
Anne Canteaut
François-Xavier Standaert (Eds.)

LN
CS

 1
26

98

40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17–21, 2021, Proceedings, Part III

Advances in Cryptology –
EUROCRYPT 2021

Lecture Notes in Computer Science 12698

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Anne Canteaut • François-Xavier Standaert (Eds.)

Advances in Cryptology –

EUROCRYPT 2021
40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17–21, 2021
Proceedings, Part III

123

Editors
Anne Canteaut
Inria
Paris, France

François-Xavier Standaert
UCLouvain
Louvain-la-Neuve, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-77882-8 ISBN 978-3-030-77883-5 (eBook)
https://doi.org/10.1007/978-3-030-77883-5

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1007/978-3-030-77883-5

Preface

Eurocrypt 2021, the 40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, was held in Zagreb, Croatia, during October 17–21, 2021.1

The conference was sponsored by the International Association for Cryptologic Research
(IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan Picek (Delft
University of Technology, The Netherlands) were responsible for the local organization.

We received a total of 400 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 59 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 78 papers. The revised versions of these papers are included in this
three-volume proceedings.

The PC decided to give Best Paper Awards to the papers “Non-Interactive Zero
Knowledge from Sub-exponential DDH” by Abhishek Jain and Zhengzhong Jin, “On
the (in)security of ROS” by Fabrice Benhamouda, Tancrède Lepoint, Julian Loss,
Michele Orrù, and Mariana Raykova and “New Representations of the AES Key
Schedule” by Gaëtan Leurent and Clara Pernot. The authors of these three papers
received an invitation to submit an extended version of their work to the Journal of
Cryptology. The program also included invited talks by Craig Gentry (Algorand
Foundation) and Sarah Meiklejohn (University College London).

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of good papers which
did not find a slot in the sparse number of accepted papers. We sincerely hope that
these works will eventually get the attention they deserve.

We are indebted to the PC and the external reviewers for their voluntary work.
Selecting papers from 400 submissions covering the many areas of cryptologic research
is a huge workload. It has been an honor to work with everyone. We owe a big thank
you to Kevin McCurley for his continuous support in solving all the minor issues we
had with the HotCRP review system, to Gaëtan Leurent for sharing his MILP programs
which made the papers assignments much easier, and to Simona Samardjiska who
acted as Eurocrypt 2021 webmaster.

Finally, we thank all the other people (speakers, sessions chairs, rump session
chairs…) for their contribution to the program of Eurocrypt 2021. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

April 2021 Anne Canteaut
François-Xavier Standaert

1 This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions due to COVID-19.

Eurocrypt 2021

The 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research
Zagreb, Croatia

October 17–21, 2021

General Co-chairs

Lejla Batina Radboud University, The Netherlands
Stjepan Picek Delft University of Technology, The Netherlands

Program Committee Chairs

Anne Canteaut Inria, France
François-Xavier Standaert UCLouvain, Belgium

Program Committee

Shweta Agrawal IIT Madras, India
Joël Alwen Wickr, USA
Foteini Baldimtsi George Mason University, USA
Marshall Ball Columbia University, USA
Begül Bilgin Rambus - Cryptography Research, The Netherlands
Nir Bitansky Tel Aviv University, Israel
Joppe W. Bos NXP Semiconductors, Belgium
Christina Boura University of Versailles, France
Wouter Castryck KU Leuven, Belgium
Kai-Min Chung Academia Sinica, Taiwan
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Véronique Cortier LORIA, CNRS, France
Geoffroy Couteau CNRS, IRIF, Université de Paris, France
Luca De Feo IBM Research Europe, Switzerland
Léo Ducas (Area Chair:

Public-Key Crypto)
CWI, Amsterdam, The Netherlands

Orr Dunkelman University of Haifa, Israel
Stefan Dziembowski

(Area Chair: Theory)
University of Warsaw, Poland

Thomas Eisenbarth University of Lübeck, Germany
Dario Fiore IMDEA Software Institute, Spain
Marc Fischlin TU Darmstadt, Germany

Benjamin Fuller University of Connecticut, USA
Adrià Gascón Google, UK
Henri Gilbert ANSSI, France
Shai Halevi Algorand Foundation, USA
Annelie Heuser Univ Rennes, CNRS, IRISA, France
Naofumi Homma Tohoku University, Japan
Kristina Hostáková ETH Zürich, Switzerland
Tetsu Iwata Nagoya University, Japan
Marc Joye Zama, France
Pascal Junod (Area Chair:

Real-World Crypto)
Snap, Switzerland

Pierre Karpman Université Grenoble-Alpes, France
Gregor Leander (Area Chair:

Symmetric Crypto)
Ruhr-Universität Bochum, Germany

Benoît Libert CNRS and ENS de Lyon, France
Julian Loss University of Maryland, College Park, USA
Christian Majenz CWI, Amsterdam, The Netherlands
Daniel Masny Visa Research, USA
Bart Mennink Radboud University, The Netherlands
Tarik Moataz Aroki Systems, USA
Amir Moradi Ruhr-Universität Bochum, Germany
Michael Naehrig Microsoft Research, USA
María Naya-Plasencia Inria, France
Claudio Orlandi Aarhus University, Denmark
Elisabeth Oswald (Area Chair:

Implementations)
University of Klagenfurt, Austria

Dan Page University of Bristol, UK
Rafael Pass Cornell Tech, USA
Thomas Peyrin Nanyang Technological University, Singapore
Oxana Poburinnaya University of Rochester and Ligero Inc., USA
Matthieu Rivain CryptoExperts, France
Adeline Roux-Langlois Univ Rennes, CNRS, IRISA, France
Louis Salvail Université de Montréal, Canada
Yu Sasaki NTT Laboratories, Japan
Tobias Schneider NXP Semiconductors, Austria
Yannick Seurin ANSSI, France
Emmanuel Thomé LORIA, Inria Nancy, France
Vinod Vaikuntanathan MIT, USA
Prashant Nalini Vasudevan UC Berkeley, USA
Daniele Venturi Sapienza University of Rome, Italy
Daniel Wichs Northeastern University and NTT Research Inc.,

USA
Yu Yu Shanghai Jiao Tong University, China

viii Eurocrypt 2021

Additional Reviewers

Mark Abspoel
Hamza Abusalah
Alexandre Adomnicai
Archita Agarwal
Divesh Aggarwal
Shashank Agrawal
Gorjan Alagic
Martin R. Albrecht
Ghada Almashaqbeh
Bar Alon
Miguel Ambrona
Ghous Amjad
Prabhanjan Ananth
Toshinori Araki
Victor Arribas
Gilad Asharov
Roberto Avanzi
Melissa Azouaoui
Christian Badertscher
Saikrishna

Badrinarayanan
Karim Baghery
Victor Balcer
Laasya Bangalore
Magali Bardet
James Bartusek
Balthazar Bauer
Carsten Baum
Christof Beierle
James Bell
Fabrice Benhamouda
Iddo Bentov
Olivier Bernard
Sebastian Berndt
Pauline Bert
Ward Beullens
Benjamin Beurdouche
Ritam Bhaumik
Erica Blum
Alexandra Boldyreva
Jonathan Bootle
Nicolas Bordes
Katharina Boudgoust

Florian Bourse
Xavier Boyen
Elette Boyle
Zvika Brakerski
Lennart Braun
Gianluca Brian
Marek Broll
Olivier Bronchain
Chris Brzuska
Benedikt Bünz
Chloe Cachet
Matteo Campanelli
Federico Canale
Ignacio Cascudo
Gaëtan Cassiers
Avik Chakraborti
Benjamin Chan
Eshan Chattopadhyay
Panagiotis Chatzigiannis
Shan Chen
Yanlin Chen
Yilei Chen
Yu Chen
Alessandro Chiesa
Ilaria Chillotti
Seung Geol Choi
Arka Rai Choudhuri
Michele Ciampi
Daniel Coggia
Benoît Cogliati
Ran Cohen
Andrea Coladangelo
Sandro Coretti-Drayton
Craig Costello
Daniele Cozzo
Ting Ting Cui
Debajyoti Das
Poulami Das
Bernardo David
Alex Davidson
Gareth Davies
Lauren De Meyer
Thomas Debris-Alazard

Leo de Castro
Thomas Decru
Jean Paul Degabriele
Akshay Degwekar
Amit Deo
Patrick Derbez
Itai Dinur
Christoph Dobraunig
Yevgeniy Dodis
Jack Doerner
Jelle Don
Benjamin Dowling
Eduoard Dufour Sans
Yfke Dulek
Frédéric Dupuis
Sylvain Duquesne
Avijit Dutta
Ehsan Ebrahimi
Kasra Edalat Nejdat
Naomi Ephraim
Thomas Espitau
Andre Esser
Grzegorz Fabiański
Xiong Fan
Antonio Faonio
Sebastian Faust
Serge Fehr
Patrick Felke
Rune Fiedler
Ben Fisch
Matthias Fitzi
Antonio Flórez-Gutiérrez
Cody Freitag
Georg Fuchsbauer
Ariel Gabizon
Nicolas Gama
Chaya Ganesh
Rachit Garg
Pierrick Gaudry
Romain Gay
Peter Gaži
Nicholas Genise
Craig Gentry

Eurocrypt 2021 ix

Marilyn George
Adela Georgescu
David Gerault
Essam Ghadafi
Satrajit Ghosh
Irene Giacomelli
Aarushi Goel
Junqing Gong
Alonso González
S. Dov Gordon
Louis Goubin
Marc Gourjon
Rishab Goyal
Lorenzo Grassi
Elijah Grubb
Cyprien de Saint Guilhem
Aurore Guillevic
Aldo Gunsing
Chun Guo
Qian Guo
Felix Günther
Iftach Haitner
Mohammad Hajiabadi
Mathias Hall-Andersen
Ariel Hamlin
Lucjan Hanzlik
Patrick Harasser
Dominik Hartmann
Eduard Hauck
Phil Hebborn
Javier Herranz
Amir Herzberg
Julia Hesse
Shoichi Hirose
Martin Hirt
Akinori Hosoyamada
Kathrin Hövelmanns
Andreas Hülsing
Ilia Iliashenko
Charlie Jacomme
Christian Janson
Stanislaw Jarecki
Ashwin Jha
Dingding Jia

Daniel Jost
Kimmo Järvinen
Guillaume Kaim
Chethan Kamath
Pritish Kamath
Fredrik Kamphuis
Ioanna Karantaidou
Shuichi Katsumata
Jonathan Katz
Tomasz Kazana
Marcel Keller
Mustafa Khairallah
Louiza Khati
Hamidreza Khoshakhlagh
Dakshita Khurana
Ryo Kikuchi
Eike Kiltz
Elena Kirshanova
Agnes Kiss
Karen Klein
Michael Klooß
Alexander Koch
Lisa Kohl
Vladimir Kolesnikov
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Adrien Koutsos
Hugo Krawczyk
Stephan Krenn
Ashutosh Kumar
Ranjit Kumaresan
Po-Chun Kuo
Rolando L. La Placa
Thijs Laarhoven
Jianchang Lai
Virginie Lallemand
Baptiste Lambin
Eran Lambooij
Philippe Lamontagne
Rio Lavigne
Jooyoung Lee
Alexander Lemmens

Nikos Leonardos
Matthieu Lequesne
Antonin Leroux
Gaëtan Leurent
Jyun-Jie Liao
Damien Ligier
Huijia Lin
Benjamin Lipp
Maciej Liskiewicz
Qipeng Liu
Shengli Liu
Tianren Liu
Yanyi Liu
Chen-Da Liu-Zhang
Alex Lombardi
Patrick Longa
Vadim Lyubashevsky
Fermi Ma
Mimi Ma
Urmila Mahadev
Nikolaos Makriyannis
Giulio Malavolta
Damien Marion
Yoann Marquer
Giorgia Marson
Chloe Martindale
Ange Martinelli
Michael Meyer
Pierre Meyer
Andrew Miller
Brice Minaud
Ilya Mironov
Tal Moran
Saleet Mossel
Tamer Mour
Pratyay Mukherjee
Marta Mularczyk
Pierrick Méaux
Yusuke Naito
Joe Neeman
Patrick Neumann
Khoa Nguyen
Ngoc Khanh Nguyen
Phong Nguyen

x Eurocrypt 2021

Tuong-Huy Nguyen
Jesper Buus Nielsen
Ryo Nishimaki
Abderrahmane Nitaj
Anca Nitulescu
Lamine Noureddine
Adam O’Neill
Maciej Obremski
Cristina Onete
Michele Orru
Emmanuela Orsini
Carles Padro
Mahak Pancholi
Omer Paneth
Dimitris Papachristoudis
Sunoo Park
Anat Paskin-Cherniavsky
Alice Pellet-Mary
Olivier Pereira
Léo Perrin
Thomas Peters
Duy-Phuc Pham
Krzyszof Pietrzak
Jérôme Plût
Bertram Poettering
Yuriy Polyakov
Antigoni Polychroniadou
Alexander Poremba
Thomas Prest
Cassius Puodzius
Willy Quach
Anaïs Querol
Rahul Rachuri
Hugues Randriam
Adrian Ranea
Shahram Rasoolzadeh
Deevashwer Rathee
Mayank Rathee
Divya Ravi
Christian Rechberger
Michael Reichle
Jean-René Reinhard
Joost Renes
Nicolas Resch

João Ribeiro
Silas Richelson
Tania Richmond
Doreen Riepel
Peter Rindal
Miruna Rosca
Michael Rosenberg
Mélissa Rossi
Yann Rotella
Alex Russell
Théo Ryffel
Carla Ràfols
Paul Rösler
Rajeev Anand Sahu
Olga Sanina
Pratik Sarkar
Alessandra Scafuro
Christian Schaffner
Peter Scholl
Tobias Schmalz
Phillipp Schoppmann
André Schrottenloher
Jörg Schwenk
Adam Sealfon
Okan Seker
Jae Hong Seo
Karn Seth
Barak Shani
Abhi Shelat
Omri Shmueli
Victor Shoup
Hippolyte Signargout
Tjerand Silde
Mark Simkin
Luisa Siniscalchi
Daniel Slamanig
Benjamin Smith
Fang Song
Jana Sotáková
Pierre-Jean Spaenlehauer
Nicholas Spooner
Akshayaram Srinivasan
Damien Stehlé
Marc Stevens

Siwei Sun
Mehrdad Tahmasbi
Quan Quan Tan
Stefano Tessaro
Florian Thaeter
Aishwarya

Thiruvengadam
Mehdi Tibouchi
Radu Titiu
Oleksandr Tkachenko
Yosuke Todo
Junichi Tomida
Ni Trieu
Eran Tromer
Daniel Tschudi
Giorgos Tsimos
Ida Tucker
Michael Tunstall
Akin Ünal
Dominique Unruh
Bogdan Ursu
Christine van Vredendaal
Wessel van Woerden
Marc Vauclair
Serge Vaudenay
Muthu

Venkitasubramaniam
Damien Vergnaud
Gilles Villard
Fernando Virdia
Satyanarayana Vusirikala
Riad Wahby
Hendrik Waldner
Alexandre Wallet
Haoyang Wang
Hoeteck Wee
Weiqiang Wen
Benjamin Wesolowski
Jan Wichelmann
Luca Wilke
Mary Wootters
David Wu
Jiayu Xu
Sophia Yakoubov

Eurocrypt 2021 xi

Shota Yamada
Takashi Yamakawa
Sravya Yandamuri
Kang Yang
Lisa Yang

Kevin Yeo
Eylon Yogev
Greg Zaverucha
Mark Zhandry
Jiayu Zhang

Ruizhe Zhang
Yupeng Zhang
Vassilis Zikas
Paul Zimmermann
Dionysis Zindros

xii Eurocrypt 2021

Contents – Part III

Garbled Circuits

LogStack: Stacked Garbling with Oðb log bÞ Computation 3
David Heath and Vladimir Kolesnikov

Large Scale, Actively Secure Computation from LPN and Free-XOR
Garbled Circuits . 33

Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini,
Nigel P. Smart, and Eduardo Soria-Vazquez

Threshold Garbled Circuits and Ad Hoc Secure Computation 64
Michele Ciampi, Vipul Goyal, and Rafail Ostrovsky

Indistinguishability Obfuscation

Indistinguishability Obfuscation from Simple-to-State Hard Problems:
New Assumptions, New Techniques, and Simplification 97

Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai

Candidate Obfuscation via Oblivious LWE Sampling 127
Hoeteck Wee and Daniel Wichs

Non-Malleable Commitments

Black-Box Non-interactive Non-malleable Commitments 159
Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters

Non-interactive Distributional Indistinguishability (NIDI)
and Non-malleable Commitments . 186

Dakshita Khurana

Zero-Knowledge Proofs

Public-Coin Statistical Zero-Knowledge Batch Verification Against
Malicious Verifiers . 219

Inbar Kaslasi, Ron D. Rothblum, and Prashant Nalini Vasudevanr

Efficient Range Proofs with Transparent Setup from Bounded
Integer Commitments. 247

Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle

Towards Accountability in CRS Generation . 278
Prabhanjan Ananth, Gilad Asharov, Hila Dahari, and Vipul Goyal

Property-Preserving Hash Functions and ORAM

Robust Property-Preserving Hash Functions for Hamming Distance
and More . 311

Nils Fleischhacker and Mark Simkin

Alibi: A Flaw in Cuckoo-Hashing Based Hierarchical ORAM Schemes
and a Solution . 338

Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky

Structured Encryption and Dynamic Leakage Suppression 370
Marilyn George, Seny Kamara, and Tarik Moataz

Blockchain

Dynamic Ad Hoc Clock Synchronization . 399
Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell,
and Vassilis Zikas

TARDIS: A Foundation of Time-Lock Puzzles in UC 429
Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen,
and Sabine Oechsner

Privacy and Law Enforcement

On the Power of Multiple Anonymous Messages: Frequency Estimation
and Selection in the Shuffle Model of Differential Privacy 463

Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh,
and Ameya Velingker

Non-Interactive Anonymous Router. 489
Elaine Shi and Ke Wu

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma
into a Single Private Signing Scheme . 521

Benoît Libert, Khoa Nguyen, Thomas Peters, and Moti Yung

Abuse Resistant Law Enforcement Access Systems 553
Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer

Author Index . 585

xiv Contents – Part III

Garbled Circuits

LogStack: Stacked Garbling
with O(b log b) Computation

David Heath(B) and Vladimir Kolesnikov

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov}@gatech.edu

Abstract. Secure two party computation (2PC) of arbitrary programs
can be efficiently achieved using garbled circuits (GC). Until recently,
it was widely believed that a GC proportional to the entire program,
including parts of the program that are entirely discarded due to con-
ditional branching, must be transmitted over a network. Recent work
shows that this belief is false, and that communication proportional only
to the longest program execution path suffices (Heath and Kolesnikov,
CRYPTO 20, [HK20a]). Although this recent work reduces needed com-
munication, it increases computation. For a conditional with b branches,
the players use O(b2) computation (traditional GC uses only O(b)).

Our scheme LogStack reduces stacked garbling computation from O(b2)
to O(b log b) with no increase in communication over [HK20a]. The cause
of [HK20a]’s increased computation is the oblivious collection of garbage
labels that emerge during the evaluation of inactive branches. Garbage is
collected by a multiplexer that is costly to generate. At a high level, we
redesign stacking and garbage collection to avoid quadratic scaling.

Our construction is also more space efficient: [HK20a] algorithms
require O(b) space, while ours use only O(log b) space. This space effi-
ciency allows even modest setups to handle large numbers of branches.

[HK20a] assumes a random oracle (RO). We track the source of this
need, formalize a simple and natural added assumption on the base gar-
bling scheme, and remove reliance on RO: LogStack is secure in the stan-
dard model. Nevertheless, LogStack can be instantiated with typical GC
tricks based on non-standard assumptions, such as free XOR and half-
gates, and hence can be implemented with high efficiency.

We implemented LogStack (in the RO model, based on half-gates gar-
bling) and report performance. In terms of wall-clock time and for fewer
than 16 branches, our performance is comparable to [HK20a]’s; for larger
branching factors, our approach clearly outperforms [HK20a]. For exam-
ple, given 1024 branches, our approach is 31× faster.

Keywords: 2PC · Garbled circuits · Conditional branching · Stacked
garbling

1 Introduction

Secure two party computation (2PC) of programs representable as Boolean
circuits can be efficiently achieved using garbled circuits (GC). However,
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 3–32, 2021.
https://doi.org/10.1007/978-3-030-77883-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_1

4 D. Heath and V. Kolesnikov

circuit-based MPC in general is problematic because conditional control flow
does not have an efficient circuit representation: in the cleartext program, only
the taken execution is computed whereas in the circuit all branches must be
computed.

Until recently, it was assumed that the players must not only compute all
branches, but also transmit a string of material (i.e., the garbled circuit itself)
proportional to the entire circuit. Since communication is the GC bottleneck,
transmitting this large string was problematic for programs with conditionals.

Stacked Garbling [HK20a], which we interchangeably call Stacked Garbled
Circuit (SGC), shows that expensive branching-based communication is unnec-
essary: the players need only send enough material for the single longest branch.
This single piece of stacked material can be re-used across all conditional
branches, substantially reducing communication. Unfortunately, this improve-
ment comes with one important downside: SGC requires the players to compute
more than they would have without stacking. In particular, for a conditional
with b branches, the [HK20a] GC generator must evaluate under encryption each
branch b − 1 times and hence must pay O(b2) total computation. In contrast,
standard garbling uses computation linear in the number of branches.

In this work, we present a new SGC construction that incurs only O(b log b)
computation for both players while retaining the important communication
improvement of [HK20a]. The construction also features improved space com-
plexity: while [HK20a] requires the generator to store O(b) intermediate gar-
blings, both Eval and Gen in our construction use only O(log b) space. Finally,
the construction features low constants and hence opens the door to using SGC
even in the presence of high branching factors without prohibitive computation.

1.1 A Case for High Branching Factor

Branching is ubiquitous in programming, and our work significantly improves the
secure evaluation of programs with branching. Moreover, the efficient support of
high branching factor is more important than it may first appear.

Efficient branching enables optimized handling of arbitrary control flow,
including repeated and/or nested loops. Specifically, we can repeatedly refactor
the source program until the program is a single loop whose body conditionally
dispatches over straightline fragments of the original program.1 However, these
types of refactorings often lead to conditionals with high branching factor.

As an example, consider a program P consisting of a loop L1 followed by
a loop L2. Assume the total number of loop iterations T of P is known, as is
usual in MPC. For security, we must protect the number of iterations T1 of L1

and T2 of L2. Implementing such a program with standard Yao GC requires us
to execute loop L1 T times and then to execute L2 T times. SGC can simply
execute Stack(L1, L2) T times, a circuit with a significantly smaller garbling.
This observation corresponds to the following refactoring:

while(e0){s0}; while(e1){s1} −→ while(e0 ∨ e1){ if(e0){s0} else {s1} }
1 As a brief argument that this is possible, consider that a CPU has this structure: in

this case the ‘straightline fragments’ are the instruction types handled by the CPU.

LogStack: Stacked Garbling with O(b log b) Computation 5

where si are nested programs and ei are predicates on program variables.2 The
right hand side is friendlier to SGC, since it substitutes a loop by a conditional.
Now, consider that s0 and s1 might themselves have conditionals that can be
flattened into a single conditional with all branches. By repeatedly applying such
refactorings, even modest programs can have conditionals with high branching
factors. High-performance branching, enabled by our approach, allows the effi-
cient and secure evaluation of such programs.

In this work, we do not further explore program refactorings as an optimiza-
tion. However, we firmly believe that SGC is an essential tool that will enable
research into this direction, including CPU emulation-based MPC. As argued
above, performance in the presence of high branching factor is essential.

1.2 [HK20a] and Its O(b2) Computation

Our approach is similar to that of [HK20a]: we also stack material to decrease
communication. The key difference is our reduced computation. It is thus instruc-
tive to review [HK20a], focusing on the source of its quadratic scaling.

The key idea of SGC is that the circuit generator Gen garbles, starting from
seeds, each branch Ci. He then stacks these b garbled circuits, yielding only a
single piece of material proportional to the longest branch: M =

⊕
i Ĉi.3 Because

garblings are expanded from short seeds, the seeds are compact representations
of the garblings. Although it would be insecure for the evaluator Eval to receive
all seeds from Gen, [HK20a] show that it is secure for her to receive seeds cor-
responding to the inactive branches. Let α be the id of the active branch. Eval
can reconstruct from seeds the garbling of each inactive branch, use XOR to
unstack the material Ĉα, and evaluate Cα normally. Of course, what is described
so far is not secure: the above procedure implies that Eval knows α, which she
does not in general know and which she should not learn.

Thus, [HK20a] supplies to Eval a ‘bad’ seed for the active branch: i.e., she
receives a seed that is different yet indistinguishable from the seed used by
Gen. From here, Eval simply guesses which branch is taken (she in fact tries
all b branches) and evaluates this guessed branch with the appropriately recon-
structed material. For security, each guess is unverifiable by Eval. Still, when
she guesses right, she indeed evaluates the taken branch and computes valid GC
output labels. When she guesses wrong, she evaluates the branch with so-called
garbage material (material that is a random-looking string, not an encryption
of circuit truth tables), and computes garbage output labels (i.e., labels that are
not the encryption of 0 or 1, but are random-looking strings). To proceed past
the exit of the conditional and continue evaluation, it is necessary to ‘collect’
these garbage labels by obliviously discarding them in favor of the valid labels.4

2 To be pedantic, this specific refactoring is not always valid: s1 might mutate variables
used in e0. Still, similar, yet more notationally complex, refactorings are always legal.

3 Note, [HK20a], as do we in this work, pad each GC material Ĉi with uniform bits
before stacking. This ensures all Ĉi are of the same length.

4 Of course, the final output labels of the conditional are fresh, such that they cannot
be cross-referenced with those obtained in branch evaluation.

6 D. Heath and V. Kolesnikov

[HK20a] collect garbage without interaction using a garbled gadget called a
multiplexer. The multiplexer can be non-interactively constructed by Gen, but
only if he knows all possible garbage labels. Once this is satisfied, it is easy for Gen
to produce a gadget (e.g., appropriate garbled translation tables) that eliminates
garbage and propagates the active branch’s output labels.

Gen’s Uncertainty. It is possible for Gen to acquire all garbage labels. [HK20a]
achieve this by having Gen emulate the actions of Eval on all inactive branches.
To see how this can be done, consider Gen’s knowledge and uncertainty about
the garbled evaluation. There are three sources of Gen’s uncertainty:

– The input values to each inactive branch. This is the largest source of uncer-
tainty (the number of possibilities are exponential in the number of input
wires), but the easiest to handle. [HK20a] introduce a simple trick: they add
an additional garbled gadget, the demultiplexer, that ‘zeros out’ the wires
into the inactive branches. This fully resolves this source of uncertainty.

– The index of the active branch, which we denote by truth.
– Eval’s guess of the value of truth, which we denote by guess.

In total, there are b2 (truth, guess) combinations. Crucially, each of these
combinations leads to Eval evaluating a unique combination of a circuit and
material. Hence, there are b2 possible sets of labels (b(b − 1) garbage sets of
labels and b valid sets of labels) that the evaluator can compute.

To acquire all possible garbage labels such that he can build the garbage
collecting multiplexer, the [HK20a] generator assumes an all-zero inputs for each
inactive branch and emulates “in his head” Eval’s evaluation of all possible
(truth, guess) combinations. This requires that Gen evaluate b(b − 1) times on
garbage material. This is the source of the O(b2) computation.

1.3 Top-Level Intuition for O(b log b) Stacked Garbling

Our main contribution is the reduction of SGC computation from O(b2) to
O(b log b). To this end, we redesign stacking/unstacking to reduce Gen’s uncer-
tainty. By doing so, we reduce the computation needed to implement garbage
collection. In this section we provide our highest-level intuition for the construc-
tion. Section 2.1 continues in greater detail.

Recall from Sect. 1.2 the sources of Gen’s uncertainty, which result in b2 eval-
uations inside Gen’s emulation of Eval: there are b possible values for both vari-
ables truth and guess (truth ∈ {0, b − 1}, guess ∈ {0, b − 1}). For each fixed
pair (truth, guess), Gen has a fully deterministic view of Eval’s garbled evalu-
ation, and hence a deterministic view of the garbage she computes. Gen uses the
garbage labels to construct the garbage collecting multiplexer.

Our main idea is to consolidate the processing of many such (truth, guess)
pairs by ensuring that Eval’s execution is the same across these (truth, guess)
pairs. This would further reduce Gen’s uncertainty and save computation.

Here is how we approach this. Wlog, let b = 2k for some k ∈ N and consider
a balanced binary tree with the b branches at the leaves. For each leaf �, define

LogStack: Stacked Garbling with O(b log b) Computation 7

the sibling subtree at level i (or i-th sibling subtree) to be the subtree rooted in
a sibling of the i-th node on the path to � from the tree root. Thus, each branch
has log b sibling subtrees. We call the root of a sibling subtree of a leaf � a sibling
root of �. Note, the log b sibling subtrees of a leaf � cover all leaves except for �.
For example, consider Fig. 1. There, node C3 has sibling roots N2,N0,1,N4,7.

We reduce the number of possible (truth, guess) combinations by changing
the semantics of truth. truth will not denote the active branch. Instead truth
will now be defined with respect to a given guess guess. In particular, truth will
denote the sibling subtree of guess that contains the active branch (truth = 0
denotes a correct guess). For a fixed guess, there are log b + 1 choices for this
truth. If Gen and Eval can efficiently process each of these b log b (truth, guess)
combinations (they can!), we achieve the improved O(b log b) computation.

1.4 Our Contributions

[HK20a] shows that GC players need not send a GC proportional to the entire
circuit. Instead, communication proportional to only the longest program exe-
cution path suffices. However, their improved communication comes at a cost:
for a conditional with b branches, the players use O(b2) computation.

This is a usually a worthwhile trade-off: GC generation is usually much
faster than network transmission (cf. our discussion in Sect. 1.5). However, as
the branching factor grows, computation can quickly become the bottleneck due
to quadratic scaling. Thus, as we argue in Sect. 1.1, a more computationally
efficient technique opens exciting possibilities for rich classes of problems.

This work presents LogStack, an improvement to SGC that features improved
computation without compromising communication. Our contributions include:

– Improved time complexity. For b branches, LogStack reduces time complexity
from O(b2) to O(b log b).

– Improved space complexity. For b branches, our algorithms require O(log b)
space, an improvement from [HK20a]’s O(b) requirement.

– High concrete performance. In total, the players together garble or evaluate
the b branches a total of 7

2b log b + 2b times. These concrete results translate
to implementation performance: for fewer than 16 branches, our wall-clock
runtime is similar to that of [HK20a]. At higher branching factors, we clearly
outperform prior work (see Sect. 7).

– A formalization in the [BHR12] framework (as modified by [HK20a]) proved
secure under standard assumptions. [HK20a] proved SGC secure by assuming
a random oracle. We prove security assuming only a pseudorandom function.

1.5 When to Use LogStack: A High-Level Costs Consideration

We now informally discuss a broad question of practical importance:

“If my program has complex control flow, how can I most efficiently imple-
ment it for 2PC?”

8 D. Heath and V. Kolesnikov

To make the question more precise, we assume that ‘most efficiently’ means
‘optimized for shortest total wall-clock time’. Since (1) GC is often the most
practical approach to 2PC, (2) the GC bottleneck is communication, (3) ‘com-
plex control flow’ implies conditional behavior, and (4) SGC improves com-
munication for programs with conditional behavior, SGC plays an important
role in answering this question. Of course, the cryptographic technique is not
the only variable in the optimization space. Program transformations, such as
described in Sect. 1.1, also play a crucial role. These variables are related: some
program transformations may lead to a blowup in the number of branches. While
SGC alleviates the communication overhead of this blowup, the players still
incur b log b computational overhead. So choosing which program transforma-
tions to apply depends also on the performance characteristics of the crypto-
graphic scheme.

Despite the fact that the optimization space for total wall-clock time is com-
plex, we firmly believe the following claim: using LogStack over standard GC will
almost always improve performance. The rest of this section argues this claim.

Computation vs communication. To discuss how to best apply LogStack, we
establish approximate relative costs of GC computation and communication.

Based on our experiments, a commodity laptop running a single core can
generate GC material at about 3× the network bandwidth of a 1 Gbps channel.
However, while 1 Gbps is a typical speed in the LAN setting, WAN speeds are
much lower, e.g. 100 Mbps. Other network speeds (bluetooth, cellular) are lower
still. Even on a LAN and even in a data center, typically we should not assume
that our MPC application is allowed to consume the entire channel bandwidth.
Rather, we should aim to use as small a fraction of the bandwidth as possible.
Based on this discussion, and erring on the conservative side, we choose 100
Mbps as “typical” available bandwidth.

Computation is a much more available resource. Today, commodity laptops
have four physical cores. Higher-end computing devices, such as desktop CPUs
and GPUs have higher numbers of cores and/or per-core processing power,
resulting in yet higher GC computation-to-transmission ratio. Precomputation,
if available, can also be seen as a way to increase the available compute resource.
SGC, even when using our more sophisticated algorithms, is highly parallelizable.
It is easy to engage many cores to achieve proportional performance improve-
ment. Based on this discussion, and erring on the conservative side, we choose 2
physical cores as a lower end of “typical” available computational power.

Given a typical setting with 2 cores and a 100 Mbps channel, we arrive at an
approximation that GC computation is ≈ 60× faster than GC transmission.

Assumption: fixed target circuit. To gain a foothold on answering our broad
question, we start by ruling out program transformations and consider only
cryptographic protocols. Thus, we consider a fixed baseline circuit against which
we measure SGC and LogStack performance. That is, our baseline is a circuit
C with conditionals, to which we apply garbling scheme directly, and to which
we do not apply any program transformations. We may compare 2PC based on
LogStack with Yao GC, both instantiated with half-gates [ZRE15].

LogStack: Stacked Garbling with O(b log b) Computation 9

Rule of thumb: always apply LogStack. Assuming our approximated speed ratio
of GC generation/transmission, and with a few caveats described next, using
LogStack for branching will always improve over standard GC.

This is easy to see. Gen and Eval together run a more computationally
demanding process, garbling and evaluating branches exactly 7

2b log b + 2b total
times (52b log b + b garblings and b log b + b evaluations). Consider a conditional
with b branches. Classic GC will transmit b branches. During this time, Gen and
Eval could have instead performed 60b branch garbling/evaluations. LogStack
garbles/evaluates 7

2b log b branches. Thus, the point where computation crosses
over to become the bottleneck is obtained by solving 7

2b log b > 60b, the solution
to which is b � 217 = 131072 branches. Of course, this is a “rule-of-thumb”
estimate and is based on the conservative assumptions discussed above.

If instead a full 1 Gbps channel is available (i.e. 10× of our network resource
assumption), to arrive at the same cross over point, we would need ten times
more cores than our computational resource assumption. That equates to 20
cores; such power is available on mainstream servers.

We conclude that applying LogStack improves wall clock time for nearly all
reasonable baseline circuits and settings.

Limits on circuit transformations imposed by computational costs. Above, we
established that LogStack is almost always better than standard GC for cir-
cuits with branching. It is harder to provide heuristics or even rough sugges-
tions regarding which circuit transformations (cf. in Sect. 1.1) to apply, and how
aggressively they should be applied in conjunction with LogStack secure evalu-
ation. We emphasize that our computational improvement opens a much wider
optimization space than what was possible with the prior scheme [HK20a]. We
leave detailed investigation into this direction as exciting future work.

2 Technical Overview of Our Approach

We now informally present our construction with sufficient detail to introduce
the most interesting technical challenges and solutions.

2.1 O(b log b) Stacked Garbling

Our main contribution is the reduction of SGC computation from O(b2) to
O(b log b). Our constants are also low: altogether Gen issues 3

2b log b + b calls
to Gb and b logb calls to Ev. Eval issues b log b calls to Gb and b calls to Ev.

We continue the discussion from Sect. 1.3 in more detail. Our main task
is the garbage collection of output labels of incorrectly guessed (truth, guess)
combinations where guess is Eval’s guess of the active branch, and truth defines
the active branch w.r.t. guess. Wlog, let b be a power of 2 to simplify notation.
Consider a binary tree where the leaves are the b branches C0, ..., Cb−1. The tree
provides an infrastructure to group branches and to unify processing.

10 D. Heath and V. Kolesnikov

C0 C2 C3 C4 C5 C6 C7

N0 N1 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

C1

Fig. 1. Suppose there are eight branches C0 through C7, and suppose Eval guesses that
C0 is the taken branch. If the taken branch is in the subtree C4 through C7, Eval will
generate the same garbage material for the entire subtree, regardless of which branch
is actually taken. By extension, C0 can only be evaluated against log 8 = 3 garbage
material strings: one for each sibling subtree (sibling subtrees are bracketed). Hence C0

has only three possible sets of garbage output labels.

Fix one of b choices for guess. In contrast with [HK20a], which then considers
b choices for truth independently from guess, we define truth in relation to
guess, and consider fewer truth options. Namely, we let truth denote the sibling
subtree of guess that contains the active branch (cf. notation Sect. 1.3). Given
a fixed incorrect guess, there are only log b choices for truth.5 While we have
redefined truth, the active branch ID α continues to point to the single active
branch. Our garbled gadgets compute functions of α.

For concreteness, consider the illustrative example of an 8-leaf tree in Fig. 1
where guess = 0. The discussion and arguments pertaining to this special case
generalize to arbitrary b and guess.

Consider the four scenarios where one of the branches C4−C7 is active. These
four scenarios each correspond to truth = 1: C4 − C7 all belong to the level-1
sibling subtree of C0. We ensure that Eval’s unstacking and evaluation in each
of these four cases is identical, and hence she evaluates the same garbage output
labels in these four cases. More generally, we achieve identical processing for all
leaves of each sibling subtree. Let α denote the index of the active branch. That
is, α is a log b-bit integer that points to the active branch.

Actions and gadgets of Gen. In the context of the example in Fig. 1, Gen
garbles branches C0, ..., C7 as follows. Recall, the active branch ID α is available
to Gen in the form of garbled labels. Gen chooses a random seed for the root of
the tree (denoted s0,7 for the 8-leaf tree in Fig. 1), and uses it to pseudorandomly
derive seeds for each node of the tree. This is done in the standard manner, e.g.,
5 We focus on garbage collection and consider only incorrect guesses; managing output

labels of the correctly guessed branches is straightforward and cheap.

LogStack: Stacked Garbling with O(b log b) Computation 11

– Inputs: the active branch id α and the number of branches b.
– Outputs: a sequence of evaluator seeds that form a binary tree:

es0,b−1, es0, b−1
2

, es b−1
2 +1,b−1

, . . . , es0, es1, . . . esb−1

such that for each node N :

esN =

{
sN , if N is a sibling root of α

s′
N , otherwise

where s′
N is a uniform string indistinguishable from sN .

Fig. 2. The SortingHat functionality. SortingHat is responsible for conveying only
the sibling root seeds of α to Eval. For every other node, Eval obtains a different, but
indistinguishable, seed that, when garbled, generates garbage material. SortingHat is
easily implemented as a garbled circuit gadget (i.e., built from garbled rows).

the immediate children of a seed s are the PRF evaluations on inputs 0 and 1
with the key s. Gen uses each leaf seed si to garble the corresponding branch Ci

and stacks all garbled branches M =
⊕

i Ĉi. This material M is the large string
that Gen ultimately sends across the network to Eval. We note two facts about
M and about the active branch α.

1. Correctness: if Eval obtains the log b seeds of the sibling roots of α, then
she can regarble all circuits Ĉi�=α, unstack by XORing with M , and obtain
Ĉα, allowing her to correctly evaluate Cα.

2. Security: Eval must not obtain any correct seed corresponding to any ances-
tor of α. If she did, she would learn (by garbling) the encoding of wire labels
which would allow her to decrypt all intermediate wire values in Cα. Instead,
Eval will obtain ‘garbage’ seeds indistinguishable yet distinct from the correct
seeds generated by Gen.

To facilitate garbled evaluation of the conditional and meet the requirements
of these two facts, in addition to M , Gen generates and sends to Eval a small
(linear in the number of branches with small constants) garbled gadget that we
call SortingHat.6 SortingHat aids Eval in her reconstruction of branch mate-
rial. SortingHat takes as input labels corresponding to α and produces candi-
date seeds for each node in the tree. For each node N , SortingHat constructs
a correct seed sN if and only if N is a sibling root of the leaf α (see Fig. 2).
SortingHat can be implemented as a collection of garbled rows. Importantly,
since this is a fixed gadget, when evaluated on a node N that is not a sibling
root of α, Eval will obtain a fixed seed that is predictable to Gen.

6 In J.K. Rowling’s Harry Potter universe, the ‘sorting hat’ is a magical object that
assigns new students to different school houses based on personality. Our SortingHat
‘sorts’ nodes of trees into two categories based on α: those that are ‘good’ (i.e., sibling
roots of α) and those that are ‘bad’.

12 D. Heath and V. Kolesnikov

For example in Fig. 1, if the active branch is α = 4, then applying SortingHat
to nodes N0,3,N6,7,N5 reconstructs the correct seeds s0,3, s6,7, s5. Applying
SortingHat to other nodes constructs fixed garbage seeds. If instead α = 3, then
SortingHat reconstructs the correct seeds s4,7, s0,1, s2. Critically, the garbage
seeds reconstructed in both cases, e.g. for node N4,5, are the same.

Actions of Eval. It is now intuitive how Eval proceed with unstacking. She
applies SortingHat and obtains a tree of random-looking seeds; of 2b seeds, only
log b seeds just off the path to α (corresponding to α’s sibling roots) are correct.
Eval guesses guess; assuming guess, she uses only the sibling seeds of guess to
derive all b−1 leaf seeds not equal to guess. She then garbles the b−1 branches
Ci and unstacks the corresponding GCs Ĉi.

If guess = α, Eval derives the intended leaf seeds si�=α, unstacks the intended
garbled circuits Ĉi�=α, and obtains the correct GC Ĉα. Consider the case where
Eval guesses wrong. Eval simply unstacks wrong branches garbled with the
wrong seeds. Since Eval never receives any additional valid seeds, there is no
security loss. We next see that the number of different garbage labels we must
collect is small, and further that they can be collected efficiently.

O(b log b) computational cost accounting. Let Gb and Ev be procedures
that respectively garble/evaluate a GC. Consider how many such calls are made
by Eval. Consider branch Ci. It is garbled log b times, once with a seed (ulti-
mately) derived from each seed on the path to the root. Thus, the total number
of calls by Eval to Gb is b log b and to Ev is exactly b.

To construct the garbage collecting multiplexer, Gen must obtain all possible
garbage labels. We demonstrate that the total cost to the generator is O(b log b)
calls to both Gb and Ev. First, consider only Gb and consider the number of ways
Eval can garble a specific circuit Ci. Clearly, this is exactly log b + 1.

Now, consider Gen’s number of calls to Ev. Recall that our goal was to ensure
that Eval constructs the same garbage output labels for a branch Ci in each
scenario where α is in some fixed sibling subtree of Ci. The logic of SortingHat
ensures that Eval obtains the same sibling root seeds in each of these scenarios,
and therefore she constructs the same garblings. Hence, since there are log b
sibling subtrees of Ci, Ci has only log b possible garbage output labels. Thus,
in order to emulate Eval in all settings and obtain all possible garbage output
labels, Gen must garble and evaluate each branch log b times.

2.2 Technical Difference Between Our and [HK20a] Binary
Braching

A careful reader familiar with [HK20a] may notice that they present two ver-
sions of stacked garbling. The first handles high branching factors by recursively
nesting conditionals. Nested conditionals can be viewed as a binary tree. This
first approach is then discarded in favor of a second, more efficient vector app-
roach. Our work advocates binary branching and yet substantially improves
over [HK20a]’s vectorized approach. Why is our binary branching better?

LogStack: Stacked Garbling with O(b log b) Computation 13

The problem with [HK20a]’s recursive construction is that Eval recursively
garbles the garbage-collecting multiplexer for nested sub-conditionals. Doing so
leads to a recursive emulation whereby Eval emulates herself (and hence Gen
emulates himself as well). This recursion leads to quadratic cost for both players.
The way out is to treat the multiplexer separately, and to opt not to stack it. If
multiplexers are not stacked, then Eval need not garble them, and hence Eval
need never emulate herself. On top of this, we reduce the number of ways that
individual branches can be garbled via our SortingHat.

A note on nested branches. Nested branches with complex sequencing of
instructions emerge naturally in many programs. Our approach operates directly
over vectors of circuits and treats them as binary trees. This may at first seem
like a disadvantage, since at the time the first nested branching decision is made,
it may not yet be possible to make all branching decisions. There are two natural
ways LogStack can be used in such contexts:

1. Although we advocate for vectorized branching, LogStack does support nested
evaluation. Although nesting is secure and correct, we do not necessarily rec-
ommend it. Using LogStack in this recursive manner yields quadratic compu-
tation overhead.

2. Refactorings can be applied to ensure branches are vectorized. For example,
consider the following refactoring:

if (e0) { s0; if (e1) { s1 } else { s2 } } else { s3; s4 } −→
if (e0) { s0 } else { s3 }; switch(e0 + e0e1) { s4 } | { s2 } | { s1 }

Where si are programs, ei are predicates on program variables, and where
s0, s3 do not modify variables in e0. This refactoring has replaced a nested
conditional by a sequence of two ‘vectorized’ conditionals, and hence made
the approach amenable to our efficient algorithms.

2.3 Memory Efficiency of LogStack

The [HK20a] approach forces Gen to store many intermediate garblings: for con-
ditionals with b branches he requires O(b) space. In contrast, LogStack has low
space requirements: its algorithms run in O(log b) space. We briefly discuss why
[HK20a] requires linear space and how our approach improves this.

In the [HK20a] approach, Eval obtains b−1 good seeds for all but the active
branch and a bad seed for the active branch. When Eval then makes a particular
guess, she attempts to uncover the material for guess by XORing the stacked
material (sent by Gen) with b−1 reconstructed materials; she ‘unstacks’ her b−1
materials corresponding to all branches that are not equal to guess. Recall that
Gen emulates Eval for all combinations of (truth, guess) where truth �= guess
to compute garbage outputs. The most intuitive way to proceed, and the strategy
[HK20a] uses, is for Gen to once and for all garble all circuits using the ‘good’
seeds and garble all circuits using the ‘bad’ seeds, and to store all materials in

14 D. Heath and V. Kolesnikov

two large vectors. Let Mi be the good material for a branch Ci and let M ′
i be

the bad material. Now let j = truth and k = guess. To emulate all possible
bad evaluations, Gen evaluates Ck using the material Mk ⊕ Mj ⊕ M ′

j : i.e., he
emulates Eval when correctly unstacking all material except Mk (which she will
not attempt to unstack because she wishes to evaluate Ck) and Mj (which she
attempts to unstack, but fails and instead adds M ′

j). Because Gen considers all
j, k combinations, it is not clear how Gen can compute all values Mk ⊕ Mj ⊕ M ′

j

without either (1) storing intermediate garblings in O(b) space or (2) repeatedly
garbling each branch at great cost. [HK20a] opts for the former.

In contrast, because of LogStack’s binary tree structure, we can eagerly stack
material together as it is constructed to save space. E.g., consider again the
example in Fig. 4 where Eval guesses that C0 is active. Recall, she garbles the
entire right subtree starting from the seed for node N4,7, and Gen emulates this
same behavior with the bad seed. For both players, the material corresponding
to individual circuits, say M4 corresponding to C4, is not interesting or useful.
Only the stacked material M4 ⊕ .. ⊕ M7 is useful for guessing C0 (and more
generally for guessing all circuits in the subtree N0,3). Thus, instead of storing
all material separately, the players both XOR material for subtrees together as
soon as it is available. This trick is the basis for our low space requirement.

There is one caveat to this trick: the ‘good’ garbling of each branch Ci is
useful throughout Gen’s emulation of Eval. Hence, the straightforward procedure
would be for Gen to once and for all compute the good garblings of each branch
and store them in a vector, consuming O(b) space. This is viable, and indeed has
lower runtime constants than presented elsewhere in this work: Gen would invoke
Gb only b log b + b times. We instead trade in some concrete time complexity in
favor of dramatically improved space complexity. Gen garbles the branches using
good seeds an extra 1

2b log b times, and hence calls Gb a total of 3
2b log b+b times.

These extra calls to Gb allow Gen to avoid storing a large vector of materials,
and our algorithms run in O(log b) space.

2.4 Stacked Garbling with and Without Random Oracles

[HK20a] (and we) focus only on branching and leave the handling of low level
gates to another underlying garbling scheme, Base. [HK20a] assumes nothing
about Base except that it satisfies the standard [BHR12] properties, as well as
their stackability property. However, they do not preclude Base’s labels from
being related to each other, which presents a security problem: Base’s labels are
used to garble rows, but if the labels are related they cannot be securely used
as PRF keys. [HK20a] handles the possible use of related keys by using a RO.

We introduce a stronger requirement on Base, which we call strong stack-
ability. Informally, we additionally require that all output labels of Base are
uniformly random. This is sufficient to prove security in the standard model.

Of course, RO-based security theorems and proofs also work, and our gadgets
could be slightly optimized in a natural manner under this assumption.

LogStack: Stacked Garbling with O(b log b) Computation 15

3 Related Work

GC is the most popular and often the fastest approach to secure two-party com-
putation. Until recently, it was believed that it is necessary to transmit the entire
GC during 2PC, even for inactive conditional branches. Recent breakthrough
work [HK20a] showed that this folklore belief is false, and that it suffices to only
transmit GC material proportional to the longest execution path.

We focus our comparison with prior work on [HK20a], and then review other
related work, such as universal circuits and earlier stacked garbling work.

Comparison with [HK20a]. As discussed in Sect. 1.1, programs with conditionals
with high branching factor may be a result of program transformations aimed at
optimizing GC/SGC performance. While the protocol of [HK20a] is concretely
efficient, its quadratic computational cost presents a limitation even in settings
with relatively modest branching factor b. This significantly limits the scope of
program transformations which will be effective for SGC.

Our work archives total computational cost proportional to 3.5b log b, and
effectively removes the computational overhead of the SGC technique as a con-
straining consideration7, as discussed in Sect. 1.5.

Memory management is a significant performance factor in GC in general,
and in particular in [HK20a] garbling. Retrieving an already-garbled material
from RAM may take similar or longer time than regarbling from scratch while
operating in cache. In addition to significantly improving computation (i.e. num-
ber of calls to Gb and Ev), our approach offers improved memory utilization
(see Sects. 1.4 and 2.3). [HK20a] requires that a linear number of garbled circuits
be kept in RAM. For larger circuits this can become a problem. For example, the
garbling of a 1M AND-gate circuit occupies 32 MB in RAM. If a machine can
dedicate 2 GB to garbling, a maximum of 64 branches of this size can be han-
dled. This ignores additional constant space costs, which are not necessarily low.
In contrast, we use only O(log b) space, and hence can fit the garblings of large
numbers of branches into memory. In our experiments, we ran our implemen-
tation on a circuit with 8192 SHA-256 branches, a circuit that altogether holds
> 385M AND-gates. Our peak memory usage was at around 100 MB ([HK20a]
would require more than 12 GB of space to run this experiment).

In sum, as discussed at length in Sects. 1.5 and 2.3 and Sect. 7, we essentially
eliminate the concern of increased computation due to Stacked Garbling for
typical settings and open the door to the possibility of applying a large class of
efficiency-improving program transformations on the evaluated program.

Universal circuits. An alternate technique for handling conditional branching
is to implement a universal circuit [Val76], which can represent any conditional
branch. We discuss universal circuits [LMS16,KS16,GKS17,ZYZL19,AGKS20,

7 We stress that branches must still be garbled, and extreme program transformations,
such as stacking all possible program control flows, may be impractical computa-
tionally due to the exponential number of branches.

16 D. Heath and V. Kolesnikov

KKW17] in more detail in the full version of this paper. In short, SGC is a more
practical approach to conditional branching in most scenarios.

Other related work. Kolesnikov [Kol18] was the first to separate the GC material
from circuit topology. This separation was used to improve GC branching given
that the GC generator Gen knows the active branch. Subsequently, [HK20b]
considered a complementary setting where the GC evaluator Eval knows the
active branch, and used it to construct efficient ZK proofs for circuits with
branching. Our work follows the line of work initiated by [Kol18,HK20b]; it is
for general 2PC and is constant-round.

As discussed in [HK20a], interaction, such as via the output selection protocol
of [Kol18], can be used to collect garbage efficiently (computation linear in b).
However, a communication round is added for each conditional branch. In many
scenarios, non-interactive 2PC (such as what we achieve) is preferred.

Designing efficient garbling schemes under standard assumptions (i.e. using
only PRFs) is a valuable research direction. [GLNP15] impressively implement
garbled table generation and evaluation with speed similar to that of fixed-
key AES. [GLNP15] cannot use the Free XOR technique [KS08], which requires
circularity assumptions [CKKZ12], but nevertheless implement XOR Gates with
only one garbled row and AND gates with two rows.

4 Notation and Assumptions

Notation. Our notation is mostly consistent with the notation of [HK20a].

– Our garbling scheme is called LogStack. We sometimes refer to it by the
abbreviation LS, especially when referring to its algorithms.

– ‘Gen’ is the circuit generator. We refer to Gen as he, him, his, etc.
– ‘Eval’ is the circuit evaluator. We refer to Eval as she, her, hers, etc.
– ‘C’ is a circuit. inpSize(C) and outSize(C) respectively compute the number

of input/output wires to C.
– x | y denotes the concatenation of strings x and y.
– Following SGC terminology introduced by [Kol18], M refers to GC material.

Informally, material is just a collection of garbled tables, i.e. the garbling
data which, in conjunction with circuit topology and input labels, is used to
compute output labels.

– We use m to denote the size of material, i.e. m = |M |.
– Variables that represent vectors are denoted in bold, e.g. x. We index vectors

using bracket notation: x[0] accesses the 0th index of x.
– We extensively use binary trees. Suppose t is such a tree. We use subscript

notation ti to denote the ith leaf of t. We use pairs of indexes to denote
internal nodes of the tree. I.e., ti,j is the root of the subtree containing the
leaves ti..tj . ti,i (i.e. the node containing only i) and ti both refer to the leaf:
ti,i = ti. It is sometimes convenient to refer to a (sub)tree index abstractly.
For this, we write Ni,j or, when clear from context, simply write N .

LogStack: Stacked Garbling with O(b log b) Computation 17

– We write a ←$ S to denote that a is drawn uniformly from the set S.
– c= denotes computational indistinguishability.
– κ denotes the computational security parameter and can be understood as

the length of PRF keys (e.g. 128).

We evaluate GCs with input labels that are generated independently of the
GC material and do not match the GC. We call such labels garbage labels. During
GC evaluation, garbage labels propagate to the output wires and must eventually
be obliviously dropped in favor of valid labels. We call the process of canceling
out output garbage labels garbage collection.

Assumptions. LogStack is secure in the standard model. However, higher effi-
ciency of both the underlying scheme Base and of our garbled gadgets can be
achieved under the RO assumption. Our implementation uses half-gates as Base,
and relies on a random oracle (RO).

5 The LogStack Garbling Scheme

In this section, we formalize our construction, LogStack. Throughout this section,
consider a conditional circuit with b branches. For simplicity, we ignore the
number input and output wires.

We adopt the above simplification because branching factor is the most inter-
esting aspect of LogStack. We emphasize that ignoring inputs/outputs does not
hide high costs. While we scale with the product of the number of inputs and
b (and respectively the product of number of outputs and b), the constants are
low (see Sect. 7 for evidence). Thus, inputs/outputs are of secondary concern to
the circuit size, which is often far larger than the number of inputs/outputs.

Consider garbled circuits Ĉi corresponding to each branch Ci. Let m be
the size of the largest such garbling: m = maxi |Ĉi|. Given branching factor
b, LogStack features:

– O(m) communication complexity.
– O(mb log b) time complexity.
– O(m log b) space complexity.

LogStack is formalized as a garbling scheme [BHR12]. Garbling schemes
abstract the details of GC such that protocols can be written generically. That
is, LogStack is a modular collection of algorithms, not a protocol. Our formaliza-
tion specifically uses the modified garbling scheme framework of [HK20a], which
separates the topology of circuits (i.e., the concrete circuit description) from cir-
cuit material (i.e., the collections of encryptions needed to securely evaluate the
circuit), an important modification for SGC.

A garbling scheme is a tuple of five algorithms:

(ev,Ev,Gb,En,De)

18 D. Heath and V. Kolesnikov

– ev specifies circuit semantics. For typical approaches that consider only low-
level gates, ev is often left implicit since its implementation is generally under-
stood. We explicate ev to formalize conventions of conditional evaluation.

– Ev specifies how Eval securely evaluates the GC.
– Gb specifies how Gen garbles the GC.
– En and De specify the translation of cleartext values to/from GC labels. That

is, En specifies how player inputs translate to input labels and De specifies
how outputs labels translate to cleartext outputs.

Correct garbling schemes ensure that the garbled functions Gb, En, Ev, and De
achieve the semantics specified by ev.

Before we present our garbling scheme LogStack, we introduce the formal
syntax of the circuits it manipulates. Because our focus is conditional branching,
we assume an underlying garbling scheme Base. Base is responsible for handling
the collections of low level gates (typically AND and XOR gates) that we refer
to as netlists. In our implementation, we instantiate Base with the efficient half-
gates scheme of [ZRE15]. We do not specify the syntax of netlists, and entirely
leave their handling to Base. Our circuit syntax is defined inductively: Let C0, C1

be two arbitrary circuits and C be a vector of arbitrary circuits. The space of
circuits is defined as follows:

C ::= Netlist(·) | Cond(C) | Seq(C0, C1)

That is, a circuit is either (1) a netlist, (2) a conditional dispatch over a
vector of circuits (our focus), or (3) a sequence of two circuits. Sequences of
circuits are necessary to allow arbitrary control flow.

With our syntax established, we are ready to present our algorithms.

Construction 1 (LogStack). LogStack is the tuple of algorithms:

(LS.ev, LS.Ev, LS.Gb, LS.En, LS.De)

Definitions for each algorithm are listed in Fig. 3.

We discuss correctness and security of Construction 1 in Sect. 6. Due to lack
of space, proofs of these properties are in the full version of this paper.

In terms of efficiency, LogStack satisfies the following property:

Theorem 1. Let Base be a garbling scheme satisfying the following property:

– Let C be an arbitrary netlist and let s be the size of material generated by
invoking Base.Gb on C. Let both Base.Ev and Base.Gb, invoked on C, run in
O(s) time and O(s) space.

Then Construction 1 instantiated with Base satisfies the following property.

– Let C be a vector of b arbitrary netlists. Let m be the maximum size of the
garblings constructed by calling Base.Gb on each of these b netlists. Then both
LS.Ev and LS.Gb, invoked on Cond(C), run in O(mb log b) time and O(m log b)
space.

LogStack: Stacked Garbling with O(b log b) Computation 19

LS.ev(C,x) :

� What are the circuit semantics?

switch C :

case Netlist(·) : return Base.ev(C,x)

case Seq(C0, C1) : return LS.ev(C1, LS.ev(C0,x))

case Cond(C) :
� split branch index from input

α | x′ ← x

� Run the active branch.

return LS.ev(C[α],x′)

LS.Ev(C, M,X) :

� How does Eval evaluate the GC?

switch(C) :
case Netlist(·) : return Base.Ev(C, M,X)

case Seq(C0, C1) :

M0 | Mtr | M1 ← M

return LS.Ev(C1, M1, trans.Ev(LS.Ev(C0, M0,X), Mtr)

case Cond(C) : return EvCond(C, M,X)

LS.En(e,x) :

� How do inputs map to labels?

� This works for all projective schemes:

X ← λ

for i ∈ 0..inpSize(C)−1 :

(X0, X1) ← e[i]

if x[i] = 0 : { X[i] ← X0 } else : { X[i] ← X1 }
return X

LS.Gb(1κ, C, S)

� How does Gen garble the GC?

� S is an explicit seed.

switch C :

case Netlist(·) :
return Base.Gb(1κ, C, S)

case Seq(C0, C1) :

� Derive seeds for two circuits.

S0 ← FS(0)

S1 ← FS(1)

(M0, e0, d0) ← LS.Gb(1κ, C0, S0)

(M1, e1, d1) ← LS.Gb(1κ, C1, S1)

� Labels out of C0 must be translated

� to labels into C1.

Mtr ← trans.Gb(d0, e1)

M ← M0 | Mtr | M1

return (M, e0, d1)

case Cond(C) : return GbCond(C, S)

LS.De(d,Y) :

� How do labels map to outputs?

� This works for all projective schemes:

y ← λ

for i ∈ 0..outSize(C)−1 :

(Y 0, Y 1) ← d[i]

if Y [i] = Y 0 : y[i] ← 0

else if Y [i] = Y 1 : y[i] ← 1

else : ABORT

return y

Fig. 3. Our garbling scheme LogStack. The included algorithms are typical except for
the handling of conditionals. Ev and Gb delegate the core of our approach: EvCond

(Fig. 5) and GbCond (Fig. 6).

Standard garbling schemes, e.g. the half-gates scheme [ZRE15], achieve the effi-
ciency required by Theorem 1, since they simply handle each gate individually.

Lemmas that support Theorem 1 are formally stated and proved in the full
version of this paper.

Proofs of these lemmas follow from inspecting our recursive algorithms and
(1) counting the number of calls to the underlying scheme’s algorithms and (2)
counting the number of garblings kept in scope.

We now draw attention to two key details of algorithms in Fig. 3: (1) LS.Ev
delegates to a subprocedure EvCond and (2) LS.Gb delegates to a subprocedure
GbCond. All details of conditionals are handled by these two subprocedures. Aside
from these delegations, the algorithms in Fig. 3 are relatively unsurprising: the
algorithms closely match [HK20a]’s construction and essentially provide infras-

20 D. Heath and V. Kolesnikov

tructure needed to host our contribution. We briefly discuss the most relevant
details of these algorithms before returning to an extended discussion of EvCond
and GbCond (c.f. Sect. 5.1):

– Projectivity. LogStack is a projective garbling scheme [BHR12]. Projectivity
requires that the input encoding string e and output decoding string d have
a specific format: they must both be a vector of pairs of labels such that the
left element of each pair is a label encoding logical 0 and the right element
of each pair is a label encoding 1. Thus, LS.En and LS.De are straightforward
mappings between cleartext values and encoding/decoding strings.

– Sequences and Translation. In a sequence of two circuits, all output wires
of the first circuit are passed as the inputs to the second. Because these
two circuits are garbled starting from different seeds, the output labels from
C0 will not match the required input encoding of C1. We thus implement
a translation component (trans.Ev and trans.Gb) that implements via gar-
bled rows a straightforward translation from one encoding to another. Our
scheme securely implements the translator, and all other gadgets, using a
PRF ([HK20a] used an RO). This simplification is possible because of the
stronger property, strong stackability, that we require of the underlying gar-
bling scheme (see Sect. 6).

5.1 Algorithms for Handling of Conditionals

With the remaining formalization out of the way, we focus on conditional branch-
ing. Our goal is to formalize EvCond and GbCond, the key sub-procedures invoked
by LS.Ev and LS.Gb respectively. Our presentation is a formalization of discus-
sion in Sect. 2; the following explores the technical aspects of our construction,
but the reader should refer to Sect. 2 for unifying high level intuition.

Demultiplexer and Multiplexer. Before we discuss handling the body of
conditionals, we briefly discuss entering and leaving a conditional. That is, we
describe the demultiplexer (entry) and multiplexer (exit) components.

The demultiplexer is responsible for (1) forwarding the conditional’s inputs
to the active branch Cα and (2) forwarding specially prepared garbage inputs to
each branch Ci�=α. The demultiplexer computes the following function for each
wire input x to each branch Ci with respect to the active index α:

demux(x, i, α) =

{
x, if i = α

⊥, otherwise

where ⊥ is a specially designated constant value. In the GC, the label corre-
sponding to ⊥ is independent yet indistinguishable from the corresponding 0
and 1 labels: independence is crucial for security. The demultiplexer is easily
implemented by garbled rows. The number of required rows is proportional to
the number of branches and the conditional’s number of inputs. EvCond and

LogStack: Stacked Garbling with O(b log b) Computation 21

GbCond make use of demux.Ev and demux.Gb, procedures which implement the
above function via GC. Although we do not, for simplicity, formally describe
these, we emphasize that they are a straightforward implementation of garbled
rows.

The multiplexer is central to our approach. It non-interactively eliminates
garbage outputs from inactive branches. Despite its central role, if Gen knows the
garbage outputs from each branch, the multiplexer’s implementation is simple.
Specifically, suppose each branch Ci has an output xi that should propagate if
that branch is active. The multiplexer computes the following function:

mux(x0, ..., xb−1, α) = xα

Given that (1) each value xi�=α is a fixed constant ⊥, at least with respect to a
given α (a property that we carefully arrange via the demultiplexer), and (2) Gen
knows the value of each of these fixed constants (the central point of our work),
then the above mux function is easily implemented as a collection of garbled
rows. The number of required rows is proportional to the number of branches
and the number of the conditional’s outputs. EvCond and GbCond make use of
mux.Ev and mux.Gb, procedures which implement the above function via GC.
As with the demultiplexer, we do not formalize these procedures in detail, but
their implementation is a straightforward handling of garbled rows.

Garbling Subtrees. Recall, we organize the b branches into a binary tree.
For each internal node of the tree, both EvCond and GbCond perform a common
task: they garble all branches in the entire subtree rooted at that node and
stack together all material. These subtrees are garbled according to seeds given
by the SortingHat, formally defined in Fig. 2. Like the demultiplexer and mul-
tiplexer, the GC implementation of SortingHat is a straightforward handling of
garbled rows: we assume procedures SortingHat.Ev and SortingHat.Gb which
implement this handling.

We next define a procedure, GbSubtreeFromSeed (Fig. 4), which performs
the basic task of garbling and stacking an entire subtree. GbSubtreeFromSeed
recursively descends through the subtree starting from its root, uses a PRF to
derive child seeds from the parent seed, and at the leaves garbles the branches.
As the recursion propagates back up the tree, the procedure stacks the branch
materials together (and concatenates input/output encodings). The recursion
tracks two integers i and j, denoting the range of branches Ci..Cj that are to
be stacked together. EvCond and GbCond use a similar strategy, and all three
algorithms maintain an invariant that i, j refers to a valid node Ni,j in the
binary tree over the b branches. EvCond and GbCond invoke GbSubtreeFromSeed
at every node. This entails that both procedures garble each branch Ci more than
once, but with different seeds. As discussed in Sect. 2, this repeated garbling is
key to reducing the total number of garbage outputs that Eval can compute.

22 D. Heath and V. Kolesnikov

GbSubtreeFromSeed(C, i, j, seed) :

if i = j : � Base case of 1 branch.

return Gb(C[i], seed)
else :

� Expand child seeds using PRF.

seedL ← Fseed(0)

seedR ← Fseed(1)

� Recursively garble both child trees and stack material.

k ← halfway(i, j)

ML, eL, dL ← GbSubtreeFromSeed(C, i, k, seedL)

MR, eR, dR ← GbSubtreeFromSeed(C, k + 1, j, seedR)

return (ML ⊕ MR, eL | eR, dL | dR)

halfway(i, j) :

� Simple helper for splitting range of branches (approximately) in half.

return i +
⌊

j − i

2

⌋

Fig. 4. The helper algorithm GbSubtreeFromSeed starts from a single seed at the root
of a subtree Ni,j , derives all seeds in the subtree, garbles all branches in the subtree, and
stacks (using XOR) all resultant material. The procedure also returns the input/output
encodings for all branches.

Evaluating Conditionals. We now formalize the procedure EvCond by which
Eval handles a vector of conditionals (Fig. 5). The core of EvCond is delegated
to a recursive subprocedure EvCond′. EvCond′ carefully manages material and
uses the garblings of sibling subtrees to evaluate each branch while limiting
the possible number of garbage outputs. EvCond′ is a formalization of the high
level procedure described in Sect. 2: Eval recursively descends through the tree,
constructing and unstacking garblings of subtrees in the general case. When she
finally reaches the leaf nodes, she simply evaluates. In the base case i = α,
she will have correctly unstacked all material except Mα (because she has good
seeds for the sibling roots of α), and hence evaluates correctly. All other cases
i �= α will lead to garbage outputs that Gen must also compute. Other than
the delegation to EvCond′, EvCond simply invokes SortingHat.Ev to obtain her
seeds, invokes demux.Ev to propagate valid inputs to Cα, and, after evaluating
all branches, invokes mux.Ev to collect garbage outputs from all Ci�=α.

Garbling Conditionals. Finally, we formalize Gen’s procedure for handling
vectors of conditional branches, GbCond (Fig. 6).

1. GbCond recursively derives a binary tree of good seeds via DeriveSeedTree.
This call uses a PRF to recursively derive seeds in the standard manner.

LogStack: Stacked Garbling with O(b log b) Computation 23

EvCond(C, M, X) :

b ← |C|
� Parse the active branch index from the rest of the input.

α | X ′ ← X

� Parse material for gadgets and body of conditional.

MSortingHat | Mdem | Mcond | Mmux ← M

� Run SortingHat to compute all of Eval’s seeds.

es ← SortingHat.Ev(α, MSortingHat)

� Run the demultiplexer to compute input for each branch Ci.

Xcond ← demux.Ev(α, X, Mdem)

� We define a recursive subprocedure that evaluates Ci − Cj using material M .

EvCond
′(i, j, Mi,j) :

if i = j :

� Base case: compute output by evaluating the branch normally.

� This base case corresponds to guess = i.

� Accumulate output labels into the vector Y cond (for later garbage collection).

Y cond[i] ← Ev(Ci, M,Xcond[i])

else :

k ← halfway(i, j)

� Garble the right subtree using the available seed,

� unstack, and recursively evaluate the left subtree.

Mk+1,j , ·, · ← GbSubtreeFromSeed(C, k + 1, j, esk+1,j)

EvCond
′(i, k, Mi,j ⊕ Mk+1,j)

� Symmetrically evaluate the right subtree.

Mi,k, ·, · ← GbSubtreeFromSeed(C, i, k, esi,k)

EvCond
′(k + 1, j, Mi,j ⊕ Mi,k)

� Start recursive process from the top of the tree.

EvCond
′(0, b − 1, Mcond)

� Eliminate garbage and propagate Y α via the multiplexer.

return mux.Ev(α,Y cond, Mmux)

Fig. 5. Eval’s procedure, EvCond, for evaluating a conditional with b branches. EvCond
evaluates each branch; b − 1 evaluations result in garbage outputs and one (the evalu-
ation of Cα) results in valid outputs. The multiplexer collects garbage and propagates
output from Cα. EvCond involves b log b calls to Gb (via GbSubtreeFromSeed), and each
branch evaluation is done with respect to the garbling of that branch’s sibling subtrees.

24 D. Heath and V. Kolesnikov

GbCond(C, S) :

b ← |C|
� Recursively derive all ‘good’ seeds for the entire tree.

s ← DeriveSeedTree(S, b)

� Sample input/output encodings for the conditional.

e ← GenProjection(S, inpSize(Cond(C)))
d ← GenProjection(S, outSize(Cond(C)))
� Parse encoding into encoding of α and encoding of rest of input.

eα | e′ ← e

� Garble SortingHat based on the encoding of α.

� This outputs material as well as the tree of all ‘bad’ seeds s′.

MSortingHat, s
′ ← SortingHat.Gb(eα, s)

� Construct the stacked material and input encodings for each branch.

Mcond, econd, dcond ← GbSubtreeFromSeed(C, 0, b − 1, s0,b−1)

� The demux conditionally translates the input encoding e′

� to one of the branch encodings in econd based on eα.

Mdem, Λin ← demux.Gb(eα, e′, econd)

� Compute all possible garbage outputs.

Λout ← ComputeGarbage(C, Mcond, Λin, s, s′)

� The demultiplexer collects garbage outputs.

Mmux ← mux.Gb(eα, d, dcond, Λout)

return (MSortingHat | Mdem | Mcond | Mmux, e, d)

Fig. 6. The algorithm for garbling a conditional vector. Given b branches, GbCond

returns (1) the stacked material, (2) the input encoding string, (3) all b output decoding
strings, and (4) all b log b possible garbage output label vectors.

2. GbCond invokes GenProjection to select uniform input/output encodings e
and d: e and d are vectors of pairs of labels that are the valid input/output
labels for the overall conditional. Our use of GenProjection is straightforward
and similar to that of [HK20a].

3. GbCond uses SortingHat.Gb to garble the SortingHat functionality of Fig. 2.
As input, GbCond provides the tree of good seeds s and the encoding of the
active branch id eα. As output, Gen receives the tree of all bad seeds. GbCond
needs these bad seeds, in addition to the good seeds he already knows, to
emulate Eval making a bad guess.

4. GbCond uses GbSubtreeFromSeed to derive stacked material Mcond from the
root seed. Mcond is the material that Gen ultimately sends to Eval.

5. GbCond calls demux.Gb to compute the demultiplexer garbled rows. This call
also returns Λin, the collection of garbage input labels for each branch: essen-
tial information that allows Gen to emulate Eval.

LogStack: Stacked Garbling with O(b log b) Computation 25

ComputeGarbage(C, M, Λin, s, s′) :

� We first define a recursive subprocedure.

ComputeGarbage
′(i, j, Mi,j ,M

′) :

� Compute all possible garbage outputs from branches Ci − Cj .

� M ′ is a vector of the bad garblings of all sibling roots of the current node.

if i = j :

� Base case: loop over all possible garbage material

� and accumulate garbage outputs into Λout.

acc ← Mi,i

for k ∈ 0..|M ′| − 1 :

� Emulate all possible bad evaluations of Ci.

acc ← acc ⊕ M ′[k]

Λout[i][k] ← Ev(C[i], acc, Λin[k])

else :

k ← halfway(i, j)

� Compute the good material for both subtrees.

Mi,k, ·, · ← GbSubtreeFromSeed(C, i, k, si,k)

Mk+1,j ← Mi,j ⊕ Mi,k

� Compute the bad material for both subtrees.

M ′
i,k, ·, · ← GbSubtreeFromSeed(C, i, k, s′

i,k)

M ′
k+1,j , ·, · ← GbSubtreeFromSeed(C, k + 1, j, s′

k+1,j)

� Recursively compute all garbage outputs.

ComputeGarbage
′(i, k, (Mk+1,j ⊕ M ′

k+1,j) | M ′)

ComputeGarbage
′(k + 1, j, (Mi,k ⊕ M ′

i,k) | M ′)

b ← |C|
� Start the recursive process using the top level material M

� and using the empty vector of bad sibling material.

ComputeGarbage
′(0, b − 1, M, [])

return Λout

Fig. 7. ComputeGarbage allows Gen to compute the possible garbage output labels from
evaluation of inactive branches. Specifically, the algorithm takes as arguments (1) the
vector of conditional branches C, (2) the ‘good’ material for the conditional M , (3)
the garbage input labels Λin, (4) the tree of ‘good’ seeds (i.e. the seeds used by Gen

to generate M) s, and (5) the tree of ‘bad’ seeds s′. The algorithm outputs Λout, the
vector (length b) of vectors (each length log b) of output labels from each branch.

With this accomplished, GbCond’s remaining task is to encrypt the garbage-
collecting multiplexer. However, it is not clear how this can be achieved unless
Gen knows all garbage outputs that Eval might compute. Thus, GbCond first

26 D. Heath and V. Kolesnikov

invokes ComputeGarbage (Fig. 7), a procedure which emulates all of Eval’s bad
guesses.

ComputeGarbage delegates to the recursive subprocedure ComputeGarbage′.
This recursive procedure walks down the tree, maintaining two key variables:
(1) Mi,j holds the correct material for the current subtree Ni,j and (2) M ′

holds a vector of bad materials of the incorrectly garbled sibling roots of Ni,j .
In the general case, these variables are simply appropriately updated via calls to
GbSubtreeFromSeed. Thus, in the base case, the garbage materials for all sibling
roots of the considered leaf are available. Additionally, all garbage inputs into
each branch are available in the vector Λin. So, at the leaves we can compute
all garbage outputs for each branch by calling Ev on the proper combinations of
garbage material and labels. We store all garbage outputs into the global vector
Λout, which is returned by the overall procedure, and then ultimately used by
GbCond to call mux.Gb.

6 LogStack Correctness/Security

We discuss LogStack’s correctness and security properties. We formalize our
theorems in the [BHR12] framework (as modified by [HK20a]), which requires a
candidate garbling scheme to be correct, oblivious, private, and authentic.

In addition, [HK20a] introduced a new property, stackability, which formal-
izes the class of garbling schemes whose garblings can be securely stacked; hence
stackable schemes are candidate underlying schemes. In this work, we strengthen
the definition of stackability. This strengthening, which we call strong stacka-
bility, allows us to prove security under standard assumptions (an improvement
over [HK20a], which required a random oracle assumption). Strong stackability is
strictly stronger than stackability: all strongly stackable schemes are stackable,
and all lemmas that hold for stackable schemes hold also for strongly stack-
able schemes. A key application of this second fact is that all stackable schemes
are trivially oblivious, so all strongly stackable schemes are oblivious. We prove
security given a strongly stackable, correct, authentic, private underlying scheme.

[HK20a] showed that several standard garbling schemes are stackable, includ-
ing the state-of-the-art half-gates technique [ZRE15]. We later argue that such
schemes either are strongly stackable without modification or can be easily
adjusted. Hence, our implementation can assume an RO and use half-gates as
its underlying scheme to achieve high performance.

LogStack is itself strongly stackable, giving flexibility in usage: while by design
LogStack handles vectors of conditional branches, we also support arbitrarily
nested conditional control flow without modifying the source program. We note
that this nested usage does not give O(b log b) computation, and so vectorized
branches should favored where possible.

Due to a lack of space, we postpone most proofs to the full version of this
paper.

LogStack: Stacked Garbling with O(b log b) Computation 27

6.1 Correctness

Definition 1 (Correctness). A garbling scheme is correct if for all circuits
C, all input strings x of length inpSize(C), and all pseudorandom seeds S:

De(d,Ev(C,M,En(e,x))) = ev(C,x)

where (M, e, d) = Gb(1κ, C, S)

A correct scheme implements the semantics specified by ev. Proof of the
following is formalized in the full version of this paper.

Theorem 2. If Base is correct, then LogStack is correct.

6.2 Security

The following definition is derived from the corresponding definition of [HK20a];
we discuss its motivation (support for PRF-based garbling gadgets) and technical
differences with [HK20a] immediately after we present it formally below.

Definition 2 (Strong Stackability). A scheme is strongly stackable if:

1. For all circuits C and all inputs x,

(C,M,En(e,x)) c= (C,M ′,X ′)

where S is uniformly drawn, (M, e, ·) = Gb(1κ, C, S), X ′ ←$ {0, 1}|X |, and
M ′ ←$ {0, 1}|M |.

2. The scheme is projective [BHR12].
3. There exists an efficient deterministic procedure colorPart that maps strings

to {0, 1} such that for all C and all projective label pairs A0, A1 ∈ d:

colorPart(A0) �= colorPart(A1)

where S is uniformly drawn and (·, ·, d) ← Gb(1κ, C S).
4. There exists an efficient deterministic procedure keyPart that maps strings to

{0, 1}κ such that for all C and all projective label pairs A0, A1 ∈ d:

keyPart(A0) | keyPart(A1) c= {0, 1}2κ

where S is uniformly drawn and (·, ·, d) ← Gb(1κ, C S).

The above definition is given by [HK20a], with the exception of point 4.
Informally, stackability ensures (a) that circuit garblings ‘look random’ and (b)
that our scheme can manipulate labels generated by the underlying scheme.
Since strong stackability simply adds point 4, the following lemma is immediate:

28 D. Heath and V. Kolesnikov

Lemma 1. Every strongly stackable scheme is stackable.

We briefly explain the role of colorPart and keyPart. As with [HK20a], we
use the output labels of the underlying scheme as keys in subsequent garbled
gadgets. The keyPart procedure allows us to extract a suitable PRF key from
each label. At the same time, we make use of the classic point-and-permute trick
to reduce the number of PRF calls needed to evaluate garbled gadgets: we use
the colorPart as the bit that instructs which garbled row to decrypt. Note that
because we essentially ‘split’ each output label into a key and a color, we ‘lose’
bits of the underlying scheme’s labels when we invoke keyPart. We stress that
this is not an issue: the required key length for the next PRF application can be
restored as we require keyPart output to be κ bits long. All point-and-permute
schemes have a similar approach.

The added requirement (point 4) allows us to relax our security assumptions
in comparison to [HK20a]. For each projective output pair A0, A1, we require that
keyPart(A0) and keyPart(A1) are unrelated. This is achieved by requiring that the
concatenation of these two strings is indistinguishable from a random string of
the same length. This allows us to circumvent a problem: the [HK20a] definition
allowed labels in the underlying scheme to be arbitrarily related. More precisely,
while point 1 requires that any particular set of labels seen by Eval look random,
it does not require that all labels together look random. This was problematic,
because the output labels of the underlying scheme were used to implement
garbled tables, so the two possibly related labels were both used as PRF keys.
Using related keys is outside the scope of the standard PRF security definition.
Thus, [HK20a] were forced to assume the existence of a random oracle to ensure
possible relationships in the output decoding string did not compromise security.
By adding point 4, we ensure that the entire decoding string ‘looks random’,
so all labels must be independent. This added requirement on the underlying
scheme allows us to push our proofs through in the standard model.

Many standard schemes are compatible with strong stackability: if the scheme
is stackable and has randomly chosen output labels, it trivially satisfies our
definition. Free XOR based schemes [KS08] use pairs of labels separated by a
fixed constant Δ, and so are not a priori strongly stackable. However, it is easy to
adjust such schemes such that the final output gates return independent labels.
As a final note, while our scheme is secure in the standard model, we of course
adopt any additional security assumptions from the chosen underlying scheme:
e.g., instantiating LogStack with the efficient Half Gates scheme [ZRE15] requires
us to assume the existence of a circular correlation robust hash function.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that LogStack’s garblings ‘looks ran-
dom’.

Theorem 3. If Base is strongly stackable, then LogStack is strongly stackable.

Definition 3 (Obliviousness). A garbling scheme is oblivious if there exists
a simulator Sobv such that for any circuit C and all inputs x of length
inpSize(C), the following are indistinguishable:

LogStack: Stacked Garbling with O(b log b) Computation 29

(C,M,X) c= Sobv(1κ, C)

where S is uniform, (M, e, ·) = Gb(1κ, C, S) and X = En(e,x).

Obliviousness ensures that the garbled circuit with input labels can be sim-
ulated, and hence reveals no extra information to Eval. [HK20a] proved that
every stackable scheme is trivially oblivious: drawing a random string of the
correct length is a suitable simulator. This fact, combined with Lemma 1 and
Theorem 3 implies two immediate facts:

Lemma 2. Every strongly stackable scheme is oblivious.

Theorem 4. If Base is strongly stackable, then LogStack is oblivious.

Definition 4 (Authenticity). A garbling scheme is authentic if for all cir-
cuits C, all inputs x of length inpSize(C), and all poly-time adversaries A the
following probability is negligible in κ:

Pr
(
Y ′ �= Ev(C,M,X) ∧ De(d,Y ′) �= ⊥)

where S is uniform, (M, e, d) = Gb(1κ, C, S), X = En(e,x), and Y ′ =
A(C,M,X).

Authenticity ensures that an adversary cannot compute GC output labels
except by running the scheme as intended.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that an adversary cannot compute GC
output labels except by running LogStack.

Theorem 5. If Base is authentic, then LogStack is authentic.

Definition 5 (Privacy). A garbling scheme is private if there exists a simu-
lator Sprv such that for any circuit C and all inputs x of length inpSize(C), the
following are computationally indistinguishable:

(M,X, d) c= Sprv(1κ, C,y),

where S is uniform, (M, e, d) = Gb(1κ, C, S), X = En(e,x), and y = ev(C,x).

Privacy ensures that Eval, who is given access to (M,X, d), learns nothing
except what can be learned from the output y. I.e., Gen’s input is protected.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that Eval’s view can be simulated.

Theorem 6. If Base is private, authentic, and strongly stackable, then LogStack
is private.

30 D. Heath and V. Kolesnikov

Fig. 8. Experimental evaluation of LogStack as compared to [HK20a]’s Stack and to
basic half-gates [ZRE15] (‘näıve’ branching). We compare in terms of wall-clock time
on different simulated network bandwidths (top). We performed an extended wall-
clock time comparison to Stack (bottom left). Both LogStack and Stack greatly outper-
form basic half-gates in terms of total bandwidth consumption (bottom center), and
LogStack greatly outperforms Stack in terms of memory consumption (bottom right).

7 Instantiation and Experimental Evaluation

We implemented LS in ∼ 1500 lines of C++ and used it to instantiate a semi-
honest 2PC protocol. We instantiated Base using the half-gates [ZRE15], allow-
ing high concrete performance. Our implementation thus relies on non-standard
assumptions. We use computational security parameter κ = 127; the 128th bit is
reserved for point and permute. Our implementation spawns additional threads
to make use of inherent parallelism available in GbCond and EvCond.

Our experiments were each performed on a MacBook Pro laptop with an
Intel Dual-Core i5 3.1 GHz processor and 8 GB of RAM.

We compared our implementation to basic half-gates [ZRE15] and to the
Stack SGC of [HK20a]. Figure 8 plots the results of our experiments.

We consider end-to-end wall-clock time, bandwidth consumption, and mem-
ory utilization. All branches implement the SHA-256 netlist, which has 47726
AND gates, 179584 XOR gates, and 70666 NOT gates. A GC for each branch has
size 1.45 MB. It is, of course, unrealistic that a conditional would have the same
circuit in each branch. However, we choose this benchmark because SHA-256
has become somewhat of a community standard and because our goal is only to
analyze performance. We ensure our implementation does not cheat: it cannot
recognize that branches are the same and hence cannot shortcut the evaluation.

Bandwidth consumption is the easiest metric to analyze. The communi-
cation chart in Fig. 8 plots communication as a function of branching factor. As
expected, Stack’s and LogStack’s communication remains almost constant, while
half-gates’ grows linearly and immediately dominates. LogStack is slightly leaner
than Stack because of low-level improvements to LogStack’s demultiplexer. This
small improvement should not be counted as a significant advantage over Stack.

LogStack: Stacked Garbling with O(b log b) Computation 31

Memory utilization was measured as a function of branching factor. We
compare our scheme to Stack (half-gates memory utilization is constant, since
garblings can be streamed across the network and immediately discarded). Our
chart shows Stack’s linear and LogStack’s logarithmic space consumption. In set-
tings with many branches, improved space consumption is essential. For exam-
ple, we ran LogStack on a circuit with 8192 SHA-256 branches, a circuit that
has > 385M AND gates. Our peak memory usage was ∼ 100 MB, while [HK20a]
would require more than 12 GB of space to run this experiment.

Wall-clock time to complete an end-to-end 2PC protocol is our most com-
prehensive metric. We plot three charts for 1 to 64 branches (on networks with
100, 300, and 1000 Mbps bandwidth) comparing each of the three approaches.
We also explored more extreme branching factors, running conditionals with
branching factors at every power of 2 from 20 to 213 in the 100 Mbps setting.

In the 1 Gbps network setting, as expected, näıve half-gates leads. As dis-
cussed in Sect. 1.5, two cores (our laptop) indeed cannot keep up with the avail-
able network capacity. However, doubling the number of cores would already
put us ahead of näıve, and any further computation boost would correspond-
ingly improve our advantage. We are about 3× faster than Stack.

In the 300 Mbps network setting, we outperform näıve. Because we range
over the same number of branches, we are the same factor ≈ 3× faster than
Stack.

The more typical 100 Mbps setting shows the advantage of SGC. Both Stack
and LogStack handily beat näıve.

Finally, we experimented with large branching factors. LogStack scales well;
we ran up to 8192 branches as it was sufficient to show a trend. Due to its
logarithmic memory utilization, LogStack would run on a practically arbitrary
number of branches. In contrast, Stack exhibited limited scaling. We ran up to
1024 branches with Stack, enough to show a trend, and after which our experi-
ments started to take too long. LogStack ran 2PC for a 1024-branch conditional
in ∼ 67s, while Stack took ∼ 2050s, ∼ 31× slower than LogStack.

Acknowledgements. This work was supported in part by NSF award #1909769, by
a Facebook research award, and by Georgia Tech’s IISP cybersecurity seed funding
(CSF) award.

References

[AGKS20] Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable
universal circuits. J. Cryptol. 33(3), 1216–1271 (2020)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM
Press, October 2012

[CKKZ12] Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the
“Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 3

https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3

32 D. Heath and V. Kolesnikov

[GKS17] Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit con-
structions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II.
LNCS, vol. 10625, pp. 443–470. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70697-9 16

[GLNP15] Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under
standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 567–578. ACM Press, October 2015

[HK20a] Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 763–792. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 27

[HK20b] Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 569–598. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 19

[KKW17] Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying conditional cir-
cuit clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part II. LNCS, vol. 10625, pp. 499–528. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9 18

[Kol18] Kolesnikov, V.: Free IF: how to omit inactive branches and implement S-
universal garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 34–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 2

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

[KS16] Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 27

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit:
improvements, implementation, and applications. Cryptology ePrint
Archive, Report 2016/017 (2016). http://eprint.iacr.org/2016/017

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196–
203. ACM Press, New York (1976)

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 8

[ZYZL19] Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited:
an overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 401–425. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 15

https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-319-70697-9_18
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-662-49890-3_27
http://eprint.iacr.org/2016/017
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-030-34578-5_15

Large Scale, Actively Secure
Computation from LPN and Free-XOR

Garbled Circuits

Aner Ben-Efraim2(B), Kelong Cong1 , Eran Omri2 , Emmanuela Orsini1 ,
Nigel P. Smart1,3 , and Eduardo Soria-Vazquez4

1 imec-COSIC, KU Leuven, Leuven, Belgium
kelong.cong@esat.kuleuven.be, {emmanuela.orsini,nigel.smart}@kuleuven.be

2 Department of Computer Science, Ariel Univeristy, Ariel, Israel
anermosh@post.bgu.ac.il

3 Department of Computer Science, University of Bristol, Bristol, UK
4 Department of Computer Science, Aarhus University, Aarhus, Denmark

eduardo@cs.au.dk

Abstract. We (MPC) protocol based on garbled circuits which is both
actively secure and supports the free-XOR technique, and which has
communication complexity O(n) per party. This improves on a proto-
col of Ben-Efraim, Lindell and Omri which only achieved passive secu-
rity, without support for free-XOR. Our construction is based on a new
variant of LPN-based encryption, but has the drawback of requiring a
rather expensive garbling phase. To address this issue we present a sec-
ond protocol that assumes at least n/c of the parties are honest (for an
arbitrary fixed value c). This second protocol allows for a significantly
lighter preprocessing, at the cost of a small sacrifice in online efficiency.
We demonstrate the practicality of our evaluation phase with an imple-
mentation.

1 Introduction

The last decade has seen an enormous amount of progress in the practicality of
actively secure multiparty computation (MPC), spanning many new designs and
implementations of protocols based on both garbled circuits and secret sharing.
Much of the developments have been in the dishonest majority case, where more
than half of the parties can arbitrarily deviate from the protocol, trying to
compromise privacy and correctness of computation. Despite this, there is still
some gap between the complexities one can achieve in theory, and those which
can be met by practical protocols in the real world.

Almost all of the most efficient protocols in the dishonest majority setting are
designed in the so-called preprocessing model, in which parties first produce some
input-independent correlated randomness which can be later used to evaluate the
function. In secret-sharing-based protocols, the main goal of the preprocessing
(or offline) phase is to generate secret-shared random multiplication triples,
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 33–63, 2021.
https://doi.org/10.1007/978-3-030-77883-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_2&domain=pdf
https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0001-8928-0587
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-4882-0230
https://doi.org/10.1007/978-3-030-77883-5_2

34 A. Ben-Efraim et al.

which are consumed during the online computation to evaluate multiplication
gates. In garbled-circuit-based protocols, the preprocessing generates a one-time
garbled circuit which will be later evaluated on private inputs.

Recent protocols in both of the above paradigms have incredibly fast exe-
cution times in their online phases when the number of parties n is relatively
small (say less than 10), see for example SPDZ-like protocols [15,25,26,28] and
SPDZ2k [13,36], for the case of linear secret-sharing based MPC, and BMR-
based protocols [22,39,40]. However, when we increase the number of parties
this practicality drops off.

Secret-sharing based protocols [7,14,15,19,37], which work for both binary
and arithmetic circuits, require a small amount of communication between
(essentially) all parties for each layer of multiplication gates in the circuit, and
hence their round complexity is linear in the depth of the circuit. This means
that these protocols require very low bandwidth, and can be very efficient in
a LAN (Local-Area-Networks) setting, but the large amount of rounds of com-
munication and high latency make them less suited for the WAN (Wide-Area-
Networks) setting, where the parties are usually geographically far apart from
each other. If we consider the complexity of the online evaluation, secret-sharing
based protocols have O(n) complexity per gate per party1.

Garbled circuit protocols, introduced by Yao [41] in the two-party setting
and later generalized to the multiparty case by Beaver, Micali and Rogaway
(BMR) [3], mainly work over binary circuits. In these protocols an “encrypted”
version of the circuit is constructed in such a way that its evaluation does not
require any communication beyond parties providing their “garbled” inputs.
These protocols run in a constant number of rounds and are often slower than
secret-sharing based protocols in a LAN setting due to their higher bandwidth
requirements. Nevertheless, they are usually much faster in the WAN setting.
For practical multiparty garbled-circuit protocols each evaluating party has to
perform O(n2) operations. Thus the scalability of the online phase of secure
multiparty computation protocols in a WAN setting, as the number of parties
increases, is still an issue.

Theoretically, this is not a problem for multi-party garbled circuits. To
achieve a protocol which has complexity O(n) per party, one can take the stan-
dard two-party protocol by Yao [41] and then compute the garbling function via
an n-party actively secure MPC system. The resulting garbled circuit will not
depend on the number of parties, but the garbling itself will be highly inefficient
as the underlying pseudo-random functions (PRFs) used in Yao’s construction
will need to be evaluated within MPC. Thus, while theoretically interesting, such
an approach is unlikely to ever be practical.

The O(n2) complexity problem for practical BMR-based protocols led Ben-
Efraim, Lindell and Omri [6] to present a passively secure BMR-based protocol

1 The complexity can be reduced to O(1) for all but one of the parties in SPDZ-like
protocols by ‘opening’ being performed in a king-followers fashion: Followers send
their shares to the king, who then replies to all followers with the reconstructed value
(hence O(n) complexity for the king). For more details, see e.g. [15].

Large Scale, Actively Secure Computation 35

whose evaluation is independent of the number of parties and such that the
garbling phase avoids to evaluate PRFs using generic MPC. This was done by
utilizing a specific key-homomorphic PRF, for which two instantiations were
given in the paper, one based on DDH in prime order groups and one based
on Learning-with-Errors. The work of Ben-Efraim et al. provides a large-scale
MPC protocol which is almost practical : their evaluation phase is concretely
faster than previous works for large n, but more research is needed into the
offline phase in order to make it practical. The efficiency of online evaluation
is demonstrated through an implementation which shows that, roughly, their
protocol is more efficient than its O(n2) counterpart [5] as soon as 100 parties
take part in the MPC. However, this large-scale protocol suffers from two major
drawbacks: firstly, it only deals with the case of passive adversaries, and secondly
their techniques are not compatible with the important free-XOR optimization
introduced by Kolesnikov and Schneider [27].

Another relevant large-scale, garbled-circuit based protocol is that proposed
by Hazay, Orsini, Scholl and Soria-Vazquez [21]. Their result, which only deals
with passive adversaries, shortens symmetric keys (as the ones for PRFs in the
garbled circuit) in order to speed up computation and reduce communication.
Security is then retained by relying on the length of the concatenation of all
honest parties’ keys, rather than on each of them individually. Such a protocol
allows to evaluate each garble gate with O(n2�/κ) operations, compared to O(n2)
of standard approaches, where κ > � is the security parameter and � is the key
length. In subsequent work [20], the same authors extended their technique to
the active setting, but only for secret-sharing based protocols, leaving actively
secure garbled circuits with short keys as an open problem.

1.1 Our Contribution

In this paper we introduce a new n-party garbling technique and present two
almost-practical, large-scale BMR-style protocols. Both the size and evaluation
complexity of the resulting garbled circuits is O(1), hence resulting in an online
phase which has a complexity of O(n) per party2. Our protocols are actively
secure and employ the free-XOR optimization by Kolesnikov and Schneider [27].

Obtaining Free-XOR. Our construction takes inspiration from the work of Ben-
Efraim et al. [6], but instead of basing the construction on key-homomorphic
PRFs, we use an encryption scheme which is both key-homomorphic and
message-homomorphic. In order to enable the free-XOR technique, we further
need to restrict ourselves to message and key spaces of characteristic two.
This rules out standard Ring-Learning-with-Errors (RLWE) based encryption
schemes, for which the secret key and message spaces are modulo distinct primes.
Instead, we introduce a new homomorphic encryption scheme based on the
Learning-Parity-with-Noise (LPN) problem. We note that LPN-based encryp-
tion was also used by Appelbaum [1] in order to replace the random oracle with
2 This increase in complexity is due to parties still needing to reconstruct the circuit

and send their masked inputs around.

36 A. Ben-Efraim et al.

standard cryptographic assumptions in two-party, free-XOR garbled circuits. We
would like to stress that the motivation (and also the resulting LPN construc-
tion) for our work is different, as we aim to build practical protocols for a large
number of parties rather than a purely theoretical result related to cryptographic
assumptions. A further overview of our new LPN garbling scheme can be found
in the next subsection, and all its details appear in Sect. 3.

Obtaining Active Security. Our first protocol achieves active security by employ-
ing an actively-secure garbling phase which guarantees that the resulting secret-
shared garbled circuit is correct. While in standard BMR all of the garbling,
except the PRFs evaluations, is computed within an MPC protocol, we instead
entirely generate the garbled gates in a distributed manner using an actively
secure full-threshold MPC system. We will refer to this first protocol as “authen-
ticated garbling”. This terminology resembles the authenticated-garbling tech-
nique by Wang, Ranellucci and Katz [38,39] (referred as WRK in the rest of the
paper) and more recently by Yang, Wang and Zhang [40]. However, while their
preprocessing phase is explicitly based on TinyOT-like protocols [17,33], which
rely on Message Authentication Codes (MACs), our preprocessing works with
any actively secure protocols.

In our construction each garbled AND gate consists of 4 rather than 4n
ciphertexts as in previous BMR-style protocols. In the online phase, parties only
need to broadcast shares of their inputs and perform a cheap, local computation
that requires a single decryption per AND gate. However, this very efficient
online evaluation comes at the price of a rather expensive preprocessing. Thus,
whilst forming a potential bridge from what is theoretically possible to what is
practically realisable, this protocol is only ‘almost’-practical.

Bridging the Gap. To further bridge the gap between theory and practice, we
also present a second construction with a more efficient preprocessing phase.
We achieve this by relaxing some of the requirements in our garbling func-
tionality, which becomes more similar to that described by Hazay, Scholl and
Soria-Vazquez (HSS) [22]. In particular, we allow the shares of the garbled cir-
cuit to be unauthenticated : rather than producing LPN ciphertexts within an
actively secure MPC engine, each party will locally produce additive shares of
these ciphertexts. This effectively allows the adversary to introduce arbitrarily
additive errors to corrupted parties’ shares. To maintain active security, we need
to introduce an extra check in the online evaluation, as we explain in Technical
Overview (Sect. 1.2).

In order to achieve a better performance, this new construction assumes
that there are at least n/c honest parties, for an arbitrarily chosen constant
1 < c ≤ n. Since our goal is constructing efficient protocols for a large number
of parties (typically more than one hundred), it is very reasonable to assume, in
this setting, more than a single honest party.

Experimental Validation. We validate the claim that our protocol is almost-
practical by demonstrating that the evaluation phase is indeed more efficient

Large Scale, Actively Secure Computation 37

than other truly practical approaches when the number of parties is large. Thus,
to turn our almost-practical protocol into a fully practical one, future works only
need to concentrate on the garbling phase.

The concrete efficiency of our schemes crucially depends on the LPN param-
eters and the error correcting codes used to instantiate the two-key LPN based
encryption scheme. We set the security of the scheme according to the work of
Esser et al. [16] and instantiate the cryptosystem with concatenated codes (see
the full version). We stress that our implementation should be taken more as
a proof of feasibility than an optimized implementation of the proposed con-
structions. Moreover, we believe that using more efficient codes, like LDPC or
QC-LDPC, the concrete efficiency of our protocols would improve significantly.

More concretely, in the full-threshold authenticated garbling case, experi-
ments show that our evaluation phase will be more efficient than state of the art
protocols such as HSS or WRK when the number of parties exceeds about 100.
Notice HSS, WRK and the recent protocol of Yang et al. [40] have similar online
efficiency, therefore, to concretely validate our claim, we compare the results
of our experiments in the full-threshold case with the running times reported
in [39]. Setting the statistical security parameter to 40, as in [39], we report a
running time for AES-128 of 1.72 s (c.f. Table 2 in Sect. 6), compared to 1.87 s
in a LAN setting and 2.3 s in a WAN setting reported in WRK [39] for 128 par-
ties. These numbers from WRK will grow quadratically as the number of parties
increases, whereas ours will remain constant.

In the scalable protocol by Ben-Efraim et al. [6] –only passively secure and
without free-XOR– the authors also estimate that the cross over point from the
O(n2) to the O(n) protocols comes when n is about 100. Thus we obtain roughly
the same cross over point in the case of active security with free-XOR as Ben-
Efraim et al. do for passive security with no free-XOR. When comparing our
protocol to [6] we see that, assuming a circuit consisting solely of AND gates,
our protocol is roughly six times slower than that of [6]. Whilst this penalty
for obtaining active security can be considered too much, one needs to consider
the effect over typical circuits, as our protocols evaluate XOR gates for free.
Thus, in practice, our performance penalty to achieve active security compared
to Ben-Efraim et al. is closer to just a 15% of slow down. The details of our
implementation can be found in Sect. 6. In the full version we also provide an
estimation of the overall complexity of our protocols.

1.2 Technical Overview

We now proceed to discuss our results and techniques in greater detail. They
mainly revolve around two key ideas: how to use LPN encryption to allow n-
party garbling with free-XOR, and how to achieve active security. We give an
overview of these techniques below, more details can be found in the rest of the
paper.

Since our constructions assume a circuit-based representation, we fix some
conventions and notation we adopt across the paper. We consider binary circuits
Cf consisting of |C∧| AND gates, |C⊕| XOR gates, each of which has two input

38 A. Ben-Efraim et al.

wires, u and v, and one output wire w. We use g to indicate the gate index. Let
W be the set of all wires, Win and Wout be the set of input and output wires,
respectively, we assume |Win| = nin and |Wout| = nout. We denote by Wini

the set
of input wires associated to party Pi, and likewise for output wires Wouti .

Background on BMR. Most of the work in multi-party garbled circuits is based
on the BMR protocol by Beaver, Micali and Rogaway [3], which has been recently
improved by a sequence of works [5,22,29,30,39] both in the case of passive and
active security. In this paper we follow the approach described in [5,22].

These protocols consist of two phases: an input-independent preprocessing
phase where the garbled circuit is generated, and an online phase where parties
locally evaluate the circuit obtaining the output of the computation. While in
Yao’s two-party protocol only one party, the garbler, creates the garbled circuit,
in BMR all parties generate it in a distributed way. This means that, instead of
having a single key associated to each wire of the circuit, in multiparty garbling
we have n keys for each wire, one for each party.

At the beginning of the preprocessing step, each party Pi chooses a global
correlation Δi ∈ F

k
2 to support free-XOR, and, for each wire w that is not the

output wire of a XOR gate, samples a random key ki
w,0, associated to the value

0, and sets ki
w,1 = ki

w,0⊕Δi for the value 1. Moreover, each Pi samples a random
wire mask λi

w ∈ F2, for all the input wires w ∈ Wini
and output wires of AND

gates. Therefore the actual wire mask for such wires is given by λw = ⊕i∈[n]λ
i
w.

In this way, XOR gates do not need any additional preprocessed material, as
parties simply set ki

w,0 = ki
u,0 ⊕ki

v,0, k
i
w,1 = ki

w,0 ⊕Δi and λw = λu ⊕λv (where
u and v are the input wires and w is the output wire).

Let g be denote an AND gate with input wires u, v and output wire w. Given
wire masks λu, λv, λw and wire keys {ki

u,α,ki
v,β ,ki

w,0}(α,β)∈{0,1}2,i∈[n], parties
generate a garbled gate corresponding to the AND truth table. It consists of
four rows, indexed by the values (α, β) ∈ {0, 1}2 on the input wires. Every row
contains n ciphertexts, each of which is encrypted under 2n keys as follows:

g̃j
α,β =

(
n⊕

i=1

Fki
u,α,ki

v,β
(g‖j)

)
⊕ kj

w,0 ⊕ Δj · (
(λu ⊕ α) · (λv ⊕ β) ⊕ λw

)
, (1)

where j ∈ [n] represents the j-th ciphertext on the (α, β)-row and F is a double-
key PRF. Note that, as free-XOR asks for every pair of keys (kj

w,0,k
j
w,1) to

be correlated according to Δj , we further need F to be a circular 2-correlation
robust PRF [22].

In the online phase, these encrypted truth tables, along with the input and
output wire masks, are revealed to all parties so to allow local evaluation of
the circuit. More precisely, in the input phase each party Pi broadcasts val-
ues εw = ρw ⊕ λw, for each w ∈ Wini

, where ρw is the actual input and λw

the corresponding wire mask provided to Pi with other preprocessed mate-
rial. In response, every party Pj broadcasts their key ki

w,εw
. Upon collecting

all the keys and masked inputs, parties can start evaluating the circuit. At this

Large Scale, Actively Secure Computation 39

point, this does not require any interaction. Given complete sets of input keys
(k1

u,εu
, . . . ,kn

u,εu
) and (k1

v,εv
, . . . ,kn

v,εv
), it is possible to decrypt a single row of

AND garbled gates obtaining (k1
w,εw

, . . . ,kn
w,εw

). Note that during evaluation
each party decrypts the entire row, requiring n2 PRF evaluations. Once these
output keys are obtained, every party Pi can check that the i-th key corresponds
to one of its keys ki

w,0,k
i
w,1 generated in the garbling phase. This check allows:

1) To determine the masked output value, i.e. if ki
w,εw

= ki
w,0, Pi sets εw = 0,

and εw = 1 otherwise; 2) To ensure active security for the online evaluation.
Notice that, while [29] uses the actively secure SPDZ protocol [15] to create

an authenticated secret-sharing of Eq. (1), Hazay et al. [22] show that, in order
to obtain an actively secure BMR-style protocol, it is enough to generate an
unauthenticated additive sharing of the garbled circuit, provided that the values
Δj · (

(λu ⊕ α) · (λv ⊕ β) ⊕ λw

)
in Eq. (1) are correctly generated.

BMR Garbling with LPN Encryption. We replace the circular 2-correlation
robust PRF needed to allow the free-XOR technique in garbled circuit based pro-
tocols with a two-key symmetric encryption scheme based on LPN. By applying
the key and message homomorphism, each garbled gate contains only a single
ciphertext per row instead of n. However to achieve efficiency we need to mod-
ify the LPN encryption used in [1], as we have n rather than two parties, and
prove that our system still satisfies the Linear Related-Key and Key-Dependent-
Message (LIN-RK-KDM) security needed to support the free-XOR optimization.

On the other hand, we cannnot naively modify the standard single-key LPN-
based encryption scheme because of the free-XOR technique. Due to the key-
homomorphism of LPN, there would be only two different keys –either ku,0+kv,0

or ku,0 +kv,0 +Δ– encrypting each four-ciphertext gate entries in every garbled
table (more details are in Sect. 3), essentially allowing the adversary to always
decrypt half of them. We define a new scheme that still takes as input two keys
but applies a permutation σ to the second one. We prove that the newly defined
scheme satisfies a related notion of LIN-RK-KDM security, which we denote by
LIN-RK-KDMσ, while supporting the use of free-XOR in our garbled circuits.

Using our new scheme, we can replace the 4 · n ciphertexts given in Eq. (1)
with 4 ciphertexts of the form

g̃α,β = Enc
(
(kw,εw,α,β

, εw,α,β), (g‖α‖β), (ku,α,kv,β)
)
, (α, β) ∈ {0, 1}2, (2)

where the values εw,α,β = (λu ⊕ α) · (λv ⊕ β) ⊕ λw, kw,εw,α,β
= kw,0 ⊕ Δ · εw,α,β

correpond to the output public-value and output key, respectively.

Obtaining Active Security. We use the garbling technique just described to
design our actively secure BMR protocols with linear online complexity in the
number of parties. At a very high level the approach we follow to obtain active
security is the same approach used in HSS, but with some significant differences.

The first one is clearly in the evaluation phase. In HSS, upon receiving all
the input-wire keys and reconstructing the garbled circuit, parties evaluate the
circuit locally by computing, for every AND gate, n2 PRF evaluations. By sub-
tracting those PRF outputs (see Eq. 1), they obtain the n keys (k1

w,εw
, . . . ,kn

w,εw
)

40 A. Ben-Efraim et al.

corresponding to the AND gate’s output, which can be used to evaluate subse-
quent gates. Since, during this operation, each party Pi should recover one of its
two possible output keys, (ki

w,0,k
i
w,1), checking whether this condition verifies

is enough to guarantee active security for the online evaluation. In our case this
is no longer true, because upon decryption any party obtains a single unknown
output key, kw,εw

. For security reasons, such a key needs to remain unknown
to all parties up to this step, therefore, if we just plug-in our new garbling into
HSS, it is no longer possible to check that the keys obtained by evaluating AND
gates are correct. We describe two different ways to overcome this issue.

The first method, described in Sect. 4 and corresponding to the fully authen-
ticated LPN-based garbling, proposes to fully authenticate the entire garbled
circuit, and not just the wire mask. This is achieved using any MPC proto-
col with active security and dishonest majority. In this way the garbled values
opened during the circuit evaluation are guaranteed to be correct, leading to a
very efficient online phase. However, this comes at the price of a rather expensive
preprocessing.

In our second protocol, described in Sect. 5, we improve the practicality of
the preprocessing phase while maintaining almost the same online efficiency. In
order to do so, we increase the number of honest parties to n/c, with c ∈ R and
1 < c ≤ n. The proposed protocol works for any 1 < c ≤ n: when c ≥ 2 we are in
the dishonest majority setting and when c = n we go back to the full threshold
case.

By setting the LPN parameters in the right way, we can design a protocol
where each party locally generates “weak” (in term of security) ciphertexts.
Since an adversary will be able to see only the sum of these ciphertexts, we
show that this is enough to obtain a secure protocol. The balance then has to
be drawn to ensure that enough ‘noise’ is added by each party in creating their
own LPN-based ciphertexts in order to ensure privacy, but not too much to
still guarantee correctness. The garbling we use in this case is unauthenticated,
like in HSS, with only few actively secure MPC operations. Since, as explained
before, we cannot rely on the online check used in HSS, we need to introduce a
new additional test. In a little more detail, for each output gate g, with input
wire u and output wire w, we construct a new garbled gate as

g̃α = Enc
(
(ξ1w,α‖ . . . ‖ξn

w,α), (g‖α‖0), (ku,α,0)
)
, α ∈ {0, 1},

where each value ξi
w,α is generated by party Pi and then secret-shared among

all parties. In the online phase each Pi decrypts g̃εu
, where εu is the public value

of g’s input wire, and checks if the i-entry in the obtained vector correspond to
one of the two values ξi

w,0, ξ
i
w,1. This extra check per output gate is sufficient to

guarantee active security of our second protocol.

2 Preliminaries

We denote by sec the security parameter. We say that a function μ : N → N

is negligible if, for every positive polynomial p(·) and all sufficiently large sec, it

Large Scale, Actively Secure Computation 41

holds that μ(sec) < 1
p(sec) . We assume that all involved algorithms are proba-

bilistic polynomial time Turing machines. We let x ← X denote the uniformly
random assignment to the variable x from the set X, assuming a uniform dis-
tribution over X. We also write x ← y as shorthand for x ← {y}. If D is a
probability distribution over a set X, then we let x ← D denote sampling from
X with respect to the distribution D. If A is a (probabilistic) algorithm then
we denote by a ← A the assignment of the output of A where the probability
distribution is over the random tape of A. With Berτ we denote the Bernoulli
distribution of parameter τ , i.e. Pr[x = 1 : x ← Berτ] = τ .

Security Model. The protocols presented in this work are proved secure in the
Universal Composability framework of Canetti [12]. We consider security against
a static, malicious adversary who corrupts a subset I ⊂ P = {P1, . . . , Pn} of
parties at the beginning of the protocol.

We assume all parties are connected via authenticated channels as well as
secure point-to-point channels and a broadcast channel. The default method of
communication is through authenticated channels, unless otherwise specified.

Randomized Functions: To describe our garbling technique we follow the
same approach used in [1] and use the terminology of randomized encodings for
garbled circuits [23,24].

A randomized function f : X×R −→ Y is a two argument function such that,
for every input x ∈ X, we can think of f(x) as a random variable which samples
r ∈ R and then applies f(x; r). When an algorithm A gets oracle access to a
randomized function f we assume A only has control on the inputs x. We denote
the resulting randomized function by Af . We say that two randomized functions
are equivalent, written f ≡ g, if for every input, their output is identically
distributed.

A set of randomized functions {fs}s∈{0,1}∗ , indexed by a key s, is called a
collection of randomized functions if fs is a randomized function for every s. In
the following we drop the dependency on s.

We say that two collections {fs} and {gs} of randomized functions are com-
putationally indistinguishable, written {fs} c≡ {gs}, if the probability that an
efficient adversary can distinguish between them, given oracle access to a func-
tion in {fs} and a function in {gs}, is negligible.

Let {fs}, {gs}, {hs} be collections of randomized functions, we have the fol-
lowing standard facts [32]:

– if {fs} c≡ {gs} and A is an efficient function then {Afs} c≡ {Ags};
– if {fs} c≡ {gs} and {gs} c≡ {hs} then {fs} c≡ {hs}.

2.1 LIN-RK-KDM Security

We briefly recall the notion of (Linear) Related-Key and Key-Dependent-
Message security [1,2,4,9,11] that we need in our constructions: Given a sym-
metric encryption scheme E = (Enc,Dec) over the plaintext space M = F

∗
2 and

42 A. Ben-Efraim et al.

key space K = F
sec
2 , we define two families of key-derivation and key-dependent

message functions:

ΦRKA = {φ : K → K} and ΨKDM = {ψ : K → M},

such that Related-Key and Key-Dependent-Message (RK-KDM) security can be
defined through two oracles Reals and Fakes, indexed by a key s ∈ K, as follows:
for each query (φ, ψ) ∈ ΦRKA×ΨKDM, Reals returns a sample from the distribution
Enc(ψ(s);φ(s)) and Fakes a sample from the distribution Enc(0|ψ(s)|;φ(s)).

Definition 1 (RK-KDM secure encryption, [1]). We say that a symmet-
ric encryption scheme E = (Enc,Dec) is semantically-secure under RK-KDM
attacks with respect to ΦRKA and ΨKDM if Reals

c≡ Fakes, where s ← K.

If both φ and ψ are linear functions over F2, we refer to this notion as Linear
Key-Related and Key-Dependent-Message (LIN-RK-KDM) security. In this case
we can rewrite the oracles in a compact way:

Reals : (δ,m, b) �−→ Enc(m ⊕ b · s, δ ⊕ s)

Fakes : (δ,m, b) �−→ Enc(0|m|, δ ⊕ s),

where m ∈ M is a message, s ∈ K a key, b ∈ F2 a bit and δ ∈ F
sec
2 a key-shift.

Notice in computing m⊕b ·s we multiply s by b bitwise, and then pad the result
with |m| − k zeros to left before xor-ing with m.

2.2 Error Correcting Codes

An [�,m, d] binary linear code L is a subspace of dimension m of F
�
2, where �

is the length of the code, m its dimension and d its distance, i.e. the minimum
(Hamming) distance between any distinct codewords in L. We denote by G a
generator matrix of L, that is any matrix in F

m×�
2 whose rows form a basis for

L. If G has the form [Im|P], where Im is the m×m identity matrix, G is said to
be in standard form. A parity-check matrix for L is a matrix in F

(�−m)×�
2 such

that GHT = 0. A linear code can be uniquely specified either by its generator
matrix or its parity-check matrix.

Given an [�,m, d] binary linear code L, we can define a pair of algorithms
(Encode,Decode), where Encode : Fm

2 → F
�
2 (resp. Decode : F�

2 → F
m
2) is an encod-

ing (resp. decoding) algorithm, such that:

1. Linearity: For every pair of messages x1,x2 ∈ F
m
2 we have Encode(x1) ⊕

Encode(x2) = Encode(x1 ⊕ x2).
2. �(d − 1)/2-Correction: The decoding algorithm can correct any error of

Hamming weight up to �(d − 1)/2, i.e., for every message x ∈ F
m
2 and every

error vector e ∈ F
�
2 with at most �(d − 1)/2 non-zero elements, it always

holds that Decode(Encode(x) ⊕ e) = Decode(Encode(x)) = x.

We will also need the following more general property.

Large Scale, Actively Secure Computation 43

Definition 2 ((�, τ)-Correction:). Let Berτ be the Bernoulli distribution with
parameter τ . Given an [�,m, d] binary linear code L and a pair of efficient encod-
ing and decoding algorithms, (Encode,Decode), we say that L is (�, τ)-correcting
if, for any message x ∈ F

m
2 , the decoding algorithm Decode will, with overwhelm-

ing probability, satisfy Decode(Encode(x) ⊕ e) = Decode(Encode(x)) = x, where
e ← Ber�τ is a noise vector, and Ber�τ is the distribution over F

�
2 obtained by

drawing each entry of the vector e independently according to Berτ .

2.3 LPN-Based Encryption

The Learning Parity with Noise (LPN) problem [10,18] is a well-studied problem
in learning and coding theory, and has recently found many applications in
cryptography. In this section we introduce the decisional version of the LPN
problem together with some variants of the standard LPN-based encryption
scheme that we need in our garbling construction.

Definition 3 (Decisional LPN). Let �, k ∈ N and τ ∈ (0, 1/2), the DLPN�,k,τ

problem is to distinguish between the distributions given by{
(C, c) : C ← F

�×k
2 , s ← F

k
2 , e ← Ber�τ , c ← C · s ⊕ e

}
and {

(C, c) : C ← F
�×k
2 , c ← F

�
2

}
.

The decisional and search variants of the LPN problem are polynomially
equivalent, they have been extensively studied and are widely believed to be hard
for any τ . The DLPN assumption has been used to build various cryptographic
primitives and, in particular, symmetric encryption schemes.

Definition 4 (Standard LPN Encryption). Let m, k, � = poly(sec) be three
integers. Let K = F

k
2 be the key space, C = F

�×k
2 × F

�
2 the ciphertext space

and M = F
m
2 the message space. Let τ ∈ (0, 1/2) be a parameter defining the

Bernoulli distribution Ber�τ . Finally, let G ∈ F
�×m
2 be a generator matrix for

an [�,m, d] binary linear code L which is (�, τ)-correcting. The (standard) LPN
symmetric encryption scheme consists of the three following algorithms:

– KeyGen1τ (1sec): Given as input the security parameter sec, sample uniformly
at random a secret key, s ← K.

– Enc1τ (m, s): Given a message m ∈ M and the secret key s ∈ K, sample a
matrix C ← F

�×k
2 , noise e ← Ber�τ and output

c ← C · s ⊕ e ⊕ G · m.

– Dec1τ ((C, c), s): Given a ciphertext (C, c) and the secret key s, compute c ⊕ C ·
s and apply a decoding algorithm to recover m.

In [1], Appelbaum proved that (an extension of) the above encryption scheme
is LIN-RK-KDM secure.

44 A. Ben-Efraim et al.

Theorem 1. Assuming DLPN�,k,τ is hard, the encryption scheme (KeyGen1τ ,
Enc1τ , Dec

1
τ) is LIN-RK-KDM secure according to the above definition of LIN-

RK-KDM security.

Assuming the DLPN-problem is hard, it is easy to show that also the follow-
ing nonce-based symmetric encryption scheme is IND-CPA, where it is required
that a specific nonce is used only once for each key s.

An eXtendable Output Function (XOF). A XOF is a way to model a random
oracle that can produce outputs of any length. Implementations of such functions
can be created from SHA-3 in a standardized manner [8,34].

Definition 5 (XOF-Based LPN Encryption). Let m, k, � = poly(sec) be
three integers and K, C,M as in Definition 4. Let τ ∈ (0, 1/2) and G ∈ F

�×m
2

be chosen in the same way as there too. Let a XOF H : {0, 1}∗ −→ F
�×k
2

be modelled as a random oracle. The XOF-Based LPN symmetric encryption
scheme consists of the three following algorithms:

– KeyGenXOF
τ (1sec): Sample uniformly at random a secret key, s ← K.

– EncXOF
τ ((m, nonce), s): Given a message m ∈ M, a key s ∈ K and a string

nonce, sample noise e ← Ber�τ and compute

C ← H(nonce) and c ← C · s ⊕ e ⊕ G · m.

– DecXOF
τ ((C, c), s): Given a ciphertext (C, c), compute c ⊕ C ·s and then apply

error correction to recover m

The above LPN encryption scheme is trivially additively homomorphic in the
message space, and is also key homomorphic if two encryptions with the same
nonce value are added together. To reduce bandwidth and storage requirements,
it is possible to define the ciphertext to be (nonce, c) instead of (C, c).

Looking ahead, we will choose the parameters for our LPN-based encryption
scheme based on recent analysis on the security of the LPN assumption by Esser
et al. [16], which implies that the parameter k in the scheme should be selected
to be

k ≥ sec

log2
(

1
1−τ

) , (3)

where sec is the (symmetric-key equivalent) security parameter and τ defines the
noise rate. In what follows one should think of sec as being equal to 128 or 256.

2.4 Functionalities for Secret-Shared MPC

Our protocols make use of the functionality FMPC for MPC over binary circuits
described in Fig. 1. The functionality is independent of how the values are stored
and represented. In particular, we will need two different implementations of
FMPC, one achieving only passive security and the second achieving active secu-
rity. Note that any generic MPC protocol can be used to practically instantiate

Large Scale, Actively Secure Computation 45

Functionality Fflag
MPC

The functionality runs with parties P1, . . . , Pn and an adversary A.
It is parametrized by flag ∈ {Auth,UnAuth}. Given a set ID of valid identifiers, all
values are stored in the form (varid , x), where varid ∈ ID .

Initialize: On input (Init) from all parties. The adversary is assumed to have
corrupted a subset I of the parties.

Input: On input (Input, Pi, varid , x) from Pi, with x ∈ F2, and (Input, Pi, varid , ?)
from all other parties, with varid a fresh identifier.

Add: On command (Add, varid1, varid2, varid3) from all parties:
1. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x⊕y).

Multiply: On input (Multiply, varid1, varid2, varid3) from all parties:
1. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x ·y).

Output/Open: On input (Output/Open, varid , i) from all honest parties the func-
tionality retrieves (varid , y), sends y to the adversary, and waits for a reply. If
A answers with Deliver, then do one of the following:
– If flag = Auth: output y to either all parties (if i = 0) or Pi (if i = 0).
– If flag = UnAuth: A further specifies an additive error e ∈ F2. The func-

tionality outputs y + e to either all parties (if i = 0) or Pi (if i = 0).
In both cases, if A does not answer with Deliver, output abort.

Fig. 1. The ideal functionality for MPC over F2

FMPC in our constructions. However, since TinyOT-like protocols, that rely on
message authentication codes (MACs) to achieve active security, are currently
the most efficient protocols on binary circuits and are used in previous works
like HSS and WRK, we abuse notation and use FAuth

MPC and FUnAuth
MPC to distinguish

between an active and a passive implementation of FMPC. Also notice that each
value in FMPC is uniquely identified by an identifier varid ∈ ID , where ID is a
set of identifiers.

After an Initialize step, the functionality allows the parties to provide their
inputs, which can be added and multiplied using Add and Multiply, respec-
tively. The functionality also provides an Output/Open command that allows
values to be revealed either publicly or privately to a single party. Note we
maintain the double notation Output/Open only to distinguish between out-
put values and intermediate values that are opened during the execution of the
protocol.

Unauthenticated Values: We denote 〈x〉 an additive sharing of x over F2 gener-
ated by FUnAuth

MPC , where x = ⊕i∈[n]x
i with party Pi holding the share xi ∈ F2.

Looking ahead, using such a sharing we can perform arbitrary linear opera-
tions, however, upon opening values, an adversary is able to introduce an arbi-
trary additive error and reveal incorrect values. For this reason when we use
unauthenticated values to instantiate our LPN-based protocol, we need to add
an new mechanism to prevent these additive errors introducing a security weak-
ness in the protocol.

46 A. Ben-Efraim et al.

Authenticated Values: We denote [x] an actively secure additive sharing of x,
for example using a fixed MAC scheme. Addition and multiplication of such
elements will be represented by [x] + [y] and [x] · [y].

To simplify notation we will use the following shorthands for inputing and
outputting values to/from a party/all parties:

[x] ← Input(Pi), x ← Output([x], Pi), x ← Open([x]),

〈x〉 ← Input(Pi), x ← Output(〈x〉, Pi), x ← Open(〈x〉),
respectively in FAuth

MPC and FUnAuth
MPC . If the type (authenticated/unauthenticated) of

operation is not obvious from the context we will write InputP ,OutputP ,OpenP

for the unauthenticated variant, with no superscript added for the authenticated
variant.

Trivially, from a [x] sharing we can obtain (immediately and with no com-
putation or communication) a 〈x〉 sharing of the same value. We denote this
operation by 〈x〉 ← Convert([x]). Extension of this notation to act on elements
x ∈ F

k
2 , for various values of k, will be by using [x] and 〈x〉 in the obvious way.

We can extend the FMPC functionality by a command, which we denote by
[x] ← GenBit() which produces a shared random bit within the MPC engine.
This command can be derived from the base commands by performing:

1. All parties call [xi] ← Input(Pi), xi ∈ F2.
2. Parties compute [x] ← ⊕i[xi].

3 Free-XOR Garbling Using LPN

We now discuss how to garble a single AND gate using LPN-based encryption
while maintaining the free-XOR invariant. Later on, in Sects. 4 and 5, we will
show how this technique can be used in order to build our actively secure garbled-
circuit based MPC protocols.

Our garbling method is similar to the one given in Eq. (1), with two main
differences. Firstly and most importantly, we have a single ciphertext per row,
rather than n of them; secondly, we replace the circular 2-correlation robust
PRF F with a nonce-based, two-key symmetric encryption scheme based on
LPN. Thus we obtain the garbling method given in Eq. (2).

To achieve this modification one could naively think of just adapting standard
LPN encryption (c.f. Definition 4) to use two keys, where Δ =

⊕n
i=1 Δi, and,

for t ∈ {u, v, w}, kt,0 =
⊕n

i=1 k
i
t,0 and kt,1 = kt,0 ⊕ Δ. Each garbled row

(εu, εv) ∈ {0, 1}2 could then be set as:

g̃εu,εv
= (C, c), C ← F

�×k
2 , c ← C · (ku,εu

⊕ kv,εv
) ⊕ e ⊕ G · kw,εw

(4)

This naive solution does not result in a secure garbling method. To see this
denote sεu,εv

= ku,εu
⊕kv,εv

, then due to free-XOR we would have that sεu,εv
=

ku,0 ⊕ kv,0 ⊕ (εu ⊕ εv) · Δ, and hence s0,0 = s1,1 as well as s1,0 = s0,1. This
would trivially allow corrupted parties to always decrypt half of the entries of

Large Scale, Actively Secure Computation 47

every garbled gate, breaking completely the security of the scheme. A possible
fix to this problem would be to sample two different matrices Cu, Cv ← F

�×k
2

and compute c ← Cu ·ku,εu
⊕ Cv ·kv,εv

⊕ e⊕G ·kw,εw
, but this would incur in

increased computational costs due to the sampling of the matrices and the cost
of calculating the matrix-vector products.

In order to avoid these issues in our garbling, while still maintaining security,
we introduce a modification to the previously provided nonce-based version of
LPN encryption. In particular, our scheme will take as input two keys in F

k
2 ,

but this time a permutation σ ∈ Sk (where Sk is the set of permutations on k
elements) will be applied to the second one.

Definition 6 (XOF-Based Two-Key LPN Encryption). Let m, k, � =
poly(sec) be three integers. Let K = F

k
2 × F

k
2 be the key space, C = F

�×k
2 × F

�
2

the ciphertext space and M = F
m
2 the message space. Let τ ∈ (0, 1/2) be a

parameter defining a Bernoulli distribution and σ a permutation in Sk. Finally,
let G ∈ F

�×m
2 be a generator matrix for an [�,m, d] binary linear code L which

is (�, τ)-correcting (c.f. Definition 2). Let H : {0, 1}∗ −→ F
�×k
2 be a XOF. A

XOF-based, two-key symmetric LPN encryption scheme EXOF
τ is defined by the

following algorithms:

– KeyGen(1sec): Samples (ku,kv) ← F
2×k
2 at random.

– Encτ ((m, nonce), (ku,kv)): On input of a message m ∈ M, a pair of keys
(ku,kv) and a string nonce, compute

C ← H(nonce),

c ← C · (ku ⊕ σ(kv)) ⊕ e ⊕ G · m, e ← Ber�τ .

– Dec((C, c), (ku,kv)): Compute c ⊕ C · (ku ⊕ σ(kv)) and then apply error
correction to recover m.

Note that this scheme is message homomorphic, and it only requires to store
nonce rather than C. In addition, when the same nonce is used, it is also key
homomorphic.

Returning to our garbling proposal from the beginning of this section, now
the key used to garble entry (εu, εv) of a given gate g is sεu,εv

= ku,εu
⊕σ(kv,εv

).
By substituting the free-XOR correlation, we see that security now relies on the
secrecy of

sεu,εv
= ku,0 ⊕ σ(kv,0) ⊕ εu · Δ ⊕ εv · σ(Δ), (5)

and hence on four possible (distinct) values of sεu,εv
. Nevertheless, the security

analysis requires additional care. As it is always the case when using the free-
XOR optimization, we have the problem that we are encrypting key-dependent
messages (where the dependence is the free-XOR correlation Δ), as well as we
are using related keys when encrypting the inactive rows of a garbled gate.
Explicitly, given the active row sεu,εv

, for (α, β) ∈ {0, 1}2 these inactive rows
are:

sεu⊕α,εv⊕β = sεu,εv
⊕ α · Δ ⊕ β · σ(Δ).

48 A. Ben-Efraim et al.

Hence, once the parties learn any sεu,εv
by evaluating the garbled circuit, security

for each of the three remaining rows is relying, respectively, on the secret values
Δ,σ(Δ) and Δ ⊕ σ(Δ). To define an appropriate way of dealing with this RK-
KDM problem, we will first define the following variant of LPN.

Definition 7 (DLPNσ Problem). Let σ ∈ Sk be the set of permutations of
k elements and �, k, τ ∈ N. The DLPNσ

�,k,τ problem is to distinguish between the
two distributions given by{

(C, c, σ) : C ← F
�×k
2 , s ← F

k
2 , e ← Ber�τ , c ← C · (s ⊕ σ(s)) ⊕ e

}
and {

(C, c, σ) : C ← F
�×k
2 , c ← F

�
2

}
,

where Ber�τ is the Bernoulli distribution with parameter τ .

Recalling that any permutationon of a finite set can be uniquely expressed as
the product of disjoint cycles, we now show how the DLPN and DLPNσ problems
are related to each other by the following Lemma, the proof of which is given in
the full version.

Lemma 1. Let σ ∈ Sk be a permutation consisting of exactly k̃ disjoint cycles,
the DLPN�,k−k̃,τ problem reduces to DLPNσ

�,k,τ problem.

In our construction, the permutation σ will be chosen to map (δ0, . . . , δk−1) ∈
F

k
2 to (δ′

0, . . . , δ
′
k−1), where δ′

j = δj−1 (mod k). Note that this σ consists of a single
cycle of length k and, hence, the security of DLPNσ is the same as that of DLPN
with keys which are one bit shorter.

We are now just one step away from defining the right RK-KDM notion
for our scheme. A detail that was overlooked in Eq. (4) is that the key space
K = F

k
2 and the message space M = F

m
2 are different, so we cannot write

G · kw,εw
. Furthermore, as in our protocols nobody will know neither kw,0 nor

kw,1 (a problem which does not come up in previous works, because each Pi

has its own pair of keys ki
w,0,k

i
w,1), we need the garbled gate to also encrypt

explicitly the external value εw.
We thus define an injection of the space K × F2 into the message space M,

which requires that m ≥ k + 1, via the following linear map:

Ψ :
{K × F2 −→ M

(k, b) �−→ A · (k, b)T

for some matrix A ∈ F
m×(k+1)
2 . In order to make the image of Ψ easily recogniz-

able, so that we can efficiently recover its preimage when decrypting a garbled
row, we pick the matrix A in the map Ψ such that we obtain:

Ψ : (k, b) �−→ (0m−k−1‖k‖b) =

⎛
⎝0(m−k−1)×(k+1)

Ik‖0k×1

01×k‖1

⎞
⎠ ·

(
kT

b

)
.

Large Scale, Actively Secure Computation 49

This choice of matrix A also simplifies somewhat the proof of Theorem 2 below.
We can now finally define the relevant notion of RK-KDM security for our

scheme defined in Definition 6 (LIN-RK-KDMσ security), and show how we will
use it to garble gates in our protocols. For security reasons, which will become
apparent in the proofs, we need to make the assumption that the free-XOR
correlation Δ ∈ F

k
2 is of the form (1,Δ′, 0).

Let Δ = (1,Δ′, 0) with Δ′ ← F
k−2
2 be a secret value. Let H the XOF

associated with the scheme (KeyGenXOF, EncXOF
τ , DecXOF) of Definition 5. In the

following we think of the encryption scheme as being defined with respect to
three possible keys Δ, σ(Δ), and Δ ⊕ σ(Δ) chosen by (α, β). The variable k is
defining a linearly homomorphic relation with respect to one of the keys and b
is defining the linearly homomorphic key-dependent offset Ψ(b · Δ, b). With this
understanding we define the following oracles:

RealσΔ : (k, α, β,m, b, nonce) �−→
EncXOF

τ ((m ⊕ Ψ(b · Δ, b), nonce), k ⊕ α · Δ ⊕ β · σ(Δ))
Fakeσ

Δ : (k, α, β,m, b, nonce) �−→ (H(nonce), c), c ← C,

where C is the ciphertext space, and forbid the following kind of queries: Let
{(ki, αi, βi,mi, bi, nonce)}q

i=1 be a sequence of queries under the same nonce.
Such a sequence is not allowed if and only if there exist coefficients c1, . . . , cq ∈
F2, not all zero, such that

∑q
i=1 ci · (αi, βi) = (0, 0). We can now define our

notion of LIN-RK-KDMσ security:

Definition 8 (LIN-RK-KDMσ secure encryption). The encryption
scheme (KeyGenXOF, EncXOF

τ , DecXOF) is said to be LIN-RK-KDMσ secure if
the two oracles RealσΔ and Fakeσ

Δ are computationally indistinguishable, when we
forbid the above queries.

The reason for the forbidden queries is in order to stop the distinguisher D
from mounting a trivial attack. Take for example the simplest forbidden query,
where D simply asks once for (k, 0, 0,m, b, nonce). As none of the three possible
secret keys depending on Δ has been applied, then D can just decrypt using k
and see whether the oracle was implementing Real or Fake. For longer sequences,
the idea is essentially the same, as the key-homomorphism of LPN would other-
wise allow D to mount the same kind of attack simply by computing the linear
combination defined by the ci values.

Theorem 2. Let Δ = (1,Δ′, 0) with Δ′ ← F
k−2
2 be a secret value, then, assum-

ing that DLPN is hard, the XOF-Based Two-Key LPN Encryption scheme (c.f.
Definition 6) is LIN-RK-KDMσ secure, i.e. RealσΔ

c≡ Fakeσ
Δ.

Proof. For the proof of this result, see the full version. ��

50 A. Ben-Efraim et al.

The security game GarbleANDSec

This is a game between a challenger and an adversary. The challenger has access
to the oracles Fakeσ

Δ or RealσΔ, which we denote by O,

1. The challenger picks three bits u v w ∈ {0, 1}, three keys
k u ,k v ,k w ∈ F

k
2 , a nonce g and bu, bv ∈ {0, 1}.

2. The challenger sets bw ← bu · bv and λt ← bt ⊕ t, t ∈ {u, v, w}.
3. The challenger sets k ← k u ⊕ σ(k v).
4. The challenger computes the ciphertext

ct u v ← Encτ ((Ψ(k w w), (g u v)), (k u ,k v))

5. For α, β ∈ {0, 1}, (α, β) = (u v) set

α,β = (λu ⊕ α) · (λv ⊕ β) ⊕ bw.

6. The challenger computes, for (α, β) = (u v) the three remaining ciphertexts:

ctα,β ← O(k u ⊕ v ⊕ β, Ψ(k w w) α,β , (g α β))

7. The ciphertexts (ct0,0, ct1,0, ct0,1, ct1,1) along with the keys values, (k u u)
and (k v v), are returned to the adversary.

8. The adversary goal is to determine which oracle the challenger is using.

Fig. 2. The security game GarbleANDSec

We end this section by showing, intuitively, why the garbling method using
our (XOF-Based) Two-Key LPN Encryption is secure. Consider the garbling
game in Fig. 2, which models an adversary that is trying to learn something
about a garbled AND gate, given only the pair of keys and external values for
the active path. From our previous discussion, if the LIN-RK-KDMσ problem is
hard then the adversary is clearly unable to win this game. We remark that this
game just provides the intuition around the security of our garbling protocols,
which will not explicitly use it in their respective proofs.

4 MPC from Fully Authenticated LPN-Garbling

We use the garbling technique introduced in the previous section to describe our
first protocol. As we said before, we evaluate the entire garbled circuit using a
generic, actively secure MPC protocol.

In particular, given a secret shared key [k], message [m], and noise vector
[e] (obtained by calling GenBit() and Mult in FAuth

MPC), the parties can compute
a secret shared ciphertext (C, [c]), where C is in the clear, using a double-key
encryption scheme EXOF

τ as described in Definition 6. Since both the generation
and opening of the garbled circuit are done using an active secure MPC system,
the reconstructed garbled circuit is guaranteed to be correct and thus there is
no need for any consistency checks during the evaluation phase. The downside of

Large Scale, Actively Secure Computation 51

Protocol ΠGarble

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption

scheme, where τ is a parameter of the scheme. Let K = F
k
2 .

Garbling:
1. Each Pi samples Δi ← F

k−2
2 and calls FAuth

MPC to compute [Δi] ← Input(Pi).
2. Set [Δ] ← (1,0) ⊕ i∈[n](0, [Δ

i], 0).
3. For every input wire w ∈ Win and output wire of an AND gate, parties do:

– Call FAuth
MPC obtaining a shared random bit [λw] ← GenBit().

– Each Pi samples ki
w,0 ← K and call FAuth

MPC on [ki
w,0] ← Input(Pi).

– Set [kw,0] ← i∈[n][k
i
w,0] and [kw,1] ← [kw,0] ⊕ [Δ].

4. For every wire w in the circuit which is the output of a XOR gate:
– Parties compute the mask on the output wire [λw] ← [λu] ⊕ [λv].
– Parties compute [kw,0] ← [kv,0] ⊕ [kv,0] and set [kw,1] ← [kw,0] ⊕ [Δ]

5. For every wire w in the circuit which is the output of an AND gate and for
α, β ∈ {0, 1}, parties call FAuth

MPC to compute
(a) [w,α,β] ← ([λu] ⊕ α) · ([λv] ⊕ β) ⊕ [λw].
(b) [kw,α,β] ← [kw,0] ⊕ ([Δ] · [w,α,β]).
(c) The encryption (Cw,α,β , [cw,α,β]), given by

Encτ (Ψ([kw,α,β], [w,α,β]), (g α β)), ([ku,α], [kv,β]) ,

where g is a unique gate identifier.
(d) Parties call FAuth

MPC to open the values λw ← Output([λw], Pi) corre-
sponding to party Pi’s output values.

Open Garbling:
1. Parties call FAuth

MPC to open cw,α,β ← Open([cw,α,β]), α, β ∈ {0, 1}.
2. Set the garbled gates to be g̃w,α,β = (Cw,α,β , cw,α,β) for α, β ∈ {0, 1}.

Fig. 3. The protocol for authenticated garbling ΠGarble

this simple approach is that the amount of multiplications required to produce
noise vectors [e] with the right distribution could be prohibitively high in some
scenarios.

4.1 Garbling

Our garble protocol ΠGarble, is described in Fig. 3. First, the parties produce, in
an actively-secure way, shares of the global key [Δ], the wire labels [ki

0,w], [ki
1,w]

and the wire masks [λw] for the garbled circuit using FAuth
MPC. Then, for each AND

gate g with input wires u, v and output wire w, and for each α, β ∈ {0, 1}, the
parties compute authenticated additive sharing of the values

[εw,α,β] ← ([λu] ⊕ α) · ([λv] ⊕ β) ⊕ [λw].

52 A. Ben-Efraim et al.

Thus the garbled gate for each AND gate is obtained by calling FAuth
MPC to evaluate

the following encryptions

(Cw,α,β , [cw,α,β]) = EncXOF
τ

(
(Ψ([kw,α,β], [εw,α,β]), (g‖α‖β)), ([ku,α], [kv,β])

)
where α, β ∈ {0, 1}, g is a unique gate identifier and kw,α,β = kw,0 ⊕ εw,α,β · Δ.
Finally, parties open the masks for all the output wires of the circuit, so that
they will be able to recover the output at the end of the evaluation phase.

When the garbled circuit is opened, using FAuth
MPC, the parties reconstruct the

four values (Cw,α,β , cw,α,β), α, β ∈ {0, 1}, and set these to be the garbled gates
g̃α,β . Note that the first component Cw,α,β of the ciphertexts in the garbled
gates does not need to be stored, as it can be generated on the fly by applying
the XOF to the relevant nonce = (g‖α‖β).

In order to see how the garbling is correct, note that the output of the AND
gate is exactly the value (λu ⊕ α) · (λv ⊕ β). Hence, assuming λw = 0, we have
two cases: if (λu ⊕α) · (λv ⊕β) = 0, then εw,α,β = 0 and kw,α,β = kw,0; otherwise
εw,α,β = 1 and kw,α,β = kw,0 ⊕ Δ. The result is reversed if λw = 1. In more
formality, we state the following theorem. It has a relatively standard proof,
which follows the pattern of previous works on n-party garbling, and can be
found in the full version.

Theorem 3. Let EXOF
τ be a XOF-based two-key LPN encryption scheme with

parameter τ . The protocol ΠGarble, given in Fig. 3, UC-securely computes the
functionality FPreprocessing (see the full version) in the presence of a static, active
adversary corrupting up to n − 1 parties in the FAuth

MPC-hybrid model.

4.2 Evaluation

The protocol ΠEvaluate, given in the full version, describes how parties evaluate
the garbled circuit. This protocol is very similar to that of HSS, where everyone
evaluates the garbled circuit obtained in the preprocessing phase by broadcasting
their inputs XORed with the corresponding wire mask. The main difference with
HSS is that, as there is a single output key kw,εw

for every wire, rather than one
such key per party, parties need to explicitly obtain the masked wire value εw

when decrypting g̃εu,εv
. Once the whole circuit has been evaluated, making use

of the output wire masks they obtained at the preprocessing stage, parties can
unmask their corresponding outputs and learn their intended result.

It is important to note that, unlike in HSS and due to the active security of the
base MPC system, all among the garbled circuit, input keys kw,εw

and masked
inputs εw are guaranteed to be correct. Since the rest of this phase is purely local
computation, this essentially ensures the output is correct. The security of the
protocol, provided by the following theorem, follows from adapting the proof of
our more complex unauthenticated garbling protocol in Sect. 5. In other words,
the proof of Theorem 4 is just a specialised version of the proof of Theorem 6.

Theorem 4. Let f be an n-party functionality and EXOF
τ a XOF-based two-key

LPN encryption scheme with parameter τ . The protocol ΠEvaluate UC-securely

Large Scale, Actively Secure Computation 53

computes f in the presence of a static, active adversary corrupting up to n − 1
parties in the {FMPC,FPreprocessing}-hybrid model.

5 MPC from Unauthenticated LPN-Garbling

Whilst the protocol described in the previous section is intuitive and achieves our
goals for the evaluation phase, the usage of an authenticated garbling function-
ality incurs a larger number of oblivious operations in the preprocessing phase.
In this section, we turn to use an unauthenticated preprocessing functionality,
in the style of HSS, in order to improve the efficiency of this phase. Our unau-
thenticated garbling protocol makes clever use of the homomorphic properties
of the LPN encryption scheme. This turns out to be especially efficient when a
large proportion of parties are assumed to be honest. Our protocols and func-
tionalities in this section are parametrised by a value c ∈ R that represents the
proportion 1/c of parties that are assumed honest. In other words, our protocols
will have n/c honest parties, with 1 < c ≤ n. Note that when 2 ≤ c, we obtain
a protocol which is secure against a dishonest majority, and by setting c = n we
would go back to the case of a full-threshold adversary. As expected, the value of
c greatly affects the performances of our construction. We remark that allowing
the possibility of having more than a single honest party is a highly reasonable
assumption in a large scale setting.

5.1 Garbling

In this section we describe how to implement the Fn/c
Preprocessing functionality

given in the full version. As this is a weaker functionality which allows the
adversary to introduce additive errors in the garbled circuit, our implementing
protocol will not need to produce the LPN ciphertexts and keys using a fully
active implementation of FMPC as we did in Sect. 4.

The main idea of our unauthenticated garbling protocol is to use the homo-
morphic property of the LPN encryption scheme, i.e., abusing notation,

Σn
i=1Enc

XOF
τ ((mi, nonce), si) = EncXOF

τ ′ ((Σn
i=1m

i, nonce), Σn
i=1s

i). (6)

However, note that the Bernoulli distribution resulting from the sum has param-
eter τ ′ > τ . Additionally, even given only the sum of the encryptions, the adver-
sary can use the above homomorphic property to “remove” his own encryptions
and remain with only the sum of the honest parties’ encryptions. Thus, the sum
of the honest parties’ encryptions must still be secure.

We thus proceed as follows: we let each party locally generate a ‘weak’ LPN
encryption for the garbled gates. The garbled gates are computed by summing
these ’weak’ encryptions. The ‘weak’ ciphertexts are never seen by the adversary,
as the parties compute their sum using additive secret-sharing. Intuitively, if the
adversary cannot learn any information on the keys and messages from the sum,
then this gives the adversary the possibility of (only) an additive attack. Hence,

54 A. Ben-Efraim et al.

Protocol Π
n/c
Garble

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption

scheme, where τ is a parameter of the scheme. Let K = F
k
2 . Let [x] and x de-

note respectively an authenticated and unauthenticated additive sharing of x.

Garbling:
1. Each Pi generates a random value Δi ∈ F

k−2
2 and call Δi InputP (Pi)

of FMPC.
2. Set Δ (1,0) ⊕i (0, Δi , 0).a

3. For every wire w in the circuit which is either an input wire or the output
of an AND gate, parties do as follows:
– Create a secret random bit [λw] ← GenBit().
– Each Pi generates a random ki

w,0 ∈ K and calls ki
w,0 InputP (Pi).

– Set kw,0 i ki
w,0 and kw,1 kw,0 Δ .

4. For every wire w in the circuit which is the output of a XOR gate (with
input wires u and v) parties locally set:
– [λw] ← [λu] ⊕ [λv].
– kw,0 ku,0 kv,0 and kw,1 kw,0 Δ .

5. For every wire w in the circuit which is the output of an AND gate g (with
input wires u and v), for α, β ∈ {0, 1},
(a) Parties call FMPC to compute [w,α,β] ← ([λu] ⊕ α) · ([λv] ⊕ β) ⊕ [λw],
(b) Parties call the command w,α,β · Δ Bit × String Δ ([w,α,β]). a

(c) Parties locally compute kw,α,β kw,0 w,α,β · Δ .
(d) Each party Pi computes the encryptions (Cw,α,β , ci,w,α,β) given by

Encτe (Ψ(ki
w,α,β

i
w,α,β), (g α β)), (ki

u,α,ki
v,β)

where g is a unique gate identifier.
(e) For every output gate g associated to a set of parties P̂ ⊆ P, with

input wire u and output wire w, perform the following steps
– Set [λw] ← [λu].
– For α ∈ {0, 1}, each Pi ∈ P̂ generates two random values ξi

w,α ∈
{0, 1}s and shares them as ξi

w,α InputP (Pi).
– For α ∈ {0, 1} use the trick from step 5d above to construct the

garbled row g̃α = (Cw,α, cw,α) corresponding to the encryption

Encτd ((ξi1
w,α . . . ξ

i|P̂|
w,α), (g α 0)), (ku,α,0)

6. Reveal to each Pi their input and output wire masks: λw ←
Output([λw], Pi), w ∈ Wini ∪ Wouti .

Open Garbling:
1. Each Pi calls ci,w,α,β InputP (Pi). All parties then computes cw,α,β =

⊕i∈[n] c
i,w,α,β and reveal the result (using calls to OpenP) so that each

party obtains the ciphertext (Cw,α,β , cw,α,β)
2. The garbled gate is g̃w,α,β = (Cw,α,β , cw,α,β) for α, β ∈ {0, 1}.
3. Similarly, in output gates, for α ∈ {0, 1} use the trick from step 1 in Open

Garbling to reconstruct g̃w,α = (Cw,α, cw,α)

a See Remark 1

Fig. 4. The protocol for unauthenticated garbling, with n/c honest parties

Large Scale, Actively Secure Computation 55

this scheme works as long as the sum of n ‘weak’ encryptions is decryptable and
the sum of n/c ‘weak’ encryptions is secure.

We now look at how to achieve these requirements. We introduce τs to denote
the parameter of the Bernoulli distribution that we want the sum of any n/c
ciphertexts to achieve. For the local, weak encryptions, honest parties will use a
parameter τe. Lastly, the sum of all n ciphertexts will have a Bernouilli distribu-
tion with a parameter that we will denote τd. Below we analyse the relationship
between the three τ parameters and give an example of how to select them in
practice. Our analysis makes use of the following lemma [31].

Lemma 2 (Piling Up Lemma). Let X be binary random variable which is
equal to one with probability p = 1/2− ε, where ε is the bias approximation, then
we have

Pr[x1 + · · · + xn = 1 : xi ← X] =
1
2

− 2n−1 · εn.

Recall we have n parties of which n/c are honest, and in our garbling protocol
each honest party will generate an LPN ciphertext with τ equal to τe, with the
adversary producing a ciphertext in any way it chooses. These ciphertexts are
then secret shared, and the sum of all the n ciphertexts is then released.

As explained, the adversary can determine the sum of the n/c ciphertexts
produced by the honest parties. These sum to a ciphertext whose underlying τ
value, τs, can be evaluated by the Piling Up Lemma. Thus, we have

τs =
1
2

− 2n/c−1 ·
(

1
2

− τe

)n/c

=
1
2

·
(
1 − (1 − 2 · τe)n/c

)
.

We also require that, if the adversarial parties follow the protocol, the resulting
ciphertext sum can be decrypted correctly. In other words we need to set τd such
that

τd =
1
2

− 2n−1 ·
(

1
2

− τe

)n

=
1
2

· (1 − (1 − 2 · τe)n) ,

or
τe =

1
2

·
(
1 − (1 − 2 · τd)

1/n
)

.

Note that this gives us

τs =
1
2

·
(

1 −
(

1 − 2 ·
(

1
2

·
(
1 − (1 − 2 · τd)

1/n
)))n/c

)

=
1
2

·
(

1 −
(
(1 − 2 · τd)

1/n
)n/c

)
=

1
2

·
(
1 − (1 − 2 · τd)

1/c
)

.

Therefore, we have proved the following fact.

Lemma 3. Let τs, τe, τd be LPN parameters, as described above. For fixed τd the
value of τs does not depend on the number of parties, but only on the proportion
c which is honest.

56 A. Ben-Efraim et al.

Starting with a τd, a desired security parameter sec and a proportion c, we
can derive the LPN parameters k, τs and τe. First, using τd and c, it is possible
to derive τs. Then, given sec and τs, we can compute k using Eq. (3). Finally,
τe, that parties use for encryption, is derived from τs and the number of parties
n. For example, if we take τd = 1/8 and a proportion of 20% honest parties, i.e.
c = 5, then we find that τs = 0.02796. For sec = 128 this implies we need to
select k = 3129. For n = 100 parties we then have that the honest parties need
to encrypt with parameter τe = 0.001436. For more example for sec = {128, 256}
see the full version.

Using the above observations we define, in Fig. 4, the garbling protocol when
n/c parties are honest. Our protocol makes use of an operation, which allows us
to compute an unauthenticated sharing of 〈x ·Δ〉 given an authenticated sharing
of a bit [x], where Δ ∈ {0, 1}k is a global shared value. We denote this operation
by

〈x · Δ〉 ← Bit × String〈Δ〉([x]).

We could näıvely implement this operation using Tiny-OT, but this would be
highly inefficient since Δ ∈ F

k
2 and k is very large as it is the dimension of the

secret key space K of the underlying LPN encryption scheme. For this reason, in
the full version, we show a more efficient bit-string multiplication protocol, that
is still based on Tiny-OT. The new protocol requires that n/c ≥ s, where s is
the statistical security parameter. Since c is a constant, this requirement holds
for sufficiently large n.3

Remark 1. Note that the way that the Bit × String operation is described in
the full version, the shares of Δ are chosen inside the Bit × String protocol.
However, this would make the unauthenticated garbling protocol description in
Fig. 4 cumbersome. To simplify the presentation, we let the parties choose their
shares of Δ at the beginning of the unauthenticated garbling protocol; this is
possible since the Δ shares are used only locally before the Bit × String operation.

Compared with the evaluation phase of [22], we cannot rely on individual
pairs of keys, ki

w,0,k
i
w,1, in order to let a party Pi decide whether to abort or

not in the presence of errors in the garbled circuit. This is because only the sums
of individual keys, kw,0,kw,1 are revealed, and these need to be hidden from all
parties. Instead, we perform a check in the output gates as follows: given a set of
parties P̂ ⊆ P who receive an output of Cf on wire w, a garbled output gate g,
with input wire u and output wire w, consists of the two following entries (one
for each α ∈ {0, 1}):

gα ← EncXOF
τ

(
((ξi1

w,α‖ . . . ‖ξ
i|P̂|
w,α), (g‖α‖0)), (ku,α,0)

)
where ξi

w,α ∈ {0, 1}s is a secret random value chosen by party Pi.4

3 If the requirement does not hold, then this operation needs to be done using Tiny-OT
directly as in [22]. Hence, this optimization is mainly for large-scale MPC.

4 For simplicity, we assume the message space is at least |P̂|·s bits long. If the message
space was only of |P̂| · s/r bits, one would compute r ciphertext, each of them with
the ξi values of |P̂|/r parties.

Large Scale, Actively Secure Computation 57

The security of our garbling protocol is then given by the following theorem,
the proof of which is given in the full version.

Theorem 5. Let EXOF
τ be a XOF-based two-key LPN encryption scheme with

parameter τ . Let FBS be implemented by the Bit × String operation. The protocol
Π

n/c
Garble described in Fig. 4 UC-securely computes Fn/c

Preprocessing in the presence of
a static, active adversary corrupting up to (c−1)·n/c parties in the {FMPC,FBS}-
hybrid model, provided n/c > s (where s is the statistical security parameter).

Remark 2. By implementing the Bit × String operation in the näıve way, using
TinyOT as in [22], we could prove Theorem 5 in the {FMPC,FTinyOT}-hybrid
model, without the n/c > s requirement.

5.2 Evaluation

The evaluation procedure is given in the full version. This involves no operations
with respect to the MPC functionality, but it requires two rounds of broadcast.
The security of our evaluation protocol is given by the following theorem, the
proof of which is given in the full version.

Theorem 6. Let f be an n-party functionality and EXOF
τ a XOF-based two-key

LPN encryption scheme with parameter τ . The protocol Π
n/c
Evaluate UC-securely

computes f in the presence of a static, active adversary corrupting up to (c −
1) · n/c parties in the {FMPC,Fn/c

Preprocessing}-hybrid model.

Our proof follows the blueprint of the online proof of Hazay et al. [22]. More
concretely, after the description of the simulator, we show that the adversary can
succeed in introducing errors in the garbled circuit only with negligible proba-
bility, so ruling out this possibility we show that the ideal and real executions
are indistinguishable trough a reduction to the LIN-RK-KDMσ security of the
LPN-based encryption scheme EXOF. Although the general idea of the proof is
similar to [22], in our proof we need to take care of our new method of garbling
AND gates, and prove that if the adversary introduces some errors such that the
some value is not correct during the evaluation, then the final checks will fail
with overwhelming probability.

6 Implementation and Experimental Results

To demonstrate the practicality of our design, we implemented the circuit evalu-
ation step for both of our protocols, and tested them on a number of ‘standard’
test circuits, given in Table 1. For the preprocessing phase, we give an estima-
tion of the communication complexity in the full version and compare it with
the recent work of Yang et al. [40].

58 A. Ben-Efraim et al.

Table 1. Standard Test Circuits

Circuit No. ANDs No. XORs No. Invs

AES-128(k, m) 6400 28176 2087

AES-192(k, m) 7168 32080 2317

AES-256(k, m) 8832 39008 2826

Keccak-f(m) 38400 115200 38486

SHA-256-f(H, f) 22573 110644 1856

SHA-512-f(H, f) 57947 286724 4946

The test circuits consisted of a combination of AND, XOR and INV gates.
The SHA-256 and SHA-512 circuits implemented the compression function f
only for a single block message m. Further, we compare our results with existing
work at the end of this section.

The hash function H used to define our nonce-based LPN encryption function
(Definition 6) is implemented using three variants. The first variant is based on
the AES-KDF from NIST [35]. This is very fast but it is not indifferentiable from
a random oracle, and thus not strictly a true XOF. The second variant is based
on the SHA-3 based XOF derived from KMAC128 and KMAC256 given in [34].
The third variant is based on the Kangaroo-12 XOF from [8], which is also based
on SHA-3 which provides 128-bits of security. For our two SHA-3 variants we
used the library provided by the Keccak team https://keccak.team/. For the
AES based KDF variant we used code using the Intel AES-NI instructions.

Code Instantiation. We use concatenated codes as our error correcting code.
While they are not the fastest or offer the highest rate, we can easily calculate the
exact failure probability, unlike the alternatives such as LDPC codes. This makes
selecting a code according to the LPN parameters convenient. The concatenated
codes we use has a Reed-Solomon outer code and a general linear inner code. The
details of concatenated codes and their concrete instantiation is presented in the
full version. We set the decoding failure probability to 2−s, and run experiments
with s = 40 and 80. While finding the best error correcting code is not the goal
of this work, we expect the performance to improve significantly when using a
more efficient family of codes such as LDPC or quasi-cyclic LDPC.

Online Implementation Results. The expensive parts of the algorithms are
the parts related to the evaluation of the garbled circuit; thus these were the
parts of the algorithm we timed. Experiments were run on a Intel i7-7700K CPU
4.20 GHz machine with 32 GB of RAM.

For the authenticated garbling (resp. unauthenticated garbling) variant of
our algorithm, we obtained the run-times presented in Table 2 (resp. Table 3)
with decryption failure s = 40. For equivalent runtimes when s = 80 see the full
version of the paper. In these tables the security level refers to the security of the

https://keccak.team/

Large Scale, Actively Secure Computation 59

Table 2. Evaluation (in sec) of various circuits in the authenticated garbling case. Set-
ting sec = 128 and s = 40, the LPN parameters are (k,m, �, τ) = (664, 672, 7140, 1/8)
and we use the error correcting given by (Lo = [255, 84, 172], Li = [28, 8, 15]). For
256 bit security, the LPN parameters are (k,m, �, τ) = (1328, 1332, 14819, 1/8) and the
error correcting code is given by (Lo = [511, 148, 364], Li = [29, 9, 11]). Details of these
codes are given in the full version.

Circuit Execution Time (sec)

128-bit Security 256-bit Security

AES-KDF KMAC128 Kangaroo KMAC256

AES-128(k, m) 1.72 6.64 4.04 35.4

AES-192(k, m) 1.92 7.41 4.51 39.9

AES-256(k, m) 2.35 9.13 5.58 48.9

Keccak-f(m) 10.2 39.7 24.3 214

SHA-256-f(H, f) 6.02 23.3 14.3 128

SHA-512-f(H, f) 15.6 60.0 36.8 327

Table 3. Evaluation of various circuits in the unauthenticated garbling variant, using
the AES-KDF, and s = 40. For the parameters for the LPN scheme, and the associated
error correcting code we used those given in the full version.

Circuit Execution Time (s)

128-bit Security 256-bit Security

c = 2 c = 5 c = 10 c = 2 c = 5 c = 10

AES-128(k, m) 10.5 50.4 77.5 16.9 80.2 538

AES-192(k, m) 11.7 56.3 86.7 18.9 89.3 602

AES-256(k, m) 14.4 69.1 106 23.4 110 742

Keccak-f(m) 64.4 309 474 104 490 3333

SHA-256-f(H, f) 36.7 176 271 59.5 284 1899

SHA-512-f(H, f) 94.0 451 692 152 725 4848

underlying LPN function. Observe that the choice of the underlying method to
generate the LPN matrix has a key effect on the performance of the system, with
an AES based KDF being the most efficient. For the unauthenticated garbling
variant, we only present runtimes using the efficient AES based KDF function.
Concretely, when using AES-KDF, a majority (81%) of the CPU time is spent
in decoding. When using KMAC128, the majority (84%) of the time is spent on
KMAC128. Thus, the performance bottleneck varies with the choice of H.

We compare our scheme with some related work. In the authenticated gar-
bling case, and the fastest implementation using an AES-KDF based for the
function H, we obtain a throughput of roughly 266µs per AND gate for s = 40.
The experiments from [6], i.e. in the passive case, with no free-XOR, has a
throughput of roughly 45 microseconds per gate (also with s = 40). Ignoring

60 A. Ben-Efraim et al.

the fact we can perform free-XOR, this gives a cost of a factor of six for using
our actively secure variant. However, this cost decreases when we look at typical
circuits. For example the AES-128 circuit has 34, 675 AND and XOR gates, thus
the protocol in [6] would take around 1.5 seconds, compared to our runtime of
1.72 seconds. Thus, the ability to cope with free-XOR means we only pay an
extra 15% in performance for active security.

As a means of comparison with ‘traditional’ n-party garbled circuits via
actively secure BMR with free-XOR, we extrapolated known run times of evalu-
ating AES-128 using the HSS protocol. It would appear that our algorithm will
provide a faster evaluation stage when the number of parties exceeds about 100
in the authenticated garbling case. This is confirmed by a comparison with [39]
that reports an online running time of 2.3 s for AES with 128 parties in the WAN
setting.

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070, FA8750-19-C-0502 and HR001120C0085, by the Office
of the Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA) via Contract No. 2019-1902070006, by the FWO under
an Odysseus project GOH9718N, and by CyberSecurity Research Flanders with ref-
erence number VR20192203. Eduardo Soria-Vazquez was supported by the Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM). Aner Ben-
Efraim and Eran Omri were supported by ISF grant 152/17, and by the Ariel Cyber
Innovation Center in conjunction with the Israel National Cyber directorate in the
Prime Minister’s Office.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of any of the
funders. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation therein.

References

1. Applebaum, B.: Garbling XOR gates “For Free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 10

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Chazelle, B. (ed.) ICS 2011, pp. 45–60. Tsinghua University
Press, January 2011

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 578–590. ACM Press, October
2016

https://doi.org/10.1007/978-3-642-36594-2_10
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31

Large Scale, Actively Secure Computation 61

6. Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS,
vol. 10625, pp. 471–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 17

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R., Vigu-
ier, B.: KangarooTwelve: fast hashing based on Keccak-p. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 400–418. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 21

9. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

10. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

13. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0 26

14. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

15. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

16. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 17

17. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48797-6 29

18. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom gen-
erators. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 146–162.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 12

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987

https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/0-387-34799-2_12

62 A. Ben-Efraim et al.

20. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 86–117. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 4

21. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to
efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 3–33. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96878-0 1

22. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 21

23. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press, November 2000

24. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

25. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

26. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

27. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 40

28. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 28

29. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 16

30. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016,
Part I. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 21

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

32. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 8

https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-46035-7_8

Large Scale, Actively Secure Computation 63

33. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

34. NIST National Institute for Standards and Technology: SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash (2016). http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-185.pdf

35. NIST National Institute for Standards and Technology: Recommendation for key
derivation through extraction- then-expansion rev.1 (2018). https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf

36. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over
Z2k from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020.
LNCS, vol. 12006, pp. 254–283. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40186-3 12

37. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

38. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017, pp. 21–37. ACM Press, October/November 2017

39. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
39–56. ACM Press, October/November 2017

40. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. Cryptology ePrint Archive, Report 2019/1104 (2019).
https://eprint.iacr.org/2019/1104

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-32009-5_40
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
https://doi.org/10.1007/978-3-030-40186-3_12
https://doi.org/10.1007/978-3-030-40186-3_12
https://eprint.iacr.org/2019/1104

Threshold Garbled Circuits and Ad Hoc
Secure Computation

Michele Ciampi1(B), Vipul Goyal2, and Rafail Ostrovsky3

1 The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk

2 NTT Research and CMU, Pittsburgh, PA, USA
goyal@cs.cmu.edu

3 UCLA Department of Computer Science and Department of Mathematics,
Los Angeles, CA, USA
rafail@cs.ucla.edu

Abstract. Garbled Circuits (GCs) represent fundamental and powerful
tools in cryptography, and many variants of GCs have been considered
since their introduction. An important property of the garbled circuits is
that they can be evaluated securely if and only if exactly 1 key for each
input wire is obtained: no less and no more. In this work we study the
case when: 1) some of the wire-keys are missing, but we are still interested
in computing the output of the garbled circuit and 2) the evaluator of
the GC might have both keys for a constant number of wires. We start to
study this question in terms of non-interactive multi-party computation
(NIMPC) which is strongly connected with GCs. In this notion there is
a fixed number of parties (n) that can get correlated information from a
trusted setup. Then these parties can send an encoding of their input to
an evaluator, which can compute the output of the function. Similarly
to the notion of ad hoc secure computation proposed by Beimel et al.
[ITCS 2016], we consider the case when less than n parties participate
in the online phase, and in addition we let these parties colluding with
the evaluator. We refer to this notion as Threshold NIMPC .

In addition, we show that when the number of parties participating
in the online phase is a fixed threshold l ≤ n then it is possible to
securely evaluate any l-input function. We build our result on top of a
new secret-sharing scheme (which can be of independent interest) and
on the results proposed by Benhamouda, Krawczyk and Rabin [Crypto
2017]. Our protocol can be used to compute any function in NC1 in the
information-theoretic setting and any function in P assuming one-way
functions.

As a second (and main) contribution, we consider a slightly different
notion of security in which the number of parties that can participate
in the online phase is not specified, and can be any number c above the
threshold l (in this case the evaluator cannot collude with the other par-
ties). We solve an open question left open by Beimel, Ishai and Kushile-
vitz [Eurocrypt 2017] showing how to build a secure protocol for the case
when c is constant, under the Learning with Errors assumption.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 64–93, 2021.
https://doi.org/10.1007/978-3-030-77883-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_3

Threshold Garbled Circuits and Ad Hoc Secure Computation 65

1 Introduction

Garbled Circuits (GCs) have played a central role in cryptography. The basic
version of GCs has been shown to be useful for secure computation as well as
various other areas in cryptography because of its non-interactive nature [4,13,
19,25–27]. Various GC variants with additional properties have also played an
important role: e.g. GC with free-XOR [24], adaptive GC [18,20,21], information-
theoretic GCs [23], covert-garbled circuit [11], and arithmetic GC [2]. Moreover,
in general, a garbled circuit can be viewed as a randomized encoding which
in turn has played an important role even beyond cryptography in complexity
theory [1]. A key property of a garbled circuit is its “decomposability”, i.e.,
different input wire keys can be computed independently based on the value
on that wire (also referred to as decomposable randomized encodings). This for
example allows to use a separate 1-out-of-2 Oblivious Transfer (OT) for each
input wire. In various applications, this property has played an important role,
like in building functional encryption from attribute based encryption [14], and in
building Non-Interactive Multi-Party Computation (NIMPC) [6] where different
parties hold input values corresponding to different input wires. An important
property of the garbled circuits is that they can be evaluated securely if and only
if exactly 1 key for each input wire is obtained: no less and no more. Moreover,
if the evaluator of the garbled circuit has more than one keys (even for a single
wire) the security of the garbled circuit is (in general) compromised.

In this work, we ask the following natural question: what if 1) the keys cor-
responding to some of the input wires are missing and 2) more than one key for
a subset of wires is leaked to the adversary?

In particular, suppose that a function is well defined even if only a subset of
the inputs are present (e.g., the function simply computes the majority, some
aggregate statistics like the median or the sorting on the inputs). Furthermore,
suppose we only have the wire keys exactly for say l wires (less than the total
number of wires n) and that more than one key for a constant number of wires
can be leaked to the adversary. Can we obtain a garbled circuit construction that
still allows one to securely compute the function output in this case?

Here l can be seen as a parameter for the GC construction. This notion,
besides being intriguing and interesting in its own right, can also be seen as
having natural applications to NIMPC. In NIMPC we can distinguish three main
phases: setup, online and evaluation. In this, various parties with inputs and
auxiliary information obtained during the setup phase, can encode their inputs
and send this encoding to an evaluator during an online phase. The evaluator
can then compute the output of the function without further interaction with
the other parties. Basic constructions of NIMPC readily follows from GC. That
is, the setup generates a garbled circuit with n input wires for the function
that needs to be computed. Each party pi receives two wire keys (one for the
input 0 and one for the input 1) for the i-th wire. During the online phase
each party sends the wire key which corresponds to its input to the evaluator.
The evaluator, which now has n wire keys, can evaluate the garbled circuit
and obtain the output. Frequently cited example applications of NIMPC are
voting and auctions [6,9]. However, in the case of voting, it is conceivable that

66 M. Ciampi et al.

several voters might never show up. Can we obtain a system where if a threshold
number of voter votes, the result can be obtained? One could also even consider
“attribute-based voting” where your attributes determine whether or not you
are eligible to vote. For example, in deciding a tenure case, only voters having
the attributes of “full professor” and “computer science department” might be
eligible. The number and identity of such voters may not necessarily be known
at the time of the NIMPC setup (and only an upper-bound on the number of
voters is known). Let n be total number of parties, the question we study in this
paper is the following:

“Is it possible to obtain a construction of garbled circuits for a function having
n input wires s.t. if the wire keys corresponding of l ≤ n wires are available,
then the output can be securely computed even if both the keys for a constant

number of wires are leaked to the adversary?”

A partial answer to the above question has been given in [7], where the
authors show how to obtain such a NIMPC protocol under the assumption that
the evaluator does not collude with any of the other parties. Another partial
answer has been given in [9], where the authors show how to obtain a NIMPC
protocol that tolerates a constant number of corruption only for the case where
l = n, where n is the total number of parties involved in the protocol. However,
to the best of our knowledge, we are the first to study the combination of the
two problems. In [7] the authors consider another interesting notion called (l, k)-
secure ad hoc private simultaneous messages (PSM). This notion is similar to the
notion of NIMPC, with the difference that 1) the parties cannot collude with
the evaluator and 2) any number k of parties might participate in the online
phase of the protocol, with k ≥ l. Beimel et al. [7] proved that such a notion (for
generic values of l and k) would imply obfuscation1, and left open the following
question:

“Is it possible to obtain (l, l + c)-secure ad hoc PSM protocol for a constant c?”.

1.1 Our Contributions

Our contribution lies in studying of the above questions, providing a formal
definition, and obtaining various constructions. Our most basic result is the
following:

Theorem 1 (informal). If there exists an l-party NIMPC protocol for the l-
input function f which tolerates up to t corruptions, then there exists an n-party
Threshold NIMPC protocol that tolerates up to t corruptions that can securely
evaluate f when only l of the n parties participate in the online phase.

This can also naturally be seen as a threshold garbled circuit where the mes-
sage received by the evaluator during the setup phase corresponds to the garbled
circuit, whereas the two messages corresponding to two different possibilities of

1 The authors of [7] propose inefficient constructions for general functions.

Threshold Garbled Circuits and Ad Hoc Secure Computation 67

the input (i.e., either 0 or 1) for party pi can be seen as the two possible wire-
keys for the i-th input wire. Our construction also relies on a conceptual tool
which we call positional secret sharing (PoSS), which we instantiate information
theoretically. Please see the technical overview for more details. We note that
our construction, additionally, has the feature that it can handle up to a con-
stant number of corruptions (assuming the input of each player is a single bit).
We build upon the construction of Benhamouda et al. [9] with tolerates up to a
constant number of corruptions. Informally, this means that the evaluator may
be able to compute multiple outputs of the function by flipping the input of the
corrupted parties (since the corrupted parties can generate an encoding of both
the inputs 0 and 1). However, the evaluator learns no more than having access
to an ideal functionality which allows for computing such multiple outputs. As
noted in [9], a construction tolerating an arbitrary number of corruptions in this
setting implies indistinguishability obfuscation (iO) [3]. Our second (and main)
technical construction is a protocol that retains its security even if more than l
input wire keys are given to an evaluator. Going back to the example of voting,
while one may have an estimate on how the voter turnout will be (e.g., based on
historical data), it might be hard to know the exact number of voters in advance.
If the actual number of voters turns out to be even l + 1 (as opposed to l), all
security guarantees cease to exist and our previous construction may become
entirely insecure. Towards that end, we ask the following question:

“Is it possible to design construction of garbled circuits where if anywhere
between l and l + c inputs wire keys are obtained, the function output can be

securely computed?

In other words: can we have an (l, l + c)-secure ad hoc PSM protocol? Note
that in this setting, the evaluator can compute multiple outputs by selecting
any l-sized subset of the received inputs. While ideally, we would like to have
l+c = n (for a generic c), such a construction necessarily implies iO and indeed,
using iO, a construction where l + c = n can be readily obtained (we recall
that n is the total number of parties). However, since our focus is on using
standard falsifiable assumptions, we restrict our attention to the case where c is
a constant. In addition, our construction allows the input of each party to be a
string of arbitrary size. Our main theorem is the following:

Theorem 2 (informal). If the LWEs assumption holds, then there exists an n-
party (l, l + c)-secure ad hoc PSM protocol that can securely evaluate an l-input
function f when N parties participate in the online phase with N ≤ l + c ≤ n
for a constant c.

We stress that N does not need to be known in the setup phase. The last
notion that we consider in this paper is adaptive-ad-hoc PSM. This notion, in
addition to the notion of ad hoc PSM, gives to the evaluator the possibility
to evaluate an N -input function fN , where N is the number of parties that
participate in the online phase, with N ≤ l + c ≤ n. This notion gives the same
security guarantees as to the notion of (l, l+ c)-secure ad hoc PSM, but it allows
an honest evaluator to evaluate a function even if more than l parties participate

68 M. Ciampi et al.

in the online phase. It should be easy to see that such a notion can be easily
realized using multiple instantiations of an ad hoc PSM scheme. Even in this
case, the input of each party can be a string of arbitrary (bounded) length.

2 Technical Overview

We start illustrating a new secret sharing scheme which is instrumental for our
constructions. Then we show how to use such a secret sharing scheme to construct
a threshold NIMPC and an (l, k)-Ad Hoc PSM protocol.

2.1 Positional Secret Sharing (PoSS)

We consider the setting where there is a dealer, n non-colluding parties
{p1,pn} and an evaluator. A PoSS scheme allows a dealer to compute a
secret sharing of l secrets x1, . . . , xl with respect to a party index j and dis-
tribute these shares among the n parties. Let S = (s1, . . . , sn) be the output
shares computed by the dealer. Any subset of parties of size l can send their
shares to an evaluator, and if the j-th party has the α-th greatest index among
these l parties, then the evaluator can reconstruct the α-th secret. If the party
pj does not send its share then none of the secrets can be reconstructed (the j-th
share goes always to the party pj). To construct such a scheme we use a standard
t-out-of-m secret sharing scheme. In more detail, the dealer computes 3-out-of-3
secret sharing of xi obtaining x0

i , x̃i and x1
i . Then computes 1) an (i − 1)-out-

of-(j − 1) secret sharing of x1
i thus obtaining the shares si,1, . . . , si,j−1, 2) an

(l − i)-out-of-(n− j) secret sharing of x0
i obtaining si,j+1, . . . , si,n and 3) defines

si,i := x̃i. The output of the sharing algorithm corresponds to (s1, . . . , sn) with
si := (s1,i, . . . , sl,i) for each i ∈ [n]. Intuitively, if the evaluator receives the
shares S′ = (si1 , . . . , sil

) with 0 ≤ i1 < · · · < il ≤ n where j = iα for some α,
then she can reconstruct x0

α using the shares si1 , . . . , siα−1 , x1
α using the shares

siα+1 , . . . , sil
and x̃α, which corresponds to the share siα

. Note that all the other
secrets xj are protected since there are not enough shares to either reconstruct
x0

k or x1
k for each k ∈ [l]−{α}. In the case where there is no iα with α = j, then

none of the secrets can be reconstructed since one share of the 3-out-of-3 secret
sharing will be missing for each of the secrets.

2.2 Threshold NIMPC

Let f be an l-input function. To obtain a Threshold NIMPC for f that tolerates
t corruptions we use a PoSS scheme in combination with a standard NIMPC
protocol that supports t corruptions and that can be used to evaluate l-input
functions. Let p1, . . . , pn be the parties that could participate an execution of
the protocol (we recall that a threshold NIMPC is parametrized by l, which
represents the maximum number of parties that can participate in the online
phase). The idea is to pre-compute an encoding of the input 0 (that we denote
with m0

j) and of the input 1 (that we denote with m1
j) for each input slot

Threshold Garbled Circuits and Ad Hoc Secure Computation 69

j ∈ [l] of the NIMPC scheme. Then we run two instantiations of a PoSS for each
party pi. The first instantiation of the PoSS scheme is run on input the secrets
m0

1, . . . ,m
0
l (and the index i of the party) whereas the second is run using the

secrets m1
1, . . . ,m

1
l (and the index i of the party). Let (s0i,1, . . . , s

0
i,n) be the

output shares of the first instantiation of the PoSS scheme, and (s1i,1, . . . , s
1
i,n)

be the output of the second instantiation for the party pi. All these shares are
then distributed among the n parties. During the online phase each party pi acts
as follows. If the input of pi is bi = 0 then pi sends all the shares but the one
related to the second instantiation of the PoSS scheme for the index i (i.e., pi

does not send s1i,i), if bi = 1 then pi sends all the shares but the one related
to the first instantiation of the PoSS scheme for the index i (i.e., pi does not
send s0i,i). The security of the PoSS scheme guarantees that if a party pi does
not send the share for one instantiation of PoSS that is run with respect to i,
then nothing can be learned about the secrets encoded in that instantiation. In
addition, for the case when piα

sends the share sb
iα,iα

(with b ∈ {0, 1}), the PoSS
security guarantees that only the secret in position iα can be learned. Hence, the
evaluator can compute m

bi1
1 , . . . ,m

bil

l by running the reconstruction algorithms
for the l instantiations of the PoSS scheme for which at least l shares have been
provided.2 These messages then can be used to run the evaluation algorithm of
NIMPC protocol to obtain the output of f . In addition, if the NIMPC protocol
used in the above construction supports up to t-corruption, so does our scheme.
We allow only the corruption of the parties that are participating in the protocol.
That is, if l parties provide an input then the corrupted parties belong to this
set of parties. We give no security guarantees in any other case (which would
give to the colluding evaluator an additional share for the PoSS scheme reaching
the total of l + 1 shares, compromising the security of the PoSS scheme, and in
turn, the security of the underling NIMPC protocol). Given the implication of
NIMPC with iO, for our construction we consider only the case when the input
of each party is a bit, exactly as in [9] (our other constructions do not have this
limitation).

2.3 (l, k)-Secure Ad Hoc PSM

The notion of (l, k)-secure ad hoc PSM is similar to the notion of threshold
NIMPC with the following two differences: 1) provides the best possible security
guarantees in the case when N parties participate in the online phase for an
unknown N with l ≤ N ≤ k and 2) the security holds only if the evaluator does
not collude with the other parties. In this work we want to construct a (l, l + c)-
secure ad hoc PSM for a constant c. Moreover, we want to construct a scheme
that allows the input of each party being a bit-string (instead of one bit like
in the previous construction). One might think that a threshold NIMPC pro-
tocol already satisfies this security notion. We start by describing what are the

2 The shares of the PoSS scheme need to be opportunely permuted to not give a trivial
advantage to the adversary. We refer the reader to the technical part of the paper
for more detail.

70 M. Ciampi et al.

problems in trying to prove that our threshold NIMPC is an ad hoc PSM, even
considering the case when the input of each party is a bit, and then show how our
construction works in an incremental fashion. In the threshold NIMPC showed
above, if more than l parties are participating to the online phase then more than
one secret from each instantiation of the PoSS scheme would be leaked (by the
definition of PoSS). Hence, it might be possible for a corrupt evaluator to learn
an encoding of different messages for the same input-slots of the NIMPC proto-
col. Note that this problem could be mitigated if the underlying NIMPC protocol
was secure against an arbitrary number of corruptions, but any such a scheme
would imply iO. Luckily, we do not really need a NIMPC protocol that sup-
ports an arbitrary number of corruptions, but we need a protocol that remains
secure in the case when an evaluator, given a set of input X := (xi1 , . . . , xil+c

),
could run the NIMPC protocol on any subset of size l of X. This property is
clearly not enjoyed by a NIMPC protocol that supports a constant number of
corruptions. Moreover, even if the problem of corruption and the problem that
we are describing here seem related, it looks like a completely different tech-
nique is required. To see the problem from a different perspective, the issue of
obtaining a secure NIMPC protocol in the case of corruption is related to the
fact that an adversary could evaluate the function on strings that have hamming
distance at most t from each other. That is, an adversary can flip up to t-bits,
obtaining up to 2t different inputs. In our case, even for c = 1, an adversary
obtains inputs that have hamming distance l (where l is a polynomial). This is
because the adversary, for example, could remove one input in the first position
and add a new input in the last position thus causing the shift of the inputs that
have not been replaced. Therefore, if the strings are close in terms of editing
distance, they could have more than l hamming distance. For this reason, it is
not clear how the techniques used to achieve security against corrupted parties
(for example those used in [9]) would be helpful in our case.

Quasi-secure Ad Hoc PSM. We now describe how, at a very high level, our
protocol works. We provide an incremental description, starting from a protocol
that is not secure, and gradually modifying it until we reach our final result. Let
us consider the simplified scenario where we have only four parties p1, p2, p3
and p4 and we want to construct a (3, 4)-Ad Hoc PSM protocol for the 3-input
function f . As a main tool, we consider two simple two-party NIMPC protocols
(that tolerate no corruption): Π1 that realizes the function g, Π2 that realizes the
function gOUT. The function g, on input two values (z1, z2) concatenates them
and creates an encoding of z1||z2 for the first input slot of Π2. The function gOUT

takes the two inputs (z1||z2, z3) and outputs f(z1, z2, z3).
Given Π1 and Π2, each party pi now prepares an encoding of its input xi

for the first and the second input slot of Π1 (let us call these encodings Msg0i
and Msg1i). In addition, each party pi computes an encoding of xi for the sec-
ond input slot of Π2 (let us call this Msg2i). For each party pi then we run an
instantiations of a PoSS scheme with input (Msg1i ,Msg2i ,Msg3i , i). The security
of the PoSS schemes guarantees that if the parties that are participating in the
online phase are, for example, p1 p2 and p4, then the evaluator will be able to

Threshold Garbled Circuits and Ad Hoc Secure Computation 71

get (Msg11,Msg22,Msg34) only. The evaluator, at this point can evaluate the func-
tion g with the inputs of p1 and p2 by running the evaluation algorithm for Π1

on input Msg11 and Msg22. The output of Π1 can then be used in combination
with Msg34 to run the evaluation algorithm of Π2 to compute the final output.
It should be easy to see that this scheme is a threshold-NIMPC protocol that
tolerates no corruption. But we are now interested in the security of the proto-
col in the case when four parties participate in the online phase. In this case,
the PoSS scheme allows the evaluator to get, for example, (Msg11,Msg22,Msg34)
and (Msg12,Msg23,Msg34) at the same time. This means that the evaluator can
run the evaluation algorithm of Π1 using (Msg11,Msg22) and (Msg12,Msg23) thus
obtaining two different encodings for different values for the first input slot of
Π2 (assuming that the x1||x2 �= x2||x3). This corresponds to the case in which
the evaluator can collude with a party to generate encodings of multiple inputs
for the first input slot of Π2. Since we do not want to assume that Π2 is resilient
against such an attack3, we modify the protocol as follows:

– Instead of considering one protocol Π2 that realizes the function gOUT, we
consider λ protocols4: Π1

2 , . . . , Πλ
2 .

– Each input of g now comes with two random values v1 and v2 that each party
samples. Hence, the inputs of g now can be seen as (z1||v1, z2||v2).

– The function g, on input z1||v1 and z2||v2 computes y = z1||z2 and the hash
H(v1 ⊕ v2) thus obtaining sel ∈ [λ]. Then g encodes y accordingly to the
protocol Πsel

2 .
– The party p3 and p4 now compute an encoding of their input for the second

input slot for all the protocols Π1
2 , . . . , Πλ

2 .

This mechanism now partially solves the problem of the previous protocol.
This is because a different combination of inputs for Π1 yields to an encoding
for a different protocol Πsel

2 , with sel ∈ [λ]. Indeed, if the Π1 is run using the
input contributed by p1 and p2 then the output of Π1 corresponds to an encod-
ing of the concatenation of x1||x2 for the protocol Πsel

2 with sel = H(v1 ⊕ v2).
If instead Π1 is run using the input contributed by p1 and p3, then we have
that H(v1 ⊕ v2) �= H(v1 ⊕ v3) = sel′ with some probability 1/p (that depends on
the choice of λ and on the random coins of the parties). Hence, the output
of Π1 corresponds to an encoding for the protocol Πsel′

2 . Clearly, λ needs to
be polynomially related to the security parameter. This means that the prob-
ability of founding a collision for H is non-negligible (and if there is a collision
then the security of this protocol collapses back to the security of the previ-
ous protocol). Later in this section we show how to solve this problem using
the LWE assumption. Before discussing that, we note that this protocol has yet
another issue. As we said, the evaluator can get the values (Msg11,Msg22,Msg34)
and (Msg12,Msg23,Msg34) when all the parties participate in the online phase.
Given that Msg11 and Msg12 represent the encoding of different values for the
3 We recall that we do not know any NIMPC protocol that is secure in this setting

when the inputs of Π2 are bit strings unless from assuming iO.
4 We discuss the size of λ later in the paper.

72 M. Ciampi et al.

first input slot of Π1, then we have an issue similar to the one that we have
just discussed. This time, we can solve this problem easily. We simply consider
an instantiation of a NIMPC protocol that realizes the function g which we
denote with Πi,j

1 , which can be used only by the party i, j, with i ∈ {1, 2} and
j ∈ {2, 3, 4}. Then, for example, the party p1 will compute an encoding for the
first input slot of Π1,2

1 , Π1,3
1 and Π1,4

1 , and use all of them as the input of the first
instantiation of the PoSS scheme. For the protocol that we have just described,
we can prove that for a suitable choice of λ (given that c is a constant value)
the probability that there are no collisions in H is 1/p where p is a polynomial.
Hence, we can prove that the execution of our protocol is secure with probability
1/p. We note that in this discussion we have assumed that the security of the
PoSS scheme is not compromised even when more than l parties provide their
shares. In the technical part of the paper we show that our construction of PoSS
enjoys a stronger notion, that is indeed sufficient to construct the protocol that
we have just described. To extend the above construction to the case when the
number of party is more than 4, and the threshold l is an arbitrary value, we
just need to consider a longer chain of 2-party NIMPC protocols. However, this
generalization has to be done carefully to avoid an exponential blowup in the
size of the messages. For more details on that, we refer the reader to Sect. 5.

Fully Secure Ad Hoc PSM. We denote the protocol that we have just
described with ΠPSM and show how to use it to obtain an ad hoc PSM that
is (l, l + c)-secure. To amplify the security of ΠPSM we make use of a homo-
morphic secret sharing (HSS) scheme for the function f (we recall that f is
the l-input function that we want to evaluate). At a high level, a HSS allows
each party i to compute m shares of its input xi and distribute them among
m servers using the algorithm ShareHSS so that xi is hidden from any m − 1
colluding servers. Each server j can apply a local evaluation algorithm EvalHSS

to its share of the l inputs, and obtain an output share yj . By combining all
the output shares it is possible to obtain the output of the function, that is
y1 ⊕ · · · ⊕ ym = f(x1, . . . , xl).5 At a very high level, our protocol consists of m
instantiations of ΠPSM where the e-th instantiation evaluates the function Ge

with e ∈ [m]. The Function Ge takes as input l shares of the HSS scheme, and
uses them as input of EvalHSS together with the server index e (see the bottom
of Fig. 6 for a formal specification of Ge). Each party pi that wants to participate
in the protocol computes a secret sharing of its input thus obtaining m shares
(s1, . . . , sm). Then pi uses the e-th share as input of the e-th instantiation of
ΠPSM. The evaluator runs the evaluation algorithm of the e-th instantiation of
ΠPSM thus obtaining ye (which corresponds to the output of EvalHSS on input
the e-th shares of all the parties) for each e ∈ [m]. The output of the evaluation
phase then corresponds to y1 ⊕ · · · ⊕ ym. We show that this protocol is secure as
long as there is at least one execution of ΠPSM that is secure (i.e., simulatable).
Moreover, by choosing m opportunely we can prove that at least one execution
of ΠPSM is secure with overwhelming probability. Hence, at least one share of
5 In our work we assume that the HSS is additive.

Threshold Garbled Circuits and Ad Hoc Secure Computation 73

each of the inputs of the honest parties will be protected. Therefore, because of
the security offered by the HSS, also the input of the parties will be protected.

Adaptive-Ad-Hoc PSM. It is straightforward to construct an adaptive-ad-
hoc PSM having a (l, l + c) ad hoc PSM ΠAPSM. Indeed, we just need to run c
instantiation of ΠAPSM, where each instantiation computes a function fα with
arity α for each α ∈ {l, . . . , l + c}.

2.4 Related Work

The study of MPC protocols with restricted interaction was initiated by Halevi,
Lindell, and Pinkas [16,17]. We have mentioned the work of Benhamouda et
al. [9] which provides the first NIMPC protocol that tolerates up to a constant
number of corruptions for all functions in P under OWFs. In addition, the
authors show how to obtain a more efficient NIMPC protocol for symmetric
functions. The work [5] introduces the notion of ad hoc PSM and in [7] the
authors propose many instantiations of such a primitive in the information-
theoretic and computational setting. A result of [7] that is very related to our
first contribution, is the construction of an ad hoc PSM protocol for a k-argument
function f : Xk → Y from a NIMPC protocol for a related n-argument function
g : (X ∪ {⊥})n → Y . More precisely, the function g outputs ⊥ if there are more
than n − k inputs that are ⊥, it outputs the output of f if there are exactly
n − k inputs that are ⊥, in any other cases the output of g is undefined. The
compiler that we propose is more generic and it preserves its security against
colluding parties (if any). Always in [7] the authors propose an (l, l + c)-secure
ad hoc PSM protocol for symmetric functions whose complexity is exponential
in l, and prove that an (l, k)-ad hoc PSM protocols for simple functions with
generic (l, k) already implies obfuscation for interesting functions. In [8] the
authors improve the efficiency of the protocols proposed in [7]. The work [16] try
to make reusable the setup assuming more interactions between the parties, or
assuming specific graphs of interaction patterns. In [15] the authors successfully
remove the need of the parties to obtain correlated randomness from the setup
phase via a PKI supplemented with a common random string under the iO
assumption. In addition, the construction proposed in [15] tolerates arbitrary
many corruptions.

3 Background

Preliminaries. We denote the security parameter by λ and use “||” as con-
catenation operator (i.e., if a and b are two strings then by a||b we denote the

concatenation of a and b). For a finite set Q, x
$←− Q denotes a sampling of x

from Q with uniform distribution. We use “=” to check equality of two different
elements (i.e. a = b then...), “←” as the assigning operator (e.g. to assign to
a the value of b we write a ← b). and := to define two elements as equal. We
use the abbreviation PPT that stands for probabilistic polynomial time. We use

74 M. Ciampi et al.

poly(·) to indicate a generic polynomial function. We assume familiarity with
the notion of negligible function. We denote with [n] the set {1, . . . , n}, N0 the
set of non-negative integers and with N the set of positive integer.

3.1 Secret Sharing

A secret sharing scheme allows a dealer to share a secret m among n parties
P = {p1, . . . , pm} such that any authorized subset (if any) of P can reconstruct
the secret m, while the other parties learn nothing about m. We now give the
definition of l-out-of-n secret sharing.

Definition 1 (l-out-of-n secret sharing). A l-out-of-n secret sharing scheme
over a message space M is a pair of PPT algorithms (Share, Reconstruct) where:

– Share on input x ∈ M outputs n shares (s1, . . . , sn);
– Reconstruct on input l values (shares) outputs a message in M;

satisfying the following requirements.

– Correctness. ∀x ∈ M, ∀S = {i1, . . . , il} ⊆ {1, . . . , n} of size l,
Prob [x ← Reconstruct(si1 , . . . , sil

) : (s1, . . . , sn) ← Share(x)] = 1.
– Security. ∀x, x′ ∈ M, ∀S ⊆ {1, . . . , n} s.t. |S| < l, the following distributions

are identical: {(si)i∈S : (s1, . . . , sn) ← Share(x)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) ← Share(x′)}.

3.2 Homomorphic Secret Sharing (HSS)

We consider HSS scheme that supports the evaluation of a function f on shares
of inputs x1, . . . xn that are originated from different clients. In this notion each
client i can compute m shares of its input xi and distribute them between m
servers using the algorithm ShareHSS so that xi is hidden from any m−1 colluding
servers. Each server j can apply a local evaluation algorithm EvalHSS to its share
of the n inputs, and obtains an output share yj . The output f(x1, . . . , xn) is
reconstructed by applying a decoding algorithm DecHSS to the output shares
y1, . . . , ym.

Definition 2 (HSS [10]). An n-client, m-server, t-secure homomorphic secret
sharing scheme for a function f : ({0, 1}�)n+1 → {0, 1}�, or (n,m, t)-HHS for
short, is a triple of PPT algorithms (ShareHSS,EvalHSS,DecHSS) where:

– ShareHSS(1λ, i, x): On input 1λ (security parameter), i ∈ [n] (client index)
and x ∈ {0, 1}� (client input), the sharing algorithm ShareHSS outputs m
input shares (x1, . . . , xm).

– EvalHSS(j, x0, (x
j
1, . . . , x

j
n)): On input j ∈ [m] (server index), x0 ∈ {0, 1}�

(common server input), and xj
1, . . . , x

j
n (j-th share of each client input), the

evaluation algorithm EvalHSS outputs yj ∈ {0, 1}�, corresponding to the server
j’s share of f(x0;x1, . . . , xn).

Threshold Garbled Circuits and Ad Hoc Secure Computation 75

– DecHSS(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding
algorithm DecHSS computes a final output y ∈ {0, 1}�.

The algorithm (ShareHSS,EvalHSS,DecHSS) should satisfy the following cor-
rectness and security requirements:

– Correctness: For any n + 1 inputs x0, . . . , xn ∈ {0, 1}�,

Prob[∀i ∈ [n](x1
i , . . . x

m
i) $←− ShareHSS(1λ, i, xi), ∀j ∈ [m] yj $←− EvalHSS(j, x0,

(xj
1, . . . , x

j
n)) : DecHSS(y1, . . . , ym) = f(x0;x1, . . . , xn)] = 1 − ν(λ).

– Security: Consider the following semantic security challenge experiment for
corrupted set of server T ⊂ [m]:
1. The stateful adversary gives challenge index and inputs (i, x0, x1) ←

A(1λ), with i ∈ [n] and |x0| = |x1|.
2. The challenger samples b

$←− {0, 1} and (x1, . . . , xm) $←− ShareHSS(1λ,
i, xb).

3. The adversary outputs b′ ← A((xj)j∈T) given the shares for corrupted T .
Denote by a := Prob [b = b′] − 1/2 the advantage of A in guessing b in
the above experiment, where probability is taken over the randomness of the
challenger and of A. For circuit size bound S = S(λ) and advantage bound
α = α(λ), we say that an (n,m, t)-HSS scheme Π is (S, α)-secure if for all
T ⊂ [m] of size |T | ≤ t, and all non-uniform adversaries A of size S(λ), we
have a ≤ α(λ). We say that Π is computationally secure if it is (S, 1/S)-
secure for all polynomials S.

In this work we consider only additive HSS schemes. An HHS scheme is
additive if DecHSS outputs the exclusive or of the m output shares. For our
construction we make use of an additive (n,m,m−1)-HSS scheme. Such a scheme
can be constructed from the LWEs assumption [10,12].

4 Our Model

In this section we propose the formal definition of NIMPC. We give a more
general definition that captures the case when up to t parties can collude with
the evaluator, and following [9,16,17], we refer to this notion as t-robust NIMPC.
Then we give our new definition of threshold NIMPC which can be seen as a
combination of the notion of NIMPC with the notion of ad hoc PSM proposed
in [6]. Let X be a non-empty set and let X n denote the Cartesian product
X n := X × · · · × X .

Definition 3 (NIMPC Protocol. [9]). Let F = (Fn)n∈N be an ensemble of
sets Fn of functions f : X → Y, where Y is a finite set. A non-interactive secure
multiparty computation (NIMPC) protocol for F is a tuple of three algorithms
Π := (Setup,Msg,Eval), where:

– Setup takes as input unary representations of n and of the security param-
eter λ, and a representation of function f ∈ Fn and outputs a tuple
(ρ0, ρ1, . . . , ρn);

76 M. Ciampi et al.

– Msg takes as input a value ρi, and an input xi ∈ X , and deterministically
outputs a message mi;

– Eval takes as input a value ρ0 and a tuple of n messages (m1, . . . ,mn) and
outputs an element in Y satisfying the following property:
Correctness. For any n ∈ N, security parameter λ ∈ N0, f ∈ Fn, x :=
(x1, . . . , xn) ∈ X , and (ρ0, . . . , ρn) $←− Setup(1n, 1λ, f),
Eval(ρ0,Msg(ρ1, x1), . . . ,Msg(ρn, xn)) = f(x).

While the previous definition is abstract, in the sequel, we will often see
NIMPC protocols as protocols with n parties p1, . . . , pn with respective inputs
x1, . . . , xn and an evaluator p0. A polynomial-time NIMPC protocol for F is an
NIMPC protocol (Setup,Msg,Eval) where Setup, Msg, and Eval run in polynomial
time in n and λ. In particular, functions f ∈ F should be representable by
polynomial-size bit strings.

Robustness. For a subset T = {i1, . . . , it} ⊆ [n] and x = (x1, . . . , xn), we
denote by xT the t-coordinate projection vector (xi1 , . . . , xit

). For a function
f : X n → Y, we denote by f |T ,xT

the function f with the inputs corresponding
to positions T fixed to the entries of the vector x. We now recall the notions of
robustness for NIMPC protocols. Informally, T -robustness T ⊆ {1, . . . , n} for a
set T of colluding parties means that if xT represents the inputs of the honest
parties, then an evaluator colluding with the parties in set T can compute the
residual function f |T ,xT

on any input xT but cannot learn anything else about the
input of the honest parties. This describes the best privacy guarantee attainable
in this adversarial setting. The formal definition is stated in terms of a simulator
that can generate the view of the adversary (evaluator plus the colluding parties
in set T) with sole oracle access to the residual function f |T ,xT

.

Definition 4 (NIMPC Robustness [9]). Let n ∈ N and T ⊆ {1, . . . , n}. A
NIMPC protocol Π is perfectly (resp., statistically, computationally) T -robust if
there exists a PPT algorithm Sim (called simulator) such that for any f ∈ Fn

and xT ∈ XT , the following distributions are perfectly (resp., statistically, com-

putationally) indistinguishable: {Simf |T ,x
T (1n, 1λ, T)}, {View(1n, 1λ, f, T, xT)},

where {View(1n, 1λ, f, T, xT)} is the view of the evaluator p0 and of the col-
luding parties pi (for i ∈ T) from running Π := (Setup,Msg,Eval) on input

xT for the honest parties: that is, ((mi)i∈T , ρ0, (ρi)i∈T) where (ρ0, . . . , ρn) $←−
Setup(1n, 1λ, f) and mi ← Msg(ρi, xi) for all i ∈ T where xT := (xi)i∈T . Let
t ∈ N0 be a function of n, then a NIMPC protocol Π is perfectly (resp., statisti-
cally, computationally) t-robust if for any n ∈ N and any T ⊆ {1, . . . , n} of size
at most t = t(n), Π is perfectly (resp., statistically, computationally) T -robust.

Robustness does not necessarily imply that the simulator Sim is the same for any
n and T . In this and in the following notions we consider only PPT simulators
since in this paper we focus only on efficiently simulatable protocols.

Threshold Garbled Circuits and Ad Hoc Secure Computation 77

4.1 Threshold NIMPC

We introduce the new notion of Threshold NIMPC. A Threshold NIMPC is
parametrized by n and l with 0 ≤ l ≤ n, where n denotes the number of parties
and l represents a threshold. Given a set of n parties P, any subset of P ′ ⊆ P
of size l can evaluate the function f : X l → Y, where Y is a finite set and X =
{{0, 1}λ, {1, . . . n}}. In more details, we assume that any party in P is univocally
identified by an index i ∈ [n]. The setup algorithm and the algorithm used by
the parties to generate an encoding of their inputs have the same interface as the
algorithms of a NIMPC protocol. The difference is in the evaluation algorithm.
In this notion we do not require all the n parties to participate in the protocol
in order to evaluate a function. That is, any subsets of P of size l would allow
the evaluator to compute the function f . Without loss of generality, we consider
only functionalities whose output depends on the inputs of the parties, and on
the indexes of the parties that contributed with these inputs. Formally, the class
of function supported by our protocol is described in Fig. 1 (where g can be any
function).

Input: (xi1 , i1), . . . (xil , il) where {i1, . . . , il} ⊆ [n], xi1 , . . . , xil ∈ X , l ≤ n
and n ∈ N.
Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that
1 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n and output ⊥ if such a permutation does not
exist, else, output g xj1 , . . . , xjl

Fig. 1. Class of functionalities supported by our threshold NIMPC protocol.

Definition 5 (Threshold NIMPC Protocol). Let F = (Fl)l∈N be an ensem-
ble of sets Fl of functions f : X → Y, a Threshold NIMPC protocol for F is a
tuple of three algorithms (Setupth,Msgth,Evalth), where:

– Setupth takes as input unary representations of n, l and of the security param-
eter λ with 1 ≤ l ≤ n, and a representation of function f ∈ Fl and outputs a
tuple (ρ0, ρ1, . . . , ρn);

– Msgth takes as input a value ρi, and an input xi ∈ X , and deterministically
outputs a message mi;

– Evalth takes as input a value ρ0 and a tuple of n messages (mj1 , . . . ,mjl
) with

1 ≤ j1 < · · · < jl ≤ n and outputs an element in Y;

satisfying the following property:

Correctness. For any n ∈ N, security parameter λ ∈ N0, f ∈ Fl, x :=
(
(xj1 , j1), . . . , (xjl

, jl)
) ∈ X , with 1 ≤ j1 < · · · < jl ≤ n and (ρ0, . . . , ρn) $←−

Setupth(1n, 1l, 1λ, f),

Evalth(ρ0,Msgth(ρj1 , xj1), . . . ,Msgth(ρjl
, xjl

)) = f
(
(xj1 , j1), . . . , (xjl

, jl)
)
.

78 M. Ciampi et al.

Definition 6 (Threshold NIMPC Security). Let n ∈ N, K := {j1, . . . , jl}
with 1 ≤ j1 < · · · < jl ≤ n, T ⊆ K and T := K − T . A Threshold NIMPC
protocol Π is perfectly (resp., statistically, computationally) T -secure if there
exists a PPT algorithm Sim (called simulator) such that for any f ∈ Fl and xT ∈
XT , the following distributions are perfectly (resp., statistically, computationally)
indistinguishable:

{Simf |T ,x
T (1n, 1l, 1λ, T,K)}, {View(1n, 1l, 1λ, f, T,K, xT)}

where {View(1n, 1l, 1λ, f, T,K, xT)} is the view of the evaluator p0 and of the
colluding parties pi (for i ∈ T) from running Π on input xT for the honest

parties: that is, ((mi)i∈T , ρ0, (ρi)i∈T) where (ρ0, . . . , ρn) $←− Setup(1n, 1l, 1λ, f)
and mi ← Msg(ρi, xi) for all i ∈ T .6 Let t, l, n ∈ N0 be such that 0 ≤ t ≤ l ≤ n,
a Threshold NIMPC protocol Π is perfectly (resp., statistically, computationally)
t-secure if for any K ⊆ [n] with |K| ≤ l, and any T ⊆ K such that K = T ∪ T
with |T | ≤ t, Π is perfectly (resp., statistically, computationally) T -secure.

4.2 Ad Hoc PSM

An (l, t)-secure ad hoc PSM protocol Π is a 0-secure threshold NIMPC that
remains secure even if more than l (and less than t) parties participate in the
online phase. In other words, the evaluator cannot collude with any of the other
parties, but the protocol remains secure for any number N of parties participat-
ing in the protocol with N ≤ t. Moreover, the evaluator can compute the output
if N ≥ l. By secure here we mean that the adversary can evaluate the function
f on any combination of size l of the inputs provided by the honest parties and
learns nothing more than that. More formally, if x := ((xi1 , i1), . . . , (xi' , iN))
represents the inputs of the N parties participating in the online phase, then a
malicious party can compute f on any input xK where K := {j1, . . . , jl} with
1 ≤ j1 < · · · < jl ≤ n, K ⊆ {i1, . . . , iN} but cannot learn anything else. This
describes the best privacy guarantee attainable in this setting. The formal defini-
tion is stated in terms of a simulator that can generate the view of the adversary
with sole oracle access to Of , where Of takes as input a set K := {j1, . . . , jl} with
1 ≤ j1 < · · · < jl ≤ n, K ⊆ {i1, . . . , iN} and returns f

(
(xj1 , j1), . . . , (xjl

, jl)
)
7.

The definition that we provide is essentially the same as the one provided in [7],
we just use a different terminology to be consistent with our other definitions.

Definition 7 (Ad Hoc PSM). Let n, l, t, λ ∈ N0 and K := {j1, . . . , jN} with
0 ≤ j1 < · · · < jN ≤ n such that 0 ≤ N ≤ t. An ad hoc PSM protocol is perfectly
(resp., statistically, computationally) K-secure if there exists a PPT algorithm
Sim (called simulator) such that for any f ∈ Fl, x :=

(
xj1 , j1), . . . , (xjN

, jN

)
, the

6 f |T,x
T

works as before, with the difference that it outputs ⊥ in the case where less

than |K| < l.
7 The oracle outputs ⊥ if N < l.

Threshold Garbled Circuits and Ad Hoc Secure Computation 79

following distributions are perfectly (resp., statistically, computationally) indis-
tinguishable:

{SimOf (1n, 1l, 1λ,K)}, {View(1n, 1l, 1λ, f,K, x)}
where {View(1n, 1l, 1λ, f,K, x)} is the view of the evaluator p0 from run-

ning Π on input x for the honest parties: that is, ((mi)i∈K , ρ0) where mi ←
Msg(ρi, xi) for all i ∈ K and (ρ0, . . . , ρn) $←− Setup(1n, 1l, 1λ, f). We say that an
ad hoc PSM protocol Π is perfectly (resp., statistically, computationally) (l, t)-
secure if for any N ≤ t, any K := {j1, . . . , jN}, Π is perfectly (resp., statistically,
computationally) K-secure.

4.3 Adaptive-Ad-Hoc PSM

An adaptive-ad-hoc PSM protocol is parametrized by the number of parties n,
the threshold l, an integer t with 0 ≤ t ≤ n and a set of functions fl, . . . , fβ ,
and allows an honest evaluator to obtain the evaluation of a function fN if the
number of parties that are participating in the protocol is l ≤ N ≤ β, for any
N ∈ {l, . . . , β}. Informally, an adaptive-ad-hoc PSM protocol can be seen as
a protocol that allows evaluating a function that accepts a variable number of
inputs. We refer to the full version for the formal definition.

5 Positional Secret Sharing (PoSS)

In this section we propose new notions of secret sharing schemes, and provide an
information theoretical instantiation of them. These new definitions represent
one of the main building block of our NIMPC protocols. We now introduce the
first notion that we call Positional Secret Sharing (PoSS). Let P := {p1, . . . , pn}
be a set of parties and X := (x1, . . . , xl) be a sequence of secrets. A PoSS
scheme is defined with respect to a party pj ∈ P. In a PoSS scheme a dealer
can compute a secret sharing of X thus obtaining s1, . . . , sn and distribute si to
pi for all i ∈ {1, . . . , n}. Let P ′ := {pj1 , . . . , pjl

} be an arbitrary chosen set of
l parties with 0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n. On input (sj1 , . . . , sjl

) with
jα = j for some α ∈ {1, . . . , l} an evaluator can compute xα and nothing more.
If there is no jα = j or less than l shares are available then all the secrets remain
protected. We now propose a formal definition of PoSS.

Definition 8 (Positional Secret Sharing). A PoSS scheme over a message
space M is a pair of PPT algorithms (SharePoSS, ReconstructPoSS) where:

– SharePoSS takes as input X := (x1, . . . , xl), the number of parties n and an
index j ∈ [n], and outputs n shares (s1, . . . , sn);

– ReconstructPoSS takes as input l values (shares), the index j and outputs a
message in M (where M denotes the message space);

satisfying the following requirements.

80 M. Ciampi et al.

Correctness. ∀x1, . . . , xl ∈ Ml, ∀S = {j1, . . . , jl} ⊆ {1, . . . , n} with j1 <
j2 < · · · < jl−1 < jl, if there exists α ∈ {1, . . . , l} such that jα = j then

Prob[xα ← ReconstructPoSS(sj1 , . . . , sjl
, j) : (s1, . . . , sn) $←− SharePoSS((x1,

. . . , xl), j)] = 1.
Standard security. ∀(x1, . . . , xl), (x′

1, . . . , x
′
l) ∈ Ml, ∀S ⊆ {1, . . . , n} s.t.

|S| < l, the following distributions are identical:

{(si)i∈S : (s1, . . . , sn) $←− SharePoSS((x1, . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− SharePoSS((x′

1, . . . , x
′
l), j)}

Positional security. ∀(x1, . . . , xl), (x′
1, . . . , x

′
l) ∈ Ml, ∀S = {j1, . . . , jl} ⊆

{1, . . . , n} with j1 < j2 < · · · < jl−1 < jl:
1. if there exists α ∈ {1, . . . , l} such that jα = j, the following distributions

are identical:
{(si)i∈S : (s1, . . . , sn) $←− SharePoSS((x1, . . . , xα−1, xα, xα+1 . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− SharePoSS((x′

1, . . . , x
′
α−1, xα, x′

α+1, . . . , x
′
l), j)}.

2. if �α ∈{1, . . . , l} such that jα = j, the following distributions are identical:

{(si)i∈S : (s1, . . . , sn) $←− SharePoSS((x1, . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− SharePoSS((x′

1, . . . , x
′
l), j)}

5.1 PoSS: Our Construction

We denote our scheme with (SharePoSS�
,ReconstructPoSS

�). SharePoSS� takes as
input X := (x1, . . . , xl) and the index j and executes the following steps.

– For i = 1, . . . , l

1. Pick x0
i , x

1
i

$←− {0, 1}λ and compute x̃i ← x0
i ⊕ x1

i ⊕ xi.
2. Construct an (i − 1)-out-of-(j − 1) secret sharing for x0

i thus obtaining
si,1, . . . , si,j−1.

3. Construct a (l − i)-out-of-(n − j) secret sharing for x1
i thus obtaining

si,j+1, . . . , si,n.
4. Define si,j := x̃i.

– For i = 1, . . . , n set si = (s1,i, . . . , sl,i).
– Output (s1, . . . , sn).

The algorithm ReconstructPoSS
� takes as input (sj1 , . . . , sjl

) and the index j,
and executes the following steps.

1. If there does not exist α such that jα = j then output ⊥ else continue as
follows.

2. For i = 1, . . . , l parses sji
as (s1,ji

, . . . , sl,ji
).

3. Use the shares sα,j1 , . . . , sα,jα−1 to reconstruct x0
α.

4. Use the shares sα,jα+1 , . . . , sα,jl
to reconstruct x1

α.
5. Output xα ← x0

α ⊕ x1
α ⊕ sα,jα

.

Threshold Garbled Circuits and Ad Hoc Secure Computation 81

We note passing that a PoSS scheme could be constructed from monotone
span programs [22]. However, for some of our applications we need a PoSS scheme
that is also secure under a stronger notion (enhanced PoSS). For this reason
we have provided one ad-hoc scheme that relies on standard k-out-of-m secret
sharing and that can be proven secure under the notion of PoSS and its stronger
variant.

Theorem 1. (SharePoSS�
,ReconstructPoSS

�) is a PoSS scheme.

For this and the proofs of all the subsequent theorems, we refer the reader to
the full version of the paper. We now present the notion of Enhanced Positional
Secret Sharing (ePoSS). An ePoSS scheme is a PoSS scheme with an additional
security property that guarantees the protection of some of the secret inputs
even when an adversary obtains more than l shares. In more detail, the notion
of PoSS guarantees that when l shares are available one of the l secret can be
reconstructed, and nothing about the other l − 1 secrets is leaked. The notion
of ePoSS guarantees that even if an adversary has l + c shares, then at least
l− c−1 secrets remain protected. In the same spirit as in the definition of PoSS,
the notion of ePoSS specifies also which secrets remain protected depending
on the indexes of the dealer (the second input of the sharing algorithm). We
show that the construction provided in the previous section already satisfies this
additional security property. The formal definition follows.

Definition 9 (Enhanced Positional Secret Sharing). An Enhanced Posi-
tional Secret Sharing scheme over a message space M is a PoSS scheme
described by the PPT algorithms (ShareePoSS,ReconstructePoSS) which satisfies the
following additional property.

Enhanced Positional Security. ∀(x1, . . . , xl), (x′
1, . . . , x

′
l) ∈ Ml, ∀S =

{j1, . . . , jl+c} ⊆ {1, . . . , n} with j1 < j2 < · · · < jl−1 < jl < · · · < jl+c:

1. If there exists α ∈ {1, . . . , l + c} such that jα = j, and c ≤ l then
1.1 If α ≤ l then the following distributions are identical (where γ =

min{c, α − 1}):
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xα−γ−1, xα−γ , . . . , xα−1, xα, . . . , xl), j)}

{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x′

1, . . . , x
′
α−γ−1, xα−γ , . . . , xα, x′

α+1, . . . , x
′
l), j)}.

1.2 If α > l the following distributions are identical:
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xα−c−1, xα−c, . . . , xl−1, xl), j)}

{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x′

1, . . . , x
′
α−c−1, xα−c, . . . , xl−1, xl), j)}

2. if �α ∈ {1, . . . , l + c} such that jα = j, the following are identical:

{(si)i∈S : (s1, . . . , sn) $←− ShareePoSS((x1, . . . , xl), j)}
{(s′

i)i∈S : (s′
1, . . . , s

′
n) $←− ShareePoSS((x′

1, . . . , x
′
l), j)}

82 M. Ciampi et al.

It is easy to see that for c = 0 the properties of enhanced positional and
positional security are equivalent and that for c ≥ l − 1 none of the secrets is
protected.

Theorem 2. (SharePoSS�
,ReconstructPoSS

�) is an Enhanced Positional Secret
Sharing scheme

6 Threshold NIMPC

In this section we show how to construct a t-secure NIMPC NIMPCth :=
(Setupth,Msgth,Evalth). That is, a threshold NIMPC protocol for n parties, with
threshold l that supports up to t corruptions. For our construction we make use
of the following tools.

– A t-robust NIMPC protocol NIMPC := (Setup,Msg,Eval).
– A PoSS scheme PSS := (SharePoSS,ReconstructPoSS).

At a high level our protocol NIMPCth works as follows.

Setup: The algorithm Setupth runs the setup algorithm of the t-robust NIMPC
protocol on input the unary representation of l (the number of parties that
will participate in the computation) thus obtaining ρ̃0, . . . , ρ̃l. Then, for each
i ∈ {1, . . . , l}, Setupth computes an encoding of the input 0 and of the input
1 using NIMPC: m̃0

i ← Msg(ρ̃i, 0), m̃1
i ← Msg(ρ̃i, 1). As a final step, for

all i ∈ {1, . . . , l}, Setupth computes a positional secret sharing of the mes-
sages (m̃0

1, . . . , m̃
0
k) using index i thus obtaining (s0i,1, . . . , s

0
i,n), and a positional

secret sharing of the messages (m̃1
1, . . . , m̃

1
k), always for the index i, obtain-

ing (s1i,1, . . . , s
1
i,n). The output of Setupth corresponds to (ρ̃0, ρ1, . . . , ρn) where

ρi := (s0j,i, s
1
j,i)j∈{1,...,n} for all i ∈ {1, . . . , n}.

Online Messages. The party pi with input ρi := (s0j,i, s
1
j,i)j∈{1,...,n} and the

input xi ∈ {0, 1} sends mi := (s01,i, s
1
1,i), . . . , s

xi
i,i, . . . , (s

0
n,i, s

1
n,i)

Evaluation. The evaluator p0, on input ρ̃0,mj1 , . . . ,mjl
with 0 ≤ j1 < · · · <

jl ≤ n, performs the following steps. For all i ∈ {1, . . . , l}, let bi ∈ {0, 1} be such

that m̃i
$←− ReconstructPoSS(sbi

ji,j1
, . . . , sbi

ji,ji
, . . . , sbi

ji,jl
, ji) and m̃i �= ⊥.8 Then p0

computes and outputs Eval(ρ̃0, m̃1, . . . , m̃l).
It is easy to see that in the above construction a malicious evaluator can learn

the input of the honest party pi by only inspecting the bit bi. To avoid this trivial
attack we just need to permute the shares sent by the parties to the evaluator.
We decided to not include this additional step into the informal description of
the protocol to make it easier to read. We show how the complete scheme works
in the formal description of the protocol proposed Fig. 2. Intuitively, the scheme
is secure because of the following reasons:
8 In this informal description of the protocol we assume that the algorithm
ReconstructPoSS outputs ⊥ in the case that some of the input shares are ill formed
(e.g., the input shares are the combination of different execution of the algorithm
SharePoSS).

Threshold Garbled Circuits and Ad Hoc Secure Computation 83

Setup

1. Run Setup(1l, 1λ, f) obtaining ρ̃0, . . . , ρ̃l.
2. For i = 1, . . . , l compute m̃0

i ← Msg(ρ̃i, 0), m̃1
i ← Msg(ρ̃i, 1)

3. For i = 1, . . . , n pick the permutation bit bi
$←− {0, 1}, run

3.1. PSS(m̃0
1, . . . , m̃

0
l , i) thus obtaining (sbi

i,1, . . . , s
bi
i,n) and run

3.2. PSS(m̃1
1, . . . , m̃

1
l , i) obtaining (s1−bi

i,1 , . . . , s1−bi
i,n).

4. Output (ρ0, ρ1, . . . , ρn) where ρ0 := ρ̃0 and for i = 1, . . . , n, ρi :=
(bi, (s0j,i, s

1
j,i)j∈{1,...,n}).

Online messages. On input xi ∈ {0, 1} and ρi the party pi does the following.

1. If bi = 0 then set si,i ← sxi
i,i and di ← xi else set si,i ← s1−xi

i,i and
di ← 1 − xi.

2. Sends mi := ((s01,i, s
1
1,i), . . . , si,i, . . . , (s0n,i, s

1
n,i), di).

Evaluation

1. On input ρ0, mj1 , . . . , mjl with 0 ≤ j1 < · · · < jl ≤ n, for i = 1, . . . , l
compute m̃i ← ReconstructPoSS(s

dji
ji,j1

, . . . , sji,ji , . . . , s
dji
ji,jl

, ji).
2. Compute and output Eval(ρ0, m̃1, . . . , m̃l).

Fig. 2. Our t-secure NIMPC

1. The standard security property of the PoSS scheme exposes only one between
Msg(ρ̃j , 0) and Msg(ρ̃j , 1) for all j ∈ [l] when ij ∈ [n] is the index of an honest
party pij

. Indeed, an honest party pij
will not send the share s1−xi

ij ,ij
where xij

denotes the input bit of pij
. Hence, there would not be enough shares to

reconstruct Msg(ρ̃i, 1 − xij
).

2. The positional security guarantees that the adversary, with respect to a cor-
rupted party pik

, can obtain only the two messages Msg(ρ̃k, 0) and Msg(ρ̃k, 1)
(where ik ∈ [n] and k ∈ [l]).

3. The security of the t-robust NIMPC guarantees that even if for the corrupted
parties pc1 , . . . , pct

the adversary obtains Msg(ρ̃i, 0) and Msg(ρ̃i, 1) for each
i ∈ [t] this does not represent a problem.

Theorem 3. If NIMPC is a t-robust NIMPC protocol, then NIMPCth is a t-
secure Threshold NIMPC protocol.

7 Ad Hoc PSM

We start by showing how to construct an (l, l + c)-secure ad hoc PSM protocol,
for an arbitrary non-negative integer c, for a very simple functionality that we
call message selector and denote with fmsg sel. fmsg sel takes l inputs, and each

84 M. Ciampi et al.

input i ∈ [l] consists of 1) a list of size l of λ-bit strings and 2) and integer io with
io ∈ [n] (this will represent the index of the party that is contributing to the
input). The output of fmsg sel corresponds to the concatenation of l messages,
where the message in position j corresponds to the j−th message in the input
list of the party with the j-th greatest index that is participating in the online
phase. We propose a formal description of the function in Fig. 3. We denote
our protocol with Πmsg sel := (Setupmsg sel,Msgmsg sel,Evalmsg sel) and provide an
informal description of it for the simplified case in which the input of each party
is a list of bits (instead of list of λ-bit strings). In the formal description we
consider the generic case where the input of each party is a list of λ-bit strings.
At a very high level, the protocol Πmsg sel works as follows.

Input: (xi1
k)k∈[l], i1 , . . . (xil

k)k∈[l], il where {i1, . . . , il} ⊆ [n], xi1
k , . . . , xil

k ∈
{0, 1}λ, l ≤ n and n, λ ∈ N.
Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that
0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n, output xj1

1 || . . . ||xjl
l

Fig. 3. fmsg sel

Setup: For each party indexed by i ∈ {1, . . . , n}, Setupmsg sel generates l
random bits b1, . . . , bl that we call permutation bits. Then Setupmsg sel com-
putes an enhanced PoSS of (b1, . . . , bl) for the index i, and an enhanced
PoSS of (1 − b1, . . . , 1 − bl) for the index i thus obtaining (s0i,1, . . . , s

0
i,n) and

(s1i,1, . . . , s
1
i,n) respectively. Intuitively, the party i will receive as a part of ρi the

permutation bits, and depending on his inputs he will send the corresponding
permutation bits. For example, if the first input in the list of pi is 0 then pi: 1)
takes the permutation bit b1 (if the input of pi is 1 then p1 picks as the permu-
tation bit 1 − bi) 2) and sends the permutation bit together with other pieces
of information (more details will follow). The output of Setupmsg sel corresponds
to (ρ0, ρ1, . . . , ρn) where ρi := (s0j,i, s

1
j,i, bj)j∈{1,...,n} for all i ∈ {1, . . . , n} and

ρ0 := ⊥.

Online Messages. The party pi on input ρi := (s0j,i, s
1
j,i, bj)j∈{1,...,n} and

the input bits x1, . . . xl computes d1 ← b1 if x1 = b1 and d1 ← 1 − b1 oth-
erwise. Repeat the same for x2 . . . xl and sends mi :=

(
(s01,i, s

1
1,i), . . . , (s

0
n,i,

s1n,i), (d1, . . . , dl)
)
.

Evaluation. The evaluator p0, on input ρ̃0,mj1 , . . . ,mjl
with 0 ≤ j1 <

· · · < jl ≤ n, does the following steps. For all i ∈ {1, . . . , l} compute y0
i ←

ReconstructPoSS(s0ji,j1
, . . . , s0ji,jl

, ji), y1
i ← ReconstructPoSS(s0ji,j1

, . . . , s0ji,jl
, ji)

and x̃i ← y
dji
i . The output of the evaluator then corresponds to (x̃1, . . . , x̃l).

The security of our protocol relies on the security of the enhanced PoSS scheme.
Informally, let X := ((xi1 , i1), . . . , (xiN

, iN)) with N ≤ l + c be the inputs of

Threshold Garbled Circuits and Ad Hoc Secure Computation 85

the parties participating in the protocol (recall that each input represents a
list of l bits). The notion of ad hoc PSM guarantees that a malicious evalu-
ator can learn only the output of fmsg sel on input any possible set S where
S := ((xj1 , j1), . . . , (xjl

, jl)) ⊆ X. Hence, the adversary can evaluate fmsg sel on
up to

(
l+c

l

)
possible sets of inputs. Consider now the input of the party piα

be
xiα

and let c < l, then we have the two possible cases (when c ≥ l then the
evaluator can obtain all the inputs).

– If α ≤ l then xiα
can be placed in the α-th input slot of fmsg sel, or in any

other position iα−1, . . . , iα−γ with γ = min{c, α − 1}.
– If α > l then xiα

can be place in l-th input slot of fmsg sel, or in any other
position il−1, . . . , iα−c given that N = l + c.

Any other value in the input list xiα
of piα

has to be protected. We note that
this is exactly the security that an ePoSS scheme can guarantee (Fig. 4).

Common input: Input length: λ, number of parties n, threshold l and c.
Setup:

1. For i = 1, . . . , n

1.1. For each k = 1, . . . l, For each j = 1, . . . , λ Pick bk
j

$←− {0, 1}.
1.2. Run PSS(b11|| . . . ||b1λ, b21|| . . . ||b2λ, . . . , bl

1|| . . . ||bl
λ, i) thus obtaining

(s0i,1, . . . , s0i,n).
1.3. Run PSS(1 − b11|| . . . ||1 − b1λ, 1 − b21|| . . . ||1 − b2λ, . . . , 1 − bl

1|| . . . ||1 − bl
λ, i)

thus obtaining (s1i,1, . . . , s1i,n).
1.4. Set Bi = (bk

1 , . . . , bk
λ)k∈[l].

2. Output (ρ0, ρ1, . . . , ρn) where ρ0 := ⊥ and for i = 1, . . . , n, ρi :=
(Bi, (s0j,i, s

1
j,i)j∈{1,...,n}).

Online messages

1. On input xi
1, . . . , x

i
l ∈ {0, 1}λ and ρi the party pi acts as follows.

1.1. For each k ∈ [l] parse xi
k as a λ bit string xk,1, . . . , xk,λ.

1.2. For each k ∈ [l], j ∈ [λ] if xk,j = bk
j then set dk

j = bk
j else set dk

j = 1−bk
j .

1.3. Set Di ← (dk
1 , . . . , dk

λ)k∈[l].
1.4. Send mi := (Di, (s01,i, s

1
1,i), . . . , (s0n,i, s

1
n,i)).

Evaluation

1. On input ρ0, mk1 , . . . , mkl
with 0 ≤ k1 < · · · < kl ≤ n, for i = 1, . . . , l do

the following
1.1. Compute y1,0|| . . . ||yλ,0 ← ReconstructPoSS(s0ki,k1 , . . . , s

0
ki,kl

, ki),
1.2. Compute y1,1|| . . . ||yλ,1 ← ReconstructPoSS(s1ki,k1 , . . . , s

1
ki,kl

, ki)
1.3. For j = 1, . . . , λ set c ← di

j , xi,j ← yj,c

2. Compute and output x1,1|| . . . ||x1,λ, . . . , xl,1|| . . . ||xl,λ.

Fig. 4. Our (l, l + c)-secure ad hoc PSM for the message selector function fmsg sel.

86 M. Ciampi et al.

Theorem 4. Πmsg sel is a (l, l + c)-secure ad hoc PSM protocol.

7.1 Ad Hoc PSM for All Functions

In this section we show how to construct a (l, l + c)-secure ad hoc PSM for any
function f and any constant c, which has a simulator that is successful with
probability at least p = e−1 (where e is the Euler number). We denote this
scheme with ΠPSM := (SetupPSM,MsgPSM,EvalPSM) and to construct it we make
use of the following tools.

– An (l, l+c)-secure ad hoc PSM Πmsg sel := (Setupmsg sel,Msgmsg sel,Evalmsg sel)
for the message selector function described in the previous section.

– A hash function H with range size λ′ = λ2c+2.9

– A 2-party 0-robust NIMPC scheme Π2PC := (Setup,Msg,Eval) for the func-
tion gk (which will be specified later) with the following additional properties:
1. It accepts inputs of size δ = 2λn + nλλ′, where n represents the number

of parties and λ is the input size allowed by ΠPSM (it also represents the
security parameter);10 and λ′ is the range size of H.

2. The size of the output of Msg depends only on poly(λ, δ) and it is inde-
pendent from the function that Π2PC is computing (whereas the output
of Setup can grow with the size of the function being computed;

3. The randomness required to run Setup is κ := poly(λ).
– A PRG PRG : {0, 1}λ → {0, 1}κ.

We start by giving a high level idea of how our construction works starting
from a scheme that does not provide security but contains most of intuitions;
then we gradually modify it until we get our final scheme.

First attempt. Let ρ be the output of the setup phase of Πmsg sel and consider
(l − 1) instantiations of Π2PC which we denote with Π2PC

2 , . . . ,Π2PC
l . We denote

with Ri, ρ
0
i , ρ

1
i the output of the setup phase of Π2PC

i for each i ∈ {2, . . . , l}.
For each i ∈ {2, . . . , l − 1}, an instantiation Π2PC

i will be used to evaluate
the function gi. The function gi takes two inputs x0 ∈ {0, 1}λ, x1 ∈ {0, 1}λ and
outputs Msg(ρ0i+1, x

0||x1). That is, gi outputs an encoding of the message x0||x1

for Π2PC
i+1 . The instantiation Π2PC

l is used to evaluate the function gl, which takes
as input x1||x2|| . . . ||xl−1 and xl and outputs f(x1, x2, . . . , xl−1, xl).

Each party pi on input x ∈ {0, 1}λ, ρ, ρ12, . . . ρ
1
l and ρ02 does the following.

1. Encode the input x for Π2PC
2 by running Msg(ρ02, x) thus obtaining m0

1.
2. For each j ∈ {2, . . . , l}

2.1 Encode the input x for Π2PC
j by running Msg(ρ1j , x) thus obtaining m1

j

3. Run Msgmsg sel(ρ,m0
2||m1

2||m1
3||m1

4|| . . . ||m1
l) thus obtaining m̃i and output

mi.

9 This function is defined as the hash function that on input x outputs x mod λ′.
10 Our construction would work for inputs of size poly(λ), but to not overburden the

notation we consider only inputs of size λ only.

Threshold Garbled Circuits and Ad Hoc Secure Computation 87

The evaluation algorithm works as follows

1. Run Evalmsg sel on input (m̃k1 , . . . , m̃kl
) thus obtaining m0

1,m
1
2, . . . ,m

1
l (we

denote with k1, . . . , kl the indexes of the parties that are participating in the
online phase).

2. Run Eval(R2,m
0
1,m

1
2) thus obtaining m0

3.
3. For each j ∈ {3, . . . , l − 1} run Eval(Rj ,m

0
j ,m

1
j) thus obtaining m0

j+1.
4. Output Eval(Rl,m

0
l ,m

1
l)

Despite being correct, the above protocol suffers of a security issue. If more
than l parties participate to the protocol, then a corrupted evaluator could be
able to obtain the encoding of two different messages with respect to the same
ρ1j for some j ∈ {2, . . . , l}, and this could harm the security of Π2PC

j .

Second Attempt. To solve this problem we give a different ρ1j to each party. In
this way, even if two different parties encode different messages we can still rely
on the security of Π2PC. This approach requires a more sophisticated function
gj , since now the output of gj should contain an encoding of the previous inputs
under Π2PC which can be combined the with the next party’s encoded message,
whoever she is. Hence, we modify gj (for any j) to output multiple encodings, one
for each party with index greater than j. Even if this approach never causes the
same ρ1j to be used twice on different inputs, now multiple encodings of different
inputs under ρ0j might be computed by a malicious evaluator. For example, an
evaluator could construct the first input for gj using two different sequences on
inputs (this is possible only if the evaluator has access to more than l messages
sent from the honest parties).

Our Approach. To mitigate (but not completely solve) the above problem, we
modify the above protocol as follows.

1. From the setup phase each party pi receives ρsel,0j,i for each sel ∈ [λ′] and each
j ∈ [l] (note that we need to run the setup of Π2PC λ′ times more in this
protocol).

2. Each party pi picks a random value vi, and encodes this value together with
its input by running Msg(ρsel,0j,i , xi||vi) for each sel ∈ λ′ and j ∈ {2, . . . , l}.

3. The function gj now takes as input v0||x0 and v1||x1, computes
sel′ ← H(v0 ⊕ v1) and outputs Msg(ρsel

′,0
j+1,i, x

0||x1||v0 ⊕ v1) for each i where
H is an hash function with range size λ′.

This protocol remains secure as long the adversary is not able to find a
combination of the messages that yields to a collision in the hash function.
We can prove that with probability at least e−1 the adversary does not find a
collision. Intuitively, this holds because each hash function can be evaluated at
most on

(
l+c

l

)
different random values. Give that c is a constant value we obtain

that the number of possible inputs of H is at most nc. Hence, for a suitable
choice of λ′ we can show that our protocol is simulatable with probability e−1.
In the next section we show how to amplify the security to obtain a secure ad
hoc PSM. For the formal description of ΠPSM and of gk we refer to Fig. 5.

88 M. Ciampi et al.

Common parameters: Security parameter λ, H λ = λ2c+1, n, l, and c.
Setup:

- For each i, j ∈ [n] with i = j do the following.
- Run Setup(12, g2, 1λ) thus obtaining (Rj

2,i, ρ
j,0
2,i , ρ

j,1
2,i).

- For each k ∈ {3, . . . , l − 1}, i ∈ [n], sel ∈ [λ] do the following.

- Pick rselk,i
$←− {0, 1}λ and compute PRG(rselk,i) thus obtaining r.

- Run Setup(12, gk, 1λ; r) thus obtaining (Rsel
k,i, ρ

sel,0
k,i , ρsel,1

k,i).
- For each sel ∈ [λ] i ∈ [n] run Setup(12, gl, 1λ) thus obtaining
(Rsel

l,i, ρ
sel,0
l,i , ρsel,1

l,i)
- Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth

0 , ρth
1 , . . . , ρth

n).

- For i ← 1, . . . , n pick vi
$←− {0, 1}λ and set

ρi := (vi, (rselk,j>i)j∈[n]sel∈[λ],k∈{3,...,l}, (ρsel,1
k,i)sel∈[λ],k∈{3,...,l},

(ρi,0
2,j , ρ

j,1
2,i)j∈[n]−{i}, ρ

th
i) and ρ0 := ρth

0 , {Rsel
k,i}sel∈[λ],i∈[n],k∈[l]

Online messages.On input xi ∈ {0, 1}λ and ρi the party pi does the following.

- For each j ∈ [n] − {i} compute mi,0
1,j ← Msg(ρi,0

2,j , (xi, vi)).
- For each j ∈ [n] − {i} compute mj,1

2,i ← Msg(ρj,1
2,i , i||xi||vi||{rsel,03,c>i}c∈[n]).

- For each k ∈ {3, . . . , l − 2}, sel ∈ [λ] compute
msel,1

k,i ← Msg(ρsel,1
k,i , i||xi||vi||{rsel,0k+1,j>i}j∈[n],sel∈[λ])

- For each sel ∈ [λ] compute msel,1
l,i ← Msg(ρsel,1

l,i , xi)
- Compute and send

mi ← Msgmsg sel(ρth
i , ({mi,0

1,j}j∈[n]−{i}, {mj,1
2,i}j∈[n]−{i}, . . . , {msel,1

l,i }sel∈[λ], i))

Evaluation On input ρ0, mk1 , . . . , mkl
with 0 ≤ k1 < · · · < kl ≤ n:

- Run Eval(ρth
0 , mk1 , . . . , mkl

) thus obtaining
{mk1,0

1,sel }sel∈[n]−{k1}, {msel,1
2,k2

}sel∈[n]−{k2}, . . . , {msel,1
l−1,kl−1

}sel∈[λ], {msel,1
l,kl

}sel∈[λ].

- Run Eval(Rk1
2,k2

, mk1,0
1,k2

, mk1,1
2,k2

) thus obtaining {μsel ,0
3,i }i∈[n].

- For j ← 3, . . . , l − 1: Run Eval(Rsel
j,kj

, μsel ,0
j,kj

, msel ,1
j,kj

) thus obtaining

{μsel ,0
j+1,i}i∈[n], set sel ← sel .

- Compute y ← Eval(Rsel
l,kl

, μsel ,0
l,kl

, msel ,1
l,kl

) and output y.

gk(x||v1, j||y||v2||{rselk+1,i>j}j∈[n],sel∈[λ]) :
v ← v1 ⊕ v2, sel ← H(v)
For each i ∈ {j + 1, . . . , n} compute

r ← PRG(rselk+1,i), (R
sel
k+1,i, ρ

sel ,0
k+1,i, ρ

sel ,1
k+1,i) ← Setup(1n, 1λ, gk+1; r).

μsel ,0
k+1,i ← Msg(ρsel ,0

k+1,i, x||y||v).
Return {μsel ,0

k+1,i}i∈{j+1,...,n}
gl(x, y) : Parse x as l bit-strings of λ bits x1, . . . , xl−1 and compute and
output f(x1, . . . , xl−1, y).

Fig. 5. Our ad hoc PSM for all functions that is secure with probability e−1.

Threshold Garbled Circuits and Ad Hoc Secure Computation 89

Theorem 5. There exists a simulator that successfully satisfies the definition
of (l, l + c)-secure ad hoc PSM with probability at least e−1, for any constant c.

How to instantiate the 2-party 0-robust NIMPC scheme Π2PC. Our com-
piler requires non-standard requirement on the size of the messages of the
protocol Π2PC. As also noted in [9], 0-robust NIMPC protocol can be con-
structed from garbled circuits. And this construction would have all the prop-
erties that we need. At a high level the construction works as follows. Let
g be a two-input function where each input is of size M . In the setup
phase a garbled circuit C̃ for the function g and the corresponding wire keys
L0,1, L1,1, . . . L0,M , L1,M , R0,1, R1,1, . . . R0,M , R1,M are computed. Then ρ = C̃
is given to the evaluator, the keys ρ0 = L0,1, L1,1, . . . L0,M , L1,M are given to to
the party p0 and the keys ρ1 = R0,1, R1,1, . . . R0,M , R1,M are given to the party
p1. For the evaluation, the party p0 on input x ∈ {0, 1}M parses it as a bit string
x1, . . . , xM and sends to the evaluator Lx1,1, . . . LxM ,M . The party p1 does the
same for its input y but using the keys ρ1 = R0,1, R1,1, . . . R0,M , R1,M . The eval-
uator then uses the received keys and C̃ to compute g(x, y). This construction
is provided in [13], the only difference is that in their protocol the C̃ is sent
by one of the parties instead in our case we assume that C̃ is already given to
the evaluator from the setup phase. This construction has the property that we
need since the size of the keys of the garbled circuit depends only on the security
parameter and on the size of the inputs and does not depend on the size of the
function g [2]. Then can instantiate our protocol from one-way functions.

7.2 Fully Secure Ad Hoc PSM

We are now ready to provide a fully-secure ad hoc PSM ΠAPSM :=
(SetupAPSM,MsgAPSM,EvalAPSM) that realizes any function f . We use the fol-
lowing tools.

– An (l, l + c)-secure ad hoc PSM protocol ΠPSM := (SetupPSM,MsgPSM,
EvalPSM) that supports up to a n parties and that is simulatable with proba-
bility 1

p with p ≤ e (where e is the Euler number).
– An additive (l,m,m − 1)-HSS Scheme for the function f HSS := (ShareHSS,

EvalHSS,DecHSS) where m := pλ.

At a very high level our protocol consists of m instantiations of the ΠPSM

where the j-th instantiation evaluates the function Gj with j ∈ [m]. The Func-
tion Gj takes as input l shares of the HSS scheme, and uses them as input of
EvalHSS together with the server index j (see bottom of Fig. 6 for a formal speci-
fication of Gj). Each party pi that wants to participate in the protocol computes
a secret sharing of his input thus obtaining m shares. Then pi encodes each share
by running MsgPSM (one execution of MsgPSM per share). The evaluator runs the
evaluation algorithm of the j-th instantiation of ΠPSM thus obtaining yj (which
corresponds to the output of EvalHSS) for each j ∈ [m]. The output of the evalua-
tion phase then corresponds to y1⊕· · ·⊕ym. We show that this protocol is secure

90 M. Ciampi et al.

as long as there is at least one execution of ΠPSM that simulatable. Moreover,
by choosing m opportunely we can prove that at least for one instantiation of
ΠPSM the simulator is successful with overwhelming probability. Hence, at least
one share of each of the inputs of the honest parties will be protected. Therefore,
because of the security offered by the HSS, also the entire input of the parties
will be protected. We refer to Fig. 6 for the formal description of ΠAPSM.

Common parameters: λ, n, l, c where l + c denotes the maximum number
of active parties supported by the protocol and m = pλ.
Setup:

1. For each j ∈ m run SetupPSM(1n, 1l, 1λ, Gj) thus obtaining ρj
0, ρ

j
1, . . . , ρ

j
n.

2. Output ρ0, ρ1, . . . , ρn with ρ0 := (ρj
0)j∈[m], ρ1 := (ρj

1)j∈[m], . . . ρn :=
(ρj

n)j∈[m]

Online messages. On input xi ∈ {0, 1}λ and ρi the party pi does the follow-
ing.

1. For each k ∈ [l] run ShareHSS(1λ, k, x) thus obtaining x1,k
i , . . . xm,k

i .
2. For each j ∈ m run MsgPSM(ρj

i , ((x
j,k
i)k∈[l], i)) thus obtaining mj

i .
3. Send mi := (mj

i)j∈[m]

Evaluation

1. On input ρ0, mk1 := (mj
k1
)j∈[m], . . . , mkl

:= (mj
kl
)j∈[m] with 0 ≤ k1 < · · · <

kl ≤ n the evaluator does the following.
2. For each j ∈ m run EvalPSM(ρj

0, m
j
k1

, . . . , mj
kl
) thus obtaining yj .

3. Output y1 ⊕ · · · ⊕ ym

The function Gj with j ∈ [m] takes as input (xk
i1)k∈[l], i1 , . . . (xk

il
)k∈[l], il

where {i1, . . . , il} ⊆ [n], xk
i1 , . . . , x

k
il

∈ {0, 1}λ, l ≤ n and n, λ ∈ N, and
outputs EvalHSS(j, x1

j1 , . . . , xl
jl
) where (j1, . . . , jl) is a permutation of the values

(i1, . . . , il) such that 0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n.

Fig. 6. Our fully secure ad hoc PSM for all functions

Theorem 6. ΠAPSM is a (l, l+c)-secure ad hoc PSM protocol for any constant c.

Since ΠPSM can be constructed from OWFs and since the HSS scheme can
be instantiated from the LWEs assumption [10,12] then our protocol can be
instantiated assuming LWEs.

Threshold Garbled Circuits and Ad Hoc Secure Computation 91

Adaptive-ad-hoc PSM. As we have anticipated in the introduction, it is straight-
forward to construct a (l, t)-secure adaptive-ad-hoc PSM from a (l, t)-secure Ad
Hoc PSM protocol. We refer to the full version for more detail.

Acknowledgments. Vipul Goyal is supported in part by the NSF award 1916939,
DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Fac-
ulty Fellowship, a PNC center for financial services innovation award, and a Cylab
seed funding award. Rafail Ostrovsky is supported in part by DARPA under Coopera-
tive Agreement No: HR0011-20-2-0025, NSF Grant CNS-2001096, US-Israel BSF grant
2015782, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research
Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corpo-
ration Research Award. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of DARPA, the Department of Defense, or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes not withstanding any copyright annotation therein. Michele
Ciampi is supported by H2020 project PRIVILEDGE #780477 and the work is done
in part while consulting for Stealth Software Technologies, Inc.

References

1. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer.
In: Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 67
(2017). https://eccc.weizmann.ac.il/report/2017/067

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations of Computer Science,
Palm Springs, CA, USA, 22–25 October 2011, pp. 120–129. IEEE Computer Society
Press (2011). https://doi.org/10.1109/FOCS.2011.40

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, 14–16 May 1990, pp. 503–513. ACM Press (1990). https://
doi.org/10.1145/100216.100287

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: Sudan,
M. (ed.) ITCS 2016: 7th Conference on Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 14–16 January 2016, pp. 81–92. Association for Com-
puting Machinery (2016). https://doi.org/10.1145/2840728.2840759

6. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

7. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 20

https://eccc.weizmann.ac.il/report/2017/067
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/2840728.2840759
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20

92 M. Ciampi et al.

8. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 10

9. Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 391–419. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 13

10. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018: 9th Innovations in Theoretical
Computer Science Conference, Cambridge, MA, USA, 11–14 January 2018, vol.
94, pp. 21:1–21:21. LIPIcs (2018). https://doi.org/10.4230/LIPIcs.ITCS.2018.21

11. Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computa-
tion. In: 48th Annual Symposium on Foundations of Computer Science, Provi-
dence, RI, USA, 20–23 October 2007, pp. 238–248. IEEE Computer Society Press
(2007). https://doi.org/10.1109/FOCS.2007.21

12. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky Encryption and Its
Applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS,
vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 4

13. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th Annual ACM Symposium on Theory of Computing, Montréal,
Québec, Canada, 23–25 May 1994, pp. 554–563. ACM Press (1994). https://doi.
org/10.1145/195058.195408

14. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of
Computing, Palo Alto, CA, USA, 1–4 June 2013, pp. 555–564. ACM Press (2013).
https://doi.org/10.1145/2488608.2488678

15. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

16. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Sudan, M. (ed.) Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cam-
bridge, MA, USA, 14–16 January 2016, pp. 157–168. ACM (2016). https://doi.
org/10.1145/2840728.2840760

17. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

18. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
Secure Garbled Circuits from One-Way Functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 6

19. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium
on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November
2000, pp. 294–304. IEEE Computer Society Press (2000). https://doi.org/10.1109/
SFCS.2000.892118

https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1109/FOCS.2007.21
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118

Threshold Garbled Circuits and Ad Hoc Secure Computation 93

20. Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40–71.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 2

21. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 17

22. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory, pp. 102–111 (1993)

23. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 8

24. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applica-
tions. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

25. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2008). https://doi.org/10.1007/s00145-008-
9036-8

26. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Feldman, S.I., Wellman, M.P. (eds.) Proceedings of the First ACM
Conference on Electronic Commerce (EC-99), Denver, CO, USA, 3–5 November
1999, pp. 129–139. ACM (1999). https://doi.org/10.1145/336992.337028

27. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27–29, October 1986, pp. 162–167. IEEE Computer Society Press (1986).
https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/336992.337028
https://doi.org/10.1109/SFCS.1986.25

Indistinguishability Obfuscation

Indistinguishability Obfuscation from
Simple-to-State Hard Problems: New
Assumptions, New Techniques, and

Simplification

Romain Gay1(B), Aayush Jain2, Huijia Lin3, and Amit Sahai2

1 IBM, Zurich, Switzerland
2 UCLA, Los Angeles, CA 90095, USA

{aayushjain,sahai}@cs.ucla.edu
3 University of Washington, Seattle, WA 98195, USA

rachel@cs.washington.edu

Abstract. In this work, we study the question of what set of simple-
to-state assumptions suffice for constructing functional encryption and
indistinguishability obfuscation (iO), supporting all functions describ-
able by polynomial-size circuits. Our work improves over the state-of-
the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple
dimensions.

New Assumption: Previous to our work, all constructions of iO from
simple assumptions required novel pseudorandomness generators involv-
ing LWE samples and constant-degree polynomials over the integers,
evaluated on the error of the LWE samples. In contrast, Boolean pseu-
dorandom generators (PRGs) computable by constant-degree polynomi-
als have been extensively studied since the work of Goldreich (2000).
(Goldreich and follow-up works study Boolean pseudorandom genera-
tors with constant-locality, which can be computed by constant-degree
polynomials.) We show how to replace the novel pseudorandom objects
over the integers used in previous works, with appropriate Boolean pseu-
dorandom generators with sufficient stretch, when combined with LWE
with binary error over suitable parameters. Both binary error LWE and
constant degree Goldreich PRGs have been a subject of extensive crypt-
analysis since much before our work and thus we back the plausibility
of our assumption with security against algorithms studied in context of
cryptanalysis of these objects.

New Techniques: we introduce a number of new techniques:

– We show how to build partially-hiding public-key functional encryp-
tion, supporting degree-2 functions in the secret part of the message,
and arithmetic NC1 functions over the public part of the message,
assuming only standard assumptions over asymmetric pairing groups.

– We construct single-ciphertext secret-key functional encryption for all
circuits with linear key generation, assuming only the LWE assump-
tion.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 97–126, 2021.
https://doi.org/10.1007/978-3-030-77883-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_4

98 R. Gay et al.

Simplification: Unlike prior works, our new techniques furthermore let
us construct public-key functional encryption for polynomial-sized circuits
directly (without invoking any bootstrapping theorem, nor transforma-
tion from secret-key to public key FE), and based only on the polynomial
hardness of underlying assumptions. The functional encryption scheme
satisfies a strong notion of efficiency where the size of the ciphertext grows
only sublinearly in the output size of the circuit and not its size. Finally,
assuming that the underlying assumptions are subexponentially hard, we
can bootstrap this construction to achieve iO.

1 Introduction

This paper studies the notion of indistinguishability obfuscation (iO) for general
programs computable in polynomial time [21,40,50], and develops several new
techniques to strengthen the foundations of iO. The key security property for iO
requires that for any two equivalent programs P0 and P1 modeled as circuits of
the same size, where “equivalent” means that P0(x) = P1(x) for all inputs x, we
have that iO(P0) is computationally indistinguishable to iO(P1). Furthermore,
the obfuscator iO should run in probabilistically polynomial time.

This notion of obfuscation was coined by [21] in 2001. However, until 2013,
there was not even a single candidate construction known. This changed with the
breakthrough work of [40]. Soon after, the floodgates opened and a flurry of over
100 papers were published reporting applications of iO (e.g. [24,33,48,54,58,73]
[38,42,53]). Not only did iO enable the first constructions of numerous important
cryptographic primitives, iO also expanded the scope of cryptography, allowing
us to mathematically approach problems that were previously considered the
domain of software engineering. A simple example along these lines is the notion
of crippleware [40]: Alice, a software developer, has developed a program P using
powerful secrets, and wishes to sell her work. Before requiring payment, Alice
is willing to share with Bob a weakened (or “crippled”) version of her software.
Now, Alice could spend weeks developing this crippled version ˜P of her software,
being careful not to use her secrets in doing so; or she could simply disable
certain inputs to cripple it yielding an equivalent P′, but this would run the
risk of Bob hacking her software to re-enable those disabled features. iO brings
this problem of software engineering into the realm of mathematical analysis.
With iO, Alice could avoid weeks of effort by simply giving to Bob iO(P′), and
because this is indistinguishable from iO(˜P), Alice is assured that Bob can learn
no secrets.

Not only has iO been instrumental in realizing new cryptographic applica-
tions, it has helped us advance our understanding of long-standing theoretical
questions. One such recent example is that of the first cryptographic evidence
of the average-case hardness of the complexity class PPAD (which contains of
the problem of finding Nash equilibrium). In particular, [24] constructed hard
instances for the End Of the Line (EOL) problem assuming subexponentially
secure iO and one-way functions.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 99

Our Contributions. In this work, we show how to simplify, both technically and
conceptually, the task of constructing secure iO schemes. Notably, the ideas we
develop in this work helped pave the way for the recent first construction of iO
from well-studied assumptions [56], resolving the central open question in the
area of iO. The follow-up work of [56] builds upon this paper.

We now discuss the contributions of our paper in detail.

What Hardness Assumptions Suffice for Constructing iO? Given its importance,
a crucial question is to identify what hardness assumptions, in particular, simple
ones, suffice for constructing iO. While it is hard to concretely measure simplic-
ity in assumptions, important features include i) having succinct description,
ii) being falsifiable and instance independent (e.g., independent of the circuit
being obfuscated), and iii) consisting of only a constant number of assump-
tions, as opposed to families of an exponential number of assumptions. However,
research on this question has followed a tortuous path over the past several
years, and so far, despite of a lot of progress, before our work, no known iO con-
structions [3,5,9,10,13,18,20,22,29,31,37,40,41,45,46,55,60,61,63,64,70] were
based on assumptions that have all above features.

Our New Assumption. In this work, building upon assumptions introduced
in [10,55], we introduce a new simple-to-state assumption, that satisfies all the
features enumerated above. We show how to provably achieve iO based only on
our new assumption combined with standard assumptions, namely subexponen-
tially secure Learning With Errors (LWE) problem [71], and subexponentially
secure SXDH and bilateral DLIN assumptions over bilinear maps [27,57]. Let us
now describe, informally, our new assumption. In this introductory description,
we will omit discussion of parameter choices; however, they are crucial (even for
standard assumptions), and we discuss them in detail in our technical sections.
We start by describing the ingredients that will go into the assumption.

Constant-degree1 Boolean PRGs generalize constant-locality Boolean PRGs,
as for Boolean functions, locality upper bounds the degree. The latter is tightly
connected to the fundamental topic of Constraint Satisfaction Problems (CSPs)
in complexity theory, and were first proposed for cryptographic use by Gol-
dreich [47] 20 years ago. The complexity theory and cryptography commu-
nities have jointly developed a rich body of literature on the cryptanalysis
and theory of constant-locality Boolean PRGs [14–16,26,39,47,67,68]. Our new
assumption first postulates that there exists a constant d-degree Boolean PRG,
G : {0, 1}n → {0, 1}m with sufficient stretch m ≥ n� d

2 �·(0.5+ε)+ρ for some con-
stants ε, ρ > 0, whose output r = G(x) should satisfy the standard notion
of pseudorandomness. Furthermore, our assumption postulates that the pseu-
dorandomness holds even when its Boolean input x ∈ {0, 1}n is embedded in
LWE samples as noises, and the samples are made public. The latter is known
as Learning With Binary Errors (LWBE), which has been studied over the

1 Throughout this work, unless specified, by degree of boolean PRGs, we mean the
degree of the polynomial computing the PRG over the reals.

100 R. Gay et al.

last decade [17,35,36,66]. Our new assumption, combining Boolean PRGs and
LWBE, is as follows:

The G-LWEleak-security assumption (informal).
(

{ai, 〈ai, s〉 + ei mod p}i∈[n], G, G(e)
)

//e = (e1, . . . , en) ← {0, 1}n
, ai, s ← Z

n0.5+ε

p

≈
(

{ai, 〈ai, s〉 + ei mod p}i∈[n], G, r
)

//r ← {0, 1}m

As is evident here, this assumption is quite succinct, is falsifiable and instance-
independent, does not involve an exponential family of assumptions, and does not
use multilinear maps. Furthermore, the ingredients that make up the assumption
– Constant-degree Boolean PRGs and LWBE – have a long history of study
within cryptography and complexity theory. As we discuss in detail in the full
version, this assumption avoids attacks by all known cryptanalytic techniques.
We note that the parameter n of LWBE samples is chosen to be sub-quadratic
in the length |s| of the secret. This is needed in order to avoid Arora-Ge attacks
on LWBE [17], and also avoid all known algebraic attacks [35]. Indeed, the
parameter choices we make are not possible using the previous work of [55], and
the parameters used in [55] would render LWBE insecure.

Comparison of Our Assumption with the Subsequent Follow-Up Work of [56].
Our shift to considering Boolean PRGs in the context of the approach of [55]
provided a conceptual starting point for the subsequent work of [56], which
finally achieved iO from four well-founded assumptions: LPN over Fp, LWE,
Boolean PRGs in NC0, and SXDH. Indeed, the work of [56] essentially succeeds
in “separating” the two ingredients in our assumption above—that is, basing
iO on LWBE and the security of Goldreich’s PRG with appropriate parameters
separately, through a novel leveraging of the LPN over Fp assumption. Indeed,
their work goes further and actually eliminates the need for the LWBE assump-
tion entirely, and also eliminates the parameter requirements that we needed for
Goldreich’s PRG.

Complexity and Clarity in iO Constructions. Another motivation for our work is
to address the complexity of existing iO constructions. Current constructions of
iO are rather complex in the sense they often rely on many intermediate steps,
each of which incur a complexity blow up, both in the sense of computational
complexity and in the sense of difficulty of understanding. Ideally, for the sake
of simplicity, iO schemes would minimize the number of such transformations,
and instead aim at a more direct construction. In our case, we solely rely on the
generic transformation of [12,25], which shows that iO can be build from Func-
tional Encryption [74], a primitive that was originally formulated by [28,69].
Roughly speaking, FE is a public-key or secret-key encryption scheme where
users can generate restricted decryption keys, called functional keys, where each
such key is associated with a particular function f . Such a key allows the decryp-
tor to learn from an encryption of a plaintext m, the value f(m), and nothing
beyond that.

Previous constructions fell short in directly constructing a full-fledged FE
needed for the implication of iO [12,25]. For example, the work of [55] first obtain

Indistinguishability Obfuscation from Simple-to-State Hard Problems 101

a “weak” FE that: i) is secret-key, ii) only generates function keys associated with
function computable only by NC0 circuits, iii) only ensures weak security, and iv)
is based on subexponential hardness assumptions. Then, generic transformations
are applied to “lift” the function class supported and the security level, which
inevitably makes the final FE and iO schemes quite complex.

This state of affairs motivates simplifying iO constructions, for efficiency
and simplicity itself, but also for making a technically deep topic more broadly
accessible to the community. That is also one of the goals of this paper.

1.1 Our Results

Our main result is a simpler and more direct iO construction from the following
assumptions.

Theorem 1. There is a construction of iO for obfuscating all polynomial-sized
circuits based on the following assumptions:

– There exists a constant-degree d Boolean PRG G : {0, 1}n → {0, 1}m with
sufficient stretch m ≥ n� d

2 �·(0.5+ε)+ρ for some constant ε, ρ > 0, and satisfies
subexponential G-LWEleak-security,

– the subexponential LWBE assumption, and
– the subexponential bilateral DLIN and SXDH assumption over asymmetric

pairing groups.

Our Techniques and Additional Results. Our construction of FE and iO are
enabled by our new assumption and a number of new techniques designed to
enable basing the security of iO on simple-to-state assumptions. We briefly sum-
marize them here, but we elaborate on how they are used in the iO construction
in the technical overview section immediately following this introduction.

Single-Ciphertext Functional Encryption with Linear Key Generation. We con-
struct, assuming only LWE, a single-ciphertext secret-key functional encryption
scheme able to give functional keys associated with any polynomial-sized circuit
with depth bounded by λ, whose key generation and decryption algorithms have
certain simple structures: i) The key generation algorithm computes a linear
function on the master secret key and randomness, and ii) the decryption algo-
rithm, given a ciphertext ct, a functional secret key skf associated with a function
f and the description of f itself, first performs some deterministic computation
on the ciphertext to get an intermediate ciphertext ctf , followed by simply sub-
tracting the skf from it, and then rounds to obtain the outcome. This object is
previously known as special homomorphic encryption in the literature [3,6,62].
However, prior constructions only handles functional keys associated with NC0

circuits (for those based on LWE) or NC1 circuits (for those based on ring LWE).
In this work, we view it through the FE lens, and construct it from LWE for
all functions computable by polynomial-size circuits with any depth bounded by
the security parameter λ. Constructing such single-ciphertext (or single-key) FE

102 R. Gay et al.

(that do not have compact ciphertexts) from standard assumptions is a meaning-
ful goal on its own. In the literature, there are constructions of single-ciphertext
FE from the minimal assumption of public-key encryption [51,72], and several
applications (e.g., [8]). However, they do not have the type of simple structures
(e.g., linear key generation algorithm) our construction enjoys, and consequently
cannot be used in our iO construction. These simple structural properties may
also find uses in other applications.

Partially-Hiding Functional Encryption for NC1 Public Computation and Degree-
2 Private Computation. Partially-hiding Functional Encryption (PHFE) schemes
involve functional secret keys, each of which is associated with some 2-ary func-
tion f , and decryption of a ciphertext encrypting (x,y) with such a key reveals
f(x,y), x, f , and nothing more about y. Since only the input y is hidden, such
an FE scheme is called partially-hiding FE. The notion was originally intro-
duced by [51] where it was used to bootstrap FE schemes. A similar notion
of partially-hiding predicate encryption was proposed and constructed by [52].
PHFE beyond the case of predicate encryption was first constructed by [11]
for functions f that compute degree-2 polynomials on the input y and degree-1
polynomials in x, under the name of 3-restricted FE, in the secret-key setting. In
this work, we construct a PHFE scheme from standard assumptions over bilinear
pairing groups, that is public-key and supports functions f that have degree 2
in the private input y, while performs an arithmetic NC1 computation on the
public input x, More precisely, f(x,y) = 〈g(x), q(y)〉 where g is computable
by an arithmetic log-depth circuit and q is a degree-2 polynomial. The previous
best constructions of partially-hiding FE were secret-key, and could only handle
NC0 computation on the public input [55].

This contribution is interesting in its own right, as a step forward towards
broadening the class of functions supported by FE schemes from standard
assumptions. In particular, it can be used to combine rich access-control and
perform selective computation on the encrypted data. In that context, the pub-
lic input x represents some attributes, while the private input y is the plaintext.
Functional secret keys reveal the evaluation of a degree-2 polynomial on the
private input if some policy access, represented by an NC1 arithmetic circuit
evaluates to true on the attributes. This is the key-policy variant of a class of
FE with rich access-control introduced in [2]. In the latter, the authors build
an FE scheme where ciphertexts encrypt a Boolean formula (the public input)
and a vector (the private input). Functional secret keys are associated with
attributes and a vector of weights, and decryption yields the weighted sum of
the plaintexts if the formula embedded in the ciphertext evaluates to true on the
attributes embedded in the functional secret key. Their construction, as ours,
rely on standard pairing assumptions, but only permits computation of degree-1
polynomials on the private input. They also give a lattice-based construction,
which is limited to identity-based access structures.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 103

2 Technical Overview

Below, we will use several different encryption schemes, and adopt the following
notation to refer to ciphertexts and keys of different schemes. For a scheme x
(e.g., a homomorphic encryption scheme HE, or a functional encryption scheme
FE), we denote by xct, xsk a ciphertext, or secret key of the scheme x. At times,
we write xct(m), xsk(f) to make it explicit what is the encrypted message m and
the associated function f ; and write xct(k,m), xsk(k, f) to make explicit what
is the key k they are generated from. We omit these details when they do not
matter or are clear from the context.

2.1 Overview of Our FE Construction

Basic Template of FE Construction in Prior Works. We start with reviewing
the basic template of FE construction in recent works [3,10,55]. FE allows one to
generate so-called functional secret key fesk(f) associated with a function f that
decrypts an encryption of a plaintext x, fect(x) to f(x). Security ensures that
beyond the evaluation of the function f on x, nothing is revealed about x. For
constructing iO, it suffices to have an FE scheme whose security is guaranteed
against adversaries seeing only a single functional secret key, for a function with
long output f : {0, 1}n → {0, 1}m and where the ciphertexts are sublinearly-
compact in the sense that its size depends sublinearly in the output length m.

Towards this, the basic idea is encrypting the message using a Homomorphic
Encryption scheme HE, which produces the ciphertext hect(s,x), where s is
the secret key of HE. It is possible to publicly evaluate homomorphically any
function f directly on the ciphertext to obtain an so-called output ciphertext
hect(s, f(x)) ← HEEval(hect, f), that encrypts the output f(x). Then, we use
another much simpler FE scheme to decrypt hect(s, f(x)) so as to reveal f(x)
and nothing more. Using this paradigm, the computation of the function f is
delegated to HE, while the FE only computes the decryption of HE. This is
motivated by the fact that HE for arbitrary functions can be built from standard
assumptions, while existing FE schemes is either not compact, in the sense that
the ciphertext grows with the output size of the functions [49,72], or are limited
to basic functions—namely, degree-2 polynomials at most, [19,43] for the public-
key setting, [13,61] for the private-key setting2 Furthermore, known HE schemes
have very simple decryption—for most of them, it is simply computing an inner
product, then rounding. That is, decryption computes 〈hectf , s〉 = p/2·f(x)+ef

(mod p) for some modulus p, where s is the secret key of HE, and ef is a small,
polynomially bounded error (for simplicity, in this overview, we assume w.l.o.g
that f(x) ∈ {0, 1}). While there are FE schemes that support computing inner
products [1,4], sublinearly compact FE that also computes the rounding are

2 As mentioned in the introduction, partially hiding functional encryption allows to
further strengthen the function class supported, by essentially adding computa-
tion on a public input, however computation on the private input is still limited
to degree 2.

104 R. Gay et al.

currently our of reach. Omitting this rounding would reveal f(x), but also ef ,
which hurts the security of HE. Instead, we will essentially realize an approximate
version of the rounding—thereby hiding the noise ef .

A natural approach to hide the noises ef is to use larger, smudging noises.
Since ef depends on the randomness used by HEEnc, and the function f , the
smudging noises must be fresh for every ciphertext. Hard-wiring the smudging
noise in the ciphertext, as done in [6], leads to non-succinct ciphertext, whose
size grows linearly with the output size of the functions. Instead, we generate
the smudging noises from a short seed, using a PRG. The latter must be simple
enough to be captured by state of the art FE schemes.

Previous constructions use a weak pseudo-random generator, referred to as
a noise generator NG, to generate many smudging noises r = NG(sd) for hiding
ef . To see how it works, suppose hypothetically that there is a noise generator
computable by degree-2 polynomials. Then we can use 2FE, an FE scheme that
support the generation of functional key for degree-2 polynomials, to compute
p/2 · f(x) + ef + NG(sd), which reveals only f(x) as desired. This gives a basic
template of FE construction summarized below.

Basic Template of FE Construction (Intuition only, does not
work)

fesk(f) contains : 2fsk(g)
fect(x) contains : hect(s,x), 2fct(s||sd)

The basic idea is using HE with a one-time secret key s to perform the com-
putation and using a simple FE for degree-2 polynomials, 2FE, to decrypt
the output ciphertext and add a smudging noise generated via a noise gen-
erator NG. That is, we would like g(s||sd) = (p/2 · f(x) + ef + NG(sd)).
However, there are many challenges to making this basic idea work.

Unfortunately, to make the above basic idea work, we need to overcome
a series of challenges. Below, we give an overview of the challenges, how we
solve them using new tools, new techniques, and new assumptions, and how our
solutions compare with previous solutions. In later Subsects. 2.2, 2.3, and in the
full version, we give more detail on our solutions.

Challenge 1: No Candidate Degree-2 Noise Generator. Several constraints are
placed on the structure of the noise generators NG which renders their instanti-
ation difficult.

– Minimal Degree. To use degree-2 FE to compute NG, the generator is
restricted to have only degree 2 in the secret seed sd.

– Small (Poly-sized) Outputs. Existing degree-2 FE are implemented using
pairing groups: They perform the degree-2 computation in the exponent of
the groups, and obtain the output in the exponent of the target group. This
means the output p/2 · f(x) + ef + NG(sd) resides in the exponent, and the

Indistinguishability Obfuscation from Simple-to-State Hard Problems 105

only way to extract f(x) ∈ {0, 1} is via brute force discrete logarithm to
extract the whole p/2 · f(x) + ef +NG(sd). This in particular restricts NG to
have polynomially bounded outputs.

Previous works [10,55] used new assumptions that combine LWE with
constant-degree polynomials over the integers (see discussion in the introduc-
tion) to instantiate the noise generator. The resulting generator do not have
exactly degree 2, but “close” to degree 2 in following sense:

Degree “2.5” Noise Generator: NG(pubsd, privsd) is a polynomial in a public
seed pubsd and a private seed privsd both of length n′, and has polynomial
stretch. The seeds are jointly sampled (pubsd, privsd) ← Dsd from some dis-
tribution and pubsd is made publc. Degree 2.5 means that NG has constant
degree in pubsd and degree 2 in privsd.

Previous degree-2.5 noise generators produce small integer outputs, and can only
satisfy certain weak pseudo-randomness property (as opposed to standard pseu-
dorandomness). To get a flavor, consider the fact that the outputs of previous
candidates are exactly the outputs of some constant-degree polynomials com-
puted over the integers. Individual output elements are not uniformly distributed
in any range, and two output elements that depend on the same seed element
are noticably correlated. Hence, they are not pseudorandom or even pseudo-
independent. In this work, our new assumption combines Learning With Binary
Errors (LWBE) and constant-degree Boolean PRGs, and gives new degree-2.5
noise generators with Boolean outputs as follows:

– pubsd = {ci = (ai,ais+ei)}i∈[n]: LWBE samples where s,ai ← Z
n0.5+ε

p , ei ←
{0, 1}.

– privsd = ⊗(s|| − 1)� d
2 �: tensoring (s|| − 1) for 	d

2
 times.
– PRG(pubsd, privsd) = G(· · · ||ei = 〈ci, (s|| − 1)〉|| · · ·) = G(e), where G is a

constant degree Boolean PRG.

When the PRG G has sufficient stretch m ≥ n� d
2 �·(0.5+ε)+ρ for some constant

ε, ρ > 0, our new generator has polynomial stretch m = |pubsd||privsd|1+ε′
for

some ε′ depending on ε, ρ. Constant-degree Boolean PRGs are qualitatively dif-
ferent from constant-degree polynomials over the integers and have been exten-
sively studied. Furthermore, our new assumption implies that the outputs of our
generator are pseudo-random – in other words, we obtain a degree-2.5 Boolean
PRG.

106 R. Gay et al.

Not surprisingly, the stronger security property of degree-2.5 PRG lets us
significantly simplify the construction and security proof.

Challenge 2: How to Evaluate Degree 2.5 Polynomials? To evaluate our degree-
2.5 Boolean PRG, we need an FE scheme that is more powerful than 2FE. The
notion of Partially-Hiding Functional Encryption PHFE, originally introduced
by [52] in the form of Partially Hiding Predicate Encryption (PHPE), fits exactly
this task. As mentioned in introduction, PHFE strengthens the functionality of
FE by allowing the ciphertext phfct(x,y) to encode a public input x, in addition
to the usual private input y. Decryption by a functional key phfsk(f) reveals x
and f(x,y) and nothing else. The works of [10,55] constructed private-key PHFE
for computing degree-2.5 polynomials (i.e., constant degree in x and degree 2 in
y) from pairing groups. (Like 2FE, the output is still computed in the exponent
of the target group.) This suffices for evaluating degree-2.5 noise generator or
PRG in the FE construction outlined above. The only drawback is that since
PHFE is private-key, the resulting FE is also private-key.

In this work, we give a new construction of PHFE from pairing groups that is
1) public-key and 2) supports arithmetic NC1 computation on the public input—
more specifically, f(x,y) = 〈g(x), q(y)〉 where g is computable by an arithmetic
log-depth circuit and q is a degree-2 polynomial.

Theorem 2 (Public-key (NC1,deg-2)-PHFE, Informal). There is a con-
struction of a public-key PHFE for arithmetic NC1 public computation and
degree-2 private computation from standard assumptions over asymmetric pair-
ing groups.

This new construction allows us to obtain public key FE directly. Furthermore,
our construction supports the most expressive class of functions among all known
FE schemes from standard assumptions; we believe this is of independent inter-
ests.

Challenge 3: How to Ensure Integrity? Now that we have replaced 2FE with
PHFE to compute degree-2.5 polynomials, the last question is how to ensure
that PHFE decrypts only the right evaluated ciphertext hectf (instead of any
other ciphertext)? The function g we would like to compute via PHFE is
g(s, pubsd, privsd) = 〈hectf , s〉 +NG(pubsd, privsd). The difficulty is that hectf is
unknown at key-generation time or at encryption time (as it depends on both f
and hect(s,x)), and is too complex for PHFE to compute (as the homomorphic
evaluation has high polynomial depth). To overcome this, we replace homor-
mophic encryption with a single-ciphertext secret-key FE for polynomial size
circuits with depth λ with linear key generation, denoted as ε-1LGFE, which has
the following special structure.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 107

Single Ciphertext FE with Linear Key Generation

PPGen(1λ) : generate public parameters pp
Setup(1λ, pp) : generate master secret key s ∈ Z

λ
p

Enc(pp, s) : generates a ciphertext ε-1LGFE.ct
KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,

output f and secret key,
ε-1LGFE.sk(f) = 〈ppf , s〉 − r

Dec(ε-1LGFE.ct, (f, ε-1LGFE.sk)) : ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)
output q

2
y + ef + r ← ε-1LGFE.ct − ε-1LGFE.sk,

|ef |∞ ≤ B′

The single-ciphertext FE has i) a key generation algorithm that is linear in
the master secret key s and randomness r, and ii) decryption first performs
some computation on the ciphertext ε-1LGFE.ct to obtain an intermediate
ciphertext ε-1LGFE.ctf , and then simply subtracts the secret key from
ε-1LGFE.ctf , and obtains the output y perturbed by a polynomially-bounded
noise.

We replace the ciphertext hect(s,x) now with a ciphertext ε-1LGFE.ct(s,x)
of ε-1LGFE. By the correctness and security of ε-1LGFE, revealing ε-1LGFE.sk(f)
only reveals the output f(x). Hence, it suffices to use PHFE to compute the secret
key. Thanks to the special structure of the key generation algorithm, this can be
done in degree 2.5, using pseudoradnomness r expanded out via our degree-2.5
PRG. More concretely, PHFE computes the following degree-2.5 function g.

g(s||pubsd||privsd) = 〈ppf , s〉 + r = ε-1LGFE.sk(f), // g has degree 2.5

where rj =
log B−1

∑

k=0

2kPRG(j−1) log B+k(pubsd, privsd) .

One more technical caveat is that known pairing-based PHFE schemes actually
compute the secret key ε-1LGFE.sk in the exponent of a target group element,
which we denote by [ε-1LGFE.sk]T , where for any exponent a ∈ Zp, [a]T = ga

T for
a generator gT . Thanks to the special structure of the decryption algorithm of
ε-1LGFE—namely, it is linear in ε-1LGFE.sk—these group elements are sufficient
for decryption. A decryptor can first compute ε-1LGFE.ctf from ε-1LGFE.ct(s,x)
and f in the clear, then perform the decryption by subtracting [ε-1LGFE.ctf −
ε-1LGFE.sk]T in the exponent. This gives [p/2 · f(x) + ef + r]T , whose exponent
p/2 · f(x) + ef + r can be extracted by enumrating all possible ef + r, which
are of polynomial size, and f(x) ∈ {0, 1}.

Our single-ciphertext FE with linear key generation is essentially the same
notion as that of Special Homomorphic Encryption (SHE) used in [3,62]. SHE are
homomorphic encryption with a special decryption equation hectf − 〈ppf , s〉 =
p/2 · f(x) + ef where ppf (as in ε-1LGFE) can be computed efficiently from
public parameters pp and f . We think it is more accurate to view this object as
a functional encryption scheme, since what the special decryption equation gives

108 R. Gay et al.

is exactly a functional key 〈ppf , s〉 + r where r are smudging noises for hiding
ef to guarantee that only p/2 · f(x) is revealed.

Viewing this through the lens of FE brought us a significant benefit. Previ-
ous works constructed SHE by modifying the Brakerski-Vankuntanathan FHE
scheme [32], but are limited to supporting NC1 computations based on RLWE [6],
and NC0 based on LWE [6,62]. Instead, the FE lens led us to search for ideas
in the predicate encryption literature. We show how to construct ε-1LGFE for
polynomial sized circuits with depth bounded by λ from LWE by modifying
the predicate encryption scheme of [52]. This new construction allowed us to
construct FE for polynomial sized circuits with depth bounded by λ directly
without invoking any bootstrapping theorem from weaker function classes.

Theorem 3 (ε-1LGFE from LWE, informal). There is a construction of a
single-ciphertext FE for polynomial size circuits of depth λ with linear key gen-
eration as described above, from LWE.

In summary, putting all the pieces together, our construction of FE for poly-
nomial size circuits with depth λ is depicted below. Comparing with previous
constructions, it enjoys several features: 1) it is public key, 2) it can be based
on the polynomial-hardness of underlying assumptions, 3) it has simpler proofs
(e.g., no bootstrapping theorem).

Our FE Construction

fesk(f) contains : phfsk(g)
fect(x) contains : ε-1LGFE.ct(s,x) phfct(s||pubsd||privsd)

FEDec(fect, (f, fesk)) : [ε-1LGFE.sk]T ← PHFEDec(phfct, phfsk)
ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)
[y + ef + r]T = ε-1LGFE.ctf − [ε-1LGFE.sk]T
extract y + ef + r and round to recover y

The basic idea is using PHFE to compute a ε-1LGFE secret key
ε-1LGFE.sk(f) in the exponent of the target group, and then decrypting
the ciphertext ε-1LGFE.ct(s,x) to reveal f(x) only.

The only aspect of our construction that we have not discussed explicitly is
how to deal with the fact that the pseudorandom smudging error is of polynomial
size, and therefore reveals a 1/poly amount of information. We thus need to
amplify security, but because the source of our error is so simple, we are able
to achieve this amplification in a simple and direct construction (found in the
full version) that avoids any need to use hard-core measures or any other such
sophisticated and/or delicate amplification technology.

2.2 Instantiating Our Assumption

To instantiate our assumption, we need to choose a degree d PRG with a stretch
more than n� d

2 �·(0.5+δ)+ρ. The good news is that there is a rich body of literature

Indistinguishability Obfuscation from Simple-to-State Hard Problems 109

on both ingredients of our assumption that existed way before our work to guide
the choice. Binary LWE was first considered by [17] and then by [7,34,35,66].
Goldreich PRGs have been studied even before that. There are many prior works
spanning areas in computer science devoted to cryptanalysis of these objects
from lattice reduction algorithms and symmetric-key cryptanalysis, to algebraic
algorithm tools such as the Gröbner basis algorithm and attacks arising from
the Constraint Satisfaction Problem and Semi-Definite Programming literature.
Guided by them, we list three candidates below. In the full-version [44], we
survey many of these attack algorithms, and we compute approximate running
times of the attacks arising out of these algorithms on our candidates. For the
parameters we choose, all those attacks are subexponential time.

A Goldreich’s PRG G is defined by a predicate P : {0, 1}�′ → {0, 1}, where
�′ is the locality of the PRG, and a bipartiate input-output dependency graph
Λ, which specifies for every output index j ∈ [m], the subset Λ(j) ⊂ [n] of
input indexes of size �′ it depends on – the j’th output bit is simply set to
G(j) = P (Λ(j)). Hence the degree of the PRG G is identical to the degree of the
predicate P . Usually, the input-output dependency graph Λ is chosen at random,
and the non-trivial part lies in choosing the predicate P .

Instantiation 1. The first instantiation is that of the predicate XORMAJ, which
is a poplular PRG predicate [16,39].

XORMAJ�,�(x1 . . . , x2�) = ⊕i∈[�]xi ⊕ MAJ(x�+1, . . . , x2�).

The predicate above has a degree of 2·�; thus, our construction require expansion
m > n

�
2+�δ+ρ. The predicate is �+1 wise independent and thus it provably resists

subexponential time SoS refutation attacks when m(n) ≤ n
�+1
2 −c for c > 0 [59].

All other known attacks that we consider and even the algebraic attacks when
instantiated in our combined assumption require subexponential time. We refer
the reader to the full-version [44] for a detailed discussion.

Instantiation 2. An slightly unsatisfactory aspect of the XORMAJ predicate is
that the lower bound on the stretch of the PRG instantiated by XORMAJ for it
to be useful in our FE construction is > n

�
2+δ′

, whereas the upper bound on the
stretch to withstand existing attacks is very close ≤ n

�+1
2 −c, leaving only a tiny

margin to work with. This motivates us to we consdier predicates with degree
lower than the locality. One such predicate was analyzed in [65] for stretch upto
n1.25−c for c > 0:

TSPA(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ ((x2 ⊕ x4) ∧ (x3 ⊕ x5)) .

What is nice about this predicate is that, it has locality 5 but only degree 3;
thus, our construction only require expansion m > n� 3

2 �(0.5+ε)+ρ = n1+2ε+ρ. In
[65], it was proven that the PRG istantiated with TSPA resists subexponential
time F2 linear and SoS attacks. We present analysis against other attacks in the
full-version [44], all taking subexponential time.

110 R. Gay et al.

Instantiation 3. We present a degree reduction transformation that takes as
input a non-linear predicate g : {0, 1}k → {0, 1} and constructs a predicate P.

Pg(x1 . . . , x2k+1) = ⊕i∈[k+1]xi ⊕ g(xk+2 ⊕ x2, . . . , x2k+1 ⊕ xk+1).

We show in the full version [44] that the predicate above has a locality of 2k + 1
but a degree equal to k + 1; thus, our construction requires expansion m >

n� k+1
2 �(0.5+ε)+ρ. The predicate is also k + 1 wise independent. We show that all

known attacks run in subexponential time even when the stretch is bounded
by m ≤ n

k+1
2 −δ for some δ > 0. Thanks to the gap between the locality and

degree, we now have a very large margin between the lower and upper bounds
on the stretch. Hence, our work motivates the interesting question of studying
such predicates.

2.3 Single Ciphertext Functional Encryption with Linear Key
Generation

We describe our construction of a single-ciphertext (secret-key) FE scheme for
all polynomial-sized circuits with depth bounded by λ, that have the simple
structure outlined in Sect. 2, denoted as ε-1LGFE, from LWE. In particular, the
key generation and decryption algorithms have the following form, where s is
the master secret key and pp is the public parameters.

KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,

output f and secret key ε-1LGFE.sk(f) = 〈ppf , s〉 − r

Dec(ε-1LGFE.ct, (f, ε-1LGFE.sk)) : ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)

output q
2 y + ef + r ← ε-1LGFE.ct − ε-1LGFE.sk, |ef |∞ ≤ B′

Importantly, decryption recovers a perturbed output where the error ef + r
is polynomially bounded. As mentioned before, this object is essentially the
same as the notion of Special Homomorphic Encryption (SHE) in the litera-
ture [6,62]. Previous SHE schemes are constructed by modifying existing homo-
morphic encryption schemes of [30,32]. These constructions are recursive and
quite complex, and the overhead due to recursion prevents them from supporting
computations beyond NC1. In this work, viewing through the FE lens, we search
the literature of predicate encryption, and show how to modify the predicate
encryption scheme of [52] (GVW) to obtain single-ciphertext FE with the desired
structure. The GVW predicate encryption provide us with a single-ciphertext
encryption scheme with the following properties:

– The public parameter generation algorithm PPGen samples a collection of
random LWE matrices Ai,Bj ← Z

n×m
p , and sets the public parameters to

pp = ({Ai}, {Bj}).
– The setup algorithm Setup samples a master secret key constaining an LWE

secret s ← χn drawn from the noise distribution χ.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 111

– The encryption algorithm to encrypt x, generates a ciphertext hect(x) con-
taining two sets of LWE samples of form ci = sT Ai + x̂iG + ei and
dj = sT Bj +̂kjG+e′

j , where G ∈ Z
n×m
p is the gadget matrix, vk is a freshly

sampled secret key of a homomorphic encryption scheme, and ei,e
′
j ← χm

are LWE noises. Furthermore, x̂i is the i’th bit of a homomorphic encryption
ciphertext of x under key k.

– The predicate encryption scheme of [52] provides two homomorphic proce-
dures: The EvalCT procedure homomorphically evaluate f on {ci,Ai} and
{dj ,Bj} to obtain cf , and the EvalPP seperately homormorphically evalu-
ates on {Ai} and {Bi} to obtain Af .

– The homomorphic evaluation outcomes cf ,Af , has the property that the
first coordinate cf,1 of cf and the first column Af,1 of Af satisfy the special
decryption equation.

cf,1 − sT Af,1 = f(x)�p/2
 + ef mod p

The above described encryption scheme almost gives the FE scheme we want
except for the issue that it has super-polynomially large decryption error ef .
Thus, we turn to reducing the norm of the decryption error, by applying the
rounding (or modulus switch) technique in the HE literature [30]. Namely, to
reduce the error norm by a factor of p/q for a q < p, we multiply cf,1 and Af,1

with q/p over the reals and then round to the nearest integer component wise.
The rounding results satisfy the following equation

�q

p
cf,1
 − sT �q

p
Af,1
 = f(x)�q/2
 + �q

p
ef
 + error mod p

where the rounding error error is bounded by |hesk|1+O(1), which is polynomially
bounded as the secret is sampled from the LWE noise distribution instead of
uniformly.

We are now ready to instantiate the FE scheme we want. It uses the same
public parameter generation, setup, and encryption algorithm. Now to generate
a functional key for f , it first computes Af ← EvalPP({Ai}, {Bj}) and sets
ppf = � q

pAf,1
, and then outputs a functional key ε-1LGFE.sk = 〈ppfs〉 − r
where r is a random vector of smudging noises of sufficiently large but still poly-
nomially bounded magnitude. The decryption algorithm decrypts a ciphertext
ε-1LGFE.ct = ({ci}, {dj}) using a functional key ε-1LGFE.sk as follows: It first
computes cf ← EvalPP({Ai, ci}, {Bj ,dj}), and sets ε-1LGFE.ctf = � q

pcf,1
, it
then subtracts ε-1LGFE.sk from it, yielding f(x)�q/2
 + � q

pef
 + error + r as
desired.

3 Preliminaries

In this section, we describe preliminaries that are useful for rest of the paper.
We denote the security parameter by λ. For any distribution X , we denote by
x ← X (or x ←R X) the process of sampling a value x from the distribution X .

112 R. Gay et al.

Similarly, for a set X we denote by x ← X (or x ←R X) the process of sampling
x from the uniform distribution over X. For an integer n ∈ N we denote by [n]
the set {1, .., n}. A function negl : N → R is negligible if for every constant c > 0
there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote the standard polynomial time computational indistin-
guishability. We say that two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
(s(λ), ε(λ))− indistinguishable if for every adversary A (modeled as a circuit) of

size bounded by s(λ) it holds that:
∣

∣

∣

∣

Prx←Xλ
[A(1λ, x) = 1] − Pry←Yλ

[A(1λ, y) =

1]
∣

∣

∣

∣

≤ ε(λ) for every sufficiently large λ ∈ N.

For a field element a ∈ Fprmtr represented in [−p/2, p/2], we say that a ∈
[−B,B] for some positive integer B if its representative in [−p/2, p/2] lies in
[−B,B].

Throughout, when we refer to polynomials in security parameter, we mean
constant degree polynomials that take positive value on non negative inputs. We
denote by poly(λ) an arbitrary polynomial in security parameter satisfying the
above requirements of non-negativity.

3.1 Pairing Groups

Throughout the paper, we use a sequence of asymmetric prime-order pairing
groups:

G = {(pλ, Gλ,1,Gλ,2,Gλ,T , Pλ,1, Pλ,2, Pλ,T , eλ)}λ∈N,

where for all s ∈ {1, 2, T}, (Gλ,s,+) is an cyclic group (for which we use additive
notation) of order pλ = 2λΘ(1)

. Gλ,1 and Gλ,2 are generated by Pλ,1 and Pλ,2

respectively, and e : Gλ,1 × Gλ,2 → GT is a non-degenerate bilinear map, that
is, satisfying eλ(aPλ,1, bPλ,2) = abPT for all integers a, b ∈ Zp, where PT =
e(Pλ,1, Pλ,2) is a generator of Gλ,T . We require the group operations as well as
the pairing operation to be efficiently computable. The rest of the paper will
refer to this sequence of bilinear pairing groups, and the corresponding sequence
of prime orders of the groups {pλ}λ∈N. In the full version [44], we describe the
assumptions bilateral DLIN and SXDH over such groups, which we use for our
construction.

4 Functional Encryption Definitions

We denote by F = ∪n,d,�,size∈poly

({Fλ,n(λ),d(λ),�(λ),size(λ)}λ∈N

)

an abstract
function class, which is parameterised by λ ∈ N and four polynomials
n(λ), d(λ), �(λ), size(λ)). We call prmtr the tuple (n, d, �, size). In this abstract
class, every function f ∈ Fλ,prmtr takes an input from Xλ,prmtr × Yλ,prmtr and
outputs in Zλ,prmtr. We will specify what the exact denotes in the exact con-
structions. Two specific instantiations of those classes are described below:

Indistinguishability Obfuscation from Simple-to-State Hard Problems 113

– The function class FCIRC
λ,prmtr: Here Yλ,prmtr consists of {0, 1}n, Xλ,prmtr is empty,

Zλ,prmtr = {0, 1}�. This family consists of Boolean circuits of depth d and size
size.

– The function class FPHFE
λ,prmtr: Here Xλ,prmtr = Yλ,prmtr = Z

O(n)
pλ where pλ is the

prime order for the group Gλ. The class consists of certain kinds of arithmetic
cicuits over Zp. We describe the exact class later when we need it.

Here we provide the relevant definition regarding functional encryption (FE)
and partially-hiding FE (PHFE) along with several notions of efficiency and
security properties. FE corresponds to the particular case where the public part
of the message (referred to as Xλ,prmtr below) is empty.

Definition 1. (Syntax of a PHFE Scheme.) A partially-hiding functional
encryption scheme, PHFE, for a functionality {Fλ,prmtr : Xλ,prmtr × Yλ,prmtr →
Zλ,prmtr}λ,prmtr, consists of the following PPT algorithms:

– PPGen(1λ, prmtr) : Given as input the security parameter 1λ and additional
parameters prmtr = (n, d, �, size), it outputs a string pp. We assume that pp
is implicitly given as input to all the algorithms below.

– Setup(pp): Given as input pp, it outputs a public key pk and a master secret
key msk.

– Enc(pk, (x, y)): Given as input the public key pk and a message (x, y) with
public part x ∈ Xλ,prmtr and private part y ∈ Yλ,prmtr, outputs the ciphertext
ct along with the input x.

– KeyGen(msk, f): Given as input the master secret key msk and a function
f ∈ Fλ,prmtr, it outputs a functional decryption key skf .

– Dec(skf , (x, ct)): Given a functional decryption key skf and a ciphertext
(x, ct), it deterministically outputs a value z in Zλ,prmtr, or ⊥ if it fails.

Remark 1. (On Secret Key Schemes.) An FE scheme is said to be secret-key is
pk is empty, and the encryption algorithm takes as additional input the master
secret key msk.

Remark 2. (On FE vs PHFE.) The syntax of FE is identical to PHFE described
above except that for all λ ∈ N, the set Xλ,prmtr = ∅, that is, all the input remains
private.

Definition 2. (Correctness.) A Partially hiding FE scheme PHFE for the func-
tionality F = {Fλ,prmtr}λ,prmtr is correct if for security parameter λ ∈ N and every
polynomials n, d, �, size there exists a negligible function negl(λ) such that for all
messages (x, y) ∈ Xλ,prmtr × Yλ,prmtr and all functions f ∈ F , we have:

Pr

⎡

⎢

⎢

⎢

⎢

⎣

pp ← PPGen(1λ, prmtr)
(pk, sk) ← Setup(pp)

(x, ct) ← Enc(pk, (x, y))
skf ← KeyGen(sk, f)

Dec(skf , x, ct)) �= f(x, y)

⎤

⎥

⎥

⎥

⎥

⎦

≤ negl(λ).

Now we give the security notions for PHFE and FE.

114 R. Gay et al.

4.1 Security Definition

We discuss two security notions. First, for any constant ε ∈ (0, 1], we present the
notion of ε-simulation security below:

Definition 3 (ε-simulation security). For all ε ∈ (0, 1], we say a PHFE
scheme for the functionality F = {Fλ,prmtr}λ,prmtr denoted by PHFE is
ε-simulation secure if there exists a (possibly stateful) PPT simulator S =
(S̃etup, ˜Enc, K̃eyGen) such that for all stateful PPT adversaries A = (A1,A2),
there exists a negligible function negl such that for all security parameters λ ∈ N,
all polynomials prmtr = (n, d, �, size), we have:

advSIMPHFE,A(1λ, prmtr) := |Pr[1 ← RealPHFE
A (1λ, prmtr)]−Pr[1 ← IdealPHFE

A,S (1λ, prmtr)]| < negl(λ),

where the experiments RealPHFE
A (1λ) and IdealPHFE

A,S (1λ) are defined below. The
differences between these two experiments are highlighted in red.

RealPHFE
A (1λ, prmtr):

(x∗, y∗) ∈ Xλ,prmtr × Yλ,prmtr, (fj ∈ Fλ,prmtr)j∈[Qsk] ← A1(1λ)
pp ← PPGen(1λ, prmtr)
(pk,msk) ← Setup(pp)
(x∗, ct∗) ← Enc(pk, (x∗, y∗))
∀j ∈ [Qsk]: skfj

← KeyGen(msk, fj)
α ← A2(pp, pk, (skfj

)j∈Qsk
, x∗, ct∗)

Output α.

IdealPHFE
A,S (1λ, prmtr):

(x∗, y∗) ∈ Xλ,prmtr × Yλ,prmtr, (fj ∈ Fλ,prmtr)j∈[Qsk] ← A1(1λ)
pp ← PPGen(1λ, prmtr)
(˜pk, td) ← S̃etup(pp), ω ← Sample(x∗, y∗, (fj)j∈[Qsk])
(x∗, ˜ct∗) ← ˜Enc(td, ω)
∀j ∈ [Qsk] : ˜skfj

← K̃eyGen(td, fj , ω)
α ← A2

(

pp, ˜pk, (˜skfj
)j∈Qsk

, x∗, ˜ct∗
)

Output α.

The algorithm Sample, given as input the tuple
(

x∗, (fj , fj(x∗, y∗))j∈[Qsk]

)

,
flips a biased coin. If the outcome is tails (which happens with probability ε over
the coin flip), then it outputs ω =

(

x∗, (fj , fj(x∗, y∗))j∈[Qsk]

)

. If the outcome is
heads (which happens with probability 1 − ε over the coin flip), then it outputs
ω =

(

x∗, y∗(fj)j∈[Qsk]

)

.

Remark 3 (Standard simulation security). If ε = 1, the algorithm Sample always
outputs ω = (x∗, (fj , fj(x∗, y∗))j∈[Qsk]), which corresponds to the standard sim-
ulation security definition.

Remark 4 (Secret-Key schemes). This definition can be easily adapted to a
secret-key scheme simply by having the encryption algorithm get the additional
input msk.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 115

Remark 5 (Subexponential security). If ε = 1, and the negl above is 2−λΩ(1)
, then

the scheme is said to satisfy subexponential security.

Remark 6 (Number of functional decryption keys). We say a a scheme is many-
key secure if security holds for any polynomial Qsk, and one-key secure if Qsk = 1.
When we do not specify it explicitly, we mean one-key security.

We also give an indistinguishability-based security definition.

Definition 4 (IND security). We say an FE scheme FE for functionality F =
{Fλ,prmtr}λ∈N is IND secure if for all stateful PPT adversaries A, all polynomial
parameters prmtr = (n, d, �, size) there exists a negligible function negl such that,
we have:

advIND
FE,A(λ) := 2 · |1/2 − Pr[1 ← INDFE

A (1λ, prmtr)]| < negl(λ),

where the experiment INDFE
A (1λ, prmtr) is defined below.

INDFE
A (1λ, prmtr):

{xi
0, x

i
1}i∈[Qct], {f j}j∈[Qsk] ← A(1λ)

pp ← PPGen(1λ, prmtr)
Where ∀i ∈ [Q]: xi

0, x
i
1 ∈ Yλ,prmtr, ∀j ∈ [Qsk]: f j ∈ Fλ,prmtr

(pk,msk) ← Setup(pp), b ←R {0, 1}
∀i ∈ [Qct] : cti ← Enc(pk, xi

b), ∀j ∈ [Qsk] : skj ← KeyGen(msk, f j)
b′ ← A({cti}i∈[Qct], {skj}j∈[Qsk], pk)
Return 1 if b = b′ and ∀ i ∈ [Qct], j ∈ [Qsk], f j(xi

0) = f j(xi
1), 0 otherwise.

As for simulation security, we say that FE satisfies subexponential security if
negl(λ) = 2−λΩ(1)

.

4.2 Efficiency Features

We now define various efficiency notions for PHFE (which are straightforward
to adapt to FE).

Definition 5 (Linear efficiency).
We say a PHFE for the functionality F = {Fλ,prmtr}λ,prmtr satisfies linear

efficiency if there exists a polynomial poly such that for all security parameters
λ ∈ N and all polynomial parameters prmtr = (n, d, �, size), all messages (x, y) ∈
Xλ,prmtr × Yλ,prmtr, all pp in the support of PPGen(1λ, prmtr), all (pk,msk) in the
support of Setup(pp) the size of the circuit computing Enc(pk, ·) on the input
(x, y) is at most (|x|+ |y|) ·poly(λ), for some fixed polynomial poly where |x| and
|y| denote the size of x and y, respectively.

Now we define the notion of sublinearity for FE scheme for the functionality
F (i.e. all polynomial circuits, defined in Sect. 3). It was shown in a series of
works [12,23,25] that such FE schemes for P/poly imply obfuscation (assuming
subexponential security).

116 R. Gay et al.

Definition 6 (Sublinearity). Let FE be an FE scheme for the functionality
F = {Fλ,prmtr}λ,prmtr. If there exists ε ∈ (0, 1) and a polynomial poly such that
for all tuple of polynomials prmtr = (n, d, �, size), all λ ∈ N, all pp in the support
of PPGen(1λ, prmtr), all (pk,msk) in the support of Setup(pp):

– if the size of the circuit Enc(pk, ·) is at most size1−ε ·poly(n, λ) then FE is said
to be sublinearly efficient. It is said to be compact if ε = 1.

– if for all x ∈ {0, 1}n, all ciphertexts ct in the support of Enc(pk, x), the size
of ct is at most size1−ε ·poly(n, λ) then FE is said to be sublinearly ciphertext-
efficient.

– if for all x ∈ {0, 1}n, all ciphertexts ct in the support of Enc(pk, x), the size of
ct is at most �1−ε ·poly(n, λ) then FE is said to be sublinearly output-efficient.

Remark 7 (levelled linear efficiency, compactness, and sublinearity). More gener-
ally, we say that the scheme satisfies levelled linear efficiency or levelled compact-
ness, or levelled sublinearity if the multiplicative factor poly(n, λ) in Definition 5
or Definition 6 is replaced by poly(λ, n, d), i.e. the polynomial also depends on
the depth bound d.

4.3 Structural Properties

Now we define some structural properties that are very specific to our construc-
tion. First we define the notion of special structure which captures the property
of a function key can be generated just by applying a linear function of the
master secret key over some field along with the fact that the decryption of a
ciphertext is “almost linear” (specified below).

Definition 7. (Special Structure*.) We say that a functional encryption
scheme FE for FCIRC = {FCIRC

λ,prmtr}λ,prmtr satisfies special structure* if there
exist polynomials h1, h2, h3, h4 such that the following holds. Recall FCIRC

λ,prmtr for
prmtr = (n, d, �, size) consists of all Boolean circuits with n bits of input, � bits
of output, depth d and size size.

– (PP Syntax.) The pp generated by the PPGen(1λ, prmtr) algorithm contains a
h1(λ)-bit prime modulus p.

– (Linear secret key Structure.) The master secret key is a vector in s ∈ Z
h2(λ)
p .

For any function f ∈ Fλ,prmtr, let f = {fi}i∈[�] denote the circuit computing
ith bit of f . The functional secret key is of the form skf = {skfi

}i∈[�] where
each skfi

= 〈ppfi
, s〉 + ei mod p where ei ←R {0, . . . , h3(λ, n, �, d)} and ppfi

is some deterministic polynomial time computable function of pp and fi.
– (Linear + Round Decryption with polynomial decryption error.) There exists

a deterministic poly-time algorithm such that given an encryption ct of
m ∈ {0, 1}n and a function f = (f1, . . . , f�) ∈ Fλ,prmtr, for every i ∈ [�],
computes ctfi

such that |ctfi
− 〈ppfi

, s〉 − fi(m)	p
2
| ≤ h4(λ, d, �, size). Given

the secret-key for a function f = (f1, . . . , f�), this can be used to recover
f(m) = (f1(m), . . . , f�(m)).

Indistinguishability Obfuscation from Simple-to-State Hard Problems 117

Outline. In the rest of the paper, we just discuss one of the aspect, which is
to construct an from a PHFE scheme, an ε-1LGFE scheme and an sPRG an
ε-secure Functional Encryption scheme. We show how to construct each of these
primitives in the full version [44]. We also show in the full version how to amplify
its security resulting into a sublinearly efficient Functional Encryption scheme.
Such a scheme can be used to build iO using known results [12,25].

5 Definition of Structured-Seed PRG

We recall the notion of a structured seed PRG sPRG [56].

Definition 8 (Syntax of Structured-Seed Pseudo-Random Generators
(sPRG)). Let τ be a positive constant. A structured-seed Boolean PRG, sPRG,
with stretch τ that maps (n ·poly(λ))-bit binary strings into (m = nτ)-bit strings,
where poly is a fixed polynomial, is defined by the following PPT algorithms:

– PPGen(1λ, 1n) takes as input the security parameter λ, and an input length 1n,
which is a polynomial in λ. It outputs public parameters pp, which amongst
other things contains an odd prime modulus p(λ) which is poly(λ) bit prime
for some polynomial independent of n.

– IdSamp(pp) samples a function index I.
– SdSamp(I) jointly samples two binary strings, a public seed and a private

seed, sd = (P,S). These are vectors over Zp. The combined dimension of
these vectors is n · poly(λ).

– Eval(I, sd) computes a string in {0, 1}m.

Remark 8 (The modulus p(λ)). The size of the modulus p(λ) is some fixed poly-
nomial in the security parameter λ independent of n.

Remark 9 (Polynomial Stretch.). We say that an sPRG has polynomial stretch
if τ > 1 for some constant τ .

Remark 10 (Linear Efficiency.). We say that an sPRG has linear-efficiency if the
time to sample sd is n · poly(λ).

Remark 11 (On poly(λ) multiplicative factor in the seed length.). As opposed
to a standard Boolean PRG definition where the length of the output is set to
be nτ where n is the seed length, we allow the length of the seed to increase
multiplicatively by a fixed polynomial poly in a parameter λ. Looking ahead,
one should view n as an arbitrary large polynomial in λ, and hence sPRG will
be expanding in length.

Definition 9 (Security of sPRG). A structured-seed Boolean PRG, sPRG,
satisfies

118 R. Gay et al.

Pseudorandomness: Let λ ∈ N be the security parameter, let n(λ) be a poly-
nomial in λ. Then, following distributions are indistinguishable.

(pp, I, P, Eval(I, sd))
(pp, I, P, r)

where pp ← PPGen(1λ, 1n), I ← IdSamp(pp), sd ← SdSamp(I), r ←
{0, 1}m.

Definition 10 (Complexity and degree of sPRG). Let D ∈ N, let λ ∈ N

and n = n(λ) be arbitrary positive polynomial in λ, and p = p(λ) denote a prime
modulus which is sampled during PPGen. Let C be a complexity class. A sPRG
has complexity C in the public seed and degree D in private seed over Zp, denoted
as, sPRG ∈ (C, deg D), if for every I in the support of IdSamp(1λ, 1n), there
exists an algorithm ProcessI in C and an m(n)-tuple of polynomials QI that can
be efficiently generated from I, such that for all sd in the support of SdSamp(I),
it holds that:

Eval(I, sd) = QI(P′,S) over Zp, P′ = ProcessI(P),

where QI has degree 1 in P and degree D in S.

We remark that the above definition generalizes the standard notion of fam-
ilies of PRGs in two aspects: 1) the seed consists of a public part and a private
part, jointly sampled and arbitrarily correlated, and 2) the seed may not be
uniform. In the full version, we show how to construct an sPRG from our new
assumption G-LWEleakD,ε,ρ.

6 Construction of ε-Simulation Secure FE

In this section, we construct a ε-simulation secure public-key functional encryp-
tion scheme FE for circuits FCIRC = {FCIRC

λ,prmtr}λ,prmtr for some ε ∈ (0, 1). FCIRC
λ,prmtr

is the function class where for all λ and all polynomials prmtr = (n, d, �, size) it
denotes the set of Boolean circuits with input length n(λ), depth at most d(λ),
output length �(λ), and size at most size(λ). It uses the following ingredients:

– ε-1LGFE: a secret-key FE scheme for the function class FCIRC defined above,
satisfying the following properties:

• (Security.) 1-key single ciphertext ε-simulation security as in Definition 4
for some constant ε ∈ (0, 1) specified later. Note that although the scheme
is for a single key, it however allows circuits with multiple output bits.

• (Efficiency.) levelled compactness as in Definition 5. In particular, cipher-
text size as well as the size of encryption circuit is poly(λ, n, d), indepen-
dent of the function size size and output length �.

• (Structural property.) Special Structure* as per Definition 7. Recall, it
says that:

Indistinguishability Obfuscation from Simple-to-State Hard Problems 119

* (PP Syntax.) The pp generated by the PPGen(1λ, prmtr) algorithm
contains a h1(λ)-bit prime modulus which is the modulus of the bilin-
ear map Gλ, p.
* (Linear secret key Structure.) The master secret key is a vector in
s ∈ Z

h2(λ)
p . For any function f ∈ Fλ,prmtr, let f = {fi}i∈[�] denote

the circuit computing ith bit of f . The functional secret key is of the
form skf = {skfi

}i∈[�] where each skfi
= 〈ppfi

, s〉 + ei mod p where
ei ←R {0, . . . , h3(λ, n, �, d)} and ppfi

is some deterministic polyno-
mial time computable function of pp and fi. For our construction
below we require that h3(λ, n, �, d) = 2t − 1 for some natural number
t = O(log(n ·d ·� ·size)). We can always choose an a constant ε ∈ (0, 1)
for the construction in the full version [44] such that there exists an
ε-1LGFE scheme with this property, satisfying ε-simulation security.
We use that value of ε.
* (Linear + Round Decryption with polynomial decryption error.)
There exists a deterministic poly-time algorithm such that given an
encryption ct of m ∈ {0, 1}n and a function f = (f1, . . . , f�) ∈
FCIRC

λ,prmtr, for every i ∈ [�], computes ctfi
such that |ctfi

− 〈ppfi
, s〉 −

fi(m)	p
2
| ≤ h4(λ, d, �, size). Given the secret-key for a function f =

(f1, . . . , f�), this can be used to recover f(m) = (f1(m), . . . , f�(m)).
Such a scheme is constructed in the full version [44].

– PHFE: a public-key PHFE for the class of functions FPHFE defined with
respect to bilinear groups of order p (which is the same as the modulus of
ε-1LGFE) and is in fact the order of group Gλ. FPHFE = {FPHFE

λ,n′ }λ,n′ for
every polynomial n′ consists of all functions f that takes an input of the form
(x,y) ∈ Z

n′
p × Z

n′
p , and computes f(x,y) = [

∑

j,k fj,k(x) · yj · yk]T ∈ GT

where fj,k is a constant degree polynomial over x (i.e. an arithmetic circuit
in NC0), and GT denotes the target group (see def pairings). The scheme
PHFE satisfies the following properties:

• (Security.) 1-simulation security for unbounded key queries.
• (Efficiency.) Linear run-time as per Definition 5.

Such a scheme is constructed in the full version. We set n′ later.
– sPRG: a structured-seed PRG with stretch τ > 1, linear efficiency as per

Definition 8. This sPRG works with the modulus p(λ) of the bilinear map
Gλ. The evaluation algorithm of sPRG computes an arithmetic NC0 circuit on
the public part of the seed, and a degree-2 polynomial on the secret part of
the seed, that is, sPRG ∈ (arith-NC0,deg 2). This sPRG is implementable by
FPHFE.

We now describe the construction.

Parameters: For sPRG, we set the length parameter to be �
1
τ · λ. Thus, �sPRG =

�
1
τ poly(λ) is the number of Zp elements in the sPRG seed for some polynomial

poly independent of the �. Define n′ = h2(λ, d)+�sPRG. Let t = log2(h3(λ, n, �, d)+
1).

120 R. Gay et al.

Construction: Please refer to the construction in Fig. 1.

FE.PPGen(1λ, prmtr) :
Given 1λ and the tuple of polynomials prmtr = (n, size, d, �),
it samples PHFE.pp ← PHFE.PPGen(1λ, 1n′

), ε-1LGFE.pp ←
ε-1LGFE.PPGen(1λ, prmtr) and sPRG.pp ← sPRG.PPGen(1λ, 1�

1
τ ·λ),

I ← sPRG.IdSamp(sPRG.pp). Let p denote the prime modulus of Gλ. Output
pp = (PHFE.pp, ε-1LGFE.pp, sPRG.pp, I, p).

FE.Setup(pp) : Run PHFE.Setup(PHFE.pp) → (PHFE.pk,PHFE.msk). Set
and output FE.pk = PHFE.pk and FE.msk = PHFE.msk.

FE.Enc(FE.pk, m ∈ {0, 1}n) :

– msk′ ← ε-1LGFE.Setup(ε-1LGFE.pp)
– ct1 ← ε-1LGFE.Enc(msk′, m).
– (P,S) ← SdSamp(I).
– ct2 ← PHFE.Enc(PHFE.pk, (P, (S,msk′))).

It returns ct = (ct1, ct2).

FE.KeyGen(FE.msk, C) : Given as input a circuit C ∈ Fprmtr, denote
C = (C1, . . . , C�) where each Ci is the circuit computing the ith output
bit of C. For every i ∈ [�], do the following:

– let ε-1LGFE.ppCi
be the vector computed deterministically from ε-1LGFE.pp

and Ci such that skCi ≈ 〈msk′, ε-1LGFE.ppCi
〉 (see the linear secret key

structure in Definition 7).
– Compute skCi ← PHFE.KeyGen(PHFE.msk, fi) where fi takes as input

(P, (S,msk′)) and outputs 〈msk′, ε-1LGFE.ppCi
〉 + ∑

j∈[1,t] 2
j−1 · r(i−1)·t+j ,

where for all θ ∈ [m], rθ denotes the θ’th bit output by sPRG.Eval(I, sd) ∈
{0, 1}m.

It returns skC = (skC1 , . . . skC�
).

FE.Dec(skC , ct) : Parse skC = (skC1 , ..., skC�
) and ct = (ct1, ct2). For ev-

ery i ∈ [�], do the following:

– By the special structure* of ε-1LGFE, compute ctC,i using the ciphertext ct1.
– Compute [wi]T ← PHFE.Dec(skCi , ct2).
– Compute [zi]T = [ctCi − wi]T .
– Check if |zi| ≤ h3(λ, n, d, �) + h4(λ, n, d, �) (by brute-force). If so set yi = 0.

Otherwise, set yi = 1. Output (y1, ..., y�).

Fig. 1. Construction of Functional Encryption Scheme FE.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 121

Due to lack of space, we argue correctness, efficiency and security properties
in the full version [44].

Acknowledgements. Aayush Jain was partially supported by grants listed under
Amit Sahai, a Google PhD fellowship. Huijia Lin was supported by NSF grants CNS-
1528178, CNS-1929901, CNS-1936825 (CAREER), the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office (ARO) under Contract No.
W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE awards,
NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foun-
dation, ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT
Research, Google, or the U.S. Government.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. Cryptology ePrint Archive, Report 2020/577
(2020). https://eprint.iacr.org/2020/577

3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

5. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 5

6. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

7. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems. ACM Commun. Comput. Algebra 49(2), 62 (2015)

8. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

https://doi.org/10.1007/978-3-662-46447-2_33
https://eprint.iacr.org/2020/577
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-662-48000-7_32

122 R. Gay et al.

9. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Bar-
rington’s theorem. In: ACM CCS, pp. 646–658 (2014)

10. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8 10

11. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multi-
linear maps: IO from LWE, bilinear maps, and weak pseudorandomness. IACR
Cryptology ePrint Archive 2018:615 (2018)

12. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

13. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

14. Applebaum, B.: Pseudorandom generators with long stretch and low locality from
random local one-way functions. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM
STOC, pp. 805–816. ACM Press, May 2012

15. Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias gen-
erators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 600–617. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 34

16. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and
their countermeasures. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp.
1087–1100. ACM Press, June 2016

17. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

18. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

19. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 3

20. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

21. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

22. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant
programs: a framework for obfuscation and witness encryption. In: Vidick, T. (ed.)
11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Seattle,
Washington, USA, 12–14 January 2020. LIPIcs, vol. 151, pp. 82:1–82:39. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-642-28914-9_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Indistinguishability Obfuscation from Simple-to-State Hard Problems 123

23. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 15

24. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a Nash equilibrium. In: Guruswami, V. (ed.) 56th FOCS, pp. 1480–1498. IEEE
Computer Society Press, October 2015

25. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press, October 2015

26. Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function. Comput.
Complex. 21(1), 83–127 (2012)

27. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

28. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

29. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 4

30. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer Sci-
ence 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)

31. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

32. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

33. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 11

34. Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE
with binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle
attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016.
LNCS, vol. 9646, pp. 24–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-31517-1 2

35. Caho, S., Tibouchi, M., Abe, M.: Sample-time trade-off for the Arora-Ge attack
on binary LWE. In: Symposium on Cryptography and Information Theory (2019)

36. Sun, C., Tibouchi, M., Abe, M.: Revisiting the hardness of binary error LWE.
Cryptology ePrint Archive, Report 2020/666 (2020). https://eprint.iacr.org/2020/
666

37. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 20

https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/978-3-319-31517-1_2
https://doi.org/10.1007/978-3-319-31517-1_2
https://eprint.iacr.org/2020/666
https://eprint.iacr.org/2020/666
https://doi.org/10.1007/978-3-319-96881-0_20

124 R. Gay et al.

38. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

39. Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security
of Goldreich’s pseudorandom generator. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 96–124. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 4

40. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

41. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

42. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
II. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 20

43. Gay, R.: A new paradigm for public-key functional encryption for degree-2 poly-
nomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part I. LNCS, vol. 12110, pp. 95–120. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45374-9 4

44. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-
to-state hard problems: new assumptions, new techniques, and simplification.
IACR Cryptology ePrint Archive 2020:764 (2020)

45. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products. In: Electronic
Colloquium on Computational Complexity (ECCC), vol. 25, p. 149 (2018)

46. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive 2014:309 (2014)

47. Goldreich, O.: Candidate one-way functions based on expander graphs. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)

48. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

49. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June
2013

50. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 3

51. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

52. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 25

https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25

Indistinguishability Obfuscation from Simple-to-State Hard Problems 125

53. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 24

54. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

55. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

56. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.
iacr.org/2020/1003

57. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

58. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

59. Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower bounds
for refuting any CSP. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC, pp. 132–145. ACM Press, June 2017

60. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

61. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

62. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018:646 (2018)

63. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

64. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, October 2016

65. Lombardi, A., Vaikuntanathan, V.: Minimizing the complexity of Goldreich’s pseu-
dorandom generator. IACR Cryptology ePrint Archive 2017:277 (2017)

66. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

67. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: 44th
FOCS, pp. 136–145. IEEE Computer Society Press, October 2003

68. O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial
stretch. In: IEEE 29th Conference on Computational Complexity, CCC 2014, Van-
couver, BC, Canada, 11–13 June 2014, pp. 1–12. IEEE Computer Society (2014)

https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-030-17653-2_9
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-642-40041-4_2

126 R. Gay et al.

69. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010:556 (2010)

70. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 28

71. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

72. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the
17th ACM Conference on Computer and Communications Security, ACM CCS
2010, pp. 463–472. ACM (2010)

73. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) STOC, pp. 475–484. ACM (2014)

74. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

Candidate Obfuscation via Oblivious
LWE Sampling

Hoeteck Wee1 and Daniel Wichs1,2(B)

1 NTT Research Inc., San Francisco, USA
wichs@ccs.neu.edu

2 Northeastern University, Boston, USA

Abstract. We present a new, simple candidate construction of indis-
tinguishability obfuscation (iO). Our scheme is inspired by lattices and
learning-with-errors (LWE) techniques, but we are unable to prove secu-
rity under a standard assumption. Instead, we formulate a new falsifiable
assumption under which the scheme is secure. Furthermore, the scheme
plausibly achieves post-quantum security.

Our construction is based on the recent “split FHE” framework of
Brakerski, Döttling, Garg, and Malavolta (EUROCRYPT ’20), and we
provide a new instantiation of this framework. As a first step, we con-
struct an iO scheme that is provably secure assuming that LWE holds and
that it is possible to obliviously generate LWE samples without knowing
the corresponding secrets. We define a precise notion of oblivious LWE
sampling that suffices for the construction. It is known how to obliviously
sample from any distribution (in a very strong sense) using iO, and our
result provides a converse, showing that the ability to obliviously sample
from the specific LWE distribution (in a much weaker sense) already also
implies iO. As a second step, we give a heuristic contraction of oblivious
LWE sampling. On a very high level, we do this by homomorphically gen-
erating pseudorandom LWE samples using an encrypted pseudorandom
function.

1 Introduction

Indistinguishability obfuscation (iO) [BGI+01,GR07] is a probabilistic
polynomial-time algorithm O that takes as input a circuit C and outputs an
(obfuscated) circuit C ′ = O(C) satisfying two properties: (a) functionality: C
and C ′ compute the same function; and (b) security: for any two circuits C1

and C2 that compute the same function (and have the same size), O(C1) and
O(C2) are computationally indistinguishable. Since the first candidate for iO
was introduced in [GGH+13b], a series of works have shown that iO would have
a huge impact on cryptography.

The state-of-the-art iO candidates with concrete instantiations may be
broadly classified as follows:

– First, we have fairly simple and direct candidates based on graded “multi-
linear” encodings [GGH+13b,GGH13a,GGH15,FRS17,CVW18,BGMZ18,

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 127–156, 2021.
https://doi.org/10.1007/978-3-030-77883-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_5

128 H. Wee and D. Wichs

CHVW19] and that achieve plausible post-quantum security. These candi-
dates have survived fairly intense scrutiny from cryptanalysts, [CHL+15,
MSZ16,CLLT16,ADGM17,CLLT17,CGH17,Pel18,CVW18,CCH+19], and
several of them are also provably secure in restricted adversarial models that
capture a large class of known attacks. However, none of these candidates
have a security reduction to a simple, falsifiable assumption.

– Next, we have a beautiful and remarkable line of works that aims to base
iO on a conjunction of simple and well-founded assumptions, starting from
[Lin16,LV16,Lin17,LT17], through [AJL+19,Agr19,JLMS19,GJLS20], and
culminating in the very recent (and independent) work of Jain, Lin and Sahai
[JLS20] basing iO on pairings, LWE, LPN and PRG in NC0. These construc-
tions rely on the prior constructions of iO from functional encryption (FE)
[BV15,AJ15], and proceed to build FE via a series of delicate and complex
reductions, drawing upon techniques from a large body of works, including
pairing-based FE for quadratic functions, lattice-based fully-homomorphic
and attribute-based encryption, homomorphic secret-sharing, as well as hard-
ness amplification.

– A number of more recent and incomparable candidates, including a direct can-
didate based on tensor products [GJK18] and another based on affine deter-
minant programs (with noise) [BIJ+20]; the BDGM candidate based on an
intriguing interplay between a LWE-based and a DCR-based cryptosystems
[BDGM20a]; the plausibly post-quantum secure candidates in [Agr19,AP20]
that replace the use of pairings in the second line of works with direct candi-
dates for FE for inner product plus noise. All of these candidates, as with the
first line of work, do not present a security reduction to a simple, falsifiable
assumption.1

To the best of our knowledge, none of these existing approaches yields a lattice-
inspired iO candidate that is plausibly post-quantum secure and enjoys a security
reduction under a simple, falsifiable assumption referring solely to lattice-based
cryptosystems, which is the focus of this work. We further believe that there is a
certain aesthetic and minimalistic appeal to having an iO candidate whose hard-
ness distills to a single source of computational hardness (as opposed to lattice
plus pairing/number-theoretic hardness). Such a candidate is also potentially
more amenable to crypto-analytic efforts as well as further research to reduce
security to more standard lattice problems.

1.1 Our Contributions

Our main contribution is a new candidate construction of iO that relies on
techniques from lattices and learning-with-errors (LWE). We formulate a new
falsifiable assumption on the indistinguishability of two distributions, and show
that our construction is secure under this assumption. While we are unable to

1 We defer a comparison with the independent and concurrent works [GP20,
BDGM20b] to Sect. 1.3.

Candidate Obfuscation via Oblivious LWE Sampling 129

prove security under a standard assumption such as LWE, we view our construc-
tion as a hopeful step in that direction. To our knowledge, this is the first iO
candidate that is simultaneously based on a clearly stated falsifiable assump-
tion and plausibly post-quantum secure. Perhaps more importantly, we open
up a new avenue towards iO by showing that, under the LWE assumption, the
ability to “obliviously sample from the LWE distribution” (see below) prov-
ably implies iO. Unlike prior constructions of iO from simpler primitives (e.g.,
functional encryption [AJ15,BV15], succinct randomized encodings [LPST16b],
XiO [LPST16a], etc.), oblivious LWE sampling does not inherently involve any
“computation” and appears to be fundamentally different. Lastly, we believe our
construction is conceptually simpler and more self-contained (relying on fewer
disjoint components) than many of the prior candidates.

Our main building block is an “oblivious LWE sampler”, which takes as
input a matrix A ∈ Z

m×n
q and allows us to generate LWE samples A · s + e

with some small error e ∈ Z
m without knowing the secrets s, e. We discuss the

notion in more detail below (see the “Our Techniques” section), and provide
a formal definition that suffices for our construction. Our notion can be seen
as a significant relaxation of “invertible sampling” (in the common reference
string model) [IKOS10,DKR15], and the equivalent notion of “pseudorandom
encodings” [ACI+20]. The work of [DKR15] showed that, assuming iO, it is
possible to invertibly sample from all distributions, and [ACI+20] asked whether
it may be possible to do so under simpler assumptions that do not imply iO.
As a side result of independent interest, we settle this question by showing that,
under LWE, even our relaxed form of invertible sampling for the specific LWE
distribution already implies iO.

Overall, our candidate iO construction consists of two steps. The first step
is a provably secure construction of iO assuming we have an oblivious LWE
sampler and that the LWE assumption holds (both with sub-exponential secu-
rity). The second step is a candidate heuristic instantiation of an oblivious LWE
sampler. On a very high level, our heuristic sampler performs a homomorphic
computation that outputs a pseudorandom LWE sample generated using some
pseudorandom function (PRF). Security boils down to a clearly stated falsifi-
able assumption that two distributions, both of which output LWE samples,
are indistinguishable even if we give out the corresponding LWE secrets. Our
assumption implicitly relies on some form of circular security: we assume that
the error term in the pseudorandom LWE sample “drowns out” any error that
comes out of the homomorphic computation over the PRF key that was used
to generate it. We also discuss how our construction/assumption avoids some
simple crypto-analytic attacks.

1.2 Technical Overview

Our iO construction is loosely inspired by the “split fully-homomorphic encryp-
tion (split FHE)” framework of Brakerski, Döttling, Garg, and Malavolta
[BDGM20a] (henceforth BDGM). They defined a new cryptographic primitive
called split FHE, which they showed to provably imply iO (under the LWE

130 H. Wee and D. Wichs

Approach Falsifiable
Circuit-

Independent
Non-

Interactive
Post-

Quantum
mmaps-based iO, cf. [GGH+13b]
NLFE candidates [Agr19, AP20]
split-FHE, DCR, LWE [BDGM20a]
LWE, SXDH, LPN, PRG in NC0 [JLS20]
circular-SRL [GP20, BDGM20b]
this work (Conjecture 1 HPLS)

Fig. 1. Summary of the main approaches and assumptions used for IO. The col-
umn “falsifiable” refers to whether there is a reduction to a clearly stated falsifiable
assumption (we don’t count just assuming the scheme is secure). The term “circuit-
independent” means that the assumption does not refer to computation for general
circuits (which is closely related to the notion of instance-independent assumptions
[GLW14]). We consider assumptions that quantify over worst-case inputs/parameters
to be interactive, since the adversary chooses them in the first step.

assumption). They then gave a candidate instantiation of split FHE by heuristi-
cally combining decisional composite residue (DCR) and LWE-based techniques,
together with the use of a random oracle. We rely on a slight adaptation of
their framework by replacing split-FHE with a variant that we call functional
encodings. Our main contribution is a new instantiation of this framework via
“oblivious LWE sampling”, relying only on LWE-based techniques (Fig. 1).

We first describe what functional encodings are and how to construct iO from
functional encodings. Then we describe our instantiation of functional encod-
ings via oblivious LWE sampling. We defer a detailed comparison to BDGM to
Sect. 1.3.

iO from Functional Encodings
As in BDGM, instead of constructing iO directly, we construct a simpler a prim-
itive called “exponentially efficient iO” XiO, which is known to imply iO under
the LWE assumption [LPST16a]. We first describe what XiO is, and then discuss
how to construct it from Functional Encodings via the BDGM framework.

XiO. An XiO scheme [LPST16a], has the same syntax, correctness and security
requirements as iO, but relaxes the efficiency requirement. To obfuscate a circuit
C with input length n, the obfuscator can run in exponential time 2O(n) and
the size of the obfuscated circuit can be as large as 2n(1−ε) for some ε > 0.
Such a scheme is useful when n is logarithmic in the security parameter, so that
2n is some large polynomial. Note that there is always a trivial obfuscator that
outputs the entire truth table of the circuit C, which is of size 2n. Therefore, XiO
is only required to do slightly better than the trivial construction, in that the
size of the obfuscated circuit must be non-trivially smaller than the truth table.
The work of [LPST16a] showed that XiO together with the LWE assumption
(assuming both satisfy sub-exponential security) imply full iO.

Functional Encodings. We define a variant of the “split FHE” primitive from
BDGM, which we call “functional encodings”. A functional encoding can be

Candidate Obfuscation via Oblivious LWE Sampling 131

used to encode a value x ∈ {0, 1}� to get an encoding c = Enc(x; r), where r is
the randomness of the encoding process. Later, for any function f : {0, 1}� →
{0, 1}m, we can create an opening d = Open(f, x, r) for f , which can be decoded
to recover the function output Dec(f, c, d) = f(x). We require many-opening
simulation based security: the encoding c = Enc(x; r) together with the many
openings d1 = Open(f1, x, r), . . . , dQ = Open(fQ, x, r) can be simulated given
only the functions f1, . . . , fQ and the outputs f1(x), . . . , fQ(x). In other words,
nothing about the encoded value x is revealed beyond the function outputs
fi(x) for which openings are given. So far, we can achieve this by simply setting
the opening d to be the function output f(x). The notion is made non-trivial,
by additionally requiring succinctness: the size of the opening d is bounded by
|d| = O(m1−ε) for some ε > 0, and therefore the opening must be non-trivially
smaller than the output size of the function. We do not impose any restrictions on
the size of the encoding c, which may depend polynomially on m. Unfortunately,
this definition is unachievable in the plain model, as can be shown via a simple
incompressibility argument. Therefore, we consider functional encodings in the
common reference string (CRS) model and only require many-opening simulation
security for some a-priori bound Q on the number of opening (i.e., Q-opening
security). We allow the CRS size, (but not the encoding size or the opening size)
to grow polynomially with the bound Q.

XiO from Functional Encodings. We construct XiO from functional encod-
ings. As a first step, we construct XiO in the CRS model. Let C : {0, 1}n →
{0, 1} be a circuit of size � that we want to obfuscate. We can partition the
input domain {0, 1}n of the circuit into Q = 2n/m subsets Si, each contain-
ing |Si| = m inputs. We then define Q functions fi : {0, 1}� → {0, 1}m such
that fi(C) = (C(x1), . . . , C(xm)) outputs the evaluations of C on all m inputs
xj ∈ Si. Finally, we set the obfuscation of the circuit C to be

(Enc(C; r),Open(f1, C, r), . . . ,Open(fQ, C, r)),

which is sufficient to recover the value of the circuit at all Q · m = 2n possible
inputs. By carefully balancing between m and Q = 2n/m, we can ensure that
the obfuscated circuit size is O(2n(1−ε)) for some constant ε > 0, and therefore
satisfies the non-triviality requirement of XiO. On a high level, we amortize the
large size of the encoding across sufficiently many openings to ensure that the
total size of the encoding and all the openings together is smaller than the total
output size.2 The above gives us XiO with a strong form of simulation-based
security (the obfuscated circuit can be simulated given the truth table) in the
CRS model, which also implies the standard indistinguishability-based security
in the CRS model.

2 In detail, assume we start with a functional encoding where the encoding size is
O(ma) and the opening size is O(m1−δ) for some constants a, δ > 0, ignoring any
other polynomial factors in the security parameter or the input size. The size of the
obfuscated circuit above is then bounded by O(ma + Qm1−δ). By choosing m =
2n/(a+δ) and recalling Q = 2n/m, the bound becomes O(2n(1−ε)) for ε = δ/(a + δ).

132 H. Wee and D. Wichs

So far, we only got XiO in the CRS model, where the CRS size can be as large
as poly(Q ·m) = 2O(n). As the second step, we show that XiO in the CRS model
generically implies XiO in the plain model. A naive idea would be to simply make
the CRS a part of the obfuscated program, but then we would lose succinctness,
since the CRS is large. Instead, we repeat a variant of the previous trick to
amortize the cost of the CRS. To obfuscate a circuit C : {0, 1}n → {0, 1},
we partition the domain {0, 1}n into Q = 2n/m subsets containing m = 2n′

inputs each, and we define Q sub-circuits Ci : {0, 1}n′ → {0, 1}, each of which
evaluates C on the m = 2n′

inputs in the i’th subset. We then choose a single
CRS for input size n′ and obfuscate all Q sub-circuits separately under this CRS;
the final obfuscated circuit consists of the CRS and all the Q obfuscated sub-
circuits. By carefully balancing between m = 2n′

and Q = 2n/m, in the same
manner as previously, we can ensure that the total size of the final obfuscated
circuit is O(2n(1−ε)) for some constant ε > 0, and therefore the scheme satisfies
the non-triviality requirement of XiO.

Constructing Functional Encodings
We now outline our construction of a functional encoding scheme. We start
with a base scheme, which is insecure but serves as the basis of our eventual
construction. We show that we can easily make it one-opening simulation secure
under the LWE assumption, meaning that security holds in the special case
where only a single opening is ever provided (i.e., Q = 1). Then we show how to
make it many-opening secure via oblivious LWE sampling. Concretely, we obtain
a Q-opening secure functional encoding candidate for bounded-depth circuits
f : {0, 1}� → {0, 1}m with CRS size O(Q ·m), encoding size O(m2) and opening
size O(1), and where O(·) hides factors polynomial in the security parameter,
input size �, and circuit depth.

Base Scheme. Our construction of functional encodings is based on a vari-
ant of the homomorphic encryption/commitment schemes of [GSW13,GVW15].
Given a commitment to an input x = (x1, . . . , x�) ∈ {0, 1}�, along with a circuit
f : {0, 1}� → {0, 1}m, this scheme allows us to homomorphically compute a
commitment to the output y = f(x). Our variant is designed to ensure that the
opening for the output commitment is smaller than the output size m.

Given a public random matrix A ∈ Z
m×n
q where m � n, we define a com-

mitment C to an input x via

C = (AR1 + x1G + E1, . . . ,AR� + x�G + E�)

where Ri ← Z
n×m log q
q , Ei ← χm×m log q has its entries chosen from the error

distribution χ, and G ∈ Z
m×m log q
q is the gadget matrix of [MP12]. Although this

looks similar to [GSW13,GVW15], we stress that the parameters are different.
Namely, in our scheme A is a tall/thin matrix while in the prior schemes it is
a short/fat matrix, we allow Ri to be uniformly random over the entire space
while in the prior schemes it had small entries, and we need to add some error Ei

that was not needed in the prior schemes. The commitment scheme is hiding by
the LWE assumption. We can define the functional encoding Enc(x; r) = (A,C)

Candidate Obfuscation via Oblivious LWE Sampling 133

to consist of the matrix A and the homomorphic commitment C, where r is all
the randomness used to sample the above values.

Although we modified several key parameters of [GSW13,GVW15], it turns
out that the same homomorphic evaluation procedure there still applies to our
modified scheme. In particular, given the commitment C to an input x and a
boolean circuit f : {0, 1}� → {0, 1}, we can homomorphically derive a commit-
ment Cf = ARf +f(x)G+Ef to the output f(x). Furthermore, given a circuit
f : {0, 1}� → {0, 1}m with m bit output, we can apply the above procedure
to get commitments to each of the output bits and “pack” them together using
the techniques of (e.g.,) [MW16,BTVW17,PS19,GH19,BDGM19] to obtain a
vector cf ∈ Z

m
q such that

cf = A · rf + f(x) · q
2 + ef ∈ Z

m
q

where f(x) ∈ {0, 1}m is a column vector, rf ∈ Z
n
q , and ef ∈ Z

m is some small
error term.

A
Ri

xiG+ + Ei A
rf

y+

Now, observe that rf constitutes a succinct opening to f(x), since |rf | �
|f(x)| and rf allows us to easily recover f(x) from cf by computing roundq/2(cf −
A · rf). Furthermore, we can efficiently compute rf by applying a homomorphic
computation on the opening of the input commitment as in [GVW15], or alter-
nately, we can sample A with a trapdoor and use the trapdoor to recover rf .
Therefore, we can define the opening procedure of the functional encoding to
output the value rf = Open(f,x, r), and the decoding procedure can recover
f(x) = Dec(f, (A,C), rf) by homomorphically computing cf and using rf to
recover f(x) as above. This gives us our base scheme (in the plain model), which
has the correct syntax and succinctness properties. Unfortunately, the scheme
so far does not satisfy even one-opening simulation security, since the opening
rf (along with the error term ef that it implicitly reveals) may leak additional
information about x beyond f(x).

One-Opening Security from LWE. We can modify the base scheme to get
one-opening simulation security (still in the plain model). In particular, we
augment the encoding by additionally including a single random LWE sample
b = A · s + e inside it. We then add this LWE sample to cf to “randomize” it,
and release df := rf + s as an opening to f(x). Given the encoding (A,C,b)
and the opening df , we can decode f(x) by homomorphically computing cf and
outputting y = roundq/2(cf +b−A ·df). Correctness follows from the fact that
cf + b ≈ A(rf + s) + f(x) · q/2.

With the above modification, we can simulate an encoding/opening pair given
only f(x) without knowing x. Firstly, we can simulate the opening without
knowing the randomness of the input commitments or the trapdoor for A. In
particular, the simulator samples df uniformly at random from Z

n
q , and then

“programs” the value b as b := A ·df − cf + f(x) · q
2 +e. The only difference in

134 H. Wee and D. Wichs

the distributions is that in the real case the error contained in the LWE sample
b is e, while in the simulated case it is e−ef , but we can choose the error e to be
large enough to “smudge out” this difference and ensure that the distributions
are statistically close. Once we can simulate the opening without having the
randomness of the input commitments or the trapdoor for A, we can rely on
LWE to replace the input commitment to x with a commitment to a dummy
value.

Many-Opening Security via Oblivious LWE Sampling. We saw that we
can upgrade the base scheme to get one-opening simulation security by adding
a random LWE sample b = A · s + e to the encoding. We could easily extend
the same idea to achieve Q-opening simulation security by adding Q samples
bi = A ·si +ei to the encoding. However, this would require the encoding size to
grow with Q, which we cannot afford. So far, we have not relied on a CRS, and
perhaps the next natural attempt would be to add the Q samples bi to the CRS
of the scheme. Unfortunately, this also does not work, since the scheme needs to
know the corresponding LWE secrets si to generate the openings, and we would
not be able to derive them from the CRS.

Imagine that we had an oracle that took as input an arbitrary matrix A
and would output Q random LWE samples bi = A · si + ei. Such an oracle
would allow us to construct Q-opening simulation secure functional encodings.
The encoding procedure would choose the matrix A with a trapdoor, call the
oracle to get samples bi and use the trapdoor to recover the values si that it
would use to generate the openings. The decoding procedure would get A and
call the oracle to recover the samples bi needed to decode, but would not learn
anything else. The simulator would be able to program the oracle and choose the
values bi itself, which would allow us to prove security analogously to the one-
opening setting. We define a cryptographic primitive called an “oblivious LWE
sampler”, whose goal is to approximate the functionality of the above oracle in
the standard model with a CRS. We can have several flavors of this notion, and
we start by describing a strong flavor, which we then relax in various ways to
get our actual definition.

Oblivious LWE Sampler (Strong Flavor). A strong form of oblivious LWE
sampling would consist of a deterministic sampling algorithm Sam that takes as
input a long CRS along with a matrix A and outputs Q LWE samples bi =
Sam(CRS,A, i) for i ∈ [Q]. The size of CRS can grow with Q and the CRS
can potentially be chosen from some structured distribution, but it must be
independent of A. We want to be able to arbitrarily “program” the outputs
of the sampler by programming the CRS. In other words, there is a simulator
Sim that gets A and Q random LWE samples {bi} as targets; it outputs a
programmed string CRS ← Sim(A, {bi}) that causes the sampler to output
the target values bi = Sam(CRS,A, i). We want the real and the simulated
CRS to be indistinguishable, even for a worst-case choice of A for which an
adversary may know a trapdoor that allows it to recover the LWE secrets. This
notion would directly plug in to our construction to get a many-opening secure
functional encoding scheme in the CRS model. It turns out that this strong form

Candidate Obfuscation via Oblivious LWE Sampling 135

of oblivious LWE sampling can be seen as a special case of invertible sampling
(in the CRS model) as proposed by [IKOS10], and can be constructed from
iO [DKR15]. Invertible sampling is also equivalent to pseudorandom encodings
(with computational security in the CRS model) [ACI+20], and we answer one
of the main open problems posed by that work by showing that these notions
provably imply iO under the LWE assumption. Unfortunately, we do not know
how to heuristically instantiate this strong flavor of oblivious LWE sampling
(without already having iO).

Oblivious LWE Sampler (Relaxed). We relax the above strong notion in
several ways. Firstly, we allow ourselves to “pre-process” the matrix A using
some secret coins to generate a value pub ← Init(A) that is given as an addi-
tional input to the sampler bi = Sam(CRS, pub, i). We only require that the size
of pub is independent of the number of samples Q that will be generated. The
simulator gets to program both CRS, pub to produce the desired outcome. Sec-
ondly, we relax the requirement that, by programming CRS, pub, the simulator
can cause the sampler output arbitrary target values bi. Instead, we now give
the simulator some target values b̂i and the simulator is required to program
(CRS, pub) ← Sim(A, b̂i) to ensure that the sampled values bi = Sam(CRSpub, i)
satisfy bi = b̂i + b̃i for some LWE sample b̃i = A · s̃i + ẽi for which the simula-
tor knows the corresponding secrets s̃i, ẽi. In other words, the produced samples
bi need not exactly match the target values b̂i given to the simulator, but the
difference has to be an LWE sample b̃i for which the simulator can produce the
corresponding secrets. Lastly, instead of requiring that the indistinguishability
of the real and simulated (CRS, pub) holds even for a worst-case choice of A with
a known trapdoor, we only require that it holds for a random A, but the adver-
sary is additionally given the LWE secrets si contained in the sampled values
bi = A · si + ei. In other words, we require that real/simulated distributions of
(CRS, pub, {si}) are indistinguishable.

We show that this relaxed form of an oblivious LWE sampling suffices in
our construction of functional encodings. Namely, we can simply add pub to the
encoding of the functional encoding scheme, since it is short. In the proof, we
can replace the real (CRS, pub) with a simulated one, using some random LWE
tuples b̂i as target values. Indistinguishability holds even given the LWE secrets
si for the produced samples bi = Sam(CRS, pub, i), which are used to generate
the openings of the functional encoding. The b̂i component of the produced
samples bi = b̂i + b̃i is sufficient to re-randomizes the output commitment cf ,
and the additional LWE sample b̃i that is added in does not hurt security, since
we know the corresponding LWE secret s̃i and can use it to adjust the opening
accordingly.

Constructing an Oblivious LWE Sampler. We give a heuristic construction
of an oblivious LWE sampler, by relying on the same homomorphic commitments
that we used to construct our base functional encoding scheme. The high level
idea is to give out a commitment to a PRF key k and let the sampling algorithm
homomorphically compute a pseudorandom LWE sample bprf := A · sprf + eprf

136 H. Wee and D. Wichs

where sprf , eprf are sampled using randomness that comes from the PRF. The
overall output of the sampler is a commitment to the above LWE sample, which
is itself an LWE sample! While we do not know how to construct a simulator
for this basic construction, we conjecture that it may already be sufficient to
instantiate functional encodings. To allow the simulator to program the output,
we augment the computation to incorporate the CRS. We give a more detailed
description below.

The CRS is a uniformly random string, which we interpret as consisting of
Q values CRSi ∈ Z

m
q . To generate pub, we sample a random key k for a pseudo-

random function PRF(k, ·) and set a flag bit β := 0. We creates a commitment
C to the input (k, β) and we set the public value pub = (A,C). The algorithm
bi = Sample(CRS, pub, i) performs a homomorphic computation of the function
gi over the commitment C, where gi is defined as follows:

gi(k, β) : Use PRF(k, i) to sample bprf
i := A · sprfi + eprfi and output

b∗
i := bprf

i + β · CRSi.

The output of this computation is a homomorphically evaluated commitment to
b∗

i and has the form bi = A·sevali +eevali +b∗
i where sevali , eevali come from the homo-

morphic evaluation.3 Overall, the generated samples bi = Sample(CRS, pub, i)
can be written as

bi = A · (sevali + sprfi) + (eevali + eprfi) + β · CRSi

where sprfi , eprfi come from the PRF output and sevali , eevali come from the homo-
morphic evaluation.

In the real scheme, the flag β is set to 0 and so each output of Sample is
an LWE sample bi = A · (sevali + sprfi) + (eevali + eprfi). In the simulation, the
simulator gets some target values b̂i and puts them in the CRS as CRSi := b̂i.
It sets the flag to β = 1, which results in the output of Sample being bi =
A · (sevali + sprfi) + (eevali + eprfi) + b̂i. Note that the simulator knows the PRF key
k and the randomness of the homomorphic commitment, and therefore knows
the values (sevali + sprfi), (eevali + eprfi). This means that the difference between
the target values b̂i and the output samples bi is an LWE tuple for which the
simulator knows the corresponding secrets, as required.

Security Under a New Conjecture. We conjecture that the above construc-
tion is secure. In particular, we conjecture that the adversary cannot distinguish
between β = 0 and β = 1 given the values:

(CRS = {CRSi = Aŝi + êi}i∈[Q], pub = (A,C = Commit(k, β)), {si = sevali + sprfi + βŝi}i∈[Q])

3 Recall that previously we relied on a “packed” homomorphic evaluation, where we
could evaluate a function f : {0, 1}� → {0, 1}m on a commitment to x to get a
commitment cf = A·sf +ef +f(x)· q

2
. The above relies on a slight variant that’s even

further packed and allows us to homomorphically evaluate a function g : {0, 1}� →
Z

m
q over a commitment to x and derive a commitment cg = A · sg + eg + g(x).

Candidate Obfuscation via Oblivious LWE Sampling 137

We refer to this as the homomorphic pseudorandom LWE samples (HPLS)
conjecture (see Conjecture 1 for a precise statement), and we argue heuristically
why we believe it to hold. Since CRS, pub completely determine the values bi =
A · si + ei, revealing si = sevali + sprfi + βŝi also implicitly reveals ei = eevali +
eprfi + βêi. We can think of the HPLS conjecture as consisting of two distinct
heuristic components. The first component is to argue that the values si, ei look
pseudorandom and independent of β given only (CRS,A), but without getting
the commitment C. Intuitively, we believe this to hold since sprfi , eprfi are provably
pseudorandom (by the security of the PRF). Therefore, as long as we choose the
noise eprfi to be large enough to “smudge out” êi, we can provably argue that
sprfi +βŝi and eprfi +βêi are pseudorandom and independent of β. Unfortunately,
this does not suffice – we still need to rely on a heuristic to ague that there are
no computationally discernible correlations between these values and sevali , eevali

respectively. We believe this should hold with most natural PRFs. Although the
first component is already heuristic, there is hope to remove the heuristic nature
of this component by explicitly analyzing the distributions sevali +sprfi , eevali +eevali

for a specific PRF, and leave this as a fascinating open problem for future work.
The second heuristic component is to argue that security holds even in the
presence of the commitment C. This part implicitly involves a circular security
aspect between the pseudorandom function and the commitment. We’d like to
argue that the PRF key k and the bit β are protected by the security of the
commitment scheme, but we release si = sevali +sprfi +βŝi, where sevali depends on
the commitment randomness; nevertheless we’d like to argue that this does not
hurt commitment security since the value sevali is masked by the PRF output,
but this argument is circular since the PRF key is contained in the commitment!
This circularity does not easily lend itself to a proof, and we see much less hope
in removing the heuristic nature of the second component than the first. Still,
this type of circularity also seems difficult to attack: one cannot easily break the
security of the commitment without first breaking the security of the PRF and
vice versa.

Simplified Construction. In the full version, we also give a simplified direct
construction of functional encodings in the plain model that we conjecture to
satisfy indistinguishability based security. The simplified construction does not
go through the intermediate “oblivious LWE sampler” primitive. In contrast
to our main construction, which is secure under a non-interactive assumption
that two distributions are indistinguishable, the assumption that our simplified
construction is secure and interactive.

1.3 Discussion and Perspectives

Comparison to BDGM
We now give a detailed comparison of our results/techniques with those of Brak-
erski, Döttling, Garg, and Malavolta [BDGM20a] (BDGM). BDGM defined a

138 H. Wee and D. Wichs

primitive called split FHE, which they show implies iO under the LWE assump-
tion. They then gave a candidate instantiation of split FHE by heuristically com-
bining decisional composite residue (DCR) and LWE-based techniques, together
with the use of a random oracle. While they gave compelling intuition for why
they believe this construction of split FHE to be secure, they did not attempt
to formulate an assumption under which they could prove security. In our work,
we define a variant of split FHE that we call functional encodings. We then
provide an entirely new instantiation of functional encodings via oblivious LWE
sampling. The main advantages of our approach are:

– We get a provably secure construction of iO under the LWE assumption
along with an additional assumption that there is an oblivious LWE sampler,
where the latter is a clearly abstracted primitive, which we then instantiate
heuristically. In particular, we are able to confine the heuristic portion of our
construction to a single well defined component.

– We can prove security of our overall construction under a falsifiable, non-
interactive assumption that is independent of the function being obfuscated.

– Our construction of iO relies only on LWE-based techniques rather than the
additional use of DCR. In our opinion, this makes the construction conceptu-
ally simpler and easier to analyze. Furthermore, the construction is plausibly
post-quantum secure.

– We avoid any reliance on random oracles.

On a technical level, we lightly adapt the split FHE framework of BDGM.
In particular, our notion of functional encodings can be seen as a relaxed form
of split FHE, and our result that functional encodings imply iO closely follows
BDGM. The main differences between the two works, lie in the our respective
instantiations of split-FHE and functional encodings. We explain the differences
in the framework and the instantiation in more detail below.

Functional Encodings vs Split FHE. There are two differences between
our notion of functional encodings versus the split FHE framework of BDGM.
Firstly, our notion of functional encodings has a simplified syntax compared to
split FHE (in particular, we do not require any key generation or homomorphic
evaluation algorithms and the opening can depend on all of the randomness
r used to generate the encoding rather than just a secret key). While we find
the simplified syntax conceptually easier, it is not crucial, and our candidate
construction of functional encodings can be adapted to also match the syntactic
requirements of split FHE. The second difference is that we explicitly allow for
a CRS in functional encodings, and show that the CRS can be removed when
we go to XiO (in particular, we show that XiO in the CRS model implies XiO
in the plain model). In contrast, the work of BDGM considered split FHE in the
plain model (with indistinguishability rather than simulation security). Their
instantiation relies on a random oracle model and they argued heuristically that
the random oracle can be removed. The fact that we explicitly consider the

Candidate Obfuscation via Oblivious LWE Sampling 139

CRS model allows us to avoid random oracles entirely, and therefore reduce the
number of heuristic components in the final construction.4

Heuristic Instantiations. Both BDGM and our work provide a heuristic
instantiation of the main building block: split FHE and functional encodings,
respectively. These instantiations are concretely very different, and rely on dif-
ferent techniques. On a conceptual level, they also differ in the role that heuristic
arguments play. BDGM constructs a provably secure instantiation of split FHE
under the combination of LWE and DCR assumptions, in some idealized oracle
world (essentially, the oracle samples Damgard-Jurik encryptions of small val-
ues). They then give a heuristic instantiation of their oracle. However, there is
no attempt to define any standard-model notion of security that such an instan-
tiation could satisfy to make the overall scheme secure. In contrast, we construct
a provably secure instantiation of functional encodings under the LWE assump-
tion and assuming we have an “oblivious LWE sampler”, where the latter is a
cryptographic primitive in the standard model (with a CRS) with a well-defined
security requirement. We then give a heuristic construction of an oblivious LWE
sampler using LWE techniques. Although the security notion of oblivious LWE
sampling involves a simulator, our heuristic construction comes with a candidate
simulator for it. Therefore, the only heuristic component of our construction is a
clearly stated falsifiable assumption that two distributions (real and simulated)
are indistinguishable.

We conjecture that the split FHE construction of BDGM could similarly be
proven secure under the LWE assumption, DCR assumption, and some type
of “oblivious sampler” for Damgard-Jurik encryptions of random small values.
Moreover, the heuristic instantiation of the oracle in BDGM could likely be seen
as a heuristic candidate for such an oblivious sampler. However, BDGM does not
appear to have a plausible candidate simulator for this instantiation and hence
security does not appear to follow from any simple falsifiable assumption (other
than assuming that the full construction of split FHE is secure).

We note that BDGM (Sect. 4.4) also presents an alternate construction of
split FHE based only the LWE assumption (without DCR) in some other ide-
alized oracle world. However, they were not able to heuristically instantiate the
oracle for this alternate construction, and hence it did not lead to even a heuris-
tic candidate for post-quantum secure iO in their work.5 Their construction
does yield a one-opening secure split-FHE / functional encoding under LWE,
and our one-opening secure scheme is in part inspired by it (and can be seen as
simplifying it). The main advantage of our scheme is that we can extend it to
many-opening security via oblivious LWE sampling, which we then instantiate
heuristically to get a candidate iO.

4 We believe that this change could also be applied retroactively to remove the use of
a random oracles in BDGM.

5 As stated in BDGM Sect. 4.4: “We stress that, in contrast with the instantiation
based on the Damgard-Jurik encryption scheme (Sect. 4.3), this scheme does not
satisfy the syntactical requirements to apply the generic transformations (described
in Sect. 4.2) to lift the scheme to the plain model.”.

140 H. Wee and D. Wichs

Comparison with FE
The line of work on building iO from simple, well-founded assumptions first
builds functional encryption (FE). A functional encryption scheme allows us to
encrypt a value x and generate secret keys for functions f so that decryption
returns f(x) while leaking no additional information about x. We also consider
Q-key security, where an adversary given an encryption of x and Q secret keys
for functions f1, . . . , fQ should learn nothing about x beyond f1(x), . . . , fQ(x).
A functional encoding scheme can be viewed as a relaxation of a secret-key
functional encryption where we allow the key for f to depend on x.

The state-of-the-art for functional encryption is analogous to that for func-
tional encoding:

– We have one-key secure public-key FE for bounded-depth circuits f :
{0, 1}� → {0, 1}m from LWE with ciphertext size O(m) and key size O(1)
[GKP+13,GVW13,BGG+14].

– A construction of iO from one-key secure public-key FE for bounded-depth
circuits f : {0, 1}� → {0, 1}m with ciphertext size O(m1−ε) [BV15,AJ15]. The
latter is in turn implied by Q-key secure public-key FE for f : {0, 1}� → {0, 1}
with ciphertext size O(Q1−ε).

– A construction of iO from Q-key secure secret-key FE bounded-depth circuits
f : {0, 1}� → {0, 1}m with ciphertext size Q1−ε ·poly(m). Our main candidate
is essentially the functional encoding analogue of such a secret-key FE scheme
(in the CRS model).

This analogue raises two natural open problems: Do the techniques in this work
also yield non-trivial FE schemes (that imply iO) with a polynomial security loss,
without passing through iO as an intermediate building block? Can we simplify
the constructions or assumptions underlying the FE schemes in [AJL+19,Agr19,
JLMS19,GJLS20,JLS20] by relaxing the requirements from FE to functional
encodings (which would still suffice for iO)?

Comparison with Concurrent Works: [GP20,BDGM20b]
The recent work of [GP20] together with a follow-up to it [BDGM20b] (both
of which are concurrent and independent of our work), present new candidate
constructions of iO by adapting the BDGM [BDGM20a] framework. Just like
our work, they go through the route of constructing XiO in the CRS model,
and have instantiations that rely only on LWE-style techniques and are plausi-
bly post-quantum secure. While there are many high-level similarities between
these works and our work, the concrete construction and security assumption
are different. In terms of construction, the main difference lies in how the works
“re-randomize” the opening/hint that allows one to recover the output of the
computation. In our case, we do so via an “oblivious LWE sampler”, which is
instantiated by using an encrypted PRF key to produce an encrypted pseu-
dorandom LWE sample. The two works [GP20,BDGM20b] follow the original
construction of [BDGM20a] more closely and rely on homomorphically decrypt-

Candidate Obfuscation via Oblivious LWE Sampling 141

ing random ciphertexts in the CRS using a key cycle.6 Our overall construction
is arguably somewhat simper than the others since it relies on a single homo-
morphic cryptosystem (a variant of GSW FHE) rather than switching between
two different homomorphic cryptosystems with different properties. In terms of
assumptions, both of the works [GP20,BDGM20b] prove security under a new
assumption that a certain cryptosystem satisfies a strong form of “circular secu-
rity” in the presence of some oracle. In the full version, we give a more detailed
comparison and our take on the circular security assumptions.

2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such
that f(λ) = O(λc) for some c > 0. For a probabilistic algorithm alg(inputs),
we might explicit the randomness it uses by writing alg(inputs; coins). We will
denote vectors by bold lower case letters (e.g. a) and matrices by bold upper
cases letters (e.g. A). We will denote by a� and A� the transposes of a and A,
respectively. We will denote by �x	 the nearest integer to x, rounding towards
0 for half-integers. If x is a vector, �x	 will denote the rounded value applied
component-wise. For integral vectors and matrices (i.e., those over Z), we use
the notation |r|, |R| to denote the maximum absolute value over all the entries.

We define the statistical distance between two random variables X and Y
over some domain Ω as: SD(X,Y) = 1

2

∑
w∈Ω |X(w) − Y (w)| . We say that two

ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically indistin-
guishable, denoted X

s≈ Y , if SD(Xλ, Yλ) ≤ negl(λ).
We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are

computationally indistinguishable, denoted X
c≈ Y , if, for all (non-uniform) PPT

distinguishers Adv, we have |Pr[Adv(Xλ) = 1] − Pr[Adv(Yλ) = 1]| ≤ negl(λ). We
also refer to sub-exponential security, meaning that there exists some ε > 0 such
that the distinguishing advantage is at most 2−λε

.
We assume familiarity with the learning-with errors (LWE) assumption

[Reg05], noise smudging (e.g., [AJL+12]), the Gadget Matrix G [MP12] and
lattice trapdoors [Ajt96,MP12]. See the full version for details.

3 Functional Encodings

3.1 Definition of Functional Encodings

A functional encoding scheme (in the CRS model) for the family F�,m,t =
{f : {0, 1}� → {0, 1}m} of depth-t circuits consists of four PPT algorithms
crsGen,Enc,Open,Dec where Open and Dec are deterministic, satisfying the fol-
lowing properties:
6 Interestingly, since decrypting random ciphertexts is a (weak-)PRF, the two

approaches may be more similar than may appear.

142 H. Wee and D. Wichs

Syntax: The algorithms have the following syntax:
– CRS ← crsGen(1λ, 1Q,F�,m,t) outputs CRS for security parameter 1λ and

a bound Q on the number of openings;
– C ← Enc(CRS, x ∈ {0, 1}�; r) encodes x using randomness r;
– d ← Open(CRS, f : {0, 1}� → {0, 1}m

, i ∈ [Q], x, r) computes the opening
corresponding to i’th function f ;

– y ← Dec(CRS, f, i, C, d) computes a value y for the encoding C and open-
ing d.

Correctness:
Dec(f,Enc(x, r),Open(f, x, r)) = f(x)

Q-SIM Security: There exists a PPT simulator Sim such that the following
distributions for all PPT adversaries A and all x, f1, . . . , fQ ← A(1λ), the
following distributions of (CRS, C, d1, . . . , dQ) are computationally indistin-
guishable (even given x, f1, . . . , fQ):

– Real Distribution: CRS ← crsGen(1λ, 1Q), C ← Enc(CRS, x; r), di ←
Open(CRS, f i, i, x, r), i ∈ [Q].

– Simulated Distribution: (CRS, C, d1, . . . , dQ) ← Sim({f i, f i(x)}i∈Q).
Succinctness: There exists a constant ε > 0 such that, for CRS ←

crsGen(1λ, 1Q,F�,m,t), C ← Enc(CRS, x; r), d ← Open(CRS, f, i, x, r) we have:

|CRS| = poly(Q,λ, �,m, t), |C| = poly(λ, �,m, t), |d| = m1−εpoly(λ, �, t).

In our discussion, we also refer to indistinguishability-based security, a relax-
ation of Q-SIM security:

Q-IND Security: For all PPT adversaries A and all x0,x1, f
1, . . . , fQ ← A(1λ)

such that f i(x0) = f i(x1) for all i ∈ [Q], the following distributions of
(CRS, C, d1, . . . , dQ) are computationally indistinguishable for β = 0 and
β = 1:

CRS ← crsGen(1λ, 1Q), C ← Enc(CRS, xβ ; r), di ← Open(CRS, f i, i, xβ , r), i ∈ [Q]

Remark 1 (Comparison with split-FHE). One can think of functional encodings
as essentially a relaxation of split-FHE, where we remove the explicit require-
ments for decryption (and secret keys) and for homomorphic evaluation. This
simplifies both the syntax and the security definition. In the language of BDGM,
Open corresponds to a decryption hint for an encryption of f(x), obtained by
applying partial decryption to homomorphic evaluation of f on the encryption of
x. Note that in BDGM, the hint should be computable given the decryption key,
whereas we allow the hint to depend on the encryption/commitment random-
ness. Finally, BDGM circumvents the impossibility of simulation-based security
for many-time security in the plain model by turning to indistinguishability-
based security, whereas we rely on a CRS.

Remark 2 (Comparison with functional encryption). Functional encoding is very
similar to (secret-key) functional encryption where given an encryption of x and
a secret key for f , we learn f(x) and nothing else about x. A crucial distinction
here is that Open also gets x as input.

Candidate Obfuscation via Oblivious LWE Sampling 143

4 Homomorphic Commitments with Short Openings

In this section, we describe a homomorphic commitment scheme with short open-
ings.

Lemma 1 (Homomorphic computation on matrices [GSW13,BGG+14]).
Fix parameters m, q, �. Given a matrix C ∈ Z

m×�m log q
q and a circuit f :

{0, 1}� → {0, 1} of depth t, we can efficiently compute a matrix Cf such
that for all x ∈ {0, 1}�, there exists a matrix HC,f,x ∈ Z

�m log q×m log q with
|HC,f,x| = mO(t) such that7

(C − x� ⊗ G) · HC,f,x = Cf − f(x)G (1)

where G ∈ Z
m×m log q
q is the gadget matrix. Moreover, HC,f,x is efficiently com-

putable given C, f,x.

Using the “packing” techniques in [MW16,BTVW17,PS19], the above rela-
tion extends to circuits with m-bit output. Concretely, given a circuit f :
{0, 1}� → {0, 1}m of depth t, we can efficiently compute a vector cf such that
for all x ∈ {0, 1}�, there exists a vector hC,f,x ∈ Z

�m log q with |hC,f,x| = mO(t)

such that

(C − x� ⊗ G) · hC,f,x = cf − f(x) · q
2 (2)

where f(x) ∈ {0, 1}m is a column vector. Concretely, let f1, . . . , fm : {0, 1}m →
{0, 1} denote the circuits computing the output bits of f . Then, we have:

cf =
m∑

j=1

Cfj
· G−1(1j · q

2) (3)

hC,f,x =
m∑

j=1

HC,fj ,x · G−1(1j · q
2)

where 1j ∈ {0, 1}m is the indicator column vector whose j’th entry is 1 and
0 everywhere else, so that f(x) =

∑
j fi(x) · 1j . Here, hC,f,x is also efficiently

computable given C, f,x.

Construction 1 (homomorphic commitments pFHC). The commitment
scheme pFHC (“packed fully homomorphic commitment”) is parameterized by
m, � and n, q, and is defined as follows.

– Gen chooses a uniformly random matrix A ← Z
m×n
q .

7 Note that if we write C = [C1 | · · · | C�] where C1, . . . ,C� ∈ Z
m×m log q
q and

x = (x1, . . . , x�), then

C − x� ⊗ G = [C1 − x1G | . . . | C� − x�G]

.

144 H. Wee and D. Wichs

– Com(A ∈ Z
m×n
q ,x ∈ {0, 1}�;R ∈ Z

n×�m log q
q ,E ∈ Z

m×�m log q) outputs a
commitment

C := AR + x� ⊗ G + E ∈ Z
m×�m log q
q .

Here, R ← Z
n×�m log q
q ,E ← χm×�m log q

– Eval(f : {0, 1}� → {0, 1}m
,C ∈ Z

m×�m log q
q) for a boolean circuit f : {0, 1}� →

{0, 1}m, deterministically outputs a (column) vector cf ∈ Z
m
q . Here, cf is the

same as that given in (2).
– Evalopen(f,A ∈ Z

m×n
q ,x ∈ {0, 1}�

,R ∈ Z
n×�m log q
q ,E ∈ Z

m×�m log q): deter-
ministically outputs (column) vectors rf ∈ Z

n
q , ef ∈ Z

m
q .

Lemma 2. The above commitment scheme pFHC satisfies the following proper-
ties:

– Correctness. For any boolean circuit f : {0, 1}� → {0, 1}m of depth t, any
x ∈ {0, 1}�, any A ∈ Z

m×n
q ,R ∈ Z

n×�m log q
q ,E ∈ Z

m×�m log q, we have

C := Com(A,x;R,E), cf := Eval(f,C), (rf , ef) := Evalopen(f, A,x,R,E)

satisfies
cf = Arf + f(x) · q

2 + ef ∈ Z
m
q

where f(x) ∈ {0, 1}m is a column vector and |ef | = |E| · mO(t).
– Privacy. Under the LWE assumption, for all x ∈ {0, 1}�, we have:

A,Com(A,x) ≈c A,Com(A,0)

Proof. Correctness follows from substituting C = AR + x� ⊗ G + E into (2),
which yields

cf = (AR + E) · hC,f,x + f(x) · q
2 = A · R · hC,f,x

︸ ︷︷ ︸
rf

+f(x) · q
2 + E · hC,f,x

︸ ︷︷ ︸
ef

.

The bound on |ef | follows from |hC,f,x| = mO(t). Privacy follows readily from
the pseudorandomness of (A,AR + E), as implied by the LWE assumption.

Handling. f : {0, 1}� → Z
m
q . Next, we observe that we can also augment

pFHC with a pair of algorithms Evalq,Evalqopen to support bounded-depth circuits
f : {0, 1}� → Z

m
q (following [PS19]). That is,

– Correctness II. For any boolean circuit f : {0, 1}� → Z
m
q of depth t, any

x ∈ {0, 1}�, any A ∈ Z
m×n
q ,R ∈ Z

n×�m log q
q ,E ∈ Z

m×�m log q, we have

C := Com(A,x;R,E), cf := Evalq(f,C), (rf , ef) := Evalqopen(f, A,x,R,E)

satisfies
cf = Arf + f(x) + ef ∈ Z

m
q

where f(x) ∈ Z
m
q is a column vector and |ef | = |E| · mO(t).

Candidate Obfuscation via Oblivious LWE Sampling 145

Concretely, let f1, . . . , fm log q : {0, 1}m → {0, 1} denote the circuits computing
the output of f interpreted as bits. Then, we have:

cf =
m log q∑

j=1

Cfj
· G−1(1j ⊗ g�) (4)

hC,f,x =
m log q∑

j=1

HC,fj ,x · G−1(1j ⊗ g�)

5 1-SIM Functional Encoding from LWE

We construct a 1-SIM functional encoding scheme for bounded-depth circuits
F�,m,t based on the LWE assumption. The scheme does not require a CRS. Such
a result is given in [BDGM20, Sect. 4.4], starting from any FHE scheme with
“almost linear” decryption; we provide a more direct construction that avoids
key-switching.

Construction 2

– Enc(x;A,R,E, s, e). Sample

A ← Z
m×n
q ,R ← Z

n×�m log q
q ,E ← χm×�m log q, s ← Z

n
q , e ← χ̂m

Compute
C := pFHC.Com(A,x;R,E), b := As + e

and output
(A,C,b)

– Open(f,x;A,R,E, s, e): Compute (rf , ef) := pFHC.Evalopen(f,A,x,R,E)
and output

d := rf + s ∈ Z
n
q

– Dec(f, (A,C,b),d): Compute cf := pFHC.Eval(f,C) and output

roundq/2(cf + b − Ad) ∈ {0, 1}m

where roundq/2 : Z
m
q → {0, 1}m is coordinate-wise rounding to the nearest

multiple of q/2.

Theorem 3. Under the LWEn,q,χ assumption, the construction above is a
1-SIM functional encoding.

We defer the proof to the full version.

146 H. Wee and D. Wichs

Remark 3 (An attack given many openings.). We describe an attack strategy
on our 1-SIM scheme in the Q-SIM setting, namely, when the adversary gets
openings d1, . . . ,dQ corresponding to many functions f1, . . . , fQ. (We stress
that this does not contradict our preceding security claim.) Observe that we
have

di = R · hC,fi,x + s

where hC,fi,x (as defined in (2)) is efficiently computable given x,C, f i. In the
case of linear functions, hC,fi,x does not even depend on x. This gives us Q
linear equations in the unknowns R, s, and allows us to recover R and break
many-opening security in both the indistinguishability-based and simulation-
based settings as long as we can choose f i’s in such a way that the equations
are linearly independent.

6 Oblivious Sampling from a Falsifiable Assumption

Oblivious LWE sampling allows us to compute Q seemingly random LWE sam-
ples bi = Asi + ei relative to some LWE matrix A, by applying some determin-
istic function to a long CRS that is independent of A along with a short public
value pub that can depend on A but whose length is independent of Q. We
require that there is a simulator that can indistinguishably program CRS, pub
to ensures that the resulting samples bi “almost match” some arbitrary LWE
samples b̂i given to the simulator as inputs. Ideally, the simulator could ensure
that bi = b̂i match exactly. However, we relax this and only require the simula-
tor to ensure that bi = b̂i + b̃i for some LWE sample b̃i = As̃i + ẽi for which
the simulator knows the corresponding secret s̃i. Note that the simulator does
not get the secrets ŝi for the target values b̂i = Aŝi + êi, but indistinguishabil-
ity should hold even for a distinguisher that gets the secrets si for the output
samples bi = Asi + ei. In the full version, we show that we can construct a
strong form of oblivious sampling using the notion of invertible sampling (in the
CRS model) from [IKOS10,DKR15,ACI+20], which can be constructed from iO.
This highlights that the notion is plausibly achievable. We then give a heuris-
tic constructions of oblivious LWE sampling using LWE-style techniques and
heuristically argue that security holds under a new falsifiable assumption.

6.1 Definition of Oblivious Sampling

An oblivious LWE sampler consists of four PPT algorithms: CRS ←
crsGen(1λ, 1Q), pub ← Init(A),bi = Sample(CRS, pub, i) and
(CRS, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]). The Sample algorithm
is required to be deterministic while the others are randomized. Let
(TrapGen, LWESolve) be the lattice trapdoor algorithms for generating A with a
trapdoor and solving LWE using the trapdoor respectively.

Definition 1. An (n,m, q, χ̂, BOLWE) oblivious LWE sampler satisfies the fol-
lowing properties:

Candidate Obfuscation via Oblivious LWE Sampling 147

Correctness: Let Q = Q(λ) be some polynomial. Let (A, td) ←
TrapGen(1n, 1m, q),CRS ← crsGen(1λ, 1Q), pub ← Init(A). Then, with over-
whelming probability over the above values, for all i ∈ [Q] there exists some
si ∈ Z

n
q and ei ∈ Z

m
q with ||ei||∞ ≤ BOLWE such that bi = Asi + ei.

Security: The following distributions of (CRS,A, pub, {si}i∈[Q]) are computa-
tionally indistinguishable:
– Real Distribution: Sample (A, td) ← TrapGen(1n, 1m, q), CRS ←

crsGen(1λ, 1Q), pub ← Init(A). For i ∈ [Q] set bi = Sample(CRS, pub, i),
si = LWESolvetd(bi). Output (CRS,A, pub, {si}i∈[Q]).

– Simulated Distribution: Sample (A, td) ← TrapGen(1n, 1m, q), ŝi ← Z
n
q , êi

← χ̂m and let b̂i = Aŝi + êi. Sample (CRS, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,

A, {b̂i}i∈[Q]) and let si = ŝi + s̃i. Output (CRS,A, pub, {si}i∈[Q]).

Observe that the algorithm pub ← Init(A) in the above definition does not
get Q as an input and therefore the size of pub is independent of Q. On the
other hand, the algorithm CRS ← crsGen(1λ, 1Q) does not get A as an input
and hence CRS must be independent of A. This is crucial and otherwise there
would be a trivial construction where either CRS or pub would consist of Q LWE
samples with respect to A.

Note that the security property implicitly also guarantees the following cor-
rectness property of the simulated distribution. Assume we simulate the val-
ues (CRS,A, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]) where the simulator is
given LWE samples b̂i = Aŝi + êi as input. Then the resulting (CRS,A, pub)
will generate samples bi = Sample(CRS, pub, i) of the form bi = b̂i + b̃i where
b̃i = As̃i + ẽi some small ẽi. This is because, in the simulation, we must have
bi = Asi + ei where ||ei||∞ ≤ B as otherwise it would be trivial to distinguish
the simulation from the real case. But si = ŝi + s̃i and so ei = êi + ẽi. This
implies ẽi = ei − êi will be small.

Remark 4 (Naive construction fails). Consider the naive construction:

pub := (AS + E), CRS := (r1, . . . , rQ), bi := (AS + E)ri

where
A ← Z

m×n
q , S ← Z

n×m log q
q , E ← χm×m log q ri ← χm log q

We stress that the simulator receives a random A but not the corresponding
trapdoor. Indeed, under the LWE assumption, there does not exist an efficient
simulator for the naive construction. In more detail, the simulator is required on
input (A, {b̂i}i∈[Q]) to output ({ri}i∈[Q],B, {s̃i}i∈[Q]) such that

({ri}i∈[Q],AS + E, {Sri}i∈[Q]) ≈c ({ri}i∈[Q],B, {ŝi + s̃i}i∈[Q])

We claim that checking whether Bri ≈ b̂i+As̃i yields a distinguisher for whether
(A, {b̂i}i∈[Q]) is drawn from LWE versus uniform distribution. The proof relies
on the fact that given ({ri}i∈[Q], {Sri}i∈[Q]) for Q � m, we can solve for S
via Gaussian elimination, which means that the matrix B must be of the form

148 H. Wee and D. Wichs

AS0 +E0 and therefore any b̂i that passes the check satisfies b̂i ≈ A(S0ri − s̃i).
Note that the LWE distinguisher works even if it does not know S0,E0.

6.2 Heuristic Construction

We now give our heuristic construction of an oblivious LWE sampler. Let
n,m, q be some parameters and χ, χprf , χ̂ be distributions over Z that are
B,Bprf , B̂ bounded respectively. Let D be an algorithms that samples tuples
(s, e) where s ← Z

n
q and e ← χm

prf . Assume that D uses v random coins, and
for r ∈ {0, 1}v define (s, e) = D(r) to be the output of D with randomness r.
Let PRF : {0, 1}λ × {0, 1}∗ → {0, 1}v be a pseudorandom function. We rely on
the homomorphic commitment algorithms Com,Evalq,Evalqopen with parameters
n,m, q, χ from Sect. 4.

Construction 4. We define the oblivious LWE sampler as follows:

– CRS ← crsGen(1λ, 1Q): CRS := (CRS1, . . . ,CRSQ) where CRSi ← Z
m
q .

– pub ← Init(A): Sample a PRF key k ← {0, 1}λ and set a flag β := 0. Set
pub := (A,C) where C ← Com(A, (k, β)).

– bi = Sample(CRS, pub, i): Let gi,CRSi,A : {0, 1}λ+1 → Z
m
q be a circuit that

contains the values (i,A,CRSi) hard-coded and performs the computation:

gi,CRSi,A(k, β) : Let (sprfi , eprf
i) = D(PRF(k, i)). Output Asprfi + eprf

i + β · CRSi.

Output bi = Evalq(gi,CRSi,A,C).
– (CRS, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]): Set CRS := (b̂1, . . . , b̂Q).

Set the flag β := 1 and pub := (A,C) for C = Com((k, β);R,E)
where R,E is the randomness of the commitment. Let (revali , eevali) =
Evalqopen(gi,CRSi,A,A, (k, β),R,E) and (sprfi , eprfi) = D(PRF(k, i)). Set s̃i =
revali + sprfi .

Form of Samples bi. Let us examine this construction in more detail and see
what the samples bi look like.

In the real case, where pub ← Init(A), we have pub = (A,C) where C =
Com(A, (k, 0); (R,E)). For bi = Sample(CRS, pub, i) we can write

bi = A (revali + sprfi)
︸ ︷︷ ︸

si

+ (eevali + eprfi)
︸ ︷︷ ︸

ei

(5)

where (sprfi , eprfi) = D(PRF(k, i)) are sampled using the PRF and (revali , eevali) =
Evalqopen(gi,A, (k, 0),R,E) come from the homomorphic evaluation.

In the simulated case, where CRS, pub are chosen by the simulator, we have
pub = (A,C) where C = Com(A, (k, 1); (R,E)) and CRSi = b̂i = Aŝi + êi. For
bi = Sample(CRS, pub, i) we can write

Candidate Obfuscation via Oblivious LWE Sampling 149

bi = A (

s̃i
︷ ︸︸ ︷

revali + sprfi +ŝi)
︸ ︷︷ ︸

si

+ (

ẽi
︷ ︸︸ ︷

eevali + eprfi +êi)
︸ ︷︷ ︸

ei

(6)

where (sprfi , eprfi) = D(PRF(k, i)) are sampled using the PRF and (revali , eevali) =
Evalqopen(gi,CRSi,A,A, (k, 0),R,E) come from the homomorphic evaluation.

Correctness. Equation 5 implies that the scheme satisfies the correctness of an
n,m, q, χ̂, BOLWE oblivious LWE sampler, where BOLWE is a bound ||ei||∞. In
particular, B ≤ Bprf + B · mO(t), where t is the depth of the circuit gi,CRSi,A

(which is dominated by the depth of the PRF).

6.3 Security Under a New Conjecture

The security of our heuristic oblivious sampler boils down to the indistinguisha-
bility of the real and simulated distributions, which is captured by the following
conjecture:

Conjecture 1 (HPLS Conjecture). For β ∈ {0, 1}, let us define the distribution
DIST(β) over

({b̂i = Aŝi + êi}i∈[Q],A,C, {si = revali + sprfi + β · ŝi}i∈[Q])

where

– A ← Z
m×n
q , ŝi ← Z

n
q , êi ← χm, b̂i := Aŝi + êi.

– k ← {0, 1}λ, (C = A · R + E + (k, β) ⊗ G) ← Com(A, (k, β); (R,E))
– (sprfi , eprfi) := D(PRF(k, i)), (revali , eevali) := Evalqopen(gi,b̂i,A

,A, (k, β),R,E)
where

gi,b̂i,A
(k, β) : Let (sprfi , eprfi) = D(PRF(k, i)). Output Asprfi + eprfi + β · b̂i.

– si := (revali + sprfi + β · ŝi).

The (sub-exponential) homomorphic pseudorandom LWE samples (HPLS) con-
jecture with parameters (n,m, q, χ, χ̂, χprf) and pseudodrandom function PRF
says that the distributions DIST(0) and DIST(1) are (sub-exponentially) com-
putationally indistinguishable.

When we do not specify parameters, we assume the conjecture holds for
some choice of PRF and any choices of n, q, χ, χ̂ and any polynomial m, such
that LWEn,q,χ and LWEn,q,χ̂ assumptions hold and χprf smudges out error of
size B̂+B ·mO(t), where t is the depth of the circuit gi,CRSi,A (which is dominated
by the depth of the PRF).

150 H. Wee and D. Wichs

Observations. We begin with two simple observations about the conjecture:

– The distribution DIST(β) satisfies the following consistency check for both
β = 0 and β = 1, namely

Evalq(gi,Aŝi+êi,A,C) ≈ Asi

This means that we cannot rely on homomorphic evaluation to distinguish
between the two distributions. In addition, note that the distinguisher can
compute

ei := Evalq(gi,Aŝi+êi,A,C) − Asi = eevali + eprfi + β · êi

– If we omit revali from si, then indistinguishability follows from standard
assumptions. Concretely, under the LWE assumption and security of PRF,
we have:

({Aŝi + êi}i∈[Q],A,C, {sprfi , eprfi }i∈[Q])

≈c ({Aŝi + êi}i∈[Q],A,C, {sprfi + ŝi, e
prf
i + ê}i∈[Q])

By privacy of Com, we can replace C with a commitment to 0, and then
security follows from PRF security plus noise smudging. In particular eprfi

smudges out êi.

That is, the non-standard/heuristic nature of Conjecture 1 arises from (1) the
interaction and potential correlations between revali and sprfi (and between eevali

and eprfi), and (2) the fact that giving out C = Com(A, (k, β)) introduces cir-
cularity between the PRF key and the commitment randomness – commitment
security is needed to ensure PRF security by making sure that the PRF key is
hidden by the commitment, while at the same time the PRF security is needed
to ensure commitment security by making sure that the values sprfi , eprfi mask
any information about the commitment randomness contained in revali , eevali . We
defer further discussion on the conjecture, its plausibility, and analysis of zeroiz-
ing attacks to the full version.

Oblivious LWE Sampling from the New Conjecture. We now that the
conjecture implies the (sub-exponential security) of our oblivious LWE sampler
in Definition 1.

Lemma 3. Under the homomorphic pseudorandom LWE samples (HPLS) con-
jecture (Conjecture 1) (with sub-exponential security), the oblivious sampler con-
struction is (sub-exponentially) secure.

We defer the proof to the full version.

7 Q-SIM Functional Encodings from Oblivious Sampling

We construct a Q-SIM functional encoding scheme (crsGen,Enc,Open,Dec)
for bounded-depth circuits F�,m,t from LWE and an oblivious LWE sampler
(OLWE.crsGen, Init,Sample).

Candidate Obfuscation via Oblivious LWE Sampling 151

Construction 5

– crsGen(1λ, 1Q,F�,m,t). Output OLWE.crsGen(1λ, 1Q).
– Enc(CRS,x): Sample

(A, td) ← TrapGen(1n, 1m, q), pub ← Init(CRS,A),R ← Z
n×�m log q
q ,E ← χm×�m log q

Compute C := pFHC.Com(A,x;R,E) and output (pub,A,C).
– Open(f i,x): Compute

(rfi , efi) := pFHC.Evalopen(f
i
,A,x,R,E), bi := Sample(CRS, pub, i), si := LWESolvetd(bi)

and output di := rfi + si ∈ Z
n
q .

– Dec(f i, (pub,A,C),di): Compute

cfi := pFHC.Eval(f,C), bi := Sample(CRS, pub, i)

and output yi := roundq/2(cfi + bi − Adi) ∈ {0, 1}m.

Theorem 6. Under the LWE assumption and the existence of a (n,m, q, χ,B)
oblivious LWE sampler, the construction above is a Q-SIM functional encoding.

We defer the proof to the full version.

8 IO from Functional Encodings

See the full version for how to construct XiO from functional encodings. We then
rely on the work of [LPST16a], which shows that (sub-exponentially secure) XiO
+ LWE implies iO. Below, we summarize the main results.

Theorem 7. The existence of (sub-exponentially secure) functional encoding
implies (sub-exponenitally secure) XiO. In particular, sub-exponentially secure
functional encodings and sub-exponential security of LWE imply the existence of
iO.

Corollary 1. Assuming that there exists a sub-exponentially secure oblivious
LWE sampler and that the sub-exponentially secure LWE assumption holds, there
exists iO.

Corollary 2. Assuming the sub-exponential security of Conjecture 1 and the
sub-exponential security of LWE, there exists iO.

152 H. Wee and D. Wichs

Acknowledgments. We thank Yilei Chen and Vinod Vaikuntanathan for insightful
discussions on cryptanalysis and bootstrapping.

References

[ACI+20] Agrikola, T., Couteau, G., Ishai, Y., Jarecki, S., Sahai, A.: On pseudo-
random encodings. In: TCC, Cryptology ePrint Archive, Report 2020/445
(2020). https://eprint.iacr.org/2020/445

[ADGM17] Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indis-
tinguishability obfuscations of circuits over GGH13. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) ICALP 2017, LIPIcs, Schloss
Dagstuhl, vol. 80, pp. 38:1–38:16, July 2017

[Agr19] Agrawal, S.: Indistinguishability obfuscation without multilinear maps:
new methods for bootstrapping and instantiation. In: Ishai and Rijmen
[IR19], pp. 191–225

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 15

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval and Johansson
[PJ12], pp. 483–501

[AJL+19] Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability
obfuscation without multilinear maps: new paradigms via low degree weak
pseudorandomness and security amplification. In: Boldyreva and Miccian-
cio [BM19], pp. 284–332

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, May 1996

[AP20] Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without
maps: attacks and fixes for noisy linear FE. In: Canteaut and Ishai [CI20],
pp. 110–140

[BDGM19] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles.
In: Hofheinz and Rosen [HR19], pp. 407–437

[BDGM20a] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from
homomorphic encryption schemes. In: Canteaut and Ishai [CI20], pp. 79–
109

[BDGM20b] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pair-
ings are not necessary for IO: Circular-secure LWE suffices. Cryptology
ePrint Archive, Report 2020/1024 (2020)

[BGG+14] Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 30

[BGI+01] Barak, B., et al.: On the (Im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 1

https://eprint.iacr.org/2020/445
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/3-540-44647-8_1

Candidate Obfuscation via Oblivious LWE Sampling 153

[BGMZ18] Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: prov-
able security against zeroizing attacks. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 544–574. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03810-6 20

[BIJ+20] Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine
determinant programs: a framework for obfuscation and witness encryp-
tion. In: Vidick, T. (ed.) ITCS 2020, LIPIcs, vol. 151, pp. 82:1–82:39,
January 2020

[BM19] Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part III. LNCS, vol.
11694. Springer, Heidelberg, August 2019

[BRF13] Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC.
ACM Press, June 2013

[BTVW17] Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 10

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190.
IEEE Computer Society Press, October 2015

[CCH+19] Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Statistical zeroizing
attack: cryptanalysis of candidates of BP obfuscation over GGH15 mul-
tilinear map. In: Boldyreva and Micciancio [BM19], pp. 253–283

[CGH17] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching
program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part III. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 10

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3–12. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46800-5 1

[CHVW19] Chen, Y., Hhan, M., Vaikuntanathan, V., Wee, H.: Matrix PRFs: con-
structions, attacks, and applications to obfuscation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 55–80. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 3

[CI20] Canteaut, A., Ishai, Y. (eds.): EUROCRYPT 2020, Part I. LNCS, vol.
12105. Springer, Heidelberg, May 2020

[CLLT16] Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. In: Robshaw and Katz [RK16], pp. 607–628

[CLLT17] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on
indistinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017,
Part I. LNCS, vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54365-8 3

[CVW18] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–
607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 20

[DKR15] Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally
composable, multiparty computation in constant rounds. In: Dodis and
Nielsen [DN15], pp. 586–613

https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-030-36030-6_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20

154 H. Wee and D. Wichs

[DN15] Dodis, Y., Nielsen, J.B. (eds.): TCC 2015, Part II. LNCS, vol. 9015.
Springer, Heidelberg, March 2015

[FRS17] Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT attacks on
obfuscation with linear overhead. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 242–271. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70700-6 9

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press,
October 2013

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis and Nielsen [DN15], pp. 498–527

[GH19] Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In:
Hofheinz and Rosen [HR19], pp. 438–464

[GJK18] Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products.
Cryptology ePrint Archive, Report 2018/756 (2018). https://eprint.iacr.
org/2018/756

[GJLS20] Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation
from simple-to-state hard problems: new assumptions, new techniques,
and simplification. Cryptology ePrint Archive, Report 2020/764 (2020).
https://eprint.iacr.org/2020/764

[GKP+13] Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh
et al. [BRF13], pp. 555–564

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 24

[GP20] Gay, R., Pass, R.: Indistinguishability obfuscation from circular security.
Cryptology ePrint Archive, Report 2020/1010 (2020)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-70936-7 11

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 5

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Boneh et al. [BRF13], pp. 545–554

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.)
47th ACM STOC, pp. 469–477. ACM Press, June 2015

[HR19] Hofheinz, D., Rosen, A. (eds.): TCC 2019, Part II. LNCS, vol. 11892.
Springer, Heidelberg, December 2019

https://doi.org/10.1007/978-3-319-70700-6_9
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://eprint.iacr.org/2018/756
https://eprint.iacr.org/2018/756
https://eprint.iacr.org/2020/764
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5

Candidate Obfuscation via Oblivious LWE Sampling 155

[IKOS10] Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: On invertible
sampling and adaptive security. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 466–482. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 27

[IR19] Ishai, Y., Rijmen, V. (eds.): EUROCRYPT 2019, Part I. LNCS, vol.
11476. Springer, Heidelberg, May 2019

[JLMS19] Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of
constant-degree expanding polynomials overa R to build iO. In: Ishai
and Rijmen [IR19], pp. 251–281

[JLS20] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003
(2020)

[KS17] Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part I. LNCS, vol. 10401.
Springer, Heidelberg, August 2017

[Lin16] Lin, H.: Indistinguishability obfuscation from constant-degree graded
encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part I. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 2

[Lin17] Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In: Katz and Shacham [KS17], pp. 599–629

[LPST16a] Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation
with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G.,
Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-
8 17

[LPST16b] Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized
encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A, Part I. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9 5

[LT17] Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In: Katz and Shacham [KS17], pp. 630–660

[LV16] Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.)
57th FOCS, pp. 11–20. IEEE Computer Society Press, October 2016

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval and Johansson [PJ12], pp. 700–718

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw and Katz [RK16], pp. 629–658

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

[Pel18] Pellet-Mary, A.: Quantum attacks against indistinguishablility obfusca-
tors proved secure in the weak multilinear map model. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 153–
183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-
0 6

[PJ12] Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol.
7237. Springer, Heidelberg, April 2012

https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-319-96878-0_6

156 H. Wee and D. Wichs

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 4

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

[RK16] Robshaw, M., Katz, J. (eds.): CRYPTO 2016, Part II. LNCS, vol. 9815.
Springer, Heidelberg, August 2016

https://doi.org/10.1007/978-3-030-26948-7_4

Non-Malleable Commitments

Black-Box Non-interactive Non-malleable
Commitments

Rachit Garg1(B), Dakshita Khurana2, George Lu1, and Brent Waters1,3

1 University of Texas at Austin, Austin, USA
{rachg96,gclu,bwaters}@cs.utexas.edu

2 University of Illinois Urbana-Champaign, Urbana, USA
dakshita@illinois.edu

3 NTT Research, Sunnyvale, USA

Abstract. There has been recent exciting progress on building non-
interactive non-malleable commitments from judicious assumptions. All
proposed approaches proceed in two steps. First, obtain simple “base”
commitment schemes for very small tag/identity spaces based on a
various sub-exponential hardness assumptions. Next, assuming sub-
exponential non-interactive witness indistinguishable proofs (NIWIs),
and variants of keyless collision resistant hash functions, construct non-
interactive compilers that convert tag-based non-malleable commitments
for a small tag space into tag-based non-malleable commitments for a
larger tag space.

We propose the first black-box construction of non-interactive non-
malleable commitments. Our key technical contribution is a novel imple-
mentation of the non-interactive proof of consistency required for tag
amplification. Prior to our work, the only known approach to tag ampli-
fication without setup and with black-box use of the base scheme (Goyal,
Lee, Ostrovsky and Visconti, FOCS 2012) added multiple rounds of inter-
action.

Our construction satisfies the strongest known definition of non-
malleability, i.e., CCA (chosen commitment attack) security. In addi-
tion to being black-box, our approach dispenses with the need for sub-
exponential NIWIs, that was common to all prior work. Instead of NIWIs,
we rely on sub-exponential hinting PRGs which can be obtained based
on a broad set of assumptions such as sub-exponential CDH or LWE.

1 Introduction

Non-malleable commitments have been a well studied primitive in cryptography
since their introduction by Dolev, Dwork and Naor [11]. They are an important

This material is based on work supported in part by DARPA under Contract
No. HR001120C0024. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government or DARPA.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 159–185, 2021.
https://doi.org/10.1007/978-3-030-77883-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_6

160 R. Garg et al.

component of nearly all multi-party protocols including multiparty computa-
tion, coin flipping and secure auctions. These commitments ensure security in
the presence of “man in the middle” attacks. A man-in-the-middle adversary
participates in two or more instantiations of a protocol, trying to use informa-
tion obtained in one execution to breach security in the other protocol execution.
A non-malleable protocol should ensure that an adversary gains no advantage
from such behavior.

Non-Interactive Non-Malleable Commitments. For several years, provably secure
constructions of non-malleable commitments required several rounds of interac-
tion. On the other hand, practical constructions need to be highly efficient and
often non-interactive. For these reasons, in practice, we often heuristically assume
that a family of (keyless) SHA-like hash functions is non-malleable. Our tech-
nique gives the first provably secure black-box construction of non-interactive
non-malleable commitments, taking us a step closer to efficient realizations.

We will focus on perfectly binding and computationally hiding non-
interactive commitments. For these commitments, the perfect binding require-
ment asserts that a commitment cannot be opened to two different messages
m �= m′. Specifically, even for a maliciously generated commitment string c,
there do not exist two openings to messages m and m′ such that m �= m′. The
(computational) hiding property asserts that for any two messages, m and m′

(of the same length), the distributions of commitments com(m) and com(m′) are
computationally indistinguishable.

Loosely speaking, a commitment scheme is said to be non-malleable if no
adversary, given a commitment com(m), can efficiently generate a commitment
com(m′), such that the message m′ is related to the original message m. This is
equivalent (assuming the existence of one-way functions) to a tag-based notion
where the commit algorithm obtains an additional input, a tag ∈ {0, 1}κ, and
where the adversary is restricted to using a tag, or identity, that is different
from the tag used to generate its input commitment. We will rely on tag-based
definitions throughout this paper. We will also model man-in-the-middle secu-
rity as a CCA (chosen commitment attack) game between the adversary and a
challenger.

Specifically, the hiding game is modified to give the adversary oracle access to
an inefficient value function CCA.Val where on input a string c, CCA.Val(tag, c)
returns m if CCA.Com(tag,m; r) → c for some r. The adversary must first specify
a challenge tag∗ along with messages m∗

0,m
∗
1. He is then allowed oracle access

to CCA.Val(tag, ·) for every tag �= tag∗, and can make an arbitrary (polyno-
mial) number of queries before and after obtaining the challenge commitment.1

This CCA definition is the strongest known definition of non-malleability. In the
non-interactive setting, the often-used definition of (concurrent) non-malleability

1 The assumption that the commitment takes input a tag is w.l.o.g when the tag
space is exponential. As is standard with non-malleable commitments, tags can be
generically removed from this construction by setting the tag as the verification key
of a signature scheme, and signing the commitment string using the signing key.

Black-Box Non-interactive Non-malleable Commitments 161

w.r.t. commitment is implied by this definition where the adversary is only
allowed to make parallel oracle queries once it obtains the challenge commit-
ment.

Our Results, in a Nutshell. In this work, we give the first black-box construc-
tion of CCA secure commitments, under weaker assumptions than prior work.
In terms of assumptions, we substitute NIWIs with hinting PRGs [25] which can
be instantiated under several standard assumptions like CDH and LWE. Addi-
tionally, while all prior work recursively applied NIWIs to prove cryptographic
statements, making heavy non-black-box use of cryptography, our constructions
are black-box. Combining this with base schemes due to [21], we obtain CCA
secure commitments from black box use of the following assumptions: subexpo-
nential hinting PRGs, subexponential keyless collision-resistant hash functions,
subexponential one-way functions against quantum adversaries, and subexpo-
nential one-way functions in BQP with hardness against classical adversaries.
We note that subexponential hinting PRGs can be obtained based on black-box
use of any group where CDH is subexponentially hard.

We believe this takes us one step closer to the goal of building provably secure
and efficient non-interactive non-malleable commitments.

Prior Work on Non-Malleable Commitments. There has been a long line of work
constructing non-malleable commitments in the plain model, without trusted
setup. This research has been driven by two often competing goals: the first
is to reduce the round complexity of commitment, which is important because
it directly impacts the round complexity of applications like MPC. The sec-
ond goal is to achieve non-malleable commitments under the weakest possible
assumptions.

This research [1,9,11,14–16,18,26,27,29–32,34,35] culminated in three
round stand-alone secure non-malleable commitments based on injective one-
way functions [17] and concurrent secure non-malleable commitments based on
DDH/LWE [22], or subexponential injective one-way functions [8]. In the two
round setting, we now have constructions based on sub-exponential time-lock
puzzles [28] and sub-exponential DDH/LWE/QR/NR [23].

Very recently, research in non-malleable commitments moved to a final fron-
tier of achieving non-interactive non-malleable commitments from well-studied
assumptions without leveraging setup. In this non-interactive setting, Pandey,
Pass and Vaikuntanathan [30] first gave constructions of non-malleable commit-
ments based on a strong non-falsifiable assumption. The primary research chal-
lenge has been to improve assumptions while realizing non-malleability without
interaction and setup, which does not allow the use of tools like zero knowledge
proof systems.

Nevertheless, the recent works of Bitansky and Lin [4] and Kalai and
Khurana [21] made progress on improving these assumptions. All of these
works [4,21,23,28] proceed in two steps. First, they construct “base” commit-
ment schemes that only support a constant-sized space of tags. Second, they
give amplification techniques to convert commitments supporting a small space

162 R. Garg et al.

of tags into commitments that support a much larger tag space. Applying these
amplification techniques to the base scheme helps generically increase the space
of tags to {0, 1}κ. We summarize known results in the non-interactive setting by
splitting up contributions into base constructions and tag amplification results.

Base Constructions. Three recent works [4,21,28] build non-interactive base
schemes: non-malleable commitments for a tag space of size c log log κ for a spe-
cific constant c > 0, based on various hardness assumptions. These are typically
only secure in a setting where the adversary is restricted to using the same tag
in all its queries to the CCA.Val oracle. This is primarily achieved by using fam-
ilies of assumptions, each of which is harder than the other along some axis of
hardness. We list these assumptions below.

1. Lin, Pass and Soni [28] assume a sub-exponential variant of the hardness
of time-lock puzzles. Specifically, they define a two-dimensional variant of
the Rivest, Shamir and Wagner (RSW) repeated squaring assumption there
is a security parameter n and another parameter t, and it is required that
computing h = g2

2t

cannot be done by circuits of overall size 2nε

and depth
2tδ

, for constants ε and δ.
2. Bitansky and Lin [4] rely on sub-exponentially hard one-way functions that

admit a strong form of hardness amplification. Roughly speaking, they say
that a one-way function f is amplifiable, if there is a way to combine (XOR),
say � hardcore bits corresponding to � independent images f(x1), . . . , f(x�)
that are each hard against T -time adversaries, so that the combined bit is
2�ε

-unpredicatable against T ′-time adversaries; that is, the level of unpre-
dictability increases at least subexponentially as more hardcore bits are com-
bined (their assumption on unpredictability goes beyond the limit poly(T

T ′)
that is commonly imposed by known provable results on hardness amplifica-
tion).

3. Kalai and Khurana [21] assume classically sub-exponentially hard but quan-
tum easy one-way functions (which can be based, e.g., on sub-exponential
hardness of DDH), and sub-exponentially quantum hard one-way functions
(which can be based, e.g., on sub-exponential hardness of LWE).

Tag Amplification. Starting with non-malleable commitments for a tag space
of size c log log κ for a specific constant c > 0 (or sometimes even smaller),
several works develop techniques to achieve non-malleable commitments for a tag
space of {0, 1}κ. This is achieved by several applications of a tag-amplification
compiler, that increases the tag space exponentially in each application. We also
point out that these compilers often obtain as input base schemes that are secure
against a restricted adversary; one that uses the same tag in all its queries to the
CCA.Val oracle. The end goal, however, is to obtain security against a general
adversary, that uses arbitrary tags in its oracle queries – as long as all tags in
oracle queries are different from the challenge tag.

Such compilers were developed in [4,21,28] based various assumptions, and
we summarize these results below.

Black-Box Non-interactive Non-malleable Commitments 163

– Lin, Pass and Soni [28] assume sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions
against uniform adversaries. The resulting commitments for larger tags are
secure only against uniform adversaries.

– Bitansky and Lin [4] assume sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions
with limited security against non-uniform adversaries. Such a hash func-
tion H : {0, 1}3κ → {0, 1}κ guarantees that no superpolynomial adversary
with non-uniform description of polynomial size S can find more than K(S)
collisions in the underlying function. Here, K is a fixed polynomial (e.g.,
quadratic). The resulting commitments for larger tags are secure against non-
uniform adversaries.

– Kalai and Khurana [21] assume sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and obtain security against non-uniform adver-
saries. But their compiler, on input commitments that satisfy a weaker notion
of non-malleability w.r.t. replacement generates commitments that are non-
malleable w.r.t replacement for a larger tag space.

In [4,28], NIWIs are combined with a hard-to-invert trapdoor statement to
enable weak forms of NIZKs without setup. In contrast, [21] use NIWIs without
associated trapdoors, but then only achieve weaker forms of non-malleability
(that is, w.r.t. replacement).

But a common thread among the amplification techniques is that they all
require the use of sub-exponential NIWI proofs. We remind that reader that
NIWIs are one round proof systems with statistical soundness, for which no
computationally bounded verifier can distinguish which witness in a relation
was used to create the proof.

Reliance on NIWIs results in the following less than ideal consequences:

– Subexponential NIWIs are only known based on the hardness of the decisional
linear problem over bilinear maps [19], or derandomization assumptions and
subexponential trapdoor permutations [2].

– All these compilers use NIWIs to prove complex cryptographic statements,
and therefore make non-black box use of the underlying non-malleable com-
mitment for a smaller tag space. On the other hand, from the point of view
of efficiency, it is desirable to have constructions that make black-box use of
cryptography.

Our Results. In this work, we provide a new approach to non-interactive tag
amplification for non-malleable commitments. This approach only makes black-
box use of cryptography, and achieves provable security under a more diverse
set of assumptions. Specifically, this compiler replaces the NIWI assumption
with hinting PRGs, that were introduced by Koppula and Waters [25], and can
be obtained based on CDH, LWE [25] and also φ-hiding and DBDHI assump-
tions [13]. (One can also alternatively execute the paradigm from any projective
key-dependent secure symmetric key encryption scheme [24] which is realizable
from the LPN assumption).

164 R. Garg et al.

We summarize (a simplification of) our results via the following informal
theorems. Recall that base schemes are typically only secure in a setting where
the adversary is restricted to using the same tag in all its queries to the oracle.
In what follows, we refer to such a commitment scheme that is only secure
against this limited class of adversaries as a same-tag CCA secure commitment.
We also refer to CCA commitments where the adversary is only allowed to
make parallel oracle queries after obtaining the challenge commitment, as non-
malleable commitments.

Theorem 1. (Informal) (Removing the Same-Tag Restriction) Assuming the
existence of sub-exponentially secure hinting PRGs and keyless hash functions
that are collision-resistant against sub-exponential uniform adversaries, there
exists a compiler that on input any same-tag CCA (respectively, non-malleable)
non-interactive commitment for N tags secure against non-uniform adversaries
where N ≤ poly(κ), outputs a CCA (respectively, non-malleable) non-interactive
commitment for N tags secure against uniform adversaries.

Theorem 2. (Informal) (Tag-Amplification for CCA commitments) Assum-
ing the existence of sub-exponentially hinting PRGs and keyless hash functions
that are collision-resistant against sub-exponential uniform adversaries, there
exists a compiler that on input any CCA (respectively, non-malleable) non-
interactive commitment for N tags secure against non-uniform adversaries where
N ≤ poly(κ), outputs a CCA (respectively, non-malleable) non-interactive com-
mitment for 2N/2 tags secure against uniform adversaries.

Unfortunately, using these informal theorems to amplify tag space from
c log log n for a small constant c > 0 immediately encounters the following issue:
the input scheme to the compiler is required to be non-uniform secure, whereas
the output scheme is only uniform secure.

To enable recursion, we strengthen our CCA abstraction. Specifically, we
modify the CCA security game to allow an adversary to submit a Turing Machine
P to the challenger, and obtain the evaluation of P on an input of the adversary’s
choice. We say that a scheme is e-“computation enabled” if it is secure against
all adversaries that submit programs that run in time polynomial in 2κe

for con-
stant e. As such, we will substitute the non-uniform security requirement for the
base CCA scheme and instead require it to be e-“computation enabled” for an
appropriate constant e. The output of the compiler will be an e′-“computation
enabled” commitment for an appropriate constant e′. We describe this abstrac-
tion, and our techniques, in additional detail in Sect. 1.1.

1.1 Our Techniques

We now provide our technical overview. Recall that the core technical goal of our
work is to provide a method for amplifying from a commitment scheme for O(N)
sized tag space to a 2N sized space. If the computational overhead associated with
the amplification step is polynomial in N and the security parameter κ, then the
process can be applied iteratively c+1 times to a base NM commitment scheme

Black-Box Non-interactive Non-malleable Commitments 165

that handles tags of size lg lg · · · lg(κ) for a c-times iterated log, for arbitrary
constant c and results in a scheme that handles tags of size 2κ. Here, we note
that subexponential quantum hardness of LWE and subexponential hardness
of DDH [21], or subexponential hardness amplifiable one-way functions [4], or
subexponential variants of time-lock puzzles [28] imply base schemes for tags in
(c lg lg κ) for a small constant c > 0, which means they imply schemes for tags
in (lg lg lg κ).

Now the traditional way to amplify such a tag space can be traced back to
[11]2 They suggested a method of breaking a large tag T j (say, in [2N]) into
N small tags tj1, t

j
2, . . . t

j
N , each in 2N , such that for two different large tags

T 1 �= T 2, there exists at least one index i such that t2i �∈ {t11, t
1
2, . . . t

1
N}. This is

achieved by setting tji = i||T j [i], where T j [i] denotes the ith bit of T j .
A scheme for tags in 2N will have an algorithm CCA.Com that commits to

a message m as CCA.Com(1κ, tag,m; r) → com. To commit to m under tag
one first creates N tags t1, . . . tN by applying the DDN encoding to tag. Next,
these (smaller) tags are used to generate commitments of m in the smaller tag
scheme as ci = Small.Com(1κ, (ti),msg = m; ri) for i ∈ [N]. Next, the com-
mitter attaches a zero knowledge (ZK) proof that all commitments are to the
same message m using the random coins as a witness. Since we are interested
in non-interactive amplification, the ZK proof will need to be non-interactive.
Additionally, we will require it to be ZK against adversaries running in time T ,
where T is the time required to brute-force break the underlying CCA scheme
for small tags.

CCA security of the scheme with larger tag space can be argued in two
basic steps. Suppose the challenger commits to either m∗

0 or m∗
1 under tag T ∗

(we denote the DDN encoding of T ∗ by t∗1, . . . t
∗
N). The adversary wins if it

gets which out of m∗
0 and m∗

1 was committed. Recall that the adversary can
request the CCA oracle to provide openings of commitment string with tags
tag �= tag∗ ∈ {0, 1}N . This oracle generates a response as follows - (1) Verify the
ZK proof in the commitment string. Return ⊥ if verification does not accept.
(2) Open the underlying commitment scheme with small tags at position 1 with
tag t1.

We will assume, for simplicity, that the adversary makes a single oracle query
in the CCA game, with tag T , whose DDN encoding is denoted by t1, . . . tN .
We will focus on the index i in the adversary’s oracle query, such that the tag
ti �∈ {t∗1, . . . t

∗
N}.

As a first step towards proving CCA security, one can modify the oracle to
open the commitment string c with small tag ti, in Step 2. Because of the sound-
ness of the ZK proof system, this change cannot be detected by the adversary,
except with negligible probability.

At this point, the challenge commitment is modified so that the ZK proof
is simulated and does not need the random coins used in the small tag com-
mitments anymore. To argue indistinguishability, we will need to answer the

2 This was recently further optimized by [23] but in this paper, we use the [11] tech-
nique for simplicity.

166 R. Garg et al.

adversary’s oracle queries. This will be done by extracting, via brute-force, the
value committed in the adversary’s oracle query. As such, we will need to rely on
ZK proofs where the ZK property holds even against machines that can (brute-
force) break the small tag commitments. Once this is done, we will change each
of the small tag commitments in the challenge commitment from committing to
the message m∗

b to committing to the all 0’s string, one by one. At the same
time, the oracle will continue to open the commitment string c with small tag ti,
in Step 2. Since ti �∈ {t∗1, . . . t

∗
N}, we can rely on CCA security of the underlying

small tag scheme and argue that the adversary will not be able to detect these
changes. By the end, all information about the bit b will be erased.

Since non-interactive zero-knowledge proofs without setup are impossible,
existing non-interactive tag amplification techniques [4,23,28] rely on weaker
variants of zero-knowledge proofs, such as ZK with super-polynomial simula-
tion and weak soundness, to perform tag amplification via the afore-mentioned
outline. These required variants of non-interactive ZK proofs are obtained by
including a trapdoor statement td. To prove that a statement x is in an NP lan-
guage L, one typically provides a NIWI to establish that (x ∈ L) ∨ (td is true).
The trapdoor statement helps perform simulation, whereas for soundness it is
required that the adversary cannot prove the trapdoor statement. One exception
is [21], which only relies on NIWIs and does not make use of on any trapdoor
statements, but is limited to the weaker notion of replacement security. However,
in addition to relying on NIWIs, the outline above makes non-black-box use of
the underlying base commitment scheme.

Eliminating NIWIs. Our primary goal in this paper is to perform tag amplifi-
cation without NIWIs, and while making black-box use of the underlying base
commitments. Taking a step back, the reason ZK is required in the tag amplifi-
cation argument discussed above, is that we can change the oracle to one that
opens different underlying tags, without the adversary noticing. In other words,
we would like to establish a system where the adversary cannot submit a com-
mitment such that its opening will be different under the original and new oracle
functions.

Here, inspired by recent work in chosen ciphertext secure public key encryp-
tion [25], our construction will allow the oracle to recover a PRG seed s that gives
(a good part of) the randomness used to create the underlying commitments.
Specifically, the oracle will use the commitment with a specific small tag to first
recover a candidate PRG seed s′ and then check for consistency by re-evaluating
the underlying commitment pieces, and checking them against the original.

These checks will intuitively serve as a substitution for ZK proofs. Interest-
ingly, our checking algorithm will allow some partially malformed commitments
to go through – allowing this is essential to our security argument. This is in
contrast to a ZK proof which enforces that all must be commitments to the same
message. While creating such partially malformed commitments is actually easy
for the adversary, the adversary will still not be able to differentiate between
different forms of decryption. (We note that in non-malleable encryption some
systems [7,33] allow for somewhat malformed ciphertexts to be let through.)

Black-Box Non-interactive Non-malleable Commitments 167

Importantly, unlike [25] that looked at two possible decryption strategies, we
will need to ensure that up to polynomially many such strategies decrypt the
same way. Furthermore, we will not be able rely on trusted setup to generate
verification keys for a signature scheme. Instead, we will develop a new technique
leveraging hinting PRGs, which we outline below.

We now describe our new tag amplification technique that converts CCA
commitments with 4N tags to CCA commitments with 2N tags. We point out
that our technique also applies as is to converting parallel CCA commitments
with 4N tags to parallel CCA commitments with 2N tags. First, we summarize
some of the tools we will use.

– Hinting PRGs. A hinting PRG, introduced in [25], satisfies the following
property: for a uniformly random short seed s, the matrix M obtained by first
expanding PRG(s) = z0z1z2 . . . zn, sampling uniformly random v1v2 . . . vn,
and setting for all i ∈ [n], Msi,i = zi and M1−si,i = vi, should be indistin-
guishable from a uniform matrix. Hinting PRGs are known based on CDH,
LWE [25] – more generally, any circular secure symmetric key encryption
scheme [24].

– Statistically Equivocal Commitments Without Setup. We will rely
on statistically hiding bit commitments without setup, that satisfy binding
against uniform adversaries. Additionally, these commitments will be statis-
tically equivocal, that is, with overwhelming probability, a randomly chosen
commitment string can be opened to both a 0 and a 1. These can be obtained
from keyless collision resistant hash functions against uniform adversaries,
based on the blueprint of [10] and [20], and more recently [3], in the keyless
hash setting.

Outline of Our Tag Amplification Technique. Let (Small.Com,Small.Val, Small.
Recover) be a non malleable commitment for 4N tags. We will assume tags take
identities of the form (i, β, γ) ∈ [N] × {0, 1} × {0, 1} and that the Small.Com
algorithm requires randomness of length �(κ).

Our transformation will produce three algorithms, (CCA.Com,CCA.Val, CCA.
Recover). The CCA.Com algorithm on input a tag tag from the large tag space,
an input message, and uniform randomness, first samples a seed s of size n for
a hinting PRG. It uses the first co-ordinate z0 of the output of the hinting PRG
on input s, as a one-time pad to mask the message m, resulting in string c.
Next, it generates n equivocal commitments {σi}i∈[n], one to each bit of s. We
will let yi denote the opening of the ith equivocal commitment (this includes the
ith bit si of s). Finally, it ‘signals’ each of the bits of s by generating commit-
ments {cx,i,b}x∈[N],i∈[n],b∈{0,1} using the small tag scheme. For every i ∈ [n], the
commitments {cx,i,0}x∈[N] and {cx,i,1}x∈[N] are generated as follows:

1. If si = 0
(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

168 R. Garg et al.

2. If si = 1
(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

where all the r̃x,i values are uniformly random, whereas rx,i values corre-
spond to the output of the hinting PRG on seed s. The output of CCA.Com
is tag, c, {σi}i∈[n], {cx,i,b}x∈[N],i∈[n],b∈{0,1}.

On an oracle query of the form CCA.Val(tag, com), we must return the
message committed in the string com, if one exists. To do this, we parse
com = tag, c, {σi}i∈[n], {cx,i,b}x∈[N],i∈[n],b∈{0,1}, and then recover the values com-
mitted under small tags (1, tag1, 0) and (1, tag1, 1), which also helps recover the
seed s of the hinting PRG. Next, we check that for every i ∈ [n], the recovered
values correspond to openings of the respective σi. We also compute hinting
PRG(s), and use the resulting randomness to check that for all x ∈ [N], the
commitments that were supposed to use the outcome of the PRG were correctly
constructed. If any of these checks fail, we know that the commitment string
com cannot be a well-formed commitment to any message. Therefore, if any of
the checks fail, the oracle outputs ⊥. These checks are inspired by [25], and intu-
itively, ensure that it is computationally infeasible for an adversary to query the
oracle on commitment strings that lead to different outcomes differently depend-
ing on which small tag was used. If all these checks pass, the CCA.Val algorithm
uses c to recover and output m.

Proving Security. We will prove that the resulting scheme is CCA secure against
uniform adversaries. To begin, we note that the set {(x, tagx)}x∈[N] is nothing
but the DDN encoding of the tag tag. Recall that this encoding has the prop-
erty that for every tag, tag∗ ∈ 2N , there exists an index x ∈ [N] such that
(x, tagx) �∈ {(x∗, tag∗

x∗)}x∗∈[N]. In the scheme described above, the tag used for
each set {cx,i,b}i∈[n] is (x, tagx, b). This means that for our particular method of
generating the commitments cx,i,b described above, for each of the adversary’s
oracle queries, there will be an index x′ ∈ [N] such that the tags (x′, tagx′ , 0)
and (x′, tagx′ , 1) used to generate {cx′,i,b}i∈[n],b∈{0,1} in that query will differ
from all small tags used to generate the challenge commitment.

Our first step towards proving security of the resulting commitment with
large tags, will be to define an alternative CCA.ValAlt algorithm, that instead of
recovering the values committed under tags (1, tag1, 0) and (1, tag1, 1), recovers
values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1). As already alluded to
earlier, this scheme is designed so that it is computationally infeasible for a
uniform adversary to query the oracle on commitment strings for which CCA.Val
and CCA.ValAlt lead to different outcomes. Formally, we will first switch to a
hybrid that uses the CCA.ValAlt algorithm instead of CCA.Val to answer the
adversary’s oracle queries.

When making this change, because of the checks performed by the valua-
tion algorithms, we can formally argue that any adversary that distinguishes
these hybrids must query the oracle with a commitment string that has fol-
lowing property: For some i ∈ [n], x ∈ [N], cx,i,0 and cx,i,1 are small tag com-
mitments to openings of the equivocal commitment to some bit b and 1 − b

Black-Box Non-interactive Non-malleable Commitments 169

respectively. Assuming that the equivocal commitment satisfies binding against
uniform adversaries that run in subexponential time, one can brute-force extract
these openings from cx,i,0 and cx,i,1 to contradict the binding property.

The next hybrid is an exponential time hybrid that samples equivocal com-
mitments {σi}i∈[n], for the challenge commitment, together with randomness
{y0,i}i∈[n] and {y1,i}i∈[n] that can be used to equivocally open these commit-
ments to 0 and 1 respectively.

In the next hybrid, inspired by [25] we modify the components
{c∗

x,i,b}x∈[N],i∈[n],b∈{0,1} in the challenge commitment to “drown” out informa-
tion about s via noise. In particular, while in the real game, the values c∗

x,i,1

are always commitments to ysi,i, in the challenge commitment these values are
modified to become commitments to y∗

i,1, irrespective of what si is. In the next
step, the values c∗

x,i,0 are modified to become commitments to y∗
i,0, irrespective

of what si is. We rely on CCA security of the underlying small tag scheme so
that we can continue to run the CCA.ValAlt function to recover values com-
mitted under (x′, tagx′ , 0) and (x′, tagx′ , 1) while changing all the components
{c∗

x,i,b}x∈[N],i∈[n],b∈{0,1} in the challenge commitment. This step crucially makes
use of the fact that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) differ from all small
tags used to generate the challenge commitment. Moreover, in spite of the fact
that generating equivocal openings of {σi}i∈[n] takes exponential time, the proof
of indistinguishability between this hybrid and the previous one does not need
to rely on an exponential time reduction. Instead, we observe that the equivocal
commitment strings {σi}i∈[n] together with their openings can be fixed non-
uniformly and independently of the strings c∗

x,i,b, and therefore these hybrids
can be proven indistinguishable based on non-malleability of the small tag com-
mitment against non-uniform adversaries. Since we must carefully manipulate
the randomness used for c∗

x,i,b in both games, this hybrid requires a delicate
argument.

At this point, we have eliminated all information about the PRG seed s,
except from the randomness rx,i and r̃x,i. In the final hybrid, we rely on the
security of the hinting PRG to switch to using uniform randomness everywhere.
Note that we still need to answer the adversary’s oracle queries, but this can be
done by ensuring that the time required to run the CCA.ValAlt algorithm is much
smaller than that needed to break hinting PRG security. At this point, there is
no information about s, and therefore about the message being committed to in
the challenge commitment.

Issues with Recursion. At this point, it may seem like we are done, but the
careful reader may have noticed a problem. To prove security, we assumed an
input scheme that was secure against non-uniform adversaries, but due to the
use of equivocal commitments against uniform adversaries, the transformation
yields a scheme that is only secure against uniform adversaries. This would be no
problem if we say were only amplifying once from κ to 2κ tags. But unfortunately,
the recursion will not work if our base scheme starts with lg lg lg(κ) size tags
(which is the number of tags allowable by most existing base schemes), as we
will need to recursively amplify multiple times.

170 R. Garg et al.

It might seem that we are fundamentally stuck. The first hybrid in our argu-
ment requires the equivocal commitment scheme to be more secure than the
underlying small tag commitment. Later hybrids require that the small tag
commitment to satisfy CCA security even when equivocal commitments with
openings to both ones and zeros are generated. If the small tag CCA scheme is
only uniformly secure, it seems impossible to satisfy this requirement without
violating the previous one.

However, if we peel the recursion back further, there appears to be a glimmer
of hope. Suppose we are applying our transformation to an underlying CCA
commitment, which is itself the result of applying the transformation one or
more times. When our proof arrives at the security of the underlying scheme,
the underlying scheme’s security will rely both on an equivocal commitment
itself, and at the deepest level the non-uniform security of the base scheme. If the
equivocal commitments in the underlying scheme use a larger security parameter
than the current one, then the lower level scheme may still be secure (and lower
level equivocal commitments may still be binding) even when equivocal openings
are found at the current level.

e-Computation Enabled Security. We capture this intuition by expanding our
abstraction to include what we call e-computation enabled CCA commitments.
Here, we modify the security game to allow an adversary to submit a Turing
Machine P to the challenger. The adversary will receive the evaluation of P on an
input of its choice. We say that a scheme is e-computation enabled if it is secure
against all adversaries that submit programs that run in time polynomial in 2κe

for constant e. (The program output size itself is required to be polynomially
bounded.)

With this abstraction in place, when proving security, our reduction can pass
the task of generating equivocal openings as an appropriate program P to the
enhanced CCA security game itself. Implicitly, this allows the equivocal opening
requests to be satisfied in different ways depending on what stage the security
proof of the lower scheme is at.

While this new property provides a useful tool for recursion, we also need to
work a bit harder to prove e-computation enabled CCA security. Specifically, we
prove in Sect. 3 that given a hinting PRG and an equivocal commitment scheme
that are uniformly secure against 2κδ

time adversaries for δ ∈ (0, 1), we can
transform an e-computation enabled CCA scheme for small tags into one that
is e′-computation enabled CCA secure for large tags, where e′ = e · δ.

In our proof, at the stages where we use a reduction to find equivocal open-
ings, the reduction will run in time 2κe′

to satisfy the adversary’s program
request. When contradicting the hinting PRG, the reduction will run in time 2κe

to find equivocal openings, and 2κe′
to satisfy the adversary’s program request.

To ensure that this gives us a contradiction, we will set the security parameter
of the hinting PRG to be large enough. Finally, when the reduction is to the
underlying small tag CCA commitment, the program request of the large tag
adversary will be passed by the reduction to the interface of the underlying small

Black-Box Non-interactive Non-malleable Commitments 171

tag scheme, which is allowed since e′ < e. In the base case, we note that we start
with schemes secure against non-uniform adversaries (for lg lg lg κ tags). By def-
inition, any scheme that is secure against non-uniform adversaries is trivially
e-computation enabled secure for arbitrary e.

Issues due to Same-Tag Restrictions. The techniques described above capture
our main ideas for tag amplification. Unfortunately, the base schemes that we
start with may only be same-tag secure. On the other hand, we would like to end
up with CCA schemes for 2κ tags that do not have this restriction. This is because
CCA commitments without such a restriction can be generically transformed,
assuming signatures into schemes that do not use tags at all. We remedy the
same-tag issue by applying a transformation that takes a scheme supporting a
tag space of N tags with same-tag only queries to one that supports N tags
without the same-tag restriction, for any N ≤ poly(κ).

Removing the Same-Tag Requirement. We start with an underlying scheme that
has the same-tag requirement, and modify it to remove this requirement as
follows. To commit to a message with tag tag in the new scheme, commit to it
with respect to all N − 1 tags except tag in the underlying same-tag scheme.
Similar to the previous construction, we use hinting PRGs and attach a bunch
of checks to ensure that recovering the committed value from the adversary’s
queries using any one tag is computationally indistinguishable from recovering
it using a different tag.

The overall mechanics and guarantees are similar to our prior transforma-
tion. Suppose an adversary were given a challenge commitment tag∗ in the trans-
formed scheme, and got to make queries to several different tags tag �= tag∗. By
our construction, the adversary’s challenge does not contain an underlying com-
mitment with tag tag∗ whereas all of the adversary’s oracle queries will contain
an underlying commitment with tag tag∗. We can therefore answer all of these
queries by changing the oracle valuation function to one that uses only tag tag∗

in underlying scheme.
We note that since the same-tag transformation incurs a blowup proportional

to N , it is imperative to apply it early on in the sequence of transformations. If
we first amplified the tag space to be of size 2κ and then attempted to remove
the same-tag restriction, the resulting scheme would have exponential sized com-
mitments. Therefore, we start with a base scheme that is same-tag secure and
supports tags of size iterated log, c times, as lg lg · · · lg(κ) for some constant c,
we will first apply the same-tag to many-tag transformation. Next, we apply
the tag amplification transformation c + 1 times. We end up with a scheme
that is polynomial sized and supports a tag space of size 2κ with no same-tag
restrictions.

Non-uniform Security. Our techniques give a CCA commitment scheme secure
against uniform adversaries. One might ask whether we could use similar tech-
niques, perhaps combined with new assumptions such as non-uniformly secure
keyless hash functions [3,4] to obtain security against non-uniform adversaries.
We address this in two parts.

172 R. Garg et al.

First, taking a step back, a primary motivation for obtaining non-uniform
security is that it is useful for protocol composition. For example, if we were
using a cryptographic primitive like public key encryption as an end application
say for encrypting email, then obtaining uniform security would arguably be just
fine. As the uniform model captures attackers in the real world. However, the
extra power of non-uniform security might be helpful if our commitment scheme
were a component used in building a larger cryptosystem. Here, we observe that
our transformation actually outputs a CCA scheme with properties that are
stronger than (plain) uniform security. Specifically, the output scheme satisfies
e-computation enabled CCA security.

While the initial motivation for this abstraction was that it helps with recur-
sion; we note that it can actually be a useful property for a CCA scheme to have.
In particular, it can actually be viewed as a more fine-grained or nuanced view
of non-uniform computation. This abstraction gives any adversary non-uniform
advice so long as it can be computed in time 2κe

. If e is set appropriately, then we
expect this would suffice in many circumstances, including for protocol compo-
sition. Indeed, this was true for the type of protocol composition that we needed
to recursively amplify the tag space. Thus our amplification techniques and our
abstraction can arguably deliver something that is the “best of both worlds”:
the outcome is as good as non-uniform security for many applications, but does
not make any new non-uniform assumptions about the hash function.

Second, our techniques are also meaningful for constructing black-box two-
message non-malleable commitments with (regular) non-uniform security. In our
transformation, the primitive that requires uniform security is the keyless hash-
based equivocal commitment scheme. In the two-message setting, it seems pos-
sible to slightly modify our scheme to have the receiver generate the key for
a keyed (non-uniform secure) collision-resistant hash function. All of our other
techniques appear to carry over to this setting, and it appears that one would
be able to prove that the resulting scheme is a (regular) non-uniform secure
non-malleable commitment that only makes black-box use of cryptography.

Organization. We define “computation enabled” commitments in Sect. 2, present
our tag amplification scheme in Sect. 3, and show how to compile these elements
in Sect. 4. Details on preliminaries and proof analyses, as well as recovery-from-
randomness and removing the same tag restriction can be found in our full
version [12].

2 Computation Enabled CCA Commitments

We now define what we describe as “computation enabled” CCA secure commit-
ments. Intuitively, these will be tagged commitments where a commitment to
message m under tag tag and randomness r is created as CCA.Com(tag,m; r) →
com. The scheme will be statistically binding if for all tag0, tag1, r0, r1 and
m0 �= m1 we have that CCA.Com(tag0,m0; r0) �= CCA.Com(tag1,m1; r1).

Our hiding property follows along the lines of chosen commitment security
definitions [6] where an attacker gives a challenge tag tag∗ along with messages

Black-Box Non-interactive Non-malleable Commitments 173

m0,m1 and receives a challenge commitment com∗ to either m0 or m1 from
the experiment. The attacker’s job is to guess the message that was commit-
ted to with the aid of oracle access to an (inefficient) value function CCA.Val
where CCA.Val(com) will return m if CCA.Com(tag,m; r) → com for some r.
The attacker is allowed oracle access to CCA.Val(·) for any tag �= tag∗. The tra-
ditional notion of non-malleability (as seen in [21], etc.) is simply a restriction
of the CCA game where the adversary is only allowed to simultaneously submit
a single set of decommitment queries. The proof of this is immediate and can be
found in [5].

The primary difference in our definition is that we also allow the attacker
to submit a randomized turing machine P at the beginning of the game. The
challenger will run P and output its result to the attacker at the beginning of
the game. This added property will allow us to successfully apply recursion for
tag amplification later in our scheme. In addition, we require a recover from
randomness property, which allows one to open the commitment given all the
randomness used to generate said commitment.

2.1 Definition

A computation enabled CCA secure commitment is parameterized by a tag space
of size N = N(κ) where tags are in [1, N]. It consists of three algorithms:

CCA.Com(1κ, tag,m; r) → com is a randomized PPT algorithm that takes as
input the security parameter κ, a tag tag ∈ [N], a message m ∈ {0, 1}∗ and
outputs a commitment com, including the tag com.tag. We denote the random
coins explicitly as r.

CCA.Val(com) → m ∪ ⊥ is a deterministic inefficient algorithm that takes in a
commitment com and outputs either a message m ∈ {0, 1}∗ or a reject symbol
⊥.

CCA.Recover(com, r) → m is a deterministic algorithm which takes a commit-
ment com and the randomness r used to generate com and outputs the under-
lying message m.

We now define the correctness, efficiency properties, as well as the security
properties of perfectly binding and message hiding.

Definition 1 (Correctness). We say that our computation enabled CCA
secure commitment scheme is perfectly correct if the following holds. ∀m ∈
{0, 1}∗, tag ∈ [N] and r we have that

CCA.Val(CCA.Com(1κ, tag,m; r)) = m.

Definition 2 (Efficiency). We say that our computation enabled CCA
secure commitment scheme is efficient if CCA.Com,CCA.Recover run in time
poly(|m|, κ), while CCA.Val runs in time poly(|m|, 2κ).

174 R. Garg et al.

Definition 3 (Security). We say that our computation enabled CCA secure
commitment is perfectly binding if ∀m0,m1 ∈ {0, 1}∗ s.t. m0 �= m1 there does
not exist tag0, tag1, r0, r1 such that

CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1).

Remark 1. We remark that this is implied by Definition 1, as we know that if
CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1), then

m0 = CCA.Val(CCA.Com(1κ, tag0,m0; r0)) = CCA.Val(CCA.Com(1κ, tag1,m1; r1)) = m1,

but m0 �= m1, a contradiction.

We define our message hiding game between a challenger and an attacker.
The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P .
The challenger runs the program on random coins and sends the output to
the attacker. If the program takes more than 22

κ

time to halt, the outputs
halts the evaluation and outputs the empty string.3

2. The attacker sends a “challenge tag” tag∗ ∈ [N].
3. The attacker makes repeated commitment queries com. If com.tag = tag∗ the

challenger responds with ⊥. Otherwise it sends

CCA.Val(com).

4. For some w, the attacker sends two messages m0,m1 ∈ {0, 1}w.
5. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r)

for randomly chosen r.
6. The attacker again makes repeated queries of commitment com. If com.tag =

tag∗ the challenger sends ⊥. Otherwise it responds as

CCA.Val(com).

7. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b] − 1
2 where the

probability is over all the attacker and challenger’s coins.

Definition 4. An attack algorithm A is said to be e-conforming for some real
value e > 0 if:

1. A is a (randomized) uniform algorithm.
2. A runs in polynomial time.
3. The program P output by A in Step 1 of the game will always terminate in

time p(2κe

) time and output at most q(κ) bits for some polynomial functions
p, q (For all possible random tapes given to the program P).

3 The choice of 22κ

is somewhat arbitrary as the condition is in place so that the game
is well defined on all P .

Black-Box Non-interactive Non-malleable Commitments 175

Definition 5. A computation enabled CCA secure commitment scheme scheme
given by algorithms (CCA.Com,CCA.Val,CCA.Recover) is said to be e-
computation enabled CCA secure if for any e-conforming adversary A there
exists a negligible function negl(·) such that the attacker’s advantage in the game
is negl(κ).

We also define another notion of security which we call “same tag” computa-
tion enabled secure for a weaker class of adversaries who only submit challenge
queries that all have the same tag.

Definition 6. A computation enabled CCA secure commitment scheme scheme
given by algorithms (CCA.Com,CCA.Val,CCA.Recover) is said to be “same tag”
e-computation enabled CCA secure if for any e-conforming adversary A which
generates queries such that all commitment queries submitted by A are on the
same tag, there exists a negligible function negl(·) such that the attacker’s advan-
tage in the game is negl(κ).

Recovery From Randomness

Definition 7. We say that our CCA secure commitment scheme can be recov-
ered from randomness if the following holds. For all m ∈ {0, 1}∗, tag ∈ [N], and
r we have that

CCA.Recover(CCA.Com(1κ, tag,m; r), r) = m.

Claim. Let (CCA.Com,CCA.Val) be a set of algorithms which satisfy any of Def-
inition 1, Definition 2, Definition 3, Definition 5. Then there exists a set of algo-
rithms (CCA′.Com,CCA′.Val, CCA′.Recover) which satisfy the same properties
as well as Definition 7. We defer the construction and proof to our full version
[12].

2.2 Connecting to Standard Security

We now connect our computation enabled definition to the standard notion
of chosen commitment security. In particular, the standard notion of chosen
commitment security is simply the computation enabled above, but removing
the first step of submitting a program P . We prove two straightforward lemmas.
The first shows that any computation enabled CCA secure commitment scheme
is a standard secure one against uniform attackers. The second is that any non-
uniformly secure standard scheme satisfies e-computation enabled security for
any constant e ≥ 0.

Definition 8. A commitment scheme (CCA.Com,CCA.Val,CCA.Recover) is said
to be CCA secure against uniform/non-uniform attackers if for any poly-time
uniform/non-uniform adversary A there exists a negligible function negl(·) such
that A’s advantage in the above game with Step 1 removed is negl(κ).

176 R. Garg et al.

Definition 9. A commitment scheme (CCA.Com,CCA.Val,CCA.Recover) is said
to be “same tag” CCA secure against uniform/non-uniform attackers if for any
poly-time uniform/non-uniform adversary A such that all commitment queries
submitted by A are on the same tag, there exists a negligible function negl(·) such
that A’s advantage in the above game with Step 1 removed is negl(κ).

Claim. If (CCA.Com,CCA.Val,CCA.Recover) is an e-computation enabled CCA
secure commitment scheme for some e as per Definition 5, then it is also a scheme
that achieves standard CCA security against uniform poly-time attackers as per
Definition 8.

Proof. This follows from the fact that any uniform attacker A in the standard
security game with advantage ε(κ) = ε immediately implies an e-conforming
attacker A′ with the same advantage where A′ outputs a program P that imme-
diately halts and then runs A. �

Claim. If (CCA.Com,CCA.Val,CCA.Recover) achieves standard CCA security
against non-uniform poly-time attackers as per Definition 8, then it is an e-
computation enabled CCA secure commitment scheme for any e as per Defini-
tion 5.

Proof. Suppose A is an e-conforming attacker for some e with some advantage
ε = ε(κ). Then our non-uniform attacker A′ can fix the random coins of A and
to maximize its probability of success. Since now A is deterministic save for
randomness produced by the challenger in step 5, this deterministically fixes
the P A sends, so A′ can fix the coins of P to maximize success. Thus, A′ can
simulate A given the above aforementioned random coins of A and the output
of P , both of which are poly-bounded by the fact that A is e-conforming. Since
all non-challenger randomness was non-uniformly fixed to maximize success, A′

has at least advantage ε as well. By our definition of standard security hiding,
the advantage of A′ must be negligible, so A’s advantage must be as well. �

We remark that the above statements are also true for “same tag” conforming
adversaries.

3 Tag Amplification

In this section we show a process from amplifying a computation enabled CCA
commitment scheme for N ′ = 4N tags to a scheme with 2N tags. The amplifica-
tion process imposes an overhead that is polynomial in N and the size/time of
the original commitment scheme. Thus it is important that N be polynomially
bounded in the security parameter.

Let (Small.Com,Small.Val,Small.Recover) be an e-computation enabled CCA
commitment scheme for N ′(κ) = N ′ = 4N tags. We will assume tags take
identities of the form (i, β, Γ) ∈ [N] × {0, 1} × {0, 1} and that the Small.Com

Black-Box Non-interactive Non-malleable Commitments 177

algorithm take in random coins of length �(κ). In addition, for some con-
stant δ ∈ (0, 1)4 we assume a equivocal commitment without setup scheme
(Equiv.Com,Equiv.Decom,Equiv.Equivocate) that is T = 2κδ

binding secure and
statistically hiding.

We assume a hinting PRG scheme (Setup,Eval) that is T = 2κγ

secure for
some constant γ ∈ (0, 1) and has seed length n(κ, |m|) (represented by n for ease)
and block output length of max(|m|, �×N). For ease of notation we assume that
HPRG.Eval(HPRG.pp, s, 0) ∈ {0, 1}|m| and ∀i ∈ [n], HPRG.Eval(HPRG.pp, s, i) ∈
{0, 1}�·N .

Our transformation will produce three algorithms, CCA.Com,CCA.Val, and
CCA.Recover which we prove e′-computation enabled where we require e′ = e·δ ≥
1. We will also present a fourth algorithm CCA.ValAlt, which is only used in the
proof. The algorithms will make use of the auxiliary subroutines CCA.Find and
CCA.Check described below. CCA.ValAlt(tag∗, com) → m ∪ ⊥ is a deterministic
inefficient algorithm that takes in a tag tag∗ and a commitment com and outputs
either a message m ∈ {0, 1}∗ or a reject symbol ⊥. It will be used solely as
an instrument in proving the scheme secure and not exported as part of the
interface. We describe the transformation and due to space constraints analyze
it’s properties formally in [12] . We present the security games in the main body
to give intuition on how our proof proceeds.

Fig. 1. Routine CCA.Find

Transformation Amplify(Small = (Small.Com,Small.Val,Small.Recover),HPRG,
Equiv, e′) → NM = (CCA.Com,CCA.Val,CCA.Recover) :

4 The constant δ must be less than 1 in order to meet the requirement that the
Equiv.Equivocate algorithm runs in time polynomial in 2κ.

178 R. Garg et al.

Fig. 2. Routine CCA.Check

CCA.Com(1κ, tag,m ∈ {0, 1}∗; r) → com

1. Compute κ′ = κ
e′
δ = κe. Compute κ′′ = κ′ 1

γ .5

2. Sample (HPRG.pp, 1n) ← HPRG.Setup(κ′′, 1max(|m|,N ·�)).
3. Sample s = s1 . . . sn

R←− {0, 1}n as the seed of the hinting PRG.
4. For all i ∈ [n] run Equiv.Com(1κ′

, si) → (σi, yi).
5. Let rx,i, r̃x,i ∈ {0, 1}� be defined as follows:
6. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·�

7. Compute c = m ⊕ HPRG.Eval(HPRG.pp, s, 0)
8. For i ∈ [n], x ∈ [N]

(a) If si = 0
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

(b) If si = 1
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

9. Output com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

as the
commitment. All of the randomness is used as the decommitment string.

CCA.Val(com) → m ∪ ⊥
1. Set s̃ = CCA.Find(1, com).
2. If CCA.Check(s̃, com) = 0 output ⊥.
3. Output c ⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com) → m ∪ ⊥
1. If com.tag = tag∗, output ⊥.
2. Let x∗ be the smallest index where the bits of tag∗, tag differ.

5 δ and γ are known from the security guarantees of Equiv,HPRG respectively.

Black-Box Non-interactive Non-malleable Commitments 179

3. Set s̃ = CCA.Find(x∗, com).
4. If CCA.Check(s̃, com) = 0 output ⊥.
5. Output c ⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r) → m ∪ ⊥
1. From r, parse the seed s of the Hinting PRG.
2. From com, parse the commitment component c and the public parameter

HPRG.pp.
3. Output c ⊕ HPRG.Eval(HPRG.pp, s, 0)

3.1 Proof of Security

We now prove security by showing that our transformation leads to an e′ =
e · δ-computation enabled CCA commitment scheme. We do so in a sequence of
security games.

In each proof step we will need to keep in mind that the attacker will be
allowed to ask for a program P that runs in time polynomial in 2κe′

where
e′ = e · δ. This will be satisfied in one of two ways. In the proof steps that
rely on the hinting PRG security or the equivocal commitment without setup
scheme we leverage the that that these are subexponentially secure primitives.
For relying on security of the equivocal commitment without setup we use secu-
rity parameter κ′ = κe, it is secure against attackers that run in time polynomial
in 2(κ

′)δ

= 2κeδ

= 2κe′
time. Thus our reduction algorithm in these steps can

satisfy the requirement by running P itself and still be a legitimate 2(κ
′)δ

time
attacker. For relying on security of the hinting PRG scheme, we use security
parameter κ′′ = κ′ 1

γ , it is secure against attackers that run in time polynomial
in 2κ′

. Thus our reduction algorithm can run P and the equivocate algorithm.
The second situation is when we rely on the security of the smaller tag

space e-computation enabled scheme. In this case the reduction will need to
be polynomial time so there is no way for it to directly run a program P that
takes 2κe′

time. However, in this case it can satisfy the requirement by creating
a program P̃ and passing this onto the security game of the e-computation
enabled challenger. The program P̃ will run P as well as n invocations of the
Equiv.Equivocate algorithm. We present our sequence of games below, and proofs
of indistinguishability between these games can be found in the full version.

Game 0. This is the original message hiding game between a challenger and an
attacker for e′ = e · δ conforming attackers. The game is parameterized by a
security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P .
The challenger runs the program on random coins and sends the output to
the attacker. If the program takes more than 22

κ

time to halt, the outputs
halts the evaluation and outputs the empty string.

2. The attacker sends a “challenge tag” tag∗ ∈ {0, 1}N .

180 R. Garg et al.

3. Pre Challenge Phase: The attacker makes repeated queries commitments

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n]

)

.

If tag = tag∗ the challenger responds with ⊥. Otherwise responds as

CCA.Val(com).

4. Challenge Phase
(a) The attacker sends two messages m∗

0,m
∗
1 ∈ {0, 1}w

(b) Part 1:
– Compute κ′ = κe.
– Compute κ′′ = κ′ 1

γ .
– Sample (HPRG.pp∗, 1n) ← HPRG.Setup(κ′′, 1max(w,N ·�)).
– Sample s∗ = s∗

1 . . . s∗
n

R←− {0, 1}n as the seed of the HPRG.
– Let r∗

x,i, r̃
∗
x,i ∈ {0, 1}� be defined as follows:

– For i ∈ [n]
i. Compute (r∗

1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗
1,i, r̃

∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·�

– For all i ∈ [n] run Equiv.Com(1κ′
, s∗

i) → (σ∗
i , y∗

i).
(c) Part 2:

– It chooses b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗
b .

– For i ∈ [n], x ∈ [N]
i. If s∗

i = 0
A. c∗

x,i,0 = Small.Com(1κ, (x, tag∗
x, 0), y∗

i ; r∗
x,i)

B. c∗
x,i,1 = Small.Com(1κ, (x, tag∗

x, 1), y∗
i ; r̃∗

x,i)
ii. If s∗

i = 1
A. c∗

x,i,0 = Small.Com(1κ, (x, tag∗
x, 0), y∗

i ; r̃∗
x,i)

B. c∗
x,i,1 = Small.Com(1κ, (x, tag∗

x, 1), y∗
i ; r∗

x,i)
– Finally, it sends com∗ =

(

tag∗, HPRG.pp∗, c∗, (σ∗
i ,

(

c∗
x,i,0,

c∗
x,i,1

)

x∈[N]
)i∈[n])

)

as the commitment. All of the randomness is used
as the decommitment string.

5. Post Challenge Phase: The attacker again makes commitment queries com.
If tag = tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

Game 1. This is same as Game 0, except that during the Pre Challenge Phase
and Post Challenge Phase, challenger uses CCA.ValAlt(tag∗, com) to answer
queries.

Black-Box Non-interactive Non-malleable Commitments 181

Game 2. In this game in Part 1 the (σ∗
i , y∗

i) are now generated from the
Equiv.Equivocate algorithm instead of the Equiv.Com algorithm.

– Compute κ′ = κe, κ′′ = κ′ 1
γ .

– Sample (HPRG.pp∗, 1n) ← HPRG.Setup(κ′′, 1max(w,N ·�)).
– Sample s∗ = s∗

1 . . . s∗
n

R←− {0, 1}n as the seed of the hinting PRG.
– Let r∗

x,i, r̃
∗
x,i ∈ {0, 1}� be defined as follows, for i ∈ [n]

1. Compute (r∗
1,i, r

∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

2. Sample (r̃∗
1,i, r̃

∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·�

– For all i ∈ [n] run Equiv.Equivocate(1κ′
) → (σ∗

i , y∗
i,0, y

∗
i,1).

– For all i ∈ [n], set y∗
i = y∗

i,s∗
i
.

Game 3. In this game in Part 2 we move to c∗
x,i,0 committing to y∗

i,0 and c∗
x,i,1

committing to y∗
i,1 for all x ∈ [N], i ∈ [n] independently of s∗

i .

– For i ∈ [n], x ∈ [N]
1. If s∗

i = 0
1. c∗

x,i,0 = Small.Com(1κ, (x, tag∗
x, 0), y∗

i,0; r
∗
x,i)

2. c∗
x,i,1 = Small.Com(1κ, (x, tag∗

x, 1), y∗
i,1; r̃

∗
x,i)

2. If s∗
i = 1

(a) c∗
x,i,0 = Small.Com(1κ, (x, tag∗

x, 0), y∗
i,0; r̃

∗
x,i)

(b) c∗
x,i,1 = Small.Com(1κ, (x, tag∗

x, 1), y∗
i,1; r

∗
x,i)

Game 4. In all r∗
x,i values are chosen uniformly at random (insted of choosing

from HPRG.Eval(HPRG.pp∗, s∗, i)) and c∗ is also chosen uniformly at random
(instead of choosing HPRG.Eval(HPRG.pp∗, s∗, 0) ⊕ m∗

b).

4 Compiling Our Transformations

We conclude by showing how to compile our transformations. Suppose that we
begin with a base scheme supporting 32 · ilog(c, κ)6 tags for some constant c that
is secure against non-uniform attackers that make same tag queries. We will
compile this into a scheme supporting 16 · 2κ space against uniform attackers
with no same tag restriction.

We apply the transformation that removes the same tag restriction [12] to
the base scheme which divides the tag space supported by 2 to get a scheme
with 16 · ilog(c, κ) sized tag space, but removes the same-tag restriction. The we
apply the Sect. 3 tag amplification process c+1 times. Recall the transformation
takes a N ′ = 4N scheme to a scheme supporting 2N tags. Since 16/4 = 4 and
24 = 16 the effect is of each application is to remove one of the lg iterations and
keep the factor of 16. Since the transformation imposes a polynomial blowup on

6 For brevity, ilog(c, κ) denotes lg lg · · · lg
︸ ︷︷ ︸

c times

(κ).

182 R. Garg et al.

the underlying scheme and since it is applied a constant number of times, the
size of the resulting scheme is also polynomial.

Below we give a formal construction utilizing the transformations
RecoverRandom(·) presented in [12] , OneToMany(·) presented in [12] , and
Amplify(·) presented in Section 3. Since we are transforming a scheme that takes
32 · ilog(c, κ) tags to 16 ·2κ tags, we need to use the amplification transformation
c + 1 times. OneToMany(·),Amplify(·) transformations take in a e-computation
enabled scheme and output a e′ = e·δ-computation enabled scheme where e′ ≥ 1
and δ ∈ (0, 1) and the equivocal commitment scheme is 2κδ

hiding secure. We set
OneToMany(·) to take a e · δ−c−2-computation enabled and output a e · δ−c−1-
computation enabled scheme. Amplify(·) takes a e · δ−c−1-computation enabled
scheme and outputs a e-computation enabled scheme after c+1 transformations.

CompiledAmplify(BaseCCA = (BaseCCA.Com,BaseCCA.Val),HPRG,Equiv, e)
1. RandomBaseCCA ← RecoverRandom(BaseCCA)
2. Let δ be the constant so that Equiv is 2κδ

binding secure and c be the
constant such that the base scheme takes 32 · ilog(c, κ).

3. AmplifiedCCA0 ← OneToMany(RandomBaseCCA,HPRG,Equiv, e · δ−c−1).
4. For i ∈ [c + 1]

(a) AmplifiedCCAi ← Amplify(AmplifiedCCAi−1,HPRG,Equiv, e · δi−c−1)
5. Output (AmplifiedCCAc+1.Com,AmplifiedCCAc+1.Val)

Below we analyze CompiledAmplify by stating theorems on correctness, efficiency
and security. Due to space constraints, we defer the proofs of these theorems to
the full version of our paper.

Theorem 3. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val)
be a perfectly correct CCA commitment scheme by Definition 1. Let
Equiv = (Equiv.Com,Equiv.Decom, Equiv.Equivocate) be a perfectly cor-
rect equivocal commitment scheme. Then, we have that the scheme
CompiledAmplify(BaseCCA,HPRG,Equiv, e) is a perfectly correct CCA commit-
ment scheme.

Theorem 4. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val) be
an efficient CCA commitment scheme by Definition 2 with tag space 32·ilog(c, κ).
Let Equiv = (Equiv.Com, Equiv.Decom,Equiv.Equivocate) be an efficient equivocal
commitment scheme. Then, CompiledAmplify
(BaseCCA,HPRG,Equiv, e) is an efficient CCA commitment scheme.

Theorem 5. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val)
be a CCA commitment scheme that is hiding against non-uniform “same tag”
adversaries according to Definition 9 for tag space 32 · ilog(c, κ). HPRG =
(HPRG.Setup,HPRG.Eval) be a hinting PRG scheme that is T = 2κγ

secure
for γ ∈ (0, 1). Equiv be an equivocal commitment without setup scheme that
is T = 2κδ

binding and statistically hiding for some constant δ ∈ (0, 1).
Then, CompiledAmplify(BaseCCA,HPRG,Equiv, e) is a e-computation enabled
CCA commitment scheme that is hiding against uniform adversaries according
to Definition 8 for tag space 16 · 2κ.

Black-Box Non-interactive Non-malleable Commitments 183

We import the following theorems about instantiating base schemes, from
prior work.

Theorem 6. [21] For every constant c > 0, there exist CCA secure commit-
ments satisfying Definition 9 against non-uniform adversaries, with tag space
(c lg lg lg κ), that make black-box use of subexponential quantum hard one-way
functions and subexponential classically hard one-way functions in BQP.

We point out that while [21] prove that their construction satisfies non-
malleability with respect to commitment, their proof technique also directly
exhibits same-tag CCA security against non-uniform adversaries.

Combining this theorem with Theorem 5 yields the following corollary.

Corollary 1. There exists a constant e > 0 for which there exists a perfectly
correct and polynomially efficient e-computation enabled CCA secure commit-
ment satisfying Definition 5 against uniform adversaries, with tag space 2κ for
security parameter κ, that makes black-box use of subexponential quantum hard
one-way functions, subexponential classically hard one-way functions in BQP,
subexponential hinting PRGs and subexponential keyless collision-resistant hash
functions.

Alternatively, [28] showed that for every constant c > 0, assuming a family of
(c lg lg lg κ) time-lock puzzles that are simultaneously increasingly depth-robust
and decreasingly time-robust, there exist CCA secure commitments satisfying
Definition 9 against non-uniform adversaries, with tag space (c lg lg lg κ). Our
compiler applies to their base scheme as well, yielding e-computation enabled
CCA secure commitment satisfying Definition 5 against uniform adversaries,
with tag space 2κ, that make black-box use of the LPS base scheme.

Finally, we point out that while all our formal theorems discuss CCA security,
our transformations also apply as is to the case of amplifying parallel CCA
security (equivalently, concurrent non-malleability w.r.t. commitment). That is,
given a base scheme that is only same-tag parallel CCA secure (or non-malleable
w.r.t. commitment) for small tags, our transformations yield a scheme for all tags
that is parallel CCA secure (or concurrent non-malleable w.r.t. commitment) for
tags in 2κ, without the same tag restriction.

References

1. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS (2002)

2. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37, 380–400 (2007)

3. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC (2018)

4. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp.
209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 8

https://doi.org/10.1007/978-3-030-03807-6_8

184 R. Garg et al.

5. Broadnax, B., Fetzer, V., Müller-Quade, J., Rupp, A.: Non-malleability vs. CCA-
security: the case of commitments. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 312–337. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76581-5 11

6. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS (2010)

7. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 387–402. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00457-5 23

8. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 5

10. Damg̊ard, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 250–265. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48329-2 22

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC (1991)

12. Garg, R., Khurana, D., Lu, G., Waters, B.: Black-box non-interactive non-
malleable commitments (2020). https://eprint.iacr.org/2020/1197

13. Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs, OWFs
with encryption, and more. IACR Cryptology ePrint Archive (2019)

14. Goyal, V.: Constant round non-malleable protocols using one-way functions. In:
STOC (2011)

15. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: FOCS (2012)

16. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC (2016)

17. Goyal, V., Richelson, S.: Non-malleable commitments using Goldreich-Levin list
decoding. In: FOCS (2019)

18. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: FOCS (2014)

19. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59, 1–35 (2012)

20. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 16

21. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum
supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 18

22. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 139–171.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

https://doi.org/10.1007/978-3-319-76581-5_11
https://doi.org/10.1007/978-3-319-76581-5_11
https://doi.org/10.1007/978-3-642-00457-5_23
https://doi.org/10.1007/978-3-642-00457-5_23
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/3-540-48329-2_22
https://doi.org/10.1007/3-540-48329-2_22
https://eprint.iacr.org/2020/1197
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-319-70503-3_5

Black-Box Non-interactive Non-malleable Commitments 185

23. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
FOCS (2017)

24. Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor functions via
key-dependent-message security. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11694, pp. 33–64. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26954-8 2

25. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 671–700. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 23

26. Lin, H., Pass, R.: Non-malleability amplification. In: STOC (2009)
27. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way

function. In: STOC (2011)
28. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-

malleable commitments from time-lock puzzles. In: FOCS (2017)
29. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-

ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

30. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

31. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS (2005)
32. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-

graphic protocols. SIAM J. Comput. 38, 702–752 (2008)
33. Pass, R., shelat, Vaikuntanathan, V.: Construction of a non-malleable encryption

scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 16

34. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 32

35. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: FOCS (2010)

https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32

Non-interactive Distributional
Indistinguishability (NIDI)

and Non-malleable Commitments

Dakshita Khurana(B)

University of Illinois, Urbana-Champaign, Urbana, USA
dakshita@illinois.edu

Abstract. We introduce non-interactive distributionally indistinguish-
able arguments (NIDI) to address a significant weakness of NIWI proofs:
namely, the lack of meaningful secrecy when proving statements about
NP languages with unique witnesses.

NIDI arguments allow a prover P to send a single message to veri-
fier V, from which V obtains a sample d from a (secret) distribution D,
together with a proof of membership of d in an NP language L.

The soundness guarantee is that if the sample d obtained by the ver-
ifier V is not in L, then V outputs ⊥. The privacy guarantee is that
secrets about the distribution remain hidden: for every pair of (suffi-
ciently) hard-to-distinguish distributions D0 and D1 with support in NP
language L, a NIDI that outputs samples from D0 with proofs of mem-
bership in L is indistinguishable from one that outputs samples from D1

with proofs of membership in L.
– We build NIDI arguments for superpolynomially hard-to-distinguish

distributions, assuming sub-exponential indistinguishability obfusca-
tion and sub-exponentially secure (variants of) one-way functions.

– We demonstrate preliminary applications of NIDI and of our tech-
niques to obtaining the first (relaxed) non-interactive constructions
in the plain model, from well-founded assumptions, of:

• Commit-and-prove that provably hides the committed message
• CCA-secure commitments against non-uniform adversaries.

The commit phase of our commitment schemes consists of a sin-
gle message from the committer to the receiver, followed by a ran-
domized output by the receiver (that need not be returned to the
committer).

1 Introduction

Can one non-interactively commit to a plaintext and prove that it satisfies
a predicate (e.g., the plaintext is larger than 0) while also ensuring that
the plaintext is hidden?

Work done in part during a visit to the Simons institute, Berkeley. This material is
based upon work supported in part by DARPA under Contract No. HR001120C0024.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 186–215, 2021.
https://doi.org/10.1007/978-3-030-77883-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_7

NIDI and Non-malleable Commitments 187

More generally, can a prover send a statement to a verifier and demonstrate
that the statement is true without revealing secrets about it? An interactive
solution to this problem can be obtained via the use of zero-knowledge proofs.
These were first introduced in an influential work of Goldwasser, Micali and
Rackoff [38], and it was subsequently shown that all languages in NP admit
interactive ZK proofs [36]. An interactive proof is said to be zero-knowledge if
there exist a simulator that can simulate the behavior of any verifier, without
having access to the prover, in such a way that its output is indistinguishable
from the output of the verifier after having interacted with an honest prover.

Understanding the round complexity of zero knowledge has been an impor-
tant problem. In particular, zero-knowledge arguments for languages outside
BPP, and without any trusted setup, are known to require at least three messages
of interaction [37]. This leads to a natural question: what meaningful relaxations
of zero-knowledge are achievable non-interactively and without setup?

Existing Relaxations of Zero-Knowledge. Towards addressing this question, sev-
eral relaxations of zero-knowledge have been studied over the years.

– Weak Zero-Knowledge [28] relaxes zero-knowledge by switching the order
of quantifiers. Specficially, weak zero-knowledge requires that for every verifier
and every distinguisher, there exists a distinguisher-dependent simulator that
fools this specific pair1.
Weak zero-knowledge is known to require at least two messages [37].

– Witness Hiding [30] loosely guarantees that a malicious verifier cannot
recover a witness from a proof unless the witness can be efficiently computed
from the statement alone.

– Strong Witness Indistinguishability (Strong WI) [35] requires that for
two indistinguishable statement distributions D0,D1, a proof (or argument)
for statement d0 ← D0 must be indistinguishable from a proof (or argument)
for statement d1 ← D1.

– Witness indistinguishability (WI) [30] ensures that proofs of the same
statement generated using different witnesses are indistinguishable. WI does
not hold for statements sampled from different distributions, or statements
that have a unique witness associated with them.

Two-message variants of weak zero-knowledge, witness hiding and strong WI
have been obtained by [5,12,25,47,57]. But so far, the only relaxation known to
be achievable non-interactively from well-studied assumptions, is witness indis-
tinguishability. Non-interactive witness indistinguishable proofs (NIWIs) have
been obtained by [8,15,44] under various assumptions. While NIWIs are quite
natural and are useful as a building blocks in some applications, they are often
quite limited. In (common) scenarios like committing to a secret message and
proving a predicate about it – where statements being proven often have unique
witnesses – the witness indistinguishability guarantee is meaningless.

1 There are several variants of this definition strengthening/weakening different
aspects [22,28].

188 D. Khurana

Commit-and-Prove. In a “commit-and-prove” protocol, a prover commits to
(or encrypts) one or more messages, and would like to prove that the secret
message(s) satisfy a predicate.

A simplification of the most basic privacy guarantee required in these appli-
cations is the following: for every pair of messages (m0,m1) that satisfy a
(polynomial-time computable) predicate φ (i.e. φ(m0) = φ(m1) = 1), the follow-
ing two distributions must be computationally indistinguishable:

(
c0 = Com(m0; r),Πc0∈Lφ

)
and

(
c1 = Com(m1; r),Πc1∈Lφ

)

where Com denotes a perfectly binding commitment (or encryption), and Πc∈Lφ

denotes a proof of the statement c ∈ Lφ where

Lφ = {c : ∃(m, r) such that (c = Com(m; r)) ∧ (φ(m) = 1)}.

In other words, any distributions c0 = Com(m0; r) and c1 = Com(m1; r) that
are computationally indistinguishable, must remain indistinguishable even given
proofs of membership in Lφ. Here φ is any efficiently computable predicate of
the message, e.g., φ(m) = 1 if and only if m > 10.

The Insufficiency Of NIWIs. Because the statements in question clearly have
unique witnesses, using NIWIs to generate the proof Πc∈Lφ

does not guarantee
that the secret message remains hidden. We note that the notion of strong witness
indistinguishability would suffice, but whether strong WI can be achieved non-
interactively remains an important open problem.

All known constructions [5,12,25,47,57] of two-message strong WI arguments
follow variants of the common FLS [29] paradigm. Here, the prover provides a
WI proof that:

“Either x ∈ L or the prover knows some trapdoor”.

The trapdoor is designed to be hard for a (cheating) prover to compute,
but easy for a simulator. Security is argued by having the simulator extract the
secret trapdoor in polynomial or superpolynomial time, and use this trapdoor
to generate the proof, instead of relying on a witness for x.

In settings where the verifier can send (at least) one message to the prover,
the verifier’s message can be used to set up a trapdoor, e.g., by sampling f(z)
for a one-way permutation f and random trapdoor z [57]. The trapdoor z can
be obtained by a simulator non-uniformly or in superpolynomial time (or even
in polynomial time via specialized recent techniques [12,25,47]).

Establishing Trapdoors in the Non-interactive Setting. In the non-interactive
setting, since the verifier does not send any message to the prover, it becomes
much more challenging to establish a trapdoor of the form described above, that
is easy for a simulator to compute but not for a cheating prover.

Nevertheless, there have been exciting prior attempts. In particular, Barak
and Pass [9] obtain variants of one-message zero-knowledge with nonuniform sim-
ulation and soundness against uniform provers. They rely on problems that are

NIDI and Non-malleable Commitments 189

hard for uniform algorithms (e.g., keyless collision-resistant hash functions) to set
up a trapdoor that no uniform prover can obtain. Bitansky and Lin [13] propose
a clever extension of this to the non-uniform setting by relying on problems that
are hard for algorithms with a polynomial amount of non-uniformity. Assum-
ing keyless collision-resistant hash functions with security against non-uniform
adversaries, they obtain one-message zero-knowledge with superpolynomial sim-
ulation and weak soundness against non-uniform provers. They guarantee that
the number of false statements a polynomial-time non-uniform prover can con-
vince the verifier to accept is not much larger than its non-uniform advice.

In summary, known constructions of meaningful non-interactive secrecy-
preserving arguments either (1) are not adequately sound and rely on non-
standard hardness assumptions, or (2) do not provide meaningful secrecy, espe-
cially when considering statements with unique witnesses.

Bottlenecked Applications. The lack of non-interactive secrecy-preserving proofs
for statements with unique witnesses has led to the need for non-standard
assumptions in additional applications besides the example commit-and-prove
scenario described above.

A prominent example are non-interactive non-malleable commitments: for
which the only known constructions [13,31,48,54,56] either achieve non-standard
forms of security or rely on relatively less standard assumptions like keyless
collision resistant hashing with security against non-uniform adversaries. Elimi-
nating non-standard assumptions appears to require appropriate non-interactive
secrecy-preserving arguments, which were so far not known under well-founded
assumptions. In the following section, we outline our contributions that aim to
remedy this situation.

1.1 Our Results

We introduce and construct non-interactive distributional indistinguishable
(NIDI) arguments without trusted setup from well-founded assumptions. These
help overcome some of the drawbacks of existing non-interactive arguments, and
enable applications like non-interactive commit-and-prove without trusted setup.

Non-interactive Distributionally Indistinguishable (NIDI) Arguments. NIDI
arguments enable a prover P with input a secret efficiently sampleable distribu-
tion D to send a single message (a “sampler”) to verifier V. Given this sampler,
V can obtain a sample d from the (secret) distribution D together with a proof of
membership of the sampled instance d in a (public) NP language L. Specifically,
after checking such a proof, the verifier either outputs ⊥ or a sample d. 2

In more detail, the prover algorithm P obtains input a security parameter,
the description of a (secret) distribution D, and a public NP language L, and

2 Jumping ahead, in our construction, a prover message will take the form of a pro-
gram, to which the verifier will make a (randomized) query. In response, the program
will output a sample d and a proof of membership of d ∈ L.

190 D. Khurana

generates P(1κ,D,L) → π. The verifier V on input sampler π and the language
L computes V(1κ, π,L) → d or ⊥.

– The soundness guarantee is that V does not output d �∈ L (except with
negligible probability). In other words, if the sample d obtained by V is not
in L, then the proof allows the verifier to detect this fact, and V outputs ⊥
(except with negligible probability over the randomness of V).

– The secrecy guarantee is that secrets in the distribution remain hidden from
a malicious verifier: i.e., for every pair of (sufficiently) hard-to-distinguish
distributions D0 ≈ D1 where Supp(D0) ∪ Supp(D1) ∈ L,

P(1κ,D0,L) ≈ P(1κ,D1,L)

Equivalently, a NIDI that outputs samples from D0 with proofs of membership
in L is indistinguishable from one that outputs samples from D1 with proofs
of membership in L.

NIDI arguments bear a peripheral resemblance to, and are implied by (non-
interactive) strong witness indistinguishable arguments, by simply having the
prover on input D sample d ← D and attach a strong WI proof of membership
of d ∈ L. In particular, the secrecy guarantee of NIDI is similar in spirit to
that of strong witness indistinguishable arguments. However, we do not know if
non-interactive strong WI arguments exist under standard assumptions.

We note that the syntax/completeness properties of NIDI are different from
strong WI: in the case of a strong WI proof system, the prover samples d ← D
and attaches a proof that d ∈ L. On the other hand, in the case of NIDI,
the prover sends a “sampler” to V, and the sample d (together with a proof)
are obtained by V from this sampler. Therefore, while an honest prover knows
the distribution D, it may not know the exact value d that was sampled by a
(randomized) V.

Non-interactive Distributionally Indistinguishable (NIDI) Arguments from Sub-
exponential Indistinguishability Obfuscation. We rely on sub-exponential indis-
tinguishability obfuscation and other standard assumptions to obtain NIDI argu-
ments that satisfy the secrecy guarantee described above as long as the pair of
distributions (D0,D1) are superpolynomially indistinguishable.

Theorem 1. (Informal) For every p(κ) = ω(log κ) and every pair of dis-
tributions D0,D1 that cannot be distinguished with advantage better than
2−p(κ) by any polynomial-sized adversary, NIDI arguments exist assuming sub-
exponentially secure indistinguishability obfuscation and other standard assump-
tions.

Application 1: Non-interactive Commit-and-Prove. A commit-and-prove argu-
ment is a protocol between a committer C and receiver R. In the commit phase,
the committer sends to the verifier a message that allows it to commit to a value
m ∈ {0, 1}κ. It also proves that the committed value m satisfies a (public) effi-
ciently computable predicate φ. Given the prover’s message, the receiver outputs

NIDI and Non-malleable Commitments 191

⊥, or a string c. Later, C and R possibly engage in another decommit phase, at
the end of which R outputs ⊥ or m ∈ {0, 1}κ.

The soundness and secrecy guarantees are as expected:

– Soundness requires that if the verifier outputs a string c that is not ⊥, then
there does not exist an opening m′ of c such that m′ does not satisfy φ.

– Secrecy guarantees that the message m is hidden, i.e. for all pairs of
(equal-sized) messages (m0,m1) that satisfy the predicate φ, C(1k,m0, φ) ≈
C(1k,m1, φ).

Theorem 2. (Informal) Assuming sub-exponentially secure indistinguishability
obfuscation and other standard assumptions, there exist commit-and-prove argu-
ments in the plain model that satisfy a relaxed notion of non-interactivity.

In our construction, the commitment phase consists of a committer sending
the receiver a string (representing a program), but the actual commitment tran-
script is finalized only after the receiver produces an output (based on a random-
ized query to this program). While the commitment transcript is a deterministic
function of the committer’s message and the receiver’s randomness, the receiver
randomness/receiver query may or may not have to be known to the committer
before or during the decommitment phase. If this randomness needs to be made
explicit, then the commitment needs an extra message from the receiver. If it is
not necessary to make the receiver randomness explicit, it becomes possible to
achieve a truly non-interactive protocol.

For example, in two-party settings where one player establishes a secret trap-
door for use in a larger protocol, the extra message from the receiver may either
be unnecessary (since it is not needed for decommitment) or could be clubbed
together with other receiver messages. At the same time, there could be multi-
party settings where the committer and receiver must agree to an entire commit-
ment transcript before the protocol can proceed. For example, on a blockchain,
one may want to commit to the value of a transaction and prove that the commit-
ted value is positive. Applying our non-interactive commit-and-prove naıvely to
such a setting, without an explicit receiver message, could allow a malicious com-
mitter to trick different verifiers into recording different transactions (although
each to a positive value).

Application 2: Non-interactive Non-malleable (CCA) Commitments. Very
roughly, non-malleability prevents an adversary from modifying a commitment
com(m) to generate a commitment com(m′) to a value m′ that is related to
the original m. This is equivalent (assuming the existence of signatures/one-
way functions) to a tag-based notion where the commit algorithm obtains an
additional input, a tag ∈ {0, 1}κ, and where the adversary is restricted to using
a tag, or identity, that is different from the tag used to generate the honest
commitment.

We consider a strong form of non-malleability for non-interactive commit-
ments: CCA security [21]. Namely, we build commitments that hide the com-
mitted value even from an adversary which has access to an oracle that computes
decommitments of arbitrary commitment strings that the adversary sends to this
oracle, as long as they are different from the challenge string.

192 D. Khurana

Theorem 3. (Informal) CCA commitments for 2κ tags satisfying a relaxed
notion of non-interactivity exist assuming sub-exponentially secure indistin-
guishability obfuscation, CCA commitments for log log log κ tags and other stan-
dard assumptions.

We note that CCA commitments for log log log κ tags can be based on either
(1) sub-exponential time-lock puzzles (which can be based on sub-exponential
indistinguishability obfuscation and the existence of sub-exponentially hard non-
parallelizable languages [11]), or (2) sub-exponential hardness of discrete log and
sub-exponential quantum hardness of LWE.

Just like the setting of commit-and-prove, the underlying “committed value”
is defined as a function of the (non-interactive) message from the committer, and
the receiver’s randomness. However, again like the case of commit-and-prove, the
receiver can remain silent throughout, thereby leading to a truly non-interactive
protocol. In this setting, the CCA commitment guarantees that the value under-
lying a mauled commitment is independent of the honestly committed message,
with overwhelming over the randomness of an honest receiver. Therefore this
appears to achieve the conceptual objective of completely non-interactive com-
mitments.

In addition, this notion would suffice for classic applications of non-malleable
commitments like coin-flipping and auctions, with a non-interactive committer
message and without the need for any additional messages from the receiver.
An auction would be implemented by having all parties commit to their inputs
using the CCA commitment, with just a single (broadcast) message from the
committer. In the next round, all committers reveal all the input and random-
ness they used to generate their entire obfuscated program. These openings are
accepted only if the honest committer strategy applied to the opened input and
randomness results in the same obfuscated program that the committer sent;
otherwise the protocol aborts. If the protocol does not abort, then the result of
the protocol is computed on these opened values.

Finally, we remark that recent exciting progress [1–3,17,33,34,45] has led
to constructions of indistinguishability obfuscation from simpler assumptions,
including most recently [18,34,65] that obtain sub-exponentially secure iO from
simple-to-state (circular security) assumptions on LWE-based cryptosystems
and [46] that obtains iO from the following sub-exponential well-founded assump-
tions: SXDH, LWE, (a variant of) LPN and boolean PRGs in NC0.

1.2 Additional Related Work

Relaxations of Zero-Knowledge. Subsequent to the introduction of weak zero-
knowledge [28], three-message weak ZK and witness hiding were constructed
by [14] from what are now considered implausible assumptions (due to [10,
19]). The work of [22] proved equivalence between different variants of weak
zero-knowledge. Next, [47] constructed distributional weak-zero-knowledge and
witness-hiding protocols for a restricted class of non-adaptive verifiers who

NIDI and Non-malleable Commitments 193

choose their messages obliviously of the proven statement. They obtain pro-
tocols in three messages under standard assumptions, and in two messages
under standard, but super-polynomial, assumptions. More recently, [12] obtained
two-message weak-zero knowledge (which implies witness hiding and strong
WI) in the standard setting via a new simulation technique, and concur-
rently [25] obtained two-message witness hiding from new assumptions. Even
more recently, [51] gave best-possible/universal and non-uniform witness hid-
ing arguments, as well as witness hiding proofs under assumptions on the non-
existence of weak forms of witness encryption for certain languages. We note
that witness hiding arguments provide a weaker one-wayness guarantee, and are
insufficient to achieve, e.g., commit-and-prove with message hiding as discussed
in the example in the introduction.

Zero knowledge with simulators that run in super-polynomial time is known
in two messages from standard, but super-polynomial, assumptions [5,57]. One-
message ZK with super-polynomial simulation can be obtained against uni-
form provers, assuming uniform collision-resistant keyless hash functions [9], or
against non-uniform verifiers, but with weak soundness, assuming multi-collision-
resistant keyless hash functions [13]. As discussed earlier, these proofs satisfy
weak notions of soundness against non-uniform provers (allowing non-uniform
provers to cheat on certain instances). This is undesirable in many settings.

Non-malleable Commitments. Minimizing the round complexity of non-
malleable commitments has been an important research goal in cryptography.
Prior work, namely [6,23,24,27,39–41,43,52,53,55,56,58–60,64] culminated
in three round non-malleable commitments from standard polynomial-time
assumptions [42,49] and two round commitments from sub-exponential assump-
tions like time-lock puzzles [54] and sub-exponential DDH/LWE/QR/NR [50].

However, achieving non-interactive non-malleable commitments from well-
found assumptions has been particularly challenging. In the non-interactive set-
ting, Pandey, Pass and Vaikuntanathan [56] first gave constructions of non-
malleable commitments based on a strong non-falsifiable assumption (“adaptive”
one-way functions). Recently Bitansky and Lin [13] obtained constructions of
non-interactive non-malleable commitments from sub-exponential time-lock puz-
zles and keyless hash functions with (variants of) collision resistance against non-
uniform adversaries. Additionally Kalai and Khurana [48] obtained constructions
satisfying a weaker notion of non-malleability w.r.t. ‘replacement’ (essentially
allowing selective-abort attacks) from well-studied assumptions including sub-
exponential NIWIs, discrete log and the quantum hardness of LWE. Very recently
Garg et al. [31] improved upon [13], eliminating the need for NIWIs and mak-
ing black-box use of cryptography. Despite this substantial progress, prior to
this work, there were no known constructions of non-interactive (or relaxed non-
interactive) non-malleable commitments from well-founded assumptions.

194 D. Khurana

2 Technical Overview

We now walk the reader through our construction and offer additional insight
into the notion of a NIDI. Our aim will be to find a meaningful privacy guar-
antee that is achievable non-interactively, and applicable widely. A “commit-
and-prove” protocol as described in the introduction will serve as a canonical
example of the type of applications that we would like to enable.

2.1 Commit-and-Prove Arguments

Outline: Compressing Interactive Commit-and-Prove via Obfuscation. Our first
stab at constructing non-interactive commit-and-prove with meaningful secrecy
is as follows: let us try to compress an interactive commit-and-prove protocol to
a non-interactive one, as follows.

Let (ICP.P, ICP.V) denote the (honest) prover and verifier circuits for an
appropriate interactive n-round commit-and-prove protocol ICP. The prover in
the non-interactive system simply outputs obfuscations of the next-message func-
tions of ICP.P, one obfuscation for each round. The prover’s next-message func-
tion ICP.Pj for round j ∈ [n] of ICP depends on its inputs m,φ (i.e. the secret
message and predicate), and randomness r – all of which are hardwired in the
obfuscated circuits. This function on input the transcript through round (j −1),
produces as output the next message. The prover must output, for every round
j ∈ [n], the obfuscated circuit

Cj = Obf (ICP.Pj(m,φ, r, ·)) .

Given (C1, . . . , Cn), V queries these circuits as if it were interacting with ICP.P,
feeding them the current transcript and obtaining the next message. Finally, it
accepts if ICP.V would have accepted.

But obfuscating the next message function in this manner leads to new
vulnerabilities that do not necessarily arise in the interactive setting. Unlike
queries to an actual prover, an adversarial verifier can query obfuscated programs
(C1, . . . , Cn) out of order, and may even query them many times, amounting to
“resetting” attacks [20]. Thus one would generally need to rely on resettably zero-
knowledge protocols that satisfy security in the presence of resetting attacks [20].

Second, we note that general-purpose obfuscators satisfying the most natural
notion of security (virtual-black-box) cannot exist [7]. We would therefore like to
base security of the compressed protocol on the weaker notion of indistinguisha-
bility obfuscation, for which we know constructions under plausible assumptions
(most recently due to [18,34,46,65]).

Basing Security on Indistinguishability Obfuscation. Recall that we would like
the compressed commit-and-prove argument to hide the committed m. This
means that for every pair of values m0,m1 that satisfy a predicate φ, obfuscated
next-message circuits that commit to m0 and generate a proof of m0 satisfying
φ, should be indistinguishable from obfuscated circuits that generate a similar
commit-and-prove argument for m1.

NIDI and Non-malleable Commitments 195

Before going into further detail, we point out that the general paradigm of
using obfuscation to compress interactive protocols has been explored in prior
work, (e.g., MPC protocols were compressed via obfuscating the next-message
function in [4,26,32]). However in these works, the set of allowable or meaningful
inputs to the program are small in number and are fixed apriori. This makes it
possible to hardwire a few meaningful paths in the obfuscated programs and use
such paths to argue security.

In our setting, the obfuscated next-message function must remain functional
for (nearly) all verifier inputs. Because of this, our strategy to prove indistin-
guishability will iterate over all possible verifier inputs. To make this easier, we
will begin by fixing a specific two-message interactive protocol, that will then be
compressed to a non-interactive protocol via obfuscation.

Fixing an Interactive Protocol. To begin with, the interactive protocol that we
rely on will be the following two-message protocols due to Pass [57].

– The interactive verifier ICP.V samples a random α and outputs f(α), where
f denotes a one-way function with “efficiently recognizable range”: where it
is easy to efficiently check given y if there exists α such that f(α) = y (e.g.,
this is true whenever f is a one-way permutation).

– Next, the prover ICP.P generates a commitment c to m by means of any per-
fectly binding non-interactive commitment, and also a non-interactive com-
mitment c′ to 0. In addition, it sends a NIWI asserting that:

“
(
c is a commitment to m such that φ(m) = 1

)

OR
(
c′ is a commitment to α such that f(α) = y

)
.”

To argue that this interactive protocol hides the value m, one can rely on a
simulator that extracts α given y in superpolynomial time, and uses the second
trapdoor statement to generate the NIWI. This makes it possible to rely on
the hiding property of the non-interactive commitment and replace c with a
commitment to a different message.

Arguing Security of the Compressed Commit-and-Prove System. Plugging this
two-message argument into the template described above yields the following
commit-and-prove protocol:

The non-interactive prover simply obfuscates a circuit that on input an arbi-
trary string y computes c, c′ as commitments to m and 0 respectively, and as
described above a NIWI asserting that:

“
(
c is a commitment to m such that φ(m) = 1

)

OR
(
c′ is a commitment to α such that f(α) = y

)
.”

Arguing secrecy of the non-interactive protocol is somewhat more involved
as one cannot hope to directly emulate the proof of secrecy of the interactive
protocol. In particular, ideally one would like to replace the obfuscated circuit
with a different one that has the superpolynomial simulator’s code hardwired
into it. In the next hybrid step one could hope to switch the commitment string

196 D. Khurana

c to commit to a different value. But this does not immediately work because of
the inefficiency introduced by the simulator. In fact, even if we started out with a
resettably-secure protocol with a polynomial simulator, it is completely unclear
how to replace the next-message circuit with one that generates simulated proofs,
unless the simulator is straight-line and black-box. Unfortunately straight-line
black-box simulators cannot exist in the plain model without trusted setup, so
we explore a different route as described below. In what follows, we will outline
a concrete construction by building on the ideas and pitfalls discussed above.

Towards a Concrete Construction. The commit-and-prove algorithm C(1k,m, φ)
samples a random key K for a puncturable PRF, and then outputs an indistin-
guishability obfuscation P̃ of the program P described in Fig. 1.

Hardwired: Puncturable PRF Key K, Message m, Predicate φ.

Input: Query y ∈ {0, 1}κ.

1. If y �∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, r3) = PRF(K, y).
3. Set c = com(m; r1) and c′ = com(0κ; r2).
4. Let e be a NIWI, computed with randomness r3, asserting that

“ c is a commitment to m such that φ(m) = 1
)

OR c′ is a commitment to α such that f(α) = y
)
.”

5. Output (c, c′, e).

Fig. 1. Program P .

The receiver on input the obfuscated program P̃ samples random α, sets
y = f(α) and queries the program on y to obtain output some (c, c′, e). It parses
e as a NIWI and outputs ⊥ if the NIWI does not verify, otherwise outputs c.

Message Hiding. Recall that we would like to establish that for all pairs of
(equal-sized) messages (m0,m1) such that φ(m0) = φ(m1) = 1, C(1κ,m0, φ) ≈
C(1κ,m1, φ).

We will prove this by iterating over exponentially many hybrids, correspond-
ing to all possible inputs to the obfuscated program. The jth intermediate hybrid
Hybridj for j ∈ [0, 2κ] will obfuscate a program P (j) that is identical to P except
the following. On all inputs y such that y < j, P (j) sets c = com(m1), and on all
inputs y such that y ≥ j, sets c = com(m0). When defined this way, note that
Hybrid0 ≡ C(1κ,m0, φ) and Hybrid1 ≡ C(1κ,m1, φ).

Let us now argue that for all j ∈ [1, 2κ], Hybridj−1 ≈ Hybridj . Note that the
only difference between the two hybrids is the difference in behavior of programs

NIDI and Non-malleable Commitments 197

P (j−1) and P (j) on input y = j. While P (j−1) on input y = j outputs com(m0),
P (j−1) on input y = j outputs com(m1).

We rely on standard iO techniques to show that Hybridj−1 and Hybridj are
indistinguishable. This is done by first puncturing the key K on input y = j, then
hardwiring uniform randomness corresponding to input j, and then relying on
the hiding of the commitments c and c′, as well as the witness indistinguishability
of NIWI.

Since there are ∼2κ hybrids, denoting (an upper bound on) the adversary’s
distinguishing advantage between any consecutive pair Hybridj−1 and Hybridj

by μ, the overall advantage between C(1κ,m0, φ) and C(1κ,m1, φ) can grow to
2κ · μ, which is not negligible unless μ = negl(κ)

2κ .
Therefore, we ensure that μ is small enough by relying on subexponential

assumptions. Specifically, we will assume the PRF, non-interactive commitment,
and iO allow adversarial advantage to be at most 2−kε

for some arbitrary small
0 < ε < 1 when executed with security parameter k. By setting k = κ1/ε, we
will achieve the desired small μ.

Proving Soundness: A Subtle Malleability Problem. Recall also that we would like
to ensure soundness, meaning that a malicious prover, by sending an arbitrary
obfuscated program P̃ to a verifier, should not be able to convince such a verifier
to output a string c for which the underlying value m does not satisfy predicate
φ.

Note that this is only possible if the verifier’s query to P̃ results in output
(c, c′) and a NIWI e for which verification accepts, and which asserts that:

“
(
c is a commitment to m such that φ(m) = 1

)

OR
(
c′ is a commitment to α such that f(α) = y

)
.”

By soundness of the NIWI, if the verifier outputs c such that the underlying
value m does not satisfy φ(m) = 1, then (w.h.p.) it must be the case that

c′ is a commitment to α such that f(α) = y.

To rule out this possibility, we would like to argue that it is impossible for
a committer to efficiently compute com(α) given y = f(α). A natural way to
achieve this is via complexity leveraging: we could try setting the parameter of
the commitment to be relatively small so that it is easy to extract the value
α from commitment string c′ in time T . At the same time, we could require
f to be uninvertible in time T . This would ensure that any committer that
efficiently computes com(α) given y = f(α), would necessarily be contradicting
uninvertibility of f against adversaries running in time T .

But this leads to a circularity: recall that we set the size of y to be κ bits,
and for our hybrid argument to go through, we needed com to use a security
parameter k = κ1/ε for the commitment scheme com, such that the commitment
scheme can be broken in time T = 2k. But because the size of y is κ bits, f
cannot be more than 2κ � T -secure. Therefore, our setting of parameters for

198 D. Khurana

the proof of secrecy directly contradicts the parameters needed for the proof of
soundness described above.

To get around this issue, we replace the commitment scheme used to gener-
ate the commitment c′ in our construction, with a perfectly correct public-key
encryption scheme.

Specifically, the commit-and-prove protcol outputs a public key pk in addition
to the obfuscated program. And instead of generating c′ as a commitment to 0, c′

is generated as an encryption of 0, with respect to pk. This enables a non-uniform
proof of soundness.

Specifically, given (pk, P̃) if the verifier outputs c such that the underlying
value m does not satisfy φ(m) = 1, then (w.h.p.) it must be the case that

c′ is an encryption (w.r.t. pk) of α such that f(α) = y.

Now given pk, our reduction/proof of soundness will non-uniformly obtain
the corresponding sk. Next, given any prover that on input y outputs c′ as
an encryption of f−1(y), this reduction will be able to use sk to decrypt c′

and recover α. This will yield a contradiction to the uninvertibility of f , and
therefore help us obtain a proof of soundness. We note that a similar technique
was used in [16] to achieve soundness in the context of post-quantum interactive
ZK arguments.

2.2 Non-interactive Distributional Indistinguishability

A reader may have already observed that the technique discussed so far is more
general: it need not be limited to commit-and-prove, and may be used to prove
arbitrary statements about (indistinguishable) distributions.

We distill out a general formulation of this technique into what we call a NIDI
argument. The construction of our NIDI argument follows an outline identical to
that of our commit-and-prove system. Namely, the prover algorithm P(1κ,D,L)
is given a secret efficiently sampleable distribution D and public language L with
corresponding relation RL. It outputs a public key pk and an indistinguishabil-
ity obfuscation of a program P ′ that is very similar to the program P discussed
above. The key difference is that the commitment c to value m in the func-
tionality of the program P is replaced by a general sample d from distribution
D. This program is described in Fig. 2. Secrecy and soundness of this program
follow identically to the commit-and-prove argument.

2.3 Application: CCA Commitments

These techniques also yield (relaxed) non-interactive non-malleable commmit-
ments: in fact, we achieve a strong form of non-malleability, i.e. CCA security.

We model CCA commitments as being associated with identities or tags,
where the CCA adversary gets access to a decommitment oracle for all
tags/identities different from its own. All non-malleable commitment schemes

NIDI and Non-malleable Commitments 199

Hardwired: Puncturable PRF Key K, Distribution D, Language L,
Public key pk.

Input: Query y ∈ {0, 1}κ.

1. If y �∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, r3) = PRF(K, y).
3. Set d = D(r1) and c′ = Encpk(0κ; r2).
4. Let e be a NIWI, computed with randomness r3, asserting that

“ d = D(r) for some D and r such that RL(d, D, r) = 1
)

OR c′ is an encryption w.r.t. pk, of α such that f(α) = y
)
.”

5. Output (d, c′, e).

Fig. 2. Program P ′.

assign “tags” (or identities) to parties, and require non-malleability to hold when-
ever the adversary is trying to generate a commitment CCACom

˜T w.r.t. a tag T̃
that is different from the honest tag T . Existing constructions of non-interactive
non-malleable commitments (1) develop a scheme for a small (constant) number
of tags, and then (2) recursively apply tag amplification, discussed below, sev-
eral times until a scheme supporting (2λ) tags is achieved – which corresponds
to supporting every possible λ-bit identity that a participant can assume.

Outline of Existing Tag Amplification Techniques. Non-interactive CCA com-
mitments that support a small space of tags can be bootstrapped into commit-
ments for a larger space of tags by executing (a round optimized variant of) a
tag encoding scheme first suggested by [27].

Given a large tag T (in [2n]) where n ≤ poly(λ), first encode T into n small
tags t1, t2, . . . tn each in [2n], by setting each ti = (i||Ti) where Ti denotes the
ith bit of T . This encoding ensures that for any different large tags T �= T̃ , there
exists at least one index i such that t̃i �∈ {t1, t2, . . . tn}, where (t̃1, t̃2, . . . t̃n) is an
encoding of T̃ . Note that when T ∈ [2n], each of the small tags t will only be as
large as 2n. Now starting with a CCA commitment ‘ComSmall’ for tags in [2n],
a scheme CCACom for tags in [2n] can be obtained as follows:

To commit to a message m w.r.t. a tag T , set

CCAComT (m) =
(
{ci = ComSmallti

(m)}i∈[n],Π
)
, where

Π is (an appropriate variant of a) zero-knowledge argument certifying that:

“All n commitments ci are to the same message.”

Analysis. Suppose the adversary used large tag T̃ = (t̃1, . . . , t̃n) and the honest
party used tag T = (t1, . . . , tn). By the property of the encoding, for any two

200 D. Khurana

large tags T �= T̃ , there exists at least one index i such that t̃i �∈ {t1, t2, . . . tn},
where (t1, t2, . . . tn) and (t̃1, t̃2, . . . t̃n) refer to encodings of T and T̃ respectively.
This means (due to non-malleability of ComSmall) that the message committed
by the adversary using tag t̃i must be independent of the honest committer’s
input. By the soundness of ZK, the message committed by the adversary using
each (small) tag t̃1, . . . t̃n is identical, so independence of the one committed
using t̃i implies independence of them all! Loosely, it then suffices to argue that
a message corresponding to any tag t̃i is generated independently of the honest
committer’s message.

In some more detail, for the CCA attacker’s jth oracle decommitment query,
we will focus on the index ij such that the tag t̃ij

�∈ {t11, t12, . . . t1n}. In the
real interaction, by soundness of the ZK argument, the value committed by the
attacker is identical to the value committed using t̃ij

. This makes it possible to
rely on CCA security of the value committed using t̃ij

. We note that this method
will need rely on a ZK argument that is secure against adversaries running in
time T , where T is the time required to brute-force break the CCA commitment
with t̃i,j . This is because we will want to argue that the value committed using
tag t̃ij

remains unchanged even when the challenge commitment is generated by
simulating the underlying ZK argument.

Once the ZK argument in the challenge commitment is simulated, it becomes
possible to switch all components of the challenge commitment one by one, while
arguing CCA security w.r.t. the value committed by the adversary via tag t̃ij

.
This follows because of CCA security of the underlying commitment scheme for
small tags.

The Zero-Knowledge Bottleneck. Unfortunately, this process makes cricital use
of the zero-knowledge argument. Recall that ZK requires more than 2 rounds
of interaction, which leads to a clear problem in the non-interactive setting.
Existing methods to overcome this problem without interaction rely on special
(weak) types of ZK – thus requiring non-standard assumptions [13], or achiev-
ing only weak forms of security [31,48,54]. In [13,54], NIWIs are combined with
a trapdoor statement to enable weak forms of NIZKs without setup: against
uniform provers assuming keyless collision-resistant hash functions in [54], and
a weak form of soundness against non-uniform provers under the non-standard
assumption of keyless collision-resistant hash against non-uniform adversaries
in [13]. In addition [48] use NIWIs without trapdoors, but only achieve weaker
forms of non-malleability (that is, w.r.t. replacement). Even more recently, [31]
replace NIWIs with hinting PRGs and remove the need for non-black-box use
of cryptography. However, they also rely on keyless hash functions to set up
“trapdoors” for equivocal commitments, thereby achieving only uniform secu-
rity. In summary, due to the need for (variants of) non-interactive ZK, all known
constructions achieving the standard notion of non-malleability w.r.t. commit-
ment (or the stronger notion of CCA security) without trusted setup and against
non-uniform adversaries end up having to rely on non-standard assumptions.

In fact by now, CCA commitments – only for constant (and slightly super-
constant) tags – are known based on relatively mild assumptions, whereas tag

NIDI and Non-malleable Commitments 201

amplification requires stronger assumptions. We now briefly describe the milder
assumptions for schemes with slightly super-constant tags for completeness,
before going back to discussing the tag amplification bottleneck.

Base Schemes. Three recent works [13,48,54] build non-interactive “base”
schemes: i.e. non-malleable commitments for a tag/identity space of size
c log log κ for a specific constant c > 0, based on various hardness assumptions.
This is achieved by relying on families of assumptions, each of which is harder
than the other along some axis of hardness.

Lin, Pass and Soni [54] assume a sub-exponential variant of the hardness of
time-lock puzzles. Bitansky and Lin [13] show that base commitments can also
rely on sub-exponentially hard one-way functions that admit a strong form of
hardness amplification (the assumption is stronger than what is currently known
to be provable by known results on hardness amplification). Subsequently, Kalai
and Khurana [48] showed that one can assume classically sub-exponentially
hard but quantum easy one-way functions (which can be based, e.g., on sub-
exponential hardness of DDH), and sub-exponentially quantum hard one-way
functions (which can be based, e.g., on sub-exponential quantum hardness of
LWE). As discussed above, we would like to enable an alternative tag amplifi-
cation process.

Commit-and-Prove. Going back to the tag amplification process outlined above,
one may observe that the type of statement being proved via ZK fits well into the
“non-interactive commit-and-prove” paradigm. In particular, one may hope that
it would suffice to replace the ZK argument Π with (an appropriate) commit-
and-prove – which allows a committer to generate n commitments w.r.t. n differ-
ent small tags, and give a (privacy-preserving) proof that all n strings commit to
the same message. As such, by carefully relying on our non-interactive commit-
and-prove discussed in Sect. 2.1, it seems like one should be able to achieve
generic tag amplification.

In fact, our construction is roughly as expected at this point. The committer
C on input a message m and tag T encoded as {t1, . . . , tn}3, outputs a public
key pk, together with an obfuscation of the program PCCA described in Fig. 3.

The proof of security of the resulting CCA commitment for large tags relies
on a delicate interplay of parameters between the CCA commitment and the
zero-knowledge argument. Specifically, recall that the tag amplification method
sketched out earlier requires the “strength” of zero-knowledge to be higher than
the time needed to brute-force extract the committed value from the underlying
CCA commitment for small tags. In our setting, this translates to carefully fine-
tuning parameters so that the NIWI, PRF and public key encryption scheme
are all secure against T -size adversaries, where T is the time needed to break
(via brute-force) the underlying CCA commitment for small tags. This require-
ment for fine-tuned parameters requires us to “open the black-box” and give a

3 In the main technical body, we use a somewhat more optimal encoding scheme due
to [50], but we ignore this optimization for the purposes of this overview.

202 D. Khurana

Hardwired: Puncturable PRF Key K, Message m, Tags t1, . . . , tn, Public
key pk.

Input: Query y ∈ {0, 1}κ.

1. If y �∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, . . . , rn+2) = PRF(K, y).
3. Set ci = ComSmall(m; ri) for all i ∈ [n].
4. Set c′ = encpk(0κ; rn+1).
5. Let e be a NIWI, computed with randomness rn+2, asserting that

“(There exist m and {ri}i∈[n] s.t. ∀i ∈ [n], ci = ComSmall(m; ri))
OR c′ is an encryption w.r.t. pk, of α such that f(α) = y

)
.”

6. Output ({ci}i∈[n], c
′, e).

Fig. 3. Program PCCA.

monolithic proof of security. By contrast, our (regular) commit-and-prove system
makes black-box use of the NIDI abstraction.

A Final Subtle Issue. We now point out one additional subtlety that we glossed
over the in the overview so far. Existing base schemes [13,48,54] (for O(log log κ)
tags) are only secure in a setting where the adversary is restricted to using the
same tag in all its queries to the CCA decommitment oracle. Before performing
our tag amplification process, we will need to remove this “same-tag” restriction.

We build on a technique proposed by [31] to eliminate this restriction. A CCA
commitment scheme without the same-tag restriction, for tags in [n] where n ≤
poly(κ), can be obtained from a CCA commitment with the same tag restriction,
via the following process: To commit w.r.t. tag t ∈ [n], send commitments w.r.t.
all tags in [n] that are not equal to t. In more detail,

CCAComt(m) = ({CCACom-same-tagi(m)}i∈[n]\{t},Π),

where Π is (an appropriate variant of a) ZK argument certifying that

“All n − 1 commitments ci are to the same message.”

Let us assume that the adversary’s challenge commitment has tag t∗. This
means that the challenge commitment does not contain the underlying commit-
ment CCACom-same-tag w.r.t. tag t∗, and on the other hand, all the adversaries
oracle decommitment queries will contain CCACom-same-tag w.r.t. tag t∗. This
means that all decommitment queries that the adversary makes contain a com-
mitment w.r.t. tag t∗ that does not appear in the challenge commitment. This
leads to an identical situation as the setting of tag amplification, and a very sim-
ilar construction (and proof) helps bootstrap same-tag schemes for n ≤ poly(κ)
tags to those that do not have such a requirement.

NIDI and Non-malleable Commitments 203

In summary, our final CCA commitment is obtained by first bootstrapping
“base” same-tag commitment schemes for small tags to remove the same-tag
requirement, and then bootstrapping the resulting small tag commitment via
the tag amplification process outlined above.

Organization. The rest of this paper is organized as follows. In Sect. 3 we set up
notation and define building blocks. In Sect. 4 we define and construct NIDIs,
in Sect. 5, we use NIDIs in a black-box way to obtain commit-and-prove, and
finally in Sect. 6 we build CCA commitments.

3 Preliminaries

We rely on the standard notions of Turing machines and Boolean circuits.

– A polynomial-size circuit family C is a sequence of circuits C = {Cκ}κ∈N,
such that each circuit Cκ is of polynomial size κO(1) and has κO(1) input
and output bits. We also consider probabilistic circuits that may toss random
coins.

– We follow the standard habit of modeling any efficient adversary as a family
of polynomial-size circuits. For an adversary A corresponding to a family of
polynomial-size circuits {Aκ}κ∈N, we omit the subscript κ, when it is clear
from the context.

– A function f : N → R is negl(n) if f(n) = n−ω(1).
– For random variables X,Y , and 0 < μ < 1, we write X ≈T (κ) Y if for all

polynomial-sized circuits A, there exists a negligible function μ such that for
all κ,

∣
∣ Pr[A(X) = 1] − Pr[A(Y) = 1]

∣
∣ ≤ μ(T (κ)).

– We will use d ← D to denote a random sample from distribution D. This will
sometimes be denoted equivalently as d = D(r) for r ← {0, 1}∗. Similarly, we
will consider randomized algorithms that obtain inputs, and toss coins. We
will use notation t ← T (m) to denote the output of randomized algorithm T
on input m. Sometimes we will make the randomness of T explicit, in which
case we will use notation t = T (m; r) for r ← {0, 1}∗.

4 Non-interactive Distributionally Indistinguishable
(NIDI) Arguments

In this section, we define and construct NIDI arguments. As discussed earlier,
NIDI arguments enable a prover P with input a secret efficiently sampleable
distribution D to send a single message (a “sampler”) to verifier V. Given this
sampler, V can obtain a sample d from the (secret) distribution D together with
a proof of membership of the sampled instance d in a (public) NP language L.
Specifically, after checking such a proof, the verifier either outputs ⊥ or a sample
d from the distribution.

204 D. Khurana

4.1 Definitions

In a NIDI, the prover algorithm P obtains input a security parameter, the
description of a (secret) distribution D, and a public NP language L, and gen-
erates P(1κ,D,L) → π. The verifier V on input sampler π and the language L
computes V(1κ, π,L) → d or ⊥. We formally define this primitive below.

Definition 1 (Non-interactive Distributionally-Indistinguishable
(NIDI) Arguments). A pair of PPT algorithms is (P,V) is a non-interactive
distributionally-indistinguishable (NIDI) argument for NP language L with asso-
ciated relation RL if the non-interactive algorithms P(1κ,D,L) and V(1κ, π,L)4

satisfy:

– Completeness: For every poly(λ)-sampleable distribution5 D = (X ,W) over
instance-witness pairs in RL such that Supp(X) ⊆ L,

(
V(1κ, π,L) : π ∈ Supp (P(1κ,D,L))

)
∈ Supp(X).

– Soundness: For every ensemble of polynomial-length strings {πκ}κ∈N there
exists a negligible function μ(·) such that:

Pr
x←V(1κ,π,L)

[(
x �= ⊥

)
∧

(
x �∈ L

)]
≤ μ(κ)

– Distributional Indistinguishability: For every poly(κ)-sampleable pair of
distributions D0 = (X0,W0) and D1 = (X1,W1) over instance-witness pairs
in RL where Supp(X0) ∪ Supp(X1) ⊆ L, and X0 ≈κ X1,

P(1κ,D0,L) ≈κ P(1κ,D1,L)

Definition 2 (NIDI Arguments for T (κ)-Hard Distributions). A pair of
PPT algorithms is (P,V) is a non-interactive distributionally-indistinguishable
(NIDI) argument for T (κ)-hard distributions and NP language L with assocaited
relation RL if the non-interactive algorithms P(1κ,D,L) and V(1κ, π,L) satisfy
the completeness and soundness properties from Definition 1, and additionally
satisfy:

– Distributional Indistinguishability for T (κ)-Hard Distributions: For
every poly(κ)-sampleable pair of distributions D0 = (X0,W0) and D1 =
(X1,W1) over instance-witness pairs in RL where Supp(X0) ∪ Supp(X1) ⊆ L,
and X0 ≈T (κ) X1,

P(1κ,D0,L) ≈κ P(1κ,D1,L)

4 Since we define a NIDI for L, it is not necessary to explicitly send L as input to P
and V but we nevertheless write it this way for clarity.

5 Here, we slightly abuse notation and use D to also denote a circuit that on input
uniform randomness, outputs a sample from the distribution D.

NIDI and Non-malleable Commitments 205

4.2 Construction and Analysis

We prove the following theorem.

Theorem 4. Assuming the existence of sub-exponentially secure one-way func-
tions with efficiently recognizable range and sub-exponentially secure indistin-
guishability obfuscation, there exists a constant c > 1 s.t. for T (κ) = 2(log κ)c

there exist NIDI arguments for T (κ)-Hard Distributions satisfying Definition 2.

To prove Theorem 4, we show that there exist NIDI arguments for T (κ)-
hard distributions, where log T = (log κ)c, and c > 1 is some constant. Our
construction depends on T , and is as follows.

Construction 4.1. Let ε > 0 be an arbitrarily small constant such that:

– There exists a sub-exponentially secure one-way function f : {0, 1}poly(k) →
{0, 1}poly(k) with an efficiently recognizable range, i.e., given y there is an
efficient algorithm to check whether there exists a value x such that f(x) = y.
Note that permutations have this property, because every y is in the range of
the permutation. We require that for security parameter k′, this function is
invertible with probability at most 1

2(k′)ε by machines of size 2(k
′)ε

.
– There exists a perfectly correct, sub-exponentially secure public-key encryp-

tion scheme with key generation, encryption and decryption algorithms
(KeyGen,Enc,Dec) that for security parameter 1k satisfies 2kε

- IND-CPA secu-
rity against (non-uniform) adversaries6.

– There exists a sub-exponentially secure indistinguishability obfuscation
scheme (iO.Obf, iO.Eval) that for security parameter 1k satisfies 2kε

- security
against (non-uniform) adversaries.

– There exists a sub-exponentially secure puncturable PRF that for security
parameter 1k satisfies 2kε

- security against (non-uniform) adversaries.
– There exist sub-exponentially secure NIWIs that for security parameter 1k

satisfy 2kε

- security against (non-uniform) adversaries.

Set c = 1
ε . We construct our non-interactive distributionally-

indistinguishable (NIDI) argument below, where letting RL denote the relation
corresponding to NP language L we define

LNIWI =
{

(pk, dx, c, y) : ∃(dw, s, sk) s.t.
(

(dx, dw) ∈ RL
)

∨
(

(pk, sk) ← KeyGen(s) ∧ y = f(Decsk(c))
)

}

– The prove algorithm P(1κ,D,L) does the following:
• Set k = 2(log κ)c2

, k′ = 2(log κ)c

.
• Sample s ← {0, 1}k and set (pk, sk) ← KeyGen(s).
• Sample K ← {0, 1}k, R ← {0, 1}k.
• Generate program Ppk,K,D,L defined in Fig. 4.
• Compute P̃ = iO.Obf(Ppk,K,D,L;R).
• Output (pk, P̃).

6 This can be based on sub-exponential indistinguishability obfuscation and sub-
exponential one-way functions following [62].

206 D. Khurana

Hardwired: Public key pk, Puncturable PRF Key K, Distribution D,
Language L.

Input: Query y ∈ {0, 1}k′
.

1. If y �∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, r3) = PRF(K, y).
3. Set (dx, dw) = D(r1).
4. Set c = Encpk(0k′

; r2).
5. Set x = (pk, dx, c, y), w = (dw, 0k′+k).

Then compute e = NIWI.P(1k, x, w,LNIWI; r3).
6. Output (x, e).

Fig. 4. Program Ppk,K,D,L.

– The verify algorithm V(1κ, π,L) on input a proof π = (pk, P̃) does the fol-
lowing:

• Sample v ← {0, 1}k′
and set y = f(v).

• Compute out = iO.Eval(P̃ , y). Parse out = (x, e) and parse x =
(pk, d, c, y).

• If NIWI.V(1k, x, e,LNIWI) rejects, output ⊥ and stop.
• Else output d.

Lemma 1. Construction 4.1 satisfies completeness according to Definition 1.

Proof. The proof follows by observing that due to perfect correctness of iO,
V(π,L) for π = (pk, P̃) obtains (x, e) from P̃ , where x = (pk, d, c, y). By perfect
correctness of NIWI, V will output d with probability 1. Recall that (d, ·) = D(r1)
by construction, and therefore d ∈ Supp(X).

Lemma 2. Under the assumptions in Theorem 4, construction 4.1 satisfies
soundness according to Definition 1.

Lemma 3. Under the assumptions in Theorem 4, construction 4.1 satisfies dis-
tributional indistinguishability for T (κ)-hard distributions per Definition 2.

The proofs of these lemmas appear in the full version but are omitted from
this version due to lack of space.

5 Commit-and-Prove

A (relaxed) non-interactive commit-and-prove argument is a protocol between a
committer C and receiver R. In the commit phase, C sends R a single message to
commit to a value m ∈ {0, 1}κ. The transcript of the commitment is finalized as

NIDI and Non-malleable Commitments 207

a function of the receiver’s randomness and the committer’s message, although
the receiver does not need to return this randomness to the committer. It also
proves that m satisfies some public predicate φ, in other words it proves that
φ(m) = 1. At the end of this phase, R either outputs ⊥ (denoting that the
commitment phase was rejected) or outputs a commitment string c.

Later, the parties C and R possibly engage in another decommit phase, at
the end of which R outputs ⊥ or m ∈ {0, 1}κ.

Definition 3 (Non-interactive Commit-and-Prove). A pair of PPT algo-
rithms (C,R) where R = (R1,R2) is a non-interactive commit-and-prove argu-
ment if it satisfies the following.

– Completeness: For every φ and every m ∈ {0, 1}κ such that φ(m) = 1,

Pr
[

m ← R2(1κ, c, cert, st) ∧
φ(m) = 1

∣
∣
∣
∣
(π, st) ← C(1κ,m, φ)
(c, cert) ← R1(1κ, π, φ)

]
= 1.

– Soundness: For every poly(κ)-sized (non-uniform) committer C∗ there exists
a negligible function μ(·) such that for large enough κ ∈ N,

Pr

⎡

⎣
∃(m∗, st∗) s.t. (m∗ �= ⊥) ∧
m∗ ← R2(1κ, c, cert, st∗) ∧
φ(m∗) �= 1

∣
∣
∣
∣
∣
∣

π ← C∗

(c, cert) ← R1(1κ, π, φ)

⎤

⎦ ≤ μ(κ).

– Computational Hiding: For every language L, every pair of messages
(m0,m1) such that φ(m0) = φ(m1) = 1,

C(1κ,m0, φ) ≈κ C(1κ,m1, φ)

Construction 5.1. Let ε > 0 be a constant such that:

– There exists a non-interactive perfectly binding commitment Com that satis-
fies hiding against 2κε

-time (non-uniform) adversaries, and
– There exists a NIDI argument for 2κε

-hard distributions that satisfies Defini-
tion 1.

We define

Lφ =
{
c : ∃(m, r) s.t. c = Com(m; r) ∧ φ(m) = 1

}

– The commit algorithm C(1κ,m, φ) does the following:
• Define distribution Dm(r) = Com(m; r).
• Output π = P(1κ,Dm,Lφ) computed using uniform randomness rC .
• Set st = (m, rC).

– The receiver algorithm R1(1κ, π, φ) does the following.
• Sample randomness rR.
• Obtain y ← V(1κ, π,Lφ; rR).
• Output (y, rR).

208 D. Khurana

– The receiver algorithm R2(1κ, c, cert, st∗) does the following:
• Parse st∗ = (m∗, r∗

C) and cert = rR.
• Compute π∗ = P(1κ,Dm∗ ,Lφ; r∗

C).
• If V(1κ, π∗,Lφ; rR) = (c, ·), output m∗.
• Otherwise, output ⊥.

Lemma 4. Construction 5.1 satisfies completeness according to Definition 3.

Proof. The proof follows by the perfect correctness of NIDI.

Lemma 5. Construction 5.1 satisfies soundness according to Definition 3.

Proof. We prove that this lemma follows by the soundness of the NIDI according
to Definition 2 and the perfect binding property of Com. Towards a contradiction,
suppose there exists a poly(κ)-sized (non-uniform) committer C∗ for which there
exists a polynomial p(·) such that for infinitely many κ ∈ N,

Pr

⎡

⎣
∃(m∗, st∗) s.t. (m∗ �= ⊥) ∧
m∗ ← R2(1κ, c, cert, st∗) ∧
φ(m∗) �= 1

∣
∣
∣
∣
∣
∣

π ← C∗

(c, cert) ← R1(1κ, π, φ)

⎤

⎦ ≥ 1
p(κ)

.

Fix any string π, and let (c, cert) ← R1(1κ, π, φ).

– By construction, for any st∗ parsed as (m∗, r∗
C), R2(1κ, c, cert, st∗) outputs

m∗ �= ⊥ if and only if for π∗ = P(1κ,Dm∗ ,Lφ; r∗
C), V(1κ, π∗,Lφ; cert) = (c, ·).

By perfect completeness of NIDI, this implies that R2(1κ, c, cert, st∗) outputs
some m∗ �= ⊥ if and only if there exists r∗

C such that c = Com(m∗; r∗
C).

– Next by the perfect binding of Com, for every string c, there exists at most one
message m∗ and randomness r∗

C such that c = Com(m∗; r∗
C). Then φ(m∗) �=

1 ⇐⇒ c �∈ Lφ.

Taken together, this implies that

Pr
[(

R(1κ, π,Lφ) �= ⊥
)

∧
(
R(1κ, π,Lφ) �∈ L

)∣∣
∣π ← C∗

]
≥ 1

p(κ)
,

which contradicts the soundness of NIDI, as desired.

Lemma 6. Construction 5.1 satisfies computational hiding according to Defini-
tion 2.

Proof. This lemma follows almost immediately from the distributional indistin-
guishability of NIDI.

Specifically, for language L = Lφ, for any pair of messages m0,m1 such that
φ(m0) = φ(m1) = 1, define poly(κ)-sampleable distributions (Dm0 ,Dm1) where
Dmb

= (Com(mb; r), (mb, r)).
By definition of Lφ, Supp(D0)∪Supp(D0) ⊆ Lφ. Moreover by 2κε

-hardness of
Com, we have that Com(m0; r) ≈2κε Com(m1; r), Therefore, distributional indis-
tinguishability of NIDI according to Definition 2 implies that: P(1κ,Dm0 ,Lφ) ≈κ

P(1κ,Dm1 ,Lφ) or equivalently, C(1κ,m0, φ) ≈κ C(1κ,m1, φ), as desired.

NIDI and Non-malleable Commitments 209

6 CCA Commitments from Indistinguishability
Obfuscation

In this section, we prove the following theorem.

Theorem 5. Assume the existence of sub-exponentially secure indistinguisha-
bility obfuscation, sub-exponentially secure one-way functions with efficiently
recognizable range and sub-exponentially secure CCA commitments for tags in
[log log log κ]. Then there exist CCA commitments for tags in 2κ.

We prove this theorem by building a tag amplification compiler that ampli-
fies CCA commitments for tags in [t/2] for t ≤ poly(κ) to tags in [T] where

T =
(

t
t/2

)
. Applying this compiler 4 times to a CCA commitments for tags in

[log log log κ] yields the statement of the theorem.
In what follows, let ε > 0 be an arbitrarily small constant such that:

– The CCA commitment for small tags and security parameter κ is 2(log κ)1/ε

secure and has a “brute-force” value algorithm CCAVal that recovers the value
underlying any commitment, and runs in time at most poly(2κ).

– There exists a subexponentially secure one-way function f that with security
parameter k is 2kε

one-way. Furthermore, f has an efficiently recognizable
range, i.e., given y there is an efficient algorithm to check whether there exists
a value x such that f(x) = y. Note that permutations have this property,
because every y is in the range of a permutation.

– There exists a perfectly correct, sub-exponentially secure public-key encryp-
tion scheme with key generation, encryption and decryption algorithms
(KeyGen,Enc,Dec) that for security parameter 1k satisfies 2kε

- IND-CPA secu-
rity against (non-uniform) adversaries.

– There exists a sub-exponentially secure indistinguishability obfuscation
scheme (iO.Obf, iO.Eval) that for security parameter 1k satisfies 2kε

- security
against (non-uniform) adversaries.

– There exists a sub-exponentially secure puncturable PRF that for security
parameter 1k satisfies 2kε

- security against (non-uniform) adversaries.
– There exist sub-exponentially secure NIWIs that for security parameter 1k

satisfy 2kε

- security against (non-uniform) adversaries.

Our compiler is described formally below, where letting RL denote the rela-
tion corresponding to NP language L we define language

LNIWI =
{

{(ci, si)}i∈[t/2], (pk, enc, y) : ∃(M, r1, . . . , rt/2, s, sk) s.t.
(
∀i ∈ [t/2], ci = ComSmallsi

(M ; ri)
)

∨(
(pk, sk) ← KeyGen(s) ∧ y = f(Decsk(c))

)}

where si denotes a tag in [t/2], and ComSmall denotes the commit algorithm for
an underlying CCA commitment with tags in [t/2].

210 D. Khurana

Construction 6.1. We now describe the CCACom and CCAVal algorithms for the
scheme with large tags. We note that just like our commit-and-prove system
described in the previous section, the commit phase ends after the receiver has
queried the committer’s program on a random input. The output of the commit
phase is the output of such a receiver (and depending on the application, the
receiver may or may not need to send its input back to the committer).

On input security parameter κ, we will set parameters of our building blocks
as follows. Our one-way function with efficiently recognizable range and sub-
exponential security will have security parameter kf set to (log κ)1/ε. The CCA
commitment for small tags will have security parameter set to κ. Note that this
implies (by assumption) that CCAVal runs in time poly(2κ). Finally, all other
primitives including iO, the puncturable PRF and the PKE scheme will have
security parameter set to k = κ

1
ε .

The CCACom Algorithm: CCACom(1κ,m, tag) does the following.

– Let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the
ith element in set T, for i = tag.7 Let this element be denoted by (s1, . . . st/2).

– The committer C(1κ,M, tag) does the following:
• Set k = κ

1
ε , and kf = (log κ)

1
ε .

• Sample s ← {0, 1}k and set (pk, sk) ← KeyGen(s).
• Sample K ← {0, 1}k and R ← {0, 1}k.
• Generate program Ppk,K,M,tag defined in Fig. 5.
• Compute P̃ = iO(Ppk,K,M,tag;R).
• Output c = (tag, pk, P̃).

– The receiver R on input a commitment c = (tag, pk, P̃) does the following.
• Sample v ← {0, 1}κ and set y = f(v).
• Compute out = iO.Eval(P̃ , y). Parse out = (x, e), x = (d, pkenc, y) and

d = {ci}i∈[t/2].
• Set x′ = {(ci, si)}i∈[t/2], (pk, enc, y). If NIWI.V(1k, x′, e,LNIWI) rejects,

output ⊥ and stop.
• Else output v, and for each i ∈ [t/2], execute the receiver algorithm
ComSmall.R(ci).
If any of these (t/2) algorithms output ⊥, then output ⊥ and stop.

• At the end of this process, the receiver either outputs ⊥ or (τ1, . . . , τt/2)
where τi denotes the (non-⊥) outcome of ComSmall.R(ci)8.

The CCAVal Algorithm: The CCAVal algorithm obtains as input a commit-
ment string parsed as ⊥ or (τ1, . . . , τt/2), generated as the output of the commit
phase above, and does the following.
7 Here, we use a different tag encoding scheme due to [50] that offers a slightly more

optimized way to the same effect as the DDN encoding [27] discussed in the overview.
That is, for every pair of unequal large tags T and T ′, there is at least one member
in the set corresponding to T that is not present in the set corresponding to T ′, and
vice-versa.

8 Note that for the base scheme, R simply outputs the string it obtained from the
committer.

NIDI and Non-malleable Commitments 211

Hardwired: Public key pk, Puncturable PRF Key K, message
M ∈ {0, 1}p, small tags (s1, . . . st/2) corresponding to tag.

Input: Query y ∈ {0, 1}kf .

1. If y �∈ Range(f), output ⊥. Otherwise, continue.
2. Set r = (r1||r2|| . . . ||rt/2||rt/2+2) = PRF(K, y).
3. For i ∈ [t/2], set ci = ComSmallsi

(M ; ri). Set d = {ci}i∈[t/2].
4. Set enc = Encpk(0κ; rt/2+1).
5. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt/2, 02k).
6. Compute e = NIWI.P(1k, x, w, LNIWI; rt/2+2) and output (x, e).

Fig. 5. Program PK,M,tag

• On input a commitment string, if ⊥, output ⊥. Otherwise parse the string as
(τ1, . . . , τt/2) and execute ComSmall.CCAVal(τ1).

We prove the security of this construction, and discuss how to eliminate the
same-tag restriction in the full version of the paper.

Acknowledgments. We thank the anonymous Eurocrypt reviewers for their insight-
ful suggestions. We are also grateful to Ran Canetti, Suvradip Chakraborty, Oxana
Poburinnaya and Manoj Prabhakaran for useful discussions.

References

1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 7

2. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45721-1 5

3. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 10

4. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions
and robust combiners for indistinguishability obfuscation and witness encryption.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 17. Pro-
ceedings, Part II

https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-53008-5_17

212 D. Khurana

5. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10.
Proceedings, Part III

6. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS 2002, pp. 345–355 (2002)

7. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6:1–6:48 (2012). https://doi.org/10.1145/2160158.2160159

8. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007). https://doi.org/10.1137/050641958

9. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge.
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24638-1 7. Theory of Cryptogra-
phy, First Theory of Cryptography Conference

10. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
542–564. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-
0 20

11. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, 14–16 January 2016, pp. 345–356. ACM (2016). https://
doi.org/10.1145/2840728.2840745

12. Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the black-
box barrier. In: Charikar, M., Cohen, E. (eds.) STOC 2019, pp. 1091–1102. ACM
(2019). https://doi.org/10.1145/3313276.3316382

13. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp.
209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 8

14. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 11

15. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

16. Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant rounds. In:
Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.)
STOC 2020, pp. 269–279. ACM (2020). https://doi.org/10.1145/3357713.3384324

17. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 4

18. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not
necessary for iO: circular-secure LWE suffices. IACR Cryptol. ePrint Arch. (2020).
https://eprint.iacr.org/2020/1024

19. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45608-8 8

https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1137/050641958
https://doi.org/10.1007/978-3-540-24638-1_7
https://doi.org/10.1007/978-3-662-49099-0_20
https://doi.org/10.1007/978-3-662-49099-0_20
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1145/3313276.3316382
https://doi.org/10.1007/978-3-030-03807-6_8
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1145/3357713.3384324
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://eprint.iacr.org/2020/1024
https://doi.org/10.1007/978-3-662-45608-8_8
https://doi.org/10.1007/978-3-662-45608-8_8

NIDI and Non-malleable Commitments 213

20. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Yao, F.F., Luks, E.M. (eds.) Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, 21–23 May 2000, Port-
land, OR, USA, pp. 235–244. ACM (2000). https://doi.org/10.1145/335305.335334

21. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: Proceedings of the 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, pp. 541–550 (2010)

22. Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and appli-
cations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 66–92.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 4

23. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10. Robshaw and Katz [61]

24. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 5

25. Deshpande, A., Kalai, Y.: Proofs of ignorance and applications to 2-message wit-
ness hiding. IACR Cryptol. ePrint Arch. 2018, 896 (2018)

26. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4.
Robshaw and Katz [61]

27. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (Extended Abstract).
In: STOC 1991 (1991)

28. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM
50(6), 852–921 (2003). https://doi.org/10.1145/950620.950623

29. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999). https://doi.org/
10.1137/S0097539792230010

30. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 13–
17 May 1990, Baltimore, Maryland, USA, pp. 416–426 (1990). https://doi.org/10.
1145/100216.100272

31. Garg, R., Khurana, D., Lu, G., Waters, B.: Black-box non-interactive non-
malleable commitments. Cryptology ePrint Archive, Report 2020/1197 (2020).
https://eprint.iacr.org/2020/1197

32. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

33. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-
to-state hard problems: new assumptions, new techniques, and simplification.
IACR Cryptol. ePrint Arch. (2020). https://eprint.iacr.org/2020/764

34. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. IACR
Cryptol. ePrint Arch. (2020). https://eprint.iacr.org/2020/1010

35. Goldreich, O.: The Foundations of Cryptography -Basic Techniques, vol. 1. Cam-
bridge University Press, Cambridge (2001)

36. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991). https://doi.org/10.1145/116825.116852

https://doi.org/10.1145/335305.335334
https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1145/950620.950623
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://eprint.iacr.org/2020/1197
https://doi.org/10.1007/978-3-642-54242-8_4
https://eprint.iacr.org/2020/764
https://eprint.iacr.org/2020/1010
https://doi.org/10.1145/116825.116852

214 D. Khurana

37. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

38. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

39. Goyal, V.: Constant round non-malleable protocols using one-way functions. In:
STOC 2011, pp. 695–704. ACM (2011)

40. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: FOCS (2012)

41. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC, pp. 1128–1141. ACM, New York (2016). https://doi.org/10.1145/2897518.
2897657

42. Goyal, V., Richelson, S.: Non-malleable commitments using goldreich-levin list
decoding. In: Zuckerman, D. (ed.) FOCS 2019, pp. 686–699. IEEE Computer
Society (2019). https://doi.org/10.1109/FOCS.2019.00047, https://ieeexplore.ieee.
org/xpl/conhome/8936052/proceeding

43. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: FOCS 2014, pp. 41–50 (2014). https://doi.org/10.1109/FOCS.
2014.13

44. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012). https://doi.org/10.1145/2220357.
2220358

45. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 9

46. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.
iacr.org/2020/1003

47. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. Lecture Notes in Computer Science, vol. 10402, pp. 158–189. Springer (2017).
https://doi.org/10.1007/978-3-319-63715-0

48. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum
supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 18

49. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 139–171.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

50. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
Umans [63], pp. 564–575. https://doi.org/10.1109/FOCS.2017.58

51. Kuykendall, B., Zhandry, M.: Towards non-interactive witness hiding. Cryptology
ePrint Archive, Report 2020/1205 (2020). https://eprint.iacr.org/2020/1205

52. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC 2011, pp. 705–714 (2011)

53. Lin, H., Pass, R.: Non-malleability amplification. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 189–198
(2009)

https://doi.org/10.1007/BF00195207
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1109/FOCS.2019.00047
https://ieeexplore.ieee.org/xpl/conhome/8936052/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8936052/proceeding
https://doi.org/10.1109/FOCS.2014.13
https://doi.org/10.1109/FOCS.2014.13
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-030-17653-2_9
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://doi.org/10.1007/978-3-319-63715-0
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1109/FOCS.2017.58
https://eprint.iacr.org/2020/1205

NIDI and Non-malleable Commitments 215

54. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: Umans [63], pp. 576–587 (2017).
https://doi.org/10.1109/FOCS.2017.59

55. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: TCC 2008, pp. 571–588 (2008)

56. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Advances in Cryptology – CRYPTO 2008, pp. 57–74 (2008)

57. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

58. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: Proceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2005, pp. 563–572 (2005)

59. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

60. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 32

61. Robshaw, M., Katz, J. (eds.): Advances in Cryptology - CRYPTO 2016–36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14–18, 2016, Proceedings, Part III, Lecture Notes in Computer Science, vol. 9816.
Springer (2016). https://doi.org/10.1007/978-3-662-53015-3

62. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) STOC 2014, pp. 475–484. ACM (2014).
https://doi.org/10.1145/2591796.2591825

63. Umans, C. (ed.): 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017. IEEE Computer
Society (2017). https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding

64. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: FOCS 2010, pp. 531–540 (2010). https://doi.org/10.1109/FOCS.2010.
87

65. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. IACR
Cryptol. ePrint Arch. (2020). https://eprint.iacr.org/2020/1042

https://doi.org/10.1109/FOCS.2017.59
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-662-53015-3
https://doi.org/10.1145/2591796.2591825
https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding
https://doi.org/10.1109/FOCS.2010.87
https://doi.org/10.1109/FOCS.2010.87
https://eprint.iacr.org/2020/1042

Zero-Knowledge Proofs

Public-Coin Statistical Zero-Knowledge
Batch Verification Against Malicious

Verifiers

Inbar Kaslasi1(B), Ron D. Rothblum1, and Prashant Nalini Vasudevanr2

1 Technion, Haifa, Israel
{inbark,rothblum}@cs.technion.ac.il

2 UC Berkeley, Berkeley, USA
prashvas@berkeley.edu

Abstract. Suppose that a problem Π has a statistical zero-knowledge
(SZK) proof with communication complexity m. The question of batch
verification for SZK asks whether one can prove that k instances
x1, . . . , xk all belong to Π with a statistical zero-knowledge proof whose
communication complexity is better than k ·m (which is the complexity
of the trivial solution of executing the original protocol independently
on each input).

In a recent work, Kaslasi et al. (TCC, 2020) constructed such a
batch verification protocol for any problem having a non-interactive SZK
(NISZK) proof-system. Two drawbacks of their result are that their pro-
tocol is private-coin and is only zero-knowledge with respect to the honest
verifier.

In this work, we eliminate these two drawbacks by constructing
a public-coin malicious-verifier SZK protocol for batch verification of
NISZK. Similarly to the aforementioned prior work, the communication
complexity of our protocol is

(
k + poly(m)

) · polylog(k, m).

Keywords: Statistical zero-knowledge · Batch verification

1 Introduction

The concept of zero knowledge proofs, introduced by Goldwasser, Micali and
Rackoff [GMR89], is an incredibly deep and fascinating notion that has proven
to be a fundamental component in the construction and design of cryptographic
protocols (see, e.g., [GMW87]). A zero-knowledge proof allows a prover to con-
vince an efficient verifier that a given statement is true without revealing any-
thing else to the verifier. This is formalized by requiring that for any (possibly
malicious) verifier that participates in such a proof, there is an efficient simula-
tion algorithm that simulates its interaction with the prover.

In this work we focus on statistical zero-knowledge proofs. In this variant,
both the verifier and the prover are guaranteed information-theoretic (rather

The full version is available on the Cryptology ePrint Archive [KRV21].

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 219–246, 2021.
https://doi.org/10.1007/978-3-030-77883-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_8

220 I. Kaslasi et al.

than computational) security. On the one hand, the verifier knows that even
an all-powerful prover could not convince it to accept a false statement (other
than with negligible probability). On the other hand, the prover knows that
any polynomial-time cheating strategy of the verifier can only reveal a negligible
amount of information beyond the validity of the statement being proven.

The class of languages having a statistical zero-knowledge protocol is denoted
by SZK. This class contains several natural problems like Graph Nonisomor-
phism, and many of the problems that are central to cryptography such as
quadratic residuosity [GMR89], discrete logarithm [GK93,CP92], and various
lattice problems [GG00,MV03,PV08,APS18]. It has been found to possess
extremely rich structure [For89,AH91,Oka00,SV03,GSV98,GV99,NV06,OV08]
and to have fundamental connections to different aspects of cryptography
[BL13,KMN+14,LV16,Ost91,OW93,BDRV18,KY18,BBD+20] and complexity
theory [For87,AH91,Aar12,GR14,Dru15,AV19,BCH+20].

In a recent work, Kaslasi et al. [KRR+20] raised the question of batch ver-
ification for statistical zero-knowledge proofs: Suppose Π has a statistical zero-
knowledge proof (SZK). Can we prove that x1, . . . , xk ∈ Π with communication
complexity that beats the naive approach of separately proving that each xi ∈ Π,
while still maintaining zero-knowledge? Beyond being of intrinsic interest and
teaching us about the structure of SZK, such protocols have potential crypto-
graphic applications such as the batch verification of cryptographic signatures
[NMVR94,BGR98,CHP12] or well-formedness of public-keys [GMR98].

The main result of [KRR+20] was such a generic batch verification result
for a subclass of languages in SZK – specifically for problems having a non-
interactive statistical zero-knowledge proof system (NISZK). Kaslasi et al. con-
struct an (interactive) SZK protocol for batching k instances of Π ∈ NISZK, with
communication complexity

(
k + poly(n)

) · polylog(k, n), where n is the length
of each of the k inputs, and poly refers to a fixed polynomial that depends only
on the specific problem (and not on k). Their result should be contrasted with
the naive approach of simply executing the NISZK protocol separately on each
input (which has communication complexity k · poly(n)).

Two major drawbacks of the protocol of [KRR+20] are the fact that it is
private-coin and only honest-verifier statistical zero-knowledge (HVSZK). These
drawbacks are significant. Recall that private-coin protocols can only be verified
by a designated verifier, in contrast to public-coin protocols that can be verified
by anyone (as long as they can ensure that the coins were truly unpredicatable to
the prover, e.g., they were generated by some physical phenomenon or a public
randomness beacon). Further, public-coin protocols have the added benefit that
they can be transformed into non-interactive arguments via the Fiat-Shamir
transform (either heuristically [FS86], in the random-oracle model [PS96], or,
more recently, under concrete cryptographic assumptions (see, e.g., [CCH+19])).

The second drawback is arguably even more significant. Recall that honest-
verifier zero-knowledge is a relatively weak privacy guarantee which, in a nutshell,
only guarantees that verifiers that follow the protocol to the letter learn nothing
in the interaction. Usually this weak privacy guarantee is only used as a stepping

Public-Coin Statistical Zero-Knowledge Batch Verification 221

stone towards getting full-fledged zero-knowledge (i.e., zero-knowledge that holds
even against arbitrary polynomial-time cheating verifiers).

At first glance it may seem straightforward to overcome both drawbacks of
the protocol of [KRR+20] by employing the known generic transformations from
private-coin honest-verifier statistical zero-knowledge to public-coin malicious-
verifier statistical zero-knoweldge [Oka00,GSV98,HRV18]. Unfortunately, these
tranformations incur a large polynomial overhead in communication that we
cannot afford in our context (see also Remark 1 below).

1.1 Our Results

In this paper we eliminate the two major drawbacks mentioned above by con-
structing a public-coin malicious-verifier SZK batch verification protocol for
every problem in NISZK. The communication complexity in our protocol is sim-
ilar to that of [KRR+20].

Theorem 1 (Informally Stated, see Theorem 7). Let Π ∈ NISZK. There
exists a public-coin SZK protocol for verifying that x1, . . . , xk ∈ Π, with commu-
nication complexity

(
k + poly(n)

) · polylog(n, k). The verifier’s running time is
k · poly(n, log k), and the number of rounds is k · polylog(n, k).

Our high-level approach for proving Theorem 1 follows a classical approach for
constructing malicious-verifier zero-knowledge proofs: first construct a public-
coin honest-verifier zero-knowledge batching protocol, and then show how to
transform it to be malicious-verifier zero-knowledge. The main challenge that
we must overcome is in actually implementing these two steps without incurring
the exorbitant price of the generic transformations for SZK [Oka00,SV03,GV99,
GSV98,HRV18]. Thus, our two main steps are:

1. Construct an efficient public-coin HVSZK batch verification protocol.
2. Transform it to be zero-knowledge against malicious verifiers, while preserving

its efficiency.

Our first main technical contribution is in implementing Step 1.

Theorem 2 (Informally Stated, see Theorem 6). Let Π ∈ NISZK. There
exists a public-coin HVSZK protocol for verifying that x1, . . . , xk ∈ Π, with com-
munication complexity

(
k + poly(n)

) · polylog(n, k). The verifier’s running time
is k · poly(n, log k), and the number of rounds is O(k).

Theorem 2 already improves on the main result of [KRR+20], since it gives a
public-coin batch verification protocol. However, we would like to go further and
obtain security even against malicious verifiers. It is tempting at this point to
apply the generic transformations of [GSV98,HRV18] from public-coin honest-
verifier zero-knowledge, to malicious-verifier. Unfortunately, the overhead intro-
duced in these transformations is too large and applying them to the protocol
of Theorem 1 would yield a trivial result (see Remark 1 for details).

222 I. Kaslasi et al.

Rather, as our second technical contribution (which may be of independent
interest), we show that the communication complexity of the [GSV98] trans-
formation can be significantly improved for protocols satisfying a strong notion
of soundness. Specifically, we refer to the notion of round-by-round soundness,
introduced in a recent work of Canetti et al. [CCH+19].

Theorem 3 (Informally Stated, see Theorem 5). Any public-coin HVSZK
protocol with negligible round-by-round soundness error can be efficiently trans-
formed into a public-coin SZK protocol. In particular, a message of length � in
the original protocol grows to length poly(�) in the transformed protocol.

Note that the growth of each message in the transformation above depends
only on its own length and not on n or k – this allows us to take advantage of
the fact that all but one of the messages in the protocol of Theorem 2 have poly-
logarithmic length. We show that the protocol of Theorem 2 indeed has round-
by-round soundness which, in combination with Theorem 3, yields Theorem 1.

Remark 1 (On Generic Transformations from the Literature). We discuss here
a few known generic transformations for the class SZK from the literature, and
why they are not applicable in our context.

Okamoto [Oka00] showed how to transform any private-coin HVSZK protocol
into a public-coin one. Unfortunately, we cannot use his transformation to derive
Theorem 1 from the private-coin batching protocol of [KRR+20], due to the
overhead involved. In more detail, Okamoto’s protocol starts by taking a t-fold
parallel repetition of the private-coin protocol, where t = �9 · r9, where � is
the round complexity and r is the randomness complexity of the simulator.
In our context � = k and r = poly(n) and so the overhead from Okamoto’s
transformation would yield a trivial result (as a matter of fact, we could not
even afford an overhead of t = �, which seems inherent to Okamoto’s approach).

Similarly, we cannot derive Theorem 1 from Theorem 2 by applying
the generic transformation of [GSV98,HRV18] for transforming honest-verifier
public-coin SZK proofs to malicious-verifier ones. In more detail, the transfor-
mation of [GSV98] starts by applying an �-fold parallel repetition of the honest-
verifier protocol (where again � is the number of rounds). In the context of
Theorem 2, � = Θ(k), and so, applying the [GSV98] transformation yields a
protocol with communication complexity k · poly(n), which we cannot afford.

The more recent work of Hubácek et al. [HRV18] gives an efficiency-
preserving transformation from honest-verifier to malicious-verifier. This trans-
formation also incurs a polynomial overhead in the communication complexity.
In particular, [HRV18] rely on the instance-dependent commitments of Ong and
Vadhan [OV08], which in turn use the SZK completeness of the Entropy Differ-
ence (or ED) problem [GV99]. The known reduction from SZK to ED (see [Vad99,
Theorem 3.3.13]) generates circuits whose input size is roughly � · r. This size
would correspond to the size of the decommitments in the [HRV18] protocol and
again would lead to an overhead that we cannot incur.

Public-Coin Statistical Zero-Knowledge Batch Verification 223

Indeed, our work motivates the study of communication-preserving transfor-
mations for SZK protocols. In particular, obtaining a generic communication-
preserving transformation from honest-verifier to malicious-verifier SZK is an
interesting open question.

1.2 Technical Overview

First, in Sect. 1.2, we describe the public-coin honest-verifier statistical zero-
knowledge (HVSZK) batching protocol. Then, in Sect. 1.2, we show how to com-
pile honest-verifier protocols efficiently to be secure against malicious verifiers.

Public-Coin HVSZK Batching. Our starting point is the aforementioned
recent work of Kaslasi et al. [KRR+20], which gave a private-coin HVSZK batch-
ing protocol. As their first step, they introduced a new (promise) problem called
approximate injectivety (AI) and showed that it is NISZK-complete. They then
designed a private-coin HVSZK batch verification protocol for AI. We follow a
similar route, except that we construct a public-coin HVSZK batch verification
protocol for AI.

The inputs to the AI problem, which is parameterized by a real number
δ ∈ [0, 1], are circuits C : {0, 1}n → {0, 1}m. YES instances are circuits C
for which all but a δ fraction of the inputs are mapped injectively to their
corresponding outputs (i.e., Prx

[|C−1(C(x))| > 1
]

< δ). NO instances are cir-
cuits for which at most a δ fraction of the inputs are mapped injectively (i.e.,
Prx

[|C−1(C(x))| > 1
]

> 1 − δ).
Since AIδ was shown to be NISZK complete, to prove Theorem 2 it suffices to

show a public-coin HVSZK batching protocol for AIδ. Our main technical result
is precisely such a protocol achieving communication roughly k +poly(n), where
k is the number of instances being batched. For simplicity, we first focus on the
case that δ = 0 – namely, distinguishing circuits that are injective from those in
which no input is mapped injectively to its output. A discussion of the case of
δ > 0 is deferred to the end of this overview.

In order to present our approach, following [KRR+20], we will first consider
a drastically easier case in which the goal is to distinguish between circuits that
are permutations (rather than merely being injective) or are far from such.

Warmup: Batch Verification for Permutations. We first consider a variant of AI,
called PERM. The inputs to PERM are length-preserving circuits C : {0, 1}n →
{0, 1}n. YES instances are circuits that compute permutations over {0, 1}n,
whereas NO instances are circuits that are far from being permutations in the
sense that no input is mapped injectively (i.e., every image has at least two
preimages).

Consider the following batch verification protocol for PERM. Given com-
mon input C1, . . . , Ck : {0, 1}n → {0, 1}n the parties proceed as follows.
The verifier V samples yk ∈ {0, 1}n and sends it to the prover P. Then, P
responds with an x1 s.t. Ck(Ck−1(...C1(x1)) = yk. The verifier checks that indeed
Ck(Ck−1(...C1(x1)) = yk and accepts or rejects accordingly.

224 I. Kaslasi et al.

To argue that completeness holds, observe that when all of the Ci’s are
permutations, there exists a unique sequence x1, y1, x2, y2, . . . , xk−1, yk−1, xk,
where xi = yi−1 for every i ∈ [2, k], that is consistent with yk. That is, xi =
C−1

i (yi), for every i ∈ [k]). The prover can thus make the verifier accept (with
probability 1) by sending x1 as its message.

For soundness, let i∗ ∈ [k] denote the maximal index i s.t. Ci is a NO instance.
Since Ci∗ is a NO instance, each of its images has at least two preimages and
so the size of its image is at most 2n−1. Since yk is sampled uniformly and
Ci∗+1, . . . , Ck are permutations, we have that yi∗ is also random in {0, 1}n. In
particular this means that with probability at least half it has no preimage under
Ci∗ , and the verifier will eventually reject no matter what value of x1 the prover
sends. Note that the soundness error, which is 1/2 here, can be amplified by
repetition.

For zero-knowledge, consider the simulator that first samples x1 ∈ {0, 1}n

and then computes yk = Ck(Ck−1(...C1(x1)). Since all circuits are permutations,
yk is distributed uniformly over {0, 1}n as in the real interaction between the
honest-verifier and the prover.

The above batch verification protocol for PERM, while simple, will be the
basic underlying idea also for our batch verification protocol for AI0.

Public-Coin Batch Verification for AI0. Let C1, . . . , Ck : {0, 1}n → {0, 1}m be
instances of AI0. Since the output size of each circuit Ci is not compatible with
the input size for the following circuit Ci+1, we cannot directly compose the
circuits as we did for PERM.

A natural idea that comes to mind is to use hashing. Namely, choose a
hash function1 g to map Ci’s output yi ∈ {0, 1}m to the next circuit input
xi+1 ∈ {0, 1}n, for every i ∈ [k]. Based on this idea it is natural to consider a
minor modificition of the batch verification protocol for PERM, where the only
difference is that we interleave applications of g as we compose the circuits. Note
that we have to hash the last circuit output yk as well so that we can specify
xk+1 = g(yk) to the prover as a genuine unstructured random string.

If we could guarantee that the hash function g maps the image of each circuit
injectively into the domain of the subsequent circuit, then a similar analysis as
in the protocol for PERM could be applied and we would be done. However,
finding such a hash function in general seems incredibly difficult. Thus, instead,
we choose g to be a random function.2

In what follows, for every i ∈ [k], denote the image of Ci by Si ⊆ {0, 1}m.
Note that if Ci is a YES instance (i.e., injective), the size of Si is exactly 2n,
and if Ci is a NO instance (entirely non-injective) the size of Si is at most 2n−1.

When using a random function g as our hash function, we run into two key
challenges that did not exist in the protocol for PERM. The first of these two
challenges arises from the fact that for any YES instance circuit Ci, with high

1 The specific type of hash function that we use is left vague for now and will be
discussed in detail shortly.

2 Jumping ahead, we note that we cannot afford for g to be entirely random, and will
have to settle for some de-randomization. For the moment we ignore this issue.

Public-Coin Statistical Zero-Knowledge Batch Verification 225

probability over the choice of g : {0, 1}m → {0, 1}n, a constant fraction of the
elements in {0, 1}n have no preimages (under g) in the set Si.3 If such a situation
occurs for any of the circuits, a situation which is exceedingly likely, then even
the honest prover will not be able to find a suitable preimage x1 and we lose
completeness.

The way we solve this difficulty is relatively simple: we add to the hash
function g a short random auxiliary input that will be chosen independently
for each of the k applications of g. We denote the auxiliary input for the ith

application by zi and its length by d (which we set to polylog(n, k)). Observe
that if g : {0, 1}m × {0, 1}d → {0, 1}n is chosen at random, then we expect all
x’s in the domain of Ci+1 to have roughly the same number of preimages (under
g) that lie in the set Si × {0, 1}d.4

This brings us to the second challege in using a random hash function g,
which is slightly more subtle. When considering a YES instance circuit Ci, even
ignoring the additional auxiliary input, a constant fraction of the domain {0, 1}n

of Ci+1 will have more than one preimage (under g) which falls in Si. Needless
to say, this issue is further exacerbated by the addition of the auxiliary input.
At first glance this may not seem like much of an issue when we consider a YES
circuit. However, on further inspection, we observe that we may very well be in
the case that all of the circuits except for the first circuit C1 are YES instances
(i.e., injective) and only C1 is a NO instance (i.e., non-injective).

If such is the case, due to the collisions that occur in g, it is likely that yk will
have an exponential (in k) number of preimages x2 that are consistent with it.
If the prover has so much flexibility in its choice of x2 then it is likely that, even
though C1 is non-injective, the prover will be able to find a consistent preimage
x1 and we lose soundness.

Borrowing an idea from [KRR+20], we solve this challenge using interaction.
The high-level approach is for the prover to commit to xi before we reveal the
auxiliary information for the next circuit. Thus, the protocol proceeds iteratively,
where in each iteration first the prover commits to xi, and then the verifier
reveals the auxiliary input, which the prover uses to recover yi−1, and so on.
The commitment has the property that as long as we are processing YES input
circuits, with high probability, there is a unique xi that is consistent with the
interaction. In particular, when we reach the first NO instance circuit Ci∗ (recall
that i∗ denotes the maximal i s.t. Ci is a NO instance) there is a unique xi∗+1

that is consistent with the transcript.

Distinguishing Injective Circuits from Non-Injective Circuits. Recall that our
goal is to distinguish an injective circuit from a highly non-injective circuit.
Following our approach thus far, assume that we have processed the circuit

3 This is similar to the fact that when throwing N balls into N bins, in expectation,
a constant fraction of the bins remain empty. Here the images of Ci play the role of
the balls and the elements in the domain {0, 1}n of Ci+1 play the role of the bins.

4 Here we rely on the fact that when throwing N · polylog(N) balls into N bits, with
high probability, all bins will contain very close to the expected polylog(N) balls.

226 I. Kaslasi et al.

up to the circuit Ci and moreover, that there is a unique xi+1 that is consistent
with the interaction up to this point.

Recall also that if Ci is injective then |Si| = 2n, whereas if it is non-injective
then |Si| ≤ 2n−1. Thus, our approach is to employ a set lower bound protocol (a
la [GS89]) as follows. The verifier chooses a “filter” function hi ∈ Hn, where Hn is
a family of pairwise independent hash functions from domain {0, 1}m×{0, 1}d to
an appropriately chosen range size, as well as a target element αi. If Ci is injective
then we expect each xi+1 to have very close to 2d preimages (yi, zi) ∈ Si×{0, 1}d

under g. On the other hand, if Ci is non-injective, then we expect each xi+1 to
have roughly 2d−1 such preimages or less. Thus, by setting the range size to be
roughly 2d, the probability that one of these preimages hashes correctly via hi

to αi is larger (by a constant) in the YES case than in the NO case.

Balancing Completeness, Soundness and Zero-Knowledge. At this point we
observe that even if g and hi were random functions, the set lower bound app-
roach only yields a small constant gap between completeness and soundness. This
is insufficient since the completeness error is accumulating across the k different
circuits. Note that we cannot afford a k-fold repetition of the set lower bound
protocol (since it would be prohibitively expensive in our parameter setting).
Moreover, since we cannot generically amplify zero-knowledge, we also need the
zero-knowledge error accumulated by the YES instance circuits to be negligible.

We resolve this issue by considering a new variant of the approximate injec-
tivity problem which we denote by AIL,δ. The YES instances in this variant are
identical to the YES instance in AIδ – namely circuits that are injective on all
but a δ fraction of their domain. However, a circuit C is a NO instance if at
least 1 − δ fraction of its inputs have at least L “siblings” (i.e., inputs that are
mapped to the same output). Thus, the standard AIδ problem corresponds to
the case L = 2. Using a large enough L increases the gap between the number
of preimages in YES and NO instances, letting us set the range size of the hi’s
to obtain a larger gap between completeness and soundness.

We show that AI2,δ reduces to AIL,δ′ , where L = 2polylog(n,k) and δ′ is related
to δ. The idea for the reduction is to simply concatenate sufficiently many copies
of the input circuit.5 Thus, in the sequel it suffices to consider batch verification
for k instances of AIL,0 (and the case that δ > 0 will be discussed later on).

Over-Simplified Batch Verification Protocol for AIL,0. With the foregoing insights
in mind, consider the following over-simplified batching protocol for AIL,0 (see
also the diagram in Fig. 1 which gives a bird’s eye view of the flow of the proto-
col).

1. V samples g and xk+1 ← {0, 1}n and sends both to P.
2. For i = k, ..., 1:

5 In more detail, we transform an instance C of AI2,δ to an instance C′ of AI2�,δ·� by
concatenating � copies of C. It is not hard to see that if C were (almost) injective)
then C′ is (almost) injective. But, if (almost) every image of C has at least two
preimages then (almost) every image of C′ has at least 2� preimages.

Public-Coin Statistical Zero-Knowledge Batch Verification 227

(a) V samples a filter function hi ← Hn and target value αi (of appropriate
length) and sends both to P.

(b) P selects at random a pair (xi, zi) s.t.
i. g(Ci(xi), zi) = xi+1

ii. hi(Ci(xi), zi) = αi

and sends (xi, zi) to V.
3. V sets x′

1 = x1 and for i = 1, . . . , k:
(a) Computes y′

i = Ci(x′
i).

(b) Verifies that hi(y′
i, zi) = αi.

(c) Computes x′
i+1 = g(y′

i, zi).
(d) Verifies that x′

i+1 = xi+1.
4. If all of V’s checks pass then she accepts. Otherwise she rejects.

Fig. 1. Sampling Process of the Protocol

Note that the communication complexity in this protocol is Ω(k · n) (since
the prover sends x1, . . . , xk), which is more than we can afford. This issue will
be resolved shortly and so we ignore it for now.

For completeness, if all Ci’s are injective, in every iteration i, given that there
exists a consistent xi (i.e., xi for which there exists z where g(Ci(xi), z) = xi+1

and hi(Ci(xi), z) = αi), w.h.p. there exists also a consistent xi−1. Hence, it is not
hard to show, by induction, that with high probability, after the last iteration
there exists an x1 that passes the verifier’s checks, and so V accepts.

For soundness, consider the iteration i∗ which, as defined in the protocol for
PERM, denotes the maximal index of a NO instance circuit. Since the number
of preimages of Ci∗ is less than 2n/L, by the foregoing discussion it is very
likely that there does not exist a pair (xi∗ , zi∗) that is consistent with the rest of
the messages, i.e., s.t. g(Ci∗(xi∗), zi∗) = xi∗+1 and hi∗(Ci∗(xi∗), zi∗) = αi∗ , and
therefore V will eventually reject.

Before arguing why the protocol is zero-knowledge, we first discuss the hash
function family that g is sampled from.

The Hash Function g. One important consideration that arises when derandom-
izing g is that a cheating prover P∗ has some flexibility in the choice of the xi

228 I. Kaslasi et al.

that she sends for rounds i > i∗. Indeed, by design there will be many such xi’s.
While the honest prover should choose xi at random (from this set), a cheating
prover may try to cleverly choose xi’s that help her cheat. Since all these choices
are made after the function g was revealed, we cannot assume that xi∗+1, . . . , xk

are uniformly random relative to g. Thus, for our analysis it does not suffice that
a random xi+1 has a suitable number of preimages under g.

Instead, we will seek a much stronger, worst-case guarantee, from g. Specifi-
cally, that for every xi+1 ∈ {0, 1}n, the number of preimages (y, z) ∈ g−1(xi+1),
where y ∈ Si, is close to its expectation, i.e., around 2d for Ci ∈ YES and around
2d/L for Ci ∈ NO.

As shown by Alon et al. [ADM+99], this type of guarantee is not offered
by pairwise independent hash function or even more generally by randomness
extractors. On the other hand, what gives us hope is that a totally random
function does have such a worst-case guarantee. Thus, we wish to construct a
small hash function family G where with high probability over the choice of g ←
G, every image has roughly the same number of preimages from a predetermined
set.

Following a work of Celis et al. [CRSW11], we refer to such functions as
load-balancing hash functions. A function in this family maps the set {0, 1}m

together with some auxiliary input {0, 1}d to the set {0, 1}n. We require that
for any set S ⊆ {0, 1}n s.t. |S| ≥ 2n/L and for every x ∈ {0, 1}n, w.h.p over
g ← Gn, it holds that

∣
∣{(y, z) : y ∈ S, g(y, z) = x

}∣
∣ is roughly |S|·2d

2n . We
construct a suitable load-balancing functions based on poly(n)-wise independent
hash functions (combined with almost pairwise independent hash functions).

Honest Verifier Statistical Zero-Knowledge. To argue zero-knowledge, consider a
simulator that first samples an initial x1. Then, in each iteration i the simulator
samples zi, computes yi = Ci(xi) and xi+1 = g(yi, zi). Then it samples hi and
computes αi = hi(yi, zi).

Fig. 2. Direction of Protocol Progress vs. Simulator Progress – solid lines represent
the protocol, and dashed lines represent the simulator.

Statistical zero-knowledge is not obvious since the protocol and the simulator
progress in opposite directions. The simulation progress direction is from circuit

Public-Coin Statistical Zero-Knowledge Batch Verification 229

C1 up to circuit Ck, while the protocol progress direction is from circuit Ck down
to circuit C1, as shown in Fig. 2. However, due to the special property of the the
load-balancing function g, we manage to achieve statistical zero-knowledge.

We define the hybrid distribution Hi that is sampled as follows:

1. Sample g ∈ Gn and xi ∈ {0, 1}n.
2. Generate (xj , zj , hj , αj)j∈{1,...,i−1} according to the protocol.
3. Generate(zj , hj , αj , xj+1)j∈{i,...,k} according to the simulator.
4. Output g, xk+1 and (xj , zj , hj , αj)j∈{1,...,k}.

Note that the simulator distribution is identical to H1 while the protocol
distribution is identical to Hk+1. We bound the statistical difference between Hi

and Hi+1 and use the hybrid argument.
Note that conditioned on (g, xi, zi, hi, αi, xi+1) the rest of the variables in

Hi,Hi+1 are distributed identically. Therefore it is enough to bound the statistial
differences between those variables as sampled in Hi and Hi+1. Since g is sampled
identically in both hybrids, we can fix it and bound the statistical difference of
those variables conditioned on some g.

For the hybrid Hi+1, the variables (xi, zi, hi, αi, xi+1) are sampled according
to the protocol whereas for the hybrid Hi, the variables (xi, zi, hi, αi, xi+1) are
sampled according to the simulator. Let XS ,XP and XU denotes the distribu-
tions of any random variable X according to the simulator, protocol and the
uniform distribution respectively.

Consider the distribution of (xi, zi, hi, αi, xi+1)P which is sampled accord-
ing to the protocol, i.e., (hi, αi, xi+1) are sampled uniformly at first, and then
(xi, zi) are chosen uniformly from the set of (x, z) s.t. g(Ci(x), z) = xi+1

and hi(Ci(x), z) = αi+1. Consider also the distribution (xi, zi, hi, αi, xi+1)S

which is sampled according to the simulator, i.e., (xi, zi, hi) are sampled uni-
formly at first and then it sets xi+1 = g(Ci(xi), zi) and αi = hi(Ci(xi), zi).
Note that the distributions (xi, zi)P and (xi, zi)S are identical conditioned
on specific values of (hi, αi, xi+1), and therefore, it is enough to bound
Δ

(
(hi, αi, xi+1)P , (hi, αi, xi+1)S

)
.

We define the function ϕi(xi, zi, hi) = (hi, αi, xi+1), where xi+1 =
g(Ci(xi), zi) and αi = hi(Ci(xi)). Note that

Δ ((hi, αi, xi+1)P , (hi, αi, xi+1)S) = Δ

(
(hi, αi, xi+1)U , ϕi

(
(xi, zi, hi)U

)
)

.

Therefore, what we have left is to show that ϕi’s output on uniform input is
close to uniform.

Consider uniform (xi, zi, hi) and set xi+1 = g(Ci(xi), zi) and αi =
hi(Ci(xi), zi). xi+1 is close to uniform due to the special property of g that
every xi+1 has roughly the same number of preimages (yi, zi), and due to the
fact that each image of Ci has exactly one preimage. Now fix xi+1. the number
of pairs (xi, zi) that are mapped to xi+1 is roughly 2d, i.e., there are d bits of
entropy on which hi is applied. Therefore, since hi is pairwise independent hash
function and as such, also a strong extractor, we get that (hi, αi) is also close to
uniform.

230 I. Kaslasi et al.

Reducing Communication via Hashing. The foregoing soundness analysis relied
on the fact that the prover sent the values (x1, . . . , xk) during the interaction.
However, as noted above, this requires n · k communication which we cannot
afford. In a nutshell, we resolve this inefficiency by having the prover only send
short hashes of the xi’s, details follows.

At the beginning of each round, the verifier V sends a description of a pairwise
independent hash function fi in addition to the filter function hi and target
value αi. Then, in addition to sending zi, the prover P in her turn also sends a
hash value βi = fi(xi) (rather than sending xi explicitly). In order for the hash
value to commit the prover to xi, we would like for the hash function fi to be
injective on the set of consistent (x, z)’s (i.e., those for which g(Ci(x), z) = xi+1

and hi(Ci(x), z) = αi). This set is of size roughly 2d where d = polylog(n, k).
Therefore, setting the output size of fi to be poly(d) (= polylog(n, k)) bits is
sufficient. At the very end of the protocol, the prover P still needs to explicitly
send x′

1, so that V can compute y′
i = Ci(x′

i) and x′
i+1 = g(y′

i, zi), for every
i ∈ [k], and verify that hi(y′

i, zi) = αi, and lastly that x′
k+1 = xk+1. Note that

the verifier can only perform these checks at the end of the interaction (as she
did in the simplified protocol) since she must obtain the value of x′

1 in order to
generate x′

2, . . . , x
′
k.

Overall, the communication is dominated by the values xk+1 and g, which
are sent by the verifier, and the value x′

1 sent by the prover. Each of these
messages has length poly(n, log(k)). All the rest of the messages including the
specification of the hash functions hi, fi as well as the values αi, βi and zi have
length polylog(n, k). Overall we obtain the desired communication complexity(
k + poly(n)

) · polylog(n, k).

When δ > 0. For the case where δ > 0, the arguments we made for completeness
and zero-knowledge still hold in a straightforward manner, but we need to be
more careful about soundness. More specifically, for some YES instance circuit
Ci (where i > i∗) and xi+1 ∈ {0, 1}n, there potentially can exist a pair (yi, zi) ∈
g−1(xi+1) s.t. hi(yi, zi) = αi and yi has an exponential number of preimages.
Therefore, the set of consistent (x, z) is of exponential size and therefore, in order
to fix the chosen xi by the prover, βi must consist polynomial number of bits,
which is of course too expensive for us.

However, since there is only a small number of images yi that have more
then one preimage (δ fraction of 2n), there is also only a small number of pairs
(yi, zi) ∈ g−1(xi+1) where yi is such an image. Therefore, w.h.p over (hi, αi),
none of those problematic pairs satisfy the condition that hi(yi, zi) = αi, and
therefore, their preimages are inconsistent which allows the earlier setting of the
output size of fi to work.

Comparison to the [KRR+20] Protocol. Our public-coin batching protocol bears
some resemblance to the private-coin batching protocol of [KRR+20]. We high-
light here the similarity and differences between our approaches. We note that
readers who are unfamiliar with [KRR+20] can safely skip this discussion and
proceed directly to Sect. 1.2.

Public-Coin Statistical Zero-Knowledge Batch Verification 231

In the protocol of [KRR+20] the verifier V first samples x1 and auxiliary
randomnesses (z1, . . . , zk) as part of her setup. She computes yi = Ci(xi) and
determines the next circuit input as xi+1 = g(yi, zi), for every i ∈ [k], where in
contrast to our protocol, the function g is simply a (strong) seeded randomness
extractor (where yi is the min-entropy source and zi is the extractor’s seed).

The actual interaction starts by having the verifier V send yk to P. The parties
then proceed in iterations where in each iteration i, given xi+1, the prover needs
to guess xi using some additional hints that the verifier supplies. The prover’s
guesses are communicated by sending a short hash.

While their protocol bears some similarity to ours, we emphasize several
fundamental ways in which our approach differs from that of [KRR+20] (beyond
the fact that our protocol is public-coin).

– In [KRR+20] the verifier herself samples (z1, . . . , zk) and using it computes
(x1, . . . , xk) as part of her setup, and then she reveals these gradually. This
means that in the [KRR+20] there is a ground truth that the verifier can
compare. In contrast, in our protocol, each xi is chosen via an interactive
process that involves both parties and happens “online”. In particular, and
as discussed above, this means that a cheating prover can bias the distribution
of the xi’s as we process the circuit.

– On a related note, if the prover commits to a wrong xi in some iteration i,
then, in [KRR+20], the verifier V can immediately detect this and reject. In
contrast, in our protocol we are unable to do so and must wait to detect this
at the very end of the interaction.

– In our protocol the xi’s are computed in reverse order starting from xk down
to x1, whereas in the protocol of [KRR+20] the xi’s are computed in order,
starting from x1 up to xk. This may seem like a minor difference but turns out
to complicate matters significantly when considering zero-knowledge. Indeed,
both the [KRR+20] simulator as well as our simulator compute the xi’s in
order. This means that in the current work the protocol and the simulator,
operate in different order. This makes the analysis of the simulation signifi-
cantly more challenging.

– Lastly, [KRR+20] use extractors in order to map each circuit output yi to the
next circuit input xi+1. As discussed in detail in the above technical overview,
the average-case guarantee provided by extractors are not good enough for
us and we rely on the stronger notion of load-balancing hash functions.

Efficient Transformation to Public-Coin Malicious Verifier SZK. Gol-
dreich, Sahai, and Vadhan [GSV98] showed that any public-coin HVSZK protocol
can be transformed into a public-coin SZK protocol. Applying their transfor-
mation to the public-coin honest-verifier batch verification protocol described
above would indeed result in a malicious-verifier SZK batch verification proto-
col for AI, and thus NISZK. This transformation, however, starts by repeating
the HVSZK protocol several times in parallel in order to make the soundness
error exponentially small in the number of rounds. This would incur a blowup
in communication by a factor of Ω(k), which we cannot afford.

232 I. Kaslasi et al.

In order to get around this, we show that the transformation of [GSV98],
when used on protocols with a stronger soundness guarantee called round-by-
round soundness [CCH+19], can be performed without the initial repetition
step, and thus achieve a much smaller blowup in communication. Then we show
that our honest-verifier batching protocol does indeed provide this guarantee,
and thus the transformation can be applied to it with this better blowup, giving
us the desired result. We now briefly describe the transformation, the round-by-
round soundness property, and how they fit together.

The GSV Transformation. Recall that in a public-coin HVSZK protocol, the
honest verifier’s messages consist of uniformly random strings. What breaks when
the verifier is malicious is that it might choose these strings arbitrarily rather
than uniformly at random. In the GSV transformation, the prover and verifier
essentially run the given HVSZK protocol, but instead of the verifier sending
these random strings, they are sampled by the prover and the verifier together
using a Random Selection (RS) protocol. This protocol, which is constructed by
[GSV98], uses four messages, is public-coin, and produces as output a string r of
some desired length �. It provides, very roughly, the following guarantees when
run with security parameter λ:

1. If the prover is honest, the distribution of r is 2−λ-close to uniform over
{0, 1}�, and the transcript of the protocol is simulatable given output r.

2. If the verifier is honest, for any set T ⊆ {0, 1}�, we have Pr [r ∈ T] ≤ 2λ ·
|T | /2�.

The first property above ensures that the resulting protocol is complete and
zero-knowledge. The second property ensures that the prover cannot skew the
distribution of r, and thus soundness is maintained. Following the analysis in
[GSV98], however, it turns out that if the original protocol has soundness error
s and r rounds, the bound obtained on the soundness error of the new protocol
is roughly 2rλ · s. Thus, we would need to start by decreasing the soundness
error of the HVSZK protocol to less than 2−rλ. The only way we know to do this
generically is by repetition, which results in a multiplicative blowup of at least
Ω(r) in communication – in our case this is Ω(k), which is too large for us. We
get around this by showing that our batch verification protocol has a stronger
soundness property that results in a much better bound on the soundness error
when this transformation is applied.

Round-by-Round Soundness. Typically, the soundness property in an interactive
proof places requirements on how likely it is that a verifier accepts on a NO input.
Round-by-round soundness, introduced by Canetti et al. [CCH+19], instead
places requirements on intermediate stages of the protocol. It involves a map-
ping State from partial transcripts of the protocol to the set {alive, doomed}.
A protocol is ε-round-by-round sound if there exists a mapping State such that
for any input x and partial transcript τ with State(x, τ) = doomed, and any
subsequent prover message α, the probability over the next verifier message β

Public-Coin Statistical Zero-Knowledge Batch Verification 233

that State(x, τ, α, β) = alive is at most ε. Further, any complete transcript that
is doomed always results in a rejection by the verifier, and for any NO instance
x, it is the case that State(x,⊥) = doomed.

In other words, at a point where a protocol is doomed, irrespective of what
the prover does, the set of “bad” verifier messages that make the protocol alive
in the next round has relative size at most ε. To see its implications for stan-
dard soundness, consider a protocol that has r rounds and is ε-round-by-round
sound. The probability that the verifier accepts on a NO instance is at most the
probability that the complete transcript is alive. Thus, since the protocol has
to go from doomed to alive in at least one of the r rounds, the probability that
the verifier accepts is at most rε.

Putting it Together. Now, consider passing an ε-round-by-round sound protocol
through the GSV transformation described above. Here, each verifier message
is replaced by the output of the RS protocol. On a NO instance, in order to
successfully cheat, the prover has to make at least one of the r verifier messages
fall into the “bad” set for that round. Each of these bad sets, however, has
relative size at most ε, and thus the RS protocol’s output falls in each with
probability at most ε2λ. Thus, that total probability that the prover successfully
cheats is at most εr2λ.

So, if the original protocol had round-by-round soundness error somewhat
smaller than (r2λ)−1, the resulting protocol would still be sound. This is a much
more modest requirement than before, and can be achieved with a multiplica-
tive blowup of at most O(λ log r) in communication. Completeness and zero-
knowledge follow from the other properties of the RS protocol, and setting λ to
be polylog(n, k) gives us the desired SZK protocol.

Round-by-Round Soundness of our HVSZK Batching Protocol. To show that our
protocol described earlier has round-by-round soundness, we define the State
function as follows. Consider the partial transcript τj that corresponds to its j’th
iteration – this consists of g, xk+1, (hi, αi, fi, zi, βi)i∈{k,...,j+1}, and (hj , αj , fj).

– For j > i∗: Output doomed on the transcript τj if, for any prover message
(zj , βj) that follows, there exists at most one preimage xj that is consistent
with τj and (zj , βj). Further, if there is no such xj , output doomed on all
future transcripts that extend τj .

• Consider a doomed transcript τj+1, a prover message (zj+1, βj+1), and the
unique xj+1 that is consistent with them as promised (if it doesn’t exist,
future transcripts are already doomed). By our earlier discussion, w.h.p.,
there are very few xj ’s which have a zi such that g(Cj(xj), zj) = xj+1

and hj(Cj(xj), zj) = αj . Therefore, w.h.p., fj maps these xj ’s injec-
tively. Hence for any prover message (zj+1, βj+1), we have that w.h.p.
τj+1, (zj+1, βj+1), (hj , αj , fj) is also doomed.

– For j = i∗: We define the State function to output doomed on the transcript τi∗

if for any prover message (zi∗ , βi∗), there does not exist xi∗ that is consistent
with τi∗ and (zi∗ , βi∗).

234 I. Kaslasi et al.

• Consider any doomed transcripts τi∗+1, a prover message (zi∗+1, βi∗+1),
and the unique xi∗+1 that is consistent with them. As discussed ear-
lier, w.h.p., there does not exist (xi∗ , zi∗) s.t. g(Ci∗(xi∗), zi∗) = xi∗+1

and hi∗(Ci∗(xi∗), zi∗) = αi∗ and therefore for every prover message
(zi∗+1, βi∗+1), it holds w.h.p. that τi∗+1, (zi∗+1, βi∗+1), (hi∗ , αi∗ , fi∗) is
doomed too.

– For j < i∗: We define the State function to answer according to the partial
transcript τi∗ , and therefore round-by-round soundness in this case is imme-
diate.

We set State(x,⊥) to be doomed if x is a NO instance, and anything that
is not doomed is set to be alive. Lastly, consider a complete transcript that
is doomed; there does not exists xi∗ that is consistent with the beginning of
the transcript, and therefore V must reject. This function now witnesses the
round-by-round soundness of our protocol.

1.3 Organization

We start with preliminaries in Sect. 2. In Sect. 3 we formalize our notion of a load-
balancing hash function and provide a construction based on k-wise independent
hash functions. In Sect. 4 we introduce our variant of the approximate injectivity
(AI) problem and show that it is NISZK-complete. In Sect. 5 we construct our
public-coin honest-verifier batch verification for AI. In Sect. 6 we show a generic,
and efficient, transformation from public-coin HVSZK (having round-by-round
soundness) to public-coin full-fledged SZK. Lastly, in Sect. 7 we use the results
obtained in the prior sections to obtain our public-coin SZK batch verification
protocol for NISZK.

Due to space restrictions, most of the proofs are deferred to the full version
[KRV21].

2 Preliminaries

For a finite non-empty set S, we denote by x ← S a uniformly distributed
element in S. We also use U� to denote a random variable uniformly distributed
over {0, 1}�.

For a distribution X over a finite set U and a (non-empty) event E ⊆ U ,
we denote by X|E the distribution obtained by conditioning X on E: namely,
Pr[X|E = u] = Pr[X = u |E], for every u ∈ U . The support of X is defined as
supp(X) = {u ∈ U : Pr[X = u] > 0}.

Definition 1. Let Π = (YES,NO) be a promise problem, where YES =
(YESn)n∈N and NO = (NOn)n∈N, and let k = k(n) ∈ N. We define the promise
problem Π⊗k = (YES⊗k,NO⊗k), where YES⊗k = (YES⊗k

n)n∈N, NO⊗k =
(NO⊗k

n)n∈N and

YES⊗k
n = (YESn)k

Public-Coin Statistical Zero-Knowledge Batch Verification 235

and

NO⊗k
n = (YESn ∪ NOn)k \ (NOn)k.

The statistical distance between two distributions P and Q over a finite set
U is defined as Δ(P,Q) = maxS⊆U (P (S) − Q(S)) = 1

2

∑
u∈U |P (u) − Q(u)|.

2.1 Statistical Zero-Knowledge

We use (P,V)(x) to refer to the transcript of an execution of an interactive
protocol with prover P and verifier V on common input x. The transcript includes
the input x, all messages sent by P to V in the protocol and the verifier’s random
coin tosses. We say that the transcript τ = (P,V)(x) is accepting if at the end of
the corresponding interaction, the verifier accepts.

Definition 2 (Interactive proof)
Let c = c(n) ∈ [0, 1] and s = s(n) ∈ [0, 1]. An interactive proof with completeness
error c and soundness error s for a promise problem Π = (ΠYES,ΠNO), consists
of a probabilistic polynomial-time verifier V and a computationally unbounded
prover P such that following properties hold:

– Completeness: For any x ∈ ΠYES:

Pr [(P,V)(x) is accepting] ≥ 1 − c(|x|).
– Soundness: For any (computationally unbounded) cheating prover P∗ and

any x ∈ ΠNO:

Pr [(P∗,V)(x) is accepting] ≤ s(|x|).
We denote this proof system by the pair (P,V).

In this paper we focus on public-coin interactive proofs. An interactive proof
(P,V) is public-coin if the verifier’s messages are selected independently and uni-
formly at random (and their lengths are fixed independently of the interaction).

We next define honest-verifier statistical zero-knowledge proofs, in which
zero-knowledge is only guaranteed wrt the honest (i.e., prescribed) verifier’s
behavior.

Definition 3 (HVSZK). Let z = z(n) ∈ [0, 1]. An interactive proof system
(P,V) is an Honest Verifier SZK Proof-System (HVSZK), with zero-knowledge
error z, if there exists a probabilistic polynomial-time algorithm Sim (called the
simulator) such that for any x ∈ ΠYES:

Δ((P,V)(x),Sim(x)) ≤ z(|x|).
For the malicious verifier SZK definition, we allow the verifier access to non-

uniform advice. Therefore, we also provide the simulator with the same advice.
Let Sim[a] denote the simulator Sim given access to the some advice string a ∈
{0, 1}∗.

236 I. Kaslasi et al.

Definition 4 (SZK). Let z = z(n) ∈ [0, 1]. An interactive-proof (P,V) is a sta-
tistical zero-knowledge proof-system (SZK), with zero-knowledge error z, if for
every probabilistic polynomial-time verifier V∗ there exists an algorithm Sim
(called the simulator) that runs in (strict) polynomial time such that for any
x ∈ ΠYES and a ∈ {0, 1}∗:

Δ
(
(P,V∗

[a])(x),Sim[a](x)
)

≤ z(|x|).

If the completeness, soundness and zero-knowledge (resp., honest-verifier
zero-knoweldge) errors are all negligible, we simply say that the interactive proof
is an SZK (resp., HVSZK) protocol. We also use SZK (resp., HVSZK) to denote
the class of promise problems having such an SZK (resp., HVSZK) protocol.

Non-Interactive Statistical Zero-Knowledge Proofs. We also define the
non-interactive variant of SZK as follows.

Definition 5 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈
[0, 1]. An non-interactive statistical zero-knowledge proof (NISZK) with complete-
ness error c, soundness error s and zero-knowledge error z for a promise problem
Π = (ΠYES,ΠNO), consists of a probabilistic polynomial-time verifier V, a com-
putationally unbounded prover P and a polynomial � = �(n) such that following
properties hold:

– Completeness: For any x ∈ ΠYES:

Pr
r∈{0,1}�(|x|)

[V(x, r, π) accepts] ≥ 1 − c(|x|),

where π = P(x, r).
– Soundness: For any x ∈ ΠNO:

Pr
r∈{0,1}�(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(|x|).

– Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x ∈
ΠYES:

Δ((U�,P(x,U�)),Sim(x)) ≤ z(|x|).

(Note that the zero-knowledge property in Definition 5 is referred to as “honest-
verifier” simply because the verifier does not send any messages to the prover
and so it is meaningless to consider malicious behavior.)

As above, if the errors are negligible, we say that Π has a NISZK protocol
and use NISZK to denote the class of all such promise problems.

Public-Coin Statistical Zero-Knowledge Batch Verification 237

2.2 Many-wise Independence

Definition 6 (δ-almost �-wise Independent Hash Functions). For � =
�(n) ∈ N, m = m(n) ∈ N and δ = δ(n) > 0, a family of functions F = (Fn)n,
where Fn =

{
f : {0, 1}m → {0, 1}n }

is δ-almost �-wise independent if for every
n ∈ N and distinct x1, x2, . . . , x� ∈ {0, 1}m the distributions:

– (f(x1), . . . , f(x�)), where f ← Fn; and
– The uniform distribution over ({0, 1}n)�,

are δ-close in statistical distance.

When δ = 0 we simply say that the hash function family is �-wise independent.
Constructions of (efficiently computable) many-wise hash function families with
a very succinct representation are well known. In particular, when δ = 0 we have
the following well-known construction:

Lemma 1 (See, e.g., [Vad12, Section 3.5.5]). For every � = �(n) ∈ N and
m = m(n) ∈ N there exists a family of �-wise independent hash functions F (�)

n,m =
{f : {0, 1}m → {0, 1}n} where a random function from F (�)

n,m can be selected using
O

(
� · max(n,m)

)
bits, and given a description of f ∈ F (�)

n.m and x ∈ {0, 1}m, the
value f(x) can be computed in time poly(n,m, �).

For δ > 0, the seminal work of Naor and Naor [NN93] yields a highly succinct
construction.

Lemma 2 ([NN93, Lemma 4.2]). For every � = �(n) ∈ N, m = m(n) ∈ N

and δ = δ(n) > 0, there exists a family of δ-almost �-wise independent hash
functions F (�)

n,m = {f : {0, 1}m → {0, 1}n} where a random function from F (�)
n,m

can be selected using O
(
� · n + log(m) + log(1/δ)

)
bits, and given a descrip-

tion of f ∈ F (�)
n.m and x ∈ {0, 1}m, the value f(x) can be computed in time

poly(n,m, �, log(1/δ)).

2.3 Round-By-Round Soundness

In this section we define the notion of round-by-round soundness of interactive
proofs, as introduced in the recent work of Canetti et al. [CCH+19].

Let (P,V) be a public-coin interactive proof. We denote by V (x, τ) the dis-
tribution of the next message (or output) of V on the input x and partial tran-
script τ .

Definition 7. Let (P,V) be a public-coin interactive proof for the promise prob-
lem Π = (ΠYES,ΠNO).

We say that (P,V) has a round-by-round soundness error ε = ε(n) if there
exists some (possibly inefficient) function State that takes as input the main
input x and a partial transcript τ and outputs either alive or doomed and has
the following properties:

238 I. Kaslasi et al.

1. If x ∈ NO, then State(x,⊥) = doomed (where ⊥ denotes the empty tran-
script).

2. For any transcript prefix τ , if State(x, τ) = doomed, then for any prover
message α it holds that

Pr
β←V (x,τ,α)

[State(x, τ, α, β) = alive] ≤ ε(n).

3. For any full transcript τ (i.e., a transcript in which the verifier halts) such
that State(x, τ) = doomed, it holds that V (x, τ) is rejecting.

Canetti et al. [CCH+19] also show the following simple fact (which follows
from the union bound).

Fact 4. Let (P,V) be a 2r-message interactive proof with round-by-round sound-
ness error ε. Then, (P,V) has standard soundness error r · ε.

3 Load-Balancing Functions

We now define load-balancing hash functions, a central tool in our construction.
Loosely speaking, a load balanching hash function is a function mapping a set
{0, 1}m together with a short auxiliary random string {0, 1}d to a range {0, 1}n.
The key property that we seek is that for every subset of {0, 1}m of size roughly
2n it holds that every element x ∈ {0, 1}n has roughly the same number of
preimages (y, z) ∈ S × {0, 1}d.

Definition 8 (Load Balancing Hash Function Family). Let m = m(n) ∈
N, d = d(n) ∈ N and ε : N4 → [0, 1]. We say that a family of hash functions G =
(Gn)n, where Gn =

{
g : {0, 1}m × {0, 1}d → {0, 1}n

}
, is

(
d, ε

)
-load-balancing,

if for every n ∈ N, number of elements v ∈ N, and set S ⊆ {0, 1}m(n) of size
|S| ≤ 2n it holds that:

Pr
g←G

[
∃x ∈ {0, 1}n :

∣
∣
∣
∣LS,g(x) − |S| · 2d

2n

∣
∣
∣
∣ > v

]
≤ ε(n, |S| , v, d),

where LS,g(x) =
∣
∣
∣
{

(y, z) ∈ S × {0, 1}d : g(y, z) = x
}∣

∣
∣.

Lemma 3. For any values n, λ ∈ N and m = m(n), d = d(n), there is an
explicit family of hash functions G = (Gn)n that is

(
d, λ, ε

)
-load-balancing, where

Gn =
{

g : {0, 1}m(n) × {0, 1}d(n) → {0, 1}n
}

and

ελ(n, |S| , v, d) = 2n ·
(

64 · (n + λ) · μ + (n + λ)
v2

)n+λ+4

+ 2−λ−1,

where μ = |S|·2d

2n , s.t. a random function in the family can be sampled using
O(n2 + λ2 + d · (n + λ)) uniformly random bits, and each such function can be
evaluated in time poly(n,m, d, λ).

Public-Coin Statistical Zero-Knowledge Batch Verification 239

Due to space restrictions, the proof of Lemma 3 is deferred to the full version
[KRV21].

Corollary 1. For any n,m(n), λ, �, ε′ ∈ (0, 1] and d ≥ 3 log
(

n+λ
ε′2

)
+�, the family

of hash functions from Lemma 3 has the following properties:

1. For any set S ⊆ {0, 1}m s.t. 2n−� ≤ |S| ≤ 2n it holds that

Pr
g←G

[
∃x ∈ {0, 1}n :

∣
∣
∣
∣LS,g(x) − |S| · 2d

2n

∣
∣
∣
∣ >

|S| · 2d

2n
· ε′

]
≤ 2−λ.

2. For every ν s.t. 12 · (n + λ) ≤ ν and set S ⊆ {0, 1}m s.t. |S| ≤ 2n−d it holds
that

Pr
g←G

[
∃x ∈ {0, 1}n : LS,g(x) − |S| · 2d

2n
> v

]
≤ 2−λ.

4 Approximate Injectivity

In this section we analyze the approximate injectivity problem, introduced by
Kaslasi et al. [KRR+20]. In particular, we consider a variant in which NO cases
are (approximately) many-to-one and show that it is NISZK-complete.

We say that x′ is a sibling of x, with respect to the circuit C, if C(x) = C(x′).
We omit C from the notation if it is clear from the context.

Definition 9. The problem AIn,m
L,δ is defined as the promise problem of circuits

with n input bits and m output bits, where

(AIn,m
L,δ)Y =

{
circuit C : Pr

x

[|C−1(C(x))| > 1
]

< δ
}

,

and

(AIn,m
L,δ)N =

{
circuit C : Pr

x

[|C−1(C(x))| < L
]

< δ
}

.

We omit m and n from the notation when they are clear from the context.

To show that AIL,δ is NISZK-hard, we rely on the fact that it is known to be
NISZK-hard in the special case when L = 2.

Lemma 4 ([KRR+20]). Let δ = δ(n) ∈ [0, 1] be a non-increasing function such
that δ(n) > 2−o(n1/4). Then, AI2,δ is NISZK-hard.

Thus, to show that AIL,δ is NISZK-hard, it suffices to reduce AI2,δ to AIL,δ.

Lemma 5. For every parameter � = poly(n), there exists a polynomial time
Karp-reduction from AIn,m

2,δ to AIn·�,m·�
2�,�·δ .

240 I. Kaslasi et al.

Before proving Lemma 5, we observe that Lemma 4 together with Lemma 5
immediately implies that AIL,δ is NISZK-hard. Since AI2,δ is a special case of
AIL,δ, we get also that AIL,δ is NISZK-complete.

Corollary 2. Let δ = δ(n) ∈ [0, 1] be a non-increasing function and � = poly(n)

such that δ(n) > 2−o(n1/4)

� . Then, there exist constants c, d ∈ N such that AIn
c,md

2�,δ
is NISZK-complete.

Due to space restrictions, the proof of Lemma 5 is deferred to the full version
[KRV21].

5 Public-Coin Batch Verification for AIL,δ

In this section we prove the following lemma by showing a public-coin HVSZK
protocol for batch verification of AIL,δ (as defined in Definition 9).

Lemma 6. Let δ = δ(n) ∈ [0, 1] and k = k(n) ∈ N. Also, let λ = λ(n) ∈ N

be a security parameter and let � = �(n) ∈ N, with �(n) ≥ λ(n) for all n. Set
d = 7 · (log n + log k + λ) + � and assume that δ ≤ 2−d and d < 2� − 2λ.

Then, AI⊗k
2�,δ has an HVSZK public-coin protocol with completeness error

2−λ+1, round-by-round soundness error 2−λ and statistical zero knowledge
error k · (δ · 2d+2 + 2−λ+6). The communication complexity is O(n2) + k ·
poly(log n, log k, λ) and the verifier running time is k · poly(n, log k, λ).

Furthermore, the protocol consists of k rounds. The length of the verifier’s
first message is O(n2+�·n·poly(log n, log k, λ) and the length of all other verifier
messages is poly(log n, log k, λ).

The protocol establishing Lemma 6 is presented in Fig. 3. Due to space restric-
tions, the analysis of the protocol is deferred to the full version [KRV21].

6 From Honest to Malicious Verifier

In this section, we show how efficiently to transform an honest-verifier SZK
protocol with round-by-round soundness, into a malicious-verifier SZK proto-
col. Our transformation builds on the prior work of Goldreich, Sahai and Vad-
han [GSV98] who showed a generic transformation from honest to malicious
verifiers for SZK, which unfortunately (and as discussed in more detail in the
introduction) is not efficient enough for our purposes.

Theorem 5. Suppose a problem Π has a public-coin honest-verifier SZK proof
system. This protocol can be transformed into a public-coin malicious-verifier
SZK proof system for Π with the following properties when given security param-
eter λ:

Public-Coin Statistical Zero-Knowledge Batch Verification 241

Public-coin HVSZK Batching Protocol for AI2�,δ.

Parameters: input length n, output length m, number of instances k, security
parameter λ, arity � and seed length d = 7 · (logn + log k + λ) + �.

Input: Circuits C1, . . . , Ck : {0, 1}n → {0, 1}m, where all circuitsa have size at
most N , input length n, and output length m ≤ N .

Ingredients:

– Let G = (Gn)n, where Gn =
{
g : {0, 1}m × {0, 1}d → {0, 1}n

}
, be the

explicit family of load-balancing functions from Lemma 3, with seed length d
and accuracy 2−λ with respect to security parameter λ + log k + 1.

– Let H = (Hn)n, where Hn =
{
h : {0, 1}m × {0, 1}d → {0, 1}d/2

}
, be the

explicit family of 2−3d/2-almost pairwise independent hash function from
Lemma 2.

– Let F = (Fn)n, where Fn =
{
f : {0, 1}n → {0, 1}2d+λ+log k

}
, be the ex-

plicit family of 2−(2d+λ+log k)-almost pairwise independent hash functions
from Lemma 2.

The Protocol:

1. V samples g ← Gn and xk+1 ← {0, 1}n and sends both to P.
2. For i = k, ..., 1:

(a) V samples αi ← {0, 1}d/2, hi ← Hn, and fi ← Fn, and sends (αi, hi, fi)
to P.

(b) P generates the set

XZi =
{
(x, z) ∈ {0, 1}n × {0, 1}d : g(Ci(x), z) = xi+1 and hi(Ci(x), z) = αi

}
.

(c) P samples (xi, zi) ← XZi, and sends (zi, βi) to V, where βi = fi(xi).
In case the set XZi is empty, P sends an arbitraryb (zi, βi) ∈ {0, 1}d ×
{0, 1}2d+λ+log k.
We denote the pair received by V by (z′

i, β
′
i) (allegedly equal to (zi, βi)).

3. P sends x1 to V.
4. V receives x′

1 ∈ {0, 1}n (allegedly equal to x1) and computes:
(a) For i = 1, . . . , k:

i. y′
i = Ci(x′

i)
ii. x′

i+1 = g(y′
i, z

′
i)

5. V checks that xk+1 = x′
k+1 and that ∀i ∈ [k], β′

i = fi(x′
i) and αi = hi(y′

i, z
′
i).

6. If all of V’s checks passed then she accepts. Otherwise she rejects.

a The circuits can be trivially modified to have the same output length m ≤ N
by padding.

b Alternatively, we could simply have the prover abort in this case. However, it
will be more convenient for our analysis that P send an arbitrary (zi, βi) pair
rather than sending a special abort symbol.

Fig. 3. A Public-coin HVSZK Batching Protocol for AI2�,δ

242 I. Kaslasi et al.

1. Suppose the original protocol has r rounds and the prover and veri-
fier communication in its ith round are si and �i, respectively. Then
the transformed protocol has 2r rounds, and its total communication is(∑

i∈[r] si + O
(∑

i∈[r] �
4
i

))
.

2. The completeness and statistical zero-knowledge errors are at most
poly(r, �max) · 2−Ω(λ) more (additively) than the respective errors in the orig-
inal protocol, where �max = maxi �i.

3. If the original protocol has round-by-round soundness error ε, then this pro-
tocol has soundness error

(
εr2λ + 1

2λ

)
.

4. The verifier runs in time polynomial in the input length, r, �max, and λ, as
does the prover, if given oracle access to the prover from the original protocol.

The transformation that we use to prove Theorem 5 is almost exactly the
same as the one of Goldreich, Sahai and Vadhan [GSV98]. The main difference
is that [GSV98] first perform an O(r)-fold parallel repetition of the underlying
HVSZK protocol, where r is its round complexity. This increases the communi-
cation complexity by a factor of r, which we cannot afford.

In contrast, in our analysis we avoid the use of parallel repetition and instead
rely on the underlying protocol satisfying a stronger notion of soundness -
namely, round-by-round soundness (Definition 7).

Due to space restrictions, we defer the proof of Theorem 5 to the full version
[KRV21].

7 Public-Coin Malicious Verifier SZK Batching for NISZK

In this section we state our main theorems. The proof, which build on results
established in the prior sections is deferred to the full version [KRV21]. We first
state our public-coin HVSZK batch verification protocol for NISZK.

Theorem 6. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) ≤ 2n0.01
and let

λ = λ(n) ∈ N be a security parameter such that λ(n) ≤ n0.1. Then, Π⊗k has
a public-coin HVSZK protocol with completeness, zero-knowledge, and round-by-
round soundness errors of 2−λ.

The communication complexity is
(
k + poly(n)

) · poly(log n, log k, λ) and the
verifier running time is k · poly(n, log k, λ).

Furthermore, the protocol consists of k rounds. The length of the verifier’s
first message is poly(n) and the length of each of the verifier’s other messages is
polylog(n, k, λ).

Combining Theorem 6 with Theorem 5, we get a malicious-verifier SZK batch
verification protocol.

Theorem 7. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) ≤ 2n0.01

and let λ = λ(n) ∈ N be a security parameter such that λ(n) ≤ n0.09. Then,
Π⊗k has a public-coin SZK protocol with completeness, soundness, and zero-
knowledge errors of 2−Ω(λ), and communication complexity of

(
k + poly(n)

) ·
poly(log n, log k, λ). The verifier running time is k ·poly(n, λ, log k) and the num-
ber of rounds is O(k · λ).

Public-Coin Statistical Zero-Knowledge Batch Verification 243

Acknowledgments. We thank the anonymous Eurocrypt 2021 reviewers for useful
comments.

Inbar Kaslasi and Ron Rothblum were supported in part by a Milgrom family
grant, by the Israeli Science Foundation (Grants No. 1262/18 and 2137/19), and grants
from the Technion Hiroshi Fujiwara cyber security research center and Israel cyber
directorate.

Prashant Vasudevan was supported in part by AFOSR Award FA9550-19-1-0200,
AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract
N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation,
Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views
expressed are those of the authors and do not reflect the official policy or position of
the funding agencies.

References

[Aar12] Aaronson, S.: Impossibility of succinct quantum proofs for collision-
freeness. Quantum Inf. Comput. 12(1–2), 21–28 (2012)

[ADM+99] Alon, N., Dietzfelbinger, M., Miltersen, P.B., Petrank, E., Tardos, G.: Lin-
ear hash functions. J. ACM 46(5), 667–683 (1999)

[AH91] Aiello, W., Hastad, J.: Statistical zero-knowledge Languages can be recog-
nized in two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

[APS18] Alamati, N., Peikert, C., Stephens-Davidowitz, N.: New (and Old) proof
systems for lattice problems. In: Abdalla, M., Dahab, R. (eds.) PKC 2018,
Part II. LNCS, vol. 10770, pp. 619–643. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76581-5 21

[AV19] Applebaum, B., Vasudevan, P.N.: Placing conditional disclosure of secrets
in the communication complexity universe. In: Blum, A. (ed.) 10th Inno-
vations in Theoretical Computer Science Conference, ITCS 2019, San
Diego, California, USA, 10–12 January 2019. LIPIcs, vol. 124, pp. 4:1–
4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

[BBD+20] Ball, M., et al.: Cryptography from information loss. In: Vidick, T. (ed.)
11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
Seattle, Washington, USA, 12–14 January 2020. LIPIcs, vol. 151, pp. 81:1–
81:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatikz (2020)

[BCH+20] Bouland, A., Chen, L., Holden, D., Thaler, J., Vasudevan, P.N.: On the
power of statistical zero knowledge. SIAM J. Comput. 49(4) (2020)

[BDRV18] Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: From laconic
zero-knowledge to public-key cryptography. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 674–697. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 23

[BGR98] Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular
exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054130

[BL13] Bogdanov, A., Lee, C.H.: Limits of provable security for homomorphic
encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 111–128. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 7

https://doi.org/10.1007/978-3-319-76581-5_21
https://doi.org/10.1007/978-3-319-76581-5_21
https://doi.org/10.1007/978-3-319-96878-0_23
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/978-3-642-40041-4_7

244 I. Kaslasi et al.

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M.,
Cohen, E. (eds.) Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26
June 2019, pp. 1082–1090. ACM (2019)

[CHP12] Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short
signatures. J. Cryptol. 25(4), 723–747 (2011). https://doi.org/10.1007/
s00145-011-9108-z

[CP92] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 7

[CRSW11] Celis, L.E., Reingold, O., Segev, G., Wieder, U.: Smaller hash families and
faster evaluation. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 18, p. 68 (2011)

[Dru15] Drucker, A.: New limits to classical and quantum instance compression.
SIAM J. Comput. 44(5), 1443–1479 (2015)

[For87] Fortnow, L.: The complexity of perfect zero-knowledge (extended
abstract). In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Sym-
posium on Theory of Computing, New York, New York, USA, pp. 204–209.
ACM (1987)

[For89] Fortnow, L.J.: Complexity-theoretic aspects of interactive proof systems.
Ph.D. thesis, Massachusetts Institute of Technology (1989)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GG00] Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lat-
tice problems. J. Comput. Syst. Sci. 60(3), 540–563 (2000)

[GK93] Goldreich, O., Kushilevitz, E.: A perfect zero-knowledge proof system for
a problem equivalent to the discrete logarithm. J. Cryptol. 6(2), 97–116
(1993). https://doi.org/10.1007/BF02620137

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMR98] Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statis-
tical zero-knowledge proof system for quasi-safe prime products. In: Gong,
L., Reiter, M.K. (eds.) Proceedings of the 5th ACM Conference on Com-
puter and Communications Security, CCS 1998, San Francisco, CA, USA,
3–5 November 1998, pp. 67–72. ACM (1998)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, New York,
New York, USA, pp. 218–229 (1987)

[GR14] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptol.
27(3), 480–505 (2014)

[GS89] Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive
proof systems. Adv. Comput. Res. 5, 73–90 (1989)

[GSV98] Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In: STOC (1998)

[GV99] Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In: CCC (1999)

https://doi.org/10.1007/s00145-011-9108-z
https://doi.org/10.1007/s00145-011-9108-z
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BF02620137

Public-Coin Statistical Zero-Knowledge Batch Verification 245

[HRV18] Hubáček, P., Rosen, A., Vald, M.: An efficiency-preserving transforma-
tion from honest-verifier statistical zero-knowledge to statistical zero-
knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part
III. LNCS, vol. 10822, pp. 66–87. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78372-7 3

[KMN+14] Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.:
One-way functions and (im)perfect obfuscation. In: 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, 18–21 October 2014, pp. 374–383. IEEE Computer Society
(2014)

[KRR+20] Kaslasi, I., Rothblum, G.N., Rothblum, R.D., Sealfon, A., Vasudevan, P.N.:
Batch verification for statistical zero knowledge proofs. In: Electronic Col-
loquium on Computational Complexity (ECCC) (2020)

[KRV21] Kaslasi, I., Rothblum, R.D., Vasudevan, P.N.: Public-coin statistical zero-
knowledge batch verification against malicious verifiers. Cryptology ePrint
Archive, Report 2021/233 (2021). https://eprint.iacr.org/2021/233

[KY18] Komargodski, I., Yogev, E.: On distributional collision resistant hashing.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 303–327. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 11

[LV16] Liu, T., Vaikuntanathan, V.: On basing private information retrieval on
NP-hardness. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I.
LNCS, vol. 9562, pp. 372–386. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49096-9 16

[MV03] Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with effi-
cient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 17

[NMVR94] Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be
improved?—complexity trade-offs with the digital signature standard. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053426

[NN93] Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions
and applications. SIAM J. Comput. 22(4), 838–856 (1993)

[NV06] Nguyen, M.-H., Vadhan, S.P.: Zero knowledge with efficient provers. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, Seattle, WA, USA, 21–23 May 2006, pp. 287–295 (2006)

[Oka00] Okamoto, T.: On relationships between statistical zero-knowledge proofs.
J. Comput. Syst. Sci. 60(1), 47–108 (2000)

[Ost91] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Structure in Complexity Theory Conference,
pp. 133–138 (1991)

[OV08] Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and
commitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
482–500. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78524-8 27

[OW93] Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-
trivial zero-knowledge. In: ISTCS, pp. 3–17 (1993)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

https://doi.org/10.1007/978-3-319-78372-7_3
https://doi.org/10.1007/978-3-319-78372-7_3
https://eprint.iacr.org/2021/233
https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/BFb0053426
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/3-540-68339-9_33

246 I. Kaslasi et al.

[PV08] Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge
proofs for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 536–553. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 30

[SV03] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge.
J. ACM (JACM) 50(2), 196–249 (2003)

[Vad99] Vadhan, S.P.: A study of statistical zero-knowledge proofs. PhD thesis,
Massachusetts Institute of Technology (1999)

[Vad12] Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1–
3), 1–336 (2012)

https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1007/978-3-540-85174-5_30

Efficient Range Proofs with Transparent
Setup from Bounded Integer

Commitments

Geoffroy Couteau1, Michael Klooß2, Huang Lin3, and Michael Reichle4,5(B)

1 CNRS, IRIF, Université de Paris, Paris, France
couteau@irif.fr

2 Karlsruhe Institute for Technology, Karlsruhe, Germany
michael.klooss@kit.edu

3 Mercury’s Wing and Suterusu Project, Beijing, China
4 DIENS, École normale supérieure, CNRS, PSL University, 75005 Paris, France

michael.reichle@ens.fr
5 Inria, Paris, France

Abstract. We introduce a new approach for constructing range proofs.
Our approach is modular, and leads to highly competitive range proofs
under standard assumption, using less communication and (much) less
computation than the state of the art methods, and without relying on a
trusted setup. Our range proofs can be used as a drop-in replacement in
a variety of protocols such as distributed ledgers, anonymous transaction
systems, and many more, leading to significant reductions in communi-
cation and computation for these applications.

At the heart of our result is a new method to transform any com-
mitment over a finite field into a commitment scheme which allows to
commit to and efficiently prove relations about bounded integers. Com-
bining these new commitments with a classical approach for range proofs
based on square decomposition, we obtain several new instantiations of
a paradigm which was previously limited to RSA-based range proofs
(with high communication and computation, and trusted setup). More
specifically, we get:

– Under the discrete logarithm assumption, we obtain the most com-
pact and efficient range proof among all existing candidates (with or
without trusted setup). Our proofs are 12% to 20% shorter than the
state of the art Bulletproof (Bootle et al., CRYPTO’18) for standard
choices of range size and security parameter, and are more efficient
(both for the prover and the verifier) by more than an order of mag-
nitude.

– Under the LWE assumption, we obtain range proofs that improve
over the state of the art in a batch setting when at least a few
dozen range proofs are required. The amortized communication of
our range proofs improves by up to two orders of magnitudes over
the state of the art when the number of required range proofs grows.

– Eventually, under standard class group assumptions, we obtain the
first concretely efficient standard integer commitment scheme (with-

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 247–277, 2021.
https://doi.org/10.1007/978-3-030-77883-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_9

248 G. Couteau et al.

out bounds on the size of the committed integer) which does not
assume trusted setup.

Keywords: Range proof · Integer commitments

1 Introduction

In this work, we develop new techniques to construct range proofs, an important
building block in a variety of modern cryptographic protocols such as distributed
ledgers, anonymous transactions, e-cash, e-voting, and many more. The range
proofs obtained with our methods are highly competitive with the state of the art:
they rely on standard assumptions, require less communication and computation,
and do not assume any trusted setup. Furthermore, our approach is modular
and can be instantiated in the discrete logarithm setting, in the lattice setting
(leading to the most efficient post-quantum range proofs in a batch setting), and
in the class group setting. Below, we review some background.

Range Proofs and Anonymous Transactions. Zero-knowledge proofs, intro-
duced in the seminal work of Goldwasser, Micali, and Rackoff [GMR89], allow a
prover to convince a verifier that a statement is true, while concealing all infor-
mation beyond the truth of the statement. They are a fundamental primitive in
cryptography, with inumerable applications. Range proofs, whose genesis can be
traced back to [BCDv88], are a particular type of zero-knowledge proof where
the prover wishes to convince the verifier that a committed value belongs to a
certain range. Range proofs are a core building block in numerous applications
such as anonymous credentials [Cha90], e-voting [Gro05], and e-cash [CHL05].
Furthermore, efficient range proofs have recently become central components in
distributed ledgers, the prime example being the recent integration of Bullet-
proof [BBB+18] in the cryptocurrency Monero1 and later Mimblewimble-based
anonymous cryptocurrencies such as Beam2 and Grin3. Range proofs also play
an essential role in anonymous payment schemes for smart contract platforms
such as Zether [BAZB20].

In most of these anonymous payment schemes, (positive and negative) inte-
gers are encoded as finite field elements, and negative spendings constitute a
valid transaction in general, if they are not explicitly disallowed. This feature
can be exploited to launch a double-spending attack, allowing the adversary to
print money out of thin air [MIO18]. In a confidential payment scheme where
both inputs and outputs of a transaction are hidden in either a digital commit-
ment (as in Monero) or an encryption (as in Zether), range proofs are necessary
to guarantee that the hidden value falls into the correct range and prevent the
aforementioned overflow attack.
1 https://web.getmonero.org/resources/moneropedia/bulletproofs.html.
2 https://github.com/BeamMW/beam.
3 https://cointelegraph.com/news/cryptocurrency-grin-follows-through-with-

anticipated-july-17-mainnet-hardfork.

https://web.getmonero.org/resources/moneropedia/bulletproofs.html
https://github.com/BeamMW/beam
https://cointelegraph.com/news/cryptocurrency-grin-follows-through-with-anticipated-july-17-mainnet-hardfork
https://cointelegraph.com/news/cryptocurrency-grin-follows-through-with-anticipated-july-17-mainnet-hardfork

Efficient Range Proofs with Transparent Setup 249

The maximum throughput of a distributed ledger protocol is mainly deter-
mined by the maximum block size and average transaction size [CDE+16]. The
smaller the transaction size is, the larger the maximum throughput is. The aver-
age transaction size in an anonymous payment scheme is largely determined
by the zero-knowledge range proof size. Therefore, the proof size is a crucial
parameter for the design of a range proof scheme. The proof generation and ver-
ification time are also vital to the performance of the system built on the range
proof scheme. In the case of a decentralized anonymous payment scheme, the
proof generation time will determine how fast the anonymous payment can be
launched and have a direct impact on the user experience and system scalabil-
ity [CZJ+17]. The proof verification time, on the other hand, has a great impact
on the workload of the miners.

1.1 Standard Approaches for Building Range Proofs

Due to their wide variety of applications, many constructions of range proofs have
been proposed over the past decades. All these constructions can be categorized
in two main high level approaches, which we outline below.

First Method: n-Ary Decomposition. The first method is the one employed both
in the early (folklore) constructions of range proofs, as well as in the latest state-
of-the-art constructions (such as Bulletproof). To prove that a committed integer
x belong to an interval of the form [0, n� − 1], where n is some small value, this
method uses the following high-level template:

1. First, commit to the n-ary decomposition of x, denoted (x0, · · · , x�−1).
2. Second, prove that the relation x =

∑�−1
i=0 xi · ni holds.

3. Third, prove that each component of the committed tuple belongs to [0, n−1].
Since n is typically very small, this can be achieved using some brute-force
method (for example, when using binary decomposition, it amounts to proving
that each component is a bit, which can be done using standard methods).

When the commitment scheme satisfies some homomorphic properties, it is gen-
erally simple to lift a proof as above to a proof for a more general interval [a, b].
The first instance of this approach is a folklore discrete-logarithm-based construc-
tion using the Pedersen commitment scheme to commit to the bit decomposition
of x. Denoting β = log(b−a) the bitlength of the interval size and λ the bitlength
of group elements, This leads to a range proof communicating O(λ ·β) bits. This
approach was first improved in [CCs08] to O(λ ·β/log β) by using decomposition
in a larger basis, and later in [Gro11] to O(λ · β1/3), using pairings.

In a recent breakthrough work, the authors of [BBB+18] introduced Bullet-
proof, which managed to reduce the communication to O(λ · log β) under the
plain DLOG assumption (without pairings) while still remaining computationally
efficient. Their approach relies on generalized Pedersen commitment to commit
to the entire bit-decomposition of x using few group elements, and on a clever
recursive proof strategy to simultaneously prove that all committed values are

250 G. Couteau et al.

bits.4 This comes at the cost of a larger number of rounds O(log β) (but this is
typically not a concern in real-world applications, where the Fiat-Shamir heuris-
tic is used to make the proof non-interactive) and a computational soundness
guarantee (leading to a zero-knowledge argument instead of a proof).

A strong advantage of the proofs obtained in this line of work is that they do
not require any trusted setup. In real-world applications such as cryptocurrencies,
this is an important feature to avoid having to trust any central authority with
the secure generation of the parameters (we will discuss this more later). Due to
this feature and its good concrete efficiency, Bulletproof is currently considered
the state of the art method for range proofs, and has found its way into several
real-world protocols.

Second Method: Square Decomposition. The second method can be traced back
to the work of Boudot [Bou00], and was initially introduced to avoid the large
O(λ · β) cost of the range proofs obtained (at the time) by the first method.
It relies on the following high-level template (or a close variant thereof): first,
proving that x ∈ [a, b] reduces to proving that x − a and b − x (whose commit-
ments can typically be computed homomorphically from a commitment to x)
are positive. Now, to prove that a committed value y is positive:

1. First, decompose y as y =
∑4

i=1 y2
i over the integers. Lagrange’s four square

theorem guarantees that such a decomposition exists, and efficient algorithms
allow to quickly find one.

2. Second, commit to the yi and prove (using standard methods) that y =
∑4

i=1 y2
i over the integers.

The advantage of this method is that it requires committing only to a constant
number of components (independent of the interval size), instead of ≈ β compo-
nents with the first method. This typically leads to proofs with communication
O(β + λ) bits. However, it is crucial for this method that the relation is proven
over the integers: standard commitment schemes such as Pedersen only allow
committing values over Zp for some prime p, but finding a 4-square decom-
position over Zp does not provide any guarantee of positivity. Hence, a core
component of this line of work is the notion of integer commitment schemes,
introduced in [FO97,DF02], which allows to commit and prove relations among
values directly over the integers.

The square decomposition method has been refined in [Lip03]. Later, the
work of Groth [Gro05] observed that one can instead decompose 4y + 1 as a
sum of three squares (positive integers congruent to 1 modulo 4 can always
be decomposed this way) to reduce the proof size, and further efficiency and
security improvements were described in [CPP17]. A common issue of all these
works is that all known integer commitment schemes require the use of RSA
groups or class groups with a hard-to-factor discriminant. This means that the

4 There have been several recent follow up works [HKR19,AC20] to Bulletproof, which
expand the set of relations captured by the framework, but do not translate into
concrete improvements on the size of the range proofs produced by this framework.

Efficient Range Proofs with Transparent Setup 251

group size is very large (typically 3072 bits), and that these proofs all require
a trusted setup to generate a public product of secret prime factors5. Assuming
a trusted setup is a rather undesirable property in a decentralized anonymous
payment scheme: in general, the party responsible for the setup step can exploit
the trapdoor information obtained through this process to print an unlimited
amount of cryptocurrency without being detected [Sle,Ben]. Although one could
potentially mitigate the risk of the above attack by using secure multi-party
computation to execute the setup step (as was done e.g. for zcash6), it introduces
additional engineering complexity and potential vulnerabilities.

Furthermore, even before Bulletproof, these proof systems were competitive
with proofs obtained with the first method only for very large intervals. Com-
pared to Bulletproof, they lead to much larger proof sizes for any interval size
(and are also computationally less efficient). Due to their higher cost and their
need of a trusted setup, this second method is largely considered obsolete and
non-competitive with the proofs obtained through the first method.

1.2 Our Contribution

In this work, we turn the tables and demonstrate that the square decomposition
method can be refined to create highly competitive range proofs, with smaller
communication and computation compared to the state of the art Bulletproof,
without trusted setup (meaning that our proofs only require a transparent setup),
and under standard assumptions. Among other advantages, our method is mod-
ular and can also be instantiated in the lattice setting to obtain post-quantum
range proofs which are highly competitive with the sate of the art in a batch sce-
nario (where several range proofs must be computed at once), and in the class
group setting with prime discriminant. Furthermore, our proofs require only
three rounds of interaction, an important feature if one does not want to rely on
the Fiat-Shamir heuristic, and can be modified to achieve statistical soundness
instead of computational soundness (at a small cost in efficiency). At the heart
of our constructions is a new generic method to convert any commitment scheme
over Zp into a bounded integer commitment scheme, i.e., a commitment scheme
which allows to commit to bounded-range integers and to prove relations over Z
between committed bounded-range integers.

Instantiation in the Discrete-Log Setting. Instantiating our framework
with the standard Pedersen commitment scheme, we obtain a bounded integer
commitment scheme under the discrete logarithm assumption. When plugging
this bounded integer commitment scheme in the range proof of [CPP17], we
obtain a range proof which does not require any trusted setup and can bene-
fit simultaneously from the compactness of square-decomposition-based range
5 While it is theoretically possible to use a very large random integer as RSA modulus,

without relying on a trusted party to compute a product of safe primes, this approach
is completely impractical due to the very large group size and amount of computation,
see the discussion on RSA-UFO in [LM19].

6 https://z.cash/technology/paramgen/.

https://z.cash/technology/paramgen/

252 G. Couteau et al.

proofs (i.e., constant number of group elements) and the possibility of instan-
tiating the Pedersen commitment scheme over prime-order elliptic curve, with
small group elements7. To further optimize the proof size, we describe an opti-
mized variant which relies on the short-exponents discrete logarithm assumption
(i.e., the assumption that it is hard to compute discrete logarithm even when
the exponent is sampled from a large enough bounded range), which is a well-
studied variant of the standard discrete log assumption. For example, for an
interval size of 232 and 128 bits of security, we obtain range proofs of size 501
Bytes, compared to the 608 Bytes of Bulletproof. For the same parameters, the
computational cost for both the prover and the verifier are more than an order
of magnitude smaller compared to Bulletproof. The high efficiency of prover
and verifier is crucial for use of (range) proofs on resource constrained devices,
such as smartphones. Such devices are of special interest for privacy-enhancing
technologies, such as anonymous credentials [Cha90] and payment systems. To
achieve practicalility, tradeoffs have to made. For example, the work [BBDE19]
relies on [CCs08], which requires pairings and relatively large public parameters,
whereas the work [HKRR20] relies on uncompressed, i.e. linear-size, Bulletproofs,
trading communication for computation. Our range proofs are a great fit for these
settings.

Detailed Comparison with Bulletproof. A more detailed comparison with Bullet-
proof is given in Table 1. Below, we explain how the numbers in the table have
been obtained. Computing the exact costs of our range proof is rather tedious,
since it involves careful optimizations with rejection sampling techniques, and
optimizations using the short-exponent discrete logarithm assumption. We con-
sider range proofs over an interval [a, b] with β = log(b−a) ∈ {32, 64}, a security
parameter λ ∈ {80, 128}, and a group of size q (which might not be the same for
Bulletproof and our range proof). The formula below additionally uses param-
eters C,S, L′ corresponding respectively to the challenge size, a bound on the
length of short exponents, and a bound for rejection sampling. Our concrete
numbers are obtained by setting C = 2λ, S = 22λ, L′ = �256

√
2λ�. The for-

mulas for computing the range proof size (in the non-interactive setting, when
Fiat-Shamir is used), the prover work, and the verifier work, are given below:

– Proof size (in bits): 30(β + log(CL′)) + �log(C)/λ�(2λ + 4(2β + log(CL′) +
2 log(SCL′)) + 2) (our work) versus log q · (2β + 9) (Bulletproof).

– Prover work (in group multiplications): 2.31 · (4β + 8 log S + 6 log C +
7 log L′) + 30 (our work) versus 18 · (β log q) (Bulletproof).

– Verifier work (in group multiplications): 4.5β + 7 log S + 13 log C + 9 log L′ +
10 versus at least 3β ·log q (lower bound on the cost for Bulletproof, computed
as the cost of a single inner product argument)

7 Since our bounded integer commitment scheme requires the committed values to
remain into a bounded range, we actually require slightly larger group size compared
to Bulletproof to achieve the same security level; this is accounted for in our concrete
comparison and will be covered in details in the technical overview.

Efficient Range Proofs with Transparent Setup 253

– Group size (in bits): log q = 32(2βCL′)2 + 1 (our work) versus log q = 2λ
(Bulletproof)

In the above, prover and verifier work are computed as the number of mul-
tiplications required for the exponentiations (we do not directly count the expo-
nentiations for fairness of comparison: Bulletproof and our work do not use the
same group size, and our optimized construction also uses exponentiations with
short exponents), which largely dominate the overall cost. We note that in both
our work and Bulletproof, the verifier work can be optimized by relying on mul-
tiexponentiations techniques; since these techniques apply identically in both
works and do not significantly change the bottom line in terms of comparisons,
we ignore them in this overview.

Asymptotically, our proofs have size O(λ + β), while Bulletproof has size
O(λ log β). We note that in the range of parameters β = O(λ), our techniques
actually leads to an asymptotic improvement over Bulletproof; for larger ranges,
Bulletproof is more efficient, and for very small ranges, the asymptotic costs
are the same for both. Previous square-decomposition-based range proofs had
asymptotic cost O(β + λ3−o(1)) due to their use of RSA modulus (which allow
for subexponential attacks).

We stress that when not using the Fiat-Shamir heuristic, our scheme can
be instantiated to have only three rounds (this slightly increases the proof size,
because it requires to not use rejection sampling, since the latter causes the
protocol to restart with non-negligible probability) while Bulletproof requires
log β rounds. Even with rejection sampling and our concrete choice of parameters,
the expected number of rounds is less than 5. Thus for sufficiently large β, our
security proof is tighter than the one of Bulletproofs in the random-oracle model.

Furthermore, our scheme can be instantiated to have statistical soundness.
On the other hand, Bulletproof allows for extremely efficient batching a large
number of range proofs, and would therefore become preferable communication-
wise when many range proofs must be performed at once. In any case, and
independently of the number of range proofs, our range proofs requires 20 to 40
times less group multiplications for the prover, and 6 to 15 times less for the
verifier.

Instantiation in the Lattice Setting. For the instantiation of our framework
in the lattice setting, we build upon the commitment scheme and proof system
from [YAZ+19]. The commitments built this way allow to commit to long vectors
over Z

n
q (think of n as being a few thousands, e.g. n = 5000). Our techniques

require to use a relatively large modulus q in order to avoid overflows in the
computation. As a consequence, our commitments and proofs are quite large.

However, in exchange for using a large modulus, the commitment and proof
system obtained by compiling the commitment of [YAZ+19] with our techniques
allow to batch many range proofs extremely efficiently: we can essentially perform
up to n range proofs in parallel for the cost of a single range proof, even if range
proofs have different ranges. This improves over the communication achieved by
the best LWE-based range proofs [YAZ+19]. Even compared to the more recent

254 G. Couteau et al.

Table 1. Comparison between the optimized range proof of Sect. 5.4 and Bullet-
proof [BBB+18] for various choices of security parameter λ and log of interval size
β. Proof size and group size are in Bytes, prover and verifier work are counted as a
number of group multiplications, rounded to two decimal places. See the paragraph
“detailed comparison with Bulletproof” for the details on our computations.

(β, λ) Proof size Prover work Verifier work Group size

(32, 80) This Work 339 4.6k 2.4k 32
Bulletproof 380 92k >15k 20

(32, 128) This Work 501 7k 3.7k 44
Bulletproof 608 150k >25k 32

(64, 80) This Work 383 4.9k 2.6k 40
Bulletproof 420 180k >31k 20

(64, 128) This Work 545 7.3k 3.8k 52
Bulletproof 672 290k >49k 32

scheme of [BLLS20], which achieves very compact (single-shot) range proofs
under the ring-SIS assumption, our approach starts to become more efficient
from about 35 range proofs (and the efficiency gain scales linearly after that).
In the limit, when performing a large number of range proofs in parallel, we
achieve about two orders of magnitude of communication reduction compared
to the state of the art. The comparison is summarized on Table 2.

Table 2. Comparison of the range proof size in the lattice setting. Note that the
scheme of [YAZ+19] was designed for large ranges. For a fair comparison, we apply
similar vector-based batching optimization. The size is given in KB.

Range Batch size λ = 80 λ = 128

β = 32 LWE [YAZ+19] 31 39 73
This Work 35 4.7 5.2
This Work 5000 0.1 0.1

β = 64 LWE [YAZ+19] 31 77 146
This Work 35 8.4 9.7
This Work 5000 0.16 0.16

Instantiation in the Class Group Setting. Eventually, we also instantiate
our method in the class group setting. The proofs obtained this way improve
over our DLOG-based proofs only for large ranges, where Bulletproof would be
more efficient. On the other hand, instantiating our approach in the class group
setting leads to the first concretely efficient construction of unbounded integer
commitment scheme which does not require a trusted setup (the only known
alternative uses RSA-UFO, which is impractical, see the discussion in [LM19]).

Efficient Range Proofs with Transparent Setup 255

Concurrent Works. In the DLOG setting, the work of [CHJ+20] recently
claimed an improvement in proof size compared to [BBB+18] by slightly reduc-
ing the number of group elements required in [BBB+18]. The computational
cost of their proof is the same as in [BBB+18]. To our knowledge, their scheme
was not peer reviewed yet; we note that our range proofs are still shorter than
theirs, and more than an order of magnitude computationally more efficient.

2 Technical Overview

As we outlined in the introduction, at the heart of our results is a method
to convert standard homomorphic commitment schemes into bounded integer
commitment schemes – that is, a scheme that allows to commit to integers
from a bounded range, but also to prove in zero-knowledge relations between
commited values over the integers, see [FO97,DF02] – with a certain set of
additional specific properties. We now provide details on our approach.

2.1 A Natural Approach via Σ-Protocols

For simplicity, suppose that we have at our disposal a commitment scheme com
with message space and random coin space Zq, for some large prime q, which
is homomorphic over the messages and the coins: com(m1; r1) · com(m2; r2) =
com(m1+m2; r1+r2). This is satisfied for example by the Pedersen commitment
scheme com(m; r) = gmhr for two group elements (g, h) over a group of order q.
The transformation works for a more general class of commitments, this choice
of structure is for the sake of concreteness. Suppose now that we would like to
obtain a bounded integer commitment scheme out of com. The first obvious idea
is to proceed as follows:

– map values in Zq to integers [−(q − 1)/2, (q − 1)/2] in the natural way;
– define com′ to be exactly like com, but where the committed values are

restricted to [−R,R], where R � (q − 1)/2 is some bound.

Intuitively, the bound R is here to ensure that we will have enough “room” to
guarantee that if a relation between elements of [−R,R] holds modulo q, then it
must also hold over the integers. Looking ahead, for building a range proof, we
will want to prove relations of the form x =

∑
i x2

i , and we will choose R such
that no overflow occurs when computing

∑
i x2

i mod q with xi ∈ [−R,R].
The next step is to equip this commitment com′ with a zero-knowledge proof

system allowing to prove relations between committed values over the integers.
However, this turns out to be particularly challenging. To see this, consider the
standard Σ-protocol between a prover P and a verifier V for proving knowledge
of an opening (m, r) to a commitment c = com(m; r):

– P: pick (m′, r′) $← Z
2
q and send c′ = com(m′; r′).

– V: send a challenge e
$← Zq.

– P: send dm = em + m′ and dr = er + r′.
– V: accept if com(m; r)e · com(m′; r′) = com(dm; dr).

256 G. Couteau et al.

Using a standard rewinding argument, we can extract a valid opening (m; r) ∈
Z
2
q of c from any (potentially malicious) prover P∗ which produces accepting

proofs with non-negligible probability ε: run P∗ to get c′, fork it, and run it on two
different random challenges e, e′, receiving (dm, dr) and (d′

m, d′
r). By a standard

probability lemma (see the splitting lemma from [PS96,PS00]), (c′, e, dm, dr) and
(c′, e′, d′

m, d′
r) will both be accepting transcript with non-negligible probability

Ω(ε2). From the two accepting equations, one gets

c = com((dm − d′
m) · (e − e′)−1, (dr − d′

r) · (e − e′)−1). (1)

To adapt the protocol to com′, we would need to modify the Σ-protocol such
that it additionally guarantees that the extracted value m belongs to [−R,R].
This actually seems feasible at first sight if we agree to settle for a relaxed cor-
rectness and zero-knowledge guarantee: we only enforce correctness and (honest-
verifier) zero-knowledge whenever m belongs to [−R′, R′], for a bound R′ such
that 2λ+κR′ ≤ R, where κ is a statistical security parameter for zero-knowledge,
and λ is a statistical security parameter for soundness (we keep both separate
for generality). Then, we can modify the protocol as follows:

– P: pick (m′, r′) $← [−2λ+κR′, 2λ+κR′] × Zq and send c′ = com(m′; r′).
– V: send a challenge e

$← [1, 2λ].
– P: send dm = em + m′ and dr = er + r′.
– V: accept if com(m; r)e · com(m′; r′) = com(dm; dr) and dm ∈ [−R,R].

Intuitively, relaxed correctness and relaxed statistical zero-knowledge fol-
low from the fact that for m ∈ [−R′, R′] and e ∈ [1, 2λ], dm = em + m′

for m′ $← [−2λ+κR′, 2λ+κR′] will be 2−κ-close to uniform (in statistical dis-
tance) over [−R,R]. It remains to analyze whether we can extract from an
accepting prover a valid witness for com′. However, even though we restricted
e and dm to be small, recall that the extracted value (Eq. 1) is of the form
m = (dm − d′

m) · (e − e′)−1 mod q. That is, m is not an element of [−R,R] in
general; rather, it is the product of an element in [−R,R] and the inverse modulo
q of an element in [1, 2λ]. Therefore, this approach fails at binding the prover to
a value m ∈ [−R,R].

We note that the failure of this approach – the impossibility of extracting val-
ues guaranteed to be short in general – is a well-known problem in the context of
lattice-based cryptography. Indeed, standard Σ-protocol for proving knowledge
of a short solution to a system of equation – i.e., a witness for the SIS problem
– suffer from exactly the same limitation (see e.g. the discussions in [BCK+14]).
The standard solution is to restrict the challenge set to {−1, 0, 1} (to guarantee
that the inverse of the difference between distinct challenges remains small), and
to amplify soudness via parallel repetitions. However, in our context, this would
lead to a very inefficient proof system. Unfortunately, finding a different proof
system with much better efficiency seems to be a hard problem.

Efficient Range Proofs with Transparent Setup 257

2.2 Encoding Integers as Mod-q Rationals

Instead, we follow a different approach by turning the problem around: rather
than searching an efficient and sound proof system for the commitment com′

above, we seek to find a different construction of bounded integer commitment
com such that the above efficient proof system – which is not sound because
it only allows extracting fractions of small values modulo p – becomes a sound
proof system for com (allowing to extract bounded integers committed with
com). Abstracting out, we saw above that we can extract from a cheating prover
a triple (y, d, ρ) ∈ [−R,R] × [1, 2λ] × Zq such that c = com(y · d−1 mod q; ρ).
Our goal will be to find an appropriate choice of encoding Encode satisfying the
following properties:

– com(x; ρ) = com(Encode(x); ρ), such that a commitment to a value x′ with
com can be seen as a commitment to some different value x = Decode(x′)
with com.

– Extracting a tuple (y, d, ρ) ∈ [−R,R] × [1, 2λ] × Zq should correspond to
extracting a valid opening of com to some bounded integer x in an appropriate
bounded range.

Looking ahead, we will need a few additional properties to hold for Encode if we
want to build an efficient range proofs for com.

– First, we want Encode to satisfy some appropriate homomorphic properties.
Informally: Encode(−x) = −Encode(x), Encode(x + a) = Encode(x) + a, and
Encode(a · x) = a · Encode(x), for a sufficiently small integer a.

– Second, we want to be able to transfer a square decomposition from encodings
modulo q to encoded integers: informally, proving a relation of the form x′ =∑

i(x
′
i)

2 mod q where x′ = Encode(x) and x′
i = Encode(xi) should guarantee

that x =
∑

x2
i over the integers.

Our Choice of Encoding. It turns out that there is a choice of (randomized)
encoding that satisfies all of the above constraints simultaneously. In hindsight,
this encoding is quite simple and natural: we view any pair (y, d) ∈ [−R,R] ×
[1, 2λ] as an encoding (y, d) = Encode(x) of the integer

x =
⌊y

d

⌉
∈ [−R,R],

where the fraction denotes standard division, and
·� denotes rounding to the
nearest integer. Given this choice of encoding, com is defined as follows:

– com(x): pick ρ
$← Zq and output commitment c = com(x; ρ) and opening

(x, 1, ρ).
– com.Verify(c,x, (y, d, ρ)): check that c = com(y · d−1; ρ), x =
y/d�, y ∈

[−R,R], and d ∈ [1, 2λ].

Some remarks are in order. First, observe that com(x) is defined exactly as
com(x); that is, a honest commitment with com is just a normal commitment

258 G. Couteau et al.

with com. This is because we can view any x ∈ [−R,R] as an encoding (x, 1) of
itself (since x =
x/1�). The only difference is that we relax the verification to
accept general openings (y, d) = Encode(x) of x. Second, the fact that extracting
a triple (y, d, ρ) in the Σ-protocol corresponds to extracting a valid opening
(w.r.t. com) of an integer in [−R,R] becomes trivially true. It remains to check
two things:

1. com must remain binding and hiding ;
2. com must satisfy some homomorphic properties that we outlined above.

com is Binding and Hiding. That com is hiding follows immediatly from the
fact that com is hiding. It remains to consider binding. Suppose that an adversary
finds two valid openings (y, d, ρ) and (y′, d′, ρ′) in [−R,R] × [1, 2λ] × Zq to a
commitment c; that is, c = com(y · d−1 mod q; ρ) = com(y′ · (d′)−1 mod q; ρ′).
Since com itself is binding, we must have y · d−1 = y′ · (d′)−1 mod q. This last
equation implies

yd′ = y′d mod q =⇒ yd′ = y′d over Z =⇒
y/d′� =
y′/d�,
where the first implication holds as long as q is chosen large enough compared
to R and 2λ, i.e., q/2 > R · 2λ.

Properties of com. First, we check some basic homomorphic properties:

– If (y, d) encodes x =
y/d�, then (−y, d) encodes −x.
– If (y, d) encodes x =
y/d� and a is an integer such that ya ≤ R, then
com(x)a = com(ayd−1) is a valid commitment com(ax).

– If (y, d) encodes x =
y/d� and a is an integer such that y + da ≤ R, then
com(x) · com(a) = com(yd−1 + a) = com((y + da)d−1) is a valid commitment
com(x + a) since
(y + da)/d� =
y/d + a� =
y/d� + a.

Second, in our most optimized range proof constructions, we will reduce the
task of proving that x belongs to an interval [a, b] to the task of proving that
x0 = (x−a)(b−x) is positive. To show the latter, we will prove that there exists
three integers (x1, x2, x3) such that 4x0 + 1 =

∑3
i=1 x3

i ; such a decomposition
exists (and can be found efficiently) if and only if x0 ≥ 0 [Gro05]. Now, suppose
we extracted encodings (y, d), ((yi, d)i≤3) to 4x0 +1 and (x1, x2, x3) respectively,
with the following guarantee: yd−1 =

∑3
i=1(yid

−1)2 mod q.
Intuitively, this guarantee will be obtained by using a standard Σ-protocol

to prove knowledge of a 3-square decomposition directly over commitments with
com. The extracted encodings will all have a common d, because of the structure
of the extraction procedure: d corresponds simply to the difference between two
distinct challenges for which the prover produced an accepting transcript. The
above equation can be rewritten yd =

∑3
i=1 y2

i mod q, which necessarily holds
over the integers (i.e., no overflow occurs) given that 3R2 < q/2 and 2λR < q/2,
since the values y and yi are bounded by R and d is bounded by 2λ. From there,
dividing both sides by d2 over the rationals, we get that y/d can we written as a
sum of three squares over Q. A simple technical lemma shows that this relation

Efficient Range Proofs with Transparent Setup 259

over Q actually suffices to guarantee x =
y/d� ∈ [a, b]; we omit details in this
high level overview.

Note that in related work [FSW03], a similar encoding is used to allow
for homomorphic computations with bounded rationals. However in our case,
bounded rationals appear as an intermediate result as extracted value (y − y′) ·
(d − d′)−1 mod q of the proof of knowledge. Our encoding is for small integers,
hence the rounding. Also, the work [LN17] uses the fact that the extracted
value is unique to construct verifiable encryption schemes. Again, the application
differs.

2.3 Instantiation in the Discrete Log Setting

Equipped with a method to build bounded integer commitment schemes which
satisfy some necessary properties, we turn to the problem of instantiating the
construction in different settings, and building a range proof from it. In the
discrete logarithm setting, we set com to be the standard Pedersen commitment
scheme: com(m; r) = gmhr where (g, h) are two random generators over a group
where computing discrete logarithms is hard. As for the range proof, we rely on
the efficient Σ-protocol of [CPP17], adapting it to prime order group (since the
scheme is described over subgroups of Zn for an RSA modulus n in [CPP17]).
This is a relatively standard Σ-protocol where the prover, given an opening
(x, r) for a commitment c = gxhr, commits to three values (x1, x2, x3) such that
4(x − a)(b − x) + 1 =

∑
i x2

i , and proves knowledge of openings to x, x1, x2, x3

such that this relation is satisfied. We provide a detailed security analysis of the
resulting protocol.

The scheme of [CPP17] already includes a standard optimization for Σ-
protocols, which relies on a collision-resistant hash function to compress the
first flow while preserving soundness. We introduce two important additional
optimizations tailored to our setting.

First Optimization. Due to our use of a group with a large order, we can actu-
ally reduce the size of the random coins used in the Pedersen commitments, at
the cost of relying on the short-exponent discrete logarithm assumption (DLSE).
This improves the computational efficiency, but also reduces the communication
when proving knowledge of an opening. Furthermore, relying on DLSE has an
important consequence: while the protocol of [CPP17] has computational sound-
ness (and statistical zero-knowledge), we get an alternative instantiation which
satisfies statistical soundness (and computational zero-knowledge).

On Getting Range Proofs with Statistical Soundness. This alternative instan-
tiation is obtained by changing the commitment as follows: To commit to
m ∈ [−R,R], sample r

$← [1,K] and output gmhr. Here, R is a bound on the
committed messages, and K is chosen such that the short-exponent discrete log
assumption, with random exponent chosen from [1,K], is believed to hold. Apply-
ing DLSE, hr is indistinguishable from a uniformly random group element (using
a standard search-to-decision reduction for DLSE in prime-order groups [KK04]).

260 G. Couteau et al.

Hence, the scheme remains (computationally) hiding. Furthermore, gmhr is per-
fectly binding: the probability (over the random choice of s such that gs = h)
that there exists (m, r,m′, r′) with m′ = m such that m + sr = m′ + sr′ is neg-
ligible by the Schwartz-Zippel lemma and a union bound (when R,K are small
enough).

Therefore, using our proof system with short randomness in the Pedersen
commitments, with appropriate parameter adjustment to guarantee perfect bind-
ing, we obtain a range proof with statistical soundness. We note that this is an
important feature: the impossibility of getting statistical soundness with Bullet-
proof is discussed in Sect. 4.6 of the Bulletproof paper [BBB+18]. In anonymous
transaction schemes, statistical soundness is more important than statistical zero-
knowledge, since the former is crucial for avoiding indetectable creation of coins
(which would render the currency useless), while the second is only necessary
to guarantee anonymity (without which the currency remains usable). Not get-
ting statistical soundness was generally believed to be inherent to efficient range
proofs, since very compact commitments require computational soundness; our
method shows that it is actually possible to get competitive range proofs with
statistical soundness. Note that there is also a natural instantiation of our app-
roach using ElGamal encryption as the underlying commitment scheme. This
also yields a statistically sound range proof but it is less efficient than the vari-
ant of this work.

Second Optimization. The scheme of [CPP17] relies on standard “flooding”
to achieve statistical zero-knowledge: the value e · m, where m ∈ [−R,R] is a
secret value and e ≤ 2λ is a challenge, is masked with a random m′ $← [1, 2λ+κR]
to ensure that em + m′ will be 2−κ-close in statistical distance to the uniform
distribution over [1, 2λ+κR]. However, it turns out that our constraints are closely
related to the constraints satisfied by several Σ-protocols in the lattice setting,
which also deal with careful bounds on the size of secret values. Building upon
this observation, we import a standard optimization of Σ-protocols in the lattice-
setting, namely, the rejection-sampling method [Lyu12]. Using rejection sampling
allows different tradeoffs between the group size, the number of repetitions of
the underlying protocol, and the size of the masks used to hide secret values.
We show that an appropriate choice of tradeoff allows to significantly reduce the
communication complexity of our protocol.

3 Preliminaries

Notation. In this work, we generally perform calculations in Z/qZ with repre-
sentatives Zq = [− q−1

2 , q−1
2] for an odd modulus q ∈ N, and we identify Zq with

Z/qZ, unless stated otherwise. Inside of flooring
a
b � or rounding
a

b � =
a
b + 1

2�
operations, we generally have a, b in Z with division over Q, i.e. we work with
the representatives and not in Z/qZ.

For some randomized algorithm A with input x, we sometimes write y ←
A (x; r) for its execution with explicit randomness r. If the randomness is not

Efficient Range Proofs with Transparent Setup 261

explicit, we write y ← A (x) and assume that the randomness was sampled
accordingly. We also write s

$← S for sampling s uniformly random from a
finite set S or d

$← D to sample d randomly according to a given probability
distribution D. Further, we often assume that some public parameters, denoted
by pp, and the security parameter, denoted by λ, are implicitly passed as input
to algorithms if it is clear by context.

Throughout, we write integers a ∈ Z in lower case letters, vectors as a ∈
Z

n with components ai, and matrices A ∈ Z
m×n in bold upper case letters.

Computations on vectors are performed component-wise, unless stated otherwise.
For example, for vectors a = (ai)i=1..n, b = (bi)i=1..n ∈ Z

n and scalar x ∈ Z, we
write c = a · b = (ai · bi)i=1..n, yB = (ybi)i=1..n and By = (by

i)i=1..n. For some
constant c ∈ Z, we let by c = (c)i=1..n the vector with all components equal to c.

We denote by |x| the absolute value of x ∈ R and by ‖·‖1, ‖·‖2, ‖·‖∞ the
norms defined as ‖x‖1=

∑
i |xi|, ‖x‖2=

√∑
i x2

i , ‖x‖∞= maxi |xi| for x ∈ R
m.

3.1 Commitment Schemes

A commitment scheme com with message space Mcom, commitment space Ccom

and opening space Rcom is a 3-tuple of PPT algorithms (Setup,Commit,Verify)
such that

– com.Setup(1λ): outputs public parameters pp,
– com.Commitpp(x): computes a commitment c ∈ Ccom to x ∈ Mcom with its

opening d ∈ Rcom and outputs the pair (c, d),
– com.Verifypp(c, x, d): verifies the commitment c ∈ Ccom to x ∈ Mcom with the

opening d ∈ Rcom and outputs a bit b ∈ {0, 1}
Further, we require that com is (statistically) correct, and satisfies binding (i.e.
it is hard to find two different openings to a commitment) and hiding (i.e. one
learns nothing about x from Commit(x)). We refer to the full version for for-
mal definitions. Often, d consists of the randomness used in the commitment
generation, but it can include other auxiliary information.

(Homomorphic) Integer Commitment Schemes. In this work, we are inter-
ested in integer commitment schemes which allow to commit to an integer
x ∈ Z. An integer commitment scheme has message space Mcom = Z and allows
for proving relations, such as knowledge of an opening, in a zero-knowledge
manner (see Sect. 3.2). We also establish bounded integer commitment schemes
(Sect. 4.1) where the message space is Mcom = {x ∈ Z | |x| ≤ R} for some
upper bound R. The crucial difference between message space Mcom = Zq and
Mcom = {x ∈ Z | |x| ≤ R} is: The former can have additive homomorphism
(over Zq), but only binds to a representative of x ∈ Zq, not to an integer. The
latter binds to a (bounded) integer, but has limited homomorphism (over Z).

262 G. Couteau et al.

3.2 Zero-Knowledge Proofs

We define zero-knowledge with setup GenCRS, which generates a common refer-
ence string (CRS) crs ← GenCRS(pp). In this work, we only require an unstruc-
tured CRS8. Let R be a NP-relation over a set X defining a (pp-dependent)
NP-language L = {x ∈ X | ∃w : R(pp, x, w) = 1}. For simplicity, we suppress
the dependency on pp when it is clear. A zero-knowledge proof system for L is
a protocol between a prover P and verifier V. We write tr ← 〈P(s),V(t)〉 for the
transcript of an interaction where P (resp. V) has input s (resp. t) and implicit
inputs 1λ, pp, crs. We write b = 〈P(s),V(t)〉 for the verifier’s verdict b. A proof
system is public coin if the verifier’s messages are uniformly random and inde-
pendent of the prover’s messages, and the verifier outputs b = Verify(x, tr) for a
PPT algorithm Verify.

Due to rejection sampling, our schemes have non-negligible correctness error.

Definition 1 (Correctness). A proof system (GenCRS,P,V) for L has cor-
rectness error γerr, or is γerr-correct, if for every adversary A

Pr
[

pp ← GenPP(1λ); crs ← GenCRS(pp);
(x,w) ← A (pp, crs): 〈P(x,w),V(x)〉 = 1]

]

≥ 1 − γerr(λ)

We call (GenCRS,P,V) correct if γerr = negl.

To separate (statistical) simulation and knowledge errors from hardness
assumptions as much as possible, we define zero-knowledge and knowledge extrac-
tion by means of adversary advantages.

Definition 2 (HVZK). A simulator Sim for a public coin proof system
(GenCRS,P,V) for L is a PPT algorithm with input a statement x for which
(pp, x, w) ∈ R and implicit inputs 1λ, pp, crs, and output a transcript tr . Let A
be a stateful algorithm and let

RealA (λ) = Pr
[
pp ← GenPP(1λ); crs ← GenCRS(pp); (x,w) ← A (pp, crs);

tr ← 〈P(x,w),V(x)〉; b ← A (tr): b ∧ R(x,w) = 1

]

IdealA (λ) = Pr
[
pp ← GenPP(1λ); crs ← GenCRS(pp); (x,w) ← A (pp, crs);

tr ← Sim(x); b ← A (tr): b ∧ R(x,w) = 1

]

Define the advantage of A by AdvhvzkA ,P,V(λ) = RealA (λ) − IdealA (λ). Then Sim
(and by extension (GenCRS,P,V)) is honest verifier zero-knowledge with simula-
tion error σerr = σerr(λ), if for all PPT A we have AdvhvzkA ,P,V ≤ σerr + negl.

8 Note that the distinction between structured and unstructured random strings is
crucial in real-world applications: the former unavoidably requires either a trusted
third party, or a secure distributed setup. However, the latter can be instantiated in
the real-world using standard heuristic ’nothing-up-my-sleeve’ methods.

Efficient Range Proofs with Transparent Setup 263

Definition 3 (Knowledge error). Let (GenCRS,P,V) be a public coin proof
system for L . Let Ext be an expected polynomial time oracle algorithm (with
oracle steps counted as one step) with implicit inputs 1λ, pp, crs. Let A be a
(probabilistic) and P∗ be a deterministic algorithm.

RealA (λ) = Pr
[
pp ← GenPP(1λ); crs ← GenCRS(pp); (x, s) ← A (pp, crs);

tr ← 〈P∗(x, s),V(x)〉: Verify(x, tr) = 1

]

IdealA (λ) = Pr
[
pp ← GenPP(1λ); crs ← GenCRS(pp); (x, s) ← A (pp, crs);

(tr , w) ← ExtP
∗(x,s): Verify(x, tr) = 1 ∧ R(x,w) = 1

]

W.l.o.g. Ext let w = ⊥ if Verify(x, tr) = 1. The advantage of (A ,P∗) is
AdvkeA ,P∗,V(λ) = RealA (λ) − IdealA (λ). A proof system has knowledge error κerr,
if for any PPT A , P∗ we have AdvkeA ,P∗,V ≤ κerr + negl.

Our definition of knowledge error is closely related to witness extended emu-
lation [Lin03,GI08], which also requires that an extractor produces convincing
transcripts. This property is trivial to achieve in our setting, but interferes with
our definition of knowledge error. All of our proof systems are Σ-protocols.

Definition 4. A Σ-protocol Σ for relation R is an interactive three-move proto-
col consisting of four PPT algorithms (Σ.Init,Σ.Chall,Σ.Resp,Σ.Verify) between
prover P holding a witness w for the statement x ∈ L and verifier V such that:

– Σ.Init(1λ, w, x) → (α, st): On input of statement and witness (x,w) with
R(x,w) = 1, outputs a first message α and a state st.

– Σ.Chall(1λ) → γ: Draw challenge γ uniformly from the set of challenges [0, C].
– Σ.Resp(st, γ) → ω: On input of previous state st and challenge γ, outputs a

response ω.
– Σ.Verify(x, α, γ, ω) → b: On input statement x and transcript α, γ, ω, accepts

(b = 1) or rejects (b = 0).

Moreover, Σ must satisfy correctness and HVZK. As usual, the algorithms have
implicit inputs 1λ, pp, crs.

The simulators for our Σ-protocols actually show special HVZK, that is, they
work given any (adversarial) challenge γ. Letting Sim pick γ

$← [0, C] yields
standard HVZK. To prove knowledge extraction, we rely on k-special soundness.

Definition 5 (k-special soundness). A k-special soundness extractor Ext is
a PPT algorithm which takes as input a set of k accepting transcripts Γ =
{(α, γi, ωi) | Σ.Verify(x, α, γi, ωi) = 1}i=1..k with fixed α and pair-wise distinct
challenges γi, and outputs a valid witness w ← Ext(Γ), i.e. R(w, x) = 1.

In security proofs, k transcripts will either yield a witness or break an assump-
tion. Formally, we consider the language L ∨ Lhard instead of L . Finding k
transcripts as in Definition 5 is a standard (solved) problem.

264 G. Couteau et al.

Fiat–Shamir Transformation. Informally, the Fiat–Shamir transformation
applied to a Σ-protocol replaces the verifier’s random challenge by a hash of
the initial message α, resulting in a non-interactive proof system.

Range Proofs. A range proof is essentially a zero-knowledge proof that guar-
antees that a committed value x resides inside a specified interval [a, b]. We can
show so by setting y = (b − x)(x − a), computing the commitment to y homo-
morphically from the commitment to x and the constants a, b, and showing that
y ≥ 0 in a zero-knowledge manner. The following lemma yields a strategy to
show that committed integers are non-negative.

Lemma 1 (Decomposition into 3 Squares [RS86,Gro05]). Let y ∈ Z be an
integer. It holds that

y ≥ 0 ⇐⇒ ∃{xi}i=1..3 : 4y + 1 =
∑

i=1..3

x2
i

Further, the integers xi can be efficiently computed. In [PS19], the runtime of
finding the decomposition was improved to O(log2(y)/log log(y)) multiplications.

3.3 Tools in the DLOG Setting

Hardness Assumptions. First, we establish the hardness assumptions that
our scheme in the DLOG setting is based on (see Sect. 5). To avoid trusted setup,
we assume a deterministic family G = Gλ of cyclic groups with generator gλ and
known order qλ, generated by a group generator (Gλ, gλ, qλ) = GenGrp(1λ). For
notational simplicity, we leave GenGrp implicit in the rest of the work.

Definition 6 (S-Bounded DLSEand SEIAssumption). Consider a group G

of order q with generator g. Let S < q. The S-bounded DLSE assumption holds
if for all PPT A there is a negligible negl such that

Pr
[
z

$← {0..S − 1}, z′ ← A (gz): z = z′
]

≤ negl(λ)

The S-bounded short exponent indistinguishability (SEI) assumption holds if for
all PPT A there is a negligible negl such that
∣
∣
∣Pr

[
z

$← {0..S − 1} : A (gz) = 1
]

− Pr
[
z

$← Zord : A (gz) = 1
]∣
∣
∣ ≤ negl(λ)

Throughout this work, we generally set S = 22λ. Note that DLOG assumption is
equivalent to the q-bounded DLSE assumption.

Tools. Now, we introduce some lemmas and a commitment scheme that we later
on utilize for constructing the bounded integer commitment and range proof.

Lemma 2 ([KK04]). Let G be a group of prime order q with generator g ∈ G.
For S < q/2, the S-bounded DLSE and SEI assumptions are equivalent.

Efficient Range Proofs with Transparent Setup 265

We consider a Pedersen commitment scheme [Ped92] with smaller openings
in exchange for a computational (instead of statistical) hiding property.

Definition 7 (Pedersen Commitments with Short Openings). Let G

be a group of prime order q and consists of a 3-tuple of PPT algorithms
(Ped.Setup,Ped.Commit,Ped.Verify) such that

– Ped.Setup(1λ): samples g, h
$← G and outputs public parameters pp = (g, h),

– Ped.Commitpp(x): samples d
$← [0, 22λ] for x ∈ Zq, sets c = gxhd and outputs

the pair (c, d),
– Ped.Verifypp(c, x, d): outputs 1 iff c = gxhd.

Using d
$← [0, 22λ] instead of d

$← [0, q − 1] (as in [Ped92]) still achieves com-
putational hiding: Under SEI (or equivalently DLSE), we can replace the short
random exponent d in hd with a full random d

$← [0..q − 1] in a hybrid game.
Now gxhd is uniformly distributed, independent of x.

3.4 Tools for Zero-Knowledge

As a technical tool for achieving zero knowledge, our protocols use additive
masking of the witness. We recall the tools for masking here.

Lemma 3 (Masking with the Security Parameter). For any C,B,L ∈ N

and fixed x ∈ [−B,B], γ ∈ [−C,C], the distributions U = U [0, BCL] and V =
{m + γ · x | m

$← [0, BCL]} have statistical distance at most 1/L.

Rejection sampling and Gaussian noise allow to use smaller masks.

Definition 8 (Discrete Gaussian Distributions, [YAZ+19]). The contin-
uous Gaussian distribution over R

m centered around v ∈ R
m with standard

deviation σ is defined by the density function ρm
v ,σ(x) = (1√

2πσ2)me
−‖x−v‖2

2
2σ2 .

The discrete Gaussian distribution over Z
m centered around v ∈ Z

m with stan-
dard deviation σ is defined as Dm

v ,σ(x) = ρm
v ,σ(x)/ρm

σ (Zm), where ρm
σ (Zm) =∑

x∈Zm ρm
σ (x). We write Dm

σ (x) = Dm
0,σ(x) for short.

Lemma 4 (Relationship between norms). For v ∈ R
m, the inequalities of

norms, ‖v‖∞≤ ‖v‖1≤
√

N‖v‖2≤ N‖v‖∞, are well known.

Lemma 5 (Lemma 4.4, [Lyu12]).

– For any k > 0 it holds that Pr[|z| > kσ | z
$← Dσ] ≤ 2e

−k2
2 .

– For any k > 1 it holds that Pr[‖z‖2> kσ
√

m | z $← Dm
σ] < kme

m
2 (1−k2).

Lemma 6 (Theorem 4.6, [Lyu12]). Let V be a subset of Z
m in which all

elements have ‖·‖2 norms less than T , σ ∈ R such that σ = ω(T
√

log m) and
h : V �→ R a probability distribution. Define algorithms T (resp. S) as follows:

266 G. Couteau et al.

1. v
$← h

2. t
$← Dm

v ,σ (resp. t $← Dm
σ)

3. output (t,v) with probability min
(

Dm
σ (t)

M ·Dm
v ,σ(t)

, 1
)

(resp. with probability 1/M)

Then there exists a constant M = O(1) such that the output distributions of T
and S are within statistical distance 2−ω(log m)

M . Moreover, the probability that T
outputs something is at least 1−2−ω(log m)

M .

Note that if σ = αT for some α > 0, then M = e13.3/α+1/(2α2), the output of
algorithm T is within statistical distance 2−128/M of the output of S and the
probability that T outputs something is at least 1−2−128

M [YAZ+19,HPWZ17].

4 Integer Commitments from Rounding Fractions

In this section, we introduce bounded integer commitments and motivate the
construction of range proofs based on these commitments.

4.1 Bounded Integer Commitment Scheme

We introduce a commitment scheme transformation that allows to commit to
bounded integers. The core feature of this transformation is its proof-friendliness:
standard Σ-protocols for proving knowledge of a square decomposition (or, more
generally, any low-degree polynomial relation) with the original commitment
(over a field Zq) can be re-interpreted (with minor adaptations) as Σ-protocols
for proving knowledge of a square decomposition (resp. low-degree relation) over
Z with respect to the transformed commitment scheme. In addition, the transfor-
mation preserves some homomorphic properties of the underlying scheme, which
turns out to be crucial in the application to range proofs.

Definition 9 (The Transformation). Let com be a commitment scheme with
message space com.Mcom = Z

n
q and random space com.Rcom. We define the

commitment scheme com over parameters U,C ∈ N such that U < q−1
2 with

– com.Mcom = {x ∈ Z
n | ‖x‖∞≤ U/C}

– com.Rcom = {(d, γ,y) ∈ Rcom × Z × Z
n | γ ≤ C, ‖y‖∞≤ U/C}

as follows:

– com.Setup(1λ): outputs pp ← com.Setup(1λ).
– com.Commitpp(x): computes (c, r) ← com.Commitpp(x) and outputs

(c, (r, 1,x)).
– com.Verifypp(c,x, (r, γ,y)): sets z = y ·γ−1 mod q and checks x =
y

γ �, |γ| ≤
C, γ = 0, ‖y‖∞≤ U/C, com.Verifypp(c,z, r) = 1 as well as x =
y

γ �, where
division is performed in Q

n.

Lemma 7. The commitment scheme com is correct, binding and hiding.

Efficient Range Proofs with Transparent Setup 267

The correctness and hiding properties follow directly from the security of com.
The binding property can be argued similarly.

Let A be a PPT adversary breaking the binding property of com. We design
a PPT adversary B that breaks the binding property of com with challenger C.

On receiving pp from the challenger C, B forwards pp to A and receives
(c, (d0, γ0,y0), ((d1, γ1,y1),x0,x1). B sets zi = yi ·γ−1

i mod q and just forwards
(c, d0, d1,z0,zi) to C. If A is successful, both commitments verify correctly with
respect to com and x0 = x1. Thus by definition of com.Verify, the verification
check for the sent openings are valid with respect to the scheme com. Note that
‖yi‖∞≤ U/C, |γi| ≤ C for i ∈ [0, 1]. So ‖yi · γi‖∞≤ U ≤ q−1

2 . Assume for the
sake of contradiction that z0 = z1:

z0 = z1 =⇒ y0 · γ1 = y1 · γ0 mod q =⇒ y0 · γ1 = y1 · γ0 in Q

=⇒ y0

γ0
=

y1

γ1
in Q =⇒

⌊
y0

γ0

⌉

=
⌊
y1

γ1

⌉

in Q

This contradicts x0 = x1 and thus the advantage of B is the same as A .

Arguing over the Integers. Now, we motivate how to perform proofs over
the integers on the example Ped. Let Ped be the scheme obtained by the above
transformation applied to Ped. Let C = 2λ determine the challenge space, S =
22λ determine the size of the randomness and L = 2λ be the masking overhead.
Let 2λ = C < U ∈ N and let q be prime with 2U < q. Let G be a group of order
q. For clarity, we restate the scheme:

– Ped.Setup(1λ): outputs pp = (g, h) $← G
2.

– Ped.Commit(pp, x): samples r
$← [0, S] and outputs (c = gxhr, (r, 1, x)).

– Ped.Verify(pp, c, x, (r, γ, y)): checks gy·γ−1
hr = c as well as x =
 y

γ �, where
the division is performed in Q, |γ| ≤ C, γ = 0 and |y| ≤ U/C.

The most essential protocol is the proof of knowledge of an opening. We now
establish an unoptimized version in order to gain a basic understanding of the
underlying arguments. The relation we prove is

R = {(c, (x, (r, γ, y))) | Ped.Verify(c, x, (r, γ, y)) = 1}.

For the correctness property, we are only interested in honest openings, so γ =
1, y = x. The proof scheme follows the conventional strategy of blinding the
witnesses (x, r) with a mask. We add a size check for the masked witness to
ensure the shortness of the opening. Note that the message space of Ped is
{x ∈ Z | x ≤ U/C} but we can only perform proofs for smaller x values because
the commitments need to stay binding after the masking process. In more detail,
we let B ∈ N such that 2BCL ≤ U/C and we allow for messages |xi| ≤ B. The
following protocol proves knowledge of an opening.

– Init(c, (x ∈ [−B,B], r ∈ [0, S])): m
$← [0, BCL], s $← [0, SCL]; outputs d =

gmhs.

268 G. Couteau et al.

– Chall(): outputs γ
$← [0, C]

– Resp(γ): sets z = m + γ · x, t = s + γ · r. Outputs (z, t)
– Verify(d, γ, z, t): checks |z| ≤ BCL and gzht = d · cγ .

The first verification check succeeds with overwhelming probability since the
probability that the random m is too close to BCL is small. The second check
succeeds due to

gzht = gm+γ·xhs+γ·r = gmhs · (gxhr)γ = d · cγ .

Further, Lemma 3 also implies that z, t hide the witnesses x, r statistically and
using d = gzht · c−γ , a valid transcript can be computed for a given challenge
γ. Thus, the scheme honest-verifier is zero-knowledge. The following soundness
argument shows how to extract correct openings.

First, let (d, γ, z, t), (d, γ′, z′, t′) be two accepting transcripts with γ = γ′.
Without loss of generality, we assume that γ′ > γ. We denote z = z′ − z, t =
t′ − t and γ = γ′ − γ. We know that gz′−zht′−t = cγ′−γ which directly implies
gz/γht/γ = c. Thus, γ∗ = γ, r∗ = t/γ, y∗ = z and x∗ =
 y∗

γ∗ � is a valid opening
for c. Note that the size checks are satisfied:

|γ∗| ≤ C, |y∗| ≤ 2BCL ≤ U/C.

Note that we know that x∗ is short because γ∗ and y∗ are short, so the above
protocol can already be seen as range proof that guarantees that the committed
value lies in [−2BCL, 2BCL]. Nonetheless, this is not very satisfying yet because
the slackness of 2CL = 22λ+1 is very large. But the shortness of the extracted
values can be used to argue in Z instead of Zq which opens the door for more
sophisticated arguments.

On Retaining Homomorphism. If the original scheme is homomorphic, the
transformation retains (restricted) homomorphic properties. Firstly, if the com-
mitments are generated honestly, the homomorphic property is retained as long
as the homomorphic calculation is performed inside the bound U/C of the
scheme. In case of dishonest commitments, the scheme still retains a more limited
form of homomorphic properties.

If the scheme com allows for addition of constants to the committed value,
the homomorphic property is retained up to overflow over the bound U/C. To
illustrate, let t ∈ Z

n
q be some constant and c a commitment to message m =

y/γ� with opening (r, γ,y). Note that c commits to y/γ modulo q with respect
to com and we can use the homomorphic operations. We have

(y/γ) + t = y/γ + (t · γ)/γ = (y + t · γ)/γ mod q

and
y+t·γ
γ � =
y/γ�+t = m+t. So the result of the homomorphic operation is

actually exact because the additional operand does not introduce an additional
error term. Note that for the opening to be correct, the norm ‖y + t · γ‖∞ needs
to be smaller than U/C. So, enough space needs to be guaranteed to perform

Efficient Range Proofs with Transparent Setup 269

homomorphic operations. The analysis for retaining multiplicative homomorphic
properties for small constants is similar.

In the case of additive and multiplicative homomorphisms between dishonest
commitments, there are some small error terms and thus, the properties do not
translate as directly. We refer to the full version for more details.

For range proofs, the homomorphism with small constants can be used to
prove the 3-square decomposition of the integer and the complications from
multiplicative and the additive homomorphic error terms can be balanced out
such that we can still prove the relation with the homomorphic property of the
underlying schemes.

Ensuring Membership of an Interval. We use the 3 square decomposition
in order to show membership of [0, B]. This can be extended to a range proof for
interval [a, b] by setting B = b − a. Since com allows for addition of constants,
the prover can show x−a ∈ [0, B] =⇒ x ∈ [a, b]. Note that the values still need
to lie inside the given bounds.

We are using the 3 square decomposition to show that x ∈ [0, B]. Since the
extracted x is a rounded fraction, we still need to ensure that the decomposition
shows the desired range membership.

Lemma 8 (Three Square for Rounded Fractions). Let n, d ∈ Z and x =

n

d �, {xi}i=1..3 ∈ Q and B ≥ 2. Then:

1 + 4
n

d
(B − n

d
) =

3∑

i=1

x2
i =⇒ x ∈ [0, B].

Proof. A simple calculation shows that n
d ∈ [12 (B − √

B2 + 1), 1
2 (B +

√
B2 + 1)].

This interval can further be bound as follows:
1
2
(B +

√
B2 + 1) =

1
2
B(1 +

√
1 + 1

B2) ≤ 1
2
B(1 + 1 + 1

B2) = B + 1
2B

A similar computation for the left bound shows that the 3-squares decomposition
implies n

d ∈ [− 1
2B , B + 1

2B]. Since B ≥ 2, we find n
d ∈ [− 1

4 , B + 1
4]. Rounding

leads to the desired result. (In fact, this holds even for B = 1.)

Further Properties. Our adapted commitment scheme and range proofs have
additional useful properties.

Remark 1 (RP for com). For denominator γ = 1, com coincides with com.
Under this precondition, our range proofs establish x ∈ [0, B] for also com-
commitments.

Remark 2 (Positivity). Our proofs show x ∈ [0, B]. However, in many appli-
cations, proofs of positivity (x ≥ 0) suffice. That is, B could be made into
a zero-knowledge threshold (used for masking only), so that for x > B no
zero-knowledge guarantees hold.9 This change is achieved by proving 1 + 4x =∑3

i=1 x2
i . Now, soundness guarantees x ∈ [0, q−1

2].
9 In fact, masking and hence zero-knowledge degrades gracefully in the size of x.

270 G. Couteau et al.

Remark 3 (Denominators). A closer look at soundness shows, that a denomina-
tor γ > 1 leads to a rejection with probability 1 − 1

γ . Thus, the larger γ, the less
likely will a (malicious) verifier succeed.

5 Range Proof in a DLOG Setting

5.1 Overview

In this section, we present the range proof in the setting of a group G with
prime order q under the DLOG (or DLSE) assumption.10 As basis, we use Peder-
sen commitments Ped, which we transform in a bounded rational commitment
schemes Ped as in Sect. 4.1. Recall that the difference of Ped and Ped is mostly
in the interpretation of the committed values.

Our protocol reuses the structure of existing range proofs based on Pedersen
commitments in the RSA setting (see [Lip03,Gro05,CPP17]). For a given com-
mitment c = gxhr, the prover computes the square decomposition 1+4(b−x)x =∑

i=1..3 x2
i and lets x0 = b −x. Thus, we prove 1 + 4x0x =

∑
i=1..3 x2

i . Note that
all xi are in the range [0, B]. The prover commits to ci = gxihri for some ran-
domly sampled ri for i ∈ [1, 3], and sets c0 = gbc−1. For a proof of knowledge of
xi, he computes mask commitments di = gmihsi (and an additional “garbage”
term d), and sends them to the verifier. After receiving the challenge γ, the
prover reveals zi = mi +γxi and ti = si +γri and the verifier can check whether
the equation gzihti = cγ

i di holds (and an equation for the square decomposi-
tion).11 The verifier checks the proof of knowledge and accepts only if zi and
ti are small. As usual, if the prover can answer two different challenges γ, γ̃,
openings can be extracted. These openings are xi = zi−z̃i

γ−γ̃ with short nomina-
tor and denominator, and they satisfy the square decomposition (or DLOG is
broken). This shows soundness (for Ped openings), Furthermore, as we sketched
in the introduction, when small exponents are used for the masking term hy,
and by adjusting the parameters, soundness can actually be proven statistically.
In our parameter choice, however, we will optimize for efficiency and focus on
computational soundness.

For zero-knowledge, the witness is blinded by the masks mi. Since the mi’s
must be small (hence are not uniform in Zq), we do not get perfect zero-
knowledge. However, xi + mi still statistically hides xi. This is enough to estab-
lish (statistical) zero-knowledge by the usual “simulation by execution in reverse”.
The construction and proof is somewhat complicated by using small exponents
for the masking term hy, which consequently must be masked itself.

10 The optimization of the Pedersen commitment scheme with short exponents relies
on the SEI, which for relevant ranges is equivalent to DLSE.

11 In the scheme, we use a hash function to avoid having to send the mask commitments
to the verifier to save space.

Efficient Range Proofs with Transparent Setup 271

5.2 Parameters

Let pp = (g, h, q) be the public parameters of the commitment scheme Ped in
group G with order q, let H : {0, 1}∗ �→ {0, 1}2λ be a collision resistant hash
function, and let [0, B] be the range with B ≥ 2. Let [0, C] be the challenge
set. Let S be the size of small exponents in the SEI assumption, and let L be
the growth factor of masked intervals due to additive noise, that is, masking
[0, B] results in [0, BL]. We define U = 32B2C2L2 and note that it serves as an
upper bound for the integers appearing in the security proof. In particular, we
require U < q−1

2 . The prover shows that he knows x, r committed in c = gxhr =
Ped.Commit(x; r) and that x ∈ [0, B]. (Other commitments are interpreted as
Ped).

5.3 Scheme

The scheme RPLog follows the structure of the line of work [Lip03,Gro05,CPP17].
We adapt the scheme to the DLOG setting and apply our encoding technique.

– RPLog.Init(c = gxhr, x ∈ [0, B], r ∈ [0, S]):
1. compute xi s.t. 4x(B − x) + 1 =

∑3
i=1 x2

i

2. Set r0 = −r, x0 = B − x
3. Set c0 = c−1gB

4. Set ∀i ∈ [1, 3] : ri
$← [0, S], ci = gxihri

5. Set ∀i ∈ [0, 3] : mi
$← [0, BCL], si

$← [0, SCL], di = gmihsi

6. Set σ
$← [0, 4SBCL], d = hσc4m0

∏
i=1..3 c−mi

i

7. Set Δ = H({di}i=0..3, d)
8. Outputs {ci}i=1..3,Δ

– RPLog.Chall(): outputs γ
$← [0, C]

– RPLog.Resp(γ):
1. Sets ∀i ∈ [0, 3] : zi = mi + γ · xi, ti = si + γ · ri

2. Sets τ = σ + γ(
∑

i=1..3 xiri + 4x0r0)
3. Outputs {zi, ti}i=0..3, τ

– RPLog.Verify({ci}i=1..3,Δ, γ, {zi, ti}i=0..3, τ):
1. Compute c0 = c−1gB

2. Compute ∀i ∈ [0, 3] : fi = gzihtic−γ
i

3. Compute f = hτ · gγ · c4z0 · ∏
i=1..3 c−zi

i

4. Check Δ = H({fi}i=0..3, f)
5. Check zi ∈ [0, BC(L + 1)]

The scheme is perfectly correct. Note that any interval [0, T], where term
T contains S, may be replaced by [0,max(q − 1, T)], as these masks only serve
zero-knowledge and do not affect soundness, hence wraparound is not a problem.
In particular, the scheme is correct, sound and HVZK if S = q − 1.

Theorem 1. Suppose L ≥ 32. The range proof RPLog for [0, B] is 2-special
sound with knowledge error 1

(C+1) under DLOG and CRHF assumptions.
More precisely, for every adversary A with strict running time T there are adversaries
B1,B2 with expected running time roughly 2T and AdvkeA ≤ 1

(C+1)
+AdvdlogB 1

+AdvcrhfB 2
.

272 G. Couteau et al.

Proof. Assume we have two accepting transcripts for distinct challenges γ = γ̃
with witnesses zi, ti, τ and z̃i, t̃i, τ̃ respectively. Without loss of generality, say
γ > γ̃. We show that either we obtain a valid witness, or we break DLOG or
collision resistance.

By collision resistance of H, we have d = f = f̃ and ∀i ∈ [0, 3] : di = fi = f̃i.
Denote by a the difference of a − ã for a ∈ {zi, ti, τ}. From fi = f̃i we find

gzihtic−γ
i = gz̃iht̃ic−γ̃

i ⇐⇒ gzihti = cγ
i ⇐⇒ gzi/γhti/γ = ci.

Thus for all i ∈ [1, 3], we have valid openings xi = zi/γ and ri = ti/γ for
commitment ci. For c0, we obtain c = g(γ·B−z0)/γh−t0/γ and therefore x0 = z0/γ
and r0 = t0/γ is an opening to c−1gB . Moreover x = B − z0/γ = B − x0 is the
committed value in c.

Now we turn to the square decomposition. We have

f = f̃ =⇒ hτ · gγ · c4z0 =
∏

i=1..3

czi
i

=⇒ hτ · gγ · g4(B−z0/γ)z0 · h4r·z0 =
∏

i=1..3

gxi·zihri·zi

=⇒ gγ · g4(B−z0/γ)z0 ·
∏

i=1..3

g−xi·zi = h−4r·z0 · h−τ ·
∏

i=1..3

hri·zi

=⇒ gγ+4(B−z0/γ)z0−∑
i=1..3 xi·zi = h−4r·z0−τ+

∑
i=1..3 ri·zi .

Under the DLOG assumption (or statistically, when the exponent of h remains
small enough), this forces

γ + 4(B − z0/γ)z0 −
∑

i=1..3

xi · zi = 0 mod q

=⇒ γ + 4(B − z0/γ)z0 =
∑

i=1..3

zi
2/γ mod q

=⇒ γ2 + 4(γ · B − z0)z0 =
∑

i=1..3

zi
2 mod q

The final equality holds over the integers, because all values are small enough so
that there is no wrap-around. More precisely: Let K = BC(L+1) be the maximal
(accepting) value of |zi|. For the right hand side, |zi| ≤ |zi|+ |z̃i| ≤ 2K and hence∑

i=1..3 zi
2 ≤ 16K2 ≤ U < q−1

2 . Rewrite the left hand side as γ2 + 4γBz0 − z0
2.

Shortness follows from |γ|B ≤ K and thus K2+8K2+16K2 ≤ 25K2 ≤ U < q−1
2 .

Here we use that 25K2 = 25(BC(L + 1))2 ≤ 32(BCL)2 = U since L ≥ 32.
Since the equality holds over the integers, after dividing by γ2 it holds over

Q. Using z0 = γ(B −x), we see that γ2 +4γx(γB − γx) =
∑3

i=1 γ2x2
i and hence

1 + 4x(B − x) =
∑3

i=1 x2
i for x = B − z0

γ . Now, Lemma 8 finishes the proof.
(Note that we extracted a valid opening for c.)

Efficient Range Proofs with Transparent Setup 273

Theorem 2. The proof system RPLog is HVZK with simulation error 9/L. If
S = q − 1, this holds against unbounded adversaries.
More precisely, for every HVZK adversary A , there is a SEI adversary B with roughly
the same running time as A , such that AdvhvzkA ≤ 9/L + 4AdvseiB .

The proof works by simulation via “execution in reverse”. That is, the sim-
ulator Sim picks random messages zi, ti first and lets xi = 0. Then it uses the
challenge to compute the messages from the first round. Due to masking, this
distribution is L−1-close to the real one. And due to SEI, replacing commitments
to xi by commitments to 0 is also indistinguishable. The full proof is in the full
version.

5.4 Optimizations

We discuss some optimizations to either reduce the proof size or the group size.

Rejection Sampling for Smaller Group Size. In RPLog, we hide the values γ ·xi ∈
[0, BC] by an additive uniformly random mask z ∈ [0, BCL]. So the masking
has an overhead of log(L) bits. By using rejection sampling for masking, as used
in the lattice setting, this overhead can be traded for a (small) correctness error.
For this, we apply Lemma 6 instead of Lemma 3. That is, we choose the mask
from a discrete Gaussian distribution with large enough standard deviation σx,
and the prover aborts in Resp with (small) probability.

More concretely: Let the parameters for rejection sampling be standard devi-
ation σx = α · BC and M = e13.3/α+1/(2α2) for some α. Let k =

√
2λ and let

L′ = �kα�. Then the probability that the mask m ← Dσx
is too large (and

causes verification to abort) is O(2e−k2/2) = negl(λ) by Lemma 5. The protocol
is adapted as follows12:

– In Init, sample mi ← Dσx
for i ∈ [0, 3] (instead of mi ← [0, BCL′]).

– In Resp, abort with probability 1 − min
(

Dσx(zi)

M ·Dγ·xi,σx (zi)
, 1

)
for i ∈ [0, 3],

– In Verify, check |zi| ≤ BC(L′ + 1) for i ∈ [0, 3] instead of zi ∈ [0, BC(L′ + 1)].

Since |mi| ≤ BCL′ (and thus |zi| ≤ BC(L′ + 1)) with overwhelming probability,
the completeness is mostly affected by aborting in Resp. For the concrete value
α = 256 which implies M ≈ 1.05, the abort probability is very small (roughly
0.05). The statistical distance between honest masking and “simulated” masked
values is at most δ = 2−120, by Lemma 6. Using this property the HVZK sim-
ulator is easily adapted and achieves simulation error 4δ + 5L−1. (Note that
si and σ are sampled as before.) The soundness proof uses L′ but is otherwise
unchanged.

12 For more details on the technique and the proof of security, we refer to the range
proof in the lattice setting of the full version. It uses rejection sampling for masking
the randomness of the commitment scheme.

274 G. Couteau et al.

To achieve non-negligible completeness, the protocol needs to be repeated,
increasing computation and communication. For the Fiat–Shamir transforma-
tion, only computation increases.

Lastly, note that 2U = 32(BCL′)2 is a lower bound on the group size q. With
rejection sampling, we can choose smaller L′, and hence smaller q. One can use
rejection sampling for the masks σ and si as well, but these do not affect the
group size, only the communication (and the simulation error). More concretely,
let σr = α · SCL and further modify the protocol as follows:

– In Init choose si ← Dσr
for i ∈ [0, 3].

– In Resp abort with probability 1 − min
(

Dσr(ti)

M ·Dγ·ri,σr ti)
, 1

)
for i ∈ [0, 3].

This results in a size of |ti| ≤ SCL′. Also applying this to σ yields |τ | ≤ 4SBCL′.
In the full version, we detail the concrete impact of these changes on the effi-
ciency.

Soundness Amplification for Smaller Group Size. The soundness error of the
scheme is 1/(C + 1), and since C affects U and hence the group size, decreasing
it allows smaller groups. However, to achieve negligible soundness error, multiple
iterations are required, namely λ/log(C) iterations for a soundness error of 2−λ.
Note that the commitments ci only need to be sent in the first repetition and
can be reused in the following ones.

Efficiency. Efficiency estimations are given in the introduction. Details on our
calculations and the Python scripts used to compute the costs are given in the
full version.

References

[AC20] Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical appli-
cation to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513–543. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_18

[BAZB20] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a
smart contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 423–443. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4_23

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: short proofs for confidential transactions and more. In: 2018 IEEE
Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society
Press, May 2018

[BBDE19] Blömer, J., Bobolz, J., Diemert, D., Eidens, F.: Updatable anonymous cre-
dentials and applications to incentive systems. In: ACM CCS 2019, pp.
1671–1685. ACM Press, November 2019

[BCDv88] Brickell, E.F., Chaum, D., Damgård, I., van de Graaf, J.: Gradual and
verifiable release of a secret (extended abstract). In: Pomerance, C. (ed.)
CRYPTO 1987. LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-48184-2_11

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/3-540-48184-2_11

Efficient Range Proofs with Transparent Setup 275

[BCK+14] Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.:
Better zero-knowledge proofs for lattice encryption and their application to
group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part
I. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45611-8_29

[Ben] Benarroch, D.: Diving into the zk-SNARKs setup phase. https://medium.
com/qed-it/diving-into-the-snarks-setup-phase-b7660242a0d7

[BLLS20] Bootle, J., Lehmann, A., Lyubashevsky, V., Seiler, G.: Compact privacy
protocols from post-quantum and timed classical assumptions. In: Ding,
J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 226–246.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_13

[Bou00] Boudot, F.: Efficient proofs that a committed number lies in an interval.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_31

[CCs08] Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set mem-
bership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89255-7_15

[CDE+16] Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meik-
lejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC
2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4_8

[Cha90] Chaum, D.: Showing credentials without identification transferring sig-
natures between unconditionally unlinkable pseudonyms. In: Seberry, J.,
Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 245–264.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0030366

[CHJ+20] Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: shorter
proofs for privacy-enhanced distributed ledger. Cryptology ePrint Archive,
Report 2020/735 (2020). https://eprint.iacr.org/2020/735

[CHL05] Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18

[CPP17] Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assump-
tion from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 321–350. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6_11

[CZJ+17] Cecchetti, E., Zhang, F., Ji, Y., Kosba, A., Juels, A., Shi, E.: Solidus:
confidential distributed ledger transactions via pvorm. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 701–717 (2017)

[DF02] Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme
based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002.
LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-36178-2_8

[FO97] Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove
modular polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052225

[FSW03] Fouque, P.-A., Stern, J., Wackers, G.-J.: Cryptocomputing with rationals.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-36504-4_10

https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://medium.com/qed-it/diving-into-the-snarks-setup-phase-b7660242a0d7
https://medium.com/qed-it/diving-into-the-snarks-setup-phase-b7660242a0d7
https://doi.org/10.1007/978-3-030-44223-1_13
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/BFb0030366
https://eprint.iacr.org/2020/735
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/3-540-36504-4_10

276 G. Couteau et al.

[GI08] Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness
of a shuffle. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
379–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3_22

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gro05] Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioan-
nidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_
32

[Gro11] Groth, J.: Efficient zero-knowledge arguments from two-tiered homomor-
phic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-25385-0_23

[HKR19] Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments
in the discrete log setting, revisited. In: ACM CCS 2019, pp. 2093–2110.
ACM Press, November 2019

[HKRR20] Hoffmann, M., Klooß, M., Raiber, M., Rupp, A.: Black-box wallets: fast
anonymous two-way payments for constrained devices. PoPETs 2020(1),
165–194 (2020)

[HPWZ17] Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: A signature scheme from
learning with truncation. Cryptology ePrint Archive, Report 2017/995
(2017). http://eprint.iacr.org/2017/995

[KK04] Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In:
Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_
13

[Lin03] Lindell, Y.: Parallel coin-tossing and constant-round secure two-party com-
putation. J. Cryptol. 16(3), 143–184 (2003)

[Lip03] Lipmaa, H.: On diophantine complexity and statistical zero-knowledge
arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp.
398–415. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
40061-5_26

[LM19] Lai, R.W.F., Malavolta, G.: Subvector commitments with application to
succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7_19

[LN17] Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS,
vol. 10210, pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7_11

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_
43

[MIO18] Miola, A.: Addressing privacy and fungibility issues in bitcoin: confidential
transactions (2018)

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
46766-1_9

https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
http://eprint.iacr.org/2017/995
https://doi.org/10.1007/978-3-540-24632-9_13
https://doi.org/10.1007/978-3-540-24632-9_13
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9

Efficient Range Proofs with Transparent Setup 277

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13(3), 361–396 (2000)

[PS19] Pollack, P., Schorn, P.: Dirichlet’s proof of the three-square theorem: an
algorithmic perspective. Math. Comput. 88(316), 1007–1019 (2019)

[RS86] Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory, pp.
S239–S256 (1986)

[Sle] Slepak, G.: How to compromise zcash and take over the world. https://
blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-
world/

[YAZ+19] Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-
based zero-knowledge arguments with standard soundness: construction
and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7_6

https://doi.org/10.1007/3-540-68339-9_33
https://blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-world/
https://blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-world/
https://blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-world/
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6

Towards Accountability in CRS
Generation

Prabhanjan Ananth1(B), Gilad Asharov2, Hila Dahari3, and Vipul Goyal4

1 University of California, Santa Barbara, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 Bar-Ilan University, Ramat Gan, Israel
gilad.asharov@biu.ac.il

3 Weizmann Institute, Rehovot, Israel
hila.dahari@weizmann.ac.il

4 NTT Research and Carnegie Mellon University, Pittsburgh, USA
vipul@cmu.edu

Abstract. It is well known that several cryptographic primitives cannot
be achieved without a common reference string (CRS). Those include,
for instance, non-interactive zero-knowledge for NP, or maliciously secure
computation in fewer than four rounds. The security of those primitives
heavily relies upon on the assumption that the trusted authority, who
generates the CRS, does not misuse the randomness used in the CRS
generation. However, we argue that there is no such thing as an uncondi-
tionally trusted authority and every authority must be held accountable
for any trust to be well-founded. Indeed, a malicious authority can, for
instance, recover private inputs of honest parties given transcripts of the
protocols executed with respect to the CRS it has generated.

While eliminating trust in the trusted authority may not be entirely
feasible, can we at least move towards achieving some notion of account-
ability? We propose a new notion in which, if the CRS authority releases
the private inputs of protocol executions to others, we can then provide
a publicly-verifiable proof that certifies that the authority misbehaved.
We study the feasibility of this notion in the context of non-interactive
zero knowledge and two-round secure two-party computation.

1 Introduction

Very broadly, cryptography can be seen as having two parallel lines of research:
one where the parties don’t trust anyone but themselves, and another where
security relies on some kind of trust assumption. Most notably, many works
have relied on the common reference string (CRS) model where a trusted party
chooses and publishes a public string. The advantage of relying on a CRS depends
upon the setting. For example, for ZK it is known that while in the CRS model,
a non-interaction solution can be achieved [9,17] one needs at least 3 rounds
in the plain model [22]. For MPC, two rounds are sufficient in the CRS model
[8,21,29] while the best known constructions in the plain model require at least

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 278–308, 2021.
https://doi.org/10.1007/978-3-030-77883-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_10

Towards Accountability in CRS Generation 279

4-rounds [1,4,10,15,27,28]. Furthermore, UC security is known to be impossible
to achieve in the plain model [11,12] while this impossibility can be bypassed
in the CRS model [11,13]. Thus, while one might prefer to obtain constructions
in the plain model, it seems unlikely that the CRS model will be abandoned
anytime soon.

Do There Really Exist Trusted Parties? We argue that in real life, there
is no such thing as an unconditional trusted party. We argue that the only
reason we trust a party is because the cost of cheating (if caught) for that party
would be much higher than the potential gains obtained by cheating successfully.
Indeed this applies everywhere in our society. We are more comfortable trusting
a large bank with our personal information compared to a small individual lender
only because a large bank will pay a much higher cost (loss of reputation and
potential future business) if it behaves maliciously. However if the cost to the
large bank was zero, the reasons for placing this trust would be unfounded. There
are multiple examples where even large entities systematically participated in
an activity which would be generally unacceptable only because they thought
the activity would not become public knowledge (e.g., Facebook selling data
to Cambridge Analytica, or Wells Fargo opening accounts without customer
knowledge).

Compared to real life, in cryptography, life is largely black and white: dishon-
est parties can be arbitrarily bad and trusted parties are unconditionally trusted.
For example, the party generating a CRS (referred to as the CRS authority from
hereon) in a NIZK system can potentially even recover your witness entirely and
sell it for profit. Similarly, in MPC, the CRS authority may recover your input
and pass it on to another party. Even if you detect that the authority is doing
that, it’s not clear how to prove it in a court of law and seek damages. You can
publicly blame the authority for doing that. But this is then indistinguishable
from a malicious party blaming an honest authority.

These concerns have motivated the study of weaker notions such as ZAPs
[16] and super-polynomial simulation security [30]. Groth and Ostrovsky studied
the so called multi-string model [25] where multiple authorities publish common
reference strings such that a majority of them are guaranteed to be honest.
Goyal and Katz [24], and later Garg et al. [20] studied UC security with an
unreliable CRS if the CRS turns out to be malicious, some other setup or an
honest majority can come to the rescue. Bellare et al. [7] studied NIZKs with
an untrusted CRS where even if the CRS is malicious, some weaker security
properties still hold.

In this work, we focus on a single CRS while providing some notion of
accountability towards the CRS generation authority. Our direction is orthogo-
nal to many of the works mentioned and, to our knowledge, largely unexplored.

Towards Accountability in CRS Generation: While eliminating trust in
the CRS authority entirely may not be feasible, can we at least move towards
achieving some notion of accountability? As an example, suppose you find out
that the CRS authority decrypted your input used in an execution of MPC
protocol and sold to another party for profit. Can you obtain a cryptographic

280 P. Ananth et al.

proof of this fact? Can you convince others that such an incident has happened?
Indeed there are limits on what can and cannot be achieved. For example, if
the authority sells your input and you never find out, it’s unclear if something
can be done. But if the decrypted input indeed falls into your hand (e.g., the
person buying the input from the authority was your own agent), you know for
sure that the authority is dishonest (although you may not be able to prove it
to others).

In this work, we study if there is any meaningful notion of accountability
that can be achieved with respect to a CRS authority. We focus specifically on
the case of NIZK, and two-round MPC which are both known to be impossible
in the plain model and yet achievable with a CRS. Our work runs into several
novel technical challenges as we discuss later. We note that our study is far from
complete and leaves open various intriguing questions.

1.1 Our Results

In this work, we propose novel notions of accountability in the context of two
party secure computation protocols and NIZKs. We also accompany these defi-
nitions with constructions realizing these notions.

Secure Two-Party Computation (2PC). Our definition of malicious author-
ity security first requires the same security guarantees as in regular secure com-
putation, that is, if the CRS was honestly generated, then the protocol achieves
simulation security in the presence of a malicious adversary. To capture the set-
ting when the CRS authority is malicious, we require the following two security
properties:

– Accountability. Suppose the authority generated a CRS maliciously. At a
later point in time, it offers a service to recover the honest parties’ inputs
from the transcripts of protocol executions between these parties, using the
trapdoors it embedded in the CRS. The accountability property guarantees
that we can hold such a CRS authority accountable by producing a piece of
publicly verifiable evidence that incriminates this authority for its malprac-
tice. This evidence can then be presented in a court of law to penalize this
authority. We formalize this by defining an efficient extractor that can inter-
act1 with this malicious authority and outputs a piece of evidence (a string).
We associate with the scheme an algorithm Judge, which then determines
whether this evidence is valid or not.
The authority should not distinguish whether it interacts with the extractor
(who is trying to incriminate the authority) or with a real party (who is try-
ing to learn the inputs of the honest parties). Note that if the authority has
some auxiliary information about the honest party’s input, it can possibly

1 We stress that this extractor interacts with the malicious authority online without
being able to rewind the authority. This is because, if we want to implicate the
authority in the real world then we would not have the ability to rewind such an
authority.

Towards Accountability in CRS Generation 281

produce the input without using the CRS trapdoor at all. In that case, it
seems impossible to obtain incriminating evidence from the response of the
authority. To avoid this issue, we specify a distribution D such that the inputs
of the honest parties are sampled from this distribution in the security exper-
iment. We stress that this requirement is only for the accountability security
experiment. Our construction satisfies the usual definition of 2PC (without
requiring any distribution on the inputs) in case the CRS is honest.

– Defamation-free. Of course, accountability cannot stand by itself. This
notion opens up the possibility of falsely accusing even an honest CRS author-
ity (who never partakes in running the input recovery service mentioned
above) of malpractice. We complement the definition of accountability by
defining another property called defamation-free. Roughly speaking, this def-
inition states that just given an honestly generated CRS, it should be com-
putationally infeasible to come up with an evidence that would incriminate
an honest authority.

We study two variants of accountability. First, we study the scenario men-
tioned above in which two parties engage in a secure protocol. Then, one of
them comes to the authority after the fact and asks to open the honest party’s
input. That party has to provide to the authority its view, which includes its
own input and randomness. In the second (stronger) definition, we imagine the
authority will be more cautious and refuse to answer such queries. Instead, the
authority will insist on being involved from the beginning. In this model, the
authority completely controls one of the parties, actively participates in the pro-
tocol execution on behalf of this party, and finally recovers and provides to this
party the honest party’s input. We refer to these notions as weak and strong
accountability.

Impossibility Result. The first question is whether this new notion can be
realized at all. Unfortunately, we show that even the weak definition cannot be
realized for all functions. We show the following.

Theorem 1.1 (Informal). There exists a two-party functionality F such that
there does not exist any secure two-party computation protocol for F in the CRS
model satisfying both (weak) accountability and defamation-free properties.

Specifically, the class of functionalities for which the above impossibility result
hold are functionalities where given the output, we can efficiently recover the
inputs. Indeed, an impossibility result is easy to see in this case since the author-
ity can recover the input without even using any trapdoor related to the CRS
(and in fact, anyone can recover the input of any party). Since this class of
functionalities is somewhat trivial, and such functions are usually considered as
functions where secure computation is not necessary (a trivial protocol where
a party just gives its input suffices), this gives us hope that we can come up
with positive results for large class of interesting functionalities. We focus on
the setting of maliciously secure two-round two-party since that is known to be
impossible to achieve in the plain model.

282 P. Ananth et al.

Construction. We then study the following class of (asymmetric) two-party
functionalities F : the two-party functionality takes as input (x, y) and outputs
g({xi}yi=1) to the second party (with input y) for some function g. That is, it
outputs g on only those bits of x that are indexed by the bits of y set to 1. This
class of functions includes for instance, oblivious transfer, private information
retrieval, subset sum, and more. We show the following:

Theorem 1.2 (Informal). Assuming SXDH (Symmetric External Diffie-Hell-
man) on bilinear maps, there exists a two-round maliciously secure two-party
computation protocol for F satisfying both weak accountability (with respect to
the uniform distribution over the inputs) and defamation-free.

Indeed, obtaining such a construction turns out to be surprisingly non-trivial
and requires one to overcome novel technical challenges. We refer the reader to
Sect. 2 (Technical Overview) for a summary of techniques.

Strong Accountability for Oblivious Transfer. As mentioned, we study
weak and strong accountability, depending on whether the malicious authority
actively participates in the protocol execution or not. We focus on the oblivious
transfer functionality and demonstrate that strong accountability is possible to
achieve, based on a (seemingly) stronger assumption.

Theorem 1.3 (Informal). Assuming indistinguishability obfuscation for P/poly
[5,19] and SXDH in bilinear groups, there exists a two-round maliciously secure
oblivious transfer protocol in the CRS model satisfying both strong accountability
and defamation-free properties, with respect to the uniform distribution over the
inputs.

The techniques developed in the above construction can potentially be extended
also for the class of functions in F for which Theorem 1.2 holds, although we
focused on oblivious transfer for simplicity.

Non-Interactive Zero-Knowledge (NIZK). Another basic cryptographic
primitive which relies on a CRS is NIZK. Indeed, CRS shows up in several cryp-
tographic constructions primarily because they use NIZK as a building block.
Similar to the 2PC case, we require the same guarantees as a regular NIZK
when the CRS is honestly generated, namely, completeness, soundness and zero-
knowledge. We associate with the proof system a Judge algorithm and require
accountability and defamation free properties:

– Accountability. For any CRS∗ that might be maliciously produced by the
CRS authority, if there exists an adversary that upon receiving pairs (x, π)
can recover the witness w, (where x is an instance, π is a proof that x is in
the associated language, and w is the secret witness), then there exists an
extractor that can create a piece of evidence τ that is accepted by Judge.
As before, our accountability property is parameterized by a distribution
D defined on the instance-witness pairs. Indeed this is necessary since if the
authority can guess the witness without using the CRS trapdoor, the security
guarantees we have in mind are impossible to achieve.

Towards Accountability in CRS Generation 283

– Defamation-free. This states that no non-uniform probabilistic polynomial-
time adversary A upon receiving a CRS that was honestly generated can come
up with a piece of evidence τ that makes Judge accept.

We consider a NP language L consisting of instances of the form (C, c1, . . . , cm, b)
such that C : {0, 1}m → {0, 1} is a boolean circuit, each ci is a commitment
of xi and moreover, C(x1, . . . , xn) = b. We note that we can reduce any NP-
complete language to this language based on the existence of rerandomizable
commitments. We show the following.

Theorem 1.4 (Informal). Assuming SXDH on bilinear maps, there exists a
NIZK for L in the CRS model satisfying both the accountability and the
defamation-free properties.

We can handle a class of distributions D with the only requirement being that a
distribution in this class computes the commitments using uniform randomness
while the circuit C and inputs (x1, . . . , xn) can be arbitrarily chosen.

Open Problems. We believe that a systematic study of the notions of account-
ability in the CRS model is an exciting line of research. Our work leaves open
several natural questions. Can we broaden and characterize the class of function-
alities for which accountable 2PC can be achieved? Can we extend our construc-
tion to more than two parties? While we focus on two rounds, obtaining even
three round constructions would be valuable since the best known constructions
in the plain model require at least four rounds.

One could also consider stronger notions where the authority only supplies
some information about the input (e.g. the first bit of the input) rather than
the entire input. In this setting, it seems the extractor would need to obtain
multiple responses from the authority and somehow combine them into a single
proof. Furthermore, while we focus on privacy (of the input in case of secure
computation, or the witness in case of NIZK) in this work, what if the authority
instead attacks correctness or soundness?

Another interesting direction is to consider other settings where CRS is used
such as obtaining UC security.

Related Works. Our notion is inspired, in part, by broadcast encryption with
traitor tracing [14] where, given a decryption box, there is a trace algorithm
(similar to our Judge algorithm) which identifies the cheating party. However
there are crucial differences. Our Judge algorithm does not have direct access
to the CRS authority and only gets to see a string produced by the extractor.
Furthermore, our extractor only gets to interact with the CRS authority online
and, in particular, does not get to rewind the CRS authority. In another related
line of research, Goyal [23] introduced what is known as accountable authority
(AA) identity-based encryption (IBE) where if the authority generating the IBE
public parameters is dishonest and releases a “decryption box”, the authority
can be implicated in a court. Our definition is also inspired by public verifiability
in covert security, introduced by Asharov and Orlandi [3]. This definition shows

284 P. Ananth et al.

how one can extract, given a transcript of the protocol, a piece of evidence show-
ing that there was a misbehavior in the execution. The definition also requires
defamation free, so that innocents cannot be implicated.

Another related notion of our work is subversion security, suggested by Bel-
lare, Fuchsbauer, and Scafuro [7] (see also [18]). The work studies the security
of NIZKs in the presence of a maliciously chosen common reference string. It
shows that several security properties can still be preserved when the CRS is
maliciously generated. Nevertheless, it is shown that zero-knowledge cannot be
preserved simultaneously with soundness when the common reference string is
maliciously generated. Our work takes a different approach and seeks account-
ability when such misbehavior is detected. It will be intriguing to see how these
two notions can intertwine.

2 Technical Overview

We start by explaining the main idea that underpins the constructions of NIZK,
oblivious transfer and secure two-party computation with malicious authority
security. Realizing this insight will lead us to different challenges in the context
of designing each of the different primitives; we discuss the challenges for each
of these primitives separately.

Main Idea. Our main idea is to force the CRS authority to include a transcript
of execution of the protocol as part of the CRS, where the transcript has a
secret x embedded inside. In the context of NIZKs, we force the authority to
include a NIZK proof in the CRS where the witness contains the secret x. In the
case of oblivious transfer and secure two-party computation, the sender and the
receiver’s input in the transcript are generated as a function of x.

In the honest execution, the transcript in the CRS is ignored. However, to
argue accountability, the extractor will cleverly maul this transcript in the CRS
to generate another transcript in such a way that the mauled transcript now has
the embedded secret x ⊕ y, where y is sampled by the extractor. The extractor
then sends this mauled transcript to the malicious CRS authority. Since this
authority offers a service to recover the inputs of the honest parties (or witness
in the context of NIZKs), it recovers x ⊕ y and outputs this. Note that the
authority was tricked into recovering an input that was in reality related to the
secret that it hardwired inside the CRS. Now, the extractor has x ⊕ y, and it
can easily recover x. It recovers x and presents it as evidence to implicate the
authority. The extractor could never recover x by itself without the “help” of
the malicious authority, which also implies defamation free.

While this initial idea sounds promising, its realization involves technical
challenges. We highlight some of them below.

– The first and foremost challenge is malleability. We hinged on the fact that the
extractor can maul the transcript in the CRS. It turns out that malleability
is a challenging problem. Malleability of transcripts has not been studied in
the context of interactive protocols before and moreover, even in the setting
of NIZKs, this has only been studied in the context of restricted relations.

Towards Accountability in CRS Generation 285

– Another challenge is to ensure that the malicious authority cannot distinguish
whether it is interacting with an extractor, who is trying to incriminate it, or
is it interacting with a malicious party who only intends to learn the inputs
of the honest parties. In other words, we need an extractor who can produce
transcripts that are computationally indistinguishable from the transcripts
produced by real protocol executions (not the ones obtained by mauling the
CRS).

– We mentioned above that we force the authority to include a transcript in
the CRS. How do we ensure that the authority did indeed include a valid
transcript in the CRS? The standard solution to employ a NIZK proof cannot
work because the authority can violate soundness since it is the one who
generates the CRS.

– Finally, to prove the defamation-free property, we need to argue that any
probabilistic polynomial time adversary, (no matter how hard it tries) cannot
come up with an evidence to implicate an honest authority. In other words,
given the transcript in the CRS, it should be computationally infeasible to
recover the secret x.

We now show how to implement our main idea, to construct NIZKs, oblivious
transfer and secure 2PC with malicious authority security, and in the process we
also discuss how to address the above challenges.

2.1 Malicious Authority Security for NIZK

We start by describing the NP relation associated with the proof system.

NP Relation. Every instance in this relation is of the form (C, c1, . . . , cm, b),
consisting of three components: (1) A boolean circuit C : {0, 1}m → {0, 1}; (2)
Committed input c = (c1, . . . , cm) hiding some bits (x1, . . . , xm) using decom-
mitments (r1, . . . , rm); (3) A bit b satisfying b = C(x1, . . . , xm). The witness is
therefore the bits (x1, . . . , xm) and their associated decommitments (r1, . . . , rm).
In particular, embedding the commitments in the language guarantees average
case hardness, as opposed to regular circuit satisfiability that might have only
worst case hardness.

Base Proof System. We start with a NIZK proof system and then modify
this system to satisfy the desired properties. The proof system is obtained by
employing the standard FLS trick [17].

To prove an instance (C, c1, . . . , cm, b) using a witness x = (x1, . . . , xm) and
de-commitments r = (r1, . . . , rm), we simply use a NIWI proof system in which
the prover can show that either it knows the witness (x, r), or that it knows a
seed sin for some string y that appears in the CRS, i.e., y = PRG(sin). When
the CRS is honestly generated, with overwhelming probability, such a pre-image
does not exist, and thus the proof system is sound. Moreover, the simulator can
generate an indistinguishable CRS in which y = PRG(sin) for some trapdoor sin,
enabling it to provide proofs without knowing the witnesses.

286 P. Ananth et al.

Accountability. To achieve accountability, we need to provide more information
in the CRS. As a warmup, we will include the commitments c0 = Com(0; r0)
and c1 = Com(1; r1) for random r0, r1. To prove accountability, we define an
extractor who first samples a circuit C and a string x = (x1 · · · xn) accord-
ing to the distribution of the honest prover, chooses a subset of the commit-
ments (cx1 , . . . , cxn), where cxi is a commitment of the bit xi and is taken from
the extra information in the CRS. Then, the extractor computes a proof π on
the instance (C, (cx1 , . . . , cxn), C(x)). The authority, given the instance and the
proof, will output the witness (x, rx1 , . . . , rxn). This witness itself serves as an
evidence that can be used to incriminate the authority; this is because it can be
publicly verified that (xi, rxi) is a valid opening for cxi . Moreover, just given the
CRS, it is computationally infeasible to produce an opening; thus, defamation-
free is guaranteed as well.

There are four major issues with this approach. The first issue is the follow-
ing: the authority upon recovering the witness (x, rx1 , . . . , rxn), or even by just
viewing the instance (C, (cx1 , . . . , cxn), C(x)) to be opened, will realize that it
corresponds to the randomness associated with the commitments in the CRS.
So, it will be able to figure out that it is the extractor who submitted the proof.
The second issue is that it is unclear how the extractor will be able to produce
a valid proof on the instance (cx1 , . . . , cxn). Indeed, the binding property of the
commitment scheme and the soundness of the NIWI proof tell us that this should
not be possible. The third issue is that the authority is the one who generates
the public parameters of the commitment scheme, and might generate them as
computationally binding instead of perfectly binding. This means that even if
the authority opens the input, it might open cxi to 1 − xi. In this case, it is
unclear how to implicate the authority. Finally, the fourth issue is that we need
to verify that the malicious authority included commitments of 0 and 1 only.

– To get around the first issue, we use a rerandomizable commitment scheme.
Given commitment to a message m, we can rerandomize this commitment in
such a way that randomness of the new commitment information-theoretically
hides the randomness used in the old commitment. To see why this is use-
ful, note that the extractor can rerandomize the commitments (cx1 , . . . , cxn).
Now, the randomness recovered by the authority is identically distributed to
fresh commitments of (x1, ..., xn).

– To get around the second issue, we add to the language of our NIWI a third
branch: given a statement (C, c1, . . . , cm, b), the commitments (c1, . . . , cm)
were obtained as re-randomizations of the two commitments c0 and c1 in
the CRS, and the extractor has to provide the re-randomization information.
Thus, to generate an implicating transcript, the extractor chooses any cir-
cuit C and input (x1, . . . , xm) according to the distribution of the honest
prover. Moreover, it evaluates C(x1, . . . , xm) = b, re-randomizes the commit-
ments cx1 , . . . , cxm to obtain (c1, . . . , cm). The extractor then gets an instance
(C, c1, . . . , cm, b) with a proof πNIWI.

– For the third issue, we show that it does not matter whether the commitment
cxi is opened to xi or 1 − xi. In particular we show that, using the reran-

Towards Accountability in CRS Generation 287

domizability property of the commitment scheme, having either of the two
openings is sufficient to implicate the authority.

– Finally, to overcome the forth issue, the authority will provide four commit-
ments as part of the CRS,

(
(c00, c

0
1), (c

1
0, c

1
1)

)
, and prove using a NIWI proof

(which does not require CRS) that one of the branches (c00, c
0
1) or (c10, c

1
1) con-

sists of commitments to 0 and 1. Before participating in proving any state-
ment with respect to this CRS, one has to check using the proof provided in
the CRS that the CRS is correctly computed, i.e., that there is a method to
implicate the authority if corrupted.

To argue accountability with the modified CRS, the extractor needs to pick
the correct branch to rerandomize. However, it does not know which is the right
branch. Instead it samples one of the branches uniformly at random and pro-
ceeds. If we had the guarantee that the authority recovered the witness with
non-negligible probability then we have the guarantee that the extractor still
succeeds in coming up with an incriminating evidence with non-negligible prob-
ability.

We can argue defamation-free using the witness-indistinguishability property
of the proof in the CRS in conjunction with the hiding property of the commit-
ment scheme.

2.2 Malicious Authority Security for Oblivious Transfer

We now focus our attention on secure two party computation protocols. To gain
better intuition and to understand the difficulties we cope with, we start with
studying a specific functionality—oblivious transfer. The solutions and tech-
niques developed in addressing this functionality will also be useful in under-
standing the general case.

As opposed to NIZK which consists of one message and only the prover has
some private input (the witness), in oblivious transfer both parties have private
inputs. We consider a parallel repetition of 1-out-of-2 bit oblivious transfer, in
which the receiver holds a string σ = (σ1, . . . , σn) ∈ {0, 1}n, and the sender
holds two messages m0 = (m0

1, . . . ,m
0
n), m1 = (m1

1, . . . ,m
1
n) ∈ {0, 1}n. Only

the receiver receives the output which is mσ1
1 , . . . ,mσn

n . A two-round protocol of
oblivious transfer in the CRS model consists CRS generation algorithm GenCRS
(run by the authority) that outputs CRSOT, and two algorithms OT1,OT2 for
generating the transcript. The receiver runs msgR = OT1(CRSOT,σ) to obtain
the message msgR from the receiver to the sender, followed by a message msgS =
OT2(CRSOT,m0,m1,msgR) from the sender to the receiver. The receiver then
makes some local computation to output mσ1

1 , . . . ,mσn
n .

As the functionality hides information for both the receiver (m1−σ1
1 , . . . ,

m1−σn
n) and the sender (σ), both parties might come to the malicious authority

and ask to open the same transcript, while extracting different information from
it. We, therefore, have to discuss two different scenarios and show that in either
case, if the authority offers help to either of the two parties, it can be impli-
cated. In the first scenario, which we call malicious sender, the sender submits

288 P. Ananth et al.

its view to the authority and tries to learn the input of the receiver. We define
malicious receiver analogously. We follow the same oblivious transfer protocol
that is secure against malicious adversaries. As mentioned earlier in our discus-
sion, to achieve the protocol’s security, we cannot hope to prevent the malicious
authority from making any trapdoors in CRSOT. Those trapdoors are essential
ingredients when proving the simulation security of the protocol. All we can do
is to prevent it from using that trapdoor, and specifically from divulging secrets
to others.

Dealing with a Malicious Sender. Following our general template, the
authority generates CRSOT. Moreover, it randomly samples a challenge σ =
(σ1, . . . , σm), for some sufficiently long m, and appends f(σ) to the CRS, where
f is a one-way function. Then, we want to embed σ in transcript of OT, i.e., add
msgσ

R = OT1(σ). Without knowing the receiver’s randomness, no one can learn
σ just from seeing the message OT1(σ), as guaranteed from the receiver’s secu-
rity in the protocol against the malicious sender. This guarantees defamation
free. Yet, our goal is give the extractor the ability to maul those transcripts such
that if ever opened, we will have a piece of evidence to implicate the authority.

A natural idea is to just complete the transcript with any m0,m1 to obtain
msgS = OT2(CRSOT,m0,m1,msgσ

R). Then, to come up with the pair (msgS ,
msgR) to the authority. But, the authority will refuse to open such a transcript
– it can clearly identify that the receiver’s secret input is σ, i.e., the secret
challenge it generated! Moreover, it can identify that the message msgR in the
transcript is identical to the message it published in the CRS. We need a stronger
method that enables us to complete transcripts to any input of the sender and
to maul the receiver’s input and re-randomizes it.

To achieve that, we again successfully avoid the issue of malleability using
rerandomization and by adding more information in the CRS. Recall that
the protocol is a parallel repetition of bit OT, i.e., OT1(σ) = OTbit

1 (σ1), . . . ,
OTbit

1 (σm), where (OTbit
1 ,OTbit

2) is the underlying bit OT protocol. The author-
ity will have to generate for every bit two transcripts, αi,0 = OTbit

1 (σi ⊕ 0) and
αi,1 = OTbit

1 (σi ⊕ 1). This enables the extractor to obtain a transcript for σ ⊕Δ
for the receiver for every Δ = (Δ1, . . . ,Δn) of its choice, and any input (m0,m1)
of the sender of its choice. That is, to generate OT1(σ ⊕ Δ), do the following:

OT1(σ ⊕ Δ) = (α1,Δ1 , . . . , αn,Δn
) =

(
OTbit

1 (σ1 ⊕ Δ1), . . . ,OTbit
1 (σn ⊕ Δn)

)
.

It re-randomizes each one of these messages, and completes it to full tran-
script with any messages m0,m1 of its choice. The authority receiving such a
transcript has no way to tell that this transcript was generated using the tran-
scripts it published in the CRS. By extracting the input of the receiver it discloses
itself.

Dealing with a Malicious Receiver. Following a similar approach, recall that
on input (m0,m1) for the sender and σ for the receiver, the oblivious transfer
functionality hides only (m1−σ1

1 , . . . ,m1−σn
n) but reveals (mσ1

1 , . . . ,mσn
n) to the

Towards Accountability in CRS Generation 289

receiver. Therefore, it seems natural to embed the challenge in the hidden part
of the message. The authority chooses a new challenge x = (x1, . . . , xn) and
publishes f(x) in the CRS. Moreover, it creates transcripts that correspond to x
and enables the extractor to produce transcript for every input r = (r1, . . . , rn)
of the receiver and “shift” Δ = (Δ1, . . . ,Δn), while embedding xi in position
1 − ri (which is not revealed), to obtain ((x1 ⊕ Δ1)1−r1 , . . . , (xn ⊕ Δn)1−rn).
If the malicious authority ever opens the transcript, that is, it recovers ((x1 ⊕
Δ1)1−r1 , . . . , (xn ⊕Δn)1−rn), it can then extract x from this (since it knows the
“shift”) and implicate the authority. To do that, first observe that there are 8
possible transcripts for each bit OT: the input of the receiver is ri ∈ {0, 1} and
the input of the sender is (m0,m1) ∈ {0, 1}2. To enable the extractor to generate
any transcript it wishes, for every bit-OT i ∈ {1, . . . , n}, the CRS authority is
expected to produce (as part of the CRS generation) four values as follows: For
every μ,Δi ∈ {0, 1}:

βi
0,μ,Δi

= OT(0, (μ, xi ⊕ Δi)) and βi
1,μ,Δi

= OT(1, (xi ⊕ Δi, μ)) ,

while OT(σ, (m0,m1)) denotes a full transcript of a bit OT where the input of
the receiver is σ and the sender is (m0,m1), and we omit CRSOT for brevity.
Observe that for each i ∈ {1, . . . , n} of the bit-OTs provided in the CRS, the bit
xi is not revealed in the transcript, as it corresponds to the input of the sender
that is not revealed. On the other hand, the randomness and the input of the
receiver is given in the clear.

The extractor can now choose any message m = (m1, . . . ,mn) of its choice
and any Δ = (Δ1, . . . ,Δn), and for every input r = (r1, . . . , rn) of the receiver,
it can generate a transcript (β1

r1,m1,Δ1
, . . . , βn

rn,mn,Δn
), which embeds a masking

of x. The extractor rerandomizes this transcript and, if opened by the authority,
the extractor can easily recover x.

Finally, as the authority has to produce many transcripts that are correlated
with the challenge, it has to prove that it generated all of them as specified. Just
as in malicious authority security for NIZK, we double all the new information
in the CRS and ask it to prove using a NIWI that one of the branches was
generated as specified.

Re-randomizable Oblivious Transfer. As mentioned above, to allow this to
work, we must ensure that the oblivious transfer transcript is rerandomizable.
Informally, we say that an OT transcript is rerandomizable if given a transcript
of execution of OT, we should be able to transform into another transcript on
the same inputs. The rerandomization guarantee is that even given the secret
randomness and the input of both parties in the original transcript, a distin-
guisher receiving a view of one of the parties should not be able to figure out
whether the view comes from a new transcript (with the same inputs), or the
view was rerandomized. We show that the oblivious transfer protocol of Peikert,
Vaikuntanathan, and Waters [31] is a perfect fit for our needs: it is a two-round
oblivious transfer in the CRS model, and we augment the protocol with reran-
domization procedures.

290 P. Ananth et al.

Strong Accountability. The protocol described above works when the mali-
cious authority does not participate actively in the protocol execution. To under-
stand why, we first remark that for a malicious receiver, the authority provides
transcripts where the input and randomness of the receiver are in the clear (i.e.,
provides the complete view of the receiver).

However, in strong accountability, the extractor now talks directly to the
adversary. It receives the first message in the protocol from the adversary, and it
cannot know the randomness and the private input of the adversary. Matching
the correct transcript from the CRS to the one just received by the adversary
is impossible, due to the receiver’s privacy. Specifically, to embed xi in position
1 − ri, we have to know ri.

On the other hand, this problem does not occur for the malicious sender’s
case, as it sends the second message in the protocol. In fact, the above-described
method already achieves strong accountability against malicious sender.

Achieving Strong Accountability via Indistinguishability Obfuscation.
We first start with the following idea. As now the transcripts are given “on the
fly” to the extractor, we do not even try to embed the secret challenge into the
transcript. Instead, we generate an honestly generated transcript using random
messages m0,m1 that the extractor itself does not even know, and give it also
m0 ⊕m1 ⊕x. Now the bits (m1−r1

1 , . . . ,m1−rn
n) are not known to the sender and

the receiver, and thus x is protected using one-time pad.
To implement this idea, we use indistinguishability obfuscation2. The author-

ity obfuscates a circuit C that on input msgR generates msgS on random inputs
m0,m1 and gives also m0 ⊕ m1 ⊕ x. Crucially, the evaluator of the circuit (the
extractor) does not know m0,m1. The messages m0,m1 are generated using
a pseudorandom key chosen by the CRS authority and was hardwired in the
circuit. Moreover, the defamation free proof is now rather involved as it requires
showing that the hardwired value x is not revealed even though it is also hard-
wired in the circuit.

This description is too simplified and is not sound. If the extraction just
sends the message msgR as received from the obfuscated circuit, the authority
can clearly identify it as it had generated the obfuscated circuit. The extractor
therefore has to rerandomize the message it receives as output from the circuit.
But this still does not suffice, as the authority can also identify that two messages
m0,m1 were generated by the circuit, as those are pseudorandom and it knows
the key used to generate them. Therefore, we modify the circuit such that given
a message msgR it generates four different transcripts, i.e.,

βτ0,τ1 = OT2(m0 ⊕ τn
0 ,m1 ⊕ τn

1 ,msgR)

2 An indistinguishability obfuscator [5,19] is a compiler that on input circuit C out-

puts a functionally equivalent circuit ̂C. Moreover, it gurantees that the obfuscations
of two functionally equivalent circuits (of the same size) are computationally indis-
tinguishable.

Towards Accountability in CRS Generation 291

for every τ0, τ1 ∈ {0, 1}. This enables the extractor to pick any masking it wishes
to m0,m1, similarly to the case of weak accountability. Whenever the authority
opens such a message, the extractor recovers m0,m1 and thus also x.

2.3 Malicious Authority Security for Two Party Computation

We now focus our attention on general purpose secure two party computation
protocols. We first start with an overview that shows that it is not possible to
achieve general purpose secure computation protocols for all functions. We then
complement our negative result by identifying a class of functionalities (which
subsumes oblivious transfer functionalities) for which we can achieve a positive
result.

Impossibility Result. When it comes to tackling the problem of designing
secure computation for general functionalities, we realize that we cannot simulta-
neously achieve accountability and defamation-free properties. Since the author-
ity recovers the inputs of the honest parties, it has to be the case that the
output of the functionality does not trivially leak the inputs, i.e., each party
really needs the help of the authority to recover the inputs of the honest par-
ties. When considering functions that do not provide such secrecy, we show that
there does not exists a protocol that can address malicious authority security.
Luckily, those functions, at least intuitively, are the functions for which secure
computation is not necessary to begin with. We formalize this intuition and show
that it is impossible to achieve secure two party computation for any function-
ality, as there exists functions for which achieving malicious authority security
is impossible.

Observe also that so far, both in the NIZK example and in oblivious transfer,
the functionality hides sufficient information (in NIZK this is the witness w; in
oblivious transfer these are the choice bits of the receiver and for the sender,
those are the bits in the input that were not selected by the receiver). This is
very intuitive: If the function is not hiding, then there is no need for help from
the authority to recover the private inputs.

Positive Result. We therefore restrict our attention to a specific class of func-
tions F that is guaranteed to have some form of secrecy. We also focus on the
asymmetric case where only one of the parties (designated as the receiver) gets
an output. Specifically we look at functions in which the inputs of both parties
is sufficiently long, and for every input of the receiver, there exists at least λ
bits in the inputs of the sender that are not meaningful and do not affect the
output, where λ denotes the security parameter. Interesting functions that are
captured in this class are oblivious transfer, private information retrieval, subset
sum, and more.

We describe a two-round secure computation protocol for computing all the
functions in the family in the CRS model, and then show how to enhance its
security to achieve malicious authority security.

The base protocol is a standard two-round two-party secure computation pro-
tocol that combines two-round oblivious transfer with garbled circuits. Denoting

292 P. Ananth et al.

the sender’s input as x = (x1, . . . , x�) and the receiver’s input as y = (y1, . . . , y�),
the receiver’s first message is simply msgR = OT1(y). The second message of
the sender is a bit more involved, and this complication comes to accommodate
malicious authority security at a later stage. Given a circuit C for computing
the function F ∈ F , the sender generates a garbled circuit GC together with
the labels K

(x)
i,0 ,K

(x)
i,1 for each input of the sender, and labels K

(y)
i,0 ,K

(y)
i,1 for each

input of the receiver. To receive the output on x,y, the receiver has to obtain
the labels K

(x)
i,xi

,K
(y)
i,yi

and output Eval(GC,K
(x)
i,xi

,K
(y)
i,yi

). To do that, the “classic”
approach is to instruct the sender to send the following message:

{K
(x)
i,xi

}i∈[�], OT2

(
(K(y)

i,0)i∈[�], (K
(y)
i,1)i∈�,msgR

)
, (1)

i.e., sending the labels that correspond to the sender’s input, and the labels
correspond to the receiver’s input are obtained using the oblivious transfer. For
the generation of the transcript by the extractor, it would be easier to send
the labels of the sender also in an OT message. We instead send the following
message:

OT2

(
(K(x)

i,0 ‖ K
(y)
i,0)i∈[�], (K(x)

i,xi
‖K

(y)
i,1)i∈�, msgR

)
. (2)

That is, the receiver always receives labels that corresponds to its input, as
before. As for the labels that correspond to the input of the sender, in case
yi = 1, then the receiver obtains K

(x)
i,xi

, i.e., the “correct” label. On the other

hand, in case yi = 0 then the receiver obtains K
(x)
i,0 , regardless of what the input

of the sender is, i.e., it receives a label that corresponds to xi = 0. This still
guarantees correctness as in the case where yi = 0, the input xi does not affect
the output, and the evaluation of the circuit when xi = 0 and xi = 1 gives
the same result. Here we rely on the structure of functions that we compute.
Together with this OT2 message, the sender also sends a NIWI proof that it
either generated the message correctly as instructed, or it knows some trapdoor
in the CRS.

Enhancing to Malicious Authority Security. Since the first message in the
protocol of the receiver is just OT1(y), this case reduces to the case of obtain-
ing malicious authority security in the case of a malicious receiver in oblivious
transfer.

For the case of malicious sender, we again follow our general template and
the CRS authority chooses a random challenge r = (r1, . . . , rλ) ∈ {0, 1}λ, and
gives out f(r). The goal now is to find what transcripts to provide such that
the extractor will be able to embed r to the input of the sender. If we would
have sent the keys as described in Eq. (1), then to let the extractor choose
inputs of the sender as a function of r, the authority would have to give both
keys K

(x)
i,ri

,K
(x)
i,1−ri

. This implies that the extractor will be able to evaluate the
function on both values of ri, breaking defamation free. Embedding the changes
inside the OT2 message enables us to maul that message without giving away

Towards Accountability in CRS Generation 293

any information about r. Specifically, we always maul the part that the receiver
did not ask for, similarly to the way it is done for oblivious transfer.

Organization. The remaining of the paper is organized as follows. We pro-
vide the necessary preliminaries in Sect. 3. In Sect. 4 we formally define our new
notion. In Sect. 5 we provide the construction of NIZK. Due to lack of space, the
construction of oblivious transfer and the two-party computation are deferred
to the full version of this paper.

3 Preliminaries

Notation and Conventions. We let λ denote the security parameter. We
let [n] denote the set {1, . . . , n}. We use PPT as shorthand for probabilistic
polynomial time. A function μ is negligible if for every positive polynomial p(·)
and all sufficiently large λ’s, it holds that μ(λ) < 1/p(λ).

A probability ensemble X = {X(a, λ)}a∈{0,1}∗;λ∈N is an infinite sequence of
random variables indexed by a ∈ {0, 1}∗ and λ. In the context of zero knowledge,
the value a will represent the parties’ inputs and λ will represent the security
parameter. All parties are assumed to run in time that is polynomial in the
security parameter. Two probability ensembles X = {X(a, λ)}a∈{0,1}∗;λ∈N, Y =
{Y (a, λ)}a∈{0,1}∗;λ∈N are are said to be computationally indistinguishable, denoted
by X≈cY , if for every non-uniform polynomial-time algorithm D there exists a
negligible function μ such that for every a ∈ {0, 1}∗ and every λ ∈ N,

|Pr[D(X(a, λ)) = 1] − Pr[D(Y (a, λ)) = 1]| ≤ μ(λ)

We denote by x ← D a sampling of an instance x according to the distribution
D.

We denote vectors using a bold font, e.g., α ∈ {0, 1}n, when it is usually
clear from context what is the vector size. We let α[i] denote the ith coordinate
of the vector.

3.1 Rerandomizable Commitment Scheme

Commitment scheme is a basic tool in cryptographic protocols. Informally, we
require the commitment scheme to satisfy two properties, the first is called perfect
binding, which means that the sets of all commitments to different values are
disjoint; for all x 	= x′ it holds that Com(x) ∩ Com(x′) = ∅ where Com(x) = {c |
∃r such that c = Com(x; r)} and Com(x′) = {c | ∃r such that c = Com(x′; r)}.
The second property is computational hiding; which means that the commitments
to different strings are computationally indistinguishable.

In addition to the perfect binding and computational hiding properties, we
also require the commitment scheme to be rerandomizable. The commitment
scheme C = (Setup,Com,Rerand, fcom) has the following syntax and properties:

– p ← Setup(1λ): outputs some public parameters p. Let the message space be
M and the commitment space be C.

294 P. Ananth et al.

– c ← Com(p,m; r): The algorithm gets m ∈ M and outputs a commitment
c ∈ C. The opening of the commitment is simply r.

– c′ ← Rerand(p, c; s): On input parameters p, commitment c and randomness
s, Rerand outputs a randomized commitment c′ to the same value. More-
over, we require the existence of an efficient function fcom such that for any
randomness m, r, s the following holds:

• Rerand(p,Com(p,m; r); s) = Com(p,m, s′) where s′ = fcom(r, s).
Moreover, it is required that for every fixed s, the function fcom(·, s) is
bijection, and for every r, the function fcom(r, ·) is a bijection as well.
In particular, this means that given s′, s one can find r for which s′ =
fcom(r, s).

Such a scheme can be constructed from the DLIN assumption, as showed in [26].
It’s rerandomization properties were discussed in [2].

3.2 Non-Interactive Zero Knowledge (NIZK)

Let L be an NP language and let RL be its associated relation. For (x,w) ∈ RL

we sometimes denote x the statement and w its associated witness.

Definition 3.1. Let L ∈ NP and let RL be the corresponding NP relation. A
triple of algorithms Π = (GenCRS,Prove,Verify) is called non interactive zero
knowledge (NIZK) argument for L if it satisfies:

– Perfect completeness: For all security parameters λ ∈ N and for all
(x,w) ∈ RL,

Pr
[
CRS ← GenCRS(1λ); π ← Prove(CRS, x, w) : Verify(CRS, x, π) = 1

]
= 1

– Adaptive Soundness: For all prover P ∗, there exists a negligible function
μ such that for all λ:

Pr
[

CRS ← GenCRS(1λ); (x, π) ← P ∗(CRS) : Verify(CRS, x, π) ∧ x �∈ L
]

≤ μ(λ)

When this probability is 0, we say that Π is perfectly sound.
– Adaptive Zero Knowledge: There exists a PPT simulator S = (S1,S2)

where S1(1λ) outputs (CRSS , τ) and S2(CRSS , τ, x) outputs πS such that for
all non-uniform PPT adversaries A,

{
CRS ← GenCRS(1λ) : AO1(CRS,·,·)(CRS)

}

≈c

{
(CRSS , τ) ← S1(1λ) : AO2(CRS,τ,·,·)(CRSS)

}

where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥.
Otherwise, O1 outputs Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

Towards Accountability in CRS Generation 295

3.3 Non-Interactive Witness Indistinguishability (NIWI)

One building block that we often use in our construction is non-interactive wit-
ness indistinguishability. It is useful for our purposes as it does not require a
common-reference string. NIWI in the plain model can be constructed based
on the DLIN assumption [26] and can be constructed assuming either trapdoor
permutations and derandomization assumptions [6].

Definition 3.2. A pair of PPT algorithms (Prove,Verify) is a NIWI for an NP
relation RL if it satisfies:

1. Completeness: For every (x,w) ∈ RL,

Pr [Verify(x,w) = 1 : π ← Prove(x,w)] = 1.

2. Soundness: There exists a negligible function μ such that for every x 	∈ L
and π ∈ {0, 1}∗:

Pr [Verify(x, π) = 1] ≤ μ(|x|).
3. Witness indistinguishability: For any sequence {(x,w1, w2) : w1, w2 ∈

RL(x)} ∈ I:

{π1 : π1 ← Prove(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← Prove(x,w2)}(x,w1,w2)∈I .

4 Defining Malicious Authority Security

In this section, we define the notion of malicious authority security for cryp-
tographic protocols defined in the CRS model. There are two aspects to our
definition, depending on whether CRS is honestly generated or if its generated
by a malicious authority. In the first case, if the CRS is honestly generated,
we require that the protocol satisfies the same traditional security requirements
described in the literature. In the second case, suppose that the CRS is generated
by a malicious authority and specifically, if the malicious authority runs a ser-
vice that let the adversarial entities, participating in the protocol, to recover the
inputs of the honest parties. In this setting, we should be able to implicate the
malicious authority of its wrongdoing. Formally speaking, we define an extractor
that interacts with the malicious authority and comes up with an evidence τ that
can presented to a Judge, defined by a Judge algorithm, who verifies whether the
presented evidence is valid. At the same time, we require the property that no
efficiency adversary can present an evidence that can falsely accuse the honest
authority of running a service.

We first discuss the definition of malicious authority security for NIZK
(Sect. 4.1), and then extend the ideas to general secure two party computation
(Sect. 4.2).

296 P. Ananth et al.

4.1 Malicious Authority Security for NIZK

We start by defining malicious authority security in the context of non-interactive
zero-knowledge systems.

A NIZK system consists of a triplet of algorithms Π = (GenCRS,Prove,
Verify). In addition, we define a PPT algorithm Judge, which will be necessary
for malicious authority security.

– b ← Judge(CRS, τ) where b ∈ {honest, corrupted}: The algorithm receives as
input the (possibly corrupted) CRS and some transcript τ , and outputs a b,
indicating whether the τ proves that the CRS CRS is corrupted or not.

Definition 4.1. Let L ∈ NP and let RL be the corresponding NP relation.
We say that a NIZK system Π = (GenCRS,Prove,Verify, Judge) has malicious
authority security with respect to distribution D if:

1. The system Π ′ = (GenCRS,Prove,Verify) is a NIZK proof system for L.
2. (Accountability:) We say that the NIZK scheme Π achieves accountability

with respect to distribution D if for all sufficiently large security parameter
λ ∈ N, any adversary A, if there exists a non-negligible function ε1(·) such
that

Pr[Acc.RealΠ,A,q(λ) = 1] ≥ ε1(λ)

then there exists a probabilistic polynomial time oracle-aided algorithm Ext
making at most q queries, and a non-negligible function ε2(·) such that:

Pr[Acc.Extπ,A,E,q(λ) = 1] ≥ ε2(λ)

where the random variables Acc.Realπ,A,E,q(λ) and Acc.Extπ,A,E,q(λ) are
defined below.

Acc.RealΠ,A,q(λ):
The adversary A(1λ) outputs some CRS∗, and we repeat the following for q
iterations:
– (xi, wi) ← D and then πi ← Prove(CRS∗, (xi, wi)).
– If Verify(CRS∗, xi, πi) 	= 1 then abort and the output of the experiment is

0.
– A is given (xi, πi).

A outputs some (i, x′
i, w

′
i) for i ∈ [q]. The output of the experiment is 1 if

xi = x′
i and RL(xi, w

′
i) = 1.

Acc.Extπ,A,E,q(λ):
The adversary A(1λ) outputs some CRS∗, and we invoke the extractor E on
input (CRS∗). We run q iterations in which in each iteration E outputs some
(xi, πi) that is forwarded to A. After all iterations, A outputs some (i, x′

i, w
′
i)

for some i ∈ [q]. The extractor E then outputs τ , and the output of the exper-
iment is 1 if Judge(CRS∗, τ) = corrupted.

Towards Accountability in CRS Generation 297

3. (Defamation-free:) For every ppt adversary A, there exists a negligible
function μ(·), such that for all λ:

Pr [Judge(CRS,A(CRS)) = corrupted] ≤ μ(λ) ,

where CRS ← GenCRS(1λ).

Discussion. We would like to highlight the following aspects of the above defi-
nition:

– Maliciously generated CRS∗: In the above definition, the adversary is the
one who is choosing the CRS∗ which might be maliciously generated. Natu-
rally, our aim is to capture the case where the maliciously generated CRS∗ is
indistinguishable from an honestly generated one, but the malicious authority
has some trapdoors that enable it to extract sensitive information. However,
the definition also has to capture the case where CRS∗ might be far from
an honestly generated CRS, to the extent where the scheme does not even
provide correctness with respect to that CRS∗. In that case, the output of the
real experiment is 0, and it is easy to implicate the adversary.

– Oracle access to the adversary: We remark that the extractor only has
an oracle access to the authority and does not get the code of the authority.
Giving the code of the authority to the extractor is unrealistic - in real life, the
authority is an actual entity, and so the extractor will not have access to its
code. Moreover, we want to explicitly prevent the extractor from “rewinding”
the authority, as this is not realistic in the real world.

– The distribution of the queries of the extractor: The malicious author-
ity A is the same in both experiments, and as such its view, as generated by
the extractor, should be indistinguishable from the view in the real execu-
tion. In particular, this means that the malicious authority should receive
from E in each iteration a pair (xi, πi) where the marginal distribution on
xi is computationally indistinguishable from the marginal distribution on
xi sampled according to the distribution (xi, wi) ← D and then setting
πi = Prove(CRS∗, xi, wi).

4.2 Malicious Authority for Secure Two-Party Computation

We now extend the above definition to general two-party computation in the
CRS model. We again assume that the reader is familiar with the standard
(standalone) definition of secure computation, and refer to the full version for a
formal definition. We require that the protocol Π simulates some functionality
F in the CRS model. Then, we add the malicious authority capability. We first
provide the definition and then discuss its changes from the NIZK definition. We
define a judgement algorithm similarly to the NIZK case:

– b ← Judge(CRS, τ): It takes as input a common reference string CRS, a cer-
tificate τ and outputs a bit b, indicating whether the common reference string
CRS is corrupted or not.

298 P. Ananth et al.

Definition 4.2. We say that a protocol Π = (π, Judge) has malicious authority
security for the functionality F with respect to the distribution D if the following
conditions hold:

1. Simulation security: π satisfies simulation security for the functionality F .
2. Accountability: We say that π satisfies security against malicious authority

with respect to the distribution D if the same conditions as in Definition 4.1
hold, where now the random variables Acc.Realπ,A,q(λ) and Acc.Extπ,A,E,q(λ)
are defined as follows.

Acc.Realπ,A,q(λ):

(a) A(1λ) is invoked and outputs a common reference string CRS∗.
(b) The protocol π is executed q number of times, where in the kth execution:

– The adversary A chooses some input x
(k)
i and randomness r

(k)
i for Pi.

– The input x
(k)
j of the honest party is sampled according to D.

– The protocol is run on these inputs; let transk be the resulting transcript.
– The adversary A receives transk.

(c) The adversary outputs (k, x
(k)
j) for some k ∈ [q].

(d) The output of the experiment is 1 if the input of Pj in the kth execution was
x
(k)
j .

Acc.Extπ,A,E,q(λ):

(a) A(1λ) is invoked and output common reference string CRS∗.
(b) The following is run for q number of times:
– The adversary outputs some input x

(k)
i and randomness r

(k)
i for Pi.

– The extractor replies with transk.

(c) The A receives the q queries, it outputs
(
k, x

(k)
j

)
for some k ∈ [q]. The

extractor E then outputs τ .
(d) The experiment outputs 1 if Judge(CRS∗, τ) = corrupted.

3. Defamation free: Same as in Definition 4.1.

Comparison to the Malicious Authority Security of NIZK. Malicious
authority security of NIZK is a special case of the above definition for two-
party computation. In NIZK, the functionality involves a prover and a verifier,
where the prover sends the functionality some (x,w). If (x,w) ∈ RL then the
functionality sends (x, yes) to the verifier and otherwise it sends (x, no). The
protocol in the CRS model consists of a single message from the Prover to the
Verifier. As we are interested in the privacy of the witness, we focus on the case
where the verifier is corrupted. As a result, the input of the honest party (the
prover) is chosen according to the distribution D and the input of the corrupted
party (the verifier) is chosen by the adversary, which is empty in the case of
NIZK. The adversary receives the transcript and at some point has to come up
with the input of the honest party, i.e., extract from (xi, πi) some (xi, wi).

Towards Accountability in CRS Generation 299

4.3 Strong Accountability

So far, we considered adversaries that are passive - while they contribute the
input and randomness of the corrupted party in the protocol, the malicious
authority expects to get back a full transcript of the protocol, i.e., the adversary
is semi-malicious. Here, we model the case where the malicious authority is
part of the protocol and colludes with one of the parties. Recall that simulation
security is guaranteed only if the CRS authority honestly generated the CRS. If
it does not, then we just have accountability as defined next. Defamation free is
defined similarly to the previous definitions.

Definition 4.3. We say that π satisfies strong security against malicious authority
with respect to the distribution D if the conditions as in Definition 4.1 hold, where
now the random variables StrongAcc.Realπ,A,q(λ) and StrongAcc.Extπ,A,E,q(λ)
are defined as follows.

StrongAcc.Realπ,A,q(λ):

1. A(1λ) is invoked and outputs a common reference string CRS∗.
2. The protocol π is executed q number of times where in the kth execution:

– The adversary A participates in the protocol and corrupts party Pi.
– The input x

(k)
j of the honest party is sampled according to D.

3. The adversary outputs (k, x
(k)
j) for some k ∈ [q] and j 	= i.

4. The output of the experiment is 1 if the input of Pj in the kth execution was
x
(k)
j .

StrongAcc.Extπ,A,E,q(λ):

1. A(1λ) is invoked and outputs a common reference string CRS∗.
2. A and E engage in q executions of a secure computation protocol, where the

party Pi is controlled by A.
3. After the q executions, A outputs (k, x

(k)
j) for some k ∈ [q] and j 	= i. The

extractor E then outputs τ .
4. The experiment outputs 1 if Judge(CRS∗, τ) = corrupted.

5 Malicious Authority Security for NIZK

In this section we construct a NIZK satisfying malicious authority security for
the language of circuit satisfiability on committed inputs. The instance is a
circuit C : {0, 1}m → {0, 1}, some committed values c = (c1, . . . , cm) and the
output b. The claim is that c are commitments of bits x = (x1, . . . , xm), and
that C(x1, . . . , xm) = b. Formally:

Rp(L) =
{

(C, c1, . . . , cm, b) | ∃(x1, . . . , xm) ∈ {0, 1}m
,

(r1, . . . , rm) ∈ {0, 1}poly(λ) s.t. C(x1, . . . , xm) = b

∧ ∀i ∈ [m] ci = Com(p, xi; ri)
}

300 P. Ananth et al.

The public parameters p associated with the commitment scheme are part of the
CRS. We let C be the set of all circuits that map m-bit input to 1 bit output.

Tools. The construction is based on the following components:

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}poly(λ).
– A rerandomizable bit commitment scheme which is perfectly binding

and computationally hiding, denoted as C = (Setup,Com,Rerand), where
Setup(1λ) outputs some public parameters p, c ← Com(p,m; r) where m
is a bit and r is the de-commitment. c′ ← Rerand(p, c; s) takes a commitment
c and randomness s and outputs some commitment c′.
It holds that Rerand(p,Com(p,m; r); s) = Com(p,m, s′) for some s′ =
fcom(r, s), and for every fixed s, r, the two functions fcom(·, s) and fcom(r, ·)
are bijections.

– Two non-interactive witness-indistinguishable proof systems (Prove,Verify),
denoted as Π

(1)
NIWI,Π

(2)
NIWI, associated with the languages L1 and L2, respec-

tively, which are defined as follows:
• The language L1:

Statement :
(
p, (c00, c

0
1), (c

1
0, c

1
1)

)

Witness :
(
(r, r00, r

0
1), (r, r

1
0, r

1
1)

)
,

such that one of the following conditions hold:
1. p = Setup(1λ; r) and (c00, c

0
1) = (Com(p, 0, r00),Com(p, 1, r01)), or

2. p = Setup(1λ; r) and (c10, c
1
1) = (Com(p, 0, r10),Com(p, 1, r11)).

• The language L2:

Statement :
(
CRS, C, {ci}i∈[m], b

)

Witness :
(
sin, {xi}i∈[m], {ri}i∈[m], σ, {si}i∈[m]

)

such that one of the following conditions hold:
1. PRG(sin) = sout, or,
2. C(x1, . . . , xm) = b, and ∀i ∈ [m] it holds that ci = Com(p, xi; ri).
3. C(x1, . . . , xm) = b, and ∀i ∈ [m] it holds that ci = Rerand(p, cσ

xi
; si).

where sout and (c00, c
0
1), (c

0
1, c

1
1) are taken from the CRS as given in Step 5

of GenCRS in Construction 5.1.

Construction 5.1 [NIZK with Malicious Authority Security]

GenCRS
(
11λ

)
:

1. Compute p ← Setup(11
λ

; r) for a random r.
2. Sample sout ← {0, 1}poly(λ)

3. For σ = 0 and σ = 1, do the following:
– Compute (cσ

0 , cσ
1) = (Com(p, 0, rσ

0),Com(p, 1, rσ
1)), for rσ

0 , rσ
1 ←

{0, 1}poly(λ).

Towards Accountability in CRS Generation 301

4. Compute π(1) ← Π
(1)
NIWI.Prove

((
(c00, c

0
1), (c

1
0, c

1
1)

)
, (r, r00, r

0
1,⊥,⊥,⊥)

.
5. Output CRS =

(
p, sout, (c00, c

0
1), (c

1
0, c

1
1), π(1)

)
.

Prove(CRS, (C, c1, . . . , cm , b),w): On input CRS, circuit C : {0, 1}m → {0, 1},
commitments (c1, . . . , cm), output bit b ∈ {0, 1}, and witness w do the following:

1. Parse w = ((x1, . . . , xm), (r1, . . . , rm)) where xi ∈ {0, 1}, ri ∈ {0, 1}poly(λ) for
all i ∈ [m], and compute

π(2) ← Π
(2)
NIWI.Prove

(
(CRS, C, {ci}i∈[m], b), (⊥, {xi}i∈[m], {ri}i∈[m],⊥,⊥)

)
.

Output π = π(2).

Verify(CRS, (C, c, b), π): On input CRS, instance (C, c, b), proof π,

1. Output the decision of Π
(2)
NIWI.Verify((CRS, C, c, b), π).

Judge(CRS∗, τ) : On input (possibly maliciously generated) CRS∗ and a tran-
script τ , do the following:

1. Check that the CRS∗ is well formed. That is:
(a) Parse CRS∗ =

(
p, sout, (c00, c

0
1), (c

1
0, c

1
1), π(1)

)
.

(b) Verify that Π
(1)
NIWI.Verify

((
p, (c00, c

0
1), (c

1
0, c

1
1)

)
, π(1)

)
= 1.

If the verification fails then abort and output corrupted.
2. If τ = (open, σ, ρ, r), where σ, ρ ∈ {0, 1} and r ∈ {0, 1}poly(λ) then: If cσ

ρ =
Com(p, ρ; r) then output corrupted.

3. If τ = (rerandomize, σ, ρ, r, c, s) where σ, ρ ∈ {0, 1} and r, s ∈ {0, 1}poly(λ), and
c is a commitment, then: If c = Rerand(p, cσ

ρ ; s) and c = Com(p, 1 − ρ; r) then
output corrupted.

4. Otherwise, output honest.

The Distribution D(DC ,Dx). We define now the family of distributions D
associated with the accountability property. We only place a restriction on the
generation of commitments; that is, the commitments need to be honestly gen-
erated, i.e., the randomness ri is uniformly distributed in {0, 1}poly(λ).

Formally, for any distribution over C (recall that C denotes the set of all
circuits with m-bit input and 1-bit output) and for any distribution Dx over
{0, 1}m, the distribution D(DC ,Dx) samples the input and witness as follows:

1. Sample a circuit C according to DC .
2. Sample the bits (x1, . . . , xm) according to Dx and evaluate b = C(x1, . . . , xm).
3. For every i ∈ [m] ∪ {M} compute ci = C.Com(p, xi; ri) for a uniform ri.
4. Output (C, c1, . . . , cm, b) as the instance and (x1, . . . , xm), (r1, . . . , rm) as the

witness.

302 P. Ananth et al.

Theorem 5.2. For every DC ,Dx, Construction 5.1 is a NIZK proof system with
malicious authority security with respect to the distribution D(DC ,Dx), assuming
the security of PRG, ΠComm, Π

(1)
NIWI and Π

(2)
NIWI.

Proof. We show completeness, soundness, zero-knowledge, accountability and
defamation-free properties.

Completeness. The completeness property follows from the completeness prop-
erty of Π

(2)
NIWI.

Soundness. Let CRS ← GenCRS(1λ), and fix any ppt adversary (corrupted
prover) A and any (C, c, b) /∈ Rp(L). We show that the probability that the
adversary outputs a proof π such that Verify(CRS, (C, c, b), π) = 1 is negligible.

We claim that (sout, C, c, b) /∈ L2. Once we prove this, it then follows from
the perfect soundness of Π

(2)
NIWI that the probability that the adversary outputs

a valid proof is negligible.
To show this, it suffices to argue that there does not exist any witness

(sin, (x1, . . . , xm), (r1, . . . , rm), σ, {si}i∈[m]) for the instance (sout, C, c, b).

1. Firstly, with overwhelming probability it holds that PRG(sin) 	= sout since sout
is sampled uniformly at random.

2. Since (C, c, b) 	∈ Rp(L), it holds that either C(x1, . . . , xm) 	= b, or there exists
some i ∈ [m] such that ci 	= Com(p, xi; ri).

3. Finally, we argue that there exists some i ∈ [m] such that Rerand(p, cσ
xi

; si) 	=
ci. Observe that if ci was obtained as a rerandomization of some cσ

xi
, then

still there exists a unique opening to xi (or no opening at all). This would
then violate (C, c, b) 	∈ Rp(L).

Zero-Knowledge. We describe a PPT simulator Sim. The simulator Sim runs
GenCRS, but compute sout as an output of PRG where the seed sin is sampled
uniformly at random from {0, 1}λ and stores the trapdoor sin. Then, whenever it
is given an instance (CRS, C, c, b) it uses (sin,⊥,⊥,⊥,⊥) as a witness to compute
the proof π

(2)
NIWI.

The computational indistinguishability of the real world and the ideal world
follows from the witness-indistinguishability of Π

(2)
NIWI, and the pesudorandom-

ness of PRG.

Accountability. We first describe the extractor E . On input (possibly mali-
ciously generated) CRS∗ generated by the malicious authority, it does the fol-
lowing:

1. It checks that CRS∗ is well formed, as described in Step 1 in Judge algorithm.
If CRS∗ is not well formed, then it halts and outputs τ = ⊥.

2. It chooses a branch σ ∈ {0, 1} uniformly at random and runs the following
for q iterations. For every j ∈ [q]:
(a) It samples a circuit C(j) = C according to the distribution DC .
(b) It samples an input x(j) = x = (x1, . . . , xm) according to the distribution

Dx.

Towards Accountability in CRS Generation 303

(c) It evaluates b(j) = b = C(x1, . . . , xm).
(d) For every i ∈ [m], it generates the commitment ĉxi

= C.Rerand(p, cσ
xi

, si)
for a uniformly random s

(j)
i = si ∈ {0, 1}poly(λ).

Let ĉ(j) = ĉ = (ĉx1 , . . . , ĉxm
) be the sequence of all commitments.

(e) It generates π = π(2)←Π
(2)
NIWI.Prove

(
(CRS, C, ĉ, b), (⊥,⊥,⊥, σ,{si}i∈[m])

)
.

(f) It sends ((C, ĉ, b), π) to the malicious authority.
3. After q iterations, the malicious authority might reply with some input

(j, (C, ĉ, b)) with witness {xi}i∈[m] and {ri}i∈[m] for which ĉi = Com(p, xi; ri)
for all i ∈ [m] and C(x1, . . . , xm) = b.
(a) If (x1, r1) satisfies cσ

x1
= Com(p, x1; r1) where cσ

x1
is taken from the CRS,

then output τ = (open, σ, x1, r1).
(b) Otherwise, if it holds that c′ := Rerand(p, cσ

1−x1
, s(j)1) = Com(p, x1, r1),

output τ = (rerandomize, σ, x1, r, c′, s(j)1).

We claim that if the extractor chooses σ to be the “correct branch”, i.e., the one
for which π(1) from the CRS is correct, then the view of the malicious author-
ity is indistinguishable between Acc.Real and Acc.Ext. We then claim that the
extractor always outputs a transcript that is accepted by Judge if the malicious
authority outputs a valid witness (j, (C, ĉ, b)) for the j ∈ [q] iteration. To show
this, we need to argue that the view of the authority when interacting with the
real parties is computationally indistinguishable from the view of the authority
when interacting with the extractor.

Indistinguishability of Views. Consider the following hybrids:

– H1: We change the way CRS is generated, such that sout is an output of
PRG where the seed sin is sampled uniformly at random from {0, 1}λ. The
output of the hybrid is 1 if the adversary succeeds to output π for which
Verify(CRS, (C, c, b), π) = 1.

– H2: This is the experiment Acc.RealΠ,A,q(λ).
– H3: This hybrid is inefficient. The prover in the real experiment works as

follows: It samples C ← DC and x ← Dx. Then, instead of directly committing
to the x = (x1, . . . , xm) it takes cσ

x1
, . . . , cσ

xm
. It then rerandomizes all the

commitments to obtain rerandomized commitments ĉσ
x1

, . . . , ĉσ
xm

. It then runs
in exponential time and determines the randomness {ri}i∈[m] such that ĉσ

xi
=

Com(p, xi; ri). It uses (⊥, x, {ri}i∈[m],⊥,⊥) to compute the proof π
(2)
NIWI for

the instance (C, c̃, b), where b = C(x). The rest of the hybrid is the same as
before.

– H4: This is Acc.ExtΠ,A,q(λ) with branch σ.

From the security of PRG, it follows that the view of the adversary in H1 is
computational indistinguishale from the real view. The view of the adversary in
H2 and H3 is identical, which follows from the fact that the rerandomization
procedure of the commitment scheme generates commitments that are identically
distributed to fresh commitments.

304 P. Ananth et al.

The two hybrids H3 and H4 are computationally indistinguishable, follows
from the witness-indistinguishability of Π

(2)
NIWI. We consider a non-uniform reduc-

tion which gets as input the CRS and the decommitments of the commitments
in the CRS as non-uniform advice. Using this, the (efficient) reduction computes
and sends the instance (C, ĉ, b), where b = C(x), along with two witnesses to
the challenger of the WI game. The challenger then sends the proof π

(2)
NIWI to

the reduction, who forwards it to the adversary. If the adversary can distinguish
the hybrids H3 and H4 with non-negligible probability then the reduction can
break the witness-indistinguishability property with non-negligible probability,
a contradiction.

Once the authority gives a witness {xi}i∈[m] and {ri}i∈[m] for the jth exe-
cution, from inspection it is easy to see that the extractor outputs a transcript
that implicates the authority. Thus, if the authority succeeds in Acc.Real with
some non-negligible probability ε1(λ) then the extractor succeeds with proba-
bility negligibly close to ε1(λ)/2, where the loss occurs from guessing σ and the
indistinguishability of the proof π.

Defamation-Free. For every ppt adversary A there exists a negligible func-
tion μ(·) such that: Pr [Judge(CRS,A(CRS)) = corrupted] ≤ μ(λ), where CRS ←
GenCRS(1λ). First, since CRS is honestly generated, it always passes the verifi-
cation of Step 1 in the Judge algorithm. We now show that for every σ ∈ {0, 1},
no ppt adversary can output τ = (open, σ, ·) or τ = rerandomize, σ, ·, ·, ·, ·) with
non-negligible probability. For that, fix σ ∈ {0, 1}, and consider the following
sequence of hybrid experiments:

1. H1: In this hybrid, the adversary receives CRS ← GenCRS(1λ) and the output
of the hybrid is 1 if it outputs τ = (open, σ, ··) or τ = (rerandomize, σ, ·, ·, ·, ·)
that is accepted by Judge.

2. H2: We modify the way CRS is generated, such that for proving the instance
((c00, c

0
1), (c

1
0, c

1
1)) using Π

(1)
NIWI, we use the witness of 1 − σ. That is,

(a) If σ = 0 we prove π(1) using the witness (⊥,⊥,⊥, r, r10, r
1
1).

(b) If σ = 1 we prove π(1) using the witness (r, r00, r
0
1,⊥,⊥).

Clearly, the views of the adversary in both the experiments are computationally
indistinguishable from the witness-indistinguishability property of Π

(1)
NIWI. Next,

we claim that the probability that the adversary outputs an accepted transcript
in H2 is negligible. At this point, the proof π(1) is independent of the randomness
used to create the commitments cσ

0 , cσ
1 . Outputting τ = (open, σ, ρ, r) is equiv-

alent to violating the hiding property of the commitment scheme. Outputting
τ = (rerandomize, σ, ·, ·, ·, ·) is impossible in case p is perfectly binding. In case
p just satisfies computational hiding, coming up with the rerandomization is
equivalent to violating the (computationally infeasible) “rerandomize and open”
property, as we formalize in the full version.

Towards Accountability in CRS Generation 305

6 Malicious Authority Security for Oblivious Transfer

6.1 Oblivious Transfer with Weak Accountability

Due to lack of space, we just state our results and refer the reader to the full
version for further details. Our construction is based on a rerandomizable obliv-
ious transfer, which intuitively mean that a transcript of a given execution of
two-round oblivious transfer can be re-randomized, i.e., look like a fresh execu-
tion on the same inputs. We show that [31] achieves this notion. We denote by
n×OT the functionality of n parallel instance of 1-out-of-2 bit OT.

Theorem 6.1. Assuming one-way functions, non-interactive witness indistin-
guishability proof system, and two-round rerandomizable oblivious transfer for
bit OT, there exists a construction of two-round n×OT with (weak) mali-
cious authority with respect to the uniform distribution over the inputs for any
n ∈ Ω(λ), where λ is the security parameter.

6.2 Oblivious Transfer with Strong Accountability

Moreover, we show that strong accountability is possible but we need stronger
assumptions:

Theorem 6.2. Assuming the security of one-way function, indistinguishabil-
ity obfuscator, non-interactive witness-indistinguishability proof system, and the
existence of a rerandomizable oblivious transfer, there exists a construction that
achieves strong malicious authority security for the functionality n×OT with
respect to the uniform distribution over the inputs for any n ∈ Ω(λ), where λ is
the security parameter.

7 Malicious Authority Secure for Secure 2PC

In this section, we investigate malicious authority security for secure two party
computation. Due to lack of space, we just give the statements of the results and
refer the reader to the full version for more details.

Lemma 7.1. There exists a two-party functionality F such that for any secure
computation protocol for F between parties P1 and P2, the following events can-
not simultaneously hold:

– Pi, for some i ∈ {1, 2} receives the output of the protocol and,
– The following properties are satisfied: (i) defamation-free property and, (ii)

accountability holds when the malicious authority corrupts the party Pi.

Positive Result - the Class of Functions. For > λ, we let F be a family
of all functions over F : {0, 1}� × Y → {0, 1}� such that

F ((x1, . . . , x�), (y1, . . . , y�)) = g ({xi}yi=1) ,

for some function g. Namely, whenever yi = 0, then the xi does not affect the
output. The set Y ⊂ {0, 1}� contains all elements with hamming weight at most
 − λ.

306 P. Ananth et al.

Theorem 7.2. For every function F ∈ F , there exists a construction that
achieves (weak) malicious authority security with respect to the uniform distribu-
tion over the inputs, assuming the existence of maliciously secure rerandomizable
oblivious transfer in the CRS model, non-interactive witness-indistinguishability
proofs, and pseudorandom generator.

Acknowledgements. The authors thank the anonymous reviewers of EUROCRYPT
2021 for many helpful comments.

Gilad Asharov is sponsored by the Israel Science Foundation (grant No. 2439/20),
and by the BIU Center for Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk�lodowska-Curie grant agreement No. 891234.
Hila Dahari is a fellow of the Ariane de Rothschild Women Doctoral Program and sup-
ported in part by grants from the Israel Science Foundation (No. 950/15 and 2686/20)
and by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness.
Vipul Goyal is supported in part by the NSF award 1916939, DARPA SIEVE program,
a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center
for financial services innovation award, and a Cylab seed funding award.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

2. Ananth, P., Deshpande, A., Kalai, Y.T., Lysyanskaya, A.: Fully homomorphic
NIZK and NIWI proofs. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 356–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-36033-7 14

3. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 41

4. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 16

5. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

6. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 18

7. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-030-36033-7_14
https://doi.org/10.1007/978-3-030-36033-7_14
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26

Towards Accountability in CRS Generation 307

8. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

9. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: Symposium on Theory of Computing (STOC), pp.
103–112. ACM (1988)

10. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

11. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

12. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 5

13. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: ACM Symposium on Theory of
Computing (STOC), pp. 494–503 (2002)

14. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

15. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: Theory of Cryptog-
raphy - TCC 2020 (2020, to appear)

16. Dwork, C., Naor, M.: Zaps and their applications. In: Foundations of Computer
Science, FOCS 2000, pp. 283–293 (2000)

17. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29, 1–28 (1999)

18. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 11

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

20. Garg, S., Goyal, V., Jain, A., Sahai, A.: Bringing people of different beliefs together
to Do UC. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 311–328. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 19

21. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

22. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7, 1–32 (1994)

23. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74143-5 24

https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-39200-9_5
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-19571-6_19
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-540-74143-5_24

308 P. Ananth et al.

24. Goyal, V., Katz, J.: Universally composable multi-party computation with an
unreliable common reference string. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 142–154. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 9

25. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

26. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

27. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 17

28. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

29. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

30. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

31. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

https://doi.org/10.1007/978-3-540-78524-8_9
https://doi.org/10.1007/978-3-540-78524-8_9
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Property-Preserving Hash Functions
and ORAM

Robust Property-Preserving Hash
Functions for Hamming Distance

and More

Nils Fleischhacker1(B) and Mark Simkin2

1 Ruhr University Bochum, Bochum, Germany
mail@nilsfleischhacker.de

2 Aarhus University, Aarhus, Denmark

Abstract. Robust property-preserving hash (PPH) functions, recently
introduced by Boyle, Lavigne, and Vaikuntanathan [ITCS 2019], com-
press large inputs x and y into short digests h(x) and h(y) in a manner
that allows for computing a predicate P on x and y while only having
access to the corresponding hash values. In contrast to locality-sensitive
hash functions, a robust PPH function guarantees to correctly evaluate
a predicate on h(x) and h(y) even if x and y are chosen adversarially
after seeing h.

Our main result is a robust PPH function for the exact hamming
distance predicate

HAMt(x, y) =

{
1 if d(x, y) ≥ t

0 Otherwise

where d(x, y) is the hamming-distance between x and y. Our PPH func-
tion compresses n-bit strings into O(tλ)-bit digests, where λ is the secu-
rity parameter. The construction is based on the q-strong bilinear dis-
crete logarithm assumption.

Along the way, we construct a robust PPH function for the set inter-
section predicate

INTt(X, Y) =

{
1 if |X ∩ Y | > n − t

0 Otherwise

which compresses sets X and Y of size n with elements from some arbi-
trary universe U into O(tλ)-bit long digests. This PPH function may
be of independent interest. We present an almost matching lower bound
of Ω(t log t) on the digest size of any PPH function for the intersection
predicate, which indicates that our compression rate is close to optimal.
Finally, we also show how to extend our PPH function for the intersection
predicate to more than two inputs.

N. Fleischhacker—Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.
M. Simkin—Supported by a DFF Sapere Aude Grant 9064-00068B.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 311–337, 2021.
https://doi.org/10.1007/978-3-030-77883-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_11

312 N. Fleischhacker and M. Simkin

1 Introduction

Compressing data while maintaining some of its properties is one of the most
fundamental tasks in computer science. Approximate set membership data struc-
tures, such as Bloom Filters [2] or Cuckoo Hashing [16], allow for compressing
large data sets into small digests that can afterwards be used to test whether
some element x was a member of the original data set or not. Locality-sensitive
hash functions [11] allow for compressing data points x and y independently
into short digests h(x) and h(y) such that the hash values can be used to check
whether the original points were close or far apart according to some metric like
the euclidean or angular distance. Streaming algorithms [14] enable an observer
of a data stream to estimate certain statistics about the stream while using
only a small amount of local storage. All of these algorithms have two things
in common. They are all randomized and thus may fail on certain inputs with
some, usually small, probability and they all assume that the inputs are chosen
independently of the random coins used by the data structure.

Over the past years, a series of works [1,4,5,10,13,15] have investigated such
data structures in the presence of adversarial inputs that are chosen after seeing
the random coins of the data structure. Naor and Yogev [15], for instance, study
the robustness of Bloom filters in the presence of an adversary that aims to
find an input set X and a value z �∈ X such that the approximate membership
test on a digest of X and the value z incorrectly reports that z ∈ X. Clayton,
Patton, and Shrimpton [5] extend the work of Naor and Yogev to other data
structures such as counting Bloom filters and count-min sketches. Boyle, LaVi-
gne and Vaikuntanathan [4], referenced as BLV hereafter, initiated the study of
robust property-preserving hash (PPH) functions, which, in a nutshell, combine
the security guarantees of collision-resistant and the functionality of locality-
sensitive hash functions.

A bit more formally, a PPH function h : X → Y with evaluation algorithm
Eval : Y × Y → {0, 1} for some predicate P : X × X → {0, 1} is said to be
robust, if no PPT adversary A, who is given (h,Eval), can produce an output
(x, y) such that P (x, y) �= Eval(h(x), h(y)). The authors construct such a hash
function, which compresses n-bit inputs by some small constant factor, for the
gap-hamming predicate

GAP-HAMt
ε(x, y) =

⎧
⎪⎨

⎪⎩

1 if d(x, y) ≥ t(1 + ε)
0 if d(x, y) ≤ t(1 − ε)
� Otherwise

for t = O(n/ log n) and an arbitrary small, but constant, non-zero value ε, where
d is the hamming distance. This means that the Eval function can only guarantee
that the Hamming distance is at most t(1 + ε) for output 0 or at least t(1 − ε)
for output 1. In the gap between the two values either output is possible and
we get no correctness or security guarantees. It would therefore be desirable to
close this gap, i.e., to obtain a construction for ε = 0, which was left open by

Robust Property-Preserving Hash Functions 313

the work of BLV. In addition to their positive results, BLV also proved that a
compressing PPH function for ε = 0 and t = n/2 cannot exist.

1.1 Our Contribution

In this work, we construct a robust PPH function for the exact hamming distance
predicate, which essentially corresponds to GAP-HAMt

ε(x, y) with ε = 0, for t ≤
n/cλ for some small constant c > 1. We also show how to generalize our result to
strings over large alphabets, e.g. alphanumeric sequences, and the corresponding
generalized hamming distance, which counts the number of positions in which
the strings differ.1 Our construction is based on the q-strong bilinear discrete
logarithm assumption in pairing-friendly groups and compresses n-bit inputs into
O(tλ)-bit hash values. Our results are not covered by the impossibility results
of BLV, since we restrict t to be sufficiently small in comparison to the input
bit-length n.

Along the way, we consider the symmetric set difference predicate, which
takes two sets X and Y of size n from some universe U as input and checks
whether |(X \Y)∪ (Y \X)| < t. We construct a PPH function for this predicate
from the same assumptions and with the same O(tλ)-bit long hash values as
above. Here it is insightful to note that for two-input predicates, the symmetric
set difference and an intersection predicate with a threshold on the minimum
intersection size are equivalent.

For the symmetric set difference and the intersection predicate, we show that
any PPH function has to have Ω(t log t)-bit long hash values, which indicates
that our hash functions are close to optimal in terms of compression factor.

Finally, we show how to construct PPH functions for the intersection predi-
cate with more than two inputs.

1.2 Technical Overview

We will start our overview by constructing a robust PPH function for the two-
input symmetric set difference predicate. Obtaining our PPH function for the
exact hamming distance predicate will only require one additional step of encod-
ing the input bit strings into appropriate sets.

The starting point of our work is a simple, yet beautiful, observation about
polynomials and rational function interpolation made by Minsky et al. [12]2.
Consider sets A = {a1, . . . , an} and B = {b1, . . . , bn} which are encoded into the
roots of some polynomials u(x) =

∏n
i=0(x − ai) and v(x) =

∏n
i=0(x − bi) over

1 Note that encoding strings from a large alphabet into bit strings and then using
our construction for binary inputs does not work, since the hamming distance of the
encoded strings has no meaningful interpretation.

2 The work of Minsky et al. has recently found other applications in the context
of cryptography in the domain of communication efficient private set intersection
protocols [7].

314 N. Fleischhacker and M. Simkin

some finite field F, and consider the rational function3

w(x) :=
u(x)
v(x)

=

∏
ai∈A\B(x − ai)

∏
bj∈B\A(x − bj)

.

The main observation behind the work of Minsky et al. was the following: the
larger the intersection of A and B, the smaller their symmetric set difference,
the more roots of the polynomials u(x) and v(x) “cancel out”. Furthermore, the
smaller the degrees of the remaining polynomials in the numerator and denom-
inator, the fewer evaluation points are needed for correctly interpolating w(x).
More precisely, the degree each polynomial, once they have been reduced to
lowest terms, is exactly |A \ B| = |B \ A|, thus if the symmetric set difference
is at most 2t large, then w(x) can be correctly interpolated from � evaluation
points of w(x), where � ∈ O(t). Importantly for us, � can be chosen such that
� − 1 points are not sufficient for correctly interpolating the rational function if
|(A \ B) ∪ (B \ A)| > 2t.

As a first attempt towards compressing sets A and B of size n into appropri-
ate hash values, one might want to compute (u(α1), . . . , u(α�)) and (v(α1), . . . ,
v(α�)), where α1, . . . , α� are some distinct publicly known fixed evaluation points.
Given these two hash values, the evaluation algorithm Eval could now compute
w(αi) := u(αi)/v(αi) for i ∈ [n] and attempt to interpolate a rational function
ŵ(x) using these points. Recall that w(x) = ŵ(x) if |(A \ B) ∪ (B \ A)| ≤ 2t and
w(x) �= ŵ(x) otherwise.

At this point we are left with the task of checking whether the interpo-
lated function is the correct one. Ideally, we would like to simply evaluate
the polynomials u(x) and v(x) on some random point r and check whether
u(r)/v(r) = ŵ(r). Over a large enough field and using a uniformly and inde-
pendently sampled random value r this allows us to efficiently test the equality
of two (rational) functions with only negligible error. Unfortunately, since we
are designing a hash function, rather than an interactive protocol, u(r) and v(r)
would need to be part of the corresponding hash value. This means, r would need
to be fixed at the time of hashing and needs to be the same for all inputs to the
hash function. Thus, it has to already be fixed as part of the sampling of the hash
function from its corresponding family and an adversary can choose sets A and B
conditioned on r. Since r is now no longer distributed independently of A,B the
adversary could potentially find two such input sets with |(A\B)∪(B \A)| > 2t,
which result in an interpolation of a function ŵ(x) �= w(x) that still passes the
check, because the sets are chosen such that ŵ(r) = w(r).

To get around this problem, we need to hide r from the adversary. Towards
this goal, we fix a uniformly random hidden value r in a way that allows for
performing the check described above obliviously. Assume the PPH function
description includes values �Γ = (g, gr, gr2

, . . . , grn

) for some uniformly random
3 Note, that the equality does not strictly hold, since the function on the right is

defined for x ∈ A∪B, whereas the one on the left is not. However, the two functions
are equivalent for all x except for the removable singularities of u(x)/v(x) which is
exactly what we need.

Robust Property-Preserving Hash Functions 315

value r. Now given the coefficients of polynomials u(x), v(x), and �Γ , we can
evaluate our polynomials in the exponent to obtain gu(r) and gv(r). Under an
appropriate q-type discrete logarithm assumption we can argue that the actual
value r remains hidden and the attack outlined above is no longer possible.

To see how to perform the rational function equality check in the exponent,
assume that the interpolation of ŵ(x) gives us the coefficients of the polynomials
v̂(x) and û(x) with ŵ(x) = û(x)/v̂(x). The equation

w(x) =
u(x)
v(x)

=
û(x)
v̂(x)

= ŵ(x)

holds if and only if
u(x)v̂(x) = û(x)v(x)

holds. Finally, given gu(r), gv(r), which are computed independently during hash-
ing, the vector �Γ , which is part of the hash function description, and the coef-
ficients of û(x) and v̂(x), which we obtain from the interpolation, we can use a
bilinear pairing, which allows us to perform a multiplication in the exponent, to
check the desired equation.

To obtain our construction for the hamming distance predicate, we need to
encode the input bit strings into sets in a way that allows us to translate a
threshold on the hamming distance to a threshold on the size of the symmetric
set difference of the corresponding sets. Towards this goal, we simply encode a
bit string x = x1x2 . . . xn into a set Sx := {2i − xi | i ∈ [n]}. For two strings x
and y and each bit position i with xi = yi the corresponding sets Sx and Sy will
have one element 2i − xi = 2i − yi in common. For each position i with xi �= yi,
the sets will contain distinct elements 2i and 2i − 1. With this in mind, it is
straightforward to see that

d(x, y) =
|(Sx \ Sy) ∪ (Sy \ Sx)|

2
,

which means that we can reduce the problem of computing the hamming distance
between bit strings to computing the size of the symmetric set difference of the
corresponding set encodings.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we
will use throughout this work. We denote by λ ∈ N the security parameter
and by poly(λ) any function that is bounded by a polynomial in λ. A function
f is negligible if for every c ∈ N, there exists some N ∈ N such that for all
λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any negligible function.
An algorithm is PPT if it is modeled by a probabilistic Turing machine with a
running time bounded by poly(λ).

Let n ∈ N, we denote by [n] the set {1, . . . , n}. Let X,Y be sets, we denote
by |X| the size of X and by X � Y the symmetric set difference of X and Y ,

316 N. Fleischhacker and M. Simkin

i.e., X � Y = (X ∪ Y) \ (X ∩ Y) = (X \ Y) ∪ (Y \ X). Further, we denote by
Pn(X) = {S ⊆ X | |S| = n} the set of all subsets of size n of X and by x ← X
the process of sampling an element of X uniformly at random. Let x, y ∈ {0, 1}n,
we write w(x) to denote the Hamming weight of x and we write d(x, y) to denote
the Hamming distance between x and y, i.e., d(x, y) = w(x⊕y). For a polynomial
p =

∑n
i=0 cix

i, we write coef(p, i) = ci to denote the i-th coefficient of p.

Rational Functions. A rational function is the fraction of two polynomials.
The total degree of a rational function is the sum of the degrees of the numer-
ator and the denominator after they have been reduced to lowest terms. More
precisely, it is defined as follows.

Definition 1 (Total Degree). Let f and g be arbitrary non-zero polynomials.
Let r, f ′, g′ be polynomials, such that f = rf ′, g = rg′ and f ′ and g′ are co-
prime. Note that r, f ′, g′ always exist and are unique. The total degree of the
rational function f/g is then defined as tdeg(f/g) = deg(f ′) + deg(g′).

Encoding Bit Strings as Sets. A given bit string x ∈ {0, 1}n can be efficiently
encoded into a set as Sx := {2i − xi | i ∈ [n]}. We have that Sx ∈ Pn([2n]), i.e.
the size of Sx is n and its description length in bits is nlog 2n�. We call Sx the
set encoding of x.

Lemma 1. Let n ∈ N. For any x, y ∈ {0, 1}n, it holds that

2d(x, y) = |Sx � Sy|.
Proof. We denote by I := {i ∈ [n] | xi = yi} the set of indices i where xi = yi.
Similarly, we denote by J := {j ∈ [n] | xj �= yj} the set of indices j where
xj �= yj . By definition of the Hamming distance, we have |J | = d(x, y) and
|I| = n − |J |.

We can now write Sx, Sy in terms of I and J as

Sx ={2i − xi | i ∈ I} ∪ {2j − xj | j ∈ J}
Sy ={2i − yi | i ∈ I} ∪ {2j − yj | j ∈ J}.

By definition of I, we have that {2i−xi | i ∈ I} = {2i−yi | i ∈ I} and therefore
that

Sx ∪ Sy = {2i − xi | i ∈ [n]} ∪ {2j − yj | j ∈ J} = Sx ∪ {2j − yj | j ∈ J}
Since, by definition of J it must also hold that Sx ∩ {2j − yj | j ∈ J} = ∅ we
thus have

|Sx ∪ Sy| = |Sx| + |J | = n + d(x, y). (1)

Similarly, by the above observations, it holds that Sx ∩ Sy = {2i − xi | i ∈ I}
and thereby

|Sx ∩ Sy| = |I| = n − |J | = n − d(x, y) (2)

Robust Property-Preserving Hash Functions 317

Finally, combining the definition of symmetric set difference and Eqs. 1 and 2
we thus have

|Sx � Sy| = |(Sx ∪ Sy) \ (Sx ∩ Sy)| = |Sx ∪ Sy| − |Sx ∩ Sy|
= n + d(x, y) − (n − d(x, y)) = 2d(x, y)

as claimed. ��

Encoding Sets as Polynomials. We define the polynomial encoding of a set
S = {s1, . . . , sn} ⊆ [N] as the polynomial pS(z) =

∏n
i=1(z − si) over some field

Zq of prime order q > N . For a bit string x ∈ {0, 1}n, we will abuse notation and
write px to denote the polynomial encoding of the set encoding of x. Observe
that the roots of px are all in [2n].

Lemma 2. Let n,N ∈ N such that n < N . For any pair of sets X,Y ∈ Pn([N]),
it holds that

|X � Y | = tdeg

(
pX

pY

)

.

Proof. Let X ′ := X \ Y , Y ′ := Y \ X and W := X ∩ Y . We have by definition of
the polynomial encoding that

pX(z) =
∏

x∈X

(z − x) =

(
∏

w∈W

(z − w)

)

·
(
∏

x∈X′
(z − x)

)

and

pY (z) =
∏

y∈Y

(z − y) =

(
∏

w∈W

(z − w)

)

·
⎛

⎝
∏

y∈Y ′
(z − y)

⎞

⎠.

Since X ′ ∩ Y ′ = ∅, the two polynomials
∏

x∈X′(z − x) and
∏

y∈Y ′(z − y) are
coprime, while

∏
w∈W (z − w) is a common factor in pX and pY . By Definition

1, it thus holds that

tdeg

(
pX(z)
pY (z)

)

= deg

(
∏

x∈X′
(z − x)

)

+ deg

⎛

⎝
∏

y∈Y ′
(z − y)

⎞

⎠

= |X ′| + |Y ′| = |X ′ ∪ Y ′| = |(X \ Y) ∪ (Y \ X)|
= |X � Y |

as claimed. ��
Proposition 3 ([12]). For polynomials f ∈ F≤n[X] and g ∈ F≤m[X], the ratio-
nal function h(z) = f(z)/g(z) can be uniquely interpolated (up to equivalences)
from distinct evaluation points z1, . . . , zd and f(z1), g(z1), . . . , f(zd), g(zd), where
d = n + m + 1, as well as upper bounds on n and m.

318 N. Fleischhacker and M. Simkin

Remark 1. We denote by RatInt the algorithm that takes as input a list of d
points (x1, y1), . . . , (xd, yd) ∈ Fq and tries to find a rational function p/q with
degrees of p and q at most �(d − 1)/2�, such that p(xi)/q(xi) = yi for 1 ≤ i ≤ d.
Upon success it outputs (p, q). Otherwise it outputs the constant 0 function.

Two-Input Predicates. We define the following two-input predicates, which
will be the main focus of this work.

Definition 2 (Hamming Predicate). For x, y ∈ {0, 1}n and t > 0, the two-
input predicate is defined as

HAMt(x, y) =

{
1 if d(x, y) ≥ t

0 Otherwise

Definition 3 (Symmetric Set Difference Predicate). For a universe U ,
natural number n, X,Y ∈ Pn(U), and t > 0, the two-input symmetric set dif-
ference predicate is defined as

SSDt(X,Y) =

{
1 if |X � Y | ≥ t

0 Otherwise

Bilinear Groups and Pairings. A bilinear group is described by a tuple
(G1,G2,GT , q, e), where G1,G2,GT are groups of order q and e : G1 ×G2 → GT

is a (non-degenerate) bilinear asymmetric map, called pairing, such that for all
a, b ∈ Zq and g1 ∈ G1 and g2 ∈ G2 it holds that

e(ga
1 , gb

2) = e(g1, g2)ab.

If G1 and G2 are cyclic and g1 and g2 are generators of those groups respectively,
then e(g1, g2) is a generator of GT .

Let GGen be a PPT algorithm that takes the security parameter 1λ as input
and outputs bilinear map parameters (G1,G2,GT , q, e, g1, g2), where G1,G2,GT

are the groups of prime order q = q(λ). e : G1 ×G2 → GT is a (non-degenerate)
bilinear map and g1 and g2 are generators of G1 and G2 respectively. Our con-
structions will rely on the following q-type extension of the discrete logarithm
assumption over bilinear groups.

Definition 4 (The n-Strong Bilinear Discrete Logarithm (n-SBDL)
Assumption). The n-SBDL assumption holds relative to GGen if for all PPT
algorithms A it holds that

Pr
[

r = A
(

G1,G2,GT , q, e,

(
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

))]

≤ negl(λ),

where the probability is taken over (G1,G2,GT , q, e, g1, g2) ← GGen(1λ) and r ←
Zq.

Robust Property-Preserving Hash Functions 319

To the best of our knowledge, and unlike the regular n-strong discrete loga-
rithm (n-SDL) assumption [9], this exact assumption has not been used before.
However, it is in fact implied by, and thus weaker than, other related q-type
assumptions such as the n-BDHI [3] assumption.

Hash Functions. We first recall the standard definition of collision-resistant
hash functions.

Definition 5 (Collision Resistant Hash Function Family). For a λ ∈ N a
hash function family F = {f : {0, 1}∗ → {0, 1}λ} consists of a pair of efficiently
computable algorithms:

Sample(1λ) → f is an efficient randomized algorithm that samples an efficiently
computable random hash function from F with security parameter λ.

Hash(f, x) → y is an efficient deterministic algorithm that evaluates the hash
function h on x.

The family F is collision resistant if, for any PPT adversary A it holds that,

Pr[f ← Sample(1λ); (x1, x2) ← A(f) : f(x1) = f(x2)] ≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.

The following definition of property-preserving hash functions is taken almost
verbatim from [4]. In this work, we consider the strongest of several different
security notions that were proposed by BLV.

Definition 6 (Property-Preserving Hash). For a λ ∈ N an η-compressing
property preserving hash function family Hλ = {h : X → Y } for a two-input
predicate requires the following three efficiently computable algorithms:

Sample(1λ) → h is an efficient randomized algorithm that samples an efficiently
computable random hash function from H with security parameter λ.

Hash(h, x) → y is an efficient deterministic algorithm that evaluates the hash
function h on x.

Eval(h, y1, y2) → {0, 1}: is an efficient deterministic algorithm that on input h,
and y1, y2 ∈ Y outputs a single bit.

We require that H must be compressing, meaning that log |Y | ≤ η log |X| for
0 < η < 1.

For notational convenience we write h(x) for Hash(h, x).

Definition 7 (Direct-Access Robustness). A family of PPH functions H =
{h : X → Y } for a two-input predicate P : X × X → {0, 1} is a family of
direct-access robust PPH functions if, for any PPT adversary A it holds that,

Pr

[
h ← Sample(1λ);
(x1, x2) ← A(h)

: Eval(h, h(x1), h(x2)) �= P (x1, x2)

]

≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.

320 N. Fleischhacker and M. Simkin

Sample(1λ)

(G1,G2,GT , q, e, g1, g2) ← GGen(1λ)

r ← Zq \ [N]

Γ :=
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

return h := (G1,G2,GT , q, e, Γ)

Hash(h, X)

parse h as (G1,G2,GT , q, e, Γ)

a := pX(N + 1), . . . , pX(N + t)

b :=
n

i=0

Γ
coef(pX ,i)
1,i+1 = g

pX(r)
1

return (a, b)

Eval(h, (a, b), (ã, b̃))

parse h as (G1,G2,GT , q, e,Γ)

for 1 ≤ i ≤ t

si := N + i,
ai

ai

(u, v) := RatInt(s1, . . . , st)

return e b,

n

i=0

Γ
coef(v,i)
2,i+1

?

= e b̃,

n

i=0

Γ
coef(u,i)
2,i

Fig. 1. A family of direct-access robust PPH for the predicate SSDt over the domain
Pn([N]) for any N ∈ N with N ≤ 2λ−1.

3 PPH for Symmetric Set Difference

In this section we construct property preserving hash functions for symmetric
set difference. We start by presenting a construction for sets with elements from
a universe of bounded size in Sect. 3.1 and show how to extend the construction
to sets with elements from an arbitrarily large universe in Sect. 3.2.

3.1 PPH for Symmetric Set Difference of Pn([N])

Theorem 4. Let GGen be a bilinear group generation algorithm that generates
groups of prime order q = q(λ) with q > 2λ. Then, for any n = poly(λ), N ∈ N

with n ≤ N ≤ 2λ−1 and any t < n(log N−log n)
log q(λ) −1, the construction in Fig. 1 is a

(t+1) log q(λ)

log (N
n) ≤ (t+1) log q(λ)

n(log N−log n) -compressing direct-access robust property preserving

hash function family for the two-input predicate SSDt and domain Pn([N]), if
the n-SBDL assumption holds relative to GGen.

Robust Property-Preserving Hash Functions 321

Proof. Let A be an arbitrary PPT adversary against the direct access robustness
of H. We have

Pr[Eval(h, h(X1), h(X2)) �= SSDt(X1,X2)]

= Pr[Eval(h, h(X1), h(X2)) = 1 | SSDt(X1,X2) = 0] · Pr[SSDt(X1,X2) = 0]

+ Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1,X2) = 1] · Pr[SSDt(X1,X2) = 1],

where the probabilities are taken over h ← Sample(1λ) and (X1,X2) ← A(h).
We consider the two cases separately.

Claim 5. Pr[Eval(h, h(X1), h(X2)) = 1 | SSDt(X1,X2) = 0] = 0

Proof (claim 5). Since SSDt(X1,X2) = 0, we know that |X1 � X2| < t. By
Lemma 2 this means that

tdeg

(
pX1

pX2

)

< t.

From Proposition 3 it follows that the rational function pX1/pX2 can (up to
equivalences) be uniquely interpolated from t points. We observe that for 1 ≤
i ≤ t it holds that pX2(N + i) �= 0, since roots of pX2 are in the interval [N] by
construction. Therefore, si = pX1(N + i)/pX2(N + i) is well-defined and thus

pX1

pX2

=
u

v

where u/v is the rational function computed by RatInt in Eval(h, h(X1), h(X2)).
Finally, we observe that

e

(

g
pX1 (r)
1 ,

n∏

i=0

Γ
coef(v,i)
2,i+1

)

= e

(

g
pX2 (r)
1 ,

n∏

i=0

Γ
coef(u,i)
2,i

)

⇐⇒ e(g1, g2)pX1 (r)
∑n

i=0(coef(v,i)·ri) = e(g1, g2)pX2 (r)
∑n

i=0(coef(u,i)·ri)

⇐⇒ e(g1, g2)pX1 (r)v(r) = e(g1, g2)pX2 (r)u(r),

which is true whenever

pX1(r) · v(r) = pX2(r) · u(r)

⇐⇒ pX1(r)
pX2(r)

=
u(r)
v(r)

,

which is true for all r and thus the last inequality in Eval(h, h(X1), h(X2)) is
never satisfied. ��
Claim 6. If the n-SBDL assumption holds relative to GGen, then

Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1,X2) = 1] · Pr[SSDt(X1,X2) = 1]
≤negl(λ).

322 N. Fleischhacker and M. Simkin

Proof (claim 6). Since SSDt(X1,X2) = 1, it must hold that t ≤ |X1 �X2| ≤ 2n.
By Lemma 2 this means that

t ≤ tdeg

(
px1

px2

)

≤ 2n.

On the other hand, by construction u/v is the rational function of total degree
at most t − 1 uniquely determined by s1, . . . , st. It must therefore hold that

u

v
�= px1

px2

.

For the last inequality in Eval(h, h(X1), h(X2)) to hold, pX1/pX2 and u/v must
therefore be two different rational functions that agree on point r. This means
that r must be one of the at most n + (t − 1)/2 roots of the rational function

pX1

pX2

− u

v
=

pX1 · v − pX2 · u

pX2 · v
.

Whenever A would be successful, we could therefore find r by testing the roots
of the polynomial pX1 · v − pX2 · u. We give a formal reduction as follows:

R takes as input

G1,G2,GT , q, e, �Γ :=
(

g1 gr
1 · · · grn

1

g2 gr
2 · · · grn

2

)

and invokes A on h := (G1,G2,GT , q, e, �Γ) and receives X1,X2.
If SSDt(X1,X2) = 0, R aborts. Otherwise it computes (u, v) as in Eval and

determines the set X of roots of the polynomial pX1 ·v−pX2 ·u. For each r′ ∈ X,
R checks whether gr′

1
?= Γ1,2 and returns r′ if it holds. If the equality holds for

no r′ ∈ X, R aborts.
Since A is PPT and finding the roots of a polynomial is possible in polynomial

time, it follows that R is PPT and must, by assumption, have a negligible success
probability against the n-SBDL problem.

Note that r from the input of the reduction is distributed uniformly in Zq,
while A expects r to be uniformly distributed in Zq \ [N]. However, since N ≤
2λ−1 and q > 2λ, it holds that r ∈ Zq \ [N] with probability at least 1/2.
Furthermore, once we condition on r �∈ [N], the distribution of h is identical to
the one expected by A.

Now, observe that the reduction R is successful, if A outputs X1,X2, such
that SSDt(X1,X2) = 1 and r is one of the roots of pX1 · v − pX2 · u. As argued
above, the latter must be true, if Eval(h, h(x1), h(x2)) = 0. Therefore, it holds
that

negl(λ)

≥Pr
[

r = R
(

G1,G2,GT , q, e,

(
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

))]

Robust Property-Preserving Hash Functions 323

≥ Pr
[
r �∈ [N]

] · Pr
[

r = R
(

G1,G2,GT , q, e,

(
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

)) ∣
∣
∣
∣ r �∈ [N]

]

≥1
2

· Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1,X2) = 1] · Pr[SSDt(X1,X2) = 1]

and, thus, the claim follows. ��
Using Claims 5 and 6 we can thus conclude that

Pr[Eval(h, h(X1), h(X2)) �= SSDt(X1,X2)] ≤ 0 + negl(λ) = negl(λ).

Therefore, H is direct access robust as claimed. It remains to show that it is
also compressing. The domain of the hash function is Pn([N]), the codomain is
Z

t
q(λ) × G1. It follows that the compression factor is

η =
log |Zt

q(λ) × G1|
log |Pn([N])| =

log q(λ)t+1

log
(
N
n

) ≤ log q(λ)t+1

log
(

N
n

)n =
(t + 1) log q(λ)

n(log N − log n)

as claimed. The construction is thus compressing, if

(t + 1) log q(λ)
n(log N − log n)

< 1 ⇐⇒ t <
n(log N − log n)

log q
− 1.

��

3.2 PPH for Symmetric Set Difference of Arbitrary Sets

To obtain our construction for sets with elements from an arbitrarily large uni-
verse, we make use of a collision-resistant hash function. We simply first hash the
elements of the input sets into a smaller universe and then apply our construction
from the previous section.

Sample(1λ)

h ← H.Sample(1λ)

f ← F .Sample(1λ)

return h := (h, f)

Hash((h, f), X)

X := {f(x) | x ∈ X}
y := h(X)

return y

Eval((h, f), y, ỹ)

b := H.Eval(h, y, ỹ)

return b

Fig. 2. A family of direct-access robust PPH for SSDt on Pn({0, 1}�).

Theorem 7. Let Hλ = {h : Pn({0, 1}λ) → Y } be an η-compressing direct-
access robust property preserving hash function family for SSDt. Let F = {f :
{0, 1}� → {0, 1}λ} be a collision resistant hash function family. Then the con-

struction in Fig. 2 is a η · log (2λ

n)
log (2�

n)
≤ η · log e+λ−log n

�−log n -compressing direct-access

robust PPH for SSDt and domain Pn({0, 1}�).

324 N. Fleischhacker and M. Simkin

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness
of H′. We have that

Pr[Eval(h′, h′(X1), h′(X2)) �= SSDt(X1,X2)]

= Pr[H.Eval(h, h(X ′
1), h(X ′

2)) �= SSDt(X1,X2)]

= Pr
[
H.Eval(h, h(X ′

1), h(X ′
2)) �= SSDt(X1,X2)

∣
∣
∣ |X ′

1 � X ′
2| = |X1 � X2|

]

· Pr
[
|X ′

1 � X ′
2| = |X1 � X2|

]

+ Pr
[
H.Eval(h, h(X ′

1), h(X ′
2)) �= SSDt(X1,X2)

∣
∣
∣ |X ′

1 � X ′
2| �= |X1 � X2|

]

· Pr
[
|X ′

1 � X ′
2| �= |X1 � X2|

]

(3)

where the probability is taken over the sampling of h′ = (h, f) ← Sample′(1λ)
and (X1,X2) ← A(h′). Equation 3 follows by applying the definition of H′ and
then splitting the probability. We will now upper bound the two parts of the
sum in Claims 8 and 9.

Claim 8. If H is direct-access robust, it holds that

Pr
[
H.Eval(h, h(X ′

1), h(X ′
2)) �= SSDt(X1,X2)

∣
∣
∣ |X ′

1 � X ′
2| = |X1 � X2|

]

· Pr
[
|X ′

1 � X ′
2| = |X1 � X2|

]
≤ negl(λ).

Proof (claim 8). By the direct access robustness of H, we have

negl(λ)

≥ Pr
[
H.Eval(h, h(X ′

1), h(X ′
2)) �= SSDt(X ′

1,X
′
2)
]

≥ Pr
[
H.Eval(h, h(X ′

1), h(X ′
2)) �= SSDt(X ′

1,X
′
2)
∣
∣
∣ |X ′

1 � X ′
2| = |X1 � X2|

]

· Pr
[
|X ′

1 � X ′
2| = |X1 � X2|

]

= Pr
[
H.Eval(h, h(X ′

1), h(X ′
2)) �= SSDt(X1,X2)

∣
∣
∣ |X ′

1 � X ′
2| = |X1 � X2|

]

· Pr
[
|X ′

1 � X ′
2| = |X1 � X2|

]

where the last equality follows from the fact that |X ′
1 � X ′

2| = |X1 � X2| implies
that SSDt(X ′

1,X
′
2) = SSDt(X1,X2). Thus the claim follows. ��

Claim 9. If F is collision resistant, it holds that

Pr
[|X ′

1 � X ′
2| �= |X1 � X2|

] ≤ negl(λ).

Proof (claim 9). Note that, since f is a function, it must hold that |X ′
1 ∪ X ′

2| ≤
|X1 ∪ X2|. Further, if |X ′

1 ∪ X ′
2| = |X1 ∪ X2| then it must hold that |X ′

1 ∩ X ′
2| ≥

|X1 ∩ X2|. By definition of symmetric set difference it therefore holds that

Pr
[|X ′

1 � X ′
2| �= |X1 � X2|

]

Robust Property-Preserving Hash Functions 325

≤ Pr
[|X ′

1 ∪ X ′
2| < |X1 ∪ X2| ∨ |X ′

1 ∩ X ′
2| > |X1 ∩ X2|

]

= Pr
[∃ x1, x2 ∈ X1 ∪ X2 : x1 �= x2 ∧ f(x1) = f(x2)

]
.

Since F is a family of collision resistant hash functions, the probability that A
finds a collision is negligible and thus the claim follows. ��
Combining Eq. 3 with Claims 8 and 9, it thus follows that

Pr[Eval(h′, h′(X1), h′(X2)) �= SSDt(X1,X2)] ≤ negl(λ)

and the theorem follows. ��
We obtain the following Corollary by combining Theorems 7 and 4.

Corollary 10. Let GGen be a bilinear group generation algorithm that generates
bilinear groups of prime order q = q(λ) with q > 2λ relative to which the n-SBDL
assumption holds. Let F = {f : {0, 1}� → {0, 1}λ} be a collision resistant hash
function family. Then for any n = poly(λ), and any t < n(�−log n)

log q(λ) − 1 there

exists a (t+1) log q(λ)

log (2�

n)
≤ (t+1) log q(λ)

n(�−log n) -compressing direct-access robust PPH for the

two-input predicate SSDt and domain Pn({0, 1}�).

4 PPH for Hamming Distance

In this section, we construct a PPH function for the hamming distance predicate.
To hash a string x ∈ {0, 1}n, we apply our PPH function for the symmetric set
difference predicate to the set encoding Sx of x.

Theorem 11. Let Hλ = {h : Pn([2n]) → Y } be an η-compressing direct-access
robust property preserving hash function family for SSD2t. Then the following

construction H′ is a η · log (2n
n)

n ≤ η · (1 + log e)-compressing direct-access robust
PPH for HAMt and domain {0, 1}n. H′ is defined by (Sample′,Hash′,Eval′) with
Sample′ = Sample, Hash′(x) := Hash(Sx), and Eval′ = Eval.

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness
of H′. We have that

Pr[Eval′(h′, h′(x1), h′(x2)) �= HAMt(x1, x2)]

= Pr[Eval(h, h(Sx1), h(Sx2)) �= HAMt(x1, x2)] (4)

= Pr[Eval(h, h(Sx1), h(Sx2)) �= SSD2t(Sx1 , Sx2)] (5)

≤negl(λ) (6)

where Eq. 4 follows from the definition of H′, Eq. 5 follows from the fact that by
Lemma 1 for any x, y ∈ {0, 1}n it holds that d(x1, x2) > t ⇐⇒ |Sx1 �Sx2 | > 2t.
Finally Eq. 6 follows from the direct-access robustness of the underlying property
preserving hash function family H.

326 N. Fleischhacker and M. Simkin

The inputs to the hash functions are of length n and are first mapped to
elements of Pn([2n]) before being hashed with an η-compressing function. The
total compression is thus

η · log
(
2n
n

)

n
≤ η · log

(
e·2n

n

)n

n
= η · log 2e = η · (1 + log e)

as claimed. ��
Combining Theorems 11 and 4, we immediately get the following Corollary.

Corollary 12. Let GGen be a bilinear group generation algorithm that generates
bilinear groups of prime order q = q(λ) with q > 2λ relative to which the n-SBDL
assumption holds. Then for any n = poly(λ), and any t < n

2 log q(λ)− 1
2 there exists

a (2t+1) log q(λ)
n -compressing direct-access robust PPH for the two-input predicate

HAMt and domain {0, 1}n.

4.1 Generalization to Different Alphabets

Previously, we have defined Hamming distance specifically for binary strings.
This notion, however, as well as the corresponding predicate, can easily be gen-
eralized to strings over an arbitrary alphabet Σ. Let Σ be an alphabet and let
x, y ∈ Σn be strings. The Hamming distance between the two strings is the num-
ber of indices i ∈ [n], such that xi �= yi, formally d(x, y) = |{i ∈ [n] | xi �= yi}|.

Using this generalized definition of Hamming distance, it is straightforward to
generalize the Hamming predicate defined in Definition 2 to a predicate HAMΣ,t

for strings over an arbitrary alphabet Σ.
To generalize the construction from Theorem 11 to this predicate, we merely

need to define a set-encoding for strings over Σ. Let Σ = {a1, . . . , a�} be an
alphabet of size � and let x = xi . . . xn = ai1 . . . ain

∈ Σn be an arbitrary string
over Σ. We define the set encoding of x as Sx = {� · j − ij | j ∈ [n]}. Using this
set encoding in the construction from Theorem 11 immediately gives us a PPH
function for HAMΣ,t as stated in the following.

Proposition 13. Let H = {h : Pn([�n]) → Y } be an η-compressing direct-
access robust property preserving hash function family for SSD2t. Then the fol-

lowing construction H′ is a η · log (�n
n)

log �n ≤ η · (1 + log e
log �)-compressing direct-access

robust PPH for HAMΣ,t and domain Σn. H′ is defined by (Sample′,Hash′,Eval′)
with Sample′ = Sample, Hash′(x) := Hash(Sx), and Eval′ = Eval.

The proof easily follows from the proof of Theorem 11, by extending Lemma
1 to strings over arbitrary alphabets. Note, that the proof of Lemma 1 already
proves this stronger statement.

Robust Property-Preserving Hash Functions 327

5 PPH for Multi-input Predicates

In this section, we show how to extend our constructions to the multi-input
intersection predicate, which we introduce below. The basic idea underlying our
construction is reminiscent to an idea used by Ghosh and Simkin [7]4 for con-
structing interactive protocols that are secure against semi-honest adversaries
for the so-called multiparty threshold private set intersection problem. Since we
consider an active adversary and would like to construct a non-interactive prim-
itive, our setting is quite a bit more challenging and requires a more intricate
security analysis.

Definition 8 (Intersection Predicate). For sets X1, . . . , X� ∈ Pn(U) of size
n with elements from the universe U and threshold t > 0, the multi-input set
intersection predicate is defined as

INTt
�(X1, . . . , X�) =

{
1 if |X1 ∩ · · · ∩ X�| > n − t

0 Otherwise

Before presenting our construction in this section, we observe that the sym-
metric set difference and the intersection predicate are equivalent for the two-
input setting.

Proposition 14. For all n ∈ N, for all sets X,Y ∈ Pn(U) of size n with
elements from the universe U and for all t ∈ N, it holds that INTt

2(X,Y) =
1 − SSD2t(X,Y).

Proof. Let X and Y be two sets of size n with elements from an arbitrary
universe U . We observe that

|X � Y | = |(X \ Y) ∪ (Y \ X)|
= |(X \ (X ∩ Y)) ∪ (Y \ (X ∩ Y))|
= n − |X ∩ Y | + n − |X ∩ Y |
= 2n − 2|X ∩ Y |

and therefore

SSD2t(X,Y) = 1 ⇐⇒ |X � Y | ≥ 2t

⇐⇒ 2n − 2|X ∩ Y | ≥ 2t

⇐⇒ n − t ≥ |X ∩ Y | ⇐⇒ INTt
2(X,Y) = 0

and equivalently SSD2t(X,Y) = 0 ⇐⇒ INTt
2(X,Y) = 1. ��

4 Their multiparty protocols can be found in the extended abstract [8] on ePrint.

328 N. Fleischhacker and M. Simkin

5.1 PPH for the Intersection Predicate INTt
�

The intuition for our PPH function for INTt
� is as follows. Let X1, . . . , X� be sets

encoded into polynomials pX1(z), . . . , pX�
(z) over a field Zq of prime order. Let

W = X1 ∩ · · · ∩ X� be the intersection of those sets and let c1, . . . , c� be field
elements, then

c1 · pX1(z) + · · · + c�−1 · pX�−1(z)
c1 · pX�

(z)

=
pW (z)

(
c1 · pX1\W (z) + · · · + c�−1 · pX�−1\W (z)

)

pW (z) · c� · pX�\W (z)

=
c1 · pX1\W (z) + · · · + c�−1 · pX�−1\W (z)

c� · pX�\W (z)

If |W | > n− t, then for each i ∈ [�] the degree of pXi\W (z) is upper bounded
by t. This implies that the degree of the two polynomials in the numerator and
denominator are upper bounded by t respectively, resulting in an upper bound
of 2t for the total degree of the rational function. This is stated formally in the
following lemma.

Lemma 15. Let n,N ∈ N such that n < N and let Zq be a field of prime order
q > N . For all X1, . . . , X� ∈ Pn([N]) and all c1, . . . , c� ∈ Z

∗
q it holds that

2
(
n −

∣
∣
∣
⋂

i∈[�]

Xi

∣
∣
∣

)
≥ tdeg

(∑
i∈[�−1] ci · pXi

c� · pX�

)

Proof. Let W = X1 ∩ · · · ∩ X� be the intersection of the sets. We have

pX�
(z) =

∏

x∈X�

(z − x) =
(∏

x∈X�\W

(z − x)
)

·
(∏

x∈W

(z − x)
)

= pX�\W (z) · pW (z)

and thus the degree of the denominator is at most n − |W |. Similarly, for any
1 ≤ i ≤ � − 1, we have

ci · pXi
(z) = ci · pXi\W (z) · pW (z)

and thus the degree of each individual polynomial in the numerator is at most
n−|W |. Since the sum of polynomials of degrees d1, . . . , d�−1 is a new polynomial
of degree max(d1, . . . , d�), the lemma follows. ��

To obtain something equivalent to Lemma 2, i.e. that the degree of the
rational function corresponds exactly to n − t, we would like to argue that if
|W | ≤ n − t, then the degree of numerator and denominator are also at least t.
However, this is not necessarily the case. Even though, after factoring out pW (z)
the remaining polynomials pXi\W (x) no longer share any common roots, the
sum of polynomials in the numerator could share an additional root with the
numerator. However, by choosing the ci with a random oracle and choosing our

Robust Property-Preserving Hash Functions 329

parameters appropriately, we can ensure that no efficient algorithm will be able
to find such a combination with non-negligible probability. We formally state
the following lemma.

Lemma 16. Let n,N ∈ N with n < N and let δ ≥ λ + � log2 λ + log N + 1.
Let Zq be a field of prime order q > 2δ and let R : Pn([N]) → Z

∗
q be a random

oracle. Then for any PPT algorithm A it holds that

Pr

⎡

⎣2
(
n −

∣
∣
∣
⋂

i∈[�]

Xi

∣
∣
∣

)
> tdeg

(∑
i∈[�−1] R(Xi) · pXi

R(X�) · pX�

)⎤

⎦ ≤ negl(λ),

where the randomness is taken over (X1, . . . , X�) ← AR(·)(1λ) and the choice of
the random oracle.

Proof. Denote by (X1, . . . , X�) the output of A and by W = {w | pX1(w) = · · · =
pX�−1(w) = 0} the set of common roots of the polynomials in the numerator.
We first note, that the degree of the rational function can only be smaller than
(n− |⋂i∈[�]Xi|), if an additional root of pX1 cancels out. For this to be the case,
the sum in the numerator must have a root z ∈ [N] \ W . To prove the lemma,
it thus suffices to show that

Pr
[∑

i∈[�−1]

R(Xi) · pXi
(z) = 0 ∧ ∃i ∈ [� − 1]. pXi

(z) �= 0
]

≤ negl(λ).

Denote by Q the set of queries made to the random oracle R before A produces
its output. For any fixed z ∈ [N] \ W , and any index i it holds that

Pr
[∑

j∈[�−1]

R(Xj) · pXj
(z) = 0

∣
∣
∣ ∃ Xi �∈ Q. pXi

(z) �= 0
]

= Pr
[
R(Xi) = −p−1

Xi
(z) ·

∑

j∈[�−1]\{i}
R(Xj) · pXj

(z)
∣
∣
∣ ∃ Xi �∈ Q. pXi

(z) �= 0
]

≤ 2−δ,

since the left-hand side is an independently and uniformly distributed element
of Z∗

q . By a union bound this gives us the following probability that there exists
any such z ∈ [N] \ W and Xi �∈ Q:

Pr
[
∃ z ∈ [N] \ W.

∑

j∈[�−1]

R(Xj) · pXj
(z) = 0 ∧ ∃ Xi �∈ Q. pXi

(z) �= 0
]

≤
∑

z∈[N]\W

Pr
[
∑

j∈[�−1]

R(Xj) · pXj
(z) = 0 ∧ ∃ Xi �∈ Q. pXi

(z) �= 0
]

≤
∑

z∈[N]\W

Pr
[
∑

j∈[�−1]

R(Xj) · pXj
(z) = 0

∣
∣
∣
∣ ∃ Xi �∈ Q. pXi

(z) �= 0
]

=
∑

z∈[N]\W

2−δ ≤ N · 2−δ.

330 N. Fleischhacker and M. Simkin

Thus we can conclude that for any z and any (X1, . . . , X�) the adversary
has to query R on all polynomials that are not vanishing at z to have any hope
of succeeding at that evaluation point. At this point, the adversary’s task is
effectively reduced to finding a sequence (X1, . . . , Xk) ∈ Qk of length k ∈ [� − 1]
such that pX(z) �= 0 for all Xi, but

∑

i∈[k]

R(Xi) · pXi
(z) = 0.

Given such a sequence, the adversary can win by simply “filling up” the sequence
to length � − 1 using sets corresponding to polynomials that vanish at z.

Since A runs in polynomial time, there exists a μ = poly(λ) such that |Q| = μ.
Let Yi denote the ith query made by A and let Qi = {Y1, . . . , Yi} ⊆ Q denote
the set of the first i queries.

Fix an arbitrary z ∈ [N] and consider the set Zi = {R(Y) · pY (z) | Y ∈
Qi ∧ pY (z) �= 0} with |Zi| ≤ |Qi| = i, which is a set of independent uniformly
random elements of Z∗

q because R is a random oracle and none of the involved
polynomials is 0 at point z. The number of sequences5 of elements from Zi of
length at most � − 1 can be bounded as

∣
∣
∣
⋃

k∈[�−1]

Zk
i

∣
∣
∣ ≤

∑

k∈[�−1]

ik ≤ 2i�−1,

Assume that a sequence that sums up to zero does not exist in Zi−1. Then for
each of those sequences of Zi elements, there is at most one value of R(Yi)·pYi

(z)
that would make the sequence sum up to zero. Let ZERO be the event that at
least one sequence summing up to zero occurs in Zμ and let ZEROi be the
event that the first such sequence occurs after the ith query. Then by the above
observation, we have

Pr[ZERO] =
μ∑

i=1

Pr[ZEROi] ≤
μ∑

i=1

Pr
[∧

j∈[i−1]

¬ZEROj

]
· 2i�−1

2δ

≤21−δ ·
μ∑

i=1

i�−1

≤21−δμ�

≤21−δλ� log λ = 21+� log2 λ−δ

where the last inequality follows from the fact that μ ≤ λlog λ for large enough
λ. By a union bound over z ∈ [N], we get that

Pr
[
∃z ∈ [N]. ∃ (X1, . . . , Xk) ∈

⋃

j∈[�−1]

Qj .
∑

i∈[k]

pXi
(z) = 0

]
= 2log N+1+� log2 λ−δ.

5 Taking into account the commutativity of addition in F, many of these sequences are
actually equivalent. It would be sufficient to count the number of possible multi-sets
instead. However, counting sequences is an upper bound on this actual number and
gives a simpler, though slightly worse, bound for δ.

Robust Property-Preserving Hash Functions 331

Sample(1λ)

(G1,G2,GT , q, e, g1, g2) ← GGen(1λ)

r ← Zq \ [N]

Γ :=
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

return h := (G1,G2,GT , q, e, Γ)

HashR(h, X)

parse h as (G1,G2,GT , q, e, Γ)

c := R(X)

a :=

⎛

⎜
⎝

c · pX(N + 1)
...

c · pX(N + 2t)

⎞

⎟
⎠

b :=
n

i=0

Γ
coef(c·pX ,i)
1,i+1 = g

c·pX(r)
1

return (a, b)

EvalR h, a(1), b(1) , . . . , a(), b()

parse h as (G1,G2,GT , q, e, Γ)

for 1 ≤ i ≤ 2t

si := N + i,
j∈[−1] a

(j)
i

a
()
i

(u, v) := RatInt(s1, . . . , st)

return e
j∈[−1]

b(j),

n

i=0

Γ
coef(v,i)
2,i+1

?= e b(),

n

i=0

Γ
coef(u,i)
2,i

Fig. 3. A family of direct-access robust PPHs for INTt
�.

Note that this event is exactly the event that the adversary can find the desired
sequence described above. Since by the lemma statement, δ ≥ λ+(�+1) log2 λ+
log N + 1 the lemma follows. ��

Equipped with these observations, our construction will now be a natural
extension of our previous constructions for the two-input case. The proof of
Theorem 17 will therefore mirror the proof of Theorem 4 closely.

Theorem 17. Let n = poly(λ), N ∈ N with n ≤ N ≤ 2λ. Let GGen be a
bilinear group generation algorithm that generates bilinear groups of prime order
q(λ) > 2δ, where δ ≥ λ + � log2 λ + log N + 1 and let R : Pn([N]) → Z

∗
q be a

random oracle. Then for any t < n(log N−log n)
2 log q(λ) − 1

2 the construction in Fig. 3 is a
(2t+1) log q(λ)
n(log N−log n) -compressing direct-access robust PPH for the multi-input predicate
INTt

� and domain Pn([N]) if the n-SBDL assumption holds relative to GGen.

Proof. Let A be an arbitrary PPT adversary against the direct access robustness
of H. We have

Pr[Eval(h, h(X1), . . . , h(X�)) �= INTt
�(X1, . . . , X�)]

332 N. Fleischhacker and M. Simkin

= Pr[Eval(h, h(X1), . . . , h(X�)) = 0 | INTt
�(X1, . . . , X�) = 1]

· Pr[INTt
�(X1, . . . , X�) = 1]

+ Pr[Eval(h, h(X1), . . . , h(X�)) = 1 | INTt
�(X1, . . . , X�) = 0]

· Pr[INTt
�(X1, . . . , X�) = 0],

where the probabilities are taken over h ← Sample(1λ) and (X1, . . . , X�) ← A(h).
We consider the two cases separately.

Claim 18. Pr[Eval(h, h(X1), . . . , h(X�)) = 0 | INTt
�(X1, . . . , X�) = 1] = 0

Proof (claim 18). Let ci = R(Xi). Since INTt
�(X1, . . . , X�) = 1, it holds that

|X1 ∩ · · · ∩ X�| > n − t and by Lemma 15 that

tdeg

(∑
i∈[�−1] ci · pXi

c� · pX�

)

< 2t.

By Proposition 3, it follows that the rational function can thus be uniquely
(up to equivalences) interpolated from 2t points. We observe that for 1 ≤ i ≤ 2t
it holds that c� · pX�

(N + i) �= 0, since the roots of pX�
are in the interval [N]

by construction and c1 ∈ Z
∗
q . Therefore,

si =

∑
j∈[�−1] cj · pXj

(N + i)

c� · pX�
(N + i)

are well-defined and thus
∑

j∈[j−1] cj · pXj

c� · pX�

=
u

v
(7)

where u/v is the rational function computed by RatInt in Eval(h, h(X1), . . . ,
h(X�)). Finally we observe that

e
(∏

j∈[�−1]

b(j),

n∏

i=0

Γ
coef(v,i)
2,i+1

)
= e

(
b(�),

n∏

i=0

Γ
coef(u,i)
2,i

)

⇐⇒ e
(
g

∑
j∈[�−1] cj ·pXj

(r)

1 , g
v(r)
2

)
= e

(
g

c�·pX�
(r)

1 , g
u(r)
2

)

⇐⇒ e(g1, g2)
(∑

j∈[�−1] cj ·pXj
(r)
)
·v(r) = e(g1, g2)c�·pX�

(r)·u(r)

⇐⇒
(∑

j∈[�−1]

cj · pXj
(r)
)

· v(r) = c� · pX�
(r) · u(r)

⇐⇒
∑

j∈[�−1] cj · pXj
(r)

c� · pX�
(r)

=
u(r)
v(r)

,

which due to Eq. 7 is always true and thus Eval always returns 1 in this case. ��

Robust Property-Preserving Hash Functions 333

Claim 19. If the n-SBDL assumption holds relative to GGen, then

negl(λ) ≥Pr[Eval(h, h(X1), . . . , h(X�)) = 1 | INTt
�(X1, . . . , X�) = 0]

· Pr[INTt
�(X1, . . . , X�) = 0].

Proof (claim 19). Since INTt
�(X1, . . . , X�) = 0, it must hold that 0 ≤ |X1 ∩ · · · ∩

X�| ≤ n − t. By Lemma 16, since A is a PPT algorithm, this means that except
with negligible probability

2t ≤ tdeg

(∑
i∈[�−1] ci · pXi

c� · pX�

)

≤ 2n.

On the other hand, by construction u/v is the rational function of total degree
at most 2t − 1 uniquely determined by s1, . . . , s2t. It must therefore hold that

u

v
�=
∑

i∈[�−1] ci · pX�

c� · pX�

.

For the last inequality in Eval(h, h(X1), . . . , h(X�)) to hold, (
∑

i∈[�−1] ci·pX�
)/(c1·

pX�
) and u/v must therefore be two different rational functions that agree on

point r. This means that r must be one of the at most n + (t − 1)/2 roots of the
rational function

∑
i∈[�−1] ci · pX�

c� · pX�

− u

v
=

v ·∑i∈[�−1] ci · pX�
− c� · pX�

· u

c� · pX�
· v

.

Whenever A would be successful, we could therefore find r by testing the roots
of the polynomial v ·∑i∈[�−1] ci · pX�

− c� · pX�
· u. We give a formal reduction

as follows:
R takes as input

G1,G2,GT , q, e, �Γ :=
(

g1 gr
1 · · · grn

1

g2 gr
2 · · · grn

2

)

and invokes A on h := (G1,G2,GT , q, e, �Γ) and receives X1, . . . , X�.
The reduction then checks whether INTt

�(X1, . . . , X�) = 0 and aborts other-
wise. We denote this event as INT0. Next R checks whether

tdeg

(∑
i∈[�−1] ci · pXi

c� · pX�

)

≥ 2t

and again aborts otherwise. We denote this event as TDEG≥2t. Note, that as
argued above, by Lemma 16

Pr[TDEG≥ | INT0] ≥ 1 − negl(λ).

334 N. Fleischhacker and M. Simkin

If it has not aborted, R then computes (u, v) as in Eval and determines the set
X of roots of the polynomial v ·∑i∈[�−1] ci · pX�

− c� · pX�
· u. For each r′ ∈ X,

R checks whether gr′
1

?= Γ1,2 and returns r′ if it holds. If the equality holds for
no r′ ∈ X, R aborts.

The reduction R essentially performs three steps, executing A, checking the
total degree of a rational function, and finding the roots of a polynomial. Each of
those steps can be performed in polynomial time. It follows that R is PPT and
must, by assumption, have a negligible success probability against the n-SBDL
problem.

Note that r from the input of the reduction is distributed uniformly in Zq,
while A expects r to be uniformly distributed in Zq \ [N]. However, since and
q > 2δ ≥ 2λ+� log2 λ+log N+1 ≥ N · 2λ+� log2 λ+1, it holds that r ∈ Zq \ [N] with
probability at least 1−2−λ−� log2 λ−1. Furthermore, once we condition on r �∈ [N],
the distribution of h is identical to the one expected by A.

Now, observe that the reduction R is successful, if A outputs X1, . . . , X�, such
that INT0 and TDEG≥2t both occur and r is one of the roots of v ·∑i∈[�−1] ci ·
pX�

− c� · pX�
· u. As argued above, conditioned on the first two, the latter must

be true, if Eval(h, h(X1), . . . , h(X�)) = 1. Therefore, it holds that

negl(λ)

≥ Pr
[

r = R
(

G1,G2,GT , q, e,

(
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

))]

≥ Pr
[
r �∈ [N]

] · Pr
[

r = R
(

G1,G2,GT , q, e,

(
g1 gr

1 · · · grn

1

g2 gr
2 · · · grn

2

)) ∣
∣
∣
∣ r �∈ [N]

]

≥(1 − negl(λ)) · Pr[Eval(h, h(X1), . . . , h(X�)) = 1 | INT0,TDEG≥2t]
· Pr[TDEG≥2t | INT0] · Pr[INT0]

≥ Pr[Eval(h, h(X1), . . . , h(X�)) = 1 | INT0,TDEG≥2t]
· Pr[TDEG≥2t | INT0] · Pr[INT0] − negl(λ)

≥ Pr[Eval(h, h(X1), . . . , h(X�)) = 1 | INT0] · Pr[INT0]
− Pr[¬TDEG≥2t | INT0] − negl(λ)

≥ Pr[Eval(h, h(X1), . . . , h(X�)) = 1 | INT0] · Pr[INT0] − negl(λ)

and the claim follows. ��
Using Claims 18 and 19 we can thus conclude that

Pr[Eval(h, h(X1), . . . , h(X�)) �= INTt
�(X1, . . . , X�)] ≤ 0 + negl(λ) = negl(λ).

Therefore, H is direct access robust as claimed. It remains to show that it is
also compressing. The domain of the hash function is Pn([N]), the codomain is
Z

t
q(λ) × G1. It follows that the compression factor is

η ≤
log |Z2t

q(λ) × G1|
log |Pn([N])| =

log q(λ)2t+1

log
(
N
n

) ≤ log q(λ)2t+1

log(N
n)n

=
(2t + 1) log q(λ)
n(log N − log n)

Robust Property-Preserving Hash Functions 335

as claimed. The construction is thus compressing, if

(2t + 1) log q(λ)
n(log N − log n)

< 1 ⇐⇒ t <
n(log N − log n)

2 log q
− 1

2
.

��

6 Lower Bounds

In this section, we show that the compression rate of our constructions for the
SSDt and INTt

2 predicates are close to optimal. We prove our lower bound on
the size of a hash value by drawing connections to one-round communication
complexity lower bounds. Such a connection was already observed in the work
of BLV6, but we state our lower bound and full proof here for the sake of com-
pleteness.

Theorem 20 ([6]). For a universe U , let X,Y ⊆ Pn(U). Let the set disjointness
predicate be defined as follows:

DISJ(X,Y) =

{
1 if X ∩ Y = ∅
0 Otherwise

For n <
√|U | the one-way randomized communication complexity of DISJ(X,Y)

in the common random string model is Ω(n log n).

In contrast to BLV, who prove the non-existence of PPH functions for certain
parameters, we prove a lower bound on the size of the hash value for parameters
where PPH functions are feasible.

Theorem 21. Let H = {h : Pn(U) → Y } be a family of direct-access robust
PPH functions for the symmetric set difference predicate SSDt for some universe
U with |U | > t2/4 + n − t/2. Then,

log |Y | ∈ Ω(t log t).

Proof. We assume without loss of generality, that t is even.7 Fix an arbitrary
set S ∈ Pn−t/2(U). We prove the stated theorem by using H to construct a
communication efficient one-round protocol for the set disjointness problem for
input sets of size t/2 from the universe U ′ = U \ S. Let R be the common
random string that the parties can access in the set disjointness problem. Let
A,B ∈ Pn′(U ′) be the input sets of the two parties. The protocol proceeds as
follows:

The parties define A′ = A ∪ S and B′ = B ∪ S. We note that |A′| =
|B′| = n and that SSDt(A′, B′) = 1 if and only if A ∩ B = ∅. I.e.,
6 See Theorem 36 in [4].
7 Note that for sets of equal size, the symmetric set difference is always even and

therefore SSD2i−1 = SSD2i for all i ∈ N+.

336 N. Fleischhacker and M. Simkin

SSDt(A′, B′) = DISJ(A,B). Both parties then sample a hash function h ∈ H
using randomness R and security parameter n. We let party PA holding A send
z = h(A′) to party PB holding B. Party PB computes b = Eval(h, z, h(B′)) and
outputs b. Note, that A′, B′ are fixed before and independently of h. It follows
from the direct access robustness of H that for any such a priori fixed A′, B′ it
holds that

Pr[Eval(h, h(A′), h(B′) = SSDt(A′, B′)] ≥ 1 − negl(n)

where the probability is taken over the random choice of h ∈ H. It therefore
holds that Pr[b = DISJt(A,B)] ≥ 1 − negl(n).

Observe that by definition of U ′ and S, it holds that |U ′| = |U | − |S| =
|U | − (n − t/2). By the condition on |U | from the theorem statement, it thus
follows that

|U ′| >
t2

4
+ n − t/2 − (n − t/2) =

t2

4
,

and thereby
√|U ′| > t/2. Since the protocol described above works for sets of

size t/2, Theorem 20 therefore applies. The total communication of our protocol
consists of z ∈ Y , thus by Theorem 20 we have that log |Y | ∈ Ω(t log t). ��

Via the equivalence of the SSDt and INTt predicate proven in Proposition
14, we immediately also get the following lower bound on size of a hash value of
a PPH function for INTt

2.

Corollary 22. Let H = {h : Pn(U) → Y } be a family of direct-access robust
PPH functions for the two-input intersection predicate INTt

2 for some universe
U with |U | > t2 + n − t. Then,

log |Y | ∈ Ω(t log t).

References

1. Ben-Eliezer, O., Jayaram, R., Woodruff, D.P., Yogev, E.: A framework for adver-
sarially robust streaming algorithms. In: Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 63–80 (2020).
https://doi.org/10.1145/3375395.3387658

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970). https://doi.org/10.1145/362686.362692

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

4. Boyle, E., LaVigne, R., Vaikuntanathan, V.: Adversarially robust property-
preserving hash functions. In: Blum, A. (ed.) ITCS 2019: 10th Innovations in
Theoretical Computer Science Conference, vol. 124, pp. 16:1–16:20. LIPIcs, San
Diego, 10–12 January 2019. https://doi.org/10.4230/LIPIcs.ITCS.2019.16

https://doi.org/10.1145/3375395.3387658
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.4230/LIPIcs.ITCS.2019.16

Robust Property-Preserving Hash Functions 337

5. Clayton, D., Patton, C., Shrimpton, T.: Probabilistic data structures in adversarial
environments. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019: 26th Conference on Computer and Communications Security, pp. 1317–1334.
ACM Press, 11–15 November 2019. https://doi.org/10.1145/3319535.3354235

6. Dasgupta, A., Kumar, R., Sivakumar, D.: Sparse and lopsided set disjointness
via information theory. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.)
APPROX/RANDOM -2012. LNCS, vol. 7408, pp. 517–528. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32512-0 44

7. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 1

8. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. Cryptology ePrint Archive, Report 2019/175 (2019). https://eprint.
iacr.org/2019/175

9. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 12

10. Hardt, M., Woodruff, D.P.: How robust are linear sketches to adaptive inputs? In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium
on Theory of Computing, pp. 121–130. ACM Press, Palo Alto, 1–4 June 2013.
https://doi.org/10.1145/2488608.2488624

11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: 30th Annual ACM Symposium on Theory of Comput-
ing, pp. 604–613. ACM Press, Dallas, 23–26 May 1998. https://doi.org/10.1145/
276698.276876

12. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal
communication complexity. IEEE Trans. Inf. Theory 49(9), 2213–2218 (2003).
https://doi.org/10.1109/TIT.2003.815784

13. Mironov, I., Naor, M., Segev, G.: Sketching in adversarial environments. In: Ladner,
R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing, pp.
651–660. ACM Press, Victoria, 17–20 May 2008. https://doi.org/10.1145/1374376.
1374471

14. Muthukrishnan, S.: Data streams: algorithms and applications. In: 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 413–413. ACM-SIAM, Balti-
more, 12–14 January 2003

15. Naor, M., Yogev, E.: Bloom filters in adversarial environments. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 565–584. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 28

16. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004).
https://doi.org/10.1016/j.jalgor.2003.12.002

https://doi.org/10.1145/3319535.3354235
https://doi.org/10.1007/978-3-642-32512-0_44
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://eprint.iacr.org/2019/175
https://eprint.iacr.org/2019/175
https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1145/2488608.2488624
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1109/TIT.2003.815784
https://doi.org/10.1145/1374376.1374471
https://doi.org/10.1145/1374376.1374471
https://doi.org/10.1007/978-3-662-48000-7_28
https://doi.org/10.1016/j.jalgor.2003.12.002

Alibi: A Flaw in Cuckoo-Hashing Based
Hierarchical ORAM Schemes

and a Solution

Brett Hemenway Falk1(B), Daniel Noble1, and Rafail Ostrovsky2

1 University of Pennsylvania, Philadelphia, USA
{fbrett,dgnoble}@cis.upenn.edu

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. There once was a table of hashes
That held extra items in stashes
It all seemed like bliss
But things went amiss
When the stashes were stored in the caches
The first Oblivious RAM protocols introduced the “hierarchical solu-

tion,” (STOC ’90) where the server stores a series of hash tables of geo-
metrically increasing capacities. Each ORAM query would read a small
number of locations from each level of the hierarchy, and each level of the
hierarchy would be reshuffled and rebuilt at geometrically increasing inter-
vals to ensure that no single query was ever repeated twice at the same
level. This yielded an ORAM protocol with polylogarithmic overhead.

Future works extended and improved the hierarchical solution, replac-
ing traditional hashing with cuckoo hashing (ICALP ’11) and cuckoo
hashing with a combined stash (Goodrich et al. SODA ’12). In this work,
we identify a subtle flaw in the protocol of Goodrich et al. (SODA ’12)
that uses cuckoo hashing with a stash in the hierarchical ORAM solution.

We give a concrete distinguishing attack against this type of hierarchi-
cal ORAM that uses cuckoo hashing with a combined stash. This security
flaw has propagated to at least 5 subsequent hierarchical ORAM proto-
cols, including the recent optimal ORAM scheme, OptORAMa (Euro-
crypt ’20).

In addition to our attack, we identify a simple fix that does not
increase the asymptotic complexity.

We note, however, that our attack only affects more recent hierarchi-
cal ORAMs, but does not affect the early protocols that predate the use
of cuckoo hashing, or other types of ORAM solutions (e.g. Path ORAM
or Circuit ORAM).

1 Introduction

In this work, we describe an attack on a wide variety of hierarchical Oblivious
RAM (ORAM) protocols in the literature. Oblivious RAM is a cryptographic
primitive designed to allow a client to securely execute RAM programs using an
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 338–369, 2021.
https://doi.org/10.1007/978-3-030-77883-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_12

Alibi: A Flaw in Cuckoo-Hashing 339

untrusted memory. ORAM provides a method for simulating a virtual memory
array, such that for any two equal-length sequences of reads and writes into the
virtual array, the sequences of accesses to the underlying physical memory are
indistinguishable.

Typically, encryption protects the data content, however, even when the
underlying data are encrypted simply observing the data access pattern can
leak significant information.

ORAM is applicable in several different types of scenarios, including:

1. Outsourced storage: If a client makes use of an outsourced (cloud) storage
provider, even if the content is encrypted, the storage provider can observe the
client’s access pattern. This may leak sensitive information. ORAM allows all
sequences of accesses (of equal length) to be indistinguishable to the server.
(Note that if the amount of data that the user accesses is sensitive, then
ORAM cannot hide this.)

2. Secure hardware: If a small, trusted hardware component makes use of
a (cheaper) untrusted memory, observing the memory access pattern can
compromise the security of the processes running within the trusted com-
ponent. This was the original proposed application [Ost90] and is a con-
cern where memory side-channel attacks exist. A secure enclave, such as
Intel SGX, is a recent real-world computing environment in which com-
putation is performed on secure hardware, but the application needs the
memory resources of an untrusted operating system. A series of works have
shown that revealing memory access patterns is indeed a problem for SGX
[BMD+17,GESM17,MIE17,JHOvD17], and this leakage can be mitigated
using ORAM and other oblivious data structures to allow enclaves to use
untrusted memory without leaking access patterns [SGF17].

3. Secure multiparty computation (MPC): ORAM is also useful in secure
multiparty computation (MPC), where a group of parties engage in a dis-
tributed protocol to compute a joint function of their private data. Most
MPC protocols use cryptographic secret sharing to protect the content of
the data, and execute computations in the circuit model to ensure that the
computation’s control flow remains independent of the private data. Efficient
ORAM protocols have the potential for allowing efficient, secure multiparty
computation in the RAM model [OS97,LHS+14,Ds17,WHC+14].

The first ORAM construction [Ost90], introduced the hierarchical solution,
and many subsequent works have expanded and built on this paradigm [Ost92,
GO96,GMOT12,KLO12,LO13,PPRY18,AKL+20]. We review the hierarchical
solution in Sect. 2.5.

The original Hierarchical ORAM builds a hierarchy of O(log(n)) levels, each
containing a hash table with buckets of size O(log(n)), leading to lookups (ignor-
ing the costs of rebuilds1) having a cost of O(log2(n)).
1 Rebuilds require constructing oblivious hash tables, which is relatively costly, so the

amortized cost of lookups is usually dominated by the rebuild cost. Much of the
progress in the literature has been towards reducing this cost, but to simplify the
narrative, we focus here only on the costs of lookups without rebuilds.

340 B. Hemenway Falk et al.

To reduce the cost of each lookup, the traditional hash tables at each level
can be replaced with cuckoo hashing, which reduces the cost of accessing each
hash table to O(1) per virtual access. The initial solution [PR10] allowed cuckoo
hashing to fail with some non-negligible probability, and in the case that it
did, the hash table would be reconstructed. The failure (and rebuilding) of a
cuckoo hash led to security problems, however, since the ORAM protocol would
rebuild the hash table until there were no collisions, an adversary who observed
a collision in the physical access pattern, would learn that the client had made
queries for elements not stored in that level [GM11].

This problem was resolved by reducing the cuckoo hash failure probability by
including a stash [PR04]. If each Cuckoo Hash Table in the hierarchy includes
a O(log(n))-sized stash, the probability of a build failure becomes negligible,
and no rehashing is needed [GM11].2 At query time, every element of the stash
at each level needed to be accessed, so although this eliminated the security
problem created by cuckoo hashing failures, it did not improve the asymptotic
overhead, which remained O (

log2(n)
)
.

Scanning separate cuckoo stashes at every level of the hierarchy significantly
adds to the query complexity, and Goodrich et al. [GMOT12] then observed that
even though the size of the stash for each level needs to be O(log(n)) in order
to ensure a negligible probability of failure, the same failure probability could
be maintained by combining the stashes at all levels into a single O (log(n))-
sized stash. Similarly, Kushilevitz et al. [KLO12] proposed that elements that
would otherwise be placed in a cuckoo stash could instead be re-inserted directly
into the ORAM data structure. Both these techniques improved the asymptotic
complexity of accesses in the hierarchical solution to O(log(n)) physical accesses
per virtual access.

In this work, we show that the techniques of combining cuckoo stashes across
different levels of the hierarchy (introduced by Goodrich et al. and Kushilevitz et
al.) creates a subtle security flaw which gives an adversary non-negligible advan-
tage in distinguishing access patterns. The problem is similar to the problem in
[PR10], where rehashing in the event of a build failure leaked information about
the elements being stored at that level. Removing the elements from the stash
on each level, like performing a rehashing, causes the elements that would have
been in the stash to no longer be in that level. Therefore, if these elements are
searched for they will be found before this level is reached, so instead of access-
ing the locations for the stashed elements at that level, random locations will
be accessed instead. This means that, if all elements that were placed in a given
level are searched for (including the items that were stashed), the access pattern
of that level is less likely to contain any collisions in the physical access pattern.
In contrast, if no elements from that level are accessed, all accessed locations

2 Even though a logarithmic-sized stash provides a negligible failure probability, for
the smaller levels, a failure probability that is negligible in the size of the level may
be non-negligible in the overall size of the ORAM. To avoid this problem, [GM11]
suggested using traditional hash tables (rather than cuckoo hashing) for the smaller
levels of the hierarchy, i.e., until the level size reached O (

log7(n)
)
.

Alibi: A Flaw in Cuckoo-Hashing 341

will be random. The expected number of collisions will therefore be higher in
the second case, and we will show that this difference is non-negligible.

This flaw affects a large number of papers [GMOT12,KLO12,LO13,PPRY18,
KM19,AKL+20] which combine stashes in order to eliminate super-constant
sized stashes at each level. This does not affect earlier hierarchical solutions
that did not combine the stash e.g. [Ost90,Ost92,GO96] or non-hierarchical
ORAMs such as PathORAM [SvDS+13] or Circuit ORAM [WCS15]. In addition
to finding this flaw, we present a simple solution. Our solution applies to all
schemes which suffer from the flaw without affecting their asymptotic complexity.

In Sect. 2.3, we review cuckoo hashing, and in Sect. 2.5 we review the basic
hierarchical ORAM construction. In Sect. 3, we present our concrete attack
that allows an adversary to distinguish two different access patterns with non-
negligible probability in hierarchical ORAM solutions that use Cuckoo Hashing
with a combined stash. This attack has a nice intuitive interpretation. However,
this attack does not apply directly to PanORAMa and OptORAMa, so in Sect.
4 we present a generic version of our attack which does apply to these protocols.
The generic attack is also shorter and simpler. In Sect. 5 we present our solution
and prove that it is correct. Finally, we present the protocols that have been
affected by this flaw in Sect. 6.

2 Preliminaries

2.1 Notation and Model

For any positive integer x, [x] def= {1, . . . , x}. For a set Z, z
$← Z denotes that z

is chosen uniformly at random from Z and 2Z denotes the powerset of Z.
We denote a sequence using parenthesis as follows: v = (v1, . . . , vt). Sequences

can alternatively be thought of as vectors or tuples, and we use the standard
subscript vi to denote the element at location i of sequence v. Set notation (e.g.
∈,∪) is often applied to sequences, in which case the sequence is implicitly first
mapped to the set of elements it contains.

We think of an ORAM as an oblivious implementation of a RAM. Therefore,
the index space, which we denote V, is simply [N], where N is the size of the
ORAM.3 We assume that the payloads are chosen from a space W. For all w ∈ W
we assume that |w|, the length of the bit-representation of w, is the same, so
that items cannot be distinguished by volumetric attacks.

As is standard practice, we model the hash functions as truly random func-
tions (see [Mit09] for a discussion of this assumption). Assuming that the hash
functions are truly random implies that the adversary (who only learns outputs
of the hash function) cannot gain any additional information about the hash
function. Our protocols are secure against computationally unbounded adver-
saries in this model.4 We consider protocols secure (information-theoretically
3 With some additional work, an ORAM scheme can be made to be an oblivious

implementation of a dictionary, i.e., that have keys chosen from a space different
than [N], but we avoid this version for simplicity.

4 In practice, implementations must use hash functions that are not truly random,
but seem sufficiently random to a computationally bounded adversary.

342 B. Hemenway Falk et al.

secure in the random hash function model) if the distributions of adversary
views do not change much based on sensitive data. Formally, let D(x), D(x′)
be two distributions of views of the adversary on differing sensitive data x and
x′. Let Δ(D(x),D(x′)) denote the statistical distance between two distributions.
Protocols are secure if Δ(D(x),D(x′)) is negligible (in N) for all pairs x, x′.

2.2 Oblivious Hash Tables

The hierarchical ORAM scheme builds on Oblivious Hash Tables which we for-
malize and abstract in Definition 1. We view a hash table as a method for storing
(v, w) pairs, where v ∈ V = [N] is a (virtual) index, and w ∈ W is a payload.
Let X = V × W.

Definition 1 (Oblivious Hash Tables). An Oblivious Hash Table

T = (Gen,Build, Lookup,Delete,Extract)

is a tuple of polynomial-time algorithms

– Setup: k ← Gen(N,m) generates a key for a hash table of capacity m, storing
(virtual) indices from [N]. In most cases, the key is simply the description of
the hash functions.

– Building: The function T ← Build(k,X) takes a set, X ⊂ X , |X| ≤ m and
builds a table, T , containing the elements in X. For any X, the probability
that Build(k,X) fails is negligible in N , i.e., is bounded by N−ω(1).

– Lookup: The deterministic function Q ← Lookup(k, v) takes a (virtual) index
v ∈ V, and returns a set of query locations Q ⊂ [|T |].

– Delete: The deterministic function Delete(k, v, T) removes items (v, w) if
they exist in any location T [i] where i ∈ Q ← Lookup(k, v). Delete accesses
exactly the indexes of T in Q and does not access any other memory.

– Extract: The function X̄ ← Extract(k, T), takes a key k and a table T and
returns a set of elements X̄.

These algorithms satisfy the following correctness properties. Suppose k ←
Gen(N,m) and X ⊂ X with |X| ≤ m.

– Building: If T ← Build(k,X), then T ∈ X |T |. For every (v, w) ∈ X, we say
that the payload w was stored in virtual location v and that (v, w) is stored
in T .

– Lookup: If T ← Build(k,X), then for any (v, w) ∈ X, if v has not been deleted
from T , the lookup Q ← Lookup(k, v) produces a set of indices, Q ⊂ [|T |] such
that (v, w) ∈ T [i] for some i ∈ Q with probability at least 1 − N−ω(1).

– Extraction: If k, T are constructed as above, and D is the set of items deleted
from table T , and X̄ ← Extract(k, T) then x = (v, w) ∈ X̄ iff (v, w) ∈ X,
v /∈ D,

Alibi: A Flaw in Cuckoo-Hashing 343

Additionally, these algorithms will need to allow the above functions to be exe-
cuted obliviously. We define two notions of obliviousness: access-obliviousness
and full obliviousness. Full obliviousness includes access-obliviousness. In our
attack, we show that “combined-stash” cuckoo hashing schemes are not access-
oblivious, and hence cannot be fully oblivious. Since the techniques used to obliv-
iously perform builds and extractions are complex and varied, focusing on access-
obliviousness will simplify exposition.

In brief, a protocol is access-oblivious if equal-length non-repeating sequences
of indexes have indistinguishable outputs from Lookup. This is the best that can be
achieved. Since Lookup is deterministic, repeated indexes in the input to Lookup
will result in repeated outputs, so if one sequence contains repeats and another
doesn’t the outputs of Lookup will be easily distinguishable. ORAM can be viewed
as a way of modifying an Oblivious Hash Table to allow repeated queries of the
same index.

Definition 2. A sequence v = (v1, . . . , vt) is said to be non-repeating if for all
1 ≤ i < j ≤ t, vi �= vj.

– Obliviousness:
• Access-obliviousness: For any two sets X,X ′ ⊂ X with |X|, |X ′| ≤ m

and any non-repeating sequences of virtual indices v, v′ ∈ Vt the sequence
of outputs of Lookup(k, ·) on v and v′ have negligible statistical distance
(in N). In other words

Δ ((Q1, . . . , Qt) , (Q′
1, . . . , Q

′
t)) < Nω(1)

where the sequence of queries (Q1, . . . , Qt) and (Q′
1, . . . , Q

′
t) are generated

according to the following experiments:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Q1, . . . , Qt)

∣
∣
∣
∣
∣
∣
∣
∣
∣

T ← Build(k,X)
Q1 ← Lookup(k, v1)

...
Qt ← Lookup(k, vt)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Q′
1, . . . , Q

′
t)

∣
∣
∣
∣
∣
∣
∣
∣
∣

T ′ ← Build(k′,X ′)
Q′

1 ← Lookup(k′, v′
1)

...
Q′

t ← Lookup(k′, v′
t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

• Full obliviousness: The complete sequence of accesses from building,
lookups, deletions and extractions are oblivious, provided that the lookup
and deletion sequences are the same, and the sequences are non-repeating.
Note that deletions access the same locations as the results of lookups, so
the access pattern of deletions do not provide additional information and

344 B. Hemenway Falk et al.

can be ignored. Concretely, for any two sets X,X ′ ⊂ X with |X|, |X ′| ≤ m
and any non-repeating sequences v, v′ ∈ Vt and

A
def
=

{
Acc

(
T ← Build(k,X)
X̄ ← Extract(k, T)

) ∣
∣
∣
∣ k ← Gen(N,m)

}

and

A′ def
=

{
Acc

(
T ′ ← Build(k′,X ′)
X̄ ′ ← Extract(k′, T ′)

) ∣
∣
∣
∣ k

′ ← Gen(N,m)
}

where Acc (f(·)) are the set of physical memory accesses when exe-
cuting function f and Qi, Q′

i are defined as above using the same
v, v′,X,X ′, k, k′, then

Δ ((A,Q1, . . . , Qt) , (A′, Q′
1, . . . , Q

′
t)) < Nω(1)

Remark 1 (Full Obliviousness). In a single-party ORAM setting, the hash-table
must provide full obliviousness. It is possible in a multi-party setting to have
the construction, accessing and extraction of the hash table be performed by
different parties (e.g., [LO13]). In this case, the set of functions executed by
each individual party must be oblivious, but the combined set of all functions
need not be.

Remark 2 (Insertions). Although most hash tables support insertion, the hier-
archical ORAM construction does not require this feature – instead, elements are
inserted into the ORAM only during rebuilds. Thus we do not include insertion
as a necessary functionality in our formal definition of a hash table.

Remark 3 (Deletions and Extraction). Some ORAM schemes do not delete items
as they are accessed, but rather extract data from all levels and then perform
deduplication. However, the definition presented here simplifies proofs.

2.3 Cuckoo Hashing

Cuckoo hashing was introduced in [PR04] as a method of multiple-choice hashing
with expected constant-time lookups. Since its introduction, many variants of
cuckoo hashing have been proposed and analyzed (see [Mit09] for a review). In
this section, we review a basic common form of cuckoo hashing, but we emphasize
that our attack works for almost all types of hashing with a stash.

We view a Cuckoo Hash Table as an array, T , with cn + s locations, each
having capacity one. Each element, x, can be placed in one of d locations given
by hi(x) for i = 1, . . . , d where hi(x) ∈ [cn]. If an element cannot be placed in
one of its d locations, it is placed in a logarithmic-sized “stash,” i.e., a location
in cn + 1, . . . , cn + s.

With appropriate choices of constants c and d, and a stash of size s = log(n),
cuckoo hashing will succeed except with probability negligible in n (Theorem 2
of [ADW14]).

Alibi: A Flaw in Cuckoo-Hashing 345

– Key generation: Generate d ≥ 2 hash functions hi : V → [cn] for i ∈ [d].
– Building: The build algorithm must place each element (v, w) ∈ X in either

T [hi(v)] for some 1 ≤ i ≤ d or in T [cn + j] for some 1 ≤ j ≤ s. If there is no
allocation of elements that satisfies this condition, the build fails. Building can
be accomplished by repeated insertions, or an “offline” algorithm. We do not
specify how the build is accomplished obliviously as this varies significantly
between protocols.

– Lookups: Return Q = (h1(v), . . . , hd(v), cn + 1, . . . , cn + s). To read an ele-
ment from a virtual index, v, read T [hi(v)] for i = 1, . . . , d, and check if any
of the elements retrieved are of the form (v, x) for some x.

– Deletions: Find Q ← Lookup(k, v) and for any i ∈ Q if T [i] = (v, x) set
T [i] = (⊥, ⊥).

– Extractions: Again, the method for performing extractions obliviously varies
significantly between protocols, so we do not outline it here.

Fig. 1. Cuckoo Hash Table (1-table version) [PR04]

Lemma 1. Cuckoo Hash Tables, as presented in Fig. 1 are access oblivious.

Proof. Since each hash function is truly random, the first time an item is queried
to a hash function, the result is chosen uniformly at random and independent
of all previous choices. Therefore, within the scope of the access obliviousness
experiment, the values Qi and Q′

i will all be chosen uniformly at random and
independently, since each access sequence is distinct, and the keys are different
in the two experiments. Therefore, (Q1, . . . , Qt) and (Q′

1, . . . Q
′
t) will actually be

chosen from the same random distribution, and the statistical distance between
them is 0.

Remark 4 (Set Membership in Table). The access pattern of a Cuckoo Hash
Table does not reveal whether the queried elements were present in the table
or not. This follows because non-stash locations accessed are always chosen uni-
formly at random from [cm]d (and the stash locations are always accesssed).

Unlike some other constructions, Cuckoo Hash Tables hide set membership
without the insertion of dummy elements, i.e., pre-inserted elements that should
be searched for in the case the item is not in the table.

If Cuckoo hashing is combined with an appropriate Build and Extract con-
struction, it can be fully oblivious. Note that this not only requires that the Build
and Extract functions are oblivious in themselves, but that when Build, Lookup
and Extract are all performed by a single entity, that the combined sequence of
accesses is still oblivious.

Remark 5 (1-table vs d-table cuckoo hashing). We describe a single-table cuckoo
hashing scheme, where all d hash functions hash into the same table. Alter-
natively, some cuckoo hashing constructions use d tables, and hash function
i hashes into table i. Setting d to 2 is a common choice, resulting in 2-table

346 B. Hemenway Falk et al.

cuckoo hashing. Using 1- vs d-table cuckoo hashing does not change the asymp-
totic performance of the hashing scheme, although it does change some details
in the analysis.

A single-table Cuckoo Hash Table corresponds naturally to bipartite multi-
graph with n left-hand nodes (corresponding to [n]) and cn right-hand nodes cor-
responding to the hash buckets (i.e., the first cn locations in the array T). Then
a left hand node, v, is connected to d right hand neighbors given by {hi(v)}d

i=1.
It is straightforward to see that the build procedure can succeed if there is a
bipartite matching that includes |X| − s left-hand vertices. The matched ele-
ments can be placed in their right-hand neighbors (given by the matching) and
the remaining s elements can be placed in the stash.

This also shows that the build procedure can be implemented by building
this bipartite multigraph and calculating a maximum matching. We assume that
whatever build procedure is used does find such a maximum matching. In prac-
tice, analyses of build processes generally assume that a maximum matching is
found, even if they use an algorithm which is not known to provide a maximum
matching. For instance, in [KMW09] builds use a bounded-time insertion which
is not guaranteed to find an optimal allocation, but is heuristically found to be
nearly optimal.

To be an Oblivious Hash Table, the functions Build and Lookup need to
fail with probability N−ω(1). If a Cuckoo Hash Table is successfully built, the
locations returned by Lookup will always include the location of the queried item
if it is stored in the table, so the probability of failure is 0. Build, however, can fail.
If the stash is chosen by finding a maximum matching, the probability of failure is
O(n−s) for any constant s [KMW09]. A similar result holds for s = O(log n), for
which the probability of failure is O(n− s

2) [ADW14]. Therefore, if s = Θ(log(n))
the failure probability is O(n−Θ(log n)), which is negligible in n. Note that for
ORAMs, the failure probability needs to be negligible not in the capacity of the
Cuckoo Hash Table, n, but in the capacity of the ORAM, N . If N is polynomial
in n this will hold. Goodrich and Mitzenmacher show that if the stash size is
Θ(log(N)) and n = Ω(log7(N)) the failure probability is still negligible in N and
propose using another type of oblivious hash table for n = o(log7(N)) [GM11].
We similarly assume that for n = o(log7(N)) some alternative Oblivious Hash
Table is used so that the failure probability of each hash table is indeed negligible
in N , rather than n.

We have shown here that the Cuckoo Hash Table presented here, with appro-
priate Build and Extract functions, is an example of an oblivious hash table (with
failure negligible in n). We next show how oblivious hash tables can be used to
construct a hierarchical ORAM. This is secure, but we will later show that if
the stashes are combined this breaks obliviousness.

Alibi: A Flaw in Cuckoo-Hashing 347

2.4 ORAM

An Oblivious RAM (ORAM) provides access to a virtual memory such that all
equal-length sequences of virtual memory accesses have indistinguishable phys-
ical access sequences. We define an ORAM formally below.

Definition 3 (ORAM). An ORAM O = (Init,Query) is a tuple of polynomial-
time algorithms:

– Init: O ← Init(A,N), where N is an integer, and A is an array of length N of
elements from some space W. This initializes the value of index i ∈ V = [N]
to A[i] ∈ W.

– Query: w′ ← Query(O, v,w) where O is an ORAM object, v ∈ V is an index
and w ∈ W ∪ {⊥}. If w = ⊥ this is a read query and it returns the value at
index v. If w �= ⊥ this is a write query and it returns ⊥ and sets the value at
index v to w.

The ORAM must satisfy the following correctness guarantee.

– Consistency: When a read is performed on index v, the result equals the
value that was last written to index v, or if a write has never been performed
on index v, it returns the initial value of index v, A[v].

The ORAM must additionally satisfy the following security property.

– Obliviousness:
Regardless of the data, or the sequence of queries, the access pattern to
the physical memory is indistinguishable. Formally, for any initial arrays
A, A′ of length N and any sequence of queries (v1, w1), . . . , (vt, wt),
(v′

1, w
′
1), . . . , (v

′
t, w

′
t), where vi, v

′
i ∈ V, wi, w

′
i ∈ W ∪ {⊥}, given

C
def
=

⎧
⎪⎪⎨

⎪⎪⎩
Acc

⎛

⎜
⎜
⎝

O ← Init(A,N)
Query(O, v1, w1)

. . .
Query(O, vt, wt)

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

and

C ′ def
=

⎧
⎪⎪⎨

⎪⎪⎩
Acc

⎛

⎜
⎜
⎝

O′ ← Init(A′, N)
Query(O′, v′

1, w
′
1)

. . .
Query(O′, v′

t, w
′
t)

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

then
Δ (C,C ′) < Nω(1)

Note that the basic ORAM security definition only gives the adversary the
ability to see the access pattern, but not the underlying data itself. To hide the
data, each record can be encrypted under the client’s key using a symmetric-
key cryptosystem, or, in multi-server ORAMs, each record can be secret-shared
among the servers (e.g. [KM19]).

348 B. Hemenway Falk et al.

2.5 Hierarchical ORAM

The hierarchical ORAM construction was originally put forward in [Ost90,
Ost92,GO96] and has since been used as a basis for many future ORAM proto-
cols including [GMOT12,LO13,PPRY18,AKL+20]. In this section, we lay out
a generic version of hierarchical ORAM and show it to be secure. In Sect. 3, we
show how modifications to this basic scheme caused a subtle security problem
that caused future schemes (using this modification) to be insecure.

A hierarchical ORAM consists of �+1 levels. Of these, there are � levels each
consisting of an Oblivious Hash Table of increasing capacities. Additionally, there
is one level L0, also called the cache, which is an oblivious object similar to an
Oblivious Hash Table but that additionally supports insertions and repeated
queries in the access sequence. The cache only ever contains at most c elements
(where typically c = Θ(log(N))). We choose � such that c2� ≥ N . Since c is
small, the cache can be implemented easily by performing a linear scan of its
contents on each access.

We present the Hierarchical ORAM formally in Fig. 2. We will now show
why such ORAMs are secure, provided that the hash tables are fully oblivious.
First, we need the following lemma.

Lemma 2. The ORAM of Fig. 2 satisfies an invariant that all possible indexes
v ∈ V are stored in exactly one level in the ORAM. This invariant holds after
initialization, after each cache insertion and after each rebuild, though need not
hold between these points.

Proof. By induction. The ORAM is initialized to store all indexes v ∈ V in level
L�. Each query is to some v ∈ V. When a lookup to some index v is made, by
induction this index will exist at some level. Since each level is searched, this
index will be found and deleted from this level. It will then be placed in the
cache. Therefore, once the item has been inserted into the cache, each index
v ∈ V will be stored in exactly one location. If a rebuild occurs, certain levels
will be emptied and merged into a larger level. However, this merge preserves
the set of indexes in the ORAM, since all indexes from levels i = 0, . . . , i∗ are
extracted and placed in level i∗.

Lemma 3. An index is queried at most once at each (non-cache) level between
rebuilds of that level, or equivalently, an index is queried at most once to any
Oblivious Hash Table.

Proof. If an index, v ∈ V is queried at a level Li, it will be found at some
level, (since by Lemma 2 it must exist at some level). It will then be placed
in the cache. Until Li is rebuilt, it will not exist in Li, since the tables only
support deletions, not insertions. Since the sizes of the tables are exponentially
increasing, if Lj is rebuilt for some j > i, Li will also be rebuilt (possibly to an
empty table) so conversely, if Li has not been rebuilt, Lj will also have not been
rebuild for all j > i. Therefore, the index will not be stored at Lj for any j > i.
Therefore, since the index must be stored somewhere, it is stored at some level

Alibi: A Flaw in Cuckoo-Hashing 349

– Input: A virtual memory size N . An array of initial values A.
– Init: Set t = 0

Set X = (v, A[v]) for all 1 ≤ v ≤ N .
For i = 0 − 1, set ki ← Gen(N, c2i), Ti ← Build(ki, ∅).
Set k ← Gen(N, c2), T ← Build(k , X).

Hierarchical ORAM Initialization

– Input: A virtual memory address, v. A payload, x. (For read queries x = ⊥.)
– State: A counter, t. Hash tables {Ti}i∈[]. Hash keys {ki}i∈[]. Local memory,

m.
– Scan the cache: Initialize found = false. Read every element in the cache

L0. If a pair (v, w) is found, set m = w, found = true, and delete the old item
from the cache.

– Search each level: For i in 1
• If found = false set Qi ← Lookup(ki, v), otherwise set Qi ←

Lookup(ki, dummy◦t) where ◦ denotes concatenation, ensuring dummy◦t /∈
V.

• Access Ti[j] for all j ∈ Qi. If there is a j ∈ Qi, and a w such that
Ti[j] = (v, w), then set m = w and found = true.

• Delete(ki, v, Ti)
– Insert into the cache: If x = ⊥ (i.e., it was a write query), insert (v, x) into

the cache, otherwise insert (v, m) into the cache.
– Rebuilding: Increment t. Let τ = 2c be the rebuild period. If t is a multiple

of τ initiate a rebuild (as described below).
– Output: Output m. If it was a read query, m will contain the read value.

Hierarchical ORAM queries.

– State: A counter, t. Hash tables {Ti}i∈[]. Hash keys {ki}i∈[].

– Identify level: Let ī be the largest value such that t
τ

= 0 mod 2ī. Let i∗ =
min(̄i + 1). We will merge levels 0, . . . , i∗ into level i∗.

– Merge levels: Initialize X = ∅. For i = 0, . . . , i∗, and obliviously evaluate
X = X ∪ Extract(ki, Ti). Set ki∗ ← Gen(N, c2i∗

), and Ti∗ = Build(ki∗ , X).
– Clear lower levels: For i = 0, . . . , i∗ − 1, set ki ← Gen(N, c2i), Ti ←

Build(ki, ∅).

Hierarchical ORAM rebuilds.

Fig. 2. Hierarchical ORAM

350 B. Hemenway Falk et al.

Lk, where k < i. Since the Hierarchical ORAM searches levels sequentially, it
will find the item before Li is reached, will set found = true and will therefore
search for dummy ◦ t. Therefore each v ∈ V will only be searched for once in Li

between rebuilds of Li. The values of t increment with each ORAM query, so
each query of form dummy ◦ t will also be queried at most once at any level.

We now show that the oblivious property of the ORAM follows easily from
this lemma and the properties of Oblivious Hash Tables:

Theorem 1. The Hierarchical ORAM protocol in Fig. 2, when using an Obliv-
ious Hash Table at each level, is oblivious as per Definition 3.

Proof. The security of the ORAM protocol rests on two key facts: (1) No repeated
accesses: An index is queried once in each level between rebuilds, or equivalently,
the sequence of queries to each hash table is non-repeating. This was demon-
strated in Lemma 3. (2) Oblivious accesses: Our definition of an Oblivious Hash
Table (Definition 1) produces indistinguishable physical access patterns provided
that the two sequences of virtual indices are non-repeating. This is satisfied as
per fact (1), so the combined access patterns of builds, lookups, deletions and
extractions at each level have distributions separated by negligible statistical
distances. Accesses to the cache are always the same, so these do not increase
the statistical distance between access distributions. Furthermore the access pat-
terns of builds, lookups, deletions and extractions of each Oblivious Hash Table
are independent of each other Oblivious Hash Table, since different keys are used
each time. Therefore the combined access pattern of the entire data structure
also has distributions separated by negligible statistical distances so is secure by
Definition 3.

Remark 6 (Efficiency). While rebuilding the hash tables is expensive,5 these
rebuilds occur at a frequency proportional to the capacity of the table, thus
the amortized cost can remain low. The exact communication cost depends on
how the hash tables are implemented, and how the oblivious functions Build and
Extract are implemented. We do not focus on these details here, as they do not
bear directly on our attack.

3 The Attack

In this section, we describe a novel attack on hierarchical ORAM protocols
that use cuckoo hashing with a combined stash. This attack applies directly
to [GMOT12,KLO12,LO13] and Instantiation 2 of [KM19]. The recent works
of PanORAMa [PPRY18] and OptORAMa [AKL+20] use a modified hierar-
chical solution with multiple cuckoo tables at each level. Since the attack pre-
sented here assumes that the adversary can know which indexes are stored in the
5 In the client-server setting expense is measured by communication between the client

and the server. In the MPC setting, expense is measured as the communication
between the parties in the computation.

Alibi: A Flaw in Cuckoo-Hashing 351

Cuckoo Hash Table, it does not apply directly to PanORAMa and OptORAMa.
In Sect. 4 we present a more general attack that also applies to PanORAMa
and OptORAMa. The general attack is also simpler, but this attack has the
advantage of having an intuitive interpretation.

3.1 Simplified Attack

First, we describe this attack in a simplified setting, which we later show is
equivalent to the ORAM setting.

Imagine the following construction of a hash table. A Cuckoo Hash Table,
as defined in Fig. 1, is modified in the following way. When querying some item
v ∈ V, the stash will be searched first. If the item is found in the stash, then
some new unique index v′ /∈ V will be searched for in the remainder of the table,
i.e., hi(v′) will be accessed for 1 ≤ i ≤ d. This construction is presented in Fig.
3. We will show that this object is no longer an Oblivious Hash Table.

Build, Delete and Extract are the same as in Cuckoo Hash Tables (Figure 1)

– Lookups: Lookup takes the key k, an index v and the table object T , and
returns a set of indexes, Q. If v is not in the stash, (i.e., T [j] = (v, w) for
any cm + 1 ≤ j ≤ cm + s) return Q = (cm + 1, . . . , cm + s, h1(v), . . . , hd(v)).
However, if v is in the stash pick a new v /∈ V, using an internal counter
to ensure that the same v is never selected twice, and return Q = (cm +
1, . . . , cm + s, h1(v), . . . , hd(v)).

Fig. 3. Stash-resampling cuckoo hash table

Observe that previously, Lookup only took k and v as parameters, whereas in
this definition, its behavior depends on an additional parameter T . Specifically,
Lookup now depends on which items were placed in T ’s stash. The fact that the
access pattern changes depending on how the table is constructed breaks the
abstraction of an Oblivious Hash Table. We will next show that this break leads
to a concrete vulnerability.

Remark 7. We describe our attack in terms of cuckoo hashing, but essentially
the same argument goes through with other hashing schemes that use a stash.

Let T be a Stash-Resampling Cuckoo Hash Table containing indices v =
(v1, . . . , vt) and using hash functions h = (h1, . . . , hd). Imagine computing
Lookup(k, vi, T) for 1 ≤ i ≤ t. Let v′ be the sequence of inputs to the hash
functions. If vi was not stashed, v′

i = vi, but if vi was stashed, v′
i will be some

other unique value.
Now imagine that a Cuckoo Hash Table is constructed using hash functions h,

but with indices v′. All items that were already stored in the table can continue

352 B. Hemenway Falk et al.

to be stored in the table. However, it is likely that if vi was stashed, v′
i will not

need to be stashed, since it is hashed to new locations, one of which is probably
empty. Therefore the stash size of this Cuckoo Hash Table is smaller than usual.
Now, an adversary does not know h or v′, but it does learn hj(v′

i) since these
are returned by Lookups. Therefore, it can learn what the stash size would have
been in a table that used hash functions h and indexes v′.

In contrast, let v′′ be a sequence of t accesses, none of which are in T . Since
none are in the stash, v′′ are also the inputs to the hash functions and the
adversary can learn from the access pattern the size the stash would have been
if the table stored v′′. The values of hj(v′′

i) will be chosen uniformly at random,
so this stash would be chosen from the usual stash size distribution. Hence,
if the adversary calculates what the stash size would have been if a table was
constructed from the hash function inputs, the distribution of stash sizes will be
smaller if v is queried than if v′′ is queried.

We now prove formally that a Stash-Resampling Cuckoo Hash Table is not
access-oblivious. We formalize the intuition above by representing the accesses
as a bipartite graph, with m left-vertices corresponding to the m inputs to the
hash functions, with cm right-vertices corresponding to the non-stash locations
in the table and edges from a left-vertex to a right-vertex if one of the hash func-
tions maps the left-vertex to the right-vertex. A maximum matching in the graph
therefore corresponds to a possible assignment of elements to locations in the
hypothetical hash table constructed by the adversary. The number of unmatched
elements then will correspond to the stash size. Below, we formalize the corre-
spondance from access sequences to graphs and show that the distribution of
the number of unmatched elements in the graphs indeed differs non-negligibly.

Definition 4 (Graph Representation of an Access-Pattern). The Graph
Representation of an Access Pattern, B(m, c,Q) is a function that takes as inputs
integers m and c and a sequence of access sets, Q = Q1, . . . , Qm, and returns a
bipartite multigraph with left vertices a1, . . . , am, right vertices b1, . . . , bcm and
edges (ai, bj) for j ∈ Qi ∩ [cm].

Definition 5 (Left-regular bipartite multigraph). We define a left-regular
bipartite multigraph to be a graph G = (L ∪ R,E) with the following properties.

– It is bipartite, with vertex sets L and R, and each edge being directed from L
to R, i.e., ∀(u, v) ∈ E, u ∈ L, v ∈ R.

– Every vertex in L has a constant number of edges, denoted d.
– E is a multiset, i.e., the edge (u, v) may occur multiple times.

Definition 6 (Random left-regular bipartite multigraph). We define
H0(m, c, d) to be a function that produces a random left-regular bipartite multi-
graph, where |L| = m, |R| = c · m, d ≥ 1 is the degree of each vertex in L and
where each outgoing edge from a vertex u ∈ L has an end-point, v ∈ R, that is
chosen uniformly at random from R (and independent of all other choices).

If Q = (Q1, . . . , Qm) is the result of outputs of Lookup to a sequence of
queries to a (Stash-Resampling) Cuckoo Hash Table with capacity m and degree

Alibi: A Flaw in Cuckoo-Hashing 353

d, then G ← B(m, c,Q) will be a left-regular bipartite multigraph, since every
Qi will contain d vertices in [cm]. We will soon show that for a Stash-Resampling
Cuckoo Hash Table, if none of the queried elements are in the table, G will be
sampled as a random left-regular bipartite multigraph, but if the table contents
are queried, the left-regular bipartite multigraph will be sampled from a different
distribution of graphs which will have fewer unmatched elements.

Definition 7 (Matching of a bipartite multigraph). For a bipartite multi-
graph G = (L ∪ R,E), a matching is a set of edges E′ ⊆ E such that

(u, v), (u′, v′) ∈ E′ ⇒ u �= u′, v �= v′.

A maximum matching is a matching of maximum size. There may be multiple
such matchings, but they will all be the same size; we use M(G) to denote some
such matching and |M(G)| to be this size, which is independent of which match-

ing is chosen. S(G)
def
= m−|M(G)| is the number of unmatched elements on the

left-hand side.

Note that for any G, 1 ≤ |M(G)| ≤ m, so 0 ≤ S(G) ≤ m − 1.

Lemma 4 (Lower bound on unmatched elements). For all 0 ≤ s ≤ m−1
and G ← H0(m, c, d), where d, c are constants,

Pr [S(G) ≥ s] ≥
(

1
cm

)ds+d−1

which is non-negligible in m.

Proof. Pick s+1 elements of L. The probability that all d · (s+1) edges of these
elements will have the same endpoint v ∈ R is

(
1

cm

)d(s+1)−1 =
(

1
cm

)ds+d−1. If
this occurs, any matching can contain at most 1 of these elements, which means
that at least s of these elements will be unmatched. Thus S(G) ≥ s. Note that
for any constant d and s, this probability is non-negligible.

Next, we describe two distributions on the integers [m − 1].

Definition 8. Fix constants d,m ∈ N, and c > 1. Let M(·) be an algorithm
that takes a bipartite multigraph G, and returns a maximum matching M(G).

– Distribution 0: Let s0 be the random variable denoting the number of
unmatched elements in a random bipartite multigraph. s0

def
= S(H0(m, c, d)).

– Distribution 1: Define a distribution of graphs according to the following
process. First construct a graph G′ ← H0(m, c, d). Let G′ = (L ∪ R,E′). Let
M(G′) be a maximum matching in G′. Initialize E = E′. For every u ∈ L
s.t. �(u, v) ∈ M(G′), remove every edge (u, v) ∈ E′, and replace it with a
new edge (u, v′) where v′ is chosen uniformly at random from R. Let G =
(L1 ∪ R1, E) be the modified graph. Let H1(m, c, d,M(·)) denote the function
that samples a graph from this distribution. Define s1 to be the number of
unmatched elements in this experiment, i.e., s1

def
= S(H1(m, c, d,M(·))).

354 B. Hemenway Falk et al.

Although the distributions s0 and s1 depend on parameters, we generally suppress
these dependencies for notational convenience.

Intuitively, the expected value of s1 should be smaller than the expected
value of s0, since the vertices which were not matched get another chance to be
matched when new end-points are chosen for them. In Lemma 5 we show that
this is indeed the case, and that the distributions of s0 and s1 are statistically
different (i.e., non-negligibly different).

Lemma 5. If s0 and s1 are the random variables described above, then the sta-
tistical distance between s0 and s1 is at least 1

m

(
1 − (

1
c

)d
) (

1
cm

)2d−1 which is
non-negligible in m.

Proof. Consider the graph G′ = (L ∪ R,E′) ← H0(m, c, d) generated as the
first step in generating distribution s1, where |R| = c · m. Let M = M(G′).
Let S ⊂ L be the unmatched vertices in L. We know |S| is distributed by s0.
When G is constructed (as the second step of distribution s1), each u ∈ S will
receive d new random neigbors. For v ∈ L/S we can use the existing matching
M for G and for u ∈ S we can match it to a neighbor directly if this neighbor
is not already matched.6 Since at most m elements of R will ever be matched,
the probability that a new random neighbor is already matched is at most 1

c .

There is then at most a
(
1
c

)d probability that all d right-hand neighbors of u
are already matched. Let e′

i be the event that vi is unmatched in G′, and ei the
event that vi is unmatched in G. This shows:

Pr[ei] ≤
(

1
c

)d

Pr[e′
i]

Thus by linearity of expectation

E [s1] =
∑

1≤i≤m

Pr[ei] ≤
∑

1≤i≤m

(
1
c

)d

Pr[e′
i] =

(
1
c

)d

E [s0] .

By Lemma 4, Pr(s0 ≥ s) ≥ (
1

cm

)ds+d−1. Since s0 is a non-negative distribution,

E [s0] ≥ Pr(s0 ≥ 1) ≥ (
1

cm

)2d−1 so

|E [s0] − E [s1]| ≥
(

1 −
(

1
c

)d
)(

1
cm

)2d−1

.

In particular, this means that the expected values, E [s0] and E [s1] are non-
negligibly different. Finally, notice that 0 ≤ s0, s1 ≤ m, so

Δ (s0, s1) ≥ 1
m

|E [s0] − E [s1]| ≥ 1
m

(

1 −
(

1
c

)d
)(

1
cm

)2d−1

which means that Δ (s0, s1) is also non-negligible.
6 This greedy matching assignment not give an optimal matching for G, but it will

provide an upper bound for s1 in terms of s0.

Alibi: A Flaw in Cuckoo-Hashing 355

Now we show that the Stash-Resampling Cuckoo Hash Table is not access
oblivious.

Theorem 2. The Stash-Resampling Cuckoo table presented in Fig. 3 is not
access-oblivious.

Proof. Let X = X ′ = {1, . . . , m} for some m ≤ N
2 . Let vi = i + m and let v′

i = i
for 1 ≤ i ≤ m. The adversary will generate a table with the input data, lookup
the sequence of virtual indices and construct a bipartite graph based on these
lookup results.

Let there be two experiments:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k ← Gen(N,m)
T ← Build(k,X)
{Qi ← Lookup(k, vi, T)}i∈[m]

G ← B(m, c,Q)
s = S(G)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k′ ← Gen(N,m)
T ′ ← Build(k,X ′)
{Q′

i ← Lookup(k′, v′
i, T

′)}i∈[m]

G′ ← B(m, c,Q′)
s′ = S(G′)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

In the first experiment, none of the queries are in X, therefore none will
be in the stash. Therefore Qi = (cm + 1, . . . , cm + s, h1(vi), . . . , hd(vi)). Since
the vi are distinct from each other and the elements stored in the table, hj(vi)
will be chosen uniformly at random from [cm] and independently of all previous
variables. Therefore, each left-vertex in G will have d neighbors, chosen uniformly
at random from bj . Therefore G is chosen exactly according to H0.

In the second experiment, all of the queries are in X ′. If we were to search
according to the oblivious Cuckoo Hash Table of Fig. 1 then the corresponding
graph would be distributed according to H0(m, c, d). However, for any element
that was not in the maximum matching, (i.e., the elements in the stash) the
Stash-Resampling Cuckoo Hash Table will instead pick new indices to query, v̄′

j

and return locations hi(v̄′
j) which will not have been queried before so will be new

random locations. Therefore, for these elements that were not in the maximum
matching, the corresponding edges will be re-chosen uniformly at random. The
graph from the second experiment will therefore be constructed according to
distribution H1(m, c, d,M(·)), assuming the stash was chosen by some maximum
matching algorithm M(·).

We have already shown that distributions H0(m, c, d) and H1(m, c, d,M(·))
are distinguishable. Therefore an adversary can distinguish the two experiments,
so Stash-Resampling Cuckoo Hash Tables are not access-oblivious.

Remark 8. Note that the attack described above is immediately applicable in
cases where the stash is accessed before the associated Cuckoo Hash Table, and
if the target is found in the stash, the protocol searches for dummy elements in
the table. For instance, our attack would apply to a hierarchical ORAM that

356 B. Hemenway Falk et al.

stored a stash at the same level, but accessed the stash first, and searches for a
dummy in the rest of the table if the element is found in the stash.

3.2 Hierarchical ORAM with a Combined Stash

We now present how hierarchical ORAMs were constructed using a combined
stash. We will show that this breaks the abstraction of an Oblivious Hash Table,
and results in access patterns identical to those of the Stash-Resampling Cuckoo
Hash Table, which breaks obliviousness.

Beginning with the protocol of Goodrich et al. [GMOT12], a number of hier-
archical ORAM schemes stored stashed items from a table construction in a
shared stash or re-inserted them into the cache. Since most schemes re-insert
stash items into the cache, we will present this version. Figure 4 presents the
changes between the stash-reinserting hierarchical ORAM and the original hier-
archical ORAM protocol from Sect. 2.5. All other parts of the protocol remain
the same.

A Stash-Reinserting ORAM is an ORAM equivalent to that of Figure 2 with the
following modifications:

– Rebuild: Rather than table Ti∗ storing all elements in X, at most c of these
elements can be stored in a stash. The stash is not stored at this level, but is
is padded to size c and inserted into the cache.

– Rebuild frequency: Since the cache is of size c after a rebuild, the rebuild
period is now τ = c.

Fig. 4. Stash-reinserting hierachical ORAM

Theorem 3. The Stash-Reinserting ORAM of Fig. 4 is insecure; i.e., it does
not satisfy the oblivious property in Definition 3.

Proof. Let A = A′ = 0N . Let the hierarchical ORAM be such that there will
be some level Li of capacity m ≤ N

2 that is implemented using a Cuckoo Hash
Table.7

Let U = ((1, 0), . . . , (2m, 0)) and U ′ = ((1, 0), . . . , (m, 0), (1, 0), . . . , (m, 0))
be two sequences of ORAM queries.

7 Some schemes use a mixture of hash table types at different levels. We do not require
that all levels use a Cuckoo Hash Table, only that there is at least one such level of
size ≤ N

2
that has its stash re-inserted into the ORAM data structure.

Alibi: A Flaw in Cuckoo-Hashing 357

After m queries, Li will be constructed.8 In both experiments Li will be
constructed using the elements (1, 0), . . . , (m, 0). A Cuckoo Hash Table will be
constructed in both cases, with these contents.9

The stash will be re-inserted in both cases. We have from Lemma 2 that
each of these stashed elements will exist at a single location at the start of each
access. Since levels Lj for all j ≥ i will only be rebuilt when Li is also rebuilt,
we know that these elements must remain in some level Lk with k < i until Li

is rebuilt. This means that, until this point in time, they will always be found
before Li is accessed. Thus, by the ORAM query algorithm, a dummy query will
be performed in Li.

Therefore, the access pattern in the Cuckoo Hash Table at Li will be the same
as that of the Stash-Resampling Cuckoo Hash Table in Fig. 3, where elements
were searched in the stash first, and if found in the stash a dummy was searched
in the remainder of the table. The only difference is that in the Stash-Resampling
Cuckoo Hash Table, the algorithm also accessed a pre-assigned stash, but this
is not an issue since the attack to the stash-resampling algorithm does not use
the access pattern to the stash (as this access pattern is always the same).
Observe that, exactly like in the attack of Theorem 2, one sequence of accesses
(U) will only access elements that were not in the data table, and the other
sequence (U ′) will only access elements that were in the data table (including the
stash). Therefore, by the same argument as Theorem 2 the statistical distance
between ORAM access pattern distributions is non-negligible. Therefore, the
ORAM protocol is insecure.

4 The Generic Attack

The attack in Sect. 3 assumes that an adversary knows all m elements that
were placed in the Cuckoo Hash Table. However, in PanORAMa [PPRY18] and
OptORAMa [AKL+20] each level contains multiple Cuckoo Hash Tables and
only some of the elements are placed in any given table. We therefore now
construct a more general attack that assumes only that the adversary knows
a superset of the elements that were placed in the table. More formally, we
can weaken the definition of Access-Obliviousness in Definition 1 such that the
8 This is not quite true. We would like to construct Li such that it contains indices

1, . . . ,m (although some may of these may be stashed). However, due to reinsersions
of the stash this will actually need to occur in a level with capacity roughly 2m. If
additional accesses are needed to trigger the rebuild, then the same element, e.g.,
(1, 0) can be looked up multiple times. The exact details of what sequence of accesses
is needed in order to cause elements 1, . . . ,m to be inserted into a particular level
also varies depending on how exactly the ORAM is constructed. More generally, the
sequence (1, 0), . . . , (m, 0) at the beginning of both U and U ′ should be replaced
with whatever sequence in the given ORAM is needed in order to instantiate a level
to contain exactly the indices 1, . . . ,m.

9 It is possible that when the ORAM is initialized, elements from L� are stashed and
stored in the cache. These elements would inadvertently also be stored in Li. The
effect of this on the Cuckoo Hash Table is small.

358 B. Hemenway Falk et al.

contents of the data in the two experiments are the same, and the access patterns
cannot depend directly on the table contents, but are functions of any superset
of the contents.

Definition 9. A hash-table is access-oblivious in the knowledge of a content
superset if for all datasets X ⊂ X with indices V ⊂ V, and all PPT algorithms
f, f ′ : 2V → Vt, there exists Y , with V ⊂ Y ⊂ V, |Y | ≤ |V| − 3 such that the
distribution of outputs of Lookup(k, f(Y), T) has negligible (in |Y |) statistical
distance from the distribution of outputs of Lookup(k′, f ′(Y), T ′) where T ←
Build(k,X), T ′ ← Build(k′, T ′).

We show that a Stash-Resampling Cuckoo Hash Table (Fig. 3) does not
satisfy this weaker security guarantee. We will then show that an adversary
can then use this to differentiate sequences in PanORAMa and OptORAMa
with non-negligible probability. For simplicity, our proof assumes d = 2 hash
functions, which is the choice used by PanORAMa and OptORAMa, but can
easily be extended to any constant number of hash functions.

4.1 Generic Stash-Resampling Cuckoo Hash Table Attack

Theorem 4. Stash-Resampling Cuckoo Hash Tables with d = 2 are not access-
oblivious in the knowledge of a content superset.

Proof. Let |X| = |V | = n′ ≥ 3 and |Y | = m. The adversary algorithms are as

follows: f chooses distinct v1, v2, v3
$← Y and outputs A = (v1, v2, v3). f ′ chooses

distinct v′
1, v

′
2, v

′
3

$← V/Y and outputs A′ = (v′
1, v

′
2, v

′
3).

Let the set S ⊂ V denote the indexes stored in the stash constructed by the
table T , that is built in the first experiment, and let |S| = s. Define B = V/S
to be the indexes that were successfully stored in their hashed locations in T
and define C = S ∪ Y/V = Y/B to denote indexes in Y that are not (either
because they weren’t in V to begin with, or because they were stashed). As
previously assumed, there are 2 hash functions. By the definition of a Stash
Resampling Cuckoo Hash Table, if v1, v2, v3 ∈ B are distinct elements, it is
impossible for (h1(vi), h2(vi)) to be equal for all i ∈ {1, 2, 3}. Let r be the size
of the set of outputs of (h1(v), h2(v)). For the Cuckoo Hash Table of Fig. 1
r = (cn′)2. Let Qi = Lookup(k, T, vi) and Q′

i = Lookup(k′, T ′, v′
i) be the results

of Lookups in the first and second experiments respectively, but ignoring the
stash locations (since these are chosen deterministically). We now show that
Δ((Q1, Q2, Q3), (Q′

1, Q
′
2, Q

′
3)) ≥ m−Θ(1), i.e., that the accesses to A and A′ are

statistically different.
Let us first look at the distribution of (Q1, Q2) and (Q′

1, Q
′
2). Since v′

1, v
′
2 /∈

Y ⊃ V , Q′
1 and Q′

2 contain random locations in the table. Therefore, the prob-
ability that Q′

1 = Q′
2 is exactly 1

r .
Now let us look at the distribution of (Q1, Q2). If both v1, v2 ∈ C, Q1 and

Q2 will both be chosen uniformly at random, and the probability that Q1 = Q2

would be 1
r . Even if only one of v1 or v2 is in C, the locations returned by Lookup

Alibi: A Flaw in Cuckoo-Hashing 359

for this element will be chosen uniformly at random and independent from all
previous choices, so the probability that Q1 = Q2 would be 1

r in this case also.
Now let us examine the probability that Q1 = Q2 for a randomly selected

v1, v2 ∈ B. Let this probability be denoted by p for a given Cuckoo Hash Table
implementation. For a random v1, v2 ∈ V , the probability that (h1(v1), h2(v1)) =
(h1(v2), h2(v2)) is 1

r . However, the build algorithm has some choice in which
items it places in the stash. It is possible that elements that cause collisions
are either more, or less, likely to be placed in S. Therefore p could be different
from 1

r , but we show it cannot be much different without making the output
distributions non-negligibly statistically distant.

Pr(Q1 = Q2) =

(|B|
2

)

(|Y |
2

)p +

(

1 −
(|B|

2

)

(|Y |
2

)
1
r

)

Pr(Q1 = Q2) − Pr(Q′
1 = Q′

2) =

(|B|
2

)

(|Y |
2

)
(

p − 1
r

)

There are two cases. In the first case |p − 1
r | ≥ mΘ(1) then |Pr(Q1 = Q2) −

Pr(Q′
1 = Q′

2)| is non-negligible in m, (Q1, Q2) and (Q′
1, Q

′
2) will be statistically

different, and the proof is done. In the second case |p − 1
r | = mω(1) and we

will proceed to show that then (Q1, Q2, Q3) and (Q′
1, Q

′
2, Q

′
3) are statistically

different.
Let us examine the probability that Q1 = Q2 = Q3. If v1, v2, v3 ∈ C, then

this probability is 1
r2 , since we can imagine one vi being pre-set, and each other

vj is chosen uniformly at random and independently from a space of size 1
r . If

at least two of v1, v2, v3 are in C, then the one that is not can be pre-set, and
by the same argument as above the probability that Q1 = Q2 = Q3 is 1

r2 .
Now if vi, vj ∈ B, vk ∈ C for some distinct i, j, k ∈ {1, 2, 3}, the probability

that Qi = Qj is exactly p, by our definition of p. Qk is chosen uniformly at
random and independently from a space of size 1

r , so the probability that Qi =
Qj = Qk is p 1

r .
Finally, let us examine the case where v1, v2, v3 ∈ B. Since these items were

successfully stored in the table, they cannot all have been hashed to the same 2
locations. Therefore in this case Pr(Q1 = Q2 = Q3) = 0.

We therefore have:

Pr(Q1 = Q2 = Q3) − Pr(Q′
1 = Q′

2 = Q′
3) =

(|C|
1

)(|B|
2

)

(|Y |
3

)
(

p − 1
r

)
−

(|B|
3

)

(|Y |
3

)
1
r

But we are looking at the case that p − 1
r is negligible. On the other hand

(|B|
3)

(|Y |
3)

1
r = n′(n′−1)(n′−2)

m(m−1)(m−2)r which, since r = O(m2), is non-negligible in m.

Therefore |Pr(Q1 = Q1 = Q3) − Pr(Q′
1 = Q′

2 = Q′
3)| and subsequently

Δ((Q1, Q2, Q3), (Q′
1, Q

′
2, Q

′
3)) are also non-negligible in m.

360 B. Hemenway Falk et al.

4.2 Attack Against PanORAMa and OptORAMa

In PanORAMa and OptORAMa, rather than each ORAM level containing a
single Cuckoo Hash Table, each level has a number of equal-size bins, an Overflow
Table and a (level-specific) Combined Stash. The bins, the Overflow Table and
the Combined Stash are all implemented as Cuckoo Hash Tables. The Combined
Stash Table contains the combined stashes of all bins on that level. The Overflow
Table and the Combined Stash additionally have their own stashes. These stashes
are removed from the level and reinserted into the ORAM.

Provided that items found in the Combined Stash are still searched for at
each bin, the fact that the stashes of all bins in a given level are combined is
not an issue.10 However, the fact that the stashes of the Overflow Table and of
the (level-specific) Combined Stash are removed from the level and re-inserted
into the ORAM makes the protocols vulnerable to the attack described in this
paper.

Like in the regular ORAM attack, let u1, . . . , um be a sequence of distinct
accesses of length m ≤ N − 3 such that following this sequence of accesses, a
level Li is built with the set Y = {u1, . . . , um} as input.

Let T be the Overflow Hash Table,11 and X be the set of items input the
Build function. X is unknown to the adversary, but it is guaranteed that X ⊆ Y .
Let S be the set of stashed elements in the Overflow Hash Table.

Observe that if an index x ∈ S is queried, PanORAMa and OptORAMa will
find x before reaching Li and will query a nonce in T instead. Therefore, the
access sequence to the Overflow Hash Table in the ORAM is the same as that
of a Stash-Resampling Cuckoo Hash Table.

Since the Overflow Hash Table is not access-oblivious, to an adversary that
knows Y ⊇ X, by Theorem 4, the ORAM protocols are not access-oblivious
either. In particular, let the adversary choose distinct v1, v2, v3 uniformly at
random from Y . Let A = (u1, . . . , um, v1, v2, v3). Let v′

1, v
′
2, v

′
3 /∈ Y be distinct

elements and A′ = (u1, . . . , um, v′
1, v

′
2, v

′
3). The access sequences of the ORAM

on A and A′ will have non-negligible statistical distance in m (and N).

5 Alibi: Secure Hierarchical ORAM with Reinserted
Stashes

The basic problem arises when a stashed element is found before the appropriate
level of the ORAM hierarchy is searched. As a successful criminal needs not only
10 OptORAMa seaches in the Combined Stash after searching in the bins, so the access

pattern in the bins will be the same for items that are later found in the Combined
Stash. However, in PanORAMa, the Combined Stash is accessed before the bins
are accessed and a random bin is chosen in the case that the data is found in
the Combined Stash. Therefore, the access patterns in the individual bins are also
vulnerable to a distinguishing attack based on the fact that stashed elements will
not be searched for. This can simply be solved by searching the bins before searching
the Combined Stash.

11 The proof would work out the same if T was the Combined Stash Hash Table.

Alibi: A Flaw in Cuckoo-Hashing 361

to be hidden in the location where they committed a crime, but also needs an
alibi who claims to have seen them enacting their everyday life, likewise the
stashed elements need not only hide their presence in the levels to which they
are reinserted, but also need to hide their absence from the levels from which
they came. To fix this problem, we need to ensure that even when an element
cannot be stored at a certain level of the ORAM hierarchy (i.e., because it falls
in the cuckoo stash), it must still be searched for at this level. This way, the
set of physical accesses at a level will always be chosen uniformly at random
and be fully independent. Each element therefore needs to store a record of
the locations where it would have been, and needs to be searched for in these
locations if accessed.

There are some small subtleties here. First, an element needs to store the
fact that it was ejected from a level not only when it is in the cache, but at least
until this level is rebuilt or the item is searched for, since if it is looked up at any
point before this level is rebuilt it needs to be searched for in this level. Second,
it is entirely possible that the same element that had been stashed at some level
Li could be stashed again at some level Lk with k < i, before Li is rebuilt or
the element queried. Therefore each element needs to store the location of all
levels from which it was ejected due to having fallen in the stash. Since there are
� ≤ log N levels in the hierarchical ORAM, it is possible to store which levels
the item was ejected from using log N bits.

The flaw can be fixed using the following simple modification. For each ele-
ment (v, x) the algorithm will additionally store a bit array e of length �, which
records at which levels the item was “stashed.”

Our solution modifies the generic hierarchical ORAM protocol of Fig. 2; these
modifications12 are presented in Fig. 5.

Lemma 6. In the Alibi protocol presented in Fig. 5 there is an invariant that
given a tuple (v, w, e) stored at some level, e[i] = 1 if and only if v was stashed
at level Li during the last rebuild and v has not been queried by the ORAM
since this rebuild. This invariant holds initially, after each query and after each
rebuild.

Proof. By induction. This is initially true, as no items have been stashed and
e[i] = 0 for all items.

If a level Li is rebuilt, all levels Lj for j < i will be rebuilt as empty levels.
Therefore following the rebuild e[j] = 0 for all such levels, satisfying the invariant
for these levels. For level Li, some elements may be stashed after the rebuild,
e[i] = 1 for exactly these elements, so the invariant is satisfied for level i. For
any level Lj with j > i, the level has not been rebuilt and e[j] is not modified,
so the invariant will hold if it held before.

After a query e[j] is set to 0 for all j, so e[i] will only be 1 if there has not
been a query since the last rebuild.

12 This protocol uses a slightly definition of Oblivious Hash Tables. Rather than return-
ing a single array, Build returns a tuple (Ti, Si), where Ti is the main table and Si

is the stash. Lookup only contains the non-stash locations.

362 B. Hemenway Falk et al.

– Initializing records: When initializing the ORAM, for each input tuple
(v, x) store the tuple (v, x, 0) in the ORAM.

– On rebuilds: When a hash table, Ti, is constructed at level i, suppose
(Ti, Si) ← Build(ki, X).

• Stashed records: For each record (v, x, e) ∈ Si, set e[i] = 1, and e[j] = 0
for j = 1, . . . , i − 1. Finally, insert (v, x, e) into the cache (or combined
stash) as usual.

• Regular records: For each record (v, x, e) ∈ Ti, set e[i] = 0, and e[j] = 0
for j = 1, . . . , i − 1.

– On queries: On input (v, x), initialize found = false, f = 0 .
• Scan the cache: If a record (v, w, e) is found in the cache, set m = w,

found = true and f = e and delete the item from the cache.
• Search each level: For i in 1

∗ If found = true and f[i] = 0 then set Qi ← Lookup(ki, dummy ◦ t).
Otherwise set Qi ← Lookup(ki, v),

∗ Probe locations Ti[j] for j ∈ Qi.
∗ If there is a j ∈ Qi, such that Ti[j] = (v, w, e), then set m = w,

found = true and f = e.
∗ Execute Delete(ki, v, Ti)

• Rewrite the cache: If x = ⊥ (i.e., it was a write query), insert (v, x, 0)
into the cache. Otherwise insert (v, m, 0) into the cache.

Fig. 5. Alibi Hierarchical ORAM protocol (delta to standard protocol of Fig. 2)

Therefore, by induction, this invariant always holds.

Theorem 5. Let (v1, · · · , vm) be the sequence of indices that are looked up at
level Li with i > 0, between two subsequent rebuilds of that level. Then the
Alibi protocol satisfies the following property. If vk = v′

k for some k′ < k, then
Qk = Lookup(ki, dummy ◦ t) else Qk = Lookup(ki, vk).

Proof. Immediately after Li is rebuilt, all levels Lj for 0 < j < i are empty.
Furthermore, the cache L0 contains only elements from Si, the stash of level i.
Therefore, by Lemma 6 every element (v, w, e) either exists in level Lj for some
j ≥ i or has e[i] = 1. This will remain true until Li is rebuilt or v is queried. If
vk = v is queried and v is stored at some level j ≥ i, then it will be looked up
at level i, i.e., Qk = Lookup(ki, vk). Similarly, if vk = v is queried, and e[i] = 1
then when v is found f[i] will be set to e[i] so v will still be looked up at level Li,
i.e., Qk = Lookup(ki, vk). In both cases e[i] will be set to 0 (if it wasn’t already)
and it will be moved to a level j < i (if it wasn’t already). Only a rebuild on
level Li could change either of these facts. Therefore, until Li is rebuilt, for
any subsequent queries v′

k = v, a dummy item will be looked for in Li, i.e.,
Q′

k = Lookup(ki, dummy ◦ t).

Theorem 6. The Alibi Stash-Reinserting ORAM protocol, when instantiated
with an Oblivious Hash Table with a stash, is secure, i.e., it satisfies the security
property of Definition 3.

Alibi: A Flaw in Cuckoo-Hashing 363

Proof. This follows similarly to the proof of Theorem 1. The ORAM satisfies
two properties: (1) No repeated accesses: Each query is queried at most once to
each level between rebuilds. This follows directly from Theorem 5. Any query
in the form v ∈ V is queried at most once, since the theorem implies that any
future accesses will be to dummy items. Any query in the form dummy ◦ t is
queried at most once, because t is incremented after each query. Therefore the
lookups to the Oblivious Hash Table are non-repeating. (2) Oblivious accesses:
The Oblivious Hash Table satisfies a property that the results of Lookup have
distributions with negligible distances for all non-repeating access patterns. We
know from (1) that in an ORAM the accesses to each Oblivious Hash Table
are indeed non-repeating. The ORAM only accesses the non-stash part of the
Oblivious Hash Table, and since it is only accessing a subset, the distribution of
access patterns of the ORAM on each level still differ negligibly. Furthermore,
for an Oblivious Hash Table satisfying Full Obliviousness, the distribution of all
memory accesses by an ORAM on each level differ negligibly.

Since each Oblivious Hash Table is built independently, the distance between
distributions of their combined accesses will be at most the sum of the distances
between distributions of accesses at each Oblivious Hash Table. Also, the distri-
bution of accesses to the cache is the same each time, since the entire cache is
scanned initially and a single item is written at the end, so this does not increase
the distance between the access patterns of the ORAM. The distance between
distributions of the entire sequences of tmax queries to an ORAM system with
� levels, will therefore be at most �tmax times that of any individual Oblivious
Hash Table. Since the latter is negligible in N , and �tmax is polynomial in N ,
then the the total distance between distributions of ORAM access will also be
negligible in N . Therefore the ORAM is oblivious.

Remark 9. It may initially seem that the proof of security above would apply to
the flawed schemes as well. However, because the schemes resample the queries
based on whether they were stored in the stash, the access pattern of the remain-
ing table changes, and changes specifically in a way that depends on the structure
of the table. We showed that in the case of Cuckoo Hashing this change causes
a change in the combined set of accesses that is distinguishable.

Complexity: Since each element only needs to store one bit for each level,
and there are at most log N levels, then the additional size of each element is
increased by log N bits. Since the index is at least log N bits and the payload is
Ω(log n) the items still have the same asymptotic sizes so this does not change
the asymptotic communication complexity. All of the modifications above only
involve modifying or reading e when v and/or x would also be read or modified.
We have that |e| = O(|v|), |e| = O(|x|). Therefore the modification only increases
communication costs by up to constant factors.

Correctness: The modifications do not change the output of the program, only
the access patterns. The only operation that does not involve only modifications

364 B. Hemenway Falk et al.

of e is that during an access, if the item has already been found, the real item
may be searched for in subsequent levels rather than a random item. This does
not change the output of the program, since the value that was already found is
the one that will be used.

Note that this fix also applies to PanORAMa and OptORAMa. Even though
these protocols contain multiple Cuckoo Hash Tables at each level, it is possible
to view the entire level as a single Oblivious Hash Table with a stash. (The
stash of the level would be the union of the stashes of the Overflow Table and
the level-specific Combined Stash Table).

6 Summary of Affected Papers

Goodrich et al. [GMOT12] introduced the idea of using Cuckoo tables with
combined stashes for Hierarchical ORAM. This introduced the flaw described
in this paper. Kushilevitz et al. [KLO12] introduced the alternative approach of
reinserting elements from the stash into the ORAM (“cache the stash”). While
there are differences between these approaches, in either case an element that
was stashed will be found prior to the level from which it was ejected and random
locations accessed at this level instead. Therefore both approaches are vulnerable
to our attack.

Lu and Ostrovsky [LO13] then used the stash-reinsertion of [KLO12] in their
2-server ORAM protocol, inheriting this vulnerability. Similarly Kushilevitz and
Mour [KM19] created a 3-server ORAM that also uses cuckoo hashing (Instan-
tiation 2) based on [KLO12], but using a shared stash [GMOT12] rather than
reinserting the stash. This ORAM protocol is therefore vulnerable to the attack
from this paper. Kushilevitz and Mour also present other multi-party ORAM
protocols based on other techniques which are not subject to this attack.

Two alternative Hierarchical ORAM protocols were also published that
avoided the flaw described in this paper. The Hierarchical ORAM protocol
[MZ14] of Mitchell and Zimmerman uses a different model where the client can
keep track of which level each item should be stored at. Knowing before-hand
that an element does not exist at a certain level allows the algorithm to search
for pre-inserted dummy elements at these levels. The data-structure therefore no
longer needs to hide where data is stored, but only whether an element is real or
a dummy, so any standard hash tables can be used instead of Cuckoo hashing.
The two-tiered Hierarchical ORAM protocol of Chan et al. [CGLS17] then pre-
sented an alternative to cuckoo hashing with a stash. Instead, two hash tables
existed, each with bins of size logε(λ) for some constant ε ∈ (0.5, 1) and security
parameter λ. They presented an oblivious construction in which elements would
be placed in the first hash table if possible and in the second if not. They showed
that the probability that an element could not be placed was negligible. Since

Alibi: A Flaw in Cuckoo-Hashing 365

this protocol used two-tier hashing rather than Cuckoo hashing with a combined
stash it is immune to the attack we have presented.13

However, the flaw resurfaced again in the recent asymptotic breakthroughs of
PanORAMa [PPRY18] and OptORAMa [AKL+20].14 These achieved efficiency
by storing most of the data in small bins, which are small enough to be sorted
without increasing the asymptotic performance, while remaining items are placed
in an overflow pile. Each of these bins is implemented as a cuckoo table and
stashes are shared, but the combined stash for the bins is kept at the same level
as the bins. Therefore it is possible to search the bins for the stashed elements
and then to access the single-level combined stash, so the bin tables are not
vulnerable to this attack. However, in both papers, the overflow and single-
level combined stash cuckoo tables both have stashes that are re-inserted into
the ORAM data structure. They are therefore vulnerable to the variant of our
attack in Sect. 4.

Our attack does not affect the tree-based ORAM protocols, such as Binary
Tree ORAM [SCSL11], Path ORAM [SvDS+13] and Circuit ORAM [WCS15],
as these do not use cuckoo hashing.

In summary, this flaw existed in the ORAM literature for almost a decade
and has affected six significant protocols, including the most recent asymptotic
breakthroughs. The fact that such a flaw could exist unnoticed for so long moti-
vates the development of simpler protocols for oblivious data structures.

Acknowledgements. This research was sponsored in part by ONR grant (N00014-
15-1-2750) “SynCrypt: Automated Synthesis of Cryptographic Constructions”. This
research was supported in part by DARPA under Cooperative Agreement No: HR0011-
20-2-0025, NSF-BSF Grant1619348, US-Israel BSF grant 2012366, Google Faculty
Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty
Research Award, OKAWA Foundation Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of DARPA, the Department of Defense, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copyright annotation therein.

13 Chan et al. also presented a concrete instantiation of Goodrich and Mitzenmacher’s
ORAM protocol in an appendix of the full version of their paper. The protocol they
present uses a Cuckoo Hash Table at each level and a shared stash, so is vulner-
able to the attack described in this paper. However, they recommend, somewhat
clairvoyantly, that since Cuckoo hashing is complex and hard to prove correct, that
their two-tier hash-table protocol should be used rather than the Cuckoo-hashing
protocol.

14 In response to our preprint, Asharov et al. have updated the OptORAMa paper to
include a fix.

366 B. Hemenway Falk et al.

Supplementary Material

A Distinguishing Distributions

In this section, we review a basic fact that if two distributions are statistically
different, and supported on polynomial-sized sets, then they are polynomial-time
distinguishable.

Lemma 7. Let {Xn}, {Yn} denote two sequences of distributions supported on
polynomial-sized sets, i.e., there is a constant c, such that max(|Xn|, |Yn|) < nc.
In addition, assume that Xn and Yn are efficiently samplable.

Then if Δ(Xn, Yn) is non-negligible, the distributions {Xn} and {Yn} are
polynomial-time distinguishable.

Proof. Consider the following maximum likelihood distinguisher, D. Let W =
supp(Xn) ∪ supp(Yn), and m = |W |. Define

pz
def= Pr [Xn = z]

qz
def= Pr [Yn = z]

Fix t = poly(n).
Recall that if W = Xn ∪ Yn,

∑

w∈W

max(pw, qw) =
1

2

∑

w∈W

[[max(pw, qw) + min(pw, qw)] + [max(pw, qw)−min(pw, qw)]]

=
1

2

⎡

⎣2 +
∑

w∈W

[max(pw, qw)−min(pw, qw)]

⎤

⎦

=
1

2
[2 + 2Δ(Xn, Yn)]

= 1 + Δ(Xn, Yn)

First, D will estimate the frequency of elements in both Xn and Yn by sam-
pling. First D will draw tm samples from Xn, let Xsampled denote the multiset
corresponding to these samples. Similarly D will draw tm samples from Yn. Let
Ysampled be the multiset corresponding to these samples.

Then D defines

p̃w
def=

number of times w occurred in Xsampled

tm

q̃w
def=

number of times w occurred in Ysampled

tm

Finally, given a sample z from a distribution Z ∈ {Xn, Yn}, the adversary
will guess

A(z) =
{

X if p̃z ≥ q̃z

Y if p̃z < q̃z.

Alibi: A Flaw in Cuckoo-Hashing 367

A Hoeffding bound shows that

Pr [|p̃z − pz| > δ] < 2e−2mtδ2

and similarly
Pr [|q̃z − qz| > δ] < 2e−2mtδ2

Fix δ > 0, and define

G
def= {z ∈ W | |pz − qz| > 2δ}

B
def= {z ∈ W | |pz − qz| ≤ 2δ}

Now, notice that

max(pz, qz) − 2δ < min(pz, qz) for all z ∈ B . (1)

The Hoeffding bounds give

Pr [max(pz, qz) = max (p̃z, q̃z)] > 1 − 2e−2mtδ2
for z ∈ G (2)

Let ε = maxz (|Pr(Xn = z) − Pr(Yn = z)|). Thus ε ≥ Δ(Xn,Yn)
m , which is

non-negligible.
Pr [A is correct]

=
1

2

⎡
⎣ ∑

z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑

z∈Z

Pr [max (p̃z, q̃z) �= max (pz, qz)] min (pz, qz)

⎤
⎦

=
1

2

⎡
⎣ ∑

z∈Z

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑

z∈B

Pr [max (p̃z, q̃z) �= max (pz, qz)] min (pz, qz)

⎤
⎦

≥
1

2

⎡
⎣ ∑

z∈G

Pr [max (p̃z, q̃z) = max (pz, qz)] max (pz, qz) +
∑

z∈B

[max (pz, qz) − 2δ]

⎤
⎦

≥
1

2

⎡
⎣

(
1 − 2e

−2mtδ2
) ∑

z∈Z

max (pz, qz) − 2mδ

⎤
⎦

=
1

2

[(
1 − 2e

−2mtδ2
)

[1 + Δ(Xn, Yn)] − 2mδ

]

=
(
1 − 2e

−2mtδ2
) [1

2
+

1

2
Δ(Xn, Yn)

]
− mδ

Which is a non-negligible advantage for sufficiently large t and sufficiently
small δ.

References

[ADW14] Aumüller, M., Dietzfelbinger, M., Woelfel, P.: Explicit and efficient hash
families suffice for cuckoo hashing with a stash. Algorithmica 70(3), 428–
456 (2014)

[AKL+20] Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi,
E.: OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 403–432. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 14

https://doi.org/10.1007/978-3-030-45724-2_14

368 B. Hemenway Falk et al.

[BMD+17] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S.,
Sadeghi, A.-R.: SGX cache attacks are practical. In: WOOT, Software
Grand Exposure (2017)

[CGLS17] Chan, T.-H.H., Guo, Y., Lin, W.-K., Shi, E.: Oblivious hashing revis-
ited, and applications to asymptotically efficient ORAM and OPRAM.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 660–690. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 23

[Ds17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS,
pp. 523–535 (2017)

[GESM17] Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel
SGX. In: Proceedings of the 10th European Workshop on Systems Security,
pp. 1–6 (2017)

[GM11] Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 576–587. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22012-8 46

[GMOT12] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.:
Privacy-preserving group data access via stateless oblivious RAM simu-
lation. In: SODA, pp. 157–167. SIAM (2012)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. JACM 43(3), 431–473 (1996)

[JHOvD17] John, T.M., Haider, S.K., Omar, H., van Dijk, M.: Connecting the dots:
privacy leakage via write-access patterns to the main memory. IEEE Trans.
Dependable Secure Comput. (2017)

[KLO12] Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based
oblivious RAM and a new balancing scheme. In: SODA, pp. 143–156.
SIAM (2012)

[KM19] Kushilevitz, E., Mour, T.: Sub-logarithmic distributed oblivious RAM
with small block size. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11442, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17253-4 1

[KMW09] Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo
hashing with a stash. SIAM J. Comput. 39(4), 1543–1561 (2009)

[LHS+14] Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-
model secure computation. In: S&P, pp. 623–638. IEEE (2014)

[LO13] Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party
computation. In: Sahai, A. (ed.) TCC, pp. 377–396. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 22

[MIE17] Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies
the power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66787-4 4

[Mit09] Mitzenmacher, M.: Some open questions related to cuckoo hashing. In:
ESA, pp. 1–10 (2009)

[MZ14] Mitchell, J.C., Zimmerman, J.: Data-oblivious data structures. In: STACS.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

[OS97] Ostrovsky, R., Shoup, V.: Private information storage. In: STOC, vol. 97,
pp. 294–303. Citeseer (1997)

[Ost90] Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC, pp.
514–523 (1990)

https://doi.org/10.1007/978-3-319-70694-8_23
https://doi.org/10.1007/978-3-319-70694-8_23
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4

Alibi: A Flaw in Cuckoo-Hashing 369

[Ost92] Ostrovsky, R.: Software protection and simulation on oblivious RAMs.
Ph.D. thesis, Massachusetts Institute of Technology (1992)

[PPRY18] Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM
with logarithmic overhead. In: FOCS, pp. 871–882. IEEE (2018)

[PR04] Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–144 (2004)
[PR10] Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.)

CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 27

[SCSL11] Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with
O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 11

[SGF17] Sasy, S., Gorbunov, S., Fletcher, C.W.: Zerotrace: oblivious memory prim-
itives from Intel SGX. IACR Cryptol. ePrint Arch., 2017:549 (2017)

[SvDS+13] Stefanov, E.: Path ORAM: an extremely simple oblivious RAM protocol.
In: CCS, pp. 299–310 (2013)

[WCS15] Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: CCS, pp. 850–861 (2015)

[WHC+14] Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM:
oblivious RAM for secure computation. In: CCS, pp. 191–202. ACM (2014)

https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

Structured Encryption and Dynamic
Leakage Suppression

Marilyn George1(B), Seny Kamara1, and Tarik Moataz2

1 Brown University, Providence, USA
marilyn george@brown.edu

2 Aroki Systems, Providence, USA

Abstract. Structured encryption (STE) schemes encrypt data struc-
tures in such a way that they can be privately queried. Special cases of
STE include searchable symmetric encryption (SSE) and graph encryp-
tion. Like all sub-linear encrypted search solutions, STE leaks informa-
tion about queries against persistent adversaries. To address this, a line
of work on leakage suppression was recently initiated that focuses on
techniques to mitigate the leakage of STE schemes.

A notable example is the query equality suppression framework
(Kamara et al. CRYPTO’18) which transforms dynamic STE schemes
that leak the query equality into new schemes that do not. Unfortunately,
this framework can only produce static schemes and it was left as an open
problem to design a solution that could yield dynamic constructions.

In this work, we propose a dynamic query equality suppression frame-
work that transforms volume-hiding semi-dynamic or mutable STE
schemes that leak the query equality into new fully-dynamic construc-
tions that do not. We then use our framework to design three new fully-
dynamic STE schemes that are “almost” and fully zero-leakage which,
under natural assumptions on the data and query distributions, are
asymptotically more efficient than using black-box ORAM simulation.
These are the first constructions of their kind.

1 Introduction

The problem of encrypted search has received a lot of attention over the years
from both the research community and industry. The ability to efficiently search
and query encrypted data has the potential to change how we store and process
data and help increase the wide-scale deployment of end-to-end encryption. A
key requirement for any practical encrypted search solution is handling search
queries in sub-linear time. Sub-linear encrypted search can be achieved based
on several cryptographic primitives, including property-preserving encryption
(PPE), structured encryption (STE) and oblivious RAM (ORAM). Each of these
primitives have been heavily investigated and are known to achieve different
tradeoffs between efficiency, expressiveness and security/leakage.

Leakage. All sub-linear encrypted search primitives leak information which has
motivated the study of leakage attacks to investigate the real-world security
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 370–396, 2021.
https://doi.org/10.1007/978-3-030-77883-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_13

Structured Encryption and Dynamic Leakage Suppression 371

of these primitives. In 2015, Naveed, Kamara and Wright [34] described data-
recovery attacks in the snapshot setting against schemes that leak data equality
and order. In 2012, Islam, Kuzu and Kantarcioglu [23] described a query-recovery
attack against schemes that leak query co-occurrences (i.e., whether two key-
words appear in the same document). The IKK attack was subsequently shown
not to work in the standard adversarial model [10] but followup work described
attacks in stronger adversarial models where the adversary is assumed to either
know or choose a fraction of the client’s data [6,10]. The known-data attacks
of [10] exploit co-occurrence leakage and require a large fraction of known data
whereas the attacks of [6] require a smaller fraction of known-data and exploit
response length leakage; making them applicable to ORAM-based solutions as
well. The chosen-data attacks of [46] exploit the response identity (i.e., iden-
tifiers of the files that contain the keyword) whereas the recent attacks of [6]
only exploit response lengths; again, making them applicable to ORAM-based
solutions. Several works have also described leakage attacks on the profiles of
known oblivious and encrypted range schemes [21,22,30,32]. In [2], it is shown
that highly-efficient STE schemes with zero-leakage queries can be achieved in
the snapshot model.

Leakage suppression. Recently, Kamara, Moataz and Ohrimenko initiated the
study of leakage suppression [27], which are methods to diminish and eradicate
the leakage of STE schemes. There are two kinds of leakage suppression tech-
niques: compilers and data transformations. Compilers take an STE scheme and
transform it into a new scheme with similar efficiency but with an improved
leakage profile. An example is the cache-based compiler (CBC) of [27] which is
a generalization of the seminal Square Root ORAM construction of Goldreich
and Ostrovsky [19]. The CBC takes any rebuildable STE scheme that leaks the
query equality and possibly some other pattern patt, and transforms it into a new
scheme that leaks only the non-repeating sub-pattern of patt. The non-repeating
sub-pattern of a leakage pattern is the leakage it produces when queried only on
non-repeating query sequences.

Data transformations change plaintext data structures in such a way that
leakage is less harmful. The simplest example of a data transformation is
padding, which mitigates response length leakage, but more sophisticated
approaches include the clustering-based techniques of Bost and Fouque [8]
and the transformation that underlies the PBS construction [27], both of
which mitigate volume leakage. Recently, Kamara and Moataz also introduced
computationally-secure transformations (as opposed to the previously mentioned
approaches which are information-theoretic) to mitigate volume leakage [26].

Dynamic leakage suppression. The main advantage of suppression compilers
over transformations is that they can be applied to large classes of schemes. For
example, the CBC can be applied to any rebuildable STE scheme and, further-
more, [27] shows that any semi-dynamic STE scheme can be made rebuildable.
An STE scheme is semi-dynamic if it supports additions but not deletions, and it
is fully-dynamic if it supports both. The main limitation of the techniques from
[27] is that they only produce static schemes even if the base construction is

372 M. George et al.

dynamic. While static STE schemes have several applications, dynamic schemes
allow the encrypted data structure to adapt to changing data, which is more
useful from a practical standpoint.

1.1 Our Contributions

In this work, we address the main problem left open by [27] which is to design
a dynamic leakage suppression framework for the query equality. As we will see,
solving this open problem results in three new low- and zero-leakage dynamic
constructions that, under natural conditions on the data and queries, are asymp-
totically more efficient than black-box ORAM simulation.

Dynamic compilers. The suppression framework of [27], which includes the
CBC and the rebuild compiler (RBC), can be used to compile any semi-dynamic
STE scheme that leaks the query equality into a new scheme that does not. But,
as discussed, this framework can only produce static schemes; i.e., it does not
preserve the (semi-)dynamism of the base scheme. In this work, we propose
dynamic variants of the CBC and RBC that suppress the query equality while
preserving the dynamism of the base scheme.

Designing such compilers is challenging for several reasons. For example, con-
sider that if the base scheme leaks the response length as well as the operation
identity pattern (i.e., whether an operation is a query or an update), the adver-
sary can learn the query equality as follows. Suppose that the largest response
length observed is n and that it occurs at some time t. Furthermore, suppose
that at time t + 1 an update operation occurs and that at some time t′ > t + 1
another query occurs with response larger than n. For some datasets and query
distributions, it would be reasonable for the adversary to infer that the two
queries are for the same value which, effectively, is the query equality. Unfortu-
nately, all currently-known fully-dynamic STE schemes leak both the response
length and the operation identity patterns.

Our approach, therefore, is to start with schemes that do not leak the
response length like PBS [27] and AVLH [26]. The challenge in using these
schemes, however, is that they are not dynamic but only semi-dynamic or muta-
ble (i.e., they only support edit operations). To address this, our compiler is
designed to work with these limited forms of dynamism but this requires over-
coming a set of additional technical challenges like “upgrading” the base scheme’s
dynamism from semi-dynamic or mutable to fully-dynamic without leaking any
additional information.

New constructions. We apply our compilers to three base multi-map encryp-
tion schemes to construct dynamic zero- and almost zero-leakage multi-map
encryption schemes. Our first construction results from applying our compilers
to the PBS construction of [27]. This results in a dynamic variant of the AZL
scheme [27] which, given a sequence of operations (op1, . . . , opt), reveals noth-
ing on operations (op1, . . . , opt−1) and then reveals the sum of the operations’
response lengths on operation opt. Similarly, our second construction results
from applying our compilers to a variant of PBS and is a dynamic variant of

Structured Encryption and Dynamic Leakage Suppression 373

the FZL scheme of [27]. This scheme has zero-leakage queries but only achieves
probabilistic correctness. Our third construction, which results from applying our
compilers to the AVLH construction of [26], also has ZL queries but achieves per-
fect correctness. We show that all three schemes are asymptotically more efficient
than state-of-the-art black-box ORAM simulation under natural assumptions.

2 Related Work

Structured encryption. Structured encryption was introduced by Chase and
Kamara in [14] as a generalization of searchable symmetric encryption (SSE)
[15,41]. Several aspects of STE and SSE have been studied including dynamism
[11,28,29,35], expressiveness [12,17,24,25,37], locality and I/O-efficiency [3,4,
11,13,16], security [2,7,9,18,42] and cryptanalysis [6,10,23,30,32,46].

Leakage suppression. Leakage suppression was first proposed by Kamara,
Moataz and Ohrimenko [27] who generalized and adapted the techniques from
Goldreich and Ostrovsky’s seminal Square-Root ORAM to STE. Recently,
Kamara and Moataz showed, for the first time, how to design volume-hiding
STE schemes [26] without making use of padding. In follow up work, Patel, Per-
siano, Yeo and Yung [39] proposed new volume-hiding constructions that achieve
better query and storage efficiency.

Oblivious RAM. Oblivious RAM was first proposed by Goldreich and Ostro-
vsky [19]. Several aspects of ORAM have been studied and improved in the
last twenty years including its communication complexity, the number of rounds
and client and server storage [18,20,31,36,38,40,43,45]. Another line of work
initiated by Wang et al. [44] considers the design of oblivious data structures,
without making use of general-purpose ORAM techniques. These constructions
are typically more efficient than using general-purpose ORAM but are usually
static or require setting an upper bound the structure at setup time.

3 Preliminaries and Notation

Notation. We denote the security parameter as k, and all algorithms run in
time polynomial in k. The set of all binary strings of length n is denoted as
{0, 1}n, and the set of all finite binary strings as {0, 1}∗. [n] is the set of integers
{1, . . . , n}, and 2[n] is the corresponding power set. We write x ← χ to represent

an element x being sampled from a distribution χ, and x
$← X to represent an

element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x ← A. Given a sequence v of n elements, we refer
to its ith element as vi or v[i]. If S is a set then #S refers to its cardinality. If s
is a string then |s|2 refers to its bit length.

Sorting networks. A sorting network is a circuit of comparison-and-swap gates.
A sorting network for n elements takes as input a collection of n elements

374 M. George et al.

(a1, . . . , an) and outputs them in increasing order. Each gate g in an n-element
network SNn specifies two input locations i, j ∈ [n] and, given ai and aj , returns
the pair (ai, aj) if i < j and (aj , ai) otherwise. Sorting networks can be instanti-
ated with the asymptotically-optimal Ajtai-Komlos-Szemeredi network [1] which
has size O(n log n) or Batcher’s more practical network [5] with size O(n log2 n)
but with small constants.

The word RAM. Our model of computation is the word RAM. In this model,
we assume memory holds an infinite number of w-bit words and that arithmetic,
logic, read and write operations can all be done in O(1) time. We denote by
|x|w the word-length of an item x; that is, |x|w = |x|2/w. Here, we assume that
w = Ω(log k).

Abstract data types. An abstract data type specifies the functionality of a
data structure. It is a collection of data objects together with a set of operations
defined on those objects. Examples include sets, dictionaries (also known as key-
value stores or associative arrays) and graphs. The operations associated with
an abstract data type fall into one of two categories: query operations, which
return information about the objects; and update operations, which modify the
objects. If the abstract data type supports only query operations it is static,
otherwise it is dynamic. We model a dynamic data type T as a collection of
four spaces: the object space D = {Dk}k∈N, the query space Q = {Qk}k∈N, the
response space R = {Rk}k∈N and the update space U = {Uk}k∈N. We also define
the query map qu : D×Q → R and the update map up : D×U → D to represent
operations associated with the dynamic data type. We refer to the query and
update spaces of a data type as the operation space O = Q∪U. When specifying
a data type T we will often just describe its maps (qu, up) from which the object,
query, response and update spaces can be deduced. The spaces are ensembles of
finite sets of finite strings indexed by the security parameter. We assume that R
includes a special element ⊥ and that D includes an empty object d0 such that
for all q ∈ Q, qu(d0, q) = ⊥.

Data structures. A type-T data structure is a representation of data objects
in D in some computational model (as mentioned, here it is the word RAM).
Typically, the representation is optimized to support qu as efficiently as possible;
that is, such that there exists an efficient algorithm Query that computes the
function qu. For data types that support multiple queries, the representation is
often optimized to efficiently support as many queries as possible. As a concrete
example, the dictionary type can be represented using various data structures
depending on which queries one wants to support efficiently. Hash tables support
Get and Put in expected O(1) time whereas balanced binary search trees support
both operations in worst-case O(log n) time.

Definition 1 (Structuring scheme). Let T = (qu : D×Q → R, up : D×U →
D) be a dynamic type. A type-T structuring scheme SS = (Setup,Query,Update)
is composed of three polynomial-time algorithms that work as follows:

– DS ← Setup(d): is a possibly probabilistic algorithm that takes as input a data
object d ∈ D and outputs a data structure DS. Note that d can be represented

Structured Encryption and Dynamic Leakage Suppression 375

in any arbitrary manner as long as its bit length is polynomial in k. Unlike
DS, its representation does not need to be optimized for any particular query.

– r ← Query(DS, q): is an algorithm that takes as input a data structure DS
and a query q ∈ Q and outputs a response r ∈ R.

– DS ← Update(DS, u): is a possibly probabilistic algorithm that takes as input
a data structure DS and an update u ∈ U and outputs a new data structure
DS.

Here, we allow Setup and Update to be probabilistic but not Query. This
captures most data structures but the definition can be extended to include
structuring schemes with probabilistic query algorithms. We say that a data
structure DS instantiates a data object d ∈ D if for all q ∈ Q, Query(DS, q) =
qu(d, q). We denote this by DS ≡ d. We denote the set of queries supported by
a structure DS as QDS; that is,

QDS
def
=

{
q ∈ Q : Query(DS, q) �= ⊥

}
.

Similarly, the set of responses supported by a structure DS is denoted RDS.

Definition 2 (Correctness). Let T = (qu : D × Q → R, up : D × U → D)
be a dynamic type. A type-T structuring scheme SS = (Setup,Query,Update) is
perfectly correct if it satisfies the following properties:

1. (static correctness) for all d ∈ D,

Pr [DS ≡ d : DS ← Setup(d)] = 1,

where the probability is over the coins of Setup.
2. (dynamic correctness) for all d ∈ D and u ∈ U, for all DS ≡ d,

Pr [Update(DS, u) ≡ up(d, u)] = 1,

where the probability is over the coins of Update.

Note that the second condition guarantees the correctness of an updated
structure whether the original structure was generated by a setup operation
or a previous update operation. Weaker notions of correctness (e.g., for data
structures like Bloom filters) can be derived from Definition 2.

Basic data structures. We use structures for several basic data types includ-
ing arrays, dictionaries and multi-maps which we recall here. An array RAM
of capacity n stores n items at locations 1 through n and supports read and
write operations. We write v := RAM[i] to denote reading the item at location
i and RAM[i] := v the operation of storing an item at location i. A dictionary
structure DX of capacity n holds a collection of n label/value pairs {(�i, vi)}i≤n

and supports get and put operations. We write vi := DX[�i] to denote getting
the value associated with label �i and DX[�i] := vi to denote the operation of

376 M. George et al.

associating the value vi in DX with label �i. A multi-map structure MM with
capacity n is a collection of n label/tuple pairs {(�i,vi)i}i≤n that supports get
and put operations. Similarly to dictionaries, we write vi := MM[�i] to denote
getting the tuple associated with label �i and MM[�i] := vi to denote operation
of associating the tuple vi to label �i. Multi-maps are the abstract data type
instantiated by an inverted index. In the encrypted search literature multi-maps
are sometimes referred to as indexes, databases or tuple-sets (T-sets).

Data structure logs. Given a structure DS that instantiates an object d, we
will be interested in the sequence of update operations needed to create a new
structure DS′ that also instantiates d. We refer to this as the query log of DS and
assume the existence of an efficient algorithm Log that takes as input DS and
outputs a tuple (u1, . . . , un) such that adding u1, . . . , un to an empty structure
results in some DS′ ≡ d.

Extensions. An important property we will need from a data structure is that it
be extendable [27] in the sense that, given a structure DS one can create another
structure DS �= DS that is functionally equivalent to DS but that also supports
a number of dummy queries. We say that a structure is efficiently extendable if
there exist a query set Q ⊃ Q and a ppt algorithm ExtT that takes as input a
structure DS of type T and a capacity λ ≥ 1 and returns a new structure DS also
of type T1 such that: (1) DS ≡ d; and (2) for all q ∈ Q \ Q, Query(DS, q) = ⊥.
We say that DS is an extension of DS and that DS is a sub-structure of DS.

Cryptographic protocols. We denote by (outA, outB) ← ΠA,B(X,Y) the exe-
cution of a two-party protocol Π between parties A and B, where X and Y are
the inputs provided by A and B, respectively; and outA and outB are the outputs
returned to A and B, respectively.

3.1 Structured Encryption

We recall the syntax definition of STE.

Definition 3 (Structured encryption [14]). An interactive structured
encryption scheme Σ = (Setup,Operate) consists of an algorithm and a two-
party protocol that work as follows:

– (K, st,EDS) ← Setup(1k, λ,DS): is a probabilistic polynomial-time algorithm
that takes as input a security parameter 1k, a query capacity λ ≥ 1 and a
type-T structure DS. It outputs a secret key K, a state st and an encrypted
structure EDS. If DS ≡ d0, it outputs an empty EDS.

–
(
(st′, r),EDS′) ← OperateC,S

(
(K, st, op),EDS

)
: is a two-party protocol exe-

cuted between a client and a server where the client inputs a secret key K,
a state st and an operation op and the server inputs an encrypted structure
EDS. The client receives as output a (possibly) updated state st′ and a response
r ∈ R ∪ ⊥ while the server receives a (possibly updated) encrypted structure
EDS′.

1 We consider that the inclusion of dummy queries in a query space does not impact
the type of a structure.

Structured Encryption and Dynamic Leakage Suppression 377

If Σ also has a Rebuild protocol as defined below, we say that it is rebuildable,

–
((

st′,K ′),EDS′) ← RebuildC,S ((K, st) ,EDS): is a two-party protocol exe-
cuted between the client and server where the client inputs a secret key K and
a state st. The server inputs an encrypted data structure EDS. The client
receives an updated state st′ and a new key K ′ as output while the server
receives a new structure EDS′.

Operations. Note that an STE schemes usually supports more than a single
operation and the syntax above can be used (or extended) to capture this in one
of two ways. The first is to notice that the Operate protocol can take as input
an operation op that describes one of a set of operations and its operands. For
example, if ΣDS = (Setup,Operate) supports both query and add operations,
then op can have the form op = (qry, q) to denote a query operation for q
or op = (add, a) to denote an add operation for a. The Operate protocol can
then operate on EDS accordingly and output ((st, r),EDS′), where r �= ⊥ and
EDS′ = EDS in the case of a query, and where r = ⊥ and EDS′ �= EDS in the
case of an add. For notational convenience we will usually omit the flags qry
or add and just write op = q or op = a to denote that it is a query or and
add. This formulation is particularly convenient when working with schemes
that hide which operation is being executed, as will be the case with our main
constructions. Another approach is to include the different operations explicitly
in ΣDS’s syntax. For example, if it supports queries and adds, then we would
write ΣDS = (Setup,Query,Add), where Query is a special case of Operate that
(usually) outputs a response r �= ⊥ and an EDS′ = EDS and Add is a special case
that (usually) outputs r = ⊥ and EDS′ �= EDS. This formulation is particularly
convenient when working with schemes that reveal which operation is being
executed, as will be the case with the constructions we use as building blocks.

Dynamism. We consider several kinds of dynamic STE schemes. The first are
fully-dynamic schemes which support add and delete operations. We usually refer
to such schemes simply as dynamic. Add operations insert a query/response pair
(q, r) into the data structure whereas delete operations remove query/response
pairs (q, r) associated with a given query q. If a scheme only handles add opera-
tions we say it is semi-dynamic. Finally, we consider mutable schemes which are
schemes that support an edit operation which takes as input a query/response
pair (q, r′) and changes a pre-existing pair (q, r) to (q, r′). If a scheme is either
semi-dynamic or mutable we say that it is weakly dynamic.

Security. We recall the notion of adaptive semantic security for STE.

Definition 4 (Security [14,15]). Let Σ = (Setup,OperateC,S,RebuildC,S) be
a structured encryption scheme and consider the following probabilistic experi-
ments where C is a stateful challenger, A is a stateful adversary, S is a stateful
simulator, Λ = (pattS, pattO, pattR) is a leakage profile, λ ≥ 1 and z ∈ {0, 1}∗:

RealΣ,C,A(k): given z and λ the adversary A outputs a structure DS and receives
EDS from the challenger, where (K, st,EDS) ← Setup(1k, λ,DS). A then

378 M. George et al.

adaptively chooses a polynomial-size sequence of operations (op1, . . . opm).
For all 1 ≤ i ≤ m the challenger and adversary do the following:
1. if opi is a query or an update, they execute OperateC,A

((
K, st, opi

)
,EDS

)
;

2. if opi is a rebuild, they execute RebuildC,A
((

K, st
)
,EDS

)
.

Finally, A outputs a bit b that is output by the experiment.
IdealΣ,A,S(k): given z and λ the adversary A outputs a structure DS of type

T. Given pattS(DS), the simulator returns an encrypted structure EDS
to A. A then adaptively chooses a polynomial-size sequence of operations
(op1, . . . , opm). For all 1 ≤ i ≤ m, the challenger, simulator and adversary
do the following:
1. if opi is either a query or an update, S is given pattO(DS, op1, . . . , opi)

and it executes OperateS,A with A;
2. if opi is a rebuild, S is given pattR(DS) and it executes RebuildS,A with

A;
Finally, A outputs a bit b that is output by the experiment.

We say that Σ is Λ-secure if there exists a ppt simulator S such that for all
ppt adversaries A, for all λ ≥ 1 and all z ∈ {0, 1}∗,

|Pr [RealΣ,A(k) = 1] − Pr [IdealΣ,A,S(k) = 1]| ≤ negl(k).

Note that security of non-rebuildable schemes can be recovered by not allowing
rebuild operations.

Leakage. We extend the leakage patterns defined in [27] to the dynamic setting.
In particular [27] defined leakage patterns as functions of queries on a static data
type. We will have to extend the definitions to account for general operations
(queries or updates) on a dynamic data type. Let T = (qu : D × Q → R, up :
D×U → D) be a dynamic data type. We assume that updates can be written as
query/response pairs, i.e., U = Q × R. Given a data structure d and a sequence
of t operations op1, . . . , opt, we denote by dt the structure that results from
applying the given sequence of operations to d. Consider the following leakage
patterns,

– the operation identity pattern is the function family oid = {oidk,t}k,t∈N with
oidk,t : Dk × O

t
k → {0, 1}t such that oidk,t(d, op1, . . . , opt) = m, where m is

a binary t-dimensional vector such that m[i] = 0 if opi ∈ Q and m[i] = 1 if
opi ∈ U;

– the update query equality pattern is the function family uqeq = {uqeqk,t}k,t∈N

with uqeqk,t : Dk × U
t
k → {0, 1}t×t such that uqeqk,t(d, u1, . . . , ut) = M ,

where M is a binary t × t matrix such that for updates ui = (qi, ri) and
uj = (qj , rj), M [i, j] = 1 if qi = qj and M [i, j] = 0 otherwise;

– the operation total response length pattern is the function family otrlen =
{otrlenk}k∈N with otrlenk : Dk × O

t
k → N such that otrlenk(d, op1, . . . , opt) =∑

q∈Qk
|qu(dt, q)|w and dt is d after t operations.;

– the operation data size pattern is the function family odsize = {odsizek}k∈N

with odsizek : Dk × O
t
k → N such that odsizek(d, op1, . . . , opt) = |dt|w;

Structured Encryption and Dynamic Leakage Suppression 379

– the operation log size pattern is the function family olsize = {olsizek}k∈N with
olsizek : Dk × O

t
k → N such that olsizek(d, op1, . . . , opt) = #Log(DS) where

DS is an instantiation of dt such that DS ≡ dt;
– the operation max log length pattern is the function family omllen =

{omllenk}k∈N with omllenk : Dk×O
t
k → N such that omllenk(d, op1, . . . , opt) =

maxop∈Log(dt) |op|w.

Note that in the static setting, i.e., when O = Q, the leakage patterns
otrlen, odsize, olsize, omllen are equivalent to the patterns trlen, dsize, lsize,mllen
originally defined in [27].

Leakage sub-patterns. We recall the notion of leakage sub-patterns introduced
in [27]. Given a leakage pattern patt, it can be decomposed into sub-patterns
capturing its behavior on restricted classes of query sequences. In particular, we
can decompose a leakage pattern into repeating and non-repeating sub-patterns.
The non-repeating sub-pattern is pattern that results from evaluating patt on
non-repeating query sequences (i.e., where all queries are unique).

Definition 5 (Non-repeating sub-patterns). Let T = (qu : D×Q → R, up :
D × U → D) be a dynamic data type and patt : D × Q

t → X be a query leakage
pattern. The non-repeating sub-pattern of patt is the function uniq such that

patt(DS, q1, . . . , qt) =

{
uniq(DS, q1, . . . , qt) if qi �= qj for all i, j ∈ [t],
other(DS, q1, . . . , qt) otherwise.

Safe extensions. We recall and extend the notion of safe extension from [27]
to support updates.

Definition 6 (Safe extensions). Let Λ = (pattS, pattQ, pattU, pattR) be a leak-
age profile. We say that an extension Ext is Λ-safe if for all k ∈ N, for all d ∈ Dk,
for all DS ≡ d, for all λ ≥ 1, for all DS output by Ext(DS, λ), for all t ∈ N, for
all op = (op1, . . . , opt) ∈ O

t
k,

– pattS(DS) ≤ pattS(DS);
– pattQ(DS, q1, . . . , qp) ≤ pattQ(DS, q1, . . . , qp), where (q1, . . . , qp) is the sub-

sequence of queries in op;
– pattU(DS, u1, . . . , uw) ≤ pattU(DS, u1, . . . , uw), where (u1, . . . , uw) is the sub-

sequence of updates in op;
– pattR(DS) ≤ pattR(DS),

where patt1 ≤ patt2 means that patt1 can be simulated from patt2.

4 Our Dynamic Suppression Framework

In this section, we present a dynamic variant of the query equality suppres-
sion framework proposed by [27]. Our framework transforms non-rebuildable

380 M. George et al.

weakly-dynamic STE schemes that leak the query equality into fully-dynamic
STE schemes that do not. Recall that the static framework relies on two com-
pilers: (1) a rebuild compiler (RBC) which transforms a semi-dynamic and non-
rebuildable scheme into a static and rebuildable one; and (2) the cache-based
compiler (CBC) which transforms a static and rebuildable scheme that leaks the
query equality into a static scheme that does not.

Challenges. One of the challenges in designing a dynamic variant of the CBC is
handling subtle correlations between various leakage patterns. For example, sup-
pose the base STE scheme leaks the response length and the operation identity
patterns and consider a sequence of operations (op1, . . . , op4) such that op1 = q1,
op2 = q2, op3 = u3 and op4 = q4. Now, given the operation identities and the
response lengths, suppose the adversary observes that: q1 has the largest response
length �1; that q3 is an update operation; and that q4 has response length �1 +1.
From this, it can reasonably infer that q1 might be equal to q4 which is a “prob-
abilistic” variant of the query equality. It is therefore not enough to suppress the
exact query equality but also the patterns that can reveal partial information
about it.

To address this, our compiler will have to suppress the response length and
the operation identity in addition to the query equality. One can trivially sup-
press the former by padding responses to the maximum length but this induces
a large storage cost; especially when the response lengths are skewed. A better
approach would be to start with base schemes that are volume-hiding in the
sense that they hide the response lengths (without naive padding). Unfortu-
nately, all volume-hiding constructions we are aware of [26,39] are only weakly
dynamic. Our goal, therefore, will be to design a compiler that suppresses the
query equality, the operation identity and the response length while upgrading
the base scheme from being weakly-dynamic to fully-dynamic.

Another important challenge we must overcome is making the base scheme
rebuildable. [27] already showed how to make semi-dynamic schemes rebuildable
but, in our setting, we also need to handle mutable constructions which do not
support add operations but only edits. To summarize, our compiler has to handle
the following challenges:

– (weak dynamism) it must transform a weakly-dynamic (i.e., either semi-
dynamic or mutable) scheme to a fully-dynamic one;

– (operation identity) it must suppress the operation identity; that is, queries
and updates should look identical.

– (rebuild) it must make the base scheme rebuildable even if it is only weakly
dynamic.

Overview of the dynamic CBC. The dynamic CBC is similar to the static
CBC of [27] with the exception of a few steps to handle adds and edits. Let ΣDS =
(Setup,Query,Add) be a semi-dynamic STE scheme and let ΣDX = (Setup,
Get,Put) be a semi-dynamic and zero-leakage dictionary encryption scheme. The
compiler produces a new scheme ΣDDS = (Setup,Operate) that works as follows.

Structured Encryption and Dynamic Leakage Suppression 381

Given a structure DS and a capacity λ ≥ 1, its setup algorithm outputs a struc-
ture EDDS = (EDS,EDX), where EDS is the encryption of a λ-extension of DS
and EDX is an encryption of a dictionary with capacity λ. Operations on EDDS
are handled as follows:

– (queries) to make a query q, the client first executes a get on EDX for q. If
this returns ⊥ (i.e., q has never been issued before) the client queries EDS
for q and receives a response r. The client then does a put on EDX to add
the query/response pair (q, r). If, on the other hand, the get on the cache
returned a response r �= ⊥, the client queries EDS for an unused dummy
value and puts the query/response pair (q, r) in EDX;

– (adds) to add a query/response pair (q, r), the client executes a get on EDX
for an arbitrary query and ignores the response. It then queries EDS for an
unused dummy and puts (q, r) in EDX;

– (edits) to edit the response of an existing query q (e.g., by either adding to it,
deleting from it or changing it), the client first executes a get on EDX for q. If
this returns ⊥, the client queries EDS for q and receives a response r. It then
edits r, which results in a new response r′, and puts (q, r′) in EDX. If, on the
other hand, the get on the cache returned a response r �= ⊥, the client queries
EDS for an unused dummy, edits r and puts the edited query/response pair
(q, r′) in EDX.

Note that for every operation, the dynamic CBC executes a get on EDX, then
a query on EDS and, finally, a put on EDX. Furthermore, EDS is never queried
for a query q more than once. Intuitively, the first property will guarantee that
the scheme suppresses the operation identity while the second will guarantee
that it suppresses the query equality.

Every operation executed on EDDS consumes a (unique) dummy item from
EDS. And since it holds λ dummies, it needs to be rebuilt after λ operations so
that it can continue to be used. We now describe how this rebuild is achieved.

Overview of the dynamic RBC. We have two main goals when rebuilding
EDDS = (EDS,EDX). The first is to build a new EDS structure EDS′ that holds
the λ dummies. The second is to make sure that EDS′ holds the most up-to-date
responses for all the queries. Note that the second goal is non-trivial because of
the way adds and edits are handled. In particular, the most up-to-date response
for a query q can be either in EDS or in EDX depending on whether it has been
added, edited or never modified. More precisely, we have hat after λ operations,
if a query/response pair (q, r) is in the cache then r is the most up-to-date
response for q. On the other hand, if a pair (q, r) is not in the cache then the
main structure EDS holds the most up-to-date response for q. In the following, we
refer to a query/response pair (q, r) as valid if r is the most up-to-date response
for q and as invalid if it is not. Our rebuild protocol must then extract the valid
query/response pairs from EDX and EDS and add them to EDS′ with a minimal
amount of leakage.2

2 Note that invalid query/response pairs in EDS result from the pair existing in EDS
from setup (i.e., not being added) but being edited during the last λ operations.

382 M. George et al.

The protocol consists of five phases: (1) initialization, where an array RAM is
initialized at the server; (2) extract-and-tag, where all the query/response pairs
are retrieved from EDS and EDX, tagged according to their validity and stored
in an encrypted array at the server; (3) sort-and-shuffle, where the encrypted
array is (obliviously) sorted to partition the invalid and valid query/response
pairs so that the former can be deleted and the latter are randomly shuffled;
(4) update, where the valid query/response pairs in the array are added to a
new EDS′ structure; and (5) cache setup, where a new cache structure EDX′ is
created. More precisely, it works as follows:

1. (initialization): the server initializes an array RAM.
2. (extract-and-tag) the client sequentially retrieves all the query/response pairs

(q, r) in EDS and EDX. For all (q, r) in EDX, it adds an encryption of (q, r, f)
to RAM, where f is a random non-zero k-bit value we refer to as a validity tag.
If there are less than λ entries in EDX, it queries it on arbitrary values until it
reaches λ queries and for each of these arbitrary queries it adds an encryption
of (⊥,⊥, 0) to RAM. For all query/response pairs (q, r) in EDS, it adds an
encryption of (q, r, f) to RAM, where f is set to 0 if q was present in EDX
and f is set to a random non-zero k-bit value otherwise. For each dummy in
EDS, the client adds an encryption of (⊥,⊥, f) to RAM, where f is a random
non-zero k-bit value. Throughout this phase, the client also keeps count of
the number of entries with 0 tags. Notice that the valid query/response pairs
and the dummies are all tagged with random non-zero validity tags whereas
the invalid pairs and the entries that result from the “arbitrary” queries on
EDX are tagged with 0.

3. (sort-and-shuffle) the client obliviously sorts RAM according to the validity
tags. Since the valid pairs and the dummies have random non-zero tags and
the rest have 0 tags, this step will randomly shuffle the valid pairs and dum-
mies and store the rest at the start of the array. The client then asks the
server to delete the first t entries, where t is the number of entries with 0
tags. At this point, the array only holds valid query/response pairs.

4. (update) the client creates a new structure EDS′ by retrieving the
query/response pairs in RAM and adding them to EDS′. How exactly this
is done depends on the kind of dynamism ΣDS supports:

– (semi-dynamic) if it is semi-dynamic, the client initializes an empty struc-
ture DS0 and encrypts it with ΣDS before storing it at the server. This
new encrypted structure is EDS′. The client sequentially retrieves the
query/response pairs (q, r) from RAM and adds them to EDS′.

– (mutable) if ΣDS is mutable we can only use edit operations. The client
then sets up “placeholder” structure D̃S that it will encrypt and edit until
it holds the necessary data. Note that for this to work, the placeholder
must be large enough to hold the latest version of DS (i.e., the structure
DS after the λ operations) and it must be “safe” in the sense that encrypt-
ing and editing the placeholder must not leak more than operating on the
original structure.

Structured Encryption and Dynamic Leakage Suppression 383

5. (cache setup) the client generates an empty dictionary with capacity λ and
encrypts it with ΣDX and sets it to be EDX′.

Finally, the protocol outputs a rebuilt structure EDDS′ = (EDS′,EDX′).

4.1 Security

We now analyze the security of our dynamic suppression framework. We present
two theorems whose proofs are in the full version of this work. Theorem 1 ana-
lyzes the case when ΣDS is semi-dynamic and Theorem 2 analyzes the case where
ΣDS is mutable. For Theorem 1, we assume ΣDS has leakage profile

ΛDS = (LS,LQ,LA) =
(
pattds

S , (qeqds, pattds
Q), pattds

A

)
,

and ΣDX has profile

ΛDX = (LS,LG,LP) =
(
pattdx

S ,⊥,⊥)
.

Theorem 1 (Semi-dynamic). If ΣDS is ΛDS-secure, if Ext is (pattds
S , uniq,

pattds
A)-safe, and if ΣDX is ΛDX-secure, then ΣDDS is ΛDDS-secure, where

ΛDDS = (LS,LO,LR) =
((
pattds

S , pattdx
S

)
, uniq,

(
pattdx

S , patt1, patt2, patt3
))

and patt1, patt2 and patt3 are defined as,

– patt1(DS) =
(
pattds

S (DS0), lsize, olsize, omllen
)

– patt2(DS) =
(
pattds

Q (DS, q)
)
q∈QDS

– patt3(DS) =
(
pattds

A (DS0, a)
)
a∈Log(DSλ)

,

where uniq is the non-repeating sub-pattern of pattds
Q , DS0 ≡ d0 and DSλ is the

updated DS after λ ≥ 1 operations.

Before we state our Theorem for mutable schemes, recall that the rebuild
protocol needs to setup a placeholder structure that can be edited to realize
the new data object. This placeholder must be setup and edited with minimal
leakage. We do this with the notion of a safe placeholder which we define below.

Definition 7 (Safe placeholder). A placeholder structure D̃S is (pattS, pattQ,
pattE)-safe for a structure DS if, for all queries q1, . . . , qt, for all edits e1, . . . , et,

– pattS(D̃S) ≤ pattS(DS),
– pattQ(D̃S, q1, . . . , qt) ≤ pattQ(DS, q1, . . . , qt),
– pattE(D̃S, e1, . . . , et) ≤ pattA(DS, e1, . . . , et).

We assume that there exists an efficient algorithm GenPlaceholder that takes
as input some state information and generates a safe placeholder. We now state
Theorem 2 whose proof is deferred to the full version of this work. Here, we
assume ΣDS has leakage profile

ΛDS = (LS,LQ,LE) =
(
pattds

S , (qeqds, pattds
Q), pattds

E

)
,

and ΣDX has the same profile as above.

384 M. George et al.

Theorem 2 (Mutable). If ΣDS is ΛDS-secure, if Ext is (pattds
S , uniq, pattds

E)-
safe, if D̃S is an (pattds

S , pattds
Q , pattds

E)-safe placeholder for DSλ, and if ΣDX is
ΛDX-secure, then ΣDDS is ΛDDS-secure, where

ΛDDS = (LS,LO,LR) =
((
pattds

S , pattdx
S

)
, uniq,

(
pattdx

S , patt1, patt2, patt3
))

and patt1, patt2 and patt3 are defined as,

– patt1(DS) =
(
pattds

S (DSλ), lsize, olsize, omllen
)

– patt2(DS) =
(
pattds

Q (DS, q)
)
q∈QDS

– patt3(DSλ) = (pattE(DSλ, e))e∈Log(DSλ)
,

where uniq is the non-repeating sub-pattern of pattds
Q , and DSλ is the updated DS

after λ ≥ 1 operations.

4.2 Efficiency of the Dynamic Cache-Based Compiler

We now analyze the efficiency of the schemes produced by our suppression frame-
work and compare it to using black-box ORAM simulation.

Operation complexity. The efficiency of ΣDDS clearly depends on the efficiency
of its building blocks ΣDS and ΣDX. Recall that for every operation op on EDDS,
the client executes: one get operation on EDX, one query operation on EDS and
one put operation on EDX. This leads to an operation complexity of

timedds
O = timeds

Q + timedx
G + timedx

P ,

where timeds
Q is the query complexity of ΣDS, and timedx

G and timedx
P are the get

and put complexities of ΣDX.

Rebuild complexity. Recall that the Rebuild protocol of ΣDDS executes: (1) λ
gets on EDX; (2) #QDS queries on EDS; (3) an oblivious sort on an array of size
#QDS + 2 · λ; and (4) #QDSλ

adds or edits on EDS. The complexity of steps (1)
and (2) is

λ · timedx
G + #QDS · timeds

Q .

The complexity of steps (3) and (4) depend on the sorting network used and the
storage at the client. Using Batcher’s bitonic sort [5] with O(1) client storage
[27], steps (3) and (4) have complexity

O

(
#QDSλ

· max
r∈RDSλ

|r|w · log2 #QDSλ
+ #QDSλ

· max
u∈U

timeds
U (|u|)

)
, (1)

where timeds
U (|u|) is either the add or the edit complexity of ΣDS, QDSλ

is the
query space of DSλ, and RDSλ

is the corresponding response space for the queries
q ∈ QDSλ

. Note that if maxu∈U timeds
U (|u|) = O

(
log2 #QDSλ

)
, then Eq. (1) above

is

O

(
#QDSλ

· max
r∈RDSλ

|r|w · log2 #QDSλ

)
.

Structured Encryption and Dynamic Leakage Suppression 385

Adding steps (1) through (4) we have

timedds
R = λ ·timedx

G +#QDS ·timeds
Q +O

(
#QDSλ

· max
r∈RDSλ

|r|w · log2 #QDSλ

)
. (2)

Operations & rebuild. It follows from the above that the time timeds
λO+R to

execute λ operations and to rebuild the structure is

timedds
λO+R = λ · timedds

O + timedds
R

= λ ·
(
timeds

Q + 2 · timedx
G + timedx

P

)
+ #QDS · timeds

Q

+ O

(
#QDSλ

· max
r∈RDSλ

|r|w · log2 #QDSλ

)
. (3)

The complexity above depends in part on the efficiency of the scheme ΣDX

used for the underlying cache. Several constructions can be used including the
“standard” cache, square-root ORAM or the more efficient tree-based ORAM
[43]. In the following, we analyze the complexity of ΣDDS based on different
instantiations of ΣDX.

Using the standard cache. The standard (zero-leakage) cache is an array of
size λ that stores encryptions of label/value pairs (�, v) where the labels all have
the same size and where the values are padded to the maximum value length.
To execute a get for a label �, the client retrieves the entire encrypted array,
decrypts it and keeps the value associated with �. To insert or edit a label/value
pair, the client retrieves the entire encrypted array, decrypts it, inserts the new
pair or modifies an existing pair, re-encrypts the array and sends it back to he
server. It follows that the get and put complexities of the standard cache are

timedx
G = timedx

P = O

(
λ · max

r∈RDSλ

|r|w
)

,

Combining this with Eq. (3), we have

timedds
λO+R = (λ + #QDS) · timeds

Q + O

(
λ2 · max

r∈RDSλ

|r|w)
)

+ O

(
#QDSλ

· max
r∈RDSλ

|r|w · log2 #QDSλ

)
.

Using a tree-based cache. The scheme ΣDX can also be instantiated with a
tree-based ORAM like Path ORAM [43] which has get and put complexity

timedx
G = timedx

P = O

(
max

r∈RDSλ

|r|w · log2 λ

)
,

386 M. George et al.

where λ is the number of entries stored in the ORAM. Combining this with
Eq. 3, we have

timedds
λO+R = (λ + #QDS) · timeds

Q + O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)

+ O

(
#QDSλ

· max
r∈RDSλ

|r|w · log2 #QDSλ

)
. (4)

Comparison to black-box ORAM simulation. With the exception of the
construction of [33], ORAM does not traditionally support re-sizing. So to com-
pare our constructions with black-box ORAM simulation based on state-of-the-
art ORAMs (e.g., Path ORAM [43])3 we have to assume that the ORAM is
initialized with some upper-bound on the size. We use an “upper-bound” data
structure which we denote DS∗. More precisely, to setup the ORAM simulation
for a structure DS, the ORAM is initialized to hold DS∗ so that DS can expand
to fill the allocated space. The ORAM simulation of one operation on DS using
a tree-based ORAM then has complexity,

timetree
O = Bds

Q · O

(
log2

|DS∗|2
B

)
· B

w
,

where Bds
Q is the number of blocks that need to be read to answer a query, B is

the block size of the ORAM and w is the word length (in bits). Since the ORAM
does not have to be rebuilt, timetree

λO+R is the same as the time complexity of λ
operations. Setting B = maxr∈RDS∗ |r|2 as an upper limit on possible response
length, we have,

timetree
λO = λ · Bds

Q · O

(
log2

|DS∗|2
maxr∈RDS∗ |r|2

)
· max

r∈RDS∗
|r|w. (5)

To compare the efficiency of our schemes with black-box ORAM simulation, we
examine Eq. (4). Assuming that λ = O(#QDS),4 and timeds

Q = O(log #QDS) we
have that #QDSλ

≤ #QDS + λ = O(#QDS). Combining the first two terms in
Eq. (4) we get,

timedds
λO+R = O(#QDS · log #QDS) + O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)

+ O

(
#QDS · max

r∈RDSλ

|r|w · log2 #QDS

)
. (6)

3 Note that some ORAM constructions can achieve better asymptotic query complex-
ity [38] but we use Path ORAM for its simplicity and real-world practicality.

4 This is a conservative assumption on λ. In practice, the selection of λ is crucial to
the efficiency of the scheme. The question of selecting the optimal λ for efficiency is
interesting and can be further explored.

Structured Encryption and Dynamic Leakage Suppression 387

From Eq. (6), we observe that timedds
λO+R is asymptotically dominated by

O

(
#QDS · max

r∈RDSλ

|r|w · log2 #QDS

)
.

Comparing Eqs. (5) and (6), we have the following proposition.

Proposition 1. If λ = O(#QDS), #QDS = O(#QDS∗) and Bds
Q = ω(1), then

timedds
λO+R = o

(
timetree

λO

)
.

For structures with constant-time queries, Bds
Q = 1 so our approach improves

asymptotically over ORAM simulation whenever

max
r∈RDSλ

|r|w = o

(
max

r∈RDS∗
|r|w

)
.

For a concrete efficiency comparison we refer the reader to Sect. 5.3.

5 Concrete Instantiations

In this section we show how to apply our framework to two concrete schemes:
the piggyback scheme PBS from [27] which is a semi-dynamic construction and
the advanced volume-hiding scheme AVLHd from [26] which is mutable. The
leakage profiles of the resulting schemes is minimal and only reveal information
pertaining to the total size of the structure.

5.1 Our PBS-Based Constructions

PBS is a non-rebuildable semi-dynamic STE scheme. It is parameterized with
a batch size α and supports query and add operations. PBS queries and adds
in batches in the sense that when executing a query q1 it only retrieves a fixed
number of batches from q1’ s response and retrieves the next set of batches only
when a new query q2 occurs. In the meantime, q2 is inserted into a queue until
enough queries are made for the client to retrieve q1’s entire response. Adds
are handled similarly. When a sequence of queries or adds is complete, all the
remaining batches in the queue are retrieved or pushed.

PBS has two variants. The first is a perfectly correct variant which incurs
some small amount of query leakage; namely, for sequences of non-repeating
queries, it leaks the number of batches required to process the sequence; and for
sequences with repeating queries, it reveals the query equality and the response
lengths. The second variant achieves only probabilistic correctness but the non-
repeating sub-pattern of its query leakage is ⊥. The application of our framework
to the first variant results in a dynamic variant of the AZL construction from

388 M. George et al.

[27] whereas applying it to the second variant results in a dynamic variant of
the FZL construction from [27].

Leakage profile of PBS. The leakage profile of the perfectly correct variant of
PBS is

ΛPBS = (LS,LQ,LA) = (tbrlen, rqeq, alen),

where tbrlen, rqeq and alen are defined as follows. The total batched response
length

tbrlenk,α(DS) = trlen(DS) +
∑

q∈QDS

α − (|qu(DS, q)|w mod α
)

reveals the number of batches needed to store the responses in the structure.
The repeated query equality pattern

rqeqk,m(DS, q1, . . . , qt) =

⎧
⎪⎨

⎪⎩

⊥ if m < t and qi �= qj for all i, j ∈ [t],

γm if m = t and qi �= qj for all i, j ∈ [t],

qeq × rlen(DS, q1, . . . , qt) otherwise,

where

γm
def
=

(∑
i∈[m]

|qu(DS, qi)|w + α − (|qu(DS, qi)|w mod α
)) · α−1 − (m − 1).

Note that the non-repeating sub-pattern of rqeq is uniq where

uniqk,m(DS, q1, . . . , qt) =

{
⊥ if m < t and qi �= qj for all i, j ∈ [t],
γm if m = t and qi �= qj for all i, j ∈ [t].

The add length pattern

alenk,m(DS, u1, . . . , ut) =

{
⊥ if m < t,

γm if m = t,

reveals nothing until the last add of the sequence, and then reveals the number
of batches required to finish the add sequence.

When PBS is modified to support only probabilistic correctness for queries,
the non-repeating sub-pattern of its query leakage is ⊥. The leakage profile of the
probabilistic variant of PBS is therefore (Lpbs

S ,Lpbs
Q ,Lpbs

U) = (tbrlen, pattQ, alen)
where

pattQ(DS, q1, . . . , qt) =

{
⊥ if qi �= qj for all i, j ∈ [t],
qeq × rlen(DS, q1, . . . , qt) otherwise.

Safe extension for PBS. Let (q̃1, · · · , q̃λ) be dummy queries. For all 1 ≤ i ≤ λ,
compute DS ← Add(DS, (q̃i,0)), where |0|w = maxr∈RDS

|r|w.

Structured Encryption and Dynamic Leakage Suppression 389

Theorem 3. If λ and α are publicly-known parameters and if all queries
in QDS have the same bit length, the extension scheme described above is
(tbrlen, uniq, alen)-safe.

Dynamic AZL. Let dynamic AZL be the perfectly-correct fully-dynamic
rebuildable scheme that results from applying our framework to the perfectly-
correct variant of PBS. Its security is stated in the following Theorem whose
proof is in the full version.

Theorem 4. If ΣDX is ΛDX-secure where ΛDX = (LS,LG,LP) = (mllen,⊥,⊥),
then dynamic AZL is ΛAZL-secure where

ΛAZL = (LS,LO,LR)

=
(
(tbrlen,mllen) , uniq′, (lsize, tbrlen, olsize, omllen, otbrlen)

)
where otbrlen(DS, op1, . . . , opλ) = tbrlenk,α(DSλ) and

uniq′
k,m(DS, op1, . . . , opt) = uniqk,m(DS, q1, . . . , qt),

where opi is either a query qi or an update ui = (qi, ri).

Efficiency of dynamic AZL. It follows from Eq. (4) that the complexity of
dynamic AZL when ΣDX is initialized with a tree-based ORAM is

timeazl
λO+R = (λ + #QDS) · timepbs

Q + O

(
λ · max

r∈RDSλ

|r|w · log2 λ

)

+ O

(
#QDS · max

r∈RDSλ
|r|w

· log2 #QDSλ

)
,

where timepbs
Q is the query complexity of PBS which is equal to the query com-

plexity of is underlying multi-map encryption scheme. The storage complexity
of dynamic AZL is the sum of the storage required for the cache and the storage
required for the PBS structure. This results in storage complexity

O

(
λ · (α + max

a∈Log(DSλ)
|a|w) + #QDS · (α + max

r∈RDS

|r|w)
)

.

Dynamic FZL. Dynamic FZL is the probabilistically-correct fully-dynamic
scheme that results from applying our framework to the probabilistically-correct
variant of PBS. Its security is analyzed in the following Theorem whose proof is
in the full version of this work.

Theorem 5. If ΣDX is ΛDX where ΛDX = (LS,LG,LP) = (mllen,⊥,⊥), then
dynamic FZL is ΛFZL-secure where

ΛFZL = (LS,LO,LR) = ((tbrlen,mllen) ,⊥, (lsize, olsize, omllen, otbrlen)) .

Efficiency of dynamic FZL. The efficiency of dynamic FZL is the same as that
of dynamic AZL.

390 M. George et al.

5.2 Our AVLH-Based Construction

We now apply our framework to the mutable variant of the advanced volume-
hiding multi-map encryption scheme AVLHd from [26]. Note that here we do not
consider the variant that exploits concentrated components for storage improve-
ments.

Overview of AVLH. At a high level, the scheme uses n bins to store a multi-
map of size N , where N is the sum over all labels of the labels’ tuple lengths.
The scheme uses a random bipartite graph to map labels to bins. More precisely,
each label � is mapped at random to t out of n bins, where t is the maximum
tuple length. The elements of the tuple corresponding to a label � are placed
in each bin mapped to �. If there are more bins mapped than the length of the
tuple, some bins are left empty. The bins are then padded to the size of the
maximum bin, encrypted and stored on the server. To query for a label �, the
client retrieves all the bins mapped to �. The scheme hides the tuple lengths,
i.e., the response length rlen. It also supports restricted edits in the sense that
one can edit/change the values in a tuple but not add values to it. The leakage
profile of AVLHd is

ΛAVLH = (LS,LQ,LE) = (trlen, qeq, (oid, uqeq)).

Extension. Let (q̃1, · · · , q̃λ) be dummy queries and (r̃1, · · · , r̃λ) be the cor-
responding dummy responses such that |r̃i| = 1. For all i ∈ [λ], compute
MM ← Add(MM, (q̃i, r̃i)). We state the security of this extension in the The-
orem below whose proof is deferred to the full version.

Theorem 6. If λ is a publicly-known parameter and that all queries in the query
space QDS have the same bit length, the above extension scheme is (trlen,⊥,
(oid, uqeq))-safe.

Safe placeholder. Since AVLHd is mutable we define a safe placeholder multi-
map M̃M. Note that the placeholder must have the following properties:

1. M̃M must have enough space to hold the tuples of all the labels � ∈ LMMλ
5;

2. the setup, query and edit leakages on M̃M must be at most the setup, query
and edit leakages on MM.

The placeholder structure is created as follows during rebuilds. During the
extract-and-tag phase, the client learns which labels are valid and their tuple
lengths. During the update phase it creates, for every valid label � a dummy
tuple t of the same length and inserts (�, t) in M̃M. We state the security of the
placeholder in the Theorem below, whose proof is deferred to the full version.

Theorem 7. The placeholder above is (trlen, qeq, (oid, uqeq))-safe.

5 For any multi-map data structure MM, the query space QDS is the label space LMM.

Structured Encryption and Dynamic Leakage Suppression 391

Zero-leakage advanced volume-hiding. Let ZAVLH be the dynamic rebuild-
able multi-map encryption scheme that results from applying our framework to
AVLHd with the above placeholder structure and a dictionary encryption scheme
ΣDX with leakage profile ΛDX = (Ldx

S ,Ldx
G ,Ldx

P) = (mllen,⊥,⊥). Theorem 8 below,
whose proof is in the full version of this work, states the security of ZAVLH.

Theorem 8. If ΣDX is ΛDX-secure, then ZAVLH is ΛZAVLH-secure where

ΛZAVLH = (LS,LO,LR) = ((trlen,mllen) ,⊥, (lsize, olsize, omllen, otrlen)) .

Efficiency of ZAVLH. We now analyze the efficiency of our dynamic cache-based
compiler with a tree-based cache and the AVLHd scheme. The query complexity
for ZAVLH is

timezavlh
Q = O(t · N/n)

If t = O(1) and n = O(N/ log N) where t is the maximum tuple length and n is
the number of bins, the query complexity is O(log N) for zero-leakage operations.
From Eq. (4) we have,

timezavlh
λO+R = O (#LMM · log N) + O

(
λ · max

r∈RMMλ

|r|w · log2 λ

)
(7)

+ O

(
#LMM · max

r∈RMMλ

|r|w · log2 #LMMλ

)
(8)

5.3 Concrete Comparisons

In Sect. 4.2, we showed that our framework can asymptotically outperform black-
box ORAM simulation under natural assumptions on the data and queries. In
this section, we are interested in gaining a better understanding of the practical
gains in different settings. Specifically, we compare the concrete efficiency of
our ZAVLH scheme to an oblivious multi-map constructed via black-box ORAM
simulation and to a standard dynamic encrypted multi-map called Πdyn

bas [11].
Since the latter has optimal storage and query complexities, this comparison
highlights the cost of leakage suppression.

Parameters and notation. For our comparison, we consider a multi-map MM
with t labels and N =

∑
�∈LMM

#MM[�] total values and maximum tuple length
l. After λ Add operations on MM, the resulting multi-map is denoted MMλ. We
denote the number of labels in MMλ as tλ and the total values in MMλ as Nλ.
The maximum tuple size in MMλ is denoted by lλ. All PRF keys and outputs
are of length k = 256 bits, all values in the multi-maps are 64 bits and N is set
to 216.

Parameters for ZAVLH. The number of bins in AVLH are chosen such that
each bin contains (log N)/2 values on average. The tree-based cache used in
the dynamic CBC is instantiated with Path ORAM with λ leaf nodes; one for

392 M. George et al.

Table 1. Parameters for the efficiency comparison of dynamic CBC, black-box ORAM
simulation, and Πdyn

bas , given a multi-map MM and a sequence of λ add operations.

Parameters Setting 1 Setting 2 Setting 3 Setting 4

General:

length of PRF output (bits) 256 256 256 256

length of MM value (bits) 64 64 64 64

cache size (λ) 64 64 64 64

MM:

max. tuple length (l) 512 512 512 512

total # of labels (t) 256 256 256 256

total # of values (N) 216 216 216 216

total # of AVLH bins (n) 8192 8192 8192 8192

Updated MMλ:

max. tuple length (lλ) 512 512 512 512

total # of labels (tλ) 256 256 256 256

total # of values (Nλ) 65600 65600 65600 65600

total # of AVLH bins (nλ) 8199 8199 8199 8199

Upper-bound MM∗:
factor of growth 25 50 150 1000

max. tuple length (l∗) 1.28 ×104 2.56 ×104 7.68 ×104 51.2 ×104

total # of labels (t∗) 0.64 ×104 1.28 ×104 3.84 ×104 25.6 ×104

total # of values (N∗) 163.84 ×104 327.68 ×104 983.04 ×104 6553.6 ×104

Table 2. Concrete efficiency comparison. The efficiency numbers shown for ORAM
correspond to each of the 4 settings for the ORAM upper-bound data structure.

Efficiency

Measure

ZAVLH

(OPS)

ZAVLH

(E&T)

ZAVLH

(S&S)

ZAVLH

(UP)

ZAVLH

(Total)

Path ORAM

EMM(∗)
Std EMM

(Πdyn
bas)

0.401 0.084 – 0.401 0.486 4.78 0.066

Client State 10.058

(Mbits) 32.539

244.137

29.704 14.352 – 29.71 44.062 52424.704 20.992

Server Storage 209707.008

(Mbits) 1887412.224

83885916.16

166.739 211.042 1181.008 268.294 1827.084 1995.534 10.485

Communication 4306.721

(Mbits) 14421.059

113419.012

Leakage l, N t tλ lλ, Nλ l, N, t

lλ, Nλ, tλ

l∗, t∗ vol, qeq

Structured Encryption and Dynamic Leakage Suppression 393

each tuple in the cache. Each block is initialized to hold one tuple and therefore
(l + λ) values at most. Each node/bucket in the binary tree holds Z = 5 blocks.
The position map maps every label to a leaf node in the ORAM and has size
λ(k + log λ). The stash stores at most log λ blocks and therefore log λ(l + λ)
values. A query to the cache reads and writes a path of log λ buckets in the tree.
The multi-map MM stores t+λ labels and N +λ total values. We summarize the
cost of ZAVLH in Table 2 breaking it down into the cost to execute λ operations
(OPS) and the costs of the different rebuild phases: extract-and-tag (E&T),
sort-and-shuffle (S&S) and update (UP).

Black-box ORAM simulation. To manage the dynamic multi-map MM with
Path ORAM, we initialize an upper-bound structure MM∗ with t∗ labels and
N∗ values.6 Specifically, we use upper-bound structures that are 25, 50, 150, and
1000 times larger than the multi-map’s original size (Table 1). The maximum
length of a tuple in MM∗ is l∗. The Path ORAM that manages MM∗ has t∗
leaf nodes, one for each label in MM∗. Each block is initialized to hold l∗ values
and each node/bucket in the binary tree holds Z = 5 blocks. This ORAM has
a position map of size t∗(q + log t∗) and a stash that holds at most log t∗ blocks
at any given time.

Comparison. Table 2 shows the costs in Mbits for each of the 4 settings for
ZAVLH, black-box ORAM simulation, and Πdyn

bas . We can see that ZAVLH out-
performs black-box ORAM simulation in both space and communication for our
chosen parameters. In particular, the storage cost of ZAVLH is 3 to 7 orders
of magnitude smaller than black-box ORAM simulation and only a factor of 2
larger than Πdyn

bas . We also observe that the communication cost of ZAVLH is up
to 60 times smaller than black-box ORAM simulation, but 180 times larger than
Πdyn

bas which is optimal but incurs more leakage.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In: ACM
Symposium on Theory of Computing (STOC 1983), pp. 1–9 (1983)

2. Amjad, G., Kamara, S., Moataz, T.: Breach-resistant structured encryption. In:
Proceedings on Privacy Enhancing Technologies (Po/PETS 2019) (2019)

3. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: Wichs,
D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016,
pp. 1101–1114. ACM (2016)

4. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryp-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
407–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 14

5. Batcher, K.: Sorting networks and their applications. In: Proceedings of the Joint
Computer Conference, pp. 307–314 (1968)

6 This is due to Path ORAM’s inability to resize.

https://doi.org/10.1007/978-3-319-96884-1_14

394 M. George et al.

6. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: Net-
work and Distributed System Security Symposium (NDSS 2020) (2020)

7. Bost, R.: Sophos - forward secure searchable encryption. In: ACM Conference on
Computer and Communications Security (CCS 2016) (2016)

8. Bost, R., Fouque, P.-A.: Thwarting leakage abuse attacks against searchable
encryption - a formal approach and applications to database padding. Technical
Report 2017/1060, IACR Cryptology ePrint Archive (2017)

9. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: ACM Conference on
Computer and Communications Security (CCS 2017) (2017)

10. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: ACM Conference on Communications and Computer
Security (CCS 2015), pp. 668–679. ACM (2015)

11. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: data structures and imple-
mentation. In: Network and Distributed System Security Symposium (NDSS 2014)
(2014)

12. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

13. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 20

14. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

15. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: ACM Conference on Com-
puter and Communications Security (CCS 2006), pp. 79–88. ACM (2006)

16. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 371–406. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 13

17. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24177-7 7

18. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 20

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

20. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: ACM Workshop on Cloud
Computing Security Workshop (CCSW 2011), pp. 95–100 (2011)

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-319-24177-7_7
https://doi.org/10.1007/978-3-662-53015-3_20

Structured Encryption and Dynamic Leakage Suppression 395

21. Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Pump up the volume:
practical database reconstruction from volume leakage on range queries. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018, pp. 315–331. ACM (2018)

22. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct:
learning theory and encrypted database attacks. In: 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23 May 2019, pp.
1067–1083. IEEE (2019)

23. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Network and Distributed Sys-
tem Security Symposium (NDSS 2012) (2012)

24. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 4

25. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 149–180. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 6

26. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 183–213.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 7

27. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 339–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-
1 12

28. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography and Data Security (FC 2013) (2013)

29. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security (CCS 2012).
ACM Press (2012)

30. Kellaris, G., Kollios, G., Nissim, K., Neill, A.O.: Generic attacks on secure out-
sourced databases. In: ACM Conference on Computer and Communications Secu-
rity (CCS 2016) (2016)

31. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivi-
ous RAM and a new balancing scheme. In: ACM-SIAM Symposium on Discrete
Algorithms (SODA 2012), pp. 143–156 (2012)

32. Lacharité, M., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on
encrypted data using range query leakage. In: 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, San Francisco, California, USA, 21–23 May
2018, pp. 297–314. IEEE Computer Society (2018)

33. Moataz, T., Mayberry, T., Blass, E.-O., Chan, A.H.: Resizable tree-based oblivious
RAM. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 147–167.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 9

34. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: ACM Conference on Computer and Communications
Security (CCS), CCS 2015, pp. 644–655. ACM (2015)

35. Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via
blind storage. In: IEEE Symposium on Security and Privacy (S&P 2014) (2014)

36. Ostrovsky, R., Shoup, V.: Private information storage. In: ACM Symposium on
Theory of Computing (STOC 1997), pp. 294–303 (1997)

https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-662-47854-7_9

396 M. George et al.

37. Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE Symposium
on Security and Privacy (SP), pp. 359–374. IEEE (2014)

38. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Panorama: oblivious RAM with
logarithmic overhead. In: 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 871–882. IEEE (2018)

39. Patel, S., Persiano, G., Yeo, K.,Yung, M.: Mitigating leakage in secure cloud-hosted
data structures: volume-hiding for multi-maps via hashing. In: Conference on Com-
puter and Communications Security (CCS 2019), pp. 79–93 (2019)

40. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

41. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: IEEE Symposium on Research in Security and Privacy, pp. 44–55. IEEE
Computer Society (2000)

42. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryp-
tion with small leakage. In: Network and Distributed System Security Symposium
(NDSS 2014) (2014)

43. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In:
ACM Conference on Computer and Communications Security (CCS 2013) (2013)

44. Wang, X.S., et al.: Oblivious data structures. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 215–226
(2014)

45. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: ACM Conference on
Computer and Communications Security (CCS 2008), pp. 139–148 (2008)

46. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power
of file-injection attacks on searchable encryption. In: USENIX Security Symposium
(2016)

https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

Blockchain

Dynamic Ad Hoc Clock Synchronization

Christian Badertscher1(B) , Peter Gaži1, Aggelos Kiayias1,2,
Alexander Russell1,3 , and Vassilis Zikas4

1 IOHK, Hong Kong, China
{christian.badertscher,peter.gazi}@iohk.io

2 University of Edinburgh, Edinburgh, UK
aggelos.kiayias@ed.ac.uk

3 University of Connecticut, Mansfield, USA
acr@cse.uconn.edu

4 Purdue University, West Lafayette, USA
vzikas@cs.purdue.edu

Abstract. Clock synchronization allows parties to establish a common
notion of global time by leveraging a weaker synchrony assumption, i.e.,
local clocks with approximately the same speed. Despite intensive inves-
tigation of the problem in the fault-tolerant distributed computing liter-
ature, existing solutions do not apply to settings where participation is
unknown, e.g., the ad hoc model of Beimel et al. [EUROCRYPT 17], or
is dynamically shifting over time, e.g., the fluctuating/sleepy/dynamic-
availability models of Garay et al. [CRYPTO 17], Pass and Shi [ASI-
ACRYPT 17] and Badertscher et al. [CCS 18].

We show how to apply and extend ideas from the blockchain litera-
ture to devise synchronizers that work in such dynamic ad hoc settings
and tolerate corrupted minorities under the standard assumption that
local clocks advance at approximately the same speed. We discuss both
the setting of honest-majority hashing power and that of a PKI with
honest majority. Our main result is a synchronizer that is directly inte-
grated with a new proof-of-stake (PoS) blockchain protocol, Ouroboros
Chronos, which we construct and prove secure; to our knowledge, this is
the first PoS blockchain protocol to rely only on local clocks, while tol-
erating worst-case corruption and dynamically fluctuating participation.
We believe that this result might be of independent interest.

1 Introduction

Global clock synchronization [13,19,24] allows a set of mutually distrustful par-
ties to approximate a global notion of “time,” in such a manner that if some

C. Badertscher—Work done while the author was at the University of Edinburgh,
Scotland.
A. Kiayias—Research partly supported by EU Project No. 780477, PRIVILEDGE.
A. Russell—This material is based upon work supported by the National Science Foun-
dation under Grant No. 1717432.
V. Zikas—Work done in part while the author was at the University of Edinburgh and
while visiting the Simons Institute for the Theory of Computing, UC Berkeley. Work
supported in part by IOHK.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 399–428, 2021.
https://doi.org/10.1007/978-3-030-77883-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_14&domain=pdf
http://orcid.org/0000-0002-1353-1922
http://orcid.org/0000-0002-8228-6238
https://doi.org/10.1007/978-3-030-77883-5_14

400 C. Badertscher et al.

party believes that the global time is t then every party believes it to be t ± ε
for some small ε > 0. This allows for an (approximately) synchronous (or par-
tially synchronous) execution of distributed protocols which has placed the study
of such synchronizers at a prominent position in theoretical computer science
research. A number of works investigated feasibility across the spectrum of secu-
rity/adversary models—from perfect to computational security and for different
types of network synchronization assumptions [2,13–15,19,24,25,28,32,33]. We
defer a full description of the current landscape of feasibility to the full version
of this work [4] due to space constraints. The common assumption of such syn-
chronizers is that the (honest) parties have local (initially desynchronized) clocks
which advance at (roughly) the same speed.

Notwithstanding, existing synchronization techniques rely on accurate knowl-
edge of the total number of parties present in the system and smart counting of
received messages (or message chains). Consequently these techniques are inap-
plicable in the ad hoc secure multi-party computation setting of Beimel et al. [6],
where the universe of parties is known but not all parties participate in the pro-
tocol and the identities of those that do participate are not known to the other
parties. As discussed in [6], what makes this model challenging is the fact that
it aims for non-interactive secure computation in the private simultaneous mes-
sage (PSM) model [16,20]. Indeed, if one allows multiple rounds of interaction,
then the parties assumed to be online can try to figure out the active identities,
taking the problem’s difficulty away.

In this work we study a synchronization challenge which arises in the dynamic
variant of the ad hoc model, where not only the parties do not know who is
actually playing the protocol, but the set of active participants might change
in every round (this change is further allowed to be under adversarial control).
This is not only a natural extension of [6] but is also motivated by real-world
considerations in the blockchain setting. Indeed, the sleepy model of consensus
proposed by Pass and Shi [31]—and later generalized in the UC setting [8,9]
by Badertscher et al. [3] under the term dynamic availability—puts forth such
a dynamic ad hoc model for capturing participation fluctuation in distributed
ledger protocols. In a nutshell, these works allow for parties to (re)join the pro-
tocol at any time and to temporarily sleep—i.e., drop out of (certain processes
of) the protocol—according to an arbitrary (or even adversarial) sleep pattern.

This dynamic ad hoc setting limits the power of existing synchronization
techniques, since the lack of agreement of participation patterns makes count-
ing ineffective for taking consistent decisions. The lack of such synchroniza-
tion makes any distributed cryptography primitive [1] in this dynamic ad hoc
setting reliant on a (possible imperfect) global notion of time. In fact, even
the formal cryptographic analyses of proof-of-work (PoW) and proof-of-stake
(PoS) blockchains have typically assumed a (partially) synchronous model with
a notion of global time. For instance, standard references for the proven secu-
rity of Bitcoin [17,18,29] implicitly use the fact that they can refer to a global
round index in order to prove the desired properties of the protocol. Indeed,
the common-prefix property is defined to require that if an honest party holds a

Dynamic Ad Hoc Clock Synchronization 401

chain at round ρ, then the prefix of this chain—obtained by removing the k most
recent blocks—will eventually become prefix of the chain of any honest party (at
some round ρ′ ≥ ρ). The assumption was made explicit in [5] by assuming a
global clock in the global UC setting [9]: this permits every party to query a
common clock on demand and from that deduce the current round. A similar
approach, assuming access to a global clock, was also adopted in the construc-
tions of PoS blockchains, such as Sleepy Consensus [31], Snow White [11], and
Ouroboros [3,12,23].

The natural question that we address in this work is the following: Is global
clock synchronization from standard assumptions possible in the dynamic ad hoc
setting? By “standard assumptions” in the above question we mean the com-
mon assumptions underlying traditional synchronizers—that is, local (initially
desynchronized) clocks which advance at (roughly) the same speed and an honest
majority of parties.1 —along with standard cryptographic assumptions such as a
public-key infrastructure (PKI) and existentially unforgeable digital signatures.

As discussed above, counting arguments of the sort used in classical syn-
chronizers does not seem to help. Therefore, to answer this question we turn to
techniques from the cryptographic literature on blockchain ledgers, which has
already come a long way in addressing other security challenges that the dynamic
ad hoc model creates. In fact, it is not hard to verify that in a resource-restricted
scenario, such as the one created by assuming honest majority of hashing power,
the above question can be answered by relying on a simplified version of the Bit-
coin backbone protocol [17]. In particular, one can observe that the description
of the Bitcoin blockchain (without difficulty recalibration) can rely on a purely
execution-driven notion of time and explicit knowledge of current global time is
not required. In the static difficulty setting, proving security in this way follows
immediately from [17,29]. As a result, a synchronizer can be trivially inferred
by defining the clock to be the current blockchain length in each party’s local
state.

The above observation is a good indication that blockchain techniques can
help answering our question, but it unfortunately does not provide a satisfy-
ing answer, as it relies on a non-standard—from the perspective of synchroniz-
ers and/or general multi-party computation (MPC) literature—assumption, i.e.,
that the honest parties control the majority of the computing power per unit of
time. To avoid such non-standard assumptions we turn to proof of stake (PoS).
Here, an execution-driven notion of time similar to the aforementioned notion
achieved by Bitcoin without difficulty recalibration can actually be achieved
by certain PoS-based iterated-Byzantine Fault Tolerant (iBFT) ledger protocols
such as Algorand [10]. Indeed, given access to the genesis block (which can be
seen as an initial PKI) a party can use the index (sequence number) of the
current block as global time. This suggests the following as a solution to our
synchronization problem: The assumed PKI—which in the ad hoc model would

1 In the static ad hoc setting [6], this assumption becomes honest majority of active
parties; and in the dynamic, it would be honest majority among the parties that are
actively participating in any given round.

402 C. Badertscher et al.

include the keys of all parties, active or not—is interpreted as a genesis block
where every key is associated with a unit of stake. Then a simplified version of
the Algorand ledger protocol is executed, i.e., without any stake shift and where
the contents of the blocks are independent messages, in particular they are not
interpreted as transactions of any kind. Whenever a party becomes active in
the computation, he uses the length of the blockchain as his global time. If a
(2/3 + ε)-majority of active parties is honest (for some constant ε > 0), it fol-
lows that in the above execution of simplified-Algorand, a (2/3 + ε)-majority of
the (implicit) stake must be in honest hands and therefore security follows by
the security proof of Algorand. It is not hard to verify that the protocol yields
a good synchronizer, where, not surprisingly, the network delay lower-bounds
the maximum skew of synchronized parties’ clocks. However, the above solution
works only under a concession which severely limits the nature of the dynamic
ad hoc model. We need to demand explicit participation thresholds that are part
of the protocol logic. Stated differently, each protocol participant at any given
time must be aware of a sufficiently accurate estimate of how many parties are
active at that time. To our knowledge, such a property, which in [10] is referred
to as lazy honesty, is necessary for the security analysis of [10]. We note in pass-
ing that such a rigid participation restriction is not necessary for the Bitcoin
blockchain or its PoS variants in the sleepy/dynamic-availability setting.

Although it does not solve our question, the above idea still points to the
right direction: Concretely, if we could use the above idea but with a PoS pro-
tocol which does not rely on explicit participation bounds, e.g., [3,11,12,23,31],
then we would have answered our question to the affirmative. And even better,
our synchronizer would work assuming an honest majority (1/2 + ε of parties
for some suitably chosen ε), since the above protocols are secure w.r.t. such an
assumption on the stake distribution. Unfortunately, unlike Algorand, these pro-
tocols use a notion of (approximate) global time hardwired in the protocol logic,
and the protocol is unspecified without such global knowledge of time/round. In
fact, as explained below, there does not seem to be a simple way to removing
this dependence of global time, and replace it by local clocks —even, perfectly-
coordinated ones that advance at exactly the same speed—while preserving the
security guarantees.2 The reason is that in these PoS blockchains a party’s right
to create a block is always associated with a concrete round (also called “slot”),
and in order to verify that a block is created by an eligible party, that party must
include a proof explicitly referring to the slot number. This means that a new
party that joins the blockchain—or one that has been sleeping for long—cannot
prune-off chains with adversarial timestamps so that it eventually adopts the
right chain. Thus if a new party with an incorrect local time joins the protocol
and sees a chain that includes blocks which appear to be far in the future (accord-
ing to her local time), she cannot decide whether the chain is adversarial—in

2 Of course, one could include such a notion of (approximate) global time in a trusted
checkpointing assumption [11], but this defeats the purpose of decoupling the protocol
from an explicitly assumed trusted source of global time when a party (re)joins, which
is the main challenge of our work.

Dynamic Ad Hoc Clock Synchronization 403

which case she needs to ignore or truncate it—or her local time is far behind
absolute time. It is worth adding that these are not merely theoretical consider-
ations: in a real world deployment the dependency on a global clock is typically
met by using a global time synchronization service such as NTP [27] and hence
the security of all these protocols becomes compromised if such service fails to
deliver a truly reliable clock, a possibility that cannot be excluded [26].

Note that all previous PoS protocols which can operate in a participation-
unrestricted setting [3,11,12,23,31] require an upper bound on the network delay
Δ which is a necessary assumption, see [30], due to the participation uncertainty.
However, knowledge of an upper bound on Δ does not help the parties in any
direct way to assess the actual time (e.g., by locally counting time intervals of
length Δ), as participation gaps can invalidate their local timer with respect to
the implicit global execution-driven time.

It seems we have hit a deadlock: if the protocol itself crucially relies on
global time, then how can it be used to remove global time and replace it with
loosely synchronized clocks? Unfortunately, there seems to be no way to use
these blockchain protocols (or their properties) in a black-box manner to realize
a global clock from standard assumptions. Nonetheless, as we prove here, we can
draw inspiration from these works to design new a new PoS blockchain protocol
from scratch, so that it does not rely on a global clock and can be used as a
synchronizer to obtain an approximate global clock from standard synchronizer
assumptions. Our approach to building the new blockchain extends in a highly
non-trivial manner ideas from the recent PoS literature.

Our blockchain protocol works not only for static stake, but can even accom-
modate stake transfers and new keys being generated (and potentially allocated
stake) as in existing PoS blockchains. Thus, we actually not only solve the syn-
chronizer problem in the dynamic ad hoc setting, but we provide the first full
fledged PoS blockchain in the dynamic availability setting which relies not on
global time but on the weaker and more realistic assumption of local (initially
desynchronized) clocks which advance at (roughly) the same speed. We believe
that this result might be both of independent interest for the distributed ledgers
literature as well as of practical importance. We note in passing that given our
new synchronizer, a potential alternative construction of a blockchain would be
to use it in a black-box way to first realize a global clock, and then use this within
an existing PoS blockchain. However, this would yield a highly suboptimal use
of resources as it would effectively mean running two blockchains. This works
shows that one does not need this redundancy and use our construction both
as a PoS blockchain and as means to simulate a global clock (and potentially
export it to other calling protocols) at the same time.

2 Overview of Our Techniques

At the core of our global synchronization procedure is a new PoS blockchain
ledger protocol which (1) does not rely on global clocks but merely on local
clocks with (approximately) the same speed, (2) accommodates dynamic ad hoc

404 C. Badertscher et al.

participation, and (3) assigns timestamps to each block so that they can be used
by any external observer to deduce an (approximate) notion of global time/round
(see Theorem 1). We refer to this new blockchain protocol as Ouroboros Chronos,
or simply Chronos, and discuss it below. As discussed above, it would be sufficient
for our synchronizer’s needs to just design a blockchain that works in the static
stake setting. Nonetheless, for full generality, we design Chronos to accommodate
(and tolerate) stake-shift, which makes it the first fully-functional PoS blockchain,
yielding the same guarantees as existing ones [3,10,11], but without reliance on
a global clock or restricting dynamic participation.

First, observe that if all the parties running the blockchain protocol would be
guaranteed to be around from its beginning and throughout its lifetime (i.e., in
the static ad hoc model of [6]) then one could use an existing PoS blockchain for
honest majority, e.g., [3,11] with the convention described above to assign one
unit of stake per public key. A synchronizer could be derived from the length
of the blockchain while the security assumptions and parties never joining or
leaving the system would guarantee that parties stay synchronized. What makes
the problem challenging and excludes the above solution is, thus, the combination
of lack of a global clock with dynamic (ad hoc) participation. In the following
we focus on how to redesign the mechanism of the above PoS protocols to allow
(re)joining parties to get in sync with parties that have been around sufficiently
long and are, therefore, already in-sync with each other—we refer to these latter
parties as alert.

The central idea of our mechanism is the continuous recording of individu-
ally submitted clock readings and the clock adjustment of the alert parties’ local
clocks based on these readings at regular recalibration points. This mechanism is
based on a VRF-based probabilistic sampling of the local clocks of all active par-
ties using the blockchain to consistently record this operation over the protocol
execution. As we demonstrate, this opens the opportunity for a safe (re)joining
procedure; newly joining parties will be able to “hook” themselves into the next
recalibration point and become fully alert.

In more details, here is how our new (re)joining procedure works: (Re)joining
parties, start with listening on the network for some time, collecting broadcasted
chains and following a “densest chain” chain-selection rule similar to [3]. Infor-
mally, this rule mandates that if two chains C and C′ start diverging at some
time t—according to the reported time-stamps in C and C′—then choose the
chain which is denser in a sufficiently long interval after that time. Our first key
observation is that this rule offers a useful (albeit in itself insufficient) guarantee
in our setting: the joining party will end up with some blockchain that, although
arbitrarily long, is at worst forking from a chain held by an honest and already
synchronized party by a bounded number of blocks (equal to a security parame-
ter) with overwhelming probability. This observation is the key to start building
our synchronization mechanism. More concretely, we prove that the above pro-
cess guarantees to eventually prune-off all chains with bad prefixes, i.e., prefixes
that do not largely coincide with the prefixes of the other already synchronized
honest parties’ chains. In fact, as we show, the parties can compute an upper

Dynamic Ad Hoc Clock Synchronization 405

bound on the time (according to their local clocks) they need to remain in the
above self-synchronization state before they build confidence in the above guar-
antee, i.e., before they know that their locally held chain is consistent with a
long and stable prefix that already-synchronized honest parties adopt.

The second key observation is that once a joining party has converged to such
a fresh—i.e., produced after the joining party was activated— prefix of an honest
chain, it may use the difference between its current local time and the (local)
time recorded when this chain (and other control information) was received to
adjust its local clock so that its local time is consistent with the times reported
on the prefix. The hope would be that a clever adjustment will bring this local
time sufficiently close to that of an honest and already synchronized party.

Designing and analyzing such an updating process is challenging. Indeed, con-
sider the following straw man attempt: The party resets its local clock so that
the time reported in, say, the last block of the prefix is the time this block was
received. Before discussing the limitations of this proposal, let us first discuss an
inherent property when dealing with clock synchronization in the setting with
Δ-bounded (but adversarially controlled) delay networks. A message received
by a party might have been sent up to Δ rounds before, hence the time that
the party will set its clock to might be up to Δ rounds away from the clock of
the sender (at the point of update). This delay-induced imprecision is unavoid-
able, so when we assess a given proposal we accept that clocks only need to
be “loosely” synchronized; specifically, clocks of honest parties might differ by
a bounded amount, where the bound is known and depends only on Δ. In fact,
this relaxation is common and believed to be necessary even in the permissioned
model [19,24].3

However, the above simple solution is problematic even when there are no
delays: Although the chain that the newly joining party recovered is guaranteed
to have a prefix consistent with the already synchronized honest parties, individ-
ual blocks might be originating from the adversary and therefore contain a time
stamp very different from the true sending time of that block. To make matters
worse, the rate of honestly generated blocks in a chain of an honest party can
be quite low as implied by the known bounds of chain quality [12,18], and thus
the time inaccuracy of any individual block can be significant.

A second attempt would be to have in every round (or at regular intervals)
every party use the credentials of all the coins it owns to broadcast a signed
timestamp, i.e., every party acts as a verifiable synchronization (or timestamp-
ing) beacon on behalf of all the coins it owns. The joining party receives all
these broadcasted timestamps, and uses their majority to compute the value of
its clock. Still, this solution has drawbacks: The first is scalability; this is not
severe, as existing ideas can be employed such as using the protocol history as
input to a verifiable random function (VRF) to identify eligible parties (or, as
in the case of Algorand, by using Bracha-style committees [7]) to send time-

3 The model from [24] with honest clocks that report values differing by up to Δ is
equivalent to a situation in which clocks report the right value, but parties might
receive it with a difference of up to Δ rounds.

406 C. Badertscher et al.

stamping beacons in every synchronization round. The second, harder problem
is that in order to use the majority, the local clocks of the parties that report
time need to be perfectly synchronized so that their majority agrees. If their
clocks have any small drift, this fails. Furthermore, even with identical speed
clocks, dynamic participation allows parties to drop off and rejoin, which means
that, due to the network delay the honest parties will end up with only loosely
synchronized local clocks. Using the average instead of the majority function
does not help out here either since a single adversarial timestamp can throw off
the average arbitrarily far. Hence, taking the median of the received timestamps
promises to be more stable against extreme values. Observe that as long as syn-
chronized honest parties’ local clocks are not far apart, the times they report
will be concentrated to a sufficiently small time interval, and the median will fall
in this interval.

The above insight brings us closer, but is still insufficient: If the adversary
can serve to, say, two different joining parties different and possibly disjoint sets
of timestamps (on behalf of eligible corrupted synchronization-beacon parties)
then he could force an opposing clock adjustment between the two that will
increase their clock drift well beyond the drift of any pair of already synchro-
nized parties. To resolve this issue, we need to ensure that the parties agree on
the set of eligible timestamps (whether honest or corrupted) that they use for
adjusting their local time. This is a classical consensus problem. Luckily, our
synchronizer runs in tandem with a PoS-based blockchain which solves consen-
sus with dynamic availability, and which can assist in reaching agreement on
the synchronization-beacon values for recalibration. And thanks to the prop-
erty discussed at the beginning of the section—namely that even joining parties
(without accurate time) will eventually be able to bootstrap a sufficiently long
prefix of the blockchain—the joining parties will agree on the set of beacons for
recalibration.

Our solution follows the spirit of the above conclusion. In a nutshell, we
will use the VRF to assign timestamping-beacon parties to slots according to
their state. Parties who are synchronized and active when their assigned slot
is encountered will broadcast a timestamp and a VRF-proof of their eligibility
for the current timeslot (together, we call this a synchronization beacon). And
to agree on the set of eligible parties that will be used (including the dishon-
est ones) these beacons will also be included in the blockchain by the already
synchronized parties, similarly to transactions. Any party who joins and tries
to get synchronized will gather chains and record any broadcasted beacons (and
keep track of the local time these were received). Once the party is confident
it has a sufficiently long prefix of the honest chain, it will retrospectively use
this gathered information to extract the agreed-upon set of beacons, compute a
good approximation of the clocks parties had when they broadcasted these bea-
cons and apply a median rule to set its local clock to at most a small distance
from other honest and synchronized parties. In order to ensure that already syn-
chronized parties adjust in tandem with joining parties we will have them also
periodically execute the synchronization algorithm—but of course using their

Dynamic Ad Hoc Clock Synchronization 407

local blockchain, which they know is guaranteed to have a large common prefix
with any other honest and synchronized party. Evidently, to turn this high-level
idea of our solution into a provably secure protocol requires appropriate design
choices that we present in Sect. 4. Nonetheless, by a careful analysis (cf. Sect. 5)
we can show that not only the above construction yields a PoS blockchain that
does not rely on global time, but, also, the reported timestamps are (approxi-
mately) consistent among long-term (alert) participants and can, with a suitable
encoding mechanism, be used to devise a synchronizer satisfied the guarantees
of the following theorem.

Theorem 1. There is a synchronizer protocol in the dynamic ad hoc setting, so
that the following properties hold:

1. (Completeness) Any alert party in the protocol reports some time t ∈ N.
2. (Approximate synchrony) For any two alert parties p1 and p2 reporting times

t1 and t2, respectively, it holds |t1 − t2| ≤ 2Δ, where Δ is an upper bound on
the network delay.

3. (Monotonicity) If an alert party reports times t1 and then t2 at two consecu-
tive steps4 in its execution, then t1 ≤ t2 ≤ t1 + 2Δ.

4. (Liveness) For any alert party, if time t2 is reported 2Δ local rounds after
time t1, then t1 < t2.

Note that the above theorem provides a clock that might make “jumps” (i.e.,
skip some rounds for certain parties). However, these jumps are bounded by 2Δ.
Hence, it is straightforward to turn this clock into a clock that does not make
jumps (albeit slower) and where synchronized parties are within a round from
each other: Every party reports time � t

2Δ�, where t is the value it sees from the
above “jumpy” clock.

3 Our Model

Basic Notation. For n ∈ N we use the notation [n] to refer to the set {1, . . . , n}.
For brevity, we often write {xi}n

i=1 and (xi)n
i=1 to denote the set {x1, . . . , xn}

and the tuple (x1, . . . , xn), respectively. For a tuple (xi)n
i=1, we denote by

med((xi)n
i=1) the (lower) median of the tuple, i.e., med((xi)n

i=1) � x′
�n/2�, where

(x′
i)

n
i=1 is a (non-decreasing) sorted permutation of (xi)n

i=1. For a blockchain
(or chain) C, which is a sequence of blocks, we denote by C�k the chain that is
obtained by removing the last k blocks; and by head(C) the last block of C. We
write C1 � C2 if C1 is a prefix of C2.

We discuss the model and the hybrid functionalities assumed in the protocol
below. The formal descriptions are given in the full version of this work [4].

Relaxed Synchrony. The synchrony assumption that parties advance at
exactly the same pace can be captured by the global-setup variant of the clock
4 In this context, a step in the execution corresponds to the action(s) a party takes

during a single local round (i.e., between two “ticks” of its local clock.).

408 C. Badertscher et al.

functionality from [22]. This is a weaker version of the global clock used in previ-
ous analyses of blockchains [3,5] in that it does not keep a counter representing
the global system time, but rather maintains for each party (resp. ideal func-
tionality) an indicator bit dP (resp. d(F,sid)) of whether or not a new round has
started. Each party’s indicator is accessible by a standard clock-get command.
All indicators are set to 0 at the beginning of each round; once any party or func-
tionality finishes its round it issues a clock-update command that updates his
indicator to 1. Once every party and functionality has updated its indicator, the
clock resets all of them to 0; this switch allows the parties to detect that the
previous round has ended and move on to the next round.

Arguably the above clock offers very strong synchronization guarantees, since
once a round switches, every party is informed about it in the next activation. In
[22] a relaxed version of this clock was introduced which allowed the adversary
to delay notifying the parties about a round switch by bounded amount of fetch-
attempts. This behavior relaxes the perfect nature of the clock, but it still ensures
that no party advances to a next round before all parties have completed their
current round.

In this work we consider parties that advance at roughly the same speed,
which means that a party might advance its round even before another party has
finished with its current round, and even multiple times, as long as its is ensured
that no honest party is left too far behind. For this purpose we introduce an even
more relaxed version of the (global-setup variant) of the clock from [22] which,
intuitively, allows a party to advance to its next round multiple times before some
honest parties have completed their current round, as long as the relative pace of
advancement for any two honest parties stays below a drift parameter Δclock. We
note in passing that a similar guarantee was formulated in the timing model [21];
however, the solution there notified the underlying model of computation which
creates complications with the (G)UC composition theorem which would need
to be reproved. To avoid such complications, in this work we capture the above
relaxed synchrony assumption as a global functionality.5 and call it GΔclock

ImperfLClock.
Similar to the perfect clock above, the imperfect clock stores an indicator bit

dP which is used to keep track of when everyone has completed a round (not
necessarily the same round)—one can think of this indicator as corresponding to
a baseline round-switch, which is however hidden from the parties and might only
be observed by ideal functionalities. Additionally, for every party the imperfect
clock keeps an imperfect version of the indicator bit dImp

P (corresponding to
switches P’s local, e.g., hardware, clock switches) which is what is exported when
the party attempts to check his clock.

This local indicator is used similarly to how synchronous protocols would
use the perfect indicator in [22]; but we allow the adversary to control when this

5 In [22] a functionality corresponding to the timing-model assumptions [21] was pro-
posed along with a reduction to the (local) clock functionality. However, both the
fact that their clock functionality is local and that their reduction uses a complete
network of (known) bounded-delay authenticated channels—which we do not assume
here—makes that result incompatible with our model and goals.

Dynamic Ad Hoc Clock Synchronization 409

local indicator is updated under the restrictions that (a) dImp
P cannot advance

in the middle of P’s round, (b) it cannot fall behind the baseline induced by
the indicator dP, and (c) it cannot advance ahead of the baseline by more than
Δclock. This is achieved by the imperfect clock keeping track of the relative differ-
ence/distance driftP between the number of local advances of each registered P

from the baseline updates; this distance is increased whenever dImp
P is reset (by

the adversary) to 0 and decreased whenever the baseline indicator dP ∈ {0, 1}
is reset to 0; if the distance of some party from the baseline falls below 0 (i.e.,
the adversary attempts to stall a party when the baseline advances6) then the
local indicator is reset to dImp

P = 0 (which allows P to advance his round) and
the corresponding distance is also reset to 0.

Modeling Peer-to-Peer Communication. We assume a diffusion network,
denoted by and we denote it by FΔnet

N-MC, in which all messages sent by honest
parties are guaranteed to be fetched by protocol participants after a specific delay
Δnet. Additionally, the network guarantees that once a message has been fetched
by an honest party, this message is fetched by any other honest party within a
delay of at most Δnet, even if the sender of the message is corrupted. We note
that this network model is not substantially stronger than in previous works [3,5],
which use a network functionality providing bounded-delay message delivery. Our
model is equivalent via an unconditional reduction: echoing received messages.
In practice, this reduction of course needs to be applied prudently to avoid
saturating the network. This is exactly done by the relevant networking protocols:
e.g. in Bitcoin, when a new block is received its hash is advertised and then
propagated and validated by the network as needed. Chronos can use the same
mechanism.

Genesis Block Distribution and Weak Start Agreement. Our model
allows parties’ local time-stamps to drift apart over the course of an execution;
additionally the model makes no assumption that the initialization of the ini-
tial stakeholders is completed in the same round, i.e., honest parties might start
staking at different rounds of the execution. To this aim, we weaken the function-
ality FINIT adopted by [3] to allow for bounded delays when initial stakeholders
receive the genesis blocks. Namely, our FΔnet

INIT functionality merely guarantees
genesis block delivery to initial stakeholder not more than Δnet rounds apart
from each other; the offsets are under adversarial control.

Further Hybrids. The protocol makes use of a VRF (verifiable random func-
tion) functionality FVRF, a KES (key-evolving signature) functionality FKES, and
a (global) random oracle functionality GRO (to model ideal hash functions).

3.1 Dynamic (Ad Hoc) Participation

To support a fine-grained dynamic participation model, we follow the approach
of [3] and categorize the parties into party types. Recall that the dynamic partic-
6 Note that by definition the baseline advances when all parties have completed their

current round.

410 C. Badertscher et al.

ipation model allows to capture the security of the protocol in a realistic fashion,
by considering that some parties might be stalling their computation, some might
accidentally lose network access and hence disappear unannounced, and others
might lose track of the passage of time due to some failure. In our model, we
formally let the environment be in charge of connecting and disconnecting to
its resources. (This is done by equipping the functionalities, global setups, and
the protocol with explicit registration/de-registration commands, thereby keep-
ing track of when parties are joining and adjusting their guarantees depending
based on this information.) The various basic and derived types of parties are
summarized in Fig. 1.

Basic types of honest parties
elbaliava.seRelbaliavanu.seR).seR(ecruoseR

random oracle GRO stalled operational
network FN-MC offline online
clock GPerfLClock time-unaware time-aware
synchronized state, local time desynchronized synchronized
KES capable of signing (w.r.t. local time) sign-capable sign-uncapable

Derived types:

alert :⇔ operational ∧ online ∧ time-aware ∧ synchronized ∧ sign-capable

active :⇔ alert ∨ adversarial ∨ time-unaware
Note: alert parties are honest, active parties also contain all adversarial parties.

Fig. 1. Party types.

For a given point in execution, a party is considered offline if it is not regis-
tered with the network, otherwise it is considered online. A party is time-aware
if it is registered with the clock, otherwise we call it time-unaware. We say that
a party is operational if it is registered with the random oracle, otherwise we
call it stalled. Finally, we say that a party is sign-capable if the counter in FKES

is less or equal to its local time-stamp.
Additionally, an honest party is called synchronized if it has been continu-

ously connected to all its resources for a sufficiently long interval to make sure
that, roughly speaking, (i) it holds a chain that shares a common prefix with
other synchronized parties (synchronized state) and (ii) its local time does not
differ by much from other synchronized parties (synchronized time). Our proto-
col’s resynchronization procedure JoinProc will guarantee the party that after
executing it for the prescribed number of rounds, it will achieve both properties
(i) and (ii) above. In addition, such a party will eventually become sign-capable
in future rounds (in case the KES is “evolved” too far into the future due to a de-
synchronized time-stamp before joining). We note that an honest party always
knows whether it is synchronized or sign-capable and (in contrast to the treat-
ment in [3]), it maintains its synchronization state in a local variable isSync
and makes its actions depend on it.

Dynamic Ad Hoc Clock Synchronization 411

Based on these four basic attributes, we define alert and active parties sim-
ilarly to [3]. Alert parties are considered the core set of honest parties that
have access to all necessary resources, are synchronized and sign-capable. On
the other hand, potentially active parties (or active for short) are those (honest
or corrupted) parties that can potentially act (propose a block, send a synchro-
nization beacon) in its current status; in other words, we cannot guarantee their
inactivity. Formally, it includes alert parties, corrupted (i.e., adversarial) par-
ties, and moreover any party that is time-unaware (independently of the other
attributes; this is because those parties are in particular not capable of evolving
their signing keys reliably and hence it cannot be excluded that if they later get
corrupted, they might retroactively perform protocol operations in a malicious
way).

The definition of a party type is extended now, namely from single points in
an execution to the natural numbers, which we refer to as logical slots in this
context. As we see in Sect. 4, to each logical slot, a leader election process is asso-
ciated, which every honest party will run when its local clock localTime equals
sl for the first time. The definition of party types w.r.t. logical slots is as follows:
a party P is counted as alert (resp. operational, online, time-aware, synchronized,
sign-capable) for a slot sl if the first time its local clock passes through the (log-
ical) slot sl, it maintains this state throughout the whole slot, otherwise it is
considered not alert (resp. stalled, offline, time-unaware, desynchronized, sign-
uncapable) for sl. It is considered corrupted (i.e., adversarial) for sl if it was
corrupted by the adversary A when its local clock satisfied localTime ≤ sl.
Finally, it is active for sl if it is either corrupted for that slot, or it is alert or
time-unaware at any point during the interval when its local clock for the first
time passes through slot sl.

4 The Blockchain Protocol

At a high level, the protocol we present is a Nakamoto-style proof-of-stake based
protocol for the so-called semi-synchronous setting; this is the same model used
for standard analyses of Bitcoin. In this model, parties have a somewhat accurate
common notion of elapsed time (rather than absolute time information) and the
network has an upper bound on the delay which is not known to the parties. At
a very high-level the protocol attempts to imitate a process which resembles a
situation in which state (including time) is continuously passed on to currently
alert stakeholders. The honest majority of active stake assumption that is explicit
in [3,12] will then ensure that the adversary cannot destroy this state by using
his ability to tune participation.

To ease into the main protocol ideas it is useful to imagine a situation in
which there is a core of parties with sufficient stake that has been around from
the onset of the blockchain. (These parties have a common, albeit somewhat
imperfect, understanding of how much time has passed since the protocol started
and can contribute this information to the synchronization procedure.) We stress
that the continuous or indefinite presence of such parties is not needed in our

412 C. Badertscher et al.

final protocol which will ensure that the information that these parties would
safeguard is passed on to new parties if/when such inaugural parties go to sleep
or deregister.

Here is how such an inaugural participant (i.e., a participant who is assigned
stake at the outset of the computation by FINIT) executes the protocol. With
access to the provided genesis block, which reveals an initial record S1 =(
(P1, v

vrf
1 , vkes

1 , s1), . . . , (Pn, vvrf
n , vkes

n , sn)
)

that associates each participant Pi
7

to its chosen public keys used for verification purposes of the staking process
and its initial stake si, each party begins the so-called first epoch of the staking
procedure and sets its local clock localTime to the value 1. The party has to
execute a certain set of tasks per round. Note that two inaugural parties have
only a somewhat accurate notion of elapsed time and receiving the genesis block
might be delayed, it might very well be that a party P1 has executed three
rounds, while P2 has only executed one so far, or has not even received the gene-
sis block. The bounds on the clock drifts and the network delay however ensure
that the difference of the number of completed protocol rounds does not drift
too far apart.

A participant’s main task (per round) is to evaluate whether it is elected
to produce a block for the current local time, which we refer to as a slot.
For this, it evaluates a verifiable random function (VRF) on input x :=
η1 ‖ localTime ‖ TEST, where η1 is a truly random seed provided by FINIT. If
the returned value y is smaller than a threshold value T ep

P , which is derived
from the stake associated with P, then the participant is called a slot leader.
The threshold is computed to yield a higher probability of slot leadership the
higher the stake of the party. The main task of the slot leader is to create a valid
block for this slot that contains, as control information (alongside the trans-
actions), the VRF proof of slot leadership, an additional random nonce, and
the hash to the head of the chain it connects to. Each block is signed using a
key-evolving signature scheme.8 As typical in these systems, the block is made
to extend (essentially) the longest valid chain known to the party. Due to the
slightly shifted local clocks, some care has to be taken to not disregard entirely
chains that contain blocks in the logical future of a party. However, the chain a
party adopts (and computes the ledger state from) at slot localTime shall never
contain a block with a higher time-stamp.9

In addition to the above actions, or if a party is not slot leader, it must play
the lottery once more on input x′ := η1 ‖ localTime ‖ SYNC. If the party is lucky
this time and receives a return value smaller than the threshold (defined shortly),
it must emit a so-called synchronization beacon containing the VRF proof and
7 More precisely, Pi denotes just a bitstring in the model that formally identifies a

machine and is used to identify which keys (and hence stake) are controlled by
corrupted machines. Note that we write participant or party instead of machine.

8 The KES ensures that if a participants gets corrupted, no blocks can be created in
retrospect.

9 Some further care has to be taken in proof of stake to detect chains that try to
perform a long-range attack. We describe this in the next section in more detail
when we recall the Genesis chain-selection rule.

Dynamic Ad Hoc Clock Synchronization 413

the current time localTime. Synchronization beacons are treated similarly to
transactions and are contained into blocks if valid. If a party has done all its
tasks, it increments localTime and waits until the round is over. Except for the
generation of synchronization beacons, which is only done in a first fraction of
an epoch, the above round procedure iterates over the entire first epoch, where
the length of an epoch is R, a parameter of the protocol. Our security proof
shows that this first epoch does result in a blockchain satisfying common prefix,
chain growth, and chain quality properties for specific parameters, as long as the
leader-election per slot is to the advantage of honest protocol participants.10

At the epoch boundary to the second epoch, two important things happen.
First the stake-distribution and the epoch randomness change: they are derived
from specific blocks contained in the guaranteed common prefix established by
the first epoch. In particular, we must ensure that at the time the stake distribu-
tion is fixed, the epoch randomness cannot be predicted to ensure the freshness
of the slot leader election lottery for the second epoch. The second critical update
at the epoch boundary is the local time: each party performs a local-clock adjust-
ment, outlined in Sect. 4.1, which ensures that after the adjustment parties are
still close together, where “close” means within Δ = Δnet+Δclock (two sources of
bounded variance contribute to this: delay and drift) and that performed shifts of
the local clock remain small (which is crucial for security). The desired property
follows from the common-prefix guarantee (enabling an agreement on beacons),
the honest majority assumption (enabling small clock shifts), and the network
properties and clock properties (which ensure correlated arrival times). With
some additional considerations detailed in Sect. 4.1, the protocol proceeds exe-
cuting the above round tasks for the entire second epoch until the next boundary
is met. This iterated process, where one epoch bootstraps the next, is backed by
an inductive security argument, following previous works [3,12,23], that shows
how the overall security is a consequence of the first epoch achieving the desired
blockchain properties to serve as a good basis for the second, etc.

The reason to perform a local-clock adjustment is to enable the main goal of
our construction: to enable new parties to safely join the system and to determine,
just by observing the network and without any further help, an accurate and
up-to-date local-clock value and ledger state with respect to the existing honest
parties in the system, i.e., being within a Δ interval of their clock values and
obtaining the same common-prefix, chain-quality and chain-growth guarantees.
After this, newly joining parties can start contributing to the security of the
system.

The bootstrapping procedure for newcomers is quite involved due to a com-
bination of obstacles: First, the joining party needs to obtain a blockchain that
shares some common prefix with the common prefix established by the exist-
ing parties. This is achieved by having the joining party listen to the network
for some rounds, and picking the “best” chain C it sees in the following sense:
when compared with any other seen valid chain C′, C contains more blocks in an

10 We note that the leader election is per logical slot and honest parties will all pass
through the same logical not at the same time, but at related times.

414 C. Badertscher et al.

interval of slots of size s starting from the forking point of C and C′. We prove
that based on the honest-majority assumption, such a densest chain must share
a large common prefix with the chains honest parties currently hold. However,
C could still be adversarially crafted and for example be much longer than what
honest parties agreed on by extending into the future, hence a reliable ledger
state cannot yet be computed. However, it will become possible once the joining
party succeeds in bootstrapping also an accurate time-stamp in the Δ interval
of honest participants’ timestamps, which is the second obstacle to overcome.
After the party is guaranteed to be hooked to a large prefix of the honest par-
ties’ common-prefix, it begins recording all synchronization beacons it receives
on the network for a long enough period of time, a parameter of the system.
The length of the waiting time is set in order to ensure that, after the newly
joining party started listening to the network, the parties at least once seeded
the slot-leadership lottery with a fresh nonce that was unpredictable at the time
of joining the system. After an additional waiting time, the agreed-upon set
of beacons (with proofs referring to the fresh lottery) will be part of the com-
mon prefix and eventually be part of what is known to the joining party. We
prove that based on this agreement on beacons found in the blockchain, the
clock-adjustments procedure by the current participants in the system can be
retraced and will yield a clock adjustment to the newly joining party’s local
clock that will directly push it into the interval of existing honest participants’
local clock. At this point, the party runs the normal chain-selection mechanism,
essentially cutting off blocks in its logical future and obtains a reliable ledger
state as well.

4.1 The Protocol with Static Ad Hoc Participation

Towards a modular description of our protocol, let us first focus on how the
protocol would work in the static ad hoc setting, where all parties are alert. In
particular, we discuss what such alert parties need to do in order to accommo-
date synchronization of joining and rejoining parties. The description of what
joining and rejoining parties do—i.e., how they use the help of alert parties to
get in-sync—is the included in Sect. 4.2. Every alert party runs the following
round instructions. For the pseudo-code of all involved tasks (and more detailed
explanations), we refer to the full version of this work [4].

1. Fetch information from the network over which transactions, beacons, and
blocks are sent and further update the current time-stamp and epoch number.
A party locally advances its time-stamp whenever it realizes that a new (local)
round has started by a call to GImperfLClock.

2. Record the arrival times of the synchronization beacons produced by all pro-
tocol participants. This is discussed in more detail below.

3. Process the received chains: as some chains might have been created by par-
ties whose time-stamps are ahead of local time, the future chains are stored in
a specific buffer for later usage (and importantly, not discarded). Among the

Dynamic Ad Hoc Clock Synchronization 415

remaining chains, the protocol will decide whether any chain is more prefer-
able than the local chain using a chain-selection rule inspired by Ouroboros
Genesis [3] which we thus refer to as the Genesis rule. An important property
of the Genesis rule is that chain selection is secure without requiring a mov-
ing checkpoint: roughly speaking, a chain C1 is preferred over C2 if they have
a large common history, except possibly the last k blocks (where k is some
parameter) and C1 is longer. If however, they fork even before, chain C1 is
preferred if it is block density is higher compared to C2 in a carefully selected
interval of size s slots after the forking point.

4. Run the main staking procedure to evaluate slot leadership, and potentially
create and emit a new block or synchronization beacon. Before the main
staking procedure is executed, the local state is updated including the current
stake distribution. We provide more details on some of these aspects below.

5. If the end of the round coincides with the end of an epoch, the synchronization
procedure (denoted SyncProc) is executed.

While the above only gives a broad overview of different tasks per round, we
cover some of those in more detail below.

Stake Distribution and Leader Election. A party P is an eligible slot-leader
for a particular slot sl in an epoch ep if its VRF-output (for an input dependent
on sl) is smaller than a threshold value T ep

P . The threshold is derived from the
(local) stake distribution Sep assigned to an ep which in turn is defined by the
(local) blockchain Cloc, that is we assume an abstract mapping that assigns to
a party (identified by an encoding of its public keys) its stake derived as a
function of the transactions in Cloc, the genesis block, and the epoch the party is
currently in. As described above, the stake distribution is only updated once a
party enters a new epoch, i.e., once localTime mod R = 1. Say a party enters in
epoch ep+1, then the distribution is defined by the state contained in the block
sequence up to and including the last block in epoch ep−1 (or the genesis block
for the first two epochs). Furthermore, the epoch randomness for epoch ep + 1
(to refresh the lottery) is extracted from the previous randomness and the seeds
defined by the first two-thirds of the blocks in epoch ep (for the first epoch, the
randomness is defined by the genesis block). Both of these updates thus derived
based on the (supposedly) established common prefix among participants.

The relative stake of P in the stake distribution Sep is denoted as αep
p ∈ [0, 1].

The mapping φf (·) is defined as

φf (α) � 1 − (1 − f)α (1)

and is parametrized by a quantity f ∈ (0, 1] called the active slots coefficient
[12].

Finally, the threshold T
ep
p is determined as

T ep
p = 2�VRFφf (αep

p), (2)

where �VRF denotes the output length of the VRF (in bits).

416 C. Badertscher et al.

Note that by (2), a party with relative stake α ∈ (0, 1] becomes a slot leader
in a particular slot with probability φf (α), independently of all other parties.
We clearly have φf (1) = f , hence f is the probability that a hypothetical party
controlling all 100% of the stake would be elected leader for a particular slot.
Furthermore, the function φ has an important property called “independent
aggregation” [12]:

1 − φ

(
∑

i

αi

)

=
∏

i

(1 − φ(αi)) . (3)

In particular, when leadership is determined according to φf , the probability of a
stakeholder becoming a slot leader in a particular slot is independent of whether
this stakeholder acts as a single party in the protocol, or splits its stake among
several “virtual” parties.

The technical code of the staking procedure is not given here due to space con-
straints. Briefly, it starts by two calls evaluating the VRF in two different points,
using constants NONCE and TEST to provide domain separation, and receiving
(yρ, πρ) and (y, π), respectively. The value y is used to evaluate slot leadership:
if y < T

ep
p then the party is a slot leader and continues by processing its current

transaction buffer to form a new block B. Aside of this application data, each
block contains control information. The information includes the proof of leader-
ship (y, π), additional VRF-output (yρ, πρ) that influences the epoch-randomness
for the next epoch, and the block signature σ produced using FKES. Finally, an
updated blockchain Cloc containing the new block B is multicast over the net-
work (note that in practice, the protocol would only diffuse the new block B).
A slot leader embeds a sequence of valid transactions into a block. As in [3], we
abstract block formation and transaction validity into predicates blockifyOC and
ValidTxOC. The function blockifyOC takes as input a plain sequence of transac-
tions and outputs a block, whereas ValidTxOC takes as input a single transaction
and the ledger state. A transaction is said to be valid with respect to the ledger
state if and only if it fulfills the predicate. The transaction validity predicate
ValidTxOC induces a natural transaction validity on blockchain-states that we
succinctly denote by the predicate isvalidstate(st) that decides that a state is
valid if it can be constructed sequentially by adding one transaction at a time
and viewing the already added transactions as part of the state.

Eligibility to Emit Synchronization Beacons. An alert party emits so-
called synchronization beacons in the first R/6 slots of an epoch ep. To be
admissible to emit a beacon, the party evaluates the VRF again as for slot-
leadership. To obtain an independent evaluation, we use a new constant called
SYNC to obtain domain separation. If the returned value y ≤ T ep,bc

P , where in
this case we can simply use a linear scaling of the domain, i.e., we define the
threshold

T ep,bc
p := 2�VRF · αep

p , (4)

then the party will create a block header and send it on the broadcast network.

Embedding Synchronization Beacons in Blocks. Part of the staking proce-
dure is to embed synchronization beacons in the first 2R/3 slots of an epoch ep.

Dynamic Ad Hoc Clock Synchronization 417

A synchronization beacon is embedded if the creator of the beacon was elected
to emit a beacon (according to the current stake distribution in epoch ep) in the
first R/6 slots of this epoch, and if no other beacon in the chain already specifies
the same slot and party identifiers. Like this, an alert party is assured to pro-
duce a valid chain. Validity is decided according to a predicate whose description
appears as part of the protocol’s code in the full version [4].

Details of the Synchronization Process. At the end of an epoch, parties run
the synchronization procedure based on the beacons recorded in this epoch. The
entire synchronization can be logically partitioned into seven logical building
blocks. The first five items are definitions and necessary preparatory tasks in
order to have the synchronization procedure perform its tasks at the end of an
epoch.

1.) Synchronization slots: Once a party’s local time-stamp reaches a defined syn-
chronization slot for the first time, it will adjust its local time-stamp before
moving to the next slot. The protocol will specify the necessary actions for
the cases where the local time-stamp is shifted forward or backward. We
define the synchronization slots to be the slots with numbers i · R for i ≥ 1
and hence they coincide with the end of an epoch. In a real-word execution
(which is a random experiment with discrete steps), we say that a party P
has passed its synchronization slot i · R (e.g., at step x of the experiment) if
it has already concluded its operations in a round where P.localTime = i ·R
holds for the first time.

2.) Synchronization Beacons: In addition to the other messages, the parties
in Chronos generate synchronization messages or “beacons” as follows:
an alert party P evaluates the VRF functionality by sending the input
(EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to FVRF in order to receive the
response (Evaluated, sid, y, π). The beacon message is then defined as

SB � (P.localTime,P, y, π),

where P.localTime is the current slot number party P reports and the triple
(P, yρ, π) is the usual attestation of slot leadership by party (or stakeholder)
P. In the following, let slotnum(·) be the function that returns the first
element (the reported slot number) of a beacon.

3.) Arrival times bookkeeping: Every party P maintains an array P.
TimestampSB(·) that assigns to each synchronization beacon SB a pair
(n,flag) ∈ N × {final, temp}. Assume a beacon SB with slotnum(SB) ∈
[j · R + 1, . . . , j · R + R/6], j ∈ N and party P′ is fetched by party P (for the
first time). If the pair (slotnum(SB),P′) is new, the recorded arrival time is
defined as follows:
• If P has already passed synchronization slot j · R but not yet passed

synchronization slot (j+1) ·R, TimestampSB(SB) is defined as the current
slot number and the value is considered final, i.e., TimestampSB(SB) �
(P.localTime, final).

418 C. Badertscher et al.

• If party P has not yet passed synchronization slot j · R (and thus the
beacon belongs logically to this party’s next epoch), TimestampSB(SB)
is defined as the current slot number P.localTime and the decision
is marked as temporary, i.e., TimestampSB(SB) � (P.localTime, temp).
This value will be adjusted once this party adjusts its local time-stamp
for the next epoch (when arriving at the next synchronization slot j · R).

If a party has already received a beacon for the same slot and creator, it will
set the arrival time equal to the first one received among those.

4.) The synchronization interval : the interval based on which the adjustment of
the local time-stamp is computed. For a synchronization slot i · R (i ≥ 1),
its associated synchronization interval is the interval Isync(i) � [(i − 1) · R +
1, . . . (i − 1) · R + R/6] and hence encompasses the first sixth of the epoch
that is now ending.

5.) Emitting Beacons and inclusion into the chain: An alert party sends out a
synchronization beacon during a synchronization interval (i.e., if the current
local time reports a slot number that falls into a synchronization interval) if
and only if the VRF evaluation (EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to
FVRF returned (Evaluated, sid, y, π) with y < T

ep
P where T

ep,bc
P is the beacon

threshold in the current epoch as defined in Eq. 4. An alert slot leader P′ on
the other hand will include any valid synchronization beacon in its new block
as long as P′.localTime reports a slot number within the first two-thirds of
an epoch (and if the beacon has not been included yet). This process is part
of the main staking procedure and was describe in the previous paragraph.

The remaining three steps are implemented as part of the core synchronization
procedure SyncProc.

6.) Computing the adjustment evidence: The adjustment will be computed based
on evidence from the set SP

i that is defined with respect to the current
view of P in the execution: Let SP

i contain all beacons SB that report a
slot number slotnum(SB) ∈ [(i − 1) · R + 1, . . . , (i − 1) · R + R/6] (of the
synchronization interval) and which are included in a block B of P.Cloc that
reports a slot number slotnum(B) ≤ (i − 1) · R + 2R/3. Based on these
beacons and their recorded arrival times, the shift will be computed. More
precisely, if a beacon SB is recorded in P.Cloc, then the arrival time used
in the computation will be based on a the valid11 beacon SB′ that reports
the same slot number and party identity as SB and which has arrived first—
either as part of some blockchain block or as a standalone message. By our
choice of parameters, parties will have assigned an arrival value to any such
beacon with overwhelming probability.

7.) Adjusting the local clock: The shift shiftPi a party P computes to adjust its
clock in synchronization slot i · R is defined by

shiftPi � med
{
slotnum(SB) − Timestamp(SB) | SB ∈ SP

i

}
.

11 Evaluated using this epoch’s stake distribution.

Dynamic Ad Hoc Clock Synchronization 419

Recall that Timestamp(SB) is shorthand for the first element of the pair
TimestampSB(SB). As we will show, this adjustment ensures that the local
time stamps of alert parties report values in a sufficiently narrow inter-
val (depending on the network delay) to provide all protocol properties we
need. Furthermore, for each beacon SB with P.TimestampSB(SB) = (a, temp)
and slot number slotnum(SB) > i · R the arrival time is adjusted by
P.TimestampSB(SB) � (a + shiftPi , final). This ensures that eventually the
arrival times of all beacons that logically belong to epoch i + 1 will be
expressed in terms of the newly adjusted local time-stamp computed at syn-
chronization slot i ·R. At this point, the party is further capable of excluding
invalid beacons.

8.) At the beginning of the next round the party will report a local time equal
to i · R + shift + 1. If shift ≥ 0, the party proceeds by emulating its actions
for shift rounds. If shift < 0, the party remains a silent observer (recording
arrival times for example) until its local time has advanced to slot i · R + 1
and resumes normally at that round. Note that in this time, an alert party
will not revert any previously reported ledger state with overwhelming prob-
ability. The reason is that the party will stick to Cloc during this waiting time
and only replace it by longer chains that do not fork by more than k blocks
from Cloc which is a direct consequence of the security guarantees implied
by the Genesis chain-selection rule. (An alert party reverting a previously
reported state implies a common-prefix violation.)

4.2 (Re)Joining Procedures

De-Registration and Re-Joining. If a party is alert, it can lose in several ways
its status of being alert. If a party loses access to the random oracle only, then it
will still be able to observe the protocol execution and record message arrivals.
The main issue is that such a party—when it is fully operational again—will have
to retrace what it missed. This is slightly complicated due to the adjustments to
the local clock in the course of the execution. However, the party has all reliable
information to actually retrace the actions as if it was present as a passive
observer all the time. This special procedure SimulateClockAdjustments is given
in the full version of this work [4] and it is invoked as part of the main round
tasks before performing the actions as an alert party (again).

On the other hand, if any alert party loses access to GImperfLClock or FN-MC

by the respective de-registration queries, or if it joins anew only late in the
execution, then it considers itself as de-synchronized. Parties are aware of their
synchronization status, and any party that is de-synchronized will have to run
through the main joining procedure that we call JoinProc in order to become
alert. Due to lack of space, we cannot provide the code of this procedure and
refer to [4]. Below we give an overview of this procedure.

Description of JoinProc. Introducing synchronization slots into the protocol
serves the main purpose of enabling a novel joining procedure that newly joining

420 C. Badertscher et al.

(or resynchronizing) parties can execute to bootstrap an actual reliable time-
stamp and ledger state, where a reliable time-stamp is one that lies in the interval
of time stamps reported by alert parties. The joining procedure is divided into
several phases where the party gathers reliable information, identifies a good
synchronization interval and finally applies the shift(s) that will allow it to report
a local time-stamp that is sufficiently close to the alert parties in the system. The
procedure refers to a couple of parameters. Their concrete values is not necessary
to understand its dynamics.
Phase A: A joining party with all resources available invokes the main round
procedure triggering the join procedure that first resets the local variables.
Phase B: In the second activation upon a maintain-ledger command, the party
will jump to phase B and continue to do so until and including round toff . During
this interval, the party applies the Genesis chain selection rule maxvalid-bg to
filter its incoming chains. It will apply the chain selection rule to all valid chains
it receives. Since the party does not have reliable time, it will consider also future
chains as valid, as long as they satisfy all remaining validity predicates. As we
prove in the security analysis, at the end of this phase, the party adopts chain
C that stands in a particularly useful relation to any chain C′ an alert party
adopts. Roughly, the relation says that the point at which the two chains fork is
about k blocks behind the tip of C′. This follows from the Genesis chain selection
rule and the fact that C′ is more dense than C shortly after the fork. However,
this also means that P could still hold an extremely long chain served by the
adversary (namely, an adversarial extension of an alert party’s chain at some
point less than k blocks behind the tip into the future). On the positive side,
the stake distribution used for general validation of blocks and beacons logically
associated to the time before the fork are reliable.
Phase C: If a party arrives at local time toff + 1, it starts with phase C, the
gathering phase. The party still filters chains as before, but now processes the
arrival times of beacons from the network (or indirectly via the received chains).
This phase is parameterized by two quantities: the sum of tminSync and tstable

define the total duration of this round, where intuitively, tminSync guarantees
that enough arrival times are recorded to compute a reliable estimate of the
time-shift, and tstable ensures that the blockchain reaches agreement on which
(valid) synchronization beacons to use. After this phase, a party can reliably
judge valid arrival times.
Phase D: The party collects the valid evidence and computes the adjustment
based on the first synchronization interval I = [(i − 1)R, . . . , (i − 1)R + R/6]
identified on the blockchain that reports beacons that arrived sufficiently later
than the start of phase C (parameter tpre). Party P computes the adjustment
value that alert parties would do at synchronization slot i · R based on the
recorded beacon arrival times associated with interval I. The party P is done if
its adjusted time does not indicate that it should have passed another synchro-
nization slot (and otherwise, the above is repeated with adjusted arrival times
of already recorded beacons).

Dynamic Ad Hoc Clock Synchronization 421

5 Security Analysis

We begin by setting down notation and defining the conventions we adopt for
measuring stake ratios. The following definition is adapted from [3]; the crucial
difference is that it refers to the types of parties with respect to a logical slot as
defined in Sect. 3.1.

Definition 1 (Classes of parties and their relative stake). Let P[sl]
denote the set of all parties in a logical slot sl and let Ptype[sl], for any type of
party described in Fig. 1 (e.g. alert, active), denote the set of all parties of the
respective type in the slot sl. For a set of parties Ptype[sl], let S−(Ptype[sl]) ∈
[0, 1] (resp. S+(Ptype[sl]) ∈ [0, 1]) denote the minimum (resp., maximum), taken
over the views of all alert parties, of the total relative stake of all the parties in
Ptype[sl] in the stake distribution used for sampling the slot leaders for slot sl.

Looking ahead, we remark that even though we give the general definition
above, our protocol will have the desirable property that for all party types and
all time slots, S−(Ptype[sl]) = S+(Ptype[sl]) with overwhelming probability, as
all the alert parties will agree on the distribution used for sampling slot leaders
with overwhelming probability.

Definition 2 (Alert ratio, participating ratio). For any logical slot sl
during the execution, we let: (i.) the alert stake ratio be the fraction of stake
S−(Palert[sl])/S+(Pactive[sl]); and (ii.) the (potentially) participating stake
ratio be S−(Pactive[sl]).

It is instructive to see that the potentially participating stake ratio allows us to
infer the ratio of stake belonging to parties that cannot participate in slot sl.
Intuitively speaking, we will prove the security of our protocol under the assump-
tion that both stake ratios from Definition 2 are sufficiently lower-bounded (the
former one by 1/2+ε, the latter one by a constant). We remark that it is easy to
verify that in particular, such an assumption also implies the existence of alert
parties at any point in the execution.

5.1 Blockchain Security Properties

We now define the standard security properties of blockchain protocols: common
prefix, chain growth and chain quality. These will later be useful as an interme-
diate step in establishing the UC-security guarantees.

Similarly to [3], we only grant these guarantees to alert parties. More impor-
tantly for this work, the definitions from [3] need to be adjusted to take into
account the fact that the local clocks of the parties are not synchronized. To this
end, we choose now to define the properties below with respect to the logical
timestamps (i.e., slot numbers) contained in blocks, and the local clocks of the
parties. Namely, we refer to logical slots below, and a party is considered to be
on the onset of slot sl (or enter slot sl) if her local clock just switched to sl.

422 C. Badertscher et al.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed
by two alert parties at the onset of the slots sl1 < sl2 are such that C�k

1 � C2,
where C�k

1 denotes the chain obtained by removing the last k blocks from C1,
and � denotes the prefix relation.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain C
possessed by an alert party at the onset of a slot sl. Let sl1 and sl2 be two
previous slots for which sl1 + s ≤ sl2 ≤ sl, so sl2 is at least s slots ahead
of sl1. Then |C[sl1 : sl2]| ≥ τ · s. We call τ the speed coefficient.

Chain Quality (CQ); with parameters μ ∈ (0, 1] and k ∈ N. Consider any
portion of length at least k of the chain possessed by an alert party at the
onset of a slot; the ratio of blocks originating from alert parties is at least μ.
We call μ the chain quality coefficient.

Existential Chain Quality (∃CQ); with parameter s ∈ N. Consider a chain
C possessed by an alert party at the onset of a slot sl. Let sl1 and sl2 be
two previous slots for which sl1 + s ≤ sl2 ≤ sl. Then C[sl1 : sl2] contains
at least one alertly generated block (i.e., block generated by an alert party).

The first 3 properties are standard, the last one is a slight variant of chain
quality fitting better our analysis. For brevity we sometimes write CP(k) (resp.,
CG(τ, s), CQ(μ, k), ∃CQ(s)) to refer to these properties.

While these definitions based on the logical time allow us to talk about
the logical structure of the forks created by the parties and reuse parts of the
technical machinery given in [3,12,23] to analyze it, providing only guarantees
based on the logical time would be unsatisfactory, as the parties running Chronos
desire persistence and liveness with respect to a more “real-time” notion (that
we define in a moment). We will address this translation from logical-time to
real-time guarantees later in Sect. 5.2.

For many of the security arguments it will be convenient to define a notion
of nominal time; even though inaccessible to alert parties, we will use it in the
proofs to express time-relevant properties of an execution.

Definition 3 (Nominal Time). Given an execution of Chronos, any prefix
of the execution can be mapped deterministically to an integer t, which we call
nominal time, as follows: parsing the prefix from genesis and keeping track of
the honest party set registered with the imperfect clock functionality (bootstrapped
with the set of inaugural alert parties), t is the number of times the functionality
internally switches all flags dP,P ∈ P from 1 to 0 until the final step of the
execution prefix. (In case no honest party exists in the execution t is undefined).

Nominal time is a technical definition useful for the analysis. It naturally coin-
cides with the idea of defining a baseline that runs at a certain speed, but where
parties have some varying (but bounded) lead ahead of the baseline. For example,
if a set of alert parties execute Chronos from the beginning, then nominal time
lower bounds the number of rounds completed by any of them. Furthermore, by
the bounded (absolute) drift enforced by GΔclock

ImperfLClock, the number of locally
completed rounds by these alert parties can each be decomposed to be t + δ
(nominal) rounds, where t is the baseline, and δ is bounded by Δclock.

Dynamic Ad Hoc Clock Synchronization 423

We next state a definition that will help us quantify how much parties’ (local)
timestamps deviate from the nominal time and from each other.

Definition 4. (Clock skew and SkewΔ). Given an honest party P, we define
its skew in slot sl (denoted SkewP[sl]) as the difference between sl and the
nominal time t when P enters slot sl. For any Δ ≥ 0 and a slot sl, we denote
by SkewΔ[sl] the predicate that for all parties that are synchronized in slot sl,
their skew in this slot differs by at most Δ; formally

SkewΔ[sl] :⇔
(
∀P1,P2 ∈ Palert[sl] :

∣
∣
∣SkewP1 [sl] − SkewP2 [sl]

∣
∣
∣ ≤ Δ

)
.

Note that in the static-registration setting (where parties do not join or leave),
all honest parties are synchronized (and hence are considered for SkewΔ[sl]).

Definition 5 (Joining party). We say that an honest party P is joining the
protocol execution at time tjoin > 0 if tjoin is the nominal time at the point of the
execution where P becomes operational, time-aware and online for the first time.

5.2 Proving the Blockchain Properties

We phrase here the asymptotic version of our main result, its concrete-security
variant is proven in the full version [4].

Theorem 2. Consider an execution of the protocol Chronos in the dynamic-
availability setting and let κ denote a security parameter. Let f be the active-slot
coefficient and R the epoch length, let Δ be the upper bound on the sum of the
maximum network delay and maximum local clock drifts, and let Δ̃ � 2Δ. Let
α, β ∈ [0, 1] denote a lower bound on the alert and participating stake ratios
throughout the whole execution, respectively. Assume that for some ε ∈ (0, 1) we
have

α · (1 − f) ˜Δ+1 ≥ (1 + ε)/2 ,

and that the maxvalid-bg parameters, k and s, satisfy

k > 192Δ̃/(εβ) and R/6 ≥ s = k/(4f) ≥ 48Δ̃/(εβf).

Then, all blockchain properties CP(k′),CG(τ, s′), CQ(μ, k′), ∃CQ(s′) (for con-
crete coefficients τ and μ defined in the proof) hold except with negligible proba-
bility in κ whenever s′ and k′ as well as the chain-selection parameters k and s
of maxvalid-bg are functions in ω(log κ).

Note that the bound on s implies that the epoch length R has a lower bound
in ω(log κ) in such an asymptotic treatment.
Outline of the Proof. We only give a brief overview of the proof and refer
to the full version of this work [4]. To handle the proof complexity, the proof is
divided into a sequence of logical steps:

424 C. Badertscher et al.

1. A proof that the blockchain properties CP, CG, CQ, and ∃CQ hold in a static
registration setting (where parties do not join or leave) and for a single epoch.
In view of an inductive proof, this serves as the security base case.

2. Once we can rely on the blockchain properties, we can as a second step analyze
the synchronization procedure and prove that no matter what the adversary
does, the parties will always stay close together when transitioning from one
epoch, say i where the security properties hold, to the next and that the
clock-adjustments are very small. Two properties are important:
SyncProc maintains SkewΔ. If (some parametrizations of) CG and CP are

not violated up to the end of epoch i, then SkewΔ is satisfied in the first
slot of epoch i + 1.

Bounded shift. If the lower bound on α, some parametrization of ∃CQ, and
SkewΔ are not violated up to epoch i, then the value shift by which an
alert party updates its local clock in SyncProc right before epoch i + 1
satisfies |shift| ≤ 2Δ.

Here we only briefly comment on the proof of the first property, which relies on
two intermediate claims: The first is that all alert parties use the same set of
synchronization beacons in their execution of the procedure SyncProc between
epochs ep and ep + 1; the second is that for any fixed beacon SB ∈ SP1

j =
SP2

j (in the jth synchronization slot), the quantity μ(Pi, SB) � SkewPi [sl] +
slotnum(SB) − Pi.Timestamp(SB) will differ by at most Δ between any two
alert parties P1 and P2.

3. By an inductive argument, if we start with a bounded-skew initial epoch
(which is guaranteed by the weak start agreement), the above two steps allow
us to conclude the security of the (multi-epoch) blockchain protocol, but
without parties joining.

4. A party joining the network acts like an observer of the network (i.e., it does
not interfere with the protocol) and becomes synchronized after extracting
enough information from the network, at which point it can start to be an
active protocol participant. This step of the security proof can hence be con-
ducted based on the previous analysis. Our analysis shows two properties of
the joining process of Pjoin that hold as long as the established properties CP,
CG, ∃CQ remain satisfied throughout the joining process:
(a) After Phase B, Pjoin will be holding a chain Cjoin that satisfies C�k

alert � Cjoin

with respect to any Calert held by an alert party at least Δ time steps ago.
(b) In Phase D, Pjoin correctly identifies an epoch i∗ for which it has collected

all the beacons that alert parties had used in their execution of SyncProc
after epoch i∗, and based on these beacons mimics the synchronization
procedure so that starting with epoch i∗ +1, Pjoin does not violate SkewΔ

as it becomes alert.
5. At this point, we are ready to derive the CP, CG, CQ, and ∃CQ guarantees

for the entire protocol in a fully dynamic world, where parties join any time,
might be temporarily stalled, and disappear unannounced. This can be argued
based on a case distinction on different party types (cf. Sect. 3.1) and quantify
their impact on the security guarantees established above. This concludes the
proof.

Dynamic Ad Hoc Clock Synchronization 425

From Logical-Time to Real-Time Guarantees for Chain Growth. Recall
that eventually, we are interested in a ledger that provides consistency and live-
ness and they typically follow black-box from the blockchain properties above.
However, since in our protocol, parties emulate a global time themselves, we
must make related logical time advancement with the nominal time, which is
especially important for liveness. Since parties adjust their timestamps at the
boundary of every epoch, an external observer that takes nominal time as the
baseline, would conclude that parties are slightly off. To quantify the general
relationship, we introduce a concrete discount factor τTG. We state the infor-
mal lemma here, which is proven with a concrete expression for τTG in the full
version [4].

Lemma 1 (Nominal vs. logical time, informal). Consider an execution
of the full protocol Chronos in the dynamic-availability setting, let P be a party
that is synchronized between (and including) slots sl and sl′, let t and t′ be
the nominal times when P enters slot sl and sl′ for the first time, respectively.
Denote by δsl and δt the respective differences |sl′−sl| and |t′−t|. Then, under
the same assumptions as before, we have δsl ≥ τTG · δt for large enough δt.

It is important to point out that the τTG is close to 1 for typical parameter
choices and that the lower bound on δt does depend on Δ and not on the security
parameter. We are ready to state chain-growth with respect to nominal time.
Again, the formal statement with concrete bounds is given in the full version [4].

Corollary 1 (Nominal time CG, informal). Consider the event that the
execution of Chronos under the assumptions as above does not violate property
CG with parameters τ ∈ (0, 1], s ∈ N. Let τCG,glob � τ · τTG. Consider a chain C
possessed by an alert party at a point in the execution where the party is at an
onset of a (local) round and where the nominal time is t. Let further t1, t2, and
δt be such that t1 + δt ≤ t2 ≤ t. Let sl1 and sl2 be the last slot numbers that P
reported in the execution when nominal time was t1 (resp. t2) Then it must hold
that |C[sl1 : sl2]| ≥ τCG,glob · δt whenever δt is sufficiently large.

6 The Synchronizer

We now explore the properties of the time-stamps that are recorded by our
blockchain protocol and how to export a clock based on them. Recall that in
the view of each party P, blocks feature extended local timestamps timeP, equal
to the pair timeP = (e, t), where t is the time-value, and e is the number of
non-monotone adjustments to t, i.e., the number of epoch switches that P has
observed (and hence the synchronization procedure was executed). The follow-
ing lemma (proven in the full version [4]) captures the properties of these times-
tamps.

Lemma 2 (Quality of Exported Time-Stamps). Consider an execution
of the full protocol Chronos in the dynamic-availability setting, let P be a party

426 C. Badertscher et al.

and let the sequence (e1, t1), . . . , (en, tn) denote the updates that P makes to its
exported time-stamp between two arbitrary instances in the execution where in
between P is synchronized throughout. Then the timestamps satisfy the following
properties:

1. No reported time stamp ti is further than 2Δ slots apart from any other alert
party’s time value and no other alert party reports an e-value that differs by
more than 1. If another alert party reports the same e-value, then the exported
times are at most Δ apart.

2. Any subsequence of the same epoch (e, tj), . . . , (e, tk), k > j has monotone
increasing time-stamps with increments of 1 happening whenever P locally
completes a round in the execution.

3. The only non-monotone behavior of the exported time can occur at most once
per epoch, namely at the epoch boundary (e, t) → (e+1, t′) with t mod R = 0,
and it holds t′ ≤ t + Δ and t′ ≥ t − 2Δ.

Having established this final piece, we can couple it with the statements above,
notably with Theorem 2—which guarantees that we have achieved a blockchain
protocol in the dynamic availability setting with all required properties—which
overall assures that we have a protocol that outputs reliable, accurate two-
dimensional time-stamps in the dynamic availability setting: any party and any
observer is able to compute a reliable time-stamp, no matter when he or she
joined or started observing the system.

Proof of Theorem 1 [The synchronizer]. Theorem 1 follows as a simple corol-
lary of the above. In fact, we just need to map the above 2D time-stamps to
the natural numbers: an alert party, obtaining sequences of (2-dimensional)
time-stamps from the underlying protocol over the course of an execution,
say E = (e1, t1), . . . , (en, tn), simply maps this to an integer by the map
τi ← maxj∈[i]{tj}. This integer time-stamp satisfies the abstract properties 1.
to 4. demanded by Theorem 1. Clearly, the outputs are natural numbers, then
by property 1. of Lemma 2 we obtain the bound between time-stamps of 2Δ, and
by combining properties 2. and 3. of Lemma2, the third and fourth properties
of Theorem 1 follow, i.e., the final sequence of time values are non-decreasing
and guaranteed to increase after a constant number of local rounds have elapsed
(since the underlying 2D timestamps never roll back more than 2Δ in the second
coordinate).

In the full version of this paper [4], we additionally give a UC proof of the
protocol that follows in a straightforward way from the above properties. The
protocol UC-realizes a functionality that combines a ledger with a clock. We
analyze in a modular way further settings, including optimistic network models
with known expectation and variance of delay to show that it is possible to
approximate real-time progression extremely accurately.

References

1. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,

Dynamic Ad Hoc Clock Synchronization 427

vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 19

2. Attiya, H., Herzberg, A., Rajsbaum, S.: Optimal clock synchronization under dif-
ferent delay assumptions (preliminary version). In: Anderson, J., Toueg, S. (eds.)
12th ACM PODC, pp. 109–120. ACM, August 1993

3. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press,
October 2018

4. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros chronos:
permissionless clock synchronization via proof-of-stake. Cryptology ePrint Archive,
Report 2019/838 (2019). https://eprint.iacr.org/2019/838

5. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

6. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 20

7. Bracha, G.: An asynchronous [(n−1)/3]-resilient consensus protocol. In: Probert,
R.L., Lynch, N.A., Santoro, N. (eds.) 3rd ACM PODC, pp. 154–162. ACM, August
1984

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

9. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

10. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

11. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32101-7 2

12. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

13. Dolev, D., Halpern, J.Y., Strong, H.R.: On the possibility and impossibility of
achieving clock synchronization. In: 16th ACM STOC, pp. 504–511. ACM Press
(1984)

14. Dolev, S., Welch, J.L.: Wait-free clock synchronization (extended abstract). In:
Anderson, J., Toueg, S. (eds.) 12th ACM PODC, pp. 97–108. ACM, August 1993

15. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults (abstract). In: Anderson, J.H. (ed.) 14th ACM PODC, p. 256.
ACM, August 1995

16. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th ACM STOC, pp. 554–563. ACM Press, May 1994

https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
https://eprint.iacr.org/2019/838
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3

428 C. Badertscher et al.

17. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

18. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. Cryptology ePrint Archive, Report 2016/1048 (2016). http://
eprint.iacr.org/2016/1048

19. Halpern, J.Y., Simons, B.H., Strong, R., Dolev, D.: Fault-tolerant clock synchro-
nization. In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.) 3rd ACM PODC, pp.
89–102. ACM, August 1984

20. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: ISTCS 1997, pp. 174–184. IEEE Computer Society (1997)

21. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure pro-
tocols in the timing model. J. Cryptol. 20(4), 431–492 (2007)

22. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

23. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

24. Lamport, L., Melliar-Smith, P.M.: Byzantine clock synchronization. In: Probert,
R.L., Lynch, N.A., Santoro, N. (eds.) 3rd ACM PODC, pp. 68–74. ACM, August
1984

25. Lenzen, C., Locher, T., Wattenhofer, R.: Clock synchronization with bounded
global and local skew. In: 49th FOCS, pp. 509–518. IEEE Computer Society Press,
October 2008

26. Malhotra, A., Van Gundy, M., Varia, M., Kennedy, H., Gardner, J., Goldberg, S.:
The security of NTP’s datagram protocol. In: Kiayias, A. (ed.) FC 2017. LNCS,
vol. 10322, pp. 405–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70972-7 23

27. Mills, D.L.: Computer Network Time Synchronization: The Network Time Protocol
on Earth and in Space, 2nd edn. CRC Press, Boca Raton (2010)

28. Ostrovsky, R., Patt-Shamir, B.: Optimal and efficient clock synchronization under
drifting clocks. In: Coan, B.A., Welch, J.L. (eds.) 18th ACM PODC, pp. 3–12.
ACM, May 1999

29. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

30. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 30th IEEE Computer Secu-
rity Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, 21–25 August
2017, pp. 115–129. IEEE Computer Society (2017)

31. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

32. Simons, B.: An overview of clock synchronization. In: Simons, B., Spector, A. (eds.)
Fault-Tolerant Distributed Computing. LNCS, vol. 448, pp. 84–96. Springer, New
York (1990). https://doi.org/10.1007/BFb0042327

33. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. In: Malcolm, M.A.,
Strong, H.R. (eds.) 4th ACM PODC, pp. 71–86. ACM, August 1985

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2016/1048
http://eprint.iacr.org/2016/1048
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-70972-7_23
https://doi.org/10.1007/978-3-319-70972-7_23
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/BFb0042327

TARDIS: A Foundation of Time-Lock
Puzzles in UC

Carsten Baum1(B), Bernardo David2, Rafael Dowsley3, Jesper Buus Nielsen1,
and Sabine Oechsner1

1 Aarhus University, Aarhus, Denmark
cbaum@cs.au.dk

2 IT University of Copenhagen, Copenhagen, Denmark
3 Monash University, Melbourne, Australia

Abstract. Time-based primitives like time-lock puzzles (TLP) are find-
ing widespread use in practical protocols, partially due to the surge of
interest in the blockchain space where TLPs and related primitives are
perceived to solve many problems. Unfortunately, the security claims
are often shaky or plainly wrong since these primitives are used under
composition. One reason is that TLPs are inherently not UC secure and
time is tricky to model and use in the UC model. On the other hand, just
specifying standalone notions of the intended task, left alone correctly
using standalone notions like non-malleable TLPs only, might be hard
or impossible for the given task. And even when possible a standalone
secure primitive is harder to apply securely in practice afterwards as its
behavior under composition is unclear. The ideal solution would be a
model of TLPs in the UC framework to allow simple modular proofs. In
this paper we provide a foundation for proving composable security of
practical protocols using time-lock puzzles and related timed primitives
in the UC model. We construct UC-secure TLPs based on random ora-
cles and show that using random oracles is necessary. In order to prove
security, we provide a simple and abstract way to reason about time in
UC protocols. Finally, we demonstrate the usefulness of this foundation
by constructing applications that are interesting in their own right, such
as UC-secure two-party computation with output-independent abort.

C. Baum—This work was funded by the European Research Council (ERC) under
the European Unions’ Horizon 2020 research and innovation programme under grant
agreement No. 669255 (MPCPRO).
B. David—This work was supported by the Concordium Foundation, by Protocol Labs
grant S2LEDGE and by the Independent Research Fund Denmark with grants number
9040-00399B (TrA2C) and number 9131-00075B (PUMA).
R. Dowsley—This work was partially done while Rafael Dowsley was with Bar-Ilan
University and was supported by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office.
J. B. Nielsen—Partially funded by The Concordium Foundation; The Danish Indepen-
dent Research Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM).
S. Oechsner—Supported by the Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE).

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 429–459, 2021.
https://doi.org/10.1007/978-3-030-77883-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_15

430 C. Baum et al.

1 Introduction

The Universal Composability (UC) framework [18] is widely used for formally
analyzing cryptographic protocols as it provides strong security guarantees that
allow UC-secure protocols to be arbitrarily composed. This is a very useful prop-
erty and enables the modular design of cryptographic protocols. However, the
original UC framework is inherently asynchronous and does not support the
notion of time. Katz et al. [35] introduced a clock functionality in order to define
universally composable synchronous computation. Their clock functionality cap-
tures the essence of synchronized wall clocks that are available to all parties. This
notion is particularly useful in reasoning about synchronous protocols in the UC
framework, since the honest parties can use the clock to achieve synchronization.

However, many cryptographic protocols do not depend on concrete time pro-
vided by a wall clock, but just on the relative order of events, such as the arrival
of messages or the completion of some computation. In particular, protocols
in a semi-synchronous communication model (e.g. [5,24]) rely on the fact that
there exists a finite (but unknown) upper bound for the delay in communication
channels, without requiring that events (e.g. the arrival of a message) occur at
a specific wall clock time (or even within a concrete delay) as long as they occur
in a certain order. In this case, using a clock can make the design and security
analysis of such protocols unnecessarily complicated.

Another important challenge lies in modeling sequential computation and
computational delays in the UC framework. Since the environment may operate
in many parallel sessions and activate parties arbitrarily, it obtains an unfair
computational advantage in relation to the parties. For example, even if its
computational power is constrained within a session, the environment can use
multiple sessions to solve faster than a regular party a computational problem
assumed to require at least a certain amount of computational steps (and thus
time). This precludes the UC modeling and construction of primitives based on
sequential computation and computational delays, such as time-lock puzzles [44].

1.1 Our Contributions

In this work, we introduce a new abstract notion of time in the UC framework
that allows us to reason about communication channels with delays as well as
delays induced by sequential computation. We demonstrate the power of our
approach by introducing the first definition and construction of composable time-
lock puzzles (TLPs) without resorting to clocks, which we use to obtain the
first two-party computation protocol with output-independent abort. Finally,
we establish that a programmable random oracle is necessary for obtaining UC-
secure TLPs. Our contributions are summarized below:

– Abstract Time in UC: we put forth a novel abstract notion of time for the
UC framework capturing relative event ordering without a clock.

– Impossibility of UC-Secure TLPs without Programmable Ran-
dom Oracles: we prove that programmable random oracles are necessary

TARDIS: A Foundation of Time-Lock Puzzles in UC 431

for constructing UC-secure TLPs, yielding a new separation between pro-
grammable and non-programmable random oracles.

– First Composable Treatment of Time-Lock Puzzles (TLPs): we intro-
duce the first composable definition and construction of time-lock puzzles.
Our construction uses a RO, as it must. However, it has a flavor of “graceful
degradation”: if the hash function is not modeled as a random oracle, our
TLPs are still non-malleable, which is in some sense optimal without a RO.

– First Two-Party Computation Protocol with Output Independent
Abort: we use TLPs to construct a UC-secure two-party computation pro-
tocol where the adversary cannot see the output before deciding to abort.

The incompatibility of time-lock puzzles and UC security is easy to explain.
All that is needed is to recall that UC has straight-line simulation. Let P =
TLP(x, T, t) be a timed commitment to x which can be opened in time T and
is hiding for time t < T . Consider simultaneous message exchange. In the UC
functionality Alice inputs a, Bob inputs b and only then are both given (a, b).
Here is a toy protocol which does not work for many reasons. Alice and Bob
each publish PA = TLP(a, T, t) and PB = TLP(b, T, t) and then open the puzzles
or brute force them. Assume that Alice is supposed to send her puzzle first,
and Bob is corrupted. In the security proof, the UC simulator needs to extract
Bob’s input b in order to query the ideal functionality and learn a. However, the
simulator needs to learn PB for that. PB though is only sent by Bob after seeing
PA. As a result, the simulator has to produce PA without knowing a. Rewinding
is not allowed, so the simulator cannot go back and replace the puzzle PA.
The simulator had to put some a′ inside PA and is now committed to it. If a
is random then with noticeable probability a′ �= a. In UC these problems are
typically handled by having trapdoors which allow to do equivocation. Had PA

been a UC commitment we could have changed a′ to a before opening. But PA is
a TLP, so there is no way to cheat. The UC environment can simply take PA and
brute-force it open. So the a′ is irrevocably committed to by PA. A shorter way
to explain the problem is as follows. In a UC simulation the simulator must for
all puzzles it sends agree on what is inside at the point in time where they were
sent. And the UC experiment will keep running as long as the environment wants,
so it can allow itself time enough to open all puzzles eventually. Hence puzzles
will not afford us the power of a UC commitment which can be equivocated.
Unfortunately, equivocation is exactly the power needed for simulating time-
lock puzzles in the UC framework for most interesting applications.

Although the above argument only shows that one particular protocol does
not work, we show that the problem cannot be circumvented by any protocol
even allowing setup like a CRS. Assuming a random oracle, however, one can
cheat and use the random oracle to get equivocation. Note the if we model H as
a random oracle and send TLP(r),H(r) ⊕ m in a simulation, we can reprogram
H at r as long as TLP(r) is hiding r such that H was not queried at r. This is
of course an unsatisfactory solution, but some comfort can be gained from the
fact that we provably cannot do without such a cheat if we want UC security.

432 C. Baum et al.

There is a clear need for a UC model of time-lock puzzles and other time-
based primitives, since those are finding widespread use in complex scenarios like
the widely distributed and concurrent blockchain setting, where there is no way
around having composable security for the protocol building blocks. Many of the
proposed uses are often relatively simple a la the above simultaneous message
exchange example. However, the security statements are often provably wrong,
as TLPs for instance cannot yield composable simultaneous message exchange.
Reverting to non-composable game-based definitions of the intended tasks and
using non-malleable TLPs for the standard model is in principle a solution, but
the proofs are typically complicated and the protocols inefficient. We therefore
introduce a foundation for practical TLP-based protocols using a UC model of
TLPs that allows simple analysis of practical protocols. This model is motivated
in the same vein as the random oracle model, which was also proposed as a basis
for analysing efficient, practical protocols.

Clearly, when using TLPs we also need a notion of time. If a TLP that can
be broken in an hour is received through a network, it should not be trusted to
be hiding an hour later. That requires a notion of time (e.g. a clock). Often the
reliance on time in practical protocols using TLPs if fairly light. In line with the
motivation above, we therefore provide also a simple abstract notion of time.

The advantage of our new abstract notion of time for the UC framework
is twofold: 1. it captures delays without explicitly referring to wall clock time
and 2. it allows for modeling delays induced by sequential computation. This
notion makes it possible to state protocols and security proofs in terms of the
relative delays between events (e.g. the arrival of a message or completion of a
computation) and the existence of large enough delays that ensure that these
events occur in a certain order.

Building on this model, we introduce the first definition and construction of
UC-secure time-lock puzzles. Our construction is based on the classical time-lock
assumption of Rivest et al. [44] and uses a restricted programmable and observ-
able global random oracle, which we prove to be necessary. As an application of
our composable TLPs, we introduce the notion of two-party computation (2PC)
with output independent abort (OIA) along with the first OIA-2PC protocol.
This new security notion for secure computation guarantees that an adversary
who aborts the execution cannot learn any information about the output before
deciding to abort, only obtaining the output after this decision is made. Our
new definition improves on the standard security notion with abort (realized by
all known 2PC protocols), which allows for the adversary to decide whether to
force the honest parties to abort without obtaining the output after learning the
output itself. We argue that this new security notion is optimal, since fairness
(i.e. ensuring all parties obtain the output if the adversary does so) for 2PC
protocols is impossible [21].

1.2 Related Work

Composition Frameworks with Time and Fairness. Composition frameworks
for cryptographic protocols (e.g. UC [18], constructive cryptography [39], the

TARDIS: A Foundation of Time-Lock Puzzles in UC 433

reactive simulatability (RSIM) framework [42]) provide strong security guaran-
tees for protocols under concurrent composition. In all mentioned frameworks,
communication is through inherently asynchronous channels. Several works have
therefore studied general composition guarantees with synchronous communica-
tion by introducing a shared source of time or restricting adversarial scheduling.
Modeling network timing assumptions such as bounded message delay and clock
drift and the resulting concurrent composition guarantees for specific tasks was
studied for zero-knowledge [25,29] and MPC [33]. In the context of composition
frameworks, Backes et al. [4] model traffic-related timing attacks in GNUC [31]
by allowing the adversary to measure the local time at which a message arrives.
In this setting, each party has a local execution time, and the EXEC function of
GNUC maps the local times into a global time. Backes et al. [3] studied fairness
in the RSIM framework and achieve a composable notion of fairness by restrict-
ing the adversary model to fair schedulers who deliver any message after at most
a polynomial number of steps.

The work that is most closely related to ours is that of Kiayias et al. [36],
which points out limitations of the local clock functionality of Katz et al. [35]
and adapts it to the Global UC (GUC) framework [19] to provide all parties with
access to a global clock functionality for the purpose of synchronization. Their
model requires all parties executing a (semi-)synchronous protocol to keep track
of current global clock time and to actively query the global clock functionality in
order to advance of time. In particular, even if their model is used to define semi-
synchronous communication, it implies that all parties are kept synchronized and
may learn how much time has elapsed since their last activation (i.e. by obtaining
the current time from the global clock), which is a rather strong synchrony
assumption. However, many protocols cast in this model do not crucially rely on
obtaining concrete time stamps or determining concrete delays between party
activations, as long as messages are guaranteed to be delivered within certain
delays and in a certain order (e.g. as in [5]). This is exactly the kind of guarantees
that our model captures without explicitly exposing time keeping to parties
or requiring them to keep track of concrete time sources. By doing that, our
model allows us to analyse many protocols cast in their model while significantly
relaxing synchrony assumptions. Moreover, our model can be used to capture
delays induced by sequential computation, which is not captured by the global
clock model of Kiayias et al..

Another work technically related to ours is the notion of resource-fairness
for protocols in UC introduced by Garay et al. [28]. Resource fairness ensures
that honest parties who invest a certain amount of resources (e.g. computational
time) can always recover from an abort and obtain the protocol output in case
the adversary causes an abort in such a way that it learns the output. In order to
realize this notion, Garay et al. show a generic compiler based on a “time-line”
construction and a secure computation functionality. Essentially, this time-line
encodes a number of computational states into a programmable common refer-
ence, which parties use in order to commit to messages that can be recovered by
another party who invests enough computational steps. This idea differs from
our work in that it limits TLP delay a priori, since the maximum number of

434 C. Baum et al.

computational states used to ensure delay is fixed by the CRS. This crucial dif-
ference also forces the resource-fairness framework to modify the UC framework
in such a way that environments, adversaries and simulators must have an a pri-
ori bounded running time. On the other hand, our modelling of computational
time and TLPs does not make modifications or restrictions to the UC environ-
ment, as well as allowing us to define TLPs in a more natural way where there’s
no a priori bound to the TLP delay. In particular, this means that TLPs can be
parameterized with any arbitrary delay and that honest parties are always able
to solve a TLP, which also allows us to realize our notion of output independent
abort in such a way that honest parties can always either retrieve the output
of the computation or determine that the adversary has aborted (by solving the
adversary’s TLPs).

Another relation to [28] is that both papers circumvent the problem that
TLPs are not UC simulatable. We do it using the simple hack of using a random
oracle, to get a simple model to work with. In [28] it is done by letting the
simulator depend on the running time of the environment.

As an example of how to exploit this consider a party that wants to commit to
s. It secret shares it into (s1, . . . , sk) and makes public P1 = TLP(s1), . . . , Pk =
TLP(sk). The hardness of Pi is set to 2i and k is the security parameter. So
Pk cannot be brute-forced open. For each si it also gives a UC commitment
to si and a ZK proof that the commitment is to the value in the TLP. To
do fair message exchange both Alice and Bob do the above with s = a and
s = b. Then the parties open the commitments (not the TLPs) to the shares in
the order sk, sk−1, . . ., taking turns to reveal a share. If a party stops opening
commitments, then use the TLPs to learn the remaining shares, if the hardness
of the remaining TLPs is feasible. Now in the simulation, if the running time of
the environment is upper bounded to some polynomial t, then there exists i0 < k
such that 2i0 > t. Now the simulator can put dummy shares s′

i in Pj for j ≥ i.
When it learns the message a of Alice it can then adjust the UC commitments to
be a secret sharing of a. It does not have to adjust the TLPs as the environment
will not have time to open them. The fact that there is an “end of time” in the
simulation allows to simulate some TLPs. On the other hand, the fact that there
is an “end of time” in the simulation makes composition cumbersome. Indeed [28]
gets a complicated notion of security where a protocol to be called secure must
be secure in two ways. It must be secure in a so-called resource game, and it
must also be so-called full simulation secure. This requires [28] to develop a new
variant of the UC framework. This variant does not imply security in the normal
UC model which does not have an “end of time”.

It also seems hard to prove security of most practical protocols in [28]. The
reason is that it seems hard to exploit the simulator’s knowledge of the running
time of the environment (which can be any polynomial) without using TLPs
of super-polynomial running time, as in the above examples with TLPs of dou-
bling hardness. This seems to make it hard to prove security of many simple and
intuitively secure scheme like the first protocol above with two TLPs for simul-
taneous message exchange. Either these two TLPs have a hardness set such that
real-world parties can brute-force them (and then so can the environment) or it

TARDIS: A Foundation of Time-Lock Puzzles in UC 435

is set so hard that the environment cannot brute-force them, then neither can
the parties. In the first case the protocols falls prey to our impossibility result.
In the later case the TLPs seems useless.

We find the techniques and models in our paper and [28] complementary. Our
model is built on the normal (G)UC model without modifying it and is simple
to specify and use. But needs a random oracle. The paper [28] shows that even
without random oracles not everything is lost. It is possible to get models and
some constructions with UC like security.

Time-Lock Puzzles and Computational Delay. The original construction of time-
lock puzzles was proposed by Rivest, Shamir and Wagner [44]. Boneh and Naor
[15] introduced the notion of timed commitments. An alternative construction
of time-lock puzzles was presented by Bitansky et al. [13]. Recently, the related
notion of verifiable delay functions has been investigated [14,43,48]. These con-
structions are closely related in that they rely on sequential computational tasks
that force parties to spend a certain amount of time before they are able to
obtain an output. However, none of these works have considered composability
issues for such time-based primitives. In particular, the issues of malleability
for these time-based primitives and the relationship between computational and
communication delay are notably ignored in previous works. The lack of compos-
abillity guarantees for time-lock puzzles is a significant shortcoming, since these
primitives are mostly used as building blocks for more complex protocols and
current constructions do not ensure that their security guarantees are retained
when composed with other primitives to obtain such protocols. Our composable
treatment of time-lock puzzles addresses theses issues by introducing construc-
tions that can be arbitrarily composed along with a framework for analysing
complex protocols whose security relies on the relative delays in computation
and communication.

Concurrently to us, Katz et al. [34] as well as Ephraim et al. [26] have con-
structed Non-Malleable Timed Commitments. Among others, [23] have shown
that UC (non-timed) Commitments imply Non-Malleable Commitments. A sim-
ilar argument can be made for timed commitments as well. In that sense, our
construction of UC-secure TLPs implies [26,34]. At the same time, our work
crucially relies on a programmable Random Oracle (and indeed shows that it
is necessary to achieve UC security). Neither [34] nor [26] require such strong
assumptions and can be seen as realising the strongest notion of non-malleability
achievable without using a (programmable) random oracle or similar assump-
tion: the beautiful construction of [34] does not require any Random Oracle-type
assumption and builds upon RSW-TLPs in the Algebraic Group Model, while
[26] use an observable Random Oracle but their construction can be realized
from a generic TLP. At the same time, [26] also constructs publicly verifiable
TLPs departing from generic strong trapdoor VDFs. We’d like to stress that
our construction of a UC-secure TLP is publicly verifiable, although this is only
shown in recent follow-up work [7]. We further note that the work of [26] shows
a bound on the composability of non-malleable TLPs, but their bound does not
apply to our setting as they assume a distinguisher with an arbitrary runtime,
while the UC environment is computationally restricted in our setting.

436 C. Baum et al.

Aborts and Fairness in Secure Computation. An MPC protocol is said to be fair
if a party can obtain the output if and only if all other parties also obtain the
output. It is a well-known fact that fair MPC in the standard communication
model is impossible with a dishonest majority [21]. Given the impossibility to
achieve fairness, techniques for identifying misbehaving parties responsible for
causing an abort have been investigated [9,10,32]. In the last few years a line
of work developed which imposes financial penalties on parties who are identi-
fied as misbehaving by using cryptocurrencies and smart contracts, thus giving
financial incentives for rational parties to behave in a fair way. Protocols have
been designed to punish misbehavior at any point of the protocol execution (Fair
Computation with Penalties) [2,36,38] or to only punish participants that learn
the output but prevent others from doing the same (Fair Output Delivery with
Penalties) [1,6,12,37]. However, these protocols allow the adversary to make a
decision on whether to abort or not after seeing the output that will be obtained
by the honest parties in case the execution proceeds.

The recent work of Couteau et al. [22] studies the problem of obtaining
partially-fair exchange from time-lock puzzles, but in much weaker security and
adversarial models. In particular, their work does not consider composability
issues and is limited to the specific problem of fair exchange rather than the
general problem of secure computation considered in our results.

Random Oracle Separation Results. Our impossibility result provides yet another
separation between the programmable and non-programmable random oracle
models, complementing the few previously known separations [11,27,40,47].

1.3 Our Techniques

In the remainder of this section, we briefly outline the new techniques behind
our results and their implications.

Abstract Time: Our goal is to express different timing assumptions (possibly
related) within the GUC framework in such a way that protocols are oblivious
to them. We do so by providing the adversary with a way of advancing time
in the form of ticks. A tick represents a discrete unit of time. Time can only
be advanced, and moreover only one unit at a time. In contrast to Katz et al.
[35,36], however, these ticks and thus the passing of time are not supposed to
be directly visible to the protocol. Thus instead of a (global) clock that parties
can ask for the current time, we add a ticking interface to ideal functionali-
ties. This way, timing-related observable behavior becomes an assumption of the
underlying functionalities, e.g. of a computational problem or a channel. Par-
ties may now observe events triggered by elapsed time, but not the time itself.
Ticked functionalities are free to interpret ticks in any way they like; this way we
can synchronize and relate ticks representing elapsed time in different “units”
like passed time or computation steps. The technical challenge is to ensure in a
composable way that all honest parties have a chance at observing all relevant
timing-related events. Katz et al. solved this issue inside the clock by keeping

TARDIS: A Foundation of Time-Lock Puzzles in UC 437

track of which parties have been activated in the current time period (and thus
asked for the time) and refusing to advance time if necessary. We enforce the
requirement that all honest parties must be activated between ticks by defining a
global ticker functionality that makes sure this constraint is obeyed. In contrast
to the global clock, our global ticker does not provide any information about
the time elapsed between queries by functionalities, only informing functionali-
ties that a new tick has occurred. From the point of view of honest parties, our
global ticker is even more restricted, since it does not inform parties whether a
tick has occurred or not. To further control the observable side effects of ticks,
we restrict protocols and ideal functionalities to interact in the “pull model”
known from Constructive Cryptography, precluding functionalities from implic-
itly providing communication channels between parties and instead requiring
parties to actively query functionalities in order to obtain new messages. Apart
from presenting a clear abstraction of time, this notion explicitly exposes issues
that must be taken in consideration when implementing protocols that realize
our functionalities, i.e. the concrete delays in real world communication channels
and computation. In particular, while the theoretical protocol description and
security analysis can be carried in terms of such abstract delays, our techniques
clarify the relationship between concrete time-based parameters (e.g. timeouts
vs. network delays) that must be respected in protocol implementations. We will
go into this in more detail in Sect. 2.

Composable Treatment of Time-Lock Puzzles: To illustrate the potential uses
of our framework, we present the first definition and construction of UC-secure
Time-Lock Puzzles (TLP). We depart from the classical construction by Rivest
et al. [44] and provide the first UC abstraction of the Time-Lock Assumption,
which is modeled in a “generic group model” style, hiding the group description
from the environment and limiting its access to group operations. A party acting
as the “owner” of an instance of the TLP functionality can generate a puzzle
containing a certain message that should be revealed after a certain number of
computational steps. The functionality allows the parties to make progress on
the solution of the puzzle every time that it is ticked. Once a party solves a
puzzle, it can check that a certain message was contained in that puzzle. The
ticks given to this functionality come externally from the adversary and we
require in the framework that the parties get activated often enough. We show
that our UC abstraction of the Time-Lock Assumption allows us to implement
UC-secure TLPs in the restricted programmable and observable global random
oracle model of Camenisch et al. [16] (which turns out to be necessary for UC-
realizing TLPs). We introduce our notion of TLP in the UC model with a global
ticker in Sect. 4 and our construction of a protocol realizing this notion in Sect. 5.

Two-Party Computation with Output Independent Abort: To further showcase
our framework we construct the first protocol for secure two-party computation
(2PC) with output-independent abort, i.e., the adversary must decide whether
to abort or not before seeing the output. In order to do so, we build on techniques
from [6]: there, the authors combine an MPC protocol with linearly secret-shared

438 C. Baum et al.

outputs and an additively homomorphic commitment by having each party com-
mit to its share of the output and then reconstruct the output inside the commit-
ments. In [6], the output of the secure computation is obtained by opening the
final commitments resulting from the reconstruction procedure, which allows the
adversary to learn the output before the honest parties do. He can then refuse
to open its commitment, causing the protocol to abort, based on this informa-
tion. Similarly to [6], we combine a 2PC protocol with secret-shared outputs and
an additively homomorphic commitment, but we define and construct commit-
ments with a new delayed opening interface. When a delayed opening happens,
the receiver is notified after a communication delay but only receives the revealed
message after an opening delay. Hence, we can obtain output independent abort
by delayed opening the final commitments obtained after reconstructing the
output and considering that a party aborts if it does not execute a delayed
opening of their commitments before the other parties delayed openings reveal
their messages. Finally, we show how to obtain UC-secure additively homomor-
phic commitments with delayed opening by modifying the scheme of Cascudo
et al. [20] with the help of the delayed secure message transmission and TLP
functionalities. We present these results in Sect. 6.

Impossibility Result. Finally, we prove that a non-programmable random oracle
is not sufficient for obtaining UC-secure fair-coin flip, secure 2PC with output-
independent abort or TLP. Therefore a programmable random oracle is necessary
to implement these primitives, yielding a separation between the programmable
and non-programmable random oracle models. This also shows that our TLP
construction which requires this strong assumption is in that sense “optimal”.
We present this impossibility result in Sect. 7.

2 UC with Relative Time

This section describes our notion of abstract time. In order to obtain universal
composability, we model our ideas on top of the GUC framework [19]. The goal is
to capture time in such a way that parties are oblivious to it and can only observe
the progression of time indirectly through events like the arrival of messages or
the completion of a computation. At the same time, the passing of abstract time
is completely under adversarial control. And most importantly, the notion is
meant to be composable.

Timing Assumptions. Our first observation is that timing assumptions are
assumptions about physical systems and should thus be captured at the level of
ideal functionalities. Such a timed functionality has a notion of passing time and
can adapt its behavior as time progresses. This will allow us to reduce properties
of a protocol that require concrete timing assumptions. Note that the time is only
a proof construct, it is not visible to the actual protocol, much like physical time.
Most importantly, having a notion of passing time should not imply synchrony
like in the UC clock models of [35,36].

TARDIS: A Foundation of Time-Lock Puzzles in UC 439

Functionality Gticker

Initialize a set of registered parties P = ∅, a set of registered functionalities F = ∅,
a set of activated parties LP = ∅, and a set of functionalities LF = ∅ that have
been informed about the current tick. Gticker communicates with an adversary S .

Party registration: Upon receiving (register, pid) from honest party Pi with
pid pid, add pid to P and send (registered) to Pi.

Functionality registration: Upon receiving (register) from F , add F to F and
send (registered) to F .

Tick: Upon receiving (tick) from the environment, do the following:
1. If P = LP , reset LP = ∅ and LF = ∅, and send (ticked) to S .
2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from F ∈ F , do the following:
– If F /∈ LF , add F to LF and send (ticked) to F.
– If F ∈ LF , send (notticked) to F.

Record party activation: Upon receiving (activated) from party Pi with pid
pid ∈ P , add pid to LP and send (recorded) to Pi.

Fig. 1. Global ticker functionality Gticker.

Global Ticker Functionality Gticker (Fig. 1). This idea leads to natural ques-
tions. Where does this “time” come from? And if there are multiple timed func-
tionalities, how is it coordinated between them to support the kind of reduc-
tions we want? The first question can be answered by the well-known concept
of adversarial “ticks” that model discrete units of passing time. To answer the
second question, we propose a global ticker functionality Gticker that receives ticks
from the environment and makes them available for ticked functionalities upon
request. Parties themselves have no access to the ticker.

Note that Gticker captures an assumption on the physical world and can there-
fore not be instantiated. It is only a tool for proofs. Similar to the synchronous
setting with a global clock where the next logical round can only start after all
parties have been activated, the global ticker implicitly enforces that all honest
parties can finish their computations for the current tick before advancing to
the next tick. This ensures all honest parties are activated and given a chance to
perform computation without the need to modify the (G)UC framework. Notice
that, while the assumption of a global time is a poor model of reality, we do not
envision our model being used for protocols running in relativistic conditions.

While Gticker allows the ideal adversary to take actions as soon as every tick
happens, it gives no information about passing time to the honest parties. The
only interaction that honest parties have with Gticker is in confirming that they
have been activated. A new tick only happens once all honest parties confirm
they have been activated after the last tick. This mechanism ensures that the
environment or the adversary do not get an unfair advantage in accessing timed
functionalities while preventing the honest parties from also doing so (since in
this case the honest parties will not confirm they have been activated and time
will not progress).

440 C. Baum et al.

Only other functionalities (and the ideal adversary) can detect elapsed time
by querying Gticker and receiving a notification in case a new tick happened. In
our model, functionalities take actions such as delivering a message or the output
of a computation once a new tick happens. Hence, honest parties only perceive
time through messages received by other functionalities that have their behavior
conditioned on the progression of time. In particular, if one wants to instantiate
synchronized clocks from Gticker, it would be possible to instantiate a version
of the UC clocks of [35,36] where the clock only progresses when a new tick is
issued by Gticker. With such a construction, parties can access the number of ticks
issued up to a certain point of the execution by querying the clock functionality
(but not Gticker). Note that in this setting, honest parties need to query the clock
functionality regularly to ensure that the clock can in turn query Gticker for ticks.

Conventions. For the sake of readability, we will omit the calls of ideal function-
alities to Gticker which would in the worst case have to occur at every activation.
Functionalities are instead assumed to query Gticker with (tick?) whenever they
are activated, and the behavior upon a positive answer is described as Tick in
the ideal functionality description.

3 Communication Delay

In the context of communication, we interpret abstract time ticks in order to
model message transmission delays. That is, we model the fact that message
transmission is never instantaneous and thus takes time. Moreover, we model
the different synchrony assumptions for communication channels in current lit-
erature. As a concrete example, we will study the secure message transmis-
sion functionality F�

smt. Any implementation of an interactive functionality must
strictly speaking be in a F�

smt (or similar) hybrid model and hence our model-
ing can be adapted to any interactive functionality. Notice that by interactive
functionalities we mean any functionality that transmits information between
parties, a task that is often done implicitly by UC ideal functionalities such as
those for secure computation.

3.1 Secure Message Transmission with Delays

Secure message transmission (SMT) is the problem of securely sending a single
message m from a sender PS to a receiver PR. Secure means that the power of
an eavesdropper intercepting the channel is restricted to learning some leakage
�(m) on the message and delaying the message delivery. The standard formu-
lation of F�

smt [17, 2019 version] assumes that message delivery can be delayed
infinitely by an adversary. Here, we want to add an upper bound on the message
delay. The exact constraints on this upper bound will determine whether a pro-
tocol operates over synchronous, semi-synchronous or asynchronous channels, as
discussed further in Sect. 3.2.

In order to capture elapsed time according to our model, we add a Tick
procedure to obtain a ticked ideal functionality. As mentioned in the previous

TARDIS: A Foundation of Time-Lock Puzzles in UC 441

Functionality FΔ
smt,delay

FΔ
smt,delay proceeds as follows, when parameterized by maximal delay Δ > 0, sender

PS, receiver PR and adversary S . Internal variable t is initally set to 0, and flags
msg, released, done to ⊥.

Send: Upon receiving an input (Send, sid, PR, m) from party PS, do:
– If msg = ⊥, record m, set msg = , and send (Sent, sid, PR (m)) to S .
– If msg = , send (None, sid) to PS.

Receive: Upon receiving (Rec, sid, R) from PR, do:
– If released = ⊥ and done = ⊥, then send (None, sid) to PR.
– If released = and done = ⊥, then msg = as well and there exists a

recorded message m. Set done = and send (Sent, sid, PS, PR, m) to PR.
– If done = , then send (done, sid) to PR.

Release message: Upon receiving an input (ok, sid, PS, PR) from S , do:
– If msg = ⊥, then send (None, sid, PS, PR) to S .
– If msg = and released = ⊥, then set released = .
– If released = , then send (None, sid, PS, PR) to S .

Tick:
– If msg = ⊥, then send (None, sid, PS, PR) to S .
– If msg = and released = ⊥, then set t = t + 1. If now t = Δ, set

released = . Then send (Ticked, sid) to S .
– If released = , then send (None, sid, PS, PR) to S .

Corrupt: Upon receiving (Corrupt, sid, P) from S where P ∈ {PS , PR}, do:
– If P = PS and msg = ⊥, send (None, sid, PS, PR) to S .
– If P = PS and msg = , then there exists a recorded message m. Send

(Sent, sid, m,PS , PR) to S .
– If P = PR and done = ⊥, send (None, sid, PS, PR) to S .
– If P = PR and done = , then there exists a recorded message m. Send

(Sent, sid, m,PS , PR) to S .

Fig. 2. Ticked ideal functionality FΔ
smt,delay for secure message transmission with maxi-

mal message delay Δ.

section, Tick is run upon each activation if Gticker indicates that a new tick hap-
pened. The functionality is parameterized by a maximal delay Δ > 0. Requiring
Δ > 0 models the fact that communication always takes time. After a message
is input to the functionality by the sender, each tick will increase a counter. The
message is released to the receiver after at most Δ ticks are counted or whenever
the ideal adversary instructs the functionality to release it.1 However, a tick can-
not directly trigger the activation of parties other than the adversary. Otherwise,
we would be exposing the elapsed time towards the parties and implicitly syn-
chronizing them. As a consequence, the functionality cannot send the message
to the receiver as in [17]. We solve this issue by requiring the receiver to actively

1 The delay model could generalized even further by introducing two delay parameters
Δmin and Δmax to model that communication must take time. In that case, messages
are only forwarded after Δmin ticks were received.

442 C. Baum et al.

query the functionality for newly released messages. Finally, the adversary can
adaptively request to corrupt a party P ∈ {PS ,PR}, in which case they will
learn the message if the corresponding party knows it already. Note that this
corruption behavior differs crucially from Canetti’s formulation: Since message
transmission is explicitly taking time, adaptive corruptions at runtime are actu-
ally meaningful now. In particular, it is no longer possible to first observe leakage
on a sent message to then corrupt the sender and change the message that was
sent. The resulting ideal functionality FΔ

smt,delay is shown in Fig. 2.
In principle, one can transform a UC-functionality also by adding a wrap-

per that buffers messages and handles ticks. Due to the differences in handling
adaptive corruption, we chose a standalone solution for this concrete example.

3.2 Modeling (Semi)-Synchronous Channels

Besides establishing that all messages must be delivered with a maximal delay Δ,
our formulation of FΔ

smt,delay does not specify if it operates as a synchronous, semi-
synchronous or asynchronous channel. This modeling choice is made so that this
single model can capture all of these assumptions on communication synchrony
by imposing constraints of the maximal delay Δ. We obtain a channel satisfying
each communication synchrony assumption by constraining Δ as follows:
– Synchronous Channel, finite and publicly known Δ: a synchronous

channel is modeled by setting a finite Δ > 0 and allowing all parties to learn
Δ, which makes it possible for parties to determine if a given message was
sent or not (since a message must be delivered within the known delay Δ).

– Semi-Synchronous Channel, finite but unknown Δ: a semi-
synchronous channel is modeled by setting a finite Δ > 0 that is only known
to the adversary, which ensures parties that all messages will be eventually
delivered but does not allow them to explicitly distinguish a delayed message
from a dropped message (since they do not know the maximal delay Δ after
which messages are guaranteed to be delivered).

– Asynchronous Channel, infinite Δ: an asynchronous channel is modeled
by setting Δ = ∞, which allows the adversary to never release messages sent
through FΔ

smt,delay (i.e. essentially dropping these messages).

In the synchronous and asynchronous cases, the constraints on Δ simply
model the usual notions of synchronous and asynchronous channels. In the semi-
synchronous case, the constraints limit the way a protocol can use Δ, since no
information about it is given to honest parties, precluding them from setting
other parameters of the protocol relatively to a previously known Δ. We remark
that Δ can potentially be chosen by the adversary itself or preset before exe-
cution starts, as long as the right constraints for the communication synchrony
assumption considered in the proof are obeyed (i.e. in the synchronous case the
adversarially chosen Δ must be made public to the honest parties and in the
semi-synchronous case Δ is not revealed to the honest parties). Notice that the
exact value of Δ does not affect the behavior of honest parties in our model
because the honest parties cannot perceive the advance of abstract time (i.e. the
honest parties cannot tell when a tick happened).

TARDIS: A Foundation of Time-Lock Puzzles in UC 443

4 Modeling Time-Lock Puzzles and Computational Delay

We will now introduce a concept for modeling sequential computation inside
the UC framework that does not suffer from degradation through composition
or adversarially chosen activation of parties. As an example, we will realize the
notion of a “time-lock puzzle” [44] in a composable fashion. In a time-lock puzzle
(TLP), the owner generates a computational puzzle that outputs a message to
the receiver when solved. The main property of the construction is that none of
the solvers can obtain the message from the puzzle substantially faster than any
other solvers, thus introducing problems that cannot be parallelized.

To the best of our knowledge, this has not been formalized in the UC frame-
work before and there are multiple pitfalls that one has to avoid when formalizing
TLPs. First, UC allows the environment to activate parties at its will through-
out the session and it might be that an honest party does not even get activated
before the puzzle was solved by the adversary. Even worse, such a modeling
might permit that the environment can solve the puzzle in another session, so
even by enforcing regular activation inside a session (as in the previous section)
or equal computational powers between the iTM modeling the parties as well as
the adversary one cannot achieve the aforementioned notion.

Ticked ideal functionalities help us to overcome both issues, and the resulting
ticked time lock puzzle ideal functionality Ftlp is shown in Fig. 3. It can easily
be seen that the functionality fulfills our definitions as outlined before. First,
any new instance of a puzzle can be tied to a specific party, namely the owner
Po, who can initialize the puzzle by providing a number of computation steps
Γ and a message m. The functionality outputs a puzzle puz = (st0, Γ, tag)
consisting of an initial state st0, the number of steps Γ needed for reaching
a final state and tag tag used to encode the message. After every tick, each
party can use a puzzle state sti to call the Solve interface, which will append
the next state sti+1 to a list of messages delivered to the party after the next
tick. By buffering messages containing the next states, we essentially limit all
parties’ (and the environment’s and adversary’s) ability to attempt performing
more than one solving step per tick and puzzle. Notice that any party who tries
to call Solve more than once per tick for a puzzle would have to guess the next
state sti+1 in order to perform the second call, which can only be done with
negligible probability. Once the final state stΓ is reached, parties can call the
Get Message interface in order to retrieve the message associated with the
puzzle by presenting the puzzle puz and the final state stΓ obtained through
successive calls to Solve. Finally, Ftlp will at the beginning of any activation
query Gticker if a clock-tick happened and execute the Tick procedure if it indeed
did. This will allow each party to obtain a new value, which may get it closer to
the solution of the puzzle.

Observe that this model does neither restrict the actual computational power
of the environment nor any other iTM. The environment can activate any party
arbitrarily often, as long as the honest parties also occasionally can have the
ability to access the restricted resource. Care must also be taken to allow limited
ideal adversarial control over the functionality’s answers to queries to Solve

444 C. Baum et al.

Functionality Ftlp

Ftlp is parameterized by a set of parties P , an owner Po ∈ P , a computational
security parameter τ , a state space ST and a tag space T AG. In addition to P the
functionality interacts with an adversary S . Ftlp contains initially empty lists steps
(honest puzzle states), omsg (output messages), in (inbox) and out (outbox).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ, m) from Po

where Γ ∈ N
+ and m ∈ {0, 1}τ , proceed as follows:

1. If Po is honest, sample tag
$← T AG and Γ + 1 random distinct states stj

$←
{0, 1}τ for j ∈ {0, . . . , Γ}. If Po is corrupted, let S provide values tag ∈ T AG
and Γ + 1 distinct values stj ∈ ST .

2. Append (st0, tag, stΓ , m) to omsg, append (stj , stj+1) to steps for j ∈
{0, . . . , Γ − 1}, and output (CreatedPuzzle, sid, puz = (st0, Γ, tag)) to Po and
S . Ftlp stops accepting messages of this form.

Solve: Upon receiving (Solve, sid, st) from party Pi ∈ P with st ∈ ST , if there
exists (st, st) ∈ steps, append (Pi, st, st) to in and ignore the next steps. If there
is no (st, st) ∈ steps, proceed as follows:

– If Po is honest, sample st
$← ST .

– If Po is corrupted, send (Solve, sid, st) to S and wait for answer
(Solve, sid, st, st).

Append (st, st) to steps and append (Pi, st, st) to in.
Get Message: Upon receiving (GetMsg, sid, puz, st) from party Pi ∈ P with st ∈
ST , parse puz = (st0, Γ, tag) and proceed as follows:
– If Po is honest and there is no (st0, tag, st, m) ∈ omsg, append (st0, tag, st, ⊥)

to omsg.
– If Po is corrupted and there exists no (st0, tag, st, m) ∈ omsg, send

(GetMsg, sid, puz, st) to S , wait for S to answer with (GetMsg, sid, puz, st, m)
and append (st0, tag, st, m) to omsg.

Get (st0, tag, st, m) from omsg and output (GetMsg, sid, st0, tag, st, m) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P , retrieve the set Li of all entries
(Pi, ·, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out ← in and set in = ∅.

Fig. 3. Functionality Ftlp for time-lock puzzles.

containing undefined states and queries to Get Message containing undefined
(puz, st) tuples. While the adversary is allowed to provide an arbitrary sequence
of states st0, . . . , stΓ and an arbitrary tag tag, the functionality enforces the fact
that, once defined, the same sequence of steps will be deterministically obtained
by all honest parties invoking Solve. However, queries to Ftlp involving undefined
states and puzzles are answered with messages provided by the ideal adversary.
This is necessary for capturing adversaries that construct different versions of a
puzzle departing from different initial states of the original sequence st0, . . . , stΓ

or from an arbitrary state that eventually leads to this sequence.

TARDIS: A Foundation of Time-Lock Puzzles in UC 445

5 Constructing Time-Lock Puzzles in UC

The functionality given in Fig. 3 from Sect. 4 describes how we ideally model a
TLP in our framework. We will now instantiate Ftlp departing from the well-
known construction by Rivest et al. [44]. In order to obtain a UC-secure protocol,
we will first model the assumption that underpins Rivest et al.’s construction
under our notion of sequential computation with ticks. Moreover, we will resort
to a global random oracle, which turns out to be necessary for UC-realizing Ftlp

as discussed later in this section.
The TLP construction of Rivest et al. [44] is based on the assumption that

it is hard to compute successive squarings of an element of (Z/NZ)× (i.e. the
group of primitive residues modulo N) with a large N in less time than it takes
to compute each of the squarings sequentially, unless the factorization of N is
known. In other words, for a random element g

$← (Z/NZ)× and a large N whose
factorization is unknown, this assumptions says that it is hard to compute g2

Γ

in less time than it takes to compute Γ sequential squarings g2, g2
2
, g2

3
, . . . , g2

Γ

.
On the other hand, if N = pq is generated following the key generation algorithm
of the RSA cryptosystem, one obtains a trapdoor (i.e. the order of (Z/NZ)×)
φ(N) = (p − 1)(q − 1) that allows for fast computation of g2

Γ

requiring two
exponentiations: first compute t = 2Γ mod φ(N) and then gt. Hence, a TLP
encoding a message m ∈ (Z/NZ)× with a number of steps Γ can be generated by

a party who knows N = pq, p, q by sampling a random g
$← (Z/NZ)×, computing

t = 2Γ mod φ(N), g2
Γ

= gt and mg2
Γ

, arriving at a puzzle puz = (g, Γ,mg2
Γ

).
From the assumption of Rivest et al., it follows that any party must compute
Γ sequential squarings departing from g in order to obtain g2

Γ

and compute
m = mg2

Γ

g−2Γ

.
In employing Rivest et al.’s time-lock assumption to UC-realize Ftlp we face

an important challenge: even if the environment is computationally constrained
in a session, it can use the representation of (Z/NZ)× (i.e. N) to compute all Γ

squarings needed to obtain g2
Γ

from g across multiple sessions. Hence, it would
be impossible to construct a simulator for a protocol realizing Ftlp, since the
environment would be able to immediately extract the message encoded in the
puzzle. Notice that an environment that can immediately solve a TLP makes it
impossible for the simulator to provide a TLP containing a random message and
later equivocate the opening of this TLP so that it yields an arbitrary message
obtained from Ftlp. In order to address this issue, we need to model this time-
lock assumption using our notion of sequential computation with ticks, which will
limit the environment’s power for computing squarings of elements of (Z/NZ)×.

5.1 Modeling Rivest et al.’s Time-Lock Assumption [44]

We describe in Fig. 4 an ideal functionality Frsw that captures the hardness
assumption used by Rivest et al. [44] to build a time-lock puzzle protocol. This
functionality essentially treats group (Z/NZ)× as in the generic group model [46]

446 C. Baum et al.

Functionality Frsw

Frsw is parameterized by a set of parties P , an owner Po ∈ P , an adversary S and a
computational security parameter τ and a parameter N ∈ N

+. Frsw contains a map
group which maps strings el ∈ {0, 1}τ to N as well as maps in and out associating
parties in P to a list of entries from ({0, 1}τ)2 or ({0, 1}τ)3. The functionality
maintains the group of primitive residues modulo N with order φ(N) denoted as
(Z/NZ)×.

Create Group: Upon receiving the first message (Create, sid) from Po:
1. If Po is corrupted then wait for message (Group, sid, N, φ(N)) from S with

N ∈ N
+, N < 2τ and store N, φ(N).

2. If Po is honest then sample two random distinct prime numbers p, q of length
approximately τ/2 bits according to the RSA key generation procedure. Set
N = pq and φ(N) = (p − 1)(q − 1).

3. Set td = φ(N) and output (Created, sid, td) to Po.
Random: Upon receiving (Rand, sid, td) from Pi ∈ P , if td = td, send

(Rand, sid, Invalid) to Pi. Otherwise, sample el
$← {0, 1}τ and g

$← (Z/NZ)×, add
(el, g) to group and output (Rand, sid, el) to Pi.
GetElement: Upon receiving (GetElement, sid, td , g) from Pi ∈ P , if g /∈
(Z/NZ)× or td = td, send (GetElement, sid, td , q, Invalid) to Pi. Otherwise, if there
exists an entry (el, g) in group then retrieve el, else sample a random string el and
add (el, g) to group. Output (GetElement, sid, td , g, el) to Pi.
Power: Upon receiving (Pow, sid, td , el, x) from Pi ∈ P with x ∈ Z, if td = td

or there is no a such that (el, a) ∈ group, output (Pow, sid, td , el, x, Invalid) to Pi.
Otherwise, proceed:
1. Convert x ∈ Q into a representation x ∈ Zϕ(N). If no such x exists in Zϕ(N)

then output (Pow, sid, td , el, x, Invalid) to Pi.

2. Compute y ← ax mod N . If there is no (el , y) ∈ group then sample el
$←

{0, 1}τ randomly but different from all group entries and add (el , y) to group.
3. Output (Pow, sid, td, el, x, el) to Pi.

Multiply: Upon receiving (Mult, sid, el1, el2) from Pi ∈ P :
1. If there are no a, b s.t. (el1, a), (el2, b) ∈ group, then output (Invalid, sid) to Pi.

2. Compute c ← ab mod N . If there is no (el3, c) ∈ group then sample el3
$←

{0, 1}τ randomly but different from all group entries and add (el3, c) to group.
3. Add (Pi, (el1, el2, el3)) to in and return (Mult, sid, el1, el2) to Pi.

Invert: Upon receiving (Inv, sid, el) from some party Pi ∈ P :
1. If there is no a such that (el, a) ∈ group then output (Invalid, sid) to Pi.

2. Compute y ← a−1 mod N . If there is no el s.t. (el , y) ∈ group, sample el
$←

{0, 1}τ randomly but different from all group entries and add (el , y) to group.
3. Add (Pi, (el, el)) to in and return (Inv, sid, el) to Pi.

Output: Upon receiving (Output, sid) by Pi ∈ P , retrieve the set Li of all entries
(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out ← in and in = ∅.

Fig. 4. Functionality Frsw capturing the time lock assumption of [44].

TARDIS: A Foundation of Time-Lock Puzzles in UC 447

and only gives handles to the group elements to all parties. In order to perform
operations, the parties then need to interact with the functionality. They can ask
for any number of operations to be performed between two computational ticks.
However, the outcome of the operation (i.e. the handle of the resulting group
element) will only be released after the next computational tick occurs. However,
a special owner party Po who initializes Frsw receives a trapdoor td that allows
it to perform arbitrary operations on group elements. Upon learning td any
party gains the power to perform arbitrary operations in Frsw but parties who
do not know td are restricted to sequential operations and have no information
about the group representation. In particular, in case of an honestly generated
group the order will remain completely hidden from the adversary. Finally, this
functionality is treated as a global functionality in order to make sure that a
simulator does not obtain an unreal advantage in computing the solution of a
TLP without waiting for enough ticks.

We remark that our modeling of this time-lock assumption is corroborated
by a recent result [45] showing that delay functions (such as TLPs) based on
cyclic groups that do not exploit any particular property of the underlying group
cannot be constructed if the order is known. It is clear that we cannot reveal
any information about the group structure to the environment, since it could use
this information across multiple sessions to solve TLPs quicker than the parties.
Hence, in order to make it possible to UC-realize Ftlp based on cyclic groups
(and in particular the time-lock assumption of Rivest et al. [44]), we must model
the underlying group in such a way that both its structure and its order are
hidden from the environment and the parties.

5.2 Realizing Ftlp in the Frsw,GrpoRO-Hybrid Model

Using Rivest et al.’s time-lock assumptions modeled in Frsw following our sequen-
tial computation with ticks framework, we can instantiate Rivest et al.’s original
time-lock puzzle without running into the issues described before. However, we
now face different issues: 1. because all parties are forced by Frsw to do sequen-
tial computation, a simulator for Rivest et al.’s construction would not be able
to extract m from mg2

Γ

; 2. because Frsw deterministically assigns handles to
each group element, a simulator would not be able to equivocate mg2

Γ

in such
a way that it yields an arbitrary message m′. In order to address these issues,
we must resort to a random oracle. More specifically, we work in the restricted
programmable and observable global random oracle model GrpoRO of [16] (see
the full version for the description). It turns out that a programmable random
oracle is indeed necessary for UC-realizing Ftlp, as it implies coin flipping with
output independent abort as shown in Sect. 6, which is impossible without a
programmable random oracle as shown in Sect. 7.

We present Protocol πtlp in Fig. 5. The main idea behind this protocol is to
follow Rivest et al.’s construction to compute puz = (el0, Γ, tag) while encoding
the initial random group element el0, the message m, the final group element
elΓ and the trapdoor td for Frsw in a tag generated with the help of the random

448 C. Baum et al.

Protocol πtlp

Protocol πtlp is parameterized by a security parameter τ , a state space ST = {0, 1}τ

and a tag space T AG = {0, 1}τ × {0, 1}τ . πtlp is executed by an owner Po and a
set of parties P interacting among themselves and with functionalities Frsw, GrpoRO1

(an instance of GrpoRO with domain {0, 1}2τ and output size {0, 1}2τ) and GrpoRO2

(an instance of GrpoRO with domain {0, 1}4τ and output size {0, 1}τ).

Create Puzzle: Upon receiving input (CreatePuzzle, sid, Γ, m) for m ∈ {0, 1}τ , Po

proceeds as follows:
1. Send (Create, sid) to Frsw obtaining (Created, sid, td).
2. Send (Rand, sid, td) to Frsw, obtaining (Rand, sid, el0).
3. Send (Pow, sid, td, el0, 2Γ) to Frsw, obtaining (Pow, sid, td, el0, 2Γ , elΓ).
4. Send (Hash-Query, (el0|elΓ)) to GrpoRO1, obtaining (Hash-Confirm, h1).
5. Send (Hash-Query, (h1|m|td)) to GrpoRO2, obtaining (Hash-Confirm, h2).
6. Compute tag1 = h1⊕(m|td) and tag2 = h2, set tag = (tag1, tag2) and output

(CreatedPuzzle, sid, puz = (el0, Γ, tag)) to Po. Send (activated) to Gticker.
Solve: Upon receiving input (Solve, sid, el), a party Pi ∈ P , send (Mult, sid, el, el)
to Frsw. If Pi obtains (Invalid, sid), it aborts. Send (activated) to Gticker.
Get Message: Upon receiving (GetMsg, puz, el) as input, a party Pi ∈ P parses
puz = (el0, Γ, tag), parses tag = (tag1, tag2) and proceeds as follows:
1. Send (Hash-Query, (el0|el)) to GrpoRO1, obtaining (Hash-Confirm, h1).
2. Compute (m|td) = tag1 ⊕ h1 and send (Hash-Query, (h1|m|td)) to GrpoRO2,

obtaining (Hash-Confirm, h2).
3. Send (Pow, sid, td, el0, 2Γ) to Frsw, obtaining (Pow, sid, td, el0, 2Γ , elΓ).
4. Send (IsProgrammed, (el0|el)) and (IsProgrammed, (h1|m|td)) to GrpoRO1

and GrpoRO2, obtaining (IsProgrammed, b1) and (IsProgrammed, b2), respec-
tively. Abort if b1 = 0 or b2 = 0,.

5. If tag2 = h2 and el = elΓ , output (GetMsg, sid, el0, tag, el, m). Otherwise,
output (GetMsg, sid, el0, tag, el, ⊥). Send (activated) to Gticker.

Output: Upon receiving (Output, sid) as input, a party Pi ∈ P sends (Output, sid)
to Frsw, receiving (Complete, sid, Li) and outputting it. Send (activated) to Gticker.

Fig. 5. Protocol πtlp realizing time-lock puzzle functionality Ftlp in the Frsw,GrpoRO-
hybrid model.

oracle. This tag is generated in such a way that a party who solves the puzzle
can retrieve td,m and test whether the tag is consistent with these values and
with initial and final group elements el0, elΓ . More specifically, the tag tag =
(tag2, tag2) is generated by computing h1 = H1(el0|elΓ), tag1 = h1 ⊕ (m|td)
and tag2 = H2(h1|m|td), where H1(·),H2(·) are random oracles. A party who
solves this puzzle obtaining elΓ by performing Γ sequential squarings of el0
can retrieve h1, obtain (m|td) and check that these values are consistent with
h2. Notice that this also allows a simulator who observes queries to random
oracles H1(·),H2(·) to extract all parameters of a puzzle (including the message)
and check whether it is a valid puzzle. A simulator who also has the additional
(and provably necessary) power of programming the output of these random

TARDIS: A Foundation of Time-Lock Puzzles in UC 449

oracles can deliver an arbitrary message m′ to a party who solves the puzzle.
We formally state the security of πtlp in Theorem 1. Due to space limitations,
the proof is contained in the full version.

Theorem 1. Protocol πtlp UC-realizes Ftlp in the GrpoRO,Frsw-hybrid model with
computational security against a static adversary. Formally, for every static
adversary A there exists a simulator S such that for any environment Z, the
environment cannot distinguish πtlp composed with GrpoRO,Frsw and A from S
composed with Ftlp.

6 Secure Two-Party Computation with Output-
Independent Abort

We show how to obtain 2PC with output independent abort from any 2PC with
secret-shared outputs using homomorphic commitments with delayed opening.

Functionalities. We will use the following functionalities, for which we present
new definitions which take time into consideration:

– The functionality FΔ,δ
2pcoia (Fig. 6) for 2PC with Output-Independent Abort.

– The functionality FΔ
2pcsso (Fig. 7 and Fig. 8) for secure 2PC with secret-shared

output which naturally arises from existing protocols.
– The functionality FΔ,δ

ahcom (see full version) for homomorphic commitments
with delayed non-interactive openings that naturally arises from homomor-
phic commitments that are combined with Ftlp.

An additional functionality Fct for coin-flipping with abort in the timed
message model appears in the full version [8]. All of the functionalities assume
that one of the parties is honest while the other is corrupted, but this is only
for simplicity of exposition of the functionalities. We write functionalities where
the parties have to send messages to trigger “regular behavior” instead of giving
full one-sided control to S as this appears more natural. Messages to dishonest
parties, on the other hand, go directly to S that can act upon them.

2PC with Output-Independent Abort. The functionality FΔ,δ
2pcoia as out-

lined in Fig. 6 shows how Output-Independent Abort for 2PC can be modeled.
Similar to other 2PC functionalities, it allows parties to fix the circuit C to be
computed, provide inputs, compute with these inputs and then obtain the result
of the computation. In comparison to regular UC functionalities, there are two
differences how this is handled:

– Parties using FΔ,δ
2pcoia do not receive messages from FΔ,δ

2pcoia in a push-model
where they get activated upon each new message, but instead they have to
pull messages from the functionality (which was also already the case for
FΔ

smt,delay). The reasoning behind this is that the functionality is ticked and it
might happen that multiple messages arrive to multiple receivers in the same

450 C. Baum et al.

Functionality FΔ,δ
2pcoia

The functionality runs with parties P1, P2 and an adversary S who may corrupt
either of the parties. It is parameterized by parameters Δ, δ ∈ N

+. The computed
circuit is defined over F2. The functionality internally has three lists M, Q, O and
flags output, noabort ← ⊥.

Init: On input (Init, sid, C) by Pi ∈ {P1, P2}:
1. Add (Δ,mid, sid, P3−i, (Init, C)) to Q for an unused mid.
2. If both parties sent (Init, sid, C) then store C locally.
3. Send (Init, sid, Pi, C,mid) to S .

Input: On first input (Input, sid, i, xi) by Pi for i ∈ {1, 2}:
1. Add (Δ,mid, sid, P3−i, (Input, Pi)) to Q for an unused mid.
2. Accept xi as input for Pi.
3. Send (Input, sid, Pi, xi,mid) to S if Pi is corrupted and (Input, sid, Pi,mid) oth-

erwise.
Computation: On first input (Compute, sid) by Pi ∈ {P1, P2} and if both x1, x2

were accepted:
1. Add (Δ,mid, sid, P3−i, (Compute)) to Q for an unused mid.
2. If both parties sent (Compute, sid) compute y = C(x1, x2) and store y.
3. Send (Compute, sid, Pi,mid) to S .

Output: On first input (Output, sid) by both parties and if y has been stored then
add (δ, sid, S , (Output, y)) to O.
Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1, P2} retrieve the set
L of all entries (P , sid, ·) in M, remove L from M and return (FetchMsg, sid, L) to
P .
Scheduling: On input from S :
– If S sent (Deliver, sid,mid) and then remove each (c,mid, sid, P , m) from Q and

add (P , sid, m) to M.
– If S sent (Abort, sid) and noabort = ⊥ then add (P1, sid,Abort), (P2, sid,Abort)

to M and ignore all further calls to the functionality except toFetch Message.
Tick:
1. For each query (0,mid, sid, P , m) ∈ Q:

(a) Remove (0,mid, sid, P , m) from Q.
(b) Add (P , sid, m) to M.

2. Replace each (c,mid, sid, P ,m) in Q with (c − 1,mid, sid, P , m).
3. For each entry (c, sid, S , y) ∈ O, proceed as follows:

– If c = 0, send (OutputOrAbort, sid) to S . Sample a fresh mid
and set noabort . If S responds with (Abort, sid) then add
(Δ,mid, sid, Pj , (Abort)) to Q for the honest party Pj , otherwise add
(Δ,mid, sid, Pj , (Output, y)). Finally send (Output, sid,mid, y) to S .

– If c > 0, replace (c, sid, S , y) with (c − 1, sid, S , y) in O.

Fig. 6. The FΔ,δ
2pcoia functionality for 2PC with output-independent abort.

“tick” round. But upon receiving a message from FΔ,δ
2pcoia, a party may not

return activation to it. This means that another “tick” may happen before
another message gets delivered, which would break the guaranteed delivery

TARDIS: A Foundation of Time-Lock Puzzles in UC 451

requirement. A pull-model is a solution as each party is guaranteed to get
activated between any two “ticks” in our model, allowing it to receive mes-
sages if it wants to. We will also use this modeling for the other functionalities
in this section.

– The functionality does not directly deliver messages to receivers, but instead
internally queries them first. This is because it is necessary to use communica-
tion using FΔ

smt,delay, which means that the adversary may arbitrarily control
how messages get delivered, and he may reorder delivery at his will within
the maximal delay that FΔ

smt,delay permits. We also allow the adversary to
influence delivery “adaptively”, meaning depending on other events outside
of FΔ,δ

2pcoia’s scope.

Towards achieving this pull-model and adversarial reordering of messages, FΔ,δ
2pcoia

has three internal lists Q, M and O. Q contains all the buffered messages which
can be delivered in the future, while messages in M can be retrieved right now
by the respective receivers. Whenever FΔ,δ

2pcoia notices that a tick happened it will
run Tick, which will then move all messages from Q to M which get available
in the next round, and which can be retrieved via the interface Fetch Message.

S may use Scheduling to prematurely move messages to M by sending
a special message that contains the message id mid—that means that S gets
notified about every new mid whenever a message is added to Q which S can
influence. S may also cancel the delivery of messages, though this will lead to
a break-down of the functionality as FΔ

smt,delay does not allow to drop messages
altogether.

We let Tick be responsible to realize the output-independent abort property
of FΔ,δ

2pcoia. To see why this is the case, observe that once both parties activate the
output phase the functionality stores a message to S that represents the output
in O. In comparison to Q, S cannot make FΔ,δ

2pcoia output values in O any faster.
Once this message will be delivered to S, the functionality will then ask S if the
honest party should obtain the output or not. It will also give S control over
when the output message should be delivered to the honest party. Observe that
once S obtained the output then the Abort command cannot be used anymore.

Two-Party Computation with Secret-Shared Output. In Fig. 7 and Fig. 8
we describe a 2PC functionality FΔ

2pcsso which will be the foundation for our
compiler that will realise FΔ,δ

2pcoia. FΔ
2pcsso has the same initialization, input and

computation interfaces as other 2PC functionalities. The two main differences
between a standard 2PC functionality and FΔ

2pcsso are: first, FΔ
2pcsso is again a

“ticked” functionality, meaning that it similarly to FΔ,δ
2pcoia considers a 2PC pro-

tocol that implements communication via FΔ
smt,delay. Second, FΔ

2pcsso does not
directly output the outcome of the computation. Instead, it reveals a secret-
sharing of it to both parties. The parties can then manipulate shares using the
functionality, generate additional random shares or reconstruct them.

We will not show in this work how to realize FΔ
2pcsso. This is because

it’s output-sharing property is rather standard (albeit not always modeled
as explicitly as here) and it follows directly from any 2PC protocol that is

452 C. Baum et al.

Functionality FΔ
2pcsso (Computation, Message Handling)

The functionality interacts with two parties P1, P2 and an adversary S which may
corrupt either of the parties. The functionality will internally have two lists M, Q.

Init: On input (Init, sid, C) by Pi ∈ {P1, P2}:
1. Add (Δ,mid, sid, P3−i, (Init, C)) to Q for an unused mid.
2. If both parties sent (Init, sid, C) then store C locally and let m be the length of

the output of C. Then send (Init, sid, Pi, C,mid) to S .
Input: On first input (Input, sid, i, xi) by Pi for i ∈ {1, 2}:
1. Add (Δ,mid, sid, P3−i, (Input, Pi)) to Q for an unused mid.
2. Accept xi as input for Pi. Then send (Input, sid, Pi, xi,mid) to S if Pi is cor-

rupted and (Input, sid, Pi,mid) otherwise.
Computation: On first input (Compute, sid) by Pi ∈ {P1, P2} and if both x1, x2

were accepted:
1. Add (Δ,mid, sid, P3−i, (Compute)) to Q for an unused mid.
2. If both parties sent (Compute, sid) compute y = (y1, . . . , ym) ← C(x1, x2) and

store y. Then send (Compute, sid, Pi,mid) to S .
Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1, P2} retrieve the set
L of all entries (P , sid, ·) in M, remove L from M and return (Output, sid, L) to P .
Scheduling: On input of S :
– If S sent (Deliver, sid,mid) then remove each (c,mid, sid, P , m) from Q and add

(P , sid, m) to M.
– If S sent (Abort) add (PS, sid,Abort), (PR, sid,Abort) to M and ignore all fur-

ther calls to the functionality except to Fetch Message.
Tick:
1. For each query (0,mid, sid, P , m) ∈ Q:

(a) Remove (0,mid, sid, P , m) from Q.
(b) Add (P , sid, m) to M.

2. Replace each (c,mid, sid, P ,m) in Q with (c − 1,mid, sid, P , m).

Fig. 7. 2PC with secret-shared output and linear share operations.

entirely based on secret-sharing [41] or BMR protocols that secret-share the
output [6,30].

Additively Homomorphic Commitments with Delayed Openings. In
order to implement FΔ,δ

2pcoia we also need a special commitment scheme that allows
for delayed openings. The functionality is naturally ticked, as its implementation
will use both FΔ

smt,delay and Ftlp. Due to space limitations, the functionality as
well as its implementation is delayed to the full version [8]. In addition to regular
commit and opening procedures, the functionality has a special Delayed Open
command which releases the message in a commitment after a delay δ. The
adversary A may introduce a (communication) delay of maximum Δ ticks before
the honest party receives the delayed opening notification (or it may decide to
abort the opening process altogether). However, A cannot choose to abort the
delayed opening anymore once the honest party has received the notification.

TARDIS: A Foundation of Time-Lock Puzzles in UC 453

Functionality FΔ
2pcsso (Computation on Outputs)

Share Output: Upon input (ShareOut, sid, I) by Pi ∈ {P1, P2} for fresh identifiers
I = {cid1, . . . , cidm} and if Computation was finished:
1. Add (Δ,mid, sid, P3−i, (ShareOut)) to Q for an unused mid. Then send

(ShareOut, sid, Pi,mid) to S .
2. If both parties sent ShareOut (and letting Pj be the corrupted party):

(a) Send (ReqShares, sid, I) to S , which replies with (OutShares, sid,
{(cid, sj,cid)}cid∈I) for the corrupted party Pj . Then set s3−j,cidh = yh ⊕
sj,cidh .

(b) For cid ∈ I store (cid, s1,cid, s2,cid). Then add (Δ,mid1, sid, P3−j ,
(OutShares, {(cid, s3−j,cid)}cid∈I)) for a fresh mid1 to Q and send
(OutShares, sid, P3−j ,mid1) to S .

Share Random Value: Upon input (ShareRand, sid, I) by both parties, for fresh
identifiers I and letting Pj be the corrupted party:
1. Send (ReqShares, sid, I) to S , which replies with (RandShares, sid,

{(cid, sj,cid)}cid∈I) for the corrupted party Pj . Then sample s3−j,cid
$← F

for each cid ∈ I.
2. For each cid ∈ I store (cid, s1,cid, s2,cid). Then add (Δ,mid1, sid, P3−j ,

(RandShares, {(cid, s3−j,cid)}cid∈I)) for a fresh mid1 to Q and send
(RandShares, sid, P3−j ,mid1) to S .

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈I, cid) from both
parties: If all αcid ∈ F, all cid ∈ I have stored values and cid is unused, set si,cid ←

cid∈I αcid · si,cid for i ∈ {1, 2} and record (cid , s1,cid , s2,cid).
Reveal: Upon input (Reveal, sid, cid) by Pi ∈ {P1, P2}, if (cid, s1, s2) is stored and
Pj is corrupted:
1. Add (Δ,mid, sid, Pi, (Reveal)) to Q for an unused mid. Then send

(Reveal, sid, Pi,mid) to S .
2. If both parties sent (Reveal, sid, cid) then send (Reveal, sid, cid, s1 ⊕ s2) to S .
3. If S sends (DeliverReveal, sid, cid) then add (Δ,mid, sid, P3−j , (Reveal, cid, s1 ⊕

s2)) for a fresh mid to Q.
4. Send (DeliverReveal, sid, cid, P3−j ,mid) to S .

Fig. 8. 2PC with secret-shared output and linear share operations, part 2.

A will learn the opening δ ticks after PR initiated the delayed opening (as he
receives messages immediately), while an honest receiver PR might have to wait
δ + Δ ticks in total as the ticking for the delayed opening of a commitment can
only happen once the opening notification arrives on the receiver’s side.

Coin Tossing. In our protocol we additionally need to use a functionality for
coin tossing, as mentioned before. It could actually already be implemented,
albeit inefficiently, using FΔ,δ

ahcom. For completeness, we instead use the function-
ality Fct which can be found in the full version.

454 C. Baum et al.

Protocol π2pcoia

This protocol is for two parties P1, P2 and uses the functionalities FΔ,δ
ahcom, FΔ

2pcsso

and Fct. The parties compute the circuit C over F with output length m. We assume
that the commitment functionality FΔ,δ

ahcom commits to vectors of length m.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that it, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Init: Each Pi sends (Init, sid, C) to FΔ
2pcsso and ticks. Then it waits and queries

FΔ
2pcsso for an output (Init, sid, C).

Input: Each Pi sends (Input, sid, i, xi) to FΔ
2pcsso and ticks. Then it waits and queries

FΔ
2pcsso for an output (Input, sid, P3−i).

Computation: Each Pi sends (Compute, sid) to FΔ
2pcsso and ticks. Then it waits

and queries FΔ
2pcsso for an output (Compute, sid).

Output:
1. Each party Pi sends (ShareOutput, sid, cid1, . . . , cidm) for fixed cidh to FΔ

2pcsso

and ticks. Then it waits and queries FΔ
2pcsso to receive its shares s1,i, . . . , sm,i.

2. Each party Pi sends (RandomOutput, sid, cid1, . . . , cidm·κ) for fixed cidt to
FΔ

2pcsso and ticks. Then it waits and queries FΔ
2pcsso until it receives its shares

r1,i, . . . , rm·κ,i.
3. Each party uses FΔ,δ

ahcom to commit to si = (s1,i, . . . , sm,i) as well as rk,i =
(r(k−1)·m+1,i, . . . , rk·m,i) for k ∈ [κ] using the cid’s cids

i , cid
r
1,i, . . . , cid

r
κ,i and

ticks. Then it waits and queries FΔ,δ
ahcom to see if the other party committed.

4. Each Pi sends (Toss, sid, κ) to Fct and ticks. Then it waits and queries Fct until
obtains α1, . . . , ακ.

5. For i ∈ [2], k ∈ [κ] the parties use Linear Combination on FΔ,δ
ahcom to com-

pute commitments for the κ values dk,i = αk · si ⊕ rk,i. These have cid’s
cidd

1,i, . . . , cid
d
κ,i.

6. For k ∈ [κ], h ∈ [m] the parties use Linear Combination on FΔ
2pcsso to compute

the linear relations dk,h = αk · sh ⊕ r(k−1)·m+h.
7. The parties use Reveal on FΔ

2pcsso to open dk,h for all k ∈ [κ], h ∈ [m].
8. Each Pi sends (DOpen, sid, cids

i , cid
d
1,i, . . . , cid

d
κ,i, δ) to its instance of FΔ,δ

ahcom.
9. Each party Pi now waits and:

(a) Queries the instance of FΔ,δ
ahcom where Pi was a receiver to see if it obtained

a message (DOpen, cids
3−i, cid

d
1,3−i, . . . , cid

d
κ,3−i). If so, then exit the loop.

(b) Queries the instance of FΔ,δ
ahcom where Pi was a sender to see if it obtained

a message (DOpened, cids
i , cid

d
1,i, . . . , cid

d
κ,i). If so, then exit the loop.

10. After having obtained either of the above messages, Pi does the following:
– If DOpened arrived before DOpen then output ⊥.
– If DOpen arrived before DOpened then wait until s̃3−1, d̃1,3−i, . . . , d̃κ,3−i is

obtained from FΔ,δ
ahcom. Then output y = si⊕s̃3−i if d̃k,3−i[h] = dk,h⊕dk,i[h]

for all k ∈ [κ], h ∈ [m] and ⊥ otherwise.

Fig. 9. Protocol π2pcoia For 2PC with output-independent abort.

TARDIS: A Foundation of Time-Lock Puzzles in UC 455

6.1 Achieving Output-Independent Abort for 2PC in UC

Intuitively, the protocol realizing FΔ,δ
2pcoia works as follows: first, both parties

use FΔ
2pcsso to perform the secure computation. They then don’t directly obtain

an output, but instead each get a vector of shares si. Afterwards, the parties
will commit to si using FΔ,δ

ahcom and use the homomorphic property of FΔ,δ
ahcom

to show consistency between the values in FΔ,δ
2pcoia,FΔ,δ

ahcom. For this, they sample
a random matrix using Fct and perform an identical linear operation on both
functionalities.

At this stage the protocol might still fail and an adversary might still abort,
but no information will leak as the consistency check does only reveal a uniformly
random value. Finally, both parties use the Delayed Open to reveal their share
si which allows each party to reconstruct the output. At this stage, A might
decide not to activate Delayed Open, but we can set the parameters of FΔ,δ

ahcom

such that it will have to do so before the commitment of the honest party opens.
If it does not activate its delayed opening before that point, then the honest
party will decide that an abort happened and just ignore any future messages
of A. The full protocol π2pcoia can be found in Fig. 9. In the full version [8], we
show the following theorem:

Theorem 2. Let δ > Δ and κ ∈ N
+ be a statistical security parameter. Then

the protocol π2pcoia UC-implements FΔ,δ
2pcoia in the FΔ

2pcsso,FΔ,δ
ahcom,Fct-hybrid model

against any static active adversary corrupting at most one of the two parties.

7 The Impossibility Result

We show that in the UC model one cannot implement fair coin-flip without using
a random oracle, or similar programmable setup assumption. This holds even if
one is allowed to use time-lock puzzles, and non-programmable random oracles
and 2PC with abort. We first show the impossibility result for the simple case
where we assume there is no setup, no random oracles and that the protocol has
a fixed round complexity. This allows us to focus on the central new idea. After
that we show the result for the full case.

The ideal functionality Fcf for fair coin-flip (without abort) proceeds as fol-
lows. When activated by any party in round 0 it will sample a uniformly random
bit c and output it to both parties in some round ρ specified by the adversary.
The adversary cannot refuse the output to be given. The ideal functionality is
rushing: the adversary gets c in round 0. The honest parties do not get the coin
until round ρ.

Implications. Below we show that in several settings, called the excluded set-
tings, one cannot UC securely realize Fcf. By the UC composition theorem this
impossibility result has wide implications. In particular, it holds for all ideal
functionalities G that if one can UC securely realize Fcf in the G-hybrid model,
then one cannot UC realize G in the excluded settings either.

456 C. Baum et al.

Impossibility of Two-Party Coinflip with Output-Independent Abort.
It follows that two-party coin-flip with output-independent abort is impossible in
the excluded settings. Namely, given a protocol πcfoia for two-party coin-flip with
output-independent abort one can get a two-party coin-flip protocol πcf without
abort as follows. We describe the protocol in the Fcfoia-hybrid model and get the
result by composition. Run Fcfoia. If neither of the parties aborts, take the output
of Fcfoia to be the output. If one of the parties aborts, let the other party sample
and announce a uniformly random c and take c as the output. To simulate the
protocol, get from Fcf the coin c to hit in the simulation. Simulate a copy of
Fcfoia to the adversary. If the adversary does not abort, let the output of Fcfoia

be c. Otherwise, let the output of Fcfoia be a uniformly random c′, and then
simulate that the honest party samples and announces c.

Notice that it was crucial for this simulation that we could change the output
of Fcfoia from c to an independent c′ when there was an abort. Namely, when
there is an abort we still need to hit the c output by Fcf in the simulation, so
we are forced to simulate that the honest party samples and announces c in the
simulation. But if we were then also forced to let Fcfoia output c, then in the
simulation the bits output by Fcfoia and the honest party when there is an abort
will always be the same. In the protocol they are independent. This would make
it easy to distinguish. A generalisation of this observation will later be the basis
for our impossibility result.

Impossibility of UC 2PC with Output-Independent Abort. It also fol-
lows that 2PC with output-independent abort is impossible in the excluded
settings. Namely, given a functionality F2pcoia for 2PC with output-independent
abort (as described in the previous section) one can UC securely realize Fcfoia.
Namely, use F2pcoia to compute the function which takes one bit as input from
each party and outputs the exclusive or. Let each party input a uniformly ran-
dom bit. If any party aborts on F2pcoia, abort in πcfoia. It is straight forward to
simulate πcfoia given F2pcoia.

Impossibility of UC Time-Lock Puzzles. It also follows that UC time-
lock puzzles are impossible in the excluded settings. Namely, we have shown
that given UC time-lock puzzles one can UC securely realize F2pcoia, which was
excluded above. Due to space constraints, proofs are left to the full version [8].

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2014

https://doi.org/10.1007/978-3-662-44774-1_8

TARDIS: A Foundation of Time-Lock Puzzles in UC 457

3. Backes, M., Hofheinz, D., Müller-Quade, J., Unruh, D.: On fairness in
simulatability-based cryptographic systems. In: FMSE 2005, pp. 13–22. ACM
(2005)

4. Backes, M., Manoharan, P., Mohammadi, E.: TUC: time-sensitive and modular
analysis of anonymous communication. In: Computer Security Foundations Sym-
posium, CSF 2014. IEEE Computer Society Press (2014)

5. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: ACM CCS
2018. ACM Press, October 2018

6. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

7. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: Craft: composable
randomness and almost fairness from time. Cryptology ePrint Archive, Report
2020/784 (2020). https://eprint.iacr.org/2020/784

8. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: time and
relative delays in simulation. Cryptology ePrint Archive, Report 2020/537 (2020).
https://eprint.iacr.org/2020/537

9. Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with
identifiable abort. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol.
9985, pp. 461–490. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53641-4 18

10. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC
with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 562–592. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 20

11. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 38

12. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

13. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS 2016. ACM, January
2016

14. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

15. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

16. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 11

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/537
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-319-78381-9_11
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067

458 C. Baum et al.

18. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS. IEEE Computer Society Press, October 2001

19. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

20. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.:
Efficient UC commitment extension with homomorphism for free (and applica-
tions). In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS,
vol. 11922, pp. 606–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34621-8 22

21. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC. ACM Press, May 1986

22. Couteau, G., Roscoe, B., Ryan, P.: Partially-fair computation from timed-release
encryption and oblivious transfer. Cryptology ePrint Archive, Report 2019/1281
(2019). https://eprint.iacr.org/2019/1281

23. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: 35th ACM STOC. ACM Press, June 2003

24. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 3

25. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC.
ACM Press, May 1998

26. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-lock puz-
zles and applications. Cryptology ePrint Archive, Report 2020/779 (2020). https://
eprint.iacr.org/2020/779

27. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 18

28. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and com-
posability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 21

29. Goldreich, O.: Concurrent zero-knowledge with timing, revisited. In: 34th ACM
STOC. ACM Press, May 2002

30. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 21

31. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

32. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 21

33. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent general composition of
secure protocols in the timing model. In: 37th ACM STOC. ACM Press, May
2005

https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-030-34621-8_22
https://eprint.iacr.org/2019/1281
https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2020/779
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21

TARDIS: A Foundation of Time-Lock Puzzles in UC 459

34. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp.
390–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 14

35. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

36. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 25

37. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: ACM CCS 2014. ACM Press, November 2014

38. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: ACM CCS 2015. ACM Press, October 2015

39. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27375-9 3

40. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

41. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

42. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: 2001 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2001

43. Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019. LIPIcs, January
2019

44. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

45. Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require hidden-
order groups. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 155–180. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 6

46. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

47. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 25

48. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 379–407. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-10366-7_25
https://doi.org/10.1007/978-3-030-17659-4_13

Privacy and Law Enforcement

On the Power of Multiple Anonymous
Messages: Frequency Estimation

and Selection in the Shuffle Model
of Differential Privacy

Badih Ghazi1(B), Noah Golowich2, Ravi Kumar1, Rasmus Pagh3,
and Ameya Velingker1

1 Google Research, Mountain View, USA
2 MIT EECS, Cambridge, USA

nzg@mit.edu
3 BARC and University of Copenhagen, Copenhagen, Denmark

pagh@di.ku.dk

Abstract. It is well-known that general secure multi-party computation
can in principle be applied to implement differentially private mecha-
nisms over distributed data with utility matching the curator (a.k.a. cen-
tral) model. In this paper we study the power of protocols running on
top of a much weaker primitive: A non-interactive anonymous channel,
known as the shuffle model in the differential privacy literature. Such pro-
tocols are implementable in a scalable way using known cryptographic
methods and are known to enable non-interactive, differentially private
protocols with error much smaller than what is possible in the local
model. We study fundamental counting problems in the shuffle model
and obtain tight, up to polylogarithmic factors, bounds on the error and
communication in several settings.

For the classic problem of frequency estimation for n users and a
domain of size B, we obtain:

– A nearly tight lower bound of Ω̃(min(4
√

n,
√

B)) on the �∞ error
in the single-message shuffle model. This implies that the protocols
obtained from the amplification via shuffling work of Erlingsson et
al. (SODA 2019) and Balle et al. (Crypto 2019) are nearly optimal
for single-message protocols.

– Protocols in the multi-message shuffle model with poly(log B, log n)
bits of communication per user and �∞ error at most poly

N. Golowich—This work was done while interning at Google Research. Supported at
MIT by a Fannie & John Hertz Foundation Fellowship and an NSF Graduate Fellow-
ship.
R. Pagh—This work was initiated while visiting Google Research. Supported by VIL-
LUM Foundation grant 16582.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-77883-5 16) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 463–488, 2021.
https://doi.org/10.1007/978-3-030-77883-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_16
https://doi.org/10.1007/978-3-030-77883-5_16
https://doi.org/10.1007/978-3-030-77883-5_16

464 B. Ghazi et al.

(log B, log n), which provide an exponential improvement on the
error compared to what is possible with single-message algorithms.
This implies protocols with similar error and communication guar-
antees for several well-studied problems such as heavy hitters, d-
dimensional range counting, M-estimation of the median and quan-
tiles, and more generally sparse non-adaptive statistical query algo-
rithms.

For the selection problem on a domain of size B, we prove:
– A nearly tight lower bound of Ω(B) on the number of users in

the single-message shuffle model. This significantly improves on the
Ω(B1/17) lower bound obtained by Cheu et al. (Eurocrypt 2019).

A key ingredient in our lower bound proofs is a lower bound on the error
of locally-private frequency estimation in the low-privacy (a.k.a. high ε)
regime. For this we develop new tools to improve the results of Duchi et
al. (FOCS 2013; JASA 2018) and Bassily & Smith (STOC 2015), whose
techniques only gave tight bounds in the high-privacy setting.

1 Introduction

With increased public awareness and the introduction of stricter regulation of
how personally identifiable data may be stored and used, user privacy has become
an issue of paramount importance in a wide range of practical applications. While
many formal notions of privacy have been proposed (see, e.g., [76]), differential
privacy (DP) [44,46] has emerged as the gold standard due to its broad applica-
bility and nice features such as composition and post-processing (see, e.g., [51,93]
for a comprehensive overview). A primary goal of DP is to enable processing of
users’ data in a way that (i) does not reveal substantial information about the
data of any single user, and (ii) allows the accurate computation of functions of
the users’ inputs. The theory of DP studies what trade-offs between privacy and
accuracy are feasible for desired families of functions.

Most work on DP has been in the central (a.k.a. curator) setup, where numer-
ous private algorithms with small error have been devised (see, e.g., [18,49,50]).
The premise of the central model is that a curator can access the raw user data
before releasing a differentially private output. In distributed applications, this
requires users to transfer their raw data to the curator—a strong limitation in
cases where users would expect the entity running the curator (e.g., a govern-
ment agency or a technology company) to gain little information about their
data.

To overcome this limitation, recent work has studied the local model of
DP [71] (also [97]), where each individual message sent by a user is required
to be private. Indeed, several large-scale deployments of DP in practice, at com-
panies such as Apple [5,62], Google [55,87], and Microsoft [40], have used local
DP. While estimates in the local model require weaker trust assumptions than in
the central model, they inevitably suffer from significant error. For many types
of queries, the estimation error is provably larger than the error incurred in the
central model by a factor growing with the square root of the number of users.

On the Power of Multiple Anonymous Messages 465

Shuffle Privacy Model. The aforementioned trade-offs have motivated the study
of the shuffle model of privacy as a middle ground between the central and local
models. While a similar setup was first studied in cryptography in the work of
Ishai et al. [68] on cryptography from anonymity, the shuffle model was first
proposed for privacy-preserving protocols by Bittau et al. [16] in their Encode-
Shuffle-Analyze architecture. In the shuffle setting, each user sends one or more
messages to the analyzer using an anonymous channel that does not reveal
where each message comes from. Such anonymization is a common procedure
in data collection and is easy to explain to regulatory agencies and users. The
anonymous channel is equivalent to all user messages being randomly shuffled
(i.e., permuted) before being operated on by the analyzer, leading to the model
illustrated in Fig. 1; see Sect. 2 for a formal description of the shuffle model. In
this work, we treat the shuffler as a black box, but note that various efficient
cryptographic implementations of the shuffler have been considered, including
onion routing, mixnets, third-party servers, and secure hardware (see, e.g., [16,
68]). A comprehensive overview of recent work on anonymous communication
can be found on Free Haven’s Selected Papers in Anonymity website [57].

The DP properties of the shuffle model were first analytically studied, inde-
pendently, in the works of Erlingsson et al. [54] and Cheu et al. [29]. Protocols
within the shuffle model are non-interactive and fall into two categories: single-
message protocols, in which each user sends one message (as in the local model),
and multi-message protocols, in which a user can send more than one message.
In both variants, the messages sent by all users are shuffled before being passed
to the analyzer. The goal is to design private protocols in the shuffle model with
as small error and total communication as possible. An example of the power of
the shuffle model was established by Erlingsson et al. [54] and extended by Balle
et al. [9], who showed that every locally differentially private algorithm directly
yields a single-message protocol in the shuffle model with significantly better
privacy. In this paper we study the optimal error achievable for fundamental
tasks such as frequency estimation (i.e., histograms) and selection in the shuffle
model of differential privacy. We show that in many settings, multi-message pro-
tocols can achieve significantly smaller error than single-message protocols, and
we introduce such low-error multi-message protocols that have the additional
property of having low communication.

The study of differential privacy in the shuffle model can be seen as part of a
movement towards an integrated study of differential privacy and cryptographic
protocols, i.e., “DP-cryptography” [94].

466 B. Ghazi et al.

Fig. 1. Computation in the shuffle model consists of local randomization of inputs in
the first stage, followed by a shuffle of all outputs of the local randomizers, after which
the shuffled output is passed on to an analyzer.

Overview. The remainder of the paper is organized as follows. In Sect. 2 we
review some preliminaries for differential privacy and the shuffle model. In Sect. 3
we give an overview of our main theorems for the frequency estimation and
selection problems, and in Sect. 4 we overview the proofs of our main results. In
Sect. 5 we discuss applications of our results to problems such as range queries
and median estimation. In Sect. 6 we discuss related work in detail, and we
conclude in Sect. 7. Full proofs of our results as well as the precise statements of
some theorems are relegated to the supplementary material; see Section A.

2 Preliminaries

Before stating our main results, we formally introduce the basics of differential
privacy and the shuffle model.

Notation. For a positive real number a, we use log(a) to denote the logarithm
base 2 of a, and ln(a) to denote the natural logarithm of a. For any positive
integer B, let [B] = {1, 2, . . . , B}. For any set Y, we denote by Y∗ the set
consisting of sequences of elements of Y, i.e., Y∗ =

⋃
n�0 Yn. For positive integers

n,B, we write polylog(n,B) to denote the class of functions f(n,B) for which
there is a constant C so that for all n,B ∈ N, f(n,B) � C(log(nB))C .

Datasets. Fix a finite set X , the space of reports of users. A dataset is an element
of X ∗, namely a tuple consisting of elements of X . Let hist(X) ∈ N

|X | be the
histogram of X: for any x ∈ X , the xth component of hist(X) is the number
of occurrences of x in the dataset X. We will consider datasets X,X ′ to be
equivalent if they have the same histogram (i.e., the ordering of the elements
x1, . . . , xn does not matter). For a multiset S whose elements are in X , we will
also write hist(S) to denote the histogram of S (so that the xth component is
the number of copies of x in S).

On the Power of Multiple Anonymous Messages 467

Differential Privacy. Two datasets X,X ′ are said to be neighboring if they
differ in a single element, meaning that we can write (up to equivalence) X =
(x1, . . . , xn−1, xn) and X ′ = (x1, . . . , xn−1, x

′
n), for x1, . . . , xn, x′

n ∈ X . In this
case, we write X ∼ X ′. Let Z be a set; we now define the differential privacy of
a randomized function P : X n → Z:

Definition 21 (Differential privacy [44,46]). A randomized algorithm P :
X n → Z is (ε, δ)-differentially private (DP) if for every pair of neighboring
datasets X ∼ X ′ and for every set S ⊂ Z, we have

P[P (X) ∈ S] � eε · P[P (X ′) ∈ S] + δ,

where the probabilities are taken over the randomness in P . Here, ε � 0, δ ∈
[0, 1].

We will use the following compositional property of differential privacy.

Lemma 1 (Post-processing, e.g., [50]). If P is (ε, δ)-differentially private,
then for every randomized function A, the composed function A ◦ P is (ε, δ)-
differentially private.

Shuffle Model. We review the shuffle model of differential privacy [16,29,54]. The
input to the model is a dataset (x1, . . . , xn) ∈ X n, where item xi ∈ X is held by
user i. A protocol in the shuffle model is the composition of three algorithms:

– The local randomizer R : X → Y∗ takes as input the data of one user,
xi ∈ X , and outputs a sequence (yi,1, . . . , yi,mi

) of messages; here mi is a
positive integer. In the single-message shuffle model, we require mi = 1 for
each i; in the multi-message shuffle model, mi may be any positive integer.

– The shuffler S : Y∗ → Y∗ takes as input a sequence of elements of Y,
say (y1, . . . , ym), and outputs a random permutation, i.e., the sequence
(yπ(1), . . . , yπ(m)), where π ∈ Sm is a uniformly random permutation on [m].
The input to the shuffler will be the concatenation of the outputs of the local
randomizers.

– The analyzer A : Y∗ → Z takes as input a sequence of elements of Y (which
will be taken to be the output of the shuffler) and outputs an answer in Z
which is taken to be the output of the protocol P .

We will write P = (R,S,A) to denote the protocol whose components are given
by R, S, and A. The main distinction between the shuffle and local model is
the introduction of the (trusted) shuffler S between the local randomizer and
the analyzer. Similar to the local model, in the shuffle model the analyzer is
untrusted; hence privacy must be guaranteed with respect to the input to the
analyzer, i.e., the output of the shuffler. Formally, we have:

Definition 22 (Differential privacy in the shuffle model, [29,54]). A
protocol P = (R,S,A) is (ε, δ)-differentially private if, for any dataset X =
(x1, . . . , xn), the algorithm

(x1, . . . , xn) �→ S(R(x1), . . . , R(xn))

is (ε, δ)-differentially private.

468 B. Ghazi et al.

Notice that the output of S(R(x1), . . . , R(xn)) can be simulated by an algo-
rithm that takes as input the multiset consisting of the union of the elements of
R(x1), . . . , R(xn) (which we denote as

⋃
i R(xi), with a slight abuse of notation)

and outputs a uniformly random permutation of them. Thus, by Lemma 1, it
can be assumed without loss of generality for privacy analyses that the shuffler
simply outputs the multiset

⋃
i R(xi). For the purpose of analyzing accuracy of

the protocol P = (R,S,A), we define its output on the dataset X = (x1, . . . , xn)
to be P (X) := A(S(R(x1), . . . , R(xn))). We also remark that the case of local
differential privacy, formalized in Definition 23, is a variant of the shuffle model
where the shuffler S is replaced by the identity function.

Definition 23 (Local differential privacy [71]). A protocol P = (R,A)
is (ε, δ)-differentially private in the local model (or (ε, δ)-locally differentially
private) if the function x �→ R(x) is (ε, δ)-differentially private in the sense of
Definition 21. We say that the output of the protocol P on an input dataset
X = (x1, . . . , xn) is P (X) := A(R(x1), . . . , R(xn)).

3 Overview of Results

In this work, we study several basic problems related to counting in the shuffle
model of DP. In these problems, each of n users holds an element from a domain
of size B. We consider the problems of frequency estimation, variable selection,
heavy hitters, median estimation, and range counting and study whether it is
possible to obtain (ε, δ)-DP in the shuffle model with accuracy close to what is
possible in the central model, while keeping communication low. This section
contains an overview of our main results.

The frequency estimation problem (also known as computing histograms) is at
the core of many of the problems we study. In the simplest version, for some pos-
itive integer B, each of n users gets an element of the domain X := [B], and the
goal is to estimate the number of users in a dataset X holding element j, namely
hist(X)j , for each query element j ∈ [B]. We study frequency estimation with
the �∞ error, meaning that we define the error of a frequency estimation protocol
to be the maximum additive error for the frequency estimate of any coordinate j.
In particular, if f̂ ∈ R

B is a vector of frequency estimates for a dataset X, then
the �∞ error is ‖hist(X)− f̂‖∞ = maxj∈[B] |hist(X)j − f̂j |. Frequency estimation
is a fundamental primitive that is used in various data structural, sketching, and
streaming applications (see Sect. 5 for its use in the shuffled protocols for range
counting and median estimation as well as Sect. 6 for a sample of related work on
the problem). Frequency estimation has been extensively studied in DP where in
the central model, the smallest possible error is Θ(min(log(1/δ)/ε, log(B)/ε, n))
(see, e.g., [93, Section 7.1]). By contrast, in the local model of DP, the small-
est possible error is known to be Θ(min(

√
n log(B)/ε, n)) under the assumption

that δ < o(1/n) [12] (this regime for δ covers all values for δ of interest in the
setting of differential privacy).1

1 Most of the large-scale deployments of local DP in practice (e.g., [5,55]) have been
variants of frequency estimation protocols.

On the Power of Multiple Anonymous Messages 469

In the high-level exposition of our results given below, we let n and B be
any positive integers. We typically take ε > 0 to be any constant, and δ > 0
to be inverse polynomial in n. This assumption on ε and δ covers a regime of
parameters that is relevant in practice. We will make use of tilde notation (e.g.,
Õ, Θ̃) to indicate the suppression of multiplicative factors that are polynomial in
log B and log n. Theorem statements which do not make such assumptions and
contain full dependence on all parameters may be found in the supplementary
material.

Single-Message Bounds for Frequency Estimation. For the frequency estimation
problem, we show the following result in the shuffle model where each user sends
a single message.

Theorem 1 (Informal version of Theorems 5 & 7). Any (O(1), o(1/n))-
differentially private frequency estimation protocol in the single-message
shuffle model has expected �∞ error Ω̃(min(4

√
n,

√
B)). Moreover, there

is a single-message (O(1), o(1/n))-differentially private protocol with error
Õ(min(4

√
n,

√
B)).

The main contribution of Theorem 1 is the lower bound. To prove this result, we
obtain improved bounds on the error needed for frequency estimation in local
DP in the weak privacy regime where ε is around lnn. The upper bound in
Theorem 1 follows by combining the recent result of Balle et al. [9] (building
on the earlier result of Erlingsson et al. [54]) with RAPPOR [55] and B-ary
randomized response [97] (see Sect. 4.1 and Section C for more details).

The precise version of Theorem 1 with polylogarithmic factors (i.e., Theorem
5) implies that in order for a single-message differentially private protocol to
get error o(n) one needs to have n = ω

(
log B

log log B

)
users; see Corollary 2. This

improves on a result of Cheu et al. [29, Corollary 32], which gives a lower bound
of n = ω(log1/17 B) for this task.

Multi-message Protocols for Frequency Estimation. Theorem 1 implies that
in the single-message shuffle model, the error has to grow polynomially with
min(n,B), even with unbounded communication (i.e., message length). We next
present (non-interactive) multi-message protocols in the shuffle model of DP for
frequency estimation with only polylogarithmic error and communication. One
of the protocols is a public-coin protocol, meaning that it makes use of a source
of public randomness (known to all parties, including the adversary); the other
protocol is a private-coin protocol, meaning that no such assumption is made. In
addition to error and communication, a parameter of interest is the query time,
which is the time to estimate the frequency of any element j ∈ [B] from the data
structure constructed by the analyzer.2

2 The analyzers for both protocols in Theorem 2 have pre-processing time Õ(n) on the
output of the shuffler. In the regime B � n (which is often of interest), this running
time precludes them from computing all frequencies up-front.

470 B. Ghazi et al.

Table 1. Upper and lower bounds on expected maximum error (over all B queries,
where the sum of all frequencies is n) for frequency estimation in different models
of DP. The bounds are stated for fixed, positive privacy parameters ε and δ, and
Θ̃/Õ/Ω̃ asymptotic notation suppresses factors that are polylogarithmic in B and n.
The communication per user is in terms of the total number of bits sent. In all upper
bounds, the protocol is symmetric with respect to the users, and no public randomness
is needed. References are to the first results we are aware of that imply the stated
bounds.

Local Local + shuffle Shuffle,

single-message

Shuffle,

multi-message

Central

Expected

max. error

Õ(
√

n) Ω̃(
√

n) Õ(min(4√n,
√

B)) Ω̃(min(4√n,
√

B)) polylog(n, B) polylog(n, B)

Comm. per

user

Θ(1) Any O(B) (err 4√n)

log B (err
√

B)

Any polylog(n, B) n.a.

References [11] [12] [9,55,97] Thms. 7 & 5 Thm. 15 [78,90]

Theorem 2 (Informal version of Theorems 15 & 16). There are private-
coin and public-coin multi-message (O(1), 1/nO(1))-DP protocols in the shuffle
model for frequency estimation satisfying the following:

– The private-coin protocol has �∞ error O(max{log B, log n}), total communi-
cation of O(log B log2 n) bits per user, and query time Õ(n).

– The public-coin protocol has �∞ error O(log3/2(B)
√

log(n log(B))), total com-
munication of O(log4(B) log2(n)) bits per user, and query time O(log B).

Combining Theorems 1 and 2 yields the first separation between single-
message and multi-message protocols for frequency estimation. Moreover, The-
orem 2 can be used to obtain multi-message protocols with small error and
small communication for several other widely studied problems (e.g., heavy hit-
ters, range counting, and median and quantile estimation), discussed in Sect. 5.
Finally, Theorem 2 implies the following consequence for statistical query (SQ)
algorithms with respect to a distribution D on X (see Section G for the basic
definitions). We say that a non-adaptive SQ algorithm A making at most B
queries q : X → {0, 1} is k-sparse if for each x ∈ X , the Hamming weight of the
output of the queries is at most k. Then, under the assumption that users’ data
is drawn i.i.d. from D, the algorithm A can be efficiently simulated in the shuffle
model as follows (Table 1):

Corollary 1 (Informal version of Corollary 4). For any non-adaptive k-
sparse SQ algorithm A with B queries of tolerance τ > 0 and any β ∈ (0, 1),
there is a (private-coin) shuffle model protocol satisfying (ε, δ)-DP whose output
has total variation distance at most β from that of A, such that the number of
users is n � Õ

(
k
ετ + 1

τ2

)
, and the per-user communication is Õ

(
k2

ε2

)
, where

Õ(·) hides logarithmic factors in B,n, 1/δ, 1/ε, and 1/β.

Corollary 1 improves upon the simulation of non-adaptive SQ algorithms in the
local model [71], for which the number of users must grow as k

ε2τ2 as opposed to

On the Power of Multiple Anonymous Messages 471

1
τ2 + k

ετ in the shuffle model. We emphasize that the main novelty of Corollary 1
is in the regime that k2/ε2
 B; in particular, though prior work on low-
communication private summation in the shuffle model [10,29,59] implies an
algorithm for simulating A with roughly the same bound on the number of users
n as in Corollary 1 and communication Ω(B), it was unknown whether the
communication could be reduced to have logarithmic dependence on B, as in
Corollary 1.

Single-Message Bounds for Selection. The techniques that we develop to prove
the lower bound in Theorem 1 can be used to get a nearly tight Ω(B) lower bound
on the number of users necessary to solve the selection problem. In the selection
problem3, each user i ∈ [n] is given an arbitrary subset of [B], represented by
the indicator vector xi ∈ {0, 1}B , and the goal is for the analyzer to output an
index j∗ ∈ [B] such that

∑

i∈[n]

xi,j∗ � max
j∈[B]

∑

i∈[n]

xi,j − n

10
. (1)

In other words, the analyzer’s output should be the index of a domain element
that is held by an approximately maximal number of users. The choice of the
constant 10 in (1) is arbitrary; any constant larger than 1 may be used.

The selection problem has been studied in several previous works on differen-
tial privacy, and it has many applications to machine learning, hypothesis testing
and approximation algorithms (see [41,90,92] and the references therein). Our
work improves an Ω(B1/17) lower bound on n in the single-message shuffle model
due to Cheu et al. [29]. For ε = 1, the exponential mechanism [78] implies an
(ε, 0)-DP algorithm for selection with n = O(log B) users in the central model,
whereas in the local model, it is known that any (ε, 0)-DP algorithm for selection
requires n = Ω(B log B) users [92].

Theorem 3 (Informal version of Theorem 11). For any single-message
(O(1), o(1/(nB)))-DP protocol in the shuffle model that solves the selection prob-
lem given in Eq. (1), the number n of users should be Ω(B).

The lower bound in Theorem 3 nearly matches the O(B log B) upper bound on
the required number of users that holds even in the local model (and hence in the
single-message shuffle model) and that uses the B-randomized response [92,97].
Cheu et al. [29] have previously obtained a multi-message protocol for selection
with O(

√
B) users, and combined with this result Theorem 3 yields the first

separation between single-message and multi-message protocols for selection.
In subsequent work Chen et al. [28] have extended Theorem 3 to the setting

when each user only sends few messages; in particular, they show that if each
user sends at most m messages in the shuffle model, then the number of users
should be Ω(B/m). Their proof uses generally similar techniques to ours.

3 Sometimes also referred to as variable selection.

472 B. Ghazi et al.

4 Proof Outlines

4.1 Overview of Single-Message Lower Bounds

We start by giving an overview of the lower bound of Ω̃(min{n1/4,
√

B}) in
Theorem 1 on the error of any single-message frequency estimation protocol. We
first focus on the case where n � B2 and thus min{n1/4,

√
B} = n1/4. The main

component of the proof in this case is a lower bound of Ω̃(n1/4) for frequency
estimation for (εL, δL)-local DP protocols4 when εL = ln(n) + O(1). In fact,
we prove lower bounds for (εL, δL)-locally differentially protocols for a broader
range of parameters εL, δL in Theorem 6; a special case of this result which
includes the setting εL = ln(n) + O(1) relevant for the shuffle model is stated
below:

Theorem 4 (Local DP lower bound; informal version of Theorem 6).
Suppose that εL, δL > 0 satisfy

2
3

· ln n � εL + ln(1 + εL) � min {2 ln(B) − O(1), 2 ln(n) − 2 ln ln(B)} ,

and δL < o
(
min

{
1

n lnn , exp(−εL)
})

. Then any (εL, δL)-locally differentially
private protocol for frequency estimation on [B] must have �∞ error at least
Ω̃

(√
n

eεL/4

)
, where the tilde hides factors polynomial in log B, log n.

While lower bounds for local DP frequency estimation were previously
obtained in the seminal works of Bassily and Smith [12] and Duchi, Jordan and
Wainwright [42], two critical reasons make them less useful for our purposes: (i)
for εL = ω(1) (i.e., in the low-privacy regime) they only apply to the case where
δL = 0 (i.e., pure privacy)5, and (ii) even for δL = 0, their dependence on εL

is sub-optimal when εL = ω(1): the results of [42], for instance, imply a lower
bound of Ω

(√
n log B
eεL

)
on the �∞ error.6 By contrast, Theorem 4 covers the low

and approximate privacy regime; we next discuss its proof.
Let R be an (εL, δL)-locally differentially private randomizer. The general

approach in the proof of Theorem 4, which was also taken in [12,42], is to
show that if V is a random variable drawn uniformly at random from [B] and

4 Note that we use the subscripts in εL and δL to distinguish the privacy parameters
of the local model from the ε and δ parameters (without a subscript) of the shuffle
model.

5 As we discuss in Remark 1, generic reductions [20,29] showing that one can efficiently
simulate an approximately differentially private protocol (i.e., with δL > 0) with a
pure differentially private protocol (i.e., with δL = 0) are insufficient to obtain tight
lower bounds.

6 If we were to ignore the assumption of δL = 0 and try to use this bound for εL =
ln(n) + O(1) to attempt to derive a lower bound in the single-message shuffle model
in the context of Theorem 1, we would get a lower bound of Ω(

√
log(B)/n) on

the �∞ error, which for n � log B is (much) worse than even the lower bound of
Ω(min{log B, log n}) from the central model.

On the Power of Multiple Anonymous Messages 473

if X is a random variable that is equal to V with some appropriate choice of
α ∈ (0, 1), and is drawn uniformly at random from [B] otherwise, then the
mutual information between V and the local randomizer output R(X) satisfies

I(V ;R(X)) � log B

4n
. (2)

Once (2) is established, the chain rule of mutual information implies that
I(V ;R(X1), . . . , R(Xn)) � log B

4 , where X1, . . . , Xn are independent and identi-
cally distributed given V . Fano’s inequality [38] then implies that the probabil-
ity that any analyzer receiving R(X1), . . . , R(Xn) correctly guesses V is at most
1/4; on the other hand, an Ω(αn)-accurate analyzer must be able to determine
V with high probability since its frequency in the dataset X1, . . . , Xn is roughly
αn, greater than the frequency of all other v ∈ [B]. This approach thus yields a
lower bound of Ω(αn) on frequency estimation.

To prove the lower bound of Theorem 4 using this approach, we choose
αn = Θ̃(

√
n/eεL/4), and show that

I(V ;R(X)) � Õ(α4neεL) � log B

4n
. (3)

For the application to the single-message shuffle model, we will have εL = ln(n)+
O(1) and so α = Θ̃(n−3/4); as we will discuss later, (3) is essentially tight in this
regime.

Limitations of Previous Approaches. We first state the existing upper bounds
on I(V ;R(X)), which only use the privacy of the local randomizer. Bassily
and Smith [12, Claim 5.4] showed an upper bound of I(V ;R(X)) � O(ε2Lα2)
with εL = O(1) and δL = o(1/(n log n)), which thus satisfies (2) with α =
Θ

(√
log B
ε2

Ln

)
. For δL = 0, Duchi et al. [42] generalized this result to the case

εL � 1, proving that7 I(V ;R(X)) � O(α2e2εL). Even ignoring the constraint
δL = 0, this bound of [42] is weaker than (3) for the above setting of α and εL.

However, proving the mutual information bound in (3) turns out to be impos-
sible if we only use the privacy of the local randomizers! In particular, the bound
can be shown to be false if all we assume about R is that it is (εL, δL)-locally dif-
ferentially private for some εL ≈ ln n and δL � n−O(1). For instance, it is violated
if one takes R to be RRR, the local randomizer of the B-randomized response
[97]. Consider for example the regime where B � n � B2, and the setting where
RRR(v) is equal to v with probability 1 − B/n, and is uniformly random over
[B] with the remaining probability of B/n. In this case, the local randomizer
RRR(·) is (ln(n)+O(1), 0)-differentially private. A simple calculation shows that
I(V ;RRR(X)) = Θ̃(α). Whenever α
 1/n2/3, which is the regime we have to
consider in order to prove Theorem 18, it holds that α � α4n exp(ln(n)), thus

7 This bound is not stated explicitly in [42], though [42, Lemma 7] proves a similar
result whose proof can readily be modified appropriately.

8 i.e., we will take αn = Θ̃(n1/4), so α = Θ̃(n−3/4).

474 B. Ghazi et al.

contradicting (3). (See also Remark 4 for an explanation of how a slightly differ-
ent strategy also fails.) The insight derived from this counterexample is crucial,
as we describe in our new technique next.

Mutual Information Bound from Privacy and Accuracy. Departing from pre-
vious work, we manage to prove the stronger bound (3) as follows. Inspecting
the counterexample based on the B-randomized response outlined above, we
first observe that any analyzer must have error at least Ω(

√
B) when com-

bined with RRR(·), which is larger than αn, the error that would be ruled out
by the subsequent application of Fano’s inequality. This leads us to appeal to
accuracy, in addition to privacy, when proving the mutual information upper
bound. We thus leverage the additional available property that the local ran-
domizer R can be combined with an analyzer A in such a way that the mapping
(x1, . . . , xn) �→ A(R(x1), . . . , R(xn)) computes the frequencies of elements of
every dataset (x1, . . . , xn) accurately, i.e., to within an error of O(αn). At a high
level, our approach for proving the bound in (3) then proceeds by:

(i) Proving a structural property satisfied by the randomizer corresponding to
any accurate frequency estimation protocol. Namely, we show in Lemma 10
that if there is an accurate analyzer, the total variation distance between
the output of the local randomizer on any given input, and its output on a
uniform input, is close to 1.

(ii) Using the (εL, δL)-DP property of the randomizer along with the structural
property in (i) in order to upper-bound the mutual information I(V ;R(X)).

We believe that the application of the structural property in (i) to proving
bounds of the form (3) is of independent interest. As we further discuss below,
this property is, in particular, used (together with privacy of R) to argue that
for most inputs v ∈ [B], the local randomizer output R(v) is unlikely to equal
a message that is much less likely to occur when the input is uniformly random
than when it is v. Note that it is somewhat counter-intuitive that accuracy is
used in the proof of this fact, as one way to achieve very accurate protocols is to
ensure that R(v) is equal to a message which is unlikely when the input is any
u = v. We now outline the proofs of (i) and (ii) in more detail.

The gist of the proof of (i) is an anti-concentration statement. Let v be a
fixed element of [B] and let U be a random variable uniformly distributed on [B].
Assume that the total variation distance Δ(R(v), R(U)) is not close to 1, and that
a small fraction of the users have input v while the rest have uniformly random
inputs. Let Z denote the range of the local randomizer R. First, we consider the
special case where Z is {0, 1}. Then the distribution of the histogram of outputs
of the users with v as their input is in bijection with a binomial random variable
with parameter p := P[R(v) = 1], and the same is true for the distribution of
the shuffled outputs of the users with uniform random inputs U (with parameter
q := P[R(U) = 1]). Then, we use the anti-concentration properties of binomial
random variables in order to argue that if |p − q| = Δ(R(v), R(U)) is too small,
then with nontrivial probability the shuffled outputs of the users with input v
will be indistinguishable from the shuffled outputs of the users with uniform

On the Power of Multiple Anonymous Messages 475

random inputs. This is then used to contradict the supposed accuracy of the
analyzer. To deal with the general case where the range Z is any finite set,
we repeatedly apply the data processing inequality for total variation distance
in order to reduce to the binary case (Lemma 13). The full proof appears in
Lemma 10.

Equipped with the property in (i), we now outline the proof of the mutual
information bound in (ii). Denote by

– Tv the set of messages much more likely to occur when the input is v than
when it is uniform,

– Yv the set of messages less likely to occur when the input is v than when it
is uniform.

Note that the union Tv ∪Yv is not the entire range Z of messages; in particular,
it does not include messages that are a bit more likely to occur when the input
is v than when it is uniform.9 On a high level, it turns out that the mutual
information I(V ;R(X)) will be large, i.e., R(X) will reveal a significant amount
of information about V , if either of the following events occurs:

(a) There are not enough inputs v ∈ [B] such that the mass P[R(X) ∈ Yv] is
large. Intuitively, for v so that P[R(X) ∈ Yv] is large, the local randomizer
“effectively hides” the fact that the uniform input X is v given that X indeed
equals v and R(v) ∈ Yv.

(b) There are too many inputs v ∈ [B] such that the mass P[R(v) ∈ Tv] is large.
Such inputs make it too likely that X = v given that R(X) ∈ Tv, which
makes it more likely in turn that V = v.

We first note that the total variation distance Δ(R(v), R(X)) is upper-bounded
by P[R(X) ∈ Yv]. On the other hand, the accuracy of the protocol along with
property (i) imply that Δ(R(v), R(X)) is close to 1 for all v. By putting these
together, we can conclude that event (a) does not occur (see Lemma 10 for more
details).

To prove that event (b) does not occur, we use the (εL, δL)-DP guarantee
of the local randomizer R. Namely, we will use the inequality P[R(v) ∈ S] �
eεL · P[R(X) ∈ S] + δ for various subsets S of Z. Unfortunately, setting S = Tv

does not lead to a good enough upper bound on P[R(v) ∈ Tv]; indeed, for the
local randomizer R = RRR corresponding to the B-ary randomized response, we
will have Tv = {v} for n � B, and so P[R(v) ∈ Tv] = 1 − B/n ≈ 1 for any v.
Thus, to establish (b), we need to additionally use the accuracy of the analyzer
A (i.e., property (i) above), together with a careful double-counting argument
to enumerate the probabilities that R(v) belongs to subsets of Tv of different
granularity (with respect to the likelihood of occurrence under input v versus a
uniform input). For the details, we refer the reader to Section B.3 and Lemma 9.

Having established Theorem 4 giving a lower bound for locally differentially
private estimation in the low-privacy regime, Theorem 1 follows in a straightfor-
ward manner: the only step is to apply a lemma of Cheu et al. [29] (restated as
9 For clarity of exposition in this overview, we refrain from quantifying the likelihoods

in each of these cases; for more details on this, we refer the reader to Section B.3.

476 B. Ghazi et al.

Lemma 2 below), stating that any lower bound for (ε + ln(n), δ)-locally differ-
entially private protocols implies a lower bound for (ε, δ)-differentially private
protocols in the single-message shuffle model (i.e., we take εL = ε + ln(n)).
Indeed, for εL = ln(n) + O(1), the error lower bound from Theorem 4 is
Ω̃(

√
n/eεL/4) = Ω̃(n1/4). Finally, we point out that while the above outline

assumed that n ≤ B2, it turns out that this is essentially without loss of gener-
ality as the other case where n > B2 can be reduced to the former (see Lemma 6).

Tightness of Lower Bounds. The lower bounds sketched above are nearly tight.
The upper bound of Theorem 1 follows from combining existing results showing
that the single-message shuffle model provides privacy amplification of locally
differentially private protocols [9,54], with known locally differentially private
protocols for frequency estimation [9,42,55,97]. In particular, as recently shown
by Balle et al. [9], a pure (εL, 0)-differentially private local randomizer yields a

protocol in the shuffle model that is
(

O

(

eεL

√
log(1/δ)

n

)

, δ

)

-differentially pri-

vate and that has the same level of accuracy.10 Then:

– When combined with RAPPOR [42,55], we get an upper bound of Õ(n1/4)
on the error.

– When combined with the B-randomized response [3,97], we get an error upper
bound of Õ(

√
B).

The full details appear in Section C. Put together, these imply that the minimum
in our lower bound in Theorem 1 is tight (up to logarithmic factors). It also
follows that the mutual information bound in Eq. (3) is tight (up to logarithmic
factors) for εL = ln(n) + O(1) and α = n−3/4 (which is the parameter settings
corresponding to the single-message shuffle model); indeed, a stronger bound in
Eq. (3) would lead to larger lower bounds in the single-message shuffle model
thereby contradicting the upper bounds discussed in this paragraph.

Lower Bound for Selection: Sharp Bound on Level-1 Weight of Probability Ratio
Functions. We now outline the proof of the nearly tight lower bound on the
number of users required to solve the selection problem in the single-message
shuffle model (Theorem 3). The main component of the proof in this case is a
lower bound of Ω(B) users for selection for (εL, δL)-local DP protocols when
εL = ln(n) + O(1).

In the case of local (εL, 0)-DP (i.e., pure) protocols, Ullman [92] proved a
lower bound n = Ω

(
B log B

(exp(εL)−1)2

)
. There are two different reasons why this

lower bound is not sufficient for our purposes:

1. It does not rule out DP protocols with δL > 0 (i.e., approximate protocols),
which are necessary to consider for our application to the shuffle model.

10 Note that we cannot use the earlier amplification by shuffling result of [54], since it
is only stated for εL = O(1) whereas we need to amplify a much less private local
protocol, having an εL close to ln n.

On the Power of Multiple Anonymous Messages 477

2. For the low privacy setting of εL = ln(n) + O(1), the bound simplifies to
n = Ω̃(B/n2), i.e., n = Ω̃(B1/3), weaker than what we desire.

To prove our near-optimal lower bound, we remedy both of the aforemen-
tioned limitations by allowing positive values of δL and achieving a better depen-
dence on εL. As in the proof of frequency estimation, we reduce proving Theo-
rem 3 to the task of showing the following mutual information upper bound:

I((L, J);R(XL,J)) � Õ

(
1
B

)

+ O(δL(B + n)), (4)

where L is a uniform random bit, J is a uniform random coordinate in [B], and
XL,J is uniform over the subcube {x ∈ {0, 1}B : xJ = L}. Indeed, once (4)
holds and δL < o(1/(Bn)), the chain rule implies that the mutual information
between all users’ messages and the pair (L, J) is at most O

(
n ln(B)

B

)
. It follows

by Fano’s inequality that if n = o(B), no analyzer can determine the pair (L, J)
with high probability (which any protocol for selection must be able to do).

For any message z in the range of R, define the Boolean function fz(x) :=
P[R(x)=z]

P[R(XL,J)=z] where x ∈ {0, 1}B . Let W1[f] denote the level-1 Fourier weight
of a Boolean function f . To prove inequalities of the form (4), the prior work
of Ullman [92] shows that I((L, J);R(XL,J)) is determined by W1[fz], up to
normalization constants. In the case where δL = 0 and εL = ln(n) + O(1),
fz ∈ [0, eεL], and by Parseval’s identity W1[fz] � O(e2εL) for any message z,
leading to

I((L, J);R(XL,J)) � O

(
e2εL

B

)

. (5)

Unfortunately, for our choice of εL = ln(n) + O(1), (5) is weaker than (4).
To show (4), we depart from the previous approach in the following ways:

(a) We show that the functions fz take values in [0, O(eεL)] for most inputs x;
this uses the (εL, δL)-local DP of the local randomizer R (we cannot show
this for all x as in general δL > 0).

(b) Using the Level-1inequality from the analysis of Boolean functions [84] (see
Theorem 13 below), we upper bound W1[gz] by O(εL), where gz is the
truncation of fz defined by gz(x) = fz(x) if fz(x) � O(n), and gz(x) = 0
otherwise.

(c) We bound I((L, J);R(XL,J)) by W1[gz], using the fact fz is sufficiently
close to its truncation gz.

The above line of reasoning, formalized in Section B.5, allows us to show

I((L, J);R(XL,J)) � O
(εL

B
+ δ · (B + eεL)

)
,

which is sufficient to establish that (4) holds.
Having proved a lower bound on the error of any (ε+ln n, δ)-local DP protocol

for selection with ε = O(1), the final step in the proof is to apply a lemma of
[29] to deduce the desired lower bound in the single-message shuffle model.

478 B. Ghazi et al.

4.2 Overview of Multi-message Protocols

An important consequence of our lower bound in Theorem 1 is that one cannot
achieve an error of polylog(n,B) using single-message protocols. This in partic-
ular rules out any approach that uses the following natural two-step recipe for
getting a private protocol in the shuffle model with accuracy better than in the
local model:

1. Run any known locally differentially private protocol with a setting of param-
eters that enables high-accuracy estimation at the analyzer, but exhibits low
privacy locally.

2. Randomly shuffle the messages obtained when each user runs step 1 on their
input, and use the privacy amplification by shuffling bounds [9,54] to improve
the privacy guarantees.

Thus, shuffled versions of the B-randomized response [3,97], RAPPOR [3,42,
55], the Bassily–Smith protocol [12], TreeHist and Bitstogram [11], and the
Hadamard response protocol [2,3], will still incur an error of Ω(min(4

√
n,

√
B)).

Moreover, although the single-message protocol of Cheu et al. [29] for binary
aggregation (as well as the multi-message protocols given in [7,8,59,60] for the
more general task of real-valued aggregation) can be applied to the one-hot
encodings of each user’s input to obtain a multi-message protocol for frequency
estimation with error polylog(n,B), the communication per user would be Ω(B)
bits, which is clearly undesirable.

Recall that the main idea behind (shuffled) randomized response is for each
user to send their input with some probability, and random noise with the
remaining probability. Similarly, the main idea behind (shuffled) Hadamard
response is for each user to send a uniformly random index from the support
of the Hadamard codeword corresponding to their input with some probability,
and a random index from the entire universe with the remaining probability.
In both protocols, the user is sending a message that either depends on their
input or is noise; this restriction turns out to be a significant limitation. Our
main insight is that multiple messages allows users to simultaneously send both
types of messages, leading to a sweet spot with exponentially smaller error and
communication.

Our Protocols. We design a multi-message version of the private-coin Hadamard
response of Acharya et al. [2,3] where each user sends a small subset of indices
sampled uniformly at random from the support of the Hadamard codeword cor-
responding to their input, and in addition sends a small subset of indices sampled
uniformly at random from the entire universe [B]. To get accurate results it is
crucial that a subset of indices is sampled, as opposed to just a single index (as in
the local model protocol of [2,3]). We show that in the regime where the number
of indices sampled from inside the support of the Hadamard codeword and the
number of noise indices sent by each user are both logarithmic, the resulting
multi-message algorithm is private in the shuffle model, and it has polylogarith-
mic error and communication per user (see Theorem 15, Lemmas 17, 18, and 19
for more details).

On the Power of Multiple Anonymous Messages 479

A limitation of our private-coin algorithm outlined above is that the time
for the analyzer to answer a single query is Õ(n). This might be a drawback
in applications where the analyzer is CPU-limited or where it is supposed to
produce real-time answers. In the presence of public randomness, we design an
algorithm that remedies this limitation, having error, communication per user,
and query time all bounded above by polylog(n,B). This algorithm is based on
a multi-message version of randomized response combined in a delicate man-
ner with the Count Min data structure [34] (for more details, see Section D.2).
Previous work [11,12] on DP has used Count Sketch [24], which is a close vari-
ant of Count Min, to reduce heavy hitter computation to frequency estimation.
In contrast, our use of Count Min has the purpose of reducing the amount of
communication per user.

5 Applications

Heavy Hitters. Another algorithmic task that is closely related to frequency esti-
mation is computing the heavy hitters in a dataset distributed across n users,
where the goal of the analyzer is to (approximately) retrieve the identities and
counts of all elements that appear at least τ times, for a given threshold τ . It
is well-known that in the central DP model, it is possible to compute τ -heavy
hitters for τ = polylog(n,B) whereas in the local DP model, it is possible to
compute τ -heavy hitters if and only if τ = Θ̃(

√
n). By combining with known

reductions (e.g., from Bassily et al. [11]), our multi-message protocols for fre-
quency estimation yield multi-message protocols for computing the τ -heavy hit-
ters with τ = polylog(n,B) and total communication of polylog(n,B) bits per
user (for more details, see Section H).

Range Counting. In range counting, each of the n users is associated with a
point in [B]d and the goal of the analyzer is to answer arbitrary queries of the
form: given a rectangular box in [B]d, how many of the points lie in it?11 This
is a basic algorithmic primitive that captures an important family of database
queries and is useful in geographic applications. This problem has been well-
studied in the central model of DP, where Chan et al. [22] obtained an upper
bound of (log B)O(d) on the error (see Sect. 6 for more related work). It has also
been studied in the local DP model [33]; in this case, the error has to be at least
Ω(

√
n) even for d = 1.

We obtain private protocols for range counting in the multi-message shuf-
fle model with exponentially smaller error than what is possible in the local
model (for a wide range of parameters). Specifically, we give a private-coin multi-
message protocol with (log B)O(d) messages per user each of length O(log n) bits,
error (log B)O(d), and query time Õ(n logd B). Moreover, we obtain a public-coin
protocol with similar communication and error but with a much smaller query
time of Õ(logd B) (see Section F for more details).

11 We formally define range queries as a special case of counting queries in Section F.

480 B. Ghazi et al.

We now briefly outline the main ideas behind our multi-message protocols for
range counting. We first argue that even for d = 2, the total number of queries is
Θ(B2) and the number of possible queries to which a user positively contributes
is also Θ(B2). Thus, direct applications of DP algorithms for aggregation or for
frequency estimation would result in polynomial error and polynomial commu-
nication per user. Instead, we combine our multi-message protocol for frequency
estimation (Theorem 2) with a communication-efficient implementation, in the
multi-message shuffle model, of the space-partitioning data structure used in
the central model protocol of Chan et al. [22]. The idea is to use a collection
B of O(B logd B) d-dimensional rectangles in [B]d (so-called dyadic intervals)
with the property that an arbitrary rectangle can be formed as the disjoint
union of O(logd B) rectangles from B. Furthermore, each point in [B]d is con-
tained in O(logd B) rectangles from B. This means that it suffices to release a
private count of the number of points inside each rectangle in B—a frequency
estimation task where each user input contributes to O(logd B) buckets. To turn
this into a protocol with small maximum communication in the shuffle model,
we develop an approach analogous to the matrix mechanism [74,75]. We argue
that the transformation of the aforementioned central model algorithm for range
counting into a private protocol in the multi-message shuffle model with small
communication and error is non-trivial and relies on the specific protocol struc-
ture. In fact, the state-of-the-art range counting algorithm of Dwork et al. [48]
in the central model does not seem to transfer to the shuffle model.

M-Estimation of Median. A very basic statistic of any dataset of real numbers is
its median. For simplicity, suppose our dataset consists of real numbers lying in
[0, 1]. It is well-known that there is no DP algorithm for estimating the value of
the median of such a dataset with error o(1) (i.e., outputting a real number whose
absolute distance to the true median is o(1)) [93, Section 3]. This is because the
median of a dataset can be highly sensitive to a single data point when there are
not many individual data points near the median. Thus in the context of DP,
one has to settle for weaker notions of median estimation. One such notion is
M-estimation, which amounts to finding a value x̃ that approximately minimizes∑

i |xi−x̃| (recall that the median is the minimizer of this objective). This notion
has been studied in previous work on DP including by [42,73] (for more on
related work, see Sect. 6 below). Our private range counting protocol described
above yields a multi-message protocol with communication polylog(n) per user
and that M -estimates the median up to error polylog(n), i.e., outputs a value
y ∈ [0, 1] such that

∑
i |xi−y| ≤ minx̃

∑
i |xi−x̃|+polylog(n) (see Theorem 23 in

Section I). Beyond M -estimation of the median, our work implies private multi-
message protocols for estimating quantiles with polylog(n) error and polylog(n)
bits of communication per user (see Section I for more details).

6 Related Work

Shuffle Privacy Model. Following the proposal of the Encode-Shuffle-Analyze
architecture by Bittau et al. [16], several recent works have sought to formalize
the trade-offs in the shuffle model with respect to standard local and central

On the Power of Multiple Anonymous Messages 481

DP [9,54] as well as devise private schemes in this model for tasks such as secure
aggregation [7–9,29,59,60]. In particular, for the task of real aggregation, Balle
et al. [9] showed that in the single-message shuffle model, the optimal error is
Θ(n1/6) (which is better than the error in the local model which is known to be
Θ(n1/2)).12 By contrast, recent follow-up work gave multi-message protocols for
the same task with error and communication of polylog(n) [7,8,59,60]13. Our
work is largely motivated by the aforementioned body of works demonstrating
the power of the shuffle model, namely, its ability to enable private protocols
with lower error than in the local model while placing less trust in a central
server or curator.

Wang et al. [96] recently designed an extension of the shuffle model and
analyzed its trust properties and privacy-utility tradeoffs. They studied the basic
task of frequency estimation, and benchmarked several algorithms, including one
based on single-message shuffling. However, they did not consider improvements
through multi-message protocols, such as the ones we propose in this work.
Very recently, Erlingsson et al. [53] studied multi-message (“report fragmenting”)
protocols for frequency estimation in a practical shuffle model setup. Though
they make use of a sketching technique, like we do, their methods cannot be
parameterized to have communication and error polylogarithmic in n and B
(which our Theorem 2 achieves). This is a result of using an estimator (based
on computing a mean) that does not yield high-probability guarantees.

(Private) Frequency Estimation, Heavy Hitters, and Median. Frequency esti-
mation (and its extensions considered below) is a fundamental problem that
has been extensively studied in numerous computational models including data
structures, sketching, streaming, and communication complexity, (in particular,
[24,31,34,35,56,61,63,70,77,79,80,101]). Heavy hitters and frequency estima-
tion have also been studied extensively in the standard models of DP, e.g.,
[2,11,12,20,67,95,97]. The other problems we consider in the shuffle model,
namely, range counting, M-estimation of the median, and quantiles, have been
well-studied in the literature on data structures and sketching [37] as well as in
the context of DP in the central and local models. Dwork and Lei [45] initiated
work on establishing a connection between DP and robust statistics, and gave
private estimators for several problems including the median, using the paradigm
of propose-test-release. Subsequently, Lei [73] provided an approach in the cen-
tral DP model for privately releasing a wide class of M-estimators (including
the median) that are statistically consistent. While such M-estimators can also
be obtained indirectly from non-interactive release of the density function [98],
the aforementioned approach exhibits an improved rate of convergence. Fur-
thermore, motivated by risk bounds under privacy constraints, Duchi et al. [42]
12 Although the single-message real summation protocol of Balle et al. [9] uses the B-

ary randomized response, when combined with their lower bound on single-message
protocols, it does not imply any lower bound on single-message frequency estimation
protocols. The reason is that their upper bound doe not use the �∞ error bound for
the B-ary randomized response as a black box.

13 A basic primitive in these protocols is a “split-and-mix” procedure that goes back
to the work of Ishai et al. [68].

482 B. Ghazi et al.

provided private versions of information-theoretic bounds for minimax risk of
M-estimation of the median.

Frequency estimation can be viewed as the problem of distribution estimation
in the �∞ norm where the distribution to be estimated is the empirical distribu-
tion of a dataset (x1, . . . , xn). Some works [69,100] have established tight lower
bounds for locally differentially private distribution estimation in the weak pri-
vacy setting with loss instead given by either �1 or �22. However, their techniques
proceed by using Assouad’s method [42] and are quite different from the app-
roach we use for the �∞ norm in the proof of Theorem 1 (specifically, in the
proof of Theorem 6).

We also note that an anti-concentration lemma qualitatively similar to our
Lemma 10 was used by Chan et al. [23, Lemma 3] to prove lower bounds on
private aggregation, but they operated in a multi-party setting with communi-
cation limited by a sparse communication graph. After the initial release of this
paper, Ghazi et al. [58] proved a similar anti-concentration lemma to establish a
lower bound on private summation for protocols with short messages. The lem-
mas in both of these papers do not apply to the more general case of frequency
estimation with an arbitrary number B of buckets, as is the case throughout this
paper.

Range Counting. Range counting queries have also been an important subject of
study in several areas including database systems and algorithms (see [30] and
the references therein). Early works on differentially private frequency estima-
tion , e.g., [43,64], apply naturally to range counting, though the approach of
summing up frequencies yields large errors for queries with large ranges.

For d = 1, Dwork et al. [47] obtained an upper bound of O
(

log2 B
ε

)
and

a lower bound of Ω(log B) for obtaining (ε, 0)-DP. Chan et al. [22] extended
the analysis to d-dimensional range counting queries in the central model,
for which they obtained an upper bound of roughly (log B)O(d). Meanwhile,
a lower bound of Muthukrishnan and Nikolov [81] showed that for n ≈ B,
the error is lower bounded by Ω

(
(log n)d−O(1)

)
. Since then, the best-known

upper bound on the error for general d-dimensional range counting has been
(log B + log(n)O(d))/ε [48], obtained using ideas from [22,47] along with a k-d
tree-like data structure. We note that for the special case of d = 1, it is known
how to get a much better dependence on B in the central model, namely, expo-
nential in log∗ B [14,21].

Xiao et al. [99] showed how to obtain private range count queries by using
Haar wavelets, while Hay et al. [66] formalized the method of maintaining a
hierarchical representation of data; the aforementioned two works were com-
pared and refined by Qardaji et al. [85]. Cormode et al. [33] showed how to
translate many of the previous ideas to the local model of DP. We also note that
the matrix mechanism of Li et al. [74,75] also applies to the problem of range
counting queries. An alternate line of work for tackling multi-dimensional range
counting that relied on developing private versions of k-d trees and quadtrees
was presented by Cormode et al. [36].

On the Power of Multiple Anonymous Messages 483

Secure Multi-party Computation. If we allow user interaction in the computation
of the queries, then there is a rich theory, within cryptography, of secure multi-
party computation (SMPC) that allows f(x1, . . . , xn) to be computed without
revealing anything about xi except what can be inferred from f(x1, . . . , xn) itself
(see, e.g., the book of Cramer et al. [39]). Kilian et al. [72] studied SMPC pro-
tocols for heavy hitters, obtaining near-linear communication complexity with
a multi-round protocol. In contrast, all results in this paper are about non-
interactive (single-round) protocols in the shuffle model (in the multi-message
setting, all messages are generated at once). Though generic SMPC protocols
can be turned into differentially private protocols (see, e.g., Sect. 10.2 in [93] and
the references therein), they almost always use multiple rounds, and often have
large overheads compared to the cost of computing f(x1, . . . , xn) in a non-private
setting.

7 Conclusions and Open Problems

The shuffle model is a promising new privacy framework motivated by the sig-
nificant interest in anonymous communication. In this paper, we studied the
fundamental task of frequency estimation in this setup. In the single-message
shuffle model, we established nearly tight bounds on the error for frequency esti-
mation: while in the local model the error is well-known to be Θ̃(

√
n), we proved

that the right bound in the single-message model is the minimum of Θ̃(n1/4) and
Θ̃(

√
B), which interestingly are achieved by shuffling the widely used RAPPOR

and the B-randomized response protocols, respectively. Moreover, we proved a
nearly tight lower bound on the number of users required to solve the selection
problem in the single-message shuffle model. We also obtained communication-
efficient multi-message private-coin protocols with exponentially smaller error
for frequency estimation, heavy hitters, range counting, and M-estimation of
the median and quantiles (and more generally sparse non-adaptive SQ algo-
rithms). We also gave public-coin protocols with, in addition, small query times.
Our work raises several interesting open questions and points to fertile future
research directions.

Our Ω̃(B) lower bound for selection (Theorem 3) holds for single-message
protocols even with unbounded communication. We conjecture that a lower
bound on the error of BΩ(1) should hold even for multi-message protocols
(with unbounded communication) in the shuffle model, and we leave this as
a very interesting open question. Such a lower bound would imply a first separa-
tion between the central and (unbounded communication) multi-message shuffle
model.

Another interesting question is to obtain a private-coin protocol for frequency
estimation with polylogarithmic error, communication per user, and query time;
reducing the query time of our current protocol below Õ(n) seems challenging.
In general, it would also be interesting to reduce the polylogarithmic factors in
our guarantees for range counting as that would make them practically useful.

Another interesting direction for future work is to determine whether our
efficient protocols for frequency estimation with much less error than what is

484 B. Ghazi et al.

possible in the local model could lead to more accurate and efficient shuffle model
protocols for fundamental primitives such as clustering [91] and distribution
testing [1], for which current locally differentially private protocols use frequency
estimation as a black box.

Finally, a promising future direction is to extend our protocols for sparse
non-adaptive SQ algorithms to the case of sparse aggregation. Note that the
queries made by sparse non-adaptive SQ algorithms correspond to the special
case of sparse aggregation where all non-zero queries are equal to 1. Extending
our protocols to the case where the non-zero coordinates can be arbitrary num-
bers would, e.g., capture sparse stochastic gradient descent (SGD) updates, an
important primitive in machine learning. More generally, it would be interesting
to study the complexity of various other statistical and learning tasks [13,25–
27,88,98] in the shuffle privacy model.

References

1. Acharya, J., Canonne, C., Freitag, C., Tyagi, H.: Test without trust: optimal
locally private distribution testing. In: AISTATS, pp. 2067–2076 (2019)

2. Acharya, J., Sun, Z.: Communication complexity in locally private distribution
estimation and heavy hitters. ICML 97, 51–60 (2019)

3. Acharya, J., Sun, Z., Zhang, H.: Hadamard response: estimating distributions
privately, efficiently, and with little communication. In: AISTATS, pp. 1120–1129
(2019)

4. Agarwal, N., Suresh, A.T., Yu, F.X.X., Kumar, S., McMahan, B.: cpSGD:
communication-efficient and differentially-private distributed SGD. In: Advances
in Neural Information Processing Systems, pp. 7564–7575 (2018)

5. Apple Differential Privacy Team: Learning with privacy at scale. Apple
Mach. Learn. J. (2017). https://machinelearning.apple.com/docs/learning-with-
privacy-at-scale/appledifferentialprivacysystem.pdf

6. Balcer, V., Cheu, A.: Separating local & shuffled differential privacy via his-
tograms. In: ITC, pp. 1:1–1:14 (2020)

7. Balle, B., Bell, J., Gascón, A., Nissim, K.: Differentially private summation with
multi-message shuffling. CoRR arXiv:1906.09116 (2019)

8. Balle, B., Bell, J., Gascón, A., Nissim, K.: Improved summation from shuffling.
arXiv:1909.11225 (2019)

9. Balle, B., Bell, J., Gascón, A., Nissim, K.: The privacy blanket of the shuffle model.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
638–667. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 22

10. Balle, B., Bell, J., Gascón, A., Nissim, K.: Private summation in the multi-message
shuffle model. arXiv:2002.00817 (2020)

11. Bassily, R., Nissim, K., Stemmer, U., Thakurta, A.G.: Practical locally private
heavy hitters. In: NIPS, pp. 2288–2296 (2017)

12. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms.
In: STOC, pp. 127–135 (2015)

13. Bassily, R., Smith, A.D., Thakurta, A.: Private empirical risk minimization: effi-
cient algorithms and tight error bounds. In: FOCS, pp. 464–473 (2014)

https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
http://arxiv.org/abs/1906.09116
http://arxiv.org/abs/1909.11225
https://doi.org/10.1007/978-3-030-26951-7_22
http://arxiv.org/abs/2002.00817

On the Power of Multiple Anonymous Messages 485

14. Beimel, A., Nissim, K., Stemmer, U.: Private learning and sanitization: pure vs.
approximate differential privacy. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 363–
378. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6 26

15. Bentley, J.L.: Decomposable searching problems. IPL 8(5), 244–251 (1979)
16. Bittau, A., et al.: Prochlo: strong privacy for analytics in the crowd. In: SOSP,

pp. 441–459 (2017)
17. Blum, A., Dwork, C., Nissim, K., McSherry, F.: Practical privacy: the SuLQ

framework. In: PODS, pp. 128–138 (2005)
18. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive

database privacy. In: STOC, pp. 609–618 (2008)
19. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasmpy-

totic Theory of Independence. Clarendon Press, Oxford (2012)
20. Bun, M., Nelson, J., Stemmer, U.: Heavy hitters and the structure of local privacy.

In: PODS, pp. 435–447 (2018)
21. Bun, M., Nissim, K., Stemmer, U., Vadhan, S.: Differentially private release and

learning of threshold functions. In: FOCS, pp. 634–649 (2015)
22. Chan, T.H., Shi, E., Song, D.: Private and continual release of statistics. ACM

Trans. Inf. Syst. Secur. 14(3), 26:1–26:24 (2011)
23. Chan, T.H.H., Shi, E., Song, D.: Optimal lower bound for differentially private

multi-part aggregation. In: European Symposium on Algorithms (2012)
24. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data

streams. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo,
R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 59

25. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: NIPS,
pp. 289–296 (2008)

26. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical
risk minimization. JMLR 12, 1069–1109 (2011)

27. Chaudhuri, K., Sarwate, A.D., Sinha, K.: A near-optimal algorithm for
differentially-private principal components. JMLR 14(1), 2905–2943 (2013)

28. Chen, L., Ghazi, B., Kumar, R., Manurangsi, P.: On distributed differential pri-
vacy and counting distinct elements. arXiv:2009.09604 (2020)

29. Cheu, A., Smith, A.D., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differen-
tial privacy via mixnets. In: EUROCRYPT, pp. 375–403 (2019)

30. Cormode, G.: Sketch techniques for approximate query processing. In: Founda-
tions and Trends in Databases. Now Publishers (2011)

31. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. VLDB
1(2), 1530–1541 (2008)

32. Cormode, G., Kulkarni, T., Srivastava, D.: Marginal release under local differen-
tial privacy. In: SIGMOD, pp. 131–146 (2018)

33. Cormode, G., Kulkarni, T., Srivastava, D.: Answering range queries under local
differential privacy. In: Proceedings of International Conference on Management
of Data (SIGMOD), pp. 1832–1834 (2019)

34. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the Count-
Min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

35. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. TODS 30(1), 249–278 (2005)

36. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially pri-
vate spatial decompositions. In: ICDE, pp. 20–31 (2012). https://doi.org/10.1109/
ICDE.2012.16

https://doi.org/10.1007/978-3-642-40328-6_26
https://doi.org/10.1007/3-540-45465-9_59
http://arxiv.org/abs/2009.09604
https://doi.org/10.1109/ICDE.2012.16
https://doi.org/10.1109/ICDE.2012.16

486 B. Ghazi et al.

37. Cormode, G., Yi, K.: Small Summaries for Big Data. Cambridge University Press,
Cambridge (2020). http://cormode.org/ssbd

38. Cover, T.A., Thomas, J.M.: Elements of Information Theory. Wiley, New York
(1991)

39. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Secure Multiparty Computation. Cam-
bridge University Press, Cambridge (2015)

40. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: NIPS,
pp. 3571–3580 (2017)

41. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical mini-
max rates. In: FOCS, pp. 429–438 (2013)

42. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for
locally private estimation. JASA 113(521), 182–201 (2018)

43. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 1

44. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://
doi.org/10.1007/11761679 29

45. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: STOC, pp. 371–
380 (2009)

46. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

47. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under
continual observation. In: STOC, pp. 715–724 (2010)

48. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N.: Pure differential privacy
for rectangle queries via private partitions. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 735–751. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 30

49. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complex-
ity of differentially private data release: efficient algorithms and hardness results.
In: STOC, pp. 381–390 (2009)

50. Dwork, C., Roth, A.: The Algorithmic Foundations of Differential Privacy. Now
Publishers Inc., Delft (2014)

51. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theoret. Comput. Sci. 9(3–4), 211–407 (2014)

52. Edmonds, A., Nikolov, A., Ullman, J.: The power of factorization methods in
local and central differential privacy. In: Symposium on the Theory of Computing
(2020)

53. Erlingsson, Ú., et al.: Encode, shuffle, analyze privacy revisited: formalizations
and empirical evaluation. arXiv preprint arXiv:2001.03618 (2020)

54. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta,
A.: Amplification by shuffling: from local to central differential privacy via
anonymity. In: SODA, pp. 2468–2479 (2019)

55. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: CCS, pp. 1054–1067 (2014)

56. Estan, C., Varghese, G.: New directions in traffic measurement and accounting:
focusing on the elephants, ignoring the mice. TOCS 21(3), 270–313 (2003)

57. Free Haven: Selected papers in anonymity. https://www.freehaven.net/anonbib/

http://cormode.org/ssbd
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-662-48800-3_30
http://arxiv.org/abs/2001.03618
https://www.freehaven.net/anonbib/

On the Power of Multiple Anonymous Messages 487

58. Ghazi, B., Golowich, N., Kumar, R., Manurangsi, P., Pagh, R., Velingker, A.:
Pure differentially private summation from anonymous messages. In: Information
Theoretic Cryptography (ITC) (2020)

59. Ghazi, B., Manurangsi, P., Pagh, R., Velingker, A.: Private aggregation from fewer
anonymous messages. arXiv:1909.11073 (2019)

60. Ghazi, B., Pagh, R., Velingker, A.: Scalable and differentially private distributed
aggregation in the shuffled model. arXiv:1906.08320 (2019)

61. Gilbert, A.C., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.:
Fast, small-space algorithms for approximate histogram maintenance. In: STOC,
pp. 389–398 (2002)

62. Greenberg, A.: Apple’s “differential privacy” is about collecting your data - but
not your data. Wired, 13 June 2016

63. Greenwald, M., Khanna, S., et al.: Space-efficient online computation of quantile
summaries. ACM SIGMOD Rec. 30(2), 58–66 (2001)

64. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differ-
entially private data release. In: NIPS, pp. 2339–2347 (2012). http://dl.acm.org/
citation.cfm?id=2999325.2999396

65. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: FOCS, pp. 61–70 (2010)

66. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially
private histograms through consistency. VLDB 3(1–2), 1021–1032 (2010). https://
doi.org/10.14778/1920841.1920970

67. Hsu, J., Khanna, S., Roth, A.: Distributed private heavy hitters. In: Czumaj, A.,
Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp.
461–472. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-
7 39

68. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: FOCS, pp. 239–248 (2006)

69. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under
local privacy. In: ICML, pp. 2436–2444 (2016)

70. Karnin, Z., Lang, K., Liberty, E.: Optimal quantile approximation in streams. In:
FOCS, pp. 71–78 (2016)

71. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Rashkodnikova, S., Smith, A.: What
can we learn privately? In: FOCS, pp. 531–540 (2008)

72. Kilian, J., Madeira, A., Strauss, M.J., Zheng, X.: Fast private norm estimation
and heavy hitters. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 176–193.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 11

73. Lei, J.: Differentially private m-estimators. In: NIPS, pp. 361–369 (2011)
74. Li, C., Hay, M., Rastogi, V., Milau, G., McGregor, A.: Optimizing linear counting

queries under differential privacy. In: PODS, pp. 123–134 (2010)
75. Li, C., Miklau, G.: An adaptive mechanism for accurate query answering under

differential privacy. VLDB 5(6), 514–525 (2012)
76. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity

and l-diversity. In: ICDE, pp. 106–115 (2007)
77. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other

quantiles in one pass and with limited memory. ACM SIGMOD Rec. 27(2), 426–
435 (1998)

78. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS,
pp. 94–103 (2007)

79. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2),
143–152 (1982)

http://arxiv.org/abs/1909.11073
http://arxiv.org/abs/1906.08320
http://dl.acm.org/citation.cfm?id=2999325.2999396
http://dl.acm.org/citation.cfm?id=2999325.2999396
https://doi.org/10.14778/1920841.1920970
https://doi.org/10.14778/1920841.1920970
https://doi.org/10.1007/978-3-642-31594-7_39
https://doi.org/10.1007/978-3-642-31594-7_39
https://doi.org/10.1007/978-3-540-78524-8_11

488 B. Ghazi et al.

80. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. TCS
12(3), 315–323 (1980)

81. Muthukrishnan, S., Nikolov, A.: Optimal private halfspace counting via discrep-
ancy. In: STOC, pp. 1285–1292 (2012)

82. Nguyen, T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J.: Collecting
and analyzing data from smart device users with local differential privacy.
arXiv:1606.05053 (2016)

83. Nikolov, A., Talwar, K., Zhang, L.: On the geometry of differential privacy: the
sparse and approximate cases. In: STOC, pp. 351–360 (2013)

84. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

85. Qardaji, W., Yang, W., Li, N.: Understanding hierarchical methods for differ-
entially private histograms. VLDB 6(14), 1954–1965 (2013). https://doi.org/10.
14778/2556549.2556576

86. Roos, B.: Binomial approximation to the Poisson binomial distribution: the
Krawtchouk expansion. Theory Prob. Appl. 45(2), 258–272 (2006)

87. Shankland, S.: How Google tricks itself to protect Chrome user privacy. CNET,
October 2014

88. Smith, A.D.: Privacy-preserving statistical estimation with optimal convergence
rates. In: STOC, pp. 813–822 (2011)

89. Steinke, T., Ullman, J.: Between pure and approximate differential privacy. J.
Priv. Confid. 7(2), 3–22 (2016)

90. Steinke, T., Ullman, J.: Tight lower bounds for differentially private selection. In:
FOCS, pp. 552–563 (2017)

91. Stemmer, U.: Locally private k-means clustering. In: Proceedings of the 2020
Symposium on Discrete Algorithms (2020)

92. Ullman, J.: Tight lower bounds for locally differentially private selection.
arXiv:1802.02638 (2018)

93. Vadhan, S.: The complexity of differential privacy. In: Lindell, Y. (ed.) Tutorials
on the Foundations of Cryptography. ISC, pp. 347–450. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57048-8 7

94. Wagh, S., He, X., Machanavajjhala, A., Mittal, P.: DP-cryptography: mar-
rying differential privacy and cryptography in emerging applications. CoRR
abs/2004.08887 (2020). https://arxiv.org/abs/2004.08887, to appear in Commu-
nications of the ACM

95. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for
frequency estimation. In: USENIX Security, pp. 729–745 (2017)

96. Wang, T., Xu, M., Ding, B., Zhou, J., Li, N., Jha, S.: Practical and robust privacy
amplification with multi-party differential privacy. arXiv:1908.11515 (2019)

97. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. JASA 60(309), 63–69 (1965)

98. Wasserman, L., Zhou, S.: A statistical framework for differential privacy. JASA
105(489), 375–389 (2010)

99. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. TKDE
23(8), 1200–1214 (2010)

100. Ye, M., Barg, A.: Optimal schemes for discrete distribution estimation under local
differential privacy. In: ISIT, pp. 759–763 (2017)

101. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles.
Algorithmica 65(1), 206–223 (2013)

http://arxiv.org/abs/1606.05053
https://doi.org/10.14778/2556549.2556576
https://doi.org/10.14778/2556549.2556576
http://arxiv.org/abs/1802.02638
https://doi.org/10.1007/978-3-319-57048-8_7
https://arxiv.org/abs/2004.08887
http://arxiv.org/abs/1908.11515

Non-Interactive Anonymous Router

Elaine Shi(B) and Ke Wu

Carnegie Mellon University, Pittsburgh, USA

Abstract. Anonymous routing is one of the most fundamental online
privacy problems and has been studied extensively for decades. Almost
all known approaches for anonymous routing (e.g., mix-nets, DC-nets,
and others) rely on multiple servers or routers to engage in some interac-
tive protocol; and anonymity is guaranteed in the threshold model, i.e.,
if one or more of the servers/routers behave honestly.

Departing from all prior approaches, we propose a novel non-
interactive abstraction called a Non-Interactive Anonymous Router
(NIAR), which works even with a single untrusted router. In a NIAR
scheme, suppose that n senders each want to talk to a distinct receiver.
A one-time trusted setup is performed such that each sender obtains
a sending key, each receiver obtains a receiving key, and the router
receives a token that “encrypts” the permutation mapping the senders
to receivers. In every time step, each sender can encrypt its message
using its sender key, and the router can use its token to convert the n
ciphertexts received from the senders to n transformed ciphertexts. Each
transformed ciphertext is delivered to the corresponding receiver, and
the receiver can decrypt the message using its receiver key. Imprecisely
speaking, security requires that the untrusted router, even when collud-
ing with a subset of corrupt senders and/or receivers, should not be able
to compromise the privacy of honest parties, including who is talking to
who, and the message contents.

We show how to construct a communication-efficient NIAR scheme
with provable security guarantees based on the standard Decision Lin-
ear assumption in suitable bilinear groups. We show that a compelling
application of NIAR is to realize a Non-Interactive Anonymous Shuf-
fler (NIAS), where an untrusted server or data analyst can only decrypt
a permuted version of the messages coming from n senders where the
permutation is hidden. NIAS can be adopted to construct privacy-
preserving surveys, differentially private protocols in the shuffle model,
and pseudonymous bulletin boards.

Besides this main result, we also describe a variant that achieves fault
tolerance when a subset of the senders may crash. Finally, we further
explore a paranoid notion of security called full insider protection, and
show that if we additionally assume sub-exponentially secure Indistin-
guishability Obfuscation and as sub-exponentially secure one-way func-
tions, one can construct a NIAR scheme with paranoid security.

A full version of the paper can be found online [68].

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 489–520, 2021.
https://doi.org/10.1007/978-3-030-77883-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_17

490 E. Shi and K. Wu

1 Introduction

The Internet has become a platform that billions of users rely on in their
daily lives, and protecting users’ online privacy is a significant challenge we
face. Anonymous communication systems provide a way for users to communi-
cate without leaking their identities or message contents. There has been sev-
eral decades of work dedicated to the design, implementation, and deployment
of anonymous communication systems [8,18,34,35,38,39,42,50,64,70,71,74],
and numerous abstractions and techniques have been explored, including mix-
nets [8,18,34], the Dining Cryptographers’ nets [9,35,39], onion routing [29,
41,42,50], multi-party-computation-based approaches [13], multi-server PIR-
write [38,48,60], as well as variants/improvements of the above [70,71,74]. We
refer the readers to several excellent surveys on this rich line of work [40,44,69].

To the best of our knowledge, almost all known anonymous routing schemes
rely on multiple routers or servers to engage in an interactive protocol, and more-
over, security is guaranteed in the threshold model, i.e., assuming that one or
more of the routers remain honest. For example, the mix-net family of schemes
typically require each router along the way to shuffle the input ciphertexts and
remove a layer of encryption; the DC-net family of schemes require multiple
parties to engage in a cryptographic protocol, and so on.

Departing from all prior approaches which are interactive and rely on some
form of threshold cryptography, we ask the following natural question:

Can we achieve anonymous routing non-interactively on a single untrusted
router?

1.1 Defining Non-Interactive Anonymous Router (NIAR)

Our first contribution is a conceptual one: we formulate a new abstraction called
a non-interactive anonymous router (NIAR). The abstraction is in fact quite
natural, and in hindsight, it may even be a little surprising why it has not been
considered before.

Non-Interactive Anonymous Router. Imagine that there are n senders and
n receivers, and each sender wishes to speak with a distinct receiver. Henceforth
let π denote the permutation that maps each sender to its intended receiver,
i.e., each sender i ∈ [n] wants to speak to receiver π(i). A NIAR scheme has the
following syntax:

– ({eki, rki}i∈[n], tk) ← Setup(1κ, n, π): First, we run a one-time trusted
setup procedure that takes the security parameter 1κ, the number of
senders/receivers n, and the routing permutation π, and produces a sender
key eki for each sender i ∈ [n], and a receiver key rki for each receiver i ∈ [n].
Moreover, the setup procedure also produces a token tk for the router which
encodes the secret permutation π. Note that the trusted setup can be decen-
tralized using standard multi-party computation techniques.

Non-Interactive Anonymous Router 491

– cti,t ← Enc(eki, xi,t, t): With this one-time setup, we can allow the n senders
to anonymously send T number of packets to their intended receivers. In every
time step t ∈ [T], each sender i ∈ [n] encrypts its message xi,t using its secret
key eki by calling Enc(eki, xi,t, t), and sends the resulting ciphertext cti,t to
the router.

– {ct′i,t}i∈[n] ← Rte(tk, {cti,t}i∈[n]): The untrusted router uses its token to con-
vert the n ciphertexts collected from the senders into n transformed cipher-
texts. This is accomplished by calling Rte(tk, {cti,t}i∈[n]). The router then
forwards each transformed ciphertext ct′i,t to the corresponding recipient i.

– xi ← Dec(rki, ct
′
i,t): Finally, the recipients use their respective secret keys to

decrypt the plaintexts by calling Dec(rki, ct
′
i,t).

At a very high level, we want that the untrusted router learns no information
about the routing permutation π as well as the messages exchanged. Moreover,
the scheme should offer robustness even when a (potentially majority) subset of
the senders and/or receivers collude with the untrusted router. It turns out that
defining robustness under collusion is non-trivial and the security requirements
can vary from application to application—we will discuss the security definitions
in more detail later.

Communication Efficiency. The first näıve idea is to let each sender-receiver
pair share a freshly and randomly chosen secret key during the setup. During
each time step, each sender encrypts its messages using its secret key, and sends
the ciphertext to the router. The router then forwards all n ciphertexts to each
of the n receivers; and each receiver’s secret key allows it to decrypt exactly one
among the n ciphertexts received. This scheme protects the plaintext messages
as well as the routing permutation π from the untrusted router; unfortunately,
it incurs quadratic communication overhead in each time step1.

Throughout the rest of the paper, we will require that the NIAR scheme
preserve communication efficiency, that is, the communication blowup relative
to sending the messages in the clear must be upper bounded by poly(κ) where κ is
the security parameter. In other words, suppose, without loss of generality, that
in each time step, each sender has one bit to send, then the total communication
(among all senders and receivers) per time step must be upper bounded by
O(n) · poly(κ).

Non-Interactive Anonymous Shuffler. One important application and spe-
cial case of NIAR is to realize a non-interactive anonymous shuffler (NIAS). To
understand what is a non-interactive anonymous shuffler, it helps to think of the
following application. Suppose that during a pandemic, University X wants to
implement a privacy-preserving daily check mechanism, where students and fac-
ulty each send a short message to report their health conditions every day, and
whether they could have been exposed to the virus. To protect each individual’s
1 Furthermore, while this näıve scheme works for a private-messaging scenario, and

does not work for the non-interactive anonymous shuffler application to be described
later, due to the fact that a receiver colluding with the router can learn which sender
it is paired with. We will elaborate on this point when we define security.

492 E. Shi and K. Wu

privacy, we want to shuffle the messages according to some randomly chosen per-
mutation π, such that the history of an individual’s reports is pseudonymous.
In this scenario, we can employ a NIAR scheme, and give the data analyst the
token tk as well as all n receiver keys. This ensures that the data analyst can
decrypt only a shuffled list of the plaintexts, and moreover the permutation is
hidden from the data analyst.

In other words, a Non-Interactive Anonymous Shuffler (NIAS) is a special
case of NIAR where the router and all the receivers are a single party. In Sect. 1.4,
we will present numerous applications of NIAR and NIAS. We point out that
the NIAS special case in fact imposes some extra security requirements on top
of our basic security notion for NIAR, in the sense that even a receiver cannot
know which sender it is paired up with—we will discuss how to define security
next.

1.2 Defining Security Requirements

If all receivers were fully trusted, then another näıve idea would be to have
every sender encrypt its message along with its respective destination using
a Fully Homomorphic Encryption (FHE) scheme. In this way, the untrusted
router can accomplish the routing through homomorphic evaluation. However, all
receivers must be given the FHE’s secret key to decrypt the messages. Therefore,
if even a single receiver colludes with the untrusted router, then all other honest
players’ anonymity would be broken. This is clearly unacceptable since in most
applications of anonymous routing, anyone can become a sender or a receiver,
including the owner of the router. Approaches that construct special-purpose
homomorphic encryption schemes optimized for shuffling suffer from the same
drawback [11].

We therefore require a security notion that provides robustness even when
a subset of the senders and receivers can be corrupt, and potentially colluding
with the untrusted router. It turns out that how to define robustness against
collusion requires some careful thinking, since the security requirements can
vary from application to application.

Basic Notion. Our basic security notion is motivated by a private-messaging
scenario, e.g., members of a secret society wish to send private emails without
revealing their identities and their correspondence to the public. In this case,
each player (i.e., either sender or receiver) knows who it is talking to. There-
fore, if the adversary who controls the router additionally corrupts a subset of
the senders and receivers, the adversary can learn who the corrupt senders and
receivers are paired up with, as well as the messages received by corrupt receivers
(from honest senders) in every time step. Our basic security notion requires that
besides this natural leakage, the adversary should not learn any additional infor-
mation. Observe that our communication-inefficient näıve solution that forwards
all ciphertexts to every receiver would satisfy this basic notion.

Receiver-Insider Protection. The basic security notion, however, turns out to
be insufficient for the NIAS application. In the NIAS application, a single entity

Non-Interactive Anonymous Router 493

acts as the router and all n receivers—for example, in our earlier “anonymous
daily check-in” application, the data analyst has all receiver keys {rki}i∈[n] as
well as the token tk. To protect the users’ pseudonymity, it is important that the
data analyst does not learn which decrypted report corresponds to which user.
In Sect. 1.4, we present more applications for NIAS, and all of them have the
same security requirement.

We therefore propose a strengthened security notion, called receiver-insider
protection, that is suitable and sufficient for NIAS-type applications. Here, we
require that even a receiver does not learn which sender it is speaking with;
however, a sender may learn which receiver it is speaking with. Now, if the
adversary who controls the router additionally corrupts a subset of the senders
and receivers, the adversary can learn the corrupt-to-∗ part2 of the permutation
π as well as the messages received by corrupt receivers in every time step. Besides
this natural leakage, the adversary should not learn anything else.

Full Insider Protection. While receiver-insider protection seems sufficient for
most applications including NIAS, we additionally explore a paranoid notion of
security. Here, we want that every player has no idea who it is speaking with,
including both senders and receivers. Nonetheless, the corrupt-to-corrupt part of
the permutation is inherently leaked to the adversary and this leakage cannot
be avoided: since a corrupt sender can always try encrypting some message and
check whether any corrupt receiver received the corresponding message. There-
fore, our most paranoid notion, which we call full insider protection, requires
that an adversary controlling the router and a subset of corrupt senders and
receivers learns only the corrupt-to-corrupt part of the permutation π, as well as
the messages received by corrupt receivers in every time step, but nothing else.

In Sect. 1.4, we describe more applications of NIAR and NIAS, and at that
point, the reader can see how different applications require different notions. Of
course, one can always go for the most paranoid notion; but the weaker notions
suffice for a wide range of natural applications. Therefore, differentiating between
these notions can lead to more efficient constructions.

Equivalence Between Simulation- and Indistinguishability-Based
Notions. Later in the paper, we shall formalize the above security notions using
two definitional approaches: simulation-based notions and indistinguishability-
based notions. We then prove that in fact, each simulation-based notion (without
insider protection, with receiver-insider protection, or with full insider protec-
tion) is equivalent to the corresponding indistinguishability-based notion. While
the simulation-based notion more naturally captures the security requirements
we want to express, the indistinguishability-based notions are often easier to
work with in proofs.

Remark 1 (NIAR/NIAS requires no network-layer anonymity protection). We
point out that whenever a NIAR or NIAS scheme is deployed, one advantage

2 Here, ∗ denotes a wildcard; thus the corrupt-to-∗ part of the permutation includes
who every corrupt sender is speaking with.

494 E. Shi and K. Wu

is that we would no longer need any network-layer anonymity protection (e.g.,
Tor [42] or DC nets [35]). This is in contrast to a vast line of works that lever-
age cryptographic techniques such as zero-knowledge proofs for anonymity pro-
tection, e.g., E-Cash [32,33], e-voting [10,62], anonymous credentials [14,20],
ZCash [21], and others [53,54]—in these cases, an Internet Service Provider con-
trolling the network routers can completely break anonymity despite the cryp-
tographic techniques employed.

1.3 Our Results

Main Construction: NIAR with Receiver-Insider Protection and
NIAS. To situate our results in context, it helps to first think of the following
näıve construction based on a virtual-blackbox (VBB) obfuscator. During setup,
we publish the public key pk of a public-key encryption (PKE) scheme, and
moreover, we give each sender-receiver pair a symmetric encryption key. During
each routing step, each sender uses its symmetric key to encrypt its respective
message, resulting what we henceforth call an inner ciphertext. The sender then
encrypts the inner ciphertext with the public key encryption scheme, resulting in
an outer ciphertext. During the setup, we give the router a VBB obfuscation of
the following program: use the PKE’s secret key to decrypt each sender’s outer
ciphertext, obtain a list of n inner ciphertexts, and then apply the permutation
π to the n inner ciphertexts and output the result. Now, during each routing
step, the router can simply apply its VBB obfuscated program to the list of
n outer ciphertexts collected from the senders, and the result would be n per-
muted inner ciphertexts. The i-th inner ciphertext is then forwarded to the i-th
receiver where i ∈ [n]. Note that in this VBB-based solution, the program obfus-
cation hides the secret key of the PKE scheme as well as the secret permutation
π. One can verify that indeed, this VBB-based construction satisfies security
with receiver-insider protection; but it does not provide full insider protection.
Specifically, a corrupt sender i∗ ∈ [n] colluding with the router can simply plant
a random inner ciphertext c, and see which of the receivers receives c at the
end—this must be the receiver i∗ is speaking with3.

The drawback with this näıve solution is obvious: it is well-known that VBB
obfuscation is impossible to attain for general functions if one-way functions
exist [17]. We therefore ask,

Can we construct a NIAR scheme from standard cryptographic assumptions?

We construct a NIAR scheme that achieves security with receiver-insider pro-
tection, relying on the Decisional Linear assumption in suitable bilinear groups.
Our scheme satisfies communication efficiency: in each time step, each player
sends or receives only poly(κ) bits of data (assuming, without loss of generality,
that each sender wants to send one bit during each time step). Furthermore, the

3 In general, achieving full insider security appears much more challenging than our
basic notion or receiver-only insider protection. Indeed, we will discuss this in further
detail later on.

Non-Interactive Anonymous Router 495

public and secret key sizes are poly(n, κ); and yet the scheme can support an
unbounded number of time steps.

At a high level, in our construction, each sender creates an inner encryption
of its message using a symmetric key shared with its receiver, and then encrypts
the inner ciphertext again using a special outer encryption scheme. With an
appropriately constructed token, the router can output a permuted list of inner
ciphertexts. We state the aforementioned result in the following theorem:

Theorem 1 (NIAR with receiver-insider protection). Assume that the
Decisional Linear assumption holds in certain bilinear groups. Then, there exists
a NIAR scheme with receiver-insider protection, where the public key and secret
key sizes are at most poly(n, κ) bits, and the per-player communication cost in
each routing step is only poly(κ) assuming that each sender has one bit to send
per time step. Further, the scheme supports an unbounded number of time steps.

The above theorem also implies a NIAS scheme with the same performance
bounds. Although our work should primarily be viewed as an initial exploration
of NIAR, the constructions that led to Theorem1 is potentially implementable.

NIAR with Full Insider Protection. The receiver-insider protection
achieved by Theorem 1 is sufficient for most application scenarios including
NIAS. Nonetheless, it is interesting to ask whether one can achieve full insider
protection. As mentioned, full insider protection is the strongest security notion
one can hope for in the context of NIAR, since here we leak only the inevitable.
Achieving full insider security, however, appears much more challenging. The
reason is that we do not even want a corrupt sender to learn which honest
receiver it is talking to. However, in our schemes so far (even the aforementioned
VBB-based construction), a corrupt sender i∗ ∈ [n] colluding with the router
can choose a random inner ciphertext c and just check which receiver receives c.
In this way, the adversary can learn the corrupt-to-∗ part of the permutation π.

Again, it is instructive to first consider how to achieve full insider protection
using VBB obfuscation. To achieve such paranoid security, one way is to modify
the previous VBB-based scheme such that inside the VBB, we decrypt the n
input ciphertexts, permute them, and then reencrypt them under the receivers’
keys, respectively. To defeat the aforementioned attack, it is important that
the reencryption step produces random transformed ciphertexts. In fact, one
useful insight we can draw here is that for any scheme that provides full insider
protection, if the adversary controlling a corrupt sender˜i ∈ [n] switches ˜i’s input
ciphertext, the transformed ciphertexts corresponding to all receivers output by
the Rte procedure must all change.

We show how to achieve full insider protection by additionally relying on
sub-exponentially secure indistinguishability obfuscation and sub-exponentially
secure one-way functions.

Theorem 2 (NIAR with full insider protection). Assume the existence of
sub-exponentially secure indistinguishability obfuscator, sub-exponentially secure

496 E. Shi and K. Wu

one-way functions, and that the Decisional Linear assumption (with standard
polynomial security) holds in certain bilinear groups. Then, there exists a NIAR
scheme with full insider protection, and whose key sizes and communication cost
match those of Theorem1.

Notably, a flurry of very recent works [27,47,56,73] show that sub-
exponentially secure indistinguishability obfuscator can be constructed under
a variety of assumptions some of which are considered well-founded.

Extension: Fault-Tolerant NIAR. Similar to the line of work on Multi-Client
Functional Encryption (MCFE) [2,37,37,51,66], a drawback with the present
formulation is that a single crashed sender can hamper liveness. Basically, the
router must collect ciphertexts from all senders in each time step to successfully
evaluate the Rte procedure. To the best of our knowledge, fault tolerance has
been little investigated in this line of work.

We therefore formulate a variation of our basic NIAR abstraction, called
fault-tolerant NIAR. In a fault-tolerant NIAR, if a subset of the senders have
crashed, the remaining set of senders can encrypt their messages in a way that
is aware of the set of senders who are known to be still online (henceforth
denoted O). Similarly, the router will perform the Rte procedure in a way that
is aware of O, too. In this way, the router can continue to perform the rout-
ing, without being stalled by the crashed senders. Similar to our basic notion,
we define receiver-insider protection and full-insider protection for our fault-
tolerant NIAR abstraction, and show that the most natural simulation-based
and indistinguishability-based notions are equivalent.

We show that our previous NIAR constructions of Theorem1 and Theorem 2
can be extended to the fault-tolerant setting, and the result is stated in the
following theorem.

Theorem 3 (Informal: fault-tolerant NIAR). Suppose that the Decisional
Linear assumption holds in suitable bilinear groups. Then, there exists a fault-
tolerant NIAR scheme that leaks only the (corrupt+crashed)-to-∗ part of the
permutation as well as messages received by corrupt receivers, but nothing else
(see the online full version [68] for formal security definitions).

Suppose that the Decisional Linear assumption (with standard polynomial
security) holds in suitable bilinear groups, and assume the existence of sub-
exponentially secure indistinguishability obfuscation and one-way functions.
Then, there exists a fault-tolerant NIAR scheme that leaks only the inherent
leakage, that is, the (corrupt+crashed)-to-corrupt part of the permutation as well
as messages received by corrupt receivers, but nothing else (see the online full
version [68] for formal security definitions).

Furthermore, both schemes achieve the same key sizes and communication
efficiency as in Theorem1.

Non-Interactive Anonymous Router 497

1.4 Applications of NIAR and NIAS

NIAR adds to the existing suite of primitives [8,18,34,35,38,39,42,50,70,71,74]
that enable anonymous routing. In comparison with prior works, NIAR adopts a
different trust model since it does not rely on threshold cryptography. Arguably
it also has a somewhat simpler abstraction than most existing primitives, partly
due to the non-interactive nature.

We discuss two flavors of applications for NIAR, including 1) using NIAR in
private messaging, which is the more classical type of application; and 2) using
NIAR as a non-interactive anonymous shuffler (NIAS). We will use these appli-
cations to motivate the need for the different security notions, without insider
protection, with receiver-insider protection, or with full insider protection. We
shall begin with NIAS-type applications since some of these applications are of
emerging interest.

Using NIAR as a Non-Interactive Anonymous Shuffler. NIAR can serve
as a non-interactive anonymous shuffler (NIAS), which shuffles n senders’ mes-
sages in a non-interactive manner, such that the messages become unlinkable to
their senders. This allows the senders to publish messages under a pseudonym,
and the pseudonymity does not have to rely on the network layer being anony-
mous. In a non-interactive shuffler type of application, typically a single entity
acts as the router and all n receiver—therefore, typically these applications
require receiver-insider protection. To understand what is a non-interactive
anonymous shuffler, it is most instructive to look at some example applications.

Anonymous Bulletin Board or Forum. Imagine that a group of users want to
post messages pseudonymously to a website every day, e.g., to discuss some
sensitive issues. The users act as the NIAR senders and encrypt their messages
every day. The server, which acts as both the router and all the receivers in
NIAR, decrypts a permuted list of the messages and posts them on the website.
In this way, the untrusted server can mix the n senders’ messages, and the
pseudonymity guarantee need not rely on additional network-layer anonymity
protection. In other words, even a powerful attacker controlling all routers in
the world as well as the server cannot break the pseudonymity guarantees.

Since the server takes the role of the router and all n receivers, we would
need a NIAR scheme that provides receiver-insider protection. This way, even
when all the receivers are in the control of the adversary, the adversary cannot
deanonymize honest senders.

Distributed Differential Privacy in the Shuffle Model. There has been a growing
appetite for large-scale, privacy-preserving federated learning, especially due to
interest and investment from big players such as Google and Facebook. Unlike
the classical “central model” where we have a trusted database curator [43], in
a federated learning scenario, the data collector is not trusted, and yet it wants
to learn interesting statistics and patterns over data collected by multiple users’
mobile phones, web browsers, and so on. This model is often referred to the

498 E. Shi and K. Wu

“local model”. It is understood that without any additional assumptions and
without cryptographic hardness, mechanisms in the local model incur a utility
loss [19,31,67] that is significantly worse than the central model (given a fixed
privacy budget).

Recently, an elegant line of work [15,16,23,36,45,49] emerged, and showed
that if there exists a shuffler that randomly shuffles the users’ input data, then we
can design (information-theoretic) distributed differential privacy mechanisms
that are often competitive to the central model. This is commonly referred to as
the “shuffle model”.

NIAR can be potentially employed to implement a shuffler for the shuffle
model. In particular, it is suited for a setting like Google’s RAPPOR project [46],
where data was repeatedly collected from the users’ Chrome browsers on a daily
basis. In this scenario, the data collector acts as the NIAR router and all the
receivers too; therefore, we also need the NIAR scheme to satisfy receiver-insider
protection. Again, we do not need network-level anonymity protection.

Privacy-Preserving “Daily Check” During a Pandemic. This application was
described earlier in this section. We additionally point out an interesting
variation of the same application: we can create the inner layer of encryp-
tion using not symmetric-key encryption, but rather, a predicate encryption
scheme [7,25,26,52,61,65]. In this way, a data analyst can be granted special
tokens that would permit her to decrypt the data, only if some predicate is sat-
isfied over the user’s encrypted daily report (e.g., the user has come in contact
with an infected person and needs to be quarantined).

Pseudonymous Survey Systems. Another application is to build a pseudonymous
survey system. For example, we can allow students to pseudonymously and reg-
ularly post course feedback to an instructor throughout the semester, or ask
questions that they would otherwise feel embarrassed to ask. We can also cre-
ate periodic surveys and allow members of an underrepresented minority group
to pseudonymously report if they have been the victims of discrimination or
harassment. Similar applications have been considered and implemented in the
past [10,54]. However, in such existing mechanisms [10,54], the cryptographic
protection alone is insufficient, and one must additionally rely on the network
layer to be anonymous too. By contrast, with NIAR, we no longer need the
network layer to provide anonymity protection.

Other Applications. Besides these aforementioned applications, it is also known
that a shuffler can lend to the design of light-weight multi-party computation
(MPC) protocols [55].

Private Messaging. NIAR can also be used to enable private messaging, which
is the more traditional application of anonymous routing. We give a few scenarios
to motivate the different security requirements.

In the first scenario, we may imagine that members of a secret society wish to
send private messages or emails to one another without identified. To do so, pairs

Non-Interactive Anonymous Router 499

of members that wish to communicate regularly can join a NIAR group. In this
scenario, each pair of communicating parties know each other’s identities, and
therefore we only need the basic security notion, i.e., without insider protection.

Another application is to build an anonymous mentor-mentee system, or an
anonymous buddy or mutual-support system. For example, some scientists have
relied on Slack to provide such functionalities [1], where members can anony-
mously post questions, and others can anonymously provide advice. Currently,
the anonymity guarantee is provided solely by the Slack server. However, one
can easily imagine scenarios where trusting a centralized party for anonymity is
undesirable. In these cases, we can rely on NIAR to build an anonymous buddy
system. Each pair of buddies can regularly engage in conversations to provide
mutual support, and the untrusted router (e.g., Slack) cannot learn the communi-
cation pattern or the messages being exchanged. Like the earlier mentor-mentee
scenario, the buddies themselves may not wish to reveal their identities to each
other. Therefore, in this scenario, we would need the NIAR scheme to provide
full insider protection.

1.5 Open Questions

Partly, our work makes a conceptual contribution since we are the first to define
the NIAR and NIAS abstractions. Our work should be viewed as an initial explo-
ration of these natural abstractions, inspired by a fundamental and long-standing
online privacy problem. Many open questions arise given our new abstractions,
and our work lays the groundwork for further exploring exciting future direc-
tions. We present a list of open questions in the online full version [68].

1.6 Technical Highlight

Why Existing Approaches Fail. A first strawman attempt is to rely on a
Multi-Client Functional Encryption (MCFE) scheme for inner products, also
known as Multi-Client Inner-Product Encryption (MCIPE) [2,4,37,51]. In a
Multi-Client Inner-Product Encryption scheme, each of the n clients obtains
a secret encryption key during a setup phase. During every time step t, each
client i uses its secret encryption key to encrypt a message xi,t—henceforth the
i-th ciphertext is denoted cti,t for i ∈ [n], and moreover, let xt := (x1,t, . . . , xn,t).
An authority with a master secret key can generate a functional key sky for a
vector y whose length is also n. Given the collection of ciphertexts {cti,t}i∈[n]

and the functional key sky, one can evaluate the function 〈xt,y〉 of the encrypted
plaintexts but nothing else is revealed.

Our idea is to express the permutation π as n selection vectors, and each is
used to select what one receiver would receive from the vector of input messages.
The router receives one functional key for each selection vector. A selection vector
y has exactly one coordinate that is set to 1, whereas all other coordinates are set
to 0. In this way, the inner product of xt and y selects exactly one coordinate of
xt. In our NIAR construction, the input messages xt to the MCFE-for-selection

500 E. Shi and K. Wu

scheme will be inner ciphertexts encrypted under keys shared between each pair
of sender and receiver, such that the router cannot see to the plaintext message.

At first sight, an MCFE scheme for inner products may seem like a good
match for our problem, but upon more careful examination, all known MCFE
schemes, including those based on program obfuscation, fail in our context. To
the best of our knowledge, all existing MCFE schemes (for evaluating any func-
tion, not just inner products) are NOT function-hiding. In our context, this
means that the functional key sky is allowed to reveal the selection vector y.
This unfortunately means that the token could leak the routing permutation
π and thus violate anonymity. Not only so, in fact, it appears that no prior
work has attempted to define or construct function-hiding MCFE [2,4,37,57,66],
likely because we currently lack techniques to get function privacy for MCFE
schemes, even allowing RO and program obfuscation [51]. The known techniques
for upgrading Functional Encryption and Multi-Input Functional Encryption to
have function privacy [5,22,58,59,63] do not apply to MCFE, because they are
fundamentally incompatible with the scenario where some clients can be corrupt.

Finally, we point out that a related line of work called Multi-Input Inner-
Product Encryption [5,6,28,51] also fails to solve our problem, because its secu-
rity definition is too permissive: specifically, mix-and-matching ciphertexts from
multiple time steps is allowed during evaluation, and this could be exploited by
an adversary to break anonymity in our context.

Key Insights and Roadmap. We are the first to define function-hiding MCFE,
and demonstrate a construction for a meaningful functionality, i.e., selection.
Selection is a special case of inner product computation, and is structurally
simpler than inner product. Leveraging this structural simplicity, we develop
new construction and proof techniques that allow us to prove function-hiding
security even when some of the clients can be corrupted. We use the resulting
“function-hiding MCFE for selection” as a core building block to realize NIAR.

At a very high level, the structural simplicity of selection helps us in the
following way. First, in a more general MCIPE scheme, even without function
privacy, one must prevent mix-and-match attacks—in other words, the adver-
sary should not be able to take clients’ ciphertext from different time steps
and combine them in the same inner-product evaluation. When it comes to the
special case of selection, however, we can defer the handling of such mix-and-
match attacks. Specifically, if we were not concerned about function privacy, then
mix-and-match attacks turned out to be a non-issue in an MCFE-for-selection
scheme. With this observation, we first construct a conceptually simple MCFE-
for-selection scheme without function privacy. Essentially, the construction runs
n independent instances of semantically secure public-key encryption (PKE), one
for each client. The functional key for selecting one client’s plaintext is simply
the corresponding PKE’s secret key.

Next, we perform a function-privacy upgrade—during this function-privacy
upgrade, we do need to take care and prevent the aforementioned mix-and-
match attacks. The function-privacy upgrade is technically much more involved,
and we will give an informal overview in Sect. 3. What lends to the function-

Non-Interactive Anonymous Router 501

privacy upgrade is the fact that the underlying MCFE scheme (without function
privacy) is essentially “decomposable” into n independent components. This
is an important reason why we can accomplish the function privacy upgrade
even when some of the clients can be corrupted. In comparison, prior MCFE
schemes for general inner-products [2,4,37] need more structurally complicated
techniques to prevent mix-and-match, even without function privacy. For this
reason, our techniques in the current form are not capable of getting a function-
private MCFE scheme for general inner-products—this remains a challenging
open question.

Once we construct a function-hiding MCFE-for-selection scheme, we then
use it to construct two NIAR schemes: one with receiver-insider protection,
and one with full insider protection. The scheme with receiver-insider protec-
tion can be constructed without introducing additional assumptions—and this
notion of security suffices for most applications including NIAS. As explained in
Sect. 1.3, full insider protection seems much more challenging and a natural class
of approaches fail. To get a paranoid construction with full insider protection,
we additionally rely on sub-exponentially secure indistinguishability obfuscation
and sub-exponentially one-way functions.

2 New Definitions: Non-Interactive Anonymous Router

We now define the syntax and security requirements of NIAR. Since our app-
roach relies on a single untrusted router and is non-interactive, both the syntax
and security definitions are incomparable to the formal definitions of anonymous
routing in prior works, all of which involve multiple routers and interactive pro-
tocols [13,29,41].

2.1 Syntax

Suppose that there are n senders and n receivers, and each sender wants to talk
to a distinct receiver. They would like to route their messages anonymously to
hide who is talking to who. The routing is performed by a single router non-
interactively.

Let Perm([n]) denote the set of all permutations on the set [n]. Let π ∈
Perm([n]) be a permutation that represents the mapping between the sender
and the receivers. For example, π(1) = 3 means that sender 1 wants to talk to
receiver 3.

A Non-Interactive Anonymous Router (NIAR) is a cryptographic scheme
consisting of the following, possibly randomized algorithms:

– ({eki}i∈[n], {rki}i∈[n], tk) ← Setup(1κ, n, π): the trusted Setup algorithm
takes the security parameter 1κ, the number of senders/receivers n, and a
permutation π ∈ Perm([n]) that represents the mapping between the senders
and the receivers. The Setup algorithm outputs a sender key for each sender
denoted {eki}i∈[n], a receiver key for each receiver denoted {rki}i∈[n], and a
token for the router denoted tk.

502 E. Shi and K. Wu

– cti,t ← Enc(eki, xi,t, t): sender i uses its sender key eki to encrypt the message
xi,t where t ∈ N denotes the current time step. The Enc algorithm produces
a ciphertext cti,t.

– (ct′1,t, ct
′
2,t, . . . , ct

′
n,t) ← Rte(tk, ct1,t, ct2,t, . . . , ctn,t): the routing algorithm

Rte takes its token tk (which encodes some permutation π), and n ciphertexts
received from the n senders denoted ct1,t, ct2,t, . . . , ctn,t, and produces trans-
formed ciphertexts ct′1,t, ct

′
2,t, . . . , ct

′
n,t where ct′i,t is destined for the receiver

i ∈ [n].
– x ← Dec(rki, ct

′
i,t): the decryption algorithm Dec takes a receiver key rki, a

transformed ciphertext ct′i,t, and outputs a decrypted message x.

In our formulation above, the permutation π is known a-priori at Setup time.
Once Setup has been run, the senders can communicate with the receivers over
multiple time steps t.

Correctness. Without loss of generality, we may assume that each plain-
text message is a single bit—if the plaintext contains multiple bits, we can
always split it bit by bit and encrypt it over multiple time steps. Correct-
ness requires that with probability 1, the following holds for any κ ∈ N, any
(x1, x2, . . ., xn) ∈ {0, 1}n and any t ∈ N: let ({eki}i∈[n], {rki}i∈[n], tk) ←
Setup(1κ, n, π), let cti,t ← Enc(eki, xi, t) for i ∈ [n], let (ct′1,t, ct

′
2,t, . . . , ct

′
n,t) ←

Rte(tk, ct1,t, ct2,t, . . . , ctn,t), and let x′
i ← Dec(rki, ct

′
i,t) for i ∈ [n]; it must be

that
x′

π(i) = xi for every i ∈ [n].

Communication Compactness. We require our NIAR scheme to have com-
pact communication, that is, the total communication cost per time step should
be upper bounded by poly(κ) · O(n). Furthermore, we would like that the token
tk, and every sender and receiver’s secret key eki and rki respectively, are all
upper bounded by a fixed polynomial in n.

2.2 Simulation-Based Security

We consider static corruption where the set of corrupt players are chosen prior
to the Setup algorithm.

Real-World Experiment RealA(1κ). The real-world experiment is described
below where KS ⊆ [n] denotes the set of corrupt senders, and KR ⊆ [n] denotes
the set of corrupt receivers. Let HS = [n] \ KS be the set of honest senders and
HR = [n] \ KR be the set of honest receivers. Let A be a stateful adversary:

– n, π,KS ,KR ← A(1κ)
– ({eki}i∈[n], {rki}i∈[n], tk) ← Setup(1κ, n, π)
– For t = 1, 2, . . .:

• if t = 1 then {xi,t}i∈HS
← A(tk, {eki}i∈KS

, {rki}i∈KR
); else {xi,t}i∈HS

←
A({cti,t−1}i∈HS

);
• for i ∈ HS , cti,t ← Enc(eki, xi,t, t)

Non-Interactive Anonymous Router 503

Ideal-World Experiment IdealA,Sim(1κ). The ideal-world experiment involves
not just A, but also a p.p.t. (stateful) simulator denoted Sim, who is in charge of
simulating A’s view knowing essentially only what corrupt senders and receivers
know. Further, the IdealA,Sim(1κ) experiment is parametrized by a leakage func-
tion denoted Leak to be defined later. Henceforth for C ⊆ [n], we use π(C) to
denote the set {π(i) : i ∈ C}.

– n, π,KS ,KR ← A(1κ)
– ({eki}i∈[n], {rki}i∈[n], tk) ← Sim(1κ, n,KS ,KR, Leak(π,KS ,KR))
– For t = 1, 2, . . .:

• if t = 1 then {xi,t}i∈HS
← A(tk, {eki}i∈KS

, {rki}i∈KR
); else {xi,t}i∈HS

←
A({cti,t−1}i∈HS

);
• {cti,t}i∈HS

← Sim
({∀i ∈ KR ∩ π(HS) : (i, xj,t) for j = π−1(i)})

. In other
words, the simulator Sim is allowed to see for each corrupt receiver talking
to an honest sender, what message it receives.

Defining the Insider Information Leak(π,KS ,KR) Known to Corrupt
Players. We require that when no sender or receiver is corrupt, the adver-
sary should not learn anything about the routing permutation π. When some
senders and receivers are corrupt, the adversary may learn the insider informa-
tion about π known to the corrupt players, but nothing else. We use the function
Leak(π,KS ,KR) to describe the insider information known to corrupt senders
and receivers about the routing permutation π. We define three natural notions
of insider information:

1. Every player knows who it is talking to. The first natural notion is to assume
that each sender or receiver knows whom the player itself is talking to, but
it is not aware who others are talking to. By corrupting some senders and
receivers, the adversary should not learn more about the routing permutation
π beyond what the corrupt senders and receivers know. In other words, the
part of the permutation π containing “corrupt → ∗” and “∗ → corrupt” is
leaked. More formally, we can define leakage as below:

LeakSR(π,KS ,KR) := {∀i ∈ KS : (i, π(i))} ∪ {∀i ∈ KR : (π−1(i), i)}
2. Every sender knows who it is talking to. Another natural notion is when a

sender knows which receiver it is talking to, but a receiver may not know who
it is receiving from. By corrupting a subset of the senders and receivers, the
adversary should not learn more than what those corrupt players know. In
other words, the “corrupt → ∗” part of the permutation π is leaked. More
formally, we can formally define leakage as below:

LeakS(π,KS ,KR) := {∀i ∈ KS : (i, π(i))}
3. Inherent leakage. The least possible leakage is when only the “corrupt →

corrupt” part of the permutation π is leaked. Note that this leakage is inherent
because a corrupt sender can always encrypt multiple random messages in

504 E. Shi and K. Wu

the same time slot, and observe whether any corrupt receiver received this
message. In the minimum, inherent leakage scenario, we require that only this
is leaked about the permutation π and nothing else. More formally, we can
formally define leakage as below:

Leakmin(π,KS ,KR) := {∀i ∈ KS ∩ π−1(KR) : (i, π(i))}

Remark 2. Note that even in the minimum, inherent leakage scenario, knowing
the leaked information Leakmin(π,KS ,KR) := {∀i ∈ KS ∩π−1(KR) : (i, π(i))} as
well as KR, one can efficiently compute the set KR∩π(HS). Therefore, during the
encryption phase, by learning {∀i ∈ KR ∩ π(HS) : (i, xj) for j = π−1(i)}, i.e.,
the set of leaked messages received by corrupt receivers from honest senders,
the simulator Sim does not learn anything extra about the routing permu-
tation π beyond what it already learned earlier in the experiment, that is,
Leakmin(π,KS ,KR).

Definition 1 (NIAR simulation security). We define simulation security
of a NIAR scheme as below depending on which leakage function is used in the
IdealA,Sim experiment:

1. We say that a Non-Interactive Anonymous Routing (NIAR) scheme is SIM-
secure iff the following holds when using Leak := LeakSR in the IdealA,Sim

experiment: there exists a p.p.t. simulator Sim such that for any non-uniform
p.p.t. adversary A, A’s view in RealA(1κ) and IdealA,Sim(1κ) are computa-
tionally indistinguishable.

2. We say that a NIAR scheme is SIM-secure with receiver-insider protection,
iff the above holds when using Leak := LeakS in the IdealA,Sim experiment.

3. We say that a NIAR scheme is SIM-secure with full insider protection, iff the
above holds when using Leak := Leakmin in the IdealA,Sim experiment.

2.3 Equivalence to Indistinguishability-Based Security

In our online full version [68], we define an alternative, indistinguishability-based
security notion, and prove that it is equivalent to the simulation-based notion.

3 Informal Overview of Our Construction

We now give an informal overview of our constructions.

3.1 Notations and Building Block

We will concretely instantiate a scheme using a cyclic group G of prime order q.
Therefore, we introduce some notations for group elements and group operations.

Non-Interactive Anonymous Router 505

Group Notation and Implicit Notation for Group Exponentiation. Throughout
the paper, we use the notation �x� to denote a group element gx ∈ G where
g ∈ G is the generator of an appropriate cyclic group of prime order q where
x ∈ Zq. Similarly, �x� denotes a vector of group elements where x ∈ Z

|x|
q is the

exponent vector. If we know �x� ∈ G and y ∈ Zp, we can compute �xy� ∈ G.
Therefore, whenever an algorithm needs to compute �xy�, it only needs to know
one of the exponents x or y. The same implicit notation is used for vectors too.

Correlated Pseudorandom Functions. We will need a building block which we
call a correlated pseudorandom function, denoted CPRF. A CPRF scheme has
the following possibly randomized algorithms:

– (K1,K2, . . . ,Kn) ← Gen(1κ, n, q): takes a security parameter 1κ and the
number of users n, some prime q, and outputs the user secret key Ki for each
i ∈ [n].

– v ← Eval(Ki, x): given a user secret key Ki and an input x ∈ {0, 1}κ, output
an evaluation result v ∈ Zq.

For correctness, we require that the following always holds if {Ki}i∈[n] is in
the support of Gen(1κ, n, q):

∑

i∈[n]

CPRF.Eval(Ki, x) = 0 mod q (1)

For security, we require that even when a subset of the keys K ⊂ [n]
can be corrupted by the adversary, it must be that for every fresh x, all
honest evaluations {CPRF.Eval(Ki, x)i/∈K} are computationally indistinguish-
able from random terms subject to the constraint

∑

i/∈K CPRF.Eval(Ki, x) =
−∑

i∈K CPRF.Eval(Ki, x) mod q—note that the adversary can compute the
right-hand-side of the equation.

Intuitively, such a correlated PRF guarantees that even when some players’
keys can be corrupt, honest players’ evaluations for any fresh input x must appear
random, except that they are subject to the constraint in Eq. 1. A couple earlier
works [2,24] showed how to construct such a CPRF from ordinary PRFs. We will
present more formal definitions and construction in the online full version [68].

3.2 A Simple, Function-Revealing MCFE Scheme for Selection

Multi-client functional encryption for summation was first suggested by Shi et
al. [66] (coined “private stream aggregation” in their paper). Later, Goldwasser
et al. [51] defined multi-client functional encryption for general functions, and
constructed a scheme assuming indistinguishable obfuscation, random oracles,
and other assumptions. Subsequently, a line of work focused on constructing
MCFE schemes for inner-products.

We consider MCFE for “selection”, which can be viewed as a special case
of inner-product computation. An MCFE-for-selection scheme has four possibly
randomized algorithms (Setup, KGen, Enc, Dec)—in our definition below,

506 E. Shi and K. Wu

we allow each client to encrypt a vector xi,t ∈ {0, 1}m of length m, and the
selection vector y ∈ {0, 1}mn selects exactly one coordinate from one client’s
plaintext vector4:

– The Setup(1κ,m, n) algorithm5 outputs a secret key for each of the n clients
where the i-th client’s key is denoted eki, and a master public- and secret-key
pair (mpk,msk).

– The KGen(mpk,msk,y) algorithm takes the master public-key mpk and the
master secret-key msk, and outputs a functional key sky for the selection
vector y ∈ {0, 1}mn. It is promised that the input y has only one coordinate
set to 1, and the rest are set to 0.

– The Enc(mpk, eki,xi,t, t) algorithm lets client i ∈ [n] use its secret key eki to
encrypt a plaintext xi,t ∈ {0, 1}m for the time step t.

– Finally, given the n ciphertexts ct1, . . . , ctn collected from all clients pertain-
ing to the same time step, as well as the functional key sky, one can call
Dec(mpk, sky, {cti}i∈[n]) to evaluate the selection outcome 〈x,y〉 where x
denotes the concatenation of the plaintexts encrypted under ct1, . . . , ctn.

If we did not care about function privacy, it turns out that we can construct
a very simple MCFE-for-selection scheme as follows. Basically, for each of the n
clients, there is a separate symmetric-key encryption instance. During Setup,
client i obtains the secret keys ski,1, . . . , ski,m corresponding to m independent
encryption instances. For client i to encrypt a message of m bits during some
time step t, it simply encrypts each bit j ∈ [m] using ski,j , and output the
union of the ciphertexts. To generate a functional key for selection vector y that
selects the j-th coordinate of the client i’s message, simply output (y, ski,j), and
decryption can be completed, i.e., using ski,j to decrypt the coordinate in the
ciphertext that is being selected.

3.3 Preparing the MCFE Scheme for Function Privacy Upgrade

The next challenge is how to upgrade the above MCFE-for-selection scheme to
have function privacy. Function privacy in inner-product functional encryption
(FE) was first studied by Shen, Shi, and Waters [63], who considered single-
input FE and a weaker notion of function privacy than what we will need.
Subsequent works have generalized and improved the techniques of Shen, Shi,
and Waters [63] to achieve stronger notions of function privacy [58], and have
extended the techniques to a multi-input FE context [5].

Our function privacy upgrade techniques are inspired by these earlier
works [5,58,63], but we need non-trivial new techniques to make it work in our

4 Our scheme can support the case where each coordinate of the plaintext vector xi,t

comes from a polynomially sized space, but we simply assume each coordinate is a
bit for simplicity.

5 In our subsequent formal sections, for notational reasons needed to make our presen-
tation formal, we shall separate the Setup algorithm into a parameter generation
algorithm Gen and a Setup algorithm, respectively.

Non-Interactive Anonymous Router 507

context. Specifically, previous function privacy techniques assume the encryptor
to be trusted, and thus they are not directly applicable to the MCFE setting in
which some of the clients may be corrupted, and their secret keys become known
to the adversary.

To enable the function-private upgrade, let us first understand where the
above MCFE-for-selection scheme in Sect. 3.2 leaks information about the selec-
tion vector y. First, the scheme blantantly embeds the selection vector y in
cleartext in the functional key sky. Second, the decryption process itself also
reveals y because decryption works on only the coordinate being selected. To fix
the above problems, we would like to first modify the idea in Sect. 3.2 to satisfy
the following two requirements:

1. We change the decryption process such that decryption involves all coordi-
nates, and not just the coordinate being selected.

2. Further, we want to randomize the partial decryption outcome corresponding
to every client such that from the partial decryptions alone, one cannot tell
which coordinate is being selected.

We can instantiate an MCFE-for-selection scheme satisfying the above
requirements in a cyclic group G of prime order q. The resulting scheme is still
function-revealing—at this point, we have merely “prepared” the scheme for the
function privacy upgrade described later in Sect. 3.4. We describe this scheme
below where we use CPRF(Ki, t) as an abbreviation for CPRF.Eval(Ki, t):

MCFE: function-revealing MCFE for selection, w/ randomized
partial decryptions

mpk = �w�, msk = {Si, ai}i∈[n], eki = (Ki, ai) where each Si ∈ Z
m×2
q

Ciphertext for t where each xi,t ∈ {0, 1}m:

∀i ∈ [n] :
(

�xi,t + Siri�, �ri�, �CPRF(Ki, t) + aiwμi�, �wμi�

)

where ri and μi are chosen at random

Functional key for y := (y1, . . . ,yn) where each yi ∈ {0, 1}m:

∀i ∈ [n] :
(

yi, −S�
i yi, ρ, −ρai

)

where ρ is chosen at random

Henceforth, we will name �ci,1� := �xi,t + Siri�, �ci,2� := �ri�, and �c̃� :=
�CPRF(Ki, t) + aiwμi, wμi�. Additionally, let ki,1 := yi, ki,2 := S�

i yi, and ˜ki :=
(ρ,−ρai).

For the above scheme to be a correct function-revealing MCFE-for-selection,
we only need the first two terms of the ciphertext and functional keys, i.e.,

508 E. Shi and K. Wu

(�ci,1�, �ci,2�) and (ki,1, ki,2). Essentially, these terms can be viewed as a concrete
instantiation of the ideas mentioned in Sect. 3.2: the j-th row of Si is used to
encrypt the j-th coordinate of xi,t; further, to compute a functional key for y
which is selecting the j-th coordinate of the i-th client’s message, simply output y
and the j-th row of Si (which is equal to S�

i yi). Security of the encryption follows
from the Decisional Linear assumption. The extra terms in the ciphertexts and
functional keys, denoted c̃i and ˜ki are randomizing terms added to satisfy the
aforementioned randomized partial decryption requirement as we explain below.

We now explain how decryption works. Given a ciphertext vector for n all
clients �c� :=

(

(�c1,1�, �c1,2�, �c̃1�), . . . , (�cn,1�, �cn,2�, �c̃n�)
)

, and a key vector
k :=

(

(k1,1, k1,2, ˜k1), . . . , (kn,1,kn,2, ˜kn)
)

, decryption computes the “inner-
product-in-the-exponent” of the ciphertext vector and the token vector, i.e.,

�〈c,k〉� =
∏

i∈[n]

(

�〈ci,1,ki,1〉� · �〈ci,2,ki,2〉� · �〈c̃i, ˜ki〉�
)

.

Finally, we output the discrete logarithm of the above expression as the
decrypted message6.

The decryption can alternatively be viewed as computing the partial decryp-
tion of each client and then multiplying the partial decryptions together. Hence-
forth, let MCFE.Deci denote the function that computes the partial decryption
corresponding to client i, and let pi,t denote the i-th partial decryption:

pi,t := MCFE.Deci(ski, cti,t) =
(

�〈ci,1,ki,1〉� · �〈ci,2, ci,2〉� · �〈c̃i, ˜ki〉�
)

,

and then multiplying all the randomized partially decrypted results. Note
that the partial decryption function MCFE.Deci(ski, cti,t) also evaluates an
inner-product in the exponent. One can verify the following: let xi,t :=
(xi,1,t, . . . , xi,m,t) be the plaintext message encrypted under cti,t, we have that

pi,t =

{
�CPRF(Ki, t) · ρ� if client i’s vector is not being selected

�xi,j,t + CPRF(Ki, t) · ρ� if the j-th coordinate of the i-th client is being selected

Thus, the above decryption indeed involves all coordinates, and moreover, the
partial decryption results {pi,t}i∈[n] are randomized due to the use of the CPRF.

Remark 3 (Technical condition needed for the function privacy upgrade). Infor-
mally speaking, we want the following (necessary but not sufficient) condition
to hold for our function privacy upgrade to work. Let H ⊆ [n] be the set of
honest clients. Assume that the Decisional Linear assumption holds. We want
that even after having seen the public key, honest ciphertexts in all time steps
other than t, honest ciphertexts in time step t, i.e., {cti,t}i∈H, as well as �ρ�
for a fresh random ρ ∈ Zq, the terms {�CPRF(Ki, t) · ρ�}i∈H must be compu-
tationally indistinguishable from random, except that their product is equal to
6 Note that because decryption involves computing a discrete logarithm, we require

the plaintext space to be small.

Non-Interactive Anonymous Router 509

some fixed term known to the adversary. This condition is needed in the proof
of a key lemma in the function privacy upgrade proof (see our the online full
version [68]).

3.4 Function Privacy Upgrade

Since we do not want the functional key to leak the selection vector y, we want to
encrypt the functional key sky; but how can we use the encrypted sky for correct
decryption? Inspired by earlier works [5,58], our idea is to adopt n instances
(single-input) functional encryption henceforth denoted FE, such that the i-th
client obtains the master secret key of the i-th instance, henceforth denoted
mski. During KGen, we encrypt the i-th coordinate of sky using the i-th FE,
and let the result be ski. To encrypt its message xi,t, the i-th client first encrypts
xi,t using the MCFE-for-selection scheme and obtains the ciphertext cti,t; then
it calls cti,t := FE.KGen(mski, f

cti,t) to transform cti,t into an FE token for the
function f cti,t(�) := MCFE.Deci(�, cti,t). Recall that MCFE.Deci computes the
MCFE’s partial decryption for the i-th coordinate. In this way, an evaluator can
invoke FE.Dec on the pair cti,t and ski to obtain the i-th partial decryption.

To make this idea work, in fact, we do not even need FE for general circuits.
Recall that in our MCFE-for-selection scheme above, each partial decryption
function MCFE.Deci computes an inner-product in the exponent. We there-
fore only need an FE scheme capable of computing an inner-product in the
exponent. Several earlier works [3,12,72] showed how to construct inner-product
function encryption based on the DDH assumption. By slightly modifying these
constructions, one can construct an FE scheme for evaluating “inner-product-
in-the-exponent” as long as the Decisional Linear assumption holds in certain
bilinear groups. For completeness, we shall present this special FE scheme for
computing “inner-product-in-the-exponent” in the online full version [68].

From Weak to Full Function Privacy. Although intuitively, the above idea
seems like it should work, it turns out for technical reasons, we can only prove
that it satisfies a weak form of function privacy henceforth called weak function
hiding. We defer its detailed technical definition to the online full version [68].
Fortunately, we can borrow a two-slot trick from various prior works on Func-
tional Encryption [5,22,63] and Indistinguishability Obfuscation [58,59], and
upgrade a weakly function-hiding MCFE-for-selection scheme to a fully function-
hiding one. At a very high level, to achieve this, instead of having each client
i ∈ [n] encrypt its plaintext xi ∈ {0, 1}m, we have each client i encrypt the
expanded vector (xi,0) instead where 0 is also of length m. Similarly, the selec-
tion vector’s length will need to be doubled accordingly too, i.e., to compute a
functional key for y = (y1, . . . ,yn) where each yi ∈ {0, 1}m, we instead compute
a functional key for the expanded vector ((y1,0), . . . , (yn,0)).

By expanding the plaintext and selection vectors, we gain some spare slots
which can serve as “wiggle room” during our security proofs. This way, in our
security proofs, we can make incremental modifications in every step of the
hybrid sequence and make progress with the proof.

510 E. Shi and K. Wu

Our exposition above is geared towards understandability and is sometimes
informal. The actual details and proofs are somewhat more involved and we refer
the reader to the online full version [68] for a formal exposition.

Summarizing the above, we can construct an MCFE-for-selection scheme
with (full) function privacy, henceforth denoted MCFEffh, presented more for-
mally below. In the description below, MCFE is the aforementioned function-
revealing MCFE for selection, augmented to have randomized partial decryp-
tions; FE is a single-input functional encryption scheme for computing inner-
products in exponents, formally defined in the online full version [68].

MCFEffh: function-hiding MCFE for selection

– Gen(1κ): Sample a suitable prime q, and generate a suitable bilinear
group of order q, with the pairing function e : G1 × G2 → GT . Let
H : {0, 1}∗ → G1 be a random oracle. The public parameter pp contains
the prime q, and the description of the bilinear group; the parameters
pp′ contains a description of G1, its order q, and a description of H.

– Setup(pp,m, n): Call (mpk′,msk′, {ek′
i}i∈[n]) ← MCFE.Setup

(pp′, 2m,n). For i ∈ [n], call (mpki, mski) ← FE.Setup(pp, 2m + 2).
Output:

mpk := (pp,mpk′, {mpki}i∈[n]), msk := (msk′, {mski, eki}i∈[n]),
∀i ∈ [n] : eki := (mski, ek

′
i)

– Enc(mpk, eki,x, t):
1. Let ct := MCFE.Enc(mpk′, ek′

i, (x,0), t) ∈ G
2m+2
1 .

2. Let ct := FE.KGen(mski, ct).
3. Output CT := (ct, ct).

– KGen(mpk,msk,y):
1. Parse y := (y1, . . . ,yn) where each yi ∈ {0, 1}m.
2. Let ỹ = ((y1,0), . . . , (yn,0)) ∈ {0, 1}2mn.
3. Call (k1, . . . ,kn) := MCFE.KGen(mpk′, msk′, ỹ) where each ki ∈

Z
2m+2
q for i ∈ [n].

4. For i ∈ [n], call ki := FE.Enc(mpki,ki).
5. Output sky := (k1, . . . ,kn).

– Dec(mpk, sky, {CTi}i∈[n]): Parse each CTi := (cti, cti). Parse sky :=
(k1, . . . ,kn). For i ∈ [n], call vi := FE.Dec(cti, cti,ki). Output
log(

∏n
i=1 vi).

Our MCFEffh scheme will be at the core of both our NIAR schemes, the one
with receiver-insider protection, and the one with full insider protection.

Proof Roadmap for MCFEffh. To prove our MCFEffh scheme secure, a critical
stepping stone is to prove that it satisfies a weak notion of function privacy—
afterwards we can rely on known techniques [5,22,58,59] to prove full function

Non-Interactive Anonymous Router 511

privacy. Roughly speaking, we say that an MCFE scheme for selection satisfies
weak function privacy iff no p.p.t.admissible adversary A can distinguish two
worlds indexed by b ∈ {0, 1}. In world b:

– the adversary A first specifies a set of corrupt clients, and obtains the public
parameters as well as secret keys for corrupt clients;

– the adversary A now submits multiple KGen queries, each time specifying
y(0) and y(1); and the challenger computes and returns tokens for y(b);

– then A makes Enc queries for each time step t by specifying {x(0)
i,t }i∈H and

{x(1)
i,t }i∈H where H ⊆ [n] denotes the set of honest clients; and the challenger

computes and returns encryptions for {x(b)
i,t }i∈H.

Moreover, an admissible adversary A must respect the following constraints:

1. for i ∈ [n]\H, y(0)
i = y(1)

i .
2. for any {x(0)

i,t ,x(1)
i,t }i∈H submitted in an Enc query,

〈

(x(0)
i,t)i∈H, (y(0)

i)i∈H
〉

=
〈

(x(1)
i,t)i∈H, (y(0)

i)i∈H
〉

=
〈

(x(1)
i,t)i∈H, (y(1)

i)i∈H
〉

In our proof, we start from world 0, and through a sequence of hybrids,
we switch to world 1; and every adjacent pair of hybrids are computationally
indistinguishable. First, we use the function-revealing privacy of the underlying
MCFE scheme to switch the encrypted vectors from {x(0)

i,t }i∈H to {x(1)
i,t }i∈H—this

step is possible due to the aforementioned admissibility rule A must respect.
Next, we want to switch to using y(1) in each KGen query. To accomplish
this, we rely on a hybrid sequence over the multiple KGen queries one by one.
Essentially, in the �-th hybrid, the first � KGen queries are answered with y(1),
and the rest of the KGen queries are answered using y(0). It suffices to argue that
the (� − 1)-th hybrid and the �-th hybrid are computationally indistinguishable,
and this turns out to be the most subtle step in our proof. To achieve this, let
us consider the following modification of the (� − 1)-th hybrid. Henceforth the
�-th KGen query is also called the challenge KGen query, and the two vectors
submitted during this query are denoted y(0)

∗ and y(1)
∗ respectively:

1. During the �-th KGen quer, for computing components of the key corre-
sponding to honest players, the challenger switches the FE.Enc inside the
challenge KGen query to a simulated encryption which does not use the
underlying MCFE’s functional key as input. Corrupt players’ key components
are still computed honestly.
Correspondingly, in every time step, the challenger answers Enc queries by
calling the a simulated FE.KGen for every honest client i’s ciphertext compo-
nent: the i-th simulated FE.KGen embeds the i-th partial decryption when
paired with the challenge key for y(0)

∗ of the underlying MCFE scheme. This
step relies on the 1-SEL-SIM security of the single-input FE scheme (defined
in the online full version [68]).

512 E. Shi and K. Wu

2. At this moment, due to the randomizing terms, and the aforementioned
admissibility rule, we argue that during each Enc query, instead of encoding
in the simulated FE.KGen the partial decryptions when paired with the chal-
lenge key for y(0)

∗ of the underlying MCFE scheme, we could use y(1)
∗ instead.

This step is more involved and requires the technical condition in Remark 3.

From this point onwards, we can use a symmetric argument to switch all the
way to the aforementioned �-th hybrid, in which the first � KGen queries are
answered with y(1), and the remaining answered with y(0). We defer the detailed
proof to the subsequent formal sections.

3.5 Constructing NIAR with Receiver-Insider Protection

Construction. With a function-hiding MCFE-for-selection scheme henceforth
denoted MCFEffh, we can construct a NIAR scheme in a natural fashion infor-
mally described below:

– Setup: The idea is to use the MCFEffh scheme to generate functional keys
for n selection vectors, denoted tk1, . . . , tkn, where tki is for selecting the
message received by receiver i ∈ [n]. The collection {tki}i∈[n] is given to
the router as the token. The MCFEffh also generates n secret encryption keys
denoted {eki}i∈[n], one for each sender. Finally, the setup procedure generates
n symmetric encryption keys, one for each sender-receiver pair.

– Enc: During each time step t, to encrypt a message xi,t, the i-th sender
first encrypts xi,t with its symmetric key shared with its receiver—let ci,t

denote the resulting ciphertext. Now, call cti,t := MCFEffh.Enc(mpk, eki, ci,t)
to further encrypt ci,t and obtain a final ciphertext cti,t. Here, we abuse
notation slightly and use MCFEffh.Enc(mpk, eki, ci,t) to mean encrypting ci,t

bit by bit with the MCFEffh scheme.
– Rte: Using the n functional keys {tki}i∈[n], a router can call MCFEffh.Dec

to obtain the n inner ciphertexts encrypted under the symmetric keys, and
send the corresponding inner ciphertext to each receiver.

– Dec: Finally, each receiver uses its symmetric key to decrypt the final out-
come.

Proof Roadmap. In the online full version [68], we shall prove that as long
as MCFEffh satisfies function-hiding security and the symmetric-key encryp-
tion scheme employed is secure, then, the above NIAR construction satisfies
receiver-insider protection. To prove this, we use the indistinguishability security
notion for NIAR, which is shown to be equivalent to the simulation-based notion.
Rouhgly speaking, the indistinguishability game for NIAR, denoted NIAR-Exptb

is indexed by a bit b ∈ {0, 1}: imagine the adversary A chooses two permutations
π(0) and π(1), and specifies two sets of messages {x

(0)
i,t }i∈HS

and {x
(1)
i,t }i∈HS

to
query in each time step t. The challenger gives A a token for π(b), and cipher-
texts for {x

(b)
i,t }i∈HS

in each time step t. An admissible adversary must choose

Non-Interactive Anonymous Router 513

the permutations and messages such that the leakage in the two worlds are
the same, where the leakage contains the corrupt-to-∗ part of the permutation
and the messages received by corrupt receivers in every time step. We want to
prove that any efficient, admissible A cannot distinguish whether it is playing
NIAR-Expt0 or NIAR-Expt1.

To prove this, we first modify NIAR-Exptb slightly to obtain a hybrid Hybb for
b ∈ {0, 1}: in Hybb, we replace the inner symmetric-key encryption from honest
senders to honest receivers with simulated ciphertexts. We can easily show that
Hybb is computationally indistinguishable from NIAR-Exptb by reducing to the
security of the symmetric encryption scheme.

To complete the proof, the more challenging step is to show that Hyb0 is com-
putationally indistinguishable from Hyb1 for any efficient, admissible adversary
A. Here, we want to leverage A to create an efficient reduction B that breaks the
function-hiding security of the underlying MCFEffh scheme. The subtlety is to
make sure that B indeed respects the MCFEffh’s admissibility rules. In our formal
proofs, we fix the randomness ψ consumed by the SE instances corresponding
to each receiver in the set π(0)(HS) = π(1)(HS), and prove that the two exper-
iments are indistinguishability for every choice of fixed ψ. We then define the
reduction B in a natural manner, and make a careful argument that if A satisfies
the NIAR game’s admissibility rule (for the receiver-insider protection notion),
then B will indeed respect the admissibility rules of the underlying MCFEffh.

We defer the formal description and proofs to the online full version [68].

3.6 Achieving Full Insider Protection

To upgrade our NIAR scheme to have full insider protection turns out to be
more involved. As explained earlier in Sect. 1.3, for such a scheme to work, all
the transformed ciphertexts output by Rte must change when a single sender’s
input ciphertext changes.

Construction (Sketch). To accomplish this, we leverage a indistinguisha-
bility obfuscator for probabilistic circuits (piO) whose existence is implied by
sub-exponentially secure indistinguishability obfuscation and sub-exponentially
secure one-way functions [30].

– Setup: during the trusted setup, each receiver i receives the secret key of
a PKE scheme (with special properties mentioned later); and each sender
receives the encryption key generated by an MCFEffh scheme.
The router’s token tk is a piO which encodes the MCFEffh scheme’s functional
keys for all n selection vectors. Inside the piO, the following probabilistic
program is evaluated:
1. first, use the MCFEffh functional keys to decrypt the messages that each

receiver should receive;
2. next, encrypt the messages under each receiver’s respective public keys,

and output the encrypted ciphertexts—note that the encryption scheme
is randomized.

514 E. Shi and K. Wu

– Enc: in every time step, senders encrypt their messages using MCFEffh.
– Rte: in each time step, the router applies its token tk, which is an obfuscated

program, to the n ciphertexts collected from senders. The outcome will be n
transformed ciphertexts.

– Dec: When a receiver receives a transformed ciphertext, it simply uses its
secret key to decrypt it.

Observe that in this construction, indeed, if a single sender’s input ciphertext
changes, all transformed ciphertexts output by the Rte procedure will change.

Proof Roadmap and Subtleties. We encounter some more subtleties when
we attempt to prove the above construction secure. First, it turns out that for
technical reasons, to prove the above scheme secure, we need the public-key
encryption (PKE) scheme used by the piO to reencrypt output messages to
satisfy a special property: the PKE must be a special trapdoor mode in which
encryptions of 0 and 1 are identically distributed. Obviously, the trapdoor mode
loses information and cannot support correct decryption. In fact, in the real
world, we will never use the trapdoor mode—it is used only inside our security
proofs. We henceforth call a PKE scheme with this special property a perfectly
hiding trapdoor encryption (tPKE). Such a tPKE scheme can be constructed
assuming DDH [30].

Informally, our proof strategy is the following: First, we modify the real-world
experiment (in which π(0) and x

(0)
i,t are used), and switch the tPKE instances

corresponding to honest receivers’ to use a trapdoor setup. This step can be
reduced to the tPKE’s security, since the adversary does not have the tPKE
instances’ secret keys corresponding to honest receivers. Next, we modify the
obfuscated program to no longer use the functional keys corresponding to the
honest receivers; instead, the obfuscated program will simply output encryptions
of 0 under the trapdoor public keys for honest receivers. For corrupt receivers, the
obfuscated program still behaves like the real world: use the MCFEffh scheme’s
Dec procedure to decrypt the messages they ought to receive, and output encryp-
tions of these messages under each corrupt receiver’s public keys, respectively.
This step relies on the security of the piO and the fact that the modified program
is “distributionally equivalent” to the original program. At this moment, the
obfuscated program no longer uses the functional keys for honest receivers, and
only at this point can we rely on the MCFEffh’s security and switch from using
π(0) in the setup and encrypting x

(0)
i,t to using π(1) in the setup and encrypting

x
(1)
i,t . The remaining hybrids are symmetric to the above, such that eventually we

arrive at an experiment that is the same as the real-world experiment in which
π(1) and x

(1)
i,t are used by the challenger.

Notice that in our construction, we use the piO to obfuscate the MCFEffh

scheme’s Dec procedure using all n functional keys. One natural question is
why we did not directly use the piO to obfuscate a program that calls the Rte
procedure of our earlier NIAR scheme (with receiver-insider protection) and then
encrypts the n outcomes using n instances of tPKE. It turns out that our proof
strategy would not have worked for the latter, exactly because in our proofs,

Non-Interactive Anonymous Router 515

we needed an intermediate hybrid to completely stop using functional keys for
honest receivers—intuitively, this is how we can prove the privacy of messages
received by honest receivers. This explains why in our construction and proofs,
we need to open up the NIAR scheme and directly manipulate the functional
keys of the underlying MCFEffh.

3.7 Achieving Fault Tolerance

So far in our constructions, unless all senders send their encryption during a
certain time step, the router would fail to perform the Rte operation. Such a
scheme relies all senders to be online all the time, and thus is not fault-tolerant.

We modify our earlier NIAR abstraction to one that is fault-tolerant. The
idea is to let Enc and Rte take an extra parameter O ⊆ [n] which denotes the set
of senders that remain online. Additionally, Rte now takes in only ciphertexts
from those in O. In fact, our fault-tolerant NIAR abstraction can be viewed as
a generalization of the non-fault-tolerant version.

To achieve fault tolerance, we observe that the underlying CPRF construction
we use has a nice fault-tolerance property. In fact, we can modify the CPRF’s
evaluation function to take in O, such that the following is satisfied:

∀t ∈ N :
∑

i∈O
CPRF.Eval(Ki, t,O) = 0

This way, for every receiver whose corresponding sender is in the online set O,
the router can correctly perform the MCFEffh’s decryption procedure using only
ciphertexts from those in O. Note that the recent elegant work of Bonawitz et
al. [24] also made a similar observation of the fault-tolerance of the CPRF, and
leveraged it to enable fault-tolerant, privacy-preserving federated learning—this
is not explicitly stated in their paper but implicit in their constructions.

If a receiver i’s corresponding sender is no longer online, however, then the
MCFEffh’s decryption procedure will output an inner ciphertext of 0 for receiver
i. Since receiver i cannot decrypt the 0 ciphertext using its symmetric key, it will
simply output ⊥—this is inevitable since the corresponding sender is no longer
around. However, the router can also observe that receiver i received an inner-
ciphertext 0. In this way, if the adversary is able to drop the senders one by one
and check which receiver starts to receive an inner ciphertext of 0, it can learn
the receivers paired up with crashed senders. In our subsequent formal sections,
we shall prove that in this fault-tolerant NIAR scheme, indeed the adversary can
learn only the (corrupt+crashed)-to-∗ part of the permutation π, as well as the
messages received by corrupt receivers every time step, and nothing else.

Finally, using techniques similar to those sketched in Sect. 3.6, we can upgrade
the security of the above fault-tolerant scheme to full insider protection, i.e., only
the (corrupt + crashed)-to-corrupt part of the permutation is leaked as well
as the messages received by corrupt receivers, but nothing else. As mentioned
earlier, this leakage is inherent and unavoidable for any fault-tolerant NIAR
scheme, since the adversary can always make the senders crash one by one and
check which corrupt receiver now starts to receive ⊥.

516 E. Shi and K. Wu

Of course, the above description is a gross simplification omitting various
subtleties both in definitions and constructions. We refer the reader to the online
full version [68] for the detailed definitions, constructions, and proofs.

Deferred Contents. Due to lack of space, the formal definitions, constructions
and proofs can be found in our online full version [68].

Acknowledgments. This work is in part supported by a Packard Fellowship, a
DARPA SIEVE grant under a sub-contract from SRI, and NSF grants under award
numbers 2001026 and 1601879.

References

1. Computer science research and practice on slack
2. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-

product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 19

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional
encryption for inner product evaluations. Cryptology ePrint 2016/011 (2016)

4. Abdalla, M., Bourse, F., Marival, H., Pointcheval, D., Soleimanian, A., Waldner,
H.: Multi-client inner-product functional encryption in the random-oracle model.
Cryptology ePrint Archive, Report 2020/788 (2020)

5. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 20

6. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 21

7. Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted sums
from k -Lin. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 685–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 23

8. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999). https://doi.org/10.1007/978-3-540-48000-6 21

9. Abraham, I., Pinkas, B., Yanai, A.: Blinder: MPC based scalable and robust anony-
mous committed broadcast. In: ACM CCS (2020)

10. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security (2008)
11. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC

2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 30

12. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1007/978-3-540-70936-7_30
https://doi.org/10.1007/978-3-540-70936-7_30
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

Non-Interactive Anonymous Router 517

13. Alexopoulos, N., Kiayias, A., Talviste, R., Zacharias, T.: MCMix: anonymous mes-
saging via secure multiparty computation. In: USENIX Security (2017)

14. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: CCS (2013)
15. Balle, B., Bell, J., Gascón, A., Nissim, K.: Differentially private summation with

multi-message shuffling. CoRR, abs/1906.09116 (2019)
16. Balle, B., Bell, J., Gascón, A., Nissim, K.: The privacy blanket of the shuffle model.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 638–
667. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 22

17. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

18. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

19. Beimel, A., Nissim, K., Omri, E.: Distributed private data analysis: simultaneously
solving how and what. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
451–468. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 25

20. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 20

21. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: IEEE S & P (2014)

22. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 20

23. Bittau, A., et al.: Prochlo: strong privacy for analytics in the crowd. In: SOSP
(2017)

24. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: CCS (2017)

25. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

26. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

27. Brakerski, Z., Dottling, N., Garg, S., Malavolta, G.: Factoring and pairings are not
necessary for iO: circular-secure LWE suffices. Cryptology ePrint 2020/1024 (2020)

28. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. J. Cryptol. 31(2),
434–520 (2018). https://doi.org/10.1007/s00145-017-9261-0

29. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 11

30. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1007/11535218_11
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19

518 E. Shi and K. Wu

31. Chan, T.-H.H., Shi, E., Song, D.: Optimal lower bound for differentially private
multi-party aggregation. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS,
vol. 7501, pp. 277–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33090-2 25

32. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

33. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

34. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

35. Chaum, D.L.: The dining cryptographers problem: unconditional sender and
recipient untraceability. J. Cryptol. 1(1), 65–75 (1988). https://doi.org/10.1007/
BF00206326

36. Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential
privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17653-2 13

37. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 24

38. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging
system handling millions of users. In: S & P (2015)

39. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: CCS, ppp. 340–350 (2010)

40. Danezis, G., Diaz, C.: A survey of anonymous communication channels. Technical
Report MSR-TR-2008-35. Microsoft Research (2008)

41. Degabriele, J.P., Stam, M.: Untagging tor: a formal treatment of onion encryption.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
259–293. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 9

42. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: USENIX Security Symposium (2004)

43. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

44. Edman, M., Yener, B.: On anonymity in an electronic society: a survey of anony-
mous communication systems. ACM Comput. Surv. 42(1), 1–35 (2009)

45. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta,
A.: Amplification by shuffling: from local to central differential privacy via
anonymity. In: SODA (2019)

46. Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: CCS (2014)

47. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. Cryptol-
ogy ePrint Archive, Report 2020/1010 (2020)

48. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

49. Ghazi, B., Pagh, R., Velingker, A.: Scalable and differentially private distributed
aggregation in the shuffled model. CoRR, abs/1906.08320 (2019)

https://doi.org/10.1007/978-3-642-33090-2_25
https://doi.org/10.1007/978-3-642-33090-2_25
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/11681878_14

Non-Interactive Anonymous Router 519

50. Goldschlag, D., Reed, M., Syverson, P.: Onion routing for anonymous and private
internet connections. Commun. ACM 42, 39–41 (1999)

51. Goldwasser, S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

52. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

53. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
an untrusted bitcoin-compatible anonymous payment hub. In: NDSS (2017)

54. Hohenberger, S., Myers, S., Pass, R.: ANONIZE: a large-scale anonymous survey
system. In: IEEE S & P (2014)

55. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: FOCS (2006)

56. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020)

57. Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the
standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 18

58. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

59. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS, pp. 11–20 (2016)

60. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
STOC, pp. 294–303 (1997)

61. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

62. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme: a practical solution to
the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-49264-X 32

63. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

64. Sherwood, R., Bhattacharjee, B., Srinivasan, A.: P5: a protocol for scalable anony-
mous communication. In: IEEE S & P (2002)

65. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: S & P (2007)

66. Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation
of time-series data. In: NDSS (2011)

67. Shi, E., Chan, T.-H.H., Rieffel, E., Song, D.: Distributed private data analysis:
lower bounds and practical constructions. ACM Trans. Algorithms 13(4), 1–38
(2017)

68. Shi, E., Wu, K.: Non-interactive anonymous router (2021)
69. Shirazi, F., Simeonovski, M., Asghar, M.R., Backes, M., Diaz, C.: A survey on

routing in anonymous communication protocols (2018)

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-642-00457-5_27

520 E. Shi and K. Wu

70. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: Stadium: a distributed
metadata-private messaging system. In: SOSP (2017)

71. Van Den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: SOSP (2015)

72. Wee, H.: New techniques for attribute-hiding in prime-order bilinear groups.
Manuscript (2016)

73. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. Cryptol-
ogy ePrint Archive, Report 2020/1042 (2020)

74. Zhuang, L., Zhou, F., Zhao, B.Y., Rowstron, A.: Cashmere: resilient anonymous
routing. In: NSDI (2005)

Bifurcated Signatures: Folding
the Accountability vs. Anonymity

Dilemma into a Single Private Signing
Scheme

Benôıt Libert1,2(B), Khoa Nguyen3, Thomas Peters4, and Moti Yung5

1 CNRS, Laboratoire LIP, Lyon, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),

Lyon, France
3 Nanyang Technological University, SPMS, Singapore, Singapore
4 FNRS and UCLouvain (ICTEAM), Louvain-la-Neuve, Belgium

5 Google and Columbia University, New York City, USA

Abstract. Over the development of modern cryptography, often, alter-
native cryptographic schemes are developed to achieve goals that in
some important respect are orthogonal. Thus, we have to choose either
a scheme which achieves the first goal and not the second, or vice versa.
This results in two types of schemes that compete with each other. In
the basic area of user privacy, specifically in anonymous (multi-use cre-
dentials) signing, such an orthogonality exists between anonymity and
accountability.

The conceptual contribution of this work is to reverse the above
orthogonality by design, which essentially typifies the last 25 years or
so, and to suggest an alternative methodology where the opposed prop-
erties are carefully folded into a single scheme. The schemes will support
both opposing properties simultaneously in a bifurcated fashion, where:

– First, based on rich semantics expressed over the message’s context
and content, the user, etc., the relevant property is applied point-
wise per message operation depending on a predicate; and

– Secondly, at the same time, the schemes provide what we call
“branch-hiding;” namely, the resulting calculated value hides from
outsiders which property has actually been locally applied.

Specifically, we precisely define and give the first construction and secu-
rity proof of a “Bifurcated Anonymous Signature” (BiAS): A scheme
which supports either absolute anonymity or anonymity with account-
ability, based on a specific contextual predicate, while being branch-
hiding. This novel signing scheme has numerous applications not eas-
ily implementable or not considered before, especially because: (i) the
conditional traceability does not rely on a trusted authority as it is
(non-interactively) encapsulated into signatures; and (ii) signers know
the predicate value and can make a conscious choice at each signing
time.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 521–552, 2021.
https://doi.org/10.1007/978-3-030-77883-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_18

522 B. Libert et al.

Technically, we realize BiAS from homomorphic commitments for a
general family of predicates that can be represented by bounded-depth
circuits. Our construction is generic and can be instantiated in the stan-
dard model from lattices and, more efficiently, from bilinear maps. In
particular, the signature length is independent of the circuit size when
we use commitments with suitable efficiency properties.

Keywords: New primitive · Privacy · Anonymity · Accountability ·
Group signatures · Conditional traceability · Predicate-based privacy

1 Introduction

Properties provided by cryptographic primitives (such as confidentiality and
anonymity) generate a natural tension between the requirements of individual
users (such as privacy and other rights), and those of society (such as safety and
individual accountability). This fact has created a very rigid positioning of cryp-
tosystems: Designs that serve individual needs, and those which serve societal
concerns. A classical example of the above rigidity is the scenario of anonymous
signing. On the one hand, there are group signatures [18], central privacy tools
allowing users to anonymously sign messages in the name of a population of
users they belong to. In order to keep users accountable for their actions, group
signatures involve a trusted opening authority (OA) which is called upon when
needed only, and is endowed with some privileged information allowing it to
trace any signature back to its author. This accountability mechanism, there-
fore, in these cases, revokes the anonymity of that user. On the other hand, ring
signatures [45] and related primitives [11,19,30,39] allow users to sign whatever
they like in the name of a population while retaining unconditional anonymity.

In light of this over quarter-of-a-century old situation, we claim that for many
applications, in fact, group and ring signatures fall short of providing an appro-
priate tradeoff between anonymity and accountability that would be sufficiently
fair for, both, signers and authorities. Privacy-aware signers naturally want to
protect their privacy as much as possible. At the same time, authorities aim to
ensure that signers of all problematic signatures can be caught. What we argue
in this work is that in many real-life situations, the ability to trace a signature
or not should actually depend on the content and context of the message, and
should be provided programmatically by the primitive rather than being sup-
ported by a one sided mechanism which is part of the primitive specification.

Consider the scenario where each signature authenticates an anonymous
financial transaction associated with a hidden amount of money and between
users in different countries that should only be known to the payer and the
payee (this can be done by employing additional cryptographic mechanisms,
e.g., the amount and countries are encrypted or committed to, as in the privacy-
preserving cryptocurrency system Monero [41]). For money-laundering detection
purposes, the authorities would like to make sure that transactions with amounts
above a certain threshold between two specific countries can be traced. On the

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 523

other hand, to satisfy privacy-aware users, the system should also provide abso-
lute anonymity for transactions amounts below the traceability threshold or
within the same country, say, or for any other messages of harmless content.
Importantly, for privacy reasons as well (e.g., keeping statistics of the financial
transactions hidden), the public should not be able to determine whether a given
signed transaction, corresponds to a traceable or to an untraceable type.

As another example, imagine that visitors of a digital library are required
to register and sign before reviewing specific e-books. The ability/ inability to
identify signers should naturally depend on whether the books in question are
totally benign (e.g., comics, essays containing controversial but inoffensive polit-
ical opinions, etc.) or potentially harmful (like chemistry books explaining how
to produce bombs, any form of advocacy of hatred, etc.).

As yet another example, note that service providers often ask users to attest
to personal attributes, for example, to guarantee the veracity of answers to ques-
tions like “Have you been to one of these countries in the last 6 months?”, “Are
you above 18?”, etc. In this case we argue that while suspicious online activi-
ties and alert-raising messages should be traceable by some warranted authority,
regular well-behaved typical users should not have to reveal their history and
information to service providers that verify their signatures.

The above examples motivate the design of a new anonymous signature prim-
itive where the ability to trace a signature back to its source is determined by
a predicate that depends on the signed message and the user’s credential, and
where the traceability property of a signature is hidden from the general public.
Such schemes are highly desirable, so that they can support the above scenarios,
since they provide a fair privacy-preserving non-rigid setting which users and
authorities both have strong incentives to deploy. However, to our knowledge, a
non-rigid conditional setting, and such signatures have never been considered so
far. We call this type of schemes that allow this on the fly flexibility “Bifurcated
Cryptosystems.”

1.1 Our Contributions

We introduce the study of cryptographic primitives that provide tradeoffs
between competing requirements like end-to-end privacy and accountability, by
suggesting bifurcated anonymous signatures (BiAS). In short, BiAS schemes are
anonymous signature schemes allowing to bifurcate into absolute anonymity and
identity escrow at the signing time, where computing signatures is associated
with a predicate P . They enable unconditional anonymity when the predicate
P (M, id, w) evaluates to 1 on input of the message M , the user’s identity id
and some secret context-dependent piece of information w which we call a wit-
ness. At the same time, signatures should be traceable by an authority whenever
P (M, id, w) = 0.

As a first major requirement, BiAS must be branch-hiding : verifiers as well
as the issuing credential authority should be unable to figure out whether a
signature is traceable or not.

524 B. Libert et al.

In our BiAS primitive, whether a signature is traceable or not depends on
the content which is being signed and the user’s identity. Since users know the
predicate and its value before signing, they know beforehand when they will
be subject to tracing and they can make an educated decision as to whether
they can afford to sign a specific message or not. At the same time, only the
tracing authority will be able to learn whether the signatures are traceable or
not. The users are assured that if their signature is not traceable, no one, even
if the authority’s keys are available, will be able to trace them. In fact, let us
emphasize that this is an unconditional anonymity property, which is of high
importance in some applications, such as the case of journalists signing an arti-
cle unfavorable to the local regime, in a place where their life is in danger upon
eventual identification.

As a natural second requirement, we pair the notion of branch-hiding with
the notion of branch-soundness. Branch-soundness prevents users from generat-
ing untraceable signatures when the signer should have been identified or vice
versa. Said otherwise, no signers can fool the system even with the help of the
authorities and be able to produce a signature of which the traceability does not
respect the predicate.

We first give precise syntax and security definitions for the BiAS primitive.
The guarantee offered by this notion allows us to extend the notions of traceabil-
ity, non-frameability, and anonymity, borrowed from ordinary group signatures
to our more general predicate-based primitive.

Secondly, we provide a generic BiAS realization where predicates may con-
sist of polynomial-size circuits of a priori bounded depth. As building blocks,
our construction relies on the homomorphic equivocal commitment (HEC) prim-
itive defined by Katsumata et al. [27], dual-mode non-interactive zero-knowledge
(NIZK) arguments [24,26,42], and a variant of the R-lossy encryption prim-
itive of Boyle et al. [14]. Our constructions are instantiable in the standard
model for arbitrary polynomial-size Boolean circuits under the Learning-With-
Errors (LWE) assumption [44]. For Boolean formulas (equivalently, NC1 circuits),
more efficient instantiations are possible under falsifiable assumptions in groups
endowed with a bilinear map. In both cases, our schemes enjoy the property
that the signature size only depends on the maximal circuit depth, and not on
its size. The signature size is dominated by O((log N + |w|) · λc) bits (where
N is the group size and c is a constant) committing to the witness w and the
user’s identity together with NIZK arguments showing that the ciphertexts were
properly generated.

1.2 Technical Overview

Defining Security. Our security model puts forth the notions of branch-
hiding and branch-soundness for our bifurcated anonymous signature (BiAS)
primitive. We advocate, more generally, that it is the first instance of a new
fundamental notion of bifurcated cryptosystems (balancing based on a predi-
cate in one scheme, both, user concerns and public safety issues). Further, to
capture anonymity we extend the CCA-like notion of unlinkability of signatures

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 525

which can be now produced from different predicate values. We call the resulting
notion anonymity “in the traceable case” which implies the branch-hiding prop-
erty of BiAS. We augment this anonymity notion with the anonymity “in the
non-traceable case” where all the signatures are generated from a predicate value
equals to 1, i.e., from the branch leading to unconditional anonymity. A BiAS is,
then, called fully anonymous if it fulfills both anonymity notions. Branch-hiding
and full anonymity, primarily, take care of privacy of BiAS.

To prevent misuse of the BiAS functionality, we build on two security notions
from the Kiayias-Yung model [29] of group signatures. First, the security against
mis-identification attacks (a.k.a. traceability) which requires that, even if the
adversary can introduce users under its control in the group of signers, it can-
not produce a signature that traces outside the dishonest coalition. Second, the
notion of security against framing attacks which implies that honest users can
never be falsely accused of having signed messages, even if the whole system con-
spires against them. However, extending these security notions is not straight-
forward or immediate in our model, since we have to detect whether a given
signature contradicts one of these properties even, if that signature is untrace-
able. Indeed, to build a reduction in a security proof, for instance, we have to
figure out if a given untraceable signature has been generated honestly by a
legitimate signer or if it is a forgery. However, being able to do so, in fact, seems
to contradict statistical (unconditional) anonymity.

To circumvent the apparent incompatibility between privacy and security,
we rely on our branch-soundness notion. It is a two-stage definition which first
defines an extractable mode of the scheme only useful for the sake of proving
security: it generates parameters of the scheme allowing to extract the identity
and the witness behind any valid signatures. Such an extraction allows evaluat-
ing the predicate a posteriori given any signature. As a second stage, we require
that the (real) tracing algorithm can be indistinguishably emulated from the
(ideal) extractable mode, even when the authorities’ keys are exposed. A BiAS
satisfying branch-soundness thus ensures the hardness of “cheating” with the
predicate, even for corrupt authorities. The reason is that it implies the infea-
sibility of producing signatures that: (i) can be traced while the context allows
retaining statistical anonymity, i.e., P (M, id, w) = 1, and conversely (ii) cannot
be traced while the context allows retaining identity escrow, i.e., P (M, id, w) = 0.
We stress that the indistinguishability in branch-soundness cannot be statistical
since, otherwise, untraceable signatures would no longer be statistically anony-
mous. Based on the branch-soundness notion, we can now extend the security
notion of [29] from the (ideal) extractable mode of the BiAS.

Underlying primitives. Our construction for bounded-depth circuits is based
on combining a number of primitives. First, it is built on the homomorphic equiv-
ocal commitments (HEC) of Katsumata et al. [27]. An HEC is a commitment
scheme that allows committing to a message �x using random coins R in such
a way that anyone can publicly evaluate a circuit C over the commitment com
to obtain an evaluated commitment comev = Eval(C, comev) to C(�x). Using the
pair (�x,R), the committer can internally run a private evaluation algorithm over

526 B. Libert et al.

(�x,R) in order to compute a proof π which will convince a verifier that comev

is a commitment to C(�x). The primitive is instantiatable for all circuits via the
fully homomorphic commitments of Gorbunov, Vaikuntanathan and Wichs [23],
which in turn, is built on the FHE scheme of Gentry, Sahai and Waters (GSW)
[22]. Katsumata et al. [27] also gave a construction for log-depth circuits under
pairing-related assumptions [27]. In order to combine statistical anonymity in
non-tracing mode and extractability in the security proofs, we employ a dual-
mode NIZK argument, which either provides statistical zero-knowledge and com-
putational soundness or vice versa, depending on the distribution of the common
reference string. In the public verifiability setting, dual-mode NIZK is known to
exist under standard assumptions in pairing-friendly groups, as shown by Groth,
Ostrovsky and Sahai [24]. Peikert and Shiehian [42] (inspired by the earlier
work of Canetti et al. [17]) recently gave constructions under the Learning-With-
Errors (LWE) assumption. In order to smoothly interact with HEC schemes, the
dual-mode NIZK system makes use of dual-mode commitments [24], where the
commitment key can be tuned to give either statistically hiding or extractable
commitments.

Construction. At a high level, our construction proceeds as follows. When a
user joins the group, he generates a fresh public key for a digital signature pkid
and obtains from the group manager (GM) a membership certificate certid con-
sisting of the GM’s signature on the pair (id, pkid), where id is the user’s identity.
In order to sign a message w.r.t. the predicate P , a group member computes an
HEC commitment com(id,w) to the witness w and his identity id. At the same
time, the signer computes a dual-mode commitment to (id, w), which is config-
ured to be statistically hiding in the real scheme. The signer then considers the
message-dependent circuit CM (., .) which evaluates CM (id, w) = P (M, id, w) on
input of (id, w). He runs the private HEC evaluation algorithm to compute a
proof πC,M that comev = Eval(CM , comev) is really a commitment to CM (id, w).
It finally computes a public key encryption ctid ← Encrypt(pk, (1−CM (id, w))· id)
of the product (1 − CM (id, w)) · id, so that ctid encrypts 0 when unconditional
anonymity is enabled (i.e., when CM (id, w) = 1) and id otherwise. A dual-mode
NIZK argument then allows arguing that all steps were properly carried out.

When the tracing capability is enabled (namely, when CM (id, w) = 0), we
need to rely on a special kind of dual-mode commitment to prove computational
anonymity in the CCA sense (i.e., when the adversary has access to a signa-
ture opening oracle). Specifically, we need to program the commitment key to
make commitments extractable in all signature opening queries and statistically
hiding in the challenge phase. This is achieved using tag-based commitments,
where each commitment is computed under a tag-dependent commitment key
that either provides statistically hiding or extractable commitments, depend-
ing on the tag. In order to instantiate these dual-mode tag-based commitments,
we use a recent variant [34] of the R-lossy encryption of Boyle et al. [14], for
which we give a DDH-based realization (as well as an LWE-based realization
adapted from [34]). Using this R-lossy encryption to instantiate the dual-mode
commitment component, we can make it statistically hiding in the challenge

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 527

phase (for a specific tag corresponding to a one-time verification key VK�) and
statistically extractable for all other tags VK �= VK�. This allows us to proceed
with a sequence of hybrid games where, instead of answering opening queries by
decrypting the ciphertext ctid, we can extract the committed (id, w). This can be
seen as applying the two-key paradigm of Naor and Yung [40] for CCA2-secure
encryption.

The above construction crucially relies on HEC to avoid the signature length
from depending on the circuit size. If we were to give up the circuit-size inde-
pendent property, constructions would be possible from any non-interactive sta-
tistically hiding commitment.

Open Questions. Naturally, our work, being in a new area (with some new tech-
nical and definitional challenges as described above), leaves many open problems
which we believe to be interesting. Conceptually, one can ask how bifurcated cryp-
tography applies elsewhere. Technically, the first problem that comes to mind is
finding practically efficient instantiations from lattice assumptions (even in the
random oracle model) as our LWE-based construction is only meant to be a first
feasibility result. In particular, it would be interesting to provide more efficient
lattice-based solutions using, e.g., the Fiat-Shamir-with-abort method [10,37] or
the techniques recently suggested in [49]. The second open problem is to deter-
mine the extent to which more specific predicate families can be realized more
efficiently (with or without random oracles) and under different assumptions.
While the work of Katsumata et al. [27] implies a pairing-based construction for
Boolean formulas, it is only known to achieve circuit-size independence under a
q-type (although falsifiable) assumption. A sufficient condition to avoid relying
on variable-size assumptions in the pairing setting would be to build an HEC
scheme based on simple assumptions, where the size of partial openings does not
depend on the circuit size. Finally, while the rest of the paper will concentrate on
BiAS, exploring further primitives providing point-wise predicate-based built-in
privacy or confidentiality bifurcated tradeoffs seems like a new area for broader
investigations.

1.3 Related Work

The rigid anonymity vs. accountability situation indeed generated much discom-
fort in the community. Group signatures traditionally allow opening authorities
to identify the author of any signature. As advocated by Sakai et al. [46], it
may be desirable to prevent the OA from seeing the entire signature history of
all group members. Restricting the power of the opening authorities is a chal-
lenging research direction, where a few steps have been taken. For example,
traceable signatures [28], group signatures with message-dependent opening [46],
and accountable tracing signatures [33] can all be viewed as group signatures
with restricted opening authorities. However, the OA can still freely break the
anonymity of some subset of signatures without the user’s agreement. These
primitives offer more privacy to users than ordinary group signatures, but not
at a level that privacy-sensitive users would hope for.

Ring signatures [6,45] confer everlasting anonymity to group members. They
depart from group signatures in that signers are not required to register in the

528 B. Libert et al.

system and signers have complete freedom on the list of their ring-mates at each
signature. Compared to group signatures, they stand at the opposite extreme
of the spectrum as they do not provide any accountability at all. Linkable ring
signature [36], traceable ring signatures [20], as well as k-time anonymous authen-
tication systems [47] only introduce a weak form of accountability in ring sig-
natures as users only lose anonymity to some extent: for example, if they issue
two or more signatures for some message, their signatures become linkable but
they can still create one controversial signature and disappear from the system
without being caught.

Accountable tracing signatures (ATS) [32,33] take a different approach to
balance accountability and anonymity, by allowing the two extreme settings of
ring signatures and group signatures to co-exist. In ATS schemes, a given user is
either always unconditionally anonymous or always traceable, based on a decision
made by the authority when the user joins the system. In addition, users are
never notified about their traceability status. In our setting and use-cases, the
ability to trace or not should depend point-wise on the message and not only on
group members’ identities. Moreover, we deliberately aim at leaving users some
control on when and under which circumstances they want to accept traceability.

Accountable ring signatures (ARS) [9,48] provide another kind of tradeoff
where anonymity and traceability can live together. Xu and Yung [48] consider
a threshold opening mechanism where no single opener is given the entire power.
The ARS model of Bootle et al. [9] also provides some flexibility in the choice of
tracing authorities as signers are allowed to choose which opener they trust with-
out necessarily leaving the full tracing capability to a pre-determined authority.
On the other hand, neither of these models [9,48] provides full expressiveness as
to which messages can be signed with unconditional anonymity and which ones
should always be traceable.

Bangerter et al. [2] considered an informal framework allowing to monitor
the release of certified data. Their (interactive) model fully trusts the opening
authority to only disclose users’ data when specific conditions are met. In con-
trast, BiAS does not trust the opener when de-anonymization conditions are not
fulfilled and even requires unconditional anonymity in this case.

Boyen and Delerablée [12] introduced a variant of group signatures allowing
group members to flexibly and expressively choose a subgroup wherein they
hide their identity. Our goals are orthogonal to theirs since their model always
allows tracing authorities to identify signers whereas we accurately control the
conditions under which the signer’s identity can be uncovered.

Garms and Lehmann [21] put forth the concept of convertably linkable signa-
tures (CLS) which are group signatures where a “converter” can blindly relate a
bunch of signatures to some randomized pseudonyms. To convert the given sig-
natures into linkable ones, another authority first blinds the signatures in order
to mitigate the power of the converter. However, the converter is actually an
opening authority that can always trace a given signature as long as it was not
blinded. At any time, CLS thus “only” provide computational anonymity.

Attribute-based signatures (ABS) [38] allow a signer to sign a message while
simultaneously showing possession of credentials satisfying a public predicate.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 529

Policy-based signatures (PBS) [3] are signature schemes where users obtain a
policy-based signing key (associated with some predicate P) from some author-
ity, which allows them to sign exactly those messages M for which P (M) = 1.
ABS and PBS address different problems than our BiAS primitive in that they
provide fine-grained control over “who can sign” and “which messages can be
signed at all”, respectively. As such, they do not give users control over which
signatures can be traced (with user knowledge of it). Our BiAS functionality
departs from PBS [3] in that predicates are not associated with keys but with
signed messages and may vary across signatures. In terms of generic implica-
tions, PBS were shown [3] to imply digital signatures, NIZK [7] and CCA-secure
encryption [43]. However, they are not known to imply homomorphic equivo-
cal commitments with circuit-size independent verification, and the relationship
between PBS and BiAS thus remains unclear. In particular, we do not see any
obvious way to obtain BiAS realizations by generically using a PBS.

Functional signatures [13] differ from conditionally traceable signatures in
that, in the same spirit as PBS, they accurately control which messages can be
signed. In contrast, BiAS controls which signatures can be traced.

In the context of anonymous compact e-cash [15], Camenisch et al. [16] were
bothered by the anonymity vs. accountability issue in a specific scenario. They
considered a conditional anonymity setting which restricts transactions to be
untraceable only when they do not exceed a specific amount. In their model,
the threshold amount is fixed for each merchant over multiple transactions. If
a user performs a number of transactions with total values exceeding a thresh-
old, he can be traced based on public records. On the other hand, if the total
amount remains under the threshold, the traceable authority is unable to extract
the user’s identity. However, the anonymity remains computational even in that
case. In contrast, our BiAS primitive is a generic add-on mechanism, and ensures
the statistical anonymity of signers as long as the predicate equals 1, e.g., the
amount does not reach a fixed threshold.

In summary, there was a lot of discomfort with the existing dichotomy
between anonymity and accountability. This has produced a large number of
interesting and useful cases and solutions. However, a bifurcated solution with
choice at the user’s hand folded into a single scheme, where the choice is driven
by a local predicate which further remains undetected by others, has not been
considered. This new BiAS system, which gives the user the best possible (i.e.,
unconditional) anonymity when permitted, in fact, constitutes the most private
and the most versatile solution for the problem of balancing user’s vs. society’s
needs within anonymous signing scenarios.

2 Preliminaries

2.1 R-Lossy Public-Key Encryption

Boyle et al. [14] formalized the notion of R-lossy encryption. The primitive is a
tag-based encryption scheme [31] where the tag space T is partitioned into injec-
tive tags and lossy tags. When ciphertexts are generated under an injective tag,

530 B. Libert et al.

the decryption algorithm recovers the underlying plaintext. On lossy tags, the
ciphertext statistically hides the underlying plaintext. In R-lossy PKE schemes,
the tag space is partitioned according to a binary relation R ⊆ K × T . The key
generation algorithm inputs an initialization value K ∈ K and partitions T in
such a way that injective tags t ∈ T are exactly those for which (K, t) ∈ R (i.e.,
all tags t for which (K, t) �∈ R are lossy).

Libert et al. [34] considered a flavor of R-lossy PKE schemes with two distinct
key generation algorithms and equivocal lossy ciphertexts. For our purposes, we
do not need to equivocate lossy ciphertexts but we still need two distinct key
generation algorithms. Looking ahead, our proof of anonymity (in Lemma 4),
requires to switch from a setting where all tags are lossy to a setting where only
one tag is lossy. Also, proving other security notions requires to move from the
“all lossy” setting to the “all injective” setting in the proof of Theorem 1.

Definition 1. Let R ⊆ Kλ × Tλ be an efficiently computable binary relation.
An R-lossy PKE scheme with efficient opening is a 5-uple of PPT algorithms
(Par-Gen,Keygen, LKeygen,Encrypt,Decrypt) such that:

Parameter generation: On input of a security parameter λ, a desired length
of initialization values L ∈ poly(λ) and a lower bound B ∈ poly(λ) on the
message length, Par-Gen(1λ, 1L, 1B) outputs public parameters Γ that specify
a tag space T , a space of initialization values K, a public key space PK and
a secret key space SK.

Key generation: For an initialization value K ∈ K and public parameters
Γ , algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK and a
decryption key sk ∈ SK. The public key specifies a ciphertext space CtSp and
a randomness space RRLE.

Lossy Key generation: Given an initialization value K ∈ K and public param-
eters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK and a lossy secret key sk ∈ SK.

Decryption under injective tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any
K ∈ K, any t ∈ T such that (K, t) ∈ R, and any Msg ∈ MsgSp, we have

Pr
[
∃r ∈ RRLE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
�= Msg

]
< ν(λ) ,

for some negligible function ν(λ), where (pk, sk) ← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key generation
algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, the distributions Dinj = {pk | (pk, sk) ← Keygen(Γ,K)}
and Dloss = {pk | (pk, sk) ← LKeygen(Γ,K)} are computationally indis-
tinguishable.

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk) ← LKeygen(Γ,K)} and {pk | (pk, sk) ← LKeygen(Γ,K ′)} are
statistically indistinguishable.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 531

Lossiness: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization value K ∈ K
and tag t ∈ T such that (K, t) �∈ R, any (pk, sk) ← Keygen(Γ,K), and any
Msg0,Msg1 ∈ MsgSp, the following distributions are statistically close:

{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}.

For any (pk, sk) ← LKeygen(Γ,K), the above holds for any tag t.

We will use an R-lossy encryption scheme for the inequality relation.

Definition 2. Let K = {0, 1}L and T = {0, 1}L \ {0L}, for some L ∈ poly(λ).
The inequality relation RNEQ : K × T → {0, 1} is the relation for which we
have RNEQ(K, t) = 1 if and only if K �= t.

We note that, since we exclude the all-zeroes string 0L from T , running
Keygen on input of the initialization value K = 0L produces a key pk that is
injective for all tags. In contrast LKeygen produces keys that are lossy for any
tag and any initialization value.

We now give an RNEQ-Lossy PKE realization under the Decision Diffie-
Hellman (DDH) assumption (MDDH generalization is obvious).

In the full version, we also provide a construction from the LWE assumption.

An RNEQ-Lossy PKE Scheme from DDH. The construction below is inspired
from [35], which is itself inspired from Groth-Sahai commitments [25] to scalars.
We first recall the definition of the DDH problem.

Definition 3. In a cyclic group G of prime order p, the Decision Diffie-
Hellman Problem (DDH) in G, is to distinguish the distributions (g, ga, gb, gab)
and (ga, gb, gc), with a, b, c ←↩ Zp. The Decision Diffie-Hellman assumption
is the intractability of DDH for any PPT algorithm D.

Par-Gen(1λ, 1L, 1B): Define K = {0, 1}L, and T = {0, 1}L \ {0L}. Define public
parameters as Γ = (1λ, 1L, 1B).

Keygen(Γ,K): On input of Γ and K ∈ K, generate a key pair as follows.
1. Choose a cyclic group G or prime order p > 2λ with a generator g ←↩

U(G). Choose α ←↩ U(Zp) and compute h = gα. Define �g0 = (g, h) ∈ G
2

and �g = �gβ
0 · (1, g) ∈ G

2, where β ←↩ U(Zp).
2. Pick γ ←↩ U(Zp) and compute �u = �gγ

0 · �g−K ∈ G
2, where K ∈ {0, 1}L is

interpreted as an element of Zp.

Define RRLE = Z
B
p and output sk = (α,K) as well as pk :=

(
G, �g0, �g, �u

)
.

LKeygen(Γ,K): This algorithm is identical to Keygen with the difference that,
at step 1, it computes �g as �g = �gβ

0 ∈ G
2, where β ←↩ U(Zp). It defines

RRLE = Z
B
p and outputs sk = (α,K) as well as pk :=

(
G, �g0, �g, �u

)
.

Encrypt(pk, t,Msg): To encrypt Msg ∈ {0, 1}B , interpret the tag t ∈ T as an
element of Zp. For each index i ∈ [B], pick ri ←↩ U(Z∗

p) and compute cti =
(
�u · �gt

)Msg[i] · �gri
0 ∈ G

2. Then, output ct = (ct1, . . . , ctB) ∈ G
2B .

532 B. Libert et al.

Decrypt(sk, t, ct): Given sk = (α,K) and t ∈ {0, 1}L, interpret t as an element
of Zp. If t = K, return ⊥. Otherwise, for each i ∈ [B], do the following:
1. Parse cti as (cti,1, cti,2) ∈ G

2

2. Set Msg[i] = 0 if cti,2 = ctαi,1 and Msg[i] = 1 otherwise.
Output Msg ∈ {0, 1}B .

The proof of Lemma 1 is straightforward. The first indistinguishability property
follows immediately from the semantic security of ElGamal and the observation
that Keygen and LKeygen only differ in the distribution of �g. The second indistin-
guishability property follows from the fact that, for any K ∈ K and any public
key pk generated by LKeygen, �u ∈ G

2 is uniformly distributed in the subspace
spanned by �g0. The same holds for any ciphertext encrypted under an injective
key for the lossy tag t = K or a lossy key for any tag. The construction readily
extends to rely on the k-linear assumption [8] for k > 1.

Lemma 1. The above construction is an RNEQ-lossy public-key encryption
scheme under the DDH assumption.

2.2 Homomorphic Equivocal Commitments

We now recall the definition of homomorphic equivocal commitment, as formal-
ized by Katsumata et al. [27].

Definition 4. A HEC scheme with message space X , randomness space
RHEC and randomness distribution DHEC over RHEC for a circuit class
C = {C : X → {0, 1}} is a tuple of PPT algorithms HEC =
(Setup,Commit,Open,Evalin,Evalout,Verify) with the following specifications:

Setup(1λ): Inputs a security parameter 1λ and outputs public parameters pp, an
evaluation key ek and a master secret key msk.

Commit(pp, �x, r): Takes as input public parameters pp, a message �x ∈ X and
randomness r ∈ RHEC. It outputs a commitment com. When r is omitted
from the notation Commit(pp, �x), we man that r is sampled from DHEC.

Open(msk, �x, r, �x′): Takes as input a master secret key msk, messages �x, �x′ ∈ X ,
and randomness r ∈ RHEC. It outputs fake randomness r′ ∈ RHEC.

Evalin(ek, C, �x, r): The inner evaluation algorithm inputs a key ek, a circuit C ∈
C, a message �x and randomness r ∈ RHEC. It outputs a proof π.

Evalout(ek, C, com): The outer evaluation algorithm is a deterministic algorithm
that inputs an evaluation key ek, a circuit C ∈ C and a commitment com. It
outputs an evaluated commitment comev.

Verify(pp, comev, z, π): The verification algorithm takes as input public parame-
ters pp, an evaluated commitment comev, a message z ∈ {0, 1}, and a proof
π. It outputs 0 or 1.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 533

In addition, it should satisfy the following properties:

Evaluation correctness: For all λ ∈ N, all (pp, ek,msk) ← HEC.Setup(1λ),
any input �x ∈ X , any randomness r ∈ RHEC, and any circuit C ∈ C, if
com = HEC.Commit(pp, �x; r), π ← HEC.Evalin(msk, C, �x, r), and

comev = HEC.Evalout(ek, C, com),

then Pr[HEC.Verify(pp, comev, C(�x), π) = 1] ≥ 1 − ν(λ), for some function
ν(λ) ∈ negl(λ).

Distributional equivalence of Open: For all λ ∈ N, any (pp, ek,msk) ←
HEC.Setup(1λ), any �x, �̄x ∈ X , randomness r, r′ ←↩ DHEC, the distributions
{(pp, ek,msk, �x, r, com) | r ←↩ DHEC, com = HEC.Commit(pp, �x; r)} and

{(pp, ek,msk, �x, r′ = HEC.Open(msk, �̄x, r̄, �x), com′) |
r̄ ←↩ DHEC, com′ = HEC.Commit(pp, �̄x; r̄)}

are statistically close.
Computational binding on evaluated commitments: For any PPT adver-

sary A, we have

Pr
[
HEC.Verify(pp, comev, z�, π�) = 1 ∧ z� �= C(�x)|

(pp, ek,msk) ← HEC.Setup(1λ),
(�x, r, C, z�, π�) ← A(pp, ek),

com = HEC.Commit(pp, �x; r),
comev = HEC.Evalout(ek, C, com)

]
∈ negl(λ)

Efficient committing: There exists a polynomial poly(λ) such that, for all
(pp, ek,msk) ← HEC.Setup(1λ), �x ∈ X and r ∈ RHEC, the running time of
com = HEC.Commit(pp, �x; r) is bounded by |�x| · poly(λ).

Efficient verification: There exists a polynomial poly(λ) such that, for all
(pp, ek,msk) ← HEC.Setup(1λ) and any �x ∈ X , r ∈ RHEC, C ∈ C and
z ∈ {0, 1}, if com = HEC.Commit(pp, �x; r), π ← HEC.Evalin(msk, C, �x, r) and
comev = HEC.Evalout(ek, C, com), then |π|, |comev| ≤ poly(λ) and the running
time of HEC.Verify(pp, comev, z, π) is at most poly(λ) (which does not depend
on |C|).

Context hiding: There exists a PPT simulator HEC.ProofSim such that, for all
λ ∈ N, (pp, ek,msk) ← HEC.Setup(1λ), �x ∈ X , C ∈ C, r ∈ RHEC and com =
HEC.Commit(pp, �x; r), the distribution {π ← HEC.Evalin(msk, C, �x,R)} is sta-
tistically indistinguishable from {π′ ← HEC.ProofSim(msk, com, C, C(�x))}.

We note that the distributional equivalence of Open implies that the commit-
ment is statistically hiding. Here, we only need the statistically hiding property
and we do not rely on equivocation. We do not explicitly rely on the context
hiding property either since partial openings π produced by Open will be part of
witnesses in a NIZK argument. On the other hand, we will exploit the efficient

534 B. Libert et al.

verification property to achieve circuit-size independence in terms of signature
size.1

3 Bifurcated Anonymous Signatures

This section formalizes the primitive of bifurcated anonymous signature (BiAS).
BiAS is the first general signature primitive reconciling statistical anonymity and
accountability in front of dishonest authorities in a single scheme. Nevertheless,
our model and syntax are inspired by those in the context of dynamic group
signatures given by Kiayias and Yung [29] —who extended the work of Bellare,
Micciancio and Warinschi [4] on static group signatures.

3.1 Syntax

Like in [29], we consider dynamically growing groups. The syntax includes an
interactive protocol which allows users to be enrolled as new members of the
group at any time. Analogously to the similar model of Bellare, Shi and Zhang [5],
the Kiayias-Yung (KY) model assumes an interactive join protocol whereby a
prospective user becomes a group member by interacting with the group man-
ager responsible to issuing credentials. This protocol provides the user with a
membership certificate, certi, and a membership secret, seci.

In the syntax below, we define a space ID of user identifiers as well as a space
of witnesses W. For any message-identity-witness triple (M, id, w) ∈ M×ID×W,
we adopt the convention that P (M, id, w) = 0 whenever the user of identity id
was only allowed to sign M using the witness w while being subject to tracing,
by the opening authority. In contrast, having P (M, id, w) = 1 allows the user to
use the witness w to generate a signature on M while retaining unconditional
anonymity. For generality and more applicability, a BiAS defines a family P of
authorized public predicates P which are needed to verify signatures.

Definition 5 (Bifurcated Anonymous Signature). A bifurcated anony-
mous signature (BiAS) scheme for a predicate family P consists of the following
algorithms or protocols.

Setup(1λ, 1N): given a security parameter λ and a maximal number of group
members N ∈ poly(λ)∩N, this algorithm is run by a trusted party to generate
a group public key Y associated to the predicate family Pλ, which specifies a
message space M, a space of user identifiers ID, and a witness space W. It
also outputs the group manager’s private key SGM and the opening authority’s
private key SOA. Each key is given to the appropriate authority while Y is
made public. The algorithm also initializes a public state St comprising a set
data structure Stusers = ∅ and a string data structure Sttrans = ε. From now
on we assume λ is implicit.

1 As pointed out in [27, Remark 3.3], it is straightforward to build an HEC without
the context-hiding and efficient verification properties, using any statistically hiding
commitment.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 535

Join: is an interactive protocol between the group manager GM and a user U
who gets a unique identifier id ∈ ID (both are responsible for enforcing the
uniqueness of the identifier). The protocol involves two interactive Turing
machines Juser and JGM that both take Y as input. The execution, denoted as
[Juser(Y), JGM(Y,SGM, St)], ends with user Uid := U obtaining a membership
secret secid, that no one else knows, and a membership certificate certid. If
the protocol is successful, the group manager updates the public state St by
setting Stusers := Stusers ∪ {id} as well as Sttrans := Sttrans||〈id, transcriptid〉.

Sign(id, certid, secid,M,w, P): given an identifier id ∈ ID, a membership certifi-
cate certid, a membership secret secid, a message M ∈ M, a witness w ∈ W,
and a predicate P ∈ P, this probabilistic algorithm outputs a signature σ.

Verify(Y,M, σ, P): given a message M ∈ M, a signature σ, a predicate P ∈ P
and a group public key Y, this deterministic algorithm returns either 0 or 1.

Open(Y,SOA,M, σ, P, St): takes as input the opening authority’s private key SOA,
a message M ∈ M, a signature σ w.r.t. Y and a predicate P ∈ P as well as
the public state St. It outputs id ∈ Stusers ∪ {⊥}, which is the identity of a
group member or a symbol indicating anonymity.

Correctness basically requires that, if all parties honestly run the protocols,
all algorithms are correct with respect to their specification described as above.

Correctness of Bifurcated Anonymous Signatures. Following the Kiayias-Yung
terminology [29], we say that a public state St is valid if it can be reached from
St = (∅, ε) by a Turing machine having oracle access to JGM. Also, a state St′ is
said to extend another state St if it is within reach from St. Moreover, we write
certid �Y secid to mean that there exists coin tosses for JGM and Juser such
that, for some valid public state St′, the execution of the interactive protocol
[Juser(Y), JGM(Y,SGM, St′)]() provides Juser with 〈id, secid, certid〉.

Definition 6 (Correctness). A BiAS scheme is correct if the following condi-
tions are all satisfied for any (St,Y,SGM,SOA) ← Setup(1λ, 1N):

(1) In a valid state St, |Stusers| = |Sttrans| always holds and two distinct entries
of Sttrans always contain certificates with distinct id.

(2) If [Juser(Y), JGM(Y,SGM, St)] is run by two honest parties following the pro-
tocol and 〈id, certid, secid〉 is obtained by Juser, then we have certid �Y secid.

(3) For each 〈id, certid, secid〉 such that certid �Y secid, any message M ∈ M,
any witness w ∈ W and any predicate P ∈ P, we have

Verify
(
Y,M,Sign(id, certid, secid,M,w, P), P

)
= 1.

(4) For any M �∈ M or any P �∈ P, and any σ, we have Verify(Y,M, σ, P) = 0.
(5) Open(Y,SOA,M, σ, P, St) ∈ ID ∪ {⊥} as long as Verify(Y,M, σ, P) = 1.
(6) For any outcome 〈id, certid, secid〉 of [Juser(., .), JGM(., St, ., .)], for some valid

St, any predicate P ∈ P, any message M ∈ M, any witness w ∈ W and
σ ← Sign(id, certid, secid,M,w, P), with overwhelming probability:

(a) if P (M, id, w) = 0, then Open(Y,SOA,M, σ, P, St) = id;

536 B. Libert et al.

(b) if P (M, id, w) = 1, then Open(Y,SOA,M, σ, P, St) = ⊥.

We formalize security properties via experiments where the adversary inter-
acts with a stateful interface I that maintains the following variables:

– stateI : is a data structure representing the state of the interface as the adver-
sary invokes the various oracles available in the attack games. It is initial-
ized as stateI = (St,Y,SGM,SOA) ← Setup(1λ, 1N). It includes the (initially
empty) set Stusers of group members and a dynamically growing database
Sttrans storing the transcripts of previously executed join protocols.

– n = |Stusers| ≤ N denotes the current cardinality of the group.
– Sigs: is a database of honestly generated signatures created by the signing

oracle. Each entry consists of a tuple (id,M,w, σ, P) indicating that message
M was signed by user id with respect to the witness w and the predicate P .

– Ua: is an initially empty set of users that are introduced by the adversary in
the system in an execution of the join protocol.

– U b: is an initially empty set of honest users introduced in the system by the
adversary acting as a dishonest group manager. For these users, the adversary
obtains the transcript of [Juser, JGM] but not the user’s membership secret.

In attack games, adversaries are granted access to the following oracles:

– Qpub, QkeyGM and QkeyOA: when these oracles are invoked, the interface looks
up stateI and returns the group public key Y, the GM’s private key SGM

and the opening authority’s private key SOA respectively. Once the oracle
QkeyGM (resp. QkeyOA) is invoked, it updates the initially empty key state
StGM ← {SGM} (resp. StOA ← {SOA}).

– Qa-join: allows the adversary to introduce users under its control in the group.
On behalf of the GM, the interface runs JGM in interaction with the Juser-
executing adversary who plays the role of the prospective user in the join
protocol. At the beginning of Juser, the user chooses an identifier id and the
interface aborts if id was previously assigned to a different user in Ua. If this
protocol successfully ends, the interface updates St by inserting the new user
id in both sets Stusers and Ua. It also sets Sttrans := Sttrans||〈id, transcriptid〉.

– Qb-join: allows the adversary, acting as a corrupted group manager, to intro-
duce new honest group members of its choice. The interface triggers an exe-
cution of [Juser, JGM] and runs Juser in interaction with the adversary who runs
JGM. If the protocol successfully completes, the interface adds user id to Stusers
and U b and sets Sttrans := Sttrans||〈id, transcriptid〉. It stores the membership
certificate certid and the membership secret secid in a private part of stateI .

– Qsig: given a tule (M,w,P) and an identifier id, the interface returns ⊥ if
id �∈ U b. Otherwise, the private area of stateI must contain a certificate certid
and a membership secret secid. The interface outputs a signature σ on behalf
of user id and also updates Sigs ← Sigs||(id,M,w, σ, P).

– Qopen: when this oracle is invoked on input of a valid triple (M,σ, P), the
interface runs algorithm Open using the current state St. When S is a set
of tuples of the form (M,σ, P), Q¬S

open denotes a restricted oracle that only
applies the opening algorithm to tuples (M,σ, P) which are not in S.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 537

– Qread and Qwrite: are used by the adversary to read and write the content of
St. At each invocation, Qread outputs the state St of the interface. By using
Qwrite, the adversary can modify St at will as long as it does not invalidate
St: for example, the adversary is allowed to create dummy users as long as it
does not re-use already existing certificates.

In the random oracle model we implicitly assume that all the BiAS algorithms
and protocols have access to the random oracle.

3.2 Branch-Hiding and Privacy

Branch-Hiding. The notion of branch-hiding captures the infeasibility, even for
a corrupt group manager, to decide whether a user signs a message M for a
given predicate P while enabling traceability or not. In particular, P (M, id, w)
remains computationally hidden. Said otherwise, signatures do not betray any
potential intent of a user to remain untraceable or accept traceability. The formal
description is given in the full version as we require a stronger privacy notion.

Full Anonymity. The notion of anonymity is formalized via two games
parametrized by a bit d and involving a two-stage adversary. The first stage
is called play stage and allows the adversary A to modify stateI via Qwrite-
queries and open arbitrary signatures by probing Qopen. When the play stage
ends, A chooses a message-predicate pair (M�, P �) as well as two 4-ules
(id�

0, w
�
0 , sec

�
0, cert

�
0) and (id�

1, w
�
1 , sec

�
1, cert

�
1), both containing a valid member-

ship certificate and a corresponding membership secret. Then, depending on
d ∈ {0, 1}, the adversary is given a challenge signature σ� computed using
(id�

d, w
�
d, sec�

d, cert
�
d) with the task of eventually guessing the bit d ∈ {0, 1}. Before

doing so, it is allowed further oracle queries throughout the second stage, called
guess stage, but is restricted not to query Qopen for (M�, σ�, P �). We note that
the adversary is allowed to choose (id�

0, sec
�
0, cert

�
0) and (id�

1, sec
�
1, cert

�
1) such that

P �(M�, id�
0, w

�
0) �= P �(M�, id�

1, w
�
1). Our definition of anonymity thus reflects the

inability of a verifier to distinguish signatures that are traceable from those that
are not. To strengthen the model, the definition even allows the adversary to
corrupt the opening authority as long as P �(M�, id�

0, w
�
0) = 1 = P �(M�, id�

1, w
�
1).

In such a non-traceable case, we require that the indistinguishability is statisti-
cally independent of the bit d. We elaborate more on this adversarial complexity
just after.

Definition 7. A BiAS is fully anonymous if it satisfies the next conditions:

Traceable case. For any PPT adversary A the following advantage is negligible.

Advanon
A,N (λ) :=

∣
∣Pr

[
Expanon-1

A,N (λ) = 1
]
− Pr

[
Expanon-0

A,N (λ) = 1
]∣∣

Non-traceable case. For any (unbounded) adversary involved in Expanon-d
A,N

and Expanon-ntr-d
A,N (defined in Fig. 1), the following advantage is negligible.

Advanon-ntr
A,N (λ) :=

∣
∣Pr

[
Expanon-ntr-1

A,N (λ) = 1
]
− Pr

[
Expanon-ntr-0

A,N (λ) = 1
]∣∣

538 B. Libert et al.

1 stateI := (St, Y, SGM, SOA) ← Setup(1λ, 1N);

2 aux,M , w0 , w1 , (id0, sec0, cert0), (id1, sec1, cert1), P
← A(play; Qpub, QkeyGM, Qopen, Qread, Qwrite, QkeyOA);

3 if ¬ certid0 Y secid0 ∨ ¬ certid1 Y secid1 then return 0;

4 if M M ∨ w0 , w1 ∨ P then return 0;

5 σd ← Sign(Y, idd, certd, secd, M , wd, P) ;

6 d ← A(guess; σd, aux,Qpub, QkeyGM, Q
¬{(M ,σd, P)}
open , Qread, Qwrite, QkeyOA);

7 if P (M , id0, w0) = 1 ∧ P (M , id1, w1) = 1 then return d ;

8 if StOA = ∅ then return d ;

9 return 0;

Fig. 1. Experiment Expanon-d
A,N (λ) (resp. Expanon−ntr-d

A,N (λ)) excluding the dotted (resp.
solid) box.

The anonymity definition has two parts: a first one that captures the (CCA)
unlinkability against all entities but the OA regardless of the predicate value;
and a second one which captures the unlinkability even against the OA when
the predicate evaluates to 1. Clearly, the first case can never be statistical if
the predicate is not constantly equal to 1. However, while the requirement of
the second case could only have been computational, we stress that having two
cases has nothing to do with the running time of the adversary.

The reason we are requiring statistical anonymity is because we advocate
the need to enhance the privacy branch in the context of anonymous signa-
tures. When the predicate equals 1, the signer should have full confidence in
his anonymity. Allowing computational anonymity leaves room for a potential
backdoor in the system, which could be exploitable in an unexpected way in
some applications.

In the full version of this paper, we suggest an even stronger notion of
anonymity, called unsubversive anonymity, in the non-traceable case. This notion
allows for adversarially-generated authorities’ keys. Since it only seems achiev-
able in the random oracle model, we do not include it in the general BiAS model
and leave the design of a BiAS achieving it for future research.

3.3 Branch-Soundness and Security

Defining strong unforgeability-related notions requires being able to check
whether an adversary fools the underlying predicate value embedded into signa-
tures. However, checking such a relation needs extracting meaningful information
even from (statistically) non-traceable signatures. To circumvent this apparent
conflicting requirements we first define the branch-soundness notion which sets
an indistinguishable extractable mode even if all the keys are exposed. It also
captures the inability of any efficient adversary to produce valid signatures in

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 539

the extractable mode that contradict the openability of signatures in the real
mode. Equipped with a setting where identities and witnesses are extractable
“all the time” we can turn to other security notions.

Branch-Soundness. To be able to extract (id, w) from any valid signatures, we
introduce an indistinguishable setting allowing such extractions for the purpose
of testing the underlying predicate value P (M, id, w). As long as signatures are
traceable, we require id to be consistent with the outcome of Open.

Definition 8. A BiAS scheme satisfies the branch-soundness property if there
is a pair of efficient algorithms with the following specifications:

SimSetup(1λ, 1N): given a security parameter λ and a maximal number of users
N ∈ poly(λ) ∩ N, this algorithm generates a group public key Y, the group
manager’s secret key SGM, the opening authority’s secret key SOA as well
as an extraction trapdoor τext. The algorithm also initializes a public state
St = (Stusers, Sttrans) := (∅, ε) as in Setup;

Extract(Y, τext,M, σ, P, St): inputs a valid message-signature pair (M,σ) w.r.t.
Y and a predicate P ∈ P, the extraction trapdoor τext as well as the public
state St. It outputs an identity id ∈ ID and a witness w ∈ W.

In addition, these algorithms must satisfy the following notions.

Extractable correctness: for any (St,Y,SGM,SOA, τext) ← SimSetup(1λ, 1N),
for any outcome 〈id, certid, secid〉 such that certid �Y secid, any message M ,
any witness w, and any predicate P ∈ P: if σ ← Sign(id, certid, secid,M,w, P)
and (id′, w′) ← Extract(Y, τext,M, σ, P, St), then (id, w) = (id′, w′) with over-
whelming probability.

Extractable soundness: For any PPT adversary A involved in the experiments
defined in Fig. 2, the following advantage function must be negligible:

Advext-s
A (λ) =

∣
∣
∣ Pr

[
Expreal

A (λ) = 1
]
− Pr

[
Expext

A (λ) = 1
]∣∣
∣.

1 (St, Y, SGM, SOA) ← Setup(1λ, 1N) (St, Y, SGM, SOA, τext) ← SimSetup(1λ, 1N) ;

2 (M, σ, P, st) ← A(St, Y, SGM, SOA);

3 if Verify(Y, M, σ, P) = 0 then return 0;

4 id ← Open(SOA, Y, M, σ, P, St) (id, w) ← Extract(τext, Y, M, σ, P, St) ;

5 if P (id, M, w) = 1 then id ← ⊥ else id ← id ;

6 return A(st, id);

Fig. 2. Experiment Expreal
A (λ) (resp. Expext

A (λ)) excluding the dotted (resp. solid)
boxes.

540 B. Libert et al.

In the random oracle model, Item 2 of Fig. 2 is modified as follows:

2’ (M, σ, P, st) ← AH0 (St, Y, SGM, SOA) (M, σ, P, st) ← AH1 (St, Y, SGM, SOA) ;

Here, H0 and H1 are random oracles which privately evaluate and return the
digests of given inputs. In the real setup, the BiAS algorithms have access to H0

whereas, in the extractable setup, they have access to H1.
We stress that all secret keys but the extraction trapdoor are given to the

distinguisher/adversary. This is necessary because we need the extractable prop-
erties even in presence of dishonest authorities. In the extractable setting, we
require Extract to output a potential identifier id ∈ ID and a witness w ∈ W
with overwhelming probability, even on adversarially-chosen verifying signatures
and when both authorities are corrupted. This extractable mode makes it pos-
sible to compute the predicate in a meaningful way. Further, the extractable
soundness property implies the hardness of computing a valid signature that
traces to some user id for some predicate P although this predicate would have
allowed user id to sign the message with statistical anonymity. While Extract is
consistent with Open, we still do not have the complementary property of the
hardness of computing a valid signature that cannot be traced although the trac-
ing operation should have been possible. Indeed, if Open identifies a signature
as non-traceable, we still have no clue about the meaning of the identity-witness
pair produced by Extract on adversarially generated valid signatures that are
not honestly generated (as otherwise, extractable-correctness implies the match
with the actual pair).

Security Against Misidentification Attacks (a.k.a. traceability). In a misidentifi-
cation attack, the adversary can corrupt the opening authority using the QkeyOA

oracle and introduce malicious users in Ua via Qa-join-queries. It aims at produc-
ing a valid signature σ� that does not open to any adversarially-controlled user.

Definition 9. A BiAS scheme is secure against misidentification attacks if it
is branch-sound and, for any PPT adversary A involved in experiment Expmis-id

A,N

(as defined in Fig. 3), we have: Advmis-id
A,N (λ) = Pr

[
Expmis-id

A,N (λ) = 1
]

∈
negl (λ) .

1 stateI := (St, Y, SGM, SOA); (St, Y, SGM, SOA, τext) ← SimSetup(1λ, 1N) ;

2 (M, σ, P) ← A(Qpub, Qa-join, Qread, Qwrite, QkeyOA);

3 if Verify(Y, M, σ, P) = 0 then return 0;

4 (id, w) ← Extract(τext, Y, M, σ, P, St);

5 if id ∈ ID \ Ua then return 1;

6 return 0;

Fig. 3. Experiment Expmis-id
A,N (λ).

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 541

The winning condition is also checkable without the extractor if we rather
define id� ← Open(SOA,Y,M, σ, P, St) in the experiment, as long as id� �= ⊥
in the winning condition of line 5. In that case, the analogue security with the
real setup is implied by the extractable soundness property. Nevertheless, in the
extractable mode the definition also captures the unforgeability of anonymous
signatures, i.e. those which would have made Open to return id� = ⊥ at line 5, if
the extracted id does not correspond to a corrupt user when the group manager
remains honest.

Non-Frameability. Framing attacks consider the case where the entire system
is colluding against some honest user. The adversary can corrupt the group
manager as well as the opening authority (via oracles QkeyGM and QkeyOA, respec-
tively). It can also introduce honest group members (via Qb-join-queries), observe
the system while these users sign messages and create dummy users using Qwrite.
The adversary aims at framing an honest group member. Moreover, the adver-
sary is also deemed successful if it is able to create a non-traceable valid signature
which could have been created by an honest user but who never computed it:
even a corrupted group manager is unable to compute a non-traceable signature
using the identity of an honest user. For example, if the predicate of a BiAS only
allows some users to compute perfectly anonymous signatures, it is infeasible to
compute such signatures without corrupting at least one of these users. The defi-
nition follows the indistinguishable approach of security against misidentification
attacks.

Definition 10. A BiAS scheme is secure against framing attacks if it satisfies
branch-soundness and, for any PPT adversary A involved in experiment Expfra

A,N

(as defined in Fig. 4), we have: Advfra
A,N (λ) = Pr

[
Expfra

A,N (λ) = 1
]

∈ negl (λ) .

1 stateI := (St, Y, SGM, SOA); (St, Y, SGM, SOA, τext) ← SimSetup(1λ, 1N) ;
2 (M , σ , P) ← A(Qpub, QkeyGM, QkeyOA, Qb-join, Qsig, Qread, Qwrite);

3 if Verify(Y, M , σ , P) = 0 then return 0;

4 (id, w) ← Extract(τext, Y, M , σ , P , St);

5 if id ∈ Ub ∧ (id, M , w, σ , P) Sigs then return 1;

6 return 0;

Fig. 4. Experiment Expfra
A,N (λ)

Let id� = Open(SOA,Y,M�, σ�, P �, St) in the framing experiment. Then, we
can derive two winning conditions depending on whether id� ∈ ID or id� = ⊥. In
the former case, the branch-soundness tells us that id� = id. This traceable case
is thus the analogue of the usual framing attack of KY in group signature trans-
posed to our BiAS primitive. In the latter case, the signature σ� of a successful

542 B. Libert et al.

adversary is deemed non-traceable, but it would have been created on behalf of
an honest signer with identifier id who never produced it. This further justifies
the need of all these security notions as we now have the complementary prop-
erty discussed after Definition 8: a branch-sound BiAS scheme whose extracting
algorithm returns independent identity-witness pairs given non-honest valid sig-
natures cannot be secure against framing attacks.

Finally, we note that a signature does not only authenticate the message M ,
but it also binds the predicate value as well as the hidden (id, w) to M . The fram-
ing resistance also guarantees that the signature itself is not malleable as the
winning condition is akin to the “strong”-unforgeability notion of standard signa-
tures. This requirement is actually necessary since, in order to achieve anonymity
in the “CCA sense”, we need to prevent signatures from being malleable.

Discussion on the witness. Our model does not assume any property of the
witness. At first glance, it may seem strange to apparently let the users choose
their witnesses arbitrarily at the signature generation time. This syntactic choice
makes BiAS more flexible to be combined with other building blocks. For
instance, the witness w may already be committed in an external commitment,
i.e. outside our syntax, and bound by the application. Additional zero-knowledge
proofs between w, the context, and the BiAS scheme are of course possible, which
might prevent the user from choosing w freely.

In a money-laundering prevention application, a signer has no incentive in
authenticating a transaction for a big amount of money w if he does not want to
pay such an amount. Therefore, even if P (M, id, w) may vary when w varies at
each transaction, the context prevents the user with identity id from fixing w in
an arbitrary way. We thus leave it to the applications to define their own rules
on the w’s and the desire and the way to keep their level of secrecy.

4 Generic Construction

We provide a generic construction of BiAS for an arbitrary predicate family
P : {0, 1}∗ → {0, 1}. Our construction relies on the following building blocks:

– An RNEQ-lossy PKE scheme ΠRLE = (Par-Gen,Keygen,Encrypt,Decrypt);
– An ordinary lossy PKE scheme Π lpke = (Keygen, LKeygen,Encrypt,Decrypt)

where the message space has size at least N and forms an additive group;
– A digital signature scheme Πsig = (Kg,Sign,Verify) with signature space S

and public key space VK;
– A one-time signature Πots = (Kg,Sign,Verify);
– A homomorphic equivocal commitment scheme HEC = (Setup,Commit,

Open,Evalin,Evalout,Verify), where Commit samples its random coins from
a distribution DHEC over a randomness space RHEC;

– A dual-mode statistical NIZK argument system NIZK = (Setup,ExtSetup,
Prove,Verify,Sim,Extract), as defined in the full version.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 543

Since an RNEQ-lossy PKE scheme implies a standard lossy PKE scheme, the
only ingredients we need are an RNEQ-lossy PKE system, a digital signature, a
homomorphic equivocal commitment and a dual-mode NIZK argument.

For our purposes, it is sufficient to use an HEC scheme without the context-
hiding property since we combine it with NIZK arguments where its partial open-
ings serve as witnesses.2 By using an HEC with the efficient verification property,
we can make the signature length independent of the circuit size. Katsumata et
al. [27] gave such a pairing-based HEC construction under a q-type assumption
for NC1 circuits. In the lattice setting, the fully homomorphic commitments of
Gorbunov et al. [23] provide efficient verification (for bounded-depth circuits)
under the Short Integer Solution [1] assumption, as recalled in the full version.
At the expense of a signature length depending on the circuit size, the construc-
tion can be simplified to use any statistically hiding commitment instead of an
efficiently verifiable HEC. However, we aim at avoiding the circuit-size depen-
dency.

Intuitively, the construction encrypts the group member’s identity id and the
witness w using an HEC and simultaneously encrypts them into ct(id,w) using
the RNEQ-lossy PKE scheme, which realizes either a statistically hiding or an
extractable commitment to (id, w). Our proofs of anonymity require statistically-
hiding commitments (as in the real scheme). In our proofs of security against
mis-identification attacks and framing attacks, we will switch ct(id,w) to its
extractable mode because we need to be able to extract the underlying w and
id.

In the signing algorithm, the group member next computes an evaluated
HEC commitment comev of the predicate evaluation CM (id, w) by homomorphi-
cally computing over com(id,w) (note that comev need not be included in the
signature since the verifier can recompute if from com(id,w)). Then, the signer
computes a ciphertext ctid that verifiably encrypts a product (1−CM (id, w)) · id
of his identity id and the logical NOT of CM (id, w). When the predicate evalu-
ates to CM (id, w) = 0, ctid is distributed as a lossy encryption3 of id. When
CM (id, w) = 1, ctid is completely independent of the signer’s identity as it
encrypts 0|id|.

Setup(1λ, 1N ,Pd): Given a security parameter λ, a predicate family Pd modeled
by circuits of depth d = d(λ) and the maximal number of group members
N = 2� ∈ poly(λ), do the following.

1. Generate a key pair (pksig, sksig) ← Πsig.Kg(1λ) for the signature scheme.
We assume that each public key has bitlength �sig ∈ poly(λ).

2. Run (pp, ek,msk) ← HEC.Setup(1λ) to generate parameters for the homomor-
phic equivocal commitment, together with an evaluation key ek and a master
key msk.

2 A context-hiding construction can still improve the efficiency by outputting partial
openings in the clear in each signature.

3 It is possible to compute ctid using an ordinary (i.e., non-lossy) PKE scheme but it
requires to rely on the simulation-soundness of NIZK in the proof of Lemma 4.

544 B. Libert et al.

3. Choose a one-time signature scheme Πots = (Kg,Sign,Verify) with verification
key space {0, 1}L, for some L ∈ poly(λ).

4. Choose public parameters Γ ← ΠRLE.Par-Gen(1λ, 1L, 1B) for an RNEQ-lossy
PKE scheme with tag space K = T = {0, 1}L and message length B = �+ �w,
where �w ∈ poly(λ) is the bitlength of witnesses from the witness space W =
{0, 1}�w . Then, generate lossy keys (pkRLE, skRLE) ← ΠRLE.LKeygen(Γ,0L) for
the initialization value K = 0L.

5. Generate an injective key pair (pke, ske) ← Π lpke.Keygen(1λ) for the standard
lossy PKE scheme.

6. Generate a common reference string ρ from (ρ, ζ) ← NIZK.Setup(1λ) for a
dual-mode NIZK argument in its statistical ZK mode.

The algorithm outputs
(
Y,SGM,SOA

)
, where the group public key is as

Y :=
(
ρ, pksig, (pp, ek), (Γ, pkRLE), pke

)
,

the opening authority’s private key is SOA := ske and the private key of the
group manager consists of SGM := sksig. Y implicitly initializes St.

Join(GM,Uid): the group manager and the prospective user Uid run the following
interactive protocol [Juser(λ,Y), JGM(λ, St,Y,SGM)]:

1. User Uid generates a key pair (skid, pkid) ← Πsig.Kg(1λ) and sends the public
key pkid together with his identity id ∈ {0, 1}�\{0�} and an ordinary signature
sigid ← Πsig.Sign(usk[id], (id, pkid)) to GM.

2. JGM verifies that: id �= 0�; id was not previously used by a registered user; sigid
is a valid signature on (id, pkid) w.r.t. upk[id]. It aborts if this is not the case.
Otherwise, it computes certid ← Πsig.Sign(sksig, (id, pkid)) as a signature on
the message (id, pkid). The membership certificate certid is sent to Uid. Then,
Juser verifies that Πsig.Verify(pksig, (id, pkid), certid) = 1. If this condition is
not satisfied, Juser aborts. Otherwise, Juser defines the membership certificate
as certid. The membership secret secid is defined to be secid = skid. JGM stores
transcriptid = (id, pkid, certid, upk[id], sigid) in the database Sttrans of joining
transcripts.

Sign(id, certid, secid,M,w, P): To sign a message M ∈ {0, 1}�m using the witness
w = w[1] . . . w[�w] ∈ {0, 1}�w w.r.t. the predicate P ∈ Pd, let CM : {0, 1}�w ×
{0, 1}� → {0, 1} be the message-dependent Boolean circuit of depth ≤ d that
evaluates P (M, id, w) on input of (w[1], . . . , w[�w], id[1], . . . , id[�]).

1. Generate a one-time signature key pair (VK,SK) ← Πots.Kg(1λ).
2. Choose rid,w ←↩ RRLE in the randomness space of ΠRLE and encrypt the

identity-witness pair (id, w) ∈ {0, 1}�+�w as an RNEQ-lossy encryption

ct(id,w) = ΠRLE.Encrypt(pkRLE,VK, (id, w); rw) (1)

under the tag VK ∈ {0, 1}L.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 545

3. Sample random coins rhec ←↩ DHEC and compute a commitment

com(id,w) = HEC.Commit(pp, ek, (id, w); rhec). (2)

4. Using the homomorphic evaluation algorithm of HEC, compute

πC,M ← HEC.Evalin
(
ek, CM , (id, w), rhec

)

comev = HEC.Evalout
(
ek, CM , com(id,w)

)
.

5. Choose rlpke ←↩ Rlpke and compute

ctid = Π lpke.Encrypt
(
pke, (1 − cev) · id; rlpke

)
, (3)

where cev = CM (w1, . . . , w�w
, id1, . . . , id�) ∈ {0, 1}.

6. Generate σ ← Πsig.Sign(skid, (M,P, ct(id,w))) as a signature on the message
(M,P, ct(id,w)).

7. Generate a NIZK argument �π ← NIZK.Prove(ρ, �x, �w) for the statement �x that
there exists a witnesses �w comprised of (id, w) ∈ {0, 1}�+�w , (pkid, certid, σ) ∈
VK × S × S, rid,w ∈ RRLE, rhec ∈ RHEC, rlpke ∈ Rlpke, cev ∈ {0, 1} and πC,M ,
which satisfy the relations (1)–(3) as well as

Πsig.Verify(pksig, (id, pkid), certid) = 1

Πsig.Verify(pkid, (M,P, ct(id,w)), σ) = 1 (4)
HEC.Verify(pp, comev, cev, πC,M) = 1.

8. Compute sig ← Πots.Sign(SK, (ct(id,w), com(id,w), ctid, �π)).

Return the signature

Σ =
(
VK, (ct(id,w), com(id,w), ctid, �π), sig

)
(5)

Verify(Y,M,Σ, P): Parse Σ as above. Return 1 if and only if: (i) sig is a valid
one-time signature on (ct(id,w), com(id,w), Cid, �π) for the verification key VK; (ii)
The NIZK argument �π properly verifies for the commitment comev publicly
obtained as comev = HEC.Evalout

(
ek, CM , com(id,w)

)
.

Open(Y,SOA,M,Σ, P, St): Given the opener’s secret key SOA := ske, parse the
signature Σ as in (5). Compute tid = Π lpke.Decrypt(ske, ctid). If tid = 0�,
return ⊥. Otherwise, check if the string tid ∈ {0, 1}� appears in a record
(tid, transcriptid = (tid, pkid, certid, upk[id], sigid)) of Sttrans. If it does, output
id = tid ∈ {0, 1}� (and, optionally, upk[id]). Otherwise, output ⊥.

In the full version, we provide details on instantiations from lattices and
bilinear maps. The lattice-based construction is only a feasibility result based on
generic NIZK for NP statements [42]. In the case of NC1 circuits, the scheme can
be instantiated with Groth-Sahai proofs [25] to provide much shorter signatures
than using the Groth-Ostrovsky-Sahai techniques [24].

546 B. Libert et al.

4.1 Branch-Soundness and Security

To prove security under our definitions, we first consider the following SimSetup
and Extract algorithms associated to our BiAS construction.

SimSetup(1λ, 1N ,Pd): This algorithm is exactly as Setup(1λ, 1N ,Pd) except that
steps 4 and 6 are modified in the following way:
4. Choose public parameters Γ ← ΠRLE.Par-Gen(1λ, 1L, 1B) for an RNEQ-

lossy PKE scheme with tag space K = T = {0, 1}L and message
length B = � + �w, where �w ∈ poly(λ) is the bitlength of witnesses
from the witness space W = {0, 1}�w . Then, generate injective keys
(pkRLE, skRLE) ← ΠRLE.Keygen(Γ,0L) for the initialization value K = 0L.

6. Generate a common reference string ρ from (ρ, ξ) ← NIZK.ExtSetup(1λ)
for an extractable (and thus statistically sound) NIZK proof system.
The algorithm returns the same output as Setup, together with an extrac-
tion trapdoor τext = (skRLE, ξ), where ξ is the extraction trapdoor of NIZK.

Extract(Y, τext,M,Σ, P, St): Write Σ as
(
VK, (ct(id,w), com(id,w), ctid, �π), sig

)
and

return ⊥ if its components do not parse properly. Otherwise, use skRLE to
decrypt the RNEQ-lossy PKE ciphertexts ct(id,w) (recall that the NEQ rela-
tions makes all tags injective on a public key produced by Keygen for the
initialization value K = 0�). If any decryption fails, return ⊥. Otherwise,
output w ∈ {0, 1}�w and id ∈ {0, 1}�.

The security properties of the NIZK argument system ensure that the com-
mon reference strings ρ produced by NIZK.Setup and NIZK.ExtSetup are com-
putationally indistinguishable. Moreover, in the RNEQ-lossy PKE scheme, the
public keys produced by LKeygen and Keygen are computationally indistinguish-
able as well.

Next, we will show that this extractable BiAS satisfies the extractable sound-
ness notion unless the adversary can break the (statistical) soundness of the proof
�π included in a valid signature Σ.

Theorem 1. The scheme satisfies branch-soundness if: (i) ΠRLE is a secure
RNEQ-lossy PKE scheme; (ii) NIZK is a dual-mode NIZK argument system (i.e.,
its statistically sound and statistically ZK modes are computationally indistin-
guishable); (iii) HEC is computationally binding for evaluated commitments.

Proof. To prove the result, we consider a sequence of games. In each game, we
call Wi the event that the challenger outputs 1.

Game 0: This is the real experiment Expreal
A (λ), where the adversary A is given

(Y,SGM,SOA), where (St,Y,SGM,SOA) ← Setup(1λ, 1N). The adversary out-
puts a tuple (M,Σ,P, st), where Σ =

(
VK, (ct(id,w), com(id,w), ctid, �π), sig

)
. If

Σ does not verify, the challenger outputs 0. Otherwise, it runs Open to obtain
id� ∈ {0, 1}� and feeds A with id�. Then, the challenger outputs whatever A
outputs. By definition, Pr[W0] = Pr[Expreal

A (λ) = 1].

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 547

Game 1: This game is identical to Game 0 except that, at step 4 of the Setup algo-
rithm, the challenger computes (pkRLE, skRLE) ← ΠRLE.Keygen(Γ,0L) instead
of (pkRLE, skRLE) ← ΠRLE.LKeygen(Γ,0L). By the first indistinguishability
property of ΠRLE, we have |Pr[W1] − Pr[W0]| ∈ negl(λ).

Game 2: This game is like Game 1 except that, at step 6 of the Setup algorithm,
the challenger generates (ρ, ξ) ← NIZK.ExtSetup(1λ) instead of (ρ, ζ) ←
NIZK.Setup(1λ) and keeps the extraction trapdoor τext = (skRLE, ξ) to itself.
By the dual-mode property of NIZK, the CRSes produced by NIZK.Setup
and NIZK.ExtSetup have computationally indistinguishable distributions, thus
ensuring that |Pr[W2] − Pr[W1]| ∈ negl(λ) for any PPT adversary A.

Game 3: In this game, the challenger makes use of the trapdoor τext = (skRLE, ξ).
When A outputs a tuple (M,Σ,P, st), the challenger parses the signature
Σ as

(
VK, (ct(id,w), com(id,w), ctid, �π), sig

)
and uses skRLE to extract (id†, w†).

From the NIZK proof �π, it uses ξ to extract the witnesses (id, w) ∈ {0, 1}�w+�,
(pkid, certid, σ) ∈ VK × S × S, rid,w ∈ RRLE, rhec ∈ RHEC, rlpke ∈ Rlpke,
cev ∈ {0, 1} and πC,M . Then, the challenger halts and outputs a random bit
if cev �= CM (w1, . . . , w�w

, id[1], . . . , id[�]).

We claim that |Pr[W3] − Pr[W2]| ∈ negl(λ) as the two games only dif-
fer when A breaks the computational binding property of HEC for eval-
uated commitments. Indeed, by the statistical soundness of NIZK on a
CRS ρ produced by NIZK.ExtSetup, we have (id, w) = (id†, w†) and
extracted witnesses satisfy the relations (1)–(3). In particular, we have
com(id,w) = HEC.Commit(pp, ek, (id, w); rhec) and the extracted cev ∈
{0, 1}, πC,M satisfy HEC.Verify(pp, comev, cev, πC,M) = 1, where comev =
HEC.Evalout

(
ek, CM , com(id,w)

)
. It is easy to see that Game3 only differs from

Game2 when the extracted πC,M differs from

π̄C,M ← HEC.Evalin
(
ek, CM , (id, w), rhec

)
,

which is the value that would satisfy HEC.Verify(pp, comev, CM (w, id), π̄C,M) = 1.
Hence, if |Pr[W3] − Pr[W2]| is noticeable, the challenger can break the binding
property of HEC by outputting

(
(id, w), rhec, CM , cev, πC,M

)
.

Game 4: This game is identical to Game 3 with the difference that, after hav-
ing extracted (id, w), the challenger computes CM (w, id) ∈ {0, 1}, which is
identical to the extracted cev ∈ {0, 1} unless the failure event of Game
3 occurs. If CM (w, id) = 0, it overwrites id� ← Open(SOA,Y,M, σ, P, St)
with id� = id, which was extracted from ct(id,w). If CM (w, id) = 1, it sets
id� =⊥. In both cases, it feeds A with id� and returns whatever A out-
puts in reaction. This change does not modify the output distribution of
A because, as long as cev = CM (w, id), the statistical soundness of �π ensures
that ctid = Π lpke.Encrypt

(
pke, (1 − CM (w, id)) · id; rlpke

)
, where rlpke and id

are extracted from �π. Hence, unless A breaks the statistical soundness of �π,
Game 4 eventually returns id =⊥ or id = id� to A whenever Game 3 does.

Game 5: This game is like Game 4 but we remove the restriction introduced in
Game 3. Namely, the challenger does no longer replace A’s output by a random

548 B. Libert et al.

bit when the witnesses cev ∈ {0, 1}, (id, w) ∈ {0, 1}�w+� extracted from �π
are such that cev �= CM (w1, . . . , w�w

, id[1], . . . , id[�]). The same arguments
as those in the transition between the first two games show that |Pr[W5] −
Pr[W4]| ∈ negl(λ) so long as HEC is computationally binding.

We conclude the proof by noting that Game 5 is identical to Expext
A (λ), so that

we have |Pr
[
Expreal

A (λ) = 1
]
− Pr

[
Expext

A (λ) = 1
]
| = [Pr[W0] − Pr[W5]|. ��

Security Against Mis-Identification and Framing Attacks.

Lemma 2. The scheme is secure against misidentification attacks if: (i) Πsig is
existentially unforgeable under chosen-message attacks; (ii) The NIZK argument
is computationally sound. (The proof is given in the full version.)

Lemma 3. The scheme is secure against framing attacks provided: (i) Πsig is
strongly unforgeable under chosen-message attacks; (ii) The NIZK argument is
computationally sound. (The proof is given in the full version.)

4.2 Branch-Hiding and Privacy

The branch-hiding property follows from the full anonymity of our scheme.

Theorem 2. The scheme provides full anonymity if: ΠRLE and Π lpke are secure
RNEQ-lossy PKE and standard lossy PKE schemes, respectively; (ii) NIZK is a
computationally sound NIZK argument; (iii) Πots is strongly unforgeable.

To prove Theorem 2, we separately consider the tracing and non-tracing
modes. Lemma 4 first considers the former case where the adversary does not
corrupt the opening authority. Lemma 5 shows that even an unbounded adver-
sary is unable to distinguish group members’ signatures in non-tracing mode.

Lemma 4. The scheme provides anonymity in tracing mode assuming that:
(i) ΠRLE is a secure RNEQ-lossy PKE scheme; (ii) Π lpke is a standard lossy
PKE scheme; (ii) The NIZK argument system provides soundness; (iii) Πots is
strongly unforgeable. (The proof is given in the full version.)

Lemma 5. The scheme provides statistical anonymity in non-tracing mode.

Proof. Recall that experiment Expanon-ntr-d
A (λ) allows the adversary to obtain a

challenge for the non-tracing mode. Namely, it is allowed to corrupt the opening
authority and obtain SOA as long as, in the challenge phase, it chooses a pair
(M�, P �) and two tuples (id�

0, w
�
0 , sec

�
0, cert

�
0) and (id�

1, w
�
1 , sec

�
1, cert

�
1), such that

P �(M�, id�
0, w

�
0) = P �(M�, id�

1, w
�
1) = 1. In this scenario, we will prove that, even

after having obtained SOA, an unbounded adversary A remains unable to infer
anything about the bit d ∈ {0, 1} used by the challenger to compute the signature
Σ� =

(
VK�, (ct�(id,w), com

�
(id,w), ct

�
id, �π

�), sig�
)

using (id�
d, w

�
d, sec�

d, cert
�
d).

To this end, we consider two statistically indistinguishable games. The first
one is the real game whereas the second one appeals to the statistical honest-
verifier zero-knowledge simulator of the argument system.

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 549

Game(d) 0: This is the real game, which is as in the proof of Lemma 4.

Game(d) 1: This game is like Game(d) 0 except that, in the challenge signature
Σ�, we use the simulation trapdoor ζ generated from NIZK.Setup and the sta-
tistical NIZK simulator NIZK.Sim to generate �π�. Owing to the statistical ZK
property of NIZK, the simulated �π� is statistically close to a real �π� that would
be generated using the witnesses. Moreover, it is statistically independent of the
witnesses used to compute ct�(id,w), com

�
(id,w) and ct�id.

In Game(d) 1, we note that, when CM�(w�
1 , . . . , w

�
�w

, id�
1, . . . , id

�
�) = 1, the

ciphertext ct�id is of the form ct�id = Π lpke.Encrypt
(
pke,0

�; rlpke�)
, where rlpke

� ←↩
Rlpke, so that ct�id is independent of d ∈ {0, 1} although pke is an injective
public key. Moreover, ct�(id,w), com�

(id,w) statistically hide the underlying pair
(id, w) since, by definition, the homomorphic equivocal commitment com�

(id,w) is
statistically hiding and the RNEQ-lossy encryption ct�(id,w) is computed under a
lossy key produced by LKeygen. ��

Acknowledgements. Part of this research was funded by the French ANR ALAM-
BIC project (ANR-16-CE39-0006). This work was also supported in part by the Euro-
pean Union PROMETHEUS project (Horizon 2020 Research and Innovation Program,
grant 780701). Khoa Nguyen was supported in part by the Gopalakrishnan - NTU PPF
2018, by A*STAR, Singapore under research grant SERC A19E3b0099, and by Vietnam
National University HoChiMinh City (VNU-HCM) under grant number NCM2019-18-
01. Thomas Peters is a research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS).

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
2. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for

the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm,
J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer,
Heidelberg (2006). https://doi.org/10.1007/11861386 4

3. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. J. Cryptol. 22(1), 114–138 (2009)

7. Blum, M., Feldman, M., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC (1988)

https://doi.org/10.1007/11861386_4
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11

550 B. Libert et al.

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

10. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

11. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 12

12. Boyen, X., Delerablée, C.: Expressive subgroup signatures. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 185–200. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 13

13. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

14. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 7

15. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

16. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN
2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11832072 10

17. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
18. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT

1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

19. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad-
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

20. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-71677-8 13

21. Garms, L., Lehmann, A.: Group signatures with selective linkability. In: Lin, D.,
Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 190–220. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4 7

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

23. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC (2015)

https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-85855-3_13
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-20465-4_7
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-030-17253-4_7
https://doi.org/10.1007/978-3-642-40041-4_5

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma 551

24. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

25. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

26. Hofheinz, D., Ursu, B.: Dual-mode NIZKs from obfuscation. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 311–341. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 12

27. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Exploring constructions
of compact NIZKs from various assumptions. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 639–669. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 21

28. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

29. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Netw. 1(1), 24–45 (2006)

30. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055727

31. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

32. Kohlweiss, M., Miers, I.: Accountable tracing signatures. IACR Cryptology ePrint
Archive, 2014:824 (2014)

33. Kohlweiss, M., Miers, I.: Accountable metadata-hiding escrow: a group signature
case study. In: PoPETs (2015)

34. Libert, B., Nguyen, K., Passelègue, A., Titiu, R.: Simulation-sound arguments for
LWE and applications to KDM-CCA2 security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12491, pp. 128–158. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64837-4 5

35. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 5

36. Liu, J., Wei, V., Wong, D.: Linkable spontaneous anonymous group signature for
ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27800-9 28

37. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

38. Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

39. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 31

https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-030-34578-5_12
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-030-64837-4_5
https://doi.org/10.1007/978-3-030-64837-4_5
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/3-540-45708-9_31

552 B. Libert et al.

40. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC (1990)

41. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
42. Peikert, C., Shiehian, S.: Non-interactive zero knowledge for NP from (plain) learn-

ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

43. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 35

44. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC (2005)

45. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

46. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group
signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pair-
ing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36334-4 18

47. Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

48. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In:
Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS
2004. IIFIP, vol. 153, pp. 271–286. Springer, Boston, MA (2004). https://doi.org/
10.1007/1-4020-8147-2 18

49. Yang, R., Au, M.-H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.1007/1-4020-8147-2_18
https://doi.org/10.1007/1-4020-8147-2_18
https://doi.org/10.1007/978-3-030-26948-7_6

Abuse Resistant Law Enforcement Access
Systems

Matthew Green1(B), Gabriel Kaptchuk2, and Gijs Van Laer1

1 Johns Hopkins University, Baltimore, USA
mgreen@cs.jhu.edu, gijs.vanlaer@jhu.edu

2 Boston University, Boston, USA
kaptchuk@bu.edu

Abstract. The increasing deployment of end-to-end encrypted commu-
nications services has ignited a debate between technology firms and
law enforcement agencies over the need for lawful access to encrypted
communications. Unfortunately, existing solutions to this problem suffer
from serious technical risks, such as the possibility of operator abuse and
theft of escrow key material. In this work we investigate the problem of
constructing law enforcement access systems that mitigate the possibility
of unauthorized surveillance. We first define a set of desirable properties
for an abuse-resistant law enforcement access system (ARLEAS), and
motivate each of these properties. We then formalize these definitions
in the Universal Composability (UC) framework, and present two main
constructions that realize this definition. The first construction enables
prospective access, allowing surveillance only if encryption occurs after a
warrant has been issued and activated. The second, more powerful con-
struction, allows retrospective access to communications that occurred
prior to a warrant’s issuance. To illustrate the technical challenge of con-
structing the latter type of protocol, we conclude by investigating the
minimal assumptions required to realize these systems.

1 Introduction

Communication systems are increasingly deploying end-to-end (E2E) encryption
as a means to secure physical device storage and communications traffic. E2E
encryption systems differ from traditional link encryption mechanisms in that
keys are not available to service providers, but are instead held by endpoints:
typically end-user devices such as phones or computers. This approach ensures
that plaintext data cannot be accessed by providers and manufacturers, or by
attackers who may compromise their systems. Widely-deployed examples include
messaging protocols [6,73,78], telephony [4], and device encryption [5,43], with
some systems deployed to billions of users.

The adoption of E2E encryption in commercial services has provoked a back-
lash from the law enforcement and national security communities around the
world, based on concerns that encryption will hamper agencies’ investigative

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 553–583, 2021.
https://doi.org/10.1007/978-3-030-77883-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_19

554 M. Green et al.

and surveillance capabilities [10,36,77]. The U.S. Federal Bureau of Investiga-
tion has mounted a high-profile policy campaign called “Going Dark” around
these issues [34], and similar public outreach has been conducted by agencies
in other countries [55]. These campaigns have resulted in legislative propos-
als in the United States [46,66,71] that seek to discourage the deployment of
“warrant-proof” end-to-end encryption, as well as adopted legislation in Aus-
tralia that requires providers to guarantee access to plaintext in commercial
communication systems [76].

The various legislative proposals surrounding encryption have ignited
a debate between technologists and policymakers. Technical experts have
expressed concerns that these proposals, if implemented, will undermine the
security offered by encryption systems [1,61,74], either by requiring unsafe
changes or prohibiting the use of E2E encryption altogether. Law enforcement
officials have, in turn, exhorted researchers to develop new solutions that resolve
these challenges [10]. However, even the basic technical requirements of such a
system remain unspecified, complicating both the technical and policy debates.

Existing Proposals for Law Enforcement Access. A number of recent
and historical technical proposals have been advanced to resolve the technical
questions raised by the encryption policy debate [13,14,30,55,68,75,79]. With
some exceptions, the bulk of these proposals are variations on the classical key
escrow [31] paradigm. In key escrow systems, one or more trusted authorities
retain key material that can be used to decrypt targeted communications or
devices.

Technologists and policymakers have criticized key escrow systems [1,33,62],
citing concerns that, without additional protection measures, these systems could
be abused to covertly conduct mass surveillance of citizens. Such abuses could
result from a misbehaving operator or a compromised escrow keystore. Two
recent policy working group reports [33,62] provide evidence that, at least for
the case of communications services, these concerns are shared by members of
the policy and national security communities.1 Reflecting this consensus, recent
high-profile technical proposals have limited their consideration only to the spe-
cial case of device encryption, where physical countermeasures (e.g., physical
possession of a device, tamper-resistant hardware) can mitigate the risk of mass
surveillance [14,68]. Unfortunately, expanding the same countermeasures to mes-
saging or telephony software seems challenging.

Abuse of Surveillance Mechanisms. Escrow-based access proposals suffer
from three primary security limitations. First, key escrow systems require the
storage of valuable key material that can decrypt most communications in the
system. This material must be accessible to satisfy law enforcement request, but
must simultaneously be defended against sophisticated, nation-state supported

1 The Carnegie Institution report [33] concludes that “In the case of data in motion,
for example, our group could identify no approach to increasing law enforcement
access that seemed reasonably promising to adequately balance all of the various
concerns”.

Abuse Resistant Law Enforcement Access Systems 555

attackers. Second, in the event that key material is surreptitiously exfiltrated
from a keystore, it may be difficult or impossible to detect its subsequent mis-
use. This is because escrow systems designed to allow lawful access to encrypted
data typically store decryption keys, which can be misused without producing
any detectable artifact.2 Finally, these access systems require a human operator
to interface between the digital escrow technology and the non-digital legal sys-
tem, which raises the possibility of misbehavior by operators. These limitations
must be addressed before any law enforcement access system can be realisti-
cally considered, as they are not merely theoretical: wiretapping and surveillance
systems have proven to be targets for both nation-state attacks and operator
abuse [19,44,60].

Overcoming these challenges is further complicated by law enforcement’s
desire to access data that was encrypted before an investigation is initiated.
For example, several recent investigations requested the unlocking of suspects’
phones or message traffic in the wake of a crime or terrorist attack [56]. Sat-
isfying these requests would require retrospectively changing the nature of the
encryption scheme used: ciphertext must be strongly protected before an inves-
tigation begins, but they must become accessible to law enforcement after an
investigation begins. Satisfying these contradictory requirements is extraordinar-
ily challenging without storing key material that can access all past ciphertexts,
since a ciphertext may be created before it is known if there will be a relevant
investigation in the future.

Law enforcement access systems that do not fail open in the face of lost key
material or malicious operators have been considered in the past, e.g., [13,16,79].
Bellare and Rivest [13] proposed a mechanism to build probabilistic law enforce-
ment access, in order to mitigate the risk of mass surveillance. Wright and
Varia [79] proposed cryptographic puzzles as a means to increase the financial
cost of abuse. While these might be theoretically elegant solutions, such tech-
niques have practical limitations that may hinder their adoption: law enforce-
ment is unlikely to tolerate arbitrary barriers or prohibitive costs that might
impede legitimate investigations. Moreover, these proposals do little to enable
detection of key theft or to prevent more subtle forms of misuse.

Towards Abuse Resistant Law Enforcement Access. In this work, we
explore if it is technically possible to limit abuse while giving law enforcement the
capabilities they are truly seeking: quickly decrypting relevant ciphertexts during
legally compliant investigations. To do this, we provide a new cryptographic
definition for an abuse resistant law enforcement access system. This definition
focuses on abuse resistance by weaving accountability features throughout the
access process. More concretely, our goal is to construct systems that realize the
following three main features:

2 This contrasts with the theft of e.g., digital certificates or signing keys, where abuse
may produce artifacts such as fraudulent certificates [64] or malware artifacts that
can be detected through Internet-wide surveillance.

556 M. Green et al.

– Global Surveillance Policies. To prohibit abuse by authorized parties,
access systems must enforce specific and fine-grained global policies that
restrict the types of surveillance that may take place. These policies could,
for example, encompass limitations on the number of messages decrypted, the
total number of targets, and the types of data accessed. They can be agreed
upon in advance and made publicly available. This approach ensures that
global limits can be developed that meet law enforcement needs, while also
protecting the population against unlimited surveillance.

– Detection of Abuse. We require that any unauthorized use of escrow key
material can be detected, either by the public or by authorized auditing par-
ties. Achieving this goal ensures that even fully-adversarial use of escrow key
material (e.g., following an undetected key exfiltration) can be detected, and
the system’s security can be renewed through rekeying.

– Operability. At the same time, escrow systems must remain operable, in
the sense that honest law enforcement parties should be able to access mes-
sages sent through a compliant system. We aim to guarantee this feature by
ensuring that it is easy to verify that a message has been correctly prepared.

We stress that the notion of abuse-resistance is different from impossible to abuse.
Under our definitions abuse may still happen, but the features described above
will allow the abuse to be quickly identified and system security renewed. The
most critical aspect of our work is that we seek to enforce these features through
the use of cryptography, rather than relying on correct implementation of key
escrow hardware or software, or proper behavior by authorities.

Prospective vs. Retrospective Surveillance. We will divide the access systems we
discuss into two separate categories: prospective and retrospective. When using a
prospective system, law enforcement may only access information encrypted sent
or received from suspects after those suspects have been explicitly selected as
targets for surveillance: this is analogous to “placing an alligator clip on a wire”
in an analog wiretap. A retrospective access system, as described above, allows
investigators to decrypt past communications, even those from suspects who were
not the target of surveillance when encryption took place. Retrospective access
clearly offers legitimate investigators more capabilities, but may also present a
greater risk of abuse. Indeed, achieving accountable access in the challenging
setting of retrospective key escrow, where encryption may take place prior to
any use of escrow decryption keys, is one of the most technically challenging
aspects of this work.

Our Contributions. More concretely, in this work we make the following con-
tributions.

– Formalizing security notions for abuse resistant law enforcement
access systems. We first provide a high-level discussion of the properties
required to prevent abuse in a key escrow system, with a primary focus on
the general data-in-motion setting: i.e., we do not assume that targets pos-
sess trusted hardware. Based on this discussion, we formalize the roles and

Abuse Resistant Law Enforcement Access Systems 557

protocol interface of an Abuse-Resistant Law Enforcement Access System
(ARLEAS): a message transmission framework that possesses law enforce-
ment access capability with strong accountability guarantees. Finally, we
provide an ideal functionality FARLEAS in Canetti’s Universal Composability
framework [21].

– A prospective ARLEAS construction from non-interactive secure
computation. We show how to realize ARLEAS that is restricted to the
case of prospective access: this restricts the use of ARLEAS such that law
enforcement must commit to surveillance parameters before a target commu-
nication occurs. Each message contains a message for a non-interactive secure
computation protocol [49] that will release plaintext only if law enforcement
has activated a relevant warrant before encryption. We note that more sim-
ple and efficient constructions are possible if restrictions are put on warrants,
e.g. warrants must list specific receivers; due to space constraints, we discuss
these approaches in the full version of the paper.

– A retrospective ARLEAS construction from proof-of-publication
ledgers and extractable witness encryption. We show how to real-
ize ARLEAS that admits retrospective access, while still maintaining the
auditability and detectability requirements of the system. The novel idea
behind our construction is to use secure proof-of-publication ledgers to con-
dition cryptographic escrow operations. The cryptographic applications of
proof-of-publication ledgers have recently been explored (under slightly dif-
ferent names) in several works [25,45,51,69]. Such ledgers may be realized
using recent advances in consensus networking, a subject that is part of a
significant amount of research.

– Evaluating the difficulty of retrospective systems. Finally, we investi-
gate the minimal assumptions for realizing retrospective access in an account-
able law enforcement access system. As a concrete result, we present a lower-
bound proof that any protocol realizing retrospective ARLEAS implies the
existence of an extractable witness encryption scheme for some language L
which is related to the ledger functionality and policy functions of the system.
While this proof does not imply that all retrospective ARLEAS realizations
require extractable witness encryption for general languages (i.e., it may be
possible to construct languages that have trivial EWE realizations), it serves
as a guidepost to illustrate the barriers that researchers may face in seeking
to build accountable law enforcement access systems.

1.1 Towards Abuse Resistance

In this work we consider the problem of constructing secure message transmission
protocols with abuse resistant law enforcement access, which can be seen as an
extension of secure message transmission as formalized in the UC framework
by Canetti [21,22]. Before discussing our technical contributions, we present
the parties that interact with such a system and discuss several of the security
properties we require.

558 M. Green et al.

The ARLEAS Setting. An ARLEAS system is comprised of three types of
parties:

1. Users: Users employ a secure message transmission protocol to exchange
messages with other users. From the perspective of these users, this system
acts like a normal messaging service, with the additional ability to view public
audit log information about the use of warrants on information sent through
the system.

2. Law Enforcement: Law enforcement parties are responsible for initiating
surveillance and accessing encrypted messages. This involves determining the
scope of a surveillance request, obtaining a digital warrant, publishing trans-
parency information, and then accessing the resulting data.

3. Judiciary: The final class of parties act as a check on law enforcement, deter-
mining whether a surveillance request meets the necessary legal requirements.
In our system, any surveillance request must be approved by a judge before it
is activated on the system. In our model we assume a single judge per system,
though in practice this functionality can be distributed.

At setup time an ARLEAS system is parameterized by three functions, which
we refer to as the global policy function, p(·), the warrant transparency function,
t(·), and the warrant scope check function, θ(·).3 The purpose of these functions
will become clear as we discuss operation and desired properties below. Finally,
our proposals assume the existence of a verifiable, public broadcast channel, such
as an append-only ledger. While this ledger may be operated by a centralized
party, in practice we expect that such systems would be highly-distributed, e.g.
using blockchain or consensus network techniques.

ARLEAS Operation. To initiate a surveillance request, law enforcement must
first identify a specific class of messages (e.g. by metadata or sender/receiver);
it then requests a surveillance warrant w from a judge. The judge reviews the
request and authorizes or rejects the request. If the judge produces an authorized
warrant, law enforcement must take a final step to activate the warrant in order
to initiate surveillance. This activation process is a novel element of an abuse
resistant access scheme, and it is what allows for the detection of misbehavior. To
enforce this, we require that activation of a warrant w results in the publication of
some information that is viewable by all parties in the system. This information
consists of two parts: (1) a proof that the warrant is permissible in accordance
with the global policy function, i.e. p(w) = 1, and (2) some transparency data
associated with the warrant. The amount and nature of the transparency data
to be published is determined by the warrant transparency function t(w). Once
the warrant has been activated, and the relevant information has been made
public, law enforcement will be able to access any message that is within the
scope of the warrant, as defined by the warrant scope check function θ(w).

3 We later introduce a fourth parameterizing function, but omit it here for the clarity
of exposition.

Abuse Resistant Law Enforcement Access Systems 559

1.2 Technical Overview

We now present an overview of the key technical contributions of this work. We
will consider this in the context of secure message transmission systems, which
can be generalized to the setting of encrypted storage. Our overview will begin
with intuition for building prospective ARLEAS, and then we will proceed to
retrospective ARLEAS.

Accountability From Ledgers. For an ARLEAS the most difficult proper-
ties to satisfy are accountability and detectability. Existing solutions attempt
to achieve this property by combining auditors and key escrow custodians; in
order to retrieve key material that facilitates decryption, law enforcement must
engage with an auditor. This solution, however, does not account for dishonest
authorities, and is therefore vulnerable to covert key exfiltration and collusion.
In our construction, we turn to public ledgers—a primitive that can be realized
using highly-decentralized and auditable systems—as a way to reduce these trust
assumptions.

Ledgers have the property that any party can access their content. Impor-
tantly, they also have the property that any parties can be convinced that other
parties have access to these contents. Thus, if auditing information is posted
on a ledger, all parties are convinced that that information is truly public. We
note that using ledgers in this way is fundamentally different from prior work
addressing encrypted communications; our ledger is a public functionality that
does not need to have any escrow secrets. As such, if it is corrupted, there is no
private state that can be exploited by an attacker.

Warm up: Prospective ARLEAS. To build to our main construction, we
first consider the simpler problem of constructing a prospective access system,
one that is capable of accessing messages that are sent subsequent to a warrant
being activated.

A key aspect of this construction is that we consider a relatively flexible
setting where parties have network access, and can receive periodic communica-
tions from escrow system operators prior to transmitting messages. We employ
a public ledger for transmission of these messages, which provides an immutable
record as well as a consistent view of these communications. The goal in our app-
roach is to ensure that escrow updates embed information about the specifics of
surveillance warrants that are active, while ensuring that even corrupted escrow
parties cannot abuse the system.

Prospective ARLEAS for Arbitrary Predicates. The core intuition of
our approach is to construct a “dual-trapdoor” public-key encryption system
that senders can use to encrypt messages to specific parties. This scheme is
designed with two ciphertexts c1 and c2, such that c1 can be decrypted by the
intended recipient using a normal secret key, while c2 can be decrypted by law
enforcement only if the recipient is under active surveillance, i.e. law enforcement
has a warrant w that applies to the message and has posted any necessary
transparency information. A feature of this scheme is that for all recipients not
the target of surveillance, c2 should leak no information about the plaintext to

560 M. Green et al.

law enforcement. In this work, we use non-interactive secure computation (NISC)
[49], a reusable, non-interactive version of two-party computation to “encrypt”
the ciphertext c2. NISC for an arbitrary function f allows a receiver to post an
encryption of some secret x1 such that all players can reveal f(x1, x2) to the
receiver with only one message, without revealing anything about x2 beyond the
output of the function.

In prospective surveillance, law enforcement must activate their warrant
before it can be used to decrypt traffic. When activating a warrant, law enforce-
ment computes the transparency information for their warrant info ← t(w) along
with the first message of the NISC scheme, embedding the warrant, and posts
these onto the ledger. Whenever a sender sends a message m, they retrieve law
enforcement’s latest post, generate c1 as using a normal public key encryption
scheme and then generate c2 which, using the NISC scheme, allows law enforce-
ment to compute f(w, (m,meta)) = m∧ θ(meta, w), where θ(·, ·) evaluates if the
warrant applies to this particular message (we will discuss θ(·, ·) in more detail
in Sect. 3). Notice that if θ(meta, w) = 0, then the output of the NISC eval-
uation is uncorrelated with the message. However, if θ(meta, w) = 1, meaning
law enforcement has been issued a valid warrant, then the message is recovered.
We note that it is possible to construct a more concretely efficient scheme that
uses lossy encryption instead of NISC, as long as warrants specify the identity
of users; we discuss this construction in the full version of the paper.

From Prospective to Retrospective. The major limitation of the ARLEAS
construction above is that it is fundamentally restricted to the case of prospec-
tive access. Abuse resistance derives from the fact that “activation” of a warrant
results in a distribution of fresh encryption parameters to users, and each of these
updates renders only a subset of communications accessible to law enforcement.
A second drawback of the prospective protocol is that it requires routine com-
munication between escrow authorities and the users of the system, which may
not be possible in all settings.

Updating these ideas to provide retrospective access provides a stark illustra-
tion of the challenges that occur in this setting. In the retrospective setting, the
space of targeted communications is unrestricted at the time that encryption
takes place. By the time this information is known, both sender and recipient
may have completed their interaction and gone offline. Using some traditional,
key based solution to this problem implies the existence of powerful master
decryption keys that can access every ciphertext sent by users of the system.
Unfortunately, granting such power to any party (or set of parties) in our system
is untenable; if this key material is compromised, any message can be decrypted
without leaving a detectable artifact. The technical challenge in the retrospective
setting is to find an alternative means to enable decryption, such that decryption
is only possible on the conditions that (1) a relevant warrant has been issued
that is compliant with the global policy function, (2) a detectable artifact has
been made public. This mechanism must remain secure even when encryption
occurs significantly before the warrant is contemplated.

Abuse Resistant Law Enforcement Access Systems 561

Ledgers as a Cryptographic Primitive. A number of recent works [24,25,45,51,
69] have proposed to use public ledgers as a means to condition cryptographic
operations on published events. This paradigm was initially used by Choud-
huri et al. [25] to achieve fairness in MPC computations, while independently a
variant was proposed by Goyal and Goyal [45] to construct one-time programs
without the need for trusted hardware. Conceptually, these functionalities all
allow decryption or program execution to occur only after certain information
has been made public. This model assumes the existence of a secure global ledger
L that is capable of producing a publicly-verifiable proof π that a value has been
made public on the ledger. In principle, this ledger represents an alternative form
of “trusted party” that participates in the system. However, unlike the trusted
parties proposed in past escrow proposals [30], ledgers do not store any decryp-
tion secrets. Moreover, recent advances in consensus protocols, and particularly
the deployment of proof-of-work and proof-of-stake cryptocurrency systems. e.g.,
[17,28,40,52], provide evidence that these ledgers can be operated safely at large
scale.

Following the approach outlined by Choudhuri et al. [25], we make use of the
ledger to conditionally encrypt messages such that decryption is only possible
following the verifiable publication of the transparency function evaluated over
a warrant on the global ledger. For some forms of general purpose ledgers that
we seek to use in our system, this can be accomplished using extractable witness
encryption (EWE) [18].4 EWE schemes allow a sender to encrypt under a state-
ment such that decryption is possible only if the decryptor knows of a witness
ω that proves that the statement is in some language L, where L parameterizes
the scheme. While candidate schemes for witness encryption are known for spe-
cific languages (e.g. hash proof systems [26,39]), EWE for general languages is
unlikely to exist [38].

Building Retrospective ARLEAS from EWE. Our retrospective ARLEAS con-
struction assumes the existence of a global ledger that produces verification
proofs π that a warrant has been published to a ledger. As mentioned before,
we aim to condition law enforcement access on the issuance of a valid warrant
and the publication of a detectable artifact. In a sense, we want to use this pub-
lished detectable artifact as a key to decrypt relevant ciphertexts. Thus, in this
construction, a sender encrypts each message under a statement with a witness
that shows evidence that these conditions have been met. This language reasons
over (1) the warrant transparency function, (2) a function determining the rele-
vance of the warrant to ciphertext, (3) the global policy function, (4) the judge’s
warrant approval mechanism, and (5) the ledger’s proof of publication function.

On the Requirement of EWE. We justify the use of EWE in our construc-
tion by showing that the existence of a secure protocol realizing retrospective
ARLEAS implies the existence of a secure EWE scheme for a related language
that is deeply linked to the ARLEAS protocol. Intuitively, the witness for this
4 Using the weaker witness encryption primitive may be possible if the ledger produces
unique proofs of publication.

562 M. Green et al.

language should serve as proof that the protocol has been correctly executed; law
enforcement should be able to learn information about a message if and only if
the accountability and detectability mechanisms have been run. For the concrete
instantiation of retrospective ARLEAS, we give in Sect. 6, this would include get-
ting a valid proof of publication from the ledger. If the protocol is realized with a
different accountability mechanism, the witness encryption language will reason
over that functionality. No matter the details of the accountability mechanism,
we note that it should be difficult for law enforcement to locally simulate the
mechanism. If it were computationally feasible, then law enforcement would be
able to circumvent the accountability mechanism with ease.

1.3 Contextualizing ARLEAS In The Encryption Debate

This work is motivated by the active global debate on whether to mandate
law enforcement access to encrypted communication systems via key escrow.
Reduced to its essentials, this debate incorporates two broad sub-questions. First:
can mandatory key escrow be deployed safely? Secondly, if the answer to the first
question is positive: should it be deployed?

We do not seek to address the second question in this work. Many scholars
in the policy and technical communities have made significant efforts in tackling
this issue [1,11,33,62] and we do not believe that the current work can make
a substantial additional contribution. We stress, therefore, that our goal in this
work is not to propose techniques for real-world deployment. Numerous prac-
tical questions and technical optimizations would need to be considered before
ARLEAS could be deployed in practice.

Instead, the purpose of this work is to provide data to help policymakers
address the first question. We have observed a growing consensus among stake-
holders that key escrow systems should provide strong guarantees of informa-
tion security as a precondition for deployment. Some stakeholders in the law-
enforcement and national security communities grant that key escrow systems
should not be deployed unless they can mitigate the risk of mass-surveillance
via system abuse or compromise.5 Unfortunately, there is no agreement on the
definition of safety, and the technical community remains divided on whether
traditional key escrow security measures (such as the use of secure hardware,
threshold cryptography and policy safeguards) will be sufficient. We believe that
the research community can help to provide answer these questions, and a failure
to do so will increase the risk of unsound policy.

Our contribution in this paper is therefore to take a first step towards this
goal. We attempt to formalize a notion of abuse-resilient key escrow, and to
5 For evidence of this consensus, see e.g., the 2018 National Academies of Sciences

Report [62], which provides a framework for discussing such questions. See also a
recent report by the Carnegie Endowment [33] which chooses to focus only on the
problem of escrow for physical devices rather than data in motion, providing the
following explanation: “it is much harder to identify a potential solution to the
problems identified regarding data in motion in a way that achieves a good balance”
(p. 10).

Abuse Resistant Law Enforcement Access Systems 563

determine whether it can be realized using modern cryptographic techniques.
Our work is focused on feasibility. With this perspective in mind, we believe
that our work makes at least three necessary contributions to the current policy
debate:

Surface the notion of cryptographic abuse-resistance. We raise the question of
whether key escrow can be made abuse resistant using modern cryptographic
technologies, and investigate what such a notion would imply. A key aspect
of this discussion is the question of detectability: by making abuse and key
exfiltration publicly detectable, we can test law enforcement’s belief that back-
door secrets can remain secure, and renew security by efficiently re-keying the
system.

Separate the problems of prospective and retrospective surveillance. By emphasiz-
ing the technical distinctions between prospective and retrospective surveil-
lance, we are able to highlight the design space in which it is realistic to discuss
law enforcement access mechanisms. In particular, our technical results in this
work illustrate the cryptographic implausibility of retrospective ARLEAS:
this may indicate that retrospective surveillance systems are innately suscep-
tible to abuse.

Shift focus to public policy. In defining and providing constructions for prospec-
tive and retrospective ARLEAS, we formalize the notion of a global policy
function and a transparency function (see Sect. 3). By making these func-
tions explicit, we hope to highlight the difficult policy issues that must be
solved before deploying any access mechanism. As noted by Feigenbaum
and Weitzner [35], there are limits what cryptography can contribute to this
debate; legal and policy experts must do a better job reducing the gray area
between rules and principles so that technical requirements can be better
specified.

Finally, we note that the existence of a cryptographic construction for ARLEAS
may not be sufficient to satisfy lawn enforcement needs. The mathematics for
cryptographically strong encryption systems is already public and widespread,
and determined criminals may simply implement their own secure messaging
systems [32]. Alternatively, they may use steganography or pre-encrypt their
messages with strong encryption to prevent “real” plaintext from being recovered
by law enforcement while still allowing contacts to read messages [47]. These
practical problems will likely limit the power of any ARLEAS and must be
considered carefully by policy makers before pushing for deployment.

2 Related Work

The past decade has seen the start of academic work investigating the notion
of accountability for government searches. Bates et al. [12] focus specifically
on CALEA wiretaps and ensuring that auditors can ensure law enforcement
compliance with court orders. In the direct aftermath of the Snowden leaks,
Segal et al. [70] explored how governments could accountably execute searches

564 M. Green et al.

without resorting to dragnet surveillance. Liu et al. [57] focus on making the
number of searches more transparent, to allow democratic processes to balance
social welfare and individual privacy. Kroll et al. [53,54] investigate different
accountability mechanisms for key escrow systems, but stop short of addressing
end-to-end encryption systems and the collusion problems we address in this
work. Kamara [50] investigates cryptographic means of restructuring the NSA’s
metadata program. Backes considered anonymous accountable access control [7],
while Goldwasser and Park [42] investigate similar notions with the limitation
that policies themselves may be secret, due to national security concerns. Frankle
et al. [37] make use of ledgers to get accountability for search procedures, but
their solution cannot be extended to the end-to-end encryption setting. Wright
and Varia [79] give a construction that uses cryptographic puzzles to impose a
high cost for law enforcement to decrypt messages. Servan-Schreiber and Wheeler
[72] give a construction for accountability that randomly selects custodians that
law enforcement must access to decrypt a message. Panwar et al. [65] attempt
to integrate the accountability systems closely with ledgers, but do not use the
ledgers to address access to encryption systems. Finally, Scafuro [69] proposes a
closely related concept of “break-glass encryption” and give a construction that
relies on trusted hardware.

3 Definitions

Notation. Let λ be an adjustable security parameter and negl(λ) be a negligible
function in λ. We use ‖ to denote concatenation,

c≈ to denote computational
indistinguishability, and

s≈ to denote statistical indistinguishability. We will write
x ← Algo(·) to say that x is a specific output of running the algorithm Algo on
specific inputs and will write x ∈ Algo(·) to indicate that x is an element in
the output distribution of Algo, when run with honest random coins. We write
AlgoPar to say that the algorithm Algo is parameterized by the algorithm Par.

Defining ARLEAS. We now formally define the notion of an Abuse-Resistant
Law Enforcement Access System (ARLEAS). An ARLEAS is a form of mes-
sage transmission scheme that supports accountable access by law enforcement
officials. To emphasize the core functionality, we base our security definitions
on the UC Secure Message Transmission (FSMT) notion originally introduced
by Canetti [21]. Indeed, our systems can be viewed as an extension of a multi-
message SMT functionality [22], with added escrow capability.

Parties and System Parameters. An ARLEAS is an interactive message trans-
mission protocol run between several parties and network components:

– User Pi: Users are the primary consumer of the end-to-end encrypted ser-
vice or application. These parties, which may be numerous, interact with the
system by sending messages to other users.

Abuse Resistant Law Enforcement Access Systems 565

– Judge PJ : The judge is responsible for determining the validity of a search
and issuing search warrants to law enforcement. The judge interacts with the
system by receiving warrant requests and choosing to deny or approve the
request.

– LawEnforcement PLE: Law enforcement is responsible for conducting searches
pursuant to valid warrants authorized by a judge. Law enforcement interacts
with the system by requesting warrants from the judge and collecting the
plaintext messages relevant to their investigations.

A concrete ARLEAS system also assumes the existence of a communication
network that parties can use to transmit encrypted messages to other users. To
support law enforcement access, it must be possible for law enforcement to “tap”
this network and receive encrypted communications between targeted users. For
the purposes of this exposition, we will assume that law enforcement agents have
access to any communications transmitted over the network (i.e., the network
operates as a transparent channel.) In practice, a service provider would handle
the transmissions of ciphertexts. This service provider would also be respon-
sible for storing ciphertext and metadata, and providing this information to
law enforcement. Our simplified model captures the worst case network secu-
rity assumption, where the service provider cooperates with all law enforcement
requests. Service providers would also be responsible for checking that messages
sent by users are compliant with the law enforcement access protocol. We move
this responsibility to the receiver for simplicity. We discuss the role of service
providers in more detail in the full version.

An ARLEAS system is additionally parameterized by four functions, which
are selected during a trusted setup phase:

– t(w): the deterministic transparency function takes as input a warrant w and
outputs specific information about the warrant that can be published to the
general public.

– p(w): the deterministic global policy function takes as input a warrant w and
outputs 1 if this warrant is allowed by the system.

– θ(w,meta): the deterministic warrant scope check takes as input a warrant
w and per-message metadata meta. It outputs 1 if meta is in scope of w for
surveillance.

– v(meta, aux): The deterministic metadata verification functionality takes as
input metadata associated with some message meta and some auxiliary infor-
mation aux and determines if the metadata is correct. This auxiliary informa-
tion could contain the ciphertext, global timing information, or some authen-
ticated side channel information.

We discuss concrete instantiations of these functions in the full version of the
paper.

ARLEAS Scheme. An ARLEAS scheme comprises a set of six possibly interac-
tive protocols. We provide a complete API specification for these protocols in
later sections:

566 M. Green et al.

– Setup. On input a security parameter, this trusted setup routine generates all
necessary parameters and keys needed to run the full system.

– SendMessage. On input a message m, metadata meta, and a recipient identity,
this protocol sends an encrypted message from one party to another.

– RequestWarrant. On input a description of the warrant request, this procedure
allows law enforcement to produce a valid warrant.

– ActivateWarrant. Given a warrant w, this protocol allows law enforcement and
a judge to confirm and activate a warrant.

– VerifyWarrantStatus. Given a warrant w, this protocol is used to verify that a
warrant is valid and active.

– AccessMessage. In the retrospective case, this protocol is used by law enforce-
ment to open a message.

UC Ideal Functionality. To define the properties of an ARLEAS system, we
present a formal UC ideal functionality FARLEAS in Fig. 1. Recalling that
ARLEAS can be instantiated in one of two modes, supporting only prospec-
tive or retrospective surveillance, we present a single definition that supports a
parameter, mode ∈ {pro, ret}.

Ideal World. For any ideal-world adversary S with auxiliary input z ∈ {0, 1}∗,
input vector x, and security parameter λ, we denote the output of the ideal
world experiment by IdealS,Fv,t,p,θ,mode

ARLEAS
(1λ, x, z).

Real World. The real world protocol starts with the adversary A selecting a sub-
set of the parties to compromise PA ⊂ P, where PA ⊂ {{Pi}, {PLE}, {PLE, PJ}},
where we denote sender with Pi and receiver with Pj . We limit the subsets of
parties that can be compromised to these cases, because any other combination
is trivial to simulate or can be deducted from the other cases. For example, if
both Pi and Pj would be corrupted, there is nothing stopping them from not
using the system. Moreover, we also don’t consider the case where PJ is the only
corrupted party, this case is a more specific then when both PLE and PJ are
corrupted and PJ on its own doesn’t have any additional information to achieve
anything different. All parties engage in a real protocol execution Π, the adver-
sary A sends all messages on behalf of the corrupted parties and can choose any
polynomial time strategy.

In a real world protocol we assume that communication between a sender Pi

and receiver Pj happens over a transparent channel, meaning all other parties
are able to receive all communication. We make this choice to simplify the pro-
tocol and security proofs. In the real world, this can be modeled with a service
provider relaying messages between Pi and Pj that always complies with law
enforcement requests and hands over encrypted messages when presented with
a valid warrant. Note that this makes our modeling the worst case scenario, and
therefore captures more selective service providers. Additionally, in practice, this
service provider would validate if messages are well-formed to make sure Pi and
Pj follow the real protocol.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector x, and
security parameter λ, we denote the output of Π by RealA,Π(1λ, x, z).

Abuse Resistant Law Enforcement Access Systems 567

Functionality Fv,t,p,θ,mode
ARLEAS

The ideal functionality is parameterized by mode ∈ {pro, ret}, a metadata verifi-
cation function v : {0, 1}∗ × {0, 1}∗ → {0, 1}, the transparency function t(·), the
global policy function p(·), and the warrant scope check functionality θ(·, ·). The
three latter functions are as defined above. We denote the session identifier as sid
to separate different runs of the same protocol. We have several parties:
– P1, . . . , Pn: participants in the system
– PJ : the generator of a warrant
– PLE: Law enforcement that can read the message given a valid warrant

Send Message: Upon receiving a message (SendMessage, sid, Pj , m,meta, valid)
where valid ∈ {0, 1} from party Pi, it sends (Sent, sid,meta) to the adversary. If
(sid, c) is received from the adversary,

– If valid = 0 or v(meta, aux) = 0, send (Sent, sid,meta, c, m) to Pi and send
(Sent, sid,meta, c, 0) to PLE.

– If valid = 1, v(meta, aux) = 1, and there is no entry w in the active
warrant table Wactive send (Sent, sid,meta, c, m) to Pi and Pj , and send
(Sent, sid,meta, c) to PLE.

– If valid = 1, v(meta, aux) = 1, and there is an entry w in the active warrant
table Wactive send (Sent, sid,meta, c, m) to Pi, Pj , and PLE.

Finally, store (Sent, sid,meta, c, m) in the message table M .

Request Warrant: Upon receiving a message (RequestWarrant, sid, w) from PLE,
the ideal functionality first checks if p(w) = 1, responding with ⊥ and aborting if
not. Otherwise, the ideal functionality sends (ApproveWarrant, w) to PJ . If PJ re-
sponds with (Disapprove), the trusted functionality sends ⊥ to PLE. If PJ responds
with (Approve), the trusted functionality sends (Approve) to PLE, and stores the
entry w in the issued warrant table Wissued.

Activate Warrant: Upon receiving a message (ActivateWarrant, sid, w) from
PLE, the ideal functionality checks to see if w ∈ Wissued, responding with ⊥
and aborting if not. If w ∈ Wissued, the trusted functionality adds the entry w to
the active warrant table Wactive, computes t(w), and sends (NotifyWarrant, t(w))
to all parties and the adversary.

Verify Warrant Status: Upon receiving message
(VerifyWarrantStatus, sid, c,meta, w) from PLE, if mode = pro, the ideal function-
ality responds with ⊥ and aborts. Otherwise, if (Sent, sid,meta, c, m) ∈ M and
w ∈ Wactive such that θ(w,meta) = 1, the ideal functionality returns 1. Finally,
if θ(w,meta) = 0 or w �∈ Wactive, it returns 0.

Access message: Upon receiving message (AccessData, sid, c,meta, w) from PLE,
if mode = pro, the ideal functionality responds with ⊥ and aborts. Otherwise, if
(Sent, sid,meta, c, m) ∈ M and w ∈ Wactive such that θ(w,meta) = 1, the ideal
functionality returns m. Finally, if θ(w,meta) = 0, it returns 0.

Fig. 1. Ideal functionality for an Abuse Resistant Law Enforcement Access System.

568 M. Green et al.

Protocol RealA,Π(1λ, x, z)

RealA,Π(1λ, x, z) is parameterized by the protocol Π = (Setup,
SendMessage,RequestWarrant,ActivateWarrant,VerifyWarrantStatus,
AccessMessage) and a variable mode ∈ {pro, ret}.

1. When RealA,Π(1λ, x, z) is initialized, then all parties engage in the
interactive protocol Π.Setup

2. When Pi is activated with (SendMessage, sid, Pj , m, 1), parties Pi,
Pj , and PLE engage in the interactive protocol Π.SendMessage. PLE

learns some metadata meta about the message.
3. When Pi is activated with (SendMessage, sid, Pj , m, 0), parties Pi,

and PLE engage in the interactive protocol Π.SendMessage (with
Pj not getting output). PLE learns some metadata meta about the
message.

4. When PLE is activated with (RequestWarrant, sid, ŵ), parties PLE

and PJ engage in the interactive protocol Π.RequestWarrant.
5. When PLE is activated with (ActivateWarrant, sid, w), all parties

engage in the interactive protocol Π.ActivateWarrant.
6. When PLE is activated with (VerifyWarrantStatus, sid, c,meta, w),

if mode = pro, PLE returns ⊥. Otherwise, PLE calls the non-
interactive functionality Π.VerifyWarrantStatus(c,meta, w)

7. When PLE is activated with (AccessData, sid, c,meta, w), if mode =
pro, PLE returns ⊥. Otherwise, PLE calls the non-interactive func-
tionality Π.AccessMessage(c,meta, w)

Fig. 2. The real world experiment for a protocol implementing Fv,t,p,θ,mode
ARLEAS

Functionality LVerify

GetCounter: Upon receiving (GetCounter) from any party, return �.

Post: Upon receiving (Post, x), the trusted party increments � by 1, computes the proof of
publication πpublish on (�||x) such that Verify((�‖x), πpublish) = 1. Add the entry (�, x, πpublish) to
the entry table T . Respond with (�, x, πpublish)

GetVal: Upon receiving (GetVal, �), check if there is an entry (�, x, πpublish) in the entry table
T . If not, return ⊥. Otherwise, return (�, x, πpublish).

Fig. 3. Ideal functionality for a proof-of-publication ledger, from [25].

Definition 1. A protocol Π is said to be a secure ARLEAS protocol computing
Fv,t,p,θ,mode

ARLEAS if for every PPT real-world adversary A, there exists an ideal-world
PPT adversary S corrupting the same parties such that for every input x and
auxiliary input z it holds that

IdealS,Fv,t,p,θ,mode
ARLEAS

(1λ, x, z)
c≈ RealA,Π(1λ, x, z)

Abuse Resistant Law Enforcement Access Systems 569

π
v,t,p,θ
PRO .Setup:

– All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for the NIZK scheme

and all users send (CRS) to FΠNISC.GenCRS
CRS to retrieve the common reference string for the NISC scheme

CRSNISC.

– Each user Pj computes (pkj , skj) ← ΠEnc.KeyGen(1λ) and sends pkj to PLE and to each Pi via FAUTH .

– The judge PJ computes (pksign, sksign) ← ΠSign.KeyGen(1λ) and send pksign to all other users via FAUTH .

– Law enforcement PLE runs π
v,t,p,θ
PRO .ActivateWarrant with an empty set ∅ as the valid warrants.

π
v,t,p,θ
PRO .SendMessage :

– The sender Pi computes the ciphertext (c1, c2, π, meta) as follows, and sends it to Pj and PLE via FAUTH :

• Send (GetCounter) to LVerify and receive the current counter �. Then query LVerify on (GetVal, �) to receive

the latest posting (�, x, πpublish). Parse x as (niscpublic1 , π, info). If ΠNIZK.ZKVerify(niscpublic
1 , info, π) = 0

or LVerify.Verify(�‖(niscpublic
1 , π, info), πpublish) = 0 return ⊥ and halt.

• c1 ← ΠEnc.Enc(pkj , m; r1), where r1
$←− {0, 1}λ

• Create meta

• nisc2 ← ΠNISC.NISC2(CRSNISC, I|info|, (m, meta), nisc
public
1 ; r2), where r2

$←− {0, 1}λ

• c2 ← nisc2
• Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

⎧⎪⎨
⎪⎩

(m, r1, r2) :
c1 = ΠEnc.Enc(pkj , m; r1)∧

c2 = ΠNISC.NISC2(CRSNISC, I|info|, (m, meta), nisc
public
1 ; r2)

⎫⎪⎬
⎪⎭

– Upon receiving c from Pi, Pj calls π
v,t,p,θ
PRO .VerifyMessage on c. If the output is 1, then recover the message

as m ← ΠEnc.Dec(skj , c2)

– Upon receiving c from Pi, PLE calls π
v,t,p,θ
PRO .VerifyMessage on c. If the output is 1, then recover the message

as m ← ΠNISC.Evaluate(CRSNISC, nisc2, nisc
private
1)

π
v,t,p,θ
PRO .VerifyMessage :

– Any party parses (c1, c2, π, meta) ← c and verifies that π is correct and computes v(meta, aux), aborting if
the output is 0. Otherwise, output 1.

π
v,t,p,θ
PRO .RequestWarrant:

– PLE sends (RequestWarrant, ŵ) to PJvia FAUTH . PJ then either decides to send (Disapprove) to PLE and halt
or executes the following:

• Verify that p(ŵ) = 1. If not send (Disapprove) to PLE and abort.
• σ ← ΠSign.Sign(sksign, ŵ)
• Send the signed warrant w = (ŵ, σ) to PLE via FAUTH .

π
v,t,p,θ
PRO .ActivateWarrant:

– PLE adds the new warrant w to the set of valid warrants W. Let w∗ = w1‖ . . . ‖w|W| for wi = (ŵi, σi) ∈
W.

– (niscpublic1 , nisc
private
1) ← ΠNISC.NISC1(CRSNISC, w∗; r) and record nisc

private
1

– Compute info ← {t(w)|w ∈ W}
– Use ΠNIZK.ZKProve to compute π such that

π ← NIZK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(W, nisc
private
1 , r) :

info = {t(w)|w ∈ W}∧

(niscpublic
1 , nisc

private
1) ← ΠNISC.NISC1(CRSNISC, w

∗; r)∧
∀(ŵ, σ) ∈ W, ΠSign.Verify(pksign, ŵ, σ) = p(ŵ) = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

– Send (Post, (niscpublic
1 , π, info)) to LVerify and receive (�, x, πpublish).

Fig. 4. Our construction of a protocol πv,t,p,θ
PRO that UC-realizes Fv,t,p,θ,pro

ARLEAS

570 M. Green et al.

4 Building Blocks

Proof-of-Publication Ledgers. Our work makes use of a public append-only
ledger that can produce a publicly-verifiable proof of publication. This concept
was formalized by Goyal et al. [45], Choudhuri et al. [25], and Kaptchuk et
al. [51], but related ideas have also been previously used by Liu et al. to realize
time-lock encryption [58]. Plausible candidates for such ledgers have been the
subject of great interest, due to the deployment of blockchains and other con-
sensus networks [59]. Significant work has been done to formalize the notion of
a public, append-only ledger [8,9,24,45] and study its applications to crypto-
graphic protocols [3,15,25]. This work uses a simplified ledger interface formal-
ized in [25] that abstracts away details such as timing information and temporary
inconsistent views that are modeled in [9]. However, this simplified view captures
the eventual functionality of the complex models, and is therefore equivalent for
our purposes (Fig. 2).

The ledger ideal functionality is provided in Fig. 3. This functionality allows
users to post arbitrary information to the ledger; this data is associated with
a particular index on the ledger, with which any user can retrieve the original
data as well as a proof of publication. For security, our functionality encodes a
notion we refer to as ledger unforgeability, which requires that there exists an
algorithm to verify a proof that a message has been posted to the ledger, and
that adversaries cannot forge this proof.

Authenticated Communication. We use a variant of Canetti’s ideal function-
ality for authenticated communication, FAUTH , to abstract the notion of mes-
sage authentication [21]. Due to space constraints, we omit the ideal functionality
in this shortened version. Since we restrict our analysis to static corruption, we
simplify this functionality to remove the adaptive corruption interface.6

Simulation Extractable Non-interactive Zero Knowledge. In our pro-
tocols we require non-interactive zero knowledge proofs of knowledge that are
simulation extractable. To preserve space, we refer the reader to the definitions
of Sahai [67] and De Santis et al. [29]. Rather than rely on UC functionalities,
we employ a NIZK directly in our protocols.

Multi-sender Non-interactive Secure Computation. When instantiating
our prospective protocol for arbitrary predicates in Sect. 5, we will require the
use of Non-interactive Secure Computation (NISC) [2,49]. In NISC, a receiver
can post an encryption embedding a secret x1 such that senders with secret x2

can reveal f(x1, x2) to the receiver by sending only a single message. Realizing
such a scheme (see [49]) is feasible in the CRS model [21,23] from two-round,
UC-secure malicious oblivious transfer [27,63], Yao’s garbled circuits [48], and
generic non-interactive zero knowledge (see Sect. 4). The resulting protocols,

6 Note that this ideal functionality only handles a single message transfer, but to
achieve multiple messages, we rely on universal composition and use multiple
instances of the functionality.

Abuse Resistant Law Enforcement Access Systems 571

however, are very inefficient and require non-blackbox use of the underlying
cryptographic primitives. While this is sufficient for our purposes, we note that
depending on specific functionality required in an instantiation of ARLEAS, it
may be possible to use more efficient constructions (i.e. depending on the size
of the predicate circuit, etc.) Because the notation for NISC protocols varies, we
fix it for this work below. We omit the ideal functionality of multi-sender NISC
from [2], due to space constraints. Because we require non-blackbox use of the
primitive, we will use it directly rather than as a hybrid.

Definition 2 (Multi-sender Non-interactive Secure Computation). A
garbling scheme for a functionality f : {0, 1}input1 ×{0, 1}input2 → {0, 1}output is a
tuple of PPT algorithms ΠNISC := (GenCRS,NISC1,NISC2,Evaluate) such that

– GenCRS(1λ, input; r) → (CRSNISC, τNISC): GenCRS takes the security parame-
ter 1n and outputs a CRS, along with a simulation backdoor τNISC. When we
explicitly need to specify the randomness, we will include it as r as here.

– NISC1(CRSNISC, x1; r) → (niscpublic1 , niscprivate1): NISC1 takes in the CRS and
an input x ∈ {0, 1}input1 and outputs the first message NISC1. When we explic-
itly need to specify the randomness, we will include it as r as here.

– NISC2(CRSNISC, f, x2, nisc
public
1 ; r) → nisc2: NISC2 takes in the CRS, a circuit

C, an input x2 ∈ {0, 1}input2 and the first garbled circuit message niscpublic1 .
It outputs the second message nisc2. When we explicitly need to specify the
randomness, we will include it as r as here.

– Evaluate(CRSNISC, nisc2, nisc
private
1): Evaluate takes as input the second GC

message nisc2 along with the private information niscprivate1 and outputs
y ∈ {0, 1}output or the error symbol ⊥

We omit the ideal world security definition for multi-sender NISC, due to space
constraints. It can be found in [2].

Witness Encryption and Extractable Witness Encryption. Our retro-
spective constructions require extractable witness encryption (EWE) [18], a vari-
ant of witness encryption in which the existence of a distinguisher can be used
to construct an extractor for the necessary witness [41]. While EWE is a strong
assumption, in later sections of this work we show that it is a minimal require-
ment for the existence of retrospective ARLEAS.

To preserve space we give the formal definition in the full version of our
paper and we describe it informally here. An extractable witness encryption
scheme is parameterized by an NP-language L and has two algorithms ΠEWE =
(Enc,Dec). Encryption uses a statement x to encrypt a plaintext message m,
while decryption uses a witness ω such that (x, ω) ∈ RL to recover the plaintext.

This scheme has two properties: correctness and extractable security. Correct-
ness implies decryption recovers the plaintext if the witness is valid. Extractable
security says that if an adversary can distinguish between two encrypted mes-
sages, there exists an extractor that can extract the witness of the statement.

572 M. Green et al.

π
v,t,p,θ
RET .Setup:

– All users send (CRS) to FΠNIZK.ZKSetup
CRS to retrieve the common reference string for the NIZK scheme.

– PJ computes (pksign, sksign) ← ΠSign.KeyGen(1λ) and sends pksign to all other users via FAUTH .

π
v,t,p,θ
RET .SendMessage:

– The sender Pi computes the ciphertext (c1, c2, c3, π, meta) as follows, and sends it to Pj and PLE via
FAUTH :

• Sample r ← {0, 1}λ

• Query the random oracle to obtain the hashes:
(HashConfirm, r1) ← GpRO(HashQuery, (“ENC”‖r‖m)),
(HashConfirm, r2) ← GpRO(HashQuery, (“WE”‖r‖m)), and
(HashConfirm, r3) ← GpRO(HashQuery, (“RP”‖r))

• c1 ← ΠEnc.Enc(pk, r; r1), c2 ← ΠEWE.Enc(meta, r; r2), and c3 ← m ⊕ r3
• Use ΠNIZK.ZKProve to compute π ← NIZK{(r, r1, r2) : c1 = ΠEnc.Enc(pkj , r; r1) ∧ c2 =

ΠEWE.Enc(meta, r; r2)}
– Upon receiving (send, c), Pj performs the following steps:

• Call π
v,t,p,θ
RET .VerifyMessage on c, aborting if the output is 0;

• Compute r′ ← ΠEnc.Dec(skj , c1)

• (HashConfirm, r3) ← GpRO(HashQuery, (“RP”‖r′))
• Compute m′ ← c3 ⊕ r3
• (HashConfirm, r1) ← GpRO(HashQuery, (“ENC”‖r′‖m′))
• (HashConfirm, r2) ← GpRO(HashQuery, (“WE”‖r′‖m′))
• Then to verify that the message has not been mauled, Pj recomputes c′

1 ← ΠEnc.Enc(pkj , r′; r1)

and c′
2 ← ΠEWE.Enc(meta, r′; r2). If c1 �= c′

1 or c2 �= c′
2, return ⊥. Otherwise, return m′.

– Upon receiving (send, c), PLE calls π
v,t,p,θ
RET .VerifyMessage on c, aborting if the output is 0, and then calls

π
v,t,p,θ
RET .AccessMessage on c.

π
v,t,p,θ
RET .VerifyMessage :

– Any party parses (c1, c2, c3, π, meta) ← c and verifies that π is correct and computes v(meta, aux), aborting
if the output is 0. Otherwise, output 1.

π
v,t,p,θ
RET .RequestWarrant:

– PLE sends (RequestWarrant, ŵ) to PJ via FAUTH . PJ then either decides to send (Disapprove) to PLE and halt
or executes the following:

• Verify that p(ŵ) = 1. If not send (Disapprove) to PLE and abort.
• σ ← ΠSign.Sign(wsk, ŵ)
• Send the signed warrant w = (ŵ, σ) to PLE via FAUTH .

π
v,t,p,θ
RET .ActivateWarrant:

– PLE computes info ← t(w); uses ΠNIZK.ZKProve to compute π ← NIZK{(w) : w =

(ŵ, σ), ΠSign.Verify(pksign, ŵ, σ) = 1 ∧ info ← t(w)}; and sends (Post, (info, π)) to LVerify. It receives and
returns (�, info, πpublish).

π
v,t,p,θ
RET .VerifyWarrantStatus:

– PLE calls ΠEWE.Dec(c2, meta, (ŵ, σ), (�, info, πpublish)). If the output is ⊥, return 0. Otherwise, return 1.

π
v,t,p,θ
RET .AccessMessage:

– PLE computes r′ ← ΠEWE.Dec(c2, meta, (ŵ, σ), (�, info, πpublish)).

– (HashConfirm, r3) ← GpRO(HashQuery, (“RP”‖r′))
– Recovers m′ ← c3 ⊕ r3.
– (HashConfirm, r1) ← GpRO(HashQuery, (“ENC”‖r′‖m′))
– (HashConfirm, r2) ← GpRO(HashQuery, (“WE”‖r′‖m′))
– Recomputes c′

1 ← ΠEnc.Enc(pkj , r′; r1) and c′
2 ← ΠEWE.Enc(meta, r′; r2). If c′

1 = c1 and c′
2 = c2, PLE

returns m′ and ⊥ otherwise.

Fig. 5. Our construction of a protocol πv,t,p,θ
RET that UC-realizes Fv,t,p,θ,ret

ARLEAS

Abuse Resistant Law Enforcement Access Systems 573

Programmable Global Random Oracle Model. The security proof for our
retrospective construction makes use of the programmable global random oracle
model, introduced in [20]. We omit the ideal functionality GpRO from [20] due to
space constraints.

5 Prospective Solution

In this section we describe a prospective ARLEAS scheme, which supports arbi-
trary predicates. Recall that the key feature of the prospective case is that war-
rants must be activated before targets perform encryption. A key implication of
this setting is that new cryptographic material can be generated and distributed
to users each time law enforcement updates the set of active warrants. The tech-
nical challenge, therefore, is to ensure that this material is distributed in such a
way that the surveillance it permits is accountable, without revealing to targets
any confidential information about which messages are being accessed.

For generality, our main construction supports targeting by allowing warrants
to specify an arbitrary predicate over the metadata of a transmitted messages.
In practice, we realize this functionality through the use of public ledgers and
non-interactive secure computation techniques.

5.1 UC-Realizing Fv,t,p,θ,pro
ARLEAS for Arbitrary Predicates

To realize prospective ARLEAS, each user must encrypt each message in two
separate forms. The first ciphertext uses standard PKE ciphertext to encrypt the
message directly to the recipient, as is standard in many end-to-end encrypted
messaging systems. The second ciphertext represents a “law enforcement access
field” that is designed to permit authorized surveillance. To construct the second
ciphertext, we require a mechanism that enables law enforcement access if and
only if the warrant is active and valid for the specific message metadata being
transmitted. To ensure that the transmission is consistent (i.e., the plaintexts
contained in each ciphertext is the same), the two ciphertexts are bound together
by using non-interactive zero knowledge proof of knowledge that can be verified
by all parties in the system.

Our construction relies on non-interactive secure computation (NISC) [49].
Recall that a NISC scheme for some function f allows a receiver to post an
encryption of some secret x1 such that all players can reveal f(x1, x2) to the
receiver with only one message, without revealing anything about x2 beyond the
output of the function. For the following construction, we require a NISC scheme
for the function Ik, defined as Ik((w1, w2, . . . , wk), (m,meta)) = m ∧ (θ(meta, w1) ∨
. . . ∨ θ(meta, wk)).

This function evaluates the warrant scope check functionality on the meta-
data over k different warrants. If any of them evaluate to true, the message is
output. Otherwise, Ik outputs 0. Note that the number of warrants is an explicit
parameter of the function and its circuit representation.

574 M. Green et al.

Law enforcement begins by posting the first message of the NISC scheme,
embedding as input their k warrants, along with the transparency information
and proof of correctness. Senders generate and send the ciphertext (c1, c2, π),
generated as follows. c1 remains a normal public key ciphertext for the recipient.
c2 is the second message of the NISC scheme, for the function Ik and embedding
the inputs m,meta. Most known realizations of NISC rely on garbled circuits,
with the second message containing the garbling of the intended function and
hardcoding the sender’s inputs. π is a zero-knowledge proof demonstrating that
the two ciphertexts contain the same message and that they were each generated
correctly with respect to the first message of the NISC.

Upon receiving the resulting ciphertext, law enforcement can attempt to
decrypt by evaluating the NISC ciphertext. By the security of the NISC scheme,
law enforcement will only learn information about the plaintext if they have a
relevant warrant and posted the required transparency information, accomplish-
ing our goal.

We give a description of the prospective ARLEAS protocol πv,t,p,θ
PRO in Fig. 4.

Theorem 1. Assuming a CCA secure public key encryption scheme ΠEnc, a
SUF-CMA secure signature scheme ΠSign, a NIZK scheme ΠNIZK, and an NISC
scheme ΠNISC, πv,t,p,θ

PRO (presented in Fig. 4) UC-realizes Fv,t,p,θ,pro
ARLEAS initialized

in prospective mode in the LVerify, FΠNIZK.ZKSetup
CRS , FΠNISC.GenCRS

CRS , FAUTH−hybrid
model.

Security Proof. We give the security proof in the full version of the paper. The
simulator is straight forward, taking advantage of the NIZKs and the NISC to
facilitate extraction. The proof first simulates just a user, then law enforcement,
and then both the judge and law enforcement.

6 Retrospective Solution

In the previous section we proposed a protocol to realize ARLEAS under the
restriction that access would be prospective only. That protocol requires that
law enforcement must activate a warrant and post the resulting parameters on
the ledger before any targeted communication occurs. In this section we address
the retrospective case. The key difference in this protocol is that law enforce-
ment may activate a warrant at any stage of the protocol, even after a target
communication has occurred.

In this setting we assume law enforcement has a way of getting messages that
were sent in the past. As described before, we take the simplifying assumption
that messages automatically get send to law enforcement. In practice, either a
service provider can forward them, after checking the warrant. One can try to
avoid surveillance by using expiring messages, but service providers can be forced
to keep encrypted messages for a certain period of time. Or law enforcement can
actively record messages in transit.

Abuse Resistant Law Enforcement Access Systems 575

Our construction makes use of an extractable witness encryption scheme
ΠEWE to encrypt the law enforcement ciphertext c2. This scheme is parame-
terized by a language LEWE that is defined with respect to the transparency
function t(·), the policy function p(·), the targeting function θ(·, ·), the warrant
signing key pksign, and the ledger verification function L.Verify, as follows:

LEWE =

⎧
⎨

⎩
meta

∣
∣
∣
∣
∣
∣
∃w, (t, info, πpublish) s.t.

w = (ŵ, σ), L.Verify((�‖info), πpublish) = 1,
info = t(w), ΠSign.Verify(pksign, ŵ, σ) = 1,
p(ŵ) = 1, θ(ŵ,meta) = 1

⎫
⎬

⎭

Intuitively, these ciphertexts can only be decrypted by law enforcement once
they have performed all the accountability tasks required by the ARLEAS.

We will describe our protocol in a hybrid model that makes use of several
functionalities. These include L, FD

CRS , GpRO and FAUTH .

6.1 UC-Realizing Fv,t,p,θ,ret
ARLEAS

We give a description of the retrospective ARLEAS protocol πv,t,p,θ
RET in Fig. 5.

Theorem 2. Assuming a CCA-secure public key encryption scheme ΠEnc, an
extractable witness encryption scheme for LEWE, a SUF-CMA secure signature
scheme ΠSign, and a simulation-extractable NIZK scheme ΠNIZK, πv,t,p,θ

RET (pre-
sented in Fig. 5) UC-realizes Fv,t,p,θ,ret

ARLEAS in the LVerify,FΠNIZK.ZKSetup
CRS ,GpRO−hybrid

model.

Security Proof. We show the full security proof in the full version of the paper.
The proof proceed similarly to the prospective case, with the exception that the
simulator needs to equivocate on the context of ciphertexts once law enforcement
is able to decrypt them. This equivocation is facilitated by the random oracle.

7 On the Need for Extractable Witness Encryption

The retrospective solution we present in Sect. 6 relies on extractable witness
encryption. Intuitively, this strong assumption is required in our construction
because a user must encrypt in a way that decryption is only possible under
certain circumstances. Because the description of these circumstances can be
phrased as an NP relation, witness encryption represents a “natural” primitive
for realizing it. However, thus far we have not shown that the use of extractable
witness encryption is strictly necessary. Given the strength (and implausibility
[38]) of the primitive, it is important to justify its use. We do this by showing that
any protocol ΠA that UC-realizes Fv,t,p,θ,ret

ARLEAS implies the existence of extractable
witness encryption for a related language. Notice that this does not mean the
existence of a particular ARLEAS instantiation implies the existence of generic
extractable witness encryption scheme, but rather a specific, non-trivial scheme.

576 M. Green et al.

Before proceeding to formally define this related language, we give some
intuition about its form. We wish to argue that a protocol ΠA acts like an
extractable witness encryption scheme in the specific case where an adversary has
corrupted the escrow authorities PLE and PJ (along with an arbitrary number of
unrelated users). Recall that in order to learn any information about a message
sent in ΠA, the following conditions must be met: specifically, law enforcement
must correctly run the protocol for ΠA.RequestWarrant and ΠA.ActivateWarrant
such that if ΠA.VerifyWarrantStatus were to be called, it would output 1.7 For
the protocol we presented in Sect. 6, this corresponds to obtaining a correct
proof of publication from the ledger. Importantly, it must be impossible for law
enforcement and judges to generate this information independently; if it were
possible, it would be easy for these parties to circumvent the accountability
mechanism.

We give a formal definition of this language L below. We denote the view
of a user Pi as VPi

, where this view is a collection of the views of running
all algorithms that appear. We abuse notation slightly and denote the pro-
tocol transcript resulting from a sender PS sending a message m to PR as
ΠA.SendMessage(·, PS , PR,m)

L =

{
(meta, sid)

∣∣∣∣∣∃
(

w, c,

{ VPLE , VPJ
,

{VPi
}Pi∈{P1,...,Pn}/{PS,PR}

})
s.t.

c,meta ← ΠA.SendMessage(sid, PS , PR, m),

(Approve) ← ΠA.RequestWarrant(sid, w),

(NotifyWarrant, t(w)) ← ΠA.ActivateWarrant(sid, w),

1 ← ΠA.VerifyWarrantStatus(sid, w,meta, c)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

In this language, the statement comprises some specified metadata and a valid
instance of the protocol ΠA from the perspectives of the parties PLE, PJ , and
the users Pi without the sender and receiver. This setup specifies all the relevant
components of the protocol (including the ledger functionality, in the case of
the protocol presented in Sect. 6). The witness is a valid transcript starting
with that setup, that includes the sending party sending a message with the
appropriate metadata and concludes with a call to ΠA.VerifyWarrantStatus that
returns 1. Note that if VerifyWarrantStatus returns 1, then in the real protocol,
AccessMessage would return the relevant plaintext. Unlike other common witness
encryption languages, we note that all correctly sampled statements are trivially
in the language and have multiple witnesses. Therefore, we need the strong
notion of extractable witness encryption. As we will discuss, finding a witness
for the statement remains a difficult task.

Consider the implications if it were computationally feasible for an adver-
sary to generate a witness for an honestly sampled statement for L. This would
imply that an adversary corrupting PLE and PJ interacting with the real proto-
col has a correct witness, which includes a call to ActivateWarrant, this implies

7 As specified in the ideal functionality, during verification it will be checked that a
warrant was properly requested and activated.

Abuse Resistant Law Enforcement Access Systems 577

our accountability property. Such a protocol could never succeed in meeting
our original goals; law enforcement would always be able to simulate the steps
required for proper accountability. An accountability mechanism that can be
locally simulated cannot guarantee that all parties can monitor the mechanism,
undermining the purpose of the protocol.

To formalize this intuition, we begin by describing an extractable witness
encryption scheme ΠEWE for language L given access to an ARLEAS protocol
ΠA.

– Enc(x,m) parses (meta, sid) from x and calls ΠA.SendMessage(sid,m, PS , PR)
such that it outputs meta, c. It then returns the views {VPLE ,VPJ

,VP0 , . . . ,
VPn

} resulting from that run, excluding the private information associated
with sending the message.

– Dec(c, ω) first parses c, w,meta, sid from the inputs c and ω, then calls m ←
ΠA.AccessMessage(sid, w,meta, c) and returns the result.

It is easy to see that this construction satisfies the correctness property of
extractable witness encryption. Notice that a valid witness needs to contain
inputs to VerifyWarrantStatus such that it outputs 1. Because VerifyWarrantStatus
is defined to return 1 exactly when AccessMessage will return a message, the
above decryption algorithm will return a message only with a valid witness.

We introduce the metadata in the statement in order to fix a witness to a
particular statement. Note that our protocol generates an encryption as run-
ning part of the protocol, actually generating part of the witness. If metadata
is not included in the statement, then any witness for a particular setup can
be used to decrypt any ciphertext generated by the encryption oracle under
the same statement. While this is not inherently problematic for extractable
witness encryption, it no longer corresponds neatly to ARLEAS. Recall that
warrants in ARLEAS specify the metadata for which they are relevant through
the warrant scope check functionality θ(·, ·) and this property must be enforced
in the language. We now proceed to show that the above scheme ΠEWE satisfies
extractable security if ΠA UC-realizes Fv,t,p,θ,ret

ARLEAS .

Theorem 3. Given a protocol ΠA that UC-realizes Fv,t,p,θ,ret
ARLEAS , ΠEWE is a secure

extractable witness encryption scheme for the language L.

Proof. Given an adversary A with non-negligible advantage in the extractable
witness encryption game for language L, either

1. We construct an extractor ExtA(1λ, x, aux) by verifying if the adversary
A ran ΠA.RequestWarrant(sid, w) and ΠA.ActivateWarrant(sid, w) such that
ΠA.VerifyWarrantStatus(sid, w,meta, c) = 1. If this was the case, the extractor
would have all information to form a witness that it can output;

2. else, if such extractor does not exist, we construct a distinguisher Z that
distinguishes between ΠA and ARLEAS ideal functionality. Z proceeds as
follows

578 M. Green et al.

(a) When A asks to sample a statement, Z instantiates ΠA with parties
{PLE, PJ , P0, . . . Pn, PS , PR} on honest random coins. Z then generates
some arbitrary metadata meta associated with a message that PS could
send in the future. and returns meta, sid to A.

(b) When A sends the challenge plaintexts m0,m1 (such that |m0| = |m1|)
on statement x, Z then flips a coin b

$←− {0, 1}, Z has PS call

ΠA.SendMessage(sid,mb, PS , PR)

such that it outputs c,meta. Z then returns the updated views of PLE, PJ

and the N other users to A.
(c) When A outputs the guess b′ and halts, Z outputs b′ == b, where 1

indicates the real world and 0 indicates the ideal world.
Note that in the ideal functionality, the joint views of law enforcement and the
judge contain no information about the plaintext, because the ciphertext is
chosen by the ideal world adversary without access to the plaintext. As such,
if the adversary is able to distinguish between messages with non-negligible
probability, Z must be interacting with the real world protocol.

Implications For Practical Retrospective ARLEAS. The relationship
between retrospective ARLEAS and extractable witness encryption is an indi-
cation of the difficulty of realizing retrospective ARLEAS in practice. In very
specific cases, it may be possible to phrase certain existing encryption schemes
as witness encryption schemes, for example some IBE schemes. General purpose
extractable witness encryption, on the other hand, is considered implausible
[38]. The extractable witness encryption language we have described above must
reason over the ledger authentication language and the various functionalities
that parameterize an retrospective ARLEAS system. As such, the difficulty of
realizing a practical retrospective ARLEAS will hinge on the complexity of the
ledger and the parameterizing functionalities. If they are centralized and simple,
it may be possible to instantiate an retrospective ARLEAS using the protocol
we provided in Sect. 6 and known encryption techniques. However, the security
provided by a centralized ledger is not significant, as a compromised central
authority could circumvent the accountability properties of the system. Thus,
we believe that this result indicates that instantiating an retrospective ARLEAS
with meaningful security is impractical with known techniques.

Acknowledgments. The first author funded in part from the National Science Foun-
dation under awards CNS-1653110 and CNS-1801479, a Google Security & Privacy
Award. The second author is supported by the National Science Foundation under
Grant #2030859 to the Computing Research Association for the CIFellows Project.
Additionally, this material is based upon work supported by DARPA under Agreements
No. HR00112020021 and Agreements No. HR001120C0084. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Government or DARPA.

Abuse Resistant Law Enforcement Access Systems 579

References

1. Abelson, H., et al.: Keys under doormats: mandating insecurity by requiring gov-
ernment access to all data and communications. J. Cybersecur. 1(1), 69–79 (2015)

2. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

4. Apple. Facetime. https://apps.apple.com/us/app/facetime/id1110145091
5. Apple. icloud security overview. https://support.apple.com/en-us/HT202303
6. Apple. imessage. https://support.apple.com/explore/messages
7. Backes, M., Camenisch, J., Sommer, D.: Anonymous yet accountable access control.

In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,
WPES 2005, pp. 40–46. Association for Computing Machinery, New York (2005)

8. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press
(2018)

9. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO, Part I. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

10. Barr, W.: Attorney general William P. Barr delivers keynote address at the inter-
national conference on cyber security, July 2019

11. Barr, W.: Attorney general William P. Barr delivers keynote address at the inter-
national conference on cyber security, July 2019. https://www.justice.gov/opa/
speech/attorney-general-william-p-barr-delivers-keynote-address-international-
conference-cyber

12. Bates, A.M., Butler, K.R.B., Sherr, M., Shields, C., Traynor, P., Wallach, D.S.:
Accountable wiretapping -or- I know they can hear you now. In: NDSS 2012. The
Internet Society, February 2012

13. Bellare, M., Rivest, R.L.: Translucent cryptography - an alternative to key escrow,
and its implementation via fractional oblivious transfer. J. Cryptol. 12(2), 117–139
(1999)

14. Bellovin, S.M., Blaze, M., Boneh, D., Landau, S., Rivest, R.R.: Analysis of the
CLEAR protocol per the National Academies’ framework. Technical report CUCS-
003-18, Columbia University, May 2018

15. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

16. Blaze, M.: Oblivious key escrow. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174,
pp. 335–343. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61996-
8 50

17. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://apps.apple.com/us/app/facetime/id1110145091
https://support.apple.com/en-us/HT202303
https://support.apple.com/explore/messages
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://www.justice.gov/opa/speech/attorney-general-william-p-barr-delivers-keynote-address-international-conference-cyber
https://www.justice.gov/opa/speech/attorney-general-william-p-barr-delivers-keynote-address-international-conference-cyber
https://www.justice.gov/opa/speech/attorney-general-william-p-barr-delivers-keynote-address-international-conference-cyber
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/3-540-61996-8_50
https://doi.org/10.1007/3-540-61996-8_50
https://doi.org/10.1007/978-3-319-96884-1_25

580 M. Green et al.

18. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

19. Bryan-Low, C.: Vodafone, Ericsson get hung up in Greece’s phone-tap scandal.
Wall Street J. (2006)

20. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 11

21. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

22. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

23. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

24. Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp.
351–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 13

25. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 719–728. ACM
Press, October/November 2017

26. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

27. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally compos-
able oblivious transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol.
5461, pp. 318–335. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00730-9 20

28. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

29. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

30. Denning, D.E.: The US key escrow encryption technology. Comput. Commun.
17(7), 453–457 (1994)

31. Denning, D.E., Branstad, D.K.: A taxonomy for key escrow encryption systems.
Commun. ACM 39(3), 34–40 (1996)

32. EncroChat. Encrochat network. http://encrochat.network/
33. Encryption Working Group: Moving the Encryption Policy Conversation Forward.

Technical report, Carnegie Endowment for International Peace (2019)
34. Federal Bureau of Investigation. Going Dark. https://www.fbi.gov/services/

operational-technology/going-dark

https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-030-17656-3_13
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-00730-9_20
https://doi.org/10.1007/978-3-642-00730-9_20
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/3-540-44647-8_33
http://encrochat.network/
https://www.fbi.gov/services/operational-technology/going-dark
https://www.fbi.gov/services/operational-technology/going-dark

Abuse Resistant Law Enforcement Access Systems 581

35. Feigenbaum, J., Weitzner, D.J.: On the incommensurability of laws and technical
mechanisms: or, what cryptography can’t do. In: Matyáš, V., Švenda, P., Sta-
jano, F., Christianson, B., Anderson, J. (eds.) Security Protocols 2018. LNCS, vol.
11286, pp. 266–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03251-7 31

36. Franceschi-Bicchierai, L.: FBI director: encryption will lead to a ‘very dark place’.
Mashable, October 2014

37. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.J.: Practical account-
ability of secret processes. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018,
pp. 657–674. USENIX Association, August 2018

38. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 29

39. Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical zero knowl-
edge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 28

40. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Sym-
posium on Security and Privacy, pp. 139–156. IEEE Computer Society Press, May
2019

41. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 24

42. Goldwasser, S., Park, S.: Public accountability vs. secret laws: can they coexist? A
cryptographic proposal. In: Proceedings of the 2017 on Workshop on Privacy in the
Electronic Society, WPES 2017, pp. 99–110. Association for Computing Machinery,
New York (2017)

43. Google. Encrypt your data - pixel phone help. https://support.google.com/
pixelphone/answer/2844831?hl=en

44. Gorman, S.: NSA officers spy on love interests. Wall Street J. (2013)
45. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using

blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 529–561. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-
2 18

46. Graham, S.L.: Eliminating abusive and rampant neglect of interactive technologies
act of 2020, March 2020

47. Horel, T., Park, S., Richelson, S., Vaikuntanathan, V.: How to subvert backdoored
encryption: security against adversaries that decrypt all ciphertexts. In: Blum, A.
(ed.) ITCS 2019, vol. 124, pp. 42:1–42:20. LIPIcs (2019)

48. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 7

49. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

50. Kamara, S.: Restructuring the NSA metadata program. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 235–247. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1 19

https://doi.org/10.1007/978-3-030-03251-7_31
https://doi.org/10.1007/978-3-030-03251-7_31
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-44371-2_24
https://support.google.com/pixelphone/answer/2844831?hl=en
https://support.google.com/pixelphone/answer/2844831?hl=en
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-540-74143-5_7
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-662-44774-1_19

582 M. Green et al.

51. Kaptchuk, G., Green, M., Miers, I.: Giving state to the stateless: augmenting trust-
worthy computation with ledgers. In: NDSS 2019. The Internet Society, February
2019

52. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 12

53. Kroll, J., Felten, E., Boneh, D.: Secure protocols for accountable warrant execution
(2014)

54. Kroll, J.A., Zimmerman, J., Wu, D.J., Nikolaenko, V., Felten, E.W., Boneh, D.:
Accountable cryptographic access control (2018)

55. Levy, I., Robinson, C.: Principles for a more informed exceptional access debate.
Lawfare (2018)

56. Lichtblau, E., Goldstein, J.: Apple faces U.S. demand to unlock 9 more iPhones.
The New York Times, February 2016

57. Liu, J., Ryan, M.D., Chen, L.: Balancing societal security and individual privacy:
accountable escrow system. In: 2014 IEEE 27th Computer Security Foundations
Symposium, pp. 427–440, July 2014

58. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Des. Codes Crypt. 86(11), 2549–2586 (2018)

59. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
60. Nakashima, E.: Chinese hackers who hacked Google gained access to sensitive data,

U.S. officials say. The Washington Post, May 2013
61. National Academies of Sciences, Engineering, and Medicine. Exploring Encryption

and Potential Mechanisms for Authorized Government Access to Plaintext, The
National Academies Press (2016)

62. National Academies of Sciences, Engineering, and Medicine. Decrypting the
Encryption Debate: A Framework for Decision Makers: The National Academies
Press, Washington, DC (2018)

63. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

64. Nightingale, J.: Fraudulent *.google.com Certificate, August 2011
65. Panwar, G., Vishwanathan, R., Misra, S., Bos, A.: SAMPL: scalable auditability

of monitoring processes using public ledgers. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019, pp. 2249–2266. ACM Press, November 2019

66. Poplin, C.M.: Burr-feinstein encryption legislation officially released. Lawfare,
April 2016

67. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999

68. Savage, S.: Lawful device access without mass surveillance risk: a technical design
discussion. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pp. 1761–1774. Association for Computing
Machinery, New York (2018)

69. Scafuro, A.: Break-glass encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part
II. LNCS, vol. 11443, pp. 34–62. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 2

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-030-17259-6_2
https://doi.org/10.1007/978-3-030-17259-6_2

Abuse Resistant Law Enforcement Access Systems 583

70. Segal, A., Ford, B., Feigenbaum, J.: Catching bandits and only bandits: Privacy-
preserving intersection warrants for lawful surveillance. In: 4th USENIX Workshop
on Free and Open Communications on the Internet (FOCI 14). USENIX Associa-
tion, San Diego, CA, August 2014

71. Blackburn, Sen.M., Graham, Sen.L., Cotton, Sen.T.: Lawful access to 5 encrypted
data act, June 2020

72. Servan-Schreiber, S., Wheeler, A.: Judge, jury & encryptioner: exceptional access
with a fixed social cost (2019)

73. Signal. Signal secure messaging system
74. Sing, M.: Over two dozen encryption experts call on India to rethink changes to

its intermediary liability rules. TechCrunch, February 2020
75. Tait, M.: An approach to James Comey’s technical challenge. Lawfare, April 2016
76. Tarabay, J.: Australian government passes contentious encryption law. The New

York Times, December 2018
77. Watt, N., Mason, R., Traynor, I.: David Cameron pledges anti-terror law for inter-

net after Paris attacks. The Guardian, January 2015
78. WhatsApp. WhatsApp Encryption Overview, December 2017
79. Wright, C., Varia, M.: Crypto crumple zones: enabling limited access without mass

surveillance. In: 2018 IEEE European Symposium on Security and Privacy (EuroS
P), pp. 288–306, April 2018

Author Index

Agarwal, Amit I-435
Aggarwal, Divesh I-467
Albrecht, Martin R. I-528
Alwen, Joël I-87
Amon, Ohad II-127
Ananth, Prabhanjan II-501, II-754, III-278
Andreeva, Elena II-92
Asharov, Gilad III-278

Badertscher, Christian III-399
Bao, Zhenzhen I-771
Bartusek, James I-435
Baum, Carsten III-429
Beck, Gabrielle II-663
Beierle, Christof II-155
Belaïd, Sonia II-313
Benamira, Adrien I-805
Ben-Efraim, Aner III-33
Benhamouda, Fabrice I-33, II-724
Beullens, Ward I-348
Bhattacharyya, Rishiraj II-92
Biryukov, Alex II-219
Blanchet, Bruno I-87
Bordes, Nicolas II-283
Bossuat, Jean-Philippe I-587
Bossuet, Lilian II-438
Boyle, Elette II-871
Brian, Gianluca II-408
Burdges, Jeffrey I-302

Cayrel, Pierre-Louis II-438
Chandran, Nishanth II-871
Cheng, Qi I-559
Chung, Kai-Min II-598
Ciampi, Michele III-64
Colombier, Brice II-438
Cong, Kelong III-33
Costello, Craig I-272
Couteau, Geoffroy II-842, III-247
Coutinho, Murilo I-711

Dahari, Hila III-278
Datta, Pratish I-177
David, Bernardo III-429

De Feo, Luca I-302
Deaton, Joshua I-329
Delpech de Saint Guilhem, Cyprien I-213
Derbez, Patrick II-155
Ding, Jintai I-329
Dinur, Itai I-374
Dobraunig, Christoph II-3, II-377
Dong, Xiaoyang I-771
Dowsley, Rafael III-429
Drăgoi, Vlad-Florin II-438
Ducas, Léo II-249
Dunkelman, Orr II-127

Faonio, Antonio II-408
Farshim, Pooya II-64
Faust, Sebastian II-782
Fehr, Serge II-598
Fleischhacker, Nils III-311

Galbraith, Steven D. I-213
Garg, Rachit III-159
Gay, Romain III-97
Gaži, Peter III-399
George, Marilyn III-370
Gerault, David I-805
Ghazi, Badih III-463
Gilboa, Niv II-871
Goel, Aarushi II-663
Golowich, Noah III-463
Gordon, S. Dov II-694
Goyal, Vipul I-435, II-468, III-64, III-278
Grassi, Lorenzo II-3
Green, Matthew III-553
Grilo, Alex B. II-531
Guinet, Anna II-3
Guo, Jian I-771
Gupta, Divya II-871
Gurkan, Kobi I-147

Hauck, Eduard I-87
Hazay, Carmit II-782
Heath, David III-3
Hemenway Falk, Brett III-338
Heninger, Nadia I-528

586 Author Index

Huang, Yu-Hsuan II-598
Hubaux, Jean-Pierre I-587

Ishai, Yuval II-871

Jager, Tibor I-117
Jain, Aayush II-724, III-97
Jain, Abhishek I-3, II-663, II-754
Jin, Zhengzhong I-3, II-754
Jovanovic, Philipp I-147

Kamara, Seny III-370
Kaptchuk, Gabriel II-663, III-553
Karpman, Pierre II-283
Kaslasi, Inbar III-219
Katsumata, Shuichi I-404
Keller, Nathan II-35, II-127
Khurana, Dakshita I-435, III-159, III-186
Kiayias, Aggelos III-399
Kiltz, Eike I-87, I-117
Kim, Young-Sik I-618
Klooß, Michael III-247
Kolesnikov, Vladimir III-3
Komargodski, Ilan I-177, II-724
Kretzler, David II-782
Kuijsters, Daniël II-3
Kumar, Nishant II-871
Kumar, Ravi III-463
Kutas, Péter I-242

La Placa, Rolando L. II-501
Lai, Qiqi I-498
Lai, Yi-Fu I-213
Leander, Gregor II-155
Lee, Eunsang I-618
Lee, Joon-Woo I-618
Lee, Yongwoo I-618
Lepoint, Tancrède I-33
Leurent, Gaëtan I-54, II-155
Li, Baiyu I-648
Li, Chao I-741
Li, Zeyong I-467
Li, Zheng I-771
Liao, Tai-Ning II-598
Libert, Benoît III-521
Lin, Huang III-247
Lin, Huijia II-531, II-724, III-97
Lipp, Benjamin I-87
Liu, Feng-Hao I-498
Liu, Yunwen I-741

Loss, Julian I-33
Lu, George III-159

Maji, Hemanta K. II-344
Malavolta, Giulio I-435, II-754
Maller, Mary I-147
Meiklejohn, Sarah I-147
Mennink, Bart II-377
Menu, Alexandre II-438
Merz, Simon-Philipp I-242
Meyer, Michael I-272
Meyer, Pierre II-842
Micciancio, Daniele I-648
Moataz, Tarik III-370
Mouchet, Christian I-587

Naehrig, Michael I-272
Nguyen, Hai H. II-344
Nguyen, Khoa III-521
Nielsen, Jesper Buus III-429
Nishimaki, Ryo I-404
No, Jong-Seon I-618
Noble, Daniel III-338

Obremski, Maciej II-408
Oechsner, Sabine III-429
Omri, Eran III-33
Orlandi, Claudio I-678
Orrù, Michele I-33
Orsini, Emmanuela III-33
Ostrovsky, Rafail III-64, III-338

Pagh, Rasmus III-463
Pan, Yanbin I-559
Paskin-Cherniavsky, Anat II-344
Pernot, Clara I-54
Peters, Thomas III-521
Petit, Christophe I-242
Peyrin, Thomas I-805
Polychroniadou, Antigoni II-812

Raddum, Håvard II-155
Rathee, Mayank II-871
Raykova, Mariana I-33
Reichle, Michael III-247
Ribeiro, João II-408
Riepel, Doreen I-87, I-117
Rindal, Peter II-901
Rivain, Matthieu II-313
Roberts, Bhaskar II-562

Author Index 587

Ronen, Eyal II-127
Rosemarin, Asaf II-35
Rotella, Yann II-155
Rothblum, Ron D. III-219
Roy, Arnab II-92
Rupprecht, David II-155
Russell, Alexander III-399

Sahai, Amit III-97
Schäge, Sven I-117
Schlosser, Benjamin II-782
Scholl, Peter I-678
Schoppmann, Phillipp II-901
Shamir, Adi II-127
Shi, Danping I-771
Shi, Elaine III-489
Simkin, Mark II-408, III-311
Skórski, Maciej II-408
Smart, Nigel P. III-33
Song, Fang II-531
Song, Yifan II-812
Soria-Vazquez, Eduardo III-33
Souza Neto, Tertuliano C. I-711
Srinivasan, Akshayaram II-468
Starin, Daniel II-694
Stennes, Lukas II-155
Stephens-Davidowitz, Noah I-467
Stern, Gilad I-147
Stevens, Marc II-249
Suad, Tom II-344
Sun, Siwei I-741, I-771

Taleb, Abdul Rahman II-313
Tan, Quan Quan I-805
Tessaro, Stefano II-64
Tomescu, Alin I-147
Troncoso-Pastoriza, Juan I-587

Udovenko, Aleksei II-219

Vaikuntanathan, Vinod II-531
Van Laer, Gijs III-553
van Woerden, Wessel II-249
Vasudevanr, Prashant Nalini III-219
Velingker, Ameya III-463
Venturi, Daniele II-408
Vidick, Thomas II-630
Vishakha I-329

Wadleigh, Nick I-559
Wang, Mingyuan II-344
Wang, Xiaoyun I-771
Wang, Zhedong I-498
Waters, Brent I-177, III-159
Wee, Hoeteck III-127
Weitkämper, Charlotte I-242
Wichs, Daniel III-127
Wu, Ke III-489

Xu, Guangwu II-187
Xu, Jun I-559

Yakoubov, Sophia I-678
Yamada, Shota I-404
Yamakawa, Takashi I-404, II-568
Yang, Bo-Yin I-329
Yerukhimovich, Arkady II-694
Yu, Wei II-187
Yung, Moti III-521

Zhandry, Mark II-568
Zhang, Tina II-630
Zhu, Chenzhi II-468
Zikas, Vassilis III-399

	Preface
	Eurocrypt 2021
	Contents – Part III
	Garbled Circuits
	LogStack: Stacked Garbling with O(b logb) Computation
	1 Introduction
	1.1 A Case for High Branching Factor
	1.2 ch1C:HeaKol20 and Its O(b2) Computation
	1.3 Top-Level Intuition for O(b logb) Stacked Garbling
	1.4 Our Contributions
	1.5 When to Use LogStack: A High-Level Costs Consideration

	2 Technical Overview of Our Approach
	2.1 O(blogb) Stacked Garbling
	2.2 Technical Difference Between Our and ch1C:HeaKol20 Binary Braching
	2.3 Memory Efficiency of LogStack
	2.4 Stacked Garbling with and Without Random Oracles

	3 Related Work
	4 Notation and Assumptions
	5 The LogStack Garbling Scheme
	5.1 Algorithms for Handling of Conditionals

	6 LogStack Correctness/Security
	6.1 Correctness
	6.2 Security

	7 Instantiation and Experimental Evaluation
	References

	Large Scale, Actively Secure Computation from LPN and Free-XOR Garbled Circuits
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 LIN-RK-KDM Security
	2.2 Error Correcting Codes
	2.3 LPN-Based Encryption
	2.4 Functionalities for Secret-Shared MPC

	3 Free-XOR Garbling Using LPN
	4 MPC from Fully Authenticated LPN-Garbling
	4.1 Garbling
	4.2 Evaluation

	5 MPC from Unauthenticated LPN-Garbling
	5.1 Garbling
	5.2 Evaluation

	6 Implementation and Experimental Results
	References

	Threshold Garbled Circuits and Ad Hoc Secure Computation
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Positional Secret Sharing (PoSS)
	2.2 Threshold NIMPC
	2.3 (l, k)-Secure Ad Hoc PSM
	2.4 Related Work

	3 Background
	3.1 Secret Sharing
	3.2 Homomorphic Secret Sharing (HSS)

	4 Our Model
	4.1 Threshold NIMPC
	4.2 Ad Hoc PSM
	4.3 Adaptive-Ad-Hoc PSM

	5 Positional Secret Sharing (PoSS)
	5.1 PoSS: Our Construction

	6 Threshold NIMPC
	7 Ad Hoc PSM
	7.1 Ad Hoc PSM for All Functions
	7.2 Fully Secure Ad Hoc PSM

	References

	Indistinguishability Obfuscation
	Indistinguishability Obfuscation from Simple-to-State Hard Problems: New Assumptions, New Techniques, and Simplification
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Overview of Our FE Construction
	2.2 Instantiating Our Assumption
	2.3 Single Ciphertext Functional Encryption with Linear Key Generation

	3 Preliminaries
	3.1 Pairing Groups

	4 Functional Encryption Definitions
	4.1 Security Definition
	4.2 Efficiency Features
	4.3 Structural Properties

	5 Definition of Structured-Seed PRG
	6 Construction of -Simulation Secure FE
	References

	Candidate Obfuscation via Oblivious LWE Sampling
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Discussion and Perspectives

	2 Preliminaries
	2.1 Notations

	3 Functional Encodings
	3.1 Definition of Functional Encodings

	4 Homomorphic Commitments with Short Openings
	5 1-SIM Functional Encoding from LWE
	6 Oblivious Sampling from a Falsifiable Assumption
	6.1 Definition of Oblivious Sampling
	6.2 Heuristic Construction
	6.3 Security Under a New Conjecture

	7 Q-SIM Functional Encodings from Oblivious Sampling
	8 IO from Functional Encodings
	References

	Non-Malleable Commitments
	Black-Box Non-interactive Non-malleable Commitments
	1 Introduction
	1.1 Our Techniques

	2 Computation Enabled CCA Commitments
	2.1 Definition
	2.2 Connecting to Standard Security

	3 Tag Amplification
	3.1 Proof of Security

	4 Compiling Our Transformations
	References

	Non-interactive Distributional Indistinguishability (NIDI) and Non-malleable Commitments
	1 Introduction
	1.1 Our Results
	1.2 Additional Related Work

	2 Technical Overview
	2.1 Commit-and-Prove Arguments
	2.2 Non-interactive Distributional Indistinguishability
	2.3 Application: CCA Commitments

	3 Preliminaries
	4 Non-interactive Distributionally Indistinguishable (NIDI) Arguments
	4.1 Definitions
	4.2 Construction and Analysis

	5 Commit-and-Prove
	6 CCA Commitments from Indistinguishability Obfuscation
	References

	Zero-Knowledge Proofs
	Public-Coin Statistical Zero-Knowledge Batch Verification Against Malicious Verifiers
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Organization

	2 Preliminaries
	2.1 Statistical Zero-Knowledge
	2.2 Many-wise Independence
	2.3 Round-By-Round Soundness

	3 Load-Balancing Functions
	4 Approximate Injectivity
	5 Public-Coin Batch Verification for AIL,
	6 From Honest to Malicious Verifier
	7 Public-Coin Malicious Verifier SZK Batching for NISZK
	References

	Efficient Range Proofs with Transparent Setup from Bounded Integer Commitments
	1 Introduction
	1.1 Standard Approaches for Building Range Proofs
	1.2 Our Contribution

	2 Technical Overview
	2.1 A Natural Approach via -Protocols
	2.2 Encoding Integers as Mod-q Rationals
	2.3 Instantiation in the Discrete Log Setting

	3 Preliminaries
	3.1 Commitment Schemes
	3.2 Zero-Knowledge Proofs
	3.3 Tools in the DLOG Setting
	3.4 Tools for Zero-Knowledge

	4 Integer Commitments from Rounding Fractions
	4.1 Bounded Integer Commitment Scheme

	5 Range Proof in a DLOG Setting
	5.1 Overview
	5.2 Parameters
	5.3 Scheme
	5.4 Optimizations

	References

	Towards Accountability in CRS Generation
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Malicious Authority Security for NIZK
	2.2 Malicious Authority Security for Oblivious Transfer
	2.3 Malicious Authority Security for Two Party Computation

	3 Preliminaries
	3.1 Rerandomizable Commitment Scheme
	3.2 Non-Interactive Zero Knowledge (NIZK)
	3.3 Non-Interactive Witness Indistinguishability (NIWI)

	4 Defining Malicious Authority Security
	4.1 Malicious Authority Security for NIZK
	4.2 Malicious Authority for Secure Two-Party Computation
	4.3 Strong Accountability

	5 Malicious Authority Security for NIZK
	6 Malicious Authority Security for Oblivious Transfer
	6.1 Oblivious Transfer with Weak Accountability
	6.2 Oblivious Transfer with Strong Accountability

	7 Malicious Authority Secure for Secure 2PC
	References

	Property-Preserving Hash Functions and ORAM
	Robust Property-Preserving Hash Functions for Hamming Distance and More
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	3 PPH for Symmetric Set Difference
	3.1 PPH for Symmetric Set Difference of P n([N])
	3.2 PPH for Symmetric Set Difference of Arbitrary Sets

	4 PPH for Hamming Distance
	4.1 Generalization to Different Alphabets

	5 PPH for Multi-input Predicates
	5.1 PPH for the Intersection Predicate INT t

	6 Lower Bounds
	References

	Alibi: A Flaw in Cuckoo-Hashing Based Hierarchical ORAM Schemes and a Solution
	1 Introduction
	2 Preliminaries
	2.1 Notation and Model
	2.2 Oblivious Hash Tables
	2.3 Cuckoo Hashing
	2.4 ORAM
	2.5 Hierarchical ORAM

	3 The Attack
	3.1 Simplified Attack
	3.2 Hierarchical ORAM with a Combined Stash

	4 The Generic Attack
	4.1 Generic Stash-Resampling Cuckoo Hash Table Attack
	4.2 Attack Against PanORAMa and OptORAMa

	5 Alibi: Secure Hierarchical ORAM with Reinserted Stashes
	6 Summary of Affected Papers
	A Distinguishing Distributions
	References

	Structured Encryption and Dynamic Leakage Suppression
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries and Notation
	3.1 Structured Encryption

	4 Our Dynamic Suppression Framework
	4.1 Security
	4.2 Efficiency of the Dynamic Cache-Based Compiler

	5 Concrete Instantiations
	5.1 Our PBS-Based Constructions
	5.2 Our AVLH-Based Construction
	5.3 Concrete Comparisons

	References

	Blockchain
	Dynamic Ad Hoc Clock Synchronization
	1 Introduction
	2 Overview of Our Techniques
	3 Our Model
	3.1 Dynamic (Ad Hoc) Participation

	4 The Blockchain Protocol
	4.1 The Protocol with Static Ad Hoc Participation
	4.2 (Re)Joining Procedures

	5 Security Analysis
	5.1 Blockchain Security Properties
	5.2 Proving the Blockchain Properties

	6 The Synchronizer
	References

	TARDIS: A Foundation of Time-Lock Puzzles in UC
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Our Techniques

	2 UC with Relative Time
	3 Communication Delay
	3.1 Secure Message Transmission with Delays
	3.2 Modeling (Semi)-Synchronous Channels

	4 Modeling Time-Lock Puzzles and Computational Delay
	5 Constructing Time-Lock Puzzles in UC
	5.1 Modeling Rivest et al.'s Time-Lock Assumption ch15rivestspstimespslockspspuzzles
	5.2 Realizing Ftlp in the Frsw,GrpoRO-Hybrid Model

	6 Secure Two-Party Computation with Output-Independent Abort
	6.1 Achieving Output-Independent Abort for 2PC in UC

	7 The Impossibility Result
	References

	Privacy and Law Enforcement
	On the Power of Multiple Anonymous Messages: Frequency Estimation and Selection in the Shuffle Model of Differential Privacy
	1 Introduction
	2 Preliminaries
	3 Overview of Results
	4 Proof Outlines
	4.1 Overview of Single-Message Lower Bounds
	4.2 Overview of Multi-message Protocols

	5 Applications
	6 Related Work
	7 Conclusions and Open Problems
	References

	Non-Interactive Anonymous Router
	1 Introduction
	1.1 Defining Non-Interactive Anonymous Router (NIAR)
	1.2 Defining Security Requirements
	1.3 Our Results
	1.4 Applications of NIAR and NIAS
	1.5 Open Questions
	1.6 Technical Highlight

	2 New Definitions: Non-Interactive Anonymous Router
	2.1 Syntax
	2.2 Simulation-Based Security
	2.3 Equivalence to Indistinguishability-Based Security

	3 Informal Overview of Our Construction
	3.1 Notations and Building Block
	3.2 A Simple, Function-Revealing MCFE Scheme for Selection
	3.3 Preparing the MCFE Scheme for Function Privacy Upgrade
	3.4 Function Privacy Upgrade
	3.5 Constructing NIAR with Receiver-Insider Protection
	3.6 Achieving Full Insider Protection
	3.7 Achieving Fault Tolerance

	References

	Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma into a Single Private Signing Scheme
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 R-Lossy Public-Key Encryption
	2.2 Homomorphic Equivocal Commitments

	3 Bifurcated Anonymous Signatures
	3.1 Syntax
	3.2 Branch-Hiding and Privacy
	3.3 Branch-Soundness and Security

	4 Generic Construction
	4.1 Branch-Soundness and Security
	4.2 Branch-Hiding and Privacy

	References

	Abuse Resistant Law Enforcement Access Systems
	1 Introduction
	1.1 Towards Abuse Resistance
	1.2 Technical Overview
	1.3 Contextualizing ARLEAS In The Encryption Debate

	2 Related Work
	3 Definitions
	4 Building Blocks
	5 Prospective Solution
	5.1 UC-Realizing Fv, t, p, , proARLEAS for Arbitrary Predicates

	6 Retrospective Solution
	6.1 UC-Realizing Fv, t, p, , retARLEAS

	7 On the Need for Extractable Witness Encryption
	References

	Author Index

