
Anne Canteaut
François-Xavier Standaert (Eds.)

LN
CS

 1
26

97

40th Annual International Conference on the Theory 
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17–21, 2021, Proceedings, Part II

Advances in Cryptology – 
EUROCRYPT 2021



Lecture Notes in Computer Science 12697

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Anne Canteaut • François-Xavier Standaert (Eds.)

Advances in Cryptology –

EUROCRYPT 2021
40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17–21, 2021
Proceedings, Part II

123



Editors
Anne Canteaut
Inria
Paris, France

François-Xavier Standaert
UCLouvain
Louvain-la-Neuve, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-77885-9 ISBN 978-3-030-77886-6 (eBook)
https://doi.org/10.1007/978-3-030-77886-6

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1007/978-3-030-77886-6


Preface

Eurocrypt 2021, the 40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, was held in Zagreb, Croatia, during October 17–21, 2021.1

The conference was sponsored by the International Association for Cryptologic Research
(IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan Picek (Delft
University of Technology, The Netherlands) were responsible for the local organization.

We received a total of 400 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 59 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 78 papers. The revised versions of these papers are included in this
three-volume proceedings.

The PC decided to give Best Paper Awards to the papers “Non-Interactive Zero
Knowledge from Sub-exponential DDH” by Abhishek Jain and Zhengzhong Jin, “On
the (in)security of ROS” by Fabrice Benhamouda, Tancrède Lepoint, Julian Loss,
Michele Orrù, and Mariana Raykova and “New Representations of the AES Key
Schedule” by Gaëtan Leurent and Clara Pernot. The authors of these three papers
received an invitation to submit an extended version of their work to the Journal of
Cryptology. The program also included invited talks by Craig Gentry (Algorand
Foundation) and Sarah Meiklejohn (University College London).

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of good papers which
did not find a slot in the sparse number of accepted papers. We sincerely hope that
these works will eventually get the attention they deserve.

We are indebted to the PC and the external reviewers for their voluntary work.
Selecting papers from 400 submissions covering the many areas of cryptologic research
is a huge workload. It has been an honor to work with everyone. We owe a big thank
you to Kevin McCurley for his continuous support in solving all the minor issues we
had with the HotCRP review system, to Gaëtan Leurent for sharing his MILP programs
which made the papers assignments much easier, and to Simona Samardjiska who
acted as Eurocrypt 2021 webmaster.

Finally, we thank all the other people (speakers, sessions chairs, rump session
chairs…) for their contribution to the program of Eurocrypt 2021. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

April 2021 Anne Canteaut
François-Xavier Standaert

1 This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions due to COVID-19.



Eurocrypt 2021

The 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research
Zagreb, Croatia

October 17–21, 2021

General Co-chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Delft University of Technology, The Netherlands

Program Committee Chairs

Anne Canteaut Inria, France
François-Xavier Standaert UCLouvain, Belgium

Program Committee

Shweta Agrawal IIT Madras, India
Joël Alwen Wickr, USA
Foteini Baldimtsi George Mason University, USA
Marshall Ball Columbia University, USA
Begül Bilgin Rambus - Cryptography Research, The Netherlands
Nir Bitansky Tel Aviv University, Israel
Joppe W. Bos NXP Semiconductors, Belgium
Christina Boura University of Versailles, France
Wouter Castryck KU Leuven, Belgium
Kai-Min Chung Academia Sinica, Taiwan
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Véronique Cortier LORIA, CNRS, France
Geoffroy Couteau CNRS, IRIF, Université de Paris, France
Luca De Feo IBM Research Europe, Switzerland
Léo Ducas (Area Chair:

Public-Key Crypto)
CWI, Amsterdam, The Netherlands

Orr Dunkelman University of Haifa, Israel
Stefan Dziembowski

(Area Chair: Theory)
University of Warsaw, Poland

Thomas Eisenbarth University of Lübeck, Germany
Dario Fiore IMDEA Software Institute, Spain
Marc Fischlin TU Darmstadt, Germany



Benjamin Fuller University of Connecticut, USA
Adrià Gascón Google, UK
Henri Gilbert ANSSI, France
Shai Halevi Algorand Foundation, USA
Annelie Heuser Univ Rennes, CNRS, IRISA, France
Naofumi Homma Tohoku University, Japan
Kristina Hostáková ETH Zürich, Switzerland
Tetsu Iwata Nagoya University, Japan
Marc Joye Zama, France
Pascal Junod (Area Chair:

Real-World Crypto)
Snap, Switzerland

Pierre Karpman Université Grenoble-Alpes, France
Gregor Leander (Area Chair:

Symmetric Crypto)
Ruhr-Universität Bochum, Germany

Benoît Libert CNRS and ENS de Lyon, France
Julian Loss University of Maryland, College Park, USA
Christian Majenz CWI, Amsterdam, The Netherlands
Daniel Masny Visa Research, USA
Bart Mennink Radboud University, The Netherlands
Tarik Moataz Aroki Systems, USA
Amir Moradi Ruhr-Universität Bochum, Germany
Michael Naehrig Microsoft Research, USA
María Naya-Plasencia Inria, France
Claudio Orlandi Aarhus University, Denmark
Elisabeth Oswald (Area Chair:

Implementations)
University of Klagenfurt, Austria

Dan Page University of Bristol, UK
Rafael Pass Cornell Tech, USA
Thomas Peyrin Nanyang Technological University, Singapore
Oxana Poburinnaya University of Rochester and Ligero Inc., USA
Matthieu Rivain CryptoExperts, France
Adeline Roux-Langlois Univ Rennes, CNRS, IRISA, France
Louis Salvail Université de Montréal, Canada
Yu Sasaki NTT Laboratories, Japan
Tobias Schneider NXP Semiconductors, Austria
Yannick Seurin ANSSI, France
Emmanuel Thomé LORIA, Inria Nancy, France
Vinod Vaikuntanathan MIT, USA
Prashant Nalini Vasudevan UC Berkeley, USA
Daniele Venturi Sapienza University of Rome, Italy
Daniel Wichs Northeastern University and NTT Research Inc.,

USA
Yu Yu Shanghai Jiao Tong University, China

viii Eurocrypt 2021



Additional Reviewers

Mark Abspoel
Hamza Abusalah
Alexandre Adomnicai
Archita Agarwal
Divesh Aggarwal
Shashank Agrawal
Gorjan Alagic
Martin R. Albrecht
Ghada Almashaqbeh
Bar Alon
Miguel Ambrona
Ghous Amjad
Prabhanjan Ananth
Toshinori Araki
Victor Arribas
Gilad Asharov
Roberto Avanzi
Melissa Azouaoui
Christian Badertscher
Saikrishna

Badrinarayanan
Karim Baghery
Victor Balcer
Laasya Bangalore
Magali Bardet
James Bartusek
Balthazar Bauer
Carsten Baum
Christof Beierle
James Bell
Fabrice Benhamouda
Iddo Bentov
Olivier Bernard
Sebastian Berndt
Pauline Bert
Ward Beullens
Benjamin Beurdouche
Ritam Bhaumik
Erica Blum
Alexandra Boldyreva
Jonathan Bootle
Nicolas Bordes
Katharina Boudgoust

Florian Bourse
Xavier Boyen
Elette Boyle
Zvika Brakerski
Lennart Braun
Gianluca Brian
Marek Broll
Olivier Bronchain
Chris Brzuska
Benedikt Bünz
Chloe Cachet
Matteo Campanelli
Federico Canale
Ignacio Cascudo
Gaëtan Cassiers
Avik Chakraborti
Benjamin Chan
Eshan Chattopadhyay
Panagiotis Chatzigiannis
Shan Chen
Yanlin Chen
Yilei Chen
Yu Chen
Alessandro Chiesa
Ilaria Chillotti
Seung Geol Choi
Arka Rai Choudhuri
Michele Ciampi
Daniel Coggia
Benoît Cogliati
Ran Cohen
Andrea Coladangelo
Sandro Coretti-Drayton
Craig Costello
Daniele Cozzo
Ting Ting Cui
Debajyoti Das
Poulami Das
Bernardo David
Alex Davidson
Gareth Davies
Lauren De Meyer
Thomas Debris-Alazard

Leo de Castro
Thomas Decru
Jean Paul Degabriele
Akshay Degwekar
Amit Deo
Patrick Derbez
Itai Dinur
Christoph Dobraunig
Yevgeniy Dodis
Jack Doerner
Jelle Don
Benjamin Dowling
Eduoard Dufour Sans
Yfke Dulek
Frédéric Dupuis
Sylvain Duquesne
Avijit Dutta
Ehsan Ebrahimi
Kasra Edalat Nejdat
Naomi Ephraim
Thomas Espitau
Andre Esser
Grzegorz Fabiański
Xiong Fan
Antonio Faonio
Sebastian Faust
Serge Fehr
Patrick Felke
Rune Fiedler
Ben Fisch
Matthias Fitzi
Antonio Flórez-Gutiérrez
Cody Freitag
Georg Fuchsbauer
Ariel Gabizon
Nicolas Gama
Chaya Ganesh
Rachit Garg
Pierrick Gaudry
Romain Gay
Peter Gaži
Nicholas Genise
Craig Gentry

Eurocrypt 2021 ix



Marilyn George
Adela Georgescu
David Gerault
Essam Ghadafi
Satrajit Ghosh
Irene Giacomelli
Aarushi Goel
Junqing Gong
Alonso González
S. Dov Gordon
Louis Goubin
Marc Gourjon
Rishab Goyal
Lorenzo Grassi
Elijah Grubb
Cyprien de Saint Guilhem
Aurore Guillevic
Aldo Gunsing
Chun Guo
Qian Guo
Felix Günther
Iftach Haitner
Mohammad Hajiabadi
Mathias Hall-Andersen
Ariel Hamlin
Lucjan Hanzlik
Patrick Harasser
Dominik Hartmann
Eduard Hauck
Phil Hebborn
Javier Herranz
Amir Herzberg
Julia Hesse
Shoichi Hirose
Martin Hirt
Akinori Hosoyamada
Kathrin Hövelmanns
Andreas Hülsing
Ilia Iliashenko
Charlie Jacomme
Christian Janson
Stanislaw Jarecki
Ashwin Jha
Dingding Jia

Daniel Jost
Kimmo Järvinen
Guillaume Kaim
Chethan Kamath
Pritish Kamath
Fredrik Kamphuis
Ioanna Karantaidou
Shuichi Katsumata
Jonathan Katz
Tomasz Kazana
Marcel Keller
Mustafa Khairallah
Louiza Khati
Hamidreza Khoshakhlagh
Dakshita Khurana
Ryo Kikuchi
Eike Kiltz
Elena Kirshanova
Agnes Kiss
Karen Klein
Michael Klooß
Alexander Koch
Lisa Kohl
Vladimir Kolesnikov
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Adrien Koutsos
Hugo Krawczyk
Stephan Krenn
Ashutosh Kumar
Ranjit Kumaresan
Po-Chun Kuo
Rolando L. La Placa
Thijs Laarhoven
Jianchang Lai
Virginie Lallemand
Baptiste Lambin
Eran Lambooij
Philippe Lamontagne
Rio Lavigne
Jooyoung Lee
Alexander Lemmens

Nikos Leonardos
Matthieu Lequesne
Antonin Leroux
Gaëtan Leurent
Jyun-Jie Liao
Damien Ligier
Huijia Lin
Benjamin Lipp
Maciej Liskiewicz
Qipeng Liu
Shengli Liu
Tianren Liu
Yanyi Liu
Chen-Da Liu-Zhang
Alex Lombardi
Patrick Longa
Vadim Lyubashevsky
Fermi Ma
Mimi Ma
Urmila Mahadev
Nikolaos Makriyannis
Giulio Malavolta
Damien Marion
Yoann Marquer
Giorgia Marson
Chloe Martindale
Ange Martinelli
Michael Meyer
Pierre Meyer
Andrew Miller
Brice Minaud
Ilya Mironov
Tal Moran
Saleet Mossel
Tamer Mour
Pratyay Mukherjee
Marta Mularczyk
Pierrick Méaux
Yusuke Naito
Joe Neeman
Patrick Neumann
Khoa Nguyen
Ngoc Khanh Nguyen
Phong Nguyen

x Eurocrypt 2021



Tuong-Huy Nguyen
Jesper Buus Nielsen
Ryo Nishimaki
Abderrahmane Nitaj
Anca Nitulescu
Lamine Noureddine
Adam O’Neill
Maciej Obremski
Cristina Onete
Michele Orru
Emmanuela Orsini
Carles Padro
Mahak Pancholi
Omer Paneth
Dimitris Papachristoudis
Sunoo Park
Anat Paskin-Cherniavsky
Alice Pellet-Mary
Olivier Pereira
Léo Perrin
Thomas Peters
Duy-Phuc Pham
Krzyszof Pietrzak
Jérôme Plût
Bertram Poettering
Yuriy Polyakov
Antigoni Polychroniadou
Alexander Poremba
Thomas Prest
Cassius Puodzius
Willy Quach
Anaïs Querol
Rahul Rachuri
Hugues Randriam
Adrian Ranea
Shahram Rasoolzadeh
Deevashwer Rathee
Mayank Rathee
Divya Ravi
Christian Rechberger
Michael Reichle
Jean-René Reinhard
Joost Renes
Nicolas Resch

João Ribeiro
Silas Richelson
Tania Richmond
Doreen Riepel
Peter Rindal
Miruna Rosca
Michael Rosenberg
Mélissa Rossi
Yann Rotella
Alex Russell
Théo Ryffel
Carla Ràfols
Paul Rösler
Rajeev Anand Sahu
Olga Sanina
Pratik Sarkar
Alessandra Scafuro
Christian Schaffner
Peter Scholl
Tobias Schmalz
Phillipp Schoppmann
André Schrottenloher
Jörg Schwenk
Adam Sealfon
Okan Seker
Jae Hong Seo
Karn Seth
Barak Shani
Abhi Shelat
Omri Shmueli
Victor Shoup
Hippolyte Signargout
Tjerand Silde
Mark Simkin
Luisa Siniscalchi
Daniel Slamanig
Benjamin Smith
Fang Song
Jana Sotáková
Pierre-Jean Spaenlehauer
Nicholas Spooner
Akshayaram Srinivasan
Damien Stehlé
Marc Stevens

Siwei Sun
Mehrdad Tahmasbi
Quan Quan Tan
Stefano Tessaro
Florian Thaeter
Aishwarya

Thiruvengadam
Mehdi Tibouchi
Radu Titiu
Oleksandr Tkachenko
Yosuke Todo
Junichi Tomida
Ni Trieu
Eran Tromer
Daniel Tschudi
Giorgos Tsimos
Ida Tucker
Michael Tunstall
Akin Ünal
Dominique Unruh
Bogdan Ursu
Christine van Vredendaal
Wessel van Woerden
Marc Vauclair
Serge Vaudenay
Muthu

Venkitasubramaniam
Damien Vergnaud
Gilles Villard
Fernando Virdia
Satyanarayana Vusirikala
Riad Wahby
Hendrik Waldner
Alexandre Wallet
Haoyang Wang
Hoeteck Wee
Weiqiang Wen
Benjamin Wesolowski
Jan Wichelmann
Luca Wilke
Mary Wootters
David Wu
Jiayu Xu
Sophia Yakoubov

Eurocrypt 2021 xi



Shota Yamada
Takashi Yamakawa
Sravya Yandamuri
Kang Yang
Lisa Yang

Kevin Yeo
Eylon Yogev
Greg Zaverucha
Mark Zhandry
Jiayu Zhang

Ruizhe Zhang
Yupeng Zhang
Vassilis Zikas
Paul Zimmermann
Dionysis Zindros

xii Eurocrypt 2021



Contents – Part II

Symmetric Designs

CIMINION: Symmetric Encryption Based on Toffoli-Gates over Large
Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Christoph Dobraunig, Lorenzo Grassi, Anna Guinet,
and Daniël Kuijsters

Mind the Middle Layer: The HADES Design Strategy Revisited. . . . . . . . . . 35
Nathan Keller and Asaf Rosemarin

Password Hashing and Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Pooya Farshim and Stefano Tessaro

Compactness of Hashing Modes and Efficiency Beyond Merkle Tree . . . . . . 92
Elena Andreeva, Rishiraj Bhattacharyya, and Arnab Roy

Real-World Cryptanalysis

Three Third Generation Attacks on the Format Preserving Encryption
Scheme FF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Ohad Amon, Orr Dunkelman, Nathan Keller, Eyal Ronen,
and Adi Shamir

Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 . . . . . 155
Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent,
Håvard Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes

Implementation Issues

Pre-computation Scheme of Window sNAF for Koblitz Curves Revisited . . . 187
Wei Yu and Guangwu Xu

Dummy Shuffling Against Algebraic Attacks
in White-Box Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Alex Biryukov and Aleksei Udovenko

Advanced Lattice Sieving on GPUs, with Tensor Cores . . . . . . . . . . . . . . . . 249
Léo Ducas, Marc Stevens, and Wessel van Woerden



Masking and Secret-Sharing

Fast Verification of Masking Schemes in Characteristic Two . . . . . . . . . . . . 283
Nicolas Bordes and Pierre Karpman

On the Power of Expansion: More Efficient Constructions in the Random
Probing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb

Leakage-Resilience of the Shamir Secret-Sharing Scheme Against
Physical-Bit Leakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Hemanta K. Maji, Hai H. Nguyen, Anat Paskin-Cherniavsky, Tom Suad,
and Mingyuan Wang

Leakage, Faults and Tampering

Leakage Resilient Value Comparison with Application to Message
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Christoph Dobraunig and Bart Mennink

The Mother of All Leakages: How to Simulate Noisy Leakages
via Bounded Leakage (Almost) for Free. . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Gianluca Brian, Antonio Faonio, Maciej Obremski, João Ribeiro,
Mark Simkin, Maciej Skórski, and Daniele Venturi

Message-Recovery Laser Fault Injection Attack on the Classic McEliece
Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Drăgoi,
Alexandre Menu, and Lilian Bossuet

Multi-source Non-malleable Extractors and Applications . . . . . . . . . . . . . . . 468
Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu

Quantum Constructions and Proofs

Secure Software Leasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Prabhanjan Ananth and Rolando L. La Placa

Oblivious Transfer Is in MiniQCrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan

Security Analysis of Quantum Lightning . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Bhaskar Roberts

Classical vs Quantum Random Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Takashi Yamakawa and Mark Zhandry

xiv Contents – Part II



On the Compressed-Oracle Technique, and Post-Quantum Security
of Proofs of Sequential Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao

Classical Proofs of Quantum Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 630
Thomas Vidick and Tina Zhang

Multiparty Computation

Order-C Secure Multiparty Computation for Highly Repetitive Circuits . . . . . 663
Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk

The More the Merrier: Reducing the Cost of Large Scale MPC . . . . . . . . . . 694
S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich

Multiparty Reusable Non-interactive Secure Computation from LWE . . . . . . 724
Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin

Unbounded Multi-party Computation from Learning with Errors . . . . . . . . . . 754
Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin,
and Giulio Malavolta

Generic Compiler for Publicly Verifiable Covert Multi-Party Computation . . . 782
Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser

Constant-Overhead Unconditionally Secure Multiparty Computation Over
Binary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

Antigoni Polychroniadou and Yifan Song

Breaking the Circuit Size Barrier for Secure Computation Under
Quasi-Polynomial LPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

Geoffroy Couteau and Pierre Meyer

Function Secret Sharing for Mixed-Mode and Fixed-Point Secure
Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871

Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai,
Nishant Kumar, and Mayank Rathee

VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE . . . . . . . . . . . . . . 901
Peter Rindal and Phillipp Schoppmann

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931

Contents – Part II xv



Symmetric Designs



CIMINION: Symmetric Encryption Based
on Toffoli-Gates over Large Finite Fields

Christoph Dobraunig1,2(B), Lorenzo Grassi3(B), Anna Guinet3(B),
and Daniël Kuijsters3(B)

1 Lamarr Security Research, Graz, Austria
christoph.dobraunig@lamarr.at

2 IAIK, Graz University of Technology, Graz, Austria
3 Digital Security Group, Radboud University, Nijmegen, The Netherlands
lgrassi@science.ru.nl, email@annagui.net, Daniel.Kuijsters@ru.nl

Abstract. Motivated by new applications such as secure Multi-Party
Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-
Knowledge proofs (ZK), the need for symmetric encryption schemes that
minimize the number of field multiplications in their natural algorithmic
description is apparent. This development has brought forward many
dedicated symmetric encryption schemes that minimize the number of
multiplications in F2n or Fp, with p being prime. These novel schemes
have lead to new cryptanalytic insights that have broken many of said
schemes. Interestingly, to the best of our knowledge, all of the newly
proposed schemes that minimize the number of multiplications use those
multiplications exclusively in S-boxes based on a power mapping that is
typically x3 or x−1. Furthermore, most of those schemes rely on complex
and resource-intensive linear layers to achieve a low multiplication count.
In this paper, we present Ciminion, an encryption scheme minimizing the
number of field multiplications in large binary or prime fields, while using
a very lightweight linear layer. In contrast to other schemes that aim to
minimize field multiplications in F2n or Fp, Ciminion relies on the Toffoli
gate to improve the non-linear diffusion of the overall design. In addition,
we have tailored the primitive for the use in a Farfalle-like construction
in order to minimize the number of rounds of the used primitive, and
hence, the number of field multiplications as far as possible.

Keywords: Symmetric encryption · Low multiplicative complexity

1 Introduction

Recently, several symmetric schemes have been proposed to reduce the number of
field multiplications in their natural algorithmic description, often referred to as
the multiplicative complexity. These ciphers fall into two main categories. The first
one contains ciphers that minimize the use of multiplications in F2, for instance,
Flip [54], Keyvrium [22], LowMC [4], and Rasta [33]. The second category is com-
prised of ciphers having a natural description in larger fields, which are mostly
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 3–34, 2021.
https://doi.org/10.1007/978-3-030-77886-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_1


4 C. Dobraunig et al.

binary fields F2n and prime fields Fp. Examples include MiMC [3], GMiMC [2],
Jarvis [8], Hades [41], Poseidon [40] and Vision and Rescue [6]. The design of
low multiplicative complexity ciphers is motivated by applications such as secure
Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and
Zero-Knowledge proofs (ZK). These recent ciphers based on specialized designs
highly outperform “traditionally” designed ones in these applications. The search
of minimizing the multiplicative complexity while providing a sufficient security
level is an opportunity to explore and evaluate innovative design strategies.

The sheer number of potentially devastating attacks on recently published
designs implies that the design of schemes with low multiplicative complexity
has not reached a mature state yet. Indeed, we count numerous attacks on vari-
ants of LowMC [32,59], Flip [35], MiMC [36], GMiMC [15,19], Jarvis [1], and
Starkad/Poseidon [15]. Attacks that are performed on schemes defined for larger
fields mostly exploit weaknesses of the algebraic cipher description, e.g., Gröb-
ner bases attacks on Jarvis [1] or higher-order differential attacks on MiMC [36].
Nonetheless, attack vectors such as differential cryptanalysis [17] and linear
cryptanalysis [52] do not appear to threaten the security of these designs. Indeed,
the latter two techniques seem to be able to attack only a tiny fraction of the
rounds compared to algebraic attacks.

Interestingly, the mentioned ciphers working over larger fields are inspired by
design strategies proposed in the 1990s to mitigate differential cryptanalysis. For
example, MiMC resembles the Knudsen-Nyberg cipher [56], Jarvis claims to be
inspired by the design of Rijndael [27,28], while Hades, Vision, and Rescue take
inspiration from Shark [60]. The latter ciphers have a linear layer that consists
of the application of a single MDS matrix to the state. An important common-
ality between all those examples is a non-linear layer that operates on individ-
ual field elements, e.g., cubing single field elements or computing their inverse.
Furthermore, design strategies naturally working over larger fields easily pre-
vent differential cryptanalysis. However, algebraic attacks seem to be their main
threat. Therefore, it is worth exploring different design strategies to increase the
resistance against algebraic attacks.
Our Design: Ciminion. In that spirit, Ciminion offers a different design app-
roach in which we do not apply non-linear transformations to individual field
elements. Instead, we use the ability of the multiplication to provide non-linear
diffusion between field elements. Our cipher is built upon the Toffoli gate [62],
which is a simple non-linear bijection of field elements that transforms the triple
(a, b, c) into the triple (a, b, ab + c). The binary version of the Toffoli gate is used
as a building block in modern ciphers, such as FRIET [61], which inspired our
design. In addition to this, the S-box of Xoodoo [26] can also be described as the
consecutive application of three binary Toffoli gates. With respect to the linear
layer, we learned from ciphers like LowMC [4] that very heavy linear layers can
have a considerably negative impact on the performance of applications [31].
Therefore, we decide to pair the Toffoli gate with a relatively lightweight lin-
ear layer to construct a cryptographic permutation on triples of field elements.
Compared to the designs that use a non-linear bijection of a single field element,
e.g., cubing in F2n for odd n, we can define our permutation on any field, and
then provide a thorough security analysis for prime fields and binary fields.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 5

Fig. 1. Comparison of a Farfalle construction and a Hades-like scheme.

We do not use a bare primitive in the applications, but we employ prim-
itives in a mode of operation. Indeed, instead of constructing a primitive of
low multiplicative complexity, our goal is to provide a cryptographic function
of low multiplicative complexity. We achieve this by using a modified version
of the Farfalle construction to make it possible to perform stream encryption.
Farfalle [12] is an efficiently parallelizable permutation-based construction with
a variable input and output length pseudorandom function (PRF). It is built
upon a primitive, and modes are employed on top of it. The primitive is a PRF
that takes as input a key with a string (or a sequence of strings), and produces
an arbitrary-length output. The Farfalle construction involves two basic ingre-
dients: a set of permutations of a b-bit state, and the so-called rolling function
that is used to derive distinct b-bit mask values from a b-bit secret key, or to
evolve the secret state. The Farfalle construction consists of a compression layer
that is followed by an expansion layer. The compression layer produces a single
b-bit accumulator value from a tuple of b-bit blocks representing the input data.
The expansion layer first (non-linearly) transforms the accumulator value into a
b-bit rolling state. Then, it (non-linearly) transforms a tuple of variants of this
rolling state which are produced by iterating the rolling function, into a tuple
of (truncated) b-bit output blocks. Both the compression and expansion layers
involve b-bit mask values derived from the master key.

We slightly modify Farfalle (see Fig. 3) and instantiate it with two differ-
ent permutations: pC for the compression part, and pE for the expansion part.
Those two permutations are obtained by iterating the same round function,
but with a different number of rounds. In our construction, the permutation
pC takes an input that is the concatenation of a nonce ℵ and a secret key,
and it derives a secret intermediate state from this input. Then, the intermedi-
ate state is updated by using a simple rolling function, and fixed intermediate
keys. From this intermediate state, the keystream for encrypting the plaintext is
derived by using the permutation pE . In order to prevent backward computation,
the outputs of the expansion layers are truncated. Our security analysis that is



6 C. Dobraunig et al.

Fig. 2. Number of MPC multiplications of several designs over (Fp)t, with p ≈ 2128

and t ≥ 2 (security level of 128 bits).

presented in Sect. 4 shows that pE requires a significantly lower number of rounds
than pC . The relatively low number of multiplications that is used per encrypted
plaintext element leads to a remarkably overall low multiplicative complexity.
The full specification for Ciminion is presented in Sect. 2. A detailed rationale
of the choices made during the design process is given in Sect. 3. A reference
implementation can be found at https://github.com/ongetekend/ciminion.

A Concrete Use Case: Multi-party Computation. The primary motivation
of our design is to explore the limits on the use of non-linear operations in
cipher design, while limiting the use of linear operations, and ensuring a secure
design. The main body of our paper is thus dedicated to cryptanalysis which is
accompanied by one specific use-case, namely Secure Multi-Party Computation.

MPC is a subfield of cryptography that aims to create methods for parties to
jointly compute a function over their inputs, without exposing these inputs. In
recent years, MPC protocols have converged to a linearly homomorphic secret
sharing scheme, whereby each participant is given a share of each secret value.
Then, each participant locally adds shares of different secrets to generate the
shares of the sum of the secrets. In order to get data securely in and out of
a secret-sharing-based MPC system, an efficient solution is to directly evaluate
a symmetric primitive within such system. In this setting, “traditional” PRFs
based on, e.g., AES or SHA-3 are not efficient. Indeed, they were designed with
different computing environments in mind. Hence, they work over data types that
do not easily match the possible operations in the MPC application. As devel-
oped in [43], “traditional” PRFs like AES and SHA-3 are rather bit/byte/word-
oriented schemes, which complicate their representation using arithmetic in Fp

or/and F2n for large integer n, or prime p.
From a theoretical point of view, the problem of secure MPC is strongly

connected to the problem of masking a cryptographic implementation. This

https://github.com/ongetekend/ciminion


Ciminion: Symmetric Encryption Based on Toffoli-Gates 7

observation has been made in [45,46]. The intuition behind is that both mask-
ing and MPC aim to perform computations on shared data. In more detail, the
common strategy behind these techniques is to combine random and unknown
masks with a shared secret value, and to perform operations on these masked
values. Only at the end of the computation, the values are unmasked by combin-
ing them, in a manner that is defined by the masking scheme. In our scheme, we
use a linear sharing scheme, because affine operations (e.g., additions, or mul-
tiplications with a constant) are non-interactive and resource efficient, unlike
the multiplications that require some communication between the parties. The
number of multiplications required to perform a computation is a good estimate
of the complexity of an MPC protocol.

However, in practice, other factors influence the efficiency of a design. For
instance, while one multiplication requires one round of communication, a batch
of multiplications can be processed into a single round in many cases. In that
regard, Ciminion makes it possible to batch several multiplications due to the
parallel execution of pE . Another alternative to speed up the processing of mes-
sages is to execute some communication rounds in an offline/pre-computation
phase before receiving the input to the computation. This offline phase is cheaper
than the online rounds. For example, in the case of Ciminion, precomputing sev-
eral intermediate states is possible by applying pC to different nonces ℵ. As a
result, for the encryption of arriving messages, those intermediate states only
have to be expanded, and processed by pE to encrypt the plaintext.

Section 5 demonstrates that our design Ciminion has a lower number of
multiplications compared to several other schemes working over larger fields.
The comparison of the number of multiplications in MPC applications to the
ciphers that are presented in the literature, is shown in Fig. 2, when working
over a field (Fp)t with p ≈ 2128 and t ≥ 1, and with a security level of 128 bits
(which the most common case in the literature). It indicates that our design
needs approximately t + 14 · �t/2� ≈ 8 · t multiplications compared to 12 · t
multiplications that are required by HadesMiMC, or 60 · t multiplications that
is needed by Rescue. These two schemes that have recently been proposed in
the literature are our main competitors. Additionally, our design employs a low
number of linear operations when compared with other designs present in the
literature. Indeed, Ciminion grows linearly w.r.t. t, whereas the number of linear
operations grows quadratically in HadesMiMC and Rescue. That is because their
rounds are instantiated via the multiplication with a t × t MDS matrix. Even if
the cost of a linear operation is considerably lower than the cost of a non-linear
one in MPC applications, it is desirable to keep both numbers as low as possible.
Our design has this advantage.

2 Specification

2.1 Mode

In order to create a nonce-based stream-encryption scheme, we propose to work
with the mode of operation described in Fig. 3. First, the scheme takes a nonce



8 C. Dobraunig et al.

pC

K2

K1

ℵ

pE

P3

C3

pE

K3
K4

rol

K2l−1
K2l

rol

P4

C4

P2l−1

C2l−1

P2l

C2l

pE

P1

C1

P2

C2

Fig. 3. Encryption with Ciminion over F2n . The construction is similar over Fp (⊕ is
replaced by +, the addition modulo p).

ℵ along with two subkey elements K1 and K2 as input, and processes these
input with a permutation pC to output an intermediate state. This intermediate
state is then processed by a permutation pE , and truncated to two elements
so that two plaintext elements P1 and P2 can be encrypted. If more elements
need to be encrypted, the intermediate state can be expanded by repeatedly
performing an addition of two subkey elements to the intermediate state, then
followed by a call to the rolling function rol. After each call to the rolling function
rol, two more plaintext elements P2i and P2i+1 can be encrypted thanks to the
application of pE to the resulting state. We consider the field elements as atomic,
and therefore, our mode can cope with a different number of elements without
the need for padding. The algorithmic description of the mode of operation that
is described in Fig. 3, is provided in [34, App. A. I].

2.2 Permutations

We describe two permutations of the vector space F
3
q. They act on a state of

triples (a, b, c) ∈ F
3
q. The first permutation is defined for a prime number q = p

of log2(p) ≈ n bits, while the second permutation is specified for q = 2n. Both
permutations are the result of the repeated application of a round function.
Their only difference is the number of repeated applications that we call rounds.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 9

RC1 �

ai−1

bi−1

ci−1

ai

bi

ci

RC2 �

RC3 �

·RC4 �

Fig. 4. Round function fi.

Fig. 5. rol.

pC

MK2

MK1

IV H

K1

pC

. . .

. . .

. . . pC

K2l−1 K2l

Fig. 6. Key generation.

As presented in Fig. 3, we employ two permutations pC and pE that have respec-
tively N and R rounds.

Round Function. We write fi for round i (Fig. 4). It uses four round constants
RC �, with � = i for pC , and � = i+N −R for pE . We assume that RC4 � /∈ {0, 1}.
For each i ≥ 1, fi maps a state (ai−1, bi−1, ci−1) at its input to the state (ai, bi, ci)
at its output, where the relation between these two states is

⎡
⎣

ai

bi

ci

⎤
⎦ :=

⎡
⎣

0 0 1
1 RC4 � RC4 �

0 1 1

⎤
⎦ ·

⎡
⎣

ai−1
bi−1

ci−1 + ai−1 · bi−1

⎤
⎦ +

⎡
⎣

RC3 �

RC1 �

RC2 �

⎤
⎦ .

2.3 The Rolling Function

Our rolling function rol is a simple NLFSR as depicted in Fig. 5. The rolling
function takes three field elements ιa, ιb, and ιc at the input. It outputs three
field elements: ωa := ιc + ιa · ιb, ωb := ιa, and ωc := ιb. The latter variables form
the input of the permutation pE in our Farfalle-like mode Fig. 3.

2.4 SubKeys and Round Constants

SubKeys Generation. We derive the SubKey material Ki from two master
keys MK1, and MK2. As a result, the secret is shared in a compact manner,
while the expanded key is usually stored on a device, and used when needed.
To expand the key, we use the sponge construction [13] instantiated with the



10 C. Dobraunig et al.

Table 1. Proposed number of rounds based on f . The security level s must satisfy
64 ≤ s ≤ log2(q), and q ≥ 264, where q is the number of elements in the field.

Instance pC pE (two output words per block)
Standard s + 6 max

{⌈
s+37
12

⌉
, 6

}
Data limit 2s/2 elements 2(s+6)

3 max
{⌈

s+37
12

⌉
, 6

}
Conservative s + 6 max

{(⌈
3
2 · s+37

12

⌉)
, 9

}

permutation pC (Fig. 6). The value IV H can be made publicly available, and is
typically set to one.

Round Constants Generation. We generate the round constants RC1 �,
RC2 �, RC3 �, and RC4 � with Shake-256 [14,55]. The detail is provided in [34,
App. A].

2.5 Number of Rounds and Security Claim for Encryption

In this paper, we assume throughout that the security level of s bits satisfies the
condition 64 ≤ s ≤ 	log2(q)
. This implies that q ≥ 264.

In Table 1, we define three sets of round numbers for each permutation in
our encryption scheme:

– The “standard” set guarantees s bit of security; in the following sections, we
present our security analysis that supports the chosen number of rounds for
this case.

– For our MPC application, we propose a number of rounds if the data available
to the attacker is limited to 2s/2; our security analysis that supports the
chosen number of rounds for this case is presented in [34, App. F].

– Finally, we present a “conservative” number of rounds where we arbitrarily
decided to increase the number of rounds by 50% of the standard instance.

Since many cryptanalytic attacks become more difficult with an increased
number of rounds, we encourage to study reduced-round variants of our design
to facilitate third-party cryptanalysis, and to estimate the security margin. For
this reason, it is possible to specify toy versions of our cipher, i.e., with q < 264
which aim at achieving, for example, only 32 bits of security.

3 Design Rationale

3.1 Mode of Operation

In order to provide encryption, our first design choice is to choose between a mode
of operation that is built upon a block cipher or a cryptographic permutation. In
either case, a datapath design is necessary. However, a block cipher requires an
additional key schedule, unlike a cryptographic permutation. If a designer opts



Ciminion: Symmetric Encryption Based on Toffoli-Gates 11

pC

K2

K1

ℵ

pE

K2s+2

C2s

rol

rol

P2s

C2s+1

K2s+3 P2s+1

pE

K3

C1

P1

C2

K4 P2

Fig. 7. Intermediate step in constructing Fig. 3

for a block cipher, the key schedule can be chosen to be either a non-linear, an
affine, or a trivial transformation, where the round keys are equal to the master
key apart from round constants. In this case, the designer has to be careful,
because a poor key schedule leads to weaknesses and attacks [19]. Considering
that the research in low multiplicative complexity ciphers is a relatively new
research area, we decided to limit our focus to the essential components of a
primitive. Therefore, we opted for permutation-based cryptography.

Since we consider the application of low multiplicative ciphers in areas that
have enough resources to profit from parallel processing, we base our mode of
operation on the Farfalle construction [12] as depicted in Fig. 1a. The Farfalle
construction is a highly versatile construction that provides many functionalities.

A Modified Version of Farfalle. As already mentioned in the introduction,
our mode of operation resembles the Farfalle construction. In this section, we
explain and support the modifications that we performed on the original Farfalle
construction, as depicted in Fig. 1a. The aim of those modifications is to both
increase the resistance of the construction against algebraic attacks which are the
most competitive ones in our scenario, and to increase its efficiency in our target
application scenario, that is to say to minimize the number of multiplications.
We focus first on the security aspect, before explaining in further detail how we
reach our efficiency goal.

Our first modification is for simplicity. Since the functionality provided by
the Farfalle construction to compress information is not needed, we merge pc

and pd to a single permutation pC .
Our second modification is to truncate the output. This prevents meet-in-

the-middle style attacks that require the knowledge of the full output.
The third modification is to manipulate different keys Ki (see Fig. 7) instead

of employing the same key k′ for each output block. Since we aim to have a
permutation with a low degree, Gröbner bases are the main threat. For the
scheme that is depicted in Fig. 7, an attacker has to exploit equations of the
form f(x) + Ki = y and f(x′) + Ki = y′, with f(x) − f(x′) = y − y′ for a
Gröbner basis attack. We describe this scenario in more detail in Sect. 4.4.



12 C. Dobraunig et al.

Our last modification is to move the keys Ki from the output of pE to the
input of our rolling function, and hence, effectively to the input of pE (Fig. 3).
Figure 3 is our final construction, and it provides two main benefits. First, hav-
ing the keys at the input does not make it possible to easily cancel them by
computing the difference of the output as described before. Hence, this adds
an additional barrier in mounting successful Gröbner basis attacks. Second, we
can use a simple non-linear rolling function, because the addition of the key
stream during the rolling function prevents the attacker from easily detecting
short cycles within it.

Minimizing the Number of Multiplications. One main reason to use the
Farfalle construction is that its three permutations pc, pd, and pe do not have
to provide protection against all possible attack vectors. Indeed, the permuta-
tion pe alone does not have to provide resistance against higher-order differential
attacks [48,50]. The latter are particular algebraic attacks that exploit the low
degree polynomial descriptions of the scheme. Resistance against higher-order
differential attacks (higher-order attacks in short) can be provided by the per-
mutations pc, and pd, and it inherently depends on the algebraic degree that a
permutation achieves. Hence, requiring protection against higher-order attacks
provides a lower bound on the number of multiplications that are needed in a per-
mutation. In a nutshell, since pe does not have to be secure against higher-order
attacks, we can use a permutation with fewer multiplications. This benefits the
multiplication count of the scheme, since the permutations pc and pd are called
only once independently of the number of output words.

The Rolling Function. An integral part of the Farfalle construction is the
rolling function rol. The permutations pc and pe (Fig. 1a) in the Farfalle construc-
tion are usually chosen to be very lightweight, such that the algebraic degree is rel-
atively low. Hence, to prevent higher-order attacks, the rolling function is chosen
to be non-linear. In our modified version, the same is true up to the intermediate
construction as depicted in Fig. 7. In this case, rol has to be non-linear in order to
use a permutation pE of low degree. For our final construction (Fig. 3), we do not
see any straightforward way to exploit higher-order attacks due to the unknown
keys at the inputs of pE . Thus, we could use a linear rolling function rol, but we
rather choose to use a simple non-linear rol forCiminion. That is because it makes
it possible to analyze the security of Fig. 7, and to keep the same conclusion when
we opt for the stronger version of Fig. 3. In addition, we present Aiminion in [34,
App. B], a version of our design that does not follow this line of reasoning. Aimin-
ion uses a linear rolling function, and nine rounds of pE . We deem this version
to be an interesting target for further analysis that aims to evaluate the security
impact of switching from a non-linear to a linear rolling function.

Generating the Subkeys. Instead of sharing all subkeys Ki directly by com-
municating parties to encrypt messages, we specify a derivation of the subkeys
Ki from two master keys MK1, and MK2. These subkeys can be generated in
a single precomputation step. For the storage of the subkeys, trade-offs can be
made to store as many subkeys as needed, and to split messages into lengths
that match the stored subkey lengths.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 13

3.2 The Round Function

Our round function is composed of three layers: a non-linear transformation, a
linear transformation, and a round constant addition. Like classical designs, we
employ the same non-linear and linear transformations for each round, but with
different round constant additions. This makes it easier to implement, and to
reduce code-size and area requirements. Nonetheless, some primitives that have
been designed to lower the multiplicative complexity use a different linear layer
for each round, like in LowMC [4].

Non-linear Transformation. Most primitives operating in large fields have
a variant of powering field elements, e.g., x3 or x−1. These mappings became
popular to guard against linear and differential cryptanalysis due to their prop-
erties [56]. The most popular design that uses such mappings is the AES [28],
where x−1 is used as part of its S-box. For ciphers that aim at a low multiplica-
tive complexity, these power mappings are interesting because they often have
an inverse of high degree, which provides protection against algebraic attacks.
However, they impose some restrictions, e.g., the map x �→ xα for integer α ≥ 2
is a bijection in Fq if and only if gcd(q − 1, α) = 1 (e.g., x �→ x3 is a permutation
over F2n for odd n only). Hence, one has to consider several power values α in
order for xα to stay a permutation for any field. In a design that should make it
possible to be instantiated for a wide variety of fields, considering those special
cases complicates the design of the cipher.

Instead of a power mapping, the non-linear element in our designs is the
Toffoli gate [62]. Indeed, algebraic attacks are the main threat against designs
aiming to lower the multiplicative complexity, and the multiplications are the
main cost factor in our design. It thus seems counter intuitive to spend the non-
linear element on simply manipulating a single field element, as is the case for
power mappings. Therefore, we choose to multiply two elements of the state,
instead of operating on a single state element, in order to increase the non-
linear diffusion. Furthermore, the Toffoli gate is a permutation for any field, and
therefore we are not restricted to a specific field. We mitigate potential negative
effects of the property of the Toffoli gate to provide the same degree in forward
and backward direction by mandating its use only in modes that truncate the
permutation output, and that never evaluate its inverse using the secret key.

Linear Transformation. We present the linear transformation in its matrix
form, the coefficients of which must be carefully chosen. One possibility is to
use an MDS matrix. Since an MDS matrix has the highest branch number [24]
among all possible matrices, it plays an important role in proving lower bounds
on the linear and differential trail weight. However, we do not need to rely on
MDS matrices as the field multiplications already have advantageous properties
against linear and differential attacks.

Another option is to randomly choose the coefficients of the matrix for each
round, and then verify that the matrix is invertible. This strategy was used in one
of the first low multiplicative complexity designs, namely LowMC [4]. However,
the drawback is that random matrices contribute significantly to the cost of the



14 C. Dobraunig et al.

primitive in some scenarios, and the security analysis becomes more involved.
Hence, we have decided to use a much simpler linear layer.

In order to provide sufficient diffusion, complex equation systems, and low
multiplicative complexity, the degree of the functions that output equations
depending on the input variables must grow as fast as possible. By applying
a single multiplication per round, the degree doubles per round in the best sce-
nario. However, this also depends on the linear layer. For instance, this layer
could be a simple layer permuting the elements (e.g., the 3 × 3 circulant matrix
circ(0, 0, 1)), for which the univariate degree of a single element only grows
according to a Fibonacci sequence. To ensure that the univariate degree of a
single element doubles per round, the result of the previous multiplication has
to be reused in the multiplication of the next round. This is also applicable to
the inverse of the permutation. Hence, we decided to use the following matrix
for the linear layer:

M =

⎡
⎣

0 0 1
1 RC4 RC4
0 1 1

⎤
⎦ (and M−1 =

⎡
⎣

0 1 −RC4
−1 0 1
1 0 0

⎤
⎦ ),

Here, M0,2, M1,2, M−1
0,2, M−1

1,2 = 0 with Mi,j denoting the element of the
matrix M at row i and column j. The use of the round constant RC4 /∈ {0, 1}
is motivated by aiming to improve the diffusion, and to avoid a weakness with
respect to linear cryptanalysis that we discuss in Sect. 4.1.

About Quadratic Functions. In addition to the matrix multiplication, another
(semi-)linear transformation1 over a binary field F2n is the quadratic permuta-
tion x �→ x2. This transformation can be exploited as a component in the round
function (e.g., as a replacement of the multiplication by RC4 ) to both increase
the diffusion and the overall degree of the function that describes the scheme.
However, we do not employ it for several reasons. First, even if the quadratic
permutation is linear over F2n , its cost in an application like MPC might not be
negligible. Indeed, the quadratic permutation costs one multiplication as detailed
in [43]. As a result, even if it makes it possible to reduce the overall number of
rounds due to a faster growth of the degree, the overall number of multipli-
cations2 would not change for applications like MPC. Secondly, the quadratic
function is not a permutation over Fp for a prime p = 2. Thus, its introduction
implies having to work with two different round functions: one for the binary
case and one for the prime case. Since our goal is to present a simple and elegant
general scheme, we decided not to use it.

Round Constants. The round constants break up the symmetry in the design.
They prevent the simplification of the algebraic description of the round func-
tion. However, as we manipulate many round constants, and since they influence
1 A function f over (F, +) is semi-linear if for each x, y ∈ F: f(x + y) = f(x) + f(y).

It is linear if it is semi-linear and if for each x ∈ F: f(α · x) = α · f(x).
2 A minimum number of multiplications is required to reach maximum degree, which

is one of the property required by a cryptographic scheme to be secure.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 15

the rounds in a complex manner, we use an extendable output function to obtain
round constant values without an obvious structure. We performed some exper-
iments where we added round constants to one or two state elements. These
instances provided simpler algebraic descriptions. Considering the small costs of
manipulating dense round constants, we decide to use three round constants to
complicate the algebraic description of the cipher, even after a few rounds.

4 Security Analysis

We present our security analysis of Ciminion with respect to “standard” applica-
tion of the attacks that are found in the literature. This analysis determines the
required number of rounds to provide some level of confidence in its security. Due
to page limitation, further analysis is presented in the full version of the paper.

First and foremost, the number of rounds that guarantees security up to s
bits are computed under the assumption that the data available to the attacker
is limited to 2s, except if specified in a different way. Moreover, we do not make
any claim about the security against related-key attacks and known- or chosen-
key distinguishers (including the zero-sum partitions). The latter are out the
scope of this paper.

We observe that the attack vectors penetrating the highest number of rounds
are algebraic attacks. On the contrary, traditional attacks, such as differen-
tial and linear cryptanalysis, are infeasible after a small number of rounds. As
detailed in the following, in order to protect against algebraic attacks and higher-
order differential attacks, we increase the number of rounds proportionally to the
security level s. A constant number of rounds is added to prevent an adversary
from guessing part of the key or the initial or middle state, or to linearize part
of the state. Hence, the numbers of rounds for pC and pE are respectively s + 6
and

⌈
s+19
12 + 1.5

⌉
for the standard security level.

4.1 Linear Cryptanalysis

Linear cryptanalysis [52] is a known-plaintext attack that abuses high correla-
tions [25] between sums of input bits and sums of output bits of a cryptographic
primitive. However, classical correlation analysis is not restricted to solely primi-
tives operating on elements of binary fields. In this section, we apply the existing
theory developed by Baignères et al. [9] for correlation analysis of primitives that
operate on elements of arbitrary sets to the permutations defined in Sect. 2.

General Correlation Analysis. An application of the theory to ciphers oper-
ating on elements of binary fields is presented by Daemen and Rijmen [29]. In
this section, we apply the theory to the more general case of primitives operating
on elements of Fq where q = pn. Henceforth, we suppose that f : (Fq)l → (Fq)m.

Correlation analysis is the study of characters, and their configuration in the
l-dimensional vector space L2((Fq)l) of complex-valued functions (Fq)l → C.
The space L2((Fq)l) comes with the inner product 〈g, h〉 =

∑
g(x)h(x), which

defines the norm ‖g‖ =
√〈g, g〉 = q

l
2 .



16 C. Dobraunig et al.

Fig. 8. Mask propagation in f

A character is an additive homomorphism from (Fq)l into S := {z ∈ C : |z| =
1}. It is well-known that any character on (Fq)l is of the form

χu(x) = e
2πi

p Trq
p(u

�x) ,

for some u ∈ (Fq)l. We recall that for q = 2 we have that χu(x) = (−1)u�x, which
appears in classical correlation analysis. Here, Trq

p(x) = x+x2 + · · ·+xpl−1 ∈ Fp

is the trace function. For this reason, u�x is called a vectorial trace parity and
u a trace mask vector. We call the ordered pair (u, v) a linear approximation of
f , where u is understood to be the mask at the input and v to be the mask at
the output of f .

We define the vectorial trace parity correlation in the following definition.

Definition 1 (Correlation).

Cf (u, v) = 〈μu, μv ◦ f〉
‖μu‖‖μv ◦ f‖ = 1

ql

∑
x∈(Fq)l

e
2πi

p Trq
p(u

�x−v�f(x))

This helps us to define a more general linear probability metric as follows.

Definition 2 (Linear probability). LPf (u, v) = | Cf (u, v)|2

The idea is then to consider the permutation as a circuit made of simple building
blocks. Those blocks correspond to the operators that we apply, and for which we
attach to each edge a trace mask vector. Importantly, these trace mask vectors
are in one-to-one correspondence with characters. The goal of the attacker is to
construct a linear trail from the end of the permutation to the beginning, with
the goal of maximizing the linear probability of each building block. A list of the
linear probabilities of each such building block can be found in [34, App. C.2] to
deduce the result of the analysis.

On Three-Round Linear Trails. Figure 8 illustrates how the linear masks
propagate through the round function when the linear probabilities of all building
blocks are maximized. In this Figure, c� := RC4 �. The attacker is able to choose



Ciminion: Symmetric Encryption Based on Toffoli-Gates 17

u, v, and w freely at the beginning of the first round, and afterwards, a mask at
the input of the next round is determined by a mask at the output of the former
round. We write Ri for the i’th round function. Moreover, we use the notation
cij := cicj and cijk := cicjck, where the subscript refers to the round number.
The masks evolve as follows:⎛

⎝
u
v
w

⎞
⎠ R0−−→

⎛
⎝

v
c1v + w

u + c1v + w

⎞
⎠ R1−−→

⎛
⎝

c1v + w
u + (c1 + c12)v + (1 + c2)w

u + (1 + c1 + c12)v + (1 + c2)w

⎞
⎠

R2−−→
⎛
⎝

u + (c1 + c12)v + (1 + c2)w
(1 + c3)u + (1 + c1 + c12 + c13 + c123)v + (1 + c2 + c3 + c23)w
(1 + c3)u + (1 + 2c1 + c13 + c12 + c123)v + (2 + c2 + c3 + c23)w

⎞
⎠ .

An implicit assumption in both Fig. 8, and the mask derivation above, is that the
masks at the output of the multiplication and at the input of the third branch
are equal. However, an attacker can only make sure that this assumption is valid
if the following system of equations has a non-zero solution:

⎛
⎝

1 c1 1
1 1 + c1 + c12 1 + c2

1 + c3 1 + 2c1 + c13 + c12 + c123 2 + c2 + c3 + c23

⎞
⎠

⎛
⎝

u
v
w

⎞
⎠ =

⎛
⎝

0
0
0

⎞
⎠ .

If we denote by A the matrix above, then this happens if and only if the matrix is
singular, i.e., if det(A) = c2c3 +1 = 0. If either c2 or c3 is equal to zero, then the
condition does not hold. If both are non-zero, then the condition is equivalent
to requiring that c2 = −c−1

3 . In this case, we can freely choose one value, which
determines the other. Hence, the probability that the condition holds is equal to
q−1
q2 < 1

q . Since log2(q) is the security parameter, this probability is negligible
and there exists no three-round trail with a linear probability of 1.
Clustering of Linear Trails. We have LPf (u, v) ≥ ∑

Q∈LTf (u,v) LP(Q), where
LTf (u, v) is the set of linear trails contained in (u, v). If we suppose now that
an attacker is able to find more than q linear trails, i.e., if |LTf (u, v)| > q, then
we have LPf (u, v) > 1

q . However, log2(q) is the security parameter, therefore the
latter condition is not feasible. In a nutshell, three rounds are sufficient to resist
against linear cryptanalysis.
Round Constant Multiplication Necessity. If the multiplication by the
round constant is not present, or RC4 � = 1, then the masks evolve as follows
over a single round:

⎛
⎝

u
v
w

⎞
⎠ f−1

−−→
⎛
⎝

v + x
v + w + y
u + v + w

⎞
⎠ if u=v and x=y=w=0−−−−−−−−−−−−−−→

⎛
⎝

v
v
0

⎞
⎠ f−1

−−→
⎛
⎝

v
v
2v

⎞
⎠ ,

where (x, y) is the mask vector at the input of the multiplication function, which,
like u, v, and w, can be freely chosen. Hence, if we choose u = v, and x = y =
w = 0, and since the characteristic of the field is equal to two, then a one-round
approximation with a linear probability of one can be chained indefinitely. This
is the reason behind including a multiplication by a non-trivial constant.



18 C. Dobraunig et al.

4.2 Differential Cryptanalysis

Differential cryptanalysis exploits the probability distribution of a non-zero input
difference leading to an output difference after a given number of rounds [17].
As Ciminion is an iterated cipher, a cryptanalyst searches for ordered sequences
of differences over r rounds that are called differential characteristics/trails. A
differential trail has a Differential Probability (DP). Assuming the independence
of the rounds, the DP of a differential trail is the product of the DPs of its one-
round differences (Definition 3).

Definition 3 (One-round differential probability). Let (αa, αb, αc) ∈
(Fp)3 be the input of the round, and (α∗

a, α∗
b , α∗

c) ∈ (Fp)3 the chosen non-zero
input difference. The probability that an input difference is mapped to an output
difference (β∗

a, β∗
b , β∗

c ) ∈ (Fp)3 through one iteration of the round function f is
equal to

|f(α∗
a + αa, α∗

b + αb, α∗
c + αc) − f(αa, αb, αc) = (β∗

a, β∗
b , β∗

c )|
|(Fp)3| .

The operation + is replaced by ⊕ in F2n .

However, in general, the attacker does not have any information about the
intermediate differences of the differential trail. Hence, the attacker only fixes
the input and the output differences over r rounds, and works with differentials.
A differential is a collection of differential trails with fixed input and output
differences, and free intermediate differences. The DP of a differential over r
rounds is the sum of all DPs of the differential trails that have the same input
and output difference over the same number of rounds as the differential.

In this paper, we perform the differential cryptanalysis by grouping fixed
differences in sets. Those sets impose some conditions to satisfy between the
differences of the branches of the round, and/or specify that some differences at
the input of the branches equal zero. Then, given an input difference, we study
the possible sets of output differences after a round, and we determine the DP
that an input difference is mapped into an output difference over a round. The
goal is to find the longest differential trail with the highest DP.

Toward this end, we build a state finite machine (more details in [34, App.
C.3]) that represents all the encountered sets of differences as states associated
to their differential probabilities. To construct the graph, we start with a differ-
ence of the form {(0, 0, x)|x = 0}, and we search for the possible sets of output
differences until we have explored all the possibilities from each newly reached
set. Hereafter, let us assume that the difference x is not zero. We see that an
input difference from {(0, 0, x)} is mapped into an output difference of the form
{(x, RC4 �x, x)} after one round with probability one. Indeed, since the input
difference goes through the non-linear operation and stays unchanged, the out-
put difference is simply the result of the linear operation applied to the input
difference. For the other cases, a non-zero input difference propagates to an out-
put difference over one round with probability equal to p−1 in Fp, or 2−n in
F2n . From those results, we determine the differential over three rounds with
the highest DP.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 19

On Three-Round Differentials. The differential trail in Fp with the highest
DP is

{(0, 0, x)} prob. 1−−−−→ {(x, RC4 �x, x)} prob. p−1
−−−−−−→ {(−RC4 �x, x, 0)} prob. p−1

−−−−−−→ {(0, 0, x)} ,

where the fixed input difference x is equal to another fixed value in the following
rounds, and satisfies the conditions imposed by the set (for details see [34, App.
C.3]). Additionally, this differential trail holds if and only if the round constant
RC4 � introduced by the first round is equal to the round constant RC4 � of the
third round.

In F2n , we obtain almost the same state finite machine as in Fp. The
only exception is that the set of differences {(−RC4 �x, x, 0)} corresponds to
{(RC4 �x, x, 0)}, because −z is equal to z for each z ∈ F2n . Hence, the differen-
tial trail in F2n with the highest DP is

{(0, 0, x)} prob. 1−−−−→ {(x, RC4 �x, x)} prob. 2−n

−−−−−−→ {(RC4 �x, x, 0)} prob. 2−n

−−−−−−→ {(0, 0, x)} ,

under the same conditions that in Fp.
In summary, a fixed difference from {(0, 0, x)} is mapped to the difference

of the form {(x, RC4 �x, x)} after one round with probability one in F2n and in
Fp. Moreover an input difference can be mapped to an output difference of the
form {(0, 0, x)} with DP p−1 (resp. 2−n) if and only if this difference is of the
form {(−RC4 �x, x, 0)}. This means that the only possible differential trail over
three rounds with input and output differences of the form {(0, 0, x)} are the
ones given before. The DP of this differential trail is expressed in the following
Lemma.

Lemma 1. A differential trail over three rounds has a probability at most equal
to p−2 in Fp and 2−2n in F2n .

The DP of all other differential trails over three round are at most equal to
p−3 in Fp and 2−3n in F2n . Since the security level s satisfies s ≤ log2(p) in Fp

and s ≤ n in F2n , we therefore conjecture that three rounds are sufficient to guar-
antee security against “basic” differential distinguishers. We thus choose to have
at least six rounds for the permutations pE and pC , which is twice the number
of rounds necessary to guarantee security against “basic” differential/linear dis-
tinguishers. The minimal number of rounds for the permutations should provide
security against more advanced statistical distinguishers.

4.3 Higher-Order Differential and Interpolation Attacks

If a cryptographic scheme has a simple algebraic representation, higher-order
attacks [48,50] and interpolation attack [47] have to be considered. In this part,
we only focus on higher-order differential attacks. We conjecture that the number
of rounds necessary to prevent higher-order differential attacks is also sufficient
to prevent interpolation attacks (see details in [34, App. D]). This result is not
novel, and the same applies for other schemes, like MiMC, as further explained
in [36].



20 C. Dobraunig et al.

Background. We recall from Fig. 3 that an attacker can only directly manip-
ulate a single element, and the two other elements are the secret subkeys. We
therefore operate with this single element to input value sets, while keeping the
two other elements fixed. Each output element is the result of a non-linear func-
tion depending on the input element x, and two fixed elements that are the
input of the permutation. Thus, we have fN (x) = p(x, const, const) in F2n , and
fp(x) = p(x, const, const) in Fp.

A given function fp over prime fields Fp is represented by fp(x) =
∑p−1

i=0 κix
i

with constants κi ∈ Fp. The degree of the function fp(x) that we denote by
dFp

, corresponds to the highest value i for which κi = 0. The same holds for a
function fn working over binary extension fields F2n . For the latter, fN (x) =⊕d

i=0 κix
i with κi ∈ F2n , and dF2n is the degree of the function fn(x). Like

previously, the degree is the highest value i for which κi = 0. In F2n , the function
can as well be represented by its algebraic norm form (ANF)

−→
fn(x1, . . . , xn),

whose output element j is defined by its coordinate function fn,j(x1, . . . , xn) =⊕
u=(u1,...,u2) κj,u ·xu1

1 · . . . ·xun
n with κj,u ∈ F2. The degree dF

n
2
of

−→
fn corresponds

to the maximal Hamming weight of u for which κj,u = 0, that is to say dF
n
2

=
maxi≤d{hw(i) | κi = 0}.

For the last representation, as proved by Lai [50] and in[48], if we iterate
over a vector space V having a dimension strictly higher than dF

n
2
, we obtain

the following result:
⊕

v∈V⊕ν fn(v) = 0 . A similar result has also been recently
presented for the prime case in [36, Proposition 2]. More precisely, if the degree
of fp(x) is dFp

, then iterating over all elements of a multiplicative subgroup G of
F

t
p of size |G| > dFp

leads to
∑

x∈G fp(x) = fp(0) · |G| . The last sum is equal to
zero modulo p since |G| is a multiple of p.

In order to provide security against higher-order differential attacks based on
the presented zero-sums, we choose the number of rounds of our permutation to
have a function of a degree higher than our security claim.

Overview of our Security Argument. In our construction, we assume that
an attacker can choose the nonce ℵ, which is the input of the permutation pC . For
the first call of this permutation, we want to prevent an attacker to input value
sets that always result in the same constant after the application of the permuta-
tion pC . This requirement is necessary, since we assume in the remaining analysis
that the output values of pC are unpredictable by an attacker. We emphasize
that if the output of the permutation pC is guaranteed to be randomly dis-
tributed, then this is sufficient to prevent higher-order differential attacks. That
is because the inverse of the final permutations pE is never evaluated, and the
attacker cannot construct an affine subspace in the middle of the construction.

Estimating the Degree of pC : Necessary Number of Rounds. We study
the evolution of the degrees dFp

and dF2n for the permutation pC for which the
round function f (Fig. 3) is iterated r times. We conclude that the degree of
the permutation pC remains unchanged for two rounds, if an input element is
present at branch a, and the input at the branch b is zero. For a higher number
of rounds, the degree increases. We have chosen the affine layer to ensure that



Ciminion: Symmetric Encryption Based on Toffoli-Gates 21

the output of the multiplication can affect both inputs of the multiplication in
the next round. This should make it possible for the maximal possible degree
of the output functions to increase faster than having affine layers without this
property. In the best case, the maximal degree of the function can be doubled
per round.

Considering both previous observations, a minimum of s + 2 rounds are
required to obtain at least dFp

≈ 2s, or dF2n ≈ 2s. As we want to ensure that
the polynomial representation of pC is dense, it is then advisable to add more
rounds as a safety margin. In order to reach this goal, we arbitrarily decided to
add four more rounds.

4.4 Gröbner Basis Attacks

Preliminary. To perform a Gröbner basis [21] attack, the adversary constructs
a system of algebraic equations that represents the cipher. Finding the solution
of those equations makes it possible for the attacker to recover the key that is
denoted by the unknown variables x1, ..., xn hereafter. In order to solve this sys-
tem of equations, the attacker considers the ideal generated by the multivariate
polynomials that define the system. A Gröbner basis is a particular generating
set of the ideal. It is defined with respect to a total ordering on the set of mono-
mials, in particular the lexicographic order. As a Gröbner basis with respect to
the lexicographic order is of the form

{x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)},

the attacker can easily find the solution of the system of equations. To this end,
one method is to employ the well-known Buchberger’s criterion [21], which makes
it possible to transform a given set of generators of the ideal into a Gröbner basis.
From a theoretic point of view, state-of-the-art Gröbner basis algorithms are
simply improvements to Buchberger’s algorithm that include enhanced selection
criteria, faster reduction step by making use of fast linear algebra, and an attempt
to predict reductions to zero. The best well-known algorithm is Faugère’s F5
algorithm [11,37].

Experiments highlighted that computing a Gröbner basis with respect to
the lexicographic order is a slow process. However, computing a Gröbner basis
with respect to the grevlex order can be done in a faster manner. Fortunately,
the FGLM algorithm [38] makes it possible to transform a Gröbner basis with
respect to the grevlex order to another with respect to the lexicographic order.
To summarize, the attacker adopts the following strategy:

1. Using the F5 algorithm, compute a Gröbner basis w.r.t. the grevlex order.
2. Using the FGLM algorithm, transform the previous basis into a Gröbner basis

w.r.t. the lexicographic order.
3. Using polynomial factorization and back substitution, solve the resulting sys-

tem of equations.



22 C. Dobraunig et al.

Henceforth, we consider the following setting: let K be a finite field, let
A = K[x1, . . . , xn] be the polynomial ring in n variables, and let I ⊆ A be an
ideal generated by a sequence of polynomials (f1, . . . , fr) ∈ Ar associated with
the system of equations of interest.

Cost of the F5 Algorithm. In the best adversarial scenario, we assume that the
sequence of polynomials associated with the system of equations is regular.3 In
this case, the F5 algorithm does not perform any redundant reductions to zero.

Write FA/I for the Hilbert-Series of the algebra A/I and HA/I for its Hilbert
polynomial. The degree of regularity Dreg is the smallest integer such that
FA/I(n) = HA/I(n) for all n ≥ Dreg. The quantity Dreg plays an important role
in the cost of the algorithm. If the ideal I is generated by a regular sequence of
degrees d1, . . . , dr, then its Hilbert series equals FA/I(t) =

∏r

i=1
(1+t+t2+···+tdi−1)

(1−t)n−r .
From this, we deduce that deg(I) =

∏r
i=1 di, and Dreg = 1 +

∑r
i=1(di − 1).

The main result is that if f1, . . . , fr is a regular sequence in K[x1, . . . , xn],
then computing a Gröbner basis with respect to the grevlex order using the F5
algorithm can be performed within

O
((

n + Dreg

Dreg

)ω)

operations in K, where 2 ≤ ω ≤ 3 is the matrix multiplication exponent.

Costs of Gröbner Basis Conversion and of Back Substitution. FGLM is an algo-
rithm that converts a Gröbner basis of I with respect to one order, to a Gröbner
basis of I with respect to a second order in O(n deg(I)3) operations in K. Finally,
as proved in [39], the cost of factorizing a univariate polynomial in K[x] of degree
d over Fpn for a prime p is O(d3n2 + dn3).

Number of Rounds. After introducing the Gröbner Basis attack, we analyze
the minimum number of rounds that is necessary to provide security against this
attack. However, we first emphasize that:

– there are several ways to set up the system of equations that describes the
scheme. For instance, we could manipulate more equations, and thus more
variables, of lower degree. Alternatively, we could work with less equations,
and thus less variables, of higher degree. In addition, we could consider the
relation between the input and the output, or between the middle state and
the outputs, and so on. In the following, we present some of these strategies,
that seem to be the most competitive ones;

– computing the exact cost of the attack is far from an easy task. As largely
done in the literature, we assume that the most expensive step is the “F5
Algorithm”. If the cost of such a step is higher than the security level, we
conclude that the scheme is secure against the analyzed attack.

3 A sequence of polynomials (f1, . . . , fr) ∈ Ar is called a regular sequence on A if the
multiplication map mfi : A/〈f1, . . . , fi−1〉 → A/〈f1, . . . , fi−1〉 given by mfi ([g]) =
[g][fi] = [gfi] is injective for all 2 ≤ i ≤ r.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 23

A Weaker Scheme. Instead of using the model that is described in Fig. 3, we
analyze a weaker model as illustrated in Fig. 7. In the latter, the key is added after
the expansion part, instead of before the rolling function application. This weaker
model is easier to analyze, and makes it possible to draw a conclusion regarding
the security of our scheme. Thus, we conjecture that if the scheme proposed
in Fig. 7 is secure w.r.t. Gröbner Basis attack, then the scheme in Fig. 3 is
secure. Indeed, in the scheme proposed in Fig. 7, it is always possible to consider
the difference between two or more texts to remove the final key addition. For
instance, given f(x) + K = y and f(x′) + K = y′, it follows that f(x) − f(x′) =
y−y′. As a result, the number of variables in the system of equations to be solved
remains constant independently of the number of considered outputs. However,
in Fig. 3, given g(x+K) = y and g(x′ +K) = y′, this is not possible except if g(·)
is inverted. Nevertheless, since it is a truncated permutation, this does not seem
feasible, unless the part of the output which is truncated is either treated as a
variable (that results to have more variables than equations) or guessed by brute
force (that results in an attack whose cost is higher than the security level, and
2s ≤ q). Such consideration leads us to conjecture that the number of rounds
necessary to make the scheme proposed in Fig. 7 secure is a good indicator of
the number of rounds necessary to make the scheme in Fig. 3 secure as well.

Input-Output Relation. The number of rounds must ensure that the maximum
degree is reached. Based on that, we do not expect that the relation that holds
between the input and the output, makes it possible for the attacker to break
the scheme. In particular, let N be the nonce, and k1, k2 be the secret keys.
If we assume that a single word is output, then an equation of degree 2r can
be expressed between each input (N, k1, k2) ∈ (Fq)3, and the output T ∈ Fq

with r the number of rounds. Hence, if there are two different initial nonces,
then the attacker has to solve two equations in two variables. In that case,
Dreg = 1 + 2 · (2r − 1) ≈ 2r+1. The cost of the attack is thus lower bounded
by

[(2+2r+1

2r+1

)]ω

≥
[
(1+2r+1)2

2

]ω

≥ 22r+1, where ω ≥ 2. Consequently, 22r+1 ≥ 2s

if the total number of rounds is at least
⌈

s−1
2

⌉
(e.g., 64 for s = 128). Since the

number of rounds for pC is s + 6, this strategy does not outperform the previous
attacks as expected.

Finally, we additionally consider a strategy where new intermediate variables
are introduced to reduce the degree of the involved polynomials. We concluded
that this strategy does not reduce the solving time as it increases the number of
variables.

Middle State-Output Relation. There is another attack strategy that exploits the
relation between the middle state and the outputs. In this strategy, only pE is
involved, and several outputs are generated by the same unknown middle state.
For a given nonce N , let (xN

0 , xN
1 , xN

2 ) ∈ (Fq)3 be the corresponding middle
state. Since the key is added after the permutation pE , we first eliminate the key
by considering two initial nonces, and taking the difference of the corresponding



24 C. Dobraunig et al.

output. This makes it possible to remove all the secret key material at the end,
at the cost of having three more unknown variables in the middle.4

Hence, independently of the number of outputs that are generated, there are
six variables, and thus simply the two middle states. That means that we need
at least six output blocks, and an equivalent number of equations. Since two
words are output for each call of pE , we have six equations of degree 2r−1 and 2r

for the first two words, 2r and 2r+1 for the next two words, and so on. We recall
that every call of the rolling function increases the degree by a factor two, while
the function that describes the output of a single block has a maximum degree,
namely 2r after r rounds for one word, and 2r−1 for the other two words. Hence,
Dreg = 1 + (2r−1 − 1) + 2 · ∑1

i=0(2r+i − 1) + (2r+2 − 1) = 21 · 2r−1 − 5 ≈ 2r+3.4,
and the cost of the attack is lower bounded by

[(
6 + 2r+3.4

2r+3.4

)]ω

≥
[

(1 + 2r+3.4)6

6!

]ω

≥ 212(r+3.4)−19 ,

where ω ≥ 2. Therefore, 212(r+3.4)−19 ≥ 2s if the number of rounds for pE is at
least

⌈
s+19
12 − 3.4

⌉
(e.g., 9 for s = 128). Like previously, potential improvement

of the attack (e.g., an enhanced description of the equations) can lead to a lower
computational cost. We thus decided to arbitrarily add five rounds as a security
margin. We conjecture that at least

⌈
s+19
12 + 1.5

⌉
rounds for pE are necessary to

provide some security (e.g., 14 for s = 128).
In addition, in order to reduce the degree of the involved polynomials, we

studied the consequences of introducing new intermediate variables in the mid-
dle, e.g., at the output of the rolling function or among the rounds5. In that
regard, we did not improve the previous results. Moreover, we also considered a
scenario in which the attacker accesses more data, without being able to improve
the previous results.

4.5 On the Algebraic Cipher Representation

Algebraic attacks seem to be the most successful attack vector on ciphers that
have a simple representation in larger fields, while restricting the usage of mul-
tiplications. Until now, we have mainly focused on the growth of the degree to
estimate the costs of the algebraic attacks that we considered. However, this
is not the only factor that influences the cost of an algebraic attack. It is well
known that such attacks (including higher-order, interpolation, and Gröbner
basis attacks) can be more efficient if the polynomial that represents the cipher
4 Another approach would be to involve the keys in the analysis. However, since the

degree of the key-schedule is very high, the cost would then explode after few steps.
It works by manipulating the degree of the key-schedule, or by introducing new
variables for each new subkeys while keeping the degree as lower as possible. This
approach does not seem to outperform the one described in the main text.

5 For example, new variables can be introduced for each output of the rolling state. It
results in having more equations with lower degrees. Our analysis suggests that this
approach does not outperform the one described in the main text.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 25

Table 2. Number of monomials of a certain degree for Fp.

Output Degree
Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
2 a 1 3 4 3 1

b 1 3 4 3 1
c 1 3 4 3 1

3 a 1 3 6 8 11 8 6 3 1
b 1 3 6 8 11 8 6 3 1
c 1 3 6 8 11 8 6 3 1

4 a 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
b 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1
c 1 3 6 10 15 19 24 28 33 28 24 19 15 10 6 3 1

5 a 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
b 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21
c 1 3 6 10 15 21 28 36 45 53 62 70 79 87 96 104 113 104 96 87 79 70 62 53 45 36 28 21

is sparse. Consequently, it is necessary to study the algebraic representation of
the cipher for a feasible number of rounds.

To evaluate the number of monomials that we have for a given degree, we
wrote a dedicated tool. This tool produces a symbolic evaluation of the round
function without considering a particular field or specific round constants. Nev-
ertheless, it considers the fact that each element in F2n is also its inverse with
respect to the addition. Since we do not instantiate any field and constants, the
reported number of monomials might deviate from the real number of monomi-
als here, e.g., due to unfortunate choices of round constants that sum to zero for
some monomials. As a result, the entries in the tables are in fact upper bounds,
but we do not expect high discrepancies between the numbers reported in the
tables and the “real” ones.

Prime Case. First, we consider iterations of the round function f over Fp. In
Table 2, we evaluate the output functions at ai, bi, and ci depending on the
inputs a0, b0, and c0 after a certain number of rounds i ≥ 2. We count in Table 2
the number of monomials for a certain multivariate degree up to a fixed degree
dFp

. Higher degree monomials might appear, but they are not presented in the
table. To report this behavior, we do not input 0 in the table after the highest
degree monomial. The column ‘max’ indicates the maximal number of monomials
that can be encountered for three variables. As reported in Table 2, the number
of monomials increases quite quickly, and we do not observe any unexpected
behavior, or missing monomials of a certain degree.
Binary Case. Table 3 provides the number of monomials of a certain degree in
F2n . We notice that the diffusion is slower than in Fp, and it may be because of
the behavior of the addition that is self inverse in F2n . More discussions on the
algebraic cipher representation in the binary case can be found in [34, App. D].

5 Comparison with Other Designs

In this section, we compare the performance of our design with other designs that
are presented in the literature for an MPC protocol using masked operations. We



26 C. Dobraunig et al.

Table 3. Number of monomials of a certain degree for F2n .

Output Degree
Round Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Max 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
2 a 1 3 4 2 1

b 1 3 4 2 1
c 1 3 4 2 1

3 a 1 3 6 7 7 3 3 0 1
b 1 3 6 7 7 3 3 0 1
c 1 3 6 7 7 3 3 0 1

4 a 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
b 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1
c 1 3 6 9 15 14 19 12 13 5 6 2 3 0 0 0 1

5 a 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
b 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0
c 1 3 6 9 15 18 28 28 39 35 41 36 39 24 26 16 19 9 10 7 9 3 3 0 3 0 0 0

mainly focus on the number of multiplications in an MPC setting, which is often
the metric that influences the most the cost in such a protocol. In addition,
we discuss the number of online and pre-computation/offline rounds, and we
compare those numbers to the ones specified for other schemes. The influence of
the last two metrics on the overall costs highly varies depending on the concrete
protocol/application, and the concrete environment, in which an MPC protocol
is used, e.g., network of computers vs. a system on chip. Finally, we consider the
advantages and the disadvantages of our design w.r.t. the other ones.

5.1 MPC Costs: CIMINION and Related Works

We compare the MPC cost of Ciminion with the cost of other designs that are
published in the literature with q ≈ 2128, and s = 128 bits. We assume that
the amount of data available to the attacker is fixed to 2s/2 = 264, which is the
most common case. Due to page limitation, we limit our analysis to Ciminion
and HadesMiMC. The latter is the main competitive design currently present in
the literature for the analyzed application. The detailed comparison with other
designs (including MiMC, GMiMC, Rescue and Vision) is provided in [34, App.
G]. A summary of the comparison is given in Table 4 and 5 for the binary and
prime case, respectively.

Our design has the lowest minimum number of multiplications w.r.t. all other
designs, in both Fp and F2n . In (Fq)t for q ≈ 2128, our design needs approximately
t + 14 · �t/2� ≈ 8 · t multiplications w.r.t. 12 · t multiplications required by
HadesMiMC or 60 · t by Rescue. Additionally, our design has a low number of
linear operations compared to other designs. For instance, for large t � 1, our
design needs approximately 50 · t affine operations (sums and multiplications
with constants) while HadesMiMC requires approximately 12 · t2 + (157 + 4 ·
max{32; �log3(t)�}) · t affine operations. However, this advantage comes at the
price of having more online rounds than the other schemes. In particular, 104 +
�t/2� online rounds are required by our design whereas HadesMiMC and Rescue
have respectively 78 and 20 online rounds.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 27

Table 4. Comparison on the MPC cost of schemes over F2n
t for n = 128 (or 129),

and a security level of 128 bits. With the exception of Vision (whose number of offline
rounds is equal to max

{
20, 2 ·

⌈
136+t

t

⌉}
), the number of offline rounds for all other

schemes is zero.

Scheme Multiplications (MPC) Online rounds
Element in F2n

t Asymptotically (t 	 1)
Ciminion 8 · t + 89 8 104 + 
t/2�
MiMC-CTR 164 · t 164 82
Vision t · max

{
70, 7 ·

⌈
136+t

t

⌉}
70 max

{
50, 5 ·

⌈
136+t

t

⌉}

Table 5. Comparison on the MPC cost of schemes over Fp
t for p ≈ 2128, and a security

level of ≈ 128 bits. With the exception of Rescue (whose number of offline rounds is
equal to max{30; 6 ·

⌈
32.5

t

⌉
}), the number of offline rounds for all other schemes is zero.

Scheme Multiplications (MPC) Online rounds
Element in Fp

t Asymptotically (t � 1)

Ciminion 14 · �t/2� + t + 89 8 104 + �t/2�
MiMC-CTR 164 · t 164 82

GMiMCerf 4 + 4t + max
{
4t2, 320

}
4 · t 2 + 2t + max

{
2t2, 160

}
Rescue (α = 3) t · max{60; 12 ·

⌈
32.5

t

⌉
} 60 max{20; 4 ·

⌈
32.5

t

⌉
}

HadesMiMC 12t+max{78+�log3(t2)�; 142} 12 max{45 + �log3(t)�; 77}

Ciminion. For q ≈ 2128, and a security level of 128 bits with data limited to
264, the permutation pC counts 90 rounds. In order to output 2t′ − 1 ≤ t ≤ 2t′

words, we call t′ times the permutation pE that is composed of 14 rounds, and
(t′ − 1) times the rolling function. Therefore, for the binary and the prime case,
the cost of Ciminion in MPC applications to generate t words is

# multiplications: 14 · �t/2� + (t − 1) + 90 ≈ 8 · t + 89 ,

# online rounds: 104 + �t/2� ,

# affine operations: 99 · �t/2� + 629 ≈ 50 · t + 629 .

The number of online rounds depends on t, because the rolling function is serial.
It is noteworthy that the expansion part can be performed in parallel. We empha-
size that the number of sums and multiplications with a constant6 (denoted as
“affine” operations) is proportional to the number of multiplications. That is one
of the main differences w.r.t. to the Hades construction as we argue afterwards.

HadesMiMC. HadesMiMC [41] is a block cipher that is proposed over (Fp)t

for a prime p such that gcd(p − 1, 3) = 1, and t ≥ 2. It combines RF = 2Rf

rounds with a full S-box layer (Rf at the beginning, and Rf at the end), and
RP rounds with a partial S-box layer in the middle. Each round is defined with
Ri(x) = ki + M × S(x), where M is a t × t MDS matrix, and S is the S-box
layer. This layer is defined as the concatenation of t cube S-boxes in the rounds
6 Each round counts six additions and one multiplication with a constant.



28 C. Dobraunig et al.

with full layer, and as the concatenation of one cube S-Box and t − 1 identity
functions in the rounds with partial layer.

In addition, hash functions can be obtained by instantiating a Sponge con-
struction with the Hades permutation, and a fixed key, like Poseidon & Starkad
[40]. In [15], the authors present an attack on Starkad that exploits a weakness
in the matrix M that defines the MixLayer. The attack takes advantage of the
equation M2 = μ · I. This attack can be prevented by carefully choosing the
MixLayer (we refer to [44] for further detail). There is no attack that is based
on an analogous strategy that has been proposed for the cipher7.

In order to guarantee some security, RF and RP must satisfy a list of inequal-
ities [41]. There are several combinations of (RF , RP ) that can provide the same
level of security. In that regard, authors of [41] present a tool that makes it
possible to find the best combination that guarantees security, and minimizes
the computational cost. For a security level of approximately log2(p) bits, and
with log2(p) � t, the combination (RF , RP ) minimizing the overall number of
multiplications is

(RF , RP )=
(

6, max
{⌈

log3(p)
2

⌉
+ �log3(t)�; �log3(p)� − 2	log3(log2(p))


}
− 2

)
.

In MPC applications (p ≈ 2128 and s = 128 bits), the cost of HadesMiMC is

# multiplications: 2 · (t · RF + RP ) = 12t + max{78 + �log3(t2)� ; 142} ,

# online rounds: RF + RP = max{45 + �log3(t)�; 77} ,

# affine operations: 2 · t2 · RF + (4 · RP + 1) · t − 2 · RP

≈ 12 · t2 + (157 + 4 · max{32; �log3(t)�}) · t .

Parallel S-boxes can be computed in a single online round8. To compute the
number of affine operations, we considered an equivalent representation of the
cipher in which the MixLayer of the rounds, with a partial S-box layer, is defined
by a matrix. In this matrix, only 3t − 2 entries are different from zero, that is
to say the ones in the first column, in the first row, and in the first diagonal.
(A (t − 1) × (t − 1) submatrix is an identity matrix.) The details are presented
in [41, App. A]. Therefore, the total number of affine operations required grows
quadratically w.r.t. the number of rounds with full S-box layer, and thus w.r.t.
the number of multiplications.

Finally, we highlight that the number of multiplications is minimized when
HadesMiMC takes as input the entire message. Indeed, let us assume that the
input message is split into several parts, and that HadesMiMC is used in CTR
mode (as suggested by the designers). In the analyzed case in which the secu-
rity level is of the same order of the size of the field p, the number of rounds

7 The main problem, in this case, regards the current impossibility to choose texts in
the middle of the cipher by bypassing the rounds with full S-Box layer when the
secret key is present.

8 We refer to [43] on how to evaluate x → x3 within a single communication round.



Ciminion: Symmetric Encryption Based on Toffoli-Gates 29

is almost constant, and independent of the parameter t ≥ 2. It follows that
using HadesMiMC in CTR mode would require more multiplications, because
every process requires the computation of the rounds with a partial S-box layer,
whereas this computation is needed only once when the message size equals the
block size. We stress that a similar conclusion holds for Rescue/Vision, for which
the total number of multiplications would barely change when they are used in
CTR mode, rather than when the message size is equal to the block size.

5.2 Ciminion Versus Hades: Advantages and Similarities

The previous comparison highlights that the two most competitive designs
for MPC applications with a low multiplicative complexity are Ciminion and
HadesMiMC. Referring to Fig. 1, we further develop the similarities and advan-
tages between a block cipher based on a Hades design, and a cipher based on
Farfalle. We present a brief comparison between our new design and the “Fork-
Cipher” design that is proposed in [7] in [34, App. G.2].

Similarities: Distribution of the S-Boxes. We focus our attention on the
distribution of the S-boxes, or more generally, the non-linear operations. Both
strategies employ a particular parallelization of the non-linear operations/S-
boxes to their advantage, in order to minimize the number of non-linear opera-
tions. More precisely, each step is composed of t parallel non-linear operations
in the external rounds, i.e., the rounds at the end and at the beginning. Fur-
thermore, each step is composed of a single non-linear operation in the internal
rounds.

Both strategies take advantage of an attacker that cannot directly access the
state in the middle rounds, because the state is masked both by the external
rounds or phases, and by the presence of a key. In a Farfalle design, the attacker
knows that each output of the expansion phase always employs the same value
at the input, without accessing those inputs. In a Hades design, the attacker is
able to skip some rounds with a partial S-box layer by carefully choosing the
texts (see [15]). However, they cannot access the texts without bypassing the
rounds with the full S-box layer that depends on the key.

Having middle rounds with a single S-box makes it possible to reduce the
overall number of non-linear operations. In addition, they ensure some secu-
rity against algebraic attacks. Indeed, even a single S-box makes it possi-
ble to increase the overall degree of the scheme. For a concrete example, let
(Rc, Rm, Re) be the rounds for respectively the compression part, middle part
and expansion part of Farfalle. Like previously, let (RF , RP ) be the number of
rounds with respectively a full and a partial S-box layer in Hades. The number of
multiplications is respectively (Rc +Re)·t+Rm and RF ·t+RP . If RP � RF and
Rm � Rc + Re. For a similar number of round, i.e., proportional to ≈ RP + RF

or/and ≈ Rm + Rc + Re, it is then necessary to reach the maximum degree.
Our number of multiplications is lower compared to a classical design where the
rounds have a full S-box layer.



30 C. Dobraunig et al.

Advantages. There are major differences between Farfalle-like designs and
Hades-like designs, because of their primary intention. The Farfalle-like design
aims to behave like a Pseudo-Random Function (PRF), and the Hades-like design
like a Pseudo-Random Permutation (PRP). The latter is used as a PRF in the
Counter mode (CTR).9 Under the assumption that affine operations are cheaper
than non-linear ones, designers of Hades defined the MixLayer as the multipli-
cation with a t × t MDS matrix. Consequently, each round with full S-box layer
counts t2 multiplications with constants. However, when t � 1, linear operations
cannot be considered as free anymore, and their presences influence the overall
performance.

This problem is not present in a Farfalle-like design. Indeed, by construction,
in the first Rc and the last Re rounds, the MixLayer is not required. That
implies that the first three words are never mixed with the following ones. On
the contrary, the elements are simply added together to generate the input of the
compression phase. In addition, the expansion part’s input is generated through
a non-linear rolling function whose cost grows linearly with t. Finally, since
invertibility is not required, the number of input words can be lower than the
number of output words to design a function from (Fq)3 to (Fq)t for any t ≥ 1.
Thus, independently of the number of output words, one multiplication per round
is present in the compression phase, contrary to O(t) of a Hades-like scheme.

Acknowledgements. We thank Joan Daemen for his guidance and support and the
reviewers of Eurocrypt 2021 for their valuable comments that improved the paper.
This work has been supported in part by the European Research Council under the
ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA, the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402), and the Austrian Science
Fund (FWF): J 4277-N38.

References

1. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: appli-
cation to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 371–397. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8_13

2. Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schnei-
der, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity.
ASIACRYPT. LNCS 10031, 191–219 (2016)

4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_17

9 This means that, in both cases, the cost of encryption and decryption is the same.
That is because Farfalle-like and Hades-like designs are used as stream ciphers.

https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17


Ciminion: Symmetric Encryption Based on Toffoli-Gates 31

5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint
Archive, Report 2019/426 (2019)

6. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3), 1–45 (2020)

7. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: a new primitive for authenticated encryption of very short messages.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
153–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_6

8. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic
primitives. Cryptology ePrint Archive, Report 2018/1098 (2018)

9. Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers.
In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–
211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_13

10. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: ACM Symposium, pp. 201–209. ACM (1989)

11. Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5 Gröbner basis
algorithm. J. Symb. Comput. 70, 49–70 (2015)

12. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryp-
tol. 2017(4), 1–38 (2017)

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: Ecrypt
Hash Workshop 2007 (2007)

14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion (Version 3.0) (2011)

15. Beyne, T., et al.: Out of oddity – new cryptanalytic techniques against symmetric
primitives optimized for integrity proof systems. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1_11

16. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X_2

17. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

18. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_3

19. Bonnetain, X.: Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951 (2019)

20. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15

21. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull. 10(3), 19–29 (1976)

22. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

23. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract).
In: STOC, pp. 106–112. ACM (1977)

https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-540-77360-3_13
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-642-34047-5_3
https://doi.org/10.1007/978-3-642-21702-9_15


32 C. Dobraunig et al.

24. Daemen, J.: Cipher and hash function design, strategies based on linear and dif-
ferential cryptanalysis, Ph.D. Thesis. K.U. Leuven (1995)

25. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60590-8_21

26. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

27. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064_26

28. Daemen, J., Rijmen, V.: The design of Rijndael. AES - The Advanced Encryp-
tion Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-
04722-4

29. Daemen, J., Rijmen, V.: Correlation analysis in GF 2n. The Design of Rijndael.
ISC, pp. 181–194. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-
60769-5_12

30. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_3

31. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-
alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 343–372.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_12

32. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3_22

33. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and Few ANDs per
bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

34. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryp-
tion based on toffoli-gates over large finite fields. Cryptology ePrint Archive, Report
2021/267 (2021). https://eprint.iacr.org/2021/267

35. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
457–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4_17

36. Eichlseder, M., et al.: An algebraic attack on ciphers with low-degree round func-
tions: application to full MiMC. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12491, pp. 477–506. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64837-4_16

37. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero F5. In: ISSAC, pp. 75–83. ACM (2002)

38. Faugère, J., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

39. Genovese, G.: Improving the algorithms of Berlekamp and Niederreiter for factor-
ing polynomials over finite fields. J. Symb. Comput. 42(1–2), 159–177 (2007)

40. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: USENIX Security 2021.
USENIX Association (2021)

https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-60769-5_12
https://doi.org/10.1007/978-3-662-60769-5_12
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/978-3-030-17653-2_12
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://eprint.iacr.org/2021/267
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-030-64837-4_16
https://doi.org/10.1007/978-3-030-64837-4_16


Ciminion: Symmetric Encryption Based on Toffoli-Gates 33

41. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: the HADES design strategy.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–
704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_23

42. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6_10

43. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: CCS, pp. 430–443. ACM (2016)

44. Grassi, L., Rechberger, C., Schofnegger, M.: Weak linear layers in word-oriented
partial SPN and HADES-like ciphers. Cryptology ePrint Archive, Report 2020/500
(2020)

45. Grosso, V., Standaert, F., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? J. Cryptograph. Eng. 4(1), 47–57 (2014)

46. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

47. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052332

48. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8_16

49. Knudsen, L.R.: DEAL - a 128-bit block cipher (1998)
50. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,

Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptog-
raphy. The Springer International Series in Engineering and Computer Science
(Communications and Information Theory), vol. 276. Springer, Boston, MA (1994).
https://doi.org/10.1007/978-1-4615-2694-0_23

51. Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39887-5_2

52. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7_33

53. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
mode of operation (full version). Cryptology ePrint Archive, Report 2004/193
(2004)

54. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3_13

55. NIST: FIPS PUB 202: SHA-3 standard: permutation-based hash and extendable-
output functions (August 2015)

56. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J. Cryp-
tol. 8(1), 27–37 (1995)

57. Procter, G.: A security analysis of the composition of ChaCha20 and Poly1305.
Cryptology ePrint Archive, Report 2014/613 (2014)

58. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. J. Cryptol. 28(4), 769–795 (2015)

https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-540-39887-5_2
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-662-49890-3_13


34 C. Dobraunig et al.

59. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of
full LowMCv2. IACR Trans. Symmetric Cryptol. 2018(3), 163–181 (2018)

60. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_47

61. Simon, T., et al.: Friet: an authenticated encryption scheme with built-in fault
detection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105,
pp. 581–611. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-
1_21

62. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.
1007/3-540-10003-2_104

63. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8_12

https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/978-3-030-45721-1_21
https://doi.org/10.1007/978-3-030-45721-1_21
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12


Mind the Middle Layer: The HADES
Design Strategy Revisited

Nathan Keller1(B) and Asaf Rosemarin2

1 Mathematics Department, Bar Ilan University, Ramat Gan, Israel
nkeller@math.biu.ac.il

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

Abstract. The HADES design strategy combines the classical SPN con-
struction with the Partial SPN (PSPN) construction, in which at every
encryption round, the non-linear layer is applied to only a part of the
state. In a HADES design, a middle layer that consists of PSPN rounds
is surrounded by outer layers of SPN rounds. The security arguments
of HADES with respect to statistical attacks use only the SPN rounds,
disregarding the PSPN rounds. This allows the designers to not pose any
restriction on the MDS matrix used as the linear mixing operation.

In this paper we show that the choice of the MDS matrix significantly
affects the security level provided by HADES designs. If the MDS is cho-
sen properly, then the security level of the scheme against differential
and linear attacks is significantly higher than claimed by the designers.
On the other hand, weaker choices of the MDS allow for extremely large
invariant subspaces that pass the entire middle layer without activating
any non-linear operation (a.k.a. S-box).

We showcase our results on the Starkad and Poseidon instantiations
of HADES. For Poseidon, we significantly improve the lower bounds on
the number of active S-boxes with respect to both differential and linear
cryptanalysis provided by the designers – for example, from 28 to 60
active S-boxes for the t = 6 variant. For Starkad, we show that for any
variant with t (i.e., the number of S-boxes in each round) divisible by 4,
the cipher admits a huge invariant subspace that passes any number of
PSPN rounds without activating any S-box (e.g., a subspace of size 21134

for the t = 24 variant). Furthermore, for various choices of the parame-
ters, this invariant subspace can be used to mount a preimage attack on
the hash function that breakes its security claims. On the other hand, we
show that the problem can be fixed easily by replacing t with any value
that is not divisible by four.

Following our paper, the designers of Starkad and Poseidon amended
their design, by adding requirements which ensure that the MDS matrix
is chosen properly.

Research supported by the European Research Council under the ERC starting grant
agreement number 757731 (LightCrypt) and by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 35–63, 2021.
https://doi.org/10.1007/978-3-030-77886-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_2


36 N. Keller and A. Rosemarin

1 Introduction

1.1 Background

Substitution-permutation network (SPN) is a classical design strategy of crypto-
graphic permutations, used in the AES [14] and in numerous other modern cryp-
tosystems. An SPN iterates many times a sequence of operations called ‘round’,
which consists of a layer of local non-linear operations (S-boxes) and a global
linear mixing layer. The wide trail strategy, employed in the AES, allows design-
ing SPNs with an easily provable lower bound on the number of active S-boxes
in any differential or linear characteristic, thus providing a security guarantee
with respect to the most common statistical cryptanalytic attacks.

In 2013, Gerard et al. [9] proposed the Partial SPN (PSPN) construction, in
which the S-box layer is applied to only a part of the state in each round (in
exchange for somewhat increasing the number of rounds). This approach, that
has obvious performance advantages in various scenarios, was used in the block
ciphers Zorro [9] and LowMC [1]. A drawback of this approach is that ‘clean’
security arguments (like the wide trail strategy) are not applicable for PSPNs,
and thus, the security of these designs was argued by more ad-hoc approaches.
These turned out to be insufficient, as Zorro was practically broken in [2] and the
security of the initial versions of LowMC was shown in [7,8] to be significantly
lower than claimed by the designers.

At Eurocrypt 2020, Grassi et al. [12] proposed the HADES design strategy
that combines the classical SPN construction with the PSPN construction. In
a HADES design, a middle layer of PSPN rounds is surrounded by two lay-
ers of SPN rounds. The scheme allows enjoying ‘the best of the two worlds’ –
the efficiency provided by the PSPN construction, along with the clean secu-
rity arguments applicable for the SPN construction. Specifically, the security
arguments of the cryptosystem with respect to statistical (e.g., differential and
linear) attacks are provided only by the SPN (a.k.a. ‘full’) rounds, using the wide
trail strategy. The security arguments with respect to algebraic attacks use also
the PSPN rounds, and take advantage of the fact that a partial non-linear layer
increases the algebraic degree in essentially the same way as a ‘full’ non-linear
layer. The linear layer in the HADES design is implemented by an MDS matrix
(see [14]), which guarantees that if the number of S-boxes in any full round is
t, then any differential or linear characteristic over two full rounds activates at
least t + 1 S-boxes. Since the PSPN rounds are not used in the security argu-
ments with respect to statistical attacks, the HADES designers do not impose
any restriction on the MDS used in the scheme. As a specific example, they
propose using Cauchy matrices over finite fields (to be defined in Sect. 2).

The designers of HADES presented applications of their strategy for secur-
ing data transfers with distributed databases using secure multiparty computa-
tion (MPC). Subsequently, Grassi et al. proposed Starkad [10, initial version]
and Poseidon [11] – hash functions whose underlying permutations are instan-
tiations of the HADES methodology, aimed at applications for practical proof
systems, such as SNARKs, STARKs, or Bulletproofs. The HADES family of



Mind the Middle Layer: The HADES Design Strategy Revisited 37

algorithms (including various Starkad and Poseidon variants) was a candidate
in the STARK-Friendly Hash Challenge [17].

1.2 Our Results

In this paper we study the effect of the MDS matrix on the security level of
HADES designs. We show that when the MDS is chosen properly, the PSPN
rounds can be taken into consideration in the security arguments against dif-
ferential and linear attacks, leading to a very significant improvement in the
lower bound on the number of active S-boxes in differential and linear charac-
teristics. On the other hand, we show that a weaker choice of the MDS matrix
may lead to existence of huge invariant subspaces for the entire middle layer
that do not activate any S-box (for any number of PSPN rounds). Furthermore,
for certain instances (albeit, not for the specific instances chosen in [10, initial
version] and [17]), these invariant subspaces allow breaking the hash function
with a Gröbner-basis [3] preimage attack.

To be specific, we focus on the variants of Starkad and Poseidon suggested
in [10, initial version]. Interestingly, our results point out a sharp difference
between the cases of a prime field (Poseidon) and a binary field (Starkad).

Analysis of Poseidon. In the case of Poseidon (which operates over a prime field
GF (p)), for all variants proposed in [10,11], we significantly improve the lower
bound on the number of active S-boxes in differential and linear characteristics.
The improvement is especially large for variants with a small number of S-boxes
in each round (denoted in [12] by t). For example, for t = 6 (which is the main
reference variant provided in the supplementary material of [10]), the designers
claim a lower bound of 4 · (6 + 1) = 28 active S-boxes, based on application
of the wide trail strategy to the ‘full’ rounds. We prove that the PSPN rounds
must activate at least 32 S-boxes, thus more than doubling the lower bound on
the number of active S-boxes to 60. For the t = 2 variant, the improvement is
most striking: there are at least 41 active S-boxes in the PSPN rounds, while
the designers’ bound for the SPN rounds is 12 S-boxes. We obtain the new lower
bounds using an automated characteristic search tool for PSPNs proposed in [2].
A comparison of our new lower bounds and the lower bounds of the designers is
presented in Table 1.

Analysis of Starkad. In the case of Starkad (which operates over a binary field
GF (2n)), perhaps surprisingly, there is a significant difference between different
values of t. For t = 24 (which is the main reference variant provided in the
supplementary material of [10, initial version]), we show that there exists an
invariant subspace U of size 218·63 = 21134 that does not activate the S-box
in the PSPN rounds. This means that U passes any number of PSPN rounds,
without activating any S-box! On the other hand, for t = 47 and t = 51 (the
other variants of Starkad considered in [10, initial version]), there are no t-round



38 N. Keller and A. Rosemarin

Table 1. The lower bound on the number of active S-boxes in a differential/linear
characteristic, for the full rounds (shown by the designers) and for the PSPN rounds
(our results), for various versions of Poseidon

Security
level

t RF = full
rounds

RP = partial
rounds

S-boxes
in RF

S-boxes
in RP

S-boxes
in total

128 2 8 82 12 41 53

128 4 8 83 20 36 56

128 6 8 84 28 32 60

256 8 8 127 36 42 78

128 16 8 64 68 12 80

differential or linear characteristics that do not activate any S-box.1 We show
that these results are not a coincidence, but rather follow from properties of
Cauchy matrices over binary fields. Specifically, we prove the following:

Theorem 1. Let F = GF (2n) be a binary field. Let t = 2k · s where s ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad
specification. Then there exists a linear subspace U ⊂ F

t of dimension at least
(1− k+1

2k
)t such that for any � ∈ N and for any x ∈ U , the top n bits of M �x are

equal to zero. Consequently, application of any number of PSPN rounds to any
x ∈ U does not activate any S-box.

Theorem 1 implies that for any t that is divisible by 4, there is a huge subspace U
of size at least 2nt/4 that passes any number of PSPN rounds without activating
any S-box. (This follows from applying the theorem with k = 2 and s = t/4.)
In fact, we conjecture that the lower bound on the dimension of the subspace
in Theorem 1 can be improved to (1 − 2

2k
)t (which would fully explain the size

of the invariant subspace for the t = 24 variant of Starkad). We verified this
conjecture experimentally for many values of n and t, including all variants of
Starkad proposed in [10, initial version]. The sizes of the invariant subspace for
n = 63 and several representative values of t are given in Table 2.

An especially notable case is Starkad variants with t = 2k. For such variants,
we show that the MDS is essentially an involution.

Theorem 2. Let F = GF (2n) be a binary field, and let t = 2k for k ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad
specification. Then M2 = αI, where α = (

∑2k+1−1
j=2k j−1)2. Consequently, there

exists a linear subspace U ⊂ F
t of dimension at least t − 2 such that for any

� ∈ N and for any x ∈ U , the top n bits of M �x are equal to zero.

1 We note that for the specific variants with t = 47, 51 proposed in [10], there does
exist a large subspace that does not activate any S-box in the PSPN rounds, since
the number of these rounds (25 for t = 47 and 24 for t = 51) is smaller than t. While
this might be undesirable, this is an inevitable result of the choice of the number of
PSPN rounds, that does not depend on the MDS matrix.



Mind the Middle Layer: The HADES Design Strategy Revisited 39

Table 2. The dimension of the invariant subspace whose elements do not activate S-
boxes for any number of PSPN rounds, as a function of t (the number of S-boxes in
each round), for a Starkad cipher over the field GF (263)

t Dimension of
invariant
subspace

t Dimension of
invariant
subspace

t Dimension of
invariant
subspace

4 2 6 0 8 6

10 0 13 0 16 14

18 0 21 0 24 18

28 14 32 30 42 0

46 0 47 0 48 42

50 0 51 0 52 26

56 42 64 62 70 0

As can be seen in Table 2, Theorem 2 is tight for all checked variants (i.e., n = 63
and t = 4, 8, 16, 32, 64).

We obtain Theorems 1 and 2 via an extensive study of properties of Cauchy
matrices over binary fields.2 As Cauchy matrices are widely used (e.g., for
error correcting codes, see [15]), these linear-algebraic results are of independent
interest.

Of course, a crucial question is whether these invariant subspaces can be used
to actually attack Starkad. We show that they indeed can be used to mount a
Gröbner-basis preimage attack proposed by Beyne et al. [6, Sec. 6.2], and that for
certain choices of the parameters (e.g., a variant over the field GF (2127) aimed at
a 256-bit security level, like the variant proposed in the STARK-Friendly Hash
Challenge [17], with 16 S-boxes in each round instead of 14), the resulting attack
breaks the security claims of the hash function.

On the other hand, our results show that this deficiency can be fixed easily:
it is sufficient to choose a value of t that is not divisible by 4 (see Table 2).
Furthermore, we show that various other mild changes (such as slightly altering
the way in which the sequences {xi}, {yj} used in the construction of the Cauchy
matrix are selected) are also sufficient for avoiding the existence of an invariant
subspace.

Hence, our results (both on Poseidon and on Starkad) suggest that prop-
erly designing the MDS matrix and taking it into consideration in the analysis
allows significantly improving the security guarantee of HADES constructions
with respect to statistical attacks.

2 We note that a variant of the easier Theorem 2 was independently and concurrently
obtained in [6, Appendix A].



40 N. Keller and A. Rosemarin

1.3 Practical Impact of Our Results and Subsequent Work

In the short time since the initial version of this paper appeared on eprint, its
results had a practical impact:

Our Results for Strong MDS Matrices. The designers of Starkad and Poseidon
accepted our results and included them in the amended security analysis pre-
sented in [10, updated version, Sec. 5.4.1] and [11]. In particular, the authors
of [10,11] agreed with our claim that as far as statistical attacks are concerned,
several full rounds could be replaced by partial rounds without reducing the
security claims. Nevertheless, they decided to not reduce the number of full
rounds in the amended version, since the full rounds are advantageous over par-
tial rounds also with respect to certain algebraic attacks, such as Gröbner basis
attacks (see [10, updated version, Sec. 5.4.1]).

Our Results for Weak MDS Matrices. Following our results, the designers of
Starkad and Poseidon amended the design in such a way that invariant subspaces
that pass an infinite number of PSPN rounds would not be possible (see [10]). To
this end, they adopted the amednments we proposed (and in particular, required
t to be odd), along with other amendments.

In addition, the STARK-Friendly Hash Challenge [17] cryptanalytic commit-
tee used our results, alongside other results, to motivate their recommendation
to remove Starkad from consideration in the challenge (see [4, Sec. 4]).

Subsequent Work. Motivated by our results, Grassi et al. [13] presented a sys-
tematic study of linear layers for which the cipher admits an invariant subspace
that passes all PSPN rounds for free. The results of the analysis were used to
determine the requirements on the MDS matrix used in the amended variant of
Starkad and Poseidon [10, updated version].

1.4 Organization of the Paper

This paper is organized as follows. We briefly describe the HADES construction
and its instantiations, Starkad and Poseidon, in Sect. 2. In Sect. 3 we present our
results on variants of Poseidon. In Sect. 4 we explore a special class of matrices
over binary fields (which includes Cauchy matrices of the type used in Starkad)
and obtain the linear-algebraic results required for proving Theorems 1 and 2.
In Sect. 5 we present our results on variants of Starkad, and in particular, prove
Theorems 1 and 2. We conclude the paper with a discussion and open problems
in Sect. 6.

2 The HADES Construction

In this section we briefly describe the structure of a HADES permutation [12].
A block cipher/permutation designed according to the HADES strategy

employs four types of operations:



Mind the Middle Layer: The HADES Design Strategy Revisited 41

ARK (·)

S S S S S S . . . S

M(·)
...

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

S S S S S S . . . S

M(·)
...

ARK (·)

. . . S

M(·)
...

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

S S S S S S . . . S

M(·)
...

ARK (·)

S S S S S S . . . S

M(·)

ARK (·)

Rstat
f

RP

Rstat
f

Rf

Rf

Fig. 1. The HADES construction

1. AddRoundKey, denoted by ARK(·) – a bitwise XOR of a round subkey (or
a round constant for unkeyed designs) with the state;

2. Full S-box Layer, denoted by S(·) – parallel application of t copies of an
identical S-box to the entire state;

3. Partial S-box Layer, denoted by S∗(·) – application of a single S-box to a part
of the state, while the rest of the state remains unchanged;

4. Mixing Layer, denoted by M(·) – multiplication of the entire state by an MDS
matrix.

A full round is defined as M ◦ S ◦ ARK(·), and a partial round is defined
as M ◦ S∗ ◦ ARK(·). The cipher consists of Rf full rounds, followed by RP full
rounds, followed by Rf full rounds, where the parameters RP , Rf are chosen by
a complex rule intended mainly to thwart algebraic attacks. The structure of
HADES is demonstrated in Fig. 1.

In this paper, we study the Poseidon and Starkad permutations [10], built
according to the HADES design strategy. Poseidon works over a finite field
GF (p), while Starkad works over a binary field GF (2n). Starkad uses only the
S-box S(x) = x3, while Poseidon uses also x−1 and x5. For our purposes, the
choice of the S-box is not relevant.

The block ciphers are parameterized by RP , Rf (as in HADES), n – the
logarithm of the field size, and t – the number of S-boxes applied in each full
round.



42 N. Keller and A. Rosemarin

The MDS Matrix. The design component on which we focus in this work is the
MDS matrix used in the linear layer. In the case of a binary field GF (2n), the
matrix is a so-called Cauchy matrix, constructed as follows.

First, a constant r is chosen. Then, one sets up two sequences {xi}, {yj} of
length t, by choosing a staring point x0 and setting

∀i ∈ [t] : xi � x0 + i − 1, yi � xi + r,

where + denotes integer addition. The t-by-t MDS matrix M is set as

Mi,j = (xi ⊕ yj)−1,

where the inversion is taken in the field GF (2n). In all Starkad variants presented
in [10], the parameters x0, r are set to 0, t, respectively. The construction for a
prime Fp (on which we do not focus) is similar to the binary case.

3 Improved Security Bounds for Poseidon Permutations

In this section we show that the lower bounds on the number of active S-boxes in
a differential or a linear characteristic obtained by the designers of Poseidon, can
be improved significantly by taking into consideration active S-boxes in PSPN
rounds and lower bounding their number.

In order to lower-bound the number of active S-boxes, we use a generic char-
acteristic search algorithm for PSPNs, presented by Bar-On et al. [2] at Euro-
crypt 2015. For a parameter a, the algorithm allows computing the (provably)
minimal number r of rounds such that any r-round differential/linear character-
istic must activate at least a + 1 S-boxes.

The idea behind the algorithm is to enumerate patterns of active/non-active
S-boxes and to check the validity of each pattern by posing a homogeneous linear
equation on each non-active S-box, and linearizing the output of active S-boxes
by introducing new variables. As for checking an r-round variant, the algorithm
has to sieve

(
rt′

≤a

)
possible patterns of active S-boxes, where t′ is the number of

S-boxes in each PSPN round, the running time of the algorithm is determined
by the parameters a, r, t′. In addition, the complexity depends on t – the number
of S-boxes in each full round, which affects the complexity of multipication by
the MDS matrix (an operation used extensively in the algorithm). As a result,
for smaller values of t, we were able to run the algorithm up to larger values
of a.

For t = 2, the algorithm is not needed. Indeed, the MDS property of the
matrix guarantees that both S-boxes are active every second round, and hence,
the lower bound on the number of active S-boxes in an r-round characteristic is
at least r/2. The t = 2 variant of Poseidon has 82 PSPN rounds, and thus, any
characteristic over the PSPN rounds has at least 41 active S-boxes. Interestingly,
the lower bound obtained by the designers using the wide trail strategy is much
lower – only 12 active S-boxes.



Mind the Middle Layer: The HADES Design Strategy Revisited 43

For t = 6, which is the main variant proposed by the designers, we were able
to run the algorithm up to a = 8, showing that there is no characteristic with
at most 8 active S-boxes for 22 rounds. As this variant of Poseidon contains 84
possible rounds, our result implies that any characteristic for the PSPN rounds
of Poseidon activates at least 32 S-boxes. This number is higher than the lower
bound proved by the designers – 28 active S-boxes in the SPN rounds. Combining
the bounds, we obtain a provable lower bound of 60 active S-boxes for the entire
cipher, more than doubling the bound proved by the designers.

For large values of t (e.g., t = 16), the lower bound that follows from the wide
trail strategy becomes much more effective, and on the other hand, the number
of PSPN rounds is reduced. As a result, our lower bound for the PSPN rounds
is less effective for these variants.

It should be emphasized that for all variants and for all values of a we were
able to check, the minimal number of rounds for which any characteristic must
activate at least a + 1 S-boxes is t + 2a – matching exactly the generic estimate
of [2]. This suggests that in this respect, the MDS matrices of all Poseidon
variants achieve the effect of ‘random’ matrices.

The lower bounds we obtained on the number of active S-boxes for different
variants of Poseidon, along with the maximal values of a we were able to check,
are presented in Table 3. The code we used is publicly available.3 The exact
description of the algorithm is given in Appendix A.

Table 3. Lower bounds on the number of active S-boxes in a differential or a linear
characteristic over the PSPN rounds, for variants of Poseidon. The column ‘a’ denotes
the number of active S-boxes checked by our algorithm.

Security
level

t RF RP Field a S-boxes
in Rf

S-boxes
in RP

S-boxes
in total

128 2 8 82 GF (p) - 12 41 53

128 4 8 83 GF (p) 12 20 36 56

128 6 8 84 GF (p) 8 28 32 60

256 8 8 127 GF (p) 7 36 42 78

128 16 8 64 GF (p) 5 68 12 80

4 A Class of Matrices over a Binary Field and Its
Properties

In this section we study the properties of a certain class of matrices over commu-
tative rings with characteristic 2 (e.g., binary fields GF (2n)). As we will show in

3 The link to the code is: https://anonymous.4open.science/r/bc580cca-659f-4e8f-
b8c1-9dfcd5fb75a2/.

https://anonymous.4open.science/r/bc580cca-659f-4e8f-b8c1-9dfcd5fb75a2/
https://anonymous.4open.science/r/bc580cca-659f-4e8f-b8c1-9dfcd5fb75a2/


44 N. Keller and A. Rosemarin

Sect. 5, the MDS matrix used in Starkad belongs to this class (for all variants of
Starkad), and thus, the results of this section will allow us to study the security
of the middle layer of Starkad constructions.

4.1 Special Matrices and Their Basic Properties

Special matrices4 are matrices of order 2k (for k ∈ N∪{0}) over a ring R, defined
in the following inductive way.

Definition 1. For k = 0, any 1×1 matrix over R is a special matrix. For k ≥ 1,

a matrix M ∈ R2k×2k is a special matrix if M =
[
A B
B A

]

, where A and B are

special matrices.

The following proposition summarizes some basic properties of special matri-
ces. Most importantly, it shows that special matrices commute.

Proposition 1. Let R be a ring, let k ≥ 0, and let Sk be the set of all 2k × 2k

special matrices over R. Then Sk is a commutative subring of R2k×2k .

Proof. We have to show that for any k ≥ 0, if M1,M2 ∈ R2k×2k are special
matrices, then:

1. −M1,M1 + M2, and M1 · M2 are special matrices;
2. M1 and M2 commute.

The proof is a simple induction on k; we provide it for the sake of completeness.
For k = 0 the claim is obvious. For k > 0, assume the claim holds for k − 1, and
let

M1 =
[
A B
B A

]

,M2 =
[
C D
D C

]

be 2k × 2k special matrices. We have M1 + M2 =
[
A + C B + D
B + D A + C

]

. As by the

induction hypothesis, A+C and B+D are special matrices, M1+M2 is a special
matrix as well.

Similarly, for any c ∈ R (and in particular, for c = −1),

c · M1 =
[
c · A c · B
c · B c · A

]

,

and thus by the induction hypothesis, c · M1 is a special matrix.
Furthermore, we have

M1 · M2 =
[
A · C + B · D A · D + B · C
B · C + A · D B · D + A · C

]

=
[
X Y
Y X

]

,

4 We refrain from giving a meaningful name to this class of matrices, since most
probably it was already considered in previous works (which we were not able to
find so far).



Mind the Middle Layer: The HADES Design Strategy Revisited 45

where X = A · C + B · D and Y = A · D + B · C. By the induction hypothesis
X and Y are special matrices, and thus, M1 · M2 is a special matrix as well.

To show that special matrices commute, we first observe that they are sym-
metric. Indeed, we have

MT
1 =

[
AT BT

BT AT

]

=
[
A B
B A

]

= M1,

where the middle equality follows by induction on k. Now, let M1,M2 be special
matrices. We have

M1 · M2 = (M1 · M2)T = MT
2 · MT

1 = M2 · M1,

where the first equality uses the fact that M1 ·M2 is a special matrix, and hence,
is symmetric. This completes the proof.

4.2 Special Matrices over Commutative Rings of Characteristic 2

When R is a commutative ring of characteristic 2 (i.e., a commutative ring such
that for any x ∈ R, we have x + x = 0), special matrices over R have more
interesting structural properties, as is shown in the following two propositions.

In particular, a special matrix has a single eigenvalue and is ‘almost’ an
involution, and we have det(M1 + M2) = detM1 + det M2 for any pair M1,M2

of special matrices over R.

Proposition 2. Let R be a commutative ring of characteristic 2, let k ∈ N∪{0},
and let M ∈ R2k×2k be a special matrix. Then:

1. M has exactly one eigenvalue, which is the sum of elements in each of its
rows. Consequently, the characteristic polynomial of M is

fM (x) = (x − λ(M))2
k

,

where λ(M) is the unique eigenvalue of M , and det(M) = λ(M)2
k

.
2. We have M2 = λ(M)2 · I.

Proof. By induction on k. For k = 0 the claim is obvious. For k > 0, assume

the claim holds for k − 1, and let M =
[
A B
B A

]

be a 2k × 2k special matrix. The

characteristic polynomial of M , which we denote by fM (λ), satisfies

fM (λ) = det(λ · I − M) = det(
[
λ · I − A −B

−B λ · I − A

]

)

= det(λ · I − A + B) · det(λ · I − A − B),

where the last equality uses the well-known formula

det(
[
X Y
Y X

]

) = det(X + Y ) · det(X − Y ),



46 N. Keller and A. Rosemarin

which is a special case of Theorem 3 below. As char(R) = 2, we have

fM (λ) = det(λ · I − A + B) · det(λ · I − A − B) = det(λ · I − (A + B))2.

Since A + B is a special matrix by Proposition 1, we can use the induction
hypothesis to deduce

fM (x) = fA+B(x)2 = (x − λ(A + B))2
k

.

Thus, λ(A+B) is the only eigenvalue of M , and so we have fM (x) = (x−λ(M))2
k

and det(M) = λ(M)2
k

, as asserted.
Since char(R) = 2, and as special matrices commute by Proposition 1, we

have

M2 =
[

A2 + B2 AB + BA
BA + AB A2 + B2

]

=
[
(A + B)2 0

0 (A + B)2

]

.

Since A + B is a special matrix, we can use again the induction hypothesis to
deduce

M2 =
[
(A + B)2 0

0 (A + B)2

]

=
[
λ(A + B)2 · I 0

0 λ(A + B)2 · I

]

= λ(M)2 · I.

Finally, note that in any special matrix, the sums of elements in all rows are
equal. Hence, the sum of elements in each row is an eigenvalue, that corresponds
to the eigenvector (1, 1, . . . , 1). This completes the proof.

Proposition 3. Let R be a commutative ring of characteristic 2, let k ∈ N∪{0},
and let M1,M2 ∈ R2k×2k be special matrices. Then

1. det(M1 + M2) = det(M1) + det(M2);
2. λ(M1 + M2) = λ(M1) + λ(M2);
3. λ(M1 · M2) = λ(M1) · λ(M2),

where λ(M) denotes the unique eigenvalue of the special matrix M .

Proof. Let

M1 =
[
A B
B A

]

,M2 =
[
C D
D C

]

∈ R2k×2k .

We have

λ(M1 + M2) = λ(A + B + C + D) = λ(A + B) + λ(C + D) = λ(M1) + λ(M2),

where the first and last transitions follow from the fact that λ(M) = λ(A + B)
as was shown in the proof of Proposition 2, and the middle transition uses the
induction hypothesis.

Since char(R) = 2 and R is commutative, we have

det(M1 + M2) = λ(M1 + M2)2
k

= (λ(M1) + λ(M2))2
k

= λ(M1)2
k

+ λ(M2)2
k

= det(M1) + det(M2).



Mind the Middle Layer: The HADES Design Strategy Revisited 47

Finally, as (1, 1, . . . , 1) is an eigenvector of both M1 and M2, corresponding to
the eigenvalues λ(M1) and λ(M2), respectively, it follows that λ(M1) · λ(M2) is
an eigenvalue of M1 · M2, corresponding to the same eigenvector. As M1 · M2

is a special matrix, Proposition 2 implies λ(M1 · M2) = λ(M1) · λ(M2). This
completes the proof.

4.3 Nilpotent Special Matrices over Commutative Rings with
Characteristic 2

In this subsection we consider the subring Nk of Sk which consists of the special
matrices M that are nilpotent (i.e., Nk = {M ∈ Sk : ∃t,M t = 0}). By Proposi-
tion 2, Nk has a simple characterization: Nk = {M ∈ Sk : λ(M) = 0}. We aim
at showing that the product of any k + 1 matrices in Nk equals zero. To this
end, we need a somewhat complex inductive argument, which uses the following
auxiliary operator.

Definition 2. For any k ≥ 1, the operator ∗ : Sk → Sk−1 is defined as follows.

For any special matrix M =
[
A B
B A

]

∈ Sk, we define M∗ = A + B. (Note that

M∗ ∈ Sk−1 since the sum of special matrices is a special matrix.)

Basic properties of the operator ∗ are described in the following proposition.
The easy proof is provided for the sake of completeness.

Proposition 4. Let M1,M2 ∈ Sk for some k ≥ 1. We have:

1. (M1 + M2)∗ = M∗
1 + M∗

2 ;
2. (M1 · M2)∗ = M∗

1 · M∗
2 ;

3. λ(M∗
1 ) = λ(M1).

Proof. Let M1 =
[
A B
B A

]

and M2 =
[
C D
D C

]

be special matrices. Then

(M1 + M2)∗ = A + B + C + D = M∗
1 + M∗

2 .

Furthermore, M1 · M2 =
[
AC + BD AD + BC
AD + BC AC + BD

]

, and hence,

(M1 · M2)∗ = AC + BD + AD + BC = (A + B) · (C + D) = M∗
1 · M∗

2 .

Part (3) was shown in the proof of Proposition 2.

We now define, by induction on k + �, the notion of a special matrix M ∈ Sk

which is a depth-� zero.

Definition 3. For � = 0 and for any k ∈ N, a matrix M ∈ Sk is a depth-0 zero
if and only if λ(M) = 0.

For any �, k such that � ≥ k, a matrix M ∈ Sk is a depth-� zero if and only
if it is the zero matrix.

For all k > � ≥ 1, a matrix M =
[
A B
B A

]

∈ Sk is a depth-� zero if:



48 N. Keller and A. Rosemarin

1. A and B are depth-(� − 1) zeros, and
2. M∗ = A + B is a depth-� zero.

The zero depth of a matrix M ∈ Sk is the maximal �, such that M is a depth-�
zero.

Intuitively, the higher is the zero depth of M ∈ Sk related to k, the ‘closer’ is M
to the zero matrix. In particular, if the zero depth of M is 0, we only know that
λ(M) = 0. If the zero depth of M is k − 1, then M is ‘almost zero’, in the sense

that M =
[
X X
X X

]

, where X ∈ Sk−1 has zero depth k − 2. If the zero depth of

M is k, then M is the zero matrix.
The two following propositions relate the zero depth of the sum and the

product of special matrices to their zero depths.

Proposition 5. Let M1,M2 ∈ Sk be special matrices over a commutative ring
R with characteristic 2 that are depth-� zeros, and let c ∈ R. Then c · M1 and
M1 + M2 are depth-� zeros as well.

Proof. For � = 0, the assertion follows immediately from Proposition 3 (i.e.,
additivity of the eigenvalue for special matrices).

For � ≥ 1, the proof is an easy induction on k. For k = 0 the claim is obvious.
Assume the claim holds for k − 1 and let

M1 =
[
A B
B A

]

,M2 =
[
C D
D C

]

∈ Sk

be depth-� zeros. By definition, A,B,C,D are depth-(� − 1) zeros, and thus, by
the induction hypothesis (or by Proposition 3, in the case � = 1), A + C,B + D
(which are the blocks of M1 + M2) are depth-(� − 1) zeros as well. Furthermore,
M∗

1 = A + B and M∗
2 = C + D are depth-� zeros, and thus, by the induction

hypothesis, (M1 + M2)∗ = A + B + C + D is a depth-� zero as well. Hence,
M1 + M2 is a depth-� zero. The proof for c · M1 is similar.

Proposition 6. Let M,L ∈ Sk be special matrices over a commutative ring R
with characteristic 2, and assume that:

1. M is a depth-� zero for some � < k;
2. L is a depth-0 zero.

Then M · L is a depth-(� + 1) zero.

Proof. We prove the claim by induction on k + �. For the base case, we consider
k = 1, � = 0. In this case, since k = 1 and λ(M) = λ(L) = 0, M and L must be
of the form

M =
[
a a
a a

]

, L =
[
b b
b b

]

,

for some a, b. In such a case, M · L = 0, which is a depth-1 zero, as asserted.



Mind the Middle Layer: The HADES Design Strategy Revisited 49

Assume the assertion holds for all k′, �′ with k′ + �′ < k + �, and let

M =
[
A B
B A

]

, L =
[
C D
D C

]

∈ Sk

be such that M is a depth-� zero and λ(L) = 0. We have

M · L =
[
AC + BD AD + BC
AD + BC AC + BD

]

=
[
X Y
Y X

]

.

We consider several cases:

Case 1: 0 < � < k − 1. First, we show that X + Y = (M · L)∗ is a depth-(� + 1)
zero. By Proposition 4, we have (M · L)∗ = M∗ · L∗. M∗ is a depth-� zero by
definition and λ(L∗) = λ(L) = 0. Thus, by the induction hypothesis (which can
be applied since � < k − 1), M∗ · L∗ is a depth-(� + 1) zero.

Now we show that X and Y are depth-� zeros. As λ(M) = 0, we have
λ(C) = λ(D). Denote λ(C) = λ(D) = γ, and let C ′ = C + γ · I,D′ = D + γ · I.
We have

X = A · (C ′ + γ · I) + B · (D′ + γ · I) = A · C ′ + B · D′ + γ · M∗.

By Proposition 5, γ ·M∗ is a depth-� zero and by the induction hypothesis (which
can be applied since � > 0), A · C ′ and B · D′ are depth-� zeros as well. Hence,
by Proposition 5, X is a depth-� zero. The proof for Y is similar.

Case 2: � = 0. In this case, the proof that X + Y is a depth-1 zero works like in
Case 1.

We now prove that X is a depth-0 zero; the proof for Y is similar. Since
M and L are depth-0 zeros, we have λ(A) = λ(B) and λ(C) = λ(D). Hence,
Proposition 3 implies

λ(X) = λ(AC + BD) = λ(A)λ(C) + λ(B)λ(D) = 0,

and thus, X is a depth-0 zero, as asserted.

Case 3: � = k − 1. In this case, the proof that X and Y are depth-� zeros works
like in Case 1. As X,Y ∈ Sk−1, this means that X = Y = 0, and thus, M · L
is the zero matrix, which is of course a depth-(� + 1)-zero. This completes the
proof.

Now we are ready to prove that the product of any k + 1 elements of Nk is
the zero matrix.

Proposition 7. Let M1, ...,Mk+1 be 2k-by-2k nilpotent special matrices over a
commutative ring R with characteristic 2. Then

k+1∏

i=1

Mi = 0.

Proof. By applying Proposition 6 on the sequence of products Pj =
∏j

i=1 Mi,
we deduce that for all j ≥ 1, Pj is a depth-(j − 1) zero. In particular,
Pk+1 =

∏k+1
i=1 Mi is a depth-k zero, which means that it is the zero matrix

by the definition of zero depth.



50 N. Keller and A. Rosemarin

4.4 Block Matrices with Special Blocks

In this subsection we consider s-by-s block matrices over a commutative ring R
with characteristic 2, in which each block is a special 2k-by-2k matrix. We aim
at showing that the minimal polynomial of any such matrix is of degree at most
s(k + 1). As an intermediate result, we show that the characteristic polynomial
of any such matrix has a very specific structure.

We use the following classical result (see, e.g., [16, Theorem 1]) on determi-
nants of block matrices with commuting blocks.

Theorem 3. Let �,m ∈ N. Let R be a commutative ring and let S be a commu-
tative subring of R�×�. Let X ∈ Sm×m be an m-by-m block matrix over R with
�-by-� blocks in S. Then detR(X) = detR(detS(X)).

The theorem asserts that if the blocks of the matrix commute, then in order to
compute its determinant, we can first compute the determinant of the ‘matrix of
blocks’ (an m-by-m matrix over the ring S), which in itself is an �-by-� matrix
over R, and then compute the determinant (over R) of this determinant.

In the case of block matrices over a commutative ring with characteristic 2
whose blocks are special matrices, the computation of the determinant can be
further simplified.

Proposition 8. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-2k

special matrix. Denote the blocks of M by {Mi,j}s
i,j=1. Let M ′ ⊂ Rs×s be defined

by M ′
i,j = det(Mi,j). Then det(M) = det(M ′).

The proposition asserts that for block matrices with special blocks, in order to
compute the determinant, we can replace each block with its determinant and
compute the determinant of the resulting s-by-s matrix.

Proof. By Theorem 3, we have det(M) = detR(detS(M)). The expression
detS(M) is a sum-of-products of special matrices. As in the subring Sk of special
matrices, the determinant is multiplicative and additive by Proposition 3, the
expression detR(detS(M)) does not change if we replace each matrix in detS(M)
with its determinant. The result is exactly det(M ′). Thus, det(M) = det(M ′),
as asserted.

We are now ready for computing the characteristic polynomial of a block
matrix whose blocks are special matrices.

Proposition 9. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-2k

special matrix. Denote the blocks of M by {Mi,j}s
i,j=1. Let M ′′ ⊂ Rs×s be defined

by M ′′
i,j = λ(Mi,j), where λ(Mi,j) is the unique eigenvalue of the special matrix

Mi,j. Denote by p(x) = fM (x) and q(x) = fM ′′(x) the characteristic polynomials
of M and M ′′, respectively. Then p(x) = q(x)2

k

.



Mind the Middle Layer: The HADES Design Strategy Revisited 51

Proof. Since char(R) = 2, we have p(λ) = fM (λ) = det(λ · I + M). As the
blocks of λ ·I +M are special matrices (over the commutative ring R[λ] that has
characteristic 2), by Proposition 8 the expression det(λ · I +M) does not change
if we replace each block with its determinant. For non-diagonal blocks Mi,j , the
replacement yields M ′

i,j , where M ′ is as defined in the proof of Proposition 8.
For diagonal blocks Mi,i, by Proposition 3 we have

det(λ · I + Mi,i) = det(λ · I) + det(Mi,i) = λ2k + M ′
i,i.

Therefore, we have

p(λ) = det(λ · I + M) = det(λ2k · I + M ′) = fM ′(λ2k).

Denote fM ′(x) =
∑s

l=0 fl({M ′
ij}) · xl, where each fl({M ′

ij}) is a sum of prod-
ucts of M ′

ij ’s. Recall that for any i, j,

M ′
i,j = det(Mi,j) = (λ(Mi,j))2

k

= (M ′′
i,j)

2k .

As char(R) = 2 (and so, the function x �→ x2k is linear over R), it follows that
for each l, fl({M ′

i,j}) = fl({M ′′
i,j})2

k

. Hence,

fM ′(λ2k) =
s∑

l=0

fl({M ′′
i,j})2

k

(λ2k)l = (
s∑

l=0

fl({M ′′
i,j})λl)2

k

.

Finally, as
∑s

l=0 fl({M ′′
i,j})λl = fM ′′(λ), we obtain

p(λ) = fM ′(λ2k) = (fM ′′(λ))2
k

= q(λ)2
k

.

This completes the proof.

We are now ready to show that the degree of the minimal polynomial of a
block matrix whose blocks are special matrices is much lower than the degree
of its characteristic polynomial. Specifically, we prove that its degree is at most
s(k + 1), while the degree of the characteristic polynomial is s · 2k.

Proposition 10. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-
2k special matrix. Denote the blocks of M by {Mi,j}s

i,j=1. Let M ′′ ⊂ Rs×s be
defined by M ′′

i,j = λ(Mi,j), where λ(Mi,j) is the unique eigenvalue of the special
matrix Mi,j. Denote by q(x) = fM ′′(x) the characteristic polynomial of M ′′.
Then q(M)k+1 = 0.

Proof. First, we claim that q(M) is a block matrix whose blocks are nilpotent
special matrices (equivalently, special matrices whose unique eigenvalue is 0).
Indeed, the blocks of q(M) are special matrices, since they are sums-of-products
of special matrices. Hence, we can represent each such block (q(M))i,j in the
form

∑ ∏
Ai, where all Ai are special matrices. By Proposition 3, we have

λ(q(M)i,j) = λ(
∑ ∏

Ai) =
∑∏

λ(Ai) = (q(M ′′))i,j = 0,



52 N. Keller and A. Rosemarin

where the last equality holds since q(M ′′) = 0 by the Cayley-Hamilton theorem.
Now, we can apply Proposition 7. Consider the matrix q(M)k+1. Each block

of this matrix is a sum of products of k + 1 nilpotent 2k-by-2k special matrices.
By Proposition 7, each such product is the zero matrix. Hence, each block of
q(M)k+1 is the zero matrix, and thus, q(M)k+1 = 0, as asserted.

4.5 A Stronger Conjectured Bound

We conjecture that Proposition 10 can be further improved, and that in fact,
the following holds:

Conjecture 1. Let k, s ∈ N. Let R be a commutative ring with characteristic 2,
and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-
2k special matrix. Denote the blocks of M by {Mi,j}s

i,j=1. Let M ′′ ⊂ Rs×s be
defined by M ′′

i,j = λ(Mi,j), where λ(Mi,j) is the unique eigenvalue of the special
matrix Mi,j . Denote by q(x) = fM ′′(x) the characteristic polynomial of M ′′.
Then q(M)2 = 0.

We proved this conjecture for s = 2 by a direct computation (which we omit
here, being not sufficiently illuminating), and verified it experimentally for many
values of t, over various binary fields (including the field GF (233) used in Starkad
with t = 47). In particular, it matches all sizes of invariant subspaces presented
in Table 2. However, we were not able to prove the conjecture in general at this
stage.

5 A Large Invariant Subspace in the Middle Layer of
Starkad Permutations

In this section we apply the results on special matrices obtained in Sect. 4 to
show that for many choices of t (i.e., the number of S-boxes in each round), the
Starkad permutation admits a huge invariant subspace that allows bypassing any
number of PSPN rounds without activating any S-box. We then explain how the
invariant subspace can be used to mount a Gröbner basis preimage attack on
Starkad, using an attack strategy proposed by Beyne et al. [6]. Subsequently, we
show that these invariant subspaces can be easily avoided, by a careful choice of
parameters, or by very mild changes in the design.

5.1 The Starkad MDS and Special Matrices

In this subsection we show that for any choice of the parameters, the Starkad
MDS is a block matrix over a binary field GF (2n) (which is, in particular, a
commutative ring with characteristic 2), whose blocks are special matrices. This
will allow us to deduce Theorems 1 and 2 from the results on special matrices
obtained in Sect. 4.

We start with the case t = 2k.



Mind the Middle Layer: The HADES Design Strategy Revisited 53

Proposition 11. Let M ∈ GF (2n)2
k×2k be a Cauchy matrix generated from

the sequences {xi}, {yj}, where for each 1 ≤ i ≤ 2k, we have xi = i − 1 and
yi = xi + r (integer summation), for some r such that 2k|r. Then M is a special
matrix.

Proof. In the following, we use the symbols � and � to denote integer addition
and subtraction and ⊕ to denote bit-wise XOR, which is addition in the field.

We prove the claim by induction on k. For k = 0 the claim is obvious,

assume the claim holds for k −1. Let M =
[
A B
C D

]

∈ F
2k×2k be a Cauchy matrix

generated as described above. A is obviously a 2k−1 × 2k−1 Cauchy matrix with

xi = i � 1, yi = xi � r,

and thus, by the induction hypothesis, is a special matrix.
D is a 2k−1 × 2k−1 Cauchy matrix with

xi = 2k−1 � i � 1, yi = xi � r,

for all 1 ≤ i ≤ 2k−1. Using the range of the i � 1’s, we conclude that xi =
2k−1 � (i � 1) = 2k−1 ⊕ x′

i for x′
i = i � 1. Similarly, as 2k|r, yi = xi � r = xi ⊕ r.

Thus,

Dij = (xi ⊕ yj)−1 = (x′
i ⊕ 2k−1 ⊕ xj ⊕ r)−1 = (x′

i ⊕ 2k−1 ⊕ x′
j ⊕ 2k−1 ⊕ r)−1

= (x′
i ⊕ x′

j ⊕ r)−1 = (x′
i ⊕ (x′

j � r))−1 = Aij .

Hence, D = A.
Define r′ � 2k−1 ⊕ r. Notice that B is a Cauchy matrix with xi = i � 1, yi =

xi � r � 2k−1. As 0 ≤ xi < 2k−1 and 2k|r, we have

yi = xi ⊕ 2k−1 ⊕ r = xi ⊕ r′ = xi � r′.

As r′ is divisible by 2k−1, we can use the induction hypothesis to conclude that
B is also a special matrix.

C is a Cauchy matrix with xi = 2k�1�(i�1) = 2k−1⊕(i−1), yi = r�(i�1) =
r ⊕ (i � 1). Thus Cij = (xi ⊕ yj)−1 = ((i − 1) ⊕ (j − 1) ⊕ r′)−1 = Bij . Hence,
C = B. We proved that A,B are special and that C = B,D = A. Thus, M is a
special matrix, as asserted.

Corollary 1. For any t = 2k, the MDS in Starkad with t S-boxes in each SPN
round is a special matrix.

Corollary 1 follows immediately from Proposition 11, since the sequences {xi}
and {yj} used in Starkad to generate the Cauchy matrix are exactly those con-
sidered in the proposition, and since the parameter r is chosen in Starkad to be
equal to t.

Now we consider variants of Starkad with any number t of S-boxes in each
round.



54 N. Keller and A. Rosemarin

Proposition 12. Let t = 2k · s, for k ≥ 0 and s ≥ 1. Let M ∈ GF (2n)t×t

be a Cauchy matrix generated from the sequences {xi}, {yj}, where for each
1 ≤ i ≤ 2k, we have xi = i − 1 and yi = xi + r (integer summation), for some r
such that 2k|r. Then M is an s × s block matrix of 2k × 2k special matrices.

Proof. Divide the matrix M into s × s blocks of 2k × 2k matrices. Denote the
blocks by Mp,q, 1 ≤ p, q ≤ s. Let Mp,q be one of the blocks and we will prove
that it is a special matrix. Mp,q is a Cauchy matrix with

xi = (i � 1) � p2k = (i � 1) ⊕ p2k, yi = (i � 1) � q2k � t = (i � 1) ⊕ (q2k � t).

Define t′ � p2k ⊕ (q2k � t). We have

(Mp,q)ij = ((i � 1) ⊕ (j � 1) ⊕ (p2k ⊕ (q2k � t)))−1

= ((i � 1) ⊕ (j � 1) ⊕ t′)−1 = ((i � 1) ⊕ ((j � 1) � t′))−1.

Notice that 2k|t′, and thus, Mp,q satisfies the assumption of Proposition 11, and
thus, is a special matrix. This completes the proof.

Corollary 2. For any t = 2k · s, the MDS in Starkad with t S-boxes in each
SPN round is an s-by-s block matrix, each of whose blocks is a special matrix.

Corollary 1 follows immediately from Proposition 11, since {xi}, {yj}, and r used
in Starkad satisfy the assumption of the proposition.

5.2 A Large Invariant Subspace in Starkad with 4� S-Boxes in Each
Full Round

In this subsection we prove Theorems 1 and 2. The former shows that for any
t = 4�, Starkad with t S-boxes in each SPN round admits a large invariant
subspace. The latter asserts that if t is a power of 2, then the MDS of Starkad
with t S-boxes in each SPN round is essentially an involution.

First, we prove Theorem 1. Let us recall its statement.

Theorem 1. Let F = GF (2n) be a binary field. Let t = 2k · s where s ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad
specification. Then there exists a linear subspace U ⊂ F

t of dimension at least
(1 − k+1

2k
)t such that for any � ∈ N and for any x ∈ U , the top n bits of M �x are

equal to zero. Consequently, application of any number of PSPN rounds to any
x ∈ U does not activate any S-box.

Proof. Let M be a matrix that satisfies the assumptions of the theorem. By
Corollary 2, it is an s-by-s block matrix, where each block is a 2k-by-2k special
matrix. Hence, by Proposition 10, there exists a polynomial q′ of degree s(k +1)
such that q′(M) = 0.

Let
U = {x ∈ GF (2n)t : ∀0 ≤ i ≤ s(k + 1) − 1, (M ix)1 = 0},



Mind the Middle Layer: The HADES Design Strategy Revisited 55

where (X)1 stands for the top n bits of X that enter the unique S-box in the
PSPN rounds. Clearly, U is a linear subspace of dimension at least s(2k − (k +
1)) = (1 − k+1

2k
)t. We claim that for any � ∈ N and for any x ∈ U , the top n

bits of M �x are equal to zero. Indeed, using division of polynomials we can write
M � = q′(M) · q0(M) + q1(M), where deg(q1(M)) < deg(q′(M)) = s(k + 1). We
have

(M �x)1 = (q′(M) · q0(M)x + q1(M)x)1 = (q1(M)x)1 = 0,

where the second equality holds since q′(M) = 0 and the last inequality holds
since deg(q1(M)) < s(k + 1) and x ∈ U . This completes the proof.

As for any k ≥ 2 we have (k+1)/2k ≤ 3/4, Theorem 1 implies that whenever the
number t of S-boxes in each full round of Starkad is divisible by 4, there exists
a linear subspace of dimension at least t/4 that does not activate any S-box
for any number of PSPN rounds. If t is divisible by 8, the lower bound on the
dimension of the subspace increases to t/2, if 16|t, it increases to 11t/16, etc.

In the cases where t is a power of 2, the structure of the Starkad MDS is
surprisingly simple, as is shown in Theorem 2. Let us recall its statement.

Theorem 2. Let F = GF (2n) be a binary field, and let t = 2k for k ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad
specification. Then M2 = αI, where α = (

∑2k+1−1
j=2k j−1)2. Consequently, there

exists a linear subspace U ⊂ F
t of dimension at least t − 2 such that for any

� ∈ N and for any x ∈ U , the top n bits of M �x are equal to zero.

Proof. Let M be a matrix that satisfies the assumption of the theorem. By
Corollary 1, M is a special matrix. By Proposition 2, we have M2 = α · I, where
α = λ(M)2, and λ(M) (i.e., the unique eigenvalue of M) is the sum of elements
in each row of M . By the construction of the Starkad MDS, these elements are
the inverses of {2k + i}2k−1

i=0 . Hence,

α = (
2k+1−1∑

j=2k

j−1)2,

as asserted. Finally, the dimension of the subspace U is at least t − 2, since it is
sufficient to require x1 = 0 and (Mx)1 = 0, by the argument used in the proof
of Theorem 1. This completes the proof.

5.3 Using the Invariant Subspaces for a Preimage Attack

In [6, Sec. 6.2], Beyne et al. showed that if the linear layer of Starkad or Poseidon
was an involution, this could be used to mount a Gröbner basis preimage attack
on the scheme.

Brief Description of the Attack of [6]. The basic idea behind the attack is simple.
Assuming that the linear layer is involutionary, it is easy to show that there exists



56 N. Keller and A. Rosemarin

an invariant subspace of dimension t−2 over the field (where t is the number of S-
boxes in each round) that passes all PSPN rounds without activating any S-box.
Hence, if we restrict ourselves to plaintexts whose intermediate values lie in the
invariant subspace, a Gröbner basis attack on the scheme can bypass all PSPN
rounds for free. The condition that the intermediate value resides in the invariant
subspace can be added as a set of linear constraints to the system of equations
in the Gröbner basis attack, without increasing its complexity significantly. The
preimage is then found by representing the full rounds as a system of equations,
adding the linear constraints, and solving the resulting system of equations using
Gröbner basis methods.

The authors of [6] conclude that a preimage can be found in time

2γ(2π)−ω/2(c + 2)2−ω/2eω(c+2)3(ω(c+2)+1)(RF −1), (1)

where the parameters γ and ω are such that the computational cost of com-
puting the row-reduced echelon form of an m-by-n matrix is γmnω (see [6,
Appendix A]).5

Application of the Attack in our Scenario. The preimage attack of [6] is presented
in terms of the multiplicative order of the linear layer (which is actually very
high in Starkad, unless t is a power of 2). However, it is easy to see by going
over the proof of [6, Lemma 2], that the multiplicative order of the matrix can
be replaced by the co-dimension of the invariant subspace that passes the PSPN
rounds without activating any S-box. (In other words, there is no difference
between the case where Mk = αI for some constant α and the more general
case where the minimal polynomial of M is of degree at most k).

Therefore, the attack described above can be applied to Starkad, where in
the formula of the time complexity (i.e., Eq. (1) above) c + 2 is replaced with
c + d′, where d′ is the degree of the minimal polynomial of M . In particular, if
we take a variant of Starkad with the binary field GF (2127) as was proposed in
the Starkware Challenge [17] for 256-bit security, and take t to be any power of
2, then the scheme admits a preimage attack of complexity about 2220, which
breaks the 256-bit security bound.

We note however that for all actually proposed sets of parameters, the com-
plexity of the preimage attack we described does not break the security bound.

5 Note that these results are weaker than the results claimed in [6, Sec. 6.2]; specifically,
we replace c by c+2, which affects the results significantly. In particular, this means
that among the results presented in [6, Table 5], the complexity of the attack on
the variant 128-e is increased from 244.2 to about 2115, the complexity of the attack
on 256-b is increased from 2150.9 to about 2220, and the attack on 128-c becomes
infeasible. In addition, the attack on the variant 256-a fails as well, since for that
variant we have c = t/2, while the attack applies only for c < t/2, as is explained
in [6, Sec. 6]. The authors of [6] admitted (in private communication [5]) that the
formula they wrote was incorrect, and agreed with our correction.



Mind the Middle Layer: The HADES Design Strategy Revisited 57

5.4 The Invariant Subspaces Can Be Avoided Easily

While it is not clear whether the invariant subspaces presented above can be
exploited to attack the Starkad hash function, it seems clear that their existence
is an undesirable feature. The ‘good news’ are that these subspaces can be easily
avoided, by a careful choice of parameters. We present below three possible
ways to make sure that the middle layer of Starkad cannot be bypassed without
activating any S-box.

Choosing the Value of t Carefully. One possible way is to choose t that is not
divisible by 4. As was exemplified in Table 2 for several values of t, in most cases6

where t is not divisible by 4, there is no invariant subspace of the form described
above. Furthermore, given a value of t, we can use the tool described in Sect. 3
to guarantee that any t-round characteristic indeed activates at least one S-box.

Changing the Parameter r. Another possible way is to change the parameter
r used in the generation of the MDS matrix. Recall that the MDS matrix is a
Cauchy matrix, generated by the sequences {xi}, {yj}, where xi = i − 1 and
yi = xi + r (integer addition). The designers fixed r = t.

The relation of the Starkad matrix to special matrices, proved in Proposi-
tion 12, assumes that r is divisible by 2k (which is obviously satisfied by r = t).
This suggests that choosing a different value of r might avoid the invariant sub-
space. Our experiments, performed with n = 263 and t = 24, indicate that
indeed, whenever r is not divisible by 4, there is no invariant subspace of the
form described above (see Table 4). As before, given such a value of r, we can
use the strategy described in Sect. 3 to guarantee that any t-round characteristic
indeed activates at least one S-box.

Table 4. The dimension of the invariant subspace whose elements do not activate S-
boxes for any number of PSPN rounds, as a function of r, for a Starkad permutation
over the field GF (263) with t = 24

r Dimension of
invariant
subspace

r Dimension of
invariant
subspace

r Dimension of
invariant
subspace

24 18 25 0 26 0

27 0 28 12 29 0

30 0 31 0 32 20

40 18 47 0 52 12

64 20 101 0 128 20

6 We checked this experimentally, with numerous values of t and n. The only ‘coun-
terexamples’ we are aware of occur for small values of n, that is, over small-sized
binary fields.



58 N. Keller and A. Rosemarin

Shifting the Sequence {xi}. A third possible mild change is shifting the sequence
{xi}, namely, taking xi = x0+i−1 for some x0 �= 0. In this case, our experiments
(performed with n = 263 and t = 24, see Table 5) indicate that non-divisibility of
x0 by 4 is not a sufficient condition. However, there exist many values of x0 for
which there is no invariant subspace of the form described above, and as before,
for such values of x0 we can guarantee that any t-round characteristic indeed
activates at least one S-box using the technique of Sect. 3.

Table 5. The dimension of the invariant subspace whose elements do not activate S-
boxes for any number of PSPN rounds, as a function of x0 (the initial element of the
sequence {xi} used in the construction of the Cauchy matrix), for a Starkad cipher
over the field GF (263) with t = 24

x0 Dimension of
invariant
subspace

x0 Dimension of
invariant
subspace

x0 Dimension of
invariant
subspace

0 18 1 6 2 0

3 0 4 12 5 0

6 0 7 12 8 18

9 6 10 0 11 0

12 12 13 0 14 0

15 12 16 18 17 6

6 Discussion and Open Problems

We conclude this paper with a discussion on the implication of our results on
the HADES design strategy, and with a few open problems.

6.1 Discussion: PSPN Rounds Vs. SPN Rounds

In this paper we showed that the MDS matrix used in HADES constructions
significantly affects the security level provided by the cryptosystem. This empha-
sizes the need of choosing the MDS matrix in the construction carefully, but also
gives rise to a more general question regarding the design strategy.

Specifically, we showed in Sect. 3 that when the MDS matrix is chosen prop-
erly (which is the case for all suggested variants of Poseidon, an instantiation
of HADES for prime fields), the lower bound on the number of active S-boxes
in differential and linear characteristics can be significantly improved by taking
into consideration the PSPN rounds. In some of the cases, the lower bound we
obtain on the number of active S-boxes in the PSPN rounds is much larger than
the lower bound obtained by the designers using the wide-trail strategy.



Mind the Middle Layer: The HADES Design Strategy Revisited 59

This gives rise to the question, whether full SPN rounds are ‘cost effective’
compared to PSPN rounds, in scenarios where the complexity is dominated by
the number of S-boxes in the construction (which are the target scenarios of the
HADES design strategy).

As was emphasized by the HADES designers, PSPN rounds are more cost-
effective with respect to algebraic attacks, since when the linear layer is an MDS,
the increase of the algebraic degree obtained by a PSPN round is the same as the
increase obtained by an SPN round which uses t times more S-boxes. It should
be noted (and was also emphasized by the HADES designers) that security
with respect to algebraic attacks is determined not only by the algebraic degree,
and thus, a single PSPN round provides less security with respect to algebraic
attacks than an SPN round. However, it seems clear that t PSPN rounds provide
a much larger security increase than a single SPN round, while employing the
same number of S-boxes.

The HADES designers motivate the use of the SPN rounds by protection
against statistical – mainly differential and linear – attacks, and in particular, by
the ability to use the wide trail strategy for proving lower bounds on the number
of active S-boxes in differential and linear characteristics. It turns out however
that when the MDS matrix is chosen properly, the number of active S-boxes
in a characteristic over PSPN rounds is not much smaller than the respective
number for SPN rounds that employ the same number of S-boxes. Indeed, the
wide trail strategy provides a tight lower bound of t + 1 active S-boxes over two
rounds which employ 2t S-boxes in total. For PSPN rounds with a single S-box
in each round, the analysis of [2] suggests that for a ‘good’ MDS, the minimal
number of active S-boxes over m rounds (which employ m S-boxes) is m−t

2 + 1.
While the ratio t+1

2t obtained by SPN rounds is somewhat larger than the ratio
m−t+2

2m obtained for PSPN rounds, the asymptotic difference between the ratios
is small.

The wide trail strategy has the advantages of being generic, and of appli-
cability to any number of active S-boxes (compared to the algorithm of [2] we
use in this paper, which depends on the specific structure of the cipher and on
the available computational resources). However, if indeed the advantage of SPN
rounds with respect to statistical attacks7 is small, while the advantage of PSPN
rounds with respect to algebraic attacks is very large, then it might make sense
to change the balance between the numbers of rounds in favor of PSPN rounds.

6.2 Open Problems

Finding Better Ways to Exploit the Invariant Subspace in Starkad. The first
open problem arising from this paper is, whether there are more efficient ways
7 It should be noted that in our analysis, we considered only differential and linear

attacks, and not other types of statistical attacks. However, for all other classes of
attacks, the security arguments provided for SPN constructions are heuristic, and
hence, there is no clear way to decide whether r full SPN rounds provide a better
security guarantee against those attacks, compared to tr PSPN rounds. Therefore,
we focus on differential and linear attacks, for which the results are ‘measurable’.



60 N. Keller and A. Rosemarin

to exploit the large invariant subspaces found for variants of Starkad to mount
attacks on the schemes.

Optimal Bound on the Size of the Invariant Subspace. Another open problem
is to prove Conjecture 1 – namely, to show that the dimension of the invariant
subspace for t = 2k · s is at least t − 2s. Numerous experiments suggest that the
conjecture (which would be tight if proved) indeed holds, and it seems that a
proof is not out of reach.

Improved Cryptanalysis Techniques for PSPN Rounds. As was pointed out by
the HADES designers, the cryptanalysis tools available for PSPN designs are
very scarce. Developing new tools (and improving existing ones, like that of [2]
we used) may enable a wider use of PSPN rounds, and further development of
designs based on them. In particular, it seems unclear whether a design that
contains only PSPN rounds with a few S-boxes in each round is necessarily
problematic, despite the mixed success of previous designs of this class (Zorro
and LowMC).

The recent paper [13] is a first step in this direction, but the main problems
in the understanding of PSPN designs are still open.

Balancing the Number of SPN vs. PSPN Rounds in HADES Designs. As was
mentioned in the above discussion, our results may suggest that one can design
more efficient instantiations of HADES by choosing the MDS properly, taking
into consideration the middle layer, and changing the balance between SPN and
PSPN rounds. It will be interesting to find out whether this is indeed possible.
To be concrete, we suggest studying the following variant.

Question 1. Consider a variant of Poseidon in which the 2Rf SPN rounds are
replaced by tRf PSPN rounds (and so, the cipher has only PSPN rounds, and
the total number of S-boxed is reduced by tRf ). What is the security level of
the new variant, compared to the initial variant?

If the security level of the new variant is not lower, this allows to speed up
variants of Poseidon without reducing their security level, and suggests that
using only PSPN rounds is advantageous over combining SPN and PSPN rounds,
provided that the linear transformation is chosen properly.

Acknowledgements. The authors are grateful to Tim Beyne, Itai Dinur, Lorenzo
Grassi and Christian Rechberger, for helpful discussions and suggestions.

A Detailed Description of the Pattern Search Algorithm

In this appendix we describe in detail the pattern search algorithm we applied
to variants of the Poseidon permutation. The code of the algorithm is pub-
licly available at: https://anonymous.4open.science/r/bc580cca-659f-4e8f-b8c1-
9dfcd5fb75a2/.

https://anonymous.4open.science/r/bc580cca-659f-4e8f-b8c1-9dfcd5fb75a2/
https://anonymous.4open.science/r/bc580cca-659f-4e8f-b8c1-9dfcd5fb75a2/


Mind the Middle Layer: The HADES Design Strategy Revisited 61

A.1 Checking a Single Pattern

In order to check whether there exists a differential characteristic following a
specific pattern, one can use the following algorithm:

algorithm Check-Pattern(pattern), pattern ∈ (
[n]
a

)

1. ST := (It; 0a+t)
2. E := ∅
3. s := t + 1
4. for every i = 1 : n

(a) if i ∈ pattern: ST1 ← es, s ← s + 1
(b) if i /∈ pattern: E ← E ∪ ST1

(c) ST ← M · ST
5. Solve the equation system E, return TRUE if and only if there exists a

nontrivial solution

Explanation of the Algorithm. Each row of the state corresponds to the coeffi-
cients in the linear combination of the t + a variables. Thus, the beginnings of
the rows consist of the unit vectors e1, . . . , et.

On a non-active S-box, we get a linear restriction by the coefficients in the
first row. On an active S-box, we replace the first row by a new variable, which
is represented by es.

The state is updated after the S-box layer, using the MDS matrix. When we
finish posing the linear equations, we can solve the system E using Gaussian
elimination and check whether there exists a solution. We note that for linear
characteristics, the same algorithm can be used, with the matrix (MT )−1 instead
of M .

A.2 Checking All r-Round Patterns with a Active S-boxes

We can also iterate over all the patterns of length r with a active S-boxes, using
the following simple recursive algorithm:

function Search-Pattern(pref, s, a, i, n):

1. if i ≥ n − 1 ∧ Check-Pattern(pref) : output pref
2. if i < t + 2s: Search-Pattern(pref,s, a, i + 1, n)
3. if s < a ∧ 2s < i: Search-Pattern(pref ∪{i}, s + 1, a, i + 1, n)

Explanation of the Algorithm. The word “pref” denotes a prefix of the pattern,
s is the number of active S-boxes in the prefix, i is the length of the prefix and
n is the total number of S-boxes (i.e., the length of the final pattern). It should
thus always hold that s ≤ a, s ≤ i.



62 N. Keller and A. Rosemarin

The function should be called with pattern = ∅, s = 0, a, i = 2, n = t + 2a.
Note that we assume that the function was already called for each a′ ≤ a

and that no differential characteristic was found. We use this fact to reduce the
number of checked patterns, since if a pattern contains a previously checked
pattern as a substring, then we do not have to check it.

The condition for a non active S-box is: i < t+2s. Indeed, if i ≥ t+2s, then
the prefix already cannot contain active S-boxes (this is the case of a lower a
that was already checked), and thus we do not need to check this prefix at all.

The condition for an active S-box is: s < a ∧ 2s < i. Indeed, the condition
s < a is obvious. The condition 2s < i appears, since if 2s ≥ i then the suffix
(starting from i + 1) is a pattern that was already checked, as it corresponds to
a′ = a− s, n′ = n−2s = t+2(a− s) = t+2a′, and thus we do not need to check
this prefix.

The stopping condition is at n−1, as the last two S-boxes must be non-active
or otherwise the prefix will correspond to a′ = a − 1. By the same reasoning, we
start from i = 2, meaning that the first two S-boxes are also inactive.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46800-5 13

3. Becker, T., Weispfenning, V.: Gröbner bases - a computational approach to com-
mutative algebra, 1st edn., p. 576. Springer, New York, USA (1993). https://doi.
org/10.1007/978-1-4612-0913-3

4. Ben-Sasson, E., Goldberg, L., Levit, D.: STARK friendly hash - sur-
vey and recommendation. Cryptol. ePrint Arch. Rep. 2020, 948 (2020).
https://eprint.iacr.org/2020/948

5. Beyne, T.: Personal communication (2020)
6. Beyne, T., et al.: Out of oddity – new cryptanalytic techniques against symmetric

primitives optimized for integrity proof systems. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 11

7. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 22

8. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30840-1 6

9. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-1-4612-0913-3
https://eprint.iacr.org/2020/948
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-319-30840-1_6
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22


Mind the Middle Layer: The HADES Design Strategy Revisited 63

10. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and poseidon: new hash functions for zero knowledge proof systems. IACR
Cryptol. ePrint Arch. 2019, 458 (2019). https://eprint.iacr.org/2019/458

11. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: USENIX Security Sym-
posium. USENIX Association (2021)

12. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: the HADES design strategy.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–
704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 23

13. Grassi, L., Rechberger, C., Schofnegger, M.: Weak linear layers in word-oriented
partial SPN and hades-like ciphers. IACR Cryptol. ePrint Arch. 2020, 500 (2020).
https://eprint.iacr.org/2020/500

14. NIST: Advanced Encryption Standard, Federal Information Processing Standards
publications No. 197 (2001)

15. Roth, R.M., Lempel, A.: On MDS codes via Cauchy matrices. IEEE Trans. Inf.
Theory 35(6), 1314–1319 (1989). https://doi.org/10.1109/18.45291

16. Silvester, J.R.: Determinants of block matrices. Math. Gaz. 84(501), 460–467
(2000)

17. StarkWare: Stark-friendly hash challenge (2019–2020). https://starkware.co/hash-
challenge

https://eprint.iacr.org/2019/458
https://doi.org/10.1007/978-3-030-45724-2_23
https://eprint.iacr.org/2020/500
https://doi.org/10.1109/18.45291
https://starkware.co/hash-challenge
https://starkware.co/hash-challenge


Password Hashing and Preprocessing

Pooya Farshim1(B) and Stefano Tessaro2

1 University of York, York, UK
pooya.farshim@gmail.com

2 University of Washington, Seattle, USA
tessaro@cs.washington.edu

Abstract. How does the cryptanalytic effort needed to compromise t
out of m instances of hashed passwords scale with the number of users
when arbitrary preprocessing information on the hash function is avail-
able? We provide a formal treatment of this problem in the multi-instance
setting with auxiliary information. A central contribution of our work
is an (arguably simple) transcript-counting argument that allows us to
resolve a fundamental question left open by Bellare, Ristenpart, and
Tessaro (BRT; CRYPTO 2012) in multi-instance security. We leverage
this proof technique to formally justify unrecoverability of hashed salted
passwords in the presence of auxiliary information in the random-oracle
model. To this end we utilize the recent pre-sampling techniques for deal-
ing with auxiliary information developed by Coretti et al. (CRYPTO
2018). Our bounds closely match those commonly assumed in practice.

Besides hashing of passwords through a monolithic random oracle, we
consider the effect of iteration, a technique that is used in classical mech-
anisms, such as bcrypt and PBKDF2, to slow down the rate of guessing.
Building on the work of BRT, we formulate a notion of KDF security,
also in the presence of auxiliary information, and prove an appropriate
composition theorem for it.

Keywords: Password hashing · Multi-instance security ·
Preprocessing · KDF security

1 Introduction

Password hashing plays a central role in the design of secure systems. We store
a password hash H (pw) in lieu of a password pw for authentication purposes.
Moreover, whenever key-management is too complex (e.g., in hard-drive encryp-
tion), one typically uses H (pw) as a secret key. Generally, one assumes that
the hash function is by itself secure in a standard cryptographic sense, and the
real threat are attacks which exploit the limited entropy of humanly generated
passwords and only evaluate the hash function in the forward direction on a
sequence of password guesses. Several approaches have been adopted to make
this task as hard as possible – these typically consist of making the computa-
tion of H as expensive as acceptable (e.g., via iteration, as in PKCS#5 [Kal00]
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 64–91, 2021.
https://doi.org/10.1007/978-3-030-77886-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_3


Password Hashing and Preprocessing 65

or bcrypt [PM99], or by making the computation memory hard as in e.g.,
[PJ16,AS15]).

Our contributions, in a nutshell. This paper focuses on a crucial aspect of
password-cracking attacks, namely the role of pre-processing. For example, rain-
bow tables [Oec03] are a well-known type of data structures that help speed up
password-cracking attacks. The common wisdom is that salting defeats such pre-
processing – one usesH (sa, pw) instead ofH (pw), for a fresh salt sa. Indeed, recent
works (cf. e.g. [Unr07,DGK17,CDGS18,CDG18]) analyze the security of random
oracles under auxiliary information, and partially validate the benefits of salting.

Still, these results do not consider important aspects which are specific to
password hashing. First, they focus on protecting a single password. Bellare, Ris-
tenpart, and Tessaro (BRT) [BRT12] however point out that the security study of
password hashing must consider multi-instance security metrics, to ensure that
the hardness of password cracking grows with the number of passwords under
attack. Second, existing results focus on monolithic random oracles, as opposed
to constructions using them (e.g., by iterating them). Third, they focus on cryp-
tographic hardness for uniformly chosen secrets, as opposed to using arbitrary
distributions, with correlations across instances.

In this paper, we address all of the above, and extend the provable-security
treatment of password-hashing (following BRT) to the pre-processing setting. On
the way, of independent interest, we resolve open problems in the characteriza-
tion of the hardness of password distributions via guessing games. We elaborate
on our contributions next.

1.1 Guessing Games

The first set of contributions are independent of pre-processing, and revisit
password-recovery hardness metrics in the multi-instance setting. For example,
consider a vector pw = (pw[1], . . . ,pw[m]) of m passwords sampled from a
distribution P, and our aim is to guess all of them. Then, the optimal guess is
the most likely vector pw∗ output by P, and the success probability is captured
exactly by the min-entropy H∞(P).

It is not immediately clear whether min-entropy, however, is a good metric
in the password-hashing setting – there, one is additionally given m hashes

H (sa[1],pw[1]), . . . ,H (sa[m],pw[m]) , (1)

where sa is a public vector of salts – which we assume to be distinct and suf-
ficiently long for this discussion – and is asked to recover the entire vector pw.
The availability of the hashes themselves allows for verification of individual
password guesses. Following [BRT12], this can be abstracted as an interactive
password guessing game which initially samples pw←← P, and the adversary can
issue user-specific queries Test(i, pw), and learn whether or not pw[i] = pw .
The adversary wins if a query Test(i,pw[i]) is made for every i ∈ [m].

BRT suggest that the best probability of winning this game with a given
budget T of Test queries—which we denote as Advguess

P (T )—is by itself a



66 P. Farshim and S. Tessaro

good metric of hardness for password distributions. However, it is very hard to
evaluate. Our first contribution is a bound of the form

Advguess
P (T ) ≤

(
eT

m

)m

· 2−H∞(P) , (2)

which only depends on the min-entropy of the distribution P. This resolves the
main open question of [BRT12], which only gave a bound for the case where
(1) the passwords are independent and (2) we know separate and a-priori fixed
bounds Ti on the number of Test(i, ·) queries for each i ∈ [m]. We note that (2)
is a strong assumption, since an optimal attacker generally stops using queries
for a particular password when successful. For the case where the passwords are
drawn independently from a set of size N , for example, our bound is

(
eT
mN

)m,
which is clearly tight (the optimal strategy makes T/m distinct guesses for each
i ∈ [m]).

In fact, our framework studies a more general metric Advsa-guess
P,�,Gen (T, c) which

considers a general salt generator Gen (which may generate colliding salts, or
salts with low entropy), allows for a password to be re-used across � salts, and
enables the adversary to learn c passwords via corruption queries. On special
case of interest is that of no salts, i.e., Gen = ⊥ outputs m empty strings as salts
(and thus � = 1 without loss of generality). Here, we prove that

Advsa-guess
P,1,⊥ (T ) ≤ Tm · 2−H∞(P) . (3)

While this bound appears natural, the main technical challenge in the proof
(which exploits a combinatorial counting argument) is to deal with distributions
which yield collisions across passwords. It is worth noticing here that the effort
needed to compromise all passwords, for example, increases by a factor of m – this
is because every individual query can be helpful to guess any of the passwords.

1.2 Unrecoverability Bounds

We then turn to our first contribution in the pre-processing model. Here, we give
tight bounds on the success probability of recovering all of pw in the setting of
(1), when H is a random oracle with n-bit outputs (in the following, we let
N = 2n) to which the adversary can issue T queries, and where additionally the
adversary is given S bits of pre-processed information about the random oracle
H . This model is often referred to as the random-oracle model with auxiliary
information, or AI-ROM for short. This generalizes in particular prior works
on studying one-wayness in the AI-ROM [GT00,Wee05,Unr07,DTT10,DGK17,
CDGS18] in that we consider both general pre-image distributions as well as
(most importantly) multi-instance security.

Our analyses rely on a reduction to the bounds for guessing games discussed
above, combined with the bit-fixing random oracle model (BF-ROM) of [Unr07,
CDGS18]. In the BF-ROM, one analyzes unrecoverability in a setting where P
input-output pairs of the random oracle are chosen arbitrarily (the rest of the
random oracle is truly random) – here, P is a parameter. In [CDGS18] it is shown
that replacing P with (roughly) ST , and multiplying the recovering probability



Password Hashing and Preprocessing 67

by 2, gives a corresponding AI-ROM bound. We will slightly relax this paradigm,
and realize that setting P = ST/m, while multiplying the probability by 2m,
allows us to obtain the right bound.

Unrecoverability in the unsalted case. For example, for the case where
passwords are chosen uniformly from a set of size N (which is equal to the output
size of the random oracle), we show that if no salts are used, then the probability
of recovering all passwords is of order (assuming S is large enough)

(
ST

mN

)m

.

We also obtain a corresponding bound for arbitrary distributions. This is inter-
esting, because it means that if we want to recover all passwords with probability
one, then we need to invest time T = mN/S, in other words, the complexity of
recovering multiple passwords without salts, even given a rainbow tables, grows
linearly in the number of passwords. This is in contrast to the setting without
auxiliary information, where in time T = N we can recover essentially any num-
ber of passwords. In Appendix A, we give a self-contained and straightforward
extension of Hellman’s space-time trade-off for multi-instance security, where
one can exactly see that computation needed to break one password cannot be
recycled for another one.

Unrecoverability in the salted case. For the case with salts, in contrast,
the expectation is that the S bits of pre-processing is not helpful. We confirm this
via a bound, which depends on the salt size K, and prove that the probability
of recovering all m passwords is roughly

(
T

N

)m

+
m�

K

(
eST

m2N

)m

+
m2

K

for the special case of passwords drawn independently from an N -element set.
(Again, our final bound is more general.) In other words, the first term becomes
the leading one if K is sufficiently large.

1.3 AI-KDF Security of Iteration

Finally, we consider a simulation-based notion of KDF security which extends
the notion introduced by BRT [BRT12] to the AI-ROM setting. The basic idea of
KDF security is to see the functionality provided by a key-derivation function as
providing m keys to honest users and giving an attacker the ability to test pass-
words guess for correctness. Thus, this notion requires that for any (real-world)
attacker against a KDF function with salted passwords and auxiliary informa-
tion there is a simulator against the ideal functionality that has essentially the
same advantage. This notion in particular justified the use of password-based
KDFs to replace uniform keys with those derived from (salted) passwords.

BRT’s notion was inspired by the indifferentiability framework [MRH04,
CDMP05], and restricts it to a particular ideal KDF functionality. Directly



68 P. Farshim and S. Tessaro

using indifferentiability as the target security notion, however, suffers from two
drawbacks: the indifferentiability of iterated constructions (from RO) in general,
remain unclear. Second, concrete security bounds for indifferentiability, due to
the attack surface exposed, often fall short of providing the guarantees that are
needed in practice to provably set salt sizes.

To prove our result, we first formulate a notion of KDF security in the bit-
fixing random-oracle model. In this model we can present a simulator that simu-
lates the primitive oracle by looking for about to complete chains of length r −1,
where r in the iteration count, and if so, using the Test oracle provided in the
ideal game to handle the query. As with BRT, we require that when the number
of queries made by the adversary to the primitive oracle is T , the number of
queries made by the simulator to its Test oracle is only T/r . This restriction will
allow us to conclude that in applications an adversary needs to place r queries to
the random oracle to check whether or not a candidate guess for a password was
correct. Finally, we lift this BF-ROM result to the AI-RO model using [CDGS18,
Theorem 5].

Applications. We prove a composition theorem for AI-KDF security for a
range of games beyond IND-CPA security as considered by BRT and extended
to encompass a preprocessing phase. This result shows that uniform values used
in a game can be replaced with those derived from salted passwords via an AI-
KDF-secure function, even in the presence of preprocessing. This result can thus
be seen as formal justification of “salting defeats preprocessing in password-based
cryptography.” As with BRT, our simulation-based notion allows us to reduce
security to the full difficulty of the multi-instance password-guessing game.

1.4 Structure of the Paper

We start by recalling the necessary preliminaries in Sect. 2. We define our basic
measures of unguessability of passwords in Sect. 3, where we establish our basic
bounds. In Sect. 4 we define unrecoverability of hashed passwords and relate them
to unguessability, both in the salted and unsalted settings. In Sect. 5 we study
iterated hashing under KDF security in the presence of auxiliary information
and show how to apply this result (and in general KDF security) to securely
replace uniform keys with password-derived ones in various applications in the
presence of preprocessing.

2 Preliminaries

Notation. Throughout the paper N denotes the set of nonnegative integers
including zero, {0, 1}n the set of all bit strings of length n, and {0, 1}∗ denotes the
set of all finite-length bit strings, and ε the empty string. For two bit-strings X
and Y , X|Y denotes string concatenation and (X,Y ) denotes a uniquely decod-
able encoding of X and Y . The length of a string X is denoted by |X|. For a
finite, non-empty set S we write s←← S to mean that s is sampled uniformly
at random from S. Overloading the notion, for a randomized algorithm A with



Password Hashing and Preprocessing 69

input(s) x we write y ←← A(x) to mean that y is sampled from the outputs of A
according to the distribution induced by running A on uniform random coins.
We denote adversarial procedures, which may be randomized and/or stateful,
by A, honest stateless procedures with C, and honest stateful procedures with
S.

Factorials and friends. Recall that (n/3)n ≤ n! ≤ e · (n/2)n and that
n! ∼ √

2πn(n/e)n. Further, for all 1 ≤ m ≤ T ,
(

T

m

)
≤ Tm

m!
<

(
eT
m

)m

.

We let (T )m :=
(

T
m

)
m! denote the falling factorial. The Stirling numbers of

the second kind
{

m
k

}
count the number of partitions of a set of size m into k

non-empty sets. For these numbers we have,

m∑
k=0

{
m

k

}
(T )k = Tm and

{
m

k

}
≤

(
m

k

)
km−k .

We also have that
{

m
0

}
= 0 for m ≥ 1.

The RO model. We denote the set of all functions from a domain D to a
finite range R by Fun(D,R). The random-oracle model RO(D,R) is a model
of computation where parties are given oracle access to a uniformly random
function H←← Fun(D,R).1 We denote an adversary A with access to H by AH().

The BF-RO model. An assignment (or pre-set) list L is a list of pairs of points
(x, y) ∈ D × R that respects the property of defining a function, i.e., for each x
there is at most one y such that (x, y) ∈ L. For P ∈ N, the bit-fixing random-
oracle model BF-RO(P,D,R) grants oracle access to a uniformly chosen random
function H←← Fun(N,M) compatible with L, where (σ,L)←← A0() is chosen by
an initial (aka. offline or preprocessing) adversary A0() and has size at most P .
Note that A0 does not get access to H. We denote the online phase of the attack
by AH

1 (σ), which gets access to H and σ, the information passed from A0. Thus,
σ does not depend on H. We use H[L] for a random oracle conditioned on L.
Note that in the BF-RO model, there is no upper bound on the size of σ.

The AI-RO model. For P ∈ N, the auxiliary-input (AI) random-oracle
model AI-RO(S,D,R) grants oracle access to a random function H←← Fun(D,R)
together with oracle-dependent auxiliary information σ ←← A0(H), where |σ| ≤
P . We denote the online phase by AH

1 (σ).

Games. A game is a randomized stateful algorithm (y, st) ← G(x; r; st), where
x is the input, r the randomness, and st the state, which is initialized to ε. The
output y is returned to a stateful adversary (x, st′)←← A1(y, st′), which then calls
the game x and so on. This interaction terminates by the game returning a flag

1 Note the distribution is well-defined when D = {0, 1}∗ and can be formalized in the
language of measure theory.



70 P. Farshim and S. Tessaro

win indicating win/loss. For indistinguishability games, the advantage metric
takes the form Advind

G (A1) := 2 · Pr[win] − 1 and for unpredictability games
it takes the form Advpred

G (A1) := Pr[win]. We can lift this definition to ideal
models of computation by sampling a random oracle H←← Fun(D,R), which
both G and A1 can access, and passing auxiliary information computed by A0,
as described above, to A1. We define Advind

G,AI-RO(S, T ) by taking the maximum
of Advind

G (A0,A1) over all (A0,A1) that output at most S bits of auxiliary
information and place at most T queries to the random oracle. Unpredictability
advantages and advantages in the BF-RO model are defined analogously.

Coretti, Dodis, Guo, and Steinberger [CDGS18, Theorems 5 and 6] prove
the following result, which bounds adversarial advantage in the AI-RO model in
terms of that in the BF-RO model.

Theorem 1 ([CDGS18, Theorems 5 and 6]). For any P ∈ N and any
γ > 0 and any game G in the AI-RO model,

Advind
G,AI-RO(S, T ) ≤ Advind

G,BF-RO(P, TG + T ) +
(S + log γ−1) · (TG + T )

P
+ γ ,

where TG is the query complexity of G. Furthermore, for any unpredictability
game G,

Advpred
G,AI-RO(S, T ) ≤ 2(S+log γ−1)·(TG+T )/P · Advpred

G,BF-RO(P, TG + T ) + γ .

3 Unguessability

Password samplers. A password sampler is a randomized algorithm P that
takes no input and outputs a vector of passwords pw = (pw[1], . . . ,pw[m]) and
some leakage z on the passwords.2 We assume that P always outputs the same
number of passwords m. To make this explicit we call the sampler an m-sampler.
We note that password samplers in our work do not get access to the random
oracle.3

A basic measure of the unguessability of a password sampler is its min-
entropy. We consider an average-case notion over leakage z, as this will not be
under the control of the adversary:

H̃∞(P | Z) := − logEZ(2−H∞(P|Z=z)) ,

Here Z denotes the random variable corresponding to the leakage.

Unguessability. Following [BRT12], we consider a guessability game which
allows for testing and adaptive corruptions of guessed passwords. The goal of

2 This is not the preprocessing information, only some partial information related to
passwords.

3 In this work we do not consider password samplers that have oracle access to an
ideal primitive.



Password Hashing and Preprocessing 71

the adversary is to guess all passwords. More precisely, for an adversary A we
define

Advguess
P (T, c) := max

A
Pr

[
Guess

A
P

]
,

where game Guess
A
P is defined in Fig. 1 and the maximum is taken over all A

that place at most T queries to Test, and at most c queries to Cor. Observe
that the test oracle takes an index i. This signifies the fact that guesses are user-
specific and thus cannot be amortized over all users. Our definition also includes
some side information z for generality, which was not present in BRT.

Fig. 1. The guessing game.

Simplifying assumptions. We assume, wlog, that A does not call Cor(i) on
any index i for which Test returned true. Similarly, we assume that A does not
call Test with an index i which was queried to Cor(i). Moreover, for c′ ≤ c ≤
m, any adversary A that places c′ queries to Cor can be transformed to an
adversary B that places c ≥ c′ queries to Cor without any loss in advantage.4
Thus, throughout the paper we may assume, wlog, that adversaries that place
at most c corrupt queries place exactly c corrupt queries. Furthermore, the set
of corrupted indices and those for which Test was successful are disjoint.

A basic measure of unguessability. It follows from the definitions of
unguessability and average-case min-entropy that

Advguess
P (m, 0) = 2−H̃∞(P|Z) .

To see this, note that given any P and any A in Guess we can build an adversary
B with no oracle access as follows. B runs A on the leakage that it receives and
answers all its Test queries with true, and outputs the set of passwords queried
to Test sorted according to their index. For all password vectors where A is
successful, these queries are answered correctly. Thus, B runs A perfectly in the
4 Algorithm B runs A and forwards its Test and Cor queries to its own respective

oracles. It stops A from making further queries to Test once m − c queries to
Test return true. B corrupts the remaining indices. By the previous assumption,
the passwords for these indices have not been found due to a corrupt or a test query
so far. Clearly, the number of Test queries of B is less than those of A. Further B
places in total at most c queries to Cor. To see this let c′

0 be the number of corrupt
queries by A when it was stopped. At this point c′

0 + m − c passwords were found.
Hence there are m − (c′

0 + m − c) = c − c′
0 passwords that were not found at that

stage. Thus, B places c′
0+(c−c′

0) = c queries to its Cor oracle after A was stopped.



72 P. Farshim and S. Tessaro

environment that it expects. Thus, B is successful whenever A is. Inequality in
the opposite direction is trivial and we obtain the result. We note that in the
presence of adaptive corruptions, it is unclear how to relate the above game-based
notion of unguessability to a standard information-theoretic notion. Thus,

Advguess
P (m − c, c)

will form our basic measure of unguessability of passwords, which we call c-
unguessability.

Threshold security. Consider a threshold notion of unguessability whereby
the adversary’s goal is to guess t out of m of the passwords, while having access to
Test oracle, but no longer a Cor oracle. The advantage of any such adversary is
easily upper bounded by the advantage of an adversary that before termination
simply corrupts the m − t users for which recovery was not attempted. Thus,

Advt-guess
P (T ) ≤ Advguess

P (T,m − t) .

In the reverse direction, however, an inequality does not hold in general.5 How-
ever, when the password sampler is a product sampler in the sense that for some
Pi it computes (pw[i], zi)←← Pi (run on independent coins) and returns the
vector ((pw[1], . . . ,pw[m]), z) where z := (z1, . . . , zm), we have

Advguess
⊗Pi

(T, c) ≤ Adv(m−c)-guess
⊗Pi

(T ) .

Using an argument similar to [BRT12, Lemma F.1] the independence of the
passwords allows for a perfect simulation of Cor(i). Run the corrupting adver-
sary and answer its test oracle using its own test oracle. When a Cor(i) query is
placed, return a value distributed according to Pi, conditioned on auxiliary infor-
mation zi and output not matching any pw for which Test(i, pw) previously
responded with false.

Thus for product samplers, recovering t out of m passwords without corrup-
tions is equivalent to recovering t passwords while corrupting m − t of them.
Since for non-product distributions the corrupting adversaries are stronger, we
work with such adversaries.6

Our first result relates the unguessability of passwords to c-unguessability.

Theorem 2 (Unguessability). For any m-sampler P and any T, c ∈ N,

Advguess
P (T, c) ≤

(
T

m − c

)
· Advguess

P (m − c, c) .

5 Consider m identical passwords, where the common password is uniformly dis-
tributed within a large set. With corruptions, guessing the common value is trivial;
without, it can be done with small probability.

6 Note however that for correlated passwords, this may imply that there is no security,
whereas in practice we would like to argue that there is some security. We leave the
treatment of this intermediate notion to future work.



Password Hashing and Preprocessing 73

Proof. By our simplifying assumptions, A makes exactly c corrupt queries and
of the T test queries, exactly m − c are successful. Consider an adversary B
against Guess that runs A as follows. At the onset, B guesses which of the
m − c queries among the T queries will result in true. There are

(
T

m−c

)
such

choices. It then runs A and answers all Test queried for the guessed indices
with true. The corruption queries are relayed. If the set of indices guessed is
correct, the algorithm B runs A perfectly. We obtain the claim inequality by
maximizing over A. 	

Despite its simplicity, this argument is novel and in particular resolves a problem
left open by BRT on upper bounds for guessability with only a global bound on
the total number of Test queries (and not a priori bounds on the number of
user-specific guesses, as treated by BRT).

Salted Guessability. Following BRT, we consider an extension of Guess

that incorporates salts. We allow for multiple salts per password (as required
in applications such as password-based encryption) and consider a Test oracle
which is salt-specific rather than user-specific. This test procedure thus amortizes
guessing over all users who share a salt value. The rationale for this choice is
that given salted hashes of passwords—whose security we will be ultimately
analyzing—once a password is recovered, it is also recovered for all users for
which password-salt pairs match. Crucially, a single query is needed to deduce
this information.

Our formal definition, which is shown in Fig. 2, differs from that of BRT in
a number of aspects. First, we allow for an arbitrary salt-generation algorithm
Gen that takes a user index i and a counter j. (This choice allows for stateful
generation of salts, which may be possible in certain contexts.) Second, under
Test we set wini to true for all matching i, rather than only the first i for which
a match is found as in BRT. This ensures that password-salt collisions do not
result in an unwinnable game. We also release the set of all passwords indices for
which password-salt matches the query (rather than the first such index). This
choice more closely matches the setting of hashed passwords. Finally, we leak the
collision pattern of the password-salt pairs. This is formalized via an algorithm
Colls(pw, sa) that takes a vectors of passwords pw of length m and an m × �
matrix of salts and returns an m� × m� matrix whose ((i1, j1), (i2, j2)) entry is
set to 1 iff (pw[i1], sa[i1, j1]) = (pw[i2], sa[i2, j2]). We define the advantage of
(T, c)-adversaries analogously to the Guess game.

A direct reduction shows that for any password sampler P, any salt-sampler
Gen, and any number of salts per password �,

Advguess
P (T, c) ≤ Advsa-guess

P,�,Gen (T, c) .

In order to prove a result in the opposite direction, for a salt sampler Gen,
we define

CollGen(m, �) := Pr[∃(i, j) �= (i′, j′) ∈ [m] × [�] : Gen(i, j) = Gen(i′, j′)]



74 P. Farshim and S. Tessaro

Fig. 2. The password-guessing game with salts where the collision pattern of password-
salt pairs is always leaked. wini are initialized to false.

as the probability of obtaining m� distinct salts. For uniform salts in [K],

CollGen(m, �) = 1 − K!
Km�(K − m�)!

≤ m2�2

K
.

We note that in some settings, the distinctness of salts may be guaranteed.
For instance, by appending (i, j) to salts, where i is a “user-id” and j is an
application-specific “session-id,” one can guarantee distinctness. As we shall see,
to defeat preprocessing the salts must also be unpredictable. Hence (i, j, sa) for
a random sa ←← [K] can be used in these settings.

The next theorem relates salted unguessability of passwords to their user-
specific guessability.

Theorem 3. For any m-sampler P, any Gen, and any �, T, c ∈ N,

Advsa-guess
P,�,Gen (T, c) ≤ Advguess

P (T, c) +CollGen(m, �) .

Proof. Given a (T, c)-adversary A against sa-Guess we build a (T, c)-adversary
B against Guess as follows. Algorithm B(z) picks m� salts via Gen(i, j) and
terminates if the salts are not distinct. Algorithm B sets zcoll to be the identity
matrix (if the salts do not collide, certainly password-salt pairs will not), runs
A(sa, z, zcoll) and answers its corrupt queries using its own equivalent oracle.
Test(pw , sa) queries are handled by first checking if sa = sa[i, j] for some (i, j).
If not, B returns ⊥; else it finds the unique (i, j) such that sa = sa[i, j]. Such an
index pair is unique due to the distinctness of salts. Algorithm B then queries
Test(i, pw) and returns S := {i} if it receives true, and the empty set otherwise.
(We note that the loss is additive, rather than multiplicative, since A might be
successful exactly when there is a collision among the salts.) 	

The unsalted setting. Unsalted hashing of passwords is interesting from both
a historical and theoretical point of view. Unsalted unguessability is closely linked
to amplification of hardness. Second, unguessability of passwords without salts
constitutes a “worst-case” scenario and can be used to upper-bound unguess-
ability with respect to any other salt generator.7 When there are no salts, all
7 The proof of this fact follows from the observation that the collision pattern of

passwords and the collision pattern of salts (which is publicly available) are sufficient
to infer the collision pattern of password-salt pairs.



Password Hashing and Preprocessing 75

passwords fall under a single (empty) salt, and in order to check if a candidate
password matches any of the sampled passwords a reduction analogous to one
given above would need to call Test(i, pw) for all i ∈ [m]. This, however, results
in a blow up in the number of test queries, which we aim to avoid in this work.

Let us, by a slight abuse of notation, denote the salt generator Gen that
always returns ε by ⊥. We directly prove an upper bound on Advsa-guess

P,�,⊥ (T, c).
This extends [BRT12, Theorem 3.2] in two aspects: first, and as mentioned above,
the number of queries to Test(i, ·) for each index i are no longer a priori fixed.
Second, P no longer comprises independent and identically distributed samples
from some base single-password distribution. Proving such a result was left open
by BRT.

Theorem 4. For any m-sampler P and any �, T ∈ N,

Advsa-guess
P,�,⊥ (T, 0) ≤ Tm · Advguess

P (m, 0) .

Proof. Observe that � does not affect unguessability and thus we may assume,
wlog, that � = 1. We now fix a deterministic adversary B and count the number
of vectors (pw[1], . . .pw[m]) on which B wins. Call this number N . Then, the
final bound will be N · Advguess

P (m, 0).
Consider a vector (pw[1], . . .pw[m]) on which B wins with T queries, and

suppose the m passwords are distinct. These can be represented uniquely by
a permutation giving the order in which the uncorrupted passwords appear.
There are (m − c)! such permutations. There are

(
T

m−c

)
such indices and thus

N = (m − c)!
(

T
m−c

)
= (T )m−c.

In general, the collision pattern induces a partition of passwords into k
groups. Suppose there are no corruptions. Then the number of password vec-
tors (pw[1], . . .pw[m]) on which B wins is at most

{
m

k

}
· k! ·

(
T

k

)
,

where
{

m
k

}
are the Stirling numbers of the second kind. Thus, the total number

of representations is at most

N ≤
m∑

k=1

{
m

k

}
· (T )k = Tm ,

where the last equality is by an identity for Stirling numbers. 	

We now deal with the general case with corruptions. We consider a non-

adaptive guessability game NA-Guess, where corruptions are carried out non-
adaptively at the beginning of the game in parallel. This potentially lowers
unpredictability advantage and thus strengthens upper bounds using it. Unpre-
dictability in the adaptive game can be bounded by that in the non-adaptive
game by guessing at the onset the

(
m
c

)
indices that will be corrupted. However,

below we carry a direct reduction to NA-Guess to avoid multiple losses.



76 P. Farshim and S. Tessaro

Theorem 5. For any m-sampler P and �, T, c ∈ N,

Advsa-guess
P,�,⊥ (T − c, c) ≤ (Tm−c + O(Tm−c−1)) · Advna-guess

P (m − c, c) .

Proof. Once again, wlog, � = 1. We prove the bound for a modified game where
Cor(i) leaks the set of all indices j for which pw[j] = pw[i]. In this game,
wlog, we may assume that Test and Cor oracles return disjoint sets that form
a partition of [m]. This game is equivalent to the unmodified game where the
adversary after a corrupt query places a test query on the password just revealed
to learn its equality pattern. This results in c additional Test queries.

We now count the number of successful transcripts.

– The number of sets in the partition, k ≥ c.
– A partition of [m] into k sets:

{
m
k

}
choices.

– Which c of the k sets will be corrupted:
(
k
c

)
choices. (No ordering of the

guesses is needed, since the queried index will be contained in exactly one
set.

– The order of the remaining k − c sets that will be returned as responses to
Test queries: (k − c)! choices.

– The T test queries which these k − c sets will be responses for:
(

T
k−c

)
choices.

(The rest of the queries are answered ∅.)

Hence,

Advsa-guess
P,1,⊥ (T − c, c) ≤

m∑
k=c

{
m

k

}(
k

c

)
(k − c)!

(
T

k − c

)
· Advna-guess

P (m − c, c) .

When c = 0, this bound matches that stated in Theorem 4. Using (computer)
algebra we have that,

m∑

k=c

{m

k

}(k

c

)
(k − c)!

( T

k − c

)
=

m−c∑

k=0

C(m − c, k, c) · T m−c−k = T m−c + O(T m−c−1) ,

where the coefficients C(n, k, c) are defined recursively via

C(n, k, c) :=

⎧⎪⎨
⎪⎩
1 if k = 0 ;{

n+c
c

}
if k = n ;

c · C(n − 1, k − 1, c) + C(n − 1, k, c) otherwise.

When there is a single corruption (c = 1), the sum bounding the advantage has
the simple closed form (T + 1)m−1. 	


4 Unrecoverability

We now define two notions of unrecoverability for hashed passwords in the AI-
RO and the BF-RO models respectively. In the AI-RO model the adversary



Password Hashing and Preprocessing 77

Fig. 3. The password recoverability games in the AI-RO model (left) and the BF-RO
model (right).

can carry out an initial stage of the attack and obtain arbitrary preprocessing
information on the entire table of the random oracle. Formally, we define

Advai-rec
P,�,Gen,KD(S, T, c) := max

A0,A1
Pr

[
AI-Rec

A0,A1
P,�,Gen,KD

]
,

where game AI-Rec is defined in Fig. 3 (left) and the maximum is taken over all
A0 that output at most S bits of auxiliary information, and all A1 that place at
most T queries to the random oracle and at most c queries to the corrupt oracle.

Similarly, we define

Advbf-rec
P,�,Gen,KD(P, T, c) := max

A0,A1
Pr

[
BF-Rec

A0,A1
P,�,Gen,KD

]
,

where game BF-Rec is defined in Fig. 3 (right) and the maximum is taken over
all A0 that output a list L of size at most P and all A1 that place at most T
queries to the random oracle and at most c queries to the corrupt oracle.

We start by showing that for any salt generator the BF-RO advantage can
be upper bounded by that in the salted unguessability game. Here we will rely
on the fact that the collision pattern zcoll is known in the sa-Guess game.

Theorem 6. Let KDH(pw , sa) := H(pw |sa) for random oracle H. Then for any
m-sampler P, any salt generator Gen, and any �, P, T, c ∈ N,

Advbf-rec
P,�,Gen,H(P, T, c) ≤ Advsa-guess

P,�,Gen (T + P, c) .

Proof. Let (A0,A1) be a (P, T, c)-adversary in the BF-Rec game. We construct
a (T+P, c)-adversary B in the sa-Guess game as follows. Algorithm B(sa, z, zcoll)
receives a salt vector sa, z and a collision pattern zcoll. It then runs A0() to obtain
(σ,L).

Algorithm B now needs to prepare the challenge key vector k for A1. To
this end, it will use its access to a Test oracle to find out whether or not a



78 P. Farshim and S. Tessaro

password-salt pair appears on L. If it does, it uses the provided value in L. Else
it will pick the answer randomly, ensuring consistency using the collision pattern
of password-salt pairs zcoll.

In more detail, for each (pw |sa, y) ∈ L with sa = sa[i, j] for some (i, j),
algorithm B queries Test(pw , sa) and obtains a set S of indices. If S is non-
empty, it contains indices i for which (pw[i], sa[i, j]) = (pw , sa) for some j. For
these indices, algorithm B uses y as the challenge value. If S is empty, B does
nothing (the (pw , sa) pair on L is not one of the challenge password-salt pairs).
For indices (i, j) such that (pw[i], sa[i, j]) does not appear on L, algorithm B
generates uniform values compatible with zcoll as the corresponding challenge
keys. Note that for these lazily sampled values the domain point is only partially
known. Note also that at this point B places at most P queries to Test.

Let k be the set of challenge keys sampled as above. Algorithm B runs
AH[L],Cor

1 (sa,k, σ, z) as follows. It relays all its Cor(i) queries to its own Cor(i)
oracle. For the pw[i] received, B updates the corresponding unknown entry part
of the domain point with pw[i]. Note that B places at most c queries to Cor.

To answer a random-oracle query H[L](pw , sa) outside L, if sa does not match
sa[i, j] for any (i, j) it chooses a random value. If sa = sa[i, j] for some (i, j),
algorithm B queries Test(pw , sa) to get a set of indices S. If this set is empty,
B returns a random value. If S is non-empty, then pw[i] for i ∈ S are discovered
and the random value generated at the challenge phase is used. Note that for
i ∈ S this value was set consistently using zcoll. (Algorithm B also updates the
corresponding unknown half of the domain point.) Note also that B places at
most T queries to Test during this phase. 	


The estimated extra P queries to Test queries during challenge preparation
may indeed arise for example when passwords are predictable and there are no
salts. On the other hand, for large random salts, with overwhelming probability
no queries to Test will be made at this stage. Our next theorem formalizes this.

Theorem 7. Let KDH(pw , sa) := H(pw |sa) for random oracle H. Then for any
m-sampler P, any salt generator Gen := [K] that outputs uniform salts in a set
of size K, and any �, P, T, c ∈ N,

Advbf-rec
P,�,[K],H(P, T, c) ≤

((
T

m − c

)
+

m�

K

(
T + P

m − c

))
·Advguess

P (m−c, c)+
m2�2

K
.

Proof. Let (A0,A1) be a (P, T, c)-adversary in the BF-Rec game. We construct
an adversary B in the Guess game. Algorithm B(z) receives z and runs A0()
to obtain (σ,L). It then generates a salt vector sa of size m × �. If there is a
collision among these salts, B terminates. Otherwise, B sets zcoll to be the all-
zero collision pattern and prepares the challenge key vector k as follows. The
difficulty in preparing these values lies in that the values need to be consistent
with those specified in L. Let S denote an ordered list of salts and let Psa for
sa ∈ [K] denote the number of passwords which together with sa appear in L.
Since L is of size P we have that∑

sa∈[k]

Psa = P .



Password Hashing and Preprocessing 79

To prepare the challenge vector consistently, B calls its Test(i, pw) oracle on
each password pw appearing on the L together with some salt sa[i, j] ∈ S. If a
password-salt pair is discovered to be on L, algorithm B uses the value provided
in L, else it picks a random value. At this phase algorithm B makes

∑
sa∈S Psa

queries to Test.
Algorithm B now runs A1(sa,k, σ, z) and answers its corruption queries by

queries its own corruption oracle. Primitive queries on (pw , sa), which wlog
can be assumed to be outside L, are handled by first querying Test(i, pw)
if sa = sa[i, j] for some (i, j) and accordingly using either a value from the
challenge phase, or a uniform value. Thus,

Advbf-rec
P,�,[K],H(P, T, c) ≤ m2�2

K
+

∑
S∈[K](m�)

1
Km�

· Advguess
P (T +

∑
sa∈S

Psa , c) ,

where [K](m�) denotes all ordered lists of size m� with distinct entries in K.
By Theorem2 each summand above can be bound as

Advguess
P (T +

∑
sa∈S

Psa , c) ≤
(

T +
∑

sa∈S Psa

m − c

)
· Advguess

P (m − c, c) .

Now for fixed m and c the right-hand side is a convex function. Thus, by Jensen’s
inequality, the sum attains its maximum at one of the extremal values where
Psa = P for a single salt sa = sa∗, and Psa = 0 elsewhere. Since the advantage
terms are symmetric, without loss of generality, we may assume that sa∗ = 1.

For this particular distribution of passwords in L, we have that for
(m�)!

(
K−1
m�

)
terms the number of additional queries,

∑
sa∈S Psa , is zero: choose

m� salts in [K]\{sa∗} and order them. For these cases B places T queries in total.
For (m�)!

(
K−1
m�−1

)
terms the number of additional queries is

∑
sa∈S Psa = P :

choose one salt to be sa∗, the rest in [K] \ {sa∗}, and order. For these cases B
places T + P queries in total.

Hence we obtain that

Advbf-rec
P,�,[K],H(P, T, c) ≤ m2�2

K
+
(m�)!
Km�

·
(

K − 1
m�

)
·
(

T

m − c

)
·Advguess

P (m−c, c)

+
(m�)!
Km�

·
(

K − 1
m� − 1

)
·
(

T + P

m − c

)
· Advguess

P (m − c, c) .

Using the upper bound on the binomial coefficients we have

(m�)!
Km�

·
(

K − 1
m�

)
≤ 1 and

(m�)!
Km�

·
(

K − 1
m� − 1

)
≤ m�

K
.

The theorem follows. 	


4.1 Main Theorems

In this section we derive upper bounds on the adversarial advantage in
the AI-Rec game based on the bounds established in the previous section.



80 P. Farshim and S. Tessaro

Theorems 8–10 below upper-bound unrecoverability of hashed passwords in three
different settings. We will use Theorems 2–4 to prove these results.

We start with the case of unsalted passwords. We focus on the case with
no corruption; the case with corruptions can be dealt with similarly using our
results but the involved bounds are more complex.

Theorem 8 (No salts). Let P be an m-sampler and consider the empty salt
generator. Then for any adversary in the AI-Rec game outputting at most S
bits of side information, making at most T queries to the random oracle and no
corruption queries, for any γ > 0 and m ≤ T we have that

Advai-rec
P,�,⊥,H(S, T, 0) ≤ 2m ·

(
T +

2T (S + log γ−1)
m

)m

· Advguess
P (m, 0) + γ .

Proof. Theorems 4 and 6 together yield

Advbf-rec
P,�,⊥,H(P, T, 0) ≤ (T + P )m · Advguess

P (m, 0) .

Using the second (i.e., the unpredictability) part of Theorem 1, noting that in
our setting there are m+ T calls to H, and assuming that m ≤ T for any γ > 0,
we may set

P :=
(S + log γ−1)(m + T )

m
≤ 2T (S + log γ−1)

m

to deduce the stated bound for any γ > 0.8 	

We next consider the case of distinct and potentially low-entropy salts. This

is for example the case when salts are an index and consequently the domain of
the hash function is separated for different users.

Theorem 9 (Known distinct salts). Let P be an m-sampler and consider
a salt generator that always outputs distinct, but potentially low-entropy, known
salts. Then for any adversary in the AI-Rec game outputting at most S bits
of side information, making at most T queries to the random oracle and no
corruption queries, for any γ > 0 and m ≤ T we have that

Adv
ai-rec
P,�,Gen,H(S, T, 0) ≤ 2

m ·
(

eT + 2eT (S + log γ−1)/m

m

)m

· Adv
guess
P (m, 0) + γ . (4)

Proof. In the case of salted passwords with distinct salts, Theorems 3 and 6
together yield

Advbf-rec
P,�,Gen,H(P, T, 0) ≤

(
T + P

m

)
·Advguess

P (m, 0) ≤
(
e(T + P )

m

)m

·Advguess
P (m, 0) .

Using the second part of Theorem 1, we may set P as in the unsalted case (which
is close to the optimal) to deduce that the stated bound for any γ > 0. 	

8 Via differentiation, this value of P is close to the optimal choice.



Password Hashing and Preprocessing 81

We finally consider the case of uniform salts.

Theorem 10 (Uniform salts). Let P be an m-sampler and consider a salt
generator that always outputs uniformly random salts in a set of size K. Then for
any adversary in the AI-Rec game outputting at most S bits of side information,
making at most T queries to the random oracle and no corruption queries, for
any γ > 0 and m ≤ T we have that

Advai-rec
P,�,[K],H(S, T, 0) ≤ 2m ·

((
eT

m

)m

+
m�

K
·
(
eT + 2eT (S + log γ−1)/m

m

)m)

· Advguess
P (m, 0) +

m2�2

K
+ γ .

Proof. Using Theorems 3 and 7 for uniform salts in [K] we get

Advbf-rec
P,�,[K],H(P, T, 0) ≤

((
eT

m

)m

+
m�

K

(
e(T + P )

m

)m)
· Advguess

P (m, 0) +
m2�2

K
.

We may set P as in the previous cases, which is again close to optimal, to deduce
the stated bound for any γ > 0. 	


We summarize the above discussion for the case of uniform passwords in [N ]
in the table below. We have assumed log γ−1 ≤ m and have removed the additive
“+γ” terms, and in the uniform case “+m2�2

K ” terms, to help readability.

No salts Known distinct salts Uniform salts

S = 0
(
6T
N

)m (
6eT
mN

)m (
1 + m�

K

) · (
6eT
mN

)m

“Large” S ≥ 3m
(
6ST
mN

)m (
6eST
m2N

)m (
2eT
mN

)m + m�
K

· (
6eST
m2N

)m

5 Iterated Hashing

A well-known method for reducing vulnerabilities to brute-force attacks is to
compute iterated hashes of salted passwords. The effects of iteration will be
hardly noticeable by the honest users, but for the adversary the cryptanalytic
effort will increase by a factor proportional to the number of iteration rounds
(converting weeks of effort to years). This mechanism has been used, for example,
in classical password-hashing mechanisms such as PBKDF and bcrypt.

The r -iterated construction is

KDH
r (pw , sa) := H ◦ · · · ◦ H ◦ H︸ ︷︷ ︸

r

(pw |sa) ,

where r ∈ N is the number of rounds, and H : {0, 1}∗ → {0, 1}n is a hash function
that we will model as a random oracle. We also assume that pw |sa is never of
length n (and hence such values cannot be a hash output).



82 P. Farshim and S. Tessaro

Fig. 4. Simulation-based notion of KDF security in the AI-RO and BF-RO model.
Note that the ideal games are syntactically identical.

Following BRT, in this section we adopt a more modular approach to security
and formulate two simulation-based notions of security for KDF. In the next
section we will then show how to use KDF security to argue for the security of
password-based protocols.

AI-KDF security. Our first definition is a (simulation-based) notion of KDF
security which extends that of [BRT12, Sect. 3.1] to the AI-RO model. We define
the KDF advantage of an adversary D = (D0,D1) in the AI-RO model with
respect to a simulator S = (S0,S1) as

Advai-kdf
P,�,Gen,KD,S0,S1

(D0, D1) := Pr
[
AI-KDF-RealD0,D1

P,�,Gen,KD

]
−

Pr
[
AI-KDF-IdealD1

P,�,Gen,S0,S1

]
,

where games AI-KDF-Real and AI-KDF-Ideal are defined in Fig. 4.
Our definition differs from that of BRT in a number of aspects. First, it

includes a preprocessing stage via D0 in the real game and a simulated prepro-
cessing stage via S0 in the ideal game. Second, our games sample salts via Gen,
whereas in BRT an arbitrary joint distribution on passwords-salt pairs was con-
sidered. Such a notion is infeasible to achieve in the presence of preprocessing
as salts need to have entropy. Finally, the Test procedure in the ideal game



Password Hashing and Preprocessing 83

returns the set of all indices i for which the i-th password matches the queried
password and some salt associated with it matches the queried salt. We note
that, as in BRT, the simulator does not get access to the collision pattern of the
password-salt pairs: the purpose of the ideal KDF game is to translate security
to a setting where keys are truly random, and their collision patterns are not
necessarily known.

BF-KDF security. We now define an analogous notion of KDF security in the
BF-RO model. We set

Advbf-kdf
P,�,Gen,KD,S0,S1

(D0, D1) := Pr
[
BF-KDF-RealD0,D1

P,�,Gen,KD

]
−

Pr
[
BF-KDF-IdealD1

P,�,Gen,S0,S1

]
,

where games BF-KDF-Real and BF-KDF-Ideal are defined in Fig. 4. Note
that the ideal AI and BF games are syntactically identical.

Using Theorem 1, we first show that KDF security in the BF-RO model
implies KDF security in the AI-RO model.

Theorem 11 (BF-to-AI KDF Security). Let KDH be a key-derivation where
H is a random oracle and let Gen be a salt generator. Then for any AI-KDF
distinguisher (D0,D1), where D0 outputs S bits of auxiliary information and D1

places at most T queries to its Prim oracle, and any P ∈ N and γ > 0 there is
a BF-KDF distinguisher (D̃0, D̃1), where D̃0 output a string of length at most S
and a list of size at most P , and such that for any BF-KDF simulator (S0,S1)
and any � ∈ N,

Advai-kdf
P,�,Gen,KD,S0,S1

(D0,D1) ≤ Advbf-kdf
P,�,Gen,KD,S0,S1

(D̃0, D̃1) +
(S+log γ−1)·(rm�+T )

P + γ .

Proof. Let (D0,D1) be an AI-indifferentiability adversary. We apply the first
part of Theorem 1 to the real AI-KDF game and obtain a BF-KDF distinguisher
(D̃0, D̃1). In the real game there are in total at most rm�+T queries to H. Now
let (S0,S1) be a BF-KDF simulator for (D̃0, D̃1). Then (S0,S1) is also an AI-
KDF simulator as the ideal BF- and AI-KDF games are syntactically identical.
	


We now prove that salted iteration of a random oracle achieves KDF security
in the BF-RO model. The technical challenge here is to show that the results
of [BRT12] can be “lifted” to a setting with auxiliary information. To do so, we
can follow the generic approach of Coretti et al. [CDGS18] (i.e., Theorem1),
but this results in a different construction where every primitive call in the
construction is salted. Standard iterated constructions, however, only salt the
innermost call.

We thus directly establish the bit-fixing KDF security of the iterated con-
struction when pw |sa are never an n-bit string where n is the output length of
H. We then translate this result to the auxiliary-input setting using the above



84 P. Farshim and S. Tessaro

theorem. The length restriction on pw |sa allows us to decouple the innermost
call to H from the rest of the calls.9

Theorem 12 (Bit-fixing KDF security). Let KDH
r be the r-iterated key-

derivation function where H : {0, 1}∗ → {0, 1}n is a random oracle, and let Gen
be a salt generator that outputs uniform salts in a set of size K. Let N := 2n.
Then for any BF-KDF distinguisher (D0,D1) where D1 outputs a list of size P
and makes at most T primitive queries, there is a simulator (S0,S1) such that
for any � ∈ N

Advbf-kdf
P,�,Gen,KDr ,S0,S1

(D0, D1) ≤ (r + 1)m�T

N
+ 3 ·

(
rm�(rm� + P )

N
+

m�P

K
+

m2�2

K

)
.

Furthermore, S1 places at most T/r queries to RO and runs in time Õ(r).

We start with a high-level overview of our simulator, which we define in
Fig. 5. The initial stage of the simulator S0 simply runs D0 to get (σ,L), and
populates table H with assignments in L. It passes H (which is essentially L)
onto S1 via state st. The online simulator simulates H via lazy sampling using H
and detecting completed chains (as is common in indifferentiability proofs). For
a query w, it looks for a chain of queries w0, w1, . . . , wr−1 such that the chain
starts at w0 = pw |sa for a one of salts (note that the simulator knows the salts)
and ends at wr−1 = w, and furthermore along the chain there were no collisions
in H (and hence the chain, if defined, is unique). If a chain is found, the simulator
uses the random oracle RO to answer the query; else a fresh random string is
chosen. This simulator makes a Test query as a result of a chain completion.
Hence it makes at most T2/r queries.10

Proof (Sketch). We now give an overview of the game transitions used in the
proof of BF-KDF security and refer the reader to the full version of the paper
for the details.

G0: In this game we initially populate a table H (used for lazy sampling) with
entries in L. We compute the challenge vector using lazy sampling and also
answer primitive queries using H.

G1: In this game we “optimistically” sample the outputs of the random oracle
for the challenge values. We also set a bad flag bad if while computing chains
we encounter a penultimate value whose hash has already been set. We still
use the value already set, but in the next game we would like to set this value
to the optimistically chosen one. G1 and G0 are identical.

9 In particular, we do not run into “hash-of-hash” problems as in [DRST12] as not
every H call is salted.

10 We emphasize that without the length restriction on password-salt pairs, this sim-
ulator can fail. Consider a differentiator that gets wr ← Const(pw , sa), w′

r+1 ←
Prim(wr), and w′

1 ← Prim(pw |sa). It the parses w′
1 as (pw ′, sa ′), gets wr+1 ←

Const(pw ′, sa ′), and checks if (wr+1 = w′
r+1). This attack corresponds to the com-

putation of two overlapping chains. Our S1 fails as it simulates the two Prim queries
randomly since it won’t be able to detect any chains.



Password Hashing and Preprocessing 85

Fig. 5. Simulator for the bit-fixing KDF security of the r -iterated random oracle.

G2: In this game, even if the hash of a penultimate value is already defined and
the flag bad gets set, we set the hash of the penultimate value to the opti-
mistically chosen one. (Note that the primitive oracle has not been changed.)
G2 and G1 are identical until bad.

G3: In this game we introduce two conceptual changes: (1) We no longer set
the entry in H for the penultimate values; and (2) We modify the primitive
oracle to check if a query is a penultimate value. If so, the primitive oracle
uses the optimistically sampled value. G2 and G3 are identical.

G4: In this game we change the way the primitive oracle operates by first check-
ing if there is a chain of values of length r −1 leading to the query w. (This is
done by maintaining a set of edges E for the graph resulting from the queries.
If so, we set the hash of w to the optimistically chosen one. Otherwise if the
query w matches a penultimate value, we set a flag bad2 and set hash value
to the optimistically chosen one. G3 and G4 are identical until bad.

G5: In this game if bad2 is set, we do not use the optimistically set value, but
rather a random value. The two games are identical until bad2.

G6: This game removes code in computing the challenge keys and setting of
bad2. It also moves populating H with L to the primitive oracle. This game
is identical to G5.

G7: In this game we modify the way chains are detected. Now of course the sim-
ulator does not know the password-salt pairs. Hence, we modify this chain
detection procedure so that it uses a Test oracle to check if a password-salt
pair that traces to the queried point is indeed one of the challenge password-
salt pairs. This game is identical to the ideal AI-KDF game with the simulator
in Fig. 5.
Such a path, if it exists, will be unique as long the paths are isolated (that
is there are no edges (u, v) on graph of execution E such that v is on the
path but u is not) and the path has no loops. Here we use the fact that
password-salt pairs have length different than n-bit, so that the adversary
cannot “slide” the path.
These conditions ensure that there is at more one path for a given w. In par-
ticular the simulator makes at most T/r such paths and thus the simulator’s
number of queries to Test is also at most T/r times.



86 P. Farshim and S. Tessaro

We now bound the distinguishing advantage in the transitions above. The
games G1–G4 are all identical until bad. So we can bound this difference with a
single game hop. (G2 and G3 were used for reasoning.) The probability of bad
is upper bounded by the probabilities of (1) hitting a bad starting point with
a non-fresh salt, that is m�P/K; (2) two salts colliding, m2�2/K (here we do
not make any assumptions about the entropy of P and in particular it could
be that the sampled passwords are not distinct); and (3) any value generated
collides with a value generated before, or one of the pre-sampled values, i.e.,
(rm�)(rm� + P )/N . Thus, the overall bound is

m�P

K
+

m2�2

K
+

(rm�)(rm� + P )
N

.

The distance between G4 and G5 is bounded by the probability of setting
bad2. We have that Pr[bad2] ≤ Pr[bad] + Pr[bad2|¬bad]. Now under ¬bad the
values that provoke bad2 are uniform. Since there are rm� of them we get that
Pr[bads|¬bad] ≤ rm�T/N .

We now bound the distance between G6 and G7. The probability that input-
outputs defining the paths from password-salt pairs of length r − 1 stay disjoint
and outside L is given by the bound displayed above. Thus, we pick up three
Pr[bad] terms in total. The probability that no other queries enter into these
paths is at most rm�T/N . The theorem follows by collecting terms. 	


We note our bound above does not involve birthday terms of the form T 2

or T · P , which would translate to salt sizes that are too large to be acceptable
in practice. We may now apply Theorem 11 to deduce that for any AI-KDF
adversary (D0,D1) that outputs at most S bits of auxiliary information and
places at most T queries to the primitive oracle, there is a simulator (namely
the simulator for the BF-KD notion) such that for any γ > 0

Advai-kdf
P,�,Gen,KDr ,S0,S1

(D0,D1) ≤ S′T ′

P
+ 3P

(
rm�

N
+

rm�

K

)
+ · · · ,

where S′ := S+log γ−1 and T ′ := rm�+T and the omitted terms do not involve
P . For the optimal P , we set the two terms involving P to a common value and
obtain (up to constant factors) that

P =

√
S′T ′NK

3rm�(N + K)
.

Plugging this back into the bound we finally obtain that

Advai-kdf
P,�,Gen,KDr ,S0,S1

(D0,D1) ≤ 6 ·
√

S′T ′NK

3rm�(N + K)
·
(
rm�

N
+

rm�

K

)

+
3m2�2

K
+

3r2 m2�2 + (r + 1)m�T

N
+ γ .



Password Hashing and Preprocessing 87

Fig. 6. Security game for the password-based multi-instance extension of G in the pres-
ence of auxiliary information on H. States sti are initialized to ε and ri are independent
random coins of appropriate length. � is the number of random strings that need to be
replaced in each instance of G.

6 KDF Security in Applications

Given a game G, as defined in Sect. 2, we consider a multi-instance extension
that runs a central adversary A1 with respect to m independent instances of G.
Let

Advsingle
G (A) := 2 · Pr

[
G

A
]

− 1 ,

be the single-instance advantage. Suppose G uses randomness (k1, . . . , k�, b, r) for
some �. We are interested in replacing the values kj with those that are derived
from passwords through a KDF (see game ai-multi-G in Fig. 6). Let

Advai-multi
G,P,Gen,KD(A0,A1) := 2 · Pr

[
ai-multi-GA0,A1

G,P,Gen,KD

]
− 1 .

We show that if KDH is a secure KDF in the AI-RO model, this advantage can be
upper bounded by those in the single-instance game G and the salted guessing
game.

Theorem 13. Let G be a game with � keys, P an m-sampler, KDH a key-
derivation function in the RO model, and Gen a salt generator. Then for any
adversary (A0,A1) in ai-multi-G with A0 outputting at most S bits of auxiliary
information, and A1 placing at most T queries to H and at most c queries to
Cor, there is a AI-KDF distinguisher (D0,D1) where D0 also outputs at most
S bits of auxiliary information and D1 places at most T queries to its Prim

oracle, and an adversary B against G in the single instance setting (with uniform
randomness) that uses S bits of non-uniformity and runs in time that of A1 plus



88 P. Farshim and S. Tessaro

the time need to run m − 1 instances of G such that for any AI-KDF simulator
(S0,S1),

Advai-multi
G,P,Gen,KD(A0, A1) ≤ 2 · Advai-kdf

P,�,Gen,KD,S0,S1
(D0, D1) +

2 · Advsa-guess
P,�,Gen (T, c) + m · Advsingle

G (B) .

Proof. The proof follows that of [BRT12, Theorem 3.4], except that we need to
deal with general games and also auxiliary information on H.

Let ai-multi-G0 be identical to ai-multi-G. Let (S0,S1) be the AI-KDF sim-
ulator. We modify ai-multi-G0 to a game ai-multi-G1 that uses random keys
instead of keys derived from passwords, and where σ and H are stimulated via
the AI-KDF simulator (S0,S1). This transition is justified using AI-KDF secu-
rity as the inputs and oracles provided in each of the two AI-KDF games (that
is, all passwords, real/random keys, and salts) are sufficient for an AI-KDF dis-
tinguisher D0,D1 to simulate ai-multi-G0 or ai-multi-G1. In this transition the
distinguisher also picks coins ri and bits bi. When A1 returns b′, the distinguisher
returns (b′ = ⊕m

i=1bi). Thus,

Pr[ai-multi-G0] − Pr[ai-multi-G1] ≤ Advai-kdf
P,�,Gen,KD,S0,S1

(D0,D1) .

We now modify ai-multi-G1 to ai-multi-G2 that sets flag bad and termi-
nates if the simulator queries all passwords to its Test oracle. The two games
are identical until bad. We can upper-bound the probability of bad by building a
sa-Guess adversary as follows. Run the initial simulator S0 to generate σ. (Note
that this step entails that the sa-Guess adversary that we build is potentially
unbounded.) Pick randomness (including keys) to simulate the m instances of
the games. The Cor oracle is simulated by relaying queries to and the corrup-
tion oracle provided in sa-Guess. For the Test query, use the Test oracle in
sa-Guess to get a set S of indices. If this set is non-empty, return the corre-
sponding set of keys k[S]; otherwise return ⊥. Whenever bad is set, sa-Guess

is won and thus

Pr[ai-multi-G1] − Pr[ai-multi-G2] ≤ Advsa-guess
P,�,Gen (T, c) .

We now bound the probability of winning ai-multi-G2 in terms of winning
a single instance of G with random keys. This is done via a simple guessing
argument. In game ai-multi-G2 at the onset an adversary B guesses an index i∗

among the m instances which won’t be corrupted. By the bad flag introduced
in the previous game, if an index remains uncorrupted, i∗ will be a good guess
with probability 1/m. For the reduction, B chooses σ, passwords, salts, and
randomness for all games except for the i∗-th game. All games except the i∗-
th instance are simulated using these values. The i∗-th instance is simulated
using the provided game G. If i∗ is corrupted, B returns a random bit. When
A1 terminates with b′, algorithm B returns b′ ⊕i
=i∗ bi as its guess in the single
instance game. This guess is correct guess whenever b′ = bi∗ . Thus,

Pr[G] = 1/m · Pr[ai-multi-G2] + (1 − 1/m) · 1/2 ,



Password Hashing and Preprocessing 89

and hence

Pr[ai-multi-G2] − 1/2 = m · (Pr[G] − 1/2) = m/2 · Advsingle
G (B) .

The theorem follows by collecting the terms above and using the definitions
of the advantage functions. Note that B uses |σ| bits of non-uniformity in this
reduction. 	


Our result generalizes [BRT12, Theorem 3.4] to a larger class of games, which
among others includes IND-CPA security for symmetric encryption (as consid-
ered by BRT without auxiliary information), as well as other games such as AE
or CCA security for symmetric encryption, unforgeability for MACs, and may
others all in the presence of auxiliary information. We emphasize that this result
does not extend to games that access H (i.e., the random oracle in G and that
used by the KD are shared). Indeed, when attempting to prove such a result,
the initial two sequence of games above go through, but the last step fails: the
oracle access in instance i∗ cannot be simulated. (And indeed, attacks do exist.)
Despite this, if the domains of access for H are separated for G and KD such an
extension can be established.

Acknowledgments. Tessaro was partially supported by NSF grants CNS-1930117
(CAREER), CNS-1926324, CNS-2026774, a Sloan Research Fellowship, and a JP Mor-
gan Faculty Award. Farshim was supported in part by EPSRC grant EP/V034065/1.

A Multi-instance Hellman

We present a simple adaptation of Hellman’s space-time trade-off algorithm for
inverting random permutations. Consider the cycle graph of the permutation
π : [N ] → [N ]. We pick S points that are roughly equidistant on the graph. We
store each such point together with a pointer to a point T/m steps behind. Now
given π(x) = y, where x is within distance T/m from one of the S points on the
cycle graph, we can successfully recover x in T steps: We apply π iteratively to
y until we reach one of the S points. We then jump backwards by T/m steps
(following the stored pointer), and apply π until we reach x. This process takes
exactly T/m evaluations of π. (This is as in the single-instance case except for
the T/m instead of T ).

Now, in the multi-instance setting with m points x1, . . . , xm, if all of the
xi’s land within distance T/m from one of the S points, we can recover each
xi by evaluating π for T/m times, and thus in the worst case we make at most
m · T/m = T queries. The probability that this happens is (ST/mN)m. With c
corruptions, we first reduce m to m − c. Thus, for uniform passwords in [N ],

Advai-rec
[N ]m,�,⊥,π(S, T, c) ≥

(
ST

(m − c)N

)m−c

.

With no corruptions, if we have sufficiently large side information, we may
well need time T = mN/S. In particular, this means that we have a direct sum
situation (without introducing salts). That is, the time to break m instances
scales linearly with m.



90 P. Farshim and S. Tessaro

References

[AS15] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-
hard functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
pp. 595–603. ACM Press (June 2015)

[BRT12] Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its
application to password-based cryptography. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-32009-5_19

[CDG18] Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 693–721.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_23

[CDGS18] Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random Oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 227–258. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_9

[CDMP05] Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revis-
ited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005). https://doi.
org/10.1007/11535218_26

[DGK17] Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles
with auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6_16

[DRST12] Dodis, Y., Ristenpart, T., Steinberger, J.P., Tessaro, S.: To hash or not
to hash again? (In)differentiability results for H2 and HMAC. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366.
Springer, Heidelberg (2012)

[DTT10] De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against
one-way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 649–665. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7_35

[GT00] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic crypto-
graphic constructions. In: 41st FOCS, pp. 305–313. IEEE Computer Society
Press (November 2000)

[Kal00] Kaliski, B.: Pkcs# 5: password-based cryptography specification version
2.0 (2000)

[MRH04] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodol-
ogy. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_2

[Oec03] Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_36

[PJ16] Percival, C., Josefsson, S.: The scrypt password-based key derivation func-
tion. RFC 7914 (Informational) (August 2016)

[PM99] Provos, N., Mazières, D.: A future-adaptable password scheme. In: Proceed-
ings of the FREENIX Track: 1999 USENIX Annual Technical Conference,
6–11 June 1999, Monterey, California, USA, pp. 81–91. USENIX (1999)

https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-45146-4_36


Password Hashing and Preprocessing 91

[Unr07] Unruh, D.: Random Oracles and auxiliary input. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5_12

[Wee05] Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.)
37th ACM STOC, pp. 523–532. ACM Press (May 2005)

https://doi.org/10.1007/978-3-540-74143-5_12


Compactness of Hashing Modes
and Efficiency Beyond Merkle Tree

Elena Andreeva1(B), Rishiraj Bhattacharyya2, and Arnab Roy3

1 Technical University of Vienna, Vienna, Austria
elena.andreeva@tuwien.ac.at
2 NISER, HBNI, Jatani, India

rishirajbhattacharyya@protonmail.com
3 University of Klagenfurt, Klagenfurt, Austria

arnab.roy@aau.at

Abstract. We revisit the classical problem of designing optimally effi-
cient cryptographically secure hash functions. Hash functions are tra-
ditionally designed via applying modes of operation on primitives with
smaller domains. The results of Shrimpton and Stam (ICALP 2008),
Rogaway and Steinberger (CRYPTO 2008), and Mennink and Preneel
(CRYPTO 2012) show how to achieve optimally efficient designs of 2n-
to-n-bit compression functions from non-compressing primitives with
asymptotically optimal 2n/2−ε-query collision resistance. Designing opti-
mally efficient and secure hash functions for larger domains (>2n bits)
is still an open problem.

To enable efficiency analysis and comparison across hash functions
built from primitives of different domain sizes, in this work we propose
the new compactness efficiency notion. It allows us to focus on asymp-
totically optimally collision resistant hash function and normalize their
parameters based on Stam’s bound from CRYPTO 2008 to obtain max-
imal efficiency.

We then present two tree-based modes of operation as a design prin-
ciple for compact, large domain, fixed-input-length hash functions.
1. Our first construction is an Augmented Binary Tree (ABR) mode.

The design is a (2� + 2�−1 − 1)n-to-n-bit hash function making a
total of (2� − 1) calls to 2n-to-n-bit compression functions for any
� ≥ 2. Our construction is optimally compact with asymptotically
(optimal) 2n/2−ε-query collision resistance in the ideal model. For
a tree of height �, in comparison with Merkle tree, the ABR mode
processes additional (2�−1 −1) data blocks making the same number
of internal compression function calls.

2. With our second design we focus our attention on the indifferentiabil-
ity security notion. While the ABR mode achieves collision resistance,
it fails to achieve indifferentiability from a random oracle within 2n/3

queries. ABR+ compresses only 1 less data block than ABR with the
same number of compression calls and achieves in addition indiffer-
entiability up to 2n/2−ε queries.

Both of our designs are closely related to the ubiquitous Merkle Trees
and have the potential for real-world applicability where the speed of
hashing is of primary interest.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 92–123, 2021.
https://doi.org/10.1007/978-3-030-77886-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_4


Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 93

1 Introduction

Hash functions are fundamental cryptographic building blocks. The art of design-
ing a secure and efficient hash function is a classical problem in cryptography.
Traditionally, one designs a hash function in two steps. In the first, one con-
structs a compression function that maps fixed length inputs to fixed and usu-
ally smaller length outputs. In the second step, a domain extending algorithm
is designed that allows longer messages to be mapped to a fixed-length output
via a sequence of calls to the underlying compression functions.

Most commonly compression functions are designed based on block ciphers
and permutations [10,13–15,32,34]. For a long time block ciphers were the most
popular primitives to build a compression function and the classical construc-
tions of MD5 and SHA1, SHA2 hash functions are prominent examples of that
approach. In the light of the SHA3 competition, the focus has shifted to permu-
tation [12] or fixed-key blockcipher-based [3,4] compression functions. Classical
examples of domain extending algorithms are the Merkle–Damg̊ard [21,28] (MD)
domain extender and the Merkle tree [27] which underpins numerous crypto-
graphic applications. Most recently, the Sponge construction [11] that is used in
SHA-3 has come forward as a domain extender [5,13,16,33] method for designs
which directly call a permutation.

Efficiency of Hash Design: Lower Bounds. Like in all cryptographic
primitives, the design of a hash function is a trade-off between efficiency and
security. Black, Cochran, and Shrimpton [14] were the first to formally analyze
the security-efficiency trade-off of compression functions, showing that a 2n-to-
n-bit compression function making a single call to a fixed-key n-bit block cipher
can not achieve collision resistance. Rogaway and Steinberger [35] generalized the
result to show that any mn-to-ln bit compression function making r calls to n-bit
permutations is susceptible to a collision attack in (2n)1− m−l/2

r queries, provided
the constructed compression function satisfies a “collision-uniformity” condition.
Stam [37] refined this result to general hash function constructions and conjec-
tured: if any m + s-to-s-bit hash function is designed using r many n + c-to-n-bit
compression functions, a collision on the hash function can be found in 2

nr+cr−m
r+1

queries. This bound is known as the Stam’s bound and it was later proven in two
works by Steinberger [38] and by Steinberger, Sun and Yang [39].

Efficiency of Hash Design: Upper Bounds. The upper bound results
matching Stam’s bound focused on 2n-to-n-bit constructions from n-bit non-
compressing primitives. In [36], Shrimpton and Stam showed a (Shrimpton-
Stam) construction based on three n-to-n-bit functions achieving asymptoti-
cally birthday bound collision resistance in the random oracle model. Rogaway
and Steinberger [34] showed hash constructions using three n-bit permutations
matching the bound of [35] and assuming the “uniformity condition” on the
resulting hash construction. In [25], Mennink and Preneel generalized these
results and identified four equivalence classes of 2n-to-n-bit compression func-
tions from n-bit permutations and XOR operations, achieving collision security
of the birthday bound asymptotically in the random permutation model.



94 E. Andreeva et al.

In comparison, upper bound results for larger domain compressing functions
have been scarce. The only positive result we are aware of is by Mennink and
Preneel [26]. In [26], the authors considered generalizing the Shrimpton-Stam
construction to get m + n-to-n-bit hash function from n-bit primitives for m >
n, and showed n/3-bit collision security in the random oracle model. For all
practical purposes the following question remains open.

If an m+n-to-n-bit hash function is designed using r many n+c-to-n-bit compres-
sion functions, is there a construction with collision security matching Stam’s
bound when m > n?

Beyond Collision Resistance: Indifferentiability. Collision resistance
is undoubtedly the most commonly mandated security property for a crypto-
graphic hash function. Naturally, all the hash function design principles and
respective efficiencies are primarily targeting to achieve collision resistance. More
recently, for applications of hash functions as replacement of random oracles in
higher-level cryptographic schemes or protocols, the notion of indifferentiability
has also gained considerable traction. The strong notion of indifferentiability
from a random oracle (RO) by Maurer, Renner and Holenstein [24] has been
adopted to prove the security of hash functions when the internal primitives
(compression functions, permutations etc.) are assumed to be ideal (random
oracle, random permutation, etc.). An important advantage of the indifferentia-
bility from a random oracle notion is that it implies multiple security notions (in
fact, all the notions satisfied by a random oracle in a single stage game) simul-
taneously up to the proven indifferentiability bound. The question of designing
an optimally efficient hash function naturally gets extended also to the indiffer-
entiability setting.
If an m+n-to-n-bit hash function is designed using r many n+c-to-n-bit compres-
sion functions, is there a construction with indifferentiability security matching
Stam’s bound when m > n? Note that, a collision secure hash function matching
Stam’s bound may not imply the indifferentiability notion up to the same bound.

1.1 Our Results

New measure of efficiency. Comparing efficiency of hash functions built
from primitives of different domain sizes is a tricky task. In addition to the
message size and the number of calls to underlying primitives, one needs to take
into account the domain and co-domain/range sizes of the underlying primitives.
It is not obvious how to scale the notion of rate up to capture these additional
parameters.

We approach the efficiency measure question from Stam’s bound perspective.
We say an m+s-to-s-bit hash function construction designed using r many n+c-
to-n-bit compression functions is optimally efficient if Stam’s bound is tight, that
is one can prove that asymptotically at least 2

nr+cr−m
r+1 queries are required to

find a collision. Notice that the value in itself can be low (say 2s/4), but given
the proof, we can argue that the parameters are optimal for that security level.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 95

Given that the collision-resistance requirement for a hash function is given
by the birthday bound (2s/2 queries), we can say that a hash function construc-
tion achieves optimal security-efficiency trade-off if nr+cr−m

r+1 = s
2 and Stam’s

bound is asymptotically tight. Then one can focus on schemes which achieve
the asymptotically optimal collision security, and normalize the efficiency of the
construction. We hence propose the notion of compactness as the ratio of the
parameter m and its optimal value (2nr+2cr−sr−s

2 ) as an efficiency measure of a
hash function construction C. In Sect. 3 we formally define the notion and derive
compactness of some popular modes.

f

m1 m2

f

m3 m4

f

(a) Merkle tree hashing 4 input
messages

f1

m1 m2

f2

m3 m4

f0

m5

(b) ABR mode hashing 5 input
messages

Fig. 1. Merkle Tree and ABR mode for height � = 2

Optimally Compact ABR Mode. We present a new tree-based mode ABR.
ABR of height � implements a (2� + 2�−1 − 1)n-to-n-bit function making only
(2� − 1) calls to the underlying 2n-to-n-bit compressing primitives. Assuming
the underlying primitives to be independent random oracles, we show that the
ABR mode is collision resistant up to the birthday bound asymptotically. The
parameters of ABR mode achieve maximum compactness. In Sect. 4 we formally
present the ABR mode and prove its collision resistance.

A natural comparison with Merkle tree is in order. We show that Merkle
Tree can achieve only 2/3 of the optimal compactness and thus our mode is
significantly more efficient. For a tree of height �, in comparison to the Merkle
tree, the ABR mode can process an additional (2�−1 − 1) message blocks with
the same number of calls to the underlying compression functions.

ABR does not satisfy Indifferentiability. Our next target is to consider
the notion of indifferentiability. Specifically, how does the ABR compression
score in the indifferentiability setting? The primary objective of this question
is twofold. If we can prove the ABR construction with height � = 2 to be indiffer-
entiable from a random oracle up to the birthday bound, then we could use the
indifferentiability composition theorem and replace the leaf level compression
function of ABR by 5n-to-n-bit ideal compression function. Then by recursively
applying the proof of collision resistency of ABR with height � = 2, we could



96 E. Andreeva et al.

extend the collision resistance proof to arbitrary large levels. Secondly, the proof
of indifferentiability implies simultaneously all the security notions satisfied by
a random oracle in single stage games. Unfortunately, we show that the ABR
mode with height � = 2 does not preserve indifferentiability. We show an indif-
ferentiability attack of order 2

n
3 in Sect. 5. The attack can easily be generalized

to ABR of arbitrary levels.

Salvaging Indifferentiability. Next, in Sect. 5.2 we propose an almost opti-
mally compact ABR+ mode design which salvages the indifferentiability secu-
rity (up to birthday bound) of the original ABR mode. In principle, our second
construction ABR+ (see Fig. 4a) tree merges two left and right ABR mode (of
possibly different heights) calls by an independent post-precessor. Using the H-
coefficient technique, we prove the indifferentiability of the ABR+ construction
up to the birthday bound.

Compared to ABR mode, ABR+ compresses 1 less message block for the same
number of calls. For large size messages, this gap is extremely small. In compar-
ison to the Merkle Tree, the ABR+ mode, improves the efficiency significantly
and still maintains the indifferentiability property.

1.2 Impact of Our Result

Merkle trees were first published in 1980 by Ralph Merkle [27] as a way to
authenticate large public files. Nowadays, Merkle trees find ubiquitous applica-
tions in cryptography, from parallel hashing, integrity checks of large files, long-
term storage, signature schemes [8,9,18,19], time-stamping [23], zero-knowledge
proof based protocols [7,22], to anonymous cryptocurrencies [6], among many
others. Despite their indisputable practical relevance, for 40 years we have seen
little research go into the rigorous investigation of how to optimize their effi-
ciency, and hence we still rely on design principles that may in fact have some
room for efficiency optimizations.

In view of the wide spread use of Merkle trees, we consider one of the main
advantage of our construction as being in: increased number of message inputs
(compared to the classical Merkle tree) while maintaining the same tree height
and computational cost (for both root computation and node authentication). Our
trees then offer more efficient alternatives to Merkle trees in scenarios where the
performance criteria is the number of messages hashed for: 1. a fixed compu-
tational cost – compression function calls to compute the root, or/and 2. fixed
authentication cost – compression function calls to authenticate a node.

Regular hashing is naturally one of the first candidates for such an appli-
cations. Other potential use cases are hashing on parallel processors or multi-
core machines, such as authenticating software updates, image files or videos;
integrity checks of large files systems, long term archiving [17], memory authen-
tication, content distribution, torrent systems [1], etc. A recent application that
can benefit from our ABR or ABR+ mode designs are (anonymous) cryptocur-
rency applications. We elaborate more on these in Sect. 6.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 97

2 Notation and Preliminaries

Let N = {0, 1, . . .} be the set of natural numbers and {0, 1}∗ be the set of all bit
strings. If k ∈ N, then {0, 1}k denotes the set of all k-bit strings. The empty string
is denoted by ε. [n] denotes the set {0, 1, · · · , n−1}. f : [r]×Dom → Rng denotes
a family of r many functions from Dom to Rng. We often use the shorthand
f to denote the family {f0, · · · , fr−1} when the function family is given
as oracles.

If S is a set, then x
$← S denotes the uniformly random selection of an

element from S. We let y ← A(x) and y
$← A(x) be the assignment to y of the

output of a deterministic and randomized algorithm A, respectively, when run
on input x.

An adversary A is an algorithm possibly with access to oracles O1, . . . ,O�

denoted by AO1,...,O� . The adversaries considered in this paper are computa-
tionally unbounded. The complexities of these algorithms are measured solely
on the number of queries they make. Adversarial queries and the corresponding
responses are stored in a transcript τ .

Hash Functions and Domain Extensions. In this paper, we consider Fixed-
Input-Length (FIL) hash functions. We denote these by the hash function H :
M → Y where Y and M are finite sets of bit strings. For a FIL H the domain
M = {0, 1}N is a finite set of N -bit strings.

Note that, modelling the real-world functions such as SHA-2 and SHA-3, we
consider the hash function to be unkeyed. Typically, a hash function is designed
in two steps. First a compression function f : Mf → Y with small domain is
designed. Then one uses a domain extension algorithm C, which has a blackbox
access to f and implements the hash function H for larger domain.

Definition 1. A domain extender C with oracle access to a family of compres-
sion functions f : [r] × Mf → Y is an algorithm which implements the function
H = Cf : M → Y.

Collision Resistance. Our definitions of collision (Coll) security is given for
any general FIL hash function H built upon the compression functions fi for
i ∈ [r] where fis are modeled as ideal random functions. Let Func(2n, n) denote
the set of all functions mapping 2n bits to n bits. Then, for a fixed adversary A

and for all i ∈ [r] where fi
$← Func(2n, n), we consider the following definition

of collision resistance.

Definition 2. Let A be an adversary against H = Cf . H is said to be (q, ε)
collision resistant if for all algorithm A making q queries it holds that

AdvColl
H (A) = Pr

[
M ′,M $← Af (ε) : M �= M ′ and H(M) = H(M ′)

]
≤ ε.

Indifferentiability
In the game of indifferentiability, the distinguisher is aiming to distinguish
between two worlds, the real world and the ideal world. In the real world, the



98 E. Andreeva et al.

distinguisher has oracle access to (CF ,F) where CF is a construction based on
an ideal primitive F . In the ideal world the distinguisher has oracle access to
(G, SG) where G is an ideal functionality and S is a simulator.

Definition 3 (Indifferentiability [24]). A Turing machine C with oracle
access to an ideal primitive F is said to be (tA, tS , qS , q, ε) indifferentiable (Fig. 2)
from an ideal primitive G if there exists a simulator S with an oracle access to
G having running time at most tS, making at most qS many calls to G per invo-
cation, such that for any adversary A, with running time tA making at most q
queries, it holds that

AdvIndiff
(CF ,F),(G,SG)(A)

def
=

∣∣∣Pr[A(CF ,F) = 1] − Pr[A(G,SG) = 1]
∣∣∣ ≤ ε

CF is computationally indifferentiable from G if tA is bounded above by some
polynomial in the security parameter k and ε is a negligible function of k.

In this paper, we consider an information-theoretic adversary implying tA is
unbounded. We derive the advantage in terms of the query complexity of the
distinguisher. The composition theorem of indifferentiability [24] states that if a
construction CF based on an ideal primitive F is indifferentiable from G, then
CF can be used to instantiate G in any protocol with single-stage game. We note,
however, the composition theorem does not extend to the multi-stage games, or
when the adversary is resource-restricted. We refer the reader to [31] for details.
We refer to the queries made to CF/G as construction queries and to the queries
made to F/S as the primitive queries.

C S G

A

Fig. 2. The indifferentiability notion

Coefficient-H Technique. We shall prove indifferentiability using Patarin’s
coefficient-H technique [30]. Fix any distinguisher D making q queries. As the
distinguisher is computationally unbounded, without loss of generality we can
assume it to be deterministic [20,29]. The interaction of D with its oracles is
described by a transcript τ . τ contains all the queries and the corresponding
responses D makes during its execution. Let Θ denote the set of all possible
transcripts. Let Xreal and Xideal denote the probability distribution of the
transcript in the real and the ideal worlds, respectively.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 99

Lemma 1. [30] Consider a fixed deterministic distinguisher D. Let Θ can be
partitioned into sets Θgood and Θbad. Suppose ε ≥ 0 be such that for all τ ∈ Θgood,

Pr [Xreal = τ ] ≥ (1 − ε)Pr [Xideal = τ ]

Then AdvIndiff
(CF ,F),(G,SG)

≤ ε + Pr [Xideal ∈ Θbad ]

Markov Inequality. We recall the well known Markov inequality.

Lemma 2. Let X be a non-negative random variable and a > 0 be a real num-
ber. Then it holds that

Pr[X ≥ a] ≤ E [ X ]
a

3 Compactness: Normalizing Efficiency for Optimally
Secure Constructions

In Crypto 2008, Stam made the following conjecture (Conjecture 9 in [37]): If
Cf : {0, 1}m+s → {0, 1}s is a compression function making r calls to primitive
f : {0, 1}n+c → {0, 1}n, a collision can be found in the output of C by making
q ≤ 2

nr+cr−m
r+1 queries. The conjecture was proved in two papers, the case r =

1 was proved by Steinberger in [38], whereas the general case was proved by
Steinberger, Sun and Yang in [39]. The result, in our notation, is stated below.

Theorem 1 ([39]). Let f1, f2, . . . , fr : {0, 1}n+c → {0, 1}n be potentially dis-
tinct r many compression functions. Let C : {0, 1}m+s → {0, 1}s be a domain
extension algorithm making queries to f1, f2, . . . , fr in the fixed order. Suppose
it holds that 1 ≤ m ≤ (n + c)r and s

2 ≥ nr+cr−m
r+1 . There exists an adversary

making at most q = O
(
r2

nr+cr−m
r+1

)
queries finds a collision with probability at

least 1
2 .

In other words, if one wants to construct a hash function that achieves birthday
bound collision security asymptotically, the query complexity of the attacker
must be at least 2s/2. Then the parameters must satisfy the following equation:

nr + cr − m

r + 1
≥ s

2

Next, we rearrange the equation and get

m ≤ 2nr + 2cr − sr − s

2

Thus we can analyze the security-efficiency trade-off across different construc-
tions by considering only the schemes secure (asymptotically) up to the birthday



100 E. Andreeva et al.

bound and describe the efficiency by the ratio 2m
2nr+2cr−sr−s . Then we argue that

the optimal efficiency is reached when the parameters satisfy

m =
2nr + 2cr − sr − s

2
Now we are ready to define compactness of hash functions based on compressing
primitives.

Definition 4 Compactness. Let f1, f2, . . . , fr : {0, 1}n+c → {0, 1}n be poten-
tially distinct r many compression functions. Let C : {0, 1}m+s → {0, 1}s be a
domain extension algorithm making queries to f1, f2, . . . , fr in the fixed order.
We say C is α-compact if

– for all adversary A making q queries, for some constant c1, c2, it satisfies that

AdvColl
C (A) ≤ O

(
sc1rc2q2

2s

)
,

–

α =
2m

2nr + 2cr − sr − s

Clearly for any construction, α ≤ 1. For the rest of the paper, we consider
constructions where s = n. Thus, we derive the value of α as

α =
2m

2cr + nr − n

In Sect. 3.1, in Examples 1 and 3 we estimate that both Merkle–Damg̊ard and
Merkle tree domain extenders with 2n-to-n-bit compression function primitives
have a compactness of ≈2/3.

3.1 Compactness of Existing Constructions

Example 1. We consider the textbook Merkle–Damg̊ard (MD) domain exten-
sion with length padding and fixed IV. Let the underlying function be a 2n-to
n-bit compression function f . Let the total number of calls to f be r. At every
call n-bits of message is processed. Assuming the length-block is of one block,
the total number of message bits hashed using r calls is (r − 1)c. Hence, we get
m = (r − 1)c − n. Putting c = n we compute

α =
2n(r − 1) − 2n

2nr + nr − n
=

2nr − 4n

3nr − n
<

2
3

Example 2. For binary Merkle tree with c = n, let the number of f calls at the
leaf level is z. Then the total number of message bit is 2nz. Let the total number
of calls to the compression function f is r = z + z − 1 = 2z − 1. Comparing with
the number of message bits we get m + n = (r + 1)n which implies m = rn. So
we calculate the compactness of Merkle tree as

α =
2rn

3nr − n
=

2r

3r − 1
<

2
3



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 101

Example 3. Next we consider Shrimpton-Stam 2n-to-n compression function
using three calls to n-to-n-bit function f . Here m = n and c = 0. Then α =

2n
3n−n = 1. The Mennink-Preneel generalization [25] of this construction gives
2n-to-n-bit compression function making three calls to n-bit permutations. Thus
in that case α = 2n

3n−n = 1 as well.

Example 4. Consider again MD domain extension with length padding and fixed
IV but let the underlying function be a 5n-to n-bit compression function f . At
every (out of r) f call 4n-bits are processed (the rest n-bits are the chaining
value). As we have one length-block, the total number of message bits hashed is
(r − 1)4n. Hence, we get m = (r − 1)4n − n and compute:

α =
2 × 4n(r − 1) − 2n

2 × 4r + nr − n
=

8nr − 6n

9nr − n
≈ 8

9

Example 5. The 5-ary Merkle tree with 5z leaf messages has 5nz bit input
in total. Thus r = 3(5z−1)

4 and m = n(5z − 1). The compactness is given by

α =
2n(5z − 1)

2nr + nr − n
=

5z − 1
3r − 1

=
8(5z − 1)

9(5z − 1) − 4
≈ 8

9

4 ABR Mode with Compactness α = 1

In this section we present the ABR domain extender. We prove its collision
resistance in the random oracle model and show that it is optimally (α = 1)-
compact. Our ABR mode collision-resistance-proof is valid for FIL trees. That
means that our result is valid for trees of arbitrary height but once the height
is fixed, all the messages queried by the adversary must correspond to a tree of
that height. We remind the reader that the majority of Merkle tree applications
rely exactly on FIL Merkle trees.1 The parameter of our construction is � which
denotes the height of the tree. The construction makes r = 2� − 1 many inde-
pendent 2n-to-n-bit functions and takes input messages from the set {0, 1}μn,
where μ = 2� + 2�−1 − 1. f(j,b) denotes the bth node at jth level. The parents of
f(j,b) are denoted by f(j−1,2b−1) and f(j−1,2b). We use the following notations for
the messages. Let M be the input messages with μ many blocks of n-bits. The
corresponding input to a leaf node f(1,b) is denoted by m(1,2b−1) and m(1,2b). For
the internal function f(j,b), m(j,b) denotes the message that is xored with the
previous chaining values to produce the input. We refer the reader to Fig. 3b for
a pictorial view. Note, the leaves are at level 1 and the root of the tree is at level
�. The message is broken in n-bit blocks. 2� many message blocks are processed
at level 1. For level j(>1), 2�−j many blocks are processed. The adversary A has
query access to all functions, and it makes q queries in total.
1 Although VIL Merkle tree exists with collision preservation proof, that is done at the

cost of an extra block of Merkle-Damg̊ard-type strengthening and padding schemes.
As Stam’s bound is derived for FIL constructions, we restrict our focus on FIL
constructions only.



102 E. Andreeva et al.

y ← ABR mode(m1, . . . ,m2 +2 −1−1)

i ← 1, j ← 1

do

y1,j = f1,j(mi, mi+1)

i ← i+ 2, j ← j + 1

while i < 2

count ← 2

for j in{2 }
i ← 1, s ← count

do

yj,i = fj,i(ms+i ⊕ yj−1,2i−1,

ms+i ⊕ yj−1,2i) ⊕ yj−1,2i

while i < 2 −j

count ← count+ 2 −j

endfor

return y 1

(a) Algorithm for computing ABR
mode hash value with height

f1,1

m1 m2

f1,2

m3 m4

f1,3

m5 m6

f1,4

m7 m8

f2,1

m9

f2,2

m10

f3,1

m11

(b) ABR mode of height = 3 with 23

leaf message inputs (valid for Merkle
tree), r = 7 compression function calls,
and total of 2 + 2 −1 − 1 = 11 input
blocks.

Fig. 3. ABR mode algorithm and instantiation

Theorem 2. Let � ≥ 2 be a natural number and r = 2�. Let f : [r]×{0, 1}2n →
{0, 1}n be a family of functions. Let A be an adversary against the collision
resistance of ABR mode. If the elements of f are modeled as independent random
oracles, then

AdvColl
ABR(Af ) = O

(
rn2q2

2n

)
.

where q is the number of queries A makes to f satisfying q2 < 2n

2e(n+1) .

4.1 Warmup: ABR Mode with Height 2

First, we prove the security of the case � = 2. In this case ABR mode implements
a 5n-to-n-bit compression function with 3 calls to 2n-to-n-bit compression func-
tions. For convenience of explanation, we refer the three functions as f0, f1, f2

(see Fig. 1b).

Construction 3. Let f0, f1, f2 : {0, 1}2n → {0, 1}n be three compression func-
tions. We define ABR mode for � = 2 as ABRf : {0, 1}5n → {0, 1}n where

ABR(m1,m2,m3,m4,m5) = f2 (x3, x4) ⊕ f0 (m5 ⊕ f1 (x1, x2) ,m5 ⊕ f2 (x3, x4))

Theorem 2 can be restated for this case as the following proposition.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 103

Proposition 4. Let f0, f1, f2 : ×{0, 1}2n → {0, 1}n. Let A be an adversary
against the collision resistance of ABR. If fis are modeled as independent random
oracles, then

AdvColl
ABR(Af ) = O

(
n2q2

2n

)

where q is the maximum number of queries A makes to the oracles f0, f1, f2s.

Proof of Proposition 4. The proof strategy closely follows [36].
Moving to level-wise setting. In general, one needs to consider the adver-
sary making queries in some adaptive (and possibly probabilistic) manner. But
for the case of 5n-bit to n-bit ABR, as in [36], we can avoid the adaptivity as f1

and f2 are independent random oracles.

Lemma 3. For every adaptive adversary Â, there exists an adversary A who
makes level-wise queries and succeeds with same probability;

AdvColl
ABR(Â) = AdvColl

ABR(A).

Collision Probability in the level-wise query setting. From this point
on, we assume that the adversary is provided with two lists L1 and L2 at the
start of the game. L1 and L2 have q uniformly sampled points and they should
be considered as the responses of the queries made by the adversary to f1 and
f2, respectively. The adversary only needs to query f0.

Let A be an adversary that can find a collision in ABR. Two cases may arise.
In the first case, A can find collision in the leaf nodes (f1 or f2). In that case,
there is a collision in either L1 and L2. In the other case, there is no collision
among the outputs of f1 or f2, and the collision is generated at the final output.
Let Colli denote the event that A finds a collision in Li. Let Coll denote the event
that A finds a collision in ABR.

AdvColl
ABR(A

f ) ≤ Pr [Coll ] = Pr [Coll ∧ (Coll1 ∨ Coll2) ] + Pr [Coll ∧ ¬(Coll1 ∨ Coll2) ]

≤ Pr [Coll1 ∨ Coll2 ] + Pr [Coll | ¬(Coll1 ∨ Coll2) ]

≤ Pr [Coll1 ] + Pr [Coll2 ] + Pr [Coll | ¬(Coll1 ∨ Coll2) ].

As the functions are independent random oracles, Pr [Coll1 ] and Pr [Coll2 ]
are bounded above by q2

2n . In the remaining, we bound the probability of the
third term.
Defining the range. For every query (ui, vi) made by the adversary to f0, we
define the following quantity

Yi
def
= | {(h1, h2) | h1 ∈ L1, h2 ∈ L2, h1 ⊕ ui = h2 ⊕ vi} | .

where f0(ui, vi) is the ith query of the adversary. While Yi counts the number
of valid or more precisely consistent with the ABR structure pairs (h1, h2) that



104 E. Andreeva et al.

were already queried to f1 and f2, Yi also denotes the number of possible ABR
hash outputs produced by the adversary by making f0(ui, vi) query. Notice,
that Yi inputs to f0 generate Yi outputs. Each of these outputs are XORed each
with only one corresponding consistent h2 value determined by the equation
h1 ⊕ ui = h2 ⊕ vi, hence producing Yi ABR outputs on Yi consistent number
inputs to f0. Let Y = maxiYi.
Bounding Collision by range. Now, we show how bounding the range will
help us bounding the collision probability. Let Ei denotes the probability that
after making the ith query f0(ui, vi) produces a collision in the output of ABR.
Suppose after making i − 1 queries, adversary is not able to produce a collision
for ABR. Hence, the adversary has produced

∑i−1
j=1 Yj many hash outputs. We

bound the probability that ith query response produces a collision.

Pr
[
Ei | ∧i−1

j=1¬Ej

] ≤ Yi

∑i−1
j=1 Yj

2n

Now we can bound the collision probability as

Pr [Coll | ¬(Coll1 ∨ Coll2) ] ≤
q∑

i=1

Yi

∑i−1
j=1 Yj

2n
≤

q∑
i=1

i−1∑
j=1

Y 2

2n
≤ q2Y 2

2n+1

We shall use the following lemma, which we prove later.

Lemma 4.

Pr [Y > k | ¬(Coll1 ∨ Coll2) ] ≤ q2k(2n − k)!
k! (2n − 1)!

Using Lemma 4, we get

Pr [Coll | ¬(Coll1 ∨ Coll2) ] ≤ Pr [Coll ∧ Y ≤ k | ¬(Coll1 ∨ Coll2) ]
+ Pr [Y > k | ¬(Coll1 ∨ Coll2) ]

≤ k2q2

2n+1
+

q2k(2n − k)!
k! (2n − 1)!

Putting k = n we get the probability as

Pr [Coll | ¬(Coll1 ∨ Coll2) ] ≤ n2q2

2n+1
+

q2n

n! (2n − 1) · · · (2n − n + 1)
≈ n2q2

2n+1
+

q2n

2n2

= O
(

n2q2

2n

)

Hence, we get the theorem. �
Proof of Lemma 4. Let (hi1 , h

′
j1

), (hi2 , h
′
j2

), · · · , (hik
, h′

jk
) be the set of k pairs

such that each hil
∈ L1 and h′

jl
∈ L2, and

hi1 ⊕ h′
j1 = hi2 ⊕ h′

j2 = · · · = hik
⊕ h′

jk
= a (say)



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 105

The condition ¬(Coll1 ∨Coll2) implies that there is no collision in L1 and L2.
The total number of ways to choose each of L1 and L2 such that there is no
collision is q!

(
2n

q

)
.

Next we count the number of ways of choosing L1 and L2 such that the k
equalities get satisfied. The number of ways we can choose i1, i2, · · · , ik is

(
q
k

)
.

Fixing the order of i1, i2, · · · , ik, the number of ways to pair j1, j2, · · · , jk is k!
(

q
k

)
.

Observe that there can be 2n many possible values of a. Fix a value of a. Thus
for each value of hil

, there is a single value of h′
jl

. Hence the total number of ways
we can select L1, L2 such that the equalities get satisfied is q!

(
2n

q

) × q!
(
2n−k

q

)
.

Hence the probability that for independently sampled L1 and L2,

Pr [Y > k | ¬(Coll1 ∨ Coll2) ] =
k!

((
q
k

))2 2nq!
(
2n

q

) × q!
(
2n−k

q

)
(
q!

(
2n

q

))2

After simplification, we get the probability as

Pr [Y > k | ¬(Coll1 ∨ Coll2) ] =
(q!)22n(2n − k)!

((q − k)!)2 k! (2n)!
≤ q2k2n(2n − k)!

k! (2n)!

At the last step, we upper bound (q!)2

((q−k)!)2
by q2k. The lemma follows. �

4.2 Proof of Theorem 2

Proof Overview. Now we prove the general case. We start with an overview
of the proof. Unlike the case for � = 2, we have to consider adaptive adversaries.
Specifically, we can no longer assume that the adversary makes the queries level
wise. Indeed, a query at a non-leaf level is derived from the previous chain-
ing values (part of which is fed-forward to be xored with the output) and the
messages. We can no longer “replace” the query without changing the chaining
values. To the best of our knowledge, no proof technique achieving 2n/2 security
bound asymptotically, exists in the literature for this case.

The intuition of our proof follows. Like in the previous case, our analysis
focuses on the yield of a function. Informally, the yield of a query (u, v) to a
function f is the number of chaining values created by the query. For example,
consider a query (u, v) made to function fj,z, zth function of level j, and let y
be the output of the query. How many chaining values does this query create?
A cursory inspection reveals that the number of created chaining values are the
number of “legal” feedforward (chaining value from the previous level function
fj−1,2z) values h. Indeed a feedforward value h can extend the chain, if there
exists a chaining value h′ from the set of chaining values created from fj−1,2z−1

(the other parent of (j, z)) such that h′ ⊕ u = h ⊕ v.
Naturally, if we can bound the total yield of a function (denoted as load),

we can bound the probability of collision among the chaining values generated
by the function. The load of a function fj,z gets increased in two ways. The first
one is by a query made to fj,z, as encountered in the previous section. The other



106 E. Andreeva et al.

one is by a query made to fj′,z′ where j′ < j and (j′, z′) is in the subtree of
(j, z). To see why the second case holds, observe that the query to fj′,z′ increases
the yield of the function, and thus creating new chaining values. Some of those
newly created chaining values can be “legal” feedforward values for some queries
already made to the next level, and thus increasing the yield of that query as
well. Moreover, this in turn again creates new chaining value at the level j′ + 1.
The effect continues to all the next levels and eventually affects the load of all
the functions in the path to the root, including (j, z).

We bound the load of functions at each level starting from the leaves. At
each level, we bound the probability of having a transcript which creates the
load on a function (of that level) over a threshold amount, conditioned on the
event that in none of the previous level the load exceeded the threshold.

Formal Analysis. Our formal analysis involves the transcript of the queries
and the corresponding responses. Each entry of the transcript contains a query
response pair, denoted by (u, v, y)(j,b) which indicates that y is the response of
the query fj,b(u, v). τ denotes the (partial) transcript generated after the q many
queries. Q(j,b) denotes the set of queries made to the function f(j,b). L(j,b) holds
the responses.

Yield Set. For each function f(j,b), we define a set Γ(j,b) holding the possible
chaining values. Note, a chaining value h ∈ Γ(j−1,2b) can be a valid feedforward
value for entry (u, v, y)(j,b) if there exists a matching h′ ∈ Γ(j−1,2b−1) such that
for some m′, it holds that m′ ⊕ h′ = u and m′ ⊕ h = v. Such a m′ can exist only
if h′ ⊕ u = h ⊕ v.

Γ(1,b)
def
= {y | (u, v, y)(1,b) ∈ τ}

Γ(j>1,b)
def
= {y ⊕ h | (u, v, y)(j,b) ∈ τ, h ∈ Γ(j−1,2b), ∃h′ ∈ Γ(j−1,2b−1), h

′ ⊕ u = h ⊕ v}.

Feedforward set. For each function f(j,b), we define a set F(j,b) containing the
possible elements that can be used as feedforward and xored with the output of
f(j,b) to generate valid chaining values. It is easy to verify that F(j,b) = Γ(j−1,2b),
where Γ(0,b) = ∅.

Let Coll denotes the event that the adversary finds collision in
ABR mode. Let M = (m1,1,m1,2 · · · ,m1,2� , · · · ,m�,1) and M ′ =
(m′

1,1,m
′
1,2 · · · ,m′

1,2� , · · · ,m′
�,1) be the two distinct messages that produce the

collision. We use (u, v, y)(j,b) and (u′, v′, y′)(j,b) to be the corresponding queries
made to function f(j,b) in the evaluation respectively.2

Proper Internal Collision. The transcript is said to contain a proper internal
collision at (j, b), if the transcript contains two distinct queries (u, v, y)(j,b) and
(u′, v′, y′)(j,b) and there exists h, h′ ∈ Γ(j−1,2b) such that y ⊕ h = y′ ⊕ h′.
2 We assume the adversary makes all the internal queries before producing a collision.

Indeed we can always add the missing queries in the transcript without significantly
changing the query complexity.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 107

Lemma 5. Collision in tree implies a proper internal collision.

Proof. The proof follows the Merkle tree collision resistance proof. Without loss
of generality, we assume that there is no collision at the leaf. Now, consider a
collision in the tree. This implies that there exist (u, v, y)(�,1), (u′, v′, y′)(�,1) ∈ τ
and h, h′ ∈ Γ(�−1,2) such that

y ⊕ h = y′ ⊕ h′

If (u, v)(�,1) �= (u′, v′)(�,1), then we get our proper internal collision at (�, 1),
and we are done. Otherwise (u, v)(�,1) = (u′, v′)(�,1), which in turn implies y = y′.
This implies h = h′. Moreover, we get h ⊕ u ⊕ v = h′ ⊕ u′ ⊕ v′ . The above two
equalities give us collision in the both left and the right subtree. As M �= M ′,
the messages differ in one of the subtrees. Repeating the above argument in
the appropriate tree, we indeed find a (j, b) with distinct inputs (u, v)(j,b) �=
(u′, v′)(j,b). �
Bounding Probabilities of a Proper Internal Collision

Yield of a query. Consider an element (u, v, y)(j,b) ∈ τ . We define the follow-
ing quantity as the yield of the query f(j,b)(u, v).

Yu,v,j,b
def
=

{ | {(h1, h2) | h1 ∈ Γ(j−1,2b−1), h2 ∈ Γj−1,2b, h1 ⊕ u = h2 ⊕ v} | if j > 1

1 if j = 1

Load on a function. The load on a function f(j,b) is defined by the total yield
of the queries made to that function.

L(j,b)
def
=

∑
(ui,vi)∈Qj,b

Yui,vi,j,b.

Observe that if no internal collision happens at a function, the size of the
yield set is the load on that function; L(j,b) =| Γj,b |

For the rest of the analysis we use the variable k which is equal to (n + 1)
1
� .

Bad Events. In this section we define the notion of bad event. We observe that
with every query, the load on the functions in the tree change. Two types of
contributions to load happen with each query.

1. Type I A new (u, v)(j,b) query contributes to L(j,b). The contribution amount
is Y(u,v,j,b).

2. Type II A new (u, v)j′,b′ query increases the load of (j, b) where j > j′ and
(j′, b′) is in the sub-tree rooted at (j, b).

δ1
(j,b) and δ2

(j,b) denotes the total type-I and type-II contributions to L(j,b) respec-
tively. We consider the following two helping Bad events.

1. Bad1 happens at function (j, b) such that for some (u, v, y)(j,b) ∈ τ , such that
Y(u,v,j,b) > k�. This event corresponds to the Type I queries.



108 E. Andreeva et al.

2. Bad2 happens at function (j, b), if δ2
(j,b) > k�q.

Bad1j and Bad2j denotes the event that Bad1 or Bad2 respectively happens at
some node at level j. We define Badj as Bad1j ∪Bad2j . Let Bad denote the event
that for the generated transcript Badj holds for some level j.

Bad
def
=

⋃
j

Badj

The following proposition holds from the definitions.

Lemma 6.

¬Badj =⇒ ∀b ∈ [2�−j ] it holds that L(j,b) ≤ 2k�q

Deriving Collision Probability. Let Collj denote the event of a proper
internal collision at (j, b) for some b ∈ [2�−j ].

Pr [Coll ] ≤ Pr [Coll ∪ Bad ]

≤ Pr [Coll1 ∪ Bad1 ] +
∑
j>1

Pr
[
(Collj ∪ Badj) ∩ ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′

]

≤ Pr [Coll1 ∪ Bad1 ] +
∑
j>1

Pr
[
Badj ∩ ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′

]
+

∑
j>1

Pr
[
Collj ∩ ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

]

Using the fact that Pr[A ∩ B ] = Pr[A | B ] Pr[B ] ≤ Pr[A | B ],

Pr [Coll ] ≤Pr [Coll1 ∪ Bad1 ] +
∑
j>1

Pr [Badj | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′ ]

+
∑
j>1

Pr [Collj | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′ ] (1)

Bounding. Pr [Coll1 ∪ Bad1 ]. As all the functions are modeled as a random
function, for all b ∈ [2�−1], we have Pr [Coll1,b ] ≤ q2

2n . Hence,

Pr [Coll1 ] ≤ 2�−1q2

2n

In order to find Pr[Bad1 ], we recall that F1,b = ∅. In other words the nothing is
xored with the output of the functions at the leaf level. Hence, Y(u,v,1,b) = 1 for
all b ∈ [2�−1] and (u, v, y)1,b ∈ τ . Hence Pr [Bad1 ] = 0. Hence we get,

Pr [Coll1 ∪ Bad1 ] ≤ 2�−1q2

2n
(2)

Bounding.
∑

j>1 Pr [Collj | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′ ]. Fix b ∈ [2�−j ] and
thus fix a function at the jþ level. As analyzed in the previous section, given



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 109

∩j′≤j¬Badj′ , the proper internal collision probability for (j, b) is
L2

(j,b)

2n . From
Lemma 6, it holds that for each b ∈ [2�−j ], L(j,b) ≤ 2k�q. Hence for each
j > 1, b ∈ [2�−j ],

Pr
[
Coll(j,b) | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

] ≤ 4k2�q2

2n
.

Taking sum over all j > 1, b ∈ [2�−j ],

∑
j>1,b

Pr
[
Coll(j,b) | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

] ≤
�∑

j=2

2�−j∑
b=1

4k2�q2

2n

=
�∑

j=2

2�−j × 4k2�q2

2n

=
2�+2k2�q2

2n
×

⎛
⎝

�∑
j=2

1
2j

⎞
⎠

In the next step we shall use the fact that
∑�

j=2
1
2j < 1

2 . Finally we get,

∑
j>1,b

Pr
[
Coll(j,b) | ∩j′<j¬Collj′ ∩ ∩j′≤j¬Badj′

] ≤ 2�+2k2�q2

2n+1
(3)

Bounding Pr [Bad]. Now we bound the probabilities of the two bad events.
We bound the probabilities level-wise. Let Bad1j,b denote that Bad1 happens at
node b of level j. Similarly, let Bad2j,b denote that Bad2 happens at node b of
level j. Clearly, Bad1j = ∪b∈[2�−j ]Bad1j,b and Bad2j = ∪b∈[2�−j ]Bad2j,b

Bounding Bad1j

Lemma 7. For any (u, v, y)(j,b) for b ∈ [2�−j ]

Pr[Bad1j,b | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′ ] ≤ 2n

(
ek�q2

2n

)k�

Proof. We bound the probability for any possible input (u, v)(j,b) that Y(u,v,j,b) >

k�. Fix u ⊕ v = a. Consider any entry (u1, v1, y1)(j−1,2b) from τ . This entry con-
tributes to Y(u,v,j,b) if there exists a h ∈ F(j−1,2b) and x ∈ Γ(j−1,2b−1) such
that y1 ⊕ h ⊕ v = x ⊕ u. Rearranging, we get that y1 = h ⊕ x ⊕ a. Probabil-
ity of that event is Y(u1,v1,j−1,2b)|Γ(j−1,2b−1)|

2n . As ¬Badj′ holds for all j′ < j, we
have | Γ(j−1,2b−1) |≤ k�q, and Yu1,v1,j−1,2b ≤ kj−1. Hence, the probability that



110 E. Andreeva et al.

(u1, v1, y1)(j−1,2b) contributes to Yu,v,j,b is at most k�+j−1q
2n . As there are at most

q choices for (u1, v1, y1)(j−1,2b) and each choice contributes one to Yu,v,j,b,

Pr
[
Yu,v,j,b > k�

] ≤
(

q

k�

)(
k�+j−1q

2n

)k�

Next, we use the inequality
(
a
b

) ≤ (
ea
b

)b, where e is the base of natural logarithm.

Pr
[
Yu,v,j,b > k�

] ≤
(

ekj−1q2

2n

)k�

≤
(

ek�q2

2n

)k�

Now, taking union bound over all possible choice of a, we get that for any possible
input (u, v) to f(j,b),

Pr
[
Yu,v,j,b > k�

] ≤ 2n

(
ek�q2

2n

)k�

�
Bounding Bad2j

Lemma 8. Fix b ∈ [2�−j ] and thus fix a function at the jþ level.

Pr[Bad2j,b | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′ ∩ ¬Bad1j,b ] ≤ 2�k�q2

2n

Proof. Consider a query (u, v, y)j′,b′ where (j′, b′) is in the sub-tree of (j, b).
As ∩j′<j¬Badj′ holds, we argue ¬Bad1j′ holds. Thus the number of chaining
value created by (u, v, y)j′,b′ query at the output of j′, b′ is at most k�, we have
Yu,v,j′,b′ ≤ k�.

Next we calculate the increase in the load of the next node f(j′+1,� b′
2 �) due

to query (u, v, y)j′,b′ . Consider any chaining value h created due to the query
(u, v, y)j′,b′ . h increases the load of (j′ + 1, � b′

2 �) if there exists h1 ∈ Γj′,b′−1 and
(u1, v1, y1)j′+1,� b′

2 � ∈ τ such that h = h1 ⊕ u1 ⊕ v1. For a fixed h1 and query

(u1, v1, y1)j′+1,� b′
2 �, probability the equation gets satisfied is 1

2n . There can be at

most |Qj′+1,� b′
2 �| many queries made to the function j′+1, � b′

2 � in the transcript,
implying at most q many choices for candidate (u1, v1, y1)j′+1,� b′

2 �.

E
[
δ2
(j′+1,� b′

2 �)

]
≤

Yu,v,j′,b′
∣∣Γ(j′,b′−1)

∣∣
∣∣∣Qj′+1,� b′

2 �
∣∣∣

2n

As ¬Badj′ holds in the given condition,
∣∣Γ(j′,b′−1)

∣∣ = L(j′,b′−1) < 2k�q. More-
over, Yu,v,j′,b′ ≤ k�; thus the expected increase in the load of f(j′+1,� b′

2 �) is at

most 2k2�q2

2n .



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 111

We extend this argument to the next levels. For a random element from
Qj′+1,� b′

2 � × Γ(j′,b′−1) the expected number of matched elements in Qj′+2,� b′
4 � ×

Γ(j′+1,� b′
2 �−1) is

∣
∣
∣
∣
Γ
(j′+1,� b′

2 �−1)

∣
∣
∣
∣

∣
∣
∣
∣
Q

j′+2,� b′
4 �

∣
∣
∣
∣

|Γ(j′,b′−1)|
∣
∣
∣
∣
Q

j′+1,� b′
2 �

∣
∣
∣
∣

. Using ¬Badj′ for all j′ < j, we bound

the expected increase of load for f(j′+2,� b′
4 �) as

E
[
δ2
(j′+2,� b′

4 �)

]

≤
Yu,v,j′,b′ | Γ(j′,b′−1) || Qj′+1,� b′

2 � |
2n

×
| Γ(j′+2,� b′

2 �−1) || Qj′+1,� b′
4 � |

| Γ(j′,b′−1) || Qj′+1,� b′
2 � |

≤
Yu,v,j′,b′ | Γ(j′+1,� b′

2 �−1) || Qj′+1,� b′
4 � |

2n

≤ 2k2�q2

2n

Inductively extending the argument

E
[
δ2
(j,b)

]
≤ 2k2�q2

2n
.

As there q many queries in the transcript, the expected total type II contribution
for a function (j, b) is 2�k2�q3

2n . By using Markov inequality we get that

Pr
[
δ2
(j,b) > k�q

]
≤

E
[
δ2
(j,b)

]

k�q
≤ 2k�q2

2n

�

Finishing the Proof. From Lemma 6, Lemma 7, and Lemma 8, we bound the
probability of bad as

∑
j>1

Pr
[
Badj | ∩j′<j¬Collj′ ∩ ∩j′<j¬Badj′

]
=

∑
j>1,b∈[2�−j ]

⎛
⎝2n

(
ek�q2

2n

)k�

+
2k�q2

2n

⎞
⎠ (4)

=
2�+1k�q2

2n
+ 2�+n

(
ek�q2

2n

)k�

(5)

From Eq. 1, Eq. 2, Eq. 3, and Eq. 5, we get,

Pr [Coll ] ≤ 2�−1q2

2n
+

2�+1k2�q2

2n
+

2�+1k�q2

2n
+ 2�+n

(
ek�q2

2n

)k�

(6)

≤ 2�+1q2(1 + k� + k2�)
2n

+ 2�+n

(
ek�q2

2n

)k�

(7)



112 E. Andreeva et al.

Finally, putting k = (n + 1)
1
� , and assuming q2 < 2n

2e(n+1) , we get

2�+n

(
ek�q2

2n

)k�

<
2�e(n + 1)q2

2n

Putting k� = (n + 1) in Eq. 7,

Pr [Coll ] = O
(

2�(1 + n + n2)q2

2n

)
= O

(
rn2q2

2n

)
.

This finishes the proof of Theorem2. �
Corollary 1. The compactness of ABR is 1.

5 Achieving Indifferentiability Efficiently

Below we first consider the basic ABR compression function and analyze its secu-
rity with respect to the indifferentiability notion. We show that while ABR fails
to achieve indifferentiability, a simple modification can restore the indifferen-
tiability. We call that modified tree ABR+ mode construction. ABR+ mode is
the merge of two ABR modes (trees), not necessarily of the same height � ≥ 2
each, and feeding their inputs to a final compression function (omitting the final
message injection and feedforward).

5.1 Indifferentiability Attack Against ABR Mode

Our main result of this section is the following.

Theorem 5. Consider the ABR mode with � = 2. There exists an indifferen-
tiability adversary A making O(2

n
3 ) many calls such that for any simulator S it

holds that

AdvIndiff
(ABR,f),(G,SG)(A) ≥ 1 − ε

where ε is a negligible function of n.

Theorem 5 can be extended for � > 2 as well.

Principle Behind the Attack. Recall the ABR with � = 2 from Fig. 1b. The
idea is to find collision on the input of f0 for two distinct messages m,m′. If the
adversary finds such a collision, then the output of the simulator on this input
needs to be consistent with the random oracle (F) responses on two distinct
messages. That is impossible unless there is a certain relation at the output of
F , making that probability negligible.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 113

The Attack. The adversary A maintains three (initially empty) query-response
lists L0, L1, L2 for the three functions f0, f1, f2, respectively. A chooses 2n/3 mes-
sages (x(1)

1 , x
(1)
2 ) ∈ {0, 1}2n, queries to f1, and adds the query-response tuple

to L1. Similarly, A chooses 2n/3 messages (x(2)
1 , x

(2)
2 ) ∈ {0, 1}2n, queries to

f2, and adds the query-response tuple to L2. A checks whether there exists
(x(1)

1 , x
(1)
2 , h

(1)
1 ) ∈ L1, and (x(2)

1 , x
(2)
2 , h

(2)
1 ) ∈ L1, and (x(1)

3 , x
(1)
4 , h

(1)
2 ) ∈ L2, and

(x(2)
3 , x

(2)
4 , h

(2)
2 ) ∈ L2 such that

h
(1)
1 ⊕ h

(2)
1 ⊕ h

(1)
2 ⊕ h

(2)
2 = 0 (8)

If such tuples do not exist, A outputs 1 and aborts. If there is collision in the
lists, A outputs 1 and aborts. Otherwise, it chooses a random m̂ ∈ {0, 1}n. The
adversary sets m = h

(1)
1 ⊕ h

(2)
1 ⊕ m̂ = h

(1)
2 ⊕ h

(2)
2 ⊕ m̂, adversary computes

u = m ⊕ h
(1)
1 = m̂ ⊕ h

(2)
1 and v = m ⊕ h

(1)
2 = m̂ ⊕ h

(2)
2 . Finally, adversary

queries z = f0(u, v) and outputs 1 if z �= F(x(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ,m) ⊕ h

(1)
2 or

z �= F(x(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4 , m̂) ⊕ h

(2)
2 . Else adversary outputs 0.

The full probability analysis is straightforward and skipped in this version.

5.2 Almost Fully Compact and Indifferentiable ABR+ Mode

In this section, we show that the generalized ABR+ mode without the additional
message block at the last level is indifferentiable (up to the birthday bound)
from a random oracle. For ease of explanation, we prove the result for three-
level (see Fig. 4b) balanced tree. The proof for the general case follows exactly
the same idea. The generalized ABR+ mode can be viewed as the merge of two
ABR mode instances, one being the left ABR+ branch and the other being the
right branch. Both their root values are input to a final 2n-to-n-bit compression
function to compute the final value of the ABR+ tree. The ABR+ tree can be
either balanced or unbalanced depending on whether it uses two ABR modes of
identical or distinct heights (see Fig. 4a), respectively.

Our main result here is the following theorem. The result can be generalized
to ABR+ with arbitrary height. However, the simulator description will be more
detailed. For ease of explanation we consider the mode with � = 3.

Theorem 6. Let f : [7] × {0, 1}2n → {0, 1}n be a family of random func-
tions. Let Cf : {0, 1}10n → {0, 1}n be the ABR+ mode as in Fig. 4b. (Cf , f)
is (tS , qS , q, ε) indifferentiable from a random oracle F : {0, 1}10n → {0, 1}n

where

ε ≤ O
(

n2q2

2n

)
.

where q is the total number of queries made by the adversary. Moreover tS =
O(q2) and qS = 1



114 E. Andreeva et al.

f

ABRrightABRleft

21

(a) General ABR+ mode

f1,1

m1 m2

f1,2

m3 m4

f1,3

m5 m6

f1,4

m7 m8

f2,1

m9

f2,2

m10

f3,1

(b) ABR+ mode with 10 input messages

Fig. 4. ABR+ mode examples

5.3 Proof of Theorem 6

We assume that the distinguisher D makes all the primitive queries correspond-
ing the construction queries. This is without loss of generality as we can construct
a distinguisher D′ for every distinguisher D such that D′ satisfies the condition.
D′ emulates D completely, and in particular, makes the same queries. However,
at the end, for each construction queries made by D, D′ makes all the (non-
repeating) primitive queries required to compute the construction queries. At
the end, D′ outputs the same decision as D. As a result, in the transcript of
D′, all the construction query-responses, can be reconstructed from the primi-
tive queries. Hence, it is sufficient to focus our attention on only the primitive
queries and compare the distribution of outputs. If D makes q1 many construc-
tion queries and q2 many primitive queries, then D makes q1 many construction
queries and q2 + q1l many primitive queries in total where l is the maximum
number of primitive queries to compute C.

The Simulator. We start with the high-level overview of how the simulator S
works. For each j ∈ [3], b ∈ [23−j ] the simulator maintains a list L(j,b). The list
L(j,b) contains the query-response tuples for the function f(j,b).
Message Reconstruction. The main component of the simulator is the mes-
sage reconstruction algorithm FindM. In the case of traditional Merkle tree, the
messages are only injected in the leaf level. We have, in addition, the message
injection at each (non-root) internal node. The message reconstruction in our
case is slightly more involved.

The algorithm for message reconstruction is the subroutine FindM. It takes
(u0, v0), the input to f(3,1), as input. Let M = m1||m2|| · · · ||m10 be the message
for which f(3,1)(u0, v0) is the hash value. Also, suppose all the intermediate
queries to f(j,b)(j < 3) has been made. In the following, we describe how the



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 115

(partial) messages corresponding to chaining value u0 is recovered. The other
half of the message, corresponding to v0, is recovered in analogous way.

Recall that there is no message injection at the final node. Hence, if all the
intermediate queries related to M is made by the adversary, then m9 must satisfy
all the following relations, ∃(u, v, y)(2,1) ∈ L(2,1), such that

y = u0 ⊕ v ⊕ m9 (m1,m2, u ⊕ m9) ∈ L(1,1) (m3,m4, v ⊕ m9) ∈ L(1,2)

We find a candidate m9 by xoring u0 with y ⊕ v for all the (so far) recorded
entries (u, v, y)(2,1) ∈ L(2,1). To check the validity of the candidate, we check
the other two relations. If indeed such query tuples exist, we can recover the
message.

Simulation of the functions. For every non-root function f(j,b), j < 3, the
simulator simulates the function perfectly. Every query response is recorded in
the corresponding list L(j,b). The simulation of f(3,1) is a little more involved,
albeit standard in indifferentiability proof. Upon receiving a query (u0, v0) for
f(3,1), the simulator needs to find out whether it is the final query correspond-
ing to the evaluation for a message M . Suppose, all other queries corresponding
to M has been made. The simulator finds M using the message reconstruction
algorithm. If only one candidate message M is found, the simulator programs
the output to be F(M). If the list returned by FindM is empty, then the sim-
ulator chooses a uniform random string and returns that as output. The first
problem, however, arises when there are multiple candidate messages, returned
by FindM. This implies, there are two distinct messages M,M ′ for both of which
f(3,1)(u0, v0) is the final query. The simulator can not program its output to
both F(M) and F(M ′). Hence, it aborts. In that case, there is a collision at
either u or v, implying that the adversary is successful in finding a collision in
ABR mode. The probability of that event can indeed be bounded by the results
from the previous section. The second problem occurs in the output of non-root
functions. Suppose for a f(3,1)(u0, v0) query the FindM algorithms returns an
empty set. Intuitively, the simulator assumes here the adversary can not find a
message M , for which the final query will be f(3,1)(u0, v0). Hence, the simulator
does not need to maintain consistency with the Random Oracle. Now the second
problem occurs, if later in the interaction, the output of some f(j,b) query forces
a completion in the chaining value and a message M can now be recovered for
which the final query will be f(3,1)(u0, v0). This will create an inconsistency of
the simulator’s output and the response of the Random Oracle. In the following,
we bound the probability of these two events.

The description of the simulator is given in Fig. 5. The message reconstruc-
tion algorithm finds a candidate m9 (and resp. m10) for each entry in L(2,1)

(and resp. L(2,2)), and checks the validity against every entry of L(1,1) along
with L(1,2) (resp. L(1,3) along with L(1,4)). Thus the time complexity of message
reconstruction algorithm is O(q2). As the simulator invokes the message recon-
struction algorithm at most once for each query, we bound ts = O(q2). Similarly,
we find qs = 1 as the simulator has to query F only once per invocation.



116 E. Andreeva et al.

Procedure S(3, 1, u, v)

1 : if (u, v, z) ∈ L(3,1) return z

2 : M = FindM(u, v)

3 : if |M| > 1return ⊥
4 : if |M| = 0

5 : z
$←− {0, 1}n

6 : L(3,1) = L(3,1) ∪ (u, v, z)

7 : return z

8 : endif

9 : M ← M
10 : z = F(M)

11 : L(3,1) = L(3,1) ∪ (u, v, z)

12 : return z

Procedure S(j, b, u, v) where j < 3

1 : if ∃(u, v, z) ∈ L(j,b)

2 : return z

3 : else

4 : z
$←− {0, 1}n

5 (j,b) = L(j,b) ∪ (u, v, z)

6 : return z

7 : endif

Procedure FindM(u, v)

// Recovering message from u part

1 : M1 = ∅
2 : for each (u , v , h ) ∈ L(2,1)

3 : m9 = h ⊕ u ⊕ v

4 : endfor

5 : if ∃(m1,m2) such that (m1,m2, u ⊕ m9) ∈ L(1,1)

∧ ∃(m3, m4) such that (m3,m4, v ⊕ m9) ∈ L(1,2)

6 : M1 = M1 ∪ (m1,m2,m3,m4,m9)

7 : endif

// Recovering message from v part

8 : M2 = ∅
9 : for each (u , v , h ) ∈ L2,2

10 : m10 = h ⊕ v ⊕ v

11 : endfor

12 : if ∃(m5,m6) such that (m5,m6, u ⊕ m10) ∈ L(1,3)

∧ ∃(m7, m8) such that (m7,m8, v ⊕ m10) ∈ L(1,4)

13 : M2 = M2 ∪ (m5,m6, m7,m8,m10)

14 : endif

// Combining the messages

15 : for each(m1,m2, m3,m4,m9) ← M1

∧ each(m5,m6,m7, m8,m10) ← M2

16 : M = M ∪ (m1,m2, · · · ,m10)

17 : endif

18 : return M

Fig. 5. Description of the simulator

The Bad Events. We shall prove the theorem using the H-coefficient technique.
We consider the following Bad events.
Bad0: The set M, returned by the message reconstruction algorithm has car-
dinality more that one. This implies, one can extract two message M1,M2 from
the transcript such that the computation of ABR+(M1) and ABR+(M2) makes
the same query to f(3,1).

Bad1: There exists an i, such that for the ith entry in the transcript hi =
f(j,b)(xi, yi) with j < 3, there exists a message M such that Cf (M) can be
computed from the first i entries of the transcript, but can not be computed
from the first i − 1 entries. This in particular implies that there exists a i′ with
i′ < i, such that:

– i′th query is a query to f(3,1). h = f(3,1)(ui′ , vi′)



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 117

– By setting hi = f(j,b)(xi, yi) with � > 0, we create a message M such that all
the other chaining values of Cf (M) are present in the first i − 1 queries with
f(3,1)(ui′ , vi′) as the final query.

Lemma 9. For adversary A making q many queries,

Pr [Bad ] ≤ O
(

n2q2

2n

)
.

Bounding Pr [Bad ]. We bound the probabilities of the Bad events.

– Case Bad0: If there is a collision in the final query of the computations for
two different messages, then there is a collision in the u part or v part of
the chain. This implies a collision in one of the ABR mode output. Hence, by
Proposition 4

Pr[Bad0] ≤ O
(

n2q2

2n

)

– Case Bad1: We first consider a query f(j,b)(u, v) with j = 2. Let Y(u,v,j,b)

denote the yield of this query (recall that yield of a query denotes the number
of new chaining values a query creates, see page 17). As there can be at
most q many queries to f(3,1) done before this, probability that such a query
raises the Bad1 is bounded by Y(u,v,j,b)q

2n . Taking union bound over all the

queries at f(j,b), the probability gets upper bounded by q
∑

Y(u,v,j,b)

2n . As we

showed in the previous section this probability can be bounded by O
(

n2q2

2n

)
.

Finally, we consider the case of Bad1 raised by some queries at the leaf
level. As in the proof of collision resistance, the expected number of new
chaining values created at the output by the leaf level queries is nq3

2n . Hence,
by Markov inequality, the probability that the total number of new chaining
values created is more that q is at most nq2

2n . Finally, conditioned on the
number of new chaining values be at most q, the probability that it matches
with one of the f(3,1) queries is at most q2

2n . Hence, we get

Pr[Bad1] ≤ O
(

nq2

2n

)

Good Transcripts Are Identically Distributed. We show that the good
views are identically distributed in the real and ideal worlds. Note that the
simulator perfectly simulates f for the internal node. The only difference is the
simulation of the final query. In case of good views, the queries to f0 are of two
types:

1. The query corresponds to the final query of a distinct message M , such that
all the internal queries of Cf (M) have occurred before. In this case, the
simulator response is F(M). Conditioned on the rest of the transcript the
output distribution remains same in both the worlds.



118 E. Andreeva et al.

2. There is no message M in the transcript so far for which this is the final query.
In this case, the response of the simulator is a uniformly chosen sample. As
Bad1 does not occur, the property remains true. In that case as well, the
output remains same, conditioned on the rest of the transcript.

Hence, for all τ ∈ Θgood

Pr [Xreal = τ ] = Pr [Xideal = τ ]

This finishes the proof of Theorem6.

Corollary 2. The compactness of ABR+ making r calls to underlying 2n-to-n-
bit function is 1 − 2

3r−1 .

6 Efficiency and Applications

In this section, we discuss the compactness of our proposed designs, possible
applications and use cases.

6.1 Efficiency and Proof Size

Below we discuss and compare our designs with the Merkle tree regarding effi-
ciency of compression and authentication and proof size: the number of openings
to prove a membership of a node in a tree.

Efficiency of compression and authentication. To measure efficiency of
compression we consider the amount of message (in bits) processed for a fixed
tree height or a fixed number of compression function calls. As mentioned earlier,
compared to a Merkle tree of height � which absorbs n2� message bits, the ABR
or ABR+ modes process an additional n(2�−1 −1) message bits. Thus, asymptot-
ically the number of messages inserted in our ABR (or ABR+) mode increases by
50% compared to Merkle tree. Additionally, the cost of authentication (number
of compression function calls to authenticate a node) in a Merkle tree is log N
where N = 2�. Here as well the ABR or ABR+ modes compress 50% more mes-
sage bits compared to Merkle tree keeping the same cost of authentication as in
Merkle tree as shown in Lemma 10.

Proof Size. We refer to the tree chaining and internal message nodes as the
tree openings. The proof size in a tree is determined by the number of openings.
In a Merkle tree, the proof of membership of all (leaf) inputs requires log N
compression function evaluations and openings each. More precisely, to prove
the membership of an arbitrary leaf input , log N −1 chaining values and one leaf
input are required. Note that while counting the number of openings, we exclude
the input for which the membership is being proved.

Lemma 10. In ABR mode, to prove the membership of any node (message
block): leaf or internal, we require 2 log N − 1 (n-bit) openings and log N com-
pression function computations.



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 119

Proof. To prove the membership of a leaf input in the ABR mode 2(log N − 1)
openings are required together with one leaf input. This makes a total of
2 log N − 1 openings. To obtain the root hash log N computation must be com-
puted. To prove the membership of an internal node, we need 2(log N −1) open-
ings, excluding any openings from the level at which the internal node resides.
Additionally, one more opening is required from the level of the node. Thus,
in total we need again 2 log N − 1 openings. The number of compression calls
remains log N .

Compared to Merkle tree, in ABR+ the proof size increases by log N −1. Admit-
tedly, for Merkle tree applications where the proof size is the imperative perfor-
mance factor, the ABR+ modes do not provide an advantage.

6.2 Applications and Variants

ZK-SNARKs. We briefly point out here the potential advantages of using the
ABR mode in zk-SNARKS based applications, such as Zcash. In a zk-SNARK
[22] based application, increasing the number of inputs or transactions in a block
means that we need to increase the size of the corresponding Merkle tree. The
complexity of the proof generation process in zk-SNARK is C log C where C is
the circuit size of the underlying function. In ABR+ modes the additional mes-
sages are inserted without increasing the tree height or introducing additional
compression function calls. Since the messages are only injected with xor/addi-
tion operation, this does not deteriorate the complexity of the proof generation.
Zcash uses a Merkle tree with height ≈29 and 234 byte inputs. By using either
one, ABR or ABR+ modes, an additional of ≈233 byte inputs can be compressed
without making any extra calls to the underlying compression function. Asymp-
totically, ABR or ABR+ provides 50% improvement in the number of maintained
(in the tree structure) messages compared to a Merkle tree.

Further Applications. Our modes can be useful in applications, such as
hashing on parallel processors or multicore machines: authenticating software
updates, image files or videos; integrity checks of large files systems, long term
archiving [17], content distribution, torrent systems [1], etc.

Variants. We continue with possible variants of utilizing the ABR compression
function in existing constructions, such as the Merkle–Damg̊ard domain extender
and a 5-ary Merkle tree, and discuss their compactness and efficiency.

Merkle–Damg̊ard (MD) Domain Extender with ABR. When the compres-
sion function in MD is substituted by ABR (� = 2) compression function, the
collision resistance preservation of the original domain extender is maintained.
We obtain compactness of ≈8/9 of such an MD variant (see Sect. 3.1).

For all our modes, the high compactness allows us to absorb more messages
at a fixed cost or viewed otherwise, to compress the same amount of data (e.g.
as MD or Merkle tree) much cheaper. We elaborate on the latter trade-off here.
To compress 1 MB message with classical MD that produces a 256-bit hash



120 E. Andreeva et al.

value and uses a 512-to-256-bit compression function, around 31250 calls to the
underlying (512-to-256-bit) compression function are made. In contrast, ABR in
MD requires just ≈7812 calls to the (512-to-256) compression function, that is
an impressive 4-fold cost reduction.

5-ary Merkle Tree with ABR. One can naturally further construct a 5-ary
Merkle tree using ABR with compactness <8/9 (see Sect. 3.1). That means to
compress 1MB data with a 5-ary ABR mode with 5n-to-n-bit (n = 256) com-
pression functions will require ≈23437 calls to the 512-to-256-bit compression
functions. Using the Merkle tree the number is 31250 compression function calls.
On the other hand, the ABR and ABR+ modes require only ≈20832 calls.

We have also considered simpler versions of ABR (e.g. when the feed forward
from f2 is omitted) to show how they fail to achieve collision security (in the
extended version [2]).

7 Discussion and Conclusions

The ABR mode is the first collision secure, large domain, hash function that
matches Stam’s bound for its parameters. The ABR+ is also close to optimally
efficient and achieves the stronger indifferentiablity notion, both completed in
the ideal model. Based on our security results we can conclude that the ABR+

mode is indeed the stronger proposal that achieves all the ‘good’ function prop-
erties up to the birthday bound. Driven by practical considerations for suitable
replacements of Merkle tree, the ABR mode appears to be the more natural
choice. This is motivated by the fact that the majority of Merkle tree uses are
indeed FIL, namely they work for messages of fixed length.

Indeed, for such FIL Merkle trees collision preservation in the standard model
holds but it fails once message length variability is allowed (for that one needs
to add MD strengthening and extra compression function call). The ABR mode
is proven collision secure in the ideal model. Our result confirms the structural
soundness of our domain extenders in the same fashion as the Sponge domain
extender does it for the SHA-3 hash function.

We clarify that simple modifications of ABR lead to the same security results.
These variants are when one uses for feed-forward the left chaining value (instead
of the right as in the ABR mode) or when the internal message itself (instead
of the right chaining value) are fed-forward into the output of f0. The collision
security proofs for these two variants follow exactly the same arguments and are
identical up to replacement for the mentioned values. Similarly, an extended tree
version of the latter constructions can be shown collision or indifferentiability
secure when it is generalized in the same fashion as the ABR+ mode.

An interesting practical problem is to find and benchmark concrete mode
instantiations. From a theory perspective, finding compact double length con-
structions is an interesting research direction.

Acknowledgements. We thank Martijn Stam for reading an earlier version of the
draft and providing valuable comments. We would like to also thank Markulf Kohlweiss



Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 121

for discussion on the zksnarks and other applications of this work. We sincerely thank
the reviewers of this and the earlier version of this paper for their insightful comments.
Rishiraj is supported by SERB ECR/2017/001974 .

References

1. http://bittorrent.org/beps/bep 0030.html
2. Andreeva, E., Bhattacharyya, R., Roy, A.: Compactness of hashing modes and

efficiency beyond Merkle tree. IACR Cryptol. ePrint Arch. (2021)
3. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash

function. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 88–
105. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4 7

4. Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the second round
SHA-3 candidates. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 39–53. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18178-8 5

5. Andreeva, E., Mennink, B., Preneel, B.: The parazoa family: generalizing the
sponge hash functions. Int. J. Inf. Sec. 11(3), 149–165 (2012)

6. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
IACR Cryptol. ePrint Arch. 2014, 349 (2014)

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014, pp. 781–796. USENIX Association (August 2014)

8. Benjamin, D.: Batch signing for TLS (2019). https://tools.ietf.org/html/draft-
davidben-tls-batch-signing-02

9. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS+ signature framework. In: ACM CCS 2019, pp. 2129–2146. ACM
Press (November 2019)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. Cryptology ePrint Archive,
Report 2011/499 (2011). http://eprint.iacr.org/2011/499

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

14. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient
Blockcipher-based hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 526–541. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 31

15. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 21

http://bittorrent.org/beps/bep_0030.html
https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-642-18178-8_5
https://doi.org/10.1007/978-3-642-18178-8_5
https://tools.ietf.org/html/draft-davidben-tls-batch-signing-02
https://tools.ietf.org/html/draft-davidben-tls-batch-signing-02
http://eprint.iacr.org/2011/499
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/11426639_31
https://doi.org/10.1007/11426639_31
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21


122 E. Andreeva et al.

16. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 21

17. BSI. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TR03125/TR-03125 M3 v1 2 2.pdf

18. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

19. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an
improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 25

20. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

21. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

23. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991). https://doi.org/10.1007/BF00196791

24. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

25. Mennink, B., Preneel, B.: Hash functions based on three permutations: a generic
security analysis. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 330–347. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 20

26. Mennink, B., Preneel, B.: Efficient parallelizable hashing using small non-
compressing primitives. Int. J. Inf. Secur. 15(3), 285–300 (2015). https://doi.org/
10.1007/s10207-015-0288-7

27. Merkle, R.C.: Protocols for public key cryptosystems. In: Proceedings of the 1980
IEEE Symposium on Security and Privacy, Oakland, California, USA, 14–16 April
1980, pp. 122–134. IEEE Computer Society (1980)

28. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

29. Nandi, M.: A simple and unified method of proving indistinguishability. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer,
Heidelberg (2006). https://doi.org/10.1007/11941378 23

30. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03125/TR-03125_M3_v1_2_2.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03125/TR-03125_M3_v1_2_2.pdf
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-32009-5_20
https://doi.org/10.1007/978-3-642-32009-5_20
https://doi.org/10.1007/s10207-015-0288-7
https://doi.org/10.1007/s10207-015-0288-7
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/11941378_23
https://doi.org/10.1007/978-3-642-04159-4_21


Compactness of Hashing Modes and Efficiency Beyond Merkle Tree 123

31. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

32. Ristenpart, T., Shrimpton, T.: How to build a hash function from any collision-
resistant function. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 147–163. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
76900-2 9

33. Rivest, R.L., Schuldt, J.C.N.: Spritz - a spongy RC4-like stream cipher and hash
function. IACR Cryptol. ePrint Arch. 2016, 856 (2016)

34. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-
key blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–
450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 24

35. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based
hashing. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 13

36. Shrimpton, T., Stam, M.: Building a collision-resistant compression function
from non-compressing primitives. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 643–654. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 52

37. Stam, M.: Beyond uniformity: better security/efficiency tradeoffs for compression
functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 22

38. Steinberger, J.: Stam’s collision resistance conjecture. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 597–615. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 30

39. Steinberger, J., Sun, X., Yang, Z.: Stam’s conjecture and threshold phenomena in
collision resistance. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 384–405. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 23

40. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-540-76900-2_9
https://doi.org/10.1007/978-3-540-76900-2_9
https://doi.org/10.1007/978-3-540-85174-5_24
https://doi.org/10.1007/978-3-540-78967-3_13
https://doi.org/10.1007/978-3-540-70583-3_52
https://doi.org/10.1007/978-3-540-70583-3_52
https://doi.org/10.1007/978-3-540-85174-5_22
https://doi.org/10.1007/978-3-642-13190-5_30
https://doi.org/10.1007/978-3-642-13190-5_30
https://doi.org/10.1007/978-3-642-32009-5_23
https://doi.org/10.1007/978-3-642-32009-5_23
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19


Real-World Cryptanalysis



Three Third Generation Attacks
on the Format Preserving Encryption

Scheme FF3

Ohad Amon1, Orr Dunkelman2(B), Nathan Keller3, Eyal Ronen1,
and Adi Shamir4

1 Computer Science Department, Tel Aviv University, Tel Aviv, Israel
{ohad.amon,eyal.ronen}@cs.tau.ac.il

2 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il

3 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
nkeller@math.biu.ac.il

4 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, Israel

adi.shamir@weizmann.ac.il

Abstract. Format-Preserving Encryption (FPE) schemes accept plain-
texts from any finite set of values (such as social security numbers or
birth dates) and produce ciphertexts that belong to the same set. They
are extremely useful in practice since they make it possible to encrypt
existing databases or communication packets without changing their for-
mat. Due to industry demand, NIST had standardized in 2016 two such
encryption schemes called FF1 and FF3. They immediately attracted
considerable cryptanalytic attention with decreasing attack complexi-
ties. The best currently known attack on the Feistel construction FF3
has data and memory complexity of O(N11/6) and time complexity of
O(N17/6), where the input belongs to a domain of size N × N .

In this paper, we present and experimentally verify three improved
attacks on FF3. Our best attack achieves the tradeoff curve D = M =
Õ(N2−t), T = Õ(N2+t) for all t ≤ 0.5. In particular, we can reduce the
data and memory complexities to the more practical Õ(N1.5), and at the
same time, reduce the time complexity to Õ(N2.5).

We also identify another attack vector against FPE schemes, the
related-domain attack. We show how one can mount powerful attacks

O. Amon—is supported in part by Len Blavatnik and the Blavatnik Family foundation
and by the Blavatnik ICRC.
O. Dunkelman—was supported in part by the Center for Cyber, Law, and Policy in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office and
by the Israeli Science Foundation through grants No. 880/18 and 3380/19.
N. Keller—was supported by the European Research Council under the ERC start-
ing grant agreement n. 757731 (LightCrypt) and by the BIU Center for Research in
Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.
E. Ronen—is a member of CPIIS.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 127–154, 2021.
https://doi.org/10.1007/978-3-030-77886-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_5


128 O. Amon et al.

when the adversary is given access to the encryption under the same key
in different domains, and show how to apply it to efficiently distinguish
FF3 and FF3-1 instances.

1 Introduction

Standard block ciphers such as DES [19] and AES [11] are designed to encrypt
and decrypt fixed length binary strings. However, there are many cases in which
the data we want to encrypt has a different format such as a decimal number
(e.g., a social security number) or a string of English letters (e.g., a name). While
we can try to map such inputs to binary strings, we are usually faced with the
problem that the number of possible inputs is not a perfect power of 2. In these
cases, the size of the encrypted values will be larger than the size of the original
values. This can pose a severe problem when we try to protect existing databases
or communication packets which have a fixed format and whose fields cannot be
expanded even by a single bit, since we will not be able to simply replace each
original value by its encrypted version.

A solution to the problem was proposed 23 years ago by Brightwell and Smith
who introduced the concept of Format-Preserving Encryption (FPE) [10]. More
precisely, FPE is a cipher that encrypts any predefined domain into itself, even
when it is not represented as a fixed length binary string. For example, we want
that the encryption of a credit card number to look like another credit card
number, following the same syntactic restrictions on its format. FPE has been
used and deployed by numerous companies, e.g., Voltage, Veriphone, Ingenico,
Cisco, as well as by major credit-card payment organizations.

In the last 20 years, numerous FPE schemes were proposed. The first cipher to
support the FPE functionality was the AES candidate Hasty Pudding Cipher [22]
which was submitted by Schroeppel and Orman. In 2002, Black and Rogaway [8]
proposed three different methods for offering FPE functionality: Cycle walking,
prefix cipher, and a Feistel-based construction, where in cycle walking schemes
we iteratively encrypt the plaintext under the secret key, until a ciphertext that
resides in the domain is found. In 2008, Spies proposed the Feistel Finite Set
Encryption Mode (FFSEM) [24], which is an AES based balanced Feistel network
that uses the idea of cycle walking. This has become the underlying approach
for many FPE schemes.

In the subsequent years, several groups submitted to the US National Insti-
tute of Standards and Technology (NIST) proposals for FPE schemes: Bellare
et al. proposed FFX [2,3] (called by NIST “FF1”), Vance [25] proposed VAES3
(called by NIST “FF2”) and Brier, Peyrin and Stern [9] proposed BPS (whose
central component was called by NIST “FF3”). All these proposals are block
ciphers, based on types of a Feistel network.

In 2016, NIST published a special publication (SP800-38G [13]) that spec-
ified the aforementioned FF1 and FF3 as two modes of operation for format-
preserving encryption. The domain in these schemes consists of M × N possible
inputs, but for the sake of simplicity we assume that M = N in all our complexity
estimates.



Three Third Generation Attacks on FF3 129

The first analysis of FF3 was published shortly afterwards by Bellare et al. [1]
who developed an efficient message recovery attacks for small domains. A year
later, Durak and Vaudenay [12] presented at Crypto’17 a new slide attack [7]
against the FF3 scheme. The attack makes it possible to compute new cipher-
texts, but without finding the scheme’s 128-bit cryptographic key (note that in
FPE’s the number of possible keys is typically much larger than the number of
possible plaintexts). Its data complexity of O(N11/6) is slightly smaller than the
N2 size of the codebook, and its time complexity is O(N5), regardless of the
schemes’s key size. The attack is based on the fact that the tweak-key schedule
allows for a simple related-tweak attack that reduces the number of rounds we
have to attack from 8 to only 4 rounds.

Following this attack, NIST had revised their recommendation by modifying
the way the tweak is used in the scheme, calling the new scheme FF3-1 (see
SP 800-38G Rev. 1 [14]). Despite this revision, the security of the original FF3
against slide attacks continued to stir a great deal of interest. In particular,
at Eurocrypt 2019, Hoang, Miller and Trieu [17] presented a second generation
slide attack which improved the first generation attack of Durak and Vaudenay
by using better algorithms for detecting slid pairs. The resulting attack has the
same data complexity of O(N11/6) but a greatly reduced time complexity of
O(N17/6).

1.1 Our Contributions

In this paper we present three third generation slide attacks on FF3:

1. A symmetric slide attack that follows the general strategy of Hoang et al.’s
attack [17] but simultaneously improves all its complexity measures – from
D = M = N11/6 and T = N17/6 to D = M = Õ(N7/4) and T = Õ(N5/2). It
can be generalized to any point along the time/data tradeoff curve D = M =
Õ(N7/4−t) and T = Õ(N5/2+2t), for any 0 ≤ t ≤ 1/4.

2. A new type of asymmetric slide attack which exploits the asymmetry of the
classical distinguisher on 4-round Feistel schemes to reduce the complexity
even further – to D = M = Õ(N3/2) and T = Õ(N5/2), and more generally, to
the tradeoff curve D = M = Õ(N2−t) and T = Õ(N2+t), for all 0 ≤ t ≤ 1/2
(including the point D = M = T = Õ(N2)). The reduction in data com-
plexity is especially important, since it pushes the amount of required data
significantly farther from the entire codebook (Õ(N3/2) instead of O(N11/6),
out of N2), while keeping the time complexity at Õ(N5/2) – lower than the
complexity of Hoang et al.’s attack.

3. A slide attack using the cycle structure which matches the second attack at
the lowest overall complexity point – D = M = T = N2. This attack is par-
ticularly interesting since it is the first practical application of the slide attack
using the cycle structure technique [4], which was previously believed to be
purely academic due to its huge data complexity, but can be applied in the
context of FPE schemes due to their small input domains. Its successful appli-
cation demonstrates the importance of developing new “theoretical” attack



130 O. Amon et al.

techniques which are often criticized for having hopelessly high complexities,
since they may suddenly become practical in a different setting.

Our new attacks also utilize an improved PRF reconstruction phase. Durak
and Vaudenay presented that the actual round functions can be reconstructed
given Õ(N10/6) input/output pairs in time O(N3) [12]. The time complexity of
the reconstruction attack was improved by Hoang, Miller, and Trieu to O(N5/3).
Both algorithms rely on finding cycles of length 3 in a graph (defined by the
data). We show an improved cycles detection algorithm (based on meet in the
middle approach), that allows finding longer cycles (in our case of length 4 and
5) while reducing the data complexity of this phase to Õ(N3/2) as well as the
time complexity to Õ(N3/2).

A comparison of the complexities of our complete attacks with the complex-
ities of previous attacks is presented in Table 1.

Table 1. Comparison of complete attacks on FF3

Attack & source Complexity

Data Time Memory

First generation [12] O(N11/6) O(N5) O(N11/6)

Second generation [17] O(N11/6) O(N17/6) O(N11/6)

Symmetric slide (Sect. 4.1) Õ(N7/4−t) Õ(N5/2+2t) Õ(N7/4−t)

Cycle detection slide (Sect. 4.2) N2 Õ(N2) N2

Asymmetric slide (Sect. 4.3) Õ(N2−t) Õ(N2+t) Õ(N2−t)

We experimentally verified all of our attacks and their complexity (source
code is available at https://github.com/OhadAm7/FF3-code). Table 2 compares
the concrete number of data queries required for our asymmetric slide attack and
the second generation attack. We show that our attack outperforms the previous
state-of-the-art in all parameters.

In the last part of the paper, we introduce a new class of distinguishing
attacks that can only be applied to FPE schemes, which we call related domain
attacks. We first show that if the cipher uses cycle walking during the encryption
process of a block, then one can offer a simple key recovery attack. We then

Table 2. A comparison of our asymmetric slide attack (with t = 0.5 and L = 3) and
the previous second generation attack

N Asymmetric slide (Sect. 4.3) Second generation [17])

Number of
queries

Time
complexity

Success
rate

Number of
queries

Time
complexity

Success
rate

27 13752 218 0.58 16384 220 0.39

28 48302 220 0.69 52012 223 0.5

29 161676 223 0.69 165140 226 0.33

https://github.com/OhadAm7/FF3-code


Three Third Generation Attacks on FF3 131

show that it is possible to apply use this type of an attack to offer efficient
and practical distinguishers on FF3 and FF3-1 using related-domain attacks.
Finally, we identify a very simple design principal which can protect any FPE
scheme from such attacks. This design principal was already used in various FPE
schemes, e.g., FF1 [14].

1.2 Paper Organization

The paper is organized as follows: We describe FF3 in Sect. 2. The existing
attacks against FF3 are summarized in Sect. 3. Our new attacks are given in
Sect. 4. The experimental verification of these attacks is given in Sect. 5. We
introduce the related-domain attack on cycle walking FPE schemes in Sect. 6,
and discuss a specific set of distinguishing attacks for the case of FF3 and FF3-1
in Sect. 7. Finally, Sect. 8 concludes this paper.

2 FF3

FF3 is a Format Preserving Encryption based on the FFX methodology proposed
by Brier, Peyrin, and Stern [9]. It is a Feistel construction which accepts a
plaintext in a domain of size N × M and produces a ciphertext in that domain.
The plaintext P is divided into two parts (which we refer to as halves even though
they may have different sizes) L and R, each composed of u and v, respectively,
characters over some alphabet. In each round one half enters a PRP (a full AES
encryption) together with a tweak, the key, and a round constant (which is equal
to the round number). The output is numerically added modulo the respective
size to the other half, their roles are then swapped for the next round.1

Formally, the encryption algorithm takes a 64-bit tweak T = TL||TR, where
TL and TR are 32-bit each. Then, an 8-round Feistel construction is used, as
depicted in Algorithm 1. In each round, half of the data is encoded into 96 bits
(padding it with 0’s if needed) using the naive lexicographic transformation.2

The encoded value is appended to the XOR of the 32-bit tweak and the round
constant. The resulting 128-bit string is then encrypted under AES with the key
K. The AES’ output is then added using modular addition to the other half.

It is important to note that following the previous attacks of [12], a new
version of FF3 called FF3-1 had been proposed in [14]. In FF3-1, the tweaks TL

and TR are chosen such that they always have 0 in the 4 bits which accept the
round counter i. This tweak destroys the related-tweak slide property which lies
in the core of the slide distinguishers, and thus prevents the attack of [12], as

1 As the two halves may not be of equal size, following previous works that try to
avoid possible confusion, throughout this paper we avoid the swap after the round
function.

2 FF3 is defined for strings over some alphabet; it uses the transformation
Encode96(X) which computes the location of X in the lexicographic order of all
the possible strings, and encodes this number as a 96-bit binary string.



132 O. Amon et al.

Algorithm 1: The Encryption Algorithm of FF3
Input : Message P of domain of size M × N , Key K, Tweak T = TL||TR

Output: Ciphertext C of domain size M × N

1 (L, R) ← P ;
2 for i ← 0 to 7 do
3 if i mod 2 = 0 then
4 L ← L � AESK(Encode96(R)||TR ⊕ i) mod M ;
5 else
6 R ← R � AESK(Encode96(L)||TL ⊕ i) mod N ;

7 return C ← L||R;

well as its extensions [17] and our results presented in Sect. 4. All these attacks
are only applicable to the original FF3 scheme.

On the other hand, our results presented in Sect. 7 are independent of the
tweak schedule. Hence, the related-domain distinguishing attack applies both to
FF3 and to FF3-1.

2.1 Our Notations

Throughout the paper we use several notations related to FF3: We use the term
plaintexts and ciphertexts to refer to the inputs and outputs of 8-round FF3. As
our attacks are usually mounted on 4-round FF3, we use the term inputs and
outputs to denote those.

In addition, a plaintext is P = (L0, R0), where the values after the ith round
are (Li, Ri), i.e., the ciphertext are (L8, R8). We use LH(·) to denote the left
half of a value, and similarly RH(·) to denote the right half of a value.

The notation
(
n
2

)
is the binomial coefficients for n choose 2, which is the

number of possible pairs in a group of size x.

3 Previous Attacks

We now describe the previously published attacks against FF3. We note that
they exploit the relatively small size of the input domain, and do not attempt to
recover the 128-bit cryptographic key of the AES function. Consequently, their
complexity is stated as a function of the scheme’s domain size (which is N2 when
M = N) rather than as a function of the key size.

3.1 A Message Recovery Attack [1]

The first work analyzing FF3 is by Bellare, Hoang, and Tessaro [1]. The proposed
attack is a message recovery attack for small domain sizes. The attack takes 3·24·
(n+4)·26n data to attack FF3 with 2n-bit blocks (where each triplet is encrypted



Three Third Generation Attacks on FF3 133

using a single tweak value). It is based on a simple differential distinguisher—
given an input difference (x, 0) the output difference is also (x, 0) with a slightly
higher probability than the expected probability (which is 1/(22n − 1)).

The differential characteristic is quite straightforward. Given an input dif-
ference (x, 0), the first round maintains the (x, 0) difference with probability 1.
The second round has a non-zero input difference, but with probability 2−n (or
1/M of M if not a power of 2) the round function which is a PRF has an output
difference of 0. This is an iterative differential, which suggests that the plain-
text difference (x, 0) becomes the ciphertext difference (x, 0) with probability
1/(22n − 1) + 2−4n for the 8-round FF3.

The attack is given a plaintext X ′ = (L′, R) and tries to recover the plaintext
X = (L,R) for some unknown L �= L′. This is done by asking for the encryption
of (X,X ′) under many different tweaks (the adversary in this scenario does not
know X but can still obtain the corresponding ciphertexts). The differential
characteristic suggests that the difference of the left half of the ciphertexts is
equal to the difference in the left half of the plaintexts. As the ciphertexts can
be observed, the adversary can compute the ciphertext difference. Since the
input X ′ is known to the adversary, then the value of the left half of X can be
recovered.

A similar idea can be used to recover the right hand side. The main difference
is that only ciphertexts for which the left halves agree are used in the counting
process (as the differential characteristic in use is based on the left hand side).
The two attacks can be combined to recover an unknown X by probing its
ciphertext together with two related plaintexts X ′ and X∗ under many tweaks.
Using the relation between X and X ′ one can recover its left half, and using the
between X and X∗ one can recover the right half.

3.2 A First Generation Related-Tweak Slide and PRF Recovery
[12]

The original idea of the related-tweak slide attack was proposed at Crypto’17
by Durak and Vaudenay [12]. It can reconstruct the full table of AESK(x) for
different inputs and for a given tweak, allowing the encryption/decryption of all
plaintexts/ciphertexts with that tweak (and in some cases even under additional
tweaks which are related to the original tweak).

The attack itself uses O(N11/6) adaptive chosen plaintexts (for domains of
size N × N) which are encrypted under two tweaks: T = TL||TR and T ′ =
TL ⊕ 4||TR ⊕ 4. As seen in Fig. 1, for the same key, if one can write the 8-round
encryption under K with the tweak T as g ◦ f (each of 4 rounds), then the
encryption under K with the tweak T ′ is equal to f ◦ g.

As a result, if a plaintext P is partially encrypted under f (the first four
rounds of the encryption under K and T ) into P ′, then its corresponding cipher-
text, C is equal to the evaluation of g on P ′. This property continues (as C ′,
the ciphertext corresponding to P ′ is the result of applying f to C), and allows
constructing long slid chains, as suggested by Furuya [16]. For such a slid chain,
the adversary is left with attacking a 4-round Feistel construction, for which



134 O. Amon et al.

f

f

f

f

f

f

f

f

X Xr

C Cr

Tr ⊕ 0

Tl ⊕ 1

Tr ⊕ 2

Tl ⊕ 3

Tr ⊕ 4

Tl ⊕ 5

Tr ⊕ 6

Tl ⊕ 7

f

g

(a) Encryption using T

f

f

f

f

f

f

f

f

X Xr

C Cr

Tr ⊕ 4

Tl ⊕ 5

Tr ⊕ 6

Tl ⊕ 7

Tr ⊕ 0

Tl ⊕ 1

Tr ⊕ 2

Tl ⊕ 3

g

f

(b) Encryption using T

Fig. 1. Encryption under related-tweaks

Durak and Vaudenay present a known plaintext attack with O(N10/6) data and
O(N3) time.3

The attack algorithm, given in Algorithm2 is as follows: First,4 N1/6 possible
chains of 2N10/6 values are generated by picking a random xi

0 value, and itera-
tively encrypting it under K,T , i.e., xi

1 = FF3K,T (xi
0), xi

2 = FF3K,T (xi
1), . . ..

Similarly, N1/6 chains of 2N10/6 values are generated from random yi
0 values,

iteratively encrypted under K,T ′, i.e., yi
1 = FF3K,T ′(yi

0), yi
2 = FF3K,T ′(yi

1), . . ..
Then, the attack tries each pair of starting points (xi

0, y
j
t ) (for all possible

i, j, and 0 ≤ t ≤ N10/6) as if they constitute the beginning of a slid chains.
If indeed xi

0 and yt
s are slid pairs (which suggests that f(xi

0) = yj
t ) then so

are the rest of the chain (i.e., f(xi
s) = yj

t+s). Hence, the adversary obtains at
least N pairs of values for the recovery attack. If the recovery attack succeeds,
then the considered chains were indeed slid chains (not that it matters, as the
recovery part succeeded). Similarly, the attack can be applied against g(·) with
the corresponding changes.

3 There are other reconstruction attacks against Feistel ciphers, such as [20] or [6],
but these usually require a chosen plaintext attack scenario, whereas in this case, a
known plaintext attack is needed.

4 We alert the reader that [12, Sect. 5] suggests that
√

N chains of length 2N values
are needed. However, given that the function recovery attack needs N10/6 known
plaintexts, then we report, similarly to [17] the correct values.



Three Third Generation Attacks on FF3 135

Algorithm 2: The Basic Attack algorithm on FF3 by Durak and Vaude-
nay [12]

1 Pick at random N1/6 values xi
0. Pick at random N1/6 values yi

0. for all

1 ≤ i ≤ N1/6 do

2 for j = 0 to 2N10/6 − 1 do
3 Compute xi

j+1 = FF3K,T (xi
j) Compute yi

j+1 = FF3K,T (yi
j)

4 for all 1 ≤ i ≤ N1/6 do

5 for all 1 ≤ j ≤ N1/6 do

6 for all 0 ≤ t ≤ N10/6 do

7 Assume that (xi
0, y

j
t ) generate slid chains.

8 Call the Function Recovery attack on f with (xi
0, y

j
t ).

The function recovery attack is based on trying to recover the input/output
values for 4-round Feistel (each with a different round function). Specifically,
let the input/output of the 4-round FF3 be denoted by (L0, R0) and (L3, R4),
respectively, then this input/output pair defines four input/output pairs to the
corresponding round function. We follow previous work (and the description
of [13]) and do not perform the swap after each Feistel round):

L1 = L0 + F0(R0)
R2 = R0 + F1(L1)
L3 = L1 + F2(R2)
R4 = R2 + F3(L3)

where the Fi represent the keyed and tweaked round function.
The recovery attack starts with N3/2+1/2L, for a parameter L set to 3,

input/output pairs ((Li
0, R

i
0), (L

i
3, R

i
4)) with equal L3, i.e., Li

3 = Lj
3 (for which

there is no difference in the input or output of F3(·)) and with the right hand
difference Ri

4−Rj
4 = Ri

0−Rj
0. Furthermore, a set of good pairs is defined as pairs

for which Li
1 = Lj

1. For these pairs

F0(R
j
0) − F0(Ri

0) = Lj
0 − Li

0 (1)

holds as well. In other words, for the good pairs, one obtains information about
the outputs of F0(·).5

Now, the attack tries to identify the good pairs using the following idea: Let
the set of vertices be all the pairs for which Li

3 = Lj
3. A directed edge (i, j) is

added to the graph if Li
3 = Lj

0 with the label Lj
0 − Li

0. The graph has cycles in
5 We alert the reader that there are multiple solutions to the problem of recovering

F0, F1, F2, F3. However, by fixing one value for F0 (or any other Fi), the solution
becomes unique.



136 O. Amon et al.

it if the sum of labels on the edges is zero (as
∑

(i,j)∈cycle Lj
0 − Li

0 = 0). If the
cycle is composed only of good pairs, then we also obtain information about the
outputs of F0 (as the label on the edges that sum to zero is also the output of
the round function F0, following Eq. 1).

Hence, the attack tries to find such cycles of length L. Each R0 input that
appears in such cycles can then be part of the reconstruction phase, and thus
we need all of them to be covered (i.e., appear in the graph). Moreover, we need
that any R0 input value will be connected (possibly via different cycles) to any
other R0 input value (as Eq. 1 is differential in nature). Once enough inputs to F0

are present, one can assign one output F0 arbitrarily (which defines all the other
outputs). Once F0 is (partially) recovered, the attack needs to recover F1, F2, F3,
which is a much simpler problem (which is solved either by Patarin’s attack [21]
and/or ideas very similar to the ones for the 4-round recovery attack). Hence,
the adversary takes the largest connected component found in the attack, and
runs the 3-round attack for the values that can be recovered (if the 3-round
attack fails, then at least one of the values is wrong).

Given O(N3/2+1/2L) known plaintexts, we expect O(N3+1/L) pairs, out of
which O(N1+1/L) satisfy the differential conditions (zero difference in the left
half of the ciphertext and the input of the right half of the plaintext equal to that
of the ciphertext). Hence from any of O(N) vertices, we expect about O(N1/L)
edges. In their analysis, Durak and Vaudenay show that a cycle of length L = 3 is
sufficient. To detect these cycles, they just use the Floyd-Warshall algorithm [15]
that takes O(N3) for L = 3.

Finally, Durak and Vaudenay noted that there is a non-trivial tradeoff
between the number of vertices/edges in the graph and the success rate: If there
are too few edges (i.e., too little pairs to begin with), then the chance that F0

is recovered is small (as there are only small connected components). On the
other hand, if there are too many edges, then besides the cycles of good pairs,
we expect to find many cycles of bad pairs as well (which cause the failure of
the recovery attack and waste time).

3.3 A Second Generation Related-Tweak Slide and PRF Recovery
[17]

The attack of Hoang, Miller and Trieu [17] improves the attack of Durak and
Vaudenay using two main ideas: The first idea is to improve the detection of
slid chains. The second idea is an improved (and more suitable) cycles detection
algorithm, which allows for better complexity.

The improved detection of slid pairs is done using the ideas presented in [4]
of identifying the respective offset of a slide using a differential distinguisher
(which were further developed in [5]). They rely on the existence of a bias in the
probability of the differential characteristics (x, 0) → (x, 0), as for the correct
shift between the chains, the number of pairs with input difference (x, 0) having
ciphertext difference (x, 0) is higher than when the shift is wrong.

Hence, the slid chains are identified not by running an attack but rather by
an auxiliary distinguisher. Instead of running the full recovery attack for each



Three Third Generation Attacks on FF3 137

possible slid chains and possible offsets, the attack is repeated fewer times (about
O(N) for the parameters considered in [17]).

The combination of the slide with the differential is as follows: Collect
O(N1/6) chains of length O(N5/3) each under T and under T ′. For each pair
of candidate slid chains (and respective offset) check whether the differential
distinguisher succeeds, namely, check whether the input difference (x, 0) leads
to the output difference (x, ?) with probability of (2N − 1)/N2 which is about
twice as high as for the random case.

The distinguisher accepts m candidate input/output pairs (the inputs
encrypted under T and the outputs under T ′). These m input values are then
divided into d bins according to the value of Ri

0. In each bin, all the inputs have
the same value in the right hand side, and thus, input difference of 0 in that half.
We note that bins with many such values offer many pairs, and thus can be used
for the next step of the attack. For each bin with many inputs, the distinguisher
checks how many times the difference in the left half of the inputs is equal to
the difference in the left half of the outputs. The threshold was chosen to be
1/5 · 2N−1

N2 + 4/5 · N
N2−1 of the number of candidate pairs.

We note that this threshold was chosen so that the probability of right slid
chains to fail is negligible (i.e., O(1/

√
N)) and that chance for a random permu-

tation to pass the distinguisher is also O(1/
√

N). The latter claim is obtained
using Chebyshev’s inequality that suggests that the probability that the counter
is k standard deviations larger than the mean value is at most 1/k2. The standard
deviation is then upper bounded using the Cauchy-Schwartz inequality based on
the sizes of the different bins.

The chains in use are of length O(N5/6) and as in Durak and Vaudenay’s
attack one needs to consider O(N2) possible pairs of chains and corresponding
offsets. Moreover, for each such possible chains and offsets, one can apply the
same distinguisher for the last four rounds of FF3 (i.e., treating the outputs as
inputs to four round FF3). Hence, a wrong chain/offset is expected to pass the
two distinguishers with probability of at most O(1/N). The time complexity of
this part is O(N17/6) and it dominates the running time of the attack.

The second idea is to offer a better PRF reconstruction attack that runs in
time O(N5/3) instead of Durak and Vaudenay’s original O(N3). As it targets
cycles of length 3, the Triangle-Finding algorithm puts the input/output pairs
in a hash table indexed by Li

3 ⊕ Li
0||Ri

0. Any collision in the table offers a pair
of input/output pairs

((Li
0, R

i
0), (L

i
3, R

i
4)), ((L

j
0, R

j
0), (L

j
3, R

j
4))

Each of them has an edge in the graph.
The attack then starts from an edge in the graph. This edge defines the two

nodes which are connected. In the case of a triangle, the two nodes define the
requirement from the third node (as the sum of the labels is 0). Hence, it is
a simple matter to check whether there is such a third node in the data, i.e.,
whether the edge the attack starts from is indeed part of a good triangle.

As the attack is repeated O(N) times, and takes O(N5/3), this part of the
attack takes O(N8/3) time in total.



138 O. Amon et al.

4 Improved Attacks on FF3

Similarly to Hoang et al.’s attack, our attack uses two subroutines: Identifica-
tion of the correct slid chains and a PRF reconstruction phase. We offer three
methods to identify the correct slid chains: The first method follows Hoang et
al.’s approach which we call symmetric slide attack. Our improved version uses
Õ(N7/4) data and Õ(N5/2) time, and is described in Sect. 4.1. We also extend
this distinguisher with a time-memory tradeoff attack for which Õ(N7/4−t) data
is used with time of Õ(N5/2+2t) for t ∈ [0, 1/4]. The second method, described
in Sect. 4.2, uses a cyclic structure of slid pairs (as proposed in [4]), resulting
in data and time complexities of O(N2). The third method uses an asymmetric
slide attack, it also offers a time-data tradeoff with Õ(N2−t) data and Õ(N2+t)
running time. Its memory complexity is Õ(N2), and is described in Sect. 4.3.

The PRF reconstruction, described in Sect. 4.4, is the same for all slid chain
identification variants. Our PRF reconstruction procedure follows the same gen-
eral idea suggested by [12,17], i.e., based on cycles. At the same time, we intro-
duce a meet in the middle approach to the recovery itself, which significantly
reduces its running time, thus allowing the use of larger cycles (which results in
reducing the data, and hence, the time complexities).

4.1 Symmetric Slide Attack

In this attack, our data is composed of 2 sets of Õ(N1/4) chains, each containing
Õ(N3/2) plaintexts. Similarly to [12,17], the first set of chains are encrypted
under K and T and the second set is encrypted under K and T ′.

We iterate over all Õ(N1/2) pairs of chains created by taking a chain from
each set. For each such pair of chains, we slid the first chain across the second one
for Õ(N3/2) different offsets. For each of the Õ(N2) resulting offsets, we utilize a
distinguishing attack to checking whether the candidate slid chains (with offset)
corresponds to 4 rounds of FF3 or not.

Actually, the distinguisher we use is very similar in nature to that of [17]. We
rely on the fact that the truncated differential characteristic (x, 0) → (x, ?) for
4-round FF3 has probability of about 2/N rather than 1/N for the random case.
Unlike [17] that divided the datasets between bins (according to the x value) and
counted how many of them had “more pairs than expected in the random case”,
we argue that a single counter is sufficient (and more efficient). Namely, given m
pairs with input difference (x, 0) we expect 2m/N pairs with output difference
(x, ?) (compared with m/N for a random permutation).

The number of pairs that follow the truncated differential is distributed
according to the Poisson distribution. Hence, m = O(N log(N)) = Õ(N) is
sufficient to distinguish between the two distributions—one Poisson distribution
with parameter λ = m/N and another with parameter λ = 2m/N .

The above fact can also be explained by the following probabilistic explana-
tion: Each pair with the required input difference has probability of about 2/N
for 4-round FF3 or 1/N for a random permutation to have the required out-
put difference. Hence, we can assign an indicator variable to whether a given



Three Third Generation Attacks on FF3 139

pair satisfies the differential. As all the indicators are independent (recall that
4-round Feistel is a PRP [18]) we can use the Chernoff bound: For the ran-
dom permutation, the probability that the sum of indicators (which in our case
corresponds to the number of pairs that satisfy the differential) is greater than
(1+ δ)m/N is no more than (eδ/(1+ δ)1+δ)m/N . For m = c ·N log N this bound
is (eδ/(1 + δ))c. Setting δ = 0.5 this upper bound becomes 0.897c·log N . For
example, taking c > 5 means that less than 1/

√
N of the sums of indicators

for random permutations are greater than 1.5 · 5 · log N . The optimal threshold
between the two distributions can be found either experimentally or by analyzing
the Poisson distribution.

We note that similarly to [17], we can run the distinguisher twice: Once
for the first 4 rounds, and another time for the second 4 rounds. Hence, the
probability of a wrong slid chain to pass the distinguisher is less than 1/N .

In contrast, for a 4-round FF3, the mean value for the sum of indicators
is 2 · c log N . Again, the number of right pairs is expected to be higher than
1.5 · c log N with high probability. This again can be achieved by a Chernoff
analysis or by studying the Poisson distribution. However, as mentioned before,
it is sufficient to set the threshold based on experiments (which confirm the
Poisson distribution).

The attack follows the footsteps of [17], but with a significantly smaller num-
ber of pairs needed for the distinguisher as the statistical significance is larger.
Hence, we start by taking Õ(N1/4) chains of length Õ(N3/2) each.

In each such chain, we insert all values (Li
0, R

i
0) into a hash table according

to the value of Ri
0. As there are Õ(N3/2) values in the chain, we expect one of

the bins to contain about Õ(N1/2) values, which suggest Õ(N) pairs, all with
input difference (x, 0). In practice, we need to take a constant number of bins.6

We take the actual values of Li
0, and use them as the candidate inputs.

Then for each candidate chain (out of Õ(N1/4) of them) and candidate offset
(out of possible Õ(N3/2) offsets) we extract the corresponding Õ(N1/2) values
which may serve as the candidate outputs for the above Õ(N1/2) inputs, denoted
by (L̂i

3, R̂
i
3). Then, for each bin, we store in a hash table the values L̂i

3 − Li
0,

where each collision suggests a pair of inputs with difference (x, 0) (the right
hand zero difference is guaranteed by the way the inputs were chosen) and the
corresponding outputs have difference x in the left hand side. Hence, we can test
in time Õ(N1/2) whether two chains are slid chains in a given offset.

The resulting algorithm, given in Algorithm3 takes Õ(N3/2) data and
Õ(N2.5) time.

Offering a Time-Data Tradeoff. We can offer a time-data tradeoff for the
improved symmetric slide attack. The distinguisher takes Õ(N7/4−t) data and
has a running time of Õ(N5/2+2t) for t ∈ [0, 1/4].

The attack is based on taking shorter chains as in [17], but more of them.
Given that the chains are shorter (of length Õ(N3/2−2t)) we need to collect
plaintexts from N4t bins to obtain enough pairs for the distinguisher. Then,
6 Taking the 8 largest bins is empirically shown to suffice.



140 O. Amon et al.

Algorithm 3: Improved Symmetric Slide Distinguisher for FF3
Input : Õ(N1/4) chains Cr of Õ(N3/2) plaintexts encrypted under K and

T = TL||TR

Input : Õ(N1/4) chains Ĉs of Õ(N3/2) plaintexts encrypted under K and
T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains Ci, Ĉj and their respective offset

1 for all chains Cr do
2 Initialize a hash table H1

3 Insert all the plaintexts (Li
0, R

i
0) ∈ Cr into H1 indexed by Ri

0

4 Take a constant number d of bins (each with O(
√

N) plaintexts)
5 Denote the plaintexts by Xi1 , Xi2 , . . . , Xiv

6 for all chains Ĉs do

7 for all respective offsets u = 0, . . . , N3/2 do

8 Extract (L̂u+i1
0 , R̂u+i1

0 ), (L̂u+i2
0 , R̂u+i2

0 ),. . . , (L̂u+iv
0 , R̂u+iv

0 ) from Ĉs

9 Denote these values as “ciphertexts” Ci1 , Ci2 , . . . , Civ

10 Initialize d hash tables Hj
2

11 for all k=1,. . . ,v do
12 if Xik is from bin j then

13 Store in Hj
2 the value LH(Cik ) − LH(Xik)

14 Count the number of collisions in all Hj
2

15 if number of collisions is greater than 1.6
N

· ΣB∈bins

(|B|
2

)
then

16 Call the PRF-recovery procedure with Cr as inputs and Ĉs

shifted by u as the outputs.

when we process the second chain, we only consider a pair of outputs if they
correspond to plaintexts from the same bin.

Repeating the above analysis shows that each step has to deal with shorter
chains, but repeated more times. The result is indeed an attack whose data
complexity is Õ(N7/4−t) data and has a running time of Õ(N5/2+2t) for t ∈
[0, 1/4]. The resulting algorithm is given in Algorithm4.

The extreme case, with the minimal amount of data Õ(N3/2), uses all the
bins. The resulting attack uses Õ(N1/2) chains of length Õ(N). For each such
chain, we insert all the plaintexts into a hash table indexed by the value of
Ri

0, identify the Õ(N) pairs (out of Õ(N2) possible ones) with input difference
(x, 0). Then, for any candidate chain counterpart (and any of the Õ(N) possible
offsets), we take the Õ(N) corresponding values as ciphertexts, and check how
many times the output differences are indeed x in the left half.

In other words, for each pair of candidate slid chains and offset, we just
collect all the Õ(N) pairs of inputs with difference (x, 0) and test whether the
corresponding outputs have difference x with the bias predicted for 4-round FF3.
Identifying the pairs can be done in time Õ(N) using a hash table. Hence, as



Three Third Generation Attacks on FF3 141

there are Õ(N) pairs of slid chains, each with Õ(N) possible offsets, the total
running time of the distinguisher is Õ(N3).

There are two technical details to note: First, the PRF reconstruction attack
described in Sect. 4.4 requires Õ(N3/2) input/output pairs for the 4-round FF3
construction. As a result, in attacks that use shorter chains, we need to ask
for the extension of the identified slid chains. Luckily, in an adaptive chosen
plaintext and ciphertext attack scenario, that merely means we need to ask for
at most two chains of Õ(N3/2).

Second, while previous distinguishing attacks were sufficiently good when
the probability of a wrong chain to pose a slid chain was 1/

√
N , we need a

better filter. This filter is needed as to avoid the increase in the data complexity
explained earlier. Hence, we need to ask that the probability of a wrong candidate
to pass the distinguisher is no more than (1/N1−t). The distinguisher can be
applied twice, and thus out of the N2 wrong slid chains/offsets, we get Õ(N2t)
candidate slid chains. This is sufficient to ensure the complete attack does not
use more than Õ(N7/4−t) data and O(N5/2+2t) time.

Algorithm 4: Time-Data Tradeoff Variant of the Symmetric Slide for FF3
Input : Õ(N1/4+t) chains Cr of Õ(N3/2−2t) plaintexts encrypted under K

and T = TL||TR

Input : Õ(N1/4+t) chains Ĉs of Õ(N3/2−2t) plaintexts encrypted under K
and T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains Ci, Ĉj and their respective offset

1 for all chains Cr do
2 Initialize a hash table H1

3 Insert all the plaintexts (Li
0, R

i
0) ∈ Cr into H1 indexed by Ri

0

4 Take O(N4t) bins (each with O(N1/2−2t plaintexts)
5 Denote the plaintexts by Xi1 , Xi2 , . . . , Xiv

6 for all chains Ĉs do

7 for all respective offsets u = 0, . . . , N3/2−2t do

8 Extract (L̂u+i1
0 , R̂u+i1

0 ), (L̂u+i2
0 , R̂u+i2

0 ),. . . , (L̂u+iv
0 , R̂u+iv

0 ) from Ĉs

9 Denote these values as “ciphertexts” Ci1 , Ci2 , . . . , Civ

10 Initialize O(N4t) hash tables Hj
2

11 for all k=1,. . . ,v do
12 if Xik is from bin j then

13 Store in Hj
2 the value LH(Cik) − LH(Xik)

14 Count the number of collisions in all Hj
2

15 if number of collisions is greater than 1.6
N

· ΣB∈bins

(|B|
2

)
then

16 Ask for the extension of Cr and Ĉs to Õ(N3/2) values.

17 Call the PRF-recovery procedure with Cr as inputs and Ĉs

shifted by u as the outputs.



142 O. Amon et al.

4.2 Cycle Structure Attack

The second attack follows the footsteps of [4] to find candidate slid chains. Con-
sider a related-tweak slid pair (L0, R0) and (L̂0, R̂0), i.e., 4-round FF3 with the
key K and T partially encrypts (L0, R0) into (L̂0, R̂0). If we start a chain of
encryption from (L0, R0), we are assured to reach (L0, R0) again after some
number of encryptions t ≤ N2. Due to the slid property, the same is true also
for (L̂0, R̂0), i.e., after t encryptions under K and T ′, we are assured to reach
(L̂0, R̂0) again. It is easy to see that this value does not repeat before t encryp-
tions (as otherwise, (L0, R0) would also close the chain earlier). Hence, there is
no point to check whether two chains can be slid chains, if their cycle length is
not equal.

The attack thus tries to find chains which are actually cycles, of length
Õ(N3/2) (as this is the amount of data needed for the PRF reconstruction).
We note that following Shepp and Lloyd’s results [23] it is reasonable to assume
that (a) such a cycle exists, and (b) that it is unique. Of course, if by chance the
unlikely event happens, and there are two cycles in the encryption under K and
T of exactly the same length of Õ(N3/2), we can just try all pairs of chains, or
just take the next larger cycle.

Once this pair of cycles is identified, one can run the distinguisher used before
for all possible Õ(N3/2) offsets. As the cost of the distinguisher is Õ(N1/2), the
total time complexity needed to identify the exact offset between the chains
is Õ(N2). When the correct offset is identified, it is possible to run the PRF
reconstruction attack as we have obtained Õ(N3/2) input/output pairs for 4-
round FF3.

Given that the PRF reconstruction takes Õ(N3/2) time, we can call it at most
Õ(

√
N) times. This requires that the filtering is set such that the probability

of a random permutation to pass the threshold be below Õ(1/
√

N) (as the
distinguisher can be applied twice in each offset, this rate is sufficient to discard
all but a fraction of Õ(1/N) of the wrong offsets).

The data complexity of the attack is about O(N2) encryptions: An adaptive
chosen-plaintext attack would be based on picking a random plaintext, gener-
ating a cycle from it, and then, check whether the cycle has the right length.
If not, an unseen plaintext needs to be picked, and the process is repeated. It
is easy to see that the process is expected to finish after exploring almost all
plaintexts (as most of the values lie in the larger cycles, e.g., the largest one of
size about (1− 1/e) ·N2). A simple analysis suggests that about Õ(N3/2) of the
values remain “unseen” once the cycle of length Õ(N3/2) is identified.

Another approach is to collect N2 − √
N known plaintext pairs. If all the

values in the cycle of length Õ(N3/2) are not in the missing
√

N ones, which
happens with constant probability, then the cycle can be identified and used for
the attack.

Hence, to conclude, this first phase of the attack (for the detection of slid
pairs) takes data O(N2) and time Õ(N2). The resulting attack algorithm is given
in Algorithm 5 (we describe the known plaintext variant, but it is very similar
to the adaptive chosen plaintext one).



Three Third Generation Attacks on FF3 143

Algorithm 5: The Cycle Structure Slide Distinguisher for FF3
Input : N2 − N known plaintexts (P i, Ci) encrypted under K and T = TL||TR

Input : N2 − N known plaintexts (P̂ i, Ĉi) encrypted under K and
T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains C, Ĉ

1 Initialize a bitmap B of N2 bits to 0.

2 while no cycle C of size Õ(N3/2) was found do
3 Pick the first plaintext whose bit is not set in B — P0.
4 Set B[P0] = 1, Set t = 0
5 repeat
6 Set Pt+1 = Ct(= EK,T (Pt))
7 if Pt+1 is not in the dataset then
8 break (goto 2)

9 Set B[Pt+1] = 1; Set t = t + 1

10 until Pt = P0;

11 if t = Õ(N3/2) then
12 Set C to be P0, P1, . . . , Pt−1

13 Initialize a bitmap B of N2 bits to 0.

14 while no cycle Ĉ of size t was found do

15 Pick the first plaintext whose bit is not set in B — P̂0.

16 Set B[P̂0] = 1, Set s = 0
17 repeat

18 Set P̂s+1 = Ĉs(= EK,T (P̂s))

19 if P̂s+1 is not in the dataset then
20 break (goto 2)

21 Set B[P̂s+1] = 1; Set s = s + 1

22 until P̂s = P̂0;

23 Set Ĉ to be P̂0, P̂1, . . . , P̂t−1

24 for all possible offsets do

25 Call the differential distinguisher for any offset between C and Ĉ
26 if the distinguisher succeeds then

27 Call the PRF reconstruction attack with C,Ĉ, and the offset

4.3 Asymmetric Slide Attack

The new attack follows the footsteps of the low data distinguisher presented in
Sect. 4.1, but offers an improved distinguishing algorithm as well as a tradeoff
curve. The data and memory complexity of the attack is Õ(N2−t) with time
complexity Õ(N2+t) for t ∈ [0, 1/2].

This related-tweak slide differential distinguisher uses the minimal amount
of pairs (O(N log N)) similarly to the one of Sect. 4.1. The key element in it is
the algorithmic gain, coming from searching the pairs from the plaintext’s side.



144 O. Amon et al.

Consider an input chain of Õ(N) values. We preprocess the chain by com-
puting for each of the Õ(N) input pairs with a common right half Pi, Pj the
value LH(Pj) − LH(Pi), j − i and storing it in a hash table. In other words, we
store for each pair the difference in the left half and the location difference. To
prepare this table, we need Õ(N) memory, where each cell contains about Õ(1)
values.7 The table can be calculated in Õ(N) time by using a supporting hash
table keyed according to the right-hand-side of the plaintexts.

From the output side, we take a chain of length Õ(N). We initialize Õ(N)
counters to zero. Then, we can compute for each such pair (Ci′ , Cj′) the value
(LH(Cj′) − LH(Ci′), j′ − i′), and find the offset it proposes in the table. We
then increment the Õ(1) counters related to the offset.8 For the correct offset
the amount of pairs that “succeed” is expected to be 2m/N out of m pairs,
compared with m/N for wrong offsets (or wrong chains). If the preprocessed
input chains are all keyed into the same hash table, this search can be done
simultaneously against all Õ(N1−t) of them, taking only Õ(N2) time per output
chain.

The attack is thus based on taking Õ(N t) output chains of length Õ(N) and
Õ(N1−t) input chains of length Õ(N). For each input chain we perform Õ(N)
preprocessing. Then we try Õ(N t) chains in time Õ(N2+t), i.e., a time of Õ(N2)
per output chain. This results in time complexity of N2+t and data complexity
which is max{Õ(N1+t), Õ(N2−t)} (which if t ∈ [0, 1/2] suggests Õ(N2−t). The
memory complexity is comprised of Õ(N1−t) preprocessed plaintext tables of
size Õ(N) each, meaning Õ(N2−t) in total (the amount of counters in the in the
sliding part of the attack is also Õ(N2−t)).

The full attack algorithm is given in Algorithm 6.

4.4 The PRF Reconstruction Procedure

Our PRF reconstruction procedure follows the foot steps of Durak and Vaudenay
and of Hoang et al. We use a graph where cycles are searched for. We follow
Hoang et al.’s approach, and call the PRF reconstruction fewer times than there
are candidate slid chains. However, to reduce the data and time complexities of
our attack (which is needed as our slid chain detection is more efficient) we use
cycles of larger size, i.e., we pick L = 4 and L = 5 rather than L = 3.

This means that for finding sufficiently large connected component between
all the values, it is sufficient that from any node in the graph, there will be only
Õ(N1/L) outgoing edges (instead of Õ(N1/3) needed for L = 3).

Hence, we are left with the problem of finding cycles of length L in a graph
of Õ(N) nodes, with an average out degree of Õ(N1/L). Our algorithm just
7 The number of actual values per cell follows a Poisson distribution, i.e., there may

be a few cells with Õ(log N) values.
8 We note that the table is expected to have 1 value on average in each cell. However,

the actual number is distributed according to a Poisson distribution with this mean.
Hence, some cells will be empty, and a few will have several possible offsets. When
there are multiple offsets, we just increment all the counters corresponding to the
offsets.



Three Third Generation Attacks on FF3 145

Algorithm 6: The Asymmetric Slide Distinguisher for FF3
Input : Õ(N1−t) chains Cr of q = Õ(N) plaintexts encrypted under K and

T = TL||TR

Input : Õ(N t) chains Ĉs of q = Õ(N) plaintexts encrypted under K and
T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains Ci, Ĉj and their respective offset

1 Initialize a hash table H1

2 for all chains Cr
k ∈ Cr do

3 for all i, j where Rj
k = Ri

k do

4 Store in H1 in location (j − i, Lj
k − Li

k) the value (k, i)

5 for all chains Ĉs
k′ ∈ Ĉs do

6 Initialize Õ(N2−t) counters

7 for all i′ = 0, 1, . . . , Õ(N) do

8 for all j′ = i′ + 1, i′ + 2, . . . , Õ(N) do

9 for all k, i ∈ H1[j
′ − i′, Lj′

k′ − Li′
k′ ] do

10 if i′ < i then
11 Increment the counter of chain k and offset i − i′

12 Identify k, v such that counter[k][v] is maximal
13 if counter[k][v] > 1.6 · (

q
2

) · 1
N2 then

14 Ask for the extension of Cr
k and Ĉs

k to Õ(N3/2) values.

15 Call the PRF reconstruction with the chains Cr
k , Ĉs

k′ , with offset v

performs a simple meet in the middle procedure: From each node we detect all
possible Õ(N1/L)�L/2� nodes in distance 	L/2
, and then detect all the possible
Õ(N1/L)�L/2	 nodes in distance minus �L/2� (i.e., when walking on the reversed
edges graph) and find a collision between these sets (which correspond to a cycle
of length L).

Similarly to [12,17], once the cycles are found, all the involved nodes are
assumed to be good nodes, and they can be used to determine values for F0.
Heuristically, we found out that filling in 1/3 · log(N)

√
N values of F0 gives a

high chance of success for the recovery attack on F1, F2, F3 (exactly as proposed
in [17]). If indeed the reconstruction is consistent with the slid chains, then we
continue to reconstruct the missing values in F0 (as we know the full F1, F2, F3),
and apply the recovery attack to the second half (i.e., swapping the order of the
slid chains w.r.t. input/output).

On the other hand, if the results are inconsistent with the slid chain, we
try a different value to start the assignment from (from a different connected
component), or try a different slid chain (when there are other candidates). This
part is similar to that of [17].



146 O. Amon et al.

5 Experimental Verification

We implemented all of our attacks and experimentally verified their correctness
and success probability. The code and instructions to reproduce our results is
available at https://github.com/OhadAm7/FF3-code.

5.1 Experimental Verification of the Symmetric Slide Attack

We experimentally verified the full implementation of the symmetric slide attack
(described in Sect. 4.1) for both t = 0.25 and t = 3

4log(N) (which leads to using
8 bins in the distinguisher). We tested the attacks for various values of N = 2n

(n is half the bit size of the encryption domain) and various cycle sizes L. To
calculate each attack’s overall success probability for each parameter choice, we
repeated the attacks 100 times using different random keys and tweaks. The
results can be seen in Table 3 and Table 4.

“PRF Reconstruction” in the following tables denotes the success rate of
the PRF Reconstruction subroutine over all calls. “Combined Reconstruction”
denotes the rate at which both calls to the PRF Reconstruction subroutine for
a single slide succeed, resulting in the full codebook being recovered.

Note that the PRF reconstruction rate for smaller domain sizes is lower
than expected. This is due to overlap between the different chains that mean
there is a correlation between multiple reconstruction attempts. As we continue
trying different chains after failed reconstruction attempts but stop after the
first successful one, the reconstruction rate is skewed to lower values.

5.2 Experimental Verification of the Cycle Structure Attack

We also tested the cycle structure attack (described in Sect. 4.2) for various
values of N = 2n and L. These experiments were also repeated 100 times each
using random keys and tweaks. The results are presented in Table 5.

Note that the success rate has a slight drop above N = 29. This is due to
runs that fail to find a cycle of length between q and e2q (where q is some Õ(N

3
2 )

required for the distinguisher). With our parameters, e2q > N2 so there is no
upper bound, and the probability of finding a cycle is very high. For N > 29 the
probability drops to a constant but lower probability.

5.3 Experimental Verification of the Asymmetric Slide Attack

We also performed experimental verification of the Asymmetric Slide Attack
(described in Sect. 4.3). This was tested both for a constant number of ciphertext
chains (3) and for t = 0.5. We ran both experiments for 100 times each on random
keys and tweaks. The results are presented in Table 6 and Table 7, respectively.

https://github.com/OhadAm7/FF3-code


Three Third Generation Attacks on FF3 147

Table 3. Symmetric slide attack experiment results (num bins = 8.0)

N L Queries Success

rate

PRF

reconstruction

Combined

reconstruction

Distinguisher

(cipher)

Distinguisher

(Rand)

26 3 3679 0.26 0.527 0.286 0.919 1.0

27 3 12631 0.35 0.798 0.614 0.891 1.0

28 3 41578 0.37 0.963 0.925 0.93 1.0

29 3 203414 0.79 1.0 1.0 0.952 1.0

210 3 695431 0.76 1.0 1.0 1.0 1.0

26 4 3679 0.12 0.34 0.128 0.922 1.0

27 4 12631 0.14 0.484 0.226 0.912 1.0

28 4 41546 0.22 0.744 0.564 0.929 1.0

29 4 201246 0.75 0.963 0.926 0.953 1.0

210 4 670125 0.75 1.0 1.0 1.0 1.0

26 5 3679 0.0 0.042 0.0 0.922 1.0

27 5 12631 0.0 0.07 0.0 0.901 1.0

28 5 41546 0.0 0.025 0.0 0.93 1.0

29 5 201246 0.02 0.182 0.015 0.971 1.0

210 5 670125 0.31 0.557 0.32 1.0 1.0

Table 4. Symmetric slide attack experiment results (t = 0.25)

N L Queries Success

rate

PRF

reconstruction

Combined

reconstruction

Distinguisher

(cipher)

Distinguisher

(Rand)

26 3 3608 0.24 0.53 0.242 0.915 0.999

27 3 13472 0.49 0.765 0.59 0.896 0.999

28 3 48432 0.66 0.971 0.943 0.928 1.0

29 3 173349 0.69 1.0 1.0 0.921 1.0

210 3 594010 0.73 1.0 1.0 1.0 1.0

26 4 3492 0.11 0.283 0.096 0.909 0.998

27 4 12932 0.26 0.5 0.255 0.892 0.999

28 4 44252 0.5 0.799 0.61 0.924 1.0

29 4 154090 0.67 0.965 0.931 0.921 1.0

210 4 516131 0.74 1.0 1.0 1.0 1.0

26 5 3416 0.0 0.031 0.0 0.908 0.999

27 5 12438 0.0 0.021 0.0 0.895 0.999

28 5 42902 0.0 0.057 0.0 0.929 1.0

29 5 150015 0.04 0.163 0.033 0.949 1.0

210 5 488380 0.31 0.548 0.27 0.984 1.0



148 O. Amon et al.

Table 5. Cycle structure attack experiment results (num bins = 8.0)

N L Queries Success

rate

PRF

Reconstruction

Combined

reconstruction

Distinguisher

(cipher)

Distinguisher

(Rand)

26 3 3851 0.24 0.542 0.289 0.874 1.0

27 3 15386 0.61 0.824 0.67 0.929 1.0

28 3 60686 0.89 0.954 0.908 0.98 1.0

29 3 244674 0.99 1.0 1.0 0.99 1.0

210 3 948308 0.9 1.0 1.0 0.978 1.0

211 3 3825251 0.85 1.0 1.0 0.988 1.0

212 3 16303811 0.86 1.0 1.0 1.0 1.0

26 4 3851 0.05 0.307 0.06 0.874 1.0

27 4 15386 0.18 0.462 0.198 0.929 1.0

28 4 60686 0.7 0.837 0.714 0.98 1.0

29 4 244674 0.91 0.965 0.929 0.99 1.0

210 4 948308 0.78 1.0 1.0 0.975 1.0

211 4 3923124 0.88 1.0 1.0 1.0 1.0

212 4 16366382 0.88 1.0 1.0 0.989 1.0

26 5 3851 0.01 0.072 0.012 0.874 1.0

27 5 15386 0.0 0.027 0.0 0.929 1.0

28 5 60686 0.01 0.102 0.01 0.98 1.0

29 5 244674 0.04 0.187 0.04 0.99 1.0

210 5 948308 0.2 0.538 0.256 0.975 1.0

211 5 3923124 0.62 0.841 0.705 1.0 1.0

212 5 16366382 0.86 0.989 0.977 0.989 1.0

6 A New Class of Attacks on Cycle Walking FPE
Schemes

In this section we point out that generic FPE schemes which are based on the
cycle walking idea may be highly vulnerable to a new class of attacks which
we call Related Domain Attacks. These attacks are similar to related key or
related tweak attacks, but can only be applied to FPE schemes in which we can
dynamically change the declared size of the input domain.

To demonstrate the basic form of these attacks, consider an iterated FPE
scheme which consists of an arbitrarily large number k of round functions, each
one of which is a different keyed permutation over the input domain. Further-
more, we assume that the round function itself takes a value from a domain
of size N and processes it using the cycle walking idea. In other words, the
round function may cause the value to be outside the domain, in which case
the same round function is applied again and again until the value resides again
in the domain. For the sake of discussion, we assume that extracting the secret
key from known or chosen plaintext/ciphertext pairs is infeasible, but that each
keyed round function by itself is sufficiently simple that finding the key from the
two-round version of this scheme is practically doable (this assumption is similar
in nature to that of the slide attack [7]).



Three Third Generation Attacks on FF3 149

Table 6. Asymmetric slide attack experiment results with constant number of 3 cipher-
text chains

N L Queries Success
rate

PRF
reconstruction

Combined
reconstruction

Distinguisher
success rate

26 3 3863 0.31 0.5 0.295 0.417

27 3 13883 0.47 0.709 0.527 0.368

28 3 52526 0.63 0.921 0.9 0.326

29 3 193894 0.7 0.959 0.959 0.339

210 3 752222 0.63 0.955 0.955 0.304

211 3 2946123 0.7 1.0 1.0 0.344

26 4 3828 0.12 0.303 0.101 0.436

27 4 13775 0.2 0.451 0.194 0.373

28 4 51264 0.51 0.794 0.637 0.327

29 4 190204 0.68 0.929 0.883 0.347

210 4 733040 0.64 0.97 0.97 0.302

211 4 2874664 0.7 0.986 0.986 0.344

26 5 3824 0.0 0.035 0.0 0.435

27 5 13622 0.0 0.047 0.0 0.39

28 5 51099 0.0 0.078 0.0 0.34

29 5 189543 0.07 0.225 0.069 0.354

210 5 733453 0.28 0.562 0.35 0.297

211 5 2868815 0.53 0.813 0.639 0.355

Assume further that the permutation P used in each round follows the cycle
walking paradigm: If we declare that the input domain is {1, 2, . . . , N}, then for
any input x which is in this domain, we output the first value y that follows
x along its cycle in P which is in the domain (possibly going all the way until
we reach x again). This guarantees that all the intermediate values encountered
during the encryption are valid values in the domain, and that any such y can
be uniquely decrypted to x.

The related domain attack uses two very similar domains: The first one is
defined as {1, 2, . . . , N} and the second one is defined as {1, 2, . . . , N −1}. When
we use a keyed round permutation on the first domain, we skip over all the
possible values of the permutation which are larger than N . When we use the
same keyed round permutation on the second domain, we skip over all the values
which are larger than N −1. The two permutations are almost identical, and the
only difference between them is related to the single value N which is allowed in
the first permutation but forbidden in the second permutation. More specifically,
given the preimage of N in the first permutation, we compute its output as N
in the first permutation, but as the postimage of N in the second permutation.

To apply our new adaptive chosen message attack, we perform the full k -
round encryption of N in the first domain, getting the ciphertext z = E1(N).
With high probability, z is different than N , and thus we can request its



150 O. Amon et al.

Table 7. Asymmetric slide attack experiment results (t = 0.5)

N L Queries Success
rate

PRF
reconstruction

Combined
reconstruction

Distinguisher
success rate

26 3 3856 0.34 0.47 0.252 0.408

27 3 13752 0.58 0.766 0.615 0.268

28 3 48302 0.69 0.934 0.908 0.182

29 3 161676 0.69 0.932 0.932 0.142

210 3 543516 0.77 0.891 0.885 0.129

211 3 1769542 0.79 0.975 0.975 0.09

26 4 3828 0.18 0.315 0.116 0.404

27 4 13757 0.26 0.432 0.195 0.292

28 4 46880 0.54 0.787 0.621 0.181

29 4 153589 0.68 0.914 0.895 0.139

210 4 504930 0.8 0.982 0.976 0.128

211 4 1624932 0.81 0.988 0.988 0.092

26 5 3808 0.0 0.04 0.0 0.418

27 5 13702 0.0 0.047 0.0 0.296

28 5 47486 0.01 0.081 0.007 0.194

29 5 153608 0.08 0.25 0.068 0.137

210 5 498716 0.3 0.5 0.254 0.111

211 5 1564668 0.7 0.863 0.737 0.087

decryption w = E−1
2 (z) as a member of the second domain (using the same

unknown key and known tweak). Consider now the composition of these func-
tions w = E−1

2 (E1(N)). With high probability, none of the intermediate values
will be N , and thus we can cancel almost all the 2k rounds in matching pairs.
The only thing left will be the two round version of the problem in which N
encrypted by the first round of E1 and then decrypted by the first round of E2

is equal to w. By repeating this process several times with shrinking domains,
we can get sufficiently many input/output pairs, which are presumably enough
to find the key used by this first round of the original scheme. If each round
permutation uses a different key, we can easily repeat the process in order to
find the keys of all the subsequent rounds. Note that this kind of attack can also
be used against Feistel structures.

To protect FPE schemes against this new kind of attack, we propose to use
the declared size of the domain as part of the tweak in each round function. This
is a very simple modification which costs almost nothing but will make sure that
any change in the domain size will result in a new and unrelated round function.



Three Third Generation Attacks on FF3 151

7 A Related Domain Distinguishing Attack on FF3 and
FF3-1

We now present a distinguishing attack on both FF3 and FF3-1. The distinguish-
ing attack is a related-domain attack that highlights the importance of domain
separation between different instances of the encryption algorithm. For example,
FF1 [14] uses the input size parameters as an input to the round function, thus
avoiding this attack.

The distinguishing attack is quite efficient. Given about c · 24 pairs of chosen
plaintexts, we can distinguish whether two FF3 or FF3-1 instances were applied
with related domain sizes (using the same key and tweak) for binary domains.
Note that FF3 supports plaintexts encoded in any base (denoted as radix in the
standard). One can easily expand the distinguishing attack to use c ·radix4 pairs
of chosen plaintext to handle different radix -sizes.

Hence, for the sake of simplicity we will describe an attack on a binary
domain. As mentioned before, one can easily extend it to any radix. Let D1 be a
domain that includes 2n-bit plaintexts, whereas domain D2 includes 2n + 1-bit
plaintexts. In other words, in D1, the plaintexts have n-bit halves, whereas in
D2 the halves are n-bit and n + 1-bit, respectively.

The adversary is given access to two encryption oracles O1 (over D1) and O2

(over D2). Similarly to the related cipher scenario [26], either these two oracles
are two independent random permutations (of different sizes), or they are FF3
instantiated with the same key K and tweak T . We note that the attack also
works against FF3-1 without any change, since the only difference between them
is in the way they deal with the tweak.

Consider a plaintext (x, y) encrypted using FF3 (or FF3-1) in the smaller
domain D1 to (z, w). During its encryption, there are 8 invocations of the AES
function using the same key K and tweak T , but with different inputs and
round constants. When we encrypt (0||x, y) in the larger domain D2, we also
get 8 invocations of AES. In the first round, we get the same input (y in both
cases), but this time, n + 1 bits of the AES output are used in the modular
addition (instead of the previous n). Let the n-bit output (for D1) be denoted
by α and for the n + 1-bit output be denoted by b||α. It is easy to see that
if x + α < 210 then (0||x) + (b||α) mod 211 = (b||x + α), otherwise, (0||x) +
(b||α) mod 211 = (b||x + α mod 210). It is easy to see that independent of the
value of b, with probability of 1/2, the addition’s output is (0||x + α mod 210).
When this happens, the actual input to the AES invocation in the second round
is the same for both the smaller domain D1 and the larger domain D2, which
suggests the same output of the second round function. Hence, the input to the
third round is also the same. The third round is similar to the first, and indeed,
with probability 1/2, the MSB of the output of addition is also 0. This also
repeats in rounds 5 and 7. In other words, with probability 1/16, if (0||x, y) is
encrypted to (0||z, w) in the larger domain, when (x||y) is encrypted to (z, w) in
the smaller domain.



152 O. Amon et al.

It is easy to see that the probability that this holds for two random permu-
tation (over 2n-bit and 2n + 1-bit values, respectively) is much smaller (namely
2−2n). This produces a very efficient distinguisher: Pick c · 16 random plaintexts
Pi = (xi, yi) ∈ D1, and ask for their encryptions under O1, resulting in Ci. Then,
ask for the encryptions of the c · 16 plaintexts (0||xi, yi) under O2, resulting in
Ĉi. If for about c/16 of the ciphertexts Ĉi = 0||Ci, conclude that this is FF3;
otherwise, conclude that the two oracles are independent random permutations.
For small values of c, where the probability of obtaining a right pair in the ran-
dom case is negligible, the success rate of the attack is about 1 − e−c. Hence,
setting c = 2 (and using 32 pairs in total) results in a success rate of 86.5%.

The generalization of the above attack to larger radices is trivial. We just
need to assume that the most significant character (rather than bit) is 0, which
happens with probability 1/radix. Hence, one can construct an efficient distin-
guisher with data and time complexity of c · radix4 chosen plaintext pairs.

8 Conclusions

In this paper we studied the FF3 format preserving encryption algorithm. Build-
ing on top of the previous ideas of using related-tweak slide attack against FF3,
we presented three attacks: An improved symmetric slide attack which enjoys
better time, data and memory complexity compared with previous results, a
cycle detection slide attack, and a asymmetric slide attack which outperforms
the symmetric one.

We also presented two related-domain attacks. The first, a generic attack
against cycle walking schemes, which reduces the problem of breaking them into
the problem of attacking two rounds of the construction. The second, which is
applicable to FF3 (and FF3-1) offers efficient distinguishing and shows how to
expand the knowledge on the encryption in the smaller domain, to recover the
PRFs used in the bigger one.

References

1. Bellare, M., Hoang, V.T., Tessaro, S.: Message-recovery attacks on Feistel-based
format preserving encryption. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, 24–28 October 2016,
pp. 444–455. ACM (2016)

2. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05445-7 19

3. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption (draft 1.1) (2010). http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/ffx/ffx-spec.pdf

4. Biham, E., Dunkelman, O., Keller, N.: Improved slide attacks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 153–166. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74619-5 10

https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
https://doi.org/10.1007/978-3-540-74619-5_10


Three Third Generation Attacks on FF3 153

5. Biham, E., Dunkelman, O., Keller, N.: A unified approach to related-key attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 5

6. Biryukov, A., Leurent, G., Perrin, L.: Cryptanalysis of Feistel networks with secret
round functions. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 102–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 6

7. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

8. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

9. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption pro-
posal (2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/bps/bps-spec.pdf

10. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security, pp. 141–149 (1997). http://csrc.nist.gov/niccs/1997

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

12. Durak, F.B., Vaudenay, S.: Breaking the FF3 format-preserving encryption stan-
dard over small domains. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 679–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 23

13. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods for
Format-Preserving Encryption. NIST Special Publication, 800-38G (2016)

14. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods
for Format-Preserving Encryption. NIST Special Publication, SP 800-38G Rev. 1
(2019)

15. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
16. Furuya, S.: Slide attacks with a known-plaintext cryptanalysis. In: Kim, K. (ed.)

ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45861-1 17

17. Hoang, V.T., Miller, D., Trieu, N.: Attacks only get better: how to break FF3
on large domains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 85–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 4

18. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

19. National Bureau of Standards. Data Encryption Standard (DES). Technical report.
Federal Information Processing Standards Publication 46 (1977)

20. Patarin, J.: Generic attacks on Feistel schemes. IACR Cryptol. ePrint Arch. 2008,
36 (2008)

21. Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. IACR Cryptol. ePrint Arch. 2010, 293 (2010)

22. Schroeppel, R., Orman, H.: The hasty pudding cipher. AES candidate submitted
to NIST, p. M1 (1998)

23. Shepp, L., Lloyd, S.: Ordered cycle lengths in a random permutation. Trans. Am.
Math. Soc. 121(2), 340–357 (1966)

24. Spies, T.: Feistel Finite Set Encryption Mode. NIST submission (2008)

https://doi.org/10.1007/978-3-540-71039-4_5
https://doi.org/10.1007/978-3-319-31301-6_6
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/niccs/1997
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/3-540-45861-1_17
https://doi.org/10.1007/978-3-030-17656-3_4
https://doi.org/10.1007/978-3-030-17656-3_4


154 O. Amon et al.

25. Vance, J.: VAES3 scheme for FFX: An addendum to “The FFX Mode of Oper-
ation for Format-Preserving Encryption”: a parameter collection for encipher
strings of arbitrary radix with subkey operation to lengthen life of the enci-
phering key (2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/ffx/ffx-ad-VAES3.pdf

26. Wu, H.: Related-cipher attacks. In: Deng, R., Bao, F., Zhou, J., Qing, S. (eds.)
ICICS 2002. LNCS, vol. 2513, pp. 447–455. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36159-6 38

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-ad-VAES3.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-ad-VAES3.pdf
https://doi.org/10.1007/3-540-36159-6_38
https://doi.org/10.1007/3-540-36159-6_38


Cryptanalysis of the GPRS Encryption
Algorithms GEA-1 and GEA-2

Christof Beierle1(B), Patrick Derbez2(B), Gregor Leander1(B),
Gaëtan Leurent3(B), H̊avard Raddum4(B), Yann Rotella5(B),

David Rupprecht1(B), and Lukas Stennes1(B)

1 Ruhr University Bochum, Bochum, Germany
{christof.beierle,gregor.leander,david.rupprecht,

lukas.stennes}@rub.de
2 Univ Rennes, CNRS, IRISA, Rennes, France

patrick.derbez@irisa.fr
3 Inria, Paris, France

gaetan.leurent@inria.fr
4 Simula UiB, Bergen, Norway

haavardr@simula.no
5 Laboratoire de Mathématiques de Versailles, Université Paris-Saclay, UVSQ,

CNRS, Versailles, France
yann.rotella@uvsq.fr

Abstract. This paper presents the first publicly available cryptanalytic
attacks on the GEA-1 and GEA-2 algorithms. Instead of providing full
64-bit security, we show that the initial state of GEA-1 can be recovered
from as little as 65 bits of known keystream (with at least 24 bits coming
from one frame) in time 240 GEA-1 evaluations and using 44.5 GiB of
memory.

The attack on GEA-1 is based on an exceptional interaction of the
deployed LFSRs and the key initialization, which is highly unlikely to
occur by chance. This unusual pattern indicates that the weakness is
intentionally hidden to limit the security level to 40 bit by design.

In contrast, for GEA-2 we did not discover the same intentional weak-
ness. However, using a combination of algebraic techniques and list merg-
ing algorithms we are still able to break GEA-2 in time 245.1 GEA-2
evaluations. The main practical hurdle is the required knowledge of 1600
bytes of keystream.

Keywords: GPRS Encryption · Stream cipher · Algebraic attacks ·
GEA

1 Introduction

General Packet Radio Service (GPRS) is a mobile data standard based on the
GSM (2G) technology. With its large deployments during the early 2000s world-
wide, GPRS (including EDGE) was the technology for many of us, which pro-
vided us the first mobile Internet connection. While some countries are about to
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 155–183, 2021.
https://doi.org/10.1007/978-3-030-77886-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_6


156 C. Beierle et al.

sunset 2G technology (or have already done so), other countries rely on GPRS as
a fallback data connection. Consequently, the security of those connections was
and still is relevant for a large user base. In the wireless medium, an attacker
conducts an eavesdropping attack by merely sniffing the traffic in the victim’s
vicinity. To protect against eavesdropping GPRS between the phone and the
base station, a stream cipher is used and initially two proprietary encryption
algorithms GEA-1 and GEA-2 were specified.

Design Process of the GPRS Encryption Algorithm. A dedicated encryption
algorithm for GPRS, now known as GEA-1, was designed by ETSI Security
Algorithms Group of Experts (SAGE) in 1998. A technical report on the design
process is available at [15]. The total budget spent was 429 man days and six
organizations have been involved in the process. As seen in [15, Section 8], the
following requirements were set for the design:

The algorithm should be a stream cipher which gets a 64-bit key (Kc), a
32-bit IV, and a 1 bit flag to indicate the transfer direction as inputs and
outputs a stream of 1,600 bytes.

It was explicitly mentioned as a design requirement that “the algorithm
should be generally exportable taking into account current export restrictions”
and that “the strength should be optimized taking into account the above require-
ment” [15, p. 10]. The report further contains a section on the evaluation of
the design. In particular, it is mentioned that the evaluation team came to the
conclusion that, “in general the algorithm will be exportable under the current
national export restrictions on cryptography applied in European countries” and
that “within this operational context, the algorithm provides an adequate level of
security against eavesdropping of GSM GPRS services” [15, p. 13].

A successor algorithm, called GEA-2, was designed later. An official require-
ment specification by ETSI as for GEA-1 is not publicly available. According to
Charles Brookson in 2001, “GEA2 was defined about a year later than GEA1
and was an improvement, which was allowed by the easing of export control leg-
islation” [8, p. 4].

The particular restrictions that GEA-1 should fulfill in order to be exportable
are not specified in the requirements.

Export Regulations. For a detailed survey on national and international regula-
tions concerning the use, supply, import and export of cryptographic algorithms
in the ’90s, we refer to the Crypto Law Survey of Bert-Jaap Koops [23]. In France,
rather strict regulations have been in place. In particular, until the late ’90s, the
use, supply, import and export of cryptography for providing confidentiality was
subject to authorization by the prime minister. The requirements for obtaining
such an authorization were not publicly available. To quote from [23], “It was
unclear to what extent the restrictive regulation was enforced in practice; it was
rumoured to be widely ignored. It seemed impossible for individuals or enterprises
to obtain authorisation for ‘strong’ cryptography. Even for state-owned industry,
cryptography that does not serve military or high-grade security purposes had



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 157

to be breakable. SCSSI, the office dealing with authorisation, rendered decisions
without motivation.”

In 1998, the French Decrees1 98-206 and 98-207 were announced, in which
exceptions from such authorization or declaration have been defined. The three
most interesting exceptions defined in Decree 98-206 with regard to our work
can be translated as follows:

– Means and services of Cryptology for “mobile phones for civil use that do not
implement end-to-end encryption” are exempt from authorization or declara-
tion for supply, use, import and export.

– Means and services of Cryptology for “Commercial civil base towers with
the following characteristics: a) Limited to connection with cell phones that
cannot apply cryptographic techniques to traffic between terminals, excepted
on the direct link between cell phones and base stations b) And not allowing
the use of cryptographic techniques to traffic excepted on the radio interface”
are exempt from authorization or declaration for supply, use and import (but
not export).

– Means and services of Cryptology in which “exhaustive search of all possible
keys does not require more than 240 trials with a simple test” are exempt
from authorization or declaration for use and import (but not for supply and
export).

Interestingly enough, we will show later in Sect. 3 that GEA-1 offers only
40-bit security.

1.1 Related Work and Reverse Engineering

In 2011, Nohl and Melette analyzed the security of GPRS traffic and showed
that GPRS signals could easily be eavesdropped [29]. This was reported as a
serious weakness, especially since some providers did not activate encryption at
all. However, according to the authors, most operators at that time employed the
proprietary encryption algorithms GEA-1 or GEA-2 for encrypting the GPRS
traffic.

In the same talk, Nohl and Melette also reported the reverse-engineering of
those encryption algorithms. Without presenting all of the specification details,
the following properties of the design of GEA-1 have been shown:

– It is a stream cipher which works on an internal state of 96 bits and uses a
64-bit key.

– A non-linear function is employed for initialization.2

– The state is kept in three registers of sizes 31, 32, and 33 bits.3

1 Available via https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000753702
and https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000753703, accessed
Oct-06, 2020.

2 See minute 32:15 of the recorded talk.
3 The size of the registers are visible in the live state-recovery attack, see minute 48:25

of the recorded talk.

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000753702
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000753703


158 C. Beierle et al.

– The state update function is linear, i.e., the registers are LFSRs.
– The function that generates the output stream has algebraic degree 4.

The structure of the GEA-1 stream cipher as known from [29] is depicted in
Fig. 1. For GEA-2, it was reported that it employs a similar algebraic structure
to its predecessor GEA-1. While the key size for GEA-2 is 64 bits as well, the
internal state was reported to be of size 125 bits.

f out
(≤ 1600 bytes)

A

B

C

12....31

12....32

12....33

LFSR update A

LFSR update B

LFSR update C

Fig. 1. The structure of the GEA-1 stream cipher with its 96 bit state known from [29].
The algebraic degree of the output function is 4.

In their talk, the authors claimed that GEA-1 has severe weaknesses against
algebraic attacks, mainly due to the nonlinearity of the state update function
and the availability of a long keystream to the adversary. Live on stage, a state-
recovery attack was performed that took less than 15 minutes using “a Gaussian
equation solver based on some SAT solver ideas” (minute 48:40 of the recorded
talk).4 However, details of this attack are not available.

Interestingly, the ETSI prohibited the implementation of GEA-1 in mobile
phones in 2013, while GEA-2 and the non-encrypted mode are still mandatory
to be implemented today [16].

Despite the hints of deliberately weakening GEA-1 for export and a demon-
strated attack, a public cryptanalysis of GEA-1 and GEA-2 is still missing to
date. This puts us in a position where we are uncertain about the algorithm’s
security guarantees. In this paper, we fill this gap with the first public crypt-
analysis of GEA-1 and GEA-2. As part of this we also describe the design of
those two proprietary algorithms, which we obtained from a source that prefers
to stay anonymous.

4 The authors acknowledged Mate Soos for ideas and also admitted that the live attack
did not apply the SAT solver yet.



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 159

1.2 Our Contribution

After describing the stream ciphers GEA-1 and GEA-2 and their internal build-
ing blocks, we start by analyzing the security of GEA-1.

The main observation is that after the linear initialization process the joint
initial state of 64 bits of two of the three LFSRs is guaranteed to be in one of
only 240 states (rather than close to 264 as should be expected).

This property immediately allows to conduct a Divide-and-Conquer state-
recovery attack in time 240 GEA-1 evaluations by using only 65 bits of known
keystream (with at least 24 bits in the same frame). The attack needs the pre-
computation of a (sorted) table of size 44.5 GiB, which can be done in time of
roughly 237 GEA-1 evaluations. Once this table has been computed, the attack
can be performed in time of roughly 240 GEA-1 evaluations for each new 64-bit
session key.

Further, we experimentally show that for randomly chosen LFSRs, it is very
unlikely that the above weakness occurs. Concretely, in a million tries we never
even got close to such a weak instance. Figure 2 shows the distribution of the
entropy loss when changing the feedback polynomials of registers A and C to ran-
dom primitive polynomials. This implies that the weakness in GEA-1 is unlikely
to occur by chance, indicating that the security level of 40 bits is due to export
regulations.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

200

400

600

800

1,000

1,200

1,400

GEA-1

Entropy loss in bits

nu
m
be

r
of

L
F
SR

co
m
bi
na

ti
on

s
(1
06

sa
m
pl
es
)

Fig. 2. The distribution of the entropy loss within the joint initial 64-bit state of
registers A and C after the linear initialization in GEA-1 for a random sample of 106

combinations of primitive LFSRs. The occurences of entropy losses up to 4 bits are
omitted.

As a last part of this work, we look into the security of the successor algorithm
GEA-2. We conduct a state-recovery attack that does not target the initialization
process, but rather the keystream generation itself. The idea is to mix a list
merging algorithm, combined with algebraic techniques. The attacks works in



160 C. Beierle et al.

time equivalent to 245.1 GEA-2 evaluations. The required memory is roughly 32
GiB. Rather than only 65 bit of known keystream as for GEA-1, this attacks
needs all of the keystream available per frame, i.e., 1,600 bytes, and it cannot
exploit information coming from multiple frames.

We demonstrate the practical feasibility of the attack against GEA-1 on
standard hardware. Further, we discuss the real-world requirements and attack
implications for today’s mobile phone network. Eventually, we are dedicated to
eliminating weak ciphers in current and future mobile phones—improving mobile
network security.

2 Description of GEA-1 and GEA-2

In this section, we give a detailed description of the two algorithms GEA-1 and
GEA-2, which we obtained from a source. Therefore we verify the correctness
of the algorithms by a) using test vectors that are available on github [28] and
b) verify the algorithm by checking the interoperability with commercial phones
using the osmocom project [31]. Both experiments confirm the correct function-
ality; thus, we can assume that the provided algorithms are accurate with a high
degree of certainty.

For the encryption, the GEA algorithms take the following input parameters:
the plaintext, which is the GPRS LLC (Logical Link Control) frame, the key
(K), the direction bit (uplink/downlink), and the IV (Input) that consists of an
increasing counter for each frame.

As we will see, GEA-2 is an extension of GEA-1– with slight but crucial
exceptions. For this reason, we first describe GEA-1 first and explain the differ-
ences and extensions for GEA-2 in a second step. An overview of the keystream
generation of GEA-1 and GEA-2 is shown in Fig. 3.

2.1 GEA-1

GEA-1 is built from three linear feedback shift registers over F2, called A,B
and C, together with a non-linear filter function, called f . The registers A,B,C
have lengths 31, 32 and 33, respectively, and f is a Boolean function on seven
variables of degree 4. The registers work in Galois mode. This means that if the
bit that is shifted out of a register is 1, the bits in a specified set of positions
in the register are flipped. The specification of f = f(x0, x1, . . . , x6) is given in
algebraic normal form as follows:

x0x2x5x6 + x0x3x5x6 + x0x1x5x6 + x1x2x5x6 + x0x2x3x6 + x1x3x4x6

+ x1x3x5x6 + x0x2x4 + x0x2x3 + x0x1x3 + x0x2x6 + x0x1x4 + x0x1x6

+ x1x2x6 + x2x5x6 + x0x3x5 + x1x4x6 + x1x2x5 + x0x3 + x0x5 + x1x3

+ x1x5 + x1x6 + x0x2 + x1 + x2x3 + x2x5 + x2x6 + x4x5 + x5x6 + x2 + x3 + x5



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 161

f

f

f

f

ai

bi

ci

di

zi

D

A

B

C

Fig. 3. Overview of the keystream generation of GEA-1 and GEA-2. The D register is
only present in GEA-2.

Initialization. The cipher is initialized via a non-linear feedback shift register
of length 64, denoted as S. This register is filled with 0-bits at the start of the
initialization process. The input for initializing GEA-1 consists of a public 32-bit
initialization vector IV , one public bit dir (indicating direction of communica-
tion), and a 64-bit secret key K. The initialization starts by clocking S 97 times,
feeding in one input bit with every clock. The input bits are introduced in the
sequence IV0, IV1, . . . , IV31, dir,K0,K1, . . . ,K63. When all input bits have been
loaded, the register is clocked another 128 times with 0-bits as input. The feed-
back function consists of f , xored with the bit that is shifted out and the next
bit from the input sequence. See Fig. 4 for particular tap positions.

. . . . . . . . . . . . . . . . . .

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

3 12 22 38 42 55 63

Fig. 4. Initialization of register S

After S has been clocked 225 times, the content of the register is taken as
a 64-bit string s = s0, . . . , s63. This string is taken as a seed for initializing



162 C. Beierle et al.

A,B and C as follows. First, all three registers are initialized to the all-zero
state. Then each register is clocked 64 times, with an si-bit xored onto the
bit that is shifted out before feedback. Register A inserts the bits from s in
the natural order s0, s1, . . . , s63. The sequence s is cyclically shifted by 16 posi-
tions before being inserted to register B, so the bits are entered in the order
s16, s17, . . . , s63, s0, . . . , s15. For register C the sequence s is cyclically shifted by
32 positions before insertion starts. Figure 5 depicts the process for register B.
If any of the registers A,B or C end up in the all-zero state, the bit in position
0 of the register is forcibly set to 1 before keystream generation starts.

s16, s17, . . . , s63, s0, s1, . . . , s15

Fig. 5. Initialization of register B

Keystream Generation. When all registers have been initialized, the actual
keystream generation starts. This is done by taking the bits in seven specified
positions in each register to be the input to f . The three outputs from the
f -functions are xored together to produce one bit of the keystream. Figure 3
shows the particular feedback positions of each register, as well as showing which
positions form which input to f . In Fig. 3, the topmost arrow in the input to f
represents x0, and the input at the bottom is x6. After calculating the keystream
bit, all registers are clocked once each before the process repeats.

2.2 GEA-2

The cipher GEA-2 is a simple extension of GEA-1. A fourth register of length
29, called D, is added to the system together with an instance of f . During
keystream generation, the output of f from the D register is added to the
keystream together with the three others at each clock, as shown in Fig. 3. The
initialization process of GEA-2 follows the same mode as for GEA-1, but it is
done in a longer register that is clocked more times.

Initializing GEA-2. As for GEA-1, the initialization of GEA-2 is done via a
non-linear feedback shift register, called W . The length of W is 97, and uses
f as its feedback function. The input to GEA-2 are the same as for GEA-1; a
32-bit IV and a direction bit dir that are public, and a secret 64-bit key K.

Initialization starts with W being set to the all-zero state. Next, it is clocked
97 times, inserting one bit from the input sequence for each clock. The order
for inserting IV, dir and K is the same as for GEA-1. After K63 is inserted, W
is clocked another 194 times, with 0 as input. This process, together with the
particular tap positions for f , is shown in Fig. 6.

The content of W is now taken as a 97-bit string w = w0, . . . , w96, and
inserted in A,B,C and D in much the same way as with GEA-1. The four



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 163

. . . . . . . . . . . . . . . . . .

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

4 18 33 57 63 83 96

Fig. 6. Initialization of register W

registers starts from the all-zero state, and are filled with the bits of w in the
same way as shown in Fig. 5. The offsets of where in the sequence w each register
starts is different than for GEA-1. Register D inserts the bits of w in the natural
order w0, . . . , w96, whereas the registers A,B and C start with bits w16, w33 and
w51, respectively. Again, if any of the registers happens to end up in the all-
zero state after initialization, the bit in position 0 is hard-coded to 1 before key
generation start.

2.3 Deconstructing the Filter Function

The filter function f : F7
2 → F2 has a very particular Walsh (or Fourier) spec-

trum. Namely
̂f(α) =

∑

x∈F
7
2

(−1)f(x)+〈α,x〉 ∈ {0,±2
7+1
2 },

for all α ∈ F
7
2. Several ways to construct such a Boolean function are known (we

refer to Claude Carlet’s treatment [9] for a detailed presentation of the required
theory of Boolean functions). They appear as component functions of almost
bent functions or can be constructed using bent functions in one dimension
smaller. While we do not know how f was actually designed, it can certainly be
decomposed into two bent functions

fi : F6
2 → F2

as
f(x) = (1 + x6)f0(x0, . . . , x5) + x6f1(x0, . . . , x5).

Furthermore, the functions fi are linearly equivalent to Maiorana-McFarland
bent functions [27] (as actually all bent functions in 6 bits are classified in [32]).
Indeed, we can decompose f0 further into

f0(x0, . . . , x5) = g0(x0, x1 + x2, x2, x3, x4, x5)

where g0 is a Maiorana-McFarland bent function given as

g0(x0, . . . , x5) =

〈

⎛

⎝

x2

x3

x4

⎞

⎠ ,

⎛

⎝

x0 + x1x5 + x5

x0x1 + x0x5 + x0 + x1 + 1
x0x1 + x5

⎞

⎠

〉

+ h0(x0, x1, x5),



164 C. Beierle et al.

where
h0(x0, x1, x5) = x0x5 + x1x5 + x1 + x5.

In a similar fashion, f1 can be written as

f1(x0, . . . , x5) = g1(x0 + x2 + x5, x1, x2, x3, x4 + x5, x5).

That is, f1 is linearly equivalent to g1 where g1 is again a Maiorana-McFarland
bent function. The function g1 can be written as

g1(x0, . . . , x5) =

〈

⎛

⎝

x0

x3

x4

⎞

⎠ ,

⎛

⎝

x1x5 + x2x5 + x2

x1x5 + x1 + x2 + 1
x5 + 1

⎞

⎠

〉

+ h1(x0, x1, x5),

where
h1(x0, x1, x5) = x1x2 + x1x5.

We like to note that those insights in the filter function do not play any role in
our attacks and, for all we know, do not point at any weakness of the cipher.
Rather, they indicate that the filter was generated following known and valid
principles.

3 An Attack on GEA-1

First we recall some basic facts about LFSRs in Galois mode, as depicted in
Fig. 7. For further reading we refer to ([34, p. 378 ff.], [20, p. 227]).

. . .

∧ ∧ ∧ ∧ ∧

. . .

l0 l1 ln−2 ln−1

a0 a1 an−3 an−2 an−1

Fig. 7. An LFSR in Galois mode.

Given an LFSR L in Galois mode of degree n with entries in F2, clocking the
inner state l = l0, . . . , ln−1 is equivalent to the matrix-vector multiplication

GL · l :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 1 0 . . . 0
a1 0 1 . . . 0
...

...
...

. . .
...

an−2 0 0 . . . 1
an−1 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎜

⎝

l0
l1
...
ln−2

ln−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0l0 + l1
a1l0 + l2
...
an−2l0 + ln−1

an−1l0

⎞

⎟

⎟

⎟

⎟

⎟

⎠



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 165

and the characteristic polynomial of GL is

g(X) := Xn + a0X
n−1 + · · · + an−2X + an−1.

Throughout this work, we consider the case in which g is primitive. The charac-
teristic polynomial g(X) is equal to the minimal polynomial of GL if and only
if an−1 = 1. Vice versa, given a primitive polynomial g(X) := Xn + a0X

n−1 +
· · · + an−2X + an−1, then

GL :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 1 0 . . . 0
a1 0 1 . . . 0
...

...
...

. . .
...

an−2 0 0 . . . 1
an−1 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

is the companion matrix of an LFSR in Galois mode with minimal polynomial
g. We call such a matrix the Galois matrix and the corresponding minimal
polynomial the Galois polynomial in the sequel. Moreover, given an LFSR L
in Galois mode with minimal (primitive) polynomial g, we denote the Galois
matrix with Gg. In the case of GEA-1 the Galois polynomials are

gA(X) =X31 + X30 + X28 + X27 + X23 + X22 + X21 + X19 + X18 + X15

+ X11 + X10 + X8 + X7 + X6 + X4 + X3 + X2 + 1,

gB(X) =X32 + X31 + X29 + X25 + X19 + X18 + X17 + X16 + X9 + X8

+ X7 + X3 + X2 + X + 1,

gC(X) =X33 + X30 + X27 + X23 + X21 + X20 + X19 + X18 + X17 + X15

+ X14 + X11 + X10 + X9 + X4 + X2 + 1.

The initialization process of the registers A, B and C with the string s is obvi-
ously linear. Hence there exist three matrices MA ∈ F

31×64
2 , MB ∈ F

32×64
2 and

MC ∈ F
33×64
2 such that

α = MAs,

β = MBs,

γ = MCs,

where α, β and γ denote the states of the three LFSRs after the initialization
phase. We exclude here the unlikely case that α, β or γ is still in the all-zero
state after the shifted insertion of s.

We are now interested in the number of possible starting states of the registers
after this initialization. For those considerations, we used the computer algebra
system sagemath [37]. The corresponding code is attached in Appendix A. The
first observation is that all the three matrices have full rank. This implies that
the number of possible starting states after initialization is maximal when each
LFSR is considered independently, i.e. there are 231 possible states for register A,



166 C. Beierle et al.

232 possible states for register B, and 233 possible states for register C, as should
be expected. However, when considering pairs of registers, the picture changes
drastically. In particular, the number of possible joint states after initialization
of the registers A and C is much smaller than expected. For this it is convenient
to consider the kernels of the linear mappings. Clearly, the corresponding linear
mappings represented by MA, MB and MC have kernels of dimension of at
least 33, 32 and 31, respectively. If we denote TAC := ker(MA) ∩ ker(MC) and
UB := ker(MB) then, curiously enough, we have

1. dim(TAC) = 24 and dim(UB) = 32 ,
2. UB ∩ TAC = {0} .

From this it directly follows that F
64
2 can be decomposed into the direct sum

UB ⊕ TAC ⊕ V , where V is of dimension 8. Thus, for the key-dependent and
secret string s, there exists a unique representation s = u + t + v with u ∈ UB ,
t ∈ TAC , v ∈ V and

β = MB(u + t + v) = MB(t + v)
α = MA(u + t + v) = MA(u + v)
γ = MC(u + t + v) = MC(u + v).

From this decomposition, s can be computed with a Divide-and-Conquer
attack with a complexity5 of 237 GEA-1 evaluations to build (and sort) 28 tables
with 224 entries of size 89 bits and a brute-force step of complexity 240 GEA-1
evaluations for each new session key K0, . . . ,K63. The details will be given in
Sect. 3.1.

In other words, the joint state of A and C can be described with only 40 bits
and thus can take only 240 possible values. This is the key observation of the
attack and the weakness that is highly unlikely to occur unintentionally.

Once s is determined, K0, . . . ,K63 can be recovered as follows. Let Si denote
the state of register S after i clocks of initialization. So S0 = (0, 0, . . . , 0) and
S225 = (s0, s1, . . . , s63) where all the sj are known (see also Fig. 4). The last 128
clocks of S all insert 0-bits from the string containing K, dir and IV , so it is
straightforward to clock S225 backwards 128 times and find the content of S97.
Let S97 = (a0, a1, . . . , a63), where all the ai are known.

Starting from the other side, the first 33 clocks of S0 only insert the known
bits IV0, IV1, . . . , IV31, dir, so the content of S33 is fully known. The next clock
inserts K0+b0 at position 63 of S34, where b0 is a known bit. Further clocking do
not change the content of this cell, but only shifts it further positions to the left,
so after 63 clockings starting from S34 we have S97 = (K0 + b0, . . .). Equating
S97 from the forward direction with S97 from the backward direction gives us
K0 = a0 + b0.

With K0 known, position 63 of S35 can now be given as K1 + b1, where b1
is known. Clocking S35 forward 62 times gives S97 = (K0 + b0,K1 + b1, . . .) and

5 The complexity will be measured by the amount of operations that are roughly as
complex as GEA-1 evaluations (for generating a keystream of size ≤ 128 bit).



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 167

again equating with S97 from the backwards side gives K1 = a1 +b1. Continuing
this way recovers the whole session key K. Hence, the attack has to be conducted
only once per GPRS session and is done in 240 operations once the table has
been established.

3.1 A Simple Divide-and-Conquer Attack on GEA-1

A table Tab is built by exhaustive search over the 232 values

βt,v = MB(t + v), t ∈ TAC , v ∈ V,

plugging βt,v into register B and clocking it � times. The parameter � will be
determined later. The table is divided into 28 sub-tables Tab[v] indexed by v; the
output bits b

(0)
t,v , . . . , b

(�−1)
t,v (after applying the filter f), together with t, are stored

in Tab[v]. We then sort each Tab[v] according to b
(0)
t,v , . . . , b

(�−1)
t,v interpreted as an

�-bit integer. The table has 232 entries of size � + 24 bits, so it can be generated
and sorted with a complexity of 32 · 232 = 237 operations if the size of � is
negligible (which it is, as we will see below).

Given � bits of keystream zi, the sequence s is recovered as follows. First, an
exhaustive search is conducted over the 240 values

αu,v = MA(u + v), γu,v = MC(u + v), u ∈ UB, v ∈ V,

plugging αu,v into A, γu,v into C and clocking both registers � times. We denote
by a

(0)
u,v, . . . , a

(�−1)
u,v , resp., c

(0)
u,v, . . . , c

(�−1)
u,v , the output stream of register A, resp.,

C after applying the filter f . For each (u, v), the output stream

a(0)
u,v ⊕ c(0)u,v ⊕ z0, . . . , a

(�−1)
u,v ⊕ c(�−1)

u,v ⊕ z�−1

is generated and it is checked whether there is a match in Tab[v]. In the positive
case, this gives candidates for u, t and v and finally for s = u⊕t⊕v if and only if
the entry is found in Tab[v]. The overall complexity of this step is 240, assuming
that generating � bits of keystream, together with a search in the sorted table
is below the complexity of one GEA-1 evaluation (for generating a keystream of
size 128 bit).

The correct key will always be identified, but this procedure can also suggest
some wrong keys, depending on the value of �. There is a trade-off between
the amount of known plaintext available, the size of table, and the number of
remaining keys. A wrong partial key u⊕v yields a bitstream stored in Tab[v] with
probability 1

2� for each entry, if we assume the widely accepted hypothesis that
an � bit output of a filtered LFSR behaves like uniformly distributed random
bits as long as � is below its period (which will be the case here). We have 224

entries in Tab[v], thus there are at most 224 possible correct entries per partial
key. In other words, the probability that a wrong partial key does not cause a
hit in Tab[v] is

(

1 − 1
2�

)224 and therefore the probability that none of the wrong



168 C. Beierle et al.

partial keys cause a hit is

(

(

1 − 1
2�

)224
)(240−1)

≈
(

1 − 1
2�

)264

.

If we want the probability for no false hit to be larger than or equal to 1
2 , we can

choose � = 65, for which we get
(

1 − 1
2�

)264 ≈ 0.607. The corresponding size of
the table Tab with this choice for � is only 44.5 GiB and it can be built in time
237.

If we only have n < 65 known plaintext bits, we obtain a set of roughly 264−n

remaining keys; if n ≥ 24 we expect less than 240 candidate keys, and can try
each of them without increasing significantly the complexity of the attack. The
key candidates can be verified using redundancy in the frame (e.g. checksums),
or known bits in a different frame (e.g. headers). We need 65 known bits of
information in total, but they can be spread over several frames as long as one
frame has 24 bit of known plaintext. In practice, there are many GPRS frames
with predictable content, so that intercepting a ciphertext with some known
plaintext bits is not an issue (see Sect. 5.1 for details). Thus the attack is fully
practical.

Note that the attack presented is rather straightforward and can probably
be optimized. Moreover, several trade-offs are possible. For instance, one can
alternatively apply the attack by building a table corresponding to the 240 choices
of αu,v, γu,v and then performing an exhaustive search over 232 values for βt,v.
This way, one would need 232 GEA-1 evaluations as the online time complexity,
but much more memory for storing the table. For example, the memory needed
to store 240 values of 65-bit length is 8.125 TiB.

On the Likelihood that dim(TAC ) = 24. We did an extensive computer
search to answer the question if the situation in GEA-1 is unlikely to occur. To
do so, over 106 samples, we randomly generated two primitive polynomials g1, g2
of degrees d1, d2, built the corresponding Galois matrices Gg1 , Gg2 , computed the
representation matrices MGg1

,MGg2 ,cs for the initialization and computed the
dimension of the intersection TGg1 ,Gg2 ,cs. Here, the parameter cs denotes the
cyclic shift applied in the initialization process of the register. In Tables 1, 2,
and 3, the results for the parameters as in GEA-1 are given, i.e., for the param-
eters d1 = 31 and d2 = 32, d1 = 31 and d2 = 33, d1 = 32 and d2 = 33 with
the corresponding shifts. A Sage program that allows the reader to repeat those
experiments is provided in Appendix B.

Table 1. Behavior of intersections for randomly generated LFSRs of lengths d1 = 31,
d2 = 32 and cs = 16 (106 tries)

Dimension of intersection <5 5 6 7 8 9 10 11

# of spaces 996,027 3,002 742 171 49 6 1 2



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 169

Table 2. Behavior of intersections for randomly generated LFSRs of lengths d1 = 31,
d2 = 33 and cs = 32 (106 tries)

Dimension of intersection <5 5 6 7 8 9 10 11

# of spaces 998,027 1,490 366 86 26 5 0 0

Table 3. Behavior of intersections for randomly generated LFSRs of lengths d1 = 32,
d2 = 33 and cs1 = 16, cs2 = 32 (106 tries)

Dimension of intersection <5 5 6 7 8 9 10 11

# of spaces 999,065 701 181 39 10 3 1 0

Recall that in GEA-1, the intersection is of dimension 24. Thus, in gen-
eral, our attack is avoided almost automatically when choosing random primi-
tive feedback polynomials and further research needs to be conducted to better
understand the design of GEA-1.

Experimental Verification. In this section we address our C++ implemen-
tation of the simple Divide-and-Conquer attack on GEA-1.

We first utilized sage to generate V and bases for TAC and UB . We then
built a table Tab of 232 entries, similarly as described above. Notice that each
sub-table Tab[v] is implemented as an array of 219 sorted vectors containing
entries consisting of 64 bits for bt,v and 24 bits representing t. The remaining bit
of bt,v is implicitly stored as an index in Tab[v]. Tab is stored on disk such that
it can be loaded when the attack gets executed again.

Given 65 bits of keystream zi, the recovery of the initial state s is implemented
as follows. For each combination of u ∈ UB and v ∈ V the output stream
is generated using a bitsliced implementation of A and C. To check whether
there is a match in Tab we search through the vector at Tab[v][idx] where idx
represents the 19 most significant bits of the output stream. If there is a match
we restore t from Tab and return s = u⊕t⊕v. To speed things up we parallelized
both the generation of Tab and the recovery of s using OpenMP [10].

To test our implementation we first picked random values for t, u, v. After
this we determined suitable values for K, IV and dir by clocking the register
S backwards. Then we used the GEA-1 implementation that we were provided
with to generate 65 keystream bits. Finally we checked if our attack restores the
correct initial state s = u ⊕ t ⊕ v.

We executed the attack on a cluster made up of four AMD EPYC 7742 64-
Core Processors. Generating and storing Tab takes 30 minutes whereas loading
it from disk only takes five minutes. Tab is 46 GiB in size and the recovery of s
has a running time of 25 minutes averaged over six runs.



170 C. Beierle et al.

4 An Attack on GEA-2

GEA-2 does not suffer from the same problems as GEA-1 for initialization. How-
ever, it is still possible to mount an attack on GEA-2 that does not target ini-
tialization, but keystream generation. The idea is to combine a list merging
algorithm and algebraic techniques.

4.1 Algebraic Cryptanalysis

The algebraic degree of the filtering function f is 4. The filtering function also
has an algebraic immunity of 4. But, as the 4 registers are never mixed, the
number of monomials present in the system of equations formed by the relations
between the keystream and the initial state is very limited. More precisely, this
number is upper bounded by

1 +
4

∑

i=1

(

29
i

)

+
(

31
i

)

+
(

32
i

)

+
(

33
i

)

= 152682 .

This relatively small number would directly imply a powerful attack, just
by using a linearisation technique, or, even more powerful, by applying the
Berlekamp-Massey algorithm [2,26], as this value is naturally an upper bound to
the linear complexity of the output sequence (a direct consequence of Blahut’s
Theorem [5]).

However, each session in GEA-2 (or GEA-1) is limited to 1600 bytes, that is
12800 bits. This data limitation frustrates direct algebraic cryptanalysis, as the
linearization technique is impossible when we have less equations than monomi-
als.

4.2 Guess-and-Determine

The Guess-and-Determine technique seems to have its origin already in the
cryptanalysis of A5/1 cipher [1,18]. It can be a powerful technique, specially
for analyzing stream ciphers. In the context of algebraic cryptanalysis, it has
been shown in [13] that Guess-and-Determine can really help to provide much
simpler systems of equations. In a context of general multivariate system solving
algorithms, this technique is known as the hybrid approach [3].

For GEA-2, we mainly want to reduce the number of monomials present in
our system below 12800. By guessing nd, na, nb and nc bits in the registers D,
A, B and C respectively, we find that the number of non-constant monomials in
the equations is upper bounded by

4
∑

i=1

(

29 − nd

i

)

+
(

31 − na

i

)

+
(

32 − nb

i

)

+
(

33 − nc

i

)

.

To get a system of equations of size below 12800 one needs to guess at least
59 bits of the initial state. One choice is nd = 29 − 16 = 13 bits in the first



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 171

register, na = 31 − 16 = 15 bits in the second register, nb = 32 − 17 = 15 bits in
the third register and nc = 33 − 17 = 16 bits in the fourth register.

This leads to an attack complexity of 259 times the cost of solving a linear
system of size 12800, which is much more than the cost of the exhaustive search.
We therefore need to combine guessing with other techniques.

4.3 Divide-and-Conquer Technique

The sum of the output of the four filtered registers frustrates the specific Divide-
and-Conquer cryptanalysis described by T. Siegenthaler in 1985: correlation
attacks [36].

However, Divide-and-Conquer techniques can also be applied when we adapt
it for the following problem. We are given two sets S1 and S2, as well as two
functions f1 : S1 → F

c
2 and f2 : S2 → F

c
2. For a given t ∈ F

c
2 the problem is

to find all s1 ∈ S1 and s2 ∈ S2 such that f1(s1) + f2(s2) = t. This problem
arises quite often in cryptography and started in [35] with the cryptanalysis of
the knapsack-based cryptosystem. Since then, advanced solving techniques have
shown they can be a powerful tool for the cryptanalyst [6,12,22,24,33].

One way to solve this problem is to use a hash table H. Typically, for all
s1 ∈ S1 we compute f1(s1) and add s1 to H [f1(s1)]. Then for each s2 ∈ S2

we compute f2(s2) and check the corresponding values for s1 in H [t + f2(s2)].
Using the right structure for H the complexity of exhausting all the solutions is
O(|S1| + |S2|) in time and O(|S1|) in memory.

Remark. This algorithm performs |S2| random accesses to H. If the table is
too large to fit in RAM it may be faster to build the two lists, then to sort them
and finally to sequentially go through them to find matches.

4.4 Description of the Attack

The techniques involved in our attack do not work in practice when used alone.
However, they can be combined in an elegant way to recover the initial state
with complexity significantly lower than 264. Our attack works as follows.

1. Guess na + nd bits in both registers A and D (note that the choice of values
for na and nd is not the same as in Sect. 4.2). The choice of registers A and
D has been done with respect to their length, so as the choice of na and nd

that lead to the smallest number of guesses.
2. Using linearization technique, derive linear combinations of the keystream

bits that are independent of the remaining variables in registers A and D.
This corresponds to a set a linear masks mi, for 1 ≤ i ≤ c, such that for all
i, mi · sA+D is constant, where sA+D denotes the xor-sum of the sequences
generated by the registers A and D, and · is the scalar product.

3. Apply the Divide-and-Conquer technique described previously, with S1 cov-
ering all initial states β in register B and S2 covering all initial states γ in



172 C. Beierle et al.

register C, with f1 and f2 being defined by the linear masks, and ti defined as
mi · z ⊕ mi · sA+D, where z is the known keystream, and mi · sA+D is known:

f1 : β 	→ (m1 · sB , . . . ,mc · sB)
f2 : γ 	→ (m1 · sC , . . . ,mc · sC)

First, we build polynomials corresponding to the output of each filtered reg-
ister, with the initial value of the register bits as variables. We use register C as
an example since it is the largest one. Since the LFSR is linear, we can write the
state as a matrix representing the linear expression of each bit in terms of the
33 variables; clocking the LFSR is just a matrix product with a total cost of at
most 12800 × 333 = 228.8. This could probably be improved further, but will be
a negligible cost in the attack anyway.

Next, we notice that guessing nd = 9 bits from register D and na = 11 bits
from register A decreases the number of possible non-constant monomials in the
20+20 remaining variables from A and D to

4
∑

i=1

(

20
i

)

+
(

20
i

)

= 12390

which is smaller than the amount of data available per session. Thus we can
perform a Gaussian elimination on the system of equations to derive at least
12800−12390 = 410 linear masks mi on the output of A and D, such that every
non-constant monomial vanishes. On a 64-bit computer the cost of this step is
around 12800 × 12390 × 12390/64 = 234.8 simple operations on 64-bit words.

In order to evaluate f1 and f2 efficiently, we write them as polynomials in
the B and C variables, respectively. To do so we first choose c = 64 masks and
we compute the corresponding polynomial expressions of outputs from B and C.
This corresponds to multiplying a binary matrix of size 12800×(

∑4
i=1

(

32
i

)

+
(

33
i

)

)
by a binary matrix of size 64×12800. This requires 64×12800×88385/64 = 230.1

simple operations on 64-bit words. We also apply the masks to the keystream
sequence with a negligible cost.

At the end of the previous step we have 64 equations of the form P i
B = P i

C

where P i
B and P i

C are polynomials in variables from registers B and C respec-
tively and we can apply the Meet-in-the-Middle technique to retrieve the possible
values for B and C. First we evaluate (P 0

B , P 1
B , . . . , P 63

B ) for all the 232 possi-
ble initial states of register B and store the result in a hash table H. Then we
evaluate (P 0

C , P 1
C , . . . , P 63

C ) for all the 233 possible starting states of C and get
the corresponding values for B by looking into the hash table. Using the enu-
meration technique of [7], we can evaluate the 64 degree-4 polynomials on all 2n

states for a cost of only 2n × 64 × 4 bit operation. Therefore, the cost of this
step is roughly (232 + 233) × 4 × 64/64 = 235.6 operations on 64-bit words plus
232 + 233 = 233.6 random accesses to the hash table.

Finally, for all the remaining values for registers B and C we solve the system
of equations in variables from A and D. As it was already echelonized in the first
step of the attack we only have to check whether it is consistent or not, requiring



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 173

approximately 12390 bit-operations. Since there are only a few remaining key
candidates, this step is negligible.

Overall the attack requires:

– 220 × (234.8 + 230.1 + 235.6) = 256.3 operations on 64-bit words
– 220 × (233.6) = 253.6 memory accesses

In terms of GEA-2 operations, we assume that one encryption requires at least 64
word operations6, and that one memory access is comparable to an encryption
call. Therefore the complexity is equivalent to 253.7 GEA-2 encryptions. The
memory complexity corresponds to 232 × 64 = 238 bits.

4.5 Improved Attack

We have developed two tricks to decrease the complexity of our attack against
GEA-2. The first one is based on the observation that we perform the same
computations several times and that this can be avoided by reorganizing them.
The second improvement is highly inspired from classical time/data trade-offs
where a sequence of n keystream bits can be seen as k (shifted) sequences of
n − k keystream bits.

Gaussian Elimination Only Once. The first Gaussian elimination is per-
formed 220 times, once for each guessed value of the 20 chosen bits of registers A
and D. But since the polynomials are of degree 4, guessing a variable cannot cre-
ate a monomial of degree 4. Thus, before starting to guess variables, it is possible
to partially echelonize the system by removing all degree 4 monomials which do
not contain a variable that will be guessed. This removes

(

20
4

)

+
(

20
4

)

= 9690
equations and requires 12800 × (

∑4
i=1

(

29
i

)

+
(

31
i

)

) × 9690/64 = 236.9 operations
on 64-bit words. Then for each guess the first Gaussian elimination is performed
on a matrix with 12800−9690 = 3110 rows and

∑3
i=1

(

20
i

)

+
(

20
i

)

= 2700 columns.
As a consequence, the time complexity of the attack becomes:

– 236.9 + 220 × (228.4 + 230.1 + 235.6) = 255.6 operations on 64-bit words
– 220 × (233.6) = 253.6 memory accesses

Reducing Number of Guesses. We can improve the attack using the classical
trick of targeting the internal state at several different clocks, instead of focusing
only on the initial state. The novelty here is that we can find masks which
simultaneously work for several shifted keystream sequences.

First, we use nd = 10 and na = 11, so that the number of non-constant
monomial from A and D is only

∑4
i=1

(

19
i

)

+
(

20
i

)

= 11230. We target one of
the 753 first internal states, therefore we extract shifted keystream sequences
of length 12047 produced by each of those states. The initial state produces

6 In a brute-force search, the initialization requires at least 195 clocking of the W
register per key.



174 C. Beierle et al.

keystream z0 · · · z12046, the state after one clock produces keystream z1 · · · z12047,
and so on. We define V as the vector space of masks m (of length 12047) such that
m · z is independent of z for all the 753 sequences considered; V has dimension
12047 − 753 + 1 = 11295.

Using the strategy of the previous attack, for each guess of the 21 bits in
registers A and D, we can deduce a vector space of dimension 12047 − 11230 =
817 of masks such that mi · sA+D is constant. We intersect this vector space
with V to obtain a space of dimension 65 of masks such that both mi ·sA+D and
mi · z are constant, and we run the previous attack with 64 independent masks
from this space.

The probability that the guess of the 21 bits is correct for at least one of the
753 first internal states is 1 − (1 − 2−21)753 ≈ 2−11.4. Thus we have to repeat
this step with 211.4 different guesses on the average, and the time complexity
becomes:

– 236.9 + 211.4 × (227.9 + 230.1 + 235.6) = 247 operations on 64-bit words
– 211.4 × (233.6) = 245 memory accesses

This is equivalent to roughly 245.1 GEA-2 encryptions.

4.6 Recovering the Master Key

This attack recovers the internal states of the registers A,B,C and D, either at
the beginning or after a few clocks. From this we can easily recover the sequence
w, because the initialization and the update of the LFSRs are linear functions.
As in the case of GEA-1, we can also recover the master key by clocking the W
register forwards from the zero state, and backwards from the recovered state w.
Therefore, we only have to perform the attack once per GPRS session; we can
decrypt all the messages in a session if we have one known message of length
1600 byte.

4.7 Using Less Data

Our attack can be applied with less data than 12800 bits of keystream. In that
case the time complexity is increased as shown in Fig. 8. To reach a complexity
below 264 (the complexity of an exhaustive search on the key), we need around
1468 consecutive keystream bits.

4.8 Experimental Verification

We now briefly describe our proof of concept implementation of the attack on
GEA-2. The implementation consists of a sage and C++ part which is made
accessible to sage using Cython.

In an initial step we built matrices that represent polynomials corresponding
to the filtered output of B and C by evaluating B and C symbolically in sage.
Here we enumerated the 12 most significant bits and therefore we do not have one



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 175

0 2,000 4,000 6,000 8,000 10,000 12,000

45

50

55

60

65

70

75

number of keystream bits available

lo
g 2

ti
m
e
co
m
pl
ex
it
y

Fig. 8. Time complexity of our attack against GEA-2 as a function of the number of
consecutive keystream bits available.

but 4096 matrices for each register. This allows straightforward parallelization
of the Divide-and-Conquer step when using the enumeration technique of [7].
The matrices are stored on disks such that they can be loaded when the attack
gets executed again.

Given the keystream we first compute V as described above. Then we start
guessing 21 bits in A and D. For each guess we compute 64 corresponding masks.
These are then handed over to the C++ part which builds upon the M4RI [25]
library to apply the Divide-and-Conquer technique. Candidates for β and γ are
returned to sage to check if they lead to consistent solutions for the remaining
bits in registers A and D.

To test our implementation we picked random values for K, IV and dir
and computed the keystream with the GEA-2 implementation we were provided
with. We also determined the first 753 internal states such that we can directly
check whether a guess of the 21 bits in A and D was correct or not.

We executed the attack on the same hardware as for the GEA-1 attack. It
takes about one hour to perform the calculations on one guess and therefore we
get roughly four months as the runtime of a full attack.

5 Discussion

In the following, we discuss the real-world attack feasibility, the attack severity
and the attack implications.



176 C. Beierle et al.

5.1 Attack Requirements

To recover the full session key of a GEA-1 encrypted connection, the attacker
must meet the following conditions: The attacker must i) sniff the encrypted
radio traffic of the victim’s phone and ii) know 65 bits of the keystream, prefer-
ably at the beginning of the keystream. As shown by Nohl and Melette [29],
sniffing the encrypted traffic can be conducted with the osmocom-bb project [31]
using ordinary hardware.

Meeting the requirement of knowing 65 bits of the keystream can be achieved
by exploiting predictable SNDCP (Subnetwork Dependent Convergence Proto-
col) and IP header patterns. A GPRS data connection encapsulates each IP
packet with the SNDCP, which is then encrypted by the LLC (Logical Link
Control) protocol. In a small experiment, we study patterns that remain stable
and predictable over multiple GPRS connections in the SNDCP and IP header.
Header fields like the SNDCP NSAPI, the IP Version, TTL, ToS, and desti-
nation IP address fields remain stable over multiple connections. Consequently,
guessing 65 plaintext bits and obtaining 65 keystream bits is plausible by an
entirely passive attacker.

In contrast, the attack on GEA-2 requires the attacker to know the whole
1600 bytes of keystream to recover the session key with complexity 245.1 GEA-2
evaluations. Accordingly, the attacker must correctly predict 1600 bytes of plain-
text. Depending on the attacker’s capabilities, this can be within the area of
possibility. If the attacker controls a server that the victim visits, he can access
the bytes sent or receives, and consequently, the attack can predict 1600 bytes.
The recovered key is then valid for the whole GRPS session, including other
traffic of interest. Such an attack may require some social engineering, e. g., a
phishing attack, to convince the victim to visit the website.

5.2 Attack Severity

In GPRS the operator chooses the encryption algorithm, i. e., GEA-1, GEA-2,
GEA-3 (based on KASUMI with a 64-bit key), or GEA-4 (based on KASUMI
with a 128-bit key). According to a study by Tomcsányi et al. [11], that analyzes
the use of the ciphering algorithm in GRPS of 100 operators worldwide, most
operators prioritize the use of GEA-3 (58) followed by the non-encrypted mode
GEA-0 (38). Only a few operators rely on GEA-2 (4), while no operator uses
GEA-1 (0). Consequently, the likelihood for an attack based on the GEA-1 and
GEA-2 vulnerabilities is nowadays comparably small.

To draw a complete picture, we additionally analyze the support of both
algorithms in mobile phones. Since 2013, ETSI prohibits implementing GEA-1
in mobile stations, while GEA-2 and the non-encrypted mode (GEA-0) are still
mandatory to be implemented [16]. We tested a range of current phones if they
follow the specification regarding disabling the GEA-1 cipher. We use an osmo-
com GPRS setup which we extended with the support of GEA-1 and GEA-2 [31].
Table 4 shows a selection of phones in which we cover a wide range of baseband



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 177

manufacturers. Those manufacturers are responsible for implementing the stan-
dard accordingly. Surprisingly, all tested phones support the vulnerable ciphers
GEA-1, thereby clearly disrespecting the specification.

Table 4. Overview of the phones and basebands supporting (�) GEA-X

Phone Year Baseband GEA-1 GEA-2

Apple iPhone XR 2018 Intel XMM 7560 � �
Apple iPhone 8 2017 Intel XMM 7480 � �
Samsung Galaxy S9 2018 Samsung Exynos 9810 � �
HMD Global Nokia 3.1 2018 Mediatek MT6750 � �
Huawei P9 lite 2016 HiSilicon Kirin 650 � �
OnePlus 6T 2018 Qualcomm Snapdragon 845 � �

Once the key is recovered, the attacker can decrypt all traffic for the complete
GPRS session until the key gets invalid, which happens in the GPRS authen-
tication and ciphering procedure triggered by the network. The start of this
procedure depends on the operator’s policy. Usually, the procedure starts on an
expired timer, e. g., 1–24 h, or the change of a location area, which is a regional
group of base stations.

5.3 Attack Implications

GEA-1 provides 40-bit security and is breakable by today’s standard hardware.
This fact causes severe implications for our mobile Internet connection during
the early 2000s and now.

During the early 2000s, Internet connections were barely secured by any
transport layer security, such as TLS. Under the assumption that an opera-
tor used GEA-1 for the network, the entire traffic was accessible to a passive
attacker. In contrast, nowadays connections are mostly secured by TLS. How-
ever, if the network encryption can be bypassed (as with GEA-1), metadata is
still accessible, such as DNS requests, IP addresses, and hostnames when using
the TLS SNI extension. Consequently, the use of GEA-1 has still far-reaching
consequences on the user’s privacy and should be avoided at all costs.

Even if the operator uses a stronger cipher like GEA-3, the support of GEA-1
by the phone allows an attacker to recover a previous session key. A requirement
for this attack is that the operator also relies on GSM authentication. GSM
authentication is not replay protected, and thus the attacker can replay the
previous authentication request with a fake base station and instruct the phone
to use the vulnerable cipher (Authentication and Ciphering Request). After a
complete attack procedure, sending the ciphering request forces the phone to use
a weak cipher (i.e. GEA-1) for the next data uplink packet. At that point, the
attacker can guess the plaintext to recover parts of the keystream and thus also



178 C. Beierle et al.

the previous session key. Consequently, the attacker can decrypt the previous
session, which was encrypted with a stronger cipher, e. g., GEA-3. This shows
that even when operators do not actively use GEA-1, the weak GEA-1 design
affects the security of today’s communication.

Time/Memory Trade-Off Attack against GEA-2. While the present attack
against GEA-2 has a complexity of 245 GEA-2 evaluations and requires a large
amount of known keystream, we could also think of a time/memory trade-off
attack against GEA-2. However, in contrast to A5/1 where this could be applied
[21], the initial state of 125 bits prohibits any such attack aiming for the initial
state. Building a time/memory trade-off, using e.g. rainbow-tables, (see [30])
targeting directly the 64 bits secret key would only work for a fixed IV. While it
would indeed reduce the amount of known keystream needed, it turns the attack
into a chosen IV attack, which limits its practical interest.

5.4 Responsible Disclosure and Industry Implications

Following the guidelines of responsible disclosure, we have disclosed the vul-
nerability to the GSMA and ETSI Coordinated Vulnerability Disclosure pro-
gramme [14,19]. We, thereby, followed two aims: In short term, we want to
disable the support of GEA-1 from all mobile phones and thereby restore the
specifications conformity. For mitigating the mid-risk of exploiting the GEA-2
vulnerabilities, we advocate for removing the support of GEA-2 from the speci-
fication.

The main objective of the GSMA CVD program was to disable the support of
GEA-1. The GSMA informed the affected baseband vendors, phone manufactur-
ers, including Google and Apple, through the CVD program. Further, the GSMA
liaised with GCF (Global Certification Forum) [17], the mobile industry’s glob-
ally recognized certification scheme for mobile phones and wireless devices based
on 3GPP standards. The GCF included two test cases as part of version 3.81.0
of the certification criteria, which became available for certification in January
2021. These are: Conformance test case 44.2.5.2.5 Ciphering mode/Non-support
of GEA-1 from 3GPP TS 51.010-1 and field trial test case 5.6.5 GPRS function-
ality – Non-support of GEA-1 from GSMA TS.11. Those test cases now allow
to verify that the support of GEA-1 is disabled by devices before entering the
market.

In contrast, the submission to the ETSI CVD program followed the mid-term
goal to remove the support of GEA-2 from the specification and consequently
also from mobile devices. At the time of paper finalization, the ETSI has accepted
our CVD submission and considers whether any standards related measures need
to be taken. Specification changes usually require the consent of several parties
and take accordingly longer. We will continue to fight for removing the support
of GEA-2 from the specification.



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 179

6 Conclusion

We have shown that the first version of the GPRS Encryption Algorithm, GEA-1,
only offers 40-bit (out of 64) security. We have further shown that it is very
unlikely for a random instance to suffer from such weaknesses. Since GEA-1 was
designed to be exportable within the export restrictions in European countries
in the late 1990s, this might be an indication that a security level of 40 bits was
a barrier for cryptographic algorithms to obtain the necessary authorizations.
Ultimately, the weak design of GEA-1 brings security problems for today’s com-
munication, even if it is not being actively used by the operators.

The successor algorithm GEA-2 seems to be a stronger design, in which the
weaknesses of GEA-1 are not present anymore. Still, the cipher does not offer
full 64-bit security and we have shown an attack of complexity 245.1 GEA-2
evaluations. Although such an attack is more difficult to be applied in practice,
we think that GEA-2 does not offer a high enough security level for todays
standards. Therefore, we strongly recommend that only the much more secure
GPRS Encryption Algorithms, starting from GEA-3, should be implemented.

Acknowledgment. This work was supported by the German Research Foundation
(DFG) within the framework of the Excellence Strategy of the Federal Government
and the States – EXC 2092 CaSa – 39078197, and by French Agence Nationale de la
Recherche (ANR), under grant ANR-20-CE48-0017 (project SELECT). Patrick Derbez
was supported by the French Agence Nationale de la Recherche through the CryptAudit
project under Contract ANR-17-CE39-0003.

Most of all, we give thanks to Dieter Spaar and Harald Welte for their support and
contact persons of the osmocom project.

Appendix A Source Code to Compute the Kernels

Listing 1.1. gea1 kernels.sage

de f g e t In i tMat r i x (p , keyLength , s h i f t ) :
P.<x> = PolynomialRing (GF(2 ) )
l = p . degree ( )

#cons t ruc t t rans fo rmat ion matrix A f o r LFSR in Galo i s mode

A = companion matrix (p , ” l e f t ”)
M = zero matr ix (GF(2 ) , keyLength , l )

f o r c in range ( keyLength ) :
x = z e r o v e c t o r (GF(2 ) , l )

k = z e r o v e c t o r (GF(2 ) , keyLength )

k [ c ] = 1

f o r j in range ( keyLength ) :

x [ 0 ] = x [ 0 ] + k [ ( j+s h i f t ) % keyLength ]
x = A∗x

M[ c ] = x

return M

#fo r GEA−1



180 C. Beierle et al.

P.<x> = PolynomialRing (GF(2 ) )
keyLength = 64

pA = xˆ31+xˆ30+xˆ28+xˆ27+xˆ23+xˆ22+xˆ21+xˆ19+xˆ18+xˆ15
+xˆ11+xˆ10+xˆ8+xˆ7+xˆ6+xˆ4+xˆ3+xˆ2+1
sh i f tA = 0

pB = xˆ32+xˆ31+xˆ29+xˆ25+xˆ19+xˆ18+xˆ17+xˆ16+xˆ9+xˆ8+xˆ7+xˆ3

+xˆ2+x+1

sh i f tB = 16

pC = xˆ33+xˆ30+xˆ27+xˆ23+xˆ21+xˆ20+xˆ19+xˆ18+xˆ17+xˆ15+xˆ14
+xˆ11+xˆ10+xˆ9+xˆ4+xˆ2+1

sh i f tC = 32

MA = get In i tMat r i x (pA, keyLength , sh i f tA )

MB = get In i tMat r i x (pB, keyLength , sh i f tB )
MC = get In i tMat r i x (pC, keyLength , sh i f tC )

U B = MB. ke rne l ( )

T AC= MA. ke rne l ( ) . i n t e r s e c t i o n (MC. ke rne l ( ) )

p r i n t (U B . dimension ( ) ) #has dimension 32

p r i n t (T AC. dimension ( ) ) #has dimension 24
p r i n t (T AC. i n t e r s e c t i o n (U B ) . dimension ( ) ) #has dimension 0

Appendix B Source Code to Compute the Dimensions

Listing 1.2. random kernels.sage

set random seed ( )
P.<x> = PolynomialRing (GF(2 ) )

de f get random pr imi t ive ( l ) :

V = VectorSpace (GF(2 ) , l )

v = l i s t (V. random element ( ) )

p = P(v+[1 ] )
whi l e ( not p . i s p r im i t i v e ( ) ) :

v = l i s t (V. random element ( ) )
p = P(v+[1 ] )

r e turn p

#parameters to s e t

keyLength = 64
l 1 = 31

l 2 = 33

s h i f t 1 = 0
s h i f t 2 = 32

samples = 1000000

dim = [ 0 ]∗40
f o r i in range ( samples ) :
#get random pr im i t i v e po lynomia l s p1 and p2

p1 = get random pr imi t ive ( l 1 )

p2 = get random pr imi t ive ( l 2 )
M1 = get In i tMat r i x (p1 , keyLength , s h i f t 1 )



Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 181

M2 = get In i tMat r i x (p2 , keyLength , s h i f t 2 )
T = M1. ke rne l ( ) . i n t e r s e c t i o n (M2. ke rne l ( ) )

dim [T. dimension ( ) ] = dim [T. dimension () ]+1
i f ( ( ( i +1)%1000)==0):

p r i n t ( ’ runs = ’ , i +1)

p r i n t (dim)

References

1. Anderson, R.J.: A5 (was hacking digital phones). Newsgroup Communication
(1994). http://yarchive.net/phone/gsmcipher.html. Accessed 4 Mar 2021

2. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill Series in Systems Sci-
ence. McGraw-Hill (1968). http://www.worldcat.org/oclc/00256659

3. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate sys-
tems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009). https://doi.org/10.
1515/JMC.2009.009

4. Biryukov, A., Gong, G., Stinson, D.R. (eds.): SAC 2010. LNCS, vol. 6544. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7

5. Blahut, R.E.: Theory and Practice of Error Control Codes. Addison-Wesley, Boston
(1983)

6. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov et al. [4], pp. 229–240.
https://doi.org/10.1007/978-3-642-19574-7 16

7. Bouillaguet, C., et al.: Fast exhaustive search for polynomial systems in F2. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 14

8. Brookson, C.: GPRS Security (2001). https://web.archive.org/web/
20120914110208/www.brookson.com/gsm/gprs.pdf. (snapshot of 14 Septem-
ber 2012)

9. Carlet, C., Crama, Y., Hammer, P.L.: Boolean functions for cryptography and
error-correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cam-
bridge University Press (2010). https://doi.org/10.1017/cbo9780511780448.011

10. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

11. Tomcsányi, D.P., Weyres, M., Simao, P.: Analysis of EGPRS Ciphering Algo-
rithms used Worldwide. https://www.umlaut.com/en/analysis-of-egprs-ciphering-
algorithms-used-worldwide. (to appear)

12. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks
on reduced-round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 8

13. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
457–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 17

14. ETSI: ETSI – Coordinated Vulnerability Disclosure. https://www.etsi.org/
standards/coordinated-vulnerability-disclosure. Accessed 4 Mar 2021

http://yarchive.net/phone/gsmcipher.html
http://www.worldcat.org/oclc/00256659
https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1007/978-3-642-19574-7
https://doi.org/10.1007/978-3-642-19574-7_16
https://doi.org/10.1007/978-3-642-15031-9_14
https://web.archive.org/web/20120914110208/www.brookson.com/gsm/gprs.pdf
https://web.archive.org/web/20120914110208/www.brookson.com/gsm/gprs.pdf
https://doi.org/10.1017/cbo9780511780448.011
https://www.umlaut.com/en/analysis-of-egprs-ciphering-algorithms-used-worldwide
https://www.umlaut.com/en/analysis-of-egprs-ciphering-algorithms-used-worldwide
https://doi.org/10.1007/978-3-540-77026-8_8
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17
https://www.etsi.org/standards/coordinated-vulnerability-disclosure
https://www.etsi.org/standards/coordinated-vulnerability-disclosure


182 C. Beierle et al.

15. ETSI: Security algorithms group of experts (SAGE); report on the specification,
evaluation and usage of the GSM GPRS encryption algorithm (GEA). Technical
report (1998). https://www.etsi.org/deliver/etsi tr/101300 101399/101375/01.01.
01 60/tr 101375v010101p.pdf. Accessed 8 Oct 2020

16. ETSI: Digital cellular telecommunications system (phase 2+) (GSM); security
related network functions (3GPP TS 43.020 version 15.0.0 release 15). Technical
Specification (2018). https://www.etsi.org/deliver/etsi ts/143000 143099/143020/
15.00.00 60/ts 143020v150000p.pdf. Accessed 8 Oct 2020

17. GCF: GCF – Global Certification Forum. https://www.globalcertificationforum.
org/. Accessed 4 Mar 2021

18. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

19. GSMA: GSMA – Coordinated Vulnerability Disclosure Programme. https://
www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/.
Accessed 4 Mar 2021

20. Hoffman, K., Kunze, R.A.: Linear Algebra. PHI Learning (2004). http://www.
worldcat.org/isbn/8120302702

21. Kalenderi, M., Pnevmatikatos, D.N., Papaefstathiou, I., Manifavas, C.: Breaking
the GSM A5/1 cryptography algorithm with rainbow tables and high-end FPGAS.
In: Koch, D., Singh, S., Tørresen, J. (eds.) 22nd International Conference on Field
Programmable Logic and Applications (FPL), Oslo, Norway, 29–31 August 2012,
pp. 747–753. IEEE (2012). https://doi.org/10.1109/FPL.2012.6339146

22. Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of
Luffa v2 components. In: Biryukov et al. [4], pp. 388–409. https://doi.org/10.1007/
978-3-642-19574-7 26

23. Koops, B.J.: Crypto law survey (2013). http://www.cryptolaw.org. Accessed 8 Oct
2020

24. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 8

25. Albrecht, M., Bard, G.: The M4RI Library. The M4RI Team (2021). http://m4ri.
sagemath.org. Accessed 4 Mar 2021

26. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory
15(1), 122–127 (1969). https://doi.org/10.1109/TIT.1969.1054260

27. McFarland, R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory
Ser. A 15(1), 1–10 (1973). https://doi.org/10.1016/0097-3165(73)90031-9

28. MediaTek: Test Vector GEA1/2 – MediaTek-HelioX10-Baseband.
https://github.com/Dude100/MediaTek-HelioX10-Baseband/blob/
591772a0d659ef0f7bba1953d18f8fe7c18b11de/(FDD)MT6795.MOLY.LR9.W1423.
MD.LWTG.MP.V24/driver/cipher/include/gcu ut.h. Accessed 4 Mar 2021

29. Nohl, K., Melette, L.: GPRS intercept: Wardriving your country. Chaos
Communication Camp (2011). Slides http://events.ccc.de/camp/2011/Fahrplan/
attachments/1868 110810.SRLabs-Camp-GRPS Intercept.pdf. Accessed 8 Oct
2020. Recorded talk https://media.ccc.de/v/cccamp11-4504-gprs intercept-en#
t=1744. Accessed 8 Oct 2020

30. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

https://www.etsi.org/deliver/etsi_tr/101300_101399/101375/01.01.01_60/tr_101375v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/101300_101399/101375/01.01.01_60/tr_101375v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/143000_143099/143020/15.00.00_60/ts_143020v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/143000_143099/143020/15.00.00_60/ts_143020v150000p.pdf
https://www.globalcertificationforum.org/
https://www.globalcertificationforum.org/
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/
http://www.worldcat.org/isbn/8120302702
http://www.worldcat.org/isbn/8120302702
https://doi.org/10.1109/FPL.2012.6339146
https://doi.org/10.1007/978-3-642-19574-7_26
https://doi.org/10.1007/978-3-642-19574-7_26
http://www.cryptolaw.org
https://doi.org/10.1007/978-3-642-10366-7_8
http://m4ri.sagemath.org
http://m4ri.sagemath.org
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1016/0097-3165(73)90031-9
https://github.com/Dude100/MediaTek-HelioX10-Baseband/blob/591772a0d659ef0f7bba1953d18f8fe7c18b11de/(FDD)MT6795.MOLY.LR9.W1423.MD.LWTG.MP.V24/driver/cipher/include/gcu_ut.h
https://github.com/Dude100/MediaTek-HelioX10-Baseband/blob/591772a0d659ef0f7bba1953d18f8fe7c18b11de/(FDD)MT6795.MOLY.LR9.W1423.MD.LWTG.MP.V24/driver/cipher/include/gcu_ut.h
https://github.com/Dude100/MediaTek-HelioX10-Baseband/blob/591772a0d659ef0f7bba1953d18f8fe7c18b11de/(FDD)MT6795.MOLY.LR9.W1423.MD.LWTG.MP.V24/driver/cipher/include/gcu_ut.h
http://events.ccc.de/camp/2011/Fahrplan/attachments/1868_110810.SRLabs-Camp-GRPS_Intercept.pdf
http://events.ccc.de/camp/2011/Fahrplan/attachments/1868_110810.SRLabs-Camp-GRPS_Intercept.pdf
https://media.ccc.de/v/cccamp11-4504-gprs_intercept-en#t=1744
https://media.ccc.de/v/cccamp11-4504-gprs_intercept-en#t=1744
https://doi.org/10.1007/978-3-540-45146-4_36


Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 183

31. osmocom: osmocom – Cellular Network Infrastructure. https://osmocom.org/
projects/cellular-infrastructure. Accessed 4 Mar 2021

32. Rothaus, O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305
(1976). https://doi.org/10.1016/0097-3165(76)90024-8

33. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 22

34. Schneier, B.: Applied Cryptography - Protocols, Algorithms, and Source Code in
C, 2nd edn. Wiley (1996). http://www.worldcat.org/oclc/32311687

35. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) algorithm for certain np-
complete problems. SIAM J. Comput. 10(3), 456–464 (1981). https://doi.org/10.
1137/0210033

36. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. Comput. 34(1), 81–85 (1985). https://doi.org/10.1109/TC.1985.1676518

37. The Sage Developers: SageMath, the Sage Mathematics Software System (2020).
https://www.sagemath.org

https://osmocom.org/projects/cellular-infrastructure
https://osmocom.org/projects/cellular-infrastructure
https://doi.org/10.1016/0097-3165(76)90024-8
https://doi.org/10.1007/978-3-642-21702-9_22
http://www.worldcat.org/oclc/32311687
https://doi.org/10.1137/0210033
https://doi.org/10.1137/0210033
https://doi.org/10.1109/TC.1985.1676518
https://www.sagemath.org


Implementation Issues



Pre-computation Scheme of Window
τNAF for Koblitz Curves Revisited

Wei Yu1(B) and Guangwu Xu2,3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

yuwei@iie.ac.cn, yuwei 1 yw@163.com
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry

of Education, Qingdao 266237, Shandong, China
gxu4sdq@sdu.edu.cn

3 School of Cyber Science and Technology, Shandong University, Qingdao 266237,
Shandong, China

Abstract. Let Ea/F2 : y2 + xy = x3 + ax2 + 1 be a Koblitz curve.
The window τ -adic non-adjacent form (window τNAF) is currently
the standard representation system to perform scalar multiplications
on Ea/F2m utilizing the Frobenius map τ . This work focuses on the
pre-computation part of scalar multiplication. We first introduce μτ̄ -
operations where μ = (−1)1−a and τ̄ is the complex conjugate of
τ . Efficient formulas of μτ̄ -operations are then derived and used in a
novel pre-computation scheme. Our pre-computation scheme requires
6M+ 6S, 18M+ 17S, 44M+ 32S, and 88M+ 62S (a = 0) and 6M+ 6S,
19M+ 17S, 46M+ 32S, and 90M+ 62S (a = 1) for window τNAF with
widths from 4 to 7 respectively. It is about two times faster, compared to
the state-of-the-art technique of pre-computation in the literature. The
impact of our new efficient pre-computation is also reflected by the signif-
icant improvement of scalar multiplication. Traditionally, window τNAF
with width at most 6 is used to achieve the best scalar multiplication.
Because of the dramatic cost reduction of the proposed pre-computation,
we are able to increase the width for window τNAF to 7 for a better scalar
multiplication. This indicates that the pre-computation part becomes
more important in performing scalar multiplication. With our efficient
pre-computation and the new window width, our scalar multiplication
runs in at least 85.2% the time of Kohel’s work (Eurocrypt’2017) com-
bining the best previous pre-computation. Our results push the scalar
multiplication of Koblitz curves, a very well-studied and long-standing
research area, to a significant new stage.

Keywords: Elliptic curve cryptography · Koblitz curve · Scalar
multiplication · Window τNAF · Pre-computation

1 Introduction

Elliptic curve cryptography has drawn extensive attention from the literature
[24,29]. The family of Koblitz curves, proposed by Koblitz in [12], are non-
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 187–218, 2021.
https://doi.org/10.1007/978-3-030-77886-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_7


188 W. Yu and G. Xu

supersingular curves defined over F2. The arithmetic of Koblitz curves has been
of theoretical and practical significance since the start of elliptic curve cryp-
tography. 4 Koblitz curves were recommended to be used in digital signature,
key-establishment, and key management by National Institute of Standards and
Technology (NIST) FIPS 186-5(draft) [20]–“digital signature standard” (Octo-
ber of 2019), NIST special publication 800-56A (revision 3)–“recommendation
for pair-wise key-establishment schemes using discrete logarithm cryptography”
[3] (April of 2018), and NIST special publication 800-57 Part 1 (revision 5)–
“recommendation for key management, part 1: general” [2] (May of 2020) respec-
tively. These indicate that Koblitz curves can still be useful in practice.

Koblitz curves has a computational advantage that a faster scalar multipli-
cation can be achieved by replacing point doubling with the Frobenius map. For
each bit a ∈ {0, 1}, the Koblitz curves are given as

Ea : y2 + xy = x3 + ax2 + 1.

These curves can be considered over the binary extension F2m as m varies.
Since Ea(F2) is a subgroup of Ea(F2m), one sees that |Ea(F2m)| = |Ea(F2)| · p
for some positive integer p. It is of cryptographic interest to choose suitable
m that makes p a prime. In the rest of our discussion, we just consider cases
that p is a prime. In the range of 160 < m < 2000, |E0(F2m )|

|E0(F2)| is a prime when

m = 233, 239, 277, 283, 349, 409, 571, 1249, and 1913, and |E1(F2m )|
|E1(F2)| is a prime

when m = 163, 283, 311, 331, 347, 359, 701, 1153, 1597, and 1621. Four Koblitz
curves with a = 0 have been recommended by NIST [2,3,20]: K-233(a = 0),
K-283(a = 0), K-409(a = 0), and K-571(a = 0). Koblitz curves with a = 1 over
F2163 , F2283 , F2359 , and F2701 denoted by K1-163(for legacy-use only), K1-283,
K1-359, and K1-701 respectively are also investigated in this work.

The Frobenius map τ is an endomorphism of Ea(F2m) defined by τ(x, y) =
(x2, y2) and τ(O) = O where O is the point at infinity. Let μ = (−1)1−a, then
for each point P in Ea(F2m),

τ2(P ) + 2P = μτ(P ).

This means that τ can be interpreted as a complex number satisfying τ2 −
μτ + 2 = 0. The Euclidean domain Z[τ ] = Z + τZ can be identified as a set of
endomorphisms of Ea in the sense that (g + hτ)P = gP + hτ(P ).

Let M be the main subgroup of Ea(F2m), namely the subgroup of order p.
M is an annihilating subgroup of δ = τm−1

τ−1 in the sense that δ(P ) = O for every
P ∈ M . We also note that N(δ) = p where N is the norm function on Z[τ ]
defined as N(g + hτ) = |g + hτ |2 = g2 + μgh + 2h2. It is easy to see that for an
integer n and an element ρ ∈ Z[τ ], if ρ ≡ n (mod δ), then ρP = nP holds for
all P ∈ M .

Koblitz [12] proposed a method of computing scalar multiplication nP with
P from the main subgroup of a Koblitz curve by representing n =

∑l−1
i=0 εiτ

i with
εi ∈ {0, 1} and evaluating

∑l−1
i=0 εiτ

i(P ). In [26], Solinas further developed an
extremely efficient window τNAF to compute nP . Refinements and extensions
of Solinas’ method were obtained by Blake, Murty and Xu [5,6].

The procedure of window τNAF can be described as four steps [5,27].



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 189

1. Reduction. Find a suitable ρ ∈ Z[τ ] satisfying ρ ≡ n (mod δ).
2. Window τNAF with width w. We shall just consider the nontrivial case of

w ≥ 3. Let Iw = {1, 3, . . . , 2w−1 − 1}. For each i ∈ Iw, we choose an element
ci from the set Ri = {g + hτ |g + hτ ≡ i (mod τw), N(g + hτ) < 2w}, and
construct the coefficient set C = {c1, c3, . . . , c2w−1−1}. The window τNAF of
n is the following sparse τ expansion of its reduction ρ:

ρ =
l−1∑

i=0

εiuiτ
i,

where εi ∈ {−1, 1} and ui ∈ C ∪ {0} with the property that any set
{uk, uk+1, . . . , uk+w−1} contains at most one nonzero element.

3. Pre-computation. Compute Qi = ciP for each i ∈ Iw.
4. Computing nP . Employ Horner’s algorithm to calculate nP using window

τNAF and pre-computation.

Pre-computation plays a significant role in improving the efficiency of scalar
multiplications using window τNAF. For window τ -NAF with widths w, 2w−2−1
pre-computed points require to be stored in memory. Several ways of designing
pre-computations have been proposed by Solinas [26], Blake, Murty and Xu [5],
and Hankerson, Menezes, and Vanstone [10]. In fact, [5] established a framework
under which pre-computations for window τNAF can be made more flexible.
This framework also enables a rigorous proof of termination of window τNAF.
In [6], the authors investigated fast scalar multiplications for larger family of
elliptic curves by developing non-adjacent radix-τ expansions for integers in
other Euclidean imaginary quadratic number fields. Later, Trost and Xu [27]
introduced an optimal pre-computation of window τNAF that improves previ-
ous results. However, the main objective of the pre-computation in [27] is its
mathematically natural and clean forms. The optimality is based on the fact
that it requires 2w−2 − 1 point additions and two evaluations of the Frobenius
map τ . They employed λ-coordinates [23] to achieve an improvement on perfor-
mance of scalar multiplication and provided a convenient structure for further
work.

In 2017, Kohel introduced a twisted μ4-normal form elliptic curve over a
binary field for its efficiency in [15]. Kohel proved that twisted μ4-normal form
elliptic curves cover all the elliptic curves over binary fields recommended by
NIST. A Koblitz curve using twisted μ4-normal form is called a μ4-Koblitz
curve. Because of its promising computational advantage, it is of great inter-
est to consider the use of μ4-Koblitz curves in the window τNAF, especially for
the pre-computation part.

Let us summarize the cost of existing pre-computation schemes for window
τ -NAF with widths w = 4, 5, and 6 on μ4-Koblitz curves (for w = 3, P −μτP is
the only pre-computation). We write I, M, and S for the costs of an inversion, a
multiplication, and a squaring in F2m respectively. The pre-computation scheme
in [26] covers w = 4 and 5 only. The corresponding costs are 15M+ 15S and
38M+ 38S with a = 0 and those are 18M+ 15S and 45M+ 38S with a = 1. In



190 W. Yu and G. Xu

[10], w = 4, 5, and 6 are considered. The corresponding costs are 15M+ 15S,
40M+ 35S, and 89M+ 67S with a = 0 and those are 18M+ 15S, 47M+ 35S,
and 104M+ 67S with a = 1. The pre-computation scheme constructed in [27]
has improved the above costs to 15M+ 12S, 39M+ 20S, and 87M+ 36S with
a = 0 and 18M+ 12S, 46M+ 20S, and 102M+ 36S with a = 1 for w = 4, 5,
and 6.

Our Contributions. The main purpose of this work is twofold. Firstly, we
develop an efficient way of calculating pre-computation for the window τNAF
on Koblitz curves; and secondly, we propose to use a bigger width in the window
τNAF together with our pre-computation to achieve a significant speedup on
scalar multiplication. By using a μ4-Koblitz curve, our results show a great
improvement over previous results. The main contributions are described as
follows.

1. Let τ̄ = μ − τ be the complex conjugate of τ and P be a rational point on a
Koblitz curve. Both Avanzi, Dimitrov, Doche, and Sica [1] and Doche, Kohel,
and Sica [8] used complex multiplication τ̄P in double-base representation to
speed up scalar multiplication. Inspired by their elegant results, we introduce
a new radix μτ̄ . Under this radix, we design new formulas for μτ̄P which only
requires 2M+ 2S. Trost and Xu proved that one point addition is necessary
for computing each pre-computation point Qi, i ∈ {3, 5, . . . , 2w−1 − 1} [27].
We use μτ̄ -operations to replace point additions or mixed additions in pre-
computation scheme. As the cost of one full addition is 7M+ 2S and that of
one mixed addition is 6M+ 2S for a = 0 and those are 8M+ 2S and 7M+ 2S
respectively for a = 1, our formulas of μτ̄P save quite a few field operations.
Our formulas for μτ̄P are part of doubling formulas, which may lead to a
simplicity of the implementation.

2. We propose a plane search to generate Ri whose elements are with the
form of g + hμτ . To take full advantage of our μτ̄ -operations, we choose
one suitable ci ∈ Ri for each i ∈ Iw generated by the plane search. A
novel pre-computation scheme is developed to save more field operations.
Our pre-computation scheme requires 6M+ 6S, 18M+ 17S, 44M+ 32S, and
88M+ 62S (a = 0) and 6M+ 6S, 19M+ 17S, 46M+ 32S, and 90M+ 62S
(a = 1) for window τNAF with widths from 4 to 7 respectively. The cost
of Solinas’ pre-computation scheme, that of Hankerson, Menezes, and Van-
stone’s pre-computation scheme, that of Trost and Xu’s pre-computation
scheme, and that our pre-computation scheme on μ4-Koblitz curves with
a = 0 and a = 1 are shown in Table 1. The practical implementations
show that our pre-computation is two times faster than Trost and Xu’s pre-
computation and are consistent with our theoretical analysis.

3. In window τNAF, a bigger window width corresponds to a sparser τ expan-
sion for scalar multiplication. However, one should not make the width too
big as it would increase the pre-computation cost and affect the overall per-
formance. Currently, the state-of-the-art pre-computation scheme suggests



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 191

to use width at most 6 to achieve the best efficiency of scalar multiplica-
tion. Our pre-computation reduces the cost by half in most practical cases,
namely, scheme with width 7 is about the same as the cost of existing pre-
computation scheme with width 6. This allows us to use a bigger window
width (e.g., 7) to get a faster scalar multiplication. The balance between
the pre-computation part and the other part of scalar multiplication shows
that the pre-computation takes a bigger ratio of scalar multiplication than
before. This is useful especially for scalar multiplication with unfixed point.
Constant-time scalar multiplication using our novel pre-computation on a
μ4-Koblitz curve saves up to 33.5% compared to that using Trost and Xu’s
pre-computation in López-Dahab (LD) coordinates [19], saves up to 28.6%
compared to Trost and Xu’s original work [27], and saves up to 14.8% com-
pared to Kohel’s work [15] combining Trost and Xu’s pre-computation. It is
about 4 times faster compared to the state-of-the-art non-pre-computation-
based constant-time scalar multiplication in LD coordinates, about 4 times
faster in λ-coordinates, and over 3 times faster on a μ4-Koblitz curve.

Table 1. Cost of pre-computations on a μ4-Koblitz curve

w = 4 w = 5 w = 6

a = 0 Solinas [26] 15M+ 15S 38M+ 38S –

Hankerson, Menezes, Vanstone[10] 15M+ 15S 40M+ 35S 89M+ 67S

Trost, Xu [27] 15M+ 12S 39M+ 20S 87M+ 36S

Ours 6M+ 6S 18M+ 17S 44M+ 32S

a = 1 Solinas [26] 18M+ 15S 45M+ 38S –

Hankerson, Menezes, Vanstone[10] 18M+ 15S 47M+ 35S 104M+ 67S

Trost, Xu [27] 18M+ 12S 46M+ 20S 102M+ 36S

Ours 6M+ 6S 19M+ 17S 47M+ 32S

This paper is organized as follows. In Sect. 2, we present previous pre-
computation schemes of window τNAF for Koblitz curves. In Sect. 3, we propose
new formulas of P ± Q and μτ̄ -operations. In Sect. 4, we design a novel pre-
computation. In Sect. 5, scalar multiplications using different pre-computation
schemes are analyzed. In Sect. 6, we compare our pre-computation scheme to
other pre-computation schemes and compare scalar multiplications in experi-
mental implementations. Finally, we discuss our pre-computation in Sect. 7.

2 Preliminary

We shall include some technical preparation and three existing designs of pre-
computations in this section.



192 W. Yu and G. Xu

2.1 Determine τw |(g + hτ )

In the later discussion, we need a convenient criterion to determine whether
τw|(g + hτ) holds in Z[τ ]. This can be done by Lucas sequence in [26] or by the
approach suggested in [6] based on Hensel’s lifting procedure [13].

Using Lucas sequence or Hensel’s lifting algorithm, we get s2 = 2μ, s3 = 6μ,
s4 = 6μ, s5 = 6μ, s6 = 38μ, s7 = 38μ, s8 = 166μ, s9 = 422μ, and s10 = 934μ.
When w ≥ 2, sw ≡ 0 (mod 2) and sw/2 is odd.

It has been proved in [6,26] that for each positive integer w,

τw|(g + hτ) ⇔ 2w|(g + hsw). (1)

2.2 Costs of Point Operations on Koblitz Curves

We summarize the costs of point operations on Koblitz curves using LD coor-
dinates [19], λ-coordinates [23], and those on a μ4-Koblitz curve [15] shown as
Table 2. We neglect the cost of a field addition since it involves only bitwise
XORs.

Table 2. Costs of point operations on Koblitz curves

Coordinates τ(P ) τ -affine operation Addition Mixed addition∗

LD coordinates [16,19] 3S 2S 13M+4S 8M+5S

λ-coordinates [23] 3S 2S 11M+2S 8M+2S

μ4-Koblitz curve (a = 0) [14] 4S 3S 7M+ 2S 6M+2S

μ4-Koblitz curve (a = 1) [15,17] 4S 3S 8M+ 2S 7M+2S
∗ Let P , Q be rational points in the main subgroup M . τ(P ) is denoted by τ -affine
operation or P + Q is denoted by mixed addition when the Z-coordinate of P is 1 using
LD coordinates, that is 1 using λ-coordinates, or X2-coordinate of P is 1 on a μ4-Koblitz
curve.

Let a ∈ {0, 1}. A Koblitz curve y2 +xy = x3 +ax2 +1 can be translated into
a μ4-Koblitz curve X2

0 + X2
2 = X1X3 + aX0X2, X2

1 + X2
3 = X0X2 via the map

(x, y) �→ (x2 : x2 + y : 1 : x2 + y + x) and the inverse is (X0 : X1 : X2 : X3) �→
(X1+X3 : X0+X1 : X2) [15]. The identity of a μ4-Koblitz curve is (1 : 1 : 0 : 1).
The inverse morphism is [−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1). The
projective point (X0 : X1 : X2 : X3) on a μ4-Koblitz curve can be translated into
an affine point (X0

X2
: X1

X2
: 1 : X3

X2
). τ(X0 : X1 : X2 : X3) = (X2

0 : X2
1 : X2

2 : X2
3 )

and τ2(P ) + 2P = μτ(P ) where μ = (−1)1−a. On a μ4-Koblitz curve, a τ -
operation requires 4S and a τ -affine operation requires 3S.

In particular, μ4-Koblitz curve with a = 0 corresponds to the curve given
in Theorem 4 of [14] with c = 1. In the case of a = 0, one full point addition
requires 7M+ 2S, one mixed addition requires 6M+ 2S, and one point addition
with both affine points (X2-components of both summands can be set to 1)
requires 5M+ 2S [14]. In the case of a = 1, one full point addition requires



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 193

8M+ 2S, one mixed addition requires 7M+ 2S, and one point addition with
both affine points requires 6M+ 2S [15,17].

The LD coordinates system and λ-coordinates system, proposed by López
and Dahab [19] and by Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez [23]
respectively, are also efficient coordinate systems for binary elliptic curves. In
Appendixes B and C, we will utilize our pre-computation scheme on Koblitz
curves using LD coordinates and λ-coordinates.

2.3 Previous Pre-computation Schemes

We will consider the efficiency of pre-computation schemes on a μ4-Koblitz curve.

Solinas’ Pre-computation [26]. Solinas suggested an efficient design of the
pre-computation and gave an example shown in Table 3. Computing Q3 =
−P + τ2P requires one point addition with both affine points and two τ -affine
operations at the total cost of (5M+ 2S) + 6S. The other costs are similarly
computed in Table 3 and in the following pre-computation schemes. The costs
of Solinas’ pre-computation are 15M+ 15S and 38M+ 38S with a = 0 and
18M+ 15S and 45M+ 38S with a = 1 for window τNAF with widths 4 and 5
respectively.

Table 3. Pre-computation scheme in [26]

a = 0 a = 1 cost(a = 0)

w = 4 15M+15S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S

Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S

Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

w = 5 38M+38S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S

Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S

Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

Q9 = P + τ3Q5(c9 = −2τ − 3) Q9 = P − τ3Q5(c9 = 2τ − 3) (6M+2S)+12S

Q11 = −τ2Q5 − P (c11 = −2τ − 1) Q11 = −τ2Q5 − P (c11 = 2τ − 1) 6M+2S

Q13 = −τ2Q5 + P (c13 = −2τ + 1) Q13 = −τ2Q5 + P (c13 = 2τ + 1) 6M+2S

Q15 = −P + τ4P (c15 = 3τ + 1) Q15 = −P + τ4P (c15 = −3τ + 1) (5M+2S)+3S

Hankerson, Menezes, and Vanstone’s Pre-computation [10]. Hankerson,
Menezes, and Vanstone presented an improved design of pre-computation shown
in Table 4. The costs of Hankerson, Menezes, and Vanstone’s pre-computation
are 15M+15S, 40M+35S, and 89M+75S with a = 0 and 18M+15S, 47M+35S,
and 104M+75S with a = 1 for window τNAF with widths 4, 5, and 6 respec-
tively.

Trost and Xu’s Pre-computation [27]. Trost and Xu proposed a mathemat-
ically natural and clean form of pre-computation. The pre-computation requires



194 W. Yu and G. Xu

Table 4. Pre-computation scheme in [10]

a = 0 a = 1 cost(a = 0)

w = 4 15M+15S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S

Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S

Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

w = 5 40M+35S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+6S

Q5 = P + τ2P (c5 = −τ − 1) Q5 = P + τ2P (c5 = τ − 1) 5M+2S

Q7 = −P + τ3P (c7 = −τ + 1) Q7 = −P − τ3P (c7 = τ + 1) (5M+2S)+3S

Q9 = P + τ3Q5(c9 = −2τ − 3) Q9 = P − τ3Q5(c9 = 2τ − 3) (6M+2S)+12S

Q11 = −τ2Q5 − P (c11 = −2τ − 1) Q11 = −τ2Q5 − P (c11 = 2τ − 1) 6M+2S

Q13 = −τ2Q5 + P (c13 = −2τ + 1) Q13 = −τ2Q5 + P (c13 = 2τ + 1) 6M+2S

Q15 = −Q5 + τ2Q5(c15 = 3τ + 1) Q15 = −Q5 + τ2Q5(c15 = −3τ + 1) 7M+2S

w = 6 89M+75S

Q23 = −P − τ3P (c23 = τ − 3) Q23 = −P + τ3P (c23 = −τ − 3) (5M+2S)+9S

Q25 = P − τ3P (c25 = τ − 1) Q25 = P + τ3P (c25 = −τ − 1) 5M+2S

Q27 = −P − τ2P (c27 = τ + 1) Q27 = −P − τ2P (c27 = −τ + 1) 5M+2S

Q29 = P − τ2P (c29 = τ + 3) Q29 = P − τ2P (c29 = −τ + 3) 5M+2S

Q3 = τ2Q25 − P (c3 = 3) Q3 = τ2Q25 − P (c3 = 3) (6M+2S)+8S

Q5 = τ2Q25 + P (c5 = 5) Q5 = τ2Q25 + P (c5 = 5) 6M+2S

Q7 = −τ3Q27 − P (c7 = −2τ − 5) Q7 = τ3Q27 − P (c7 = 2τ − 5) (6M+2S)+12S

Q9 = −τ3Q27 + P (c9 = −2τ − 3) Q9 = τ3Q27 + P (c9 = 2τ − 3) 6M+2S

Q11 = τ2Q27 − P (c11 = −2τ − 1) Q11 = τ2Q27 − P (c11 = 2τ − 1) 6M+2S

Q13 = τ2Q27 + P (c13 = −2τ + 1) Q13 = τ2Q27 + P (c13 = 2τ + 1) 6M+2S

Q15 = −τ2Q27 + Q27(c15 = 3τ + 1) Q15 = −τ2Q27 + Q27(c15 = −3τ + 1) 7M+2S

Q17 = −τ2Q27 + Q29(c17 = 3τ + 3) Q17 = −τ2Q27 + Q29(c17 = −3τ + 3) 7M+2S

Q19 = −τ2Q3 − P (c19 = 3τ + 5) Q19 = −τ2Q3 − P (c19 = −3τ + 5) (6M+2S)+8S

Q21 = τ2Q29 + P (c21 = −4τ − 3) Q21 = τ2Q29 + P (c21 = 4τ − 3) (6M+2S)+8S

Q31 = τ2Q25 + Q27(c31 = τ + 5) Q31 = τ2Q25 + Q27(c31 = −τ + 5) 7M+2S

the least number of point additions and τ evaluations. We include their pre-
computation scheme for window τNAF with widths 4, 5, and 6 in Table 5. The
costs are 15M+12S, 39M+20S, and 87M+36S with a = 0 and 18M+12S,
46M+20S, and 102M+36S with a = 1.

Trost and Xu did not get into field arithmetic details to speed up the
pre-computation. Our main objective of this paper is to design a novel pre-
computation and efficient formulas to achieve a great saving of scalar multipli-
cation. To implement scalar multiplication, Montgomery trick may be useful.

2.4 Montgomery Trick

Montgomery trick [7] computes simultaneously the inversions of n elements. It
requires one inversion and 3(n − 1) multiplications. Montgomery trick is pow-
erful to translate points in projective coordinates to those in affine coordinates
shown as Algorithm 1. For n points (X0i : X1i : X2i : X3i), 1 ≤ i ≤ n, we use
Montgomery trick to compute X−1

2i , and then compute (X0i

X2i
: X1i

X2i
: 1 : X3i

X2i
). This

trick translates n projective points on a μ4-Koblitz curve to those in affine coor-
dinates on a μ4-Koblitz curve. When projective points are converted to affine



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 195

Table 5. Pre-computation scheme in [27]

a = 0 a = 1 cost(a = 0)

w = 4 15M+12S

Q5 = −P − τP (c5 = −τ − 1) Q5 = −P + τP (c5 = τ − 1) (5M+2S)+3S

Q7 = P − τP (c7 = −τ + 1) Q7 = P + τP (c7 = τ + 1) 5M+2S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+3S

w = 5 39M+20S

Q5 = −P − τP (c5 = −τ − 1) Q5 = −P + τP (c5 = τ − 1) (5M+2S)+3S

Q7 = P − τP (c7 = −τ + 1) Q7 = P + τP (c7 = τ + 1) 5M+2S

Q3 = −P + τ2P (c3 = −τ − 3) Q3 = −P + τ2P (c3 = τ − 3) (5M+2S)+3S

Q9 = Q3 − τP (c9 = −2τ − 3) Q9 = Q3 + τP (c9 = 2τ − 3) 6M+2S

Q11 = Q5 − τP (c11 = −2τ − 1) Q11 = Q5 + τP (c11 = 2τ − 1) 6M+2S

Q13 = Q7 − τP (c13 = −2τ + 1) Q13 = Q7 + τP (c13 = 2τ + 1) 6M+2S

Q15 = −Q11 + τP (c15 = 3τ + 1) Q15 = −Q11 − τP (c15 = −3τ + 1) 6M+2S

w = 6 87M+36S

Q27 = P + τP (c27 = τ + 1) Q27 = P − τP (c27 = −τ + 1) (5M+2S)+3S

Q25 = −P + τP (c25 = τ − 1) Q25 = −P − τP (c25 = −τ − 1) 5M+2S

Q29 = P − τ2P (c29 = τ + 3) Q29 = P − τ2P (c29 = −τ + 3) (5M+2S)+3S

Q3 = Q29 − τP (c3 = 3) Q3 = Q29 + τP (c3 = 3) 6M+2S

Q9 = −Q29 − τP (c9 = −2τ − 3) Q9 = −Q29 + τP (c9 = 2τ − 3) 6M+2S

Q31 = Q3 − τ2P (c31 = τ + 5) Q31 = Q3 − τ2P (c31 = −τ + 5) 6M+2S

Q5 = Q31 − τP (c5 = 5) Q5 = Q31 + τP (c5 = 5) 6M+2S

Q7 = −Q31 − τP (c7 = −2τ − 5) Q7 = −Q31 + τP (c7 = 2τ − 5) 6M+2S

Q11 = −Q27 − τP (c11 = −2τ − 1) Q11 = −Q27 + τP (c11 = 2τ − 1) 6M+2S

Q13 = −Q25 − τP (c13 = −2τ + 1) Q13 = −Q25 + τP (c13 = 2τ + 1) 6M+2S

Q15 = −Q11 + τP (c15 = 3τ + 1) Q15 = −Q11 − τP (c15 = −3τ + 1) 6M+2S

Q17 = −Q9 + τP (c17 = 3τ + 3) Q17 = −Q9 − τP (c17 = −3τ + 3) 6M+2S

Q19 = −Q7 + τP (c19 = 3τ + 5) Q19 = −Q7 − τP (c19 = −3τ + 5) 6M+2S

Q21 = −Q17 − τP (c21 = −4τ − 3) Q21 = −Q17 + τP (c21 = 4τ − 3) 6M+2S

Q23 = −Q3 + τP (c23 = τ − 3) Q23 = −Q3 − τP (c23 = −τ − 3) 6M+2S

Algorithm 1. Montgomery trick [7]
Input: a1, a2, . . . , an

Output: b1 = a1
−1, b2 = a2

−1, . . . , bn = an
−1

Computation

1. c1 ← a1

2. for i from 2 to n
ci ← ci−1 · ai

3. d ← c−1
n

4. for i from n to 2
bi ← ci−1 · d
d ← ai · d

5. b1 ← d
6. output bi

points, we replace full point addition with mixed point addition to get a higher
efficiency of scalar multiplication when the ratio of I/M is not too high.



196 W. Yu and G. Xu

In the next section, we will propose new formulas on a μ4-Koblitz curve to
design an efficient pre-computation scheme.

3 New Formulas on μ4-Koblitz Curves

Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 : Y2 : Y3) be rational points on a
μ4-Koblitz curve. Let Uij = XiYj in the following text. Point addition P +Q on
a μ4-Koblitz curve can be calculated as
(
(U13 + U31)2 : U02U31 + U20U13 + aF : (U02 + U20)2 : U02U13 + U20U31 + aF

)

where F = (X1 + X3)(Y1 + Y3)(U02 + U20). It also can be calculated as
(
(U00 + U22)2 : U00U11 + U22U33 + aG : (U11 + U33)2 : U00U33 + U11U22 + aG

)

where G = (X1 +X3)(Y1 +Y3)(U00 +U22). This point addition requires 9M+2S
and mixed addition requires 8M+2S. The point addition with a = 0 is shown
in Lemma 1 and that with a = 1 is shown in Lemma 2.

Lemma 1 (Corollary 5 in [14]). Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 :
Y2 : Y3) be rational points on a μ4-Koblitz curve with a = 0. Point addition
P + Q can be computed at the cost of 7M+2S as

(
(U00 + U22)2 : U00U11 + U22U33 : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00U11 + U22U33) .

Mixed addition costs 6M+2S. Point addition with both affine points costs
5M+2S.

Lemma 2 (Theorem 1 in [17]). Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 : Y2 :
Y3) be rational points on a μ4-Koblitz curve with a = 1. Point addition P + Q
can be computed at the cost of 8M+2S as

(
(U00 + U22)2 : U00(U11 + H) + U22(U33 + H) : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00(U11 + H) + U22(U33 + H)) ,

where H = (X1 + X3)(Y1 + Y3). Mixed addition costs 7M+2S. Point addition
with both affine points costs 6M+2S.

Jarvinen, Forsten, and Skytta first proposed P ± Q to improve the efficiency
of scalar multiplication on Koblitz curves in affine coordinates [11]. Longa and
Gebotys used P ± Q to improve the efficiency of pre-computation on elliptic
curves over a prime field [18]. To avoid the expensive inversion, we will show the
formulas of P ±Q on μ4-Koblitz curves in Theorem 1. Avanzi, Dimitrov, Doche,
and Sica [1] first introduced τ̄ to improve the efficiency of scalar multiplication.
They noticed that 2 = τ τ̄ and computed τ̄P requiring a point doubling and
three square roots. Doche, Kohel, and Sica [8] proposed a new way to compute
τ̄P which induces a speedup on the scalar multiplication using double-base rep-
resentation over 15% in LD coordinates. Inspired by their works, we introduce
a new radix μτ̄ to speed up the pre-computation stage of scalar multiplication
using window τNAF shown in Theorem 1.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 197

Theorem 1. Let P (X0 : X1 : X2 : X3) and Q(Y0 : Y1 : Y2 : Y3) be rational
points on a μ4-Koblitz curve. The two operations of P +Q and P −Q ((P ±Q)-
operation) can be computed at the total cost of 10M+3S (a = 0) and 11M+3S
(a = 1) when X2 = 1, and μτ̄P are calculated at the cost of 2M+2S.

Proof. Let P (X0 : X1 : X2 : X3), Q(Y0 : Y1 : Y2 : Y3), and −Q(Y0 : Y3 : Y2 : Y1).
When a = 0, P + Q and P − Q are computed as

P + Q =
(
(U00 + U22)2 : U00U11 + U22U33 : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00U11 + U22U33) ,

P − Q =
(
(U11 + U33)2 : U02U33 + U20U11 : (U02 + U20)2 :

(U02 + U20)(U11 + U33) + U02U33 + U20U11) .

(2)

Notice that U22 = Y2 and U20 = Y0, the total cost of computing P ± Q is
10M+3S.

When a = 1, P + Q and P − Q are computed as

P + Q =
(
(U00 + U22)2 : U00(U11 + H) + U22(U33 + H) : (U11 + U33)2 :

(U00 + U22)(U11 + U33) + U00(U11 + H) + U22(U33 + H)) ,

P − Q =
(
(U11 + U33)2 : U02(U33 + H) + U20(U11 + H) : (U02 + U20)2 :

(U02 + U20)(U11 + U33) + U02(U33 + H) + U20(U11 + H)) ,

(3)

where H = (X1 + X3)(Y1 + Y3). Since U22 = Y2 and U20 = Y0, the total cost of
computing P ± Q is 11M+3S.

Notice that 2 = τ τ̄ . We have 2μP = τ(μτ̄P ).
It is pointed out that there is one typographical error in Sect. 6 of [15], the

correct doubling formulas are in Kohel’s slides [15] where 2μP is computed as
(
(X0 + X2)4 : (X0X3 + X1X2)2 : (X1 + X3)4 : (X0X1 + X2X3)2

)
.

Then

μτ̄P =
(
(X0 + X2)2 : (X0X3 + X1X2) : (X1 + X3)2 : (X0X1 + X2X3)

)
. (4)

When a = 0, since (X0X3 + X1X2) = (X0 + X1)(X2 + X3) + (X0 + X2)2 +
(X1 + X3)2 and (X0X1 + X2X3) = (X0 + X2)(X1 + X3) + (X0X3 + X1X2), the
cost of μτ̄P is 2M+2S.

When a = 1, since (X0X3 +X1X2) = (X0 +X1)(X2 +X3)+ (X0 +X2)2 and
(X0X1 + X2X3) = (X0 + X2)(X1 + X3) + (X0X3 + X1X2), the cost of μτ̄P is
2M+2S.

Since separate computations of P + Q and P − Q require 12M+4S (a = 0)
and 14M+4S (a = 1), our formulas save 2M+S (a = 0) and 3M+S (a = 1).
In the case of a = 0, using our formulas of P ± Q, Solinas’ pre-computation
scheme saves 2M+S for w = 4 and 4M+2S for w = 5; Hankerson, Menezes, and
Vanstone’s pre-computation scheme saves 2M+S for w = 4, 4M+2S for w = 5,



198 W. Yu and G. Xu

and 10M+5S for w = 6; Trost and Xu’s pre-computation scheme saves 4M+2S
for w = 6.

Our formulas of μτ̄ -operation save 4M(a = 0) and 5M(a = 1). The costs
of point operations including (P ± Q)-operation and μτ̄P are summarized in
Table 6. Notice that formulas of (P ± Q)-operation are the two forms of the
formulas of point addition and formulas of μτ̄P are part of the formulas of point
doubling. This leads to software and hardware implementations with simplicity.
These new efficient point operations will be used to improve the arithmetics on
a μ4-Koblitz curve.

4 A Novel Pre-computation Scheme

Solinas’ pre-computation in Section 7.4 of [26], Hankerson, Menezes, and Van-
stone’s pre-computation shown as Tables 3.9 and 3.10 in [10], and Trost and Xu’s
pre-computation shown as Tables 5 and 6 in [27] all have a pre-computation
scheme on E0 and another pre-computation scheme on E1. In this section, we
will introduce a unified pre-computation without treating a = 0 and a = 1 sep-
arately. Our method is to write pre-computations with variable curve coefficient
hidden in μ. Let ci ∈ Ri and ci = g + hμτ for i ∈ Iw. Then Qi = ciP works
on both E0 and E1. We call Qi = ciP a unified pre-computation scheme when
ci has the form g + hμτ for all i ∈ Iw. Trost and Xu’s pre-computation can be
unified. Take w = 4 for example, we have Q5 = −P + μτP , Q7 = P + μτP ,
Q3 = −3P +μτP . Also Solinas’ pre-computation, and Hankerson, Menezes, and
Vanstone’s pre-computation can be unified.

Table 6. Costs of point operations on a μ4-Koblitz curve

Point operation Cost (a = 0) Cost (a = 1)

(P ± Q)-operation (this work) 10M+3S (Eq. (2)) 11M+3S (Eq. (3))

μτ̄P (this work) 2M+2S (Eq. (4)) 2M+2S (Eq. (4))

To design an efficient pre-computation, some properties of Ri, i ∈ Iw are
useful.

4.1 Basic Lemmas

Recall that for w ≥ 3, Iw = {1, 3, · · · , 2w−1 − 1} and Ri consists of the elements
of the class i modulo τw whose norms are smaller than 2w for each i ∈ Iw. Since
elements of Iw are odd integers, we will work on the subset (2Z+1)+Zτ ⊂ Z[τ ]
as Ri ⊂ (2Z + 1) + Zτ .

Lemma 3. We have the following facts:

1. If g + hτ ∈ Ri for some i ∈ Iw, then g − hτ /∈ Ri for any h �= 0.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 199

2. If g + hτ ∈ Ri for some i ∈ Iw, then g′ + hτ /∈ Ri for any g′ ∈ Z \ {g}.
3. For any g + hτ ∈ (2Z + 1) + Zτ , there exists an i ∈ Iw such that i ≡ g + hτ

(mod τw) or −i ≡ g + hτ (mod τw).

Proof. From [27], we know that if g + hτ ∈ Ri, then |g| < 2
w+2

2√
3

and |h| < 2
w
2 .

(1) Assume both g + hτ and g − hτ are in Ri, then τw|2hτ . By Eq. (1), this
implies that 2w|2hsw and hence 2w−2|h as sw

2 is odd. On the other hand, since
N(g ± hτ) < 2w, we see that h2 < 2w−1. This reaches a contradiction.

(2) Assume both g+hτ and g′+hτ are in Ri for some g′ �= g, then τw|(g−g′).

We get 2w|(g−g′) by Eq. (1). Since |g|, |g′| < 2
w+2

2√
3

, then |g−g′| < 2 · 2
w+2

2√
3

≤ 2w.
We get a contradiction again.

(3) Since g + hsw is odd, it must be in one of the congruence classes of
−2w−1 + 1,−2w−1 + 3, . . . ,−3,−1, 1, 3, . . . , 2w−1 − 3, 2w−1 − 1 modulo 2w.

We can show that the number of elements of Ri is well bounded.

Lemma 4. Let i ∈ Iw, then #Ri ≤
⌊
2

w+2
2

⌋
.

Proof. If g + hτ ∈ Ri, then |h| < 2
w
2 . So the cardinality of T = {h ∈ Z|g + hτ ∈

Ri for some odd number g} is less than 2 · 2
w
2 . By Lemma 3, for each h ∈ T ,

there is only one g available such that g +hτ ∈ Ri. Thus #Ri = #T ≤
⌊
2

w+2
2

⌋
.

If g + h1τ ≡ g + h2τ (mod τw), then sw(h2 − h1) ≡ 0 (mod 2w). Since sw is
even and sw/2 is odd, h2 = h1 + c · 2w−1. Thus g + hτ, g + (h + 1)τ, . . . , g + (h +
2w−1 − 1)τ cover all congruence classes Ri and R−i, i ∈ Iw when g is odd. On
average, #Ri is less than 4.62. We have calculated out that #Ri ≤ 3 for i ∈ Iw

and 3 ≤ w ≤ 10.

4.2 Calculating Ri

We propose a plane search to generate Ri, i ∈ Iw, shown as Algorithm 2. For
each g + hμτ ∈ (2Z + 1) + Zτ with N(g + hμτ) = g2 + gh + 2h2 < 2w, we treat
it as the point (g, h) on the Euclidean plane. To determine whether g + hμτ is
in the set Ri for some i satisfying 2w|g − i + hμsw, we search all points (g, h)

and append g + hμτ to the corresponding Ri where −
⌊

2
w+2

2√
3

⌋

≤ g ≤
⌊

2
w+2

2√
3

⌋

,

− ⌊
2

w
2
⌋ ≤ h ≤ ⌊

2
w
2
⌋
, and g is odd. We collect all such elements and form a set

C = {ci|ci ∈ Ri, i ∈ Iw}. Then Qi = ciP with ci ∈ C for all i ∈ Iw form a
unified pre-computation. We set the trivial case c1 = 1.



200 W. Yu and G. Xu

Algorithm 2. Plane search to generate Ri, i ∈ Iw

Computation

1. Ri ←<>

2. for g from −
⌊

2
w+2

2√
3

⌋
to

⌊
2

w+2
2√
3

⌋
and g is odd

for h from −
⌊
2

w
2

⌋
to

⌊
2

w
2

⌋
if (2w|g − i + hμsw) and (g2 + gh + 2h2 < 2w)

then append (g + hμτ) to Ri

3. output Ri

4.3 Our Novel Pre-computation

We design a novel pre-computation for window τNAF with widths from 4 to 8.

Theorem 2. Let P = (xP , λP ) and Qi = (Xi, Λi, Zi) with i ∈ Iw. There exists a
unified pre-computation scheme shown in Tables 7, 14, and 15 requiring 6M+6S,
18M+17S, 44M+32S, 88M+62S, and 186M+123S on a μ4-Koblitz curve with
a = 0 and 6M+6S, 19M+17S, 47M+32S, 93M+72S, and 198M+123S with
a = 1 for window τNAF with widths from 4 to 8 respectively.

Proof. The explicit design of calculating pre-computations for window τNAF
with widths from 4 to 6 is shown as Table 7, for that with width 7 is shown as
Table 14 in Appendix A.1, and for that with width 8 is shown as Table 15 in
Appendix A.2. Let ci = g + hμτ for each i ∈ Iw in Tables 7, 14, and 15. Since
ci = g + hμτ for each i ∈ Iw, our pre-computation scheme for w from 4 to 8 is
unified. Since g + hμsw ≡ i (mod 2w) and N(ci) < 2w for all i ∈ Iw, this novel
pre-computation is correct for window τNAF with widths from 4 to 8.

We show our novel pre-computation for window τNAF with widths 4, 5, and
6 as follows.

1. w = 4. Q5 = −(μτ̄P ), Q7 = −(μτ̄)2P , Q3 = (μτ̄)3P are shown as
Table 7. Our pre-computation scheme for window τNAF with width 4 requires
6M+6S.

2. w = 5. Let τP = (xτP , λτP ) = (x2
P , λ2

P ). Q5 = −(μτ̄P ), Q7 = −(μτ̄)2P ,
Q3 = (μτ̄)3P , Q15 = −(μτ̄)4P , Q11 = μτP + Q5, Q9 = μτ̄Q11, Q13 =
−(μτ̄)2Q11 are shown as Table 7. This pre-computation scheme requires
18M+17S with a = 0 and 19M+17S with a = 1.

3. w = 6. Let τP = (xτP , λτP ) = (x2
P , λ2

P ). Q27 = μτ̄P , Q25 = (μτ̄)2P , Q29 =
−(μτ̄)3P , Q15 = −(μτ̄)4P , Q21 = −(μτ̄)5P , (Q3, Q9) = μτP ± Q29 (Q3 =
μτP + Q29, Q9 = μτP − Q29), Q13 = −(μτ̄)Q9, Q31 = −(μτ̄)2Q9, Q17 =
μτ̄Q3, Q11 = (μτ̄)2Q3, Q23 = μτP −Q15, Q19 = −μτ̄Q23, Q5 = −μτP −Q21,
Q7 = μτ̄Q5 are shown as Table 7. This scheme requires 44M+32S with a = 0
and 47M+32S with a = 1.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 201

Table 7. Novel pre-computation for widths from 4 to 6

ci Qi a = 0/a = 1

w = 4 6M+6S

c5 = −1 + μτ c5 = −μτ̄ Q5 = −μτ̄P 2M+2S

c7 = 1 + μτ c7 = μτ̄c5 Q7 = −(μτ̄)2P 2M+2S

c3 = −3 + μτ c3 = −μτ̄c7 Q3 = (μτ̄)3P 2M+2S

w = 5 18M+17S/19M+17S

c5 = −1 + μτ c5 = −μτ̄ Q5 = −μτ̄P 2M+2S

c7 = 1 + μτ c7 = μτ̄c5 Q7 = −(μτ̄)2P 2M+2S

c3 = −3 + μτ c3 = −μτ̄c7 Q3 = (μτ̄)3P 2M+2S

c15 = 1 − 3μτ c15 = −μτ̄c3 Q15 = −(μτ̄)4P 2M+2S

c11 = −1 + 2μτ c11 = μτ + c5 Q11 = μτP + Q5 (6M+2S)+3S/(7M+2S) + 3S∗

c9 = 3 + μτ c9 = μτ̄c11 Q9 = μτ̄Q11 2M+2S

c13 = −5 + 3μτ c13 = −μτ̄c9 Q13 = −(μτ̄)2Q11 2M+2S

w = 6 44M+32S/47M+32S

c27 = 1 − μτ c27 = μτ̄ Q27 = μτ̄P 2M+2S

c25 = −1 − μτ c25 = μτ̄c27 Q25 = (μτ̄)2P 2M+2S

c29 = 3 − μτ c29 = −μτ̄c25 Q29 = −(μτ̄)3P 2M+2S

c15 = 1 − 3μτ c15 = μτ̄c29 Q15 = −(μτ̄)4P 2M+2S

c21 = −5 − μτ c21 = μτ̄c15 Q21 = −(μτ̄)5P 2M+2S

c3 = 3 c3 = μτ + c29 Q3 = μτP + Q29

c9 = −3 + 2μτ c9 = μτ − c29 Q9 = μτP − Q29 (10M+3S)+3S/(11M+3S)+3S∗

c13 = −1 − 3μτ c13 = −μτ̄c9 Q13 = −(μτ̄)Q9 2M+2S

c31 = −7 + μτ c31 = μτ̄c13 Q31 = −(μτ̄)2Q9 2M+2S

c17 = 3 − 3μτ c17 = μτ̄c3 Q17 = μτ̄Q3 2M+2S

c11 = −3 − 3μτ c11 = μτ̄c17 Q11 = (μτ̄)2Q3 2M+2S

c23 = −1 + 4μτ c23 = μτ − c15 Q23 = μτP − Q15 6M+2S/7M+2S

c19 = −7 − μτ c19 = −μτ̄c23 Q19 = −μτ̄Q23 2M+2S

c5 = 5 c5 = −μτ − c21 Q5 = −μτP − Q21 6M+2S/7M+2S

c7 = 5 − 5μτ c7 = μτ̄c5 Q7 = μτ̄Q5 2M+2S
∗ “+3S” is the cost of τP . For window width 6, Q3 and Q9 can be computed as one (P ± Q)-

operation.

The explicit computing process and the value of ci for window τNAF with
widths from 4 to 6 are shown as Table 7; those for window τNAF with width 7
are shown as Table 14; and those for window τNAF with width 8 are shown as
Table 15.

For each Qi (i = 3, 5, . . . , 2w−1 − 1), one point addition is necessary. We
employ μτ̄(P ) and (P ± Q)-operations to replace point addition which leads to
a speedup of our pre-computation algorithm. Next, we will compare our scheme
with other pre-computation schemes.

4.4 Comparison of Pre-computation Schemes in M and S

The ratio of I/M and that of S/M both affect the cost of pre-computation
schemes and that of scalar multiplications. Suppose that I/M=10, S/M=0;
or I/M=10, S/M=0.2; or I/M=150, S/M=0.5. The first two cases are both
suggested by Bernstein and Lange in their explicit-formulas database [4]. The
third case suits for binary fields over desktop architectures embedded with



202 W. Yu and G. Xu

the carry-less multiplication instruction [9]. The first two ratios are reasonable
in the experiments of our environments shown as Sect. 6 where I/M=10 and
0.06<S/M<0.12.

The costs of Solinas’ pre-computation scheme, Hankerson, Menezes, and Van-
stone’s pre-computation scheme, Trost and Xu’s pre-computation scheme, and
our pre-computation scheme on the μ4-Koblitz curves with a = 0 and a = 1
for window τNAF are summarized in Table 1. Our pre-computation scheme
is the fastest one among these four pre-computation schemes. Our novel pre-
computation scheme is about two times faster than Trost and Xu’s scheme for
window τNAF with widths 4, 5, and 6 for all three cases.

5 Scalar Multiplications Using Window τNAF on
μ4-Koblitz Curves

Let the costs of pre-computation schemes for window τNAF with width w be
denoted by Prew.

5.1 Expected Costs of Scalar Multiplications

Scalar multiplication using window τNAF has two situations.

1. Scalar multiplication uses pre-computations in projective coordinates. It
requires m τ -operations, m

w+1 · 2w−2−1
2w−2 point additions, m

w+1 · 1
2w−2 mixed

additions, and the pre-computation. Scalar multiplication is expected to cost

4mS +
m

w + 1

(

(7 + a)M + 2S − 1
2w−2

M
)

+ Prew.

2. Scalar multiplication uses pre-computations in affine coordinates. This
method fully uses mixed additions and requires Montgomery trick to translate
the pre-computation points in projective coordinates to those in affine coor-
dinates. It requires m τ -projective operations, m

w+1 mixed additions, Mont-
gomery trick, and the pre-computation. Scalar multiplication is expected to
cost

4mS +
m

w + 1
((6 + a)M + 2S) + I + (6 · 2w−2 − 9)M + Prew.

For window τNAF with width w, one should choose Case 1 or Case 2 to
compute the scalar multiplication. The selection is not affected by the efficiency
of the pre-computation. For the case of a = 0, the lowest costs of scalar multi-
plications on K-233, K-283, K-409, and K-571 using μ4-Koblitz curves utilizing
our pre-computation scheme and Trost and Xu’s pre-computation scheme are
summarized in Table 8. For the case of a = 1, the lowest costs of scalar multipli-
cations on K1-163, K1-283, K1-359, and K1-701 utilizing our pre-computation
scheme and Trost and Xu’s pre-computation scheme are summarized in Table 9.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 203

Table 8. The expected costs of scalar multiplications on K-233, K-283, K-409, and
K-571 using μ4-Koblitz curves in M

K-233(w) K-283(w) K-409(w) K-571(w)

S=0M τNAF 466 566 818 1142

Trost, Xu 306.0(5) 363.3(5) 492.3(6) 652.9(6)

Ours 274.9(6) 324.5(6) 444.3(7) 585.4(7)

S= 0.2M regular τNAF 683.5 830.1 1199.7 1674.9

Trost, Xu 511.9(5) 612.5(5) 850.1(6) 1149.5(6)

Ours 481(6) 573.4(6) 804.3(7) 1083.1(7)

S= 0.5M regular τNAF 1009.7 1226.3 1772.3 2474.3

Trost, Xu 835.2(6) 991.9(6) 1386.8(6) 1894.5(6)

Ours 790.2(6) 946.9(6) 1341.8(6) 1829.8(7)

Table 9. The expected costs of scalar multiplications on K1-163, K1-283, K1-359, and
K1-701 using μ4-Koblitz curves in M

K1-163(w) K1-283(w) K1-359(w) K1-701(w)

S = 0M τNAF 380.3 660.3 837.7 1635.7

Trost, Xu 259.9(5) 417.4(5) 509.1(6) 896.9(6)

Ours 231.8(6) 367.9(6) 450.6(7) 791.3(7)

S = 0.2M τNAF 532.5 924.5 1172.7 2289.9

Trost, Xu 405.2(5) 666.7(5) 824(6) 1505(6)

Ours 377.9(6) 616.9(6) 768.1(7) 1399.5(7)

S = 0.5M τNAF 760.7 1320.7 1675.3 3271.3

Trost, Xu 623.1(5) 1040.6(5) 1296.4(6) 2417.3(6)

Ours 594.6(5) 990.3(6) 1239.4(6) 2311.9(7)

5.2 Expected Costs of Constant-Time Scalar Multiplications

When a constant running time is required, a regular window τNAF [22], the
improved recoding of zero-free representation [21,28], is used to implement scalar
multiplication. Scalar multiplication using pre-computations in projective coor-
dinates requires

4mS +
m

w − 1
((7 + a)M + 2S) + Prew.

Scalar multiplication using pre-computations in affine coordinates requires

4mS +
m

w − 1
((6 + a)M + 2S) + I + (6 · 2w−2 − 9)M + Prew.

We summarize the lowest costs of constant-time scalar multiplications using
our pre-computation scheme and Trost and Xu’s pre-computation scheme on



204 W. Yu and G. Xu

curves with a = 0 in Table 10 and on curves with a = 1 in Table 11. Our pre-
computation saves 9M+6S with a = 0 and 12M+6S with a = 1 for w = 4,
21M+3S with a = 0 and 27M+3S with a = 1 for w = 5, 43M+4S with
a = 0 and 55M+4S with a = 1 for w = 6, compared to the state-of-the-art
pre-computation. Our pre-computation scheme only requires 88M+62S with
a = 0 and 93M+62S with a = 1 for w = 7, and 186M+123S with a = 0
and 198M+123S with a = 1 for w = 8. Since constant-time scalar multiplica-
tion usually uses window τNAF with a bigger window width, the ratios of the
improvements of scalar multiplication become higher.

Table 10. The expected costs of constant-time scalar multiplications on K-233, K-283,
K-409, and K-571 using μ4-Koblitz curves in M

K-233(w) K-283(w) K-409(w) K-571(w)

S = 0M regular τNAF 1398 1698 2454 3426

Trost, Xu 413.2(6) 483.2(6) 659.6(6) 869.2(6,M)

Ours 359.8(7) 418.2(7) 565.2(7) 754.2(7)

S = 0.2M regular τNAF 1677.6 2037.6 2944.8 4111.2

Trost, Xu 625.4(6) 739.4(6) 1026.7(6) 1378.9(6,M)

Ours 574.2(7) 675.8(7) 932(7) 1261.4(7)

S = 0.5M regular τNAF 2097 2547 3681 5139

Trost, Xu 943.8(6) 1123.8(6) 1577.4(6) 2160.6(6)

Ours 895.7(7) 1062.3(7) 1482.3(7) 2022.3(7)

If we use Montgomery trick, we denote it by M. This notation is also used in
the following tables.

Table 11. The expected costs of constant-time scalar multiplications on K1-163, K1-
283, K1-359, and K1-701 using μ4-Koblitz curves in M

K1-163(w) K1-283(w) K1-359(w) K1-701(w)

S = 0M regular τNAF 1141 1981 2513 4907

Trost, Xu 362.8(6) 554.8(6) 676.4(6) 1180.4(6,M)

Ours 307.8(6) 470.3(7) 571.7(7) 999.1(8)

S = 0.2M regular τNAF 1336.6 2320.6 2943.8 5748.2

Trost, Xu 513.4(6) 811(6) 999.5(6) 1804.5(6,M)

Ours 457.6(6) 728(7) 895.2(7) 1624.6(8)

S = 0.5M regular τNAF 1630 2830 3590 7010

Trost, Xu 739.4(6) 1195.4(6) 1484.2(6) 2783.8(6)

Ours 682.4(6) 1114.5(7) 1380.5(7) 2562.8(8)



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 205

6 Experiments

Miracl lib [25] is used to implement field arithmetics over F2m . Our experiments
are tested by C++ programs compiled by Microsoft visual studio 2015. The
processor is Intel� CoreTM i7-6567U 3.3 GHZ with Skylake architecture and the
operating system is 64-bit Windows 10.

6.1 Pre-Computation Schemes on μ4-Koblitz Curves

We run each pre-computation scheme 1000 times on six Koblitz curves. The time
costs of pre-computation schemes on K1-163, K-233, K-283, K1-283, K-409, and
K-571 using μ4-Koblitz curves for window τNAF with widths from 4 to 6 are
shown in Table 12.

Table 12. Time costs of pre-computations on K1-163, K-233, K-283, K1-283, K-409,
and K-571 using μ4-Koblitz curves in μs

K1-163 K-233 K-283 K1-283 K-409 K-571

w = 4 Solinas 4.4 5.36 7.08 8.36 10.48 12.35

Hankerson, Menezes, Vanstone 4.4 5.36 7.08 8.36 10.48 12.35

Trost, Xu 4.36 5.28 6.52 7.64 10 11.76

Ours 1.76 2.24 3.04 3.4 4.5 5.432

w = 5 Solinas 11.24 13.68 17.6 20.72 27.86 31.81

Hankerson, Menezes, Vanstone 11.52 14.04 18.32 20.92 29.12 33.77

Trost, Xu 10.88 13.28 17.56 20.36 27.47 31.75

Ours 4.96 6.44 8.36 9.16 13.5 15.2

w = 6 Hankerson, Menezes, Vanstone 25.16 30.68 40.48 46.36 63.83 73.64

Trost, Xu 24.88 30.36 39.24 45.28 62.96 71.89

Ours 11.44 15.32 19.96 21.16 31.72 36.54

Our pre-computation scheme is about two times faster than Trost and Xu’s
scheme. Within the bounds of the error, the practical implementations are con-
sistent with the theoretical analysis. The reason of some tiny differences is that a
few field additions were ignored, that the number of temporary variables affects
the performance, and that the ratio of S/M is about 0.06 to 0.12 which depends
on the size of the binary field.

6.2 Scalar Multiplications on μ4-Koblitz Curves

The costs of constant-time scalar multiplications on K1-163, K-233, K-283, K1-
283, K-409, and K-571 using μ4-Koblitz curves are shown in Table 13. Our
constant-time scalar multiplication is over 3 times faster, compared to the state-
of-the-art non-pre-computation-based constant-time scalar multiplication. The
constant-time scalar multiplication using our pre-computation on μ4-Koblitz



206 W. Yu and G. Xu

curves runs in 85.6%, 88.7%, 87.9%, 85.2%, 87.7%, and 87.9% the time of that
using Trost and Xu’s pre-computation on μ4-Koblitz curves. The experimen-
tal results also show that the lowest constant-time scalar multiplication using
our pre-computation usually employs width 7, and that using Trost and Xu’s
pre-computation usually employs width 6.

Table 13. Time cost of scalar multiplications using μ4-Koblitz curves in μs

K1-163(w) K-233(w) K-283(w) K1-283(w) K-409(w) K-571(w)

τNAF 70.42 98.6 171.9 167.3 384.2 424.6

Trost, Xu 48.9(5) 70.23(5) 114.9(5) 132.1(5) 225(6) 268.4(6)

Ours 44.75(6) 64.05(6) 104.3(6) 117.8(6) 207.4(7) 243.3(7)

constant-time regular τNAF 173.7 265.6 432.4 491.8 860.1 1038.5

Trost, Xu 63.95(6) 88.7(6) 143.6(6) 164.8(6) 283.6(6) 336.2(6,M)

Ours 54.77(6) 78.67(7) 126.2(7) 140.5(7) 248.8(7) 294.7(7)

7 Conclusion

In the previous works of scalar multiplication using window τNAF [10,21,22,26–
28], the authors employed a window τNAF with width at most 6. From Tables 8,
9, 10, 11, and 13, scalar multiplication using our pre-computation usually
employs a bigger window width (e.g., 7) to achieve a lower cost of the total
scalar multiplication.

In Appendix B, we employed our pre-computation scheme on Koblitz
curves using LD coordinates. Our pre-computation scheme requires 5M+6S,
19M+19S, 51M+40S, 99M+76S, and 214M+158S when a = 0, and 5M+3S,
19M+13S, 51M+29S, 99M+53S, and 214M+113S when a = 1 using LD coor-
dinates for window τNAF with widths from 4 to 8 respectively. Constant-time
scalar multiplication using Trost and Xu’s pre-computation requires 74.35, 109.4,
189.8, 357.9, and 433.1 μs on K1-163, K-233, K-283/K1-283, K-409, and K-
571 respectively. Non-pre-computation-based constant-time scalar multiplication
216.3, 339.7, 547.8, 1078.3, and 1330.6 μs on these curves. These experimental
results show that constant-time scalar multiplication using our pre-computation
on μ4-Koblitz curves runs in 73.7%, 71.9%, 66.5%, 74%, 69.5%, and 68% the
time of Trost and Xu’s work on K1-163, K-233, K-283, K1-283, K-409, and
K-571 respectively where they used LD coordinates to perform scalar multi-
plication. Our scalar multiplication on μ4-Koblitz curves is about 4 times faster
than non-pre-computation-based constant-time scalar multiplication in LD coor-
dinates and saves up to 33.5% on the scalar multiplication compared to scalar
multiplication using Trost and Xu’s pre-computation in LD coordinates.

In Appendix C, we employed our pre-computation scheme on Koblitz curves
using λ-coordinates. The costs of our pre-computation scheme are 7M+5S,
26M+16S, 66M+36S, 135M+72S, and 282M+148S using λ-projective coor-
dinates for window τNAF with widths from 4 to 8 respectively. Constant-time



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 207

scalar multiplication using Trost and Xu’s pre-computation requires 71.21, 102.2,
176.7, 335.9, and 402.5 μs on K1-163, K-233, K-283/K1-283, K-409, and K-
571 respectively. Non-pre-computation-based constant-time scalar multiplication
211.7, 332.3, 540.8, 1065.2, and 1316.1 μs on these curves. These experimental
results show that constant-time scalar multiplication using our pre-computation
on μ4-Koblitz curves runs in 76.9%, 77%, 71.4%, 79.5%, 74.1%, and 73.2% the
time of Trost and Xu’s work on K1-163, K-233, K-283, K1-283, K-409, and
K-571 respectively where they used λ-coordinates to perform scalar multiplica-
tion. Based on our novel pre-computation, the efficient arithmetics on μ4-Koblitz
curves, and a bigger window width, our scalar multiplication on μ4-Koblitz
curves is about 4 times faster than non-pre-computation-based constant-time
scalar multiplication in λ-coordinates and can save up to 28.6% on the scalar
multiplication compared to [27].

It is noted that the arithmetic of Koblitz curves has been of theoretical and
practical importance since the start of elliptic curve cryptography. Our results
make a significant progress on the scalar multiplication for Koblitz curves which
is a long-standing and well-studied area.

The idea of using μτ̄ to design an efficient pre-computation scheme and using
a window τNAF with a bigger window width to improve the efficiency of scalar
multiplication can be extended to Koblitz curves over F3m and Fqm for some
small primes q ≥ 5. The efficient μτ̄ -operations can also be used to speed up
scalar multiplication utilizing double-base chain [29] and double-base number
system [1], and to speed up multi-scalar multiplication utilizing double-base
number system [8].

Acknowledgments. The authors would like to thank the anonymous reviewers
for many helpful comments and thank Bao Li, Kunpeng Wang, Xianhui Lu, and
Song Tian for their helpful suggestions. This work is supported by the National
Natural Science Foundation of China (No. 61872442 and U1936209), by National
Key Research and Development Program of China (No. 2018YFA0704702), and
by Department of Science and Technology of Shandong Province of China (No.
2019JZZY010133). W. Yu is supported by Beijing Municipal Science & Technology
Commission (No. Z191100007119006), by the National Cryptography Development
Fund (No. MMJJ20180216), and by the National Natural Science Foundation of China
(No. 61772515 and 61502487).

A Pre-computation for Window τNAF with Widths 7
and 8

A.1 Pre-computation for Window Width w = 7

Our pre-computation on a μ4-Koblitz curve for window τNAF with width 7 is
shown in Table 14. The cost of this pre-computation is 88M+62S with a = 0
and 93M+62S with a = 1.



208 W. Yu and G. Xu

Table 14. Novel pre-computation for w = 7

ci Qi a = 0/a = 1

88M+62S/93M+62S

c37 = −1 + μτ c37 = −μτ̄ Q37 = −μτ̄P 2M+2S

c39 = 1 + μτ c39 = μτ̄c37 Q39 = −(μτ̄)2P 2M+2S

c35 = −3 + μτ c35 = −μτ̄c39 Q35 = (μτ̄)3P 2M+2S

c15 = 1 − 3μτ c15 = −μτ̄c35 Q15 = −(μτ̄)4P 2M+2S

c43 = 5 + μτ c43 = −μτ̄c15 Q43 = (μτ̄)5P 2M+2S

c53 = 1 − 2μτ c53 = μτ + c15 Q53 = μτP + Q15

c23 = −1 + 4μτ c23 = μτ − c15 Q23 = μτP − Q15 (10M+3S) + 3S/(11M+3S) + 3S

c41 = 3 + μτ c41 = −μτ̄c53 Q41 = −μτ̄Q53 2M+2S

c19 = 5 − 3μτ c19 = μτ̄c41 Q19 = −(μτ̄)2Q53 2M+2S

c63 = 1 + 5μτ c63 = −μτ̄c19 Q63 = (μτ̄)3Q53 2M+2S

c27 = −11 + μτ c27 = −μτ̄c63 Q27 = −(μτ̄)4Q53 2M+2S

c45 = 7 + μτ c45 = μτ̄c23 Q45 = μτ̄Q23 2M+2S

c3 = 3 c3 = μτ − c35 Q3 = μτP − Q35

c55 = 3 − 2μτ c55 = −μτ − c35 Q55 = −μτP − Q35 10M+3S/11M+3S

c17 = 3 − 3μτ c17 = μτ̄c3 Q17 = μτ̄Q3 2M+2S

c11 = −3 − 3μτ c11 = μτ̄c17 Q11 = (μτ̄)2Q3 2M+2S

c13 = −1 − 3μτ c13 = μτ̄c55 Q13 = μτ̄Q55 2M+2S

c31 = −7 + μτ c31 = μτ̄c13 Q31 = (μτ̄)2Q55 2M+2S

c5 = 5 + 7μτ c5 = μτ̄c31 Q5 = (μτ̄)3Q55 2M+2S

c51 = −1 − 2μτ c51 = μτ + c13 Q51 = μτP + Q13

c25 = 1 + 4μτ c25 = μτ − c13 Q25 = μτP − Q13 10M+3S/11M+3S

c33 = −5 + μτ c33 = μτ̄c51 Q33 = μτ̄Q51 2M+2S

c59 = −3 + 5μτ c59 = μτ̄c33 Q59 = (μτ̄)2Q51 2M+2S

c7 = −7 − 3μτ c7 = −μτ̄c59 Q7 = −(μτ̄)3Q51 2M+2S

c29 = −9 + μτ c29 = −μτ̄c25 Q29 = −μτ̄Q25 2M+2S

c49 = −3 − 2μτ c49 = −μτ − c41 Q49 = −μτP − Q41 6M+2S/7M+2S

c21 = 7 − 3μτ c21 = −μτ̄c49 Q21 = −μτ̄Q49 2M+2S

c9 = −1 + 7μτ c9 = −μτ̄c21 Q9 = (μτ̄)2Q49 2M+2S

c57 = 5 − 2μτ c57 = −μτ − c33 Q57 = −μτP − Q33 6M+2S/7M+2S

c61 = −1 + 5μτ c61 = −μτ̄c57 Q61 = −μτ̄Q57 2M+2S

c47 = 9 + μτ c47 = μτ̄c61 Q47 = −(μτ̄)2Q57 2M+2S

A.2 Pre-computation for Window Width w = 8

Our pre-computation on a μ4-Koblitz curve for window τNAF with width 8 is
shown in Table 15. The cost of this pre-computation is 186M+123S with a = 0
and 198M+123S with a = 1.

B Our Pre-computation Scheme on Koblitz Curves Using
LD Coordinates

A projective point P = (X : Y : Z) in LD coordinates on an elliptic curve
E/F2m can be converted to an affine point (X

Z , Y
Z2 ) [19]. Let P = (xP , yP ).



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 209

Table 15. Novel pre-computation for w = 8

ci Qi a = 0/a = 1

186M+123S/198M+123S

c91 = 1 − μτ c91 = μτ̄ Q91 = μτ̄P 2M+2S

c89 = −1 − μτ c89 = μτ̄c91 Q89 = (μτ̄)2P 2M+2S

c93 = 3 − μτ c93 = −μτ̄c89 Q93 = −(μτ̄)3P 2M+2S

c15 = 1 − 3μτ c15 = μτ̄c93 Q15 = −(μτ̄)4P 2M+2S

c85 = −5 − μτ c85 = μτ̄c15 Q85 = −(μτ̄)5P 2M+2S

c55 = −7 + 5μτ c55 = μτ̄c85 Q55 = −(μτ̄)6P 2M+2S

c115 = −3 − 7μτ c115 = −μτ̄c55 Q115 = (μτ̄)7P 2M+2S

c75 = −1 + 2μτ c75 = −μτ − c15 Q75 = −μτP − Q15

c105 = 1 − 4μτ c105 = −μτ + c15 Q105 = −μτP + Q15 10M+3S+3S/11M+3S+3S

c87 = −3 − μτ c87 = −μτ̄c75 Q87 = −μτ̄Q75 2M+2S

c19 = 5 − 3μτ c19 = −μτ̄c87 Q19 = (μτ̄)2Q75 2M+2S

c63 = 1 + 5μτ c63 = −μτ̄c19 Q63 = −(μτ̄)3Q75 2M+2S

c101 = 11 − μτ c101 = μτ̄c63 Q101 = −(μτ̄)4Q75 2M+2S

c25 = −9 + 11μτ c25 = −μτ̄c101 Q25 = (μτ̄)5Q75 2M+2S

c83 = −7 − μτ c83 = μτ̄c105 Q83 = μτ̄Q105 2M+2S

c127 = 9 − 7μτ c127 = −μτ̄c83 Q127 = −(μτ̄)2Q105 2M+2S

c37 = −5 − 9μτ c37 = μτ̄c127 Q37 = −(μτ̄)3Q105 2M+2S

c3 = 3 c3 = −μτ − c87 Q3 = −μτP − Q87

c79 = 3 + 2μτ c79 = μτ − c87 Q79 = μτP − Q87 10M+3S/11M+3S

c17 = 3 − 3μτ c17 = μτ̄c3 Q17 = μτ̄Q3 2M+2S

c11 = −3 − 3μτ c11 = μτ̄c17 Q11 = (μτ̄)2Q3 2M+2S

c23 = 9 − 3μτ c23 = −μτ̄c11 Q23 = −(μτ̄)3Q3 2M+2S

c45 = 3 − 9μτ c45 = μτ̄c23 Q45 = −(μτ̄)4Q3 2M+2S

c21 = 7 − 3μτ c21 = μτ̄c49 Q21 = μτ̄Q79 2M+2S

c119 = 1 − 7μτ c119 = μτ̄c21 Q119 = (μτ̄)2Q79 2M+2S

c73 = −3 + 2μτ c73 = −μτ − c17 Q73 = −μτP − Q17

c107 = 3 − 4μτ c107 = −μτ + c17 Q107 = −μτP + Q17 10M+3S/11M+3S

c13 = −1 − 3μτ c13 = −μτ̄c73 Q13 = −μτ̄Q73 2M+2S

c97 = 7 − μτ c97 = −μτ̄c13 Q97 = (μτ̄)2Q73 2M+2S

c123 = 5 − 7μτ c123 = μτ̄c97 Q123 = (μτ̄)3Q73 2M+2S

c9 = −5 − 3μτ c9 = μτ̄c107 Q9 = μτ̄Q107 2M+2S

c51 = −11 + 5μτ c51 = μτ̄c9 Q51 = (μτ̄)2Q107 2M+2S

c33 = −1 + 11μτ c33 = μτ̄c51 Q33 = (μτ̄)3Q107 2M+2S

c77 = 1 + 2μτ c77 = −μτ − c13 Q77 = −μτP − Q13

c103 = −1 − 4μτ c103 = −μτ + c13 Q103 = −μτP + Q13 10M+3S/11M+3S

c95 = 5 − μτ c95 = μτ̄c77 Q95 = μτ̄Q77 2M+2S

c59 = −3 + 5μτ c59 = −μτ̄c95 Q59 = −(μτ̄)2Q77 2M+2S

c7 = −7 − 3μτ c7 = −μτ̄c59 Q7 = (μτ̄)3Q77 2M+2S

c125 = −13 + 7μτ c125 = μτ̄c7 Q125 = (μτ̄)4Q77 2M+2S

c99 = 9 − μτ c99 = −μτ̄c103 Q99 = −μτ̄Q103 2M+2S

c49 = 7 − 9μτ c49 = μτ̄c99 Q49 = −(μτ̄)2Q103 2M+2S

c5 = 5 c5 = −μτ − c85 Q5 = −μτP − Q85 6M+2S/7M+2S

c57 = −5 + 5μτ c57 = −μτ̄c5 Q57 = −μτ̄Q5 2M+2S

c67 = 5 + 5μτ c67 = μτ̄c57 Q67 = −(μτ̄)2Q5 2M+2S

c47 = −15 + 5μτ c47 = −μτ̄c67 Q47 = (μτ̄)3Q5 2M+2S

c71 = −5 + 2μτ c71 = −μτ − c19 Q71 = −μτP − Q19

c61 = −1 + 5μτ c61 = μτ̄c71 Q61 = μτ̄Q71 2M+2S

c109 = 5 − 4μτ c109 = −μτ + c19 Q109 = −μτP + Q19 10M+3S/11M+3S

c81 = −9 − μτ c81 = −μτ̄c61 Q81 = −(μτ̄)2Q71 2M+2S

(continued)



210 W. Yu and G. Xu

Table 15. (continued)

ci Qi a = 0/a = 1

c53 = 11 − 9μτ c53 = −μτ̄c81 Q53 = (μτ̄)3Q71 2M+2S

c65 = 3 + 5μτ c65 = −μτ̄c109 Q65 = −μτ̄Q109 2M+2S

c27 = 13 − 3μτ c27 = μτ̄c65 Q27 = −(μτ̄)2Q109 2M+2S

c69 = −7 + 2μτ c69 = −μτ − c21 Q69 = −μτP − Q21

c111 = 7 − 4μτ c111 = −μτ + c21 Q111 = −μτP + Q21 10M+3S/11M+3S

c121 = 3 − 7μτ c121 = −μτ̄c69 Q121 = −μτ̄Q69 2M+2S

c117 = −1 − 7μτ c117 = μτ̄c111 Q117 = μτ̄Q111 2M+2S

c113 = 9 − 4μτ c113 = −μτ + c23 Q113 = −μτP + Q23 6M+2S/7M+2S

c43 = 1 − 9μτ c43 = μτ̄c113 Q43 = μτ̄Q113 2M+2S

c39 = 11 − 6μτ c39 = −μτ − c51 Q39 = −μτP − Q51 6M+2S/7M+2S

c35 = 1 + 11μτ c35 = −μτ̄c39 Q35 = −μτ̄Q39 2M+2S

c29 = 1 − 6μτ c29 = −μτ − c61 Q29 = −μτP − Q61 6M+2S/7M+2S

c31 = 3 − 6μτ c31 = −μτ − c59 Q31 = −μτP − Q59 6M+2S/7M+2S

c41 = 13 − 6μτ c41 = μτ − c125 Q41 = μτP − Q125 6M+2S/7M+2S

The projective LD coordinates of P are (XP , YP , ZP ) where xP = XP

ZP
and

yP = YP

Z2
P

. We have −(xP , yP ) = (xP , xP + yP ), −(XP , YP , ZP ) = (XP ,XP ZP +

YP , ZP ), τ(xP , yP ) = (x2
P , y2

P ), and τ(XP , YP , ZP ) = (X2
P , Y 2

P , Z2
P ). Let P =

(XP , YP , ZP ) and Q = (XQ, YQ, ZQ). Point addition P + Q = (xP+Q, λP+Q)
with ZP = 1 was given in Sect. 3 of [16] as

A = Z2
QYP + YQ,B = ZQXP + XQ, C = ZQB,

ZP+Q = C2,D = ZP+QXP , E = XP + YP ,

XP+Q =A2 + C(A + B2 + aC),

YP+Q = (D+XP+Q)(AC + ZP+Q) + Z2
P+QE.

One full point addition costs 13M+4S, one mixed point addition costs 8M+5S,
and one point addition with both affine points costs 5M+5S. Furthermore, eval-
uation of −P costs 1M, evaluation of τ(P ) costs 3S, and τ -affine operation
requires 2S.

B.1 New Formulas Using LD Coordinates

New Formulas for P ± Q. We introduce efficient formulas of P ± Q in LD
coordinates by Theorem 5.

Theorem 3. Let P = (xP , yP ) and Q = (XQ, YQ, ZQ) where P �= ±Q. Notice
that −Q = (XQ,XQZQ + YQ, ZQ). The two operations of P + Q and P − Q
((P ± Q)-operation) can be computed as Eq. (5) at the total cost of 12M+6S.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 211

A =Z2
QYP + YQ, B = ZQXP + XQ, C = ZQB 3M + S

ZP+Q =ZP−Q = C2 S

D =ZP+QXP , E = XP + YP , F = AC 2M

XP+Q =A2 + C(A + B2 + aC) M + 2S

YP+Q =(D + XP+Q)(F + ZP+Q) + Z2
P+QE 2M + S

G =XQZQC,H = (XQZQ)2 + G 2M + S

XP−Q =XP+Q + H

YP−Q =YP+Q + H(G + F + ZP+Q) + (D + XP+Q)G 2M

(5)

Theorem 4. ([8]) Let P = (XP , YP , ZP ) in LD coordinates. μτ̄P can be com-
puted as

Xμτ̄P =(XP + ZP )2

Zμτ̄P =XP ZP

Yμτ̄P =(YP + (1 − a)Xμτ̄P )(YP + aXμτ̄P + Zμτ̄P ) + (1 − a)Z2
μτ̄P

at the cost of 2M+2S with a = 0 and 2M+S with a = 1 when ZP �= 1 and at
the cost of M+2S with a = 0 and M+S with a = 1 when ZP = 1. The cost of
−μτ̄P is the same as that of μτ̄P .

B.2 Pre-computation Schemes Using LD Coordinates

Our pre-computation scheme for window τNAF in LD coordinates is the same
as that on a μ4-Koblitz curve. Our pre-computation scheme requires 5M+6S,
19M+19S, 51M+40S, 99M+76S, and 214M+158S when a = 0, and 5M+3S,
19M+13S, 51M+29S, 99M+53S, and 214M+113S when a = 1 using LD coor-
dinates for window τNAF with widths from 4 to 8 respectively.

The costs of different pre-computation schemes for window τNAF with
widths from 4 to 6 are summarized in Table 16. Trost and Xu’s pre-computation
scheme requires 15M+19S, 48M+39S, and 120M+79S for w = 4, 5, and 6. Both
theoretical analysis and experimental results show that our pre-computation
scheme is about 2.4 times faster than Trost and Xu’s scheme using LD coordi-
nates.

Table 16. Cost of pre-computations using LD coordinates with a = 0/a = 1

w = 4 w = 5 w = 6

Solinas 15M+21S 45M+52S –

Hankerson, Menezes, Vanstone 15M+21S 54M+49S 125M+105S

Trost, Xu 15M+19S 48M+39S 120M+79S

Ours 5M+6S/5M+3S 19M+19S/19M+13S 51M+40S/51M+29S



212 W. Yu and G. Xu

B.3 Scalar Multiplications Using Window τNAF in LD Coordinates

The Montgomery trick transferring n pre-computations in LD coordinates to
affine coordinates costs I+(5n − 3)M+nS. Let the costs of pre-computation
schemes for window τNAF with width w be denoted by PreLDw.

Constant-time scalar multiplication using window τNAF has two situations.

1. Scalar multiplication uses pre-computations in LD coordinates. It requires m
τ -operations, m

w−1 point additions, the pre-computation, and negative of the
pre-computation. Scalar multiplication is expected to cost

3mS +
m

w − 1
(13M + 4S) + PreLDw + (2w−2 − 1)M.

2. Scalar multiplication uses pre-computations in affine coordinates. It requires
m τ -projective operations, m

w−1 mixed additions, Montgomery trick, and the
pre-computation. Scalar multiplication is expected to cost

3mS +
m

w − 1
(8M + 5S) + I + (5 · 2w−2 − 8)M + (2w−2 − 1)S + PreLDw.

We summarize the lowest costs of constant-time scalar multiplications on
K1-163, K-233, K-283, K1-283, K-409, and K-571 using our pre-computation
scheme in Table 17. Our experimental results show that our constant-time scalar
multiplication on Koblitz curves using LD coordinates saves up to 10% compared
to Trost and Xu’s work using LD coordinates.

Table 17. The expected costs of constant-time scalar multiplications using our pre-
computation in LD coordinates on K1-163, K-233, K-283/K1-283, K-409, and K-571
in M

K1-163(w) K-233(w) K-283(w)/K1-283(w) K-409(w) K-571(w)

S=0M regular τNAF 1304 1864 2264 3272 4568

Trost, Xu 416(5,M) 556(5,M) 654.8(6,M) 856.4(6,M) 1115.6(6,M)

Ours 387(5,M) 505.8(6,M) 585.8(6,M) 787.4(6,M) 1022.3(7,M)

S=0.2M regular τNAF 1564.8 2236.8 2716.8 3926.4 5481.6

Trost, Xu 563.8(5,M) 763.3(5,M) 900(6,M) 1202.4(6,M) 1591.2(6,M)

Ours 529.6(5,M) 703.2(6,M) 823.2(6,M)/821(6,M) 1125.6(6,M) 1481.5(7,M)

S=0.5M regular τNAF 1956 2796 3396 4908 6852

Trost, Xu 908(6) 1214.1(5,M) 1407.8(6,M) 1861.4(6,M) 2444.6(6,M)

Ours 808.5(6) 1100(7) 1300(7)/1288.5(7) 1772.9(6,M) 2310.3(7,M)

C Our Pre-computation Scheme on Koblitz Curves Using
λ-Coordinates

Given an affine point P = (x, y) on an elliptic curve E/F2m , its lambda repre-
sentation is (x, λ) with λ = x + y

x [23]. Let P = (xP , λP ) with λP = xP + yP

xP
.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 213

The λ-coordinates of −P are (xP , λP + 1). The λ-projective coordinates of P
are (XP , ΛP , ZP ) where xP = XP

ZP
and λP = ΛP

ZP
. We have τ(xP , λP ) = (x2

P , λ2
P )

and τ(XP , ΛP , ZP ) = (X2
P , Λ2

P , Z2
P ). Let P = (xP , λP ) and Q = (xQ, λQ). Point

addition P + Q = (xP+Q, λP+Q) was given in Section 3.1 of [23] as

{
xP+Q = xP xQ

(xP +xQ)2 (λP + λQ),

λP+Q = xQ(xP+Q+xP )2

xP+QxP
+ λP + 1.

One full point addition costs 11M+2S, one mixed point addition costs 8M+2S
and one point addition with both affine points costs 5M+2S. Furthermore, eval-
uation of τ(P ) costs 3S and τ -affine operation requires 2S.

C.1 New Formulas Using λ-Coordinates

New Formulas for P ± Q . We introduce efficient formulas of P ± Q in λ-
projective coordinates by Theorem 5.

Theorem 5. Let P = (xP , λP ) and Q = (XQ, ΛQ, ZQ) where P �= ±Q. Notice
that −Q = (XQ, ΛQ+ZQ, ZQ). The two operations of P +Q and P −Q ((P ±Q)-
operation) can be computed as Eq. (6) at the total cost of 12M+5S.

A =λP ZQ + ΛQ M

B =(xP ZQ + XQ)2 M + S

C =XQZQ M

D =xP C M

XP+Q =A2D M + S

ZP+Q =BAZQ 2M

ΛP+Q =(AXQ + B)2 + ZP+Q(λP + 1) 2M + S

XP−Q =XP+Q + DZ2
Q M + S

ZP−Q =ZP+Q + BZ2
Q M

ΛP−Q =ΛP+Q + C2 + BZ2
Q(λP + 1) M + S

(6)

Formulas for μτ̄ -Operations. An efficient formula for μτ̄P in λ-coordinates
has been obtained in Sect. 4 of [27] under the form of P −μτP . We shall use their
formula μτ̄P =

(
x2

P +1
xP

,
x2

P

x2
P +1

+ λP

)
with P = (xP , λP ). Formulas for (μτ̄)2P

and (μτ̄)3P were also reported in Sect. 4 of [27] under the form of P + μτP and
P − τ2P , however in [27], these formulas were not based on the one for μτ̄P .
We can get a good improvement by designing efficient formulas of (μτ̄)iP by
utilizing (μτ̄)i−1P if it is already computed.

Theorem 6. Let P = (XP , ΛP , ZP ). μτ̄P and (μτ̄)iP, i ≥ 2 can be computed
at the cost of 5M+3S and 3M+2S respectively.



214 W. Yu and G. Xu

Proof. 1. By μτ̄P =
(

x2
P +1
xP

,
x2

P

x2
P +1

+ λP

)
in Sect. 4.1 of [27], we have

μτ̄P =

(
(XP

ZP
)2 + 1

XP

ZP

,
(XP

ZP
)2

(XP

ZP
)2 + 1

+
ΛP

ZP

)

.

Then μτ̄P can be calculated as Eq. (7) at the cost of 5M+3S.

α =XP ZP M

A1 =X2
P + Z2

P 2S

Xμτ̄P =A2
1 S

Λμτ̄P =αX2
P + XP ΛP A1 3M

Zμτ̄P =A1α M

(7)

2. The values for computing previous point operations are utilized to compute
a new point operation in [18,27]. Motivated by their trick, some values for
computing μτ̄P are used to compute (μτ̄)2P . Let μτ̄P = (Xμτ̄P , Λμτ̄P , Zμτ̄P )
be computed as Eq. (7) where xμτ̄P = A1

α . Notice that (μτ̄)2P = μτ̄(μτ̄P ).
We have

(μτ̄)2P =

(
x2

μτ̄P + 1
xμτ̄P

,
x2

μτ̄P

x2
μτ̄P + 1

+ λμτ̄P

)

=
(

A2
1 + α2

A1α
,

A2
1

A2
1 + α2

+
Λμτ̄P

Zμτ̄P

)

=
(

Xμτ̄P + α2

Zμτ̄P
,

Xμτ̄P

Xμτ̄P + α2
+

Λμτ̄P

Zμτ̄P

)

.

Then (μτ̄)2P can be computed as Eq. (8) at the cost of 3M+2S.

A2 =Xμτ̄P + α2 S

X(μτ̄)2P =A2
2 S

Λ(μτ̄)2P =Xμτ̄P Zμτ̄P + Λμτ̄P A2 2M
Z(μτ̄)2P =Zμτ̄P A2 M

(8)

3. When i ≥ 3, (μτ̄)iP = μτ̄((μτ̄)i−1P ). We have

(μτ̄)iP =

(
x2
(μτ̄)i−1P + 1

x(μτ̄)i−1P
,

x2
(μτ̄)i−1P

x2
(μτ̄)i−1P + 1

+ λ(μτ̄)i−1P

)

.

Some values of calculating (μτ̄)i−1P are used to calculate (μτ̄)iP . When
i = 3, x(μτ̄)i−1P = Ai−1

Z(μτ̄)i−2P
and X(μτ̄)i−1P = A2

i−1 are computed by Eq. (8);

when i > 3, x(μτ̄)i−1P = Ai−1
Z(μτ̄)i−2P

and X(μτ̄)i−1P = A2
i−1 are computed by



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 215

Eq. (9). (μτ̄)iP can be computed as
⎛

⎝
( Ai−1

Z(μτ̄)i−2P
)2 + 1

Ai−1
Z(μτ̄)i−2P

,
( Ai−1

Z(μτ̄)i−2P
)2

( Ai−1
Z(μτ̄)i−2P

)2 + 1
+

Λ(μτ̄)i−1P

Z(μτ̄)i−1P

⎞

⎠

=

(
X(μτ̄)i−1P + Z2

(μτ̄)i−2P

Z(μτ̄)i−1P

,
X(μτ̄)i−1P

X(μτ̄)i−1P + Z2
(μτ̄)i−2P

+
Λ(μτ̄)i−1P

Z(μτ̄)i−1P

)

.

Then (μτ̄)iP , i ≥ 3 can be computed as Eq. (9) at the cost of 3M+2S.

Ai =X(μτ̄)i−1P + Z2
(μτ̄)i−2P S

X(μτ̄)iP =A2
i S

Λ(μτ̄)iP =X(μτ̄)i−1P Z(μτ̄)i−1P + Λ(μτ̄)i−1P Ai 2M

Z(μτ̄)iP =Z(μτ̄)i−1P Ai M

(9)

Notice that μτ̄P = P − μτP , (μτ̄)2P = −(P + μτP ), and (μτ̄)3P = −(P −
τ2P ). Trost and Xu showed that P −μτP , P +μτP , and P − τ2P cost 5M+3S,
7M+5S, and 5M+3S respectively. Their formula of P −μτP is still the state-of-
the-art. The costs of (μτ̄)2P and (μτ̄)3P are 3M+2S and 3M+2S which largely
improves their costs of 7M+5S and 5M+3S.

When Z-coordinate of P is 1, by Λ(μτ̄)2P = Xμτ̄P Zμτ̄P + Λμτ̄P A2 =
A2Zμτ̄P λP +xP in Eq. (8), the formulas of μτ̄P and (μτ̄)2P are shown as Eq. (10)
at the total cost of 4M+3S.

β =x2
P S

Xμτ̄P =β2 + 1 S

Zμτ̄P =xP β + xP M

Λμτ̄P =(λP + 1)Zμτ̄P + xP M

A2 =Xμτ̄P + β

X(μτ̄)2P =A2
2 S

Z(μτ̄)2P =A2Zμτ̄P M

Λ(μτ̄)2P =Z(μτ̄)2P λP + xP M

(10)

C.2 Pre-computation Schemes Using λ-Coordinates

Our pre-computation scheme for window τNAF in λ-coordinates is the same as
that on a μ4-Koblitz curve except Q5 and Q7 for window width 6 in Table 7
and Q35 for window width 8 in Table 15. Q5 and Q7 are computed as Q5 =
μτP + Q31 and Q7 = μτP − Q31 with c5 = −7 + 2μτ and c7 = 7 by one
(P ± Q)-operation. Q35 is computed as μτP + Q125 with c35 = −13 + 8μτ . Our



216 W. Yu and G. Xu

Table 18. Cost of pre-computations using λ-coordinates

w = 4 w = 5 w = 6

Solinas 15M+12S 44M+31S –

Hankerson, Menezes, Vanstone 15M+12S 50M+29S 117M+63S

Trost, Xu 12M+8S 44M+18S 108M+36S

Ours 7M+5S 26M+16S 66M+36S

pre-computation scheme requires 7M+5S, 26M+16S, 66M+36S, 135M+72S,
and 282M+148S using λ-projective coordinates for window τNAF with widths
from 4 to 8 respectively.

The costs of different pre-computation schemes for window τNAF with
widths from 4 to 6 are summarized in Table 18. Trost and Xu’s pre-computation
scheme requires 12M+8S, 44M+18S, and 108M+36S for w = 4, 5, and 6 based
on their efficient formulas for P − μτ(P ), P + μτ(P ) and P − τ2(P ). Both theo-
retical analysis and experimental results show that our pre-computation scheme
is about 40% faster than Trost and Xu’s scheme using λ-coordinates.

C.3 Scalar Multiplications Using Window τNAF in λ-Coordinates

The Montgomery trick transferring n pre-computations in λ-projective coordi-
nates to λ-coordinates costs I+(5n − 3)M. Let the costs of pre-computation
schemes for window τNAF with width w be denoted by Preλw.

Constant-time scalar multiplication using window τNAF has two situations.

1. Scalar multiplication uses pre-computations in λ-projective coordinates. It
requires m τ -operations, m

w−1 point additions, and the pre-computation.
Scalar multiplication is expected to cost

3mS +
m

w − 1
(11M + 2S) + Preλw.

2. Scalar multiplication uses pre-computations in λ-coordinates. It requires m
τ -projective operations, m

w−1 mixed additions, Montgomery trick, and the
pre-computation. Scalar multiplication is expected to cost

3mS +
m

w − 1
(8M + 2S) + I + (5 · 2w−2 − 8)M + Preλw.

We summarize the lowest costs of constant-time scalar multiplications on
K1-163, K-233, K-283, K1-283, K-409, and K-571 using our pre-computation
scheme in Table 19. Our experimental results show that our constant-time scalar
multiplication on Koblitz curves using λ-coordinates saves up to 6.5% compared
to Trost and Xu’s work using λ-coordinates.



Pre-computation Scheme of Window τNAF for Koblitz Curves Revisited 217

Table 19. The expected costs of constant-time scalar multiplications using our pre-
computation in λ-coordinates on K1-163, K-233, K-283/K1-283, K-409, and K-571 in M

K1-163(w) K-233(w) K-283/K1-283(w) K-409(w) K-571(w)

S=0M regular τNAF 1304 1864 2264 3272 4568

Trost, Xu 412(5,M) 552(5,M) 642.8(6,M) 844.4(6,M) 1103.6(6,M)

Ours 394(5,M) 520.8(6,M) 600.8(6,M) 802.4(6,M) 1058.3(7,M)

S=0.2M regular τNAF 1467 2097 2547 3681 5139

Trost, Xu 529.7(5,M) 718.7(5,M) 842.4(6,M) 1129.7(6,M) 1499.1(6,M)

Ours 511.3(5,M) 686.4(6,M) 800.4 (6,M) 1087.7(6,M) 1453.4(7,M)

S=0.5M regular τNAF 1711.5 2446.5 2971.5 4294.5 5995.5

Trost, Xu 755.6(6) 1026(6) 1219.1(6) 1697.7(6,M) 2232.3(6,M)

Ours 713.6(6) 982.9(7) 1157.1(7) 1596.1(7) 2160.6(7)

References

1. Avanzi, R., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using
double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp.
130–144. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 9

2. Barker, E.: Draft NIST special publication 800–57 part 1 revision 5 - recommen-
dation for key management, part 1: general, May 2020. https://doi.org/10.6028/
NIST.SP.800-57pt1r5

3. Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis, R.: NIST special publica-
tion 800–56A revision 3 - recommendation for pair-wise key-establishment schemes
using discrete logarithm cryptography, April 2018. https://doi.org/10.6028/NIST.
SP.800-56Ar3

4. Bernstein, D.J., Lange, T.: Explicit-formulas database (2020). http://hyperelliptic.
org/EFD/

5. Blake, I., Murty, V., Xu, G.: A note on window τ -NAF algorithm. Inf. Process.
Lett. 95(5), 496–502 (2005)

6. Blake, I., Murty, V., Xu, G.: Nonadjacent radix-τ expansions of integers in
Euclidean imaginary quadratic number fields. Can. J. Math. 60, 1267–1282 (2008)

7. Bos, J., Lenstra, A., Te Riele, H., Shumow, D.: Introduction. In: Bos, J., Lenstra, A.
(eds.) Topics in Computational Number Theory Inspired by Peter L. Montgomery,
pp. 1–9. Cambridge University Press, Cambridge, October 2017. https://doi.org/
10.1017/9781316271575.002

8. Doche, C., Kohel, D.R., Sica, F.: Double-base number system for multi-scalar mul-
tiplications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 502–517.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 29

9. Gueron, S., Kounavis, M.: Intel carry-less multiplication instruction and its usage
for computing the GCM mode, Revision 2.02, Intel, April 2014. https://software.
intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf

10. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
SPC, 1st edn. Springer, New York (2004). https://doi.org/10.1007/b97644

11. Järvinen, K., Forsten, J., Skyttä, J.: FPGA design of self-certified signature verifi-
cation on Koblitz curves. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 256–271. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74735-2 18

12. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 22

https://doi.org/10.1007/11935230_9
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
http://hyperelliptic.org/EFD/
http://hyperelliptic.org/EFD/
https://doi.org/10.1017/9781316271575.002
https://doi.org/10.1017/9781316271575.002
https://doi.org/10.1007/978-3-642-01001-9_29
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
https://doi.org/10.1007/b97644
https://doi.org/10.1007/978-3-540-74735-2_18
https://doi.org/10.1007/978-3-540-74735-2_18
https://doi.org/10.1007/3-540-46766-1_22


218 W. Yu and G. Xu

13. Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions. GTM, vol. 58,
New York, Springer, Heidelberg (1984)

14. Kohel, D.: Efficient arithmetic on elliptic curves in characteristic, February 2016.
https://arxiv.org/abs/1601.03669

15. Kohel, D.: Twisted μ4-normal form for elliptic curves. In: Coron, J.-
S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 659–
678. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 23.
https://eurocrypt.iacr.org/2017/slides/A03-twisted.pdf

16. Lange, T.: A note on Lez-Dahab coordinates. Cryptology ePrint Archive, Report
2004/323 (2004). https://eprint.iacr.org/2004/323.pdf

17. Li, W., Yu, W., Li, B., Fan, X.: Speeding up scalar multiplication on Koblitz curves
using μ4 coordinates. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol.
11547, pp. 620–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21548-4 34

18. Longa, P., Gebotys, C.: Novel precomputation schemes for elliptic curve cryptosys-
tems. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 71–88. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01957-9 5

19. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 16

20. National Institute of Standards and Technology(NIST).: Digital signature standard
(DSS). FIPS PUB 186–5(Draft), October 2019. https://doi.org/10.6028/NIST.
FIPS.186-5-draft

21. Okeya, K., Takagi, T., Vuillaume, C.: Efficient representations on Koblitz curves
with resistance to side channel attacks. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 218–229. Springer, Heidelberg (2005). https://
doi.org/10.1007/11506157 19

22. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 20

23. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: Lambda coordinates for binary elliptic curves. J. Cryptography Eng. 4(1),
3–7 (2014). https://doi.org/10.1007/s13389-013-0069-z

24. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 16

25. Scott, M.: MIRACL-Multiprecision integer and rational arithmetic cryptographic
library, C/C++ Library. https://github.com/miracl/MIRACL

26. Solinas, J.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptography 19,
195–249 (2000). https://doi.org/10.1023/A:1008306223194

27. Trost, W., Xu, G.: On the optimal pre-computation of window τNAF for Koblitz
curves. IEEE Trans. Comput. 65(9), 2918–2924 (2016)

28. Vuillaume, C., Okeya, K., Takagi, T.: Defeating simple power analysis on Koblitz
curves. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89–A(5), 1362–
1369 (2006)

29. Yu, W., Musa, S.A., Li, B.: Double-base chains for scalar multiplications on elliptic
curves. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp.
538–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 18

https://arxiv.org/abs/1601.03669
https://doi.org/10.1007/978-3-319-56620-7_23
https://eurocrypt.iacr.org/2017/slides/A03-twisted.pdf
https://eprint.iacr.org/2004/323.pdf
https://doi.org/10.1007/978-3-030-21548-4_34
https://doi.org/10.1007/978-3-030-21548-4_34
https://doi.org/10.1007/978-3-642-01957-9_5
https://doi.org/10.1007/978-3-642-01957-9_5
https://doi.org/10.1007/3-540-48892-8_16
https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.1007/11506157_19
https://doi.org/10.1007/11506157_19
https://doi.org/10.1007/978-3-319-13051-4_20
https://doi.org/10.1007/s13389-013-0069-z
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://github.com/miracl/MIRACL
https://doi.org/10.1023/A:1008306223194
https://doi.org/10.1007/978-3-030-45727-3_18


Dummy Shuffling Against Algebraic
Attacks in White-Box Implementations

Alex Biryukov1(B) and Aleksei Udovenko2

1 DCS and SnT, University of Luxembourg, Luxembourg City, Luxembourg
alex.biryukov@uni.lu

2 CryptoExperts, Paris, France
aleksei@affine.group

Abstract. At CHES 2016, Bos et al. showed that most of existing white-
box implementations are easily broken by standard side-channel attacks.
A natural idea to apply the well-developed side-channel countermeasure
- linear masking schemes - leaves implementations vulnerable to linear
algebraic attacks which exploit absence of noise in the white-box set-
ting and are applicable for any order of linear masking. At ASIACRYPT
2018, Biryukov and Udovenko proposed a security model (BU-model for
short) for protection against linear algebraic attacks and a new quadratic
masking scheme which is provably secure in this model. However, coun-
termeasures against higher-degree attacks were left as an open problem.

In this work, we study the effectiveness of another well-known side-
channel countermeasure - shuffling - against linear and higher-degree
algebraic attacks in the white-box setting. First, we extend the classic
shuffling to include dummy computation slots and show that this is a cru-
cial component for protecting against the algebraic attacks. We quantify
and prove the security of dummy shuffling against the linear algebraic
attack in the BU-model. We introduce a refreshing technique for dummy
shuffling and show that it allows to achieve close to optimal protection
in the model for arbitrary degrees of the attack, thus solving the open
problem of protection against the algebraic attack in the BU-model. Fur-
thermore, we describe an interesting proof-of-concept construction that
makes the slot function public (while keeping the shuffling indexes pri-
vate).

Keywords: White-box · Obfuscation · Provable security · Shuffling ·
Algebraic attack

1 Introduction

White-box model studies security of cryptographic implementations under full
control of an adversary. In seminal works, Chow et al. [8,9] proposed first white-
box implementations of the AES and DES block ciphers, which were later broken

This work was partly supported by the French FUI-AAP25 IDECYS+ project, by
the French ANR-AAPG2019 SWITECH project and by the Luxembourg National
Research Fund (FNR) project FinCrypt (C17/IS/11684537).

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 219–248, 2021.
https://doi.org/10.1007/978-3-030-77886-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_8


220 A. Biryukov and A. Udovenko

with practical attacks [1,24]. Further attempts at fixing the implementations did
not succeeded. The main idea behind these implementations is to implement the
cipher as a network of lookup tables (LUTs) and obfuscate tables by composing
them with random encodings. In 2016, Bos et al. [6] showed that most exist-
ing white-box implementations can be defeated with classic correlation attacks
known from side-channel analysis. The adaptation of the attack to the white-
box model was called Differential Computation Analysis (DCA). More recently,
Rivain and Wang [20] showed that any table-based encoding of LUTs is always
susceptible to the DCA attack, possibly applied to a later round.

The DCA attack can be fully automated and is easy to mount. Therefore, a
natural question is how to protect white-box implementations against the DCA
attack. A well-studied countermeasure against correlation attacks is masking.
The idea is to split sensitive variables in the implementation into pseudoran-
dom shares and perform computations without recombining the shares explicitly.
The classic masking schemes are linear. While this is not a problem in the side-
channel setting (e.g. analyzing power measurements) because of large amounts
of noise in measurements, it becomes an issue in the white-box setting. Recently,
Biryukov et al. [2] and Goubin et al. [13] showed that the linear masking coun-
termeasure in the white-box setting can be easily and generically broken using
elementary linear algebra. The attack was called algebraic DCA in the former
and linear decoding analysis (LDA) in the latter and was used in a sophisti-
cated multi-stage cryptanalysis of the winning challenge from the CHES 2017
CTF/WhibOx Contest 2017 [13,18]. Biryukov et al. further developed a security
model and a quadratic masking scheme achieving provable security against the
linear algebraic attack. Seker et al. [21] combined the nonlinear masking scheme
with a linear scheme and extended it to a cubic masking scheme, offering pro-
tection against degree-2 algebraic attacks.

Another known side-channel countermeasure is shuffling, inspired by hard-
ware randomization techniques and described by Herbst et al. [15] and later
analyzed in [19,22,23]. The idea is to shuffle the evaluation of identical compo-
nents (mainly S-boxes) to introduce more noise into measurements. It provides
limited security against the correlation attacks by itself and is usually combined
with the masking countermeasure. Security of shuffling against the correlation
DCA attack in the white-box setting was recently studied by Bogdanov et al. [5].
In addition, Goubin et al. [14] developed data-dependency higher-order DCA and
used it to cryptanalyze the winning challenges of the CHES 2019 CTF/WhibOx
Contest 2019 [4]. One of the challenges included a shuffling countermeasure,
which was defeated by a fault attack.

It can be expected that shuffling provides security against the algebraic attack
due to its nonlinearity. However, the algebraic security of shuffling has not yet
been evaluated. This work aims to fill this gap and analyzes shuffling rigorously
and extensively.

Our Contribution
– We show that classic shuffling provides weak security against the linear alge-

braic attack, especially against chosen-plaintext attacks. We describe a simple



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 221

generalization of the attack called differential algebraic attack, which defeats
the classic shuffling countermeasure by analyzing pairs of executions with
well-chosen differences in the inputs. However, we show that the model of [2]
guarantees protection against the new differential algebraic attack as well,
highlighting rigidity of the model.

– We define dummy shuffling, which extends the classic shuffling by adding
dummy “random” inputs. While the idea of adding dummy operations was
already present in previous works, our new definition is the first to emphasise
the importance of dummy slots. In addition, we distinguish hidden and public
shuffling, the property which is relevant in the white-box model.

– We prove and quantify security of dummy shuffling against the degree-1 alge-
braic attack, in the model of [2]. We show that it depends on a particular
property of the implementation being protected, however this property is
hard to evaluate. To overcome this problem, we introduce a novel refresh-
ing technique, that transforms any implementation into an equivalent one,
but with the relevant property being known and optimal, leading to provable
security against linear algebraic attacks.

– We prove that such “refreshed” implementations in fact provide protection
against algebraic attacks of any degree up to the amount of dummy slots
used. The degree bound is tight as shown by our generic higher-degree attack.
As a result, we obtain the first provable method of protection against alge-
braic attacks of arbitrary (predetermined) degree. Our main result is stated
in Theorem 3. Surprisingly, our new protection has quite low complexity, as
illustrated in Table 1.

– We describe an interesting proof-of-concept construction of uniform public
dummy shuffling. In this construction, shuffling is done implicitly by calling a
single slot function with an extra “index” argument. This construction shows
that a white-box designer needs only to obfuscate a single slot function, rather
than the whole shuffling process and evaluation of all the slots.

To summarize, our work provides extensive analysis of the dummy shuffling
as a countermeasure against algebraic attacks. This proves useful as it turns out
to be a solid provably secure protection. We believe that it is a useful tool for
protecting white-box implementations against generic attacks.

We remark that this work studies dummy shuffling strictly in the gray-box
model of algebraic security of [2] and white-box related problems such as white-
box-secure pseudorandomness generation, structure hiding, fault protection, etc.
are out of scope for this paper.

2 The Framework

In this section, we fix the notation, recall necessary preliminaries and the frame-
work of white-box algebraic attacks.

We write := to note that the equation holds by definition. For a ≤ b integers,
the sequence (a, a + 1, . . . , b − 1, b) is denoted by [a . . . b]. The finite field of size
2 is denoted by F2, and the n-dimensional vector space over F2 is denoted by



222 A. Biryukov and A. Udovenko

Table 1. Estimation of gate complexity for protections against algebraic attacks per
original AND/XOR gate. $ stands for one random bit generation. The error bound τ
is a security parameter (larger is more secure). Instances from [21] are created with
minimal order of linear masking (n = 1). The parameter t is an arbitrary integer greater
or equal than the protection degree.

Protection degree XOR AND Error τ Ref.

1 33 + 6$ 43 + 6$ 1/16 [2, Alg. 3]

1 7 16 + 2$ 1/16 [21]

1 2 8 + 1$ 1/8 Section 5

2 16 46 + 3$ 1/4096 [21]

2 3 14 + 3$ 1/48 Section 5

d (t ≥ d) t + 1 (6t + 2) + t$ t+1−d
t+1 · 1

22d Section 5

F
n
2 . Vectors/sequences are written as v = (v1, v2, . . . , vn). The symbol || denotes

concatenation of vectors/sequences. |X| denotes the size of the vector/set X,
or weight of the Boolean function X, or the number of computed functions in
the implementation X. 0,1 denote constant Boolean functions. The bias of a
Boolean function f : Fn

2 → F2 is given by E(f) := |f | /2n − 1/2, and the error
of f is given by err (f) := min(|f | , |f ⊕ 1|)/2n = 1/2 − |E(f)|. The Kronecker
delta function [x = y] : Fn

2 × F
n
2 → F2 is a Boolean function that is equal to 1 if

and only if x = y; its complement is denoted by [x �= y]. For a Boolean function
f(x1, . . . , xt) we denote its restriction to xi = c by f |xi=c. Every Boolean func-
tion f : Fn

2 → F2 can be uniquely written in the algebraic normal form (ANF):
f(x) =

⊕
u∈F

n
2

auxu, where au ∈ F2 and xu is a shorthand for xu1
1 . . . xun

n . The
algebraic degree (or simply degree) of f , denoted deg f , is the maximum Ham-
ming weight of all u with au = 1.

2.1 Implementations and Computational Traces

In this work, we do not restrict our analysis to any particular type of implemen-
tations (e.g. Boolean circuits or programs), even though our constructions are
most naturally and generally expressed as Boolean circuits. The only requirement
for analysis is that an implementation represents a finite sequence of Boolean
functions, which can be efficiently evaluated on arbitrary inputs (resulting in
a computational trace). Note that not all programs are easily expressed in this
form due to possibly varying control flow paths on different inputs. However,
various techniques for recording and processing (e.g. aligning) computational
traces of (compiled) programs are described in the literature [6,7]. Our setting
is formalized as follows.

Definition 1 (Implementation). An implementation is a vectorial Boolean
function C : Fn

2 → F
m
2 together with an associated sequence of efficiently com-

putable Boolean functions

F(C) = (Fi(C) : Fn
2 → F2 | i ∈ [1 . . . |C|]) .



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 223

The functions x �→ xi representing the input variables x ∈ F
n
2 and the output

coordinates of C are included in F(C).

Remark 1. For ease of understanding one can think of C as a Boolean circuit and
Fi(C) as nodes of this circuit. Note that our definition omits data-dependency
relations. While out of scope for this work, they can be used to aid higher-order
correlation or algebraic attacks by selecting nearby nodes and thus reducing the
combinatorial complexity, as was recently shown in [14].

In the context of white-box attacks, an adversary typically analyzes a part
of the implementation, for example the first 10% of operations to target the first
round of a block cipher. We call such part a window.

Definition 2 (Window). Let C be an implementation. A window W is a sub-
sequence of F(C).

For the correlation/algebraic attacks, an adversary runs the analyzed imple-
mentation on a chosen input and records all intermediate computed values inside
the chosen window, producing a so-called computational trace.

Definition 3 (Computational trace). A computational trace of an imple-
mentation C : Fn

2 → F
m
2 on a window W ⊆ F(C) and on input x ∈ F

n
2 is the

vector W(x) := (f(x) | f ∈ W) ∈ F
|W|
2 .

After recording a certain amount of computational traces, the adversary is
trying to check whether a chosen sensitive function is computed in the imple-
mentation. This analysis can be done statistically (correlation attacks) or alge-
braically (algebraic attacks). A standard example of a sensitive function that we
will use throughout the paper is an output bit of the S-box in the first round
of AES. This function depends on one key byte and the adversary recovers the
key byte by matching the correct sensitive function with the traces. More gener-
ally, one may also consider an obfuscation-related scenario, where an adversary’s
goal is to decide whether a given protected implementation computes internally
a certain function or not. In order to develop generic protection against such
adversaries, we will consider every function in the original unprotected imple-
mentation to be sensitive. The protection is then required to “hide” all original
computations and anything related to them. This is also a standard requirement
in the side-channel context of correlation attacks.

2.2 Algebraic Attack

We now recall and restate formally the notion of an algebraic attack. In the
degree-1 (linear) algebraic attack, the idea is to find a linear combination of func-
tions computed in the analyzed implementation that results in a sensitive func-
tion. For example, in an implementation protected by a linear masking scheme,
the shares of a sensitive value describe such a linear combination. By utilizing
elementary linear algebra, the shares can be located efficiently, given a sufficient



224 A. Biryukov and A. Udovenko

amount of computational traces. This allows to avoid the step of guessing the
locations of shares and thus avoid the combinatorial explosion in the complexity.

Note that it may be possible to find the shares by other methods, for exam-
ple, by analyzing the implementation structure. Indeed, the attacks against win-
ning challenges of the WhibOx 2017/2019 competitions included analysis of the
data-dependency graphs of the implementations [13,14]. Nonetheless, the cur-
rent state-of-the-art of white-box implementations struggles to provide security
even against generic, automated attacks. Thus achieving security against the
powerful algebraic attack is already an ambitious goal.

The linear algebraic attack can be naturally extended to higher degrees. The
idea is to include products of 2, 3 or more computed functions in the allowed
linear combinations. This extension can break nonlinear masking schemes, such
as quadratic masking proposed in [2]. In addition, it can also defeat table-based
encodings, since in that case a sensitive value can be computed as a higher-degree
function of the exposed encoded value.

We first define the degree-d expansion of a vector, which captures the idea
of including products of degree up to d.

Definition 4. (Degree-d expansion and closure). Let x be an n-
dimensional vector over a ring K. For an integer d ≥ 1 define the degree-d
expansion of x, denoted πd(x), as a concatenation of all products of 0, 1, 2, . . . , d
coordinates of x in a fixed order:

πd(x) := (1) || x || (xi1xi2 | 1 ≤ i1 < i2 ≤ n) || . . .

|| (xi1xi2 . . . xid
| 1 ≤ i1 < i2 < . . . < id ≤ n) .

Let V be a sequence of Boolean functions with the same domain F
n
2 . The

degree-d closure of V [2] is defined as:

V(d) := span c(πd(V)) = span ({1} ∪ {f1f2 · · · fd | f1, f2, . . . , fd ∈ V}),

where c maps a vector to the set of its coordinates1.

Example 1. Let V = (f1, f2, f3) for some Boolean functions f1, f2, f3 : Fn
2 → F2.

Then V(2) is a vector space of Boolean functions spanned by 1, f1, f2, f3, f1f2,
f1f3, f2f3.

Example 2. We will usually consider F (d)(C) for an implementation C : Fn
2 →

F
m
2 . This set consists of all degree-d combinations of intermediate functions com-

puted in C. Elements of this set are Boolean functions f mapping F
n
2 to F2.

Let
(

n
≤d

)
:=

∑d
i=0

(
n
i

)
. It is easy to see that the length of πd(x) is equal to

(|x|
≤d

)
. When n � d,

(
n

≤d

)
= nd/d! +O(nd−1). We are now ready to formalize the

algebraic attack.

1 Products of degrees less than d are included by setting, for example, f1 = f2.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 225

Definition 5 (Algebraic attack). A degree-d algebraic attack against an
implementation C : Fn

2 → F
m
2 targeting a sensitive function f : Fn

2 → F2 consists
of the following steps :

1. choose a window W ⊆ F(C);
2. choose an input vector x := (x1, . . . ,xt) ∈ (Fn

2 )t, where t :=
(|W|

≤d

)
+ ε for

some small integer ε;
3. compute on these inputs the t traces W(xi) and their degree-d expansion;
4. compute on these inputs the sensitive function f(xi);
5. solve the following linear system in z:

⎛

⎜
⎝

πd(W(x1))
...

πd(W(xt))

⎞

⎟
⎠ × z =

⎛

⎜
⎝

f(x1)
...

f(xt)

⎞

⎟
⎠ . (1)

The attack succeeds if at least one non-trivial solution is found. It is further
required that x is such that the right-hand side of the equation is non-zero.

Example 3. Consider an AES implementation protected with a Boolean masking
of an arbitrarily large order (for example, the ISW scheme [17]). An adversary
may choose f as a coordinate of an S-box output in the first round. Then, the
degree-1 algebraic attack succeeds, as f can be expressed as a linear combination
of shares which are computed in the implementation. Note that in order to
compute f (for the right part of the Eq. 1), the adversary has to guess a subkey
byte.

The time complexity of the attack on a single window W with |W| � d is

O
((|W|

≤ d

)2.8
)

= O
(

|W|2.8d

d!2.8

)

, (2)

where 2.8 is the matrix multiplication exponent using the Strassen algorithm.
We leave out the discussion about the choice of the window(s). For a relevant
analysis we refer to [2,13].

2.3 Security Model

We now recall the security model introduced in [2] and reformulate it con-
cisely. Biryukov et al. proposed a game-based notion of prediction security,
which aimed to motivate the security goals. Furthermore, the authors defined
algebraically secure circuits and encoding functions, which together implied a
stronger notion [2, Def. 3] sufficient for achieving prediction security. In this
work, we concentrate on this strongest combined notion, which we equivalently
reformulate as an algebraically secure scheme.

The model is a variant of the gray box model allowing a particular type of
leakage. Roughly speaking, the implementation may leak a degree-d function



226 A. Biryukov and A. Udovenko

of intermediate inputs, whereas in t-probing security, the implementation may
leak t intermediate wires. The model relies on the use of randomness, which in
the white-box setting has to be derived pseudorandomly from the inputs. The
model formally defines security of a scheme, containing an encoding function, an
implementation and a decoding function.

Definition 6 (Scheme). Let f : Fn
2 → F

m
2 be a function. A scheme S comput-

ing f consists of

1. an encoding function S.enc(x, re) : Fn
2 × F

|re|
2 → F

n′
2 ;

2. an implementation S.comp(x′, rc) : Fn′
2 × F

|rc|
2 → F

m′
2 ;

3. a decoding function S.dec(y′) : Fm′
2 → F

m
2 .

It is required that for all re ∈ F
|re|
2 , rc ∈ F

|rc|
2 S.dec(S.comp(S.enc(x, re), rc)) =

f(x).

The encoding step is considered as a black-box and its implementation is not
analyzed. However, it is important that it has access to the random bits re. The
output of the encoding step S.enc is passed to the implementation S.comp, which
may access additional random bits rc. The output of S.comp is then decoded by
the black-box function S.dec to obtain the final output. Full computation process
can be described as

x′ ← S.enc(x, re), y′ ← S.comp(x′, rc), y ← S.dec(y′).

Remark 2. The randomness rc used in S.comp can always be generated in S.enc
and included in the “encoded” input x′. The schemes that we propose in this
work in fact do not use any randomness in S.comp by construction. A downside
of this is that the intermediate state x′ may become very large because of the
included randomness, which otherwise could be computed “on the fly”.

The algebraic security model requires that the implementation S.comp pro-
vides security against the algebraic attacks. In the attacks, the adversary controls
the input x ∈ F

n
2 to S.enc and is mounting the algebraic attack on S.comp as

described in Definition 5. The security goal is to prevent the algebraic attack from
succeeding on any function computed in S.comp and any set of inputs chosen
by the adversary. This becomes possible due to the use of (pseudo)randomness.

Note that functions F(S.comp) computed in the implementation are functions
of the “encoded” input (that is, of the output of S.enc), which is not directly
controlled by the adversary. This requirement can be captured by composing
each function from F(S.comp) with S.enc.

We are now ready to reformulate the main security definition given in [2].
Recall that F (d)(S.comp) contains all degree-d combinations of intermediate
functions from S.comp. The idea is to require every non-trivial function from
F (d)(S.comp(S.enc)) and restricted to any fixed input x to have a non-negligible
error (as a function of random bits re, rc)2.
2 In a real white-box implementation re, rc would be constant for fixed x, but in our

definitions we allow a more powerful adversary with ability to re-randomize for the
same x.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 227

Then, any such function would be hard to predict and target in the attack
even when the input is fully controlled. Such security requirement guarantees
hardness of launching an algebraic attack even when the adversary knows all
the intermediate values computed in the original implementation (for example,
knows the secret key if the scheme implements a white-box AES). While such
an adversary would not need anymore to launch such an attack, this property
highlights the universality of the protection.

We define the algebraic security in terms of the error (τ -error-d-AS scheme)
instead of the bias as in [2] ((1/2 − τ)-d-AS circuits and encoding functions),
as it simplifies the notation. Indeed, the error in our cases is small, especially
for the higher-degree case but sufficient to thwart an attacker. Furthermore, it
highlights the link with the Learning Parity with Noise (LPN) problem, where
a linear system with errors has to be solved. Indeed, if some equations in Eq. 1
from Definition 5 are erroneous, the attack might still succeed if the fraction of
erroneous equations is small enough for LPN-solving algorithms to be applicable.
For example, in the case of an extremely small error, the constructed linear
system may be error-free and then even the basic algebraic attack succeeds.

Definition 7. (τ-error-d-AS scheme). Let S be a scheme and let d ≥ 1 be
an integer. Let τ be the minimum error among all non-trivial functions from
F (d)(S.comp) composed with S.enc and with any fixed x = x̃ ∈ F

n
2 :

τ := min
{
err

(
f(S.enc(x̃, ·), ·) ) ∣

∣
∣ f(x, rc) ∈ F (d)(S.comp) \ {0,1} , x̃ ∈ F

n
2

}
,

where the error is computed over re, rc. If τ > 0, the scheme S is said to be
degree-d algebraically secure with error τ (τ -error-d-AS).

Remark 3. The larger is the error bound τ , the more secure the scheme is against
LPN attacks. As noted above, an extremely low error may even allow the basic
algebraic attack to succeed.

Remark 4. The algebraic security definition does not cover the decoding function
S.dec, which is defined for completeness and to restrict the analysis to useful
schemes - schemes that indeed compute the desired function C : Fn

2 → F
m
2 .

A major goal is to develop a method of embedding any given implementa-
tion into a τ -error-d-AS scheme with a constant τ > 0 (i.e. independent of the
circuit size) and with the encoding function independent of the circuit structure.
Biryukov et al. proposed a quadratic masking scheme that achieves 1/16-error-
1-AS (i.e. based on 7/16-1-AS circuit gadgets), but didn’t provide schemes for
degree d > 1. The aim of this work is to evaluate shuffling techniques as such a
protection method.

What is the maximum value of τ that could possibly be achieved by a scheme?
Consider a Boolean circuit-based scheme and consider d independent functions
computed in the scheme. Their product has error 2−d if the functions are bal-
anced and less otherwise. As a linear computation would not be universal, we
assume that d AND gates with independent balanced inputs are present. Since



228 A. Biryukov and A. Udovenko

each computed function in such gate has error 1/4, the degree-d product of these
functions has error 2−2d. We conclude that in Boolean circuit implementations
the error lower bound close to 2−2d would be optimal to achieve. In other imple-
mentation models, such as lookup table (LUT) networks, a larger error bound
may be achievable.3

In a recent exposition of algorithms for solving LPN by Esser et al. [12], all
time complexities are exponential in the number of unknowns k, with the base
of the exponent close to 2τ for small errors (excluding BKW [3] with complexity
2

k
log k−log τ ). Since the number of unknowns k =

(|W|
≤d

)
in the algebraic attack

grows much faster than τ−1 ≥ 22d, the error bound close to 2−2d provide a
sound protection with roughly estimated attack complexity 2τk ≈ 2(|W|/4)d

or

2
|W|d

(d+1)! log |W| using the BKW algorithm. More precise analysis of the complexity
of solving LPN instances with such errors is beyond the scope of this work.

3 Shuffling Definitions

We first briefly survey the literature on the shuffling countermeasure with a
stress on the white-box model in Subsect. 3.1 and then proceed with our new
definitions. High-level definition of dummy shuffling is given in Subsect. 3.2 and
its variants in the white-box setting are discussed in Subsect. 3.3. Finally, we
describe our formal model of dummy shuffling in the algebraic security framework
in Subsect. 3.4.

3.1 Related Work

Shuffling is a side-channel countermeasure that often complements masking. The
idea is to randomize the order of the operations to desynchronize sensitive leakage
points. A comprehensive study from the side-channel point of view is given by
Veyrat-Charvillon et al. [23]. More recently, two works analyzed shuffling in the
white-box setting and described two classifications.

Bogdanov et al. [5] distinguished two dimensions of shuffling in white-box
implementations: time and memory. Time shuffle randomizes the order of the
computations. This is precisely what matters from the classic side-channel point
of view, as it desynchronizes the leakage channel. In the white-box setting how-
ever, such shuffling can be defeated by synchronizing computational traces by
memory addresses, rather than by time. Therefore, it is necessary to augment
time shuffle with memory shuffle, which randomizes the addresses of stored inter-
mediate values.

Goubin et al. [14] distinguished horizontal and vertical shuffling. In horizontal
shuffling, the computations are performed at the same time, while the data being
3 Absence of intermediate nodes in pure LUT-based implementation gives less vari-

ables to use for an attack. As an extreme case, consider one big LUT e.g. of a
permutation. Since inputs and outputs are balanced, best error bound to get is 2−d,
which is better than 2−2d for circuits.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 229

processed is shuffled. In vertical shuffling, slots are processed sequentially, and
the data is shuffled. Thus, both time and memory shuffle are performed. The
authors further allowed dummy slots, which could be based on pseudorandom
input or on an irrelevant dummy key.

3.2 Dummy Shuffling

In order to distinguish the time/memory and vertical/horizontal separation from
the presence of dummy computations, we propose a definition that specifically
focuses on the “dummy” part, while being independent of being serial/parallel.
The main idea is to hide the real computation among several redundant but sim-
ilarly looking computations. We start by defining a computational slot, which is
the target of shuffling: an operation that is computed multiple times indepen-
dently.

We remark that the definitions in this and the next subsection are infor-
mal and introduce only the terminology and broad implementation and hiding
strategies.

Definition 8. (Slot (informal)). A slot is a part of the implementation com-
puting a particular sensitive function. In the context of shuffling, it is expected
that the implementation contains multiple slots for each (sub)function being pro-
tected.

Example 4. In a Boolean or arithmetic circuit, an example of a slot is a sub-
circuit reproduced multiple times, possibly with modifications or alternative
circuit representations. In a program, an example of a slot is a function or a
piece of code that is called multiple times, or simply multiple pieces of code each
computing the same sensitive function.

We are now ready to provide informal definition of our main protection tool
- dummy shuffling.

Definition 9. (Dummy Shuffling (informal)). Dummy shuffling is an
implementation strategy, in which a sensitive function is computed in multiple
slots, such that during an execution:

1. at least one of the slots (main slot(s)) computes the function on the correct
(main) input(s);

2. at least one of the slots (dummy slot(s)) computes the function on a
(pseudo)randomly generated input(s);

3. the locations of the main slots are (pseudo)randomly generated on each exe-
cution or on each distinct input.

Dummy shuffling is performed in three phases (see Fig. 1):

1. in the input-shuffling phase, the dummy inputs are generated and shuffled
together with the main inputs;



230 A. Biryukov and A. Udovenko

x1 x2 xt

main inputs dummy inputs

input-shuffling

C C C C Cevaluation slots

output-selection

y1 y2 yt

main outputs

Fig. 1. Dummy Shuffling. The symbol $ denotes a uniform and independent source of
randomness. Implementation of each application of C can be different or, for example,
can be one shared procedure in software implementations.

2. in the evaluation phase, the sensitive function is evaluated on each of the
inputs, using slots;

3. in the output-selection phase, the main outputs are extracted and passed into
further computations (by unshuffling or by any other means).

Multiple main slots can be used for two reasons. First, multiple main slots
may be running on the same main input, with the goal of error detection and/or
correction. Second, multiple main slots may be running on different main inputs,
when in the reference implementation the sensitive function is computed multiple
times. The second case corresponds to the standard shuffling, for example, the
16 identical S-boxes (or 4 identical MixColumns operations) in the AES may
constitute main slots.

3.3 Hidden and Public Dummy Shuffling

We now introduce a further classification of dummy shuffling techniques with
respect to whether the slots are clearly isolated in the implementation or are
intertwined with each other to hide the shuffling structure. Furthermore, another
important factor is whether all slots have an identical implementation.

Definition 10 (informal). Hidden dummy shuffling is an implementation of
dummy shuffling for which it must be difficult for an adversary to isolate any
single slot or a group of slots, no matter main or dummy.

Public dummy shuffling is an implementation of dummy shuffling in which
all slots are clearly separated in the implementation and are easy to isolate.
However, the locations of the main/dummy slots must still be difficult to predict
for an adversary in any evaluation. Furthermore, if all slots’ implementations
are fully identical and an adversary is able to interchange them freely, then we
say that the dummies are uniform.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 231

This definition captures the level at which an obfuscation is performed. In
hidden dummy shuffling, the whole implementation is obfuscated and the slots
are hard to locate and isolate. In public dummy shuffling, each slot may be
obfuscated but is still easy to locate and isolate in the implementation.

In this work we analyze dummy shuffling as a countermeasure against the
algebraic attack. In this context, the difference between hidden and public
dummy shuffling mainly affects the size of the window that contains all nodes
of the circuit used in the attack. Typically, two configurations of attacked nodes
arise in the attacks: (1) all attacked nodes are contained in a single slot; (2)
attacked nodes contain the same group of nodes in multiple/all slots. Case 2 is
illustrated in Fig. 2, where the adversary tries to blindly select a window in the
full implementation such that it contains the same target sensitive function com-
puted in each of the slots; the red areas highlight the uncertainty for selecting
such a window.

C′C C′′

(a) hidden

C C′ C′′

(b) non-uniform public

C C C

(c) uniform public

Fig. 2. Variants of dummy shuffling and window selection uncertainty. Red areas illus-
trate possible positions of a window relatively to the slots. (Color figure online)

1. In hidden dummy shuffling, the slots are not clearly separated and thus a
window has to be selected from the entire implementation including all slots.
Furthermore, in the case (2) the size of the window has to be much larger to
be able to cover multiple slots.

2. In non-uniform public shuffling (for example, if each slot is obfuscated inde-
pendently), the slots are easy to isolate. Therefore, a window in a single slot
is selected from that slot only, reducing the combinatorial complexity and the
required window size. A window covering the same group of nodes in multiple
slots is still similar to the hidden dummy shuffling case, since it should be
hard to find the parts of obfuscated circuits related to the target attacked
group.

3. In uniform public shuffling, the slots are clearly isolated and are identical.
Therefore, in both cases (1) and (2), the window can be selected inside a single
slot, and extended to the same area in the other slots in the case (2). This
case allows minimal combinatorial complexity of the attacks. However, from
the designer’s viewpoint, it removes the high-level obfuscation requirement
and leads to a cleaner solution.

In Sect. 6, we describe a proof-of-concept construction for uniform public
dummy shuffling. It shows that it is possible to implement dummy shuffling in
a way that, even given a black-box access to the slot function, it is hard to



232 A. Biryukov and A. Udovenko

distinguish main slots from dummy slots for any particular input. Therefore, a
white-box designer aiming to use dummy shuffling does not have to obfuscate the
whole implementation including the shuffling procedure and all slot evaluations;
obfuscating a single slot function is sufficient.

3.4 Modeling Algebraic Security of Dummy Shuffling

In this work, we analyze security of the slot evaluation phase, which is the core
of dummy shuffling. It is the most critical part where all the computations of
the original implementation take place. This subsection defines a formal model
for analyzing security of dummy shuffling in the framework of [2].

In the following, let smain denote the number of main inputs, sdummy the
number of dummy inputs, and s := smain+sdummy. For simplicity, we assume that
there are no always-duplicate main inputs and all main inputs are independent,
i.e. an adversary can set each main input to any value independently.

We analyze the security of the evaluation phase by considering the input-
shuffling phase as the “encoding” part of a scheme (S.enc), the slot evaluation
phase as the main “implementation” (S.comp), and the output-selection phase
as the “decoding” part (S.dec). Finally, the goal is to determine the algebraic
security of the resulting scheme S. This gray-box setting is formally described in
the following definition.

Definition 11 (Evaluation-Phase Model). Let C(x) : F
n
2 → F

m
2 be an

implementation. Let smain, sdummy be positive integers, s := smain + sdummy. In
the evaluation-phase model, we analyze the algebraic security (in the sense of
Definition 7) of the scheme EPM(C, smain, sdummy) := S, constructed as follows:

Func.
S.enc(x, re) : (Fn

2 )smain ×F
|re|
2 → (Fn

2 )s

let v ∈ (Fn
2 )s

for i ∈ [1 . . . smain] do
vi ← xi

(r′
e, r

′′
e ) ← re

for i ∈ [(smain + 1) . . . s] do

vi
r′

e←− F
n
2

return x′ r′′
e←−− Shuffle(v1, . . . , vs)

Impl. S.comp(x′) : (Fn
2 )s → (Fm

2 )s

let y′ ∈ (Fm
2 )s

for i ∈ [1 . . . s] do
y′
i ← C(x′

i)

return y′ ← (y′
1, . . . , y

′
s)

Func. S.dec(y′, r′′
e ) : (Fm

2 )s → (Fm
2 )smain

y
r′′

e←−− Unshuffle(y′
1, . . . , y

′
s)

return (y1, . . . , ysmain)

Here, by
r′

e←− (
r′′

e←−) we mean that r′
e (r′′

e ) is used as randomness to generate the
value (sample uniformly from F

n
2 shuffle almost-uniformly).

Remark 5. The EPM scheme does not use randomness in the implementation
part, so the argument rc in S.comp is omitted.

Remark 6. We define the decoding function by unshuffling the computed state
y using saved randomness r′′

e which was used to shuffle in S.enc. Formally, we
could include r′′

e in S.comp by encrypting it in S.enc so that it does not introduce



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 233

algebraic leakage, and decrypting in S.dec. This just an example method of
implementing the output-selection. As we focus on the evaluation phase, this
process is out of scope of this model.

Remark 7. The shuffling permutation does not have to be perfectly uniform (in
fact, it is not possible for s ≥ 3). In addition, it is easy to show that it is enough
to choose uniformly locations of smain main slots and shuffle them; shuffling
dummy slots does not change the output distribution of S.enc.

4 Algebraic Attacks on Dummy(less) Shuffling

In this section, we describe weaknesses in the algebraic security of dummy(less)
shuffling. We start by exhibiting leakage of classic dummyless shuffling in the
model in Subsect. 4.1, where we also sketch a standard linear algebraic attack
to highlight the practical relevance. In Subsect. 4.2, we develop a differential
algebraic attack which exploits the leakage more effectively. We show however
in Subsect. 4.3 that the security model of [2] is strong enough to provide security
against the differential attack technique out-of-the-box. We continue by general-
izing the attack to a higher-degree algebraic attack against shuffling with dummy
slots in Subsect. 4.4. This attack gives an upper-bound on the degree of algebraic
security of dummy shuffling depending on the number of dummy slots.

4.1 Standard Algebraic Attack Against Dummyless Shuffling

Shuffling without dummy slots requires the implementation to have multiple
main slots and thus is quite limited in its applications. Nonetheless, a typical
application is a block cipher utilizing the Substitution-Permutation Network
(SPN) structure and almost all such ciphers use the same S-box in each round,
clearly exposing multiple main slots for the substitution layer. The linear layers
however have a large variety of structures and the applicability of classic dum-
myless shuffling depends on each case. Since white-box implementations of SPN
ciphers is a typical goal, we analyze this case.

We start by exhibiting a critical weakness of dummyless shuffling. Briefly
speaking, shuffling leaks any symmetric function of the permuted values. For a
degree one attack, the only such function is the sum of the value over all slots.
For higher degrees, there are more possibilities.

Proposition 1. Let C : F
n
2 → F

m
2 be an implementation and let S :=

EPM(C, s, 0) for an integer s ≥ 1. Then, for any f ∈ F(C) and any sym-
metric function g : Fs

2 → F2 the following function h is leaked, i.e. there exists
h′ ∈ F (deg g)(S.comp), such that h′(S.enc(x, re)) = h(x), where

h : (Fn
2 )s → F2 : (x1, . . . , xs) �→ g(f(x1), . . . , f(xs)).

Proof. Since f(xi) is computed in clear in each slot, a degree-d symmetric com-
bination h′ of these functions belongs to F (deg g)(S.comp). The effect of S.enc
only permutes the inputs x1, . . . , xn, which does not have an effect on h′ since
it is symmetric: h(x) = h′(S.enc(x, re)) = h′(x). ��



234 A. Biryukov and A. Udovenko

Example 5. The most trivial example is the sum of a sensitive function f over
all slots being vulnerable to the algebraic attack. Note that a related technique
called integration attack was applied to differential power analysis (DPA) of
randomized implementations in [10] in order to reduce the introduced noise and
lower the required number of traces.

The proposition shows that classic dummyless shuffling does not achieve secu-
rity in the evaluation-phase model. We now show a concrete practical attack on
the example of the AES.

Consider an AES implementation where the 16 S-boxes are shuffled and pos-
sibly protected by a linear masking scheme. We target any single bit output of
the S-box after the first round. However, as observed above, only the sum of
these bits of all 16 S-boxes is leaked. Let S1 : F8

2 → F2 denote the first output
bit of the AES S-box and define a function f as follows:

f : (F8
2)

16 → F2 : (x1, . . . , x16) �→ S1(x1 ⊕ k1) ⊕ . . . ⊕ S1(x16 ⊕ k16),

where k1, . . . , k16 is the first round subkey. Clearly, f can be computed via a
linear combination of some intermediate variables in the analyzed implementa-
tion. The standard approach of guessing a portion of the key to compute f does
not work, since it depends on the full key. We show that in the chosen-plaintext
(CPA) setting an efficient attack is possible. Note that the algebraic security
model assumes CPA and so such attack is covered by the model. The idea is to
fix x2, . . . , x16 to arbitrary constants and guess one bit

c := S1(x2 ⊕ k2) ⊕ . . . ⊕ S1(x16 ⊕ k16).

Then, after guessing k1 the value of f can be computed for all 256 values of x1,
i.e. on inputs of the form (F8

2, x2, . . . , x16). The limited number of inputs upper
bounds the window size that can be used for the attack which can become a
limitation for an attacker. While this is already a proof-of-concept attack, we
can further overcome the limitation. Let us guess another bit, which is now a
bit of difference

S1(x′
2 ⊕ k2) ⊕ S1(x2 ⊕ k2)

for some x′
2 �= x2. This allows to compute the value of f on 256 more inputs

of the form (F8
2, x

′
2, x3, . . . , x16). More generally, we can guess t ≤ 15 bits of

difference (in addition to the 8 bits of k1) to be able to compute f on 256 · 2t

different inputs, which already allows a huge window. Further, more difference
bits per each byte can be guessed to cover more inputs at a little cost.

We conclude that dummyless shuffling provides little security even against
standard algebraic attack (with modified key guessing method) in the chosen
plaintext setting.

4.2 Differential Algebraic Attack Against Dummyless Shuffling

In this section, we describe a generalization of the algebraic attack called dif-
ferential algebraic attack. The idea follows rather naturally from the previously



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 235

described attack, where bits of differences were guessed. Let us attack the differ-
ence of f on pairs of inputs (i.e. f(x)⊕f(x′)), instead of the function f itself (i.e.
f(x)). Indeed, the difference is at least not harder to compute and, in particular
cases, may be much easier.

This modification works very well for the dummyless shuffling setting
described above. In fact, it works out-of-the-box with a standard key guess-
ing procedure. First, an attacker chooses pairs (x, x′) such that (x2, . . . , x16) =
(x′

2, . . . , x
′
16) and x1 �= x′

1. Then, she records computational traces W(x),W(x′)
and computes a new differential trace

v(x) := (Wi(x) ⊕ Wi(x′) | 1 ≤ i ≤ |W|) ,

which is used further as in the standard algebraic attack. Similarly, instead of
computing f(x) for a given key guess, the attacker computes f(x) ⊕ f(x′). In
the AES example, it requires only one key byte guess as

f(x) ⊕ f(x′) = S1(x1 ⊕ k1) ⊕ S1(x′
1 ⊕ k1),

while computing f(x) requires 16 key bytes:

f(x) = S1(x1 ⊕ k1) ⊕ . . . ⊕ S1(x16 ⊕ k16).

The attack can be viewed as a standard algebraic attack with an extra pre-
processing step of the collected traces and of the predicted sensitive function. A
formal definition of a general degree-d differential attack, similar to Definition
5 (Algebraic attack), can be found in the full version of this paper.

4.3 Security Against Differential Algebraic Attack

We will show that the differential algebraic attack does not provide any advan-
tage against algebraically secure schemes (τ -error-d-AS), in particular, against
secure variants of dummy shuffling which we will identify later. To state it for-
mally, we define an analogue of the security notion τ -error-d-AS and show that
the new notion is implied by τ -error-d-AS.

Definition 12. Let S be a scheme and let d ≥ 1 be an integer. Let τ be defined
as follows4:

τ := min
{

err
(

f
(
S.enc(x, ·), ·) ⊕ f

(
S.enc(x′, ·), ·) )

∣
∣
∣ f ∈ F (d)(S.comp) \ {0,1} , x, x′ ∈ F

n
2

}

.

If τ > 0, the scheme S is said to be degree-d differentially algebraically secure
with error τ (τ -error-d-DAS).

4 The randomness variables re, rc are independent in each application of f and S.enc.



236 A. Biryukov and A. Udovenko

We now show that standard algebraic security implies differential algebraic
security.

Proposition 2. Let S be a scheme. If it is τ -error-d-AS for some τ, d, then it
is τ ′-error-d-DAS with τ ′ = 2τ(1 − τ) ≥ τ .

Proof. Let f ∈ F (d)(S.comp) \ {0,1} and x, x′ ∈ F
n
2 . Define

e := err (f(S.enc(x, ·), ·)) ≥ τ, e′ := err (f(S.enc(x′, ·), ·)) ≥ τ,

e′′ := err (f(S.enc(x, ·), ·) ⊕ f(S.enc(x′, ·), ·)) .

Since f(S.enc(x, ·), ·) and f(S.enc(x′, ·), ·) each use independent inputs rc, re, it
follows that

e′′ = e(1 − e′) + (1 − e)e′ = e + e′ − 2ee′,

which is minimized when both e and e′ are minimized, that is e′′ ≥ 2τ − 2τ2 =
2τ(1 − τ). This is always not less than τ , since τ ≤ 1/2 and so 2(1 − τ) ≥ 1. ��

The proof shows that, in fact, the error only increases when multiple traces
are combined. It is trivial to prove a similar statement for the case of higher-order
differentials or general integrals (i.e. adding values of f in more than 2 inputs).
Therefore, the differential algebraic attack is not useful against algebraically
secure schemes. Note that this was not a problem in the dummyless shuffling
setting, because the attack targeted a function with error 0. We conclude that τ -
error-d-AS is a strong security notion and automatically covers some extensions
of the algebraic attack.

4.4 Generic Higher-Degree Attack

After (crypt)analyzing dummyless shuffling, we switch to dummy shuffling with
at least one dummy slot. We consider higher-degree attacks in order to establish
an upper bound on the degree of the algebraic security of dummy shuffling.
We describe a generic degree-(sdummy + 1) attack in the evaluation-phase model
(meaning that the attack is very generic), and further sketch how an actual attack
would look like in practice. In a way, this attack generalizes the attack from
Subsect. 4.1. Indeed, the former attack described a degree-1 attack on shuffling
with sdummy = 0.

Proposition 3. Let C be an implementation, and let smain ≥ 1, sdummy ≥
0. The evaluation-phase model scheme EPM(C, smain, sdummy) is not τ -error-
(sdummy + 1)-AS for any τ > 0.

Proof. Let d = sdummy + 1. The idea is to select the same sensitive variable
z ∈ F (1)(C) in arbitrary d slots (for the sake of the proof, any input bit function
of S.comp suffices), and to multiply these linear functions. The resulting function,
denoted z ∈ F (d)(S.comp), is always a product of some bits computed on dummy
inputs and of the sensitive variable at one (or more) of the main slots.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 237

Let p denote the probability of z = 1 when the input is sampled uniformly
at random, i.e. p = Prx∈F

n
2

[z(x) = 1] > 0. Let us consider all main inputs set to
the same value, namely x0 or x1, such that z(x0) = 0, z(x1) = 1.

In the first case, the sensitive variable z is equal to 0 in at least one of the
considered slots and the product is always equal to zero:

Pr
re

[
z(S.enc(x0, re)) = 0

]
= 1.

In the second case, the probability of the product being equal to 1 is pt where
t denotes the number of dummy slots among the chosen d slots. It is minimal
when all d − 1 dummy slots are selected. We conclude that the whole product is
equal to 1 with probability at least pd−1:

Pr
re

[
z(S.enc(x1, re)) = 1

]
≥ pd−1.

This concludes the proof, since for the described non-constant function z ∈
F (d)(S.comp) \ {0,1}, the function z(S.enc(x0, ·), ·) is constant and thus has the
error equal to 0. ��

The proposition shows that dummy shuffling does not achieve τ -error-d-AS,
but it does not prove that it is in fact insecure against the algebraic attack. We
go further and sketch a concrete attack that is applicable to an implementation
protected with dummy shuffling. Let W ⊆ F(S.comp) denote the attacked win-
dow and let w := |W| denote its size, e.g. w = |S.comp| = s |C| for the whole
circuit. We assume that there is a sensitive variable z ∈ W(1) that defines a
balanced or a close to balanced Boolean function.

Let X0 (resp. X1) denote the set of inputs for which the sensitive variable is
equal to 0 (resp. 1). The adversary chooses t := wd/d! + ε inputs from X0 for
which the sensitive variable is equal to 0 and computes traces on these inputs.
Then, she chooses an input from X1 for which the sensitive variable is equal to
1 and computes a single trace on it. She applies the degree-d algebraic attack
to the t + 1 traces together, searching for the vector (0, . . . , 0, 1) in the space
W(d) restricted to the traced inputs, which has size at most

(
w
≤d

)
< wd/d! .

The sensitive function z constructed as in the proof above would match the
first t zeroes with probability 1 and match the last one with probability at least
1/2d−1. We assume that the probability of other vectors matching (i.e. a false
positive) is negligible since t is larger then the dimension of the vector space.
With probability 1/2d−1 an attack trial succeeds. Therefore, O(2d) traces with
inputs from X1 are enough to find the desired degree-d combination with high
probability. The complexity of the attack is thus O(2d · (wd/d!)2.8) (using the
Strassen algorithm).

Example 6. Consider an AES implementation protected with dummy shuffling,
smain = 1 and sdummy ≥ 1, i.e. a slot computes the whole cipher. The sensitive
variable z is as usual the output of a first-round S-box, and we target z: the
product of z taken over all s = sdummy+1 slots. A guess of the respective subkey



238 A. Biryukov and A. Udovenko

byte allows to split the input space into X0 and X1. A standard assumption
is that the wrong subkey guess results in an incorrect split and leads to an
unsuccessful attack. We conclude that the correct subkey can be identified by
running the attack 256 times.

5 Provable Algebraic Security of Dummy Shuffling

After establishing the limits of the algebraic security of dummy shuffling in the
previous section, we switch to quantifying and proving security of dummy shuf-
fling. In Subsect. 5.1, we analyze the security of basic dummy shuffling against the
linear attack. Next, we develop a refreshing technique which allows to achieve
provable security in Subsect. 5.2. Finally, we use the same technique to prove
security against higher-degree algebraic attack in the case of a single main slot
in Subsect. 5.3.

5.1 Security Analysis (Linear Case)

After showing an upper-bound on the algebraic security degree provided by
dummy shuffling, we now study the case of degree-1 attack, and analyze when
dummy shuffling indeed provides a protection and evaluate the security param-
eter τ . We show that algebraic security of the EPM scheme depends on a par-
ticular property of the original circuit, which is defined formally in the following
definition.

Definition 13. Let C be an implementation. For an integer d ≥ 1, denote by
errd (C) the minimum error of a nontrivial function from F (d)(C):

errd (C) := min
f∈F(d)(C)\{0,1}

τf.

We now give a bound on the 1-AS security of the EPM scheme, parameterized
by the value err1 and the number of main and dummy slots.

Theorem 1. Let C be an implementation and let smain ≥ 1, sdummy ≥ 0 be
integers, s = smain + sdummy. Then the evaluation-phase model scheme S :=
EPM(C, smain, sdummy) is τ -error-1-AS, where

τ ≥ sdummy

s
· err1 (C) .

Proof. Consider a function f ∈ F (1)(S.comp) \ {0,1} and an arbitrary input x.
Since f is nontrivial, it can be expressed w.l.o.g. as f(x′) = g(x′

1)+h(x′
2, · · · , x′

s),
where g ∈ F (1)(C) \ {0,1} is a function computed in one of the slots, and
h is a function computed in the other slots. The slot of g is a dummy slot
with probability sdummy

s . In this case, g takes as input an independent uniformly
random input (derived from r′

e in S.enc), and its error is lower-bounded by



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 239

err1 (C). In the case it is a main slot, the value of g is constant and the error is
equal to 0. It follows that

err (g(S.enc(x, ·)) ≥ sdummy

s
· err1 (C) +

smain

s
· 0.

For any fixed shuffling order outcome (decided by r′′
e in S.enc), g and h are

independent, and so the error err (f(S.enc(x, ·))) satisfies the same bound. ��
Simply stating, the error bound is proportional to err1 (C) with coefficient

equal to the fraction of dummy slots: when all slots are dummy slots, the bound
is equal to err1 (C); when all slots are main slots, the bound is equal to 0.

According to this theorem, dummy shuffling provides security against the
linear algebraic attack as soon as at least one dummy slot is used. However, the
security parameter τ depends on the original circuit C and thus is not generally
a constant. Furthermore, even determining or approximating the bound err1 (C)
for an arbitrary implementation C is not an easy problem. We consider one
special case when the bias can be upper bounded.

Corollary 1. Let C : F
n
2 → F

m
2 be an implementation and let r = deg C :=

maxf∈F(C) deg f . Then the scheme EPM(C, smain, sdummy) is τ -error-1-AS with

τ ≥ 1
2r

· sdummy

s
.

Proof. We use the well-known facts that the minimum weight of a nonzero
Boolean function of degree r is 2n−r, i.e. the minimum error satisfies err1 (C) ≥
1/2r, and that a linear combination of such functions can not increase the degree.

��
In the following subsection, we propose a solution to obtain concrete security

guarantees for arbitrary circuits.

5.2 Provable Security via Refreshing (Linear Case)

In this solution, we first transform the original implementation C before applying
the shuffling countermeasure. For simplicity, we assume that the implementation
is based on a Boolean circuit.

First, we add extra inputs to the circuit. After embedding the extended circuit
in the EPM scheme, the extra bits would be set to zero on main inputs, while
on dummy inputs they would be uniformly random (by the definition of EPM).
Then, we use these extra inputs to “refresh” each non-linear gate by an extra
XOR. In a main slot, this will have no effect on the computation, since the extra
bits are equal to zero. In a dummy slot, this will randomize all computations
and maximize the value err1(C̃) of the new implementation C̃.

Definition 14 (Refreshed Circuit). Let C(x) : F
n
2 → F

m
2 be a Boolean

circuit implementation with l AND gates and an arbitrary amount of XOR and



240 A. Biryukov and A. Udovenko

NOT gates. Define the refreshed circuit C̃(x, r) : F
n
2 × F

l
2 → F

m
2 as follows.

Replace each AND gate ak = zi ∧ zj in C, 1 ≤ k ≤ l by the circuit a′
k =

rk ⊕ ak = rk ⊕ (zi ∧ zj), where rk is the k-th extra bit; each wire using ak is
rewired to use a′

k.

Refreshing has a useful effect on the computed functions: up to a bijective
modification of the input, a refreshed circuit computes only quadratic functions
of the input. This immediately implies err1(C̃) ≥ 1/4 for any circuit C and will
also be useful for proving higher-degree security in Subsect. 5.3.

Lemma 1. Let C : Fn
2 → F

m
2 be an implementation in a form of a Boolean cir-

cuit in the {AND,XOR,NOT} basis using l AND gates and let C̃ be its refreshed
version. Then, there exists a bijection h mapping F

n
2 × F

l
2 to itself, such that

deg f ◦ h−1 ≤ 2 for all f(x, r) ∈ F(C̃).

Proof. We use the notation from Defintion 14. For all 1 ≤ k ≤ l, let

gk : F
n
2 × F

l
2 → F

n
2 × F

l
2 : (x, r) �→ (x, r′), where

r′
i =

{
ri ⊕ ak(x, (r1, . . . , rk−1)), if i = k

ri if i �= k.

That is, gk replaces rk by rk + ak = a′
k in the full state (x, r). Note that ak is a

function of x and r1, . . . , rk−1 and so gk is a bijection.
Define h := gl ◦ . . . ◦ g1 and let (x, r′) := h(x, r). Then, we have r′

k = a′
k(x, r)

for all k. Let f ∈ F(C̃) be the function computed in an arbitrary AND gate of
C̃. Note that outputs of AND gates are used only to compute a′

k in C̃ and the
inputs of AND gates can only be affine functions of x and all refreshed AND
gates a′

k. That is,
f(x, r) = p(x, a′(x, r))q(x, a′(x, r))

for some affine functions p, q. Since (x, a′) = (x, r′) is the output of h(x, r), it
follows that

f(x, r) = p(h(x, r))q(h(x, r)).

The right-hand side defines (at most) quadratic function o(z) := p(z)q(z) such
that f = o ◦ h. We conclude that f ◦ h−1 = o has degree at most 2. ��
Remark 8. From the proof it can be observed that the last topologically inde-
pendent AND gates (i.e. those, output of which does not affect any other AND)
do not have to be refreshed for the lemma to hold.

The linear algebraic security of dummy shuffling with refreshing follows nat-
urally from the lemma and Corollary 1.

Theorem 2. Let C(x) : Fn
2 → F

m
2 be an implementation in a form of a Boolean

circuit in the {AND,XOR,NOT} basis. Then, EPM(C̃, smain, sdummy) is τ -error-
1-AS, where

τ ≥ 1
4

· sdummy

s
.

In particular, EPM(C̃, 1, 1) is a 1/8-error-1-AS scheme.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 241

Proof. The weight/error of any function f ∈ F (1)(C̃) \ {0,1} is unchanged
when the function is composed with a bijection (in this case, the bijection h−1

from Lemma 1): err (f) = err
(
f ◦ h−1

) ≥ 1/4. Therefore, any considered func-
tion f is weight-equivalent to a (non-zero) quadratic function, which has error
at least 1/4, and so err1(C̃) ≥ 1/4. The result follows from Theorem 1. ��

5.3 Provable Security via Refreshing (Higher-Degree)

We now switch to higher-degree algebraic security. In this subsection we show
that the refreshing technique allows to achieve algebraic security of degree match-
ing the upper-bound given by the generic attack given in Subsect. 4.4, namely
the degree equal to the number of dummy slots.

We will use the following lemma. Intuitively, consider s parallel applications
of an implementation C : F

n
2 → F

m
2 and assume f : (Fn

2 )s → F2 be a non-
constant function of the s inputs obtained by applying a degree-d function to
intermediate functions inside all copies of C. Assume that we can set one of the
inputs to any constant c ∈ F

n
2 , making all intermediate computations in that

C constant as well. However, which one out of s copies is set to the constant is
chosen uniformly at random. The lemma says that f can be constant in at most
d such choices out of s.

The motivation for the lemma comes from a simple choice of such f and
c (coming from the generic attack from Subsect. 4.4) set c = 0 and f be (for
example) a product of the first input bit of the first d copies of C: f(x1, . . . , xs) =
x1,1x2,1 . . . xd,1. Clearly, f = 0 when x1 = c = 0, or x2 = c = 0, . . ., or xd = c =
0. However, it is non-constant in all other s − d choices, namely xd+1 = c = 0,
. . ., or xs = c = 0. The lemma thus states that such a choice of f, c is the best
an adversary (aiming to find f that is constant as often as possible) can achieve.

Lemma 2. Let C : Fn
2 → F

m
2 be an implementation. For an integer s ≥ 1 denote

s parallel applications of C by C⊗s (as an implementation):

C⊗s : (Fn
2 )s → (Fm

2 )s : (x1, . . . , xs) �→ (C(x1), . . . , C(xs)).

Let f ∈ F (d)(C⊗s) \ {0,1} for an integer d, 1 ≤ d ≤ s. Then, for any c ∈ F
n
2

the number of positions i, 1 ≤ i ≤ s such that f |xi=c is constant is at most d:
∣
∣
{
f |xi=c ∈ {0,1} ∣

∣ i ∈ [1 . . . s]
}∣
∣ ≤ d.

Proof. The proof is by contradiction. Let g denote the degree-d function associ-
ated to f , that is the function applied to (F(C))s to obtain f :

g :
(
F

|F(C)|
2

)s

→ F2, such that

g(F(C)(x1), . . . ,F(C)(xs)) = f(x1, . . . , xs) for all x1, . . . , xs ∈ F
n
2 .

Here F(C)(xi) is the computational trace of C on input xi (the bit-vector of all
intermediate values computed in C on input xi).



242 A. Biryukov and A. Udovenko

Assume that there exist (at least) d + 1 positions j1, . . . , jd+1 such that for
all j ∈ {j1, . . . , jd+1}, f |xj=c is constant. Note that it is the same constant for
all such positions, since these restrictions intersect at xj1 = c, . . . , xjd+1 = c.
We can assume w.l.o.g. that the constant is 0. Since f is not constant, there
exist a = (a1, . . . , as) ∈ (Fn

2 )s such that f(a) = 1. Consider the affine subspace
V = V1 × . . . × Vs, where

Vi =

{
{F(C)(ai),F(C)(c)} , if i ∈ {j1, . . . , jd+1} ,

{F(C)(ai)} , otherwise.

Observe that
⊕

v∈V g(v) = 1. Indeed, g(v) = 0 for all v ∈ V except v =
(F(C)(a1), . . . ,F(C)(as)). Since V is a (d + 1)-dimensional affine subspace, it
follows that deg g ≥ d + 1, which is a contradiction. ��

We can now prove our main result. At its core, it relies on the above lemma to
bound the number of (bad) shuffling outcomes when f is constant, and on Lemma
1 (stating that a refreshed circuit is equivalent to a quadratic circuit) to lower-
bound the error in good shuffling outcomes.

Theorem 3 (Main). Let C be an implementation and s ≥ 2 an integer. The
evaluation-phase model scheme S := EPM(C̃, 1, s − 1) is τ -error-d-AS for any
1 ≤ d ≤ s − 1, with

τ ≥ 1
22d

· s − d

s
.

Proof. Consider arbitrary f ∈ F (d)(S.comp)\{0,1}. We need to prove that when
the input x of S.enc(x, re) is fixed, the error of f(S.enc(x, ·)) is at least τ . Recall
that S.enc uses r′′

e (part of re) to shuffle the sequence (x, r′
e,1, . . . , r

′
e,s−1) (r′

e

being another part of re), which is then passed to the input to f . By Lemma 2,
in at most d/s fraction of the shuffling outcomes (i.e. positions i with x′

i = x) the
function f(S.enc(x, ·)) = f |xi=x can be constant. Consider the remaining (s −
d)/s fraction of the outcomes. By Lemma 1, we can see F (1)(S.comp) as spanned
by at most quadratic functions of the input (it has the structure of a refreshed
circuit), and so F (d)(S.comp) = (F (1)(S.comp))(d) spanned by functions of degree
at most 2d (when composed with h−1 from Lemma 1). Since in the considered
case f is non-constant, we can use the bound err (f) ≥ 1/22d. By combining the
two different shuffling outcomes we obtain

err (f(S.enc(x, ·))) ≥ d

s
· 0 +

s − d

s
· 1
22d

=
1

22d
· s − d

s
. ��

This result shows that dummy shuffling together with the refreshing tech-
nique provides algebraic security for degrees up to the number of dummy slots.
Furthermore, the error bound τ can be seen as close to the maximal 1/22d in e.g.
Boolean circuit implementations, as was discussed in Subsect. 2.3. We conclude
that dummy shuffling with refreshing solves the problem of algebraic security,
at least in the gray-box model of [2].



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 243

5.4 Implementation Cost Estimation

Dummy shuffling with refreshing allows cheap provably secure protection against
algebraic attacks of any predetermined degree d ≥ 1 using a single main slot and
d dummy slots (sdummy = d). We estimate roughly the number of gates required
for implementing dummy shuffling.

Let lA (resp. lX) denote the number of AND gates (resp. the number of XOR
gates) in the original implementation. In the input-shuffling phase, the cost is to
generate |x| + sdummylA bits of randomness and shuffle s vectors of size |x| + lA
bits. For typical complex circuits C, the number of AND gates is much larger
than the input size: lA � |x|, so we ignore the latter for our estimation. We
utilize the controlled swap construction, which can be implemented in Boolean
circuits as

(xi, yi) �→ (
(c ∧ (xi ⊕ yi)) ⊕ xi, (c ∧ (xi ⊕ yi)) ⊕ yi

)

for each index i, where c is the control (random) bit. For d = 1, one controlled
swap of l-bit state is sufficient for perfectly uniform shuffling. For d > 1, we only
have to place the single main slot in a random position. This can be implemented
in circuits using sdummy conditional swaps of lA-bit states, assuming a random
bitstring with a single one is generated, which would be negligible for the final
cost. The output-selection phase can be for example implemented as the inverse
of the input-shuffling and has the same cost, excluding random bits. The total
cost of such implementation of input-shuffling is 4sdummylA = 4dlA gates for
swaps and generation of sdummylA random bits for dummy slots. The cost of the
evaluation phase is s(|C| + lA) = 2slA + slX = (2d + 2)lA + (d + 1)lX gates. We
conclude with the total cost estimation of (6d + 2)lA + (d + 1)lX gates and d · lA
random bits.

6 Public Dummy Shuffling Construction

In this section, we describe a construction of public dummy shuffling. This proof-
of-concept shows that a white-box designer willing to implement dummy shuf-
fling does not have to obfuscate the whole implementation but rather a single
slot function.

The goal of the construction is to have a clear slot separation without any
interaction between slots except the final merging step, which in our case is
simply XOR of outputs of all the slots. The input-shuffling phase is also implicit
and is performed inside the slot, using an extra index input, specifying the slot
index. The high-level description of the scheme is as follows:

output =
⊕

0≤index<s

slot(input, index).

The construction implements dummy shuffling with a single main slot and mul-
tiple dummy slots. The location of main slot depends pseudorandomly on the



244 A. Biryukov and A. Udovenko

input. More precisely, for any fixed input there exists a unique value of the index
i that corresponds to the main slot computation, and this value should be hard
to predict for an adversary, even after observing the outputs of slots. For this
purpose, the output of each slot is “masked” by a pseudorandom mask, with the
property that all masks XOR to zero. Note that the output of the main slot is
masked too, since otherwise it would match the final output and thus would be
trivial to locate.

When the slot function is implemented as a Boolean circuit, the construction
can be implemented in a bit-slice style by performing bitwise operations on 32-
or 64-bit registers. This allows to compute up to 32 or 64 slots in parallel without
any significant overhead, leading to very efficient implementations.

The construction requires two standard pseudorandom functions (PRFs) and
a special primitive called tweakable zero-sum PRF, which we formally define in
the following.

Definition 15 (TZS-PRF). A function with the signature Fk[t](x) : F
|k|
2 ×

F
|t|
2 × F

n
2 → F

m
2 is called a tweakable zero-sum PRF if

1. for all k, t the function Fk[t] sums to zero over F
n
2 :

⊕
x∈F

n
2

Fk[t](x) = 0;

2. for a uniformly sampled k ∈ F
|k|
2 , the family Fk is computationally indistin-

guishable from a uniformly sampled function family (ft : Fn
2 → F

m
2 )

t∈F
|t|
2

with

the constraint
⊕

x∈F
n
2

ft(x) = 0 for all t ∈ F
|t|
2 .

We describe a simple TZS-PRF construction from a PRF in the full version
of this paper, with the TZS-PRF security reduced to the PRF security. It is
based on the following simple observation: the zero-sum property is equivalent
to requiring each Fk[t] have algebraic degree at most n − 1. The general idea
follows: multiply each monomial of degree at most n − 1 by a pseudorandom bit
derived from the tweak using another PRF, and sum all monomials to get one
output coordinate. This construction is tailored to our application, where the
TZS-PRF input has size logarithmic in the number of slots and so the number
of considered monomials is linear in the number of slots.

We are now ready to describe our proof-of-concept public dummy shuf-
fling construction. The high-level pseudocode is given in Algorithm 1. We now
describe each step of the algorithm in details.

Line 1–4 First, the input x is used to determine the index i ∈ F
h
2 of the main slot.

For this purpose, the PRF Gk1 (with a hardcoded key) is used. If Gk1(x) is
not equal to the value of i passed into the current slot, then the dummy input
is generated by applying the PRF Hk2 to the full input (x, i). Otherwise, the
original input is used and padded with zeroes.

Line 5 Main computation is done by using the refreshed circuit (as in Definition
14). By Line 1–4 of the algorithm, the input in the main slot is the original
input x padded with zeroes, and the input in a dummy slot is fully pseudoran-
dom. Note that x, i are passed through the slot evaluation phase. This does
not introduce algebraic leakage, since otherwise an algebraic attack would
serve as a distinguisher for the PRF Gk1 or Hk2 .



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 245

Algorithm 1. Public Dummy Shuffling Construction
Input: an implementation C : Fn

2 → F
m
2 with l AND gates;

an integer h ≥ 1;
Gk1(x) : Fn

2 → F
h
2 : a PRF instance (impl.);

Hk2(x) : Fn+h
2 → F

n+l
2 : a PRF instance (impl.);

Fk3 [t](x) : Fn
2 × F

h
2 → F

m
2 : a tweakable zero-sum PRF instance (impl.);

Output: slot implementation S(x, i) : Fn
2 ×F

h
2 → F

m
2 , such that

⊕
i∈F

h
2

S(x, i) = C(x).

Input-Shuffling:
1: if Gk1(x) = i then � Gk1(x) determines the main slot index
2: x′ ← (x || 0l)
3: else
4: x′ ← Hk2(x || i)

Slot Evaluation:
5: y′ ← C̃(x′) � x, i are passed through

Output-Selection:
6: mask ← Fk3 [x](i)
7: if Gk1(x) = i then � determine the main output
8: return y ⊕ mask
9: else

10: return mask

Line 6 The output mask is generated using the tweakable zero-sum PRF Fk3

tweaked by x. The necessary property is that the generated masks XOR to
zero for any fixed input x.

Lines 7–10 The PRF Gk1 is again used to identify the main slot. In the main
slot, the generated mask is XOR-ed with the output y′ (which is equal to the
main output) and returned. In dummy slots, the generated mask is returned
unmodified. As a result, the output of the main slot is the correct output
XOR-ed with an output mask, and the output of a dummy slot is simply an
output mask. Since all output masks sum to zero, the sum of all slots outputs
results in the desired output C(x).

The slot evaluation phase can be proven to provide algebraic security, under
the assumption of the pseudorandomness of H. More precisely, by Theorem 3,
the scheme S with S.enc defined by Lines 1–4, S.comp defined by Line 5, and
S.dec defined by lines 6–10, is τ -error-d-AS for any 1 ≤ d ≤ s − 1, with

τ ≥ 1
22d

· s − d

s
.

This proves that algebraically secure computations are possible for any fixed
degree and any target circuit. However, the whole construction can be still sus-
ceptible to algebraic attacks of degree 2, if the sensitive terms are computed
in clear, namely [Gk1(x) = i], which identifies the main slot. Provably secure
implementation of these functions is left as future work: it would first require



246 A. Biryukov and A. Udovenko

a meaningful extension of the algebraic security model to include encoding and
decoding phases5.

Note that the output masks used in the construction are used not for achiev-
ing the algebraic security, but to prevent black-box slot identification attacks.
Indeed, without the masks, all the dummy slots will have the all-zero output and
thus, the main slot at each execution would be trivially identifiable. Any obfus-
cation of the slot procedure would not prevent the attack, since only outputs of
the slots are used. Therefore, the outputs should not reveal the location of the
main slot. In particular, the output of the main slot should be indistinguishable
from an output of any dummy slot, even with the knowledge of the main output.
This is naturally guaranteed by the tweakable zero-sum PRF security. Indeed, in
our scheme the adversary is given access to the TZS-PRF modified by XORing
a constant (the main output of the scheme) to a single output of the TZS-PRF
per each tweak. Note that for an ideal TZS-PRF this modification produces the
same distribution of random function families independently of which output is
modified (and of the constant, which can be chosen adversarially). Therefore,
the adversary can not gain any advantage in guessing which output is modified,
or, equivalently, what is the index of the main slot.

7 Conclusions

In this work, we analyzed algebraic security of dummyless and dummy shuffling
in the gray-box model of [2]. Dummy shuffling allows to achieve close to optimal
security for arbitrary degrees of the attack with reasonable overhead. This is a
rather surprising development, since the minimalist quadratic masking scheme
of [2] was already rather heavy. We conclude that this work solves the open
problem of higher-order algebraic security and provides useful tools for white-
box implementations. Nonetheless, there are still many open questions around
the topic.

Towards White-Box Model. The current BU-model covers only the main com-
putation part. A natural question is how to extend this model to cover both
encoding and decoding steps, including pseudorandomness generation. Steps
were made towards such a solution in the context of probing security [11,16].
Finally, dummy shuffling requires to generate a lot of random bits in the encoding
step. This leads to large intermediate state and may incur a large overhead for
further obfuscation. Therefore, a masking-style solution to higher-degree alge-
braic security is still a desirable tool.

Public Dummy Shuffling. We proposed a proof-of-concept construction of public
dummy shuffling. An interesting task is to develop an efficient instantiation using
existing PRFs or develop new white-box-friendly PRFs.

5 Direct extension is not possible, since input and output are sensitive functions by
definition and will be leaked in the encoding/decoding phases.



Dummy Shuffling Against Algebraic Attacks in White-Box Implementations 247

Fault Attacks. Fault attacks pose a dangerous threat to dummy shuffling. Most
importantly, faults can be used to distinguish main slots from dummy slots in
public dummy shuffling (as was done in [14]), and aid algebraic attacks in hidden
dummy shuffling. For example, the attacker can filter the inputs for which chosen
intermediate values lead to a difference in the output when faulted. In a basic
dummy shuffling, this would identify the inputs for which those intermediate
values belong to a main slot.

We conclude that the topic of algebraic security and, in general, provable
countermeasures for white-box implementations still has many interesting open
problems and research directions.

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. The work of Aleksei Udovenko was partly supported by the French FUI-AAP25
IDECYS+ project and by the French ANR-AAPG2019 SWITECH project; part of his
work was performed while he was at the University of Luxembourg and supported by
the Luxembourg National Research Fund (FNR) project FinCrypt (C17/IS/11684537).

References

1. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

2. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 373–
402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 13

3. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press
(2000)

4. Bogdanov, A., et al.: CHES 2019 Capture The Flag Challenge. The WhibOx Con-
test, 2nd edn. (2019). https://whibox-contest.github.io/2019/

5. Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-order DCA against stan-
dard side-channel countermeasures. In: Polian, I., Stöttinger, M. (eds.) COSADE
2019. LNCS, vol. 11421, pp. 118–141. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-16350-1 8

6. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

7. Breunesse, C.B., Kizhvatov, I., Muijrers, R., Spruyt, A.: Towards fully automated
analysis of whiteboxes: perfect dimensionality reduction for perfect leakage. Cryp-
tology ePrint Archive, Report 2018/095 (2018)

8. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

9. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-030-03329-3_13
https://whibox-contest.github.io/2019/
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17


248 A. Biryukov and A. Udovenko

10. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44499-8 20

11. Coron, J.-S., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-random
generator. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 342–375. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3 12

12. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

13. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. J. Cryptogr. Eng. 10(1), 49–66 (2019). https://
doi.org/10.1007/s13389-019-00207-5

14. Goubin, L., Rivain, M., Wang, J.: Defeating state-of-the-art white-box counter-
measures. IACR TCHES 2020(3), 454–482 (2020)

15. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767480 16

16. Ishai, Y., et al.: Robust pseudorandom generators. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 576–588.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1 49

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

18. Prouff, E., et al.: CHES 2017 Capture The Flag Challenge. The WhibOx Contest
(2017). https://whibox-contest.github.io/2017/

19. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04138-9 13

20. Rivain, M., Wang, J.: Analysis and improvement of differential computation attacks
against internally-encoded white-box implementations. IACR TCHES 2019(2),
225–255 (2019)

21. Seker, O., Eisenbarth, T., Liskiewicz, M.: A white-box masking scheme resist-
ing computational and algebraic attacks. IACR TCHES 2021(2), 61–105 (2021).
https://tches.iacr.org/index.php/TCHES/article/view/8788

22. Tillich, S., Herbst, C., Mangard, S.: Protecting AES software implementations on
32-bit processors against power analysis. In: Katz, J., Yung, M. (eds.) ACNS 2007.
LNCS, vol. 4521, pp. 141–157. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72738-5 10

23. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

24. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-642-39206-1_49
https://doi.org/10.1007/978-3-540-45146-4_27
https://whibox-contest.github.io/2017/
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-540-77360-3_17


Advanced Lattice Sieving on GPUs,
with Tensor Cores

Léo Ducas(B), Marc Stevens, and Wessel van Woerden

CWI, Amsterdam, The Netherlands
{L.Ducas, Wessel.van.Woerden}@cwi.nl

Abstract. In this work, we study GPU implementations of various
state-of-the-art sieving algorithms for lattices (Becker-Gama-Joux 2015,
Becker-Ducas-Gama-Laarhoven 2016, Herold-Kirshanova 2017) inside
the General Sieve Kernel (G6K, Albrecht et al. 2019). In particular,
we extensively exploit the recently introduced Tensor Cores – originally
designed for raytracing and machine learning – and demonstrate their
fitness for the cryptanalytic task at hand. We also propose a new dual-
hash technique for efficient detection of ‘lift-worthy’ pairs to accelerate
a key ingredient of G6K: finding short lifted vectors.

We obtain new computational records, reaching dimension 180 for
the SVP Darmstadt Challenge improving upon the previous record for
dimension 155. This computation ran for 51.6 days on a server with 4
NVIDIA Turing GPUs and 1.5TB of RAM. This corresponds to a gain
of about two orders of magnitude over previous records both in terms of
wall-clock time and of energy efficiency.

Keywords: Lattice sieving · Shortest vector · G6K · Cryptanalysis ·
Challenges

1 Introduction

Lattice reduction is a key tool in cryptanalysis at large, and is of course a central
interest for the cryptanalysis of lattice-based cryptography. With the expected
standardisation of lattice-based cryptosystems, the question of the precise per-
formance of lattice reduction algorithms is becoming a critical one. The crux of
the matter is the cost of solving the Shortest Vector Problem (SVP) with sieving
algorithms. While even in the RAM model numerous questions remain regarding
the precise cost of the fastest algorithms, one may also expect a significant gap
between this model and practice, due to their high-memory requirements.

Lattice sieving algorithms [AKS01,NV08,MV10] are asymptotically supe-
rior to enumeration techniques [FP85,Kan83,SE94,GNR10], but this has only
recently been shown in practice. Recent progress on sieving, both on its theo-
retical [Laa15,BGJ15,BDGL16,HKL18] and practical performances [FBB+14,
Duc18,LM18,ADH+19], brought the cross-over point with enumeration as low
as dimension 80. The work of Albrecht et al. at Eurocrypt 2019, named the Gen-
eral Sieve Kernel (G6K), set new TU Darmstadt SVP-records [SG10] on a single
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 249–279, 2021.
https://doi.org/10.1007/978-3-030-77886-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_9


250 L. Ducas et al.

machine up to dimension 155, while before the highest record was at 152 using
a cluster with multiple orders of magnitude more core-hours of computation.

Before scaling up to a cluster of computers, a natural step is to port cryptan-
alytic algorithms to Graphical Processing Units (GPUs); not only are GPUs
far more efficient for certain parallel tasks, but their bandwidth/computa-
tion capacity ratio are already more representative of the difficulties to expect
when scaling up beyond a single computational server. This step can there-
fore already teach us a great deal about how a cryptanalytic algorithm should
scale in practice. The only GPU implementation of sieving so far [YKYC17] did
not make use of advanced algorithmic techniques (such as the Nearest Neigh-
bour Search techniques, Progressive Sieving or the Dimensions for Free tech-
nique [Laa15,LM18,Duc18]), and is therefore not very representative of the cur-
rent state of the art.

An important consideration for assessing practical cryptanalysis is the direc-
tion of computation technologies, and one should in particular note the advent of
Tensor architectures [JYP+17], offering extreme performance for low-precision
matrix multiplication. While this development has been mostly motivated by
machine learning applications, the potential application for cryptanalytic algo-
rithms must also be considered. Interestingly, such architectures are now also
available on commodity GPUs (partly motivated by ray-tracing applications),
and therefore accessible even with modest resources.

1.1 Contributions

The main contribution of this work is to show that lattice sieving, including the
more complex and recent algorithmic improvements, can effectively be accel-
erated by GPUs. In particular, we show that the NVIDIA Tensor cores, only
supporting specific low-precision computations, can be used efficiently for lat-
tice sieving. We exhibit how the most computationally intensive parts of complex
sieving algorithms can be executed in low-precision even in large dimensions.

We show and demonstrate by an implementation that the use of Tensor cores
results in large efficiency gains for cryptanalytic attacks, both in hardware and
energy costs. We present several new computational records, reaching dimen-
sion 180 for the TU Darmstadt SVP challenge record with a single high-end
machine with 4 GPUs and 1.5TB RAM in 51.6 days. Not only did we break
SVP-records significant faster, but also with <4% of the energy cost compared
to a CPU only attack. For instance, we solved dimension 176 using less time and
with less than 2 times the overall energy cost compared to the previous record
of dimension 155. Furthermore by re-computing data at appropriate points in
our algorithms we reduced the memory usage per vector by 60% compared to
the base G6K implementation with minimal computational overhead.

Our work also includes the first implementation of asymptotically best sieve
(BDGL) from [BDGL16] inside the G6K framework, both for CPU-only (multi-
threaded and AVX2-optimized) and with GPU acceleration. We use this to shed
some light on the practicality of this algorithm. In particular we show that our
CPU-only BDGL-sieve already improves over the previous record-holding sieve



Advanced Lattice Sieving on GPUs, with Tensor Cores 251

in dimensions as low as 95, but that this cross-over point lies much higher for
our GPU accelerated sieve due to memory-bottleneck constraints.

One key feature of G6K is to also consider lifts of pairs even if such a
pair is not necessarily reducible, so as to check whether such lifts are short;
the more such pairs are lifted, the more dimensions for free one can hope
for [Duc18,ADH+19]. Yet, Babai lifting of a vector has quadratic running time
which makes it too expensive to apply to each pair. We introduce a filter based
on dual vectors that detects whether pairs are worth lifting. With adequate pre-
computation on each vector, filtering a pair for lifting can be made linear-time,
fully parallelizable, and very suitable to implement on GPUs.

Open Source Code. Since the writing of this report, our CPU implementation
of bdgl has been integrated in G6K, with further improvements, and we aim for
long term maintenance.1 The GPU implementations has also been made public,
but with lower expectation of quality, documentation and maintenance.2

2 Preliminaries

2.1 Lattices and the Shortest Vector Problem

Notation. Given a matrix B = (b0, . . . ,bd−1) ⊂ R
d with linearly indepen-

dent columns, we define the lattice generated by the basis B as L(B) :=
{∑d

i xibi : xi ∈ Z}. We denote the volume of the fundamental area B · [0, 1]d

by det(L) := |det(B)|. Given a basis B we define πi as the projections orthog-
onal to the span of (b0, . . . ,bi−1) and the Gram-Schmidt orthogonalisation as
B∗ = (b∗

0, . . . ,b
∗
d−1) where b∗

i := πi(bi). The projected sublattice L[l:r] where
0 ≤ l < r ≤ d is defined as the lattice with basis B[l:r] := (πl(bl), . . . , πl(br−1)).
Note that the Gram-Schmidt orthogonalisation of B[l:r] is induced by B∗ and
equals (b∗

l , . . . ,b
∗
r−1); consequently det(L[l:r]) =

∏r−1
i=l ‖b∗

i ‖. When working with
the projected sublattice L[l:r] and the associated basis B[l:r] we say that we work
in the context [l : r].

The Shortest Vector Problem. The computationally hard problem on which
lattice-based cryptography is based relates to the Shortest Vector Problem
(SVP), which given a basis asks for a non-zero lattice vector of minimal length.
More specifically, security depends on approximate versions of SVP, where
we only try to find a non-zero lattice vector at most a factor poly(d) longer
than the minimal length. However, via block reduction techniques like (D)BKZ
[SE94,MW16] or slide reduction [GN08,ALNSD20], the approximate version can
be reduced to a polynomial number of exact SVP instances in a lower dimension.

Definition 1 (Shortest Vector Problem (SVP)). Given a basis B of a
lattice L, find a non-zero lattice vector v ∈ L of minimal length λ1(L) :=
min

0 �=w∈L
‖w‖.

1 https://github.com/fplll/g6k/pull/61.
2 https://github.com/WvanWoerden/G6K-GPU-Tensor.

https://github.com/fplll/g6k/pull/61
https://github.com/WvanWoerden/G6K-GPU-Tensor


252 L. Ducas et al.

For the purpose of cryptanalysis, SVP instances are typically assumed to be
random, in the sense that they are distributed close to the Haar measure [GM03].
While the exact distribution is irrelevant, it is assumed for analysis that these
instances follow the Gaussian Heuristic for ‘nice’ volumes K; which is widely
verified to be true for lattices following the Haar measure.

Heuristic 1 (The Gaussian Heuristic (GH)). Let K ⊂ R
d be a measurable

body, then the number |K ∩ L| of lattice points in K is approximately equal to
Vol(K)/det(L).

Note that the number of lattice points the Gaussian Heuristic indicates is exactly
the expected number of lattice points in a random translation of K. When
applying the Gaussian Heuristic to a d-dimensional ball of volume det(L) we
obtain that the minimal length λ1(L) is approximately the radius of this ball,
which asymptotically means that λ1(L) ≈ √

d/(2πe) · det(L)1/d. For a lattice
L ⊂ R

d we denote this radius by gh(L), and to shorten notation we denote
gh(l : r) := gh(L[l:r]). In practice for random lattices the minimal length deviates
at most 5% from the predicted value starting around dimension 50, and even
less in larger dimensions [GNR10,Che13]. Note that a ball of radius δ · gh(L)
contains an exponential number of δd lattice vectors not much longer than the
minimal length. We say that a list of lattice vectors saturates a volume K if
it contains some significant ratio (say 50%) of the lattice vectors in L ∩ K as
predicted by the Gaussian Heuristic.

Lifting and Dimensions for Free. We discuss how to change context without
increasing the length of vectors too much. Extending the context to the right
(from [l : r] to [l : r + k]) is merely following the inclusion L[l:r] ⊂ L[l:r+k].
Extending the context on the left is more involved. To lift a vector v from
L[l:r] to L[l−k:r] for 0 ≤ k ≤ l we have to undo the projections away from
b∗

l−k, . . . ,b∗
l−1. Such a lift is not unique, e.g., if w ∈ L[l−k:r] projects to v, then

so would the infinite number of lattice vectors w − c with c ∈ L[l−k:l], and our
goal is to find a rather short one.

0 l k l r d

t − c v = πl(w)

w c

Note that we can orthogonally decompose any lift as w − c = (t − c) + v
with t ∈ span(L[l−k:l]), c ∈ L[l−k:l] and v ∈ L[l:r]. So each lift has squared
length ‖t − c‖2 + ‖v‖2 and to minimize this we need to find a lattice vector
c ∈ L[l−k:l] that lies close to t. Note that even if we find a closest lattice point the
added squared length ‖t − c‖2 is lower bounded by dist2(t,L[l−k:l]). Instances for
which this distance is very small are better known as δ-BDD (Bounded Distance
Decoding) instances, where δ indicates the maximum distance of the target to
the lattice.



Advanced Lattice Sieving on GPUs, with Tensor Cores 253

Finding a close lattice point is at least as hard as finding a short vector,
so for optimal lifts one would need the dimension k to stay small. E.g., for a
1-dimensional lattice the problem is equivalent to integer rounding. A famous
polynomial time algorithm to find a somewhat close lattice point is Babai’s
nearest plane algorithm: lift in 1-dimensional steps [l : r] → [l − 1 : r] →
· · · → [l − k : r], greedily finding the closest lattice point in the 1-dimensional
lattices b∗

l−1Z, . . . ,b∗
l−kZ. Babai’s nearest plane algorithm finds a lattice point at

squared distance at most 1
4

∑l−1
i=l−k ‖b∗

i ‖2, and always returns the closest lattice
point for δ-BDD instances with δ ≤ 1

2 minl−k≤i<l ‖b∗
i ‖.

Lifting vectors to a larger context on the left increases their length. However
under reasonable assumptions one can think of ‖b∗

0‖ , . . . ,
∥
∥b∗

d−1

∥
∥ as a decreasing

sequence, which means that the minimal length over the extended context can
be much larger than that of the original under the Gaussian Heuristic. So even
though a vector becomes larger from lifting in the absolute sense, it can actually
become shorter relatively to the context. Consequently lifting many short lattice
vectors from L[l:d] can result in finding a shortest vector in the full lattice L[0:d] =
L. Note that such a successful lift corresponds exactly to BDD instances, as the
added length cannot be too large. When lifting a single-exponential number
of short vectors, then l can be as large as O(d/ log(d)) [Duc18]. So for SVP
algorithms that happen to find an exponential number of short vectors (instead
of just a shortest), it suffices to run in a lower dimension; luckily lattice sieving
algorithms do precisely that, essentially getting O(d/ log(d)) dimensions for free.

Lattice Sieving. Lattice sieving algorithms are among the current best asymp-
totic algorithms to solve SVP, running in single exponential time and memory.
Sieving algorithms start with an exponentially large database of lattice vectors
and try to find sums and differences of these vectors that are relatively short.
These shorter combinations, which we call reductions, are inserted back into the
database, possibly replacing longer vectors. The search for reductions is repeated
until the database contains many short vectors, among which (hopefully) one of
minimal length. As we do not know the exact length of the shortest vector a
priori we need to fall back to alternative stopping conditions. In line with the
dimensions for free technique explained before it makes sense to stop when the
database saturates a ball with some saturation radius R, i.e., when the database
contains a significant ratio of the short lattice vectors of length at most R. A
simple sieving algorithm is summarized in Algorithm 1.

Provably solving SVP with lattice sieving leads to many technical problems
like showing that we can actually find enough short combinations and in partic-
ular that they are new, i.e., they are not present in our database yet; unfortu-
nately side-stepping these technicalities leads to high time and memory complex-
ities [AKS01,MV10,PS09]. In contrast there are also sieving algorithms based
mainly on the Gaussian and similar heuristics and these do fall in the practical
regime. The first and simplest of these practical sieving algorithms by Nguyen
and Vidick uses a database of N = (4/3)d/2+o(d) = 20.2075d+o(d) vectors and runs
in time N2+o(1) = 20.415d+o(d) by repeatedly checking all pairs v±w [NV08]. The
database size of (4/3)d/2+o(d) is the minimal number of vectors that is needed



254 L. Ducas et al.

in order to keep finding enough shorter pairs, and eventually saturate the ball
of radius of

√
4/3 · gh(L). In a line of works [Laa15,BGJ15,BL16,BDGL16] the

time complexity was gradually improved to 20.292d+o(d) by nearest neighbour
searching techniques to find close pairs more efficiently. Instead of checking all
pairs they first apply some bucketing strategy in which close vectors are more
likely to fall into the same bucket. By only considering the somewhat-close pairs
inside each bucket, the total number of checked pairs can be decreased. In order
to lower the memory requirement of 20.2075d+o(d) one can also look at triplets of
vectors in addition to pairs. This leads to a time-memory trade-off; lowering the
memory cost while increasing the computational cost. The current best triple
sieve with minimal memory 20.1887d+o(d) takes time 20.3588d+o(d) [HKL18].

2.2 The General Sieve Kernel

The General Sieve Kernel (G6K) [ADH+19] is a lattice reduction framework
based on sieving algorithms that is designed to be ‘stateful’ instead of treat-
ing sieving as a black-box SVP oracle. This encompasses recent algorithmic
progress like progressive sieving and dimensions for free. Besides an abstract
state machine that allows to easily describe many reduction strategies, it also
includes an open-source implementation that broke several new TU Darmstadt
SVP Challenges [SG10] up to dimension 155. This implementation is multi-
threaded and low-level optimized and includes many of the implementation tricks
from the lattice sieving literature and some more. In this section we recall the
state and instructions of G6K.

Algorithm 1: Lattice sieving algorithm.
Input : A basis B of a lattice L, list size N and a saturation radius R.
Output: A list L of short vectors saturating the ball of radius R.

1 Sample a list L ⊂ L of size N .
2 while L does not saturate the ball of radius R do
3 for every pair v,w ∈ L do
4 if v − w /∈ L and ‖v − w‖ < maxu∈L ‖u‖ then
5 Replace a longest element of L by v − w.
6 return L

State. Naturally, the state includes a lattice basis B ∈ Z
d×d and its correspond-

ing Gram-Schmidt basis B̃. The current state keeps track of a sieving context
[l : r] and a lifting context [κ : r]. In the remainder of this work the sieving
dimension will be denoted by n := r − l. There is a database L containing
N lattice vectors from the sieving context. To conclude G6K also keeps track of
good insertion candidates iκ, . . . , il for the corresponding positions in the current
lattice basis.



Advanced Lattice Sieving on GPUs, with Tensor Cores 255

Instructions. In order to move between several contexts there are several
instructions like Extend Right, Shrink Left and Extend Left. To avoid
invalidating the database the vectors are lifted to the new context as explained in
Sect. 2.1, keeping the lifted vectors somewhat short. The Insertion instruction
inserts one of the insertion candidates back into the basis B, replacing another
basis vector, and the Gram-Schmidt basis B̃ is updated correspondingly. By
some carefully chosen transformations and by moving to the slightly smaller
sieving context [l + 1 : r] we can recycle most of the database after an inser-
tion. We can also Shrink the database by throwing away the longest vectors or
Grow it by sampling new (long) vectors. The Sieve instruction reduces vectors
in the database until saturation of a ball of a given radius. G6K also allows for
well-chosen vectors that are encountered during sieving to be lifted from the
sieving context [l : r] to hopefully short vectors in the lifting context [κ : r], and
storing the best insertion candidates. The Sieve instruction is agnostic about
the sieving algorithm used, which allows to relatively easily implement and then
compare sieving algorithms with each other, while letting G6K take care of global
strategies.

Global Strategies. The implementation of G6K consists of a high level Python
layer and a low-level C++ layer. The earlier mentioned instructions can be called
and parametrized from the Python layer, while the core implementation con-
sists of highly optimized C++ code. This allows one to quickly experiment with
different global strategies. An important global strategy is known as the pump
up: start in a small context of say [d − 40 : d] and alternate the Extend Left,
Grow and Sieve instructions until the context reaches a certain dimension
(passed as a parameter). Note that the sieve in each dimension already starts
with a database consisting of many relatively short vectors, thus taking signif-
icantly less iterations to complete. This technique is also known as progressive
sieving [Duc18,LM18] and gives a significant practical speed-up. A full pump
consists of a pump up followed by a pump down: repeat the Insertion instruc-
tion to improve the basis while making the context smaller again, and optionally
combine this with the Sieve instruction to find better insertion candidates. To
solve SVP-instances among other things G6K combines such pumps in a work-
out, which is a sequence of longer and longer pumps, until a short enough vector
is found in the full context by lifting. Each pump improves the quality of the
basis, which as a result lowers the expected length increase from lifting, making
consequent pumps faster and simultaneously improving the probability to find
a short vector in the full context.

G6K Sieve Implementations. The current open-source implementation of
G6K contains multiple sieving algorithms that implement the Sieve instruc-
tion. There are single-threaded implementations of the Nguyen–Vidick sieve (nv)
[NV08] and Gauss sieve (gauss) [MV10], mostly for testing purposes. Further-
more G6K includes a fully multi-threaded and low-level optimized version of the
Becker–Gama–Joux (BGJ) sieve with a single bucketing layer (bgj1) [BGJ15].



256 L. Ducas et al.

The filtering techniques from bgj1 were also extended and used in a triple sieve
implementation (triple) [BLS16,HK17]. This implementation considers both
pairs and triples and its behaviour automatically adjusts based on the database
size, allowing for a continuous time-memory trade-off between the (pair) sieve
bgj1 and a full triple sieve with minimal memory. Note that the asymptotically
best sieve algorithm, which we will refer to as BDGL, has been implemented
before [BDGL16,MLB17], but not inside of G6K.

Data Representation. Given that lattice sieving uses an exponential number
of vectors, it is of practical importance how much data is stored per vector
in the database. G6K stores for each lattice vector v = Bx ∈ R

n the (16-
bit integer) coordinates x ∈ Z

n as well as the (32-bit floating-point) Gram-
Schmidt representation y = (〈v,b∗

i 〉/ ‖b∗
i ‖)i ∈ R

n normalized by the Gaussian
Heuristic of the current sieving context. The latter representation is used to
quickly compute inner products between any two lattice vectors in the database.
On top of that other preprocessed information is stored for each vector, like the
corresponding lift target t in span(L[κ:l]), the squared length, a 256-bit SimHash
(see [Cha02,FBB+14,Duc18]) and a 64-bit hash as identifier. In order to sort
the database on length, without having to move the entries around, there is also
a lightweight database that only stores for each vector the length, a SimHash
and the corresponding database index. A hash table keeps track of all hash
identifiers, which are derived from the x-coordinates, in order to quickly check
for duplicates. All of this quickly adds up to a total of ≈ 210 bytes per vector in
a sieving dimension of n = 128.

3 Architecture

3.1 GPU Device Architecture

In this section we give a short summary of the NVIDIA Turing GPU architecture
on which our implementations and experiments are based. During the write-up
of this paper a new generation named Ampere was launched, doubling many of
the performance metrics mentioned here.

CUDA Cores and Memory. A NVIDIA GPU can have up to thousands of
so-called CUDA cores organized into several execution units called Streaming
Multiprocessors (SM ). These SM use their many CUDA cores (e.g. 64) to service
many more resident threads (e.g. 1024), in order to hide latencies of computation
and memory operations. Threads are bundled per 32 in a warp, that follow the
single-instruction multiple-data paradigm.

The execution of a GPU program, also called a kernel, consists out of multiple
blocks, each consisting of some warps. Each individual block is executed on any
available single SM. The GPU RAM, also called global memory, can be accessed
by all cores. Global memory operations always pass through a GPU-wide L2



Advanced Lattice Sieving on GPUs, with Tensor Cores 257

GPU SM 1

max. 1024 threads

64 CC 8 TC

Registers
64K × 32-bit

L1
32KiB/
64KiB

Shared
64KiB/
32KiB

99GB/s

GPU L2 Cache
5.5MiB

GPU RAM
11GiB

616GB/s

(≈ 1270GB/s)

GPU SM 68

max. 1024 threads

64 CC 8 TC

Registers
64K × 32-bit

L1
32KiB/
64KiB

Shared
64KiB/
32KiB

99GB/s

GPU Peak Performance:
Clock: 1545MHz

FP32: 13.4 TFLOPS
FP16: 26.9 TFLOPS

FP16-TU: 107.6 TFLOPS

System CPU(s)

System RAM
1.5TiB

16GB/s

Fig. 1. Device architecture of the NVIDIA RTX 2080 Ti used in this work.

cache. In addition, each SM benefits from a individual L1 cache and offers an
addressable shared memory that can only be used by threads in that block.

In this work we focus on the NVIDIA RTX2080 Ti that we used, whose
architecture is depicted in Fig. 1. While a high-end CPU with many cores can
reach a performance in the order of a few tera floating point operations per
second (TFLOPS), the RTX2080 Ti can achieve 13 TFLOPS for 32-bit floating
point operations on its regular CUDA cores.

To implement GPU kernel functions for a NVIDIA GPU one can use CUDA
[NBGS08,NVF20] which is an extension of the C/C++ and FORTRAN program-
ming languages. A kernel is executed by a specified number of threads grouped
into blocks, all with the same code and input parameters. During execution each
thread learns that it is thread t inside block b and one needs to use this informa-
tion to distribute the work. For example when loading data from global memory
we can let thread t read the t-th integer at an offset computed from b, because
the requested memory inside each block is contiguous such a memory request
can be executed very efficiently; such memory request are known as coalescing
reads or writes and they are extremely important to obtain an efficient kernel.

Tensor Cores. Driven by the machine learning domain there have been tremen-
dous efforts in the past few years to speed up low-precision matrix multiplica-
tions. This lead to the so-called Tensor cores, that are now standard in high-end
NVIDIA GPUs. Tensor cores are optimized for 4 × 4 matrix multiplication and
also allow a trade-off between performance and precision. In particular we are
interested in the 16-bit floating point format fp16 with a 5-bit exponent and a
10-bit mantissa, for which the tensor cores obtain an 8× speed-up over regular
32-bit operations on CUDA cores.



258 L. Ducas et al.

Efficiency. For cryptanalytic purposes it is not only important how many oper-
ations are needed to solve a problem instance, but also how cost effective these
operations can be executed in hardware. The massively-parallel design of GPUs
with many relatively simple cores results in large efficiency gains per FLOP com-
pared to CPU designs with a few rather complex cores; both in initial hardware
cost as in power efficiency.

As anecdotal evidence we compare the acquisition cost, energy usage and
theoretical peak performance of the CPU and GPU in the new server we used
for our experiments: the Intel Xeon Gold 6248 launched in 2019 and the NVIDIA
RTX2080 Ti launched in 2018 respectively. The CPU has a price of about e2500
and a TDP of 150 Watt, while the GPU is priced at about e1000 and has a
TDP of 260 Watt. For 32-bit floating point operations the peak performance is
given by 3.2 TFLOPS3 and 13.45 TFLOPS for the CPU and GPU respectively,
making the GPU a factor 2.4 better per Watt and 10.5 better per Euro spend on
acquisition. For general 16-bit floating point operations these number double for
the GPU, while the CPU obtains no extra speed-up (one actually has to convert
the data back to 32-bit). When considering the specialized Tensor cores with
16-bit precision the GPU has a theoretical peak performance of 107.6 TFLOPS,
improving by a factor 19.4 per Watt and a factor 84 per Euro spend on acquisition
compared to the CPU.

3.2 Sieve Design

The great efficiency of the GPU is only of use if the state-of-the-art algorithms
are compatible with the massively-parallel architecture and the specific low-
precision operations of the Tensor cores. To show this we extended the lattice
sieving implementation of G6K. We will focus our main discussion on the sieving
part, as the other G6K instructions are asymptotically irrelevant and relatively
straightforward to accelerate on a GPU (which we also did).

All of our CPU multi-threaded and GPU-powered sieve implementations fol-
low a similar design (cf. Fig. 2) consisting out of three sequential phases: bucket-
ing, reducing and result insertion. We call the execution of this triplet an iteration
and these iterations are repeated until the desired saturation is achieved. Note
that our sieves are not ‘queued’ sieves such as the Gauss-Sieve of [MV10] and the
previous record setting triple sieve; this relaxation aligns with the batched
nature of GPU processing and allows to implement an asymptotically optimal
BDGL-like sieve [BDGL16], without major memory overhead.

Bucketing. During the bucketing phase, the database is subdivided in several
buckets B1, . . . , Bm ⊂ L, each containing relatively close vectors. We do not
necessarily bucket our full database, as some vectors might be too large to be
interesting for the reduction phase in the first few iterations. For each bucket we
collect the database indices of the included vectors. For the sieves we consider,
3 With 64 FLOP per core per cycle using two AVX-512 FMA units and a maximal clock

frequency of 2500 MHz when using AVX-512 on all 20 cores.



Advanced Lattice Sieving on GPUs, with Tensor Cores 259

Bucketing Reducing Insertion

Database

Loop until target saturation achieved

Fig. 2. High level diagram of the implemented Sieving process.

these buckets can geometrically be interpreted as spherical caps or cones with
for each bucket Bk an explicit or implicit bucket center ck ∈ R

n indicating its
direction. For each included vector v ∈ Bk, we also store the inner product 〈ck,v〉
with the bucket center, which is obtained freely from the bucketing process. Note
that a vector may be included in several buckets, something which we tightly
control by the multi-bucket parameter, whose value we will denote by M . The
optimal amount of buckets m and the expected number of vectors in a bucket
differs for each of our bucketing implementations. In Sect. 4, we further exhibit
our different bucketing implementations and compare their performance and
quality.

Reducing. During the reduction phase, we try to find all close pairs of lattice
vectors inside each bucket, i.e., at distance at most some length bound �. Using
negation, we orient the vectors inside a bucket into the direction of the bucket
center based on the earlier computed inner product 〈ck,vi〉. In case the bucketing
center ck is itself a lattice vector (as can be the case for BGJ-like sieves, but not
for BDGL), it is also interesting to check if ck −vi −vj is a short lattice vector,
leading to a triple reduction [HK17].

For each bucket Bk, we compute all pairwise inner products 〈vi,vj〉 for
vi,vj ∈ Bk. Together with the already computed lengths ‖vi‖ , ‖vj‖ , ‖ck‖
and inner products 〈ck,vi〉, 〈ck,bj〉 we can then efficiently decide if vi − vj

or ck − vi − vj is short. Note that we compute the length of both the pair and
the triple essentially from a single inner product computation. We return the
indices of pairs and triplets that result in a vector of length at most the length
bound �, together with the length of the new vector. In Sect. 5 we further discuss
the reduction phase, and in Appendix B and exhibit implementation details of
our reduction kernel on the GPU using low-precision Tensor cores.

The number of inner products we have to compute per bucket grows quadrat-
icly in the bucket size |Bk|, while the number of buckets only decreases linearly
in the bucket size. Therefore, one would in principle want many buckets that
are rather small and of high quality, improving the probability that a checked
pair actually gives a reduction. For a fixed bucketing algorithm more buckets
generally increase the cost of the bucketing phase, while decreasing the cost of
the reduction phase due to smaller bucket sizes. We try to balance the cost of
these phases to obtain optimal performance.



260 L. Ducas et al.

Next to finding short vectors in the sieving context we also want to find
pairs that lift to short vectors in the larger lifting context. Unfortunately it is
too costly to just lift all pairs as this has a cost of at least Θ((l − κ)2) per
pair. In Sect. 6 we introduce a filter based on dual vectors that can be computed
efficiently for each pair given a bit of pre-computed data per vector. The few
pairs that survive this filter are more likely to lift to a short vector and we only
lift those pairs.

Result Insertion. After the sieving part we have a list of tuples with indices
and the corresponding length of the new vector they represent. The hash identi-
fier of the new vector can efficiently be recomputed by linearity of the hash func-
tion and we check for duplicates in our current database. For all non-duplicate
vectors we then compute their x-representation. After all new entries are created
they are inserted back in the database, replacing entries of greater length.

3.3 Data Storage and Movement

Recall from Sect. 2.2 that G6K stores quite some data per vector such as the coef-
ficients x in terms of the basis, a Gram-Schmidt representation y, the lift target
t, a SimHash, and more. Theoretically we could remove all data except the x-
representation and compute all other information on-the-fly. However, as most of
this other information has a cost of Θ(n2) to compute from the x-representation
this would mean a significant computational overhead, for example increasing
the cost of an inner product from Θ(n) to Θ(n2). Also given the limited amount
of performance a CPU has compared to a GPU we certainly want to minimize
the amount of such overhead for the CPU. By recomputing at some well chosen
points on the GPU, our accelerated sieves minimize this overhead, while only
storing the x-representation, length and a hash identifier per vector, leading to
an approximately 60% reduction in storage compared to the base G6K imple-
mentation. As a result we can sieve in significantly larger dimensions with the
same amount of system RAM.

While GPUs have an enormous amount of computational power, the mem-
ory bandwidth between the database in system RAM and the GPU’s RAM is
severely limited. These are so imbalanced that one can only reach theoretical
peak performance with Tensor cores if every byte that is transferred to the GPU
is used in at least 213 computations. A direct result is that reducing in small
buckets is (up to some threshold) bandwidth limited. Growing the bucket size
in this regime would not increase the wall-clock time of the reduction phase,
while at the same time considering more pairs. So larger buckets are preferred,
in our hardware for a single active GPU the threshold seems to be around a
bucket size of 214, matching the 213 computations per byte ratio. Because in
our hardware each pair of GPUs share their connection to the CPU, halving the
bandwidth for each, the threshold grows to around 215 when using all GPUs
simultaneously. The added benefit of large buckets is that the conversion from
the x-representation to the y-representation, which can be done directly on the



Advanced Lattice Sieving on GPUs, with Tensor Cores 261

GPU, is negligible compared to computing the many pairwise inner products. To
further limit the movement of data we only return indices instead of a full vector;
if we find a short pair vi−vj on the GPU we only return i, j and ‖vi − vj‖2. The
new x-representation and hash identifier can efficiently (in O(n)) be computed
on the CPU directly from the database.

4 Bucketing

The difference between different lattice sieve algorithms mainly lies in their buck-
eting method. These methods differ in their time complexity and their perfor-
mance in catching close pairs. In this section we exhibit a Tensor-GPU acceler-
ated bucketing implementation triple gpu similar to bgj1 and triple inspired
by [BGJ15,HK17], and two optimized implementations of the asymptotically
best known bucketing algorithm [BDGL16], one for CPU making use of AVX2
(bdgl) and one for GPU (bdgl gpu). After this we show the practical perfor-
mance difference between these bucketing methods.

4.1 BGJ-like Bucketing (triple gpu)

The bucketing method used in bgj1 and triple is based on spherical caps
directed by explicit bucket centers that are also lattice points. To start the buck-
eting phase we first choose some bucket centers b1, . . . ,bm from the database;
preferably the directions of these vectors are somewhat uniformly distributed
over the sphere. Then each vector v ∈ L in our database is associated to bucket
Bkv with

kv = arg max
1≤k′≤m

∣
∣
∣
∣

〈
bk′

‖bk′‖ ,v
〉∣

∣
∣
∣ .

We relax this condition somewhat by the multi bucket parameter M , to associate
a vector to the best M buckets. In this we differ from the original versions of bgj1
and triple [BGJ15,HK17,ADH+19] in that they use a fixed filtering threshold
on the angle |〈bk/ ‖bk‖ ,v/ ‖v‖〉|. As a result our buckets do not exactly match
spherical caps, but they should still resemble them; in particular such a change
does not affect the asymptotic analysis. We chose for this alternation as this fixes
the amount of buckets per vector, which reduced some communication overhead
in our highly parallel GPU implementations.

In each iteration the new bucket centers are chosen, normalized and stored
once on each GPU. Then we stream our whole database v1, . . . ,vN through the
GPUs and try to return for each vector the indices of the M closest normalized
bucket vectors and their corresponding inner products 〈vi,bk〉. For efficiency rea-
sons the bucket centers are distributed over 16 threads and each thread stores
only the best encountered bucket for each vector. Then we return the buckets
from the best M ≤ 16 threads, which are not necessarily the best M buckets
overall. The main computational part of computing the pairwise inner prod-
ucts is similar to the Tensor-GPU implementation for reducing, and we refer to
Appendix B for further implementation details.



262 L. Ducas et al.

The cost of bucketing is O(N · n) per bucket. Assuming that the buckets are
of similar size |Bk| ≈ M · N/m the cost to reduce is O(M ·N

m · n) per bucket.
To balance these costs for an optimal runtime one should choose m ∼ M · √

N
buckets per iteration. For the regular 2-sieve strategy with an asymptotic mem-
ory usage of N = (4/3)n/2+o(n) = 20.208n+o(n) this leads to a total complexity of
20.349n+o(n) using as little as 20.037n+o(n) iterations. Note that in low dimensions
we might prefer a lower number of buckets to achieve the minimum required
bucket size to reach peak efficiency during the reduction phase.

4.2 BDGL-Like Bucketing (bdgl and bdgl gpu)

The asymptotically optimal bucketing method from [BDGL16] is similar to bgj1
as in that it is based on spherical caps. The difference is that in contrast to
bgj1 the bucket centers are not arbitrary but structured, allowing to find the
best bucket without having to compute the inner product with each individual
bucket center.

Following [BDGL16], such a bucketing strategy would look as follows. First
we split the dimension n into k smaller blocks (say, k = 2, 3 or 4 in practice)
of similar dimensions n1, . . . , nk that sum up to n. In order to randomize this
splitting over different iterations one first applies a random orthonormal trans-
formation Q to each input vector. Then the set C of bucket centers is constructed
as a direct product of random local bucket centers, i.e., C = C1 ×±C2 · · ·×±Ck

with Cb ⊂ R
nb . Note that for a vector v we only have to pick the closest local

bucket centers to find the closest global bucket center, implicitly considering
m = 2k−1

∏
b |Cb| bucket centers at the cost of only

∑
b |Cb| ≈ O(m1/k) inner

products. By sorting the local inner products we can also efficiently find all
bucket centers within a certain angle or say the closest M bucket centers. With
similar reasons as for triple gpu we always return the closest M bucket cen-
ters for each vector instead of a fixed threshold based on the angle. While for a
fixed number of buckets m we can expect some performance loss compared to
bgj1 as the bucket centers are not perfectly random, this does not influence the
asymptotics.4

To optimize the parameters we again balance the cost of bucketing and reduc-
ing. Note that for k = 1 we essentially obtain bgj1 with buckets of size O(N1/2)
and a time complexity of 20.349n+o(n). For k = 2 or k = 3 the buckets become
smaller of size O(N1/3) and O(N1/4) respectively and of higher quality, leading
to a time complexity of 20.3294n+o(n) and 20.3198n+o(n) respectively. By letting
k slowly grow, e.g., k = O(log(n)) there will only be a sub-exponential 2o(n)

number of vectors in each bucket, leading to the best known time complexity of
20.292n+o(n). Note however that a lot of sub-exponential factors might be hidden
inside this o(n), and thus for practical dimensions a rather small value of k might
give best results.

We will take several liberties with the above strategy to address practical effi-
ciency consideration and fine-tune the algorithm. For example, for a pure CPU

4 The analysis of [BDGL16, Theorem 5.1] shows this is up to a sub-exponential loss.



Advanced Lattice Sieving on GPUs, with Tensor Cores 263

implementation we may prefer to make the average bucket size somewhat larger
than the ≈ N1/(k+1) vectors that the theory prescribes; this will improve cache
re-use when searching for reducible pairs inside buckets. In our GPU imple-
mentation, we make this average bucket size even larger, to prevent memory
bottlenecks in the reduction phase.

Furthermore, we optimize the construction of the local bucket centers
c ∈ Ci to allow for a fast computation of the local inner products 〈c,v〉.
While [BDGL16] choose the local bucket centers Ci uniformly at random, we
apply some extra structure to compute each inner product with a vector v in
time O(log(ni)) instead of O(ni). The main idea is to use the (Fast) Hadamard
Transform H on say 32 ≤ ni coefficients of v. Note that this computes the inner
product between v and 32 orthogonal ternary vectors, which implicitly form the
bucket centers, using only 32 log2(32) additions or subtractions. To obtain more
than 32 different buckets we permute and negate coefficients of v in a pseudo-
random way before applying H again. This strategy can be heavily optimized
both for CPU using the vectorized AVX2 instruction set (bdgl) and for GPU by
using special warp-wide instructions (bdgl gpu). In particular this allows a CPU
core to compute an inner product every 1.3 to 1.6 cycles for 17 ≤ ni ≤ 128. For
further implementation details we refer to Appendix A.

Since the writing of this report, our CPU implementation of bdgl has been
integrated in G6K, with further improvements.5 As it may be of independant
interest, the AVX2 bucketer is also provided as a standalone program.6

4.3 Quality Comparison

In this section we compare the practical bucketing quality of the BGJ- and
BDGL-like bucketing methods we implemented. More specifically, we consider
triple gpu, 1-bdgl gpu and 2-bdgl gpu where the latter two are instances of
bdgl gpu with k = 1 and k = 2 blocks respectively. Their quality is compared to
the idealized theoretical performance of bgj1 with uniformly distributed bucket
centers.7 For triple gpu, we follow the Gaussian Heuristic and sample bucket
centers whose directions are uniformly distributed. As a result the quality dif-
ference between triple gpu and the idealized version highlights the quality loss
resulting from our implementation decisions. Recall that compared to bgj1 the
main difference is that for every vector we return the M closest bucket centers
instead of using a fixed threshold for each bucket. Also these are not exactly the
M closest bucket centers, as we first distribute the buckets over 16 threads and
only store a single close bucket per thread. For our bdgl gpu implementation
the buckets are distributed over 32 threads and we add to this that the bucket
centers are not random but somewhat structured by the Hadamard construction.

5 https://github.com/fplll/g6k/pull/61.
6 https://github.com/lducas/AVX2-BDGL-bucketer.
7 Volumes of caps and wedges for predicting the idealized behavior where extracted

from [AGPS19], and more specifically https://github.com/jschanck/eprint-2019-
1161/blob/main/probabilities.py.

https://github.com/fplll/g6k/pull/61
https://github.com/lducas/AVX2-BDGL-bucketer
https://github.com/jschanck/eprint-2019-1161/blob/main/probabilities.py
https://github.com/jschanck/eprint-2019-1161/blob/main/probabilities.py


264 L. Ducas et al.

To compare the geometric quality of bucketing implementations, we mea-
sure how uniform vectors are distributed over the buckets and how many close
pairs end up in at least one common bucket. The first measure is important
as the reduction cost does not depend on the square of the average bucket size
(

1
m

∑m
k=1 |Bk|)2, which is fixed, but on the average of the squared bucket size

1
m

∑m
k=1 |Bk|2, which is only minimal if the vectors are equally distributed over

the buckets. For all our experiments we observed at most an overhead of 0.2%
compared to perfectly equal bucket sizes and thus we will further ignore this part
of the quality assessment. To measure the second part efficiently we sample 220

close unit pairs (x,y) ∈ Sn × Sn uniformly at random such that 〈x,y〉 = ± 1
2 .

Then we count the number of pairs that have at least 1 bucket in common, possi-
bly over multiple iterations. We run these experiments with parameters that are
representative for practical runs. In particular we consider (sieving) dimensions
up to n = 144 and a database size of N = 3.2 · 20.2075n to compute the number
of buckets given the desired average bucket size and the multi-bucket parameter
M . Note that we specifically consider the geometric quality of these bucketing
implementations for equivalent parameters and not the cost of the bucketing
itself.

To compare the bucketing quality between the different methods and the ide-
alized case we first consider the experimental results in graphs a. and b. of Fig. 3.
Note that the bucketing methods triple gpu and 1-bdgl gpu obtain extremely
similar results overall, showing that the structured Hadamard construction is
competitive with fully random bucket centers. We see a slight degradation of 5%
to 20% for triple gpu with respect to the idealized case as a result of not using
a fixed threshold. We do however see this gap decreasing when M grows to 4
or 8, indicating that these two methods of assigning the buckets become more
similar for a larger multi-bucket parameter. At M = 16 we see a sudden degra-
dation for triple gpu which exactly coincides with the fact that the buckets are
distributed over 16 threads and we only store the closest bucket per thread. The
quality loss of 2-bdgl gpu seems to be between 15% and 36% in the relevant
dimensions, which is quite significant but reasonable given a loss potentially as
large as sub-exponential [BDGL16, Theorem 5.1].

Now we focus our attention on graph c. of Fig. 3 to consider the influence
of the average bucket size on the quality. We observe that increasing the aver-
age bucket size reduces the bucketing quality; many small buckets have a better
quality than a few large ones. This is unsurprising as the asymptotically optimal
BDGL sieve aims for high quality buckets of small size. Although our k-bdgl gpu
bucketing method has no problem with efficiently generating many small buck-
ets, the reduction phase cannot efficiently process small buckets due to memory
bottlenecks. This is the main trade-off of (our implementation of) GPU accel-
eration, requiring a bucket size of 215 versus e.g. 210 leads to a potential loss
factor of 7 to 8 as shown by this graph. For triple gpu this gives no major
problems as for the relevant dimensions n ≥ 130 the optimal bucket sizes are
large enough. However 2-bdgl gpu should become faster than bgj1 exactly by
considering many smaller buckets of size N1/3 instead of N1/2, and a minimum



Advanced Lattice Sieving on GPUs, with Tensor Cores 265

a. (n = 128, |Bk| ≈ 214) b. (M = 4, |Bk| ≈ 214)

1 2 4 8 16
0

0.5

1

Multi Bucket (M)

Fo
un

d
P
ai
rs

(r
el
at
iv
e)

96 112 128 144

N
/
A

Dimension (n)

c. (n = 128, M = 4)

210 211 212 213 214 215 216
0

0.2

0.4

0.6

Iterations = 216/ Bucket Size

Average Bucket Size (|Bk|)

Fo
un

d
P
ai
rs

(r
at
io
)

Idealized triple gpu 1-bdgl gpu 2-bdgl gpu

Fig. 3. Bucketing Quality Comparison. We sampled 220 pairs v,w of unit vectors such
that |〈v,w〉| = 0.5 and we measured how many fell into at least 1 common bucket.
The number of buckets is computed based on the desired average bucket size |Bk|, the
multi-bucket parameter M , and a representative database size of N = 3.2 · 20.2075n.
The found pairs in a. and b. are normalized w.r.t. idealized theoretical performance
of bgj1 (perfectly random spherical caps). For c. the number of applied iterations is
varied such that the total reduction cost is fixed.

bucket size of 215 shifts the practical cross-over point above dimension 130, and
potentially much higher.

5 Reducing with Tensor Cores

Together with bucketing, the most computationally intensive part of sieving
algorithms is that of finding reducing pairs or triples inside a bucket. We con-
sider a bucket of s vectors v1, . . . ,vs ∈ R

n with bucket center c. Only the x-
representations are send to the GPU and there they are converted to the 16-bit
Gram-Schmidt representations y1, . . . ,ys and yc that are necessary to quickly
compute inner products. Together with the pre-computed squared lengths ‖y1‖2

,

. . . , ‖ys‖2 and inner products 〈yc,y1〉, . . . , 〈yc,ys〉, the goal is to find all pairs
yi−yj or triples yc−yi−yj of length at most some bound �. A simple derivation



266 L. Ducas et al.

shows that this is the case if and only if

for pairs: 〈yi,yj〉 ≥ ‖yi‖2 + ‖yj‖2 − �2

2
, or

for triples: 〈yi,yj〉 ≤ −‖yc‖2 + ‖yi‖2 + ‖yj‖2 − �2 − 2〈yc,yi〉 − 2〈c,yj〉
2

.

And thus we need to compute all pairwise inner products 〈yi,yj〉. If we consider
the matrix Y := [y1, . . . ,ys] ∈ R

n×s then computing all pairwise inner products
is essentially the same as computing one half of the matrix product YtY.

Many decades have been spend optimizing (parallel) matrix multiplication for
CPUs, and this has also been a prime optimization target for GPUs. As a result
we now have heavily parallelized and low-level optimized BLAS (Basic Linear
Algebra Subprograms) libraries for matrix multiplication (among other things).
For NVIDIA GPUs close to optimal performance can often be obtained using
the proprietary cuBLAS library, or the open-source, but slightly less optimal
CUTLASS library. Nevertheless the BLAS functionality is not perfectly adapted
to our goal. Computing and storing the matrix YtY would require multiple
gigabytes of space. Streaming the result YtY to global memory takes more time
than the computation itself. Indeed computing YtY using cuBLAS does not
exceed 47 TFLOPS for n ≤ 160, and this will be even lower when also filtering
the results.

For high performance, in our implementation we combined the matrix mul-
tiplication with result filtering. We made sure to only return the few indices
of pairs that give an actual reduction to global memory; filtering the results
locally while the computed inner products are still in registers. Nevertheless the
data-movement design, e.g. how we efficiently stream the vectors yi into the
registers of the SMs, is heavily inspired by CUTLASS and cuBLAS. To maxi-
mize memory read throughput, we had to go around the dedicated CUDA tensor
API and reverse engineer the internal representation to obtain double the read
throughput. Further implementation details are discussed in Appendix A.

Efficiency. To measure the efficiency of our Tensor-accelerated GPU kernel we
did two experiments: the first experiment runs only the kernel with all (con-
verted) data already present in global memory on the GPU, while the second
experiment emulates the practical efficiency by including all overhead. This over-
head consists of obtaining the vectors from the database, sending them to the
GPU, converting them to the appropriate representation, running the reduc-
tion kernel, recomputing the length of the resulting close pairs, and retrieving
the results from the GPU. Each experiment processed a total of 228 vectors of
dimension 160 in a pipelined manner on a single NVIDIA RTX 2080 Ti GPU
and with a representative number of 10 CPU threads. We only counted the 2n
16-bit floating point operations per inner product and not any of the operations
necessary to transfer data or to filter and process the results. The theoretical
limit for this GPU when only using Tensor cores and continuously running at
boost clock speeds is 107 TFLOPS, something which is unrealistic in practice.



Advanced Lattice Sieving on GPUs, with Tensor Cores 267

210 211 212 213 214 215 216
0

10
20
30
40
50
60
70

Bucket Size

16
-b
it

T
F
L
O
P
S Excluding overhead

Including overhead

Fig. 4. Efficiency of the reduction GPU kernel for different bucket sizes on a RTX 2080
Ti, only counting the 2n FLOPS per inner product. The overhead includes obtaining
the vectors from the database, sending them to the GPU, conversions, recomputing
length at higher precision, and retrieving the results from the GPU in a pipelined
manner.

The results of these experiments are displayed in Fig. 4. We see that the
kernel itself reaches around 65 TFLOPS starting at a bucket size of at least
212. When including the overhead we see that the performance is significantly
limited below a bucket size of 213 which can fully be explained by CPU-GPU
memory-bottlenecks. For bucket sizes of at least 214 we see that the overhead
becomes reasonably small. We observed that this threshold moves to 215 when
using multiple GPUs, because in our hardware the CPU-GPU bandwidth is
shared per pair of GPUs.

Precision. The main drawback of the high performance of the tensor cores is
that the operations are at low precision. Because the runtime of sieving algo-
rithms is dominated by computing pairwise inner products to find reductions or
for bucketing (in case of triple gpu) we focus our attention on this part. Other
operations like converting between representations are computationally insignif-
icant and can easily be executed by regular CUDA cores at higher precisions. As
the GPU is used as a filter to find (extremely) likely candidates for reduction,
we can tolerate some relative error, say up to 2−7 in the computed inner prod-
uct, at the loss of more false positives or missed candidates. Furthermore it is
acceptable for our purposes if say 1% of the close vectors are missed because of
even larger errors. In Appendix C we show under a reasonable randomized error
model that problems due to precision are insignificant up to dimensions as large
as n = 2048. This is also confirmed by practical experiments as shown in Fig. 5.



268 L. Ducas et al.

16 32 64 128 256 512 1024 2048

2−14

2−13

2−12

2−11

2−10

2−9

2−8

Dimension (n)

C
om

pu
ta
ti
on

E
rr
or

Max (2−13.613 · √
n)

99th percentile (2−14.313 · √
n)

Average (2−16.005 · √
n)

Fig. 5. Computation error |S − Ŝ| observed in dimension n over 16384 sampled pairs
of unit vectors y,y′ that satisfy S := 〈y,y′〉 ≈ 0.5.

6 Filtering Lifts with Dual Hash

Let us recall the principle of the ‘dimensions for free’ trick [Duc18]; by lifting
many short vectors in the sieving context [l : r] we can recover a short(est)
vector in some larger context [l − k : r] for k > 0. The sieving implementation
G6K [ADH+19] puts extra emphasis on this by lifting any short pair it encoun-
ters while reducing a bucket, even when this vector is not short enough to be
added to the database. Note that G6K first filters on the length in the sieving
context because lifting has a significant cost of O(n ·k+k2) per pair. The O(n ·k)
part to compute the corresponding target ti − tj ∈ R

k in the context [l − k : l]
can be amortized to O(k) over all pairs by pre-computing t1, . . . , ts, leaving a
cost of O(k2) for the Babai nearest plane algorithm.

We went for a stronger filter with an emphasis on the extra length added by
the lifting. Most short vectors will lift to rather large vectors, as by the Gaussian
Heuristic we can expect an extra length of gh(l − k : l) � gh(l − k : r). For the
few lifts that we are actually interested in we expect an extra length of only
δ · gh(l − k : l), for some 0 < δ < 1 (say δ ∈ [0.1, 0.5] in practice). This means
that we need to catch those pairs ti −tj that lie exceptionally close to the lattice
[l − k : l], also known as BDD instances.

More abstractly we need a filter that quickly checks if pairs are (excep-
tionally) close over the torus R

k/L. Constructing such a filter directly for
this rather complex torus and our practical parameters seems to require at
least quadratic time like Babai’s nearest plane algorithm. Instead we intro-
duce a dual hash to move the problem to the much simpler but possibly higher
dimensional torus R

h/Zh. More specifically, we will use inner products with
short dual vectors to build a BDD distinguisher in the spirit of the so-called
dual attack on LWE given in [MR09] (the general idea can be traced back
at least to [AR05]). This is however done in a different regime, where the
shortest dual vectors are very easy to find (given the small dimension of the



Advanced Lattice Sieving on GPUs, with Tensor Cores 269

considered lattice); we will also carefully select a subset of those dual vectors to
optimize the fidelity of our filter. Recall that the dual of a lattice L is defined as
L∗ := {w ∈ span(L) : 〈w,v〉 ∈ Z for all v ∈ L}.

Definition 1 (Dual hash). For a lattice L ⊂ R
k, h ≥ k and a full (row-rank)

matrix D ∈ R
h×k with rows in the dual L∗, we define the dual hash

HD : Rk/L → R
h/Zh,

t �→ Dt.

The dual hash relates distances in R
k/L to those in R

h/Zh.

Lemma 2. Let L ⊂ R
k be a lattice with some dual hash HD. Then for any

t ∈ R
k we have

dist(HD(t),Zh) ≤ σ1(D) · dist(t,L),

where σ1(D) denotes the largest singular value of D.

Proof. Let x ∈ L such that ‖x − t‖ = dist(t,L). By definition we have Dx ∈ Z
h

and thus HD(t−x) ≡ HD(t). We conclude by noting that dist(HD(t−x),Zh) ≤
‖D(t − x)‖ ≤ σ1(D) ‖t − x‖.

So if a target t lies very close to the lattice then HD(t) lies very close to Z
h. We

can use this to define a filter that passes through BDD instances.

Definition 3 (Filter). Let L ⊂ R
k be a lattice with some dual hash HD. For

a hash bound H we define the filter function

FD,H : t �→
{

1, if dist(HD(t),Zh) ≤ H,
0, else.

Note that computing the filter has a cost of O(h · k) for computing Dt for
D ∈ R

h×k followed by a cost of O(h) for computing dist(Dt,Zh) using simple
coordinate-wise rounding. Given that h ≥ k, computing the filter is certainly
not cheaper than ordinary lifting, which is the opposite of our goal. However
this changes when applying the filter to all pairs ti − tj with 1 ≤ i < j ≤ h.
We can pre-compute Dt1, . . . ,Dts once, which gives a negligible overhead for
large buckets, and then compute D(ti − tj) by linearity, lowering the total cost
to O(h) per pair.

6.1 Dual Hash Analysis

We further analyse the dual hash filter and try to understand the correlation
between the distance dist(t,L) and the dual hash HD(t). In fact we consider
two regimes, the preserved and unpreserved regime. Consider a target t ∈ R

k

and let x be a closest vector in L to t. We will say that we are in the preserved
regime whenever D(t − x) ∈ [− 1

2 , 1
2 ]h (i.e., Dx remains a closest vector of Dt

among Z
h), in which case it holds that ‖D(t − x)‖2 = dist(HD(t),Zh). In the

general case, we only have the inequality ‖D(t − x)‖2 ≥ dist(HD(t),Zh). For
the relevant parameters, the BDD instances we are interested in will fall almost
surely in the preserved regime, while most of the instances we wish to discard
quickly will fall in the unpreserved regime.



270 L. Ducas et al.

Preserved Regime. We have that ‖D(t − x)‖2 = dist(HD(t),Zh), and there-
fore Lemma 2 can be complemented with a lower bound as follows:

σk(D) · dist(t,L) ≤ dist(HD(t),Zh) ≤ σ1(D) · dist(t,L).

Setting a conservative hash bound based on the above upper bound leads to
false positives of distance at most σ1(D)/σk(D) further away than the targeted
BDD distance. This is a worst-case view, however, and we are more interested in
the average behavior. We will assume without loss of generality that x = 0, such
that dist(t,L) = ‖t‖. To analyse what properties play a role in this correlation
we assume that t is spherically distributed for some fixed length ‖t‖. Suppose
that DtD has eigenvalues σ2

1 , . . . , σ2
k with corresponding normalized (orthogo-

nal) eigenvectors v1, . . . ,vk. We can equivalently assume that t =
∑k

i=1 tivi with
(t1, . . . , tk)/ ‖t‖ uniformly distributed over the sphere. Computing the expecta-
tion and variation we see

E[‖Dt‖2] = E

[
k∑

i=1

t2i · σ2
i

]

=
k∑

i=1

σ2
i · E[t2i ] = ‖t‖2 · 1

k

k∑

i=1

σ2
i

Var
[
‖Dt‖2

]
=

‖t‖4

(k/2 + 1)

⎛

⎝1
k

·
k∑

i=1

σ4
i −

(
1
k

k∑

i=1

σ2
i

)2
⎞

⎠ .

So instead of the worst case bounds from Lemma 2, dist(HD(t),Zh) is more or

less close to
√

1
k

∑k
i=1 σ2

i · ‖t‖.

Unpreserved Regime. In this regime dist(HD(t),Zh) is not really a useful
metric, as there will seemingly be no relation with ‖D(t − x)‖2. Note that we can
expect this regime to mostly contain targets that lie rather far from the lattice,
i.e., these are targets we want to not pass our filter. Therefore it is interesting
to analyse how many (false) positives we can expect from this regime.

Inspired by practical observations, we analyse these positives from the heuris-
tic assumption in this regime that every Dt is just uniformly distributed over
[− 1

2 , 1
2 ]h modulo Z

h. Then we can ask the question how probable it is that
‖Dt‖2 = dist(Dt,Zh) ≤ H; i.e., that the target passes the filter. This is equiva-
lent to the volume of the intersection of an h-dimensional ball with radius H and
the hypercube [− 1

2 , 1
2 ]h. We can bound this by just the volume of the ball, which

is quite tight if H is not too large. Therefore we would expect in this regime
a false positive rate bounded by Hh · πh/2

Γ(h/2+1) . Note that this only depends on
the filter threshold H and the number of dual vectors h and not on the specific
matrix D.

Choosing a Dual Hash. We will shortly discuss how to pick the dual hash
matrix D ∈ R

h×k. The goal is to obtain a filter with a good correlation, i.e.,
a good trade-off between the positive-rate and the number of false negatives.



Advanced Lattice Sieving on GPUs, with Tensor Cores 271

Fig. 6. Dual hash filter correlation on the context [14 : 30] for a reduced 160-
dimensional lattice using 48 dual vectors. The BDD-bound was computed with a rep-
resentative squared length bound of 1.44 and the 220 targets are uniformly sampled
over the Voronoi cell around 0.

As the computational cost mostly depends on the number of dual vectors h we
will try to optimize D for a fixed h.

In the preserved regime we see that the variation is minimized if all singular
values are equal, so we want D to be well conditioned in the sense that all
singular values are somewhat the same. For the unpreserved regime we want
the filter bound H to be small, which means we want

∑k
i=1 σi(D)2 to be small

(together with the variance); this can be achieved by working with short dual
vectors.

To summarize we want to find a set of short dual vectors to form the dual hash
such that D is well conditioned. One initial method is to just pick the h shortest
dual vectors (modulo sign). This definitely satisfies the needs of the unpreserved
regime, but the conditioning of the resulting matrix is often not that great. Given
a list of short dual vectors we can greedily try to improve the conditioning of D
by replacing some of the (row) vectors from the list. A good continuous metric to
measure if all singular values are somewhat the same is Tr(DtD)/det(DtD)1/k.
From experiments we can conclude that this greedy method to improve the filter
works really well. For example with the parameters as in Fig. 6, picking the 48
shortest dual vectors leads to a positive rate of 1.3 · 10−4 for a false negative
rate of 1%; using the greedy construction improves the positive rate down to
1.4 ·10−5 for the same false negative rate. The additional overhead of the greedy
method is negligible and easily won back from allowing a lower number of dual
vectors h.



272 L. Ducas et al.

6.2 Implementation

Given a list of pre-computed Dt1, . . . ,Dtm we want to use the GPU to efficiently
compute dist(D(ti − tj),Zh) for all i < j. As usual the actual implementation
requires some trade-offs to significantly improve performance. Given that the
dimension of the dual hash seems to have more impact than the precision of the
values we choose for an 8-bit integer representation for the dual hash coordinates
in [−1/2, 1/2) by dividing it in 256 equally sized intervals. The added benefit
of this representation is that the modZ operations are implicitly handled by
integer overflow. Both CUDA and Tensor cores have special instructions and very
good performance for 8-bit arithmetic, even when using 32 bits to accumulate
inner products. We refer to Appendix D for more implementation details on
computing all pairwise dual hash filters using CUDA cores; we also discuss how
one could adapt it for Tensor cores.

Choosing the Parameters. To use the dual hash in practice as a filter we need
to decide on what context to use it and what the threshold should be. Applying
the dual hash to the full lift context [κ : l] would fail to return short vectors
for positions l′ > κ, which are also needed to improve the quality of the basis.
Therefore we apply the dual hash to a subcontext [f : l] (the lift-filter context)
of the lift context [κ : l]. If a vector is short in the context [l′ : r] for some l′ < f
then we can also expect it to be short in the filter context, and therefore to be
catched by our filter.

We also need to decide on a distance threshold. Let v be a lattice vector in
the sieving context [l : r] of length R. We can assume that R ≥ � as otherwise
the vector would already be inserted (and always lifted) in the sieving database.
Suppose that v lifts to a short vector with length at most �l′ in some context
[l′ : r] for κ ≤ l′ ≤ f . This corresponds to a target t at distance at most

dist(t,L[l′:l]))2 ≤ �2l′ − �2.

in the context [l′ : l]. Although we cannot know what the length of t would be

in the filter context we can expect this to be close to
√

l−f
l−l′ ‖t‖ by the Gaussian

Heuristic. Therefore setting the filter length bound to

Fl′ :=

√
l − f

l − l′
(�2l′ − �2)

allows a significant part of the short lifts in the context [l′ : r] through the filter.
Note that most of the pairs we lift are much larger on the sieving part, and thus
have to be even shorter in the filter context; definitely passing the above filter
length bound. We conclude by setting the filter to aim for a length of at most
F := maxκ≤l′≤f{Fl′}.

Given the filter length bound we could immediately apply Lemma 2 to obtain
a threshold for the dual hash that guarantees that our filter has no false negatives.
However as usual there is a trade-off between the number of false negatives



Advanced Lattice Sieving on GPUs, with Tensor Cores 273

and the positive rate of the filter. For our purposes we set the bound at the
expectation plus 3 standard deviations in the preserved regime to prevent most
false negatives. For a more precise bound under a fixed false negative ratio one
could fall back to Monte-Carlo sampling methods as we do not know of a closed
form formula for the distribution. Figure 6 shows the effectiveness of the dual
hash filter based on realistic parameters as encountered during a 130-dimensional
pump on a 160-dimensional lattice. The pre-processing of the basis consisted of
a workout with pumps up to dimension 128.

7 Sieving in Practice

7.1 Comparison

We compare several of our sieve implementations. Although our BDGL-like
implementations bdgl and bdgl gpu will eventually be faster than the BGJ-like
implementations triple by G6K and triple gpu by us, the cross-over point
could be outside of practical dimensions. For the comparison we run a pump
up to dimension 120 and 140 for CPU and GPU respectively in a lattice of
dimension 160 that has been pre-processed by a workout up to dimension 118
and 138. In Fig. 7 we display the wall-clock time taken for each Sieve dur-
ing the pump up. All our GPU implementations use a multi-bucket parameter
of 4, which should give a balanced comparison based on Fig. 3. Any on-the-fly
lifting or dual hash techniques are disabled. For the remaining parameters we
refer to the next Sect. 7.2. The cross-over point between our 3-bdgl and record-
holding triple sieve from [AGPS19] is already in a sieving dimension of 94,
and our speed-up grows to a speed-up of 2.7 in dimension 120. This shows that
for CPU implementations BDGL is already extremely practical. For 2-bdgl gpu
and triple gpu the cross-over point lies above dimension 140, and given the
extrapolations we expect them to cross in dimension n ≈ 149. The large mini-
mum bucket size shifts the cross-over point by more than 50 dimensions. In this
light, it did not appear pertinent to implement 3-bdgl gpu, which, while being
asymptotically faster, would cross-over even later.

7.2 SVP Parameter Tuning

There are many parameters in our implementation that can be tuned for optimal
performance with respect to memory and time complexity. We will focus on
triple gpu as we have shown it to be the fastest implementation in practical
sieving dimensions n ≤ 150. As low level parameters, such as minimum bucket
sizes for GPUs, are discussed earlier, here we discuss the higher level parameters
to solve 1.05-approxSVP for a lattice of dimension d.

Given the large amount of computational power available with the 4 GPUs,
we can potentially solve lattice 1.05-approxSVP up to dimension 180 in reason-
able time on a single machine. The main limiting factor at that point is the
available memory, in our case 1.5 TiB RAM. We have spent significant efforts



274 L. Ducas et al.

a. (CPU only) b. (CPU and GPU)

60 80 100 120
2−9

2−1

27

215

Sieving dimension (n)

T
im

e
(s
)

triple ( [ADH+19])
20.357n−28.88

3-bdgl (Ours)
20.308n−24.44

90 100 110 120 130 140
2−6

22

210

218

Sieving dimension (n)

triple gpu (Ours)
20.367n−37.15

2-bdgl gpu (Ours)
20.338n−32.81

Fig. 7. Comparison of different sieve implementations from [ADH+19] and from this
work. We ran a single pump up in a 160-dimensional lattice to a sieving dimension
of 120 and 140 for CPU only and GPU accelerated respectively. The timings give the
amount of time spend in each sieving dimension before reaching a saturation of 37.5%
with a database size of 2.77 · 20.2075n. The fitting is obtained by a linear least-squares
regression on the last 20 dimensions in log-space.

aiming to reduce the memory footprint of our G6K-GPU implementation, such
as maintaining only basis coordinates, length and a hash of each vector in our
database. Many parameters can be safely tweaked in certain regions without
significantly affecting time complexity, hence we focus more on suitable values
that limit memory usage.

To increase dimensions-for-free, and thus decrease memory usage, we enabled
DownSieve for all workouts for a stronger preprocessing. We found that with
DownSieve on, a larger PreferLeftInsert is more benificiary. I.e., prefer to insert
even a slightly improved b′

i into the basis over a more significantly improved b′
i+1.

Another main parameter affecting memory use is the constant factor in
database size, normally chosen as 3.2 in G6K [ADH+19]. We opted to reduce
this to 2.77, resulting in DBSize(d) = 2.77× (4/3)(d/2) for sieve dimension d, and
compensate by also reducing SaturationRatio from .5 to .375.

Additionally, we introduced a database size limit by setting an
experimentally-verified target dimensions-for-free TD4F(n) = �n/ log(n)�, and
limiting the database size to DBSizeLimit(n) = DBSize(n−T4DF(n)). This means
that the database size limit does not affect sieving up to the target dimensions-
for-free. However, for unlucky cases, we allow G6K workouts of up to 4 dimen-
sions larger without further increasing the database size. Because triple gpu
also considers triples we can be certain that saturation will still be reached.

As discussed before, we use DualHash lifting: starting from a sieving dimen-
sion of 106 in the filter context [l − 24, l] using 32 dual vectors. To reduce
memory overhead from storing buckets and results (before insertion), we set



Advanced Lattice Sieving on GPUs, with Tensor Cores 275

Table 1. Darmstadt Lattice 1.05-approxSVP Challenge results

(T)D4F = target/actual dimensions for free
MSD = actual maximum sieving dimension

FLOP = # bucketing + reduction core floating point operations
dim TD4F D4F MSD Norm Norm/GH FLOP Walltime Mem GiB
158 31 29 129 3303 1.04329 262.1 9h 16m 89
160 31 33 127 3261 1.02302 261.8 8h 24m 88
162 31 31 131 3341 1.04220 263.2 18h 32m 156
164 32 28 136 3362 1.04368 264,8 2d 01h 179
166 32 30 136 3375 1.03969 264.8 2d 01h 234
168 32 31 137 3424 1.04946 265.3 2d 18h 318
170 33 31 139 3435 1.04594 266.3 5d 11h 364
172 33 35 137 3455 1.04582 265.0 2d 09h 364
174 33 35 139 3482 1.04913 266.3 5d 06h 518
176 34 33 143 3487 1.04412 267.5 12d 11h 806
178 34 32 146 3447 1.02725 268.6 22d 18h 1060
180 34 30 150 3509 1.04003 269.9 51d 14h 1443

Machine specification:
2× Intel Xeon Gold 6248 (20C/40T @ 2.5-3.9GHz)
4× Gigabyte RTX 2080 TI (4352C @ 1.5-1.8GHz)

1.5 TiB RAM (2666 MHz)
Average load: 40 CPU threads @ 93%, 4 GPUs @ 79%/1530MHz/242Watt

MultiBucket = 2. Thus, our main parameters are:

TD4F(n) = �n/ log(n)�, MaxSieveDim(n) = n − TD4F(n) + 4,
DBSize(d) = 2.77 × (4/3)(d/2), DBSizeLimit(n) = DBSize(n − T4DF(n)),
SaturationRadius = 4/3, SaturationRatio = .375,
DualHashMinDim = 106, DualHashDim = 24, DualHashVecs = 32,
PreferLeftInsert = 1.2, DownSieve = True,
MultiBucket = 2 Sieve = triple gpu,

7.3 New SVP Records

With the parameters tuned as discussed above, we have solved several Darmstadt
Lattice 1.05-approxSVP Challenges for lattices with dimension in the range of
158 till 180 (all with seed=0). Details about the effort and results for each
challenge are presented in Table 1.

With a new top record of the 1.05-approxSVP challenges with dimension 180,
we improve significantly upon the last record of dimension 155 by [ADH+19].
Note that this last record was achieved on a single large machine with 72 CPU
cores in 14 days and 16 h, where we were able to find an even shorter vector of
length 0.9842 ·gh in about 5 hours (68× faster). Also we can improve this record
from 155 by no less than 21 dimensions by solving lattice 1.05-approxSVP for
dimension 176 on our 4-GPU machine in less wall-clock time: 12 days and 11 h.



276 L. Ducas et al.

Table 2. Power use comparison for records of dimension 155 (G6K) and 176 (ours).

dim time CPU+GPU only system CPU+GPU only system

155 352 h 560 W 720 W 197 kWh 254 kWh
176 229 h 1268 W 1428 W 379 kWh 427 kWh

As proof we present our short vector for Darmstadt Lattice 1.05-approxSVP
Challenge dimension 180 with seed 0:

(68, 33, -261, 11, 101, 354, -48, -398, 196, -84, 217, 319, -137, -157, -29, 304, -14, 312, 28,
-240, -347, -6, -153, -35, -214, 67, -565, 91, 365, 382, -168, 152, 30, 42, -12, -14, -230, 54,

304, 51, 398, 380, 76, -111, 437, 374, -554, -171, -90, -92, 564, 32, 217, 60, -107, 475,
-290, -326, -224, -218, 27, -271, 12, 200, 463, -365, 119, -431, 92, 450, 58, 183, 342, 82,
-144, 77, -95, -62, -245, 171, 169, -106, -330, 236, 194, 41, -84, -297, 567, 58, 553, 279,
260, 140, -141, -30, -183, -448, -112, 45, 135, -260, -261, 1, -105, 507, 105, -414, -161,

-9, -337, -287, 431, 92, -91, 350, -376, -75, 11, -249, 119, -172, -351, 410, 97, -320, -270,
223, -287, 97, 235, 242, 279, -222, 384, -95, 501, 317, 167, -130, -103, 441, 424, 25, 187,
-128, -9, -90, 328, -107, -132, -81, 2, 94, -326, -109, 465, 49, -30, 345, 125, -114, 909, 180,

-5, -112, 190, 182, -65, -291, -83, 445, -68, -318, -18, -732, -241, 246, -34, 299)

7.4 Remarks

Power Use. To compare power efficiency of our new record computation for
dimension 176 with the previous record computation for dimension 155 regard-
ing power usage, we estimated power use as shown in Table 2 as follows. Their
dimension 155 computation ran for 352 h on 4 CPUs (Intel Xeon E7-8860V4)
that have a TDP of 140 W each. Our dimension 176 computation ran for 299 h
on 2 CPUs (Intel Xeon Gold 6248) with a TDP of 150 W each, and 4 GPUs
that typically used 242 W as measured through the nvidia-smi tool. For both
systems we approximate other system power usage covering motherboard, RAM
and disk as about 160W.

Note in Table 2 that while solving the challenge for dimension 176 is about
two orders of magnitude harder compared to dimension 155, we spent less than
a factor 2 more in electricity.

Memory Use. From these, we estimate that our implementation requires about
416 Bytes per vector for dimensions higher than 137. Hence, sieving up to dimen-
sion 146 could still fit within our 1.5 TiB of available RAM, which allowed us to
solve the lattice challenge of dimension 180.

Appendix. The Appendix can be found in the full version.8

Acknowledgments. The authors would like to express their gratitude to Joe Rowell
for his precious feedback and support on parts of our code.

8 https://eprint.iacr.org/2021/141.

https://eprint.iacr.org/2021/141


Advanced Lattice Sieving on GPUs, with Tensor Cores 277

The research of L. Ducas was supported by the European Union’s H2020
Programme under PROMETHEUS project (grant 780701) and the ERC-StG-
ARTICULATE project (no. 947821). W. van Woerden is funded by the ERC-ADG-
ALGSTRONGCRYPTO project (no. 740972). The computational hardware enabling
this research was acquired thanks to a Veni Innovational Research Grant from NWO
under project number 639.021.645 and to the Google Security and Privacy Research
Award awarded to M. Stevens.

References

[ADH+19] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite,
E.W., Stevens, M.: The general sieve kernel and new records in lattice
reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 25

[AGPS19] Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Esti-
mating quantum speedups for lattice sieves. In: Moriai, S., Wang, H. (eds.)
Advances in Cryptology – ASIACRYPT 2020. ASIACRYPT 2020. LNCS,
vol. 12492, pp. 583–613. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64834-3 20

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing. pp. 601–610 (2001)

[ALNSD20] Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduc-
tion, revisited—filling the gaps in SVP approximation. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 274–295.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 10

[AR05] Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. J. ACM
(JACM) 52(5), 749–765 (2005)

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SIAM, pp. 10–24 (2016)

[BGJ15] Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search. IACR
Cryptology ePrint Archive 2015/522 (2015)

[BL16] Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-
polytope LSH. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 3–23. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31517-1 1

[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Comput.
Math. 19(A), 146–162 (2016)

[Cha02] Charikar, M.S.: Similarity estimation techniques from rounding algo-
rithms. In: Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing, pp. 380–388 (2002)

[Che13] Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement com-
pletement homomorphe. Ph.D. thesis, Paris 7 (2013)

[Duc18] Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 5

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-56880-1_10
https://doi.org/10.1007/978-3-319-31517-1_1
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5


278 L. Ducas et al.

[FBB+14] Fitzpatrick, R., et al.: Tuning GaussSieve for speed. In: Aranha, D.F.,
Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 16

[FP85] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis. Math. Comput.
44(170), 463–471 (1985)

[GM03] Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum
Mathematicum 15, 165–189 (2003)

[GN08] Gama, N. Nguyen, P.Q.: Finding short lattice vectors within Mordell’s
inequality. In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, pp. 207–216 (2008)

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 13

[HK17] Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -
list problem in Euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 16–40. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54365-8 2

[HKL18] Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time–memory
trade-offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC
2018. LNCS, vol. 10769, pp. 407–436. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76578-5 14

[JYP+17] Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor pro-
cessing unit. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 1–12 (2017)

[Kan83] Kannan, R.: Improved algorithms for integer programming and related lat-
tice problems. In: Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, pp. 193–206 (1983)

[Laa15] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 1

[LM18] Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T.,
Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 14

[MLB17] Mariano, A., Laarhoven, T., Bischof, C.: A parallel variant of LDSieve for
the SVP on lattices. In: 2017 25th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pp. 23–30.
IEEE (2017)

[MR09] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

[MV10] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 1468–1480
(2010)

[MW16] Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 31

https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-319-79063-3_14
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31


Advanced Lattice Sieving on GPUs, with Tensor Cores 279

[NBGS08] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel program-
ming with CUDA. Queue 6(2), 40–53 (2008)

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

[NVF20] NVIDIA, Vingelmann, P., Fitzek, F.H.P.: CUDA, release: 10.2.89 (2020)
[PS09] Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time

22.465 n. IACR Cryptology ePrint Archive 2009/605 (2009)
[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical

algorithms and solving subset sum problems. Math. Program. 66(1–3),
181–199 (1994)

[SG10] Schneider, M., Gama, N.: Darmstadt SVP Challenges (2010). https://
www.latticechallenge.org/svp-challenge/index.php. Accessed 06 Oct 2020

[YKYC17] Yang, S.-Y., Kuo, P.-C., Yang, B.-Y., Cheng, C.-M.: Gauss sieve algorithm
on GPUs. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp.
39–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-
4 3

https://www.latticechallenge.org/svp-challenge/index.php
https://www.latticechallenge.org/svp-challenge/index.php
https://doi.org/10.1007/978-3-319-52153-4_3
https://doi.org/10.1007/978-3-319-52153-4_3


Masking and Secret-Sharing



Fast Verification of Masking Schemes
in Characteristic Two

Nicolas Bordes(B) and Pierre Karpman

Univ. Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering Univ. Grenoble
Alpes, LJK, 38000 Grenoble, France

{nicolas.bordes,pierre.karpman}@univ-grenoble-alpes.fr

Abstract. We revisit the matrix model for non-interference (NI)
probing security of masking gadgets introduced by Beläıd et al. at
CRYPTO 2017. This leads to two main results.

1) We generalise the theorems on which this model is based, so as to
be able to apply them to masking schemes over any finite field—in par-
ticular F2—and to be able to analyse the strong non-interference (SNI)
security notion. We also follow Faust et al. (TCHES 2018) to addition-
ally consider a robust probing model that takes hardware defects such as
glitches into account.

2) We exploit this improved model to implement a very efficient veri-
fication algorithm that improves the performance of state-of-the-art soft-
ware by three orders of magnitude. We show applications to variants of NI
and SNI multiplication gadgets from Barthe et al. (EUROCRYPT 2017)
which we verify to be secure up to order 11 after a significant parallel
computation effort, whereas the previous largest proven order was 7; SNI
refreshing gadgets (ibid.); and NI multiplication gadgets from Groß et al.
(TIS@CCS 2016) secure in presence of glitches. We also reduce the ran-
domness cost of some existing gadgets, notably for the implementation-
friendly case of 8 shares, improving here the previous best results by 17%
(resp. 19%) for SNI multiplication (resp. refreshing).

Keywords: High-order masking · Probing model · Multiplication
gadget · Refreshing gadget · Linear code

1 Introduction

Since their introduction in the late last century, side-channel attacks and in par-
ticular Differential Power Analysis (DPA) [KJJ99] have developed into one of
the most efficient attack techniques on implementations of cryptographic prim-
itives. The importance of this new threat and its practical relevance soon lead
to the design of appropriate counter-measures, one of the most influential to
date being the “ISW” private multiplication circuit of Ishai, Sahai and Wag-
ner [ISW03]. This is a foremost example of a masking scheme, where sensitive
data are split into several shares using a secret sharing scheme; the crux of the

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 283–312, 2021.
https://doi.org/10.1007/978-3-030-77886-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_10


284 N. Bordes and P. Karpman

design is then to devise a way to perform field arithmetic over the shares without
leaking too much information to the adversary in the process.

A major characteristic of a masking scheme is the order at which it is secure:
in a probing model such as the one introduced by Ishai, Sahai and Wagner, a
circuit secure at order d is such that no adversary can learn information about
its input and output even when being given d intermediate values of its com-
putation. The usefulness of increasing the security order is then justified by the
fact that under reasonable assumptions, the number of measurements needed for
a successful attack increases exponentially in d [DFS15].

Unfortunately, high-order schemes also come with a significant overhead,
since the cost of ISW multiplication is quadratic in d for three relevant metrics:
to secure one field multiplication, one needs 2d(d + 1) sums, (d + 1)2 products
and d(d + 1)/2 fresh random masks. This lead to several attempts to find more
efficient multiplication circuits, especially with respect to the last two metrics.

A number of new schemes for private multiplication were introduced in the
past few years by Beläıd et al. [BBP+16,BBP+17]. At EUROCRYPT 2016,
they design a new high-order scheme whose randomness cost is decreased to
≈ d2/4+d, and which can be easily instantiated over any finite field of character-
istic two (they also give specific schemes with even lower cost up to order 4). The
security of this multiplication is analysed in the composable model of non inter-
ference (NI) from Barthe et al. [BBD+16]. This is slightly weaker than the strong
non-interference (SNI) security achieved by ISW multiplication but remains of
high practical relevance: for instance, one can replace half of the multiplications
in a masked AES S-box computation by the ones of [BBP+16] while maintain-
ing the overall strong SNI security for the entire S-box. At CRYPTO 2017, the
same authors propose two new schemes, one with linear bilinear multiplication
cost, and the other with linear randomness cost. However, those are complex
to securely instantiate and cannot be done so over F2. As an example, over
F28 , Beläıd et al. only manage to instantiate their algorithms at order 2 and
3 respectively; this was later slightly improved to 4 in both cases by Karp-
man and Roche [KR18]. In this second paper, Beläıd et al. also analyse the
security of their schemes thanks to a powerful matrix-based model that they
introduce. This model is however not complete for schemes defined over small
fields such as F2; while this was not a limitation in their case, it precludes its
full application to this common setting. Finally, Barthe et al. introduced some
of the most efficient known NI and SNI multiplication and refreshing schemes
at EUROCRYPT 2017 [BDF+17], selected instances of which were then later
improved by Grégoire et al. [GPSS18] and Barthe et al. [BBD+18]. Comple-
mentary approaches to decrease the overhead of masking implementations con-
sist in batching multiplications in order to amortise their cost (for instance
by sharing some of the shares across several multiplications [CGPZ16] or by
using a “packing” strategy [WGS+20]) or in carrying a global analysis of the
primitive to be masked, so that one may for instance use fewer refreshing gad-
gets [BGR18,BDM+20]. Both of these are quite orthogonal to the design and
analysis of individual gadgets.



Fast Verification of Masking Schemes in Characteristic Two 285

On the implementation side, several recent work have investigated the effi-
ciency of high-order masking in practice [GR17,JS17,GJRS18,GPSS18]; they
show in particular the increasing feasibility of masking block ciphers at quite
high order such as 7, and the possibility of masking at very high order such as
31. Such high-order masking may be useful to secure implementations running
on devices with low noise level. This was recently highlighted by a practical
attack of Bronchain and Standaert on a protected AES implementation where
the low noise and masking order were found to be contributing factors to its fea-
sibility [BS19]. From a technical point-of-view, high-order implementations share
the common approach of exploiting bitslicing or vectorisation to amortise the
overhead brought by the use of many shares; since bitslicing works with opera-
tions at the bit level, this strategy typically requires the masking to be performed
over F2. These implementations also confirm the high cost of randomness gen-
eration; for instance, depending on the random number generator performance
and the block cipher under consideration Journault and Standaert report that
68–92% of the time is spent generating fresh masks in their 32-share implementa-
tions [JS17]. All in all, concrete implementations of high-order masking confirm
the importance of schemes defined over F2 with low randomness cost.

All of the above work are chiefly concerned with software-oriented counter-
measures and are designed with respect to a high-level computation model.
While this abstraction is beneficial to the formal analysis of the schemes and
their implementation, it comes with the inherent downside of ignoring some of
the micro-architectural phenomena that may enable side-channel attacks in the
first place. It was for instance recently noted by Gao et al. that some indepen-
dence assumptions made in bitsliced implementations do not seem to hold in
practice, and that in-register bit interaction leakage may in fact significantly
decrease the actual resistance of a scheme from what could be theoretically
expected [GMPO20]. In the case of hardware circuits, it is also well-known
that their protection additionally requires to take into account the possibility of
physical defects such as glitches. From a formalisation perspective this can for
instance be done by generalising probing security to a robust variant proposed
by Faust et al. [FGP+18], or by following the more physical approach of Bloem
et al. [BGI+18]. As was recently noted by Moos et al. [MMSS19], the analysis
of masking schemes in this harder model is currently quite less mature than in
the software case.

Finally although some schemes such as the original ISW multiplication ben-
efit from analytical proofs of security at an arbitrary order, the security of
many gadgets from the literature is checked using some verification software.
This is true in particular for most of the improvements over ISW from recent
work [BBP+16,BBP+17,BDF+17,GPSS18,BBD+18]. One of the main verifica-
tion software is the maskVerif tool from Barthe et al. [BBC+19], which allows to
verify the security of a scheme described with a high-level language with respect
to a range of models such as (S)NI in the (robust) probing model. A recent
alternative is the SILVER software from Knichel, Sasdrich and Moradi [KSM20],
whose notable features are that it proves gadgets described at the gate level from



286 N. Bordes and P. Karpman

an actual hardware synthesis file rather than from a high-level description, and
that it is complete (i.e. does not produce false negatives, as maskVerif may).
While those are clear advantages in the case of hardware implementations, the
somewhat slower verification time compared to maskVerif makes SILVER less
competitive in the software case, where one may wish to prove a scheme at a
higher order and where a high-level description is not limiting.

1.1 Our Contribution

Our work brings two main contributions. On the theoretical side, we extend
the matrix model of [BBP+17] to make it complete over any finite field and
thus for instance usable to prove the security of schemes defined over F2; we
also extend it to analyse SNI security, whereas it was only formulated in the
NI case by Beläıd et al., and incorporate the robust probing model of Faust
et al. [FGP+18] to offer some support for verification in presence of glitches. The
extension to F2 is particularly relevant to concrete masking schemes since up to
a few exceptions such as the one of [BBP+17], most schemes are intrinsically
defined over this field. A corollary of our new theorems is also a simple proof
that a scheme proven secure over F2 remains so when used over any extension,
which is a common practice.

On the practical side, we use this extended model to derive a very efficient
implementation of a verification algorithm whose performance beats the state-
of-the-art maskVerif tool of Barthe et al. [BBC+19] by three orders of magnitude
in the case of software multiplication gadgets; we illustrate this on software and
hardware multiplication and refreshing schemes from the literature. We then
take advantage of our improved verification performance and spend significant
computation effort into proving the security of (variants of) the software mul-
tiplication gadgets of Barthe et al. [BDF+17] at mid-to-high order. This is all
the more relevant since those do not have known generic proof of security at any
order and are used in concrete implementations [JS17,GPSS18]. We verify NI
and SNI gadgets up to order 11 at a total combined cost of close to 255 basic
operations, whereas the previously largest proven order was 7. We justify on the
way the necessity of performing this kind of verification for schemes that do not
have generic proofs by disproving a conjecture of Barthe et al. on the security of a
natural transformation of NI schemes into SNI ones. Finally, we propose various
improvements to decrease the randomness cost of several software gadgets. This
results for instance in a decrease of 17% (resp. 19%) over the state-of-the-art
for 8-share SNI multiplication (resp. refreshing) schemes, which could then for
instance be used as stand-in replacements in the vectorised implementation of
Grégoire et al. [GPSS18].

1.2 Roadmap

We present the security models and extend the matrix approach from
CRYPTO 2017 in Sect. 2. We then introduce our verification algorithm and



Fast Verification of Masking Schemes in Characteristic Two 287

discuss its implementation in Sects. 3 and 4. We conclude with experimental
results and the description of new gadgets in Sect. 5.

1.3 Notation

We use K
n×m to denote the ring of matrices of n rows and m columns over the

field K. We write �a, a + t� for the set of integers {a, a + 1, . . . , a + t}. Matrices
and vectors are named with bold upper- and lower-case variables respectively;
In, 0n×m, 1n×m always denote the n-dimensional identity matrix and all-zero
and all-one n × m matrices respectively, over any field K.

2 Security Models for Masking Schemes

2.1 Simulatability and Non-interference

We start by recalling the definitions of the models of non-interference (NI), tight
non-interference (TNI) and strong non-interference (SNI), introduced by Barthe
et al. at CCS 2016 [BBD+16]. Our presentation closely follows the one of Beläıd
et al. [BBP+17].

Definition 1 (Gadgets). Let f : K
n → K

m, u, v ∈ N; a (u, v)-gadget for the
function f is a randomised circuit C such that for every tuple (x1, . . . ,xn) ∈
(Ku)n and every set of random coins R, (y1, . . . ,ym) ←� C (x1, . . . ,xn;R)
satisfies:

⎛
⎝

v∑
j=1

y1,j , . . . ,
v∑

j=1

ym,j

⎞
⎠ = f

⎛
⎝

u∑
j=1

x1,j , . . . ,
u∑

j=1

xm,j

⎞
⎠ .

We then use xi to denote
∑u

j=1 xi,j, and similarly for yi; xi,j is called the jth
share of xi.

In this definition, a randomised circuit C is a directed acyclic graph whose
vertices represent arithmetic operation gates (addition and multiplication) over
K of arity two, or random gates of arity zero whose outputs are uniform over K

and pairwise independent for every execution of the circuit, and recorded in the
variable R; the edges of the graph are wires that connect the input and output
of the gates together so as to describe the full computation of a given function.

A probe on a circuit C is a map that for every execution C (x1, . . . ,xn;R)
returns the value propagated on one of the wires of C . One may further distin-
guish between external probes on the output wires or output shares yi,j ’s of C ,
and the remaining internal probes.

Definition 2 (t-Simulatability). Let C be a (u, v)-gadget for f : K
n → K

n,
and �, t ∈ N. A set P = {p1, . . . , p�} of probes of C is said to be t-simulatable
if ∃ I1, . . . , In ⊆ �1, u�; #Ii ≤ t and a randomised function π : (Kt)n → K

�

such that for any fixed (x1, . . . ,xn) ∈ (Ku)n, {p1, . . . , p�} ∼ {π({x1,i, i ∈
I1}, . . . , {xn,i, i ∈ In})}.



288 N. Bordes and P. Karpman

Less formally, a set P of probes on C is t-simulatable if there exists a ran-
domised function that perfectly simulates the distribution of {p1, . . . , p�} while
requiring at most t shares of every input to C to do so. It is important to remark
here that the simulation is done w.r.t. a fixed input (x1, . . . ,xn), regardless of
the fact that one may randomise these inputs across many executions of C .

Thanks to Definition 2, we may now define the following.

Definition 3 (d-Non-interference). A (u, v)-gadget C for a function over K
n

is d-non-interfering (d-NI) if and only if for any set P of at most d probes on C
∃ t ≤ d s.t. P is t-simulatable.

Definition 4 (d-Tight non-interference). A (u, v)-gadget C for a function
over K

n is d-tight-non-interfering (d-TNI) if and only if any set of t ≤ d probes
on C is t-simulatable.

Definition 5 (d-Strong non-interference). A (u, v)-gadget C for a function
over K

n is d-strong non-interfering (d-SNI) if and only if for every set P1 of d1
internal probes and every set P2 of d2 external probes such that d1 + d2 ≤ d,
then P1 ∪ P2 is d1-simulatable.

It is clear that strong non-interference implies tight non-interference at the
same order, which itself implies non-interference. Barthe et al. [BBD+16] showed
that tight non-interference did not imply strong non-interference, but that the
composition of a d-NI gadget with a d-SNI one is d-SNI, while the composition of
two d-NI gadgets was not necessarily d-NI. On the other hand they also showed
that non-interference and tight non-interference are in fact equivalent, which in
proofs allows to select the most convenient notion.

2.2 Matrix Model for Non-interference

We now recall Theorem 3.5 from Beläıd et al. [BBP+17], which defines a powerful
matrix model to analyze the (T)NI property of a gadget over a sufficiently large
field K for which all probes are bilinear. We then generalise it as Theorem 12
to work with schemes over any finite field (and F2 in particular), and to also
analyse SNI security in Theorem 20.

In all of the following, we restrict our interest to gadgets for binary functions1

f : K
2 → K, and the inputs to f (resp. their sharings in a gadget C ) will be

denoted a and b (resp. a = (a0, . . . ,au−1)t, b = (b0, . . . , bu−1)t). We also write
the elements of R as a vector r = (r1, . . . , rR)t

Definition 6 (Bilinear probe). A probe p on a (d + 1, v)-gadget C for a
function f : K

2 → K is called bilinear iff. it is an affine function in ai, bj, aibj,
rk; 0 ≤ i, j ≤ d, 1 ≤ k ≤ R. Equivalently, p is bilinear iff. ∃M ∈ K

(d+1)×(d+1),
μ, ν ∈ K

d+1, σ ∈ K
R and τ ∈ K s.t. p = atMb + atμ + btν + rtσ + τ .

1 Results for unary functions can then easily be obtained by e.g. fixing one input.



Fast Verification of Masking Schemes in Characteristic Two 289

Definition 7 (Functional dependence). An expression E(x1, . . . , xn) is
said to functionally depend on xn iff. ∃ c1, . . . , cn−1 s.t. the mapping xn �→
E(c1, . . . , cn−1, xn) is not constant.

We now introduce the following condition.

Condition 8 ([BBP+17, Condition 3.2]). A set of bilinear probes P =
{p1, . . . , p�} on a (d + 1, v)-gadget C for a function f : K

2 → K satisfies
Condition 8 iff. ∃λ ∈ K

�, M ∈ K
(d+1)×(d+1), μ, ν ∈ K

d+1, and τ ∈ K s.t.∑�
i=1 λipi = atMb+atμ+ btν + τ and all the rows of the block matrix

(
M μ

)

or all the columns of the block matrix
(

M
νt

)
are non-zero.

In other words, this condition states that there exists a linear combination
of probes of P that does not functionally depend on any random scalar and that
functionally depends on either all of the shares for a or all of the shares for b.

We are now ready to state the following theorem.

Theorem 9 ([BBP+17, Theorem 3.5]). Let P be a set of bilinear probes on
a (d+1, v)-gadget C for a function f : K

2 → K. If P satisfies Condition 8, then
it is not d-simulatable. Furthermore, if P is not d-simulatable and #K > d + 1,
then it satisfies Condition 8.

The next immediate corollary is more useful in practice.

Corollary 10 ([BBP+17, Corollary 3.7]). Let C be a (d + 1, v)-gadget for a
function f : K

2 → K for which all probes are bilinear. If C is d-NI, then there
is no set of d probes on C satisfying Condition 8. Furthermore, if #K > d + 1
and there is no set of d probes on C satisfying Condition 8, then C is d-NI.

For the masking schemes of CRYPTO 2017 [BBP+17] the restriction #K >
d+1 is never an issue, as they are defined over large fields; however, this condition
means that one cannot directly apply Corollary 10 to prove the security of a
scheme over a small field such as F2.

We now sketch a proof of the second statement of Theorem 9 as a preparation
to extending it to any field.

Proof (Theorem 9 right to left, sketch). Let P = {p1, . . . , p�} be a set of bilinear
probes that is not d-simulatable. We call R the block matrix

(
σ1 · · · σ�

)
, where

σi denotes as in Definition 6 the vector of random scalars on which pi depends.
Up to a permutation of its rows and columns, the reduced column echelon form

R′ of R is of the shape
(

It 0t,�−t

N 0t

)
, where t < � is the rank of R and N is

arbitrary. If we now consider the formal matrix P =
(
p1 · · · p�

)t and multiply it
by the change-of-basis matrix from R to R′, we obtain the matrix P ′ =

(
P ′

r P ′
d

)
where P ′

r represents t linear combinations {p′
1, . . . , p

′
t} of probes that each depend

on at least one random scalar which does not appear across any of the other linear
combinations, and P ′

d represents � − t linearly independent linear combinations



290 N. Bordes and P. Karpman

P ′ = {p′
t+1, . . . , p

′
�} of probes that do not depend on any random scalar. All

of the {p′
1, . . . , p

′
t} can then be simulated by independent uniform distributions

without requiring the knowledge of any share, and as P is not d-simulatable,
P ′ cannot be d-simulatable either. W.l.o.g., this means that for every share
ai, there is at least one linear combination of probes in P ′ that depends on
it. In other words, the matrix D =

(
M ′

t+1 μt+1 · · · M ′
� μ�

)
that records this

dependence has no zero row. We now finally want to show that there is a linear
combination

(
λt+1 · · · λ�

)t of elements of P ′ that satisfies Condition 8. This can
be done by showing that ∃Λ =

(
Λt+1 · · · Λ�

)t s.t. DΛ has no zero row, where
the Λi’s are the (d + 2) × (d + 2) scalar matrices of multiplication by the λi’s.
By the Schwartz-Zippel-DeMillo-Lipton lemma this is always the case as soon
as #K > d + 1 [Sch80], and this last step is the only one that depends on K. �

We now wish to extend Theorem 9 and its corollary to any finite field K. We
do this using the TNI notion rather than NI, and so first state an appropriate
straightforward adaptation of Condition 8:

Condition 11. A set of bilinear probes P = {p1, . . . , p�} on a (d + 1, v)-gadget
C for a function f : K

2 → K satisfies Condition 11 iff. ∃λ ∈ K
�, M ∈

K
(d+1)×(d+1), μ, ν ∈ K

d+1, and τ ∈ K s.t.
∑�

i=1 λipi = atMb + atμ + btν + τ

and the block matrix
(
M μ

)
(resp. the block matrix

(
M
νt

)
) has at least � + 1

non-zero rows (resp. columns).

In other words, Condition 11 states that the expression
∑�

i=1 λipi, which
involves � probes, functionally depends on no random scalar and on at least
� + 1 shares of a or � + 1 shares of b, and hence is a TNI attack. We will then
show the following:

Theorem 12. Let P be a set of at most d bilinear probes on a (d + 1, v)-gadget
C for a function f : K

2 → K. If P, is not d-simulatable then ∃P ′ ⊆ P s.t. P ′

satisfies Condition 11.

Corollary 13 (Corollary of Theorems 9 and 12). Let C be a (d + 1, v)-
gadget C for a function f : K

2 → K for which all probes are bilinear. If C is
d-NI, then there is no set of d probes on C satisfying Condition 8. Furthermore,
if there is no set of t ≤ d probes on C satisfying Condition 11, then C is d-NI.2

The proof of Theorem 12 essentially relies on the following lemmas, conve-
niently formulated with linear codes3:

Lemma 14. Let C1 (resp. C2) be an [n1, k] (resp. [n2, k], n2 > n1) linear code
over a finite field K. Let G1 ∈ K

k×n1 and G2 ∈ K
k×n2 be two generator matrices

2 As Condition 11 directly implies an attack, one could also formulate this corollary
solely in terms of this condition.

3 Recall that an [n, k] linear code over a field K is a k-dimensional linear subspace of
K

n.



Fast Verification of Masking Schemes in Characteristic Two 291

for C1 and C2 that have no zero column. Then the concatenated code C1,2 of C1

and C2 generated by G1,2 :=
(
G1 G2

)
has the following property: ∃ c ∈ C1,2

s.t. wt1(c) < wt2(c), where wt1(·) (resp. wt2(·)) denotes the Hamming weight
function restricted to the first n1 (resp. last n2) coordinates of C1,2.

One may remark that if #K is sufficiently large w.r.t. the parameters of the
codes, then by the Schwartz-Zippel-DeMillo-Lipton lemma there exists a word
in C1,2 of maximal wt2 weight, and the conclusion immediately follows; yet this
argument does not hold over any field.

Lemma 15. The statement of Lemma 14 still holds if K is replaced by a matrix
ring K

′d×d and if G1 is defined over the subfield of the scalar matrices of K
′d×d.

We first recall the following:

Definition 16 (Shortening of a linear code). Let C be an [n, k] linear code
over K generated by G ∈ K

k×n. The shortened code C′ w.r.t. coordinate i ∈
�1, n� is the subcode made of all codewords of C that are zero at coordinate i,
with this coordinate then being deleted.

We also give:

Definition 17 (Isolated coordinate). Let M ∈ K
m×n. A coordinate i ∈

�1, n� is called isolated for the row Mj of M , j ∈ �1,m�, iff. Mj,i �= 0 and
∀j′ �= j ∈ �1,m�, Mj′,i = 0.

And:

Procedure 18. We reuse the notation of the statement of Lemma 14. We apply
Procedure 18 on a row of G1,2 by doing the following: denote I1 (resp. I2) the
(possibly empty) set of isolated coordinates on its first n1 (resp. last n2) columns;
then if #I1 ≥ #I2, shorten C1,2 w.r.t. all the coordinates in I1 ∪I2. Practically,
this means deleting from G1,2 the row being processed and all the columns in
I1 ∪I2. This results in a code C′

1,2 generated by
(
G′

1 G′
2

)
where G′

1 ∈ K
(k−1)×n′

1

(resp. G′
2 ∈ K

(k−1)×n′
2) is a submatrix of G1 (resp. G2) and n′

1 < n1, n′
2 < n2,

n′
1 < n′

2, and none of the columns of G′
1,2 is zero. One may also remark that

since G′
1 is of rank k − 1, we have k − 1 ≤ n′

1.

We are now ready to prove Lemmas 14 and 15.

Proof (Lemma 14). We prove this lemma by induction using Procedure 18.
In a first step one applies Procedure 18 to every row of G1,2 one at a time

and repeats this process again until either there is no row for which applying
the procedure results in a shortening, or the dimension of the shortened code
reaches 1.

In the latter case, this means that the only non-zero codeword in G′
1,2 ∈

K
1×(n′

1+n′
2) is of full weight n′

1+n′
2 with n′

1 < n′
2 (since G′

1,2 only has a single row
and none of its columns is zero). This induces a codeword c of C s.t. wt1(c) = n′

1

and wt2(c) = n′
2, so we are done.



292 N. Bordes and P. Karpman

In the former case, one is left with a matrix G′
1,2 ∈ K

k′×(n′
1+n′

2), k′ > 1. One
then computes the reduced row echelon form of G′

1,2 (this does not introduce
any zero column since the elementary row operations are invertible) and again
iteratively applies Procedure 18 on the resulting matrix as done in the first
step. Now either the application of Procedure 18 leads to a shortened code
of dimension 1 and then we are done as above, or we are left with a matrix
G′′

1,2 ∈ K
k′′×(n′′

1 +n′′
2 ) which can be of two forms:

1. k′′ = n′′
1 . Up to permutation of its columns, G′′

1,2 can be written as:
(
In′′

1
In′′

1
In′′

1
∗)

,

where ∗ is arbitrary. The left k′′ × n′′
1 block is justified from G′′

1,2 being in
reduced row echelon form and having full rank. The right k′′ × n′′

2 block
is justified from the fact that every row of the left block has exactly one
isolated coordinate; since no simplification can be done anymore to G′′

1,2 by
applying Procedure 18, this means that those rows have at least two isolated
coordinates on the right block. This is enough to conclude on the existence
of a codeword of C satisfying the desired property.
Recall that it is not possible to have k′′ > n′′

1 from the last remark in Proce-
dure 18. The only remaining case is then:

2. k′′ < n′′
1 . Up to a permutation of its columns, the rank-k′′ matrix G′′

1,2 can
be written as: (

Ik′′ ∗L Ik′′ Ik′′ ∗R

)
,

and it has no zero column. One then applies Lemma 14 inductively on the
code generated by the submatrix G′′′

1,2 :=
(∗L Ik′′ ∗R

)
which is of strictly

smaller length. Let c′′′ = λG′′′
1,2 be a codeword of this latter code that satisfies

the desired property, then λG′′
1,2 also satisfies it for C1,2, which concludes the

proof.

�
Proof (Lemma 15). The proof simply consists in remarking that all the steps of
the proof of Lemma 14 can be carried out in the modified setting of Lemma 15.
Mainly:

– Definitions 16 and 17 and Procedure 18 naturally generalise to matrices over
rings, and the application of Procedure 18 is unchanged.

– Recall that by induction the left k′ × n′
1 submatrix is always of full rank

k′, which is also the rank of G′
1,2. Since G1 is defined over scalar matrices,

Gauß-Jordan elimination can be computed as if over a field.

�
The proof of Theorem 12 then follows.

Proof (Theorem 12). We start similarly from the proof of Theorem 9, and use
the same notation: let P ′ be a set of � − t linearly independent linear com-
binations of probes of P that do not depend on any random scalar, and let



Fast Verification of Masking Schemes in Characteristic Two 293

D =
(
M ′

t+1 μt+1 · · · M ′
� μ�

)
be the matrix that records the dependence of these

probes on every share ai. We will show that ∃P ′′ ⊆ P that satisfies Condition
11. To do this, we introduce two new indicator matrices:

– Let Π ∈ K
(d+2)×(d+2)(�−t)×�

be s.t. for every p′ ∈ P ′ it records in its rows
its dependence on the probes of P as scalar matrices;4 that is, Π is s.t.
p′

i =
∑�

j=1 πi,jpj where πi,j is the scalar on the diagonal of the scalar matrix
Πi,j . W.l.o.g., we may assume that every probe of P appears at least once
in a linear combination of P ′, otherwise it is simply discarded, so Π has no
zero column.

– Let Δ ∈ K
(d+2)×(d+2)(�−t)×(d+1)

be the matrix that for every p′ ∈ P ′ records
in its rows its dependence on the shares ais; that is if the bilinear probe p′

i

can be written as p′
i = atM ′b + atμ′ + btν′ + τ ′, then Δi,j is set to the

diagonal matrix of the jth row of
(
M ′ μ′).5 Note that since by assumption

D has no zero row, Δ has no zero column.

Now we invoke Lemma 15 with Π as G1 and Δ as G2 the generator matri-
ces for the concatenated code C1,2. Let c ∈ C1,2 be a codeword that satisfies
wt1(c) < wt2(c); this translates to a linear combination of �′′ := wt1(c) probes
of P ′′ ⊆ P that (as linear combinations of elements of P ′) does not depend on
any randomness and s.t. the associated matrix

(
M ′′ μ′′) has wt2(c) ≥ �′′ + 1

non-zero rows (by applying the inverse transformation from Δ to D), hence P ′′

satisfies Condition 11. �
Finally, the proof of Corollary 13 is immediate from Theorems 9 and 12.

2.3 Matrix Model for Strong Non-interference

We now wish to adapt the approach of Theorems 9 and 12 to be able to prove
that a scheme is SNI. This is in fact quite straightforward, and it mostly consists
in defining a suitable variant of Condition 11 and in applying Lemma 15 to well-
chosen matrices, to show again that there is a subset of probes that satisfies the
condition whenever there is an attack.

Condition 19. A set of � = �1 + �2 bilinear probes P = {p1, . . . , p�} on a
(d + 1, v)-gadget C for a function f : K

2 → K, of which �1 are internal, satisfies
4 This use of scalar matrices is only so that Π is defined on the same base structure

as Δ below. As an example, taking � = d = 2 and considering two probes in P ′ as

p′
1 = p1 + p2; p′

2 = p2, then Π =

(
I4 I4

04 I4

)
.

5 This use of diagonal matrices allows to keep track of (the lack of) simplifications
when combining several probes; for instance, if two probes depend on the same ai

as aibj and aibj′ with j �= j′, then the sum of those probes still depends on ai.
Continuing the previous example and taking p′

1 = a0b0 + a0b1 + a1b2 + a2, then

the first row of Δ (whose entries are 4 × 4 matrices) is

⎛
⎜⎜⎝

1 0 0
1 0 0

0 1 0
0 0 1

⎞
⎟⎟⎠.



294 N. Bordes and P. Karpman

Condition 19 iff. ∃λ ∈ K
�, M ∈ K

(d+1)×(d+1), μ, ν ∈ K
d+1, and τ ∈ K s.t.∑�

i=1 λipi = atMb+atμ+btν +τ and the block matrix
(
M μ

)
(resp. the block

matrix
(

M
νt

)
) has at least �1 + 1 non-zero rows (resp. columns).

Theorem 20. Let P be a set of at most d bilinear probes on a (d + 1, v)-gadget
C for a function f : K

2 → K, of which �1 are internal. If P is not �1-simulatable
then ∃P ′ ⊆ P s.t. P ′ satisfies Condition 19.

Proof. In the full version [BK19].

And we then have the immediate corollary:

Corollary 21. Let C be a (d+1, v)-gadget for a function f : K
2 → K for which

all probes are bilinear, then C is d-SNI iff. there is not set of t ≤ d probes on C
that satisfies Condition 19.

2.4 Security of Binary Schemes over Finite Fields of Characteristic
Two

Let C be a d-NI or SNI gadget for a function defined over F2; a natural question
is whether its security is preserved if it is lifted to an extension F2n . Indeed, the
probes available to the adversary are the same in the two cases, but the latter
offers more possible linear combinations

∑�
i=1 λipi, since the λis are no longer

restricted to {0, 1}. We answer this question positively, and give a simple proof
based on Theorems 12 and 20.

Theorem 22. Let C be a d-NI (resp. d-SNI) gadget for a function f : F
2
2 → F2,

then for any n, the natural lifting Ĉ of C to f̂ : F
2
2n → F2n is also d-NI (resp.

d-SNI).

Proof. We only prove the d-NI case, the d-SNI one being similar. From Corollary
13, it is sufficient to show that if � P for C that satisfies Condition 11, then the
same holds for Ĉ . We do this by showing the following contrapositive: if a set of
probes P is not d-simulatable for Ĉ , then it is not d-simulatable either for C .

From the proofs of Theorems 9 and 12, if P is not d-simulatable for Ĉ , then
there is a matrix D̂ that leads to the existence of P ′ s.t. Condition 11 is satisfied.
All we need to do is showing that a similar matrix D can also be found for C .
Since C is defined over F2, the matrices R and P , and thence R̂ and P̂ have
all their coefficients in {0, 1}. As 1 is its own inverse, the change-of-basis matrix
from R̂ to R̂′ is also binary; equivalently, this means that the Gauß-Jordan
elimination of R̂ can be done in the subfield F2. Thus one only has to take
D = D̂ to satisfy Condition 11 on C . �

This result is quite useful as it means that the security of a binary scheme
only needs to be proven once in F2, even if it is eventually used in one or several



Fast Verification of Masking Schemes in Characteristic Two 295

extension fields. Proceeding thusly is in particular beneficial in terms of verifica-
tion performance, since working over F2 limits the number of linear combinations
to consider and may lead to some specific optimisations (cf. e.g. Sects. 3 and 4).

Remark. This result was in fact already implicitly used (in a slight variant) by
Barthe et al. in their masking compiler [BBD+15] and in maskVerif [BBC+19],
since they use gadgets defined over an arbitrary structure (K, 0, 1,⊕,�,�). How-
ever we could not find a proof, which actually seems necessary to justify the
correctness of this approach and of our algorithms of the next section.

3 An Algorithm for Checking Non-interference

In this section, we present a new efficient algorithm to check if a scheme is
(strong) non-interfering. This algorithm is a modification of the one presented
by Beläıd et al. at EUROCRYPT 2016 [BBP+16, Section 8], and its correctness
crucially relies on Theorems 12 and 20; it thus only applies to schemes for which
all probes are bilinear, but this is not a hard restriction in practice.

In all of the following we assume that the field K over which the scheme
is defined is equal to F2, which means that we will simultaneously assess its
security in that field and all its extensions (cf. Sect. 2.4). Some discussion of
implementation in the NI case for schemes natively defined over larger fields
(meaning that shares or random masks may be multiplied by constants not in
{0, 1}) for which the new Theorem 12 is not needed can be found in [KR18].

We start by introducing some vocabulary and by recalling the algorithm from
Beläıd et al.

Definition 23 (Elementary probes). A probe p is called elementary if it is
of the form p = aibj (elementary deterministic probe) or p = ri (elementary
random probe).

Definition 24 (Shares indicator matrix). Let p be a bilinear probe. We call
shares indicator matrix and write Mp the matrix M from Definition 6.

Definition 25 (Randomness indicator matrix). Let p be a bilinear probe.
We call randomness indicator matrix and write σp the column matrix σ from
Definition 6.

3.1 The Algorithm from EUROCRYPT 2016

At EUROCRYPT 2016, Beläıd et al. presented an efficient probabilistic algo-
rithm to find potential attacks against the d-privacy notion6 for masking schemes
for the multiplication over F2. By running the algorithm many times and not
detecting any attack, one can also establish the security of a scheme up to some
probability, but deriving a deterministic counterpart is less trivial. This algo-
rithm works as follows.
6 It can also be trivially modified to check attacks against NI security.



296 N. Bordes and P. Karpman

Consider a scheme on which all possible probes P are bilinear, and let
HP :=

(
σp

)
, p ∈ P be the block matrix constructed from all the correspond-

ing randomness indicator matrices. The algorithm of [BBP+16, Sect. 8] starts
by finding a set of fewer than d probes whose sum7 does not depend on any
randomness. That is to say, it is looking for a vector x such that HP · x = 0
and wt(x) ≤ d. This can be immediately reformulated as a coding problem, as
one is in fact searching for a codeword of weight less than d in the dual code
of HP . This search can then be performed using any information set decoding
algorithm, and Beläıd et al. used the original one of Prange [Pra62].8 Once such
a set has been found, it is tested against [BBP+16, Condition 2] (which is sim-
ilar to Condition 8) to determine if it is a valid attack against the d-NI notion,
and [BBP+16, Condition 1] to determine if it is an attack for d-privacy. This
procedure is then repeated until an attack is found or one has gained sufficient
confidence in the security of the scheme.

Removing elementary deterministic probes. To make the above procedure
more efficient, an important observation made by Beläıd et al. is that if the sum
of every probe of a given set does not functionally depend on some ai or bj , it is
always possible to make it so by adding a corresponding elementary probe aibj .
This can be used to check, say, d-NI security by simply comparing the number
of missing ai or bj to d−wt(x). This allows to reduce the number of probes that
one has to include in P (and thus the dimension of HP), making the algorithm
more efficient.

3.2 A New Algorithm Based on Enumeration

We now describe a new algorithm based on a partial enumeration of the power
set ℘(P) of P. The idea is to simply consider every sum of fewer than d probes
and check if it depends on all shares and no random masks, relying on Corollaries
13 and 21 for correctness. Since the cost of such an enumeration quickly grows
with the size of P, we then follow and extend the above observation by Beläıd
et al. and only perform the enumeration on a reduced set. We first describe
a simple extension of this “dimension reduction” strategy, before detailing the
algorithms themselves. A more elaborate dimension reduction process is then
described in Sect. 3.3, and we discuss implementation aspects in Sect. 4.

Removing elementary random probes. It is easy to adapt a deterministic
enumeration so that one can completely remove elementary random probes; it
suffices to remark that if the sum of every probe of a given set functionally
depends on some ri, it is always possible to make it not so by adding the corre-
sponding elementary probes.

7 That is, the only non-trivial linear combination over F2 that depends on all the
elements of the set.

8 One may remark that since information set decoding relies on Gaussian elimination,
the cost of one step of this algorithm increases more than linearly in the size of P.



Fast Verification of Masking Schemes in Characteristic Two 297

Combining the two above observations, we may remove every elementary
probe from the set P.9 This can be summarized by saying that in the enumer-
ation, one is not restricted anymore to finding exactly a combination of fewer
than d probes that depends on all shares and no random masks, as it is enough
to find a combination of � ≤ d probes that depends on u shares and v masks as
long as d − � ≥ (d + 1 − u) + v, since the missing shares and extra masks can
be dealt with elementary probes in a predictable way. This is in fact exactly the
check that is performed in our implementation in the case of NI security, as is
detailed and justified below.

Checking a Scheme for Non-interference. We now state the following:

Proposition 26. Let C be a (d + 1, v)-gadget for a function f : F
2
2 → F2 for

which all probes are bilinear, and Q0 be a set of n0 non-elementary probes on C
that functionally depends on na shares ais, nb shares bjs, and nr random scalars
ris. Let Q1 be one of the smallest sets of elementary probes needed to complete
Q0 such that Q0 ∪ Q1 satisfies Condition 11 and functionally depends on all the
ais or all the bis.10 Then n1 := #Q1 = nr + (d + 1 − max(na, nb)).

Proof. In the full version [BK19].

This proposition can then be used in a straightforward way to check if a
scheme is d-NI. To do so, one simply has to enumerate every set Q0 ∈ ℘(P) of d
non-elementary probes or fewer and check if n0 + n1 ≤ d. By Corollary 13, if no
such set Q0 can be completed as in Proposition 26 and still contain fewer than
d probes, then the scheme is d-NI.

Checking a Scheme for Strong Non-interference. We only need to adapt
Proposition 26 to distinguish between internal and external probes:

Proposition 27. Let C be a (d + 1, v)-gadget for a function f : F
2
2 → F2 for

which all probes are bilinear, and Q0 be a set of n0 non-elementary probes on
C that functionally depends on na shares ais, nb shares bjs, and nr random
scalars ris. Let nI denote the number of internal probes in Q0. Then there is a
set Q1 of nr elementary random probes such that Q0 ∪Q1 satisfies Condition 19
iff. max(na, nb) > nI + nr.

Proof. In the full version [BK19].

9 Note that this means that one would not detect the existence of an attack that would
use only elementary probes. However, it is easy to see from their definitions that �
such probes functionally depend on at most � shares, and so can never lead to a
non-trivial attack.

10 This additional constraint is not in itself necessary, but it simplifies the overall
algorithm.



298 N. Bordes and P. Karpman

This proposition can then be used in a straightforward way to check if a
scheme is d-SNI. To do so, one simply has to enumerate every set Q0 ∈ ℘(P)
of d non-elementary probes or fewer and check if max(na, nb) > nI + nr and
n0 + nr ≤ d. If no such set satisfying this condition is found, then the scheme is
d-SNI by Corollary 21.

3.3 Dimension Reduction

To further reduce the size of the space to explore during the verification, it may
be possible to filter additional non-elementary probes from the set P, in the
case where they can be replaced by “better” ones. To do so while preserving the
correctness of our verification algorithm, we first define the following:

Definition 28 (Reduced sets). Let P := ∪v
k=0Pk and P ′ := ∪v

k=0P ′
k be two

sets of probes on a (d + 1, v)-gadget C for a function f : F
2
2 → F2 for which all

probes are bilinear, where Pk (resp. P ′
k) denotes the probes on the wires of C

that are connected to the output share ck. Then P ′ is said to be a reduced set
for P iff.:

– #P ′ ≤ #P
– For all output wires k, for every linear combination of probes of Pk there is a

linear combination of equal or lower weight of probes of P ′
k with: 1) exactly the

same randomness dependence (reusing the notation of Definition 6 this means
that both combinations have the same σ term); 2) the shares dependence of
the combination from P ′

k covers the one of the combination from Pk ( i.e. the
support of the M , μ, ν terms of the former include the ones of the same
terms of the latter).

We then have:

Lemma 29. If two linear combinations of probes
∑

λipi and
∑

λ′
ip

′
i function-

ally depend on disjoint sets of elementary probes and shares aibj, ai and bj,
then their sum functionally depends on the union of those sets.

Proof. Immediate, since using the notation of Definition 6, the supports of M ,
μ, ν are disjoint from the ones of M ′, μ′, ν′. �

Finally, we conclude with the following:

Proposition 30. Let P ′ be a reduced set for a set of probes P on a (d + 1, v)-
gadget C for a function f : F

2
2 → F2 for which all probes are bilinear and for

which all output shares functionally depend on pairwise disjoint sets of elemen-
tary probes and shares aibj, ai and bj. Then if Q ⊆ P satisfies Condition 11,
∃Q′ ⊆ P ′, #Q′ ≤ #Q that also satisfies Condition 11.

Proof. In the full version [BK19].



Fast Verification of Masking Schemes in Characteristic Two 299

Examples. Consider a set P of two probes a0b0 + r0 + a0b1 and a0b0 + r0 +
a0b1 + a1b0 on the same output share. Then provided that none of the aibj

appears in other output shares, this set can be simplified by keeping only the
second probe, since it covers all the shares of the first one.

On the other hand, a set containing two probes a0b0 + r0 +a0b1 +a1b0 and
a0b0 + r0 + a0b1 + a1b0 + r1 cannot be simplified since the two probes do not
include exactly the same random masks.

We will see in Sect. 5 how Proposition 30 can be used in practice to signifi-
cantly improve verification performance. The nature of the probes that can be
removed of course depends on the scheme under consideration, and we will later
detail how to do this for some concrete gadgets.

3.4 Adaptation to the Robust Probing Model

A limitation of the traditional probing model is that it does not capture inter-
actions between intermediate values of a computation made possible by either
physical or micro-architectural effects. For instance Gao et al. showed that some
bitslicing implementation strategies of software masking schemes could exhibit
unwanted bit-interactions, thereby violating typical independence assumptions
from the probing model and resulting in unwanted leakage [GMPO20]. Simi-
larly, Grégoire et al. had noticed that their 4-share vectorised implementation of
a masked AES was subject to such an order reduction, without identifying the
exact cause [GPSS18].

In the case of hardware implementations, additional violations to the probing
model are typically witnessed and some of them are well-identified enough to
be formally captured. For one such phenomenon known as glitches, a probe at
an arithmetic gate (i.e. an addition or a multiplication) can leak more to the
adversary than its sole output—something that is not taken into account in the
basic model. In an effort to remedy this situation, Faust et al. recently proposed
to extend probing security into a robust probing model [FGP+18], able to take
several types of hardware defects into account. In the case of glitches, this is
done by assuming that a probe at an arithmetic gate leaks the union of what
is leaked by its two inputs. One consequence is that if two arithmetic gates are
connected together, leakage at the first one also propagates to the second. To
stop this propagation, one must then use a memory gate (a register), which only
leaks its output value.

Concretely, the robust probing model defines a leakage set L(p) of possibly
more than one value for every probe p at an arbitrary gate. This is more complex
than, and not directly compatible with the usual probing security model and
how we exploit it in our algorithm, where a probe leaks a single expression and
verification implies enumerating and summing all subsets of size up to some
order d. Nevertheless, one can opt for the following simple two-step strategy: 1)
iterate over all subsets P of d probes or fewer; 2) then compute and check every
possible full-weight linear combination of values leaked by this set of probes.
In a non-robust model and for schemes over F2, step 2) only involves a single
expression (viz. the sum of all the single values leaked by each probe), but in



300 N. Bordes and P. Karpman

a robust model there are in general
∏

p∈P
(
2#L(p) − 1

)
expressions to consider

(since for each probe one must now consider all the non-trivial binary linear
combinations of the values it leaked).

Related work. The maskVerif tool [BBC+19] also implements the
robust probing model to check security in presence of glitches. More dedi-
cated approaches are the ones of Bloem et al. [BGI+18] and of the SILVER
tool [KSM20].

4 Implementation

We now describe an efficient C implementation of the algorithm of the previous
section for K = F2. Our software is publicly available at https://github.com/
NicsTr/binary masking.

4.1 Data Structures

To evaluate if a set of probes P may lead to an attack, it is convenient to define
the following:

Definition 31 (Attack matrix). The attack matrix AP of a set of probes P
is defined as the sum of the share indicator matrices of the probes in P:

AP =
∑
p∈P

Mp.

Definition 32 (Noise matrix). The noise matrix BP of a set of probes P is
defined as the sum of the randomness indicator matrices of the probes in P:

BP =
∑
p∈P

σp.

One can then simply compute the quantities na, nb and nr needed in Proposi-
tions 26 and 27 as the number of non-zero rows or columns of these two matrices,
which we do using an efficient vectorised Hamming weight routine. To analyse
a given scheme, one then just has to provide a full description of Mp and σp

for every non-elementary probe. Additionally, since Propositions 27 requires to
compute the number of internal probes nI in a set, those have to be labelled as
such.

4.2 Amortised Enumeration and Parallelisation

Recall that to prove the security of a scheme at order d, the algorithm of Sect. 3
requires to enumerate all the

∑d
i=1

(
n
i

)
subsets of a (possibly filtered) set of

probes P of size n. For a subset P ′ ⊆ P of size �, a näıve approach in computing
AP′ would use �−1 additions, and this for every such P ′. However, a well-known
optimisation for this kind of enumeration is instead to go through all the subsets

https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking


Fast Verification of Masking Schemes in Characteristic Two 301

of a fixed weight in a way that ensures that two consecutive sets P ′ and P ′′ only
differ by two elements. One can then compute, say, AP′′ efficiently by updating
AP′ with one addition and one subtraction. We do this in our implementation
by using a so-called “revolving-door algorithm” (cf. e.g. [Knu11, Algorithm R])
for the Nijenhuis-Wilf-Liu-Tang “combination Gray code” [NW78,LT73].

In the robust probing model setting one may also need to enumerate more
than one expression for a given set of probes; this can still be done efficiently
using Gray codes. First one uses the same approach as described above to enu-
merate the sets of probes thanks to a combination Gray code. Then for each of
these sets P, checking if it leads to an attack or not requires one to go over the∏

p∈P(2#L(p) − 1) linear combinations of the relevant leakage sets as explained
in Sect. 3.4. This enumeration itself is done using two layers of Gray codes: an
outer layer is composed of a mixed-radix Gray code of length #P, with the radix
associated with probe p being equal to 2#L(p); this outer Gray code indicates
at each step which probes needs to be “incremented” to obtain the next linear
combination. Then this increment is itself implemented efficiently by using an
inner (“standard”) Gray code in dimension #L(p).

The enumeration can also be easily parallelised, and the main challenge is
to couple this with the above amortised approach. This can in fact be done
quite efficiently, as the combination Gray code that we use possesses an efficient
unranking map from the integers to arbitrary configurations [Wal]. One can
then easily divide a full enumeration of a total of n combinations into j jobs by
starting each of them independently at one of the configurations given by the
unranking of i × n/j, i ∈ �0, j�.

4.3 From High-Level Representation to C description

We use a custom parser to convert a readable description of a masking scheme
into a C description of its probes’ indicator matrices.

Each line of the high-level description corresponds to an output share. The
available symbols are:

– sij which represents a product aibj ;
– ri which represents a random mask ri;
– a space ‘ ’, a binary operator which represents an addition (i.e. XOR) gate;
– parentheses, which allow explicit scheduling of the operations;
– |, a postfixed unary operator which represents the use of a register to store

the expression that is before the symbol. This is only needed for an analysis
in presence of glitches.

Additionally, the user needs to specify the order d of the scheme as well as the
list of random masks used.

The scheduling of the operations needed to compute the output shares is
important, as it determines the probes available to the adversary. In that respect,
the parser uses by default an implicit left-to-right scheduling and addition gates
have precedence over registers. As an example the scheme whose output shares
are defined as:



302 N. Bordes and P. Karpman

c0 = ((((a0b0 ⊕ r0) ⊕ a0b1) ⊕ a1b0) ⊕ r1)
c1 = ((((a1b1 ⊕ r1) ⊕ a1b2) ⊕ a2b1) ⊕ r2)
c2 = ((((a2b2 ⊕ r2) ⊕ a2b0) ⊕ a0b2) ⊕ r0)

is described by the file:
ORDER = 2
MASKS = [r0, r1, r2]
s00 r0 s01 s10 r1
s11 r1 s12 s21 r2
s22 r2 s20 s02 r0

Another example is the following DOM-indep multiplication by Groß
et al. [GMK16], which is NI at order two even in the presence of glitches:

ORDER = 2
MASKS = [r0, r1, r2]
s00 (s01 r0|) (s02 r1|)

(s10 r0|) s11 (s12 r2|)
(s20 r1|) (s21 r2|) s22

5 Applications

In this section we apply our fast implementation of the verification algorithm
of Sect. 3 to various state-of-the-art masking gadgets and also propose new
improved instances in medium order, including better SNI multiplication and
refreshing gadgets for the practically-relevant case of 8 shares.

We analyse:

– In Sect. 5.1: NI and SNI multiplication gadgets originally from [BDF+17,
GPSS18].

– In Sect. 5.2: SNI refreshing gadgets originally from [BDF+17,BBD+18].
– In Sect. 5.3: Glitch-resistant NI multiplication from [GMK16].

5.1 NI and SNI Multiplication Gadgets

We first study a family of multiplication gadgets that were introduced by Barthe
et al. at EUROCRYPT 2017 [BDF+17] and used in the efficient masked AES
implementation of Grégoire et al. [GPSS18] (who also propose improvements in
the 4-share setting) and in the very high order implementations of Journault
and Standaert [JS17].

Our motivations in doing so are the following: since there is no known security
proof at arbitrary order for these schemes, it is natural to try to prove them
computationally at the highest possible order. Barthe et al. originally did this
up to order 7,11 and we manage to reach order 11 both for NI and SNI security,
11 We ourselves used the latest version of maskVerif to do so up to order 8.



Fast Verification of Masking Schemes in Characteristic Two 303

which represents a significant improvement.12 A second motivation is that the
verification of multiplication gadgets quickly becomes intractable with increasing
order, and such a task allows us to clearly demonstrate our performance gain
over maskVerif. Finally, this improved verification efficiency is exploited in trying
to find ad hoc gadget variants with lower cost.

On the negative side our verification shows that a conjecture from Barthe
et al. on the security of a natural strategy to convert NI multiplication into
SNI fails at order 10. More positively, we were able to find ad hoc conversions
tuned to every NI multiplication we considered, which sometimes also bring a
significant improvement in randomness cost over Barthe et al.’s strategy. For
instance we are able to gain 17% for an 8-share, 7-SNI gadget similar to the
one used in [GPSS18]. Finally using a slight variant of Barthe et al.’s gadget
generation algorithm, we occasionally obtain some improvements also in the NI
case, notably at order 5.

We give details of our improvements in Table 1 and the descriptions of all
the gadgets at https://github.com/NicsTr/binary masking. Note however that
Beläıd et al. also propose optimized gadgets in [BBP+16] up to order 4, that
ISW is also better than [BDF+17] at order 3 and that Grégoire et al. already
proposed improvements at this same order in [GPSS18]. The main range of
interest of Table 1 is thus at order 5 and beyond.

The NI Multiplication Gadget Family of [BDF+17, Algorithm 3]. We
give in Algorithm 1 a description of a slightly modified variant of [BDF+17,
Algorithm 3], which occasionally gives better gadgets than the original. We also
provide a small script to automatically generate a scheme at a given order at
https://github.com/NicsTr/binary masking.

This description relies on the following convenient definition:

Definition 33 (Pair of shares). Let (aibj), i, j ∈ �0, d� be the input shares of
a (d + 1, v) gadget. We define α̂i,j as:

α̂i,j =

{
aibj if i = j

aibj + ajbi otherwise

Extension to SNI Security. One can derive an SNI multiplication gadget
from Algorithm 1 by doing the following: 1) proving NI security at some order d;
2) proving SNI security at the same order for a refreshing gadget ; 3) composing
the two gadgets.

This strategy can for instance be implemented with the refreshing gadgets
also introduced in [BDF+17] that we discuss in the next Sect. 5.2, but Barthe
et al. already remarked that it was in fact apparently not necessary to use full
refreshing gadgets and that one could do better by using a degraded variant
thereof: in a nutshell, one starts from a secure NI multiplication and simply
12 This however still cannot theoretically justify the use of this masked multiplication

at order 31 as is done in [JS17].

https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking


304 N. Bordes and P. Karpman

Table 1. Explicit randomness cost of multiplication gadgets

Order d Defined and verified in [BDF+17] Defined or verified in §5
Random masks XOR gates Random masks XOR gates

2 SNI 3 12 = =

3 NI 4 20 = =

SNI 8 28 5 24

4 NI 5 30 = =

SNI 10 40 9 38

5 NI 12 54 10 50

SNI 18 66 12 54

6 NI 14 70 = =

SNI 21 84 18 78

7 NI — — 16 88

SNI 24 104 20 96

8 NI — — 18 108

SNI — — 27 126

9 NI — — 26 142

SNI — — 30 150

10 NI — — 33 176

SNI — — 39 188

11 NI — — 36 204

SNI — — 42 216

masks every output share with a fresh random mask and then again with the
mask of the following share in a circular fashion.

Barthe et al. then conjecture in [BDF+17] that this transformation is always
enough to convert an NI scheme into an SNI one. However we could check that
this is not true for 11- and 12-share gadgets: the respective instantiations of
Algorithm 1 are NI, but the transformation fails to provide SNI multiplications.
Yet it is in fact still possible to derive an 11-share, 10-SNI multiplication gadget
at no additional cost by simply rotating the last repeated masks by two positions
instead of one, for a total cost of 44 random masks.

We explored several other transformation strategies, trying to exploit the
special shape of the NI multiplication gadgets as much as possible. This almost
always improved on the use of a new mask for every share (the current exception
being the order-8 gadget), usually requiring only about half. For instance our
best 11-share gadget in fact only requires 39 masks instead of the above 44
as shown in Fig. 1, and we found a 7-SNI multiplication with only 20 masks
shown in Fig. 2, which is 4 less than [BDF+17]. While this latter improvement
is somewhat moderate at about 17%, this 8-share case is quite relevant due



Fast Verification of Masking Schemes in Characteristic Two 305

Algorithm 1: A conjectured d-NI (d + 1, d + 1)-gadget for multiplication
over fields of characteristic two.
Input : S = {α̂i,j , 0 ≤ i ≤ j ≤ d}
Input : R = {ri}, i ∈ N

Output: (ci)0≤i≤d, such that
∑d

i=0 ci =
∑d

i=0 ai

∑d
i=0 bi

for i ←� 0 to d do
ci ←� α̂i,i

S ← � S \ {α̂i,i}
end
R′ ←� {}
j ←� 1
while S �= ∅ do

for i ←� 0 to d do
if j ≡ 1 mod 2 then

ci ←� ci + r (j−1)
2 .(d+1)+i

R′ ←� R′ ∪
{

r (j−1)
2 .(d+1)+i

}
else

ci ←� ci + r (j−2)
2 .(d+1)+(i+1 mod (d+1))

R′ ←� R′ \
{

r (j−2)
2 .(d+1)+(i+1 mod (d+1))

}
end
if S �= ∅ then

ci ←� ci + α̂i,((i+j) mod (d+1))

S ← � S \ {α̂i,((i+j) mod (d+1))}
else

break
end

end
j ←� j + 1

end
k ←� #R′

for i ←� 0 to d do
ci ←� ci + r (j−1)

2 (d+1)+(i+1 mod k)

end

to its use in the efficient vectorised masked AES implementation of Grégoire
et al. [GPSS18]; using our new variant should then result in a noticeable decrease
in randomness usage.

We provide a summary of the cost of the multiplication gadgets that we have
verified and their improvement over the previously best known ones in Table 1,
and we give their full description at https://github.com/NicsTr/binary masking.

https://github.com/NicsTr/binary_masking


306 N. Bordes and P. Karpman

s00 r00 s01 s10 r01 s02 s20 r11 s03 s30 r12 s04 s40 r22 s05 s50 r23 r40
s11 r01 s12 s21 r02 s13 s31 r12 s14 s41 r13 s15 s51 r23 s16 s61 r24 r41
s22 r02 s23 s32 r03 s24 s42 r13 s25 s52 r14 s26 s62 r24 s27 s72 r25 r42
s33 r03 s34 s43 r04 s35 s53 r14 s36 s63 r15 s37 s73 r25 s38 s83 r26 r43
s44 r04 s45 s54 r05 s46 s64 r15 s47 s74 r16 s48 s84 r26 s49 s94 r27 r44
s55 r05 s56 s65 r06 s57 s75 r16 s58 s85 r17 s59 s95 r27 s5a sa5 r28 r45
s66 r06 s67 s76 r07 s68 s86 r17 s69 s96 r18 s6a sa6 r28 s60 s06 r29 r40
s77 r07 s78 s87 r08 s79 s97 r18 s7a sa7 r19 s70 s07 r29 s71 s17 r30 r41
s88 r08 s89 s98 r09 s8a sa8 r19 s80 s08 r20 s81 s18 r30 s82 s28 r31 r42
s99 r09 s9a sa9 r10 s90 s09 r20 s91 s19 r21 s92 s29 r31 s93 s39 r32 r43
saa r45 sa0 s0a r00 sa1 s1a r21 sa2 s2a r11 sa3 s3a r32 sa4 s4a r22 r44 r10

Fig. 1. 10-SNI gadget for multiplication, using 39 random masks.

s00 r00 s01 s10 r01 s02 s20 r08 s03 s30 r09 s04 r20
s11 r01 s12 s21 r02 s13 s31 r09 s14 s41 r10 s15 r21
s22 r02 s23 s32 r03 s24 s42 r10 s25 s52 r11 s26 r22
s33 r03 s34 s43 r04 s35 s53 r11 s36 s63 r12 s37 r23
s44 r04 s45 s54 r05 s46 s64 r12 s47 s74 r13 s40 r20
s55 r05 s56 s65 r06 s57 s75 r13 s50 s05 r14 s51 r21
s66 r06 s67 s76 r07 s60 s06 r14 s61 s16 r15 s62 r22
s77 r07 s70 s07 r00 s71 s17 r15 s72 s27 r08 s73 r23

Fig. 2. 7-SNI gadget for multiplication, using 20 random masks.

Verification Performance. We now analyse the performance of our verifica-
tion software on these multiplication schemes, and compare it with the one of
the latest version of maskVerif [BBC+19].13

Probes filtering. Following the results of Sect. 3.3, we use a filtering process
to reduce the initial set of probes that one has to enumerate to prove security.
For the gadgets of Algorithm 1 and their SNI counterparts, this means removing
probes of the form: α̂∗,∗+

∑
(r∗+α̂∗,∗)+r∗+a∗b∗,14 and the fact that the filtered

set really is a reduced set in the sense of Definition 28 is verified by an exhaustive
check on the subsets corresponding to every output share; this filtering process
was only partially automated since an initial human intervention was necessary
to identify the probes that could be removed. Intuitively, the idea is that one can
always replace in an attack a probe of the above form with one that includes one
extra ajbi term, i.e. one of the form α̂∗,∗ +

∑
(r∗ + α̂∗,∗) + r∗ + α̂∗,∗, since the

latter only adds an additional functional dependence on the input shares “for
free”.

The concrete impact of filtering on the verification performance of our
schemes can be seen in Table 2, where we give the size of the attack sets to
enumerate before and after this filtering.

Performance. For order d ≤ 10 (except the 10-SNI case) we have run our
software on a single core of the retourdest server, which features a single Intel
Xeon Gold 6126 at 2.60 GHz. The corresponding timings are given in Table 2.
At peak performance, we are able to enumerate ≈227.5 candidate attack sets per
second for NI verification, while SNI performance is slightly worse.
13 Available at https://gitlab.com/benjgregoire/maskverif.
14 This corresponds exactly to the probes made of an even number of a∗b∗ terms.

https://gitlab.com/benjgregoire/maskverif


Fast Verification of Masking Schemes in Characteristic Two 307

Using filtered sets significantly improves verification time, especially at high
order. For instance, the running times of 2 and 6 h for NI and SNI multiplication
at order 9 are an order of magnitude faster than the 3 and 6 d initially spent
before we implemented filtering. This optimisation was also essential in allowing
to check the security of 10-NI multiplication in less than one calendar day on
a single machine (using parallelisation); it would otherwise have taken a rather
costly 1 core-year.

We also tested a multi-threaded implementation of our software on schemes
at order 8–10, using all 12 physical cores of the same Xeon Gold 6126; the
results are shown in the right column of Table 2. While we do not have many
data points, the speed-up offered by the parallelisation seems to be close to
linear, albeit slightly less for NI verification: the 9-SNI multi-threaded wall time
is ≈11.7 times less than the single-threaded one, and multi-threading for 9- and
10-NI saves a factor ≈9.7.

The largest schemes that we verified are NI (resp. SNI) multiplication at
order d = 11. We relied heavily on parallelisation to enumerate the ≈252.72

(resp. ≈254.48) possible attack sets,15 using up to 40 nodes of the Dahu cluster.16

Each node has two 16-core Intel Xeon Gold 6130 at 2.10 GHz, and when using
hyperthreading allows to enumerate ≈231.38 sets per second. This cluster was
also used to verify the best version of our 10-SNI gadget.17

Comparison with maskVerif. We used the maskVerif tool from Barthe
et al. [BBC+19] to check the security of the gadgets at order 6 to 8. Due to sys-
tem constraints, we could not run the verification on retourdest, and instead
defaulted to the older hpac, which features an Intel Xeon E5-4620 at 2.20 GHz.
We compare this to our software on this machine using 4 threads—the same
amount of parallelisation that maskVerif is able to exploit.

The running times are summarised in Table 3. Even though we cannot benefit
from vectorisation due to the absence of AVX2 instructions on hpac, it is notable
that our own software is faster by three orders of magnitude, for instance taking
slightly more than two minutes to check 8-NI multiplication versus two days for
maskVerif. Note that this comparison is done after filtering in our case, which
saves us up to a factor ≈30 (cf. for instance the 8-NI case) as can be computed
from Table 2.

5.2 SNI Refreshing Gadgets

We used our software to verify the SNI security of some (variations of) refresh-
ing gadgets introduced in [BDF+17], and subsequently improved in [GPSS18,
BBD+18]. Such schemes are useful when designing large circuits based on gad-
gets satisfying composable security notions since they help in providing strong

15 This is after filtering of the initial ≈259 (resp. ≈259.76) sets.
16 https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu.
17 This is somewhat slow compared to performance on the similar ‘6126. The reason

is currently unclear, but might involve the different build environment and overall
setup.

https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu


308 N. Bordes and P. Karpman

Table 2. Running time of our verification software on retourdest.

Order d log2(number of sets) Wall time (1 thread) Wall time (12 threads)

Before/After filtering Best (after filtering) Best (after filtering)

1 NI 2.6/2.6 < 0.01 s —

SNI 2.6/2.6 < 0.01 s —

2 NI 6.3/5.5 < 0.01 s —

SNI 6.3/5.5 < 0.01 s —

3 NI 10.4/8.9 < 0.01 s —

SNI 11.2/9.96 < 0.01 s —

4 NI 15.0/12.6 < 0.01 s —

SNI 16.4/14.6 < 0.01 s —

5 NI 21.2/18.6 < 0.01 s —

SNI 21.7/19.3 < 0.01 s —

6 NI 27.1/23.9 0.09 s —

SNI 28.0/25.3 0.28 s —

7 NI 32.7/28.7 2.43 s —

SNI 33.6/30.6 11.70 s —

8 NI 38.5/33.7 1min. 17 s 7.43 s

SNI 40.3/36.3 9min. 28 s 47.0 s

9 NI 45.6/40.5 2 h. 18min 14 min 20 s

SNI 46.3/41.6 6 h. 30min 33 min. 20 s

10 NI 52.6/47.1 9 d 3h 22 h. 30 min

SNI 53.5/48.4 — —

Table 3. Comparison with maskVerif [BBC+19] on hpac.

Order d Wall time Wall time

maskVerif (4 threads) Our software (4 threads, filtered)

6 NI 2 min 44 s 0.57 s

SNI 8 min. 11 s 1.48 s

7 NI 1 h. 39 min 4.13 s

SNI 5 h. 54 min 15.60 s

8 NI 2 d 10h 2 min 15 s

SNI 13 d 6h 14 min 35 s

security for the overall design. However, refreshing also comes with a significant
cost in terms of randomness while not performing any sort of useful computation,
leading several prior work to try finding new low-cost gadgets.



Fast Verification of Masking Schemes in Characteristic Two 309

The best current results come from [BBD+18] who prove the SNI security at
any order of a “block” refreshing gadget introduced in [BDF+17], when iterated
enough times. Yet together with [GPSS18], they also remark that it is possible
to make significant improvements in practice at the cost of losing generic proofs,
and they give cheaper alternatives verified secure up to order 16.

Our contribution here is an 8-share, 7-SNI refreshing gadget shown in
Fig. 3 that only needs 13 masks, which improves slightly on the best gadget
from [BBD+18], which requires 16. Since such gadgets are used in the imple-
mentation of [GPSS18], it could again lead to actual practical gains.

We also compared the verification time of our tool with the one of maskVerif
on the largest “RefreshZero” instances of [BBD+18], and actually have worse
performance. For instance, even using 24 threads on the 12-core retourdest,
verifying RefreshZero14[1,3] took us about 3 h 40 min, while [BBD+18] reports
an “Order of Magnitude” of 1 h 30 min. We suspect this to be caused by the
fact that there is no obvious probe filtering to be done on this sort of gadget,
whereas maskVerif is likely able to successfully exploit their structure to reduce
the number of attack sets to consider.

s00 r00 r01 r10 r20
s11 r01 r02 r11 r20
s22 r02 r03 r12 r20
s33 r03 r04 r13 r20
s44 r04 r05 r10
s55 r05 r06 r11
s66 r06 r07 r12
s77 r07 r00 r13

Fig. 3. 7-SNI refreshing gadget, using 13 random masks..

5.3 Glitch-Resistant NI Multiplication

We conclude with a brief application to the DOM-indep family of multiplication
gadgets introduced by Groß et al. [GMK16]. While those schemes are not more
efficient than the state-of-the-art in terms of randomness cost, their main advan-
tage is their resistance to glitches. A description of an instantiation at order 2
can be found in Fig. 4.3, and at any order less than 5 at https://github.com/
NicsTr/binary masking.

These gadgets can be instantiated at an arbitrary order d but do not come
with a generic security proof guaranteeing the security of the result. We then
have used our implementation to verify that instantiations up to order 5 are NI
in the robust probing model. The running times on retourdest are summarised
in Table 4.

https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking


310 N. Bordes and P. Karpman

Table 4. Running time of our verification software on retourdest for the DOM-indep
schemes.

Order d Wall time (1 thread)

1 < 0.01 s

2 < 0.01 s

3 < 0.01 s

4 0.12 s

5 2 min. 22 s

Acknowledgments. We thank Clément Pernet for his contribution to the proof of
Lemma 14, Yann Rotella for an early discussion on the possibility of further filtering,
the authors of [BBC+19] for providing us access to an up-to-date version of maskVerif,
and finally all the reviewers for their constructive comments.

This work is partially supported by the French National Research Agency in the
framework of the Investissements d’avenir programme (ANR-15-IDEX-02).

Some of the computations presented in this paper were performed using the
GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr), which is partially sup-
ported by the Equip@Meso project (ANR-10-EQPX-29-01) of the Investissements
d’Avenir programme.

References

[BBC+19] Barthe, G., Beläıd, S., Cassiers, G., Fouque, P.-A., Grégoire, B., Standaert,
F.-X.: maskVerif: automated verification of higher-order masking in pres-
ence of physical defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 300–318. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29959-0 15

[BBD+15] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.: Com-
positional verification of higher-order masking: application to a verifying
masking compiler. IACR Cryptology ePrint Archive 2015, 506 (2015)

[BBD+16] Barthe, G., et al.: Strong non-interference and type-directed higher-order
masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM (2016)

[BBD+18] Barthe, G., et al.: Improved parallel mask refreshing algorithms: generic
solutions with parametrized non-interference & automated optimizations.
IACR Cryptology ePrint Archive 2018, 505 (2018)

[BBP+16] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Randomness complexity of private circuits for multiplica-
tion. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 22

[BBP+17] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Private multiplication over finite fields. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 397–426.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 14

https://gricad.univ-grenoble-alpes.fr
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14


Fast Verification of Masking Schemes in Characteristic Two 311

[BDF+17] Barthe, G., et al.: Parallel implementations of masking schemes and the
bounded moment leakage model. In: Coron and Nielsen [CN17], pp. 535–
566 (2017)

[BDM+20] Beläıd, S., Dagand, P.É., Mercadier, D., Rivain, M., Wintersdorff, R.: Tor-
nado: automatic generation of probing-secure masked bitsliced implemen-
tations. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45727-3 11

[BGI+18] Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.:
Formal verification of masked hardware implementations in the presence
of glitches. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10821, pp. 321–353. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 11

[BGR18] Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving prob-
ing security with the least refreshing. In: Peyrin and Galbraith [PG18], pp.
343–372

[BK19] Bordes, N., Karpman, P.: Fast verification of masking schemes in charac-
teristic two. IACR Cryptol. ePrint Arch. 2019, 1165 (2019)

[BS19] Bronchain, O., Standaert, F.-X.: Side-channel countermeasures’ dissection
and the limits of closed source security evaluations. IACR Cryptology
ePrint Archive 2019, 1008 (2019)

[CGPZ16] Coron, J.-S., Greuet, A., Prouff, E., Zeitoun, R.: Faster evaluation of
SBoxes via common shares. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 498–514. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 24

[CN17] Coron, J.-S., Nielsen, J.B. (eds.): EUROCRYPT 2017. LNCS, vol. 10210.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7

[DFS15] Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs con-
crete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 401–429. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 16

[FG18] Fan, J., Gierlichs, B. (eds.): COSADE 2018. LNCS, vol. 10815. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89641-0

[FGP+18] Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.-X.:
Composable masking schemes in the presence of physical defaults &
the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 89–120 (2018)

[GJRS18] Goudarzi, D., Journault, A., Rivain, M., Standaert, F.-X.: Secure multipli-
cation for bitslice higher-order masking: optimisation and comparison. In:
Fan and Gierlichs [FG18], pp. 3–22

[GMK16] Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact
masked hardware implementations with arbitrary protection order. In: Bil-
gin, B., Nikova, S., Rijmen, V. (eds.) ACM TIS@CCS 2016, p. 3. ACM
(2016)

[GMPO20] Gao, S., Marshall, B., Page, D., Oswald, E.: Share-slicing: friend or foe?
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 152–174 (2020)

[GPSS18] Grégoire, B., Papagiannopoulos, K., Schwabe, P., Stoffelen, K.: Vectorizing
higher-order masking. In: Fan and Gierlichs [FG18], pp. 23–43

[GR17] Goudarzi, D., Rivain, M.: How fast can higher-order masking be in soft-
ware? In: Coron and Nielsen [CN17], pp. 567–597

https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-662-53140-2_24
https://doi.org/10.1007/978-3-662-53140-2_24
https://doi.org/10.1007/978-3-319-56620-7
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-319-89641-0


312 N. Bordes and P. Karpman

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[JS17] Journault, A., Standaert, F.-X.: Very high order masking: efficient imple-
mentation and security evaluation. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 623–643. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66787-4 30

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

[Knu11] Knuth, D.E.: Combinatorial Algorithms, Part 1, volume 4A of The Art of
Computer Programming. Addison Wesley (2011)

[KR18] Karpman, P., Roche, D.S.: New instantiations of the CRYPTO 2017 mask-
ing schemes. In: Peyrin and Galbraith [PG18], pp. 285–314

[KSM20] Knichel, D., Sasdrich, P., Moradi, A.: SILVER – statistical independence
and leakage verification. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12491, pp. 787–816. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64837-4 26

[LT73] Liu, C.N., Tang, D.T.: Enumerating combinations of m out of n objects
[G6] (algorithm 452). Commun. ACM 16(8), 485 (1973)

[MMSS19] Moos, T., Moradi, A., Schneider, T., Standaert, F.-X.: Glitch-resistant
masking revisited or why proofs in the robust probing model are needed.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 256–292 (2019)

[NW78] Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and
Calculators, 2nd edn. Academic Press, New York (1978)

[PG18] Peyrin, T., Galbraith, S. (eds.): ASIACRYPT 2018. LNCS, vol. 11273.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3

[Pra62] Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans.
Inf. Theory 8(5), 5–9 (1962)

[Sch80] Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial
identities. J. ACM 27(4), 701–717 (1980)

[Wal] Walsh, T.R.: A simple sequencing and ranking method that works on
almost all gray codes. Unpublished research report. https://www.labunix.
uqam.ca/∼walsh t/papers/sequencing and ranking.pdf

[WGS+20] Wang, W., Guo, C., François-Xavier Standaert, Y.Y., Cassiers, G.: Packed
multiplication: how to amortize the cost of side-channel masking? IACR
Cryptol. ePrint Arch. 2020, 1103 (2020)

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-03329-3
https://www.labunix.uqam.ca/~walsh_t/papers/sequencing_and_ranking.pdf
https://www.labunix.uqam.ca/~walsh_t/papers/sequencing_and_ranking.pdf


On the Power of Expansion: More
Efficient Constructions in the Random

Probing Model

Sonia Beläıd1(B), Matthieu Rivain1, and Abdul Rahman Taleb1,2

1 CryptoExperts, Paris, France
{sonia.belaid,matthieu.rivain,abdul.taleb}@cryptoexperts.com

2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

Abstract. The random probing model is a leakage model in which each
wire of a circuit leaks with a given probability p. This model enjoys prac-
tical relevance thanks to a reduction to the noisy leakage model, which is
admitted as the right formalization for power and electromagnetic side-
channel attacks. In addition, the random probing model is much more
convenient than the noisy leakage model to prove the security of masking
schemes. In a recent work, Ananth, Ishai, and Sahai (CRYPTO 2018)
introduce a nice expansion strategy to construct random probing secure
circuits. Their construction tolerates a leakage probability of 2−26, which
is the first quantified achievable leakage probability in the random prob-
ing model. In a follow-up work, Beläıd, Coron, Prouff, Rivain, and Taleb
(CRYPTO 2020) generalize their idea and put forward a complete and
practical framework to generate random probing secure circuits. The so-
called expanding compiler can bootstrap simple base gadgets as long as
they satisfy a new security notion called random probing expandability
(RPE). They further provide an instantiation of the framework which tol-
erates a 2−8 leakage probability in complexity O(κ7.5) where κ denotes
the security parameter.

In this paper, we provide an in-depth analysis of the RPE security
notion. We exhibit the first upper bounds for the main parameter of
a RPE gadget, which is known as the amplification order. We further
show that the RPE notion can be made tighter and we exhibit strong
connections between RPE and the strong non-interference (SNI) compo-
sition notion. We then introduce the first generic constructions of gadgets
achieving RPE for any number of shares and with nearly optimal ampli-
fication orders and provide an asymptotic analysis of such constructions.
Last but not least, we introduce new concrete constructions of small gad-
gets achieving maximal amplification orders. This allows us to obtain
much more efficient instantiations of the expanding compiler: we obtain
a complexity of O(κ3.9) for a slightly better leakage probability, as well
as O(κ3.2) for a slightly lower leakage probability.

Keywords: Random probing model · Masking · Side-channel security

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 313–343, 2021.
https://doi.org/10.1007/978-3-030-77886-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_11


314 S. Beläıd et al.

1 Introduction

Most commonly used cryptographic algorithms are assumed to be secure against
black-box attacks, when the adversary is limited to the knowledge of some inputs
and outputs. However, as revealed in the late nineties [18], their implementation
on physical devices can be vulnerable to the more powerful side-channel attacks.
The latter additionally exploit the physical emanations of the underlying device
such as the execution time or the device temperature, power consumption, or
electromagnetic radiations during the algorithm execution.

To counteract side-channel attacks which often only require cheap equipment
and can be easily mounted in a short time interval, the cryptographic community
has searched for efficient countermeasures. Among the different approaches, one
of the most widely used is known as masking. Simultaneously introduced by
Chari, Jutla, Rao and Rohatgi [10], and by Goubin and Patarin [16] in 1999,
it happens to be strongly related to techniques usually applied in secure multi-
party computation. In a nutshell, the idea is to split each sensitive variable of the
implementation into n shares such that n − 1 of them are generated uniformly
at random whereas the last one is computed as a combination of the original
value and the random shares. Doing so, one aims to ensure that an adversary
cannot recover the secret without knowledge of all the shares. When the shares
are combined by bitwise addition, the masking is said to be Boolean, and it
enjoys simple implementation for linear operations which can be simply applied
on each share separately. However, things are trickier for non-linear operations
for which it is impossible to compute the result without combining shares.

In order to reason about the security of these countermeasures, the com-
munity has introduced a variety of models. Among them, the probing model
introduced by Ishai, Sahai, and Wagner in 2003 [17] is well suited to analyze the
security of masked implementations. Basically, it assumes that an adversary is
able to get the exact values of a certain number t of intermediate variables in
an implementation. This way, it captures the increasing difficulty of combining
noisy leakage to recover secrets. Despite its wide use by the community [8,11–
13,20], the probing model raised a number of concerns regarding its relevance in
practice. Therefore, in 2013, Prouff and Rivain introduced a general and practical
model, known as the noisy leakage model [19]. This model well captures the real-
ity of embedded devices by assuming that all the manipulated data leak together
with some noise. Unfortunately, proving the security of a masking scheme in this
model is rather tedious, which is why Duc, Dziembowski, and Faust provided
in 2014 a reduction showing that a scheme secure in the probing model is also
secure in the noisy leakage model [14].

This reduction is based on an intermediate leakage model, known as random
probing model, to which the security in the noisy leakage model tightly reduces.
In this model, every wire of a circuit is assumed to leak with some constant
leakage probability. Then, a circuit is secure if there is a negligible probability
that these leaking wires actually reveal information on the secrets. Compared
to the probing model, the random probing model is closer to the noisy leakage
model and, in particular, captures horizontal attacks which exploit the repeated



On the Power of Expansion 315

manipulations of variables throughout the implementation. Classical probing
secure schemes are also secure in the random probing model but the tolerated
leakage probability (a.k.a. leakage rate) might not be constant which is not sat-
isfactory from a practical viewpoint. Indeed, in practice, the leakage probability
translates to some side-channel noise amount which might not be customizable
by the implementer.

So far, only a few constructions [1–3,9] tolerate a constant leakage probability.
The two former ones [1,3] are based on expander graphs and the tolerated prob-
ability is not made explicit. The third construction [2] is based on multi-party
computation protocols and an expansion strategy. It reaches a tolerated leakage
probability of around 2−26 for a complexity of O(κ8.2) for some security parame-
ter κ, as computed by the authors of [9]. Finally, the more recent construction [9]
relies on masking gadgets and a similar expansion strategy and reaches a tol-
erated leakage probability of 2−8 for a complexity of O(κ7.5). While obtaining
such quantified tolerated leakage probability is of great practical interest, the
obtained complexity is high which makes this construction hardly practical.

Besides their explicit construction, the authors of [9] provide a complete
and practical framework to generate random probing secure implementations.
Namely, they formalize the expanding compiler which produces a random prob-
ing secure version of any circuit from three base gadgets (for addition, copy, and
multiplication) achieving a random probing expandability (RPE) property. The
advantage of this approach is that it enables to bootstrap small gadgets (defined
for a small number of shares) into a circuit achieving arbitrary security in the
random probing model while tolerating a constant and quantified leakage prob-
ability. Although the concrete results of [9] in terms of complexity and tolerated
leakage probability are promising, the authors left open the analysis of this RPE
property and the design of better gadgets in this paradigm.

Our Contributions. In this paper, we provide an in-depth analysis of the ran-
dom probing expandability security notion. We first provide some upper bounds
for the amplification order of an RPE gadget, which is the crucial parameter
in view of a low-complexity instantiation of the expanding compiler. We further
show that the RPE notion can be made tighter and we exhibit strong rela-
tions between RPE and the strong non-interference (SNI) composition notion
for probing-secure gadgets.

From these results, we introduce the first generic constructions of gadgets
achieving RPE for any number of shares and with nearly optimal amplification
orders. These generic gadgets are derived from the widely known Ishai-Sahai-
Wagner (ISW) construction. We show that the obtained expanding compiler can
approach a quadratic complexity depending on the leakage probability that must
be tolerated: the smaller the leakage probability, the closer the complexity to
O(κ2). We further introduce a new multiplication gadget achieving the optimal
amplification order, which allows us to improve the convergence to a quadratic
complexity.



316 S. Beläıd et al.

Finally, we provide new concrete constructions of copy, addition, and multi-
plication gadgets achieving maximal amplification orders for small numbers of
shares. These gadgets yield much more efficient instantiations than all the pre-
vious schemes (including the analysed ISW-based constructions). While slightly
improving the tolerated leakage probability to p = 2−7.5, our 3-share instanti-
ation achieves a complexity of O(κ3.9). For a slightly lower leakage probability,
our 5-share instantiation drops the complexity to O(κ3.2).

We thus achieve a significant step forward in the quest for efficient random
probing secure schemes that tolerate a quantified leakage probability. Besides our
concrete instantiations, our work introduces several tools (new bounds, relations,
and generic gadgets) that shall be instrumental for future constructions.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In partic-
ular, K shall denote a finite field. For any n ∈ N, we shall denote [n] the integer
set [n] = [1, n] ∩Z. For any tuple x = (x1, . . . , xn) ∈ K

n and any set I ⊆ [n], we
shall denote x|I = (xi)i∈I .

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the
function K

n → K defined as

LinDec : (x1, . . . , xn) �→ x1 + · · · + xn ,

for every n ∈ N and (x1, . . . , xn) ∈ K
n. We shall further consider that, for every

n, � ∈ N, on input (x̂1, . . . , x̂�) ∈ (Kn)� the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂�) �→ (LinDec(x̂1), . . . , LinDec(x̂�)).

Definition 1 (Linear Sharing). Let n, � ∈ N. For any x ∈ K, an n-linear
sharing of x is a random vector x̂ ∈ K

n such that LinDec(x̂) = x. It is said to be
uniform if for any set I ⊆ [n] with |I| < n the tuple x̂|I is uniformly distributed
over K|I|. A n-linear encoding is a probabilistic algorithm LinEnc which on input
a tuple x = (x1, . . . , x�) ∈ K

� outputs a tuple x̂ = (x̂1, . . . , x̂�) ∈ (Kn)� such that
x̂i is a uniform n-sharing of xi for every i ∈ [�].

An arithmetic circuit on a field K is a labeled directed acyclic graph whose
edges are wires and vertices are arithmetic gates processing operations on K. We
consider circuits composed of addition gates, (x1, x2) �→ x1 + x2, multiplication
gates, (x1, x2) �→ x1 · x2, and copy gates, x �→ (x, x). A randomized arithmetic
circuit is equipped with an additional random gate which outputs a fresh uniform
random value of K.

In the following, we shall call an (n-share, �-to-m) gadget, a randomized
arithmetic circuit that maps an input x̂ ∈ (Kn)� to an output ŷ ∈ (Kn)m such



On the Power of Expansion 317

that x = LinDec(x̂) ∈ K
� and y = LinDec(ŷ) ∈ K

m satisfy y = g(x) for some
function g. In this paper, we shall consider gadgets for three types of functions
(corresponding to the three types of gates): the addition g : (x1, x2) �→ x1 + x2,
the multiplication g : (x1, x2) �→ x1 · x2 and the copy g : x �→ (x, x). We shall
generally denote such gadgets Gadd, Gmult and Gcopy respectively.

2.2 Random Probing Security

Let p ∈ [0, 1] be some constant leakage probability parameter, a.k.a. the leakage
rate. In the p-random probing model, an evaluation of a circuit C leaks the value
carried by each wire with a probability p (and leaks nothing otherwise), all the
wire leakage events being mutually independent.

As in [9], we formally define the random-probing leakage of a circuit from
the two following probabilistic algorithms:

– The leaking-wires sampler takes as input a randomized arithmetic circuit C
and a probability p ∈ [0, 1], and outputs a set W, denoted as

W ← LeakingWires(C, p),

where W is constructed by including each wire label from the circuit C with
probability p to W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input a randomized arithmetic circuit C,
a set of wire labels W (subset of the wire labels of C), and an input x, and
it outputs a |W|-tuple w ∈ (K ∪ {⊥})|W|, denoted as

w ← AssignWires(C,W,x),

where w corresponds to the assignments of the wires of C with label in W
for an evaluation on input x.

Definition 2 (Random Probing Leakage). The p-random probing leakage
of a randomized arithmetic circuit C on input x is the distribution Lp(C,x)
obtained by composing the leaking-wires and assign-wires samplers as

Lp(C,x) id= AssignWires(C, LeakingWires(C, p),x).

Definition 3 (Random Probing Security). A randomized arithmetic circuit
C with � · n ∈ N input gates is (p, ε)-random probing secure with respect to
encoding Enc if there exists a simulator Sim such that for every x ∈ K

�:

Sim(C) ≈ε Lp(C,Enc(x)). (1)

2.3 Expanding Compiler

In [2], Ananth, Ishai and Sahai propose an expansion approach to build a
random-probing-secure circuit compiler from a secure multiparty protocol. This



318 S. Beläıd et al.

approach was later revisited by Beläıd, Coron, Prouff, Rivain, and Taleb who
formalize the notion of expanding compiler [9].

The principle of the expanding compiler is to recursively apply a base com-
piler, denoted CC, and which simply consists in replacing each gate in the input
circuit by the corresponding gadget. More specifically, assume we have three n-
share gadgets Gadd, Gmult, Gcopy, for the addition, the multiplication, and the
copy on K. The base compiler CC simply consists in replacing each addition gate
in the original gadget by Gadd, each multiplication gate by Gmult, and each copy
gate by Gcopy, and by replacing each wire by n wires carrying a sharing of the
original wire. One can derive three new n2-share gadgets by simply applying CC

to each gadget: G
(2)
add = CC(Gadd), G

(2)
mult = CC(Gmult), and G

(2)
copy = CC(Gcopy).

Doing so, we obtain n2-share gadgets for the addition, multiplication, and copy
on K. This process can be iterated an arbitrary number of times, say k, to an
input circuit C:

C
CC−−−→ ̂C1

CC−−−→ · · · CC−−−→ ̂Ck.

The first output circuit ̂C1 is the original circuit in which each gate is replaced
by a base gadget Gadd, Gmult, or Gcopy. The second output circuit ̂C2 is the
original circuit C in which each gate is replaced by an n2-share gadget G

(2)
add,

G
(2)
mult, or G

(2)
copy as defined above. Equivalently, ̂C2 is the circuit ̂C1 in which each

gate is replaced by a base gadget. In the end, the output circuit ̂Ck is hence the
original circuit C in which each gate has been replaced by a k-expanded gadget
and each wire has been replaced by nk wires carrying an (nk)-linear sharing of
the original wire.

This expanding compiler achieves random probing security if the base gadgets
verify a property called random probing expandability [9].

2.4 Random Probing Expandability

We recall hereafter the original definition of the random probing expandability
(RPE) property for 2-input 1-output gadgets.

Definition 4 (Random Probing Expandability [9]). Let f : R → R. An
n-share gadget G : Kn × K

n → K
n is (t, f)-random probing expandable (RPE)

if there exists a deterministic algorithm SimG
1 and a probabilistic algorithm SimG

2

such that for every input (x̂, ŷ) ∈ K
n × K

n, for every set J ⊆ [n] and for every
p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J ′) ← SimG
1 (W, J)

out ← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡ (|I1| > t
)

and F2 ≡ (|I2| > t
)

verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (2)



On the Power of Expansion 319

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n − 1 otherwise,
3. the output distribution satisfies

out
id=

(

AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′
)

(3)

where ẑ = G(x̂, ŷ).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1

simulator takes two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′
1

and J ′
2 satisfying the same property as J ′ in the above definition (w.r.t. J1 and

J2). The SimG
2 simulator must then produce an output including ẑ1|J ′

1
and ẑ2|J ′

1

where ẑ1 and ẑ2 are the output sharings. The RPE notion can also be simply
extended to gadgets with a single input: the SimG

1 simulator produces a single
set I so that the failure event (|I| > t) occurs with probability ε (and the SimG

2

simulator is then simply given x̂|I where x̂ is the single input sharing). We refer
the reader to [9] for the formal definitions of these variants. Eventually, the RPE
notion can also be extended to gadgets with an arbitrary number � of inputs.
The SimG

1 simulator then produces � sets I1, . . . , I� so that the corresponding
failures (|I1| > t), . . . (|I�| > t) occur with probability ε and are additionally
mutually independent. The SimG

2 simulator then simply gets use of the shares of
each input as designated respectively by the corresponding sets I1, . . . , I�.

Note that as explained in [9], the requirement of the RPE notion on the
mutual independence of the failure events might seem too strong. We can actually
use the proposed relaxation referred to as weak random probing expandability.
Namely, the equalities (Eq. (2)) are replaced by inequalities as upper bounds are
sufficient in our context. We refer the reader to [9] for the concrete reduction,
which does not impact the amplification orders.

2.5 Complexity of the Expanding Compiler

We start by recalling the definition of the amplification order of a function and
of a gadget.

Definition 5 (Amplification Order).

– Let f : R → R which satisfies

f(p) = cd pd + O(pd+ε)

as p tends to 0, for some cd > 0 and ε > 0. Then d is called the amplification
order of f .

– Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves
(t, f)-RPE for f : R → R of amplification order d. Then d is called the
amplification order of G (with respect to t).



320 S. Beläıd et al.

We stress that the amplification order of a gadget G is defined with respect
to the RPE threshold t. Namely, different RPE thresholds t are likely to yield
different amplification orders d for G (or equivalently d can be thought of as a
function of t).

As shown in [9], the complexity of the expanding compiler relates to the
(minimum) amplification order of the three gadgets used in the base compiler
CC. If the latter achieves (t, f)-RPE with an amplification order d, the expanding
compiler achieves (p, 2−κ)-random probing security with a complexity blowup of
O(κe) for an exponent e satisfying

e =
log Nmax

log d
(4)

with

Nmax = max
(

Nm,m , eigenvalues

((

Na,a Nc,a

Na,c Nc,c

)))

(5)

where Nx,y denotes the number of gates “x” in a gadget “y”, with “m” meaning
multiplication, “a” meaning addition, and “c” meaning copy. As an illustration,
the instantiation proposed in [9] satisfies Nmax = 21 and d = 3

2 which yields an
asymptotic complexity of O(κ7.5).

Finally, we recall the notion of maximum tolerated leakage probability which
corresponds to the maximum value p for which we have f(p) < p. This happens
to be a necessary and sufficient condition for the expansion strategy to apply
with (t, f)-RPE gadgets. The instantiation proposed in [9] tolerates a leakage
probability up to 2−7.80.

3 Bounding the Amplification Order

As recalled above, the amplification order of a gadget is a crucial parameter
of its random probing expandability. The higher the amplification order, the
lower the asymptotic complexity of the expanding compiler, ceteris paribus. A
natural question which was left open in [9] is to determine the best amplification
order that can be hoped for given the different parameters of a gadget. In this
section, we exhibit concrete upper bounds on the amplification order that can
be achieved by a gadget depending on its input-output dimensions (�,m), its
number of shares n, and its RPE threshold t.

Before giving the bounds let us make a key observation on the amplification
order of a gadget. Let G be a 2-to-1 n-share gadget achieving (t, f)-RPE. A
subset W of the wires of G is said to be a failure set with respect to the first
input (resp. the second input) if there exists a set J ⊆ [n] such that (I1, I2, J ′) ←
SimG

1 (W, J) implies |I1| > t (resp. |I2| > t), namely if a leaking set W implies
the failure event F1 (resp. F2) in the definition of RPE. One can check that G
has amplification order d ≤ dup if one of the two following events occurs:

1. there exists a failure set W w.r.t. the first input or the second input such
that |W| = dup,



On the Power of Expansion 321

2. there exists a failure set W w.r.t. the first input and the second input such
that |W| = 2dup.

In the former case, the existence of the failure set implies that the function f(p)
has a non-zero coefficient in pdup and hence d ≤ dup. In the latter case, the
existence of the double failure set implies that the function f2(p) has a non-
zero coefficient in p2dup and hence d ≤ dup. The case of a single-input gadget is
simpler: it has amplification order d ≤ dup if there exists a failure set W (w.r.t.
its single input) such that |W| = dup.

We start by exhibiting a generic upper bound for the amplification order and
then look at the particular case of what we shall call a standard multiplication
gadget.

3.1 Generic Upper Bound

In the following we will say that a function g : K� → K
m is complete if at least

one of its m outputs is functionally dependent on the � inputs. Similarly, we say
that a gadget G is complete if its underlying function g is complete.

The following lemma gives our generic upper bound on the amplification
order.

Lemma 1. Let f : R → R, n ∈ N and �,m ∈ {1, 2}. Let G : (Kn)� → (Kn)m be
an �-to-m n-share complete gadget achieving (t, f)-RPE. Then its amplification
order d is upper bounded by

min((t + 1), (3 − �) · (n − t)).

Proof. The first part of the bound on the amplification order d ≤ (t + 1) is
immediate since by probing t + 1 shares of any input, the considered set will be
a failure set of cardinality t + 1. We then consider two cases depending on the
number of inputs:

1. 1-input gadgets ( � = 1): We show that we can exhibit a failure set of size
2(n − t). Let us denote the output shares z1, . . . , zn (for two-output gadgets,
i.e. m = 2, z1, . . . , zn can be any of the output sharings). In the evaluation of
the (t, f)-RPE property, t shares among the zi’s (corresponding to the set J)
must be simulated. Without loss of generality, let z1, . . . , zt be those shares
(i.e. J = [t]). By including both input gates of each of the remaining output
shares zt+1, . . . , zn in the set W, the distribution to be simulated requires the
knowledge of the full input (by completeness of the gadget). The set W is
thus a failure set with 2(n − t) elements.

2. 2-input gadgets ( � = 2): Considering the same failure set as in the above case,
the simulation of out requires the full two input sharings. Hence W is a failure
set of size 2(n − t) with respect to the two inputs, and so the amplification
order satisfies d ≤ (n − t).

We hence conclude that d ≤ min((t + 1), 2(n − t)) for one-input gadgets, and
d ≤ min((t + 1), (n − t)) for two-input gadgets. ��



322 S. Beläıd et al.

Corollary 1 (One-input gadget). The amplification order d of a one-input
gadget achieving (t, f)-RPE is upper bounded by

d ≤ 2(n + 1)
3

.

The above corollary directly holds from Lemma 1 for a RPE threshold t = 2n−1
3

(which balances the two sides of the min).

Corollary 2 (Two-input gadget). The amplification order d of a two-input
gadget achieving (t, f)-RPE is upper bounded by

d ≤ n + 1
2

.

The above corollary directly holds from Lemma 1 for a RPE threshold t = n−1
2

(which balances the two sides of the min).
We deduce from the two above corollaries that for a circuit composed of addi-

tion, multiplication and copy gadgets, the amplification order is upper bounded

d ≤ min
(

2(n + 1)
3

,
n + 1

2

)

=
n + 1

2
,

which can only be achieved for an odd number of shares by taking t = n−1
2 as

RPE threshold.

3.2 Upper Bound for Standard Multiplication Gadgets

The generic bound exhibited above is not tight in the special case of a standard
multiplication gadget which computes cross products between the input shares,
such as the ISW multiplication gadget [17]. We exhibit hereafter a tighter bound
for such gadgets.

Formally, a n-share multiplication gadget G is a standard multiplication gad-
get, if on input (x,y) ∈ (Kn)2, G computes the cross products xi · yj for
1 ≤ i, j ≤ n. Our upper bound on the amplification order for such gadgets
is given in the following lemma.

Lemma 2. Let f : R → R and n ∈ N. Let G be an n-share standard multi-
plication gadget achieving (t, f)-RPE. Then its amplification order d is upper
bounded by

d ≤ min
(

t + 1
2

, (n − t)
)

.

Proof. The second part of the bound (n − t) holds directly from Lemma 1. We
now prove the bound (t + 1)/2 by exhibiting a failure set of size t + 1 with t
output shares, which will be a failure on both inputs. Let {mij}0≤i,j≤n denote
the cross products such that mij = xi · yj . Consider a set W made of t + 1
such variables {mij} for which the indexes i and j are all distinct. Specifically,



On the Power of Expansion 323

W = {xi1 ·yj1 , . . . , xit+1 ·yjt+1} such that {i�}1≤�≤t+1 and {j�}1≤�≤t+1 are both
sets of (t + 1) distinct indexes. Clearly, such a set is a failure set for both inputs
x and y since it requires t + 1 shares of each of them to be perfectly simulated
(even without considering the output shares to be also simulated). We hence
have a double failure set of cardinality t + 1 which implies the (t + 1)/2 upper
bound on the amplification order. ��

The above lemma implies that the highest amplification order for standard
multiplication gadgets might be achieved for a RPE threshold t = 2n−1

3 which
yields the following maximal upper bound:

d ≤ n + 1
3

,

which is lower than the generic upper bound for 2-to-1 gadgets exhibited in
Corollary 2. This loss suggests that better amplification orders could be achieved
for multiplication gadgets that do not compute direct cross products of the input
shares. We actually provide new constructions of multiplication gadgets avoiding
this loss in Sect. 5.

4 A Closer Look at Random Probing Expandability

In this section, we give a closer look at the RPE notion. We first show that it
naturally splits into two different notions, that we shall call RPE1 and RPE2,
and further introduce a tighter variant which will be useful for our purpose. We
then study the relations between (tight) RPE and the Strong Non-Interference
(SNI) notion used for probing security. We exhibit strong connections between
(tight) RPE1 and SNI, which will be very useful for our constructive results
depicted in Sect. 5.

4.1 Splitting RPE

From Definition 4, we can define two sub-properties which are jointly equivalent
to RPE. In the first one, designated by RPE1, the set J is constrained to satisfy
|J | ≤ t and J ′ = J (the simulator does not choose J ′). In the second one,
designated by RPE2, J ′ is chosen by the simulator such that J ′ ⊆ [n] with
|J ′| = n − 1 (and J does not matter anymore). For the sake of completeness,
these two notions are formally defined in the full version of this paper.

This split is somehow a partition of the RPE notion since we have:

G is (t, f)-RPE ⇐⇒ G is (t, f)-RPE1 and G is (t, f)-RPE2

for any gadget G. As a result of the above equivalence, we can show that a
gadget achieves RPE1 and RPE2 independently in order to obtain RPE for this
gadget. Formally, we use the following lemma.

Lemma 3. An n-share gadget G : Kn × K
n → K

n which is (t, f1)-RPE1 and
(t, f2)-RPE2 is also (t, f)-RPE with f(p) ≥ max(f1(p), f2(p)) for every p ∈ [0, 1].



324 S. Beläıd et al.

We can refine the upper bounds introduced in Sect. 3 with respect to this
split. In Lemma 1, the bound d ≤ t + 1 applies to both RPE1 and RPE2, while
the bound d ≤ (3 − �) · (n − t) only applies to RPE1. Similarly, in Lemma 2,
the bound d ≤ (t + 1)/2 applies to both RPE1 and RPE2, while the bound
d ≤ (n − t) only applies to RPE1.

4.2 Tightening RPE

We introduce a tighter version of the RPE security property. The so-called tight
random probing expandability (TRPE) is such that a failure occurs when the
simulation requires more than t input shares (as in the original RPE notion) but
also whenever this number of shares is greater than the size of the leaking set
W. Formally, the failure event Fj is defined as

Fj ≡ (|Ij | > min(t, |W|))

for every j ∈ [�].
This tighter security property will be instrumental in the following to obtain

generic RPE constructions. Similarly to the original RPE property, the TRPE
property can be split into two intermediate properties, namely TRPE1 and
TRPE2 and Lemma 3 also applies to the case of TRPE. Moreover the upper
bounds on the amplification order for RPE in Lemmas 1 and 2 further apply to
the amplification order for TRPE (which holds by definition). The formal TRPE,
TRPE1, and TRPE2 definitions are given in the full version of this paper for
the sake of completeness.

We show hereafter that the TRPE notion is actually equivalent to the RPE
notion if and only if the function f is of maximal amplification order t + 1.

Lemma 4. Let t ∈ N, let f : R → R of amplification order d. Let G be a gadget.

1. If G achieves (t, f)-TRPE, then it achieves (t, f ′)-RPE for some f ′ : R → R

of amplification order d′ ≥ d.
2. If G is of amplification order d with respect to t (i.e. d is the max amplification

order of a function f for which G is (t, f)-RPE), then for all f ′ : R → R for
which G achieves (t, f ′)-TRPE, f ′ is of amplification order d′ ≤ d.

3. If d = t+1, then G achieves (t, f)-TRPE if and only if G achieves (t, f)-RPE.

Proof. The proof for the first two points is easy. In particular, for the first point,
if G achieves TRPE with an amplification order of d, then G achieves RPE
with amplification order at least d, since a failure in the TRPE setting i.e.
|Ij | > min(t, |W|) does not necessarily imply a failure in the RPE setting i.e.
|Ij | > t, meanwhile if there is no failure for TRPE for a leaking set of wires W,
then this implies that |Ij | ≤ min(t, |W|) ≤ t so there is no failure in the RPE
setting either.

As for the second point, the proof is similar: if G achieves an amplification
of d in the RPE setting, then it achieves an amplification order of at most d in
the TRPE setting, since a failure in the RPE setting i.e. |Ij | > t immediately



On the Power of Expansion 325

implies a failure in the TRPE setting |Ij | > min(t, |W|). But also, even if there
is no failure for a leaking set of wires W in the RPE setting we might still have
a failure in the TRPE setting for the same set W. This is mainly the case where
W can be simulated with sets of input shares Ij such that |W| < |Ij | ≤ t, so we
have |Ij | ≤ t (i.e. no failure for RPE) and |Ij | > min(t, |W|) = |W| (i.e. failure
on TRPE). This concludes the proof for the second point.

We will now prove the third point. Let d = t+1. We will show that for every
set J ′ ⊆ [n] of output shares and every leaking set of wires W, a failure occurs
in the TRPE setting if and only if a failure also occurs in the RPE setting. If
|W| ≥ t, then the two settings are equivalent since min(t, |W|) = t. We will thus
only focus on the case |W| < t. Clearly, a failure in the RPE setting, i.e. |Ij | > t,
implies a failure in the TRPE setting, i.e. |Ij | > min(t, |W|). Let us now show
that the converse is also true.

We assume by contradiction that there exists J ′ and W implying a TRPE
failure which is not an RPE failure, that is a set Ij satisfying |W| < |Ij | ≤ t. We
then show that there exists a leaking set W ′ of size |W ′| < t+1 for which an RPE
failure always occurs, which implies an amplification order strictly lower than
t+1 and hence contradicts the lemma hypothesis. This set W ′ is constructed as
W ′ = W ∪I ′

j for some set I ′
j ⊂ [n]\Ij such that |I ′

j | = t+1−|Ij |. The simulation
of W ′ and J ′ then requires the input shares from Ij ∪ I ′

j . However, we have

|Ij ∪ I ′
j | = |Ij | + |I ′

j | = t + 1

implying an RPE failure, and

|W ′| = |W ∪ I ′
j | ≤ |W| + |I ′

j | = |W| + t + 1 − |Ij | < |W| + t + 1 − |W| = t + 1.

Thus, we have built a failure set W ′ of size strictly less than the amplification
order t + 1, which contradicts the hypothesis and hence concludes the proof. ��

The above proof also applies to the case of the split notions, specifically for
((t, f)-RPE1, (t, f)-TRPE1) and for ((t, f)-RPE2, (t, f)-TRPE2).

4.3 Unifying (Tight) RPE and SNI

Strong non-interference (SNI) is a widely used notion to compose probing-secure
gadgets [5]. In [9], the authors exhibit a relation between the SNI and the random
probing composability (RPC) property in their Proposition 1. We go one step
further and study the relation between SNI and (T)RPE.

We state hereafter some equivalence results between the (T)RPE1 and SNI
notions, up to some constraints on the parameters. Let us first recall the defini-
tion of the SNI notion.

Definition 6 (Strong Non-Interference (SNI)). Let n, � and τ be positive
integers. An n-share gadget G : (Kn)� → K

n is τ -SNI if there exists a deter-
ministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every



326 S. Beläıd et al.

set J ⊆ [n] and subset W of wire labels from G satisfying |W| + |J | � τ , the
following random experiment with any x̂ ∈ (Kn)�

I ← SimG
1 (W, J)

out ← SimG
2

(

x̂|I
)

yields
|I1| � |W|, . . . , |I�| � |W| (6)

and
out

id=
(

AssignWires(G,W, x̂) , ŷ|J
)

(7)

where I = (I1, . . . , I�) and ŷ = G(x̂).

We first formally show that (T)RPE1 implies SNI.

Lemma 5. Let t ∈ N and f : R → R of amplification order t + 1. Let G be a
gadget which achieves (t, f)-TRPE1. Then G is also t-SNI.

Proof. By definition of TRPE1 and by hypothesis on the amplification order,
there exist input sets I1, . . . , I� which can perfectly simulate any leaking wires set
W such that |W| ≤ t and any set of output shares J such that |J | ≤ t, satisfying
|I1|, . . . , |I�| ≤ |W|. Consequently, there exist input sets I1, . . . , I� which can
perfectly simulate any leaking wires set W such that |W| = ti ≤ t and any set of
output shares J such that |W| + |J | ≤ t with |I1|, . . . , |I�| ≤ ti. G is thus t-SNI.
��

We now show that SNI implies TRPE1 up to some constraints on the param-
eters t and τ .

Lemma 6. Let τ, � ∈ N. Let G be an �-to-1 gadget which achieves τ -SNI. Then
G satisfies (t, f)-TRPE1 for some f : R → R with an amplification order of

d ≥ 1
�

min(t + 1, τ − t + 1) .

Proof. Since G is τ -SNI, then for any set of leaking wires W and output shares J
such that |W| + |J | ≤ τ , the wires indexed by W and the output shares indexed
by J can be perfectly simulated from input shares indexed by I1, . . . , I� such
that |Ij | ≤ |W| for every 1 ≤ j ≤ �. In the TRPE1 property, the set J of output
shares can be any set of size |J | ≤ t so we can assume |J | = t without loss of
generality.

For a leaking set W of size |W| < min(t+1, τ − t+1) no failure event occurs.
Indeed τ -SNI and |W| < τ − t + 1 implies |W| + |J | ≤ τ and hence the existence
of the sets I1, . . . , I� allowing the simulation with |Ij | ≤ |W|. And |W| < t + 1
implies |Ij | ≤ min(t, |W|) for every j which implies the absence of failure. Then
for a leaking set W of size |W| ≥ min(t + 1, τ − t + 1), no condition remains to
rule out simulation failures and one could actually get a failure for every input.
In the latter case, the amplification order would equal 1

� min(t + 1, n − t), but in
all generality it could be higher (i.e. this value is a lower bound). ��



On the Power of Expansion 327

An illustrative summary of the relations between RPE1, TRPE1 and SNI
is depicted in Fig. 1 (d denotes the amplification order of the function f). We
hence observe an equivalence between the three notions up to some constraints
on the parameters t, d, τ and �.

τ -SNI (t, f)-TRPE1 (t, f)-RPE1

d ≥ 1 min(t + 1, τ − t + 1)

τ = t iff d = t + 1

Fig. 1. Summary of relations between the different notions.

Relation and Separation Between (T)RPE2 and SNI. For a given n-
share gadget G, the (T)RPE2 notion exclusively focuses on the simulation of
a set of leaking intermediate variables together with a chosen set of (n − 1)
output shares. If G is τ -SNI for τ < n − 1, then nothing can be claimed on the
simulation of the latter sets. But if G is (n − 1)-SNI, then any set of (n − 1)
output shares can be perfectly simulated without the knowledge of any input
share. Concretely, it implies that G is (t, f)-(T)RPE2 of amplification order at
least 1 as a chosen output set of (n − 1) shares alone can be perfectly simulated
without any additional knowledge on the input shares. Namely, we have

(n − 1)-SNI ⇒ (t, f)-(T)RPE2 of amplification order at least 1.

Nevertheless, there is no relation from τ -SNI to (t, f)-(T)RPE2 for amplifi-
cation orders strictly greater than 1 as (T)RPE2 would then consider leaking
sets of size larger than or equal to n (for n-share gadgets, τ < n). On the other
side, there is no direct implication either from (t, f)-(T)RPE2 to τ -SNI since the
former property does not consider all possible output sets of size (n − 1), but
only a chosen one.

5 Generic Constructions

To the best of our knowledge, the only RPE gadgets in the literature are the
ones designed in [9] which are restricted to a small number of shares, specifi-
cally n ∈ {2, 3}. A natural open question is the definition of RPE gadgets with
good amplification orders, typically achieving or approaching the upper bounds
exhibited in Sect. 3, for any number of shares n. In this section, we exhibit copy,
addition, and multiplication gadgets derived from the widely known Ishai-Sahai-
Wagner (ISW) construction [17]. Based on the results demonstrated in Sect. 4,



328 S. Beläıd et al.

we are able to show that these gadgets achieve RPE for any number of shares
n with amplification orders close to the upper bounds (up to a small constant
factor). We further provide an asymptotic analysis of the expanding compiler
using these gadgets as well as a new multiplication gadget reaching the opti-
mal amplification order hence improving the convergence to a better asymptotic
complexity.

5.1 Generic Copy and Addition Gadgets

As intuitively proposed in [9] for small gadgets, copy and addition gadgets can be
naturally derived from a refresh gadget. Such a gadget takes one sharing as input
and outputs a new refreshed sharing of the same value. We formally introduce
these natural constructions hereafter and show that their RPE security can be
reduced to that of the underlying refresh gadget.

Generic Copy Gadget. Algorithm 1 displays the generic construction for the
copy gadget from a refresh gadget. It simply consists in refreshing the input
sharing twice to obtain two fresh copies.

Algorithm 1: Copy gadget Gcopy

Input : (a1, . . . , an) input sharing
Output: (e1, . . . , en), (f1, . . . , fn) fresh copies of (a1, . . . , an)
(e1, . . . , en) ← Grefresh(a1, . . . , an);
(f1, . . . , fn) ← Grefresh(a1, . . . , an);

We have the following lemma (see the proof in the full version of this paper).

Lemma 7. Let Grefresh be an n-share (t, f)-TRPE refresh gadget of amplifica-
tion order d. Then, the copy gadget Gcopy displayed in Algorithm 1 is (t, f ′)-
TRPE also of amplification order d.

As a consequence of this result, a TRPE refresh gadget directly yields a
TRPE copy gadget achieving the same amplification order. Both gadgets can
then reach the upper bound for 1-input gadgets whenever t + 1 = 2(n − t)
implying an amplification order d = 2(n+1)

3 .

Generic Addition Gadget. Algorithm 2 displays the generic construction for
the addition gadget from a refresh gadget. It simply consists in refreshing both
input sharings before adding them.

Algorithm 2: Addition Gadget Gadd

Input : (a1, . . . , an), (b1, . . . , bn) input sharings
Output: (c1, . . . , cn) sharing of a + b
(e1, . . . , en) ← Grefresh(a1, . . . , an);
(f1, . . . , fn) ← Grefresh(b1, . . . , bn);
(c1, . . . , cn) ← (e1 + f1, . . . , en + fn);



On the Power of Expansion 329

We have the following lemma (see the proof in the full version of this paper).

Lemma 8. Let Grefresh be an n-share refresh gadget and let Gadd be the corre-
sponding addition gadget displayed in Algorithm 2. Then if Grefresh is (t, f)-RPE
(resp. (t, f)-TRPE) of amplification order d, then Gadd is (t, f ′)-RPE (resp.
(t, f ′)-TRPE) for some f ′ of amplification order d′ ≥ �d

2�.
The above lemma shows that a (T)RPE refresh gadget of amplification order

d directly yields a (T)RPE addition gadget of amplification order at least �d
2�.

If the refresh gadget achieves the optimal d = 2(n+1)
3 , then the generic addition

gadget has an amplification order at least �n
3 � which is not far from the upper

bound for two-input gadgets of n+1
2 .

We stress that the results of Lemma 7 and Lemma 8 are general and apply for
any refresh gadget satisfying the (T)RPE property. In the rest of the section, we
shall focus on a particular refresh gadget, namely the ISW-based refresh gadget.
We show that this gadget achieves (T)RPE from which we obtain (T)RPE copy
and addition gadgets for any number of shares n and with amplification orders
close to the upper bound (up to a small constant factor).

5.2 ISW-Based Copy and Addition Gadgets

As a basis of further constructions, we focus our analysis on the most deployed
refresh gadget, which is based on the ISW construction [17].

ISW Refresh Gadget. This refresh can be seen as an ISW multiplication
between the input sharing and the n-tuple (1, 0, . . . , 0). This is formally depicted
in Algorithm 3.

Algorithm 3: ISW Refresh
Input : (a1, . . . , an) input sharing, {rij}1≤i<j≤n random values
Output: (c1, . . . , cn) such that c1 + · · · + cn = a1 + · · · + an

for i ← 1 to n do
ci ← ai;

end
for i ← 1 to n do

for j ← 1 to i − 1 do
ci ← ci + rji;

end
for j ← i + 1 to n do

ci ← ci + rij ;
end

end
return (c1, . . . , cn);



330 S. Beläıd et al.

We demonstrate through Lemma 9 that the ISW refresh gadget satisfies
TRPE with an amplification order close to the optimal one. The proof is given
in the full version of this paper.

Lemma 9. Let n ∈ N. For every t ≤ n − 2, the n-share ISW refresh gadget is
(t, f1)-TRPE1 and (t, f2)-TRPE2 for some functions f1, f2 : R → R of amplifi-
cation orders d1, d2 which satisfy:

– d1 = min(t + 1, n − t) for f1,
– d2 = t + 1 for f2.

Corollary 3 then directly follows from Lemma 3 applied to TRPE and
Lemma 9.

Corollary 3. Let n ∈ N. For every t ≤ n − 2, the n-share ISW refresh gadget
is (t, f)-TRPE of amplification order

d = min(t + 1, n − t).

According to Lemma 1, the upper bound on the amplification order of 1-
input gadgets is d ≤ min(t + 1, 2(n − t)) which gives d ≤ 2n+2

3 for t = 2n−1
3 . In

contrast, the ISW refresh gadget reaches d = �n+1
2 � by taking t = �n−1

2 �. While
applying this result to the generic constructions of addition and copy gadgets
introduced above, we obtain:

– a copy gadget of amplification order dc = �n+1
2 � (Lemma 7),

– an addition gadget of amplification order at least da = �n+1
4 � (Lemma 8).

In the following, we demonstrate a tighter result than Lemma 8 for the ISW-
based addition gadget (namely which does not imply the loss of a factor 2).

ISW-Based Copy Gadget. The copy gadget Gcopy that uses the n-share ISW
refresh gadget as a building block in Algorithm 1 achieves the same amplification
order as the ISW refresh for the TRPE setting, i.e. d = min(t + 1, n − t). This
is a direct implication from Lemma 7. Then, from Lemma 4, we have that ISW-
based Gcopy also achieves (t, f ′)-RPE with amplification order d′ ≥ d. We can
actually prove that ISW-based Gcopy achieves (t, f ′)-RPE with amplification
order d′ exactly equal to the amplification order in the TRPE setting, i.e. d′ =
d = min(t + 1, n − t). This is stated in the following lemma which proof is given
in the full version of this paper.

Lemma 10. Let Gcopy be the n-share copy gadget displayed in Algorithm 1 and
instantiated with the ISW refresh gadget. Then for every t ≤ n−2, Gcopy achieves
(t, f)-RPE with amplification order d = min(t + 1, n − t).



On the Power of Expansion 331

ISW-Based Addition Gadget. The addition gadget Gadd that uses the n-
share ISW refresh gadget as a building block in Algorithm 2 achieves the same
amplification order as the ISW refresh gadget, which is tighter than the bound
from Lemma 8. This is stated in the following Lemma, which follows from
Lemma 9, and from the fact that ISW refresh is (n − 1)-SNI. The proof is
given in the full version of this paper.

Lemma 11. Let Gadd be the n-share addition gadget displayed in Algorithm 2
and instantiated with the ISW refresh gadget. Then for every t ≤ n − 2, Gadd

achieves (t, f1)-TRPE1 and (t, f2)-TRPE2 for some functions f1, f2 : R → R of
amplification orders d1, d2 which satisfy:

– d1 = min(t + 1, n − t),
– d2 = t + 1.

Corollary 4 then directly follows from Lemma 11 by applying Lemma 3
(TRPE1 ∩ TRPE2 ⇒ TRPE) and Lemma 4 (TRPE ⇒ RPE).

Corollary 4. Let n ∈ N. For every t ≤ n−2, the n-share gadget Gadd displayed
in Algorithm 2 and instantiated with the ISW refresh gadget is (t, f)-RPE of
amplification order d = min(t + 1, n − t).

5.3 ISW Multiplication Gadget

In contrast to the copy and addition gadgets that are built from generic
schemes with a refresh gadget as a building block, the multiplication gadget
can be directly defined as the standard ISW multiplication, which is recalled in
Algorithm 4.

Algorithm 4: ISW Multiplication
Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i<j≤n random

values
Output: (c1, . . . , cn) sharing of a · b
for i ← 1 to n do

ci ← ai · bi;
end
for i ← 1 to n do

for j ← i + 1 to n do
ci ← ci + rij ;
rji ← (ai · bj + rij) + aj · bi;
cj ← cj + rji;

end
end
return (c1, . . . , cn);

We have the following lemma (see the proof in the full version of this paper).



332 S. Beläıd et al.

Lemma 12. Let n ∈ N. For every t ≤ n − 2, the n-share ISW multiplication
gadget displayed in Algorithm 4 is (t, f1)-RPE1 and (t, f2)-RPE2 for some func-
tions f1, f2 : R → R of amplification orders d1, d2 which satisfy:

– d1 =
min(t + 1, n − t)

2
,

– d2 =
t + 1

2
.

Corollary 5 then directly follows from Lemma 12 by applying Lemma 3
(RPE1 ∩ RPE2 ⇒ RPE).

Corollary 5. Let n ∈ N. For every t ≤ n − 2, the n-share ISW multiplication
gadget displayed in Algorithm 4 is (t, f)-RPE of amplification order

d =
min(t + 1, n − t)

2
.

According to Lemma 2, the upper bound on the amplification order of a
standard multiplication gadget (i.e. which starts with the cross-products of the
input shares) is d ≤ min((t + 1)/2, (n − t)) which gives d ≤ (n + 1)/3 for t =
(2n − 1)/3. In contrast, the ISW multiplication gadget reaches d = �n+1

4 � by
taking t = �n−1

2 �.

5.4 Application to the Expanding Compiler

As recalled in Sect. 2.5, instantiating the expanding compiler with three RPE
base gadgets gives a (p, 2−κ)-random probing secure compiler (i.e. achieving κ
bits of security against a leakage probability p) with a complexity blowup of
O(κe) for an exponent e satisfying

e =
log Nmax

log d

where Nmax satisfies (5) and where d is the minimum amplification order of the
three base gadgets.

We can instantiate the expanding compiler using the above ISW-based gad-
gets. Specifically, we use the ISW multiplication for the multiplication gadget
Gmult, and the generic constructions of addition and copy gadgets based on the
ISW refresh. From Lemmas 10, 11, and 12, the maximum amplification order
achievable by the compiler is the minimum of the three gadgets, which is the
order of the ISW multiplication gadget:

d =
min(t + 1, n − t)

2
.



On the Power of Expansion 333

Hence, for a given number of shares n, the maximum amplification order achiev-
able is

dmax =
⌊

n + 1
4

⌋

which is obtained for t = �n−1
2 �. On the other hand, the value of Nmax can be

characterized in terms of the number of shares n from the ISW algorithm. Recall
from Sect. 2.5 that

Nmax = max
(

Nm,m , eigenvalues

((

Na,a Nc,a

Na,c Nc,c

)))

.

In the case of the ISW-based gadgets, we have Nm,m = n2 and
(

Na,a Nc,a

Na,c Nc,c

)

=
(

n(2n − 1) 2n(n − 1)
n(n − 1) n2

)

.

The eigenvalues of the above matrix are λ1 = n and λ2 = 3n2 − 2n, implying
Nmax = 3n2 − 2n. Thus, the expanding compiler instantiated by our ISW-based
gadgets has a complexity blowup O(κe) with exponent

e =
log(3n2 − 2n)

log(�(n + 1)/4�) .

Figure 2 (blue curve) shows the evolution of the value of this exponent with
respect to the number of shares n (where we assume an odd n). The value of
e clearly decreases as the number of shares grows, and this decrease is faster
for a small number of shares (5 ≤ n ≤ 10). The exponent value reaches e ≈ 4
for a number of shares around 25 and then slowly converges towards e = 2 as
n grows. This is to be compared with the O(κ7.5) complexity achieved by the
instantiation from [2,9].

Towards a Better Complexity. Choosing gadgets which attain the upper
bound min(t + 1, n − t) on the amplification order from Lemma 1 allows the
compiler to have the maximum amplification order d = (n + 1)/2 and thus
have the lowest complexity blowup. Our ISW-based copy and addition gadgets
achieve this bound while the ISW multiplication gadget is limited to (n + 1)/4
(Lemma 12). To reach the optimal amplification order, one would need a different
multiplication gadget and in particular a multiplication gadget which does not
perform a direct product of shares (because of the bound from Lemma 2). We
introduce such a multiplication gadget hereafter (see Sect. 5.5). Specifically, our
new multiplication gadget achieves the upper bound on the amplification order
min(t+1, n−t) by avoiding a direct product of shares using a prior refresh on the
input sharings. The orange curve in Fig. 2 shows the evolution of the value of the
exponent when instantiating the expanding compiler with our previous addition
and copy gadgets and this new multiplication gadget. For such an instantiation,
the complexity exponent still slowly converges towards e = 2 but, as we can see



334 S. Beläıd et al.

0 5 10 15 20 25
0

5

10

15

Number of shares n

E
xp

on
en

t
e

Nmax = 3n2 − 2n, d = (n + 1)/4

Nmax = 3n2 − 2n, d = (n + 1)/2

Nmax = n2, d = (n + 1)/2

Fig. 2. Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect to
the number of shares n. The blue curve matches the instantiation with the ISW-based
gadgets; the orange curve assumes the optimal amplification order (i.e. an improvement
of the multiplication gadget); the pink curve assumes a better complexity for addition
and copy gadgets (so that Nmax matches Nm,m = n2). (Color figure online)

from Fig. 2, the exponent value is much better for small values of n. For example,
we obtain e ≈ 3 for n = 20.

Another possible direction for improvement would be to lower the complexity
of the addition and copy gadgets, which is mainly dominated by the refreshing.
Assume that we can design a (T)RPE refresh gadget in sub-quadratic complex-
ity, e.g. as the refresh gadgets proposed in [7,15,20], then the eigenvalues of the
matrix in (5) would also be sub-quadratic and the value of Nmax from Eq. (5)
would drop to Nm,m = n2 (if the multiplication gadget still requires n2 multi-
plication gates). The pink curve in Fig. 2 depicts the evolution of the exponent
value under this assumption. We still have a slow convergence towards e = 2 but
the exponent value is yet better for small values of n. For example, a complexity
blowup of O(κ2.5) is obtained with 20 shares. We leave the task of finding such
a sub-quadratic (T)RPE refresh gadget as an open question for further research.

The above analysis shows that the expanding compiler can theoretically app-
roach a quadratic complexity at the cost of increasing the number of shares in
the base gadgets. The downside of it is that the tolerated leakage probability
is likely to decrease as the number of shares grow. For instance, the ISW con-
struction is known to only tolerate a leakage probability p = O(1/n) [14]. The
number of shares hence offers multiple trade-offs between the tolerated prob-
ability and the asymptotic complexity of the compiler. Starting from a target
leakage probability p, one could determine the highest number of shares admis-
sible from a generic construction (such as the ISW-based instantiation exhibited



On the Power of Expansion 335

above) and thus deduce the best complexity exponent achievable. In Sect. 6, we
exhibit concrete trade-offs that can be reached for small values of n.

5.5 Multiplication Gadget with Maximal Amplification Order

Constructing a multiplication gadget which achieves the upper bound on the
amplification order from Lemma 1 is tricky. First, as a standard multiplication
gadget (i.e. which computes the cross products of the input shares), the ISW
multiplication cannot achieve the maximal amplification order (see Lemma 2).
In order to reach the upper bound for two-input gadgets (see Corollary 2), we
need a non-standard multiplication gadget, i.e. which does not perform a direct
product between the input shares. As an additional observation, the addition,
copy, and random gates are virtually free in a multiplication gadget since they do
not impact the final complexity of the expanding compiler (see Sect. 2.5). This
suggests that we can be greedy in terms of randomness to reach the maximal
amplification order.

In the following, we will describe the construction of a new multiplication
gadget which achieves the maximum amplification order min(t + 1, n − t). We
first describe our standard n-share multiplication gadget and then explain how
we avoid the initial cross products of shares. First, the gadget constructs the
matrix of the cross product of input shares:

M =

⎛

⎜

⎜

⎜

⎝

a1 · b1 a1 · b2 · · · a1 · bn

a2 · b1 a2 · b2 · · · a2 · bn

...
...

. . .
...

an · b1 an · b2 · · · an · bn

⎞

⎟

⎟

⎟

⎠

Then, it picks n2 random values which define the following matrix:

R =

⎛

⎜

⎜

⎜

⎝

r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n

...
...

. . .
...

rn,1 rn,2 · · · rn,n

⎞

⎟

⎟

⎟

⎠

It then performs an element-wise addition between the matrices M and R:

P = M + R =

⎛

⎜

⎜

⎜

⎝

p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n

⎞

⎟

⎟

⎟

⎠



336 S. Beläıd et al.

At this point, the gadget randomizes each product of input shares from the
matrix M with a single random value from R. In order to generate the correct
output, the gadget adds all the columns of P into a single column V of n elements,
and adds all the columns of the transpose matrix RT into a single column X of
n elements:

V =

⎛

⎜

⎜

⎜

⎝

p1,1 + · · · + p1,n

p2,1 + · · · + p2,n

...
pn,1 + · · · + pn,n

⎞

⎟

⎟

⎟

⎠

, X =

⎛

⎜

⎜

⎜

⎝

r1,1 + · · · + rn,1

r1,2 + · · · + rn,2

...
r1,n + · · · + rn,n

⎞

⎟

⎟

⎟

⎠

The n-share output is finally defined as (c1, . . . , cn) = V + X.
In order to further increase the maximum amplification order attainable by

the gadget, we need to avoid performing a direct product of shares (because
of the bound proved in Lemma 2). For this, we add a pre-processing phase
to the gadget using a refresh gadget Grefresh. Specifically, we refresh the input
(b1, . . . , bn) each time it is used. In other terms, each row of the matrix M uses
a fresh copy of (b1, . . . , bn) produced using the considered refresh gadget. This
amounts to performing n independent refreshes of the input (b1, . . . , bn). The
matrix M is thus defined as

M =

⎛

⎜

⎜

⎜

⎜

⎝

a1 · b
(1)
1 a1 · b

(1)
2 · · · a1 · b

(1)
n

a2 · b
(2)
1 a2 · b

(2)
2 · · · a2 · b

(2)
n

...
...

. . .
...

an · b
(n)
1 an · b

(n)
2 · · · an · b

(n)
n

⎞

⎟

⎟

⎟

⎟

⎠

where (b(j)1 , . . . , b
(j)
n ), j ∈ [n], are the n independent refreshings of the input

(b1, . . . , bn).
With this refreshing scheme, we avoid using the same share more than once

for one of the two input sharings. As a consequence, the double failure set of size
t + 1 which is the reason behind the bound (t + 1)/2 in Lemma 2, becomes a
simple failure set (i.e. provoking a failure on a single input sharing). In addition,
the computational overhead of these additional n refreshes is negligible compared
to the joint contribution of the copy and addition gadgets to the complexity of
the expanding compiler.

For the sake of completeness, we present the full algorithm for this multipli-
cation gadget in Algorithm 5.



On the Power of Expansion 337

Algorithm 5: Our multiplication gadget
Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i≤n,1≤j≤n

random values, refresh gadget Grefresh

Output: (c1, . . . , cn) sharing of a · b
for i ← 1 to n do

(b(i)1 , . . . , b
(i)
n ) ← Grefresh(b1, . . . , bn);

end
for i ← 1 to n do

for j ← 1 to n do
pi,j ← ai × b

(i)
j + ri,j ;

end
end
(v1, . . . , vn) ← (0, . . . , 0);
(x1, . . . , xn) ← (0, . . . , 0);
for i ← 1 to n do

for j ← 1 to n do
vi ← vi + pi,j ;
xi ← xi + ri,j ;

end
end
for i ← 1 to n do

ci ← vi + xi;
end
return (c1, . . . , cn);

In the following lemma, we show that if the refresh gadget Grefresh achieves
the TRPE1 property with the amplification order at least d = min(t + 1, n − t)
for any t, then the multiplication gadget depicted in Algorithm 5 achieves TRPE
with the maximum amplification orders. The proof is given in the full version of
this paper.

Lemma 13. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for
some function f ′ : R → R, and Gmult the n-share multiplication gadget from
Algorithm 5. If f ′ is of amplification order d′ ≥ d = min(t + 1, n − t), then
Gmult achieves (t, f)-TRPE for some function f : R → R of amplification order
d = min(t + 1, n − t).

Corollary 6 then directly follows from Lemma 13 by applying Lemma 4
(TRPE ⇒ RPE).

Corollary 6. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for
some function f ′ : R → R, and Gmult the n-share multiplication gadget from
Algorithm 5. If f ′ is of amplification order d′ ≥ d = min(t + 1, n − t), then
Gmult achieves (t, f)-RPE for some function f : R → R of amplification order
d = min(t + 1, n − t).



338 S. Beläıd et al.

6 Efficient Small Gadgets

This section displays our new constructions of small gadgets for copy, addition,
and multiplication operations with a low number of shares. As explained in [9], we
cannot achieve RPE security with relevant amplification orders for gadgets of less
than 3 shares. Then, as explained in Sect. 3.1, the highest amplification orders
can only be achieved for gadgets with an odd number of shares. We therefore
omit 4-share gadgets and display our best trade-offs in terms of RPE security
and complexity for 3-share and 5-share gadgets. Each one of these gadgets is
experimentally verified using the VRAPS verification tool from [9].

Addition and Copy Gadgets. For the construction of small 3-share and 5-
share addition and copy gadgets, we use the generic constructions depicted in
Algorithms 1 and 2 (in Sect. 5) which naturally use a refresh gadget as a building
block. We hence start by looking for refresh gadgets that have a good complexity
in terms of gates count, and achieve the upper bound on the amplification order
for the specific case of 3-share and 5-share constructions (but not necessarily for
a higher number of shares).

Multiplication Gadget. For the construction of small 3-share and 5-share
multiplication gadgets, we use the generic construction depicted in Algorithm 5
from Sect. 5.5 which, to the best of our knowledge, is the only multiplication gad-
get which achieves the maximum amplification order for any number of shares,
and specifically for 3-share and 5-share constructions. As for the refresh gadget
Grefresh which is used to perform n refreshes on the second input, we use the
same scheme as for the construction of small addition and copy gadgets (and
which shall satisfy the necessary condition on Grefresh from Corollary 6).

While the multiplication gadget from Sect. 5.5 achieves the desired ampli-
fication order, we add another pre-processing phase to the gadget in order to
further improve the tolerated leakage probability. In addition to the n refreshes
performed on the second input b (see Algorithm 5), we add another single refresh
of the input (a1, . . . , an) before computing the cross-products, using the same
refresh gadget Grefresh. Refreshing the input (a1, . . . , an) before usage experi-
mentally shows a further increase in the maximum tolerated leakage probability,
by adding more randomness to the input shares before computing the cross-
product matrix M in Algorithm 5. And since the refresh gadget Grefresh achieves
the maximum amplification order, the amplification order achieved by Gmult is
not affected by adding another refresh to the first input a.

The above construction achieves the maximum amplification order for 3-share
(d = 2) and 5-share (d = 3) gadgets based on natural refresh gadgets detailed
hereafter.



On the Power of Expansion 339

6.1 3-Share Gadgets

We start with the construction of 3-share gadgets for our three base operations.

Copy and Addition Gadgets. We build our copy and addition gadgets from
the instantiation of the generic constructions of Sect. 5 (Algorithms 1 and 2)
with 3 shares. However, we do not use the ISW refresh gadget but the following
more efficient construction with only two random values (instead of three):

Grefresh : c1 ← r1 + a1

c2 ← r2 + a2

c3 ← (r1 + r2) + a3.

This refresh is sufficient to reach the upper bounds on the amplification orders
(from Lemma 1). From this basis, we obtain the following 3-share addition gadget
with four random values:

Gadd : c1 ← (r1 + a1) + (r3 + b1)
c2 ← (r2 + a2) + (r4 + b2)
c3 ← (

(r1 + r2) + a3

)

+
(

(r3 + r4) + b3
)

and the following 3-share copy gadget with also four random values:

Gcopy : c1 ← r1 + a1; d1 ← r3 + a1

c2 ← r2 + a2; d2 ← r4 + a2

c3 ← (r1 + r2) + a3; d3 ← (r3 + r4) + a3.

Multiplication Gadget. The following construction is a 3-share instantia-
tion of the multiplication gadget described in Sect. 5.5. For the input refreshing,
we use the 3-share refresh gadget described above with two uniformly random
values. The construction achieves the bound on the amplification order from
Lemma 1 with 17 random values:

Gmult : i1,1 ← r1 + b1; i1,2 ← r2 + b2; i1,3 ← (r1 + r2) + b3

i2,1 ← r3 + b1; i2,2 ← r4 + b2; i2,3 ← (r3 + r4) + b3

i3,1 ← r5 + b1; i3,2 ← r6 + b2; i3,3 ← (r5 + r6) + b3

a′
1 ← r7 + a1; a′

2 ← r8 + a2; a′
3 ← (r7 + r8) + a3

c1 ← (a′
1 · i1,1 + r1,1) + (a′

1 · i1,2 + r1,2) + (a′
1 · i1,3 + r1,3) + (r1,1 + r2,1 + r3,1)

c2 ← (a′
2 · i2,1 + r2,1) + (a′

2 · i2,2 + r2,2) + (a′
2 · i2,3 + r2,3) + (r1,2 + r2,2 + r3,2)

c3 ← (a′
3 · i3,1 + r3,1) + (a′

3 · i3,2 + r3,2) + (a′
3 · i3,3 + r3,3) + (r1,3 + r2,3 + r3,3).



340 S. Beläıd et al.

Table 1. Results for the 3-share gadgets for (t = 1, f)-RPE, achieving the bound on
the amplification order.

Gadget Complexity
(Na, Nc, Nm, Nr)

Amplification
order

log2 of maximum
tolerated proba

Grefresh (4, 2, 0, 2) 2 −5.14

Gadd (11, 4, 0, 4) 2 −4.75

Gcopy (8, 7, 0, 4) 2 −7.50

Gmult (40, 29, 9, 17) 2 −7.41

Compiler O(|C| · κ3.9) 2 −7.50

Results. Table 1 displays the results for the above gadgets obtained through
the VRAPS tool. The second column gives the complexity, where Na, Nc, Nm,
Nr stand for the number of addition gates, copy gates, multiplication gates
and random gates respectively. The third column provides the amplification
order of the gadget. And the last column gives the maximum tolerated leakage
probability. The last row gives the global complexity, amplification order, and
maximum tolerated leakage probability for the expanding compiler using these
three gadgets from the results provided in [9].

6.2 5-Share Gadgets

We now present our 5-share gadgets for our three base operations, which reach
the optimal amplification order from Lemma 1.

Copy and Addition Gadgets. As for the 3-share case, we use the generic
constructions from Sect. 5. Instead of using the ISW refresh gadget which would
require 10 uniformly random values for a 5-share construction, we use the circular
refresh gadget described in [4,6] (a.k.a. block refresh gadget):

Grefresh : c1 ← (r1 + r2) + a1

c2 ← (r2 + r3) + a2

c3 ← (r3 + r4) + a3

c4 ← (r4 + r5) + a4

c5 ← (r5 + r1) + a5.

This gadget only uses n randoms for an n-share construction, and while it does
not achieve enough security in the generic case (unless the refresh block is iter-
ated on the input a certain number of times [4,6]), it proves to be more than
enough to achieve the necessary amplification order for our 5-share construc-
tions. We use a variant of the original version (also suggested in [4]): we choose
to sum the random values first (thus obtaining a sharing of 0) before adding them
to the input shares. The idea is to avoid using the input shares in any of the



On the Power of Expansion 341

intermediate variables, so that input shares only appear in the input variables
{ai}1≤i≤n and the final output variables {ci}1≤i≤n. Intuitively, this trick allows
to have less failure tuples in the gadget because there are less variables that
could leak information about the input. This is validated experimentally where
we obtain better results in terms of amplification order and tolerated leakage
probability for small gadgets.

From this circular refresh, we obtain an addition gadget and a copy gadget
that both reach the upper bound on the amplification order while making use of
ten random values. The description of those 5-share gadgets is given in the full
version of the paper.

Multiplication Gadget. We use the 5-share instantiation of the multiplication
gadget described in Sect. 5.5. For the input refreshing, we use the 5-share circular
refresh gadget described above. The gadget advantageously achieves the optimal
amplification order (given by Lemma 1) with 55 random values. The description
of this 5-share multiplication gadget is given in the full version of the paper.

Results. Table 2 gives the results for the above gadgets obtained through the
VRAPS tool.

Table 2. Results for the 5-share gadgets for (t = 2, f)-RPE, achieving the bound on
the amplification order.

Gadget Complexity Amplification
order

log2 of maximum
tolerated proba

Grefresh (10, 5, 0, 5) 3 −4.83

Gadd (25, 10, 0, 10) 3 [−6.43,−3.79]

Gcopy (20, 15, 0, 10) 3 [−6.43,−5.78]

Gmult (130, 95, 25, 55) 3 [−12.00,−6.03]

Compiler O(|C| · κ3.23) 3 [−12.00,−6.03]

From Tables 1 and 2, we observe that the asymptotic complexity is better for
the instantiation based on 5-share gadgets as they provide a better amplification
order with limited overhead. While this result can seem to be counterintuitive,
it actually comes from the fact that each gadget will be expended less in the
second scenario. We stress that we could only obtain an interval [2−12, 2−6] for
the tolerated leakage probability because it was computationally too expensive
to obtain a tighter interval from the VRAPS tool, but this could probably be
improved in the future. Meanwhile, we can consider that our best complexity
O(|C| · κ3.2) comes at the price of a lower tolerated leakage probability of 2−12

(5-share gadget) compared to the O(|C| · κ3.9) complexity and 2−7.5 tolerated
leakage probability obtained for our 3-share instantiation.



342 S. Beläıd et al.

In comparison, the previous instantiation of the expanding compiler [9] could
only achieve a complexity of O(|C| · κ7.5) for maximum tolerated probabilities
of 2−8, and the instantiation of the expanding approach with a multi-party
computation protocol [2], could only achieve a complexity of O(|C| · κ8.2) for
maximum tolerated probabilities of 2−26.

Acknowledgments. This work is partly supported by the French FUI-AAP25 VeriS-
iCC project.

References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fort-
now, L., Vadhan, S.P., (eds.) 43rd ACM STOC, pp. 715–724. ACM Press, June
2011

2. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 427–455. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 15

3. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/ log(n))
Leakage Rate. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 586–615. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 21

4. Barthe, G., et al.: Improved parallel mask refreshing algorithms: generic solutions
with parametrized non-interference and automated optimizations. J. Cryptogr.
Eng. 10(1), 17–26 (2019). https://doi.org/10.1007/s13389-018-00202-2

5. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 116–129. ACM Press, October 2016

6. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-
7 19

7. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive,
Report 2016/540 (2016). http://eprint.iacr.org/2016/540

8. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

9. Beläıd, S., Coron, J.-S., Prouff, E., Rivain, M., Taleb, A.R.: Random probing secu-
rity: verification, composition, expansion and new constructions. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 339–368. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 12

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/s13389-018-00202-2
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
http://eprint.iacr.org/2016/540
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26


On the Power of Expansion 343

11. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 25

12. Coron, J.-S., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-random
generator. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 342–375. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3 12

13. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

15. Dziembowski, S., Faust, S., Zebrowski, K.: Simple refreshing in the noisy leakage
model. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. Part III, volume
11923 of LNCS, pp. 315–344. Springer, Heidelberg (2019)

16. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

17. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

19. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

20. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9


Leakage-Resilience of the Shamir
Secret-Sharing Scheme Against

Physical-Bit Leakages

Hemanta K. Maji1(B), Hai H. Nguyen1, Anat Paskin-Cherniavsky2,
Tom Suad2, and Mingyuan Wang1

1 Department of Computer Science, Purdue University, West Lafayette, USA
{hmaji,nguye245,wang1929}@purdue.edu

2 Department of Computer Science, Ariel University, Ariel, Israel
anatpc@ariel.ac.il, tom.suad@msmail.ariel.ac.il

Abstract. Efficient Reed-Solomon code reconstruction algorithms, for
example, by Guruswami and Wootters (STOC–2016), translate into local
leakage attacks on Shamir secret-sharing schemes over characteristic-2
fields. However, Benhamouda, Degwekar, Ishai, and Rabin (CRYPTO–
2018) showed that the Shamir secret sharing scheme over prime-fields is
leakage resilient to one-bit local leakage if the reconstruction threshold
is roughly 0.87 times the total number of parties. In several applica-
tion scenarios, like secure multi-party multiplication, the reconstruction
threshold must be at most half the number of parties. Furthermore, the
number of leakage bits that the Shamir secret sharing scheme is resilient
to is also unclear.

Towards this objective, we study the Shamir secret-sharing scheme’s
leakage-resilience over a prime-field F . The parties’ secret-shares, which
are elements in the finite field F , are naturally represented as λ-bit binary
strings representing the elements {0, 1, . . . , p − 1}. In our leakage model,
the adversary can independently probe m bit-locations from each secret
share. The inspiration for considering this leakage model stems from the
impact that the study of oblivious transfer combiners had on general cor-
relation extraction algorithms, and the significant influence of protecting
circuits from probing attacks has on leakage-resilient secure computation.

Consider arbitrary reconstruction threshold k � 2, physical bit-
leakage parameter m � 1, and the number of parties n � 1. We prove
that Shamir’s secret-sharing scheme with random evaluation places is
leakage-resilient with high probability when the order of the field F is

H. K. Maji, H. H. Nguyen and M. Wang—The research effort is supported in part by
an NSF CRII Award CNS–1566499, an NSF SMALL Award CNS–1618822, the IARPA
HECTOR project, MITRE Innovation Program Academic Cybersecurity Research
Awards (2019–2020, 2020–2021), a Purdue Research Foundation (PRF) Award, and
The Center for Science of Information, an NSF Science and Technology Center, Coop-
erative Agreement CCF–0939370.
A. Paskin-Cherniavsky and T. Suad—Research supported by the Ariel Cyber Inno-
vation Center in conjunction with the Israel National Cyber directorate in the Prime
Minister’s Office.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 344–374, 2021.
https://doi.org/10.1007/978-3-030-77886-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_12


Leakage-Resilience of the Shamir Secret-Sharing Scheme 345

sufficiently large; ignoring polylogarithmic factors, one needs to ensure
that log |F | � n/k. Our result, excluding polylogarithmic factors, states
that Shamir’s scheme is secure as long as the total amount of leakage
m · n is less than the entropy k · λ introduced by the Shamir secret-
sharing scheme. Note that our result holds even for small constant values
of the reconstruction threshold k, which is essential to several application
scenarios.

To complement this positive result, we present a physical-bit leak-
age attack for m = 1 physical bit-leakage from n = k secret shares and
any prime-field F satisfying |F | = 1 mod k. In particular, there are
(roughly) |F |n−k+1 such vulnerable choices for the n-tuple of evaluation
places. We lower-bound the advantage of this attack for small values of
the reconstruction threshold, like k = 2 and k = 3, and any |F | = 1
mod k. In general, we present a formula calculating our attack’s advan-
tage for every k as |F | → ∞.

Technically, our positive result relies on Fourier analysis, analytic
properties of proper rank-r generalized arithmetic progressions, and
Bézout’s theorem to bound the number of solutions to an equation over
finite fields. The analysis of our attack relies on determining the “discrep-
ancy” of the Irwin-Hall distribution. A probability distribution’s discrep-
ancy is a new property of distributions that our work introduces, which
is of potential independent interest.

Keywords: Random punctured Reed-Solomon codes · Physical-bit
leakage · Local leakage resilience · Discrete Fourier analysis ·
Exponential sums · Rank-r generalized arithmetic progression ·
Bézout’s theorem · Irwin-Hall distribution

1 Introduction

In the presence of an increasing number of side-channel attacks on cryptographic
protocols, theoretical cryptography research has been revisiting its implicit
assumptions in modeling secure cryptographic protocols. For example, results in
reconstructing Reed-Solomon codes [11,15,16] imply that leaking even (m = 1)
bit from the secret shares of Shamir’s secret-sharing scheme over characteristic-2
finite field F renders this secret sharing scheme insecure. That is, there exist two
secrets s(0), s(1) ∈ F that an adversary can distinguish by leaking only (m = 1)-
bit local leakage from every secret share. We emphasize that in locally leakage-
resilient secret-sharing schemes,1 the entire secret’s reconstruction is not neces-
sary to qualify as a successful attack. It suffices to achieve a non-negligible advan-
tage in distinguishing any two secrets s(0), s(1) ∈ F of adversary’s choice. Since
secret-sharing schemes (typically, packed [13] Massey secret-sharing schemes [35]
corresponding to linear error-correcting codes with “good” properties) are
fundamental cryptographic primitives underlying nearly all of conceivable

1 The term “local” in local leakage-resilience refers to the fact that the adversary
performs arbitrary leakage on each secret-share independently.



346 H. K. Maji et al.

cryptography, such innovative side-channel attacks threaten the security of most
cryptographic protocols.

The recent ground-breaking work of Benhamouda, Degwekar, Ishai, and
Rabin [3] identified several scenarios where Shamir’s secret-sharing scheme and
the additive secret-sharing scheme are resilient to such local leakage attacks;2

thus, laying to rest the devastating possibility of side-channel attacks break-
ing all secret-sharing schemes. Recently, [37] propose even more sophisti-
cated local leakage attacks on secret-sharing schemes. Since the work of Ben-
hamouda et al. [3], several works [1,2,6,9,22,29,34,41] have introduced transfor-
mations to convert existing secret-sharing schemes into leakage-resilient versions.
It seems insurmountable to replace every deployed secret-sharing scheme with
its leakage-resilient version. Furthermore, the leakage-resilient versions of these
secret-sharing schemes introduce encoding overheads that noticeably reduce
these secret-sharing schemes’ information-rate,3 adversely affecting the appli-
cations’ efficiency. Towards the objective of retaining the efficiency of existing
secret-sharing schemes with minimal changes, other works [7,21,30,33] ana-
lyze the resilience of existing secret-sharing schemes or ensembles of secret-
sharing schemes with good properties (for example, packed Massey secret-sharing
schemes corresponding to (nearly) maximum distance separable linear error-
correcting codes) that are already locally leakage-resilient. Currently, our under-
standing of the local leakage-resilience of existing secret-sharing schemes typ-
ically used in cryptography is still in a nascent state. The exact loss in the
achievable parameters and information-rate to additionally ensure local leakage-
resilience is even less clear. These losses in the feasible parameter regions and
information-rate even render secret-sharing schemes unusable for various appli-
cation scenarios.

For example, Benhamouda et al. [3] proved that if Shamir’s secret-sharing
scheme, one of the most widely used secret-sharing schemes, has a reconstruc-
tion threshold k � 0.867n, where n is the total number of parties, then it is
leakage-resilient to (m = 1)-bit local leakage. Observe that using a large recon-
struction threshold k introduces inefficiencies, which may not be necessary for
various applications. Additionally, an even more concerning fact is that some
cryptographic constructions crucially rely on the reconstruction threshold being
low. For example, the secure computation of the multiplication of two (already
secret-shared) secrets requires the reconstruction threshold k < n/2 even against
honest-but-curious parties.

Summary of Our Work: Problem Statement and Results. Our work
contributes to this research thrust on characterizing the local leakage-resilience
of secret-sharing schemes. As a stepping-stone, our work considers the scenario
where each party stores their secret-share in its natural λ-bit binary represen-
tation, and the adversary may (independently) probe arbitrary m physical-bits

2 Leakage-resilient secret-sharing was also, independently, introduced by [14] as an
intermediate primitive.

3 The information-rate of a secret-sharing scheme is the ratio on the size of the secret
to the largest size of the secret-share that a party receives.



Leakage-Resilience of the Shamir Secret-Sharing Scheme 347

from each secret-share. The particular choice of the physical-bit leakage draws
inspiration from, for instance, the crucial role of the studies on oblivious transfer
combiners [8,19,20,25,36] in furthering the state-of-the-art of general correlation
extractors [4,5,24], and the techniques in protecting circuits against probing
attacks [12,26,27] impacting the study of leakage-resilient secure computation
(refer to the excellent recent survey [28]).

We present both feasibility and hardness of computation results. Roughly,
our results prove that Shamir’s secret-sharing scheme with n random evaluation
places, for any reconstruction threshold k � 2, is locally leakage-resilient. The
adversary can leak m physical-bits from each secret-share if the total amount of
leakage m·n is less than the total entropy k·λ in the secret-sharing scheme, except
with an exponentially small probability in λ. To complement this result, we also
present new local physical-bit leakage attacks demonstrating several sets of bad
evaluation places where Shamir’s secret-sharing scheme is not leakage-resilient
even when m = 1 and n = k. Technically, our positive result’s analysis proceeds
by discrete Fourier analysis relying on the analytical properties of exponential
sums involving rank-r generalized arithmetic progressions, and Bézout’s theorem
to upper-bound the number of solutions to a system of equations over finite fields.
On the other hand, our attack’s analysis is equivalent to the “discrepancy” of
the Irwin-Hall distribution [18,23], a new mathematical property of probability
distributions that we introduce.

1.1 Our Contribution

This section, first, introduces some informal notations to facilitate the introduc-
tion of our results and discussion on them. Let λ represent the security param-
eter. Consider a prime-field F of order p such that 2λ−1 � p < 2λ. That is,
every element in the finite field (when equivalently interpreted as elements of
the set {0, 1, . . . , p−1}) has a λ-bit binary representation. The parameter k ∈ N

represents the reconstruction threshold, and n ∈ N represents the total number
of parties.

Shamir Secret-Sharing Scheme. Suppose the secret is s ∈ F , and the tuple of dis-
tinct evaluation places is �X := (X1,X2, . . . , Xn) ∈ (F ∗)n, such that i �= j implies
Xi �= Xj .4 Shamir’s secret-sharing scheme with threshold k ∈ N, represented by
ShamirSS(n, k, �X), picks a random secret-sharing polynomial P (X) ∈ F [X]/Xk

conditioned on the fact that P (0) = s. The secret-shares for parties 1, 2, . . . , n

4 We assume this for the ease of presentation for now, while our results do not require
such restrictions. When there are two identical evaluation places, leaking one bit
from each share is equivalent to leaking two bits from one of those shares. Since our
results naturally extend to leaking multiple bits from each share, we do not need
the restriction that all the evaluation places are distinct. Furthermore, when all the
evaluation places are chosen independently randomly (at most a polynomial in the
security parameter), the probability that there are two identical evaluation places
are exponentially small (by the birthday bound) since the field size is exponentially
large in the security parameter.



348 H. K. Maji et al.

are s1 = P (X1), s2 = P (X2), . . . , sn = P (Xn), respectively. Observe that, in a
Shamir secret-sharing scheme, it is implicit that the number of parties satisfies
n < p.

Physical Bit-Leakage. Our work represents all the secret shares s1, . . . , sn ∈ F
with the parties as λ-bit binary representation. An m-bit local physical-bit leak-
age function specifies probing locations {�i,j} 1�i�n

1�j�m

such that �i,j ∈ {1, 2, . . . , λ}
for each of the n secret shares. The output of the leakage function provides the
�i,j-th bit5 in the i-th secret-share si, for all 1 � i � n and 1 � j � m. For
a fixed secret s ∈ F , the output of the leakage function is a distribution over
the sample space {0, 1}mn induced by the random choice of the secret-sharing
polynomial P (X) above.

Local Leakage-Resilience Against Physical Bit-Leakage. ShamirSS(n, k, �X) is (1−
ε)-secure against local physical-bit leakages if, for any two secrets s(0), s(1) ∈ F
and an m-bit local physical-bit leakage function, the statistical distance between
the leakage distributions is at most ε.6

Result I: Feasibility. Suppose we are given as input the number of parties
n ∈ N, the reconstruction threshold 2 � k ∈ N, the length of the binary repre-
sentations λ ∈ N, the insecurity tolerance ε = 2−t, and the number of leakage
bits m from each secret-share. Our experiment picks distinct evaluation places
�X uniformly at random from the set F ∗. Given a fixed tuple of distinct evalu-
ation places �X, one tests whether ShamirSS(n, k, �X) is resilient to m-bit local
physical-bit leakage resilient or not.

We prove that the ShamirSS(n, k, �X) scheme is (1 − ε)-secure (except with
an exponentially small probability in (k − 1) · λ over the random choices of the
evaluation places �X), if the following conditions are satisfied.

1. The number of bits λ satisfies λ/ log2 λ � Θ (t/k) , and
2. The total leakage mn satisfies mn � kλ/ log2 λ.

This result is the summarized in Theorem 4 and Corollary 4.
The constants in the asymptotic notations are all universal positive con-

stants. Given n, k, F parameters, note that one can choose the random evalu-
ation places once (using a trusted setup, e.g., common random string) for all
future instantiations of Shamir secret-sharing scheme. The probability that the
instantiation is not (1− ε)-secure is exponentially small. We emphasize that the

5 For instance, let λ = 5 and p = 19. The element 5 ∈ F = {0, 1, . . . , 18} is represented
as 00101. The first bit is 1, second bit is 0, third bit is 1, and the fourth and the
fifth bits are both 0.

6 One can simulate the leakage joint distribution as follows. The simulator shall fix
an arbitrary secret (say, 0), generate its secret shares, and output the evaluation of
the leakage function on the respective secret shares. The simulation error for this
strategy is a two-approximation of the indistinguishability advantage by the triangle
inequality.



Leakage-Resilience of the Shamir Secret-Sharing Scheme 349

result above holds for any k � 2, which is the best possible result. Therefore,
for every n, k,m, ε, our result proves that Shamir secret-sharing scheme for all
large-enough prime fields F is leakage-resilient.

A Concrete Example. As a representative example, consider the following sce-
nario. Suppose the reconstruction threshold is k = 2, the number of bits leaked
is m = 1, and the number of parties n = 10, 100, and 1000. Assume we wish
to achieve insecurity ε = 2−50 and succeed in picking a set of good evaluation
places with probability (at least) 1 − 2−50. Our Theorem 3 states that picking
a prime number p with more than 430, 4800, and 62000 bits, respectively, in its
binary representation suffices. Intuitively, it scales (roughly) linearly with n. As
k increases, even smaller primes suffice. The estimates above correspond to the
most difficult case for security.

Reinterpretation: Randomly Punctured Reed-Solomon Code. Given a Reed-
Solomon code of dimension k over a prime-field F , one punctures (p − 1) − n
columns among the columns numbered {1, 2, . . . , p − 1}. Suppose the columns
numbered (0,X1, . . . , Xn) survive the puncturing operations. The Massey secret-
sharing scheme [35] corresponding to this resulting [n + 1, k]F linear error-
correcting code is identical to the ShamirSS(n, k, �X) secret-sharing scheme men-
tioned above. Consequently, our result proves that all puncturing operations
(except an exponentially small fraction of them) result in an (1 − ε)-secure
leakage-resilient scheme.

Result II: Hardness of Computation. We present an attack strategy for
any k � 2, n � k, m � 1, and p = 1 mod k. For a fixed k � 2, there are
infinitely many primes satisfying p = 1 mod k due to Dirichlet’s theorem [39].
Our attack leaks only the least-significant bit of the secret-shares, and has a
constant advantage in distinguishing two secrets based on this leakage. For given
values of k, n, p satisfying the conditions above, there are (roughly) nkpn−k · (p−
1)/k vulnerable tuples of evaluation places where our attack succeeds.

For k = 2, 3 (and any p), we calculate the exact advantage of our attack.
Next, for any k � 2, as p → ∞, we show that the quality of our attack is
lower-bounded by the “discrepancy” of the Irwin-Hall distribution [18,23] (with
parameter (k−1), represented by Ik−1). The “discrepancy” of a distribution (see
Definition 9) is a new property of probability distributions that we introduce,
which is of potential independent interest. We explicitly calculate the discrepancy
of the Irwin-Hall distribution for (k − 1) ∈ {2, 3, . . . , 24}, and Fig. 2 provides the
details. If the discrepancy of the Irwin-Hall distribution Ik−1 is non-zero, then
the discrepancy is at least 1/k!. However, based on our numerical experiments,
we conjecture that the discrepancy of Irwin-Hall distribution (with parameter
k) behaves as � exp(−Θ (k)), which is not negligible for k = O (log λ). We
emphasize that, given a fixed k, the conjectured distinguishing advantage of this
attack depends only on k, independent of the security parameter. Intuitively,
increasing the size of the prime should only make the scheme more secure, and
the conjecture above considers p → ∞.



350 H. K. Maji et al.

Reinterpretation: Attack on Additive Secret-Sharing Scheme. Our physical bit
leakage attack on the Shamir secret-sharing scheme directly translates into phys-
ical bit leakage attacks on the additive secret-sharing scheme. If the number of
shares in the additive secret sharing scheme is O (log λ) then, our conjecture
above, states that the advantage of our attack is 1/poly (λ).

Benhamouda et al. [3] proposed a general leakage attack on additive secret-
sharing scheme. Their attack tests whether each share is smaller than p/2k and
has an advantage of (roughly) 1/kk. In comparison, our attack employs a simpler
leakage function, i.e., physical-bit leakage, and will achieve similar advantage if
our conjecture holds. Since the leakage function is simpler, the threat it poses is
even more significant.

1.2 Technical Overview

Let λ be the security parameter. Let F be a prime field of order p such that
p needs λ bits in its binary representation. That is, we have p ∈ {2λ−1, 2λ−1 +
1, . . . , 2λ − 1}.

For a secret s ∈ F , assume that Shamir’s secret sharing scheme uses a
random polynomial P (X) of degree < k = poly (λ) conditioned on P (0) = s
to share a secret among n = poly (λ) parties. Let the evaluation places be
�X = (X1,X2, . . . , Xn) ∈ (F ∗)n such that i �= j =⇒ Xi �= Xj (i.e., all
evaluation places are distinct). The share of party i is the evaluation of the
polynomial P (X) at the evaluation place Xi. ShamirSS(n, k, �X) represents this
secret-sharing scheme.

Fix the local leakage function �τ that leaks m physical-bits from the binary
representation of the secret-shares of the n parties. Furthermore, �τ

(
Share

�X(s)
)

represents the joint distribution of the leakage conditioned on the fact that the
secret is s ∈ F . If this joint distribution of the leakage is independent of the
secret, then the secret-sharing scheme is locally leakage-resilient to physical bit
leakages.

Our objective is to prove that Shamir secret-sharing scheme is locally leakage-
resilient for most evaluation places �X, when �X is chosen uniformly at random
from the set (F ∗)n under the constraint that i �= j =⇒ Xi �= Xj . Theorem 3
formally states this result. To simplify the presentation of key technical ideas, it
is instructive to use m = 1. The analysis for larger m is analogous.

Reduction 1. Fix any two secrets s(0), s(1) ∈ F . We prove the following two
bounds. First, by standard Fourier techniques, we prove

SD
(
�τ
(
Share

�X(s(0))
)

, �τ
(
Share

�X(s(1))
))

�
∑

��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

.

Here, 1�i
is the indicator function of the set {x : Li(x) = �i}; C �X is the (punc-

tured) Reed-Solomon code that corresponds to Shamir’s secret-sharing with eval-
uation places �X; C⊥

�X
is the dual code of C �X .



Leakage-Resilience of the Shamir Secret-Sharing Scheme 351

Next, we show that it suffices to prove that, over randomly chosen evaluation
places �X ∈ (F ∗)n (under the constraint that i �= j =⇒ Xi �= Xj), this upper
bound is small. That is,

E
�X

⎡
⎢⎣

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)⎤
⎥⎦ � exp(−Θ (λ)).

This bound above is sufficient for our objective. One could use a union bound
on the leakage function to conclude that most evaluation places yield a locally
leakage-resilient Shamir secret-sharing scheme. After that, a Markov inequal-
ity yields random evaluation places, except an exponentially small fraction of
the evaluation places, result in a locally leakage-resilient Shamir secret-sharing
scheme. Note that we avoid the union bound over secrets since the upper bound
is insensitive to the secret. The above argument can be found in Sect. 5.2.

Reduction 2. We employ Fourier analysis to estimate the following bound

E
�X

⎡
⎢⎣

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)⎤
⎥⎦ .

The analysis in Sect. 5.4 reduces this estimation to two problems, Problems A
and B below.

Problem A. For simplicity of presenting the main technical ideas, assume that
the parties’ secret-shares are elements from the set {0, 1}λ. The Fourier analysis
above relies on bounding certain exponential sums over the subset of elements
that agree with an apriori fixed m-bit leakage. In particular, these elements will
have m bits identical to the leakage, and all remaining (λ − m) bits may either
be zero or one. The abstraction of generalized arithmetic progressions (refer to
Sect. 3.1) is adequate to capture the analytic properties of such subsets.

We import an estimate of the exponential sum mentioned in Imported The-
orem 1. For the particular case of m = 1, we present a tight estimate of the con-
stant in the above imported theorem (refer to Theorem 2). This tight estimate of
the constant translates into near-optimal bounds on the local leakage-resilience
of Shamir secret-sharing scheme.

A subtlety in the argument above is that the set of binary representations of
a party’s secret-share is not the set {0, 1}λ. It is, in fact, the set of the binary
representations of {0, 1, . . . , p − 1}. However, this subset can be partitioned into
(at most) λ subsets such that each set is an MSB-fixing set, a set whose most
significant bits are fixed and the least significant bits are uniformly random (for
formal definition and examples, refer to Sect. 4). This notion of MSB-fixing sets
introduced by us helps perform the simplified analysis mentioned above in the
context of our problem.



352 H. K. Maji et al.

Problem B. Once problem A is solved, the Fourier analysis requires another
bound. Fix any �α ∈ Fn. Next, consider the following equation.

⎛
⎜⎜⎜⎝

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

α1

α2

...
αn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .

How many solutions �X ∈ (F ∗)n exist of the equation above, such that i �= j =⇒
Xi �= Xj?

Consider the simplification when �α = �1. Fix any distinct values of
Xk+1, . . . , Xn ∈ F ∗. If a solution X1, . . . , Xk exists (where each X1, . . . , Xn are
distinct as well) then every permutation of X1, . . . , Xk is also a solution. Con-
sequently, the number of solutions of the equation above is at least min{0, k!}.

We rely on Bézout’s theorem (in particular, a form that has an easy-to-verify
analytic test, refer to Imported Theorem 2) to claim that the number of solutions
is, in fact, at most k!. Consequently, overall, the number of solutions �X ∈ (F ∗)n

is O (k! · pn−k
)
. This bound holds for any �α, in general, and not just for �α = �1.

Resolving the problems A and B completes the proof of Theorem 3. Corol-
lary 2 is an easy-to-use corollary of this theorem demonstrating that when
n = poly (λ), k = O

(
t
λ + log λ

λ · n
)

suffices to ensure that 1 − exp(−Θ (λ))
fraction of the evaluation places yield a Shamir secret-sharing scheme that is
locally leakage-resilient to m = 1 physical-bit leakage with insecurity �2−t.

Generalization to m-Bit Leakage from Each Share. Observe that one can
directly consider the leaking m-bit leakage from the secret-shares of the Shamir
secret-sharing scheme. Towards this objective, one needs to consider MSB-fixing
sets that are consistent with an apriori fixed leakage, which are proper rank-
(m + 1) generalized arithmetic progressions. However, the constant in Imported
Theorem 1 for rank-(m + 1) generalized arithmetic progressions is not explicit.
Moreover, without an explicit constant, one can not provide concrete bound on
the insecurity of the secret-sharing scheme. Consequently, our work relies on a
different approach.

We consider secret-sharing scheme where each share of the Shamir secret-
sharing scheme is duplicated m-times, and the adversary leaks one physical bit
from each secret share. This technique allows using our Theorem 2 that has an
explicit and tight constant, which is specifically tailored for our problem. The
remainder of the technical analysis proceeds similar to the presentation above.
The general result is summarized as Theorem 4.

New Physical-Bit Attack. For reconstruction threshold k, consider the num-
ber of parties n = k, and the prime p = 1 mod k. Let F be the finite field of
order p. Let

{
α, α2, . . . , αk = 1

} ⊆ F ∗ be the set of all solutions to the equa-
tion Zk − 1 = 0. Consider n = k evaluation places X1 = α, X2 = α2, . . . , and
Xk = αk. Let f(X) ∈ F [X]/Xk be an arbitrary polynomial with f(0) = s, for
some secret s ∈ F. Observe that f(X1) + f(X2) +· · · + f(Xk) = ks.



Leakage-Resilience of the Shamir Secret-Sharing Scheme 353

To present the primary technical ideas, consider k = 3. Let s1 be the secret
share of party one. Over the random choice of the polynomial f(X), the secret
share s1 is uniformly random over F . Similarly, the choice of s2, the secret
share of party two, is independent and uniformly random over F . However, the
secret share of the k-th party satisfies the constraint sk = ks − ∑k−1

i=1 si, i.e.,
s3 = 3s − (s1 + s2).

Our leakage functions shall leak the least significant digit of the shares s1, s2,
and s3 to construct a test that predicts the least significant digit of ks with
constant advantage, for an appropriate s ∈ F . For a random secret, our test has
(statistically close to) zero advantage. So, our test distinguishes, by an averaging
argument, two secrets with a constant advantage.

Our New Test. Let S1, S2, S3 ∈ {0, 1, . . . , p − 1} ⊆ N0 := {0, 1, 2, . . . } represent
the whole numbers corresponding to the secret shares s1, s2, s3. Our test predicts
the least significant digit of ks as the parity of the least significant digits of
S1, S2, S3. Observe that (the addition in the equation below is over the set of
whole numbers N0, and (ks) ∈ F is interpreted as an element of {0, 1, . . . , p−1})

S1 + S2 + S3 = pZ + (ks).

Therefore, if S1 + S2 + S3 = ip + ks, for an even integer i, then the parity of
the least significant digits of S1, S2, S3 correctly predicts the least significant
digit of ks. On the other hand, if S1 + S2 + S3 = ip + ks, for an odd integer
i, then the parity of the least significant digits of S1, S2, S3 incorrectly predicts
the least significant digit of ks. Our objective is to prove that there exists s ∈ F
such that the absolute value of the difference between the correct and incorrect
prediction probabilities is a constant. Equivalently, the objective is to prove that
there exists s ∈ F such that the probability of correct prediction probability is
a constant larger than 1/2 or a constant smaller than 1/2.

So, for independent and uniformly random S1, S2 ∈ {0, 1, . . . , p − 1}, our
objective is to compute the probability that

S1 + S2 + S3 = ip + (ks),

where i is even and S3 ∈ {0, 1, . . . , p − 1}. Equivalently, for independent and
uniformly random S1, S2 ∈ {0, 1, . . . , p − 1}, our objective is to compute the
probability that

S1+S2 ∈ 2pZ+(ks)−{0, 1, . . . , p−1} = N0∩
⋃
i∈Z

i odd

[ip + (ks) + 1, (i + 1)p + (ks)] .

For k = 3, we can show that this probability is <0.25 by choosing ks = (p−1)/2.

Extensions. Note that our attack naturally extends to that the evaluation places
form an arbitrary coset in F ∗/{α, . . . , αk = 1}. For n > k, one can choose the
remainder of the evaluation places arbitrarily. Consequently, there are a total of
∼ nk · pn−k · (p − 1)/k evaluation places where our attack works.



354 H. K. Maji et al.

For a fixed k, and prime p → ∞, Sect. 6.1 shows that the advantage of our
test tends to disc(Ik−1), where Ik−1 is the Irwin-Hall distribution for parameter
(k − 1), and Definition 9 defines the discrepancy of a probability distribution
disc(·). Figure 1 shows this discrepancy for (k − 1) = 4 and (k − 1) = 5. Figure 2
shows the conjectured bound for discrepancy for (k − 1) ∈ {2, 3, . . . , 24}.

2 Preliminaries

In this work, λ represents the security parameter. Let p be a prime whose binary
representation has λ bits. Or, equivalently, the prime satisfies 2λ−1 � p < 2λ.
For any positive integer a and i � 1, [a]i denotes the ith least significant bit
in the binary representation of a. For example, let λ = 5 and p = 19, the field
element 5 ∈ F = {0, 1, ..., 18} is binary represented as 00101. Its least significant
bit is [5]1 = 1, second least significant bit is [5]2 = 0, and so on. Using our
notations, the binary representation of p is [p]λ [p]λ−1 · · · [p]1.

0 1 2 3 4
0

0.2

0.4

0.6

0 2 4
0

0.2

0.4

0.6

Fig. 1. Plot of the Irwin-Hall distribution for parameters (k − 1) = 4 and (k − 1) = 5.
The black intervals have width 1, each black interval is separated from the next nearest
black interval by distance 1, and the central mass of probability distribution is captured
by a black interval. The discrepancy of the respective distributions is the difference
between the probability mass inside the black bands and the total probability mass
outside the black bands. For (k − 1) = 4 and (k − 1) = 5, the discrepancies are 5/24
and 2/15, respectively.

For any set S, 1S denotes its indicator function. That is, 1S(x) = 1 if x ∈ S,
and 1S(x) = 0, otherwise.

For any two distributions A and B (over a countable sample space), the sta-
tistical distance between two distributions, represented by SD(A,B), is defined
as 1

2

∑
x |Pr [A = x] − Pr [B = x]|.

We shall use f(λ) ∼ g(λ) if f(λ) = (1 + o (1)) g(λ). Additionally, we write
f(λ) � g(λ) if f(λ) � (1 + o (1)) g(λ).



Leakage-Resilience of the Shamir Secret-Sharing Scheme 355

2.1 Secret Sharing Schemes

Definition 1 ((n, k)F -Secret Sharing Scheme). For any two positive integer
k < n, an (n, k)F -secret-sharing scheme over a finite field F consists of two
functions Share and Rec. Share is a randomized function that takes a secret s ∈ F
and outputs Share(s) = (Share(s)1, . . . ,Share(s)n) ∈ Fn. The pair of function
(Share,Rec) satisfies the following requirements.

– Correctness. For any secret s ∈ F and a set of parties {i1, i2, . . . , it} ⊆
{1, 2, . . . , n} such that t � k, we have

Pr [Rec(Share(s)i1 , . . . ,Share(s)it
) = s] = 1.

– Privacy.7 For any two secret s0, s1 ∈ F and a set of parties {i1, i2, . . . , it} ⊆
{1, 2, . . . , n} such that t < k, we have

SD
((

Share(s0)i1 , . . . ,Share(s0)it

)
,
(
Share(s1)i1 , . . . ,Share(s1)it

))
= 0.

0 5 10 15 20 25
0

2

4

6

8

10

(k − 1)

−
ln

d
is
c(
I k

−
1
)

Fig. 2. Plot of − ln disc(Ik−1) versus (k − 1) for (k − 1) ∈ {2, 3, . . . , 24}.

Definition 2 ((n, k, �X)F -Shamir Secret-sharing). Let F be a prime field.
For any positive integer k � n and evaluation places �X = (X1, . . . , Xn) the
following conditions are satisfied. (1) For all 1 � i � n, Xi ∈ F ∗, and (2) for all
1 � i < j � n, Xi �= Xj. The corresponding (n, k, �X)F -Shamir secret sharing is
defined as follows.
7 The definition considers perfect privacy. For secret-sharing schemes based on

Massey’s construction [35] from linear error-correcting codes, the shares of any set
of parties either witness perfect privacy, or the set of shares suffices to reconstruct
the secret. A statistical notion of privacy is relevant when using non-linear codes
instead. However, in our work we shall primarily study secret-sharing schemes based
on Massey’s construction from linear error-correcting codes. Consequently, we define
perfect privacy only.



356 H. K. Maji et al.

– Given secret s ∈ F , Share
�X(s) independently samples a random ai ∈ F , for

all 1 � i < k. The ith share of Share
�X(s) is

Share
�X(s)i := s + a1Xi + a2X

2
i + · · · + ak−1X

k−1
i .

– Given shares
(
Share

�X(s)i1 , . . . ,Share
�X(s)it

)
, Rec

�X interpolates to obtain the

unique polynomial f ∈ F [X]/Xk such that f(Xij
) = Share

�X(s)ij
for all 1 �

j � t, and outputs f(0) to be the reconstructred secret.

2.2 Physical-Bit Leakage Function

In this paper, we study the physical-bit leakage. Let F be the prime field of order
p. Recall that 2λ−1 � p < 2λ. For every element a ∈ F , we let a be an element
in the set {0, 1, . . . , p − 1}. We shall use λ bits for the binary representation of
a, i.e., [a]λ [a]λ−1 · · · [a]1. In particular, we pad with a sufficient number of 0s if
a < 2λ−1. For example, when λ = 5 the binary representation of a = 6 is 00110.

Definition 3. An m-bit physical-bit leakage function �τ = (τ1, . . . , τn) on
(n, k)F -secret sharing, leaks m bits from every share locally. This leakage func-
tion is specified by indices u

(i)
1 , . . . , u

(i)
m , for all 1 � i � n. Given the indices

u
(i)
1 , . . . , u

(i)
m , the leakage on the ith share is the joint distribution

τi(Share(s)i) :=
(
[Share(s)i]u(i)

1
, [Share(s)i]u(i)

2
, . . . , [Share(s)i]u(i)

m

)
.

Furthermore, �τ (Share(s)) denotes the collection of leakage from every share

(τ1(Share(s)1), τ2(Share(s)2), . . . , τn(Share(s)n)) .

2.3 Local Leakage-Resilient Secret Sharing Scheme Against
Physical-Bit Leakage

Definition 4 (�n, k,m, ε�F -LLRSS). An (n, k)F -secret sharing scheme (Share,
Rec) is an �n, k,m, ε�F -local leakage-resilient secret sharing scheme against m
physical-bit leakage (tersely represented as �n, k,m, ε�F -LLRSS), if it provides
the following guarantee. For any two secrets s0, s1 ∈ F and any physical-bit
leakage function �τ that leaks m physical bits from every share locally, we have

SD (�τ(Share(s0)) , �τ(Share(s1))) � ε.

2.4 Generalized Reed-Solomon Code

Definition 5 ((n, k, �X, �α)F -GRS). A generalized Reed-Solomon code over
prime field F with message length k and block length n consists of an encod-
ing function Enc : F k → Fn and decoding function Dec : Fn → F k. It is specified
by the evaluation places �X = (X1, . . . , Xn), such that for all 1 � i � j � n,



Leakage-Resilience of the Shamir Secret-Sharing Scheme 357

Xi �= Xj, and a scaling vector �α = (α1, . . . , αn) such that for all 1 � i � n,
αi ∈ F ∗. Given �X and �α, the encoding function is

Enc(m1, . . . ,mk) := (α1 · f(X1), . . . , αn · f(Xn)) ,

where f(X) := m1 + m2X + · · · + mkXk−1.
In particular, the generator matrix of the linear (n, k, �X, �α)F -GRS code is

the matrix ⎛
⎜⎜⎜⎝

α1 · 1 α2 · 1 · · · αn · 1
α1 · X1 α2 · X2 · · · αn · Xn

...
...

. . .
...

α1 · Xk−1
1 α2 · Xk−1

2 · · · αn · Xk−1
n

⎞
⎟⎟⎟⎠ .

Observation 1. The joint distribution of the secret-shares of an (n, k, �X)F -
Shamir secret sharing with secret s = 0 is identical to the uniform distribution
over the codewords in the (n, k − 1, �X, �X)F -GRS code.

The following standard properties of generalized Reed-Solomon codes shall
be helpful.

Theorem 1 (Properties of GRS).

1. The distance of the (n, k, �X, �α)F -GRS is (n − k + 1) (i.e., the linear code is
maximum distance separable [32]).

2. The dual code of (n, k, �X, �α)F -GRS is identical to the (n, n− k, �X, �β)F -GRS,
where for all 1 � i � n,

βi :=

⎛
⎜⎜⎝αi

n∏
j=1
j �=i

(Xi − Xj)

⎞
⎟⎟⎠

−1

.

The βi’s are the scalars from Lagrange interpolation. A proof for this theorem
can be found in, for example, [17,31].

2.5 Fourier Analysis Basics

In this paper, we shall use Fourier analysis on prime field F of order p. We follow
the notation of [38]. Define ω := exp(2πı/p). For any functions f, g : F → C,
define

〈f, g〉 :=
1
p

∑
x∈F

f(x) · g(x),

where z is the complex conjugate of z ∈ C. For z ∈ C, |z| :=
√

zz. For any
α ∈ F , define the function f̂ : F → C as follows.

f̂(α) :=
1
p

∑
x∈F

f(x) · ω−αx.



358 H. K. Maji et al.

The Fourier transform maps the function f to the function f̂ . This transfor-
mation is a full-rank linear mapping, i.e., only the zero function has zero Fourier.
In particular, it satisfies the following identities.

Lemma 1 (Fourier Inversion Formula). f(x) =
∑

α∈F f̂(α) · ωαx.

Lemma 2 (Parseval’s Identity). 1
p

∑
x∈F |f(x)|2 =

∑
α∈F

∣∣∣f̂(α)
∣∣∣
2

.

3 Imported Theorems

3.1 Generalized Arithmetic Progressions

Our first imported theorem is on the �1-norm of the Fourier-coefficients of the
indicator function of a generalized arithmetic progression.

Definition 6 (r-GAP). Let F be a finite field. A subset S ⊆ F is a generalized
arithmetic progression of rank r (i.e., an r-GAP) if

S = {a0 + a1h1 + a2h2 + · · · + arhr : 0 � hi < Hi for every 1 � i � r} ,

where a0, . . . , ar ∈ F and 2 � H1, . . . , Hr � |F |.
Furthermore, the set S is proper if |S| = H1H2 · · · Hr.

Intuitively, in a proper GAP every element in the set has a unique decomposition.
Shao [40] proved that for any proper r-GAP S, the �1-norm of the Fourier-

coefficients of its indicator function 1S is small.

Imported Theorem 1 (Theorem 3.1 of [40]).8 For every natural number
r, there exists a constant Cr > 0 such that the following bounds holds for any
proper r-GAP S ⊆ F .

∑
α∈F

∣∣∣1̂S(α)
∣∣∣ � Cr · log(H1) · · · log(Hr).

Shao [40] proved this result for vector spaces over F as well. However, we are
importing the minimum result sufficient for our derivations.

In our setting, we are interested in a special type of proper 2-GAPs satisfying
a1 = 1 and a2 = 2H1. We carefully calculate the constant D2 for this special
case because a tight estimate itranslates into tight bounds on the insecurity of
the cryptographic constructions. Our results are summarized in Theorem 2.

3.2 Number of Isolated Solutions of a Square Polynomial System

Our next imported theorem is regarding the number of the solutions of a square
polynomial system. The specific version of Bézout’s theorem that we are using
8 Note that, in the definition of [40], the Fourier coefficients are scaled by the field size

compared to our definition.



Leakage-Resilience of the Shamir Secret-Sharing Scheme 359

is due to Wooley [42]. Before we present Wooley’s theorem, let us introduce the
minimal necessary definitions. For this part of the presentation, we follow the
notations introduced by [10].

Definition 7 (Degree, Formal Derivative, Determinant, and Jacobian).

1. Let F be a prime field. The degree of a monomial Xi1
1 Xi2

2 · · · Xin
n is

∑n
�=1 i�.

For a polynomial f ∈ F [X1,X2, . . . , Xn], the degree of f is the largest degree
of its monomial.

2. Suppose
f = gtX

t
i + gt−1X

t−1
i + · · · + g1Xi + g0,

where g0, . . . , gt ∈ F [X1, . . . , Xi−1,Xi+1, . . . , Xn]. Then, the formal derivative
of f with respect to Xi is the polynomial in F [X1,X2, . . . , Xn] defined below.

∂f

∂Xi
:= (t · gt)Xt−1

i + ((t − 1) · gt−1)Xt−2
i + · · · + (2 · g2)Xi + g1.

3. For a square matrix M ∈
(
F [X1,X2, . . . , Xn]

)k×k

, det(M) denotes the deter-
minant of M defined as follows.

det(M) :=
∑

σ : {1,2,...,k}→{1,2,...,k}
σ is a permutation

sgn(σ) ·
k∏

i=1

Mi,σ(i),

where sgn(σ) represents the {+1,−1} sign of the permutation σ.9 Note that
det(M) ∈ F [X1,X2, . . . , Xn].

4. For polynomials f1, . . . , fk ∈ F [X1,X2, . . . , Xn], their Jacobian is

J(f1, . . . , fk) :=

⎛
⎜⎜⎜⎜⎝

∂f1
∂X1

∂f2
∂X1

· · · ∂fk

∂X1
∂f1
∂X2

∂f2
∂X2

· · · ∂fk

∂X2
...

...
. . .

...
∂f1
∂Xn

∂f2
∂Xn

· · · ∂fk

∂Xn

⎞
⎟⎟⎟⎟⎠

.

Intuitively, the Jacobian encodes information pertinent to the independence of
a system of polynomials.

A square polynomial system has equal number of polynomials and the number
of variables. That is, in the presentation above, we have n = k. The following
theorem bounds the number of isolated solutions of a square polynomial system.

9 The sign of a permutation is +1 is an even number of swaps transform the permu-
tation into the identity-permutation. Otherwise, the sign is −1.



360 H. K. Maji et al.

Imported Theorem 2 (Consequence of [42]). Let F be a prime order field.
Let f1, . . . , fk ∈ F [X1, . . . , Xk] such that the degree of fi is di. The number of
(x1, . . . , xk) ∈ F k satisfying

∀1 � i � k, fi(x1, . . . , xk) = 0 and

det
(
J(f1, . . . , fk)

)
(x1, . . . , xk) �= 0.

is at most (d1d2 · · · dk).

Wooley’s theorem covers the case of polynomial congruence equations mod ps,
where s � 1. However, we import the result that suffices for our derivations.

Intuitively, a root with high multiplicity also occurs as a root of the Jacobian.
On the other hand, the isolated roots occur only in the polynomials but not in
the Jacobian. This theorem presented above, provides an easy-to-verify test to
count the isolated roots of a square polynomial system.

4 Physical-Bit Witness Set as a Small Number of 2-GAPs

Let 1 � u � λ be an arbitrary index. Let b ∈ {0, 1} be an arbitrary bit. We are
interested in

Au,b := {a ∈ F | [a]u = b}.

We shall prove that for any u and b, Au,b is the disjoint union of (at most) λ
number of 2-GAPs.

We first show that the prime field F can be partitioned as λ number of
most-significant-bit-fixing sets, which is defined as follows.

Definition 8 (Most-significant-bit-fixing Set). A set S ⊆ F is called most-
significant-bit-fixing set (MSB-fixing set) if there exists an index 1 � i∗ � λ and
a fixing aλ, aλ−1, . . . , ai∗ such that S is identical to the following set.

{
b ∈ {0, 1}λ

∣∣∣ ∀i∗ � i � λ, [b]i = ai

}
.

For example, when λ = 5, the set S = 01{0, 1}3 (i.e., the bit-strings correspond-
ing to the elements in the set {8, 9, 10, . . . , 15}) is an MSB-fixing set.

Given a prime field F , Fig. 3 demonstrates how to partition it as most
significant bit-fixing sets. Easily, one can verify that Fλ, Fλ−1, . . . , F1 are all
MSB-fixing sets. For example, when λ = 5 and p = 29, the binary representa-
tions of the elements in {0, 1, . . . , 28} partitions into subsets 0{0, 1}4, 10{0, 1}3,
110{0, 1}2, and {11100}.

Now, given Au,b, for 0 � i � λ, define

Ai := Au,b ∩ Fi.

One can verify that Ai consists of all bit-strings such that the following condi-
tions hold simutaneously. (1) Some of most significant bits are fixed, (2) the uth



Leakage-Resilience of the Shamir Secret-Sharing Scheme 361

Fig. 3. Given a finite field F , this procedure partitions F into MSB-fixing sets
Fλ, Fλ−1, . . . , F1.

least significant bit is fixed to b, and (3) finally, all the remaining positions are
uniformly random. Continuing with the example above, the set S2,0 is the subset
of elements in S with their 2-nd LSB fixed to 0. That is, S2,0 = 01{0, 1}0{0, 1},
the binary representation of elements in the set {8, 9, 12, 13}. Therefore, one can
write Ai as

Ai = {a0 + h1 + a2h2 : 0 � hi < Hi for i = 1, 2 } ,

for some a0, a2, H1, and H2 such that a2 = 2H1 and a2H2 < p. For example, the
elements whose binary representation are in the set S2,0 above can be expressed
as the proper 2-GAP 8+{0, 1}+{0, 4}. We have the following theorem regarding
the �1-norm of the Fourier coefficient of such special type of 2-GAP sets.

Theorem 2. Let p be a prime and

S = {a0 + h1 + a2h2 : 0 � hi < Hi for i = 1, 2} ,

for some a0, a2, H1, and H2 such that a2 = 2H1 and a2H2 < p. Then

∑
α∈F

∣∣∣1̂S(α)
∣∣∣ � (1 + o (1)) ·

(
2
π

)2

· log(H1) log(H2).



362 H. K. Maji et al.

We defer the proof of this theorem to the full version. This theorem immediately
implies the following corollary.

Corollary 1. For any index 1 � u � λ and bit b ∈ {0, 1},
∑
α∈F

∣∣∣1̂Au,b
(α)
∣∣∣ � (1 + o (1)) · 1

π2
· (log p)2 · λ.

Proof. We have

∑
α∈F

∣∣∣1̂Au,b

∣∣∣ �
∑
α∈F

λ∑
i=1

∣∣∣1̂Ai

∣∣∣ (Triangle inequality)

=
λ∑

i=1

∑
α∈F

∣∣∣1̂Ai

∣∣∣

�
λ∑

i=1

(1 + o (1)) ·
(

2
π

)2

· log(H1) log(H2) (Theorem 2)

= (1 + o (1)) ·
(

2
π

)2

· log(H1) log(H2) · λ

� (1 + o (1)) ·
(

2
π

)2

·
(

log(H1) + log(H2)
2

)2

· λ

(AM-GM inequality)

< (1 + o (1)) · 1
π2

· (log p)2 · λ

The last inequality uses the fact that H1 · H2 < p.

5 Physical-Bit Leakage on Shamir Secret Sharing

In this section, we prove the following theorems.

Theorem 3. For any ε > 0, the following bound holds.

Pr
�X

[
ShamirSS(n, k, �X) is not an �n, k, 1, ε�F -LLRSS

]
� 1

ε
· 2

n · (log p)3n · λn · (k − 1)!

π2n · (p − n)k−1
.

We emphasize that �X is the uniform distribution over the set of all n-tuple of
unique evaluation places in F ∗.

Before we present the proof of this theorem, let us first interpret it through
various parameter settings.

Corollary 2. Let 0 < d < ln 2 be an arbitrary constant. There exists a (slightly)
super-linear function P (·, ·) such that the following holds. For any number of
parties n ∈ N, reconstruction threshold 2 � k ∈ N, and insecurity tolerance
ε = 2−t, if the number of bits λ needed to represent the order of the prime-field



Leakage-Resilience of the Shamir Secret-Sharing Scheme 363

F satisfies λ > P (n/k, t/k), then ShamirSS(n, k, �X) is an �n, k, 1, ε�F -LLRSS
with probability (at least) 1 − exp(−d · (k − 1)λ).

In particular, the (slightly super-linear) function P (n/k, t/k) = d′ · (n
k + t

k

) ·
log2

(
n
k + t

k

)
suffices, for an appropriate universal positive constant d′.

In fact, our result can be generalized to multiple-bit physical leakage, which
is summarized as follows.

Theorem 4. For any ε > 0, for any positive integer m, the following bound
holds.

Pr
�X

[
ShamirSS(n, k, �X) is not an �n, k,m, ε�F -LLRSS

]

� 1
ε

·
(

log p

m

)n

· 2mn · (log p)2mn · λmn · (k − 1)!
π2n · (p − n)k−1

.

We remark that this result extends to the setting that mi bits are leaked from the
ith share for i ∈ {1, 2, . . . , n}. In this case, the probability that ShamirSS(n, k, �X)
is not leakage resilient is bounded by

1
ε

·
(

log p

m1

)(
log p

m2

)
· · ·
(

log p

mn

)
· 2M · (log p)2M · λM · (k − 1)!

π2n · (p − n)k−1
,

where M =
∑n

i=1 mi.
The proof of Theorem 4 is analogous to the proof of Theorem 3. Hence, we

omit the proof of Theorem 4 and refer the reader to the full version for details.
Similarly, we interpret Theorem 4 as follows.

Corollary 3. Let 0 < d < ln 2 be an arbitrary constant. There exists a (slightly)
super-linear function P (·, ·) such that the following holds. For any number of par-
ties n ∈ N, reconstruction threshold 2 � k ∈ N, number of bits leaked from each
share m ∈ N, and insecurity tolerance ε = 2−t, there exists λ0 = P (mn/k, t/k)
such that if the number of bits λ needed to represent the order of the prime-
field F satisfies λ > λ0, then ShamirSS(n, k, �X) is an �n, k,m, ε�F -LLRSS with
probability (at least) 1 − exp(−d · (k − 1)λ).

In particular, function P (mn/k, t/k) = d′ · (mn
k + t

k

) · log2
(

mn
k + t

k

)
, for an

appropriate universal positive constant d′, suffices.

On the other hand, one can also interpret Theorem 4 as follows.

Corollary 4. Let 0 < d < ln 2 be an arbitrary constant. For any number of
parties n ∈ N, reconstruction threshold 2 � k ∈ N, and insecurity tolerance
ε = 2−t, there exists λ0 = (t/k) · log (t/k) such that if the number of bits λ
needed to represent the order of the prime-field F satisfies λ > λ0, then for all
m such that

m � kλ

n log2 λ
,

it holds that ShamirSS(n, k, �X) is an �n, k,m, ε�F -LLRSS with probability (at
least) 1 − exp(−d · (k − 1)λ).



364 H. K. Maji et al.

5.1 Claims Needed to Prove Theorem 3

We prove Theorem 3 by proving the following claims.
In the first claim, we prove an upper bound on the statistical distance between

the leakage of secrets s0 and s1. We emphasize that this upper bound is not
sensitive to the actually secrets, but only sensitive to the leakage function �τ and
evaluation places �X.

Claim 1. Let (Share
�X ,Rec

�X) be an (n, k, �X) Shamir secret sharing. Let C �X be
the set of all possible secret shares of the secret 0.10 Let C⊥

�X
be the dual code

of C �X . For every 1-bit physical leakage function family �τ = (τ1, τ2, . . . , τn), for
every leakage �� ∈ {0, 1}n, and for every pair of secrets s0 and s1, the following
inequality holds.

SD
(
�τ
(
Share

�X(s0)
)

, �τ
(
Share

�X(s1)
))

�
∑

��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

.

Here, we abuse the notation and use 1�i
to stand for the indicator function

1τ−1
i (�i)

. That is, 1�i
(si) = 1 if τi(si) = �i and 1�i

(si) = 0 otherwise.
Our next claim states that the average of the upper bound proven in Claim

1 over all evaluation places �X is sufficiently small.

Claim 2. Let (Share
�X ,Rec

�X) be an (n, k, �X) Shamir secret sharing. For every
1-bit physical leakage function family �τ = (τ1, τ2, . . . , τn), the following inequality
holds.

E
�X

⎡
⎢⎣

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)⎤
⎥⎦ � 2n · (log p)2n · λn · (k − 1)!

π2n · (p − n)k−1
.

We defer the proofs to Sect. 5.3 and Sect. 5.4. We shall first present why these
claims imply Theorem 3.

10 By Observation 1, C �X is an (n, k − 1, �X, �X)-GRS with generator matrix

⎛
⎜⎜⎜⎝

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

⎞
⎟⎟⎟⎠ .

.



Leakage-Resilience of the Shamir Secret-Sharing Scheme 365

5.2 Proof of Theorem 3 Using Claim 1 and Claim 2

By definition, we have11

Pr
�X

[
ShamirSS(n, k, �X) is not an �n, k, 1, ε�F -LLRSS

]

= Pr
�X

[
∃s0, s1, �τ s.t. SD

(
�τ(Share

�X(s0)) , �τ(Share
�X(s1)

)
� ε

]

� Pr
�X

⎡
⎢⎣∃s0, s1, �τ s.t.

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

� ε

⎤
⎥⎦ (Claim 1)

= Pr
�X

⎡
⎢⎣∃�τ s.t.

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

� ε

⎤
⎥⎦

�
∑

�τ

Pr
�X

⎡
⎢⎣

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

� ε

⎤
⎥⎦ (Union bound)

�
∑

�τ

1
ε

· 2n · (log p)2n · λn · (k − 1)!
π2n · (p − n)k−1

(Markov’s Inequality and Claim 2)

= (log p)n · 1
ε

· 2n · (log p)2n · λn · (k − 1)!
π2n · (p − n)k−1

� (log p)n · 1
ε

· 2n · (log p)2n · λn · k!
π2n · pk−1

∼ k!
ε

·
(

2λ(log p)3

π2

)n

· 1
2λ(k−1)

.

This completes the proof of Theorem 3.

5.3 Proof of Claim 1

We start with the following calculation, which can be proven using standard
techniques in Fourier analysis. We refer the readers to the full version for a
proof.

Claim 3. For any leakage �� ∈ {0, 1}n, we have

Pr
�s←Share

�X(s)

[
�τ(�s) = ��

]
=

∑

�α∈C⊥
�X

(
n∏

i=1

1̂�i
(αi)

)
ωs(α1+···+αn).

11 We note that the λ = log2 p. However, in Theorem 2, the logrithm is natural log.
Hence, we did not merge λ with log p.



366 H. K. Maji et al.

Now, given Claim 3, Claim 1 can be proven as follows.

SD
(
�τ
(
Share

�X(s0)
)

, �τ
(
Share

�X(s1)
))

=
1
2

∑
��∈{0,1}n

∣∣∣∣∣ Pr
�s←Share

�X(s0)

[
�τ(�s) = ��

]
− Pr

�s←Share
�X(s1)

[
�τ(�s) = ��

]∣∣∣∣∣

=
1
2

∑
��∈{0,1}n

∣∣∣∣∣∣∣
∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

1̂�i
(αi)

)(
ωs0(α1+···+αn) − ωs1(α1+···+αn)

)
∣∣∣∣∣∣∣

(Claim 3)

� 1
2

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
) ∣∣∣ωs0(α1+···+αn) − ωs1(α1+···+αn)

∣∣∣

(Triangle inequality)

� 1
2

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

· 2

=
∑

��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

5.4 Proof of Claim 2

The proof of Claim 2 crucially relies on the following claim, which bounds the
number of solutions to a polynomial system. We state and prove this claim first.

Claim 4. Let �α = (α1, α2, . . . , αn) be a non-zero vector in Fn. Then the number
of solutions �X = (X1,X2, . . . , Xn) ∈ (F ∗)n of the equation G �X · �αT = �0 such
that Xi �= Xj for every 1 � i < j � n is at most (p − 1)(p − 2) · · · (p − (n − k +
1)) · (k − 1)!. Here, G �X stands for the generator matrix of C �X , which is

G �X =

⎛
⎜⎜⎜⎝

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk−1
1 Xk−1

2 · · · Xk−1
n

⎞
⎟⎟⎟⎠ .

Proof. Note that G �X · �αT = �0 implies that �α ∈ C⊥
�X
. By Theorem 1, we know C⊥

�X
has distance k, which implies that there are at least k non-zero coordinates in
�α. Therefore, without loss of generality, assume αi �= 0 for every 1 � i � k − 1.
Now, for i = k, . . . , n, we fix Xi to be arbitrary distinct non-zero values . Note
that there are (p−1)(p−2) . . . (p−(n−k+1)) possible ways of doing this fixing.



Leakage-Resilience of the Shamir Secret-Sharing Scheme 367

Let ci :=
∑n

j=k+1 αjX
i
j for i = 1, 2, . . . , k − 1. We can rewrite the equation

G �X · �αT = �0 as a system of polynomial equations as follows.

f1(X1,X2, . . . , Xk−1) := α1X1 + α2X2 + . . . + αk−1Xk−1 + c1 = 0

f2(X1,X2, . . . , Xk−1) := α1X
2
1 + α2X

2
2 + . . . + αk−1X

2
k−1 + c2 = 0

...

fk−1(X1,X2, . . . , Xk−1) := α1X
k−1
1 + α2X

k−1
2 + . . . + αk−1X

k−1
k−1 + ck−1 = 0

Since αi �= 0, it is a square polynomials system with deg(fi) = i, for every
1 � i � k − 1. Next, to apply Imported Theorem 2, we shall show that

det
(
J(f1, f2, . . . , fk−1)

)
(X1,X2, . . . , Xk−1) �= 0 if Xi �= Xj for every i �= j.

We have

J
(
f1, f2, . . . , fk−1

)
(X1, X2, . . . , Xk−1) =

⎛
⎜⎜⎜⎜⎝

α1 2α1X1 · · · (k − 1)α1Xk−2
1

α2 2α2X2 · · · (k − 1)α2Xk−2
2

..

.
..
.

. . .
..
.

αk−1 2αk−1Xk−1 · · · (k − 1)αk−1Xk−2
k−1

⎞
⎟⎟⎟⎟⎠

By the properties of determinant,

det
(
J (f1, f2, . . . , fk−1)

)
(X1,X2, . . . , Xk−1)

=

(
k−1∏
i=1

αi

)
· det

⎛
⎜⎜⎜⎝

1 2X1 · · · (k − 1)Xk−2
1

1 2X2 · · · (k − 1)Xk−2
2

...
...

. . .
...

1 2Xk−1 · · · (k − 1)Xk−2
k−1

⎞
⎟⎟⎟⎠

=

(
k−1∏
i=1

αi

)
(k − 1)! · det

⎛
⎜⎜⎜⎝

1 X1 · · · Xk−1
1

1 X2 · · · Xk−1
2

...
...

. . .
...

1 Xk−1 · · · Xk−1
k−1

⎞
⎟⎟⎟⎠

�= 0,

since αi are non-zeros and the Vandermonde matrix is full-rank. By Imported
Theorem 2, there are at most (k − 1)! solutions for the above square polynomial
system. Since there are total (p − 1)(p − 2) . . . (p − (n − k + 1)) possible ways of
fixing Xk,Xk+1, . . . , Xn, the number of solutions of the equation G �X · �αT = �0 is
at most (p − 1)(p − 2) . . . (p − (n − k + 1)) · (k − 1)!, which completes the proof
of Claim 4.



368 H. K. Maji et al.

Given Claim 4, we are ready to prove Claim 2 as follows.

E
�X

⎡
⎢⎣

∑
��∈{0,1}n

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)⎤

⎥⎦

=
∑

��∈{0,1}n

E
�X

⎡
⎢⎣

∑

�α∈C⊥
�X

\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)⎤

⎥⎦

=
∑

��∈{0,1}n

∑
�α∈F n\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

· Pr
�X

[
�α ∈ C⊥

�X

]
(Linearity of expectation)

�
∑

��∈{0,1}n

∑
�α∈F n\{0}

(
n∏

i=1

∣∣∣1̂�i
(αi)

∣∣∣
)

· (p − 1)(p − 2) · · · (p − (n − k + 1)) · (k − 1)!

(p − 1)(p − 2) · · · (p − n)

(Claim 4)

�
∑

��∈{0,1}n

n∏
i=1

⎛
⎝ ∑

αi∈F

∣∣∣1̂�i
(αi)

∣∣∣
⎞
⎠ · (k − 1)!

(p − (n − k + 2)) · · · (p − n)

�
∑

��∈{0,1}n

(
(1 + o (1)) · 1

π2
· (log p)2 · λ

)n

· (k − 1)!

(p − (n − k + 2)) · · · (p − n)
(Corollary 1)

� 2n · (log p)2n · λn · (k − 1)!

π2n · (p − n)k−1
.

This gives us the desired upper bound.

6 Physical-Bit Leakage Attack on Shamir Secret-Sharing
Scheme

Consider the Shamir secret-sharing scheme with <k degree polynomials, where
k ∈ {2, 3}, for n parties over a prime field F of order p > 2. Fix a secret s ∈ F .
Suppose the random polynomial used for secret-sharing is f(X) ∈ F [X]/Xk

such that P (0) = s.
Suppose p = 1 mod k, that is there exists a solution of the equation

Zk − 1 = 0 in the multiplicative group F ∗. Let α ∈ F be such that
E := {α, α2, . . . , αk−1, αk = 1} ⊆ F ∗ be the multiplicative sub-group of order k
containing all k solutions of the equation Zk − 1 = 0.

Suppose n � k, and the evaluation places for the first k parties be
{1, α, α2, . . . , αk−1} ⊆ F ∗, respectively. Remaining evaluation places are incon-
sequential as we shall leak only one bit from the shares of only the first k parties.

Define si := f(αi), for 1 � i � k, to be the secret-share of party i. Observe
that we have the following properties

1. The secret shares s1, . . . , sk−1 are independently and uniformly random over
the set F , and

2. The secret share sk = ks − (s1 +· · · + sk−1).



Leakage-Resilience of the Shamir Secret-Sharing Scheme 369

Let 0 � S1, S2, . . . , Sk � p − 1 be the whole numbers (i.e., the set
N0 := {0, 1, 2, . . . }) corresponding to the elements s1, s2, . . . , sk ∈ F . Note that

E [S1 + S2 +· · · + Sk−1] = μ := (k − 1)(p − 1)/2 ∈ N.

Define Ik,Δ := {Δ + 1,Δ + 2, . . . , Δ + p}, where Δ := μ − (p − 1)/2 − 1. For
k ∈ {2, 3}, we note that12

Pr

[
k−1∑
i=1

Si ∈ Ik,Δ

]
� 0.75.

Express Δ = u · p + δ, where u ∈ N0 (the set of all whole numbers), and
δ ∈ {0, 1, . . . , p − 1}. Define the secret s := k−1δ ∈ F .

Following technical claim, which holds for any secret s ∈ F , is key to our
attack strategy.

Claim. (Parity of the “Parity of Shares”). Let P ∈ {0, 1} represent the LSB (or,
equivalently, the parity) of ks when expressed as a whole number. For 1 � i � k,
let Pi ∈ {0, 1} represent the LSB (or, equivalently, the parity) of the secret share
Si. Define the following subsets of whole numbers

Ssame := N0 ∩
⋃
i∈Z

i odd

[ip + ks + 1, (i + 1)p + ks]

Sdiff := N0 ∩
⋃
i∈Z

i even

[ip + ks + 1, (i + 1)p + ks] .

If S1 + S2 + · · · + Sk−1 ∈ Ssame, then P1 ⊕ P2 ⊕· · · ⊕ Pk = P . Otherwise, if
S1 + S2 +· · · + Sk−1 ∈ Sdiff , then P1 ⊕ P2 ⊕· · · ⊕ Pk = 1 ⊕ P .

Proof. Since s1 + s2 + · · · + sk = ks, we have

S1 + S2 + · · · + Sk = ks + ip,

for some i ∈ N0.
Observe that P1 ⊕ P2 ⊕ · · · ⊕ Pk is the parity of S1 + S2 + · · · + Sk, which is

identical to the parity of ks (i.e., P ) if and only if i is even.
Finally, since Sk ∈ {0, 1, . . . , p−1}, the constraint “S1+S2+· · ·+Sk = ks+ip

for some even i” is equivalent to

S1 + S2 +· · · + Sk−1 ∈ Ssame.

12 One can explicit calculate the probability. When k = 2, Pr [S1 ∈ I2,Δ] = 1. When

k = 3, Pr [S1 + S2 ∈ I3,Δ] = 3
4

(
1 + 1

p
− 1

p2

)
.



370 H. K. Maji et al.

The above claim gives us an attack for the case k = 3 because of the following
argument.

Fix k = 3, the parity of ks is exactly the parity (LSB) of secret s. Observe
that if u is odd, then Ik,Δ ⊆ Ssame. In this case, the parity P1 ⊕ P2 ⊕· · · ⊕ Pk is
identical to the LSB of the secret with probability >0.75. Otherwise, if u is even
then Ik,Δ ⊆ Sdiff . In this case, the parity P1 ⊕ P2 ⊕· · · ⊕ Pk is the opposite to
the LSB of the secret with probability >0.75. In any case, since the adversary
knows u, she can predict the LSB of the secret with probability >0.75.

For a randomly chosen secret, on the other hand, one can predict the LSB
(using the strategy above) only with probability (statistically close to) 0.5.

Remark 1. Let ρ ∈ F be the primitive root of the equation Zp − 1 = 0. That is,
ρ is a generator for of the multiplicative group F ∗. The discussion above holds
for all evaluation places of the form

{
ρi · α, ρi · α2, . . . , ρi · αk

}
,

where i ∈ {0, 1, . . . , (p − 1)/3}. More generally, let G ⊆ F ∗ be the multiplicative
subgroup formed by the roots of the equation Zk − 1 = 0. Any coset F ∗/G
suffices for our purposes.

Consequently, there is not just one k-tuple of evaluation places that witnesses
our attack. There are, in fact, k! · (p − 1)/k such tuples that witness our attack.

Therefore, the following result holds.

Theorem 5. Let F be a prime field of order p > 2. Consider any natural number
n such that p > n � k = 3 and p = 1 mod k. There exist distinct secrets
s(0), s(1) ∈ F , distinct evaluation places X1, . . . , Xn ∈ F ∗, and one physical-
bit local leakage function �τ such that, based on the leakage, an adversary can
efficiently distinguish the secret being s(0) or s(1) with advantage > 2 · (0.75 −
0.5) = 0.5.

Remark 2. We emphasize that our attacker leaks one bit from the first k shares
and tries to predict the secret based solely on this. In particular, we do not rely
on the information regarding the remaining n − k shares. Asymptotically, this
approach is doomed to fail as k grows. As Benhamouda et al. [3] prove that,
Shamir secret sharing is resilient to arbitrary one-bit leakage from each share,
as long as k � n − nc for some small constant c > 0. Therefore, to find more
devastating attacks, one has to utilize the fact that n is larger than k and we
are leaking from every share.

6.1 Our Attack and Discrepancy of Irwin-Hall Distribution

Consider any 2 � k ∈ N and prime p = 1 mod k. The following analysis is for
the case when p → ∞.

Observe that Si is uniformly random over the set {0, 1, . . . , p−1}. Instead of
Si, we normalize this random variable and consider Ŝi that is uniformly random



Leakage-Resilience of the Shamir Secret-Sharing Scheme 371

over the set [0, 1) ⊂ R. Now, the random variable S1 + · · · + Sk−1 over whole
numbers corresponds to the normalized distribution Ŝ1 +· · · + Ŝk−1 over the set
[0, k −1) ⊂ R. It is well-known that the sum of (k −1) independent and uniform
distributions over the unit interval [0, 1) is the Irwin-Hall distribution [18,23]
with parameter (k − 1), represented by Ik−1.

Let δ ∈ [0, 1) be an offset. Define the intervals (as a function of δ)

Ŝsame = (1 + δ, 2 + δ] ∪ (3 + δ, 4 + δ] ∪ (5 + δ, 6 + δ] ∪· · · , and

Ŝdiff = (δ, 1 + δ] ∪ (2 + δ, 3 + δ] ∪ (4 + δ, 5 + δ] ∪· · · .
Intuitively, these two sets correspond to the normalized Ssame and Sdiff sets
defined above. The attack above corresponds to finding the offset

δ∗ := argmax
δ∈[0,1)

∣∣∣Pr
[
Ik−1 ∈ Ŝsame

]
− Pr

[
Ik−1 ∈ Ŝdiff

]∣∣∣ ,

and the advantage corresponding to that attack is

ε∗ := max
δ∈[0,1)

∣∣∣Pr
[
Ik−1 ∈ Ŝsame

]
− Pr

[
Ik−1 ∈ Ŝdiff

]∣∣∣ .

Intuitively, this offset δ∗ witnesses the largest discrepancy and, in turn, deter-
mines the most vulnerable secret.

Definition 9 (Discrepancy of a Probability Distribution). Let X be a
real-valued random variable. The discrepancy of the random variable X, repre-
sented by disc(X), is

disc(X) := max
δ∈[0,1)

|2 · Pr [X ∈ I(δ)] − 1| ,

where I(δ) is the set δ + 2Z + (0, 1].

Then, disc(Ik−1) represents the advantage of our attack presented above, as
p → ∞.

References

1. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 18

2. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 20

3. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience
of linear secret sharing schemes. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 531–561. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 18

https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-319-96884-1_18


372 H. K. Maji et al.

4. Block, A.R., Gupta, D., Maji, H.K., Nguyen, H.H.: Secure computation using leaky
correlations (asymptotically optimal constructions). In: Beimel, A., Dziembowski,
S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 36–65. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03810-6 2

5. Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation based on leaky cor-
relations: high resilience setting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63715-0 1

6. Bogdanov, A., Ishai, Y., Srinivasan, A.: Unconditionally secure computation
against low-complexity leakage. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 387–416. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 14

7. Candel, G., Géraud-Stewart, R., Naccache, D.: How to compartment secrets. In:
Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024, pp. 3–11.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4 1

8. Cascudo, I., Damg̊ard, I., Farràs, O., Ranellucci, S.: Resource-efficient OT com-
biners with active security. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 461–486. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 15

9. Chattopadhyay, E., et al.: Extractors and secret sharing against bounded collusion
protocols. In: 61st FOCS, pp. 1226–1242. IEEE Computer Society Press, November
2020

10. Chen, X., Kayal, N., Wigderson, A.: Partial derivatives in arithmetic complexity
and beyond. Found. Trends Theor. Comput. Sci. 6(1–2), 1–138 (2011). https://
doi.org/10.1561/0400000043

11. Dau, H., Duursma, I.M., Kiah, H.M., Milenkovic, O.: Repairing Reed-Solomon
codes with multiple erasures. IEEE Trans. Inf. Theory 64(10), 6567–6582 (2018)

12. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

13. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992

14. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe,
D., Henzinger, M. (eds.) 50th ACM STOC, pp. 685–698. ACM Press, June 2018

15. Guruswami, V., Wootters, M.: Repairing Reed-Solomon codes. In: Wichs, D., Man-
sour, Y. (eds.) 48th ACM STOC, pp. 216–226. ACM Press, June 2016

16. Guruswami, V., Wootters, M.: Repairing Reed-Solomon codes. IEEE Trans. Inf.
Theory 63(9), 5684–5698 (2017)

17. Hall, J.I.: Notes on Coding Theory (2015). https://users.math.msu.edu/users/
halljo/classes/codenotes/coding-notes.html

18. Hall, P.: The distribution of means for samples of size n drawn from a population
in which the variate takes values between 0 and 1, all such values being equally
probable. Biometrika 19, 240–245 (1927)

19. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 22

20. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 6

https://doi.org/10.1007/978-3-030-03810-6_2
https://doi.org/10.1007/978-3-030-03810-6_2
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-030-26951-7_14
https://doi.org/10.1007/978-3-030-26951-7_14
https://doi.org/10.1007/978-3-030-41702-4_1
https://doi.org/10.1007/978-3-319-70503-3_15
https://doi.org/10.1007/978-3-319-70503-3_15
https://doi.org/10.1561/0400000043
https://doi.org/10.1561/0400000043
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://users.math.msu.edu/users/halljo/classes/codenotes/coding-notes.html
https://users.math.msu.edu/users/halljo/classes/codenotes/coding-notes.html
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6


Leakage-Resilience of the Shamir Secret-Sharing Scheme 373

21. Hazay, C. Ishai, Y., Marcedone, A. Venkitasubramaniam, M.: LevioSA: lightweight
secure arithmetic computation. In: Cavallaro, L. Kinder, J., Wang, X., Katz, J.
(eds.) ACM CCS 2019, pp. 327–344. ACM Press, November 2019

22. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active security in
cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 184–215. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 7

23. Irwin, J.O.: On the frequency distribution of the means of samples from a popu-
lation having any law of frequency with finite moments, with special reference to
Pearson’s type II. Biometrika 19, 225–239 (1927)

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In:
50th FOCS, pp. 261–270. IEEE Computer Society Press, October 2009

25. Ishai, Y., Maji, H.K., Sahai, A., Wullschleger, J.: Single-use ot combiners with
near-optimal resilience. In: 2014 IEEE International Symposium on Information
Theory, Honolulu, HI, USA, 29 June–4 July 2014, pp. 1544–1548. IEEE (2014)

26. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

28. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. In: Goldreich,
O. (ed.) Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pp 727–794. ACM (2019)

29. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: Zuckerman, D. (ed.) 60th FOCS, pp. 636–660. IEEE Computer Society
Press, November 2019

30. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Leakage-
resilient secret sharing in non-compartmentalized models. In: Kalai, Y.T., Smith,
A.D., Wichs, D. (eds.) 1st Conference on Information-Theoretic Cryptography,
ITC 2020, Boston, MA, USA, 17–19 June 2020. LIPIcs, vol. 163, pp. 7:1–7:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

31. Lindell, Y.: Introduction to coding theory lecture notes (2010)
32. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16.

Elsevier, Amsterdam (1977)
33. Maji, H.K. Paskin-Cherniavsky, A., Suad, T., Wang, M.: On leakage resilient secret

sharing (2020)
34. Manurangsi, P., Srinivasan, A., Vasudevan, P.N.: Nearly optimal robust secret shar-

ing against rushing adversaries. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 156–185. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 6

35. Massey, J.L.: Some applications of code duality in cryptography. In: Mat. Contemp,
vol. 21, pp. 187–209:16th (2001)

36. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 22

37. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 556–577.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 20

https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-56877-1_6
https://doi.org/10.1007/978-3-030-56877-1_6
https://doi.org/10.1007/978-3-540-70936-7_22
https://doi.org/10.1007/978-3-030-45721-1_20


374 H. K. Maji et al.

38. Rao, A.: An exposition of Bourgain’s 2-source extractor (2007)
39. Selberg, A.: An elementary proof of Dirichlet’s theorem about primes in an arith-

metic progression. Ann. Math. 50, 297–304 (1949)
40. Shao, X.: On character sums and exponential sums over generalized arithmetic

progressions. Bull. Lond. Math. Soc. 45(3), 541–550 (2013)
41. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 17

42. Wooley, T.D.: A note on simultaneous congruences. J. Number Theory 58(2), 288–
297 (1996)

https://doi.org/10.1007/978-3-030-26951-7_17


Leakage, Faults and Tampering



Leakage Resilient Value Comparison with
Application to Message Authentication

Christoph Dobraunig1,2(B) and Bart Mennink3(B)

1 Lamarr Security Research, Graz, Austria
christoph.dobraunig@lamarr.at

2 Graz University of Technology, Graz, Austria
3 Radboud University, Nijmegen, The Netherlands

b.mennink@cs.ru.nl

Abstract. Side-channel attacks are a threat to secrets stored on a
device, especially if an adversary has physical access to the device. As
an effect of this, countermeasures against such attacks for cryptographic
algorithms are a well-researched topic. In this work, we deviate from
the study of cryptographic algorithms and instead focus on the side-
channel protection of a much more basic operation, the comparison of a
known attacker-controlled value with a secret one. Comparisons sensitive
to side-channel leakage occur in tag comparisons during the verification
of message authentication codes (MACs) or authenticated encryption,
but are typically omitted in security analyses. Besides, also comparisons
performed as part of fault countermeasures might be sensitive to side-
channel attacks. In this work, we present a formal analysis on comparing
values in a leakage resilient manner by utilizing cryptographic building
blocks that are typically part of an implementation anyway. Our results
indicate that there is no need to invest additional resources into imple-
menting a protected comparison operation itself if a sufficiently protected
implementation of a public cryptographic permutation, or a (tweakable)
block cipher, is already available. We complement our contribution by
applying our findings to the SuKS message authentication code used by
lightweight authenticated encryption scheme ISAP, and to the classical
Hash-then-PRF construction.

Keywords: Leakage resilience · Value comparison · Tag verification

1 Introduction

Side-channel attacks have been introduced to the public in the late 1990s [38,
39]. Especially differential power analysis (DPA) [39] turned out to be a very
potent threat to implementations of cryptographic algorithms. A practical and
sound countermeasure against differential power analysis is masking [12,28], and
hence, a lot of research has been conducted in this direction bringing forward a
myriad of different masking schemes [13,14,30,35,46,47,51,55]. Since the cost of
masking is tied to the cryptographic primitive it protects, many newly designed
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 377–407, 2021.
https://doi.org/10.1007/978-3-030-77886-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_13


378 C. Dobraunig and B. Mennink

cryptographic primitives take protection against DPA into account and have
been designed to reduce the cost of masking [3,10,15,17,21,27,29,31,52].

Later, a research direction called leakage resilient cryptography [7,22–
26,32,50,54] emerged. In principle, leakage resilient cryptography leads to modes
of operation that take side-channel attacks into account and, thus, ease the
investment on side-channel countermeasures on the primitive level (e.g., the pro-
tection of the public cryptographic permutation or block cipher). For instance,
research in this direction lead to modes of operation that protect against (higher-
order) DPA without the need of applying (higher-order) masking [19,20,43,44],
or restrict the use of masking to a fraction of the building blocks [5,8,33,49].
However, it is worth noting that leakage resilient modes can only solve part
of the problem. Thus, the protection of primitives against potent and skillful
attackers that can perform simple power analysis or template attacks is still
crucial [37]. Nevertheless, leakage resilient schemes have been implemented on
micro-controllers and practical evaluation shows that protection against side-
channel attacks can be efficiently achieved in practice against a set of realistic
adversaries [56].

An operation that is part of many cryptographic schemes, but also part of
some fault countermeasures, is the comparison of two values for equality. In cases
where this comparison is made between a value that an attacker should not know
with a known and potentially chosen value, side-channel countermeasures for this
comparison have to be in place.

Alternatively, one can perform the comparison using a cryptographic prim-
itive. During the last years, many authenticated encryption schemes have been
proposed that use a “perfectly” protected (tweakable) block cipher as the last
step before the tag output [5,7,8,33]. The advertised advantage of these schemes
is that in the case of verification, the inverse of the “perfectly” protected (tweak-
able) block cipher can be applied to the candidate tag T . Then, the comparison
of equality does not have to be done on the tag T directly but rather on an inter-
mediate value. Therefore, the correct value of the tag T � is never computed and
cannot leak via side-channel attacks. Hence, the comparison operation itself does
not need any protection against side-channel attacks. An alternative avenue is to
use a public cryptographic permutation as, e.g., suggested in the ISAP v2.0 [19]
specification. This approach was believed to have comparable advantages, with
the added benefit that no key material needs to be protected.

Although various articles on this very topic appeared recently, culminating at
a CRYPTO 2020 article [6], these works typically see the leakage resilient value
comparison as integral part of a scheme or abstract the actual leakage resilience
of the final value comparison and assume that it is “sufficiently leakage resilient
secure.” A formal qualitative and quantitative analysis of leakage resilient value
comparison as a general method suitable for a wide range of applications is,
despite its practical relevance, lacking.



Leakage Resilient Value Comparison with Application 379

1.1 Formal View on Leakage Resilient Value Comparison

In this paper, we present a formal leakage resilience study of comparing a secret
value with a value chosen by an attacker, as would, e.g., typically happen during
verification of a tag. By considering the problem in isolation, it allows for a
neater model and cleaner bound, that compose properly with broader schemes
like authenticated encryption schemes or fault countermeasures.

In detail, the formal model considers a set of μ secretly computed target
values T1, . . . , Tμ, and an adversary that can guess values T � for which value
comparison succeeds. To resolve the fact that unprotected implementations of
this comparison allow for DPA to recover any of the Tj ’s [6], we will incorporate a
value processing function and consider comparison of processed values. This value
processing function takes as additional input a salt Sj , tied to the target value
Tj , and is based on a cryptographic primitive. The adversary wins the security
game if it ever makes value comparison succeed, where it may be aided with side-
channel leakage coming from the value processing and value comparison. This
model captures the non-adaptive bounded leakage of the cryptographic functions
and the leakage of the value comparison, a non-adaptive leakage model, and
works in the standard model and ideal model dependent on the cryptographic
function in use. It is described in Sect. 3.

1.2 Two Practical Solutions

In Sects. 4 and 5, we present two concrete solutions that tackle the protection of
value comparison. The first construction, PVP (“permutation-based value pro-
cessing”) of Sect. 4, processes the tag T and user input T � along with a salt
S using a cryptographic permutation to obtain an intermediate value U and
U�, upon which comparison is evaluated. The cryptographic permutation can
be a public permutation like Keccak-f [10] or a block cipher instantiated with
a secret key like AESK [18]. The construction with a public permutation is
inspired by the informal proposal of the designers of ISAP v2.0 [19] to perform
secure comparison. However, for PVP also the instantiation with a secret permu-
tation is relevant, noting that this variant is naturally of use in implementations
of schemes based on block ciphers that have an implementation of a heavily
protected block cipher anyway, such as [1,36,40–42]. The scheme achieves very
strong leakage resilience under the model defined in Sect. 3.

The second construction, TPVP (“tweakable permutation-based value pro-
cessing”) of Sect. 5, resembles much of PVP but is instantiated with a crypto-
graphic tweakable permutation, which could in turn be a tweakable block cipher
instantiated with a secret key like SKINNYK [2]. The construction is particu-
larly inspired by the idea to use a strongly protected tweakable block cipher for
value comparison, as suggested by Berti et al. [8]. This construction, although
different in nature from PVP, achieves comparable security.

These results are under the assumption that all target values T1, . . . , Tμ come
with a unique and distinct salt S1, . . . , Sμ. In Sect. 6 we discuss how the results
on PVP and TPVP extend if one takes random salts or no salts at all.



380 C. Dobraunig and B. Mennink

1.3 Application to Message Authentication

A particularly interesting application is message authentication and authenti-
cated encryption, after all the cradle of the problem that we tackle. In Sect. 7
we take a close look at how to apply the results from Sects. 4 and 5 to message
authentication.

The first construction that we present is StP (“SuKS then PVP”), a con-
struction built as composition of the SuKS (“suffix keyed sponge”) message
authentication code [9,20,23] and the PVP value comparison function. In this
construction, the SuKS function outputs a tag, and one also takes a salt from
the internal computation of SuKS, and these values are fed to PVP for value
comparison. We demonstrate that, in fact, leakage resilience of StP follows from
the leakage resilient PRF security of SuKS and the leakage resilient value com-
parison security of PVP, provided that the two individual constructions are built
on independent cryptographic primitives. In other words, the functions compose
nicely and cheaply.

The second construction that we present is HaFuFu (“hash function func-
tion”), a hash-then-PRF message authentication code that uses the same PRF
for value comparison. As the message authentication code and the value com-
parison function use the same cryptographic primitive, black-box composition
is not an option. Instead, we prove direct security of HaFuFu, while still reusing
many aspects of the security analysis of the schemes from Sects. 4 and 5.

1.4 Comparison of Proposed Solutions

Our solutions fall into two categories depending on whether or not the used
(tweakable) permutation is public or secret. In the case of public primitives, real-
world instances would typically be based on public cryptographic permutations
like Keccak-f [10], whereas for secret (tweakable) primitives, one would typically
resort to (tweakable) block ciphers like AES [18] or SKINNY [2].

The most significant difference between using a public cryptographic per-
mutation versus a (tweakable) block cipher is that the latter uses a secret key.
Hence, this key has to be protected against a side-channel adversary that can
freely choose inputs to this (tweakable) block cipher. As typical in this scenario,
we assume that the block cipher is then perfectly protected [5,7,8,33], meaning
that the secret key cannot be extracted using a side-channel attack.

In contrast, basing the value comparison on public cryptographic permuta-
tions does not require to protect an additional secret value in addition to the
candidate tag T . Hence, we do not require the assumption that the public cryp-
tographic permutation is perfectly protected.

2 Preliminaries

Throughout the entire work, the parameters k,m, n, c, r, s, t, u, p, q, ε, μ, λ, λ′ are
natural numbers. We denote by {0, 1}n the set of n-bit strings. By func(m,n) we



Leakage Resilient Value Comparison with Application 381

define the set of all functions from {0, 1}m to {0, 1}n, by perm(n) ⊆ func(n, n)
the set of permutations on {0, 1}n, and by perm(k, n) the set of families of 2k

permutations on {0, 1}n. We will write func(∗, n) for the set of all functions from
{0, 1}∗ to {0, 1}n.

For a finite set S, S
$←− S denotes the uniformly random drawing of an

element S from S. We will sometimes abuse the notation a bit for infinite sets,
as long as uniformly random sampling is possible. An example set is the family
of functions func(∗, n), for which uniformly random sampling can be simulated
by lazy sampling (for each new input to the function, a random string of length
n bits is generated). We denote by S

AC←− S the drawing of an element S from S
according to such a distribution that Pr (S = s) ≤ 2ε/|S| for any s ∈ S. Here,
ε is some fixed constant which is typically required to be � log2(|S|). Slightly
abusing notation, we denote by (S1, . . . , Sμ) AC←− (S)μ the independent drawing
of μ values S1, . . . , Sμ such that Pr (Sj = s) ≤ 2ε/|S| for all j = 1, . . . , μ.

For a string S ∈ {0, 1}n, if m ≤ n, we denote by leftm(S) (resp., rightm(S))
the m leftmost (resp., rightmost) bits of S. For a predicate A, �A� equals 1 if A
is true and 0 otherwise.

2.1 Multicollision Limit Function

We will use the notion of a multicollision limit function of Daemen et al. [16].
Consider the experiment of throwing q balls uniformly at random in 2m bins,
and let μ denote the maximum number of balls in a single bin. We define the
multicollision limit function mlfq

m,n as the smallest x ∈ N that satisfies

Pr (μ > x) ≤ x

2n
.

Daemen et al. [16] demonstrated that this function is of the following order of
magnitude:

mlfq
m,n �

⎧
⎪⎨

⎪⎩

(m + n)/ log2

(
2m

q

)

, for q � 2m ,

(m + n) · q

2m
, for q � 2m .

In addition, if the balls are not thrown uniformly at random, but rather according
to a distribution D that prescribes that the probability P that the i-th ball ends
up in a certain bin satisfies

2n − (i − 1)
2m+n − (i − 1)

≤ P ≤ 2n

2m+n − (i − 1)
, (1)

the corresponding multicollision function, defined as mlfD,q
m,n, satisfies mlfD,q

m,n ≤
mlf2q

m,n [16, Lemma 6].



382 C. Dobraunig and B. Mennink

2.2 Block Ciphers and Tweakable Block Ciphers

A block cipher E : {0, 1}k × {0, 1}n → {0, 1}n is a family of n-bit permutations
indexed by a key K ∈ {0, 1}k. Its security is typically measured by the PRP-
advantage. In detail, an adversary is given query access to either EK for random
and secret key K

$←− {0, 1}k, or to a random permutation P
$←− perm(n), and its

goal is to distinguish both worlds:

Advprp
E (A) =

∣
∣
∣Pr

(
K

$←− {0, 1}k : AEK = 1
)

− Pr
(
P

$←− perm(n) : AP = 1
)∣
∣
∣ .

Denoting by Advprp
E (q, τ) the maximum advantage over any adversary making

q construction queries and operating in time τ , the block cipher E is called
PRP-secure if Advprp

E (q, τ) is small.
A tweakable block cipher TE : {0, 1}k ×{0, 1}r ×{0, 1}n → {0, 1}n is a family

of n-bit permutations indexed by a key K ∈ {0, 1}k and a tweak R ∈ {0, 1}r. Its
security is typically measured by the TPRP-advantage. In detail, an adversary is
given query access to either TEK for random and secret key K

$←− {0, 1}k, or to
a family of random permutations TP

$←− perm(r, n), and its goal is to distinguish
both worlds:

Advtprp
TE (A) =

∣
∣
∣Pr

(
K

$←− {0, 1}k : ATEK = 1
)

− Pr
(
TP

$←− perm(r, n) : ATP = 1
)∣
∣
∣ .

Denoting by Advtprp
TE (q, τ) the maximum advantage over any adversary making

q construction queries and operating in time τ , the block cipher TE is called
TPRP-secure if Advtprp

TE (q, τ) is small.

3 Security Model for Value Comparison

We will present a security model for leakage resilient value comparison. To do so,
we first describe how, perhaps pedantically, value comparison in the black-box
model can be modeled (Sect. 3.1). Then, we explain how value comparison in a
leaky model can be described in Sect. 3.2. The model of leakage resilient value
comparison is then given in Sect. 3.3.

3.1 Value Comparison in Black-Box Model

In a black-box setting, value comparison is trivial. If a tag T � ∈ {0, 1}t must
be tested against a target value T ∈ {0, 1}t, one simply performs a comparison,
and outputs 1 if and only if the values are correct. We can capture this by the
following, trivial, value comparison function VC : {0, 1}t × {0, 1}t → {0, 1}:

VC(T, T �) =
�
T

?= T �
�

. (2)



Leakage Resilient Value Comparison with Application 383

For the pure sake of understanding the model of leakage resilient value com-
parison in Sect. 3.3, it makes sense to formally define value comparison security in
the black-box model. The model is entirely trivial, but we write it in a slightly
more complex way to suit further discussion. This is done by considering an
adversary A that engages in the following game. Prior to the game, a list of μ

target values T = (T1, . . . , Tμ) $←− ({0, 1}t)μ is randomly generated. The adver-
sary has query access to a value comparison oracle

OT : (j, T �) 	→
�
Tj

?= T �
�

.

It wins if OT ever outputs 1:

Advvc[μ]
O (A) = Pr

(
T

$←− ({0, 1}t)μ : AOT wins
)

. (3)

For completeness, we can define by Advvc[μ]
O (q) the maximum advantage over

any adversary making q queries. To confirm that the model is entirely trivial:
if A has q guessing attempts, its success probability is at most q/2t. However,
as mentioned, it makes sense to describe this model as starter for the model of
leakage resilient value comparison in Sect. 3.3.

3.2 Value Comparison in Leaky Model

In a leaky setting, plain value comparison as in Sect. 3.1 is risky: performing the
comparison may potentially leak data [6]. In detail, an adversary can repeatedly
perform verification attempts against a single target value Tj , and each verifi-
cation attempt might leak a certain number of bits of information about Tj . In
addition, leakage obtained in a verification attempt against one target value Tj

might be useful for a later verification against another target value Tj′ . Besides
securing (masking) the comparison itself, another method proposed to counter
such side-channel attacks is to pre-process tags with a cryptographic value pro-
cessing function, and compare the processed tags. This value processing function
is, in turn, based on a cryptographic function.

Let Π ∈ perm(r, n) be a cryptographic primitive. A value processing function
is a function VPΠ : {0, 1}s × {0, 1}t → {0, 1}u that gets as input a salt S, value
T , and processes it using cryptographic primitive Π to obtain a value U . Now,
the basic idea is to not perform value comparison on (T, T �) directly (as in (2)),
but rather on the subtags:

VC(VPΠ(S, T ),VPΠ(S, T �)) =
�
VPΠ(S, T ) ?= VPΠ(S, T �)

�
. (4)

Remark 1. Looking ahead, for r = 0, the cryptographic primitive Π might be
a public permutation that can in practice then be instantiated with a strong
permutation like Keccak-f [10], or it could be a secret permutation that could
for instance be instantiated with AESK [18] for a secret key. The difference is
subtle. In the former case, an adversary knows the permutation and can make



384 C. Dobraunig and B. Mennink

queries to it. In the latter case, the adversary cannot make primitive evaluations,
but this instantiation comes at the cost of the PRP-security of AES. In addition,
the implementation of AESK must then be strongly protected to prevent the key
from leaking. We will elaborate on this in Sects. 4.2 and 4.3.

Likewise, if r > 0, the cryptographic primitive Π might be a public tweakable
permutation (like keyless SKINNY) or a secret tweakable permutation that could
for instance be instantiated with SKINNY [2]. Also here, the same differences
between the two cases surface. We will elaborate on these two cases in Sects. 5.2
and 5.3.

Remark 2. Although our focus is on value processing functions instantiated with
a (public or secret) family of permutations, the definition and later security
models readily extend to instantiations with a different type of primitive, such
as an arbitrary function F ∈ func(r, n).

3.3 Security Model for Leakage Resilient Value Comparison

A straightforward generalization of the security model of Sect. 3.1 would be to
consider a random Π

$←− perm(r, n), a list of μ distinct salts S = (S1, . . . , Sμ) ⊆
{0, 1}s and a list of μ target values T = (T1, . . . , Tμ) AC←− ({0, 1}t)μ, where we
recall that each of the μ values Tj has min-entropy of at least t − ε. This allows
us to model the information an attacker might get via side-channels during the
generation of the values Tj outside of our observation that just focuses on the
value comparison and the leakage occurring there. Furthermore, we consider an
adversary that has query access to a value comparison oracle

OVP,Π
S ,T : (j, T �) 	→

�
VPΠ(Sj , Tj)

?= VPΠ(Sj , T
�)

�
. (5)

The adversary can learn the salts S. It a priori has bi-directional access to Π (if
Π is a secret permutation, the number of queries to Π is bounded to 0, below).

However, it is not as simple as that: we will consider value comparison secu-
rity in case of leakage resilience. We will restrict our focus to non-adaptive L-
resilience of Dodis and Pietrzak [24], where the adversary receives leakage under
any leakage L ∈ L of the scheme under investigation. In our case, leakage of
secret data can occur in two occasions: evaluation of Π within the two evalu-
ations of VPΠ, and the value comparison. Therefore, L consists of a Cartesian
product of two leakage sets.

Let LΠ = {LΠ : {0, 1}r ×{0, 1}n ×{0, 1}n → {0, 1}λ} be a fixed set of leakage
functions on the primitive Π within the value processing function VP, and let
LC = {LC : {0, 1}u ×{0, 1}u → {0, 1}λ′} be a fixed set of leakage functions on the
value comparison function VC. All functions are independent of Π, i.e., they do
not internally evaluate Π or Π−1. Write L = LΠ × LC. For any leakage function
L = (LΠ, LC) ∈ L, define by

[
OVP,Π

S ,T

]

L
an evaluation of OVP,Π

S ,T of (5) that not only
returns the response of this function, but also leaks the following values:



Leakage Resilient Value Comparison with Application 385

LΠ (X,Y ) ∈ {0, 1}λ
(∀ Π-evaluation (X,Y ) in VPΠ(Sj , Tj)

)
,

LΠ (X,Y ) ∈ {0, 1}λ
(∀ Π-evaluation (X,Y ) in VPΠ(Sj , T

�)
)
,

LC

(
VPΠ(Sj , Tj),VPΠ(Sj , T

�)
)

∈ {0, 1}λ′
.

The security model of Sect. 3.2 now extends as suggested in the beginning of
this section, but with A having access to the leaky variant of OVP,Π

S ,T . In detail,
consider an adversary A that, for any given tuple of leakage functions L =
(LΠ, LC) ∈ L and any tuple of μ distinct salts S ⊆ {0, 1}s, has query access to[
OVP,Π

S ,T

]

L
and bi-directional access to Π (bounded to 0 queries if Π is a secret

permutation). The adversary wins if
[
OVP,Π

S ,T

]

L
ever outputs 1:

Advlr-vc[μ]

OVP (A) = max
L=(LΠ,LC)∈L

max
S⊆{0,1}s

Pr
(
Π

$←− perm(r, n) , T
AC←− ({0, 1}t)μ : A[OVP,Π

S ,T ]
L
,Π±

(S) wins
)

.(6)

For completeness, we can define by Advlr-vc[μ]

OVP (q, p) the maximum advantage

over any adversary making q queries to
[
OVP,Π

S ,T

]

L
and p bi-directional queries

to Π±. In the bigger picture, q refers to the number of verification queries an
adversary can make. In case the primitive Π is a secretly keyed primitive, one
restricts to p = 0.

4 Value Comparison Based on Permutation

Let P ∈ perm(n) be a permutation (for now, we will not yet limit ourselves
to secret or public permutation). Assume that log2(μ) ≤ s and s + t, u ≤ n.
Define the following, arguably most straightforward, permutation-based value
processing function PVPP : {0, 1}s × {0, 1}t → {0, 1}u:

PVPP(S, T ) = leftu(P(S ‖ T ‖ 0n−s−t)). (7)

Value verification then follows as in (4), using above value processing function
PVP (see also Fig. 1):

PVC(PVPP(S, T ),PVPP(S, T �)) =
�
PVPP(S, T ) ?= PVPP(S, T �)

�
. (8)

A general security bound of value comparison using PVP is given in Sect. 4.1.
Note that we did not put any stringent condition on s, t, u, and n yet: all we need
is that s + t, u ≤ n. Depending on whether P is a secret or public permutation,
an additional condition is needed. Both cases are rather different in nature, in
practical appearance, and in the security level that they achieve. We elaborate on
the case of secret permutation in Sect. 4.2, and on the case of public permutation
in Sect. 4.3.



386 C. Dobraunig and B. Mennink

P

s u

n−s−t n−u

S

0

t
T

U
?= U�

V
P

s

n−s−t

t

u

n−u

S

0

T �

V �

Fig. 1. Depiction of leakage resilient value comparison using permutation.

4.1 Leakage Resilience of Value Comparison with PVP

We derive a general bound on the leakage resilience of value comparison using
PVP,

OPVP,P
S ,T : (j, T �) 	→

�
PVPP(Sj , Tj)

?= PVPP(Sj , T
�)

�
, (9)

in the security definition of (6) against any adversary making q construction
queries and p primitive queries. We note that the bound is meaningless for certain
choices of n, s, t, u, q, p: in particular, if p > 0 (i.e., if we consider instantiation
using a public permutation), one requires t, u � n. The bound is nevertheless
derived in full generality, and will only be interpreted for the specific cases in
Sects. 4.2 and 4.3.

Theorem 1. Assume that log2(μ) ≤ s and s + t, u ≤ n. For any adversary A
with construction complexity q and primitive complexity p,

Advlr-vc[μ]

OPVP (A) ≤ 2(q + p)
2min{t−ε−λ,u} − (μ + q + p)

+
2mlf2μ

u,n−up

2n−max{t,u+λ} − (μ + q + p)
+

mlf2μ
u,n−u

2n−u
.

Proof. Let L = (LP, LC) ∈ L be any two leakage functions and let S ⊆ {0, 1}s be
a list of q distinct salts. Let P

$←− perm(n) be a random permutation, and let T AC←−
({0, 1}t)μ be a list of μ target values Tj , where each Tj has at least a min-entropy
of at least t − ε. For any j ∈ {1, . . . , μ}, define P(Sj‖Tj‖0n−s−t) = Uj‖Vj , where
Uj ∈ {0, 1}u and Vj ∈ {0, 1}n−u. By definition, we have Uj = PVPP(Sj , Tj).
Consider any adversary A that can make q queries (j, T �) to OPVP,P

S ,T of (9), and
p direct queries to P±. For each of the q construction queries, A also learns the
following values:

LP

(
Sj‖Tj‖0n−s−t, Uj‖Vj

) ∈ {0, 1}λ,

LP

(
Sj‖T �‖0n−s−t,P(Sj‖T �‖0n−s−t)

) ∈ {0, 1}λ,

LC

(
Uj ,PVPP(Sj , T

�)
)

∈ {0, 1}λ′
.

Note that, as LP and LC are fixed, predetermined, functions, the adversary learns
at most λ bits of leakage on Tj , λ bits of leakage on Vj , and λ+qλ′ bits of leakage
on Uj , for any j ∈ {1, . . . , μ}.



Leakage Resilient Value Comparison with Application 387

The adversary wins if any of its q construction queries returns 1. However,
the probability for this to occur depends on “lucky” primitive queries. In detail,
if the adversary happens to make a primitive query of the form

(Sj ‖ ∗t ‖ 0n−s−t , Uj ‖ ∗n−u),

for any j ∈ {1, . . . , μ}, it can use this to make the construction oracle output 1
with probability 1. Therefore, we also say that the adversary wins if any of its p
primitive queries is of above form. Finally, it turns out that the adversary might
have a significantly increased success probability if there exists a multicollision
in {U1, . . . , Uμ}. We will also count that as a win for the adversary.

More detailed, write m = mlf2μ
u,n−u for brevity. We denote by bad the event

that there exist m + 1 distinct indices j1, . . . , jm+1 ∈ {1, . . . , μ} such that Uj1 =
· · · = Ujm+1 . In addition, for i ∈ {1, . . . , q + p}, we denote by wini the event that
the i-th query is

– a construction query (j, T �) that satisfies PVPP(Sj , T
�) = Uj , or

– a primitive query (X,Y ) that satisfies lefts(X) = Sj , rightn−s−t(X) =
0n−s−t, and leftu(Y ) = Uj for some j ∈ {1, . . . , μ}.

Write win =
∨q+p

i=1 wini. Our goal is to bound

Pr (win) ≤ Pr (win ∧ ¬bad) + Pr (bad)

= Pr

(
q+p∨

i=1

wini ∧ ¬bad

)

+ Pr (bad)

≤
q+p∑

i=1

Pr (wini ∧ ¬win1..i−1 ∧ ¬bad) + Pr (bad) , (10)

where win1..0 = false by definition.

Bound on Pr (wini ∧ ¬win1..i−1 ∧ ¬bad). Consider any i ∈ {1, . . . , q + p}, and
consider the i-th query. We will make a distinction between a construction query,
forward primitive query, and inverse primitive query.

– Construction query. Consider any construction query (j, T �) to OPVP,P
S ,T . If

there were an earlier primitive query of the form Sj‖T �‖0n−s−t, then by
¬win1..i−1 its outcome is not of the form Uj‖∗n−u, and the oracle will not
output 1. Therefore, we can assume that this query has not been made directly
to P yet.
The oracle outputs 1 if:

• T � = Tj . As the values Tj are randomly generated with a min-entropy of
at least t − ε, and as the adversary has so far learned at most λ bits of
leakage on Tj , this condition is set with probability at most 1/2t−ε−λ;

• T � = Tj but PVPP(Sj , T
�) = Uj . As there was no earlier evaluation of

P(Sj‖T �‖0n−s−t), the result will be randomly drawn from a set of size at
least 2n − (μ+ i− 1) ≥ 2n − (μ+ q + p) values, and at most 2n−u of these
satisfy PVPP(Sj , T

�) = Uj . Thus, the condition is set with probability at
most 2n−u/(2n − (μ + q + p)).



388 C. Dobraunig and B. Mennink

Adding both cases, we get

Pr (wini ∧ ¬win1..i−1 ∧ i-th query to construction) ≤
2

2min{t−ε−λ,u} − (μ + q + p)
; (11)

– Forward primitive query. Consider any forward primitive query (X,Y ) to P.
Without loss of generality, X = Sj‖T �‖0n−s−t for some j ∈ {1, . . . , μ} and
T � ∈ {0, 1}t (otherwise, the query cannot set wini). Note that the value j
is unique as S is assumed to contain no collisions. We can also assume that
neither this query has been made to P yet, nor (j, T �) has been queried to
the construction oracle before.
Now, the forward primitive query sets wini if T � = Tj or if Y = Uj‖∗n−u,
and the analysis is identical to that of construction queries. We thus obtain

Pr (wini ∧ ¬win1..i−1 ∧ i-th query to forward primitive) ≤
2

2min{t−ε−λ,u} − (μ + q + p)
; (12)

– Inverse primitive query. Consider any inverse primitive query (X,Y ) to P.
We can assume that this query has not been made to P yet. At the point
of making this primitive query, the adversary has learned at most λ + qλ′

bits of information about all Uj ’s. We will be more generous, and assume
w.l.o.g. that any inverse query is of the form Uj‖V � for some j ∈ {1, . . . , μ}
and V � ∈ {0, 1}n−u. Note that the value j might not be unique as there
might be collisions in {U1, . . . , Uμ}. However, due to ¬bad, the largest size
of a multicollision is at most mlf2μ

u,n−u. Therefore, there are at most mlf2μ
u,n−u

possible values j.
The inverse primitive query sets wini if for any of these possible values j:

• V � = Vj . As the adversary has so far learned at most λ bits of leakage on
Vj , this condition is set with probability at most 1/2n−u−λ;

• V � = Vj but X = Sj‖T �‖0n−s−t for some T �. As there was no earlier
evaluation of P−1(Uj‖V �), the result will be randomly drawn from a set
of size at least 2n − (μ + i − 1) ≥ 2n − (μ + q + p) values, and at most
2t of these satisfy lefts(X) = Sj and rightn−s−t(X) = 0n−s−t. Thus, the
condition is set with probability at most 2t/(2n − (μ + q + p)).

Adding both cases, and summing over all ≤ mlf2μ
u,n−u possible value j, we get

Pr (wini ∧ ¬win1..i−1 ∧ i-th query to inverse primitive) ≤
2mlf2μ

u,n−u

2n−max{t,u+λ} − (μ + q + p)
.(13)

Bound on Pr (bad). The values Uj are all uniformly randomly drawn from a set
of size 2n − (j − 1) values, and they are truncated to take any value from a set
of 2u elements. The event is thus a balls-and-bins experiment in the notation of
Sect. 2.1 with μ balls randomly thrown into 2u bins, in such a way that any of the



Leakage Resilient Value Comparison with Application 389

bins contains more than mlf2μ
u,n−u balls. The distribution satisfies the condition

of (1). Therefore, we obtain that

Pr (bad) ≤ mlf2μ
u,n−u

2n−u
. (14)

Conclusion. The adversary makes q construction queries, each of which succeeds
with probability at most (11), and p primitive queries, each of which succeeds
with probability the maximum of (12) and (13). For simplicity, we do not max-
imize, but rather take the sum. Finally, we have to add (14). We thus obtain
from (10) that

Advlr-vc[μ]

OPVP (A) ≤ 2(q + p)
2min{t−ε−λ,u} − (μ + q + p)

+
2mlf2μ

u,n−up

2n−max{t,u+λ} − (μ + q + p)
+

mlf2μ
u,n−u

2n−u
.

The reasoning holds for any adversary making q construction queries and p
primitive queries, and this completes the proof. ��

4.2 PVP with Secret Permutation

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. If E is PRP-secure (see
Sect. 2.2), one can instantiate the secret permutation P in the value processing
function PVPP using the block cipher with a secret key, and de facto consider

EVPEK (S, T ) = leftu(EK(S ‖ T ‖ 0n−s−t)). (15)

A value comparison via an inverse block cipher call is part of the constructions
proposed in [8].

The security bound of Theorem 1 carries over to EVP, with the following
four changes:

– The term Advprp
E (q, τ) is added (where q is exactly the number of queries

described in Theorem 1 and τ is an additional time complexity measure on
A);

– The function EK must be strongly protected, so that the function leaks no
information about its inputs and outputs;

– The number of primitive queries is bounded to p = 0;
– As the number of primitive queries is bounded to p = 0, the auxiliary bad

event bad has become obsolete, and hence the term mlf2μ
u,n−u/2n−u disappears.

More formally, we obtain the following corollary. Notably, the sole term with
2n−max{t,u} in the denominator disappeared, and we do not need to put any
condition on n − max{t, u}.



390 C. Dobraunig and B. Mennink

Corollary 1 (Value Comparison Using Block Cipher). Assume that
log2(μ) ≤ s and s + t, u ≤ n. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher that is perfectly protected. For any adversary A with construction com-
plexity q and operating in time τ ,

Advlr-vc[μ]

OEVP (A) ≤ 2q

2min{t−ε−λ,u} − (μ + q)
+ Advprp

E (q, τ) .

4.3 PVP with Public Permutation

Assuming that P is a public permutation, the permutation-based value processing
function PVP of (7) is similar to the one proposed by the designers of NIST
Lightweight Cryptography candidate ISAP [19]. In this case, the adversary can
evaluate the public primitive, or in terms of Theorem 1: p > 0. This also means
that, for the last term of this theorem to be small, we require t, u � n. We
obtain the following corollary:

Corollary 2 (Value Comparison Using Permutation). Assume that
log2(μ) ≤ s ≤ n − t and t, u � n. Let P ∈ perm(n) be a permutation that
is assumed to be perfectly random. For any adversary A with construction com-
plexity q and primitive complexity p,

Advlr-vc[μ]

OPVP (A) ≤ 2(q + p)
2min{t−ε−λ,u} − (μ + q + p)

+
2mlf2μ

u,n−up

2n−max{t,u+λ} − (μ + q + p)
+

mlf2μ
u,n−u

2n−u
.

5 Value Comparison Based on Tweakable Permutation

Let TP ∈ perm(r, n) be a cryptographic family of permutations (for now, we
will not yet limit ourselves to families of secret or public permutations). Assume
that s ≤ r and t, u ≤ n. Define the following tweakable permutation-based value
processing function TPVPTP : {0, 1}s × {0, 1}t → {0, 1}u:

TPVPTP(S, T ) = leftu(TP(S ‖ 0r−s, T ‖ 0n−t)). (16)

Tag verification then follows as in (4), using above value processing function
TPVP (see also Fig. 2):

TPVC(TPVPTP(S, T ),TPVPTP(S, T �)) =
�
TPVPTP(S, T ) ?= TPVPTP(S, T �)

�
.

(17)

As before, we did not put any stringent condition on r, s, t, u, and n yet: all we
need is that s ≤ r and t, u ≤ n. Depending on whether TP is a family of secret
or public permutations, an additional condition is needed. A general security
bound of value comparison using TPVP is given in Sect. 5.1. We elaborate on
the case of families of secret permutations in Sect. 5.2, and on the case of families
of public permutations in Sect. 5.3.



Leakage Resilient Value Comparison with Application 391

TP

u

n−t n−u0

t
T U

?= U�

V
TP

n−t

tu

n−u 0

T �

V �

r

S‖0r−s

r

S‖0r−s

Fig. 2. Leakage resilient value comparison using a tweakable permutation.

5.1 Leakage Resilience of Value Comparison with TPVP

We derive a general bound on the leakage resilience of value comparison using
TPVP,

OTPVP,TP
S ,T : (j, T �) 	→

�
TPVPTP(Sj , Tj)

?= TPVPTP(Sj , T
�)

�
, (18)

in the security definition of (6) against any adversary making q construction
queries and p primitive queries. We note that the bound is meaningless for certain
choices of n, r, s, t, u, q, p: in particular, if p > 0 (i.e., if we consider instantiation
using a public permutation), one requires t, u � n. The bound is nevertheless
derived in full generality, and will only be interpreted for the specific cases in
Sects. 5.2 and 5.3.

Theorem 2. Assume that log2(μ) ≤ s ≤ r and t, u ≤ n. For any adversary A
with construction complexity q and primitive complexity p,

Advlr-vc[μ]

OTPVP (A) ≤ 2(q + p)
2min{t−ε−λ,u} − (μ + q + p)

+
2p

2n−max{t,u+λ} − (μ + q + p)
.

The proof is a direct simplification of the proof of Theorem 1. Most importantly,
as the salt Sj is processed by TP as tweak input in both forward and inverse
primitive queries, the adversary restricts itself to a unique choice of j (as salts are
assumed not to collide) and hence there is no need to bother about multicollisions
in {U1, . . . , Uμ}. This means that event bad, as well as its analysis, drops out.
A second change is in the analysis of the probability that an inverse primitive
queries sets wini: now we need that either “V � = Vj” or “V � = Vj but X =
T �‖0n−t”. The resulting bound is identical to the one before, with the term
mlf2μ

u,n−u removed. A formal proof is included in the full version of the paper.

5.2 TPVP with Secret Tweakable Permutation

Let TE : {0, 1}k × {0, 1}r × {0, 1}n → {0, 1}n be a tweakable block cipher.
If TE is TPRP-secure (see Sect. 2.2), one can instantiate the secret tweakable



392 C. Dobraunig and B. Mennink

permutation TP in the value processing function TPVPTP using the block cipher
with a secret key, and de facto consider

TEVPTEK (S, T ) = leftu(TEK(S ‖ 0r−s, T ‖ 0n−t)). (19)

A variant of this using tweakable block ciphers is, in fact, proposed in NIST
Lightweight Cryptography candidate Spook [5].

Identical to the analysis in Sect. 4.2, the security bound of Theorem 2 carries
over to TEVP, with the following three changes:

– The term Advtprp
TE (q, τ) is added (where q is exactly the number of queries

described in Theorem 2 and τ is an additional time complexity measure on
A);

– The function TEK must be strongly protected, so that the function leaks no
information about its inputs and outputs;

– The number of primitive queries is bounded to p = 0.

More formally, we obtain the following corollary, in analogy with Corollary 1.

Corollary 3 (Value Comparison Using Tweakable Block Cipher).
Assume that log2(μ) ≤ s ≤ r and t, u ≤ n. Let E : {0, 1}k × {0, 1}r × {0, 1}n →
{0, 1}n be a tweakable block cipher that is perfectly protected. For any adversary
A with construction complexity q and operating in time τ ,

Advlr-vc[μ]

OTEVP (A) ≤ 2q

2min{t−ε−λ,u} − (μ + q)
+ Advtprp

TE (q, τ).

5.3 TPVP with Public Tweakable Permutation

If one takes a block cipher E : {0, 1}r × {0, 1}n → {0, 1}n (see Sect. 4.2 for
the definition) that does not only satisfy that its PRP-security is strong, but
that does not even have any inherent weaknesses and that can be modeled as
an ideal cipher, one can use this block cipher as tweakable permutation in the
TPVP construction. Just like in Sect. 4.3, the adversary can evaluate the public
primitive, or in terms of Theorem 2: p > 0. This also means that, for the last
term of this theorem to be small, we require t, u � n. We obtain the following
corollary:

Corollary 4 (Value Comparison Using Tweakable Permutation).
Assume that log2(μ) ≤ s ≤ r and t, u � n. Let TP ∈ perm(r, n) be a family
of permutations that is assumed to be perfectly random. For any adversary A
with construction complexity q and primitive complexity p,

Advlr-vc[μ]

OTPVP (A) ≤ 2(q + p)
2min{t−ε−λ,u} − (μ + q + p)

+
2p

2n−max{t,u+λ} − (μ + q + p)
.



Leakage Resilient Value Comparison with Application 393

6 Freedom of Salts

In the security model of Sect. 3.3, the salts S ∈ ({0, 1}s)μ are unique and paired
to the values in T

AC←− ({0, 1}t)μ. This might require state and/or another tech-
nique to obtain these salts. Nevertheless, it appears that this condition can be
released at almost no efficiency or security cost. In this section, we consider var-
ious cases and inspect how the bounds of Theorems 1 and 2 deteriorate. First,
in Sect. 6.1 we consider the case of randomly generated salts. Then, in Sect. 6.2,
we discuss how the bounds change if the salts are omitted. Finally, we briefly
elaborate on the theoretical benefit of not disclosing salts to the adversary in
Sect. 6.3.

6.1 Random Salts

One can simply take uniformly random S
$←− ({0, 1}s)μ. This will induce an addi-

tional term to the proof of Theorem 1. In detail, for the probability that the i-th
query is a forward primitive query and sets wini, we rely on the uniqueness of the
values Sj . (In fact, closer inspection shows that it suffices to rely on uniqueness
of the values Sj‖Tj , but the distribution of the Tj ’s might be a bit odd and
might not fit the modeling of multicollisions as per Sect. 2.1.) This means that
we need to expand the bad event bad to cover multicollisions in S

$←− ({0, 1}s)μ,
leading to an additional term mlfμ

s,t/2t. Subsequently the multiplication of p in
the numerator of the first term of the bound of Theorem 1 by mlfμ

s,t. Here, when
defining the multicollision event, we had some freedom to choose the value of
the denominator, which we set to t to match the denominator in the first term
of the bound. In total, the complete bound becomes:

2(q + mlfμs,tp)

2min{t−ε−λ,u} − (µ+ q + p)
+

2mlf2μ
u,n−up

2n−max{t,u+λ} − (µ+ q + p)
+

mlf2μ
u,n−u

2n−u
+

mlfμs,t

2t
. (20)

We remark that the changes are obsolete if we consider a secret primitive, in
which case p = 0, and also the two last terms of above equation disappear (see
also the explanation before Corollary 1).

For the bound of TPVP, there was no bad event bad in the first place.
However, we must consider multicollisions in {S1‖T1, . . . , Sμ‖Tμ} as well as
in {S1‖U1, . . . , Sμ‖Uμ}. As before, subtleties arise in the distribution of the
Tj ’s as well as in the Uj ’s, and we will restrict our focus to multicollisions in
S

$←− ({0, 1}s)μ. This can be bound by mlfμ
s,t/2t. The expanded bound becomes

2(q + mlfμ
s,tp)

2min{t−ε−λ,u} − (μ + q + p)
+

2mlfμ
s,tp

2n−max{t,u+λ} − (μ + q + p)
+

mlfμ
s,t

2t
.

6.2 Omission of Salt

In practice, it might not be that straightforward to pair salts with tags. However,
an option that is always available is to just use the same salt for every tag.



394 C. Dobraunig and B. Mennink

Compared to the random selection of salts in Sect. 6.1, we do not have a strong
bound on the largest multicollision on S. Instead, in the worst case we have a
single μ-collision. Hence, in contrast to Sect. 6.1, we do not need to introduce an
additional term mlfμ

s,t/2t, since we cannot have more than a single μ-collision on
μ-values. Akin to (20), the complete bound for the PVP scenario becomes:

2(q + μp)
2min{t−ε−λ,u} − (μ + q + p)

+
2mlf2μ

u,n−up

2n−max{t,u+λ} − (μ + q + p)
+

mlf2μ
u,n−u

2n−u
.

Since using a tweakable permutation with a single tweak/salt gives a single
permutation scenario we omit to spell out the TPVP case.

Furthermore, we note that the term 2μp
2min{t−λ,u}−(μ+q+p)

that introduces a
birthday-like trade-off in the bound between number of tags μ and primitive
calls p stems from the ability of a side-channel adversary to recover all μ possible
Uj ’s. In absence of a side-channel adversary, the bound in the black-box model
omits this term. In particular, for fixed S and no leakage, we would allow the
adversary access to a oracle similar to (9):

OPVP,P
T : (j, T �) 	→

�
PVPP(Tj)

?= PVPP(T �)
�

,

and the adversary wins if OPVP,P
T ever outputs 1:

Advpvc[μ]

OPVP,P
T

(A) = Pr
(
P

$←− perm(n) , T
$←− ({0, 1}t)μ : AOPVP,P

T ,P± wins
)

.

For completeness, we can define by Advpvc[μ]

OPVP,P
T

(q, p) the maximum advantage over

any adversary making q queries to OPVP,P
T and p bi-directional queries to P±.

Proposition 1 (Saltless Value Comparison using Permutation in the
Black-Box Model). Assume that t, u � n. Let P ∈ perm(n) be a permutation
that is assumed to be perfectly random. For any adversary A with construction
complexity q and primitive complexity p,

Advpvc[μ]

OPVP,P
T

(A) ≤ 2q

2min{t,u} − q
.

Proof. Since we work in the black-box model, the only thing an adversary learns
from a failed verification query is that Tj = T . What an adversary learns from
a successful verification query does not matter, since the adversary has won
anyway. As a consequence, an adversary cannot detect matches of forward prim-
itive queries (∗t‖0n−t, U�‖∗n−u) with U� = Uj only if it already won. The same
counts for inverse primitive queries, hence the adversary does not profit from
calls to P.

The possibilities for an adversary to win on a single query to the construction
is to either guess the tag Tj correctly, or to be lucky that an incorrect guess still



Leakage Resilient Value Comparison with Application 395

leads to the same U . Summing over q construction queries and considering that
all Uj ’s are computed via a perfectly random permutation, we hence get:

Advpvc[μ]

OPVP,P
T

(A) ≤ 2q

2min{t,u} − q
.

The reasoning holds for any adversary making q construction queries and p
primitive queries, and this completes the proof. ��

6.3 Note on Disclosing Salts

We remark that the security model of Sect. 3.3 prescribes that A actually obtains
the salts. In practice, it might often be more practical to not disclose them. This
will, clearly, only improve security.

7 Application to Message Authentication

Our leakage resilient solutions have many applications. We already mentioned
some in Sect. 1. In this section, we will consider the application of our solutions
to message authentication. In Sect. 7.2, we consider a composition of SuKS with
PVP, dubbed StP. The composition is very powerful against leakage resilience,
even though it requires that the building blocks (SuKS and PVP) are built from
independent cryptographic permutations. The result has immediate application
to the ISAP authenticated encryption scheme [19,20], that is currently in sub-
mission to the NIST Lightweight Cryptography competition. This function uses
SuKS for message authentication.

In Sect. 7.3, we go one step further, and stretch the analysis to a MAC con-
struction whose cryptographic primitive is related to that in value verification.
In detail, we present HaFuFu, a hash-then-PRF message authentication code
that uses the same PRF for value comparison, and prove that this construction
is a leakage resilient MAC function. The result can be relevant for many other
submissions to the NIST Lightweight Cryptography competition [48], given the
prevalence of the hash-then-PRF construction.

Both results are derived in a model for leakage resilient message authentica-
tion plus value verification, that is described in Sect. 7.1. It is a slight extension
of the model of Sect. 3.3.

7.1 Security Model for Leakage Resilient MAC Plus Value
Comparison

We will describe the security model for leakage resilient message authentication
with integrated value comparison in generality, so as it is applicable to both StP
and HaFuFu.

Let Π ∈ prims be a cryptographic primitive or a set of cryptographic primi-
tives, taken from a set of primitives prims from which uniform sampling is possi-
ble. A message authentication code MACΠ : {0, 1}k × {0, 1}∗ → {0, 1}t takes as



396 C. Dobraunig and B. Mennink

input a key K and an arbitrarily-long message M , and uses the cryptographic
primitive Π to generate a tag T . Associated to MACΠ is a verification function
VFYΠ : {0, 1}k × {0, 1}∗ × {0, 1}t → {0, 1} that gets as input a key K, a mes-
sage M , and a tag T �, and it outputs 1 if the tag belongs to the message and
0 otherwise. Whereas typical verification function do plain value comparison of
MACΠ

K(M) with T �, in our case verification will include leakage resilient value
comparison. Before proceeding, we remark that the key input to MACΠ may be
optional: sometimes, Π is a secretly keyed primitive (like a secret permutation)
and the key would be implicit.

As before, we consider non-adaptive L-resilience [24], where the adversary
receives leakage under any leakage L ∈ L of the scheme under investigation.
Any cryptographic evaluation of secret material may leak information, and a
proper definition of L depends on the scheme and primitive under consideration.
For StP and HaFuFu, the set will thus be formalized as soon as we go on to
prove leakage resilience (in Sects. 7.2.3 and 7.3.2, respectively). For any leakage
function L ∈ L, define by

[
MACΠ

K

]

L
an evaluation of MACΠ

K of (25) that not only
returns the response of this function, but also leaks secret material in consistency
with the evaluation of L (details for the two specific schemes will follow in the
corresponding sections). The function

[
VFYΠ

K

]

L
is defined analogously.

Leakage resilience of the MAC function now extends from the conventional
definition of unforgeability, but now with the adversary A having access to the
leaky oracles. In detail, let L ∈ L be any tuple of leakage functions. Consider
an adversary A that has query access to

[
MACΠ

K

]

L
and

[
VFYΠ

K

]

L
. It wins if

[
VFYΠ

K

]

L
ever outputs 1 on input of a message/tag tuple that was not the result

of an earlier query to
[
MACΠ

K

]

L
:

Advlr-mac
MAC (A) = max

L∈L
Pr

(
K

$←− {0, 1}k , Π
$←− prims : A[MACΠ

K ]
L
,[VFYΠ

K ]
L wins

)
.

(21)

For completeness, we can define by Advlr-mac
MAC (q, v) the maximum advantage over

any adversary making q authentication queries to
[
MACΠ

K

]

L
and v verification

queries to
[
VFYΠ

K

]

L
.

7.2 StP: SuKS-then-PVP

7.2.1 Description of SuKS
Assume that c + r = n and k, s, t ≤ n. Let P ∈ perm(n) be a cryptographic
permutation and G : {0, 1}k × {0, 1}s → {0, 1}s be a keyed function. The suffix
keyed sponge SuKS : {0, 1}k × {0, 1}∗ → {0, 1}t, formalized by Dobraunig and
Mennink [23], is depicted in Fig. 3.



Leakage Resilient Value Comparison with Application 397

P

r

M1

c
0

M�

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

Q R W

P′

s u

n−s−t n−u

S

0

t
T

U
?= U�

V
P′

s

n−s−t

t

u

n−u

S

0

T �

V �

s s

t

n−t

SuKS PVP

Fig. 3. The SuKS-then-PVP construction StP. The message M is first injectively
padded into r-bit blocks M1 . . .M�.

Dobraunig and Mennink [23] proved that if P is a random permutation, G has
good uniformity and universality,1 then SuKS behaves like a random function.
In addition, if G is strongly protected and any evaluation of P only leaks λ bits
of data non-adaptively, SuKS still behaves like a random function.

The security model under consideration is PRF-security under non-adaptive
leakage (as in Sect. 3.3). Let LP = {LP : {0, 1}n × {0, 1}n → {0, 1}λ} be a fixed
set of leakage functions on the primitive P, and let LG = {LG : {0, 1}k ×{0, 1}s ×
{0, 1}s → {0, 1}λ′} be a fixed set of leakage functions on the function G. All
functions are independent of P, i.e., they do not internally evaluate P or P−1.
Write L = LP × LG. For any leakage function L = (LP, LG) ∈ L, define by[
SuKSP

K

]

L
an evaluation of SuKSP

K of Fig. 3 that not only returns the response

of this function, but also leaks the values LG(K, lefts(Q), lefts(R)) and LP(R,W )
(see Fig. 3 for the values Q, R, and W ). Then, non-adaptive leakage resilient
pseudorandom function (LR-PRF) security is defined as the maximum advantage
of any distinguisher to distinguish the following two worlds:

Advlr-prf
SuKS (A) =

∣
∣
∣Pr

(
K

$←− {0, 1}k , P
$←− perm(n) : A[SuKSP

K ]
L
,SuKSP

K ,P = 1
)

−

Pr
(
K

$←− {0, 1}k , P
$←− perm(n) , F

$←− func(∗, t) : A[SuKSP
K ]

L
,F,P = 1

)∣
∣
∣ .

Under this model, Dobraunig and Mennink proved the following result.

Proposition 2 (Leakage Resilience of SuKS [23, Theorem 3]). Assume that
c + r = n and k, s, t ≤ n. Consider the SuKS construction of Fig. 3 based on
random permutation P

$←− perm(n) and a function G : {0, 1}k ×{0, 1}s → {0, 1}s.
Assume that G is strongly protected 2−δ-uniform and 2−ε-universal. For any

1 Uniformity means that the probability (over the drawing of K) that any fixed input
X maps to any fixed output Y is at most 2−δ. Universality means that the probability
(over the drawing of K) that any fixed distinct inputs X,X ′ map to the same value
is at most 2−ε.



398 C. Dobraunig and B. Mennink

adversary A with construction complexity q ≥ 2 and primitive complexity p ≤
2n−1,

Advlr-prf
SuKS (A) ≤ 2p2

2c
+

mlf
2(p−q)
s,n−s

2n−s
+

mlf
2(p−q)
n−s,s · p

2min{δ,ε}−mlf
2(p−q)
s,n−s λ

+
mlf2q

t,n−t · p

2n−t−λ
.

One term that is important in this bound is
mlf

2(p−q)
s,n−s

2n−s . In the proof of SuKS,
the authors upper bound the maximum size of a multicollision on lefts(Q) by
mlf

2(p−q)
s,n−s . The fact that this bounding is already performed in the proof of SuKS

itself will become useful when we consider composition of SuKS with PVP.

7.2.2 Description of StP
Let P,P′ ∈ perm(n), and let MACP,P′

: {0, 1}k × {0, 1}∗ → {0, 1}t be the SuKS
message authentication code:

MACP,P′
K (M) = SuKSP(K,M) = T . (22)

Verification VFYP,P′
: {0, 1}k×{0, 1}∗×{0, 1}t → {0, 1} now incorporates PVPP′

.
It takes S = lefts(Q) from the computation of SuKSP(K,M) (see Fig. 3) as salt,
and is defined as follows:

VFYP,P′
K (M,T �) =�
leftu(P(S ‖ MACP,P′

K (M) ‖ 0n−s−t))
?
= leftu(P(S ‖ T � ‖ 0n−s−t))

�
, (23)

where S = lefts(Q) is a function of M as specified in Fig. 3.

7.2.3 Leakage Resilience of StP
We will prove security of StP, provided that P,P′ $←− perm(n) are two random
permutations.

In StP, leakage occurs on evaluations of P, G, P′, and in the value comparison.
Let LP = {LP : {0, 1}n × {0, 1}n → {0, 1}λ} be a fixed set of leakage functions
on the primitive P, and let LG = {LG : {0, 1}k × {0, 1}s × {0, 1}s → {0, 1}λ′}
be a fixed set of leakage functions on the function G. Let LP′ = {LP′ : {0, 1}n ×
{0, 1}n → {0, 1}λ} be a fixed set of leakage functions on the value processing
function P′, and let LC = {LC : {0, 1}u × {0, 1}u → {0, 1}λ′} be a fixed set of
leakage functions on the value comparison within VFY. All functions are inde-
pendent of P and P′. Write L = LP × LG × LP′ × LC. For any leakage function
L = (LP, LG, LP′ , LC) ∈ L, define by

[
MACP,P′

K

]

L
an evaluation of MACP,P′

K of (22)
that not only returns the response of this function, but also leaks the following
values:

LG(K, lefts(Q), lefts(R)) ∈ {0, 1}λ ,

LP(R,W ) ∈ {0, 1}λ ,



Leakage Resilient Value Comparison with Application 399

where K,Q,R, and W are values related to the computation of MACP,P′
K (K,M),

as outlined in Fig. 3. Similarly, define by
[
VFYP,P′

K

]

L
an evaluation of VFYP,P′

K

of (23) that not only returns the response of this function, but also leaks the
following values:

LG(K, lefts(Q), lefts(R)) ∈ {0, 1}λ ,

LP(R,W ) ∈ {0, 1}λ ,

LP′
(
S‖T‖0n−s−t, U‖V

) ∈ {0, 1}λ ,

LP′
(
S‖T �‖0n−s−t, U�‖V �

) ∈ {0, 1}λ ,

LC (U,U�) ∈ {0, 1}λ′
,

where K,Q,R,W, S, T, U, U�, V , and V � are values related to the computation
of VFYP,P

K (M,T �) as outlined in Fig. 3.
We can now prove leakage resilience of StP in the security model of Sect. 7.1.

Theorem 3. Assume that k, s+t, u ≤ n. Consider the StP construction based on
two random permutations P,P′ $←− perm(n) and a function G : {0, 1}k×{0, 1}s →
{0, 1}s. Assume that G is strongly protected 2−δ-uniform and 2−ε-universal. For
any adversary A with construction query q and verification complexity v, with
q + v ≥ 2, and primitive complexity p ≤ 2n−1,

Advlr-mac
StP (A) ≤ 2p2

2c
+

mlf
2(p−q)
s,n−s

2n−s
+

mlf
2(p−q)
n−s,s · p

2min{δ,ε}−mlf
2(p−q)
s,n−s λ

+
mlf

2(q+v)
t,n−t · p

2n−t−λ

+
2(v + mlf

2(p−q)
s,n−s p)

2min{t−2λ,u} − (2v + p)
+

2mlf2v
u,n−up

2n−max{t,u+λ} − (2v + p)
+

mlf2v
u,n−u

2n−u
.

Proof. Let L = (LP, LG, LP′ , LC) ∈ L be any four leakage functions, let K
$←−

{0, 1}k and P,P′ $←− perm(n). Consider any adversary A that aims to mount a
forgery against StPP,P′

K . It can make q construction queries, v verification queries,
and p primitive queries to both P and P′.

It is important to note that the functions SuKSP
K and PVPP′

are indepen-
dent primitives. In addition, SuKSP

K is a pseudorandom function under leakage.
Concretely, up to the bound of Proposition 2, each new evaluation of SuKSP

K

outputs a T that has min-entropy at least t − λ and is independent of earlier
evaluations of the construction, and associated with this value T is a value S
that is not secret but that has the property that if the construction is evaluated
q times, the maximum size of a multicollision is mlf

2(p−q)
s,n−s .

In fact, within StP, SuKSP
K gets evaluated up to q times for different inputs

and at most v additional times in new verification queries. Say that the number
of unique messages under which A queries SuKSP

K is q′. Then, we can replace
SuKSP

K by generating a list of random elements T = (T1, . . . , Tq′) AC←− ({0, 1}t)q′

with ε = λ, and an arbitrary randomly generated list S = (S1, . . . , Sq′) of which
each element occurs at most mlf

2(p−q′)
s,n−s ≤ mlf

2(p−q)
s,n−s . This replacement comes at

the cost of



400 C. Dobraunig and B. Mennink

2p2

2c
+

mlf
2(p−q′)
s,n−s

2n−s
+

mlf
2(p−q′)
n−s,s · p

2min{δ,ε}−mlf
2(p−q′)
s,n−s λ

+
mlf2q′

t,n−t · p

2n−t−λ

≤ 2p2

2c
+

mlf
2(p−q)
s,n−s

2n−s
+

mlf
2(p−q)
n−s,s · p

2min{δ,ε}−mlf
2(p−q)
s,n−s λ

+
mlf

2(q+v)
t,n−t · p

2n−t−λ
. (24)

Having made this replacement, one can then see that, as evaluations of
SuKSP

K are independent for different messages, only the elements in T and S
that are considered in the evaluation of PVPP are useful. Therefore, the game of
mounting a forgery against the resulting construction is equivalent to the game
of mounting an attack against the value comparison function PVPP′

in the model
of Sect. 3.3, where μ = v.

In summary, we have obtained that

Advlr-mac
StP (A) ≤ (24) + Advlr-vc[v]

OPVP (A) ,

for some adversary A′ with construction complexity v and primitive complexity
p, that operates in the game with salts that may repeat up to mlf

2(p−q)
s,n−s times.

We can take the bound of Theorem 1 with the p in the numerator of the first
term multiplied by mlf

2(p−q)
s,n−s (or, alternatively, take (20) with mlfv

s,t replaced by

mlf
2(p−q)
s,n−s and with the last term dropped as it is already accounted for in the

bound of SuKSP
K), for μ = v, ε = λ, and q = v. ��

7.3 HaFuFu: MAC Plus Value Comparison with Same Primitive

7.3.1 Description of HaFuFu
We will describe the HaFuFu message authentication with dependent value com-
parison. Given the non-triviality of the problem, we consider a simpler scenario
compared to the results of Sects. 4 and 5, namely one based on a random func-
tion (cf., Remark 2). In addition, for simplicity we assume that s + t = n (the
analysis easily extends to the case of s + t ≤ n) and t = u. Let H ∈ func(∗, n)
be a cryptographic hash function, and F ∈ func(n, t) a (secret) cryptographic
function. As F is a secret primitive, there is no key involved. Define the following
message authentication code MACH,F : {0, 1}∗ → {0, 1}t:

MACH,F(M) = F(H(M)) = T . (25)

The corresponding verification function VFYH,F : {0, 1}∗ × {0, 1}t → {0, 1} is
defined as follows:

VFYH,F(M,T �) =
�
F(lefts(H(M))‖MACH,F(M)) ?= F(lefts(H(M))‖T �)

�
, (26)

The function is depicted in Fig. 4. The picture also includes definitions of inter-
mediate values R,S, T, U , and U�, that we will use when analyzing MAC and
VFY. Note that the name HaFuFu is derived from the verification oracle, that
operates in a Hash-then-Function-then-Function mode.



Leakage Resilient Value Comparison with Application 401

M H F
T

F F
s+t

t

∗
t t

lefts

S
s

U
?= U� t t

T �
S

s

s

R

Fig. 4. HaFuFu algorithms MAC and VFY of (25) and (26), respectively. H is a crypto-
graphic hash function and F a secret random permutation.

7.3.2 Leakage Resilience of HaFuFu

We will prove security of HaFuFu, provided that H
$←− func(∗, n) is a random

oracle, and F
$←− func(n, t) a secret random function. In practice, one might

consider instantiating H with any good cryptographic hash function, and F by
a strongly protected PRF, which can in turn be built from a (tweakable) block
cipher with n-bit block size, followed by truncation [4,11,34,45,53].

In HaFuFu, leakage occurs on evaluations of F and in the value comparison.
Let LF = {LF : {0, 1}n × {0, 1}t → {0, 1}λ} be a fixed set of leakage functions on
the value processing function F, and let LC = {LC : {0, 1}t × {0, 1}t → {0, 1}λ′}
be a fixed set of leakage functions on the value comparison within VFY. All
functions are independent of F itself, i.e., they do not internally evaluate F. Write
L = LF ×LC. For any leakage function L = (LF, LC) ∈ L, define by

[
MACH,F

]

L
an

evaluation of MACH,F of (25) that not only returns the response of this function,
but also leaks the following value:

LF (R, T ) ∈ {0, 1}λ ,

where R and T are values related to the computation of MACH,F(M), as outlined
in Fig. 4. Similarly, define by

[
VFYH,F

]

L
an evaluation of VFYH,F of (26) that not

only returns the response of this function, but also leaks the following values:

LF (R, T ) ∈ {0, 1}λ ,

LF (S‖T,U) ∈ {0, 1}λ ,

LF (S‖T �, U�) ∈ {0, 1}λ ,

LC (U,U�) ∈ {0, 1}λ′
,

where R,S, T, U , and U� are values related to the computation of VFYH,F(M,T �)
as outlined in Fig. 4.

We can now prove leakage resilience of HaFuFu in the security model of
Sect. 7.1.

Theorem 4. Assume that s + t = n. Consider the HaFuFu construction based
on a random oracle H

$←− func(∗, n) and a secret random function F
$←− func(n, t).

For any adversary A with construction query q and verification complexity v,



402 C. Dobraunig and B. Mennink

Advlr-mac
HaFuFu(A) ≤ 2q

2t−2λ
+

2
(
q+v
2

)

2n
.

Proof. Let L = (LF, LC) ∈ L be any two leakage functions, let H
$←− func(∗, n) be

a random oracle and F
$←− func(n, t) a random function. Consider any adversary

A that aims to mount a forgery against HaFuFuH,F. It can make q construction
queries and v verification queries. For each verification query VFYH,F(M,T �), A
learns the following values:

LF (R, T ) ∈ {0, 1}λ ,

LF (S‖T,U) ∈ {0, 1}λ ,

LF (S‖T �, U�) ∈ {0, 1}λ ,

LC (U,U�) ∈ {0, 1}λ′
.

Here, R,S, T, U , and U� are as described in Fig. 4. Under the assumption that
outputs of H never collide, we can observe that these are the only functions that
leak information about R, T , and U for this message M . In other words, under
this assumption, leakages for different messages are independent. As LF and LC

are fixed, predetermined, functions, they adversary learns at most 2λ bits of
leakage on T and at most λ + vλ′ bits of leakage on U , for any message M .

The adversary wins if any of its q construction queries returns 1. However, as
suggested above, we have to argue based on the non-existence of collisions in the
output of H, labeled R. In fact, it turns out that the adversary also has a gain
if there are collisions in the values S‖U . Therefore, we will count both types of
collisions as a win for the adversary.

More detailed, we denote by bad the event that there exist two queries to
MACH,F and VFYH,F that satisfy R = R′ or S‖U = S′‖U ′. For i ∈ {1, . . . , v},
we denote by wini the event that the i-th verification query succeeds. Write
win =

∨v
i=1 wini. Our goal is to bound

Pr (win) ≤ Pr (win ∧ ¬bad) + Pr (bad)

= Pr

(
v∨

i=1

wini ∧ ¬bad

)

+ Pr (bad)

≤
v∑

i=1

Pr (wini ∧ ¬win1..i−1 ∧ ¬bad) + Pr (bad) , (27)

where win1..0 = false by definition.

Bound on Pr (wini ∧ ¬win1..i−1 ∧ ¬bad). Consider any i ∈ {1, . . . , v}, and con-
sider the i-th query (M,T �). By ¬bad, message M defines a unique R, so the
construction query is independent of all other construction queries that were not
made for the message M . The oracle outputs 1 if:

– T � = T . As the adversary has so far learned at most 2λ bits of leakage on T ,
this condition is set with probability at most 1/2t−2λ;



Leakage Resilient Value Comparison with Application 403

– T � = T but F(S‖T �) = U . Clearly, if there were an earlier message M ′ for
which S′ = S and T ′ = T �, the equation F(S‖T �) = U would contradict with
the assumption that there is no collision S‖U = S′‖U ′. Therefore, necessarily,
there was no earlier evaluation of F(S‖T �), and the result will be randomly
drawn from a set of size at least 2t values. Thus, the condition is set with
probability at most 1/2t.

Adding both cases, we get

Pr (wini ∧ ¬win1..i−1) ≤ 2
2t−2λ

. (28)

Bound on Pr (bad). The hash function is invoked a total number of q + v times,
and any pair of invocations has colliding R = R′ with probability 1/2n and
colliding S‖U = S′‖U ′ with probability s + t. As we assumed that s + t = n, we
obtain that

Pr (bad) ≤ 2
(
q+v
2

)

2n
. (29)

Conclusion. The adversary makes q construction queries, each of which succeeds
with probability at most (28). Next, we have to add (29). We thus obtain from
(27) that

Advlr-mac
HaFuFu(A) ≤ 2q

2t−2λ
+

2
(
q+v
2

)

2n
.

The reasoning holds for any adversary making q construction queries and v
verification queries, and this completes the proof. ��

8 Conclusion

In this paper, we examined leakage resilient value comparison via cryptographic
building blocks. In short, we showed that is possible to perform value comparison
via cryptographic building blocks in a sound and leakage resilient way without
the need to protect the comparison operation at all. Hence, there is no strict need
in putting resources into the additional protection of the comparison operation.
Instead, implementers could choose an area/speed trade-off by just saving the
area needed to implement a protected verification operation in exchange for two
additional primitive executions during verification.

The probability that an adversary guesses the right value in q attempts for
just a plain tag comparison in the black box setting is q/2t. When comparing
this with the security bounds we get for value comparison via cryptographic
functions, we see that doing the comparison cryptographic functions give the
adversary a slightly bigger advantage in succeeding. The main reason for this is
that U and U� can have the same value although T and T � might differ. We
consider this advantage to be negligible in most practical cases and value the
benefits in resistance against side-channel attacks more. However, in case this
additional advantage over a plain comparison is a concern, it is possible to lessen
it by increasing the size of U and U�.



404 C. Dobraunig and B. Mennink

Acknowledgements. This work has been supported in part by the Austrian Science
Fund (FWF): J 4277-N38, and the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No
681402).

References

1. Andreeva, E., et al.: COLM v1. CAESAR, second choice for defense in depth (2016)
2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant

MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019)

4. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. Cryptology ePrint Archive, Report 1999/024 (1999)

5. Bellizia, D., et al.: Spook: sponge-based leakage-resistant authenticated encryption
with a masked tweakable block cipher. IACR Trans. Symmetric Cryptol. 2020,
295–349 (2020)

6. Bellizia, D., et al.: Mode-Level vs. implementation-level physical security in sym-
metric cryptography. In: Micciancio, D., Ristenpart, T. (eds.) 12170. LNCS, vol.
12170, pp. 369–400. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 13

7. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Tedt, a leakage-
resist AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(1), 256–320 (2020)

8. Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol.
2017(3), 271–293 (2017)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions, January 2011

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference. Sub-
mission to NIST (Round 3) (2011)

11. Bhattacharya, S., Nandi, M.: A note on the chi-square method: A tool for proving
cryptographic security. Cryptogr. Commun. 10(5), 935–957 (2018)

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

13. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 7

14. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.: Pro-
tecting against statistical ineffective fault attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 508–543 (2020)

15. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of xoodoo and
xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7


Leakage Resilient Value Comparison with Application 405

16. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 21

17. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher
(2000), nessie Proposal

18. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES). Springer, Information Security and Cryptography (2002)

19. Dobraunig, C., et al.: Isap v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–
416 (2020)

20. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to NIST Lightweight Cryptography (2019)

22. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 225–
255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 8

23. Dobraunig, C., Mennink, B.: Security of the suffix keyed sponge. IACR Trans.
Symmetric Cryptol. 2019(4), 223–248 (2019)

24. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 2

25. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–
302. IEEE Computer Society (2008)

26. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 13

27. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

28. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

29. Goudarzi, D., et al.: Pyjamask: Block cipher and authenticated encryption
with highly efficient masked implementation. IACR Trans. Symmetric Cryptol.
2020(S1), 31–59 (2020)

30. Gross, H., Mangard, S.: Reconciling d + 1 masking in hardware and software.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 6

31. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46706-0 2

32. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. IACR
Trans. Symmetric Cryptol. 2020(1), 6–42 (2020)

https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-662-46706-0_2


406 C. Dobraunig and B. Mennink

33. Guo, C., Standaert, F.X., Wang, W., Yu, Y.: Efficient side-channel secure message
authentication with better bounds. IACR Trans. Symmetric Cryptol. 2019(4),
23–53 (2019)

34. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055742

35. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

36. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. CAESAR, first choice
for defense in depth (2016)

37. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 243–268 (2020)

38. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

39. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

40. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

41. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm. RFC
7253, 1–19 (2014)

42. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

43. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 12

44. Medwed, M., Standaert, F.-X., Nikov, V., Feldhofer, M.: Unknown-input attacks
in the parallel setting: improving the security of the CHES 2012 leakage-resilient
PRF. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp.
602–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 22

45. Mennink, B.: Linking stam’s bounds with generalized truncation. In: Matsui, M.
(ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 313–329. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12612-4 16

46. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

47. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

48. NIST: Lightweight Cryptography, February 2019
49. Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and

encryption from symmetric cryptographic primitives. In: ACM CCS, pp. 96–108.
ACM (2015)

https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/978-3-662-53887-6_22
https://doi.org/10.1007/978-3-662-53887-6_22
https://doi.org/10.1007/978-3-030-12612-4_16
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38


Leakage Resilient Value Comparison with Application 407

50. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 27

51. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

52. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopou-
los, K., Regazzoni, F., Samwel, N.: Friet: an authenticated encryption scheme
with built-in fault detection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 581–611. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 21

53. Stam, A.J.: Distance between sampling with and without replacement. Statistica
Neerlandica 32(2), 81–91 (1978)

54. Standaert, F.-X., Pereira, O., Yu, Yu.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 19

55. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. Cryptology ePrint Archive, Report 2003/236 (2003)

56. Unterstein, F., Schink, M., Schamberger, T., Tebelmann, L., Ilg, M., Heyszl, J.:
Retrofitting leakage resilient authenticated encryption to microcontrollers. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 365–388 (2020)

https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-030-45721-1_21
https://doi.org/10.1007/978-3-030-45721-1_21
https://doi.org/10.1007/978-3-642-40041-4_19


The Mother of All Leakages:
How to Simulate Noisy Leakages via
Bounded Leakage (Almost) for Free

Gianluca Brian1(B), Antonio Faonio2, Maciej Obremski3, João Ribeiro4,
Mark Simkin5, Maciej Skórski6, and Daniele Venturi1

1 Sapienza University of Rome, Rome, Italy
{brian,venturi}@di.uniroma1.it

2 EURECOM, Sophia-Antipolis, France
antonio.faonio@eurecom.fr

3 National University of Singapore, Singapore, Singapore
4 Imperial College London, London, UK
j.lourenco-ribeiro17@imperial.ac.uk
5 Aarhus University, Aarhus, Denmark

simkin@cs.au.dk
6 University of Luxembourg, Luxembourg, Luxembourg

maciej.skorski@uni.lu

Abstract. We show that the most common flavors of noisy leakage can
be simulated in the information-theoretic setting using a single query of
bounded leakage, up to a small statistical simulation error and a slight
loss in the leakage parameter. The latter holds true in particular for one
of the most used noisy-leakage models, where the noisiness is measured
using the conditional average min-entropy (Naor and Segev, CRYPTO’09
and SICOMP’12).

Our reductions between noisy and bounded leakage are achieved in
two steps. First, we put forward a new leakage model (dubbed the dense
leakage model) and prove that dense leakage can be simulated in the
information-theoretic setting using a single query of bounded leakage,
up to small statistical distance. Second, we show that the most common
noisy-leakage models fall within the class of dense leakage, with good
parameters. Third, we prove lower bounds on the amount of bounded
leakage required for simulation with sub-constant error, showing that
our reductions are nearly optimal. In particular, our results imply that
useful general simulation of noisy leakage based on statistical distance
and mutual information is impossible. We also provide a complete pic-
ture of the relationships between different noisy-leakage models.

Our result finds applications to leakage-resilient cryptography, where
we are often able to lift security in the presence of bounded leakage
to security in the presence of noisy leakage, both in the information-
theoretic and in the computational setting. Additionally, we show how
to use lower bounds in communication complexity to prove that bounded-
collusion protocols (Kumar, Meka, and Sahai, FOCS’19) for certain func-
tions do not only require long transcripts, but also necessarily need to
reveal enough information about the inputs.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 408–437, 2021.
https://doi.org/10.1007/978-3-030-77886-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_14


The Mother of All Leakages 409

1 Introduction

1.1 Background

The security analysis of cryptographic primitives typically relies on the assump-
tion that the underlying secrets (including, e.g., secret keys and internal ran-
domness) are uniformly random to the eyes of the attacker. In reality, however,
this assumption may simply be false due to the presence of so-called side-channel
attacks [4,36,37], where an adversary can obtain partial information (also known
as leakage) on the secret state of an implementation of a cryptographic scheme,
by exploiting physical phenomena.

Leakage-resilient cryptography [28,34,43] aims at bridging this gap by allow-
ing the adversary to launch leakage attacks in theoretical models too. The last
decade has seen an impressive amount of work in this area, thanks to which we
now dispose of a large number of leakage-resilient cryptographic primitives in
different leakage models. We refer the reader to the recent survey by Kalai and
Reyzin [35] for an overview of these results.

From an abstract viewpoint, we can think of the leakage on a random variable
X (corresponding, say, to the secret key of an encryption scheme) as a correlated
random variable Z = f(X) for some leakage function f that can be chosen by the
adversary. Depending on the restriction1 we put on f , we obtain different leakage
models. The first such restriction, introduced for the first time by Dziembowski
and Pietrzak [28], is to simply assume that the length � ∈ N of the leakage
Z is small enough. This yields the so-called Bounded Leakage Model. Thanks
to its simplicity and versatility, this model has been used to construct many
cryptographic primitives that remain secure in the presence of bounded leakage.

A considerable limitation of the Bounded Leakage Model is the fact that, in
real-world side-channel attacks, the leakage obtained by the attacker is rarely
bounded in length. For instance, the power trace on a physical implementation
of AES typically consists of several Megabytes of information, which is much
larger than the length of the secret key.

This motivates a more general notion of noisy leakage, where there is no upper
bound on the length of Z but instead we assume the leakage is somewhat noisy, in
the sense that it does not reveal too much information about X. It turns out that
the level of noisiness of the leakage can be measured in several ways, each yielding
a different leakage model. The first such model, proposed for the first time by
Naor and Segev [44] in the setting of leakage-resilient public-key encryption,
assumes that the uncertainty of X given Z drops at most by some parameter
� ∈ R>0. The latter can be formalized by means of conditional2 average min-
entropy [22], i.e. by requiring that ˜H∞(X|Z) ≥ H∞(X)− �. In this work, we will
refer to this model as the Min-Entropy-Noisy (ME-Noisy) Leakage Model. Dodis,

1 Clearly, there must be some restriction as otherwise f(X) = X and there is no hope
for security.

2 Intuitively, the conditional average min-entropy of a random variable X given Z
measures how hard it is to predict X given Z on average (by an unbounded predic-
tor).



410 G. Brian et al.

Haralambiev, López-Alt, and Wichs [20] considered a similar model, which we
refer to as the Uniform-Noisy (U-Noisy) Leakage Model, where the condition
about the min-entropy drop is defined w.r.t. the uniform distribution U (rather
than on X which may not3 be uniform).

Another variant of noisy leakage was pioneered by Prouff and Rivain [47]
(building on previous work by Chari, Jutla, Rao, and Rohatgi [16]), who sug-
gested to measure the noisiness of the leakage by bounding the Euclidean norm
between the joint distribution PXZ and the product distribution PX ⊗ PZ with
some parameter η ∈ (0, 1). Follow-up works by Duc, Dziembowski, and Faust [24]
and by Prest, Goudarzi, Martinelli, and Passelègue [46] replaced the Euclidean
norm, respectively, with the statistical distance and the mutual information,
yielding what we refer to as the SD-Noisy Leakage and the MI-Noisy Leakage
Models. More precisely,4 Duc, Dziembowski, and Faust considered a strict sub-
set of SD-noisy leakage—hereafter dubbed DDF-noisy leakage—for the special
case where X = (X1, . . . , Xn), for some fixed parameter n ∈ N, and the func-
tion f has a type f = (f1, . . . , fn) such that Δ(PXi

⊗ PZi
, PXiZi

) ≤ η for each
Xi and Zi = fi(Xi). All of these works studied noisy leakage in the setting of
leakage-resilient circuit compilers (see Sect. 1.4).

The different flavors of noisy leakage discussed above capture either a more
general class of leakage functions than bounded leakage (as in the case of ME-
noisy and U-noisy leakage), or an orthogonal class of leakage functions (as in the
case of SD-noisy and MI-noisy leakage). On the other hand, it is usually easi-
est (and most common) to prove security of a cryptographic primitive against
bounded leakage, whereas extending the analysis to other types of noisy leakage
requires non-trivial specialized proofs for each primitive. Motivated by this situ-
ation, we consider the following question: Can we reduce noisy-leakage resilience
to bounded-leakage resilience in a general way?

1.2 Our Results

In this work, we answer the above question to the positive in the information-
theoretic setting. In a nutshell, we achieve this by proving that a novel and
very general leakage model, which we refer to as the Dense Leakage Model and
that encompasses all the aforementioned noisy-leakage models, can be simulated
almost for free (albeit possibly inefficiently) using a single query of bounded
leakage. Our result allows us to show in a streamlined way that many crypto-
graphic primitives which have only been proved to be resilient against bounded
leakage are also secure against noisy leakage, with only a small loss in parame-
ters. Importantly, the latter does not only hold for cryptographic schemes with
information-theoretic security, but also for ones with computational security

3 For instance, in the setting of public-key encryption [44], the random variable X
corresponds to the distribution of the secret key SK given the public key PK , which
may not be uniform.

4 The work by Prest, Goudarzi, Martinelli, and Passelègue considered a similar restric-
tion for MI-noisy leakage.



The Mother of All Leakages 411

only. We elaborate on our contributions in more details in the paragraphs below,
and refer the reader to Sect. 1.3 for a more technical overview.

Simulating Dense Leakage with Bounded Leakage. As the starting point for our
work, in Sect. 3, we introduce a meaningful simulation paradigm between leakage
models. Informally, given some random variable X and two families of leakage
functions F and G on X, we say F is ε-simulatable from G if for every f ∈ F
we can simulate (X, f(X)) to within statistical distance ε using a single query
of the form g(X) for some g ∈ G.

Taking into account the above simulation paradigm, the question we tackle
is whether we can have simulation theorems stating that different noisy-leakage
families F are ε-simulatable from the family G of �-bounded leakage (for some
small ε). We prove such a simulation theorem for a new leakage model that we
call dense leakage.

In order to define the Dense Leakage Model, we begin with the concept of
δ-density : Given two distributions P and P ′ over a discrete set X , we say P is
δ-dense in P ′ if P (x) ≤ P ′(x)

δ for all x ∈ X . In particular, δ-density implies that
P (x) = 0 whenever P ′(x) = 0, and thus this concept is connected to the notion
of absolute continuity of one measure with respect to another. Given this notion,
it is simple to describe the Dense Leakage Model. If Z = f(X) denotes some
leakage from X, then Z is (p, γ, δ)-dense leakage from X if, with probability 1−p

over the choice of X = x, we have PZ|X=x(z) ≤ PZ(z)
δ with probability 1 − γ

over the choice of Z = z. Intuitively, Z being a dense leakage of X essentially
corresponds to the distributions PZ|X=x being “approximately” dense in the
marginal distribution PZ for most choices of x ∈ X .

Our first result is a simulation theorem for dense leakage with respect to
bounded leakage, which we state in simplified form below.

Theorem 1 (Informal). For any random variable X, and every parameter
ε ∈ (0, 1), the family of (p, γ, δ)-dense leakage functions on X is (ε+ε1/4δ+γ+p)-
simulatable from the family of �-bounded leakage functions on X, so long as

� ≥ log(1/δ) + log log(1/ε) + 2 log
(

1
1 − γ

)

+ 2.

On the Power of Dense Leakage. Second, we show that dense leakage captures
all of the noisy-leakage models considered above. In particular, we obtain the
following informal result.

Theorem 2 (Informal). The families of ME-noisy, U-noisy, and DDF-noisy
leakages fall within the family of dense leakage with good5 parameters.

By combining Theorem 1 and Theorem 2, we obtain non-trivial simulation theo-
rems for the families of ME-noisy, U-noisy, and DDF-noisy leakage from bounded

5 In particular, small enough in order to be combined with Theorem 1 yielding inter-
esting applications.



412 G. Brian et al.

Fig. 1. Containment of the different leakage models considered in this paper. Our main
result is that a single query of bounded leakage is enough to simulate dense leakage to
within small statistical distance.

leakage, with small simulation error and small bounded leakage parameter. It is
worth mentioning that, for the specific case of ME-noisy leakage, Theorem 2 only
holds for distributions X that are almost flat. As we shall prove, this restriction
is nearly optimal in the sense that there exist “non-flat” distributions X for
which we cannot simulate ME-noisy leakage on X from bounded leakage on X
with good parameters, even when the drop in min-entropy is minimal.

Fundamental Limitations of SD-noisy and MI-noisy Leakages. Turning to the
families of SD-noisy and MI-noisy leakage, one can show that they fall within the
family of dense leakage too. However, the parameters we obtain in this case are
not good enough to be combined with Theorem 1 in order to yield interesting
applications. In fact, we prove that the families of η-SD-noisy and η-MI-noisy
leakage are trivially simulatable with statistical error roughly η even from the
degenerate family of 0-bounded leakage. Unfortunately, this is inherent for the
general form of SD-noisy and MI-noisy leakage we consider: we prove that no
simulator can achieve simulation error significantly smaller than η even when
leaking almost all of the input. In contrast, Duc, Dziembowski, and Faust [23,
24] gave a non-trivial6 simulation theorem for the family of DDF-noisy leakage
(which is a strict subset of SD-noisy leakage) from a special type of bounded
leakage called threshold probing leakage. Consistently, Theorem 2 establishes that
DDF-noisy leakage is dense leakage with good parameters which in combination
with Theorem 1 gives an alternative (non-trivial) simulation theorem for DDF-
noisy leakage from bounded leakage. While this result is not new, we believe it
showcases the generality of our techniques.

6 In particular, with negligible simulation error and small bounded leakage parameter
even for constant η.



The Mother of All Leakages 413

A Complete Picture, and Near-Optimality of our Simulation Theorems. We also
provide a complete picture of inclusions and separations between the different
leakage models, as depicted in Fig. 1. Some of these relationships were already
known (e.g., the fact that the family of U-noisy leakage is a strict subset of the
family of ME-noisy leakage), and some are new (e.g., the separations between the
family of SD-noisy leakage and the families of ME-noisy and MI-noisy leakage).

Moreover, we prove a series of results showing that the amount of bounded
leakage we use in our simulation theorems is nearly optimal with respect to the
desired simulation error.

Applications in Brief. Next, we explore applications of our results to leakage-
resilient cryptography. Intuitively, the reason why the simulation paradigm is
useful is that it may allow us to reduce leakage resilience of a cryptographic
scheme against F to leakage resilience against G. In particular, when G is
taken to be the family of bounded-leakage functions, we obtain that many
primitives which were already known to be secure against bounded leakage are
also secure against dense (and thus noisy) leakage. Examples include forward-
secure storage [26], leakage-resilient one-way functions and public-key encryp-
tion [5], cylinder-intersection extractors [38], symmetric non-interactive key
exchange [40], leakage-resilient secret sharing [1,9,38,41,48] and two-party com-
putation [32].

1.3 Technical Overview

Due to space constraints, most proofs have been deferred to the full version of
this paper [13].

Simulation via Rejection Sampling. We begin by giving an overview of the app-
roach we use to simulate dense leakage from bounded leakage. As discussed
before, our goal is to show that, for a random variable X and some associated
dense leakage function f (where f may be randomized), there is a (possibly
inefficient) simulator that makes at most one black-box query g(X) for some
�-bounded leakage function g : X → {0, 1}� and outputs ˜Z such that

(X, f(X)) ≈ε (X, ˜Z), (1)

where ≈ε denotes statistical distance at most ε. For simplicity, we focus here
on the setting where f is “exactly” δ-dense leakage from X, meaning that, if
Z = f(X), we have PZ|X=x(z) ≤ PZ(z)

δ for all x and z. This setting is already
appropriate to showcase our main ideas.

The key observation that enables the design of our simulator, as we formalize
in Sect. 2, is that if a distribution P is δ-dense in P ′, then it is possible to
sample ˜P satisfying ˜P ≈ε P with access only to s = log(1/ε)

δ independent and
identically distributed (i.i.d.) samples from P ′, say z1, z2, . . . , zs, and knowledge
of the distribution P , via rejection sampling : For i = 1, 2, . . . , s, either output



414 G. Brian et al.

zi with probability δP (zi)/P ′(zi) ≤ 1, or move to i + 1 otherwise (if i = s + 1,
abort).

This suggests the following simulator for f exploiting δ-density: The simula-
tor generates s i.i.d. samples z = (z1, z2, . . . , zs) from PZ . Then, it queries the
bounded-leakage oracle with the randomized function gz which, with full knowl-
edge of x, performs rejection sampling of PZ|X=x from PZ using z. If rejection
sampling outputs zi, then gz(x) = i, and if rejection sampling aborts we may set
gz(x) = ⊥. In particular, gz has 1 + s possible outputs, and so it is �-bounded-
leakage from X with � = log(1 + s) ≤ log(1/δ) + log log(1/ε) + 1. The behavior
of the simulator is now clear: Since it knows z, it can simply output ˜Z = zi (or
˜Z = ⊥ if rejection sampling aborted). The discussion above guarantees that the
output of the simulator is ε-close in statistical distance to f(x), which yields
Eq. (1).

As previously discussed, in the actual proof (which appears in Sect. 4.1) we
must deal with an approximate variant of δ-density. However, we show that the
above approach still works in the setting of approximate density at the price of
some additional small terms in the simulation error and in the bounded leakage
length.

Noisy Leakage is Dense Leakage. As an example of how we manage to frame
many types of noisy leakage as dense leakage with good parameters, we discuss
how this can be accomplished for ME-noisy leakage assuming X satisfies a prop-
erty we call α-semi-flatness. The full proof appears in Sect. 4.2. The property
states that X satisfies PX(x) ≤ 2α · PX(x′) for all x, x′ ∈ supp(X), and, as we
shall see, it is usually satisfied in applications with small α (or even α = 0,
which corresponds to a flat distribution). We stress that for the case of U-noisy,
DDF-noisy, SD-noisy, and MI-noisy leakages, no assumption is required on X to
place these types of leakage inside the set of dense leakages. More details can be
found in Sect. 4.3 and Sect. 4.4.

Consider some α-semi-flat X and leakage function f such that Z = f(X)
satisfies

H∞(X|Z = z) ≥ H∞(X) − � (2)

for some � > 0 and all z. Note that this is a special case of ME-noisy leakage, but
it suffices to present the main ideas of our approach. Our goal is to show that f
is (0, 0, δ)-dense leakage of X for an appropriate parameter δ, meaning that we
wish to prove that PZ|X=x(z) ≤ PZ(z)

δ for all x and z. Observe that, by Eq. (2),
we have PX|Z=z(x) ≤ 2� maxx′ PX(x′) ≤ 2�+αPX(x) for all x and z, where the
rightmost inequality makes use of the fact that X is α-semi-flat. Rewriting the
inequality above using Bayes’ theorem yields PZ|X=x(z) ≤ 2�+αPZ(z), meaning
that f is (p = 0, γ = 0, δ = 2−�−α)-dense leakage of X. By Theorem 1, we
then have that f(X) can be simulated with statistical error 2ε using �′ = � +
α + log log(1/ε) + 2 bits of bounded leakage from X. This statement allows for
significant flexibility in the choice of parameters. For example, setting ε = 2−λ

for some security parameter λ yields negligible simulation error from � + α +
log(λ) + 2 bits of bounded leakage. Since α is usually very small in applications



The Mother of All Leakages 415

(often we have α = 0), in practice we can achieve negligible simulation error
using � + log(λ) + O(1) bits of bounded leakage, i.e., by paying only an extra
log(λ)+O(1) bits of leakage. Extending the argument above to general ME-noisy
leakage from X requires the addition of small error terms p and γ, but setting
parameters similarly to the above still allows us to simulate general �-ME-noisy
leakage from X using only, say, � + O(log2(λ)) bits of bounded leakage from X.

Trivial Simulation of SD-noisy and MI-noisy Leakages. Consider the trivial sim-
ulator that given the function f simply samples ˜X according to the distribution
of X and then outputs ˜Z = f( ˜X). Assuming f belongs to the family of η-
SD-noisy leakage, the above gives a simulation theorem for SD-noisy leakage
with simulation error η (and without requiring any leakage from X). By Pinsker
inequality, the above also implies a simulation theorem for η-MI-noisy leakage
with simulation error

√
2η (again without leaking anything from X).

Unfortunately, it turns out that one cannot do much better than the trivial
simulator (even when using large bounded leakage) for our general definition of
SD-noisy leakage. More specifically, there exists some X such that any simulator
for a function f that is η-SD-noisy leakage for X must incur a simulation error
of at least η/2 even when leaking all but one bit from X. In the case of MI-noisy
leakage, we prove a similar result: There exists an X such that any simulator
must have simulation error at least η

2n when simulating η-MI-noisy leakage from
X, even when leaking all but one bit of X. Notably, this means that negligible
simulation error is impossible to achieve when η is non-negligible, and thus one
cannot do significantly better than the trivial simulator for MI-noisy leakage
either.

It is instructive to compare the above trivial simulation theorem for SD-
noisy leakage with the result by Duc, Dziembowski, and Faust [24], who gave
a non-trivial simulation theorem for DDF-noisy leakage from a special case of
bounded leakage known as threshold probing leakage. Notice that by the triangle
inequality, the trivial simulation theorem for η-SD-noisy leakage implies a trivial
simulation theorem for η-DDF-noisy leakage with large simulation error n · η,
which in particular becomes uninteresting as soon as η is non-negligible.

Nevertheless, in [13], we show that the family of η-DDF-noisy leakage falls
within the family of U-noisy (and thus dense) leakage with good parameters,
which in turn gives a non-trivial simulation theorem for η-DDF-noisy leakage
from �-bounded leakage with negligible simulation error and for small bounded
leakage parameter �, even when η ∈ (0, 1) is constant.

Separations Between Leakage Families, and Tradeoffs Between Simulation Error
and Bounded Leakage Parameter. We complement our positive results in sev-
eral ways. First, we present missing separations between the different types of
leakages we consider in [13], leading to a complete picture of their relationships
(as depicted in Fig. 1). Second, we study the minimum amount of bounded leak-
age required to simulate different types of noisy leakage with a given simulation
error, and show that our simulation theorems are close to optimal. For exam-
ple, in the case of ME-noisy leakage, for a large range of � and α we show that



416 G. Brian et al.

�+α−O(1) bits of bounded leakage are required to simulate �-ME-noisy leakage
from some α semi-flat X. In contrast, as discussed above, our simulation theorem
states that approximately � + α bits of bounded leakage are sufficient to achieve
negligible simulation error.

To showcase our approach towards obtaining tradeoffs between simulation
error and the bounded leakage parameter, we discuss here one particularly
insightful implication of a more general theorem we obtain, which states that
enforcing α-semi-flatness of X is necessary to obtain a non-trivial simulation
theorem for ME-noisy leakage with sub-constant simulation error. More pre-
cisely, there exists X with support in {0, 1}n with an associated 0-noisy leakage
function f (meaning that ˜H∞(X|f(X)) = H∞(X)) with the property that sim-
ulating Z = f(X) with simulation error less than 1/4 requires one �′-bounded-
leakage query for �′ ≥ n − 2. In other words, to achieve small simulation error
without semi-flatness, we must leak almost all of the input X. The statement
above is proved as follows. Consider X ∈ {0, 1}n satisfying PX(0n) = 1/2 and
PX(x) = 1

2(2n−1) for x 
= 0n. Moreover, set Z = f(X) for a leakage function
f such that f(0n) is uniformly distributed over {0, 1}n \ {0n} and f(x) = x
with probability 1 for x 
= 0n. Routine calculations show that H∞(X) = 1 and
H∞(X|Z = z) = 1 for all z, meaning that ˜H∞(X|Z = z) = 1 = H∞(X), as
desired. Finally, every simulator for (X,Z) above with access to one query of
�′-bounded-leakage for �′ ≤ n − 2 must have simulation error 1/4 because, con-
ditioned on X 
= 0n (which holds with probability 1/2), we have f(X) = X
and X uniform over {0, 1}n \ {0n}. Therefore, under this conditioning, we can
only correctly guess f(X) with probability at most 1/2 from any one (n − 2)-
bounded-leakage query of X.

Sample Application: Leakage-Resilient Secret Sharing. We now explain how
to use our result in order to lift bounded-leakage resilience to noisy-leakage
resilience (almost) for free in cryptographic applications. In fact, in the
information-theoretic setting, the latter is an almost immediate consequence
of our result.

For the purpose of this overview, let us focus on the concrete setting of
secret sharing schemes with local leakage resilience [9]. Briefly, a t-out-of-n secret
sharing scheme allows to share a message y into n shares (x1, . . . , xn) in such a
way that y can be efficiently recovered using any subset of t shares. Local leakage
resilience intuitively says that no unbounded attacker obtaining in full all of the
shares xU within an unauthorized subset U ⊂ [n] of size u < t, and further
leaking at most � bits of information zi from each of the shares xi independently,
should be able to tell apart a secret sharing of message y0 from a secret sharing
of message y1. Benhamouda, Degwekar, Ishai and Rabin [9] recently proved
that both Shamir secret sharing and additive secret sharing satisfy local leakage
resilience for certain ranges of parameters.

Thanks to Theorem 1, in Sect. 5.1, we show that any secret sharing scheme
meeting the above property continues to be secure even if the attacker obtains
dense (rather than bounded) leakage on each of the shares xi independently.



The Mother of All Leakages 417

The proof of this fact is simple. We move to a mental experiment in which
leakages (z1, . . . , zn) corresponding to dense-leakage functions (f1, . . . , fn) are
replaced by (z̃1, . . . , z̃n) obtained as follows: For each i ∈ [n], first run the simu-
lator guaranteed by Theorem 1 in order to obtain an �′-bounded leakage function
f ′

i and compute z′
i = f ′

i(xi); then, run the simulator upon input z′
i in order to

obtain a simulated leakage z̃i.
By a hybrid argument, the above experiment is statistically close to the

original experiment. Furthermore, we can reduce a successful attacker in the
mental experiment to an attacker breaking local bounded-leakage resilience. The
proofs follows. Finally, thanks to Theorem 2, we can use the abstraction of dense
leakage in order to obtain security also in the presence of ME-noisy and U-noisy
leakage as well. Note that in the case of ME-noisy leakage, for the second step to
work, we need that the distribution Xi of each share outside U given the shares
xU is almost flat, which is the case for Shamir and additive secret sharing.

Applications in the Computational Setting. The above proof technique can
be essentially applied to any cryptographic primitive with bounded leakage
resilience in the information-theoretic setting. Further examples include, e.g.,
forward-secure storage [26], leakage-resilient storage [19], leakage-resilient non-
malleable codes [2], non-malleable secret sharing [14,38] and algebraic manipu-
lation detection codes [3,6,42]. (We work out the details for some of these prim-
itives in [13].) However, we cannot apply the same trick in the computational
setting or when in the proof of security we need to define an efficient simulator
(e.g., for leakage-resilient non-interactive zero knowledge [7] and leakage-resilient
multi party computation [9,32]), as the simulation of dense leakage with bounded
leakage guaranteed by Theorem 1 may not be efficient.

Nevertheless, we show that our results are still useful for lifting bounded-
leakage to noisy-leakage resilience in the computational setting too. In particular,
in [13], we exemplify how to do that for the concrete construction of leakage-
resilient one-way functions in the floppy model proposed by Agrawal, Dodis,
Vaikuntananthan, and Wichs [5], and in the setting of multi-party computation.

We give an overview of the former application, and refer to [13] for the latter.
Let G be a cyclic group with generator g and prime order q, and define gi = gτi

for each i ∈ [n]. Upon input a vector x = (x1, . . . , xn), the one-way function
outputs y =

∏n
i=1 gxi

i ; moreover, there is a refreshing procedure that given y
and τ = (τ1, . . . , τn) can generate a fresh pre-image x′ of y by simply letting
x′ = x+σ for randomly chosen σ orthogonal to τ . Here, one should think of τ as
a sort of master secret key to be stored in some secure hardware (i.e., the floppy).
Agrawal, Dodis, Vaikuntananthan, and Wichs proved that, under the discrete
logarithm assumption in G, no efficient attacker can successfully invert y even
when given �-bounded leakage on x, so long as � ≈ (n − 3) log(q) and assuming
that after each leakage query the value x is refreshed using the floppy. The proof
of this fact follows in two steps. First, we move to a mental experiment where
each of the leakage queries is answered using a random (n − 2)-dimensional
subspace S ⊆ ker(τ ). By the subspace hiding lemma [12], this experiment is
statistically close to the original experiment. Thus, we can use Theorem 1 and



418 G. Brian et al.

Theorem 2 to show that the above still holds in the case of ME-noisy and U-
noisy leakage.7 Second, one finally reduces a successful attacker in the mental
experiment to an efficient breaker for the discrete logarithm problem; in this last
step, however, the reduction can trivially answer leakage queries by using S, and
thus it does not matter whether the leakage is bounded or noisy. We believe the
above blueprint can be applied to analyze other cryptographic primitives whose
leakage resilience is derived through the subspace hiding lemma; we mention a
few natural candidates in [13].

Bounded-Collusion Protocols. Finally, motivated by additional applications to
leakage-resilient cryptography and by exploring new lower bounds in communica-
tion complexity [49], in Sect. 5.2, we investigate the setting of bounded-collusion
protocols (BCPs) as proposed by Kumar, Meka, and Sahai [38]. Here, a set of n
parties each holding an input xi wishes to evaluate a Boolean function φ of their
inputs by means of an interactive protocol π. At the j-th round, a subset of k
parties (where k < n is called the collusion bound) is selected, and appends to
the protocol transcript τ an arbitrary (possibly unbounded) function fj of their
joint inputs. The goal is to minimize the size � of the transcript, which leads to
what we call an �-bounded communication k-bounded collusion protocol (BC-
BCP). BC-BCPs interpolate nicely between the well-studied number-in-hand
(NIH) [45] (which corresponds to k = 1) and number-on-forehead (NOF) [15]
(which corresponds to k = n − 1) models.

We put forward two natural generalizations of BC-BCPs, dubbed dense
(resp. noisy) communication k-bounded collusion protocols (DC-BCPs, resp.
NC-BCP), in which there is no restriction on the length of the final transcript τ
but the round functions are either dense or U-noisy leakage functions. It is easy
to see that any BC-BCP is also a NC-BCP as well as a DC-BCP. By Theorem 1
and Theorem 2, we are able to show that the converse is also true: namely, we
can simulate8 the transcript τ of any DC-BCP or NC-BCP π using the tran-
script τ ′ of a related BC-BCP π′ up to a small statistical distance. Protocol
π′ roughly runs π and uses the simulation paradigm in order to translate the
functions used within π into functions to be used within π′. The proof requires
a hybrid argument, and thus the final simulation error grows linearly with the
number of rounds of the underlying BC-BCP.

The above fact has two consequences. The first consequence is that we
can translate communication complexity lower bounds for BC-BCPs into lower
bounds on the noisiness of NC-BCPs. A communication complexity lower bound
for a Boolean function φ says that any BC-BCP computing φ with good proba-
bility must have long transcripts (i.e., large �). Concrete examples of such func-
tions φ include those based on the generalized inner product and on quadratic
7 The former requires the distribution of x given y and (G, g, g1, . . . , gn, q) to be almost

flat which is easily seen to be the case.
8 The reason for not considering NC-BCPs where the round functions are ME-noisy

(instead of U-noisy) leakage functions is that simulating ME-noisy leakage with
bounded leakage inherently requires semi-flatness, but we cannot ensure this condi-
tion is maintained throughout the entire execution of a leakage protocol.



The Mother of All Leakages 419

residues in the NOF model with logarithmic (in the input length) number of
parties [8,18], and more recently a new function (based on the Bourgain extrac-
tor [11]) for more general values of k and even for super-logarithmic number of
parties [39]. Note that the above lower bounds do not necessarily say how much
information a transcript must reveal about the inputs. Thanks to our results, we
can show that any NC-BCP (i.e., where there is no upper bound on the tran-
script length) computing the above functions with good probability must also in
some sense reveal enough information about the inputs. However, for technical
reasons, the latter holds true only so long as the number of rounds is not too
large. We refer the reader to Sect. 5.2 for further details.

The second consequence is that we can lift the security of cryptographic
primitives whose leakage resilience is modeled as a BC-BCP (which intuitively
corresponds to security against adaptive bounded joint leakage) to the more
general setting where leakage resilience is modeled as a NC-BCP or DC-BCP
(which intuitively corresponds to security against adaptive noisy joint leak-
age). Examples include secret sharing with security against adaptive joint leak-
age [17,38,39] (see Sect. 5.2), extractors for cylinder-intersection sources [17,38–
40] (see [13]), and leakage-resilient non-interactive key exchange [40] (see [13]).
Interestingly, the security of these applications in the bounded-leakage setting
has been derived exploiting communication complexity lower bounds for BC-
BCPs. We can instead directly lift security to the dense and U-noisy leakage
setting in a fully black-box way, and thus without re-doing the analysis.

1.4 Related Work

Naor and Segev [44] conjectured that ME-noisy leakage may be compressed to
small leakage in the information-theoretic setting. In this light, our results prove
this conjecture to be false for arbitrary distributions and establish the exact
conditions under which the above statement holds true not only in the case of
ME-noisy leakage, but also for U-noisy leakage.

Most relevant to our work is the line of research on leakage-resilient circuit
compilers (see, e.g., [29,30,34]), where the equivalence of different leakage models
has also been explored. For instance, the beautiful work by Duc, Dziembowski,
and Faust [23,24] shows that DDF-noisy leakage on masking schemes used to
protect the internal values within a cryptographic circuit can be simulated by
probing a limited number of wires (which can be thought of as bounded leakage
in the circuit setting). The notion of DDF-noisy leakage was studied further, both
experimentally and theoretically, by Duc, Faust, and Standaert [25]. Follow-up
work by Dziembowski, Faust, and Skórski [27] and by Prest, Goudarzi, Mar-
tinelli, and Passelègue [46] further improved the parameters of such a reduction
and extended it to other noisy-leakage models as well. The difference between
the above results and our work is that we prove simulation theorems between
very abstract and general leakage models, which ultimately allows us to obtain
a broad range of applications which goes beyond the setting of leakage-resilient
circuits. In a complementary direction, Fuller and Hamlin [31] studied the rela-
tionship between different types of computational leakage.



420 G. Brian et al.

Harsha, Ishai, Kilian, Nissim, and Venkatesh [33] investigate tradeoffs
between communication complexity and time complexity in non-cryptographic
settings, including deterministic two-party protocols, query complexity and prop-
erty testing. Our simulation theorems can be thought of as similar tradeoffs in
the cryptographic setting.

1.5 Notation

We denote by [n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗, we denote its
length by |x|; if X is a set, |X | represents the number of elements in X . When x
is chosen randomly in X , we write x ←$ X . When A is a randomized algorithm,
we write y ←$ A(x) to denote a run of A on input x (and implicit random coins
r) and output y; the value y is a random variable and A(x; r) denotes a run
of A on input x and randomness r. An algorithm A is probabilistic polynomial-
time (PPT for short) if A is randomized and for any input x, r ∈ {0, 1}∗, the
computation of A(x; r) terminates in a polynomial number of steps (in the size of
the input). For a random variable X, we write P[X = x] for the probability that
X takes on a particular value x ∈ X , with X being the set where X is defined.
The probability mass function of X is denoted PX , i.e., PX(x) = P[X = x]
for all x ∈ X ; we sometimes omit X and just write P when X is clear from
the context. For a set (or event) S ⊆ X , we write P (S) for the probability of
event S, i.e., P (S) =

∑

x∈S P (x). We denote the statistical distance between
two distributions P and P ′ by Δ(P ;P ′). The min-entropy of a random variable
X is denoted by H∞(X), and the average conditional min-entropy of X given Y

is denoted by ˜H∞(X|Y ).
We denote with λ ∈ N the security parameter. A function p is polynomial (in

the security parameter), denoted p ∈ poly(λ), if p(λ) ∈ O(λc) for some constant
c > 0. A function ν : N → [0, 1] is negligible (in the security parameter) if it van-
ishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all
positive polynomials p(λ). We sometimes write negl(λ) to denote an unspecified
negligible function. Unless stated otherwise, throughout the paper, we implicitly
assume that the security parameter is given as input (in unary) to all algorithms.

Basic definitions and lemmas in cryptography used throughout the paper are
discussed in [13].

2 Rejection Sampling for Approximate Density

The problem that we consider in this section is the following: How can we sample
from a distribution P with statistical error at most ε, given only black-box access
to i.i.d. samples from another distribution P ′?

It turns out that the problem above can be solved via rejection sampling,
assuming that P is approximately dense in P ′ as defined below.

Definition 1 (δ-density). Given distributions P and P ′ over a set Z and δ ∈
(0, 1], we say P is δ-dense in P ′ if for every z ∈ Z it holds that P (z) ≤ P ′(z)

δ .



The Mother of All Leakages 421

Definition 2 ((γ, δ)-density). Given distributions P and P ′ over a set Z and
γ ∈ [0, 1], δ ∈ (0, 1], we say P is γ-approximate δ-dense in P ′, or simply (γ, δ)-
dense in P ′, if there exists a set S ⊆ Z such that P (S), P ′(S) ≥ 1 − γ, and for
all z ∈ S it holds that P (z) ≤ P ′(z)

δ .

2.1 The Case of Exact Density

First, we consider the special case where P is δ-dense in P ′.

Lemma 1. Suppose P is δ-dense in P ′. Then, for any ε ∈ (0, 1], it is possible
to sample ˜P such that ˜P ≈ε P given access to s = log(1/ε)

δ i.i.d. samples from
P ′.

Proof. Consider the following rejection sampling algorithm:

1. Sample z1, . . . , zs i.i.d. according to the distribution P ′, and set y := ⊥;
2. For i = 1, . . . , s do the following: Set Bi := 1 with probability pi = δP (zi)

P ′(zi)

and Bi := 0 otherwise. If Bi := 1, set y := zi and stop the cycle;
3. Output y.

Observe that δP (zi)
P ′(zi)

≤ 1 for all zi (hence the algorithm above is valid), and that
the probability that the algorithm outputs some z in the i-th round is

P[Bi = 1] =
∑

z

P ′(z) · δP (z)
P ′(z)

= δ. (3)

Let ˜P denote the distribution of the output of the algorithm above and let Y be
the corresponding output. Observe that (Y |Y 
= ⊥) is distributed exactly like
P . This holds because, in view of Eq. (3), the probability that the algorithm
outputs z in the i-th round given that it stops in the i-th round is

P[Y = z|Bi = 1,∀j < i : Bj = 0] =
(1 − δ)i−1 · P ′(z) · δP (z)

P ′(z)

(1 − δ)i−1 · δ
= P (z).

Moreover, we have

P[Y = ⊥] = (1 − δ)s ≤ exp(−δ · s) = ε.

From these observations, we conclude that Δ( ˜P ;P ) ≤ Pr[Y = ⊥] ≤ ε.

2.2 The Case of Approximate Density

The analogous result for approximate density follows by a similar proof.

Lemma 2. Suppose P is (γ, δ)-dense in P ′. Then, for any ε ∈ (0, 1], it is possi-
ble to sample ˜P such that ˜P ≈

ε+ε
1
4δ +γ

P given access to 2 log(1/ε)
δ(1−γ)2 i.i.d. samples

from P ′.



422 G. Brian et al.

3 Leakage Models

In this section, we review several leakage models from the literature, and intro-
duce the simulation paradigm which will later allow us to draw connections
between different leakage models. Our take is very general, in that we think as
the leakage as a randomized function f on a random variable X, over a set X ,
which yields a correlated random variable Z = f(X). Different leakage models
are then obtained by putting restrictions on the joint distribution (X,Z). We
refer the reader to Sect. 5 for concrete examples of what the distribution X is
in applications.

3.1 Bounded Leakage

A first natural restriction is to simply assume an upper bound � ∈ N on the
total length of the leakage. This yields the so-called Bounded Leakage Model,
which was formalized for the first time by Dziembowski and Pietrzak [28].

Definition 3 (Bounded leakage). Given a random variable X over X , we
say a randomized function f : X → Z is an �-bounded leakage function for X if
Z ⊆ {0, 1}�. For fixed X, we denote the set of all its �-bounded leakage functions
by Bounded�(X).

3.2 Noisy Leakage

A considerable drawback of the Bounded Leakage Model is that physical leakage
is rarely of bounded length. The Noisy Leakage Model overcomes this limitation
by assuming that the length of the leakage is unbounded but somewhat noisy.

There are different ways from the literature how to measure the noisiness of
the leakage. A first way, considered for the first time by Naor and Segev [44], is
to assume that the leakage drops the min-entropy of X by at most � ∈ R>0 bits.
We will refer to this model as the ME-Noisy Leakage Model.

Definition 4 (ME-noisy leakage). Given a random variable X over X , we
say a randomized function f : X → Z is an �-ME-noisy leakage function for X
if, denoting Z = f(X), we have ˜H∞(X|Z) ≥ H∞(X)−�. For fixed X, we denote
the set of all its �-ME-noisy leakage functions by Noisy∞,�(X).

Dodis et al. [20] considered a slight variant of the above definition where the
min-entropy drop is measured w.r.t. the uniform distribution U over X (rather
than X itself). We will refer to this model as the U-Noisy Leakage Model.

Definition 5 (U-noisy leakage). Given a random variable X over X , we say
a randomized function f : X → Z is an �-U-noisy leakage function for X if it
holds that ˜H∞(U |f(U)) ≥ H∞(U)− �, where U denotes the uniform distribution
over X . For fixed X, we denote the set of all its �-U-noisy leakage functions by
UNoisy∞,�(X).



The Mother of All Leakages 423

A second way to measure noisiness is to assume that the leakage only implies
a bounded bias in the distribution X, which is formally defined as distributions
PXZ and PX ⊗ PZ being close according to some distance when seen as real-
valued vectors. Prouff and Rivain [47] were the first to consider this restriction
using the Euclidean norm (i.e., the �2-norm), whereas Duc, Dziembowski and
Faust [24] used the statistical distance (i.e., the �1-norm). We recall the latter
definition below, which we will refer to as the SD-Noisy Leakage Model.

Definition 6 (SD-noisy leakage). Given a random variable X over X , we
say a randomized function f : X → Z is an η-SD-noisy leakage function for X
if, denoting Z = f(X), it holds that Δ(PXZ ;PX ⊗ PZ) ≤ η, where PX ⊗ PZ

denotes the product distribution of X and Z. For fixed X, we denote the set of
all its η-SD-noisy leakage functions by NoisyΔ,η(X).

Duc, Dziembowski, and Faust [24] considered only a restricted subset of SD-
noisy leakage, which we call DDF-noisy leakage. We discuss it in [13], placing
it with respect to other leakage models and deriving an associated simulation
theorem.

Alternatively, as suggested by Prest et al. [46], we can measure the noisiness
of the leakage by looking at the mutual information between X and Z. We can
define the mutual information between X and Z as I(X;Z) = DKL(PXZ‖PX ⊗
PZ), where DKL(P‖P ′) =

∑

x∈X P (x) log
(

P (x)
P ′(x)

)

is the Kullback-Leibler diver-
gence between P and P ′.

Definition 7 (MI-noisy leakage). Given a random variable X over X , we
say a randomized function f : X → Z is an η-MI-noisy leakage function for X
if, denoting Z = f(X), it holds that I(X;Z) ≤ η. For fixed X, we denote the set
of all its η-MI-noisy leakage functions by MINoisyη(X).

The well-known Pinsker inequality allows us to relate MI-noisy leakage to
SD-noisy leakage.

Lemma 3 (Pinsker inequality). For arbitrary distributions P and P ′ over
a set X it holds that Δ(P ;P ′) ≤

√

2 · DKL(P‖P ′).

As an immediate corollary of Lemma 3, we obtain the following result (which
was observed also in [46]).

Corollary 1. For any η > 0 and X we have MINoisyη(X) ⊆ NoisyΔ,
√
2η(X).

3.3 Dense Leakage

Next, we introduce a new leakage model which we dub the Dense Leakage Model.
This model intuitively says that the distribution of Z|X = x is approximately
dense in the distribution of Z for a large fraction of x’s. Looking ahead, dense
leakage will serve as a powerful abstraction to relate different leakage models.



424 G. Brian et al.

Definition 8 (Dense leakage). Given a random variable X over X , we say
a randomized function f : X → Z is a (p, γ, δ)-dense leakage function for X if,
denoting Z = f(X), there exists a set T ⊆ X with PX(T ) ≥ 1 − p such that
PZ|X=x is (γ, δ)-dense in PZ for all x ∈ T . For fixed X, we denote the set of all
its (p, γ, δ)-dense leakage functions by Densep,γ,δ(X).

3.4 The Simulation Paradigm

Finally, we define the simulation paradigm which allows to draw connections
between different leakage models. Intuitively, for any random variable X, we
will say that a leakage family F(X) is simulatable from another leakage family
G(X) if for all functions f ∈ F(X) there exists a simulator Simf which can
generate ˜Z such that (X,Z) and (X, ˜Z) are statistically close, using a single
sample g(X) for some function g ∈ G(X).

Definition 9 (Leakage simulation). Given a random variable X and two
leakage families F(X) and G(X), we say F(X) is ε-simulatable from G(X) if
for all f ∈ F(X) there is a (possibly inefficient) randomized algorithm Simf

such that (X,Z) ≈ε (X,Sim
Leak(X,·)
f ), where Z = f(X) and the oracle Leak(X, ·)

accepts a single query g ∈ G(X) and outputs g(X).

Remark 1 (On the simulator). Note that since the simulator Simf knows the dis-
tribution PX of X and the leakage function f , it also knows the joint distribution
PX,Zwhere Z = f(X). We will use this fact to design our leakage simulators.
We will also sometimes think of the simulator Simf as two machines with a
shared random tape, where the first machine outputs the description of a leakage
function g ∈ G(X), while the second machine outputs the simulated leakage ˜Z
given the value g(X).

4 Relating Different Leakage Models

In this section, we show both implications and separations between the leakage
models defined in Sect. 3. In a nutshell, our implications show that all the noisy-
leakage models from Sect. 3 can be simulated by bounded leakage with good
parameters. We achieve this in two main steps: First, we prove that dense leakage
can be simulated by bounded leakage with good parameters. Second, we show
that dense leakage contains the other leakage models we have previously defined.
Combining the two steps above, we conclude that many different leakage models
can be simulated by bounded leakage with good parameters. To complement
these results, our separations show that the containment of the different leakage
models in dense leakage are essentially the best we can hope for in general.

The simulation theorem for the case of ME-noisy leakage only holds for cer-
tain distributions X, which are nevertheless the most relevant in applications.
In particular, we will require to assume that the random variable X is semi-flat,
as formally defined below.

Definition 10 (Semi-flat distribution). We say that X is α-semi-flat if for
all x, x′ ∈ supp(X) we have PX(x) ≤ 2α · PX(x′).



The Mother of All Leakages 425

4.1 Simulating Dense Leakage with Bounded Leakage

The following theorem states that one dense leakage query can be simulated
with one bounded leakage query to within small statistical error. The efficiency
of the simulator and the bounded leakage function is essentially governed by the
density parameter δ.

Theorem 3. For arbitrary X, and for any ε ∈ (0, 1], the set of dense leakages
Densep,γ,δ(X) is (ε + ε1/4δ + γ + p)-simulatable from Bounded�(X) with

� = 1 + log
(

2 log(1/ε)
(1 − γ)2δ

)

= log(1/δ) + log log(1/ε) + 2 log
(

1
1 − γ

)

+ 2.

Proof. Fix any f ∈ Densep,γ,δ(X). By hypothesis, there is a set T ⊆ X such that
PX(T ) ≥ 1 − p and PZ|X=x is (γ, δ)-dense in PZ for all x ∈ T . Thus, we may
assume that X ∈ T by adding p to the simulation error.

We consider the simulator Simf which, given the distribution PXZ , samples
s∗ = 2 log(1/ε)

(1−γ)δ i.i.d. samples z = (z1, z2, . . . , zs∗) from PZ . Then, Simf makes a
query to Z ′ = gz(X) ∈ Bounded�(X), where � = 1 + log s∗ and gz : X → {0, 1}�

on input x ∈ T runs the rejection sampling algorithm from the proof of Lemma 2
to sample from PZ|X=x to within statistical error ε+ ε1/4δ +γ using the s∗ i.i.d.
samples (z1, . . . , zs∗) from PZ , and outputs the index i ≤ s∗ such that zi is output
by the rejection sampling algorithm, or s∗+1 if this algorithm outputs ⊥. Finally,
if I = gz(X) ≤ s∗, then Simf outputs zI , and otherwise it outputs ⊥. Let ˜Z the
random variable corresponding to the output of the simulator. Summing up all
simulation errors, Lemma 2 guarantees that (X,Z) ≈ε+ε1/4δ+γ+p (X, ˜Z), which
completes the proof. ��

Remark 2 (On useful parameters). The statement of Theorem 3 is most useful
when ε, γ, and p are negligible in the security parameter, so as to obtain negligi-
ble simulation error. The parameter δ essentially dictates the number of bits of
bounded leakage required to simulate a given class of dense leakages. Indeed, it
is usually the case that log log(1/ε)+2 log

(

1
1−γ

)

is much smaller than log(1/δ).

Remark 3 (On efficiency of the simulation). The complexity of the simulator
from Theorem 3 is dominated by the complexity of computing the distributions
PZ (possible with knowledge of PX and f) and PZ|X=x (possible with knowledge
of X and f), and of sampling both the zi according to PZ and the decision in
each step of rejection sampling. If these steps can be implemented in polynomial
time with respect to some parameter of interest, then the simulator is efficient.

4.2 Min-Entropy-Noisy Leakage Is Dense Leakage

The following theorem states that all ME-noisy leakage is also dense leakage
for semi-flat distributions. Looking ahead, we will later establish that the semi-
flatness condition is necessary.



426 G. Brian et al.

Theorem 4. Suppose X is α-semi-flat. Then, for every β > 0 and � > 0,
and for p = 2−β/2, γ = 2−β/2 and δ = 2−(�+β+α), we have Noisy∞,�(X) ⊆
Densep,γ,δ(X).

Combining Theorem 3 and Theorem 4, we immediately obtain the following
corollary.

Corollary 2. If X is α-semi-flat, then, for any β > 0 and ε > 0, the set of
leakages Noisy∞,�(X) is (ε+ε2

�+β+α−2
+2−β/2+1)-simulatable from Bounded�′(X)

with �′ = � + β + α + log log(1/ε) + 2 log
(

1
1−2−β/2

)

+ 2.

The remark below says that there is a natural tradeoff between the simulation
error in the above corollary and the leakage bound.

Remark 4 (Trading simulation error with ME-noisy leakage). By choosing ε =
2−λ and β = 2 + log2(λ) in Corollary 2, we can obtain negligible simulation
error ε′ = λ−ω(1) with leakage9 �′ = � + O(log2(λ) + α). By choosing β = λ, we
can instead obtain a much smaller simulation error of ε′ = 2−Ω(λ) with larger
leakage �′ = � + O(λ + α).

Near-optimality of simulation theorem for ME-noisy leakage. We now show that
our simulation result for ME-noisy leakage (Corollary 2) is essentially optimal.
More precisely, we obtain the following result.

Theorem 5. For every n and α, � > 0 such that � + α < n − 2 there exists an
(α+1)-semi-flat random variable X and f ∈ Noisy∞,�+2(X) such that simulating
f(X) with error less than 1/4 requires one �′-bounded leakage query for �′ ≥
� + α − 1.

Essentially, Theorem 5 states that � + α − O(1) bits of bounded leakage are
required to simulate �-ME-noisy leakage from an α-semi-flat random variable X
with useful simulation error. Our simulation theorem from Corollary 2 comple-
ments this negative result, showing that �′ ≈ � + α bits of bounded leakage are
enough even with negligible simulation error.

Necessity of the semi-flatness assumption in Corollary 2. Theorem 5 implies
that assuming α-semi-flatness of X is necessary to obtain a non-trivial simulation
theorem for ME-noisy leakage, even when we are attempting to simulate only 0-
ME-noisy leakage functions. Indeed, setting � = 0 and α = n − 3 in Theorem 5,
we conclude that there exists a random variable X along with an associated
0-ME-noisy-leakage function f ∈ Noisy∞,0(X) that requires n − O(1) bits of
bounded leakage from X in order to be simulated with error less than 1/4.

Note also that the proof of Theorem 5 shows the impossibility of non-trivial
simulation theorems for ME-noisy leakage even for a restricted subset of semi-
flat distributions X for which there exists x∗ such that PX(x∗) may be large but
(X|X 
= x∗) is flat.
9 In fact, we can push the leakage bound down to �′ = � + O(log log(λ) log(λ) + α) or

even �′ = � + O(log∗(λ) log(λ) + α), while still obtaining negligible simulation error.



The Mother of All Leakages 427

4.3 Uniform-Noisy Leakage Is Also Dense Leakage

There is a known connection between U-noisy and ME-noisy leakage, i.e., every
U-noisy leakage function is also a ME-noisy leakage function by itself.

Lemma 4. ([20]). Given any randomized function f : X → Z, if it holds
that ˜H∞(U |f(U)) ≥ H∞(U) − �, then for any X over X it is the case that
˜H∞(X|f(X)) ≥ H∞(X) − �. In particular, this implies that UNoisy∞,�(X) ⊆
Noisy∞,�(X).

We remark that there also exist some X and a leakage function f such that
f ∈ Noisy∞,�(X) but f 
∈ UNoisy∞,�(X) (such an example is provided in [20]).
This shows that the containment of U-noisy leakage in ME-noisy leakage may
be strict for some X.

Although Lemma 4 immediately yields an analogue of Corollary 2 for U-noisy
leakage, we can obtain a better result by arguing directly that every U-noisy
leakage function is also a dense leakage function for arbitrary X, i.e., without
requiring that X be semi-flat. Our result is stated formally in the next theorem.

Theorem 6. For every β > 0 and X, we have UNoisy∞,�(X) ⊆ Densep,γ,δ(X),
where p = 2−β/2, γ = 2−β/2 and δ = 2−(�+β).

Combining Theorem 3 and Theorem 6 immediately yields the following result.

Corollary 3. For every X and every β > 0 and ε > 0, the set of leakages
UNoisy∞,�(X) is (ε + ε2

�+β−2
+ 2−β/2+1)-simulatable from Bounded�′(X) with

�′ = � + β + log log(1/ε) + 2 log
(

1
1−2−β/2

)

+ 2.

The remark below says that there is a natural tradeoff between the simulation
error in the above corollary and the leakage bound.

Remark 5 (Trading simulation error with U-noisy leakage). By choosing ε =
2−λ and β = 2 + log2(λ) in Corollary 3, we can obtain negligible simulation
error ε′ = λ−ω(1) with leakage �′ = � + O(log2(λ)). By choosing β = λ, we can
instead obtain a much smaller simulation error of ε′ = 2−Ω(λ) with larger leakage
�′ = � + O(λ).

Near-optimality of simulation theorem for U-noisy leakage. We now show that
in order to simulate arbitrary �-U-noisy leakage from X uniformly distributed
over {0, 1}n with simulation error less than 1/2, we need access to one query of
�′-bounded leakage from X for �′ ≥ � − 1. As we shall see, this result implies
that our simulation theorem from Corollary 3 is nearly optimal.

Theorem 7. For X uniform over {0, 1}n and every � ≥ 1 there exists f ∈
UNoisy∞,�(X) ⊆ Noisy∞,�(X) such that f(X) cannot be simulated with error
less than 1/2 by one (�− 1)-bounded leakage query to X. Moreover, it also holds
that f ∈ Densep=0,γ=0,δ=2−�(X).



428 G. Brian et al.

Comparing Theorem 7 with Corollary 3, we see that our simulation theorem for
U-noisy leakage is nearly optimal with respect to the bounded leakage parameter,
since we only require approximately � bits of bounded leakage to simulate U-noisy
leakage for uniform X. Furthermore, we can achieve this result with negligible
simulation error.

4.4 SD-Noisy and MI-Noisy Leakage Are Also Dense Leakage

We now proceed to relate SD-noisy leakage and dense leakage.

Theorem 8. For every γ > 0 and X, we have NoisyΔ,η(X) ⊆ Densep,γ,δ(X)
with p = 2η/γ and δ = 1/2.

By combining Corollary 1 and Theorem 8, we immediately obtain an analo-
gous result for MI-noisy leakage.

Theorem 9. For every γ > 0 and X, we have MINoisyη(X) ⊆ Densep,γ,δ(X)
with p =

√
8η/γ and δ = 1/2.

Near-Optimality of Trivial Simulator for SD-Noisy and MI-Noisy Leakages.
While one can combine Theorem 8 and Theorem 9 with Theorem 3 in order
to obtain simulation theorems for SD-noisy and MI-noisy leakage from bounded
leakage, it turns out that these simulation theorems do not perform better than
the trivial simulator that makes no bounded leakage queries to X: Sample ˜X
according to PX , and output ˜Z = f( ˜X). In [13], we show that this is inherent,
since the trivial simulator is nearly optimal for SD-noisy and MI-noisy leakages.

5 Applications

In this section we show that our results have interesting implications for so-called
leakage-resilient cryptography. In particular, we will show that many crypto-
graphic primitives that have been shown to be resilient to bounded leakage are
also resilient to different forms of noisy leakage, with only a small loss in param-
eters.

5.1 Secret Sharing with Local Leakage Resilience

In this section, we consider the following kind of local leakage attack on a thresh-
old secret sharing scheme: after seeing an unauthorized subset of shares, the
adversary performs one query of leakage from all the shares independently.

Definition 11 (Local leakage-resilient secret sharing). Let t, n, u ∈ N

be parameters such that u < t ≤ n, and let Σ = (Share,Rec) be a t-out-of-
n secret sharing scheme. We say that Σ is a (p, γ, δ)-dense u-local ε-leakage-
resilient secret sharing scheme (or (u, p, γ, δ, ε)-DLLR-SS for short) if for all
messages y0, y1 ∈ {0, 1}m, all unauthorized subsets U ⊆ [n] such that |U| ≤ u,
and every tuple of leakage functions (f1, . . . , fn) such that fi is (p, γ, δ)-dense
for all i ∈ [n], we have Δ

((

X0
U , (fi(X0

U ,X0
i ))i∈[n]

)

,
(

X1
U , (fi(X1

U ,X1
i ))i∈[n]

))

≤ ε,
where (Xb

1, . . . , X
b
n) = Share(yb) for all b ∈ {0, 1}.



The Mother of All Leakages 429

Moreover, in case the functions fi in the above definition are:

– �-bounded leakage functions, we say that Σ is �-bounded u-local ε-leakage-
resilient (or (u, �, ε)-BLLR-SS);

– �-ME-noisy leakage functions, we say that Σ is �-min-entropy-noisy u-local
ε-leakage-resilient (or (u, �, ε)-ME-NLLR-SS);

– �-U-noisy leakage functions, we say that Σ is �-uniform-noisy u-local ε-
leakage-resilient (or (u, �, ε)-U-NLLR-SS).

The theorem below says that any bounded leakage-resilient secret sharing
scheme is also secure in the presence of dense leakage.

Theorem 10. Any (u, �, ε)-BLLR-SS is also a (u, p, γ, δ, ε′)-DLLR-SS so long
as

� = log(1/δ) + log log(1/ε) + 2 log
(

1
1−γ

)

+ 2

ε′ = (2n + 1)ε + 2nε1/4δ + 2nγ + 2np.

Next, using the connection between ME-noisy and U-noisy leakage with dense
leakage established in Sect. 4, we obtain the following corollary.

Corollary 4. Any (u, �′, ε′)-BLLR-SS is also an:

(i) (u, �, ε)-ME-NLLR-SS so long as � = �′ − 2 log(1/ε′) − α − log log(1/ε′) − 1
and ε = (6n+1)ε′, and assuming that (X1, . . . , Xn) = Share(y) is such that
Xi is α-semi-flat for all i ∈ [n].

(ii) (u, �, ε)-U-NLLR-SS so long as � = �′ − 2 log(1/ε′) − log log(1/ε′) − 1 and
ε = (6n + 1)ε′.

Proof. The statement follows by choosing β = 2 + 2 log(1/ε′) and ε = ε′ in
Corollary 2 and Corollary 3. ��

We present concrete instantiations of Corollary 4 in [13].

5.2 Bounded-Collusion Protocols

In this section, we deal with applications related to so-called bounded-collusion
protocols (BCPs). These are interactive protocols between n parties where at
each round a subset of k < n parties are selected, and the output of a leak-
age function applied to the input of such parties is appended to the protocol’s
transcript.

Definition 12 (Bounded-communication BCPs). An interactive (possibly
randomized) protocol π is called an n-party r-round �-bounded communication
k-bounded-collusion protocol ((n, r, �, k)-BC-BCP, for short) if:

(i) the n parties start the protocol with input x1, . . . , xn ∈ X , and the transcript
τ is empty at the beginning of the protocol;



430 G. Brian et al.

(ii) there is a function Next : {0, 1}∗ →
(

[n]
k

)

taking as input a (partial) tran-
script τ and outputting a set S ⊂ [n] with |S| = k along with a function
f : X k → {0, 1}∗;

(iii) at each round j ∈ [r] with current transcript τ , the protocol runs Next(τ)
obtaining (Sj , fj) and appends the message fj(XSj

) to the current transcript
τ ;

(iv) the final transcript τ consists of at most � ∈ N bits.

The above notion, which was introduced by Kumar, Meka, and Sahai [38], inter-
polates nicely between the well-known number-in-hand (NIH) and number-on-
forehead (NOF) models, which correspond respectively to the extreme cases
k = 1 and k = n − 1. Note that the number of rounds in a BC-BCP is at
most r ≤ �.

Below, we generalize the definition of BCPs to settings where the round
functions correspond to noisy-leakage (in particular, dense and uniform-noisy
leakage) functions on the parties’ inputs, and thus there is no restriction on the
size of the final transcript.

Definition 13 (Dense-communication BCPs). An interactive (possibly
randomized) protocol π is called an n-party r-round (p, γ, δ)-dense communica-
tion k-bounded-collusion protocol ((n, r, p, γ, δ, k)-DC-BCP, for short) if it satis-
fies the same properties as in Definition 12, except that property (iv) is replaced
by

(iv’) for each j ∈ [r], the function fj : X k → {0, 1}∗ is (p, γ, δj)-dense
leakage for XSj

|τj−1, where τj denotes the transcript up to the j-th round
and 0 < δj ≤ 1, and where additionally

∏r
j=1 δj ≥ δ.

Definition 14 (Noisy-communication BCPs). An interactive (possibly
randomized) protocol π is called an n-party r-round �-noisy communication k-
bounded-collusion protocol ((n, r, �, k)-NC-BCP, for short) if it satisfies the same
properties as in Definition 12, except that property (iv) is replaced by

(iv”) for each j ∈ [r], the function fj : X k → {0, 1}∗ is �j-U-noisy leakage

for XSj
, where �j ≥ 0 and additionally

⌈

∑r
j=1 �j

⌉

≤ �.

Observe that the number of rounds in a DC-BCP or NC-BCP is unbounded.
Also, note that property (iv”) in Definition 14 implicitly implies that the overall
leakage drops the min-entropy of the uniform distribution over any subset of k
inputs by at most �. More formally, the final transcript τ is such that10 for all
subsets S ∈

(

[n]
k

)

we have

˜H∞(US |π(U1, . . . , Un)) ≥ H∞(US) − �, (4)
10 This is because, by [20, Lemma L.3], any sequence of (adaptively chosen) functions

f1, . . . , fr on a random variable X, such that each function fj is �j-ME-noisy leak-
age for some �j ≥ 0 and where

∑r
j=1 �j ≤ �, satisfies H̃∞(X|f1(X), . . . , fr(X)) ≥

H∞(X)− �. Furthermore, for the case of NC-BCPs, in the worst case all the leakage
happens on the same subset S of inputs.



The Mother of All Leakages 431

where U = (U1, . . . , Un) is uniform over X n and π(U1, . . . , Un) denotes the dis-
tribution of the transcript τ at the end of the protocol.

Clearly, any BC-BCP is also a NC-BCP with the same leakage parameter.
Below, we show that the converse is also true, in the sense that the transcript
of any NC-BCP π can be simulated using the transcript of a related BC-BCP
π′, up to a small statistical distance. In fact, the latter statement holds true for
the more general case of DC-BCPs.

Theorem 11. Let π be an (n, r, p, γ, δ, k)-DC-BCP. There exists an (n, r, �′, k)-
BC-BCP π′ such that, for any ε > 0, a transcript of π can be simulated within
statistical distance r · (ε + ε1/4 + γ + p) given a transcript of π′ with length
�′ = log(1/δ) + r · (log log(1/ε) + 2 log(1/(1 − γ)) + 2).

Proof. We start by describing protocol π′ acting on a random variable X =
(X1, . . . , Xn). Consider the simulator Simf guaranteed by Theorem 3.

– Let τ ′ be initially empty, and sample r independent random tapes ρ1, . . . , ρr

for Sim.
– At each round j ∈ [r], the function Next′ takes as input the current transcript

τ ′ = z′
1|| . . . ||z′

j−1 and runs Next(τ̃), where

τ̃ = Simf1(z
′
1; ρ1)|| . . . ||Simfj−1(z

′
j−1; ρj−1).

– Let (fj ,Sj) be the j-th output of Next. Then, Next′ runs Simfj
on XSj

|τ̃ (with
fixed random tape ρj), obtaining a leakage function f ′

j : X k → {0, 1}�′
j , and

outputs (f ′
j ,Sj).

Next, we claim that protocol π′ has �′-bounded communication for �′ as in
the statement of the theorem. Recall that, for each j ∈ [r], the function fj

output by Next is (p, γ, δj)-dense leakage for XSj
|τ̃ , with 0 < δj ≤ 1. Then, by

applying Theorem 3, for any ε > 0 we get that �′
j = log(1/δj) + log log(1/ε) +

2 log(1/(1−γ))+2. Hence, the final transcript τ ′ has size at most �′ =
∑r

j=1 �′
j =

log(1/δ) + r · (log log(1/ε) + 2 log(1/(1 − γ)) + 2), which is the bound in the
statement of the theorem.

It remains to prove that we can simulate a transcript of π given a tran-
script of π′. Consider the simulator that, after running π′ with random tapes
ρ1, . . . , ρr, obtains the transcript τ ′ = z′

1|| . . . ||z′
r and simply outputs the sim-

ulated transcript τ̃ = Simf1(z
′
1; ρ1)|| . . . ||Simfr

(z′
r; ρr). By a hybrid argument,

Theorem 3 implies that the transcript τ̃ is within statistical distance at most
r · (ε + γ + p)+

∑r
j=1 ε1/4δj ≤ r · (ε+ε1/4+γ +δ) from the transcript τ obtained

by running π. This finishes the proof. ��

Theorem 12. Let π be an (n, r, �, k)-NC-BCP. There exists an (n, r, �′, k)-BC-
BCP π′ such that, for any 0 < δ < 1, a transcript of π can be simulated within
statistical distance r · 3δ given a transcript of π′ with length �′ ≤ � + r · (6 +
2 log(1/δ) + log log(1/δ)).



432 G. Brian et al.

Next, we show that Theorem 11 and Theorem 12 have applications to commu-
nication complexity lower bounds, and to constructing cryptographic primitives
with adaptive noisy-leakage resilience (i.e., where leakage resilience is modeled
either as a NC-BCP or as a DC-BCP).

Communication Complexity Lower Bounds. We say that an (n, r, �, k)-
BCP π (with either bounded or noisy communication) ε-computes a (determin-
istic) Boolean function φ : X n → {0, 1}, if there exists an unbounded predictor
P that, after running a BCP protocol π on the parties’ inputs yielding a final
transcript τ , outputs φ(X1, . . . , Xn) with probability at least 1/2 + ε (over the
randomness of (Xi)i∈[n], π and P). The theorem below says that for any NC-BCP
π that computes a Boolean function φ there is a BC-BCP π′ that computes the
same function with roughly the same probability, where the size �′ of a transcript
of π′ is related to the leakage parameter � of π.

Corollary 5. Let π be any (n, r, �, k)-NC-BCP that ε-computes a Boolean func-
tion φ. Then, there exists an (n, r, �′, k)-BC-BCP π′ that ε′-computes φ so long
as �′ ≤ � + r · (6 + 2 log(6r/ε) + log log(6r/ε)) and ε′ = ε/2.

The above corollary can be used to translate known lower bounds in com-
munication complexity for BC-BCPs to the more general setting of NC-BCPs.11

Note that a lower bound on the communication complexity of BC-BCPs does
not necessarily imply a lower bound on the noisiness of NC-BCPs, as the fact
that the transcript must consist of at least � bits does not say anything about
how each round function reveals on the players’ inputs. We argue how the result
from Corollary 5 can be used to lift lower bounds on bounded communication
needed to compute certain functions φ to more general lower bounds on noisy
communication in [13].

Remark 6 (On lower bounds on the leakage parameters of NC-BCPs). It may
seem that a lower bound on the parameter � of NC-BCPs does not necessarily
mean that any protocol must reveal a lot of information on the parties’ inputs,
as the actual min-entropy drop in Eq. (4) could be much smaller12 than �. Never-
theless, we observe that the definition of NC-BCP implies that there must exist
an index j∗ ∈ [r] such that, say, �j∗ ≥ �−1

r . This is because, if �j < �−1
r for

all j ∈ [r], then �
∑r

j=1 �j� ≤ � − 1. In this light, the corollaries below still say
that, for certain Boolean functions, a transcript must necessarily reveal enough
information about the inputs so long as the number of rounds is not too large.

BCP Leakage Resilience. Finally, we show how to lift bounded-leakage
resilience to dense-leakage and uniform-noisy-leakage resilience in applications

11 In fact, using Theorem 11, we could also derive lower bounds on DC-BCPs. However,
we stick to the setting of NC-BCPs for simplicity.

12 For instance, take k = 1 and consider the functions f1, . . . , fn that always reveal the
first bit of X1. Then, � =

∑n
j=1 �j = n, but H̃∞(U1|π(U1, . . . , Un)) = H∞(U1) − 1.



The Mother of All Leakages 433

where the leakage itself is modelled as a BCP protocol. For concreteness, we
focus again on secret sharing schemes and refer the reader to [13] for additional
examples.

Let Σ = (Share,Rec) be a secret sharing scheme. The definition below cap-
tures security of Σ in the presence of an adversary leaking information jointly
from subsets of the shares of size k < n, where both the leakage functions and
the subsets of shares are chosen adaptively. For simplicity, we focus on threshold
secret sharing but our treatment can be generalized to arbitrary access struc-
tures.

Definition 15 (Secret sharing with BCP leakage resilience). Let t, n, � ∈
N, ε ∈ [0, 1] be parameters. A t-out-of-n secret sharing scheme (Share,Rec)
is a k-joint r-adaptive (p, γ, δ)-dense ε-leakage-resilient secret sharing scheme,
(k, r, p, γ, δ, ε)-JA-DLR-SS for short, if for all messages y0, y1 ∈ {0, 1}m and
all (n, r, p, γ, δ, k)-DC-BCP π we have π(X(0)

1 , . . . , X
(0)
n ) ≈ε π(X(1)

1 , . . . , X
(1)
n ),

where (X(b)
1 , . . . , X

(b)
n ) = Share(yb) is the distribution of the shares of message

yb ∈ {0, 1}m for all b ∈ {0, 1}.

Moreover, in case the protocol π in the above definition is an:

– (n, r, �, k)-NC-BCP, we say that Σ is k-joint r-adaptive �-noisy ε-leakage-
resilient (or (k, r, �, ε)-JA-NLR-SS);

– (n, r, �, k)-BC-BCP, we say that Σ is k-joint r-adaptive �-bounded ε-leakage-
resilient (or (k, r, �, ε)-JA-BLR-SS).

Corollary 6. Every (k, r, �, ε)-JA-BLR-SS scheme Σ is also a (k, r, p, γ, δ, ε′)-
JA-DLR-SS so long as � = log(1/δ)+ r · (log log(1/ε)+2 log(1/(1− γ))+2) and
ε′ = ε + 2r · (ε + ε1/4 + γ + p).

Corollary 7. Every (k, r, �′, ε′)-JA-BLR-SS scheme Σ is also a (k, r, �, ε)-JA-
NLR-SS scheme so long as �′ = � + r · O(log(r/ε)) and ε = 3ε′.

Explicit constructions of secret sharing schemes with BCP leakage resilience
in the bounded leakage setting can be built for any leakage bound � and any
ε > 0 from n-party functions with large NOF complexity with collusion bound
k = O(log(n)) [38] (for arbitrary access structures) and k = O(t/ log(t)) [39]
(for threshold access structures). By the above corollaries, these schemes are
also directly secure in the settings of dense and U-noisy leakage.

6 Conclusions and Open Problems

We have shown that a single query of noisy leakage can be simulated in the
information-theoretic setting using a single query of bounded leakage, up to a
small statistical distance and at the price of a slight loss in the leakage parameter.
The latter holds true for a fairly general class of noisy leakage (which we intro-
duce) dubbed dense leakage. Importantly, dense leakage captures many already
existing noisy-leakage models including those where the noisiness of the leakage



434 G. Brian et al.

is measured using the conditional average min-entropy [20,44], the statistical
distance [24], or the mutual information [46]. For some of these models, our
simulation theorems require additional assumptions on the input distribution or
only hold for certain range of parameters, but in each case we show this is the
best one can hope for.

The above result has applications to leakage-resilient cryptography, where
we can reduce noisy-leakage resilience to bounded-leakage resilience in a black-
box way. Interestingly, for some applications, the latter holds true even in the
computational setting. Additionally, we have shown that our simulation theorems
yield new lower bounds in communication complexity.

Several interesting open questions remain. We list some of them below:

– Can we prove that other families of noisy leakage (e.g., hard-to-invert leak-
age [21]) fall within the class of dense leakage (or directly admit simulation
theorems with good parameters from bounded leakage)?

– Can we make the simulator efficient for certain families of noisy leakage? The
latter would allow to lift bounded-leakage resilience to noisy-leakage resilience
for all computationally-secure applications, and for statistically-secure appli-
cations with simulation-based security in which the running time of the sim-
ulator needs to be polynomial in the running time of the adversary (such as
leakage-tolerant MPC [10]).

– Can we generalize Theorem 12 to a more general setting where the leakage
parameter � of NC-BCPs measures the worst-case average min-entropy drop
w.r.t. the final transcript of the protocol (instead of being the summation
over the worst-case min-entropy drops of each round function in isolation)?
The latter would allow to strengthen the lower bounds in Sect. 5.2, as well as
the security of the applications in Sect. 5.2 and [13].

Acknowledgments. We thank François-Xavier Standaert for bringing [25,31] to our
attention. Maciej Obremski was funded by the Singapore Ministry of Education and
the National Research Foundation under grant R-710-000-012-135. Daniele Venturi was
partially supported by the research project SPECTRA funded by Sapienza University
of Rome.

References

1. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 18

2. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 17

3. Aggarwal, D., Kazana, T., Obremski, M.: Leakage-resilient algebraic manipulation
detection codes with optimal parameters. In: IEEE International Symposium on
Information Theory, pp. 1131–1135 (2018)

https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17


The Mother of All Leakages 435

4. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

5. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of
discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 21

6. Ahmadi, H., Safavi-Naini, R.: Detection of algebraic manipulation in the presence
of leakage. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 238–258. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-04268-8 14

7. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation for turing
machines: constant overhead and amortization. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 252–279. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 9

8. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)

9. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience
of linear secret sharing schemes. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 531–561. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 18

10. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 15

11. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theor. 1(1), 1–32 (2005)

12. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: Public-key cryptography resilient to continual memory leakage. In: 51st
FOCS, pp. 501–510. IEEE Computer Society Press (October 2010). https://doi.
org/10.1109/FOCS.2010.55

13. Brian, G., et al.: The mother of all leakages: How to simulate noisy leakages via
bounded leakage (almost) for free. Cryptology ePrint Archive, Report 2020/1246
(2020). https://eprint.iacr.org/2020/1246

14. Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-malleable secret
sharing against bounded joint-tampering attacks in the plain model. Cryptology
ePrint Archive, Report 2020/725 (2020). https://eprint.iacr.org/2020/725

15. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: 15th ACM
STOC, pp. 94–99. ACM Press (April 1983). https://doi.org/10.1145/800061.
808737

16. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

17. Chattopadhyay, E., Goodman, J., Goyal, V., Li, X.: Leakage-resilient extractors
and secret-sharing against bounded collusion protocols. Cryptology ePrint Archive,
Report 2020/478 (2020). https://eprint.iacr.org/2020/478

18. Chung, F.R.K.: Quasi-random classes of hypergraphs. Random Struct. Algorithms
1(4), 363–382 (1990)

19. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/978-3-642-42045-0_21
https://doi.org/10.1007/978-3-642-42045-0_21
https://doi.org/10.1007/978-3-319-04268-8_14
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-642-28914-9_15
https://doi.org/10.1109/FOCS.2010.55
https://doi.org/10.1109/FOCS.2010.55
https://eprint.iacr.org/2020/1246
https://eprint.iacr.org/2020/725
https://doi.org/10.1145/800061.808737
https://doi.org/10.1145/800061.808737
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://eprint.iacr.org/2020/478
https://doi.org/10.1007/978-3-642-15317-4_9


436 G. Brian et al.

20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, pp. 511–520. IEEE Computer Society
Press (October 2010). https://doi.org/10.1109/FOCS.2010.56

21. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press (May/June
2009). https://doi.org/10.1145/1536414.1536498

22. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

23. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

24. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. J. Cryptology 32(1), 151–177 (2019). https://doi.org/10.1007/
s00145-018-9284-1

25. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete (or
how to evaluate the security of any leaking device), extended version. J. Cryptology
32(4), 1263–1297 (2019). https://doi.org/10.1007/s00145-018-9277-0

26. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 11

27. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 6

28. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press (October 2008). https://doi.org/10.1109/
FOCS.2008.56

29. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 7

30. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from computationally bounded and noisy leakage. SIAM J. Comput. 43(5),
1564–1614 (2014)

31. Fuller, B., Hamlin, A.: Unifying leakage classes: simulatable leakage and pseudoen-
tropy. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 69–86.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17470-9 5

32. Goyal, V., Ishai, Y., Maji, H.K., Sahai, A., Sherstov, A.A.: Bounded-
communication leakage resilience via parity-resilient circuits. In: Dinur, I. (ed.)
57th FOCS, pp. 1–10. IEEE Computer Society Press (October 2016). https://doi.
org/10.1109/FOCS.2016.10

33. Harsha, P., Ishai, Y., Kilian, J., Nissim, K., Venkatesh, S.: Communication versus
computation. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 745–756. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27836-8 63

34. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

https://doi.org/10.1109/FOCS.2010.56
https://doi.org/10.1145/1536414.1536498
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/11681878_11
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1109/FOCS.2008.56
https://doi.org/10.1109/FOCS.2008.56
https://doi.org/10.1007/978-3-642-13190-5_7
https://doi.org/10.1007/978-3-319-17470-9_5
https://doi.org/10.1109/FOCS.2016.10
https://doi.org/10.1109/FOCS.2016.10
https://doi.org/10.1007/978-3-540-27836-8_63
https://doi.org/10.1007/978-3-540-27836-8_63
https://doi.org/10.1007/978-3-540-45146-4_27


The Mother of All Leakages 437

35. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. In: Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, pp. 727–794. ACM (2019)

36. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

37. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

38. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: Zuckerman, D. (ed.) 60th FOCS, pp. 636–660. IEEE Computer Society
Press (November 2019). https://doi.org/10.1109/FOCS.2019.00045

39. Kumar, A., Meka, R., Zuckerman, D.: Bounded collusion protocols, cylinder-
intersection extractors and leakage-resilient secret sharing. Cryptology ePrint
Archive, Report 2020/473 (2020). https://eprint.iacr.org/2020/473

40. Li, X., Ma, F., Quach, W., Wichs, D.: Leakage-resilient key exchange and two-seed
extractors. Cryptology ePrint Archive, Report 2020/771 (2020). https://eprint.
iacr.org/2020/771

41. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Leakage-
resilient secret sharing in non-compartmentalized models. In: Kalai, Y.T., Smith,
A.D., Wichs, D. (eds.) 1st Conference on Information-Theoretic Cryptography
(ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 163, pp.
7:1–7:24. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/LIPIcs.ITC.2020.7

42. Lin, F., Safavi-Naini, R., Wang, P.: Detecting algebraic manipulation in leaky
storage systems. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS,
vol. 10015, pp. 129–150. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49175-2 7

43. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

44. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.
Comput. 41(4), 772–814 (2012)

45. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multi-
party communication complexity, made easy. In: Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, 17–19 January 2012, pp. 486–501 (2012)

46. Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models
on a Rényi day. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 683–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26948-7 24

47. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

48. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 17

49. Yao, A.C.: Some complexity questions related to distributive computing (prelim-
inary report). In: Proceedings of the 11h Annual ACM Symposium on Theory of
Computing, April 30–May 2, 1979, Atlanta, Georgia, USA. pp. 209–213 (1979)

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/FOCS.2019.00045
https://eprint.iacr.org/2020/473
https://eprint.iacr.org/2020/771
https://eprint.iacr.org/2020/771
https://doi.org/10.4230/LIPIcs.ITC.2020.7
https://doi.org/10.1007/978-3-319-49175-2_7
https://doi.org/10.1007/978-3-319-49175-2_7
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-030-26951-7_17


Message-Recovery Laser Fault Injection
Attack on the Classic McEliece

Cryptosystem

Pierre-Louis Cayrel1 , Brice Colombier2 , Vlad-Florin Drăgoi3,4(B) ,
Alexandre Menu5, and Lilian Bossuet1

1 Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516,
42023 Saint-Etienne, France

2 Univ Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000 Grenoble, France
3 Faculty of Exact Sciences, Aurel Vlaicu University, Arad, Romania

vlad.dragoi@uav.ro
4 LITIS, University of Rouen Normandie, Mont-Saint-Aignan, France

5 IMT, Mines Saint-Etienne, Centre CMP, Equipe Commune CEA Tech-Mines
Saint-Etienne, 13541 Gardanne, France

Abstract. Code-based public-key cryptosystems are promising candi-
dates for standardization as quantum-resistant public-key cryptographic
algorithms. Their security is based on the hardness of the syndrome
decoding problem. Computing the syndrome in a finite field, usually F2,
guarantees the security of the constructions. We show in this article that
the problem becomes considerably easier to solve if the syndrome is com-
puted in N instead. By means of laser fault injection, we illustrate how to
compute the matrix-vector product in N by corrupting specific instruc-
tions, and validate it experimentally. To solve the syndrome decoding
problem in N, we propose a reduction to an integer linear programming
problem. We leverage the computational efficiency of linear program-
ming solvers to obtain real-time message recovery attacks against the
code-based proposal to the NIST Post-Quantum Cryptography standard-
ization challenge. We perform our attacks in the worst-case scenario, i.e.
considering random binary codes, and retrieve the initial message within
minutes on a desktop computer.

Our attack targets the reference implementation of the Niederreiter
cryptosystem in the NIST PQC competition finalist Classic McEliece
and is practically feasible for all proposed parameters sets of this submis-
sion. For example, for the 256-bit security parameters sets, we success-
fully recover the message in a couple of seconds on a desktop computer
Finally, we highlight the fact that the attack is still possible if only a
fraction of the syndrome entries are faulty. This makes the attack fea-
sible even though the fault injection does not have perfect repeatability
and reduces the computational complexity of the attack, making it even
more practical overall.

Keywords: Code-based cryptography · Classic McEliece · Syndrome
decoding problem · Laser fault injection · Integer linear programming

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 438–467, 2021.
https://doi.org/10.1007/978-3-030-77886-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_15&domain=pdf
http://orcid.org/0000-0002-6708-868X
http://orcid.org/0000-0002-6028-3028
http://orcid.org/0000-0002-8673-9097
http://orcid.org/0000-0001-7964-3137
https://doi.org/10.1007/978-3-030-77886-6_15


Message-Recovery Laser Fault Injection Attack 439

1 Introduction

For the last three decades, public key cryptography has been an essential com-
ponent of digital communications. Communication protocols rely on three core
cryptographic functionalities: public key encryption (PKE), digital signatures,
and key exchange. These are implemented using Diffie-Hellman key exchange
[16], the RSA cryptosystem [44], and elliptic curve cryptosystems [26,39]. Their
security relies on the difficulty of number theoretic problems such as the Inte-
ger Factorization Problem or the Discrete Logarithm Problem. Shor proved that
quantum computers can efficiently solve each of these problems [47], potentially
making all public-key cryptosystems (PKC) based on such assumptions impo-
tent.

Since then, cryptographers proposed alternative solutions which remain safe
in the quantum era. These schemes are called post-quantum secure [9]. In 2016,
the National Institute of Standards and Technology (NIST) made a call to the
community to propose post-quantum secure solutions for standardization. Mul-
tiple candidates were submitted, that are based on various hard problems (lat-
tices, error-correcting codes, multivariate systems of equations and hash func-
tions). In this work, we analyze one of the four finalists, the only one that uses
error-correcting codes, Classic McEliece1 [1].

1.1 General Decoding and Integer Linear Programming

The hardness of general decoding for a linear code is an NP-complete problem
in coding theory [8], which makes it an appealing candidate for code-based post-
quantum cryptography. From the original scheme proposed by McEliece [36] to
the latest variants submitted to the NIST PQC competition [1,3–5], the majority
of these PKCs base their security on the syndrome decoding problem (SDP).
Informally, for a binary linear code C of length n and dimension k, having a
parity-check matrix H, the SDP is defined as follows: given s ∈ F

n−k
2 , find a

binary vector x having less than t values equal to one, such that Hx = s.
A recent possible solution to solve the general decoding problem is to use

Integer Linear Programming (ILP). The idea was first proposed by Feldman [19]
and later improved by Feldman et al. [20]. Since the initial problem is nonlin-
ear, some relaxation was proposed in order to decrease the complexity. For more
details on these aspects, we refer the reader to the excellent review of Helmling
et al. [22]. One of the latest proposals [50] introduces a new method for trans-
forming the initial decoding problem into an ILP, formalism that fits perfectly
the ideas that we will put forward in this article. Let us briefly explain the idea
of Tanatmis et al. [50]. The general decoding problem can be tackled using the
well-known maximum-likelihood decoder. Let C be a binary linear code of length
n and dimension k, with parity-check matrix H. The integer linear programming
formulation of maximum-likelihood decoding is given in Eq. (1).

min{vxT | Hx = 0 ,x ∈ {0, 1}n}, (1)
1 https://classic.mceliece.org/nist.html.

https://classic.mceliece.org/nist.html


440 P.-L. Cayrel et al.

where v is the log-likelihood ratio (see [20,33]). Tanatmis et al. proposed to
introduce an auxiliary positive variable z ∈ N

n−k, and define a new problem:

min{vxT | Hx = 2z ,x ∈ {0, 1}n,z ∈ N
n−k}. (2)

The advantage of (2) compared to (1) is that z introduces real/integer con-
straints, which are much easier to handle for solvers than binary constraints.
Also, there are as many constraints as rows in H. Finding an appropriate vari-
able z is not trivial and algorithms such as [50] are constantly modifying the
values of z in order to find the correct solution.

Inspired by the ideas of Tanatmis et al., we define the SDP as an ILP. Then,
we propose to determine a valid constraints integer vector z so that the problem
becomes easier to solve. Such an approach was recently proposed as a proof of
concept in [17]. Simulations for small to medium sized random codes (n < 1500
and k < 750) using the simplex algorithm were performed in [17]. However,
cryptographic parameters were out of reach. Hence, in order to achieve our goal
we will propose several improvements compared to [17] (detailed in Sect. 3.4),
among which we count the following:

– Instead of solving the integer constrains problem using the simplex we will
solve a relaxed version (with real constrains) using the interior point method.

– An optimization scheme, where only a small proportion of the parity-check
rows are required, is proposed. This amount of information required to retrieve
a valid solution points out to an information theoretical threshold of the
integer-SDP.

– Simulations show that the overall complexity empirically decreases from
O(n3) for the initial algorithm to O(n2) for the optimized algorithm.

– In a practical implementation, real cryptographic instances are solved within
minutes, proving the efficiency of the algorithm.

Before that, we need to put forward a recent result in laser fault injection [14].

1.2 Related Works

Understanding how fault attacks allow to corrupt the instructions executed by
a microcontroller has been a vivid topic of research in recent years. While elec-
tromagnetic fault injection is probably the most commonly used technique, cer-
tainly because of its relatively low cost, it has several drawbacks. Indeed, while
the “instruction skip” or “instruction replay” fault models were clearly identi-
fied [45], most of the time going down to the instruction set level leaves a lot of
questions open [40]. As such, only a handful of the observed faults can be tracked
down and explained by a modification of the bits in the instruction [31]. Last,
but not least, electromagnetic fault injection usually exhibits poor repeatability
[13], as low as a few percents in some cases.

Conversely, another actively studied technique is laser fault injection, which
offers several advantages when it comes to interpreting the observed faults. For
example, the instruction skip fault model has been experimentally validated



Message-Recovery Laser Fault Injection Attack 441

by laser fault injection, with perfect repeatability and the ability to skip one
or multiple instructions [18]. On a deeper level of understanding, it has been
shown in [14] that it was possible to perform a bit-set on any of the bits of an
instruction while it is fetched from the Flash memory of the microcontroller.
This modification is temporary since it is performed during the fetch process.
As such, the instruction stored in the Flash memory remains untouched. We
place ourselves in this framework here. We reproduce the fault injection setup to
show how this powerful fault model gives the possibility to actively corrupt the
instructions and allows to mount a fault attack on code-based cryptosystems.

In a recent article [27], the authors present a physical attack on the code-
based finalist Classic McEliece. The idea is to combine side-channel information
and the use of the information set decoding algorithm to recover the message
from a Classic McEliece hardware reference implementation. In this paper, we
will focus on the same candidate. Our approach of combining techniques coming
from laser fault attacks and algorithms for general decoding problem fits well in
this new trend in cryptanalysis.

Moreover, implementations of the Classic McEliece on memory-constrained
is an active research topic [46]. These implementations are typically subject to
physical attacks, such as the one described in this article.

1.3 Contributions

This article makes the following contributions.

– First, we propose a new attack on code-based cryptosystems which security
relies on the SDP. We show by simulations that, if the syndrome is computed
in N instead of F2, then the SDP can be solved in polynomial time by linear
programming.

– Second, we experimentally demonstrate that such a change of set is feasible
by corrupting the instructions executed during the syndrome computation.
To this end, we rely on backside laser fault injection in Flash memory in order
to transform an addition over F2 into an addition over N. We perform this
by corrupting the instruction when it is fetched from Flash memory, thereby
replacing the exclusive-OR operation with an add-with-carry operation.

– Third, we then show, starting with the faulty syndrome, that the secret error-
vector can be recovered very efficiently by linear programming. By means of
software simulations we show that, in particular, this attack scales to cryp-
tographically strong parameters for the considered cryptosystems.

– Finally, we highlight a very practical feature of the attack, which is that
only a fraction of the syndrome entries need to be faulty in order for the
attack to be successful. On top of that, this fraction decreases when the
cryptographic parameters grow. This has important practical consequences,
since the attack can be carried out even if the fault injection is not perfectly
repeatable. Moreover, this also drastically reduces the number of inequalities
to be considered in the linear programming problem, thereby making the
problem much easier to solve.



442 P.-L. Cayrel et al.

The proposed attack fits in the following framework. We perform a message
recovery attack against code-based cryptosystems based on Niederreiter’s model.
Specifically, we recover the message from one faulty syndrome and the public
key. The attacker must have physical access to the device, where the laser fault
injection is performed during encryption, i.e., the matrix-vector multiplication.
The total number of faults the attacker must inject is upper-bounded by the
code dimension.

Our attack was performed on a real microcontroller, embedding an ARM
Cortex-M3 core, where we corrupted the XOR operation and obtained the faulty
outputs. As in our case, one needs to perform single-bit and double-bit faults, in
a repeatable and controlled manner. This method strongly relies on the work of
Colombier et al. [14] and thus can be verified and repeated experimentally. We
stress out that constant-time implementations are of great help for this attack
setting, since they allow to easily synchronize the laser shots with the execution
of the algorithm.

We chose to attack here two multiplication methods: the schoolbook and
the packed version. The former is general, and is considered for example in the
NTL library2. The later is the reference implementation of the Classic McEliece
cryptosystem and makes optimum use of the computer words.

The article is organized as follows. In Sect. 2, we focus on code-based cryp-
tosystems,and in particular the NIST PQC competition finalist Classic McEliece.
Section 3 defines the SDP in N and shows how it relates to linear programming. In
Sect. 4, we show how the corruption of instructions by laser fault injection allows
to switch from F2 to N during the syndrome computation. Section 5 presents
experimental results following the attack path, from laser fault injection to the
exploitation of the faulty syndrome by linear programming. Finally, we conclude
this article in Sect. 6.

2 Code-Based Cryptosystems

2.1 Coding Theory – Preliminaries

Notations. The following conventions and notations are used. A finite field
is denoted by F, and the ring of integers by N. Vectors (column vectors) and
matrices are written in bold, e.g., a binary vector of length n is x ∈ {0, 1}n, an
m × n integer matrix is A = (ai,j)0≤i≤m−1

0≤j≤n−1
∈ Mm,n (N). A row sub-matrix of

A indexed by a set I ⊆ {0, . . . , m − 1} is denoted by AI, = (ai,j) i∈I
0≤j≤n−1

. The

same applies to column vectors, i.e., xI is the sub-vector induced by the set I
on x.

Error Correcting Codes. We say that C is an [n, k] linear error-correcting
code, or simply a linear code, over a finite field F if C is a linear subspace of

2 https://www.shoup.net/ntl/.

https://www.shoup.net/ntl/


Message-Recovery Laser Fault Injection Attack 443

dimension k of the vector space F
n, where k, n are positive integers with k < n.

The elements of C are called codewords. The support of a codeword Supp(c)
is the set of non-zero positions of c. We will represent a code either by its
generator matrix, G ∈ Mk,n (F) (rank(G) = k), or by its parity-check matrix,
H ∈ Mn−k,n (F), (rank(H) = n − k), where HGT = 0 holds. One of the key
ingredients for decoding is the usage of a metric. The Hamming weight of a
vector wt(x) is the number of non-zero components of x. Now, we can define a
well-known strategy used for general decoding, i.e., syndrome decoding.

Definition 1 (Binary-SDP).

Input: H ∈ Mn−k,n (F2) of rank n − k, a vector s ∈ F
n−k
2 and t ∈ N

∗.
Output: x ∈ F

n
2 , with wt(x) ≤ t, such that Hx = s.

2.2 NIST PQC Competition

The main goal of the process started by NIST is to replace three standards that
are considered the most vulnerable to quantum attacks, i.e., FIPS 186-43 (for
digital signatures), NIST SP 800-56A4 and NIST SP 800-56B5(both for keys
establishment in public-key cryptography). For the first round of this competi-
tion, 69 candidates met the minimum criteria and the requirements imposed by
NIST. 26 out of 69 were announced on January 30, 2019 for moving to the sec-
ond round. From these, 17 are public-key encryption and/or key-establishment
schemes and 9 are digital signature schemes. Since July 2020, NIST started
the third round of this process where only seven finalists were admitted (four
PKE/KEM and three signature schemes). In addition to the finalists, eight alter-
nate candidates were selected.

In this article, we focus on one of the finalists, Classic McEliece, which is a
merger of the former Classic McEliece submission and NTS-KEM. In Table 1 the
design rationale of the McEliece [36] and Niederreiter [42] schemes is illustrated.
The private key is a structured code, and the public key its masked variant. We
would like to stress out that our method applies to any code-based cryptosystem
that bases its security on the binary SDP.

2.3 Security and Practical Parameters

Basically, all the code-based schemes support their security on the hardness of
the SDP. Hence, state-of-the-art algorithms for solving the SDP are used to set
up the security level of any such proposals. The best strategy in this direction is
the class of so-called Information Set Decoding (ISD) algorithms. The original
algorithm was proposed by Prange [43] and has been significantly improved
since then [7,28,30,34,35,48]. Under the assumption that the public code is
indistinguishable from a random code, the ISD techniques are considered the
3 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.
4 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf.
5 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf


444 P.-L. Cayrel et al.

Table 1. McEliece and Niederreiter PKE schemes

McEliece PKE Niederreiter PKE

KeyGen(n, k, t) = (pk, sk)

G-generator matrix matrix of C H -parity-check of C
\\ C an [n, k] that corrects t errors

An n × n permutation matrix P

A k × k invertible matrix S An (n − k) × (n − k) invertible

Matrix S

Compute Gpub = SGP Compute Hpub = SHP

pk = (Gpub, t) pk = (Hpub, t)

sk = (S,G,P ) sk = (S,H ,P )

Encrypt(m, pk) = z

Encode m → c = mGpub Encode m → e

Choose e

\\ e a vector of weight t

z = c + e z = Hpube

Decrypt(z, sk) = m

Compute z∗ = zP −1 Compute z∗ = S−1z

z∗ = mSG + eP −1 z∗ = HPe

m∗ = Decode(z∗,G) e∗ = Decode(z∗,H)

Retrieve m from m∗S−1 Retrieve m from P −1e∗

best strategy for message recovery. For Classic McEliece, the error weight t is of
order o(n), when n → ∞, to be more precise is of order (n−k)

log2(n)
. In this case, the

time complexity of the ISD variants is 2ct(1−o(1)), where c is a constant given
by the code rate. Table 2 gives the list of parameters for the Classic McEliece
proposal.

Table 2. IND-CCA2 KEM McEliece parameters.

Parameters set 348864 460896 6688128 6960119 8192128

n 3488 4608 6688 6960 8192

k 2720 3360 5024 5413 6528

t 64 96 128 119 128

Equivalent bit-level security 128 196 256 256 256



Message-Recovery Laser Fault Injection Attack 445

3 Syndrome Decoding over N

3.1 Description of the Problem

Definition 2 (N-SDP).

Input: H ∈ Mn−k,n (N) with hi,j ∈ {0, 1} for all i, j,
s ∈ N

n−k and t ∈ N
∗ with t �= 0.

Output: x ∈ N
n with xi ∈ {0, 1} and wt(x) ≤ t, such that Hx = s.

Notice that H and x are binary, as in the SDP, whereas s is integer. Basically,
H and x are sampled exactly as for the SDP, it is only the operation, i.e., matrix-
vector multiplication, that changes, and thus its result.

Possible Solutions. Based on the similarities with SDP, one might try to solve
N-SDP using techniques from coding theory. We briefly enumerate three possible
solutions.

1. The simplest solution is to solve it as a linear system. If we consider the
system Hx = s, it has n − k equations and n unknowns, and hence, can be
solved efficiently. However, there are k free variables, and 2k possible solutions,
since x ∈ {0, 1}. For each instance, compute the Hamming weight, and stop
when the value is smaller than or equal to t. This procedure is not feasible in
practice for cryptographic parameters, due to the values of k.

2. Another possible solution is combinatorial (emulating an exhaustive search).
One can choose subsets of si elements from Supp(Hi,) for increasing values
of i, until it finds the correct combinations. This solution can be further
optimised by choosing subsets from a smaller set at each iteration, where
previously selected positions are rejected from the updated set. Even so, the
time complexity will be dominated by a product of binomial coefficients that
is asymptotically exponential in t.

3. A modified ISD to the integer requirements. Let us choose the original algo-
rithm of Prange [43], that is randomly permuting the matrix H (denote P
such a permutation) until the support of the permuted x is included in the
set {0, . . . , n − k − 1}, i.e., the set where the HP is in upper triangular
form. To put an integer matrix in the upper triangular form, one has to use
the equivalent of the Gaussian elimination for the integers, i.e., the Hermite
normal form. So, by computing an integer matrix A and H∗, so that H∗ is
upper triangular on its first n − k positions we obtain:

AHP
(
P Tx

)
= AH ′x′ = H∗x′ = As. (3)

If Supp(x′) ⊆ {0, . . . , n − k − 1} then the new syndrome s∗ = As has rather
small integer entries, that directly allow the computation of x′. This algorithm
has time complexity similar to the classic ISD, and hence, remains exponential
in t.



446 P.-L. Cayrel et al.

Since all these methods are not feasible in practice for cryptographic param-
eters, we propose another solution. For that, let us notice the following fact.

Remark 1. As for the maximum-likelihood decoding problem, we can reformu-
late N-SDP as an optimization problem:

min{wt(x) | Hx = s,x ∈ {0, 1}n}, (4)

where H and s are given as in Definition 2.

This fact leads us to searching for mathematical optimization techniques,
such as integer linear programming.

3.2 Integer Linear Programming

ILP was already used in a cryptographic context, mainly for studying stream
ciphers [11,12,41]. The authors of [41] implemented ILP-based methods that
gave practical results for Enocoro-128v2, as well as for calculating the number
of active S-boxes for AES. In [11,12] ILP was used for studying the Trivium
stream cipher and the lightweight block cipher Ktantan. In all of these, the
technique was to reformulate the original cryptographic problems by means of
ILP, and use some well-known solvers in order to obtain practical evidence of
their security. Typically, in [12] the authors used the CPLEX solver. There are
mainly three big solvers for LP and ILP problems: lpSolve6, IBM CPLEX7 and
Gurobi8, recently tested for various types of practical problems [32].

We point here some necessary facts about ILP, as we will use ILP as a tool
only. Interested readers might check [10,23] for more details.

Definition 3 (ILP problem). Let n,m ∈ N
+, b ∈ N

n, s ∈ N
m and A ∈

Mm,n (N). The ILP problem is defined as the optimization problem

min{bTx|Ax = c,x ∈ N
n,x ≥ 0}. (5)

Any vector x satisfying Ax = s is called a feasible solution. If a feasible
solution x∗ satisfies the minimum condition in (5) then x∗ is optimal. In order
to redefine our initial problem, i.e., (4) into an ILP problem, we need to redefine
the Hamming weight of a vector as a linear operation.

3.3 Solving N-SDP Using ILP

Theorem 1 ([17]). Let us suppose that there exists a unique vector x∗ ∈ {0, 1}n

with wt(x∗) = t, solution to the N-SDP. Then x∗ is the optimum solution of an
ILP problem.
6 http://lpsolve.sourceforge.net/5.5/.
7 https://www.ibm.com/products/ilog-cplex-optimization-studio.
8 https://www.gurobi.com.

http://lpsolve.sourceforge.net/5.5/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com


Message-Recovery Laser Fault Injection Attack 447

Proof. Suppose that such an x∗ exists and is unique, i.e., Hx∗ = s with s ∈
N

n−k and wt(x∗) = t. We will construct an ILP problem for which x∗ is the
optimum solution. For that, we simply set A = H, c = s, and bT = (1, . . . , 1)
in (5). Since x ∈ {0, 1}n wt(x) =

∑n
i=1 xi = (1, . . . , 1) · x, but this is equal to

bTx∗. The ILP problem we need to solve can now be defined as:

min{bTx|Hx = s,x ∈ {0, 1}n}, (6)

which is exactly (4). This implies that x∗ is a feasible solution to (6), and as
x∗ is the unique vector satisfying Hx∗ = s with wt(x∗) ≤ t, x∗ is optimum for
the minimum weight condition.

ILP problems are defined as LP problems with integer constraints, hence any
algorithm for solving an LP problem could potentially be used as a subroutine
for solving the corresponding ILP problem. Usually, these are formalised in a
sequential process, where the solution to one LP problem is close to the solution
to the next LP problem, and so on, until eventually the ILP problem is solved.
One of the most efficient method for solving ILP problems is the branch and
cut method. In a branch and cut algorithm, an ILP problem is relaxed into an
LP problem that is solved using an algorithm for LP problems. If the optimal
solution is integral then it gives the solution to the ILP problem. There are
mainly two famous methods for solving the linear problem: the simplex and the
interior point method.

The simplex algorithm, introduced by Dantzig in [15], is one of the most
popular methods for solving LP problems. The idea of this algorithm is to move
from one vertex to another on the underlying polytope, as long as the solution is
improved. The algorithm stops when no more neighbours of the current vertex
improve the objective function. It is known to be really efficient in practice, by
solving a large class of problems in polynomial time. However, it was proved in
[25] that there are instances where the simplex falls into the exponential time
complexity class.

Interior point algorithms represent a class of alternative algorithms to
the simplex method, and were first proposed by [24]. Several variants improved
the initial method, also by providing polynomial time complexity [29,51]. As
the name suggests, this method starts by choosing a point in the interior of
the feasible set. Moving inside the polyhedron, this point is improved, until the
optimal solution is found.

Efficient solutions using interior point methods were proposed for the problem
of maximum-likelihood decoding of binary codes [49,53,54]. These have running
times dominated by low-degree polynomial functions in the length of the code.
Also, they are in particular very efficient for large scale codes [49,53]. For these
particular interesting arguments, we choose the interior point method for solving
the N-SDP.

Solving the N-SDP. The algorithm we propose here to solve the N-SDP can be
described as follows. Initiate the parameters from (6), solve a relaxation of the



448 P.-L. Cayrel et al.

N-SDP (using the interior point methods), round the solution to binary entries
(using the method from [37]) and finally verify if the binary solution satisfies
the parity-check equations and the weight condition. The relaxation of the ILP
problem to an LP problem is a common method, more exactly, the LP problem
that we have to solve is:

min{bTx | Hx = s,0 	 x 	 1,x ∈ R
n}, (7)

where 	 is defined by x 	 y if and only if xi ≤ yi for all 0 ≤ i ≤ n − 1.

Algorithm 1. ILP solver for N-SDP
Input: H , s, t
Output: x solution to N-SDP or ERROR

1: Set b = (1, . . . , 1)T

2: Solve equation (7) � Using the interior-point method
3: round the solution x∗ to x∗ ∈ {0, 1}n � as done in [37]
4: if Hx∗ = s and wt(x) ≤ t then
5: return x∗

6: else
7: return ERROR
8: end if

3.4 Optimization

In this paragraph we propose an optimization to Algorithm 1. Let us first define
the following sets :

Definition 4. Let 0 < � < n − k and ∅ ⊂ I0 ⊂ · · · ⊂ I� ⊆ {0, . . . , n − k − 1}.
For 0 ≤ i ≤ � we define HIj

= {x ∈ {0, 1}n | HIj ,x = sIj
}, and H = {x ∈

{0, 1}n | Hx = s}.
Now, let us prove how to reduce the number of constraints to our initial prob-

lem. First, notice that N-SDP can be written as min{bTx | x ∈ H}. Secondly,
we prove that:

Proposition 1. Let 0 < � < n − k and ∅ ⊂ I0 ⊂ · · · ⊂ I� ⊆ {0, . . . , n − k − 1}
and x∗

Ij
= min{bTx | x ∈ HIj

}, for any 0 ≤ j ≤ �. Then wt(x∗) ≥ wt(x∗
I�

) ≥
· · · ≥ wt(x∗

I0
).

Proof. From Definition 4 we deduce

H ⊆ HI�
· · · ⊆ HI0 . (8)

Since the sets HIj
are finite, we can take the minimum and use the inclusion

from (8) to deduce the result.



Message-Recovery Laser Fault Injection Attack 449

Hence, the sequence wt(xI∗
0
), . . . ,wt(xI∗

�
) is non-decreasing. If the initial set

is I0 = {si0} then the sequence of Hamming weight of the solutions starts from
wt(xI∗

0
) = si0 .

We will thus use Proposition 1 as a reduction of our initial problem to a
shorter one, in terms of constraints or equivalently in the dimension of the sys-
tem. Two algorithms exploiting the result of Proposition 1, are presented here.
Both are based on the same rationale:

1. Choose I0 and call the ILP solver for N-SDP (Algorithm 1);
2. if the output is an optimum solution for the full problem then stop;
3. if not add an extra row to I0 to create I1 and continue until a solution is

found.

This procedure allows us to solve an easier instance and reduce the overall time
complexity of our algorithm. The way rows are sampled for building I0, I1, . . . , I�

has a significant impact on the length of the chain �. Two natural methods for
creating the sets are described. The first one, uses uniform random sampling
(each row has a probability 1/(n − k) of being selected), and as we shall see in
Sect. 5.2 it allows to solve the N-SDP for all the Classic McEliece parameters only
by using less than 40% of the rows. Reducing the parameter � might be achievable
by starting in a more clever way. More exactly, by including rows in an ordered
manner, where the ordering corresponds to the decreasing order on the entries
of the syndrome. By doing so, we start at wt(xI∗

0
) = max{si, 0 ≤ i ≤ n−k}. For

the parameters used in the Classic McEliece proposal, the improvement of this
method compared with the random sampling, reduces the number of required
rows for solving the N-SDP by a multiplicative factor close to 2. As we shall
see in Sect. 5.2, considering only a fraction of the syndrome entries decreases the
empirically observed time complexity of the N-SDP from O(n3) to O(n2).

4 Fault Injection

As shown in the previous section, computing the syndrome in N instead of F2

makes the SDP considerably easier to solve. In order to perform this change, we
must have the processor perform the additions in N instead of F2 during the syn-
drome computation. This is done by replacing the exclusive-OR instruction with
an add-with-carry instruction. Since both these arithmetic instructions are per-
formed by the arithmetic logic unit of the processor, their associated opcodes are
close, in the sense that the Hamming distance between them is small. Therefore,
only few bits must be modified to switch from one to the other.

We focus on the Thumb instruction set here since it is widely used in embed-
ded systems. The fact that, in the Thumb instruction set, the exclusive-OR
instruction can be transformed into an add-with-carry instruction by a single
bit-set can be considered pure luck. This is at least partially true but this is not
as surprising as it seems. Indeed, both these instructions are “data processing”
instructions. As such, they are handled by the arithmetic logic unit. Therefore,



450 P.-L. Cayrel et al.

the opcode bits are used to generate similar control signals, and it is not sur-
prising that they differ by only a few bits. A few examples of corruptions in
other instruction sets are given in Appendix A, showing that this attack could
be easily ported to other targets.

4.1 Previous Work

The single-bit fault model is a very powerful one and allows an attacker to mount
efficient attacks [21]. However, performing a single-bit fault in practice is far from
trivial. While these can be performed by global fault injection techniques, such
as under-powering [6], further analysis is necessary to filter the exploitable faults.
Indeed, while performing a single-bit fault at a non-chosen position is feasible,
targeting one bit specifically is much more complicated.

To this end, a more precise fault injection technique is required. In this
regard, laser fault injection is a well-suited method. Indeed, as shown in [14], it
is possible to perform a single-bit bit-set fault on data fetched from the Flash
memory. This makes it possible to alter the instruction while it is fetched, before
it is executed by the processor. We insist here on the fact that, as detailed in [14],
the corruption is temporary, and only performed on the fetched instruction. The
content of the Flash memory is left untouched. Therefore, if the instruction is
fetched again from the Flash memory while no laser fault injection is performed
then it is executed normally.

Colombier et al. showed that targeting a single bit in a precise manner is rel-
atively easy, since it only requires to position the laser spot at the right location
on the y-axis in the Flash memory [14], aiming at different word lines. Indeed,
moving along the x-axis does not change the affected bit, since the same word
line is covered by the laser spot. Therefore, targeting a single bit of the fetched
instruction is possible. This observation was experimentally confirmed on two
different hardware targets in [38], further proving the validity of this fault model.
Moreover, they also showed that two adjacent bits can also be set by shooting
with sufficient power between two word lines. This single-bit or dual-bit bit-set
fault model is the one we use as a framework for the rest of the article.

4.2 Bit-Set Fault on an Exclusive-OR Instruction

Using the fault injection technique described above, we now show how to apply
it to replace an exclusive-OR instruction with an add-with-carry instruction.
Figure 1 shows the Thumb encoding of both instructions, given in the ARMv7-M
Architecture Reference Manual9. When comparing both instructions, we observe
that only one single-bit bit-set fault, on the bit of index 8, is required to replace
the exclusive-OR instruction with an add-with-carry instruction. This is high-
lighted in red in Fig. 1.

9 https://static.docs.arm.com/ddi0403/e/DDI0403E B armv7m arm.pdf.

https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf


Message-Recovery Laser Fault Injection Attack 451

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic EORS: Rd = Rm ^ Rn
0 1 0 0 0 0 0 0 0 1 Rm Rdn

Generic ADCS: Rd = Rm + Rn
0 1 0 0 0 0 0 1 0 1 Rm Rdn

Fig. 1. Thumb encoding of the exclusive-OR (EORS) and add-with-carry (ADCS) instruc-
tions. The bit set by laser fault injection is highlighted in red. (Color figure online)

Algorithm 2. Matrix-vector multiplication.
1: function Mat vec mult(matrix, error vector)
2: for r ← 0 to n − k − 1 do
3: syndrome[r] = 0 � Initialisation

4: for r ← 0 to n − k − 1 do
5: for c ← 0 to n − 1 do
6: syndrome[r] ^= matrix[r][c] & error vector[c]

7: � Multiplication and addition

8: return syndrome

4.3 Bit-Set Fault on Schoolbook Matrix-Vector Multiplication

Now that we have shown that a single-bit fault can replace an exclusive-OR
instruction with an add-with-carry instruction, we will extend it to a matrix-
vector multiplication, used to compute the syndrome in code-based cryptosys-
tems. The syndrome computation is typically implemented as shown in Algo-
rithm 2. This is how it is done in the NTL library for instance, which is widely
used by NIST PQC competition candidates.

When performing laser fault injection in this setting, an attacker has essen-
tially three delays to tune. According to this implementation, an exclusive-OR
instruction will be executed at each run of the inner for loop. The delay between
the execution of these instructions is constant. We refer to it as tinner. The sec-
ond delay of interest is between the last and the first exclusive-OR instruction
of the inner for loop, when one iteration of the outer for loop is performed. This
delay is constant too. We refer to it as touter. Finally, the last delay to tune is
the initial delay, before the matrix-vector multiplication starts. We refer to it as
tinitial. Figure 2 shows these three delays on an example execution.

execution
starts X

O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

X
O
R

tinitial tinner touter
time

Fig. 2. Laser fault injection delays to tune



452 P.-L. Cayrel et al.

These delays can be tuned one after the other. The first delay to tune is
tinitial, then tinner and finally touter. Therefore, performing laser fault injection
on the schoolbook matrix-vector multiplication does not induce much additional
practical complexity compared with the exclusive-OR instruction alone because
of the regularity of the computation. Overall, (n − k) × n faults are necessary to
obtain the full faulty syndrome in N.

4.4 Bit-Set Fault on a Packed Matrix-Vector Multiplication

The matrix-vector multiplication method described in Algorithm 2 makes poor
use of the capacity of the computer words when matrix entries are in F2. Indeed,
even if both the matrix and the error-vector are binary, their elements are stored
in a full computer word. Although the smallest type available can be used, it
still takes a byte to store only one bit of information.

To overcome this, consecutive bits in the rows of the parity-check matrix can
be packed together in a single computer word. Typically, eight bits are packed in
a byte. In this setting, the dimensions of the matrix, error-vector and syndrome
are changed. The parity-check matrix now has n−k rows and n/8 columns. The
error-vector now has n/8 entries. The syndrome now has (n − k)/8 entries..

Algorithm 3. Matrix-vector multiplication with packed bits10.
1: function Mat vec mult packed(matrix, error vector)
2: for r ← 0 to n − k − 1 do
3: syndrome[r/8] = 0 � Initialisation

4: for r ← 0 to n − k − 1 do
5: b = 0

6: for c ← 0 to n/8 − 1 do
7: b ^= matrix[r][c] & error vector[c] � Multiplication and addition

8: b ^= b >> 4; �
9: b ^= b >> 2; � Exclusive-OR folding

10: b ^= b >> 1; �
11: b &= 1; � LSB extraction
12: syndrome[r/8] |= b << (r%8) � Bits packing

13: return syndrome

Compared to the schoolbook method shown in Algorithm 2, a variable b is
used to store the intermediate result of the multiplication and addition (see line 7
of Algorithm 3). Next, a few extra steps are performed on this variable. First,
it is necessary to compute the exclusive-OR of all the bits of this variable. This
is done by computing the exclusive-OR of the lower half and the upper half, by
shifting by four positions (see line 8 of Algorithm 3). This is repeated again by

10 As implemented by the syndrome function in the encrypt.c source file of the software
submission of Classic McEliece: https://classic.mceliece.org/nist.html.

https://classic.mceliece.org/nist.html


Message-Recovery Laser Fault Injection Attack 453

shifting by two and finally one position (see lines 9 and 10 of Algorithm 3). We
refer to this technique as exclusive-OR folding. The least-significant bit is then
extracted (see line 11 of Algorithm 3). Finally, it is packed into the syndrome
byte at the correct position (see line 12 of Algorithm 3).

Compared to the schoolbook matrix-vector multiplication shown in Algo-
rithm 2, several different faults are required here. They are detailed below.

Fault on the Multiplication and Addition for Loop. The first specific
fault to perform on the packed matrix-vector multiplication is on the inner for
loop found on line 6 of Algorithm 3. Indeed, since the bits of the parity-check
matrix are now packed, we cannot perform the sum over N and expect the final
value to be the sum of all individual bits. This is because, when bits are stored
in a word, performing the addition in N will incur carries which will propagate
and make the final byte useless, since individual contributions of the rows of the
parity check matrix are mixed.

To overcome this issue, we propose to prematurely exit this for loop. Before
explaining how this can be achieved in practice by laser fault injection, we detail
the consequences it has on the packed matrix-vector multiplication.

Consequence of a Premature Exit of the Inner for Loop of the Packed Matrix-
Vector Multiplication. If we are able to prematurely exit the inner for loop, then
the value of the intermediate variable b, which holds the temporary result of the
multiplication and addition, is changed. We shall identify the possible values of
b by induction. Let us refer to the value of b after the i-th execution of the for
loop as bi.

Let us first identify the base case, that is, exiting after only one execution.
We have:

b0 = matrix[r][0] & error vector[0] (9)

We can now identify the induction step, which corresponds to the subsequent
executions of the for loop. We then have:

bi = bi−1 ˆ (matrix[r][i] & error vector[i]) (10)

Therefore, we now have the values of b from b0 to bn/8−1. The value bi is
obtained by executing the for loop i times and prematurely exiting it only then.
As mentioned in Subsect. 4.1, this is feasible since instructions are corrupted
“on the fly”, only when they are fetched from the Flash memory.

In order to obtain the faulty syndrome entry, that is, the sum over N, we
must compute the sum given in Eq. (11). We use the Hamming weight (wt) to
obtain the sum of the individual bits.

wt(b0) +
n/8−1∑

i=1

wt(bi ˆ bi−1) (11)

We then obtain a faulty syndrome entry just like the one we got after per-
forming fault injection on the schoolbook matrix-vector multiplication. The next
paragraph describes how to perform it practically by laser fault injection.



454 P.-L. Cayrel et al.

mov r1, #0

inner:

...

...

...

add r1, #1

cmp r1, #N/8

ble @inner

(a) Typical assembly
code of a for loop.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic ADD: Rdn += imm8

0 0 1 1 0 Rdn imm8

ADD r1 #1

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

ADD r1 #193

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1

(b) Thumb encoding of the ADD instruction and two exam-
ples with different immediate values. The bits which must
be set by laser fault injection are highlighted in red.

Fig. 3. Assembly code of a for loop and a way to exit it prematurely by corrupting
the loop variable increment.

Premature Exit of a for Loop by Laser Fault Injection. As discussed in [14], pre-
maturely exiting a for loop is feasible by corrupting the loop variable increment.
Instead of incrementing the loop variable by only 1, we can try to make this
increment as large as possible. As shown in Fig. 3, the increment of the loop
variable at the end of the for loop is performed by a 16-bit ADD instruction. It
has been demonstrated in [14] that it is possible to perform a bit-set fault on
two adjacent bits of the instruction. Here, we can thus make the increment step
as large as 193 by setting the bits of index 6 and 7 of the ADD instruction.

As shown in Algorithm 3, the body of the inner for loop normally executes
n/8 times. By performing the previously described fault, we can make the loop
variable increment step as large as 193. Therefore, the loop is executed � n

8×193 =
� n
1544 times. Our objective is to exit the for loop prematurely. In this regard,

for large values of n, executing the loop � n
1544 times can lead to execute the for

loop for a few more iterations.
For instance, if n = 3488, then the loop should be executed n

8 = 436 times.
If we want to exit after 5 iterations to obtain b5, then we will in fact obtain:

b5 = b4 ˆ matrix[r][5] & error vector[5] ˆ
matrix[r][198] & error vector[198] ˆ (12)
matrix[r][391] & error vector[391]

instead of:
b5 = b4 ˆ matrix[r][5] & error vector[5] (13)

since 391 ≡ 198 ≡ 5 mod 193.
Therefore, we have a few parasitic extra elements in the bi value. How-

ever, since the error-vector has low weight, we can expect the associated bytes,
error vector[198] and error vector[391] in Eq. 12, to be all zeros and there-
fore not change the bi value.

Another approach would be to obtain multiple values for every bi, by explor-
ing several increment steps. The correct one could then potentially be extracted



Message-Recovery Laser Fault Injection Attack 455

as the common pattern of all these values. This will not be investigated further
in this article but could be the subject of future research.

Fault on the Exclusive-OR Folding. Now that we obtained a temporary
faulty syndrome entry stored in the intermediate variable b, we must deal with
the exclusive-OR folding (see lines 8 to 10 of Algorithm 3) in order to keep this
value intact.

There are two ways to address the exclusive-OR folding. The first possibil-
ity is to corrupt the destination register in the instruction. Depending on the
level of optimisation used for the compilation, the exclusive-OR folding can be
either decomposed into three consecutive shift-exclusive-OR pairs or be per-
formed directly by three consecutive “wide” exclusive-OR operations. Indeed,
as specified in the ARM reference manual, the exclusive-OR instruction can be
made “wide” to include an optional shift of one of the operands (see ARMv7-M
Reference Manual). In both cases, corrupting the destination register is easy and
consists only in performing a bit-set on the Rd part of the instruction.

The second possibility, which is the one we consider more practical, is to
notice that the sequence of three operations that make up the exclusive-OR
folding constitute a permutation over F

8
2. We verified it exhaustively for the

256 possible values. Therefore, rather than performing the destination register
corruption described previously, one can simply inverse the permutation.

Fault on the Least-Significant Bit Extraction. The next operation to
address is the least-significant bit (LSB) extraction (see line 11 of Algorithm 3).

Again here, there are two possible faults. Similarly to what was presented
before for the exclusive-OR folding, it is also possible to corrupt the destination
register. This would leave the source register untouched and preserve the full
value of bi, not only its LSB. The second option is to corrupt the “immediate”
operand of the AND instruction that performs the masking to extract the LSB.
To extract the LSB, this immediate value is 0x01. The objective here is to set as
many bits as possible to 1 in the immediate value, in order for the AND masking to
reset as few bits as possible. Depending on the level of optimisation used for the
compilation, the LSB extraction can be performed in one or two instructions. For
the sake of readability, we consider only the case where two 16-bit instructions
are used instead of a condensed 32-bit one. However, the idea to apply is exactly
the same.

Figure 4a shows the two assembly instructions that perform the LSB extrac-
tion. First, the mask value is loaded. It is then used as a mask in the subsequent
AND instruction. Ideally, we would like to load 255 as a mask instead, so that no
bits are reset by the AND masking. However, this requires to perform a bit-set
on seven adjacent bits, which is out of reach with a single-spot laser that can
at most fault two adjacent bits [14]. This could be done with a multi-spot laser
setup though. Therefore, here, four intermediate faults are necessary. For each
of them, two bits of the mask are set, as shown in Fig. 4b, giving the following
mask values: 0x03, 0x0D, 0x31 and 0xC1. We refer to the four consecutive faulty



456 P.-L. Cayrel et al.

mov r1, #1

and r1, r2

(a) Assembly code of
the LSB extraction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic MOV: Rd = imm8

0 1 0 0 0 Rd imm8

MOV r1 #1

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

MOV r1 #3

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

MOV r1 #13

0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1

MOV r1 #49

0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1

MOV r1 #193

0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1

(b) Thumb encoding of the MOV instruction and the set of four
corruptions required to get the full byte value. The bits which
must be set by laser fault injection are highlighted in red.

Fig. 4. Assembly code of the LSB extraction and the four necessary corruptions
required to prevent it and obtain the full byte value.

byte values as b#3, b#13, b#49 and b#193. Then the correct b value, without LSB
extraction, is given in Eq. (14).

b = b#3 | b#13 | b#49 | b#193 (14)

Fault on the Bits Packing Operation. The previous sections showed how
it is possible to keep the b value intact. Finally, the last operation to address
is the bits packing operation (see line 12 of Algorithm 3). There are two issues
to address here. First, we must deal with the left shift that will cause the most
significant bits of b to be dropped. Second, we must address the eight successive
OR operations performed for each syndrome entry.

We will actually start without dealing with the shift. The objective here is
to have the b stored in the syndrome vector directly, to make them available
to the attacker. To this end, we will apply again the idea of modifying the
loop increment (as shown in Fig. 3 but this time for the outer for loop). The
pattern to observe is the following. If we increase the loop increment after the
first execution of the outer for loop, then we have: s[0] = b, with b not being
shifted. All other syndrome entries are altered and unusable. If we increase the
loop increment after the ninth execution of the outer for loop, then we have:
s[0] = b, with b not being shifted. Again, all other syndrome entries are altered
and unusable. We then repeat this process and exit the outer for loop after the
i-th execution, i ∈ {8m + 1 | m ∈ N, m < k/8}.

This fault leaves us with a syndrome vector which entries contain every eighth
faulty syndrome value, those for which the row index r verifies r ≡ 0 mod 8.
Therefore, we only have 12.5 % of the faulty syndrome entries to feed to the



Message-Recovery Laser Fault Injection Attack 457

linear programming solver. We briefly examine some possibilities to obtain a
higher percentage.

The issue here is with the left shift operation, which discards the most sig-
nificant bits of the byte b. This shift is implemented with the LSL instruction.
As it turns out, performing a one-bit bit-set at different positions of this instruc-
tion leads quite a few corrupted instructions. They are listed in Fig. 5. The most
interesting corruption is probably to turn the LSL instruction into a CMP instruc-
tion, which compares the values stored in the registers and updates the processor
flags but does not modify the content of the registers. Therefore, this is the cor-
ruption that we pick. Alternatively, other corruptions such as LSR (logical shift
right) or SBC (subtract with carry) could also be exploited, but would require
more analysis.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Generic LSL: Rdn <<= Rm
0 1 0 0 0 0 0 0 1 0 Rm Rdn

Generic LSR: Rdn >>= Rm
0 1 0 0 0 0 0 0 1 1 Rm Rdn

Generic SBC: Rdn -= Rm
0 1 0 0 0 0 0 1 1 0 Rm Rdn

Generic CMP: Compare(Rm, Rn)

0 1 0 0 0 0 1 0 1 0 Rm Rn

Fig. 5. Possible corruptions of the LSL instruction with a one-bit bit-set fault

At last, the final operation to deal with is the OR operation which packs the
bits together without affecting the ones which have already been packed. This
must be addressed by premature exit of the outer for loop again.

After the row of index r ≡ 0 mod 8 has been processed, the syndrome entry
holds the correct value, as mentioned before, making 12.5% of the faulty entries
readily available. However, if we run the outer for loop for one more iteration,
the row of index r ≡ 1 mod 8 is processed. The syndrome entry value is then:
br≡0 | (br≡1 << 1). If the value br≡0 had many zeroes and the most significant
bit of br≡1 is not 1, then the value of br≡1 can be deduced. However, this might
not be correct, but considering the low error weight t for the Classic McEliece
parameter sets, this might be possible. A trial-and-error process could then be
followed, trying to include those new faulty syndrome entries into the problem
fed to the solver.

Summary and Feasibility of Faulting the Packed Matrix-Vector Multi-
plication. Figure 6 summarizes the steps performed in the packed matrix-vector
multiplication and the associated faults required to compute the multiplication
in N instead of F2. Essentially, a lot of required faults involve prematurely exiting
the inner and outer for loops.



458 P.-L. Cayrel et al.

For loop of
multiplications
and additions

Exclusive-OR
folding LSB extraction Bits packing

Prematurely
exiting

F
8
2 permutation

OR after four
complementary

mask corruptions

Prematurely
exiting the

outer for loop

Fig. 6. Summary of the operations found in the packed matrix-vector multiplication
and the required associated faults.

For practical reasons, it is worth noting which bits of the instructions must be
set. Indeed, this determines the position of the laser spot in the Flash memory.
The timing of the laser fault injection can be tuned very precisely, allowing
to selectively target one instruction only. However, given the linear speed at
which a typical XYZ stage travels and the operating frequency of the device,
it is foolish to try to fault consecutive instructions at different bit positions.
Premature exit of a for loop requires to set the bits of index 7 and 6. Corrupting
the MOV instruction to avoid LSB extraction, as depicted in Fig. 4b, requires to
set the bits 7 and 6, then 5 and 4, then 3 and 2, and finally 1. This is thus not
feasible with a single-spot laser injection station, but would be possible with a
multi-spot station.

5 Experimental Results

5.1 Fault Injection

We did perform the fault described above by laser fault injection. This allowed
us to replace the exclusive-OR instruction by an add-with-carry instruction. We
use an infrared laser, at a wavelength of 1064 nm and perform backside injection
on the target. We reused the laser fault injection parameters given in [14]. The
injection power is 1 W. The laser spot has a diameter of 5µm. The duration
of the laser pulse is 135 ns. This is roughly equal to the clock period of the
microcontroller, which runs at 7.4 MHz. Laser synchronisation is becoming more
precise and circuit with faster clocks are definitely within reach, with laser pulses
as short as a few nanoseconds. Then, the fault is achieved by placing the laser
spot in the Flash memory of the 32-bit microcontroller. This device embeds an
ARM Cortex-M3 core, which is a very common processor core found in many
embedded systems. We validated that the fault injection was indeed correctly
performed by comparing input/output pairs with and without fault injection.
This confirmed that the exclusive-OR instruction can indeed be replaced with
an add-with-carry instruction.

Figure 7 shows a detailed example of instruction corruption performed by
laser fault injection. The example code simply loads an identical constant value
into two registers and performs the exclusive-OR of them. The value is then read
out from the destination register.



Message-Recovery Laser Fault Injection Attack 459

Fault Assembly code Binary machine code Readout

mov r3, #90 0010 0011 0101 1010

No mov r4, #90 0010 0100 0101 1010 r3 = 0x00

eors r3, r4 0010 0000 0110 0011

mov r3, #90 0010 0011 0101 1010

Yes mov r4, #90 0010 0100 0101 1010 r3 = 0xB4

adcs r3, r4 0010 0001 0110 0011

Fig. 7. Detailed example of instruction corruption by laser fault injection. The effects
of the fault are highlighted in red (Color figure online)

On the first line, no fault injection is performed. Since the value loaded into
the registers is the same, the exclusive-OR leads to a byte where all bits are zero,
as shown in the readout value of the destination register.

On the second line, a fault is injected. This allows to perform a bit-set on
the bit of index 8, as shown in red in the “Binary machine code” column. This
in turns changes the exclusive-OR operation into an add-with-carry operation.
This is visible in the “Assembly code” column, where the eors instruction is
replaced with an adcs instruction. As a consequence, the value stored in the
destination register is different from zero and equal to the sum of both registers
instead. Since we observe precisely this value in our experimentation, it confirms
that the instruction has been successfully corrupted.

Following the fault injection strategies detailed in Sect. 4, we are able to
obtain a syndrome with values in N. The following section describes the actual
exploitation of this syndrome to recover the binary error-vector.

5.2 Syndrome Decoding over N with Integer Linear Programming

After obtaining a faulty syndrome with entries in N, we feed it and the parity-
check matrix to the linear programming solver. We used the linprog function
of the scipy.optimize [52] Python module. It implements the interior point
method as described in [2]. As mentioned in Sect. 3, we chose the interior point
method over the simplex, for several already known arguments. We still per-
formed a comparison between these two methods for our specific problem, and
indeed, the interior point method turned out to be much faster.

In order to remain as general as possible, we consider parity-check matrices of
random binary codes. Since no efficient decoding algorithm exists for these, they
can be considered the worst-case scenario. Also, all the code-based proposals
to the NIST competition state that the public codes are indistinguishable from
random codes. Parity-check matrices which are associated with structured codes
thus cannot be harder to handle than the ones of random binary codes. All
experiments are conducted on a desktop computer, embedding a 6-core CPU
clocked at 2.8 GHz and 32 GB of RAM.



460 P.-L. Cayrel et al.

In Table 3 the precise timings (in seconds) to solve the modified SDP for all
the proposed parameters of the Classic McEliece submission are given. Notice
that even for the 256 bit security level parameters, using ILP, we retrieve the
secret message in less than three seconds.

Table 3. Execution time for solving the modified SDP using the optimal number of
rows in the ILP (optimized version) for Classic McEliece parameters.

Parameters set 348864 460896 6688128 6960119 8192128

n 3488 4608 6688 6960 8192

k 2720 3360 5024 5413 6528

t 64 96 128 119 128

Equivalent bit-level security 128 192 256 256 256

Required number of rows 340 470 625 597 658

Execution time [s] 0.6925 1.2045 2.3865 2.1295 2.7625

As highlighted in Sect. 3.4, only a fraction of the parity-check matrix rows
and syndrome entries are required to solve the linear programming problem.
This fraction depends on at least three parameters: the length of the code n,
the weight of the solution t, and the method used for adding extra rows to
the system. Here, we will limit our discussion to the case where the algorithm
randomly selects rows until a valid solution to the initial problem is found. Hence,
there is a threshold, a minimum number of rows required to solve the N-SDP.

In order to realize how efficient the ILP is at solving the N-SDP, and to sus-
tain our method for other potential sets of parameters, we simulate our attack
on a wider range of parameters. For that, we choose values of t of order

√
n

and
√

n log(n). One might argue that in the case of the Classic McEliece cryp-
tosystem, the value of t equals n−k

log(n) , which is different from what we pro-
pose here. Notice that in the Classic McEliece cryptosystem, the order of k
is about 2n

3 , which makes t approximately n
3 log(n) . At these orders, for any

n ∈ {854, . . . , 29 448} we have that
√

n ≤ n
3 log(n) ≤ √

n log(n). Hence, the
two cases considered here represent lower and upper bounds for any potential
set of parameters of the Classic McEliece cryptosystem. As we will detail in the
next paragraph, for any parameters within this range of values, the ILP solver
will retrieve the secret message from the faulty syndrome within minutes.

Required Percentage of Faulty Syndrome Entries for Random Sam-
pling. Figure 8 shows how the percentage of required syndrome entries changes
for different values of n. The value of k equals as in the case of the Classic
McEliece n/3. This depends not only on n but also on the weight of the error-
vector. Figure 8a shows the required percentage of syndrome entries for t =

√
n.

Figure 8b shows the required percentage of syndrome entries for t =
√

n log(n).



Message-Recovery Laser Fault Injection Attack 461

(a) t =
√
n (b) t =

√
n log(n) (c) Classic McEliece

Fig. 8. Success rate of solving the linear programming problem for different values of
n and percentage of syndrome entries considered.

As stated before when the exact parameters or the McEliece are considered (see
Fig. 8c) the percentage of required rows is in between t =

√
n and t =

√
n log(n),

being closer to the former for small security levels, an closer to the later for high
security levels. For each value of n and every percentage we estimate the success
rate by solving the linear programming problem 20 times.

For t =
√

n log(n), as shown in Fig. 8b, the required percentage of syndrome
entries does not drop as fast. Moreover, this leads to an issue related to large
values of t. For example, n = 10 000 leads to t =

√
n log(n) = 303. This is

already higher than the biggest value of t in Classic McEliece (see Table 2). At
this number of errors, since n is not so large, the linear programming problem
to solve is better satisfied by non-binary vectors. Therefore, it is necessary to
add bounds on the variables of the problem to make sure that they remain in
the [0, 1] interval. This dramatically increases the memory requirements of the
solver, thereby limiting the largest value of n to 2 × 104 approximately. Note
that this is only dictated by the RAM available on the desktop computer we
used and is not an algorithmic limit.

When the precise parameters of the Classic McEliece are considered, about
n/10 rows were sufficient to solve the N-SDP when random sampling is used
in the optimizations (see Table 3). Further simulations show that this number
could be reduced to n/20 when the second optimization algorithm is used. Hence,
considering high-rate Goppa codes with k/n ≤ 0.90 leads to practical attacks on
the corresponding N-SDP.

It is worth mentioning that, for any t <
√

n log(n), the ILP solver finds
the binary solution directly, which makes it really efficient. However, for larger
values of t, we need to bound the solution to the [0, 1] interval in order to
be able to practically solve the ILP. In addition, when parameters grow, the



462 P.-L. Cayrel et al.

Fig. 9. Execution time of the linear programming solver for different values of n. In
the “Full” case, all syndrome entries are considered. In the “Optimal” case, only the
required percentage of syndrome entries are considered.

required percentage is reduced. This contradicts the common sense that larger
cryptographic parameters offer better security.

Execution Time. Figure 9 shows how the execution time of the linear pro-
gramming solver changes for different values of n. Two cases are displayed. In
the “Full” case, the whole faulty syndrome is fed to the solver. In the “Optimal”
case, only the required percentage of syndrome entries are used.

We can observe that considering only the required percentage of syndrome
entries drastically reduces the computation time. For n = 9000, and t =

√
n,

more than one order of magnitude of computation time is saved. For the Classic
McEliece parameters, less than three seconds of computation are necessary in
the 256-bit security case. For 128 bits of security, the problem is solved in one
second approximately.

We can empirically observe on Fig. 9 that the slope is different for the “Full”
and the “Optimal” cases, having respectively O(n3) and O(n2) time complex-
ities. We do not have an explanation for this behaviour at the moment. This
could be the subject of future works.

6 Conclusion

We have shown in this paper that, using laser fault injection, we are able to
modify one of the building blocks of code-based cryptosystems, i.e., the well-
known syndrome decoding problem. We modeled the modified instance by means
of an integer linear programming problem, and further solve it experimentally in
polynomial time. We have provided real-time attacks against all the parameters
of the Classic McEliece proposal.



Message-Recovery Laser Fault Injection Attack 463

Furthermore, we have shown that the number of fault injected can be dras-
tically reduced if we focus on only a few percent of the number of rows of the
matrices involved. Combining laser fault injection to obtain an easier problem
such as the syndrome decoding problem over N instead of F2 and then using
linear programming to solve this problem is an interesting combination that
potentially could be applied to other interesting problems, such as the Shortest
Integer Problem or the Shortest Vector Problem.

We can identify several research perspectives to continue this work. First,
finding a better attack path for the packed version would be an advantage. This
would make the attack more practical. Hardware implementations of Classic
McEliece could also be targeted. On a more theoretical side, studying the com-
plexity of the problem discussed here would also be interesting. In particular,
the drop from cubic to quadratic complexity when considering only the optimal
number of syndrome entries is particularly intriguing.

Acknowledgments. This work was carried out in the framework of the FUIAAP22-
Project PILAS supported by Bpifrance. V-F. Drăgoi was supported by a grant of the
Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number
PN-III-P1-1.1-PD-2019-0285, within PNCDI III.

A Other Instruction Sets

Here are a few examples of possible corruptions of the exclusive-OR instruction
in other instruction sets than the one we considered in the article.

ARMv7 In the ARMv711 instruction set, the exclusive-OR instruction (EORS.W)
can be corrupted into a saturated addition instruction (QADD) as shown in Fig. 10.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Generic EORS.W: Rd = Rm ^ Rn

1 1 1 0 1 0 1 0 1 0 0 0 Rn 0 imm3 Rd imm2 type Rm
Generic QADD: Rd = Rm + Rn

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

Fig. 10. Fault by bit-sets on the ARMv7 exclusive-OR instruction

PIC. In the PIC12 instruction set, the exclusive-OR instruction (XORWF) can be
corrupted into an addition instruction (ADDWF) as shown in Fig. 11.

RISC-V Compressed. In the RISC-V compressed13 instruction set, the exclusive-
OR instruction (C.XOR) can be corrupted into an addition instruction (C.ADDW)
as shown in Fig. 12.
11 https://static.docs.arm.com/ddi0403/e/DDI0403E B armv7m arm.pdf.
12 http://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf.
13 https://riscv.org/specifications/isa-spec-pdf/.

https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf
http://ww1.microchip.com/downloads/en/devicedoc/31029a.pdf
https://riscv.org/specifications/isa-spec-pdf/


464 P.-L. Cayrel et al.

13 12 11 10 9 8 7 6 5 4 3 2 1 0
Generic XORWF: W = W ^ Rf

0 0 0 1 1 0 d Rf
Generic ADDWF: W = W + Rf

0 0 0 1 1 1 d Rf

Fig. 11. Fault by bit-set on the PIC exclusive-OR instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Generic C.XOR: Rd = Rs1 ^ Rs2

1 0 0 0 1 1 Rs1/d 0 1 Rs2 0 1
Generic C.ADDW: Rd = Rs1 + Rs2

1 0 0 1 1 1 Rs1/d 0 1 Rs2 0 1

Fig. 12. RISC-V encoding of the exclusive-OR instruction and a possible fault feasible
by bit-set

References

1. Albrecht, M.R., et al.: Classic McEliece, submission to the NIST post quantum
standardization process (November 2017)

2. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. In: Frenk, H.,
Roos, K., Terlaky, T., Zhang, S. (eds.) High performance optimization, vol. 33, pp.
197–232. Springer, Boston (2000) https://doi.org/10.1007/978-1-4757-3216-0 8

3. Aragon, N., et al.: BIKE: Bit Flipping Key Encapsulation, submission to the NIST
post quantum standardization process (December 2017)

4. Aragon, N., et al.: Rollo (merger of Rank-Ouroboros, LAKE and LOCKER). Sec-
ond round submission to the NIST post-quantum cryptography call (2020)

5. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAkem: a post-
quantum key encapsulation mechanism based on QC-LDPC codes. In: Lange, T.,
Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 3–24. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-79063-3 1

6. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Fault attack
on AES with single-bit induced faults. In: International Conference on Information
Assurance and Security, pp. 167–172. Atlanta, IEEE (August 2010)

7. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in
2n/20: how 1+1=0 improves information set decoding. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

8. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Trans. Inf. Theor. 24(3), 384–386
(1978)

9. Bernstein, D.J.: Post-quantum cryptography. In: van Tilborg, H.C.A., Jajodia, S.
(eds.) Encyclopedia of Cryptography and Security, 2nd edn., pp. 949–950. Springer,
New York (2011). https://doi.org/10.1007/978-1-4419-5906-5 386

10. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Organisation, Athena Sci-
entific Optimization and Computation Series, vol. 6. Athena Scientific, Belmont
(1997)

https://doi.org/10.1007/978-1-4757-3216-0_8
https://doi.org/10.1007/978-3-319-79063-3_1
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-1-4419-5906-5_386


Message-Recovery Laser Fault Injection Attack 465

11. Borghoff, J.: Mixed-integer linear programming in the analysis of trivium and
ktantan. IACR Cryptology ePrint Archive 2012, 676 (2012). http://eprint.iacr.
org/2012/676

12. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a mixed-integer linear program-
ming problem. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 133–152.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 9

13. Bukasa, S.K., Lashermes, R., Lanet, J., Legay, A.: Let’s shock our IoT’s heart:
ARMv7-M under (fault) attacks. In: Doerr, S., Fischer, M., Schrittwieser, S., Her-
rmann, D. (eds.) International Conference on Availability, Reliability and Security,
pp. 33:1–33:6. ACM, Hamburg, Germany (August 2018)

14. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger,
J.L.: Laser-induced single-bit faults in flash memory: Instructions corruption on a
32-bit microcontroller. In: IEEE International Symposium on Hardware Oriented
Security and Trust, pp. 1–10. McLean, VA, USA (May 2019)

15. Dantzig, G.B.: Maximization of a linear function of variables subject to linear
inequalities. Activity Anal. Prod. Allocation 13, 339–347 (1951)

16. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

17. Dragoi, V.F., Cayrel, P.L., Colombier, B., Bucerzan, D., Hoara, S.: Solving a modi-
fied syndrome decoding problem using integer programming. Int. J. Comput. Com-
mun. Control 15(5), 1–9 (2020)

18. Dutertre, J.-M., Riom, T., Potin, O., Rigaud, J.-B.: Experimental analysis of the
laser-induced instruction skip fault model. In: Askarov, A., Hansen, R.R., Rafnsson,
W. (eds.) NordSec 2019. LNCS, vol. 11875, pp. 221–237. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35055-0 14

19. Feldman, J.: Decoding error-correcting codes via linear programming. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA (2003)

20. Feldman, J., Wainwright, M.J., Karger, D.R.: Using linear programming to decode
binary linear codes. IEEE Trans. Inf. Theory 51(3), 954–972 (2005)

21. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506447 4

22. Helmling, M., Ruzika, S., Tanatmis, A.: Mathematical programming decoding of
binary linear codes: theory and algorithms. IEEE Trans. Inf. Theory 58(7), 4753–
4769 (2012)

23. Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Progress in linear
programming-based algorithms for integer programming: an exposition. INFORMS
J. Comput. 12(1), 2–23 (2000)

24. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–396 (1984)

25. Klee, V., Minty, G.J.: How good is the simplex algorithm. Inequalities 3(3), 159–
175 (1972)

26. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
27. Lahr, N., Niederhagen, R., Petri, R., Samardjiska, S.: Side channel information set

decoding using iterative chunking. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 881–910. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4 29

28. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Barstow, D., Barstow, D., et al. (eds.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-45961-8 25

http://eprint.iacr.org/2012/676
http://eprint.iacr.org/2012/676
https://doi.org/10.1007/978-3-642-10868-6_9
https://doi.org/10.1007/978-3-030-35055-0_14
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25


466 P.-L. Cayrel et al.

29. Lee, Y.T., Sidford, A.: Efficient inverse maintenance and faster algorithms for linear
programming. In: Guruswami, V. (ed.) IEEE Annual Symposium on Foundations
of Computer Science, pp. 230–249. IEEE Computer Society, Berkeley, CA, USA
(October 2015)

30. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inf. Theory 34(5), 1354–1359 (1988)

31. Liao, H., Gebotys, C.H.: Methodology for EM fault injection: charge-based fault
model. In: Teich, J., Fummi, F. (eds.) Design, Automation & Test in Europe Con-
ference & Exhibition, pp. 256–259. IEEE, Florence, Italy (March 2019)

32. Luppold, A., Oehlert, D., Falk, H.: Evaluating the performance of solvers for
integer-linear programming. Technical Report, Hamburg University of Tech-
nology (2018). https://doi.org/10.15480/882.1839, https://tore.tuhh.de/handle/
11420/1842

33. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16.
Elsevier, New York (1977)

34. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

35. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

36. McEliece, R.J.: A public-key system based on algebraic. Coding Theory 4244,
114–116 (1978)

37. Megiddo, N.: On finding primal- and dual-optimal bases. INFORMS J. Comput.
3(1), 63–65 (1991)

38. Menu, A., Dutertre, J., Rigaud, J., Colombier, B., Moëllic, P., Danger, J.: Single-bit
laser fault model in NOR flash memories: analysis and exploitation. In: Workshop
on Fault Detection and Tolerance in Cryptography, pp. 41–48. IEEE, Milan, Italy
(September 2020)

39. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

40. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: Towards a fault model on a 32-bit microcontroller. In: Fischer,
W., Schmidt, J. (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, pp. 77–88. IEEE Computer Society, Los Alamitos, CA, USA (August 2013)

41. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

42. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Control Inf. Theory 15(2), 159–166 (1986)

43. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

44. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

45. Rivière, L., Najm, Z., Rauzy, P., Danger, J., Bringer, J., Sauvage, L.: High preci-
sion fault injections on the instruction cache of armv7-m architectures. In: IEEE
International Symposium on Hardware Oriented Security and Trust. pp. 62–67.
IEEE Computer Society, Washington, DC, USA (May 2015)

https://doi.org/10.15480/882.1839
https://tore.tuhh.de/handle/11420/1842
https://tore.tuhh.de/handle/11420/1842
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5


Message-Recovery Laser Fault Injection Attack 467

46. Roth, J., Karatsiolis, E., Krämer, J.: Classic McEliece implementation with low
memory footprint. In: Liardet, P.-Y., Mentens, N. (eds.) CARDIS 2020. LNCS,
vol. 12609, pp. 34–49. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
68487-7 3

47. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

48. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

49. Taghavi, M.H., Shokrollahi, A., Siegel, P.H.: Efficient implementation of linear
programming decoding. IEEE Trans. Inf. Theory 57(9), 5960–5982 (2011)

50. Tanatmis, A., Ruzika, S., Hamacher, H.W., Punekar, M., Kienle, F., Wehn, N.: A
separation algorithm for improved lp-decoding of linear block codes. IEEE Trans.
Inf. Theory 56(7), 3277–3289 (2010)

51. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication
(extended abstract). In: Annual Symposium on Foundations of Computer Science,
pp. 332–337. IEEE Computer Society, Research Triangle Park, North Carolina,
USA (October 1989)

52. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in
python. Nature Methods 17(3), 261–272 (2020)

53. Vontobel, P.O.: Interior-point algorithms for linear-programming decoding. In:
Information Theory and Applications Workshop, pp. 433–437. IEEE, San Diego,
CA, USA (January 2008)

54. Wadayama, T.: An LP decoding algorithm based on primal path-following interior
point method. In: International Symposium on Information Theory, pp. 389–393.
IEEE, Seoul, Korea (June 2009)

https://doi.org/10.1007/978-3-030-68487-7_3
https://doi.org/10.1007/978-3-030-68487-7_3
https://doi.org/10.1007/BFb0019850


Multi-source Non-malleable Extractors
and Applications

Vipul Goyal1(B), Akshayaram Srinivasan2, and Chenzhi Zhu3

1 CMU and NTT Research, Pittsburgh, USA
vipul@cmu.edu

2 Tata Institute of Fundamental Research, Mumbai, India
akshayaram.srinivasan@tifr.res.in
3 Tsinghua University, Beijing, China

Abstract. We introduce a natural generalization of two-source non-
malleable extractors (Cheragachi and Guruswami, TCC 2014) called
as multi-source non-malleable extractors. Multi-source non-malleable
extractors are special independent source extractors which satisfy an
additional non-malleability property. This property requires that the
output of the extractor remains close to uniform even conditioned on
its output generated by tampering several sources together. We formally
define this primitive, give a construction that is secure against a wide
class of tampering functions, and provide applications. More specifically,
we obtain the following results:

– For any s ≥ 2, we give an explicit construction of a s-source non-

malleable extractor for min-entropy Ω(n) and error 2−nΩ(1)
in the

overlapping joint tampering model. This means that each tampered
source could depend on any strict subset of all the sources and the
sets corresponding to each tampered source could be overlapping
in a way that we define. Prior to our work, there were no known
explicit constructions that were secure even against disjoint tamper-
ing (where the sets are required to be disjoint without any overlap).

– We adapt the techniques used in the above construction to give a
t-out-of-n non-malleable secret sharing scheme (Goyal and Kumar,
STOC 2018) for any t ≤ n in the disjoint tampering model. This
is the first general construction of a threshold non-malleable secret
sharing (NMSS) scheme in the disjoint tampering model. All prior
constructions had a restriction that the size of the tampered subsets
could not be equal.

– We further adapt the techniques used in the above construction to
give a t-out-of-n non-malleable secret sharing scheme (Goyal and
Kumar, STOC 2018) for any t ≤ n in the overlapping joint tampering
model. This is the first construction of a threshold NMSS in the
overlapping joint tampering model.

– We show that a stronger notion of s-source non-malleable extrac-
tor that is multi-tamperable against disjoint tampering functions
gives a single round network extractor protocol (Kalai et al., FOCS
2008) with attractive features. Plugging in with a new construction
of multi-tamperable, 2-source non-malleable extractors provided in

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 468–497, 2021.
https://doi.org/10.1007/978-3-030-77886-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_16


Multi-source Non-malleable Extractors and Applications 469

our work, we get a network extractor protocol for min-entropy Ω(n)
that tolerates an optimum number (t = p − 2) of faulty proces-
sors and extracts random bits for every honest processor. The prior
network extractor protocols could only tolerate t = Ω(p) faulty pro-
cessors and failed to extract uniform random bits for a fraction of
the honest processors.

1 Introduction

Non-malleable Extractors. Randomness extractors are fundamental objects in
the study of computer science and combinatorics. They allow to extract uniform
random bits from a source that has “some” randomness which may not nec-
essarily be uniform. The amount of randomness in a source X is captured by
the notion of min-entropy defined as H∞(X) = mins∈sup(X){log 1

Pr[X=s]}. It is
well-known that if we only have a single source with min-entropy less than full,
then it is impossible to extract uniform random bits out of this source. One way
to get around this impossibility result is to assume that we have two or more
sources that are independent and the goal is to extract uniform random bits
from these independent sources. Such extractors are called as multi-source (or
independent source) extractors. A long line of work starting from the seminal
work of Chor and Goldreich [CG88] have focused on constructing multi-source
extractors for lower min-entropy. This recently resulted in a breakthrough work
of Chattopadhyay and Zuckerman showing explicit constructions of two-source
extractors for poly logarithmic min-entropy [CZ16]. See also the follow-up works
of [Li16,Li17a,BDT17,GKK19].

A natural strengthening of multi-source extractors (that have also been used
as a key tool in the recent breakthroughs) is the notion of a non-malleable
extractor [CG14]. Roughly speaking, non-malleable extractors require that the
output of the extractor (when run on independent sources) to be statistically
close to uniform even conditioned on the output of the extractor generated by
tampered version of the sources. Formally, we say that a s-source extractor is
non-malleable against a tampering function family F if for any set of s inde-
pendent sources X1, . . . , Xs with sufficient min-entropy and for any tampering
function f ∈ F , there exists a distribution Df with support in {0, 1}m ∪{same∗}
that is independent of X1, . . . , Xs such that:

|MNMExt(X1, . . . , Xs) ◦ MNMExt(f(X1, . . . , Xs)) − Um ◦ copy(Df , Um)| ≤ ε

Here, copy(x, y) = x if x �= same∗; else, it is equal to y and |X − Y | denotes
the statistical distance between the random variables X and Y . Such extractors
have wide applications in computer science and specifically, in cryptography;
in particular, they can be used to construct two-source extractors [CZ16], non-
malleable codes [DPW18,CG14,CGL16], non-malleable secret sharing [GK18a],
round-optimal non-malleable commitments [GPR16,GKP+18] and cryptogra-
phy with correlated random tapes [GS19].



470 V. Goyal et al.

Almost all of the prior work in constructing non-malleable multi-source
extractors have focused on protecting against tampering functions that tam-
per each of the sources independently (aka individual tampering family). In this
work, we are interested in constructing multi-source extractors that are secure
against richer classes of tampering functions that could tamper several sources
together. For the case of two sources (that has been the focus of the majority of
the prior work), any tampering function that can tamper with both the sources
can easily break the non-malleability property and hence, the individual tam-
pering is the best that one could hope for. However, this is not the case for more
than two sources.

Non-malleable Secret Sharing. Non-malleable secret sharing introduced in the
work of Goyal-Kumar [GK18a] strengthens the traditional secret sharing with an
additional non-malleability property. Specifically, in addition to the standard cor-
rectness and privacy properties, a non-malleable secret sharing scheme requires
that any tampering attack from a family of allowable tampering functions either
preserves the original secret that was shared or completely destroys it. Most
of the works in this area [BS19,SV19,ADN+19,KMS18,FV19] focused on con-
structing non-malleable secret sharing against the individual tampering setting.
Specifically, these constructions become insecure even if a tampering function
can tamper with two shares together. The work of Goyal and Kumar [GK18a]
gave a construction of t-out-of-n non-malleable secret sharing in a restricted ver-
sion of the disjoint tampering model. Here, the tampering function first chooses
a set of t shares, then partitions this share into two sets of unequal sizes and
then tampers each partition independently. It was crucial to their security anal-
ysis that the partitions are of unequal size and this construction does not work
for equal size partitions. In [GK18b], this assumption was removed for the spe-
cific case of t = n and a construction that was secure in the overlapping joint
tampering model with cover-free subsets (the exact description of this model
can be found in Sect. 1.1) was given. However, the construction and the analysis
crucially rely on the fact that t = n and does not work for any t < n. Despite a
number of follow up works, overcoming this restriction for threshold NMSS has
remained an open problem. This brings us to the following questions.

Can we construct a threshold non-malleable secret sharing scheme secure in the
disjoint tampering model (without restriction on the size of tampering sets)?

Can we construct a threshold non-malleable secret sharing scheme in the
overlapping joint tampering model?

Network Extractor Protocols. Network extractor [DO03,GSV05,KLRZ08,
KLR09] is a protocol between p processors, each starting with an independent
source Xi of length n with min-entropy k. The processors exchange some mes-
sages during the protocol and these messages are sent over public channels. At
the end of the protocol, we require each (honest) processor to end up with an
independent (statistically close to) uniform string. We require this guarantee to



Multi-source Non-malleable Extractors and Applications 471

hold even in the face of a centralized adversary who can corrupt a set of proces-
sors and instruct these processors to arbitrarily deviate from the protocol spec-
ification (byzantine corruptions). Such network extractor protocols can be run
prior to any secure multiparty computation protocol or distributed computation
protocols where the honest parties necessarily require private uniform random
bits but they only start with independent sources with some min-entropy.

Formally, if B is the random variable denoting all the messages exchanged
during the protocol and Zi is the random variable denoting the output of the
i-th processor, then the definition of a network extractor protocol is as follows.

Definition 1 (Network Extractor Protocol [KLRZ08]). A protocol for p
processors is a (t, g, ε) network extractor for min-entropy k if for any (n, k)
independent sources X1, . . . , Xp and any choice T of t faulty processors, after
running the protocol, there exists a set G ∈ [p] \ T of size at least g such that

|B, {Xi}i�∈G, {Zi}i∈G − B, {Xi}i�∈G, Ugm| < ε

Here Ugm is the uniform distribution on gm bits, independent of B, and {Xi}i�∈G.

It is easy to see that if we allow the adversary to corrupt p − 1 processors
then this task is impossible as it amounts to extracting random bits from a single
source. Kalai et al. [KLRZ08] gave a (t = Ω(p), p− (1+O(1))t, 2−nΩ(1)

)-network
extractor protocol for min-entropy k = (1/2 + O(1))n. This protocol required a
single round of interaction. They also showed another multi-round protocol for
lower min-entropy (specifically, k = 2log

β n for some β < 1) but in this protocol,
a smaller number of honest processors end up with a uniform string. Li [Li13]
further improved this result and gave a 2-round network extractor protocol for
k ≥ logc n. However, all these protocols only allow an adversary to corrupt Ω(p)
processors and additionally, there exists a fraction of the honest processors whose
output is not statistically close to uniform. This brings us to the next question.

Can we construct a network extractor protocol where the adversary can corrupt
upto p − 2 processors and the protocol ensures that every honest processor ends

up with a uniform output?

We note that in the computational setting, the work of Kalai et al. [KLR09] gave
a protocol satisfying both the properties assuming sub-exponential hardness of
one-way permutations.

Our Work. In this work, we provide positive answers to the question on non-
malleable secret sharing as well as the network extractor protocols by viewing
them through the lens of multi-source non-malleable extractors. The details fol-
low.

1.1 Our Results

In this work, we initiate the systematic study of multi-source non-malleable
extractors and give constructions that are secure against a wide class of tamper-
ing function families. We also show applications of this primitive in constructing



472 V. Goyal et al.

non-malleable codes [DPW18], non-malleable secret sharing [GK18a], and net-
work extractor protocols [DO03,GSV05,KLRZ08,KLR09]. Before we state the
formal theorem statements, we first describe the tampering functions of interest.

Overlapping Joint Tampering. For any s ∈ N, the overlapping joint tamper-
ing family is given by a sequence of sets (T1, . . . , Ts) where Ts ⊂ [s] and the
associated tampering functions (fT1 , . . . , fTs

). The i-th tampered source ˜Xi is
generated by applying fTi

on the sources {Xj}j∈Ti
. In other words, the tam-

pered source ˜Xi is generated by tampering all the sources indexed by the set Ti

using the function fTi
.

We say that (T1, . . . , Ts) are cover-free, if for every i ∈ [s], the union of all Tj

such that i ∈ Tj has size at most s − 1. Some examples of cover-free subsets are:

– Individual Tampering: This is the setting where Ti = {i}.
– Disjoint Tampering: Here, (T1, . . . , Ts) are such that for each i, j ∈ [s],

either Ti = Tj or Ti ∩ Tj = ∅.
– Cycles of size at most �s/2�: Here, Ti = {i, i + 1 mod s, . . . , i + �s/2� − 1

mod s}.

Cover-free subsets include a rich class of joint tampering functions and it
strictly generalizes the individual tampering functions considered in the previous
works. In this work, we focus on constructing multi-source non-malleable extrac-
tors in the overlapping joint tampering model with cover-free subsets (cover-free
tampering, in short). We note that prior to our work, no construction of non-
malleable extractors was known even in the disjoint tampering model.

Multi-source Non-malleable Extractors. Our first result in this paper is a con-
struction of multi-source non-malleable extractors that are secure against cover-
free tampering. The formal theorem statement appears below.

Theorem 1. For any s ≥ 2, there exists a constants γ > 0 and n0 such that for
any n > n0, there exists an efficient construction of a s-source, non-malleable
extractor MNMExt : ({0, 1}n)s → {0, 1}m against cover-free tampering at min-
entropy n(1 − γ) and error 2−nΩ(1)

with output length m = nΩ(1).

We note that extending the class of tampering functions beyond cover-free
tampering requires a new set of tools as there are sources which are tampered
together with every other source. We leave open the fascinating problem of
constructing explicit extractors that are secure against a generalization of cover-
free tampering.

Split-State Non-malleable Codes. We show that (a variant of) our multi-source
extractor is efficiently pre-image sampleable, meaning that there exists an effi-
cient algorithm such that given any string of length m, the algorithm outputs
(except with negligible probability) an uniform pre-image of this string. This fea-
ture combined with a straightforward generalization of the result of Cheraghchi
and Guruswami [CG14] gives the following theorem.



Multi-source Non-malleable Extractors and Applications 473

Theorem 2. For any s ≥ 2 and m ∈ N, there exists an efficient construction of
s-split-state non-malleable code for messages of length m that is secure against
cover-free tampering with error 2−mΩ(1)

.

This result is a conceptual contribution as we already know constructions of
s-split state non-malleable codes against cover-free tampering from the work of
[GK18b]. However, as we will see below this construction leads to a t-out-of-n
non-malleable secret sharing in the overlapping joint tampering model.

Non-malleable Secret Sharing. An interesting aspect of our construction of
multi-source non-malleable extractor is that a minor modification to this con-
struction gives a t-out-of-n non-malleable secret sharing against t-cover-free tam-
pering. t-cover free tampering is the same as cover-free tampering defined above
except that we require that for every i, the union of all Tj ’s such that i ∈ Tj has
size at most t − 1. As before, t-cover-free tampering includes disjoint tampering
where each partition is of size at most t−1. We note if any set of t or more shares
are tampered together, then the tampering function can trivially reconstruct the
secret and hence, obtaining non-malleability is impossible. The formal statement
about our construction is given below.

Theorem 3. For every t ≥ 2, n ≥ t and m ∈ N, there exists an efficient
construction of t-out-of-n non-malleable secret sharing for secrets of length m

against t-cover-free tampering with error 2−mΩ(1)
.

As a corollary, we get a construction of t-out-of-n non-malleable secret shar-
ing in the disjoint tampering model.

Corollary 1. For every t ≥ 2, n ≥ t and m ∈ N, there exists an efficient
construction of t-out-of-n non-malleable secret sharing for secrets of length m in
the disjoint tampering model with error 2−mΩ(1)

.

As mentioned before, this is the first construction of threshold NMSS in
the disjoint tampering model without restriction on the size of the tamper-
ing sets. This answers an explicit open problem from the work of Goyal and
Kumar [GK18a]. In addition, ours is also the first construction of threshold
NMSS in the overlapping joint tampering model. The only previous construc-
tion of NMSS in the overlapping joint tampering model was for n-of-n secret
sharing [GK18b].

Network Extractor Protocols. For any s ≥ 2, we show that a stronger
notion of s-source non-malleable extractor that is multi-tamperable and whose
non-malleability property holds even conditioned on all but one of the sources
implies a single round network extractor protocol with at least s honest proces-
sors. It is sufficient for such multi-source non-malleable extractors to be resilient
against a weaker form of disjoint tampering. For the case of 2 sources, we give a



474 V. Goyal et al.

compiler that transforms a single tamperable non-malleable extractor to a multi-
tamperable non-malleable extractor by building on the ideas of Cohen [Coh16a]
who gave such a compiler for seeded non-malleable extractors. This result might
be of independent interest. We show that the resultant extractor is sufficient to
instantiate the network extractor protocol. This leads to a single round network
extractor protocol that is resilient against an optimum number of byzantine cor-
ruptions of p−2 (where p is the total number of processors) and ensures that all
the honest processors end up with a string that is statistically close to uniform.
Specifcially, we show the following result.

Theorem 4. For any p ≥ 2, there exists constants γ > 0 and n0 such that for
all n > n0 and for any t ≤ p − 2, there exists a single-round, (t, p − t, 2−nΩ(1)

)-
network extractor protocol for p processors and (n, n(1 − γ)) sources.

We note that all the prior information-theoretic network extractor protocols
could only tolerate Ω(p) number of byzantine corruptions and furthermore, these
protocols could not extract uniform randomness for a Ω(t) number of honest pro-
cessors. Our protocol tolerates an optimum number of corruptions and ensures
that every honest processor outputs a string that is statistically close to uniform.
This matches the best protocols known in the computational setting [KLR09]
that relied on sub-exponential hardness assumptions but has weaker min-entropy
requirements.

2 Technical Overview

In this section, we give a high-level overview of the techniques used in obtain-
ing our main results. We start our overview with the construction of multi-
source non-malleable extractors. Then, we will extend this result to obtain a
non-malleable secret sharing. Finally, we give the description of our network
extractor protocol.

2.1 Multi-source Non-malleable Extractor

An s-source non-malleable extractor MNMExt : ({0, 1}n)s → {0, 1}m is just
like any other independent source extractor with an additional non-malleability
property. Recall that an s-source extractor is said to be non-malleable against the
tampering function family F if for any set of s independent sources X1, . . . , Xs

with sufficient min-entropy and for any tampering function f ∈ F , there exists
a distribution Df with support in {0, 1}m ∪ {same∗} that is independent of
X1, . . . , Xs such that:

|MNMExt(X1, . . . , Xs) ◦ MNMExt(f(X1, . . . , Xs)) − Um ◦ copy(Df , Um)| ≤ ε

Here, copy(x, y) = x if x �= same∗; else, it is equal to y. A standard two-source
non-malleable extractor is a special case of a multi-source extractor that is secure
against the independent tampering family. Furthermore, it can be shown that any



Multi-source Non-malleable Extractors and Applications 475

two-source non-malleable extractor implies an s-source non-malleable extractor
for any s ≥ 2 where each of the s-sources are tampered independently. However,
in this work, we are interested in designing multi-source non-malleable extractors
that are secure against richer forms of tampering where several sources can
potentially be tampered together. In such a scenario, the trivial construction of
extending any two-source extractor to an s-source extractor is insecure.

To explain the key ideas behind our construction without getting bogged
down with the details, let us make the following simplifying assumptions.
We stress that our actual construction does not make any of the following
assumptions.

– Let us assume that there are only 3 sources X1,X2 and X3 and each of
the sources have full min-entropy. Even when the sources have full entropy,
non-malleable extractors are known to imply non-malleable codes [CG14].

– We are interested in protecting against tampering functions that tamper two
sources together and tampers the other source independently. The identity of
the two sources that are tampered together is not fixed apriori. Specifically,
we assume that the tampering functions are given by (fij , gk) for distinct
i, j, k ∈ [3] where fij takes in sources Xi,Xj and outputs ˜Xi, ˜Xj . Similarly,
gk takes in Xk and outputs ˜Xk.

A Simple Construction. A natural attempt at constructing a multi-source non-
malleable extractor is to take any 2 source non-malleable extractor 2NMExt and
output 2NMExt(X1 ◦1,X2 ◦2)⊕2NMExt(X2 ◦2,X3 ◦3)⊕2NMExt(X3 ◦3,X1 ◦1)
where ◦ denotes concatenation. Recall that our tampering functions satisfy the
property that for every source there exists at least one other source that is not
tampered together with this source. Since the above construction applies a non-
malleable extractor for every pair of sources, we can hope to reduce the security
of this construction to the security of the underlying non-malleable extractor.
However, proving this is not straightforward as the tampering function may
not modify these two sources and thus, proving independence between the tam-
pered output and the untampered output is tricky. Nevertheless, with some
non-trivial work, we can show using the techniques developed in [CGGL19] (for
completeness, we provide a detailed proof in the full version of the paper) that
this construction is indeed secure against cover-free tampering if the underlying
non-malleable extractor is multi-tamperable1 and is symmetric (meaning that
2NMExt(x, y) = 2NMExt(y, x) for every x, y). However, a major problem with
this simple construction is that it is not efficiently pre-image sampleable. Recall
that for a non-malleable extractor to be efficiently pre-image sampleable, we need
1 A multi-tamperable non-malleable extractor introduced in [CGL16] considers several

sets of split-state tampering functions and requires the output of the extractor to
be random even conditioned on all the tampered outputs generated by each split-
state tampering function. An equivalent way to view the multi tamperable (or, t
tamperable) non-malleable extractor is to allow the split-state tampering functions
to have t sets of outputs and we require the real output to be close to random even
conditioned on joint distribution of the t tampered outputs.



476 V. Goyal et al.

an efficient algorithm that given any output of the non-malleable extractor, sam-
ples an uniform pre-image of this output. This property is crucially needed to
construct a s-split state non-malleable code from non-malleable extractors using
the approach of Cheraghchi and Guruswami [CG14]. To see why this construc-
tion is not efficiently pre-image sampleable, consider any output s ∈ {0, 1}m

of the extractor. Now, we need to sample three sources, X1,X2,X3 such that
2NMExt(X1 ◦ 1,X2 ◦ 2) ⊕ 2NMExt(X2 ◦ 2,X3 ◦ 3) ⊕ 2NMExt(X3 ◦ 3,X1 ◦ 1) = s.
Even if we assume that 2NMExt is efficiently pre-image sampleable, fixing
any two sources, say X1,X2, requires the third source to satisfy the equation
2NMExt(X2 ◦ 2,X3 ◦ 3) ⊕ 2NMExt(X3 ◦ 3,X1 ◦ 1) = s ⊕ 2NMExt(X1 ◦ 1,X2 ◦ 2).
Efficiently sampling from the set of such X3’s seems highly non-trivial. This
seems to be a major roadblock with this simple construction (and is crucial to
obtain our main application in constructing non-malleable secret sharing) and
hence, it calls for a more sophisticated construction that is efficiently pre-image
sampleable.

A Starting Point. In order to construct a multi-source non-malleable extrac-
tor with efficient pre-image sampling, we could try to make the following gen-
eralization. We can parse the sources X1 as (X(1), Y (3)), X2 as (X(2), Y (1)),
X3 as (X(3), Y (2)) and output ⊕i2NMExt(X(i), Y (i)). This construction is effi-
ciently pre-image sampleable since the inputs to each invocation of the under-
lying 2NMExt is “non-overlapping”. Specifically, given any output s ∈ {0, 1}m,
we can sample X(1), Y (1),X(2), Y (2) uniformly at random and sample X(3), Y (3)

such that 2NMExt(X(3), Y (3)) = s ⊕ 2NMExt(X(2), Y (2)) ⊕ 2NMExt(X(2), Y (2)).
This process is efficient if the underlying 2NMExt has efficient pre-image sam-
pling. This seems like progress but unfortunately, we prove this construction
is insecure. In particular, consider any tampering function that tampers X1,X2

together. Such a tampering function takes as input (X(1), Y (3)) and (X(2), Y (1)),
leaves X(2), Y (3) untampered, but tampers X(1), Y (1) to ˜X(1), ˜Y (1) such that
2NMExt( ˜X(1), ˜Y (1)) = 2NMExt(X(1), Y (1)) (where z denotes flipping each bit of
z). If the tampering function against X3 is the identity function, then we infer
that the real output XORed with the tampered output will be the all 1s string.

Our Construction. If we look a little bit closely into the analysis of the above
construction, we realize that the main reason for the attack is that X(1), Y (1)

was available in the clear to one of the tampering functions. However, this attack
could have been avoided if every tampering function does not get hold of both
X(i), Y (i) together. With this intuition, we are ready to describe our extractor
with efficient pre-image sampleability.

1. Parse Xi as (X(1)
i ,X

(2)
i ,X

(3)
i , Y (i)).

2. Compute X(i) = X
(i)
1 ⊕ X

(i)
2 ⊕ X

(i)
3 for each i ∈ [3].

3. Output 2NMExt(X(1), Y (1)) ⊕ 2NMExt(X(2), Y (2)) ⊕ 2NMExt(X(3), Y (3)).

Notice that any tampering function that looks at any two sources Xi,Xj can-
not determine X(i) and X(j) since these are “secret shared” between all the three



Multi-source Non-malleable Extractors and Applications 477

sources. Furthermore, we observe that this construction has efficient pre-image
sampling if the underlying 2NMExt is efficiently pre-image sampleable. This is
because for any image s ∈ {0, 1}m, we can sample X(2), Y (2) and X(3), Y (3)

uniformly at random and we sample X(1), Y (1) conditioned on its output being
equal to 2NMExt(X(2), Y (2)) ⊕ 2NMExt(X(3), Y (3)) ⊕ s. Then, for every i ∈ [3],
we sample X

(1)
1 ,X

(i)
2 ,X

(i)
3 uniformly at random conditioned on its XOR being

equal to X(i). This allows to efficiently find the sources X1,X2,X3 such that
applying the extractor on these sources yields s. Below, we give the main ideas
behind proving the non-malleability of this construction.

Proof Idea. The key technical component of our security proof is a way to
reduce the tampering of our extractor to a multi-tampering of the underlying
non-malleable extractor 2NMExt. However, unlike the simple construction, this
reduction is highly non-trivial and it requires the underlying extractor to satisfy
a strong leakage-resilience property. The details follow.

Recall that in the tampering functions of our interest, for every source j,
there exists at least one other source j∗ that is not tampered together with this
source. The main trick in the reduction is that we view X

(j)
i for every i as a

secret share of the source X(j). Viewing X
(j)
i as a secret share of X(j) allows

us to fix all the shares except X
(j)
j∗ . Hence, X

(j)
j∗ is completely determined by

the source X(j) and the fixed shares. Now, since j and j∗ are not tampered
together, we infer that Y (j) and X(j) are tampered independently! This allows
us to reduce any tampering attack on our extractor to a split-state tampering
attack on 2NMExt. Thus, relying on this reduction, we can hope to make the
tampered output of our extractor to be “independent” of 2NMExt(X(j), Y (j))
and thus, conclude that the real output is independent of the tampered output.
However, arguing independence is not as straightforward as it seems. Notice that
nothing prevents a tampering function from leaving X(j), Y (j) untampered. In
this case, 2NMExt( ˜X(j), ˜Y (j)) = 2NMExt(X(j), Y (j)) and hence, it is impossible
to argue that the tampered output is independent of 2NMExt(X(j), Y (j)).

To get around this problem, we prove a weaker property about our reduc-
tion to split-state multi-tampering of 2NMExt. Specifically, we show that
for every i, j ∈ [3], the tampered output 2NMExt( ˜X(i), ˜Y (i)) is either inde-
pendent of 2NMExt(X(j), Y (j)) (meaning that a non-trivial tampering attack
has taken place) or is the same as 2NMExt(X(j), Y (j)) (meaning that the
tampering function has just copied). This in fact allows us to argue (via
a hybrid argument going over every j ∈ [λ])2 that the tampered tuple
(2NMExt( ˜X(1), ˜Y (1)), 2NMExt( ˜X(2), ˜Y (2)), 2NMExt( ˜X(3), ˜Y (3))) is either a per-
mutation of (2NMExt(X(1), Y (1)), 2NMExt(X(2), Y (2)), 2NMExt(X(3), Y (3))) in
which case the adversarial tampering functions have not changed the output
of the extractor or there exists at least one j such that the tampered tuple is
independent of 2NMExt(X(j), Y (j)). This allows us to argue that the real output

2 This is where we need the stronger property that for every source j there exists at
least one other source that is not tampered together with this source.



478 V. Goyal et al.

is independent of the tampered output and it is in fact, close to uniform since
2NMExt(X(j), Y (j)) is close to uniform.

Below, we show a sketch of a proof of this property. This is shown via a reduc-
tion to the multi-tampering of the underlying 2-source non-malleable extractor.
As mentioned before, for this reduction to go through, we need the underly-
ing non-malleable extractor to satisfy an additional strong leakage resilience
property.

The Main Reduction. Let us try to sketch the above reduction for j =
1 by considering specific tampering functions f12, g3. Recall that f12 takes
X1,X2 as input and outputs ˜X1, ˜X2 and g3 takes X3 as input and out-
puts ˜X3. The goal here is to show that each entry of the tampered tuple
(2NMExt( ˜X(1), ˜Y (1)), 2NMExt( ˜X(2), ˜Y (2)), 2NMExt( ˜X(3), ˜Y (3))) is either equal to
2NMExt(X(1), Y (1)) or independent of this value. As mentioned before, we prove
this via a reduction from any tampering attack against our extractor to a split-
state tampering attack (f ′, g′) against X(1), Y (1).

Towards this goal, we will fix X(2), Y (2), X(3), Y (3) and all the shares of X(2)

and X(3). In addition to this, we will fix the shares X
(1)
1 and X

(1)
2 . Notice that

by the choice of our tampering functions, X1 and X3 are tampered indepen-
dently and thus, by fixing X

(1)
1 ,X

(1)
2 , we have ensured that X(1) and Y (1) are

tampered independently. Let us additionally assume that there exists a special
string Y ∗ such that for every s ∈ {0, 1}m, there exists an x ∈ {0, 1}m such
that 2NMExt(x, Y ∗) = s (it will be clear on why this property is needed when
we explain our reduction). We show that for any non-malleable extractor with
sufficiently low-error, there exists such an Y ∗.

Given the fixed values and the string Y ∗, designing the multi-tampering
function g′ against Y (1) is straightforward. On input Y (1), g′ uses the fixed
values and the input Y (1) to reconstruct the sources X1,X2. It then applies
f12 on these two sources and obtains ˜X1, ˜X2. It now outputs (˜Y (1), ˜Y (2), Y ∗)
(where ˜Y (1), ˜Y (2) are obtained from ˜X1, ˜X2) as the three tampered outputs.
However, constructing a tampering function against X(1) is not as straight-
forward. Notice that the tampering function against X(1) must somehow get
{ ˜X

(i)
1 , ˜X

(i)
2 , ˜X

(i)
3 }i∈[3], XOR them together and finally output the XORed value

as the tampered source ˜X(i). However, { ˜X
(i)
1 , ˜X

(i)
2 }i∈[3] are generated by the

tampering function f12 that depends on Y (1). Hence, we cannot directly invoke
the security of 2NMExt since the tampering against X(1) and Y (1) are not inde-
pendent of each other. To solve this issue, we rely on a “strong leakage-resilience”
property of 2NMExt. Under this stronger property, one of the tampering func-
tions can get a leakage about the other source such that the amount of leakage
is an arbitrary polynomial in the length of the tampered source. If we have such
an extractor, we can view { ˜X

(i)
1 , ˜X

(i)
2 }i∈[3] as leakage from the source Y (1) given

to the tampering function f ′ against X(1). Given this leakage and the input
X(3), f ′ reconstructs the source X3 from the fixed values and the input X(3)

and applies g3(X3) to obtain ˜X3. Now, it can use the leakage { ˜X
(i)
1 , ˜X

(i)
2 }i∈[3]



Multi-source Non-malleable Extractors and Applications 479

and { ˜X
(i)
3 }i∈[3] (obtained from ˜X3) to obtain ˜X(i) for every i ∈ [3]. Further-

more, f ′ also has ˜Y (3). It computes 2NMExt( ˜X(3), ˜Y (3)) and samples a string
x such that 2NMExt(x, Y ∗) = 2NMExt( ˜X(3), ˜Y (3)). It outputs ( ˜X(1), ˜X(2), x) as
the tampered sources. Notice that applying 2NMExt on the outputs of f ′, g′

precisely yields (2NMExt( ˜X(1), ˜Y (1)), 2NMExt( ˜X(2), ˜Y (2)), 2NMExt( ˜X(3), ˜Y (3))).
Further, it now follows from the split-state non-malleability of 2NMExt that each
of these outputs is either independent of 2NMExt(X(1), Y (1)) or is exactly the
same as 2NMExt(X(1), Y (1)). This shows the main claim of the proof.

In the next subsection, we show how to construct such a strong leakage-
resilient non-malleable extractor.

2.2 Strong Leakage-Resilient Non-malleable Extractor

Recall that a (2, t)-non-malleable extractor 2NMExt : {0, 1}n×{0, 1}n → {0, 1}m

(introduced in [CG14,CGL16]) satisfies the following property: for any t split-
state tampering functions F = (f1, g1) . . . , (ft, gt) and independent sources X,Y
with sufficient min-entropy, there exists a distribution DF with support on
{0, 1}m ∪ {same∗} that is independent of X,Y such that

|2NMExt(X,Y ), {2NMExt(fi(X), gi(Y ))}i∈[t] − Um, copy(t)(DF , Um)| < ε (1)

where both Um’s refer to the same uniform m-bit string. Here, copy(t)((x1, . . . ,

xt), y) = (z1, . . . , zt) where zi =

{

xi if xi �= same∗

y if xi = same∗ .

A leakage-resilient variant of such an extractor requires that even when one
half of these tampering functions, say {fi}i∈[t] gets some bounded leakage on
the other source Y , the non-malleability property still holds. Specifically, for
any leakage function h : {0, 1}n → {0, 1}μ, we require that

|2NMExt(X,Y ), {2NMExt(fi(X,h(Y )), gi(Y ))}i∈[t] − Um, copy(t)(DF,h, Um)| < ε
(2)

It is not hard to see that if the underlying non-malleable extractor tolerates a
min-entropy loss of roughly μ, then such a non-malleable extractor can be shown
to be leakage-resilient. Notice that for this approach to work, the length of the
source must be far greater than the amount of leakage tolerated. However, for
our application to constructing multi-source non-malleable extractor, we require
the amount of leakage from one of the sources to be an arbitrary polynomial
in the length of the other source. Of course, if we insist on both the sources to
be of same length then it is easy to see that such a primitive does not exist.
Hence, this primitive necessarily requires uneven length sources. We call such a
non-malleable extractor as (2, t)-strong leakage-resilient non-malleable extractor
where we require the output length of h in Eq. 2 to be an arbitrary polynomial
in the length of X.

A similar primitive for the case of non-malleable codes was studied in the
work of Goyal and Kumar [GK18a]. They showed that the CGL construc-
tion [CGL16] of non-malleable code satisfies this property. Unfortunately, they



480 V. Goyal et al.

neither give a construction of a non-malleable extractor for sufficiently low min-
entropy nor do they give a multi-tamperable version of the result. Both of these
properties are crucial in obtaining our main results.

In this work, we show that any (2, t)-leakage-resilient non-malleable extractor
(where the leakage tolerated is only a fraction of the source length) can be
bootstrapped to a (2, t)-strong leakage-resilient non-malleable extractors (where
the leakage tolerated is an arbitrary polynomial in the length of the other source).
This gives a modular approach of constructing such primitives and additionally,
simplifies the construction of strong leakage resilient non-malleable codes in the
work of [GK18a].

Our Compiler. To illustrate the main ideas behind our compiler, let us simplify
the problem and assume that X and Y are independent full entropy sources with
length n1 and n2 respectively. Further, assume that n2 >> p(n1) where p(·) is
a polynomial denoting the amount of leakage tolerated.

Our compiler under these assumptions is extremely simple. We view the
source X as (S,X ′) where S is the seed of a strong extractor Ext. We apply
Ext(Y, S) to obtain Y ′ where the length of Y ′ is equal to the length of X ′. We
finally apply 2NMExt(X ′, Y ′) and output the result. The main intuition behind
the compiler is that conditioned on the output of the leakage function, it can be
shown (via standard approaches [MW97,DORS08]) that Y has sufficient min-
entropy. Hence, if we apply a seeded extractor on this Y , the output is close to
uniform.

While the main intuition is relatively straightforward, proving the non-
malleability of this construction requires new tricks. Notice that to prove the non-
malleability of the compiled construction, we need to invoke the non-malleability
of the underlying 2NMExt. However, if we closely notice the compiler, we see that
the tampered version of the source ˜Y ′ that is fed as the second input to 2NMExt
is not only a function of Y but also a function of the other source X ′ via the
tampered seed ˜S. In particular, ˜S could be a function of the source X ′ and
hence, ˜Y ′ is a function of both X ′ and Y . This means that the tampering of
the second source is not independent of the first source and hence, we cannot
directly invoke the security of 2NMExt. To solve this issue, we recall that 2NMExt
is in fact, a leakage-resilient non-malleable extractor. In particular, we can fix
the length of the seed S to be small enough so that it is only a fraction of the
length of X ′. We now view the tampered seed ˜S as leakage from the source X ′

to the tampering function of Y . This allows us to reduce the non-malleability of
the compiled construction to the leakage-resilient, non-malleability of 2NMExt.

Lower Min-Entropy Case. Recall that the above construction crucially relied
on the fact that X is a full entropy source to make sure that the seed S has
full-entropy. This compiler completely breaks down if X didn’t have full entropy
as otherwise, we cannot rely on the pseudorandomness of Ext. Thus, we require
a new approach to deal with the case where the entropy of the sources are not
full. In this setting, we modify our compiler as follows. We view X as (X ′,X1)



Multi-source Non-malleable Extractors and Applications 481

and Y as (Y1, Y2). We first apply a strong two-source extractor 2Ext(X1, Y1) to
get a short seed S. We later apply a strong seeded extractor Ext(Y2, S) to obtain
Y ′. Finally, we output 2NMExt(X ′, Y ′).

As in the previous construction, we can show that conditioned on the leakage
h(Y ), the source Y has sufficient min-entropy. Now, since X1, Y1 are independent
sources, it follows from the pseudorandomness of 2Ext that the output S is close
to uniform. Now, we can rely on the pseudorandomness of Ext to show that Y ′

is close to uniform. Again, as in the previous case, we can rely on the leakage-
resilience property of the underlying 2NMExt extractor to leak the tampered
version ˜X1 to the tampering function of Y and this allows us to argue non-
malleability of the compiled construction. However, one subtlety that arises here
is that we necessarily require the length of Y1 to be much larger than the length
of the other source X1 that is fed as input to the strong two-source extractor.
This is because we require Y1 to have sufficient min-entropy even conditioned on
the output of the leakage function h and the output of the leakage function is a
polynomial in the length of the other source. This means that the length of X1

is much smaller than the length of Y1 and hence, we have to rely on the uneven
length two-source extractor given by Raz [Raz05].

2.3 Non-malleable Secret Sharing

A significant advantage of our construction of multi-source non-malleable extrac-
tor is its generality to give other primitives. In particular, we show that a minor
modification to our construction gives a t-out-of-n non-malleable secret sharing
scheme for every t and n against a family of t-cover-free tampering functions.
Roughly speaking, t-cover-free family requires that every share is tampered with
at most t − 2 other shares. This family includes disjoint tampering (as defined
in [GK18a]) as a special case and gives the first construction of threshold non-
malleable secret sharing scheme that is secure against a strict super class of
disjoint tampering3.

Our Construction. The construction we give for t-out-of-n non-malleable secret
closely resembles the construction of our n-source non-malleable extractor.
Specifically, the i-th share of our non-malleable secret sharing scheme is viewed as
(X(1)

i ,X
(2)
i , . . . , X

(n)
i , Y (i)). The only difference in the semantics is that instead

of viewing (X(i)
1 , . . . , X

(i)
n ) as an XOR (or equivalently, n-out-of-n) secret shar-

ing of the value X(i), we consider them to be a t-out-of-n secret sharing of X(i).
Now, given any t-shares, say corresponding to i1, . . . , it, we would be able to
reconstruct X(1), . . . , X(n) and compute 2NMExt(X(ij), Y (ij)) for every j ∈ [t].
We now interpret 2NMExt(X(ij), Y (ij)) as the ij-th Shamir share of a secret mes-
sage s ∈ {0, 1}m and these t Shamir shares can be put together to reconstruct
the secret s. Recall that in the case of multi-source non-malleable extractors, we
interpreted 2NMExt(X(ij), Y (ij)) as an n-out-of-n secret sharing of the output.

3 We note that even for the case of disjoint tampering, the work of Goyal and
Kumar [GK18a] assumes that the partitioned subsets must be of unequal length.



482 V. Goyal et al.

Below, we give the description of our sharing algorithm assuming that 2NMExt is
efficiently pre-image sampleable. Here, we use a t-out-of-n secret sharing scheme
Share with perfect privacy.

To share a secret s ∈ {0, 1}m, we do the following:

1. (Sh1, . . . ,Shn) ← Share(s).
2. For each i ∈ [n], compute (X(i), Y (i)) ← 2NMExt−1(Shi).
3. For each i ∈ [n], (X(i)

1 , . . . , X
(i)
n ) ← Share(X(i)).

4. Set sharei = (X(1)
i , . . . , X

(n)
i , Y (i)).

5. Output (share1, . . . , sharen).

We show via a similar argument to the proof of our multi-source non-
malleable extractor that if the underlying 2NMExt is strong leakage-resilient then
the above non-malleable secret sharing is secure against t-cover-free tampering.
The complete analysis of the construction appears in Sect. 8.

2.4 Network Extractor Protocol

Another application of our multi-source non-malleable extractors is to get
improved results for network extractor protocols [DO03,GSV05,KLRZ08,
KLR09]. In the setting of network extractors, there are p processors, each with
an independent source Xi having some min-entropy. The processors exchange
some messages and at the end of the protocol, we require that every honest
processor end up with an uniform random string independent of outputs of the
other processors and the transcript of the protocol. This property must hold
even if a subset of the processors are corrupted by a centralized adversary who
can instruct the corrupted processors to deviate arbitrarily from the protocol.
It is easy to see that if the adversary controls p − 1 processors then this task
is impossible as it amounts to extracting random bits from a single source with
min-entropy less than full. However, if the adversary corrupts at most p− s pro-
cessors, we show that a s-source non-malleable extractor that is multi-tamperable
can give a one-round protocol for this task. Additionally, unlike the other prior
works (except in the computational setting), this approach allows every honest
party to extract uniform random bits.

For simplicity, let us show a variant of our protocol from a multi-tamperable
2-source non-malleable extractor 2NMExt. This allows us to obtain optimal
results for the case of p − 2 corruptions. We give the description of the pro-
tocol below.

1. Each processor parses Xi as X
(i)
1 , . . . , X

(i)
p .

2. It broadcast {X
(i)
j }j �=i.

3. It receive {X
(j)
i }j �=i from all the processors. If some processor j does not send

any message, it replaces X
(j)
i with a default value.

4. For every j ⊆ [p] \ {i}, processor Pi

(a) Computes yj = 2NMExt(X(i)
i ,X

(j)
i ).

5. It removes the duplicates from the sequence (yj)j �=i to get y′
1, . . . , y

′
k.

6. It outputs zi = y′
1 ⊕ . . . ⊕ y′

k.



Multi-source Non-malleable Extractors and Applications 483

The main intuition behind the proof of this network extractor protocol is
that for every honest processor i, the message X

(j)
i sent by every adversarial

processor j can be viewed as a tampering of the message X
(i∗)
i of one another

honest processor i∗. Thus, it now follows from the multi-tamperability of 2NMExt

that the tampered output 2NMExt(X(i)
i ,X

(j)
i ) is independent of the real output

2NMExt(X(i)
i ,X

(i∗)
i ) which in turn is close to uniform. However, for this argu-

ment to hold, we require the non-malleability property to hold even conditioned
on X

(i∗)
i , in other words, we require 2NMExt to be a strong non-malleable extrac-

tor. Fortunately, Li [Li17a] showed that every non-malleable extractor with suf-
ficiently low min-entropy is also a strong non-malleable extractor and this allows
us to complete the proof.

The new constructions of multi-source extractors for s ≥ 3 given in this paper
have the same min-entropy requirement as that of the two source extractors and
hence, do not provide any further improvements over the above result. We leave
open the fascinating problem of constructing multi-source extractors for s ≥ 3
for lower min-entropy requirements.

3 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
the corresponding lowercase letters to denote a sample from the same. x ∼ X
is used to denote a sample x from a distribution X. We will slightly abuse the
notation and use X to denote a random variable as well as a distribution. Let [n]
denote the set {1, 2, . . . , n}, and Ur denote the uniform distribution over {0, 1}r.
For any finite set S, we use s ← S to denote the process of sampling s uniformly
at random from S. For any i ∈ [n], let xi denote the symbol at the i-th co-
ordinate of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x
to the co-ordinates indexed by T . We write ◦ to denote concatenation.

We give the standard definitions and results about min-entropy, seeded and
seedless extractors and non-malleable codes in the full version of this paper.

3.1 Seedless Non-malleable Extractors

We now give the definition of 2-source, non-malleable extractors that are tamper-
able t times [CGL16]. Such an extractor is called as (2, t)-non-malleable extrac-
tors.

Definition 2 ((2,t)-Non-malleable Extractor). A function 2NMExt :
{0, 1}n × {0, 1}n → {0, 1}m is a (2, t)-non-malleable extractor at min-entropy
k and error ε if it satisfies the following property: if X and Y are indepen-
dent (n, k)-sources and A1 = (f1, g1), . . . ,At = (ft, gt) are t arbitrary 2-
split-state tampering functions, then there exists a random variable D−→

f ,−→g on

({0, 1}m ∪ {same∗})t which is independent of the random variables X and Y ,
such that

|2NMExt(X,Y ), {2NMExt(fi(X), gi(Y ))}i∈[t] − Um, copy(t)(D−→
f ,−→g , Um)| < ε



484 V. Goyal et al.

where both Um’s refer to the same uniform m-bit string. Here,

copy(t)((x1, . . . , xt), y) = (z1, . . . , zt) where zi =

{

xi if xi �= same∗

y if xi = same∗ .

For t = 1, we call 2NMExt a non-malleable 2-source extractor.

Theorem 5 ([CGL16]). There exists a constant γ > 0 such that for all n > 0
and t < nγ , there exists a (2, t)-non-malleable extractor 2NMExt : {0, 1}n ×
{0, 1}n → {0, 1}nΩ(1)

at min-entropy n − nγ with error 2−nγ

.

Theorem 6 ([Li17b]). For any n > 0, there exists a constant γ such that there
exists a non-malleable 2-source extractor NMExt : {0, 1}n × {0, 1}n → {0, 1}m

with min-entropy (1 − γ)n, m = Ω(k) and error ε = 2−Ω(n/ log(n)).

4 (2, t)-Non-malleable Randomness Extractors

In this section, we give a construction of (2, t)-Non-malleable extractors for min-
entropy Ω(n). We achieve this by giving a generic transformation from (2, 1)-
non-malleable extractor to (2, t)-non-malleable randomness extractor. This fol-
lows a similar approach given in [Coh16b] for the case of seeded non-malleable
extractors.

One of the main tools used in this transformation is a correlation breaker
with advice and we start by recalling this definition.

Definition 3 (t-Correlation-breaker with advice [Coh16a]). For an integer
t ≥ 1 a t-correlation-breaker with advice for min-entropy k and error ε is a
function AdvBC : {0, 1}w×{0, 1}l×{0, 1}a → {0, 1}m with the following property.
Let X,X(1), . . . , X(t) be random variables distributed over {0, 1}w such that X
has min-entropy k. Let Y, Y (1), . . . , Y (t) be random variables distributed over
{0, 1}l that are jointly independent of (X,X(1), . . . , X(t)) such that Y is uniform.
Then, for any string s, s(1), . . . , s(t) ∈ {0, 1}a such that s �∈ {s(1), . . . , s(t)}, it
holds that

|AdvBC(X, Y, s), {AdvBC(X(i), Y (i), s(i))}i∈[t] − Um, {AdvBC(X(i), Y (i), s(i))}i∈[t]| ≤ ε.

Theorem 7 ([CGL16]). For all integers �, w, a, t and for any ε ∈ (0, 1) such
that

� = Ω(at · log(aw/ε)),

there exists a poly(�, w)-time computable t-correlation-breaker with advice
AdvBC : {0, 1}w × {0, 1}� × {0, 1}a → {0, 1}m, for entropy

k = Ω(at · log(a�/ε)),

with error ε and m = Ω(�/(at)) output bits.



Multi-source Non-malleable Extractors and Applications 485

4.1 Transformation

Building blocks and parameters

1. Let NMExt : {0, 1}d1 ×{0, 1}d1 → {0, 1}l1 be a non-malleable 2-source extrac-
tor with min-entropy d1 − Δ and error ε, where l1 = Ω(log(1/ε)).

2. Let ECC : {0, 1}d2 → {0, 1}D2 be an error correcting code with D2 = O(d2)
and relative distance 1/4.

3. Let IP : {0, 1}d1 ×{0, 1}d1 → {0, 1}l′2 be a strong 2-source extractor with error
ε and min-entropy d1 − Δ, where l′2 = l2 log(D2) and l2 = Ω(log(1/ε)).

4. Let Raz : {0, 1}n×{0, 1}d2 → {0, 1}l3 be a strong 2-source extractor with error
ε, where the min-entropy requirement for the first source is n−Δ−(1+t)(d1+
l2)−log(1/ε) and that for the second source is d2−Δ−(1+t)(d1+l2)−log(1/ε).

5. Let AdvBC : {0, 1}d3×{0, 1}l3×{0, 1}a → {0, 1}m be an efficient t-correlation-
breaker with advice for error ε and min-entropy d3 − Δ − (1 + t)(d1 + l2 +
d2) − log(1/ε), where a = l1 + 2l2

Construction. On the input sources X,Y , NMExt′ is computed as follows.

1. Let X = X1 ◦ X2, Y = Y1 ◦ Y2, where |X1| = |Y1| = d1.
2. Let AdvGen(X,Y ) = NMExt(X1, Y1) ◦ ECC(X2)IP(X1,Y1) ◦ ECC(Y2)IP(X1,Y1),

where SIP(X1,Y1) means to take the bits from S with indexes represented by
IP(X1, Y1).

3. Let Y2 = Y3 ◦ Y4, where |Y3| = d2 and |Y4| = d3.
4. Return AdvBC(Y4,Raz(X,Y3),AdvGen(X,Y )).

Theorem 8. In the above construction, NMExt′ is a t-non-malleable 2-source
extractor with min-entropy n − Δ and error O(t

√
ε).

With the proper instantiation, we get the following corollary. The proof of
the above theorem and the instantiation are presented in the full version of this
paper.

Corollary 2. For any t ≥ 1, there exists constant n′
0, γ

′ > 0 such that for any
n > n′

0 there exists a t-non-malleable 2-source extractor 2NMExt : {0, 1}n ×
{0, 1}n → {0, 1}m satisfying Definition 2 with error 2−nΩ(1)

, min-entropy (1 −
γ′)n and output length m = nΩ(1).

5 Strong Leakage-Resilient Non-malleable Extractor

In this section, we give a construction of a (2, t)-non-malleable extractor where
one of the tampering functions, say g, that is tampering the source Y , can get
leakage about the other source X. The crucial property we will need is that the
amount of leakage can be an arbitrary polynomial in the length of the source Y .
We call such non-malleable extractors as strong leakage-resilient non-malleable
extractors. This, in particular would require that the length of the source X to
be much larger than the length of the other source Y .



486 V. Goyal et al.

Definition. We now define a strong leakage-resilient non-malleable extractor.

Definition 4 (Strong Leakage-Resilient Non-malleable Extractor). For
any polynomial p(·), a (2, t) non-malleable extractor 2SLNMExt : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m is said to be p-strong leakage resilient if it satisfies the
following property: if X and Y are independent (n1, k1) and (n2, k2) sources,
A1 = (f1, g1), . . . ,At = (ft, gt) are t arbitrary 2-split-state tampering functions
and h : {0, 1}n1 → {0, 1}p(n2) is an arbitrary leakage function, then there exists
a random variable D−→

f ,−→g ,h
on ({0, 1}m ∪ {same∗})t which is independent of the

random variables X and Y , such that

|2SLNMExt(X,Y ), {2SLNMExt(fi(X), gi(h(X), Y ))}i∈[t]

−Um, copy(t)(D−→
f ,−→g ,h

, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

Organization. This section is organized as follows. In Sect. 5.1, we define a weaker
variant called as leakage resilient non-malleable extractor. The main difference
between this variant and our strong leakage-resilience is that here, the sources
are of same length but one of the tampering functions can get some fractional
leakage about the other source. We show that any non-malleable extractors that
works for sufficiently small min-entropy already satisfies this property. Next, in
Sect. 5.2, we show how to bootstrap leakage-resilience to strong leakage-resilience
with the help of a strong seeded extractor and strong two-source extractors.
In Sect. 5.3, we give a variant of our extractor that is additionally preimage
sampleable.

5.1 Leakage-Resilient Non-malleable Extractors

We now give the definition of a (2, t)-leakage resilient non-malleable extractor.

Definition 5 (Leakage-Resilient Non-malleable Extractor). For some
μ ∈ N, a (2, t) non-malleable extractor 2NMExt : {0, 1}n × {0, 1}n → {0, 1}m

is said to be μ-leakage resilient if it satisfies the following property: if X and Y
are independent (n, k)-sources, A1 = (f1, g1), . . . ,At = (ft, gt) are t arbitrary 2-
split-state tampering functions and h : {0, 1}n → {0, 1}μ is an arbitrary leakage
function, then there exists a random variable D−→

f ,−→g ,h
on ({0, 1}m ∪ {same∗})t

which is independent of the random variables X and Y , such that

|2NMExt(X,Y ), {2NMExt(fi(X,h(Y )), gi(Y ))}i∈[t]

−Um, copy(t)(D−→
f ,−→g ,h

, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

We now prove the following lemma which states that any (2, t)-non-malleable
extractor is also a leakage-resilient non-malleable extractor. A similar result was
also shown in [GKP+18] and we include it here for the sake of completeness.



Multi-source Non-malleable Extractors and Applications 487

Lemma 1 ([GKP+18]). Let 2NMExt : {0, 1}n × {0, 1}n → {0, 1}m be a
(2, t)-non-malleable extractor at min-entropy k and error ε. For any function
h : {0, 1}n → {0, 1}μ, 2NMExt is μ-leakage resilient at min-entropy k′ and error
2ε for any n ≥ k′ ≥ k + μ + log 1/ε.

5.2 Bootstrapping

We will now show how to bootstrap a leakage-resilient non-malleable extractor
to a strong leakage-resilient non-malleable extractor.

Building Blocks and Parameters. Let n1, n2 ∈ N and let Δ be another parameter
that will denote the entropy loss. Let ε denote the error parameter and p(·) be
any polynomial. In our construction, we will use the following building blocks
and set the parameters as shown below.

– Let 2Ext : {0, 1}n′
1 × {0, 1}n′

2 → {0, 1}d be a a strong two sources extractor
at min-entropy (n′

1 − Δ − p(n2) − log(1/ε), n′
2 − Δ − log(1/ε)) and error ε.

– Let Ext : {0, 1}n1−n′
1 × {0, 1}d → {0, 1}n2−n′

2 be a strong seeded extractor at
min-entropy n1 − n′

1 − Δ − p(n2) − log(1/ε) and error ε.
– Fix μ = n′

2t. Let 2NMExt : {0, 1}n2−n′
2 × {0, 1}n2−n′

2 → {0, 1}m be a (2, t)-
non-malleable extractor at min-entropy n2 −n′

2 −Δ−μ−2 log(1/ε) and error
ε. By Lemma 1, we infer that 2NMExt is μ-leakage-resilient for min-entropy
n2 − n′

2 − Δ − log(1/ε) and error 2ε.
– We set n′

1 = n2 + p(n2), n′
2 = 3Δ, and n1 ≥ 4n2 + 2p(n2).

Construction 1. On input ((x1, x2), (y1, y)) where x1 ∈ {0, 1}n′
1 , y1 ∈ {0, 1}n′

2 ,
x2 ∈ {0, 1}n1−n′

1 , and y ∈ {0, 1}n2−n′
2 , the function 2SLNMExt is computed as

follows:

1. Compute s = 2Ext(x1, y1).
2. Compute x = Ext(x2, s).
3. Output 2NMExt(x, y).

Theorem 9. For any polynomial p(·), 2SLNMExt described in Construction 1 is
a p-strong leakage-resilient, (2, t)-non-malleable extractor at min-entropy (n1 −
Δ,n2 − Δ) with error 8ε.

With the proper instantiation, we get the following corollary. The proof of
the above theorem and the instantiation are presented in the full version of this
paper.

Corollary 3. For any polynomial p and constant t, there exists constants
γ, n0 > 0 such that for any n2 > n0, there exists an p-strong leakage-resilient
(2, t)-non-malleable extractor 2SLNMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m with
min-entropy (n1 − γn2, n2 − γn2) and error 2−n

Ω(1)
2 , where n1 = 4n2 + 2p(n2).



488 V. Goyal et al.

5.3 Efficient Pre-image Sampleability

We also get a construction of strong leakage-resilient non-malleable extractor
with efficient pre-image sampleability and we obtain the following corollary. See
the full version of this paper for more details.

Corollary 4. For any polynomial p and n2, there exists an efficiently pre-
image sampleable p-strong leakage-resilient (2, n

Ω(1)
2 )-non-malleable extractor

2SLNMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m with min-entropy (n1, n2) and error
2−n

Ω(1)
2 , where n1 = 4n2 + p(n2) and m = n

Ω(1)
2 .

6 Multi-source Non-malleable Extractors

In this section, we will define and construct multi-source non-malleable extrac-
tors against a wide class of tampering function families.

6.1 Definition

Definition 6 (Multi-source Non-malleable Extractors). A function
MNMExt : {0, 1}n × {0, 1}n . . . × {0, 1}n → {0, 1}m is a s-source non-malleable
extractor against a tampering family F at min-entropy k and error ε if it satis-
fies the following property: If X1, . . . , Xs are independent (n, k)-sources and for
any f ∈ F , there exists a random variable Df with support on {0, 1}m ∪{same∗}
that is independent of (X1, . . . , Xs) such that

|MNMExt(X1, . . . , Xs) ◦ MNMExt(f(X1, . . . , Xs)) − Um ◦ copy(Df , Um)| ≤ ε

where both Um’s refer to the same uniform m-bit string and

copy(x, y) =

{

x if x �= same∗

y if x = same∗ .

Tampering Function Family. We are interested in constructing multi-source non-
malleable extractors that are secure against the tampering function families of
the following form. Let T1, . . . , Ts ⊂ [s]. The tampering family FT1,...,Ts

consists
of the set of all functions f = (fT1 , . . . , fTs

) such that on input (X1, . . . , Xs), f

outputs ( ˜X1, . . . , ˜Xs) where for every i ∈ [s], fTi
({Xj}j∈Ti

) = ˜Xi. In other words,
˜Xi is generated by applying fTi

on the set of sources {Xj}j∈Ti
. Depending on

the properties required from the sets {T1, . . . , Ts}, we get two interesting classes
of tampering functions.

– Disjoint Tampering Family. The disjoint tampering family Fdis is the set
of all FT1,...,Ts

for every possible T1, . . . , Ts such that each Ti is non-empty,
|Ti| ≤ s − 1, and if x ∈ Ti, Tj then Ti = Tj .



Multi-source Non-malleable Extractors and Applications 489

– Cover-free Tampering Family. For every i ∈ [s], let us define Cover(i)
w.r.t. T1, . . . , Ts to be the union of all the sets Tj where i ∈ Tj . The cover-
free tampering family Fcover−free is the set of all FT1,...,Ts

for all possible
T1, . . . , Ts ⊂ [s] such that for every i ∈ [s], the size of Cover(i) w.r.t. T1, . . . , Ts

is at most s − 1.

Observe that Fdis ⊂ Fcover−free and hence in the rest of the section, we will
focus on constructing non-malleable extractors that are secure against Fcover−free.

6.2 Construction

In this subsection, we will give a construction of s-source non-malleable extractor
that is secure against Fcover−free.

Building Blocks and Parameters. In our construction, we will use the following
building blocks and set the parameters as shown below. Let n1, n2 ∈ N and let
ε denote the error and Δ denote the entropy loss parameter.

– Define the polynomial p(·) as p(x) = xs2. Let 2SLNMExt : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m be a p-strong leakage-resilient, (2, s)-non-malleable extrac-
tor (see Definition 4). Let the min-entropy requirement of the extractor be
(n1 − Δ,n2 − Δ) and error be ε.

– We set n = n1 + sn2.
– We set ε < 1/2m.

Construction 2. On input strings (x1, . . . , xs) where each xi ∈ {0, 1}n, the
function MNMExt is computed as follows:

1. For each i ∈ [s], partition xi into (s+1) blocks (x(i), y
(1)
i , . . . , y

(s)
i ) where x(i)

has length n1 and each y
(j)
i has length n2.

2. For each i ∈ [s], compute y(i) = y
(i)
1 ⊕ y

(i)
2 . . . ⊕ y

(i)
s

3. Output 2SLNMExt(x(1), y(1)) ⊕ 2SLNMExt(x(2), y(2)) . . . ⊕ 2SLNMExt(x(s), y(s)).

Theorem 10. Assume that 2SLNMExt is a p-strong leakage resilient (2, s)-
non-malleable extractor with error ε. Then, construction 2 is a s-source, non-
malleable extractor against Fcover−free at min-entropy n−Δ+log(1/ε) and error
O(s(ε + s2−m)).

The proof of the above theorem is given in the full version of this paper.

6.3 Instantiation

We now instantiate construction 3 with the strong leakage-resilient non-malleable
extractors from Sect. 4.1.

From Corollary 3, by setting p(n2) = s2n2, there exists n0 such that for any
n2 > n0, we get could a p-strong leakage-resilient (2, s)-non-malleable extractor
2NMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m with min-entropy (n1 − Δ,n2 − Δ) and



490 V. Goyal et al.

error ε, where n1 = 4n2 + 2p(n2), m = n
Ω(1)
2 , Δ = γn2, ε = 2−n

Ω(1)
2 for some

constant γ. We can assume m < log 1/ε since we can cut any number of bits
from the output of 2SLNMExt while the error bound ε still holds. We can also
let Δ > 2 log 1/ε by enlarging ε.

Let n = (2s2 +s+4)n2 and γ′ = γ/(2s2 +s+4). From Theorem 10, we get a
s-source, non-malleable extractor against Fcover−free at min-entropy (1−γ′)n and
error 2−nΩ(1)

with output length nΩ(1). We summarize the instantiation with the
following corollary.

Corollary 5. For any s ≥ 2, there exists a constant n0 and γ such that for
any n > n0, there exists a s-source, non-malleable extractor against Fcover−free

at min-entropy (1 − γ)n and error 2−nΩ(1)
with output length nΩ(1).

6.4 Efficient Pre-image Sampleability

We now show that if the underlying 2SLNMExt is efficiently pre-image sampeable,
then our construction of multi-source non-malleable extractor is also efficiently
pre-image sampleable.

Pre-image Sampling Procedure. Given any msg ∈ {0, 1}m, the pre-image sam-
pling procedure does the following:

1. Sample msg1, . . . ,msgs−1 uniformly from {0, 1}m.
2. Set msgs = msg ⊕ msg1 ⊕ msg2 . . . ⊕ msgs−1.
3. Sample (x(i), y(i)) ← 2SLNMExt−1(msgi) for all 1 ≤ i ≤ s.
4. Sample y

(i)
1 , . . . , y

(i)
s−1 from {0, 1}n2 for all 1 ≤ i ≤ s.

5. Set y
(i)
s = y(i) ⊕ y

(i)
1 ⊕ y

(i)
2 . . . ⊕ y

(i)
s−1 for all 1 ≤ i ≤ s.

6. Output (x1, y
(1)
1 , . . . , y

(s)
1 ) ◦ (x2, y

(1)
2 , . . . , y

(s)
2 ) . . . ◦ (xs, y

(1)
s , . . . , y

(s)
s ).

It is clear that the above procedure give an uniform sample from
MNMExt−1(msg), and if the step 3 can be done efficiently, which means the
underlying 2SLNMExt is efficiently pre-image sampleable, then the whole sam-
pling procedure is also efficient.

Instantiation. We now instantiate 2SLNMExt from Sect. 5.3. Recall that this
extractor has efficient pre-image sampleability.

From Corollary 4, by setting p(n2) = s2n2, we get could a p-strong leakage-
resilient (2, s)-non-malleable extractor 2SLNMExt : {0, 1}n1 ×{0, 1}n2 → {0, 1}m

with min-entropy (n1, n2) and error ε, where n1 = 4n2 + p(n2), m = n
Ω(1)
2 ,

ε = 2−n
Ω(1)
2 and s < nγ

2 for some constant γ. We assume m < log 1/ε as above.
Let n = (s2 + s + 4)n2, which implies n2 = nΩ(1). Let γ′ > 0 be constant

such that γ′ < γ
2γ+1 . From Theorem 10, for any s ≤ nγ′

, we get a s-source,

non-malleable extractor against Fcover−free at min-entropy n and error 2−nΩ(1)

with output length nΩ(1), which is also efficiently pre-image sampleable.



Multi-source Non-malleable Extractors and Applications 491

Corollary 6. For any s ≥ 2 and n ≥ s1/γ′
, there exists an efficiently pre-image

sampleable s-source, non-malleable extractor against Fcover−free at min-entropy n

and error 2−nΩ(1)
with output length nΩ(1).

7 Multi-Split-State Non-malleable Codes

In this section, we will define multi-split-state non-malleable codes and show how
to construct the multi-split-state non-malleable codes against a certain tamper-
ing function families, such as Fdis or Fcover−free, from a multi-source non-malleable
extractor against the same tampering function families. The construction follows
the same paradigm as in [CG14].

7.1 Definition

In this subsection, we define multi-split-state non-malleable codes, which is sim-
ilar to multi-source non-malleable extractor. The codeword is split into s states,
where the tampering function for each state takes some but not all states as
input and outputs the tampered version of that state.

Definition 7 (Multi-Split-State Non-malleable Codes). A coding scheme
MNMEnc : {0, 1}m → {0, 1}n × {0, 1}n . . . × {0, 1}n, MNMDec : {0, 1}n ×
{0, 1}n . . . × {0, 1}n → {0, 1}m is a s-split-state non-malleable code with error ε
against a family of tampering functions F if for every f ∈ F , there exists a ran-
dom variable Df on {0, 1}m ∪{same}t such that for all messages msg ∈ {0, 1}m,
it holds that

|MNMDec(f(X1, . . . , Xs)) − copy(Df ,msg)| ≤ ε

where X1, . . . , Xt = MNMEnc(msg).

Note the tampering function families Fdis and Fcover−free defined in 6.1 are also
the tampering function families for multi-split-state codes. Therefore, we could
use them to define s-split-state non-malleable codes against Fdis or Fcover−free.

7.2 Construction

We now recall the result of [CG14] and generalize it to s-independent sources.

Theorem 11 ([CG14]). Let MNMExt : {0, 1}n×{0, 1}n · · ·×{0, 1}n → {0, 1}m

be a s-source non-malleable extractor against a tampering function family F with
error ε. Construct (MNMEnc,MNMDec) as following:

– MNMEnc : {0, 1}m → {0, 1}n × {0, 1}n . . . × {0, 1}n such that MNMEnc(msg)
outputs a uniform sample from MNMExt−1(msg).

– MNMDec : {0, 1}n × {0, 1}n . . . × {0, 1}n → {0, 1}m such that
MNMDec(x1, . . . , xs) outputs MNMExt(x1, . . . , xs).



492 V. Goyal et al.

Then, the above construction is a s-split-state non-malleable against F with error
ε(2(m+1) + 1).

The proof of the above theorem and the instantiation are presented in the
full version of this paper. With the instantiation, we get the following corollary.

Corollary 7. For any s ≥ 2 and for all m ∈ N, there exists an efficient
construction of s-split-state non-malleable code for messages of length m that
is secure against cover-free tampering with error 2−mΩ(1)

and codeword length
(m + s)O(1).

8 Non-malleable Secret Sharing

In this section, we give a construction of threshold non-malleable secret sharing
schemes with security against t-cover-free tampering. We give the definition of
NMSS and t-cover-free tampering in the full version of this paper.

8.1 Construction

In this subsection, we will give a construction of t-out-of-n non-malleable secret
sharing scheme that is secure against Ft−cover−free.

Building Blocks. In our construction, we will use the following building blocks.

– Let (Share,Rec) be a t-out-of-n Shamir secret sharing scheme. The length of
each share is same as the length of the message.

– Define the polynomial p(·) as p(x) = xn2. Let 2SLNMExt : {0, 1}n1 ×
{0, 1}n2 → {0, 1}3m be a p-strong leakage-resilient, (2, t)-non-malleable
extractor with efficient pre-image sampleability and error ε.

– We set ε < 1/23m4.

Construction 3. We give the description of (NMShare,NMRec).

– NMShare(s) : On input a message s ∈ {0, 1}m, do:
1. (Sh1, . . . ,Shn) ← Share(s).
2. For each i ∈ [n], compute (L(i),R(i)) ← 2SLNMExt−1(Shi ◦ U2m).
3. For each i ∈ [n], (R(i)

1 , . . . ,R
(i)
n ) ← Share(R(i)).

4. Set sharei = (L(i),R(1)
i , . . . ,R

(n)
i ).

5. Output (share1, . . . , sharen).
– NMRec(sharei1 , . . . , sharei�

) : On input (sharei1 , . . . , shareit
) for distinct

i1, . . . , it:
1. For each i ∈ {i1, . . . , it},

(a) Parse sharei as (L(i),R(1)
i , . . . ,R

(n)
i ).

4 Similar to the construction of multi-source non-malleable extractor in Sect. 6.2, we
need this condition since in proof, we need the fact that there exists L∗ such that
for every s ∈ {0, 1}3m there exists an Rs such that 2SLNMExt(L∗, Rs) = s.



Multi-source Non-malleable Extractors and Applications 493

(b) Compute R(i) := Rec(R(i)
i1

, . . . ,R
(i)
it

).
(c) Set Shi := 2SLNMExt(L(i),R(i))[m].

2. Output s := Rec(Shi1 , . . . ,Shit
).

Theorem 12. For any t ≥ 2, (NMShare,NMRec) described above is a (t, n, 0, 0)
secret sharing scheme that is O(n(ε · 23m + t2−m))-non-malleable against
Ft−cover−free.

The proof of the above theorem and the instantiation of the protocol are
presented in the full version of this paper. With the instantiation, we get the
following corollary.

Corollary 8. For every t ≥ 2, n ≥ t and any m ∈ N, there exists an efficient
construction of t-out-of-n non-malleable secret sharing for secrets of length m

against t-cover-free tampering with error 2−mΩ(1)
.

9 Network Extractor Protocol

In this section, we show that a strong version of s-source non-malleable extrac-
tors give rise to a network extractor protocol. We start with the definition of a
network extractor protocol from [KLRZ08].

Notation. We follow the same notation that was used in [KLRZ08]. Processor i
begins with a sample from a weak source xi ∈ {0, 1}n and ends in possession of
a hopefully uniform sample zi ∈ {0, 1}m. Let b be the concatenation of all the
messages that were sent during the protocol. Capital letters such as Xi, Zi and
B denote these strings viewed as random variables.

Definition 8 (Network Extractor Protocol [KLRZ08]). A protocol for p
processors is a (t, g, ε) network extractor for min-entropy k if for any (n, k)
independent sources X1, . . . , Xp and any choice T of t faulty processors, after
running the protocol, there exists a set G ∈ [p] \ T of size at least g such that

|B, {Xi}i�∈G, {Zi}i∈G − B, {Xi}i�∈G, Ugm| < ε

Here Ugm is the uniform distribution on gm bits, independent of B, and {Xi}i�∈G.

9.1 Building Block

In this subsection, we give a building block that will be used in the construction
of network extractor protocols.



494 V. Goyal et al.

Weak Disjoint Tampering function family. The weak disjoint tampering function
family FwDis is the set of all functions given by f = (i, g). Given (x1, . . . , xs), f
outputs x̃1, . . . , x̃s where x̃i = xi and g(x[s]\{i}) = x̃[s]\{i}. In other words, the
tampering function leaves the i-th source as it is, and for the rest of the sources,
it applies the tampering function g to generate their tampered version.

Below, we give an useful definition.

Definition 9. The function Deduplicate takes in a1, . . . , at and removes all the
duplicates in the input. That is, if for any i ∈ [s], ai = ai1 = . . . = ai�

where
i < i1 < . . . < i�, then Deduplicate removes ai1 , . . . , ai�

.

We are now ready to give the definition of the building block.

Definition 10 ((s, t)-Strong Multi-source Non-malleable Extractors).
A function MNMExt : {0, 1}n × {0, 1}n . . . × {0, 1}n → {0, 1}m is a (s, t)-strong
non-malleable extractor against the tampering family FwDis at min-entropy k and
error ε if it satisfies the following property: If X1, . . . , Xs are independent (n, k)-
sources and for any f1 = (i, g1), . . . , ft = (i, gt) ∈ FwDis, there exists a random
variable D−→

f
with support on ({0, 1}m)t which is independent of the random

variables X1, . . . , Xs, such that

|X[s]\{i},Deduplicate(MNMExt(X),MNMExt(f1(X)), . . . ,MNMExt(ft(X)))
− X ′

[s]\{i}, Um, Z| < ε

where X = (X1, . . . , Xs), Um refers to an uniform m-bit string and
(X ′

[s]\{i}, Z) ∼ D−→
f
.

We show in the full version of this paperthat the construction from Sect. 4
satisfies this definition for s = 2.

9.2 The Protocol

In this subsection, we give the description of our network extractor protocol. Let
p be the number of processors and Δ denote the entropy loss parameter. We use
a (s,

(

p
s−1

)

)-strong non-malleable extractor MNMExt : ({0, 1}n/p)s → {0, 1}m for
min-entropy n/p − Δ and error ε against tampering family FwDis.

Protocol 1. On input xi ∈ {0, 1}n, processor i does the following.

1. Parse xi as x
(i)
1 , . . . , x

(i)
p .

2. Broadcast {x
(i)
j }j �=i.

3. Receive {x
(j)
i }j �=i from all the processors. If some processor j does not send

any message, replace x
(j)
i with a default value.

4. For every set {i1, . . . , is−1} ⊆ [p] of size s − 1,
(a) Compute yi1,...,is−1 = MNMExt(x(i)

i , x
(i1)
i , . . . , x

(is−1)
i ).

5. Remove the duplicates from the sequence (yi1,...,is−1)i1,...,is−1 to get y′
1, . . . , y

′
k.

6. Output zi = y′
1 ⊕ . . . ⊕ y′

k.



Multi-source Non-malleable Extractors and Applications 495

Theorem 13. For any p, s, n ∈ N, assume (s,
(

p
s−1

)

)-strong non-malleable
extractor MNMExt : ({0, 1}n/p)s → {0, 1}m for min-entropy n/p−Δ and error ε
against tampering family FwDis. Then, for any t ≤ p−s and g = p− t, protocol 1
is a (t, g, 2g · ε) network extractor protocol for min-entropy n − Δ + log(1/ε).
When s = O(1), the running time of the protocol is poly(n, p).

The proof of the above theorem and the instantiation are presented in the
full version of this paper. With the instantiation, we get the following corollary.

Corollary 9. For any p ≥ 2, there exists constants γ, n0 > 0 and γ such that
for all n > n0 and for any t ≤ p−2, there exists a single-round, (t, p−t, 2−nΩ(1)

)-
network extractor protocol for p processors and (n, n(1 − γ)) sources.

Acknowledgements. We thank the anonymous reviewers of Eurocrypt 2021 for use-
ful comments on our manuscript. The first author was supported in part by NSF grant
1916939, a gift from Ripple, a JP Morgan Faculty Fellowship, and a Cylab seed funding
award. Work partially done while the second author was at UC Berkeley and supported
in part from AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award
1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award
and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The work was partially done while the second
and third authors were visiting CMU. The views expressed are those of the authors
and do not reflect the official policy or position of the funding agencies.

References

[ADN+19] Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret
sharing schemesfor general access structures. In: Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, 18–22 August 2019, Proceedings, Part II, pp. 510–539
(2019)

[BDT17] Ben-Aroya, A., Doron, D., Ta-Shma, A.: An efficient reduction from two-
source to non-malleable extractors: achieving near-logarithmic min-entropy.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp.
1185–1194 (2017)

[BS19] Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 20

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–
261 (1988)

[CG14] Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and
split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
440–464. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54242-8 19

[CGGL19] Chattopadhyay, E., Goodman, J., Goyal, V., Li, X.: Extractors for adver-
sarial sources via extremal hypergraphs. Manuscript (2019)

https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-642-54242-8_19


496 V. Goyal et al.

[CGL16] Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes,
with their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.)
48th Annual ACM Symposium on Theory of Computing, pp. 285–298.
ACM Press (2016)

[Coh16a] Cohen, G.: Making the most of advice: new correlation breakers and their
applications. In: IEEE 57th Annual Symposium on Foundations of Com-
puter Science, FOCS 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, 9–11 October 2016, pp. 188–196 (2016)

[Coh16b] Cohen, G.: Two-source dispersers for polylogarithmic entropy and
improved ramsey graphs. In: Wichs, D., Mansour, Y. (eds.) 48th Annual
ACM Symposium on Theory of Computing, pp. 278–284. ACM Press
(2016)

[CZ16] Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and
resilient functions. In: Wichs, D., Mansour, Y. (eds.) 48th Annual ACM
Symposium on Theory of Computing, pp. 670–683. ACM Press (2016)

[DO03] Dodis, Y., Oliveira, R.: On extracting private randomness over a pub-
lic channel. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 252–263. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45198-3 22

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38, 97–139 (2008)

[DPW18] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM
65(4), 20:1–20:32 (2018)

[FV19] Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational
setting: adaptive tampering, noisy-leakage resilience, and improved rate.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693,
pp. 448–479. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 16

[GK18a] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I.,
Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on Theory
of Computing, pp. 685–698. ACM Press (2018)

[GK18b] Goyal, V., Kumar, A.: Non-malleable secret sharing for general access struc-
tures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 501–530. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96884-1 17

[GKK19] Garg, A., Kalai, Y.T., Khurana, D.: Computational extractors with negli-
gible error in the crs model. Cryptology ePrint Archive, Report 2019/1116
(2019). https://eprint.iacr.org/2019/1116

[GKP+18] Goyal, V., Kumar, A., Park, S., Richelson, S., Srinivasan, A.: Non-malleable
commitments from non-malleable extractors. Manuscript, accessed via per-
sonal communication (2018)

[GPR16] Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commit-
ments. In: Wichs, D., Mansour, Y. (eds.) 48th Annual ACM Symposium
on Theory of Computing, pp. 1128–1141. ACM Press (2016)

[GS19] Goyal, V., Song, Y.: Correlated-source extractors and cryptography with
correlated-random tapes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11476, pp. 562–592. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 19

https://doi.org/10.1007/978-3-540-45198-3_22
https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-319-96884-1_17
https://eprint.iacr.org/2019/1116
https://doi.org/10.1007/978-3-030-17653-2_19
https://doi.org/10.1007/978-3-030-17653-2_19


Multi-source Non-malleable Extractors and Applications 497

[GSV05] Goldwasser, S., Sudan, M., Vaikuntanathan, V.: Distributed computing
with imperfect randomness. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol.
3724, pp. 288–302. Springer, Heidelberg (2005). https://doi.org/10.1007/
11561927 22

[KLR09] Kalai, Y.T., Li, X., Rao, A.: 2-source extractors under computational
assumptions and cryptography with defective randomness. In: 50th Annual
Symposium on Foundations of Computer Science, pp. 617–626. IEEE Com-
puter Society Press (2009)

[KLRZ08] Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols.
In: 49th Annual Symposium on Foundations of Computer Science, pp. 654–
663. IEEE Computer Society Press (2008)

[KMS18] Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Electron.
Colloquium Comput. Complex. (ECCC) 25, 200 (2018)

[Li13] Li, X.: New independent source extractors with exponential improvement.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM
Symposium on Theory of Computing, pp. 783–792. ACM Press (2013)

[Li16] Li, X.: Improved two-source extractors, and affine extractors for polyloga-
rithmic entropy. In: Dinur, I. (ed.) 57th Annual Symposium on Foundations
of Computer Science, pages 168–177. IEEE Computer Society Press (2016)

[Li17a] Li, X.: Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. In: STOC (2017)

[Li17b] Li, X.: Improved non-malleable extractors, non-malleable codes and inde-
pendent source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.)
49th Annual ACM Symposium on Theory of Computing, pp. 1144–1156.
ACM Press (2017)

[MW97] Maurer, U., Wolf, S.: Privacy amplification secure against active adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052244

[Raz05] Raz, R.: Extractors with weak random seeds. In: Gabow, H.N., Fagin, R.
(eds.) 37th Annual ACM Symposium on Theory of Computing, pp. 11–20.
ACM Press (2005)

[SV19] Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and appli-
cations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 17

https://doi.org/10.1007/11561927_22
https://doi.org/10.1007/11561927_22
https://doi.org/10.1007/BFb0052244
https://doi.org/10.1007/978-3-030-26951-7_17
https://doi.org/10.1007/978-3-030-26951-7_17


Quantum Constructions and Proofs



Secure Software Leasing

Prabhanjan Ananth1(B) and Rolando L. La Placa2

1 UC Santa Barbara, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 MIT, Santa Barbara, USA
rlaplaca@mit.edu

Abstract. Formulating cryptographic definitions to protect against
software piracy is an important research direction that has not received
much attention. Since natural definitions using classical cryptography
are impossible to achieve (as classical programs can always be copied),
this directs us towards using techniques from quantum computing. The
seminal work of Aaronson [CCC’09] introduced the notion of quantum
copy-protection precisely to address the problem of software anti-piracy.
However, despite being one of the most important problems in quantum
cryptography, there are no provably secure solutions of quantum copy-
protection known for any class of functions.

We formulate an alternative definition for tackling software piracy,
called secure software leasing (SSL). While weaker than quantum copy-
protection, SSL is still meaningful and has interesting applications in
software anti-piracy.

We present a construction of SSL for a subclass of evasive circuits (that
includes natural implementations of point functions, conjunctions with
wild cards, and affine testers) based on concrete cryptographic assump-
tions. Our construction is the first provably secure solution, based on
concrete cryptographic assumptions, for software anti-piracy. To com-
plement our positive result, we show, based on cryptographic assump-
tions, that there is a class of quantum unlearnable functions for which
SSL does not exist. In particular, our impossibility result also rules out
quantum copy-protection [Aaronson CCC’09] for an arbitrary class of
quantum unlearnable functions; resolving an important open problem
on the possibility of constructing copy-protection for arbitrary quantum
unlearnable circuits.

1 Introduction

Almost all proprietary software requires a legal document, called software license,
that governs the use against illegal distribution of software, also referred to as pirat-
ing. The main security requirement from such a license is that any malicious user
no longer has access to the functionality of the software after the lease associated
with the software license expires. While ad hoc solutions existed in the real world,
for a long time, no theoretical treatment of this problem was known.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 501–530, 2021.
https://doi.org/10.1007/978-3-030-77886-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_17


502 P. Ananth and R. L. La Placa

This was until Aaronson, who in his seminal work [3] introduced and formal-
ized the notion of quantum software copy-protection, a quantum cryptographic
primitive that uses quantum no-cloning techniques to prevent pirating of soft-
ware by modeling software as boolean functions. Roughly speaking, quantum
copy-protection says1 that given a quantum state computing a function f , the
adversary cannot produce two quantum states (possibly entangled) such that
each of the states individually computes f . This prevents a pirate from being
able to create a new software from his own copy and re-distribute it; of course
it can circulate its own copy to others but it will lose access to its own copy.

Need for Alternate Notions. While quantum copy-protection does provide a solu-
tion for software piracy, constructing quantum copy-protection has been noto-
riously difficult. Despite being introduced more than a decade ago, not much is
known on the existence of quantum copy-protection. There are no known prov-
ably secure constructions of quantum copy-protection for any class of circuits.
All the existing constructions of quantum copy-protection are either proven in
an oracle model [3,5] or are heuristic2 candidates for very simple functions such
as point functions [3]. In a recent blog post, Aaronson [2] even mentioned con-
structing quantum copy-protection from cryptographic assumptions as one of
the five big questions he wishes to solve.

This not only prompted us to explore the possibility of copy-protection but
also look for alternate notions to protect against software piracy. Specifically, we
look for application scenarios where the full power of quantum copy-protection
is not needed and it suffices to settle for weaker notions. Let us consider one
such example.

Example: Anti-Piracy Solutions for Microsoft Office. Microsoft Office is one of
the most popular software tools used worldwide. Since Microsoft makes a sizeable
portion of their revenue from this tool [1], it is natural to protect Microsoft Office
from falling prey to software piracy. A desirable requirement is that pirated
copies cannot be sold to other users such that these copies can run successfully
on other Microsoft Windows systems. Importantly, it does not even matter if
the pirated copies can be created as long as they cannot be executed on other
Windows systems; this is because, only the pirated copies that run on Windows
systems are the ones that bite into the revenue of Microsoft. Indeed, there are
open source versions of Office publicly available but our aim is to prevent these
open source versions from being sold off as authentic versions of Microsoft Office
software.

This suggests that instead of quantum copy-protection – which prevents the
adversary from creating any pirated copy of the copy-protected software – we
can consider a weaker variant that only prevents the adversary from being able
to create authenticated pirated copies (for instance, that runs only on specific

1 More generally, Aaronson considers the setting where the adversary gets multiple
copies computing f and not just one.

2 That is, there is no known reduction to concrete cryptographic assumptions.



Secure Software Leasing 503

operating systems). To capture this, we present a new definition called secure
software leasing.

Our Work: Secure Software Leasing (SSL). Roughly speaking, a secure leasing
scheme allows for an authority (the lessor3) to lease a classical circuit C to a
user (the lessee4) by providing a corresponding quantum state ρC . The user can
execute ρC to compute C on any input it desires. Leases can expired, requiring
ρC to be returned at a later point in time, specified by the lease agreement.
After it returns the state, we require the security property that the lessee can
no longer compute C.

In more detail, a secure software leasing scheme (SSL) for a family of cir-
cuits C is a collection, (Gen, Lessor,Run,Check), of quantum polynomial-time
algorithms (QPT) satisfying the following conditions. Gen(1λ), on input a secu-
rity parameter λ, outputs a secret key sk that will be used by a lessor to
validate the states being returned after the expiration of the lease. For any
circuit C : {0, 1}n → {0, 1}m in C, Lessor(sk, C) outputs a quantum state
ρC , where ρC allows Run to evaluate C. Specifically, for any x ∈ {0, 1}n, we
want that Run(ρC , x) = C(x); this algorithm is executed by the lessee. Finally,
Check(sk, ρC) checks if ρC is a valid leased state. Any state produced by the
lessor is a valid state and will pass the verification check.

A SSL scheme can have two different security guarantees depending on
whether the leased state is supposed to be returned or not.

– Infinite-Term Lessor Security : In this setting, there is no time duration asso-
ciated with the leased state and hence, the user can keep this leased state
forever5. Informally, we require the guarantee that the lessee, using the leased
state, cannot produce two authenticated copies of the leased state. Formally
speaking, any (malicious) QPT user A holding a leased state A(ρC) (produced
using classical circuit C) cannot output a (possibly entangled) bipartite state
σ∗ such that both σ∗

1 = Tr2[σ∗] and σ∗
2 = Tr1[σ∗] can be used to compute C

with Run.
– Finite-Term Lessor Security : On the other hand, we could also consider a

weaker setting where the leased state is associated with a fixed term. In
this setting, the lessee is obligated to return back the leased state after the
term expires. We require the property that after the lessee returns back the
state, it can no longer produce another authenticated state having the same
functionality as the leased state.
Formally speaking, we require that any (malicious) QPT user A holding a
leased state ρC (produced using C) cannot output a (possibly entangled)
bipartite states σ∗ such that σ∗

1 := Tr2[σ∗]6 passes the lessor’s verification
(Check(sk, σ∗

1) = 1) and such that the resulting state, after the first register

3 The person who leases the software to another.
4 The person to whom the software is being leased to.
5 Although the lessor will technically be the owner of the leased state.
6 This denotes tracing out the second register.



504 P. Ananth and R. L. La Placa

has been verified by the lessor, on the second register, σ∗
2 , can also be used

to evaluate C with the Run algorithm, Run(σ∗
2 , x) = C(x).

A SSL scheme satisfying infinite-term security would potentially be useful to
tackle the problem of developing anti-piracy solutions for Microsoft Office. How-
ever, there are scenarios where finite-term security suffices. We mention two
examples below.

Trial Versions. Before releasing the full version of a program C, a software
vendor might want to allow a selected group of people7 to run a beta version
of it, Cβ , in order to test it and get user feedback. Naturally, the vendor would
not want the beta versions to be pirated and distributed more widely. Again,
they can lease the beta version Cβ , expecting the users to return it back when
the beta test is over. At this point, they would know if a user did not return
their beta version and they can penalize such a user according to their lease
agreement.

Subscription Models. Another example where finite-term SSL would be useful
is for companies that use a subscription model for their revenue. For example,
Microsoft has a large library of video games for their console, the Xbox, which
anyone can have access to for a monthly subscription fee. A malicious user could
subscribe in order to have access to the collection of games, then make copies of
the games intending to keep them after cancelling the subscription. The same
user will not be able to make another copy of a game that also runs on Xbox.

1.1 Our Results

We present a construction of SSL for a restricted class of unlearnable circuits;
in particular, our construction is defined for a subclass of evasive circuits. This
demonstrates the first provably secure construction for the problem of software
anti-piracy in the standard model (i.e., without using any oracles).

Our construction does not address the possibility of constructing SSL for an
arbitrary class of unlearnable circuits. Indeed, given the long history of unclon-
able quantum cryptographic primitives (see Section A) along with the recent
boom in quantum cryptographic techniques [8,13,20,22–25,35,36,41], one might
hope that existing techniques could lead us to achieve a general result. We show,
rather surprisingly, assuming cryptographic assumptions, there exists a class of
unlearnable circuits such that no SSL exists for this class. This also rules out
the existence of quantum copy-protection for arbitrary unlearnable functions8;
thus resolving an important open problem in quantum cryptography.
7 For instance, they could be engineers assigned to test whether the beta version

contains bugs.
8 Both the notions (quantum copy-protection and secure software leasing) are only

meaningful for unlearnable functions: if a function is learnable, then one could learn
the function from the quantum state and create another authenticated quantum
state computing the same function.



Secure Software Leasing 505

We explain our results in more detail. We first start with the negative result
before moving on to the positive result.

Impossibility Result. To demonstrate our impossibility result, we identify a
class of classical circuits C that we call a de-quantumizable circuit class. This
class has the nice property that given any efficient quantum implementation of
C ∈ C, we can efficiently ‘de-quantumize’ it to obtain a classical circuit C ′ ∈ C
that has the same functionality as C. If C is learnable then, from the definition of
learnability, there could be a QPT algorithm that finds C ′. To make the notion
interesting and non-trivial, we add the additional requirement that this class
of circuits is quantum unlearnable. A circuit class C is quantum unlearnable if
given black-box access to C ∈ C, any QPT algorithm cannot find a quantum
implementation of C.

We show the existence of a de-quantumizable circuit class from cryptographic
assumptions.

Proposition 1 (Informal). Assuming the quantum hardness of learning with
errors (QLWE), and asssuming the existence of quantum fully homomorphic
encryption9 (QFHE), there exists a de-quantumizable class of circuits.

We show how non-black-box techniques introduced in seemingly different con-
texts – proving impossibility of obfuscation [7,12,19] and constructing zero-
knowledge protocols [9,14,16] – are relevant to proving the above proposition.
We give an overview, followed by a formal construction, in Sect. 3.

We then show that for certain de-quantumizable class of circuis, there does
not exist a SSL scheme (with either finite or infinite-term security) for this class.
Combining this with the above proposition, we have the following:

Theorem 1 (Informal). Assuming the quantum hardness of learning with
errors (QLWE), and asssuming the existence of quantum fully homomorphic
encryption (QFHE), there exists a class of quantum unlearnable circuits C such
that there is no SSL for C.

On the Assumption of QFHE: There are lattice-based constructions of QFHE
proposed by [17,35] although we currently don’t know how to base them solely on
the assumption of LWE secure against QPT adversaries (QLWE). Brakerski [17]
shows that the security of QFHE can be based on QLWE and a circular security
assumption.

Impossibility of Quantum Copy-Protection. Since copy-protection implies SSL,
we have the following result.

9 We need additional properties from the quantum fully homomorphic encryption
scheme but these properties are natural and satisfied by existing schemes [17,35].
Please refer to full version for a precise description of these properties.



506 P. Ananth and R. L. La Placa

Corollary 1 (Informal). Assuming the quantum hardness of learning with
errors (QLWE), and asssuming the existence of quantum fully homomorphic
encryption (QFHE), there exists a class of quantum unlearnable circuits C that
cannot be quantumly copy-protected.

Main Construction. Our impossibility result does not rule out the possibility
of constructing SSL schemes for specific circuit classes. For instance, it does not
rule out the feasibility of SSL for evasive functions; this is a class of functions
with the property that given black-box access, an efficient algorithm cannot find
an accepting input (an input on which the output of the function is 1).

We identify a subclass of evasive circuits for which we can construct SSL.
infinite

Searchable Compute-and-Compare Circuits. We consider the following circuit
class C: every circuit in C, associated with a circuit C and a lock α, takes as
input x and outputs 1 iff C(x) = α. This circuit class has been studied in the
cryptography literature in the context of constructing program obfuscation [32,
39]. We require this circuit class to additionally satisfy a searchability condition:
there is an efficient (classical) algorithm, denoted by S, such that given any
C ∈ C, S(C) outputs x such that C(x) = 1.

There are natural and interesting sub-classes of compute-and-compare cir-
cuits:

– Point circuits C(α, ·): the circuit C(α, ·) is a point circuit if it takes as input
x and outputs C(α, x) = 1 iff x = α. If we define the class of point circuits
suitably, we can find α directly from the description of C(α, ·); for instance,
α is the value assigned to the input wires of C.

– Conjunctions with wild cards C(S, α, ·): the circuit C(S, α, ·) is a conjunction
with wild card if it takes as input x and outputs C(S, α, x) = 1 iff y = α,
where y is such that yi = xi for all i ∈ S and yi = 0 for all i /∈ S. Again, if
we define this class of circuits suitably, we can find S and α directly from the
description of C(S, α, ·).

On Searchability: We note that the searchability requirement in our result state-
ment is natural and is implicit in the description of the existing constructions
of copy-protection by Aaronson [3]. Another point to note is that this notion is
associated with circuit classes rather than a function family.

We prove the following result. Our construction is in the common reference
string (CRS) model. In this model, we assume that both the lessor and the
lessee will have access to the CRS produced by a trusted setup. We note that
our impossibility result also holds in the CRS model.

Theorem 2. Assuming the existence of: (a) quantum-secure subspace obfusca-
tors [41] and, (b) learning with errors secure against sub-exponential quantum
algorithms, there exists an infinite-term secure SSL scheme in the common ref-
erence string model for searchable compute-and-compare circuits.



Secure Software Leasing 507

Notice that for applications in which the lessor is the creator of software,
the lessor can dictate how the circuit class is defined and thus would choose an
implementation of the circuit class that is searchable.

On the Assumptions in Theorem 2. A discussion about the primitives described
in the above theorem statement is in order. A subspace obfuscator takes as input
a subspace A and outputs a circuit that tests membership of A while hiding A
even against quantum adversaries. This was recently constructed by [41] based on
the quantum-security of indistinguishability obfuscation [28]. Moreover, recently,
there has been exciting progress in constructing quantum-secure indistinguisha-
bility obfuscation schemes [18,30,38] from cryptographic assumptions that hold
against quatum adversaries.

With regards to the assumption of learning with errors against sub-
exponential quantum algorithms, we firstly note that classical sub-exponential
security of learning with errors has been used in the construction of many
cryptographic primitives and secondly, there are no known significant quantum
speedups known to solving this problem.

In the technical sections, we prove a more general theorem.

Theorem 3 (SSL for General Evasive Circuits; Informal). Let C be a
searchable class of circuits. Assuming the existence of: (a) quantum-secure input-
hiding obfuscators [11] for C, (b) quantum-secure subspace obfuscators [41] and,
(c) learning with errors secure against sub-exponential quantum algorithms, there
exists an infinite-term secure SSL scheme in the setup model for C.

An input-hiding obfuscator is a compiler that converts a circuit C into another
functionally equivalent circuit ˜C such that given ˜C it is computationally hard to
find an accepting point. To achieve Theorem 2, we instantiate searchable input-
hiding obfuscators for compute-and-compare circuits from quantum hardness of
learning with errors. However, we can envision quantum-secure instantiations of
input-hiding obfuscators for more general class of searchable evasive circuits; we
leave this problem open.

We admittedly use heavy cryptographic hammers to prove our result, but as
will be clear in the overview given in the next section, each of these hammers
will be necessary to solve the different technical challenges we face.

Concurrent Work on qVBB. Our impossibility result also rules out the existence
of quantum VBB for classical circuits assuming quantum FHE and quantum
learning of errors; this was stated as an open problem by Alagic and Feffer-
man [7]. Concurrently, [6] also rule out quantum virtual black-box obfuscation
under the assumption of quantum hardness of learning with errors; unlike our
work they don’t additionally assume the existence of quantum FHE.



508 P. Ananth and R. L. La Placa

In hindsight, it shouldn’t be surprising that non-black box techniques devel-
oped in the context of quantum zero-knowledge [9,16] are relevant to proving
the impossibility of quantum obfuscation; the breakthrough work of Bitansky
and Paneth [15] show how to construct (classical) zero-knowledge protocols with
non-black box simulation using techniques developed in the context of (classical)
obfuscation.

1.2 Overview of Construction of SSL

For this overview, we only focus on constructing a SSL sscheme satisfying finite-
term lessor security. Our ideas can be easily adapted to the infinite-term lessor
security.

To construct a SSL scheme in the setup model (Setup,Gen, Lessor,Run,Check)
against arbitrary quantum poly-time (QPT) pirates, we first focus on two weaker
class of adversaries, namely, duplicators and maulers. Duplicators are adversaries
who, given ρC generated by the lessor for a circuit C sampled from a distribution
DC , produce ρ⊗2

C ; that is, all they do is replicate the state. Maulers, who given
ρC , output ρC ⊗ρ∗

C , where ρ∗
C is far from ρC in trace distance and ρC is the copy

returned by the mauler back to the lessor; that is the second copy it produces is
a modified version of the original copy.

While our construction is secure against arbitrary pirates, it will be helpful to
first focus on these restricted type of adversaries. We propose two schemes: the
first scheme is secure against QPT maulers and the second scheme against QPT
duplicators. Once we discuss these schemes, we will then show how to combine
the techniques from these two schemes to obtain a construction secure against
arbitrary pirates.

SSL Against Maulers. To protect SSL against a mauler, we attempt to construct
a scheme using only classical cryptographic techniques. The reason why it could
be possible to construct such a scheme is because maulers never produce a pirated
copy ρ∗

C that is the same as the original copy ρC .
A natural attempt to construct a SSL scheme is to use virtual black-box

obfuscation [12] (VBB): this is a compiler that transforms a circuit C into
another functionally equivalent circuit ˜C such that ˜C only leaks the input-output
behavior of C and nothing more. This is a powerful notion and implies almost
all known cryptographic primitives. We generate the leased state ρC to be the
VBB obfuscation of C, namely ˜C. The hope is that a mauler will not output
another leased state ρ∗

C that is different from ˜C.
Unfortunately, this scheme is insecure. A mauler on input ˜C, obfuscates ˜C

once more to obtain ˜

˜C and outputs this re-obfsuscated circuit. Moreover, note
that the resulting re-obfuscated circuit still computes C. This suggests that
program obfuscation is insufficient for our purpose. In hindsight, this should
be unsurprising: VBB guarantees that given an obfuscated circuit, an efficient
adversary should not learn anything about the implementation of the circuit,
but this doesn’t prevent the adversary from being able to re-produce modified
copies of the obfuscated circuit.



Secure Software Leasing 509

To rectify this issue, we devise the following strategy:

– Instead of VBB, we start with a different obfuscation scheme that has the
following property: given an obfuscated circuit ˜C, where C corresponds to an
evasive function, it is computationally infeasible to determine an accepting
input for C.

– We then combine this with a special proof system that guarantees the prop-
erty: suppose an adversary, upon receiving ˜C and a proof, outputs a different
but functionally equivalent obfuscated circuit ˜C∗ along with a new proof.
Then we can extract an accepting input for ˜C from the adversary’s proof.
But this would contradict the above bullet and hence, it follows that its com-
putationally infeasible for the adversary to output a different circuit ˜C∗.

To realize the above strategy, we need two separate cryptographic tools, that we
define below.

Input-Hiding Obfuscators [11]: We recall the notion of input-hiding obfusca-
tors [11]. An input-hiding obfuscator guarantees that given an obfuscated circuit
˜C, any efficient adversary cannot find an accepting input x, i.e., an input x such
that ˜C(x) = 1. Of course this notion is only meaningful for an evasive class of
functions: a function is evasive if given oracle access to this function, any effi-
cient adversary cannot output an accepting point. The work of Barak et al. [11]
proposed candidates for input-hiding obfuscators.

Simulation-Extractable NIZKs [26,37]: Another primi-
tive we consider is simulation-extractable non-interactive zero-knowledge [26,37]
(seNIZKs). A seNIZK system is a non-interactive protocol between a prover and a
verifier with the prover trying to convince the verifier that a statement belongs to
the NP language. By non-interactive we mean that the prover only sends one mes-
sage to the verifier and the verifier is supposed to output the decision bit: accept or
reject. Moreover, this primitive is defined in the common reference string model.
In this model, there is a trusted setup that produces a common reference string
and both the prover and the verifier have access to this common reference string.

As in a traditional interactive protocol, we require a seNIZK to satisfy the
completeness property. Another property we require is simulation-extractability.
Simulation-extractability, a property that implies both zero-knowledge and
soundness, guarantees that if there exists an efficient adversary A who upon
receiving a simulated proof10 for an instance x, produces an accepting proof for
a different instance x′, i.e., x′ �= x, then there also exists an adversary B that
given the same simulated proof produces an accepting proof for x′ along with
simultaneously producing a valid witness for x′.

10 A simulated proof is one that is generated by an efficient algorithm, called a simu-
lator, who has access to some private coins that was used to generate the common
reference string. Moreover, a simulated proof is indistinguishable from an honestly
generated proof. A simulator has the capability to generate simulated proofs for YES
instances even without knowing the corresponding witness for these instances.



510 P. Ananth and R. L. La Placa

Combining Simulation-Extractable NIZKs and Input-Hiding Obfuscators: We
now combine the two tools we introduced above to obtain a SSL scheme secure
against maulers. Our SSL scheme will be associated with searchable circuits;
given a description of a searchable circuit C, an input x can be determined
efficiently such that C(x) = 1.

To lease a circuit C, do the following:

– Compute an input-hiding obfuscation of C, denoted by ˜C,
– Produce a seNIZK proof π that proves knowledge of an input x such that

C(x) = 1. Note that we can find this input using the searchability property.

Output ( ˜C, π) as the leased circuit. To evaluate on any input x, we first check if
π is a valid proof and if so, we compute ˜C on x to obtain C(x).

To see why this scheme is secure against maulers, suppose an adversary A
given ( ˜C, π) produces ( ˜C∗, π∗), where ˜C∗ �= ˜C. Since A is a valid mauler we
are guaranteed that ˜C∗ is functionally equivalent to C. We first run the seNIZK
simulator to simulate π and once this is done, we no longer need x to generate
π. Now, we invoke the simulation-extractability property to convert A into one
who not only produces ( ˜C∗, π∗) but also simultaneously produces x such that
˜C∗(x) = 1. Since ˜C∗ is functionally equivalent to C, it follows that C(x) = 1
as well. But this violates the input-hiding property which says that no efficient
adversary given ˜C can produce an accepting input.

Issue: Checking Functional Equivalence. There is a subtlety we skipped in the
proof above. The maulers that we consider have multi-bit output which is atypi-
cal in the cryptographic setting where the focus is mainly on boolean adversaries.
This causes an issue when we switch from the honestly generated proof to a sim-
ulated proof. Upon receiving the honestly generated proof, A outputs ( ˜C∗, π∗)
such that ˜C∗ is functionally equivalent to C but upon receiving the simulated
proof, the adversary outputs ( ˜C∗, π∗) where ˜C∗ differs from C on one point. From
A, we need to extract one bit that would help distinguish the real and simulated
proofs. To extract this bit, we rely upon sub-exponential security. Given ˜C∗, we
run in time 2n, where n is the input length, and check if ˜C∗ is still functionally
equivalent to C; if indeed ˜C∗ is not functionally equivalent to C then we know
for a fact that the adversary was given a simulated proof, otherwise it received
an honestly generated proof. We set the security parameter in the seNIZK sys-
tem to be sufficiently large (for eg, poly(n)) such that the seNIZK is still secure
against adversaries running in time 2n.

SSL Against Duplicators. Next we focus on constructing SSL secure against
duplicators. If our only goal was to protect against duplicators, we could achieve
this with a simple scheme. The lessor, in order to lease C, will output (|ψ〉, C)
where |ψ〉 is a random quantum state generated by applying a random polyno-
mial sized quantum circuit U on input |0⊗λ〉. Run on input (|ψ〉, C, x) ignores
the quantum state |ψ〉, and outputs C(x). By quantum no-cloning, an attacker
cannot output two copies of (|ψ〉, C), which means that this scheme is already
secure against duplicators.



Secure Software Leasing 511

Recall that we focused on designing SSL for duplicators in the hope that it
will be later helpful for designing SSL for arbitrary pirates. But any SSL scheme
in which Run ignores the quantum part would not be useful for obtaining SSL
secure against arbitrary pirates; an attacker can simply replace the quantum
state as part of the leased state with its own quantum state and copy the clas-
sical part. To overcome this insufficiency, we need to design SSL schemes where
the Run algorithm only computes correctly when the input leased state belongs
to a sparse set of quantum states. This suggests that the Run algorithm implic-
itly satisfies a verifiability property; it should be able to verify that the input
quantum state lies in this sparse set.

Publicly Verifiable Unclonable States. We wish to construct a family of efficiently
preparable states {|ψs〉}s with the following verifiability property. For any state
|ψs〉 in the family, there is a way to sample a classical description ds for |ψs〉 in
such a way that it can be verified that ds is a corresponding description of |ψs〉.
To be more precise, there should be a verification algorithm Ver(|ψs〉, d) that
accepts if d is a valid description for |ψs〉. Furthermore, we want the guarantee
that given a valid pair (|ψs〉, ds), no QPT adversary can produce |ψs〉⊗2.

Our requirement has the same flavor as public-key quantum money, but a key
difference is that we do not require any secret parameters associated with the
scheme. Moreover, we allow anyone to be able to generate such tuples (|ψs〉, ds)
and not just the minting authority (bank).

Given such verifiable family, we can define the Run algorithm as follows,

Run(C, (|ψs〉, d), x):

– If Ver(|ψs〉, d) = 0, output ⊥.
– Otherwise, output C(x).

Any lessor can now lease a state (|ψs〉, ds, C), which would allow anyone to com-
pute C using Run. Of course, any pirate that is given (|ψs〉, ds, C) can prepare
their own (|ψs′〉, ds′) and then input (|ψs′〉, ds′ , C) into Run. But recall that we
are only interested in ruling out duplicators. From the public verifiable property
of the quantum states, we have the fact that no QPT pirate could prepare |ψs〉⊗2

from (|ψs〉, ds) and thus, it is computationally infeasible to duplicate the leased
state.

Publicly Verifiable Unclonable States from Subspace Hiding Obfuscation. The
notion of publicly verifiable unclonable states was first realized by Zhandry [41].
The main tool used in Zhandry’s construction is yet another notion of obfusca-
tion, called subspace hiding obfuscation. Roughly speaking, a subspace hiding
obfuscator (shO) takes as input a description of a linear subspace A, and out-
puts a circuit that computes the membership function for A, i.e. shO(A)(x) = 1
iff x ∈ A. Zhandry shows that for a uniformly random λ

2 -dimensional subspace
A ⊂ Zλ

q , given |A〉 := 1√
qλ/2

∑

a∈A

|a〉 along with g̃ ← shO(A), g̃⊥ ← shO(A⊥),

no QPT algorithm can prepare |A〉⊗2 with non-negligible probability. Neverthe-



512 P. Ananth and R. L. La Placa

less, because g̃ and g̃⊥ compute membership for A and A⊥ respectively, it is
possible to project onto |A〉〈A| using (g̃, g̃⊥). This lets anyone check the tuple
(|ψ〉, (g̃, g̃⊥)) by measuring |ψ〉 with the projectors {|A〉〈A|, I − |A〉〈A|}.

Main Template: SSL Against Pirates. Our goal is to construct SSL against
arbitrary QPT pirates and not just duplicators or maulers. To achieve this goal,
we combine the techniques we have developed so far.

To lease a circuit C, do the following:

1. First prepare the state the state |A〉 = 1√
qλ/2

∑

a∈A

|a〉, along with g̃ ← shO(A)

and g̃⊥ ← shO(A⊥).
2. Compute an input-hiding obfuscation of C, namely ˜C.
3. Let x be an accepting point of C. This can be determined using the searcha-

bility condition.
4. Compute a seNIZK proof π such that: (1) the obfuscations (g̃, g̃⊥, ˜C) were

computed correctly, as a function of (A,A⊥, C), and, (2) C(x) = 1.
5. Output |ψC〉 = (|A〉, g̃, g̃⊥, ˜C, π).

The Run algorithm on input (|ψC〉, g̃, g̃⊥, ˜C, π) and x, first checks the proof π,
and outputs ⊥ if it does not accept the proof. If it accepts the proof, it knows
that g̃ and g̃⊥ are subspace obfuscators for some subspaces A and A⊥ respec-
tively; it can use them to project |ψC〉 onto |A〉〈A|. This checks whether |ψC〉 is
the same as |A〉 or not. If it is not, then it outputs ⊥. If it has not output ⊥ so
far, then it computes ˜C on x to obtain C(x).

Proof Intuition: To prove the lessor security of the above scheme, we consider
two cases depending on the behavior of the pirate:

– Duplicator: in this case, the pirate produces a new copy that is of the form
(σ∗, g̃, g̃⊥, ˜C, π); that is, it has the same classical part as before. If σ∗ is close
to |A〉〈A|, it would violate the no-cloning theorem. On the other hand, if σ∗ is
far from |A〉〈A|, we can argue that the execution of Run on the copy produced
by the pirate will not compute C. The reason being that at least one of the
two subspace obfuscators g̃, g̃⊥ will output ⊥ on the state σ∗.

– Mauler: suppose the pirate produces a new copy that is of the form
(σ∗, g̃∗, g̃⊥

∗
, ˜C∗, π∗) such that (g̃∗, g̃⊥

∗
, ˜C∗) �= (g̃, g̃⊥, ˜C). We invoke the

simulation-extractability property to find an input x such that ˜C∗(x) = 1.
Since ˜C∗ is assumed to have the same functionality as C, this means that
C(x) = 1. This would contradict the security of input-hiding obfuscation,
since any QPT adversary even given ˜C should not be able to find an accept-
ing input x such that C(x) = 1.

Organization. We provide the related works and preliminary background in the
full version. We present the formal definition of secure software leasing in Sect. 2.
The impossibility result is presented in Sect. 3. Finally, we present the positive
result in Sect. 4.



Secure Software Leasing 513

2 Secure Software Leasing (SSL)

We present the definition of secure software leasing schemes. A secure software
leasing (SSL) scheme for a class of circuits C = {Cλ}λ∈N consists of the following
QPT algorithms.

– Private-key Generation, Gen(1λ): On input security parameter λ, outputs
a private key sk.

– Software Lessor, Lessor (sk, C): On input the private key sk and a poly(n)-
sized classical circuit C ∈ Cλ, with input length n and output length m,
outputs a quantum state ρC .

– Evaluation, Run(ρC , x): On input the quantum state ρC and an input x ∈
{0, 1}n, outputs y, and some state ρ′

C,x.
– Check of Returned Software, Check (sk, ρ∗

C): On input the private key sk
and the state ρ∗

C , it checks if ρ∗
C is a valid leased state and if so it outputs 1,

else it outputs 0.

Setup. In this work, we only consider SSL schemes in the setup model. In this
model, all the lessors in the world have access to a common reference string
generated using a PPT algorithm Setup. The difference between Setup and Gen
is that Setup is run by a trusted third party whose output is used by all the lessors
while Gen is executed by each lessor separately. We note that our impossibility
result rules out SSL schemes for all quantum unlearnable class of circuits even
in the setup model.

We define this notion below.

Definition 1 (SSL with Setup). A secure software leasing scheme
(Gen, Lessor,Run,Check) is said to be in the common reference string (CRS)
model if additionally, it has an algorithm Setup that on input 1λ outputs a string
crs.

Moreover, the algorithm Gen now takes as input crs instead of 1λ and Run
additionally takes as input crs.

We require that a SSL scheme, in the setup model, satisfies the following prop-
erties.

Definition 2 (Correctness). A SSL scheme (Setup,Gen, Lessor,Run,Check)
for C = {Cλ}λ∈N is ε-correct if for all C ∈ Cλ, with input length n, the fol-
lowing two properties holds for some negligible function ε:

– Correctness of Run:

Pr

⎡

⎢

⎢

⎣

∀x ∈ {0, 1}n, y = C(x) :

crs←Setup(1λ),

sk←Gen(crs),

ρC←Lessor(sk,C)

(ρ′
C,x,y)←Run(crs,ρC ,x)

⎤

⎥

⎥

⎦

≥ 1 − ε

– Correctness of Check:

Pr

[

Check (sk, ρC) = 1 :
crs←Setup(1λ),

sk←Gen(crs)

ρC←Lessor(sk,C)

]

≥ 1 − ε



514 P. Ananth and R. L. La Placa

Reusability. A desirable property of a SSL scheme is reusability: the lessee should
be able to repeatedly execute Run on multiple inputs. A SSL scheme does not
necessarily guarantee reusability; for instance, Run could destroy the state after
executing it just once. But fortunately, we can transform this scheme into another
scheme that satisfies reusability.

We define reusability formally.

Definition 3. (Reusability) A SSL scheme (Setup,Gen, Lessor,Run,Check) for
C = {Cλ}λ∈N is said to be reusable if for all C ∈ C and for all x ∈ {0, 1}n,

∥

∥ρ′
C,x − ρC

∥

∥

tr
≤ negl(λ).

Note that the above requirement
∥

∥ρ′
C,x − ρC

∥

∥

tr
≤ negl(λ) would guarantee that

an evaluator can evaluate the leased state on multiple inputs; on each input,
the original leased state is only disturbed a little which means that the resulting
state can be reused for evaluation on other inputs.

The following proposition states that any SSL scheme can be converted into
one that is reusable.

Proposition 2. Let (Setup,Gen, Lessor,Run,Check) be any SSL scheme (not
necessarily satisfying the reusability condition). Then, there is a QPT algorithm
Run′ such that (Setup,Gen, Lessor,Run′,Check) is a reusable SSL scheme.

Proof. For any C ∈ C and for any x ∈ {0, 1}n, we have that Run(crs, ρC , x)
outputs C(x) with probability 1 − ε. By the Almost As Good As New Lemma
(see full version), there is a way to implement Run such that it is possible to
obtain C(x), and then recover a state ρ̃C satisfying ‖ρ̃C − ρC‖tr ≤ √

ε. We let
Run′ be this operation.

Thus, it suffices to just focus on the correctness property when constructing a
SSL scheme.

2.1 Security

Our notion intends to capture the different scenarios discussed in the introduc-
tion. In particular, we want to capture the security guarantee that given an
authorized (valid) copy ρC , no pirate can output two authorized copies. We will
assume that these valid copies contain a quantum state and a classical string. The
Run algorithm expects valid copies to have this form; without loss of generality,
the classical part can always be measured before executing Run.

Finite-Term Lessor Security. We require the following security guarantee:
suppose a QPT adversary (pirate) receives a leased copy of C generated using
Lessor; denote this by ρC . We require that the pirate cannot produce a bipartite
state σ∗ on registers R1 and R2, such that σ∗

1 := Tr2[σ∗] passes the verification
by Check, and the resulting post-measurement state on R2, which we denote by
P2(σ∗), still computes C by Run(P2(σ∗), x) = C(x).



Secure Software Leasing 515

Before formally stating the definition, let us fix some notation. We will use
the following notation for the state that the pirate keeps after the initial copy
has been returned and verified. If the pirate outputs the bipartite state σ∗, then
we will write

P2(sk, σ∗) ∝ Tr1 [Π1[Check(sk, ·)1 ⊗ I2 (σ∗)]]

for the state that the pirate keeps after the first register has been returned and
verified. Here, Π1 denotes projecting the output of Check onto 1, and where
Check(sk, ·)1 ⊗ I2(σ∗) denotes applying the Check QPT onto the first register,
and the identity on the second register of σ∗. In other words, P2(sk, σ∗) is used to
denote the post-measurement state on R2 conditioned on Check(sk, ·) accepting
on R1.

Definition 4 (Finite-Term Perfect Lessor Security). We say that a SSL
scheme (Setup,Gen, Lessor,Run,Check) for a class of circuits C = {Cλ}λ∈N is
said to satisfy (β, γ,DC)-perfect finite-term lessor security, with respect to
a distribution DC on C, if for every QPT adversary A (pirate) that outputs a
bipartite (possibly entangled) quantum state on two registers, R1 and R2, the
following holds:

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Check(sk,σ∗
1 )=1

∧

∀x, Pr[Run(crs,P2(sk,σ
∗),x)=C(x)]≥β

:

crs←Setup(1λ),

C←DC(λ),

sk←Gen(crs),

ρC←Lessor(sk,C),

σ∗←A(crs,ρC)

σ∗
1=Tr2[σ

∗]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ γ

Remark 1. The reason why we use the word perfect here is because we require
Run(P2(σ∗), x) = C(x) to hold with probability at least β on every input x.
Note that Run is not necessarily deterministic (for instance, it could perform
measurements) and thus we allow it to output the incorrect value with some
probability.

2.2 Infinite-Term Lessor Security

In the infinite-term lease case, we want the following security notion: given
(σ∗

1 , σ
∗
2) generated by a pirate A(ρC), guarantees that if one copy satisfies the

correctness,
∀xPr[Run(crs, σ∗

1 , x) = C(x)] ≥ β

for some non-negligible β, then after successfully evaluating C(x) using σ∗
1 on

any input x∗, it should be the case that the resulting state on the second register,
which we will denote by E(2)

x∗ (σ∗), cannot also satisfy

∀xPr[Run(crs, E(2)
x∗ (σ∗), x) = C(x)] ≥ β.

In other words, if one of the copies has already been succesful in computing C
in Run, then there will be inputs in which the second copy cannot evaluate C
with better than negligible probability.



516 P. Ananth and R. L. La Placa

This security notion would rule out the following scenario. Eve gets a copy
of ρC and gives σ∗

1 to Alice and σ∗
2 to Bob. Alice now chooses an input xA, and

Bob an input xB. It cannot be the case that for all inputs (xA, xB) they choose,
they will compute (C(xA), C(xB)) with non-negligible probability.

Definition 5 (Infinite-term Perfect Lessor Security). We say that a SSL
scheme (Setup,Gen, Lessor,Run,Check) for a class of circuits C = {Cλ}λ∈N is
said to be (γ, β,DC)-infinite-term perfect lessor secure, with respect to a
distribution DC, if for every QPT adversary A (pirate) that outputs a bipartite
(possibly entangled) quantum state on two registers, R1 and R2, the following
holds:

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∀x,

⎛

⎝

Pr[(Run(crs,x,σ∗
1 )=C(x)]≥β

∧

∀x′,Pr[Run(crs,x′,E(2)
x (σ∗))=C(x′)]≥β

⎞

⎠ :

crs←Setup(1λ),

C←DC(λ),

sk←Gen(crs),

ρC←Lessor(sk,C),

σ∗←A(crs,ρC)

σ∗
1=Tr2[σ

∗]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ γ.

Remark 2. Both finite and infinite-term security can be extended to the case
where the pirate is given multiple copies, ρ⊗m

C , where ρC is the output of Lessor
on C. In the finite-term case, we require the following: if a pirate outputs m + 1
copies and moreover, the m initial copies are returned and succesfully checked,
computing Run on the remaining copy (that the pirate did not return) will not
be functionally equivalent to the circuit C. In the infinite-term case, the pirate
cannot output m + 1 copies where Run on each of the m + 1 copies can be used
to successfully compute C.

3 Impossibility of SSL

To prove the impossibility of SSL, we first construct de-quantumizable class of
circuits.

3.1 De-Quantumizable Circuits: Definition

A de-quantumizable class of circuits C is a class of circuits for which there is
a QPT algorithm that given any quantum circuit with the same functionality
as C ∈ C, it finds a (possibly different) classical circuit C ′ ∈ C with the same
functionality as C. Of course if C is learnable, then it could be possible to just
observe the input-output behavior of the quantum circuit to find such a C ′. To
make this notion meaningful, we additionally impose the requirement that C
needs to be quantum unlearnable; given only oracle access to C, any quantum
algorithm can find a circuit (possibly a quantum circuit and an auxiliary input
state ρ) with the same functionality as C with only negligible probability.



Secure Software Leasing 517

Definition 6. We say that a collection of QPT algorithms, {UC , ρC}C∈C, com-
putes C if for any C ∈ C, with input length n and output length m, ρC is a
poly(n)-qubits auxiliary state, and UC a QPT algorithm satisfying that for all
x ∈ {0, 1}n,

Pr[UC(ρC , x) = C(x)] ≥ 1 − negl(λ),

where the probability is over the measurement outcomes of UC . We also refer
to (UC , ρC) as an efficient quantum implementation of C. A class of classical
circuits C, associated with a distribution DC, is said to be de-quantumizable if
the following holds:

– Efficient de-quantumization: There is a QPT algorithm B such that, for
any {UC , ρC}C∈C that computes C, the following holds:

Pr

[

C′∈C∧

∀x∈{0,1}n,C(x)=C′(x)
:

C←DC

C′(x)←B(UC ,ρC)

]

≥ 1 − negl(λ)

– ν-Quantum Unlearnability: For any QPT adversary A, the following
holds:

Pr
[

∀x,Pr[U∗(ρ∗, x) = C(x)] ≥ ν : C←DC
(U∗,ρ∗)←AC(·)(1λ)

]

≤ negl(λ)

Remark 3. By the Almost As Good As New Lemma (we present the lemma
in the full version), we can assume that the QPT algorithm UC also output a
state ρ′

C,x that is negligibly close in trace distance to ρC , i.e. for all C ∈ C and
x ∈ {0, 1}n it holds that

Pr[UC(ρC , x) = (ρ′
C,x, C(x))] ≥ 1 − negl(λ)

and
∥

∥ρ′
C,x − ρC

∥

∥

tr
≤ negl(λ).

Remark 4. We emphasize that the efficient de-quantumization property requires
that the circuit C ′ output by the adversary should be in the same circuit class
C.

Remark 5. We can relax the unlearnability condition in the above definition to
instead have a distribution over the inputs and have the guarantee that the
adversary has to output a circuit (U∗, ρ∗) such that it agrees with C only on
inputs drawn from this distribution. Our impossibility result will also rule out
this relaxed unlearnability condition; however, for simplicity of exposition, we
consider the unlearnability condition stated in the above definition.

From the above definition, we can see why a de-quantumizable class C can-
not be copy-protected, as there is a QPT B that takes any (UC , ρC) efficiently
computing C, and outputs a functionally equivalent classical circuit C ′, which
can be copied. In the following theorem we will show that if every circuit C ∈ C
have a unique representation in C, then it is also not possible to have SSL for this
circuit class. To see why we need an additional condition, lets consider a QPT
pirate A that wants to break SSL given (Run, ρC) computing C ∈ C. Then, A can



518 P. Ananth and R. L. La Placa

run B to obtain a circuit C ′ ∈ C, but in the proccess it could have destroyed ρC ,
hence it wouldn’t be able to return the initial copy. If B takes as input (Run, ρC)
and outputs a fixed C ′ with probability neglibly close to 1, then by the Almost
As Good As New Lemma, it could uncompute and recover ρC . The definition of
de-quantumizable class does not guarantee that B will output a fixed circuit C ′,
unless each circuit in the family has a unique representation in C. If each circuit
has a unique representation, the pirate would obtain C ′ = C with probability
neglibly close to 1, and uncompute to recover ρC . At this point, the pirate can
generate its own leasing keys sk′, and run Lessor(sk′, C ′) to obtain a valid leased
state ρ′

C′ . The pirate was able to generate a new valid leased state for C, while
preserving the initial copy ρC , which it can later return to the lessor.

Theorem 4. Let (C,DC) be a de-quantumizable class of circuits in which every
circuit in the support of DC has a unique representation in C. Then there is no
SSL scheme (Setup,Gen, Lessor,Run,Check) (in CRS model) for C satisfying ε-
correctness and (β, γ,DC)-perfect finite-term lessor security for any negligible γ,
and any β ≤ (1 − ε).

Proof. Consider the QPT algorithm A (pirate) that is given ρC ← Lessor(sk, C)
for some C ← DC . The pirate will run B, the QPT that de-quantumizes (C,DC),
on input (Run, ρC) to obtain a functionally equivalent circuit C ′ ∈ C. Because
C has a unique representation in C, we have C ′ = C. Since this succeeds with
probability neglibly close to 1, by the Almost As Good As New Lemma, it can
all be done in a way such that it is possible to obtain C and to recover a state
ρ̃C satisfying ‖ρ̃C − ρC‖tr ≤ negl(λ). At this point, the pirate generates its own
key sk′ ← Gen(crs), and prepares ρ′

C ← Lessor(sk′, C). It outputs ρ̃C ⊗ ρ′
C .

This means that ρ′
C is a valid leased state and by correctness of the SSL

scheme,

Pr

⎡

⎣∀x ∈ {0, 1}n, Run (crs, ρ′
C , x) = C(x) :

crs←Setup(1λ),

sk′←Gen(crs),

ρ′
C←Lessor(sk′,C)

⎤

⎦ ≥ 1 − ε

Furthermore, since ‖ρ̃C − ρC‖tr ≤ negl(λ), the probability that ρ̃C passes the
return check is neglibly close to 1. Putting these together, we have

Pr

⎡

⎢

⎢

⎢

⎣

Check(sk,ρ̃C)=1
∧

∀x, Pr[Run(crs,ρ′
C ,x)=C(x)]≥1−ε

:

crs←Setup(1λ),

C←DC(λ),

sk←Gen(crs),

ρC←Lessor(sk,C),

ρ̃C⊗ρ′
C←A(crs,ρC)

⎤

⎥

⎥

⎥

⎦

≥ 1 − negl(λ)

3.2 De-Quantumizable Circuit Class: Construction

All that remains in the proof of impossibility of SSL is the construction of a de-
quantumizable circuits class (C,DC) in which every circuit in the support of DC
has a unique representation in C. We begin with an overview of the construction.



Secure Software Leasing 519

Constructing de-quantumizable Circuits: Challenges. The starting point is the
seminal work of Barak et al. [12], who demonstrated a class of functions, where
each function is associated with a secret key k, such that: (a) Non-black-box secret
extraction: given non-black-box access to any classical circuit implementation of
this function, the key can be efficiently recovered, (b) Classical Unlearnability of
secrets: but given black-box access to this circuit, any classical adversary who
can only make polynomially many queries to the oracle cannot recover the key.

While the result of Barak et al. has the ingredients suitable for us, it falls
short in many respects:

– The proof of non-black-box secret extraction crucially relies upon the fact that
we are only given a classical obfuscated circuit. In fact there are inherent
difficulties that we face in adapting Barak et al. to the quantum setting;
see [7].

– As is the case with many black-box extraction techniques, the proof of Barak
et al. involves evaluating the obfuscated circuit multiple times in order to
recover the secret. As is typically the case with quantum settings, evaluating
the same circuit again and again is not always easy – the reason being that
evaluating a circuit once could potentially destroy the state thus rendering it
impossible to run it again.

– Barak et al. only guarantees extraction of secrets given black-box access to
the classical circuit implementation of the function. However, our requirement
is qualitatively different: given a quantum implementation of the classical
circuit, we need to find a (possible different) classical circuit with the same
functionality.

– Barak et al.’s unlearnability result only ruled out adversaries who make clas-
sical queries to the oracle. On the other hand, we need to argue unlearnability
against QPT adversaries who can perform superposition queries to the oracle.

Nonetheless, we show that the techniques introduced in a simplified version of
Barak11 can be suitably adapted for our purpose by using two tools: quantum
fully homomorphic encryption (QFHE) and lockable obfuscation. Combining
QFHE and lockable obfuscation for the purpose of secret extraction has been
recently used in a completely different context, that of building zero-knowledge
protocols [9,16] (and in classical setting was first studied by [14]).

Construction. We present the construction of de-quantumizable circuits.

Theorem 5. Assuming the quantum hardness of learning with errors (QLWE),
and assuming that there is a QFHE that supports evaluation of arbitrary
polynomial-sized quantum circuits, and has the following two properties: (a)
ciphertexts have classical plaintexts have classical descriptions and, (b) classical
ciphertexts can be decrypted using a classical circuit,

there exists a de-quantumizable class of circuits (C,DC).

11 See [15] for a description of this simplified version.



520 P. Ananth and R. L. La Placa

Proof. We define a de-quantumizable class of circuits C = {Cλ}λ∈N, where every
circuit in Cλ is defined as follows:

Ca,b,r,pk,O(x):

1. If x = 0 · · · 0, output QFHE.Enc (pk, a; r) |O|pk.
2. Else if x = a, output b.
3. Otherwise, output 0 · · · 0
We will suitably pad with zeroes such that all the inputs (resp., outputs) are of
the same length n (resp., of the same length m).

Let DC(λ) be the distribution that outputs a circuit from Cλ by sampling

a, b, r
$←− {0, 1}λ, then computing (pk, sk) ← QFHE.Gen(1λ), and finally com-

puting an obfuscation O ← LO.Obf(C[QFHE.Dec(sk, ·), b, (sk|r)]), where C is a
compute-and-compare circuit.

We show that with respect to this distribution: (a) C is quantum unlearnable
(Proposition 3) and, (b) C is efficiently de-quantumizable (Proposition 4).

Proposition 3. For any non-negligible ν, the circuit class C is ν-quantum
unlearnable with respect to DC.

We provide a proof of the above proposition in the full version.

Proposition 4. (C,DC) is efficiently de-quantumizable.

Proof. We will start with an overview of the proof.

Overview : Given a quantum circuit (UC , ρC) that computes Ca,b,r,pk,O(·), first
compute on the input x = 0 · · · 0 to obtain QFHE.Enc(pk, a; r)|O|pk. We then
homomorphically evaluate the quantum circuit on QFHE.Enc(pk, a; r) to obtain
QFHE.Enc(pk, b′), where b′ is the output of the quantum circuit on input a; this
is part where we crucially use the fact that we are given (UC , ρC) and not just
black-box access to the functionality computing (UC , ρC). But b′ is nothing but
b! Given QFHE encryption of b, we can then use the lockable obfuscation to
recover sk; since the lockable obfuscation on input a valid encryption of b out-
puts sk. Using sk we can then recover the original circuit Ca,b,r,pk,O(·). Formal
details follow.

For any C ∈ C, let (UC , ρC) be any QPT algorithm (with auxiliary state ρC)
satisfying that for all x ∈ {0, 1}n,

Pr
[

UC(ρC , x) =
(

ρ′
C,x, C(x)

)] ≥ 1 − negl(λ),

where the probability is over the measurement outcomes of UC , and ρ′
C,x is

neglibly close in trace distance to ρC (see Remark 3). We will show how to
constuct a QPT B to de-quantumize (C,DC).

B will perform a QFHE evaluation, which we describe here. Given
QFHE.Enc(pk, x), we want to homomorphically evaluate C(x) to obtain



Secure Software Leasing 521

QFHE.Enc(pk, C(x)). To do this, first prepare QFHE.Enc(pk, ρC , x), then eval-
uate UC homomorphically to obtain the following:

QFHE.Enc(pk, ρ′
C,x, C(x)) = QFHE.Enc(pk, ρ′

C,x)
∣

∣QFHE.Enc(pk, C(x))

Consider the following QPT algorithm B that is given (UC , ρC) for any C ∈ C.
B(UC , ρC):

1. Compute (ρ′, ct1|O′|pk′) ← UC(ρC , 0 · · · 0).
2. Compute σ|ct2 ← QFHE.Eval(UC(ρ′, ·), ct1)
3. Compute sk′|r′ ← O(ct2)
4. Compute a′ ← QFHE.Dec(sk′, ct1), b′ ← QFHE.Dec(sk′, ct2).
5. Output Ca′,b′,r′,pk′,O′ .

We claim that with probability negligibly close to 1, (a′, b′, r′, pk′,O′) =
(a, b, r, pk,O) when C := Ca,b,r,pk,O ← DC . This would finish our proof.

Lets analyze the outputs of B step-by-step.

– After Step (1), with probability neglibibly close to 1, we have
that ct1 = QFHE.Enc(pk, a; r) , pk′ = pk, and O′ = O ←
LO.Obf(C[QFHE.Dec(sk, ·), b, (sk|r)]). Furthermore, we have that ρ′ is neg-
ligibly close in trace distance to ρC .

– Conditioned on Step (1) computing C(0 · · · 0) correctly, we have that
QFHE.Eval(UC(ρ′, .), ct1) computes correctly with probability negligibly close
to 1. This is because ‖ρ′ − ρC‖tr ≤ negl(λ), and by correctness of both QFHE
and (UC , ρC). Conditioned on ct1 = QFHE.Enc(pk, a; r), when Step (2) eval-
uates correctly, we have ct2 = QFHE.Enc(pk, C(a)) = QFHE.Enc(pk, b)

– Conditioned on ct2 = QFHE.Enc(pk, b), by correctness of lockable obfuscation,
we have that O(ct2) outputs sk|r. Furthermore, by correctness of QFHE,
decryption is correct: QFHE.Dec(sk, ct1) outputs a with probability neglibly
close to 1, and QFHE.Dec(sk, ct2) outputs b with probability neglibly close to
1.

With probability negligibly close to 1, we have shown that (a′, b′, r′, pk′,O′) =
(a, b, r, pk,O).

Note that it is also possible to recover ρ′′ that is neglibly close in trace
distance to ρC . This is because σ = QFHE.Enc(pk, ρ′′) for some ρ′′ satisfying
‖ρ′′ − ρC‖tr. Once sk′ = sk has been recovered, it is possible to also decrypt σ
and obtain ρ′′. To summarize, we have shown a QPT B satisfying

Pr[B(UC , ρC) = (ρ′′, C) : C ← DC ] ≥ 1 − negl(λ)

where ‖ρ′′ − ρC‖tr ≤ negl(λ).

Implications to Copy-Protection. We have constructed a class C and an associ-
ated distribution DC that is efficient de-quantumizable. In particular, this means
that there is no copy-protection for C. If for all inputs x, there is a QPT (UC , ρC)
to compute UC(ρC , x) = C(x) with probability 1 − ε for some negligible ε, then



522 P. Ananth and R. L. La Placa

it is possible to find, with probability close to 1, a circuit C ′ that computes the
same functionality as C. We also proved that (C,DC) is quantum unlearnable.
We summarize the result in the following corollary,

Corollary 2. There is (C,DC) that is quantum unlearnable, but C cannot be
copy-protected against DC. Specifically, for any C ← DC with input length n,
and for any QPT algorithm (UC , ρC) satisfying that for all x ∈ {0, 1}n,

Pr[UC(ρC , x) = C(x)] ≥ 1 − ε

for some negligible ε, there is a QPT algorithm (pirate) that outputs a circuit
C ′, satisfying C ′(x) = C(x) for all x ∈ {0, 1}n, with probability negligibly close
to 1.

Further Discussion. Notice that in our proof that C is efficient de-quantumizable,
we just need to compute UC(ρC , x) at two different points x1 = 0 · · · 0 and
x2 = a, where the evaluation at x2 is done homomorphically. This means that
any scheme that lets a user evaluate a circuit C at least 2 times (for 2 possibly
different inputs) with non-negligible probability cannot be copy-protected. Such
a user would be able to find all the parameters of the circuit, (a, b, r, pk,O),
succesfully with non-negligible probability, hence it can prepare as many copies
of a functionally equivalent circuit C ′.

In our proof, we make use of the fact that (UC , ρC) evaluates correctly with
probability close to 1. This is in order to ensure that the pirate can indeed
evaluate at 2 points by uncomputing after it computes C(0 · · · 0). Since any
copy-protection scheme can be amplified to have correctness neglibly close to 1
by providing multiple copies of the copy-protected states, our result also rules
out copy-protection for non-negligible correctness parameter ε, as long as the
correctness of (UC , ρC) can be amplified to neglibily close to 1 by providing ρ⊗k

C

for some k = poly(λ).

Impossibility of Quantum VBB with Single Uncloneable State. Our techniques
also rule out the possibility of quantum VBB for classical circuits. In particular,
this rules the possibility of quantum VBB for classical circuits with the obfucated
circuit being a single uncloneable state, thus resolving an open problem by Alagic
and Fefferman [7].

Proposition 5. Assuming the quantum hardness of learning with errors and
assuming that there is a QFHE satisfying the properties described in Theorem 5,

there exists a circuit class C such that any quantum VBB for C is insecure.

Proof. We construct a circuit class C = {Cλ}λ∈N, where every circuit in Cλ is of
the form Ca,b,r,pk,O defined in the proof of Theorem 5.

Given any quantum VBB of Ca,b,r,pk,O, there exists an adversary A that
recovers b and outputs the first bit of b. The adversary A follows steps 1–4 of B
defined in the proof of Proposition 4 and then outputs the first bit of b′. In the
same proof, we showed that the probability that b′ = b is negligibly close to 1
and thus, the probability it outputs the first bit of b is negligibly close to 1.



Secure Software Leasing 523

On the other hand, any QPT simulator Sim with superposition access to
Ca,b,r,pk,O can recover b with probability negligibly close to 1/2. To prove this,
we rely upon the proof of Proposition 3 (see full version for details). Suppose
T is the number of superposition queries made by Sim to Ca,b,r,pk,O. Let |ψ0〉 is
the initial state of Sim and more generally, let |ψt〉 be the state of Sim after t
queries, for t ≤ T .

We define an alternate QPT simulator Sim′ which predicts the first bit of
b with probability negligibly close to Sim. Before we describe Sim′, we give the
necessary preliminary background. Define |φt〉 = UtUt−1 · · · U1|ψ0〉. We proved
the following claim.

Claim. |〈φt|ψt〉| = 1 − δt for every t ∈ [T ].

Sim′ starts with the initial state |ψ0〉. It then computes |φT 〉. If U is a unitary
matrix Sim applies on |ψT 〉 followed by a measurement of a register D then Sim′

also performs U on |φT 〉 followed by a measurement of D. By the above claim,
it then follows that the probability that Sim′ outputs 1 is negligibly close to
the probability that Sim outputs 1. But the probability that Sim′ predicts the
first bit of b is 1/2. Thus, the probability that Sim predicts the first bit of b is
negligibly close to 1/2.

4 Main Construction

In this section, we present the main construction of SSL satisfying infinite-term
perfect lessor security. We first start by describing the class of circuits of interest.

4.1 Circuit Class of Interest: Evasive Circuits

The circuit class we consider in our construction of SSL is a subclass of evasive
circuits. We recall the definition of evasive circuits below.

Evasive Circuits. Informally, a class of circuits is said to be evasive if a circuit
drawn from a suitable distribution outputs 1 on a fixed point with negligible
probability.

Definition 7 (Evasive Circuits). A class of circuits C = {Cλ}λ∈N, associated
with a distribution DC, is said to be evasive if the following holds: for every
λ ∈ N, every x ∈ {0, 1}poly(λ),

Pr
C←DC

[C(x) = 1] ≤ negl(λ),

Compute-and-Compare Circuits. The subclass of circuits that we are interested
in is called compute-and-compare circuits, denoted by Ccnc. A compute-and-
compare circuit is of the following form: C[C,α], where α is called a lock and C
has output length |α|, is defined as follows:

C[C,α](x) =
{

1, if C(x)=α,

0, otherwise



524 P. Ananth and R. L. La Placa

Multi-bit Compute-and-Compare Circuits. We can correspondingly define the
notion of multi-bit compute-and-compare circuits. A multi-bit compute-and-
compare circuit is of the following form:

C[C,α,msg](x) =
{

msg, if C(x)=α,

0, otherwise
,

where msg is a binary string.
We consider two types of distributions as defined by [39].

Definition 8 (Distributions for Compute-and-Compare Circuits). We
consider the following distributions on Ccnc:

– Dunpred(λ): For any (C[C,α]) along with aux sampled from this unpredictable
distribution, it holds that α is computationally unpredictable given (C, aux).

– Dpseud(λ): For any C[C,α] along with aux sampled from this distribution, it
holds that HHILL (α|(C, aux)) ≥ λε, for some constant ε > 0, where HHILL(·)
is the HILL entropy [33].

Note that with respect to the above distributions, the compute-and-compare
class of circuits Ccnc is evasive.

Searchability. For our construction of SSL for C, we crucially use the fact that
given a circuit C ∈ C, we can read off an input x from the description of C
such that C(x) = 1. We formalize this by defining a search algorithm S that on
input a circuit C outputs an accepting input for C. For many interesting class
of functions, there do exist a corresponding efficiently implementable class of
circuits associated with a search algorithm S.

Definition 9 (Searchability). A class of circuits C = {Cλ}λ∈N is said to be
S-searchable, with respect to a PPT algorithm S, if the following holds: on input
C, S(C) outputs x such that C(x) = 1.

Searchable Compute-and-Compare Circuits: Examples. As mentioned in the
introduction, there are natural and interesting classes of searchable compute-
and-compare circuits. For completeness, we state them again below with addi-
tional examples [39].

– Point circuits C(α, ·): the circuit C(α, ·) is a point circuit if it takes as input
x and outputs C(α, x) = 1 iff x = α. If we define the class of point circuits
suitably, we can find α directly from Cα; for instance, α can be the value
assigned to the input wires of C.

– Conjunctions with wild cards C(S, α, ·): the circuit C(S, α, ·) is a conjunction
with wild cards if it takes as input x and outputs C(S, α, x) = 1 iff y = α,
where y is such that yi = xi for all i ∈ S. Again, if we define this class
of circuits suitably, we can find S and α directly from the description of
C(S, α, ·). Once we find S and α, we can find the accepting input.



Secure Software Leasing 525

– Affine Tester: the circuit C(A, α, ·) is an affine tester, with A,y where A has
a non-trivial kernel space, if it takes as input x and outputs C(A, α,x) = 1
iff A · x = α. By reading off A and α and using Gaussian elimination we can
find x such that A · x = α.

– Plaintext equality checker C(sk, α, ·): the circuit C(sk, α, ·), with hardwired
values decryption key sk associated with a private key encryption scheme,
message α, is a plaintext equality checker if it takes as input a ciphertext ct
and outputs C(sk, α, ct) = 1 iff the decryption of ct with respect to sk is α.
By reading off α and sk, we can find a ciphertext such that ct is an encryption
of α.

Remark 6. We note that both the candidate constructions of copy-protection
for point functions by Aaronson [3] use the fact that the accepting point of the
point function is known by whoever is generating the copy-protected circuit.

4.2 Ingredients

We describe the main ingredients used in our construction.
Let C = {Cλ} be the class of S-searchable circuits associated with SSL. We

denote s(λ) = poly(λ) to be the maximum size of all circuits in Cλ. And let
DC be the distribution associated with C. All the notions below are described in
detail in the full version.

Q-Input-Hiding Obfuscators. The notion of q-input-hiding obfuscators states
that given an obfuscated circuit, it should be infeasible for a QPT adver-
sary to find an accepting input; that is, an input on which the circuit
outputs 1. We denote the q-input-hiding obfuscator scheme to be qIHO =
(qIHO.Obf, qIHO.Eval) and the class of circuits associated with this scheme is
C.

Subspace Hiding Obfuscation. This notion allows for obfuscating a circuit, asso-
ciated with subspace A, that checks if an input vector belongs to this subspace
A or not. In terms of security, we require that the obfuscation of this circuit
is indistinguishable from obfuscation of another circuit that tests membership
of a larger random (and hidden) subspace containing A. We denote the scheme
to be shO = (shO.Obf, shO.Eval). The field associated with shO is Zq and the
dimensions will be clear in the construction.

Q-Simulation-Extractable Non-Interactive Zero-Knowledge (seNIZK) System.
This notion is a strengthening of a non-interactive zero-knowledge (NIZK) sys-
tem. It guarantees the following property: suppose a malicious adversary, after
receiving a simulated NIZK proof, produces another proof. Then, there exists
an extractor that can extract the underlying witness associated with this proof
with probability negligibly close to the probability of acceptance of the proof.
We denote the seNIZK proof system to be qseNIZK = (CRSGen,P,V) and we
describe the NP relation associated with this system in the construction. We
require this scheme to satisfy sub-exponential security. We refer to the full ver-
sion for an appropriate instantiation.



526 P. Ananth and R. L. La Placa

4.3 Construction

We describe the scheme of SSL below. We encourage the reader to look at the
overview of the construction presented in Sect. 1.2 before reading the formal
details below.

– Setup(1λ): Compute crs ← CRSGen
(

1λ1
)

, where λ1 = λ + n and n is the
input length of the circuit. Output crs.

– Gen(crs): On input common reference string crs, choose a random λ
2 -

dimensional subspace A ⊂ Zλ
q . Set sk = A.

– Lessor(sk = A,C): On input secret key sk, circuit C ∈ Cλ, with input length
n,
1. Prepare the state |A〉 = 1√

qλ/2

∑

a∈A

|a〉.
2. Compute ˜C ← qIHO.Obf(C; ro)
3. Compute g̃ ← shO(A; rA).
4. Compute g̃⊥ ← shO(A⊥; rA⊥).
5. Let x = S(C); that is, x is an accepting point of C.
6. Let L be the NP language defined by the following NP relation.

RL :=

⎧

⎨

⎩

((

g̃, g̃⊥, ˜C
)

, (A, ro, rA, rA⊥ , C, x)
)

∣

∣

∣

∣

∣

g̃=shO(A;rA)

g̃⊥=shO(A⊥;r
A⊥ )

C̃=qIHO.Obf(C;ro),
C(x)=1

⎫

⎬

⎭

.

Compute π ← P
(

crs,
(

g̃, g̃⊥, ˜C
)

, (A, ro, rA, rA⊥ , C, x)
)

7. Output ρC = |ΦC〉〈ΦC | =
(

|A〉〈A|, g̃, g̃⊥, ˜C, π
)

.

– Run(crs, ρC , x):
1. Parse ρC as

(

ρ, g̃, g̃⊥, ˜C, π
)

. In particular, measure the last 4 registers.
Note: This lets us assume that the input to those registers is just classical,
since anyone about to perform Run might as well measure those registers
themselves.

2. We denote the operation shO.Eval(g̃, |x〉|y〉) = |x〉|y ⊕1A(x)〉 by g̃[|x〉|y〉],
where 1A(x) is an indicator function that checks membership in A. Com-
pute g̃[ρ ⊗ |0〉〈0|] and measure the second register. Let a denote the out-
come bit, and let ρ′ be the post-measurement state.

3. As above, we denote the operation shO.Eval(g̃⊥, |x〉|y〉) = |x〉|y⊕1A(x)〉 by
g̃⊥[|x〉|y〉]. Compute g̃⊥[FTρ′FT†⊗|0〉〈0|] and measure the second register.
Let b denote the outcome bit.
Note: in Step 2 and 3, Run is projecting ρ onto |A〉〈A| if a = 1 and b = 1.

4. Afterwards, perform the Fourier Transform again on the first register of
the post-measurement state, let ρ′′ be the resulting state.

5. Compute c ← V
(

crs,
(

g̃, g̃⊥, ˜C
)

, π
)



Secure Software Leasing 527

6. If either a = 0 or b = 0 or c = 0, reject and output ⊥.
7. Compute y ← qIHO.Eval

(

˜C, x
)

.

8. Output
(

ρ′′, g̃, g̃⊥, ˜C, π
)

and y.
– Check(sk = A, ρC):

1. Parse ρC as
(

ρ, g̃, g̃⊥, ˜C, π
)

.
2. Perform the measurement {|A〉〈A|, I − |A〉〈A|} on ρ. If the measurement

outcome corresponds to |A〉〈A|, output 1. Otherwise, output 0.

Lemma 1 (Overwhelming probability of perfect correctness). The
above scheme satisfies ε = negl(λ) correctness.

Proof. We first argue that the correctness of Run holds. Since qIHO is perfectly
correct, it suffices to show that Run will not output ⊥. For this to happen, we
need to show that a, b, c = 1. Since g̃ = shO(A), g̃⊥ = shO(A⊥), and the input
state is |A〉〈A|, then a = 1 and b = 1 with probability negligibly close to 1 by
correctness of shO. If π is a correct proof, then by perfect correctness of qseNIZK,
we have that Pr[c = 1] = 1.

To see that the correctness of Check also holds, note that the leased state is
ρ = |A〉〈A|, which will pass the check with probability 1.

Lemma 2. Fix β = μ(λ), where μ(λ) is any non-negligible function. Assuming
the security of qIHO, qseNIZK and shO, the above scheme satisfies (β, γ,DC)-
infinite-term perfect lessor security, where γ is a negligible function.

The proof of the above lemma is presented in the full version.

Acknowledgements. We thank Alex Dalzell and Aram Harrow for helpful discus-
sions. During this work, RL was funded by NSF grant CCF-1729369 MIT-CTP/5204.

A Related Work

Quantum Money and Quantum Lightning. Using quantum mechanics to achieve
unforgeability has a history that predates quantum computing itself. Wiesner [40]
informally introduced the notion of unforgeable quantum money – unclonable
quantum states that can also be (either publicly or privately) verified to be valid
states. A few constructions [3,4,27,29,34] achieved quantum money with various
features and very recently, in a breakthrough work, Zhandry [41] shows how to
construct publicly-verifiable quantum money from cryptographic assumptions.

Certifiable Deletion and Unclonable Encryption. Unclonability has also been
studied in the context of encryption schemes. The work of Gottesman [31] studies
the problem of quantum tamper detection. Alice can use a quantum state to
send Bob an encryption of a classical message m with the guarantee that any
eavsdropper could not have cloned the ciphertext. In a recent work, Broadbent



528 P. Ananth and R. L. La Placa

and Lord [23] introduced the notion of unclonable encryption. Roughly speaking,
an unclonable encryption allows Alice to give Bob and Charlie an encryption of
a classical message m, in the form of a quantum state σ(m), such that Bob and
Charlie cannot ‘split’ the state among them.

In a follow-up work, Broadbent and Islam [22], construct a one-time use
encryption scheme with certifiable deletion. An encryption scheme has certifiable
deletion property, if there is an algorithm to check that a ciphertext was deleted.

Quantum Obfuscation. Our proof of the impossibility of SSL is inspired by the
proof of Barak et al. [10] on the impossibility of VBB for arbitrary functions.
Alagic and Fefferman [7] formalized the notion of program obfuscation via quan-
tum tools, defining quantum virtual black-box obfuscation (qVBB) and quantum
indistinguishability obfuscation (qiO), as the natural quantum analogues to the
respective classical notions (VBB and iO). They also proved quantum analogues
of some of the previous impossibility results from [10], as well as provided quan-
tum cryptographic applications from qVBB and qiO.

Quantum One-Time Programs and One-Time Tokens. Another related primitive
is quantum one-time programs. This primitive wasn shown to be impossible
by [21]. This rules out the possibility of having a copy-protection scheme where a
single copy of the software is consumed by the evaluation procedure. Despite the
lack of quantum one-time programs, there are constructions of secure ‘one-time’
signature tokens in the oracle models [8,13]. A quantum token for signatures is
a quantum state that would let anyone in possession of it to sign an arbitrary
document, but only once. The token is destroyed in the signing process.

Recent Work on Copy-Protection. While finishing this manuscript, we became
aware of very recent work on copy-protection. Aaronson et al. [5] constructed
copy-protection for unlearnable functions relative to a classical oracle. Our work
complements their results, since we show that obtaining copy-protection in the
standard model (i.e., without oracles) is not possible.

References

1. How microsoft corporation makes most of its money. https://www.fool.com/
investing/2017/06/29/how-microsoft-corporation-makes-most-of-its-money.aspx

2. Scott Aaronson. Shtetl-Optimized. Ask Me Anything: Apocalypse Edi-
tion. https://www.scottaaronson.com/blog/?p=4684#comment-1834174. Com-
ment #283, Posted: 03–24-2020. Accessed 25 Mar 2020

3. Aaronson, S.: Quantum copy-protection and quantum money. In: 2009 24th Annual
IEEE Conference on Computational Complexity, pp. 229–242. IEEE (2009)

4. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: Proceed-
ings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp.
41–60 (2012)

5. Aaronson, S., Liu, J., Zhang, R.: Quantum copy-protection from hidden subspaces.
arXiv preprint arXiv:2004.09674 (2020)

https://www.fool.com/investing/2017/06/29/how-microsoft-corporation-makes-most-of-its-money.aspx
https://www.fool.com/investing/2017/06/29/how-microsoft-corporation-makes-most-of-its-money.aspx
https://www.scottaaronson.com/blog/?p=4684#comment-1834174
http://arxiv.org/abs/2004.09674


Secure Software Leasing 529

6. Alagic, G., Brakerski, Z., Dulek, Y., Schaffner, C.: Impossibility of quantum virtual
black-box obfuscation of classical circuits. arXiv preprint arXiv:2005.06432 (2020)

7. Alagic, G., Fefferman, B.: On quantum obfuscation. arXiv preprint
arXiv:1602.01771 (2016)

8. Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and appli-
cations to hybrid quantum/classical authentication. Cryptology ePrint Archive,
Report 2020/107 (2020)

9. Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. Cryptology
ePrint Archive, Report 2019/1323 (2019)

10. Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings
42nd IEEE Symposium on Foundations of Computer Science, pp. 106–115. IEEE
(2001)

11. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfusca-
tion for evasive functions. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol. 8349,
pp. 26–51. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 2

12. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, Joe
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 1

13. Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv preprint
arXiv:1609.09047 (2016)

14. Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the black-box
barrier. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pp. 1091–1102. ACM (2019)

15. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, pp. 241–250 (2013)

16. Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant rounds. In:
STOC (2020)

17. Brakerski, Z.: Quantum FHE (Almost) as secure as classical. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 67–95. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96878-0 3

18. Brakerski, Z., Döttling, N., Garg, S.: and Giulio Malavolta. Circular-secure lwe
suffices, Factoring and pairings are not necessary for io (2020)

19. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

20. Broadbent, A., Grilo, A.B.: Zero-knowledge for qma from locally simulatable
proofs. arXiv preprint arXiv:1911.07782 (2019)

21. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 344–360. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 20

22. Broadbent, A., Islam, R.: Quantum encryption with certified deletion. arXiv
preprint arXiv:1910.03551 (2019)

23. Broadbent, A., Lord, S.: Uncloneable quantum encryption via random oracles.
arXiv preprint arXiv:1903.00130 (2019)

24. Coladangelo, A.: Smart contracts meet quantum cryptography. arXiv preprint
arXiv:1902.05214 (2019)

25. Coladangelo, A., Vidick, T., Zhang, T.: Non-interactive zero-knowledge arguments
for qma, with preprocessing. arXiv preprint arXiv:1911.07546 (2019)

http://arxiv.org/abs/2005.06432
http://arxiv.org/abs/1602.01771
https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/3-540-44647-8_1
http://arxiv.org/abs/1609.09047
https://doi.org/10.1007/978-3-319-96878-0_3
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
http://arxiv.org/abs/1911.07782
https://doi.org/10.1007/978-3-642-40084-1_20
http://arxiv.org/abs/1910.03551
http://arxiv.org/abs/1903.00130
http://arxiv.org/abs/1902.05214
http://arxiv.org/abs/1911.07546


530 P. Ananth and R. L. La Placa

26. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

27. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from
knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pp. 276–289 (2012)

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

29. Gavinsky, D.: Quantum money with classical verification. In: 2012 IEEE 27th Con-
ference on Computational Complexity, pp. 42–52. IEEE (2012)

30. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. Technical
report, Cryptology ePrint Archive, Report 2020/1010 (2020)

31. Gottesman, D.: Uncloneable encryption. Quant. Inf. Comput. 3(6), 581–602 (2003)
32. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS (2017)
33. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator

from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
34. Lutomirski, A., et al.: Breaking and making quantum money: toward a new quan-

tum cryptographic protocol. arXiv preprint arXiv:0912.3825 (2009)
35. Mahadev, U.: Classical homomorphic encryption for quantum circuits. In: 2018

IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp.
332–338. IEEE (2018)

36. Mahadev, U.: Classical verification of quantum computations. In: 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 259–267.
IEEE (2018)

37. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer Sci-
ence (Cat. No. 99CB37039), pp. 543–553. IEEE (1999)

38. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling (2020)
39. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.

In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 600–611. IEEE (2017)

40. Wiesner, S.: Conjugate coding. ACM Sigact News 15(1), 78–88 (1983)
41. Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y.,

Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 408–438. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 14

https://doi.org/10.1007/3-540-44647-8_33
http://arxiv.org/abs/0912.3825
https://doi.org/10.1007/978-3-030-17659-4_14


Oblivious Transfer Is in MiniQCrypt

Alex B. Grilo1(B), Huijia Lin2(B), Fang Song3(B),
and Vinod Vaikuntanathan4(B)

1 CNRS, LIP6, Sorbonne Université, Paris, France
Alex.Bredariol-Grilo@lip6.fr

2 University of Washington, Seattle, WA, USA
rachel@cs.washington.edu

3 Portland State University, Portland, OR, USA
fsong@pdx.edu

4 MIT, Cambridge, MA, USA
vinodv@csail.mit.edu

Abstract. MiniQCrypt is a world where quantum-secure one-way func-
tions exist, and quantum communication is possible. We construct an
oblivious transfer (OT) protocol in MiniQCrypt that achieves simulation-
security in the plain model against malicious quantum polynomial-time
adversaries, building on the foundational work of Crépeau and Kil-
lian (FOCS 1988) and Bennett, Brassard, Crépeau and Skubiszewska
(CRYPTO 1991). Combining the OT protocol with prior works, we
obtain secure two-party and multi-party computation protocols also in
MiniQCrypt. This is in contrast to the classical world, where it is widely
believed that one-way functions alone do not give us OT.

In the common random string model, we achieve a constant-round
universally composable (UC) OT protocol.

1 Introduction

Quantum computing and modern cryptography have enjoyed a highly productive
relationship for many decades ever since the conception of both fields. On the one
hand, (large-scale) quantum computers can be used to break many widely used
cryptosystems based on the hardness of factoring and discrete logarithms, thanks
to Shor’s algorithm [60]. On the other hand, quantum information and computa-
tion have helped us realize cryptographic tasks that are otherwise impossible, for
example quantum money [65] and generating certifiable randomness [13,17,63].

Yet another crown jewel in quantum cryptography is the discovery, by Ben-
nett and Brassard [8], of a key exchange protocol whose security is unconditional.
That is, they achieve information-theoretic security for a cryptographic task that
classically necessarily has to rely on unproven computational assumptions. In a
nutshell, they accomplish this using the uncloneability of quantum states, a
bedrock principle of quantum mechanics. What’s even more remarkable is the

A full version of this paper appears on ePrint Archive Report 2020/1500 [35].

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 531–561, 2021.
https://doi.org/10.1007/978-3-030-77886-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_18


532 A. B. Grilo et al.

fact that their protocol makes minimalistic use of quantum resources, and conse-
quently, has been implemented in practice over very large distances [23,45]. This
should be seen in contrast to large scale quantum computation whose possibility
is still being actively debated.

Bennett and Brassard’s groundbreaking work raised a tantalizing possibility
for the field of cryptography:

Could every cryptographic primitive
be realized unconditionally using quantum information?

A natural next target is oblivious transfer (OT), a versatile cryptographic
primitive which, curiously, had its origins in Wiesner’s work in the 1970s on quan-
tum information [65] before being rediscovered in cryptography by Rabin [56]
in the 1980s. Oblivious transfer (more specifically, 1-out-of-2 OT) is a two-party
functionality where a receiver Bob wishes to obtain one out of two bits that
the sender Alice owns. The OT protocol must ensure that Alice does not learn
which of the two bits Bob received, and that Bob learns only one of Alice’s bits
and no information about the other. Oblivious transfer lies at the foundation of
secure computation, allowing us to construct protocols for the secure multiparty
computation (MPC) of any polynomial-time computable function [33,42,43].

Crépeau and Killian [19] and Bennett, Brassard, Crépeau and Skubiszewska
[9] constructed an OT protocol given an ideal bit commitment protocol and
quantum communication. In fact, the only quantum communication in their pro-
tocol consisted of Alice sending several so-called “BB84 states” to Bob. Unfor-
tunately, unconditionally secure commitment [49,53] and unconditionally secure
OT [16,48] were soon shown to be impossible even with quantum resources.

However, given that bit commitment can be constructed from one-way func-
tions (OWF) [37,54], the hope remains that OT, and therefore a large swathe
of cryptography, can be based on only OWF together with (practically feasible)
quantum communication. Drawing our inspiration from Impagliazzo’s five worlds
in cryptography [39], we call such a world, where post-quantum secure one-way
functions (pqOWF) exist and quantum computation and communication are
possible, MiniQCrypt. The question that motivates this paper is:

Do OT and MPC exist in MiniQCrypt?

Without the quantum power, this is widely believed to be impossible. That
is, given only OWFs, there are no black-box constructions of OT or even key
exchange protocols [40,57]. The fact that [8] overcome this barrier and construct
a key exchange protocol with quantum communication (even without the help
of OWFs) reinvigorates our hope to do the same for OT.

Aren’t We Done Already? At this point, the reader may wonder why we do
not have an affirmative answer to this question already, by combining the OT
protocol of [9,19] based on bit commitments, with a construction of bit commit-
ments from pqOWF [37,54]. Although this possibility was mentioned already in
[9], where they note that “. . . computational complexity based quantum cryp-
tography is interesting since it allows to build oblivious transfer around one-way
functions.”, attaining this goal remains elusive as we explain below.



Oblivious Transfer Is in MiniQCrypt 533

First, proving the security of the [9,19] OT protocol (regardless of the
assumptions) turns out to be a marathon. After early proofs against limited
adversaries [52,66], it is relatively recently that we have a clear picture with for-
mal proofs against arbitrary quantum polynomial-time adversaries [12,20,21,61].
Based on these results, we can summarize the state of the art as follows.

– Using Ideal Commitments: If we assume an ideal commitment protocol, for-
malized as universally composable (UC) commitment, then the quantum OT
protocol can be proven secure in strong simulation-based models, in particular
the quantum UC model that admits sequential composition or even concur-
rent composition in a network setting [12,20,30,61]. However, UC commit-
ments, in contrast to vanilla computationally-hiding and statistically-binding
commitments, are powerful objects that do not live in Minicrypt. In par-
ticular, UC commitments give us key exchange protocols and are therefore
black-box separated from Minicrypt.1

– Using Vanilla Commitments: If in the [9,19] quantum OT protocol we use a
vanilla statistically-binding and computationally hiding commitment scheme,
which exists assuming a pqOWF, the existing proofs, for example [12], fall
short in two respects.
First, for a malicious receiver, the proof of [12] constructs only an inefficient
simulator. Roughly speaking, this is because the OT receiver in [9,19] acts
as a committer, and vanilla commitments are not extractable. Hence, we
need an inefficient simulator to extract the committed value by brute force.
Inefficient simulation makes it hard, if not impossible, to use the OT protocol
to build other protocols (even if we are willing to let the resulting protocol
have inefficient simulation). Our work will focus on achieving the standard
ideal/real notion of security [32] with efficient simulators.
Secondly, it is unclear how to construct a simulator (even ignoring efficiency)
for a malicious sender. Roughly speaking, the issue is that simulation seems to
require that the commitment scheme used in [9,19] be secure against selective
opening attacks, which vanilla commitments do not guarantee [6].

– Using Extractable Commitments: It turns out that the first difficulty above
can be addressed if we assume a commitment protocol that allows efficient
extraction of the committed value – called extractable commitments. Con-
structing extractable commitments is surprisingly challenging in the quantum
world because of the hardness of rewinding. Moreover, to plug into the quan-
tum OT protocol, we need a strong version of extractable commitments from
which the committed values can be extracted efficiently without destroying or

1 The key exchange protocol between Alice and Bob works as follows. Bob, playing
the simulator for a malicious sender in the UC commitment protocol, chooses a
common reference string (CRS) with a trapdoor TD and sends the CRS to Alice.
Alice, playing the sender in the commitment scheme, chooses a random K and runs
the committer algorithm. Bob runs the straight-line simulator-extractor (guaranteed
by UC simulation) using the TD to get K, thus ensuring that Alice and Bob have
a common key. An eavesdropper Eve should not learn K since the above simulated
execution is indistinguishable from an honest execution, where K is hidden.



534 A. B. Grilo et al.

even disturbing the quantum states of the malicious committer,2 a property
that is at odds with quantum unclonability and rules out several extraction
techniques used for achieving arguments of knowledge such as in [62]. In par-
ticular, we are not aware of a construction of such extractable commitments
without resorting to strong assumptions such as (unleveled) quantum FHE
and LWE [2,10], which takes us out of minicrypt. Another standard way to
construct extractable commitments is using public-key encryption in the CRS
model, which unfortunately again takes us out of minicrypt.

To summarize, we would like to stress that before our work, the claims that
quantum OT protocols can be constructed from pqOWFs [9,28] were rooted in
misconceptions.

Why MiniQCrypt. Minicrypt is one of five Impagliazzo’s worlds [39] where
OWFs exist, but public-key encryption schemes do not. In Cryptomania, on the
other hand, public-key encryption schemes do exist.

Minicrypt is robust and efficient. It is robust because there is an abundance
of candidates for OWFs that draw from a variety of sources of hardness, and
most do not fall to quantum attacks. Two examples are (OWFs that can be
constructed from) the advanced encryption standard (AES) and the secure hash
standard (SHA). They are “structureless” and hence typically do not have any
subexponential attacks either. In contrast, cryptomania seems fragile and, to
some skeptics, even endangered due to the abundance of subexponential and
quantum attacks, except for a handful of candidates. It is efficient because the
operations are combinatorial in nature and amenable to very fast implementa-
tions; and the key lengths are relatively small owing to OWFs against which the
best known attacks are essentially brute-force key search. We refer the reader to
a survey by Barak [3] for a deeper perspective.

Consequently, much research in (applied) cryptography has been devoted to
minimizing the use of public-key primitives in advanced cryptographic proto-
cols [5,41]. However, complete elimination seems hard. In the classical world, in
the absence of quantum communication, we can construct pseudorandom gen-
erators and digital signatures in Minicrypt, but not key exchange, public-key
encryption, oblivious transfer or secure computation protocols. With quantum
communication becoming a reality not just academically [23,38,55] but also com-
mercially [45], we have the ability to reap the benefits of robustness and efficiency
that Minicrypt affords us, and construct powerful primitives such as oblivious
transfer and secure computation that were so far out of reach.

Our Results. In this paper, we finally show that the longstanding (but previ-
ously unproved) claim is true.

Theorem 1.1 (Informal). Oblivious transfer protocols in the plain model that
are simulation-secure against malicious quantum polynomial-time adversaries

2 This is because when using extractable commitment in a bigger protocol, the proof
needs to extract the committed value and continue the execution with the adversary.



Oblivious Transfer Is in MiniQCrypt 535

exist assuming that post-quantum one-way functions exist and that quantum
communication is possible.

Our main technical contribution consists of showing a construction of an
extractable commitment scheme based solely on pqOWFs and using quan-
tum communication. Our construction involves three ingredients. The first is
vanilla post-quantum commitment schemes which exist assuming that pqOWFs
exist [54]. The second is post-quantum zero-knowledge protocols which also
exist assuming that pqOWFs exist [64]. The third and final ingredient is a
special multiparty computation protocol called conditional disclosure of secrets
(CDS) constructing which in turns requires OT. This might seem circular as this
whole effort was to construct an OT protocol to begin with! Our key observa-
tion is that the CDS protocol is only required to have a mild type of security,
namely unbounded simulation, which can be achieved with a slight variant of the
[9,19] protocol. Numerous difficulties arise in our construction, and in particular
proving consistency of a protocol execution involving quantum communication
appears difficult: how do we even write down an statement (e.g., NP or QMA)
that encodes consistency? Overcoming these difficulties constitutes the bulk of
our technical work. We provide a more detailed discussion on the technical con-
tribution of our work in Sect. 1.1.

We remark that understanding our protocol requires only limited knowledge
of quantum computation. Thanks to the composition theorems for (stand-alone)
simulation-secure quantum protocols [36], much of our protocol can be viewed as
a classical protocol in the (unbounded simulation) OT-hybrid model. The only
quantumness resides in the instantiation of the OT hybrid with [9,19].

We notice that just as in [8,9,19], the honest execution of our protocols
does not need strong quantum computational power, since one only needs to
create, send and measure “BB84” states, which can be performed with current
quantum technology.3 Most notably, creating the states does not involve creating
or maintaining long-range correlations between qubits.

In turn, plugging our OT protocol into the protocols of [24,27,42,61] (and
using the sequential composition theorem [36]) gives us secure two-party compu-
tation and multi-party computation (with a dishonest majority) protocols, even
for quantum channels.

Theorem 1.2 (Informal). Assuming that post-quantum one-way functions
exist and quantum communication is possible, for every classical two-party and
multi-party functionality F , there is a quantum protocol in the plain model that
is simulation-secure against malicious quantum polynomial-time adversaries.
Under the same assumptions, there is a quantum two-party and multi-party pro-
tocol for any quantum circuit Q.

Finally, we note that our OT protocol runs in poly(λ) number of rounds,
where λ is a security parameter, and that is only because of the zero-knowledge

3 A BB84 state is a single-qubit state that is chosen uniformly at random from
{|0〉, |1〉, |+〉, |−〉}. Alternatively, it can be prepared by computing HhXx|0〉 where
X is the bit-flip gate, H is the Hadamard gate, and h, x ∈ {0, 1} are random bits.



536 A. B. Grilo et al.

proof. Watrous’ ZK proof system [64] involves repeating a classical ZK proof
(such as that graph coloring ZK proof [34] or the Hamiltonicity proof [11])
sequentially. A recent work of Bitansky and Shmueli [10] for the first time con-
structs a constant-round quantum ZK protocol (using only classical resources)
but they rely on a strong assumption, namely (unleveled) quantum FHE and
quantum hardness of LWE, which does not live in minicrypt. Nevertheless, in
the common random string (CRS) model, we can instantiate the zero-knowledge
protocol using a WI protocol and a Pseudo-Random Generator (PRG) with
additive λ bit stretch as follows: To prove a statement x, the prover proves using
the WI protocol that either x is in the language or the common random string is
in the image of the PRG. To simulate a proof, the simulator samples the CRS as
a random image of the PRG, and proves using the WI protocol that it belongs
to the image in a straight-line. Moreover, this modification allows us to achieve
straight-line simulators, leading to universally-composable (UC) security [15].
Therefore, this modification would give us the following statement.

Theorem 1.3 (Informal). Constant-round oblivious transfer protocols in the
common random string (CRS) model that are UC-simulation-secure against
malicious quantum poly-time adversaries exist assuming that post-quantum one-
way functions exist and that quantum communication is possible.

Plugging the above UC-simulation-secure OT into the protocol of [42] gives
constant-round multi-party computation protocols for classical computation in
the common random string model that are UC-simulation-secure against mali-
cious quantum poly-time adversaries.

Going Below MiniQCrypt? We notice that all of the primitives that we imple-
ment in our work cannot be implemented unconditionally, even in the quantum
setting [16,48,49,53]. Basing their construction on pqOWFs seems to be the next
best thing, but it does leave with the intriguing question if they could be based
on weaker assumptions. More concretely, assume a world with quantum com-
munication as we do in this paper. Does the existence of quantum OT protocols
imply the existence of pqOWFs? Or, does a weaker quantum notion of one-way
functions suffice? We leave the exploration of other possible cryptographic worlds
below MiniQCrypt to future work.

Other Related Work. Inspired by the quantum OT protocol [9,19], a family of
primitives, named k-bit cut-and-choose, has been shown to be sufficient to realize
OT statistically by quantum protocols [25,29] which is provably impossible by
classical protocols alone [51]. These offer further examples demonstrating the
power of quantum cryptographic protocols.

There has also been extensive effort on designing quantum protocols OT and
the closely related primitive of one-time-memories under physical rather than
computational assumptions, such as the bounded-storage model, noisy-storage
model, and isolated-qubit model, which restrict the quantum memory or admis-
sible operations of the adversary [21,22,44,46,47,58]. They provide important
alternatives, but the composability of these protocols are not well understood.



Oblivious Transfer Is in MiniQCrypt 537

Meanwhile, there is strengthening on the impossibility for quantum protocols to
realize secure computation statistically from scratch [14,59].

We note that there exist classical protocols for two-party and multi-party
computation that are quantum-secure assuming strong assumptions such as
post-quantum dense encryption and superpolynomial quantum hardness of the
learning-with-errors problem [1,36,50]. And prior to the result in [24], there is a
long line of work on secure multi-party quantum computation (Cf. [7,18,26,27]).

We remark that the idea to use OT and ZK for obtaining extractable com-
mitment was also used (at least implicitly) in [10,36,50].

Finally, we notice that [4] have independently and concurrently proposed a
quantum protocol for extractable and equivocal commitments, which can be used
in the protocol of [9,19] to achieve OT (and secure multi-party computation)
in MiniQCrypt. In comparison, their extractable and equivocal commitment
scheme is statistically hiding, which leads to one-sided statistical security in their
OT protocols. Furthermore, their commitment and OT protocols make black-
box use of the underlying one-way function. Our protocols do not have these
properties. On the other hand, our commitment scheme is statistically binding,
and we give constant-round UC-secure protocols in the reusable CRS model. We
also believe that our notion of verifiable CDS is of independent interest.

1.1 Technical Overview

We give an overview of our construction of post-quantum OT protocol in the
plain model from post-quantum one-way functions. In this overview, we assume
some familiarity with post-quantum MPC in the stand-alone, sequential compo-
sition, and UC models, and basic functionalities such as Fot and Fcom. We will
also consider parallel versions of them, denoted as Fp-ot and Fso-com. The parallel
OT functionality Fp-ot enables the sender to send some polynomial number of
pairs of strings {si

0, s
i
1}i and the receiver to choose one per pair to obtain si

ci in
parallel. The commitment with selective opening functionality Fso-com enables a
sender to commit to a string m while hiding it, and a receiver to request opening
of a subset of bits at locations T ⊆ [|m|] and obtain mT = (mi)i∈T . We refer
the reader to Sect. 2 for formal definitions of these functionalities.

BBCS OT in the Fso-com-Hybrid Model. We start by describing the quantum
OT protocol of [9] in the Fso-com hybrid model.

BBCS OT protocol: The sender ot.S has strings s0, s1 ∈ {0, 1}�, the receiver
ot.R has a choice bit c ∈ {0, 1}.
1. Preamble. ot.S sends n � � BB94 qubits |xA〉θA prepared using random

bits xA ∈R {0, 1}n and random basis θA ∈R {+, ×}n.
ot.R measures these qubits in randomly chosen bases θB ∈R {+, ×}n and
commits to the measured bits together with the choice of the bases, that is
{θB

i , xB
i }i, using Fso-com.

2. Cut and Choose. ot.S requests to open a random subset T of locations, of
size say n/2, and gets {θB

i , xB
i }i∈T from Fso-com.

Importantly, it aborts if for any i θB
i = θA

i but xB
i �= xA

i . Roughly speaking,
this is because it’s an indication that the receiver has not reported honest
measurement outcomes.



538 A. B. Grilo et al.

3. Partition Index Set. ot.S reveals θA
T̄ for the unchecked locations T̄ . ot.R

partitions T̄ into a subset of locations where it measured in the same bases
as the sender Ic := {i ∈ T̄ : θA

i = θB
i } and the rest I1−c := T̄ − Ic, and sends

(I0, I1) to the sender.
4. Secret Transferring. ot.S hides the two strings si for i = 0, 1 using

randomness extracted from xA
Ii

via a universal hash function f and sends
mi := si ⊕ f(xA

Ii
), from which ot.R recovers s := mc ⊕ f(xB

Ic).

Correctness follows from that for every i ∈ Ic, θA
i = θB

i and xA
Ic

= xB
Ic

, hence
the receiver decodes sc correctly.

The security of the BBCS OT protocol relies crucially on two important
properties of the Fso-com commitments, namely extractability and equivocability,
which any protocol implementing the Fso-com functionality must satisfy.

Equivocability: To show the receiver’s privacy, we need to efficiently simulate the
execution with a malicious sender ot.S∗ without knowing the choice bit c and
extract both sender’s strings s0, s1. To do so, the simulator ot.SimS would like to
measure at these unchecked locations T̄ using exactly the same bases θA

T̄
as ot.S∗

sends in Step 3. In an honest execution, this is impossible as the receiver must
commit to its bases θB and pass the checking step. However, in simulation, this
can be done by invoking the equivocability of Fso-com. In particular, ot.SimS can
simulate the receiver’s commitments in the preamble phase without committing
to any value. When it is challenged to open locations at T , it measures qubits at
T in random bases, and equivocates commitments at T to the measured outcomes
and bases. Only after ot.S∗ reveals its bases θA

T̄
for the unchecked locations, does

ot.SimS measure qubits at T̄ in exactly these bases. This ensures that it learns
both xA

I0
and xA

I1
and hence can recover both s0 and s1.

Extractability: To show the sender’s privacy, we need to efficiently extract the
choice bit c from a malicious receiver ot.R∗ and simulate the sender’s messages
using only sc. To do so, the simulator ot.SimR needs to extract efficiently from the
Fso-com commitments all the bases θB, so that, later given I0, I1 it can figure out
which subset Ic contains more locations i where the bases match θB

i = θA
i , and

use the index of that set as the extracted choice bit. Observe that it is important
that extraction does not “disturb” the quantum state of ot.R∗ at all, so that
ot.SimR can continue simulation with ot.R∗. This is easily achieved using Fso-com

as extraction is done in a straight-line fashion, but challenging to achieve in the
plain model as rewinding a quantum adversary is tricky. Indeed, the argument
of knowledge protocol of [62] can extract a witness but disturbs the state of the
quantum adversary due to measurement. Such strong extractable commitment is
only known in the plain model under stronger assumptions [2,10,36] or assuming
public key encryption in the CRS model.

It turns out that equivocability can be achieved using zero-knowledge pro-
tocols, which gives a post-quantum OT protocol with an inefficient simulator
ot.SimR against malicious receivers (and efficient ot.SimS). Our main technical
contribution lies in achieving efficient extractability while assuming only post-
quantum one-way functions. In particular, we will use the OT with unbounded
simulation as a tool for this. We proceed to describing these steps in more detail.



Oblivious Transfer Is in MiniQCrypt 539

Achieving Equivocability Using Zero-Knowledge. The idea is to let the
committer commit c = com(μ; ρ) to a string μ ∈ {0, 1}n using any statistically
binding computationally hiding commitment scheme com whose decommitment
can be verified classically, for instance, Naor’s commitment scheme [54] from
post-quantum one-way functions. For now in this overview, think of com as non-
interactive. (Jumping ahead, later we will also instantiate this commitment with
a multi-round extractable commitment scheme that we construct.)

Any computationally hiding commitment can be simulated by simply com-
mitting to zero, c̃ = com(0; ρ). The question is how to equivocate c̃ to any string
μ′ later in the decommitment phase. With a post-quantum ZK protocol, instead
of asking the committer to reveal its randomness ρ which would statistically
bind c̃ to the zero string, we can ask the committer to send μ′ and give a zero-
knowledge proof that c̃ indeed commits to μ′. As such, the simulator can cheat
and successfully open to any value μ′ by simulating the zero-knowledge argument
to the receiver.

Equivocable Commitment: The sender com.S has a string μ ∈ {0, 1}n, the
receiver com.R has a subset T ⊆ [n].
1. Commit Phase. com.S commits to μ using a statistically binding commit-

ment scheme com using randomness ρ. Let c be the produced commitment.
Note: Simulation against malicious receivers commits to 0n. Simulation
against malicious senders is inefficient to extract μ by brute force.

2. Decommit Phase. Upon com.R requesting to open a subset T of locations,
com.S sends μ′ and gives a single zero knowledge argument that c commits
to μ such that μ′ = μT .
Note: To equivocate to μ′ �= μT , the simulator sends μ′ and simulates the
zero-knowledge argument (of the false statement).

The above commitment protocol implements Fso-com with efficient simulation
against malicious receivers, but inefficient simulation against malicious senders.
Plugging it into BBCS OT protocol, we obtain the following corollary:

Corollary 1.1 (Informal). Assume post-quantum one-way functions. In the
plain model, there is:

– a protocol that securely implements the OT functionality Fot, and
– a protocol that securely implements the parallel OT functionality Fp-ot,

in the sequential composition setting, and with efficient simulation against mali-
cious senders but inefficient simulation against malicious receivers.

The second bullet requires some additional steps, as parallel composition does
not automatically apply in the stand-alone (as opposed to UC) setting (e.g., the
ZK protocol of [64] is not simulatable in parallel due to rewinding). Instead,
we first observe that the BBCS OT UC-implements Fot in the Fso-com hybrid
model, and hence parallel invocation of BBCS OT UC-implements Fp-ot in the
Fso-com hybrid model. Note that parallel invocation of BBCS OT invokes Fso-com

in parallel, which in fact can be merged into a single invocation to Fso-com.
Therefore, plugging in the above commitment protocol gives an OT protocol that



540 A. B. Grilo et al.

implements Fp-ot. In particular, digging deeper into the protocol, this ensures
that we are invoking a single ZK protocol for all the parallel copies of the parallel
OT, binding the executions together.

Achieving Extractability Using OT with Unbounded Simulation. Inter-
estingly, we show that OT with (even 2-sided) unbounded simulation plus zero-
knowledge is sufficient for constructing extractable commitments, which when
combined with zero-knowlege again as above gives an implementation of Fso-com

in the sequential composition setting in the plain model.
The initial idea is to convert the power of simulation into the power of extrac-

tion via two-party computation, and sketched below.

Initial Idea for Extractable Commitment: The sender com.S has μ ∈ {0, 1}n.
1. Trapdoor setup: The receiver com.R sends a commitment c of a statistically

binding commitment scheme com, and gives a zero-knowledge proof that c commits
to 0.

2. Conditional Disclosure of Secret (CDS): com.S and com.R run a two-party
computation protocol implementing the CDS functionality Fcds for the language
Lcom = {(c′, b′) : ∃r′ s.t. c′ = com(b′; r′)}, where the CDS functionality Fcds for Lcom

is defined as below:

Fcds : Sender input (x, μ), Receiver input w

Sender has no output, Receiver outputs x and μ′ =

{
μ if RLcom(x, w) = 1

⊥ otherwise

com.S acts as the CDS sender using input (x = (c, 1), μ) while com.R acts as the
CDS receiver using witness w = 0.

It may seem paradoxical that we try to implement commitments using the
much more powerful tool of two-party computation. The key observation is that
the hiding and extractability of the above commitment protocol only relies on
the input-indistinguishability property of the CDS protocol, which is implied by
unbounded simulation.

– Hiding: A commitment to μ can be simulated by simply commiting to 0n

honestly, that is, using (x = (c, 1), 0n) as the input to the CDS. The simulation
is indistinguishable as the soundness of ZK argument guarantees that c must
be a commitment to 0 and hence the CDS statement (c, 1) is false and should
always produce μ′ = ⊥. Therefore, the unbounded-simulation security of the
CDS protocol implies that it is indistinguishable to switch the sender’s input
from μ to 0n.

– Extraction: To efficiently extract from a malicious sender com.S∗, the idea
(which however suffers from a problem described below) is to let the simulator-
extractor com.SimS set up a trapdoor by committing to 1 (instead of 0) and
simulate the ZK argument; it can then use the decommitment (call it r) to 1
as a valid witness to obtain the committed value from the output of the CDS
protocol. Here, the unbounded-simulation security of CDS again implies that



Oblivious Transfer Is in MiniQCrypt 541

interaction with an honest receiver who uses w = 0 is indistinguishable from
that with com.SimS who uses w = r as com.S∗ receives no output via CDS.

The advantage of CDS with unbounded simulation is that it can be imple-
mented using OT with unbounded simulation: Following the work of [42,43,61],
post-quantum MPC protocols exist in the Fot-hybrid model, and instantiating
them with the unbounded-simulation OT yields unbounded simulation MPC and
therefore CDS.

NP-Verifiability and the Lack of It. Unfortunately, the above attempt
has several problems: how do we show that the commitment is binding? how to
decommit? and how to guarantee that the extracted value agrees with the value
that can be decommitted to? We can achieve binding by having the sender addi-
tionally commit to μ using a statistically binding commitment scheme com, and
send the corresponding decommitment in the decommitment phase. However,
to guarantee that the extractor would extract the same string μ from CDS, we
need a way to verify that the same μ is indeed used by the CDS sender. Towards
this, we formalize a verifiability property of a CDS protocol:

A CDS protocol is verifiable if

– The honest CDS sender cds.S additionally outputs (x, μ) and a “proof” π (on
a special output tape) at the end of the execution.

– There is an efficient classical verification algorithm Ver(τ, x, μ, π) that verifies
the proof, w.r.t. the transcript τ of the classical messages exchanged in the
CDS protocol.

– Binding: No malicious sender cds.S∗ after interacting with an honest receiver
cds.R(w) can output (x, μ, π), such that the following holds simultaneously:
(a) Ver(τ, x, μ, π) = 1, (b) cds.R did not abort, and (c) cds.R outputs μ′

inconsistent with the inputs (x, μ) and w, that is, μ′ �=
{

μ if RL(x,w) = 1
⊥ otherwise

We observe first that classical protocols with perfect correctness have ver-
ifiability for free: The proof π is simply the sender’s random coins r, and the
verification checks if the honest sender algorithm with input (x, μ) and random
coins r produces the same messages as in the transcript τ . If so, perfect cor-
rectness guarantees that the output of the receiver must be consistent with x, μ.
However, verifiability cannot be taken for granted in the Fot hybrid model or
in the quantum setting. In the Fot hybrid model, it is difficult to write down
an NP-statement that captures consistency as the OT input is not contained in
the protocol transcript and is unconstrained by it. In the quantum setting, pro-
tocols use quantum communication, and consistency cannot be expressed as an
NP-statement. Take the BBCS protocol as an example, the OT receiver receives
from the sender � qubits and measures them locally; there is no way to ”verify”
this step in NP.

Implementing Verifiable CDS. To overcome the above challenge, we imple-
ment a verifiable CDS protocol in the Fp-ot hybrid model assuming only post-
quantum one-way functions. We develop this protocol in a few steps below.



542 A. B. Grilo et al.

Let’s start by understanding why the standard two-party comptuation pro-
tocol is not verifiable. The protocol proceeds as follows: First, the sender cds.S
locally garbles a circuit computing the following function into ̂G with labels
{�j

b}j∈[m],b∈{0,1} where m = |w|:

Gx,μ(w) = μ′ =

{

μ if RL(x,w) = 1
⊥ otherwise

(1)

Second, cds.S sends the pairs of labels {�j
0, �

j
1}j via Fp-ot. The receiver cds.R on

the other hand chooses {wj}j to obtain {˜�j
wj

}j , and evaluates ̂G with these labels
to obtain μ′. This protocol is not NP-verifiable because consistency between the
labels of the garbled circuit and the sender’s inputs to Fp-ot cannot be expressed
as a NP statement.

To fix the problem, we devise a way for the receiver to verify the OT sender’s
strings. Let cds.S additionally commit to all the labels {cj

b = com(�j
b; r

j
b)}j,b and

the message c = com(μ; r) and prove in ZK that ̂G is consistent with the labels
and message committed in the commitments, as well as the statement x. More-
over, the sender sends both the labels and decommitments {(�j

0, r
j
0), (�

j
1, r

j
1)}j via

Fp-ot. The receiver after receiving {˜�j
wj

, r̃j
wj

}j can now verify their correctness
by verifying the decommitment w.r.t. cj

wj
, and aborts if verification fails. This

gives the following new protocol:

A Verifiable but Insecure CDS Protocol: The sender cds.S has (x, μ) and
the receiver cds.R has w.
1. Sender’s Local Preparation: cds.S generate a garbled circuits Ĝ for the

circuit computing Gx,μ (Equation (1)), with labels {�i,j
b }j,b. Moreover, it gen-

erates commitments c = com(μ, r) and cj
b = com(�j

b; r
j
b) for every j, b.

2. OT: cds.S and cds.R invoke Fp-ot. For every j, the sender sends

(�j
0, r

j
0), (�

j
1, r

j
1), and the receiver chooses wj and obtains (�̃j

wj
, r̃j

wj
).

3. Send Garbled Circuit and Commitments: cds.S sends Ĝ, c, and {cj
b}j,b

and proves via a ZK protocol that they are all generated consistently w.r.t.
each other and x.

4. Receiver’s Checks: cds.R aborts if ZK is not accepting, or if for some j,
cj

wj
�= com(�̃j

wj
, r̃j

wj
). Otherwise, it evaluates Ĝ with the labels and obtain

μ′ = Gx,μ(w).

We argue that this protocol is NP-verifiable. The sender’s proof is simply the
decommitment r of c, and Ver(τ, (x, μ), r) = 1 iff r is a valid decommitment
to μ of the commitment c contained in the transcript τ . To show the binding
property, consider an interaction between a cheating sender cds.S∗ and cds.R(w).
Suppose cds.R does not abort, it means that 1) the ZK argument is accepting
and hence ̂G must be consistent with x, {cj

b}, c, and 2) the receiver obtains the
labels committed in cj

wj
’s. Therefore, evaluating the garbled circuit with these

labels must produce μ′ = Gx,μ(w) for the μ committed to in c.
Unfortunately, the checks that the receiver performs render the protocol inse-

cure. A malicious sender com.S∗ can launch the so-called selective abort attack



Oblivious Transfer Is in MiniQCrypt 543

to learn information of w. For instance, to test if w1 = 0 or not, it replaces �10
with zeros. If w1 = 0 the honest receiver would abort; otherwise, it proceeds
normally.

The Final Protocol. To circumvent the selective abort attack, we need a way
to check the validity of sender’s strings that is independent of w. Our idea is to
use a variant of cut-and-choose. Let cds.S create 2λ copies of garbled circuits and
commitments to their labels, { ̂Gi}i∈[2λ] and {ci,j

b = com(�i,j
b ; ri,j

b )}i,j,b and prove
via a ZK protocol that they are all correctly generated w.r.t. the same c and x.
Again, cds.S sends the labels and decommitment via Fp-ot, but cds.R does not
choose w universally in all copies. Instead, it secretly samples a random subset
Λ ∈ [2λ] by including each i with probability 1/2; for copy i ∈ Λ, it chooses
random string si ← {0, 1}m and obtains {˜�i,j

si
j
, r̃i,j

si
j
}j , whereas for copy i �∈ Λ, it

choose w and obtains {˜�i,j
wj

, r̃i,j
wj

}j . Now, in the checking step, cds.R only verifies

the validity of {˜�i,j
si
j
, r̃i,j

si
j
}i∈Λ,j received in copies in Λ. Since the check is now

completely independent of w, it circumvents the selective abort attack.
Furthermore, NP-verifiability still holds. The key point is that if the decom-

mitments cds.R receives in copies in Λ are all valid, with overwhelming probabil-
ity, the number of bad copies where the OT sender’s strings are not completely
valid is bounded by λ/4. Hence, there must exist a copy i �∈ Λ where cds.R

receives the right labels �i,j
wj

committed to in ci,j
wj

. cds.R can then evaluate ̂Gi to
obtain μ′. By the same argument as above, μ′ must be consistent with the (x, μ)
and w, for μ committed in c, and NP-verifiability follows. The final protocol is
described in Fig. 3.

Organization of the Paper. We review the quantum stand-alone security
model introduced by [36] in Sect. 2. In section Sect. 3, we construct a quantum
parallel-OT protocol with one-sided, unbounded simulation. In more detail, we
review in Sect. 3.1 the quantum OT protocol from [9] based on ideal commit-
ments with selective opening security. Then in Sect. 3.2, we show how to boost
it to construct a parallel OT protocol from the same assumptions. And finally,
we provide a classical implementation of the commitment scheme with selec-
tive opening security in Sect. 3.3 which gives us ideal/real security except with
unbounded receiver simulation. This result will be fed into our main technical
contribution in Sect. 4 where we show how to construct extractable commitments
from unbounded-simulation parallel-OT. In Sect. 4.2, we show how to construct
(the intermediate primitive of) CDS from parallel-OT and one-way functions,
and then in Sect. 4.3 we construct extractable commitments from CDS. Finally,
in Sect. 5 we lift our results to achieve quantum protocols for multi-party (quan-
tum) computation from one-way functions.

2 Quantum Stand-Alone Security Model

We adopt the quantum stand-alone security model from the work of Hallgren,
Smith and Song [36], tailored to the two-party setting.



544 A. B. Grilo et al.

Let F denote a functionality, which is a classical interactive machine speci-
fying the instructions to realize a cryptographic task. A two-party protocol Π
consists of a pair of quantum interactive machines (A,B). We call a protocol effi-
cient if A and B are both quantum poly-time machines. If we want to emphasize
that a protocol is classical, i.e., all computation and all messages exchanged
are classical, we then use lower-case letters (e.g., π). Finally, an adversary A is
another quantum interactive machine that intends to attack a protocol.

When a protocol Π = (A,B) is executed under the presence of an adversary
A, the state registers are initialized by a security parameter 1λ and a joint
quantum state σλ. Adversary A gets activated first, and may either deliver a
message, i.e., instructing some party to read the proper segment of the network
register, or corrupt a party. We assume all registers are authenticated so that A
cannot modify them, but otherwise A can schedule the messages to be delivered
in any arbitrary way. If A corrupts a party, the party passes all of its internal
state to A and follows the instructions of A. Any other party, once receiving a
message from A, gets activated and runs its machine. At the end of one round,
some message is generated on the network register. Adversary A is activated
again and controls message delivery. At some round, the party generates some
output and terminates.

We view Π and A as a whole and model the composed system as another
QIM, call it MΠ,A. Then executing Π in the presence of A is just running MΠ,A
on some input state, which may be entangled with a reference system available
to a distighuisher.

Protocol emulation and secure realization of a functionality. A secure
protocol is supposed to “emulate” an idealized protocol. Consider two protocols
Π and Γ , and let MΠ,A be the composed machine of Π and an adversary A,
and MΓ,S be that of Γ and another adversary S. Informally, Π emulates Γ if
the two machines MΠ,A and MΓ,S are indistinguishable.

It is of particular interest to emulate an ideal-world protocol ˜ΠF for a func-
tionality F which captures the security properties we desire. In this protocol,
two (dummy) parties ˜A and ˜B have access to an additional “trusted” party that
implements F . We abuse notation and call the trusted party F too. Basically ˜A
and ˜B invoke F with their inputs, and then F runs on the inputs and sends the
respective outputs back to ˜A and ˜B. An execution of ˜Π with an adversary S is
as before, except that F cannot be corrupted. We denote the composed machine
of F and ˜ΠF as MF,S .

Definition 2.1 (Computationally Quantum-Stand-Alone Emulation).
Let Π and Γ be two poly-time protocols. We say Π computationally quantum-
stand-alone ( C-QSA) emulates Γ , if for any poly-time QIM A there exists a
poly-time QIM S such that MΠ,A ≈qc MΓ,S .

Definition 2.2 (C-QSA Realization of a Functionality). Let F be a poly-
time two-party functionality and Π be a poly-time two-party protocol. We say
Π computationally quantum-stand-alone realizes F , if Π C-QSA emulates ˜ΠF .



Oblivious Transfer Is in MiniQCrypt 545

Namely, for any poly-time A, there is a poly-time S such that MΠ,A ≈qc MF,S .

Definition 2.3 (Statistically Quantum-Stand-Alone Emulation). Let Π
and Γ be two poly-time protocols. We say Π statistically quantum-stand-alone
( S-QSA) emulates Γ , if for any QIM A there exists an QIM S that runs in
poly-time of that of A, such that MΠ,A ≈� MΓ,S .

We assume static corruption only in this work, where the identities of cor-
rupted parties are determined before protocol starts. The definitions above con-
sider computationally bounded (poly-time) adversaries, including simulators.
Occasionally, we will work with inefficient simulators, which we formulate as
unbounded simulation of corrupted party P .

Definition 2.4 (Unbounded Simulation of Corrupted P ). Let Π and Γ
be two poly-time protocols. For any poly-time QIM A corrupting party P , we
say that Π C-QSA-emulates Γ against corrupted P with unbounded simulation,
if there exists a QIM S possibly unbounded such that MΠ,A ≈qc MΓ,S .

2.1 Modular Composition Theorem

It’s shown that protocols satisfying the definitions of stand-alone emulation
admit a modular composition [36]. Specifically, let Π be a protocol that uses
another protocol Γ as a subroutine, and let Γ ′ be a protocol that QSA emulates
Γ . We define the composed protocol, denoted ΠΓ/Γ ′

, to be the protocol in which
each invocation of Γ is replaced by an invocation of Γ ′. We allow multiple calls
to a subroutine and also using multiple subroutines in a protocol Π. However,
quite importantly, we require that at any point, only one subroutine
call be in progress. This is more restrictive than the “network” setting, where
many instances and subroutines may be executed concurrently.

In a hybrid model, parties can make calls to an ideal-world protocol ˜ΠG of
some functionality G4. We call such a protocol a G-hybrid protocol, and denote
it ΠG . The execution of a hybrid-protocol in the presence of an adversary A
proceeds in the usual way. Assume that we have a protocol Γ that realizes G
and we have designed a G-hybrid protocol ΠG realizing another functionality F .
Then the composition theorem allows us to treat sub-protocols as equivalent to
their ideal versions.

If the secure emulation involves unbounded simulation against a party, the
proof in [36] can be extended to show that the composed protocol also emulates
with unbounded simulation against the corresponding corrupted party.

Theorem 2.1 (Modular Composition). All of the following holds.

– Let Π, Γ and Γ ′ be two-party protocols such that Γ ′ C-QSA-emulates Γ , then
ΠΓ/Γ ′

C-QSA emulates Π. If Γ ′ C-QSA emulates Γ against corrupted P with
unbounded simulation, then ΠΓ/Γ ′

C-QSA emulates against corrupted P with
unbounded simulation.

4 In contrast, we call it the plain model if no such trusted set-ups are available.



546 A. B. Grilo et al.

– Let F and G be poly-time functionalities. Let ΠG be a G-hybrid protocol that
C-QSA realizes F , and Γ be a protocol that C-QSA realizes G, then ΠG/Γ

C-QSA realizes F . If Γ C-QSA realizes G against corrupted P with unbounded
simulation then ΠG/Γ C-QSA realizes F against corrupted P with unbounded
simulation.

3 Parallel OT with Unbounded Simulation from OWF

The goal of this section is to prove the following theorem.

Theorem 3.1. Assuming the existence of pqOWF, there exists a protocol Πp-ot

that C-QSA-emulates Fp-ot with unbounded simulation against a malicious
receiver.

We prove this theorem as follows. In Sect. 3.1, we review the protocol of [9]
that implies stand-alone-secure OT in Fso-com-hybrid model. Then, in Sect. 3.2,
we show how to build Fp-ot from Fso-com. Finally in Sect. 3.3, we construct Fso-com

with unbounded simulation against malicious sender.

3.1 Stand-Alone-Secure OT in Fso-com-hybrid Model

In this section we present the quantum OT protocol assuming a selective
opening-secure commitment scheme, that is, in the Fso-com hybrid model. We
would like to stress that the results in this section are not novel; they consist of a
straightforward adaptation of previous results [9,20,61] to our setting/language,
and our goal in this presentation is to to provide a self-contained proof of its
security. We describe the protocol ΠQOT in Sect. 1.1 and we have the following.

Theorem 3.2. ΠQOT C-QSA-realizes Fot in the Fso-com hybrid model.

3.2 Parallel Repetition for Protocols with Straight-Line Simulation

We show now that if π implements F in the G-hybrid model with an (effi-
cient/unbounded) straight-line simulator, then a parallel repetition of π, denoted
π|| implements F || in the G||-hybrid model with an (efficient/unbounded) simu-
lator. As a corollary, we get that a parallel repetition of the Fot protocol from
the previous section is a secure implementation of parallel OT in the Fso-com

hybrid model.

Theorem 3.3 (Parallel Repetition). Let F and G be two-party functional-
ities and let π be a secure implementation of F in the G-hybrid model with a
straight-line simulator. Then, π|| is a secure implementation of F || in the G||-
hybrid model with straight-line simulation as well.

Corollary 3.1. The parallel repetition of any protocol that C-QSA-realizes Fot

in the Fso-com-hybrid model with a straight-line simulator achieves Fp-ot in the
Fso-com-hybrid model.



Oblivious Transfer Is in MiniQCrypt 547

3.3 Implementing Fso-com with Unbounded Simulation

In this section we provide an implementation of Fso-com from Naor’s commitment
scheme and ZK protocols. Our protocol Πso-com is described in Fig. 1 and we
prove the following result.

Theorem 3.4. Assuming the existence of pqOWF, Πso-com C-QSA-realizes
Fso-com. with unbounded simulation against malicious committer.

We prove Theorem 3.4 by showing security against malicious committer with
unbounded simulator in Lemma3.1 and security against malicious receiver in
Lemma 3.2.

Parties: The committer C and the receiver R.
Inputs: C gets -bit strings m1,...mk and R gets a subset I ⊆ [k] of messages to
be decommited

Commitment Phase

1. R sends ρ for Naor’s commitment scheme
2. For i ∈ [k], C generates the commitments ci = comρ(mi, ri), where ri is some

private randomness.
3. C sends c1, ..., ck to R

Decommitment Phase

1. R sends I to C
2. C sends (mi)i∈I to R and they run a ZK protocol to prove that there exists

(mi)i I , (ri)i∈[k]) such that ci = comρ(mi, ri)

Fig. 1. Protocol for selective-opening commitment scheme Πso-com.

Lemma 3.1. Assuming the existence of pqOWF, Πso-com C-QSA-emulates
Fso-com against corrupted committer A with unbounded simulation.

Proof. The unbounded simulator S works as follows:

1. In the commitment phase, S runs the honest protocol with A and when
receives the commitments ĉ1, ..., ĉk from A and S finds the messages
m̂1, ..., m̂k by brute force. If there is a ĉi that does not decommit to any
message or decommits to more than one message S aborts. Finally, S inputs
m̂1, ..., m̂k to Fso-com

2. In the Decommitment phase, S receives I from Fso-com, forwards it to A. S
receives (m̃i)i∈I from A runs the honest verifier in the ZK protocol with A,
and rejects iff the ZK rejects or if for any i ∈ I, m̂i �= m̃i.



548 A. B. Grilo et al.

The proof follows the statistically-binding property of Naor’s commitment
scheme, so we can ignore commitments that open to more than one message, and
by the ZK soundness property, which ensures that, up to negligible probability,
if the commitments are not well-formed or if the sender tries to open then to a
different value, both the simulator and the original receiver abort.

Due to space restrictions, we leave the details to the full version of our paper.

We now show security against malicious receiver.

Lemma 3.2. Assuming the existence of pqOWF, Πso-com C-QSA-realizes Fso-com

against corrupted receiver A.

Proof. The simulator S works as follows:

1. In the commitment phase, S sends ci = comρ(0, ri) to A
2. In the decommitment phase, S receives I from A, uses it as input of Fso-com.

S receives back the messages (mi)i∈I , sends them to A and runs the ZK
simulator of the proof that (ci)i∈I open to (mi)i∈I and that (ci)i�∈I are valid
commitments.

The fact that MΠso-com,A ≈qc MFso-com,S follows from the computational zero-
knowledge of the protocol and the computatinally-hiding property of Naor’s
commitment scheme.

4 Extractable Commitment from Unbounded Simulation
OT

In this section, we construct an extractable commitment scheme using the
unbounded simulation OT from Sect. 3. We do this in two steps. First, we define
a new primitive, namely verifiable conditional disclosure of secrets (vCDS) in
Sect. 4.1, and we construct a (unbounded simulation) vCDS protocol in Sect. 4.2
from the unbounded simulation OT. We then show how to use vCDS to con-
struct an extractable commitment protocol that implements Fso-com with efficient
simulators in Sect. 4.3.

4.1 Verifiable Conditional Disclosure of Secrets (vCDS)

We define the primitive of (verifiable) conditional disclosure of secrets. Con-
ditional disclosure of secrets [31] (CDS) for an NP-language L is a two-party
protocol where a sender (denoted cds.S) and a receiver (denoted cds.R) have a
common input x, the sender has a message μ, and the receiver (purportedly)
has a witness w for the NP-relation RL. At the end of the protocol, cds.R gets
μ if RL(x,w) = 1 and ⊥ otherwise, and the sender gets nothing. In a sense, this
can be viewed as a conditional version of oblivious transfer, or as an interactive
version of witness encryption.

The CDS functionality is defined in Fig. 2. We will construct a protocol
Π = 〈cds.S, cds.R〉 that securely realizes the CDS functionality in the quantum



Oblivious Transfer Is in MiniQCrypt 549

The Conditional Disclosure of Secret (CDS) Functionality CDS for an
NP language L.

Security Parameter: λ.
Parties: Sender S and Receiver R, adversary A.

Sender Query: CDS receives (Send, sid, (x,μ)) from S, where x ∈ L ∩
{0, 1}n1(λ) and m ∈ {0, 1}n2(λ) for polynomials n1 and n2, records (sid, (x, μ))
and sends (Input, sid, x) to R and A.

CDS ignores further send messages from S with sid.
Receiver Query: CDS receives (Witness, sid, w) from party R, where w ∈

{0, 1}m(λ) for a polynomial m. CDS ignores the message if no ( ) was
recorded. Otherwise FCDS sends (Open, sid, x, μ ) to R where

μ =
μ if RL(x, w) = 1
⊥ if RL(x, w) = 0

CDS sends (Open, sid, x) to A and ignores further messages from R with
sid.

Fig. 2. The Conditional Disclosure of Secrets (CDS) functionality

stand-alone model. We will consider protocols with either efficient or unbounded
simulators.

Verifiability. We will, in addition, also require the CDS protocol to be verifi-
able. Downstream, when constructing our extractable commitment protocol in
Sect. 4.3, we want to be able to prove consistency of the transcript of a CDS
sub-protocol. It is not a-priori clear how to do this since the CDS protocol we
construct will either live in the OT-hybrid model, in which case the OT input
is not contained in the protocol transcript and is unconstrained by it; or it uses
quantum communication, in which case, again consistency cannot be expressed
as an NP-statement.

Definition 4.1 (Verifiability). Let L be an NP language, and Π =
〈cds.S, cds.R〉 be a CDS protocol between a sender cds.S and a receiver cds.R.
Π is verifiable (w.r.t. cds.S) if there is a polynomial time classical algorithm
Ver, such that, the following properties are true:

Correctness: For every (x, μ) and every w, cds.S(x, μ) after interacting
with cds.R(w), outputs on a special output tape a proof π, such that,
Ver(τ, x, μ, π) = 1 where τ is the transcript of classical messages exchanged
in the interaction.

Binding: For every λ ∈ N, every (potentially unbounded) adversary A =
{Aλ}λ∈N

, every sequence of witnesses {wλ}λ, the probability that Aλ wins
in the following experiment is negligible.
– Aλ after interacting with cds.R(1λ, w), outputs (x, μ, π). Let τ be the tran-

script of classical messages exchanged in the interaction.



550 A. B. Grilo et al.

– Aλ wins if (a) Ver(τ, x, μ, π) = 1, (b) cds.R did not abort, and (c) cds.R
outputs μ′ inconsistent with inputs (x, μ) and w, that is,

μ′ �=
{

μ if RL(x,w) = 1
⊥ otherwise

Definition 4.2 (Verifiable CDS). Let L be an NP language, and Π =
〈cds.S, cds.R〉 be a protocol between a sender cds.S and a receiver cds.R. Π is
a verifiable CDS protocol if (a) it C-QSA-emulates Fcds with an efficient simula-
tor; and (b) it is verifiable according to Definition 4.1.

4.2 CDS Protocol from Unbounded Simulation OT

Theorem 4.1. Assume the existence of pqOWF. For every NP language L,
there is a verifiable CDS protocol Π = 〈cds.S, cds.R〉 that C-QSA-emulates Fcds

for L in the Fp-ot hybrid model.

Corollary 4.1. Assume the existence of pqOWF, and a protocol that C-QSA-
emulates Fp-ot with unbounded simulation. Then, for every NP language L, there
is a verifiable CDS protocol Π = 〈cds.S, cds.R〉 that C-QSA-emulates Fcds for L
with unbounded simulation.

Proof of Theorem 4.1. The verifiable CDS protocol is described in Fig. 3. The
protocol uses Naor’s classical statistically binding commitment protocol, Yao’s
garbled circuits, and post-quantum zero knowledge proofs, all of which can be
implemented from pqOWF. For a more detailed description of these ingredients,
see the full version of our paper.

In Lemma 4.1, we show that the protocol has an efficient simulator for a
corrupted receiver, and in Lemma 4.2, an efficient simulator for a corrupted
sender (both in the OT hybrid model). Lemma 4.3 shows that the protocol is
verifiable. 
�
Lemma 4.1. There is an efficient simulator against a malicious receiver.

Proof. The simulator S interacts with cds.R∗, receives a string ρ from cds.R∗ in
Step 1, and intercepts the OT queries (σ1, . . . , σ2λ) in Step 4.

– Case 1. RL(x, σi) = 1 for some i. Send (Witness, sid, σi) to the CDS func-
tionality and receive μ. Simulate the rest of the protocol honestly using the
CDS sender input (x, μ).

– Case 2. RL(x, σi) = 0 for all i. Simulate the rest of the protocol honestly
using the CDS sender input (x, 0).

We now show, through a sequence of hybrids, that this simulator produces
a view that is computationally indistinguishable from that in the real execution
of cds.S(x, μ) with cds.R∗.



Oblivious Transfer Is in MiniQCrypt 551

Parties: The sender cds.S and the receiver cds.R. Inputs: cds.S has input (x,μ)
and cds.R has input w ∈ {0, 1}m.

1. Preamble: cds.R sends a random string ρ as the first message of Naor’s
commitment scheme to cds.S and cds.S sends x to cds.R

2. Compute Garbled Circuits: cds.S generates 2λ garbled circuits, for the

circuit computing Gx,μ(w) = μ =
μ if RL(x,w) = 1
⊥ otherwise

.

That is, for every i ∈ [2λ], (Gi, { i,j
b }j∈[m],b∈{0,1}) = Garb(Gx,μ; γi), where Gi

are the garbled circuits, and ’s are its associated labels.
3. Cut-and-Choose: cds.R samples a random subset Λ ⊆ [2λ], by including

each i ∈ [2λ] with probability 1/2. For every i ∈ [2λ], set

σi =
si ← {0, 1}m i ∈ Λ

w i Λ

4. OT: For every i ∈ [2λ], j ∈ [m], b ∈ {0, 1}, cds.S samples ri,j
b , the random

coins for committing to the labels i,j
b via Naor’s commitment scheme.

cds.S and cds.R invokes Fp-ot for 2λ × m parallel OT, where the (i, j)’th
OT for i ∈ [2λ], j ∈ [m] has sender’s input strings ( i,j

0 , ri,j
0 ) and ( i,j

1 , ri,j
1 ),

and receiver’s choice bit σi,j (which is the j-th bit of σi) and cds.R receives
( i,j , ri,j).
We refer to the OTs with index ( ) as the i’th batch. as they transfer labels
of the i’th garbled circuit Gi.

5. Send Garbled Circuits and Commitments to the Labels and μ: cds.S
samples r∗ and computes c∗ = comρ(μ; r∗) and ci,j

b = comρ( i,j
b ; ri,j

b ).
Send {Gi}i∈[2λ] and (c∗, {ci,j

b }i∈[2λ],j∈[m],b∈{0,1}) to the receiver cds.R.
6. Proof of Consistency: cds.S proves via ZK protocol that (a) c∗ is a valid

commitment to μ, (b) every Gi is a valid garbling of Gx,μ with labels
{ i,j

b }j∈[m],b∈{0,1}, and (c) ci,j
b is a valid commitment to i,j

b .
7. Checks: cds.R performs the following checks:

– If the ZK proof in the previous step is not accepting, cds.R aborts.
– Λ-checks. If there is i ∈ Λ and j ∈ [m], such that, ci,j

σi,j = comρ( i,j , ri,j),
cds.R aborts and outputs ⊥.

– Λ-check. If for every i Λ, there exists j ∈ [m], such that, ci,j

σi,j =
comρ( i,j , ri,j), cds.R aborts and outputs ⊥.

8. Output: If cds.R does not abort, there must exist i Λ such that, for all
j ∈ [m], ci,j

σi,j = comρ( i,j , ri,j). Evaluate the i’th garbled circuit Gi to get
μ = GEval(Gi, { i,j}j∈[m]), and output x , μ .

Fig. 3. The verifiable CDS Scheme in Fp-ot-hybrid model. The steps in color involve
communication while the others only involve local computation.

Hybrid 0. This corresponds to the real execution of the protocol where the sender
has input (x,m). The view of cds.R∗ consists of



552 A. B. Grilo et al.

[

ρ, { ̂Gi, ˜�i,j , r̃i,j , ci,j
b }i∈[2λ],j∈[m],b∈{0,1}, c∗, τZK

]

where ρ is the message sent by cds.R∗ in Step 1, the strings ˜�i,j and r̃i,j are
received by cds.R∗ from the OT functionality in Step 4, the garbled circuits ̂Gi

and the commitments ci,j
b and c∗ in Step 5, and τZK is the transcript of the ZK

protocol between cds.S and cds.R∗ in Step 6. (See the protocol in Fig. 3).

Hybrid 1. This is identical to hybrid 0 except that we run the simulator to inter-
cept the OT queries (σ1, . . . , σ2λ) of cds.R∗. The rest of the execution remains
the same. Of course, the transcript produced is identical to that in hybrid 0.

Hybrid 2. In this hybrid, we replace the transcript τZK of the zero-knowledge
protocol with a simulated transcript. This is indistinguishable from hybrid 1
by (post-quantum) computational zero-knowledge. Note that generating this
hybrid does not require us to use the randomness underlying the commitments
ci,j
1−σi,j and c∗. (The randomness underlying ci,j

σi,j are revealed as part of the OT
responses to cds.R∗.)

Hybrid 3. In this hybrid, we replace half the commitments, namely ci,j
1−σi,j , as

well as c∗ with commitments of 0. This is indistinguishable from hybrid 2 by
(post-quantum) computational hiding of Naor commitments.

Hybrid 4. In this hybrid, we proceed as follows. If the simulator is in case 1,
that is RL(x, σi) = 1 for some i, proceed as in hybrid 3 with no change. On
the other hand, if the simulator is in case 2, that is RL(x, σi) = 0 for all i,
replace the garbled circuits with simulated garbled circuits that always output
⊥ and let the commitments ci,j

σi,j be commitments of the simulated labels. This is
indistinguishable from hybrid 3 where the garbled circuits are an honest garbling
of Gx,μ because of the fact that all the garbled evaluations output ⊥ in hybrid
3, and because of the post-quantum security of the garbling scheme.

Hybrids 5–7 undo the effects of hybrids 2–4 in reverse.

Hybrid 5. In this hybrid, we replace the simulated garbled circuit with the
real garbled circuit for the circuit Gx,0. This is indistinguishable from hybrid
4 because of the fact that all the garbled evaluations output ⊥ in this hybrid,
and because of the post-quantum security of the garbling scheme.

Hybrid 6. In this hybrid, we let all commitments be to the correct labels and mes-
sages. This is indistinguishable from hybrid 5 by (post-quantum) computational
hiding of Naor commitments.

Hybrid 7. In this hybrid, we replace the simulated ZK transcript with the real ZK
protocol transcript. This is indistinguishable from hybrid 7 by (post-quantum)
computational zero-knowledge.

This final hybrid matches exactly the simulator. This finishes the proof.

Lemma 4.2. There is an inefficient statistical simulator against a malicious
sender.



Oblivious Transfer Is in MiniQCrypt 553

Proof. The simulator S interacts with cds.S∗ as follows:

1. Send a string ρ to cds.S∗ in Step 1, as in the protocol;
2. Intercept the OT messages (�i,j

0 , ri,j
0 ) and (�i,j

1 , ri,j
1 ) from cds.S∗ in Step 4.

3. Run the rest of the protocol as an honest receiver cds.R would.
4. If the ZK proof rejects or if any Λ-check fails, S aborts and outputs ⊥. (Note

the simulator does not perform the Λ-check).
5. Otherwise, extract μ from c∗ using unbounded time, and send (x, μ) to the

ideal functionality and halt.

The transcript generated by S is identical to the one generated in the real world
where cds.R on input w interacts with cds.S∗. It remains to analyze the output
distribution of cds.R in the simulation vis-a-vis the real world.

1. Since the Λ-checks performed on the commitments of garbled instances in
Λ by the simulator and the ones performed by the honest receiver in the
real protocol are exactly the same, we have that the probability that the
probability of abort is the same (for this step) in both scenarios.

2. The probability that the honest receiver in the real protocol aborts on the
Λ-check, conditioned on the fact that the Λ-checks passed, is negligible.

Thus, we have that the output distributions of the receiver are negligibly
close between the simulation and the real world, finishing up the proof.

Lemma 4.3. The protocol is verifiable.

Proof. We first construct a verification algorithm Ver.

– The classical transcript τ consists of ρ, x, { ̂Gi}i∈[2λ], c
∗,

{ci,j
b }i∈[2λ],j∈[m],b∈{0,1}.

– At the end of the protocol, cds.S outputs (x, μ, r∗) on its special output tape.
– The verification algorithm Ver(τ, x, μ′, r′) = 1 iff c∗ = comρ(μ′; r′).

We first claim that for honest cds.S and cds.R with (x,w) ∈ RL, we have
that Ver(τ, x, μ, r) = 1. Since all parties in the protocol are honest the input x in
τ is the same as the one output by cds.S and we have that c∗ is the commitment
to the honest message using the correct randomness, so Ver outputs 1.

To show binding, assume that the verification passes and the receiver does not
abort. Then, we know that there is at least one i /∈ Λ such that the i-th garbled
circuit+input pair is correct and the circuit is the garbling of Gx,μ. The verifier
will evaluate the circuit on input w and obtain either ⊥ when RL(x,w) = 0 or
μ when RL(x,w) = 1, exactly as required.

4.3 Extractable Commitment from CDS

Theorem 4.2. Assume the existence of pqOWF. There is a commitment pro-
tocol 〈C,R〉 that C-QSA-emulates Fso-com with efficient simulators.



554 A. B. Grilo et al.

Parties: The committer C and the receiver R.
Inputs: C gets a message vector = (μ1, . . . , μ (n)) and R gets 1n.

Commitment Phase

1. Preamble. C sends a random string ρ to R, and R sends a random string
ρ∗ to C, as the first message of the Naor commitment scheme.

2. Set up a Trapdoor Statement.
– R sends a Naor commitment c = comρ(0; r).
– R proves to C using a ZK protocol that c is a commitment to 0, that is,

((c, ρ, 0), r) ∈ RLcom . If the ZK verifier rejects, C aborts.
3. CDS. C and R run the CDS protocol cds.S, cds.R for the language Lcom

where C acts as cds.S with input x = (c, ρ, 1) and message , and R acts as
cds.R with input 0.
C aborts if cds.S aborts, else C obtains the protocol transcript τ and cds.S’s
proof π. R aborts if cds.R aborts, or if cds.R outputs (x ) but x = (ρ, c, 1).

4. Commit and Prove Consistency.
– C sends a Naor commitment c∗ = comρ∗( ; r∗).
– C proves to R using a ZK protocol there exists a such that (x =

(ρ, c, 1) ) is the input that C used in the CDS protocol and is com-
mitted in c∗, that is:

Ver( ) = 1 and c∗ = comρ∗( ∗)

5. R accepts this commitment if the ZK proof is accepting.

Decommitment Phase

1. R sends I ⊆ [ ].
2. C sends |I and proves via a ZK protocol that c∗|I commits to |I .
3. R accepts this decommitment if the ZK proof is accepting.

Fig. 4. Extractable Selective-Opening-Secure commitment scheme

Proof. The construction of our extractable commitment scheme is given in Fig. 4.
The protocol uses Naor’s classical statistically binding commitment protocol and
a verifiable CDS protocol Π = 〈cds.S, cds.R〉 that C-QSA-emulates Fcds (with
unbounded simulation) for Lcom, the language consisting of all Naor’s commti-
ments (ρ, c) to a bit b: RLcom((ρ, c, b), r) = 1 iff c = comρ(b; r).

We defer a detailed description of these tools to the full version of our paper.
In Lemma 4.4 (resp. Lemma 4.5), we show that the protocol has an efficient

simulator for a corrupted sender (resp. receiver).

Lemma 4.4. There is an efficient simulator against a malicious sender.

Proof. The simulator S against a malicious committer C∗ works as follows.

1. In step 1, proceed as an honest receiver would.



Oblivious Transfer Is in MiniQCrypt 555

2. In step 2, send a Naor commitment c = comρ(1; r) (instead of 0) and simulate
the ZK proof.

3. In step 3, run the honest CDS protocol with r as witness, gets µ and sends
it to the ideal functionality Fso-com.

4. Run the rest of the protocol as an honest receiver would.

We now show, through a sequence of hybrids, that this simulator produces a
joint distribution of a view of C∗ together with an output of R that is computa-
tionally indistinguishable from that in the real execution of C∗ with R. In order
to show this we consider the following sequence of hybrids.

Hybrid 0. This corresponds to the protocol ΠECom
H0 , where S0 sits between C∗

and the honest receiver in the real protocol and just forwards their messages. It
follows trivially that MΠECom,C∗ ≈qc MΠECom

H0
,S0

.

Hybrid 1. S1 interacts with C∗ following the protocol ΠECom
H1 , which is the

same as ΠECom
H0 except that S1 uses the ZK simulator instead of the proof that

((c, ρ, 0), r) ∈ RLcom . From the computational zero-knowledge property of the
protocol, we have that MΠECom

H0
,S0

≈qc MΠECom
H1

,S1
.

Hybrid 2. S2 interacts with C∗ following the protocol ΠECom
H2 , which is the same as

ΠECom
H1 except that S2 sends c′ = comρ(1; r) instead of the (honest) commitment

of 0. When S2 simulates Fzk, she still sends a message that c′ is a valid input.
It follows from computationally hiding property of Naor’s commitment scheme
that MΠECom

H1
,S1

≈qc MΠECom
H2

,S2
.

Hybrid 3. S3 interacts with C∗ following the protocol ΠECom
H3 , which is the same

as ΠECom
H2 except that S3 now uses the private randomness r as a witness that c′

is a commitment of 1.
Since our protocol realizes FCDS , cds.S∗ (controlled by C∗) does not behave

differently depending on the input of cds.R, so the probability of abort in step 3
does not change. Notice also that Ver(τ, x,µ, π) is independent of cds.R’s mes-
sage, so the acceptance probability of the ZK proof does not change either.

Then, if the ZK proof leads to acceptance, by the soundness of the protocol,
we know that Ver(τ, x,µ, π) = 1 and by the binding of the commitment c∗, such
a µ is uniquely determined.

Finally, by the verifiability of the CDS protocol, we know that the receiver
either aborts or outputs the specified µ. Thus, the outputs of the receiver R in
the simulated execution and the real execution must be the same in this case.

Lemma 4.5. There is an efficient simulator against a malicious receiver.

Proof. The simulator S against a malicious receiver R∗ proceeds as follows.

– In steps 1 and 2, proceed as an honest sender would.
– In step 3, run the CDS protocol using a message vector µ = 0 of all zeroes.
– In step 4, commit to the all-0 vector and produce a simulated ZK proof.
– During decommitment, send I ⊆ [�] to the ideal functionality and receive µ|I .

Send µ|I to R∗, and simulate the ZK proof.



556 A. B. Grilo et al.

We now show, through a sequence of hybrids, that this simulator is compu-
tationally indistinguishable from the real execution of C(µ) with R∗.

Hybrid 0. This corresponds to the protocol ΠECom
H0 , where S0 sits between the

honest commiter C and R∗, and it just forwards their messages. It follows triv-
ially that MΠECom,C∗ ≈qc MΠECom

H0
,S0

.

Hybrid 1. S1 interacts with R∗ following the protocol ΠECom
H1 , which is the same

as ΠECom
H0 except that S1 uses the ZK simulator in Step 4 and the decommit-

ment phase. From the computational zero-knowledge property, we have that
MΠECom

H0
,S0

≈qc MΠECom
H1

,S1
.

Hybrid 2. S2 interacts with R∗ following the protocol ΠECom
H2 , which is the same

as ΠECom
H1 except that S2 sets c∗ to be a commitment to 0. It follows from the

computationally-hiding property of the commitment scheme that MΠECom
H1

,S1
≈qc

MΠECom
H2

,S2
.

Hybrid 3. S3 interacts with R∗ following the protocol ΠECom
H3 , which is the same

as ΠECom
H2 except that S3 uses µ = 0� as the cds.S message.

From the soundness of the ZK proof in Step 2, we have that c is not a
commitment of 1. In this case, by the security of CDS, R∗ does not receive µ,
so the change of the message cannot be distinguished.

Notice that Hybrid 3 matches the description of the simulator S, and there-
fore MΠECom

H2
,S2

≈qc MFso-com,S .

5 Multiparty (Quantum) Computation in MiniQCrypt

Our quantum protocol realizing Fso-com from quantum-secure OWF allows us
to combine existing results and realize secure computation of any two-party or
multi-party classical functionality as well as quantum circuit in MiniQCrypt.

Theorem 5.1. Assuming that post-quantum secure one-way functions exist, for
every classical two-party and multi-party functionality F , there is a quantum
protocol C-QSA-emulates F .

Proof. By Theorem 3.2, we readily realize Fot in MiniQCrypt. In the Fot-hybrid
model, any classical functionality F can be realized statistically by a classical
protocol in the universal-composable model [42]. The security can be lifted to
the quantum universal-composable model as shown by Unruh [61]. As a result,
we also get a classical protocol in the Fot-hybrid model that S-QSA emulates F .
Plugging in the quantum protocol for Fot, we obtain a quantum protocol that
C-QSA-emulates F assuming existence of quantum-secure one-way functions.

Now that we have a protocol that realizes any classical functionality in
MiniQCrypt, we can instantiate Fmpc used in the work of [24] to achieve a protocol
for secure multi-party quantum computation where parties can jointly evaluate
an arbitrary quantum circuit on their private quantum input states. Specifically



Oblivious Transfer Is in MiniQCrypt 557

consider a quantum circuit Q with k input registers. Let FQ be the ideal pro-
tocol where a trusted party receives private inputs from k parties, evaluate Q,
and then send the outputs to respective parties. We obtain the following.

Theorem 5.2. Assuming that post-quantum secure one-way functions exist, for
any quantum circuit Q, there is a quantum protocol that C-QSA-emulates the FQ.

Acknowledgements. We thank the Simons Institute for the Theory of Computing
for providing a meeting place where the seeds of this work were planted. VV thanks
Ran Canetti for patiently answering his questions regarding universally composable
commitments.

Most of this work was done when AG was affiliated to CWI and QuSoft. HL
was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CAREER),
CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research Award, the
Defense Advanced Research Projects Agency (DARPA) and Army Research Office
(ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois. FS was supported by NSF grants CCF-2041841, CCF-2042414, and
CCF-2054758 (CAREER). VV was supported by DARPA under Agreement No.
HR00112020023, a grant from the MIT-IBM Watson AI, a grant from Analog Devices,
a Microsoft Trustworthy AI grant, and a DARPA Young Faculty Award. The views
expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, DARPA, the National Science Foundation, or the U.S.
Government.

References

1. Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G.: Post-quantum
multi-party computation in constant rounds (2020). arXiv:2005.12904. https://
arxiv.org/abs/2005.12904

2. Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. CoRR,
abs/1911.07672 (2019)

3. Barak, B.: The complexity of public-key cryptography. Cryptology ePrint Archive,
Report 2017/365, 2017. https://eprint.iacr.org/2017/365

4. Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: One-way functions imply
secure computation in a quantum world (2020)

5. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pp. 479–488. ACM (1996)

6. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

7. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multi-
party quantum computation with (only) a strict honest majority. In: 47th Annual
IEEE Symposium on Foundations of Computer Science, pp. 249–260. IEEE (2006)

8. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: EEE International Conference on Computers, Systems and Signal
Processing, vol. 175, p. 8 (1984)

http://arxiv.org/abs/2005.12904
https://arxiv.org/abs/2005.12904
https://arxiv.org/abs/2005.12904
https://eprint.iacr.org/2017/365
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1


558 A. B. Grilo et al.

9. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 29
As references [10, 11] and [51, 52] are same, we have deleted the duplicate reference
and renumbered accordingly. Please check and confirm

10. Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant rounds. In:
Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.)
STOC 2020, pp. 269–279. ACM (2020)

11. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians (1986)

12. Bouman, N.J., Fehr, S.: Sampling in a quantum population, and applications. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 724–741. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 39

13. Brakerski, Z., Christiano, P., Mahadev, U., Vazirani, U.V., Vidick, T.: A crypto-
graphic test of quantumness and certifiable randomness from a single quantum
device. In: FOCS 2018, pp. 320–331 (2018)

14. Buhrman, H., Christandl, M., Schaffner, C.: Complete insecurity of quantum pro-
tocols for classical two-party computation. Phys. Rev. Lett. 109(16), 160501 (2012)

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE (2001)

16. Chailloux, A., Gutoski, G., Sikora, J.: Optimal bounds for semi-honest quantum
oblivious transfer. Chic. J. Theor. Comput. Sci. 2016, 1–17 (2016)

17. Colbeck, R.: Quantum and relativistic protocols for secure multi-party computa-
tion. Ph.D. Thesis, Trinity College, University of Cambridge (2009)

18. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computa-
tion. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, pp. 643–652 (2002)

19. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions. In: 29th Annual Symposium on Foundations of Computer Science,
pp. 42–52 (1988)

20. Damg̊ard, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the
security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 24

21. Damg̊ard, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-
order entropic quantum uncertainty relation with applications. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 20

22. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-
quantum-storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)

23. Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Gigahertz decoy
quantum key distribution with 1 mbit/s secure key rate. Opt. Express 16(23),
18790 (2008)

24. Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure multi-party
quantum computation with a dishonest majority. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 729–758. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 25

25. Dupuis, F., Fehr, S., Lamontagne, P., Salvail, L.: Adaptive versus non-adaptive
strategies in the quantum setting with applications. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 33–59. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 2

https://doi.org/10.1007/3-540-46766-1_29
https://doi.org/10.1007/978-3-642-14623-7_39
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/978-3-540-74143-5_20
https://doi.org/10.1007/978-3-030-45727-3_25
https://doi.org/10.1007/978-3-662-53015-3_2


Oblivious Transfer Is in MiniQCrypt 559

26. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of uni-
taries against specious adversaries. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 685–706. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 37

27. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any
quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 794–811. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 46

28. Fang, J., Unruh, D., Weng, J., Yan, J., Zhou, D.: How to base security on the
perfect/statistical binding property of quantum bit commitment? IACR Cryptol.
ePrint Arch. 2020, 621 (2020)

29. Fehr, S., Katz, J., Song, F., Zhou, H.-S., Zikas, V.: Feasibility and completeness of
cryptographic tasks in the quantum world. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 281–296. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36594-2 16

30. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00457-5 21

31. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: Vitter, J.S. (ed.) STOC 1998, pp. 151–
160. ACM (1998)

32. Goldreich, O.: Foundations of Cryptography: Volume 2 Basic Applications, 1st
edn. Cambridge University Press, Cambridge (2009)

33. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (May 1987)

34. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

35. Grilo, A.B., Lin, H., Song, F., Vaikuntanathan, V.: Oblivious transfer is in
miniqcrypt. Cryptology ePrint Archive, Report 2020/1500 (2020). https://eprint.
iacr.org/2020/1500

36. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quantum
world. Int. J. Quant. Inf. 13(04), 1550028 (2015). Preliminary version in Crypto
2011

37. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

38. Hiskett, P.A., et al.: Long-distance quantum key distribution in optical fibre. New
J. Phys. 8(9), 193 (2006)

39. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, Annual, p. 134, Los Alamitos, CA, USA. IEEE Com-
puter Society (Jun 1995)

40. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Johnson, D.S. (ed.) STOC 1989, pp. 44–61. ACM (1989)

41. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

42. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-36594-2_16
https://doi.org/10.1007/978-3-642-36594-2_16
https://doi.org/10.1007/978-3-642-00457-5_21
https://doi.org/10.1007/3-540-47721-7_11
https://eprint.iacr.org/2020/1500
https://eprint.iacr.org/2020/1500
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-85174-5_32


560 A. B. Grilo et al.

43. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press (May 1988)

44. Konig, R., Wehner, S., Wullschleger, J.: Unconditional security from noisy quantum
storage. IEEE Trans. Inf. Theor. 58(3), 1962–1984 (2012)

45. Liao, S.-K., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev.
Lett. 120(3), 030501 (2018)

46. Liu, Y.K.: Building one-time memories from isolated qubits. In: 5th Conference on
Innovations in Theoretical Computer Science, pp. 269–286 (2014)

47. Liu, Y.-K.: Single-shot security for one-time memories in the isolated qubits model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
19–36. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 2

48. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–
1162 (1997)

49. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev.
Lett. 78(17), 3410–3413 (1997)

50. Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and
applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21969-6 2

51. Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryptographic com-
plexity with respect to computational UC security. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 32

52. Mayers, D., Salvail L.: Quantum oblivious transfer is secure against all individual
measurements. In: Proceedings Workshop on Physics and Computation. PhysComp
1994, pp. 69–77 (1994)

53. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett. 78(17), 3414 (1997)

54. Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 13

55. Pugh, C.J., et al.: Airborne demonstration of a quantum key distribution receiver
payload. Quant. Sci. Technol. 2(2), 024009 (2017)

56. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Memo TR-81,
Aiken Computation Laboratory, Harvard University (1981)

57. Rudich, S.: The use of interaction in public cryptosystems. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 242–251. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 19

58. Salvail, L.: Quantum bit commitment from a physical assumption. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055740

59. Salvail, L., Schaffner, C., Sotáková, M.: Quantifying the leakage of quantum pro-
tocols for classical two-party cryptography. Int. J. Quant. Inf. 13(04), 1450041
(2015)

60. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)

61. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 25

https://doi.org/10.1007/978-3-662-44381-1_2
https://doi.org/10.1007/978-3-642-21969-6_2
https://doi.org/10.1007/978-3-642-21969-6_2
https://doi.org/10.1007/978-3-642-14623-7_32
https://doi.org/10.1007/978-3-642-14623-7_32
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/3-540-46766-1_19
https://doi.org/10.1007/BFb0055740
https://doi.org/10.1007/978-3-642-13190-5_25


Oblivious Transfer Is in MiniQCrypt 561

62. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

63. Vazirani, U., Vidick, T.: Certifiable quantum dice: or, true random number gener-
ation secure against quantum adversaries. In: STOC 2012, pp. 61–76. Association
for Computing Machinery (2012)

64. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009). Preliminary version in STOC 2006

65. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
66. Yao, A.C.C.: Security of quantum protocols against coherent measurements. In:

27th ACM STOC, pp. 67–75. ACM Press (May/June 1995)

https://doi.org/10.1007/978-3-642-29011-4_10


Security Analysis of Quantum Lightning

Bhaskar Roberts(B)

UC Berkeley, Berkeley, USA
bhaskarr@eecs.berkeley.edu

Abstract. Quantum lightning is a new cryptographic object that gives
a strong form of quantum money. Zhandry recently defined quantum
lightning and proposed a construction of it based on superpositions
of low-rank matrices. The scheme is unusual, so it is difficult to base
the scheme’s security on any widespread computational assumptions.
Instead, Zhandry proposed a new hardness assumption that, if true,
could be used to prove security.

In this work, we show that Zhandry’s hardness assumption is in fact
false, so the proof of security does not hold. However, we note that the
proposal for quantum lightning has not been proven insecure. This work
is the first step in analyzing the security of [3]’s proposal and moving
toward a scheme that we can prove to be secure.

1 Introduction

A cryptographic protocol for money should satisfy two conditions:1

1. Verification by untrusted users: Any untrusted user, even an adversary seeking
to counterfeit, can distinguish between valid and counterfeit banknotes.

2. No counterfeiting : Only the mint, a trusted administrator, can produce valid
banknotes.

A classical bitstring can be easily duplicated, and will fail the no counter-
feiting condition. However an arbitrary string of qubits cannot be duplicated,
so quantum information is the first setting where no counterfeiting may hold.
Therefore, there is interest in creating uncounterfeitable money from quantum
states. This is known as public-key quantum money. However, we do not yet
know how to construct public-key quantum money from widely used crypto-
graphic assumptions, despite many attempts including [2] and [1].

More recently, [3] defined a new cryptographic object, called quantum light-
ning, that gives a strong form of public-key quantum money in which not even the
mint can produce two copies of the same banknote. Zhandry also proposed a con-
struction of quantum lightning, but it is unknown whether the scheme is secure.
Instead, Zhandry proposed a plausible computational hardness assumption and

1 There are several variations on the quantum money problem, each with slightly
different conditions. These are adapted from ones presented in [2].

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 562–567, 2021.
https://doi.org/10.1007/978-3-030-77886-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_19


Security Analysis of Quantum Lightning 563

proved that if it is true, then the scheme is secure. However, the assumption was
untested.

Here, we show that the hardness assumption is false. Therefore the proof
of security for [3]’s scheme does not hold. However, our work does not prove
the scheme insecure, and it may be possible to fix the hardness assumption. Our
work is the first step in determining whether [3]’s proposal is secure and whether
a similar approach is viable.

The rest of the paper is organized as follows: first we summarize [3]’s proposed
scheme for quantum lightning. Then we show that the hardness assumption that
was used to prove security is false. Finally, we suggest where our work may lead:
to a new plausible hardness assumption or to a stronger attack that proves the
scheme insecure.

2 Proposed Construction of Quantum Lightning

For context, we summarize [3]’s proposed construction of quantum lightning in
this section. The lightning bolt is a superposition that can be sampled efficiently,
but not duplicated. Anyone can generate a random lightning bolt, and a verifier
can check that the bolt was generated honestly. But it is supposedly hard to
generate two states that appear to the verifier to be the same bolt.

Here is a simplified version of the construction. There is a collision-resistant
hash function, fA, and the bolt is a superposition over the pre-image of some
value output by fA. To generate a random bolt, we create a superposition over
the domain of fA, apply fA to the superposition, and write the output to a
separate register. The output register is a superposition over the image of fA,
and it is entangled with the first register. Finally, we measure the output register,
which collapses to a single random eigenstate |y〉, called the hash or the serial
number. Since the two registers were entangled, the first register becomes a
uniform superposition over the pre-image of y. The first register’s state is the
bolt, and y is the classical serial number that identifies the bolt.

The bolt is unclonable if fA is collision-resistant. If we can create two bolts
that hash to the same serial number, then we can find a collision in fA by
simply measuring both bolts in the computational basis. Each measurement will
give a random value in the pre-image of y, and the two values are very likely
to be distinct. These values represent a collision in fA, which contradicts the
collision-resistance of fA.

More formally, the construction comprises three polynomial-time quantum
algorithms: Setup, Gen, and Ver. Setup samples the hash function and the public
verification key. This is performed by an honest administrator, called the mint.
Gen generates a random bolt, and can be run by anyone, even the adversary.
Finally, Ver verifies that a given state is an honestly generated bolt. Like Gen,
Ver is also public-key. We describe the construction’s variables, as well as the
three algorithms, below.



564 B. Roberts

Variables

◦ The scheme takes as parameters the positive integers m, q, d, e, k for which
m − d < e and d < e.

◦ Let n =
(
m+1
2

) − (
e+1
2

)
. n is the dimension of the image of fA.

◦ Let D be the set of m × m symmetric matrices over Zq with rank ≤ d. D is
the domain of fA.

◦ Let A = {A1,A2, . . . ,An} be some subset of the symmetric m × m matrices
over Zq. A determines fA.

◦ Let fA : D → Z
n
q such that for an input M ∈ D and each i ∈ [n],

[fA(M)]i =
m∑

j=1

m∑

k=1

(Ai)j,k · Mj,k = Tr(AT
i M) (1)

fA is the hash function used to sample the bolt. It maps matrices to vectors.
[fA(M)]i is the dot product of Ai’s entries with M’s entries. To take the dot
product of two matrices, we unfurl the entries of each matrix into a vector
and dot the vectors together. This procedure is captured by (1).

◦ Let |E〉 be the lightning bolt, which is an unclonable state.

Setup

Setup samples a verification trapdoor R and a hash function fA. fA is chosen
so that RTR is in the kernel of fA, a fact that will be useful in Ver.
Setup

1. Sample R ∈R Z
e×m
q . R is the verification trapdoor.

2. Choose A such that R·Ai ·RT = 0, ∀i ∈ [n], and no Ai is a linear combination
of the others. The purpose of this step is to ensure that RTR is in the kernel
of fA.

3. Publish R, A, and the parameters n,m, q, d, e, k.

Note that the space of m × m symmetric matrices A for which R · A · RT = 0
has dimension

(
m+1
2

) − (
e+1
2

)
= n, so A is a basis for this space.

Gen

Gen generates a bolt. The bolt is statistically close to a tensor product of k + 1
mini-bolts. A mini-bolt is a uniform superposition over the pre-image of y, and
all the mini-bolts that belong to a bolt have the same y-value.
Gen

1. Create |φ0〉, a uniform superposition over all sets of k + 1 rank-d matrices in
D that are mapped to the same y-value. Within a set of k + 1 matrices, all
matrices must map to the same value, but the various sets can map to any
value in the image of fA. [3] explains how this step is accomplished.

2. Compute fA(|φ0〉) in superposition, and measure the function’s output, y.
After the measurement, |φ0〉 collapses to |φ1〉, a superposition over all sets of
k + 1 rank-d matrices in D that are pre-images of y.

3. Let |E〉 = |φ1〉; then output |E〉 and y.



Security Analysis of Quantum Lightning 565

Ver

Ver verifies a purported bolt. It takes as input a serial number y and a purported
bolt |P 〉, which comprises the purported mini-bolts, |P (1)〉, . . . , |P (k+1)〉. Ver
checks each purported mini-bolt separately, and the bolt is accepted if all mini-
bolts pass and have the same serial number y.

Ver makes two measurements to verify the mini-bolt, one in the computa-
tional basis, the other in the Fourier basis. The computational basis test checks
that the eigenstates of the mini-bolt are indeed in the pre-image of y. The
Fourier basis test checks that the mini-bolt is a superposition over many eigen-
states, rather than a single eigenstate. See [3] for an explanation of why the test
works.
Ver

1. For each purported mini-bolt, |P (i)〉, let |M〉 be a generic computational-basis
eigenstate of |P (i)〉. Compute and measure whether: M ∈ D and fA(M) = y.

2. Take the quantum Fourier transform of the state. Let |N〉 be a generic Fourier-
basis eigenstate. Measure whether rank (R · N · RT ) ≤ m − d.

3. Take the inverse quantum Fourier transform, and output the resulting state.
The mini-bolt passes if and only if our measurements in steps 1 and 2 passed.

4. The purported bolt passes if and only if all the mini-bolts passed relative to
the same y.

Crucially, the Fourier basis test uses the trapdoor R to check that the mini-
bolt has the right structure, and Ver does not work without R. However, R also
gives information about the kernel of fA, which we will use to break the hardness
assumption.

3 Analysis of the Security Proof

It is difficult to base the scheme’s security on any widespread computational
assumptions because superpositions of low-rank matrices are not well studied.
Instead, Zhandry proposed a plausible new hardness Assumption (1) and showed
that if Assumption 1 is true, then the proposed construction of quantum lightning
is secure.

Essentially, Assumption 1 says that fA is (2k + 2)-multi-collision-resistant
(MCR) even when we publish the trapdoor R.

Assumption 1 ([3]). For some functions d, e, k in m for which n =
(
m+1
2

) −(
e+1
2

)
< dm − (

d
2

)
, kn ≤ dm − (

d
2

)
< (2k + 1)n, and e > d, fA is (2k + 2)-multi-

collision-resistant, even if R is public.

Before this work, Assumption 1 was untested, but here we will show that it is
false.



566 B. Roberts

Breaking Assumption 1

We will show that R allows us to construct more than 2k + 2 low-rank matrices
that are in the pre-image of y. RTR is in the kernel of fA, so we use RTR
to construct many low-rank matrices that are in the kernel of fA. All of these
matrices hash to the same value: y = 0.

First, observe that RTR is in the kernel of fA:

fA(RTR)i = Tr(AT
i R

TR) = Tr(RAiRT ) = 0

Second, we will use the rows of R to construct a set of low-rank matrices in
the kernel of fA. Let the rows of R be {r1, . . . , re} ⊂ Z

m
q , expressed as column

vectors. For any row rj , rjrTj is a symmetric matrix with rank = 1, so rjrTj ∈ D.
For any i ∈ [n], rTj · Ai · rj = 0. This means that

fA(rjrTj )i = Tr(AT
i rjr

T
j ) = Tr(rTj Airj) = 0

Therefore, rjrTj is in the kernel of fA.
Third, let K = {r1rT1 , . . . , rerTe } be the e matrices that we constructed. Then

take any linear combination of d of the matrices in K. The resulting matrix is
also a symmetric matrix of rank ≤ d that maps to 0. This procedure can be
easily modified to produce matrices in the pre-image of another output value.

Lastly, this procedure produces many more than 2k +2 colliding inputs. Due
to the restrictions on m,n, d, e, k, it is the case that k < d < e. It suffices to
find 4e colliding inputs because 2k + 2 < 2e + 2 < 4e. Since R is random, with
overwhelming probability, R has rank e. Then the matrices in K are linearly
independent, and the number of matrices we can construct from this procedure
is on the order of

(
e
d

)
qd matrices, which is much more than 4e.

In summary, we’ve given a procedure that uses R to construct many (≥
2k + 2) inputs to fA that map to 0. Therefore Assumption 1 is false.

Implications and Future Work

The proof of security given in [3] was based on Assumption 1, and since
Assumption 1 is false, the proof of security does not hold.

However we are optimistic that the construction can be patched (modified) to
rule out the attack on Assumption 1 that we presented, and any similar attacks.
We would need to find an R that is useful for verification but that does not give
a matrix in the kernel of fA. Patching the construction is an open problem.

Additionally, we wonder whether [3]’s existing construction can be proven
insecure with an attack similar to the one presented in this paper. After all, a
similar attempt at constructing quantum lightning can be proven insecure with
a similar attack. [3]’s scheme is similar to an attempted folklore construction of
quantum lightning based on the SIS problem ([3], Sect. 1.1). Where [3]’s con-
struction uses matrices of low rank, the SIS-based construction uses vectors of
small norm. The SIS-based construction is insecure because the verification trap-
door can be used to construct a superposition over short vectors in the kernel of



Security Analysis of Quantum Lightning 567

the hash function, and this state passes verification. Analogously, we hypothe-
size that R could be used to create a superposition of low-rank matrices in the
kernel of fA that passes verification.

Acknowledgements. I thank Mark Zhandry for useful discussions.

References

1. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. Theor. Com-
put. 9(9), 349–401 (2013). https://doi.org/10.4086/toc.2013.v009a009

2. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from
knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 276–289, ITCS 2012. ACM, New York (2012). https://doi.org/10.1145/
2090236.2090260

3. Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 408–438.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 14

https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1007/978-3-030-17659-4_14


Classical vs Quantum Random Oracles

Takashi Yamakawa1(B) and Mark Zhandry2,3

1 NTT Secure Platform Laboratories, Tokyo, Japan
takashi.yamakawa.ga@hco.ntt.co.jp

2 Princeton University, Princeton, USA
mzhandry@princeton.edu

3 NTT Research, Palo Alto, USA

Abstract. In this paper, we study relationship between security of cryp-
tographic schemes in the random oracle model (ROM) and quantum
random oracle model (QROM). First, we introduce a notion of a proof
of quantum access to a random oracle (PoQRO), which is a protocol to
prove the capability to quantumly access a random oracle to a classical
verifier. We observe that a proof of quantumness recently proposed by
Brakerski et al. (TQC ’20) can be seen as a PoQRO. We also give a
construction of a publicly verifiable PoQRO relative to a classical oracle.
Based on them, we construct digital signature and public key encryption
schemes that are secure in the ROM but insecure in the QROM. In par-
ticular, we obtain the first examples of natural cryptographic schemes
that separate the ROM and QROM under a standard cryptographic
assumption.

On the other hand, we give lifting theorems from security in the
ROM to that in the QROM for certain types of cryptographic schemes
and security notions. For example, our lifting theorems are applicable
to Fiat-Shamir non-interactive arguments, Fiat-Shamir signatures, and
Full-Domain-Hash signatures etc. We also discuss applications of our
lifting theorems to quantum query complexity.

1 Introduction

The random oracle model (ROM) [BR93] is a widely used heuristic in cryp-
tography where a hash function is modeled as a random function that is
only accessible as an oracle. The ROM was used for constructing practical
cryptographic schemes including digital signatures [FS87,PS96,BR96], chosen-
ciphertext attack (CCA) secure public key encryption (PKE) [BR95,FOPS01,
FO13], identity-based encryption (IBE) [GPV08], etc.

In 2011, Boneh et al. [BDF+11] observed that the ROM may not be suffi-
cient when considering post-quantum security, since a quantum adversary can
quantumly evaluate hash functions on superpositions, while the ROM only gives
a classically-accessible oracle to an adversary. Considering this observation, they

Takashi Yamakawa—This work was done while the author was visiting Princeton
University.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 568–597, 2021.
https://doi.org/10.1007/978-3-030-77886-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_20


Classical vs Quantum Random Oracles 569

proposed the quantum random oracle model (QROM), which gives an adversary
quantum access to an oracle that computes a random function.

Boneh et al. observe that many proof techniques in the ROM cannot be
directly translated into one in the QROM, even if the other building blocks of
the system are quantum-resistant. Therefore, new proof techniques are needed
in order to justify the post-quantum security of random oracle model sys-
tems. Fortunately, recent advances of proof techniques have clarified that most
important constructions that are originally proven secure in the ROM are also
secure in the QROM. These include OAEP [TU16], Fujisaki-Okamoto trans-
form [TU16,JZC+18,Zha19], Fiat-Shamir transform [LZ19,DFMS19,DFM20],
Full-Domain Hash (FDH) signatures [Zha12], Gentry-Peikert-Vaikuntanathan
(GPV) IBE [Zha12,KYY18], etc.

Given this situation, it is natural to ask if there may be a general theorem
lifting any classical ROM proof into a proof in the QROM, provided that the
other building blocks of the system remain quantum resistant. There are several
known lifting theorems that ensure that certain types of security reductions in
the ROM also work in the QROM [BDF+11,Son14,ZYF+19,KS20]. However,
there is no known general lifting theorem that works regardless of form of security
proofs in the ROM.

Such a general lifting theorem certainly seems like a challenging task. Never-
theless, demonstrating a separation—that is, a scheme using quantum-resistant
building blocks that is secure in the ROM but insecure in the QROM—has also
been elusive. Intuitively, the reason is that natural problems on random ora-
cles (such as pre-image search, collision finding, etc.) only have polynomial gaps
between classical and quantum query complexity.

We are aware of two works that consider the task of finding a separation.
First, Boneh et al. [BDF+11] gave an example of an identification protocol that
is secure in the ROM but insecure in the QROM, but is specific to a certain
non-standard timing model. Concretely, the protocol leverages the polynomial
gap in collision finding to allow an attacker with quantum oracle access to break
the system somewhat faster than any classical-access algorithm. The verifier
then rejects if the prover cannot respond to its challenges fast enough, thereby
blocking classical attacks while allowing the quantum attack to go through. This
unfortunately requires a synchronous model where the verifier keeps track of the
time between messages; such a model is non-standard.

Second, a recent work of Zhang et al. [ZYF+19] showed that quantum random
oracle is differentiable from classical random oracle, which roughly means that it
is impossible to simulate quantum queries to a random oracle using only classical
queries to the same function. Their result rules out a natural approach one may
take to give a lifting theorem, but it fails to actually give a scheme separating
classical from quantum access to a random oracle.1

1 Subsequent to the posting of the initial version of this work online, Zhang et al.
[ZYF+19] updated their paper to add a construction of a cryptographic scheme
that separates the ROM and the QROM. See Sect. 1.3 for details.



570 T. Yamakawa and M. Zhandry

In summary, there is no known classical cryptographic scheme (e.g., digital
signatures or PKE) that can be proven secure in the ROM but insecure in the
QROM. This leaves open the important question of whether or not a general
lifting theorem for cryptographic schemes is possible.

1.1 Our Results

We give constructions of cryptographic schemes that separate the ROM and
QROM, showing that a fully general lifting theorem is impossible. On the other
hand, we also give lifting theorems from the ROM security to the QROM security
for some constrained but still very general settings. Details are explained below:
Proof of Quantum Access to a Random Oracle. For showing separations
between the ROM and QROM, we first introduce a primitive which we call
a proof of quantum access to random oracle (PoQRO). Roughly speaking, a
PoQRO is a protocol where a quantum prover proves his ability to quantumly
access to a random oracle to a classical verifier who is only given classical access
to the random oracle. This is closely related to the notion of a proof of quantum-
ness [BCM+18], but the difference is that a proof of quantumness only requires
soundness against completely classical adversaries whereas a PoQRO requires
soundness against quantum adversaries with classical access to a random oracle.

First, we observe that a proof of quantumness recently proposed by Brakerski
et al. [BKVV20] is actually also a PoQRO. As a result, we obtain a PoQRO
under the assumed quantum hardness of the learning with errors (LWE) problem
[Reg09] (which we call the QLWE assumption in the following). The construction
is non-interactive in the sense that after a verifier generates a pair of a public
and secret keys and publishes the public key, a prover can generate a proof
without any interaction. However, the proof is not publicly verifiable since the
verification relies on the secret key.

We also study the possibility of publicly verifiable PoQRO. We give a con-
struction of a publicly verifiable PoQRO relative to a classical oracle (which can
be queried in superposition) using the technique developed in the recent work by
Amos et al. [AGKZ20]. Similarly to [AGKZ20], we can heuristically instantiate
the protocol in the standard model by using candidate constructions of post-
quantum obfuscation [Agr19,AP20,BDGM20,WW20,GP20].

Separation of ROM and QROM. A PoQRO itself is already an example of
cryptographic task that can be done in the QROM but cannot be done in the
ROM. By embedding a PoQRO into digital signatures and PKE, we obtain the
following results:

– A digital signature scheme that is EUF-CMA secure in the ROM but com-
pletely broken by 1 signing query in the QROM, and

– A PKE scheme that is IND-CCA secure in the ROM but completely broken
by 1 decryption query in the QROM.

Both these results rely on the QLWE assumption.



Classical vs Quantum Random Oracles 571

Moreover, by embedding a publicly verifiable PoQRO into them, we can
show the existence of a classical oracle relative to which there exist the following
schemes:

– A digital signature scheme that is EUF-CMA secure in the ROM but not
even EUF-NMA secure2 in the QROM, and

– A PKE scheme that is IND-CCA secure in the ROM but not even IND-CPA
secure in the QROM.

These results can be understood as an evidence that a generic lifting theorem
is unlikely to exist even for the weak security notions of EUF-NMA security of
digital signatures and IND-CPA security of PKE. Specifically, the above results
imply that there do not exist a relativizing lifting theorem for them that works
relative to any classical oracle.

Lifting Theorem for Search-Type Games. We now turn to our positive
results, giving lifting theorems for certain class of schemes and security notions.
First, we give a lifting theorem for what we call search-type games. A search-type
game is specified by a classical challenger that interacts with an adversary and
finally outputs � indicating acceptance or ⊥ indicating rejection. We say that the
adversary wins if the verifier outputs �. We say that the game is hard in the ROM
(resp. QROM) if no efficient quantum adversary with classical (resp. quantum)
access to the random oracle can win the game with non-negligible probability.
For example, the soundness of PoQROs is captured by the hardness of a search-
type game in the ROM (but not QROM!), and the EUF-CMA/NMA security of
digital signatures in the ROM (resp. QROM) is captured by the hardness of a
search-type game in the ROM (resp. QROM). We prove the following theorem:

Theorem 1 (Lifting Theorem for Search-Type Game, Informal). For
any search-type game where a challenger makes constant number of queries to
the random oracle, if the game is hard in the ROM, then that is also hard in the
QROM.

As immediate corollaries of the theorem, we obtain lifting theorems for the fol-
lowing:

– EUF-NMA security of digital signatures whose key generation and verification
algorithms make O(1) random oracle queries, and

– Soundness of (non-)interactive arguments whose (setup algorithm and) veri-
fier make at most O(1) random oracle queries.

The latter lifting theorem is applicable to those obtained by the Fiat-Shamir
transform to constant round interactive arguments. Though it is already proven
that such arguments are sound in the QROM [LZ19,DFMS19,DFM20], we
believe that the above general corollary would be still useful for the design

2 The EUF-NMA security is an unforgeability against adversaries that do not make
any signing query.



572 T. Yamakawa and M. Zhandry

of non-interactive arguments in the QROM in the future without repeating a
similar analyses to those works.

Theorem 1 also immediately implies the impossibility of PoQRO where the
verifier makes O(1) random oracle queries. We note that in our PoQRO protocols,
the number of queries made by the verification algorithm is ω(log λ). We leave
it as an interesting open problem to study the (im)possibility of PoQRO with
O(log λ)-query verification.

Though the applicability of Theorem1 is somewhat limited, to the best of our
knowledge, this is the first general lifting theorem from ROM security to QROM
security that does make any assumptions about the ROM security reduction.

Lifting Theorem for EUF-CMA Security of Digital Signatures. Unfor-
tunately, Theorem 1 does not give a lifting theorem for the EUF-CMA security
of digital signatures (except for a non-interesting case where the signing algo-
rithm does not make random oracle query). On the other hand, we give a lifting
theorem for the EUF-CMA security for digital signature shcmes that satisfy
additional properties.

Theorem 2 (Lifting Theorem for Digital Signatures, Informal). Sup-
pose that a digital signature scheme satisfies the following:

1. EUF-NMA secure in the ROM,
2. The key generation algorithm does not make random oracle queries and the

verification algorithm makes O(1) random oracle queries,
3. Random oracle queries made by the signing and verification algorithms reveal

the corresponding message, and
4. Signatures are simulatable without the signing key if one is allowed to non-

adaptively program the random oracle.

Then the scheme is EUF-CMA secure in the QROM.

This theorem is applicable to the FDH signatures and Fiat-Shamir signa-
tures. To the best of our knowledge, this is the first lifting theorem that is
simultaneously applicable to both of them.

Application to Quantum Query Complexity. Based on a slight variant of
a quantitative version of Theorem1, we obtain a general theorem about query
complexity. We consider a class of oracle problems, where the adversary’s goal
is to find distinct inputs to H such that the corresponding outputs satisfy some
relation. Our theorem can be seen as upper bounding the success probability of
a q-query adversary in terms of the probability of an adversary that makes no
queries at all. Slightly more formally:

Theorem 3 (Informal). Let H : X → Y be a random oracle. For any relation
R ⊆ Yk, the probability that a q-quantum-query adversary finds pair-wise distinct
x1, ..., xk such that (H(x1), ...,H(xk)) ∈ R is at most

(2q + 1)2k Pr[∃π s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk) $← Yk] (1)

where π is a permutation over {1, ..., k}.



Classical vs Quantum Random Oracles 573

The probability in Eq. 1 is typically be very easy to analyze. Theorem 3 therefore
yields very simple non-trivial query lower bounds for various problems including
(multi-)preimage search and (multi- or generalized) collision finding. Though
these bounds are already known and/or non-tight, an advantage of our proofs is
its extreme simplicity once we have Theorem 3 in hand.

1.2 Technical Overview

PoQRO from LWE. We first observe that a proof of quantumness in [BKVV20]
is also a PoQRO. Though the construction and security proof are essentially the
same as theirs, we briefly review them for the reader’s convenience. The protocol
is based on a noisy trapdoor claw-free permutation constructed from the QLWE
assumption [BCM+18,BKVV20]. In this overview, we assume that there is a
clean trapdoor claw-free permutation for simplicity. A claw-free permutation is
a function f : {0, 1} × {0, 1}n → {0, 1}n such that (1) f(0, ·) and f(1, ·) are
injective, (2) it is difficult for an efficient quantum adversary given f to find
a claw (x0, x1) such that f(0, x0) = f(1, x1), but (3) there is a trapdoor that
enables one to efficiently find both pre-images for any target value. Let H be a
random oracle from {0, 1}n to {0, 1}. In the PoQRO, the verifier first generates f
along with its trapdoor and only sends f to the prover as a public key. Then the
prover generates a state 1

2 (|0〉 |x0〉 + |1〉 |x1〉) along with y = f(0, x0) = f(1, x1)
by using the technique of [BCM+18]. Then it applies the random oracle H into
the phase to get 1

2 ((−1)H(x0) |0〉 |x0〉+(−1)H(x1) |1〉 |x1〉), applies the Hadamard
transform, measures both registers to obtain (m, d), and sends (y,m, d) as a proof
to the verifier. The verifier computes x0 and x1 from y by using the trapdoor and
accepts if m = dT · (x0 ⊕x1)⊕H(x0)⊕H(x1) holds. As shown in [BKVV20], the
equation is satisfied if the prover honestly run the protocol. On the other hand,
a cheating prover with classical access to H can pass the test with probability
almost 1/2 since the only way to obtain an information of H(x0) ⊕ H(x1) is to
query both x0 and x1; this happens with a negligible probability due to the claw-
free property. This construction only gives a constant gap between completeness
and soundness, so we amplify it to super-polynomial by ω(log λ) parallel repeti-
tions.

Publicly Verifiable PoQRO. We construct a publicly verifiable PoQRO based
on a variant of an equivocal collision-resistant hash (ECRH) [AGKZ20]. An
ECRH f : X → Y is a collision-resistant hash function with a special property
called equivocality. The equivocality enables one to generate a pair of a classical
string y ∈ Y and a quantum state |sk〉 that can be used to find x such that
f(x) = y and p(x) = b where p : X → {0, 1} is a pre-determined predicate and
b is a bit chosen after (y, |sk〉) is generated. Amos et al. [AGKZ20] constructed
an ECRH for a predicate p that returns the first bit of its input relative to a
classical oracle. Here, we observe that their construction can be extended to
support any predicate p. Specifically, we can define p as a predicate defined by
a random oracle H : X → {0, 1}. Based on such an ECRH, we can construct a
4-round publicly verifiable PoQRO as follows:



574 T. Yamakawa and M. Zhandry

1. The verifier generates an ECRH f and sends f to the prover.
2. The prover generates y along with the corresponding |sk〉 and sends y to the

verifier
3. The verifier randomly chooses b

$← {0, 1} and sends b to the prover.
4. The prover finds x such that f(x) = y and H(x) = b by using |sk〉 and sends

x to the verifier.
5. The verifier accepts if and only if f(x) = y and H(x) = b.

By the functionality of ECRH, the verifier accepts with overwhelming probability
if a prover with quantum access to H runs honestly. On the other hand, if a
cheating prover is given only classical access to H, then the verifier will accept
with probability almost 1/2. To see this, consider the first query the prover makes
to H on an x∗ such that f(x∗) = y. If the prover ultimately sends an x �= x∗

to the verifier that causes the verifier to accept, x and x∗ will be a collision for
f , contradicting the collision-resistance of f . On the other hand, if x = x∗, then
H(x) = H(x∗) has only a 1/2 chance of being equal to b, regardless of whether
the query on x∗ happened before or after the prover learned b. The result is that,
no matter what the prover does, the verifier rejects with probability essentially
at least 1/2.

This protocol only achieves a constant gap between completeness and sound-
ness, but it can be amplified to super-polynomial by ω(log λ) parallel repetitions.
Moreover since the verifier’s message in the third round is just a public coin, we
can apply the Fiat-Shamir transform to the above protocol to make the protocol
non-interactive considering the generation of f as a setup.

Separations for Digital Signatures and Public Key Encryption. Given
a PoQRO, it is easy to construct digital signature and PKE schemes that are
secure in the ROM but insecure in the QROM: Suppose that we have a EUF-
CMA secure digital signature scheme in the ROM, consider a modified scheme
in which the signing algorithm returns a secret key of the scheme if the queried
message is a valid proof of the PoQRO. Clearly, this scheme is insecure in the
QROM and completely broken by 1 signing query. On the other hand, security in
the ROM is preserved since an adversary in the ROM cannot find a valid proof
of the PoQRO. A separation for IND-CCA security of PKE can be obtained by
embedding verification of PoQRO in a decryption algorithm in a similar manner.

Moreover, if the PoQRO is publicly verifiable, then we can embed the verifi-
cation of the PoQRO into verification and encryption algorithms of digital signa-
ture and PKE schemes, respectively. As a result, we obtain separations even for
EUF-NMA secure digital signatures and IND-CPA secure PKE schemes, assum-
ing an equivocal collision-resistant hash function.

Lifting Theorem for Search-Type Games. Next, we give a brief overview
of proofs of our lifting theorems. A starting point of our lifting theorem is the
following classical lemma:

Lemma 1. (Informal) For any search-type cryptographic game in which a chal-
lenger makes at most k classical random oracle queries, if there exists an efficient



Classical vs Quantum Random Oracles 575

adversary A that makes at most q classical random oracle queries with winning
probability ε, then there exists an efficient B that makes at most k classical ran-
dom oracle queries with winning probability at least ε/(q + 1)k.

This lemma can be proven by considering B described as follows:

1. Let H be the “real” random oracle that is given to B.
2. For each j = 1, ..., k, B randomly picks ij

$← [q +1]. Intuitively, this is a guess
of A’s first query that is equal to the challenger’s j-th query where ij = q +1
is understood as a guess that “A does not make such a query”.

3. B chooses a fresh “fake” random oracle H ′ by itself.3

4. B runs A by giving A a stateful oracle O simulated as follows: B initializes O
to H ′. Whenever A makes its i-th query xi, B simulates the oracle O in one
of the following ways:
(a) If i = ij for some j ∈ [k], then B queries xi to the real random oracle H

to obtain H(xi), returns H(xi), and reprograms O to output H(xi) on
input xi.

(b) Otherwise, B just returns O(xi).
Whenever A sends some message to the challenger, B just forwards it to the
external challenger, and whenever the challenger returns some message, B
forwards it to A.

Clearly, B makes at most k classical random oracle queries and is as efficient
as A. We can see that B perfectly simulates the game for A if the guess is correct
(e.g., A’s ij-th query is its first query that is equal to the challenger’s j-th query),
which happens with probability 1/(q + 1)k. Moreover, since the events that the
guess is correct and the event that A wins are independent, we can conclude
that B’s winning probability is at least 1/(q +1)k times A’s winning probability.

Our idea is to apply a similar proof to A that may make quantum queries,
with the goal of B still only needing classical queries. Then, an obvious problem
is that B cannot forwards A’s query in Step 4a since A’s query may be quantum
whereas B only has classical access to the real random oracle H. Here, our solu-
tion is to just let B measure A’s query, query the measurement outcome to the
real random oracle H, and then reprogram O according to this value. Of course,
such a measurement can be noticed by A by a noticeable advantage. Nonethe-
less, we can rely on the techniques developed for Fiat-Shamir transform in the
QROM [DFMS19,DFM20] to prove that this decreases the winning probability
only by the factor of (2q + 1)2k. Therefore, as long as k = O(1), the reduction
works with a polynomial loss.

Application to Digital Signatures. Our lifting theorem for search-type games
(Theorem 1) immediately implies a lifting theorem for EUF-NMA security for
digital signature schemes where key generation and verification algorithms make

3 More precisely, it simulates a fresh random oracle H ′ on the fly so that this can be
done efficiently. Alternatively, it can choose H ′ from a family of q-wise independent
functions.



576 T. Yamakawa and M. Zhandry

constant number of random oracle queries. On the other hand, Kiltz et al.
[KLS18] showed that the EUF-NMA security in the QROM implies EUF-CMA
security in the QROM for Fiat-Shamir signatures. We generalize this result
to a broader class of digital signature schemes that satisfy conditions given in
Theorem 2. Roughly speaking, this can be proven based on the observation that if
signatures are simulatable without the signing key by programming the random
oracle, then the signing oracle is useless and thus the EUF-NMA and EUF-CMA
security are equivalent. By combining this with Theorem1, we obtain Theorem 2.

Application to Quantum Query Complexity. As one can see from the
overview of the proof of Theorem1, the security loss of the reduction from QROM
adversary to ROM adversary is (2q +1)2k. By applying a (slight variant of) this
quantitative version of Theorem1 to a search-type game to find a pair-wise
distinct (x1, ..., xk) such that (H(x1), ...,H(xk)) ∈ R, we obtain Theorem 3.

1.3 Related Works

P versus BQP Relative to a Random Oracle. As a related question to
the topic of this paper, Fortnow and Rogers [FR99] asked if we can separate
complexity classes P and BQP relative to a random oracle. Though Aaronson
and Ambainis [AA14] gave an evidence that it is difficult to separate (an aver-
age case version of) P and BQP relative to a random oracle under a certain
conjecture, an unconditional proof is still open. We note that our separations
between ROM and QROM do not give any implication to the problem since we
rely on computational assumptions and consider an interactive protocol, which
cannot be captured as a decision problem.

Separation of ROM and QROM for Sampling. Aaronson [Aar10] showed
that there is a sampling problem (called Fourier Sampling) that can be solved by
1 quantum query to a random oracle but requires exponential number of classical
queries. We note that this does not give a separation of the ROM and QROM
in a cryptographic setting since a classical verifier cannot efficiently check that
the sample is taken according to the correct distribution.

Known Lifting Theorems. Though several works [BDF+11,Son14,ZYF+19,
KS20] give lifting theorems from ROM security to QROM security, they assume
certain conditions for security proofs in the ROM. On the other hand, our lifting
theorem for search-type games only requires syntactic conditions of schemes and
their security notions, and do not assume anything about security proofs in the
ROM. Our lifting theorem for digital signatures requires slightly more involved
conditions, but we believe that it is much easier to check them than to check
that a security proof in the ROM relies on a certain type of reductions.

Quantum Query Complexity. Beals et al. [BBC+01] showed that quantum
query complexity is polynomially related to classical query complexity for any
total functions. Though this may seem closely related to our result on query



Classical vs Quantum Random Oracles 577

complexity, there are two significant differences. First, they consider a problem to
output a 1-bit predicate considering the oracle as an input, whereas we consider
a problem to find k inputs whose oracle values are in a certain relation. Second,
they consider the worst case complexity whereas we consider the average case
complexity. Due to the above two differences, these two results are incomparable.

Zhandry [Zha19, Theorem 3] also gave a general theorem that gives average
case quantum query lower bounds relative to a random oracle. Their theorem
gives tighter lower bounds than ours for some problems (e.g., collision finding).
On the other hand, we believe that ours is easier to apply and also more general
than theirs. For example, their theorem does not (at least directly) give mean-
ingful lower bounds for the generalized collision finding problems.

Concurrent Work. Subsequent to the posting of the initial version of this work
online, Zhang et al. [ZYF+19] updated their paper to add a construction of (an
interactive version of) PoQRO based on the QLWE assumption. Their construc-
tion is based on an ad hoc modification of Mahadev’s classical verification of
quantum computation protocol [Mah18], and completely different from ours.

2 Preliminaries

Notations. We use λ to mean the security parameter throughout the paper. For
a set X, |X| is the cardinality of X. We denote by x

$← X to mean that we take x
uniformly from X. For sets X and Y, Func(X ,Y) denotes the set of all functions
from X to Y. For a positive integer n, [n] means a set {1, ..., n}. We say that
a quantum (resp. classical) algorithm is efficient if that runs in quantum (resp.
classical) polynomial time. For a quantum or randomized classical algorithm A,
we denote y

$← A(x) to mean that A outputs y on input x, and denote y ∈ A(x)
to mean that y is in the support of A(x).

Oracles. In this paper, we consider the following three types of oracles: quantum
oracle, quantumly-accessible classical oracle, and classically-accessible classical
oracle.

A quantum oracle is an oracle that applies a unitary U on a query register. A
quantumly-accessible classical oracle is a special case of a quantum oracle where
U computes a classical function, i.e., there exists a classical function f such
that we have U |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for any x and y in the domain and range
of f . By a standard technique, when f is a single-bit output function, we can
implement an oracle that applies a unitary U ′ such that U ′ |x〉 = (−1)f(x) |x〉
for any x by a single call to an oracle that applies U as above. We call an oracle
that applies U ′ a phase oracle of f . A classically-accessible classical oracle works
similarly to a quantumly-accessible classical oracle except that it measures the
first register (the register to store x) in standard basis in each query. When we
just say that an oracle is a classical oracle, then that is quantumly-accessible
for any quantum algorithm and classically-accessible for any classical algorithm.
For an oracle-aided quantum algorithm A and a classical function f , we often



578 T. Yamakawa and M. Zhandry

denote by A|f〉 (resp. Af ) to mean that A is given a quantumly-accessible (resp.
classically-accessible) classical oracle that computes f .

Classical/Quantum Random Oracle Model. In the (classical) random ora-
cle model (ROM) [BR93], a random function H (of a certain domain and range)
is chosen at the beginning, and every party (including honest algorithms of a pro-
tocol whose security is analyzed and an adversary) can classically access H. In
other words, they are given a classically-accessible classical oracle that computes
H. The quantum random oracle model (QROM) [BDF+11] is defined similarly
except that the access to H can be quantum. In other words, a quantumly-
accessible classical oracle that computes H is available for the adversary.4 We
stress that the classical ROM can be considered even when we consider security
against quantum adversaries. We say that an algorithm in the QROM (resp.
ROM) is q-quantum-query (resp. q-classical-query) if it makes at most q queries
to its oracle.

By the following lemma, we can efficiently simulate a quantum random oracle
to a q-quantum-query algorithms by using 2q-wise independent hash function.5

Lemma 2 ([Zha12]). For any sets X and Y of classical strings and q-quantum-
query algorithm A, we have

Pr[A|H〉 = 1 : H
$← Func(X ,Y)] = Pr[A|H〉 = 1 : H

$← H2q]

where H2q is a family of 2q-wise independent hash functions from X to Y.

Learning with Errors. Roughly speaking, a learning with errors (LWE)
[Reg09] problem is a problem to solve a system of noisy linear equations. Regev
[Reg09] gave a quantum reduction from hardness of LWE to hardness of worst-
case lattice problems, and it has been conjectured that the LWE problem is hard
to solve in quantum polynomial time. We call the assumption that no quantum
polynomial time algorithm can solve the LWE problem QLWE assumption. We
omit a detailed definition and a concrete parameter choice for the LWE problem
since we use the QLWE assumption only as a building block for constructing gen-
eral primitives such as noisy trapdoor claw-free functions [BCM+18,BKVV20],
PKE [Reg09,PW08], and digital signatures [GPV08]. We refer to these works
for concrete parameter choices.

Cryptographic Primitives. We give definitions of digital signatures and PKE
and its security notions in the full version. They are mostly standard except
that we use n-EUF-CMA (resp. n-IND-CCA) security to mean security of digital
signatures (resp. PKE) against adversaries that make at most n signing (resp.
decryption) queries.

4 Since we consider the post-quantum setting where honest algorithms are classical,
the only party who may quantumly access H is the adversary.

5 Though Zhandry [Zha19] gives another method to simulate a quantum random oracle
without upper bounding the number of queries, we use a simulation by 2q-wise
independent hash functions for simplicity.



Classical vs Quantum Random Oracles 579

3 Separation Between ROM and QROM

In this section, we show examples of cryptographic schemes that are secure in
the ROM but insecure in the QROM.

3.1 Proof of Quantum Access to Random Oracle

First, we introduce a notion of proofs of quantum access to a random oracle
(PoQRO).

Definition 1. A (non-interactive) proof of quantum access to a random oracle
(PoQRO) consists of algorithms (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify).

PoQRO.Setup(1λ): This is a classical algorithm that takes the security parameter
1λ as input and outputs a public key pk and a secret key sk.

PoQRO.Prove|H〉(pk): This is a quantum oracle-aided algorithm that takes a pub-
lic key pk as input and given a quantum access to a random oracle H, and
outputs a proof π.

PoQRO.VerifyH(sk, π): This is a classical algorithm that takes a secret key sk and
a proof π as input and given a classical access to a random oracle H, and
outputs � indicating acceptance or ⊥ indicating rejection.

We require PoQRO to satisfy the following properties.

Correctness. We have

Pr

[
PoQRO.VerifyH(sk, π) = ⊥ :

(pk, sk) $← PoQRO.Setup(1λ),
π

$← PoQRO.Prove|H〉(pk)

]
≤ negl(λ).

Soundness. For any quantum polynomial-time adversary A that is given a clas-
sical oracle access to H, we have

Pr

[
PoQRO.VerifyH(sk, π) = � :

(pk, sk) $← PoQRO.Setup(1λ),
π

$← AH(pk)

]
≤ negl(λ).

Definition 2 (Public Verifiability). We say that PoQRO is publicly verifiable
if we have pk = sk for any (pk, sk) in the support of PoQRO.Setup. When we
consider a publicly verifiable PoQRO, we omit sk from the output of the setup
algorithm and gives pk instead of sk to the verification algorithm for notational
simplicity.

PoQRO from QLWE. We observe that proofs of quantumness recently pro-
posed by Brakerski et al. [BKVV20] can also be seen as PoQRO. Specifically,
by just replacing “classical prover” with “quantum prover with classical access
to the random oracle”, their security proof directly works as a security proof of
PoQRO.



580 T. Yamakawa and M. Zhandry

Theorem 4 (a variant of [BKVV20]). If the QLWE assumption holds, then
there exists a PoQRO.

Since the proof is essentially identical to that in [BKVV20], we give the proof
in the full version.

Publicly Verifiable PoQRO Relative to Classical Oracle. Next, we give
a construction of a publicly verifiable PoQRO relative to a classical oracle based
on a variant of equivocal collision-resistant hash functions recently introduced
in [AGKZ20].

Theorem 5. There exists a publicly verifiable PoQRO relative to a quantumly-
accessible classical oracle that is independent of the random oracle.

Remark 1. One may think that we can upgrade any PoQRO to publicly verifi-
able one by just relativizing to a classical oracle in which sk is hardwired that
runs the verification algorithm. However, in such a construction, the classical
oracle depends on the random oracle, which we believe is not desirable. Espe-
cially, such a construction cannot be instantiated in the standard model even
assuming an ideal obfuscation since we do not know how to obfuscate a circuit
with random oracle gates. On the other hand, we consider a construction relative
to a classical oracle that does not depend on the random oracle, which enables
us to heuristically instantiate the construction in the standard model by using
an obfuscation.

For proving Theorem5, we introduce a slightly stronger variant of equivocal
collision-resistant hash functions [AGKZ20].

Definition 3 (Equivocal Collision-Resistant Hash Functions for Gen-
eral Predicates). An equivocal collision-resistant hash function (ECRH)
family for general predicates with a domain X and a range Y is a tuple
(ECRH.Setup,ECRH.Gen,ECRH.Eval,ECRH.Equiv) of efficient algorithms with
the following syntax:

ECRH.Setup(1λ): This is a probabilistic classical algorithm that takes the security
parameter 1λ as input and outputs a classical common reference string crs.

ECRH.Eval(crs, x): This is a deterministic classical algorithm that takes a com-
mon reference string crs and an input x ∈ X as input and outputs a hash
value y ∈ Y.

ECRH.Gen(crs): This is a quantum algorithm that takes a common reference
string crs as input, and outputs a hash value y ∈ Y and a quantum secret key
|sk〉.

ECRH.Equiv|p〉(1t, |sk〉 , b) This is a quantum algorithm that is given a quantumly-
accessible classical oracle that computes a function p : X → {0, 1} and an
“iteration parameter” 1t, a secret key |sk〉, and a bit b ∈ {0, 1} as input and
outputs x ∈ X .



Classical vs Quantum Random Oracles 581

As correctness, we require that for any p : X → {0, 1} and t ∈ N, if we have

Pr
x

$←X
[ECRH.Eval(crs, x) = y ∧ p(x) = b | ECRH.Eval(crs, x) = y] ≥ t−1,

for all crs ∈ ECRH.Setup(1λ), y ∈ Y, and b ∈ {0, 1}, then we have

Pr

⎡
⎢⎣ECRH.Eval(crs, x) = y

∧ p(x) = b

crs
$← ECRH.Setup(1λ),

(y, |sk〉) $← ECRH.Gen(crs),
x

$← ECRH.Equiv|p〉(1t, |sk〉 , b)

⎤
⎥⎦ = 1 − negl(λ).

As security, we require that ECRH.Eval(crs, ·) is collision-resistant, i.e., for
any efficient quantum adversary A, we have

Pr

[
ECRH.Eval(crs, x) = ECRH.Eval(crs, x′)
∧ x �= x′ :

crs
$← ECRH.Setup(1λ),

(x, x′) $← A(crs)

]
= negl(λ).

The above definition is similar to that of a family of equivocal collision-
resistant hash functions in [AGKZ20], but stronger than that. The difference
is that the predicate p is specified by ECRH.Gen in the original definition (and
ECRH.Equiv is not given oracle access to p and the iteration parameter 1t since
they can be hardwired into the algorithm) whereas we require the correctness
for a general predicate p. They gave a construction of a family of equivocal
collision resistant hash functions w.r.t. a predicate p that just returns the first
bit of its input relative to a classical oracle. We observe that essentially the same
construction actually works for general predicates. Thus, we obtain the following
lemma.

Lemma 3. There exists a family of equivocal collision resistant hash functions
for general predicates with a domain {0, 1}2λ and a range {0, 1}λ relative to a
classical oracle that is independent of the random oracle. In the construction,
for any crs and y, we have∣∣x ∈ {0, 1}2λ : ECRH.Eval(crs, x) = y

∣∣ = 2λ.

A proof of the above lemma can be found in the full version.
We construct a publicly verifiable PoQRO based on ECRH for the random

oracle predicate.
Let (ECRH.Setup,ECRH.Gen,ECRH.Eval,ECRH.Equiv) be an ECRH for gen-

eral predicates as in Lemma 3. Let m = ω(log λ) be an integer. Let H : {0, 1}2λ →
{0, 1} and H ′ : {0, 1}2mλ → {0, 1}m be random oracles.6 Then our publicly ver-
ifiable PoQRO is described as follows:

PoQRO.Setup(1λ): It generates crs
$← ECRH.Setup(1λ) and outputs pk := crs.

6 Two (quantum) random oracles can be implemented by a single (quantum) random
oracle by considering the first bit of the input as an index that specifies which random
oracle to access.



582 T. Yamakawa and M. Zhandry

PoQRO.Prove|H〉,|H′〉(pk): It parses crs ← pk, computes (yi, |ski〉) $←
ECRH.Gen(crs) for all i ∈ [m], c := H ′(y1||...||ym), xi

$←
ECRH.Equiv|H〉(13, |ski〉 , ci) for all i ∈ [m] where ci denotes the i-th bit of
c, and outputs π := {(xi, yi)}i∈[m].

PoQRO.VerifyH,H′
(pk, π): It parses crs ← pk and {(xi, yi)}i∈[m] ← π and outputs

� if and only if ECRH.Eval(crs, xi) = yi and H(xi) = ci hold for all i ∈ [m].

Lemma 4. The above PoQRO satisfies correctness and soundness as required in
Definition 1. Moreover, the construction is relativizing, i.e., that works relative
to any oracles.

Proof. (sketch) For any crs and y, since we assume∣∣x ∈ {0, 1}2λ : ECRH.Eval(crs, x) = y
∣∣ = 2λ,

by the Chernoff bound, for an overwhelming fraction of H, we have

Pr
x

$←{0,1}2λ

[ECRH.Eval(crs, x) = y ∧ H(x) = b | ECRH.Eval(crs, x) = y] ≥ 1/3.

Therefore, the correctness of the underlying ECRH immediately implies correct-
ness of the above protocol.

Here, we only give a proof sketch for soundness. See the full version for a full
proof. Roughly speaking, soundness can be proven as follows: First, we observe
that the above protocol can be seen as a protocol obtained by applying Fiat-
Shamir transform to a 4-round protocol where c is chosen by the verifier after
receiving {yi}i∈[m] from the prover. As shown in [LZ19,DFMS19,DFM20], Fiat-
Shamir transform preserves soundness even in the quantum setting.7 Therefore,
it suffices to prove soundness of the 4-round protocol against a cheating prover
with classical access to the random oracle H. This can be argued as follows:
Let {yi}i∈[m] be the adversary’s second message. And {xi}i∈[m] be the fourth
message. Without loss of generality, we assume that the adversary queries xi for
all i ∈ [m] to the random oracle H and does not make the same query twice. By
the collision-resistance of ECRH, the only preimage of yi that is contained in
the adversary’s random oracle query list is xi for all i ∈ [m] with overwhelming
probability. Conditioned on this, the adversary can win only if H(xi) = ci holds
for all i ∈ [m], which happens with probability 2−m. Therefore, the adversary
can win with probability at most 2−m + negl(λ) = negl(λ).

Finally, we remark that the above reduction works relative to any oracles.

By combining Lemma 3 and 4, Theorem 5 follows.

7 Actually, since we only consider quantum adversaries that are only given classical
access to the random oracle, there is a simpler analysis than those in [LZ19,DFMS19,
DFM20] as shown in the full version.



Classical vs Quantum Random Oracles 583

3.2 Separations for Digital Signatures

In this section, we construct digital signature schemes that are secure in the
ROM but insecure in the QROM based on PoQRO.

Lemma 5. If there exist a PoQRO and a digital signature scheme that is EUF-
CMA secure against quantum adversaries in the ROM, then there exists a digital
signature scheme that is EUF-CMA secure in the ROM but not 1-EUF-CMA
secure in the QROM.

Lemma 6. If there exist a publicly verifiable PoQRO and a digital signature
scheme that is EUF-CMA secure against quantum adversaries in the ROM, then
there exists a digital signature scheme that is EUF-CMA secure in the ROM but
not EUF-NMA secure in the QROM.

These lemmas can be easily proven by embedding a PoQRO into digital signature
schemes. See the full version for proofs.

By combining the above lemmas with Theorem 4 and 5 and the fact that
there exists a digital signature scheme that is EUF-CMA secure against quantum
adversaries in the ROM under the QLWE assumption [GPV08], we obtain the
following corollaries.

Corollary 1. If the QLWE assumption holds, then there exists a digital signa-
ture scheme that is EUF-CMA secure against quantum adversaries in the ROM
but not 1-EUF-CMA secure against quantum adversaries in the QROM.

Corollary 2. There exists a classical oracle relative to which there exists digital
signature scheme that is EUF-CMA secure against quantum adversaries in the
ROM but not EUF-NMA secure against quantum adversaries in the QROM.8

3.3 Separations for Public Key Encryption

In this section, we construct a PKE scheme schemes that are secure in the ROM
but insecure in the QROM based on PoQRO.

Lemma 7. If there exist a PoQRO and a PKE scheme that is IND-CCA secure
against quantum adversaries in the ROM, then there exists a PKE scheme that is
IND-CCA secure against quantum adversaries in the ROM but not 1-IND-CCA
secure in the QROM.

Lemma 8. If there exist a publicly verifiable PoQRO and a PKE scheme that is
IND-CCA secure against quantum adversaries in the ROM, then there exists a
PKE scheme that is IND-CCA secure against quantum adversaries in the ROM
but not IND-CPA secure in the QROM.

8 We do not need any computational assumption in this corollary since we can con-
struct a EUF-CMA secure digital signature scheme relative to a classical oracle in a
straightforward manner.



584 T. Yamakawa and M. Zhandry

These lemmas can be easily proven by embedding a PoQRO into PKE schemes.
See the full version for proofs.

By combining the above lemmas with Theorem 4 and 5 and the fact that
there exists an IND-CCA secure PKE scheme in the standard model (and thus
in the ROM) under the QLWE assumption [PW08], we obtain the following
corollaries.

Corollary 3. If the QLWE assumption holds, then there exists a PKE scheme
that is IND-CCA secure against quantum adversaries in the ROM but not 1-
IND-CCA secure in the QROM.

Corollary 4. There exists a classical oracle relative to which there exists a PKE
scheme that is IND-CCA secure against quantum adversaries in the ROM but
not IND-CPA secure in the QROM.9

4 Lifting Theorem

In this section, we prove a lifting theorem from ROM security to QROM secu-
rity for a certain type of security notions. Then we discuss applications of this
theorem.

4.1 Statement of Lifting Theorem

First, we define a concept of classically verifiable games. The following formal-
ization is based on the definition of falsifiable assumptions in [GW11].

Definition 4 (Classically verifiable games). A classically verifiable game
consists of an interactive classical challenger CH that is given classical access
to a random oracle H and a constant c ∈ [0, 1). In the ROM (resp. QROM),
the challenger CH(1λ) interacts with an adversary AH(1λ) (resp. A|H〉(1λ)) and
finally outputs � indicating acceptance or ⊥ indicating rejection. If the challenger
returns �, we say that AH(1λ) (resp. A|H〉(1λ)) wins CH(1λ).

We say that a classically verifiable game is hard in the ROM (resp. QROM)
if for any efficient quantum10 adversary AH (resp. A|H〉) that is given a classical
(resp. quantum) access to the random oracle H, we have

Pr
H

[AH(1λ) wins CH(1λ)] ≤ c + negl(λ)

(resp.Pr
H

[A|H〉(1λ) wins CH(1λ)] ≤ c + negl(λ))

9 We do not need any computational assumption in this corollary since we can con-
struct an IND-CCA secure PKE scheme relative to a classical oracle in a straight-
forward manner.

10 Note that we consider quantum adversaries even in the classical ROM.



Classical vs Quantum Random Oracles 585

where the probability is over the choice of the random oracle H, the random coins
of A and C, and the randomness in measurements by A.11

We say that a classically verifiable game is search-type if c = 0.

Remark 2. Though the above definition is based on the definition of falsifiable
assumptions in [GW11], the hardness of a classically verifiable game may not be
falsifiable since we allow the challenger to run in unbounded time.

Examples. Soundness of PoQRO can be seen as hardness of a search-type clas-
sically verifiable game in the ROM. On the other hand, completeness requires
(at least) that the game is not hard in the QROM. Therefore, the existence of
PoQRO implies 2-round search-type classically falsifiable cryptographic game
that is hard in ROM but is not hard in QROM.

EUF-CMA and EUF-NMA security of digital signatures in the ROM (resp.
QROM) require hardness of search-type classically falsifiable games in the ROM
(resp. QROM).

CPA and CCA security of PKE in the ROM (resp. QROM) require hardness
of classically falsifiable games in the ROM (resp. QROM), which are not search-
type.

Our main lifting theorem is stated as follows.

Theorem 6 (Lifting Theorem for Search-Type Games). Let C be an k-
classical-query challenger of a search-type classically verifiable game and A be a
q-quantum-query efficient adversary against the game in the QROM. Then there
exists a k-classical-query efficient adversary B against the game in the ROM
such that

Pr
H

[BH(1λ) wins CH(1λ)] ≥ 1
(2q + 1)2k

Pr
H

[A|H〉(1λ) wins CH(1λ)].

In particular, for any search-type classically verifiable game in which the
challenger makes at most O(1) queries, if the game is hard in the ROM, then
that is also hard in the QROM.

We also give a variant of the above theorem, which gives a slightly stronger
inequality assuming that C’s queries are publicly computable. Looking ahead,
this variant will be used in Sect. 4.5 where we give quantum query lower bounds.

Theorem 7 (Lifting Theorem for Public-Query Search-Type Games).
Let C and A be as in Theorem6. Moreover, we assume that the game is public-
query, i.e., the list of C’s queries is determined by the transcript and com-

11 We only write H in the subscript of the probability since all the other randomness
are always in the probability space whenever we write a probability throughout this
section.



586 T. Yamakawa and M. Zhandry

putable in quantum polynomial-time. Then there exists a k-classical-query effi-
cient adversary B against the game in the ROM such that

Pr
H

[BH(1λ) wins CH(1λ) ∧ LB = LC ] ≥ 1
(2q + 1)2k

Pr
H

[A|H〉(1λ) wins CH(1λ)].

where LB and LC are the list of random oracle queries by B and C, respectively.

4.2 Proof of Lifting Theorem

For proving Theorem6 and 7, we introduce a lemma from [DFM20]. For stating
the lemma, we introduce some notations. Before giving formal definitions, we
give a rough explanations. For a quantumly-accessible classical oracle O, we
denote by O ← Reprogram(O, x, y) to mean that we reprogram O to output
y on input x. For a q-quantum-query algorithm A, function H : X → Y, and
y = (y1, ..., yk) ∈ Yk, we denote by Ã[H,y] to mean an algorithm that runs
A w.r.t. an oracle that computes H except that randomly chosen k queries are
measured and the oracle is reprogrammed to output yj on j-th measured query.
Formal definitions are given below:

Definition 5 (Reprogramming Oracle). Let A be a quantum algorithm with
quantumly-accessible oracle O that is initialized to be an oracle that computes
some classical function from X to Y. At some point in an execution of AO, we
say that we reprogram O to output y ∈ Y on x ∈ X if we update the oracle to
compute the function Hx,y defined by

Hx,y(x′) :=

{
y if x′ = x

H(x′) otherwise

where H is a function computed by O before the update. This updated oracle is
used in the rest of execution of A. We denote O ← Reprogram(O, x, y) to mean
the above reprogramming.

Definition 6 (Measure-and-Reprogram). Let X , Y, and Z be sets of clas-
sical strings and k be a positive integer. Let A be a q-quantum-query algorithm
that is given quantum oracle access to an oracle that computes a function from
X to Y and a (possibly quantum) input inp and outputs x ∈ X k and z ∈ Z.
For a function H : X → Y and y = (y1, ..., yk) ∈ Yk, we define a measure-and-
reprogram algorithm Ã[H,y] as follows:

Ã[H,y](inp): Given a (possibly quantum) input inp, it works as follows:

1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q]×{0, 1})∪{(⊥,⊥)} such that
there does not exist j �= j′ such that ij = ij′ �= ⊥.

2. Run AO(inp) where the oracle O is initialized to be a quantumly-accessible
classical oracle that computes H, and when A makes its i-th query, the
oracle is simulated as follows:



Classical vs Quantum Random Oracles 587

(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′
j,

and do either of the following.
i. If bj = 0, reprogram O ← Reprogram(O, x′

j , yj) and answer
A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the ora-
cle before the reprogramming and then reprogram O ←
Reprogram(O, x′

j , yj).
(b) Otherwise, answer A’s i-th query by just using the oracle O without

any measurement or reprogramming.
3. Let (x = (x1, ..., xk), z) be A’s output.
4. For all j ∈ [k] such that ij = ⊥, set x′

j := xj.
5. Output x′ := ((x′

1, ..., x
′
k), z).

Then we state [DFM20, Theorem 6] with alternative notations as defined
above.

Lemma 9. (Rephrasing of [DFM20, Theorem 6]) Let X , Y, Z, and A be as in
Definition 6. Then for any inp, H : X → Y, x∗ = (x∗

1, ..., x
∗
k) ∈ X k such that

x∗
j �= x∗

j′ for all j �= j′, y = (y1, ..., yk) ∈ Yk, and a relation R ⊆ X k × Yk × Z,
we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ R : (x′, z) $← Ã[H,y](inp)]

≥ 1
(2q + 1)2k

Pr[x = x∗ ∧ (x,y, z) ∈ R : (x, z) $← A|Hx∗,y〉(inp)].

where Ã[H,y] is the measure-and-reprogram algorithm as defined in Definition
6 and Hx∗,y is defined as

Hx∗,y(x′) :=

{
yj if ∃j ∈ [k] s.t. x′ = x∗

j

H(x′) otherwise
.

We prove Theorem 6 by using Lemma 9.

Proof. (of Theorem 6.) We prove a slightly stronger claim than Theorem 6, where
we switch the order of the quantifiers of B and C. Specifically, we prove that
for any q-quantum-query efficient algorithm A, there exists an k-classical-query
efficient algorithm B such that for any k-classical-query challenger C, we have

Pr
H

[BH(1λ) wins CH(1λ)] ≥ 1
(2q + 1)2k

Pr
H

[A|H〉(1λ) wins CH(1λ)]. (2)

For proving this claim, it suffices to prove it assuming C is deterministic since
the claim for probabilistic C immediately follows from that for deterministic C
by a simple averaging argument.12 Therefore, in the following, we assume that C
is deterministic. We also assume that C does not make the same query twice and
makes exactly k queries (by introducing dummy queries if necessary) without
loss of generality.

We construct B as follows:
12 Here, it is important that B does not depend on C due to the switching of the order

of quantifiers.



588 T. Yamakawa and M. Zhandry

BH(1λ): This is an algorithm that interacts with a challenger as follows:

1. Chooses a function H ′ : X → Y from a family of 2q-wise independent
hash functions.

2. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} so that
there does not exist j �= j′ such that ij = ij′ �= ⊥.

3. Run AO(1λ) by forwarding all messages supposed to be sent to the chal-
lenger to the external challenger and forwarding all messages sent back
from the external challenger to A and simulating the oracle O as follows.
Initialize O to be a quantumly-accessible classical oracle that computes
H ′. When A makes its i-th query, the oracle is simulated as follows:

(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′
j ,

query x′
j to the random oracle H to obtain H(x′

j), and do either of
the following.

i. If bj = 0, reprogram O ← Reprogram(O, x′
j ,H(x′

j)) and answer
A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the ora-
cle before the reprogramming and then reprogram O ←
Reprogram(O, x′

j ,H(x′
j)).

(b) Otherwise, answer A’s i-th query by just using the oracle O without
any measurement or reprogramming.

It is clear that B only makes k classical queries to H and is efficient if A is
efficient. We prove that B satisfies Eq. 2 for all k-classical-query challengers C.
Let X and Y be the domain and codomain of a random oracle that is used in
the game, and Z be a set consisting of all possible transcripts between A and
C. Here, a transcript means a concatenation of all messages exchanged between
A and C and does not contain query-response pairs of the oracle. We call the
concatenation of all query-response pairs for C and the transcript a C’s view. We
denote C’s view in the form of (x = (x1, ..., xk),y = (y1, ..., yk), z) ∈ X k ×Yk ×Z
where (xj , yj) is the j-th query-response pair for C and z is the transcript. Since
we assume that C is deterministic, a view determines if C accepts or rejects. Let
Rλ ⊆ X k ×Yk ×Z be a relation consisting of accepting view with respect to the
security parameter λ. More precisely, for (x = (x1, ..., xk),y = (y1, ..., yk), z) ∈
X k × Yk × Z, (x,y, z) ∈ Rλ if the following algorithm VerView returns � on
input (1λ,x,y, z).

VerView(1λ,x = (x1, ..., xk),y = (y1, ..., yk), z): Run C(1λ) by simulating all
messages supposed to be sent from A and random oracle’s responses so that
they are consistent with the view (x,y, z). At some point in the simulation,
if C’s behavior is not consistent with the view (i.e., C sends a message that is
not consistent with the transcript z or its j-th query is not equal to xj), then
VerView returns ⊥. Otherwise, VerView outputs the final output of C.



Classical vs Quantum Random Oracles 589

We remark that VerView is deterministic as we assume C is deterministic and
thus the relation Rλ is well-defined.

For a function H : X → Y, we consider a quantum algorithm SH , in which
the function H is hardwired, that is given quantum access to an oracle that
computes another function H ′ : X → Y described as follows:

S |H′〉
H (1λ): Simulate an interaction between A and C by simulating oracles for

them as follows:
– A’s queries are just forwarded to the oracle |H ′〉 and responded as |H ′〉

responds.
– For C’s j-th query xj for j ∈ [k], the oracle returns H(xj).

Finally, it outputs C’s queries x := (x1, ..., xk) and the transcript z between
A and C in the above execution.

For any λ ∈ N, H,H ′ : X → Y, x∗ = (x∗
1, ..., x

∗
k) ∈ X k such that x∗

j �= x∗
j′ for all

j �= j′, and y = (y1, ..., yk) ∈ Yk, by applying Lemma9 for SH , we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ Rλ : (x′, z) $← S̃H [H ′,y](1λ)]

≥ 1
(2q + 1)2k

Pr[x = x∗ ∧ (x,y, z) ∈ Rλ : (x, z) $← S |H′
x∗,y〉

H (1λ)].
(3)

where S̃H [H ′,y] is to SH as Ã[H ′,y] is to A as defined in Definition 6 and H ′
x∗,y

is as defined in Lemma 9.
Especially, since the above inequality holds for any y, by setting y :=

H(x∗) = (H(x∗
1), ...,H(x∗

k)), we have

Pr[x′ = x∗ ∧ (x′,H(x∗), z) ∈ Rλ : (x′, z) $← S̃H [H ′,H(x∗)](1λ)]

≥ 1
(2q + 1)2k

Pr[x = x∗ ∧ (x,H(x∗), z) ∈ Rλ : (x, z) $← S |H′
x∗,H(x∗)〉

H (1λ)].

(4)

Recall that S |H′
x∗,H(x∗)〉

H (1λ) is an algorithm that simulates an interaction
between A and C where A’s oracle and C’s oracles are simulated by |H ′

x∗,H(x∗)〉
and H, respectively, and outputs C’s queries x and the transcript z. Thus, con-

ditioned on that x = x∗, S |H′
x∗,H(x∗)〉

H (1λ) simulates an interaction between A
and C where both oracles of A and C compute the same function H ′

x∗,H(x∗)
since we have H(x∗) = H ′

x∗,H(x∗)(x
∗) by definition. Moreover, conditioned on

that x = x∗, (x,H(x∗), z) ∈ Rλ is equivalent to that A|H′
x∗,H(x∗)〉(1λ) wins

CH′
x∗,H(x∗)(1λ) in the execution simulated by S |H′

x∗,H(x∗)〉
H (1λ). Based on these

observations, we have

Pr[x = x∗ ∧ (x,H(x∗), z) ∈ Rλ : (x, z) $← S |H′
x∗,H(x∗)〉

H (1λ)]

= Pr[x = x∗ ∧ A|H′
x∗,H(x∗)〉(1λ) wins CH′

x∗,H(x∗)(1λ)]
(5)

where x in the RHS is the list of queries made by C.



590 T. Yamakawa and M. Zhandry

Moreover, if we uniformly choose H,H ′ : X → Y, then the distribution of the
function H ′

x∗,H(x∗) is uniform over all functions from X to Y for any fixed x∗.
Therefore, by substituting Eq. 5 for the RHS of Eq. 4, taking the average over
the random choice of H and H ′, and summing up over all x∗ ∈ X k, we have∑

x∗∈X k

Pr
H,H′

[x′ = x∗ ∧ (x′,H(x∗), z) ∈ Rλ : (x′, z) $← S̃H [H ′,H(x∗)](1λ)]

≥ 1
(2q + 1)2k

Pr
H

[A|H〉(1λ) wins CH(1λ)].
(6)

For proving Eq. 2 and completing the proof, what is left is to prove that the LHS
of Eq. 6 is smaller than or equal to the LHS of Eq. 2. For proving this, we spell
out how S̃H [H ′,H(x∗)] works according to the definition:

S̃H [H ′,H(x∗)](1λ): Given the security parameter 1λ as input, it works as follows:

1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)} so that
there does not exist j �= j′ such that ij = ij′ �= ⊥.

2. Simulate the interaction between A and C by simulating oracles for them
as follows:
Initialize an oracle O to be a quantumly-accessible classical oracle that
computes H ′. When A makes its i-th query, the oracle is simulated as
follows:

(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′
j , and

do either of the following.

i. If bj = 0, reprogram O ← Reprogram(O, x′
j ,H(x∗

j )) and answer A’s
ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the oracle before the repro-
gramming and then reprogram O ← Reprogram(O, x′

j ,H(x∗
j )).

(b) Otherwise, answer A’s i-th query by just using the oracle O without any
measurement or reprogramming.

When C makes its j-th query xj , return H(xj) as a response by the random
oracle for each j ∈ [k].
Let z be the transcript in the above simulated execution.

3. For all j ∈ [k] such that ij = ⊥, set x′
j := xj .

4. Output x′ := ((x′
1, ..., x

′
k), z).

One can see from the above description that an execution of the game simu-
lated by S̃H [H ′,H(x∗)](1λ) for a randomly chosen H ′ is very close to an interac-
tion between BH and CH . The only difference is that BH reprograms O to output
H(x′

j) instead of H(x∗
j ) on input x′

j in Step 2a.13 Therefore, conditioned on that

13 Strictly speaking, there is another difference that we consider S̃H [H ′, H(x∗)](1λ) for
a uniformly chosen H ′ whereas B chooses H ′ from a family of 2q-wise independent
hash functions. However, by Lemma 2, this does not cause any difference.



Classical vs Quantum Random Oracles 591

x′ = x∗, S̃H [H ′,H(x∗)](1λ) for a randomly chosen H ′ perfectly simulates an
interaction between BH and CH . Moreover, if x′ = x∗ and (x′,H(x∗), z) ∈ Rλ,
then we must have x = x∗ where x is the list of C’s queries in the simulation
since otherwise the view (x′,H(x∗), z) is not consistent with C’s queries and
cannot pass VerfView. In this case, we have (x,H(x), z) ∈ Rλ, which means that
BH wins CH in the simulated execution. Therefore, for any fixed H and x∗, we
have

Pr
H′

[x′ = x∗ ∧ (x′,H ′(x∗), z) ∈ Rλ : (x′, z) $← S̃H [H ′,H(x∗)](1λ)]

≤ Pr[x = x∗ ∧ BH(1λ) wins CH(1λ)]
(7)

where x in the RHS is the list of queries by CH .
By substituting Eq. 7 for the LHS of Eq. 6, we obtain Eq. 2. This completes

the proof of Theorem 6.

Theorem 7 can be proven by a slight modification to the proof of Theorem6.

Proof. (of Theorem 7.) We consider an algorithm B that works similarly to that
in the proof of Theorem6 except that it does an additional step at the end:

BH(1λ): This is an algorithm that interacts with a challenger as follows:

1–3. Work similarly to B in the proof of Theorem 6.
4. After completing the interaction with C, compute the list of C’s query, and

if any query in the list has not yet been queried in the previous steps, then
query them to H.

We have Eq. 6 by exactly the same argument to that in the proof of Theorem6
since we do not use anything about the construction of B until this point. By
the modification of B as described above, in the simulation of an interaction
between B and C by S̃H [H ′,H(x∗)](1λ), B’s query list exactly matches x′ that
appears in the description of S̃H [H ′,H(x∗)](1λ). With this observation in mind,
by a similar argument to that in the proof of Theorem6, we can see that we
have

Pr
H′

[x′ = x∗ ∧ (x′,H ′(x∗), z) ∈ Rλ : (x′, z) $← S̃H [H ′,H(x∗)](1λ)]

≤ Pr[LB = LC = {x∗
1, ..., x

∗
k} ∧ BH(1λ) wins CH(1λ)]

. (8)

By substituting Eq. 8 for the LHS of Eq. 6, we obtain

Pr
H

[BH(1λ) wins CH(1λ) ∧ LB = LC ] ≥ 1
(2q + 1)2k

Pr
H

[A|H〉(1λ) wins CH(1λ)].

which completes the proof of Theorem 7.



592 T. Yamakawa and M. Zhandry

4.3 Immediate Corollaries

Here, we list immediate corollaries of Theorem 6.

PoQRO. Soundness of PoQRO can be seen as hardness of a search-type classi-
cally verifiable game in the ROM. On the other hand, completeness requires (at
least) that the game is not hard in the QROM. By Theorem 6, such a separation
between ROM and QROM is impossible if the number of verifier’s query is O(1).
Therefore, we obtain the following corollary:

Corollary 5. There does not exist PoQRO where the verification algorithm
makes a constant number of random oracle queries.

We note that a similar statement holds even for an interactive version of
PoQRO.

(Non-)Interactive Arguments. A post-quantum interactive argument for a
language L is a protocol where an efficient classical prover given a statement
x and some auxiliary information (e.g., witness in the case of L is an NP lan-
guage) and a efficient classical verifier only given x interacts and the verifier
finally returns � indicating acceptance or ⊥ indicating rejection. As correctness,
we require that the verifier returns � with overwhelming probability if both
parties run honestly. As (post-quantum) soundness, we require that any efficient
cheating prover cannot let the verifier accept on any x /∈ L with a non-negligible
probability.

Here, we consider constructions of interactive arguments based on random
oracles. Clearly, soundness requirement of interactive arguments is captured by
a search-type classically verifiable game. Therefore, by Theorem 6, we obtain the
following corollary:

Corollary 6. If an interactive argument with constant-query verifier is sound
in the ROM, then it is also sound in the QROM.

Non-interactive arguments (in the common reference string model) is defined
similarly except that a common reference string is generated by a trusted third
party and distributed to both the prover and the verifier at the beginning of the
protocol and then the protocol consists of only one-round communication, i.e., a
prover just sends a proof to the verifier and verifies it. (Adaptive) soundness of
non-interactive arguments is defined similarly to soundness of interactive argu-
ments with the modification that the statement x /∈ L for which the cheating
prover tries to generate a forged proof can be chosen after seeing the common
reference string.

Similarly, by Theorem6, we obtain the following corollary:14

14 Note that the theorem is applicable even though the soundness game for non-
interactive arguments is not falsifiable since the challenger in our definition of clas-
sically verifiable games is not computationally bounded.



Classical vs Quantum Random Oracles 593

Corollary 7. If a non-interactive argument is sound in the ROM with constant-
query verifier and constant-query common reference string generation algorithm
is sound in the ROM, then it is also sound in the QROM.

Digital Signatures. As already observed, EUF-CMA security can be seen as a
hardness of a search-type classically verifiable game. Therefore, as an immediate
corollary of Theorem 6, we obtain the following corollary.

Corollary 8. If a digital signature scheme is n-EUF-CMA secure in the ROM
for n = O(1) and the key generation, signing, and verification algorithms make
O(1) random oracle queries, then the scheme is also n-EUF-CMA secure in
the QROM. If n = 0 (i.e., if we consider EUF-NMA security), then a similar
statement holds even if the signing algorithm makes arbitrarily many queries.

Unfortunately, we cannot extend this result to the ordinary EUF-CMA
security where the number of signing query is unbounded (except for a non-
interesting case where the signing algorithm does not make a random oracle
query) since the challenger in the EUF-CMA game may make as many random
oracle queries as the adversary’s signing queries, which is not bounded by a con-
stant. In Sect. 4.4, we extend the above corollary to give a lifting theorem for
EUF-CMA security (without restricting the number of signing queries) assuming
a certain structure for the scheme.

4.4 Application to Digital Signatures

Here, we discuss implications of our lifting theorem for digital signatures.

Theorem 8. Suppose that a digital signature scheme (Sig.KeyGen,Sig.Sign,
Sig.Verify) with a message space M relative to a random oracle H : X → Y
is EUF-NMA secure against quantum adversaries in the ROM and satisfies the
following properties:

1. Sig.KeyGen does not make a random oracle query and Sig.Verify makes O(1)
random oracle queries. (There is no restriction on the number of random
oracle queries by Sig.Sign.)

2. A random query made by Sig.Sign or Sig.Verify reveals the message given to
them as input. More precisely, there exists a classically efficiently computable
function XtoM : X → M such that for any H, honestly generated (vk, sigk),
m, and σ, if Sig.SignH(sk,m) or Sig.VerifyH(vk,m, σ) makes a random oracle
query x, then we have XtoM(x) = m.

3. A signature is simulatable without a signing key if we can (non-adaptively)
program the random oracle. More precisely, there exist a classically efficiently
computable function Fvk : R → Y tagged by a verification key vk and an
efficient classical algorithm S such that for any honestly generated (vk, sigk)
and m1, ...,m� for � = poly(λ), we have



594 T. Yamakawa and M. Zhandry

{({H(x)}x∈X , {σi}i∈[�]

)
:

H
$← Func(X ,Y)

σi
$← Sig.SignH(sigk,mi) for all i ∈ [�]

}

≈
{(

{Fvk(H̃(x))}x∈X , {σi}i∈[�]

)
:

H̃
$← Func(X ,R)

{σi}i∈[�]
$← S ˜H(vk,m)

}
.

where ≈ means that two distributions are statistically indistinguishable.

Then the scheme is EUF-CMA secure against quantum adversaries in the
QROM.

Examples. Though the requirements in the above theorem may seem quite
restrictive, it captures at least two important constructions of digital signatures:
FDH signatures (and its lattice-based variant by Gentry, Peikert, and Vaikun-
tanathan [GPV08]) and Fiat-Shamir signatures. See the full version for details.

Due to the lack of space, a proof of Theorem8 is given in the full version.

4.5 Application to Quantum Query Lower Bounds

We use Theorem 7 to give a general theorem on quantum query lower bounds.
Specifically, we prove the following theorem.

Theorem 9. Let X and Y be sets, H : X → Y be a random function, k be a
positive integer, and R ⊆ Yk be a relation over Yk. Then for any q-quantum-
query algorithm A, we have

PrH [(H(x1), ...,H(xk)) ∈ R ∧ xj �= xj′ for j �= j′ : (x1, ..., xk) $← A|H〉]

≤ (2q + 1)2k Pr[∃π ∈ Perm([k]) s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk) $← Yk]

where Perm([k]) denotes the set of all permutations over [k].

Proof. We consider a (non-interactive) public-query search-type game where
an adversary is given quantum access to a random oracle H and sends
(x1, ..., xk) ∈ X k to the challenger and the challenger outputs � if and only
if (H(x1), ...,H(xk)) ∈ R and (x1, ..., xk) is pair-wise distinct. The LHS of the
inequality in Theorem 9 is the probability that A wins the game. By Theorem 7,
there exists a k-classical-query adversary B that wins the game while making
exactly the same queries as those made by the challenger with probability at least

1
(2q+1)2k times the probability that A wins. We observe that B makes exactly
the same queries as the challenger if and only if it just sends a permutation of
its k queries as the message (x1, ..., xk). In this case, B’s winning probability
is at most Pr[∃π ∈ Perm([k]) s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk) $← Yk] since
the random oracle values are uniformly and independently random over Y. By
combining the above, we obtain Theorem 9.

We can use Theorem 9 to give quantum query lower bounds for a variety of
problems with very simple proofs. See the full version for details.



Classical vs Quantum Random Oracles 595

References

[AA14] Aaronson, S., Ambainis, A.: The need for structure in quantum speedups.
Theor. Comput. 10, 133–166 (2014)

[Aar10] Aaronson, S.: BQP and the polynomial hierarchy. In: Schulman, L.J. (ed.)
42nd ACM STOC, pp. 141–150. ACM Press (Jun 2010)

[AGKZ20] Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and
applications to hybrid quantum/classical authentication. In: Makarychev,
K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) 52nd
ACM STOC, pp. 255–268. ACM Press (Jun 2020)

[Agr19] Agrawal, S.: Indistinguishability obfuscation without multilinear maps:
new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 7

[AP20] Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without
maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 5

[BBC+01] Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower
bounds by polynomials. J. ACM 48(4), 778–797 (2001)

[BCM+18] Brakerski, Z., Christiano, P., Mahadev, U., Vazirani, U.V., Vidick, T.: A
cryptographic test of quantumness and certifiable randomness from a single
quantum device. In: Thorup, M. (ed.) 59th FOCS, pp. 320–331. IEEE
Computer Society Press (Oct 2018)

[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0 3

[BDGM20] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pair-
ings are not necessary for iO: circular-secure LWE suffices. IACR Cryptol.
ePrint Arch. 2020, 1024 (2020)

[BKVV20] Brakerski, Z., Koppula, V., Vazirani, U.V., Vidick, T.: Simpler proofs of
quantumness. In: TQC 2020, volume 158 of LIPIcs, pp. 8:1–8:14 (2020)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press (Nov
1993)

[BR95] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis,
A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Hei-
delberg (1995). https://doi.org/10.1007/BFb0053428

[BR96] Bellare, M., Rogaway, P.: The exact security of digital signatures-how to
sign with RSA and rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 399–416. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 34

[DFM20] Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0:
multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 602–631. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1 21

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-030-56877-1_21


596 T. Yamakawa and M. Zhandry

[DFMS19] Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir
transformation in the quantum random-oracle model. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–
383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-
7 13

[FO13] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptol. 26(1), 80–101 (2013)

[FOPS01] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure
under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44647-8 16

[FR99] Fortnow, L., Rogers, J.D.: Complexity limitations on quantum computa-
tion. J. Comput. Syst. Sci. 59(2), 240–252 (1999)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GP20] Gay, R., Pass, R.: Indistinguishability obfuscation from circular security.
Cryptology ePrint Archive, Report 2020/1010 (2020). https://eprint.iacr.
org/2020/1010

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th ACM STOC, pp. 197–206. ACM Press (May 2008)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM
STOC, pp. 99–108. ACM Press (Jun 2011)

[JZC+18] Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96878-0 4

[KLS18] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-
shamir signatures in the quantum random-oracle model. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–
586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-
7 18

[KS20] Krämer, J., Struck, P.: Encryption schemes using random oracles: from
classical to post-quantum security. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 539–558. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44223-1 29

[KYY18] Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for
GPV-IBE in the quantum random oracle model. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 253–282.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 9

[LZ19] Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693,
pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 12

[Mah18] Mahadev, U.: Classical homomorphic encryption for quantum circuits. In:
Thorup, M. (ed.) 59th FOCS, pp. 332–338. IEEE Computer Society Press
(Oct 2018)

https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/3-540-44647-8_16
https://doi.org/10.1007/3-540-44647-8_16
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2020/1010
https://eprint.iacr.org/2020/1010
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-030-44223-1_29
https://doi.org/10.1007/978-3-030-03329-3_9
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-26951-7_12


Classical vs Quantum Random Oracles 597

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM
Press (May 2008)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34:1–34:40 (2009)

[Son14] Song, F.: A note on quantum security for post-quantum cryptography. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11659-4 15

[TU16] Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II.
LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 8

[WW20] Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling.
IACR Cryptol. ePrint Arch. 2020, 1042 (2020)

[Zha12] Zhandry, M.: Secure identity-based encryption in the quantum random ora-
cle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 44

[Zha19] Zhandry, M.: How to record quantum queries, and applications to quantum
indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 9

[ZYF+19] Zhang, J., Yu, Y., Feng, D., Fan, S., Zhang, Z.: On the (quantum) random
oracle methodology: new separations and more. Cryptology ePrint Archive,
Report 2019/1101 (2019). https://eprint.iacr.org/2019/1101

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-319-11659-4_15
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://eprint.iacr.org/2019/1101


On the Compressed-Oracle Technique,
and Post-Quantum Security of Proofs

of Sequential Work

Kai-Min Chung1(B), Serge Fehr2,3, Yu-Hsuan Huang4, and Tai-Ning Liao5

1 Academia Sinica, Taipei City, Taiwan
kmchung@iis.sinica.edu.tw

2 CWI, Amsterdam, Netherlands
serge.fehr@cwi.nl

3 Mathematical Institute, Leiden University, Leiden, Netherlands
4 National Chiao-Tung University, Hsinchu City, Taiwan

asd00012334.cs04@nctu.edu.tw
5 National Taiwan University, Taipei City, Taiwan

Abstract. We revisit the so-called compressed oracle technique, intro-
duced by Zhandry for analyzing quantum algorithms in the quantum
random oracle model (QROM). To start off with, we offer a concise
exposition of the technique, which easily extends to the parallel-query
QROM, where in each query-round the considered algorithm may make
several queries to the QROM in parallel. This variant of the QROM
allows for a more fine-grained query-complexity analysis.

Our main technical contribution is a framework that simplifies the
use of (the parallel-query generalization of) the compressed oracle tech-
nique for proving query complexity results. With our framework in place,
whenever applicable, it is possible to prove quantum query complexity
lower bounds by means of purely classical reasoning. More than that, for
typical examples the crucial classical observations that give rise to the
classical bounds are sufficient to conclude the corresponding quantum
bounds.

We demonstrate this on a few examples, recovering known results but
also obtaining new results. Our main target is the hardness of finding a
q-chain with fewer than q parallel queries, i.e., a sequence x0, x1, . . . , xq

with xi = H(xi−1) for all 1 ≤ i ≤ q.
The above problem of finding a hash chain is of fundamental impor-

tance in the context of proofs of sequential work. Indeed, as a concrete
cryptographic application of our techniques, we prove quantum security
of the “Simple Proofs of Sequential Work” by Cohen and Pietrzak.

This research is partially supported by Ministry of Science and Technology, Taiwan,
under Grant no. MOST 109-2223-E-001 -001 -MY3, MOST QC project, under Grant
no. MOST 109-2627-M-002-003 -, and Executive Yuan Data Safety and Talent Culti-
vation Project (AS-KPQ-110-DSTCP).

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 598–629, 2021.
https://doi.org/10.1007/978-3-030-77886-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_21


On the Compressed-Oracle Technique, and Post-Quantum Security 599

1 Introduction

Background. The random oracle (RO) methodology [2], which treats a crypto-
graphic hash function H : {0, 1}n → {0, 1}m as an external oracle, has proven to
be a successful way to design very efficient cryptographic protocols and arguing
them secure in a rigorous yet idealized manner. Even though it is known that in
principle the methodology can break down [7] and a “proven secure” protocol
may become insecure in the actual (non-idealized) setting, experience has shown
that for natural protocols this does not seem to happen.

In case of a quantum adversary that may locally run a quantum computer, the
RO needs to be modeled as a quantum operation that is capable of answering
queries in superposition, in order to reasonably reflect the capabilities of an
attacker in the non-idealized setting [5]. This is then referred to as the quantum
random oracle model (QROM). Unfortunately, this change in the model renders
typical RO-security proofs invalid. One reason is that in the ordinary RO model
the security reduction can inspect the queries that the adversary makes to the
RO, while this is not possible anymore in the quantum setting when the queries
are quantum states in superposition — at least not without disturbing the query
state significantly and, typically, uncontrollably.

The Compressed Oracle. A very powerful tool to deal with the QROM is
the so-called compressed oracle technique, introduced by Zhandry [20]. On a
conceptual level, the technique very much resembles the classical “lazy sampling”
technique; on a technical level, the idea is to consider a quantum purification of
the random choice of the function H, and to analyze the internal state of the
RO then in the Fourier domain.

This idea has proven to be very powerful. On the one hand, it gave rise to
new and shorter proofs for known lower bound results on the query complexity
of quantum algorithms (like Grover [3,13]); on the other hand, it enabled to
prove new cryptographic security results, like in the context of indifferentiability
[11,20], or, more recently, the Fiat-Shamir transformation [17], when considering
a quantum adversary. However, it still is quite cumbersome to actually employ
the compressed oracle technique; proofs tend to be hard to read, and they require
a good understanding of quantum information science.

Our Results. We first present a concise yet mathematically rigorous exposition
of the compressed oracle technique. Our exposition differs from other descriptions
(e.g. [8,11,14,15,20]) in that we adopt a more abstract view.

We also consider a generalization of the compressed-oracle technique to the
parallel-query QROM. In this variation, the considered quantum oracle algorithm
may make several queries to the QROM in parallel in each query-round. The main
difference between parallel and sequential queries is of course that sequential
queries may be adaptive, i.e., the queried value x may depend on the hash learned
in a previous query, while parallel queries are limited to be non-adaptive. This
variation of the QROM allows for a more fine-grained query-complexity analysis
that distinguishes between the number q of query rounds, and the number k



600 K.-M. Chung et al.

of queries made per round; the total number of queries made is then obviously
given by Q = kq. This way of studying the query complexity of quantum oracle
algorithms is in particular suited for analyzing how well a computational task
can or cannot be parallelized (some more on this below).

As our first main technical contribution, we propose an abstract framework
that simplifies the use of (our generalized version of) the compressed oracle tech-
nique in certain cases. In particular, with our new framework in place and when
applicable, it is possible to prove quantum query complexity lower bounds by
means of purely classical reasoning: all the quantum aspects are abstracted away.
This means that no knowledge about quantum information science is necessary
in order to apply our framework. If applicable, the reasoning is purely by means
of identifying some classical property of the problem at hand and applying our
meta-theorems. More than that, the necessary classical property can typically
be extracted from the — typically much simpler — proof for the classical bound.

We demonstrate the workings and the power of our framework on a few
examples, recovering known and finding new bounds. For example, with q, k,m
as above, we show that the success probability of finding a preimage is upper
bounded by O(kq2/2m), compared to the coarse-grained bound O(Q2/2m) [3]
that does not distinguish between sequential and parallel queries; this recovers
the known fact that the naive way to parallelize a preimage search (by doing sev-
eral executions of Grover [13] in parallel) is optimal [19]. We also show that the
success probability of finding a collision is bounded by O(k2q3/2m), compared
to the coarse-grained bound O(Q3/2m) [1] that does not distinguish between
sequential and parallel queries. Like for Grover, this shows optimality for the
obvious parallelization of the BHT collision finding algorithm [6]. We are not
aware of any prior optimality result on parallel collision search; [16] shows a cor-
responding bound for element distinctness, but that bound does not apply here
when considering a hash function with many collisions. Finally, our main example
application is to the problem of finding a q-chain, i.e., a sequence x0, x1, . . . , xq

with xi = H(xi−1) for all 1 ≤ i ≤ q (or, more generally, that H(xi−1) satis-
fies some other relation with xi). While classically it is well known and not too
hard to show that q parallel queries are necessary to find a q-chain, there has
been no proven bound in the quantum setting — at least not until very recently
(see the recent-related-work paragraph below).1 Here, we show that the success
probability of finding a q-chain using fewer than q queries is upper bounded by
O(k3q3/2m). The proof is by means of recycling an observation that is crucial to
the classical proof and plugging it into the right theorem(s) of our framework.

The problem of producing a hash chain is of fundamental importance in
the context of proofs of sequential work (PoSW); indeed, a crucial ingredient
of a PoSW is a computational problem that is hard/impossible to parallelize.
Following up on this, our second main technical contribution is to show that
the “Simple Proofs of Sequential Work” proposed by Cohen and Pietrzak [10]
remain secure against quantum attacks. One might hope that this is simply a
matter of plugging in our bound on the chain problem; unfortunately, it is more

1 The problem of finding a q-chain looks similar to the iterated hashing studied in [18];
however, a crucial difference is that the start of the chain, x0, is freely chosen here.



On the Compressed-Oracle Technique, and Post-Quantum Security 601

complicated: the entire protocol needs to be analyzed in the light of a quantum
attack, which requires substantial additional work. As a matter of fact, we enrich
our framework with a “calculus” that facilitates the latter. In return, our proof
of the quantum security of the PoSW scheme is purely classical, with no need
to understand anything about quantum information science.

Related Work. Independently and concurrently to the preparation of our work,
the hardness of finding a q-chain with fewer than q queries and the security
of the Cohen and Pietrzak PoSW scheme [10] against quantum attacks have
also been analyzed and tackled by Blocki, Lee and Zhou in [4]. Their bounds
are comparable to ours, and both works are exploiting the compressed oracle
idea; however, the actual derivations and the conceptual contributions are quite
different. Indeed, Blocki et al.’s work is very specific to the q-chain problem and
the PoSW scheme, while in our work we provide a general framework for proving
quantum query complexity bounds by means of classical reasoning, opening the
door to derive further quantum query complexity bounds.

In a similar spirit, Chiesa, Manohar and Spooner [8] also offer means to apply
the compressed oracle technique using purely classical combinatorial reasoning.
A major difference is that in our work we allow parallel queries (which is crucial
for our PoSW application), which confronted us with the main technical chal-
lenges in our work. Our framework easily applies to the main application of the
Chiesa et al. paper (post-quantum secure SNARGs), but not vice versa.

2 Warm-Up: Proving Classical Query Complexity
Bounds

In this section, we discuss lower bounds on the classical query complexity in the
classical ROM for a few example problems. This serves as a warm-up and allows
us to point that, when it then comes to analyzing the quantum query complexity
of these problems, it is simply a matter of recycling certain observations from
the classical proofs and plugging them into our framework.

2.1 The Lazy-Sampling Technique

First, we briefly recall the lazy sampling technique for efficiently simulating the
classical RO. Instead of choosing a uniformly random function H : X → Y and
answering each query x to the RO as y = H(x), one can build up the hash
function H “on the fly”. Introduce a special symbol ⊥ and initiate D0 to be
the constant-⊥ function. Then, inductively for i = 1, 2, . . ., on receiving the i-th
query xi, check if this query has been made before, i.e., if ∃ j < i : xi = xj . If
so then set Di := Di−1; else, choose a uniformly random yi ∈ Y and set Di to
Di := Di−1[xi �→ yi], where in general D[x �→ y] is defined by D[x �→ y](x) = y
and D[x �→y](x̄) = D(x̄) for x̄ �= x.2 In either case, answer the query then with
yi = Di(xi). We refer to such a function Di : X → Y ∪ {⊥} as a database.
2 We stress that we define D[x �→y] also for x with D(x) �= ⊥, which then means that
D is redefined at point x; this will be useful later.



602 K.-M. Chung et al.

As it is easy to see, the lazy-sampling only affects the “internal workings” of
the RO; any algorithm making queries to the standard RO (which samples H
as a random function at the beginning of time), or to the lazy-sampled variant
(which builds up D0,D1, . . . as explained above), cannot see any difference.

For below, it will be convenient to write Di, the “update” of Di−1 in response
to query xi, as Di = D�xi

i−1 . Note that since Di(x) = yi is chosen in a randomized
way, D�xi

i−1 is a random variable, strictly speaking.

2.2 Proving Classical Lower Bounds

One important feature of the lazy-sampling technique is that it allows for an
efficient simulation of the random oracle. In the work here, we are instead inter-
ested in the lazy sampling technique as a tool for proving query complexity lower
bounds. Our goal here is to show that the well-understood classical reasoning is
very close to the reasoning that our framework will admit for proving bounds
in the quantum setting. In order to align the two, certain argumentation below
may appear overkill given the simplicity of the classical case.

Finding a Preimage. We first consider the example of finding a preimage
of H; say, without loss of generality, finding x ∈ X with H(x) = 0. Thus,
let A be an algorithm making q queries to the random oracle and outputting
some x at the end, with the goal of x being a zero-preimage. A first simple
observation is the following: if in the lazy-sampling picture after q queries the
built-up database Dq : X → Y ∪ {⊥} does not map A’s output x to 0, then
H(x) is unlikely to vanish, where H(x) is understood to be obtained by making
one more query to the oracle, i.e., H(x) = Dq+1(x). More formally, if p is the
probability that H(x) = 0 when A is interacting with the standard oracle, and
p′ is the probability that Dq(x) = 0 when A is interacting with the lazy-sampled
oracle, then p ≤ p′+1/|Y|. Looking ahead, this trivial observation is the classical
counterpart of Corollary 1 (originally by Zhandry) that we encounter later.

By the above observation, it is sufficient to bound P [∃x : Dq(x) = 0]. Fur-
thermore, setting PRMG := {D : X → Y ∪ {⊥} | ∃x : D(x) = 0}, we can write

P [∃x : Dq(x)=0] = P [Dq ∈PRMG ] ≤
∑

i

P [Di ∈PRMG |Di−1 �∈PRMG ] .

In order to align the reasoning here with our framework, we introduce the clas-
sical transition capacity

[¬PRMG → PRMG
]

:= max
D �∈PRMG

x∈X

P [D�x ∈ PRMG ]

as the maximal probability that a database D : X → Y ∪ {⊥} with no zero-
preimage will be turned into a database with a zero-preimage as a result of a
query. Combining the above observations, we obtain that

p ≤ q · [¬PRMG → PRMG
]
+

1
|Y| . (1)



On the Compressed-Oracle Technique, and Post-Quantum Security 603

Looking ahead, this is the classical counterpart to Theorem 1 (with Ps set to
PRMG), which is in terms of the (appropriately defined) quantum transition
capacity

�· → ·�.
The reader probably already sees that

[¬PRMG → PRMG
]

= 1/|Y|, lead-
ing to the (well-known) bound p ≤ (q + 1)/|Y|. However, in order to better
understand the general reasoning, we take a more careful look at bounding this
transition capacity. For every D �∈ PRMG and x ∈ X , we identify a “local”
property LD,x ⊆ Y that satisfies

D[x �→y] ∈ PRMG ⇐⇒ y ∈ LD,x ;

therefore, P [D�x ∈ PRMG ] ≤ P
[
D[x �→ U ] ∈PRMG

]
= P [U ∈ LD,x] where U is

defined to be uniformly random in Y. Here, we can simply set LD,x := {0} and
thus obtain

[¬PRMG → PRMG
]

= P [U =0] = 1/|Y| as claimed.
The point of explicitly introducing LD,x is that our framework will offer

similar connections between the quantum transition capacity
�· → ·� and the

purely classically defined probability P [U ∈LD,x]. Indeed, by means of the very
same choice of local property LD,x, but then applying Theorem 2, we obtain

�¬PRMG → PRMG
� ≤ max

D,x

√
10P

[
U ∈LD,x

] ≤
√

10
|Y| .

By Theorem 1, this implies that the success probability p of a quantum algorithm
to find a preimage is bounded by

p ≤
(
q
�¬PRMG → PRMG

�
+ 1√

|Y|

)2
≤
(
q
√

10
|Y| + 1√

|Y|

)2
= O

(
q2

|Y|
)
,

confirming the optimality of the quadratic speed-up of Grover.

Finding a Preimage with Parallel Queries. The above (classical and
quantum) reasoning can be extended to the parallel query model, where with
each interaction with the RO, a query algorithm can make k queries in one go.
The lazy-sampling technique then works in the obvious way, with the function
update Di := D�xi

i−1 now involving a query vector xi ∈ X k. This then gives rise
to
[¬PRMG

k→ PRMG
]
, and (1) generalizes accordingly. For D �∈ PRMG and

x ∈ X k, we then identify a family of local properties LD,x
1 , . . . , LD,x

k ⊆ Y so that

D[x �→y] ∈ PRMG ⇐⇒ ∃ i : yi ∈ LD,x
i , (2)

and therefore, by the union bound, P [D�x∈ PRMG ] ≤ ∑
i P [U ∈LD,x

i ]. Setting
LD,x
1 = . . . = LD,x

k := {0}, we now get
[¬PRMG

k→ PRMG
]
=kP [U =0]=k/|Y|,

showing a factor-k increase in the bound as expected. More interesting is that
Theorem 2 still applies, implying that for the quantum version we have

�¬PRMG
k→ PRMG

� ≤ max
D,x

√
10
∑

i

P
[
U ∈LD,x

i

] ≤
√

10k
|Y| .



604 K.-M. Chung et al.

Plugging this into Theorem 1, we then get the bound

p ≤
(
q
√

10k
|Y| + 1√

|Y|

)2
= O

(
q2k
|Y|
)
,

showing optimality of running k parallel executions of Grover.

Finding a Chain (with Parallel Queries). Another example we want to
discuss here, where we now stick to the parallel query model, is the problem
of finding a (q + 1)-chain, i.e., a sequence x0, x1, . . . , xq+1 with H(xi−1) � xi,
with no more than q (parallel) queries. Here, � refers to an arbitrary relation
among the elements of X and Y; typical examples are: y � x if x = y, or if y
is a prefix of y, or if y is an arbitrary continuous substring of x. Below, we set
Y�x := {y ∈ Y | y � x} and T := maxx |Y�x|.

Using the same kind of reasoning as above, we can argue that

p ≤
q∑

s=1

[¬CHNs k→ CHNs+1
]
+

q + 2
|Y| ,

where CHNs = {D | ∃x0, x1, . . . , xs ∈ X : D(xi−1) � xi ∀i}. Here, we will exploit
that after s (parallel) queries, Ds ∈ SZ≤ks := {D | |{x|D(x) �=⊥}| ≤ ks}. Thus,
the above extends to

p ≤
q∑

s=1

[
SZ≤k(s−1)\CHNs k→ CHNs+1

]
+

q + 2
|Y| , (3)

with the (classical) transition capacity here given by maxP [D�x ∈ CHNs+1 ],
maximized over all D ∈ SZ≤k(s−1)\CHNs and x ∈ X k. To control the considered
transition capacity, for any D and any x = (x1, . . . , xk) ∈ X k, we introduce the
following local properties LD,x

i ⊆ Y with i = 1, . . . , k:

LD,x
i =

⋃

x∈X
D(x)�=⊥

Y�x ∪
k⋃

j=1

Y�xj , (4)

so that yi ∈ LD,x
i if yi � x for some x ∈ X with D(x) �= ⊥ or x ∈ {x1, . . . , xk}.

They satisfy the following condition, which is slightly weaker than (2) used above.

Lemma 1. D[x �→r] �∈ CHNs ∧ D[x �→u] ∈ CHNs+1 ⇒ ∃ i : ri �= ui ∧ ui ∈ LD,x
i .

Proof. Write D◦ for D[x �→r] and D′ for D[x �→u]. Assume that D′ ∈ CHNs+1,
and let x̂0, x̂1, . . . , x̂s+1 ∈ X be such a chain, i.e., so that D′(x̂j) � x̂j+1 for
j = 0, . . . , s. Let s◦ be the smallest j so that D◦(x̂j) �= D′(x̂j); if s◦ ≥ s (or
no such j exists) then D◦(x̂j) = D′(x̂j) � x̂j+1 for j = 0, . . . , s − 1, and thus
D◦ ∈ CHNs and we are done. Therefore, we may assume s◦ < s. Furthermore,
since D◦(x̄) = D′(x̄) for x̄ �∈ {x1, . . . , xk}, we must have that x̂s◦ = xi for some
i ∈ {1, . . . , k}, and therefore ri = D◦(xi) = D◦(x̂s◦) �= D′(x̂s◦) = D′(xi) = ui.
Also, we have that ui = D′(xi) = D′(x̂s◦) � x̂s◦+1 where x̂s◦+1 is such that
D′(x̂s◦+1) � x̂s◦+2 and thus �= ⊥. The latter means that either D(x̂s◦+1) �= ⊥ or
x̂s◦+1 ∈ {x1, . . . , xk} (or both). In either case we have that ui ∈ LD,x

i .



On the Compressed-Oracle Technique, and Post-Quantum Security 605

Applied to r := D(x) so that D[x �→r] = D, we obtain P [D�x∈ CHNs+1 ] ≤∑
i P [U ∈LD,x

i ]. Given that, for D ∈ SZ≤k(s−1), the set {x|D(x) �=⊥} is bounded
in size by k(s − 1), and |Y�x|, |Y�xj | ≤ T , we can bound the relevant probabil-
ity P [U ∈LD,x

i ] ≤ ksT/|Y|. Hence, the considered classical transition capacity is
bounded by k2sT/|Y|. By (3), we thus have p = O(k2q2T/|Y|), which is in line
with the bound given by Cohen-Pietrzak [10].

Also here, our framework allows us to lift the above reasoning to the quantum
setting by plugging the core elements of the above reasoning for the classical
case into our framework. Concretely, choosing the local properties LD,x

i as above
whenever D ∈ SZ≤k(s−1), and to be constant-false otherwise, Lemma 1 ensures
that we can apply Theorem 3 to bound the quantum transition capacity as

�
SZ≤k(s−1)\CHNs k→ CHNs+1

� ≤ emax
x,D

∑

i

√
10P

[
U ∈LD,x

i

] ≤ ek
√

10k(q+1)T
|Y| ,

where e is Euler’s number. Plugging this into Theorem 1, we then get the bound

p ≤
(
qek
√

10k(q+1)T
|Y| + q+2

|Y|
)2

= O
(

q3k3 T
|Y|

)

on the success probability of a quantum oracle algorithm in finding a (q+1)-chain
with no more than q k-parallel queries. Recall, T depends on the considered
relation y � x; T = 1 if y is required to be equal to x, or a prefix of x, and
T = m − n if y and x are n- and m-bit strings, respectively, and y is required to
be a continuous substring of x.

3 Notation

3.1 Operators and Their Norms

Let H = C
d be a finite-dimensional complex Hilbert space. We use the standard

bra-ket notation for covariant and contravariant vectors in H, i.e., for column
and row vectors C

d. We write L(H,H′) for the linear maps, i.e., operators (or
matrices), A : H → H′, and we use L(H) as a short hand for L(H,H). We write
I for the identity operator in L(H). It is understood that pure states are given
by norm-1 ket vectors |ψ〉 ∈ H and mixed states by density operators ρ ∈ L(H).

A (possibly) mixed state ρ ∈ L(H) is said to be supported by subspace
H◦ ⊆ H if the support of the operator ρ lies in H◦, or, equivalently, if any
purification |Ψ〉 ∈ H ⊗ H of ρ lies in H◦ ⊗ H. A state is said to be supported by
a family of (orthonormal) vectors if it is supported by the span of these vectors.

We write ‖A‖ for the operator norm of A ∈ L(H,H′) and recall that it is
upper bounded by the Frobenius norm. Special choices of operators in L(H) are
projections and unitaries. We assume familiarity with these notions, as well as
with the notion of an isometry in L(H,H′).

If H◦ is a subspace of H and A ∈ L(H◦) then we can naturally understand
A as a map A ∈ L(H) by letting A act as zero-map on any |ψ〉 ∈ H that
is orthogonal to H◦. We point out that this does not cause any ambiguity in



606 K.-M. Chung et al.

‖A‖. Vice versa, for any A ∈ L(H) we can consider its restriction to H◦. Here,
we have the following. If H = H1 ⊕ . . . ⊕ Hm is a decomposition of H into
orthogonal subspaces Hi ⊆ H, and A ∈ L(H) is such that its restriction to Hi

is a map Hi → Hi and coincides with Bi ∈ L(Hi) for any i ∈ {1, . . . , m}, then
‖A‖ = maxi ‖Bi‖. This is a property we are exploiting multiple times, typically
making a reference then to “basic properties” of the operator norm.

3.2 The Computational and the Fourier Basis

Let Y be a finite Abelian group of cardinality M , and let {|y〉}y∈Y be an
(orthonormal) basis of H = C

M , where the basis vectors are labeled by the
elements of Y. We refer to this basis as the computational basis, and we also
write C[Y] for H = C

M to emphasize that the considered space is spanned by
basis vectors that are labeled by the elements in Y. Let Ŷ be the dual group of Y,
which is known to be isomorphic to Y, and thus to have cardinality M as well.
Up to some exceptions, we consider Ŷ to be an additive group; the neutral ele-
ment is denoted 0̂. We stress that we treat Y and Ŷ as disjoint sets, even though
in certain (common) cases they are naturally isomorphic and thus considered to
be equal. The Fourier basis {|ŷ〉}ŷ∈Ŷ of H is defined by the basis transformations

|ŷ〉 =
1√
M

∑

y

ŷ(y)∗|y〉 and |y〉 =
1√
M

∑

ŷ

ŷ(y)|ŷ〉 , (5)

where (·)∗ denotes complex conjugation. With the above convention on the nota-
tion, we have C[Y] = C[Ŷ ] = H.An elementary property of the Fourier basis is
that the operator in L(C[Y]⊗ C[Y]) defined by |y〉|y′〉 �→ |y+y′〉|y′〉 for y, y′ ∈ Y
acts as |ŷ〉|ŷ′〉 �→ |y〉|ŷ−ŷ′〉 for ŷ, ŷ′ ∈ Ŷ.

We will also consider extensions Y ∪{⊥} and Ŷ ∪{⊥} of the sets Y and Ŷ by
including a special symbol ⊥. We will then fix a norm-1 vector |⊥〉 ∈ C

M+1 that
is orthogonal to C[Y] = C[Ŷ ], given a fixed embedding of C[Y] = C

M into C
M+1.

In line with our notation, C
M+1 is then referred to as C[Y ∪{⊥}] = C[Ŷ ∪ {⊥}].

3.3 Functions and Their (Quantum) Representations

For an arbitrary but fixed non-empty finite set X , we let H be the set of functions
H : X → Y. Similarly, Ĥ denotes the set of functions Ĥ : X → Ŷ. Given that we
can represent H by its function table {H(x)}x∈X , and |y〉 ∈ C[Y] is understood
as a “quantum representation” of y ∈ Y, we consider |H〉 =

⊗
x |H(x)〉 to be the

“quantum representation” of H, where in such a tensor product we implicitly
consider the different registers to be labeled by x ∈ X in the obvious way. By our
naming convention, the space

⊗
x C[Y] spanned by all vectors |H〉 =

⊗
x |H(x)〉

with H ∈ H is denoted C[H]. Similarly, for the “quantum representation” of
Ĥ ∈ Ĥ as|Ĥ〉 =

⊗
x |Ĥ(x)〉. By applying (5) register-wise, any |H〉 is supported

by vectors |Ĥ〉 with Ĥ ∈ Ĥ, and vice versa. Thus, C[H] = C[Ĥ].
Extending Y to Ȳ := Y ∪ {⊥}, we also consider the set D of functions

(referred to as databases) D : X → Ȳ. In line with the above, we then obtain



On the Compressed-Oracle Technique, and Post-Quantum Security 607

|D〉 =
⊗

x |D(x)〉 ∈ ⊗
x C[Ȳ ] = C[D]. We also consider the set D̂ of functions

D̂ : X → Ŷ ∪ {⊥} and have C[D] = C[D̂].
For D ∈ D and x = (x1, . . . , xk) ∈ X k, we write D(x) for

(
D(x1), . . . , D(xk)

)

in Ȳk; similarly for H ∈ H. Furthermore, for x with pairwise distinct entries
and r = (r1, . . . , rk) ∈ Ȳk, we define D[x �→ r] ∈ D to be the database with
D[x �→r](xi) = ri and D[x �→r](x̄) = D(x̄) ∀ x̄ �∈ {x1, . . . , xk}.

4 Zhandry’s Compressed Oracle - Refurbished

4.1 The Compressed Oracle

The core ideas of Zhandry’s compressed oracle are, first, to consider a superpo-
sition

∑
H |H〉 of all possible functions H ∈ H, rather than a uniformly random

choice; this purified oracle is indistinguishable from the original random oracle.
Second, to then analyze the behavior of this purified oracle in the Fourier basis.
Indeed, the initial state of the oracle is given by

|Π0〉 =
∑

H

|H〉 =
⊗

x

(∑

y

|y〉
)

=
⊗

x

|0̂〉 = |0̂〉 ∈ C[H] , (6)

with 0̂ ∈ Ĥ the constant-0̂ function. Furthermore, an oracle query invokes the
unitary map O, given by

O : |x〉|y〉 ⊗ |H〉 �→ |x〉|y + H(x)〉 ⊗ |H〉
in the computational basis; in the Fourier basis, this becomes

O : |x〉|ŷ〉 ⊗ |Ĥ〉 �→ |x〉|ŷ〉 ⊗ Oxŷ|Ĥ〉 = |x〉|ŷ〉 ⊗ |Ĥ − ŷ · δx〉 , (7)

where the equality is the definition of Oxŷ, and δx : X → {0, 1} satisfies δx(x) = 1
and δx(x′) = 0 for all x′ �= x. Note that Oxŷ acts on register x only, and
OxŷOxŷ′ = Ox,ŷ+ŷ′ ; thus, Oxŷ and Ox′ŷ′ all commute. As an immediate conse-
quence of (6) and (7) above, the internal state of the oracle after q queries is
supported by state vectors of the form |Ĥ〉 = |ŷ1δx1 + · · · + ŷqδxq

〉.
The actual compressed oracle (respectively some version of it) is now obtained

by applying the isometry

Compx = |⊥〉〈0̂| +
∑

ẑ �=0̂

|ẑ〉〈ẑ| : C[Y] → C[Ȳ ], |ŷ〉 �→
{

|⊥〉 if ŷ = 0̂
|ŷ〉 if ŷ �= 0̂

to all registers x ∈ X (and then viewing the result in the computational basis).
This “compression” operator Comp :=

⊗
x Compx : C[H] → C[D] maps |Π0〉 to

|Δ0〉 := Comp |Π0〉 =
(⊗

x

Compx

)(⊗

x

|0̂〉
)

=
⊗

x

Compx|0̂〉 =
⊗

x

|⊥〉 = |⊥〉,

which is the quantum representation of the trivial database ⊥ that maps any
x ∈ X to ⊥. More generally, for any Ĥ ∈ Ĥ, Comp |Ĥ〉 = |D̂〉 where D̂ ∈ D̂ is



608 K.-M. Chung et al.

such that D̂(x) = Ĥ(x) whenever Ĥ(x) �= 0, and D̂(x) = ⊥ whenever Ĥ(x) = 0.
Thus, the internal state of the compressed oracle after q queries is supported by
vectors |D〉 in the computational basis (respectively |D̂〉 in the Fourier basis) for
which D(x) = ⊥ (respectively D̂(x) = ⊥) for all but at most q choices of x.

This representation of the internal state of the purified random oracle is
referred to as the compressed oracle because, for a bounded number of queries,
these state vectors |D〉 can be efficiently represented and the evolution of the
oracle then efficiently computed (see the full version [9]). In this work, we are
not concerned with such a computational efficiency aspect.

4.2 Linking the Compressed and the Original Oracle

The following result (originally by Zhandry [20]) links the compressed oracle
with the original standard oracle. Recall that M = |Y|.
Lemma 2. Consider an arbitrary normalized |Π〉 ∈ C[H]. Let |Δ〉 = Comp |Π〉
in C[D] be the corresponding “compressed database”. Let x = (x1, . . . , x�) consist
of pairwise distinct xi ∈ X , let y = (y1, . . . , y�) ∈ Y�, and set Px := |y1〉〈y1| ⊗
· · · ⊗ |y�〉〈y�| with the understanding that |yi〉〈yi| acts on register xi. Then

‖Px|Π〉‖ ≤ ‖Px|Δ〉‖ +

√
�

M
.

This translates to the following statement in terms of algorithmic language;
rigorous proofs of both statements are given in the full version [9].

Corollary 1 (Zhandry). Let R ⊆ X � × Y� be a relation. Let A be an oracle
quantum algorithm that outputs x ∈ X � and y ∈ X �. Let p be the probability
that y = H(x) and (x,y) ∈ R when A has interacted with the standard random
oracle, initialized with a random function H. Similarly, let p′ be the probability
that y = D(x) and (x,y) ∈ R when A has interacted with the compressed oracle
instead and D is obtained by measuring its internal state. Then

√
p ≤

√
p′ +

√
�

M
.

4.3 Working Out the Transition Matrix

Here, we work out the matrix (in the computational basis) that describes the
evolution that the compressed oracle undergoes as a result of an oracle query. For
this, it is necessary to extend the domain C[Y] of Compx to C[Ȳ ] by declaring that
Compx|⊥〉 = |0̂〉. This turns Compx into a unitary on C[Ȳ ], and correspondingly
then for Comp. Formally, we are then interested in the unitary

cO := Comp ◦ O ◦ Comp† ∈ L(C[X ] ⊗ C[Y] ⊗ C[D]
)
,

which maps |x〉|ŷ〉 ⊗ |D〉 to |x〉|ŷ〉 ⊗ cOxŷ|D〉 for any D ∈ D, where the unitary
cOxŷ := Compx ◦ Oxŷ ◦ Comp†

x ∈ L(C[Ȳ ]) acts on the x-register only.



On the Compressed-Oracle Technique, and Post-Quantum Security 609

Lemma 3. For all ŷ �= 0 and all r, u ∈ Ȳ := Y ∪ {⊥}: 〈u|cOxŷ|r〉 = γŷ
u,r.

Furthermore, cOx,0̂ = I.

The proof is a straightforward computation and is provided in the full version.

⊥ r ∈ Y

⊥ γŷ
⊥,⊥=0 γŷ

⊥,r =
ŷ∗(r)√

M

u
∈

Y ŷ(u)√
M

γŷ
u,r =

(
1 − 2

M

)
ŷ(u) +

1
M

if u = r ∈ Y
1 − ŷ(r) − ŷ(u)

M
if u �= r, both in Y

Fig. 1. The evolution of the compressed oracle in the computational basis.

Since, for any fixed ŷ, the matrix cOxŷ is unitary, the squares of the absolute
values of each column add to 1. Thus, for any ŷ, r we can consider the proba-
bility distribution defined by P̃ [U =u|r, ŷ] := |γŷ

u,r|2. This offers us a convenient
notation, like P̃ [U ∈S|r, ŷ] for

∑
u∈S |γŷ

u,r|2 or P̃ [U �=r|r, ŷ] for
∑

u�=r |γŷ
u,r|2. For

later purposes, it is useful to observe that, for any L ⊆ Y (i.e., ⊥ �∈ L),
∑

r

P̃ [r �=U ∈L|r, ŷ] ≤ P̃ [U ∈L|⊥, ŷ] +
∑

r �=⊥
P̃ [r �=U ∈L|r, ŷ]

≤ |L| 1
M

+ M |L| 9
M2

= 10P [U ∈L] ,
(8)

where P [U ∈L] = |L|
M is the probability for a random U in Y to be in L.

4.4 The Parallel-Query (Compressed) Oracle

Here, we extend the above compressed-oracle technique to the setting where a
quantum algorithm may make several queries to the random oracle in parallel.
Formally, for any positive integer k, a k-parallel query is given by k parallel
applications of O, with the understanding that each application acts on a differ-
ent input/output register pair. More explicitly, but slightly abusing notation of
writing a k-th power, a k-parallel query is given by

Ok : |x〉|y〉 ⊗ |H〉 �→ |x〉|y+H(x)〉 ⊗ |H〉
for any x = (x1, . . . , xk) ∈ X k and y = (y1, . . . , yk) ∈ Yk. The operator unitary
cOk := Comp ◦ Ok ◦ Comp†, which described the evolution of the compressed
oracle under such a k-parallel query, then acts as

cOk : |x〉|ŷ〉 ⊗ |Δ〉 �→ |x〉|ŷ〉 ⊗ cOxŷ|Δ〉
for any |Δ〉 ∈ C[D], where cOxŷ is the product cOx1ŷ1 · · · cOxkŷk

. We recall that
cOxiŷi

acts on register xi (only), and cOxiŷi
and cOxj ŷj

commute.



610 K.-M. Chung et al.

5 A Framework for Proving Quantum Query Bounds

In this section we set up a framework for proving lower-bounds on the query
complexity (actually, equivalently, upper bounds on the success probability) of
quantum algorithms in the (quantum) random oracle model. Our framework
closely mimics the reasoning for classical algorithms and allows to easily “lift”
the typical kind of reasoning to the quantum setting.

5.1 Setting up the Framework

Definition 1. A database property on D is a subset P ⊆ D.

Remark 1. We think of P as a property that is either true or false for any D ∈ D.
Furthermore, by convention, for any database property P ∈ D, we overload
notation and use P also to refer to the projection

∑
D∈P |D〉〈D| ∈ L(C[D]).

Three examples that we will later consider are

PRMG := {D |∃x : D(x) = 0} , CL := {D | ∃x, x′ : D(x) = D(x′) �= ⊥} and
CHNq := {D | ∃x0, x1, . . . , xq ∈ X : D(xi−1) � xi ∀i} ,

where � denotes an arbitrary relation, e.g., y � x if y is a prefix of x.
We introduce the following notation. For any tuple x = (x1, . . . , xk) of pair-

wise distinct xi ∈ X and for any D : X → Ȳ we let

D|x :=
{
D[x �→ r] | r ∈ Ȳk

} ⊆ D

be the set of databases that coincide with D outside of x. Furthermore, for any
database property P ⊆ D, we then let

P|D|x := P ∩ D|x

be the restriction of P to the databases in D|x. We then typically think of P|D|x
as a property of functions D′ ∈ D|x.

Remark 2. For fixed choices of x and D, we will often identify D|x with Ȳk

by means of the obvious map r �→ D[x �→ r]. The property P|D|x can then be
considered to be a property/subset of Ȳk, namely {r ∈ Ȳk |D[x �→ r] ∈ P}.
Accordingly, we do not distinguish between the projections

∑

D′∈P|D|x

|D′〉〈D′| ∈ L(C[D|x]) ⊆ L(C[D]) and
∑

r∈Ȳk

D[x�→r]∈P

|r〉〈r| ∈ L(C[Ȳk])

but refer to both as P|D|x , using our convention to use the same variable for a
property and the corresponding projection. This is justified by the fact that on
the space spanned by |D[x �→ r]〉 with r ∈ Ȳk, both act identically (with the
understanding that the latter acts on the registers labeled by x.). In particular,
they have the same operator norm.



On the Compressed-Oracle Technique, and Post-Quantum Security 611

Example 1. For a given x and D, as a subset of Ȳk, we have

PRMG|D|x =
{ Ȳk if D(x̄) = 0 for some x̄ �∈ {x1, . . . , xk}

{r | ∃ i : ri = 0} else

In words: if D has a zero outside of x then D[x �→ r] has a zero for any r ∈ Ȳk;
otherwise, D[x �→ r] has a zero if and only if one of the coordinates of r is zero.

The following definition is the first main ingredient of our framework. The
upcoming theorem, which relates the success probability of a quantum algorithm
to the quantum transition capacity, then forms the second main ingredient.

Definition 2 (Quantum transition capacity). Let P,P′ be two database
properties. Then, the quantum transition capacity (of order k) is defined as

�
P

k→ P′� := max
x,ŷ,D

‖P′|D|x cOxy P|D|x‖ .

Furthermore, we define

�
P

k,q
=⇒ P′� := sup

U2,...,Uq

‖P′cOk Uq cO · · · cOk U2 cO
k P‖ .

where the supremum is over all positive d ∈ Z and all unitaries U2, . . . , Uq acting
on C[X ] ⊗ C[Y] ⊗ C

d.

By definition, the notion
�
P

k,q
=⇒ P′� equals the square-root of the maximal

probability that the internal state of the compressed oracle, when supported
by databases D ∈ P, turns into a database D′ ∈ P′ by means of a quantum
query algorithm that performs q k-parallel queries, and when we then measure
the internal state. In particular, for p′ as in Corollary 1 and PR as below in
Theorem 1, it holds that

�⊥ k,q
=⇒ PR

�
=

√
p′.

Similarly, but on a more intuitive level so far,
�
P

k→ P′� represents a measure
of how likely it is that, as a result of one k-parallel query, a database D ∈ D
that satisfies P turns into a database D′ that satisfies P′. In the context of these
two notations, ⊥ is understood to be the database property that is satisfied by
⊥ ∈ D only, and ¬P is the complement of P, i.e., ¬P = I−P (as projections). We
also write P → P′ and refer to this as a database transition when considering two
database properties P and P′ in the context of the above two notions. Formally,
they are related as follows.

Lemma 4. For any sequence of database properties P0,P1, . . . ,Pq,

�¬P0
k,q
=⇒ Pq

� ≤
q∑

s=1

�¬Ps−1
k→ Ps

�
.



612 K.-M. Chung et al.

Proof. By means of inserting I = Pq + (I−Pq) before Uq and using properties of
the norm, we obtain

‖Pq cO
k Uq cO

k · · · cOk (I − P0)‖ ≤ ‖Pq−1 cO
k · · · cOk (I − P0)‖ + ‖Pq cO

k Uq (I − Pq−1)‖ .

To the first term, we apply induction; so it remains to bound the second term
by

�¬Pq−1
k→ Pq

�
. Using that Uq and Pq−1 commute (as they act on different

subsystems) and setting P = ¬Pq−1 and P′ = Pq, this follows from3

‖P′cOk P‖ ≤ max
x,ŷ

‖P′cOxŷ P‖ ≤ max
x,ŷ,D

‖P′|D|x cOxy (I − P|D|x)‖ ,

where for the first inequality we observe that P′cOkP maps |x〉|ŷ〉⊗|Γ〉 to |x〉|ŷ〉⊗
P′cOxŷP|Γ〉, and so the first inequality holds by basic properties of the operator
norm. Similarly for the second inequality: For any fixed D, consider the subspace
of C[D] spanned by |D[x �→ r]〉 with r ∈ Ȳk. On this subspace, P and P|D|x
are identical projections (and similarly for P′). Also, cOxy is a unitary on this
subspace. The claim then again follows again by basic properties of the operator
norm.

The following is now a direct consequence of Corollary 1, the definition of
�⊥ k,q

=⇒ PR
�
, and the above lemma.

Theorem 1. Let R be a relation, and let A be a k-parallel q-query quantum
oracle algorithm with success probability p, as considered in Corollary 1. Consider
the database property induced by R, given as

PR =
{
D ∈ D | ∃x ∈ X � :

(
x,D(x)

) ∈ R
}

.

Then, for any database properties P0, . . . ,Pq with P0 = ¬⊥ and Pq = PR:

√
p ≤ �⊥ k,q

=⇒ PR
�

+

√
�

M
≤

q∑

s=1

�¬Ps−1
k→ Ps

�
+

√
�

M
.

Remark 3. This result implies that in order to bound p, it is sufficient to find
a sequence ⊥ �∈ P0, . . . ,Pq = PR of properties for which all quantum transition
capacities

�¬Ps−1 → Ps

�
are small. Often, it is good to keep track of the (growing

but bounded) size of the database and instead bound the capacities
�
SZ≤k(s−1)\Ps−1 → Ps

�
=

�
SZ≤k(s−1)\Ps−1 → Ps ∪ ¬SZ≤ks

�
,

where the equality is due to the fact that the size of a database cannot grow
by more than k with one k-parallel query. Formally, we would then consider the
database properties P′

s = ¬(SZ≤ks \ Ps) = Ps ∪ ¬SZ≤ks.

In the following section, we offer techniques to bound the quantum transi-
tion capacities (in certain cases) using purely classical reasoning. In connection
with Theorem 1, this then provides means to prove lower bounds on the quan-
tum query complexity (for certain computational problems in the random oracle
model) using purely classical reasoning.
3 In line with Remark 2, we consider P|D|x to be a projection acting on C[Ȳk], and

thus I in the last term is the identity in L(C[Ȳk]).



On the Compressed-Oracle Technique, and Post-Quantum Security 613

5.2 Bounding Transition Capacities Using Classical Reasoning only

The idea is to “recognize” a database transition ¬P → P in terms of local prop-
erties L, for which the truth value of D ∈? L, i.e. whether D ∈ L or not, only
depends on the function value D(x) at one single point x (or at few points), and
to use that the behavior of the compressed oracle at a single point x is explicitly
given by Lemma 3. In the following two sections, we consider two possible ways
to do this, but first, we provide the formal definition for local properties.

Definition 3. A database property L ⊆ D is �-local if ∃x = (x1, . . . , x�) ∈ X �

so that

1. the truth value of D ∈? L is uniquely determined by D(x), and
2. if D ∈ L ∧ (∃ i ∈ {1, . . . , �} : D(xi) = ⊥) then D[xi �→ri] ∈ L ∀ ri ∈ Y.

The set {x1, . . . , x�} is then called the support of L, and denoted by Supp(L).

Remark 4. We observe that, as defined above, the support of an �-local property
is not necessarily uniquely defined: if � is not minimal with the required property
then there are different choices. A natural way to have a unique definition for
Supp(L) is to require it to have minimal size. For us, it will be more convenient
to instead consider the choice of the support to be part of the specification
of L. Furthermore, we then declare that Supp(L∪M) = Supp(L) ∪ Supp(M), and
Supp(L|D|x) = Supp(L) ∩ {x1, . . . , xk} for any D ∈ D and x = (x1, . . . , xk).

Remark 5. Condition 2 captures that ⊥ is a special dummy symbol with no
more “value” than any other r ∈ Y.

For example, for any database property P, any x = (x1, . . . , x�) and D, the
property P|D|x satisfies requirement 1. of Definition 3. In line with this, Remark 2
applies here as well: we may identify an �-local property L with a subset of Ȳ�.

Reasoning via Strong Recognizability

Definition 4. A database transition ¬P → P′ is (uniformly) strongly recog-
nizable by �-local properties if there exists a family of �-local properties {Li}i

with
P′ ⊆

⋃

i

Li ⊆ P . (9)

We also consider the following weaker but somewhat more intricate version.

Definition 5. A database transition ¬P → P′ is said be k-non-uniformly
strongly recognizable by �-local properties if for every x = (x1, . . . , xk) ∈ X k

with disjoint entries, and for every D ∈ D, there exist a family {Lx,D
i }i of �-

local properties Lx,D
i with supports in {x1, . . . , xk} so that

P′|D|x ⊆
⋃

i

Lx,D
i ⊆ P|D|x . (10)



614 K.-M. Chung et al.

It is easiest to think about these definitions for the case P = P′, where (9)
and (10) become equalities. Requirement (9) then means that for D to satisfy P
it is necessary and sufficient that D satisfies one of the local properties.

Remark 6. In the above definitions, as long as the support-size remains bounded
by �, one can always replace two properties by their union without affecting (9),
respectively (10). Thus, we may — and by default do — assume the Li’s to have
distinct (though not necessarily disjoint) supports in Definition 4, and the same
we may assume for the Lx,D

i ’s for every x and D in Definition 5.

Remark 7. Definition 4 implies Definition 5 with Lx,D
i := Li|D|x .

Theorem 2. Let ¬P → P′ be k-non-uniformly strongly recognizable by 1-local
properties {Lx,D

1 , . . . , Lx,D
k }, where, w.l.o.g., the support of Lx,D

i is {xi}. Then

�¬P k→ P′� ≤ max
x,D

√
10
∑

i

P
[
U ∈Lx,D

i

]

with the convention that P
[
U ∈Lx,D

i

]
= 0 if Lx,D

i is constant true or false.

Before doing the proof, let us look at one of the considered examples.

Example 2. P′ = P = PRMG is uniformly strongly recognized by the 1-local
properties Lx = {D|D(x) = 0}. Also, as a subset of Ȳ, the property Lx,D

x :=
Lx|D|x is either {0} or constant true or false.4 In the non-constant case, we
obviously have P

[
U ∈Lx,D

i

]
= P [U =0] = 1/M . It then follows from Theorem 2

that we can bound the transition capacity as
�¬PRMG

k→ PRMG
� ≤ √

10k/M
and thus from Theorem 1, setting Pi = PRMG for all i, that the probability p of
any k-parallel q-query algorithm outputting a 0-preimage x is bounded by

p ≤
(
q
√

10k
M + 1√

M

)2
= O

(
kq2

M

)
.

Proof. (of Theorem 2). Consider arbitrary x and D. To simplify notation, we
then write Li for Lx,D

i . We introduce the properties Mi := Li \ (
⋃

j<i Lj) for 1 ≤
i ≤ k. By assumption (10), as projectors they satisfy the operator inequalities
P′|D|x ≤ ∑

i Mi ≤ ∑
i Li and Mi ≤ Li ≤ P|D|x ∀i, where, on top, the Mi’s are

mutually orthogonal. Then, exploiting the various properties, for any ŷ we have

‖P′|D,x cOxŷ (I − P|D,x)‖2 ≤
∥
∥
∥
∥

∑

i

Mi cOxŷ (I − P|D|x)

∥
∥
∥
∥

2

=
∑

i

‖Mi cOŷ (I − P |D|x)‖2 ≤
∑

i

‖Li cOxŷ (I − Li)‖2 =
∑

i

‖Li cOxiŷi (I − Li)‖2 ,

4 In more detail, Lx|D|x = {0} whenever x ∈ {x1, . . . , xk}, and otherwise it is constant
true if D(x) = 0 and constant false if D(x) �= 0.



On the Compressed-Oracle Technique, and Post-Quantum Security 615

where, by considering the map as a map on C[Ȳ ] and bounding the operator
norm by the Frobenius norm,

‖Li cOxiŷi
(I − Li)‖2 ≤

∑

ri,ui∈Ȳ
|〈ui|Li cOxiŷi

(I − Li)|ri〉|2

=
∑

ri �∈Li
ui∈Li

|〈ui|cOxiŷi
|ri〉|2 =

∑

ri �∈Li

P̃ [U ∈Li|ri, ŷi] .

The claim now follows from (8), with the additional observations that if ⊥ ∈ Li

(in which case (8) does not apply) then Li is constant-true (by property 2 of
Definition 3), and that the sum is empty if Li is constant-true. ��

Reasoning via Weak Recognizability Here, we consider a weaker notion of
recognizability, which is wider applicable but results in a slightly worse bound.
Note that it will be more natural here to speak of a transition P → P′ instead
of ¬P → P′, i.e., we now write P for what previously was its complement.

Definition 6. A database transition P → P′ is (uniformly) weakly recognizable
by �-local properties if there exists a family of �-local properties {Li}i so that

D ∈ P ∧ D′ ∈ P′ =⇒ ∃ i : D′ ∈ Li ∧ (∃x∈Supp(Li) : D(x) �= D′(x)
)
.

Also here, we have a non-uniform version (see below). Furthermore, Remarks 6
and 7 apply correspondingly; in particular, we may assume the supports in the
considered families of local properties to be distinct.

Definition 7. A database transition P → P′ is said be k-non-uniformly weakly
recognizable by �-local properties if for every x = (x1, . . . , xk) ∈ X k with disjoint
entries, and for every D ∈ D, there exist a family of �-local properties {Lx,D

i }i

with supports in {x1, . . . , xk} so that

D◦ ∈ P|D|x ∧ D′ ∈ P′|D|x

=⇒ ∃ i : D′ ∈ Lx,D
i ∧ (∃x∈Supp(Lx,D

i ) : D◦(x) �= D′(x)
)
.

(11)

Remark 8. Viewing Lx,D
i as subset of Ȳk, and its support Lx,D

i = {xi1 , . . . , xi�
}

then as subset {i1, . . . , i�} of {1, . . . , k}, (11) can equivalently be written as
follows, which is in line with Lemma 1 (where Supp(Lx,D

i ) = {i}):

D[x �→r] ∈ P ∧ D[x �→u] ∈ P′ =⇒ ∃ i : u ∈ Lx,D
i ∧ (∃ j ∈ Supp(Lx,D

i ) : rj �= uj

)
.

Example 3. Consider CHNq = {D | ∃x0, x1, . . . , xq ∈ X : D(xi−1) � xi ∀i} for an
arbitrary positive integer q. For any x and D, we let Li = Lx,D

i be the 1-local
property that has support {xi} and, as a subset of Ȳ, is defined as (4), i.e., so
that u ∈ Li if and only if u � x for some x with D(x) �= ⊥ or x ∈ {x1, . . . , xk}.
Lemma 1 from the classical analysis shows that condition (11) is satisfied for the
database transition ¬CHNq → CHNq+1. This in particular implies that (11) is
satisfied for the database transition SZ≤k(q−1) \ CHNq → CHNq+1.



616 K.-M. Chung et al.

Theorem 3. Let P → P′ be k-non-uniformly weakly recognizable by 1-local prop-
erties Lx,D

i , where the support of Lx,D
i is {xi} or empty. Then

�
P

k→ P′� ≤ max
x,D

e
∑

i

√
10P

[
U ∈Lx,D

i

]
,

where e is Euler’s number.

Example 4. In the above example regarding CHNq with the considered Lx,D
i ’s

for D ∈ SZ≤kq, as in the derivation of the classical bound in Sect. 2.2, it holds
that P [U ∈Lx,D

i ] ≤ kqT/M , where T denotes the maximal number of y ∈ Y with
y � x (for any x). For D �∈ SZ≤kq we may then choose Lx,D

i := ∅. Thus,

�
SZ≤k(q−1)\CHNq k→ CHNq+1

� ≤ ek

√
10kqT

M
,

and applying Theorem 1 (and the subsequent remark) to the database transitions
SZ≤k(s−1) \ CHNs → CHNs+1 for s = 1, . . . , q, we obtain the following bound,
which we state as a theorem here given that this is a new bound.

Theorem 4. Let � be a relation over Y and X . The probability p of any k-
parallel q-query oracle algorithm A outputting x0, x1, . . . , xq+1 ∈ X with the
property that H(xi) � xi+1 for all i ∈ {0, . . . , q} is bounded by

p ≤
(

qk

√
10qkT

M
e +

√
q + 2
M

)2

= O

(
q3k3 T

M

)
,

where T := maxx |{y ∈ Y | y � x}| and M := |Y|.
Proof. (of Theorem 3). We consider fixed choices of x and D, and we then write
Li for Lx,D

i . For arbitrary but fixed ŷ, we introduce

Ai :=
∑

ui,ri s.t.
ui∈Li∧ri �=ui

|ui〉〈ui| cOxiŷi
|ri〉〈ri| and

Bi := cOxiŷi
− Ai =

∑

ui,ri s.t.
ui �∈Li∨ri=ui

|ui〉〈ui| cOxiyi
|ri〉〈ri|

and observe that, taking it as understood that the operators cOx1ŷ1 , . . . , cOxkŷk

act on different subsystems,

cOxŷ =
k∏

j=1

cOxj ŷj
=

k−1∏

j=1

cOxj ŷj
Ak +

k−1∏

j=1

cOxj ŷj
Bk

=
k−1∏

j=1

cOxj ŷj
Ak +

k−2∏

j=1

cOxj ŷj
Ak−1Bk +

k−2∏

j=1

cOxj ŷj
Bk−1Bk

= · · · =
k∑

i=0

( ∏

j<k−i

cOxj ŷj

)
Ak−i

( ∏

j>k−i

Bj

)



On the Compressed-Oracle Technique, and Post-Quantum Security 617

with the convention that A0 = I. Furthermore, by assumption on the Li’s, it
follows that

Q := P′|D|x
(∏

j>0

Bj

)
P|D|x = 0 .

Indeed, by definition of P′|D|x and P|D|x (considering them as subsets of Ȳk now),
for 〈u|Q|r〉 not to vanish, it is necessary that r ∈ P|D|x and u ∈ P′|D|x . But then,
by assumption, for such r and u there exists i so that ui ∈ Li and ri �= ui, and
thus for which 〈ui|Bi|ri〉 = 0. Therefore, 〈u|Q|r〉 = 〈u|∏j Bj |r〉 =

∏
j〈uj |Bj |rj〉

still vanishes. As a consequence, we obtain

‖P′|D|x cOxŷ P|D|x‖ ≤
∥∥∥∥∥

k−1∑

i=0

( ∏

j<k−i

cOxj ŷj

)
Ak−i

( ∏

j>k−i

Bj

)∥∥∥∥∥

≤
k−1∑

i=0

(
‖Ak−i‖

∏

j>k−i

‖Bj‖
)

.

Using that ‖Bi‖ = ‖cOxiŷi
− Ai‖ ≤ 1 + ‖Ai‖, this is bounded by

≤
k∑

i=1

‖Ai‖
k∏

j=1

(1 + ‖Aj‖) ≤
∑

i

‖Ai‖ e
∑

j ln(1+‖Aj‖) ≤
∑

i

‖Ai‖ e

where the last inequality uses that ln(1+‖Aj‖ ≤ ‖Aj‖, and so the last inequality
holds if

∑
j ‖Aj‖ ≤ 1, while the final term is trivially an upper bound on the

figure of merit otherwise. Using the fact that the operator norm is upper bounded
by the Frobenius norm, we observe that

‖Ai‖2 ≤
∑

ri,ui

|〈ui|Ai|ri〉|2 =
∑

ui,ri s.t.
ui∈Li∧ri �=ui

|〈ui|cOxiyi
|ri〉|2 =

∑

ri

P̃ [ri �=U ∈Li|ri, yi] ,

and the final term is bounded by 10P [U ∈Li] due to (8), here with the additional
observation that if ⊥ ∈ Li (and so (8) does not apply) then, by condition 2 of
Definition 3, Li = Ȳ, and hence the bound holds trivially. ��

General �-Locality and Collision Finding. We now remove the limitation
on the locality being � = 1. The bound then becomes a bit more intricate, and
we only have a version for strong recognizability.

Theorem 5. Let P → P′ be a database transition that is k-non-uniformly
strongly recognizable by �-local properties Lt, where we leave the dependency of
Lt = Lx,D

t on x and D implicit. Then

�
P

k→ P′� ≤ max
x,D

e�

√
10
∑

t

max
x∈Supp(Lt)

max
D′∈D|Supp(Lt)

P
[
U ∈Lt|D′|x

]
.

with the convention that P
[
U ∈Lt|D′|x

]
vanishes if Lt|D′|x is trivial.



618 K.-M. Chung et al.

The proof is given in the full version [9]; it combines techniques from the
proofs of Theorem 2 and Theorem 3.

Example 5. Consider CL = {D | ∃x, x′ : D(x) = D(x′) �= ⊥}. For any D ∈ D
and x = (x1, . . . , xk), consider the family of 2-local properties consisting of

CLi,j := {D◦ ∈ D|x |D◦(xi) = D◦(xj) �= ⊥} and
CLi := {D◦ ∈ D|x | ∃ x̄ �∈ {x1, . . . , xk} : D◦(xi) = D(x̄) �= ⊥}

for i �= j ∈ {1, . . . , k}, with respective supports {xi, xj} and {xi}.
It is easy to see that this family of 2-local properties satisfies (10) for the

database transition ¬CL → CL. Indeed, if D and D′ are identical outside of x,
and D has no collision while D′ has one, then D′’s collision must be for xi, xj

inside x, or for one xi inside and one x̄ outside. As an immediate consequence,
the family also satisfies (10) for the database transition (SZ≤ks \ CL) → CL. In
this case though, whenever D �∈ SZ≤k(s+1) the left hand side of (10) is never
satisfied and so we may replace the family of local properties to consist of (only)
the constant-false property.

Consider x = (x1, . . . , xk) and D ∈ SZ≤k(s+1) with s ≤ q. Then, for i �= j, as
subsets of Ȳ we have that

CLi,j |D′|xi = {D′(xj)} and CLi|D′|xi = {D′(x̄) | x̄ �∈ {x1, . . . , xk} : D′(x̄) �= ⊥}

for any D′ ∈ D|(xi,xj) and D′ ∈ D|xi , respectively, and therefore

P
[
U ∈CLi,j |D′|xi

]
=

1
M

and P
[
U ∈CLi|D′|xi

] ≤ kq

M
.

So, by Theorem 5,

�
SZ≤ks\CL k→ CL

� ≤ 2e
√

10
(

k2

M + k2q
M

)
= 2ek

√
10 q+1

M

and hence, by Theorem 1, we obtain the following bound.

Theorem 6. The probability p of any k-parallel q-query algorithm outputting a
collision is bounded by

p ≤
(

2qek

√
10

q + 1
M

+
2√
M

)2

= O

(
k2q3

M

)
.

5.3 Some Rules for the Quantum Transition Capacity

As we have seen, certain “simple” lower bounds on the query complexity (respec-
tively upper bounds on the success probability) can be obtained rather directly
by bounding the quantum transition capacity by the means discussed above. In
more complex scenarios, as we will encounter in the next section, it will be con-
venient to first manipulate the quantum transition capacity, e.g., to decompose it



On the Compressed-Oracle Technique, and Post-Quantum Security 619

into different cases that can then be analyzed individually. We thus collect some
useful manipulation rules here; all the proofs can be found in the full version [9].

To start with, since cO†
xŷ = cOxŷ∗ , we note that the quantum transition

capacity is symmetric:
�
P

k→ P′� =
�
P′ k→ P

�
.

Therefore, the following bounds hold correspondingly also for
�
P

k→ P′ ∩Q
�

etc.

Lemma 5. For any database properties P,P′ and Q,
�
P ∩ Q

k→ P′� ≤ min
{�

P
k→ P′�,

�
Q

k→ P′�} and

max
{�

P
k→ P′�,

�
Q

k→ P′�} ≤ �
P ∪ Q

k→ P′� ≤ �
P

k→ P′� +
�
Q

k→ P′� .

Corollary 2. If P ⊆ Q then
�
P

k→ P′� ≤ �
Q

k→ P′� and
�
P′ k→ P

� ≤ �
P′ k→ Q

�
.

In the following, we extend the definition of the quantum transition capacity
as follows, which captures a restriction of the query vector x = (x1, . . . , xk) to
entries xi in X ⊆ X .

�
P

k→ P′∣∣X
�

:= max
x∈Xk

ŷ,D

‖P′|D|x cOxŷ P|D|x‖ . (12)

where the max is restricted to x ∈ Xk. Obviously,
�
P

k→ P′� =
�
P

k→ P′∣∣X �
.

Lemma 6. Let X = X ′ ∪ X ′′ ⊆ X and k = k′ + k′′. Furthermore, let P,P′,P′′

and Q be database properties. Then
�
P

k→ P′′∣∣X
� ≤ �

P
k→ P′′\Q∣∣X�

+
�
P

k→ Q ∩ P′′∣∣X
�

,

where furthermore
�
P

k→ Q ∩ P′′∣∣X
� ≤ �

P
k′
→ ¬Q∣∣X�

+
�
P

k′
→ Q ∩ P′∣∣X

�
+

�
Q\P′ k′′

→ Q ∩ P′′∣∣X
�

as well as
�
P

k→ Q ∩ P′′∣∣X
� ≤ �

P
k→ ¬Q∣∣X ′� +

�
P

k→ Q ∩ P′∣∣X ′� +
�
Q\P′ k→ Q ∩ P′′∣∣X ′′�.

By recursive application of Lemma 6, we obtain the following.

Corollary 3 (Parallel Conditioning). Let X = X1 ∪ . . . ∪ Xh ⊆ X and
k = k1 + · · · + kh, and let P0,P1, . . . ,Ph and ¬P0 ⊆ Q be database properties.
Then

�¬P0
k→ Ph

∣∣X
� ≤

h∑

i=1

�¬P0
k̄i→ ¬Q∣∣X�

+
h∑

i=1

�
Q\Pi−1

ki→ Q ∩ Pi

∣∣X
�

and

�¬P0
k→ Ph

∣∣X
� ≤

h∑

i=1

�¬P0
k→ ¬Q∣∣X̄i

�
+

h∑

i=1

�
Q\Pi−1

k→ Q ∩ Pi

∣∣Xi

�
,

where k̄i = k1 + · · · + ki and X̄i = X1 ∪ . . . ∪ Xi.



620 K.-M. Chung et al.

The quantum transition capacity with restricted input, defined in (12), is just
the original definition of the quantum transition capacity (Definition 2) but with
the considered set X replaced by X. As a consequence, properties for

�
P → P′�

carry over to
�
P → P′∣∣X

�
. For instance, it is still symmetric, and Lemma 5

carries over to
�
P ∩ Q

k→ P′∣∣X
� ≤ min

{�
P

k→ P′∣∣X
�
,
�
Q

k→ P′∣∣X
�}

etc. For completeness, we spell out here the definition of non-uniform recog-
nizability as well as Theorem 3 for such input-restricted database transitions
P → P′ |X (the other types of recognizability can be generalized similarly).

Definition 8. A database transition P → P′ with input restricted in X ⊆ X is
said to be k-non-uniformly weakly recognizable by �-local properties if for every
x = (x1, . . . , xk) ∈ Xk with disjoint entries, and for every D ∈ D, there exist a
family of �-local properties {Lx,D

i }i with supports in {x1, . . . , xk} so that

D◦ ∈P|D|x ∧D′ ∈P′|D|x =⇒ ∃ i : D′ ∈ Lx,D
i ∧(∃x∈Supp(Lx,D

i ) : D◦(x) �=D′(x)
)
.

Theorem 7. Let P → P′ with input restricted in X be k-non-uniformly weakly
recognizable by 1-local properties Lx,D

i , where the support of Lx,D
i is {xi} or

empty. Then

�
P

k→ P′∣∣X
� ≤ max

x,D
e
∑

i

√
10P

[
U ∈Lx,D

i

]
,

where the max now is over all x = (x1, . . . , xk) ∈ Xk.

6 Post-Quantum Proof of Sequential Works

In this section, we prove post-quantum security of the proof of sequential work
(PoSW) construction by Cohen and Pietrzak [10] (referred to as Simple PoSW)
using our framework developed in the last section. As a matter of fact, we directly
analyze the non-interactive variant of their construction after applying the Fiat-
Shamir transformation [12]. As we shall see, the proof is by means of purely
classical reasoning, recycling observations that are relevant for arguing classical
security and combining them with results provided by our framework.

6.1 Simple Proof of Sequential Works

For readers not familiar with PoSW, we review the definition in the full ver-
sion [9]. Typically, underlying the construction of a PoSW is a directed acyclic
graph (DAG) G with certain “depth-robust” properties, and a graph labeling
that the prover P is required to compute using a hash function H. We proceed
to describe the DAG used in Simple PoSW and the graph labeling.



On the Compressed-Oracle Technique, and Post-Quantum Security 621

Simple PoSW DAG and Graph Labeling. Let n ∈ N and N = 2n+1 − 1.
Consider the (directed) complete binary tree Bn = (Vn, E′

n) of depth n, where
Vn := {0, 1}≤n and E′

n consists of the edges directed towards the root (black
edges in Fig. 2). The Simple PoSW DAG, denoted by GPoSW

n , is obtained by
adding some additional edges to Bn (red edges in Fig. 2). Before giving the
formal definition of GPoSW

n (Definition 10), we recall some basic terminology and
notation in the context of the complete binary tree Bn, which we will then also
use in the context of GPoSW

n .

Definition 9. We write rt := ε for the root and leaves(Vn) := {0, 1}n for the
leaves in Vn. For T ⊆ Vn, we set leaves(T ) := T ∩ {0, 1}n. For v /∈ leaves(Vn),
we set left(v) := v‖0 and right(v) := v‖1. For b ∈ {0, 1} and v ∈ {0, 1}<n, let
par(v‖b) := v and sib(v‖b) := v‖¬b (see Fig. 2, right).

Finally, for a leaf v ∈ leaves(Vn), we define the ancestors of v as anc(v) =
{pari(v) | 0 ≤ i ≤ n} and the authentication path of v (as in the Merkle tree) as
ap(v) = (anc(v)\{rt}) ∪ {sib(u) | rt �= u ∈ anc(v)}.

Fig. 2. Illustration of the Simple PoSW DAG GPoSW
n for n = 3.

Definition 10. Define the Simple PoSW DAG GPoSW
n := (Vn, E′

n ∪ E′′
n) with

E′
n := {(left(v), v), (right(v), v) | v ∈ Vn \ leaves(Vn)} and

E′′
n := {(sib(u), v) | v ∈ Vn, u ∈ anc(v) s.t. u = right(par(u))} .

For v ∈ Vn, we write in(v) := {u ∈ Vn | (u, v) ∈ E′
n ∪ E′′

n} to denote the
inward neighborhood of v. We consider a fixed ordering of the vertices (e.g.
lexicographic), so that for any set {v1, . . . , vd} ∈ Vn of vertices, the corresponding
ordered list (v1, . . . , vd) is well defined.

We proceed to define the graph labeling for GPoSW
n with respect to a hash

function H : {0, 1}≤B → {0, 1}w, were w is a security parameter, and B is
arbitrary large (and sufficiently large for everything below to be well defined).



622 K.-M. Chung et al.

Definition 11 (Graph Labeling). A function � : Vn → {0, 1}w, v �→ �v is a
labeling of GPoSW

n with respect to H if

�v = H(v, �in(v)) (13)

for all v ∈ Vn, were �in(v) is shorthand for (�v1 , . . . , �vd
) with {v1, . . . , vd} = in(v).

Similarly, for a subtree5 T of GPoSW
n , a function � : T → {0, 1}w, v �→ �v is a

called a labeling of T with respect to H if �v = H(v, �in(v)) for all v ∈ Vn for
which in(v) ⊆ T .

By its structure, GPoSW
n admits a unique labeling, which can be computed by

making N = 2n+1 − 1 sequential queries to H, starting with the leftmost leaf.
We speak of a consistent labeling (of GPoSW

n or T ) when we want to emphasize
the distinction from an arbitrary function �. The definition also applies when
replacing the function H by a database D : {0, 1}≤B → {0, 1}w ∪ {⊥}, where
the requirement (13) then in particular means that H(v, �in(v)) �= ⊥.

We also make the following important remark.

Remark 9. Let T be a subtree of GPoSW
n with a consistent labeling �. Then, any

path P = (v0, . . . , vr) of length |P | = r in T induces an r-chain (x0, . . . , xr),
where xi = (vi, �v′

1
, . . . , �v′

d
) with {v′

1, . . . , v
′
d} = in(vi), and where the relation

� is defined as follows. y � x if and only if x is of form (v, �1, �2, . . . , �d) with
v ∈ Vn, �j ∈ {0, 1}w, |d| = |in(v)| ≤ n, and y = �j for some j.

Simple PoSW Construction. In the Simple PoSW scheme, the prover P must
provide the root label �rt of the consistent labeling of GPoSW

n with respect to Hχ

defined by Hχ(·) := H(χ, ·) for a random χ ∈ {0, 1}w, sampled by the verifier
V, and open the labels of the authentication paths of a few random leaves.

Specifically, given parameters w, t and N = 2n+1 − 1, and a random oracel
H : {0, 1}≤B → {0, 1}w, the Simple PoSW protocol is defined as follows.

– (φ, φP) := PoSWH(χ,N): P computes the unique consistent labeling � of
GPoSW

n with respect to hash function Hχ defined by Hχ(·) := H(χ, ·), and
stores it in φP . P sets φ = �rt as the root label.

– The opening challenge: γ := HChQ
χ (φ) :=

(
Hχ(φ, 1), . . . ,Hχ(φ, d)

) ∈ {0, 1}dw

for sufficiently large d, parsed as t leaves {v1, . . . , vt} ⊆ leaves(Vn).
– τ := openH(χ,N, φP , γ) : For challenge γ = {v1, . . . , vt}, the opening τ con-

sists of the labels of the vertices in the authentication path ap(vi) of vi for
i ∈ [t], i.e., τ = {�ap(vi)}i∈[t].

– verifyH(χ,N, φ, γ, τ): V verifies if the ancestors of every vi are consistently
labeled by τ . Specifically, for each i ∈ [t], V checks if �u = Hχ(u, �in(u)) for all
u ∈ anc(vi). V outputs accept iff all the consistency checks pass.

5 By a subtree of GPoSW
n we mean a subgraph of GPoSW

n that is a subtree of the complete
binary tree Bn when restricted to edges in E′

n. We are also a bit sloppy with not
distinguishing between the graph T and the vertices of T .



On the Compressed-Oracle Technique, and Post-Quantum Security 623

Note that since we consider the non-interactive version of Simple PoSW after
applying the Fair-Shamir transformation, the random oracle H is used to com-
pute both the labels (as Hχ(v, �in(v))) and the challenge (as HChQ

χ (φ)). We silently
assume that the respective inputs are specially formatted so as to distinguish a
label query from a challenge query. E.g., a label query comes with a prefix 0 and
a challenge query with prefix 1. We then denote the set of inputs for label and
challenge queries by LbQ and ChQ ⊆ {0, 1}≤B , respectively. Also, for simplicity,
we will treat HChQ

χ (φ) as one oracle query, i.e., “charge” only one query for a
challenge query; however, we keep the superscript ChQ to remind that the query
response is (understood as) a set of leaves.

Classical Security Analysis of Simple PoSW. We first review the classical
security analysis of [10]. For simplicity, here we consider the original (interactive)
variant (i.e., P first sends φ, receives random γ from V, and then sends τ to V).
Also, to start with, we assume that P does not make further oracle queries after
sending φ. We review the argument of [10] for bounding the probability that
a k-parallel q-query classical oracle algorithm A with q < N makes V accept,
using the terminology we introduced in Sect. 2.

Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be the database at the point that A sends
φ to V. Following the argument in Sect. 2, we can bound the success probability
of A by the probability that a random challenge γ = {vi}i∈[t] can be opened
based on the information in the database D.

First, since the probability is small for the database D to contain a collision
or a (q+1)-chain with respect to the relation defined in Remark 9, we can assume
that D contains no collisions nor (q + 1)-chains.

Next, given the database D and the “commitment” φ, claimed to be the root
label �rt, we need to analyze the set of leaves v that A can open. One of the key
observations in [10] is that, for a database D with no collisions, there exists a
maximal subtree T of GPoSW

n that contains rt and admits a consistent labeling �
with �rt = φ. As observed in [10], this subtree T then contains all leaves that one
can open given D. Thus, A can correctly answer a challenge γ = {v1, . . . , vt} if
γ ⊆ leaves(T ), while otherwise it is unlikely that he succeeds.

The subtree T , together with the labeling � of T , can be extracted using
an algorithm ExtractDn (φ), described in the full version [9]. Roughly speaking,
starting with T := {rt}, consider v := rt and �rt := φ, and add left(v) and
right(v) to T if (and only if) there exist �left(v) and �right(v) such that �v =
D
(
v, �left(v), �right(v)

)
, and repeat inductively with the newly added elements in T .

In the end, for the leaves v ∈ T check if �v = D(v, �in(v)) and remove v from T
if this is not the case; we note here that v ∈ leaves(T ) ⇒ in(v) ⊆ T .

Lemma 7. Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be a database with no collisions
(beyond ⊥). Then, for any φ ∈ {0, 1}w, the subtree T and the labeling � produced
by ExtractDn (φ) are such that � is a consistent labeling of T with respect to D,
having root label �rt = φ. Furthermore, for any leave v of Vn, if v ∈ T then
�u = D(u, �in(u)) for all u ∈ anc(vi), and if v �∈ T then there exists no labeling �′

with �′
rt = φ and �′

u = D(u, �′
in(u)) for all u ∈ anc(vi).



624 K.-M. Chung et al.

Another key argument in [10] uses a certain “depth-robust” property of
GPoSW

n to show that for any subtree T ⊆ Vn with rt ∈ T , there exists a path P in
T with length |P | ≥ 2·|leaves(T )|−2. Furthermore, Remark 9 applies here as well:
a labeling of P with respect to D induces a |P |-chain in D. Combining these with
the assumption that D contains no q + 1-chain, we have |leaves(T )| ≤ (q + 2)/2.
Thus, the probability that A can open labels for a random challenge γ = {vi}i∈[t]

is at most ( |leaves(T )|
2n

)t

≤
(

q + 2
2n+1

)t

.

Lemma 8. Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be a database with no (q + 1)-
chain. Let T be a subtree of GPoSW

n admitting a consistent labeling with respect
to D. Then, |leaves(T )| ≤ (q + 2)/2.

Finally, we briefly discuss here how to deal with A making additional queries
after sending φ. Recall that T contains all leaves v that admit consistently labeled
ancestors. Thus, for the additional queries to be helpful, they must enlarge the
extracted subtree T . More precisely, let D′ be the database after the additional
queries and let T ′ and �′ be extracted by ExtractD

′
n (φ). It must be that T � T ′

and �′|T = �, and there must exist x with D(x) = ⊥ while D′(x) = �v for some
v ∈ T . This happens with probability at most O(qk/2w) for each query since
� has support size at most O(qk). We capture the above crucial observation
by means of the following formal statement, which, in this form, will then be
recycled in the security proof against quantum attacks.

Lemma 9. Let D : {0, 1}≤B → {0, 1}w ∪ {⊥} be a database with no collisions
(beyond ⊥). Let φ ∈ {0, 1}w and (T, �) = ExtractDn (φ). Furthermore, let D′ =
D[x �→u] and (T ′, �′) = ExtractD

′
n (φ), and let v be a leave of Vn. If v ∈ T ′ \ T

then there exist j ∈ {1, . . . , k} and z ∈ anc(v) so that D(xj) �= D′(xj) = �′
z.

Proof. Given that v ∈ T ′, the labeling �′ labels the ancestors of v consistently
with respect to D′, i.e., �′

z = D′(z, �′
in(z)) for all z ∈ anc(v). On the other hand,

as v �∈ T , �′ does not label the ancestors of v consistently with respect to D, i.e.,
there must exist z ∈ anc(v) such that D(z, �′

in(z)) �= �′
z = D′(z, �′

in(z)). Since D

and D′ differ only within x, there exists j ∈ {1, . . . , k} with xj = (z, �′
in(z)). ��

6.2 Post-Quantum Security of Simple PoSW

In this section, we prove post-quantum security of the (non-interactive) Simple
PoSW protocol. As we shall see, relying on the framework we developed in
Sect. 5, the proof uses purely classical reasoning only, and somewhat resembles
the arguments in the classical analysis.

Theorem 8 (Post-Quantum Simple PoSW Security). Consider the Sim-
ple PoSW protocol with parameters w, t and N = 2n+1−1 with w ≥ tn. Let P̃ be



On the Compressed-Oracle Technique, and Post-Quantum Security 625

a k-parallel q-query quantum oracle algorithm acting as a prover. The probability
p that P̃ can make the verifier V accept is at most

p = O

(
k2q2

(
q + 2
2n+1

)t

+
k3q3n

2w
+

tn

2w

)
.

The first step towards the proof is to invoke Corollary 1 (using the notation
from Theorem 1), which, in the case here, bounds the success probability p of a
dishonest prover P̃ by

√
p ≤ �⊥ k,q

=⇒ PR
�

+

√
t · (n + 1) + 1

2w
,

where R is the relation that checks correctness of P̃’s output according to the
scheme. In the following, we write Suc := PR and Fail = ¬Suc. Also, recall the
database properties CL, SZ≤s and CHNs defined previously, where the latter
is with respect to the hash chain relation � considered in Remark 9. By the
properties of (the subtree extracted with) ExtractDn (·), we have

Suc \ CL =
{
D ∈ ¬CL ∣∣∃ �rt ∈ {0, 1}w s.t. DChQ(�rt) ⊆ ExtractDn (�rt)

}
. (14)

To bound
�⊥ k,q

=⇒ PR
�

=
�⊥ k,q

=⇒ Suc
�
, we consider database properties

P0, . . . ,Pq with P0 = ⊥ and Ps = Suc ∪ CL ∪ CHNs+1 for 1 ≤ s ≤ q. Using
Lemma 4, Remark 3 and Corollary 2,

�⊥ k,q
=⇒ Suc

� ≤
∑

1≤s≤q

�
SZ≤k(s−1)\Ps−1

k→ Ps

�
.

Thus, the proof of Theorem 8 follows immediately from the following bound.

Proposition 1. For integers 0 ≤ s ≤ q, and for the database properties
P0, . . . ,Pq as defined above

�
SZ≤k(s−1)\Ps−1

k→ Ps

� ≤ 4ek

√
10

q + 1
2w

+ 3ek

√
10kqn

2w
+ ek

√

10
(

q + 2
2n+1

)t

.

Proof. By applying Corollary 3 with h := 2, X1 := LbQ and X2 := ChQ, and
with P0,P1,P2 and Q suitably chosen (we have to refer to the full version [9] for
the details here), we obtain

�
SZ≤k(s−1)\Ps−1

k→ Ps

� ≤ 2
�
SZ≤k(s−1)\Ps−1

k→ CL ∪ CHNs+1
�

+
�
SZ≤k(s−1)\Ps−1

k→ Suc\CL∣∣LbQ�
+

�¬Ps
k→ Suc\CL∣∣ChQ�

.



626 K.-M. Chung et al.

By Lemma 5 (and Corollary 2), and recalling that Ps−1 = Suc∪ CL∪ CHNs,
the first capacity in the term can be controlled as

�
SZ≤k(s−1)\Ps−1

k→ CL ∪ CHNs+1
�

≤ �
SZ≤k(s−1)\Ps−1

k→ CL
�

+
�
SZ≤k(s−1)\Ps−1

k→ CHNs+1
�

≤ �
SZ≤k(s−1)\CL k→ CL

�
+

�
SZ≤k(s−1)\CHNs k→ CHNs+1

�

≤ 2ek

√
10

q + 1
2w

+ ek

√
10kqn

2w

using earlier derived bounds. It remains to bound the remaining two capacities
appropriately, which we do below. ��

Lemma 10. For any 0 < q ∈ Z:
�¬Pq

k→ Suc\CL∣∣ChQ� ≤ ek ·
√

10
(

q+2
2n+1

)t
.

Proof. For convenience, we will denote D[x �→y] by Dx,y. In order to bound the
above capacity, we define 1-local properties Lx,D

j and show that Lx,D
j (weakly)

recognize the considered transition (with input restricted to ChQ).
For any D and x = (�1rt, . . . , �

k
rt) ∈ ChQk, we set

Lx,D
j :=

{
D◦ ∈ D|x

∣∣∣DChQ
◦ (xj) ⊆ leaves

(
ExtractDx,⊥

n (�j
rt)
)}

Suppose Dx,r ∈ ¬Pq = Fail \ CL \ CHNq+1 but Dx,u ∈ Suc \ CL. Thus, by (14),
there exists �rt ∈ {0, 1}w with

DChQ
x,u (�rt) ⊆ leaves

(
ExtractDx,u

n (�rt)
)

, (15)

while
DChQ

x,r (�rt) �⊆ leaves
(
ExtractDx,r

n (�rt)
)
. (16)

Since the output of the extraction procedure ExtractDn (·) only depends on those
function values of D that correspond to label queries (x here consists of challenge
queries), we have

ExtractDx,r
n (�rt) = ExtractDx,⊥

n (�rt) = ExtractDx,u
n (�rt).

If �rt is different from all �j
rt, then Eqs. (15) and (16) contradict. So there is some

j such that �j
rt = �rt. Equations (15) and (16) thus become

uj ⊆ leaves
(
ExtractDx,⊥

n (�rt)
)

and rj �⊆ leaves
(
ExtractDx,⊥

n (�rt)
)
,

understanding that uj and rj represent lists/sets of t (challenge) leaves. Hence
rj �= uj . This concludes that Lx,D

j indeed weakly recognizes the considered
database transition.

We note that, for each x ∈ ChQk and D ∈ Fail\CL\CHNq+1, since the longest
hash chain in D is of length no more than q and T := ExtractDx,⊥

n (�j
rt) admits



On the Compressed-Oracle Technique, and Post-Quantum Security 627

a consistent labeling (Lemma 7), it follows from Lemma 8 that the number of
leaves in T is bounded by (q + 2)/2. Therefore,

P
[
U ∈ Lx,D

j

] ≤
(
leaves

(
ExtractDx,⊥

n (�j
rt)
)

2n

)t

≤
(

q + 2
2n+1

)t

,

and so the claimed bound follows by applying Theorem 7. ��

Lemma 11. For any 0 < q ∈ Z:
�
SZ≤k(q−1)\Pq−1

k→ Suc\CL∣∣LbQ� ≤
ek
√

10nkq
2w .

Proof. Define the notion of labeling support LSupp(D) of a database D ∈ D as
follows.

LSupp(D) :=
{

λ ∈ {0, 1}w

∣∣∣∣
∃ 0≤ i≤d≤n, v∈Vn, �1, . . . , �d ∈{0, 1}w

s.t. D(v, �1, . . . , �i−1, λ, �i+1, . . . �d) �= ⊥
}

∪ {�rt ∈ {0, 1}w
∣∣DChQ(�rt) �= ⊥} .

We note that since LSupp is defined only in terms of where D is defined, but does
not depend on the actual function values (beyond being non-⊥), LSupp(D) ⊆
LSupp(Dx,0) for any x ∈ X k, where 0 ∈ {0, 1}k is the all-0 string.

In order to bound above capacity, we define 1-local properties and show that
they (weakly) recognize the considered transition (with input restricted to LbQ).
For any D and x ∈ LbQk, consider the local properties

Lx,D
j :=

{
D◦ ∈ D|x ∣∣D◦(xj) ∈ LSupp(Dx,0)

}
.

Let Dx,r ∈ ¬Pq−1 = Fail \ CL \ CHNq yet Dx,u ∈ Suc \ CL. By (14), there exists
�rt so that DChQ

x,u (�rt) ⊆ ExtractDx,u
n (�rt), while, on the other hand, there exists

some v ∈ DChQ
x,r (�rt)\ leaves(ExtractDx,r

n (�rt)
)
. Given that here x ∈ LbQk, we have

Dx,r(�rt) = Dx,u(�rt), and thus, by (15), we have

v ∈ leaves
(
ExtractDx,u

n (�rt)
)

\ leaves
(
ExtractDx,r

n (�rt)
)
.

Writing �′ for the labeling extracted by ExtractDx,u
n (�rt), it then follows from

Lemma 9 that there exist j ∈ {1, . . . , k} and z ∈ anc(v) such that uj =
Dx,u(xj) = �′

z �= Dx,r(xj) = rj . Furthermore, since DChQ
x,u (�′

z) = DChQ
x,u (�rt) �= ⊥

in case z = rt, and �′
z is part of the input that is mapped to �′

par(z) under Dx,u in
all other cases, we also have uj = �′

z ∈ LSupp(Dx,u) ⊆ LSupp(Dx,0). Therefore,
the local properties Lx,D

j do indeed weakly recognize the considered transition
for input restricted to LbQ.

For D ∈ SZ≤k(q−1) \Pq−1, since there are only k(q−1) entries in D, we have

P [U ∈ Lx,D
j ] ≤ |LSupp(Dx,0)|

2w
≤ nkq

2w
. ,

and thus the claimed bound follows from applying Theorem 7. ��



628 K.-M. Chung et al.

Acknowledgements. We thank Jeremiah Blocki, Seunghoon Lee, and Samson Zhou
for the open discussion regarding their work [4], which achieves comparable results for
the hash-chain problem and the Simple PoSW scheme.

References

1. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: colli-
sion and element distinctness with small range. Theor. Comput. 1(1), 37–46 (2005)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: First ACM Conference on Computer and Communications
Security, pp. 62–73. ACM (1993)

3. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

4. Blocki, J., Lee, S., Zhou, S.: On the security of proofs of sequential work in a
post-quantum world. arXiv/cs.CR, Report 2006.10972 (2020). https://arxiv.org/
abs/2006.10972

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

6. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv/quant-ph, Report 9705002 (1997). https://arxiv.org/abs/quant-ph/9705002

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM (JACM) 51(4), 557–594 (2004)

8. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum ran-
dom oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS,
vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 1

9. Chung, K.M., Fehr, S., Huang, Y.H., Liao, T.N.: On the compressed-oracle tech-
nique, and post-quantum security of proofs of sequential work. Cryptology ePrint
Archive, Report 2020/1305 (2020). https://eprint.iacr.org/2020/1305

10. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 451–467. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 15

11. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling
and game-playing proofs for quantum indifferentiability. arXiv/quant-ph, Report
1904.11477 (2019). https://arxiv.org/abs/1904.11477

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

14. Hamoudi, Y., Magniez, F.: Quantum time-space tradeoffs by recording queries.
arXiv/quant-ph, Report 2002.08944 (2020). https://arxiv.org/abs/2002.08944

15. Hosoyamada, A., Iwata, T.: 4-round luby-rackoff construction is a qPRP. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp.
145–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 6

16. Jeffery, S., Magniez, F., de Wolf, R.: Optimal parallel quantum query algorithms.
Algorithmica 79(2), 509–529 (2017)

https://arxiv.org/abs/2006.10972
https://arxiv.org/abs/2006.10972
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://arxiv.org/abs/quant-ph/9705002
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://eprint.iacr.org/2020/1305
https://doi.org/10.1007/978-3-319-78375-8_15
https://arxiv.org/abs/1904.11477
https://doi.org/10.1007/3-540-47721-7_12
https://arxiv.org/abs/2002.08944
https://doi.org/10.1007/978-3-030-34578-5_6


On the Compressed-Oracle Technique, and Post-Quantum Security 629

17. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

18. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

19. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60,
2746–2751 (1999). https://doi.org/10.1103/PhysRevA.60.2746

20. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 9

https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9


Classical Proofs of Quantum Knowledge

Thomas Vidick1(B) and Tina Zhang2

1 Department of Computing and Mathematical Sciences,
California Institute of Technology, Pasadena, USA

vidick@caltech.edu
2 Division of Physics, Mathematics and Astronomy,
California Institute of Technology, Pasadena, USA

tinazhang@caltech.edu

Abstract. We define the notion of a proof of knowledge in the setting
where the verifier is classical, but the prover is quantum, and where
the witness that the prover holds is in general a quantum state. We
establish simple properties of our definition, including that, if a non-
destructive classical proof of quantum knowledge exists for some state,
then that state can be cloned by an unbounded adversary, and that,
under certain conditions on the parameters in our definition, a proof of
knowledge protocol for a hard-to-clone state can be used as a (destruc-
tive) quantum money verification protocol. In addition, we provide two
examples of protocols (both inspired by private-key classical verification
protocols for quantum money schemes) which we can show to be proofs
of quantum knowledge under our definition. In so doing, we introduce
techniques for the analysis of such protocols which build on results from
the literature on nonlocal games. Finally, we show that, under our def-
inition, the verification protocol introduced by Mahadev (FOCS 2018)
is a classical argument of quantum knowledge for QMA relations. In all
cases, we construct an explicit quantum extractor that is able to produce
a quantum witness given black-box quantum (rewinding) access to the
prover, the latter of which includes the ability to coherently execute the
prover’s black-box circuit controlled on a superposition of messages from
the verifier.

1 Introduction

The notion of a proof of knowledge was first considered in the classical setting
in [GMR89] and subsequently formalized in [TW87,FFS88] and [BG92].1 Intu-
itively, a proof of knowledge protocol allows a prover to convince a verifier that
it ‘knows’ or ‘possesses’ some piece of secret information (a ‘witness’, w) which
satisfies a certain relation R relative to a publicly known piece of information x.
(Symbolically, we might say that the prover wants to convince its verifier that,
for a particular x, it knows w such that R(x,w) = 1.) For example, the witness

1 These three works give inequivalent definitions, but the differences are not important
for the purpose of this introduction.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 630–660, 2021.
https://doi.org/10.1007/978-3-030-77886-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_22


Classical Proofs of Quantum Knowledge 631

w might be a private password corresponding to a particular public username
x, and a proof of knowledge protocol in this setting could allow the prover to
demonstrate that it possesses the credentials to access sensitive information.

The formal definition of a classical proof of knowledge for NP relations R was
settled in a series of works (see [BG92] for a summary) in the 1990s. The stan-
dard definition is as follows: the prover P is said to ‘know’ a witness w if there
is an extractor E which, given black-box access to P (including the ability to
rewind P and run it again on different messages from the verifier), can efficiently
compute w. The applications of classical proofs of knowledge include identifica-
tion protocols [FFS88], signature schemes [CL06], and encryption schemes secure
against chosen-ciphertext attack [SJ00].

In this work, we consider a particular generalisation of the classical con-
cept of a proof of knowledge to the quantum setting. We imagine a situation
where the verifier remains classical, but the prover is quantum, and where the
witness w is in general a quantum state; and we ask the prover to ‘convince’
the verifier that it knows that state. We call this type of protocol a classical
proof of quantum knowledge. Recently, there have been works which show how a
fully classical verifier can, under cryptographic assumptions, delegate a quantum
computation on encrypted data to a quantum server [Mah18a], verify that such
a server performed the computation correctly [Mah18b], delegate the prepara-
tion of single-qubitstates to the server in a composable fashion [GV19], and test
classically that the server prepared an EPR pair in its own registers [MV20].
In short, as long as classical computational resources and classical communica-
tion channels remain less expensive than their quantum counterparts, it will be
natural to wish to use classical devices to test quantum functionality. Although
we focus here on information-theoretic rather than computational security, the
current paper can be considered part of the preceding line of work.

Quantum proofs of quantum knowledge (i.e. proof of knowledge protocols for
quantum witnesses in which quantum interaction is allowed) have recently been
explored by [BG19] and [CVZ19]; these two papers give a definition for quantum
proofs of quantum knowledge, and exhibit several examples which meaningfully
instantiate the definition. Here, we consider the more challenging question of
defining and constructing proofs of knowledge for quantum witnesses in which
the verifier and the interaction are classical. In this setting there is an interesting
difficulty involved in constructing an extractor: how does one argue that a quan-
tum prover ‘knows’ a certain quantum state if the only information which the
prover ‘reveals’ is classical? A first approach, following the classical definition,
would only allow the extractor to access classical transcripts from the protocol.
Under such a restriction, the problem the extractor faces becomes one of recon-
structing a witness ρ based entirely on classical measurement outcomes. It is
not hard to convince ourselves that this problem probably has no solution for
any non-trivial class of quantum states, as indeed it may be as hard as quantum
state tomography [HHJ+17]. This observation makes it clear that we must allow
the extractor to engage in some sort of quantum interaction with the prover.



632 T. Vidick and T. Zhang

Our first contribution in this paper is to provide an adequate definition of a
proof of quantum knowledge for the setting where the communication between
verifier and prover is classical. In order to circumvent the difficulty described
in the preceding paragraph, we adopt a definition of ‘black-box access to the
prover’ which is naturally suited to the quantum setting. Informally speaking,
we model the prover as a unitary map U that acts on two quantum registers,
one which is private (and which is used for storing its internal state) and one
which is public (used for sending and receiving messages). In each round of
the real protocol, the verifier places a classical message in the public ‘message
register’, and the prover then runs the unitary U , before the message register
is measured in the computational basis; the measurement result is the message
that the prover sends to the verifier for that round. We define ‘black-box access
to the prover’ as follows: we allow the extractor to place any quantum state in
the public ‘message register’, as well as run the prover’s unitary U , which acts
on both registers, or its inverse U†; we do not allow the extractor to access the
prover’s private register except through U or U†. We do, however, allow it to
place a coherent superposition of messages in the message register, even though
the verifier (in a real protocol) would only ever put one classical message there.
We make use of this latter possibility in our instantiations of this definition.

This definition matches the definition of ‘black-box access to a quantum
machine’ used in previous works [Unr12]. We emphasise that, even though we
consider protocols with purely classical communication, the extractor according
to this definition of ‘black-box access’ is allowed to coherently manipulate a uni-
tary implementation of the prover, and the message registers are not necessarily
measured after each round of interaction. This possibility was allowed in [Unr12],
but not used; here we make essential use of it when we construct our extrac-
tors. We note also that this definition of ‘black-box access’ matches the definition
given in prior works (e.g. [Wat09]) of the ‘black-box access’ to a malicious verifier
which a zero-knowledge simulator for a post-quantumly zero-knowledge proof of
knowledge is allowed to have.

Having formalised what ‘black-box access to the prover’ means in our context,
we move to the task of defining a ‘proof of quantum knowledge’ for our setting.
We have two main applications in mind for a ‘proof of quantum knowledge’: one
of them (proofs of knowledge for QMA witnesses) is natural given the standard
formulation of classical proofs of knowledge for NP witnesses, but the other
(proofs of knowledge for quantum money states [AFG+12]) is both natural and
unique to the quantum setting. The quantum money application does not fit
well into the standard formalism which is used for NP and QMA verification.
Therefore, in order to formulate our definition of a ‘proof of quantum knowledge’
generally enough that we can capture both applications, we introduce a broader
framework that mirrors frameworks recently introduced for similar purposes in
the classical literature. Formally, we base our definition of a ‘proof of quantum
knowledge’ on the notion of an ‘agree-and-prove scheme’ introduced recently
in [BJM19]. The main innovation in this framework is that it allows the instance
x and the proof relation R to be determined dynamically through interactions



Classical Proofs of Quantum Knowledge 633

between the prover, the verifier, and possibly a trusted setup entity (such as
the provider of a common random string or a random oracle). This framework
lends itself remarkably well to our applications. Since we do not need all the
possibilities that it allows, we introduce a somewhat simplified version which is
sufficient for our purposes; details are given in Sect. 3.

In Sect. 4 we show two elementary but potentially interesting properties of
our definition of a ‘proof of quantum knowledge’. The first property is that,
if a classical proof of quantum knowledge leaves the witness state intact, then
the witness state can be cloned by an unbounded adversary. This is a simple
no-go result which precludes certain types of proofs of quantum knowledge in
the scenarios which we consider. The second property is that, under certain
conditions on the parameters in the definition, a proof of knowledge protocol for
a hard-to-clone witness state can also be used as a quantum money verification
protocol. This result formalises the intuition that the property of being a ‘proof
of quantum knowledge’ is stronger than the property of being a quantum money
verification protocol: the latter implies that no adversary can pass verification
twice given access to only one money bill, and the former formalises the notion
that no adversary can pass even once unless it is possible to efficiently compute
the money bill by interacting with said adversary.

Our second main contribution is to provide several examples of protocols
which can be shown to be proofs of knowledge under our definition, and in so
doing introduce some techniques that may possibly find use in the analysis of
such protocols. As we have mentioned, instantiating a secure quantum money
scheme is a natural application for a proof of quantum knowledge protocol. Con-
versely, quantum money verification protocols are natural candidates for exam-
ples of proofs of quantum knowledge: in a quantum money protocol, there is a
prover who holds a purported money state, and who wishes to demonstrate to
the verifier (who might be the bank or an independent citizen) that it does indeed
‘hold’ or ‘possess’ the quantum money state. The first person to describe quan-
tum money was Wiesner [Wie83], who proposed money states that are tensor
products of n qubits, each qubit of which is chosen uniformly at random from the
set {|0〉 , |1〉 , |+〉 , |−〉}. Wiesner’s states can be described classically by 2n classi-
cal bits, and in a quantum money scheme this classical description is kept secret
by the bank; a typical classical description is the pair of strings (x, θ), where the
money state can be described (denoting by Hi a Hadamard gate on the ith qubit
of the state and identities on all other qubits) as |$〉x,θ =

∏
i Hθi

i |x〉. We choose
to analyse as our first example of a proof of knowledge a private-key, destructive
classical money verification protocol between a prover and the bank for Wies-
ner’s quantum money states which has been described previously in [MVW12].
The protocol is as follows: the verifier issues a uniformly random challenge string
c to the prover, which encodes the bases (standard or Hadamard) in which the
prover should measure the money state; the prover measures the ith qubit of
the state in the standard basis if ci = 0, or in the Hadamard basis if ci = 1, and
sends all the measurement outcomes as a string m to the verifier; and the verifier
checks that, whenever ci = θi, mi = xi. The property which makes this protocol



634 T. Vidick and T. Zhang

and these states interesting is that no prover who is given only one copy of the
money state can pass verification twice.

Perhaps surprisingly, showing even that this simple protocol is a proof of
knowledge according to our definition turns out to be a non-trivial task. We
may examine the following illustration of the difficulty. Consider, firstly, the
following näıve approach to designing an extractor for the protocol described
in the preceding paragraph. Recall that, according to our model of ‘black-box
access’, the prover can be considered a unitary process; we denote by Uc the
unitary that the prover applies to its private register and the message register
in response to challenge c. The extractor could pick a challenge c at random,
apply Uc, and then attempt to apply some unitary to the message register to
‘correct’ for the challenge bases in order to recover the original money state.
(For example, if n = 4, and c = 0110, the extractor could apply the unitary
U0110, and then apply H2H3 to the message register in hopes of recovering the
original money state. This strategy would work on the honest prover, who simply
measures the real money state in the bases indicated by c in order to obtain its
message to the verifier; we may imagine that few meaningful deviations from this
pattern are possible.) However, the prover (upon receipt of the challenge) may
take its honest money state and decide to apply Pauli X (bit-flip) gates to some
arbitrary subset of the qubits of the money state which it was told to measure
in the Hadamard basis, and Pauli Z (phase-flip) gates to a subset of the qubits
which it was told to measure in the standard basis. If the prover now measures
the result in the bases indicated by c, it will pass with probability 1—but the
state that it measures in the c basis in this scenario is almost certainly not the
correct money state. (The exception is when c = θ.)

A little thought will show that this is a fairly general obstacle to the extrac-
tor’s constructing the money state from the state residing in the prover’s message
registers immediately before it performs the measurement whose outcomes it will
send to the verifier. Since we know very little about what the prover might be
doing to the money state at any other stage in its execution, meanwhile, it is
difficult to reason about finding the money state in the prover’s registers at other
points in its operation. This simple argument shows that, in order to design an
effective extractor, it is crucial to consider the prover’s responses to all challenges
c at once—the question, of course, is one of how.

Our way of overcoming these difficulties builds on results from the literature
on nonlocal games. The key idea of our security proof for the Wiesner money
verification protocol is as follows. Let the party which chooses and prepares the
money state |$〉x,θ =

∏
i Hθi

i |x〉 that the prover receives be known as Alice, and
let the prover be known as Bob. Consider the following thought experiment:
instead of preparing |$〉x,θ, Alice could prepare n EPR pairs and send half of
each one to Bob. Let E(θ) = {|$〉〈$|x,θ | x ∈ {0, 1}n} be a general measurement
(POVM). Then, if Alice measures E(θ) on her side of the state, and obtains the
outcome x, Alice’s and Bob’s joint state will collapse to two copies of |$〉x,θ. Note
that, from Bob’s perspective, the protocol is the same regardless of whether Alice
sent EPR pairs and then measured E(θ), or whether she chose x and θ uniformly



Classical Proofs of Quantum Knowledge 635

at random and sent him |$〉x,θ to begin with. However, if Bob succeeds with
high probability in the money verification protocol, then he also succeeds with
high probability at recovering a subset of the string x which represents Alice’s
measurement outcomes after she measures the POVM E(θ), and which also
forms part of the classical description of the money state |$〉x,θ. This observation
makes it possible to apply a theorem from [NV16] which states that, if two
noncommunicating parties exhibit correlations like those which Alice and Bob
exhibit in this thought experiment, then they must once have shared EPR pairs,
up to local isometry. Since Alice is honest and did nothing to her shares of the
EPR pairs, the local isometry on her side is the identity map. Then, in order to
recover the original money state, the proof-of-knowledge extractor simply has to
execute the correct isometry on Bob’s side. This isometry can be implemented
efficiently using only black-box access to the prover; this step, however, crucially
makes use of the fact that the extractor can implement controlled versions of
the prover’s unitaries on a superposition of messages of its choice. A detailed
analysis is given in Sect. 5.1.

Although the efficacy of this technique for showing that a protocol is a proof
of knowledge depends strongly on the structure of the Wiesner verification pro-
tocol, we are also able to apply it to one other example. Wiesner states were
the earliest and are the best-known kind of quantum money states, but there
are other kinds, and one sort which has received some recent attention is the
class of subspace states introduced in a quantum money context by [AC12].
Subspace states are states of the form 1√

|A|
∑

x∈A |x〉 for some n/2-dimensional

subspace A ∈ Z
n
2 , and they have similar no-cloning properties to those of Wies-

ner states; they are also of additional interest because they have been used in
several schemes which make steps toward the goal of public-key quantum money
[AC12], [Zha19], and in constructions of other quantum-cryptographic primitives
such as quantum signing tokens [BDS16]. We were not able to find a simple clas-
sical verification protocol for subspace states that we could show to be a proof
of quantum knowledge. Nonetheless, in Sect. 5.2, we propose a classical (private-
key) verification protocol for what we call one-time-padded subspace states (that
is, subspace states which have had random Pauli one-time-pads applied to them
by the bank), and we are able to show under our new definition, using similar
techniques to those which we applied to Wiesner states, that this simple veri-
fication protocol is a proof of knowledge for one-time-padded subspace states.
This verification protocol is remarkable for having a challenge from the verifier
that is only one bit long.

Our final contribution is to show that, under our definition, a classical argu-
ment of quantum knowledge exists for any relation in the class QMA.2 The
notion of a QMA relation was formalised jointly by [BG19] and [CVZ19], as
a quantum analogue to the idea of an NP relation which was described in

2 Argument systems differ from proof systems only in that the honest prover must be
efficient, and that soundness is required to hold only against efficient provers. In this
case, ‘efficient’ means quantum polynomial-time.



636 T. Vidick and T. Zhang

the first paragraphs of this introduction. [BG19] and [CVZ19] show that any
QMA relation has a quantum proof of quantum knowledge. The protocol that
we show to be a classical argument of quantum knowledge for QMA rela-
tions, meanwhile, is the classical verification protocol introduced recently by
[Mah18b]. Mahadev [Mah18b] shows, under cryptographic assumptions, that
quantum properties (in her case, any language in BQP) can be decided by
a classical polynomial-time verifier through classical interaction alone with a
quantum polynomial-time prover. We note that the proofs of the main results
in [Mah18b] include statements which can be used to make the verification proto-
col which [Mah18b] introduces into a classical argument of quantum knowledge
in the sense in which we have defined the latter. The main work that needs to
be done in order to show this is to establish that the quantum witness, which
as shown in [Mah18b] always exists for the case of a successful prover, can be
extracted from the prover in a black-box manner. While all the required techni-
cal components for establishing this are already present in [Mah18b], we make
the statement explicit. (In comparison, our proofs that specific quantum money
schemes satisfy our definition of a proof of quantum knowledge do not use any
cryptographic assumptions, and the protocols which we consider are very simple
compared with the [Mah18b] protocol.) The [Mah18b] verification protocol can
be shown to be an argument of quantum knowledge for any QMA relation; the
only caveat, which was also a caveat for the quantum proofs of quantum knowl-
edge for QMA exhibited by [BG19] and [CVZ19], is that an honest prover in the
protocol may require multiple copies of a witness in order that the extractor can
succeed in extracting one copy. We refer the reader to Sect. 6 for details.

2 Preliminaries

2.1 Terminology and Notation

Due to space constraints, we refer the reader to the full version [VZ21] for basic
notation and terminology.

2.2 Black-Box Quantum Provers

Due to space constraints, we refer the reader to the full version [VZ21] for a
discussion of the definitions we will now present relating to the notion of ‘black-
box access’. Formally, we use a similar framework to that which is described
in [Unr12, Sect. 2.1] in order to capture black-box access to quantum provers. The
following definitions of interactive quantum machines and oracle access to an
interactive quantum machine are taken (with some modifications) from [Unr12];
a similar formulation of these definitions of [Unr12] appears in [CVZ19]. The
modifications which we introduce are primarily for convenience in dealing with
the situation where the verifier is known to be classical, instead of (potentially)
quantum as it is in [Unr12].



Classical Proofs of Quantum Knowledge 637

Remark 1. Even though the possibility is not used in [Unr12], the framework pre-
sented there explicitly allows the extractor to coherently implement controlled
versions of the prover’s unitaries on a superposition of messages from the veri-
fier. As we argued in the introduction, it is necessary to give this power to the
extractor in our context (see e.g. [BCC+20] for impossibility results in related
settings).

Interactive quantum machines. An interactive quantum machine is a machine
M with two quantum registers: a register S for its internal state, and a register
N for sending and receiving messages (the network register). Upon activation, M
expects in N a message, and in S the state at the end of the previous activation.
At the end of the current activation, N contains the outgoing message of M ,
and S contains the new internal state of M . A machine M gets as input: a
security parameter λ ∈ N, a classical input x ∈ {0, 1}∗, and a quantum input
|Φ〉, which is stored in S. Formally, machine M is specified by a family of unitary
circuits {Mλx}λ∈N,x∈{0,1}∗ and a family of integers {rM

λx}λ∈N,x∈{0,1}∗ . Mλx is the
quantum circuit that M performs on the registers S and N upon invocation. rλx

determines the total number of messages/invocations. We might omit writing
the security parameter and/or the classical input x when they are clear from
the context. We say that M is quantum-polynomial-time (QPT for short) if
the circuit Mλx has size polynomial in λ + |x|, the description of the circuit is
computable in deterministic polynomial time in λ + |x| given λ and x, and rλ,x

is polynomially bounded in λ and x.

Oracle access to an interactive quantum machine. We say that a quantum algo-
rithm A has oracle access to an interactive quantum machine M (with internal
register S and network register N) running on |Φ〉 to mean the following. We
initialise S to |Φ〉 and N to |0〉, we give A the security parameter λ and its
own classical input x, and we allow A to execute (a controlled version of) the
quantum circuit Mλx′ (for any x′) specifying M , and (a controlled version of)
its inverse (recall that these act on the internal register S and on the network
register N of M). Moreover, we allow A to provide and read messages from M
(formally, we allow A to act freely on the network register N). We do not allow
A to act on the internal register S of M , except via Mλx′ or its inverse.

Interactive classical machines. An interactive classical machine is a machine C
with two classical registers: a register T for its internal state, and a register N
for sending and receiving messages (the network register). Upon activation, C
expects in N a message, and in T the state at the end of the previous activation.
At the end of the current activation, N contains the outgoing message of C,
and T contains the new internal state of M . A machine C gets as input: a
security parameter λ ∈ N, a classical input x ∈ {0, 1}∗, a random input u ∈
{0, 1}p(λ+|x|) for some function p ∈ N, and a classical auxiliary input t ∈ {0, 1}|T|,
which is stored in T. Formally, machine C is specified by a function p ∈ N,
a family of classical circuits {Cλxu}λ∈N,x∈{0,1}∗,u∈{0,1}p(λ+|x|) and a family of
integers {rC

λx}λ∈N,x∈{0,1}∗ . Cλxu is the classical circuit that C performs on the



638 T. Vidick and T. Zhang

registers T and N upon invocation. Without loss of generality, for convenience’s
sake, we assume that Cλxu is reversible. rC

λx determines the total number of
messages/invocations. We might omit writing the security parameter and/or
the input when they are clear from the context. We say that C is probabilistic-
polynomial-time (PPT for short) if p is a polynomial, the circuit Cλxu has size
polynomial in λ+|x|, the description of the circuit is computable in deterministic
polynomial time in λ + |x| given λ, x and u, and rC

λx is polynomially bounded
in λ and x.

Oracle access to an interactive classical machine. We say that a quantum algo-
rithm A has oracle access to an interactive classical machine C running on string
t to mean the following. We initialise C’s internal register T to t and the network
register N to the all-zero string. We give A the security parameter and its own
classical input x. Each time A wishes to run C (or its inverse), it must submit
an input x′ on which to run C (or its inverse). Upon receiving A’s choice of x′,
we choose u uniformly at random, and then we run the classical circuit Cλx′u (or
its inverse); recall that these act on the internal register T and on the network
register N of C. Moreover, we allow A to provide and read messages from C
(formally, we allow A to act freely on the network register N). We do not allow
A to act on the internal register T of C, except via Cλx′u or its inverse.

Definition 1. We use the terminology interactive Turing machine (ITM) to
refer to either an interactive classical machine or an interactive quantum
machine. If the ITM is bounded-time, we may refer to a PPT ITM or a QPT
ITM to clarify which model is used. An interactive oracle machine is an ITM
that in addition has query access to an oracle.

Interaction between an interactive quantum machine and an interactive classical
machine. Let M = ({Mλx}, {rM

λx}) be an interactive quantum machine with
internal register S and network register N. Let C = ({p,Cλx′u}, {rC

λx′}) be an
interactive classical machine with internal register T and network register N. For
a given CQ state ρTS ∈ D(HT ⊗ HS), we define the interaction (C(x′),M(x))ρTS

as the following quantum process: initialize register N to |0〉; initialise registers
S and T to the CQ state ρTS; alternately apply Mλx to registers S and N and
Cλx′u (for a uniformly chosen u ∈ {0, 1}p(λ+|x′|) each time) to registers T and
N, measuring N in the computational basis after each application of either Mλx

or Cλx′u; stop applying Mλx after rM
λx times and Cλx′u after rC

λx′ times, and
finally output the output of the circuit Cλx′u. We denote the random variable
representing this output by 〈C(x′),M(x)〉ρTS

. We call the rM
λx + rC

λx′ measure-
ment outcomes which are obtained after performing as many standard basis
measurements of N during a single execution of the interaction (C(x′),M(x))ρTS

the transcript for this execution.

2.3 Implementing Oracles

Some of our formal definitions rely on ‘oracles’, which we generally visualise as
functions O : {0, 1}∗ → {0, 1}∗ to which query access is given. We refer the



Classical Proofs of Quantum Knowledge 639

reader to the full version [VZ21] for some brief remarks on how query access to
these oracles (which, expressed as functions, may take an exponential number of
bits to specify) can be implemented efficiently in the number of queries made to
the oracle, and also on our assumption that any query submitted to an oracle is
measured in the standard basis before being answered.

3 Quantum Agree-and-Prove Schemes

To define the intuitive notion of a ‘proof of quantum knowledge’ in sufficient
generality so that we can capture both quantum money verification and QMA
verification we introduce a quantum variant of the ‘agree-and-prove’ framework
from [BJM19], extending their formalism to our setting in which the prover and
the witness are quantum, and simplifying some aspects of the formalism that
are less important for the applications we have in mind. For convenience, we
preserve much of the notation from [BJM19]. The reader might wish to consult
the full version of this paper [VZ20] for a discussion of the intuition behind this
agree-and-prove framework; the reader can also refer to [BJM19] for additional
motivation and explanations relating to the framework.

In the next subsection we formalise the notion of a scenario. The following
section discusses input generation algorithms; the one after that formalises proto-
cols, and the one after that lays down the security conditions for agree-and-prove
schemes.

3.1 Scenario

Definition 2 (Agree-and-Prove Scenario for quantum relations). An
agree-and-prove (AaP for short) scenario for quantum relations is a triple
(F ,R, C) of interactive oracle machines satisfying the following conditions:

– The setup functionality F is a QPT ITM taking a unary encoding of a security
parameter λ as input. The ITM F runs an initialization procedure init , and
in addition returns the specification of an oracle (which we also model as an
ITM) OF (i, q, arg). The oracle function takes three arguments: i ∈ {I, P, V }
denotes a ‘role’, q denotes a keyword specifying a query type, and arg denotes
the argument for the query.3
There are three different options for the ‘role’ parameter, which exists to allow
F to release information selectively depending on the party asking for it. The
roles I, P and V correspond respectively to the input generator (Definition
3), the prover, and the verifier.

3 In [BJM19], OF has an additional function: when it is called with the argument
QUERIES, OF (QUERIES) returns a list of tuples representing all of the queries made
to OF by the prover P and the replies that were given. This functionality is available
only to the extractor, not to the parties I, P and V , and it is necessary in order
to permit the design of an efficient extractor for some protocols, particularly those
in the random oracle model (see, for example, the discussion at the bottom of page
10 in [BJM19]). Since we do not need to use this functionality in our protocols, we
omit it here.



640 T. Vidick and T. Zhang

– The agreement relation C is a QPT oracle machine taking a unary encoding of
the security parameter λ and a statement as inputs, and producing a decision
bit as output.4

– The proof relation R is a QPT oracle machine taking a unary encoding of the
security parameter λ, a (classical) statement x and a (quantum) witness ρW
as inputs, and outputting a decision bit.

3.2 Input Generation

Before we formalise the notion of an agree-and-prove protocol, we introduce the
notion of an input generation algorithm, which is an algorithm that produces
the auxiliary inputs that the prover and the verifier receive before they begin
interacting. The input generation algorithm models ‘prior knowledge’ which the
prover and the verifier may possess. For a fuller discussion of the motivation for
the input generation algorithm, please see the full version [VZ21].

Definition 3 (Input Generation Algorithm). An input generation algo-
rithm I for an agree-and-prove scenario S is a machine I taking a unary encod-
ing of the security parameter λ as input and producing a CQ state ρAUXV AUXP

specifying the auxiliary inputs for the verifier (in the classical register AUXV )
and prover (in the quantum register AUXP ) respectively as output. We may use
the shorthand ρAUXP

≡ TrAUXV

(
ρAUXV AUXP

)
and ρAUXV

≡ TrAUXP

(
ρAUXV AUXP

)
.

3.3 Protocol

Once a scenario has been fixed we can define a protocol for that scenario. Infor-
mally, the protocol specifies the actions of the honest parties. Each party, prover
and verifier, is decomposed into two entities that correspond to the two phases,
“agree” and “prove”, of the protocol.

Definition 4 (Agree-and-prove Protocol). An agree-and-prove protocol is
a tuple (I, P1, P2, V1, V2) consisting of a set I of input generation algorithms
together with the following four interactive oracle machines (P1, P2, V1, V2):

– A (honest) first phase QPT prover P1 taking a unary encoding of the security
parameter λ and a (quantum) auxiliary input ρAUXP

as inputs. It produces a
(classical) statement xP or ⊥ as output, as well as a (quantum) state ρstP

.
– A (honest) first phase PPT verifier V1 taking a unary encoding of the security

parameter λ and a (classical) auxiliary input AUXV as inputs. It produces a
(classical) statement xV or ⊥ as output, as well as a (classical) state stV .

– A (honest) second phase QPT prover P2 taking a classical instance x and
a quantum state ρstP

as input, as well as a unary encoding of the security
parameter λ, and producing as output a bit that indicates whether the proof
has been accepted.

4 In [BJM19] the agreement relation also takes two auxiliary inputs. We will not need
this.



Classical Proofs of Quantum Knowledge 641

– A (honest) second phase PPT verifier V2 taking a classical instance x and a
state string stV as input, as well as a unary encoding of the security parameter
λ, and producing as output a bit that indicates whether it accepts or rejects.

Note that in this definition the verifier is required to be a classical proba-
bilistic polynomial time ITM. In general one may extend the definition to allow
for quantum polynomial time verifiers; since our focus is on classical protocols
we restrict our attention to classical verifiers. We also restrict the honest prover
to run in quantum polynomial time; for soundness, this restriction will be lifted
for the case of proofs of knowledge and maintained for the case of arguments of
knowledge.

3.4 Security Conditions

We now specify the correctness and soundness conditions associated with an
agree-and-prove scenario S.

Definition 5 (Completeness Experiment). We define the following com-
pleteness experiment for an agree-and-prove protocol K = (I, P1, P2, V1, V2) in
the context of a scenario S = (F , C,R):

1. An input generation algorithm I ∈ I is executed. It is allowed to query
OF (I, ·, ·). It produces the CQ state ρAUXV AUXP

, and passes input ρAUXP
to

P1 and ρAUXV
to V1.

2. The interaction (V1, P1)ρAUXV AUXP
is executed (during which V1 and P1 are

allowed to query OF (V, ·, ·) and OF (P, ·, ·), respectively), and if either V1

or P1 returns ⊥, or if xV 
= xP , the agree phase returns 0. Otherwise, the
outputs of V1 and P1 are passed to V2 and P2, respectively, and the agree phase
returns 1. If the agree phase returns 1, let the CQ state representing the joint
distribution of stV and ρstP

be denoted by ρstV stP
, and let x = xP = xV be

the instance that V1 and P1 have agreed on.
3. The interaction (V2(x), P2(x))ρstV stP

is executed (during which V2 and P2 are
allowed to query OF (V, ·, ·) and OF (P, ·, ·), respectively), and the outcome of
the proof phase is set to the value which V2 returns at the end of the protocol.

The completeness experiment returns 1 if the agree phase and the proof phase
both return 1.

Definition 6 (Soundness experiment). We define the following soundness
experiment for an agree-and-prove protocol K = (I, P1, P2, V1, V2) and an extrac-
tor E, in the context of a scenario S = (F , C,R):

1. An input generation algorithm Î is executed. It is allowed to query OF (I, ·, ·).
It produces the CQ state ρAUXV AUXP

, and passes input ρAUXP
to P̂1 and ρAUXV

to V1.
2. The interaction (V1, P̂1)ρAUXV AUXP

is executed (during which V1 and P̂1 are
allowed to query OF (V, ·, ·) and OF (P, ·, ·), respectively), and if either V1

or P1 returns ⊥, or if xV 
= xP , the agree phase returns 0. Otherwise, the



642 T. Vidick and T. Zhang

outputs of V1 and P̂1 are passed to V2 and P̂2, respectively, and the agree phase
returns 1. If the agree phase returns 1, let the CQ state representing the joint
distribution of stV and ρstP

be denoted by ρstV stP
, and let x = xP = xV be

the instance that V1 and P̂1 have agreed on.
3. If the agree phase returns 1 in step 2, the extractor E is provided with the

transcript of the interaction (V1, P̂1)ρAUXV AUXP
and the instance x resulting

from the agree phase, along with oracle access to P̂2 running on input ρstP

(where ρstP
is the prover’s half of the joint CQ state ρstV stP

). In addition
the extractor can access the oracle OF using any of the roles in {I, P}. It
outputs a state ρ.

We are now ready to give the formal definition of security.

Definition 7 (Security of Protocol for Quantum Agree-and-Prove Sce-
nario). Let λ be a security parameter. Let c, κ, δ : N → [0, 1]. A protocol
K = (I, P1, V1, P2, V2) for a scenario (F , C,R) is secure with completeness c,
up to knowledge error κ, and with extraction distance parameter δ if the follow-
ing conditions hold:

– Correctness: The completeness experiment (Definition 5) returns 1 with prob-
ability at least c, and in addition the statement x = xV = xP that is agreed
on during the completeness experiment is such that C(1λ, x) = 1, whenever
the honest parties P and V are provided with their inputs by some input
generation algorithm I ∈ I.5

– Soundness: There exists a QPT ITM E (called the “extractor”) such that
the following holds. Let P̂ = (P̂1, P̂2) be a potentially dishonest prover for
K and Î an arbitrary input generation algorithm. Let x be an instance such
that, conditioned on the agree phase of K returning 1 and the instance x being
agreed upon, the prover P̂2 succeeds with probability p > κ in the proof phase
of K. Then the state ρ returned by the extractor in the soundness experiment
(Definition 6), conditioned on the agree phase of the soundness experiment
returning 1 and x being agreed on, is such that Pr[R(1λ, x, ρ) = 1] > 1−δ(p),
where δ, which may depend on λ, is such that δ(p) < 1 for all p > κ. The
expected number of steps of extractor E is required to be bounded by a
polynomial in λ/(p−κ), if executing the prover’s unitary on any input counts
as a unit-time procedure.

When the soundness condition only holds under the restriction that P̂ must
be implemented by a QPT ITM we say that the protocol is computationally
secure, or that it is an argument system (as opposed to a proof system, which is
sound against all possible provers).

5 Note that, for completeness, we require that the input generation algorithm is chosen
from a set I of ‘honest’ algorithms. Here we depart from [BJM19], where input
generation is always unrestricted (even when the verifier and the prover are honest).
We refer the reader to the full version [VZ21] for a fuller discussion of this subject.



Classical Proofs of Quantum Knowledge 643

Remark 2. When we wish to emphasize the connection between secure agree-
and-prove protocols and the more usual notion of a ‘proof of knowledge’, we
sometimes refer to an AaP scenario that satisfies Definition 7 as a ‘classical
proof (or argument) of quantum knowledge’. (Formally, proofs and arguments of
knowledge can be formulated as protocols for AaP scenarios which have trivial
agreement phases and which have as a proof relation an NP or a QMA relation;
see Sect. 6.) When we use this terminology, it will be clear from context what
the ‘knowledge’ is that we are referring to.

3.5 Agree-and-Prove Scenario for Quantum Money

As an example of a concrete agree-and-prove scenario, we define an agree-and-
prove scenario that captures the scenario which arises in the problem of verifying
quantum money. We firstly lay down the ‘standard’ security definitions for a
quantum money scheme, and in so doing introduce some notation and some
objects that will be useful in formulating quantum money in the agree-and-prove
framework.

Definition 8. A “quantum money scheme” is specified by the following objects,
each of which is parametrized by a security parameter λ:

– A algorithm Bank taking a string r as a parameter which initialises a database
of valid money bills in the form of a table of tuples (id, public, secret, |$〉id).
id represents a unique identifier for a particular money bill; public and secret
represent, respectively, public and secret information that may be necessary
to run the verification procedure for the bill labeled by id; and |$〉id is the
quantum money state associated with the identifier id. The string r should
determine a classical map Hr such that Hr(id) = (public, secret).6

– A verification procedure Ver(x, public, secret, ρW ) that is a QPT algorithm
which decides when a bill is valid.

In addition the scheme should satisfy the following conditions:

1. Completeness: for any valid money bill (id, public, secret, |$〉id) in the database
created by Bank,

Pr
(
Ver(id, public, secret, |$〉〈$|id)

) ≥ cM (λ) ,

for some function cM (·). We refer to cM as the completeness parameter of the
money scheme.

2. No-cloning: Consider the following game played between a challenger and an
adversary: the challenger selects a valid money bill (id, public, secret, |$〉id) and

6 The string r represents any random choices that Bank might make while generating
valid bills; we make this string explicit for later convenience.



644 T. Vidick and T. Zhang

sends (id, public, |$〉id) to the adversary; the adversary produces a state σAB .
Then for any adversary in this game,7

Pr
r

(
Ver(id, public, secret,TrB(σAB)) = 1

and Ver(id, public, secret,TrA(σAB)) = 1
) ≤ μM (λ) ,

for some function μM (·). We refer to μM as the cloning parameter of the
money scheme. Note that the probability of the adversary’s success is cal-
culated assuming that the string r which Bank takes is chosen uniformly at
random.

Fix a quantum money scheme according to Definition 8, with completeness
parameter cM and cloning parameter μM . We call an agree-and-prove scenario
(FM , CM ,RM ) that takes the form below a ‘quantum money scenario with com-
pleteness parameter cM and cloning parameter μM ’.

– Setup functionality FM (1λ): The setup should run an initialization procedure
initM that instantiates8 a database BM whose records are of the form (and
the distribution) that Bank would have produced running on a uniformly
random input r. The setup should also return a specification of how the
following oracles should be implemented:

• OFM
(I, id): returns an identifier id such that the bill (id, public, secret,

|$〉id) is in BM .9

• OFM
(·, public, id): Returns the public string associated with id. Returns

⊥ if no record in BM with the identifier id exists.
• OFM

(I, getMoney, id): If no record in BM with identifier id exists, returns
⊥. Otherwise, returns |$〉id the first time it is called. If called again with
the same id argument, returns ⊥.

• OFM
(V, secret, id): accesses BM and returns the secret string associated

with id. Returns ⊥ if no record in BM with the identifier id exists.
– Agreement relation COFM (1λ, id): outputs 1 if and only if a record in BM with

identifier id exists.
– Proof relation ROFM (1λ, x, ρW ): interprets x as an id (outputting ⊥ if this

fails), sets public ← OFM
(V, public, x) and secret ← OFM

(V, secret, x), and
executes Ver(x, public, secret, ρW ).

7 Many quantum money schemes are information-theoretically secure; however, it is
also possible to consider computationally secure schemes by replacing ‘any’ with ‘any
QPT’.

8 initM doesn’t necessarily need to actually allocate memory for the database; since
the database will only ever be accessed through the oracle OFM , it is possible to
‘instantiate’ the database using the method described in Sect. 2.3.

9 Which identifier is returned is at the discretion of any particular instantiation of
this function. Intuitively, this oracle is used to represent identifiers of bills that have
been generated in the past and are thus available in an “environment” that I may
have access to.



Classical Proofs of Quantum Knowledge 645

4 Simple Properties

4.1 Nondestructive Proofs of Quantum Knowledge Imply Cloning

In this section we formalize the intuitive claim that a non-destructive proof of
quantum knowledge implies the ability to clone the underlying witness state. To
formalize this statement we make a number of assumptions that help simplify
the presentation. More general statements can be proven depending on one’s
needs; see the end of the section for further discussion.

We use definitions and notation from Sect. 2.2 and Sect. 3.

Definition 9 (Nondestructive Interaction). Let P = ({Pλx}, {rP
λx}) be

an interactive quantum machine, and let V = (p, {Vλxu}, {rV
λx}) be an interac-

tive classical machine. Fix a security parameter λ. A nondestructive interaction
(V (x), P (x′))ρTS

between V and P for some CQ state ρTS is an interaction in
which the execution of (V (x), P (x′))ρTS

is unitary (including the standard-basis
measurements of the network register that take place during the execution) for
all possible random inputs u to V . More formally, for any choice of rV

λx random
strings u1, . . . , urV

λx
used during the interaction (V (x), P (x′))ρTS

, there exists a
unitary U acting on registers N, T and S such that the joint state of the registers
N, T and S is identical after U has been applied to them (assuming they are
initialised as described in Sect. 2.2) to their joint state after the execution of
(V (x), P (x′))ρTS

using the random strings u1, . . . , urV
λx

.

Definition 10 (Oracle Access to an Interactive Quantum Machine with
Power of Initialisation). Recall the definition of oracle access to an interactive
quantum machine given in Sect. 2.2. In that section, the initial state |Φ〉 on which
the quantum machine is run is fixed. We say that a quantum algorithm A has
oracle access to an interactive quantum machine M with power of initialisation
if A can do all the things described in Sect. 2.2, and in addition can initialise
M ’s internal register S to a state of its choosing (but cannot read S, only write
to it).

Proposition 1. Let λ be a security parameter, let (F , C,R) be an agree-and-
prove scenario, and let K = (I, P1, P2, V1, V2) be a protocol for (F , C,R) with a
classical honest verifier V = (V1, V2), knowledge error κ and extraction distance
δ. Let P̂ = (P̂1, P̂2) be a prover for K.

Let Î be any input generation algorithm, and x and ρTS an instance and a
CQ state respectively such that the agree phase of K, executed with Î, V1 and P̂1,
has positive probability of ending with x being agreed on, and such that the joint
state of stV and stP conditioned on x being agreed on is ρTS.

Suppose further that (i) the interaction
(
V2(x), P̂2(x)

)

ρTS

is nondestructive,

(ii) the oracle OF does not keep state during the second phase of the protocol, i.e.
any query to it by V2 or P̂2 can be repeated with the same input-output behavior,



646 T. Vidick and T. Zhang

and (iii) the success probability of P̂2 conditioned on instance x being agreed on
is at least κ. Then there exists a procedure A10 such that the following holds.

Let ROF
λx (·) be the function such that ROF

λx (ρ) = ROF (1λ, x, ρ), and let the
single-bit-valued function

(ROF
λx

)⊗2(·) be the function whose output is the AND
of the outcomes obtained by executing the tensor product of two copies of ROF

λx (·)
on the state that is given as argument. Then the procedure A, given as input x,
a copy of a communication transcript from the agree phase that led to x, and
black-box access to V2 and P̂2 as interactive machines (including any calls they
might make to OF) running on ρTS, with power of initialisation for P̂2, can
produce a state σ such that

Pr[
(ROF

λx

)⊗2(σ) = 1] > 1 − 2δ − negl(λ). (1)

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the proof.

Discussion. Due to space constraints, we refer the reader to the full version
[VZ21] for a discussion of potential extensions of Proposition 1, including to
the case where the protocol is not perfectly nondestructive but only ‘slightly
destructive’, and to the case where computationally efficient cloning might be
desirable.

4.2 Proofs of Quantum Knowledge Are Also Quantum Money
Verification Protocols

The other simple property which we prove is that, under certain assumptions on
the parameters in Definition 7, any protocol satisfying Definition 7 can be used
as a quantum money verification protocol. Proposition 2 formalises the intuition
that the property of being a ‘proof of quantum knowledge’ is stronger than the
property of being a quantum money verification protocol: the latter implies that
no adversary can pass verification twice given access to only one money bill, and
the former formalises the notion that no adversary can pass even once unless it is
possible to efficiently compute the money bill by interacting with said adversary.

Formalising interactive quantum money verification. Before we state Proposition
2, we must formalise what it means to ‘be a quantum money verification proto-
col’. The standard definition of quantum money security (Definition 8) indicates
what this means for a passive verification procedure, in which the verification
procedure Ver is just an isometric map, but we need to formalise what it means
for an interactive protocol. Due to space constraints, we refer the reader to the
full version [VZ21] for a fuller motivation of the definition that we state below,
and in particular of the no-communication assumption between provers P̂A and
P̂B .
10 A is in general not efficient. It is also allowed slightly more invasive access to P̂2 than

a typical extractor. This is acceptable because A is not an extractor, but a cloning
procedure. We refer the reader to the full version [VZ21] for a fuller discussion of
this topic.



Classical Proofs of Quantum Knowledge 647

Definition 11 (Interactive Quantum Money Verification Procedure).
Let λ be a security parameter, and let (FM , CM ,RM ) be a quantum

money scenario (as defined in Sect. 3.5). A protocol K = (I, P1, P2, V1, V2)
for (FM , CM ,RM ) (see Definition 7) is an interactive verification procedure
with completeness c and cloning error s for the quantum money scenario
(FM , CM ,RM ) if the following two conditions hold.11 (Probabilities in these
conditions are calculated assuming that r, the randomness that Bank takes as
input, is drawn from the uniform distribution. See Definition 8 for a definition
of Bank.)

1. Completeness: The protocol K has completeness c according to Definition 7.
2. Soundness: let P̂A = (P̂A,1, P̂A,2) and P̂B = (P̂B,1, P̂B,2) be two provers for K,

and let Î be an algorithm that generates inputs for both of them. We define
a no-cloning game as follows:
(a) Î prepares a (potentially entangled) joint state ρAB . During this phase,

Î is allowed to call the oracle OFM
using the role I. At the end of this

phase, Î gives ρA = TrB(ρAB) to P̂A, and ρB = TrA(ρAB) to P̂B .
(b) Holding ρA, P̂A executes K with a copy of the honest verifier of K, the

latter of which we denote by VA = (VA,1, VA,2). Likewise, holding ρB , P̂B

also executes K with a copy of the honest verifier of K, which we denote
by VB = (VB,1, VB,2). During the protocol executions, P̂A and P̂B are not
allowed to communicate, but they are allowed to call the oracle OF using
the role P .

(c) P̂A and P̂B win the game if and only if the same instance x is agreed upon
in the agree phases of both copies of K played in step 2, and in addition
both VA and VB output 1 at the end of the game.

We say that the protocol K for the quantum money scenario (FM , CM ,RM ) is
secure against cloning with cloning error s if any pair of provers (P̂A, P̂B) with
any input generation algorithm Î wins the no-cloning game with probability
less than s.

We are now ready to formally present our lemma which captures the fact that
a secure agree-and-prove protocol can be used as a quantum money verification
procedure. We refer the reader to the full version [VZ21] for an exposition of the
parameters that appear in Proposition 2.

Proposition 2. Let λ be a security parameter, and let (FM , CM ,RM ) be a quan-
tum money scenario (as defined in Sect. 3.5). Let K = (I, P1, P2, V1, V2) be a
protocol for a quantum money agree-and-prove scenario (FM , CM ,RM ). Let μM

be the cloning parameter for the quantum money scenario (FM , CM ,RM ).

11 This definition is distinct from the definition of security of a protocol K described in
Definition 7. The latter is a security definition that can apply to any AaP scenario,
and the present definition is a new definition tailored to quantum money that is a
natural extension of the standard “no-cloning”-based definition recalled in Sect. 8.
Our aim in this section, in fact, is to show that (qualitatively speaking) Definition
7 implies Definition 11.



648 T. Vidick and T. Zhang

Define δ0 ≡ 2−√
3

2 . Suppose there is a function κ(·) such that K is a (c =
1−negl(λ), δ)–secure protocol with knowledge error κ(λ) and extraction distance δ
(the latter of which we assume is a function of the prover’s success probability p as
well as the security parameter λ) such that δ0−δ(p(λ), λ) > 1

2
μM (λ)
ε·κ(λ) for arbitrary

ε > 0 and sufficiently large λ whenever p is a function such that p(λ) > κ(λ) for
sufficiently large λ.

Then K is an interactive quantum money verification protocol for the money
scenario (FM , CM ,RM ) (in the sense defined in Definition 11) with completeness
1 − negl(λ) and cloning error (1 + ε)κ.

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the proof.

Amplification. The bound on the maximum success probability of a cloning
adversary which comes out of Proposition 2 is linear in the knowledge error of the
agree-and-prove protocol which is being used as a money verification protocol.
A typical expectation in a quantum money scenario is that any cloning adver-
sary will only succeed with negligible probability (see Definition 11 of [AC12],
for example), but in our analyses of quantum money verification protocols in
Sects. 5.1 and 5.2, we only get constant (and not negligible) knowledge error.
Therefore, in the full version [VZ21], we present a sequential amplification lemma
which shows that a money scheme equipped with a classical agree-and-prove pro-
tocol that has constant knowledge error (and other parameters similar to those
which we obtain in Sects. 5.1 and 5.2) can be modified into a money scheme
which admits only cloning adversaries that pass with negligible probability.

5 Proofs of Quantum Knowledge for Quantum Money
States

In this section we apply our notion of proofs of quantum knowledge to the
problem of certifying quantum money. We give two examples for two protocols
from the literature, Wiesner’s quantum money in Sect. 5.1 and Aaronson and
Christiano’s public-key quantum money based on hidden subspaces in Sect. 5.2.

5.1 PoQK for Wiesner Money States

Our first concrete example of an Agree-and-Prove scheme for a quantum property
is a verification protocol for Wiesner’s quantum money states. Any Wiesner state
can be described by 2λ classical bits; a typical classical description is the pair of
strings $ = (v, θ) ∈ {0, 1}2λ, where the associated money state is

|$〉v,θ =
( ∏

i

Hθi
i

)
|v〉 , (2)

in which |v〉 = ⊗i |vi〉 and Hi denotes a Hadamard on the ith qubit and identities
on all other qubits. In the notation of Definition 8, valid bills in this scheme are



Classical Proofs of Quantum Knowledge 649

quadruples (id, public, secret, |$〉id) such that id is an arbitrary string, public is
empty, secret = (v, θ) ∈ {0, 1}λ × {0, 1}λ and |$〉id = |$〉v,θ. The verification pro-
cedure Ver(x, public, secret, ρW ) parses secret = (v, θ) and measures each qubit
of ρW in the basis indicated by θ. It accepts if and only if the outcomes obtained
match v. This scheme clearly has completeness parameter 1, and it was shown
in [MVW12] that its cloning parameter is μW (λ) = (3/4)λ.

Scenario 12. We instantiate the generic AaP scenario for quantum money
described in Sect. 3.5 as follows:

– Setup functionality FW (1λ):
• initW initializes a random oracle H taking strings of length 2λ to strings

of length 2λ.12 In addition, it initializes an empty database BW that is
destined to contain a record of all quantum money bills in circulation.

• OFW
(I, getId): generates id ∈ {0, 1}2λ uniformly at random. Sets

(v, θ) = H(id), secret = (v, θ) and |$〉 = |$〉v,θ. If id already appears
in BW , then returns ⊥. Otherwise, add (id, public, secret, |$〉v,θ) to BW .
Return id.

• OFW
(·, public, id), OFW

(I, getMoney, id), and OFW
(V, secret, id): as

described in Sect. 3.5.
– Agreement relation COFW

W (1λ, id): The agreement relation is the same as it is
in Sect. 3.5.

– Proof relation ROFW

W (1λ, x, ρW ): The proof relation firstly queries
OFW

(V, secret, x) in order to get a tuple (v, θ). (If OF (V, secret, x) returns
⊥, then R rejects.) Then it implements the Wiesner money verification pro-
cedure: it applies

∏
i Hθi

i to its quantum input ρW , measures all qubits in the
computational basis, and accepts if and only if the outcome is v.

Protocol 13. We define our proof of knowledge protocol KW = (IW , P1,
P2, V1, V2) for the scenario (FW , CW ,RW ). An honest input generation algorithm
I ∈ IW calls OFW

(I, getId) repeatedly until it obtains a string id ∈ {0, 1}2λ such
that id 
=⊥. It then queries OF (I, getMoney, id), obtains a quantum state ρW ,
and gives (id, ρW ) to the prover (it gives nothing to the verifier). In the agree-
ment phase, the prover P1 parses the auxiliary input ρAUXP

which it gets from
I as a classical string id ∈ {0, 1}2λ in addition to a quantum state ρW . (If this
fails, the prover halts.) Then the prover sends id to V1 and outputs the statement
xP = id and the quantum state ρstP

= ρW . V1, upon receiving id from P1, queries
OFW

(V, public, id). If this returns ⊥ the verifier aborts. Otherwise, V1 outputs
xV = id and stV = ⊥.

This completes the description of the (honest) prover and verifier in the first
(agree) phase. We now describe the interaction between the (honest) prover and
verifier, P2 and V2, in the second (proof) phase:

1. V2 queries OFW
(V, secret, id). If it obtains ⊥, V2 aborts. Otherwise, let $ =

(v, θ) be the classical description obtained.

12 Formally the oracle is implemented in the standard way, recalled in Sect. 2.3.



650 T. Vidick and T. Zhang

2. V2 sends a uniformly random c ∈ {0, 1}λ to the prover.
3. For each i ∈ {1, . . . , n} if the ith bit of c is 0, P2 measures the ith qubit of ρstP

in the standard basis; and if it is 1, it measures the ith qubit in the Hadamard
basis. Let β ∈ {0, 1}λ denote the outcomes obtained. P2 sends β to V2.

4. Let s = c · θ + c̄ · θ̄, where · denotes componentwise multiplication. In other
words, si = 1 if and only if ci = θi. V2 checks that, whenever si = 1, it holds
that vi = βi. If not, then it returns 0.

Lemma 1. There is a constant κ < 1 such that Protocol KW (Protocol 13) is a
secure agree-and-prove protocol for (FW , CW ,RW ) (Scenario 12) with complete-
ness 1, knowledge error κ, and extraction distance δ = O(μ1/4), where μ = 1−p
and p is the prover’s success probability.

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the full proof. For intuition, we provide below a sketch of the main step, the
design of the extraction procedure.

Our first step is to argue that we can replace FW from Scenario 12 with
a new setup functionality F ′

W such that the prover is (perfectly) unable to
distinguish the two. FW and F ′

W differ mainly in their implementations of
OF (I, getMoney, id): while FW chooses v and θ uniformly and returns a money
state |$〉v,θ to the prover when getMoney is called, F ′

W returns half EPR pairs to
the prover. (The number of such half-pairs is λ, the length of the money state.)
F ′

W keeps the halves of the EPR pairs that it does not give to the prover in a
register A. Then, when the verifier calls OF ′

W
(V, secret, id) in step 1 of Protocol

13, F ′
W chooses a basis string θ ∈ {0, 1}λ uniformly and measures the state in

A in the bases determined by θ. This action collapses the state in A to the state
|$〉v,θ for some uniformly random v ∈ {0, 1}λ. For convenience, we will refer to a
version of Scenario 12 with FW replaced with F ′

W as ‘the purified Scenario 12’.
We then use the prover’s unitary (Mλx′ in Sect. 2.2, which the extractor has

black-box access to) in order to define a set of 2 · 2λ measurement operators
XB(s), ZB(s) for s ∈ {0, 1}λ that act on the prover’s private space P as well as
the message register M. We design XB(s), ZB(s) so that, for any c, θ ∈ {0, 1}λ,
the outcome of measuring ZB(c · θ) is equal to the single bit ⊕i:ci=θi=0βi, and
likewise the outcome of measuring XB(c̄ · θ̄) is equal to ⊕i:ci=θi=1βi (given that
the prover’s private state is initialised the way that it is at the start of the prove
stage of Protocol 13 in the purified Scenario 12).13

We define corresponding measurement operators XA(s), ZA(s) which act on
the register A, and which simply act as σX(s), σZ(s) on the A register (where
σZ(s) ≡ ⊗

i σsi

Z,i, with σZ,i representing σZ on the ith qubit, and σX(s) is defined
analogously). Recall the verifier’s check in step 4 of Protocol 13. We argue that,
if the verifier’s check passes, the outcomes of measuring ZA(c · θ) and ZB(c · θ)

13 Formally, we mean that ZB(c · θ) and XB(c̄ · θ̄) both commute with the measure-
ment that produces β when F ′

W ’s choice of basis string is θ and when the verifier’s
choice of challenge is c, and that performing the measurement which produces β
and computing ⊕i:ci=θi=0βi (resp. ⊕i:ci=θi=1βi) always gives the same outcome as
measuring ZB(c · θ) (resp. XB(c̄ · θ̄)).



Classical Proofs of Quantum Knowledge 651

(on the registers on which they are respectively defined) are equal, and likewise
the outcomes of measuring XA(c̄ · θ̄) and XB(c̄ · θ̄) are equal.14

We then apply a theorem similar to [NV16, Theorem 14] which states that, if
we can define operators XA(s), ZA(s),XB(s), ZB(s) for all s ∈ {0, 1}λ satisfying
certain conditions (which we satisfy), and if we can show that, for some state
|ψ〉AB , 〈ψ|AB ZA(c · θ) ⊗ ZB(c · θ) |ψ〉AB = 1 and 〈ψ|AB XA(c̄ · θ̄) ⊗ XB(c̄ ·
θ̄) |ψ〉AB = 1 with high probability over uniformly chosen c, θ (in the previous
paragraph we argued that these relations hold when |ψ〉AB is the joint state of
registers A,M,P at the start of the prove phase of Protocol 13 in the purified
Scenario 12, with A = A and B = MP), then there is a local isometry of the
form ΦA ⊗ ΦB which, applied to |ψ〉AB , transforms |ψ〉AB (approximately) into
shared EPR pairs between A and B. In our case, this means that we can recover
the shared entanglement which initially existed between registers A and PM due
to the EPR pairs which F ′

W created and shared with the prover. In our case, it
is also true that ΦA is the identity map. We show in the full version of this proof
that this conclusion about the purified Scenario 12 implies that we can recover
the money state up to some error in the real Scenario 12 by applying ΦB to the
registers P and M, and also that the extractor can apply ΦB efficiently using
black-box access to the prover. (This step uses the fact that the extractor can
execute the prover’s unitary coherently on a message register which has been
initialized in a quantum superposition.)

5.2 PoQK for Subspace Money States

Our second example of a proof of quantum knowledge protocol is a verifica-
tion protocol for a modification of Aaronson and Christiano’s subspace states
[AC12]. Aaronson and Christiano present a quantum money scheme in which a
λ-qubit money state, with λ ∈ N a security parameter, is specified by a (secret)
(λ/2)-dimensional subspace A ⊆ Z

λ
2 , and defined as |A〉 = 1√

|A|
∑

x∈A |x〉.
In the notation of Definition 8, valid bills in this scheme are quadruples
(id, public, secret, |$〉id) such that id is an arbitrary string, public is empty15,
secret = Z = {z1, . . . , zλ/2} is a basis for a (λ/2)-dimensional subspace A

of Z
λ
2 , and |$〉id = |A〉. One possible (quantum-verifier) verification procedure

Ver(x, public, secret, ρW ) for these bills parses secret = Z and then performs
the projective measurement H⊗λ

PA⊥H⊗λ
PA on ρW (where PA is a projection

onto all standard basis strings in A, i.e. PA =
∑

x∈A |x〉〈x|, and PA⊥ is a pro-
jection onto all standard basis strings in A⊥), and accepts if and only if the
outcome is 1. The scheme (when equipped with this verification procedure) has

14 The reader should feel free to check that this holds given the previous paragraph.
15 What we describe here is actually a private-key version of the Aaronson-Christiano

scheme, equipped with a verification procedure which is similar to a verification pro-
cedure used in [BDS16]. Aaronson and Christiano originally proposed this subspace
scheme with the idea of making progress towards public-key quantum money. As
such, in their original scheme, public is not empty.



652 T. Vidick and T. Zhang

completeness parameter 1, and it was shown in [AC12] that its cloning parameter
is μAC(λ) ≤ cλ for some constant c < 1.16

As we mentioned in the introduction, we do not know if it is possible to devise
a natural proof of quantum knowledge for the Aaronson-Christiano subspace
states as they have thus far been described. Nonetheless, we are able to give
a proof of knowledge for a version of the subspace scheme in which a (secret)
quantum one-time pad has been applied to every subspace state.

Notation. Before we define the associated AaP scenario, we introduce some
notation:

– Let |$〉v,θ be a Wiesner money state representing the string v encoded in bases
θ, as in (2).

– Let {si : i ∈ {1, . . . , λ}} = {100...0, 010...0, 001...0, . . . , 000...1} be the stan-
dard basis for Z

λ
2 .

– Let Z = {zi : i ∈ {1, . . . , λ}} be a basis for Z
λ
2 .

– Let W be the unitary on (C2)⊗λ defined as follows:

W : W |x〉 = W |x1s1 + · · · + xλsλ〉
= |x1z1 + · · · + xλzλ〉 . (3)

– Let Lθ for a string θ ∈ {0, 1}λ be the subspace of Z
λ
2 whose elements are

always 0 in the positions where θi = 0, and can be either 0 or 1 in the
positions where θi = 1.

– Let X(a) for some vector a = (a1, . . . , aλ) ∈ Z
λ
2 denote the tensor product of

λ single-qubit gates which is Pauli X in those positions i where ai = 1, and
I otherwise. Define Z(b) similarly. Let XZ(d), for a basis Z = {zj}, denote
the operator ∏

j

(
X(zj)

)dj
,

where zj denotes a particular vector from the basis set Z, and dj denotes the
jth bit of d. Define ZZ(e) similarly.

– Let
|$〉v,θ,Z ≡ 1

√|Lθ|
∑

λ∈Lθ

XZ(d)ZZ(e) |λ1z1 + · · · + λnzn〉 , (4)

with di = vi for i such that θi = 0 (and di = 0 for all other i), and ei = vi

for i such that θi = 1 (and ei = 0 for all other i). Note that the distribution
of |$〉v,θ,Z over uniform v, θ,Z is identical (ignoring global phase) to that of
a uniformly random subspace state with a uniformly random Pauli one-time-
pad applied to it, because the coordinates of d and e which we have forced to
be zero (instead of uniformly random) would only add a global phase to the
state.

16 In fact Aaronson and Christiano show the stronger result that this bound holds even
if the adversary is given black-box access to a pair of measurement operators that
respectively implement projections on A and A⊥.



Classical Proofs of Quantum Knowledge 653

Scenario 14. We instantiate the generic AaP scenario for quantum money
described in Sect. 3.5 as follows:

– Setup functionality FAC(1λ):
• initAC initializes a random oracle H taking strings of length 2λ + λ2 to

strings of length 2λ + λ2.17 In addition, it initializes an empty database
BAC that is destined to contain a record of all quantum money bills in
circulation.

• OFW
(I, getId): generates v ∈ {0, 1}λ and θ ∈ {0, 1}λ such that |θ|H = n

2
uniformly at random and selects Z = {zi : i ∈ {1, . . . , λ}} a uni-
formly random basis for Z

λ
2 . Sets id = H−1((v, θ,Z)),18 secret = (v, θ,Z)

and |$〉id = |$〉v,θ,Z defined in (4). Adds (id, public, secret, |$〉id) to BAC .
Returns id.

• OFAC
(·, public, id), OFAC

(I, getMoney, id), and OFAC
(V, secret, id): as

described in Sect. 3.5.
– Agreement relation COFAC

W (1λ, id): The agreement relation is the same as it
is in Sect. 3.5.

– Proof relation ROFW

AC (1λ, x, ρW ): The proof relation firstly queries
OFW

(V, secret, x) in order to get a tuple (v, θ,Z). (If OF (V, secret, x)
returns ⊥, then R rejects.) Then it applies Z(e)X(d) to its quantum input ρW ,
where d and e are defined in terms of (v, θ) the same way that they are below
equation (4). Following that, it defines A to be the subspace generated by the
vectors zi ∈ Z such that θi = 1, and then it follows the subspace money ver-
ification procedure: it performs the projective measurement H⊗λ

PA⊥H⊗λ
PA

on Z(e)X(d)ρW X(d)Z(e) (where PA is a projection onto all standard basis
strings in A, i.e. PA =

∑
x∈A |x〉〈x|, and PA⊥ is a projection onto all standard

basis strings in A⊥), and accepts if and only if the outcome is 1.

Protocol 15. We define a proof of knowledge protocol KAC for the scenario
(FAC , CAC ,RAC). The agreement phase is identical to that in Protocol 13, except
that now id has length 2λ + λ2. The second phase is similar but not identical, as
the verifier’s challenge now consists of a single bit:

1. V2 queries OFAC
(V, secret, id). If it obtains ⊥, V2 aborts. Otherwise, let $ =

(v, θ,Z) be the classical description obtained.
2. V2 sends a uniformly random bit c ∈ {0, 1} to the prover.
3. If c = 0 the prover P2 measures the state ρstP

it received from P1 in the
standard basis, obtaining a λ-bit string of outcomes m ∈ {0, 1}λ, and sends
m to the verifier. If c = 1 then P2 measures in the Hadamard basis and
likewise sends the outcomes m to V2.

4. If c = 0 the verifier V2 checks that m + Wd is in the subspace A spanned by
{zi : θi = 1}, where Z = {z1, . . . , zλ}. If c = 1 then V2 checks that m + We
is in A⊥.

17 Formally the oracle is implemented in the standard way, recalled in Sect. 2.3.
18 We use H−1 and not H here because we specified in Sect. 3.5 that H maps ids to

(public, secret) pairs.



654 T. Vidick and T. Zhang

Finally, the class of input generation algorithms IAC used for completeness is
the same as the class IW in Protocol 13.

Lemma 2. There exists a constant κ < 1 such that Protocol KAC (Protocol 15)
is secure with completeness 1, up to knowledge error κ, and with extraction
distance δ = O(μ1/4), where μ = 1− p and p the prover’s success probability, for
the subspace AaP scenario (FAC , CAC ,RAC) (Scenario 14).

Proof. The proof is similar to that of Lemma 1. Due to space constraints, we
refer the reader to the full version [VZ21] for the proof.

6 Arguments of Quantum Knowledge for QMA Relations

The main result of this section is Theorem 1, which gives a classical-verifier
protocol to verify any QMA relation (a natural quantum analogue of an NP
relation; we recall the definition in Sect. 6.1 below). Since this protocol is only
sound against QPT provers, we refer to it as a ‘classical argument of quantum
knowledge’. We note that, for general QMA relations, the completeness prop-
erty from Definition 5 requires the honest prover to hold multiple copies of the
QMA witness in order to succeed with high probability. It is still possible for
completeness to hold with a single witness if one assumes that the QMA relation
takes a specific form; see the statement of Theorem 1 below.

Our construction is based on the classical verification protocol for QMA intro-
duced in [Mah18b], which we review in Sect. 6.2. Before doing so we introduce
the Agree-and-Prove scenario.

6.1 Agree-and-Prove Scenario for QMA Relations

We first recall the quantum extension of an NP relation R, following [CVZ19,
BG19].

Definition 16 (QMA relation). A QMA relation is specified by a triple
(Q,α, β) where α, β : N → [0, 1] satisfy β(n) ≤ α(n) for all n ∈ N and Q =
{Qn}n∈N is a uniformly generated family of quantum circuits such that for every
n, Qn takes as input a string x ∈ {0, 1}n and a quantum state |ψ〉 on p(n) qubits
(i.e. Qn takes n + p(n) input qubits for some polynomial p that is implicitly
specified by Q, and is assumed to immediately measure its first n input qubits
in the computational basis) and returns a single bit.

To a QMA relation (Q,α, β) we associate two sets

RQ,α =
⋃

n∈N

{
(x, σ) ∈ {0, 1}n × D(Cp(n))

∣
∣ Pr(Qn(x, σ) = 1) ≥ α

}

and

NQ,β =
⋃

n∈N

{
x ∈ {0, 1}n

∣
∣ ∀σ ∈ D(Cp(n)) , Pr(Qn(x, σ) = 1) < β

}
.



Classical Proofs of Quantum Knowledge 655

We say that a (promise) language L = (Lyes, Lno) is specified by the QMA
relation (Q,α, β) if

Lyes ⊆
{
x ∈ {0, 1}∗∣∣ ∃σ ∈ D(Cp(n)) , (x, σ) ∈ RQ,α

}
, (5)

and Lno ⊆ NQ,β . Note that, whenever α−β > 1/poly(n), any language L that is
specified by (Q,α, β) lies in QMA. Conversely, any language in QMA is specified
by some QMA relation in a straightforward (non-unique) way.

The local Hamiltonian problem In the following, we make use of Kitaev’s
circuit-to-Hamiltonian construction [KSVV02,KR03], which associates with any
promise language L = (Lyes, Lno) ∈ QMA and x ∈ Lyes ∪ Lno an instance of
the local Hamiltonian problem. An instance of the local Hamiltonian problem is
specified by a local Hamiltonian operator H and two real numbers α > β. The
instance is a ‘YES instance’ if H has smallest eigenvalue at most α, and a ‘NO
instance’ if it is at least β.

Agree-and-Prove scenario. Fix a QMA relation (Q,α, β). We associate an AaP
scenario to Q as follows.

– Setup functionality FQ(1λ). We consider a “trivial” setup, i.e. the initializa-
tion procedure does nothing and there is no associated oracle OFQ

.
– Agreement relation CQ(1λ, x): returns 1 for any λ and x.19

– Proof relation RQ(1λ, x, ρ): executes the verification circuit Q|x| on the pair
(x, ρ) and returns the outcome.

We end by presenting some assumptions on a QMA relation under which our
results will hold. Let (Q,α, β) be a QMA relation. We require that the relation
satisfies the following properties:

(Q.1) The completeness parameter α is negligibly close to 1, and the soundness
parameter β is bounded away from 1 by an inverse polynomial.

(Q.2) For any x ∈ {0, 1}n there is a local Hamiltonian H = Hx that is efficiently
constructible from x and satisfies the following. First, we assume that H is
expressed as a linear combination of tensor products of Pauli operators with
real coefficients chosen such that − Id ≤ H ≤ Id. Second, whenever there is σ
such that (x, σ) ∈ RQ,α, then Tr(Hσ) is negligibly close to −1 and moreover
any σ such that Tr(Hσ) ≤ −1+ δ satisfies Pr(Q|x|(x, σ) = 1) ≥ 1− r(|x|)q(δ)
for some polynomials q, r depending on the relation only. Third, whenever
x ∈ NQ,β then the smallest eigenvalue of H is larger than −1 + 1/s(|x|),
where s is another polynomial depending on the relation only.

The first of these assumptions is benign and can be made without loss of gen-
erality; the second assumption is a little more restrictive. For a fuller discussion
of these assumptions, we refer the reader to the full version [VZ21].
19 The agreement relation does not even require that x ∈ RQ,α ∪ NQ,β , as in general

this cannot be efficiently verified.



656 T. Vidick and T. Zhang

6.2 The Protocol

In the following subsection we recall the high-level structure of the verification
protocol from [Mah18b], on which our AaP protocol for the scenario given in
Sect. 6.1 will be based.

The verification protocol from [Mah18b]. In the protocol from [Mah18b],
which we will refer to as the verification protocol, the input to the verifier is
an n-qubit Hamiltonian H that is expressed as a linear combination of tensor
products of σX and σZ Pauli operators. The input to the prover is a ground
state of H. Both parties also receive a security parameter λ. At a high level, the
verification protocol has the following structure:

1. The verifier selects a basis string h ∈ {0, 1}n according to a distribution that
depends on H. The verifier then randomly samples a pair of keys, (pk, sk),
consisting of a public key pk and secret key sk. (The distribution according
to which (pk, sk) is sampled depends on h.) The choice of keys specifies an
integer w of size poly(n, λ). The verifier sends pk to the prover.

2. The prover returns an n-tuple of commitment strings y = (y1, . . . , yn), where
each yi lies in some alphabet Y.

3. The verifier selects a challenge bit c ∈ {0, 1} and sends c to the prover.
4. If c = 0 (“test round”), the prover returns a string b ∈ {0, 1}n and

x1, . . . , xn ∈ {0, 1}w. If c = 1 (“Hadamard round”), the prover returns a
string b ∈ {0, 1}n and d1, . . . , dn ∈ {0, 1}w.

5. In case c = 0 the verifier uses pk, y, b and x1, . . . , xn to make a decision to
accept or reject. (In a test round the verifier never checks any properties of
the prover’s state; it only checks that the prover is, loosely speaking, doing
the correct operations.) In case c = 1 the verifier uses sk to decode y, b
and d1, . . . , dn into decoded measurement outcomes (m1, . . . ,mn) ∈ {0, 1}n.
(For the case of a honest prover, the decoded outcomes m correspond to the
outcomes of measuring a ground state of H in the bases indicated by h, with
hi = 0 indicating that the ith qubit should be measured in the computational
basis and hi = 1 that the ith qubit should be measured in the Hadamard basis.
The prover remains ignorant throughout the entire protocol of the verifier’s
choice of h.)

6. In case c = 1 the verifier makes a decision based on the decoded measurement
outcomes and the instance x, as described in [Mah18c, Protocol 8.1].

To model the verifier and prover in the protocol as ITMs, in accordance with
the formalism in Definition 6, we introduce registers associated with each party
and the messages that they send. Let K and C denote registers that contain the
verifier’s first and second messages respectively, i.e. the key pk and the challenge
bit c. Let T denote the verifier’s private space. Let Y denote the register measured
by the prover to obtain the prover’s first message y, and M the register measured
to obtain the prover’s second message (b, x1, . . . , xn) or (b, d1, . . . , dn), depending
on c = 0 or c = 1 respectively. Let S denote the prover’s private space.

The natural description of the prover as an ITM consists of (i) its initial state
σ ∈ D(HYMS), (ii) a unitary V0 acting on KYMS, and (iii) two unitaries V and



Classical Proofs of Quantum Knowledge 657

V ′ acting on MS, where V is the action of the prover on challenge c = 0 and V ′

its action on challenge c = 1. In either case the register M is measured in the
computational basis to obtain the prover’s answer.20

For convenience we introduce a slightly different representation of the prover,
that matches the presentation from [Mah18b] and which can be straightforwardly
simulated given black-box access to the natural representation described in the
previous paragraph. First, we replace V0 by the unitary U0 = V V0. Note that this
is well-defined and does not change the prover’s first message, since V does not
act on Y. Second, we define U = H⊗(n+nw)V ′V †, where the Hadamard gates act
on the (n + nw) qubits in register M. It is then immediate that given a natural
representation of the prover as three unitaries (V0, V, V ′) the pair of unitaries
(U0, U) provides a different representation of the same prover, who now behaves
as follows:

1. Upon reception of pk, the prover applies U0 to its initial state (to which |pk〉
has been appended), measures the first n log |Y| qubits in the computational
basis and returns the outcome;

2. Upon reception of c = 0, the prover directly measures the first (remaining)
n + nw qubits in the computational basis and returns the outcome;

3. Upon reception of c = 1, the prover applies the unitary U , measures the first
(remaining) n + nw qubits in the Hadamard basis and returns the outcome.

In both cases c = 0 and c = 1 we denote the first n qubits measured by the prover
(in step 2 or in step 3, respectively), whose associated measurement outcomes
are denoted by b in the protocol, the committed qubits.

The Agree-and-Prove Protocol. In this section we define a protocol KQ

for the AaP scenario (FQ, CQ,RQ) associated to a QMA relation (Q,α, β) as
in Sect. 6.1. Recall that an Agree-and-Prove protocol consists of two phases, an
“agree” phase and a “prove” phase. The agree phase in protocol KQ is simple:

– The prover P1 takes as input 1λ and a CQ state ρAUXP
. It interprets the

classical part of ρ as a string z ∈ {0, 1}n and the quantum part as  witnesses
σ1, . . . , σ	 each of the same number of qubits. (We assume that the integers
n and  are both encoded in a canonical way in the state ρAUXP

.) It sends
z to the verifier and outputs the statement xp = z and the quantum state
ρstP

= (σ1, . . . , σ	) (which may in general be entangled).
– The verifier V1 takes as input 1λ and a classical auxiliary input ρAUXv . It

parses ρAUXv
as the specification (in binary) of an input length n followed by

a string x ∈ {0, 1}n. It receives z from P1. If z 
= x it aborts. Otherwise, it
produces the statement xv = x.

20 This description slightly departs from the ‘canonical’ formalism introduced in
Sect. 2.2 by using different symbols for the prover’s unitaries associated with dif-
ferent rounds as well as different challenges. It is not hard to find an equivalent
description that uses the language from Sect. 2.2. In this case, the four registers
KYCM would all be considered network registers, and are thus accessible to the
extractor.



658 T. Vidick and T. Zhang

For the proof phase V2 and P2 behave exactly as the verifier and prover do in the
verification protocol described in Sect. 6.2, first defining the Hamiltonian Hv and
Hp from their respective statements xv and xp according to assumption (Q.2).
Note that Hv (resp. Hp) acts on poly(n) qubits, with n = |xv| (resp. n = |xp|).
Of course, when all parties are honest, xv = xp.

To complete the description of the protocol we define a class of of input-
generation algorithms under which completeness holds. We consider only input
generation algorithms that generate positive instances of the language, accom-
panied with  copies of a valid proof, where  ≥ 1 is a parameter. That is, for
any  ≥ 1, I(	)

Q contains any input generation algorithm I that returns a CQ
state of the form

∑

x∈{0,1}∗
px ||x|, x〉〈|x|, x|AUXV

⊗ ( |x〉〈x| ⊗ σ⊗	
x

)
AUXP

, (6)

where (px) is any distribution over positive instances for the QMA relation, i.e.
the set {

x : ∃σ, (x, σ) ∈ RQ,α

}
,

and moreover for each x, σx is such that (x, σx) ∈ RQ,α
21.

6.3 Arguments of Quantum Knowledge for QMA Relations

We state the main result of this section.

Theorem 1. Let (Q,α, β) be a QMA relation that satisfies properties (Q.1)
and (Q.2) described in Sect. 6.1. There exists a polynomially bounded  = (n)
such that the following holds. Under the Learning with Errors assumption the
protocol presented in Sect. 6.2 is secure with completeness c (for the class of input
generation algorithms I(	)

Q ), up to knowledge error κ and with extraction distance
δ for the Agree-and-Prove scenario (FQ, CQ,RQ), where: c is negligibly close to
1; κ is bounded away from 1 by an inverse polynomial; δ = poly(1 − p) poly(n)
(for any prover success probability p > κ).

Proof. Due to space constraints, we refer the reader to the full version [VZ21]
for the proof.

6.4 Sequential Amplification

Due to space constraints, we refer the reader to the full version [VZ21] for a
treatment of sequential amplification of the [Mah18c] protocol.

Acknowledgement. We thank Alexandru Gheorghiu for useful feedback and Or
Sattath for comments. Thomas Vidick is supported by NSF CAREER Grant CCF-
1553477, AFOSR YIP award number FA9550-16-1-0495, MURI Grant FA9550-18-1-
0161 and the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with

21 For clarity we omit explicitly writing out |x| in both registers.



Classical Proofs of Quantum Knowledge 659

support of the Gordon and Betty Moore Foundation (GBMF-12500028). This material
is based upon work supported by DARPA under Agreement No. HR00112020023. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

References

[AC12] Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing (2012)

[AFG+12] Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Lutomirski,
A.: Quantum money. Commun. ACM 55(8), 84–92 (2012)

[BCC+20] Badertscher, C., et al.: Security limitations of classical-client delegated
quantum computing. arXiv preprint arXiv:2007.01668 (2020)

[BDS16] Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv
preprint arXiv:1609.09047 (2016)

[BG92] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BG19] Broadbent, A., Grilo, A.B.: Zero-knowledge for QMA from locally simulat-
able proofs. arXiv preprint arXiv:1911.07782 (2019)

[BJM19] Badertscher, C., Jost, D., Maurer, U.: Agree-and-prove: generalized proofs
of knowledge and applications. IACR Cryptol. ePrint Arch. 2019, 662
(2019)

[CL06] Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 5

[CVZ19] Coladangelo, A., Vidick, T., Zhang, T.: Non-interactive zero-knowledge
arguments for QMA, with preprocessing. arXiv preprint arXiv:1911.07546
(2019)

[FFS88] Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol.
1(2), 77–94 (1988)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GV19] Gheorghiu, A., Vidick, T.: Computationally-secure and composable remote
state preparation. In: 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 1024–1033. IEEE (2019)

[HHJ+17] Haah, J., Harrow, A.W., Ji, Z., Wu, X., Yu, N.: Sample-optimal tomography
of quantum states. IEEE Trans. Inf. Theory 63(9), 5628–5641 (2017)

[KR03] Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Inf.
Comput. 3(3), 258–264 (2003)

[KSVV02] Kitaev, A.Y., Shen, A., Vyalyi, M.N., Vyalyi, M.N.: Classical and quantum
computation. Number 47. American Mathematical Soc. (2002)

[Mah18a] Mahadev, U.: Classical homomorphic encryption for quantum circuits. In:
2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 332–338. IEEE (2018)

[Mah18b] Mahadev, U.: Classical verification of quantum computations. In: 2018
IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 259–267, October 2018

http://arxiv.org/abs/2007.01668
http://arxiv.org/abs/1609.09047
https://doi.org/10.1007/3-540-48071-4_28
http://arxiv.org/abs/1911.07782
https://doi.org/10.1007/11818175_5
http://arxiv.org/abs/1911.07546


660 T. Vidick and T. Zhang

[Mah18c] Mahadev, U.: Classical verification of quantum computations. arXiv
preprint arXiv:1804.01082 (2018)

[MV20] Metger, T., Vidick, T.: Self-testing of a single quantum device under com-
putational assumptions. arXiv preprint arXiv:2001.09161 (2020)

[MVW12] Molina, A., Vidick, T., Watrous, J.: Optimal counterfeiting attacks and
generalizations for Wiesner’s quantum money. In: Iwama, K., Kawano, Y.,
Murao, M. (eds.) TQC 2012. LNCS, vol. 7582, pp. 45–64. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-35656-8 4

[NV16] Natarajan, A., Vidick, T.: Robust self-testing of many-qubit states. arXiv
e-prints, page arXiv:1610.03574, October 2016

[SJ00] Claus Schnorr and Markus Jakobsson. Security of signed ElGamal encryp-
tion. In International Conference on the Theory and Application of Cryp-
tology and Information Security, volume 1976, pages 73–89, 12 2000

[TW87] Tompa, M., Woll, H.: Random self-reducibility and zero knowledge inter-
active proofs of possession of information. In: 28th Annual Symposium on
Foundations of Computer Science (sfcs 1987), pp. 472–482. IEEE (1987)

[Unr12] Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4 10

[VZ20] Vidick, T., Zhang, T.: Classical zero-knowledge arguments for quantum
computations. Quantum 4, 266 (2020)

[VZ21] Vidick, T., Zhang, T.: Classical proofs of quantum knowledge (2021)
[Wat09] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput.

39(1), 25–58 (2009)
[Wie83] Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)
[Zha19] Zhandry, M.: Quantum lightning never strikes the same state twice. In:

Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 408–
438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 14

http://arxiv.org/abs/1804.01082
http://arxiv.org/abs/2001.09161
https://doi.org/10.1007/978-3-642-35656-8_4
http://arxiv.org/abs/1610.03574
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-030-17659-4_14


Multiparty Computation



Order-C Secure Multiparty Computation
for Highly Repetitive Circuits

Gabrielle Beck1(B), Aarushi Goel1, Abhishek Jain1, and Gabriel Kaptchuk2

1 Johns Hopkins University, Baltimore, USA
{gbeck,aarushig,abhishek}@cs.jhu.edu

2 Boston University, Boston, USA
kaptchuk@bu.edu

Abstract. Running secure multiparty computation (MPC) protocols
with hundreds or thousands of players would allow leveraging large vol-
unteer networks (such as blockchains and Tor) and help justify honest
majority assumptions. However, most existing protocols have at least
a linear (multiplicative) dependence on the number of players, making
scaling difficult. Known protocols with asymptotic efficiency independent
of the number of parties (excluding additive factors) require expensive
circuit transformations that induce large overheads.

We observe that the circuits used in many important applications of
MPC such as training algorithms used to create machine learning mod-
els have a highly repetitive structure. We formalize this class of circuits
and propose an MPC protocol that achieves O(|C|) total complexity for
this class. We implement our protocol and show that it is practical and
outperforms O(n|C|) protocols for modest numbers of players.

1 Introduction

Secure Multiparty Computation (MPC) [4,6,23,39] is a technique that allows
mutually distrusting parties to compute an arbitrary function without revealing
anything about the parties’ private inputs, beyond what is revealed by the func-
tion output. In this work, we focus on honest-majority MPC, where a majority
of the participants are assumed to be honest.

As public concern over privacy and data sharing grows, MPC’s promise of pri-
vacy preserving collaboration becomes increasingly important. In recent years,
MPC techniques are being applied to an increasingly complex class of function-
alities such as distributed training of machine learning networks. Most current
applications of MPC, however, focus on using a small number of parties. This
is largely because most known (and all implemented) protocols incur a linear

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 663–693, 2021.
https://doi.org/10.1007/978-3-030-77886-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_23


664 G. Beck et al.

multiplicative overhead in the number of players in the communication and com-
putation complexity, i.e. have complexity O(n|C|)1, where n is the number of
players and |C| is the size of the circuit [7,12,16,27,30,35].

The Need for Large-Scale MPC. Yet, the most exciting MPC applications
are at their best when a large number of players can participate in the protocol.
These include crowd-sourced machine learning and large scale data collection,
where widespread participation would result in richer data sets and more robust
conclusions. Moreover, when the number of participating players is large, the
honest majority assumption – which allows for the most efficient known protocols
till date – becomes significantly more believable. Indeed, the honest majority
of resources assumptions (a different but closely related set of assumptions) in
Bitcoin [34] and TOR [13,36] appear to hold up in practice when there are many
protocol participants.

Furthermore, large-scale volunteer networks have recently emerged, like Bit-
coin and TOR, that regularly perform incredibly large distributed computations.
In the case of cryptocurrencies, it would be beneficial to apply the computational
power to more interesting applications than mining, including executions of MPC
protocols. Replicating a fraction of the success of these networks could enable
massive, crowd-sourced applications that still respect privacy. In fact, attempts
to run MPC on such large networks have already started [38], enabling novel
measurements.

Our Goal: Order-C MPC. It would be highly advantageous to go beyond the
limitation of current protocols and have access to an MPC protocol with total
computational and communication complexity O(|C|).

Such a protocol can support division of the total computation among players
which means that using large numbers of players can significantly reduce the
burden on each individual participant. In particular, when considering complex
functions, with circuit representations containing tens or hundreds of millions
of gates, decreasing the workload of each individual party can have a significant
impact. Ideally, it would be possible for the data providers themselves, possibly
using low power or bandwidth devices, to participate in the computation.

An O(|C|) MPC protocol can also offer benefits in the design of other cryp-
tographic protocols. In [28], Ishai et al. showed that zero-knowledge (ZK) proofs
[24] can be constructed using an “MPC-in-the-head” approach, where the prover
simulates an MPC protocol in their mind and the verifier selects a subset of the
players views to check for correctness. The efficiency of these proofs is inherited
from the complexity of the underlying MPC protocols, and the soundness error
is a function of the number of views opened and the number of players for which
a malicious prover must have to “cheat” in order to control the protocol’s out-
put. This creates a tension: higher number of players can be used to increase
the soundness of the ZK proof, but simulating additional players increases the
complexity of the protocol. Access to an O(|C|) MPC protocol would ease this

1 For sake of simplicity, throughout the introduction, we omit a linear multiplicative
factor of the security parameter in all asymptotic notations.



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 665

tension, as a large numbers of players could be used to simulate the MPC without
incurring additional cost.

Despite numerous motivations and significant effort, there are no known
O(|C|) MPC protocols for “non-SIMD” functionalities.2 We therefore ask the
following:

Is it possible to design an MPC protocol with O(|C|) total computation
(supporting division of labor) and O(|C|) total communication?

Prior Work: Achieving Õ(|C|)-MPC. A significant amount of effort has been
devoted towards reducing the asymptotic complexity of (honest-majority) MPC
protocols, since the initial O(n2|C|) protocols [4,6].

Over the years, two primary techniques have been developed for reducing
protocol complexity. The first is an efficient multiplication protocol combined
with batched correlated randomness generation introduced in [12]. Using this
multiplication protocol reduces the (amortized) complexity of a multiplication
gate from O(n2) to O(n), effectively shaving a factor of n from the protocol com-
plexity. The second technique is packed secret sharing (PSS) [15], a vectorized,
single-instruction-multiple-data (SIMD) version of traditional threshold secret
sharing. By packing Θ(n) elements into a single vector, Θ(n) operations can be
performed at once, reducing the protocol complexity by a factor of n when the
circuit structure is accommodating to SIMD operations. Using these techniques
separately, O(n|C|) protocols were constructed in [9] and [12].

While it might seem as though combining these two techniques would result
in an O(|C|) protocol, the structural requirements of SIMD operations make it
unclear on how to do so. The works of [11] and [10] demonstrate two differ-
ent approaches to combine these techniques, either by relying on randomizing
polynomials or using circuit transformations that involve embedding routing
networks within the circuits. These approaches yield ˜O(|C|) protocols with large
multiplicative constants and additive terms that depend on the circuit depth.
(The additive terms were further reduced in the recent work of [20].)

In summary, while both PSS and efficient multiplication techniques have
been known for over a decade, no O(|C|) MPC protocols are known. The best
known asymptotic efficiency is ˜O(|C|) achieved by [10,11,20]; however, these
protocols have never been implemented for reasons discussed above. Instead,
the state-of-the-art implemented protocols achieve O(n|C|) computational and
communication efficiency [7,16,35].

1.1 Our Contributions

In this work, we identify a meaningful class of circuits, called (A,B)-repetitive
circuits, parameterized by variables A and B. We show that for (Ω(n), Ω(n))-
repetitive circuits, efficient multiplication and PSS techniques can indeed be
2 SIMD circuits are arithmetic circuits that simultaneously evaluate � copies of the

same arithmetic circuit on different inputs. Genkin et al. [20] showed that it is
possible to design an O(|C|) MPC protocol for SIMD circuits, where � = Θ(n).



666 G. Beck et al.

combined, using new ideas, to achieve O(|C|) MPC for n parties. To the best
of our knowledge, this is the first such construction for a larger class of circuits
than SIMD circuits.

We test the practical efficiency of our protocol by means of a preliminary
implementation and show via experimental results that for computations involv-
ing large number of parties, our protocol outperforms the state-of-the-art imple-
mented MPC protocols. We now discuss our contributions in more detail.

Highly Repetitive Circuits. The class of (A,B)-repetitive circuits are circuits
that are composed of an arbitrary number of blocks (sets of gates at the same
depth) of width at least A, that recur at least B times throughout the circuit.
Loosely speaking, we say that an (A,B)-repetitive circuit is highly repetitive
w.r.t. n parties, if A ∈ Ω(n) and B ∈ Ω(n).

The most obvious example of this class includes the sequential composition of
some (possibly multi-layer) functionality, i.e. f(f(f(f(. . .)))) for some arbitrary
f with sufficient width. However, this class also includes many other types of
circuits and important functionalities. For example, as we discuss in Sect. 4.3,
machine learning model training algorithms (many iterations of gradient descent)
are highly repetitive even for large numbers of parties. We also identify block
ciphers and collision resistant hash functions as having many iterated rounds;
as such functions are likely to be run many times in a large-scale, private com-
putation, they naturally result in highly repetitive circuits for larger numbers of
parties. We give formal definition of (A,B)-repetitive circuits in Sect. 4.

Semi-Honest Order-C MPC. Our primary contribution is a semi-honest,
honest-majority MPC protocol for highly repetitive circuits with total computa-
tion and communication complexity O(|C|). Our protocol only requires commu-
nication over point-to-point channels and works in the plain model (i.e., without
trusted setup). It achieves unconditional security against t < n

(

1
2 − 2

ε

)

corrup-
tions, where ε is a tunable parameter as in prior works based on PSS.

Our key insight is that the repetitive nature of the circuit can be leveraged
to efficiently generate correlated randomness in a way that helps overcome the
limitations of PSS. We elaborate on our techniques in Sect. 2.

Malicious Security Compiler. We next consider the case of malicious adver-
saries. In recent years, significant work [7,16,20,21,25,30,35] has been done on
designing efficient malicious security compilers for honest majority MPC. With
the exception of [20], all of these works design compilers for protocols based on
regular secret sharing (SS) as opposed to PSS. The most recent of these works
[7,16,25,35] achieve very small constant multiplicative overhead, and ideally one
would like to achieve similar efficiency in the case of PSS-based protocols.

Since our semi-honest protocol is based on PSS, the compilers of [7,16,25,35]
are not directly applicable to our protocols. Nevertheless, borrowing upon the
insights from [20], we demonstrate that the techniques developed in [7] can in fact
be used to design an efficient malicious security compiler for our PSS-based semi-
honest protocol. Specifically, our compiler incurs a multiplicative overhead of
approximately 1.7–3, depending on the choice of ε, over our semi-honest protocol



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 667

for circuits over large fields (where the field size is exponential in the security
parameter).3 For circuits over smaller fields, the multiplicative overhead incurred
is O(k/ log |F|), where k is the security parameter and |F| is the field size.

Efficiency. We demonstrate that our protocol is not merely of theoretical inter-
est but is also concretely efficient for various choices of parameters. We give a
detailed complexity calculation of our protocols in Sects. 6.2 and 6.3.

For n = 125 parties and t < n/3, our malicious secure protocol only requires
each party to, on average, communicate approximately 31

4 field elements per
gate of a highly repetitive circuit. In contrast, the state-of-the-art [16] (an
information-theoretic O(n|C|) protocol for t < n/3) requires each party to com-
municate approximately 42

3 field elements per multiplication gate. Thus, (in
theory) we expect our protocol to outperform [16] for circuits with around 75%
multiplication gates with just 125 parties. Since the per-party communication in
our protocol decreases as the number of parties increase, our protocol is expected
to perform better as the number of parties increase.

We confirm our conjecture via a preliminary implementation of our mali-
cious secure protocol and give concrete measurements of running it for up to 300
parties, across multiple network settings. Since state-of-the-art honest-majority
MPC protocol have only been tested with smaller numbers of parties, we show
that our protocol is comparably efficient even for fewer number of parties. More-
over, our numbers suggest that our protocol would outperform these existing
protocols when executed with hundreds or thousands of players at equivalent
circuit depths.

Application to Zero-Knowledge Proofs. The MPC-in-the-head paradigm of
Ishai et al. [28] is a well-known technique for constructing efficient three-round
public-coin honest-verifier zero-knowledge proof systems (aka sigma protocols)
from (honest-majority) MPC protocols. Such proof systems can be made non-
interactive, in the random oracle model [3] via the Fiat-Shamir paradigm [14].
Recent works have demonstrated the practical viability of this approach by con-
structing zero-knowledge proofs [2,5,22,29] where the proof size has linear or
sub-linear dependence on the size of the relation circuit.

Our malicious-secure MPC protocol can be used to instantiate the MPC-in-
the-head paradigm when the relation circuit has highly repetitive form. The size
of the resulting proofs will be comparable to the best-known linear-sized proof
system constructed via this approach [29]. Importantly, however, it can have
more efficient prover and verifier computation time. This is because [29] requires
parallel repetition to get negligible soundness, and have computation time linear
in the number of simulated players. Our protocol (by virtue of being an Order-C
and honest majority protocol), on the other hand, can accommodate massive
numbers of (simulated) parties without increasing the protocol simulation time
and achieve small soundness error without requiring additional parallel repeti-
tion. Finally, we note that sublinear-sized proofs [2] typically require super-linear

3 We note that for more commonly used corruption thresholds n/2 > t > n/4, the
overhead incurred by our compiler is somewhere between 2.5–3.



668 G. Beck et al.

prover time, in which case simulating our protocol may be more computationally
efficient for the prover. We leave further exploration of this direction for future
work.

Future Directions. Our protocols achieve O(|C|) complexity for a large class
of non-SIMD circuits, namely, highly repetitive circuits. A natural open question
is whether it is possible to extend our work to handle other classes of circuits.

Another important direction for future work is to further improve upon the
concrete efficiency of our semi-honest O(|C|) protocol. The multiplicative con-
stant in our protocol complexity is primarily dictated by the tunable parameter
ε, which is inherent in PSS-based protocols. Thus, achieving improvements on
this front will likely require different techniques.

Our malicious security compiler, which builds on ideas from [7], incurs a
multiplicative overhead of somewhere between 2.5 and 3, over the semi-honest
protocol. Recent works of [16,25] achieve even lower overheads than the com-
piler of [7]. Another useful direction would be to integrate our ideas with the
techniques in [16,25] (possibly for a lower corruption threshold) to obtain more
efficient compilers for PSS-based protocols. We leave this for future work.

2 Technical Overview

We begin our technical overview by recalling the key techniques developed in
prior works for reducing dependence on the number of parties. We then proceed
to describe our main ideas in Sect. 2.2.

2.1 Background

Classical MPC protocols have communication and computation complexity
O(n2|C|). These protocols, exemplified by [4], leverage Shamir’s secret sharing
[37] to facilitate distributed computation and require communication for each
multiplication gate to enable degree reduction. Typical multiplication subpro-
tocols require that each party send a message to every other party for every
multiplication gate, resulting in total communication complexity O(n2|C|). As
mentioned earlier, two different techniques have been developed to reduce the
asymptotic complexity of MPC protocols down to O(n|C|): efficient multiplica-
tion techniques and packed secret sharing.

Efficient Multiplication. In [12], Damg̊ard and Nielsen develop a randomness
generation technique that allows for a more efficient multiplication subprotocol.
At the beginning of the protocol, the parties generate shares of random values,
planning to use one of these values for each multiplication gate. These shares
are generated in batches, using a subprotocol requiring O(n2) communication
that outputs Θ(n) shares of random values. This batched randomness generation
subprotocol can be used to compute O(|C|) shared values with total complexity
O(n|C|). After locally evaluating a multiplication gate, the players use one of
these shared random values to mask the gate output. Players then send the



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 669

masked gate output to a leader, who reconstructs and broadcasts the result
back to all players.4 Finally, players locally remove the mask to get a shared
value of the appropriate degree. This multiplication subprotocol has complexity
O(n).

Packed Secret Sharing. In [15], Franklin and Yung proposed a vectorized ver-
sion of Shamir secret sharing called packed secret sharing that trades a lower cor-
ruption threshold for more efficient representation of secrets. More specifically,
their scheme allows a dealer to share a vector of Θ(n) secrets such that each of the
n players still only hold a single field element. Importantly, the resulting shares
preserve a SIMD version of the homomorphisms required to run MPC. Specifi-
cally, if X = (x1, x2, x3) and Y = (y1, y2, y3) are the vectors that are shared and
added or multiplied, the result is a sharing of X +Y = (x1 +y1, x2 +y2, x3 +y3)
or XY = (x1y1, x2y2, x3y3) respectively. Like traditional Shamir secret shar-
ing, the degree of the polynomial corresponding to XY is twice that of original
packed sharings of X and Y . This allows players to compute over Θ(n) gates
simultaneously, provided two properties are satisfied: (1) all of the gates perform
the same operation and (2) the inputs to each gate are in identical positions in
the respective vectors. In particular, it is not possible to compute x1y2 in the
previous example, as x1 and y2 are not aligned. However, if the circuit has the
correct structure, packed secret sharing reduces MPC complexity from O(n2|C|)
to O(n|C|).

2.2 Our Approach: Semi-honest Security

A Strawman Protocol. A natural idea towards achieving O(|C|) MPC is to
design a protocol that can take advantage of both efficient multiplications and
packed secret sharing. As each technique asymptotically shaves off a factor of
n, we can expect the resulting protocol to have complexity O(|C|). A näıve
(strawman) protocol combining these techniques might proceed as follows:

– Players engage in a first phase to generate packed shares of random vec-
tors using the batching technique discussed earlier. This subprotocol requires
O(n2) messages to generate Θ(n) shares of packed random values, each con-
taining Θ(n) elements. As we need a single random value per multiplication
gate, O(|C|) total messages are sent.

– During the input sharing phase, players generate packed shares of their inputs,
distributing shares to all players.

– Players proceed to evaluate the circuit over these packed shares, using a single
leader to run the efficient multiplication protocol to reduce the degrees of
sharings after multiplication. This multiplication subprotocol requires O(n)
communication to evaluate Θ(n) gates, so the total complexity is O(|C|).

– Once the outputs have been computed, players broadcast their output shares
and reconstruct the output.

4 The choice of the leader can be rotated amongst the players to divide the total
computation.



670 G. Beck et al.

While natural, this template falls short because the circuit may not satisfy
the requirements to perform SIMD computation over packed shares. As men-
tioned before, packed secret sharing only offers savings if all the simultaneously
evaluated gates are the same and all gate inputs are properly aligned. However,
this is an unreasonable restriction to impose on the circuits. Indeed, running
into this problem, [10,20] show that any circuit can be modified to overcome
these limitations, at the cost of a significant blowup in the circuit size, which
adversely affects their computation and communication efficiency. (We discuss
their approach in more detail later in this section.)

Our Ideas. Without such a circuit transformation, however, it is not immedi-
ately clear how to take advantage of packed secret sharing (other than for SIMD
circuits). To address this challenge, we devise two conceptual tools, each of which
we will “simulate” using existing primitives, as described below:

1. Differing-operation packed secret sharing, a variant of packed secret sharing
in which different operations can be evaluated for each position in the vector.
For example, players holding shares of (x1, x2, x3) and (y1, y2, y3) are unable
to compute (x1y1, x2 + y2, x3y3). With differing-operation packed secret shar-
ing, we imagine the players can generate an operation vector (e.g. (×,+,×))
and apply the corresponding operation to each pair of inputs. Given such a
primitive, there would be no need to modify a circuit to ensure that shares
are evaluated on the same kind of gate.

2. A realignment procedure that allows pre-existing packed secret shares to be
modified so previously unaligned vector entries can be moved and aligned
properly for continued computation without requiring circuit modification.

We note that highly repetitive circuits are layered circuits (that is the inputs
to layer i + 1 of a circuit are all output wires from layer i). For the remainder of
this section, we will make the simplifying assumption that circuits contain only
multiplication and addition gates and that the circuit is layered. We expand our
analysis to cover other gates (e.g. relay gates) in the technical sections.

Simulating Differing-operation Packed Secret Sharing. To realize differing-
operation packed secret sharing, we require the parties to compute both opera-
tions over their input vectors. For instance, if the player hold share of (x1, x2, x3)
and (y1, y2, y3) and wish to compute the operation vector (×,+,×), they begin
by computing both (x1 + y1, x2 + y2, x3 + y3) and (x1y1, x2y2, x3y3). Note that
all the entries required for the final result are contained in these vectors, and the
players just need to “select” which of the aligned entries will be included in the
final result.

Recall that in the multiplication procedure described earlier, the leader recon-
structs all masked outputs before resharing them. We modify this procedure
to have the leader reconstruct both the sum and product of the input vec-
tors, i.e. the unpacked values x1 + y1, x2 + y2, x3 + y3, x1y1, x2y2, x3y3 (while
masked). The leader then performs this “selection” process, and packs only the
required values to get a vector (x1y1, x2 + y2, x3y3), and discards the unused
values x1 + y1, x2y2, x3 + y3. Shares of this vector are then distributed to the



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 671

+ + +× × ×

y1x1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6

(x1, x2, x3) (y1, y2, y3) ← Green Inputs → (x4, x5, x6) (y4, y5, y6)

(z1, z2, z3) (z4, z5, z6)← Green Outputs →

z1 z2 z3 z4 z5 z6

(z1, z3, z1) (z2, z5, z4) ← Required Purple Inputs → (z2, z4, z5) (z5, z6, z6)

Fig. 1. A simple example pair of circuit layers illustrating the need for differing-
operation packed secret sharing and our realignment procedure. Players begin by
evaluating both addition and multiplication on each pair of input vectors. How-
ever, the resulting vectors are not properly aligned to compute the purple layer. To
get properly aligned packings, the vectors (zadd

1 , zadd
2 , zadd

3 ), (zmult
1 , zmult

2 , zmult
3 ) and

(zadd
4 , zadd

5 , zadd
6 ), (zmult

4 , zmult
5 , zmult

6 ) are masked and opened to the leader. The leader
repacks these values such that the resulting vectors will be properly aligned for com-
puting the purple layer. For instance, in this case the leader would deal shares of
(zadd

1 , zmult
3 , zadd

1 ), (zadd
2 , zadd

5 , zmult
4 ), (zadd

2 , zmult
4 , zadd

5 ), and (zadd
5 , zmult

6 , zmult
6 )

rest of the players, who unmask their shares. Note that this procedure only has
an overhead of 2, as both multiplication and addition must be computed.5

Simulating the Realignment Procedure. First note that realigning packed shares
may require not only internal permutations of the shares, but also swapping
values across vectors. For example, consider the circuit snippet depicted in Fig. 1.
The outputs of the green (bottom) layer are not structured correctly to enable
computing the purple (top) layer, and require this cross-vector swapping. As
such, we require a realignment procedure that takes in all the vectors output
by computing a particular circuit layer and outputs multiple properly aligned
vectors.

Our realignment procedure builds on the ideas used to realize differing-
operation packed secret sharing. Recall that the leader is responsible for recon-
structing the masked result values from all gates in the previous layer. With
access to all these masked values, the leader is not only able to select between
a pair of values for each element of a vector (as before), but instead can arbi-
trarily select the values required from across all outputs. For instance, in the
circuit snippet in Fig. 1, the leader has masked, reconstructed values zadd

i , zmult
i

for i ∈ [6]. Proceeding from left to right of the purple layer, the leader puts the
value corresponding to the left input wire of a gate into a vector and the right
input wire value into the correctly aligned slot of a corresponding vector. Using
5 In this toy example only one vector is distributed back to the parties. If layers are

approximately of the same size, an approximately equal number of vectors will be
returned.



672 G. Beck et al.

this procedure, the input vectors for the first three gates of the purple layer will
be (zadd

1 , zmult
3 , zadd

1 ) (left wires) and (zadd
2 , zadd

5 , zmult
4 ) (right wires).

Putting it Together. We are now able to refine the strawman protocol into a
functional protocol. When evaluating a circuit layer, the players run a protocol
to simulate differing-operation packed secret sharing, by evaluating each gate
as both an addition gate and multiplication gate. Then, the leader runs the
realignment procedure to prepare vectors that are appropriate for the next layer
of computation. Finally, the leader secret shares these new vectors, distributing
them to all players, and computing the next layer can commence. Conceptually,
the protocol uses the leader to “unpack” and “repack” the shares to simultane-
ously satisfy both requirements of SIMD computation.

Leveraging Circuits with Highly Repetitive Structure. Until this point,
we have been using the masking primitive imprecisely, assuming that it could
accommodate the procedural changes discussed above without modification. This
however, is not the case. Because we need to mask and unmask values while they
are in a packed form, the masks themselves must be generated and handled in
packed form.

Consider the example vectors used to describe differing-operation packed
secret sharing, trying to compute (x1y1, x2 + y2, x3y3) given (x1, x2, x3) and
(y1, y2, y3). If the same mask (r1, r2, r3) is used to mask both the sum and prod-
uct of these vectors, privacy will not hold; for example, the leader will open the
values x1 + y1 + r1 and x1y1 + r1, and thus learn something about x1 and y1.
If (r1, r2, r3) is used to mask addition and (r′

1, r
′
2, r

′
3) is used for multiplication,

there is privacy, but it is unclear how to unmask the result. The shared vector
distributed by the leader will correspond to (x1y1 + r1, x2 + y2 + r′

2, x3y3 + r3)
and the random values cannot be removed with only access to (r1, r2, r3) and
(r′

1, r
′
2, r

′
3). To run the realignment procedure, the same problem arises: the

unmasking vectors must have a different structure than the masking vectors,
with their relationship determined by the structure of the next circuit layer.

We overcome this problem by making modifications to the batched random-
ness generation procedure. Instead of generating structurally identical masking
and unmasking shares, we instead use the circuit structure to permute the ran-
dom inputs used during randomness generation so we get outputs of the right
form. In the example above, the players will collectively generate the masking
vectors (r1, r2, r3) and (r′

1, r
′
2, r

′
3), where each entry is sampled independently at

random. The players then generate the unmasking vector (r1, r′
2, r3) by permut-

ing their inputs to the generation algorithm. For a more complete description of
this subprotocol, see Sect. 6.1.

However, it is critical for efficiency that we generate all randomness in batches.
By permuting the inputs to the randomness generation algorithm, we get Θ(n)
masks that are correctly structured for a particular part of the circuit struc-
ture. If this particular structure occurs only once in the circuit, only one of the
Θ(n) shares can actually be used during circuit evaluation. In the worst case, if
each circuit substructure is unique, the resulting randomness generation phase
requires O(n|C|) communication complexity.



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 673

This is where the requirement for highly repetitive circuits becomes relevant.
This class of circuits guarantees that (1) the circuit layers are wide enough that
using packed secret sharing with vectors containing Θ(n) elements is appropriate,
and (2) all Θ(n) shares of random values generated during the batched random-
ness generation phase can be used during circuit evaluation. We note that this
is a rather simplified version of the definition, we give a formal definition of such
circuits in Sect. 4.2.

Non-interactive packed secret sharing from traditional secret shares.
Another limitation of the strawman protocol presented above is that the circuit
must ensure that all inputs from a single party can be packed into a single packed
secret sharing at the beginning of the protocol. We devise a novel strategy (see
Sect. 5) that allows parties to secret share each of their inputs individually using
regular secret sharing. Parties can then non-interactively pack the appropriate
inputs according to the circuit structure. This strategy can also be used to effi-
ciently switch to O(n|C|) protocols when parts of the circuit lack highly repetitive
structure; the leader omits the repacking step, and the parties compute on tra-
ditional secret share until the circuits becomes highly repetitive, at which point
they non-interactively re-packing any wire values (see Sect. 4.4).

Existing O(|C|) protocols like [10] do not explicitly discuss how their protocol
handles this input scenario. We posit that this is because there are generic trans-
formations like embedding switching networks at the bottom of the circuit that
allow any circuit to be transformed into a circuit in which a player’s inputs can be
packed together. Unsurprisingly, these transformations significantly increase the
size of the circuit. Since [10] is primarily concerned with asymptotic efficiency,
such circuit modification strategies are sufficient for their work.

Comparison with [10]. We briefly recall the strategy used in [10], in order to
overcome the limitations of working with packed secret sharing that we discussed
earlier. They present a generic transformation that transforms any circuit into
a circuit that satisfies the following properties:

1. The transformed circuit is layered and each layer only consists of one type of
gates.

2. The transformed circuit is such that, when evaluating it over packed secret
shares, there is never a need to permute values across different vectors/blocks
that are secret shared. While the values within a vector might need to be per-
muted during circuit evaluation, the transformed circuit has a nice property
that only log � (where � is the size of the block) such permutations are needed
throughout the circuit.

It is clear that the first property already gets around the first limitation of packed
secret sharing. The second property partly resolves the realignment requirement
from a packed secret sharing scheme by only requiring permutations within a
given vector. This is handled in their protocol by generating permuted ran-
dom blocks that are used for masking and unmasking in the multiplication sub-
protocol. Since only log � different permutations are required throughout the



674 G. Beck et al.

protocol, they are able to get significant savings by generating random pairs cor-
responding to the same permutation in batches. Our “unpacking” and “repack-
ing” approach can be viewed as a generalization of their technique, in the sense
that we enable permutation and duplication of values across different vectors by
evaluating the entire layer in one shot.

As noted earlier, this transformation introduces significant overhead to the
size of the circuit, and is the primary reason for the large multiplicative and addi-
tive terms in the overall complexity of their protocol. As such, it is unclear how
to directly use their protocol to compute circuits with highly repetitive struc-
tures, while skipping this circuit transformation step. This is primarily because
these circuits might not satisfy the first property of the transformed circuit.
Moreover, while it is true that the number of possible permutations required in
such circuits are very few, they might require permuting values across different
vectors, which cannot be handled in their protocol.

2.3 Malicious Security

Significant work has been done in recent years to build compilers that take
semi-honest protocols that satisfy common structures and produce efficient mali-
cious protocols, most notably in the “additive attack paradigm” described in
[21]. These semi-honest protocols are secure up to additive attacks, that is any
adversarial strategy is only limited to injecting additive errors onto each of the
wires in the circuit that are independent of the “actual”wire values. The current
generation of compilers for this class of semi-honest protocols, exemplified by
[7,16,25,35], introduce only a small multiplicative overhead (e.g., 2 in the case
of [7]) and require only a constant number of additional rounds to perform a
single, consolidated check

Genkin et al. showed in [20] (with additional technical details in [19]) that
protocols leveraging packed secret sharing schemes do not satisfy the structure
required to leverage the compilers designed in the “additive attack paradigm.”
Instead, they show that most semi-honest protocols that use packed secret shar-
ing are secure up to linear errors, that is the adversary can inject errors onto
the output wires of multiplication gates that are linear functions of the values
contained in the packed sharing of input wires to this gate. We observe that this
also holds true for our semi-honest protocol. They present a malicious security
compiler for such protocols that introduces a small multiplicative overhead.

To achieve malicious security, we add a new consolidated check onto our semi-
honest protocol, reminiscent of the check for circuits over small-fields presented in
Sect. 5 of [7]. The resulting maliciously secure protocol has twice the complexity
of our semi-honest protocol, plus a constant sized, consolidated check at the end
– for the first time matching the efficiency of the compilers designed for protocols
secure up to additive attacks.

As in [7], we run two parallel executions of the circuit, maintaining the invari-
ant that for each packed set of wires z = (z1, z2, . . . , z�) in C the parties also
compute z′ = rz = (rz1, rz2, . . . , rz�) for a global, secret scalar value r. Once



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 675

the players have shares of both z and z′ for each wire in the circuit, we gener-
ate shares of random vectors α = (α1, α2, . . . , α�) (one for each packed sharing
vector in the protocol) using a malicious secure sub-protocol and reconstruct
the value r. The parties then interactively verify that r ∗ α ∗ z = α ∗ z′. Impor-
tantly, this check can be carried out simultaneously for all packed wires in the
circuit, i.e. r ∗ ∑

i∈C αi ∗ zi =
∑

i∈C αi ∗ z′
i. This simplified check relies heavily

on the malicious security of the randomness generation sub-protocol. Because of
the structure of linear attacks and the fact that α was honestly secret-shared,
multiplying z and z′ with α injects linear errors chosen by the adversary that
are monomials in α only. That is, the equation becomes

r ∗
∑

i∈C

(αi ∗ zi + E(α)) =
∑

i∈C

(αi ∗ z′
i + E′(α))

for adversarially chosen linear functions E and E′. Because α is independent of r
and r is applied to the left hand side of this equation only at the end, this check
will only pass if r ∗E(α) = E′(α). For any functions E(·), E′(·) this only happen
if either (1) both are the zero function (in which case there are no errors), or (2)
with probability 1

|F| . Hence, this technique can also be used with packed secret
sharing to get an efficient malicious security compiler.

3 Preliminaries

Model and Notation. We consider a set of parties P = {P1, . . . , Pn} in which
each party provides inputs to the functionality, participates in the evaluation
protocol, and receives an output. We denote an arbitrarily chosen special party
Pleader for each layer (of the circuit) who will have a special role in the protocol;
we note that the choice of Pleader may change in each layer to better distribute
computation and communication. Each pair of parties are able to communicate
over point-to-point private channels.

We consider a functionality that is represented as a circuit C, with maximum
width w and total total depth d. We visualize the circuits in a bottom-up setting
(like in Merkle trees), where the input gates are at the bottom of the circuit and
the output gates are at the top. As we will see later in the definition of highly
repetitive circuits, we work with layered circuits, which comprise of layers such
that the output of layer i are only used as input for the gates in layer i + 1.

We consider security against a static adversary Adv that corrupts t ≤ n(12− 2
ε )

players, where ε is a tunable parameter of the system. As we will be working
with both a packed secret sharing scheme and regular threshold secret sharing
scheme, we require additional notation. We denote the packing constant for our
protocol as � = n

ε . Additionally, we will denote the threshold of our packed
secret sharing scheme as D = t + 2� − 1. We will denote vectors of packed
values with bold alphabets, for instance x. Packed secret shares of a vector x
with respect to degree D are denoted [x] and with respect to degree 2D as 〈x〉.
We let e1, . . . , e� be the fixed x-coordinates on the polynomial used for packed
secret sharing, where the � secrets will be stored, and α1, . . . αn be the fixed



676 G. Beck et al.

x-coordinates corresponding to the shares of the parties. For regular threshold
secret sharing, we will only require shares w.r.t. degree t + �. We use the square
bracket notation to denote a secret sharing w.r.t. degree t + �. We note that we
work with a slightly modified sharing algorithm of the Shamir’s secret sharing
scheme (see Sect. 5 for details).

4 Highly Repetitive Circuits

In this section, we formalize the class of highly repetitive circuits and discuss
some examples of naturally occurring highly repetitive circuits.

4.1 Wire Configuration

We start by formally defining a gate block, which is the minimum unit over which
we will reason.

Definition 1 (Gate Block). We call a set of j gates that are all on the same
layer a gate block. We say the size of a gate block is j.

An additional non-standard functionality we require is an explicit wire map-
ping function. Recall from the technical overview that the leader must repack
values according to the structure of the next layer. To reason formally over this
procedure, we define the function WireConfiguration, which takes in two blocks
of gates blockm+1 and blockm, such that the output wires of the gates in blockm

feed as input to the gates in blockm+1. WireConfiguration outputs two ordered
arrays LeftInputs and RightInputs that contain the indices corresponding to the
left input and right input of each gate in blockm+1 respectively. In general, we
can say that WireConfiguration(blockm+1, blockm) will output a correct align-
ment for blockm+1. This is because for all values j ∈ [|blockm+1|], if the values
corresponding to the wire LeftInputs[j] and RightInputs[j] are aligned, then com-
puting blockm+1 is possible. We describe the functionality for WireConfiguration
in Fig. 2. It is easy to see that the blocks blockm+1, blockm must lie on consec-
utive layers in the circuit. We say that a pair of gate blocks is equivalent to
another pair of gate blocks, if the outcome of WireConfiguration on both pairs is
identical.

4.2 (A, B)-Repetitive Circuits

With notation firmly in hand, we can now formalize the class of (A,B)-repetitive
circuits, where A,B are the parameters that we explain next. Highly repetitive
circuits are a subset of (A,B)-repetitive circuits, which we will define later.

We define an (A,B)-repetitive circuit using a partition function part that
decomposes the circuit into blocks of gates, where a block consists of gates on
the same layer. Let {blockchildm,j } be the output of this partition function, where
m indicates the layer of the circuit corresponding to the block and j is its index
within layer m. Informally speaking, an (A,B)-repetitive circuit is one that
satisfies the following properties:



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 677

The Function WireConfiguration(blockm+1, blockm)

1. Initialize two ordered arrays LeftInputs = [ ] and RightInputs = [ ], each with capacity
|blockm+1|.

2. For a gate g, let l(g) = (j, type) denote the index j and type of the gate in block
blockm that feeds the left input of g. Similarly, let r(g) = (j, type) denote the right
input gate index and type of g. For gates with fan-in one, i.e. relay gates, r(g) = 0.
For each gate gj in blockm+1, we set LeftInputs[j] = l(gj) and RightInputs[j] = r(gj)

3. Output LeftInputs,RightInputs.

Fig. 2. A function that computes a proper alignment for evaluating blockm+1

1. Each block blockm,j consists of at least A gates.
2. For each pair (blockm,j , blockm+1,j), all the gates in blockm+1,j only take in

wires that are output wires of gates in blockm,j . And the output wires of all
the gates in blockm,j only go an input to the gates in blockm+1,j .

3. For each pair (blockm,j , blockm+1,j), there exist at least B other pairs with
identical wiring between the two blocks.

We now give a formal definition.

Definition 2 ((A,B)-Repetitive Circuits). We say that a layered circuit C
with depth d is called an (A,B)-repetitive circuit if there exists a value σ ≥ 1 and
a partition function part which on input layerm (mth layer in C), outputs disjoint
blocks of the form {blockm,j}j∈[σ] ← part(m, layerm), such that the following
holds, for each m ∈ [d], j ∈ [σ]:

1. Minimum Width: Each blockm,j consists of at least A gates.
2. Bijective Mapping: All the gates in blockm,j only take inputs from the gates

in blockm−1,j and only give outputs to gates in blockm+1,j.
3. Minimum Repetition: For each (blockm+1,j , blockm,j), there exist

pairs (m1, j1) 	= (m2, j2) 	= . . . 	= (mB , jB) 	= (m, j) such
that for each i ∈ [B], WireConfiguration(blockmi+1,ji

, blockmi,ji
) =

WireConfiguration(blockm+1,j , blockm,j).

Intuitively, this says that a circuit is built from an arbitrary number of gate
blocks with sufficient size, and that all blocks are repeated often throughout
the circuit. Unlike the layer focused example in the introduction, this defini-
tion allows layers to comprise of multiple blocks. In fact, these blocks can even
interact by sharing input values. The limitation of this interaction, captured
by the WireConfiguration check, is that the interacting inputs must come from
predictable indices in the previous layer and must have the same gate type.

We also consider a relaxed variant of (A,B)-repetitive circuits, which we
call (A,B,C,D)-repetitive circuits. These circuits differ from (A,B)-repetitive
circuits in that they allow for a relaxation of the minimum width and repetition
requirement. In particular, in an (A,B,C,D)-repetitive circuit, it suffices for all
but C blocks to satisfy the minimum width requirement and similarly, all but D



678 G. Beck et al.

blocks are required to satisfy the minimum repetition requirement. In this work,
we focus on the following kind of (A,B,C,D)-repetitive circuits.

Definition 3 (Highly Repetitive Circuits). We say that (A,B,C,D)-
repetitive circuits are highly repetitive w.r.t. n parties, if A,B ∈ Ω(n) and C,D
are some constants.

We note that defining a class of circuits w.r.t. to the number of parties that
will evaluate the circuit might a priori seem unusual. However, this is common
throughout the literature attempting to achieve O(|C|) MPC that use packed
secret sharing. For example, the protocols in [10,11,20] achieve Õ(|C|) com-
munication for circuits that are Ω(n) gates wide. Similarly, our work achieves
O(|C|) communication and computation for circuits that are (Ω(n), Ω(n), C,D)-
repetitive, where C and D are constants. Alternatively, if the number of input
wires are equal to the number of participating parties, we can re-phrase the
above definition w.r.t. the number of input wires in a circuit.

It might be useful to see the above definition as putting a limit on the number
of parties for which a circuit is highly repetitive: any (A,B,C,D)-repetitive
circuit, is highly repetitive for upto min(O(A), O(B)) parties. While our MPC
protocol can work for any (A,B,C,D)-repetitive circuit, it has O(|C|) complexity
only for highly repetitive circuits. In the next subsection we give examples of
such circuits that are highly repetitive for a reasonable range of parties.

For the remainder of this paper, we will use w denote the maximum width
of the circuit C, wm to denote the width of the mth layer and wm,j to denote
the width of blockm,j .

4.3 Examples of Highly Repetitive Circuits

We give brief overviews of three functionalities with circuit representations that
are highly repetitive for up to a large number of parties. Extended discussion of
these applications is included in the full version of this paper.

Machine Learning. Machine learning algorithms extract trends from large
datasets to facilitate accurate prediction in new, unknown circumstances. A
common family of algorithms for training machine learning models is “gradi-
ent descent.” This algorithm iteratively reduces the models error by making
small, greedy changes, terminating when the model quality plateaus. When run
with MPC, the number of iterations must be data oblivious and cover the worst
case scenario. For a more complete description of gradient descent training algo-
rithms, and their adaptation to MPC, see [31].

It is difficult to compute the exact number of gates for privacy-preserving
model training in prior work. In one of the few concrete estimates, Gascón et al.
[18] realize coordinate gradient descent training algorithms with approximately
1011 gates, which would take 3000 GB to store [32]. Subsequent work instead
built a library of sub-circuits that could be loaded as needed. As the amount
of data used to train models continues to grow, circuit sizes will continue to
increase. While we are not able to accurately estimate the number of gates for



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 679

this kind of circuit, we can still establish that their structure is highly repetitive;
gradient decent algorithm is many iterations of the same functionality. In the
implementation of Mohassel et al. [31], the default configuration for training
is 10000 iterations, deep enough to accommodate massive numbers of players.
Indeed, in the worst case the depth of a gradient descent algorithm must be
linear in the input size. This is because gradient descent usually uses a batching
technique, in which the input data is partitioned into batches and run through
the algorithm one at a time.

The width of gradient descent training algorithms is usually roughly propor-
tional to the dimension of the dataset, which is usually quite high for interesting
applications. We note that if the width of the data is no wide enough, the natural
parallelism of gradient decent training algorithms can be leveraged to provide
more width: it is typical to use a random restart strategy to avoid getting trapped
at local minima, each of which can be execute in parallel.

Table 1. Size of the highly repetitive circuits we consider in this work. We compile these
functions into F2 circuits using Frigate [33] (containerized by [26]). The 64 iterations of
the compression function for SHA256 comprise 77% of the gates and the round function
of AES comprises 88% of the gates. Both of these metrics are computed for a single
block on input.

Circuit Gates (F2) Iterative Loops Gates per Loop Percent Repeated Structure

SHA256 (1 Block) 119591 64 1437 77%

AES128 (1 Block) 7458 10 656 88%

Gradient Descent — ≥ 10000 — ∼ 100%

Cryptographic Hash Functions. All currently deployed cryptographic hash
functions rely on iterating over a round function, each iteration of which round
function is (typically) structurally identical. Moreover, the vast majority of the
gates in the circuit representation of a hash function are contained within the
iterations of the round function.

Consider SHA256 [1], one of the most widely deployed hash functions; given
its common use in applications like Bitcoin [34] and ECDSA [17], SHA256 is
an important building block of MPC applications. SHA256 contains 64 rounds
of its inner function, with other versions that use larger block size containing
80 rounds. We compiled SHA256 for a single block of input into a circuit using
Frigate [33]. As can be seen in Table 1, 77% of all the gates in the compiled
SHA256 are repeated structure, that structure repeating at least 64 times. We
note that these results were for hashing only a single block of input. When
additional blocks of data must be hashed, the percentage of the circuit that is
repeated structure will be higher. For example, if there are as few as 10 blocks
of input, the circuit is already 97% repeated structure. Common applications
of hash functions, like computing a Merkle tree over player inputs, run hash
functions in parallel, ensuring there is sufficient width for accommodate large
numbers of parties.



680 G. Beck et al.

Block Ciphers. Modern block ciphers, similar to cryptographic functions, are
iterative by nature. For example, Advanced Encryption Standard uses either
10, 12, or 14 iterations of its round function, depending on key length. Per-
forming a similar analysis as with SHA256, we identified that 88% of the gates
in AES128 are part of this repeated structure when encrypting a single block
of input. Just as with hash functions, more blocks of input lead to increased
percentage repeated structure; with 10 blocks of input, 98% of the gates are
repeated structure.

4.4 Protocol Switching for Circuits with Partially Repeated
Structure

Hash functions and symmetric key cryptography are not comprised of 100%
repeated structure. When structure is not repeated, the batched randomness
generation step cannot be run efficiently. In the worst case, if a particular piece
of structure is only present once in the circuit, O(n2) messages will be used to
generate only a single packet secret share of size Θ(n). If 0 ≤ p ≤ 1 is the fraction
of the circuit that is repeated, our protocol has efficiency O(p|C| + (1 − p)n|C|).

We note that our protocol has worse constants than [7] and [16] when run
on the non-repeated portion of the circuit. Specifically, our protocol requires
communication for all gates, rather than just multiplication gates. As we are
trying to push the constants as low as possible, it would be ideal to run the
most efficient known protocols for the portions of the circuit that are linear
in the number of players. To do this, we note that our protocol can support
mid-evaluation protocol switching.

Recall our simple non-interactive technique to transform normal secret shares
into packed secret shares, presented in Sect. 5. This technique can be used in the
middle of protocol execution to switch between a traditional, efficient, O(n|C|)
protocol and our protocol. Once the portion of the circuit without repeated
structure is computed using another efficient protocol, the players can pause
to properly structure their secret shares and non-interactively pack them. The
players can then evaluate the circuit using our protocol. If another patch of
non-repeated structure is encountered, the leader can reconstruct and re-share
normal shares as necessary. Importantly, since all these protocols are linear, it’s
still possible to use the malicious security compiler of [7].

5 A Non-interactive Protocol for Packing Regular Secret
Shares

We now describe a novel, non-interactive transformation that allows a set of
parties holding shares corresponding to � secrets [s1], . . . , [s�] to compute a sin-
gle packed secret sharing of the vector v = (s1, . . . , s�). This protocol makes a
non-black-box use of Shamir secret sharing to accomplish this non-interactive.
As discussed in the technical overview, to achieve efficiency, our protocol com-
putes over packed shares. But, if each player follows the näıve strategy of just



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 681

packing all their own inputs into a single vector, the values may not be properly
aligned for computation. This non-interactive functionality lets players simply
share their inputs using Shamir secret sharing (using degree t + � polynomials),
and then locally pack the values in a way that guarantees alignment.

Let p1, . . . , p� be the degree t+� polynomials that were used for secret sharing
secrets s1 . . . , s� respectively. We require each pi(z) (for i ∈ [�]) to be of the form
si + qi(z)

∏�
j=1(z − ej), where qi is a degree t polynomial. Then each party Pj

(for j ∈ [n]) holds shares p1(αj), . . . , p�(αj).
Given these shares, each party Pj computes a packed secret share of the vector

(s1, . . . , s�) as follows - FSS−to−PSS({pi(αj)}i∈[�]) =
∑�

i=1 pi(αj)Li(αj) = p(αj),
where Li(αj) =

∏�
j=1,j �=i

(αi−ej)
(ei−ej)

is the Lagrange interpolation constant and p

corresponds to a new degree D = t + 2� − 1 polynomial for the packed secret
sharing of vector v = (s1, . . . , s�).

Lemma 1. For each i ∈ [�], let si ∈ F be secret shared using a degree t + �

polynomial pi of the form si+qi(z)
∏�

j=1(z−ej), where qi is a degree t polynomial
and e1, . . . , e� are some pre-determined field elements. Then for each j ∈ [n],
FSS−to−PSS({pi(αj)}i∈[�]) outputs the jth share corresponding to a valid packed
secret sharing of the vector v = (s1, . . . , s�), w.r.t. a degree-D = t + 2� − 1
polynomial.

Proof. For each i ∈ [�], let pi(z) be the polynomial used for secret sharing the
secret si. We know that pi(z) = si + qi(z)

∏�
j=1(z − ej), where qi is a degree t

polynomial. Let p′
i(z) = qi(z)

∏�
j=1(z − ej) and let p(z) be the new polynomial

corresponding to the packed secret sharing. From the description of FSS−to−PSS,
it follows that:

p(z)=
∑�

i=1 p′
i(z)Li(z)+siLi(z)=

∑�
i=1 p′

i(z)
∏�

j=1,j �=i

(z−ej)
(ei−ej)+

∑�
i=1 siLi(z)

=
∑�

i=1 qi(z)
∏�

j=1,j �=i

(z−ej)
(ei−ej)

∏�
j=1(z−ej)+

∑�
i=1 siLi(z)

Let q′
i(z) = qi(z)

∏�
j=1,j �=i

(z−ej)
(ei−ej)

, then,

p(z)=
∑�

i=1 q′
i(z)

∏�
j=1(z−ej)+

∑�
i=1 siLi(z)=q(z)

∏�
j=1(z−ej)+

∑�
i=1 siLi(z)

where q(z) =
∑�

i=1 q′
i(z) is a degree t + � − 1 polynomial and hence p(z) is

a degree D = t + 2� − 1 polynomial. It is now easy to see that for each i ∈ [�],
p(ei) = si. Hence FSS−to−PSS computes a valid packed secret sharing of the
vector v = (s1, . . . , s�).

6 Our Order-C Protocols

6.1 Sub-Functionalities and Protocols

Both our semi-honest and maliciously secure protocols depend on a number of
sub-functionalities and protocols which we present in this section.



682 G. Beck et al.

fpack−input functionality. This functionality takes in the inputs of the players
and outputs packed secret shares. Using the circuit information, players can run
WireConfiguration(block0,j , block1,j) for each j ∈ [σ] to determine the alignment
of vectors required to compute the first layer of the circuit. Because each block1,j

in the circuit contains w1,j/� gates, the protocol outputs 2w1/� =
∑

j∈[σ] w1,j

properly aligned packed secret shares, each containing � values. A detailed
description of this functionality appears in Fig. 3. The description of a proto-
col that makes use of our non-interactive packing protocol from Sect. 5, that
securely realizes this functionality is deferred to the full-version of this paper.

The functionality fpack−input(P := {P1, . . . , Pn}, )

The functionality fpack−input, running with parties {P1, . . . , Pn} and the ideal adversary
Sim proceeds as follows:

— It receives inputs x1, . . . , xM ∈ F from the respective parties and the layers
layer0, layer1 from all parties.

— It computes {block0,j}j∈[σ] ← part(0, layer0) and {block1,j}j∈[σ] ← part(1, layer1).
— For each j ∈ [σ], it computes LeftInputsj ,RightInputsj =

WireConfiguration(block1,j , block0,j).
— For each j ∈ [σ] and q ∈ [w1,j/�],

• Set xj,q = (xLeftInputsj [i])i∈{(q−1)�+1,...,q�} and yj,q =
(xRightInputsj [i])i∈{(q−1)�+1,...,q�}.

• Receives from Sim, the shares [xj,q]A, [yj,q]A of the corrupted parties for the
input vectors xj,q,yj,q .

• It computes shares [xj,q] ← pshare(xj,q, A, [xj,q]A, D) and [yj,q ] ←
pshare(yj,q, A, [yj,q]A, D) and sends them to the parties.

Fig. 3. Packed secret sharing of all inputs functionality

fcorr−rand functionality. This functionality generates correlated randomness
for our main construction. Recall from the technical overview that the val-
ues in the packed secret shares of random values must be generated accord-
ing to the circuit structure. More specifically, the unmasking values (degree
D shares) for some blockm+1,j must be aligned according to the output of
WireConfiguration(blockm+1,j , blockm,j).

Before describing the functionality, we quickly note the number of shares
generated, as it is somewhat non-standard. Let wm,j be the number of gates in
blockm,j and wm+1,j be the number of gates in blockm+1,j . As noted in the tech-
nical overview, our protocol treats each gate as though it performs all operations
(relay, addition and multiplication). This lets the players evaluate different oper-
ations on each value in a packed secret share. Each of these operations must be
masked with different randomness to ensure privacy. As such, the functionality
generates 3wm,j/� shares of uniformly random vectors. To facilitate unmasking
after the leader has run the realignment procedure, the functionality must gener-
ate shares of vectors with values selected from these 3wm,j/� uniformly random



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 683

The functionality fcorr−rand({P1, . . . , Pn})

The n-party functionality fcorr−rand, running with parties {P1, . . . , Pn} and the ideal ad-
versary Sim proceeds as follows:

— Each honest party sends blockm+1,j , blockm,j to the functionality.
— The ideal simulator Sim sends {uq,left

i ,uq,right
i }q∈[wm+1/�] and

{vq,mult
i ,vq,add

i ,vq,relay
i }q∈[wm,j/�] for each corrupt party i ∈ A.

— The functionality fcorr−rand samples random vectors
({rq,mult, rq,add, rq,relay}q∈[wm,j/�]) ∈ F

�×3wm,j/� of length � and does the fol-
lowing:

• For each q ∈ [wm+1,j/�] , it sets [rq,left]A = {uq,left
i }i∈A and [rq,right]A =

{uq,right
i }i∈A. .

• For each q ∈ [wm,j/�], it sets 〈rq,mult〉A = {vq,mult
i }i∈A and 〈rq,add〉A =

{vq,add
i }i∈A and 〈rq,relay〉A = {vq,relay

i }i∈A.
• It computes LeftInputs,RightInputs = WireConfiguration(blockm→m+1).
• For each q ∈ [wm+1,j ] and for each k ∈ [�], let eleft = LeftInputs[(q − 1)� + i] and

eright = RightInputs[(q − 1)�+ i] and set rq,left[k] = r�eleft/��,GateTypek [eleft − �eleft/��]
and rq,right[k] = r�eright/��,GateTypek [eright − �eright/��], where GateTypek = mult if
gate k on layer m is a multiplication gate, else if it is an addition gate then
GateTypek = add and for relay gates, GateTypek = relay.

• For each q ∈ [wm,j/�], it runs pshare(rq,mult, A, 〈vq,mult〉A, 2D),
pshare(rq,add, A, 〈vq,add〉A, 2D), pshare(rq,relay, A, 〈vq,relay〉A, 2D).

• For each q ∈ [wm+1,j/�], it runs pshare(rq,left, A, [uq,left]A, D) and
pshare(rq,right, A, [uq,right]A, D).

— It hands each honest party Pi its shares {uq,left
i ,uq,right

i }q∈[wm+1,j/�] and

{vq,mult
i ,vq,add

i ,vq,relay
i }q∈[wm,j/�].

Fig. 4. Random share generation functionality

vectors. This selection is governed by WireConfiguration(blockm+1,j , blockm,j). As
there are wm+1,j gates in blockm+1,j , the functionality will output 2wm+1,j/� of
these unmasking shares (with degree D). In total, this is (3wm,j + 2wm+1,j)/�
packed secret sharings. A detailed description of this functionality appears in
Fig. 4. The description of a protocol that securely realizes this functionality is
deferred to the full-version of our paper.

πlayer Protocol. This sub-protocol takes properly aligned input vectors
{

[xj,q
1 ], [yj,q

1 ]
}

j∈[σ],q∈[wm,j/�]
held by a set of parties, and computes packed

shares[zj,q,left] and [zj,q,right], for each j ∈ [σ] and q ∈ [wm+1,j/�] that can be
used to evaluate the next layer. We note that for notational convenience, this
protocol takes as input

{

[xj,q
1 ], [yj,q

1 ], [xj,q
2 ], [yj,q

2 ]
}

j∈[σ],q∈[wm,j/�]
instead of just

{

[xj,q
1 ], [yj,q

1 ]
}

j∈[σ],q∈[wm,j/�]
. This is because in our maliciously secure protocol,

we invoke this sub-protocol for evaluating the circuit on actual inputs as well as
on randomized inputs. When computing on actual inputs, we set xj,q

1 = xj,q
2 and

yj,q
1 = yj,q

2 and when computing on randomized inputs, we set xj,q
2 = rxj,q

1 and
yj,q
2 = ryj,q

1 . A detailed description of this sub-protocol appears in Fig. 5.



684 G. Beck et al.

The protocol πlayer({P1, . . . , Pn})

Input: The parties {Pi}i∈[n] hold packed secret sharings{
[xj,q

1 ], [yj,q
1 ], [xj,q

2 ], [yj,q
2 ]

}
j∈[σ],q∈[wm,j/�]

and configuration of layers layerm and

layerm+1.
Protocol: For each j ∈ [σ], the parties proceed as follows:

— They invoke fcorr−rand to obtain packed secret shares:
{[rj,q,left], [rj,q,right]}j,q∈[wm+1,j/�], {〈rj,q,mult〉, 〈rj,q,add〉, 〈rj,q,relay〉}q∈[wm,j/�].

— For each q ∈ [wm,j/�], the parties locally compute the following:
〈xj,q

1 · yj,q
2 + rj,q,mult〉 = [xj,q

1 ] · [yj,q
2 ] + 〈rj,q,mult〉

〈xj,q
1 + yj,q

1 + rj,q,add〉 = [xj,q
1 ] + [yj,q

1 ] + 〈rj,q,add〉
〈xj,q

1 + rj,q,relay〉 = [xj,q
1 ] + 〈rj,q,relay〉

— All the parties send their shares to the designated party Pleader for that layer.
— Party Pleader reconstructs all the shares to get individual values

{zj,mult
i , zj,add

i , zj,relay
i }j∈[σ],i∈[wm,j ]. It then computes the values zj,1

i , . . . , z
j,wm+1
i on

the outgoing wires from the gates in layer m as follows: For each j ∈ [σ], i ∈ [wm,j ]:
• If gate gj,i

m is a multiplication gate, it sets zj,i = zj,mult
i .

• If gate gj,i
m is a multiplication gate, it sets zj,i = zj,add

i .
• If gate gj,i

m is a relay gate, it sets zj,i = zj,relay
i .

— It then computes LeftInputsj ,RightInputsj = WireConfiguration(blockm+1,j , blockm,j).
— For each j ∈ [σ] and q ∈ [wm+1,j/�] each i ∈ [�], let eleft = LeftInputs[� · (j −1)+ i] and

eright = RightInputs[� · (j − 1) + i], it sets zj,q,left[i] = zj,eleft and zj,q,right[i] = zj,eright .

— For each j ∈ [σ], q ∈ [wm+1,j/�], it then runs pshare(zj,q,left, D) to obtain shares
[zj,q,left

i ] and pshare(zj,q,right, D) to obtain a shares [zj,q,right] for each party.
— For each j ∈ [σ], q ∈ [wm+1,j/�], all parties locally subtract the randomness from

these packed secret sharings as follows— [zj,q,left] = [zj,q,left]−[rj,q,left] and [zj,q,right] =
[zj,q,right] − [rj,q,right].

Output: The parties output their shares in [zj,q,left] and [zj,q,right], for each j ∈ [σ] and
q ∈ [wm+1,j/�].

Fig. 5. A protocol for secure layer evaluation

6.2 Semi-honest Protocol

In this section, we describe our semi-honest protocol. All parties get a finite field
F and a layered arithmetic circuit C (of width w and no. of gates |C|) over F

that computes the function f on inputs of length n as auxiliary inputs.6

Protocol: For each i ∈ [n], party Pi holds input xi ∈ F and the protocol
proceeds as follows:

1. Input Sharing Phase: All the parties {P1, . . . , Pn} collectively invoke
fpack−input as follows—every party Pi for i ∈ [n], sends each of its input
xi to functionality fpack−input and records its vector of packed shares
{

[xj,q], [yj,q]
}

j∈[σ],q∈[w1,j/�]
of the inputs as received from fpack−input. They

set [zj,q,left
1 ] = [xj,q] and [zj,q,right

1 ] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/�].

6 For simplicity we assume that each party has only one input. But our protocol can be
trivially extended to accommodate scenarios where each party has multiple inputs.



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 685

2. Circuit Evaluation: The circuit evaluation proceeds layer-wise, where for
each layer m ∈ [d], where d is the depth of the circuit, the parties evalu-
ate each gate in that layer simultaneously as follows—Given packed input
shares

{

[zj,q,left
m ], [zj,q,right

m ]
}

for j ∈ [σ], q ∈ [wm,j/�], the parties run πlayer on
inputs layerm+1, layerm,

{

[zj,q,left
m ], [zj,q,right

m ], [zj,q,left
m ], [zj,q,right

m ]
}

j∈[σ],q∈[wm,j/�]
.

They record their shares in
{

[zj,q,left
m+1 ], [zj,q,right

m+1 ]
}

j∈[σ],q∈[wm+1,j/�]
.

3. Output Reconstruction: For each
{

[zj,q,left
d+1 ], [zj,q,right

d+1 ]
}

j∈[σ],q∈[wd+1,j/�]
, the

parties run the reconstruction algorithm of packed secret sharing to learn the
ouput.

We give a proof of security for this protocol in the full-version of our paper. Next
we calculate the complexity of this protocol.

Complexity of Our Semi-honest Protocol. For each layer in the protocol,
we generate 5 × (width of the layer/�) packed shares, where � = n/ε. We have
t = n

(

1
2 − 2

ε

)

. In the semi-honest setting, n − t = n( 12 + 2
ε ) of these can be

computed with n2 communication (this is because in the semi-honest setting, we
do not need to check if the shares were computed honestly). Therefore, overall
the total communication required to generate all the correlated random packed
shares is 5 × |C|2ε2/(4 + ε) = 10|C|ε2/(4 + ε).

Additional communication required to evaluate each layer of the circuit is
5n × (width of the layer/�). Therefore, overall the total communication to gen-
erate correlated randomness and to evaluate the circuit is 10|C|ε2/(4+ε)+5|C|ε =
5|C|ε(3ε+4)

4+ε . An additional overhead to generate packed input shares for all inputs
is at most 4n|I|, where |I| is the number of inputs to the protocol. Therefore,
the total communication complexity is 5|C|ε(3ε+4)

4+ε + 4n|I|.

6.3 Maliciously Secure Protocol

In this section, we now describe a protocol that achieves security with abort
against malicious corruptions. In addition to the sub-functionalities and pro-
tocol discussed in Sect. 6.1, this protocol makes use of the following additional
functionalities, we defer their description to the full version of our paper due to
space constraints:

– Functionality fpack−rand is realised by a protocol that outputs packed secret
sharings of random vectors. Because of our requirements, we assume that
this functionality operates in two modes - the independent mode will generate
packed sharings of vectors in which each element is independent and the
uniform mode will generate packed sharing of vectors in which each element
is the same random value.

– Functionality fmult is realised by a protocol that multiplies 2 pack-secret
shared vectors.

– Functionality fcheckZero takes a pack-shared vector as input and checks whether
or not it corresponds to a 0 vector.



686 G. Beck et al.

Auxiliary Inputs: A finite field F and a layered arithmetic circuit C (of width
w and |C| gates) over F that computes the function f on inputs of length n.
Inputs: For each i ∈ [n], party Pi holds input xi ∈ F.
Protocol: (Throughout the protocol, if any party receives ⊥ as output from a
call to a sub-functionality, then it sends ⊥ to all other parties, outputs ⊥ and
halts):

1. Secret-Sharing Inputs: All the parties {P1, . . . , Pn} collectively invoke
fpack−input as follows—every party Pi for i ∈ [n], sends each of its input
xi to functionality fpack−input. and records its vector of packed shares
{

[xj,q], [yj,q]
}

j∈[σ],q∈[w1,j/�]
of the inputs as received from fpack−input. They

set [zj,q,left
1 ] = [xj,q] and [zj,q,right

1 ] = [yj,q] for each j ∈ [σ] and q ∈ [w1,j/�].
2. Pre-processing:

– Random Input Generation: The parties invoke fpack−rand on mode uniform
to receive packed sharings [r] of a vector r, of the form r = (r, . . . , r).

– The parties also invoke fpack−rand on mode independent to receive
packed sharings {[αj,q,left

m ], [αj,q,right
m ]}m∈[d],j∈[σ],q∈[wm,j/�] of random vec-

tors αj,q,left
m ,αj,q,right

m .
– Randomizing Inputs: For each packed input sharing [zj,q,left

1 ], [zj,q,right
1 ] (for

j ∈ [σ], q ∈ [w1,j/�]), the parties invoke fmult, on [zj,q,right
1 ] and [r] to

receive [rzj,q,left
1 ] and on [zj,q,right

1 ] and [r] to receive [rzj,q,right
1 ].

3. Dual Circuit Evaluation: The circuit evaluation proceeds layer-wise, where
for each layer m ∈ [d], where d is the depth of the circuit, the parties evaluate
each gate in that layer simultaneously as follows:

– The parties run πlayer on inputs layerm, layerm+1,
{

[zj,q,left
m ], [zj,q,right

m ], [zj,q,left
m ], [zj,q,right

m ]
}

j∈[σ],q∈[wm,j/�]
and obtain their

respective shares in
{

[zj,q,left
m+1 ], [zj,q,right

m+1 ]
}

j∈[σ],q∈[wm,j/�]
.

– The parties then run πlayer on inputs layerm, layerm+1,
{

[zj,q,left
m ], [zj,q,right

m ], [rzj,q,left
m ], [rzj,q,right

m ]
}

j∈[σ],q∈[wm,j/�]
and obtain their

respective shares in
{

[rzj,q,left
m+1 ], [rzj,q,right

m+1 ]
}

j∈[σ],q∈[wm,j/�]
.

4. Verification Step: Each party does the following:
(a) For each m ∈ [d], j ∈ [σ],q ∈ [wm,j/�], the parties invoke fmult on

their packed shares ([zj,q,left
m ], [αj,q,left

m ]), ([rzj,q,left
m ], [αj,q,left

m ]), ([zj,q,right
m ],

[αj,q,right
m ]) and ([rzj,q,right

m ], [αj,q,right
m ]), and locally compute. 7

[v] =
∑

m∈[d]

∑

j∈[σ],q∈[wm,j/�]

[αj,q,left
m ][rzj,q,left

m ] + [αj,q,right
m ][rzj,q,right

m ]

[u] =
∑

m∈[d]

∑

j∈[σ],q∈[wm,j/�]

[αj,q,left
m ][zj,q,left

m ] + [αj,q,right
m ][zj,q,right

m ]

7 We remark that for notational convenience we describe this step as consisting of
4|C|/� multiplications (and hence these many degree reduction steps), it can be
done with just two degree reduction step, where the parties first locally multiply
and add their respective shares to compute 〈v〉 and 〈u〉 and then communicate to
obtain shares of [v] and [u] respectively.



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 687

(b) The parties open shares [r] to reconstruct r = (r, . . . , r).
(c) Each party then locally computes [t] = [v] − r[u]
(d) The parties invoke fcheckZero on [t]. If fcheckZero outputs reject, the output

of the parties is ⊥. Else, if it outputs accept, then the parties proceed.
5. Output Reconstruction: For each output vector, the parties run the recon-

struction algorithm of packed secret sharing to learn the output. If the recon-
struction algorithm outputs ⊥, then the honest parties output ⊥ and halt.

Due to space constraints, we defer the proof of security for this protocol
to the full version of our paper. We note that the above protocol only works
for circuits over large arithmetic fields. In the full version, we also present an
extension to a protocol that works for circuits over smaller fields.

Complexity Calculation for our Maliciously Secure Protocol
over Large Fields. For each layer in the protocol, we generate 5 ×
(width of the layer/�), where � = n/ε. We have t = n

(

1
2 − 2

ε

)

. In the mali-
cious setting, n − t − 1 ≈ n( 12 + 2

ε ) of these packed shares can be computed
with 5n2 +5n(t+1) communication. Therefore, overall the total communication
required to generate all the randomness is the following:

– Correlated randomness for evaluating the circuit on actual inputs:
|C|

n
ε ×n( 1

2+
2
ε )

(

5n2 + 5n2
(

1
2 − 2

ε

))

= 5ε|C|(3ε−4)
ε+4 .

– Correlated randomness for evaluating the circuit on randomized inputs:
5ε|C|(3ε−4)

ε+4

– Shares of random α vectors: 2ε|C|(3ε−4)
ε+4

Additional communication required for dual execution of the circuit is
2 × 5 × n × (width of the layer/�). Therefore, overall the total communica-
tion to generate correlated randomness and for the dual evaluate the circuit
is 12ε|C|(3ε−4)

ε+4 +10|C|ε = 46ε2|C|−8ε|C|
ε+4 . An additional overhead to generate packed

input shares for all inputs is n2|I|, where |I| is the number of inputs to the pro-
tocol. The communication required to generate shares of randomized inputs is
n2|I|. Finally, the verification step only requires 2n2 communication. Therefore,
the total communication complexity is 46ε2|C|−8ε|C|

ε+4 + 2n2|I|.

7 Implementation and Evaluation

7.1 Theoretical Comparison to Prior Work

We start by comparing the concrete efficiency of our protocol based on the calcu-
lations from Sect. 6.3, where we show that the total communication complexity
of our maliciously secure protocol is 46ε2|C|−8ε|C|

ε+4 + 2n2|I|. Recall that our pro-
tocol achieves security against t < n

(

1
2 − 2

ε

)

corruptions; we do our comparison
with the state-of-the-art using the same corruption threshold as they consider.



688 G. Beck et al.

The state-of-the-art in this regime is the O(n|C|) protocol of [16] for t <
n/3 corruptions, that requires each party to communicate approximately 42

3
field elements per multiplication gate. In contrast, for n = 125 parties and t <
n/3 corruptions, our protocol requires each party to send approximately 31

4
field elements per gate, in expectation. Notice that while we require parties to
communicate for every gate in the circuit, [16] only requires communication per
multiplication gate. However, it is easy to see that for circuits with approximately
75% multiplication gates, our protocol is expected (in theory) to outperform [16]
for 125 parties.

The advantage of O(|C|) protocols is that the per-party communication
decreases as the number of parties increases. For the same corruption threshold
of t < n/3, and n = 150 parties, our protocol would (on paper) only require
each party to communicate 2 2

3 field elements per gate. In this case, our protocol
is already expected to perform better than [16] for circuits that have more that
60% multiplication gates. As the number of parties increase, less of the circuit
must be comprised of multiplication gates in order to show improvements. Alter-
natively, because our communication complexity depends on ε (that is directly
proportional to the corruption threshold t), our protocol outperforms prior work
with fewer parties if we reduce the corruption threshold. or t < n/4 corruptions
and n = 100 parties, we require per-party communication of 22

5 field elements
per gate.

Finally, we remark that the above is a theoretical comparison, and assumes
the “best-case scenario”, e.g., where the circuit is such that it has exactly n−t−1
repetitions of the same kinds of blocks, and that each block has an exact multiple
of n/ε gates and n is exactly divisible by ε, etc. In practice, this may not be the
case, and some of the generated randomness will be “wasted” or some packed
secret sharings will not be completely filled.

7.2 Implementation Comparison to Prior Work

To make our comparison more concrete, we implement our protocol and evaluate
it on different network settings. While we do not get the exact same improve-
ments as derived above (likely due to waste), we clearly demonstrate that our
protocol is practical for even small numbers of parties, and becomes more effi-
cient than state-of-the-art for large numbers of parties.

We implemented our maliciously secure protocol from Sect. 6.3. Additional
details about our implementation can be found in the full version of the paper.
Our implementation is in C++ and built on top of libscapi [8], which provides
communication and circuit parsing. To evaluate our implementation, we gener-
ate random layered circuits that satisfy the highly repetitive structural require-
ments. Benchmarking on random circuits is common, accepted practice for hon-
est majority protocols [7,16]. We also modify the libscapi [8] circuit file format
to allow for more succinct representation of highly repetitive circuits.



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 689

Table 2. Comparing the runtime of our protocol and that of related work. Results for
our circuits are reported for the average protocol execution time over five randomized
circuits each with 1,000,000 gates. All times are rounded to seconds due to space
constraints. Asterisk denote extrapolated runtimes between LAN setting and WAN
setting (see text). On the right side of the table, prior work does not run for this
number of parties, so we only include our own results.

Configuration Number of Parties

Net. Config t Depth 30 50 70 90 110 150 200 250 300

LAN (our work) n/4 1000 29 37 49 53 60 - - - -

LAN (our work) n/3 1000 29 41 55 54 63 - - - -

[7] n/2 1000 12 26 33 49 80 - - - -

[16] n/3 20 1 2 3 4 > 4 - - - -

WAN (our work) n/4 1000 261 206 187 278 271 282 263 302 336

WAN (our work) n/3 1000 299 285 215 261 305 315 279 320 378

[7] n/2 20 87 128 164* 204* 257* - - - -

[7] n/2 100 135 197 251* 355* 478* - - - -

[7] n/2 1000 376* 816* 1k* 1.5k* 2.4k* - - - -

We ran tests in two network deployments, LAN and WAN. In our LAN
deployment, all parties were co-located on a single, large server with two Intel(R)
Xeon(R) CPU E5-2695 @ 2.10 GHz. In our WAN deployment, parties were split
evenly across three different AWS regions: us-east-1, us-east-2, and us-west-2.
Each party was a separate c4.xlarge instances with 7.5 GB of RAM and a 2.9 GHz
Intel Xeon E5-2666 v3 Processor.

We compare our work to the most efficient O(n|C|) work, as there is no
comparable work which has been run for a large number of parties.8 These works
only test for up to 110 parties. Therefore our emphasis is not on direct time
result comparisons, but instead on relative efficiency even with small numbers
of players.

We compare the runtime of our protocol in both our LAN deployment and
WAN deployment to [7,16] in Table 2. Because of differences between our proto-
col and intended applications, there are several important things to note in this
comparison. First, we run all our tests on circuits with depth 1,000 to ensure
there is sufficient repetition in the circuit. Furukawa et al. use only a depth 20
circuit in their LAN tests, meaning more parallelism can be leveraged. We note
that when Chida et al. increase the depth of their circuits from 20 to 1,000 in
their LAN deployment, the runtime for large numbers of parties increases 5–10
[7]. If we assume [16] will act similarly, we see that their runtime is approxi-
mately half of ours, when run with small number of parties. This is consistent

8 The only protocol to be run on large numbers of parties rests on incomparable
assumptions like CRS [38].



690 G. Beck et al.

with their finding that their protocol is about twice as fast as [7]. We emphasise
that for larger numbers of parties our protocol is expected to perform better.

Because Chida et al. only run their protocol for up to 30 players and up to
circuit depth 100 in their WAN deployment, there is missing data for our compar-
ison. We note that their WAN runtimes are consistently just over 30x higher than
their LAN deployment. Using this observation, we extrapolate estimated run-
times for their protocol under different configurations, denoted with an asterisk.
We emphasise that this estimation is rough, and all these measurements should
be interpreted with a degree of skepticism; we include them only to attempt a
more consistent comparison to illustrate the general trends of our preliminary
implementation.

Our results show that our protocol, even using an un-optimized implemen-
tation, is comparable to these works for small numbers of parties (see left side
of Table 2). For larger numbers of parties (see right side Table 2), where we have
no comparable results, there is an upward trend in execution time. This could
be a result of networking overhead or varying levels of network congestion when
each of the experiments was performed. For example, when executing with 250
parties and a corruption threshold of n/4 the difference between the fastest and
slowest execution time was over 60,000 ms, whereas in other deployments the
difference is as low as 1,000 ms. In general, an increase is also expected as asymp-
totic complexity has an additive quadratic dependency on n with the input size
of the circuit. Overall our experiments demonstrate that our protocol does not
introduce an impractical overhead in its effort to achieve O(|C|) MPC. As the
number of parties continues to grow (e.g. hundreds or thousands), the benefits of
our protocol will become even more apparent.

Acknowledgements. The first and second authors are supported in part by NSF
under awards CNS-1653110 and CNS-1801479 and the Office of Naval Research under
contract N00014-19-1-2292. The first author is also supported in part by DARPA under
Contract No. HR001120C0084. The second and third authors are supported in part by
an NSF CNS grant 1814919, NSF CAREER award 1942789 and Johns Hopkins Uni-
versity Catalyst award. The third author is additionally partly supported by Office off
Naval Research grant N00014-19-1-2294. The forth author is supported by the National
Science Foundation under Grant #2030859 to the Computing Research Association
for the CIFellows Project. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA.

References

1. Fips pub 180–2, secure hash standard (shs), 2002. U.S. Department of Com-
merce/National Institute of Standards and Technology (2002)

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October
2017



Order-C Secure Multiparty Computation for Highly Repetitive Circuits 691

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

5. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1825–1842. ACM Press, October 2017

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols (Abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 43

7. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

8. Cryptobiu. cryptobiu/libscapi, May 2019
9. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.

(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

10. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

11. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

12. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

13. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
vol. 13, SSYM 2004, pp. 21, Berkeley, CA, USA. USENIX Association (2004)

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7
12

15. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992

16. Furukawa, J., Lindell, Y.: Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, pp. 1557–1571. ACM Press, November 2019

17. Gallagher, P., Foreword, D.D., Director, C.F.: FIPS PUB 186–3 federal information
processing standards publication digital signature standard (DSS), June 2009. U.S.
Department of Commerce/National Institute of Standards and Technology (2009)

18. Gascon, A., et al.: Secure linear regression on vertically partitioned datasets. Cryp-
tology ePrint Archive, Report 2016/892 (2016). http://eprint.iacr.org/2016/892

19. Genkin, D.: Secure Computation in Hostile Environments. PhD thesis, Technion -
Israel Institute of Technology (2016)

https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2016/892


692 G. Beck et al.

20. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

21. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC, pp. 495–504. ACM Press, May/June (2014)

22. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, August 2016

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.), 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press,
May 1985

25. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 22

26. Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: SoK: general purpose com-
pilers for secure multi-party computation. In: 2019 IEEE Symposium on Security
and Privacy, pp. 1220–1237. IEEE Computer Society Press, May 2019

27. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication
complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 28

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007

29. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press, October 2018

30. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 259–276. ACM Press,
October 2017

31. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 35–52.
ACM Press, October 2018

32. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy, pp. 19–38.
IEEE Computer Society Press, May 2017

33. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: 2016
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 112–127.
IEEE (2016)

34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
35. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority

MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17


Order-C Secure Multiparty Computation for Highly Repetitive Circuits 693

36. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE J. Sel. Areas Commun. 16(4), 482–494 (1998)

37. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

38. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
Statistics in tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, pp. 615–632. ACM Press, November 2019

39. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986



The More the Merrier: Reducing
the Cost of Large Scale MPC

S. Dov Gordon1(B), Daniel Starin2, and Arkady Yerukhimovich3

1 George Mason University, Fairfax, USA
gordon@gmu.edu

2 Perspecta Labs, Basking Ridge, USA
dstarin@perspectalabs.com

3 George Washington University, Washington, D.C., USA
arkady@gwu.edu

Abstract. Secure multi-party computation (MPC) allows multiple par-
ties to perform secure joint computations on their private inputs. Today,
applications for MPC are growing with thousands of parties wish-
ing to build federated machine learning models or trusted setups for
blockchains. To address such scenarios we propose a suite of novel MPC
protocols that maximize throughput when run with large numbers of
parties. In particular, our protocols have both communication and com-
putation complexity that decrease with the number of parties. Our pro-
tocols buildon prior protocolsbased on packed secret-sharing, introducing
new techniques to build more efficient computation for general circuits.
Specifically, we introduce a new approach for handling linear attacks
that arise in protocols using packed secret-sharing and we propose a
method for unpacking shared multiplication triples without increasing
the asymptotic costs. Compared with prior work, we avoid the log |C|
overhead required when generically compiling circuits of size |C| for use
in a SIMD computation, and we improve over folklore “committee-based”
solutions by a factor of O(s), the statistical security parameter. In prac-
tice, our protocol is up to 10X faster than any known construction, under
a reasonable set of parameters.

1 Introduction

A major goal in secure multi-party computation (MPC) is to reduce the nec-
essary communication and computation as a function of the number of parties
participating in the protocol. Today, most protocols have costs growing linearly
and even quadratically as the number of parties increases. This makes MPC
prohibitively expensive for applications with very large numbers of parties, and
all real-world applications of MPC have focused on use-cases with only a hand-
ful of parties. Academic experiments have pushed the limit to a few hundreds of
participants [37]. However, today we have use-cases for MPC that naturally have
thousands if not millions of participating parties. For example, in secure feder-
ated learning, thousands of low-resource devices wish to train a single machine
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 694–723, 2021.
https://doi.org/10.1007/978-3-030-77886-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_24


The More the Merrier: Reducing the Cost of Large Scale MPC 695

learning model on their collective data [30]. Another example is that of dis-
tributed trusted setup for blockchains where (possibly) millions of miners may
wish to participate in the protocol. Finally, a particularly well fitting applica-
tion for such large-scale MPC is to generate offline material for smaller MPC
computation. Such offline material is usually expensive to generate, but enables
much faster online MPC computations once it is available.

To address such applications we construct a new MPC protocol that scales
practically to hundreds of thousands of parties. The amortized cost of our proto-
col decreases as the number of parties increases, resulting in reduced cost for all
parties as more parties join the computation – the more the merrier. This is espe-
cially true for applications such as blockchain setup, where the number of inputs
does not grow with the number of computing parties. Specifically, assuming that
at most t ≤ n(1/2 − ε) parties are actively malicious, for any 0 < ε < 1/2, our
protocol requires each party to send O(|C|/n) field elements, where |C| is the
size of the circuit we wish to evaluate, and n is the number of parties. It requires
each party to perform O(log n|C|/n) field operations.1

While ours is not the only protocol with communication and computation
that diminishes with n, our communication complexity is better, asymptotically
and concretely, than every construction that we know of. For example, one naive
solution in this setting of a strong honest majority is to elect a small commit-
tee of size O(s), where s is a statistical security parameter, independent of n,
and to run any arbitrary MPC protocol among that committee alone. Techni-
cally, the average communication and computation cost reduces with n, since
n − O(s) parties that remain idle still reduce the average. However, the com-
mittee members carry the worst-case cost, O(|C|). As we will see, even when we
consider natural improvements to this approach that spread the worst-case cost
among the parties, we out-perform such approaches by a factor of O(s), which,
concretely, could be as large as 40X. More interestingly, several solutions using
packed secret sharing are also known [13,23]: we outperform these constructions
by a factor of O(log |C|) by avoiding the use of a general compiler from stan-
dard circuits to SIMD circuits. We provide a brief asymptotic comparison with
specific prior constructions at the end of this introduction, in Subsect. 1.2, and
we provide a thorough analysis of these comparisons in Sect. 5.

We have implemented our protocol and executed it for small numbers of par-
ties. To our knowledge, this is the first implementation with sub-linear costs:
among existing implementations, the one with lowest concrete costs that we
know of is by Furukawa and Lindell [20], which requires O(|C|) communication
per party, and does not benefit from an increase in the number of participants.
Missing from our implementation is any large-scale deployment, which would
introduce some major engineering challenges (not to mention social and/or finan-
cial challenges of finding participants). Most obviously, it would be very difficult

1 We are ignoring terms that do not depend on |C| or n.



696 S. D. Gordon et al.

to convincingly simulate the network environment.2 Additionally, while a single
Linux server can efficiently handle tens of millions of TCP connections [39], this
is not currently supported by the OS, and requires extensive effort to implement.
Nevertheless, our implementation allows us to precisely measure the computa-
tional cost for a million participants, which is the bottleneck in our construction.
It also allows us to provide an exact extrapolation on the amount of data com-
municated. What is missing from this extrapolation is any handling of network
variance or participant failure. Recognizing these caveats and extrapolating our
performance, we estimate that we can achieve a throughput of 500 million mul-
tiplication triples per second3 when 1 million parties participate, even over a
relatively slow 10 megabit per second network.

One particularly appealing application for our protocol is as a service for
generating offline material for smaller scale computations. The offline phase is
the bottleneck for the majority of MPC protocols. If tens of thousands of users
can be incentivized4 to generate billions of computation triples over night, which
might require less than 10 min of their time, these triples can be transferred
to a small online committee for arbitrary computation the next day, enabling
malicious-secure MPC, even with a dishonest majority, at the cost of an efficient
online phase.

1.1 Technical Overview

We now give a brief overview of the key ideas and building blocks behind our
main protocol.

Damg̊ard-Nielsen: In the honest-majority setting, most modern approaches to
MPC build upon the multiplication protocol of Damg̊ard-Nielsen (DN) [15]. This
construction begins with an input-independent pre-processing phase in which the
parties compute threshold double sharings of random values, ([r]d, [r]2d), with
thresholds d and 2d, respectively. During the online phase of the computation,
these double sharings can be used to perform multiplication on shared field
elements at a communication cost of 2 field elements per party.

To generate these random sharings in the semi-honest setting, the DN pro-
tocol proceeds as follows. Each party Pi samples a random ri and sends two
threshold sharings to every other party: [ri]d, [ri]2d. This costs n2 total commu-
nication. Naively, each party could locally sum their received shares to recover

2 Sometimes such experiments are run in cloud environments, which is useful for tens
or hundreds of participants. However, we are interested in deployments involving
tens or hundreds of thousands of participants. AWS has only 64 data centers, so
testing with more parties than this would provide an inaccurate simulation of the
network environment.

3 This estimate is for a malicious-secure protocol that generates unauthenticated
triples, which suffice for semi-honest computation in the online phase. In Sect. 4.1, we
present a known result for converting these to authenticated triples. The throughput
in that setting is closer to 70 million triples per second.

4 Or commanded by Google.



The More the Merrier: Reducing the Cost of Large Scale MPC 697

a single double sharing of a random r, but the cost per sharing would be O(n2).
Instead, each party assembles an n dimensional vector from the shares that
they received, and multiplies this with a Vandermonde matrix, M . Assuming
h = O(n) honest parties, this allows them to extract h random double sharings,
instead of a single one. This reduces the total communication cost to O(n) per
multiplication gate, requiring each party to send only a constant number of field
elements per circuit gate.

Moreover, recent work by Genkin et al. [24] showed that this semi-honest
DN protocol actually offers a stronger notion of security, called security up to
additive attacks. This means that the protocol offers privacy against a malicious
adversary and only allows an additive attack, wherein an adversary can add
an error δ to the result of each multiplication. Several works have since shown
how to leverage this property to efficiently achieve full malicious security (with
abort) [10,20,33].
Packed secret sharing: To further reduce the cost by a factor of O(n), we
use packed secret sharing when we construct our double sharings [13,18,23]. In
a standard Shamir sharing, the secret is encoded in the evaluation of a ran-
dom polynomial at 0. However, if t = (1/2 − ε)n, then even after fixing all t
adversarial shares, there are still εn degrees of freedom in the polynomial (while
maintaining the degree d < n/2). These can be used for encoding additional
secret values. In a packed secret sharing scheme, a vector of � = εn elements are
encoded together in a single polynomial by interpolating a random polynomial
through those � points, and, as in Shamir sharing, providing point evaluations of
the polynomial as shares. By packing [r] = [r1], . . . , [r�] into a single polynomial,
and performing the Vandermonde matrix multiplication on the packed shares,
we can further reduce the communication and computational costs by a factor
of O(n), as was done by Damg̊ard et al., and Genkin et al. [13,23]. When per-
forming � independent computations in parallel, this directly reduces both the
communication and the computation by a factor of �, without any cost. When
performing only a single evaluation of the circuit (which is the setting we focus
on), Damg̊ard et al. [13] show how to compile a circuit C into one of size at most
O(|C| log |C|), that can leverage packed sharing even in a single computation by
parallelizing the multiplication gates in groups of size �.
Unpacking the secret shares: Our first contribution is a new way to avoid
this log |C| multiplicative overhead, even in the single execution setting. To do
this, we avoid computing on packed values, and instead unpack the random val-
ues into fresh secret shares for later use by an “online committee”.5 That commit-
tee then uses these values to perform the online phase (i.e., the input dependent
portion of the computation). Unpacking the secrets allows us to directly compute
an arbitrary circuit. However, if we unpack the � secrets before sending them

5 There are advantages and disadvantages to varying the size of this committee, which
we will discuss in depth in what follows. For now, we can assume that the online
committee is in fact the entire network of n parties. In the “standard” approach to
executing the online phase with n parties, the communication complexity is O(|C|)
per party. We will address this as well.



698 S. D. Gordon et al.

to the online committee, we ruin our sub-linear communication complexity: for
every gate in the circuit, each of the n parties would need to send (at least)
one share to the online committee, resulting in a per-party communication com-
plexity of (at least) O(|C|). Instead, we observe that unpacking requires only
linear operations (i.e., we need to perform polynomial interpolation, which is
a linear operation), and thus can be performed on secret shares of the packed
secret sharing. So, the n parties re-share each of their packed shares with the
online committee. Because they are still packed, the per-party communication
of re-sharing is O(|C|/n) instead of O(|C|). The online committee then locally
unpacks the “inner” threshold sharing by interpolating the polynomial that is
“underneath” the outside sharing. This requires no interaction inside the online
committee, and maintains the desired complexity.

Now consider the question of how to re-share the packed sharing. The naive
choice here is to stick with a threshold secret sharing scheme, ensuring that after
they unpack into the outer scheme, the parties maintain a threshold sharing of
the DN double sharings, and can proceed exactly as in the DN protocol. Unfor-
tunately, starting with ([r]d, [r]2d), we do not know how to efficiently transfer
([r]s, [r]2s) to an online committee of size s without incurring a communication
overhead of O(s): the cost of sending a Shamir share to a committee of size s is,
seemingly, O(s). In the case where the “committee” is of size n, this again ruins
the claim of sub-linear complexity, even though there are only O(|C|/n) values
to be re-shared. Instead, we use an additive secret-sharing for our outer scheme.
After establishing pairwise seeds between the senders and the receivers, we can
compress the cost of re-sharing: to re-share some value x, party i computes
[x]s = x + G(ri,1) + · · · + G(ri,s−1) and sends this to party s. All other parties
fix their shares deterministically using their shared seed. This saves a factor of
O(s) in the communication cost, and when the committee size is n, it allows us
to maintain the desired complexity. However, with an additive secret sharing,
we can no longer use DN for multiplication. Instead, prior to transferring the
packed values, we use our double sharings to create packed multiplication triples
([a]d, [b]d, [ab]d), and send additive shares of these packed, threshold shares to
the online committee. The online committee unpacks these values into additive
shares of multiplication triples by interpolating inside the additive sharing.

So far, we have ignored two important points: the cost of the online phase,
and computational complexity of the protocol. Using n-out-of-n additive shares
of multiplication triples, there is no clear way to achieve sub-linear communica-
tion complexity in the online phase. Furthermore, even if we ignore the cost of
the online phase, unpacking a single multiplication triple requires O(n log n) field
operations, which, having successfully reduced the communication complexity,
becomes the new bottleneck in our protocol. The solution to both problems is
one and the same: we parallelize the work of unpacking the triples, using many
small committees, each of size O(s), with the guarantee that each has at least



The More the Merrier: Reducing the Cost of Large Scale MPC 699

one honest participant6. The computational cost of unpacking is now reduced
to O(s log n|C|/n) field operations per party. Rather than transfer these shares
to a single evaluation committee, we then split |C| among the O(n/s) commit-
tees, charging each with evaluating O(s|C|/n) gates.7 For the online phase, we
use the online phase of the SPDZ protocol [16]. In order to use the generated
triples in this protocol, each committee first “authenticates” their triples. This is
very similar to the protocols found in prior work ([3,14,16,32]), and appears in
Sect. 4.1. We stress that the authentication and the SPDZ online protocol have
bottleneck communication linear in the number of gates to be evaluated.
Security against linear attacks: Genkin et al. [23] (building on Damg̊ard
et al. [13]) present a protocol that begins as ours does, with the construction
of packed double sharings. (They do not construct packed triples for use in
a malicious majority online committee, but instead use the packed values in
a SIMD computation, incurring the O(log |C|) overhead described above.) In
their security analysis, Genkin et al. observed that when computing with packed
double sharings, one has to prevent a “linear attack” in which an adversary
adds to the output of a multiplication gate some arbitrary linear combination
of the values that are packed into the input shares. As the authors note, this is
not something that is allowed by an additive attack, since the adversary does
not know the packed secrets. Briefly, the linear attack works as follows (See
Appendix B of [22]). Consider shares [a]d = a1, . . . , an, and [b]d = b1, . . . , bn for
n = 2d+1. Let δ1, . . . , δd+1 denote the Lagrange coefficients that recover the first
element in the packed polynomial: b(1) =

∑d+1
i=1 δibi. Let γ1, . . . , γn denote the

coefficients that recover the second element in the product polynomial: a(2)b(2) =∑n
i=1 γiaibi. If an adversary modifies the first d+1 shares of a, [â]i = [a]i+δi/γi,

then the reconstruction of a(2)b(2) will equal a(2)b(2) + b(1). Such a dependency
on b(1) is not allowed in an additive attack.

We avoid linear attacks using two critical properties of our construction.
Observe that linear attacks work by modifying at least d + 1 shares of an input
wire to a multiplication gate. Thus, we ensure that this can never happen in our
construction. First, as described earlier, we only use packed multiplication to
produce triples, thus we only need to deal with a depth-1 circuit of multiplica-
tion gates. In particular, the output of any (packed) multiplication gate is never
used as an input into another (packed) multiplication gate. Thus, even though
an adversary can introduce an arbitrary additive attack to modify all the packed
values in the resulting product, these modified values will never be used as an
input to a (packed) multiplication gate. There is still one place where the adver-
sary can introduce a linear attack: the original inputs to the triple generation

6 Technically, since we are selecting many such committees, to guarantee that they all
have at least one honest party requires a union bound over the number of committees,
resulting in committees of size O(s + log n). However, since s > log n, we drop this
log n term in our asymptotic notation. However, we point out that our experimental
results in Sect. 6 do account for this union bound.

7 This can be done regardless of the circuit structure, and does not require a wide
circuit.



700 S. D. Gordon et al.

(i.e., A’s shares of a and b). However, we observe that this requires the adversary
to change at least d+1 shares of a and thus requires changing at least one share
held by an honest party. However, this is detectable by the honest parties if they
(collectively) check the degree of the polynomial on which their shares lie. We,
therefore, avoid linear attacks on the inputs by performing a degree check on
the input shares of [a] and [b] using a standard procedure. Moreover, since we
can batch all of these checks, doing so is (almost) for free.

1.2 Performance Comparisons

We give here a brief overview of how our protocol compares, asymptotically,
to various other protocols. We will give a more detailed description of how we
arrive at these numbers in Sect. 5, after presenting our protocol in full; here we
only present the alternative protocols used in the comparisons, and present the
results. Throughout, we assume we begin the computation with n parties, and
t < n/3 corruptions by an actively malicious adversary. We use s to denote a
statistical security parameter.
Performance metrics: When comparing the communication and computation
costs of various protocols, we consider the bottleneck complexities [7]. This refers
to the maximum communication sent or received8 by any party taking part in the
protocol, and the maximum computation performed by any one party. We believe
that this is a more meaningful metric than average or total communication
when analyzing protocols that use small committees, since most parties might
do nothing after sharing their inputs, and therefore reduce the average artificially.
In Sect. 5 we will give a more careful analysis, and, for completeness, we include
there the total complexities.

Protocol Variants and Results: In what follows, we consider three variants of
our protocol, as each provides insight into various aspects of our design. We begin
by considering the simplest variant in which the full network of n participants
unpack all |C| triples, and all n parties participate in the online phase. We
compare this with two folklore solutions in which a single committee is elected
to perform the computation. We then describe two changes that strengthen our
protocol, and compare the impact of each improvement to a similar improvement
to these folklore solutions.
Baseline comparisons: In Fig. 1, we compare the asymptotic behavior of our
protocol to that of Furukawa and Lindell, which is also designed for a corruption
threshold of t < n/3 [20]. Additionally, with t < (1/2 − ε)n, an old folklore
approach is to choose a random committee of size O(s) that is guaranteed, with
8 When analyzing total or average communication, there is no need to consider receiv-

ing complexity as the number of bits sent by all parties equals the number of bits
received. But, when considering bottleneck complexity, one must make a distinction
between the two. For example, if many parties send messages to one party, that
party’s receiving bandwidth becomes the bottleneck. In fact, there are MPC proto-
cols such as [37] that are bottlenecked by the receiving bandwidth of some of the
parties.



The More the Merrier: Reducing the Cost of Large Scale MPC 701

Single Online, Single Unpack

Ours t < n/3 [20] t < n/2 [10] t < n [16]

Comm O(|C|/n) O(|C|) O(|C|) O(s|C|)
Comp O(log n|C|) O(log n|C|) O(log s|C|) O(s|C|)

Fig. 1. Asymptotic complexities for the offline phase of four protocols. In our variant,
and in that of [20], all parties participate throughout. In the other two protocols, the
state-of-the-art is run by a small committee: with an honest majority in column 4,
and a malicious majority in column 5. All values measure bottleneck costs, rather than
total costs. The online communication and computation cost for all four protocols is
O(C), and is not included.

probability 1 − negl(s), to contain an honest majority. We consider performing
the entire computation within that committee, using the state-of-the-art proto-
col for the t < n/2 setting by Chida et al. [10]. Finally, a similar folklore solution
is to select a much smaller committee, with the weaker guarantee that at least
one honest party is chosen, and then run the entire protocol using the state-
of-the-art construction for the t < n setting, such as the protocol by Damg̊ard
et al. [16], or any of the follow-up work. Furukawa and Lindell requires O(|C|)
communication per party, and the folklore solution using an honest majority
committee requires O(|C|) communication for each party on the committee,
yielding the same bottleneck complexity. The folklore solution with a malicious
majority has bottleneck complexity of O(s|C|). In comparison, our offline phase
has bottleneck complexity of O(|C|/n). However, as mentioned previously, our
online phase has bottleneck complexity of O(|C|) as well, and our computational
cost is higher than that of the first folklore solution. More importantly, compu-
tation is the major bottleneck in our performance. In the next two tables, we
address these two issues, strengthening the folklore solutions in analogous ways.

Single Online, Distributed Unpack

Ours t < n/2 t < n

Comm O(s|C|/n) O(s|C|) O(s2|C|/n)
Comp O(s log n|C|/n) O(s log s|C|/n) O(s2|C|/n)

Fig. 2. In our protocol variant, triples are unpacked in many parallel committees, and
then transferred back to the full set of size n. Costs are measured through the transfer
step, and exclude the cost of the online phase. In the column labeled t < n/2, many
parallel committees, each with an honest majority, prepare double-sharings that will
be used by a single online committee of size O(s). In the column labeled t < n, many
parallel committees, each with at least one honest participant, generate multiplication
triples that will be used by the full network of size n. The online phase still requires
O(|C|) communication and computation for all three protocols, and is not included in
the Table.



702 S. D. Gordon et al.

Distributed triple generation: Instead of unpacking all triples in a single
committee, we improve our computational complexity by a factor of O(n/s) by
unpacking the triples in O(n/s) small committees, each large enough to guaran-
tee at least one honest member. The resulting triples are then transferred to a
single online committee, still of size n.

Making an analogous change to the two folklore solutions,9 we consider con-
structing triples in parallel, using O(n/s) committees – honest majority com-
mittees in the first variant, and malicious majority committees in the second
– each responsible for an O(s/n) fraction of the pre-processing. When using
honest majority committees, we analyze the case where the double sharings are
transferred to a single online committee of size O(s), which is guaranteed to
have an honest majority with all but negligible probability. When using mali-
cious majority committees, we distribute the multiplication triples to the entire
network of size n. (In both cases, these choices minimize the bottleneck com-
plexity. We consider using a small online committee, both for ourselves, and for
the t < n setting, in Sect. 5. This reduces total communication complexity, but
introduces the bottleneck of having a small receiving committee.) We summarize
these comparisons in Fig. 2.

Asymptotically, all three protocols improve equally in computational cost, by
a factor of O(s/n). However, because honest majority committees are about 18X
larger than malicious majority committees, in concrete terms, our computational
cost is quite similar to protocol using honest majority committees. We discuss
in more detail in Sect. 5.
Distributed online computation: To claim an end-to-end protocol that has
sub-linear communication, we present a final set of protocol variants in which
we distribute the online computation. These three protocol variants begin as in
the previous set of protocols, but they stop short of transferring the multiplica-
tion triples to an online committee. Instead, each of the O(n/s) committees is

Distributed Online

Ours t < n/2 t < n

Offline Online Offline Online Offline Online

Comm O(|C|/n) O(s|C|/n) O(s|C|/n) O(s2|C|/n) O(s2|C|/n) O(s|C|/n)
Comp O(s log n|C|/n) O(s|C|/n) O(s log s|C|/n) O(s|C|/n) O(s2|C|/n) O(s|C|/n)

Fig. 3. Here we distribute the work done in the online phase, assigning O(s|C|/n) gates
to each of the O(n/s) committees. In all three protocols, the material generated during
pre-processing remains with the same committee for the online phase. The state of the
online phase is transfered from one committee to the next.

9 Note that when we assume t < n/3, we cannot construct committees of size O(s)
that have the same corruption threshold. We therefore do not consider running
Furukawa and Lindell in parallel. We could do so with larger, committees, or we
could consider a smaller threshold, but we feel the current set of comparisons suffices
for demonstrating the value of our protocol.



The More the Merrier: Reducing the Cost of Large Scale MPC 703

responsible for O(s|C|/n) triples (or double sharings, when t < n/2), and holds
them until the online phase. Each committee is then responsible for a propor-
tionate “chunk” of the circuit during the online evaluation. All three protocols
benefit similarly from the reduced cost of the online evaluation.

In Fig. 3, we have separated the online cost in this protocol. In some settings,
it might make sense to stop the protocol after the offline phase, leaving the triples
in their committees until they are needed by some other group for an online
computation. For example, we can imagine using such a protocol in a service
that sells computation triples. The cost of producing the triples diminishes with
n, and the small unpacking committees can then transfer these triples, as needed,
to paying customers. The receiving customers might have a malicious majority,
and the cost of receiving the transfer would be minimal in comparison to the
cost of securely generating the triples on their own. In this setting, the cost of
receiving these triples (which show up in Fig. 3), and the cost of using them in an
online evaluation, can both be reasonably ignored by the triple service provider.

This last protocol variant combining distributed unpacking and a distributed
online phase gives us the following main theorem.

Theorem 1 (Informal). Assuming the existence of a PRG, our distributed
online protocol generates |C| multiplication triples with O( |C|

n ) bottleneck com-
plexity and O( s log n|C|

n ) bottleneck computation for a statistical security s, achiev-
ing security against a static, malicious adversary corrupting t < n/3 parties.

1.3 Related Work

A full survey of the MPC literature is out of scope for this work, so we only
discuss the results that are most directly relevant. Damg̊ard and Nielsen [15]
introduced the technique of using double sharings for realizing multiplication
with O(|C|) per-party communication in the honest majority setting. The tech-
nique has been used in many follow-up results [5,10,13,20,23,24,33] for a variety
of efficient MPC protocols with honest majority. The technique of using mul-
tiplication triples was first introduced by Beaver [4]. Since then this technique
has been extremely fruitful in the setting of malicious majority with a number
of works proposing improved constructions of multiplication triples based on
oblivious transfer (OT) [19,26,27] and based on somewhat-homomorphic encryp-
tion [16,32].

Several works have looked into achieving sub-linear communication for MPC
in the honest majority setting. In particular, packed secret sharing was originally
introduced by Franklin and Yung [18]. We use the packed version of the protocol
due to Damg̊ard and Nielsen [15] that was first presented in [13]. Other recent
works such as Leviosa [25] and Ligero [2] have also used packed secret sharing to
achieve efficiency for MPC-in-the-head [28] and zero-knowledge proofs. Damg̊ard
and Ishai [12] present a protocol for MPC in a client/server model that leverages
packed secret sharing. Their construction has total communication complexity



704 S. D. Gordon et al.

of O(n|C| log |C|), but when the number of clients is constant, they can remove a
factor of n, achieving performance that improves as they introduce more servers.
Very recently, Garay et al. [21] study the feasibility of constructing sub-linear
communication MPC and demonstrate some challenges to achieving sub-linear
communication in MPC, especially when |C| is small.

Using committees to speed up performance of MPC has been studied start-
ing with the work of Bracha [8]. Since then several works [11,17,29,36,38] have
looked into using committees to reduce communication in MPC over large num-
bers of parties. Additionally, another line of work has leveraged committees to
improve the communication locality (i.e., how many parties a party must talk
to as part of the protocol) of MPC protocols [6,9]. Finally, similar to our work,
Scholl et al. [35] also consider how one can outsource triple generation when an
online committee does not want to do the work on its own. They propose several
approaches for outsourcing triple generation for MPC.

MPC protocols secure against additive attacks were introduced by Genkin
et al. [24]. Then, Genkin, Ishai, and Polychroniadou [23] introduced the notion
of a linear attack and showed that the semi-honest variant of packed Damg̊ard-
Nielsen given by Damg̊ard et al. [13] is secure up to linear attack. For details see
Genkin’s thesis [22].

Finally, the notion of bottleneck complexity for MPC communication was
originally introduced by Boyle et al. [7].

2 Preliminaries

2.1 Secret Sharing

We use two types of secret sharing schemes. Packed secret sharing, in which a
secret share is a single evaluation of a polynomial that encodes � secrets, and
additive secret sharing, in which a secret share is a random field element, and
the shares sum to the secret. We only define notation here, and do not bother
to define security or correctness of secret sharing.
Packed secret sharing:
We let [r]d represent a secret sharing of r using a degree d polynomial, and we
denote party Pi’s share with [r]id.
share(d, r): outputs n shares of a degree d polynomial (d, s1, . . . , sn).
reconstruct(d, s1, . . . , sj): given j shares, with j > d, output r ∈ F

�.
reconstruct(d, i, s1, . . . , sj): given j shares, with j > d, output ri ∈ F, which is the
value stored in the ith packing slot. In practice, we never extract a single value,
as we can unpack all values using a pair of FFT / IFFT operations. However,
notationaly, it is convenient to refer to the value recovered from a single slot.
Additive secret sharing:
We fix the size of our additive secret sharing to that of the online committee,
Com. Our additive secret shares will always be a sum of |Com| field elements.
aShare(x): outputs x1, . . . , xCom such that x =

∑
i xi. In practice, this can be

done by generating the first Com− 1 shares pseudorandomly, and then choosing
the final share as xCom = x − ∑Com−1

i=1 xi.
reconstruct(x1, . . . , xn): outputs

∑
i xi.



The More the Merrier: Reducing the Cost of Large Scale MPC 705

3 Multiplication Triple Generation

Overview: We describe a maliciously secure protocol with t = εn corrupted
parties, for ε ∈ [0, .5). We let h = n − t denote the number of honest parties,
and we let � = n/2− εn denote the packing parameter used in our secret sharing
scheme. We will use polynomials of degree d = �(n−1)/2�, and d′ = n−1. How-
ever, to simplify the notation, we will assume n is odd, and use d and 2d as the
degrees of these polynomials. For simplicity, we describe only one protocol vari-
ant. We describe the protocol as having a single unpacking committee, denoted
Com, and, we allow the committee size to be flexible. The extension to multiple,
parallel unpacking committees is straightforward. If |Com| < n, we elect a ran-
dom subset of the parties to the committee. To ensure an honest member with
probability 2−s, it suffices to elect a committee of size |Com| ≤ −s/ log ε. This is
done by performing a secure coin flip among the n parties, and using the result
to select parties at random, with replacement, −s/ log ε times. (If the committee
happens to be smaller than Com because there are collisions in the sampling,
this improves performance without impacting security.)

In steps 1 and 2 of the protocol, the parties exchange secret shares of random
values, and use the public Vandermonde matrix M to extract O(h) packed secret
values. In step 3, they perform a degree check on all the shares sent in the 1st
step, ensuring that the shares of all honest parties lie on a degree d polynomial, as
expected. This limits any future modifications by the adversary to t < d shares,
eliminating the linear attack described previously, and limiting the adversary to
simple additive attacks.

In Step 4, the parties perform local multiplication on their packed shares,
doubling the degree of the polynomial, and blind the result using their share of
[r]2d. This is sent to the dealer, P0, who extracts the blinded, packed secrets,
and reshares them, reducing the degree back down to d.

The resharing can be sent only to the first d + 1 parties. At this point in
the protocol, any further deviations by the adversary will only create additive
attacks, which we do not bother to prevent. (These attacks will be caught in the
online phase, through a call to macCheck, before the outputs are revealed.) We
therefore do not need the redundancy of extra shares.

In step 6, the d + 1 parties receiving shares of the blinded product re-share
their shares using the additive secret sharing scheme. These additive shares are
sent to the committee(s) of size Com, which might be of size n or of size O(s).
In step 7, the committee unpacks their shares of the triples, homomorphically,
resulting in additive shares [a]a, [b]a and [ab]a.

The ideal functionality is presented in Fig. 4. We note that the adversary
is allowed to specify what output shares they would like to receive (but learns
nothing about the shared value, which is still random). This is because we do
not try to prevent a rushing attack in which the adversary sees the messages sent
by the honest parties in the first step of the protocol, prior to fixing its own first
message. This attack is benign, and is commonly allowed in prior work. More
importantly, the adversary is allowed to specify an additive attack for every



706 S. D. Gordon et al.

triple produced. Instead of receiving [a]a, [b]a and [ab]a, the output committee
instead receives [a]a, [b]a and [ab + δ]a

Ideal functionality for triple generation secure up to
additive attack: triple

Adversarial Behavior: The adversary gets to specify the share val-
ues they receive from the functionality. Additionally, the adversary
inputs a vector δ ∈ F .

Input: The functionality takes no input.

Computation: For i ∈ {1 }
1. Sample random ai and bi and compute ci = ai · bi + δi.
2. For each i ∈ [ ], additively secret-share ai, bi, ci to Com.

Output: Each party in Com receives a share of ai, bi, and ci for
i ∈ {1 }.

Fig. 4. This is a randomized functionality that outputs additive shares of h� = O(n2)
multiplication triples to a designated committee, Com. Note that although no parties
have input, and only |Com| ≤ n parties have output, the protocol for realizing the
functionality is always an n-party protocol. The produced triples are secure up to
additive attack.

Theorem 2. Let t = εn for some ε ∈ [0, .5), let h = n − t, and let � = n/2 −
εn. Then the protocol for unauthenticated triple generation in Fig. 5 securely
realizes the functionality of Fig. 4 in the presence of an active, computationally
unbounded adversary corrupting t parties.

Proof. We define A to be the set of corrupted parties, and H to be the set of
honest parties. The simulator begins by selecting randomness on behalf of all
honest parties, and executes the protocol on their behalf, exchanging messages
with the adversary as needed.

In the first step of the protocol, for each Pi ∈ A, when Pi calls share(d, r̃i),
share(d, ãi) and share(d, b̃i), the simulator extracts the values r̃i, ãi, b̃i from
the shares sent to the honest parties. If the values are not consistently defined
(because the degree of the polynomial is too high), S sets the shares to ⊥, and
continues the simulation until the degree check in Step 3, at which point S always
aborts. Otherwise, S computes (r(1), . . . , r(h)), (a(1), . . . ,a(h)), (b(1), . . . ,b(h))
using the extracted values, the honest randomness, and the local multiplication
with the Vandermonde matrix, M .

Prior to simulating the final message in which additive shares are sent to
the output committee, Com, S extracts δ, the value used as an additive attack
by A, and submits this to the functionality. There are three places in which
the adversary might introduce an additive attack; the simulator extracts three
values, δ0, δ1, δ2, some of which might be 0, and sums them to recover δ.



The More the Merrier: Reducing the Cost of Large Scale MPC 707

Triple generation (Πtriple)

Inputs: No parties have any input.

1. Pi samples random r̃i, ãi and b̃i, and calls share(d, r̃i),
share(2d, r̃i), share(d, ãi) and share(d, b̃i).

2. Party Pi receives:
([̃r1]id, . . . , [̃rn]id), ([̃r1]i2d, . . . , [̃rn]i2d), ([ã1]

i
d, . . . , [ãn]id) and

([b̃1]
i
d, . . . , [b̃n]id).

and computes:

[r(1)]id, . . . , [r
(h)]id = M · ([̃r1]id, . . . , [̃rn]id),

[r(1)]i2d, . . . , [r
(h)]i2d = M · ([̃r1]i2d, . . . , [̃rn]i2d),

[a(1)]id, . . . , [a
(h)]id = M · ([ã1]

i
d, . . . , [ãn]id), and

[b(1)]id, . . . , [b
(h)]id = M · ([b̃1]

i
d, . . . , [b̃n]id)

3. The parties call [γ]d ← rand.
The parties call Fcoin to get random coefficients c1, . . . , c3h ← F.
They compute [ζ] = [γ]d + n

i=1 ci[ai]d + cn+i[bi]d + c2n+i[ri]d.
They open ζ, and verify that it is of degree d. If not, they abort.

4. For j ∈ {1, . . . , h}, Pi computes [m(j)]i2d = [a(j)]id ·[b(j)]id+[r(j)]i2d,
and sends [m(j)]i2d to P0.

5. For j ∈ {1, . . . , h}, P0 receives ([m(j)]12d, . . . , [m
(j)]n2d).

P0 reconstructs the packed secrets: m(j) =
reconstruct(2d, [m(j)]12d, . . . , [m

(j)]n2d). P0 then calls share(d,m(j))
and sends the first d + 1 shares to P1, . . . , Pd+1.

6. For j ∈ {1, . . . , h}, each Pi ∈ {P1, . . . , Pd+1} receives [m(j)]id from
P0, and computes
[c(j)]id = [m(j)]id − [r(j)]id = [a(j) · b(j)]id.
Pi calls aShare([a(j)]id), aShare([b

(j)]id), and aShare([c(j)]id).
7. For each j ∈ {1, . . . , h}, each Pk ∈ Com receives

([[a(j)]1d]
k
a , . . . , [[a(j)]nd ]ka ), ([[b(j)]1d]

k
a , . . . , [[b(j)]nd ]ka ), and

([[c(j)]1d]
k
a , . . . , [[c(j)]nd ]ka ).

For i ∈ {1 }, j ∈ {1, . . . , h}, Pk computes:
[a(i,j)]ka = reconstruct(d, i, [[a(j)]1d]

k
a , . . . , [[a(j)]nd ]ka ).

[b(i,j)]ka = reconstruct(d, i, [[b(j)]1d]
k
a , . . . , [[b(j)]nd ]ka ).

[c(i,j)]ka = reconstruct(d, i, [[c(j)]1d]
k
a , . . . , [[c(j)]nd ]ka ).

Output: Each Pk ∈ Com outputs [a(j)]ka , [b(j)]ka , [c(j)]ka
| |

j=1

Fig. 5. Protocol for computing additive shares of h� = O(n2) triples. The shares
are delivered to a designated committee, Com. For |C| triples, this protocol must be
repeated |C|/h� times. M ∈ F

h×n is a Van Der Monde matrix.

This is done for each of the h packed shares of triples. For ease of notation,
we drop the superscript and only describe the simulation for one of these h val-
ues. Recall that P0 denotes the dealer, and Com is the set of parties receiving
output. We let D+ denote the set {P1, . . . , Pd+1}.



708 S. D. Gordon et al.

If P0 ∈ H, S recovers m after the malicious parties send shares of [m]2d to P0

in Step 4. He then computes δ0 = m − (ab + r). If P0 ∈ A, S sets δ0 = 0l.

If (P0 ∈ A) ∧ (D+ ⊂ H):
S recovers m by interpolating the shares sent from P0 to D+ in Step 5. He
computes δ1 = m − (ab + r). If P0 ∈ H, or D+ 	⊂ H, S sets δ1 = 0l.

If D+ 	⊂ H ∧ Com ⊂ H:
S recovers ãb by summing the shares sent from the malicious parties in D+

to Com in Step 6 (using the stored values of any any honest parties in D+ to
fill in the gaps) and interpolating the resulting polynomial shares. He computes
δ2 = ãb − ab. If D+ ∈ H, or Com 	⊂ H, S sets δ2 = 0l.
S sets δ = δ0 + δ1 + δ2.

Finally, S calls Ftriple(δ), and returns the output from the functionality to A.

We now argue that S produces a joint distribution on the view of A and the
output of honest parties that is statistically close to A’s view in the real world,
together with the honest output in a real execution.

We first argue that if S does not abort, the δ value extracted by S is correct.
That is, that it matches the δ imposed in the real world output under the same
adversarial behavior. Because S does not abort, the values a,b and r that are
extracted in the first step are well defined. There are only 3 other messages sent
in the protocol: [m]2d sent to P0, the response [m]d sent to D+, and additive
sharing of [ab]d sent from D+ to Com. In each of these 3 cases we show that the
δ values that the adversary is able to introduce are independent of the values
of a or b. We note that this is not true when there is a linear attack since the
δ value in that case is allowed to be a linear combination of the packed values.
Namely, we prove the following claim.

Claim. If S does not abort, then for any values a, b, and δ ∈ F
l, we have that

Pr[a = a ∧ b = b|δ = δ] = Pr[a = a ∧ b = b]

Proof. Since S aborts whenever the degree of the initial sharing is too high, we
know that [a], [b], and [r] are all shared via degree t polynomials, and thus the
values a,b, r extracted by S are well defined. We now analyze all the ways in
which a malicious A can introduce a non-zero δ.

If P0 ∈ H, then δ0 is extracted by P0 after receiving shares of [m]2d in Step 4. In
this case, Pi ∈ A can modify his share [m]id to [m′]i = ([a]id + δa) · ([b]id + δb) +
[r]i2d + δm for adversarially chosen δa, δb, and δm, where each of these can be
arbitrary functions of the t < d shares received by the malicious parties in Step
1. Rewriting this as [m′]i = ([a]id · [b]id) + (δa · [b]id) + (δb · [a]id) + δm, we see that
Pi can contribute a value δi = (δa · [b]id)+(δb · [a]id)+δm, which is also a function
of at most t shares of a and b. Thus, the jth value in δ0, δj

0 =
∑

Pi∈A sj
i δ

i

where the sj
i are the corresponding Lagrange coefficients. Since δj

0 is a linear
combination of these δi values, it follows that it is also independent of a and b.



The More the Merrier: Reducing the Cost of Large Scale MPC 709

If (P0 ∈ A) ∧ (D+ ⊂ H), then S extracts δ1 from the values sent to D+ by the
dealer in Step 5. Because the sharing is of degree d = |D+| − 1, whatever P0

sends in this step is a consistent sharing of some value, m′. This value might
be some function of ab + r, but because the P0 has no information about r, it
follows that δ1 is independent of ab.

Finally, if D+ 	⊂ H ∧ Com ⊂ H, δ2 is extracted from the shares sent to Com.
Thus, δj

2 =
∑

Pi∈A sj
i δi where δi is the change introduce by Pi to his Shamir

sharing of ab (during the process of additively sharing the Shamir share). Since
this is again a linear combination of at most t shares of ab, it is independent of
a and b.

We can now complete the proof of Theorem 2. It is easy to see that the
shares included in A’s view are independent of the values ai,bi, ri chosen by
S. Moreover, by Claim 3, we know that, as long as the degree check does not
fail, for any A, the value of δ is also independent of these values. In the real-
world, the honest parties would output these shares while in the ideal-world they
output the shares chosen by Ftriple. Since the view of A is independent of these
values, both sets of honest outputs are consistent with A’s view showing that
the simulation is perfect. Finally, since the degree check succeeds with all but
negligible probability, we have that the simulated joint distribution is statistically
indistinguishable from that of the real world, proving the theorem.

4 Protocols for Circuit Evaluation

For input sharing and the online phase we use the well-known SPDZ proto-
col [16]. However, as SPDZ uses authenticated triples, the online protocol first
needs to “authenticate” the triples produced by our offline phase. This authenti-
cation protocol is very similar to the protocols found in prior work ([3,14,16,32]),
and appears in Sect. 4.1. We note that while the cost of authenticating the triples
is asymptotically the same as the cost of using them for circuit evaluation, this
does result in approximately a factor of 7 increase in communication in the online
phase, when compare with the online phase of SPDZ. We leave reducing this as
an interesting open question.

4.1 Authenticating the Triples

The previous protocol provides triples that are un-authenticated. We now use
these unauthenticated triples to construct authenticated triples of the form
(a, b, c, αa, αb, αc), where ab = c, and α, which is unknown to the parties, is
used to authenticate all of the triples.

For a committee to generate m = O( s|C|
n ) authenticated triples, they need to

use 8m unauthenticated triples. We describe the protocol in the Ftriple-hybrid
model, allowing the parties on this committee to receive these unauthenticated
triples from that functionality. We remind the reader that in practice, the proto-
col realizing Ftriple is executed in the full network. The remainder of the ΠTripAuth



710 S. D. Gordon et al.

TripAuth

Inputs: None.

Computation: Sample α ← F, and a random additive sharing, [α].

For i ∈ [m]:
– Sample ai, bi ← F, and compute ci = aibi.
– Sample random additive sharings, [ai], [bi], [ci], [αai], [αbi], [αci]

Output: [α], [ai], [bi], [ci], [αai], [αbi], [αci]
m

i=1

Fig. 6. An ideal functionality for constructing authenticated triples. The functionality
is parameterized by an integer m indicating how many authenticated triples should be
output.

protocol is carried out only by the smaller committees and only requires a dis-
honest majority.

Our construction is almost identical to the one used in SPDZ. The parties
first choose an additive secret sharing of a random authentication value, α. They
take one triple, ([a], [b], [c]), and compute ([αa], [αb], [αc]) using 3 other triples,
one for each multiplication (as in the classic result by Beaver [4]).10 We denote
this procedure by Mult in the protocol description.

Because the triples are additively shared and unauthenticated, it is impor-
tant to note that the adversary can modify the shared value at anytime. To
verify that we have a valid authenticated triple after performing these multi-
plications, we sacrifice one authenticated triple against another to catch any
malicious modifications, precisely as in prior work.

The only difference between our construction and that of SPDZ (and the
follow-up work) is in the way we instantiate the Mult sub-routine. While we use
unauthenticated triples, as just described, SPDZ uses somewhat homomorphic
encryption to generate these authenticated triples (prior to the sacrifice step).
With that approach, once the parties hold ([a], [b], [c]), the adversary is unable
to modify the result of Mult(a, α) or Mult(b, α). However, because they need
to refresh the ciphertext encrypting c, the adversary can introduce an additive
shift, resulting in Mult(c + δc, α). In our realization of Mult, the adversary can
introduce this shift on any of the inputs to Mult. For this reason, we provide
a complete proof of security for the authentication step. The functionality and
protocol realizing this authentication are given in Figs. 6 and 7 respectively.

Complexity. After receiving the 8M unauthenticated triples, each party sends
12M field elements in the 6M executions to the Mult subroutines, and another

10 For example, to compute [αa] from [α] and [a] using triple (x, y, z), the parties open
a + x and α + y. Each locally fixes its share by computing (a + x)[α] + (α + y)[a] −
(a + x)(α + y) + [z].



The More the Merrier: Reducing the Cost of Large Scale MPC 711

ΠTripAuth

Inputs: None.
Protocol:
1. The parties call [α] ← rand.
2. The parties call triple to generate 8m triples. We denote the first

2m of these triples by [ai], [bi], [ci], [ai], [bi], [ci]
m

i=1
.

3. The parties call
[aα] = Mult(a,α), [bα] = Mult(b, α), [cα] = Mult(c, α) and
[a α] = Mult(a , α), [b α] = Mult(b , α), [c α] = Mult(c , α)

4. The parties call (r1, . . . , rm) ← rand.
5. For i ∈ [m], the parties

– compute and open ai = ri · [ai] − [ai], and bi = [bi] − [bi].
– The parties compute:

[γi] = ri[ciα] − [ciα] − bi[aiα] − ai[biα] − aibi[α]

[ρi] = ri[aiα] − [aiα] − ai[α]

[σi] = [biα] − [biα] − bi[α]

6. The parties call (τ1, . . . , τ3m) ← rand.
7. The parties compute

[ζ] =

m

i=1

τi[γi] +

m

i=1

τm+i[ρi] +

m

i=1

τ2m+i[σi]

The parties open [ζ] using a commit-and-reveal. If ζ = 0, abort.

Output: Each party outputs its shares of
[α], ([ai], [bi], [ci]), and ([aiα], [biα], [ciα]).

Fig. 7. Protocol for sacrificing some triples in order to authenticate others. The authen-
ticated triples are then used in the online phase. The protocol is in the Ftriple-hybrid
model (Fig. 4), and realizes the FTripAuth functionality (Fig. 6). The Mult sub-routine is
the standard protocol by Beaver [4] for securely computing [xy] from [x] and [y].

2M field elements in the sacrifice step. The rest of the communication can be
amortized, as it is independent of m.

It is known that we can further reduce the number of unauthenticated triples
needed [31]. In the sacrifice step, instead of using 2 independent triples, we can
use (αa, αb, αc) and (αa′, αb, αc′), where b was used twice. In this case, we could
reduce communication per triple in our offline phase by 12.5% (by sending half as
many b values), and we can reduce the number of triples needed in the ΠTripAuth

protocol by 12.5% (because we only multiply b with α and not b′.)11

11 Note that our offline phase has a computational bottleneck, so reducing the commu-
nication cost per triple might not lead to large improvement in runtime, though it
still may reduce the dollar cost of communicating. Reducing the number of triples
needed will reduce end-to-end runtime.



712 S. D. Gordon et al.

Theorem 3. The protocol ΠTripAuth securely realizes FTripAuth in the Ftriple-
hybrid model, in the presence of an active adversary corrupting all but one party.

Proof. The proof of Theorem 3 follows from prior work and we defer it to the
full version.

4.2 Providing Input and MACCheck

For providing input, we note that SPDZ uses authenticated random values
([r], [αr]) to mask the inputs. We can use the shares of either a or b from an
authenticated triple in place of these random values.

Finally, as in SPDZ, prior to reconstructing the output, we perform a MAC-
Check on all values opened during the protocol. Specifically, as in SPDZ, we do
this by opening α to all parties. The parties can then perform a batched MAC-
Check on all values that were publicly opened during multiplication. For the
parties providing input, the committee additionally opens [αr] to the relevant
party, allowing them to locally MACCheck the masks r that they used to hide
their inputs.

As these protocols, and the corresponding functionalities, are exactly as
described in SPDZ and we omit their descriptions here.

5 Optimizing Large-Scale MPC

Having presented the components of our protocol in Sects. 3 and 4, we now
describe trade-offs that result from various choices of committee sizes. In the
process we identify several standard, but critical optimization techniques, and
we identify communication and computation bottlenecks. We also provide a
more in-depth analysis of the enhanced “folklore” schemes described in Sect. 1.2,
explaining how these compare to our work.

5.1 Protocol Optimizations

We make heavy use of the following two standard optimization techniques. While
these are not new, we briefly describe them here for completeness.

Pseudorandom share transfer: Our first optimization technique allows us
to transfer an additively shared value using very low communication by using a
PRG. Suppose a party P wants to additively secret share a value s to a committee
Com containing S parties. P pre-shares a PRG seed si with each party Pi in Com.
Then, for all but the last party in Com, both P and Pi ∈ Com compute a share
as [s]i = G(si), and P computes s − ∑s−1

i=1 [s]i and sends this value to PS as
his share. In this way, P can share a secret with a committee of any size while
communicating only one field element. If we start with an additive secret sharing
of s across a committee Com1, using the same technique, we can transfer this
shared value to another committee Com2 (of arbitrary size) by having each party
in Com1 send one field element. We observe that this technique does not work for



The More the Merrier: Reducing the Cost of Large Scale MPC 713

Shamir-shared values. Instead, the natural parallel (e.g., as described by [20,34])
can only save, approximately, a factor of 2 in the communication.

Amortization: A second optimization that we use extensively in all of our
protocols is amortization. Specifically, we rotate the roles in our protocol to
ensure that the communication and computation loads are split equally across
all parties. For example, we rotate the party serving as the dealer (P0) in Steps 4–
5 of Fig. 5, and we rotate the party receiving the real share in the pseudorandom
share transfer described above.

5.2 Protocol Bottlenecks

To simplify the analysis of both our and related protocols, we decompose our
protocol into phases, allowing us to analyze the bottlenecks of each phase sepa-
rately.

1. The Vandermonde phase corresponds to Steps 1–2 of Fig. 5 in which parties
generate doubly-shared (packed) random values. This phase is always run by
all n parties and produces O(|C|/n) packed secrets. It requires each party to
send (and receive) O(n) shares (one to each party) to produce O(n) packed
secrets, resulting in O(|C|/n) bottleneck communication.
For computation, for every n packed secrets, each party must produce its own
packed share, requiring O(n log n) field operations using an FFT, and must
perform multiplication by the Vandermonde matrix M , which can be done
by an IFFT in the same time. Thus, we have a bottleneck computation of
O(|C|/n2 · n log n) = O(log n|C|/n) field multiplications.

2. The Triple Gen. phase corresponds to Steps 3–5 in Fig. 5. This phase is again
run by all n parties, and we rotate the dealer to ensure that each party plays
the role of the dealer in a 1/n fraction of the O(|C|/n) executions. Each time
a party is the dealer, it receives and sends O(n) shares for each packed triple
and also performs an iFFT and an FFT to produce the new sharing. Thus,
the bottleneck communication is O(|C|/n2 ·n) = O(|C|/n) field elements and
the bottleneck computation is O(log n|C|/n) field operations. We note that
Step 3 (degree check) is only performed once per O(n2) triples, and thus will
not be the bottleneck.

3. The Transfer phase corresponds to Step 6 in Fig. 5. In this phase all n parties
sub-share their (Shamir-shared) packed triples to the committee Com. The
cost of this step varies a good deal in our different protocol variants, so we
defer the discussion.

4. The Unpack phase corresponds to Step 7 in Fig. 5. In this phase the parties in
Com perform local computation to unpack the received triples into additively
shared triples. This requires no communication, but requires an IFFT and
thus O(n log n) field operations for every n shares.

5. The Online phase corresponds to the online protocols described in Sect. 4.



714 S. D. Gordon et al.

5.3 Protocol Variants

We now describe several different protocol variants for realizing secure
committee-based MPC. For each of these variants, we analyze its asymptotic
communication and computation complexity. Additionally, for each of these pro-
tocol variants, we analyze analogous committee-based protocols built on top of
the existing protocols [10,16,20], as described briefly in Sect. 1.2, to provide an
apples-to-apples comparison to our work. For ease of reference, we duplicate the
tables that appeared in Sect. 1.2 here.

Single Online, Single Unpack

Ours t < n/3 [20] t < n/2 [10] t < n [16]

Comm O(|C|/n) O(|C|) O(|C|) O(s|C|)
Comp O(log n|C|) O(log n|C|) O(log s|C|) O(s|C|)

Fig. 8. Asymptotic complexities for the offline phase of four protocols. In our variant,
and in that of [20], all parties participate throughout. In the other two protocols, the
state-of-the-art is run by a small committee: with an honest majority in column 4,
and a malicious majority in column 5. All values measure bottleneck costs, rather than
total costs. The online communication and computation cost for all four protocols is
O(C), and is not included.

Single Committee: The first protocol variant we consider is one that directly
follows the protocol specified in Fig. 5. That is, we use a single committee Com
for performing both the unpack and online phases. We consider both a commit-
tee of size O(s), and the case where Com is the set of all n parties. In the former
case, the communication bottleneck (for the offline portion) is the cost for the
committee parties to receive the packed secrets. Since we have O(|C|/n) packed
secrets, with n parties holding a share of each, there are a total of O(|C|) shares
that need to be transmitted to Com. Using pseudorandom shares and amortizing
receiving cost, this requires each party in Com to receive O(|C|/s) field elements.
If, on the other hand, we let |Com| = n, then we can split the task of receiving
these shares across all n parties, resulting in O(|C|/n) bottleneck communica-
tion. We note that in this case, this also matches the bottleneck communication
in the Vandermonde and Triple gen. phases. In both of these options, the bottle-
neck communication of the online phase is O(|C|): given multiplication triples,
evaluating a multiplication gate requires O(1) communication by each party in
Com. In both cases, the computation bottleneck arises from the unpacking step,
where the parties in Com need to unpack O(|C|/n) packed shares, each requir-
ing O(n log n) field operations (for FFT), resulting in bottleneck computation of
O(log n|C|) field operations.

It is worth exploring the trade-off here between bottleneck complexity and
total complexity. We have added Fig. 9 to help do so. Because receiving shares is
a bottleneck, we lower the bottleneck complexity in the offline phase if we have
a bigger receiving committee. Put another way, using pseudorandom shares,



The More the Merrier: Reducing the Cost of Large Scale MPC 715

sending to a larger committee does not increase the total communication, but it
does distribute the cost of receiving that same data. On the other hand, when
we look at the cost of the online phase, computing in a smaller committee does
reduce the total communication. The question of which is preferable depends on
the application, and possibly on the incentive of the participants and the protocol
administrator. In some rough sense, a lower bottleneck complexity implies a
shorter run-time, while a lower total complexity implies a cheaper protocol,
financially. We note that the same comparison can be made for the protocol
using a single malicious majority committee in Fig. 10, and for the two protocols
with malicious majority committees in Fig. 11. We avoid the redundancy and do
not include the data in our figures.

Single Online, Single Unpack

Offline Online

|Com| = n |Com| = O(s) |Com| = n |Com| = O(s)

Bottleneck Comm O(|C|/n) O(|C|/s) O(|C|) O(|C|)
Total Comm O(|C|) O(|C|) O(n|C|) O(s|C|)

Bottleneck Comp O(log n|C|) O(log n|C|) O(|C|) O(|C|)
Total Comp O(n log n|C|) O(s log n|C|) O(n|C|) O(s|C|)

Fig. 9. We compare two variants of our protocol that was described in Fig. 10. In the
first column, the packed triples are re-shared with the full network, and unpacked by
all n parties. In the second column, the they are re-shared with a small, malicious
majority committee, and unpacked there.

For comparison purposes, we consider analogous protocol variants built from
existing protocols. First, consider the protocol of Furukawa and Lindell [20]
which is secure for t < n/3. Since we only have t < n/3, this protocol must
use all n parties for the entire computation resulting in an O(|C|) bottleneck
communication and O(|C| log n) computation (from the Vandermonde step). It
is easy to see that we achieve significant asymptotic savings in offline communi-
cation while matching the online communication and computation bottlenecks.
Second, consider the protocol of Genkin et al. [23]. This protocol also requires
t < n/3 and thus must use all n parties. However, this circuit works by convert-
ing the circuit C into a SIMD circuit at the cost of a O(log |C|) factor increase
in circuit size. This results in an offline and online bottleneck communication of
O(|C| log |C|/n), a O(log |C|) overhead on our protocols.

Next, we build a protocol using the honest majority (i.e., t < n/2) pro-
tocol from Chida et al. [10]. For this protocol we select random Com of size
O(s) that guarantees honest majority within the committee, and use this com-
mittee for the entire computation. Since the Chida et al. protocol cannot take
advantage of pseudorandom share transfer, there is no benefit to using a com-
mittee of size n. This results in a bottleneck communication of O(|C|) for both
the offline (i.e., Vandermonde) and online phases and O(|C| log s) computation



716 S. D. Gordon et al.

(from Vandermonde multiplication). We again significantly improve in the offline
communication. However, we are now slightly worse in bottleneck computation.

Finally, we consider a protocol variant using the malicious majority protocol
of Damg̊ard et al. [16]. For this setting, we choose a committee of size O(s) to
guarantee at least one honest party and run both the offline and online phase
inside this committee. Here, the higher complexity of triple generation becomes
the bottleneck resulting in O(s|C|) bottleneck communication and computation
for the triple generation. This communication is worse than our protocol by a
factor of O(n). The online communication of O(|C|) matches our protocol.

Single Online, Distributed Unpack

Ours t < n/2 t < n

Comm O(s|C|/n) O(s|C|) O(s2|C|/n)
Comp O(s log n|C|/n) O(s log s|C|/n) O(s2|C|/n)

Fig. 10. In our protocol variant, triples are unpacked in many parallel committees, and
then transferred back to the full set of size n. Costs are measured through the transfer
step, and exclude the cost of the online phase. In the column labeled t < n/2, many
parallel committees, each with an honest majority, prepare double-sharings that will
be used by a single online committee of size O(s). In the column labeled t < n, many
parallel committees, each with at least one honest participant, generate multiplication
triples that will be used by the full network of size n. The online phase still requires
O(|C|) for all three protocols, and is not included in the Table.

Distributed triple generation: We note that the bottleneck computation
cost of our protocol grows logarithmically in the number of parties. For our
protocol, this bottleneck comes from the cost of the unpacking phase. Thus,
our next protocol variant addresses this problem by distributing the unpacking.
Specifically, we elect many unpacking committees, each of size O(s) to guar-
antee at least one honest party per committee. These committees split the
triples to unpack, and then transfer the unpacked triples to the online com-
mittee (which can again be of size O(s) or include all n parties). Now each
unpacking committee only needs to unpack a O(s/n) fraction of the triples,
requiring O(|C|/n · s/n ·n log n) = O(s log n|C|/n) field operations. However, we
now need to communicate unpacked triples to the online committee. Since there
are O(|C|) unpacked triples held by committees that are each of size O(s), we
need to receive a total of O(s|C|) shares. If we use a committee of size O(s), this
requires O(|C|) bottleneck communication, but if we use an online committee of
size O(n), this only requires O(s|C|/n) communication. We note, however, that
the total communication of the protocol (across all parties) does not decrease,
and in fact, increases for the online computation. However, we still believe that
presenting the bottleneck complexity is the correct metric here as it measures
the end-to-end computation time for running the protocol, whereas the total (or
average) communication is measuring the total monetary cost of running the
protocol.



The More the Merrier: Reducing the Cost of Large Scale MPC 717

We now describe equivalent protocol variants using the protocols of Chida
et al. [10] and Damg̊ard et al. [16]. We do not provide further comparison to
Furukawa and Lindell [20] or Genkin et al. [23] as their protocols require t <
n/3 and thus cannot be used with smaller committees. For both of these base
protocols, the equivalent protocol variant is to elect many “offline” committees
that generate double-shared values (in the case of Chida et al.) or triples (in
the case of Damg̊ard et al.) and then transmit this material to a single online
committee. For Chida et al., since this protocol cannot take advantage of the
pseudorandom share transfer, the cost of transferring the offline material forms
the bottleneck of O(s|C|) field elements, a factor of O(n) worse than our best
deployment. However, the ability to use smaller committees, each generating a
O(s/n) fraction of the pre-processing material, results in O(s log s|C|/n) field
operations bottleneck computation. While this computation is asymptotically
better than what we achieve, we note that, concretely, the two are quite similar.
Specifically, the O(s) size committee necessary to guarantee honest majority
is much larger than the committee needed to guarantee at least one honest
party. Concretely, for 2−40 security, a committee of size 25 suffices for dishonest
majority, but a committee of size 430 is needed to guarantee honest majority. In
comparing computation between these solutions, we need to compare O(s log n)
for dishonest majority to O(s log s) for the honest majority setting. For n < 2150,
25 log n < 430 log 430. Taking other constants into account, our protocol requires
roughly 2X more computation.

The equivalent protocol variant using Damg̊ard et al. chooses many triple
generation committees of size O(s) and has them all transfer the produced triples
to the online committee. Since there are O(n/s) such offline committees, each
one is tasked with generating O(s|C|/n) triples for bottleneck communication of
O(s2|C|/n), which is O(s) times worse than what is achieved by our protocol.

Distributed Online

Ours t < n/2 t < n

Offline Online Offline Online Offline Online

Comm O(|C|/n) O(s|C|/n) O(s|C|/n) O(s2|C|/n) O(s2|C|/n) O(s|C|/n)
Comp O(s log n|C|/n) O(s|C|/n) O(s log s|C|/n) O(s|C|/n) O(s2|C|/n) O(s|C|/n)

Fig. 11. Here we distribute the work done in the online phase, assigning O(s|C|/n)
gates to each of the O(n/s) committees. In all three protocols, the material generated
during pre-processing remains with the same committee for the online phase. The state
of the online phase is transfered from one committee to the next.

Distributed Online Computation: Finally, we note that the online cost of
all our protocols considered so far grows linearly with |C|, as parties in the
online committee must send O(1) bits for each gate. To improve on this, we
design a protocol that also distributed the online computation. Specifically, we
elect many online committees, each of size O(s) to guarantee at least one honest



718 S. D. Gordon et al.

party per committee. These committees split the gates of the circuit to evalu-
ate, with each committees responsible for an O(s/n) fraction of the gates. Of
course, the intermediate gate outputs must be communicated to the commit-
tee responsible for the next gate. Using pseudorandom share transfer, this can
be done with each party sending O(1) field elements per gate. Thus, each party
needs O(s|C|/n) communication for computing the gates it is responsible for and
the same amount of communication to transfer the results of these gates. We
note that this deployment also reduces the communication of the offline phase.
The reason for this is that we no longer need to transfer unpacked triples to a
single online committee, instead each unpacking committee serves as an online
committee using the triples it unpacks. Thus, the cost of transfer in the offline
phase disappears, and with triple generation and Vandermonde steps as the new
bottleneck, we get O(|C|/n) bottleneck communication. Since the computation
in the offline phase is unchanged, this remains O(s log n|C|/n).

For a comparison, we consider similar protocol variants built using the proto-
cols of Chida et al. [10] and Damg̊ard et al. [16]. While we can similarly partition
the online phase in both these protocols, the advantages of doing so for Chida
et al. are limited. Since their t < n/2 protocol cannot take advantage of pseu-
dorandom share transfer, the cost to transmit the state between gates of the
circuit dominates, resulting in online communication of O(s2|C|/n), a factor of
O(s) worse than for our protocol. The Damg̊ard et al. protocol, on the other
hand, can benefit from pseudorandom share transfer, and can thus distribute
their online phase at the same communication cost as our protocol. However, in
their offline phase, the cost of triple generation becomes the bottleneck requiring
communication of O(s2|C|/n), which is O(s2) times worse than our offline cost.
The computational load for the distributed online protocol is the same as in the
distributed unpacking protocol regardless of which of the three protocols is used
as the building block. Thus, in the distributed online variant, our protocol is
strictly better than the variants based on either existing protocol, achieving a
factor of at least O(s) improvement in communication in both the online and
offline phases for Chida et al., and in the offline phase for Damg̊ard et al.

Triples as a service: A related protocol variant that we wish to mention briefly
is that of triples as a service. Here, our protocol would be used to produce triples,
distributed across multiple unpacking committees, for use by external parties for
their online MPC computation. In this case, we do not need to pay the cost for
transferring the triples to the clients or for the online phase. Thus, looking at
only the offline costs for our optimal deployment (the distributed online one),
we see that for this variant we save a factor of O(s) and O(s2) in communication
costs over Chida et al. and Damg̊ard et al. respectively.

6 Concrete Performance Estimation

In Sect. 5 we analyzed the asymptotic performance of our protocols and com-
pared them to committee-based protocols. Here we look at how these protocols



The More the Merrier: Reducing the Cost of Large Scale MPC 719

1 mbps 10 mbps 100 mbps 1000 mbps
n Ours DN Ours DN Ours DN Ours DN

1024 8898.0 384380.2 1366.2 39286.2 613.0 4776.8 539.6 1325.9
4096 2248.3 85541.2 369.6 8769.4 181.7 1092.2 162.9 324.5

16384 571.0 20274.3 101.6 2086.5 54.7 267.7 50.0 85.8
65536 144.9 5071.6 27.5 524.3 15.8 69.6 14.6 24.1

262144 36.8 1266.5 7.5 131.5 4.6 18.0 4.3 6.7
1048576 9.4 316.6 2.0 33.1 1.3 4.8 1.2 1.9

Ratio 33.8 - 43.2 16.2 - 28.8 3.6 - 7.8 1.6 - 2.5

Ratio Per Gate 9.7 - 12.3 4.6 - 8.2 1 - 2.2 .5 - .7

Fig. 12. Ours vs. Damg̊ard-Nielsen Pre-Processing Time. This describes the time, in
milliseconds, for n parties to generate one million (unauthenticated) triples (for our
protocol) or doubly-shared random values (for DN) as used by Chida et al. [10]. For
both we use the multiple unpacking committees protocol. Times are given for four
different network bandwidths from 1mbps to 1000mbps. The ratio is a range of ratios
between DN and our protocol. In the final row, we consider the fact that the online
phase of Chida et al. requires only 2 unauthenticated triples per gate, whereas our
online phase requires 7 unauthenticated triples per gate.

might perform in practice, taking into account the constants hidden in the big-
O notation, and the incomparable nature of communication and computation.
To better understand the concrete performance comparison, we built a proto-
type to estimate computation and communication time for two of the protocol
variants previously described: our own protocol using distributed unpacking and
distributed online evaluation, and the comparable protocol that uses parallel
honest majority committees for pre-processing (labeled t < n/2 in Fig. 11).

In both cases, we only measure the performance of the offline phase, as we
view this as our main contribution. Additionally, the offline phase of the dis-
tributed online protocol is precisely what is needed for the triples-as-a-service
application.

We also do not compare to the cost of parallel triple generation using mali-
cious majority committees. Asymptotically, this protocol is worse than the vari-
ant using honest majority committees, in both communication and computation
(Fig. 11). When considering the concrete costs reported in Overdrive [32], it
seems to compare less favorably than the honest majority protocol that we have
chosen for comparison. Also important is that the protocol we implemented looks
similar to our own (since both rely on DN). Nevertheless, a concrete comparison
with malicious majority committees would be interesting to add in the future.

6.1 Measurement Details

To estimate the performance of these protocols, we use different techniques for
computation and communication. For computation, we implement and run a
single party doing the full computation of our protocol to give an accurate esti-
mate of the bottleneck complexity. This is done using the implementation of



720 S. D. Gordon et al.

FFT from the libiop library [1]. All experiments were performed on a machine
with a dual core i7 cpu at 2.80 GHz.

To estimate the cost of communication, we took a somewhat different app-
roach. Since we do not have access to millions of compute nodes, instead of
building a full, networked test of our protocol, we precisely calculated the nec-
essary communication at each step, and estimated the communication time as
a function of the network bandwidth and latency. For this evaluation, we varied
the available bandwidth between 1 mbps, 10 mbps, 100 mbps, and 1000 mbps.

6.2 Results

The results of our empirical evaluation are given in Fig. 12 where we report the
time (in milliseconds) needed to produce one million (unauthenticated) triples.
Recall that our offline protocol generates unauthenticated triples, and we need 7
such triples for each gate in the online phase. In contrast, protocols using honest
majority in the online phase require only 2 unauthenticated triples per gate.
In the row labeled “Ratio Per Gate” we provide estimates with this distinc-
tion in mind. In the remainder of the Table, we consider the costs of generating
unauthenticated triples. At the top end of our performance, with approximately
1, 000, 000 parties on a 1000 mbps network, we can generate one million triples
in only 1.2 milliseconds. But, our best performance improvement over honest
majority committees is on lower bandwidth networks, where we can outperform
their pre-processing protocol by as much as 43.2X, and 12.3X when considering
authenticated triples. This is due to the fact that our biggest improvement is in
communication, at a slight cost in computation. We note that when considering
deployment of MPC across tens or hundreds of thousands of parties, it is quite
unlikely that all parties will have access to a high-speed (e.g., 1000 mbps) net-
work connection. For example, 4G LTE offers roughly 10 mbps. For synchronous
protocols such as ours, the bandwidth and latency of the slowest party becomes
that of all parties. Thus, we believe that our results for lower network speeds
more closely represent the use-cases we envision.

Acknowledgments. The authors would like to thank the anonymous reviewers for
many helpful comments. Arkady Yerukhimovich and Dov Gordon are supported by
NSF grant 1955264. Arkady Yerukhimovich is also supported by a Facebook Research
Award.

References

1. libiop. https://github.com/scipr-lab/libiop
2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-

linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.). ACM CCS 2017, pp. 2087–2104. ACM Press, Octo-
ber/November 2017

https://github.com/scipr-lab/libiop


The More the Merrier: Reducing the Cost of Large Scale MPC 721

3. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: a more efficient
ZKPoK for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 274–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5 12

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

6. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 21

7. Boyle, E., Jain, A., Prabhakaran, M., Yu, C.-H.: The bottleneck complexity of
secure multiparty computation. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.). ICALP 2018, vol. 107. LIPIcs, pp. 24:1–24:16. Schloss Dagstuhl,
July 2018

8. Bracha, G.: An o(log n) expected rounds randomized byzantine generals protocol.
J. ACM 34(4), 910–920 (1987)

9. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R.,
Zikas, V.: The hidden graph model: communication locality and optimal resiliency
with adaptive faults. In: Roughgarden, T. (ed.) ITCS 2015, pp. 153–162. ACM,
January 2015

10. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

11. Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear com-
munication complexity. In: Proceedings of the 2015 International Conference on
Distributed Computing and Networking, ICDCN 2015, Goa, India, 4–7 January
2015, pp. 5:1–5:10 (2015)

12. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 30

13. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

14. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

15. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38


722 S. D. Gordon et al.

17. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: efficient asyn-
chronous secure multiparty computation. In: Chatterjee, M., Cao, J., Kothapalli,
K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-45249-9 16

18. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992

19. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 29

20. Furukawa, J., Lindell, Y.: Two-thirds honest-majority MPC for malicious adver-
saries at almost the cost of semi-honest. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, pp. 1557–1571. ACM Press, November 2019

21. Garay, J., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communication in
secure multi-party computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 14

22. Genkin, D.: Secure computation in hostile environments (Phd thesis) (2016)
23. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from

passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

24. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC, pp. 495–504. ACM Press, May/June 2014

25. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA:
lightweight secure arithmetic computation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019, pp. 327–344. ACM Press, November 2019

26. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 86–117. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 4

27. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to
efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 1

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007

29. Jaiyeola, M.O., Patron, K., Saia, J., Young, M., Zhou, Q.M.: Good things
come in LogLog(n)-sized packages: robustness with small quorums. CoRR,
arXiv:1705.10387 (2017)

30. Kairouz, P., et al.: Advances and open problems in federated learning (2019)
31. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-

putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

32. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

https://doi.org/10.1007/978-3-642-45249-9_16
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
http://arxiv.org/abs/1705.10387
https://doi.org/10.1007/978-3-319-78372-7_6


The More the Merrier: Reducing the Cost of Large Scale MPC 723

33. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D., (eds.) ACM CCS 2017, pp. 259–276. ACM Press,
October/November 2017

34. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

35. Scholl, P., Smart, N.P., Wood, T.: When it’s all just too much: outsourcing MPC-
preprocessing. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 77–99.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7 4

36. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
statistics in tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, pp. 615–632. ACM Press, November 2019

37. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
39–56. ACM Press, October/November 2017

38. Zamani, M., Movahedi, M., Saia, J.: Millions of millionaires: multiparty computa-
tion in large networks. Cryptology ePrint Archive, Report 2014/149 (2014). http://
eprint.iacr.org/2014/149

39. Zheng, C., Tang, Q., Lu, Q., Li, J., Zhou, Z., Liu, Q.: Janus: a user-level TCP stack
for processing 40 million concurrent TCP connections. In: 2018 IEEE International
Conference on Communications (ICC), pp. 1–7 (2018)

https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-71045-7_4
http://eprint.iacr.org/2014/149
http://eprint.iacr.org/2014/149


Multiparty Reusable Non-interactive
Secure Computation from LWE

Fabrice Benhamouda1(B), Aayush Jain2,3, Ilan Komargodski3,4,
and Huijia Lin5

1 Algorand Foundation, New York, USA
2 UCLA, Los Angeles, CA 90095, USA

aayushjain@cs.ucla.edu
3 NTT Research, Sunnyvale, CA 94085, USA

4 Hebrew University of Jerusalem, 91904 Jerusalem, Israel
ilank@cs.huji.ac.il

5 University of Washington, Seattle, WA 98195, USA
rachel@cs.washington.edu

Abstract. Motivated by the goal of designing versatile and flexible
secure computation protocols that at the same time require as little inter-
action as possible, we present new multiparty reusable Non-Interactive
Secure Computation (mrNISC) protocols. This notion, recently intro-
duced by Benhamouda and Lin (TCC 2020), is essentially two-round
Multi-Party Computation (MPC) protocols where the first round of mes-
sages serves as a reusable commitment to the private inputs of partici-
pating parties. Using these commitments, any subset of parties can later
compute any function of their choice on their respective inputs by just
sending a single message to a stateless evaluator, conveying the result of
the computation but nothing else. Importantly, the input commitments
can be computed without knowing anything about other participating
parties (neither their identities nor their number) and they are reusable
across any number of desired computations.

We give a construction of mrNISC that achieves standard simulation
security, as classical multi-round MPC protocols achieve. Our construc-
tion relies on the Learning With Errors (LWE) assumption with polyno-
mial modulus, and on the existence of a pseudorandom function (PRF)
in NC1. We achieve semi-malicious security in the plain model and mali-
cious security by further relying on trusted setup (which is unavoidable
for mrNISC). In comparison, the only previously known constructions of
mrNISC were either using bilinear maps or using strong primitives such
as program obfuscation.

We use our mrNISC to obtain new Multi-Key FHE (MKFHE) schemes
with threshold decryption:

– In the CRS model, we obtain threshold MKFHE for NC1 based on
LWE with only polynomial modulus and PRFs in NC1, whereas all
previous constructions rely on LWE with super-polynomial modulus-
to-noise ratio.

– In the plain model, we obtain threshold levelled MKFHE for P based
on LsWE with polynomial modulus, PRF in NC1, and NTRU, and

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 724–753, 2021.
https://doi.org/10.1007/978-3-030-77886-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_25


Multiparty Reusable Non-interactive Secure Computation from LWE 725

another scheme for constant number of parties from LWE with sub-
exponential modulus-to-noise ratio. The only known prior construc-
tion of threshold MKFHE (Ananth et al., TCC 2020) in the plain
model restricts the set of parties who can compute together at the
onset.

1 Introduction

Much of the research in secure multiparty computation (MPC) is driven by the
goal of minimizing interaction as much as possible. This is first motivated by the
fact that network latency is often a major bottleneck to efficiency. Furthermore,
having many communication rounds requires participating parties to be stateful
and on-line for a long time which is difficult if not possible in some scenarios,
especially when the number of participants is large. Soon after the invention
of MPC [19,33,48], a large body of works investigated constant-round MPC
protocols, or even completely non-interactive ones.

The vision of non-interactive MPC is extremely fascinating. Ideally, it would
allow any set of parties to jointly compute an arbitrary function of their respec-
tive secret inputs, without any prior interaction or input-dependent setup, by
each sending a single message to a public bulletin board, enabling an external
evaluator to compute the output of the function based only on these messages.1
Unfortunately, it is known that such non-interactive protocols cannot satisfy the
standard simulation security notion, as they are inherently susceptible to the so
called residual-function attack. Therefore, at least another round of communica-
tion is necessary.

MrNISC. In a recent work, Benhamouda and Lin [22] introduced a hybrid
model between non-interactive MPC and two-round MPC which they called
multiparty reusable Non-Interactive Secure Computation (mrNISC). To motivate
the model, it is useful to consider the following scenario: users across the world
wish to publish an encryption of their DNA on a public bulletin board, once and
for all. At a later stage, for the purposes of medical analysis, a subset of them
wants to compute some function on their DNAs by sending just a single public
message to a doctor, who should be able to compute this function, but nothing
else. Furthermore, a user may participate in an unbounded number of medical
analyses, reusing the same encryption of DNA, with the same or other subsets
of parties on the same or different functions.

More formally, in the mrNISC model, parties publish encodings of their pri-
vate inputs xi on a public bulletin board, once and for all, independently of each
other and even independently of the total number of parties. Later, any subset
I of them can compute on-the-fly a function f on their inputs xI = {xi}i∈I

1 The reconstruction of the output is “public” in the sense that it does not require
any secrets. It is w.l.o.g. to consider public output reconstruction, as one can always
consider the evaluator as a participant of MPC with a dummy input and uses the
all zero string as its random tape.



726 F. Benhamouda et al.

by just sending a single public message to a stateless evaluator, conveying the
result f(xI) and nothing else. Importantly, the input encodings are reusable
across any number of computation sessions, and are generated independently
of any information of later computation sessions—each later computation can
evaluate any polynomial-time function, among any polynomial-size subset of
participants. The security guarantee is that an adversary corrupting a subset
of parties, chosen statically at the beginning, learns no information about the
private inputs of honest parties, beyond the outputs of the computations they
participated in. This holds for any polynomial number of computation sessions.
Throughout, each party’s input, and the function and participants of each com-
putation session are chosen adaptively by the adversary.

The work of Benhamouda and Lin [22] presents a general-purpose mrNISC
for computing polynomial-sized circuits, whose security is based on the SXDH
assumption in asymmetric bilinear groups. It is in the plain model (without any
trusted setup), and satisfies semi-malicious security.2 For malicious security, the
use of some setup is inevitable; they rely on a CRS. To date, this is the only
mrNISC construction in the plain model, based on well-established assumptions.
Prior plain-model 2-round MPC protocols either rely on strong primitives like
indistinguishability obfuscation or general-purpose witness encryption [29,35,39,
42,50] which have complex constructions from less well-established assumptions,
or have first messages that are not reusable [6,7,21,40,41,43,44,60], or only
reusable among a fixed set of parties [8,17]. Another line of works leading to
two-round MPC, using multi-key fully-homomorphic encryption (MKFHE) [10,
12,25,27,34,56,58], could possibly be made an mrNISC, but even then all known
constructions rely on trusted setup even for semi-honest security.

1.1 Our Results

New mrNISC from LWE. Our main result is a new construction of an
mrNISC. Our construction is based on the standard Learning-With-Errors
(LWE) assumption with polynomial modulus as well as on a PRF in NC1. The
construction is in the plain model, and satisfies semi-malicious security.

Theorem 1.1 (mrNISC from LWE). Assuming LWE with polynomial mod-
ulus and a PRF in NC1, there exists a mrNISC protocol for all polynomial-size
functions. The construction is in the plain model (without any trusted setup),
and satisfies semi-malicious security. For malicious security, we need to further
rely on a CRS.3

We emphasize that our construction requires only LWE with polynomial mod-
ulus. This is important both for efficiency as well as for security. First, having
2 Semi-malicious security is a strengthening of the semi-honest security wherein the

adversary is allowed to choose its random tape arbitrarily. [10] showed that any proto-
col satisfying semi-malicious security can be made maliciously secure by additionally
using Non-Interactive Zero-Knowledge proofs (NIZKs).

3 The CRS is needed for NIZK which exists from LWE with polynomial modulus [59].



Multiparty Reusable Non-interactive Secure Computation from LWE 727

a polynomial modulus makes the sizes of keys and ciphertexts shorter. Second,
for security, it is known that LWE with polynomial ratio between modulus and
noise (which is our case) is at least as hard as (classical) GapSVP with polynomial
approximation factor [26,53,54,57,61].

Unfortunately, it is not known whether PRF in NC1 can be based on LWE
with polynomial modulus-to-noise ratio, as all known constructions require super-
polynomial modulus-to-noise ratio [15,16,23]. Therefore, the above theorem can
also be instantiated using a single assumption of LWE with super-polynomial
modulus-to-noise ratio, which is independent of the depths of computations.

New Threshold Multi-key FHE Schemes. We observe that mrNISC can be
used to generically boost any multi-key FHE with an “unstructured” decryption
function that takes as input the secret key of all participating parties, into a
threshold multi-key FHE scheme by just decentralizing the decryption function.

This observation gives us new constructions of threshold multi-key FHE by
instantiating the base multi-key FHE scheme with different known constructions.
Specifically, we obtain the following three threshold multi-key FHE instantiations.

Theorem 1.2 (Threshold multi-key FHE in the CRS model). There
exists a threshold multi-key FHE scheme in the CRS model for NC1 circuits
assuming LWE with polynomial modulus and a PRF in NC1.

The above theorem follows from the multi-key FHE schemes of [34,56], which
require LWE with polynomial modulus for evaluating NC1 circuits. Here, we
rely additionally on a PRF in NC1. In comparison, all previous constructions
of threshold multi-key FHE even for NC1 require LWE with super-polynomial
modulus-to-noise ratio. Since the latter readily implies a PRF in NC1, our
assumption is weaker.

Theorem 1.3 (Threshold multi-key FHE in the plain model). Let d =
d(λ) and N = N(λ) be arbitrary polynomial functions of the security parameter.

1. There exists a threshold multi-key FHE scheme in the plain model for
polynomial-size depth-d circuits and supporting N keys. The scheme is secure
assuming LWE with polynomial modulus, a PRF in NC1, and the DPSR
assumption.4

2. There exists a threshold multi-key FHE scheme in the plain model for
polynomial-size depth-d circuits and supporting arbitrary constant number of
keys. The scheme is secure assuming LWE with sub-exponential modulus-to-
noise ratio.

The first bullet is obtained by using the multi-key FHE scheme of [52]. Recently,
Ananth et al. [9] obtained a similar result except that their threshold multi-
key FHE definition is somewhat weak in the sense that the set of public-keys
under which each evaluation is performed is fixed once and for all. On the other

4 DSPR stands for the decision small polynomial ratio assumption [52] which is used
to prove the security of the NTRU encryption scheme.



728 F. Benhamouda et al.

hand, the original vision for multi-key FHE was to support “on-the-fly” compu-
tation [52] on ciphertext encrypted any subset of public-keys. All other multi-key
FHE schemes were not in the plain model.

The second bullet is obtained by relying on the folklore multi-key FHE
scheme obtained by nesting a constant number of FHE schemes. There was
no previously-known scheme supporting constant-many keys without setup just
from LWE.
Technical Highlight and an Open Problem. Our construction is obtained
in few modular steps. We first identify a “two-party” NISC protocol (denoted
2rNISC henceforth) for a particular functionality that we call “functional OT”.
This protocol still supports arbitrary polynomially-many parties, but only the
function to be computed is specific and involves just two parties. More specifi-
cally, the two parties, acting as the OT sender and receiver, respectively, wish to
compute OT with two sender’s strings (�0, �1) = g1(x1) computed from sender’s
private input x1, and a receiver’s choice bit c = g2(x2) computed from the
receiver’s private input x2, where g1, g2 are arbitrary public polynomial-size cir-
cuits that are different for each computation. 2rNISC enables computing �c with
the sender and receiver sending a single message each. We then show that this can
be generically turned into a general-purpose mrNISC. We believe that 2rNISC
for the functional OT functionality is an interesting primitive that may find
other applications.

Lastly, we show a construction of a 2rNISC for the functional OT function-
ality, from LWE with polynomial modulus-to-noise ratio and PRFs in NC1. Our
construction draws techniques from homomorphic commitments/signatures [49]
and 2-message statistically sender-private OT [24] based on LWE. At its core is a
weak version of witness encryption for verifying the decommitments of homomor-
phic commitments, where the decommitments satisfy zero-knowledge property.
This partially answers a question left open by the work of [22].

We believe that the above modular approach is a contribution of independent
interest, as new constructions of our 2rNISC for the functional OT functional-
ity directly yield new constructions of mrNISC. One intriguing open problem
is whether it is possible to base mrNISC on DDH or even CDH. Our reduc-
tion shows that, for this purpose, it suffices to build a 2rNISC for a specific
functionality from DDH/CDH.

1.2 Related Works
While mrNISC is a new concept that was recently introduced by Benhamouda
and Lin [22], it is related to (but differs from) many previously-defined variants
of minimal-interaction MPC protocols. We refer to [22] for a comprehensive com-
parison and merely mention some of the most related notions. mrNISC can be
viewed as a generalization of the notion of reusable NISC of Ishai et al. [51]
(see also [1,11,14,30,32]) from two parties to multiple parties. mrNISC differs
from various completely non-interactive notions such as non-interactive MPC
(NIMPC) [18] and Private Simultaneous Messages (PSM) [38,47] which inher-
ently achieve weaker security guarantees or restrict the corruption pattern.



Multiparty Reusable Non-interactive Secure Computation from LWE 729

Apart from Benhamouda and Lin’s [22] recent mrNISC construction from
bilinear maps, all other 2-message MPC protocols either rely on strong primitives
like indistinguishability obfuscation or general-purpose witness encryption [39,
50], or fall short of being an mrNISC. For instance, the works of Garg and
Srinivasan and Benhamouda and Lin [21,44] constructed 2-round MPC protocols
from any 2-round Oblivious Transfer (OT). However, both constructions are not
reusable in their first message. This was recently solved by Ananth et al. [8] and
Bartusek et al. [17] who constructed a 2-round MPC where the first message
is reusable across polynomially-many sessions. The construction of [8] relies on
LWE and the construction of [17] relies on DDH. However, both construction
requires all computation sessions to be carried out by a fixed set of parties.

The concept of threshold multi-key FHE is very related to mrNISC. It is plausi-
ble that threshold multi-key FHE that are used to get 2-round MPC [10,13,34,56],
could also be used to get mrNISC. However, proving it is not straightforward. For
instance, as pointed out in [22], the current definitions of threshold decryption,
e.g., [10,13,34,56] are insufficient for constructing mrNISC, as simulatability only
ensures that a single partial decryption can be simulated (hence this definition does
not allow to re-use ciphertexts). Even if the proof works out, it would only yield a
mrNISC in the CRS model even for semi-honest security.

1.3 Organization of the Paper

We start by a technical overview in Sect. 2. After recalling preliminaries in Sect. 3,
we show how to construct a 2rNISC for Functional OT in Sect. 4. We then present
our transformation from such a 2rNISC to an mrNISC for any polynomial-
time functionality in Sect. 5. Finally, we formally show applications in the full
version [20].

2 Technical Overivew

We now give an overview of our construction of mrNISC protocols in the plain
model from LWE with polynomial modulus and PRF in NC1.

2.1 Review of Definition of mrNISC Protocols

Towards constructing mrNISC protocols, the work of [22] defined the notion
of mrNISC schemes, with a game-based security definition. Furthermore, they
showed that a mrNISC scheme immediately yields a mrNISC protocol that UC-
implements an ideal mrNISC functionality that allows for any number of com-
putations over any subsets of inputs registered by parties. Thus, in this work,
we focus on implementing mrNISC schemes for polynomial-size circuits.
mrNISC Scheme. An n-party functionality U is a represented by a Boolean
circuit that takes a public input z and n private inputs. If U is a universal circuit
and z specifies the actual function to be computed, then this formalism allows
the parties of the mrNISC to compute any function on their private inputs. An
mrNISC scheme for U , consists the following three algorithms:



730 F. Benhamouda et al.

– Input Encoding: A party Pi encodes its private input xi by invoking (x̂i, si) ←
Com(1λ, xi). It then publishes the encoding x̂i and keeps the secret state si.

– Computation: In order for a subset of parties {Pi}i∈I to compute the func-
tionality U on their private inputs xI and a public input z, each party in I
generates a computation encoding αi ← Encode(z, {x̂j}j∈I , si) and sends it
to the evaluator.

– Output: The evaluator reconstructs the output y = Eval(z, {x̂i}i∈I , {αi}i∈I).
(Note that reconstruction is public as the evaluator has no secret state.) Cor-
rectness requires that y = U(z, {xi}i∈I) when everything is honestly com-
puted.

Simulation-security requires that the view of an adversary corrupting the eval-
uator and a subset of parties, can be simulated using just the outputs of the
computations.5 Following [22], we consider static corruptions and semi-malicious
security. Static corruptions restrict the adversary to corrupt a fixed subset C of
parties chosen at the very beginning, and semi-malicious security [10] restricts
the corrupted parties {Pi}i∈C to follow the protocol specification, but allows the
adversary to choose their inputs and randomness {xi, ri}i∈C arbitrarily. Dur-
ing an execution of the mrNISC scheme for U , honest and corrupted parties
Pi can register their inputs by posting input encodings x̂i. Multiple compu-
tations, each specified by (zk, Ik), can be carried out as follows: each Pi for
i ∈ Ik sends the corresponding computation encoding αk

i , which together reveal
yk = U(zk, {xi}i∈Ik ). All the messages from the honest parties, including {x̂i}i�∈C

and {αk
i }k,i∈Ik\C , must be simulatable from the outputs {yk}k, the public infor-

mation of the computations {zk, Ik}k, and the input and randomness of the
corrupted parties {xi, ri}i∈C . Furthermore, simulation must hold in the adap-
tive setting, where the input and computation encodings are interleaved and all
xi and (zk, Ik) are chosen adaptively by the adversary.

2.2 Step 1: Reusable Functional OT from LWE

We identify a complete 2-party function, called functional OT UfOT, and show
1) how to construct a 2-party reusable NISC scheme for computing UfOT in the
plain model, and 2) how to bootstrap from UfOT to general mrNISC scheme for
any circuit U ∈ P.

Functional OT. UfOT takes three inputs: A public input consisting of two
functions g1 : {0, 1}n1 → {0, 1}λ × {0, 1}λ and g2 : {0, 1}n2 → {0, 1} represented
as Boolean circuits, a private input x1 ∈ {0, 1}n1 from a party P1 acting as
the UfOT sender x2 ∈ {0, 1}n2 from a party P2 acting as the UfOT receiver, and
computes:

5 It suffices to simulate only these computations that involve at least one honest party.
Computations involving only corrupted parties can be viewed as part of the internal
computation of the adversary.



Multiparty Reusable Non-interactive Secure Computation from LWE 731

UfOT((g1, g2), x1, x2) : compute sender’s strings (�0, �1) = g1(x1),
compute receiver’s choice c = g2(x2),
output y = (c, �c)

The name functional OT comes from the fact that both the OT sender’s strings
�0, �1 and receiver’s choice bit c are functions on sender’s and receiver’s private
inputs x1 and x2.

A 2rNISC scheme for computing UfOT provides a way to encode the private
input xi of any party Pi, so that later any two parties Pi and Pj can securely
compute UfOT (acting as sender and receiver respectively) to reveal only (c, �c)
computed according to arbitrarily chosen functions (g1, g2) and their private
inputs xi and xj , by each sending a single message. Importantly, the encoding
x̂i of Pi is reusable in any number of UfOT computations with different parties
and different functions. Note that different from classical OT where (c, �c) is
private to the receiver, a 2rNISC scheme allows to reconstruct (c, �c) publicly
given all messages sent. Jumping ahead, this feature serves exactly the purpose
of achieving the public reconstruction property of mrNISC.

Constructing 2rNISC for UfOT. We construct 2rNISC for UfOT in the plain
model from LWE with just polynomial modulus and PRF in NC1 in two steps:
We start with designing a scheme ΠfOT = (Com,Encode,Eval) that handles only
circuits g2 with bounded logarithmic depth O(log λ) (whereas the depth of g1 is
unrestricted), and then bootstrap Π to 2rNISC that handles g2 with unbounded
polynomial depth.

GSW Encryption as Homomorphic Commitments. Our 2rNISC makes
use of the GSW homomorphic encryption scheme [46], which can be turned
into a homomorphic commitment scheme (or homomorphic trapdoor functions)
as done in [49]. It enables us to commit to a string x ∈ {0, 1}n in a commit-
ment C, and then homomorphically evaluate any circuit f on C to obtain a
commitment Cf to f(x). More concretely, the scheme publishes a CRS crs = A
containing a matrix of dimension N × M for M = Ω(N · log q); the matrix
A = [B�|b�

1 | . . . |b�
k ]� consists of a random submatrix B ← Z

(N−k)×M
q , together

with k LWE samples {bl = tlB + el}l∈[k] w.r.t. independently sampled secret tl

and noise el, where e1 is sampled from a truncated discrete Gaussian distribu-
tion and always bounded by |el|∞ ≤ B. Committing to a binary string x simply
involves encrypting each bit xi using GSW encryption and public key A, and
the encryption randomness is the decommitment.

Commitment tox : {Ci = ARi + xiG}i Decommitment: {Ri}i

where Ri ← {−1, 1}M×N ·�log q�, G the gadget matrix.

We note two important details: First, the matrix A corresponds to the public
key in GSW encryption; here, we insist on it containing k > 1 LWE samples,
where k is a parameter that scales with the input length of the parties. Second,
when A is sampled honestly at random, it satisfies the following well-formedness



732 F. Benhamouda et al.

with overwhelming probability: 1) it is generated as above using some B, tl, and
B-bounded el’s, and 2) vectors el’s are linearly independent over the integers.
Observe that the well-formedness can be verified efficiently given the random
coins used to sample A. For any A satisfying property 1), commitments w.r.t.
A are statistical binding, and in fact even extractable using the secrets tl’s. We
shall see how property 2) is helpful later.

The homomorphism of GSW enables homomorphic evaluation over the com-
mitments to obtain a commitment to f(x) as follows

GSW.Eval(f, {Ci}) = Cf = ARf + f(x)G ,

where Rf = GSW.RandEval(f, {Ri}, {Ci},x) .

The new decommitment Rf can be evaluated directly from {Ri}, {Ci},x and
in particular is linear in the original decommitments Ri’s.

From Homomorphic Commitments to 2rNISC. To construct 2rNISC for
functional OT, our idea is letting each player Pi commit to its input x as the
input encoding, and keep the decommitment as its private state. Note that the
homomorphic commitments require a CRS, but we wish to construct 2rNISC in
the plain model. Thus, we let each player choose its own CRS.

Com(1λ,x) : x̂ = (A, {Ci = ARi + xiG}i), s = {Ri}i

Later two parties, P1 acting as the sender and P2 acting as the receiver, wish
to compute functional OT w.r.t. (g1, g2) on their private inputs denoted as x1
and x2, and have encodings and secret states denoted as (x̂b = (Ab, {Cb,i}), sb =
{Rb,i}) with b = 1 for P1 and b = 2 for P2. P1 can privately compute sender’s
strings (�0, �1) = g1(x1), and P2 the receiver’s choice c = g2(x2). In addition,
given x̂2, both parties can homomorphically evaluate g2 to obtain a commitment
Cg2 = A2Rg2 + cG to c, while P2 additionally knows the decommitment Rg2 .

At this point, we wish to have the following two components to enable com-
puting �c non-interactively.

– Witness Encryption of Sender’s Strings (�0, �1): P1 would like to witness
encrypt �b w.r.t. the statement that, under CRS A, Cg2 is a commitment
to bit b, so that, �b is revealed given a witness that is a decommtiment to b,
and is hidden if Cg2 is a commitment to 1−b. Then the sender’s computation
encoding is

Encode((g1, g2), (x̂1, x̂2), s1) : α1 = {wb ← WEnc((A2,Cg2 , b), �b)}b∈{0,1}

– Zero-Knowledge Decommitment to Receiver’s Choice c: P2 would like to open
Cg2 to c by sending a decommitment, in a zero-knowledge way that reveals
only c and nothing more about x2. Note that the basic decommitment Rg2

is not zero-knowledge and may reveal information of x2.

Encode((g1, g2), (x̂1, x̂2), s2 = {Ri}i) : α2 = (Xg2 ← ZKDecom(g2,Cg2 ,Rg2 )) ,

where ZKDecom produces a zero-knowledge decommitment Xg2 .



Multiparty Reusable Non-interactive Secure Computation from LWE 733

An evaluator given (α1, α2) can witness decrypt to obtain �c as desired.

Semi-Malicious Security and “Promise” WE and ZK Decommitments.
The main technical challenge is co-designing WE and ZK decommitments so that
the latter can decrypt the former. For this we will draw techniques from previous
works for constructing context-hiding homomorphic signatures [49] and 2-message
statistically sender private OT [24]. At the same time, we crucially rely on the
fact that our 2rNISC only need to be secure against semi-malicious adversaries
to simplify the requirements on WE and ZK decommitments. The key observa-
tion is that a semi-malicious corrupted party P2 must generate its input encoding
(A2, {C2,i}i) using the honest algorithm, albeit using arbitrary randomness. This
means that i) A2 must be well-formed and ii) {C2,i}i must be a valid commitment
{A2Ri + x2,iG}i to some input x2 with a decommitement Ri of 1/−1 values. As
a result, Cg2 = A2Rg2 + g2(x2)G must be a valid commitment to g2(x2) = 0/1
with a decommitment Rg2 of small magnitude6.

Therefore, the correctness and security of WE and ZK decommitments only
need to hold w.r.t. well-formed A (i.e., A2) and valid commitment C (i.e., Cg2)
to 0/1 with small decommitment, and does not need to hold w.r.t. ill-formed A
or invalid commitment C—we refer to this as the promise version of WE and
ZK decommitments:

– Yes instances (A,C, b) contain a well-formed A and a valid commitment C to
bit b, and we require the ZK property of the decommitments and correctness
of WE for them.

– No instances (A,C, b) contain a well-formed A and a valid commitment C
to bit 1 − b, and we require the hiding property of WE for them.

Thanks to the fact that it suffices to focus on the promise version, we manage
to give a relatively simple construction of WE and ZK decommitment. Next we
proceed to their description; by default, all matrices A’s are well-formed and
commitments C’s are valid 0/1 commitments.

ZK Decommitment. The context-hiding homomorphic signature schemes
of [49] provides a way to generate zero-knowledge decommtiments. If the commit-
ter wishes to open Cf = ARf + f(x)G to f(x) = b w.r.t. CRS A, it constructs
the matrix

D(b) = [A | Cf + (1 − b)G] = [A | ARf ± G] ∈ Z
N×M ′
q , M ′ = M + N�log q� ,

and uses Rf as a right-trapdoor [2,31] of D(b) to sample a short B′-bounded
vector v, for appropriately set B′ such that, D(b)v = u, where u is a random
vector published additionally in the CRS. The vector v is the new decommit-
ment.7 v together with A and the original commitment {Ci} to x reveals no

6 The magnitude scales exponentially with the depth of g2, which is relatively small if
we set the modulus to be sufficiently large.

7 It can be verified efficiently by checking whether it has small magnitude and
D(b)v = u.



734 F. Benhamouda et al.

more information beyond that f(x) = b, since they can be jointly simulated
using only (f, b), by sampling A at random with a trapdoor TA [2,54], Ci’s at
random, and v using TA as a left-trapdoor of D(b). A random A is computa-
tionally indistinguishable from a well-formed A by LWE, and v sampled using
the left or the right trapdoor is statistically close.

However, we do not know how to construct a matching WE for verifying the
above ZK decommitment and need to modify the decommitment as follows. The
new decommitment of A,Cf to f(x) = b contains a short B′-bounded basis
Xf ∈ Z

M ′×M ′ of the lattice Λ⊥
q (D(b)) = {z ∈ Z

M ′ : D(b)z = 0 (mod q)} over
the integers, that is, D(b)Xf = 0N×M ′ and is Xf has full rank over the integers.
Such a basis can be sampled again using Rf as a right-trapdoor of D(b), and
can be simulated together with A, {Ci} by sampling A without a trapdoor TA
and using it as a left-trapdoor of D(b) to sample the basis. In summary, our ZK
decommitment is generated as:

ZKDecom(f, b,D(b),Rf ) : Xf ← SampleRight(A, ±G,Rf ,TG, α) .

where TG is a trapdoor of the gadget matrix G and α controls the norm of the
trapdoor.

Promise Witness Encryption. To design a compatible WE that can be
decrypted using the above ZK decommitments. we crucially rely on the following
fundamental properties of lattices defined by a matrix D ∈ Z

N×M ′
q .

– If the lattice Λ⊥
q (D) = {z ∈ Z

M ′ : Dz = 0 (mod q)} has a B′-bounded basis
X over the integers, then vectors of form sD + e can be efficiently decoded
using X, and s can be recovered, provided that the norm of e is sufficiently
smaller than q/B′.

– On the other hand if the lattice Λq(D) = {y ∈ Z
M ′ : y = sD (mod q)} con-

tains k linearly independent vectors of norm � q/B′, then vectors of form
sD + e is lossy and s has n bits of entropy, if k is sufficiently larger than n.
This is essentially because the components of sA in the direction the short
vectors are masked by e.

The work of [24] relied on the above properties in their construction of two
message statistically sender-private OT from LWE. We here rely on them to
achieve respectively the correctness and hiding property of our promise WE. To
encrypt a string �b, under a statement (A,C = Cf , b), our WE does:

WEnc((A,C, b), �b) : D(b) = [A | C − (1 − b)G], wb = sbD(b) + eb,

�̂b = Ext(sd, sb) ⊕ �b

output (wb, sd, �̂b)

where Ext is a strong seeded extractor and sd is a randomly sampled seed, sb is a
random secret from Z

N
q , and eb is from a truncated discrete Gaussian distribution

with appropriate parameter.



Multiparty Reusable Non-interactive Secure Computation from LWE 735

– Correctness for Yes Instances: For a well-formed A and a valid commitment
C = AR + bG to b, the ZK decommitment X is exactly a short-basis of
Λ⊥

q (D(b)). Therefore, by the first lattice property, given X, the decryptor can
efficiently decode wb to obtain sb and then recover �b.

– Hiding for No Instances: For a well-formed A and a valid commitment C =
AR + (1 − b)G to 1 − b, D(b) = [A | AR] and hence the lattice Λq(D(b))
contains at least k short vectors. This is because, by the structure of a well-
formed A, for every l ∈ [k], (−tl||1)D(b) = (el||elR) is short as el and R
are. Moreover, these vectors are independent as long as el’s are (and k <
dim(el) = M), where the latter is guaranteed by the (second requirement of)
well-formedness of A. Therefore, by the second lattice property, sb has n bits
of entropy conditioned on wb and the output of the extractor information
theoretically hides �b.

Putting Pieces Together. Combining the homomorphic commitment
scheme with ZK decommitments and the witness encryption, we obtain 2rNISC
for computing functional OT with semi-malicious security. Let’s now examine
the magnitude of the modulus, which we wish to be polynomial. Based on LWE,
to support homomorphic evaluation of a circuit g2 of depth d requires the mod-
ulus to grow exponentially in d. Therefore, only when d is a fixed logarithmic
function in the security parameter λ, would the modulus be a fixed polynomial
in λ as desired.

Following a technique used in [22], we can generically bootstrap to 2rNISC
supporting circuits g2 with unbounded polynomial depth, with the help of a PRF
in NC1 and Yao’s garbled circuits. At a high-level, P1 is going to hide the sender’s
string �b in a garbled circuit Ĝ�b

for a function G�b
(Λ) that on input a randomized

encoding Λ, outputs �b iff Λ evaluates to b. At evaluation time, the evaluator
will obtain the set of labels {�̄j} of Ĝ�b

corresponding exactly to a randomized
encoding Λ of (g2,x2) generated using pseudorandom coins expanded via PRF
on a key k2 belong to the receiver P2. Then the evaluator can recover �b iff
g2(x2) = b. Crucially, the task for revealing the labels corresponding to Λ can
exactly be accomplished using 2rNISC for logarithmic-depth receiver’s circuits,
as every bit of Λ can be computed by a logarithmic-depth circuit evaluated
on (x2, k2) if PRF ∈ NC1. Correspondingly, every party now needs to commit
to their private input x and a PRF key k. This yields our final 2rNISC for
functional OT from LWE with polynomial modulus and PRF in NC1.

2.3 Step 2: 2rNISC for Functional OT to General mrNISC for P

We construct general mrNISC for polynomial-sized circuits from 2rNISC for
functional OT following a similar approach as [22], which in turn is based on
the round collapsing approach for constructing 2-round MPC protocols started
in [39,50]. The round-collapsing approach collapses an inner MPC protocol with
a polynomial L number of rounds into a 2-round outer MPC protocol, essentially
by letting every party garble its next-step message function for computing the
inner MPC messages. The challenge lies in how to enable the garbled circuits



736 F. Benhamouda et al.

generated independently by different parties “talk” to each other: the output
of one party’s garbled circuit is the input of another party’s garbled circuit.
What is new in this work is that we use 2rNISC for functional OT to enable
this, which is weaker than the tools used in previous works. Specifically, the
work of [22] proposed and constructed a primitive called Witness Encryption for
NIZK of commitments, which is a witness encryption scheme for verifying NIZK
proof of the correctness of deterministic computation over committed values.
In comparison, 2rNISC is weaker (in particular, is implied by WE for NIZK
of commitments) and has a simpler definition, thanks to which we manage to
instantiate it from LWE and PRF in NC1. Next, we give an overview of our
mrNISC from 2rNISC for functional OT.

Round Collapsing via 2rNISC for Functional OT. In mrNISC, each party
Pi uses 2rNISC for functional OT to encode its private input xi and a PRF key
fki, ((x̂i, fkρi), si) ← Com(xi, ρi). The PRF key will be used to expand pseudo-
random coins for running the inner MPC protocol and generating garbled circuits
described below.

A subset I of parties {Pi}i∈I wishes to compute f(z, {xi}i∈I). Assume that
each party P1 in the inner MPC broadcasts one message m�

i in each round �; but
we now want to carry out this multi-round interaction non-interactively. To do so,
each Pi sends one garbled circuit F̂�

i per round � ∈ [L] of the inner MPC protocol
corresponding to the next message function F�

i of Pi. This garbled circuit takes
as input all the messages m<� = {ml

j}
l<�,j∈[n] sent in previous rounds, and

outputs the next message m�
i of Pi of the inner MPC (or the output for the last

round � = L).
For an evaluator to compute the output from these garbled circuits

{F̂�
i}�∈[L],i∈[n], we need a mechanism to reveal the labels of Pi’s garbled circuits

F̂�
i that correspond to the correct messages of the inner MPC. More specifically,

let k0, k1 be two labels of Pi’s garbled circuit F̂�
i for an input wire that takes in

the t’th bit y = ml
j,t of a message from Pj . The goal is revealing only ky, which

can be accomplished using exactly 2rNISC for functional OT.
First, we let k0, k1 be expanded from Pi’s PRF key ρi, that is (k0, k1) =

g1(xi, fki) for some well-chosen g1. Second, y = m1
j is Pj ’s inner MPC message

computed from its input xj and randomness expanded from ρj ; hence, y =
g2(xi, ρ) for some g2. Therefore, to reveal ky, we can modify garbled circuits of
Pi and Pj to additionally output the right 2rNISC computation encodings:

– F̂�−1
i for round � − 1 additionally outputs αi ← Encode((g1, g2),

(x̂i, f̂ki), (x̂j , f̂kj), si).
– F̂l

j for round l where Pj outputs ml
j additionally outputs αj ←

Encode((g1, g2), (x̂i, f̂ki), (x̂j , f̂kj), sj).

By the correctness and security of 2rNISC, the evaluator can recover only ky as
desired.

We do not know however how to prove the above construction secure. The
issue is that the PRF key fki is used to generate the labels of all the garbled



Multiparty Reusable Non-interactive Secure Computation from LWE 737

circuits and our security hybrids switch garbled circuits to simulated ones, one
by one. Concretely, to switch the garbled circuit for round � into a simulated
one, its input labels must first be switched to uniformly random ones (instead
of being PRF outputs). The usual solution for that is to use the pseudorandom
property of the PRF. Unfortunately, we cannot do that, because the secret key
fki of the PRF is an input of the 2rNISC for functional OT for the rounds after
round �. To solve this issue, our final scheme actually uses L + 1 PRF keys,
one for the randomness of the inner MPC and one for the labels of the garbled
circuit for each of the L rounds. To make sure that the input encodings do not
depend on the parameters of computations later, we employ a constant round
inner MPC protocol, that is, L = O(1).

3 Preliminaries

We denote the security parameter by λ. Let N be the set of non-negative integers.
A function negl : N → N is negligible if for any polynomial p : N → N, for any
large enough λ ∈ N, negl(λ) < 1/p(λ).

We make use of garbled circuits, collision-resistant hash functions, and pseu-
dorandom functions. A garbled circuit scheme GC is defined as a tuple of
four polynomial-time algorithms GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim):
i) key ←R GC.Gen(1λ) generates labels or keys key = {key[i, b]}i,b∈{0,1}, ii)
̂C ←R GC.Garble(key, C) garbles the circuit, iii) y = GC.Eval( ̂C, key′) evalu-
ates the garbled circuit on the input x corresponding to the selected labels
key′ = {key[i, xi]}i, iv) (key′, ˜C) ←R GC.Sim(1λ, y) simulates a garbled circuit
and the corresponding input labels from the output.

3.1 General Lattice Preliminaries

Lattices. An m-dimensional lattice L is a discrete additive subgroup of R
m.

Given positive integers n, m, q and a matrix A ∈ Z
n×m
q , we let Λ⊥

q (A) denote
the lattice {x ∈ Z

m | Ax� = 0� mod q}.
Discrete Gaussians. Let σ be any positive real number. The Gaussian dis-
tribution Dσ with parameter σ is defined by the probability distribution func-
tion ρσ(x) = exp(−π‖x‖2/σ2). For any discrete set L ⊆ Rm, define ρσ(L) =
∑

x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ
is defined by the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L).

The following lemma (e.g., [55, Lemma 4.4]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).
Lemma 3.1. Let m, n, q be positive integers with m > n, q > 2. Let A ∈ Z

n×m
q

be a matrix of dimensions n × m, σ ∈ Ω̃(n), and L = Λ⊥
q (A). Then, there is a

negligible function negl(·) such that

Pr
x←DL,σ

[‖x‖ >
√

mσ
] ≤ negl(n),

where ‖x‖ denotes the �2 norm of x.



738 F. Benhamouda et al.

Truncated Discrete Gaussians. The truncated discrete Gaussian distribution
over Z

m with parameter σ, denoted by ˜DZm,σ, is the same as the discrete Gaus-
sian distribution DZm,σ except that it outputs 0 whenever the �∞ norm exceeds√

mσ. By definition, we can say that ˜DZm,σ is
√

mσ-bounded, where a family of
distributions D = {Dλ}λ∈N over the integers is B -bounded (for B = B(λ) > 0)
if for every λ ∈ N it holds that Prx←Dλ

[|x| ≤ B(λ)] = 1.
Also, by Lemma 3.1 we get that ˜DZm,σ and DZm,σ are statistically indistin-

guishable. Therefore, in the preliminaries below, unless specified, the lemata will
apply in the setting where by sampling from discrete Gaussian we mean sampling
from truncated discrete Gaussian distribution.

3.2 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [61]. The
LWEn,m,q,χ problem for parameters n, m, q ∈ N and for a distribution χ sup-
ported over Z is to distinguish between the following pair of distributions

(A, sA + e mod q) and (A,u),

where A ← Z
n×m
q , s ← Z

1×n
q , e ← χ1×n and u ← Z

1×m
q . Similarly, we can

define the matrix version of the problem, which is known to be hard, if the
version above is hard. Specifically, let k ∈ poly(n, m), then in the matrix the
task is to distinguish between the following two distributions

(A,SA + E mod q) and (A,U),

where A ← Z
n×m
q , S ← Z

k×n
q , E ← χk×n and U ← Z

k×m
q .

The Gadget Matrix [54]. Fix a dimension n and a modulus q. Define the gadget
vector g = (1, 2, 4, . . . , 2log q−1) and the gadget function g−1 : Zq → {0, 1}�log q�

to be the function that computes the (log q)th bit decomposition of an integer.
For some integer z the function is defined as g−1(z) = v = (v1, . . . , vlog q) where
vi ∈ {0, 1} such that z = 〈g,v〉. By extension we define the augmented gadget
function G−1 : Zn×m

q → {0, 1}(n·�log q�)×m to be the function that computes the
(log q)th bit decomposition of every integer in a matrix A ∈ Z

n×m
q , and arranges

them as a binary matrix of dimension (n · log q) × k which we denote G−1(A).
Hence, Gn · G−1(z) = Z, where the gadget matrix Gn is Gn = g ⊗ In ∈
Z

n×(n·�log q�)
q . When n is clear from context, we denote Gn simply by G.

3.3 Review of Gentry-Sahai-Waters FHE Scheme

We now recall the Gentry-Sahai-Waters FHE scheme [46]. The scheme has the
following overall structure:

–GSW.Setup: The public key consists of a matrix A ∈ Z
n×m
q . This matrix is

typically generated by sampling a matrix B ∈ Z
n1×m
q , a secret S ← Z

k×n1
q ,

errors E ← χk×m, and finally setting A = [B�|(SB + E)�]� ∈ Z
n×m
q where

n = n1 + k and m ∈ Ω(n · �log q�)). The secret key is S.



Multiparty Reusable Non-interactive Secure Computation from LWE 739

–GSW.Encrypt: To encrypt a message μ ∈ {0, 1}, sample randomness R ∈
{−1, 0, 1}m×(n·�log q�) and finally setting C = A · R + μ · G. Note that if
A is generated in the manner above, μ is recoverable, and if it is generated
at random, then μ is information theoretically lost.

–GSW.Eval: Let f : {0, 1}κ → {0, 1} be a depth d(κ) boolean circuit, then,
given honestly generated ciphertexts Ci = A · Ri + μi · G for i ∈ [κ].
Then GSW.Eval(f, {Ci}i∈[κ]) computes the evaluated ciphetext C̃ = A · R̃ +
f(μ1, . . . , μκ) · G. There are two facts about this computation:
Randomness Homomorphism: There is a polynomial time algorithm

GSW.RandEval that on input A, {Ri, μi}i∈[κ], and f , computes R̃.
Bounds: If f ∈ NC1, then ‖R̃‖∞ ≤ O(4d · m) as shown in [28]. Otherwise,

‖R̃‖∞ ≤ O(md) [46].

3.4 Lattice Trapdoors

Definition 3.2 (Lattice trapdoors [4,5,45,54]). There is an efficient ran-
domized algorithm TrapGen(1n, 1m, q) that given any integers n ≥ 1, q ≥ 2 and
m ∈ Ω(n log q), outputs a full-rank matrix A ∈ Z

n×m
q and a trapdoor matrix

TA ∈ Z
m×m such that

1. A · TA = 0n×m mod q.
2. The distribution of A is negl(n)-close to uniform.
3. TA ∈ Z

m×m is a short matrix with linearly independent columns over R.
More precisely, ‖TA‖GS = O(

√
n · log q), where for a matrix X, ‖X‖GS is

the operator norm of the matrix obtained by performing Gram-Schmidt (GS)
orthogonalization of X.

The following lemma is standard and follows from the leftover hash lemma.

Lemma 3.3. For any k ∈ poly(n) and m ∈ Ω(n log q), the following two distri-
butions are negl(n)-close in statistical distance:

{(A,TA,U) |(A,TA) ← TrapGen(1n, 1m, q), U ← Z
n×k
q }

and

{(A,TA,A · R) |(A,TA) ← TrapGen(1n, 1m, q), R ← {−1, +1}m×k
q }.

We will use the following algorithms for sampling trapdoor matrices.

Algorithm SampleLeft(A,B,TA, α) �→ T[A|B]:] The sample left algorithm
takes as input a full rank matrix A ∈ Z

n×m1
q , a matrix B ∈ Z

n×m2
q , a trapdoor

TA and it outputs a trapdoor T[A|B] of [A | B].
Algorithm SampleRight(A,B,R,TB, α) �→ T[A|AR+B]:] The sample right

algorithm takes as input a matrix A ∈ Z
n×m1
q , a full rank matrix B ∈ Z

n×m2
q

and its trapdoor TB, along with R ∈ Z
m1×m2
q . It outputs a trapdoor

T[A|A·R+B] of [A|A · R + B].



740 F. Benhamouda et al.

The following lemma says that the process of sampling from SampleLeft and
SampleRight produce indistinguishable outputs, when executed on the appropri-
ate inputs. The lemma follows from [2,31].
Lemma 3.4 (Indistinguishability of SampleRight, SampleLeft). Let A ∈
Z

n×m1
q be a full rank matrix with a trapdoor TA. Let B ∈ Z

n×m2
q be a full rank

matrix with a trapdoor TB. Let R ∈ Z
m1×m2 . Let

α > max
{

‖TA‖GS · ω(
√

log(m1 + m2)), ‖TB‖GS · ‖R‖ · ω(
√

log(m2))
}

.

Then, the following two distributions are statistically close (up to negligible in n
distance):

{X | X ← SampleLeft(A,A · R + B,TA, α)}
and

{X | X ← SampleRight(A,B,R,TB, α)}
Further, ‖X‖ ∈ O(

√
m1 + m2 · α).

3.5 Lossy Modes and Unique Decoding

For a given matrix A ∈ Z
n×m
q we consider the function:

fA(s,e) = s · A + e mod q,

where s ∈ Z
1×n
q and e ∈ Z

1×m
q . We now consider two settings where in one fA

is invertible and in the other it is lossy.
Invertible Mode. When we have a short trapdoor for A, and if e is short, then
s is recoverable. This is captured by the following lemma.

Lemma 3.5 ([54]). There exist a polynomial time (deterministic) algorithm
RecoverSecret such that the following holds. Let A ∈ Z

n×m
q be any full rank

matrix and TA be a corresponding trapdoor. Let s ∈ Z
1×n
q and e ∈ Z

1×m be
arbitrary. Then, RecoverSecret(A,TA, sA+ e mod q) = s whenever q > ‖TA‖ ·
‖e‖.

Lossy Mode. In the other extreme when the row span of A has k linearly
independent vectors of short norm, s is chosen at random from Z

n
q , and e ←

DZm,σ is sampled from a wide enough discrete Gaussian, then sA + e mod q
hides s information theoretically. This is captured by the following lemma.
Lemma 3.6 (From Lemma 4.3 and Lemma 3.2 of [24]). Let A ∈ Z

n×m
q

where m ∈ Ω(n log q). Assume that there exist k ≤ n linearly independent vectors
in the row span of A, each with norm bounded by γ. Then,

H̃∞ (s | (A, sA + e mod q) ≥ k · log σ

γ
− 1,

where s ← Z
1×n
q and e ← DZm,σ. (H̃∞ denotes average-conditional min-entropy;

see Definition 3.7.)



Multiparty Reusable Non-interactive Secure Computation from LWE 741

3.6 Other Preliminaries

Definition 3.7 (Average Conditional Min-Entropy). Let X be a random-
variable supported on a finite set X and Z be a possibly correlated random-
variable supported on a finite set Z. The average conditional min-entropy:

H̃∞(X|Z) = − log
(

E
z

[

max
x∈X

Pr [X = x | Z = z]
])

Definition 3.8 ((k, ε)-average case strong seeded extractor). A function
Ext : {0, 1}�Ext × X → {0, 1}� is called a seeded strong average-case extractor, if
it holds that for all random variables X and Z defined on some domains with a
finite support, if H̃∞(X|Z) ≥ k then it holds that:

(s,Ext(s, X), Z) ≈ε (s, U, Z)

where s ← {0, 1}�Ext and U ← {0, 1}�.

There exists explicit polynomial-time constructions of seeded strong average-case
(� + O(log(1/ε)), ε) extractors [36,37].

Lemma 3.9 (Error vectors are linearly independent). Let k, m ∈ N such
that k < m/2. Let ei ← DZm,σ for i ∈ [k], where σ > m. Except with negl(m)
probability, the vectors {ei}i∈[k] are linearly independent.

Proof. First observe that the column rank of the matrix E = [e�
1 | . . . |e�

k ] is at
least as much as the column rank of the matrix E mod 2 (over the field Z2). Due
to the smoothing lemma [55], it is known that the statistical distance between
e mod 2 and Z

m
2 is at most 2−Ω(m) as σ > m. Finally, the claim holds since for

a matrix A ← Z
k×m
2 sampled uniformly at random

Pr[rank(A) = k] > 1 − O(k · 2k−m).

4 Construction of 2rNISC

In this section, we give a construction of 2rNISC for the functionality:

UfOT = {UfOT,λ}λ∈N

This functionality takes three inputs. The public input consists of two polynomial
sized (in λ) functions g1 : {0, 1}n1 → {0, 1}λ × {0, 1}λ and g2 : {0, 1}n2 → {0, 1}.
(We assume that functions are given in the form of Boolean circuits). The func-
tionality is evaluated as in the specifications described in Fig. 1.

We recall that a 2rNISC is a mrNISC where the functionality to be evaluated
is restricted to 2 parties. A 2rNISC allows for an arbitrary number of parties
to commit or encode their inputs. The notion of mrNISC was recalled in the
overview (Sect. 2.1). A formal definition can be found in the full version [20].

The main result of this section is a semi-malicious 2rNISC scheme for UfOT,λ

assuming LWE and a PRF in NC1.



742 F. Benhamouda et al.

Fig. 1. The functionality UfOT,λ,d

Theorem 4.1. Assume LWE with polynomial modulus and a PRF in NC1.
Then, there exists a semi-malicious 2rNISC for UfOT.

The construction that gives Theorem 4.1 is obtained in two modular steps.
In the first step (see Sect. 4.1 and Theorem 4.2), we construct a 2rNISC for a
subset of all functions in the functionality UfOT,λ. Specifically, we restrict the
circuit depth of g2 to be an a priori fixed d = d(λ) and obtain a protocol
based solely on LWE. In the next step (see Sect. 4.2 and Theorem 4.3), using
standard bootstrapping techniques using randomized encodings, we obtain our
final 2rNISC without any restriction on d. This step relies, in addition to LWE,
on a PRF in NC1.8

4.1 2rNISC for Depth-Bounded Functions

In this section, we give a construction of a semi-malicious 2rNISC for the
restricted functionality, where g2 has a priori bounded depth d = d(λ). We
denote this functionality by {UfOT,λ,d}λ,d∈N.

Theorem 4.2. Assuming LWE with polynomial modulus, there exists a semi-
malicious 2rNISC for UfOT,λ,d for all (a priori) bounded d ∈ O(log λ). Further,
assuming LWE assumption holds with modulus-to-noise ratio 2Nε for any con-
stant ε, where N is the dimension, the same protocol is a semi-malicious 2rNISC
protocol for UfOT,λ,d for any (a priori) bounded polynomial d(λ).

Before presenting the protocol, we list various parameters used in the scheme.
We will explain how to set these parameters to achieve correctness and security
in the full version [20].

8 The common definition of a PRF in NC1 is a PRF whose circuit representation is in
NC1 when viewed as a function of both the input and the seed. We actually need a
slightly weaker condition, namely, that the circuit computing Fx(·) = PRF.Eval(·, x)
with the hardwired input x, as a function of the PRF key is in NC1.



Multiparty Reusable Non-interactive Secure Computation from LWE 743

Parameters.

– λ is the security parameter,
– ni is the length of the input of party i,
– d is the depth parameter,
– N1 is a lattice dimension involved,
– k is the number of secrets used to generate the commitment key,
– N := N1 + k,
– q is a modulus,
– M ∈ Ω(N · log q) is a dimension involved,
– σ, σ′ are discrete Gaussian parameters,
– ρ is a parameter for trapdoor sampling,
– �Ext is the seed length of an average-case strong-seeded extractor (Defini-

tion 3.8).

The Protocol. We now describe the protocol which consists of three phases.
The first phase is a commitment phase where any party can publish a commit-
ment to its input. The second phase is when two parties decide to execute the
functionality UfOT,λ,d with their respective commitments from the first phase. In
this phase, one message is published from each of these parties. In the third and
last phase, each party locally computes their output, given the public transcript.
No communication is involved in this phase.

We present the protocol from the point of view of a given party which we
call P . This party first commits to its input on a public board. Later, P can
engage in a computation phase with some other party P ′, by each broadcasting
just one message. For this phase, we distinguish between two cases: whether P
is the “first” or “second” party among P, P ′, where the ordering is given by the
functionality. Lastly, each party can recover the output of the computation just
from the public messages.

Commit on input (1λ, x): On input x ∈ {0, 1}∗ perform the following steps:
– Sample a matrix B ← Z

N1×M
q uniformly at random.

– Sample secrets tl ← Z
1×N1
q for l ∈ [k].

– For l ∈ [k], compute bl = tl · B + el where el is sampled from DM
σ .

– Set flag = 0 if {el}l∈[k] are not linearly independent. Otherwise set flag =
1. Observe that due to Lemma 3.9, with overwhelming probability flag =
1.

– Denote A = [B�|b�
1 | . . . |b�

k ]� ∈ Z
N×M
q .

– Compute commitments of input x. Parse x = (x1, . . . , xn), where
n = |x|. Compute matrices C� = A · R� + x�G for � ∈ [n]. Here
R� ← {−1, +1}M×(N�log q�) is chosen uniformly at random and G ∈
Z

N×(N�log q�)
q is the gadget matrix.

– Output x̂ = (flag,A, {C�}�∈[n]) as a public string and remember s =
({R�}�∈[n], x) as a private string.



744 F. Benhamouda et al.

Encode: There are two cases, depending on the “order” of the parties involved,
denoted P and P ′. In both cases, the view of party P (or its query) consists
of x̂, x̂′, s and the view of P ′ consists of x̂, x̂′, s′. The descriptions of g1, g2 are
public. In both cases, party P first parses the public message of P ′ as follows:

– Parse x̂′ = (flag′,A′, {C′
�}�∈[n′]), where n′ is the input length of party P ′.

If flag′ = 0, output ⊥. Otherwise, proceed.
Party P proceeds as follows, depending on whether it is the “first” party or
the “second”.
Case 1: Party P is the “first” party.

– Compute (y0, y1) = g1(x).
– Compute C̃′

g2 = GSW.Eval(g2, {C′
�}�∈[nj ]).

– Sample two secrets u0,u1 ← Z
1×N
q .

– Compute wb = ub · [A′|C̃′
g2 − (1 − b) · G] + ẽ mod q for b ∈ {0, 1}. Here

ẽ is sampled from D1×(M+N�log q�)
σ′ .

– Let Ext : {0, 1}�Ext × {0, 1}N log q → {0, 1}λ be a (λ, 2−λ)-strong seeded
extractor. Sample a seed sd of the extractor. Output α = (sd,w0,w1, v0 =
Ext(sd,u0) ⊕ y0, v1 = Ext(sd,u1) ⊕ y1).

Case 2: Party P is the “second” party.
– Compute C̃g2 = GSW.Eval(g2, {C�}�∈[n]).
– Compute GSW.RandEval(A, {R�, x�}�∈[n]) → R̃g2 such that C̃g2 = A ·

R̃g2 + g2(x) · G.
– Compute a matrix Xg2 as:

Xg2 =
{

SampleRight(A, −G, R̃g2 ,TG, ρ) when g2(x) = 0
SampleRight(A,G, R̃g2 ,TG, ρ) when g2(x) = 1

Observe that Xg2 is a trapdoor of [A | C̃g2 − (1 − g2(x))G].
– Output α = (g2(x),Xg2).

Eval on input (z = (g1, g2), x̂, x̂′, α, α′): Let P be the first party and P′ be the
second party.

– Parse x̂ = (flag,A, {C�}�∈[n]) and x̂′ = (flag′,A′, {C′
�}�∈[n′]). If α = ⊥ or

α′ = ⊥, then output ⊥. Otherwise,
– Parse α = (sd,w0,w1, v0, v1) and α′ = (α′

1,X) where α′
1 is a bit.

– Compute u = RecoverSecret([A′|C̃′
g2 −(1−α′

1)G)], X,wα′
1
), where recall

that C̃′
g2 = GSW.Eval(g2, {C′

�}�∈[n]).
– Compute out2 = Ext(sd,u) ⊕ vα′

1
. Set out1 = α′

1
– Output out = (out1, out2).

In the full version, we derive a concrete setting of parameters with which we
can instantiate the scheme as well as prove the correctness as well as the security.



Multiparty Reusable Non-interactive Secure Computation from LWE 745

4.2 Bootstrapping 2rNISC for All Depths

In this section, we use a PRF in NC1 to bootstrap a 2rNISC protocol for the
functionality UfOT,λ,c log λ for some fixed large enough constant c to a 2rNISC for
UfOT,λ, as required in Theorem 4.1. Namely, the theorem we prove is:

Theorem 4.3. Assuming a 2rNISC protocol for the functionality UfOT,λ,c log λ

for a large enough constant c > 0, a PRF in NC1, and a collision resistant hash
function, there exist a 2rNISC for the functionality UfOT,λ.

By combining Theorems 4.2 and 4.2, and using the fact that LWE (with poly-
nomial modulus) imply collision-resistant hash functions [3], imply Theorem 4.1.

We prove Theorem 4.3 in the full version [20]. An overview of the construction
is provided at the end of Sect. 2.2.

5 Construction of MrNISC Schemes

Let us now show our construction of mrNISC schemes. We recall the mrNISC
notion from the overview (Sect. 2.1) and the definition of Functional OT (UfOT,
Fig. 1).

We have the following theorem.

Theorem 5.1. Assuming the existence of a semi-malicious 2rNISC for Func-
tional OT there exists an mrNISC scheme for any polynomial-time functionality.

Our construction of mrNISC for a polynomial-time functionality U uses the
following building blocks:

– A 2rNISC 2rNISC = (Com′,Encode′,Eval′) for Functional OT (fOT ).
– A semi-malicious output-delayed simulatable L-round MPC protocol Π =

(Next,Output) for f . Output-delayed simulatability was introduced in [22]
and ensures that the transcript excluding the last messages can be simulated
for all-but-one honest parties before knowing the output. Formal definitions
and constructions from standard semi-malicious MPC are recalled in the full
version [20]. We require the number of rounds L to be constant. The reason
behind this requirement is that in an mrNISC protocol, only when all the
honest parties agreed to provide a computation encoding, the adversary (and
so the simulator) should be able to learn the output. Without loss of generality,
we will assume that in each round � of Π, each party Pi broadcasts a single
message that depends on its input xi, randomness ri and on the messages
Msg<� = {msg�′

j }
j∈[n],�′<�

that it received from all parties in all previous
rounds such that msg�

j = Nextj(z, xj , rj ,Msg<�), where z is the public input.
In other words, Nextj is the next message function that computes the message
broadcast by Pj . In the last round L of Π anybody computes the public output
y = Output(z,Msg) = U(z, {xi}), from the messages Msg = {msg�

j}
j∈[n],�∈[L].

We denote by νr the number of bits of ri and by νm the number of bits of
messages msg�

i (without loss of generality, we suppose that these numbers



746 F. Benhamouda et al.

are independent of i and �, but they may depend on z and the security
parameter). Nextj and Output implicitly take as input a unary representation
of the security parameter 1λ.

– A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for P.
The keys (aka labels) of the garbled circuits have κ bits.

– A pseudorandom function PRF. Each party will generate L + 1 PRF keys
fk0

i , . . . , fkL
i . The key fk0

i is used to generate the randomness for the internal
MPC (via PRF(fki, 0‖z‖ . . . )), while the keys fk1

i , . . . , fkL
i are used to encrypt

(via a one-time pad) the labels of the used garbled circuits for rounds 1, . . . , L
respectively (via PRF(fki, 1‖z‖ . . . )).

Our mrNISC scheme is constructed as follows:

– Input: (x̂i, si) ← Com(1λ, xi) samples L + 1 PRF key fk0
i , . . . , fkL

i ←R

{0, 1}λ.For each � ∈ L, Com also generates 2rNISC input encodings and
associated secret state for xi‖fk0

i ‖fk�
i :

(x̂�
i , s�

i) ←R Com′(xi‖fk0
i ‖fk�

i) . (1)

In other words, party Pi make L 2rNISC input encodings. When we need
to differentiate these encodings, we say that the �-th such input encoding is
made by the virtual party P �

i . Finally, Com sets x̂i := {x̂�
i}�∈[L] and si :=

(xi, {fk�
i}�∈[0,L], {s�

i}�∈[L]).
– Computation of U(z, �): αi ← Encode(z, {x̂j}j∈[n], si) proceeds as follows:9

• For � ∈ [L], generate input labels that will be used to garble the evaluation
circuit F�

i defined in Fig. 2:

(stateKey�
i , {msgKey�

i,j}
j
) ←R GC.Gen(1λ) .

For � = 1, all the input labels are empty, as F1
i does not take any input.

We also define stateKeyL+1
i and {msgKeyL+1

i,j }
j

to be empty strings.
• For � ∈ [L], j ∈ [n], k ∈ [νm], b ∈ {0, 1}, compute the following ciphertexts

ct�i,j,k,b ←R msgKey�+1
i,j [k, b] ⊕ PRF(fk�

i , 1‖z‖j‖k‖b‖[κ]) . (2)

If � = L, these ciphertexts are set to be empty strings.
• For � ∈ [L], garble the evaluation circuit F�

i :

F̂�
i ←R GC.Garble((stateKey�

i , {msgKey�
i,j}

j∈[n]), F�
i) .

• Set αi := ({F̂�
i}�∈[L], {ct�+1

i,j,k,b}
j,k,b

).
– Output y = Eval(z, {x̂i}i∈[n], {αi}i∈[n]) proceeds as follows in L iterations, for

� = 1, . . . , L:

9 For simplicity, we suppose that the set of parties participating in the computation
is I = [n].



Multiparty Reusable Non-interactive Secure Computation from LWE 747

Fig. 2. Circuit F�
i for the construction of mrNISC in Sect. 5

• Evaluate the garbled circuits for round �, for i ∈ [n]:
(

stateKey′�+1
i , msg�

i , {α�
i,j,k,1}

j,k
, {α�

j,i,k,2}
j,k

)

:= GC.Eval(F̂i, (stateKey′�
i , {msgKey�

i,j [msg�−1
j ]}

j∈[n])) .

We recall that for round � = 1, all the input labels are empty strings, so
the evaluation can be performed.



748 F. Benhamouda et al.

• If � �= L, decrypt the input labels for the next round, for i, j ∈ [n] and
k ∈ [νm], define g�

1,j,k, g�
2,i,k as in Fig. 2 and compute:

(_, K�
i,j,k) := Eval′((g�

1,j,k, g�
2,j,k), (x̂′

i, x̂′
j), (α�

i,j,k,1, α�
i,j,k,2)) ,

msgKey�+1
i,j [msg�

j ] := {ct�i,j,k, ⊕ K�
i,j,k}

k∈[νm] ,

where _ just indicates that we ignore the output.
At the end, Eval got the full transcript of the inner MPC Msg =
{msg�

j}
j∈[n],�∈[L] and set y := Output(z,Msg).

The correctness of the mrNISC scheme is follows from the perfect correctness
properties of the inner MPC protocol, of the garbled circuit scheme, and the
following fact (if everything is generated as specified in the description above):

Eval′((g�
1,j,k, g�

2,j,k), (x̂′
i, x̂′

j), (α�
i,j,k,1, α�

i,j,k,2)) = (β, yβ)
where β = g�

2,j,k(xj‖fk0
j‖fk�

j) = the k-th bit of msg�
j

and (y0, y1) = g�
1,j,k(xi‖fk0

i ‖fk�
i)

thus:
K�

i,j,k = yb = PRF(fkj , 1‖z‖j‖k‖β‖[κ]) .

The proof is similar to the security proof of the mrNISC in [22] and is formally
presented in the full version [20].

Acknowledgments. Aayush Jain was supported by a Google PhD fellowship in the
area of security and privacy (2018) and in part from DARPA SAFEWARE and SIEVE
awards, NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF
grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

Ilan Komargodski is supported in part by an Alon Young Faculty Fellowship and
by an ISF grant (No. 1774/20).

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-
1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research
Award, a Simons Collaboration grant on the Theory of Algorithmic Fairness, the
Defense Advanced Research Projects Agency (DARPA) and Army Research Office
(ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois.

The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, DARPA, the National Science Foundation,
or the U.S. Government.

References
1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation

based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_22

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22


Multiparty Reusable Non-interactive Secure Computation from LWE 749

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press (May 1996). https://doi.org/10.1145/
237814.237838

4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Albers,
S., Marion, J. (eds.) Proceedings of the 26th International Symposium on Theo-
retical Aspects of Computer Science, STACS 2009. LIPIcs, 26–28 February 2009,
Freiburg, Germany, vol. 3, pp. 75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2009). https://doi.org/10.4230/LIPIcs.STACS.2009.1832

6. Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE com-
biners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36030-6_9

7. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0_14

8. Ananth, P., Jain, A., Jin, Z.: Multiparty homomorphic encryption (or: on removing
setup in multi-key FHE). IACR Cryptology ePrint Archive: 2020/169 (2020)

9. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryp-
tion in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64375-1_2

10. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_29

11. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10

12. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness leads
to GOD. IACR Cryptology ePrint Archive: Report 2018/580 (2018). https://eprint.
iacr.org/2018/580

13. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness leads
to GOD. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp.
120–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_5

14. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive secure
computation from one-way functions. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 118–138. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3_5

15. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2_20

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.4230/LIPIcs.STACS.2009.1832
https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-70700-6_10
https://eprint.iacr.org/2018/580
https://eprint.iacr.org/2018/580
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20


750 F. Benhamouda et al.

16. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_42

17. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from
DDH. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 320–348.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_12

18. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22

19. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press (May 1988). https://doi.org/10.1145/62212.
62213

20. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-
interactive secure computation from LWE. IACR Cryptology ePrint Archive (2021)

21. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8_17

22. Benhamouda, F., Lin, H.: Mr NISC: multiparty reusable non-interactive secure
computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp.
349–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_13

23. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_23

24. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14

25. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–677.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22

26. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
45th ACM STOC, pp. 575–584. ACM Press (June 2013). https://doi.org/10.1145/
2488608.2488680

27. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4_8

28. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014, pp. 1–12. ACM (January 2014). https://doi.org/10.1145/
2554797.2554799

29. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7_22

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-64378-2_12
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-64378-2_13
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1007/978-3-662-46497-7_22
https://doi.org/10.1007/978-3-662-46497-7_22


Multiparty Reusable Non-interactive Secure Computation from LWE 751

30. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press (November 2014). https://doi.org/10.1145/2660267.2660374

31. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

32. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15

33. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (May 1988).
https://doi.org/10.1145/62212.62214

34. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_31

35. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7_23

36. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

37. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3_31

38. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th ACM STOC, pp. 554–563. ACM Press (May 1994). https://doi.
org/10.1145/195058.195408

39. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4

40. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp.
123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_5

41. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation min-
imizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0_10

42. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7_24

43. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th FOCS, pp. 588–599. IEEE Computer Society Press
(October 2017). https://doi.org/10.1109/FOCS.2017.60

44. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8_16

https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/195058.195408
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1109/FOCS.2017.60
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16


752 F. Benhamouda et al.

45. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

46. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

47. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: 30th ACM STOC, pp. 151–160. ACM
Press (May 1998). https://doi.org/10.1145/276698.276723

48. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.28420

49. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press (June 2015). https://doi.org/10.1145/2746539.
2746576

50. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guaran-
tee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_4

51. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4_23

52. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press (May 2012). https://doi.
org/10.1145/2213977.2214086

53. Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9_26

54. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

55. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press (October
2004). https://doi.org/10.1109/FOCS.2004.72

56. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–
763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

57. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31
May–2 June 2009, pp. 333–342. ACM (2009)

58. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5_9

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/276698.276723
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9


Multiparty Reusable Non-interactive Secure Computation from LWE 753

59. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7_4

60. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press (October
2018). https://doi.org/10.1109/FOCS.2018.00086

61. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC, pp. 84–93 (2005)

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1109/FOCS.2018.00086


Unbounded Multi-party Computation
from Learning with Errors

Prabhanjan Ananth1(B), Abhishek Jain2, Zhengzhong Jin2,
and Giulio Malavolta3

1 University of California, Santa Barbara, CA, USA
2 Johns Hopkins University, Baltimore, MD, USA

{abhishek,zzjin}@cs.jhu.edu
3 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. We consider the problem of round-optimal unbounded MPC :
in the first round, parties publish a message that depends only on their
input. In the second round, any subset of parties can jointly and securely
compute any function f over their inputs in a single round of broadcast.
We do not impose any a-priori bound on the number of parties nor on
the size of the functions that can be computed.

Our main result is a semi-honest two-round protocol for unbounded
MPC in the plain model from the hardness of the standard learning
with errors (LWE) problem. Prior work in the same setting assumes the
hardness of problems over bilinear maps. Thus, our protocol is the first
example of unbounded MPC that is post-quantum secure.

The central ingredient of our protocol is a new scheme of attribute-
based secure function evaluation (AB-SFE) with public decryption. Our
construction combines techniques from the realm of homomorphic com-
mitments with delegation of lattice basis. We believe that such a scheme
may find further applications in the future.

1 Introduction

A multi-party computation (MPC) protocol [20] allows a set of n mutually dis-
trustful parties to evaluate any circuit C over their inputs (x1, . . . , xn), while
leaking nothing beyond the circuit output C(x1, . . . , xn). MPC is one of the
pillars of modern cryptography and the study of its round complexity (and
the necessary assumptions) has motivated a large body of research. A series
of recent works has established that two rounds are necessary and sufficient
to securely compute any function, under a variety of cryptographic assump-
tions [8,15,17,18,24,29].

A recent line of work [2,7,9] focuses on constructing round-optimal MPC
with reusable first message, i.e. where the first message of the MPC can be
reused an unbounded number of times for computing different functions over
the committed inputs. However, out of these works only [9] achieves the “dream
version” of two round MPC, i.e. an MPC that simultaneously satisfies all of the
following properties:
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 754–781, 2021.
https://doi.org/10.1007/978-3-030-77886-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_26


Unbounded Multi-party Computation from Learning with Errors 755

– No trusted setup is required.
– In the first round, each party publishes a first message that depends only on

their input and does not depend on the number of parties nor on the size of
the circuit being evaluated.

– In the second round, any subset of parties can evaluate a circuit C over their
first messages. The output can be publicly reconstructed given all the second
messages.

– The second round can be repeated arbitrarily many times (with different
circuits and different sets of parties), without the need to recompute a first
message. Parties can join the system at any time by posting a first message.

Throughout this work, we refer to such an MPC protocol as unbounded MPC.
Among all works on round-optimal protocols, only [9] achieves the notion of

truly unbounded MPC without the need for a trusted setup. In particular, the
works of [2,7] fall short in satisfying this notion because they impose a bound
on the number of participants that needs to be fixed once and for all in the first
round and needs to be shared across all parties. The earlier work of [29] does
not suffer from this limitation, but requires a trusted setup.

The work of [9] assumes the hardness of standard problems over bilinear
maps. While the veracity of such assumptions is well-established in the classical
settings, the lurking threat of quantum computing renders such a solution imme-
diately insecure in the presence of a scalable quantum machine. This motivates
us to ask the following question:

Can we construct unbounded MPC from Learning with Errors (LWE)?

1.1 Our Results

We consider the problem of unbounded MPC with security against semi-honest
adversaries in the dishonest majority setting. In our communication model, par-
ties publish their first message through a broadcast channel which is immedi-
ately delivered to all participants. At any point in time, any subset S of par-
ticipants (with a dishonest majority) can gather together and evaluate a circuit
C over their inputs (x1, . . . , x|S|) in a single round of broadcast. The output
C(x1, . . . , x|S|) can then be publicly reconstructed from the messages of all par-
ties. This phase can be repeated arbitrarily many times without having to re-
initialize the first message (i.e. the first message is reusable). We do not impose
any a-priori bound on the number of participants nor on the size of the circuits.

We prove the following theorem:

Theorem 1 (Informal). If the learning with errors (LWE) problem is hard,
then there exist a two-round unbounded MPC in the plain model.

By additionally assuming the quantum hardness of LWE, we obtain the first
post-quantum secure protocol for (semi-honest) unbounded MPC in two rounds.
Our main technical ingredient is a new construction of attribute-based secure
function evaluation (AB-SFE) [27] where the output can be publicly reconstructed



756 P. Ananth et al.

at the end of the second round. On a technical level, our scheme combines the
homomorphic commitment scheme from [23] with techniques to delegate a lattice
basis. We believe that such a scheme may find further applications in the future.

Semi-malicious Security. In the full version of the paper, we extend our results
to the semi-malicious setting by building on techniques in [10].

2 Technical Overview

In the following, we summarize the main technical innovations of our work. This
outline can be roughly split in three components: First we introduce the notion
of AB-SFE [27] with public decryption and we recall the security properties that
we want to guarantee. Then we show an instantiation of AB-SFE with public
decryption from LWE, building on the construction of homomorphic commit-
ments from [23]. Finally, we show how AB-SFE functions as the main ingredient
(alongside garbled circuits) for constructing unbounded MPC.

2.1 AB-SFE with Public Decryption

We begin by recalling the notion of AB-SFE [27]. AB-SFE was introduced in
the context of designated-verifier non-interactive zero-knowledge proof to obtain
constructions from new assumptions. However the work of [27] focused on the
notion where decrypting a message requires a secret state (that might leak some
information about the attribute). Here we augment the syntax of AB-SFE with
a public decryption procedure. For the purpose of our work, it is going to be
useful to cast this primitive as a two-party protocol between an “authority” and
a “sender.” The interaction proceeds as follows:

– Key Generation: On input an attribute x, the authority locally runs a setup
algorithm crs ← Setup(1λ) and generates a secret/public key pair (msk, pk) ←
KeyGen(crs, x).1

– Encryption: Given the public key pk (generated as above), a circuit C and
a message μ, the sender computes a ciphertext ct ← Enc(pk, C, μ).

– Decryption Hint: To enable public decryption, the authority crafts a
circuit-specific decryption hint skC ← Hint(msk, C).

– Public Decryption: Anyone who possesses the ciphertext ct and the decryp-
tion hint skC can recover the message μ by running Dec(skC , ct). The proce-
dure succeeds if and only if C(x) = 1.

One way to intepret this primitive is as a secure two-party computation proto-
col where the interaction consists only of two rounds and where only one party
speaks in the first round. Looking ahead, this latter property is going to be cru-
cial to achieve unbounded secure MPC, since it will allow multiple (unbounded)
parties to simultaneously play the role of the sender.
1 Note that we could have merged the Setup and the KeyGen algorithms in a single

subroutine, however we refrained to do so in order to match the original syntax
from [27].



Unbounded Multi-party Computation from Learning with Errors 757

Security of AB-SFE. As for the security of AB-SFE we define two properties:
(1) We require that nothing beyond C(x) is revealed about the attribute x. This
requirement must hold even for polynomially many circuits (C1, . . . , Cq) and
in the presence of the corresponding decryption hints (skC1

, . . . , skCq
), for any

polynomial q. (2) We require that for all circuits C such that C(x) = 0 it holds
that

Enc(pk, C, μ0) ≈ Enc(pk, C, μ1)

are computationally indistinguishable. This is required to hold even if the
distinguisher is given the random coins used in the key generation procedure.
In other words, if the circuit outputs 0, even the key authority should not be
able to learn the message of the sender. This is in stark contrast with the stan-
dard attribute-based encryption settings [25,31] where typically semantic secu-
rity does not hold against a corrupted authority.

2.2 AB-SFE from Learning with Errors

The problem of constructing AB-SFE was considered in [27] where they obtained
schemes from a variety of assumptions in the private decryption settings, based
on 2-round oblivious transfer. However, none of their schemes support public
decryption (without adding an extra round of interaction).

In this work we take a different route. Our starting point is the fully homo-
morphic commitment scheme from [23], which we briefly recall in the following.

Homomorphic Commitments. The commitment key is a uniform matrix
A ← Z

n×m
q and committing to a multi-bit string (x1, . . . , xu) corresponds to the

computation of a set of

Ci = Com(A, xi;Ri) = A · Ri + xiG

where Ri ← {0, 1}m×m and G is the gadget matrix from [28]. Here Ri is a low-
norm vector and plays the role of the decommitment. In [23] it is shown that one
can homomorphically evaluate any (depth-bounded) circuit C over committed
value and still obtain a well-formed commitment CC . The exact details of the
algorithm are irrelevant for the purpose of this overview, except for the fact that
one can define a (deterministic) homomrphic computation over the decommit-
ments and obtain a low-norm vector RC,x, which is a valid decommitment for
CC .

At this point it is instructive to take a step back and think how we could
implement AB-SFE if we had a general-purpose witness encryption [16] scheme.
A witness encryption scheme, associated with a NP language, consists of an
encryption and a decryption algorithm: Anyone can encrypt their message μ
under an NP instance and the decryption algorithm can obtain μ using the wit-
ness to this instance. We use witness encryption as follows: The sender encrypts
μ under the instance A · RC,x + C(x)G which is obtained by homomorphically
evaluating upon the commitments using the circuit C. The authority releases



758 P. Ananth et al.

the decommitment RC,x as witness which would then allow anyone to recover
μ if and only if C(x) = 1. Temporarily glossing over the fact that RC,x might
leak some information about x, we are going to show how to implement this idea
without resorting to the power of general-purpose witness encryption.

Computing Hints via Basis Delegation. Our first observation is that, when
C(x) = 1, the matrix

[
A CC

]
=

[
A ARC,x + G

]
matches the construction of

lattice trapdoor in [28]. Hence, RC,x allows us to compute a short basis (a trap-
door) for the dual lattice spanned by

[
A CC

]
. Following [28], such a trapdoor

T can be efficiently computed in the following way

T =
[
I −RC,x

0 I

]
·
[

I 0
−G−1[A] TG

]

where TG is a short basis for the lattice Λ⊥
q (G), which is publicly computable.

At this point it is tempting to view
[
A CC

]
as the public-key of the witness

encryption and T as the witness. After all, T has low norm if and only if RC,x

does, which implies that RC,x is a valid decommitment for CC .
However we are not yet done. The adversary receives RC,x, for multiple

circuits, where each decommitment is a deterministic function of the decommit-
ments (R1, . . . ,Ru) and enough number of such decommitments will leak some
information about x. Recall that we are interested in the public decryption set-
ting, which would require us to publicly release T, which is again a deterministic
function of RC,x.

Our next idea is to randomize the trapdoor T using the basis delegation
procedure of [12]. In the literature, this process is also referred to as SampleRight.
First we add a uniformly sampled matrix Â ← Z

n×2m
q and a uniform vector

y ← Z
n
q to the public parameters. Given the trapdoor T for

[
A CC

]
, the inverse

sampling algorithm allows us to probabilistically sample a low-norm vector e
such that [

Â A CC

]
· e = y

and e carries no information about T. At this point we have all ingredients to
instantiate our witness encryption: After recomputing CC homomorphically, the
encryptor parses

p̂k =
[
y Â A CC

]

as a public key for a dual Regev encryption scheme [19] (with appropriate dimen-
sions) and uses p̂k to encrypt μ in a canonical way. The decryption hint e can be
computed from RC,x as described above and allows anyone to recover μ, since it
has low norm. Some care is needed in setting the parameters for the noise, but
it is not hard to prove that the scheme is secure assuming the hardness of the
LWE problem.

To see why we achieve security against a corrupted sender, we first switch
from using a trapdoor for

[
A CC

]
to generate the matrix RC,x to instead use



Unbounded Multi-party Computation from Learning with Errors 759

a trapdoor for Â (using a process referred to as SampleLeft)2; this switch is
statistically indistinguishable and follows from the standard lattice trapdoor
lemmas. We do this switch for every circuit. Once we do this, we then invoke
leftover hash lemma to instead generate the commitment as Ui + xiG, where
Ui is generated uniformly at random. At this point, the input of the receiver is
information-theoretically hidden from the sender.

The security against a corrupted receiver follows from the noise smudging
lemma and learning with errors.

2.3 From AB-SFE with Public Decryption to Unbounded MPC

We are now ready to show how AB-SFE with public decryption readily gives us
a construction of unbounded MPC.

Building Blocks. In addition to AB-SFE with public decryption, we are going
to assume the existence of any semi-malicious secure two-round MPC, denoted by
mpc, such as the protocols proposed in [8,18]. We note that we do not place any
additional restrictions on mpc: For instance, it need not guarantee any reusability
property and moreover, the total number of parties in the MPC protocol can
be fixed before the first round message. Furthermore we are going to make use
of garbled circuits [32]. For the reader unfamiliar with the notion, a garbling
scheme allows one to compute a garbled version of a circuit C together with
set of label pairs (labi,0, labi,1). Given an input z, its encoding consists of the
labels corresponding to its bit representation (lab1,z1 , . . . , lab|z|,z|z|) and security
requires that nothing is revealed about z, besides the output of the computation
C(z).

It is also going to be convenient to consider an augmented notion of AB-SFE,
that we denote by 2AB-SFE, following the convention from [22]. A 2AB-SFE
with public decryption is identical to AB-SFE with public decryption except
that the encryption algorithm takes as input two messages (μ0, μ1) and the
public decryption returns μ0 if C(x) = 0 and μ1 if C(x) = 1. Given an AB-SFE,
it is easy to construct a 2AB-SFE by just encrypting μ0 under the complement
of C.

The Unbounded MPC Protocol. We provide a simplified description of our
unbounded MPC in the following.

– First Message: Given an input xi, the first message of each party simply
consists of the generation of a public key pki for the 2AB-SFE scheme, where
the attribute is set to the input xi.

– Second Message: Each party Pi is given as input set of parties S and a
circuit C. First, it computes a garbled version of the circuit that takes as input
S (specifying the subset of parties participating in the protocol), any first

2 In the technical sections, instead of using the terms SampleLeft and SampleRight,
we use the algorithm GenSamplePre that captures the functionality of both these
algorithms.



760 P. Ananth et al.

round messages (m1, . . . ,m|S|) of mpc and computes the ith party’s second
round messages of mpc (the input xi is hardwired in the computation). After
it computes the garbled circuit, it then takes each pair of labels (labi,0, labi,1)
and computes a 2AB-SFE encryption for the corresponding participant Pj

under the circuit Γi,j , defined as follows.

Γi,j : Compute the i-th bit ofmj .

Finally, for all j = 1 . . . |S| compute the decryption hints for the 2AB-SFE
encryption corresponding to the circuit Γj,i.

– Reconstruction: The public reconstruction algorithm works by using all
the decryption hints to recover all the labels, which in turn are used to eval-
uate the garbled circuits. This results in a set of second round messages
(p1, . . . , p|S|) for the underlying two-round MPC. The reconstruction algo-
rithm then returns the result of the reconstruction procedure of the one-time
MPC.

Since the first message consists only of the key of the 2AB-SFE scheme, it is
clear that the resulting MPC does not impose a bound on the parties. Also
note that the underlying two-round secure MPC, namely mpc, is freshly re-
initialized for each second message and therefore the security of the reusable
protocol is not affected. One subtlety that we ignored in the above description is
that the computation of the messages for the one-time MPC is randomized and
we need to ensure that the same randomness is used consistently in the first and
second message for each party. This can be done routinely by adding a PRF key
alongside the input and drawing all necessary random coins by evaluating the
PRF on some public input.

2.4 Related Work

Ishai et al. [26] introduced the notion of reusable non-interactive secure compu-
tation (rNISC), where a receiver can publish a reusable encoding of its input
y and any sender can enable computation of f(x, y) by computing a message
using input x and sending it to the receiver. This notion has subsequently been
studied in many follow-up works; see, e.g., [1,5,6,11,13].

The recent work of Benhamouda and Lin [9] extends this notion to the mul-
tiparty setting, and refer to it as multiparty reusable NISC (mrNISC). Unlike
rNISC which is primarily challenging in the malicious adversary model (from the
viewpoint of black-box constructions), mrNISC is non-trivial even in the semi-
honest adversary model. Unbounded MPC seeks the same goals as mrNISC; we
use the former terminology to emphasize the key property that the first round
messages do not depend on the number of parties or the size of the circuit or
the size of the subset of parties involved in the actual computation.



Unbounded Multi-party Computation from Learning with Errors 761

3 Preliminaries

3.1 Notations

For any integer n, we use [n] to denote the set {1, 2, . . . , n}. We use Z to denote
the sets of integers, and use Zq to denote Z/qZ.

For any sets S1, S2, . . . , Sn of integers, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈ S1 ×

S2 × · · ·×Sn, we use the notation (i∗1, i
∗
2, . . . , i

∗
n)+ 1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)− 1) to

denote the lexicographical smallest (resp. biggest) element in S1 × S2 × · · · × Sn

that is lexicographical greater (resp. less) than (i∗1, i
∗
2, . . . , i

∗
n).

Statistical Distance. For any two discrete distributions P,Q, the statisti-
cal distance between P and Q is defined as SD(P,Q) =

∑
i

∣
∣ Pr [P = i] −

Pr [Q = i]
∣
∣/2 where i takes all the values in the support of P and Q.

3.2 Lattice and LWE Assumption

Let m be an integer, a lattice is a discrete additive group in R
m. We say that

a set of linear independent vectors B = {b1,b2, . . . ,bk} is a basis of a lattice
Λ, if Λ = {Bz | z ∈ Z

k}. Let B̃ = {b̃1, b̃2, . . . , b̃k} be the Gram-Schmidt basis
derived from B. We denote ‖B̃‖ = maxi∈[k] ‖b̃i‖.

For any integer n,m, q ≥ 2 and Z
n×m
q , we define the q-ary lattice

Λq(A) = {z ∈ Z
m
q | ∃s ∈ Z

n, z = AT s (modq)}
Λ⊥

q (A) = {z ∈ Z
m
q | Az = 0 (modq)}

Similarly, for any y ∈ Z
n
q , we define the coset Λy

q (A) = {z ∈ Z
m
q | Az =

y (modq)}.

Discrete Gaussian. For any integer n and real s > 0, define the Gaussian
function ρs : R → R

+ of parameter s as ρs(x) = exp(−π‖x‖2/s2). For any lattice
Λ, any vector c ∈ R

m, and real s > 0, we denote ρs(Λ + c) =
∑

x∈Λ ρs(x + c).
The discrete Gaussian probabilistic distribution DΛ+c,s is a distribution over Λ
with density function ρs(x)/ρs(Λ + c), for any x ∈ Λ.

Theorem 2 (Noise Flooding [4,14,21,30]). For any c ∈ Z, and real s > 0,
SD(DZ,s,Dc+Z,s) < O(c/s).

Definition 1 (LWE Assumption). Let n = n(λ),m = m(λ), � = �(λ) be
polynomials in λ, and let the modulus q = 2λO(1)

be a function of λ, and χ = χ(λ)
be a noise distribution. The Learning with Error (LWE) assumption states that
for any PPT distinguisher D, there exists a negligible function ν(λ) such that
for any sufficiently large λ,

∣
∣
∣
∣ Pr

[D(1λ, (A,S · A + E)) = 1
] − Pr

[D(1λ, (A,U)) = 1
]
∣
∣
∣
∣ < ν(λ)

where A ← Z
n×m
q ,S ← Z

�×n
q ,U ← Z

�×m
q ,E ← χ�×m.



762 P. Ananth et al.

Lattice Trapdoor and Preimage Sampling

Theorem 3 ([28], Theorem 5.1). There is an efficient randomized algorithm
TrapGen(1n, 1m, q), that given any integer n ≥ 1, q ≥ 2, and sufficiently large
m = O(n log q), outputs a (partity-check) matrix A ∈ Z

n×m
q , and a short basis

T for Λ⊥
q (A), such that A is statistically close to uniform.

Theorem 4 ([12], Theorem 3.4, Special Case). Let n, q,m be positive inte-
gers with q ≥ 2, and m ≥ 2n log q, there exists a PPT algorithm GenSamplePre on
input of A =

[
A1 A2

] ∈ Z
n×2m
q , and S ∈ {1, 2}, a basis BS for Λ⊥

q (AS), a vector
y ∈ Z

n
q , and an integer r > ‖B̃S‖ · ω(

√
log 2m), outputs e ← GenSamplePre(A,

BS , S,y, r), such that for overwhelming fraction of A, e is statistically close to
DΛy

q (A),r.

3.3 Garbling Scheme

A garbling scheme is a pair of algorithms (Garble,Eval), which works as follows.

– Garble(1λ, C): The garbling algorithm takes as input a security parameter λ,
and a circuit C with input length �in and output length �out. Then it outputs
a garbled circuit C̃ and some labels lab = {labb,i}b∈{0,1},i∈[�in].

– Eval(C̃, labx): For any x ∈ �in, let labx denote {labxi,i}i∈[�in]. On input C̃ and
labx, it outputs a y.

We require a garbling scheme to satisfy the following properties.

– Correctness: For any circuit C : {0, 1}�in → {0, 1}�out , and any input x ∈
{0, 1}�in , we have

Pr
[
(C̃, lab) ← Garble(1λ, C), y ← Eval(C̃, labx) : y = C(x)

]
= 1

– Simulation Security: There exists a simulator Sim such that for any n.u.
PPT distinguisher D, there exists a negligible function ν(λ) such that

∣
∣
∣
∣ Pr

[
(C̃, lab) ← Garble(1λ, C) : D(1λ, C̃, labx) = 1

]
−

Pr
[
(C, lab) ← Sim(1λ, C(x)) : D(1λ, C, lab) = 1

]
∣
∣
∣
∣ < ν(λ)

3.4 Semi-malicious 2-Round MPC in Plain Model

A (one-time useable, selective secure) semi-malicious 2-round MPC in the plain
model is a tuple of algorithms (Round1,Round2,Rec), which work as follows.

There are N parties who want to jointly compute f(x1, x2, . . . , xN ), where
xi is the input of i-th party.



Unbounded Multi-party Computation from Learning with Errors 763

– Round 1: For each i ∈ [N ], the i-th party sets fresh random coins ri, and
executes msgi ← Round1(1λ, xi, f ; ri).

– Round 2: For each i ∈ [N ], the i-th party executes pi ←
Round2(xi, ri, {msgj}j∈[N ]).

– Output Recovery: Any one with {pi}i∈[N ] executes y ← Rec({pi}i∈[N ]).

We require the protocol to satisfy the following property.

– Semi-Malicious Simulation Security: There exists a simulator Sim such
that, for any input {xi}i∈[N ], for any subset of honest parties H ⊆ [N ], and
any dishonest parties’ random coins {ri}i∈[N ]\H , any PPT distinguisher D,
there exists a negligible function ν(λ) such that for any sufficiently large λ,
∣
∣
∣
∣ Pr

[
∀i∈H,ri←{0,1}∗,∀i∈[N ],msgi=Round1(1

λ,xi;ri),
pi=Round2(xi,ri,{msgj}j∈[N])

: D(1λ, {msgi, pi}i∈[N ]) = 1
]
−

Pr
[D(1λ,Sim(1λ,H, {xi, ri}i/∈H , f, f({xi}i∈[N ]))) = 1

]
∣
∣
∣
∣ < ν(λ)

Here, without loss of generality, we assume the Round1 and Round2 use the
same random coins.

3.5 Homomorphic Commitment

A homomorphic commitment scheme is a tuple of algorithms (Setup,Com,Eval),
with the following syntax.

– Gen(1λ) : A CRS generation algorithm that takes as input a security param-
eter λ, and it outputs a common random string crs.

– Com(crs, μ; r) : A commitment algorithm that takes as input the CRS crs, a
message μ ∈ {0, 1}, and randomness r, it outputs a commitment c.

– Eval(C, (c1, c2, . . . , cu)) : The (fully) homomorphic evaluation algorithm Eval
takes as input a circuit C, and some commitments c1, c2, . . . , cu, and it outputs
an evaluated commitment Com(C(x); rC,x), where x = (x1, x2, . . . , xu) is the
message that c1, c2, . . . , cu committed. Furthermore, the randomness rC,x can
be efficiently computed from the randomness used to compute c1, c2, . . . cu

and x.

We require it to satisfy the following properties.

Statistical Hiding. There exists a negligible function ν(λ) such that,

SD((crs,Com(crs, 0)), (crs,Com(crs, 1))) < ν(λ),

where the randomness is over the CRS crs and the randomness used to compute
the commitment.

Construction. Let n = n(λ) be a polynomial in λ, q = 2ADD, and m = 2n log q.

– Gen(1λ) : It samples A ← Z
n×m
q uniformly at random, and output crs = A.



764 P. Ananth et al.

– Com(crs = A, μ ∈ {0, 1};R) : It outputs a commitment C = AR + μG.
– Eval(C, (C1,C2, . . . ,Cu)): For each gate in the circuit C, the homomorphic

evaluation algorithm performs the following:
• For each addition gate, let the commitment of the input wires to be

Cl,Cr, it computes the commitment for the output wire as follows.

Co = Cl + Cr

• For each multiplication gate, let the commitment of the input wires to be
Cl,Cr, it computes the commitment for the output wire as follows.

Co = ClG−1[Cr]

Lemma 1 (Bound on Homomorphic Evaluation). Let A ∈ Z
n×m
q be a

matrix, x = (x1, x2, . . . , xu) be a binary string, and C be a boolean circuit of
depth d. Let

C = Eval(C, (Com(A, x1;R1),Com(A, x2;R1), . . . ,Com(A, xu;Ru))),

where x1, x2, . . . , xu ∈ {0, 1}, and R1,R2, . . . ,Ru ∈ {0, 1}m×m. Then
there exists a RC,x that can be efficiently computed from x1, x2, . . . , xu

and R1,R2, . . . ,Ru such that C = Com(A, C(x1, x2, . . . , xu);RC,x) and
‖RC,x‖max < 2O(d log m).

Proof. We analysis for each gate. For each addition gate, if Cl = ARl + μlG,
and Cr = ARr + μrG, then Co = A(Rl + Rr) + (μr + μl)G. Hence, if we let
Ro = Rl + Rr, then ‖Ro‖max ≤ ‖Rl‖max + ‖Rr‖max.

For each multiplication gate, Co = ClG−1[Cr] = A(RlG−1[Cr] + μrRr) +
μlμrG. Let Ro = RlG−1[Cr]+μrGr. Hence, ‖Ro‖max ≤ m‖Rl‖max+‖Rr‖max.

Hence, by induction on the depth of the circuit, we have that ‖RC,x‖max ≤
(m + 1)O(d).

4 Secure Function Evaluation with Public Decryption

4.1 Definition

An AB-SFE with public decryption is a tuple of algorithms (Setup,KeyGen,Enc,
Hint,Dec), with the following syntax.

– Setup(1λ): On input the security parameter λ, output a common random
string crs.

– KeyGen(crs, x): On input the crs, and a binary string x, it outputs a public
key pk and a master secret key msk.

– Enc(pk, C, μ): On input the public key pk, a boolean circuit C : {0, 1}|x| →
{0, 1}, and a message μ ∈ {0, 1}, it outputs a ciphertext ct.

– Hint(msk, C): On input the master secret key, and the circuit C, output a
hint skC .



Unbounded Multi-party Computation from Learning with Errors 765

– Dec(skC , ct): On input a hint skC , and a ciphertext ct, it outputs a message
μ′.

We require the AB-SFE to satisfy the following properties.

– Correctness. For any binary string x, circuit C : {0, 1}|x| → {0, 1} with
C(x) = 1, and any message μ ∈ {0, 1}, there exists a negligible function ν(λ)
such that for any sufficiently large λ,

Pr
[
crs←Setup(1λ),(pk,msk)←KeyGen(crs,x),ct←Enc(pk,C,μ)

skC←Hint(msk,C),μ′←Dec(skC ,ct)
: μ = μ′

]
≥ 1 − ν(λ)

– Statistical Indistinguishability of Public Keys. There exists a negligible
function ν(λ) such that, with 1 − negl(λ) probability over the randomness of
crs ← Setup(1λ), for any x0, x1 with |x0| = |x1|, and any sufficiently large λ,

SD (pk0, pk1) < ν(λ)

where pkb is generated by KeyGen(crs, xb) for b ∈ {0, 1}.
– Statistical Simulation of Hints. There exists a negligible function ν(λ), a

PPT crs generating function Setup(1λ) and a PPT simulator Sim such that,
for any input string x, any circuit C, let (crs, tr) ← Setup(1λ), (pk,msk) ←
KeyGen(crs, x), we have

SD
(
Setup(1λ), crs

)
< ν(λ) (1)

SD
(
Hint(msk, f),Sim(1λ, pk, tr, C, C(x))

)
< ν(λ) (2)

where the randomness in Eq. 1 is over the randomness of Setup. The random-
ness in Equation 2 is only over the randomness of Hint, and all other random
values are fixed.

– Adaptive Sender Computational Indistinguishable Security. For any
input string x, any boolean circuit C : {0, 1}|x| → {0, 1} with C(x) = 0, any
adaptive n.u. PPT adversary A, there exists a negligible function ν(λ) such
that
∣
∣
∣
∣ Pr

[
crs←Setup(1λ),r←{0,1}∗

(pk,msk)=KeyGen(crs,x;r)
: C ← A(1λ, crs, r),A(Enc(pk, C, 0)) = 1

]
−

Pr
[
crs←Setup(1λ),r←{0,1}∗

(pk,msk)=KeyGen(crs,x;r)
: C ← A(1λ, crs, r),A(Enc(pk, C, 1)) = 1

] ∣
∣
∣
∣ < ν(λ)

2AB-SFE.A 2AB-SFE scheme with public decryption has the same syntax as
AB-SFE with public decryption, except that Enc and Dec are replaced by the
following two algorithms:

– 2Enc(pk, C, {μi,0, μi,1}i∈[�out]): On input the public key pk, a multi-bit output
circuit C : {0, 1}|x| → {0, 1}�out , and �out pair of labels, it output a ciphertext
ct.



766 P. Ananth et al.

– 2Dec(skC , ct): On input a hint skC , and a ciphertext ct, output {μ′
i}i∈[�out].

We also extend the correctness and sender’s security to the following.

– Correctness: For any binary string x, circuit C : {0, 1}|x| → {0, 1}�out , and
any messages (μi,0, μi,1)i∈[�out], there exists a negligible function ν(λ) such
that for any sufficiently large λ,

Pr
[
crs←Setup(1λ),(pk,msk)←KeyGen(crs,x),ct←2Enc(pk,C,(μi,0,μi,1)i∈[�out])

skC←Hint(msk,C),(μ′
i)i∈[�out]←2Dec(skC ,ct)

:

∀i ∈ [�out], μ′
i = μi,Ci(x)

]
≥ 1 − ν(λ)

where Ci(x) is the i-th output bit of C(x).
– Adaptive Sender’s Computational Indistinguishable Security: For

any input string x, any circuit C : {0, 1}|x| → {0, 1}�out , any messages
(μi,0, μi,1)i∈[�out], any n.u. PPT adversary A, there exists a negligible func-
tion ν(λ) such that for any sufficiently large λ,

∣
∣
∣
∣
Pr

[

crs←Setup(1λ),r←{0,1}∗
(pk,msk)=KeyGen(crs,x;r)

:C ← A(1λ, crs, r),

A(2Enc(pk, C, (μi,0, μi,1)i∈[�out])) = 1

]

−

Pr

[

crs←Setup(1λ),r←{0,1}∗
(pk,msk)=KeyGen(crs,x;r)

:C ← A(1λ, crs, r),

A(2Enc(pk, C, (μi,Ci(x), μi,Ci(x))i∈[�out])) = 1

]∣
∣
∣
∣
< ν(λ)

From AB-SFE to 2AB-SFE with Public Decryption. Given an AB-SFE
scheme with public decryption, it is straightforward to construct a 2AB-SFE
scheme with public decryption, following the methodology in [22] (where it was
described in the context of attribute-based encryption). Roughly speaking, the
idea is to encrypt one of the messages under the complement of C. We refer the
reader to [22] for details.

4.2 Construction

Our construction uses the following parameters and algorithms.

– λ, the security parameter.
– n, the dimension of LWE.
– q = 2Θ(d log3 λ), the LWE modulus, where d is the bound for the depth of the

circuit.
– χ, the discrete Gaussian of deviation poly(λ).
– χ′, the descrete Gaussian of deviation 2Θ(d log2 λ).
– m = 2n log q, the number of columns in the commitment.
– A homomorphic commitment scheme (Gen,Com,Eval). See Sect. 3.5.



Unbounded Multi-party Computation from Learning with Errors 767

– Preimage sampling algorithm GenSamplePre, with r = 2Θ(d log2 m). See
Sect. 3.2.

The construction is described in Fig. 1. Now we proceed to prove the properties.

Removing the Depth Dependence. In the construction Fig. 1, the parame-
ters depends on the depth of the circuit. However, one can use the randomized
encoding [3] to remove the depth dependence. Specifically, instead of evaluate
the circuit C on input x directly, we evaluate the randomized encoding of C
and x. Since the randomized encoding can be computed in NC1, we can set the
parameters to be large enough to work for any circuit in NC1, and thus remove
the depth dependence.

Lemma 2 (Correctness). The construction in Fig. 1 satisfies correctness.

Proof. For any binary string x, any circuit C with C(x) = 1 and depth
at most d, and any message μ ∈ {0, 1}, by Lemma 1, RC,x is bounded
by 2O(d log m). Hence, ‖TA′‖max ≤ 2‖RC,x‖max(2m) = 2O(d log m), and thus
‖T̃A′‖ ≤ √

2m‖TA′‖max = 2O(d log m). Since the matrix TA′ is basis for
Λ⊥

q (A′) and we set the parameter r = 2Θ(d log2 m) > ‖T̃A′‖ · ω(
√

log 2m). From
Theorem 4, e is statistically close to DΛy

q (A′),r. Hence, we have

〈
ct, (1,−eT )

〉
= sT · [

y A′′]
[

1
−e

]
+

[
eT
1 eT

2

]
[

1
−e

]
+

q

2
μ =

q

2
μ +

[
eT
1 eT

2

]
[

1
−e

]
,

where the second equality follows from e ≈s DΛy
q (A′′)r

, and thus A′′e = y with
overwhelming probability.

Since the second term can be bounded by

| 〈(eT
1 , eT

2 ), (1,−e)
〉 | ≤

√
‖e1‖2 + ‖e2‖2 ·

√
‖e‖2 + 1 < q/4,

with overwhelming probability, the scheme is correct.

Lemma 3 (Statistical Indistinguishability of Public Keys). The con-
struction satisfies statistical public key indistinguishability security.

Proof. For any x0, x1 with |x0| = |x1|, and b ∈ {0, 1}, we have pkb =
(crs,Com(A, xb)). From the statistical hiding property of the commitment
scheme, we have SD(pk0, pk1) < ν(λ).

Lemma 4 (Statistical Simulation of Hints). The construction satisfies sta-
tistical hint simulation security.



768 P. Ananth et al.

AB-SFE with Public Decryption

– Setup(1λ): Sample y ← Z
n
q ,A ← Z

n×m
q ,A ← Z

n×2m
q . Output crs = (y,A,A).

– KeyGen(crs, x = (x1, . . . , xu) ∈ {0, 1}u):
• Parse crs = (y,A,A). Sample Ri ← {0, 1}m×m.

• For all i ∈ [u], compute Ci = Com(A, xi;Ri) = A · Ri + xiG.

• Let pk = (crs, {Ci}i∈[u]), and msk = (pk, {Ri}i∈[u]).

• Output (pk,msk).

– Enc(pk, C, μ ∈ {0, 1}):
• Parse pk = (crs, {Ci}i∈[u]) and crs = (y,A,A).

• Deterministically homomorphically compute CC = Eval(C, {Ci}i∈[u]).

• Let A = A CC , and A = A A .

• Samples s ← Z
n
q and e1 ← χ3m+1, e2 ← χ m.

• Output ct = sT · y A + eT
1 eT

2 + μ · q
2 01×4m .

– Hint(msk, C):
• Parse msk = (pk, {Ri}i∈[u]), and pk = ((y,A,A), {C}i∈[u])

• Deterministically homomorphically compute CC = Eval(C, {Ci}i∈[u]).

• Let A = A CC , and A = A A .

• If C(x) = 0, Let skC = ⊥. Otherwise, parse CC = A ·RC,x +G, where RC,x

can be obtained deterministically from {Ri}i∈[u] and C.

• Let TA =
I −RC,x

0 I
· I 0

−G−1[A] TG
, where TG is the short basis for

Λ⊥
q (G).

• Sample e ← GenSamplePre(A ,TA , 2,y, r).

• Output skC = e.

– Dec(skC , ct):
• If skC = ⊥, output ⊥.

• Otherwise, parse skC = e, if | ct, (1, −eT ) | < q/4, then let μ = 0, otherwise
μ = 1, and output μ .

Fig. 1. Description of AB-SFE with public decryption.

Proof. We construct the following simulator (Setup,Sim).

We now prove the two properties. For any x ∈ {0, 1}n, let crs ← Setup(1λ),
(pk,msk) ← KeyGen(crs, x), and (crs, tr) ← Setup(1λ).



Unbounded Multi-party Computation from Learning with Errors 769

Simulator (Setup,Sim)

– Setup(1λ):
• Sample y ← Z

n
q ,A ← Gen(1λ).

• Let (A,T) ← TrapGen(1n, 12m).

• Output crs = (y,A,A), and trapdoor tr = T.

– Sim(1λ, pk, tr, C, C(x)):
• Parse pk = (crs, (Ci)i∈[u]), crs = (y,A,A), and tr = T.

• Deterministically homomorphically compute CC = Eval(C, (Ci)i∈[u]).

• Denote A = A CC , and A = A A .

• If C(x) = 0, Let skC = ⊥.

• Otherwise, Sample e ← GenSamplePre(A , tr, 1,y, r).

• Output skC = e.

Fig. 2. Description of the simulator.

– SD(crs, crs) < negl(λ): This follows from the property that Â sampled by
TrapGen is statistically close to uniform random.

– SD
(
Hint(msk, C),Sim(1λ, pk, tr, C, C(x))

)
< negl(λ): Note that the matrices

A′′ in Sim and Hint are the same. Follow the argument in Lemma 2, the
parameters r satisfies the condition for Theorem 4. Hence, from Theorem 4,
we have

SD (GenSamplePre(A′′,TA′ , 2,y, r),GenSamplePre(A′′,T, 1,y, r)) < negl(λ)

Hence, SD(skC , skC) < negl(λ).

Lemma 5 (Sender’s Indistinguishability Security). The construction sat-
isfies sender’s indistinguishability security.

Proof. For any input x1, . . . , xu and circuit C with C(x1, x2, . . . , xu) = 0, we
build the following hybrids.

– Hybrid0: In this hybrid, the adversary is given a ciphertext of Enc(pk, C, 0).
– Hybrid1: This hybrid is almost the same as Hybrid0, except that we use RC,x

to generate the ciphertext ct. Specifically, we replace the ct as follows.
• Let CC = A · RC,x, where RC,x can be computed deterministically from

{Ri}i∈[u].
• Samples s ← Z

n
q and e ← χ, e′

1 ← χ2m, e′
2 ← χm, e2 ← χ′m.

• Output
ct =

[
sT · y + e + q

2μ sT Â + e′T
1 sT A + e′T

2 (sT A + e′T
2 ) · RC,x + eT

2

]
.



770 P. Ananth et al.

– Hybrid2: This hybrid is the same as Hybrid1, except that we replace the first,
the second, and the third component of ct as uniformly random matrices.
Specifically, we replace the ct as follows.

• Let CC = A · RC,x, where RC,x can be computed deterministically from
(Ri)i∈[u].

• Samples u ← Zq,u1 ← Z
2m
q and u2 ← Z

m
q , e2 ← χ′m.

• Output ct =
[
u u1 u2 u2 · RC,x + eT

2

]
.

– Hybrid3: This hybrid is almost the same as Hybrid0, except that the adversary
is given a ciphertext of Enc(pk, C, 1).

Now we prove that these hybrids are indistinguishable.

– Hybrid0 ≈s Hybrid1: In the hybrid Hybrid0, parse eT
1 =

[
e e′T

1 e′T
2

]
, where

e ∈ Zq, e′
1 ∈ Z

2m
q , e′

2 ∈ Z
m
q . Then we can express ct as

ct = sT ·
[

y Â A CC

]

+
[
e e′

1 e′
2 e2

]
+ μ

[ q
2 0 0 0

]

=
[

sTy + e+ q
2μ, sT Â+ e′T

1 , sTA+ e′T
2 , (sTA+ e′T

2 )RC,x + eT
2 + (−e′T

2 RC,x)
]

Since | − e′T
2 · RC,x| ≤ ‖e′

2‖‖RC,x‖2, by the noise flooding Theorem 2, we
have

SD(Hybrid0,Hybrid1) = SD(eT
2 + (−e′T

2 RC,x), χ
′m) < O(‖e′

2‖‖RC,x‖2/r′) = negl(λ)

– Hybrid1 ≈c Hybrid2: Since the only difference between Hybrid1 and Hybrid2 is
the first, the second, and third component of ct. Also note that, in Hybrid1,
sT · y + e, sT Â + e′T

1 and sT A + e′T
2 are LWE instance, and hence is indis-

tinguishable with the uniformly random u,u1,u2 in Hybrid2. Hence, Hybrid1
and Hybrid2 are computationally indistinguishable by LWE assumption.

– Hybrid2 ≈c Hybrid3: Since Hybrid2 does not use any message μ to generat
the ciphertext ct, we can reverse Hybrid0 to Hybrid2, and obtain Hybrid2 ≈c

Hybrid3.

By the hyrbid argument, we finish the proof.

5 Unbounded MPC

5.1 Definition

A (semi-honest) unbounded MPC protocol is a 2-round MPC protocol (Round1,
Round2,Rec) satisfying the following syntax.

– First Round: The i-th party’s input is xi. It sets the random coins ri, and
executes msgi ← Round1(1λ, xi; ri). Then the i-th party broadcasts msgi.

– Second Round: After receiving the first round messages, a subset of
parties S ⊆ [N ] decide to jointly compute a �out-bit output circuit f :∏

i∈S{0, 1}|xi| → {0, 1}�out .
For each i ∈ S, the i-th party executes pi ← Round2(xi, ri, {msgj}j∈S , S, f),
and broadcasts pi.



Unbounded Multi-party Computation from Learning with Errors 771

– Public Recovery: Anyone with {pi}i∈S can execute y ← Rec({pi}i∈S , S).

Efficiency. The running time of Round1 is polynomial in λ and |xi|, and is
independent of N or the size of the circuit they want to compute later. The
runing time of Round2 is polynomial in λ, |S| and |C|.
Unbounded-Party Semi-honest Security. For any PPT adversary A, there
exists a simulator (Sim1,Sim2) such that

∣
∣
∣Pr

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
− Pr

[
ARegstr(·,·),Eval(·,·)(1λ) = 1]

]∣∣
∣ ≤ negl(λ)

where the oracles Regstr(·, ·) and Eval(·, ·) are defined as follows.

– Regstr(flag ∈ {Honest,Dishonest}, x):
• Set random coins rN , and let msgi ← Round1(1λ, x; rN ).
• If flag is Honest, then let H = H ∪ {i} and output msgN . Otherwise,

output (msg, rN ).
• Let xN = x and N = N + 1.

– Eval(S, f):
• If S � [N ], then abort.
• For each i ∈ S ∩ H, let pi ← Round2(xi, ri, {msgj}j∈S , S, f).
• Output {pi}i∈S .

– Regstr(flag ∈ {Honest,Dishonest}, x):
• If flag is Honest, then let H = H ∪ {N}, compute (msgN , stN ) ←

Sim1(1λ, 1|x|), and output msgN . Otherwise, set fresh randomness rN ,
output (Round1(1λ, x; rN ), rN ).

• Let xN = x, and N = N + 1.
– Eval(S, f):

• If S � [N ], then abort.
• Output {pi}i∈S∩H ← Sim2({sti}i∈S∩H , S,H, f, f({xi}i∈S∩H)).

5.2 Construction

We present our unbounded MPC protocol Π = (Round1,Round2,Rec) in Fig. 3.
Our construction uses the following ingredients:

– An AB-SFE scheme ABSFE = (ABSFE.Setup,ABSFE.KGen,ABSFE.2Enc,
ABSFE.Hint,ABSFE.2Dec) with public decryption.

– A one-time use two-round semi-malicious MPC protocol One = (One.Round1,
One.Round2,One.Rec) in the plain model.

– A pseudorandom function PRF = (PRF.Gen,PRF.Eval).
– A garbling scheme GC = (GC.Garble,GC.Eval).



772 P. Ananth et al.

Round1(1λ, xi): Party i performs the following steps:

– Sample a CRS crsi ← ABSFE.Setup(1λ) and a PRF key ki ← PRF.Gen(1λ).

– Compute (pki,mski) ← ABSFE.KGen(crsi, (xi, ki))

– Output msgi = pki.

Round2(xi, ri, {msgj}j∈S, S, f): Party i performs the following steps:

– Compute crsi, ki and mski from ri, and parse msgj = pkj .

– Compute (Ci, lab) ← GC.Garble(C[xi,ki]), where the circuit C[xi,ki] on input a tuple
{msgj}j∈S does the following:

• ri = PRF.Eval(ki, (S || f)).

• Output pi = One.Round2(xi, ri, {msgj}j∈S , f).

– Parse lab = {labj,k,b}j∈S,k∈[|msgj |],b∈{0,1}.

– For j ∈ S \ {i}, compute ci,j ← ABSFE.2Enc pkj , GS,f , {labj,k,0, labj,k,1}k∈[|msgj |] ,
where the circuit GS,f on input (xi, ki) does the following:

• ri = PRF.Eval(ki, (S || f)).

• msgi = One.Round1(1λ, xi, f ; ri).

• Output msgi.

– hi ← ABSFE.Hint(mski, GS,f ), msgi = GS,f(xi, ki).

– Output pi = {ci,j}j∈S\{i}, hi, Ci, {labi,k,msgi[k]}k∈[|msgi|] .

Rec({pj}j∈S , S): Party i performs the following steps:

– For each i ∈ S, parse pi = {ci,j}j∈S\{i}, hi, Ci, {labi,k,msgi[k]}k∈[|msgi|] .

– For each i ∈ S and j ∈ S \ {i}, compute labi,j ← ABSFE.2Dec(hi, ci,j). Set labi,i =
{labi,k,msgi[k]}k∈[|msgi|]. Compute pi = GC.Eval(Ci, {labj}j∈S).

– Output y = One.Rec({pi}i∈S).

Fig. 3. Description of unbounded-party reusable MPC Π.

5.3 Security

Lemma 6 (Unbounded-Party Simulation Security). The construction in
Sect. 5.2 satisfies semi-honest unbounded-party simulation security.

Proof. For any n.u. PPT adversary A, let N(λ) be the upper bound for the
number of parties N , and Q(λ) be the upper bound for the number of queries
the A made to Eval. For any i∗ ∈ [N(λ)], and q∗ ∈ [Q(λ)], we build the following
hybrids.

– Hybrid0: This hybrid is the same as ARegstr(·,·),Eval(·,·).



Unbounded Multi-party Computation from Learning with Errors 773

– Hybrid
(i∗,j∗,q∗)
1 : This hybrid is almost the same as the Hybrid0, except that

we replace the labels used by ABSFE.2Enc to the same labels. Specifically, we
replace the ABSFE.2Enc encryption in Eval(·, ·) as follows.

• For j ∈ S \ {i}, if (i, j, q) < (i∗, j∗, q∗), m̃sgj = GS,f (xj , kj),

ci,j ← ABSFE.2Enc(pkj , GS,f , ( ˜labj,k,m̃sgj [k]
, ˜labj,k,m̃sgj [k]

)k∈[|m̃sgj |]).

If (i, j, q) ≥ (i∗, j∗, q∗), ci,j ← ABSFE.2Enc(pkj , GS,f , ( ˜labj,k,0,

˜labj,k,1)k∈[|m̃sgj |]).

– Hybrid
(i∗,q∗)
2 : This hybrid is almost the same as the Hybrid

(N,N,Q)+1
1 , except

that we generate the labels of the garbled circuits by the simulator. Specifi-
cally, we replace the garbled circuits generation in Eval(·, ·) as follows.

• If (i, q) < (i∗, q∗), then (Ci, lab) ← GC.Sim(1λ, C[xi,ki]({m̃sgj}j∈S)),

let C̃i = Ci, and parse lab = ( ˜labj,k,m̃sgj [k]
)j∈S,k∈[|m̃sgj |].

If (i, q) ≥ (i∗, q∗), then (C̃i, l̃ab) ← Garble(C[xi,ki]).

– Hybridi∗
3 : This hybrid is almost the same as Hybrid

(N,Q)+1
2 , except that we

generate the replace the CRS generation of Round1(1λ, xi) in Regstr(·, ·) as
follows.

• If i < i∗ and i ∈ H, generate (crsi, tri) ← ABSFE.Setup(1λ).
• If i ≥ i∗ or i /∈ H, generate crsi ← ABSFE.Setup(1λ).

– Hybrid
(i∗,q∗)
4 : This hybrid is almost the same as HybridN+1

3 , except that we
replace the hint generation in Eval(·, ·) by the simulator. Specifically, let q be
the number of queries to Eval(·, ·), we replace the generation of hi as follows.

• If (i, q) < (i∗, q∗) and i ∈ H, hi ← ABSFE.Sim(1λ, pki, tri, GS,f , m̃sgi).
• If (i, q) ≥ (i∗, q∗) or i ∈ H̄, hi ← ABSFE.Hint(mski, GS,f ).

– Hybridi∗
5 : This hybrid is almost the same with Hybrid

(N,Q)+1
4 , except that we

replace the PRF with random function. Specifically, we replace the random-
ness ri generation in Eval(·, ·) with the following. Let (S, f) be the q-th query,

• For each i ∈ S, if i < i∗ and i ∈ H, let ri = PRFi.F(S || f).
• If i ≥ i∗ or i /∈ H, let ri = PRF.Eval(ki, (S || f)).
• Let m̃sgi = One.Round1

(
1λ, xi, f ; ri

)
, p̃i = One.Round2(xi, ri,

{m̃sgj}j∈S , f).
where PRFi.F is a random function for each i < i∗, i ∈ H.

– Hybridq∗
6 : This hybrid is almost the same with HybridN+1

5 , except that we
replace the {m̃sgi, p̃i}i∈S∩H using One.Sim. Specifically, we replace the gen-
eration of {m̃sgi, p̃i}i∈S∩H in Eval(·, ·) as follows.
At the beginning of Eval(·, ·), we initialize an empty map Map : φ → φ.
Let (S, f) be the q-th query to Eval(·, ·).

• If Map(S, f) is defined before, let {m̃sgi, p̃i}i∈S∩H = Map(S, f).
• Otherwise, if q < q∗, let ri = PRF.Eval(ki, (S||f)) for each i ∈ S \ H,
• {m̃sgi, p̃i}i∈S∩H ← One.Sim(1λ, S ∩ H, {xi, ri}i∈S\H , f, f({xi}i∈S)),



774 P. Ananth et al.

• and if q ≥ q∗, for each i ∈ S ∩ H, set fresh randomness ri, let
m̃sgi = One.Round1

(
1λ, xi, f ; ri

)
, p̃i = One.Round2(xi, ri, {m̃sgj}j∈S , f),

and define Map(S, f) = {m̃sgi, p̃i}i∈S∩H .

– Ideal: This hybrid is the same as HybridQ+1
6 , except that we replace each KGen

of real input (xi, ki) with the dummy (0|xi|, 0|ki|), for each i ∈ H. This hybrid
is the same as ARegstr(·,·),Eval(·,·)(1λ). See the simulator in Fig. 4.

Lemma 7. Hybrid0 is identical to Hybrid
(1,1,1)
1 . Moreover, there exists a negligi-

ble function ν(λ) such that for any sufficiently large λ,
∣
∣
∣
∣ Pr
Hybrid

(i∗,j∗,q∗)
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
−

Pr
Hybrid

(i∗,j∗,q∗)+1
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]∣
∣
∣
∣ < ν(λ).

Proof. We build the following adversary A′ trying to break the sender’s
indistinguishability security. A′ sets the randomness and runs the adversary
ARegstr(·,·),Eval(·,·), where the oracles Regstr(·, ·) and Eval(·, ·) are implemented as
follows.

– Regstr(·, ·): For each query, the adversary A′ does the same thing as the
Hybrid0.

– Eval(·, ·): Let q the q-th query be (S, f). The adversary does the following.
For each i ∈ H ∩ S, it generates the garbled circuit and labels (C̃i, l̃ab) for
C[xi,ki]. Then for each j ∈ S \ {i}, it considers three cases.

• If (i, j, q) < (i∗, j∗, q∗), A′ uses ABSFE.2Enc to encrypt the same labels.
• If (i, j, q) = (i∗, j∗, q∗), it queries the challenger with the circuit GS,f , and

obtains a challenge ciphertext ct. Let ci,j = ct.
• If (i, j, q) > (i∗, j∗, q∗), A′ uses ABSFE.2Enc to encrypt different labels.

Finally A′ computes and outputs {pi}i∈S∩H by the same way as Hybrid0.

Now for the challenge ciphertext ct, we consider two cases. When ct is obtained
by ABSFE.2Enc of different labels, then the adversary A′ simulates the environ-
ment of Hybrid(i

∗,j∗,q∗)
1 . Hence,

Pr
[
ct ← ABSFE.2Enc(pk, GS,f , ( ˜labj,k,0, ˜labj,k,1)k∈[|m̃sgj |]) : A′(1λ, crs, r) = 1

]

= Pr
Hybrid

(i∗,j∗,q∗)
1

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]

When ct is generated with the same labels, then the adversary A′ simulates
the environment of Hybrid(i

∗,j∗,q∗)+1
1 . Hence,

Pr
[

ct ← ABSFE.2Enc(pk, GS,f , ( ˜labj,k,m̃sgj [k],
˜labj,k,m̃sgj [k])k∈[|m̃sgj |]) : A′(1λ, crs, r) = 1

]

= Pr
Hybrid

(i∗,j∗,q∗)+1
1

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]



Unbounded Multi-party Computation from Learning with Errors 775

Sim1(1λ, 1|x|):

• Let (crsN , trN ) ← Setup(1λ), and (pkN ,mskN ) ← KGen(crsN , (0|x|, 0λ)).

• Output msgN = pkN , and stN = trN .

Sim2 initialization: an empty map Map : φ → φ.

Sim2({sti}i∈S∩H , S, H, f, f({xi}i∈S∩H)):

• For the q-the query (S, f), if Map(S, f) is defined before, then let

{msgi, pi}i∈S∩H = Map(S, f).

• Otherwise, let ri = PRF.Eval(ki, (S||f)) for each i ∈ S \ H , and

{msgi, pi}i∈S∩H ← One.Sim(1λ, S ∩ H, {xi, ri}i∈S\H , f, f({xi}i∈S)),

define Map(S, f) = {msgi, pi}i∈S∩H .

• For each i ∈ S ∩ H
∗ Let (Ci, lab) ← GC.Sim(1λ, pi), parse lab = {labj,k,msgj [k]}j∈S,k∈[|msgj |].

∗ For each j ∈ S \ {i}, compute

ci,j ← ABSFE.2Enc(pkj , GS,f , {labj,k,msgj [k], labj,k,msgj [k]}k∈[|msgj |]).

∗ hi ← ABSFE.Sim(1λ, pki, tri = sti, GS,f ,msgi).

• Output pi = (ci,j)j∈S, hi, Ci, {labi,k,msgi[k]}k∈[|msgi|] .

Fig. 4. Description of the simulator (Sim1, Sim2).

From the adaptive sender’s computational indistinguishable security of AB-
SFE, we derive that Hybrid

(i∗,j∗,q∗)
1 and Hybrid

(i∗,j∗,q∗)+1
1 are indistinguishable.

Lemma 8. Hybrid
(N,N,Q)+1
1 is identical to Hybrid

(1,1)
2 . Moreover, there exists a

negligible function ν(λ) such that for any sufficiently large λ,
∣
∣
∣
∣
∣
∣

Pr
Hybrid

(i∗,q∗)
2

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]

− Pr
Hybrid

(i∗,q∗)+1
2

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]

∣
∣
∣
∣
∣
∣

< ν(λ)

Proof. We build the following distinguisher D for the garbled scheme GC.
D takes as input (1λ, C̃, lab), sets the randomness and runs the adversary
ARegstr(·,·),Eval(·,·), where the oracles Regstr(·, ·) and Eval(·, ·) are implemented
as follows.

– Regstr(·, ·): For each query, the adversary A′ does the same thing as the
Hybrid0.

– Eval(·, ·): Let q the q-th query be (S, f). The adversary does the following.
For each i ∈ H ∩ S, it considers three cases.

• If (i, q) < (i∗, q∗), then it generates C̃i, l̃ab by the simulator GC.Sim.



776 P. Ananth et al.

• If (i, q) = (i∗, q∗), then it sets C̃i, l̃ab to be the input C̃, lab.
• If (i, q) > (i∗, q∗), then it generates C̃i, l̃ab by honestly garbling C[xi,ki].

Finally, it computes and outputs {pi}i∈S∩H by the same way as
Hybrid

(N,N,Q)+1
1 .

When (C̃, lab) ← GC.Garble(1λ, C[ski∗ ,ki∗ ]), then the distinguisher D simu-
lates the environment of Hybrid(i

∗,q∗)
2 for A. Hence, we have

Pr
[
(C̃, lab) ← GC.Garble(1λ, C[ski∗ ,ki∗ ]) : D(1λ, C̃, lab) = 1

]

= Pr
Hybrid

(i∗,q∗)
2

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

When (C̃, lab) ← GC.Sim(1λ, C[ski∗ ,ki∗ ]({m̃sgj}j∈S)), the distinguisher simu-

lates the environment of Hybrid(i
∗,q∗)+1

2 for A. Hence,

Pr
[
(C̃, lab) ← GC.Sim(1λ, C[ski∗ ,ki∗ ]({msgj}j∈S)) : D(1λ, C̃, lab) = 1

]

= Pr
Hybrid

(i∗,q∗)+1
2

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

From the security of the garbling scheme, we derive that Hybrid
(i∗,q∗)
2 and

Hybrid
(i∗,q∗)+1
2 are indistinguishable.

Lemma 9. Hybrid
(N,Q)+1
2 is identical to Hybrid13. Moreover, there exists a

negligible function ν(λ) such that for any sufficiently large λ, SD(Hybridi∗
3 ,

Hybridi∗+1
3 ) < ν(λ).

Proof. We build the following function g. The function g takes as input the crs,
and for each i < i∗, g generates the crsi using ABSFE.Setup. For each i > i∗,
g generates crsi using ABSFE.Setup. For i∗, if i∗ ∈ H, then sets crsi∗ as crs.
Otherwise, it generates crsi∗ using ABSFE.Setup. Then g invokes A and simulates
Regstr(·, ·) and Eval(·, ·) in the same way as Hybrid

(N,Q)+1
2 .

When crs ← ABSFE.Setup(1λ), then g(crs) is identical to Hybridi∗
3 . When crs is

generated by ABSFE.Setup(1λ), then g(crs) is identical to Hybridi∗+1
3 . From the

statistical public key indistinguisbaility property, we derive that SD(Hybridi∗
3 ,

Hybridi∗+1
3 ) < negl(λ).

Lemma 10. HybridN+1
3 is identical to Hybrid

(1,1)
4 . Moreover, there exists a

negligible function ν(λ) such that for sufficiently large λ, SD(Hybrid(i
∗,q∗)

4 ,

Hybrid
(i∗,q∗)+1
4 ) < ν(λ).

Proof. Since the only difference between Hybrid
(i∗,q∗)
4 and Hybrid

(i∗,q∗)+1
4 is the

way that hi is generated in q-th query of O, from the statistical hint simulation
security of AB-SFE, we have SD(Hybrid(i

∗,q∗)
4 ,Hybrid

(i∗,q∗)+1
4 ) < negl(λ).



Unbounded Multi-party Computation from Learning with Errors 777

Lemma 11. Hybrid
(N,Q)+1
4 and Hybrid15 are identical. There exists a negligible

function ν(λ) such that for any sufficiently large λ,
∣
∣
∣
∣
∣
∣

Pr
Hybridi∗

5

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]

− Pr
Hybridi∗+1

5

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]

∣
∣
∣
∣
∣
∣

< ν(λ).

Proof. We construct the following adversary A′ for the PRF. A′O(1λ) is given
access to a PRF oracle, and it invokes the adversary ARegstr(·,·),Eval(·,·)(1λ) by
implementing the oracles Regstr(·, ·) and Eval(·, ·) as follows.

– Regstr(·, ·): For the i-th query, only sample ki ← PRF.Gen(1λ) when i ≥ i∗ or
i /∈ H.

– Eval(·, ·): For each query (S, f), do the same thing as Eval in Hybrid
(N,Q)+1
4 ,

except the generation of ri. We generate ri as follows. For each i ∈ S,
• if i < i∗ and i ∈ H, let ri = PRFi.F(S||f).
• If i = i∗ and i∗ ∈ H, let ri ← O(S||f).
• If i > i∗ or i /∈ H, ri = PRF.Eval(ki, (S||f)).

When O′ is PRF.Eval(k, ·) for a uniform random PRF key k, the adversary
A′ simulates the environment of Hybridi∗

5 for A. Hence,

Pr
[
k ← {0, 1}λ : A′PRF.Eval(k,·)(1λ) = 1

]
= Pr

Hybridi∗
5

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

When O′ is a random function F(·), the adversary A′ simulates the environ-
ment of Hybridi∗

5 for A. Hence,

Pr[A′F(·)(1λ) = 1] = Pr
Hybridi∗+1

5

[
ARegstr(·,·),Eval(·,·)(1λ) = 1

]
.

From the security of PRF, we derive that Hybridi∗
5 and Hybridi∗+1

5 are indis-
tinguishable.

Lemma 12. HybridN+1
5 is identical to Hybrid16. Moreover, there exists a negligi-

ble function ν(λ) such that for any sufficiently large λ,
∣
∣
∣
∣
∣
∣

Pr
Hybrid

q∗
6

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]

− Pr
Hybrid

q∗+1
6

[

ARegstr(·,·),Eval(·,·)(1λ) = 1
]

∣
∣
∣
∣
∣
∣

< ν(λ).

Proof. We build the following distinguisher D for the semi-malicous MPC secu-
rity. The adversary D invokes the adversary ARegstr(·,·),Eval(·,·)(1λ), where the
oracle Regstr(·, ·) is the same as in HybridN+1

5 , and the oracle Eval(·, ·) is imple-
mented as follows.

Let the q-th query be (S, f), the oracle Eval(·, ·) performs the same executions
as in HybridN+1

5 , except the generation of (m̃sgi, p̃i) is replaced as follows.

– If Map(S, f) is defined before, then let {m̃sgi, p̃i}i∈S∩H ← Map(S, f). Othw-
erwise,

• If q < q∗, let {m̃sgi, p̃i}i∈S∩H ← One.Sim(1λ, S ∩ H,
{xi, ri}i∈S\H , f, f({xi}i∈S)).



778 P. Ananth et al.

• If q = q∗, query the challenger with the number of parties |S|, the
inputs {xi}i∈S , the honest party subset H ∩ S, the randomness for
dishonest parties {ri}i∈S\H , and obtains the challenge {msgi, pi}i∈S∩H .
Let {m̃sgi, p̃i}i∈S∩H = {msgi, pi}i∈S∩H , and define Map(S, f) =
{msgi, pi}i∈S∩H .

• If q > q∗, for each i ∈ S ∩ H, set fresh randomness ri. Let m̃sgi =
One.Round1

(
1λ, xi, f ; ri

)
, p̃i = One.Round2(xi, ri, {m̃sgj}j∈S , f), and

define Map(S, f) = {m̃sgi, p̃i}i∈S∩H .

When {msgi, pi}i∈S∩H is obtained from real world execution, with dishonest
parties’ random coins {ri}i∈S\H , the distinguisher D simulates the environment
of Hybridq∗

6 for A. Hence,

Pr
[ ∀i∈S∩H,ri←{0,1}∗

∀i∈S,msgi=One.Round1(1
λ,xi;ri),

pi=One.Round2(xi,ri,{msgj}j∈S)
: D(1λ, {msgi, pi}i∈S) = 1

]

= Pr
[
D(1λ,Hybridq∗

6 ) = 1
]

When {msgi, pi}i∈S∩H is obtained from the ideal simulation, then the dis-
tinguisher D simulates the environment of Hybridq∗+1

6 for A. Hence,

Pr
[
{msgi, pi}i∈S∩H ← Sim(1λ, S ∩ H, {xi, ri}i∈S\H , f, f({xi}i∈S)) :

D(1λ, {msgi, pi}i∈S) = 1
]

= Pr
[
D(1λ,Hybridq∗+1

6 )
]
.

Hence, from the semi-malicious security of the MPC protocol, we derive that
Hybridq∗

6 and Hybridq∗+1
6 are indistinguishable.

Lemma 13. There exists a negligible function ν(λ) such that for any sufficiently
large λ, SD(HybridQ+1

6 , Ideal) < ν(λ).

Proof. Similar to Lemma 10, this Lemma follows from the statistical public key
indistinguishability.

Combining Lemma 7 to Lemma 13, we finish the proof.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multikey FHE in the plain model.
Cryptology ePrint Archive, Report 2020/180 (2020). https://eprint.iacr.org/2020/
180

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://eprint.iacr.org/2020/180
https://eprint.iacr.org/2020/180


Unbounded Multi-party Computation from Learning with Errors 779

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
Rome, Italy, pp. 166–175. IEEE Computer Society Press, 17–19 October 2004.
https://doi.org/10.1109/FOCS.2004.20

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd FOCS, Palm Springs, CA, USA, pp. 120–129. IEEE Com-
puter Society Press, 22–25 October 2011. https://doi.org/10.1109/FOCS.2011.40

5. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10

6. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive secure
computation from one-way functions. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 118–138. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 5

7. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from
DDH. Cryptology ePrint Archive, Report 2020/170 (2020) https://eprint.iacr.org/
2020/170

8. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

9. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation.
Cryptology ePrint Archive, Report 2020/221 (2020). https://eprint.iacr.org/2020/
221

10. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

11. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, Scottsdale, AZ, USA,
pp. 597–608. ACM Press, 3–7 November 2014. https://doi.org/10.1145/2660267.
2660374

12. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint
Archive, Report 2009/351 (2009) https://eprint.iacr.org/2009/351

13. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 15

14. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11799-2 22

15. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

16. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, Palo
Alto, CA, USA, pp. 467–476. ACM Press, 1–4 June 2013. https://doi.org/10.1145/
2488608.2488667

17. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th FOCS, Berkeley, CA, USA, pp. 588–599. IEEE
Computer Society Press, 15–17 October 2017. https://doi.org/10.1109/FOCS.
2017.60

https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/978-3-030-03332-3_5
https://eprint.iacr.org/2020/170
https://eprint.iacr.org/2020/170
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://eprint.iacr.org/2020/221
https://eprint.iacr.org/2020/221
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/2660267.2660374
https://eprint.iacr.org/2009/351
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1109/FOCS.2017.60
https://doi.org/10.1109/FOCS.2017.60


780 P. Ananth et al.

18. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
Victoria, BC, Canada, pp. 197–206. ACM Press, 17–20 May 2008. https://doi.org/
10.1145/1374376.1374407

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, New York City, NY, USA, pp. 218–229. ACM Press, 25–27 May 1987.
https://doi.org/10.1145/28395.28420

21. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Yao, A.C.C. (ed.) ICS 2010, pp. 230–240.
Tsinghua University Press, Tsinghua University, Beijing, China, 5–7 January 2010

22. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, Palo Alto, CA, USA, pp.
555–564. ACM Press, 1–4 June 2013. https://doi.org/10.1145/2488608.2488678

23. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, Portland, OR, USA, pp. 469–477. ACM Press, 14–17 June 2015. https://
doi.org/10.1145/2746539.2746576

24. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

25. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capi-
tani di Vimercati, S. (eds.) ACM CCS 2006, Alexandria, Virginia, USA, pp. 89–
98. ACM Press, 30 October–3 November 2006. https://doi.org/10.1145/1180405.
1180418. Cryptology ePrint Archive Report 2006/309

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

27. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 670–700. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 22

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4
41

29. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

30. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 30

https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-22792-9_30


Unbounded Multi-party Computation from Learning with Errors 781

31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, Toronto, Ontario, Canada, pp. 162–167. IEEE Computer Society Press,
27–29 October 1986. https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/SFCS.1986.25


Generic Compiler for Publicly Verifiable
Covert Multi-Party Computation

Sebastian Faust1, Carmit Hazay2, David Kretzler1(B),
and Benjamin Schlosser1(B)

1 Technical University of Darmstadt, Darmstadt, Germany
{sebastian.faust,david.kretzler,benjamin.schlosser}@tu-darmstadt.de

2 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

Abstract. Covert security has been introduced as a compromise
between semi-honest and malicious security. In a nutshell, covert security
guarantees that malicious behavior can be detected by the honest parties
with some probability, but in case detection fails all bets are off. While
the security guarantee offered by covert security is weaker than full-
fledged malicious security, it comes with significantly improved efficiency.
An important extension of covert security introduced by Asharov and
Orlandi (ASIACRYPT’12) is public verifiability, which allows the honest
parties to create a publicly verifiable certificate of malicious behavior.
Public verifiability significantly strengthen covert security as the certifi-
cate allows punishment via an external party, e.g., a judge.

Most previous work on publicly verifiable covert (PVC) security
focuses on the two-party case, and the multi-party case has mostly been
neglected. In this work, we introduce a novel compiler for multi-party
PVC secure protocols with no private inputs. The class of supported
protocols includes the preprocessing of common multi-party computa-
tion protocols that are designed in the offline-online model. Our com-
piler leverages time-lock encryption to offer high probability of cheating
detection (often also called deterrence factor) independent of the number
of involved parties. Moreover, in contrast to the only earlier work that
studies PVC in the multi-party setting (CRYPTO’20), we provide the
first full formal security analysis.

Keywords: Covert security · Multi-party computation · Public
verifiability · Time-lock puzzles

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties Pi to jointly
compute a function f on their inputs such that nothing beyond the output of
that function is revealed. Privacy of the inputs and correctness of the outputs
need to be guaranteed even if some subset of the parties is corrupted by an

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 782–811, 2021.
https://doi.org/10.1007/978-3-030-77886-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_27


Generic Compiler for PVC MPC 783

adversary. The two most prominent adversarial models considered in the liter-
ature are the semi-honest and malicious adversary model. In the semi-honest
model, the adversary is passive and the corrupted parties follow the protocol
description. Hence, the adversary only learns the inputs and incoming/outgoing
messages including the internal randomness of the corrupted parties. In con-
trast, the adversarial controlled parties can arbitrarily deviate from the protocol
specification under malicious corruption.

Since in most cases it seems hard (if not impossible) to guarantee that a
corrupted party follows the protocol description, malicious security is typically
the desired security goal for the design of multi-party computation protocols.
Unfortunately, compared to protocols that only guarantee semi-honest security,
protection against malicious adversaries results into high overheads in terms of
communication and computation complexity. For protocols based on distributed
garbling techniques in the oblivious transfer (OT)-hybrid model, the communi-
cation complexity is inflated by a factor of s

log |C| [WRK17b], where C is the com-
puted circuit and s is a statistical security parameter. For secret sharing-based
protocols, Hazay et al. [HVW20] have recently shown a constant communication
overhead over the semi-honest GMW-protocol [GMW87]. In most techniques,
the computational overhead grows with an order of s.

In order to mitigate the drawbacks of the overhead required for malicious
secure function evaluation, one approach is to split protocols into an input-
independent offline and an input-dependent online phase. The input-independent
offline protocol carries out pre-computations that are utilized to speed up the
input-dependent online protocol which securely evaluates the desired function.
Examples for such offline protocols are the circuit generation of garbling schemes
as in authenticated garbling [WRK17a,WRK17b] or the generation of correlated
randomness in form of Beaver triples [Bea92] in secret sharing-based protocols
such as in SPDZ [DPSZ12]. The main idea of this approach is that the offline
protocol can be executed continuously in the background and the online protocol
is executed ad-hoc once input data becomes available or output data is required.
Since the performance requirements for the online protocol are usually much
stricter, the offline part should cover the most expensive protocol steps, as for
example done in [WRK17a,WRK17b,DPSZ12].

A middle ground between the design goals of security and efficiency has
been proposed with the notion of covert security. Introduced by Aumann and
Lindell [AL07], covert security allows the adversary to take full control over a
party and let her deviate from the protocol specification in an arbitrary way.
The protocol, however, is designed in such a way that honest parties can detect
cheating with some probability ε (often called the deterrence factor). However, if
cheating is not detected all bets are off. This weaker security notion comes with
the benefit of significantly improved efficiency, when compared to protocols in
the full-fledged malicious security model. The motivation behind covert security
is that in many real-world scenarios, parties are able to actively deviate from the
protocol instructions (and as such are not semi-honest), but due to reputation
concerns only do so if they are not caught. In the initial work of Aumann and



784 S. Faust et al.

Lindell, the focus was on the two-party case. This has been first extended to the
multi-party case by Goyal et al. [GMS08] and later been adapted to a different
line of MPC protocols by Damg̊ard et al. [DKL+13].

While the notion of covert security seems appealing at first glance it has one
important shortcoming. If an honest party detects cheating, then she cannot
reliably transfer her knowledge to other parties, which makes the notion of covert
security significantly less attractive for many applications. This shortcoming of
covert security was first observed by Asharov and Orlandi [AO12], and addressed
with the notion of public verifiability. Informally speaking, public verifiability
guarantees that if an honest party detects cheating, she can create a certificate
that uniquely identifies the cheater, and can be verified by an external party.
Said certificate can be used to punish cheaters for misbehavior, e.g., via a smart
contract [ZDH19], thereby disincentivizing misbehavior.

Despite being a natural security notion, there has been relatively little work
on covert security with public verifiability. In particular, starting with the work
of Asharov and Orlandi [AO12] most works have explored publicly verifiable
covert security in the two-party setting [KM15,HKK+19,ZDH19,DOS20]. These
works use a publicly checkable cut-and-choose approach for secure two-party
computation based on garbled circuits. Here a random subset of size t− 1 out of
t garbled circuits is opened to verify if cheating occurred, while the remaining
unopened garbled circuit is used for the actual secure function evaluation. The
adversary needs to guess which circuit is used for the final evaluation and only
cheat in this particular instance. If her guess is false, she will be detected. Hence,
there is a deterrence factor of t−1

t .
For the extension to the multi-party case of covert security even less is

known. Prior work mainly focuses on the restricted version of covert security
that does not offer public verifiability [GMS08,DGN10,LOP11,DKL+13]. The
only work that we are aware of that adds public verifiability to covert secure
multi-party computation protocols is the recent work of Damg̊ard et al. [DOS20].
While [DOS20] mainly focuses on a compiler for the two-party case, they also
sketch how their construction can be extended to the multi-party setting.

1.1 Our Contribution

In contrast to most prior research, we focus on the multi-party setting. Our main
contribution is a novel compiler for transforming input-independent multi-party
computation protocols with semi-honest security into protocols that offer covert
security with public verifiability. Our construction achieves a high deterrence
factor of t−1

t , where t is the number of semi-honest instances executed in the
cut-and-choose protocol. In contrast, the only prior work that sketches a solution
for publicly verifiable covert security for the multi-part setting [DOS20] achieves
≈ t−1

nt , which in particular for a large number of parties n results in a low
deterrence factor. [DOS20] states that the deterrence factor can be increased at
the cost of multiple protocol repetitions, which results into higher complexity
and can be abused to amplify denial-of-service attacks. A detail discussion of the
main differences between [DOS20] and our work is given in Sect. 6. We emphasize



Generic Compiler for PVC MPC 785

that our work is also the first that provides a full formal security proof of the
multi-party case in the model of covert security with public verifiability.

Our results apply to a large class of input-independent offline protocols for
carrying out pre-computation. Damg̊ard et al. [DOS20] have shown that an
offline-online protocol with a publicly verifiable covert secure offline phase and
a maliciously secure online phase constitutes a publicly verifiable covert secure
protocol in total. Hence, by applying our compiler to a passively secure offline
protocol and combining it with an actively secure online protocol, we obtain
a publicly verifiable covert secure protocol in total. Since offline protocols are
often the most expensive part of the secure multi-party computation protocol,
e.g., in protocols like [YWZ20] and [DPSZ12], our approach has the potential of
significantly improving efficiency of multi-party computation protocols in terms
of computation and communication overhead.

An additional contribution of our work (which is of independent interest)
is to introduce a novel mechanism for achieving public verifiability in protocols
with covert security. Our approach is based on time-lock encryption [RSW96,
MT19,MMV11,BGJ+16], a primitive that enables encryption of messages into
the future and has previously been discussed in the context of delayed digital cash
payments, sealed-bid auctions, key escrow, and e-voting. Time-lock encryption
can be used as a building block to guarantee that in case of malicious behavior
each honest party can construct a publicly verifiable cheating certificate without
further interaction. The use of time-lock puzzles in a simulation-based security
proof requires us to overcome several technical challenges that do not occur for
proving game-based security notions.

In order to achieve efficient verification of the cheating certificates, we also
show how to add verifiability to the notion of time-lock encryption by using
techniques from verifiable delay functions [BBBF18]. While our construction
can be instantiated with any time-lock encryption satisfying our requirements,
we present a concrete extension of the RSW time-lock encryption scheme. Since
RSW-based time-lock encryption [RSW96,MT19] requires a one-time trusted
setup, an instantiation of our construction using the RSW-based time-lock
encryption inherits this assumption. We can implement the one-time trusted
setup using a maliciously secure multi-party computation protocol similar to
the MPC ceremony used, e.g., by the cryptocurrency ZCash.

1.2 Technical Overview

In this section, we give a high-level overview of the main techniques used in our
work. To this end, we start by briefly recalling how covert security is typically
achieved. Most covert secure protocols take a semi-honest protocol and execute
t instances of it in parallel. They then check the correctness of t − 1 randomly
chosen instances by essentially revealing the used inputs and randomness and
finally take the result of the last unopened execution as protocol output. The
above requires that (a) checking the correctness of the t − 1 instances can be
carried out efficiently, and (b) the private inputs of the parties are not revealed.



786 S. Faust et al.

In order to achieve the first goal, one common approach is to derandomize
the protocol, i.e., let the parties generate a random seed from which they derive
their internal randomness. Once the protocol is derandomized, correctness can
efficiently be checked by the other parties. To achieve the second goal, the pro-
tocol is divided into an offline and an online protocol as described above. The
output of the offline phase (e.g., a garbling scheme) is just some correlated ran-
domness. As this protocol is input-independent, the offline phase does not leak
information about the parties’ private inputs. The online phase (e.g., evaluating
a garbled circuit) is maliciously secure and hence protects the private inputs.

Public Verifiability. To add public verifiability to the above-described approach,
the basic idea is to let the parties sign all transcripts that have been produced
during the protocol execution. This makes them accountable for cheating in one
of the semi-honest executions. One particular challenge for public verifiability
is to ensure that once a malicious party notices that its cheating attempt will
be detected it cannot prevent (e.g., by aborting) the creation of a certificate
proving its misbehavior. Hence, the trivial idea of running a shared coin tossing
protocol to select which of the instances will be checked does not work because
the adversary can abort before revealing her randomness and inputs used in the
checked instances. To circumvent this problem, the recent work of Damg̊ard et
al. [DOS20] proposes the following technique. Each party locally chooses a subset
I of the t semi-honest instances whose computation it wants to check (this is
often called a watchlist [IPS08]). Next, it obliviously asks the parties to explain
their execution in those instances (i.e., by revealing the random coins used in
the protocol execution). While this approach works well in the two-party case,
in the multi-party case it either results in a low deterrence factor or requires
that the protocol execution is repeated many times. This is due to the fact that
each party chooses its watchlist independently; in the worst case, all watchlists
are mutually disjoint. Hence, the size of each watchlist is set to be lower or equal
than t−1

n (resulting in a deterrence factor of t−1
nt ) to guarantee that one instance

remains unchecked or parties repeat the protocol several times until there is a
protocol execution with an unchecked instance.

Public Verifiability from Time-Lock Encryption. Our approach avoids the above
shortcomings by using time-lock encryption. Concretely, we follow the shared
coin-tossing approach mentioned above but prevent the rushing attack by lock-
ing the shared coin (selecting which semi-honest executions shall be opened)
and the seeds of the opened executions in time-lock encryption. Since the time-
lock ciphertexts are produced before the selection-coin is made public, it will be
too late for the adversary to abort the computation. Moreover, since the time-
lock encryption can be solved even without the participation of the adversary,
the honest parties can produce a publicly verifiable certificate to prove misbe-
havior. This approach has the advantage that we can always check all but one
instance of the semi-honest executions, thereby significantly improving the deter-
rence factor and the overall complexity. One may object that solving time-lock



Generic Compiler for PVC MPC 787

encryption adds additional computational overhead to the honest parties. We
emphasize, however, that the time-lock encryption has to be solved only in the
pessimistic case when one party aborts after the puzzle generation. Moreover, in
our construction, the time-lock parameter can be chosen rather small, since the
encryption has to hide the selection-coin and the seeds only for two communica-
tion rounds. See Sect. 6 for a more detailed analysis of the overhead introduced
by the time-lock puzzle generation and a comparison to prior work.

Creating the Time-Lock Encryption. There are multiple technical challenges that
we need to address to make the above idea work. First, current constructions
of time-lock encryption matching our requirements require a trusted setup for
generating the public parameters. In particular, we need to generate a strong
RSA modulus N without leaking its factorization, and produce a base-puzzle
that later can be used for efficiency reasons. Both of these need to be generated
just once and can be re-used for all protocol executions. Hence, one option is
to replace the trusted setup by a maliciously secure MPC similar to what has
been done for the MPC ceremony used by the cryptocurrency ZCash. Another
alternative is to investigate if time-lock puzzles matching the requirements of
our compiler can be constructed from hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. An additional challenge is that we cannot simply
time-lock the seeds of all semi-honest protocol executions (as one instance needs
to remain unopened). To address this problem, we use a maliciously secure MPC
protocol to carry out the shared coin-tossing protocol and produce the time-lock
encryptions of the seeds for the semi-honest protocol instance that are later
opened. We emphasize that the complexity of this step only depends on t and n,
and is in particular independent of the complexity of the functionality that we
want to compute. Hence, for complex functionalities the costs of the maliciously
secure puzzle generation are amortized over the protocol costs1.

2 Secure Multi-Party Computation

Secure computation in the standalone model is defined via the real world/ideal
world paradigm. In the real world, all parties interact in order to jointly execute
the protocol Π. In the ideal world, the parties send their inputs to a trusted
party called ideal functionality and denoted by F which computes the desired
function f and returns the result back to the parties. It is easy to see that in the
ideal world the computation is correct and reveals only the intended information
by definition. The security of a protocol Π is analyzed by comparing the ideal-
world execution with the real-world execution. Informally, protocol Π is said to
securely realize F if for every real-world adversary A, there exists an ideal-world
1 Concretely, for each instantiation we require two exponentiations and a small number

of symmetric key encryptions. The latter can be realized using tailored MPC-ciphers
like LowMC [ARS+15].



788 S. Faust et al.

adversary S such that the joint output distribution of the honest parties and the
adversary A in the real-world execution of Π is indistinguishable from the joint
output distribution of the honest parties and S in the ideal-world execution.

We denote the number of parties executing a protocol Π by n. Let f :
({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn), be the function realized
by Π. For every input vector x̄ = (x1, . . . , xn) the output vector is ȳ =
(f1(x̄), . . . , fn(x̄)) and the i-th party Pi with input xi obtains output fi(x̄).

An adversary can corrupt any subset I ⊆ [n] of parties. We further set
REALΠ,A(z),I(x̄, 1κ) to be the output vector of the protocol execution of Π on
input x̄ = (x1, . . . , xn) and security parameter κ, where the adversary A on aux-
iliary input z corrupts the parties I ⊆ [n]. By OUTPUTi(REALΠ,A(z),I(x̄, 1κ)),
we specify the output of party Pi for i ∈ [n].

2.1 Covert Security

Aumann and Lindell introduced the notion of covert security with ε-deterrence
factor in 2007 [AL07]. We focus on the strongest given formulation of covert
security that is the strong explicit cheat formulation, where the ideal-world adver-
sary only learns the honest parties’ inputs if cheating is undetected. However, we
slightly modify the original notion of covert security to capture realistic effects
that occur especially in input-independent protocols and are disregarded by the
notion of [AL07]. The changes are explained and motivated below.

As in the standard secure computation model, the execution of a real-world
protocol is compared to the execution within an ideal world. The real world
is exactly the same as in the standard model but the ideal model is slightly
adapted in order to allow the adversary to cheat. Cheating will be detected by
some fixed probability ε, which is called the deterrence factor. Let ε : N → [0, 1]
be a function, then the execution in the ideal model works as follows.
Inputs: Each party obtains an input; the ith party’s input is denoted by xi.
We assume that all inputs are of the same length. The adversary receives an
auxiliary input z.
Send Inputs to Trusted Party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties, controlled by S, may either send
their received input, or send some other input of the same length to the trusted
party. This decision is made by S and may depend on the values xi for i ∈ I
and auxiliary input z. If there are no inputs, the parties send oki instead of their
inputs to the trusted party.
Trusted Party Answers Adversary: If the trusted party receives inputs from
all parties, the trusted party computes (y1, . . . , ym) = f(w̄) and sends yi to S
for all i ∈ I.
Abort Options: If the adversary sends abort to the trusted party as additional
input (before or after the trusted party sends the potential output to the adver-
sary), then the trusted party sends abort to all the honest parties and halts. If
a corrupted party sends additional input wi = corruptedi to the trusted party,
then the trusted party sends corruptedi to all of the honest parties and halts. If
multiple parties send corruptedi, then the trusted party disregards all but one



Generic Compiler for PVC MPC 789

of them (say, the one with the smallest index i). If both corruptedi and abort
messages are sent, then the trusted party ignores the corruptedi message.
Attempted Cheat Option: If a corrupted party sends additional input wi =
cheati to the trusted party (as above: if there are several messages wi = cheati
ignore all but one - say, the one with the smallest index i), then the trusted
party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and
all of the honest parties.

2. With probability 1 − ε, the trusted party sends undetected to the adversary
along with the honest parties inputs {xj}j /∈I . Following this, the adversary
sends the trusted party abort or output values {yj}j /∈I of its choice for the
honest parties. If the adversary sends abort, the trusted party sends abort to
all honest parties. Otherwise, for every j /∈ I, the trusted party sends yj to
Pj .

The ideal execution then ends at this point. Otherwise, if no wi equals aborti,
corruptedi or cheati, the ideal execution continues below.
Trusted Party Answers Honest Parties: If the trusted party did not receive
corruptedi, cheati or abort from the adversary or a corrupted party then it sends
yj for all honest parties Pj (where j /∈ I).
Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties outputs nothing. The adversary S outputs
any arbitrary (probabilistic) polynomial-time computable function of the initial
inputs {xi}i∈I , the auxiliary input z, and the received messages.

We denote by IDEALCε
f,S(z),I(x̄, 1κ) the output of the honest parties and the

adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 1 (Covert security with ε-deterrent). Let f,Π, and ε be as
above. Protocol Π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial-
time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every I ⊆ [n],
every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input z ∈ {0, 1}∗:

{IDEALCε
f,S(z),I(x̄, 1κ)}κ∈N

c≡ {REALΠ,A(z),I(x̄, 1κ)}κ∈N

Notice that the definition of the ideal world given above differs from the
original definition of Aumann and Lindell in four aspects. First, we add the
support of functions with no private inputs from the parties to model input-
independent functionalities. In this case, the parties send ok instead of their
inputs to the trusted party. Second, whenever a corrupted party aborts, the
trusted party sends abort to all honest parties. Note that this message does not
include the index of the aborting party which differs from the original model.
The security notion of identifiable abort [IOZ14], where the aborting party is
identified, is an independent research area, and is not achieved by our compiler.



790 S. Faust et al.

Third, we allow a corrupted party to abort after undetected cheating, which does
not weaken the security guarantees.

Finally, we allow the adversary to learn the output of the function f before
it decides to cheat or to act honestly. In the original notion the adversary has
to make this decision without seeing the potential output. Although this mod-
ification gives the adversary additional power, it captures the real world more
reliably in regard to standalone input-independent protocols.

Covert security is typically achieved by executing several semi-honest
instances and checking some of them via cut-and-choose while utilizing an
unchecked instance for the actual output generation. The result of the semi-
honest instances is often an input-independent precomputation in the form of
correlated randomness, e.g., a garbled circuit or multiplication triples, which is
consumed in a maliciously secure input-dependent online phase, e.g., the circuit
evaluation or a SPDZ-style [DKL+13] online phase. Typically, the precomputa-
tion is explicitly designed not to leak any information about the actual output of
the online phase, e.g., a garbled circuit obfuscates the actual circuit gate tables
and multiplication triples are just random values without any relation to the
output or even the function computed in the online phase. Thus, in such pro-
tocols, the adversary does not learn anything about the output when executing
the semi-honest instances and therefore when deciding to cheat, which makes the
original notion of covert security realistic for such input-dependent protocols.

However, if covert security is applied to the standalone input-independent
precomputation phase, as done by our compiler, the actual output is the cor-
related randomness provided by one of the semi-honest instances. Hence, the
adversary learns potential outputs when executing the semi-honest instances.
Considering a rushing adversary that learns the output of a semi-honest instance
first and still is capable to cheat with its last message, the adversary can base its
decision to cheat on potential outputs of the protocol. Although this scenario is
simplified and there is often a trade-off between output determination and cheat-
ing opportunities, the adversary potentially learns something about the output
before deciding to cheat. This is a power that the adversary might have in all
cut-and-choose-based protocols that do not further process the output of the
semi-honest instances, also in the input-independent covert protocols compiled
by Damg̊ard et al. [DOS20].

Additionally, as we have highlighted above, the result of the precomputation
typically does not leak any information about an input-dependent phase which
uses this precomputation. Hence, in such offline-online protocols, the adversary
has only little benefit of seeing the result of the precomputation before deciding
to cheat or to act honestly.

Instead of adapting the notion of covert security, we could also focus on
protocols that first obfuscate the output of the semi-honest instances, e.g., by
secret sharing it, and then de-obfuscate the output in a later stage. However,
this restricts the compiler to a special class of protocols but has basically the
same effect. If we execute such a protocol with our notion of security up to the
obfuscation stage but without de-obfuscating, the adversary learns the potential



Generic Compiler for PVC MPC 791

output, that is just some obfuscated output and therefore does not provide any
benefit to the adversary’s cheat decision. Next, we only have to ensure that the
de-obfuscating is done in a malicious or covert secure way, which can be achieved,
e.g., by committing to all output shares after the semi-honest instances and then
open them when the cut-and-choose selection is done.

For the above reasons, we think it is a realistic modification to the covert
notion to allow the adversary to learn the output of the function f before she
decides to cheat or to act honestly. Note that the real-world adversary in cut-
and-choose-based protocols does only see a list of potential outputs but the
ideal-world adversary receives a single output which is going to be the protocol
output if the adversary does not cheat or abort. However, we have chosen to be
more generous to the adversary and model the ideal world like this in order to
keep it simpler and more general. For the same reason we ignore the trade-off
between output determination and cheating opportunities observed in real-world
protocols.

In the rest of this work, we denote the trusted party computing function f
in the ideal-world description by FCov.

2.2 Covert Security with Public Verifiability

As discussed in the introduction Asharov and Orlandi introduced to notion of
covert security with ε-deterrent and public verifiability (PVC) in the two-party
setting [AO12]. We give an extension of their formal definition to the multi-party
setting in the following.

In addition to the covert secure protocol Π, we define two algorithms Blame
and Judge. Blame takes as input the view of an honest party Pi after Pi outputs
corruptedj in the protocol execution for j ∈ I and returns a certificate Cert,
i.e., Cert := Blame(viewi). The Judge-algorithm takes as input a certificate Cert
and outputs the identity idj if the certificate is valid and states that party Pj

behaved maliciously; otherwise, it returns none to indicate that the certificate
was invalid.

Moreover, we require that the protocol Π is slightly adapted such that an
honest party Pi computes Cert = Blame(viewi) and broadcasts it after cheating
has been detected. We denote the modified protocol by Π ′. Notice that due to
this change, the adversary gets access to the certificate. By requiring simulatabil-
ity, it is guaranteed that the certificate does not reveal any private information.

We now continue with the definition of covert security with ε-deterrent and
public verifiability in the multi-party case.

Definition 2 (Covert security with ε-deterrent and public verifiabil-
ity in the multi-party case (PVC-MPC)). Let f,Π ′,Blame, and Judge
be as above. The triple (Π ′,Blame, Judge) securely computes f in the presence
of covert adversaries with ε-deterrent and public verifiability if the following
conditions hold:



792 S. Faust et al.

1. (Simulatability) The protocol Π ′ securely computes f in the presence of covert
adversaries with ε-deterrent according to the strong explicit cheat formulation
(see Definition 1).

2. (Public Verifiability) For every PPT adversary A corrupting parties Pi for
i ∈ I ⊆ [n], there exists a negligible function μ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 the following holds:
If OUTPUTj(REALΠ,A(z),I(x̄, 1κ)) = corruptedi for j ∈ [n] \ I and i ∈ I then:

Pr[Judge(Cert) = idi] > 1 − μ(n),

where Cert is the output certificate of the honest party Pj in the execution.
3. (Defamation Freeness) For every PPT adversary A corrupting parties Pi for

i ∈ I ⊆ [n], there exists a negligible function μ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 and all j ∈ [n] \ I:

Pr[Cert∗ ← A; Judge(Cert∗) = idj ] < μ(n).

3 Preliminaries

3.1 Communication Model and Notion of Time

We assume the existence of authenticated channels between every pair of parties.
Further, we assume synchronous communication between all parties participat-
ing in the protocol execution. This means the computation proceeds in rounds,
where each party is aware of the current round. All messages sent in one round
are guaranteed to arrive at the other parties at the end of this round. We further
consider rushing adversaries which in each round are able to learn the messages
sent by other parties before creating and sending their own messages. This allows
an adversary to create messages depending on messages sent by other parties in
the same round.

We denote the time for a single communication round by Tc. In order to
model the time, it takes to compute algorithms, we use the approach presented
by Wesolowski [Wes19]. Suppose the adversary works in computation model
M. The model defines a cost function C and a time-cost function T . C(A, x)
denotes the overall cost to execute algorithm A on input x. Similar, the time-
cost function T (A, x) abstracts the notion of time of running A(x). Considering
circuits as computational model, one may consider the cost function denoting
the overall number of gates of the circuit and the time-cost function being the
circuit’s depth.

Let S be an algorithm that for any RSA modulus N generated with respect
to the security parameter κ on input N and some element g ∈ ZN outputs the
square of g. We define the time-cost function δSq(κ) = T (S, (N, g)), i.e., the time
it takes for the adversary to compute a single squaring modulo N .



Generic Compiler for PVC MPC 793

3.2 Verifiable Time-Lock Puzzle

Time-lock puzzles (TLP) provide a mean to encrypt messages to the future. The
message is kept secret at least for some predefined time. The concept of a time-
lock puzzle was first introduced by Rivest et al. [RSW96] presenting an elegant
construction using sequential squaring modulo a composite integer N = p · q,
where p and q are primes. The puzzle is some x ∈ Z

∗
N with corresponding solution

y = x2T . The conjecture about this construction is that it requires T sequential
squaring to find the solution. Based on the time to compute a single squaring
modulo N , the hardness parameter T denotes the amount of time required to
decrypt the message. (See Sect. 3.1 for a notion of time.)

We extend the notion of time-lock puzzle by a verifiability notion. This prop-
erty allows a party who solved a puzzle to generate a proof which can be effi-
ciently verified by any third party. Hence, a solver is able to create a verifiable
statement about the solution of a puzzle. Boneh et al. [BBBF18] introduced the
notion of verifiable delay functions (VDF). Similar to solving a TLP, the evalu-
ation of a VDF on some input x takes a predefined number of sequential steps.
Together with the output y, the evaluator obtains a short proof π. Any other
party can use π to verify that y was obtained by evaluating the VDF on input x.
Besides the sequential evaluation, a VDF provides no means to obtain the out-
put more efficiently. Since we require a primitive that allows a party using some
trapdoor information to perform the operation more efficiently, we cannot use a
VDF but start with a TLP scheme and add verifiability using known techniques.

We present a definition of verifiable time-lock puzzles. We include a setup
algorithm in the definition which generates public parameters required to effi-
ciently construct a new puzzle. This way, we separate expensive computation
required as a one-time setup from the generation of puzzles.

Definition 3. Verifiable time-lock puzzle (VTLP) A verifiable time-lock puzzle
scheme over some finite domain S consists of four probabilistic polynomial-time
algorithms (TL.Setup,TL.Generate,TL.Solve,TL.Verify) defined as follows.

– (pp) ← TL.Setup(1λ, T ) takes as input the security parameter 1λ and a hard-
ness parameter T , and outputs public parameter pp.

– p ← TL.Generate(pp, s) takes as input public parameters pp and a solution
s ∈ S and outputs a puzzle p.

– (s, π) ← TL.Solve(pp, p) is a deterministic algorithm that takes as input public
parameters pp and a puzzle p and outputs a solution s and a proof π.

– b := TL.Verify(pp, p, s, π) is a deterministic algorithm that takes as input pub-
lic parameters pp, a puzzle p, a solution s, and a proof π and outputs a bit
b, with b = 1 meaning valid and b = 0 meaning invalid. Algorithm TL.Verify
must run in total time polynomial in log T and λ.

We require the following properties of a verifiable time-lock puzzle scheme.

Completeness. For all λ ∈ N, for all T , for all pp ← TL.Setup(1λ, T ), and for
all s, it holds that

(s, ·) ← TL.Solve(TL.Generate(pp, s)).



794 S. Faust et al.

Correctness. For all λ ∈ N, for all T , for all pp ← TL.Setup(1λ, T ), for all s,
and for all p ← TL.Generate(pp, s), if (s, π) ← TL.Solve(p), then

TL.Verify(pp, p, s, π) = 1.

Soundness. For all λ ∈ N, for all T , and for all PPT algorithms A

Pr

⎡
⎣TL.Verify(pp, p′, s′, π′) = 1

s′ �= s

pp ← TL.Setup(1λ, T )
(p′, s′, π′) ← A(1λ, pp, T )
(s, ·) ← TL.Solve(pp, p′)

⎤
⎦ ≤ negl(λ)

Security. A VTLP scheme is secure with gap ε < 1 if there exists a polynomial
T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from
above by T ε(λ), there exists a negligible function μ(·), such that for all λ ∈ N

it holds that

Pr

⎡
⎢⎢⎣b ← A2(pp, p, τ)

(τ, s0, s1) ← A1(1λ)
pp ← TL.Setup(1λ, T (λ))

b
$← {0, 1}

p ← TL.Generate(pp, sb)

⎤
⎥⎥⎦ ≤ 1

2
+ μ(λ)

and (s0, s1) ∈ S2.

Although our compiler can be instantiated with any TLP scheme satisfying
Definition 3, we present a concrete construction based on the RSW time-lock
puzzle [RSW96]. We leave it to further research to investigate if a time-lock
puzzle scheme matching our requirements, i.e., verifiability and efficient puzzle
generation, can be constructed based on hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. Due to the public setup, such constructions might
be more efficient than our RSW-based solution.

In order to make the decrypted value verifiable we integrate the generation
of a proof as introduced by Wesolowski [Wes19] for verifiable delay functions.
The technique presented by Wesolowski provides a way to generate a small proof
which can be efficiently verified. However, proof generation techniques from other
verifiable delay functions, e.g., presented by Pietrzak [Pie19] can be used as well.
The approach of Wesolowski utilizes a function bin, which maps an integer to
its binary representation, and a hash function Hprime that maps any string to an
element of Primes(2k). The set Primes(2k) contains the first 22k prime numbers,
where k denotes the security level (typically 128, 192 or 256).

The TL.Setup-algorithm takes the security and hardness parameter and out-
puts public parameter. This includes an RSA modulus of two strong primes, the
number of sequential squares corresponding to the hardness parameter, and a
base puzzle. The computation can be executed efficiently if the prime numbers
are know. Afterwards, the primes are not needed anymore and can be thrown
away. Note that any party knowing the factorization of the RSA modulus can



Generic Compiler for PVC MPC 795

efficiently solve puzzles. Hence, the TL.Setup-algorithm should be executed in a
trusted way.

The TL.Generate-algorithm allows any party to generate a time-lock puzzle
over some secret s. In the construction given below, we assume s to be an element
in Z

∗
N . However, one can use a hybrid approach where the secret is encrypted

with some symmetric key which is then mapped to an element in Z
∗
N . This allows

the generator to time-lock large secrets as well. Note that the puzzle generation
can be done efficiently and does not depend on the hardness parameter T .

The TL.Solve-algorithm solves a time-lock puzzle p by performing sequential
squaring, where the number of steps depend on the hardness parameter T . Along
with the solution, it outputs a verifiable proof π. This proof is used as additional
input to the TL.Verify-algorithm outputting true if the given secret was time-
locked by the given puzzle.

We state the formal definition of our construction next.

Construction Verifiable Time-Lock Puzzle

TL.Setup(1λ, T ):

– Sample two strong primes (p, q) and set N := p · q.
– Set T ′ := T /δSq(λ).

– Sample uniform g̃
$← Z

∗
N and set g := −g̃2( mod N).

– Compute h := g2T ′
, which can be optimized by reducing 2T ′

module φ(N)
first.

– Set Z := (g, h).
– Output (T ′, N, Z).

TL.Generate(pp, s):

– Parse pp := (T ′, N, Z) and Z := (g, h).

– Sample uniform r
$← {1, . . . , N2}.

– Compute g∗ := gr and h∗ := hr.
– Set c∗ := h∗ · s mod N .
– Output p := (g∗, c∗).

TL.Solve(pp, p):

– Parse pp := (T ′, N, Z) and p := (g∗, c∗).

– Compute h := g∗2T ′
( mod N) by repeated squaring.

– Compute s := c∗
h

mod N as the solution.
– Compute � = Hprime(bin(g

∗)|| � ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute π = g∗�2T ′
/�� as the proof.

– Output (s, π).

TL.Verify(pp, p, s, π):

– Parse pp := (T ′, N, Z).



796 S. Faust et al.

– Parse p := (g∗, c∗).
– Compute � = Hprime(bin(g

∗)|| � ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute r = 2T ′
mod �.

– Compute h′ = π�g∗r.
– Compute s′ := c∗

h′ .
– If s = s′, output 1, otherwise output 0.

The security of the presented construction is based on the conjecture that it
requires T ′ sequential squarings to solve a puzzle. Moreover, the soundness of
the proof generation is based on the number-theoretic assumption that it is hard
to find the 	-th root modulo an RSA modulus N of an integer x /∈ {−1, 0,+1}
where 	 is uniformly sampled from Primes(2k) and the factorization of N is
unknown. See [Wes19] for a detailed description of the security assumption.

3.3 Commitment

Our protocol makes use of an extractable commitment scheme which is com-
putationally binding and hiding. For ease of description, we assume the scheme
to be non-interactive. We will use the notation (c, d) ← Commit(m) to commit
to message m, where c is the commitment value and d denotes the decommit-
ment or opening value. Similarly, we use m′ ← Open(c, d) to open commitment
c with opening value d to m′ = m or m′ = ⊥ in case of incorrect opening. The
extractability property allows the simulator to extract the committed message
m and the opening value d from the commitment c by using some trapdoor
information.

Such a scheme can be implemented in the random oracle model by defining
Commit(x) = H(i, x, r) where i is the identity of the committer, H : {0, 1}∗ →
{0, 1}2κ is a random oracle and r

$← {0, 1}κ.

3.4 Signature Scheme

We use a signature scheme (Gen,Sign,Verify) that is existentially unforgeable
under chosen-message attacks. Before the start of our protocol, each party exe-
cutes the Gen-algorithm to obtain a key pair (pk, sk). While the secret key sk is
kept private, we assume that each other party is aware of the party’s public key
pk.

3.5 Semi-honest Base Protocol

Our compiler is designed to transform a semi-honest secure n-party protocol with
no private input tolerating n−1 corruptions, ΠSH, that computes a probabilistic
function (y1, . . . , yn) ← f(), where yi is the output for party Pi, into a publicly
verifiable covert protocol, ΠPVC, that computes the same function. In order to
compile ΠSH, it is necessary that all parties that engage in the protocol ΠSH

receive a protocol transcript, which is the same if all parties act honestly. This



Generic Compiler for PVC MPC 797

means that there needs to be a fixed ordering for the sent messages and that
each message needs to be sent to all involved parties2.

We stress that any protocol can be adapted to fulfill the compilation require-
ments. Adding a fixed order to the protocol messages is trivial and just a matter
of specification. Furthermore, parties can send all of their outgoing messages to
all other parties without harming the security. This is due to the fact, that the
protocol tolerates n − 1 corruptions which implies that the adversary is allowed
to learn all messages sent by the honest party anyway. Note that the transferred
messages do not need to be securely broadcasted, because our compiler requires
the protocol to produce a consistent transcript only if all parties act honestly.

3.6 Coin Tossing Functionality

We utilize a maliciously secure coin tossing functionality Fcoin parameterized
with the security parameter κ and the number of parties n. The functionality
receives oki from each party Pi for i ∈ [n] and outputs a random κ-bit string

seed
$← {0, 1}κ to all parties.

Functionality Fcoin

Inputs: Each party Pi with i ∈ [n] inputs oki.

– Sample seed
$← {0, 1}κ.

– Send seed to A.
• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send seed to all honest parties.

3.7 Puzzle Generation Functionality

The maliciously secure puzzle generation functionality FPG is parameterized with
the computational security parameter κ, the number of involved parties n, the
cut-and-choose parameter t and public TLP parameters pp. It receives a coin
share ri, a puzzle randomness share ui, and the seed-share decommitments for
all instances {di

j}j∈[t] as input from each party Pi. FPG calculates the random
coin r and the puzzle randomness u using the shares of all parties. Then, it
generates a time-lock puzzle p of r and all seed-share decommitments expect
the ones with index r. In the first output round it sends p to all parties. In the
second output round it reveals the values locked within p to all parties. As we
assume a rushing adversary, A receives the outputs first in both rounds and can
decide if the other parties should receive the outputs as well.

The functionality FPG can be instantiated with a general purpose maliciously
secure MPC-protocol such as the ones specified by [DKL+13] or [YWZ20].

2 This requirement is inherent to all known publicly verifiable covert secure protocols.



798 S. Faust et al.

Functionality FPG

Inputs: Each party Pi with i ∈ [n] inputs (ri, ui, {di
j}j∈[t]), where ri ∈ [t],

ui ∈ {0, 1}κ, and di
j ∈ {0, 1}κ.

– Compute r :=
∑n

i=1 ri mod t and u :=
⊕n

i=1 ui.
– Generate puzzle p ← TL.Generate(pp, (r, {di

j}i∈[n],j∈[t]\r)) using random-
ness u.

– Send p to A.
• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send p to all honest parties.3

– Upon receiving continue from each party, send (r, {di
j}i∈[n],j∈[t]\r) to A.

• If A returns abort or some party does not send continue, send abort to
all honest parties and stop.

• Otherwise, send (r, {di
j}i∈[n],j∈[t]\r) to all honest parties.

4 PVC Compiler

In the following, we present our compiler for multi-party protocols with no pri-
vate input from semi-honest to publicly verifiable covert security. We start with
presenting a distributed seed computation which is used as subprotocol in our
compiler. Next, we state the detailed description of our compiler. Lastly, we pro-
vide information about the Blame- and Judge-algorithm required by the notion
of publicly verifiable covert security.

4.1 Distributed Seed Computation

The execution of the semi-honest protocol instances ΠSH within our PVC com-
piler requires each party to use a random tape that is uniform at random. In order
to ensure this requirement, the parties execute several instances of a distributed
seed computation subprotocol ΠSG at the beginning. During this subprotocol,
each party Ph selects a uniform κ-bit string as private seed share seed(1,h). Addi-
tionally, Ph and all other parties get uniform κ-bit strings {seed(2,i)}i∈[n], which
are the public seed shares of all parties. The randomness used by Ph in the semi-
honest protocol will be derived from seedh := seed(1,h)⊕ seed(2,h). This way seedh

is distributed uniformly. Note that if protocol ΠSH is semi-malicious instead of
semi-honest secure then each party may choose the randomness arbitrarily and
there is no need to run the seed generation.

As the output, party Ph obtains its own private seed, commitments to all
private seeds, a decommitment for its own private seed, and all public seed
shares. We state the detailed protocol steps next. The protocol is executed by
each party Ph, parameterized with the number of parties n and the security
parameter κ.

3 The honest parties receive p or abort in the same communication round as A.



Generic Compiler for PVC MPC 799

Protocol ΠSG

(a) Commit-phase
Party Ph chooses a uniform κ-bit string seed(1,h), sets (ch, dh) ←
Commit(seed(1,h)), and sends ch to all parties.

(b) Public coin-phase
For each i ∈ [n], party Ph sends ok to Fcoin and receives seed(2,i).
Output
If Ph has not received all messages in the expected communication rounds
or any seed(2,i) = ⊥, it sends abort to all parties and outputs abort.
Otherwise, it outputs (seed(1,h), dh, {seed(2,i), ci}i∈[n]).

4.2 The PVC Compiler

Starting with a n-party semi-honest secure protocol ΠSH we compile a publicly
verifiable covert secure protocol ΠPVC. The compiler works for protocols that
receive no private input.

The compiler uses a signature scheme, a verifiable time-lock puzzle scheme,
and a commitment scheme as building blocks. Moreover, the communication
model is as defined in Sect. 3.1. We assume each party generated a signature key
pair (sk, pk) and all parties know the public keys of the other parties. Further-
more, we suppose the setup of the verifiable time-lock puzzle scheme TL.Setup
was executed in a trusted way beforehand. This means in particular that all
parties are aware of the public parameters pp. We stress that this setup needs to
be executed once and may be used by many protocol executions. The hardness
parameter T used as input to the TL.Setup-algorithm needs to be defined as
T > 2 · Tc, where Tc denotes the time for a single communication round (see
Sect. 3.1). In particular, the hardness parameter is independent of the complexity
of ΠSH.

From a high-level perspective, our compiler works in five phases. At the
beginning, all parties jointly execute the seed generation to set up seeds from
which the randomness in the semi-honest protocol instances is derived. Second,
the parties execute t instances of the semi-honest protocol ΠSH. By executing
several instances, the parties’ honest behavior can be later on checked in all but
one instance. Since checking reveals the confidential outputs of the other parties,
there must be one instance that is unchecked. The index of this one is jointly
selected in a random way in the third phase. Moreover, publicly verifiable evi-
dence is generated such that an honest party can blame any malicious behavior
afterwards. To this end, we use the puzzle generation functionality FPG to gen-
erate a time-lock puzzle first. Next, each party signs all information required for
the other parties to blame this party. In the fourth phase, the parties either hon-
estly reveal secret information for all but one semi-honest execution or abort. In
case of abort, the honest parties execute the fifth phase. By solving the time-lock
puzzle, the honest parties obtain the required information to create a certificate
about malicious behavior. Since this phase is only required to be executed in case



800 S. Faust et al.

any party aborted before revealing the information, we call this the pessimistic
case. We stress that no honest party is required to solve a time-lock puzzle in
case all parties behave honestly.

A corrupted party may cheat in two different ways in the compiled proto-
col. Either the party inputs decommitment values into the puzzle generation
functionality which open the commitments created during the seed generation
to ⊥ or the party misbehaved in the execution of ΠSH. The later means that a
party uses different randomness than derived from the seeds generated at the
beginning.

The first cheat attempt may be detected in two ways. In the optimistic exe-
cution, all parties receive the inputs to FPG and can verify that opening the
commitments is successful. In the pessimistic case, solving the time-lock puzzle
reveals the input to FPG. Since we do not want the Judge to solve the puzzle
itself, we provide a proof along with the solution of the time-lock puzzle. To this
end, we require a verifiable time-lock puzzle as modeled in Sect. 3. Even in the
optimistic case, if an honest party detects cheating, the time-lock puzzle needs
to be solved in order to generate a publicly verifiable certificate.

If all decommitments open the commitments successfully, an honest party can
recompute the seeds used by all other parties in an execution of ΠSH and re-run
the execution. The resulting transcript is compared with the one signed by all
parties beforehand. In case any party misbehaved, a publicly verifiable certificate
can be created. For the sake of exposition, we compress the detection of malicious
behavior and the generation of the certificate into the Blame-algorithm.

The protocol defined as follows is executed by each honest party Ph.

Protocol ΠPVC

Public input: All parties agree on κ, n, t, ΠSH and pp and know all parties’
public keys {pki}i∈[n].
Private input: Ph knows its own secret key skh.

Distributed seed computation:
We abuse notation here and assume that the parties execute the seed generation
protocol from above.

1. For each instance j ∈ [t] party Ph interacts with all other parties to receive

(seed
(1,h)
j , dh

j , {seed(2,i)
j , ci

j}i∈[n]) ← ΠSG

and computes seedh
j := seed

(1,h)
j ⊕ seed

(2,h)
j .

Semi-honest protocol execution:

2. Party Ph engages in t instances of the protocol ΠSH with all other parties.
In the j-th instance, party Ph uses randomness derived from seedh

j and
receives a transcript and output:

(transj , y
h
j ) ← ΠSH.



Generic Compiler for PVC MPC 801

Create publicly verifiable evidence:

3. Party Ph samples a coin share rh $← [t], a randomness share uh $← {0, 1}κ,
sends the message (rh, uh, {dh

j }j∈[t]) to FPG and receives time-lock puzzle
p as response.

4. For each j ∈ [t], Party Ph creates a signature σh
j ← Signskh(dataj), where

the signed data is defined as

dataj := (h, j, {seed(2,i)
j }i∈[n], {ci

j}i∈[n], p, transj).

Ph broadcasts its signatures and verifies the received signatures.

Optimistic case:

5. If any of the following cases happens
– Ph has not received valid messages in the first protocol steps in the

expected communication round.
– FPG returned abort, or
– any other party has sent abort

party Ph broadcasts and outputs abort.
6. Otherwise, Ph sends continueh to FPG, receives (r, {d∗i

j }i∈[n],j∈[t]\r) as
response and calculates

(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert �= ⊥, broadcast cert and output corruptedm. Otherwise, Ph outputs
yh

r .

Pessimistic case:

7. If FPG returned abort in step 6, Ph solves the time-lock puzzle

((r, {d∗i
j }i∈[n],j∈[t]\r), π) := TL.Solve(pp, p)

and calculates
(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert �= ⊥, broadcast cert and output corruptedm. Otherwise, output abort.

4.3 Blame-Algorithm

Our PVC compiler uses an algorithm Blame in order to verify the behavior
of all parties in the opened protocol instances and to generate a certificate of
misbehavior if cheating has been detected. It takes the view of a party as input
and outputs the index of the corrupted party in addition to the certificate. If
there are several malicious parties the algorithm selects the one with the minimal
index.



802 S. Faust et al.

Algorithm Blame

On input the view view of a party which contains:

– public parameters (n, t)

– public seed shares {seed(2,i)
j }i∈[n]

– shared coin r
– private seed share commitments and decommitments {ci

j , d
i
j}i∈[n],j∈[t]\r

– additional certificate information
({pkj}i∈[n], {dataj}j∈[t], π, {σi

j}i∈[n],j∈[t])

do:

1. Calculate seed
(1,i)
j := Open(ci

j , d
i
j) for each i ∈ [n], j ∈ [t] \ r.

2. Let M1 := {(i, j) ∈ ([n], [t] \ r) : seed
(1,i)
j = ⊥}. If M1 �= ∅, choose the tuple

(m, l) ∈ M1 with minimal m and l, prioritized by m, compute (·, π) :=
TL.Solve(pp, p), if π = ⊥, set cert := (pkm, dataj , π, r, {di

j}i∈[n],j∈[t]\r, σ
m
l )

and output (m, cert).

3. Set seedi
j := seed

(1,i)
j ⊕ seed

(2,i)
j for all i ∈ [n] and j ∈ [t] \ r.

4. Re-run ΠSH for all j ∈ [t] \ r by simulating the view of all other parties: In
the j-th instance simulate all parties Pi with randomness seedi

j for i ∈ [n]
and receive (trans′j , ·).

5. Let M2 := {j ∈ [t] \ r : trans′j �= transj}. If M2 �= ∅, determine the minimal
index m such that Pm is the first party that has deviated from the protocol
description in an instance l ∈ M2. If Pm has deviated from the protocol
description in several instances l ∈ M2, choose the smallest such l. Then,
set cert := (pkm, datal, {di

l}i∈[n], σ
m
l ) and output (m, cert).

6. Output (0, ⊥).

4.4 Judge-Algorithm

The Judge-algorithm receives the certificate and outputs either the identity of
the corrupted party or ⊥. The execution of this algorithm requires no interaction
with the parties participating in the protocol execution. Therefore, it can also
be executed by any third party which possesses a certificate cert. If the output
is pkm for m ∈ [n], the executing party is convinced that party Pm misbehaved
during the protocol execution. The Judge-algorithm is parameterized with n, t,
pp, and ΠSH.

Algorithm Judge(cert)

Inconsistency certificate:
On input cert = (pkm, data, π, r, {di

j}i∈[n],j∈[t]\r, σ
m
l ) do:

– If Verifypkm(data; σm
l ) = ⊥, output ⊥.

– Parse data to (m, l, ·, {ci
l}i∈[n], p, ·).



Generic Compiler for PVC MPC 803

– If TL.Verify(pp, p, (r, {di
j}i,j), π) = 0 output ⊥.

– If r = l, output ⊥.
– If Open(cm

l , dm
l ) �= ⊥, output ⊥. Else output pkm.

Deviation certificate:
On input cert = (pkm, data, {di

l}i∈[n], σ
m
l ).

– If Verifypkm(data; σm
l ) = ⊥, output ⊥.

– Parse data to (m, l, {seed(2,i)
l }i∈[n], {ci

l}i∈[n], ·, transl).
– Set seed

(1,i)
l ← Open(ci

l, d
i
l) for each i ∈ [n]. If any seed

(1,i)
l = ⊥, output ⊥.

– Set seedi
l := seed

(1,i)
l ⊕ seed

(2,i)
l for each i.

– Simulate ΠSH using the seeds seedi
l as randomness of party Pi and get result

(trans′l, ·).
– If trans′l = transl, output ⊥. Otherwise, determine the index m′ of the first

party that has deviated from the protocol description. If m �= m′, output
⊥. Otherwise, output pkm.

Ill formatted: If the cert cannot be parsed to neither of the two above cases,
output (⊥).

5 Security

In this section, we show the security of the compiled protocol described in Sect. 4.
To this end, we state the security guarantee in Theorem 1 and prove its correct-
ness in the following.

Theorem 1. Let ΠSH be a n-party protocol, receiving no private inputs, which
is secure against a passive adversary that corrupts up to n − 1 parties. Let the
signature scheme (Gen,Sign,Verify) be existentially unforgettable under chosen-
message attacks and let the verifiable time-lock puzzle scheme TL be secure with
hardness parameter T > 2 · Tc. Let (Commit,Open) be an extractable commit-
ment scheme which is computationally binding and hiding. Then protocol ΠPVC

along with algorithms Blame and Judge is secure against a covert adversary that
corrupts up to n − 1 parties with deterrence ε = 1 − 1

t and public verifiability
according to Definition 2 in the (Fcoin,FPG)-hybrid model.4

Proof. We prove security of the compiled protocol ΠPVC by showing simulata-
bility, public verifiability, and defamation freeness according to Definition 2 sep-
arately.

5.1 Simulatability

In order to prove that ΠPVC meets covert security with ε-deterrent, we define an
ideal-world simulator S using the adversary A in a black-box way as a subroutine
4 See Sect. 3.1, for details on the notion of time and the communication model.



804 S. Faust et al.

and playing the role of the parties corrupted by A when interacting with the
ideal covert-functionality FCov.

The simulator and the proof that the joint distribution of the honest parties’
outputs and the view of A in the ideal world is computationally indistinguishable
from the honest parties’ outputs and the view of A in the real world are given
in the full version of the paper.

5.2 Public Verifiability

We first argue that an adversary is not able to perform what we call a detection
dependent abort. This means that once an adversary learns if its cheating will be
detected, it can no longer prevent honest parties from generating a certificate.

In order to see this, note that withholding valid signatures by corrupted par-
ties in step 4 results in an abort of all honest parties. In contrast, if all honest
parties receive valid signatures from all other parties in step 4, then they are
guaranteed to obtain the information encapsulated in the time-lock puzzle, i.e.,
the coin r and the decommitments of all parties {di

j}i∈[n],j∈[t]\r. Either, all par-
ties jointly trigger the puzzle generation functionality FPG to output the values
or in case any corrupted party aborts, an honest party can solve the time-lock
puzzle without interaction. Thus, it is not possible for a rushing adversary that
gets the output of FPG in step 6 first, to prevent the other parties from learning
it at some time as well. Moreover, the adversary also cannot extract the values
from the puzzles before making the decision if it wants to continue or abort, as
the decision has to be made in time smaller than the time required to solve the
puzzle. Thus, the adversary’s decision to continue or abort is independent from
the coin r and therefore independent from the event of being detected or not.

Secondly, we show that the Judge-algorithm will accept a certificate, created
by an honest party, expect with negligible probability. Assume without loss of
generality that some malicious party Pm has cheated, cheating has been detected
and a certificate (blaming party Pm) has been generated. As we have two types
of certificates, we will look at them separately.

If an honest party outputs an inconsistency certificate, it has received an
inconsistent commitment-opening pair (cm

l , dm
l ) for some l �= r. The value cm

l

is signed directly by Pm and dm
l indirectly via the signed time-lock puzzle p.

Hence, Judge can verify the signatures and detect the inconsistent commitment
of Pm as well. Note that due to the verifiability of our time-lock construction, the
Judge-algorithm does not have to solve the time-lock puzzle itself but just needs
to verify a given solution. This enables the algorithm to be executed efficiently.

If an honest party outputs a deviation certificate, it has received consistent
openings for all j �= r from all other parties, but party Pm was the first party
who deviated from the specification of ΠSH in some instance l ∈ [t]\r. Since ΠSH

requires no input from the parties, deviating from its specification means using
different randomness than derived from the seeds generated at the beginning of
the compiled protocol. As Pm has signed the transcript transl, the private seed-
commitments of all parties {ci

l}i∈[n], the public seeds {seed(2,i)}i∈[n], and the
certificate contains the valid openings {di

l}i∈[n], the Judge-algorithm can verify



Generic Compiler for PVC MPC 805

that Pm was the first party who misbehaved in instance l the same way the
honest party does. Note that it is not necessary for Judge to verify that j �= r,
because the certificate generating party can only gain valid openings {di

l}i∈[n]

for j �= r.

5.3 Defamation Freeness

Assume, without loss of generality, that some honest party Ph is blamed by the
adversary. We show defamation freeness for the two types of certificates sepa-
rately via a reduction to the security of the commitment scheme, the signature
scheme and the time-lock puzzle scheme.

First, assume there is a valid inconsistency certificate cert∗ blaming Ph. This
means that there is a valid signatures of Ph on a commitment c∗h

j and a time-
lock puzzle p∗ that has a solution s∗ which contains an opening d∗h

j such that
Open(c∗h

j , d∗h
j ) = ⊥ and j �= r. As Ph is honest, Ph only signs a commitment

c∗h
j which equals the commitment honestly generated by Ph during the seed

generation. We call such a c∗h
j correct. Thus, c∗h

j is either correct or the adversary
can forge signatures. Similar, Ph does only sign the puzzle p∗ received by FPG.
This puzzle is generated on the opening value provided by all parties. Since Ph is
honest, correct opening values are inserted. Therefore, the signed puzzle p∗ either
contains the correct opening value or the adversary can forge signatures. Due
to the security guarantees of the puzzle, the adversary has to either provide the
correct solution s∗ or can break the soundness of the time-lock puzzle scheme.
To sum it up, an adversary creating a valid inconsistency certificate contradicts
to the security assumptions specified in Theorem 1.

Second, assume there is a valid deviation certificate cert∗ blaming Ph. This
means, there is a protocol transcript trans∗j in which Ph is the first party that has
sent a message which does not correspond to the next-message function of ΠSH

and the randomness, seedh
j used by the judge to simulate Ph. As Ph is honest,

either trans∗ or seedh
j needs to be incorrect. Also, Ph does not create a signature

for an invalid trans∗. Thus, trans∗ is either correct or the adversary can forge sig-
natures. The seedh

j is calculated as seedh
j := seed

(1,h)
j ⊕ seed

(2,h)
j . The public seed

seed
(2,h)
j is signed by Ph and provided directly. The private seed of Ph is provided

via a commitment-opening pair (ch
j , dh

j ), where ch
j is signed by Ph. As above, ch

j

and seed
(2,h)
j are either correct or the adversary can forge signatures. Similar,

dh
j is either correct or the adversary can break the binding property of the com-

mitment scheme. If the certificate contains correct (trans∗j , c
h
j , dh

j , seed
(2,h)
j ) the

certificate is not valid. Thus, when creating an accepting cert∗, the adversary
has either broken the signature or the commitment scheme which contradicts to
the assumption of Theorem 1.

�



806 S. Faust et al.

6 Evaluation

6.1 Efficiency of Our Compiler

In Sect. 4, we presented a generic compiler for transforming input-independent
multi-party computation protocols with semi-honest security into protocols that
offer covert security with public verifiability. We elaborate on efficiency param-
eters of our construction in the following.

The deterrence factor ε = t−1
t only depends on the number of semi-honest

protocol executions t. In particular, ε is independent of the number of parties.
This property allows for achieving the same deterrence factor for a fixed number
of semi-honest executions while the number of parties increases. Our compiler
therefore facilitates secure computation with a large number of parties. Further-
more, the deterrence factor grows with the number of semi-honest instances (t),
similar to previous work based on cut-and-choose (e.g., [AL07,AO12,DOS20]).
Concretely, this means that for only five semi-honest instances, our compiler
achieves a cheating detection probability of 80%. Moreover, the semi-honest
instances are independent of each other and, hence, can be executed in parallel.
This means, that the communication and computation complexity in comparison
to a semi-honest protocol increases by factor t. However, our compiler preserves
the round complexity of the semi-honest protocol. Hence, it is particularly useful
for settings and protocols in which the round complexity constitutes the major
efficiency bottleneck. Similarly, the requirement of sending all messages to all
parties further increases the communication overhead by a factor of n − 1 but
does not affect the round complexity. Since this requirement is inherent to all
known publicly verifiable covert secure protocols, e.g., [DOS20], these protocols
incur a similar communication overhead.

While our compiler requires a maliciously secure puzzle generation function-
ality, we stress that the complexity of the puzzle generation is independent of
the cost of the semi-honest protocol. Therefore, the relative overhead of the
puzzle generation shrinks for more complex semi-honest protocols. One applica-
tion where our result may be particular useful is for the preprocessing phase of
multi-party computation, e.g., protocols for generating garbled circuits or multi-
plication triples. In such protocols, one can generate several circuits resp. triples
that are used in several online instances but require just one puzzle generation.

For the sake of concreteness, we constructed a boolean circuit for the puzzle
generation functionality and estimated its complexity in terms of the number of
AND-gates. The construction follows a naive design and should not constitute
an efficient solution but should give a first impression on the circuit complexity.
We present some intuition on how to improve the circuit complexity afterwards.

We utilize the RSW VTLP construction described in Sect. 3.2 with a hybrid
construction, in which a symmetric encryption key is locked within the actual
time-lock puzzle and is used to encrypt the actual secret. Note that the RSW
VTLP is not optimized for MPC scenarios. Since our compiler can be instan-
tiated with an arbitrary VTLP satisfying Definition 3, any achievements in
the area of MPC-friendly TLP can result into an improved puzzle generation



Generic Compiler for PVC MPC 807

functionality for our compiler. To instantiate the symmetric encryption opera-
tion, we use the LowMC [ARS+15] cipher, an MPC-friendly cipher tailored for
boolean circuits.

Let n be the number of parties, t being the number of semi-honest instances,
κ denoting the computational security parameter, and N represents the RSA
modulus used for the RSW VTLP. We use the notation |x| to denote the bit
length of x. The total number of AND-gates of our naive circuit is calculated as
follows:

(n − 1) · (11|t| + 22N | + 12)
+nt · (4|t| + 2κ + 755)

+192 N |3 + 112N |2 + 22|N |

It is easy to see that the number of AND-gates is linear in both n and
t. The most expensive part of the puzzle generation is the computation of two
exponentiations required for the RSW VTLP, since the number of required AND-
gates is cubic in |N | for an exponentiation. However, we can slightly adapt our
puzzle generation functionality and protocol to remove these exponentiations
from the maliciously secure puzzle generation protocol. For the sake of brevity,
we just give an intuition here.

Instead of performing the exponentiations gu and hu required for the puzzle
creation within the puzzle generation functionality, we let each party Pi input
a 0-puzzle consisting of the two values gi = gui and hi = hui . The products of
all gi respectively hi are used as g∗ and h∗ for the VTLP computation. Since
we replace the exponentiations with multiplications, the number of AND-gates
is quadratic instead of cubic in |N |.

Note that this modification enables a malicious party to modify the resulting
puzzle by inputting a non-zero puzzle. Intuitively, the attacker can render the
puzzle invalid such that no honest party can create a valid certificate or the
puzzle can be modified such that a corrupted party can create a valid certificate
defaming an honest party. Concretely, one possible attack is to input inconsistent
values gi and hi, i.e., to use different exponents for the two exponentiations. As
such an attack must be executed without knowledge of the coin r, it is sufficient
to detect invalid inputs and consider such behavior as an early abort. To this
end, parties have to provide ui to the puzzle generation functionality and the
functionality outputs u = Σ ui, g∗ and h∗ in the second output round together
with the coin and the seed openings. By comparing if g∗ = gu and h∗ = hu,
each party can check the validity of the puzzle. Finally, we need to ensure that a
manipulated puzzle cannot be used to create an inconsistency certificate blaming
an honest party. Such false accusation can easily be prevented, e.g., by adding
some zero padding to the value inside the puzzle such that any invalid puzzle
input renders the whole puzzle invalid.



808 S. Faust et al.

6.2 Comparison with Prior Work

To the best of our knowledge, our work is the first to provide a fully specified
publicly verifiable multi-party computation protocol against covert adversaries.
Hence, we cannot compare to existing protocols directly. However, Damg̊ard
et al. [DOS20] have recently presented two compilers for constructing publicly
verifiable covert secure protocols from semi-honest secure protocols in the two-
party setting, one for input-independent and one for input-dependent protocols.
For the latter, they provide an intuition on how to extend the compiler to the
multi-party case. However, there is no full compiler specification for neither
input-dependent nor input-independent protocols. Still, there exist a natural
extension for the input-independent compiler, which we can compare to.

The major difference between our input-independent protocol and their
input-independent protocol, is the way the protocols prevent detection depen-
dent abort. In the natural extension to Damg̊ard et al. [DOS20], which we call
the watchlist approach in the following, each party independently selects a subset
of instances it wants to check and receives the corresponding seeds via oblivi-
ous transfer. The transcript of the oblivious transfer together with the receiver’s
randomness can be used by the receiver to prove integrity of its watchlist to the
judge; similar to the seed commitments and openings used in our protocol. The
watchlists are only revealed after each party receives the data required to create
a certificate in case of cheating detection, i.e., the signatures by the other parties.
Once a party detects which instances are checked, it is too late to prevent the
creation of a certificate. Our approach utilizes time-lock puzzles for the same
purpose.

In the watchlist approach, all parties have different watchlists. For t semi-
honest instances and watchlists of size s ≥ t

n , there is a constant probability
Pr[bad] that no semi-honest instance remains unwatched which leads to a failure
of the protocol. Thus, parties either need to choose s < t

n and hence ε = s
t < 1

n or
run several executions of the protocol. For the latter, the probability of a protocol
failure Pr[bad] and the expected number of protocol runs runs are calculated
based on the inclusion-exclusion principle as follows:

Pr[bad] = 1 −
∑t

k=1(−1)(k−1) ∗
(

t
k

)
∗ (

∏s−1
j=0(t − j − k))n

∏s−1
j=0(t − j))n

= 1 −
t∑

k=1

(−1)(k−1) ·
(

t

k

)
·
(

(t − k)! · (t − s)!
(t − k − s)! · t!

)n

runs = Pr[bad]−1

Setting the watchlist size s ≥ t
n such that there is a constant failure proba-

bility has the additional drawback that the repetition can be abused to amplify
denial-of-service attacks. An adversary can enforce a high failure probability by
selecting its watchlists strategically. If s ≥ t

(n−1) and n − 1 parties are cor-
rupted, the adversary can cause an error with probability 1 which enables an
infinite DoS-attack.



Generic Compiler for PVC MPC 809

This restriction of the deterrence factor seems to be a major drawback of the
watchlist approach. Although our approach has an additional overhead due to
the puzzle generation, which is independent of the complexity of the transformed
protocol and thus amortizes over the complexity of the base protocols, it has the
benefit that it immediately supports an arbitrary deterrence factor ε. This is
due to the fact that the hidden shared coin toss determines a single watchlist
shared by all parties. In Table 1, we display the maximal deterrence factor of
our approach ε in comparison to the maximal deterrence factor of the watch-
list approach without protocol repetitions ε′ for different settings. Additionally,
we provide the number of expected runs required to achieve ε in the watchlist
approach with repetitions.

Table 1. Maximal deterrence factor or expected number of runs of the watchlist app-
roach in comparison to our approach.

n t Our approach Watchlist approach

ε ε′ or runs

2 2 1/2 - 2

3 2/3 1/3 3

10 9/10 4/10 10

3 2 1/2 - 4

4 3/4 1/4 16

10 9/10 3/10 100

5 2 1/2 - 16

6 5/6 1/6 1296

Acknowledgments. The first, third, and fourth authors were supported by the Ger-
man Federal Ministry of Education and Research (BMBF) iBlockchain project (grant
nr. 16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), by the BMBF and the
Hessian Ministry of Higher Education, Research, Science and the Arts within their
joint support of the National Research Center for Applied Cybersecurity ATHENE,
and by Robert Bosch GmbH, by the Economy of Things Project. The second author
was supported by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s
Office, and by ISF grant No. 1316/18.

References

[AL07] Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient pro-
tocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-70936-7 8

https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-540-70936-7_8


810 S. Faust et al.

[AO12] Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public
verifiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34961-4 41

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 17

[BBBF18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 25

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: ITCS (2016)

[BW88] Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. J. Cryptol. 1(2), 107–118 (1988). https://doi.org/10.1007/
BF02351719

[DG20] Dobson, S., Galbraith, S.D.: Trustless groups of unknown order with hyper-
elliptic curves. IACR Cryptology ePrint Archive 2020 (2020)

[DGN10] Damg̊ard, I., Geisler, M., Nielsen, J.B.: From passive to covert security at
low cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128–145.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 9

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40203-6 1

[DOS20] Damg̊ard, I., Orlandi, C., Simkin, M.: Black-box transformations from pas-
sive to covert security with public verifiability. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 647–676. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 23

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[GMS08] Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party
computation against covert adversaries. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 17

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: 19th ACM
STOC 1987 (1987)

[HKK+19] Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security
with public verifiability: faster, leaner, and simpler. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 97–121. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 4

https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/978-3-642-11799-2_9
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-030-56880-1_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-540-78967-3_17
https://doi.org/10.1007/978-3-540-78967-3_17
https://doi.org/10.1007/978-3-030-17659-4_4


Generic Compiler for PVC MPC 811

[HVW20] Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active security
in cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12106, pp. 184–215. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 7

[IOZ14] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 21

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 32

[KM15] Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model
(almost) for free. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 210–235. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48800-3 9

[LOP11] Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: optimizations, vari-
ants and concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 259–276. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 15

[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the ran-
dom oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 3

[MT19] Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and
applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 620–649. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26948-7 22

[Pie19] Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019 (2019)
[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-

release crypto. Technical report, Massachusetts Institute of Technology.
Laboratory for Computer Science (1996)

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 13

[WRK17a] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient
maliciously secure two-party computation. In: ACM CCS 2017 (2017)

[WRK17b] Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty compu-
tation. In: ACM CCS 2017 (2017)

[YWZ20] Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple
generation and authenticated garbling. In: ACM CCS 2020 (2020)

[ZDH19] Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2PC over a
blockchain with applications to financially-secure computations. In: ACM
CCS 2019 (2019)

https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-17659-4_13


Constant-Overhead Unconditionally
Secure Multiparty Computation Over

Binary Fields

Antigoni Polychroniadou1 and Yifan Song2(B)

1 J.P. Morgan AI Research, New York, USA
2 Carnegie Mellon University, Pittsburgh, USA

yifans2@andrew.cmu.edu

Abstract. We study the communication complexity of unconditionally
secure multiparty computation (MPC) protocols in the honest major-
ity setting. Despite tremendous efforts in achieving efficient protocols
for binary fields under computational assumptions, there are no effi-
cient unconditional MPC protocols in this setting. In particular, there
are no n-party protocols with constant overhead admitting communica-
tion complexity of O(n) bits per gate. Cascudo, Cramer, Xing and Yuan
(CRYPTO 2018) were the first ones to achieve such an overhead in the
amortized setting by evaluating O(log n) copies of the same circuit in
the binary field in parallel. In this work, we construct the first uncondi-
tional MPC protocol secure against a malicious adversary in the honest
majority setting evaluating just a single boolean circuit with amortized
communication complexity of O(n) bits per gate.

1 Introduction

Secure multiparty computation (MPC) [Yao82,GMW87,CCD88,BOGW88]
allows n parties to compute any function of their local inputs while guaran-
teeing the privacy of the inputs and the correctness of the outputs even if t of
the parties are corrupted by an adversary.

A. Polychroniadou—This paper was prepared in part for information purposes by the
Artificial Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This docu-
ment is not intended as investment research or investment advice, or a recommenda-
tion, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of partic-
ipating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2020 JPMorgan Chase & Co. All rights reserved.
Y. Song—Work done in part while at J.P. Morgan AI Research. Supported in part by
the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL
award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation
award, and a Cylab seed funding award.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 812–841, 2021.
https://doi.org/10.1007/978-3-030-77886-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_28


Constant-Overhead Unconditionally Secure Multiparty Computation 813

Given that point-to-point secure channels are established across the parties,
any function can be computed with unconditional (perfect) security, against a
semi-honest adversary if n ≥ 2t+1 and against a malicious adversary if n ≥ 3t+1
[BOGW88,CCD88]. If we accept small error probability, n ≥ 2t + 1 is sufficient
to get malicious security [RBO89,Bea89].

The methods used in unconditional secure protocols tend to be computation-
ally much more efficient than the cryptographic machinery required for compu-
tational security. So unconditionally secure protocols are very attractive from a
computational point of view, but they seem to require a lot of interaction. In
fact, such protocols require communication complexity proportional to the size
of the (arithmetic) circuit computing the function. In this work we focus on the
communication complexity per multiplication of unconditional MPC protocols
in the honest majority setting.

Known unconditional secure MPC protocols represent the inputs as ele-
ments of a finite field Fq and represent the function as an arithmetic circuit
over that finite field. Moreover, protocols that are efficient in the circuit size of
the evaluated function process the circuit gate-by-gate using Shamir secret shar-
ing [Sha79]. This approach usually allows non-interactive processing of addition
gates but requires communication for every multiplication gate. However, secret-
sharing-based protocols require that the size of the underlying finite field is larger
than the number of parties, i.e., q > n. The work of [BTH08] based on hyper-
invertible matrices requires the underlying finite field to be q ≥ 2n.1 Other types
of protocols with unconditional online phase based on message authentication
codes, such as the SPDZ-based protocol [DPSZ12], require the size of the under-
lying finite field to be large, i.e., q > 2κ, where κ is the security parameter. This
is based on the fact that the cheating probability of the adversary needs to be
inverse proportional to the size of the field.

In this paper, we ask a very natural question for unconditionally secure pro-
tocols which, to the best of our knowledge, has not been studied in detail before:

Is it possible to construct unconditional MPC protocols for t < n/2 for com-
puting an arithmetic circuit over a small field Fq (such as q = 2) with amortized
communication complexity O(n) field elements (bits) per gate?

Note that the standard solution of applying the existing protocols to functions
which are already represented as binary circuits requires to lift the circuit to a
large enough extension field. That said, in such a scenario the communication
complexity incurs a multiplicative overhead of log n.

Recently, Cascudo, et al. [CCXY18] revisited the amortized complexity of
unconditional MPC. At a high level, the authors leverage the large extension
field to evaluate more than one instance of the same binary circuit in parallel. In
particular, the authors compile an MPC protocol for a circuit over an extension

1 In [CCXY18], Cascudo, et al. show that the requirement q ≥ 2n of using hyper-
invertible matrices can be relaxed to any field size. However, q > n is still necessary
to use Shamir secret sharing in [BTH08].



814 A. Polychroniadou and Y. Song

field to a parallel MPC protocol of the same circuit but with inputs defined over
its base field. That said, their protocol can evaluate O(log n) copies of the same
circuit in the binary field in parallel and achieve communication complexity of
O(Cn) bits where C is the size of the circuit. However, such an overhead cannot
be achieved for a single copy of the circuit. The works of [DZ13,CG20] also
allow efficient parallel computation of several evaluations of the same binary
circuits with a special focus on the dishonest majority. Note that these works
are based on packed secret sharing for SIMD circuits, however this induces an
extra overhead of log C in the circuit size when using for a single binary circuit.

Our Results. We answer the above question in the affirmative, obtaining an
unconditional MPC protocol in the honest majority setting for calculations over
F2. Informally, we prove the following:

Theorem 1 (informal). There exists an unconditional MPC protocol for n
parties secure against t < n/2 corruptions in the presence of a malicious adver-
sary evaluating a single boolean circuit with an amortized communication com-
plexity of O(n) bits per gate.

We formally state our results and communication overhead in Theorem 5. To
establish our result, we propose an online phase based on additive sharings where
we are able to authenticate the shares with O(Cn) communication overhead as
opposed to prior works which achieve an overhead of O(Cnκ) for a single boolean
circuit, where κ is the security parameter.

We are aware that the works of Hazay et al. [HVW20] and Boyle
et al. [BGIN20] (building on Boneh et al. [BBCG+19]) provide general compilers
from semi-honest security to malicious security in the honest-majority setting,
with at most a constant communication overhead. We leave the possibility of an
alternative approach to achieve malicious security by applying these compilers to
a semi-honest protocol which communicates O(n) field elements per gate, such
as our semi-honest protocol, to future work.

2 Technical Overview

In the following, we will use n to denote the number of parties and t to denote
the number of corrupted parties. In the setting of the honest majority, we have
n = 2t + 1.

Our construction will utilize two kinds of secret sharing schemes:

– The standard Shamir secret sharing scheme [Sha79]: We will use [x]t to denote
a degree-t Shamir sharing, or a (t+1)-out-of-n Shamir sharing. It requires at
least t + 1 shares to reconstruct the secret and any t shares do not leak any
information about the secret.

– An additive sharing among the first t + 1 parties: We will use 〈x〉 to denote
an additive sharing, which satisfies that the summation of the shares held by
the first t+1 parties is the secret x, and the shares of the rest of parties are 0.



Constant-Overhead Unconditionally Secure Multiparty Computation 815

In this paper, we are interested in the information-theoretic setting. Our goal
is to construct a secure-with-abort MPC protocol for a single arithmetic circuit
over the binary field F2, such that the communication complexity is O(Cn) bits
(ignoring terms which are sub-linear in the circuit size), where C is the circuit
size and n is the number of parties. The structure of our overview is as follows:

1. We first provide an overview of related works and discuss why their protocols
cannot achieve O(Cn) bits for a single binary circuit.

2. Then we introduce a high-level structure of our construction. Very informally,
our protocol uses additive sharings to achieve high efficiency in the online
phase. However, using additive sharings requires authentications of the secrets
to detect malicious behaviors. Based on the prior works, directly generating
an authentication for each sharing already requires the communication of
O(Cnκ) bits, where κ is the security parameter. The main difficulty is how
to efficiently authenticate the secrets of additive sharings.

3. Next we review the notion of reverse multiplication-friendly embeddings
(RMFE) introduced in [CCXY18], which is an important building block of
our protocol.

4. Finally, we introduce our main technique. Our idea stems from a new way to
authenticate the secret of an additive sharing. Combining with RMFEs, we
can authenticate the secret of a single additive sharing with the communi-
cation of O(n) bits. Relying on this new technique, we can obtain a secure-
with-abort MPC protocol for a single binary circuit with the communication
complexity of O(Cn) bits.

How Previous Constructions Work. In the honest majority setting, the best-
known semi-honest protocol is introduced in the work of Damg̊ard and Nielsen
[DN07] in 2007 (hereafter referred to as the DN protocol). The communication
complexity of the DN protocol is O(Cnφ) bits, where φ is the size of a field
element. A beautiful line of works [GIP+14,LN17,CGH+18,NV18,GSZ20] have
shown how to compile the DN protocol to achieve security-with-abort. In partic-
ular, the recent work [GSZ20] gives the first construction where the communica-
tion complexity matches the DN protocol. At a high-level, these protocols follow
the idea of computing a degree-t Shamir sharing for each wire, and making use
of the properties of the Shamir secret sharing scheme to evaluate addition gates
and multiplication gates. However, the Shamir secret sharing scheme requires the
field size to be at least n + 1. It means that the size of a field element φ ≥ log n.
When we want to evaluate a binary circuit by using these protocols, we need to
use a large enough extension field so that the Shamir secret sharing scheme is
well-defined, which results in O(Cn log n) bits in the communication complexity.

[CCXY18] revisited the amortized complexity of information-theoretically
secure MPC. Their idea is to compile an MPC for a circuit over an extension
field to a parallel MPC of the same circuit but with inputs defined over its base
field. In this way, we can evaluate O(log n) copies of the same circuit in the
binary field at the same time and achieve O(Cn) bits per circuit. The main
technique is the notion of reverse multiplication-friendly embeddings (RMFE)



816 A. Polychroniadou and Y. Song

introduced in this work [CCXY18]. At a high-level, RMFE allows us to perform a
coordinate-wise product between two vectors of bits by multiplying two elements
in the extension field. When evaluating O(log n) copies of the same circuit in the
binary field, each multiplication is just a coordinate-wise product between the
vectors of bits associated with the input wires. Relying on RMFE, all parties
can transform the computation to one multiplication between two elements in
the extension field, which can be handled by the DN protocol. This is the first
paper which sheds light on the possibility of evaluating a binary circuit with
communication complexity of O(Cn) bits. However, it is unclear how to use this
technique to evaluate a single binary circuit.

In the setting of the dishonest majority, the well-known work SPDZ [DPSZ12]
shows that, with necessary correlated randomness prepared in the preprocess-
ing phase, we can use an information-theoretic protocol in the online phase to
achieve high efficiency. The high-level idea of the online phase protocol is to
use the notion of Beaver tuples to transform a multiplication operation to two
reconstructions. We will elaborate this technique at a later point. In the online
phase, all parties will compute an additive sharing for each wire. One benefit of
the additive secret sharing scheme is that it is well-defined in the binary field
and each party holds a single bit as its share. As a result, the communication
complexity in the online phase is just O(Cn) bits. However, unlike the honest
majority setting where the shares of honest parties can determine the secret of a
degree-t Shamir sharing, the secret of an additive sharing can be easily altered by
a corrupted party changing its own share. Therefore, a secure MAC is required
to authenticate the secret of each additive sharing. To make the MAC effective,
the MAC size should be proportional to the security parameter κ. Although it
does not necessarily affect the sharing space, e.g., the work TinyOT [NNOB12]
uses an additive sharing in the binary field with a secure MAC in the exten-
sion field, generating a secure MAC for each sharing in the preprocessing phase
brings in an overhead of κ, which results in O(Cnκ) bits in the overall communi-
cation complexity. We however note that, this protocol achieves a highly efficient
online phase, which is O(Cn) bits. Our starting idea is the online phase protocol
in [DPSZ12]. In the honest majority setting, the preprocessing phase can also
be done by an information-theoretic protocol. In fact, the idea of using Beaver
tuples has been used in several previous works [BTH08,BSFO12,CCXY18] in the
honest majority setting. We first describe a prototype protocol of using Beaver
tuples in this setting.

A Prototype Protocol of Using Beaver Tuples. This protocol follows the same
structure as the protocol in [DPSZ12], but in the honest majority setting. Recall
that we use 〈x〉 to denote an additive sharing among the first t + 1 parties. We
use MAC(x) to denote an abstract MAC for x. It satisfies that all parties can use
MAC(x) to check the correctness of x. We further require that MAC(·) is linear
homomorphic, i.e., MAC(x) +MAC(y) = MAC(x + y). Let [[x]] := (〈x〉,MAC(x)).

In the preprocessing phase, all parties prepare a batch of Beaver tuples in
the form of ([[a]], [[b]], [[c]]), where a, b are random bits and c := a · b. These tuples
will be used in the online phase to evaluate multiplication gates.



Constant-Overhead Unconditionally Secure Multiparty Computation 817

In the online phase, all parties start with holding [[x]] for each input wire.
Addition gates and multiplication gates are evaluated in a predetermined topo-
logical order.

– For an addition gate with input sharings [[x]] and [[y]], all parties can locally
compute

[[z]] := (〈z〉,MAC(z)) = (〈x〉,MAC(x)) + (〈y〉,MAC(y)) = [[x]] + [[y]].

– For a multiplication gate with input sharings [[x]] and [[y]], let ([[a]], [[b]], [[c]]) be
the first unused Beaver tuple. Note that:

z = x · y = (x + a − a) · (y + b − b)
= (x + a) · (y + b) − (x + a) · b − (y + b) · a + a · b

Therefore, if all parties know x+ a and y + b, [[z]] can be locally computed by

[[z]] := (x + a) · (y + b) − (x + a) · [[b]] − (y + b) · [[a]] + [[c]].

The task of computing [[z]] becomes to reconstruct [[x]]+ [[a]] and [[y]]+ [[b]]. We
will use 〈x + a〉 and 〈y + b〉 to do the reconstructions. All parties send their
shares of 〈x + a〉, 〈y + b〉 to the first party. Then, the first party reconstructs
the x + a, y + b, and sends the result back to other parties.

To check the correctness of the computation, it is sufficient to verify the recon-
structions. For each x+a, all parties use [[x]], [[a]] to compute MAC(x+a), which
can be used to verify the reconstruction.

Note that we only need to communicate O(n) bits per multiplication gates.
Therefore, the communication complexity is O(Cn) bits in the online phase. The
main bottleneck of this approach is how to generate Beaver tuples efficiently. Our
protocol relies on the notion of reverse multiplication-friendly embeddings and
a novel MAC to achieve high efficiency in generating Beaver tuples.

Review of the Reverse Multiplication-Friendly Embeddings [CCXY18]. We note
that a Beaver tuple can be prepared by the following two steps: (1) prepare two
random sharings [[a]], [[b]], and (2) compute [[c]] such that c := a · b. Note that a, b
are random bits. It naturally connects to the idea of RMFE, which allows us
to perform a coordinate-wise product between two vector of bits by multiplying
two elements in the extension field. We first give a quick review of this notion.

Let F
k
2 denote a vector space of F2 of dimension k, and F2m denote the

extension field of F2 of degree m. A reverse multiplication-friendly embedding
is a pair of F2-linear maps (φ, ψ), where φ : Fk

2 → F2m and ψ : F2m → F
k
2 , such

that for all x,y ∈ F
k
2 ,

x ∗ y = ψ(φ(x) · φ(y)),

where ∗ denotes the coordinate-wise product. In [CCXY18], it has been shown
that there exists a family of RMFEs such that m = Θ(k).

In [CCXY18], recall that k = O(log n) copies of the same circuit are evaluated
together. For each wire, there is a vector of k bits associated with this wire, where



818 A. Polychroniadou and Y. Song

the i-th bit is the wire value of the i-th copy of the circuit. Thus, an addition gate
corresponds to a coordinate-wise addition, and a multiplication gate corresponds
to a coordinate-wise product. In the construction of [CCXY18], for each wire,
the vector x associated with this wire is encoded to φ(x) ∈ F2m . All parties hold
a degree-t Shamir sharing [φ(x)]t. Since φ(·) is an F2-linear map, addition gates
can be computed locally. The main task is to evaluate multiplication gates:

– For a multiplication gate with input sharings [φ(x)]t, [φ(y)]t, the goal is to
compute a degree-t Shamir sharing [φ(z)]t such that z = x ∗ y.

– Relying on the DN protocol [DN07], all parties can compute a degree-t Shamir
sharing [w]t := [φ(x) · φ(y)]t. By the property of the RMFE, we have z =
ψ(w). Therefore, all parties need to transform [w]t to [φ(ψ(w))]t.

– In [CCXY18], this is done by using a pair of random sharings ([r]t, [φ(ψ(r))]t).
All parties reconstruct [w + r]t and compute [φ(ψ(w))]t := φ(ψ(w + r)) −
[φ(ψ(r))]t. The correctness follows from the fact that φ and ψ are F2-linear
maps.

– Finally, all parties set [φ(z)]t := [φ(ψ(w))]t.

As analyzed in [CCXY18], the communication complexity per multiplication gate
is O(m · n) bits. Since each multiplication gate corresponds to k multiplications
in the binary field, the amortized communication complexity per multiplication
is O(m/k · n) = O(n) bits.

Following the idea in [CCXY18], we can prepare a random tuple of sharings
([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random vectors in F

k
2 , and c = a ∗ b. In

particular, the communication complexity per tuple is O(m · n) bits. Suppose
that a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk), and c = (c1, c2, . . . , ck). If we can
transform a random tuple ([φ(a)]t, [φ(b)]t, [φ(c)]t) to k Beaver tuples:

([[a1]], [[b1]], [[c1]]), ([[a2]], [[b2]], [[c2]]), . . . , ([[ak]], [[bk]], [[ck]]),

then the communication complexity per Beaver tuple is O(m/k · n) = O(n)
bits! More concretely, our goal is to efficiently separate a degree-t Shamir
sharing [φ(a)]t to k sharings [[a1]], [[a2]], . . . , [[ak]]. For all i ∈ [k], recall that
[[ai]] = (〈ai〉,MAC(ai)). Therefore, we need to efficiently obtain an additive shar-
ing 〈ai〉 and a secure MAC(ai) from a degree-t Shamir sharing [φ(a)]t.

Establish a Connection between [φ(x)]t and {[[xi]]}k
i=1. We first consider the fol-

lowing question: Given φ(x), how can we obtain the i-th bit xi from φ(x)? Let
e(i) be a vector in F

k
2 such that all entries are 0 except that the i-th entry is 1.

Then e(i) ∗ x is a vector in F
k
2 such that all entries are 0 except that the i-th

entry is xi. According to the definition of RMFEs, we have

e(i) ∗ x = ψ(φ(e(i)) · φ(x)).

To obtain xi from e(i)∗x, we can compute the summation of all entries in e(i)∗x.
We define an F2-linear map val(·) : F2m → F2 as follows:



Constant-Overhead Unconditionally Secure Multiparty Computation 819

– For an input element y ∈ F2m , suppose ψ(y) = (y1, y2, . . . , yk).
– val(y) is defined to be

∑k
i=1 yi.

Therefore, we have
xi := val(φ(e(i)) · φ(x)).

Note that φ(e(i)) is an element in F2m and is known to all parties. Therefore,
all parties can locally compute [y(i)]t := φ(e(i)) · [φ(x)]t. In particular, we have
val(y(i)) = xi. In the honest majority setting, a degree-t Shamir sharing satisfies
that the secret is determined by the shares of honest parties. In particular,
corrupted parties cannot alter the secret of this sharing. Therefore, [y(i)]t can be
seen as a secure MAC for xi. Thus for an element x ∈ F2, we set MAC(x) := [y]t,
where y ∈ F2m satisfies that val(y) = x. Note that [y]t can be used to check the
correctness of x, and for all x, x′ ∈ F2,

MAC(x) + MAC(x′) = [y]t + [y′]t = [y + y′]t = MAC(x + x′),

where the last step follows from the fact that val(y + y′) = val(y) + val(y′).
Recall that [[xi]] = (〈xi〉,MAC(xi)). So far, we have obtained MAC(xi) from

[φ(x)]t. Therefore, the only task is to obtain 〈xi〉. Let 〈x〉 := (〈x1〉, 〈x2〉, . . . , 〈xk〉)
denote a vector of additive sharings of x ∈ F

k
2 . For each party, its share of 〈x〉 is

a vector in F
k
2 . For the last t parties, they take the all-0 vector as their shares.

We note that for a degree-t Shamir sharing [φ(x)]t, the secret φ(x) can be
written as a linear combination of the shares of the first t+1 parties. Therefore,
the first t + 1 parties can locally transform their shares of [φ(x)]t to an additive
sharing of φ(x), denoted by 〈φ(x)〉. Let ui denote the i-th share of 〈φ(x)〉. Then
we have φ(x) =

∑t+1
i=1 ui. In Sect. 3.3, we give an explicit construction of an F2-

linear map φ̃−1 : F2m → F
k
2 which satisfies that for all x ∈ F

k
2 , φ̃−1(φ(x)) = x.

Utilizing φ̃−1, we have

t+1∑

i=1

φ̃−1(ui) = φ̃−1(
t+1∑

i=1

ui) = φ̃−1(φ(x)) = x.

Thus, the i-th party takes φ̃−1(ui) as its share of 〈x〉.
In summary, we show that given [φ(x)]t, all parties can locally obtain

{[[xi]]}k
i=1. Together with RMFEs, the communication complexity per Beaver

tuple is O(n) bits. Relying on the prototype protocol of using Beaver tuples, we
obtain a secure-with-abort MPC protocol for a single binary circuit which has
communication complexity O(Cn) bits. We note that these k sharings {[[xi]]}k

i=1

are correlated since they are computed from a single degree-t Shamir sharing
[φ(x)]t. Our protocol will make use of additional randomness as mask to protect
the secrecy of these sharings when they are used. The preparation of this addi-
tional randomness is done in a batch way at the beginning of the protocol and
does not affect the asymptotic communication complexity of the main protocol.
We refer the readers to Sect. 6.3 and Sect. 6.4 for the additional randomness we
need in the construction.



820 A. Polychroniadou and Y. Song

An Overview of Our Main Construction. Our main protocol follows the same
structure as the prototype protocol of using Beaver tuples. Recall that for x ∈ F2,
we use 〈x〉 to denote an additive sharing of x among the first t+1 parties, and the
shares of the rest of parties are 0. Let (φ, ψ) be a RMFE, where φ : Fk

2 → F2m

and ψ : F2m → F
k
2 are F2-linear maps. Recall that val(·) : Fqm → Fq is an

Fq-linear map, defined by val(y) =
∑k

i=1 yi, where (y1, y2, . . . , yk) = ψ(y). For
x ∈ F2, let [[x]] := (〈x〉, [y]t), where 〈x〉 is an additive sharing among the first
t + 1 parties in F2, and [y]t is a degree-t Shamir sharing of y ∈ F2m such that
val(y) = x.

In the preprocessing phase, all parties prepare a batch of Beaver tuples in
the form of ([[a]], [[b]], [[c]]), where a, b are random bits and c := a · b. The Beaver
tuples are prepared by the following steps:

– All parties first prepare a batch of random tuples of sharings in the form
of ([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random vectors in F

k
2 and c =

a ∗ b. In our protocol, preparing such a random tuple of sharings require the
communication of O(m · n) bits.

– For each tuple of sharings ([φ(a)]t, [φ(b)]t, [φ(c)]t), all parties locally trans-
form it to k Beaver tuples in the form of ([[a]], [[b]], [[c]]).

Note that the amortized cost per Beaver tuple is O(n) bits.
In the online phase, all parties start with holding [[x]] for each input wire.

Addition gates and multiplication gates are evaluated in a predetermined topo-
logical order.

– For an addition gate with input sharings [[x]] and [[y]], all parties locally com-
pute [[z]] := [[x]] + [[y]].

– For a multiplication gate with input sharings [[x]] and [[y]], let ([[a]], [[b]], [[c]])
be the first unused Beaver tuple. All parties use the additive sharings 〈x +
a〉, 〈y + b〉 to reconstruct x + a and y + b. Then all parties compute

[[z]] := (x + a) · (y + b) − (x + a) · [[b]] − (y + b) · [[a]] + [[c]].

All parties also locally compute [[x + a]] := [[x]] + [[a]] and [[y + b]] := [[y]] + [[b]].
These sharings will be used to verify the reconstructions at the end of the
protocol.

After evaluating the whole circuit, all parties together verify the value-sharing
pairs in the form of (x + a, [[x + a]]), where x + a is the reconstruction of [[x + a]].
In Sect. 7.3, we show that all the value-sharing pairs can be verified together
with sub-linear communication complexity in the number of pairs.

Note that addition gates can be computed locally, and the communication
complexity per multiplication gate is O(n) bits. Therefore, the communication
complexity of our protocol is O(Cn) bits.

Other Building Blocks and Security Issues. We note that the work [CCXY18]
only focuses on the setting of 1/3 corruption. These protocols cannot be
used directly in the honest majority setting. Some techniques even fail when



Constant-Overhead Unconditionally Secure Multiparty Computation 821

the corruption threshold increases. In this work, we rebuild the protocols
in [CCXY18] to fit the honest majority setting by combining known techniques
in [BSFO12,GSZ20]. Concretely,

– We follow the definition of a general linear secret sharing scheme (GLSSS)
in [CCXY18]. Following the idea in [BSFO12] of preparing random degree-
t Shamir sharings, we introduce a protocol to allow all parties efficiently
prepare random sharings of a given GLSSS. We use this protocol to prepare
various kinds of random sharings in our main construction. Let Frand denote
the functionality of this protocol.

– To prepare Beaver tuples, we first prepare a random tuple of sharings

([φ(a)]t, [φ(b)]t, [φ(c)]t),

where a, b are random vectors in F
k
2 and c = a ∗ b. This random tuple of

sharings is prepared as follows:
• The first step is to prepare random sharings [φ(a)]t, [φ(b)]t. We show that

they can be prepared by using Frand.
• Then all parties compute [φ(a) · φ(b)]t. We rely on the multiplication

protocol and the efficient multiplication verification in [GSZ20].
• Finally, all parties need to transform a sharing [w]t to [φ(ψ(w))]t, where

w = φ(a) ·φ(b). We model this process in the functionality Fre-encode. We
extend the idea in [CCXY18] from the 1/3 corruption setting to the honest
majority setting, and construct an efficient protocol for the functionality
Fre-encode.

More details can be found in Sect. 4 and Sect. 6.
We note that the idea of using Beaver tuples to construct an MPC pro-

tocol in the honest majority setting has been used in several previous works
[BTH08,BSFO12,CCXY18]. These protocols all have an additional term O(D ·
n2) in the communication complexity, where D is the circuit depth. It is due
to a verification of the computation in each layer. Recall that relying on Beaver
tuples, an multiplication can be transformed to two reconstructions. In [GLS19],
Goyal, et al. show that, without verification of the computation in each layer,
corrupted parties can learn extra information when doing reconstructions for
multiplications in the next layer. It turns out that our protocol has a similar
security issue.

To avoid the verification of the computation per layer, Goyal, et al. [GLS19]
rely on an n-out-of-n secret sharing to protect the shares of honest parties. In
this way, even without verifications, the share of each honest party is uniformly
distributed. It allows Goyal, et al. to only check the correctness at the end of
the protocol. We follows the idea in [GLS19]. Concretely, we want to protect the
shares of honest parties when using 〈x+a〉, 〈y+b〉 to do reconstructions. To this
end, we add a uniformly random additive sharing of 0 for each reconstruction.
In this way, each honest party simply sends a uniformly random element to the
first party. It allows us to delay the verification to the end of the protocol. More
details can be found in Sect. 7.



822 A. Polychroniadou and Y. Song

3 Preliminaries

3.1 The Model

In this work, we focus on functions that can be represented as arithmetic circuits
over a finite field Fq of size q with input, addition, multiplication, and output
gates. We use κ to denote the security parameter and C to denote the size of
the circuit. In the following, we will use an extension field of Fq denoted by Fqm

(of size qm). We always assume that |Fqm | = qm ≥ 2κ.
For the secure multi-party computation, we use the client-server model. In

the client-server model, clients provide inputs to the functionality and receive
outputs, and servers can participate in the computation but do not have inputs
or get outputs. Each party may have different roles in the computation. Note
that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n = 2t + 1 denote the number of servers. For all clients and servers, we
assume that every two of them are connected via a secure (private and authentic)
synchronous channel so that they can directly send messages to each other.
The communication complexity is measured by the number of bits via private
channels.

An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers.
Corrupted clients and servers can deviate from the protocol arbitrarily. We refer
the readers to Sect. 3.1 in the full version of this paper [PS20] for the security
definition.

Benefits of the Client-Server Model. In our construction, the clients only
participate in the input phase and the output phase. The main computation is
conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n
servers, and refer to the servers as parties. Let C denote the set of all corrupted
parties and H denote the set of all honest parties. One benefit of the client-server
model is the following theorem shown in [GIP+14].

Theorem 2 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client
circuit C using n = 2t + 1 parties. Then, if Π is secure against any adversary
controlling exactly t parties, then Π is secure against any adversary controlling
at most t parties.

This theorem allows us to only consider the case where the adversary controls
exactly t parties. Therefore in the following, we assume that there are exactly t
corrupted parties.

3.2 Secret Sharing Scheme

Shamir Secret Sharing Scheme. In this work, we will use the standard Shamir
Secret Sharing Scheme [Sha79]. Let n be the number of parties and G be a finite
field of size |G| ≥ n + 1. Let α1, . . . , αn be n distinct non-zero elements in G.



Constant-Overhead Unconditionally Secure Multiparty Computation 823

A degree-d Shamir sharing of x ∈ G is a vector (x1, . . . , xn) which satisfies
that, there exists a polynomial f(·) ∈ G[X] of degree at most d such that f(0) =
x and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi holds a share xi and the
whole sharing is denoted by [x]d.

We recall the properties of a degree-d Shamir sharing: (1) It requires d + 1
shares to reconstruct the secret x, and (2) any d shares do not leak any infor-
mation about x.

Abstract General Linear Secret Sharing Schemes. We adopt the notion of
an abstract definition of a general linear secret sharing scheme (GLSSS)
in [CCXY18]. The following notations are borrowed from [CCXY18].

For non-empty sets U and I, UI denotes the indexed Cartesian product∏
i∈I U . For a non-empty set A ⊂ I, the natural projection πA maps a tuple

u = (ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA. Let K be a field.

Definition 1 (Abstract K-GLSSS [CCXY18]). A general K-linear secret
sharing scheme Σ consists of the following data:

– A set of parties I = {1, . . . , n}
– A finite-dimensional K-vector space Z, the secret space.
– A finite-dimensional K-vector space U , the share space.
– A K-linear subspace C ⊂ UI , where the latter is considered a K-vector space

in the usual way (i.e., direct sum).
– A surjective K-linear map Φ : C → Z, its defining map.

Definition 2 ([CCXY18]). Suppose A ⊂ I is nonempty. Then A is a privacy
set if the K-linear map

(Φ, πA) : C −→ Z × πA(C), x 	→ (Φ(x), πA(x))

is surjective. Finally, A is a reconstruction set if, for all x ∈ C, it holds that

πA(x) = 0 ⇒ Φ(x) = 0.

A Tensoring-up Lemma. We follow the definition of interleaved GLSSS: the
m-fold interleaved GLSSS Σ×m is an n-party scheme which corresponds to m
Σ-sharings. We have the following proposition from [CCXY18]:

Proposition 1 ([CCXY18]). Let L be a degree-m extension field of K and let Σ
be a K-GLSSS. Then the m-fold interleaved K-GLSSS Σ×m is naturally viewed
as an L-GLSSS, compatible with its K-linearity.

Let [x] denote a sharing in Σ. This proposition allows us to define λ : Σ×m →
Σ×m for every λ ∈ L such that for all [x] = ([x1], . . . , [xm]) ∈ Σ×m:

– for all λ ∈ K, λ · ([x1], . . . , [xm]) = (λ · [x1], . . . , λ · [xm]);
– for all λ1, λ2 ∈ L, λ1 · [x] + λ2 · [x] = (λ1 + λ2) · [x];
– for all λ1, λ2 ∈ L, λ1 · (λ2 · [x]) = (λ1 · λ2) · [x].



824 A. Polychroniadou and Y. Song

An Example of a GLSSS and Using the Tensoring-up Lemma. We will use the
standard Shamir secret sharing scheme as an example of a GLSSS and show
how to use the tensoring-up lemma. For a field K (of size |K| ≥ n + 1), we may
define a secret sharing Σ which takes an input x ∈ K and outputs [x]t, i.e.,
a degree-t Shamir sharing. The secret space and the share space of Σ are K.
According to the Lagrange interpolation, the secret x can be written as a K-
linear combination of all the shares. Therefore, the defining map of Σ is K-linear.
Thus Σ is a K-GLSSS.

A sharing [x]t = ([x1]t, [x2]t, . . . , [xm]t) ∈ Σ×m is a vector of m sharings
in Σ. Let L be a degree-m extension field of K. The tensoring-up lemma says
that Σ×m is a L-GLSSS. Therefore we can perform L-linear operations to the
sharings in Σ×m.

3.3 Reverse Multiplication Friendly Embeddings

Definition 3 ([CCXY18]). Let k,m be integers and Fq be a finite field. A pair
(φ, ψ) is called an (k,m)q-reverse multiplication friendly embedding (RMFE) if
φ : Fk

q → Fqm and ψ : Fqm → F
k
q are two Fq-linear maps satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ F
k
q , where ∗ denotes coordinate-wise product.

Note that when picking 1 = (1, 1, . . . , 1), we have x ∗ 1 = x and therefore,
x = ψ(φ(x) · φ(1)). It implies that φ is injective. Therefore, there exists φ−1 :
Im(φ) → F

k
q such that for all x ∈ F

k
q , it satisfies that

φ−1(φ(x)) = x.

It is easy to verify that φ−1 is also Fq-linear.
Now we show that there exists an Fq-linear map φ̃−1 : Fqm → F

k
q such that

for all x ∈ F
k
q ,

φ̃−1(φ(x)) = x.

Lemma 1. Let k,m be integers and Fq be a finite field. Suppose (φ, ψ) is an
(k,m)q-reverse multiplication friendly embedding. Then there exists an Fq-linear
map φ̃−1 : Fqm → F

k
q such that for all x ∈ F

k
q ,

φ̃−1(φ(x)) = x.

Proof. Let 1 = (1, 1, . . . , 1) ∈ F
k
q . We explicitly construct φ̃−1 as follows:

φ̃−1 : Fqm −→ F
k
q , x 	→ ψ(φ(1) · x)

It is clear that φ̃−1 is Fq-linear. For all x ∈ F
k
q , by the definition of RMFE, we

have
φ̃−1(φ(x)) = ψ(φ(1) · φ(x)) = 1 ∗ x = x.

��



Constant-Overhead Unconditionally Secure Multiparty Computation 825

In [CCXY18], Cascudo et al. show that there exist constant rate RMFEs,
which is summarized in Theorem 3.

Theorem 3. For every finite prime power q, there exists a family of constant
rate (k,m)q-RMFE where m = Θ(k).

3.4 Useful Building Blocks

In this part, we will introduce three functionalities which will be used in our
main construction.

– The first functionality Fcoin allows all parties to generate a random element.
An instantiation of this functionality can be found in [GSZ20] (Protocol 6 in
Sect. 3.5 of [GS20]), which has communication complexity O(n2) elements in
Fqm (i.e., O(n2 · m) elements in Fq).

– The second functionality Fmult allows all parties to evaluate a multiplication
with inputs being shared by degree-t Shamir sharings. While Fmult protects
the secrets of the input sharings, it allows the adversary to add an arbitrary
fixed value to the multiplication result. This functionality can be instanti-
ated by the multiplication protocol in the semi-honest DN protocol [DN07].
In [GSZ20], Goyal et al. also provide a detailed proof of the security of the
multiplication protocol in [DN07] (Lemma 4 in Sect. 4.1 of [GS20]). The amor-
tized communication complexity per multiplication is O(n) field elements per
party.

– The third functionality FmultVerify allows all parties to verify the correctness
of multiplications computed by Fmult. An instantiation of FmultVerify can be
found in [GSZ20] (Protocol 17 in Sect. 5.4 of [GS20]), which has communi-
cation complexity O(n2 · log N · κ) bits, where n is the number of parties
and κ is the security parameter. Note that the amortized communication per
multiplication tuple is sub-linear.

We refer the readers to Sect. 3.4 in the full version of this paper [PS20] for
the descriptions of these functionalities.

4 Preparing Random Sharings for Fq-GLSSS

In this section, we present the protocol for preparing random sharings for a given
general Fq-linear secret sharing scheme, denoted by Σ. Let [x] denote a sharing
in Σ of secret x. For a set A ⊂ I, recall that πA([x]) refers to the shares of [x]
held by parties in A. We assume that Σ satisfies the following property:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, let

Σ(A, (ai)i∈A) := {[x]| [x] ∈ Σ and πA([x]) = (ai)i∈A}.

Then, there is an efficient algorithm which outputs that either
Σ(A, (ai)i∈A) = ∅, or a random sharing [x] in Σ(A, (ai)i∈A).



826 A. Polychroniadou and Y. Song

The description of the functionality Frand appears in Functionality 1. In
short, Frand allows the adversary to specify the shares held by corrupted parties.
Based on these shares, Frand generates a random sharing in Σ and distributes
the shares to honest parties. Note that, when the set of corrupted parties is a
privacy set, the secret is independent of the shares chosen by the adversary.

Functionality 1: Frand

1. Frand receives from the adversary the set of corrupted parties, denoted by C,
and a set of shares (si)i∈C such that Σ(C, (si)i∈C) �= ∅. Then Frand randomly
samples [r] ∈ Σ(C, (si)i∈C).

2. Frand asks the adversary whether it should continue or not.
– If the adversary replies abort, Frand sends abort to honest parites.
– If the adversary replies continue, for each honest party Pi, Frand sends

the i-th share of [r] to Pi.

We will follow the idea in [BSFO12] of preparing random degree-t Shamir
sharings to prepare random sharings in Σ. At a high-level, each party first deals
a batch of random sharings in Σ. For each party, all parties together verify that
the sharings dealt by this party have the correct form. Then all parties locally
convert the sharings dealt by each party to random sharings such that the secrets
are not known to any single party.

We refer the readers to Sect. 4 in the full version of this paper [PS20] for
the construction for Frand. Suppose the share size of a sharing in Σ is sh field
elements in Fq. The communication complexity of preparing N random sharings
in Σ is O(N · n · sh + n3 · m) elements in Fq.

5 Hidden Additive Secret Sharing

Let (φ, ψ) be an (k,m)q-RMFE. Recall that n denotes the number of parties and
φ : Fk

q → Fqm is an Fq-linear map. Recall that |Fqm | = qm ≥ 2κ ≥ n + 1. Thus,
the Shamir secret sharing scheme is well-defined in Fqm . In our construction, we
will use φ to encode a vector x = (x(1), . . . , x(k)) ∈ F

k
q . All parties will hold a

degree-t Shamir sharing of φ(x), denoted by [φ(x)]t.

Defining Additive Sharings and Couple Sharings. For x ∈ Fq, we use 〈x〉 to
denote an additive sharing of x among the first t + 1 parties in Fq. Specifically,
〈x〉 = (x1, . . . , xn) where the party Pi holds the share xi ∈ Fq such that x =
∑t+1

i=1 xi and the last t shares xt+2, . . . , xn are all 0.
Recall that ψ : Fqm → F

k
q is an Fq-linear map. For all y ∈ Fqm , if ψ(y) =

(y1, y2, . . . , yk), we define val(y) :=
∑k

i=1 yi. Note that val(·) is an Fq-linear map
from Fqm to Fq. We say a pair of sharings (〈x〉, [y]t) is a pair of couple sharings
if



Constant-Overhead Unconditionally Secure Multiparty Computation 827

– 〈x〉 is an additive sharing of x ∈ Fq;
– [y]t is a degree-t Shamir sharing of y ∈ Fqm ;
– val(y) = x.

In the following, we will use [[x]] := (〈x〉, [y]t) to denote a pair of couple sharings
of x ∈ Fq. Note that for the additive sharing 〈x〉, a corrupted party in the first
t + 1 parties can easily change the secret by changing its own share. However,
the secret of [y]t is determined by the shares of honest parties and cannot be
altered by corrupted parties. Therefore, [y]t can be seen as a robust version of
the sharing 〈x〉.

Properties of Couple Sharings. We note that couple sharings are Fq-linear. Con-
cretely, for all couple sharings [[x]] = (〈x〉, [y]t) and [[x′]] = (〈x′〉, [y′]t), and for all
α, β ∈ Fq, the linear combination

α · [[x]] + β · [[x′]] := (α · 〈x〉 + β · 〈x′〉, α · [y]t + β · [y′]t)

is still a pair of couple sharings. This property follows from the fact that val(·)
is an Fq-linear map.

We can also define the addition operation between a pair of couple sharings
[[x]] and a field element x′ in Fq. This is done by transforming x′ to a pair of
couple sharings of x′. For 〈x′〉, we set the share of the first party to be x′, and
the shares of the rest of parties to be 0. For the degree-t Shamir sharing, we
first need to find y′ ∈ Fqm such that val(y′) = x′. This is done by choosing two
vectors a, b ∈ F

k
q such that:

– For a, the first entry is 1 and the rest of entries are 0.
– For b, the first entry is x′ and the rest of entries are 0.

By the property of RMFE, ψ(φ(a) · φ(b)) = a ∗ b. In particular, the first entry
of a ∗ b is x′ and the rest of entries are 0. Therefore y′ := φ(a) · φ(b) satisfies
that val(y′) = x′. For [y′]t, we set the share of each party to be y′. Finally, the
addition operation between [[x]] and x′ ∈ Fq is defined by

[[x]] + x′ := (〈x〉, [y]t) + (〈x′〉, [y′]t).

Generating Couple Sharings from [φ(x)]t. In this part, we show how to non-
interactively obtain k pairs of couple sharings [[x(1)]], [[x(2)]], . . . , [[x(k)]] from a
degree-t Shamir sharing [φ(x)]t, where x = (x(1), x(2), . . . , x(k)) ∈ F

k
q . It allows

us to prepare k pairs of random couple sharings with the cost of preparing one
random sharing [φ(x)]t.

We first show how to obtain [y(i)]t such that val(y(i)) = x(i) for all i ∈ [k].
Let e(i) be a vector in F

k
q such that all entries are 0 except that the i-th entry

is 1. By the property of RMFE, we have

ψ(φ(e(i)) · φ(x)) = e(i) ∗ x.



828 A. Polychroniadou and Y. Song

For e(i) ∗ x, all entries are 0 except that the i-th entry is x(i). Therefore by the
definition of val(·), we have val(φ(e(i)) ·φ(x)) = x(i). To obtain [y(i)]t, all parties
compute

[y(i)]t := φ(e(i)) · [φ(x)]t.

Now we show how to obtain 〈x(i)〉 from [φ(x)]. Let 〈x〉 := (〈x(1)〉, . . . , 〈x(k)〉)
denote a vector of additive sharings of x ∈ F

k
q . For each party, its share of 〈x〉 is

a vector in F
k
q . For the last t parties, they take the all-0 vector as their shares.

Recall that the degree-t Shamir sharing [φ(x)]t corresponds to a degree-t
polynomial f(·) ∈ Fqm [X] such that f(αi) is the share of the i-th party Pi and
f(0) = φ(x), where α1, . . . , αn are distinct non-zero elements in Fqm . In partic-
ular, relying on Lagrange interpolation, f(0) can be written as a linear combi-
nation of the first t+1 shares. For i ∈ {1, . . . , t+1}, let ci =

∏
j �=i,j∈[t+1]

αj

αj−αi
.

We have

f(0) =
t+1∑

i=1

cif(αi).

Therefore, the Shamir sharing [φ(x)]t can be locally converted to an additive
sharing of φ(x) among the first t + 1 parties by letting Pi take cif(αi) as its
share. For each i ∈ {1, . . . , t+1}, Pi locally applies φ̃−1(cif(αi)), which outputs
a vector in F

k
q . It is sufficient to show that these t + 1 shares correspond to an

additive sharing of x. Note that

t+1∑

i=1

φ̃−1(cif(αi)) = φ̃−1(
t+1∑

i=1

cif(αi)) = φ̃−1(f(0)) = x.

The description of Separate appears in Protocol 2.

Protocol 2: Separate([φ(x)]t)

1. For all i ∈ [k], let e(i) be a vector in F
k
q such that all entries are 0 except that

the i-th entry is 1. All parties locally compute [y(i)]t := φ(e(i)) · [φ(x)]t.
2. Let α1, . . . , αn be n distinct elements in Fqm defined in the Shamir secret

sharing scheme.
– For each i ∈ {1, . . . , t + 1}, Pi locally computes ci =

∏
j �=i,j∈[t+1]

αj

αj−αi
.

Let f(αi) denote the i-th share of [φ(x)]t. Pi locally computes
φ̃−1(cif(αi)) and regards the result as the i-th share of 〈x〉 =
(〈x(1)〉, . . . , 〈x(k)〉).

– For each i ∈ {t + 2, . . . , n}, Pi takes the all-0 vector as its share of 〈x〉.
3. For all i ∈ [k], all parties set [[x(i)]] := (〈x(i)〉, [y(i)]t). All parties take the

following k pairs of couple sharings as output:

[[x(1)]], [[x(2)]], . . . , [[x(k)]]



Constant-Overhead Unconditionally Secure Multiparty Computation 829

6 Building Blocks for Preprocessing Phase

In this section, we will introduce 4 functionalities which are used to prepare
necessary correlated-randomness for the computation.

– The first functionality Frandom allows all parties to prepare random sharings
in the form of [φ(r)]t, where (φ, ψ) is a RMFE, and r is a random vector in
F

k
q .

– The second functionality Ftuple allows all parties to prepare random tuple
of sharings in the form of ([φ(a)]t, [φ(b)]t, [φ(c)]t), where a, b are random
vectors in F

k
q , and c = a ∗ b. For each tuple, relying on Separate, all parties

can locally obtain k multiplication tuples in the form of ([[a]], [[b]], [[c]]), where
a, b are random elements in Fq, and c = a · b. Such a multiplication tuple is
referred to as a Beaver tuple. In the online phase, one Beaver tuple will be
consumed to compute a multiplication gate.

– Recall that we use 〈x〉 to denote an additive sharing of x ∈ Fq among the
first t + 1 parties, and the shares of the rest of parties are 0. The third
functionality Fzero allows all parties to prepare random additive sharings of
0. When evaluating a multiplication gate in the online phase, we will use
random additive sharings of 0 to protect the shares of honest parties.

– Recall that val(·) : Fqm → Fq is an Fq-linear map, defined by val(y) =
∑k

i=1 yi,
where (y1, y2, . . . , yk) = ψ(y). The last functionality Fparity allows all parties
to prepare random sharings in the form of [p]t, where val(p) = 0. These
random sharings are used at the end of the protocol to verify the computation.

6.1 Preparing Random Sharings

In this part, we introduce the functionality to let all parties prepare random
sharings in the form of [φ(r)]t. Recall that (φ, ψ) is an (k,m)q-RMFE. Here
each [φ(r)]t is a random degree-t Shamir sharing of the secret φ(r) where r is
a random vector in F

k
q . The description of Frandom appears in Functionality 3.

In Sect. 6.1 of the full version of this paper [PS20], we show how to use Frand

to instantiate Frandom. Relying on the protocol (Sect. 4 in [PS20]) for Frand, we
can generate N random sharings in the form of [φ(r)]t with communication of
O(N · n · m + n3 · m) elements in Fq.

6.2 Preparing Beaver Tuples

In this part, we show how to prepare random tuples of sharings in Fqm in the
form of ([φ(a)]t, [φ(b)]t, [φ(c)]t) where a, b are random vectors in F

k
q , and c =

a ∗ b. The description of Ftuple appears in Functionality 4. In Sect. 6.2 of the
full version of this paper [PS20], we introduce an instantiation of Ftuple. The
communication complexity of preparing N tuples of sharings in the form of
([φ(a)]t, [φ(b)]t, [φ(c)]t) is O(N · n · m + n3 · m + n2 · log N · m) elements in Fq.

In the online phase, each tuple ([φ(a)]t, [φ(b)]t, [φ(c)]t) will be separated by
Separate (Protocol 2) to k Beaver tuples

([[a(1)]], [[b(1)]], [[c(1)]]), ([[a(2)]], [[b(2)]], [[c(2)]]), . . . , ([[a(k)]], [[b(k)]], [[c(k)]]).



830 A. Polychroniadou and Y. Song

Functionality 3: Frandom

1. Frandom receives {si}i∈C from the adversary, where C is the set of corrupted
parties. Then Frandom randomly samples r ∈ F

k
q and generates a degree-t

Shamir sharing [φ(r)]t such that the share of Pi ∈ C is si.
2. Frandom asks the adversary whether it should continue or not.

– If the adversary replies abort, Frandom sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Frandom sends

the i-th share of [φ(r)]t to Pi.

A Beaver tuple ([[a(i)]], [[b(i)]], [[c(i)]]) satisfies that a(i), b(i) are random elements
in Fq and c(i) = a(i) · b(i). A multiplication gate is then evaluated by consuming
one Beaver tuple. More details can be found in Sect. 7.2.

Functionality 4: Ftuple

1. Ftuple receives {(ui, vi, wi)}i∈C from the adversary, where C is the set of cor-
rupted parties. Then Ftuple randomly samples a, b ∈ F

k
q and computes c = a∗

b. Finally, Ftuple generates 3 degree-t Shamir sharings [φ(a)]t, [φ(b)]t, [φ(c)]t
such that the shares of Pi ∈ C are ui, vi, wi respectively.

2. Ftuple asks the adversary whether it should continue or not.
– If the adversary replies abort, Ftuple sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Ftuple sends

the i-th shares of [φ(a)]t, [φ(b)]t, [φ(c)]t to Pi.

6.3 Preparing Zero Additive Sharings

With Beaver tuples prepared in the preprocessing phase, all parties only need
to do reconstructions in the online phase. To protect the shares held by honest
parties, for each reconstruction, we will prepare a random additive sharing of 0
among the first t + 1 parties. We summarize the functionality for zero additive
sharings in Functionality 5. In Sect. 6.3 of the full version of this paper [PS20],
we show how to use Frand to instantiate Fzero. Relying on the protocol (Sect. 4
in [PS20]) for Frand, we can generate N random sharings in the form of 〈o〉 with
communication of O(N · n + n3 · m) elements in Fq.



Constant-Overhead Unconditionally Secure Multiparty Computation 831

Functionality 5: Fzero

1. Fzero receives {si}i∈C ⋂{1,...,t+1} from the adversary, where C is the set of
corrupted parties. Then Fzero randomly samples an additive sharing 〈o〉 such
that o = 0, and for each i ∈ C ⋂{1, . . . , t + 1}, the i-th share of 〈o〉 is si.

2. Fzero asks the adversary whether it should continue or not.
– If the adversary replies abort, Fzero sends abort to honest parties.
– If the adversary replies continue, Fzero distributes the shares of 〈o〉 to

parties in H ⋂{1, . . . , t + 1}, where H is the set of honest parties.

6.4 Preparing Parity Sharings

Recall that all parties only need to do reconstructions in the online phase. At
the end of the online phase, it is sufficient to only verify the reconstructions. To
this end, we first define what we call parity elements and parity sharings.

Recall that val(·) : Fqm → Fq is an Fq-linear map, defined by val(y) =
∑k

i=1 yi, where (y1, y2, . . . , yk) = ψ(y). For an element p ∈ Fqm , we say p is a
parity element if val(p) = 0. A parity sharing is a degree-t Shamir sharing of a
parity element. At the end of the protocol, we will use uniformly random parity
sharings as masks when checking the correctness of the reconstructions. We sum-
marize the functionality for preparing random parity sharings in Functionality 6.
In Sect. 6.4 of the full version of this paper [PS20], we show how to use Frand to
instantiate Fparity. Relying on the protocol (Sect. 4 in [PS20]) for Frand, we can
generate N random parity sharings with communication of O(N ·n ·m+n3 ·m)
elements in Fq.

Functionality 6: Fparity

1. Fparity receives {ui}i∈C from the adversary, where C is the set of corrupted
parties. Then Fparity randomly samples p ∈ Fqm such that val(p) = 0. Finally,
Fparity generates a degree-t sharing [p]t such that the share of Pi ∈ C is ui.

2. Fparity asks the adversary whether it should continue or not.
– If the adversary replies abort, Fparity sends abort to honest parties.
– If the adversary replies continue, for each honest party Pi, Fparity sends

the i-th share of [p]t to Pi.



832 A. Polychroniadou and Y. Song

7 Online Phase

Let (φ, ψ) be an (k,m)q-RMFE. Recall that

– val(·) : Fqm → Fq is defined by val(y) =
∑k

i=1 yi, where (y1, . . . , yk) = ψ(y).
– We use 〈x〉 to denote an additive sharing of x ∈ Fq among the first t + 1

parties, and the shares of the rest of parties are 0.
– A pair of couple sharings [[x]] := (〈x〉, [y]t) contains an additive sharing of

x ∈ Fq and a degree-t Shamir sharing of y ∈ Fqm such that val(y) = x.

In the online phase, our idea is to compute a pair of couple sharings for each
wire. For an addition gate, given two pairs of couple sharings as input, all parties
can locally compute the addition of these two sharings. For a multiplication
gate, relying on Beaver tuples prepared in the preprocessing phase, all parties
only need to reconstruct two pairs of couple sharings. We note that for the two
sharings in a pair of couple sharings:

– The first sharing is an additive sharing in Fq. The share of each party is just a
field element in Fq. We will use this sharing to do reconstruction. However, the
correctness cannot be guaranteed since a single corrupted party can change
the secret by changing its own share.

– The second sharing is a degree-t Shamir sharing in Fqm . The share of each
party is a field element in Fqm . Note that the secret is determined by the shares
of honest parties, and cannot be altered by corrupted parties. However, using
this sharing to do reconstruction is expensive. Therefore, we will use this
sharing to verify the correctness of reconstruction at the end of the protocol.

7.1 Input Gates

Recall that we are in the client-server model. In particular, all the inputs belong
to the clients. In this part, we introduce a protocol Input, which allows a client
to share k inputs to all parties. In the main protocol, we will invoke Input for
every client with k inputs.

The description of Input appears in Protocol 7. The communication com-
plexity of Input(Client, {x(1), . . . , x(k)}) is O(m+k) elements in Fq plus one call
of Frandom. Note that this protocol guarantees the security of the inputs of
honest clients. This is because the input of honest clients are masked by random
vectors r’s which are chosen by Frandom. However, a corrupted client can send
different values to different parties, which leads to incorrect or inconsistent cou-
ple sharings in the final step. We will address this issue by checking consistency
of the values distributed by all clients at the end of the protocol.

7.2 Addition Gates and Multiplication Gates

For each fan-in two addition gate with input sharings [[x(1)]], [[x(2)]], all parties
locally compute

[[x(0)]] := [[x(1) + x(2)]] = [[x(1)]] + [[x(2)]].



Constant-Overhead Unconditionally Secure Multiparty Computation 833

Protocol 7: Input(Client, {x(1), . . . , x(k)})

1. All parties invoke Frandom to prepare a random sharing [φ(r)]t, where r is
a random vector in F

k
q . Then, all parties send their shares of [φ(r)]t to the

Client.
2. After receiving the shares of [φ(r)]t, the Client checks whether all the shares

lie on a polynomial of degree at most t in Fqm . If not, the Client aborts.
Otherwise, the Client reconstructs the secret φ(r).

3. The Client computes r from φ(r). Then, the Client sets x = (x(1), . . . , x(k)),
where x(1), . . . , x(k) are its input. The Client sends x + r to all parties.

4. After receiving x + r from the Client, all parties locally compute [φ(x)]t :=
φ(x + r) − [φ(r)]t.

5. All parties invoke Separate on [φ(x)]t to obtain couple sharings for the input
of the Client:

(〈x(1)〉, [y(1)]t), . . . , (〈x(k)〉, [y(k)]t)

For each multiplication gate with input sharings [[x(1)]], [[x(2)]], we want to
obtain a pair of couple sharings [[x(0)]] such that x(0) = x(1) · x(2). To this end,
we will use one Beaver tuple ([[a]], [[b]], [[c]]) prepared in Sect. 6.2. It satisfies that
a, b are random field elements in Fq and c = a · b. Note that

x(0) = x(1) · x(2)

= (a + x(1) − a) · (b + x(2) − b)
= (a + x(1)) · (b + x(2)) − (b + x(2)) · a − (a + x(1)) · b + a · b

= (a + x(1)) · (b + x(2)) − (b + x(2)) · a − (a + x(1)) · b + c.

Therefore, all parties only need to reconstruct the sharings [[a]] + [[x(1)]] and
[[b]] + [[x(2)]], and the resulting sharing can be computed by

[[x(0)]] = (a + x(1)) · (b + x(2)) − (b + x(2)) · [[a]] − (a + x(1)) · [[b]] + [[c]].

To reconstruct [[a]] + [[x(1)]], we will use the additive sharing 〈a + x(1)〉 :=
〈a〉+〈x(1)〉. We first add a random additive sharing 〈o〉 of 0 (prepared in Sect. 6.3)
to protect the shares of honest parties. The first t + 1 parties locally compute
〈a〉+〈x(1)〉+〈o〉 and send their shares to P1. P1 reconstructs the secret a+x(1) and
sends the result to all other parties. Similar process is done when reconstructing
〈b + x(2)〉 := 〈b〉 + 〈x(2)〉.

Note that 〈a〉 + 〈o〉 is a random additive sharing. The share of each honest
party in {P1, . . . , Pt+1} is uniformly distributed. Essentially, each honest party
in {P1, . . . , Pt+1} uses a random element as mask to protect its own share. The
protocol Mult appears in Protocol 8. The communication complexity of Mult
is O(n) elements in Fq plus two calls of Fzero. The protocol Mult can go wrong
at three places:



834 A. Polychroniadou and Y. Song

Protocol 8: Mult([[x(1)]], [[x(2)]], ([[a]], [[b]], [[c]]))

1. All parties invoke Fzero to prepare two random additive sharings 〈o(1)〉, 〈o(2)〉
where o(1) = o(2) = 0.

2. Let 〈x(1) + a〉, 〈x(2) + b〉 denote the additive sharings in [[x(1) + a]], [[x(2) + b]]
respectively. The first t+1 parties locally compute 〈u(1)〉 := 〈x(1) +a〉+ 〈o(1)〉
and 〈u(2)〉 := 〈x(2) + b〉 + 〈o(2)〉. Then, they send their shares of 〈u(1)〉, 〈u(2)〉
to the first party P1.

3. P1 reconstructs the secrets u(1), u(2) by computing the summation of the shares
of 〈u(1)〉 and 〈u(2)〉 respectively. Then, P1 sends u(1), u(2) to all other parties
(including the last t parties).

4. After receiving u(1), u(2), all parties locally compute the resulting couple shar-
ings

[[x(0)]] = u(1) · u(2) − u(2) · [[a]] − u(1) · [[b]] + [[c]],

and take [[x(0)]] as output.

– A corrupted party may send an incorrect share to P1.
– P1 is corrupted and distributes an incorrect reconstruction result to all other

parties.
– P1 is corrupted and distributes different values to different parties.

Note that, relying on the random additive sharing of 0, honest parties in the first
t + 1 parties only send random elements to P1. Therefore, Mult does not leak
any information about the shares of honest parties even if the input sharings
of the multiplication gate are not in the correct form. It allows us to delay the
verification of the values distributed by P1 to the end of the protocol. It also
allows us to delay the verification of the values distributed by clients in the input
phase to the end of the protocol since a corrupted client distributing different
values to different parties has the same effect as P1 distributing different values
to different parties. During the verification of the computation, we will first check
whether all parties receive the same values to resolve the third issue. Then, for
the first two issues, it is sufficient to check the correctness of the reconstructions.

7.3 Verification of the Computation

Before all parties revealing the outputs, we need to verify the computation. Con-
cretely, we need to verify that (1) the clients distributed the same values in the
input phase, and P1 distributed the same values when evaluating multiplication
gates, and (2) the reconstructions are correct.

Checking the Correctness of Distribution. All parties first check whether they
receive the same values when handling input gates and multiplication gates.
Note that these values are all in Fq. Assume that these values are denoted by



Constant-Overhead Unconditionally Secure Multiparty Computation 835

x(1), x(2), . . . , x(N). The protocol CheckConsistency appears in Protocol 9.
The communication complexity of CheckConsistency(N, {x(1), . . . , x(N)}) is
O(n2 · m) elements in Fq.

Protocol 9: CheckConsistency(N, {x(1), . . . , x(N)})

1. All parties invoke Fcoin(Fqm) to generate a random element r ∈ Fqm . All
parties locally compute

x := x(1) + x(2) · r + . . . + x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If
a party Pi receives different x’s, Pi aborts.

Lemma 2. If there exists two honest parties who receive different set of values
{x(1), . . . , x(N)}, then with overwhelming probability, at least one honest party
will abort in the protocol CheckConsistency.

We refer the readers to Sect. 7.3 in the full version of this paper [PS20] for
the proof of Lemma 2.

This step makes sure that all (honest) parties receive the same values from
clients and P1. Therefore, the remaining task is to verify the correctness of the
reconstructions.

Verification of Reconstructions. Recall that a pair of couple sharings [[x]] :=
(〈x〉, [y]t) satisfies that 〈x〉 is an additive sharing of x and [y]t is a degree-t Shamir
sharing of y such that val(y) = x. For a multiplication gate with input sharings
(〈x(1)〉, [y(1)]t), (〈x(2)〉, [y(2)]t), one Beaver tuple ((〈a〉, [α]t), (〈b〉, [β]t), (〈c〉, [γ]t))
is consumed to compute the resulting sharing. All parties reconstruct

(〈x(1)〉, [y(1)]t) + (〈a〉, [α]t) and (〈x(2)〉, [y(2)]t) + (〈b〉, [β]t),

and learn x(1)+a and x(2)+b. Note that, the secret of a degree-t Shamir sharing
is determined by the shares held by honest parties. Therefore, the correctness
can be verified by checking val(y(1) + α) = x(1) + a and val(y(2) + β) = x(2) + b.

This task can be summarized as follows: Given N value-sharing pairs

(u(1), [w(1)]t), . . . , (u(N), [w(N)]t),

where u(i) ∈ Fq and w(i) ∈ Fqm for all i ∈ [N ], we want to verify that for all
i ∈ [N ], val(w(i)) = u(i). Here u(i) corresponds to x(1) + a and [w(i)]t corre-
sponds to [y(1) + α]t. The functionality FcheckRecon appears in Functionality 10.
In Sect. 7.3 of the full version of this paper [PS20], we introduce an instantiation
of FcheckRecon. The communication complexity of this instantiation is O(n2 ·m2)
elements in Fq plus m calls of Fparity.



836 A. Polychroniadou and Y. Song

Functionality 10: FcheckRecon

1. Let N denote the number of value-sharing pairs. These value-sharing pairs are
denoted by

(u(1), [w(1)]t), (u
(2), [w(2)]t), . . . , (u

(N), [w(N)]t).

FcheckRecon will check whether val(w(i)) = u(i) for all i ∈ [N ].
2. For all i ∈ [N ], FcheckRecon receives from honest parties their shares of [w(i)]t.

Then FcheckRecon reconstructs the secret w(i). FcheckRecon further computes
the shares of [w(i)]t held by corrupted parties and sends these shares to the
adversary.

3. For all i ∈ [N ], FcheckRecon computes val(w(i)) and sends u(i), val(w(i)) to the
adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that
val(w(i)) �= u(i). FcheckRecon sends b to the adversary and waits for its response.

– If the adversary replies abort, FcheckRecon sends abort to honest parties.
– If the adversary replies continue, FcheckRecon sends b to honest parties.

7.4 Output Gates

Recall that we are in the client-server model. In particular, only the clients
receive the outputs. In this part, we will introduce a functionality Foutput which
reconstructs the output couple sharings to the client who should receive them.
In the main protocol, we will invoke Foutput for every client.

Suppose we need to reconstruct the following N pairs of couple sharings to
the Client:

[[x(1)]], [[x(2)]], . . . , [[x(N)]].

Recall that a pair of couple sharings [[x]] := (〈x〉, [y]t) satisfies that 〈x〉 is an addi-
tive sharing of x, and [y]t is a degree-t Shamir sharing of y such that val(y) = x.
The functionality Foutput appears in Functionality 11. In Sect. 7.4 of the full
version of this paper [PS20], we introduce an instantiation of Foutput. The com-
munication complexity of this instantiation is O(N ·n+n2 ·m+n ·m2) elements
in Fq plus N calls of Fzero and m calls of Fparity.

7.5 Main Protocol

Now we are ready to introduce our main construction. Recall that we are in
the client-server model. In particular, all the inputs belong to the clients, and
only the clients receive the outputs. The functionality Fmain is described in
Functionality 12. The protocol Main appears in Protocol 13.

Theorem 4. Let c be the number of clients and n = 2t+1 be the number of par-
ties. The protocol Main securely computes Fmain with abort in {Ftuple,Frandom,



Constant-Overhead Unconditionally Secure Multiparty Computation 837

Functionality 11: Foutput

1. Let N denote the number of output gates belonging to the Client. The couple
sharings are denoted by

[[x(1)]], [[x(2)]], . . . , [[x(N)]].

Foutput will reconstruct x(1), x(2), . . . , x(N) to the Client.
2. For all i ∈ [N ], suppose [[x(i)]] = (〈x(i)〉, [y(i)]t). Foutput receives from honest

parties their shares of (〈x(i)〉, [y(i)]t). Then Foutput reconstructs the secret y(i)

and computes val(y(i)).
– For [y(i)]t, Foutput computes the shares of [y(i)]t held by corrupted parties

and sends these shares to the adversary.
– For 〈x(i)〉, note that the summation of all the shares should be val(y(i)).

Foutput computes the summation of the shares of corrupted parties,

denoted by x
(i)
C , which can be computed from val(y(i)) and the shares

of 〈x(i)〉 held by honest parties. Foutput sends x
(i)
C to the adversary.

3. Depending on whether the Client is honest, there are two cases:
– If the Client is corrupted, Foutput sends {val(y(i))}N

i=1 to the adversary. If
the adversary replies abort, Foutput sends abort to all honest parties.

– If the Client is honest, Foutput asks the adversary whether it should con-
tinue. If the adversary replies abort, Foutput sends abort to the Client
and all honest parties. If the adversary replies continue, Foutput sends
{val(y(i))}N

i=1 to the Client.

Functionality 12: Fmain

1. Fmain receives from all clients their inputs.
2. Fmain evaluates the circuit and computes the outputs. Fmain first sends the

outputs of corrupted clients to the adversary.
– If the adversary replies continue, Fmain distributes the outputs to honest

clients.
– If the adversary replies abort, Fmain sends abort to honest clients.

Fzero,Fcoin,FcheckRecon,Foutput}-hybrid model in the presence of a fully mali-
cious adversary controlling up to c clients and t parties.

We refer the readers to Sect. 7.5 in the full version of this paper [PS20] for
the proof of Theorem 4.
Analysis of the Communication Complexity of Main. Let cI , cM , cO denote the
numbers of input gates, multiplication gates, and output gates. Recall that c is
the number of clients. In Main, we need to invoke



838 A. Polychroniadou and Y. Song

Protocol 13: Main

Let (φ, ψ) be an (k, m)q-RMFE. Recall that val(·) : Fqm → Fq is an Fq-linear map,
which is defined by val(y) =

∑k
i=1 yi where (y1, . . . , yk) = ψ(y). A pair of couple

sharings [[x]] := (〈x〉, [y]t) satisfies that val(y) = x.

1. Preparing Beaver Tuples: Let cM denote the number of multiplication
gates in the circuit. All parties invoke Ftuple to prepare cM/k random tuples
in the form of

([φ(a)]t, [φ(b)]t, [φ(c)]t),

where a, b are random vectors in F
k
q and c = a ∗ b. Then all parties invoke

Separate to locally transform these cM/k tuples into cM random Beaver
tuples in the form of

([[a]], [[b]], [[c]]),

where a, b are random elements in Fq and c = a · b.
2. Input Phase: For every Client with k inputs x(1), . . . , x(k) ∈ Fq, all parties

and the Client invoke Input(Client, {x(1), . . . , x(k)}). At the end of the proto-
col, all parties take the couple sharings [[x(1)]], [[x(2)]], . . . , [[x(k)]] as output.

3. Computation Phase: All parties start with holding a pair of couple sharings
for each input gate. The circuit is evaluated in a predetermined topological
order.

– For each addition gate with input sharings [[x(1)]], [[x(2)]], all parties locally
compute [[x(0)]] := [[x(1) + x(2)]] = [[x(1)]] + [[x(2)]].

– For each multiplication gate with input sharings [[x(1)]], [[x(2)]], all parties
invoke Mult with the first unused Beaver tuple ([[a]], [[b]], [[c]]) to compute
[[x(0)]]. Let u(1), u(2) denote the reconstruction results of [[x(1)+a]], [[x(2)+b]]
sent by P1 in Step 3 of Mult.
Suppose [w(1)]t is the degree-t Shamir sharing in [[x(1) + a]], and [w(2)]t is
the degree-t Shamir sharing in [[x(2) +b]]. All parties will use (u(1), [w(1)]t)
and (u(2), [w(2)]t) to verify the reconstructions.

4. Verification phase:
– Suppose that u(1), u(2), . . . , u(cI ) are the values all parties receive from

the clients in Input, and u(cI+1), . . . , u(cI+2·cM ) are the values all
parties receive from P1 in Mult, where cI denotes the number of
inputs and cM denotes the number of multiplications. All parties invoke
CheckConsistency(cI +2·cM , {u(1), . . . , u(cI+2·cM )}) to verify that they
receive the same values.

– Suppose (u(1), [w(1)]t), . . . , (u
(2·cM ), [w(2·cM )]t) are the value-sharing pairs

generated when evaluating multiplication gates. All parties invoke
FcheckRecon to verify that for all i ∈ [2 · cM ], val(w(i)) = u(i).

5. Output Phase: For every Client, let [[x(1)]], [[x(2)]], . . . , [[x(N)]] denote the shar-
ings associated with the output gates, which should be reconstructed to the
Client. All parties and the Client invoke Foutput on these N pairs of couple
sharings.



Constant-Overhead Unconditionally Secure Multiparty Computation 839

– cM/k times of Ftuple in Step 1, which has communication complexity O(cM ·
n · m/k + n3 · m + n2 · log(cM/k) · m) elements in Fq,

– cI/k times of Input in Step 2, which has communication complexity O(cI ·
(m + k)/k) elements in Fq and cI/k calls of Frandom,

– cM times of Mult in Step 3, which has communication complexity O(cM ·n)
elements in Fq and 2 · cM calls of Fzero,

– one time of CheckConsistency in Step 4, which has communication com-
plexity O(n2 · m) elements in Fq,

– one time of FcheckRecon in Step 4, which has communication complexity O(n2 ·
m2) elements in Fq plus m calls of Fparity,

– c times of Foutput in Step 5, which has communication complexity O(cO ·n+
c · n2 · m + c · n · m2) elements in Fq plus cO calls of Fzero and c · m calls of
Fparity.

For Frandom,Fzero,Fparity, we will instantiate them using Rand with suitable
secret sharing schemes. As analyzed in Sect. 6,

– the communication complexity for cI/k calls of Frandom is O(cI ·n·m/k+n3·m)
elements in Fq,

– the communication complexity for 2 · cM + cO calls of Fzero is O((2 · cM +
cO) · n + n3 · m) elements in Fq,

– the communication complexity for (c + 1) · m calls of Fparity is O((c + 1) · n ·
m2 + n3 · m) elements in Fq.

Let C = cI + cM + cO be the size of the circuit. In summary, the communi-
cation complexity of Main is

O(C · n · m/k + n2 · log(C/k) · m + n3 · m + n2 · m2 + c · (n2 · m + n · m2))

elements in Fq. Recall that we require the extension field Fqm to satisfy that
qm ≥ 2κ. Therefore, we use κ as an upper bound of m. According to Theorem 3,
there exists a family of constant rate (k,m)q-RMFEs with m = Θ(k). Thus,
m/k is a constant. The communication complexity becomes

O(C ·n+n2·log C ·κ+n3·κ+n2·κ2+c·(n2·κ+n·κ2)) = O(C ·n+poly(c, n, κ, log C))

elements in Fq.

Theorem 5. In the client-server model, let c denote the number of clients, and
n = 2t + 1 denote the number of parties (servers). Let κ denote the security
parameter, and Fq denote a finite field of size q. For an arithmetic circuit over
Fq of size C, there exists an information-theoretic MPC protocol which securely
computes the arithmetic circuit with abort in the presence of a fully malicious
adversary controlling up to c clients and t parties. The communication complexity
of this protocol is O(C · n + poly(c, n, κ, log C)) elements in Fq.



840 A. Polychroniadou and Y. Song

References

BBCG+19. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 3

Bea89. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 49

BGIN20. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation
via distributed zero-knowledge proofs. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part III. LNCS, vol. 12493, pp. 244–276. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64840-4 9

BOGW88. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
1–10. ACM (1988)

BSFO12. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 39

BTH08. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 13

CCD88. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19. ACM (1988)

CCXY18. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity
of information-theoretically secure MPC revisited. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 395–
426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-
0 14

CG20. Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for
boolean circuits with good amortized complexity. Cryptology ePrint
Archive, Report 2020/162 (2020). https://eprint.iacr.org/2020/162

CGH+18. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious
adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
III. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96878-0 2

DN07. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 32

DPSZ12. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://eprint.iacr.org/2020/162
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38


Constant-Overhead Unconditionally Secure Multiparty Computation 841

DZ13. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of
boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 621–641. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 35

GIP+14. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits
resilient to additive attacks with applications to secure computation. In:
Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, pp. 495–504. ACM (2014)

GLS19. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC
with guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 85–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 4

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pp. 218–229. ACM (1987)

GS20. Goyal, V., Song, Y.: Malicious security comes free in honest-majority
MPC. Cryptology ePrint Archive, Report 2020/134 (2020). https://eprint.
iacr.org/2020/134

GSZ20. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in
honest majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part II. LNCS, vol. 12171, pp. 618–646. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 22

HVW20. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active secu-
rity in cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part II. LNCS, vol. 12106, pp. 184–215. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 7

LN17. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 259–276. ACM (2017)

NNOB12. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

NV18. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-
majority MPC by batchwise multiplication verification. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 17

PS20. Polychroniadou, A., Song, Y.: Constant-overhead unconditionally secure
multiparty computation over binary fields. Cryptology ePrint Archive,
Report 2020/1412 (2020). https://eprint.iacr.org/2020/1412

RBO89. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pp. 73–85. ACM (1989)

Sha79. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Yao82. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium

on Foundations of Computer Science, 1982, SFCS 2008, pp. 160–164. IEEE
(1982)

https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-030-26951-7_4
https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2020/134
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-93387-0_17
https://eprint.iacr.org/2020/1412


Breaking the Circuit Size Barrier for
Secure Computation Under

Quasi-Polynomial LPN

Geoffroy Couteau1(B) and Pierre Meyer2(B)

1 CNRS, IRIF, Université de Paris, Paris, France
couteau@irif.fr

2 École Normale Supérieure de Lyon and IDC Herzliya, Herzliya, Israel
pierre.meyer@ens-lyon.fr

Abstract. In this work we introduce a new (circuit-dependent) homo-
morphic secret sharing (HSS) scheme for all log / log log-local circuits,
with communication proportional only to the width of the circuit, and
polynomial computation, assuming the super-polynomial hardness of
learning parity with noise (LPN). At the heart of our new construction is
a pseudorandom correlation generator (PCG), which allows two partie to
locally stretch, from short seeds, pseudorandom instances of an arbitrary
log / log log-local additive correlation.

Our main application, and the main motivation behind this work, is a
generic two-party secure computation protocol for every layered (boolean
or arithmetic) circuit of size s with total communication O(s/ log log s)
and polynomial computation, assuming the super-polynomial hardness
of the standard learning parity with noise assumption (a circuit is lay-
ered if its nodes can be partitioned in layers, such that any wire connects
adjacent layers). This expands the set of assumptions under which the
‘circuit size barrier’ can be broken, for a large class of circuits. The
strength of the underlying assumption is tied to the sublinearity factor:

we achieve communication O(s/k(s)) under the s2
k(s)

-hardness of LPN,
for any k(s) ≤ log log s/4.

Previously, the set of assumptions known to imply a PCG for cor-
relations of degree ω(1) or generic secure computation protocols with
sublinear communication was restricted to LWE, DDH, and a circularly
secure variant of DCR.

Keywords: Homomorphic secret sharing · Multiparty computation ·
Sublinear communication · Learning parity with noise · Pseudorandom
correlation generators

1 Introduction

In this work, we present a novel (circuit dependent) homomorphic secret sharing
(HSS) scheme for any (log / log log)-local circuit which is secure under the super-
polynomial hardness of the learning parity with noise (LPN) assumption. The
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 842–870, 2021.
https://doi.org/10.1007/978-3-030-77886-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_29


Breaking the Circuit Size Barrier 843

main application, and motivation for this work, is a new protocol for securely
computing layered arithmetic and boolean circuits with communication sublinear
in the circuit size, under the quasi-polynomial hardness of LPN.

Homomorphic Secret Sharing (HSS). An HSS is a compact secret sharing scheme
equipped with homomorphism: the parties can locally convert compact (addi-
tive) shares of an input into (additive) shares of some function of it, without
interaction. Compactness here means that the input shares should be much
smaller than, and ideally independent of, the size of the evaluated circuit. More
precisely, HSS for a circuit class allows the parties to homomorphically convert
their shares for any circuit in the class. This powerful primitive has been instan-
tiated for all circuits under LWE [BKS19], or for NC1 under DDH [BGI16a], or a
circularly secure variant of DCR [FGJS17], and for the class of constant degree
polynomials from LPN [BCG+19b].

The Circuit Size Barrier in Secure Computation. Secure computation allows
mutually distrustful parties to securely compute a public function of their joint
private inputs, concealing all information beyond the output. Since its introduc-
tion in the seminal works of Yao [Yao86], and Goldreich, Micali, and Wigder-
son [GMW87b,GMW87a], secure computation has received a constant attention.
For a long time, however, all standard approaches to secure computation have
been stuck at an intriguing circuit-size barrier, in that they require an amount of
communication (at least) proportional to the size of the circuit being computed.
In contrast, insecure computation only requires exchanging the inputs, which
might be considerably smaller than the entire circuit. Getting beyond this limi-
tation has been a major challenge in secure computation. Early positive results
required exponential computation [BFKR91,NN01], or were limited to very sim-
ple functions such as point functions [CGKS95,KO97,CG97] or constant-depth
circuits [BI05].

The situation changed with the breakthrough result of Gentry [Gen09] on
fully-homomorphic encryption (FHE), which led to optimal communication pro-
tocols in the computational setting [DFH12,AJL+12]. On the downside, the set
of assumptions under which we know how to build FHE is very narrow; it is
restricted to lattice-based assumptions such as LWE, and in particular does not
include any of the traditional assumptions which were used in the 20th century.
More recently, the elegant work of [BGI16a] showed for the first time that secure
computation with sublinear communication could be based on assumptions not
known to imply FHE, by building a two-party secure computation protocol under
the DDH assumption, with communication O(s/ log s) for layered circuits of size
s.1 [FGJS17] later followed this blueprint and switched out the DDH assump-
tion for the circular security of the Pallier encryption scheme. It remains open
whether secure computation with sublinear communication can be based on any
other traditional and well-studied assumption, such as code-based assumptions.

1 A depth-d circuit is layered if it can be divided into d layers such that any wire
connects adjacent layers.



844 G. Couteau and P. Meyer

1.1 Our Contribution

We show that circuit-dependent homomorphic secret sharing, i.e.HSS where the
share generation requires knowing in advance the circuit to be evaluated homo-
morphically, for the class of log-local circuits exists, conditioned on (the quasi-
polynomial hardness of) a well-studied 20th century assumption: the learning
parity with noise (LPN) assumption [BFKL94]. Informally, the LPN assumption
captures the hardness of solving an overdetermined system of linear equations
over F2, when a small subset of the equations is perturbed with a random noise.
The LPN assumption has a long history in computational learning theory, where
it emerged. Furthermore, our results only require a flavour of LPN where the
adversary is given a very limited number of samples (typically, O(n) equations in
n indeterminates). In this regime, LPN is equivalent to the hardness of decod-
ing random linear codes over F2, which is the well-known syndrome decoding
problem in the coding theory community, where it has been studied since the
60’s [Pra62].

Details on the Underlying Assumption. In a bit more detail, given a security
parameter λ, the (T, n,N, r)-LPN assumption with dimension n = n(λ), number
of samples N = N(λ) and noise rate r = r(λ) states that for every adversary
Adv running in time at most T = T (λ),

Pr
[
A

$← F
N×n
2 , �e

$← BerNr , �s
$← F

n
2 : Adv(A,A · �s + �e) = �s

]
= negl(λ),

where Berr denotes the Bernouilli distribution which outputs 1 with probability
r, and negl denote some negligible function. When T can be any polynomial
(resp. any super-polynomial function, some super-polynomial function), we say
that we assume the polynomial (resp. quasi-polynomial, super-polynomial) hard-
ness of LPN. For arithmetic circuits, we need to assume LPN over large fields, or
equivalently syndrome decoding for random linear codes over large fields; this is
also a well-founded and well-studied assumption, used in several previous works,
e.g. [BCGI18,BCG+19b].

HSS for Any Loglog-Depth Circuit. We introduce a new circuit-dependent
HSS scheme for the class of all log log-depth circuits. More precisely,

Main Theorem 1 (HSS for any loglog-Depth Circuit, Informal). Let C be a
size-s, n-input, m-output, (ε · log log)-depth arithmetic circuit over F (for some
ε < 1/4). If the F-LPN assumption with super-polynomial dimension �, O(�)
samples, and inverse super-polynomial rate holds, then there exists a secure HSS
scheme for the class {C} with share size n+O(m ·s · log s/clog

1−ε s−log1−2ε s) (for
some constant c) and computational complexity O(m · poly(s) · (log |F|)2).

Restricting the circuit class to depth-k size-s circuits where k(s) ≤ log log s/4
leads to quantitative improvements in the size of the shares, the computational
complexity of expanding shares, and the strength of the LPN assumption.



Breaking the Circuit Size Barrier 845

Application to Sublinear Computation. Our HSS scheme has (non black-
box) implications for sublinear computation. As in [BGI16a], our results holds
for all layered (boolean or arithmetic) circuits, in the two-party setting.

Main Theorem 2 (Sublinear Computation of Layered Circuits, Informal).
For any layered arithmetic circuit C of polynomial size s = s(λ) with n inputs
and m outputs, for any function k(s) ≤ log log s−log log log s+O(1), there exists
a two party protocol for securely computing C in the honest-but-curious model,
with total communication [2(n + m + s/k)] · log |F| + o(s/k) and computation
bounded by s3 · polylogs · (log |F|)2 under a set of LPN assumptions, the exact
nature of which depends on the sublinearity factor k.

In particular, setting k ← O(log log s) leads to a protocol with total com-
munication O(n + m + s/ log log s), secure under the super-polynomial hardness
of:

– F-LPN with super-polynomial dimension �, O(�) samples, and inverse super-
polynomial rate,

– F2-LPN with super-polynomial dimension �′, O(�′) samples, and inverse poly-
nomial rate 1/sO(1) (which is implied by the above if F = F2).

Furthermore (but with a slighly different choice of parameters than the one
described above), as k is reduced to an arbitrarily small k = ω(1), we need only
assume the quasi-polynomial hardness of:

– F-LPN with quasi-polynomial dimension �, O(�) samples, and inverse quasi-
polynomial rate,

– F2-LPN with quasi-polynomial dimension �′, O(�′) samples, and inverse poly-
nomial rate 1/sO(1) (which is implied by the above if F = F2).

and the computation is reduced to O(s1+o(1) · (log |F|)2).
Remark 1. While we require security against super-polynomial-time adversaries,
this remains a relatively weak flavour of LPN where the dimension is very high,
i.e. super-polynomial as well (and the adversary is allowed to run in time O(�2)
where � is the dimension), and the number of samples which the adversary gets is
very limited, O(�). On the other hand, we require a very small noise rate λ/N . For
example, instantiating the above with k = (log log s)/5, we obtain a secure com-
putation protocol with total communication O(�+m+ s/ log log s) (sublinear in
s) and polynomial computation, assuming that LPN is hard against adversaries
running in super-polynomial time λO(log λ), with dimension � = λO(log λ), N = 2�
samples, and noise rate λ/N . More generally, for any super-constant function
ω(1), there is a two-party protocol with communication O(n + m + s/ log ω(1))
assuming the λω(1)-hardness of LPN (i.e., the quasi-polynomial hardness of
LPN).

We note that, in this regime of parameters, the best known attacks are the
information set decoding attack [Pra62] and its variants (which only shave con-
stant in the exponents, hence have the same asymptotic complexity), which



846 G. Couteau and P. Meyer

require time 2O(λ).2 Therefore, assuming hardness against λO(log λ)-time adver-
saries is a very plausible assumption.

Remark 2 (On the Generality of Layered Circuits). Our construction is restricted
to the class of (boolean or arithmetic) layered circuits. This restriction stems
from the blockwise structure of the construction, and was also present in the
previous works of [BGI16a] and [Cou19]. As noted in [Cou19], layered circuits are
a relatively large and general class of circuits, which furthermore capture many
“real-world” circuits such as FFT-like circuits (used in signal processing, integer
multiplication, or permutation networks [Wak68]), Symmetric crypto primitives
(e.g. AES and algorithms that proceed in sequences of low-complexity rounds
are naturally “layered by blocks”), or dynamic-programming algorithm (e.g. the
Smith-Waterman distance, or the Levenshtein distance and its variants).

Generalisation to the Malicious Setting. Our result can directly be gener-
alised to the malicious setting using a generic GMW-style compiler [GMW87a],
which is communication preserving when instantiated with succinct zero-
knowledge arguments [NN01]. Such arguments exist under collision-resistant
hash functions; hence, Theorem 2 extends to the malicious setting as well,
at the cost of further assuming collision-resistant hash functions (which is a
mild assumption). We note that CRHFs have recently been built from (sub-
exponentially strong) flavours of LPN [AHI+17,YZW+19,BLVW19].

1.2 Our Techniques

Our starting point is the construction of pseudorandom generator (PCG) from
the work of [BCG+19b], under the LPN assumption. At a high level, a PCG
allows to distributively generate long pseudorandom instances of a correlation.
More precisely, a PCG for a correlation corr (seen as a distribution over pairs
of elements) is a pair (Gen,Expand) where Gen(1λ) generates a pair of seeds
(k0, k1) and Expand(b, kb) output a string Rb. A PCG must satisfy two properties:
(correctness) (R0, R1) is indistinguishable from a random sample from corr, and
(security) for b ∈ {0, 1}, the string Rb is indistinguishable, even given k1−b, from
a string R′

b sampled randomly conditioned on satisfying the correlation with
R1−b.

The technical contribution at the heart of this paper is to show that, under
a certain LPN assumption, there exists a 2-party PCG for the following corre-
lation, which we call substrings tensor powers (stp) correlation. It is (publicly)
parametrised by

– a string length n;
– subsets S1, . . . , Sns ∈ (

[n]
≤K

)
of at most K = log n/ log log n many coordinates

each;

2 BKW and its variants [BKW00,Lyu05] do not improve over information set decoding
attacks in this regime of parameters, due to the very low number of samples.



Breaking the Circuit Size Barrier 847

– a tensor power parameter tpp (which can be super-constant, as high as K);

and generates additive shares of all the tensor powers of the prescribed substrings
of a random string, i.e.

(�r, ((1F || �r[Si])
⊗tpp)1≤i≤ns), where �r ∈ F

n is (pseudo)random.

In the above, �a⊗b denotes a vector �a tensored with itself b rimes. In order
to build shares of (�r, �r⊗2) for some (pseudo)random �r ∈ F

n (the bilinear cor-
relation), the PCG of [BCG+19b] uses a multi-point function secret sharing
scheme (MPFSS) (defined in Sect. 3.1) to give the parties small seeds which can
be expanded locally to shares of (�e,�e⊗2) for some random sparse vector �e ∈ F

n.
Thence, if H is some suitable public matrix the parties can get shares of �r := H ·�e,
which is pseudorandom under LPN, and of �r⊗2 = H⊗2 ·�e⊗2 by locally multiply-
ing their shares of �e and �e⊗2 by H and H⊗2 respectively. The main issue in using
this approach directly is that performing the expanding �r⊗tpp = H[Si]⊗tpp ·�e⊗tpp

(where H[Si]–abusively–denotes the submatrix of H with only the rows indexed
by elements of Si) would require super-polynomial computation, as H[Si] has n
columns.

The core idea of our work is to develop a very careful modified strategy.
Instead of letting each �r be a (pseudo)random mask, we construct �r as a sum of
n·log n vectors �rj , each associated with a public subset of at most K coordinates:
these K coordinates are random, but all others are zero. The crucial property
achieved by this construction is the following: with high probability, the sum of
these sparse vectors will be pseudorandom, but every size-K substring of �r (and
in particular S1, . . . , Sns) will be expressible as a sum of ‘not too many’ of the
�rj . This allows the expanding to be done by raising to the tensor power tpp a
matrix whose dimensions are both KO(1), and not n as before. Thus computation
remains polynomial.

If we were to stop here, the size of the seeds would grow linearly with ns,
the number of subsets; this would violate the compactness requirement. Instead,
we show that we can batch the subsets into ns/β groups of at most β subsets
each, for some parameter β to be refined, to reduce the share size and recover
compactness, without harming computational efficiency. Indeed, so long as β is
not too large, the substring of �r associated with the union of any β size-K subsets
of coordinates will still be expressible as a sum of ‘not too many’ of the �rj . Our
computations reveal a sweet spot for the choice of β, for which the PCG seeds
are compact and yet the complexity of expanding them remains polynomial.

1.3 Related Work

Pseudorandom correlation generators were first studied (under the name of
cryptocapsules) in [BCG+17]. Constructions of PCGs for various correlations,
under variants of the LPN assumptions, and applications of PCGs to low-
communication secure computation, have been described in [BCGI18,BCG+19b,
BCG+19a,SGRR19,BCG+20b,BCG+20a].



848 G. Couteau and P. Meyer

Early works on sublinear-communication secure computation either incurred
some exponential cost, or were restricted to very limited types of computations.
The first protocols to break the circuit size barriers was shown in [BFKR91]
(which gave a protocol with optimal communication, albeit with exponential
computation and only for a number of parties linear in the input size). The
work of [NN01] gave a sublinear protocol, but with exponential complexity.
The work of [BI05] gives a low-communication protocol for constant-depth cir-
cuit, for a number of parties polylogarithmic in the circuit size, and the works
of [CGKS95,KO97,CG97] gave sublinear protocols for the special case of point
functions. The result of Gentry [Gen09] led to the first optimal communica-
tion protocols in the computational setting [DFH12,AJL+12] under LWE-style
assumptions, for all circuits and without incurring any exponential cost. The
work of [IKM+13] gave an optimal communication protocol in the correlated
randomness model, albeit using an exponential amount of correlated random-
ness. More recently, [Cou19] constructed an unconditionally secure MPC protocol
with sublinear communication for layered circuits, in the two-party setting, with
a polynomial amount of correlated randomness. Finally, progress in breaking the
circuit-size barrier for layered circuits in the computational setting is closely tied
to the advances in HSS for super-constant depth circuits [BGI16a,FGJS17].

2 Technical Overview

Notations. We say that a function negl : N → R
+ is negligible if it vanishes

faster than every inverse polynomial. For two families of distributions X = {Xλ}
and Y = {Yλ} indexed by a security parameter λ ∈ N, we write X

c≈ Y if X
and Y are computationally indistinguishable (i.e. any family of circuits of size
poly(λ) has a negligible distinguishing advantage), X

s≈ Y if they are statistically
indistinguishable (i.e. the above holds for arbitrary, unbounded, distinguishers),
and X ≡ Y if the two families are identically distributed.

We usually denote matrices with capital letters (A,B,C) and vectors with
bold lowercase (�x, �y). By default, vectors are assumed to be column vectors. If
�x and �y are two (column) vectors, we use �x||�y to denote the (column) vector
obtained by their concatenation. We write �x ⊗ �y to denote the tensor product
between �x and �y, i.e., the vector of length nxny with coordinates xiyj (where nx

is the length of �x and ny is the length of �y). We write �x⊗2 for �x ⊗ �x, and more
generally, �x⊗n for the n-th tensor power of �x, �x ⊗ �x ⊗ · · · ⊗ �x. Given a vector �x
of length |�x| = n, the notation HW (x) denotes the Hamming weight �x, i.e., the
number of its nonzero entries. Let k be an integer. We let {0, 1}k denote the set
of bitstrings of length k. For two strings (x, y) in {0, 1}k, we denote by x ⊕ y
their bitwise xor.

Circuits. An arithmetic circuit C with n inputs and m outputs over a field F

is a directed acyclic graph with two types of nodes: the input nodes are labelled
according to variables {x1, · · · , xn}; the (computation) gates are labelled accord-
ing to a base B of arithmetic functions. In this work, we will focus on arithmetic



Breaking the Circuit Size Barrier 849

circuits with indegree two, over the standard basis {+,×}. C contains m gates
with no children, which are called output gates. If there is a path between two
nodes (v, v′), we say that v is an ancestor of v′. In this work, we will consider a
special type of arithmetic circuits, called layered arithmetic circuits (LBC). An
LBC is a arithmetic circuit C whose nodes can be partitioned into D = depth(C)
layers (L1, · · · , Ld), such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1

for some i ≤ d−1. Note that the width of a layered arithmetic circuit is also the
maximal number of non-output gates contained in any single layer. Evaluating
a circuit C on input �x ∈ F

n is done by assigning the coordinates of �x to the
variables {x1, · · · , xn}, and then associating to each gate g of C (seen as an
arithmetic function) the value obtained by evaluating g on the values associated
to its parent nodes. The output of C on input �x, denoted C(�x), is the vector of
values associated to the output gates.

2.1 PCG and HSS

Much like a PCG for the bilinear correlation yields an HSS for degree-two cir-
cuits [BCG+19b], given a PCG for the stp correlation with tpp = K, it is
almost immediate to build an HSS scheme for any singleton class comprised
of a log/loglog-local circuit C (which is the case in particular if its depth is
at most log log − log log log, since the gates have in-degree at most 2). Since
the circuit to be homomorphically evaluated on the input shares is known, the
Share procedure can depend on it (which is not usually the case for HSS). Let
S1, . . . , Sm be the subsets of inputs on which each output depends, and let K
denote the locality of C; we build a (circuit dependent) HSS scheme as follows:

– HSS.Share(�x): Generates compact PCG key (k0, k1) which expand to shares
of (�r, ((1F || �r[Si])

⊗tpp)1≤i≤m), set �x′ ← �x ⊕ �r, and give to each party Pσ a
share sσ = (kσ, �x′).

– HSS.Eval(σ, sσ): Expand sσ and, for each i = 1 . . . m, extract a share of
(1F || �r[Si])⊗tpp. Use it to generate shares of the coefficients of the “degree-
K polynomial” on |Si| ≤ K variables Pi satisfying Pi(X) = C(X − �r[Si]).
Output the inner product of the vector of coefficient shares with the vector
(1F || �x′)⊗K . (This linear product is a share of Pi(�x′).)

Correctness and security follow from inspection, along the same lines as
[BCG+19b]. Usually, HSS.Share is given only a circuit class as auxiliary input,
not a specific circuit, and the parties should be able to homomorphically eval-
uate any circuit in the class. In our case however the HSS is circuit-dependent,
because the subsets S1, . . . , Sm are intrinsically tied to the evaluated circuit. An
alternative formulation is that our HSS scheme supports singleton circuit classes
(or, more generally, local circuits with the same pattern of subsets).

2.2 Generating Correlated Randomness from a PCG

From now on, we set the number of parties to N = 2. The work of [BCG+19b,
Section 6] provides a pseudorandom correlation generator under the LPN



850 G. Couteau and P. Meyer

assumption, generates correlated (pseudo) random strings for the low-degree
polynomial correlation, i.e. shares of (�r, �r⊗2, . . . , �r⊗d) for some constant d, where
�r is a (pseudo)random vector. With the construction from the previous para-
graph, this yields an HSS for constant-depth circuits. Our goal is to design a
PCG which would lead to an HSS for super-constant depth circuits. More specif-
ically, and keeping our end application in mind, we would like for our PCG to
have short enough seeds to lead to a compact HSS scheme (i.e., shares of an
input x should be at most O(x)). This is fundamental when using the scheme
to generate correlated randomness in the protocol of [Cou19], which achieves
sublinear communication in the correlated randomness model, and which is the
starting point of our application to sublinear secure computation.

Our approach is therefore to directly plug in the construction of [BCG+19b]
and see where it fails. Two issues emerge: the computation is super-polynomial,
and the communication not sublinear. Below, we outline each of these issues,
and explain how we overcome them.

First Issue: Too Many Polynomials. The first problem which appears when
plugging the PCG of [BCG+19b] in the protocol of [Cou19] is that the latter
requires distributing many shares of multivariate polynomials Q̂ – more precisely,
s/k such polynomials (one for each coordinate of each first layer of a bloc). While
the PCG of [BCG+19b] allows to compress pseudorandom pairs (�r,Q( �X − �r))
into short seeds, these seeds will still be of length at least ω(log λ), where λ is the
security parameter, for the PCG to have any hope of being secure. That means
that even if we could manage to securely distribute all these seeds with optimal
communication protocols, the overall communication would still be at the very
least ω((s log λ)/ log log s), which cannot be sublinear since log log s = o(log λ)
(as s is polynomial in λ).

We solve this first issue as follows: we fix a parameter β, and partition each
�yi into w/β subvectors, each containing β consecutive coordinates of �yi. Then,
the core observation is that a simple variant of the PCG of [BCG+19b] allows
in fact to generate shares of (�r, �r⊗2, · · · , �r⊗2k

) for some pseudorandom r, where
�r⊗j denotes the tensor product of �r with itself j times (which we call from now
on the j-th tensor power of �r): this correlation is enough to generate shares
of all degree-2k polynomial in �r rather than a single one. We will build upon
this observation to show how to generate a batch of β shares of multivariate
polynomials from a single tensor-power correlation, thus reducing the number
of PCG seeds required in the protocol by a factor of β, at the tolerable cost of
slightly increasing the size of each seed.

Solution: Batching β Multivariate Polynomials. Consider the first length-β sub-
vector of �yi+1, which we denote �v. Observe that the entire subvector �v can depend
on at most β ·2k coordinates of �yi, since each coordinate of �v depends on at most
2k coordinates of �yi. Therefore, we can now see the computation of �v from �yi

as evaluating β multivariate polynomials (Q1 · · · , Qβ), where all multivariate
polynomials take as input the same size-(β2k) subset of coordinates of �yi. To
securely compute shares of �v from shares of �yi, the parties can use the following



Breaking the Circuit Size Barrier 851

type of correlated randomness: they will have shares of (�r, �r⊗2, · · ·�r⊗2k

), where
�r is a random mask of length β · 2k. Consider the following polynomials:

(Q̂1( �X), · · · , Q̂β( �X)) def= (Q1( �X − �r), · · · , Qβ( �X − �r)).

Each coefficient of each Q̂ can be computed as a degree-2k multivariate poyno-
mial in the coordinates of �r – or, equivalently, as a linear combination of the
coordinates of (�r, �r⊗2, · · ·�r⊗2k

). Hence, given additive shares of (�r, �r⊗2, · · ·�r⊗2k

),
the parties can locally compute additive shares of the coefficients of all the poly-
nomials (Q̂1, · · · Q̂β). Using the PCG of [BCG+19b], the seeds for generating
pseudorandom correlations of the form (�r, �r⊗2, · · ·�r⊗2k

) have length:

O

(
λ2k · log

((
β · 2k

)2k
))

,

where λ is some security parameter related to the hardness of the underlying LPN
assumption. Or more simply, using the fact the computational cost of generating

the correlations contains the term
(
β · 2k

)2k

which must remain polynomial in
s. Therefore, the total number of bits which the parties have to distribute (for
all (d/k) · (w/β) = s/(βk) such seeds) is O((s/k) · (λ2k · log s)/β).

Choosing the Parameter β. Suppose for simplicity that we already have at hand
an MPC protocol allowing to securely distribute such seeds between the par-
ties, with linear overhead over the total length of the seeds generated. This
means that generating the full material will require a total communication of
c · s · λ2k · log s/(βk). By setting β to be larger than c · λ2k · log s, the total
communication will be upper bounded by O(s/k) = O(s/ log log s) when set-
ting k ← O(log log s), which is the highest our techniques will allow it to be
pushed. The most important remaining question is whether we can execute this
process in polynomial time given such a large β. Put more simply, the core
issue is that the computational complexity of expanding short seeds to shares
of (�r, �r⊗2, · · ·�r⊗2k

) with the PCG of [BCG+19b] contains a term of the form
(β · 2k)2

k

. To make the computation polynomial, we must therefore ensure that
β is at most sO(2−k), which is subpolynomial. Fortunately, this can be done
by setting the security parameter λ of the underlying PCG to be sO(2−2k). For
instance, for any constant ε ∈]0, 1[, we can set λ ← 2log

ε s, k ← log log s/cε, and
β ← sO(2−k) for some explicit constant cε > 2, at the cost of now having to
assume the quasi-polynomial security of the LPN assumption.

Second Issue: Too Much Communication. In the previous paragraphs, we
focused on generating the appropriate correlated random coins using sublinear
total communication. But doing so, we glossed over the fact that in the full
protocol, the parties must also broadcast (shares of) values of the form �y + �r,
where �y contains values of some layer, and �r is some mask. Recall that with the
method which we just outlined, the parties must generate such a length-(β2k)



852 G. Couteau and P. Meyer

mask �r for the k-ancestors of each length-β subvector of each last layer of a
block. Since there are d/k blocks, whose first layers contain w/β subvector each,
and since each �y + �r is of length β · 2k, this requires to communicate a total of
(d/k) · (w/β) · β2k = s · 2k/k values – and this cannot possibly be sublinear in
s. In fact, this issue already appears in [Cou19], where it was solved as follows:
rather than picking an independent mask for each vector of ancestors of a node
on a layer (or, in our case, of a length-β block of nodes), pick a single �ri to mask
a full layer �yi, and define the mask for the subset Si,j of ancestors of a target
value yi+1,j to be �ri[Si,j ]. This implies that the parties must mow broadcast a
single masked vector �yi + �ri for each first layer of a block, reducing the overall
communication back to O(s/k). The correlated randomness which the parties
must securely distribute now consists of tensor powers of many subsets of the
coordinates of each mask.

Using the PCG of [BCG+19b] for ‘Subvectors Tensor Powers Correlations’.
However, attemping to construct a PCG for generating this kind of correlated
randomness from the PCG of [BCG+19b] blows up the computation to the point
that it can no longer be polynomial. To explain this issue, we briefly recall the
high level construction of the PCG of [BCG+19b]. To share a pseudorandom
vector (�r, · · · , �r⊗2k

) where �r is of length w, the PCG will first generate a very
sparse vector �r′, with some number t of nonzero coordinates. Then, each (�r′)⊗n

for some n ≤ 2k is itself a tn-sparse vector, of length wn. Using multi-point func-
tion secret sharing (MPFSS, a primitive which was developed in a recent line of
work [GI14,BGI15,BGI16b,BCGI18] and can be built from one way functions),
one can compress shares of (�r′)⊗n to length-tn · log w seeds. Then, the final pseu-
dorandom correlation is obtained by letting the parties locally compress �r′ by
multiplying it with a large public matrix H, giving a vector �r = H ·�r′. Similarly,
�r⊗n can be reconstructed by computing H⊗n · (�r′)⊗n = (H · �r′)⊗n = �r⊗n, using
the multilinearity of tensor powers. The security relies on the fact that if H is a
large compressing public random matrix, then its product with a random sparse
noise vector �r′ is indistinguishable from random, under the dual LPN assump-
tion (which is equivalent to the standard LPN assumption). Concretely, one can
think of �r′ as being of length 2w, and of H as being a matrix from F

w×2w which
compresses �r′ to a pseudorandom length-w vector.

Now, the issue with this construction is that even if we need only tensor
powers of small subvectors (of length β · 2k in our construction) of the vector �r,
the computation for expanding the seed to these pseudorandom tensor powers
will grow super-polynomially with the length of entire vector w. Indeed, consider
generating the 2k-th tensor power of a subvector �r[S] of �r, for some size-β · 2k

subset S of [w]. Then with the PCG of [BCG+19b], this requires computing
(H[S])⊗2k · (�r′[S])⊗2k

, where the share of (�r′[S])⊗2k

are obtained from a short
seed using MPFSS, and H[S] ∈ F

|S|×2w is the submatrix of H whose columns
are indexed by S. The core issue becomes now visible: even though H[S] has
only |S| rows, it still has 2w columns, and computing H[S]⊗2k

requires roughly
(|S| ·w)2

k

arithmetic operation. But since we want ultimately to have k be some



Breaking the Circuit Size Barrier 853

increasing function of s, the above will contain a term of the form w2k

= wω(1),
where w (the circuit width) can be polynomial in the circuit size s, leading to
an overall computational complexity of sω(1), which is super-polynomial.

Solution: Covering the Private Values with the Sum of Separable Masks. Our
solution to circumvent the above problem is to generate �r as the sum of a certain
number m of shorter masks �r1, �r2, . . . which each only cover θ values (note
that they may – and will – overlap). This way the 2k-th tensor power of a
subvector �v can be obtained from appropriate linear combinations of coordinates
of the 2k-th tensor power of the concatenation of only the �rj which overlap with
�v. The amount of computation grows super-polynomially in the length of this
concatenated vector only (instead of w as before).

More formally, we have a list of w/β target subsets S1, . . . , Sw/β (each one
corresponding to the 2kβ ancestors of a batch of β outputs) for which we want
to compute the 2k-th tensor power of �r[Si], for some random �r ∈ F

w. We want
to find M size-K sets α1, α2, . . . , αM ∈ (

[w]
K

)
such that each Si intersects with

a small number B of αjs, while ∪M
i=1αi = [w]. We associate each αj with a

vector �rj ∈ F
K : together they define a sparse subvector of F

w. If we let �r be the
sum of these sparse vectors, it is clear that for any i ∈ [w/β], each element of
(1F || �r[Si])⊗2k

can be obtained by a linear combination of the elements of the
2k-th tensor power of the vector of size (1+BK) obtained by concatenating (1F)
and the �rjs such that αj ∩ Si �= ∅. The amount of computation required is then
of the order (BK)2

k

.
The problem of deterministically finding such subsets α1, . . . , αM – which

we call a B-Good Cover of (Si)i∈[w/β] – turns out to be difficult in the general
case. Fortunately, there is a straightforward probabilistic solution: choosing them
independently and at random works with high probability. More specifically,
taking M ← O(w · ln w) i.i.d. uniformly random submasks covering K ← β2k

values each means that the β2k ancestral inputs of any batch of β outputs will be
covered by only a total of roughly B = log w submasks (the proof of this relies on
standard concentration bounds). This effectively lifts the cost of the computation
from being super-polynomial in w to being only super-polynomial in β2k log w,
which remains polynomial overall when setting β and k to be appropriately
small.

2.3 Application to Sublinear Secure Computation

The work of [Cou19] gives a generic secure protocol with sublinear communica-
tion for layered circuits. It works in the corruptible correlated randomness model :
before the protocol, a trusted dealer lets the adversary choose the strings that the
corrupted parties will get, samples the correlated random coins of the remaining
parties afterwards, and distributes them to the parties. As shown in [BCG+19b],
generating this corruptible randomness using a PCG leads to a secure protocol
in the standard model. In a bit more detail, the parties use a generic secure
protocol to generate the short seeds (k0, k1) then expand them locally; it might



854 G. Couteau and P. Meyer

have a high overhead, but it will not be a bottleneck since the seeds are very
small. We show that our new PCG can be used for just this purpose.

The general idea is to split a layered circuit of size s into carefully cho-
sen blocks, each containing O(log log s) consecutive layers. The precise block
decomposition is detailed in [Cou19]. Using our PCG cast as an HSS scheme
for O(log log s)-depth circuits (with the duality described in Sect. 2.1) allows the
parties to evaluate the circuit in a block-by-clock fashion: for each block the
parties start with additive shares of

– the inputs of the circuit;
– the values of the first layer of the block;

and, using HSS, compute additive shares of

– the outputs of the circuit which are in the block;
– the values of the last layer, which are also the values of the first layer of the

next block.

Let us note that since the circuit and its blocks are publicly known to both par-
ties, so the fact our HSS scheme is circuit-dependent is not an issue here. This
block-by-block approach allows the parties to ‘skip’ a fraction O(log log(s)) of
the gates when computing the circuit, by communicating at each block rather
than at each gate. Unfortunately, combining all these blocks together involves
pesky technicalities which prohibit a very modular approach and require us to
consider the protocol in its entirety. Indeed, the inputs can appear arbitrarily
many times–up to O(s) even–across many blocks, so the randomness used to
mask them has to be reused, and we cannot deal with each block using an inde-
pendent instance of HSS. However, dealing with this problem does not require
any additional insight, only more cumbersome notations.

In the above outline, we assumed that we had access to a sufficiently low-
communication MPC protocol to distribute the generation of the seeds to our
new PCG. To obtain our claimed result, it remains to show that this build-
ing block can be instantiated under the quasi-polynomial hardness of LPN. In
fact, this MPC protocol needs not have linear communication in the seed size;
it turns out that by tuning the parameters appropriately, any fixed polyno-
mial in the seed size suffices to guarantee the existence of a “soft spot” for the
parameters of our PCG such that we simultaneously get sublinear total commu-
nication O(s/log log s) and polynomial computation. Distributing the generation
procedure of our PCG essentially boils down to generating (many) seeds for a
multi-point function secret sharing scheme, which itself boils down mainly to
securely generating seeds for a standard length-doubling pseudorandom gen-
erator (PRG), and securely executing about log(domsize) expansions of these
short seeds, where domsize denotes the domain size of the MPFSS. Using a stan-
dard LPN-based PRG and GMW-style secure computation, instantiated with an
LPN-based oblivious transfer protocol, suffices to securely generate the MPFSS
seeds we need.



Breaking the Circuit Size Barrier 855

3 Preliminaries

3.1 Function Secret Sharing

Informally, an FSS scheme for a class of functions C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) such that:

– FSS.Gen given a function f ∈ C outputs a pair of keys (K0,K1);
– FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive

shares of f(x).

The security requirement is that each key Kb computationally hide f , except
for revealing the input and output domains of f . For the formal definition of
FSS, we refer the reader to the full version of this paper. Our application of FSS
requires applying the evaluation algorithm on all inputs. Following [BGI16b,
BCGI18,BCG+19b,BCG+19a], given an FSS scheme (FSS.Gen,FSS.Eval), we
denote by FSS.FullEval an algorithm which, on input a bit b, and an evaluation
key Kb (which defines the input domain I), outputs a list of |I| elements of G

corresponding to the evaluation of FSS.Eval(b,Kb, ·) on every input x ∈ I (in
some predetermined order). Below, we recall some results from [BGI16b] on FSS
schemes for useful classes of functions.

Distributed Point Functions. A distributed point function (DPF) [GI14]
is an FSS scheme for the class of point functions fα,β : {0, 1}� → G which
satisfies fα,β(α) = β, and fα,β(x) = 0 for any x �= α. A sequence of works [GI14,
BGI15,BGI16b] has led to highly efficient constructions of DPF schemes from
any pseudorandom generator (PRG).

Theorem 3 (PRG-based DPF [BGI16b]). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DPF for point functions fα,β : {0, 1}� → G with key
size �·(λ+2)+λ+�log2 |G|� bits. For m = � log |G|

λ+2 �, the key generation algorithm
Gen invokes G at most 2(� + m) times, the evaluation algorithm Eval invokes G
at most �+m times, and the full evaluation algorithm FullEval invokes G at most
2�(1 + m) times.

FSS for Multi-Point Functions. Similarly to [BCGI18,BCG+19b,
BCG+19a], we use FSS for multi-point functions. A k-point function evaluates
to 0 everywhere, except on k specified points. When specifying multi-point func-
tions we often view the domain of the function as [n] for n = 2� instead of
{0, 1}�.

Definition 4 (Multi-Point Function [BCGI18]). An (n, t)-multi-point func-
tion over an abelian group (G,+) is a function fS,	y : [n] → G, where S =
(s1, · · · , st) is an ordered subset of [n] of size t and �y = (y1, · · · , yt) ∈ G

t,
defined by fS,	y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n] \ S.



856 G. Couteau and P. Meyer

We assume that the description of S includes the input domain [n] so that
fS,	y is fully specified. A Multi-Point Function Secret Sharing (MPFSS) is an
FSS scheme for the class of multi-point functions, where a point function fS,	y

is represented in a natural way. We assume that an MPFSS scheme leaks not
only the input and output domains but also the number of points t that the
multi-point function specifies. An MPFSS can be easily obtained by adding t
instances of a DPF.

3.2 Learning Parity with Noise

Our constructions rely on the Learning Parity with Noise assumption [BFKL93]
(LPN) over a field F (the most standard variant of LPN typically assumes F = F2,
but other fields can be considered). Unlike the LWE assumption, in LPN over F

the noise is assumed to have a small Hamming weight. Concretely, the noise is a
random field element in a small fraction of the coordinates and 0 elsewhere. Given
a field F, Berr(F) denote the distribution which outputs a uniformly random
element of F \ {0} with probability r, and 0 with probability 1 − r.

Definition 5 (LPN). For dimension k = k(λ), number of samples (or block
length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the F-LPN(k, q, r)
assumption states that

{(A,�b) | A
$← F

q×k, �e
$← Berr(F)q, �s

$← F
k,�b ← A · �s + �e}

c≈{(A,�b) | A
$← F

q×k,�b
$← F

q}

Here and in the following, all parameters are functions of the security param-
eter λ and computational indistinguishability is defined with respect to λ. Note
that the search LPN problem, of finding the vector can be reduced to the
decisional LPN assumption [BFKL93,AIK09]. In this paper, our protocols will
mostly rely on a variant of LPN, called exact LPN (xLPN) [JKPT12]. In this vari-
ant, the noise vector �e is not sampled from Berr(F)q, but it is sampled uniformly
from the set HWrq(Fq) of length-q vectors over F with exactly rq nonzero coordi-
nates (in contrast, a sample from Berr(F)q has an expected number r·q of nonzero
coordinates). While standard LPN is usually preferred since the Bernouilli dis-
tribution is convenient to analyze, xLPN is often preferred in concrete implemen-
tations, since it offers a potentially higher level of security for similar parameters
(by avoiding weak instances with a low amount of noise). Furthermore, as out-
lined in [JKPT12], xLPN and LPN are equivalent: xLPN reduces to its search
version using the sample-preserving reduction of [AIK07], and search-xLPN is
easily seen to be polynomially equivalent to search-LPN.

Dual LPN. In our protocols, it will also prove convenient to work with the
(equivalent) alternative dual formulation of LPN.



Breaking the Circuit Size Barrier 857

Definition 6 (Dual LPN). For dimension k = k(λ), number of samples (or
block length) q = q(λ), noise rate r = r(λ), and field F = F(λ), the dual-
F-LPN(k, q, r) assumption states that

{(H,�b) | H
$← F

q−k×q, �e
$← Berr(F)q,�b ← H · �e}

c≈{(H,�b) | H
$← F

q−k×q,�b
$← F

q}

Solving the dual LPN assumption is easily seen to be at least as hard as
solving LPN: given a sample (A,�b), define H ∈ F

q−k×q to be the parity-check
matrix of A (hence H · A = 0), and feed (H,H ·�b) to the dual LPN solver. Note
that the parity check matrix of a random matrix is distributed as a random
matrix. Furthermore, when �b = A · �s + �e, we have H ·�b = H · (A · �s + �e) = H · �e.
For discussions regarding existing attacks on LPN and their efficiency, we refer
the reader to [BCGI18,BCG+19b].

3.3 Pseudorandom Correlation Generators

Pseudorandom correlation generators (PCG) have been introduced in
[BCG+19b]. Informally, a pseudorandom correlation generator allows to gen-
erate pairs of short keys (or seeds) (k0, k1) such that each key kσ can be
expanded to a long string Rσ = Expand(σ, kσ), with the following guaran-
tees: given the key k1−σ, the string Rσ is indistinguishable from a random
string sampled conditioned on satisfying the target correlation with the string
R1−σ = Expand(1 − σ, k1−σ). The formal definition of PCGs is given in the full
version of this paper

4 Secure Computation from Super-Constant-Degree
Low-Locality Polynomial Correlated Randomness

4.1 Block Decomposition of Layered Circuits

Given an arithmetic circuit C and an input vector �x, we call value of the gate g
on input �x the value carried by the output wire of a given gate g of C during the
evaluation of C(�x). The following decomposition of layered circuits is implicit
in [Cou19]; for completeness, we give the proof in the full version.

Lemma 7 (Block-Decomposition of Layered Circuits). Let C be a layered
arithmetic circuit over a field F with n inputs and m outputs, of size s and depth
d = d(n). For any integer k, denoting t = t(k) = �d/k�, there exists 2t+1 integers
(s0 = 0, s1, · · · , st−1, st = 0), (m0, · · · ,mt−1), and functions (f0, · · · , ft−1) with
fi : F

n × F
si → F

si+1 × F
mi , such that:

– The algorithm A given below satisfies, for any input vector �x ∈ F
n, A(�x) =

C(�x) (that is, A computes C);
function A(�x)



858 G. Couteau and P. Meyer

�x0 ← �x
for i = 0 to t − 1 do (�xi+1, �yi) ← fi(�xi)
�y ← �y0|| · · · ||�yt−1

return �y

– For any i ∈ [[0, t − 1]], j ≤ si+1 + mi, the j-th output3 of fi : F
n × F

si �→
F

si+1 × F
mi can be computed by a multivariate polynomial Pi,j over F

2k

of
degree deg Pi,j ≤ 2k;

–
∑t−1

i=0 si ≤ s/k and
∑t−1

i=0 mi = m.

4.2 Securely Computing C in the Correlated Randomness Model

We represent in Fig. 1 the ideal functionality for securely evaluating the layered
arithmetic circuit C.

Ideal Functionality FC

– Parameters. The functionality is parametrised with an arithmetic circuit C
with n inputs over a finite field F.

– Parties. An adversary A and N parties P1, · · · , PN . Each party P has p ∈
[0, n] inputs over F, with ≤N p = n.

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (input, ) from each party P where ∈ F
p , set

1|| · · · || N ∈ F
n.

2. Compute C( ). Output to all parties, and terminate.

Fig. 1. Ideal functionality FC for securely evaluating an arithmetic circuit C among
N parties.

We represent on Fig. 2 an ideal functionality for distributing (function-
dependent) correlated randomness between the parties.

Theorem 8. Let k ≤ log log s − log log log s. There exists a protocol ΠC which
(perfectly) securely implements the N -party functionality FC in the Fcorr-hybrid
model, against a static, passive, non-aborting adversary corrupting at most N −1
out of N parties, with communication complexity upper bounded by O(N · (n +
s
k + m) · log |F|) and polynomial computation.

The protocol follows closely the construction of [Cou19], with some tedious
technical adaptations which are necessary to rely on the specific type of corre-
lated randomness which we will manage to securely generate with low commu-
nication overhead. The protocol and its security analysis are given in the full
version.
3 i.e. the jth coordinate of the image by fi, seen as fi : F

n × F
si → F

si+1+mi .



Breaking the Circuit Size Barrier 859

Ideal Functionality

– Parameters.

– Parties.

The functionality aborts if it receives any incorrectly formatted message.

5. Output

(c) Setup evaluation of the output gates in the ith chunk:

– Wait for a message

– Compute uniformly random shares

Fig. 2. Ideal corruptible functionality Fcorr to deal out correlated randomness to the
parties.

5 Generating Correlated Randomness from LPN

In this section, we construct a protocol Πcorr, which implements the ideal func-
tionality Fcorr with small communication, under the quasi-polynomial LPN
assumption. A very natural approach to realise a functionality that distributes
correlated random coins using a small amount of communication is to rely



860 G. Couteau and P. Meyer

on pseudorandom correlation generators, a primitive recently defined an con-
structed (for various types of correlations, and under a variety of assumptions)
in [BCG+19b]. At a high level, [BCG+19b] suggests to distribute correlated
randomness with the following approach:

– Use a generic secure computation protocol ΠGen to distributively execute
the PCG.Gen functionality of the pseudorandom correlation generator. Note
that PCG.Gen outputs short seeds, much smaller than the correlated pseudo-
random strings which can be stretched from these seeds. Therefore, ΠGen can
potentially have a relatively high communication overhead in its inputs and
outputs, while maintaining the overall communication overhead of Πcorr small.

– Expand the distributively generated seeds locally using the Expand algorithm
of the PCG. Each such string is guaranteed, by the security of the PCG, to be
indistinguishable (from the viewpoint of the other parties) from a uniformly
random string sampled conditioned on satisfying the target correlation with
the expanded strings held by the other parties.

While this approach does not necessarily leads to a secure implementation
of an ideal functionality generating correlated random coins, it was shown in
[BCG+19b] (Theorem 19 in [BCG+19b]) that it provides a provably secure
implementation for all corruptible ideal functionalities for distributing correlated
random coins. Note that this property is satisfied by our functionality Fcorr. Our
protocol Πcorr will follow this approach. We start by constructing a pseudoran-
dom correlation generator for the type of correlated randomness produced by
Fcorr, building upon an LPN-based construction of [BCG+19b].

5.1 Substrings Tensor Powers Correlations (stp)

We now describe our construction of a PCG for generating the type of correlated
randomness produced by Fcorr. As all constructions of [BCG+19b], our con-
struction will be restricted to the two-party setting; hence, we focus on N = 2
parties from now on. Abstracting out the unnecessary details, the functional-
ity Fcorr does the following. It is parametrised with a vector length w, subsets
(Si)1≤i≤ns ∈ (

[w]
≤K

)ns
, a tensor power parameter tpp, and generates shares of:

(�r, ((1F || �r[Si])
⊗tpp)1≤i≤ns), where �r ∈ F

w is random.

We call C the correlation generator associated with Fcorr, i.e. the PPT
algorithm that, on input the security parameter in unary 1λ, samples cor-
related random string as above (where the parameters (ns,K, tpp) are func-
tions of λ). It is straightforward to see that C is a reverse-samplable cor-
relation generator , since it is an additive correlation: given any fixed share
share0, a matching share can be reverse-sampled by sampling �r and setting
share1 ← (�r, ((1F || �r[Si])

⊗tpp)1≤i≤ns) − share0. We call this type of correlated
randomness a subsets tensor powers (stp). Below, we describe a pseudorandom
correlation generator for such correlations.



Breaking the Circuit Size Barrier 861

5.2 Good Cover

Before we proceed with the description of a PCG to generate such correlations,
we need to introduce a concept, that of a good cover. The notations in this
subsection are completely self-contained, and may conflict with the parameters
defined for the main protocol. In the course of our construction we will want to
solve the following problem: given a vector �v of size n, a family (Si)i∈[t] ∈ P([n])t

of t (short) subsets of coordinates of �v, and a (small) bound B > 0, the problem
is to find a family (�vj)j∈[M ] of some number m of size-K subvectors of �v such
that:

1. The subvectors collectively cover �v;
2. For each i ∈ [t], there are at most B subvectors in (�vj)j∈[M ] whose coordinates

intersect Si.

We call such a family a B-Good Cover of (�v, (Si)i∈[t]). First of all we note that the
values of the vectors and subvectors do not matter, so we will conflate them with
sets and subsets (of coordinates) for simplicity, which leads to a more natural
formulation.

Definition 9 (Good Cover – Set Formulation). Let n,B,K, t, q,M ∈ N

and (Si)i∈[t] ∈ (
[n]
≤q

)t
a family of t subsets of [n] of size at most q each. A family

A = (�αj)j∈[M ] ∈ (
[n]
K

)M
is a B-Good Cover of (Si)i∈[t] if:

1. A covers [n]:
⋃M

j=1 �αj = [n]
2. Each Si intersects at most B elements of A: ∀i ∈ [t], |{j ∈ [M ] : �αj ∩ Si �=

∅}| ≤ B.

We abusively conflate the two views, where a good cover is just a family of
subsets A ∈ (

[n]
K

)M
and where the good cover is a family of sparse vectors—given

by a set of coordinates and a short vector of values—A ∈ (
(
[n]
K

) × F
K)M .

Lemma 10 (Random Covers are Good Covers.). Let n, κ, κ′ ∈ N�{0, 1},
and (Si)i∈[t] ∈ (

[n]
≤q

)t
a family of t subsets of [n] of size at most q each. Let

A = (�αj)j∈[M ] ∈ (
[n]
K

)M
be a sequence of M i.i.d. uniform random size-K subsets

of [n], with M = κ · n ln n/K. Let B ← κ′κ · q · ln n.
It holds that A = (�αj)j∈[M ] is a B-Good Cover of (Si)i∈[t] with probability at

least:
1 − 1

nκ−1
− t

n(κ′−2)κ·q/2
.

The proof is given in the full version.



862 G. Couteau and P. Meyer

5.3 PCG for Subsets Tensor Powers (PCGstp)

We now proceed with the description of a pseudorandom correlation generator
for subsets tensor powers.

PCG for Low-Degree Polynomials from [BCG+19b]. We start by recalling a
natural variant of pseudorandom correlation generator of [BCG+19b, Section 6],
which generates shares of �r⊗tpp, for a parameter tpp and a pseudorandom �r. It
relies on the xLPN assumption with dimension n, number of samples n′ > n,
and a number λ of noisy coordinates. In our instantiation, we will typically
consider n′ = O(n), e.g. n′ = 12n; this corresponds to a particularly conservative
variant of LPN with a very limited number of samples, and is equivalent to the
hardness of decoding a random constant-rate linear code (which is known as
the syndrome decoding problem). As discussed in Sect. 3, all known attacks on
the syndrome decoding problem for constant-rate codes have complexity 2O(λ).
The PCG of [BCG+19b] is parametrised by integers 1λ, n, n′, λ, tpp ∈ N (where
n′ > n), a field F, and a random parity-check matrix Hn′,n

$← F
(n′−n)×n′

(Fig. 3).

PCG for Degree-tpp Polynomial Correlations

PCG.Gen: On input 1λ:

PCG.Expand:

Fig. 3. PCG for low-degree polynomials from [BCG+19b].

Correctness follows from the fact that �v0 + �v1 = �e⊗tpp by the correctness of
MPFSS, and H⊗tpp

n′,n ·�e⊗tpp = (Hn′,n ·�e)⊗tpp by multilinearity of the tensor product.
Hence, denoting �r = Hn′,n ·�e, it holds that �r0 +�r1 = �r⊗tpp. For security, we must
show that the following distributions are indistinguishable for any σ = 0, 1:

{(kσ, �r1−σ) : (k0, k1)
$← Gen(1λ), �r1−σ ← Expand(1 − σ, k1−σ)}

c≈{(kσ, �r1−σ) : (k0, k1)
$← Gen(1λ), �rσ ← Expand(σ, kσ), �r $← F

n,

�r1−σ ← �r⊗tpp − �rσ}
Proof. We sketch the analysis for the sake of completeness; the full proof is given
in [BCG+19b]. Security is shown with the following sequence of hybrids: first



Breaking the Circuit Size Barrier 863

generate (kσ, �r1−σ) as in the first distribution above. Then, generate (kσ, �r1−σ)
as before, and generate an alternative key k′

σ solely from the parameters (1λ, F, n,
n′, t, tpp), using the simulator of the MPFSS. Output (k′

σ, �r1−σ); under the secu-
rity of the MPFSS, this distribution is indistinguishable from the previous one.
Note that k′

σ does not depend anymore on the noise vector �e. In the next hybrid,
generate �r

$← Hn′,n · �e and set �r1−σ ← �r⊗tpp − Expand(σ, kσ); this game is per-
fectly indistinguishable from the previous one. Finally, replace �r

$← Hn′,n · �e by
�r

$← F
n; under the LPN assumption, this last game (which correspond exactly to

the second distribution) is computationally indistinguishable from the previous
one, and security follows. ��

Our New PCG. We now describe a variant of the above PCG, tailored to com-
puting the tensor powers of many short subsets. The PCG is parametrised by
(Si)i∈[K] ∈ (

[w]
≤K

)ns
, ns subsets of at most K indices taken from [w]. We assume

for simplicity, but morally without loss of generality4, that
⋃ns

i=1 Si = [w]. Our
goal is for the parties to obtain shares of some pseudorandom vector �r ∈ F

w as
well as shares of (1 || �r[Si])⊗tpp ∈ F

w·tpp for each i ∈ [ns].
We start by generating a B-good cover (for some integer B) of the (Si)i of the

form (αj , �rj)j∈[m] ∈ (
(
[w]
θ

) × F
θ)m where each �rj is pseudorandom. We generate

each of the m pseudorandom masks �rj using a different instance of xLPN, i.e.
�rj ← Hj ·�ej , where �ej ∈ F

θ′
is λ-sparse and Hj

$← F
θ×θ′

for some θ′ = O(θ). For
each Si, we denote Ii := {j ∈ [m] : αj ∩ Si �= ∅} = {j1, . . . , j|Ii|} the set of the
indices of the masks which ‘intersect’ with Si. Note that ∀i ∈ [ns], |Ii| ≤ B by
definition of a B-good cover. We can now proceed with our main goal: generating
shares of a subsets tensor powers correlation.

We define �r :=
∑m

j=1 fαj ,	rj
∈ F

w, where fαj ,	rj
∈ F

w is the sparse vector
defined by (fαj ,	rj

)|αj
= �rj (and which is equal to 0F on [w]�αj). Since

⋃ns
i=1 Si =

[w] and each of the �rj is pseudorandom, �r is also pseudorandom.
Note that for any given i ∈ [ns], (1F || �r[Si]) is a subvector of

the vector �̃ri obtained by multiplying the block-diagonal matrix H ′
i =

Diag((1F),Hj1 , . . . , Hj|Ii|) with the vector �e′
i = (1F||ej1 || · · · ||ej|Ii|). Therefore

for any tensor power tpp (i.e. the degree of the polynomial correlation), �̃r
⊗tpp

i =
(H ′

i · �e′
i)

⊗tpp = (H ′
i)

⊗tpp · (�e′
i)

⊗tpp. If the parties use an MPFSS scheme to gener-
ate small seeds which expand to (�e′

i)
⊗tpp, they can then locally obtain shares of

�̃r
⊗tpp

i (since (H ′
i)

⊗tpp is public), and therefore of (1F || �r[Si])⊗tpp. From all these
shares of all the (1F || �r[Si])⊗tpp, i ∈ [ns] the parties can locally extract shares of
all the �r[Si] and thence shares of �r (since

⋃ns
i=1 Si = [w]). The protocol is given

in Fig. 4.

4 If
⋃ns

i=1 Si �= ∅, and with the notations of the rest of the section, the vector �r we
generate is equal to 0F on [w] �

⋃ns
i=1 Si, hence not pseudorandom. However, we can

simply have the parties generate another mask �r′ = H ′ · �e′, pseudorandom under
xLPN, to cover [w] �

⋃ns
i=1 Si. Since the parties do not need shares of (�r′)⊗tpp, the

communication complexity of generating the λ-sparse �e′ using an MPFSS is not an
issue.



864 G. Couteau and P. Meyer

Pseudorandom Correlation Generator PCGstp

Parameters: w, tpp, λ ∈ N and (Si)1≤i≤ns ⊆ [w]ns .

Gen: On input 1λ:

Expand:

// If there are several ways
to do so, it must be consistent accross σ ∈ {0, 1}.

a Implicitly, the Hj are supposed to be ‘suitably chosen’ for xLPN to be presumed
hard, e.g. that they were randomly and independently sampled.

Fig. 4. Pseudorandom correlation generator PCGstp for generating pseudorandom
instances of the subsets tensor powers correlation over a field F.

Theorem 11. Let w > 0, and (Si)i∈[ns] a list of ns subsets of [w]. Let B, θ′ such
that there exists a B-good cover of (Si)i∈[ns] comprised of size-θ′ vectors, and let
θ < θ′. Assume that the F-xLPN(θ, θ′, λ) assumption holds, and that MPFSS is a
secure multi-point function secret-sharing scheme for the family of (1+μ ·λ)tpp-
point functions from [(1+μ · θ′)tpp] to F for all μ ∈ [B]. Then PCGstp is a secure
pseudorandom correlation generator, which generates pseudorandom shares of a
subsets tensor powers correlation (�r, ((1F || �r[Si])

⊗tpp)1≤i≤ns) where �r ∈ F
w.



Breaking the Circuit Size Barrier 865

– Communication: If the MPFSS seeds have size O[λ · (1 + Bλ)tpp · log((1 +
Bθ′)tpp)] and MPFSS.FullEval can be computed with O((1+Bλ)tpp·(1+Bθ′)tpp·
log |F|

λ ) invocations of a pseudorandom generator PRG : {0, 1}λ �→ {0, 1}2λ+2,
then PCGstp.Gen outputs seeds of size:

|kσ| = O
(
ns · λ · (1 + Bλ)tpp · log

(
(1 + Bθ′)tpp

))
.

– Computation: The computational complexity of PCGstp.Expand is predomi-
nantly that of O(ns · (1+Bλ)tpp · (1+Bθ′) · log |F|

λ ) invocations of a PRG, plus
ns matrix-vector products with a matrix of dimensions (1+Bθ)tpp×(1+Bθ′)tpp

which requires at most O(ns · (Bθ)tpp · (Bθ′)tpp) ⊆ O(ns · (Bθ′)2·tpp) arithmetic
operations over F.

The proof of the above theorem is omitted in this version of the paper.

5.4 Instantiating the MPFSS

Theorem 11 assumes the existence of an MPFSS scheme MPFSS for the family
of all (1 + μ · λ)tpp-point functions from [(1 + μ · θ′)tpp] to F for some μ ∈ [B]
(or, equivalently, an MPFSS for each μ which can then all be combined into
one scheme), with the following efficiency guarantees: MPFSS.Gen(1λ) outputs
seeds of size O((1 + Bλ)tpp · λ · log((1 + Bθ′)tpp)), and MPFSS.FullEval can be
computed with O((1+Bλ)tpp ·(1+Bθ′)tpp · log |F|

λ ) invocations of a pseudorandom
generator PRG : {0, 1}λ �→ {0, 1}2λ+2. The works of [BGI16b,BCGI18] provides
exactly such a construction, which makes a black box use of any pseudorandom
generator PRG : {0, 1}λ �→ {0, 1}2λ+2. We instantiate the PRG using the LPN-
based construction of [BKW03], which we recall in the full version of the paper.

5.5 Securely Distributing MPFSS.Gen an Πstp

The seeds of the MPFSS scheme of [BCGI18] can be securely generated by using
parallel instances of a generic secure computation protocols to securely evaluate
the above PRG. Using GMW to instantiate the generic protocol, we have:

Corollary 12. There exists a semi-honest secure two-party protocol ΠMPFSS

which distributes the seeds of a multi-point function secret-sharing scheme
MPFSS for the family of t′-point functions from [(1+Bθ′)tpp] to F, using O(t′ ·ν ·
λ2) calls to an ideal oblivious transfer functionality, where ν = log((1 + Bθ′)tpp)
and t′ = (1+Bλ′)tpp, with an additional communication of O(t′ ·ν ·λ2) bits, and
total computation polynomial in t′ · ν · λ.

We prove the above corollary by exhibiting ΠMPFSS in the full version. As
a direct corollary of Corollary 12, since the seeds of PCGstp contain exactly ns
independent MPFSS seeds, we have:

Corollary 13. There exists a semi-honest secure two-party protocol Πstp which
distributes the seeds of the pseudorandom correlation generator PCGstp repre-
sented on Fig. 4, using O(ns · t′ · ν · λ2) calls to an ideal oblivious transfer func-
tionality, where ν = log((Bθ′ + 1)tpp) and t′ = (1 + Bλ)tpp, with an additional
communication of O(ns ·t′ ·ν ·λ2) bits, and total computation O(ns ·poly(t′ ·ν ·λ)).



866 G. Couteau and P. Meyer

Instantiating the oblivious transfer. To execute the GMW protocol, we need an
oblivious transfer. Under the F2-LPN(λ,O(λ), 1/λδ) assumption (δ is any small
constant), there exists oblivious transfers (with simulation security) with poly(λ)
communication and computation; see for example [DGH+20].

Constructing Πcorr. The work of [BCG+19b] shows that any corruptible func-
tionality distributing the output of a correlation generator C can be secure
instantiated using any semi-honest secure two-party protocol Π for distributing
the Gen procedure of a PCG for C , with the same communication as Π, and
with computational complexity dominated by the computational complexity of
Π plus the computational complexity for computing the PCG.Expand procedure.
Therefore, using their result together with our protocol Πstp for generating the
seeds of a PCG for subsets tensor powers correlation allows to securely instan-
tiate Fcorr (with N = 2).

Recall that the computation of PCGstp.Expand is dominated by O(ns · (1 +
Bλ)tpp · (1 + Bθ′)tpp · log |F|

λ ) invocations of a PRG – which requires at most
O(λ2 ·ns ·(1+Bλ)tpp ·(1+Bθ′)tpp · log |F|

λ ) operations over F2 using the simple LPN-
based PRG from [BKW03] –, plus an additional O(ns · (1 + Bθ)tpp · (1 + Bθ′)tpp)
arithmetic operations over F. Since each operation over F can be computed
with O(log |F|)2) boolean operations, combining the two, we get computation
O(λ · ns · (1 + Bθ)tpp · (1 + Bθ′)tpp · (log |F|)2).

All that remains is for the parties to generate the necessary material for
PCGstp: m random F

θ×θ′
matrices and m size-θ′ subsets of [w]. At its core,

this is just a matter for the parties to generate and hold the same m · (θ · θ′ ·
log |F| + log

(
w
θ′

)
) (pseudo)-random bits. This can be achieved by having one

party sample a seed of size λ, send it to the other, and both parties can expand
it locally by calling the length-doubling PRG from [BKW03] (and used above)
m · θ′ · (θ · log |F| + log w)/λ times (in a GGM tree-like approach). This requires
λ bits of communication and O(m · θ′ · (θ · log |F| + log w) · λ) bits of local
computation. This is summarised in an intermediate theorem, omitted from this
version. Wrapping up, using Πstp with an appropriate good cover suffices to
construct a protocol Πcorr for securely implementing the functionality Fcorr. The
detailed choice of parameters is deferred to the full version. Below, we describe
a specific choice of parameters for the full construction which suffices to arrive
at the claimed result.

6 Choice of Parameters

In this section, we tune the parameters of our protocol. We want to ensure the
scheme is correct with all but negligible probability, that it is secure, that the
communication is sublinear, and that the computation is polynomial. We make
two sets of choices for the parameters: the first optimising for communication,
and the other for computation (and incidentally for the strength of the security
assumption). The full discussion is deferred to the full version.

Combining Theorem 8–which provides a secure protocol in the Fcorr-hybrid
model–and the instantiation of the Fcorr as provided in the full version, with an



Breaking the Circuit Size Barrier 867

appropriate choice of parameters, also made explicit in the full version, we get
our main theorem, Main Theorem 1 below.

Main Theorem 1 (Sublinear Computation of Layered Circuits – Optimised
for Communication). Assuming the super-polynomial security of

– F-LPN with super-polynomial dimension �, O(�) samples, and inverse super-
polynomial rate,

– F2-LPN with super-polynomial dimension �′ = sO((1)), O(�′) samples, and
inverse polynomial rate (which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely evalu-
ates any layered arithmetic circuit over F with success probability 1 − negl(s)
and which uses O ([n + s/ log log s + m] · log |F|) bits of communication and
s3 · polylogs · (log |F|)2 bits of computation (where s, n, and m are respectively
the number of gates, inputs, and outputs of the circuit).

Instantiating the protocol with an alternative choice of parameters, also
detailed in the full version, instead yields the following.

Main Theorem 2 (Sublinear Computation of Layered Circuits – Optimised
for Computation). Assuming the quasi-polynomial security of

– F-LPN with quasi-polynomial dimension �, O(�) samples, and inverse quasi-
polynomial rate,

– F2-LPN with quasi-polynomial dimension �′, O(�′) samples, and inverse poly-
nomial rate (which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely eval-
uates any layered arithmetic circuit over F with success probability 1 − negl(s)
and which uses O ([n + o(s) + m] · log |F|) bits of communication and s1+o(1) ·
(log |F|)2 bits of computation (where s, n, and m are respectively the number of
gates, inputs, and outputs of the circuit).

References

AHI+17. Applebaum, B., Haramaty-Krasne, N., Ishai, Y., Kushilevitz, E., Vaikun-
tanathan, V.: Low-complexity cryptographic hash functions, pp. 7:1–7:31
(2017)

AIK07. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant
input locality. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
92–110. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 6

AIK09. Applebaum, B., Ishai, Y., Kushilevitz, E.: J. Cryptol. Cryptography with
constant input locality. 22(4), 429–469 (2009)

AJL+12. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

https://doi.org/10.1007/978-3-540-74143-5_6
https://doi.org/10.1007/978-3-540-74143-5_6
https://doi.org/10.1007/978-3-642-29011-4_29


868 G. Couteau and P. Meyer

BCG+17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic
secret sharing: Optimizations and applications, pp. 2105–2122 (2017)

BCG+19a. Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation, pp. 291–308 (2019)

BCG+19b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

BCG+20a. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Corre-
lated pseudorandom functions from variable-density LPN, pp. 1069–1080
(2020)

BCG+20b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Effi-
cient pseudorandom correlation generators from ring-LPN. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 14

BCGI18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE,
pp. 896–912 (2018)

BFKL93. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 24

BFKL94. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primi-
tives based on hard learning problems, pp. 278–291 (1994)

BFKR91. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low com-
munication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-38424-3 5

BGI15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 12

BGI16a. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 19

BGI16b. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and
extensions, pp. 1292–1303 (2016)

BI05. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with
applications to database search problems. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 24

BKS19. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Homo-
morphic secret sharing from lattices without FHE, vol. 11477, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1

BKW00. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model, pp. 435–440 (2000)

BKW03. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM (JACM) 50(4), 506–
519 (2003)

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/978-3-030-17656-3_1


Breaking the Circuit Size Barrier 869

BLVW19. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-
case hardness for LPN and cryptographic hashing via code smoothing.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 619–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 21

CG97. Chor, B., Gilboa, N.: Computationally private information retrieval
(extended abstract), pp. 304–313 (1997)

CGKS95. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval, pp. 41–50 (1995)

Cou19. Couteau, G.: A note on the communication complexity of multiparty
computation in the correlated randomness model. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 473–503. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 17

DFH12. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with
low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 4

DGH+20. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

FGJS17. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret
sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li,
Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68637-0 23

Gen09. Gentry, C.: Fully homomorphic encryption using ideal lattices, pp. 169–178
(2009)

GI14. Gilboa, N., Ishai, Y.: Distributed point functions and their applications.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 35

GMW87a. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority, pp. 218–229
(1987)

GMW87b. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements
in zero-knowledge and a methodology of cryptographic protocol design
(Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol.
263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-
540-47721-7 11

IKM+13. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2 34

JKPT12. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient
zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34961-4 40

KO97. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE
database, computationally-private information retrieval, pp. 364–373
(1997)

https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-34961-4_40


870 G. Couteau and P. Meyer

Lyu05. Lyubashevsky, V.: The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS,
vol. 3624, pp. 378–389. Springer, Heidelberg (2005). https://doi.org/10.
1007/11538462 32

NN01. Naor, M., Nissim, K.: Communication preserving protocols for secure func-
tion evaluation, pp. 590–599 (2001)

Pra62. Prange, E.: The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory 8(5), 5–9 (1962)

SGRR19. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed
vector-OLE: improved constructions and implementation, pp. 1055–1072
(2019)

Wak68. Waksman, A.: A permutation network. J. ACM (JACM) 15(1), 159–163
(1968)

Yao86. Yao, A.C.C.: How to generate and exchange secrets (extended abstract),
pp. 162–167 (1986)

YZW+19. Yu, Yu., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hash-
ing from sub-exponential learning parity with noise. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 1

https://doi.org/10.1007/11538462_32
https://doi.org/10.1007/11538462_32
https://doi.org/10.1007/978-3-030-34621-8_1


Function Secret Sharing for Mixed-Mode
and Fixed-Point Secure Computation

Elette Boyle1(B), Nishanth Chandran2(B), Niv Gilboa3, Divya Gupta2,
Yuval Ishai4, Nishant Kumar5, and Mayank Rathee6

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

2 Microsoft Research, Bengaluru, India
nichandr@microsoft.com

3 Ben-Gurion University of the Negev, Beersheba, Israel
4 Technion, Haifa, Israel

5 University of Illinois at Urbana-Champaign, Champaign, USA
6 University of California, Berkeley, USA

Abstract. Boyle et al. (TCC 2019) proposed a new approach for secure
computation in the preprocessing model building on function secret shar-
ing (FSS), where a gate g is evaluated using an FSS scheme for the
related offset family gr(x) = g(x + r). They further presented efficient
FSS schemes based on any pseudorandom generator (PRG) for the offset
families of several useful gates g that arise in “mixed-mode” secure com-
putation. These include gates for zero test, integer comparison, ReLU,
and spline functions. The FSS-based approach offers significant savings
in online communication and round complexity compared to alternative
techniques based on garbled circuits or secret sharing.

In this work, we improve and extend the previous results of Boyle
et al. by making the following three kinds of contributions:

– Improved Key Size. The preprocessing and storage costs of
the FSS-based approach directly depend on the FSS key size. We
improve the key size of previous constructions through two steps.
First, we obtain roughly 4× reduction in key size for Distributed
Comparison Function (DCF), i.e., FSS for the family of functions
f<

α,β(x) that output β if x < α and 0 otherwise. DCF serves as a
central building block in the constructions of Boyle et al.. Second, we
improve the number of DCF instances required for realizing useful
gates g. For example, whereas previous FSS schemes for ReLU and
m-piece spline required 2 and 2m DCF instances, respectively, ours
require only a single instance of DCF in both cases. This improves
the FSS key size by 6 − 22× for commonly used gates such as ReLU
and sigmoid.

– New Gates. We present the first PRG-based FSS schemes for arith-
metic and logical shift gates, as well as for bit-decomposition where
both the input and outputs are shared over Z2n . These gates are
crucial for many applications related to fixed-point arithmetic and
machine learning.

N. Kumar and M Rathee—Work done while at Microsoft Research, India.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 871–900, 2021.
https://doi.org/10.1007/978-3-030-77886-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_30


872 E. Boyle et al.

– A Barrier. The above results enable a 2-round PRG-based secure
evaluation of “multiply-then-truncate,” a central operation in fixed-
point arithmetic, by sequentially invoking FSS schemes for multi-
plication and shift. We identify a barrier to obtaining a 1-round
implementation via a single FSS scheme, showing that this would
require settling a major open problem in the area of FSS: namely, a
PRG-based FSS for the class of bit-conjunction functions.

1 Introduction

Secure multi-party computation (or MPC) [8,20,29,53] allows two or more par-
ties to compute any function on their private inputs without revealing anything
other than the output. A useful intermediate construction goal is that of MPC in
the preprocessing model, wherein the parties receive correlated randomness from
a trusted dealer in an offline input-independent phase, and then use this corre-
lated randomness in the online phase once the inputs are known. Such protocols
can be directly converted to ones in the standard model (without a dealer) via an
assortment of general transformations, e.g. emulating the role of the dealer jointly
using a targeted MPC protocol between the parties (see discussion in Appendix
A in full version [9]). This modular design approach facilitates significant per-
formance benefits, and indeed is followed by essentially all concretely efficient
MPC protocols to date. Common types of correlated randomness include Beaver
triples for multiplication [6], garbled circuit correlations [25,53], OT [16,31,35]
and OLE [32,42] correlations, and one-time truth tables [23,30].

When used to evaluate “pure” Boolean or arithmetic circuits, MPC protocols
in the preprocessing model have the benefit of a very fast online phase in which
the local computation performed by the parties is comparable to computing the
circuit in the clear. Furthermore, the online communication is roughly the same
as communicating the values of all wires in the circuit, and the number of online
rounds is equal to the circuit depth.

Unfortunately, typical applications of MPC in areas such as machine learn-
ing and scientific computing apply computations that cannot be succinctly rep-
resented by pure Boolean or arithmetic circuits. Instead, they involve a mix-
ture of arithmetic operations (additions and multiplications over a large field or
ring) and “non-arithmetic” operations such as truncation, rounding, integer com-
parison, ReLU, bit-decomposition, or piecewise-polynomial functions known as
splines. The cost of naively emulating such mixed computations by pure Boolean
or arithmetic circuits is prohibitively high.

This motivated a long line of work on “mixed-mode” MPC, which supports
efficient inter-conversions between arithmetic and Boolean domains and sup-
ports the above kinds of non-arithmetic operations. General frameworks such
as [15,19,25,36,40] allow mixing of arithmetic gates (additions and multiplica-
tions) and Boolean gates (such as integer comparison), performing a suitable
conversion whenever the type of gate changes. Together with MPC protocols for
Boolean circuits based on garbled circuits or secret sharing, they can support the



Function Secret Sharing for Mixed-Mode 873

above kinds of non-arithmetic operations. However, the efficiency of these tech-
niques leaves much to be desired, as they typically incur a significant overhead
in communication and rounds even when ignoring the cost of input-independent
preprocessing.

Recently, Boyle et al. [13] proposed a powerful approach for mixed-mode
MPC in the preprocessing model, using function secret sharing (FSS) [10,12]
(their approach can be seen as a generalization of an earlier truth-table based
protocol of Damg̊ard et al. [23]). The FSS-based approach to MPC with prepro-
cessing can support arithmetic operations that are mixed with the above kinds
of non-arithmetic operations with the same online communication and round
complexity as pure arithmetic computations, and while only making use of sym-
metric cryptography. In the present work, we significantly improve the efficiency
of this FSS-based approach and extend it by supporting useful new types of
non-arithmetic operations. Before giving a more detailed account of our results,
we give an overview of the FSS-based approach to MPC with preprocessing.

1.1 MPC with Preprocessing Through FSS

At a high level, a (2-party) FSS scheme [10,12] for a function family F splits a
function f ∈ F into two additive shares f0, f1, such that each fσ hides f and
f0(x) + f1(x) = f(x) for every input x. Here we assume that the output domain
of f is a finite Abelian group G, where addition is taken over G. While this can
be trivially solved by secret-sharing the truth-table of f , the goal of FSS is to
obtain succinct descriptions of f0 and f1 using short keys k0 and k1, while still
allowing their efficient evaluation.

For simplicity, consider semi-honest 2-party secure computation (2PC) with
a trusted dealer – in the full version [9] we discuss how to emulate the trusted
dealer with 2PC (building upon [27]) as well as extensions to malicious security,
in Appendix A and B, respectively. The main idea, from [13], to obtain 2PC with
trusted dealer is as follows. Consider a mixed circuit whose wires take values from
(possibly different) Abelian groups and where each gate g maps a single input
wire to a single output wire. We can additionally make free use of fan-out gates
that duplicate wires, “splitters” that break a wire from a product group G1×G2

into two wires, and “joiners” that concatenate two wires into a single wire from
the product group. This allows us to view a two-input gate (such as addition or
multiplication) as a single-input gate applied on top of a joiner gate.

The FSS-based evaluation of such a circuit proceeds by maintaining the fol-
lowing invariant: for every wire wi in the circuit, both parties learn the masked
wire value wi + ri, where ri is a random secret mask (from the group associated
with wi) which is picked by the dealer and is not revealed to any of the parties.
The only exceptions are input wires, where the mask ri is revealed to the party
owning the input, and the circuit output wires, where the masks are revealed to
both parties.

This above is easy to achieve for input wires by simply letting the dealer
send to each party the masks of the inputs owned by this party, and having
the parties reveal the masked inputs to each other. The challenge is to maintain



874 E. Boyle et al.

the invariant when evaluating a gate g with input wire wi and output wire
wj = g(wi) without revealing any information about the wire values. The idea is
to consider the function mapping the masked input w′

i = wi + ri to the masked
output w′

j = g(wi) + rj as a secret function f determined by ri and rj , applied
to the public input w′

i. Concretely, f(w′
i) = g(w′

i − ri) + rj .
Since the secret function f is known to the dealer (who picks all random

masks), the dealer can securely delegate the evaluation of f to the two parties by
splitting it into f0 and f1 via FSS and sending to each party σ its corresponding
FSS key kσ. Letting party σ evaluate fσ(w′

i), the parties obtain additive shares
of w′

j , which they can safely exchange and recover the masked output w′
j . Finally,

the circuit output wires are unmasked by having the dealer provide their masks
to both parties.

The key observation is that given a gate g, the secret function f comes
from the family of offset functions Fg that includes all functions of the form
g[r

in,rout](x) = g(x − rin) + rout. (Alternatively, up to a slight loss of efficiency, it is
enough to use FSS for the simpler class of functions of the form gr(x) = g(x+r),
together with separate shares of the masks.) We refer to an FSS scheme for the
offset function family Fg as an FSS gate for g. The key technical challenge in
implementing the approach of [13] is in efficiently realizing FSS gates for useful
types of gates g.

For addition and multiplication gates over a finite ring, the FSS gates are
information-theoretic and essentially coincide with Beaver’s protocol [6] (more
accurately, its circuit-dependent variant from [7,21,23]). A key observation of [13]
is that for a variety of useful non-arithmetic gates, including zero test, integer
comparison, ReLU, splines, and bit-decomposition (mapping an input in Z2n to
the corresponding output in Z

n
2 ), FSS gates can be efficiently constructed using

a small number of invocations of FSS schemes from [12]. The latter FSS schemes
have the appealing feature of making a black-box use of any pseudorandom gen-
erator (PRG). This gives rise to relatively short keys and fast implementations
using hardware support for AES.

Alternative Variants. The above protocol uses circuit-dependent correlated
randomness, since a wire mask is used in two or more gates incident to this wire,
and this incidence relation depends on the circuit topology. At a small additional
cost, one can break the correlations between FSS gates and obtain a circuit
independent variant; see [13] for details. Another variant, which corresponds to
how standard MPC protocols are typically described, is to use an FSS gate for
mapping a secret-shared input to a secret-shared output (rather than a masked
input to a masked output). This variant proceeds as described above, except
that the parties start by reconstructing the masked input using a single round of
interaction, and then use the FSS gate to locally compute shares of the output
(without any interaction). With this variant, one can seamlessly use FSS gates
in combination with other kinds of MPC protocols are based on garbled circuits,
secret sharing, or homomorphic encryption.

Efficiency. When mapping a masked input to a masked output, processing a
gate g requires only a single round of interaction, where each party sends a



Function Secret Sharing for Mixed-Mode 875

message to the other party. This message consists of a single element in the
output group of g. Similarly, the variant mapping a secret-shared input to a
secret-shared output still requires only a single round of interaction, where the
message here consists of a single element in the input group of g. Assuming a
single round of interaction, this online communication complexity is optimal [13].
Overall, when evaluating a full circuit the communication by each party (using
either the masked-input to masked-output or the shared-input to shared-output
variant) is equal to that of communicating all wire values. The round complexity
is equal to the circuit depth, no matter how complex the gates g are. The only
complexity measures which are sensitive to the FSS gate implementation are
the evaluation time and, typically more significantly, the size of the correlated
randomness communicated by the dealer and stored by the parties. Optimizing
the latter is a central focus of our work.

When is the FSS-Based Approach Attractive? It is instructive to compare
the efficiency features of the above FSS-based approach with that of the two main
approaches for MPC with preprocessing: a Yao-style protocol based on garbled
circuits (GC) [53] and a GMW-style protocol based on secret sharing [29].1

Consider the goal of securely converting input shares for g into output shares
when g is a nontrivial gate, say ReLU, over elements of ZN for N = 2n.

The FSS-based online protocol requires only one round of interaction in which
each party sends only n bits (as argued above, this is optimal). In contrast, in
a GC-based protocol the online phase (as used in several related works [15,19,
25,33,39–41]) requires one of the parties to communicate 256n bits (a pair of
AES keys for each input), which is 128× bigger. Furthermore, the parties need
to interact in two sequential rounds. In the full version of this paper [9], we
discuss a way to reduce the online communication of a GC-based protocol by
2×, which still leaves a 64× overhead in communication and 2× overhead in
rounds over the FSS-based protocol. A GMW-style protocol typically requires
a large number of rounds (depending on the multiplicative depth of a Boolean
circuit implementing g), and has online per-party communication which is bigger
than n by a multiplicative factor which depends on the number of multiplication
gates in the circuit. See full version for a more concrete comparison with previous
works taking the GC-based or GMW-based approach.

Even when considering MPC without preprocessing, namely, when the offline
and online phases are combined, the FSS-based approach can still maintain some
of its advantages. For instance, since keys for all FSS gates in a deep circuit can
be generated in parallel, the advantage in round complexity is maintained. In
the 3PC setting where one party emulates the role of the dealer, or in the 2PC
setting with a relatively small input length n (see Appendix A of full version [9]),
one can potentially beat the communication complexity of a GC-based protocol,
depending on the FSS key size. This will be further discussed below.

1 Here we only consider protocols whose online phase is based on symmetric cryptog-
raphy. This excludes protocols based on homomorphic encryption, whose concrete
costs are typically much higher.



876 E. Boyle et al.

To conclude, FSS-based protocols will typically outperform competing
approaches in two common scenarios: (1) when offline communication is cheaper
than online communication, or alternatively (2) when latency is the bottleneck
and minimizing rounds is a primary goal. In the setting of MPC with preprocess-
ing, the FSS-based approach beats all previous practical approaches to mixed-
mode secure computation with respect to both online communication and round
complexity.

Finally, we stress that while the above discussion mainly focuses on semi-
honest 2PC with a trusted dealer, most of the above benefits also apply to
malicious security (see full version), and when emulating the trusted dealer using
the different options we discuss: third party, 2PC protocol (full version), or semi-
trusted hardware [43].

Bottlenecks for the FSS-Based Approach. Given the optimality of rounds
and communication in the online evaluation of a gate g, the main bottleneck in
the FSS-based approach lies in the size of the correlated randomness provided
by the trusted dealer, namely the size of the FSS keys kσ. This affects both
offline communication and online storage. In the 3PC setting, where the trusted
dealer is emulated by a third party, the FSS key size directly translates to offline
communication from the third party to the other two parties. In the 2PC set-
ting, where the dealer is emulated by an offline protocol for securely generating
correlated randomness (see full version [9] for more details), the communication
and computation costs of the offline protocol grow significantly with the key
size. Thus, minimizing key size of useful FSS gates is strongly motivated by all
application scenarios of FSS-based MPC.

Many compelling use-cases of MPC, such as privacy-preserving machine
learning, finance, and scientific computing, involve numerical computation with
finite precision, also known as “fixed-point arithmetic.” Arithmetic over fixed-
point numbers not only requires arithmetic operations such as additions and
multiplications, for which efficient protocols can be based on traditional tech-
niques, but also other kinds of operations that cannot be efficiently reduced to
arithmetic operations over large rings. These include Boolean shift operators
needed for adjusting the “scale” of fixed-point numbers. Concretely, for N = 2n,
a logical (resp., arithmetic) right shift by s converts an element x ∈ ZN represent-
ing an n-bit unsigned (resp., signed) number to y ∈ ZN representing �x/2s�. To
date, there are no PRG-based realizations of FSS gates for these Boolean opera-
tions,2 and hence, fixed-point arithmetic operations cannot be realized securely
using existing lightweight FSS machinery.

We now discuss our contributions that address these bottlenecks.

2 An FSS-based protocol for right-shift can be obtained using the FSS gate for bit-
decomposition from [13]. However, their construction only allows output shares of
bits over Z2, whereas such a reduction (as well as other applications) requires output
shares over ZN . Conversion of shares from Z2 to ZN would thus require an additional
round of interaction. Furthermore, this approach would require key size quadratic
in input length: O(n2λ) for N = 2n (i.e., n-bit numbers) and PRG seed length λ.



Function Secret Sharing for Mixed-Mode 877

1.2 Our Contributions

In this work, we make the following contributions:

– Improved Key Size. We obtain both concrete and asymptotic improve-
ments in key size for widely applicable FSS gates such as integer comparisons,
interval containment, bit-decomposition, and splines.

– New Gates. We extend the scope of FSS-based MPC by providing the first
efficient FSS gates for several useful function families that include (logical
and arithmetic) right shift, as well as bit-decomposition with outputs shared
in ZN (rather than Z2 in the construction from [13]).

– A Barrier. We provide a barrier result explaining the difficulty of obtaining
PRG-based FSS gates for functions such as fixed-point multiplication.

We now give more details about these three kinds of contributions.

Improved Key Size. In Table 1 we summarize our improvements in key size
over [13] and compare our improved FSS key size with garbled circuit size for
the same gates. We provide the key size both as a function of input bitlength
n and for the special case n = 16. Compared to [13], we observe a reduction
in key size ranging from 6× for ReLU to 22× for splines and 77× for multiple
interval containment (MIC) with 12 intervals. (Please refer to Appendix D in full
version [9] for precise definitions of all gate types.) As can be observed, for all of
the FSS gates considered in [13], their key size was significantly larger than the
garbled circuit size. With our constructions, the key size is significantly lower
than garbled circuits, for all gates except bit-decomposition (with output in Z

n
2 ).

For instance, our key size is at least 2× better than garbled circuits for ReLU
and 15× and 27× better for splines and MIC, respectively. Recall that when
compared to MPC protocols that use garbled circuits for preprocessing, protocols
that follow the FSS-based approach have 64× lower online communication and
2× less rounds. So with our new schemes, FSS-based MPC with preprocessing
will typically become more efficient in storage as well. The offline cost can also
be smaller in some MPC settings (such as the 3PC case).

Our improvements in key size are obtained in two steps. The first step is a
roughly 4× improvement for a central building block of useful FSS gates that
we call Distributed Comparison Function (DCF). A DCF is an FSS scheme
for the family of functions f<

α,β(x) that output β if x < α and 0 otherwise,
where α, β ∈ ZN . This improvement is independently motivated by several other
applications, including Yao’s millionaires’ problem and 2-server PIR with range
queries. However, our primary motivation is the fact that previous FSS gate
constructions from [13] are cast as reductions that invoke multiple instances
of DCF. As a second step, we significantly improve the previous reductions
from [13] of useful non-arithmetic FSS gates to DCF. We describe these two
types of improvements in more detail below.



878 E. Boyle et al.

Optimized DCF. The best previous DCF construction is an instance of an FSS
scheme for decision trees from [12]. Instead, we provide a tighter direct construc-
tion that reduces the key size by roughly 4×. Concretely, the total key size is
improved from ≈ 2n(4λ + n) to ≈ 2n(λ + n) for input and output domains of
size N = 2n and PRG seed length λ, with similar savings for general input and
output domains.3

Better Reductions to DCF. We significantly reduce the number of DCF instances
required by most of the non-arithmetic FSS gates from [13]. The main new
building block is a new FSS scheme for the offset families of interval containment
(IC for short) and splines (piecewise polynomial functions) when the comparison
points are public. Our construction uses only one DCF instance compared to the
analogous constructions from [13] that require 2 and 2m DCF instances for IC
and splines with m pieces, respectively, but can hide the comparison points. We
note that comparison points are public for almost all important applications -
e.g. the popular activation function in machine learning, ReLU,4 absolute value,
as well as approximations of transcendental functions [38,41].

Concretely, for n = 16 (where inputs and outputs are in ZN for N = 2n),
including our improvement in DCF key size, we improve the key size from [13]
by roughly 6×, 12×, and 22× for the spline functions ReLU, absolute value
and sigmoid, respectively, where the sigmoid function is approximated using
12 pieces [38]. Moreover, this improvement in key size makes the FSS-based
construction beat garbled circuits not only in terms of online communication but
also in terms of per-gate storage requirements. See Table 1 for a more detailed
comparison.

The main technical idea that enables the above improvement is that an FSS
scheme for the offset family of a public IC function f[p,q] (that outputs is 1 if
p ≤ x ≤ q and 0 otherwise) can be reduced to a single DCF instance with
α = N − 1 + rin. We build on this construction to reduce FSS keys for multiple
intervals (and hence splines with constant payload) to this single DCF instance.
See Sect. 4 for details. Constructions for splines with general polynomial outputs
employ additional techniques to embed secret payloads (see Sect. 5.1).

Another kind of FSS gate for which we get an asymptotic improvement in
key size over [13] is bit-decomposition with outputs shared over Z2. Here an input
x ∈ ZN is split to its bit-representation (xn−1, . . . , x0) ∈ {0, 1}n, where each xi

is individually shared over Z2. (This type of “arithmetic to Boolean” conversion
can be useful for applying a garbled circuit to compute a complex function of
x that is not efficiently handled by FSS gates.) Non-trivial protocols for bit-
decomposition have been proposed in different MPC models [22,44,49,50]. An
FSS gate for the above flavor of bit-decomposition was given in [13] with O(n2λ)

3 A concurrent work by Ryffel et al. [48] on privacy-preserving machine learning using
FSS also proposes an optimized DCF scheme. Our construction is around 1.7× better
in key size than theirs.

4 A ReLU operator, or Rectified Linear Unit, is a function on signed numbers defined
by g(x) = max(x, 0).



Function Secret Sharing for Mixed-Mode 879

Table 1. Comparison of our FSS gate key sizes, with those of [13], and Garbled Circuits
(GC) [52]. For FSS (i.e., our work and [13]), we list total key size for both P0, P1. For
GC, we under-approximate and consider only the size of garbled circuit. The table only
captures the size of correlated randomness (offline communication in the 3PC case);
the online communication corresponding to both FSS columns is at least λ

2 × better
than GC (and rounds 2× better). UN , SN denote unsigned and signed n-bit integers,
respectively. We consider gates for: Interval containment (IC), multiple interval con-
tainment (MIC) with m intervals, splines with m intervals and d-degree polynomial
outputs, ReLU, Absolute value (ABS), Bit Decomposition (BD), Logical/Arithmetic
Right Shifts (LRS/ARS) by s. Syntax and definitions of all gates are described in
appendix D in our full version [9]. We provide cost in terms of number of DCFn,G keys
for DCF with input bitlength n and output group G. To disambiguate between our
optimized DCF and DCF used in [13], we use DCFBGI

n,G for the latter. Let � = �log |G|�.
Size of our optimized DCFn,G key is total 2 (n(λ + � + 2) + λ + �) bits. Size of DCFBGI

n,G

key (using [12]) is 2 (4n(λ + 1) + n� + λ) bits. For our BD scheme (with output over
U

n
2 ), w is a parameter (here we assume w | n) and compute grows exponentially with

w. We provide approximate key size expressions here by ignoring lower order terms;
refer to Table 2 in Appendix C.2 of full version [9] for exact expressions. The values
in parenthesis give exact key size in bits for λ = 128, n = 16, m = 12, d = 1, w = 4,
s = 7.

Gate This work BGI’19 [13] GC

IC (n) DCFn,UN 2 × DCFBGI
n,UN

8λn

(4992) (34592) (15616)

MIC (n, m) DCFn,UN + 2mn 2m × DCFBGI
n,UN

6λmn

(5344) (415104) (145152)

Splines (n, m, d) DCF
n,U

m(d+1)
N

+ 4mn(d + 1) 2m × DCFBGI

n,U
(d+1)
N

4λmn(d + 2)

(19040) (427008) (289536)

ReLU (n) DCFn,U2
N

2 × DCFBGI
n,U2

N
6λn

(5664) (35616) (11776)

ABS (n) DCFn,U2
N

4 × DCFBGI
n,U2

N
8λn

(5728) (71168) (15616)

BD (n, w) n
w

× DCFn+w
2 ,U2

(n − 1) × DCFBGI
n
2 ,U2

2λn

(11544) (127952) (3840)

LRS (n, s) DCFs,UN + DCFn,UN – 4λn

(7324) (–) (7680)

ARS (n, s) DCFs,SN + DCFn−1,S2
N

– 4λn

(7608) (–) (7680)

key size. Here we substantially improve the hidden constant by reducing the bit-
decomposition problem to a series of public interval containments. Moreover, we
show how to further reduce the key size by an extra factor of w at the cost of
computational overhead that grows exponentially with w. Setting w = log n, we



880 E. Boyle et al.

get an asymptotic improvement in key size over [13], while maintaining poly(n)
computation time.

New FSS Gates. A central operation that underlies fixed-point arithmetic with
bounded precision is a Boolean right shift operation that maps a number x ∈ ZN

to y ∈ ZN representing �x/2s� for shift amount s. This operation comes in two
flavors: logical that applies to unsigned numbers and arithmetic that applies to
signed numbers in 2’s complement representation. These operations are typically
applied following a multiplication operation to enable further computations while
keeping the significant bits. Previous results from the literature do not give rise to
efficient PRG-based FSS gates for these shift operators. We present a new design
approach to FSS for right shift that uses only two invocations of DCF, obtaining
asymptotic key size of O(nλ + n2). See Sect. 6 for definitions and construction
details and Table 1 for comparison of key size with garbled circuits.

Another new feasibility result is related to the bit-decomposition problem
discussed above. The FSS gate for bit-decomposition from [13] crucially relies
on the output bits xi being shared over Z2, whereas in some applications one
needs the bits xi to be individually shared over ZN (or a different ZN ′). While a
conversion from Z2 to ZN can be done directly using another FSS gate or obliv-
ious transfer, this costs at least one more round of interaction. We realize this
generalized form of bit-decomposition directly by a single FSS gate, via a similar
approach of reducing the problem to a series of public interval containments.

A Barrier. Most applications of MPC in the areas of machine learning (see
[40,41,46] and references therein) and scientific computing (see [4,5,17,18] and
references therein) use fixed-point arithmetic for efficiently obtaining an approx-
imate output. Fixed-point addition is defined to be the same as integer addition;
however, fixed-point multiplication requires an integer multiplication followed by
an appropriate right shift operation for preventing integer overflows (see Sect. 6).
Many prior works, for efficiency reasons, implement this right shift (or trunca-
tion) through a non-interactive “local truncation” procedure [26,37,40,41,51].
This has two issues. First, the truncated output can be totally incorrect, in the
sense of being random, with some (small) probability. Since this probability
accumulates with the number of such multiplications (and hence truncations),
it necessitates an increase of the modulus N that can take a toll on efficiency.
While this overhead is reasonable in some cases [2,47], local truncation may be
too costly for large scale applications [46]. Second, even when a big error does
not occur, the least significant bit resulting from local truncation is erroneous
with high probability. Such small errors are aggregated over the course of the
computation. This makes the correctness of the implementation more difficult
to verify, and can potentially lead to fraud through salami slicing (or penny
shaving) in financial applications [1], where the adversary ensures that the small
errors are biased in its favorable direction.

Our new FSS gate constructions for right shifts provide an effective solution
for performing fixed-point multiplication operations in two rounds by sequen-



Function Secret Sharing for Mixed-Mode 881

tially invoking two FSS gates: one FSS gate for performing multiplication over
ZN (implemented via [13] or a standard multiplication triple), followed by a sec-
ond FSS gate to perform an arithmetic right shift for signed integers (or logical
shift for unsigned integers). This approach gives a faithful error-free implemen-
tation of secure fixed-point multiplication for inputs of all bitlengths. A natural
question is whether it is possible to replace the two FSS gates by a single FSS
gate, avoiding the additional round of communication, using only cheap sym-
metric cryptographic primitives such as a PRG.

We demonstrate a barrier toward this goal, showing that this requires set-
tling a major open problem in the area of FSS: namely, whether the family
of conjunctions of a subset of n bits has an FSS scheme based on symmet-
ric cryptography. Currently, FSS schemes for this family are known only under
structured, public-key computational hardness assumptions such as Decisional
Diffie-Hellman [11], Paillier [28] or Learning With Errors [14,26], that imply
homomorphic public key encryption. Such FSS schemes are less efficient than
the PRG-based schemes considered in this work by several orders of magnitude,
with respect to both communication and computation.

2 Preliminaries

We provide an abbreviated version of preliminaries and notation. A more detailed
formal treatment can be found in Appendix E in our full version [9].

Notation. We use arithmetic operations in the ring ZN for N = 2n. We naturally
identify elements of ZN with their n-bit binary representation, where 0 is repre-
sented by 0n and N − 1 by 1n. Unless otherwise specified, we parse x ∈ {0, 1}n

as x[n−1], . . . , x[0], where x[n−1] is the most significant bit (MSB) and x[0] is the
least significant bit (LSB). For 0 ≤ j < k ≤ n, z = x[j,k) ∈ Z2k−j denotes the
ring element corresponding to the bit-string x[k−1], . . . , x[j]. || denotes string con-
catenation. Function family denotes an infinite collection of functions specified
by the same representation. λ denotes computational security parameter.

2.1 Data Types and Operators

Unsigned and Signed Integers. We consider computations over finite bit unsigned
and signed integers, denoted by UN and SN , respectively, over n-bits. We
note that UN = {0, . . . , N − 1} is isomorphic to ZN . Moreover, SN =
{−N/2, . . . , 0, . . . , N/2−1} can be encoded into ZN or UN using 2’s complement
notation or mod N operation. The positive values {0, . . . , N/2− 1} are mapped
identically to {0, . . . , N/2− 1} and negative values {−N/2, . . . ,−1} are mapped
to {N/2, . . . , N − 1}. In this notation, the MSB of (the binary representation
of) x is 0 if x ≥ 0 and 1 if x < 0. Note that addition, subtraction and mul-
tiplication of signed integers modulo N respect this representation as long as
the result is in the range [−N/2, N/2). Our work also considers fixed-point rep-
resentation of numbers and its associated arithmetic. Section 6 provides a more
detailed description of the mapping of rationals into the fixed-point space as well
as fixed-point arithmetic.



882 E. Boyle et al.

Operators. We consider several standard operators, which can be thought of as
applying to (signed or unsigned) integers. Each operator is defined by a gate: a
function family parameterized by input and output domains and possibly other
parameters. Some of the operators we consider are single and multiple inter-
val containments (Sect. 4), splines and applications to ReLU and absolute value
(Sect. 5.1), bit decomposition (Sect. 5.2 in full version [9]), as well as operators
required for the realization of fixed-point arithmetic - such as fixed-point addi-
tion and multiplication (Sect. 6.1), logical right shifts (Sect. 6.2), arithmetic right
shifts, and comparison (Sect. 6.3 and 6.4 in full version [9]).

2.2 Function Secret Sharing

We follow the definition of function secret sharing (FSS) from [12]. Intuitively, a
(2-party) FSS scheme is an efficient algorithm that splits a function f ∈ F into
two additive shares f0, f1, such that: (1) each fσ hides f ; (2) for every input x,
f0(x) + f1(x) = f(x). The main challenge is to make the descriptions of f0 and
f1 compact, while still allowing their efficient evaluation. As in [10,12,13], we
insist on an additive representation of the output that is critical for applications.

Definition 1 (FSS: Syntax). A (2-party) function secret sharing (FSS)
scheme is a pair of algorithms (Gen,Eval) such that:

– Gen(1λ, f̂) is a PPT key generation algorithm that given 1λ and f̂ ∈ {0, 1}∗

(description of a function f) outputs a pair of keys (k0, k1). We assume that
f̂ explicitly contains descriptions of input and output groups G

in,Gout.
– Eval(σ, kσ, x) is a polynomial-time evaluation algorithm that given σ ∈ {0, 1}

(party index), kσ (key defining fσ : Gin → G
out) and x ∈ G

in (input for fσ)
outputs a group element yσ ∈ G

out (the value of fσ(x)).

Definition 2 (FSS: Correctness and Security). Let F = {f} be a function
family and Leak be a function specifying the allowable leakage about f̂ . When Leak
is omitted, it is understood to output only G

in and G
out. We say that (Gen,Eval)

as in Definition 1 is an FSS scheme for F (with respect to leakage Leak) if it
satisfies the following requirements.

– Correctness: For all f̂ ∈ PF describing f : Gin → G
out, and every x ∈ G

in,
if (k0, k1) ← Gen(1λ, f̂) then Pr [Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

– Security: For each σ ∈ {0, 1} there is a PPT algorithm Simσ (simulator),
such that for every sequence (f̂λ)λ∈N of polynomial-size function descriptions
from F and polynomial-size input sequence xλ for fλ, the outputs of the fol-
lowing experiments Real and Ideal are computationally indistinguishable:

• Realλ: (k0, k1) ← Gen(1λ, f̂λ); Output kσ.
• Idealλ: Output Simσ(1λ, Leak(f̂λ)).

A central building block for many of our constructions is an FSS scheme for a
special interval function referred to as a distributed comparison function (DCF)
as defined below. We formalize it below.



Function Secret Sharing for Mixed-Mode 883

Definition 3 (DCF). A special interval function f<
α,β, also referred to as a

comparison function, outputs β if x < α and 0 otherwise. We refer to an FSS
schemes for comparison functions as distributed comparison function (DCF).
Analogously, function f≤

α,β outputs β if x ≤ α and 0 otherwise. In all of these
cases, we allow the default leakage Leak(f̂) = (Gin,Gout).

The following theorem captures the concrete costs of the best known con-
struction of DCF from a PRG (Theorem 3.17 in the full version of [12]):

Theorem 1 (Concrete cost of DCF [12]). Given a PRG G : {0, 1}λ →
{0, 1}2λ+2, there exists a DCF for f<

α,β : G
in → G

out with key size 4n · (λ +
1) + n� + λ,where n = 
log |Gin|� and � = 
log |Gout|�. For �′ = 
 �

λ+2�, the key
generation algorithm Gen invokes G at most n · (4 + �′) times and the algorithm
Eval invokes G at most n · (2 + �′) times.

We use DCFn,G to denote the total key size, i.e. |k0| + |k1|, of the DCF key
with input length n and output group G (see Table 1). This captures the output
length of Gen algorithm. On the other hand, we use DCFn,G (non-bold) to denote
the key size per party, i.e., |kb|, b ∈ {0, 1}. This captures the key size used in
Eval algorithm. In the rest of the paper, we use DCFn,G to count number of
invocations/evaluations as well as key size per evaluator Pb, b ∈ {0, 1}.

2.3 FSS Gates

The recent work of Boyle et al. [13] provided general-purpose transformations
for obtaining efficient secure computation protocols in the preprocessing model
via FSS schemes for corresponding function families.

The key idea is the following FSS-based gate evaluation procedure. For each
gate g : Gin → G

out in the circuit to be securely evaluated, the dealer uses an
FSS scheme for the class of offset functions Ĝ that includes all functions of the
form g[r

in,rout](x) = g(x− rin)+ rout. If the input to gate g is wire i and the output
is wire j, the dealer uses the FSS scheme for Ĝ to split the function g[r

in,rout]

into two functions with keys k0, k1, and delivers each key kσ to party Pσ. Now,
evaluating their FSS shares on the common masked input wi + ri, the parties
obtain additive shares of the masked output wj + rj , which they can exchange
and maintain the invariant for wire j. Finally, the outputs are reconstructed by
having the dealer reveal to both parties the masks of the output wires. We defer
a formal statement of the corresponding transformation to Appendix E in our
full version [9]. In what follows we introduce necessary terminology.

Definition 4 (Offset function family and FSS gates). Let G = {g :
G

in → G
out} be a computation gate (parameterized by input and output groups

G
in,Gout). The family of offset functions Ĝ of G is given by

Ĝ :=
{

g[r
in,rout] : Gin → G

out

∣∣∣∣ g : Gin → G
out ∈ G,

rin ∈ G
in, rout ∈ G

out

}
, where



884 E. Boyle et al.

g[r
in,rout](x) := g(x − rin) + rout,

and g[r
in,rout] contains an explicit description of rin, rout. Finally, we use the term

FSS gate for G to denote an FSS scheme for the corresponding offset family Ĝ.

As explained above, an FSS gate for G implies an “online-optimal” protocol
for converting a masked input x to a masked output g(x) for g ∈ G. Concretely,
the online phase consists of only one round in which each party sends a message of
length |g(x)|. Alternatively, we can have a similar one-round protocol converting
additively shared input to additively shared output, where here the message
length is |x|. The offline communication and storage correspond to the FSS
key size produced by Gen, and the online compute time corresponds to the
computational cost of Eval.

Boyle et al. [13] constructed FSS gates for most of the operators from Sect. 2.1
by reducing them to multiple invocations of DCF. In this work we will improve
the efficiency of previous DCF constructions, and provide better reductions (both
asymptotically and concretely) from gates in Sect. 2.1 to DCF.

3 Optimized Distributed Comparison Function

A Distributed Comparison Function (DCF), as formalized in Definition 3, is an
FSS scheme for the family of comparison functions. We reduce the key size of
prior best known construction of [12] from roughly n(4λ+n) to roughly n(λ+n),
i.e. roughly 4×, for input and output domains of size N = 2n and security
parameter λ, with similar savings for general input and output domains.

Our construction draws inspiration from the DPF of [12]. The Gen algorithm
uses a PRG G and generates two keys (k0, k1) such that ∀b ∈ {0, 1}, kb includes
a random PRG seed sb and n + 1 shared correction words. A key implicitly
defines a binary tree with N = 2n leaves where a node u is associated with a
tuple (sb, Vb, tb), for a PRG seed sb, an output group element Vb ∈ G and a bit
tb. The construction ensures that the sum V0 + V1 over all nodes leading to an
input x is exactly equal to f<

α,β(x). Therefore, evaluating a key kb on an input x
requires traversing the tree generated by kb from the root to the leaf representing
x, computing (sb, Vb, tb) at each node and summing up the values Vb.

The tuple (sb, Vb, tb) associated with u is a function of the seed associated
with the parent of u and the correction words. Therefore, if s0 = s1 then for any
descendent of u, k0 and k1 generate identical tuples. The correction words are
chosen such that when a path to x departs from the path to α, the two seeds s0
and s1 on the first node off the path are identical, and the sum of V0 + V1 along
the whole path to u is exactly zero if the departure is to the right of the path to
α, i.e. x > α, and is β if the departure is to the left of the path to α. Finally, along
the path to α any seed sb is computationally indistinguishable from a random
string given the key k1−b, which ensures the security of the construction.

The DCF scheme is presented in Fig. 1, and a formal statement of the
scheme’s complexity appears in Theorem 2 (see Appendix F.1 in full version [9]
for detailed security proof). The scheme uses the function ConvertG : {0, 1}λ → G



Function Secret Sharing for Mixed-Mode 885

Distributed Comparison Function (Gen<
n ,Eval<n )

Let G : {0, 1}λ → {0, 1}2(2λ+1) be a pseudorandom generator.
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a
pseudorandom group element of G.

Gen<
n (1λ, α, β,G):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample random s
(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ

3: Let Vα = 0 ∈ G, let t
(0)
0 = 0 and t

(0)
1 = 1

4: for i = 1 to n do
5: sL

0 ||vL
0 ||tL

0 sR
0 ||vR

0 ||tR
0 ← G(s

(i−1)
0 )

6: sL
1 ||vL

1 ||tL
1 sR

1 ||vR
1 ||tR

1 ← G(s
(i−1)
1 )

7: if αi = 0 then Keep ← L, Lose ← R
8: else Keep ← R, Lose ← L
9: end if

10: sCW ← sLose0 ⊕ sLose1

11: VCW ← (−1)t
(i−1)
1 · [ConvertG(vLose

1 ) − ConvertG(vLose
0 ) − Vα]

12: if Lose = L then VCW ← VCW + (−1)t
(i−1)
1 · β

13: end if
14: Vα ← Vα − ConvertG(vKeep

1 ) + ConvertG(vKeep
0 ) + (−1)t

(i−1)
1 · VCW

15: tL
CW ← tL

0 ⊕ tL
1 ⊕ αi ⊕ 1 and tR

CW ← tR
0 ⊕ tR

1 ⊕ αi

16: CW (i) ← sCW ||VCW ||tL
CW ||tR

CW

17: s
(i)
b ← sKeepb ⊕ t

(i−1)
b · sCW for b = 0, 1

18: t
(i)
b ← tKeepb ⊕ t

(i−1)
b · tKeepCW for b = 0, 1

19: end for
20: CW (n+1) ← (−1)tn1 · [ConvertG(s

(n)
1 ) − ConvertG(s

(n)
0 ) − Vα]

21: Let kb = s
(0)
b ||CW (1)|| · · · ||CW (n+1)

22: return (k0, k1)

Eval<n (b, kb, x):

1: Parse kb = s(0)||CW (1)|| · · · ||CW (n+1), x = x1, . . . , xn, let V = 0 ∈ G, t(0) = b.
2: for i = 1 to n do
3: Parse CW (i) = sCW ||VCW ||tL

CW ||tR
CW

4: Parse G(s(i−1)) = ŝL||v̂L||t̂L ŝR||v̂R||t̂R

5: τ (i) ← (ŝL||t̂L ŝR||t̂R) ⊕ (t(i−1) · sCW ||tL
CW ||sCW ||tR

CW )

6: Parse τ (i) = sL||tL sR||tR ∈ {0, 1}2(λ+1)

7: if xi = 0 then V ← V + (−1)b · [ConvertG(v̂L) + t(i−1) · VCW ]
8: s(i) ← sL, t(i) ← tL

9: elseV ← V + (−1)b · [ConvertG(v̂R) + t(i−1) · VCW ]
10: s(i) ← sR, t(i) ← tR

11: end if
12: end for
13: V ← V + (−1)b · [ConvertG(s(n)) + t(n) · CW (n+1)]
14: Return V

Fig. 1. Optimized FSS scheme for the class F<
n,G of comparison functions f<

α,β :
{0, 1}n → G, outputting β for 0 ≤ x < α and 0 for x ≥ α. || denotes string concatena-
tion. b refers to party id. All s and v values are λ-bit strings, V values are elements in
G, which are represented in �log |G|� bits and t values are single bits. α1 and x1 refer
to MSBs of α and x, respectively. Similarly, αn and xn are the corresponding LSBs.



886 E. Boyle et al.

[12] that converts a pseudo-random string to a pseudo-random group element.
When |G| = 2k and k ≤ λ, the function simply outputs the first k bits of the
input. In any other case, the function expands the input s to a string G(s) of
length at least log |G| using a PRG G, regards G(s) as an integer and returns
G(s) mod |G|.
Theorem 2. Let λ be a security parameter, let G be an Abelian group, � =

log |G|�, and let G : {0, 1}λ → {0, 1}4λ+2 be a PRG. The scheme in Fig. 1 is a
DCF for f<

α,β : {0, 1}n → G with key size n(λ+�+2)+λ+� bits. For �′ = 
 �
4λ+2�,

the key generation algorithm Gen invokes G at most 2n(1 + 2�′) + 2�′ times and
the evaluation algorithm Eval invokes G at most n(1+�′)+�′ times. In the special
case that |G| = 2c for c ≤ λ the number of PRG invocations in Gen is 2n and
the number of PRG invocations in Eval is n.

Dual Distributed Comparison Function (DDCF). Consider a variant of DCF,
called Dual Distributed Comparison Function, denoted by FDDCF

n,G . It is a class of
comparison functions fα,β1,β2 : {0, 1}n → G, that outputs β1 for 0 ≤ x < α and
β2 for x ≥ α. The FSS scheme for DDCF, denoted by DDCFn,G, follows easily
from DCF using fα,β1,β2(x) = β2+f<

α,β1−β2
(x). We provide a formal construction

in Fig. 12 of Appendix F.2 in our full version [9].

4 Public Intervals and Multiple Interval Containments

Computing interval containment for a secret value w.r.t. a publicly known inter-
val, that is, whether x ∈ [p, q], is an important building block for many tasks
occurring in scientific computations [4] as well as machine learning [37,41,51].
Moreover, many popular functions such as splines (Sect. 5.1) and most significant
non-zero bit (MSNZB) (Appendix H.1 of full version [9]) reduce to computing
multiple interval containments on the same secret value x. The work of [13] pro-
vided the first constructions of an FSS gate for interval containment as well as
splines. In their work, the key size of an FSS gate for interval containment was ≈
2 DCF keys. They build on this to construct an FSS gate for splines and multiple
interval containment with m different intervals using key size proportional to 2m
DCF keys, which is quite expensive. We provide the following constructions:

– In Sect. 4.1, we show how to reduce the key size required for a single interval
containment to a single DCF key, compared to two DCF keys needed in [13].
Including the gains from our optimized DCF, we get around 7× reduction in
key size over [13] for n = 32.

– In Sect. 4.2 of our full version [9], we show how to compress the FSS keys
for multiple interval containments to that of an FSS key for a single interval
containment (and ring elements proportional to m). More concretely, over
inputs of length n, and for computing the output of m interval containment
functions on the same input, we reduce the FSS key size from ≈ 2m(4nλ +
n2 + 4n) + mn to ≈ nλ + n2 + mn (including gains from our optimized DCF
construction). As an example, taking n = 32, we reduce the key size by up to
1100× and for instance, for m = 10, the reduction is about 62×.



Function Secret Sharing for Mixed-Mode 887

While the construction from [13] also works when the interval boundaries are
secret, i.e., known only to the dealer, our techniques crucially rely on the interval
boundaries being public. However, we show that our techniques enable the reduc-
tion of key size for several important applications, such as splines (Sect. 5.1), bit
decomposition and MSNZB (Sect. 5.2 and Appendix H.1 of full version [9]).

We start by setting notation for single and multiple interval containments.
For ease of exposition, in this section, we only consider the ring UN ; however
our ideas easily extend to SN as well. In particular, for signed intervals checking
whether x ∈ [p, q], where p, q ∈ SN , can be reduced to the following unsigned
interval containment: (x+N/2 mod N) ∈ [(p+N/2 mod N), (q+N/2 mod N)].
We define 1{b} as 1 when b is true and 0 otherwise.

Interval Containment Gate. The (single) interval containment gate GIC is
the family of functions gIC,n,p,q : UN → UN parameterized by input and output
groups G

in = G
out = UN , and given by

GIC =
{

gIC,n,p,q : UN → UN

}
0≤p≤q≤N−1

, gIC,n,p,q(x) = 1{p ≤ x ≤ q}.

Multiple Interval Containment Gate. The multiple interval containment
gate GMIC is the family of functions gMIC,n,m,P,Q : UN → U

m
N for m interval

containments parameterized by input and output groups G
in = UN and G

out =
U

m
N , respectively, and for P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qm}, given

by

GMIC =
{
gMIC,n,m,P,Q : UN → U

m
N

}
0≤pi≤qi≤N−1

, gMIC,n,m,P,Q(x) =
{
1{pi ≤ x ≤ qi}

}
1≤i≤m

,

Next, we describe our construction for single interval containment that
reduces to universal comparison function f<

(N−1)+rin,1
and this is the key idea

that allows us to compress keys for multiple interval containments.

4.1 Realizing FSS Gate for [p, q] Using FSS Scheme for f<
(N−1)+rin,1

First, in Fig. 2, we describe a construction of an FSS gate for GIC that is a slight
modification of the construction in [13]. This will enable us to build upon it
to obtain an FSS gate for GIC with a reduced key size (when the intervals are
public). The modification that we make is as follows: in [13], the FSS keys for
GIC were generated differently in the case when only q + rin wraps around in UN

as opposed to when either both or none of p+ rin and q + rin wrap around. In our
construction (Fig. 2), we unify these cases, except that the dealer additionally
includes an additive correction term 1{(p + rin mod N) > (q + rin mod N)} in
the key, which makes up for the difference between the cases. For completeness,
we provide a correctness proof in Appendix G.1 of full version [9]. We note that
the key size of our construction in Fig. 2 is identical to the scheme presented in
[13], that is, 2 DCF keys and a ring element in UN .

Next, we present an alternate construction of FSS gate for GIC again using
two DCF keys that are independent of interval [p, q]. Later, we will optimize this
construction to use only a single DCF key.



888 E. Boyle et al.

Interval Containment Gate (GenICn,p,q,Eval
IC
n,p,q)

GenICn,p,q(1
λ, rin, rout):

1: (k
(p)
0 , k

(p)
1 ) ← Gen<

n (1λ, α(p), N − 1,UN ), α(p) = p + rin ∈ UN .

2: (k
(q)
0 , k

(q)
1 ) ← Genn (1λ, α(q), 1,UN), α(q) = q + rin ∈ UN .

3: Sample random w0, w1 ← UN s.t. w0 + w1 = rout + 1{α(p) > α(q)}.
4: For b ∈ {0, 1}, let kb = k

(p)
b ||k(q)

b ||wb.
5: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(p)
b ||k(q)

b ||wb.

2: Set t
(p)
b ← Eval<n (b, k

(p)
b , x).

3: Set t
(q)
b ← Evaln (b, k

(q)
b , x).

4: return t
(p)
b + t

(q)
b + wb.

Fig. 2. FSS Gate for GIC using 2 DCFs [13], b refers to party id.

Using 2 DCF keys independent of p and q. Below, we state our main
technical lemma that allows us to give an alternate construction of FSS gate for
gIC,n,p,q using 2 keys for comparison that are independent of the interval [p, q]
and only depend on rin. More concretely, we will use FSS keys for f<

(N−1)+rin,N−1

and f≤
(N−1)+rin,1

. In the lemma statement and its proof (Appendix G.2 of full
version [9]), unless explicitly stated using mod N , all expressions and equations
are over Z and we consider the natural embedding of UN into Z.

Lemma 1. Let a, ã, b, b̃, r ∈ UN , where a ≤ b, ã = a + r mod N and b̃ =
b + r mod N . Define 4 boolean predicates over UN → {0, 1} as follows: P (x)
denotes x < ã, P ′(x) denotes x ≤ ã, Q(x) denotes (x + (b − a) mod N) < b̃,
Q′(x) denotes (x + (b − a) mod N) ≤ b̃. Then, the following holds:

P (x) = Q(x) + (ea − ex) and P ′(x) = Q′(x) + (ea − ex)

where ea = 1{ã + (b − a) > N − 1} and ex = 1{x + (b − a) > N − 1}
Intuitively, Lemma 1 allows us to reduce comparison of x with ã (both <

and ≤) to similar comparison with b̃ modulo some additive correction terms, i.e.
ea and ex. Our next observation is that in the FSS setting, ea can be computed
by the dealer (with the knowledge of r) and ex can be locally computed by
P0, P1 (with the knowledge of x at runtime). Using Lemma 1 and this observa-
tion, we can construct an FSS gate for gIC,n,p,q using 2 DCF keys, for functions
f<
(N−1)+rin,N−1

and f≤
(N−1)+rin,1

(see Appendix G.4 of full version [9] for this).

Reducing to 1 DCF Key. We now optimize the key size of our construction
to a single DCF key using Lemma 2 (proof in Appendix G.3 of full version).



Function Secret Sharing for Mixed-Mode 889

Interval Containment Gate (GenICn,p,q,Eval
IC
n,p,q)

GenICn,p,q(1
λ, rin, rout):

1: Set γ = (N − 1) + rin ∈ UN .

2: (k
(N−1)
0 , k

(N−1)
1 ) ← Gen<

n (1λ, γ, 1,UN ).
3: Set q = q + 1 ∈ UN , α(p) = p + rin ∈ UN , α(q) = q + rin ∈ UN and

α(q ) = q + 1 + rin ∈ UN .
4: Sample random z0, z1 ← UN s.t.

z0 + z1 = rout + 1{α(p) > α(q)} − 1{α(p) > p} + 1{α(q ) > q } + 1{α(q) = N − 1}.
5: For b ∈ {0, 1}, let kb = k

(N−1)
b ||zb.

6: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(N−1)
b ||zb.

2: Set q = q + 1 ∈ UN , x(p) = x + (N − 1 − p) ∈ UN and

x(q ) = x + (N − 1 − q ) ∈ UN .

3: Set s
(p)
b ← Eval<n (b, k

(N−1)
b , x(p)).

4: Set s
(q )
b ← Eval<n (b, k

(N−1)
b , x(q )).

5: return yb = b · (1{x > p} − 1{x > q }) − s
(p)
b + s

(q )
b + zb.

Fig. 3. FSS Gate for GIC using DCF key for f<
(N−1)+rin,1, b refers to party id.

Lemma 2. Let c, c′ ∈ UN , where c′ = c + 1 mod N . Define 2 boolean predicates
over UN → {0, 1} as follows: R(x) denotes x ≤ c and S(x) denotes x < c′. Then
the following holds: R(x) = S(x) + 1{c = N − 1}

This lemma lets us get rid of the DCF key for f≤
(N−1)+rin,1

and work with the
key for f<

(N−1)+rin,1
using an additional correction term which can be computed

by the dealer. Formally, we have the following theorem.

Theorem 3. There is an FSS Gate (GenICn,p,q,Eval
IC
n,p,q) for GIC that requires

2 invocations of DCFn,UN
, and has a total key size of n bits plus key size of

DCFn,UN
.

Proof. We present our construction formally in Fig. 3. For arguing correctness we
need to prove that y = y0 + y1 mod N = 1{p ≤ (x − rin mod N) ≤ q} + rout. We
use correctness of FSS gate in Fig. 2 and prove that output of Fig. 3 is identical
to output of Fig. 2. In Fig. 2, using correctness of FSS schemes for f<

α,β and f≤
α,β ,

t(p) = t
(p)
0 + t

(p)
1 mod N = −1 · 1{x < α(p)} and

t(q) = t
(q)
0 + t

(q)
1 mod N = 1{x ≤ α(q)}

Also, from correctness of FSS gate in Fig. 2, t(p) + t(q) +1{α(p) > α(q)} + rout =
1{p ≤ (x − rin mod N) ≤ q} + rout.

First, we look at t(q) = 1{x ≤ α(q)}. From Lemma 2, we can write t(q) =
1{x < α(q′)} + 1{α(q) = N − 1}, where α(q′) = α(q) + 1 mod N . Now, using



890 E. Boyle et al.

Lemma 1 with a = q′, b = N − 1, r = rin, ã = α(q′), and b̃ = γ:

t(q) = 1{x < α(q′)} + 1{α(q) = N − 1}
= 1{x + (N − 1 − q′) mod N < γ} + 1{α(q′) + (N − 1 − q′) > (N − 1)}

− 1{x + (N − 1 − q′) > (N − 1)} + 1{α(q) = N − 1}
= 1{x(q′) < γ} + 1{α(q′) > q′} − 1{x > q′} + 1{α(q) = N − 1}
= s

(q′)
0 + s

(q′)
1 + 1{α(q′) > q′} − 1{x > q′} + 1{α(q) = N − 1}

Similarly, using Lemma 1, it can be proven that: t(p) = −1·(s(p)0 +s
(p)
1 )−1{α(p) >

p}+1{x > p}. Therefore, in Fig. 3, y = y0+y1 = t(p)+t(q)+1{α(p) > α(q)}+rout

matches the output of Fig. 2.

5 Applications of Public Intervals

5.1 Splines with Public Intervals

A spline is a special function defined piecewise by polynomials. Formally, consider
P = {pi}i ∈ U

m
N such that 0 ≤ p1 < p2 < . . . < pm−1 < pm (pm = N − 1) and

d−degree univariate polynomials F = {fi}i. Then, a spline function hn,m,d,P,F :
UN → UN parameterized by input and output rings UN , list of m interval
boundaries P and degree d polynomials F is defined as

hn,m,d,P,F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x) if x ∈ [0, p1]
f2(x) if x ∈ [p1 + 1, p2]

...
fm(x) if x ∈ [pm−1 + 1, pm]

Commonly used functions such as Rectified Linear Unit (ReLU) and Absolute
value are special cases of splines. Moreover, splines have been used to approx-
imate transcendental functions such as sigmoid [38,41], sometimes with up to
m = 12 intervals. Boyle et al. [13], gave a construction of an FSS gate for splines
by reducing it to m instances of interval containment, resulting in both key size
and online evaluation cost being proportional to the cost of 2m DCF keys. In this
work, building upon our techniques for multiple interval containment5, we reduce
both the key size as well as online evaluation. More concretely, [13] requires
2m DCFn,Zd+1

N
keys and each key is evaluated once during online phase. We pro-

vide a construction using a single DCF
n,Z

(d+1)m
N

key that is evaluated m times
and additional 2m(d+1)+1 ring elements. Hence, including our improved DCF
construction, we reduce the overall key size from ≈ 2m

(
4n(λ + 1) + n2(d + 1)

)
to ≈ (

λ(n + 1) + mn2(d + 1)
)

+ 2mn(d + 1) bits. As an example, for n = 32,

5 As we explain later, our FSS gate for splines requires secret payload (function of rin)
in DCF known only to the dealer and hence, it does not black-box reduce to GMIC.



Function Secret Sharing for Mixed-Mode 891

m ≥ 2 and degree 1 polynomials, this represents a reduction in key size of about
8 − 17×, and for instance, for m = 10, the reduction is 14×.

The spline gate Gspline is the family of functions gspline,n,m,d,P,F : UN → UN
with m intervals parameterized by input and output rings UN , and for P =
{p1, p2, . . . , pm} and F = {f1, f2, . . . , fm}, given by

Gspline =
{
gspline,n,m,d,P,F : UN → UN

}
0≤pi<pi+1≤N−1

p0=pm=N−1

, gspline,n,m,d,P,F (x) = hn,m,d,P,F (x).

Construction Overview. Our FSS gate for splines builds upon our techniques
from multiple interval containment to incorporate secret payloads as required.
At a high level, the basic idea, also used in [13], is to check for interval contain-
ment [pi−1 + 1, pi] and output the coefficients of the polynomial f ′

i = fi(x − rin)
as payload. Once the evaluators P0 and P1 learn the shares of the correct coeffi-
cients, they compute an inner product with (xd, . . . , x0) to learn shares of final
output. We note that coefficients of f ′

i depend on the randomness rin that is
secret and known only to the dealer. Due to this, we cannot invoke our FSS
gate for multiple interval containment GMIC directly. Next, [13] used a different
interval containment key for each interval with payload as the corresponding
coefficients of the polynomials. In our construction, we only use a single DCF
key for all intervals, and hence, the payload of this key has to encode the coef-
ficients of all the polynomials. Moreover, naively building on GMIC, the online
computation would require 2m evaluations of the DCF key. However, for the
case of splines, we use the property that the intervals are consecutive, that is, of
the form [pi−1 + 1, pi], to reduce this to m evaluations.

We present our final construction in 2 steps. First, we present the construction
for a simpler spline gate, Gspline-one that is a family of functions hn,d,p,f with only
1 interesting interval i.e., it outputs f(x) on [0, p] and 0 otherwise. With this
construction, we describe our techniques for embedding secret payloads in our
optimized FSS gate for GIC that uses a single DCF key. Note that ReLU function,
the most commonly used activation in machine learning, is a function in Gspline-one.
We discuss about ReLU and absolute value function in the full version of this
paper [9]. Then, we will give our construction for general splines using our ideas
of common payload for all intervals and reducing number of DCF evaluations.

Spline with One Interesting Interval. The simple spline gate Gspline-one is
a family of functions hn,d,p,f : UN → UN such that p ∈ UN , f is a d-degree
univariate polynomial and hn,d,p,f (x) = f(x) for x ∈ [0, p] and 0 otherwise.
We give a formal construction for FSS gate for Gspline-one in Fig. 4. At a high
level, we build on our construction for GIC and modify it to allow for secret
payloads as follows: Recall that in FSS gate for GIC, we give out a DCF key
with payload 1 and shares of a correction term that depends on rin, say cr. Also,
during evaluation, P0, P1 compute a correction term, say cx, that depends on x.
Overall, at the time of evaluation, P0, P1 evaluate the DCF key and add cr and
cx. Now we desire the payload to be coefficients of f ′ = f(x − rin), say β. To
enable this, the dealer sets the payload of the DCF key as β. But now, this β



892 E. Boyle et al.

also needs to be multiplied with cr and cx. For this the dealer gives out shares
of cr ·β and shares of β. Shares of β allow P0 and P1 to compute shares of cx ·β,
as cx can be computed locally.

Spline Gate (Genspline-onen,d,p ,Evalspline-onen,d,p )

Genspline-onen,d,p (1λ, f, rin, rout):

1: Let (fd, . . . , f0) ∈ U
(d+1)
N be coefficients of f such that f (x) = f(x − rin).

2: Set β = (fd, . . . , f0) ∈ U
(d+1)
N and γ = (N − 1) + rin ∈ UN .

3: (k
(N−1)
0 , k

(N−1)
1 ) ← Gen<

n (1λ, γ, β,U
(d+1)
N ).

4: Set α(L) = rin ∈ UN , α(R) = p + rin ∈ UN and α(R ) = p + 1 + rin ∈ UN .
5: Set

cr = 1{α(L) > α(R)}−1{α(L) > 0}+1{α(R ) > (p+1 mod N)}+1{α(R) = N −1}.
6: Sample random e0, e1 ← U

(d+1)
N s.t. e0 + e1 = cr · β.

7: Sample random β0, β1 ← U
(d+1)
N s.t. β0 + β1 = β.

8: Sample random r0, r1 ← UN s.t. r0 + r1 = rout.
9: For b ∈ {0, 1}, let kb = k

(N−1)
b ||eb||βb||rb.

10: return (k0, k1).

Evalspline-onen,d,p (b, kb, x):

1: Parse kb = k
(N−1)
b ||eb||βb||rb.

2: Set x(L) = x + (N − 1) ∈ UN and x(R ) = x + (N − 1 − (p + 1)) ∈ UN .

3: Set s
(L)
b ← Eval<n (b, k

(N−1)
b , x(L)).

4: Set s
(R )
b ← Eval<n (b, k

(N−1)
b , x(R )).

5: Set cx = (1{x > 0} − 1{x > (p + 1 mod N)}).
6: wb = (wd,b, . . . , w0,b) = cx · βb − s

(L)
b + s

(R )
b + eb.

7: return ub = rb + d
i=0(wi,b · xi) mod N .

Fig. 4. FSS Gate for single interval splines Gspline-one, b refers to party id.

Theorem 4. There is an FSS Gate (Genspline-onen,d,p ,Evalspline-onen,d,p ) for Gspline-one that
requires 2 invocations of DCF

n,U
(d+1)
N

, and has a total key size of n(2d + 3) bits
plus the key size of DCF

n,U
(d+1)
N

.

Proof. We present our construction of FSS Gate for single interval spline formally
in Fig. 4. To prove correctness of our scheme it suffices to show that w = w0+w1

is β when (x − rin) ∈ [0, p] and 0d+1 otherwise. In our scheme, w =
∑

b(cx · βb −
s
(L)
b + s

(R′)
b + eb) = cx · β − s(L) + s(R

′) + cr · β. Now, by correctness of DCF
keys, s(L) = β · 1{x(L) < γ} and s(R

′) = β · 1{x(R′) < γ}. Using these, we get
that w =

(
cx − 1{x(L) < γ} + 1{x(R′) < γ} + cr

)
· β = 1{0 ≤ (x − rin) ≤ p} · β

as required, by using similar arguments as in correctness of GIC in Fig. 3.



Function Secret Sharing for Mixed-Mode 893

General Splines. To construct an FSS gate for general splines, we make two
modifications to the previous construction. First, we change the payload of our
DCF key to be the long vector containing coefficients of all polynomials {f ′

i}i,
where f ′

i = f(x − rin). Now, during evaluation, we do DCF evaluations similar
to GMIC separately for each interval. For each interval, output would be over
U

m(d+1)
N . While considering the ith interval, i.e., [pi−1+1, pi], we will only use the

ith segment of (d+1) ring elements. These would either be shares of coefficients
of f ′

i (if (x − rin) ∈ [pi−1 + 1, pi]) or 0d+1. Next, to reduce number of evaluations
from 2m to m, we rely on intervals in splines being consecutive, i.e., an interval
ends at pi and next interval starts at pi + 1. Recall from our construction of
GMIC, that we need to do two DCF evaluations for each interval of interest, one
for the left point and one for the right point. This is also true for Fig. 4, where
we do one DCF evaluation each for x(L) and x(R′). In general splines, for the ith

interval [pi−1 +1, pi], let these points be x
(L)
i and x

(R′)
i . Now, observe that since

x
(R′)
i = x

(L)
i+1, we need to evaluate the DCF only once for them. For consistency

of notation, we set p0 = pm = N − 1, so that the first interval, i.e., [0, p1] can
also be written as [p0+1, p1] and similarly the last interval, i.e., [pm−1+1, N −1]
can be written as [pm−1 + 1, pm]. In our construction, we do DCF evaluations
for all points xi = x

(L)
i = x + (N − 1 − (pi−1 + 1)) for i ∈ {1, . . . , m}.

Theorem 5. There is an FSS Gate (Gensplinen,m,d,{pi}i
,Evalsplinen,m,d,{pi}i

) for Gspline

that requires m invocations of DCF
n,U

m(d+1)
N

, and has a total key size of 2mn(d+
1) + n bits plus the key size of DCF

n,U
m(d+1)
N

.

We provide our scheme and its proof formally in the full version [9].

6 FSS Gates for Fixed-Point Arithmetic

Fixed-point representation allows us to embed rational numbers into fixed bit-
width integers. Let Qu denote non-negative rational numbers. Assuming no over-
flows, the unsigned (resp. signed) forward mapping fufix

n,s : Q
u → UN (resp.

f sfix
n,s : Q → SN ) is defined by �x · 2s� and the reverse mapping hufix

n,s : UN → Q
u

(resp. hsfix
n,s : SN → Q) is defined by x/2s, where x is lifted to Q and “/” denotes

the regular division over Q. The value s associated with a fixed-point repre-
sentation is called the “scale” which defines the precision, i.e., the number of
bits after the decimal point, that the fixed-point number preserves. When 2
fixed-point numbers are added or multiplied in n-bit integer ring, the bits at the
top (significant bits) can overflow leading to incorrect results. To prevent this
from happening, these operations are accompanied by a “scale adjustment” step
where the scale of operands are appropriately reduced to create enough room in
the top bits for the computation to fit. Scale adjustment is also used in multi-
plication to maintain the scale of the output at s instead of getting doubled for
every multiplication performed. Many applications of secure computation require
computing over the rational numbers. One such application is privacy-preserving



894 E. Boyle et al.

machine learning where most prior works use fixed-point representation to deal
with rational numbers [33,37,39–41,46,51]6,7.

In this section we build efficient FSS gates for realizing secure fixed-point
arithmetic. In particular, we consider the following operations: addition, multi-
plication, and comparison. We begin (in Sect. 6.1) by first describing how fixed-
point addition and multiplication work given access to a FSS gates for secure
right shift operations. We then describe the FSS gate constructions for right shift
operator - logical right shift (LRS) in Sect. 6.2, which enables scale adjustment,
and hence fixed-point multiplication, over unsigned integers. We defer the details
on arithmetic right shift (ARS) and fixed-point comparison to Sects. 6.3 and 6.4
respectively of our full version [9].

6.1 Fixed-Point Addition and Multiplication

We describe the case when the scales of both operands is the same, i.e. s - the
case of different scales is similar8. Fixed-point addition is a local operation where
the corresponding shares of the operands are added together by each party and
no scale adjustment is typically performed. This is same as the construction of
FSS gate for addition from [13] as described in Fig. 17, Appendix I.1 (of full
version [9]). Fixed-point multiplication involves 2 steps: first, using the FSS gate
for multiplication from [13] (presented in Fig. 18, Appendix I.2 of full version
for completeness) the operands are multiplied resulting in an output of scale 2s,
and second, using our FSS gate for right shift, values are shifted (ARS/LRS for
signed/unsigned operands respectively) by s to reduce the scale back to s.

6.2 Logical Right Shift

Logical right shift of unsigned integers is done by shifting the integer by a pre-
scribed number of bits to the right while removing the low-order bits and insert-
ing zeros as the high order bits. Implementing the shift operation on secret
shared values is a nontrivial task even when the shift s is public, and is typically
achieved via an expensive secure bit-decomposition operation. Prior FSS gate
for bit-decomposition [13] output shares of bits in U2 (which must then be con-
verted into shares over UN , if it is to be used in computing logical right shift).
Hence, this leads to construction for right shift that has 2 online rounds. Here we
provide a much more efficient construction, which a) requires only 1 online round
6 Although there are a handful of works outside the secure ML context that give secure

protocols directly for floating-point numbers [3,24,34,45], they are usually orders of
magnitude slower than the ones based on fixed-point.

7 All of these works except [24,45] consider simplified variants of the IEEE 754 floating-
point standard.

8 When scales of the operands differ, they need to be aligned before addition can
happen. For this, a common practice is to left shift (locally) the operand with smaller
scale by the difference of the scales. Fixed-point multiplication remains the same and
shift parameter for the right shift at the end can be chosen depending on the scale
required for the output.



Function Secret Sharing for Mixed-Mode 895

of communication of a single group element; and b) further, improves upon the
key size of the approach based on bit-decomposition, by roughly a factor of n
(when n ≤ λ), i.e. O(nλ + n2) vs O(n2λ).

If an integer x ∈ UN (N = 2n) is additively shared into x ≡ x0 + x1 mod N
with one party holding x0 and the other holding x1 then locally shifting x0 and
x1 by s bits is not sufficient to additively share a logically shifted x. Lemma 3
(proof appears in Appendix I.3 of full version [9]) gives an identity showing that
the LRS of a secret shared x can be computed as the sum of the LRS of the
shares and the output of two comparison functions. This identity is the basis for
an FSS gate realizing the offset family associated with LRS.

Notation. Given integers 0 < n, 0 ≤ s ≤ n, let (�L s) : UN → UN , 0 ≤ s ≤ n
be the logical right shift function with action on input x denoted by (�L s)(x) =
(x �L s) and defined by (x �L s) = x−(x mod 2s)

2s over Z.

Lemma 3. For any integers 0 < n, 0 ≤ s ≤ n, any x ∈ UN and any x0, x1 ∈ UN

such that x0 +x1 ≡ x mod N , the following holds over Z (and in particular over
UN ) (x �L s) = (x0 �L s) + (x1 �L s) + t(s) − 2n−s · t(n), where for any
0 ≤ i ≤ n, t(i) is defined by:

t(i) =
{

1 (x0 mod 2i) + (x1 mod 2i) > 2i − 1
0 otherwise ,

The logical right-shift gate G�L
is the family of functions g�L,s,n : UN → UN

parameterized by input/output groups G
in = G

out = UN , shift s and given by

G�L
=

{
g�L,s,n : UN → UN

}
0≤s≤n

, g�L,s,n(x) = (x �L s).

We denote the corresponding offset gate class by Ĝ�L
and the offset functions

by ĝ
[rin,rout]
�L,s,n(x) = g�L,s,n(x − rin) + rout = ((x − rin) �L s) + rout. We use Lemma

3 to construct our FSS gate for LRS (as described in Fig. 6 of full version [9])
and which satisfies the following theorem.

Theorem 6 (LRS from DCF). There is an FSS Gate (Gen�L
n,s ,Eval�L

n,s ) for
G�L

that requires a single invocation each of DCFn,UN
and DCFs,UN

, and has a
total key size of n bits plus the key sizes of DCFn,UN

and DCFs,UN
.

7 FSS Barrier for Fixed-Point Multiplication

In the previous sections, we presented FSS gates for several fixed-point opera-
tions, enabling secure computation of fixed-point multiplication FFPM with “FSS
depth 2”: namely, one FSS gate for performing multiplication of the two inte-
ger inputs over UN (resp. SN ), followed by a second FSS gate to perform a
logical right shift (resp. arithmetic right shift). While this provides an effective
solution, a downside of two sequential FSS gates is that the resulting secure



896 E. Boyle et al.

computation protocol requires information communicated between parties via
two sequential rounds, and a natural goal would be to construct a single FSS
gate to perform both steps of the fixed-point multiplication together. Such a
single FSS gate would not only lead to optimal round complexity (one instead
of two rounds), but also to optimal online communication complexity (a factor-2
improvement over the current implementation). In this section, we demonstrate
a barrier toward achieving this goal using only symmetric-key cryptography.

More specifically, we show that the existence of any FSS gate construction
for fixed-point multiplication, denoted by GuFPM (resp. GsFPM) for operation over
unsigned (resp. signed) integers, (with polynomial key size) directly implies the
existence of FSS scheme for the class of all bitwise conjunction formulas (with
polynomial key size), from the same underlying assumptions. As discussed below,
FSS schemes for conjunctions from symmetric-key primitives have remained elu-
sive despite significant research effort. As such, this constitutes a barrier toward
symmetric-key constructions for fixed-point multiplication.

FSS for Conjunctions. We will denote by F∧
n,UN

the collection of bit-conjunction
functions on n-bit inputs, each parameterized by a subset S ⊆ [n], where [n] =
{i | (0 ≤ i ≤ n−1)∧ (i ∈ Z)}), of input bits, evaluating to a given nonzero value
if the corresponding input bits are all 1.

Definition 5. The family F∧
n,UN

of conjunction functions is

F∧
n,UN

=
{

fS : {0, 1}n → UN

}
S⊆[n]

, where fS(x) =

{
β

∧
i∈S x[i] = 1

0 otherwise
.

Presently the only existing construction of FSS scheme for F∧
n,UN

with neg-
ligible correctness error relies on the Learning With Errors (LWE) assump-
tion [14,26]. A construction with inverse-polynomial correctness error can be
obtained from the Decisional Diffie-Hellman (DDH) assumption [11] or from
the Paillier assumption [28]. All assumptions are specific structured assump-
tions, and corresponding constructions require heavy public-key cryptographic
machinery. It remains a highly motivated open question to attain such an FSS
construction using only symmetric-key cryptography, even in the case when pay-
load β is public.

Open Question (FSS for conjunctions). Construct FSS scheme for the class
F∧

n,UN
of bit-conjunction functions (with key size polynomial in the security

parameter and input length n) based on symmetric-key cryptographic primitives.

The Barrier Result. We prove the desired barrier result via an intermediate
function family: F×MSB

η,UN
, a simplified version of fixed-point multiplication.

Definition 6. The family F×MSB
η,UN

of multiply-then-MSB functions is given by

F×MSB
η,UN

=
{

fc : U2η → UN

}
c∈U2η

, where fc(x) = MSB(c · x),

and where n ≤ η and c · x is multiplication over U2η .



Function Secret Sharing for Mixed-Mode 897

The description of a function fc above is assumed to explicitly contain a
description of the respective parameter c ∈ U2η (similarly for fS ∈ F∧

n,UN
and

S ⊆ [n]).

Our overall barrier result will proceed in two steps. First, we build an FSS
scheme for conjunctions F∧

n,UN
from an FSS scheme for multiply-then-MSB

F×MSB
n(
log n�+1),UN

. Next, we give a reduction from the FSS scheme for F×MSB
η,UN

to the FSS gate for unsigned fixed-point multiplication, GuFPM over U2η , and set
η = n(
log n� + 1). We now focus only on the case of unsigned fixed point mul-
tiplication - the case of signed fixed point multiplication follows in an analogous
manner (details of the changes needed can be found in the full version [9]).

Step One of the Barrier Result. Intuitively, for a function fS ∈ F∧
n,UN

, the
input/output behavior will be emulated by a corresponding function fcS

∈
F×MSB

n(
log n�+1),UN
, i.e., fS(x) = fcS

(x) = MSB(x′ · cS), where x′ is a public encod-
ing of the input x, and cS is a (secret) constant determined as a function of
S. The Gen algorithm of FSS scheme for fS ∈ F∧

n,UN
will output FSS keys for

fcS
∈ F×MSB

n(
log n�+1),UN
, where cS is determined from S. The Eval algorithm will

encode the public x ∈ U2n to x′ ∈ U2n(�log n�+1) and evaluate the given FSS key
for fcS

.
More concretely, the new FSS evaluation will encode the input x to x′ by

“spacing out” the bits of x with m = 
log n� zeros with x[0] as the least significant
bit (as depicted below). Now, cS is carefully crafted to “extract” and add the
bits in x at indices in S such that: the value x′ · cS will have most significant
bit (MSB) as 1 if and only if bits of x in all indices of S are equal to 1. For
ease of exposition, first consider the case when size h = |S| is a power of 2
and let � = log h. Moreover, consider an alternate representation of S ⊆ [n] as
(sn−1, . . . , s0) ∈ {0, 1}n such that si = 1 iff i ∈ S, else 0. Then, cS ∈ U2n(m+1)

(depicted below) will be constructed by spacing out the bits si by m zeros and
put in reverse order, and has � leading zeros and m − � trailing zeros.

Mathematically, we can write, x′ =
∑n−1

i=0 x[i] · 2i(m+1) ∈ U2n(m+1)

and cS = 2n(m+1)−�−1 · ∑n−1
i=0 si · 2−i(m+1) ∈ U2n(m+1) . We will make

use of these equations in formal construction and correctness of reduction.
m m m m

x = 0 · · · 0 x[n−1] 0 · · · 0 x[n−2] 0 · · · 0 · · · 0 · · · 0 x[0]
m m m m−

cS = 0 · · · 0 s0 0 · · · 0 s1 0 · · · 0 · · · 0 · · · 0 sn−1 0 · · · 0
The interesting part in the product x′ · cS is the upper � + 1 bits which will

capture the sum
∑n−1

i=0 x[i] · si. Things have been structured so that none of
the other terms in x′ · cS affect these upper bits due to the large spacing of 0s
(preventing additive carries), as shown in the proof of Theorem 7. Therefore,
MSB(x′ · cS) = MSB(

∑n−1
i=0 x[i] · si) = MSB(

∑
i∈S x[i]) (because si = 1 for i ∈ S,

else 0), which is equal to 1 precisely if all bits {x[i]}i∈S are equal to 1. Namely,
precisely if fS(x) = 1, as desired.



898 E. Boyle et al.

The more general case where h = |S| is not necessarily a power of 2 can be
addressed by replacing si ∈ {0, 1} with arbitrary positive integer values such
that the sum of all terms

∑
i∈S si is precisely equal to 2�, where � = 
log h�, and

{si}i/∈S = 0. The analysis remains the same.

Theorem 7. Assume the existence of an FSS scheme for the function class
F×MSB

n(m+1),UN
, where m = 
log n�. Then there exists an FSS scheme for F∧

n,UN
.

Proof. Details of this proof can be found in our full version [9].

Step two of the barrier result. In the full version, we give a formal reduction
from the FSS scheme for F×MSB

η,UN
to GuFPM over U2η . Setting η = n(
log n� + 1)

completes the barrier result for unsigned fixed-point multiplication. The high
level idea is as follows: we set the shift parameter of GuFPM as s = η − 1 and
include c + r as a part of the FSS key (along with the key for GuFPM) which still
hides the secret constant c of member functions in F×MSB

η,UN
, where r is randomly

sampled from U2η and known only to the Gen algorithm. Then using these FSS
keys, the evaluation algorithm computes ((x · c) �L η − 1) = MSB(x · c), as
desired.

Acknowledgments. E. Boyle supported by ISF grant 1861/16, AFOSR Award
FA9550-17-1-0069, and ERC Project HSS (852952). N. Gilboa supported by ISF grant
2951/20, ERC grant 876110, and a grant by the BGU Cyber Center. Y. Ishai sup-
ported by ERC Project NTSC (742754), ISF grant 2774/20, NSF-BSF grant 2015782,
and BSF grant 2018393.

References

1. Salami slicing – Wikipedia. https://en.wikipedia.org/w/index.php?title=Salami
slicing&oldid=943583075 (2020) Accessed 1 Nov 2020

2. Agrawal, N., Shamsabadi, A.S., Kusner, M.J., Gascón, A.: QUOTIENT: two-party
secure neural network training and prediction. In: CCS (2019)

3. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS (2013)

4. Aly, A., Smart, N.P.: Benchmarking privacy preserving scientific operations. In:
ACNS 2019 (2019)

5. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.H.: Secure outsourcing
of scientific computations. Adv. Comput. 54, 247–264 (2001)

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO (1991)

7. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online SPDZ!
improving SPDZ using function dependent preprocessing. In: ACNS (2019)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

9. Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure
computation. IACR Cryptol. ePrint Arch. (2020)

10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT (2015)

https://en.wikipedia.org/w/index.php?title=Salami_slicing&oldid=943583075
https://en.wikipedia.org/w/index.php?title=Salami_slicing&oldid=943583075


Function Secret Sharing for Mixed-Mode 899

11. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: CRYPTO (2016)

12. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-
sions. In: CCS (2016)

13. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: TCC (2019)

14. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: EUROCRYPT (2019)

15. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: HyCC:
compilation of hybrid protocols for practical secure computation. In: CCS (2018)

16. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

17. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point
arithmetic. In: ESORICS (2010)

18. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: FC
(2010)

19. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: pro-
grammable and efficient secure two-party computation for machine learning. In:
IEEE EuroS&P (2019)

20. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC (1988)

21. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: EUROCRYPT, Part II (2019)

22. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC (2006)

23. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-party secure computation, or: Gate-scrambling revisited. In: CRYPTO, Part I
(2017)

24. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni,
S.: Automated synthesis of optimized circuits for secure computation. In: CCS
(2015)

25. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

26. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: CRYPTO (2016)

27. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS (2017)
28. Fazio, N., Gennaro, R., Jafarikhah, T., III, W.E.S.: Homomorphic secret sharing

from paillier encryption. In: Provable Security (2017)
29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In: STOC (1987)
30. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On

the power of correlated randomness in secure computation. In: TCC (2013)
31. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer

- efficiently. In: CRYPTO (2008)
32. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no

honest majority. In: TCC (2009)
33. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency

framework for secure neural network inference. In: USENIX Security (2018)
34. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer

and floating-point arithmetic. In: FC (2016)



900 E. Boyle et al.

35. Kilian, J.: More general completeness theorems for secure two-party computation.
In: STOC (2000)

36. Kiltz, E., Damgaard, I., Fitzi, M., Nielsen, J.B., Toft, T.: Unconditionally secure
constant round multi-party computation for equality, comparison, bits and expo-
nentiation. IACR Cryptology ePrint Archive 2005, (2005)

37. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: Crypt-
flow: secure tensor flow inference. In: IEEE S&P (2020)

38. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: CCS (2017)

39. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: a cryp-
tographic inference service for neural networks. In: USENIX Security (2020)

40. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: CCS (2018)

41. Mohassel, P., Zhang, Y.: Secure ML: a system for scalable privacy-preserving
machine learning. In: IEEE S&P (2017)

42. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput.35(5),
1254–1281 (2006)

43. Nawaz, M., Gulati, A., Liu, K., Agrawal, V., Ananth, P., Gupta, T.: Accelerating
2PC-based ML with limited trusted hardware. arXiv preprint:2009.05566 (2020)

44. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: PKC (2007)

45. Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient
private IEEE 754 floating-point computations. In: FC (2015)

46. Rathee, D., et al.: CrypTFlow2: pactical 2-party secure inference. In: CCS (2020)
47. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K.E., Koushanfar, F.:

XONN: xnor-based oblivious deep neural network inference. In: USENIX Security
(2019)

48. Ryffel, T., Pointcheval, D., Bach, F.: ARIANN: Low-interaction privacy-preserving
deep learning via function secret sharing. arXiv preprint:2006.04593 (2020)

49. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted val-
ues. In: EUROCRYPT (2006)

50. Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values.
In: CT-RSA (2009)

51. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. PoPETs 2019(3), 26–49 (2019)

52. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

53. Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)

https://github.com/emp-toolkit


VOLE-PSI: Fast OPRF and Circuit-PSI
from Vector-OLE

Peter Rindal1(B) and Phillipp Schoppmann2

1 Visa Research, Palo Alto, USA
2 Humboldt-Universität zu Berlin, Berlin, Germany

schoppmann@informatik.hu-berlin.de

Abstract. In this work we present a new construction for a batched
Oblivious Pseudorandom Function (OPRF) based on Vector-OLE and
the PaXoS data structure. We then use it in the standard transformation
for achieving Private Set Intersection (PSI) from an OPRF. Our overall
construction is highly efficient with O(n) communication and computa-
tion. We demonstrate that our protocol can achieve malicious security
at only a very small overhead compared to the semi-honest variant. For
input sizes n = 220, our malicious protocol needs 6.2 s and less than 59
MB communication. This corresponds to under 450 bits per element,
which is the lowest number for any published PSI protocol (semi-honest
or malicious) to date. Moreover, in theory our semi-honest (resp. mali-
cious) protocol can achieve as low as 219 (resp. 260) bits per element for
n = 220 at the added cost of interpolating a polynomial over n elements.

As a second contribution, we present an extension where the output
of the PSI is secret-shared between the two parties. This functionality
is generally referred to as Circuit-PSI. It allows the parties to perform
a subsequent MPC protocol on the secret-shared outputs, e.g., train a
machine learning model. Our circuit PSI protocol builds on our OPRF
construction along with another application of the PaXoS data struc-
ture. It achieves semi-honest security and allows for a highly efficient
implementation, up to 3x faster than previous work.

1 Introduction

We consider the problem of private set intersection (PSI) in a two-party setting.
Here, two mutually distrusting parties, a receiver and a sender, each hold a set
of identifiers X,Y respectively. The goal of the two parties is for the receiver
to learn the intersection X ∩ Y without revealing any additional information to
the parties. In particular, the sender should not learn any information about X
beyond the size of it. Similarly, the receiver should not learn anything about
Y \ X beyond the size of Y .

A common approach to PSI is based on oblivious pseudo-random functions
(OPRFs). An OPRF allows the receiver to input x and learn Fk(x), where F
is a PRF, and k is known to the sender. A straight-forward PSI protocol can
be obtained by running an OPRF protocol for each x ∈ X, and then having
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12697, pp. 901–930, 2021.
https://doi.org/10.1007/978-3-030-77886-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77886-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-77886-6_31


902 P. Rindal and P. Schoppmann

the sender send {Fk(y) | y ∈ Y } to the receiver. The receiver can then locally
compare the sender’s OPRF values to her own to learn which elements of X are
in the intersection. This is the basis of several PSI protocols (see Sect. 1.4), and
our first contribution also follows this paradigm.

While PSI alone has interesting applications, such as private contact dis-
covery [Dem+18,Kal+19,Kis+17], other variants of PSI are gaining traction
from a practical perspective. For example, both Google [Ion+20] and Face-
book [Bud+20] have implemented variants of PSI that allow them to compute
functions of the intersection, where only the result of the function evaluation
and the intersection size is revealed, but not the intersection itself.

A generalization of these PSI-with-computation protocols yields circuit PSI,
where the output isn’t revealed to either party, but instead is secret-shared
between the parties. More precisely, the receiver learns a random vector Q0 and
the sender learns Q1 such that (q0i ⊕ q1i ) = 1 if i corresponds to an element
x ∈ X in the intersection, and (q0i ⊕ q1i ) = 0 otherwise. Note that this means
that not even the intersection size is revealed to either party. We additionally
can allow the sender (resp. receiver) to input an “associated value” ỹj (resp. x̃i)
for each yj ∈ Y (resp. xi ∈ X). In this case, the output also includes a random
vector Z0 to the receiver and Z1 to the sender such that (z0i ⊕ z1i ) = (ỹj ||x̃i) if
xi = yj .

1.1 Contributions

PSI: We present a protocol for private set intersection (Sect. 4) based on two
building blocks. The first building block is a protocol known as Vector OLE
and presented in Fig. 2. Multiple implementations of VOLE have recently been
presented [Boy+19,Sch+19a,Wen+20,Yan+20]. We use an improved version of
[Sch+19a] in this paper. The second building block is a linear system solver, e.g.
PaXoS [Pin+20], which we adapt for our purposes as shown in Fig. 1. Combin-
ing these two primitives in a novel way, we obtain an OPRF protocol (Fig. 4).
This construction is highly efficient, requiring an amortized 2.4κ bits of commu-
nication per input in our computationally efficient version or just κ bits when
optimized for communication. We also demonstrate that malicious security can
be obtained with only a very small overhead.

From an OPRF it is easy to obtain an PSI protocol which is our final goal.
This final step is shown in Fig. 6. We show that the malicious variant of this
well known transformation can be optimized which reduces its overhead by as
much as 50% compared to prior art [Pin+20,CKT10]. Our final PSI protocol is
secure against both semi-honest and malicious adversaries, and we provide an
implementation for both threat models. It is also highly efficient, requiring just
5.4 (resp. 6.2) seconds and less than 54 (resp. 59) MB communication in the
semi-honest (resp. malicious) setting.

Circuit PSI: Our second contribution is a protocol for circuit PSI. In Sect. 5, we
show that using our variant of the PaXoS solver along with any OPRF protocol



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 903

yields an Oblivious Programmable PRF (OPPRF) protocol. Given this, we then
construct the final protocol in Sect. 6 with the additional help of data structure
known as a cuckoo hash table. We also implement two variants of our circuit
PSI protocol in the semi-honest model and show that they outperform the best
previous approach [Pin+19a].

1.2 Notation

We use κ as the computational security parameter and λ for statistical security.
The receiver’s set is detonated as X while the sender’s is Y . Their respective
sizes are nx, ny. Often we will just assume both set are of size n. [a, b] denotes
the set {a, a + 1, ..., b} and [b] is shorthand for [1, b]. We denote row vectors
A = (a1, ..., an) using the arrow notation while the elements are indexed without
it. A set S = {s1, ..., sn} will use similar notation. For a matrix M , we use M i

to denote its i-th row vector, and Mi,j for the element at row i and column j.
〈A,B〉 denotes the inner product of A,B. We use = to denote the statement
that the values are equal. Assignment is denoted as := and for some set S, the
notation s ← S means that s is assigned a uniformly random element from S. If
a function F is deterministic then we write y := F (x) while if F is randomized
we use y ← F (x) to denote y := F (x; r) for r ← {0, 1}∗.

1.3 Overview

OPRF. We now present a simplified version of our main protocols. Our core
building block is a functionality known as (random) vector OLE which allows
the parties to sample random vectors A,B,C ∈ F

m and element Δ ∈ F such
that C = ΔA + B. The PSI receiver will hold A,C while the sender will hold
B,Δ. We note that in the vector OLE literature, the sender/receiver roles are
typically reversed.

The parties (implicitly) sample an exponentially large random matrix M∗ ∈
{0, 1}|F|×m. The receiver defines M ∈ {0, 1}n×m which is the submatrix indexed
by the rows x ∈ X. The receiver then solves the linear system

MP ᵀ = (0, ..., 0)ᵀ

for the unknown P ∈ F
m. For now let us assume P is some random solution and

not the trivial (0, ..., 0) solution1. The protocol proceeds by having the receiver
send A + P to the sender who defines

K :=B + Δ(A + P )

1 In our malicious OPRF construction (Sect. 3.2), we will instead use a random oracle
H, and set MP ᵀ = (H(x0),H(x1), . . . ,H(xn))ᵀ. We stick to the semi-honest variant
here for ease of presentation.



904 P. Rindal and P. Schoppmann

The crucial observation is that

MKᵀ =MBᵀ + Δ(MAᵀ + MP ᵀ)
=MBᵀ + ΔMAᵀ

=MCᵀ

In particular, for each x ∈ X it holds that 〈M∗
x,K〉 = 〈M∗

x,C〉 where M∗
x

is the x’th row of M∗. An OPRF can then be obtained by having the receiver
apply a random oracle as

H(〈M∗
x,C〉), x ∈ X

while the sender computes the output at any y as

FK (y) := H(〈M∗
y,K〉)

To ensure efficiency we will require M∗ to be of a special form such that solv-
ing MP ᵀ = (0, ..., 0)ᵀ is efficient while also computing 〈M∗

x,V 〉 in O(1) time.
Specifically, we will use the PaXoS solver [Pin+20] to enable these properties.

To achieve security it is crucial that the receiver can not compute the OPRF
F at any other point x �∈ X. In the formulation above this effectively means that
it is hard to find a x �∈ X, such that 〈M∗

x ,P 〉 = 0. We demonstrate how such a
property can be obtained at little to no overhead.

PSI. We then employ our OPRF construction as a subroutine to obtain a PSI
protocol. This traditional transformation instructs the receiver to input their
set X into an OPRF protocol to obtain F (x) for x ∈ X. The sender can then
send Y ′ = {F (y) | y ∈ Y } which allows the receiver to identify the common
items. In the malicious setting, one must show how the simulator extracts the
set Y from observing Y ′. The traditional analysis [Pin+20,CKT10] effectively
achieves this by requiring the OPRF F to be second-preimage resistant and as
such each y′ ∈ Y ′ must be of length 2κ ≈ 256 bits. We demonstrate that in fact
preimage resistance is sufficient which allows the OPRF to have κ bit output
which reduces the communication overhead by approximately 33%, or as much
as 50% when |Y | 
 |X|.

Programmable OPRF. We present extension of our OPRF protocol to achieve a
functionality known as a Programmable OPRF (OPPRF) [Pin+19a]. This build-
ing block will allow the sender to sample an OPPRF key k such that Fk(yi) = vi

for their choice of yi, vi. At all other locations the output of Fk will be random.
The parties first perform a normal OPRF protocol for an OPRF F ′, where

the receiver inputs their set X and receive F ′(x) for x ∈ X. The sender solves
the system

MP ᵀ = (v1 − F ′(y1), ..., vn − F ′(yn))ᵀ

where M ∈ {0, 1}n×m the submatrix of M∗ indexed by the rows yi. The sender
will send P to the receiver who outputs

x′ := F ′(x) + 〈M∗
x,P 〉



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 905

for x ∈ X. Observe that at x = yi ∈ Y

x′ :=F ′(x) + 〈M∗
x,P 〉

=F ′(yi) + vi − F ′(yi)
=vi

as desired. It can be shown that at all other points y �∈ Y , the output is com-
pletely random. One security concern is that P might leak information about
Y . Indeed, the PaXoS solver requires m larger than n, therefore several solutions
could exist, and which P is output by PaXoS may leak information. We show
that this is the case for PaXoS and then present an extension which is uniformly
distributed under some constraints. We call our extension XoPaXoS and present
it in Sect. 2. Our full OPPRF protocol is presented in Sect. 5.

Circuit-PSI. Finally, we present our Circuit PSI extension which allows the
output of the PSI to be secret shared between the two parties. Our protocol
builds on the previous approach of Pinkas et al. [Pin+19a] by replacing their
OPPRF construction with ours. For completeness we present this construction
in Sect. 6.

1.4 Related Work

Early PSI protocols based on OPRFs/Diffie–Hellman (DH) have been around
since the 1980s [Mea86], and they still form the basis of many modern PSI pro-
tocols [Bud+20,CT10,Ion+20]. The advantage of DH-based protocols is their
low communication cost and constant round complexity, which however comes
at the cost of high computational overhead. A more computationally efficient
protocol based on oblivious transfer extension [Ish+03] (as opposed to OPRF
based) was presented by Schneider et al. [Pin+15] along with many deriva-
tives [Kol+16,OOS17,PSZ14,RR17b].

More recently, these two paradigms have begun to merge, and various OPRF
constructions have been proposed [CM20,DCW13,Kol+16,Pin+19b,Pin+20,
RR17a] which more closely resemble [Ish+03]. All of these come with higher
communication cost than [Mea86], but they significantly reduce computation.
However, as the evaluation of Chase and Miao [CM20] has shown, the optimal
choice of protocol often depends on the network setting. Our work also follows
the OPRF-based approach, building on the recent PSI protocol of Pinkas et
al.[Pin+20], but significantly reducing communication. As our experiments in
Sect. 7 show, our protocol works particularly well in settings with limited band-
width and large input sizes. For an extended overview of the different approaches
to PSI, see [Ion+20, Section 4.1] and [PSZ18, Section 1.2].

The first circuit PSI protocols were based entirely on generic techniques
such as garbled circuits [HEK12] or GMW [Pin+15,PSZ18]. Subsequent works
improved computation and communication [CO18,Pin+18,Pin+19a], and the
linear-complexity protocol of Pinkas et al. [Pin+19a] forms the current state
of the art. Their protocol combines an oblivious programmable PRF (OPPRF)



906 P. Rindal and P. Schoppmann

based on polynomial interpolation with a relatively small GMW circuit. Our
circuit PSI protocol follows a similar approach, but uses our new OPRF con-
struction, as well as a novel way to program it based on PaXoS [Pin+20].

2 Linear Solvers and PaXoS

Our constructions makes use of linear system solvers. As discussed before, we
will use these solvers to encode our input sets (z1, ..., zn) = Z and values
(v1, ..., vn) = V as a vector P ∈ G

m. There will exist a function Decode such
that Decode(P , zi) = vi for i ∈ [n] and is linear with respect to P . There are
three main performance metrics that we are concerted with. The first is the
rate ρ = m/n which denotes how compact the encoding is, i.e. n items can be
encoded as m element vector. The last two metrics are the running time of the
encoder/solver and that of the decoder/matrix multiplier.

Each instance of a solver is parameterized by a finite group G, integer m ≥ n,
security parameter λ and an implicit random matrix M∗ ∈ G

|G|×m. The instance
is fixed by sampling M∗ ← M from some set M which depends on the particular
solver. For any set Z ⊂ G s.t. |Z| = n, the solver will output P ∈ G

m s.t.

MP ᵀ = (v1, ..., vn)ᵀ

where M ∈ {0, 1}n×m is the submatrix of M∗ obtained by taking the rows
indexed by z ∈ Z. The target values v1, ..., vn ∈ G can be arbitrary. Our appli-
cation will require the solver to output a solution with probability 1 − O(2−λ).

Since M∗ is exponential in size, it is more efficient to represent it as a random
seed r ∈ {0, 1}κ and define the i-th row as being the output of the random func-
tion row(i, r). Therefore we will have the property 〈row(xi, r),P 〉 = vi. For easy
of presentation we will further abstract this via the Decode function defined as
Decode(P , xi, r) := 〈row(xi, r),P 〉. We note that this is a very general encoding
framework and encompasses several schemes, e.g. PaXoS, interpolation, bloom
filters, and many others.

The Vandermonde Solver. One example of this general approach is polynomial
interpolation. In this case we require G to also be a field and M contains only
the Vandermonde matrix, i.e. row(i, r) = (1, i, i2, ..., in−1) for all r. As such it
achieves an optimal rate of ρ = 1, i.e. m = n. In this case, solving the system
requires O(n log2 n) time using polynomial interpolation and decoding n points
also requires O(n log2 n) time [BM74]. For large n it is also possible to construct
row in such a way that t smaller systems of size O(λ) are constructed and solved
independently [Pin+19a]. This so called binning technique effectively results in
a O(n log2 λ) running time while also maintaining near optimal rate ρ ≈ 1.

The PaXoS Solver. The PaXoS solver [Pin+20] significantly improves on poly-
nomial interpolation in that it achieves O(n) running time. However, it comes
at the cost of rate ρ ≈ 2.4, i.e., m ≈ 2.4n. The scheme of Pinkas et al. [Pin+20]
defines row as outputting a binary vector s.t. the first m′ := 2.4n elements have



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 907

Parameters:

– Statistical security parameter λ and computational security parameter κ.
– Input length n.
– A finite group G.
– For m = 2.4n, let d = O(λ) upper bound the size of 2-core of a (m , n)-Cuckoo

graph [Pin+20].
– Output length m = m + d + λ.
– A random function row : G× {0, 1}κ → {0, 1}m s.t. ∀x, the weight of the first

m bits of row(x) is 2.

Encode ((z1, v1), ..., (zn, vn); r) :

1. Define row : G → {0, 1}m and ˜row(z) s.t. row (z)|| ˜row(z) = row(z, r) for all
z. Let

M :=

⎡
⎣
row(z1, r)

...
row(zn, r)

⎤
⎦ ∈ {0, 1}n×m

and let M ∈ {0, 1}n×m , M̃ ∈ {0, 1}n×d+λ s.t. M ||M̃ = M .
2. Let G = (V, E) be a graph with vertex set V = [m ] and edge set E = {(c0, c1) |

i ∈ [n], Mi,c0 = Mi,c1 = 1}. Let G̃ = (Ṽ, Ẽ) be the 2-core of G.
3. Let R ⊂ [n] index the rows of M in the 2-core, i.e. R = {i | Mi,c0 = Mi,c1 =

1 ∧ (c0, c1) ∈ Ẽ}. Let d̃ := |R| and abort if d̃ > d.
4. Let M̃ ∈ {0, 1}d̃×(d+λ) be the submatrix of M̃ obtained by taking the row

indexed by R. Abort if M̃ does not contain an invertible d̃ × d̃ matrix. Oth-
erwise let M̃∗ be one such matrix and C ⊂ [d + λ] index the corresponding
columns of M̃ .

5. Let C := {j | i ∈ R, Mi,j = 1} ∪ ([d + λ] \ C + m ) and for i ∈ C assign
Pi ← G. For i ∈ R, define vi := vi − (MP )i where Pi is assumed to be zero
if unassigned.

6. Using Gaussian elimination solve the system M̃∗(Pm +C1 , ..., Pm +C
d̃
) =

(vR1 , ..., vR
d̃
) .

7. Let T ⊂ [m ] such that each tree in G has a single vertex in T . For i ∈ T ,
assign Pi ← G.

8. Let I := {j | i ∈ R, Mi,j = 1} ∪ T and I := [m ] \ I .
9. While I = ∅, select an i ∈ I and do the following: Update I := I \{i} and I :=

I ∪{i}. For all j ∈ {j | (j, i) ∈ E ∧j I}. Identify k s.t. {h0(zk, r), h1(zk, r)} =
{i, j} and assign Pj := vk − Pi.

10. Return P .

Decode (P , z, r) :

1. Return row(z, r),P .

Fig. 1. XoPaXoS algorithm.



908 P. Rindal and P. Schoppmann

weight 2 while the last m − m′ = O(λ) bits are distributed uniformly. There is
also a PaXoS variant which achieves a slightly better rate of ρ = 2 but at an
increased running time. In this paper, we only make use of the first scheme.

Other Solvers. Other solvers have also been considered in the context of PSI
and OPRF. A garbled bloom filter [DCW13,RR17a] where row(i, r) is a random
weight κ vector of length m = 2κn. Another options is to let row : G×{0, 1}κ →
G

m be a random function with m = n + O(λ). The Bloom filter has a linear
time solver but very poor rate while the latter requires O(n3) time (via Gaussian
elimination) and near optimal rate. Constructing more efficient solvers remains
an open question. With the advent of PaXoS we believe significant progress can
be made at achieving improved rates, i.e., ρ < 2, while at the same time main-
taining a linear running time. Evidence of this is that PaXoS is based on cuckoo
hashing which is known to achieve a significantly better rate when the matrix
has weight 3 instead of weight 2 used by PaXoS [Dem+18,PSZ18]. Moreover,
solvers for such systems have been presented [Dem+18,KS12], but it is unclear
whether they can be made robust enough to succeed with probability 1−O(2λ).
As we will see in Sect. 7, our communication overhead is dominated by ρκn, so
the performance of the solver has a direct impact.

PaXoSDetails. We now present the PaXoS solver [Pin+20] in detail. Let M ′ ∈
{0, 1}n×m′

be the submatrix formed by the first m′ = 2.4n columns of M which
itself consists of rows row(z1, r), ..., row(zn, r). As such, each row of M ′ has weight
2. The solver first analyses the sparse system formed by M ′ as follows. Let G
be the graph consisting of m′ vertices V = [m′] and the edge set E = {(c0, c1) |
i ∈ [n] ∧ M ′

i,c0
= M ′

i,c1
= 1}. That is, for each constraint vi = 〈P , row(zi, r)〉 =

Pc0 + Pc1 + ... there is an edge between vertices (c0, c1) = ei. G is called the
cuckoo-graph [Pin+20].

First, let us assume that G has no cycles and therefore consists of one or more
trees. This case can be solved by doing a linear pass over the nodes along tree
edges, and assigning values on the way. In particular: (1) Initialize Pi := 0 for
i ∈ [m]. (2) Let I ⊆ V s.t. each tree in G has a single vertex in I and I := V \ I.
(3) Pick an i ∈ I and for each edge (j, i) ∈ E such that j ∈ I, identify ek ∈ E ,
i.e. M ′

k,i = M ′
k,j = 1, and update Pj := vk − Pi. Note that because G is acyclic,

Pi will not change value later. Update I := I ∪ {j}. Finally, define I := I \ {i},
I := I ∪ {i} and if I �= ∅, go back to (3).

Observe that this algorithm does not work if G contains a cycle since at some
point in step (3) Pj will have already been updated. To address this, the solver
first identifies the so called 2-core graph G̃ which is the subgraph of G which only
contains the cycles along with any paths between these cycles. Observe that the
graph formed by G \ G̃ is acyclic.

The solver uses Gaussian elimination to solve the constraints contained in
G̃ = (Ṽ, Ẽ) with the use of the m − m′ additional columns of M . In particular,
Pinkas et al. [Pin+20] show that for m′ = 2.4n, the size of Ẽ is bounded by
d = O(λ) with overwhelming probability. Let the actual number of edges in G̃ be
d̃ < d. They then consider the submatix M̃ formed by the last m−m′ columns of



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 909

M and the d̃ rows corresponding to edges in G̃. In their parameterization they set
m = d+λ+m′. As such M̃ is a (d+λ)×d̃ random binary matrix. With probability
1 − O(2−λ) there exists an invertible d̃ × d̃ submatrix M̃∗ within M̃ [Pin+20].
The d̃ constraints in G̃ can then be solved for using Gaussian elimination on M̃∗

which requires O(d̃3) = O(λ3) time. The remaining Pi values corresponding to
G̃ and M̃ are assigned the value zero, and the remaining constraints in G \ G̃ can
then be solved using the linear time algorithm described above.

X-oblivious PaXoS. We now present a modified scheme detailed in Fig. 1 which
we denote as XoPaXoS. Looking forward our Circuit PSI protocol will require an
additional simulation property of the encode algorithm. Informally, given that
the vi values are uniform, we require the distribution of P is independent of the
zi values. More formally, we will require that the distributions

D0(z1, ..., zn) := (Encode((z1, v1), ..., (zn, vn), r), r)
where r ← {0, 1}κ; vi ← G,∀i ∈ [n]

D1(z1, ..., zn) := (P , r), where r ← {0, 1}κ;P ← G
m

be indistinguishable for any PPT adversary except with probability 2−λ.
However, this does not hold for the [Pin+20] construction outlined above. In

particular, the PaXoS algorithm assigns zero to Pi values in two locations. When
solving the 2-core using Gaussian elimination some of the column of M̃ are not
used and therefore the corresponding Pi are assigned zero. The XoPaXoS scheme
rectifies this in Step 5 of Fig. 1 by first assigning random values to the redundant
Pi positions and then solving the remaining (fully constrained) system using
Gaussian elimination. It is easy to verify that the Pi values output by Gaussian
elimination have the desired distribution.

Secondly, when performing the linear pass over the trees of G, a vertex i
from each tree is picked and Pi is assigned zero. In Step 7 of XoPaXoS, we
again replace this assignment with sampling Pi uniformly from G. Finally, the
remaining assignments have the form Pi := vk + Pj + ... where each assignment
contains a distinct uniform vk value and therefore Pi is uniform as desired.
These modifications make the Encode algorithm randomized even for a fixed r. In
particular, we assume Encode takes an addition random tape as input from which
the uniform Pi values are sampled. We note that the original PaXoS algorithm
can be obtained by omitting these addition steps and instead initializing all Pi

to zero.

3 Vole Based OPRF

3.1 Vector OLE

The VOLE functionality Fvole is presented in Fig. 2. Let F be some finite field,
e.g., F = GF (2κ). The parties have no input. The Sender obtains a random value
Δ ∈ F and a random vector B ∈ F

m. The Receiver obtains a random vector
A′ ∈ F

m and the vector
C = A′Δ + B.



910 P. Rindal and P. Schoppmann

That is, the i-th position of C is equal to A′
iΔ + Bi. We note that several

definitions of VOLE have been introduced in the literature, for both chosen-
input and random variants [App+17,Boy+18,Boy+19,Wen+20]. In the context
of these previous works, the functionality described here can be seen as random
reversed vector OLE. We refer to it as VOLE for simplicity.

A naive implementation of a VOLE generator would be to run a two-party
multiplication protocol (e.g., Gilboa multiplication [Gil99]) for each i ∈ [m].
The drawback here is that communication is linear in m. Recently, significant
advances have been made in developing VOLE generators with sub-linear com-
munication. Boyle et al. [Boy+18] presented the first protocols in that direction
based on the LPN assumption. Their two protocols, a primal and a dual variant,
rely on two different flavors of LPN. While the primal variant can be instantiated
from LPN with cheap local linear codes, its communication grows asymptotically
with the square-root of the output size. The dual variant, on the other hand,
allows for logarithmic communication, but requires more computation.

A first implementation of a primal VOLE generator was provided in
[Sch+19a], while concurrently, Boyle et al. [Boy+19] provide an implementation
of dual VOLE over binary fields. Recently, Yang et al. [Yan+20] improved on
the protocols of [Sch+19a], significantly reducing the communication overhead.
Their main observation is that the primal VOLE generator works by expanding a
size-O(

√
m) random seed correlation to a size-m pseudorandom correlation. Now

by applying this expansion iteratively, they manage to get VOLE correlations
of size m from a much shorter seed. Each expansion still takes O(

√
m) commu-

nication, but as Yang et al. [Yan+20] show, the LPN security parameters can
be optimized so that the concrete communication complexity is still far below
the non-iterative approach. Since they focus on the application of VOLE to cor-
related OT, the implementation of Yang et al. [Yan+20] is limited to binary
fields. However, Weng et al. [Wen+20] extend this paradigm to VOLE over
general fields, for which they also provide a consistency check for malicious secu-
rity. In our implementation (Sect. 7), we use an improved version of the library
of Schoppmann et al. [Sch+19a], incorporating the iterative approach of Yang
et al. [Yan+20] and the consistency check of Weng et al. [Wen+20].

3.2 Malicious Secure Oblivious PRF

We now present our main (multi-input) OPRF construction in the Fvole-hybrid
model. Our construction Πoprf is detailed in Fig. 4 and realizes the functionality
Foprf from Fig. 3 in the malicious setting. Our protocol will make use of two
random oracles, H : F × F → {0, 1}out,HF : F → F.

First, the receiver will solve the system
⎡
⎣
row(x1)

...
row(xn)

⎤
⎦P ᵀ = (HF(x1), ...,HF(xn))ᵀ

as a function of the set X. Depending on the choice of row this can correspond to
polynomial interpolation, a bloom filter solver, PaXoS or some other fast solver,



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 911

Parameters: There are two parties, a Sender and a Receiver. Let F be a field. Let
m denote the size of the output vectors.

Functionality: Upon receiving (sender, sid) from the Sender and (receiver, sid)
from the Receiver.

– If the Receiver is malicious, wait for them to send C,A ∈ F
m. Sample Δ ← F

and compute B := C − AΔ. Otherwise,
– If the Sender is malicious, wait for them to send B ∈ F

m, Δ ∈ F. Sample
A ← F

m and compute C := B +AΔ. Otherwise,
– Sample A,B ← F

m, Δ ← F and compute C := B +AΔ.

The functionality sends Δ,B to the Sender and C := AΔ+B,A to the Receiver.

Fig. 2. Ideal functionality Fvole of random reversed Vector-OLE (vole).

see Sect. 2. Recall that for all x ∈ X it holds that Decode(P , x) = 〈row(x),P 〉 =
HF(x) and that Decode is a linear function in P . Another important property
is that Decode(P , x) = HF(x) only for the elements in the set X, except the
negligible probability2.

The parties first invoke Fvole where the Receiver obtains A′,C ∈ F
m while

the Sender obtains Δ ∈ F,B ∈ F
m. Recall that C = A′Δ + B. The Receiver

computes A := P+A′ and sends this to the Sender who computes K := B+AΔ.
The parties will run a coin flipping protocol to then choose a random w ← F.

The Sender defines their the PRF function as

F (x) = H(Decode(K, x) − ΔHF(x) + w, x).

The Receiver outputs the values

X ′ := {H(Decode(C, x) + w, x) | x ∈ X}.

To understand why F (x) = H(Decode(C, x) + w, x) for x ∈ X, observe that

Decode(K, x) − ΔHF(x) =Decode(B + PΔ + A′Δ,x) − ΔHF(x)

=〈B + PΔ + A′Δ, row(x)〉 − ΔHF(x)

=〈B + A′Δ, row(x)〉 + 〈PΔ, row(x)〉 − ΔHF(x)

=〈C, row(x)〉 + Δ〈P , row(x)〉 − ΔHF(x)

=〈C, row(x)〉 + ΔHF(x) − ΔHF(x), ∀x ∈ X

=Decode(C, x), ∀x ∈ X

When this is decoded at any x ∈ X recall that Decode(P , x) = HF(x) and there-
fore the receiver will compute the correct value Decode(C, x). Also recall that
2 In the case of a malicious Receiver and depending on the choice of row, it may be

possible for |X| > n with noticeable probability. However, for PaXoS this can be
bounded as |X| ≤ m ≈ 2.4n while interpolation ensures that |X| ≤ m = n.



912 P. Rindal and P. Schoppmann

this encoding has the property that at all other locations x′ �∈ X it holds that
Decode(PΔ,x′) �= HF(x′) and therefore the outputs will disagree. Finally, we
obtain an OPRF by hashing away the linear correlation using the hash func-
tion H.

The final random oracle H call also contains to x to facilitate extraction in the
case of a malicious Sender. In particular, our functionality requires the OPRF to
effectively behave like a random oracle for the Sender. This differs from a normal
PRF where there is no security with respect to the party holding the secret key.

Parameters: There are two parties, a Sender and a Receiver. Let n, n ∈ Z be
parameters such that if Receiver is malicious then |X| < n and otherwise |X| = n.
Let out ∈ Z be the output bit length.

Functionality:Upon input (sender, sid) from the Sender and (receiver, sid, X) from
the Receiver, the functionality samples F : F → {0, 1}out and sends X := {F (x) |
x ∈ X} to the Receiver.
Subsequently, upon input (sender, sid, y) from the Sender, the functionality returns
F (y) to the Sender.

Fig. 3. Ideal functionality Foprf batched oblivious PRF.

Theorem 1. The Protocol Πoprf realizes the Foprf functionality against a Mali-
cious adversary in the random oracle, Fvole-hybrid model.

Proof. First observe that the protocol is correct. We prove the following two
Lemmas:

Lemma 1. The Protocol Πoprf realizes the Foprf functionality against a Mali-
cious Sender A in the random oracle, Fvole-hybrid model.

Proof. The simulator S interacts with the Sender as follows:

– S plays the role of Fvole. When A sends (sender, sid) to Fvole, S waits for A
to send Δ,B.

– On behalf of the Receiver, S sends uniform r,A to A.
– Whenever A queries H(q, y), if q = 〈K, row(y, r)〉 − ΔHF(y) + w and H(q, y)

has not previously been queried, S sends (sender, sid, y) to Foprf and programs
H(q, y) to the response. Otherwise H responds normally.

To prove that this simulation is indistinguishable consider the following hybrids:

– Hybrid 0: The same as the real protocol except S in this hybrid plays the role
of Fvole.

– Hybrid 1: S in this hybrid samples A uniformly as opposed to A := P +A′.
Since A′ is distributed uniformly in the view of the A, this hybrid has an
identical distribution.



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 913

Parameters: There are two parties, a Sender and a Receiver with a set X ⊆ F

where |X| = n.

Protocol: Upon input (sender, sid) from the Sender and (receiver, sid, X) from the
Receiver, the protocol specifies the following:

1. The Sender samples ws ← F and sends cs := HF(ws) to the Receiver.
2. The Receiver samples r ← {0, 1}κ, wr ← F and solves the systems

⎡
⎣
row(x1, r)

...
row(xn, r)

⎤
⎦P = (HF(x1), ...,HF(xn))

for P as a function of their set {x1, ..., xn} = X ⊂ F.
3. The Sender sends (sender, sid) and the Receiver sends (receiver, sid) to vole

with dimension m and |F| ≈ 2κ. The parties respectively receive Δ,B and
C := A Δ +B,A .

4. The Receiver sends r, wr,A := P + A to the Sender who defines K :=
B +AΔ.

5. The Sender sends ws to the Receiver who aborts if cs = HF(ws). Both parties
define w := wr + ws .

6. The Receiver outputs X := {H(Decode(C, x) + w, x) | x ∈ X}.
Subsequently, upon each input (sender, sid, y) from the Sender, the protocol speci-
fies that the Sender outputs F (y) = H(Decode(K, y, r) − ΔHF(y) + w, y).

Fig. 4. Protocol Πoprf which realizes the oblivious PRF functionality Foprf.

– Hybrid 2: When S in this hybrid samples r, it aborts if any of the row(·, r)
queries have previously been made. Since r is sampled uniformly the proba-
bility of this is O(2−κ) and therefore this hybrid is indistinguishable from the
previous.

– Hybrid 3: S in this hybrid does not call Encode, and so does not abort if
Encode fails. Since none of row(·, r) queries have previously been made, the
PaXoS cuckoo-graph is uniformly sampled from all (n,m)-cuckoo graphs and
therefore the probability of abort is bounded by 2−λ [Pin+20]. Therefore this
hybrid is statistically indistinguishable from the previous. Observe that this
hybrid no longer uses the Receiver’s input.

– Hybrid 4: Whenever A queries H(q, y) after receiving A, if q =
〈K, row(y, r)〉 + w and H(q, y) has previously been queried, this hybrid
aborts. Otherwise it sends (sender, sid, y) to Foprf and programs H(q, y) to
the response.
Observe that r is uniformly distributed prior to it being sent. Therefore, any
given q = 〈K, row(y, r)〉 − HF(y)Δ + w is similarly distributed and A has a
negligible probability of previously querying H(q, y). We conclude that this
hybrid is indistinguishable from the simulation.



914 P. Rindal and P. Schoppmann

Lemma 2. The Protocol Πoprf realizes the Foprf functionality against a Mali-
cious Receiver A in the random oracle, Fvole-hybrid model.

Proof. The simulator S interacts with the Receiver as follows:

– S plays the role of Fvole and receives A′,C from A.
– When A sends r,A, S computes P := A − A′. For each of the previous
HF(x) queries made by A, S checks if Decode(P , x, r) = HF(x) and if so adds
x to set X. S sends (Receiver, sid,X) to Foprf and receives {F (x) | x ∈ X} in
response.

– S samples w ← {0, 1}κ. For each x ∈ X, S programs H(Decode(C, x, r) +
w, x) := F (x). S sends w to A.

To prove that this simulation is indistinguishable consider the following hybrids:

– Hybrid 0: The same as the real protocol except the S plays the role of Fvole.
When A sends (receiver, sid) to Fvole, S waits to receive A′,C.

– Hybrid 1: When A sends r,A, S in this hybrid computes P := A − A′.
For each of the previous HF(x) queries made by A, this hybrid checks if
Decode(P , x, r) = HF(x) and if so adds x to set X. This hybrid sends
(Receiver, sid,X) to Foprf and receives {F (x) | x ∈ X} in response.

– Hybrid 2: S in this hybrid does not sample ws at the beginning of the protocol
and sends a random value for cs instead H(ws). Right before ws is should be
sent, S samples ws and programs H(ws) := cs. Conditioned on H(ws) not
previously being queried, this hybrid is identically distributed and therefore
indistinguishable in general since ws is uniform.

– Hybrid 3: When ws ← {0, 1}κ is sampled, S in this hybrid aborts if any
H(Decode(C, x, r) + w, x) has been made by A. Since ws was just sampled,
each Decode(...) + ... + ws is uniform and therefore the probability of abort is
at most O(2−κ).
S in this hybrid programs H(Decode(C, x, r) + w, x) := F (x) for all x ∈ X
and sends ws to A. Since the F (x) are uniform, programming H does not
change the distribution.

– Hybrid 4: S in this hybrid aborts if A ever makes an H(v, x) query such that
(v, x) ∈ {(Decode(K, x, r) − ΔHF(x) + w, x) | x ∈ F \ X}. Observe that

Decode(K, x, r) − ΔHF(x) = 〈K, row(x, r)〉 − ΔHF(x)

= 〈B + PΔ + A′Δ, row(x, r)〉 − ΔHF(x)

= 〈C + PΔ, row(x, r)〉 − ΔHF(x)

= Δ(〈P , row(x, r)〉 − HF(x)) + 〈C, row(x, r)〉
and recall that Δ is uniformly distributed in the view of A. So for all x
s.t. 〈P , row(x, r)〉 �= HF(x), the distribution of Δ(〈P , row(x, r)〉 − HF(x)) is
uniform in the view of A. Now consider the case that 〈P , row(x, r)〉 = HF(x).
W.l.o.g., let us assume that all HF(x) queries are made prior to sending A
and that for any given set (x1, ..., xm) = X ⊂ F and r ∈ {0, 1}κ, the matrix
with rows row(x1, r), ..., row(xm, r) is invertible. Recall that P ∈ F

m where



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 915

m ≈ 2.4n for PaXoS. Therefore, for any X s.t. |X| ≤ m, A can trivially
construct the unique P such that 〈P , row(x, r)〉 = HF(x) for all x ∈ X. Now
consider the probability for any x′ ∈ F \ X, that 〈P , row(x′, r)〉 = HF(x′).
Since HF(x) is a random function and all 〈P , row(x′, r)〉 values are fixed, the
probability is O(1/|F|) = O(2−κ). Therefore we conclude that this hybrid
aborts with negligible probability and that the size of X is at most n′ = m.

4 Private Set Intersection

Using our OPRF protocol from the previous section, we now obtain a PSI pro-
tocol via the well known transformation shown in Fig. 6. The ideal function-
ality for PSI is given in Fig. 5. Given a malicious or semi-honest OPRF, this
transformation achieves malicious or semi-honest security, respectively. While
the general transformation is known and implicitly or explicitly used by used
by [CKT10,CM20,DCW13,Pin+19b,Pin+20,RR17a], we provide a tight anal-
ysis in the malicious setting which reduces our communication by 20% to 50%
compared to [CKT10,Pin+20].

The OPRF to PSI transformation works as follows. The PSI receiver sends
their set X to the OPRF functionality Foprf and receives back F (x) for all x ∈ X.
The sender queries Foprf to learn F (y) for their y. The sender sends Y ′ := {F (y) |
y ∈ Y } to the receiver who can compute X ∩ Y := {x | x ∈ X ∧ F (x) ∈ Y ′}.

To ensure the correctness of this protocol it is crucial that there are not any
spurious collisions between the F (x) and F (y) values. In particular, since F is
a random function it is possible that x �= y ∧ F (x) = F (y). In the semi-honest
setting, the standard approach is to define the output domain of F to be {0, 1}out
where out := λ+log2(nxny). Since the X,Y are fixed prior to randomly sampling
F , the probability for any x �∈ Y to result in F (x) ∈ Y ′ is purely a statistical
problem3. In particular,

Pr
x,Y,F

[F (x) ∈ {F (y) | y ∈ Y } ∧ x �∈ Y ] = 2−outny = 2−out+log2(ny).

If we take the union bound over x ∈ X, the overall probability of a collision is
nx2−out+log2(ny) = 2−out+log2(nynx) = 2−λ.

In the malicious setting the situation is complicated by the fact that the
simulator must extract the sender’s set Y by observing the sender’s Foprf queries
and the value of Y ′. The folklore approach is to extract Y := {y | y ∈ Y ∗∧F (y) ∈
Y ′} where Y ∗ is the set of inputs the sender queried the Foprf at. However, in
the event that there exists distinct y, y′ ∈ Y ∗ s.t. F (y) = F (y′), then more than
one y is extracted for each y∗ ∈ Y ∗.

The probability that there exists distinct y, y′ ∈ Y ∗ s.t. F (y) = F (y′) is at
most 2−out+2 log2(ny

∗) where ny
∗ := |Y ∗|. Therefore, it is expected to occur when

ny
∗ ≥ 2out/2. As such, in the folklore analysis and that of [CKT10,Pin+20], it is

required that out := 2κ in order for the security argument to hold.

3 In the Foprf hybrid where F is truly random.



916 P. Rindal and P. Schoppmann

We now present a new extraction procedure which allows out = κ. In our
protocol this effectively reduces the sender’s communication by half, therefore
reducing the overall communication by half when |X| � |Y |.

Our extraction procedure is to only extract y ∈ Y ∗ if it is distinct. Intuitively,
the reason security still holds is that collisions within Y ∗ are unlikely to collide
with the receiver’s set X. In particular, the receiver’s set X is first fixed and
then the function F is sampled. Thus, the probability that there exists a y ∈ Y ∗

and y �∈ X, yet F (x) = F (y) is at most

2−out+log2(nxny
∗) = O(2−out+log2(κ)+log2(ny

∗))

and therefore if out := κ the probability is O(2−κ+log(κ)+log(ny
∗)). Concretely, if

κ = 128, nx = 230 then the sender would have to make an expected ny
∗ = 298

Foprf queries in order to expect to distinguish as opposed to 249 queries via the
folklore analysis.

Parameters: There are two parties, a sender with set Y ⊂ F and a receiver with
a set of key X ⊆ F. Let ny, nx, nx ∈ Z be public parameters where nx ≤ nx .

Functionality: Upon receiving (sender, sid, Y ) from the sender and
(receiver, sid, X) from the receiver. If |Y | > ny, abort. If the receiver is ma-
licious and |X| > nx , then abort. If the receiver is honest and |X| > nx, then
abort.
The functionality outputs X Y to the receiver.

Fig. 5. Ideal functionality Fpsi of Private Set Intersection.

Parameters: There are two parties, a sender with set Y ⊂ F and a receiver with
a set of key X ⊆ F.
In the Semi-honest setting, let out := λ + log2(nx) + log2(ny). In the malicious
setting let out := κ. Let oprf be the OPRF functionality with n = nx and nx := n
and the output length out.

Protocol:

1. The sender sends (sender, sid) and receiver sends (receiver, sid, X) to oprf. The
receiver receives X = {F (x) | x ∈ X}.

2. For y ∈ Y , the sender sends (sender, sid, y) to oprf and receives back F (y).
3. The sender sends Y := {F (y) | y ∈ Y } to the receiver in a random order.
4. The receiver outputs {x | F (x) ∈ Y , x ∈ X}.

Fig. 6. Protocol Πpsi which realizes the PSI functionality Fpsi.



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 917

Theorem 2. The Protocol Πpsi realizes the Fpsi functionality against a Mali-
cious adversary in the Foprf-hybrid model.

Proof. Consider a malicious sender. The simulator interacts with the sender as:

– The simulator plays the role of Foprf. The simulator observes all the
(sender, sid, y) messages. Let Y ∗ be the set of all such y.

– When the sender sends Y ′, the simulator computes Ŷ := {y | y ∈ Y ∗ ∧ �y′ ∈
Y ∗ s.t. y �= y′ ∧ F (y) = F (y′)} and extracts Y := {y | y ∈ Ŷ ∧ F (y) ∈ Y ′}
and sends Y to Fpsi.

First, conditioned on there not being any F (y) = F (y′) collisions, it is easy to
verify that the simulation above is correct and indistinguishable.

Now consider some collision F (y) = F (y′). Observe that the simulator only
needs to extract y, y′ if there is a noticeable probability of one of them being
in X. W.l.o.g., let us assume y ∈ X. Therefore, consider the probability of
F (y′) = F (x) for some x ∈ X. Since |X| = nx = O(κ), the probability of the
sender finding such a (target preimage) collision is O(2−κ).

Consider a malicious receiver. The simulator is as follows:

– The simulator plays the role of Foprf.
– When the receiver sends (receiver, sid,X) to Foprf, the simulator observes X

and sends X ′ back as the Foprf would.
– The simulator forwards X to Fpsi and receives Z = X ∩ Y in response.
– The simulator computes Y ′ as containing all {F (z) | z ∈ Z} along with

ny − |Z| uniform values from {0, 1}out \ X ′. The simulator sends Y ′.

This simulation is identical to the real protocol except for the dummy items
being sampled from {0, 1}out \X ′ instead of {0, 1}out. However, since 2out−|X| =
O(2κ) this change is indistinguishable.

5 Oblivious Programmable PRF

We now turn our attention to constructing our circuit PSI protocol. To achieve
this, we first construct a type of protocol known as an oblivious programmable
PRF (OPPRF). The functionality is shown in Fig. 7. The sender has a set of input
pairs (y1, z1), ..., (yn, zn). The functionality samples a key k such that Fk(yi) = zi

and at all other input points it outputs a random value. The receiver on input
points x1, ..., xn then obtains Fk(xi) for all i.

We instantiate this functionality using an OPRF protocol, and the XoPaXoS
solver. The parties call the OPRF functionality Foprf with X being the receiver’s
input. The sender obtains k while the receiver obtains X ′ = {Fk(x1), ..., Fk(xn)}.
The sender constructs a solver for P such that Decode(P , yi) = zi −Fk(yi) using
XoPaXoS and sends P to the receiver who then outputs x∗

i := x′
i+Decode(P , xi)

for all i. When xi = yj , then

x∗ := Fk(xi) + Decode(P , xi) = Fk(xi) + zj − Fk(xi) = zj .



918 P. Rindal and P. Schoppmann

Parameters: There are two parties, a sender with input L =
{(y1, z1), ..., (yny , zny)} where yi ∈ F, zi ∈ {0, 1}out and a receiver with a set
X ⊆ F where |X| = nx.

Functionality: Upon input (sender, sid, L) from the sender and (receiver, sid, X)
from the receiver, the functionality samples a random function F : F → {0, 1}out

such that Fk(y) = z for each (y, z) ∈ L and sends X := {Fk(x) | x ∈ X} to the
receiver.
Subsequently, upon input (sender, sid, y) from the sender, the functionality returns
F (y) to the sender.

Fig. 7. Ideal functionality Fopprf of Oblivious Programmable PRF.

The sender outputs the key k∗ := (k,P ) where the OPPRF function is defined
as F ∗

k∗(x) := Fk(x) + Decode(P, x).
With respect to security, first observe that the vi values outside the intersec-

tion are information theoretically hidden in the Foprf hybrid. What remains to
be shown is that the distribution of P does not depend on Y \ X. Recall from
Sect. 2 that this is the exact issue XoPaXoS addresses compared to PaXoS. Intu-
itively, XoPaXoS ensures that each position of P is either assigned a uniformly
random value or is the sum of previous positions and some zi −Fk(yi). We prove
security of this protocol in Theorem 3 (Fig. 8).

Parameters: There are two parties, a sender with L = {(y1, z1), ..., (y , z )} and
a receiver with a set X ⊆ F where |X| = n.

Protocol: Upon input (sender, sid, L) from the sender and (receiver, sid, X) from
the receiver, the parties do the following:

1. The sender sends (sender, sid, L) and the receiver sends (receiver, sid, X) to oprf

with |F̂| ≈ 2κ. The parties respectively receive k and X = {Fk(x) | x ∈ X}.
2. The sender uses the XoPaXoS solver to compute P ∈ F

m over the field F such
that P ← Encode((y1, z1 − Fk(y1)), ..., (y , z − Fk(y ))) and sends it to the
receiver.

3. The receiver outputs {x∗
1, ..., x

∗
n} such that x∗

i := xi + Decode(P, xi).

Subsequently, upon input (sender, sid, y) from the sender, output: Fk(x) +
Decode(P, x).

Fig. 8. Protocol Πopprf which realizes the Oblivious Programmable PRF functionality
Fopprf.

Theorem 3. The Protocol Πopprf realizes the Fopprf functionality against a semi-
honest adversary in the Foprf-hybrid model.

Proof. Consider a semi-honest sender. Observe that the protocol is correct. Since
the receiver does not send any messages the simulation is trivial.



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 919

Consider a malicious receiver. The simulator generates the receiver’s tran-
script as follows:

– The simulator samples uniform values Fk(x) for x ∈ X.
– The simulator sends X to Fopprf functionality and receives back x′

1, ..., x
′
n.

– Samples P uniformly from all vectors such that Decode(P , xi) = x′
i −Fk(xi).

– The simulator outputs ({Fk(x) | x ∈ X},P ) as the transcript.

Clearly the Fk(x) values are identically distributed. What remains to be
shown is that P has the same distribution as it would in the real protocol.
Recall from Sect. 2 that XoPaXoS assign values to P in four ways

– During Step 5, Pi ← G for i ∈ C ′. Recall that Step 4 identifies d̃ of the
last d + λ columns which form an invertible matrix for the 2-core. These
columns are indexed by C. Then C ′ is defined as C ′ = {j | i ∈ R,M ′

i,j =
1}∪([d+λ]\C +m′) indexes all positions of P which interact with the 2-core
along with all of the last d + λ columns which are not used to invert.

– Next, in Step 6, the remaining d̃ positions of P corresponding are assigned a
value such that Decode(P , yi) = v′

i − Fk(yi) for the i in the 2-core which is
equivalent to solving

M̃∗(PC1+m′ , ..., PCd̃+m′)ᵀ = (y′
R1

, ..., y′
Rd̃

)ᵀ.

Since this is a fully determined system, there is exactly one solution.
– In Step 7 a single node i from each tree in G is assigned a uniform value.
– Lastly, observe that the rest of the system is fully determined. That is, each

the the remaining Pi position are assigned a value with the form

Pi := v′
k − Fk(yk) −

∑
j∈{...}

Pj .

The analysis above can be reordered such that Step 5, 7 are performed first.
Then there is exactly one solution to the correctness constraint.

6 Circuit PSI

We now construct a circuit PSI protocol from our OPPRF. Our construction
(Fig. 10) builds on the approach of Pinkas et al. [Pin+19a], using our novel
XoPaXoS and VOLE-based OPPRF from the previous section. As we will see in
the experiments (Sect. 7), this translates into a significant speedup compared to
[Pin+19a]. The ideal functionality for circuit PSI is given in Fig. 9. It allows both
sender and receiver to input a set of associated values, which will be secret-shared
alongside the elements in the intersection. The associated values corresponding to
elements in the intersection can then be used in any subsequent MPC phase, and
could for example be used to compute sums [Ion+20] or inner products [Sch+19b]
of the intersection. Since our protocol is effectively the same as [Pin+19a] with
the substitution of our OPPRF and F2pc implementation, we defer the proof of
security to [Pin+19a].



920 P. Rindal and P. Schoppmann

Parameters: There are two parties, a sender with set Y ⊂ F, associated values
Ỹ ⊂ {0, 1}σy and a receiver with a set of keysX ⊆ F, associated values X̃ ⊂ {0, 1}σx

where |Y | = |Ỹ | = ny, |X| = |X̃| = nx. The functionality is parameterized by
Reorder : Fn → (π : [n] → [m]) which on input X outputs a injective function π.

Functionality: Upon receiving (sender, sid, Y, Ỹ ) from the sender and
(receiver, sid, X, X̃) the functionality computes π ← Reorder(X) and uniformly
samples Q0, Q1 ∈ {0, 1}m, Z0, Z1 ∈ {0, 1}(σx+σy)×m such that

q0i ⊕ q1i = 1, z0
i ⊕ z1

i = (x̃i ||ỹi) if ∃xi ∈ X, yj ∈ Y s.t. xi = yj ,

q0i ⊕ q1i = 0, z0
i ⊕ z1

i = 0 otherwise

where i = π(i). Output Q0, Z0, π to the receiver and Q1, Z1 to the sender.

Fig. 9. Ideal functionality Fcpsi of circuit private set intersection.

Cuckoo Hashing. We make use of a data structure known as a cuckoo hash table.
Given a set X, one can create a hash table T of size m = ε|X|. This table is
parameterized by k hash functions h1, . . . , hk : {0, 1}∗ → {1, 2, ...,m}. There is a
procedure [PSZ18,Dem+18] s.t. with overwhelming probability for all x ∈ X, x
can be storied in T at T [hj(x)] for a j ∈ [k], and only one item will be stored at
any position of T . We discuss concrete parameter choices for ε and k in Sect. 7.2.

We will also refer to a procedure known as simple hashing of a set Y where
we store y ∈ Y at all locations T [hj(y)]. For simple hashing, each position of T
may hold more than one value. It can be shown that if the table has m = O(|Y |)
positions, then any given location of the table will hold at most O(log |Y |) items.

Protocol. The full circuit PSI protocol is constructed using the OPPRF and
cuckoo hashing. The receiver will construct a cuckoo hash table Tx of their set
X. The sender will construct a simple has table Ty of their set Y .

For each i ∈ [m] the sender will sample a random value ri ← {0, 1}� where
� := λ + log2 m. For all i and y ∈ Ty[i], the sender will construct a list L =
{(y′, ri)} where y′ = H(y, j) and j is defined such that i = hj(y). That is, j
is the hash function index that mapped y to this bin. The receiver constructs
set X ′ which is defined as the collection of all H(x, j) such that x is stored at
Tx[hj(x)]. The sender then provides L as their input to Fopprf while the receiver
inputs X ′. In response the receiver obtains the set X∗.

As an explanation of this, let us focus on some bin index i such that x was
mapped to bin Tx[i] due to hash function hj , i.e., Tx[i] = x and hj(x) = i.
Furthermore, let us assume that there is some y ∈ Y s.t. x = y. Since the sender
did simple hashing, they too mapped y to bin Ty[i] since hj(y) = i. For this
y, they programmed the OPPRF with the pair (H(y, j), ri). When the receiver
inputs H(x, j) to the OPPRF they receive the value ri in response. If x �∈ Y ,
then the receiver will receive a random value. Therefore, for each i, the receiver
now has a value r′

i which is equal to ri (held by the sender) if Tx[i] ∈ Y and
otherwise r′

i is random per the OPPRF security definition.



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 921

Parameters: There are two parties, a sender with set Y ⊂ F, associated values
Ỹ ⊂ {0, 1}σy and a receiver with a set of key X ⊆ F, associated values X̃ ⊂
{0, 1}σx where |Y | = |Ỹ | = ny, |X| = |X̃ | = nx. The protocol is parameterized
by an expansion factor , cuckoo hash table size m = x, and k hash functions
hj : {0, 1}∗ → m.

Protocol:

1. The receiver constructs a cuckoo hash table Tx of X such that x ∈ X, there
exists a j ∈ [k] such that H(x||j) = Tx[hj(x)].

2. The sender constructs a simple hash table Ty of Y such that y ∈ Y , for all
j ∈ [k] it holds that H(y||j) ∈ Ty[hj(y)].

3. For all i, the sender samples random ri ∈ {0, 1} , wi ∈ {0, 1}σy and for all
y ∈ Ty[i], the receiver defines L := {(y , ri||ỹ ⊕wi)} ∈ (F×{0, 1} +σy )m where
ỹ is associated value for y s.t. y = H(y, j).

4. The sender sends (sender, sid, L) and the receiver sends (receiver, sid, Tx ) to
opprf where Tx := (H(1, Tx[1]), ..., H(m,Tx[m])). The receiver receives X∗ =

{(ri||wi) | i ∈ [m]}.
5. For each i, the sender sends (receiver, sid, ri||wi) and the receiver sends

(sender, sid, ri||wi||x̃) to 2pc where x̃ is the associated value with x = Tx[i]
(or zero if Tx[i] is empty). 2pc computes a circuit C that for each i ∈ [m]:
(a) Sets qi := 1 if ri = ri and qi := 0 otherwise,
(b) Outputs secret shares q0i , q1i of qi and z0

i , z1
i of zi := qi · (wi ⊕ wi)||x̃ .

Fig. 10. Protocol Πcpsi which realizes the circuit PSI functionality Fcpsi.

The final step of the protocol is to use a generic MPC protocol to compare
each r′

i with ri to check if they are equal. The output of this generic MPC will
be secret shared which will be the output of the protocol.

In the event that the sender has “associated values”, they will program the
OPPRF with L = {(y′, ri||ỹ ⊕wi)} where ỹ is the associated value for y′, and wi

is an random value that the sender samples for each bin i ∈ {1, 2, ...,m} in the
same way as ri. The receiver will then obtain r′

i||w′
i from the OPPRF protocol

for each i. The generic MPC will then take as input {(r′
i, w

′
i)} from the receiver

and {(ri, wi, x̃)} from the sender. For each i the MPC computation will compute

Parameters: There are two parties, a sender and a receiver. The functionality is
parameterized by a circuit C : {0, 1}in1+in2 → {0, 1}out1+out2 .

Functionality: Upon receiving (sender, sid, X) from the sender and
(receiver, sid, Y ) where X ∈ {0, 1}in1 and Y ∈ {0, 1}in2 , the functionality
computes (Z1, Z2) := C(X, Y ) and returns Z1 ∈ {0, 1}in1 to the receiver and
Z2 ∈ {0, 1}in2 to the sender.

Fig. 11. Ideal functionality F2pc of generic two party computation.



922 P. Rindal and P. Schoppmann

Table 1. Comparison of theoretical communication cost of various PSI protocols. Sev-
eral protocols have additional parameters which have been approximated in terms of
κ, λ. In particular, the coefficients shown below often vary (non-linearly) as a function
of n, κ, λ. In these cases we chose representative values. The third column contains the
overhead for fixed λ = 40, κ = 128 while the last three columns also fix the set sizes.

Protocol Communication n = ny = nx

216 220 224

Semi-Honest

DH-PSI 4κnx + (λ + log(nxny))ny 512nx + 40ny + log(nxny)ny 584n 592n 600n

[Kol+16] 6κnx + 3(λ + log(nxny))ny 768nx + 120ny + 3 log(nxny)ny 984n 1008n 1032n

[Pin+19b]

Low-Comm

3.5κnx + 1.02(2 + λ + log(nx))ny 450nx + 43ny + 1.02 log(nx)ny 509n 513n 517n

[Pin+19b] Fast 3.5(1 + 1/λ)κnx + 2(λ + log(nxny))ny 461nx + 80ny + 2 log(nxny)ny 603n 619n 635n

[Pin+20] 9.3κnx + (λ + log(nxny))ny 461nx + 40ny + log(nxny)ny 1208n 1268n 1302n

[CM20] 4.8κnx + (λ + log(nxny))ny 620nx + 40ny + log(nxny)ny 678n 694n 702n

Ours total (PaXoS) 2.4κnx + (λ + log(nxny))ny + 217κnx
0.05 224nx

0.05 + 307nx + 40ny + log(nxny)ny 914n 426n 398n

Ours total

(interpolation)

κnx + (λ + log(nxny))ny + 217κnx
0.05 224nx

0.05 + 128nx + 40ny + log(nxny)ny 702n 245n 219n

Ours online

(PaXoS)

2.4κnx + (λ + log(nxny))ny + 213κnx
0.13 220nx

0.13 + 307nx + 40ny + log(nxny)ny 502n 398n 396n

Ours online

(interpolation)

κnx + (λ + log(nxny))ny + 213κnx
0.13 220nx

0.13 + 128nx + 40ny + log(nxny)ny 310n 218n 217n

Malicious

[Pin+20] 11.8κnx + 2κny 1512nx + 256ny 1766n 1766n 1766n

Ours total (PaXoS) 2.4κnx + (λ + log(nxny))ny + 217κnx
0.05 224nx

0.05 + 307nx + 128ny 960n 474n 438n

Ours total

(interpolation)

κnx + (λ + log(nxny))ny + 217κnx
0.05 224nx

0.05 + 128nx + 128ny 754n 293n 259n

Ours online

(PaXoS)

2.4κnx + κny + 213κnx
0.13 220nx

0.13 + 307nx + 128ny 558n 446n 436n

Ours online

(interpolation)

κnx + κny + 213κnx
0.13 220nx

0.13 + 128nx + 128ny 366n 266n 257n

qi := (r′
i = ri) and zi := qi · (

(w′
i ⊕ wi)||x̃

)
and then output secret shares of qi

and zi (Fig. 11).

7 Performance Evaluation

7.1 Theoretical Comparison

All protocols compared here are largely based on efficient symmetric key prim-
itives – with the exception of the DH-PSI protocol – and can be instantiated
with O(nx + ny) running time. Since these protocols are asymptotically similar,
it becomes difficult to compare them. As we do below, one metric is to imple-
ment the protocol and compare their running times. However, the quality of the
implementation has a large impact on running time. Arguably a more objective
metric is the total communication which is independent of the implementation.

Table 1 shows a theoretical comparison of the communication required by
various PSI protocols. We present the communication overhead in three ways.
The general case in terms of nx, ny, κ, λ; when we fix κ = 128, λ = 40; and when
we fix all the parameters. Many protocols contain addition parameters that allow
a for some type of tradeoff. For these we chose representative values.

Our semi-honest protocol requires sending ρκnx +(λ+log(nyny))ny bits plus
the overhead of performing a VOLE of size ρnx. Here, ρ is the rate of the linear



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 923

system solver which is being employed by the protocol. We consider two values
of ρ. The first is ρ = 2.4 which corresponds to the PaXoS solver while the second
is ρ = 1 when Vandermonde/interpolation solver is used.

To estimate the overhead of the VOLE protocol we experimentally deter-
mined that our implementation requires a total of 217κ 20

√
nx bits. We note that

this is the approximate overhead of our implementation and may not be asymp-
totically correct for nx 
 224. Since the cost of the VOLE is highly sublinear,
the overhead it contributes quickly diminishes as nx increase. For example, the
VOLE requires 27,800 bits per element for nx = 210 while only requiring 38 bits
per element for nx = 220. From this we can conclude that our protocol works
best for large sets, e.g. nx ≥ 216.

We also consider a setting where we perform a one time VOLE preprocessing
phase. In this case the bulk of the VOLE computation can be performed before
the X,Y sets or their sizes nx, ny are known. This is akin to performing base
OTs ahead of time as is done by all the protocols compared below (except
DH-PSI). With preprocessing the online overhead of the VOLE decreases to
approximately 213κ 8

√
nx bits, an improvement of 16×. In addition, sublinear

VOLE constructions are relatively new and there are likely more optimizations
opportunities, like the recent work of Yang et al. [Yan+20] which we utilize.

As the table shows, our protocol outperforms prior work, especially for
large inputs. The three protocols of [Pin+19b,Pin+20] mostly differ in their
linear system encoding rates. [Pin+19b] considers two different types of Vander-
monde/interpolation solvers which achieve rate ρ ≈ 1 while [Pin+20] achieves
rate ρ = 2.4 via their PaXoS solver and a significantly improved running time.
Both of these works use an OT-extension type protocol which results in sending
approximately 3.5κ bits per element in their encoding. We on the other hand
depart from this OT-extension based technique and utilize sublinear VOLE. This
has the advantage that we send only κ bits per item in the encoding. For the
final PSI-from-OPRF construction, the sender will additionally send their set
encoded under the OPRF which requires λ + log(nxny) bits per item in Y .

[Kol+16] does not encode their input into a linear system and instead uses
cuckoo hashing which has a rate of ρ ≈ 1.7. This work is also a OT-extension
type protocol which requires sending 3.5κ bits per hash table element which
results in an overhead of 6κnx. However, the cuckoo hashing approach results in
the sender needing to send 3 OPRF values per item in Y . The core advantage
of [Kol+16] is that cuckoo hashing is extremely efficient compared to solving a
linear system and as such obtains very small running times.

In the case of malicious security, the overhead of our protocol is effectively
identical except that the sender now must send larger OPRF values, i.e. κ bits per
element in Y as opposed to λ+log(nxny) bits. On the other hand, the protocol of
[Pin+20] requires increasing the number of bits per item in the linear encoding
from 3.5κ to 5κ. This has the effect that they must send an overall encoding
size of 11.8κnx. Our protocol more naturally achieves malicious security and
only requires sending κ per encoding position. In addition, the [Pin+20] analysis



924 P. Rindal and P. Schoppmann

states the sender must send OPRF values of size 2κ. However, we demonstrate
that our protocol remains secure when only κ bits are sent.

7.2 Experimental Evaluation

Implementation. We implement all our protocols in C++. We use an extended
version of the VOLE implementation of Schoppmann et al. [Sch+19a], supporting
iterative bootstrapping [Yan+20] and a consistency check for malicious security
[Wen+20], and assuming LPN with regular noise [see Boy+18,Wen+20]. For
computing the 2-core of the cuckoo graph in our PaXoS implementation, we use
igraph [Bud+20], and we rely on libOTe [Rin] for oblivious transfers and the
GMW implementation used in our circuit PSI protocol.

To compare our protocols to previous work [CM20,Kol+16,Pin+20,
Pin+19a], we perform experiments in different network settings. To that end,
we use two Amazon EC2 M5.2xlarge VMs, each featuring 8 cores at 2.5 GHz
and 32 GiB of RAM. For comparability, we limit each protocol to a single core.
In the LAN, without any artificial constraints, we measured a bandwidth of 5
Gbps between our machines. For settings with lower bandwidth, we use Won-
dershaper [HGS] to limit incoming and outgoing traffic.

PSI. Here, we compare our semi-honest and malicious PSI implementations
against the works of Kolesnikov et al. [Kol+16], Chase and Miao [CM20], and
Pinkas et al. [Pin+20]. The protocol of Kolesnikov et al. [Kol+16] is particularly
fast, but comes with a comparatively large communication overhead. The semi-
honest protocol of Kolesnikov et al. [CM20] on the other hand comes with a
lower communication overhead, but more expensive computation. Finally, the
PaXoS protocol of Pinkas et al. [Pin+20] features fast computation, but increased
communication compared to [CM20]. We do not compare against the SpOT-light
protocol [Pin+19b], since [CM20] outperforms it in high-bandwidth settings4,
and our protocol has even lower communication than SpOT-low.

The results of our evaluation in the semi-honest setting are shown in Table 2.
As expected, [Kol+16] outperforms all other protocols in the LAN setting, but is
less effective with reduced bandwidth. For medium input sizes and bandwidths,
[CM20] and [Pin+20] sometimes outperform our protocols and [Pin+20]. Our
protocols particularly shine in medium to low bandwidth settings, and with
large input sizes, which is to be expected given its low communication cost.

In the malicious setting, the state of the art is presented by [Pin+20]. Again,
we compare communication and running time in different bandwidth settings,
and present our results in Table 3. While in the LAN, [Pin+20] sometimes out-
performs our implementation, we are consistently faster as bandwidth decreases.

Since the vector OLE implementation underlying our protocols uses the iter-
ative bootstrapping approach of Yang et al. [Yan+20], our protocols have the

4 In low communication settings (10 Mbps and 1 Mbps), [CM20] takes 15% longer
than [Pin+19b], but at the same time up to 75% longer than our protocol.



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 925

distinctive feature that a part of the computation can be performed in a one-
time, data-independent setup phase. Our implementation of this setup phase
could be improved by tuning the LPN parameters (and thus the bootstrap-
ping iteration sizes) to the input set sizes. Currently we use the parameters
from [Boy+18,Yan+20] without any additional tuning. In our tables, we high-
light the best protocols when setup is amortized in gray. It can be seen that in
that case, our protocol more consistently outperforms previous work.

Table 2. Comparison of our PSI protocols to previous works in the semi-honest setting.
We compare the amount of data sent by both parties, as well as the total running time
with different bandwidths. A dash (–) indicates experiments that either crashed or did
not finish, or where only the total communication is reported. The best protocol within
a setting is marked in blue if setup is included, and in gray if setup is excluded.

n Protocol
Communication (MB) Total running time (s)

P1 P2 Total LAN 100Mbps 10Mbps 1Mbps

216

[KKRT16] – – 7.730 0.1106 0.7250 6.884 68.82

[CM20] 0.5790 4.764 5.343 0.5853 0.6437 4.870 47.49

[PRTY20] 12.62 0.5898 13.21 0.6460 1.682 11.86 112.8

Ours 0.9965 2.702 3.699 0.1720 0.4510 3.277 31.18

Ours (w/setup) 1.171 3.062 4.232 0.5030 1.067 6.742 63.33

218

[KKRT16] – – 31.88 0.5850 2.968 28.46 283.6

[CM20] 2.520 19.23 21.75 2.017 2.194 19.50 193.8

[PRTY20] 51.94 2.621 54.56 1.517 5.976 47.66 464.2

Ours 3.066 10.30 13.37 1.227 2.192 12.26 114.1

Ours (w/setup) 3.622 10.68 14.31 1.985 3.279 16.65 151.5

220

[KKRT16] – – 128.5 2.441 11.928 114.8 1143

[CM20] 10.03 77.63 87.66 8.148 9.071 78.38 780.0

[PRTY20] 214.0 10.49 224.5 5.885 24.09 195.6 1910

Ours 12.06 40.55 52.61 4.398 8.496 48.69 449.7

Ours (w/setup) 12.062 40.93 53.55 5.396 9.850 53.35 487.7

222

[KKRT16] – – 530.1 10.19 49.30 473.6 4718

[CM20] 44.08 313.5 357.6 34.70 41.54 319.4 3182

[PRTY20] 815.7 46.14 861.9 22.94 93.67 751.3 –

Ours 47.28 161.7 208.9 23.93 40.67 199.0 1794

Ours (w/setup) 47.84 162.0 209.9 25.88 42.97 204.7 1834

224

[KKRT16] – – 2137 43.90 199.1 1909 –

[CM20] 176.3 1266 1442 189.6 198.1 1289 12860

[PRTY20] 3364 184.5 3548 101.7 392.0 – –

Ours 204.2 645.7 849.9 90.741 156.4 814.2 7296

Ours (w/setup) 204.7 646.1 850.9 92.81 158.7 819.9 7335



926 P. Rindal and P. Schoppmann

Table 3. Comparison of our PSI protocols to [Pin+20] in the malicious setting.

n Protocol
Communication (MB) Total running time (s)

P1 P2 Total LAN 100Mbps 10Mbps 1Mbps

216
[PRTY20] 12.62 2.097 14.71 0.6510 1.808 13.13 125.5

Ours 1.390 2.702 4.092 0.2250 0.5260 3.627 34.77

Ours (w/setup) 1.564 3.062 4.626 0.5560 1.147 7.109 66.72

218
[PRTY20] 51.94 8.389 60.33 1.556 6.469 52.57 513.1

Ours 4.639 10.30 14.94 1.279 2.464 13.96 127.6

Ours (w/setup) 5.195 10.68 15.88 2.046 3.558 18.37 165.0

220
[PRTY20] 214.0 33.55 247.6 6.119 26.12 215.2 2410

Ours 17.31 40.55 57.85 5.150 9.599 54.090 494.0

Ours (w/setup) 17.86 40.93 58.79 6.157 10.94 58.76 532.6

222
[PRTY20] 815.7 134.2 950.0 23.37 101.2 826.1 –

Ours 68.25 161.7 229.9 26.50 45.19 222.5 1975

Ours (w/setup) 68.81 162.0 230.9 28.46 47.50 228.3 2015

224
[PRTY20] 3364 536.9 3901 102.8 422.1 – –

Ours 271.3 645.7 917.0 104.0 174.5 881.0 7876

Ours (w/setup) 271.9 646.1 918.0 106.0 176.8 886.7 7914

Circuit PSI. We also compare our circuit-PSI implementation to the state of
the art protocol [Pin+19a]. We use the same cuckoo hashing parameters as
[Pin+19a], ε = 1.27 and k = 3 hash functions, following the analysis of [PSZ18].
We note, however, that there is some disagreement in the literature regarding
the correct cuckoo hashing parameters for a given statistical security level λ. For
example, for k = 3, n = 220, and λ = 40, [PSZ18] and [Dem+18] report quite
different expansion factors (1.27 vs. 1.54). In our own experiments, we found the
security level to be approximated by λ = 240ε − 256 − log2 n, which requires
ε = 1.32 for n = 220 and λ = 40. Still, we stick to the parameters used by Pinkas
et al. [Pin+19a] for comparability.

Like [Pin+19a], our construction uses a generic two-party computation phase
in the end (Step 5 in Fig. 10). We implement two variants of this step: one using
the standard IKNP OT extension [Ish+03] to implement the GMW offline phase,
and one using the more recent SilentOT [Boy+19].

Our results in Table 4 show that our protocols outperform [Pin+19a] in
both high and low-bandwidth settings. Since the main communication bottle-
neck is the GMW phase, the SilentOT variant works particularly well in the
low-communication setting. In the LAN, our IKNP variant still outperforms
[Pin+19a] (who also used IKNP) in terms of running time, which showcases the
efficiency of our novel OPPRF construction.



VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 927

Table 4. Comparison of our Circuit-PSI protocol to Pinkas et al. [Pin+19a]. Values
marked with an asterisk (*) were not measured, but computed from the theoretical
communication costs [Section 7.3][Pin+19a].

n Protocol Total comm. (MB)
Total running time (s)

5 Gbps 100 Mbps

212 [PSTY19] 9* 0.965 1.34

Ours (IKNP) 13.4 0.495 1.19

Ours (SilentOT) 4.79 0.737 1.07

216 [PSTY19] 149* 5.01 11.3

Ours (IKNP) 171 1.52 9.03

Ours (SilentOT) 21.1 4.0 5.34

220 [PSTY19] 2540* 72.0 172

Ours (IKNP) 2830 23.3 149

Ours (SilentOT) 277 103 120

8 Conclusion

In this paper, we have shown how to combine two cryptographic primitives,
namely Vector-OLE and linear system solvers like (Xo)PaXoS, into highly effi-
cient O(P)PRF and PSI protocols. Our final protocols outperform previous work
in terms of communication, and as a consequence, in terms of running time in
bandwidth-constrained environments. From a theoretical perspective, we provide
a more efficient reduction from OPRF to PSI.

As discussed in Sect. 2, there are many ways to implement the linear system
solvers we require for VOLE-PSI. One approach, based on polynomial interpola-
tion, promises to result in the lowest communication complexity, but as previous
work has shown, this comes at the cost of expensive computation. The approach
presented in this paper, using PaXoS, allows for fast computation, but incurs
a higher communication blowup of asymptotically 2.4κn. It remains an open
question whether there are more efficient (i.e., smaller) data structures that also
allow for linear encoding and decoding. Should these become available, they will
directly improve the communication complexity of our protocols.

References

App+17. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure
arithmetic computation with constant computational overhead. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 8

BM74. Borodin, A., Moenck, R.: Fast modular transforms. J. Comput. Syst. Sci.
8(3), 366–386 (1974)

https://doi.org/10.1007/978-3-319-63688-7_8


928 P. Rindal and P. Schoppmann

Boy+18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In:
ACM Conference on Computer and Communications Security, pp. 896–912.
ACM (2018)

Boy+19. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive
secure computation. In: ACM Conference on Computer and Communications
Security, pp. 291–308. ACM (2019)

Bud+20. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E.,
Vlaskin, V.: Private matching for compute. IACR Cryptology ePrint Archive
2020, p. 599 (2020)

CKT10. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set inter-
section protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17373-8 13

CM20. Chase, M., Miao, P.: Private set intersection in the internet setting
from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 2

CO18. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-
party computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98113-0 25

CT10. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols
with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–
159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-
3 13

DCW13. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data:
an efficient and scalable protocol. In: ACM Conference on Computer and
Communications Security, pp. 789–800. ACM (2013)

Dem+18. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIRPSI: scaling private
contact discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018)

Gil99. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 8

HEK12. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits
better than custom protocols? In: NDSS. The Internet Society (2012)

HGS. Hubert, B., Geul, J., Séhier, S.: wondershaper: Command-line utility for lim-
iting an adapter bandwidth. https://github.com/magnific0/wondershaper

Igr. igraph: Library for the analysis of networks. https://github.com/igraph/
igraph

Ion+20. Ion, M., et al.: On deploying secure computing: private intersection- sum-
with-cardinality. In: EuroS&P, pp. 370–389. IEEE (2020)

Ish+03. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

Kal+19. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile
private contact discovery at scale. In: USENIX Security Symposium, pp.
1447–1464. USENIX Association (2019)

Kis+17. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersec-
tion for unequal set sizes with mobile applications. Proc. Priv. Enhancing
Technol. 2017(4), 177–197 (2017)

https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://github.com/magnific0/wondershaper
https://github.com/igraph/igraph
https://github.com/igraph/igraph
https://doi.org/10.1007/978-3-540-45146-4_9


VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE 929

Kol+16. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: ACM Confer-
ence on Computer and Communications Security, pp. 818–829. ACM (2016)

KS12. Kobayashi, K., Shibuya, T.: Generalization of Lu’s linear time encoding algo-
rithm for LDPC codes. In: ISITA, pp. 16–20. IEEE (2012)

LM10. Lu, J., Moura, J.M.F.: Linear time encoding of LDPC codes. IEEE Trans.
Inf. Theory 56(1), 233–249 (2010)

Mea86. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In: IEEE Symposium
on Security and Privacy, pp. 134–137. IEEE Computer Society (1986)

OOS17. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension
with application to private set intersection. In: Handschuh, H. (ed.) CT-
RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-52153-4 22

Pin+15. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set inter-
section using permutation-based hashing. In: USENIX Security Symposium,
pp. 515–530. USENIX Association (2015)

Pin+18. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 5

Pin+19a. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based
PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 5

Pin+19b. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private
set intersection from sparse OT extension. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 13

Pin+20. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 25

PSZ14. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: USENIX Security Symposium, pp. 797–812. USENIX
Association (2014)

PSZ18. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based
on OT extension. ACM Trans. Priv. Secur. 21(2), 71–735 (2018)

Rin. Rindal, P.: libOTe: A fast, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe

RR17a. Rindal, P., Rosulek, M.: Improved private set intersection against malicious
adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 9

RR17b. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: ACM Conference on Computer and Communications Security,
pp. 1229–1242. ACM (2017)

Sch+19a. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-
OLE: improved constructions and implementation. In: ACM Conference on
Computer and Communications Security, pp. 1055–1072. ACM (2019)

https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9


930 P. Rindal and P. Schoppmann

Sch+19b. Schoppmann, P., Gascón, A., Raykova, M., Pinkas, B.: Make some ROOM
for the zeros: data sparsity in secure distributed machine learning. In: ACM
Conference on Computer and Communications Security, pp. 1335–1350.
ACM (2019)

Wen+20. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero- knowledge proofs for Boolean and arithmetic
circuits. IACR Cryptology ePrint Archive 2020, p. 925 (2020)

Yan+20. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension
for correlated OT with small communication. In: CCS, pp. 1607–1626. ACM
(2020)



Author Index

Agarwal, Amit I-435
Aggarwal, Divesh I-467
Albrecht, Martin R. I-528
Alwen, Joël I-87
Amon, Ohad II-127
Ananth, Prabhanjan II-501, II-754, III-278
Andreeva, Elena II-92
Asharov, Gilad III-278

Badertscher, Christian III-399
Bao, Zhenzhen I-771
Bartusek, James I-435
Baum, Carsten III-429
Beck, Gabrielle II-663
Beierle, Christof II-155
Belaïd, Sonia II-313
Benamira, Adrien I-805
Ben-Efraim, Aner III-33
Benhamouda, Fabrice I-33, II-724
Beullens, Ward I-348
Bhattacharyya, Rishiraj II-92
Biryukov, Alex II-219
Blanchet, Bruno I-87
Bordes, Nicolas II-283
Bossuat, Jean-Philippe I-587
Bossuet, Lilian II-438
Boyle, Elette II-871
Brian, Gianluca II-408
Burdges, Jeffrey I-302

Cayrel, Pierre-Louis II-438
Chandran, Nishanth II-871
Cheng, Qi I-559
Chung, Kai-Min II-598
Ciampi, Michele III-64
Colombier, Brice II-438
Cong, Kelong III-33
Costello, Craig I-272
Couteau, Geoffroy II-842, III-247
Coutinho, Murilo I-711

Dahari, Hila III-278
Datta, Pratish I-177
David, Bernardo III-429

De Feo, Luca I-302
Deaton, Joshua I-329
Delpech de Saint Guilhem, Cyprien I-213
Derbez, Patrick II-155
Ding, Jintai I-329
Dinur, Itai I-374
Dobraunig, Christoph II-3, II-377
Dong, Xiaoyang I-771
Dowsley, Rafael III-429
Drăgoi, Vlad-Florin II-438
Ducas, Léo II-249
Dunkelman, Orr II-127

Faonio, Antonio II-408
Farshim, Pooya II-64
Faust, Sebastian II-782
Fehr, Serge II-598
Fleischhacker, Nils III-311

Galbraith, Steven D. I-213
Garg, Rachit III-159
Gay, Romain III-97
Gaži, Peter III-399
George, Marilyn III-370
Gerault, David I-805
Ghazi, Badih III-463
Gilboa, Niv II-871
Goel, Aarushi II-663
Golowich, Noah III-463
Gordon, S. Dov II-694
Goyal, Vipul I-435, II-468, III-64, III-278
Grassi, Lorenzo II-3
Green, Matthew III-553
Grilo, Alex B. II-531
Guinet, Anna II-3
Guo, Jian I-771
Gupta, Divya II-871
Gurkan, Kobi I-147

Hauck, Eduard I-87
Hazay, Carmit II-782
Heath, David III-3
Hemenway Falk, Brett III-338
Heninger, Nadia I-528



932 Author Index

Huang, Yu-Hsuan II-598
Hubaux, Jean-Pierre I-587

Ishai, Yuval II-871

Jager, Tibor I-117
Jain, Aayush II-724, III-97
Jain, Abhishek I-3, II-663, II-754
Jin, Zhengzhong I-3, II-754
Jovanovic, Philipp I-147

Kamara, Seny III-370
Kaptchuk, Gabriel II-663, III-553
Karpman, Pierre II-283
Kaslasi, Inbar III-219
Katsumata, Shuichi I-404
Keller, Nathan II-35, II-127
Khurana, Dakshita I-435, III-159, III-186
Kiayias, Aggelos III-399
Kiltz, Eike I-87, I-117
Kim, Young-Sik I-618
Klooß, Michael III-247
Kolesnikov, Vladimir III-3
Komargodski, Ilan I-177, II-724
Kretzler, David II-782
Kuijsters, Daniël II-3
Kumar, Nishant II-871
Kumar, Ravi III-463
Kutas, Péter I-242

La Placa, Rolando L. II-501
Lai, Qiqi I-498
Lai, Yi-Fu I-213
Leander, Gregor II-155
Lee, Eunsang I-618
Lee, Joon-Woo I-618
Lee, Yongwoo I-618
Lepoint, Tancrède I-33
Leurent, Gaëtan I-54, II-155
Li, Baiyu I-648
Li, Chao I-741
Li, Zeyong I-467
Li, Zheng I-771
Liao, Tai-Ning II-598
Libert, Benoît III-521
Lin, Huang III-247
Lin, Huijia II-531, II-724, III-97
Lipp, Benjamin I-87
Liu, Feng-Hao I-498
Liu, Yunwen I-741

Loss, Julian I-33
Lu, George III-159

Maji, Hemanta K. II-344
Malavolta, Giulio I-435, II-754
Maller, Mary I-147
Meiklejohn, Sarah I-147
Mennink, Bart II-377
Menu, Alexandre II-438
Merz, Simon-Philipp I-242
Meyer, Michael I-272
Meyer, Pierre II-842
Micciancio, Daniele I-648
Moataz, Tarik III-370
Mouchet, Christian I-587

Naehrig, Michael I-272
Nguyen, Hai H. II-344
Nguyen, Khoa III-521
Nielsen, Jesper Buus III-429
Nishimaki, Ryo I-404
No, Jong-Seon I-618
Noble, Daniel III-338

Obremski, Maciej II-408
Oechsner, Sabine III-429
Omri, Eran III-33
Orlandi, Claudio I-678
Orrù, Michele I-33
Orsini, Emmanuela III-33
Ostrovsky, Rafail III-64, III-338

Pagh, Rasmus III-463
Pan, Yanbin I-559
Paskin-Cherniavsky, Anat II-344
Pernot, Clara I-54
Peters, Thomas III-521
Petit, Christophe I-242
Peyrin, Thomas I-805
Polychroniadou, Antigoni II-812

Raddum, Håvard II-155
Rathee, Mayank II-871
Raykova, Mariana I-33
Reichle, Michael III-247
Ribeiro, João II-408
Riepel, Doreen I-87, I-117
Rindal, Peter II-901
Rivain, Matthieu II-313
Roberts, Bhaskar II-562



Author Index 933

Ronen, Eyal II-127
Rosemarin, Asaf II-35
Rotella, Yann II-155
Rothblum, Ron D. III-219
Roy, Arnab II-92
Rupprecht, David II-155
Russell, Alexander III-399

Sahai, Amit III-97
Schäge, Sven I-117
Schlosser, Benjamin II-782
Scholl, Peter I-678
Schoppmann, Phillipp II-901
Shamir, Adi II-127
Shi, Danping I-771
Shi, Elaine III-489
Simkin, Mark II-408, III-311
Skórski, Maciej II-408
Smart, Nigel P. III-33
Song, Fang II-531
Song, Yifan II-812
Soria-Vazquez, Eduardo III-33
Souza Neto, Tertuliano C. I-711
Srinivasan, Akshayaram II-468
Starin, Daniel II-694
Stennes, Lukas II-155
Stephens-Davidowitz, Noah I-467
Stern, Gilad I-147
Stevens, Marc II-249
Suad, Tom II-344
Sun, Siwei I-741, I-771

Taleb, Abdul Rahman II-313
Tan, Quan Quan I-805
Tessaro, Stefano II-64
Tomescu, Alin I-147
Troncoso-Pastoriza, Juan I-587

Udovenko, Aleksei II-219

Vaikuntanathan, Vinod II-531
Van Laer, Gijs III-553
van Woerden, Wessel II-249
Vasudevanr, Prashant Nalini III-219
Velingker, Ameya III-463
Venturi, Daniele II-408
Vidick, Thomas II-630
Vishakha I-329

Wadleigh, Nick I-559
Wang, Mingyuan II-344
Wang, Xiaoyun I-771
Wang, Zhedong I-498
Waters, Brent I-177, III-159
Wee, Hoeteck III-127
Weitkämper, Charlotte I-242
Wichs, Daniel III-127
Wu, Ke III-489

Xu, Guangwu II-187
Xu, Jun I-559

Yakoubov, Sophia I-678
Yamada, Shota I-404
Yamakawa, Takashi I-404, II-568
Yang, Bo-Yin I-329
Yerukhimovich, Arkady II-694
Yu, Wei II-187
Yung, Moti III-521

Zhandry, Mark II-568
Zhang, Tina II-630
Zhu, Chenzhi II-468
Zikas, Vassilis III-399


	Preface
	Eurocrypt 2021
	Contents – Part II
	Symmetric Designs
	Ciminion: Symmetric Encryption Based on Toffoli-Gates over Large Finite Fields
	1 Introduction
	2 Specification
	2.1 Mode
	2.2 Permutations
	2.3 The Rolling Function
	2.4 SubKeys and Round Constants
	2.5 Number of Rounds and Security Claim for Encryption

	3 Design Rationale
	3.1 Mode of Operation
	3.2 The Round Function

	4 Security Analysis
	4.1 Linear Cryptanalysis
	4.2 Differential Cryptanalysis
	4.3 Higher-Order Differential and Interpolation Attacks
	4.4 Gröbner Basis Attacks
	4.5 On the Algebraic Cipher Representation

	5 Comparison with Other Designs
	5.1 MPC Costs: Ciminion and Related Works
	5.2 Ciminion Versus Hades: Advantages and Similarities

	References

	Mind the Middle Layer: The HADES Design Strategy Revisited
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Practical Impact of Our Results and Subsequent Work
	1.4 Organization of the Paper

	2 The HADES Construction
	3 Improved Security Bounds for Poseidon Permutations
	4 A Class of Matrices over a Binary Field and Its Properties
	4.1 Special Matrices and Their Basic Properties
	4.2 Special Matrices over Commutative Rings of Characteristic 2
	4.3 Nilpotent Special Matrices over Commutative Rings with Characteristic 2
	4.4 Block Matrices with Special Blocks
	4.5 A Stronger Conjectured Bound

	5 A Large Invariant Subspace in the Middle Layer of Starkad Permutations
	5.1 The Starkad MDS and Special Matrices
	5.2 A Large Invariant Subspace in Starkad with 4 S-Boxes in Each Full Round
	5.3 Using the Invariant Subspaces for a Preimage Attack
	5.4 The Invariant Subspaces Can Be Avoided Easily

	6 Discussion and Open Problems
	6.1 Discussion: PSPN Rounds Vs. SPN Rounds
	6.2 Open Problems

	A  Detailed Description of the Pattern Search Algorithm
	A.1 Checking a Single Pattern
	A.2 Checking All r-Round Patterns with a Active S-boxes

	References

	Password Hashing and Preprocessing
	1 Introduction
	1.1 Guessing Games
	1.2 Unrecoverability Bounds
	1.3 AI-KDF Security of Iteration
	1.4 Structure of the Paper

	2 Preliminaries
	3 Unguessability
	4 Unrecoverability
	4.1 Main Theorems

	5 Iterated Hashing
	6 KDF Security in Applications
	A Multi-instance Hellman
	References

	Compactness of Hashing Modes and Efficiency Beyond Merkle Tree
	1 Introduction
	1.1 Our Results
	1.2 Impact of Our Result

	2 Notation and Preliminaries
	3 Compactness: Normalizing Efficiency for Optimally Secure Constructions
	3.1 Compactness of Existing Constructions

	4 ABR Mode with Compactness =1
	4.1 Warmup: ABR Mode with Height 2
	4.2 Proof of Theorem2

	5 Achieving Indifferentiability Efficiently
	5.1 Indifferentiability Attack Against ABR Mode
	5.2 Almost Fully Compact and Indifferentiable ABR+ Mode
	5.3 Proof of Theorem6

	6 Efficiency and Applications
	6.1 Efficiency and Proof Size
	6.2 Applications and Variants

	7 Discussion and Conclusions
	References

	Real-World Cryptanalysis
	Three Third Generation Attacks on the Format Preserving Encryption Scheme FF3
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 FF3
	2.1 Our Notations

	3 Previous Attacks
	3.1 A Message Recovery Attack ch5Bellarespsattack
	3.2 A First Generation Related-Tweak Slide and PRF Recovery ch5DurakV17
	3.3 A Second Generation Related-Tweak Slide and PRF Recovery ch5HoangMT19

	4 Improved Attacks on FF3
	4.1 Symmetric Slide Attack
	4.2 Cycle Structure Attack
	4.3 Asymmetric Slide Attack
	4.4 The PRF Reconstruction Procedure

	5 Experimental Verification
	5.1 Experimental Verification of the Symmetric Slide Attack
	5.2 Experimental Verification of the Cycle Structure Attack
	5.3 Experimental Verification of the Asymmetric Slide Attack

	6 A New Class of Attacks on Cycle Walking FPE Schemes
	7 A Related Domain Distinguishing Attack on FF3 and FF3-1
	8 Conclusions
	References

	Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2
	1 Introduction
	1.1 Related Work and Reverse Engineering
	1.2 Our Contribution

	2 Description of GEA-1 and GEA-2
	2.1 GEA-1
	2.2 GEA-2
	2.3 Deconstructing the Filter Function

	3 An Attack on GEA-1
	3.1 A Simple Divide-and-Conquer Attack on GEA-1

	4 An Attack on GEA-2
	4.1 Algebraic Cryptanalysis
	4.2 Guess-and-Determine
	4.3 Divide-and-Conquer Technique
	4.4 Description of the Attack
	4.5 Improved Attack
	4.6 Recovering the Master Key
	4.7 Using Less Data
	4.8 Experimental Verification

	5 Discussion
	5.1 Attack Requirements
	5.2 Attack Severity
	5.3 Attack Implications
	5.4 Responsible Disclosure and Industry Implications

	6 Conclusion
	Appendix A  Source Code to Compute the Kernels
	Appendix B  Source Code to Compute the Dimensions
	References

	Implementation Issues
	Pre-computation Scheme of Window NAF for Koblitz Curves Revisited
	1 Introduction
	2 Preliminary
	2.1 Determine w | (g+h)
	2.2 Costs of Point Operations on Koblitz Curves
	2.3 Previous Pre-computation Schemes
	2.4 Montgomery Trick

	3 New Formulas on 4-Koblitz Curves
	4 A Novel Pre-computation Scheme
	4.1 Basic Lemmas
	4.2 Calculating Ri
	4.3 Our Novel Pre-computation
	4.4 Comparison of Pre-computation Schemes in M and S

	5 Scalar Multiplications Using Window NAF on 4-Koblitz Curves
	5.1 Expected Costs of Scalar Multiplications
	5.2 Expected Costs of Constant-Time Scalar Multiplications

	6 Experiments
	6.1 Pre-Computation Schemes on 4-Koblitz Curves
	6.2 Scalar Multiplications on 4-Koblitz Curves

	7 Conclusion
	A  Pre-computation for Window NAF with Widths 7 and 8
	A.1  Pre-computation for Window Width w=7
	A.2  Pre-computation for Window Width w=8

	B Our Pre-computation Scheme on Koblitz Curves Using LD Coordinates
	B.1  New Formulas Using LD Coordinates
	B.2  Pre-computation Schemes Using LD Coordinates
	B.3 Scalar Multiplications Using Window NAF in LD Coordinates

	C Our Pre-computation Scheme on Koblitz Curves Using -Coordinates
	C.1 New Formulas Using -Coordinates
	C.2  Pre-computation Schemes Using -Coordinates
	C.3  Scalar Multiplications Using Window NAF in -Coordinates

	References

	Dummy Shuffling Against Algebraic Attacks in White-Box Implementations
	1 Introduction
	2 The Framework
	2.1 Implementations and Computational Traces
	2.2 Algebraic Attack
	2.3 Security Model

	3 Shuffling Definitions
	3.1 Related Work
	3.2 Dummy Shuffling
	3.3 Hidden and Public Dummy Shuffling
	3.4 Modeling Algebraic Security of Dummy Shuffling

	4 Algebraic Attacks on Dummy(less) Shuffling
	4.1 Standard Algebraic Attack Against Dummyless Shuffling
	4.2 Differential Algebraic Attack Against Dummyless Shuffling
	4.3 Security Against Differential Algebraic Attack
	4.4 Generic Higher-Degree Attack

	5 Provable Algebraic Security of Dummy Shuffling
	5.1 Security Analysis (Linear Case)
	5.2 Provable Security via Refreshing (Linear Case)
	5.3 Provable Security via Refreshing (Higher-Degree)
	5.4 Implementation Cost Estimation

	6 Public Dummy Shuffling Construction
	7 Conclusions
	References

	Advanced Lattice Sieving on GPUs, with Tensor Cores
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Lattices and the Shortest Vector Problem
	2.2 The General Sieve Kernel

	3 Architecture
	3.1 GPU Device Architecture
	3.2 Sieve Design
	3.3 Data Storage and Movement

	4 Bucketing
	4.1 BGJ-like Bucketing (triple_gpu)
	4.2 BDGL-Like Bucketing (bdgl and bdgl_gpu)
	4.3 Quality Comparison

	5 Reducing with Tensor Cores
	6 Filtering Lifts with Dual Hash
	6.1 Dual Hash Analysis
	6.2 Implementation

	7 Sieving in Practice
	7.1 Comparison
	7.2 SVP Parameter Tuning
	7.3 New SVP Records
	7.4 Remarks

	References

	Masking and Secret-Sharing
	Fast Verification of Masking Schemes in Characteristic Two
	1 Introduction
	1.1 Our Contribution
	1.2 Roadmap
	1.3 Notation

	2 Security Models for Masking Schemes
	2.1 Simulatability and Non-interference
	2.2 Matrix Model for Non-interference
	2.3 Matrix Model for Strong Non-interference
	2.4 Security of Binary Schemes over Finite Fields of Characteristic Two

	3 An Algorithm for Checking Non-interference
	3.1 The Algorithm from EUROCRYPT 2016
	3.2 A New Algorithm Based on Enumeration
	3.3 Dimension Reduction
	3.4 Adaptation to the Robust Probing Model

	4 Implementation
	4.1 Data Structures
	4.2 Amortised Enumeration and Parallelisation
	4.3 From High-Level Representation to C description

	5 Applications
	5.1 NI and SNI Multiplication Gadgets
	5.2 SNI Refreshing Gadgets
	5.3 Glitch-Resistant NI Multiplication

	References

	On the Power of Expansion: More Efficient Constructions in the Random Probing Model
	1 Introduction
	2 Preliminaries
	2.1 Linear Sharing, Circuits, and Gadgets
	2.2 Random Probing Security
	2.3 Expanding Compiler
	2.4 Random Probing Expandability
	2.5 Complexity of the Expanding Compiler

	3 Bounding the Amplification Order
	3.1 Generic Upper Bound
	3.2 Upper Bound for Standard Multiplication Gadgets

	4 A Closer Look at Random Probing Expandability
	4.1 Splitting RPE
	4.2 Tightening RPE
	4.3 Unifying (Tight) RPE and SNI

	5 Generic Constructions
	5.1 Generic Copy and Addition Gadgets
	5.2 ISW-Based Copy and Addition Gadgets
	5.3 ISW Multiplication Gadget
	5.4 Application to the Expanding Compiler
	5.5 Multiplication Gadget with Maximal Amplification Order

	6 Efficient Small Gadgets
	6.1 3-Share Gadgets
	6.2 5-Share Gadgets

	References

	Leakage-Resilience of the Shamir Secret-Sharing Scheme Against Physical-Bit Leakages
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Secret Sharing Schemes
	2.2 Physical-Bit Leakage Function
	2.3 Local Leakage-Resilient Secret Sharing Scheme Against Physical-Bit Leakage
	2.4 Generalized Reed-Solomon Code
	2.5 Fourier Analysis Basics

	3 Imported Theorems
	3.1 Generalized Arithmetic Progressions
	3.2 Number of Isolated Solutions of a Square Polynomial System

	4 Physical-Bit Witness Set as a Small Number of 2-GAPs
	5 Physical-Bit Leakage on Shamir Secret Sharing
	5.1 Claims Needed to Prove Theorem 3
	5.2 Proof of Theorem 3 Using Claim 1 and Claim 2
	5.3 Proof of Claim 1
	5.4 Proof of Claim 2

	6 Physical-Bit Leakage Attack on Shamir Secret-Sharing Scheme
	6.1 Our Attack and Discrepancy of Irwin-Hall Distribution

	References

	Leakage, Faults and Tampering
	Leakage Resilient Value Comparison with Application to Message Authentication
	1 Introduction
	1.1 Formal View on Leakage Resilient Value Comparison
	1.2 Two Practical Solutions
	1.3 Application to Message Authentication
	1.4 Comparison of Proposed Solutions

	2 Preliminaries
	2.1 Multicollision Limit Function
	2.2 Block Ciphers and Tweakable Block Ciphers

	3 Security Model for Value Comparison
	3.1 Value Comparison in Black-Box Model
	3.2 Value Comparison in Leaky Model
	3.3 Security Model for Leakage Resilient Value Comparison

	4 Value Comparison Based on Permutation
	4.1 Leakage Resilience of Value Comparison with PVP
	4.2 PVP with Secret Permutation
	4.3 PVP with Public Permutation

	5 Value Comparison Based on Tweakable Permutation
	5.1 Leakage Resilience of Value Comparison with TPVP
	5.2 TPVP with Secret Tweakable Permutation
	5.3 TPVP with Public Tweakable Permutation

	6 Freedom of Salts
	6.1 Random Salts
	6.2 Omission of Salt
	6.3 Note on Disclosing Salts

	7 Application to Message Authentication
	7.1 Security Model for Leakage Resilient MAC Plus Value Comparison
	7.2 StP: SuKS-then-PVP
	7.3 HaFuFu: MAC Plus Value Comparison with Same Primitive

	8 Conclusion
	References

	The Mother of All Leakages: How to Simulate Noisy Leakages via Bounded Leakage (Almost) for Free
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Technical Overview
	1.4 Related Work
	1.5 Notation

	2 Rejection Sampling for Approximate Density
	2.1 The Case of Exact Density
	2.2 The Case of Approximate Density

	3 Leakage Models
	3.1 Bounded Leakage
	3.2 Noisy Leakage
	3.3 Dense Leakage
	3.4 The Simulation Paradigm

	4 Relating Different Leakage Models
	4.1 Simulating Dense Leakage with Bounded Leakage
	4.2 Min-Entropy-Noisy Leakage Is Dense Leakage
	4.3 Uniform-Noisy Leakage Is Also Dense Leakage
	4.4 SD-Noisy and MI-Noisy Leakage Are Also Dense Leakage

	5 Applications
	5.1 Secret Sharing with Local Leakage Resilience
	5.2 Bounded-Collusion Protocols

	6 Conclusions and Open Problems
	References

	Message-Recovery Laser Fault Injection Attack on the Classic McEliece Cryptosystem
	1 Introduction
	1.1 General Decoding and Integer Linear Programming
	1.2 Related Works
	1.3 Contributions

	2 Code-Based Cryptosystems
	2.1 Coding Theory – Preliminaries
	2.2 NIST PQC Competition
	2.3 Security and Practical Parameters

	3 Syndrome Decoding over N
	3.1 Description of the Problem
	3.2 Integer Linear Programming
	3.3 Solving N-SDP Using ILP
	3.4 Optimization

	4 Fault Injection
	4.1 Previous Work
	4.2 Bit-Set Fault on an Exclusive-OR Instruction
	4.3 Bit-Set Fault on Schoolbook Matrix-Vector Multiplication
	4.4 Bit-Set Fault on a Packed Matrix-Vector Multiplication

	5 Experimental Results
	5.1 Fault Injection
	5.2 Syndrome Decoding over N with Integer Linear Programming

	6 Conclusion
	A  Other Instruction Sets
	References

	Multi-source Non-malleable Extractors and Applications
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Multi-source Non-malleable Extractor
	2.2 Strong Leakage-Resilient Non-malleable Extractor
	2.3 Non-malleable Secret Sharing
	2.4 Network Extractor Protocol

	3 Preliminaries
	3.1 Seedless Non-malleable Extractors

	4 (2,t)-Non-malleable Randomness Extractors
	4.1 Transformation

	5 Strong Leakage-Resilient Non-malleable Extractor
	5.1 Leakage-Resilient Non-malleable Extractors
	5.2 Bootstrapping
	5.3 Efficient Pre-image Sampleability

	6 Multi-source Non-malleable Extractors
	6.1 Definition
	6.2 Construction
	6.3 Instantiation
	6.4 Efficient Pre-image Sampleability

	7 Multi-Split-State Non-malleable Codes
	7.1 Definition
	7.2 Construction

	8 Non-malleable Secret Sharing
	8.1 Construction

	9 Network Extractor Protocol
	9.1 Building Block
	9.2 The Protocol

	References

	Quantum Constructions and Proofs
	Secure Software Leasing
	1 Introduction
	1.1 Our Results
	1.2 Overview of Construction of SSL

	2 Secure Software Leasing (SSL)
	2.1 Security
	2.2 Infinite-Term Lessor Security

	3 Impossibility of SSL
	3.1 De-Quantumizable Circuits: Definition
	3.2 De-Quantumizable Circuit Class: Construction

	4 Main Construction
	4.1 Circuit Class of Interest: Evasive Circuits
	4.2 Ingredients
	4.3 Construction

	A  Related Work
	References

	Oblivious Transfer Is in MiniQCrypt
	1 Introduction
	1.1 Technical Overview

	2 Quantum Stand-Alone Security Model
	2.1 Modular Composition Theorem

	3 Parallel OT with Unbounded Simulation from OWF
	3.1 Stand-Alone-Secure OT in Fso-com-hybrid Model
	3.2 Parallel Repetition for Protocols with Straight-Line Simulation
	3.3 Implementing Fso-com with Unbounded Simulation

	4 Extractable Commitment from Unbounded Simulation OT
	4.1 Verifiable Conditional Disclosure of Secrets (vCDS)
	4.2 CDS Protocol from Unbounded Simulation OT
	4.3 Extractable Commitment from CDS

	5 Multiparty (Quantum) Computation in MiniQCrypt
	References

	Security Analysis of Quantum Lightning
	1 Introduction
	2 Proposed Construction of Quantum Lightning
	3 Analysis of the Security Proof
	References

	Classical vs Quantum Random Oracles
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Works

	2 Preliminaries
	3 Separation Between ROM and QROM
	3.1 Proof of Quantum Access to Random Oracle
	3.2 Separations for Digital Signatures
	3.3 Separations for Public Key Encryption

	4 Lifting Theorem
	4.1 Statement of Lifting Theorem
	4.2 Proof of Lifting Theorem
	4.3 Immediate Corollaries
	4.4 Application to Digital Signatures
	4.5 Application to Quantum Query Lower Bounds

	References

	On the Compressed-Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work
	1 Introduction
	2 Warm-Up: Proving Classical Query Complexity Bounds
	2.1 The Lazy-Sampling Technique
	2.2 Proving Classical Lower Bounds

	3 Notation
	3.1 Operators and Their Norms
	3.2 The Computational and the Fourier Basis
	3.3 Functions and Their (Quantum) Representations

	4 Zhandry's Compressed Oracle - Refurbished
	4.1 The Compressed Oracle
	4.2 Linking the Compressed and the Original Oracle
	4.3 Working Out the Transition Matrix
	4.4 The Parallel-Query (Compressed) Oracle

	5 A Framework for Proving Quantum Query Bounds
	5.1 Setting up the Framework
	5.2 Bounding Transition Capacities Using Classical Reasoning only
	5.3 Some Rules for the Quantum Transition Capacity

	6 Post-Quantum Proof of Sequential Works
	6.1 Simple Proof of Sequential Works
	6.2 Post-Quantum Security of Simple PoSW

	References

	Classical Proofs of Quantum Knowledge
	1 Introduction
	2 Preliminaries
	2.1 Terminology and Notation
	2.2 Black-Box Quantum Provers
	2.3 Implementing Oracles

	3 Quantum Agree-and-Prove Schemes
	3.1 Scenario
	3.2 Input Generation
	3.3 Protocol
	3.4 Security Conditions
	3.5 Agree-and-Prove Scenario for Quantum Money

	4 Simple Properties
	4.1 Nondestructive Proofs of Quantum Knowledge Imply Cloning
	4.2 Proofs of Quantum Knowledge Are Also Quantum Money Verification Protocols

	5 Proofs of Quantum Knowledge for Quantum Money States
	5.1 PoQK for Wiesner Money States
	5.2 PoQK for Subspace Money States

	6 Arguments of Quantum Knowledge for QMA Relations
	6.1 Agree-and-Prove Scenario for QMA Relations
	6.2 The Protocol
	6.3 Arguments of Quantum Knowledge for QMA Relations
	6.4 Sequential Amplification

	References

	Multiparty Computation
	Order-C Secure Multiparty Computation for Highly Repetitive Circuits
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Background
	2.2 Our Approach: Semi-honest Security
	2.3 Malicious Security

	3 Preliminaries
	4 Highly Repetitive Circuits
	4.1 Wire Configuration
	4.2 (A,B)-Repetitive Circuits
	4.3 Examples of Highly Repetitive Circuits
	4.4 Protocol Switching for Circuits with Partially Repeated Structure

	5 A Non-interactive Protocol for Packing Regular Secret Shares
	6 Our Order-C Protocols
	6.1 Sub-Functionalities and Protocols
	6.2 Semi-honest Protocol
	6.3 Maliciously Secure Protocol

	7 Implementation and Evaluation
	7.1 Theoretical Comparison to Prior Work
	7.2 Implementation Comparison to Prior Work

	References

	The More the Merrier: Reducing the Cost of Large Scale MPC
	1 Introduction
	1.1 Technical Overview
	1.2 Performance Comparisons
	1.3 Related Work

	2 Preliminaries
	2.1 Secret Sharing

	3 Multiplication Triple Generation
	4 Protocols for Circuit Evaluation
	4.1 Authenticating the Triples
	4.2 Providing Input and MACCheck

	5 Optimizing Large-Scale MPC
	5.1 Protocol Optimizations
	5.2 Protocol Bottlenecks
	5.3 Protocol Variants

	6 Concrete Performance Estimation
	6.1 Measurement Details
	6.2 Results

	References

	Multiparty Reusable Non-interactive Secure Computation from LWE
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Organization of the Paper

	2 Technical Overivew
	2.1 Review of Definition of mrNISC Protocols
	2.2 Step 1: Reusable Functional OT from LWE
	2.3 Step 2: 2rNISC for Functional OT to General mrNISC for P

	3 Preliminaries
	3.1 General Lattice Preliminaries
	3.2 Learning with Errors
	3.3 Review of Gentry-Sahai-Waters FHE Scheme
	3.4 Lattice Trapdoors
	3.5 Lossy Modes and Unique Decoding
	3.6 Other Preliminaries

	4 Construction of 2rNISC
	4.1 2rNISC for Depth-Bounded Functions
	4.2 Bootstrapping 2rNISC for All Depths

	5 Construction of MrNISC Schemes
	References

	Unbounded Multi-party Computation from Learning with Errors
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 AB-SFE with Public Decryption
	2.2 AB-SFE from Learning with Errors
	2.3 From AB-SFE with Public Decryption to Unbounded MPC
	2.4 Related Work

	3 Preliminaries
	3.1 Notations
	3.2 Lattice and LWE Assumption
	3.3 Garbling Scheme
	3.4 Semi-malicious 2-Round MPC in Plain Model
	3.5 Homomorphic Commitment

	4 Secure Function Evaluation with Public Decryption
	4.1 Definition
	4.2 Construction

	5 Unbounded MPC
	5.1 Definition
	5.2 Construction
	5.3 Security

	References

	Generic Compiler for Publicly Verifiable Covert Multi-Party Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Secure Multi-Party Computation
	2.1 Covert Security
	2.2 Covert Security with Public Verifiability

	3 Preliminaries
	3.1 Communication Model and Notion of Time
	3.2 Verifiable Time-Lock Puzzle
	3.3 Commitment
	3.4 Signature Scheme
	3.5 Semi-honest Base Protocol
	3.6 Coin Tossing Functionality
	3.7 Puzzle Generation Functionality

	4 PVC Compiler
	4.1 Distributed Seed Computation
	4.2 The PVC Compiler
	4.3 Blame-Algorithm
	4.4 Judge-Algorithm

	5 Security
	5.1 Simulatability
	5.2 Public Verifiability
	5.3 Defamation Freeness

	6 Evaluation
	6.1 Efficiency of Our Compiler
	6.2 Comparison with Prior Work

	References

	Constant-Overhead Unconditionally Secure Multiparty Computation Over Binary Fields
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 The Model
	3.2 Secret Sharing Scheme
	3.3 Reverse Multiplication Friendly Embeddings
	3.4 Useful Building Blocks

	4 Preparing Random Sharings for Fq-GLSSS
	5 Hidden Additive Secret Sharing
	6 Building Blocks for Preprocessing Phase
	6.1 Preparing Random Sharings
	6.2 Preparing Beaver Tuples
	6.3 Preparing Zero Additive Sharings
	6.4 Preparing Parity Sharings

	7 Online Phase
	7.1 Input Gates
	7.2 Addition Gates and Multiplication Gates
	7.3 Verification of the Computation
	7.4 Output Gates
	7.5 Main Protocol

	References

	Breaking the Circuit Size Barrier for Secure Computation Under Quasi-Polynomial LPN
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Related Work

	2 Technical Overview
	2.1 PCG and HSS
	2.2 Generating Correlated Randomness from a PCG
	2.3 Application to Sublinear Secure Computation

	3 Preliminaries
	3.1 Function Secret Sharing
	3.2 Learning Parity with Noise
	3.3 Pseudorandom Correlation Generators

	4 Secure Computation from Super-Constant-Degree Low-Locality Polynomial Correlated Randomness
	4.1 Block Decomposition of Layered Circuits
	4.2 Securely Computing C in the Correlated Randomness Model

	5 Generating Correlated Randomness from LPN
	5.1 Substrings Tensor Powers Correlations (stp)
	5.2 Good Cover
	5.3 PCG for Subsets Tensor Powers (PCGstp)
	5.4 Instantiating the MPFSS
	5.5 Securely Distributing MPFSS.Gen an stp

	6 Choice of Parameters
	References

	Function Secret Sharing for Mixed-Mode and Fixed-Point Secure Computation
	1 Introduction
	1.1 MPC with Preprocessing Through FSS
	1.2 Our Contributions

	2 Preliminaries
	2.1 Data Types and Operators
	2.2 Function Secret Sharing
	2.3 FSS Gates

	3 Optimized Distributed Comparison Function
	4 Public Intervals and Multiple Interval Containments
	4.1 Realizing FSS Gate for [p,q] Using FSS Scheme for f<(N-1)+rin,1

	5 Applications of Public Intervals
	5.1 Splines with Public Intervals

	6 FSS Gates for Fixed-Point Arithmetic
	6.1 Fixed-Point Addition and Multiplication
	6.2 Logical Right Shift

	7 FSS Barrier for Fixed-Point Multiplication
	References

	VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE
	1 Introduction
	1.1 Contributions
	1.2 Notation
	1.3 Overview
	1.4 Related Work

	2 Linear Solvers and PaXoS
	3 Vole Based OPRF
	3.1 Vector OLE
	3.2 Malicious Secure Oblivious PRF

	4 Private Set Intersection
	5 Oblivious Programmable PRF
	6 Circuit PSI
	7 Performance Evaluation
	7.1 Theoretical Comparison
	7.2 Experimental Evaluation

	8 Conclusion
	References

	Author Index



