LNCS 12698

Anne Canteaut
Francois-Xavier Standaert (Eds.)

Advances in Cryptology -
EUROCRYPT 2021

40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part llI

Foen

Dspringer (MEIEIG)

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12698

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Anne Canteaut - Francois-Xavier Standaert (Eds.)

Advances in Cryptology —
EUROCRYPT 2021

40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17-21, 2021

Proceedings, Part III

@ Springer

Editors

Anne Canteaut Francois-Xavier Standaert
Inria UCLouvain

Paris, France Louvain-la-Neuve, Belgium
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-77882-8 ISBN 978-3-030-77883-5 (eBook)

https://doi.org/10.1007/978-3-030-77883-5
LNCS Sublibrary: SL4 — Security and Cryptology

© International Association for Cryptologic Research 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1007/978-3-030-77883-5

Preface

Eurocrypt 2021, the 40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, was held in Zagreb, Croatia, during October 17-21, 2021."
The conference was sponsored by the International Association for Cryptologic Research
(IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan Picek (Delft
University of Technology, The Netherlands) were responsible for the local organization.

We received a total of 400 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 59 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 78 papers. The revised versions of these papers are included in this
three-volume proceedings.

The PC decided to give Best Paper Awards to the papers “Non-Interactive Zero
Knowledge from Sub-exponential DDH” by Abhishek Jain and Zhengzhong Jin, “On
the (in)security of ROS” by Fabrice Benhamouda, Tancréde Lepoint, Julian Loss,
Michele Orru, and Mariana Raykova and “New Representations of the AES Key
Schedule” by Gaétan Leurent and Clara Pernot. The authors of these three papers
received an invitation to submit an extended version of their work to the Journal of
Cryptology. The program also included invited talks by Craig Gentry (Algorand
Foundation) and Sarah Meiklejohn (University College London).

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of good papers which
did not find a slot in the sparse number of accepted papers. We sincerely hope that
these works will eventually get the attention they deserve.

We are indebted to the PC and the external reviewers for their voluntary work.
Selecting papers from 400 submissions covering the many areas of cryptologic research
is a huge workload. It has been an honor to work with everyone. We owe a big thank
you to Kevin McCurley for his continuous support in solving all the minor issues we
had with the HotCRP review system, to Gaétan Leurent for sharing his MILP programs
which made the papers assignments much easier, and to Simona Samardjiska who
acted as Eurocrypt 2021 webmaster.

Finally, we thank all the other people (speakers, sessions chairs, rump session
chairs...) for their contribution to the program of Eurocrypt 2021. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

April 2021 Anne Canteaut
Frangois-Xavier Standaert

! This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions due to COVID-19.

Eurocrypt 2021

The 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

Sponsored by the International Association for Cryptologic Research

General Co-chairs

Lejla Batina
Stjepan Picek

Zagreb, Croatia

October 17-21, 2021

Radboud University, The Netherlands
Delft University of Technology, The Netherlands

Program Committee Chairs

Anne Canteaut
Francgois-Xavier Standaert

Program Committee

Shweta Agrawal

Joél Alwen

Foteini Baldimtsi

Marshall Ball

Begiil Bilgin

Nir Bitansky

Joppe W. Bos

Christina Boura

Wouter Castryck

Kai-Min Chung

Jean-Sébastien Coron

Véronique Cortier

Geoffroy Couteau

Luca De Feo

Léo Ducas (Area Chair:
Public-Key Crypto)

Orr Dunkelman

Stefan Dziembowski
(Area Chair: Theory)

Thomas Eisenbarth

Dario Fiore

Marc Fischlin

Inria, France
UCLouvain, Belgium

IIT Madras, India

Wickr, USA

George Mason University, USA
Columbia University, USA

Rambus - Cryptography Research, The Netherlands
Tel Aviv University, Israel

NXP Semiconductors, Belgium
University of Versailles, France

KU Leuven, Belgium

Academia Sinica, Taiwan

University of Luxembourg, Luxembourg
LORIA, CNRS, France

CNRS, IRIF, Université de Paris, France
IBM Research Europe, Switzerland
CWI, Amsterdam, The Netherlands

University of Haifa, Israel
University of Warsaw, Poland

University of Liibeck, Germany
IMDEA Software Institute, Spain
TU Darmstadt, Germany

viii Eurocrypt 2021

Benjamin Fuller University of Connecticut, USA
Adria Gascon Google, UK
Henri Gilbert ANSSI, France
Shai Halevi Algorand Foundation, USA
Annelie Heuser Univ Rennes, CNRS, IRISA, France
Naofumi Homma Tohoku University, Japan
Kristina Hostakova ETH Ziirich, Switzerland
Tetsu Iwata Nagoya University, Japan
Marc Joye Zama, France
Pascal Junod (Area Chair: Snap, Switzerland
Real-World Crypto)
Pierre Karpman Université Grenoble-Alpes, France
Gregor Leander (Area Chair: Ruhr-Universitiat Bochum, Germany
Symmetric Crypto)
Benoit Libert CNRS and ENS de Lyon, France
Julian Loss University of Maryland, College Park, USA
Christian Majenz CWI, Amsterdam, The Netherlands
Daniel Masny Visa Research, USA
Bart Mennink Radboud University, The Netherlands
Tarik Moataz Aroki Systems, USA
Amir Moradi Ruhr-Universitit Bochum, Germany
Michael Naehrig Microsoft Research, USA
Maria Naya-Plasencia Inria, France
Claudio Orlandi Aarhus University, Denmark

Elisabeth Oswald (Area Chair: University of Klagenfurt, Austria
Implementations)

Dan Page University of Bristol, UK

Rafael Pass Cornell Tech, USA

Thomas Peyrin Nanyang Technological University, Singapore

Oxana Poburinnaya University of Rochester and Ligero Inc., USA

Matthieu Rivain CryptoExperts, France

Adeline Roux-Langlois Univ Rennes, CNRS, IRISA, France

Louis Salvail Université de Montréal, Canada

Yu Sasaki NTT Laboratories, Japan

Tobias Schneider NXP Semiconductors, Austria

Yannick Seurin ANSSI, France

Emmanuel Thomé LORIA, Inria Nancy, France

Vinod Vaikuntanathan MIT, USA

Prashant Nalini Vasudevan UC Berkeley, USA

Daniele Venturi Sapienza University of Rome, Italy

Daniel Wichs Northeastern University and NTT Research Inc.,
USA

Yu Yu Shanghai Jiao Tong University, China

Additional Reviewers

Mark Abspoel
Hamza Abusalah
Alexandre Adomnicai
Archita Agarwal
Divesh Aggarwal
Shashank Agrawal
Gorjan Alagic
Martin R. Albrecht
Ghada Almashagbeh
Bar Alon
Miguel Ambrona
Ghous Amjad
Prabhanjan Ananth
Toshinori Araki
Victor Arribas
Gilad Asharov
Roberto Avanzi
Melissa Azouaoui
Christian Badertscher
Saikrishna
Badrinarayanan
Karim Baghery
Victor Balcer
Laasya Bangalore
Magali Bardet
James Bartusek
Balthazar Bauer
Carsten Baum
Christof Beierle
James Bell
Fabrice Benhamouda
Iddo Bentov
Olivier Bernard
Sebastian Berndt
Pauline Bert
Ward Beullens
Benjamin Beurdouche
Ritam Bhaumik
Erica Blum
Alexandra Boldyreva
Jonathan Bootle
Nicolas Bordes
Katharina Boudgoust

Florian Bourse
Xavier Boyen
Elette Boyle

Zvika Brakerski
Lennart Braun
Gianluca Brian
Marek Broll

Olivier Bronchain
Chris Brzuska
Benedikt Biinz
Chloe Cachet
Matteo Campanelli
Federico Canale
Ignacio Cascudo
Gaétan Cassiers
Avik Chakraborti
Benjamin Chan
Eshan Chattopadhyay
Panagiotis Chatzigiannis
Shan Chen

Yanlin Chen

Yilei Chen

Yu Chen
Alessandro Chiesa
Tlaria Chillotti
Seung Geol Choi
Arka Rai Choudhuri
Michele Ciampi
Daniel Coggia
Benoit Cogliati

Ran Cohen

Andrea Coladangelo
Sandro Coretti-Drayton
Craig Costello
Daniele Cozzo

Ting Ting Cui
Debajyoti Das
Poulami Das
Bernardo David
Alex Davidson
Gareth Davies
Lauren De Meyer
Thomas Debris-Alazard

Eurocrypt 2021 ix

Leo de Castro
Thomas Decru

Jean Paul Degabriele
Akshay Degwekar
Amit Deo

Patrick Derbez

Itai Dinur
Christoph Dobraunig
Yevgeniy Dodis
Jack Doerner

Jelle Don

Benjamin Dowling
Eduoard Dufour Sans
Yfke Dulek
Frédéric Dupuis
Sylvain Duquesne
Avijit Dutta

Ehsan Ebrahimi
Kasra Edalat Nejdat
Naomi Ephraim
Thomas Espitau
Andre Esser
Grzegorz Fabianski
Xiong Fan

Antonio Faonio
Sebastian Faust
Serge Fehr

Patrick Felke

Rune Fiedler

Ben Fisch

Matthias Fitzi
Antonio Florez-Gutiérrez
Cody Freitag

Georg Fuchsbauer
Ariel Gabizon
Nicolas Gama
Chaya Ganesh
Rachit Garg
Pierrick Gaudry
Romain Gay

Peter Gazi

Nicholas Genise
Craig Gentry

X Eurocrypt 2021

Marilyn George
Adela Georgescu
David Gerault
Essam Ghadafi
Satrajit Ghosh

Irene Giacomelli
Aarushi Goel
Junqing Gong
Alonso Gonzalez

S. Dov Gordon
Louis Goubin

Marc Gourjon
Rishab Goyal
Lorenzo Grassi
Elijah Grubb
Cyprien de Saint Guilhem
Aurore Guillevic
Aldo Gunsing

Chun Guo

Qian Guo

Felix Giinther

Iftach Haitner
Mohammad Hajiabadi
Mathias Hall-Andersen
Ariel Hamlin
Lucjan Hanzlik
Patrick Harasser
Dominik Hartmann
Eduard Hauck

Phil Hebborn

Javier Herranz

Amir Herzberg

Julia Hesse

Shoichi Hirose
Martin Hirt

Akinori Hosoyamada
Kathrin Hovelmanns
Andreas Hiilsing
Ilia Iliashenko
Charlie Jacomme
Christian Janson
Stanislaw Jarecki
Ashwin Jha
Dingding Jia

Daniel Jost

Kimmo Jarvinen
Guillaume Kaim
Chethan Kamath
Pritish Kamath
Fredrik Kamphuis
Toanna Karantaidou
Shuichi Katsumata
Jonathan Katz
Tomasz Kazana
Marcel Keller
Mustafa Khairallah
Louiza Khati
Hamidreza Khoshakhlagh
Dakshita Khurana
Ryo Kikuchi

Eike Kiltz

Elena Kirshanova
Agnes Kiss

Karen Klein
Michael Kloof
Alexander Koch
Lisa Kohl

Vladimir Kolesnikov
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Adrien Koutsos
Hugo Krawczyk
Stephan Krenn
Ashutosh Kumar
Ranjit Kumaresan
Po-Chun Kuo
Rolando L. La Placa
Thijs Laarhoven
Jianchang Lai
Virginie Lallemand
Baptiste Lambin
Eran Lambooij
Philippe Lamontagne
Rio Lavigne
Jooyoung Lee
Alexander Lemmens

Nikos Leonardos
Matthieu Lequesne
Antonin Leroux
Gaétan Leurent
Jyun-Jie Liao
Damien Ligier
Huijia Lin
Benjamin Lipp
Maciej Liskiewicz
Qipeng Liu
Shengli Liu
Tianren Liu

Yanyi Liu
Chen-Da Liu-Zhang
Alex Lombardi
Patrick Longa
Vadim Lyubashevsky
Fermi Ma

Mimi Ma

Urmila Mahadev
Nikolaos Makriyannis
Giulio Malavolta
Damien Marion
Yoann Marquer
Giorgia Marson
Chloe Martindale
Ange Martinelli
Michael Meyer
Pierre Meyer
Andrew Miller
Brice Minaud

Ilya Mironov

Tal Moran

Saleet Mossel
Tamer Mour
Pratyay Mukherjee
Marta Mularczyk
Pierrick Méaux
Yusuke Naito

Joe Neeman
Patrick Neumann
Khoa Nguyen
Ngoc Khanh Nguyen
Phong Nguyen

Tuong-Huy Nguyen
Jesper Buus Nielsen
Ryo Nishimaki
Abderrahmane Nitaj
Anca Nitulescu
Lamine Noureddine
Adam O’Neill
Maciej Obremski
Cristina Onete
Michele Orru
Emmanuela Orsini
Carles Padro

Mahak Pancholi
Omer Paneth
Dimitris Papachristoudis
Sunoo Park

Anat Paskin-Cherniavsky
Alice Pellet-Mary
Olivier Pereira

Léo Perrin

Thomas Peters
Duy-Phuc Pham
Krzyszof Pietrzak
Jérome Plut

Bertram Poettering
Yuriy Polyakov
Antigoni Polychroniadou
Alexander Poremba
Thomas Prest
Cassius Puodzius
Willy Quach

Anais Querol

Rahul Rachuri
Hugues Randriam
Adrian Ranea
Shahram Rasoolzadeh
Deevashwer Rathee
Mayank Rathee
Divya Ravi

Christian Rechberger
Michael Reichle
Jean-René Reinhard
Joost Renes

Nicolas Resch

Jodo Ribeiro

Silas Richelson
Tania Richmond
Doreen Riepel

Peter Rindal

Miruna Rosca
Michael Rosenberg
Mélissa Rossi

Yann Rotella

Alex Russell

Théo Ryffel

Carla Rafols

Paul Rosler

Rajeev Anand Sahu
Olga Sanina

Pratik Sarkar
Alessandra Scafuro
Christian Schaffner
Peter Scholl

Tobias Schmalz
Phillipp Schoppmann
André Schrottenloher
Jorg Schwenk

Adam Sealfon

Okan Seker

Jae Hong Seo

Karn Seth

Barak Shani

Abhi Shelat

Omri Shmueli

Victor Shoup
Hippolyte Signargout
Tjerand Silde

Mark Simkin

Luisa Siniscalchi
Daniel Slamanig
Benjamin Smith
Fang Song

Jana Sotakova
Pierre-Jean Spaenlehauer
Nicholas Spooner
Akshayaram Srinivasan
Damien Stehlé

Marc Stevens

Eurocrypt 2021 Xi

Siwei Sun

Mehrdad Tahmasbi

Quan Quan Tan

Stefano Tessaro

Florian Thaeter

Aishwarya
Thiruvengadam

Mehdi Tibouchi

Radu Titiu

Oleksandr Tkachenko

Yosuke Todo

Junichi Tomida

Ni Trieu

Eran Tromer

Daniel Tschudi

Giorgos Tsimos

Ida Tucker

Michael Tunstall

Akin Unal

Dominique Unruh

Bogdan Ursu

Christine van Vredendaal

Wessel van Woerden

Marc Vauclair

Serge Vaudenay

Muthu
Venkitasubramaniam

Damien Vergnaud

Gilles Villard

Fernando Virdia

Satyanarayana Vusirikala

Riad Wahby

Hendrik Waldner

Alexandre Wallet

Haoyang Wang

Hoeteck Wee

Weigiang Wen

Benjamin Wesolowski

Jan Wichelmann

Luca Wilke

Mary Wootters

David Wu

Jiayu Xu

Sophia Yakoubov

xii Eurocrypt 2021

Shota Yamada
Takashi Yamakawa
Sravya Yandamuri
Kang Yang

Lisa Yang

Kevin Yeo
Eylon Yogev
Greg Zaverucha
Mark Zhandry
Jiayu Zhang

Ruizhe Zhang
Yupeng Zhang
Vassilis Zikas
Paul Zimmermann
Dionysis Zindros

Contents — Part II1

Garbled Circuits

LogStack: Stacked Garbling with O(blogb) Computation
David Heath and Vladimir Kolesnikov

Large Scale, Actively Secure Computation from LPN and Free-XOR

Garbled Circuits
Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini,
Nigel P. Smart, and Eduardo Soria-Vazquez

Threshold Garbled Circuits and Ad Hoc Secure Computation.
Michele Ciampi, Vipul Goyal, and Rafail Ostrovsky

Indistinguishability Obfuscation

Indistinguishability Obfuscation from Simple-to-State Hard Problems:
New Assumptions, New Techniques, and Simplification
Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai

Candidate Obfuscation via Oblivious LWE Sampling
Hoeteck Wee and Daniel Wichs

Non-Malleable Commitments

Black-Box Non-interactive Non-malleable Commitments
Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters

Non-interactive Distributional Indistinguishability (NIDI)
and Non-malleable Commitments,
Dakshita Khurana

Zero-Knowledge Proofs

Public-Coin Statistical Zero-Knowledge Batch Verification Against
Malicious Verifiers e
Inbar Kaslasi, Ron D. Rothblum, and Prashant Nalini Vasudevanr

Efficient Range Proofs with Transparent Setup from Bounded
Integer Commitments.ttt
Geoffroy Couteau, Michael Kloofs, Huang Lin, and Michael Reichle

X1v Contents — Part III

Towards Accountability in CRS Generation
Prabhanjan Ananth, Gilad Asharov, Hila Dahari, and Vipul Goyal

Property-Preserving Hash Functions and ORAM

Robust Property-Preserving Hash Functions for Hamming Distance
and MOTE. e
Nils Fleischhacker and Mark Simkin

Alibi: A Flaw in Cuckoo-Hashing Based Hierarchical ORAM Schemes
and a Solution
Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky

Structured Encryption and Dynamic Leakage Suppression
Marilyn George, Seny Kamara, and Tarik Moataz

Blockchain

Dynamic Ad Hoc Clock Synchronization.
Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell,
and Vassilis Zikas

TARDIS: A Foundation of Time-Lock Puzzlesin UC.................
Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen,
and Sabine Oechsner

Privacy and Law Enforcement

On the Power of Multiple Anonymous Messages: Frequency Estimation

and Selection in the Shuffle Model of Differential Privacy.
Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh,
and Ameya Velingker

Non-Interactive Anonymous Router.
Elaine Shi and Ke Wu

Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma
into a Single Private Signing Scheme
Benoit Libert, Khoa Nguyen, Thomas Peters, and Moti Yung

Abuse Resistant Law Enforcement Access Systems.
Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer

Author Index e

Garbled Circuits

®

Check for
updates

LogStack: Stacked Garbling
with O(blog b) Computation

David Heath®) and Vladimir Kolesnikov

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov}@gatech.edu

Abstract. Secure two party computation (2PC) of arbitrary programs
can be efficiently achieved using garbled circuits (GC). Until recently,
it was widely believed that a GC proportional to the entire program,
including parts of the program that are entirely discarded due to con-
ditional branching, must be transmitted over a network. Recent work
shows that this belief is false, and that communication proportional only
to the longest program execution path suffices (Heath and Kolesnikov,
CRYPTO 20, [HK20a]). Although this recent work reduces needed com-
munication, it increases computation. For a conditional with b branches,
the players use O(b?) computation (traditional GC uses only O(b)).

Our scheme LogStack reduces stacked garbling computation from O(b%)
to O(blogb) with no increase in communication over [HK20a]. The cause
of [HK20a]’s increased computation is the oblivious collection of garbage
labels that emerge during the evaluation of inactive branches. Garbage is
collected by a multiplexer that is costly to generate. At a high level, we
redesign stacking and garbage collection to avoid quadratic scaling.

Our construction is also more space efficient: [HK20a] algorithms
require O(b) space, while ours use only O(logb) space. This space effi-
ciency allows even modest setups to handle large numbers of branches.

[HK20a] assumes a random oracle (RO). We track the source of this
need, formalize a simple and natural added assumption on the base gar-
bling scheme, and remove reliance on RO: LogStack is secure in the stan-
dard model. Nevertheless, LogStack can be instantiated with typical GC
tricks based on non-standard assumptions, such as free XOR and half-
gates, and hence can be implemented with high efficiency.

We implemented LogStack (in the RO model, based on half-gates gar-
bling) and report performance. In terms of wall-clock time and for fewer
than 16 branches, our performance is comparable to [HK20a]’s; for larger
branching factors, our approach clearly outperforms [HK20a]. For exam-
ple, given 1024 branches, our approach is 31x faster.

Keywords: 2PC - Garbled circuits - Conditional branching - Stacked
garbling

1 Introduction

Secure two party computation (2PC) of programs representable as Boolean
circuits can be efficiently achieved using garbled circuits (GC). However,

© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 3-32, 2021.
https://doi.org/10.1007/978-3-030-77883-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_1

4 D. Heath and V. Kolesnikov

circuit-based MPC in general is problematic because conditional control flow
does not have an efficient circuit representation: in the cleartext program, only
the taken execution is computed whereas in the circuit all branches must be
computed.

Until recently, it was assumed that the players must not only compute all
branches, but also transmit a string of material (i.e., the garbled circuit itself)
proportional to the entire circuit. Since communication is the GC bottleneck,
transmitting this large string was problematic for programs with conditionals.

Stacked Garbling [HK20a], which we interchangeably call Stacked Garbled
Circuit (SGC), shows that expensive branching-based communication is unnec-
essary: the players need only send enough material for the single longest branch.
This single piece of stacked material can be re-used across all conditional
branches, substantially reducing communication. Unfortunately, this improve-
ment comes with one important downside: SGC requires the players to compute
more than they would have without stacking. In particular, for a conditional
with b branches, the [HK20a] GC generator must evaluate under encryption each
branch b — 1 times and hence must pay O(b?) total computation. In contrast,
standard garbling uses computation linear in the number of branches.

In this work, we present a new SGC construction that incurs only O(blogb)
computation for both players while retaining the important communication
improvement of [HK20a]. The construction also features improved space com-
plexity: while [HK20a] requires the generator to store O(b) intermediate gar-
blings, both Eval and Gen in our construction use only O(logb) space. Finally,
the construction features low constants and hence opens the door to using SGC
even in the presence of high branching factors without prohibitive computation.

1.1 A Case for High Branching Factor

Branching is ubiquitous in programming, and our work significantly improves the
secure evaluation of programs with branching. Moreover, the efficient support of
high branching factor is more important than it may first appear.

Efficient branching enables optimized handling of arbitrary control flow,
including repeated and/or nested loops. Specifically, we can repeatedly refactor
the source program until the program is a single loop whose body conditionally
dispatches over straightline fragments of the original program.! However, these
types of refactorings often lead to conditionals with high branching factor.

As an example, consider a program P consisting of a loop L; followed by
a loop Ls. Assume the total number of loop iterations T of P is known, as is
usual in MPC. For security, we must protect the number of iterations T} of L,
and Ty of L. Implementing such a program with standard Yao GC requires us
to execute loop L1 T times and then to execute Lo T times. SGC can simply
execute Stack(Lq, L) T times, a circuit with a significantly smaller garbling.
This observation corresponds to the following refactoring:

while(eg){so}; while(es){s1} — while(eo V es){ if(eo){so} else {s1} }

1 As a brief argument that this is possible, consider that a CPU has this structure: in
this case the ‘straightline fragments’ are the instruction types handled by the CPU.

LogStack: Stacked Garbling with O(blogb) Computation 5

where s; are nested programs and e; are predicates on program variables.? The
right hand side is friendlier to SGC, since it substitutes a loop by a conditional.
Now, consider that so and s; might themselves have conditionals that can be
flattened into a single conditional with all branches. By repeatedly applying such
refactorings, even modest programs can have conditionals with high branching
factors. High-performance branching, enabled by our approach, allows the effi-
cient and secure evaluation of such programs.

In this work, we do not further explore program refactorings as an optimiza-
tion. However, we firmly believe that SGC is an essential tool that will enable
research into this direction, including CPU emulation-based MPC. As argued
above, performance in the presence of high branching factor is essential.

1.2 [HK20a] and Its O(b?) Computation

Our approach is similar to that of [HK20a]: we also stack material to decrease
communication. The key difference is our reduced computation. It is thus instruc-
tive to review [HK20a], focusing on the source of its quadratic scaling.

The key idea of SGC is that the circuit generator Gen garbles, starting from
seeds, each branch C;. He then stacks these b garbled circuits, yielding only a
single piece of material proportional to the longest branch: M = €, C;.3 Because
garblings are expanded from short seeds, the seeds are compact representations
of the garblings. Although it would be insecure for the evaluator Eval to receive
all seeds from Gen, [HK20a] show that it is secure for her to receive seeds cor-
responding to the inactive branches. Let « be the id of the active branch. Eval
can reconstruct from seeds the garbling of each inactive branch, use XOR to
unstack the material Co, and evaluate C, normally. Of course, what is described
so far is not secure: the above procedure implies that Eval knows «, which she
does not in general know and which she should not learn.

Thus, [HK20a] supplies to Eval a ‘bad’ seed for the active branch: i.e., she
receives a seed that is different yet indistinguishable from the seed used by
Gen. From here, Eval simply guesses which branch is taken (she in fact tries
all b branches) and evaluates this guessed branch with the appropriately recon-
structed material. For security, each guess is unverifiable by Eval. Still, when
she guesses right, she indeed evaluates the taken branch and computes valid GC
output labels. When she guesses wrong, she evaluates the branch with so-called
garbage material (material that is a random-looking string, not an encryption
of circuit truth tables), and computes garbage output labels (i.e., labels that are
not the encryption of 0 or 1, but are random-looking strings). To proceed past
the exit of the conditional and continue evaluation, it is necessary to ‘collect’
these garbage labels by obliviously discarding them in favor of the valid labels.*

2 To be pedantic, this specific refactoring is not always valid: s; might mutate variables
used in eo. Still, similar, yet more notationally complex, refactorings are always legal.

3 Note, [HK20a], as do we in this work, pad each GC material C; with uniform bits
before stacking. This ensures all C; are of the same length.

4 Of course, the final output labels of the conditional are fresh, such that they cannot
be cross-referenced with those obtained in branch evaluation.

6 D. Heath and V. Kolesnikov

[HK20a] collect garbage without interaction using a garbled gadget called a
multiplezer. The multiplexer can be non-interactively constructed by Gen, but
only if he knows all possible garbage labels. Once this is satisfied, it is easy for Gen
to produce a gadget (e.g., appropriate garbled translation tables) that eliminates
garbage and propagates the active branch’s output labels.

Gen’s Uncertainty. It is possible for Gen to acquire all garbage labels. [HK20a]
achieve this by having Gen emulate the actions of Eval on all inactive branches.
To see how this can be done, consider Gen’s knowledge and uncertainty about
the garbled evaluation. There are three sources of Gen’s uncertainty:

— The input values to each inactive branch. This is the largest source of uncer-
tainty (the number of possibilities are exponential in the number of input
wires), but the easiest to handle. [HK20a] introduce a simple trick: they add
an additional garbled gadget, the demultiplexer, that ‘zeros out’ the wires
into the inactive branches. This fully resolves this source of uncertainty.

— The index of the active branch, which we denote by truth.

— Eval’s guess of the value of truth, which we denote by guess.

In total, there are b? (truth,guess) combinations. Crucially, each of these
combinations leads to Eval evaluating a unique combination of a circuit and
material. Hence, there are b? possible sets of labels (b(b — 1) garbage sets of
labels and b valid sets of labels) that the evaluator can compute.

To acquire all possible garbage labels such that he can build the garbage
collecting multiplexer, the [HK20a] generator assumes an all-zero inputs for each
inactive branch and emulates “in his head” Eval’s evaluation of all possible
(truth, guess) combinations. This requires that Gen evaluate b(b — 1) times on
garbage material. This is the source of the O(b?) computation.

1.3 Top-Level Intuition for O(blogb) Stacked Garbling

Our main contribution is the reduction of SGC computation from O(b?) to
O(blogb). To this end, we redesign stacking/unstacking to reduce Gen’s uncer-
tainty. By doing so, we reduce the computation needed to implement garbage
collection. In this section we provide our highest-level intuition for the construc-
tion. Section 2.1 continues in greater detail.

Recall from Sect. 1.2 the sources of Gen’s uncertainty, which result in b? eval-
uations inside Gen’s emulation of Eval: there are b possible values for both vari-
ables truth and guess (truth € {0,b — 1}, guess € {0,b — 1}). For each fixed
pair (truth,guess), Gen has a fully deterministic view of Eval’s garbled evalu-
ation, and hence a deterministic view of the garbage she computes. Gen uses the
garbage labels to construct the garbage collecting multiplexer.

Our main idea is to consolidate the processing of many such (truth, guess)
pairs by ensuring that Eval’s execution is the same across these (truth, guess)
pairs. This would further reduce Gen’s uncertainty and save computation.

Here is how we approach this. Wlog, let b = 2* for some k € N and consider
a balanced binary tree with the b branches at the leaves. For each leaf ¢, define

LogStack: Stacked Garbling with O(blogb) Computation 7

the sibling subtree at level ¢ (or i-th sibling subtree) to be the subtree rooted in
a sibling of the i-th node on the path to ¢ from the tree root. Thus, each branch
has log b sibling subtrees. We call the root of a sibling subtree of a leaf £ a sibling
root of £. Note, the log b sibling subtrees of a leaf £ cover all leaves except for £.
For example, consider Fig. 1. There, node C3 has sibling roots J\/'z,./\/'oyl,./\/4’7.
We reduce the number of possible (truth, guess) combinations by changing
the semantics of truth. truth will not denote the active branch. Instead truth
will now be defined with respect to a given guess guess. In particular, truth will
denote the sibling subtree of guess that contains the active branch (truth =0
denotes a correct guess). For a fixed guess, there are logb + 1 choices for this
truth. If Gen and Eval can efficiently process each of these blogb (truth, guess)
combinations (they can!), we achieve the improved O(blogb) computation.

1.4 Our Contributions

[HK20a] shows that GC players need not send a GC proportional to the entire
circuit. Instead, communication proportional to only the longest program exe-
cution path suffices. However, their improved communication comes at a cost:
for a conditional with b branches, the players use O(b?) computation.

This is a usually a worthwhile trade-off: GC generation is usually much
faster than network transmission (cf. our discussion in Sect. 1.5). However, as
the branching factor grows, computation can quickly become the bottleneck due
to quadratic scaling. Thus, as we argue in Sect.1.1, a more computationally
efficient technique opens exciting possibilities for rich classes of problems.

This work presents LogStack, an improvement to SGC that features improved
computation without compromising communication. Our contributions include:

— Improved time complexity. For b branches, LogStack reduces time complexity
from O(b?) to O(blogb).

— Improved space complexity. For b branches, our algorithms require O(logb)
space, an improvement from [HK20a]’s O(b) requirement.

— High concrete performance. In total, the players together garble or evaluate
the b branches a total of %blog b+ 2b times. These concrete results translate
to implementation performance: for fewer than 16 branches, our wall-clock
runtime is similar to that of [HK20a]. At higher branching factors, we clearly
outperform prior work (see Sect. 7).

— A formalization in the [BHR12| framework (as modified by [HK20a]) proved
secure under standard assumptions. [HK20a] proved SGC secure by assuming
a random oracle. We prove security assuming only a pseudorandom function.

1.5 When to Use LogStack: A High-Level Costs Consideration

We now informally discuss a broad question of practical importance:

“If my program has complex control flow, how can I most efficiently imple-
ment it for 2PC?”

8 D. Heath and V. Kolesnikov

To make the question more precise, we assume that ‘most efficiently’ means
‘optimized for shortest total wall-clock time’. Since (1) GC is often the most
practical approach to 2PC, (2) the GC bottleneck is communication, (3) ‘com-
plex control flow’ implies conditional behavior, and (4) SGC improves com-
munication for programs with conditional behavior, SGC plays an important
role in answering this question. Of course, the cryptographic technique is not
the only variable in the optimization space. Program transformations, such as
described in Sect. 1.1, also play a crucial role. These variables are related: some
program transformations may lead to a blowup in the number of branches. While
SGC alleviates the communication overhead of this blowup, the players still
incur blogb computational overhead. So choosing which program transforma-
tions to apply depends also on the performance characteristics of the crypto-
graphic scheme.

Despite the fact that the optimization space for total wall-clock time is com-
plex, we firmly believe the following claim: using LogStack over standard GC will
almost always improve performance. The rest of this section argues this claim.

Computation vs communication. To discuss how to best apply LogStack, we
establish approximate relative costs of GC computation and communication.

Based on our experiments, a commodity laptop running a single core can
generate GC material at about 3x the network bandwidth of a 1 Gbps channel.
However, while 1 Gbps is a typical speed in the LAN setting, WAN speeds are
much lower, e.g. 100 Mbps. Other network speeds (bluetooth, cellular) are lower
still. Even on a LAN and even in a data center, typically we should not assume
that our MPC application is allowed to consume the entire channel bandwidth.
Rather, we should aim to use as small a fraction of the bandwidth as possible.
Based on this discussion, and erring on the conservative side, we choose 100
Mbps as “typical” available bandwidth.

Computation is a much more available resource. Today, commodity laptops
have four physical cores. Higher-end computing devices, such as desktop CPUs
and GPUs have higher numbers of cores and/or per-core processing power,
resulting in yet higher GC computation-to-transmission ratio. Precomputation,
if available, can also be seen as a way to increase the available compute resource.
SGC, even when using our more sophisticated algorithms, is highly parallelizable.
It is easy to engage many cores to achieve proportional performance improve-
ment. Based on this discussion, and erring on the conservative side, we choose 2
physical cores as a lower end of “typical” available computational power.

Given a typical setting with 2 cores and a 100 Mbps channel, we arrive at an
approximation that GC computation is ~ 60x faster than GC transmission.

Assumption: fived target circuit. To gain a foothold on answering our broad
question, we start by ruling out program transformations and consider only
cryptographic protocols. Thus, we consider a fixed baseline circuit against which
we measure SGC and LogStack performance. That is, our baseline is a circuit
C with conditionals, to which we apply garbling scheme directly, and to which
we do not apply any program transformations. We may compare 2PC based on
LogStack with Yao GC, both instantiated with half-gates [ZRE15].

LogStack: Stacked Garbling with O(blogb) Computation 9

Rule of thumb: always apply LogStack. Assuming our approximated speed ratio
of GC generation/transmission, and with a few caveats described next, using
LogStack for branching will always improve over standard GC.

This is easy to see. Gen and Eval together run a more computationally
demanding process, garbling and evaluating branches exactly %blog b+ 2b total
times (%blog b+ b garblings and blogb + b evaluations). Consider a conditional
with b branches. Classic GC will transmit b branches. During this time, Gen and
Eval could have instead performed 60b branch garbling/evaluations. LogStack
garbles/evaluates %blogb branches. Thus, the point where computation crosses
over to become the bottleneck is obtained by solving %blog b > 60b, the solution
to which is b Z 2!7 = 131072 branches. Of course, this is a “rule-of-thumb”
estimate and is based on the conservative assumptions discussed above.

If instead a full 1 Gbps channel is available (i.e. 10x of our network resource
assumption), to arrive at the same cross over point, we would need ten times
more cores than our computational resource assumption. That equates to 20
cores; such power is available on mainstream servers.

We conclude that applying LogStack improves wall clock time for nearly all
reasonable baseline circuits and settings.

Limits on circuit transformations imposed by computational costs. Above, we
established that LogStack is almost always better than standard GC for cir-
cuits with branching. It is harder to provide heuristics or even rough sugges-
tions regarding which circuit transformations (cf. in Sect. 1.1) to apply, and how
aggressively they should be applied in conjunction with LogStack secure evalu-
ation. We emphasize that our computational improvement opens a much wider
optimization space than what was possible with the prior scheme [HK20a]. We
leave detailed investigation into this direction as exciting future work.

2 Technical Overview of Our Approach

We now informally present our construction with sufficient detail to introduce
the most interesting technical challenges and solutions.

2.1 O(blogb) Stacked Garbling

Our main contribution is the reduction of SGC computation from O(b?) to
O(blogb). Our constants are also low: altogether Gen issues %blogb + b calls
to Gb and b logb calls to Ev. Eval issues blogb calls to Gb and b calls to Ev.

We continue the discussion from Sect.1.3 in more detail. Our main task
is the garbage collection of output labels of incorrectly guessed (truth, guess)
combinations where guess is Eval’s guess of the active branch, and truth defines
the active branch w.r.t. guess. Wlog, let b be a power of 2 to simplify notation.
Consider a binary tree where the leaves are the b branches Cy, ...,Cp—1. The tree
provides an infrastructure to group branches and to unify processing.

10 D. Heath and V. Kolesnikov

No7
No:/\./\zj
/\ /\
Noa Najs Nujs Ne,7
No N No N3 Ny Ns Ne N7
‘ v v v v v
Cl Cz 03 04 05 CG C7
” — . ~ J . ~ J

Fig. 1. Suppose there are eight branches Cy through C7, and suppose Eval guesses that
Co is the taken branch. If the taken branch is in the subtree C4 through C7, Eval will
generate the same garbage material for the entire subtree, regardless of which branch
is actually taken. By extension, Cp can only be evaluated against log8 = 3 garbage
material strings: one for each sibling subtree (sibling subtrees are bracketed). Hence Co
has only three possible sets of garbage output labels.

Fix one of b choices for guess. In contrast with [HK20a], which then considers
b choices for truth independently from guess, we define truth in relation to
guess, and consider fewer truth options. Namely, we let truth denote the sibling
subtree of guess that contains the active branch (cf. notation Sect. 1.3). Given
a fixed incorrect guess, there are only logb choices for truth.> While we have
redefined truth, the active branch ID « continues to point to the single active
branch. Our garbled gadgets compute functions of a.

For concreteness, consider the illustrative example of an 8-leaf tree in Fig. 1
where guess = 0. The discussion and arguments pertaining to this special case
generalize to arbitrary b and guess.

Consider the four scenarios where one of the branches C4 —Cy is active. These
four scenarios each correspond to truth = 1: C4 — C7 all belong to the level-1
sibling subtree of Cy. We ensure that Eval’s unstacking and evaluation in each
of these four cases is identical, and hence she evaluates the same garbage output
labels in these four cases. More generally, we achieve identical processing for all
leaves of each sibling subtree. Let o denote the index of the active branch. That
is, «v is a log b-bit integer that points to the active branch.

Actions and gadgets of Gen. In the context of the example in Fig.1, Gen
garbles branches Cy, ...,C7 as follows. Recall, the active branch ID « is available
to Gen in the form of garbled labels. Gen chooses a random seed for the root of
the tree (denoted sq 7 for the 8-leaf tree in Fig. 1), and uses it to pseudorandomly
derive seeds for each node of the tree. This is done in the standard manner, e.g.,

5 We focus on garbage collection and consider only incorrect guesses; managing output
labels of the correctly guessed branches is straightforward and cheap.

LogStack: Stacked Garbling with O(blogb) Computation 11

— INPUTS: the active branch id o and the number of branches b.
— OuTPUTS: a sequence of evaluator seeds that form a binary tree:

€80,b—1, €S8 1,€8bp—1 ...,€80,€81,...€8p—1

b—
e R S A
such that for each node N:

sy, if NV is a sibling root of
esy =19 ,)
Shr, otherwise

where sy is a uniform string indistinguishable from sys.

Fig. 2. The SortingHat functionality. SortingHat is responsible for conveying only
the sibling root seeds of « to Eval. For every other node, Eval obtains a different, but
indistinguishable, seed that, when garbled, generates garbage material. SortingHat is
easily implemented as a garbled circuit gadget (i.e., built from garbled rows).

the immediate children of a seed s are the PRF evaluations on inputs 0 and 1
with the key s. Gen uses each leaf seed s; to garble the corresponding branch C;
and stacks all garbled branches M = €, C;. This material M is the large string
that Gen ultimately sends across the network to Eval. We note two facts about
M and about the active branch «a.

1. Correctness: if Eval obtains the logb seeds of the sibling roots of «, then

she can regarble all circuits C;+., unstack by XORing with M, and obtain
éa, allowing her to correctly evaluate C,,.

2. Security: Eval must not obtain any correct seed corresponding to any ances-
tor of a. If she did, she would learn (by garbling) the encoding of wire labels
which would allow her to decrypt all intermediate wire values in C,. Instead,
Eval will obtain ‘garbage’ seeds indistinguishable yet distinct from the correct

seeds generated by Gen.

To facilitate garbled evaluation of the conditional and meet the requirements
of these two facts, in addition to M, Gen generates and sends to Eval a small
(linear in the number of branches with small constants) garbled gadget that we
call SortingHat.% SortingHat aids Eval in her reconstruction of branch mate-
rial. SortingHat takes as input labels corresponding to v and produces candi-
date seeds for each node in the tree. For each node N, SortingHat constructs
a correct seed sy if and only if NV is a sibling root of the leaf o (see Fig.2).
SortingHat can be implemented as a collection of garbled rows. Importantly,
since this is a fixed gadget, when evaluated on a node A that is not a sibling
root of «, Eval will obtain a fized seed that is predictable to Gen.

5 In J.K. Rowling’s Harry Potter universe, the ‘sorting hat’ is a magical object that
assigns new students to different school houses based on personality. Our SortingHat
‘sorts’ nodes of trees into two categories based on «: those that are ‘good’ (i.e., sibling
roots of a) and those that are ‘bad’.

12 D. Heath and V. Kolesnikov

For example in Fig. 1, if the active branch is a« = 4, then applying SortingHat
to nodes N3, N 7,N5 reconstructs the correct seeds so.3,S67,55. Applying
SortingHat to other nodes constructs fixed garbage seeds. If instead o = 3, then
SortingHat reconstructs the correct seeds s47,s¢,1,52. Critically, the garbage
seeds reconstructed in both cases, e.g. for node Ny 5, are the same.

Actions of Eval. It is now intuitive how Eval proceed with unstacking. She
applies SortingHat and obtains a tree of random-looking seeds; of 2b seeds, only
log b seeds just off the path to « (corresponding to «’s sibling roots) are correct.
Eval guesses guess; assuming guess, she uses only the sibling seeds of guess to
derive all b—1 leaf seeds not equal to guess. She then garbles the b—1 branches
C; and unstacks the corresponding GCs C;.

If guess = o, Eval derives the intended leaf seeds s;,, unstacks the intended
garbled circuits éi¢a, and obtains the correct GC C,,. Consider the case where
Eval guesses wrong. Eval simply unstacks wrong branches garbled with the
wrong seeds. Since Eval never receives any additional valid seeds, there is no
security loss. We next see that the number of different garbage labels we must
collect is small, and further that they can be collected efficiently.

O(blog b) computational cost accounting. Let Gb and Ev be procedures
that respectively garble/evaluate a GC. Consider how many such calls are made
by Eval. Consider branch C;. It is garbled logb times, once with a seed (ulti-
mately) derived from each seed on the path to the root. Thus, the total number
of calls by Eval to Gb is blogb and to Ev is exactly b.

To construct the garbage collecting multiplexer, Gen must obtain all possible
garbage labels. We demonstrate that the total cost to the generator is O(blogb)
calls to both Gb and Ev. First, consider only Gb and consider the number of ways
Eval can garble a specific circuit C;. Clearly, this is exactly logb + 1.

Now, consider Gen’s number of calls to Ev. Recall that our goal was to ensure
that Eval constructs the same garbage output labels for a branch C; in each
scenario where « is in some fixed sibling subtree of C;. The logic of SortingHat
ensures that Eval obtains the same sibling root seeds in each of these scenarios,
and therefore she constructs the same garblings. Hence, since there are logb
sibling subtrees of C;, C; has only logb possible garbage output labels. Thus,
in order to emulate Eval in all settings and obtain all possible garbage output
labels, Gen must garble and evaluate each branch logb times.

2.2 Technical Difference Between Our and [HK20a] Binary
Braching

A careful reader familiar with [HK20a] may notice that they present two ver-
sions of stacked garbling. The first handles high branching factors by recursively
nesting conditionals. Nested conditionals can be viewed as a binary tree. This
first approach is then discarded in favor of a second, more efficient vector app-
roach. Our work advocates binary branching and yet substantially improves
over [HK20a]’s vectorized approach. Why is our binary branching better?

LogStack: Stacked Garbling with O(blogb) Computation 13

The problem with [HK20a]’s recursive construction is that Eval recursively
garbles the garbage-collecting multiplexer for nested sub-conditionals. Doing so
leads to a recursive emulation whereby Eval emulates herself (and hence Gen
emulates himself as well). This recursion leads to quadratic cost for both players.
The way out is to treat the multiplexer separately, and to opt not to stack it. If
multiplexers are not stacked, then Eval need not garble them, and hence Eval
need never emulate herself. On top of this, we reduce the number of ways that
individual branches can be garbled via our SortingHat.

A note on nested branches. Nested branches with complex sequencing of
instructions emerge naturally in many programs. Our approach operates directly
over vectors of circuits and treats them as binary trees. This may at first seem
like a disadvantage, since at the time the first nested branching decision is made,
it may not yet be possible to make all branching decisions. There are two natural
ways LogStack can be used in such contexts:

1. Although we advocate for vectorized branching, LogStack does support nested
evaluation. Although nesting is secure and correct, we do not necessarily rec-
ommend it. Using LogStack in this recursive manner yields quadratic compu-
tation overhead.

2. Refactorings can be applied to ensure branches are vectorized. For example,
consider the following refactoring:

if (eo) { so;if (e1) { s1 } else { sy} } else { s3;84 } —
if (eo) { so } else { s3 };switch(eo+epe1) {sa} | {s2} | {s1}

Where s; are programs, e; are predicates on program variables, and where
S0, s3 do not modify variables in ey. This refactoring has replaced a nested
conditional by a sequence of two ‘vectorized’ conditionals, and hence made
the approach amenable to our efficient algorithms.

2.3 Memory Efficiency of LogStack

The [HK20a] approach forces Gen to store many intermediate garblings: for con-
ditionals with b branches he requires O(b) space. In contrast, LogStack has low
space requirements: its algorithms run in O(logb) space. We briefly discuss why
[HK20a] requires linear space and how our approach improves this.

In the [HK20a] approach, Eval obtains b— 1 good seeds for all but the active
branch and a bad seed for the active branch. When Eval then makes a particular
guess, she attempts to uncover the material for guess by XORing the stacked
material (sent by Gen) with b— 1 reconstructed materials; she ‘unstacks’ her b—1
materials corresponding to all branches that are not equal to guess. Recall that
Gen emulates Eval for all combinations of (truth, guess) where truth # guess
to compute garbage outputs. The most intuitive way to proceed, and the strategy
[HK20a] uses, is for Gen to once and for all garble all circuits using the ‘good’
seeds and garble all circuits using the ‘bad’ seeds, and to store all materials in

14 D. Heath and V. Kolesnikov

two large vectors. Let M; be the good material for a branch C; and let M/ be
the bad material. Now let j = truth and k = guess. To emulate all possible
bad evaluations, Gen evaluates Cj using the material M; © M; ® MJ’ ie., he
emulates Eval when correctly unstacking all material except M}, (which she will
not attempt to unstack because she wishes to evaluate Cj) and M; (which she
attempts to unstack, but fails and instead adds M]’). Because Gen considers all
J, k combinations, it is not clear how Gen can compute all values M, © M; & M j’
without either (1) storing intermediate garblings in O(b) space or (2) repeatedly
garbling each branch at great cost. [HK20a] opts for the former.

In contrast, because of LogStack’s binary tree structure, we can eagerly stack
material together as it is constructed to save space. E.g., consider again the
example in Fig.4 where Eval guesses that Cy is active. Recall, she garbles the
entire right subtree starting from the seed for node Ny 7, and Gen emulates this
same behavior with the bad seed. For both players, the material corresponding
to individual circuits, say My corresponding to Cy4, is not interesting or useful.
Only the stacked material My @ .. & My is useful for guessing Cy (and more
generally for guessing all circuits in the subtree N 3). Thus, instead of storing
all material separately, the players both XOR material for subtrees together as
soon as it is available. This trick is the basis for our low space requirement.

There is one caveat to this trick: the ‘good’ garbling of each branch C; is
useful throughout Gen’s emulation of Eval. Hence, the straightforward procedure
would be for Gen to once and for all compute the good garblings of each branch
and store them in a vector, consuming O(b) space. This is viable, and indeed has
lower runtime constants than presented elsewhere in this work: Gen would invoke
Gb only blogb + b times. We instead trade in some concrete time complexity in
favor of dramatically improved space complexity. Gen garbles the branches using
good seeds an extra %blog b times, and hence calls Gb a total of %b log b+ b times.
These extra calls to Gb allow Gen to avoid storing a large vector of materials,
and our algorithms run in O(logb) space.

2.4 Stacked Garbling with and Without Random Oracles

[HK20a] (and we) focus only on branching and leave the handling of low level
gates to another underlying garbling scheme, Base. [HK20a] assumes nothing
about Base except that it satisfies the standard [BHR12] properties, as well as
their stackability property. However, they do not preclude Base’s labels from
being related to each other, which presents a security problem: Base’s labels are
used to garble rows, but if the labels are related they cannot be securely used
as PRF keys. [HK20a] handles the possible use of related keys by using a RO.

We introduce a stronger requirement on Base, which we call strong stack-
ability. Informally, we additionally require that all output labels of Base are
uniformly random. This is sufficient to prove security in the standard model.

Of course, RO-based security theorems and proofs also work, and our gadgets
could be slightly optimized in a natural manner under this assumption.

LogStack: Stacked Garbling with O(blogb) Computation 15

3 Related Work

GC is the most popular and often the fastest approach to secure two-party com-
putation. Until recently, it was believed that it is necessary to transmit the entire
GC during 2PC, even for inactive conditional branches. Recent breakthrough
work [HK20a] showed that this folklore belief is false, and that it suffices to only
transmit GC material proportional to the longest execution path.

We focus our comparison with prior work on [HK20a], and then review other
related work, such as universal circuits and earlier stacked garbling work.

Comparison with [HK20a]. As discussed in Sect. 1.1, programs with conditionals
with high branching factor may be a result of program transformations aimed at
optimizing GC/SGC performance. While the protocol of [HK20a] is concretely
efficient, its quadratic computational cost presents a limitation even in settings
with relatively modest branching factor b. This significantly limits the scope of
program transformations which will be effective for SGC.

Our work archives total computational cost proportional to 3.5blogb, and
effectively removes the computational overhead of the SGC technique as a con-
straining consideration”, as discussed in Sect. 1.5.

Memory management is a significant performance factor in GC in general,
and in particular in [HK20a] garbling. Retrieving an already-garbled material
from RAM may take similar or longer time than regarbling from scratch while
operating in cache. In addition to significantly improving computation (i.e. num-
ber of calls to Gb and Ev), our approach offers improved memory utilization
(see Sects. 1.4 and 2.3). [HK20a] requires that a linear number of garbled circuits
be kept in RAM. For larger circuits this can become a problem. For example, the
garbling of a 1M AND-gate circuit occupies 32 MB in RAM. If a machine can
dedicate 2 GB to garbling, a maximum of 64 branches of this size can be han-
dled. This ignores additional constant space costs, which are not necessarily low.
In contrast, we use only O(logb) space, and hence can fit the garblings of large
numbers of branches into memory. In our experiments, we ran our implemen-
tation on a circuit with 8192 SHA-256 branches, a circuit that altogether holds
> 385M AND-gates. Our peak memory usage was at around 100 MB ([HK20a]
would require more than 12 GB of space to run this experiment).

In sum, as discussed at length in Sects. 1.5 and 2.3 and Sect. 7, we essentially
eliminate the concern of increased computation due to Stacked Garbling for
typical settings and open the door to the possibility of applying a large class of
efficiency-improving program transformations on the evaluated program.

Universal circuits. An alternate technique for handling conditional branching
is to implement a universal circuit [Val76], which can represent any conditional
branch. We discuss universal circuits [LMS16,KS16, GKS17,ZYZL19, AGKS20,

7 We stress that branches must still be garbled, and extreme program transformations,
such as stacking all possible program control flows, may be impractical computa-
tionally due to the exponential number of branches.

16 D. Heath and V. Kolesnikov

KKW17] in more detail in the full version of this paper. In short, SGC is a more
practical approach to conditional branching in most scenarios.

Other related work. Kolesnikov [Kol18] was the first to separate the GC material
from circuit topology. This separation was used to improve GC branching given
that the GC generator Gen knows the active branch. Subsequently, [HK20b]
considered a complementary setting where the GC evaluator Eval knows the
active branch, and used it to construct efficient ZK proofs for circuits with
branching. Our work follows the line of work initiated by [Koll8,HK20b]; it is
for general 2PC and is constant-round.

As discussed in [HK20a], interaction, such as via the output selection protocol
of [Kol18], can be used to collect garbage efficiently (computation linear in b).
However, a communication round is added for each conditional branch. In many
scenarios, non-interactive 2PC (such as what we achieve) is preferred.

Designing efficient garbling schemes under standard assumptions (i.e. using
only PRFs) is a valuable research direction. [GLNP15] impressively implement
garbled table generation and evaluation with speed similar to that of fixed-
key AES. [GLNP15] cannot use the Free XOR technique [KS08], which requires
circularity assumptions [CKKZ12], but nevertheless implement XOR Gates with
only one garbled row and AND gates with two rows.

4 Notation and Assumptions

Notation. Our notation is mostly consistent with the notation of [HK20a].

— Our garbling scheme is called LogStack. We sometimes refer to it by the
abbreviation LS, especially when referring to its algorithms.

— ‘Gen’ is the circuit generator. We refer to Gen as he, him, his, etc.

— ‘Eval’ is the circuit evaluator. We refer to Eval as she, her, hers, etc.

— ‘C’is a circuit. inpSize(C) and outSize(C) respectively compute the number
of input/output wires to C.

— 2 | y denotes the concatenation of strings x and y.

— Following SGC terminology introduced by [Kol18], M refers to GC material.
Informally, material is just a collection of garbled tables, i.e. the garbling
data which, in conjunction with circuit topology and input labels, is used to
compute output labels.

— We use m to denote the size of material, i.e. m = |[M]|.

— Variables that represent vectors are denoted in bold, e.g. . We index vectors
using bracket notation: x[0] accesses the Oth index of .

— We extensively use binary trees. Suppose t is such a tree. We use subscript
notation ¢; to denote the ith leaf of t. We use pairs of indexes to denote
internal nodes of the tree. Le., t; ; is the root of the subtree containing the
leaves t;..t;. t; ; (i-e. the node containing only ¢) and ¢; both refer to the leaf:
t;; = t;. It is sometimes convenient to refer to a (sub)tree index abstractly.
For this, we write A; ; or, when clear from context, simply write N.

LogStack: Stacked Garbling with O(blogb) Computation 17

— We write a «—g S to denote that a is drawn uniformly from the set S.

— = denotes computational indistinguishability.

— k denotes the computational security parameter and can be understood as
the length of PRF keys (e.g. 128).

We evaluate GCs with input labels that are generated independently of the
GC material and do not match the GC. We call such labels garbage labels. During
GC evaluation, garbage labels propagate to the output wires and must eventually
be obliviously dropped in favor of valid labels. We call the process of canceling
out output garbage labels garbage collection.

Assumptions. LogStack is secure in the standard model. However, higher effi-
ciency of both the underlying scheme Base and of our garbled gadgets can be
achieved under the RO assumption. Our implementation uses half-gates as Base,
and relies on a random oracle (RO).

5 The LogStack Garbling Scheme

In this section, we formalize our construction, LogStack. Throughout this section,
consider a conditional circuit with b branches. For simplicity, we ignore the
number input and output wires.

We adopt the above simplification because branching factor is the most inter-
esting aspect of LogStack. We emphasize that ignoring inputs/outputs does not
hide high costs. While we scale with the product of the number of inputs and
b (and respectively the product of number of outputs and b), the constants are
low (see Sect. 7 for evidence). Thus, inputs/outputs are of secondary concern to
the circuit size, which is often far larger than the number of inputs/outputs.

Consider garbled circuits éi corresponding to each branch C;. Let m be
the size of the largest such garbling: m = max; |C’Al| Given branching factor
b, LogStack features:

— O(m) communication complexity.
— O(mblogb) time complexity.
— O(mlogb) space complexity.

LogStack is formalized as a garbling scheme [BHRI12]. Garbling schemes
abstract the details of GC such that protocols can be written generically. That
is, LogStack is a modular collection of algorithms, not a protocol. Our formaliza-
tion specifically uses the modified garbling scheme framework of [HK20a], which
separates the topology of circuits (i.e., the concrete circuit description) from cir-
cuit material (i.e., the collections of encryptions needed to securely evaluate the
circuit), an important modification for SGC.

A garbling scheme is a tuple of five algorithms:

(ev, Ev, Gb, En, De)

18 D. Heath and V. Kolesnikov

— ev specifies circuit semantics. For typical approaches that consider only low-
level gates, ev is often left implicit since its implementation is generally under-
stood. We explicate ev to formalize conventions of conditional evaluation.

— Ev specifies how Eval securely evaluates the GC.

— Gb specifies how Gen garbles the GC.

— En and De specify the translation of cleartext values to/from GC labels. That
is, En specifies how player inputs translate to input labels and De specifies
how outputs labels translate to cleartext outputs.

Correct garbling schemes ensure that the garbled functions Gb, En, Ev, and De
achieve the semantics specified by ev.

Before we present our garbling scheme LogStack, we introduce the formal
syntax of the circuits it manipulates. Because our focus is conditional branching,
we assume an underlying garbling scheme Base. Base is responsible for handling
the collections of low level gates (typically AND and XOR gates) that we refer
to as metlists. In our implementation, we instantiate Base with the efficient half-
gates scheme of [ZRE15]. We do not specify the syntax of netlists, and entirely
leave their handling to Base. Our circuit syntax is defined inductively: Let Cy, Cy
be two arbitrary circuits and C be a vector of arbitrary circuits. The space of
circuits is defined as follows:

C ::= Netlist(-) | Cond(C) | Seq(Co,Cy)

That is, a circuit is either (1) a netlist, (2) a conditional dispatch over a
vector of circuits (our focus), or (3) a sequence of two circuits. Sequences of
circuits are necessary to allow arbitrary control flow.

With our syntax established, we are ready to present our algorithms.

Construction 1 (LogStack). LogStack is the tuple of algorithms:
(LS.ev, LS.Ev, LS.Gb, LS.En, LS.De)
Definitions for each algorithm are listed in Fig. 3.

We discuss correctness and security of Construction 1 in Sect. 6. Due to lack
of space, proofs of these properties are in the full version of this paper.
In terms of efficiency, LogStack satisfies the following property:

Theorem 1. Let Base be a garbling scheme satisfying the following property:

— Let C be an arbitrary netlist and let s be the size of material generated by
invoking Base.Gb on C. Let both Base.Ev and Base.Gb, invoked on C, run in
O(s) time and O(s) space.

Then Construction 1 instantiated with Base satisfies the following property.

— Let C be a vector of b arbitrary netlists. Let m be the maximum size of the
garblings constructed by calling Base.Gb on each of these b netlists. Then both
LS.Ev and LS.Gb, invoked on Cond(C), run in O(mblogb) time and O(mlogb)
space.

LogStack: Stacked Garbling with O(blogb) Computation 19

LS.ev(C,) :
> What are the circuit semantics?
switch C:
case Netlist(+) : return Base.ev(C, x)

case Seq(Co,C1) : return LS.ev(Cy, LS.ev(Co, x))

case Cond(C) :
> split branch index from input
alx' —x
> Run the active branch.

return LS.ev(Cla], =)

LS.Ev(C, M, X)) :
> How does Eval evaluate the GC?
switch(C) :
case Netlist(+) : return Base.Ev(C, M, X))
case Seq(Co,C1) :
Mo | My | My — M

return LS.Ev(Cy, M, trans.Ev(LS.Ev(Co, Mo, X)), M)

case Cond(C) : return EvCond(C, M, X)

LS.En(e, @) :
> How do inputs map to labels?
> This works for all projective schemes:
X — A
for ¢ € 0..inpSize(C)-1:
(X%, X1) —eli]

if @[] =0: {X[i]HXO}else: {X[Z]HXI}

return X

LS.Gb(1%,¢, S)

> How does Gen garble the GC?

> S is an explicit seed.

switch C:

case Netlist(-) :
return Base.Gb(1",C, S)
case Seq(Co,C1) :
> Derive seeds for two circuits.
So « Fs(0)
S1 — Fs(1)
(Mo, eo, do) < LS.Gb(1",Co, So)
(M, e1,d1) — LS.Gb(1",C1, S1)
> Labels out of Co must be translated
> to labels into C.
My — trans.Gb(do, e1)
M« Mo | My | My
return (M, eo,dy)
case Cond(C) : return GbCond(C, S)

LS.De(d,Y) :

> How do labels map to outputs?
> This works for all projective schemes:
Yy—A
for ¢ € 0..outSize(C)-1:
(Y, vy — d[i]
fY[i]=Y": yli] =0
else if Y[i|=Y"': yli] — 1
else: ABORT

return y

Fig. 3. Our garbling scheme LogStack. The included algorithms are typical except for
the handling of conditionals. Ev and Gb delegate the core of our approach: EvCond
(Fig.5) and GbCond (Fig. 6).

Standard garbling schemes, e.g. the half-gates scheme [ZRE15], achieve the effi-
ciency required by Theorem 1, since they simply handle each gate individually.

Lemmas that support Theorem 1 are formally stated and proved in the full
version of this paper.

Proofs of these lemmas follow from inspecting our recursive algorithms and
(1) counting the number of calls to the underlying scheme’s algorithms and (2)
counting the number of garblings kept in scope.

We now draw attention to two key details of algorithms in Fig.3: (1) LS.Ev
delegates to a subprocedure EvCond and (2) LS.Gb delegates to a subprocedure
GbCond. All details of conditionals are handled by these two subprocedures. Aside
from these delegations, the algorithms in Fig. 3 are relatively unsurprising: the
algorithms closely match [HK20a]’s construction and essentially provide infras-

20 D. Heath and V. Kolesnikov

tructure needed to host our contribution. We briefly discuss the most relevant
details of these algorithms before returning to an extended discussion of EvCond
and GbCond (c.f. Sect.5.1):

— Projectivity. LogStack is a projective garbling scheme [BHR12]. Projectivity
requires that the input encoding string e and output decoding string d have
a specific format: they must both be a vector of pairs of labels such that the
left element of each pair is a label encoding logical 0 and the right element
of each pair is a label encoding 1. Thus, LS.En and LS.De are straightforward
mappings between cleartext values and encoding/decoding strings.

— Sequences and Translation. In a sequence of two circuits, all output wires
of the first circuit are passed as the inputs to the second. Because these
two circuits are garbled starting from different seeds, the output labels from
Co will not match the required input encoding of C;. We thus implement
a translation component (trans.Ev and trans.Gb) that implements via gar-
bled rows a straightforward translation from one encoding to another. Our
scheme securely implements the translator, and all other gadgets, using a
PRF ([HK20a] used an RO). This simplification is possible because of the
stronger property, strong stackability, that we require of the underlying gar-
bling scheme (see Sect. 6).

5.1 Algorithms for Handling of Conditionals

With the remaining formalization out of the way, we focus on conditional branch-
ing. Our goal is to formalize EvCond and GbCond, the key sub-procedures invoked
by LS.Ev and LS.Gb respectively. Our presentation is a formalization of discus-
sion in Sect. 2; the following explores the technical aspects of our construction,
but the reader should refer to Sect. 2 for unifying high level intuition.

Demultiplexer and Multiplexer. Before we discuss handling the body of
conditionals, we briefly discuss entering and leaving a conditional. That is, we
describe the demultiplexer (entry) and multiplezer (exit) components.

The demultiplexer is responsible for (1) forwarding the conditional’s inputs
to the active branch C, and (2) forwarding specially prepared garbage inputs to
each branch C;x,. The demultiplexer computes the following function for each
wire input = to each branch C; with respect to the active index a:

i
demux(z,i,a) = {m7 nr=a

1, otherwise

where | is a specially designated constant value. In the GC, the label corre-
sponding to L is independent yet indistinguishable from the corresponding 0
and 1 labels: independence is crucial for security. The demultiplexer is easily
implemented by garbled rows. The number of required rows is proportional to
the number of branches and the conditional’s number of inputs. EvCond and

LogStack: Stacked Garbling with O(blogb) Computation 21

GbCond make use of demux.Ev and demux.Gb, procedures which implement the
above function via GC. Although we do not, for simplicity, formally describe
these, we emphasize that they are a straightforward implementation of garbled
rows.

The multiplexer is central to our approach. It non-interactively eliminates
garbage outputs from inactive branches. Despite its central role, if Gen knows the
garbage outputs from each branch, the multiplexer’s implementation is simple.
Specifically, suppose each branch C; has an output x; that should propagate if
that branch is active. The multiplexer computes the following function:

mux (Lo, ..., Th—1, ®) = T

Given that (1) each value z;4, is a fixed constant L, at least with respect to a
given « (a property that we carefully arrange via the demultiplexer), and (2) Gen
knows the value of each of these fixed constants (the central point of our work),
then the above mux function is easily implemented as a collection of garbled
rows. The number of required rows is proportional to the number of branches
and the number of the conditional’s outputs. EvCond and GbCond make use of
mux.Ev and mux.Gb, procedures which implement the above function via GC.
As with the demultiplexer, we do not formalize these procedures in detail, but
their implementation is a straightforward handling of garbled rows.

Garbling Subtrees. Recall, we organize the b branches into a binary tree.
For each internal node of the tree, both EvCond and GbCond perform a common
task: they garble all branches in the entire subtree rooted at that node and
stack together all material. These subtrees are garbled according to seeds given
by the SortingHat, formally defined in Fig. 2. Like the demultiplexer and mul-
tiplexer, the GC implementation of SortingHat is a straightforward handling of
garbled rows: we assume procedures SortingHat.Ev and SortingHat.Gb which
implement this handling.

We next define a procedure, GbSubtreeFromSeed (Fig.4), which performs
the basic task of garbling and stacking an entire subtree. GbSubtreeFromSeed
recursively descends through the subtree starting from its root, uses a PRF to
derive child seeds from the parent seed, and at the leaves garbles the branches.
As the recursion propagates back up the tree, the procedure stacks the branch
materials together (and concatenates input/output encodings). The recursion
tracks two integers ¢ and j, denoting the range of branches C;..C; that are to
be stacked together. EvCond and GbCond use a similar strategy, and all three
algorithms maintain an invariant that 4,j refers to a valid node A ; in the
binary tree over the b branches. EvCond and GbCond invoke GbSubtreeFromSeed
at every node. This entails that both procedures garble each branch C; more than
once, but with different seeds. As discussed in Sect. 2, this repeated garbling is
key to reducing the total number of garbage outputs that Eval can compute.

22 D. Heath and V. Kolesnikov

GbSubtreeFromSeed(C, 1, j, seed) :

if ¢ =75: > Base case of 1 branch.
return Gb(C[i], seed)

else:
> Expand child seeds using PRF.
seedr, < Fseeq(0)
seedr — Fseed(1)
> Recursively garble both child trees and stack material.
k — halfway(i,)
My, er,dr < GbSubtreeFromSeed(C, 1, k, seedr)
Mg, er,dr <— GbSubtreeFromSeed(C, k + 1, j, seedr)
return (M ® Mg, er | er,dr | dr)

halfway(s,j) :
> Simple helper for splitting range of branches (approximately) in half.

. J—1
return 1 4 5

Fig. 4. The helper algorithm GbSubtreeFromSeed starts from a single seed at the root
of a subtree N ;, derives all seeds in the subtree, garbles all branches in the subtree, and
stacks (using XOR) all resultant material. The procedure also returns the input/output
encodings for all branches.

Evaluating Conditionals. We now formalize the procedure EvCond by which
Eval handles a vector of conditionals (Fig.5). The core of EvCond is delegated
to a recursive subprocedure EvCond’. EvCond’ carefully manages material and
uses the garblings of sibling subtrees to evaluate each branch while limiting
the possible number of garbage outputs. EvCond’ is a formalization of the high
level procedure described in Sect. 2: Eval recursively descends through the tree,
constructing and unstacking garblings of subtrees in the general case. When she
finally reaches the leaf nodes, she simply evaluates. In the base case i = «,
she will have correctly unstacked all material except M, (because she has good
seeds for the sibling roots of «), and hence evaluates correctly. All other cases
i # « will lead to garbage outputs that Gen must also compute. Other than
the delegation to EvCond’, EvCond simply invokes SortingHat.Ev to obtain her
seeds, invokes demux.Ev to propagate valid inputs to C,, and, after evaluating
all branches, invokes mux.Ev to collect garbage outputs from all C;+q.

Garbling Conditionals. Finally, we formalize Gen’s procedure for handling
vectors of conditional branches, GbCond (Fig. 6).

1. GbCond recursively derives a binary tree of good seeds via DeriveSeedTree.
This call uses a PRF to recursively derive seeds in the standard manner.

LogStack: Stacked Garbling with O(blogb) Computation 23

EvCond(C, M, X) :
b |C|
> Parse the active branch index from the rest of the input.
al X' — X
> Parse material for gadgets and body of conditional.
MSortingHat ‘ Maem | Meond | Mz — M
> Run SortingHat to compute all of Eval’s seeds.
es « SortingHat.Ev(c, Msortingtiat)
> Run the demultiplexer to compute input for each branch C;.
X cond — demux.Ev(a, X, Mgem)

> We define a recursive subprocedure that evaluates C; — C; using material M.
EvCond' (4,7, M; ;) :
ifi=j:
> Base case: compute output by evaluating the branch normally.
> This base case corresponds to guess = i.
> Accumulate output labels into the vector Y cona (for later garbage collection).
Y conalt] < Ev(Ci, M, X conali])
else:
k — halfway(,J)
> Garble the right subtree using the available seed,
> unstack, and recursively evaluate the left subtree.
My41,j,-, < GbSubtreeFromSeed(C,k + 1,7, esk+1,5)
EvCond' (i, k, M; ; ® Mi41,5)
> Symmetrically evaluate the right subtree.
M; i, -, < GbSubtreeFromSeed(C, i, k, es; k)
EvCond (k + 1,4, M ; © M; 1)

> Start recursive process from the top of the tree.
EvCond/(O, b— 17 Mcond)
> Eliminate garbage and propagate Y, via the multiplexer.

return muz.Ev(a, Y condy Mmuz)

Fig. 5. Eval’s procedure, EvCond, for evaluating a conditional with b branches. EvCond
evaluates each branch; b — 1 evaluations result in garbage outputs and one (the evalu-
ation of Cqo) results in valid outputs. The multiplexer collects garbage and propagates
output from C,. EvCond involves blogb calls to Gb (via GbSubtreeFromSeed), and each
branch evaluation is done with respect to the garbling of that branch’s sibling subtrees.

24

D. Heath and V. Kolesnikov

GbCond(C, S) :
b—|C|
> Recursively derive all ‘good’ seeds for the entire tree.
s «— DeriveSeedTree(S,b)
> Sample input/output encodings for the conditional.
e < GenProjection(S, inpSize(Cond(C)))
d — GenProjection(S, outSize(Cond(C)))
> Parse encoding into encoding of o and encoding of rest of input.
ea | —e
> Garble SortingHat based on the encoding of a.
> This outputs material as well as the tree of all ‘bad’ seeds s’.
Msortingsat, 8 < SortingHat.Gb(eq, s)
> Construct the stacked material and input encodings for each branch.
Meond, €conds deond <— GbSubtreeFromSeed(C,0,b — 1,50,6—1)
> The demux conditionally translates the input encoding e’
> to one of the branch encodings in e.onq based on e,.
Maem, Ain, — demuz.Gb(ea, €', €cond)
> Compute all possible garbage outputs.
Aout «— ComputeGarbage(C, Meond, Ain, 5, 5")
> The demultiplexer collects garbage outputs.
Mz — muz.Gb(eq, d, deond, Aout)
return (Msorsingtas | Maem | Meond | Mimuz, €, d)

Fig. 6. The algorithm for garbling a conditional vector. Given b branches, GbCond
returns (1) the stacked material, (2) the input encoding string, (3) all b output decoding
strings, and (4) all blogb possible garbage output label vectors.

2.

GbCond invokes GenProjection to select uniform input/output encodings e
and d: e and d are vectors of pairs of labels that are the valid input/output
labels for the overall conditional. Our use of GenProjection is straightforward
and similar to that of [HK20a].

GbCond uses SortingHat.Gb to garble the SortingHat functionality of Fig. 2.
As input, GbCond provides the tree of good seeds s and the encoding of the
active branch id e,. As output, Gen receives the tree of all bad seeds. GbCond
needs these bad seeds, in addition to the good seeds he already knows, to
emulate Eval making a bad guess.

. GbCond uses GbSubtreeFromSeed to derive stacked material M,,,q from the

root seed. M ynq is the material that Gen ultimately sends to Eval.

GbCond calls demux.Gb to compute the demultiplexer garbled rows. This call
also returns A;,, the collection of garbage input labels for each branch: essen-
tial information that allows Gen to emulate Eval.

LogStack: Stacked Garbling with O(blogb) Computation 25

ComputeGarbage(C, M, A, s,5) :
> We first define a recursive subprocedure.
ComputeGarbage’ (i, 7, M; ;, M) :
> Compute all possible garbage outputs from branches C; — C;.
> M’ is a vector of the bad garblings of all sibling roots of the current node.
ifi=yj:
> Base case: loop over all possible garbage material
> and accumulate garbage outputs into Aou:.
acc — M, ;
for k€ 0.|M'|—1:
> Emulate all possible bad evaluations of C;.
acc «— acc @ M'[k]
Aout[i][k] < Ev(C[i], acc, Ain[k])
else:
k < halfway(i,j)
> Compute the good material for both subtrees.
M; i, -, <+ GbSubtreeFromSeed(C, 1, k, s; i)
Myy1,5 — M;; & M
> Compute the bad material for both subtrees.
M}, -, < GbSubtreeFromSeed(C, i, k, s; 1)
Mj 41, < GbSubtreeFromSeed(C,k + 1,4, Sk y1.,)
> Recursively compute all garbage outputs.
ComputeGarbage' (i, k, (My41,; & Myi1 ;) | M)
ComputeGarbage’ (k + 1,7, (M x ® M) | M)

b—IC|

> Start the recursive process using the top level material M
> and using the empty vector of bad sibling material.
ComputeGarbage’(0,b — 1, M, [])

return Aoyt

Fig. 7. ComputeGarbage allows Gen to compute the possible garbage output labels from
evaluation of inactive branches. Specifically, the algorithm takes as arguments (1) the
vector of conditional branches C, (2) the ‘good’ material for the conditional M, (3)
the garbage input labels A;,, (4) the tree of ‘good’ seeds (i.e. the seeds used by Gen
to generate M) s, and (5) the tree of ‘bad’ seeds s’. The algorithm outputs Aoy, the
vector (length b) of vectors (each length logb) of output labels from each branch.

With this accomplished, GbCond’s remaining task is to encrypt the garbage-
collecting multiplexer. However, it is not clear how this can be achieved unless
Gen knows all garbage outputs that Eval might compute. Thus, GbCond first

26 D. Heath and V. Kolesnikov

invokes ComputeGarbage (Fig.7), a procedure which emulates all of Eval’s bad
guesses.

ComputeGarbage delegates to the recursive subprocedure ComputeGarbage’.
This recursive procedure walks down the tree, maintaining two key variables:
(1) M;; holds the correct material for the current subtree N;; and (2) M’
holds a vector of bad materials of the incorrectly garbled sibling roots of N; ;.
In the general case, these variables are simply appropriately updated via calls to
GbSubtreeFromSeed. Thus, in the base case, the garbage materials for all sibling
roots of the considered leaf are available. Additionally, all garbage inputs into
each branch are available in the vector A;,. So, at the leaves we can compute
all garbage outputs for each branch by calling Ev on the proper combinations of
garbage material and labels. We store all garbage outputs into the global vector
Aout, which is returned by the overall procedure, and then ultimately used by
GbCond to call muz.Gb.

6 LogStack Correctness/Security

We discuss LogStack’s correctness and security properties. We formalize our
theorems in the [BHR12] framework (as modified by [HK20a]), which requires a
candidate garbling scheme to be correct, oblivious, private, and authentic.

In addition, [HK20a] introduced a new property, stackability, which formal-
izes the class of garbling schemes whose garblings can be securely stacked; hence
stackable schemes are candidate underlying schemes. In this work, we strengthen
the definition of stackability. This strengthening, which we call strong stacka-
bility, allows us to prove security under standard assumptions (an improvement
over [HK20a], which required a random oracle assumption). Strong stackability is
strictly stronger than stackability: all strongly stackable schemes are stackable,
and all lemmas that hold for stackable schemes hold also for strongly stack-
able schemes. A key application of this second fact is that all stackable schemes
are trivially oblivious, so all strongly stackable schemes are oblivious. We prove
security given a strongly stackable, correct, authentic, private underlying scheme.

[HK20a] showed that several standard garbling schemes are stackable, includ-
ing the state-of-the-art half-gates technique [ZRE15]. We later argue that such
schemes either are strongly stackable without modification or can be easily
adjusted. Hence, our implementation can assume an RO and use half-gates as
its underlying scheme to achieve high performance.

LogStack is itself strongly stackable, giving flexibility in usage: while by design
LogStack handles vectors of conditional branches, we also support arbitrarily
nested conditional control flow without modifying the source program. We note
that this nested usage does not give O(blogb) computation, and so vectorized
branches should favored where possible.

Due to a lack of space, we postpone most proofs to the full version of this

paper.

LogStack: Stacked Garbling with O(blogb) Computation 27

6.1 Correctness

Definition 1 (Correctness). A garbling scheme is correct if for all circuits
C, all input strings x of length inpSize(C), and all pseudorandom seeds S':

De(d, Ev(C, M, En(e, x))) = ev(C, x)
where (M, e,d) = Gb(1%,C, S)

A correct scheme implements the semantics specified by ev. Proof of the
following is formalized in the full version of this paper.

Theorem 2. If Base is correct, then LogStack is correct.

6.2 Security

The following definition is derived from the corresponding definition of [HK20a];
we discuss its motivation (support for PRF-based garbling gadgets) and technical
differences with [HK20a] immediately after we present it formally below.

Definition 2 (Strong Stackability). A scheme is strongly stackable if:

1. For all circuits C and all inputs x,
(C, M, En(e,x)) = (C,M', X")

where S is uniformly drawn, (M, e,-) = Gb(1%,C,S), X' «—g {0, 11X and
M’ g {0, 1}IMI,

2. The scheme is projective [BHR12)].

8. There exists an efficient deterministic procedure colorPart that maps strings
to {0,1} such that for all C and all projective label pairs A°, A* € d:

colorPart(A®) # colorPart(A*)

where S is uniformly drawn and (-,-,d) < Gb(1%,C S).
4. There exists an efficient deterministic procedure keyPart that maps strings to
{0,1}* such that for all C and all projective label pairs A°, A' € d:

keyPart(A°) | keyPart(A') = {0, 1}~
where S is uniformly drawn and (-, -, d) < Gb(1*,C S5).

The above definition is given by [HK20a], with the exception of point 4.
Informally, stackability ensures (a) that circuit garblings ‘look random’ and (b)
that our scheme can manipulate labels generated by the underlying scheme.
Since strong stackability simply adds point 4, the following lemma is immediate:

28 D. Heath and V. Kolesnikov

Lemma 1. FEvery strongly stackable scheme is stackable.

We briefly explain the role of colorPart and keyPart. As with [HK20a], we
use the output labels of the underlying scheme as keys in subsequent garbled
gadgets. The keyPart procedure allows us to extract a suitable PRF key from
each label. At the same time, we make use of the classic point-and-permute trick
to reduce the number of PRF calls needed to evaluate garbled gadgets: we use
the colorPart as the bit that instructs which garbled row to decrypt. Note that
because we essentially ‘split’ each output label into a key and a color, we ‘lose’
bits of the underlying scheme’s labels when we invoke keyPart. We stress that
this is not an issue: the required key length for the next PRF application can be
restored as we require keyPart output to be x bits long. All point-and-permute
schemes have a similar approach.

The added requirement (point 4) allows us to relax our security assumptions
in comparison to [HK20a]. For each projective output pair A°, A!, we require that
keyPart(A°) and keyPart(A!) are unrelated. This is achieved by requiring that the
concatenation of these two strings is indistinguishable from a random string of
the same length. This allows us to circumvent a problem: the [HK20a] definition
allowed labels in the underlying scheme to be arbitrarily related. More precisely,
while point 1 requires that any particular set of labels seen by Eval look random,
it does not require that all labels together look random. This was problematic,
because the output labels of the underlying scheme were used to implement
garbled tables, so the two possibly related labels were both used as PRF keys.
Using related keys is outside the scope of the standard PRF security definition.
Thus, [HK20a] were forced to assume the existence of a random oracle to ensure
possible relationships in the output decoding string did not compromise security.
By adding point 4, we ensure that the entire decoding string ‘looks random’,
so all labels must be independent. This added requirement on the underlying
scheme allows us to push our proofs through in the standard model.

Many standard schemes are compatible with strong stackability: if the scheme
is stackable and has randomly chosen output labels, it trivially satisfies our
definition. Free XOR based schemes [KS08] use pairs of labels separated by a
fixed constant A, and so are not a priori strongly stackable. However, it is easy to
adjust such schemes such that the final output gates return independent labels.
As a final note, while our scheme is secure in the standard model, we of course
adopt any additional security assumptions from the chosen underlying scheme:
e.g., instantiating LogStack with the efficient Half Gates scheme [ZRE15] requires
us to assume the existence of a circular correlation robust hash function.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that LogStack’s garblings ‘looks ran-
dom’.

Theorem 3. If Base is strongly stackable, then LogStack is strongly stackable.

Definition 3 (Obliviousness). A garbling scheme is oblivious if there exists
a simulator Seopy such that for any circuit C and all inputs x of length
inpSize(C), the following are indistinguishable:

LogStack: Stacked Garbling with O(blogb) Computation 29

(C, M, X) = S0 (17,0)
where S is uniform, (M, e,-) = Gb(1",C,S) and X = En(e,).

Obliviousness ensures that the garbled circuit with input labels can be sim-
ulated, and hence reveals no extra information to Eval. [HK20a] proved that
every stackable scheme is trivially oblivious: drawing a random string of the
correct length is a suitable simulator. This fact, combined with Lemma 1 and
Theorem 3 implies two immediate facts:

Lemma 2. Fvery strongly stackable scheme is oblivious.
Theorem 4. If Base is strongly stackable, then LogStack is oblivious.

Definition 4 (Authenticity). A garbling scheme is authentic if for all cir-
cuits C, all inputs @ of length inpSize(C), and all poly-time adversaries A the
following probability is negligible in x:

Pr(Y'# Ev(C,M,X) A De(d,Y") # 1)

where S is uniform, (M,e,d) = Gb(1%,C,S), X = En(e,x), and Y' =
A(C, M, X).

Authenticity ensures that an adversary cannot compute GC output labels
except by running the scheme as intended.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that an adversary cannot compute GC
output labels except by running LogStack.

Theorem 5. If Base is authentic, then LogStack is authentic.

Definition 5 (Privacy). A garbling scheme is private if there exists a simu-
lator Spry such that for any circuit C and all inputs x of length inpSize(C), the
following are computationally indistinguishable:

(MaXad) éspr’u(lnac7y)7
where S is uniform, (M,e,d) = Gb(1%,C,S), X = En(e,x), and y = ev(C,x).

Privacy ensures that Eval, who is given access to (M, X, d), learns nothing
except what can be learned from the output y. IL.e., Gen’s input is protected.

We prove the following in the full version of this paper. The proof utilizes
properties of Base and of a PRF to show that Eval’s view can be simulated.

Theorem 6. If Base is private, authentic, and strongly stackable, then LogStack
18 private.

30 D. Heath and V. Kolesnikov

100Mbps Bandwidth 300Mbps Bandwidth 1Gbps Bandwidth

Wall Clock Time (s)
Wall Clock Time (s)
o n & o
Wall Clock Time (s)
o n & o o

1 8 15 22 29 36 43 50 57 64 1 8 15 22 29 36 43 50 57 64 1 8 15 22 29 36 43 50 57 64
Branching Factor Branching Factor Branching Factor

——LogStack «eeee Stack — — Naive ——LogStack e Stack — = Naive ——LogStack seee Stack = = Naive

~
S
o
3
3

100 Mbps Bandwidth + Communication Memory Utilization
’

2o
5 &
~

[RRFSEN
8 3
3 8

S
3

Wall Clock Time (s)
Communication (M8)
o s

~
°

1 8 15 22 29 36 43 50 57 64
Branching Factor

1 8 15 22 29 36 43 50 57 64
Branching Factor

4N T 9N
a8 3

128
256
512
1024
2048
4096
8192
~
Maximum Resident Set (MB)

Branching Factor

——LogStack - Stack ——LogStack «-ee-e Stack = = Naive ——LogStack «seee Stack

Fig. 8. Experimental evaluation of LogStack as compared to [HK20a]’s Stack and to
basic half-gates [ZRE15] (‘naive’ branching). We compare in terms of wall-clock time
on different simulated network bandwidths (top). We performed an extended wall-
clock time comparison to Stack (bottom left). Both LogStack and Stack greatly outper-
form basic half-gates in terms of total bandwidth consumption (bottom center), and
LogStack greatly outperforms Stack in terms of memory consumption (bottom right).

7 Instantiation and Experimental Evaluation

We implemented LS in ~ 1500 lines of C++ and used it to instantiate a semi-
honest 2PC protocol. We instantiated Base using the half-gates [ZRE15], allow-
ing high concrete performance. Our implementation thus relies on non-standard
assumptions. We use computational security parameter x = 127; the 128th bit is
reserved for point and permute. Our implementation spawns additional threads
to make use of inherent parallelism available in GbCond and EvCond.

Our experiments were each performed on a MacBook Pro laptop with an
Intel Dual-Core i5 3.1 GHz processor and 8 GB of RAM.

We compared our implementation to basic half-gates [ZRE15] and to the
Stack SGC of [HK20a]. Figure 8 plots the results of our experiments.

We consider end-to-end wall-clock time, bandwidth consumption, and mem-
ory utilization. All branches implement the SHA-256 netlist, which has 47726
AND gates, 179584 XOR gates, and 70666 NOT gates. A GC for each branch has
size 1.45 MB. It is, of course, unrealistic that a conditional would have the same
circuit in each branch. However, we choose this benchmark because SHA-256
has become somewhat of a community standard and because our goal is only to
analyze performance. We ensure our implementation does not cheat: it cannot
recognize that branches are the same and hence cannot shortcut the evaluation.

Bandwidth consumption is the easiest metric to analyze. The communi-
cation chart in Fig. 8 plots communication as a function of branching factor. As
expected, Stack’s and LogStack’s communication remains almost constant, while
half-gates’ grows linearly and immediately dominates. LogStack is slightly leaner
than Stack because of low-level improvements to LogStack’s demultiplexer. This
small improvement should not be counted as a significant advantage over Stack.

LogStack: Stacked Garbling with O(blogb) Computation 31

Memory utilization was measured as a function of branching factor. We
compare our scheme to Stack (half-gates memory utilization is constant, since
garblings can be streamed across the network and immediately discarded). Our
chart shows Stack’s linear and LogStack’s logarithmic space consumption. In set-
tings with many branches, improved space consumption is essential. For exam-
ple, we ran LogStack on a circuit with 8192 SHA-256 branches, a circuit that
has > 385M AND gates. Our peak memory usage was ~ 100 MB, while [HK20a]
would require more than 12 GB of space to run this experiment.

‘Wall-clock time to complete an end-to-end 2PC protocol is our most com-
prehensive metric. We plot three charts for 1 to 64 branches (on networks with
100, 300, and 1000 Mbps bandwidth) comparing each of the three approaches.
We also explored more extreme branching factors, running conditionals with
branching factors at every power of 2 from 2° to 2! in the 100 Mbps setting.

In the 1 Gbps network setting, as expected, naive half-gates leads. As dis-
cussed in Sect. 1.5, two cores (our laptop) indeed cannot keep up with the avail-
able network capacity. However, doubling the number of cores would already
put us ahead of naive, and any further computation boost would correspond-
ingly improve our advantage. We are about 3x faster than Stack.

In the 300 Mbps network setting, we outperform naive. Because we range
over the same number of branches, we are the same factor ~ 3x faster than
Stack.

The more typical 100 Mbps setting shows the advantage of SGC. Both Stack
and LogStack handily beat naive.

Finally, we experimented with large branching factors. LogStack scales well;
we ran up to 8192 branches as it was sufficient to show a trend. Due to its
logarithmic memory utilization, LogStack would run on a practically arbitrary
number of branches. In contrast, Stack exhibited limited scaling. We ran up to
1024 branches with Stack, enough to show a trend, and after which our experi-
ments started to take too long. LogStack ran 2PC for a 1024-branch conditional
in ~ 67s, while Stack took ~ 2050s, ~ 31x slower than LogStack.

Acknowledgements. This work was supported in part by NSF award #1909769, by
a Facebook research award, and by Georgia Tech’s IISP cybersecurity seed funding
(CSF) award.

References

[AGKS20] Alhassan, M.Y., Giinther, D., Kiss, A., Schneider, T.: Efficient and scalable

universal circuits. J. Cryptol. 33(3), 1216-1271 (2020)
[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:

Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784-796. ACM
Press, October 2012

[CKKZ12] Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the
“Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 39-53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9_3

https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3

32 D.

[GKS17]

[GLNP15]

[HK20a]

[HK20b)

[KKW17]

[Kol18]

[KS08]

[KS16]

[LMS16]

[Val76]

[ZRE15]

[ZYZ1.19)]

Heath and V. Kolesnikov

Gilnther, D., Kiss, /:\., Schneider, T.: More efficient universal circuit con-
structions. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017, Part IIL.
LNCS, vol. 10625, pp. 443-470. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70697-9_16

Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under
standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 567-578. ACM Press, October 2015

Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 763-792. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_27

Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 569-598. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3-19

Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying conditional cir-
cuit clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part II. LNCS, vol. 10625, pp. 499-528. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9_18

Kolesnikov, V.: Free IF: how to omit inactive branches and implement S-
universal garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S. (eds.)
ASTACRYPT 2018, Part III. LNCS, vol. 11274, pp. 34-58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3_2

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingblfsdbttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 486-498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3_40

Kiss, A., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
699-728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3_27

Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit:
improvements, implementation, and applications. Cryptology ePrint
Archive, Report 2016/017 (2016). http://eprint.iacr.org/2016/017
Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196—
203. ACM Press, New York (1976)

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
220-250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6_8

Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited:
an overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 401-425. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_15

https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-319-70697-9_16
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-319-70697-9_18
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-662-49890-3_27
http://eprint.iacr.org/2016/017
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-030-34578-5_15

®

Check for
updates

Large Scale, Actively Secure
Computation from LPN and Free-XOR
Garbled Circuits

2(=) Kelong Cong!®, Eran Omri?®, Emmanuela Orsini'®,

4

Aner Ben-Efraim
Nigel P. Smart'3@®, and Eduardo Soria-Vazquez

! imec-COSIC, KU Leuven, Leuven, Belgium
kelong.cong@esat.kuleuven.be, {emmanuela.orsini,nigel.smart}@kuleuven.be
2 Department of Computer Science, Ariel Univeristy, Ariel, Israel
anermosh@post.bgu.ac.il
3 Department of Computer Science, University of Bristol, Bristol, UK
4 Department of Computer Science, Aarhus University, Aarhus, Denmark
eduardo@cs.au.dk

Abstract. We (MPC) protocol based on garbled circuits which is both
actively secure and supports the free-XOR technique, and which has
communication complexity O(n) per party. This improves on a proto-
col of Ben-Efraim, Lindell and Omri which only achieved passive secu-
rity, without support for free-XOR. Our construction is based on a new
variant of LPN-based encryption, but has the drawback of requiring a
rather expensive garbling phase. To address this issue we present a sec-
ond protocol that assumes at least n/c of the parties are honest (for an
arbitrary fixed value ¢). This second protocol allows for a significantly
lighter preprocessing, at the cost of a small sacrifice in online efficiency.
We demonstrate the practicality of our evaluation phase with an imple-
mentation.

1 Introduction

The last decade has seen an enormous amount of progress in the practicality of
actively secure multiparty computation (MPC), spanning many new designs and
implementations of protocols based on both garbled circuits and secret sharing.
Much of the developments have been in the dishonest majority case, where more
than half of the parties can arbitrarily deviate from the protocol, trying to
compromise privacy and correctness of computation. Despite this, there is still
some gap between the complexities one can achieve in theory, and those which
can be met by practical protocols in the real world.

Almost all of the most efficient protocols in the dishonest majority setting are
designed in the so-called preprocessing model, in which parties first produce some
input-independent correlated randomness which can be later used to evaluate the
function. In secret-sharing-based protocols, the main goal of the preprocessing
(or offline) phase is to generate secret-shared random multiplication triples,
© International Association for Cryptologic Research 2021

A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 33-63, 2021.
https://doi.org/10.1007/978-3-030-77883-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_2&domain=pdf
https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0001-8928-0587
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-4882-0230
https://doi.org/10.1007/978-3-030-77883-5_2

34 A. Ben-Efraim et al.

which are consumed during the online computation to evaluate multiplication
gates. In garbled-circuit-based protocols, the preprocessing generates a one-time
garbled circuit which will be later evaluated on private inputs.

Recent protocols in both of the above paradigms have incredibly fast exe-
cution times in their online phases when the number of parties n is relatively
small (say less than 10), see for example SPDZ-like protocols [15,25,26,28] and
SPDZyi [13,36], for the case of linear secret-sharing based MPC, and BMR-
based protocols [22,39,40]. However, when we increase the number of parties
this practicality drops off.

Secret-sharing based protocols [7,14,15,19,37], which work for both binary
and arithmetic circuits, require a small amount of communication between
(essentially) all parties for each layer of multiplication gates in the circuit, and
hence their round complexity is linear in the depth of the circuit. This means
that these protocols require very low bandwidth, and can be very efficient in
a LAN (Local-Area-Networks) setting, but the large amount of rounds of com-
munication and high latency make them less suited for the WAN (Wide-Area-
Networks) setting, where the parties are usually geographically far apart from
each other. If we consider the complexity of the online evaluation, secret-sharing
based protocols have O(n) complexity per gate per party!.

Garbled circuit protocols, introduced by Yao [41] in the two-party setting
and later generalized to the multiparty case by Beaver, Micali and Rogaway
(BMR) [3], mainly work over binary circuits. In these protocols an “encrypted”
version of the circuit is constructed in such a way that its evaluation does not
require any communication beyond parties providing their “garbled” inputs.
These protocols run in a constant number of rounds and are often slower than
secret-sharing based protocols in a LAN setting due to their higher bandwidth
requirements. Nevertheless, they are usually much faster in the WAN setting.
For practical multiparty garbled-circuit protocols each evaluating party has to
perform O(n?) operations. Thus the scalability of the online phase of secure
multiparty computation protocols in a WAN setting, as the number of parties
increases, is still an issue.

Theoretically, this is not a problem for multi-party garbled circuits. To
achieve a protocol which has complexity O(n) per party, one can take the stan-
dard two-party protocol by Yao [41] and then compute the garbling function via
an n-party actively secure MPC system. The resulting garbled circuit will not
depend on the number of parties, but the garbling itself will be highly inefficient
as the underlying pseudo-random functions (PRFs) used in Yao’s construction
will need to be evaluated within MPC. Thus, while theoretically interesting, such
an approach is unlikely to ever be practical.

The O(n?) complexity problem for practical BMR-based protocols led Ben-
Efraim, Lindell and Omri [6] to present a passively secure BMR-based protocol

! The complexity can be reduced to O(1) for all but one of the parties in SPDZ-like
protocols by ‘opening’ being performed in a king-followers fashion: Followers send
their shares to the king, who then replies to all followers with the reconstructed value
(hence O(n) complexity for the king). For more details, see e.g. [15].

Large Scale, Actively Secure Computation 35

whose evaluation is independent of the number of parties and such that the
garbling phase avoids to evaluate PRF's using generic MPC. This was done by
utilizing a specific key-homomorphic PRF, for which two instantiations were
given in the paper, one based on DDH in prime order groups and one based
on Learning-with-Errors. The work of Ben-Efraim et al. provides a large-scale
MPC protocol which is almost practical: their evaluation phase is concretely
faster than previous works for large n, but more research is needed into the
offline phase in order to make it practical. The efficiency of online evaluation
is demonstrated through an implementation which shows that, roughly, their
protocol is more efficient than its O(n?) counterpart [5] as soon as 100 parties
take part in the MPC. However, this large-scale protocol suffers from two major
drawbacks: firstly, it only deals with the case of passive adversaries, and secondly
their techniques are not compatible with the important free-XOR optimization
introduced by Kolesnikov and Schneider [27].

Another relevant large-scale, garbled-circuit based protocol is that proposed
by Hazay, Orsini, Scholl and Soria-Vazquez [21]. Their result, which only deals
with passive adversaries, shortens symmetric keys (as the ones for PRFs in the
garbled circuit) in order to speed up computation and reduce communication.
Security is then retained by relying on the length of the concatenation of all
honest parties’ keys, rather than on each of them individually. Such a protocol
allows to evaluate each garble gate with O(n?(/x) operations, compared to O(n?)
of standard approaches, where xk > £ is the security parameter and ¢ is the key
length. In subsequent work [20], the same authors extended their technique to
the active setting, but only for secret-sharing based protocols, leaving actively
secure garbled circuits with short keys as an open problem.

1.1 Our Contribution

In this paper we introduce a new n-party garbling technique and present two
almost-practical, large-scale BMR-style protocols. Both the size and evaluation
complexity of the resulting garbled circuits is O(1), hence resulting in an online
phase which has a complexity of O(n) per party?. Our protocols are actively
secure and employ the free-XOR optimization by Kolesnikov and Schneider [27].

Obtaining Free-XOR. Our construction takes inspiration from the work of Ben-
Efraim et al. [6], but instead of basing the construction on key-homomorphic
PRFs, we use an encryption scheme which is both key-homomorphic and
message-homomorphic. In order to enable the free-XOR technique, we further
need to restrict ourselves to message and key spaces of characteristic two.
This rules out standard Ring-Learning-with-Errors (RLWE) based encryption
schemes, for which the secret key and message spaces are modulo distinct primes.
Instead, we introduce a new homomorphic encryption scheme based on the
Learning-Parity-with-Noise (LPN) problem. We note that LPN-based encryp-
tion was also used by Appelbaum [1] in order to replace the random oracle with

2 This increase in complexity is due to parties still needing to reconstruct the circuit
and send their masked inputs around.

36 A. Ben-Efraim et al.

standard cryptographic assumptions in two-party, free-XOR garbled circuits. We
would like to stress that the motivation (and also the resulting LPN construc-
tion) for our work is different, as we aim to build practical protocols for a large
number of parties rather than a purely theoretical result related to cryptographic
assumptions. A further overview of our new LPN garbling scheme can be found
in the next subsection, and all its details appear in Sect. 3.

Obtaining Active Security. Our first protocol achieves active security by employ-
ing an actively-secure garbling phase which guarantees that the resulting secret-
shared garbled circuit is correct. While in standard BMR all of the garbling,
except the PRFs evaluations, is computed within an MPC protocol, we instead
entirely generate the garbled gates in a distributed manner using an actively
secure full-threshold MPC system. We will refer to this first protocol as “authen-
ticated garbling”. This terminology resembles the authenticated-garbling tech-
nique by Wang, Ranellucci and Katz [38,39] (referred as WRK in the rest of the
paper) and more recently by Yang, Wang and Zhang [40]. However, while their
preprocessing phase is explicitly based on TinyOT-like protocols [17,33], which
rely on Message Authentication Codes (MACs), our preprocessing works with
any actively secure protocols.

In our construction each garbled AND gate consists of 4 rather than 4n
ciphertexts as in previous BMR-style protocols. In the online phase, parties only
need to broadcast shares of their inputs and perform a cheap, local computation
that requires a single decryption per AND gate. However, this very efficient
online evaluation comes at the price of a rather expensive preprocessing. Thus,
whilst forming a potential bridge from what is theoretically possible to what is
practically realisable, this protocol is only ‘almost’-practical.

Bridging the Gap. To further bridge the gap between theory and practice, we
also present a second construction with a more efficient preprocessing phase.
We achieve this by relaxing some of the requirements in our garbling func-
tionality, which becomes more similar to that described by Hazay, Scholl and
Soria-Vazquez (HSS) [22]. In particular, we allow the shares of the garbled cir-
cuit to be unauthenticated: rather than producing LPN ciphertexts within an
actively secure MPC engine, each party will locally produce additive shares of
these ciphertexts. This effectively allows the adversary to introduce arbitrarily
additive errors to corrupted parties’ shares. To maintain active security, we need
to introduce an extra check in the online evaluation, as we explain in Technical
Overview (Sect. 1.2).

In order to achieve a better performance, this new construction assumes
that there are at least n/c honest parties, for an arbitrarily chosen constant
1 < ¢ < n. Since our goal is constructing efficient protocols for a large number
of parties (typically more than one hundred), it is very reasonable to assume, in
this setting, more than a single honest party.

Ezperimental Validation. We validate the claim that our protocol is almost-
practical by demonstrating that the evaluation phase is indeed more efficient

Large Scale, Actively Secure Computation 37

than other truly practical approaches when the number of parties is large. Thus,
to turn our almost-practical protocol into a fully practical one, future works only
need to concentrate on the garbling phase.

The concrete efficiency of our schemes crucially depends on the LPN param-
eters and the error correcting codes used to instantiate the two-key LPN based
encryption scheme. We set the security of the scheme according to the work of
Esser et al. [16] and instantiate the cryptosystem with concatenated codes (see
the full version). We stress that our implementation should be taken more as
a proof of feasibility than an optimized implementation of the proposed con-
structions. Moreover, we believe that using more efficient codes, like LDPC or
QC-LDPC, the concrete efficiency of our protocols would improve significantly.

More concretely, in the full-threshold authenticated garbling case, experi-
ments show that our evaluation phase will be more efficient than state of the art
protocols such as HSS or WRK when the number of parties exceeds about 100.
Notice HSS, WRK and the recent protocol of Yang et al. [40] have similar online
efficiency, therefore, to concretely validate our claim, we compare the results
of our experiments in the full-threshold case with the running times reported
n [39]. Setting the statistical security parameter to 40, as in [39], we report a
running time for AES-128 of 1.72s (c.f. Table2 in Sect.6), compared to 1.87s
in a LAN setting and 2.3s in a WAN setting reported in WRK [39] for 128 par-
ties. These numbers from WRK will grow quadratically as the number of parties
increases, whereas ours will remain constant.

In the scalable protocol by Ben-Efraim et al. [6] —only passively secure and
without free-XOR- the authors also estimate that the cross over point from the
O(n?) to the O(n) protocols comes when n is about 100. Thus we obtain roughly
the same cross over point in the case of active security with free-XOR as Ben-
Efraim et al. do for passive security with no free-XOR. When comparing our
protocol to [6] we see that, assuming a circuit consisting solely of AND gates,
our protocol is roughly six times slower than that of [6]. Whilst this penalty
for obtaining active security can be considered too much, one needs to consider
the effect over typical circuits, as our protocols evaluate XOR gates for free.
Thus, in practice, our performance penalty to achieve active security compared
to Ben-Efraim et al. is closer to just a 15% of slow down. The details of our
implementation can be found in Sect.6. In the full version we also provide an
estimation of the overall complexity of our protocols.

1.2 Technical Overview

We now proceed to discuss our results and techniques in greater detail. They
mainly revolve around two key ideas: how to use LPN encryption to allow n-
party garbling with free-XOR, and how to achieve active security. We give an
overview of these techniques below, more details can be found in the rest of the
paper.

Since our constructions assume a circuit-based representation, we fix some
conventions and notation we adopt across the paper. We consider binary circuits
C'y consisting of |Cx| AND gates, |Cg| XOR gates, cach of which has two input

38 A. Ben-Efraim et al.

wires, u and v, and one output wire w. We use g to indicate the gate index. Let
W be the set of all wires, Wi, and Wy, be the set of input and output wires,
respectively, we assume |Wi,| = ni, and |Wout| = nour. We denote by Wi,. the set
of input wires associated to party P;, and likewise for output wires Wot, .

Background on BMR. Most of the work in multi-party garbled circuits is based
on the BMR protocol by Beaver, Micali and Rogaway [3], which has been recently
improved by a sequence of works [5,22,29,30,39] both in the case of passive and
active security. In this paper we follow the approach described in [5,22].

These protocols consist of two phases: an input-independent preprocessing
phase where the garbled circuit is generated, and an online phase where parties
locally evaluate the circuit obtaining the output of the computation. While in
Yao’s two-party protocol only one party, the garbler, creates the garbled circuit,
in BMR all parties generate it in a distributed way. This means that, instead of
having a single key associated to each wire of the circuit, in multiparty garbling
we have n keys for each wire, one for each party.

At the beginning of the preprocessing step, each party P; chooses a global
correlation A® € F} to support free-XOR, and, for each wire w that is not the
output wire of a XOR gate, samples a random key kfu,o, associated to the value
0, and sets ki, ; = ki, c@® A’ for the value 1. Moreover, each P; samples a random
wire mask A, € Fy, for all the input wires w € Wi,, and output wires of AND
gates. Therefore the actual wire mask for such wires is given by Ay, = Dicn) N

In this way, XOR gates do not need any additional preprocessed material, as
parties simply set ki, , = ki, ¢ @k o, ki, ; = ki, o ® A" and A, = A\, @ X\, (where
u and v are the input wires and w is the output wire).

Let g be denote an AND gate with input wires u, v and output wire w. Given
wire masks Ay, Ay, Ay, and wire keys {kua7k§;,ﬁ7kzu,o}(a,ﬁ)e{o,l}z,ie[n]a parties
generate a garbled gate corresponding to the AND truth table. It consists of
four rows, indexed by the values (a, 3) € {0,1}? on the input wires. Every row
contains n ciphertexts, each of which is encrypted under 2n keys as follows:

giﬁ = (@Fkum g”])) @ki;,o@Aj) (()‘u@a)' ()‘v@ﬁ)@)‘w)a (1)

where j € [n] represents the j-th ciphertext on the (o, §)-row and F is a double-
key PRF. Note that, as free-XOR asks for every pair of keys (k. 0- ki, 1) to
be correlated according to A7, we further need F to be a circular 2- correlatlon
robust PRF [22].

In the online phase, these encrypted truth tables, along with the input and
output wire masks, are revealed to all parties so to allow local evaluation of
the circuit. More precisely, in the input phase each party P; broadcasts val-
ues €, = puw D Ay, for each w € Wi,,, where p,, is the actual input and A,
the corresponding wire mask provided to P; with other preprocessed mate-
rial. In response, every party P; broadcasts their key k!, e+ Upon collecting
all the keys and masked inputs, parties can start evaluatmg the circuit. At this

Large Scale, Actively Secure Computation 39

point, this does not require any interaction. Given complete sets of input keys

(ki o, kr) and (k) ..., kJ), it is possible to decrypt a single row of
AND garbled gates obtaining (k}vyew, ..., kg, ..). Note that during evaluation

each party decrypts the entire row, requiring n?> PRF evaluations. Once these
output keys are obtained, every party P; can check that the i-th key corresponds
to one of its keys ki, o, Kk}, | generated in the garbling phase. This check allows:
1) To determine the masked output value, i.e. if kiu,ew = kiu,m P; sets ¢, = 0,
and €, = 1 otherwise; 2) To ensure active security for the online evaluation.
Notice that, while [29] uses the actively secure SPDZ protocol [15] to create
an authenticated secret-sharing of Eq. (1), Hazay et al. [22] show that, in order
to obtain an actively secure BMR-style protocol, it is enough to generate an
unauthenticated additive sharing of the garbled circuit, provided that the values

AV (A @) (A ® B) @ Ay) in Eq. (1) are correctly generated.

BMR Garbling with LPN Encryption. We replace the circular 2-correlation
robust PRF needed to allow the free-XOR technique in garbled circuit based pro-
tocols with a two-key symmetric encryption scheme based on LPN. By applying
the key and message homomorphism, each garbled gate contains only a single
ciphertext per row instead of n. However to achieve efficiency we need to mod-
ify the LPN encryption used in [1], as we have n rather than two parties, and
prove that our system still satisfies the Linear Related-Key and Key-Dependent-
Message (LIN-RK-KDM) security needed to support the free-XOR optimization.

On the other hand, we cannnot naively modify the standard single-key LPN-
based encryption scheme because of the free-XOR technique. Due to the key-
homomorphism of LPN, there would be only two different keys —either k,, o+k, o
or ky 0+ ky 0+ A- encrypting each four-ciphertext gate entries in every garbled
table (more details are in Sect. 3), essentially allowing the adversary to always
decrypt half of them. We define a new scheme that still takes as input two keys
but applies a permutation ¢ to the second one. We prove that the newly defined
scheme satisfies a related notion of LIN-RK-KDM security, which we denote by
LIN-RK-KDM?, while supporting the use of free-XOR in our garbled circuits.

Using our new scheme, we can replace the 4 - n ciphertexts given in Eq. (1)
with 4 ciphertexts of the form

ga,,@ = Enc ((kw,ewvaﬁaew,a,ﬁ)v (QHCYHB), (kutavkv,ﬁ)) 5 (‘Lﬂ) S {07 1}2a (2)

where the values €y a5 = (Au @ @) - (A ©B) © Aw, Kuey s = K0 @A+ €wa8
correpond to the output public-value and output key, respectively.

Obtaining Active Security. We use the garbling technique just described to
design our actively secure BMR protocols with linear online complexity in the
number of parties. At a very high level the approach we follow to obtain active
security is the same approach used in HSS, but with some significant differences.

The first one is clearly in the evaluation phase. In HSS, upon receiving all
the input-wire keys and reconstructing the garbled circuit, parties evaluate the
circuit locally by computing, for every AND gate, n? PRF evaluations. By sub-
tracting those PRF outputs (see Eq. 1), they obtain the n keys (k. R 'S

W,€Eqp ? W, Eqp

40 A. Ben-Efraim et al.

corresponding to the AND gate’s output, which can be used to evaluate subse-
quent gates. Since, during this operation, each party P; should recover one of its
two possible output keys, (ij,o, ¢ 1), checking whether this condition verifies
is enough to guarantee active securify for the online evaluation. In our case this
is no longer true, because upon decryption any party obtains a single unknown
output key, ky, ¢, . For security reasons, such a key needs to remain unknown
to all parties up to this step, therefore, if we just plug-in our new garbling into
HSS, it is no longer possible to check that the keys obtained by evaluating AND
gates are correct. We describe two different ways to overcome this issue.

The first method, described in Sect. 4 and corresponding to the fully authen-
ticated LPN-based garbling, proposes to fully authenticate the entire garbled
circuit, and not just the wire mask. This is achieved using any MPC proto-
col with active security and dishonest majority. In this way the garbled values
opened during the circuit evaluation are guaranteed to be correct, leading to a
very efficient online phase. However, this comes at the price of a rather expensive
preprocessing.

In our second protocol, described in Sect.5, we improve the practicality of
the preprocessing phase while maintaining almost the same online efficiency. In
order to do so, we increase the number of honest parties to n/c, with ¢ € R and
1 < ¢ < n. The proposed protocol works for any 1 < ¢ < n: when ¢ > 2 we are in
the dishonest majority setting and when ¢ = n we go back to the full threshold
case.

By setting the LPN parameters in the right way, we can design a protocol
where each party locally generates “weak” (in term of security) ciphertexts.
Since an adversary will be able to see only the sum of these ciphertexts, we
show that this is enough to obtain a secure protocol. The balance then has to
be drawn to ensure that enough ‘noise’ is added by each party in creating their
own LPN-based ciphertexts in order to ensure privacy, but not too much to
still guarantee correctness. The garbling we use in this case is unauthenticated,
like in HSS, with only few actively secure MPC operations. Since, as explained
before, we cannot rely on the online check used in HSS, we need to introduce a
new additional test. In a little more detail, for each output gate g, with input
wire v and output wire w, we construct a new garbled gate as

Go = Enc (€ ol 1€5.0). (glla0), (y.a, 0)) @ € {0,1},

where each value &, , is generated by party P; and then secret-shared among
all parties. In the online phase each P; decrypts Je,,, Where ¢, is the public value
of ¢’s input wire, and checks if the i-entry in the obtained vector correspond to
one of the two values 5370, ffuyl. This extra check per output gate is sufficient to
guarantee active security of our second protocol.

2 Preliminaries

We denote by sec the security parameter. We say that a function y : N — N
is negligible if, for every positive polynomial p(-) and all sufficiently large sec, it

Large Scale, Actively Secure Computation 41

holds that u(sec) < @.
bilistic polynomial time Turing machines. We let = «— X denote the uniformly
random assignment to the variable x from the set X, assuming a uniform dis-
tribution over X. We also write < y as shorthand for z «— {y}. If D is a
probability distribution over a set X, then we let z < D denote sampling from
X with respect to the distribution D. If A is a (probabilistic) algorithm then
we denote by a < A the assignment of the output of A where the probability
distribution is over the random tape of A. With Ber, we denote the Bernoulli
distribution of parameter 7, i.e. Prjzt =1: x « Ber;] = 7.

We assume that all involved algorithms are proba-

Security Model. The protocols presented in this work are proved secure in the
Universal Composability framework of Canetti [12]. We consider security against
a static, malicious adversary who corrupts a subset I C P = {Py,...,P,} of
parties at the beginning of the protocol.

We assume all parties are connected via authenticated channels as well as
secure point-to-point channels and a broadcast channel. The default method of
communication is through authenticated channels, unless otherwise specified.

Randomized Functions: To describe our garbling technique we follow the
same approach used in [1] and use the terminology of randomized encodings for
garbled circuits [23,24].

A randomized function f : X x R — Y is a two argument function such that,
for every input « € X, we can think of f(x) as a random variable which samples
r € R and then applies f(z;7). When an algorithm A gets oracle access to a
randomized function f we assume A only has control on the inputs z. We denote
the resulting randomized function by Af. We say that two randomized functions
are equivalent, written f = g, if for every input, their output is identically
distributed.

A set of randomized functions {fs}scqo,13+, indexed by a key s, is called a
collection of randomized functions if fs is a randomized function for every s. In
the following we drop the dependency on s.

We say that two collections {fs} and {gs} of randomized functions are com-
putationally indistinguishable, written {fs} = {gs}, if the probability that an
efficient adversary can distinguish between them, given oracle access to a func-
tion in {fs} and a function in {gs}, is negligible.

Let {fs},{9s},{hs} be collections of randomized functions, we have the fol-
lowing standard facts [32]:

— if {fs} = {gs} and A is an efficient function then {Afs} = {A9);
- if {fs} -

[T 1

{gs} and {gs} = {he} then {fs} = {h}.

2.1 LIN-RK-KDM Security

We briefly recall the notion of (Linear) Related-Key and Key-Dependent-
Message security [1,2,4,9,11] that we need in our constructions: Given a sym-
metric encryption scheme £ = (Enc, Dec) over the plaintext space M = Fj and

42 A. Ben-Efraim et al.

key space K = F5*, we define two families of key-derivation and key-dependent
message functions:

Prua = {¢: K - K} and Wkpm = {¢: K — M},

such that Related-Key and Key-Dependent-Message (RK-KDM) security can be
defined through two oracles Reals and Fakeg, indexed by a key s € K, as follows:
for each query (¢, 1) € Prxa XPkpm, Reals returns a sample from the distribution
Enc(¢(s); ¢(s)) and Fakegs a sample from the distribution Enc(0/*®)I; ¢(s)).

Definition 1 (RK-KDM secure encryption, [1]). We say that a symmet-
ric encryption scheme €& = (Enc,Dec) is semantically-secure under RK-KDM

attacks with respect to Pra and Yxpm if Realg = Fakes, where s «— K.

If both ¢ and v are linear functions over Fy, we refer to this notion as Linear
Key-Related and Key-Dependent-Message (LIN-RK-KDM) security. In this case
we can rewrite the oracles in a compact way:

Reals : (6, m,b) — Enc(m @ b-s, 6 ®s)
Fakes : (0, m,b) — Enc(0|m|7 0D s),

where m € M is a message, s € K a key, b € Fy a bit and 6 € F¥° a key-shift.
Notice in computing m@® b-s we multiply s by b bitwise, and then pad the result
with |m| — k zeros to left before xor-ing with m.

2.2 Error Correcting Codes

An [¢,m,d] binary linear code L is a subspace of dimension m of F%, where ¢
is the length of the code, m its dimension and d its distance, i.e. the minimum
(Hamming) distance between any distinct codewords in L. We denote by G a
generator matriz of L, that is any matrix in Fg‘” whose rows form a basis for
L. If G has the form [I,|P], where I, is the m x m identity matrix, G is said to
be in standard form. A parity-check matriz for L is a matrix in F;z_m)xe such
that GHT = 0. A linear code can be uniquely specified either by its generator
matrix or its parity-check matrix.

Given an [¢,m,d] binary linear code L, we can define a pair of algorithms
(Encode, Decode), where Encode: F§* — F% (resp. Decode: 4 — FJ') is an encod-
ing (resp. decoding) algorithm, such that:

1. Linearity: For every pair of messages x1,x2 € FJ' we have Encode(x;) ®
Encode(x2) = Encode(x; @ x3).

2. |(d — 1)/2]-Correction: The decoding algorithm can correct any error of
Hamming weight up to |(d —1)/2], i.e., for every message x € F' and every
error vector e € 4 with at most |(d — 1)/2| non-zero elements, it always
holds that Decode(Encode(x) @ e) = Decode(Encode(x)) = x.

We will also need the following more general property.

Large Scale, Actively Secure Computation 43

Definition 2 ((¢,7)-Correction:). Let Ber, be the Bernoulli distribution with
parameter T. Given an [¢,m, d] binary linear code L and a pair of efficient encod-
ing and decoding algorithms, (Encode, Decode), we say that L is (£, T)-correcting
if, for any message x € F5', the decoding algorithm Decode will, with overwhelm-
ing probability, satisfy Decode(Encodegx) @® e) = Decode(Encode(x)) = x, where
e «— Ber! is a noise vector, and Ber, is the distribution over F% obtained by
drawing each entry of the vector e independently according to Ber,.

2.3 LPN-Based Encryption

The Learning Parity with Noise (LPN) problem [10, 18] is a well-studied problem
in learning and coding theory, and has recently found many applications in
cryptography. In this section we introduce the decisional version of the LPN
problem together with some variants of the standard LPN-based encryption
scheme that we need in our garbling construction.

Definition 3 (Decisional LPN). Let ¢,k € N and 7 € (0,1/2), the DLPNg -
problem is to distinguish between the distributions given by

{(C’,c):Cngw, s—Ft e—Ber!, c—C-s @ e}

and
{(Cyc): C —TF5y*, c—TFi}.

The decisional and search variants of the LPN problem are polynomially
equivalent, they have been extensively studied and are widely believed to be hard
for any 7. The DLPN assumption has been used to build various cryptographic
primitives and, in particular, symmetric encryption schemes.

Definition 4 (Standard LPN Encryption). Let m,k, ¢ = poly(sec) be three
integers. Let I = F% be the key space, C = Fng x % the ciphertext space
and M = F5 the message space. Let 7 € (0,1/2) be a parameter defining the
Bernoulli distribution Berf. Finally, let G € ngm be a generator matriz for
an [€,m,d] binary linear code L which is (¢, T)-correcting. The (standard) LPN
symmetric encryption scheme consists of the three following algorithms:

- KeyGenl(lsec): Given as input the security parameter sec, sample uniformly
at random a secret key, s «— IC.

- Enci(m, s): Given a message m € M and the secret key s € K, sample a
matriz C — F**, noise e — Ber and output

c—C-s e & G-m.

~ Decl((C,c),s): Given a ciphertext (C,c) and the secret key's, compute ¢ @ C-
s and apply a decoding algorithm to recover m.

In [1], Appelbaum proved that (an extension of) the above encryption scheme
is LIN-RK-KDM secure.

44 A. Ben-Efraim et al.

Theorem 1. Assuming DLPNy - is hard, the encryption scheme (KeyGeni,
Enci, Deci) is LIN-RK-KDM secure according to the above definition of LIN-
RK-KDM security.

Assuming the DLPN-problem is hard, it is easy to show that also the follow-
ing nonce-based symmetric encryption scheme is IND-CPA, where it is required
that a specific nonce is used only once for each key s.

An eXtendable Output Function (XOF). A XOF is a way to model a random
oracle that can produce outputs of any length. Implementations of such functions
can be created from SHA-3 in a standardized manner [8,34].

Definition 5 (XOF-Based LPN Encryption). Let m,k,¢ = poly(sec) be
three integers and K,C, M as in Definition 4. Let 7 € (0,1/2) and G € F5*™
be chosen in the same way as there too. Let a XOF H : {0,1}* — F5<k
be modelled as a random oracle. The XOF-Based LPN symmetric encryption
scheme consists of the three following algorithms:

- KeyGen)T(OF(lsec): Sample uniformly at random a secret key, s — K.
~ Enc’®F((m, nonce),s): Given a message m € M, a key's € K and a string

nonce, sample noise e < Ber_ and compute
C «— H(nonce) andc—C-s & e & G-m.

- Dec)ﬁOF((C, c),s): Given a ciphertext (C,c), compute c & C-s and then apply
error correction to recover m

The above LPN encryption scheme is trivially additively homomorphic in the
message space, and is also key homomorphic if two encryptions with the same
nonce value are added together. To reduce bandwidth and storage requirements,
it is possible to define the ciphertext to be (nonce, ¢) instead of (C, c).

Looking ahead, we will choose the parameters for our LPN-based encryption
scheme based on recent analysis on the security of the LPN assumption by Esser
et al. [16], which implies that the parameter k in the scheme should be selected
to be

B> ¢ (3)

B log, (ﬁ)’

where sec is the (symmetric-key equivalent) security parameter and 7 defines the
noise rate. In what follows one should think of sec as being equal to 128 or 256.

2.4 Functionalities for Secret-Shared MPC

Our protocols make use of the functionality Fypc for MPC over binary circuits
described in Fig. 1. The functionality is independent of how the values are stored
and represented. In particular, we will need two different implementations of
Fwmpc, one achieving only passive security and the second achieving active secu-
rity. Note that any generic MPC protocol can be used to practically instantiate

Large Scale, Actively Secure Computation 45

Functionality 7,5

The functionality runs with parties P, ..., P, and an adversary A.
It is parametrized by flag € {Auth, UnAuth}. Given a set ID of valid identifiers, all
values are stored in the form (varid,x), where varid € ID.

Initialize: On input (Init) from all parties. The adversary is assumed to have
corrupted a subset I of the parties.
Input: On input (Input, P;, varid, x) from P;, with x € F2, and (Input, P;, varid, ?)
from all other parties, with varid a fresh identifier.
Add: On command (Add, varid1, varids, varids) from all parties:
1. The functionality retrieves (varidi, x), (varids,y) and stores (varids, t®y).
Multiply: On input (Multiply, varid., varids, varids) from all parties:
1. The functionality retrieves (varidi,), (varids,y) and stores (varids, x -y).
Output/Open: On input (Output/Open, varid, i) from all honest parties the func-
tionality retrieves (varid,y), sends y to the adversary, and waits for a reply. If
A answers with Deliver, then do one of the following:
— If flag = Auth: output y to either all parties (if ¢ = 0) or P; (if ¢ # 0).
— If flag = UnAuth: A further specifies an additive error e € Fo. The func-
tionality outputs y + e to either all parties (if ¢ = 0) or P; (if ¢ # 0).
In both cases, if A does not answer with Deliver, output abort.

Fig. 1. The ideal functionality for MPC over F,

Fmpc in our constructions. However, since TinyOT-like protocols, that rely on
message authentication codes (MACs) to achieve active security, are currently
the most efficient protocols on binary circuits and are used in previous works
like HSS and WRK, we abuse notation and use Fgiif and FUseth to distinguish
between an active and a passive implementation of Fypc. Also notice that each
value in Fypc is uniquely identified by an identifier varid € ID, where ID is a
set of identifiers.

After an Initialize step, the functionality allows the parties to provide their
inputs, which can be added and multiplied using Add and Multiply, respec-
tively. The functionality also provides an Output/Open command that allows
values to be revealed either publicly or privately to a single party. Note we
maintain the double notation Output/Open only to distinguish between out-
put values and intermediate values that are opened during the execution of the
protocol.

Unauthenticated Values: We denote (z) an additive sharing of x over Fy gener-
ated by f,b’,g%“th, where z = @ie[n}xi with party P; holding the share z? € [Fy.

Looking ahead, using such a sharing we can perform arbitrary linear opera-
tions, however, upon opening values, an adversary is able to introduce an arbi-
trary additive error and reveal incorrect values. For this reason when we use
unauthenticated values to instantiate our LPN-based protocol, we need to add
an new mechanism to prevent these additive errors introducing a security weak-
ness in the protocol.

46 A. Ben-Efraim et al.

Authenticated Values: We denote [z] an actively secure additive sharing of z,
for example using a fixed MAC scheme. Addition and multiplication of such
elements will be represented by [z] + [y] and [z] - [y].

To simplify notation we will use the following shorthands for inputing and
outputting values to/from a party/all parties:

[a] — Input(P), @ — Output(z],), = — Open([a]),

() < Input(P;), x < Output({z), P;), x < Open({(z)),

respectively in Fouth and Funfth, If the type (authenticated /unauthenticated) of
MPC MPC

operation is not obvious from the context we will write Input?, Output”, Open”
for the unauthenticated variant, with no superscript added for the authenticated
variant.

Trivially, from a [z] sharing we can obtain (immediately and with no com-
putation or communication) a (z) sharing of the same value. We denote this
operation by (z) « Convert([z]). Extension of this notation to act on elements
x € F%, for various values of k, will be by using [x] and (x) in the obvious way.

We can extend the Fypc functionality by a command, which we denote by
[x] < GenBit() which produces a shared random bit within the MPC engine.
This command can be derived from the base commands by performing:

1. All parties call [2°] « Input(P;), % € F.

2. Parties compute [z] «— ®;[z"].

3 Free-XOR Garbling Using LPN

We now discuss how to garble a single AND gate using LPN-based encryption
while maintaining the free-XOR invariant. Later on, in Sects.4 and 5, we will
show how this technique can be used in order to build our actively secure garbled-
circuit based MPC protocols.

Our garbling method is similar to the one given in Eq. (1), with two main
differences. Firstly and most importantly, we have a single ciphertext per row,
rather than n of them; secondly, we replace the circular 2-correlation robust
PRF F with a nonce-based, two-key symmetric encryption scheme based on
LPN. Thus we obtain the garbling method given in Eq. (2).

To achieve this modification one could naively think of just adapting standard
LPN encryption (c.f. Definition 4) to use two keys, where A = @, A%, and,
for t € {u,v,w}, kep = @i ko and k1 = kyo & A. Each garbled row
(€u,€y) € {0,1}? could then be set as:

Jew,eo = (C,c), C Fng, c—C- (ku,eu D kv,ev) Ded G kye, (4)

This naive solution does not result in a secure garbling method. To see this
denote s, ., = ky.c, P ky,c,, then due to free-XOR we would have that s¢, ., =
kuo @ kyo ® (€y ®€,) - A, and hence sg0 = s1,1 as well as s19 = $o,1. This
would trivially allow corrupted parties to always decrypt half of the entries of

Large Scale, Actively Secure Computation 47

every garbled gate, breaking completely the security of the scheme. A possible
fix to this problem would be to sample two different matrices C,,C, «— Fng
and compute ¢ — C,, - ky ., & Cy-ky e, & €eBG-ky c,, but this would incur in
increased computational costs due to the sampling of the matrices and the cost
of calculating the matrix-vector products.

In order to avoid these issues in our garbling, while still maintaining security,
we introduce a modification to the previously provided nonce-based version of
LPN encryption. In particular, our scheme will take as input two keys in F5,
but this time a permutation o € Sy (where Sy is the set of permutations on k
elements) will be applied to the second one.

Definition 6 (XOF-Based Two-Key LPN Encryption). Let m,k, ¢ =
poly(sec) be three integers. Let I = F5 x F§ be the key space, C = Fng x 4
the ciphertext space and M = F5 the message space. Let 7 € (0,1/2) be a
parameter defining a Bernoulli distribution and o a permutation in Si. Finally,
let G € F5*™ be a generator matriz for an [(,m,d] binary linear code L which
is (€,T)-correcting (c.f. Definition 2). Let H : {0,1}* — F5** be a XOF. A
XOF-based, two-key symmetric LPN encryption scheme EXOF is defined by the
following algorithms:

— KeyGen(1%%): Samples (k.. k,) <+ F2** at random.
— Enc.((m, nonce), (ky, ky)): On input of a message m € M, a pair of keys
(ky, ky) and a string nonce, compute

C «— H(nonce),
c—C-(k, ® ok,) ® e ® G-m, e — Ber’.

— Dec((C,), (ku,ky)): Computec & C-(k, ® o(ky,)) and then apply error

correction to recover m.

Note that this scheme is message homomorphic, and it only requires to store
nonce rather than C. In addition, when the same nonce is used, it is also key
homomorphic.

Returning to our garbling proposal from the beginning of this section, now
the key used to garble entry (e, €,) of a given gate g is s, ¢, = ku,c, Bo(ky.e,)-
By substituting the free-XOR correlation, we see that security now relies on the
secrecy of

Sev.eo = Kuo @ 0(kyo) @ €, A & ¢, -0(A), (5)

and hence on four possible (distinct) values of s, ,. Nevertheless, the security
analysis requires additional care. As it is always the case when using the free-
XOR optimization, we have the problem that we are encrypting key-dependent
messages (where the dependence is the free-XOR correlation A), as well as we
are using related keys when encrypting the inactive rows of a garbled gate.
Explicitly, given the active row s, ., for (o, 3) € {0,1}? these inactive rows
are:

Seu@ava@ﬁ = S€u75v @ a- A @ ﬁ U(A)

48 A. Ben-Efraim et al.

Hence, once the parties learn any s, , by evaluating the garbled circuit, security
for each of the three remaining rows is relying, respectively, on the secret values
A,0(A) and A @ o(A). To define an appropriate way of dealing with this RK-
KDM problem, we will first define the following variant of LPN.

Definition 7 (DLPN?Y Problem). Let o € Sy be the set of permutations of
k elements and ¢, k, 7 € N. The DLPNZ,W problem is to distinguish between the
two distributions given by

{(C,C,U)ZCHFSXk, S<_]F]2€’ e<_Ber£7 c—C-(s @ os) @ e}

and
{(Cre,0): C = FE, e — B},

where Ber’. is the Bernoulli distribution with parameter 7.

Recalling that any permutationon of a finite set can be uniquely expressed as
the product of disjoint cycles, we now show how the DLPN and DLPN? problems
are related to each other by the following Lemma, the proof of which is given in
the full version.

Lemma 1. Let 0 € S be a permutation consisting of exactly k disjoint cycles,
the DLPN, .7 _ problem reduces to DLPN7 ;. _ problem.

In our construction, the permutation o will be chosen to map (dg,...,0k—1) €
F% to (80, ...,6,_,), where 0% = 0;_1 (mod k)- Note that this o consists of a single
cycle of length k and, hence, the security of DLPN? is the same as that of DLPN
with keys which are one bit shorter.

We are now just one step away from defining the right RK-KDM notion
for our scheme. A detail that was overlooked in Eq. (4) is that the key space
K = F§ and the message space M = FT are different, so we cannot write
G - Kky,c,,- Furthermore, as in our protocols nobody will know neither k,, o nor
ki1 (a problem which does not come up in previous works, because each P,
has its own pair of keys ki, o, ki, ;), we need the garbled gate to also encrypt
explicitly the external value €,,.

We thus define an injection of the space I x Fq into the message space M,
which requires that m > k£ + 1, via the following linear map:

v ICXFQ—> M
(k7 b) — A (k,b)T

for some matrix A € F?X(kﬂ). In order to make the image of ¥ easily recogniz-
able, so that we can efficiently recover its preimage when decrypting a garbled
row, we pick the matrix A in the map ¥ such that we obtain:

Om—k—1)x(k+1) KT
@ (b) — "D = [0k -(b)

lek”l

Large Scale, Actively Secure Computation 49

This choice of matrix A also simplifies somewhat the proof of Theorem 2 below.

We can now finally define the relevant notion of RK-KDM security for our
scheme defined in Definition 6 (LIN-RK-KDM? security), and show how we will
use it to garble gates in our protocols. For security reasons, which will become
apparent in the proofs, we need to make the assumption that the free-XOR
correlation A € F% is of the form (1, 4’,0).

Let A = (1,A7,0) with A’ — F% 2 be a secret value. Let H the XOF
associated with the scheme (KeyGenXOE, Enc)T(OF, DecXOF) of Definition 5. In the
following we think of the encryption scheme as being defined with respect to
three possible keys A, o(A), and A @ o(A) chosen by (a, 3). The variable k is
defining a linearly homomorphic relation with respect to one of the keys and b
is defining the linearly homomorphic key-dependent offset W (b - A, b). With this
understanding we define the following oracles:

Real?, : (k,«, 3, m, b, nonce) —
Enc’OF((m @ ¥(b- A,b), nonce), k@ a-Adf-0(A))

Fake%, : (k, «, 5, m, b, nonce) — (H (nonce), c), c—2C,

where C is the ciphertext space, and forbid the following kind of queries: Let
{(ki, a;, B;,m;, b, nonce) }!_; be a sequence of queries under the same nonce.
Such a sequence is not allowed if and only if there exist coefficients c1,..., ¢4 €
Fo, not all zero, such that > ¢ ¢ - (g, 3;) = (0,0). We can now define our
notion of LIN-RK-KDM? security:

Definition 8 (LIN-RK-KDM? secure encryption). The encryption
scheme (KeyGen™©F | EncX®F, Dec®©%) is said to be LIN-RK-KDM° secure if
the two oracles Real%, and Fake% are computationally indistinguishable, when we
forbid the above queries.

The reason for the forbidden queries is in order to stop the distinguisher D
from mounting a trivial attack. Take for example the simplest forbidden query,
where D simply asks once for (k, 0,0, m, b, nonce). As none of the three possible
secret keys depending on A has been applied, then D can just decrypt using k
and see whether the oracle was implementing Real or Fake. For longer sequences,
the idea is essentially the same, as the key-homomorphism of LPN would other-
wise allow D to mount the same kind of attack simply by computing the linear
combination defined by the ¢; values.

Theorem 2. Let A = (1, A’,0) with A’ — F5~2 be a secret value, then, assum-
ing that DLPN s hard, the XOF-Based Two-Key LPN Encryption scheme (c.f.

Definition 6) is LIN-RK-KDM® secure, i.e. Real%, = Fake?.

Proof. For the proof of this result, see the full version. a

50 A. Ben-Efraim et al.

The security game Garble ANDSec

This is a game between a challenger and an adversary. The challenger has access
to the oracles Fake% or Real%, which we denote by O,

1. The challenger picks three bits ey, €y, €w € {0,1}, three keys
K, Kocys Kue,, € F5, anonce g and by, b, € {0,1}.

2. The challenger sets by, < by - by and Ay < by @ €, t € {u, v, w}.

The challenger sets k «— Ky, ® o(ku,e,)-

4. The challenger computes the ciphertext

w

ctey ey < Encr((¥ (Kuwey s €w), (glleulln)), (Kueyskoe,))
5. For o, 8 € {0,1}, (a0, B) # (€u, €v) set
lopg=Au@a) M DB) D buy.
6. The challenger computes, for (o, 3) # (€u, €,) the three remaining ciphertexts:
ctag — O(k, cu@a, € BB, (K, €w), las, (gllallB))

7. The ciphertexts (cto,0, ct1,0, cto,1, ct1,1) along with the keys values, (Kuy,e, , €u)
and (ky,e,, €v), are returned to the adversary.
8. The adversary goal is to determine which oracle the challenger is using.

Fig. 2. The security game Garble ANDSec

We end this section by showing, intuitively, why the garbling method using
our (XOF-Based) Two-Key LPN Encryption is secure. Consider the garbling
game in Fig.2, which models an adversary that is trying to learn something
about a garbled AND gate, given only the pair of keys and external values for
the active path. From our previous discussion, if the LIN-RK-KDM? problem is
hard then the adversary is clearly unable to win this game. We remark that this
game just provides the intuition around the security of our garbling protocols,
which will not explicitly use it in their respective proofs.

4 MPC from Fully Authenticated LPN-Garbling

We use the garbling technique introduced in the previous section to describe our
first protocol. As we said before, we evaluate the entire garbled circuit using a
generic, actively secure MPC protocol.

In particular, given a secret shared key [k], message [m], and noise vector
[e] (obtained by calling GenBit() and Mult in FGul), the parties can compute
a secret shared ciphertext (C,[c]), where C' is in the clear, using a double-key
encryption scheme £X°F as described in Definition 6. Since both the generation
and opening of the garbled circuit are done using an active secure MPC system,
the reconstructed garbled circuit is guaranteed to be correct and thus there is
no need for any consistency checks during the evaluation phase. The downside of

Large Scale, Actively Secure Computation 51

Protocol gawple

Let £X°F = {KeyGen_,Enc,,Dec,} be a XOF-based two-key LPN encryption
scheme, where 7 is a parameter of the scheme. Let K = F%.

Garbling:
1. Bach P; samples A" « F5™2 and calls Fgid to compute [AY] « Input(F;).
2. Set [A] < (1,0) & D}, (O, [A7],0).
3. For every input wire w € Wi, and output wire of an AND gate, parties do:
— Call Fjun obtalnlng a shared random bit [Aw] < GenBit().
— Each P; samples ki, o « K and call Fys¢ on [k, o] < Input(P;).
— Set [Kuno] — ey kiso] and [kuni] < [ku.o] @ [A]
4. For every wire w in the circuit which is the output of a XOR gate:
— Parties compute the mask on the output wire [Aw] < [Au] D [Ao].
— Parties compute [kuw,0] < [Kov,0] @ [kv,0] and set [kuw,1] < [kw,0] ® [4]
5. For every wire w in the circuit which is the output of an AND gate and for
a,f € {0,1}, parties call FG& to compute
(@) [ew,a,8] — ([Au] ® @) - (o] © B) & [Aw].
(b) [Kuw,a,8] — [kuw,0] & ([A] - [ew,a,p])-
(¢) The encryption (C™>*? [c***?]), given by

Enc, (¥([kw,asl;[€was]), (gllalld)), (kual, kesl)

where g is a unique gate identifier.
(d) Parties call Fyse to open the values A, <« Output([Ay], P;) corre-
sponding to party P;’s output values.
Open Garbling:
1. Parties call F4i? to open ¢'*? « Open([c***?]), o, B € {0, 1}.
2. Set the garbled gates to be fu.a.p = (C?, P for a, 8 € {0,1}.

Fig. 3. The protocol for authenticated garbling Ilgarble

this simple approach is that the amount of multiplications required to produce
noise vectors [e] with the right distribution could be prohibitively high in some
scenarios.

4.1 Garbling

Our garble protocol ITgamle, is described in Fig. 3. First, the parties produce, in
an actively-secure way, shares of the global key [A], the wire labels [k ,,], [ki ,,]
and the wire masks [\,] for the garbled circuit using Fjuf. Then, for each AND
gate g with input wires u,v and output wire w, and for each «, 3 € {0,1}, the
parties compute authenticated additive sharing of the values

[€w,a,8] — ([Mu] ® @) - ([Ao] & B) ® [Au]-

52 A. Ben-Efraim et al.

Thus the garbled gate for each AND gate is obtained by calling .7-',6,?,% to evaluate
the following encryptions

(€8, [e) = EncSOF (W ([Ku.a sl [ewas]): (9lal8)); (Kual: leus]))

where «, 3 € {0,1}, ¢ is a unique gate identifier and ky, 0,8 = kuw,0 ® €w,a.8 - A.
Finally, parties open the masks for all the output wires of the circuit, so that
they will be able to recover the output at the end of the evaluation phase.

When the garbled circuit is opened, using FQ‘E}S, the parties reconstruct the
four values (C*P c%f) «a, 3 € {0,1}, and set these to be the garbled gates
o5 Note that the first component C*»*# of the ciphertexts in the garbled
gates does not need to be stored, as it can be generated on the fly by applying
the XOF to the relevant nonce = (g|«||5).

In order to see how the garbling is correct, note that the output of the AND
gate is exactly the value (A, @ «) - (A, @ (). Hence, assuming A,, = 0, we have
two cases: if (A, B) - (A, ®F) =0, then €,.4,8 = 0 and ky, o g8 = kuw,0; otherwise
€wa,p = 1 and kyap = kwo @ A. The result is reversed if A, = 1. In more
formality, we state the following theorem. It has a relatively standard proof,
which follows the pattern of previous works on n-party garbling, and can be
found in the full version.

Theorem 3. Let EX°F be a XOF-based two-key LPN encryption scheme with
parameter 1. The protocol Hgawle, given in Fig. 3, UC-securely computes the
functionality Fpreprocessing (See the full version) in the presence of a static, active
adversary corrupting up to n — 1 parties in the fﬁ‘,‘}g -hybrid model.

4.2 Evaluation

The protocol ITgyauate, given in the full version, describes how parties evaluate
the garbled circuit. This protocol is very similar to that of HSS, where everyone
evaluates the garbled circuit obtained in the preprocessing phase by broadcasting
their inputs XORed with the corresponding wire mask. The main difference with
HSS is that, as there is a single output key k,, ., for every wire, rather than one
such key per party, parties need to explicitly obtain the masked wire value €,
when decrypting ge, c,. Once the whole circuit has been evaluated, making use
of the output wire masks they obtained at the preprocessing stage, parties can
unmask their corresponding outputs and learn their intended result.

It is important to note that, unlike in HSS and due to the active security of the
base MPC system, all among the garbled circuit, input keys k,, ., and masked
inputs €, are guaranteed to be correct. Since the rest of this phase is purely local
computation, this essentially ensures the output is correct. The security of the
protocol, provided by the following theorem, follows from adapting the proof of
our more complex unauthenticated garbling protocol in Sect. 5. In other words,
the proof of Theorem 4 is just a specialised version of the proof of Theorem 6.

Theorem 4. Let f be an n-party functionality and EX°F a XOF-based two-key
LPN encryption scheme with parameter 7. The protocol Ilgyayate UC-securely

Large Scale, Actively Secure Computation 53

computes f in the presence of a static, active adversary corrupting up ton — 1
parties in the {Fmpc, Frreprocessing | -hybrid model.

5 MPC from Unauthenticated LPN-Garbling

Whilst the protocol described in the previous section is intuitive and achieves our
goals for the evaluation phase, the usage of an authenticated garbling function-
ality incurs a larger number of oblivious operations in the preprocessing phase.
In this section, we turn to use an unauthenticated preprocessing functionality,
in the style of HSS, in order to improve the efficiency of this phase. Our unau-
thenticated garbling protocol makes clever use of the homomorphic properties
of the LPN encryption scheme. This turns out to be especially efficient when a
large proportion of parties are assumed to be honest. Our protocols and func-
tionalities in this section are parametrised by a value ¢ € R that represents the
proportion 1/c of parties that are assumed honest. In other words, our protocols
will have n/c honest parties, with 1 < ¢ < n. Note that when 2 < ¢, we obtain
a protocol which is secure against a dishonest majority, and by setting ¢ = n we
would go back to the case of a full-threshold adversary. As expected, the value of
c greatly affects the performances of our construction. We remark that allowing
the possibility of having more than a single honest party is a highly reasonable
assumption in a large scale setting.

5.1 Garbling

In this section we describe how to implement the fgr/ecpmcessing functionality
given in the full version. As this is a weaker functionality which allows the
adversary to introduce additive errors in the garbled circuit, our implementing
protocol will not need to produce the LPN ciphertexts and keys using a fully
active implementation of Fypc as we did in Sect. 4.

The main idea of our unauthenticated garbling protocol is to use the homo-
morphic property of the LPN encryption scheme, i.e., abusing notation,

21 EncOF ((m?, nonce), s') = EncF (£, m’, nonce), &7 s). (6)
However, note that the Bernoulli distribution resulting from the sum has param-
eter 7/ > 7. Additionally, even given only the sum of the encryptions, the adver-
sary can use the above homomorphic property to “remove” his own encryptions
and remain with only the sum of the honest parties’ encryptions. Thus, the sum
of the honest parties’ encryptions must still be secure.

We thus proceed as follows: we let each party locally generate a ‘weak’ LPN
encryption for the garbled gates. The garbled gates are computed by summing
these 'weak’ encryptions. The ‘weak’ ciphertexts are never seen by the adversary,
as the parties compute their sum using additive secret-sharing. Intuitively, if the
adversary cannot learn any information on the keys and messages from the sum,
then this gives the adversary the possibility of (only) an additive attack. Hence,

54

A. Ben-Efraim et al.

/
Protocol I/
Let £X°F = {KeyGen_,Enc,,Dec,} be a XOF-based two-key LPN encryption
scheme, where T is a parameter of the scheme. Let K = F. Let [z] and (z) de-
note respectively an authenticated and unauthenticated additive sharing of x.

Garbling:
1. Each P; generates a random value A* € F£~2 and call (A*) « Input” (P;)
of Fupc.
2. Set (A) « (1,0) @; (0,(A%),0).*
3. For every wire w in the circuit which is either an input wire or the output
of an AND gate, parties do as follows:
— Create a secret random bit [Ay] < GenBit().
— Bach P; generates a random ki, o € K and calls (k’, o) — Input”(P;).
— Set (ku,0) < @i(ky,0) and (ku,1) < (kw,0) @ (4).
4. For every wire w in the circuit which is the output of a XOR gate (with
input wires v and v) parties locally set:
= Pw] =] @ Ao
= (kuw,0) — (ku,0) ® (kv,0) and (ku,1) < (kuw,0) & (4).
5. For every wire w in the circuit which is the output of an AND gate g (with
input wires u and v), for o, 3 € {0,1},
(a) Parties call Fupc to compute [€w,a,8] — ([Au] ® @) - ([Ao] & B) ® [Aw],
(b) Parties call the command (€w,a,s - A) + Bit X String 4, ([€w,a,5])- *
(c) Parties locally compute (Kuw,a,8) < (Kuw,0) ® (€w,a,8 - A).
(d) Each party P; computes the encryptions (C**?, c¢"**#) given by

EncTs (l‘p(kfu,a,67€::ﬂ,a,ﬂ)7 (QHOCHB))7 (k:;,ouki),ﬁ)

where g is a unique gate identifier.
(e) For every output gate g associated to a set of parties P C P, with
input wire u and output wire w, perform the following steps
— Set [Aw] — [Au]-
— For a € {0,1}, each P; € P generates two random values €ha €
{0,1}* and shares them as (£,) < Input”(P;).
— For a € {0,1} use the trick from step 5d above to construct the
garbled row g, = (C"*"%, ") corresponding to the encryption

Encr, (€Il €2, (alle0)), (Ku,a,0)

6. Reveal to each P; their input and output wire masks: A\, <«

Output([Aw], i), w € Win, U Wout, .
Open Garbling:

1. Each P; calls (c*®#) — Input” (P;). All parties then computes (c***?) =
Diein) (c"**#) and reveal the result (using £ calls to Open”) so that each
party obtains the ciphertext (CV'®# cv»*#)

2. The garbled gate is fu,a,5 = (C*?, c¥*P) for a, 8 € {0,1}.

3. Similarly, in output gates, for o € {0, 1} use the trick from step 1 in Open
Garbling to reconstruct gu,o = (C*"%,c""%)

% See Remark 1

Fig. 4. The protocol for unauthenticated garbling, with n/c honest parties

Large Scale, Actively Secure Computation 55

this scheme works as long as the sum of n ‘weak’ encryptions is decryptable and
the sum of n/c ‘weak’ encryptions is secure.

We now look at how to achieve these requirements. We introduce 7, to denote
the parameter of the Bernoulli distribution that we want the sum of any n/c
ciphertexts to achieve. For the local, weak encryptions, honest parties will use a
parameter 7. Lastly, the sum of all n ciphertexts will have a Bernouilli distribu-
tion with a parameter that we will denote 74. Below we analyse the relationship
between the three 7 parameters and give an example of how to select them in
practice. Our analysis makes use of the following lemma [31].

Lemma 2 (Piling Up Lemma). Let X be binary random variable which is
equal to one with probability p = 1/2 — €, where € is the bias approximation, then
we have

Prlz1+ - +xz,=1:12; — X] :%—2”_1-6”.

Recall we have n parties of which n/c are honest, and in our garbling protocol
each honest party will generate an LPN ciphertext with 7 equal to 7., with the
adversary producing a ciphertext in any way it chooses. These ciphertexts are
then secret shared, and the sum of all the n ciphertexts is then released.

As explained, the adversary can determine the sum of the n/c ciphertexts
produced by the honest parties. These sum to a ciphertext whose underlying 7
value, 75, can be evaluated by the Piling Up Lemma. Thus, we have

n/c
1 _ 1 1 n/c
78_22n/61'<2fe> 25'(1*(1*2”@)/)'

We also require that, if the adversarial parties follow the protocol, the resulting
ciphertext sum can be decrypted correctly. In other words we need to set 74 such
that

1 n—1 1 n_l "
Td—§_2 <2 Te) —5 (]. (]. 2 Te)),

or

Te =

(1-a-2m)').

[N

Note that this gives us

. (1 - (1 —2. (; (1-a —Q.Td)l/n>)>"/c>

: (1 - ((1 —2~rd)1/”)"/c) - % : (1 — —2-7‘d)1/c).

Therefore, we have proved the following fact.

Ts

|
N~ N

Lemma 3. Let 74, 7,74 be LPN parameters, as described above. For fized T4 the
value of Ts does not depend on the number of parties, but only on the proportion
¢ which is honest.

56 A. Ben-Efraim et al.

Starting with a 74, a desired security parameter sec and a proportion ¢, we
can derive the LPN parameters k, 7, and 7. First, using 74 and ¢, it is possible
to derive 7. Then, given sec and 75, we can compute k using Eq. (3). Finally,
Te, that parties use for encryption, is derived from 7, and the number of parties
n. For example, if we take 74 = 1/8 and a proportion of 20% honest parties, i.e.
c = 5, then we find that 7, = 0.02796. For sec = 128 this implies we need to
select k = 3129. For n = 100 parties we then have that the honest parties need
to encrypt with parameter 7. = 0.001436. For more example for sec = {128,256}
see the full version.

Using the above observations we define, in Fig. 4, the garbling protocol when
n/c parties are honest. Our protocol makes use of an operation, which allows us
to compute an unauthenticated sharing of (z-A) given an authenticated sharing
of a bit [z], where A € {0,1}* is a global shared value. We denote this operation
by

(x - A) « Bit x String) ([z]).

We could naively implement this operation using Tiny-OT, but this would be
highly inefficient since A € F§ and k is very large as it is the dimension of the
secret key space KC of the underlying LPN encryption scheme. For this reason, in
the full version, we show a more efficient bit-string multiplication protocol, that
is still based on Tiny-OT. The new protocol requires that n/c > s, where s is
the statistical security parameter. Since c is a constant, this requirement holds
for sufficiently large n.?

Remark 1. Note that the way that the Bit x String operation is described in
the full version, the shares of A are chosen inside the Bit x String protocol.
However, this would make the unauthenticated garbling protocol description in
Fig. 4 cumbersome. To simplify the presentation, we let the parties choose their
shares of A at the beginning of the unauthenticated garbling protocol; this is
possible since the A shares are used only locally before the Bit x String operation.

Compared with the evaluation phase of [22], we cannot rely on individual
pairs of keys, kfu70,kfu’1, in order to let a party P; decide whether to abort or
not in the presence of errors in the garbled circuit. This is because only the sums
of individual keys, k., 0, k1 are revealed, and these need to be hidden from all
parties. Instead, we perform a check in the output gates as follows: given a set of
parties P C P who receive an output of Cf on wire w, a garbled output gate g,
with input wire v and output wire w, consists of the two following entries (one
for each o € {0,1}):

g EnSOF(((€all 1L, (9llall0)), (Kua,0))

where §fu7a € {0,1}* is a secret random value chosen by party P;.*

3 If the requirement does not hold, then this operation needs to be done using Tiny-OT
directly as in [22]. Hence, this optimization is mainly for large-scale MPC.

4 For simplicity, we assume the message space is at least |75| -s bits long. If the message
space was only of |75| - 8/r bits, one would compute r ciphertext, each of them with
the &' values of |P|/r parties.

Large Scale, Actively Secure Computation 57

The security of our garbling protocol is then given by the following theorem,
the proof of which is given in the full version.

Theorem 5. Let EXOF be a XOF-based two-key LPN encryption scheme with
parameter T. Let Fgs be implemented by the Bit x String operation. The protocol
Hga/rcue described in Fig. 4 UC-securely computes fgr/gpmcessing in the presence of
a static, active adversary corrupting up to (c—1)-n/c parties in the { Fmpc, Fps }-

hybrid model, provided n/c > s (where s is the statistical security parameter).

Remark 2. By implementing the Bit x String operation in the naive way, using
TinyOT as in [22], we could prove Theorem 5 in the {Fmpc, Frinyor }-hybrid
model, without the n/c > s requirement.

5.2 Evaluation

The evaluation procedure is given in the full version. This involves no operations
with respect to the MPC functionality, but it requires two rounds of broadcast.
The security of our evaluation protocol is given by the following theorem, the
proof of which is given in the full version.

Theorem 6. Let f be an n-party functionality and EXOF a XOF-based two-key
LPN encryption scheme with parameter 7. The protocol me UC-securely

Evaluate
computes f in the presence of a static, active adversary corrupting up to (c —

1) - n/c parties in the {fMPC,f;/C }-hybrid model.

reprocessing

Our proof follows the blueprint of the online proof of Hazay et al. [22]. More
concretely, after the description of the simulator, we show that the adversary can
succeed in introducing errors in the garbled circuit only with negligible proba-
bility, so ruling out this possibility we show that the ideal and real executions
are indistinguishable trough a reduction to the LIN-RK-KDM? security of the
LPN-based encryption scheme £XOF. Although the general idea of the proof is
similar to [22], in our proof we need to take care of our new method of garbling
AND gates, and prove that if the adversary introduces some errors such that the
some value is not correct during the evaluation, then the final checks will fail
with overwhelming probability.

6 Implementation and Experimental Results

To demonstrate the practicality of our design, we implemented the circuit evalu-
ation step for both of our protocols, and tested them on a number of ‘standard’
test circuits, given in Table 1. For the preprocessing phase, we give an estima-
tion of the communication complexity in the full version and compare it with
the recent work of Yang et al. [40].

58 A. Ben-Efraim et al.

Table 1. Standard Test Circuits

Circuit No. ANDs | No. XORs | No. Invs
AES-128(k, m) 6400 28176 2087
AES-192(k, m) 7168 32080 2317
AES-256(k, m) 8832 39008 2826
Keccak-f(m) 38400 115200 38486
SHA-256-{(H, f) | 22573 110644 1856
SHA-512-f(H, f) | 57947 286724 4946

The test circuits consisted of a combination of AND, XOR and INV gates.
The SHA-256 and SHA-512 circuits implemented the compression function f
only for a single block message m. Further, we compare our results with existing
work at the end of this section.

The hash function H used to define our nonce-based LPN encryption function
(Definition 6) is implemented using three variants. The first variant is based on
the AES-KDF from NIST [35]. This is very fast but it is not indifferentiable from
a random oracle, and thus not strictly a true XOF. The second variant is based
on the SHA-3 based XOF derived from KMAC128 and KMAC256 given in [34].
The third variant is based on the Kangaroo-12 XOF from [8], which is also based
on SHA-3 which provides 128-bits of security. For our two SHA-3 variants we
used the library provided by the Keccak team https://keccak.team/. For the
AES based KDF variant we used code using the Intel AES-NI instructions.

Code Instantiation. We use concatenated codes as our error correcting code.
While they are not the fastest or offer the highest rate, we can easily calculate the
exact failure probability, unlike the alternatives such as LDPC codes. This makes
selecting a code according to the LPN parameters convenient. The concatenated
codes we use has a Reed-Solomon outer code and a general linear inner code. The
details of concatenated codes and their concrete instantiation is presented in the
full version. We set the decoding failure probability to 277, and run experiments
with s = 40 and 80. While finding the best error correcting code is not the goal
of this work, we expect the performance to improve significantly when using a
more efficient family of codes such as LDPC or quasi-cyclic LDPC.

Online Implementation Results. The expensive parts of the algorithms are
the parts related to the evaluation of the garbled circuit; thus these were the
parts of the algorithm we timed. Experiments were run on a Intel i7-7700K CPU
4.20 GHz machine with 32 GB of RAM.

For the authenticated garbling (resp. unauthenticated garbling) variant of
our algorithm, we obtained the run-times presented in Table2 (resp. Table 3)
with decryption failure s = 40. For equivalent runtimes when s = 80 see the full
version of the paper. In these tables the security level refers to the security of the

https://keccak.team/

Large Scale, Actively Secure Computation 59

Table 2. Evaluation (in sec) of various circuits in the authenticated garbling case. Set-
ting sec = 128 and s = 40, the LPN parameters are (k,m,¢,7) = (664, 672,7140,1/8)
and we use the error correcting given by (L, = [255,84,172],L; = [28,8,15]). For
256 bit security, the LPN parameters are (k,m, ¢, 7) = (1328,1332, 14819, 1/8) and the
error correcting code is given by (L, = [511,148,364], L; = [29, 9, 11]). Details of these
codes are given in the full version.

Circuit Execution Time (sec)

128-bit Security 256-bit Security

AES-KDF | KMAC128 | Kangaroo | KMAC256
AES-128(k,m) |1.72 6.64 4.04 35.4
AES-192(k,m) |1.92 7.41 4.51 39.9
AES-256(k,m) |2.35 9.13 5.58 48.9
Keccak-f(m) 10.2 39.7 24.3 214
SHA-256-f(H, f) | 6.02 23.3 14.3 128
SHA-512-f(H, f) | 15.6 60.0 36.8 327

Table 3. Evaluation of various circuits in the unauthenticated garbling variant, using
the AES-KDF, and s = 40. For the parameters for the LPN scheme, and the associated
error correcting code we used those given in the full version.

Circuit Execution Time (s)

128-bit Security 256-bit Security
c=2|c=5|c=10|c=2c=5|c=10
AES-128(k,m) |10.5 |50.4 |77.5 169 |80.2 | 538
AES-192(k, m) 11.7 |56.3 |86.7 |18.9 |89.3 | 602
AES-256(k,m) |14.4 |69.1 |106 23.4 110 742
Keccak-f(m) 64.4 309 474 104 490 |3333
SHA-256-f(H, f) | 36.7 |176 |271 59.5 | 284 | 1899
SHA-512-f(H, f)|94.0 451 |692 152 | 725 |4848

)

(H
(H

underlying LPN function. Observe that the choice of the underlying method to
generate the LPN matrix has a key effect on the performance of the system, with
an AES based KDF being the most efficient. For the unauthenticated garbling
variant, we only present runtimes using the efficient AES based KDF function.
Concretely, when using AES-KDF, a majority (81%) of the CPU time is spent
in decoding. When using KMAC128, the majority (84%) of the time is spent on
KMACI128. Thus, the performance bottleneck varies with the choice of H.

We compare our scheme with some related work. In the authenticated gar-
bling case, and the fastest implementation using an AES-KDF based for the
function H, we obtain a throughput of roughly 266 s per AND gate for s = 40.
The experiments from [6], i.e. in the passive case, with no free-XOR, has a
throughput of roughly 45 microseconds per gate (also with s = 40). Ignoring

60 A. Ben-Efraim et al.

the fact we can perform free-XOR, this gives a cost of a factor of six for using
our actively secure variant. However, this cost decreases when we look at typical
circuits. For example the AES-128 circuit has 34,675 AND and XOR gates, thus
the protocol in [6] would take around 1.5 seconds, compared to our runtime of
1.72 seconds. Thus, the ability to cope with free-XOR means we only pay an
extra 15% in performance for active security.

As a means of comparison with ‘traditional’ n-party garbled circuits via
actively secure BMR with free-XOR, we extrapolated known run times of evalu-
ating AES-128 using the HSS protocol. It would appear that our algorithm will
provide a faster evaluation stage when the number of parties exceeds about 100
in the authenticated garbling case. This is confirmed by a comparison with [39]
that reports an online running time of 2.3 s for AES with 128 parties in the WAN
setting.

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070, FA8750-19-C-0502 and HR001120C0085, by the Office
of the Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA) via Contract No. 2019-1902070006, by the FWO under
an Odysseus project GOH9718N, and by CyberSecurity Research Flanders with ref-
erence number VR20192203. Eduardo Soria-Vazquez was supported by the Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM). Aner Ben-
Efraim and Eran Omri were supported by ISF grant 152/17, and by the Ariel Cyber
Innovation Center in conjunction with the Israel National Cyber directorate in the
Prime Minister’s Office.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of any of the
funders. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation therein.

References

1. Applebaum, B.: Garbling XOR gates “For Free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162-181. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2_10

2. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Chazelle, B. (ed.) ICS 2011, pp. 45-60. Tsinghua University
Press, January 2011

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503-513. ACM Press, May 1990

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491-506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9_31

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 578-590. ACM Press, October
2016

https://doi.org/10.1007/978-3-642-36594-2_10
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Large Scale, Actively Secure Computation 61

Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017, Part II. LNCS,
vol. 10625, pp. 471-498. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9_17

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1-10. ACM Press, May 1988

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R., Vigu-
ier, B.: KANGAROOTWELVE: fast hashing based on KECCAK-p. In: Preneel, B.,
Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 400-418. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0-21

Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62-75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7_6

Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278-291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_24
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93-118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6_7

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press, October
2001

Cramer, R., Damgard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ,: efficient MPC
mod 2% for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 769-798. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96881-0-26

Damgard, 1., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572-590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_32
Damgard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

Esser, A., Kiibler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 486-514. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0-17

Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 711-735. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48797-6_29

Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom gen-
erators. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 146-162.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_12

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218-229. ACM Press, May 1987

https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/0-387-34799-2_12

62

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Ben-Efraim et al.

Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Concretely efficient large-scale
MPC with active security (or, TinyKeys for TinyOT). In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 86-117. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 4

Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to
efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 3-33. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96878-0_1

Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598-628. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8_21

Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294-304.
IEEE Computer Society Press, November 2000

Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244-256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_22

Keller, M., Orsini, E., Scholl, P.. MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830-842. ACM Press, October
2016

Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part ITI. LNCS, vol. 10822,
pp. 158-189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingdlfsdébttir, A., Walukiewicz, 1. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
486-498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
340

Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II
LNCS, vol. 8617, pp. 495-512. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1_28

Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319-338. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7_16

Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016,
Part I. LNCS, vol. 9985, pp. 554-581. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4_21

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7_33

Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110-132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7_8

https://doi.org/10.1007/978-3-030-03332-3_4
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-46035-7_8

33.

34.

35.

36.

37.

38.

39.

40.

41.

Large Scale, Actively Secure Computation 63

Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681-700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_40

NIST National Institute for Standards and Technology: SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash (2016). http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-185.pdf

NIST National Institute for Standards and Technology: Recommendation for key
derivation through extraction- then-expansion rev.1l (2018). https://nvlpubs.nist.
gov /nistpubs/Legacy /SP /nistspecialpublication800-56¢.pdf

Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over
Zqr from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020.
LNCS, vol. 12006, pp. 254-283. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40186-3_12

Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73-85. ACM Press,
May 1989

Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017, pp. 21-37. ACM Press, October/November 2017
Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
39-56. ACM Press, October/November 2017

Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. Cryptology ePrint Archive, Report 2019/1104 (2019).
https://eprint.iacr.org/2019/1104

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162-167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-642-32009-5_40
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56c.pdf
https://doi.org/10.1007/978-3-030-40186-3_12
https://doi.org/10.1007/978-3-030-40186-3_12
https://eprint.iacr.org/2019/1104

l‘)

Check for
updates

Threshold Garbled Circuits and Ad Hoc
Secure Computation

Michele Ciampi'®), Vipul Goyal?, and Rafail Ostrovsky?®

! The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk
2 NTT Research and CMU, Pittsburgh, PA, USA
goyal@cs.cmu.edu
3 UCLA Department of Computer Science and Department of Mathematics,
Los Angeles, CA, USA

rafail@cs.ucla.edu

Abstract. Garbled Circuits (GCs) represent fundamental and powerful
tools in cryptography, and many variants of GCs have been considered
since their introduction. An important property of the garbled circuits is
that they can be evaluated securely if and only if exactly 1 key for each
input wire is obtained: no less and no more. In this work we study the
case when: 1) some of the wire-keys are missing, but we are still interested
in computing the output of the garbled circuit and 2) the evaluator of
the GC might have both keys for a constant number of wires. We start to
study this question in terms of non-interactive multi-party computation
(NIMPC) which is strongly connected with GCs. In this notion there is
a fixed number of parties (n) that can get correlated information from a
trusted setup. Then these parties can send an encoding of their input to
an evaluator, which can compute the output of the function. Similarly
to the notion of ad hoc secure computation proposed by Beimel et al.
[ITCS 2016], we consider the case when less than n parties participate
in the online phase, and in addition we let these parties colluding with
the evaluator. We refer to this notion as Threshold NIMPC.

In addition, we show that when the number of parties participating
in the online phase is a fixed threshold | < n then it is possible to
securely evaluate any [-input function. We build our result on top of a
new secret-sharing scheme (which can be of independent interest) and
on the results proposed by Benhamouda, Krawczyk and Rabin [Crypto
2017]. Our protocol can be used to compute any function in NC* in the
information-theoretic setting and any function in P assuming one-way
functions.

As a second (and main) contribution, we consider a slightly different
notion of security in which the number of parties that can participate
in the online phase is not specified, and can be any number ¢ above the
threshold [(in this case the evaluator cannot collude with the other par-
ties). We solve an open question left open by Beimel, Ishai and Kushile-
vitz [Eurocrypt 2017] showing how to build a secure protocol for the case
when c is constant, under the Learning with Errors assumption.

© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 64-93, 2021.
https://doi.org/10.1007/978-3-030-77883-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_3

Threshold Garbled Circuits and Ad Hoc Secure Computation 65

1 Introduction

Garbled Circuits (GCs) have played a central role in cryptography. The basic
version of GCs has been shown to be useful for secure computation as well as
various other areas in cryptography because of its non-interactive nature [4,13,
19,25-27]. Various GC variants with additional properties have also played an
important role: e.g. GC with free-XOR [24], adaptive GC [18,20,21], information-
theoretic GCs [23], covert-garbled circuit [11], and arithmetic GC [2]. Moreover,
in general, a garbled circuit can be viewed as a randomized encoding which
in turn has played an important role even beyond cryptography in complexity
theory [1]. A key property of a garbled circuit is its “decomposability”, i.e.,
different input wire keys can be computed independently based on the value
on that wire (also referred to as decomposable randomized encodings). This for
example allows to use a separate 1-out-of-2 Oblivious Transfer (OT) for each
input wire. In various applications, this property has played an important role,
like in building functional encryption from attribute based encryption [14], and in
building Non-Interactive Multi-Party Computation (NIMPC) [6] where different
parties hold input values corresponding to different input wires. An important
property of the garbled circuits is that they can be evaluated securely if and only
if exactly 1 key for each input wire is obtained: no less and no more. Moreover,
if the evaluator of the garbled circuit has more than one keys (even for a single
wire) the security of the garbled circuit is (in general) compromised.

In this work, we ask the following natural question: what if 1) the keys cor-
responding to some of the input wires are missing and 2) more than one key for
a subset of wires is leaked to the adversary?

In particular, suppose that a function is well defined even if only a subset of
the inputs are present (e.g., the function simply computes the majority, some
aggregate statistics like the median or the sorting on the inputs). Furthermore,
suppose we only have the wire keys exactly for say | wires (less than the total
number of wires n) and that more than one key for a constant number of wires
can be leaked to the adversary. Can we obtain a garbled circuit construction that
still allows one to securely compute the function output in this case?

Here [can be seen as a parameter for the GC construction. This notion,
besides being intriguing and interesting in its own right, can also be seen as
having natural applications to NIMPC. In NIMPC we can distinguish three main
phases: setup, online and evaluation. In this, various parties with inputs and
auxiliary information obtained during the setup phase, can encode their inputs
and send this encoding to an evaluator during an online phase. The evaluator
can then compute the output of the function without further interaction with
the other parties. Basic constructions of NIMPC readily follows from GC. That
is, the setup generates a garbled circuit with n input wires for the function
that needs to be computed. Each party p; receives two wire keys (one for the
input 0 and one for the input 1) for the i-th wire. During the online phase
each party sends the wire key which corresponds to its input to the evaluator.
The evaluator, which now has n wire keys, can evaluate the garbled circuit
and obtain the output. Frequently cited example applications of NIMPC are
voting and auctions [6,9]. However, in the case of voting, it is conceivable that

66 M. Ciampi et al.

several voters might never show up. Can we obtain a system where if a threshold
number of voter votes, the result can be obtained? One could also even consider
“attribute-based voting” where your attributes determine whether or not you
are eligible to vote. For example, in deciding a tenure case, only voters having
the attributes of “full professor” and “computer science department” might be
eligible. The number and identity of such voters may not necessarily be known
at the time of the NIMPC setup (and only an upper-bound on the number of
voters is known). Let n be total number of parties, the question we study in this
paper is the following:

“Is it possible to obtain a construction of garbled circuits for a function having

n input wires s.t. if the wire keys corresponding of | < n wires are available,

then the output can be securely computed even if both the keys for a constant
number of wires are leaked to the adversary?”

A partial answer to the above question has been given in [7], where the
authors show how to obtain such a NIMPC protocol under the assumption that
the evaluator does not collude with any of the other parties. Another partial
answer has been given in [9], where the authors show how to obtain a NIMPC
protocol that tolerates a constant number of corruption only for the case where
l = n, where n is the total number of parties involved in the protocol. However,
to the best of our knowledge, we are the first to study the combination of the
two problems. In [7] the authors consider another interesting notion called (I, k)-
secure ad hoc private simultaneous messages (PSM). This notion is similar to the
notion of NIMPC, with the difference that 1) the parties cannot collude with
the evaluator and 2) any number k of parties might participate in the online
phase of the protocol, with k& > I. Beimel et al. [7] proved that such a notion (for
generic values of [and k) would imply obfuscation®, and left open the following
question:

“Is it possible to obtain (1,1 + c)-secure ad hoc PSM protocol for a constant ¢?”.

1.1 Owur Contributions

Our contribution lies in studying of the above questions, providing a formal
definition, and obtaining various constructions. Our most basic result is the
following:

Theorem 1 (informal). If there exists an l-party NIMPC protocol for the [-
input function f which tolerates up to t corruptions, then there exists an n-party
Threshold NIMPC' protocol that tolerates up to t corruptions that can securely
evaluate f when only | of the n parties participate in the online phase.

This can also naturally be seen as a threshold garbled circuit where the mes-
sage received by the evaluator during the setup phase corresponds to the garbled
circuit, whereas the two messages corresponding to two different possibilities of

! The authors of [7] propose inefficient constructions for general functions.

Threshold Garbled Circuits and Ad Hoc Secure Computation 67

the input (i.e., either 0 or 1) for party p; can be seen as the two possible wire-
keys for the i-th input wire. Our construction also relies on a conceptual tool
which we call positional secret sharing (PoSS), which we instantiate information
theoretically. Please see the technical overview for more details. We note that
our construction, additionally, has the feature that it can handle up to a con-
stant number of corruptions (assuming the input of each player is a single bit).
We build upon the construction of Benhamouda et al. [9] with tolerates up to a
constant number of corruptions. Informally, this means that the evaluator may
be able to compute multiple outputs of the function by flipping the input of the
corrupted parties (since the corrupted parties can generate an encoding of both
the inputs 0 and 1). However, the evaluator learns no more than having access
to an ideal functionality which allows for computing such multiple outputs. As
noted in [9], a construction tolerating an arbitrary number of corruptions in this
setting implies indistinguishability obfuscation (iO) [3]. Our second (and main)
technical construction is a protocol that retains its security even if more than [
input wire keys are given to an evaluator. Going back to the example of voting,
while one may have an estimate on how the voter turnout will be (e.g., based on
historical data), it might be hard to know the exact number of voters in advance.
If the actual number of voters turns out to be even [+ 1 (as opposed to 1), all
security guarantees cease to exist and our previous construction may become
entirely insecure. Towards that end, we ask the following question:

“Is it possible to design construction of garbled circuits where if anywhere
between | and | + ¢ inputs wire keys are obtained, the function output can be
securely computed?

In other words: can we have an (I,l + ¢)-secure ad hoc PSM protocol? Note
that in this setting, the evaluator can compute multiple outputs by selecting
any [-sized subset of the received inputs. While ideally, we would like to have
I+ ¢ = n (for a generic ¢), such a construction necessarily implies iO and indeed,
using i0, a construction where [+ ¢ = n can be readily obtained (we recall
that n is the total number of parties). However, since our focus is on using
standard falsifiable assumptions, we restrict our attention to the case where c is
a constant. In addition, our construction allows the input of each party to be a
string of arbitrary size. Our main theorem is the following:

Theorem 2 (informal). If the LWEs assumption holds, then there exists an n-
party (1,1 + c)-secure ad hoc PSM protocol that can securely evaluate an l-input
function f when N parties participate in the online phase with N < l+c<n
for a constant c.

We stress that N does not need to be known in the setup phase. The last
notion that we consider in this paper is adaptive-ad-hoc PSM. This notion, in
addition to the notion of ad hoc PSM, gives to the evaluator the possibility
to evaluate an N-input function fxn, where N is the number of parties that
participate in the online phase, with N <[+ ¢ < n. This notion gives the same
security guarantees as to the notion of (1,14 ¢)-secure ad hoc PSM, but it allows
an honest evaluator to evaluate a function even if more than [parties participate

68 M. Ciampi et al.

in the online phase. It should be easy to see that such a notion can be easily
realized using multiple instantiations of an ad hoc PSM scheme. Even in this
case, the input of each party can be a string of arbitrary (bounded) length.

2 Technical Overview

We start illustrating a new secret sharing scheme which is instrumental for our
constructions. Then we show how to use such a secret sharing scheme to construct
a threshold NIMPC and an (I, k)-Ad Hoc PSM protocol.

2.1 Positional Secret Sharing (PoSS)

We consider the setting where there is a dealer, n non-colluding parties
{p1,....pn} and an evaluator. A PoSS scheme allows a dealer to compute a
secret sharing of [secrets x1,...,x; with respect to a party index j and dis-
tribute these shares among the n parties. Let S = (s1,...,8,) be the output
shares computed by the dealer. Any subset of parties of size [can send their
shares to an evaluator, and if the j-th party has the a-th greatest index among
these [parties, then the evaluator can reconstruct the a-th secret. If the party
p; does not send its share then none of the secrets can be reconstructed (the j-th
share goes always to the party p;). To construct such a scheme we use a standard
t-out-of-m secret sharing scheme. In more detail, the dealer computes 3-out-of-3
secret sharing of z; obtaining z?, #; and z}. Then computes 1) an (i — 1)-out-
of-(j — 1) secret sharing of @} thus obtaining the shares s;1,...,8;;-1, 2) an
(I —1i)-out-of-(n — j) secret sharing of 2? obtaining s; j+1,- .., S, and 3) defines
;i := Z;. The output of the sharing algorithm corresponds to (si,...,s,) with
si == (S1,4y.-.,81,) for each ¢ € [n]. Intuitively, if the evaluator receives the
shares S" = (si;,...,8;) with 0 < iy < -+ < i < n where j = i, for some «,
then she can reconstruct z¥ using the shares s;,,...,s;, ,, z. using the shares
Sipi1s-+ -5 5; and Zo, which corresponds to the share s;,. Note that all the other
secrets x; are protected since there are not enough shares to either reconstruct
x? or z for each k € [I] — {a}. In the case where there is no i, with o = j, then
none of the secrets can be reconstructed since one share of the 3-out-of-3 secret
sharing will be missing for each of the secrets.

2.2 Threshold NIMPC

Let f be an I-input function. To obtain a Threshold NIMPC for f that tolerates
t corruptions we use a PoSS scheme in combination with a standard NIMPC
protocol that supports t corruptions and that can be used to evaluate [-input
functions. Let p1,...,p, be the parties that could participate an execution of
the protocol (we recall that a threshold NIMPC is parametrized by [, which
represents the maximum number of parties that can participate in the online
phase). The idea is to pre-compute an encoding of the input 0 (that we denote

with mf) and of the input 1 (that we denote with m}) for each input slot

Threshold Garbled Circuits and Ad Hoc Secure Computation 69

J € [I] of the NIMPC scheme. Then we run two instantiations of a PoSS for each
party p;. The first instantiation of the PoSS scheme is run on input the secrets
md, ... ,m? (and the index i of the party) whereas the second is run using the
secrets mf,...,m; (and the index i of the party). Let (sf,,...,s?,) be the
output shares of the first instantiation of the PoSS scheme, and (s ,...,s;,)
be the output of the second instantiation for the party p;. All these shares are
then distributed among the n parties. During the online phase each party p; acts
as follows. If the input of p; is b; = 0 then p; sends all the shares but the one
related to the second instantiation of the PoSS scheme for the index i (i.e., p;
does not send s;;), if b; = 1 then p; sends all the shares but the one related
to the first instantiation of the PoSS scheme for the index ¢ (i.e., p; does not
send 3?,i)~ The security of the PoSS scheme guarantees that if a party p; does
not send the share for one instantiation of PoSS that is run with respect to 4,
then nothing can be learned about the secrets encoded in that instantiation. In
addition, for the case when p;, sends the share s? , (with b € {0,1}), the PoSS
security guarantees that only the secret in position ¢, can be learned. Hence, the

evaluator can compute mli“ e ,m?i’ by running the reconstruction algorithms
for the [instantiations of the PoSS scheme for which at least [shares have been
provided.? These messages then can be used to run the evaluation algorithm of
NIMPC protocol to obtain the output of f. In addition, if the NIMPC protocol
used in the above construction supports up to t-corruption, so does our scheme.
We allow only the corruption of the parties that are participating in the protocol.
That is, if [parties provide an input then the corrupted parties belong to this
set of parties. We give no security guarantees in any other case (which would
give to the colluding evaluator an additional share for the PoSS scheme reaching
the total of [4+ 1 shares, compromising the security of the PoSS scheme, and in
turn, the security of the underling NIMPC protocol). Given the implication of
NIMPC with iO, for our construction we consider only the case when the input
of each party is a bit, exactly as in [9] (our other constructions do not have this
limitation).

2.3 (l,k)-Secure Ad Hoc PSM

The notion of (I, k)-secure ad hoc PSM is similar to the notion of threshold
NIMPC with the following two differences: 1) provides the best possible security
guarantees in the case when N parties participate in the online phase for an
unknown N with [< N < k and 2) the security holds only if the evaluator does
not collude with the other parties. In this work we want to construct a (I,1+ c)-
secure ad hoc PSM for a constant ¢. Moreover, we want to construct a scheme
that allows the input of each party being a bit-string (instead of one bit like
in the previous construction). One might think that a threshold NIMPC pro-
tocol already satisfies this security notion. We start by describing what are the

2 The shares of the PoSS scheme need to be opportunely permuted to not give a trivial
advantage to the adversary. We refer the reader to the technical part of the paper
for more detail.

70 M. Ciampi et al.

problems in trying to prove that our threshold NIMPC is an ad hoc PSM, even
considering the case when the input of each party is a bit, and then show how our
construction works in an incremental fashion. In the threshold NIMPC showed
above, if more than [parties are participating to the online phase then more than
one secret from each instantiation of the PoSS scheme would be leaked (by the
definition of PoSS). Hence, it might be possible for a corrupt evaluator to learn
an encoding of different messages for the same input-slots of the NIMPC proto-
col. Note that this problem could be mitigated if the underlying NIMPC protocol
was secure against an arbitrary number of corruptions, but any such a scheme
would imply i0. Luckily, we do not really need a NIMPC protocol that sup-
ports an arbitrary number of corruptions, but we need a protocol that remains
secure in the case when an evaluator, given a set of input X := (x;,,..., %),
could run the NIMPC protocol on any subset of size [of X. This property is
clearly not enjoyed by a NIMPC protocol that supports a constant number of
corruptions. Moreover, even if the problem of corruption and the problem that
we are describing here seem related, it looks like a completely different tech-
nique is required. To see the problem from a different perspective, the issue of
obtaining a secure NIMPC protocol in the case of corruption is related to the
fact that an adversary could evaluate the function on strings that have hamming
distance at most ¢ from each other. That is, an adversary can flip up to t-bits,
obtaining up to 2! different inputs. In our case, even for ¢ = 1, an adversary
obtains inputs that have hamming distance ! (where { is a polynomial). This is
because the adversary, for example, could remove one input in the first position
and add a new input in the last position thus causing the shift of the inputs that
have not been replaced. Therefore, if the strings are close in terms of editing
distance, they could have more than [hamming distance. For this reason, it is
not clear how the techniques used to achieve security against corrupted parties
(for example those used in [9]) would be helpful in our case.

Quasi-secure Ad Hoc PSM. We now describe how, at a very high level, our
protocol works. We provide an incremental description, starting from a protocol
that is not secure, and gradually modifying it until we reach our final result. Let
us consider the simplified scenario where we have only four parties pi, p2, p3
and ps and we want to construct a (3,4)-Ad Hoc PSM protocol for the 3-input
function f. As a main tool, we consider two simple two-party NIMPC protocols
(that tolerate no corruption): I7; that realizes the function g, ITs that realizes the
function goyt. The function g, on input two values (z1, z2) concatenates them
and creates an encoding of zq ||z for the first input slot of IT5. The function gouyt
takes the two inputs (z1||22, 23) and outputs f(z1, 22, 23).

Given II; and Il,, each party p; now prepares an encoding of its input z;
for the first and the second input slot of II; (let us call these encodings Msg?
and Msg%). In addition, each party p; computes an encoding of x; for the sec-
ond input slot of ITy (let us call this Msg?). For each party p; then we run an
instantiations of a PoSS scheme with input (Msg;, Msg?, Msg?, 7). The security
of the PoSS schemes guarantees that if the parties that are participating in the
online phase are, for example, p; p2 and p4, then the evaluator will be able to

Threshold Garbled Circuits and Ad Hoc Secure Computation 71

get (Msg1, Msgg, Msg3) only. The evaluator, at this point can evaluate the func-
tion ¢g with the inputs of p; and py by running the evaluation algorithm for I7;
on input Msg% and Msgg. The output of II; can then be used in combination
with Msgi to run the evaluation algorithm of IIs to compute the final output.
It should be easy to see that this scheme is a threshold-NIMPC protocol that
tolerates no corruption. But we are now interested in the security of the proto-
col in the case when four parties participate in the online phase. In this case,
the PoSS scheme allows the evaluator to get, for example, (Msg}, Msg%, I\/Isgi)
and (Msg3, Msgg7 Msg?) at the same time. This means that the evaluator can
run the evaluation algorithm of IT; using (Msg], Msg3) and (Msg), Msg3) thus
obtaining two different encodings for different values for the first input slot of
II, (assuming that the xq||xg # 22||z3). This corresponds to the case in which
the evaluator can collude with a party to generate encodings of multiple inputs
for the first input slot of IT5. Since we do not want to assume that ITs is resilient
against such an attack®, we modify the protocol as follows:

— Instead of considering one protocol I1s that realizes the function goyt, we
consider A protocols*: 113, ..., I13.

— Each input of g now comes with two random values v; and vy that each party
samples. Hence, the inputs of g now can be seen as (z1||v1, z2||v2).

— The function g, on input z1||v; and z3||vy computes y = 21|22 and the hash
H(vi @ v2) thus obtaining sel € [A]. Then ¢g encodes y accordingly to the
protocol IT5¢.

— The party p3 and ps now compute an encoding of their input for the second
input slot for all the protocols 113, ..., IT3.

This mechanism now partially solves the problem of the previous protocol.
This is because a different combination of inputs for IT; yields to an encoding
for a different protocol IT5¥, with sel € [A]. Indeed, if the IT; is run using the
input contributed by p; and ps then the output of IT; corresponds to an encod-
ing of the concatenation of x||zo for the protocol T3 with sel = H(v; @ vy).
If instead IT; is run using the input contributed by p; and ps, then we have
that H(vy @ va) # H(v; @ v3) = sel’ with some probability 1/p (that depends on
the choice of A and on the random coins of the parties). Hence, the output
of II; corresponds to an encoding for the protocol H;e'/. Clearly, A\ needs to
be polynomially related to the security parameter. This means that the prob-
ability of founding a collision for H is non-negligible (and if there is a collision
then the security of this protocol collapses back to the security of the previ-
ous protocol). Later in this section we show how to solve this problem using
the LWE assumption. Before discussing that, we note that this protocol has yet
another issue. As we said, the evaluator can get the values (Msg%, Msgg7 I\/Isgi)
and (Msg%7 I\/Isg§7 Msgi) when all the parties participate in the online phase.
Given that Msg; and Msg) represent the encoding of different values for the

3 We recall that we do not know any NIMPC protocol that is secure in this setting
when the inputs of Il are bit strings unless from assuming iO.
4 We discuss the size of X later in the paper.

72 M. Ciampi et al.

first input slot of II;, then we have an issue similar to the one that we have
just discussed. This time, we can solve this problem easily. We simply consider
an instantiation of a NIMPC protocol that realizes the function g which we
denote with IT77, which can be used only by the party 7,7, with ¢ € {1,2} and
J € {2,3,4}. Then, for example, the party p; will compute an encoding for the
first input slot of I7}°%, IT}** and IT{"*, and use all of them as the input of the first
instantiation of the PoSS scheme. For the protocol that we have just described,
we can prove that for a suitable choice of A (given that c¢ is a constant value)
the probability that there are no collisions in H is 1/p where p is a polynomial.
Hence, we can prove that the execution of our protocol is secure with probability
1/p. We note that in this discussion we have assumed that the security of the
PoSS scheme is not compromised even when more than [parties provide their
shares. In the technical part of the paper we show that our construction of PoSS
enjoys a stronger notion, that is indeed sufficient to construct the protocol that
we have just described. To extend the above construction to the case when the
number of party is more than 4, and the threshold [is an arbitrary value, we
just need to consider a longer chain of 2-party NIMPC protocols. However, this
generalization has to be done carefully to avoid an exponential blowup in the
size of the messages. For more details on that, we refer the reader to Sect. 5.

Fully Secure Ad Hoc PSM. We denote the protocol that we have just
described with ITPSM and show how to use it to obtain an ad hoc PSM that
is (1,1 + c)-secure. To amplify the security of ITP>M we make use of a homo-
morphic secret sharing (HSS) scheme for the function f (we recall that f is
the [-input function that we want to evaluate). At a high level, a HSS allows
each party 7 to compute m shares of its input z; and distribute them among
m servers using the algorithm Share™SS so that z; is hidden from any m — 1
colluding servers. Each server j can apply a local evaluation algorithm Eval™SS
to its share of the [inputs, and obtain an output share y;. By combining all
the output shares it is possible to obtain the output of the function, that is
Y1 D DYm = f(x1,...,27).5 At a very high level, our protocol consists of m
instantiations of ITP°M where the e-th instantiation evaluates the function G,
with e € [m]. The Function G, takes as input [shares of the HSS scheme, and
uses them as input of Eval"'SS together with the server index e (see the bottom
of Fig. 6 for a formal specification of G.). Each party p; that wants to participate
in the protocol computes a secret sharing of its input thus obtaining m shares
($1,---,8m)- Then p; uses the e-th share as input of the e-th instantiation of
ITPSM | The evaluator runs the evaluation algorithm of the e-th instantiation of
ITPSM thus obtaining y. (which corresponds to the output of Evalt’SS on input
the e-th shares of all the parties) for each e € [m]. The output of the evaluation
phase then corresponds to y; @ - - - ® ym. We show that this protocol is secure as
long as there is at least one execution of IT”°M that is secure (i.e., simulatable).
Moreover, by choosing m opportunely we can prove that at least one execution
of ITPSM is secure with overwhelming probability. Hence, at least one share of

5 In our work we assume that the HSS is additive.

Threshold Garbled Circuits and Ad Hoc Secure Computation 73

each of the inputs of the honest parties will be protected. Therefore, because of
the security offered by the HSS, also the input of the parties will be protected.

Adaptive-Ad-Hoc PSM. It is straightforward to construct an adaptive-ad-
hoc PSM having a (1,1 + ¢) ad hoc PSM ITAPM. Indeed, we just need to run ¢
instantiation of ITAPSM | where each instantiation computes a function f, with
arity « for each av € {l,...,l 4 c}.

2.4 Related Work

The study of MPC protocols with restricted interaction was initiated by Halevi,
Lindell, and Pinkas [16,17]. We have mentioned the work of Benhamouda et
al. [9] which provides the first NIMPC protocol that tolerates up to a constant
number of corruptions for all functions in P under OWFs. In addition, the
authors show how to obtain a more efficient NIMPC protocol for symmetric
functions. The work [5] introduces the notion of ad hoc PSM and in [7] the
authors propose many instantiations of such a primitive in the information-
theoretic and computational setting. A result of [7] that is very related to our
first contribution, is the construction of an ad hoc PSM protocol for a k-argument
function f : X* — Y from a NIMPC protocol for a related n-argument function
g: (XU{L})™ — Y. More precisely, the function g outputs L if there are more
than n — k inputs that are 1, it outputs the output of f if there are exactly
n — k inputs that are L, in any other cases the output of g is undefined. The
compiler that we propose is more generic and it preserves its security against
colluding parties (if any). Always in [7] the authors propose an (I, + ¢)-secure
ad hoc PSM protocol for symmetric functions whose complexity is exponential
in /, and prove that an (I, k)-ad hoc PSM protocols for simple functions with
generic (I, k) already implies obfuscation for interesting functions. In [8] the
authors improve the efficiency of the protocols proposed in [7]. The work [16] try
to make reusable the setup assuming more interactions between the parties, or
assuming specific graphs of interaction patterns. In [15] the authors successfully
remove the need of the parties to obtain correlated randomness from the setup
phase via a PKI supplemented with a common random string under the iO
assumption. In addition, the construction proposed in [15] tolerates arbitrary
many corruptions.

3 Background
Preliminaries. We denote the security parameter by A and use “||” as con-
catenation operator (i.e., if @ and b are two strings then by a||b we denote the

concatenation of a and b). For a finite set Q, = S Q@ denotes a sampling of x
from @ with uniform distribution. We use “=" to check equality of two different
elements (i.e. @ = b then...), “~” as the assigning operator (e.g. to assign to
a the value of b we write a < b). and := to define two elements as equal. We
use the abbreviation PPT that stands for probabilistic polynomial time. We use

74 M. Ciampi et al.

poly(-) to indicate a generic polynomial function. We assume familiarity with
the notion of negligible function. We denote with [n] the set {1,...,n}, Ny the
set of non-negative integers and with N the set of positive integer.

3.1 Secret Sharing

A secret sharing scheme allows a dealer to share a secret m among n parties
P ={p1,...,pm} such that any authorized subset (if any) of P can reconstruct
the secret m, while the other parties learn nothing about m. We now give the
definition of [-out-of-n secret sharing.

Definition 1 (l-out-of-n secret sharing). A l-out-of-n secret sharing scheme
over a message space M is a pair of PPT algorithms (Share, Reconstruct) where:

— Share on input x € M outputs n shares (s1,...,8n);
— Reconstruct on input | values (shares) outputs a message in M;

satisfying the following requirements.

— Correctness. Vo € M, VS = {i1,...,4} C{1,...,n} of sizel,

Prob [# < Reconstruct(s;,,...,s;,) : ($1,...,8n) < Share(z) | = 1.
— Security. Ve, 2’ € M, VS C{1,...,n} s.t. |S| <, the following distributions
are identical: {(s;)ics : (S1,...,Sn) < Share(z)}

{(s})ies : (sh,...,58),) < Share(z’)}.

3.2 Homomorphic Secret Sharing (HSS)

We consider HSS scheme that supports the evaluation of a function f on shares
of inputs z1,...x, that are originated from different clients. In this notion each
client ¢ can compute m shares of its input z; and distribute them between m
servers using the algorithm ShareHSS so that x; is hidden from any m—1 colluding
servers. Each server j can apply a local evaluation algorithm EvaltS® to its share
of the n inputs, and obtains an output share y;. The output f(z1,...,z,) is
reconstructed by applying a decoding algorithm DecHSS to the output shares

Y15y Ym-

Definition 2 (HSS [10]). An n-client, m-server, t-secure homomorphic secret
sharing scheme for a function f : ({0,1}*)"*1 — {0,1}*, or (n,m,t)-HHS for
short, is a triple of PPT algorithms (ShareHSS, Eval™SS DecHSS) where:

— ShareMSS(1*,4,2): On input 1 (security parameter), i € [n] (client index)
and x € {0,1}* (client input), the sharing algorithm Share™S outputs m

input shares (z*,... 2™
- EvalSS(4, zo, (2], ..,2)): On input j € [m] (server index), o € {0,1}*
(common server input), and x7,...,xJ, (j-th share of each client input), the

evaluation algorithm Eval"SS outputs y? € {0,1}*, corresponding to the server
j’s share of f(xo;x1,...,Tn).

Threshold Garbled Circuits and Ad Hoc Secure Computation 75

~ Dec™SS(yt, .. y™): Oninput (y', ..., y™) (list of output shares), the decoding
algorithm DecHSS computes a final output y € {0, 1}*.

The algorithm (ShareHSS EvaltSS DecHSS) should satisfy the following cor-
rectness and security requirements:

- Correctness: For any n+ 1 inputs xo,...,x, € {0,1}*,
Prob[Vi € [n](z},...2™M) & ShareSS(12 i, 2;), Vj € [m] o & EvalsS(j, z,

(x9,...,22)) : DectSS(yl, ... y™) = f(wo; @1, . 2n)] = 1 —v(N).

— Security: Consider the following semantic security challenge experiment for

corrupted set of server T C [m]:

1. The stateful adversary gives challenge index and inputs (i,x9,21) «—

A1), with i € [n] and |xo| = |21].
2. The challenger samples b & {0,1} and (z',...,2™) & ShareSS (1%,
i, {Iib).

3. The adversary outputs b’ «— A((z7)jer) given the shares for corrupted T.
Denote by a := Prob[b=1b"] — 1/2 the advantage of A in guessing b in
the above experiment, where probability is taken over the randomness of the
challenger and of A. For circuit size bound S = S(\) and advantage bound
a = a(N), we say that an (n,m,t)-HSS scheme II is (S, a)-secure if for all
T C [m] of size |T| < t, and all non-uniform adversaries A of size S(\), we
have a < a(X). We say that II is computationally secure if it is (5,1/5)-
secure for all polynomials S.

In this work we consider only additive HSS schemes. An HHS scheme is
additive if DecSS outputs the exclusive or of the m output shares. For our
construction we make use of an additive (n, m, m—1)-HSS scheme. Such a scheme
can be constructed from the LWEs assumption [10,12].

4 Our Model

In this section we propose the formal definition of NIMPC. We give a more
general definition that captures the case when up to ¢ parties can collude with
the evaluator, and following [9,16,17], we refer to this notion as t-robust NIMPC.
Then we give our new definition of threshold NIMPC which can be seen as a
combination of the notion of NIMPC with the notion of ad hoc PSM proposed
in [6]. Let X be a non-empty set and let X" denote the Cartesian product
X" =X x - xXAX.

Definition 3 (NIMPC Protocol. [9]). Let F = (F,)nen be an ensemble of
sets Fy, of functions f : X — Y, where Y is a finite set. A non-interactive secure
multiparty computation (NIMPC) protocol for F is a tuple of three algorithms
IT := (Setup, Msg, Eval), where:

— Setup takes as input unary representations of n and of the security param-
eter A, and a representation of function f € F, and outputs a tuple

(p07p15 .. apn);

76 M. Ciampi et al.

— Msg takes as input a value p;, and an input v; € X, and deterministically
outputs a message m;;

— Eval takes as input a value py and a tuple of n messages (my, ..., my,) and
outputs an element in Y satisfying the following property:
Correctness. For any n € N, security parameter \ € Ny, f € Fp, © :=

(1,...,2n) € X, and (po, - .-, pn) & Setup(1™, 1%, f),
Eval(po, Msg(p17x1)7 DR} Msg(pTHIH)) = f(I)

While the previous definition is abstract, in the sequel, we will often see
NIMPC protocols as protocols with n parties p1, ..., p, with respective inputs
Z1,...,T, and an evaluator py. A polynomial-time NIMPC protocol for F is an
NIMPC protocol (Setup, Msg, Eval) where Setup, Msg, and Eval run in polynomial
time in n and A. In particular, functions f € F should be representable by
polynomial-size bit strings.

Robustness. For a subset T = {i1,...,4:} C [n] and =z = (21,...,2,), We
denote by Zr the t-coordinate projection vector (z;,...,z;,). For a function
f: X" =Y, we denote by fl|z o the function f with the inputs corresponding

to positions T fixed to the entries of the vector . We now recall the notions of
robustness for NIMPC protocols. Informally, T-robustness T C {1,...,n} for a
set T' of colluding parties means that if x7 represents the inputs of the honest
parties, then an evaluator colluding with the parties in set T' can compute the
residual function f |T,zf on any input z= but cannot learn anything else about the
input of the honest parties. This describes the best privacy guarantee attainable
in this adversarial setting. The formal definition is stated in terms of a simulator
that can generate the view of the adversary (evaluator plus the colluding parties
in set T') with sole oracle access to the residual function f |T»$T'

Definition 4 (NIMPC Robustness [9]). Let n € N and T C {1,...,n}. 4
NIMPC protocol II is perfectly (resp., statistically, computationally) T-robust if
there exists a PPT algorithm Sim (called simulator) such that for any f € F,
and 3 € X, the following distributions are perfectly (resp., statistically, com-
putationally) indistinguishable: {Simflf””?(ln, 12, 7))}, {View(1",1*, f, T, z7)},
where {View(1™,1*, f, T, x7)} is the view of the evaluator py and of the col-
luding parties p; (for i € T) from running II := (Setup,Msg, Eval) on input

a7 for the honest parties: that is, ((m;);cr, po, (pi)ier) where (po, ..., pn) &
Setup(1™, 1%, f) and m; «— Msg(p;,x;) for all i € T where xg := (x;);c7. Let
t € Ny be a function of n, then a NIMPC protocol II is perfectly (resp., statisti-
cally, computationally) t-robust if for any n € N and any T C {1,...,n} of size
at most t = t(n), IT is perfectly (resp., statistically, computationally) T-robust.

Robustness does not necessarily imply that the simulator Sim is the same for any
n and 7. In this and in the following notions we consider only PPT simulators
since in this paper we focus only on efficiently simulatable protocols.

Threshold Garbled Circuits and Ad Hoc Secure Computation 77

4.1 Threshold NIMPC

We introduce the new notion of Threshold NIMPC. A Threshold NIMPC is
parametrized by n and [with 0 <1 < n, where n denotes the number of parties
and [represents a threshold. Given a set of n parties P, any subset of P’ C P
of size | can evaluate the function f : X ' - Y, where Y is a finite set and X =
{{0,1}*,{1,...n}}. In more details, we assume that any party in P is univocally
identified by an index i € [n]. The setup algorithm and the algorithm used by
the parties to generate an encoding of their inputs have the same interface as the
algorithms of a NIMPC protocol. The difference is in the evaluation algorithm.
In this notion we do not require all the n parties to participate in the protocol
in order to evaluate a function. That is, any subsets of P of size | would allow
the evaluator to compute the function f. Without loss of generality, we consider
only functionalities whose output depends on the inputs of the parties, and on
the indexes of the parties that contributed with these inputs. Formally, the class
of function supported by our protocol is described in Fig. 1 (where g can be any
function).

Input: ((zi,,1),... (i, 1)) where {i1,..., it} C [n], iy,..., 2y € X, 1 <n
and n € N.

Output: Let (j1,...,) be a permutation of the values (i1,...,4) such that
1<j1<j2<-<jiz1 <ji <n and output L if such a permutation does not
exist, else, output g(mjl, . ,ZC]'L)

Fig. 1. Class of functionalities supported by our threshold NIMPC protocol.

Definition 5 (Threshold NIMPC Protocol). Let F = (F})ien be an ensem-
ble of sets F; of functions f : X — Y, a Threshold NIMPC protocol for F is a
tuple of three algorithms (Setupth, Msg™", Evalth), where:

— Setu pth takes as input unary representations of n, l and of the security param-
eter A with 1 <1 <n, and a representation of function f € F; and outputs a

tuple (1007 Ply--- apn);
— Msg™ takes as input a value p;, and an input x; € X, and deterministically

outputs a message m;;
— Eval™ takes as input a value py and a tuple of n messages (M, .. ,my,) with
1< <---<j; <n and outputs an element in Y;
satisfying the following property:
Correctness. For any n € N, security parameter A\ € Ny, f € F, © =
. $
((a:jl,yl),...,(le,jl)) € X, withl <j < - <gi <n and (po,...,pn) —
Setup™(17,14,1%, f),

Evalth(po, MSgth(pjl’le)v sy MSgth(pjl’sz)) = f((xjujl)v cee (xjmjl))'

78 M. Ciampi et al.

Definition 6 (Threshold NIMPC Security). Let n € N, K := {j1,...,j}
with1 < j3 < - <j;<n, TCK andT := K —T. A Threshold NIMPC
protocol II is perfectly (resp., statistically, computationally) T-secure if there
exists a PPT algorithm Sim (called simulator) such that for any f € F; and a7 €
X, the following distributions are perfectly (resp., statistically, computationally)
indistinguishable:

{Sim’' T (17,11, T K, (View(17, 1,12, £, T, K, 7))}

where {View(1", 11,17, f,T, K, x5)} is the view of the evaluator py and of the
colluding parties p; (for i € T) from running II on input x5 for the honest

parties: that is, ((mi);c7, po, (pi)ier) where (po, ..., pn) & Setup(1™, 11,17, f)
and m; «— Msg(p;,x;) for all i € T.S Let t,1,n € Ny be such that 0 <t <1< n,
a Threshold NIMPC protocol IT is perfectly (resp., statistically, computationally)
t-secure if for any K C [n] with |K| <1, and any T C K such that K = TUT
with |T'| < t, IT is perfectly (resp., statistically, computationally) T-secure.

4.2 Ad Hoc PSM

An (I,t)-secure ad hoc PSM protocol IT is a O-secure threshold NIMPC that
remains secure even if more than [(and less than ¢) parties participate in the
online phase. In other words, the evaluator cannot collude with any of the other
parties, but the protocol remains secure for any number N of parties participat-
ing in the protocol with N < t. Moreover, the evaluator can compute the output
if N > [. By secure here we mean that the adversary can evaluate the function
f on any combination of size [of the inputs provided by the honest parties and

learns nothing more than that. More formally, if T := ((z4,%1),--., (%, in))
represents the inputs of the N parties participating in the online phase, then a
malicious party can compute f on any input Tx where K := {j1,..., 5} with

1<j1<--<j <n, K C{i,...,in} but cannot learn anything else. This
describes the best privacy guarantee attainable in this setting. The formal defini-
tion is stated in terms of a simulator that can generate the view of the adversary
with sole oracle access to Oy, where Oy takes as input aset K := {j1,...,j;} with
1<ji<-<ji<n, KC{i,...,in} and returns f((zj,,51),..-, (z;,5))"
The definition that we provide is essentially the same as the one provided in [7],
we just use a different terminology to be consistent with our other definitions.

Definition 7 (Ad Hoc PSM). Let n,l,t,A € Ng and K := {ji1,...,jn} with
0<j1 <--<jn <nsuchthat0 < N <t. An ad hoc PSM protocol is perfectly
(resp., statistically, computationally) K-secure if there exists a PPT algorithm
Sim (called simulator) such that for any f € Fy, T := (le,jl), R (asz,jN), the

6 f|7@? works as before, with the difference that it outputs L in the case where less

than |K| < L.
" The oracle outputs L if N < [.

Threshold Garbled Circuits and Ad Hoc Secure Computation 79

following distributions are perfectly (resp., statistically, computationally) indis-
tinguishable:

{Sim?r (17,1, 1%, K)}, {View(1", 1, 1*, f, K, %)}

where {View(17, 11,17, f, K, %)} is the view of the evaluator py from run-
ning II on input T for the honest parties: that is, ((m;)ick,po) where m; «—

Msg(pi, x;) for alli € K and (po, - ., pn) & Setup(17,14,1*, f). We say that an
ad hoc PSM protocol II is perfectly (resp., statistically, computationally) (I,t)-
secure if for any N < t, any K := {j1,...,jn}, II is perfectly (resp., statistically,
computationally) K-secure.

4.3 Adaptive-Ad-Hoc PSM

An adaptive-ad-hoc PSM protocol is parametrized by the number of parties n,
the threshold [/, an integer ¢ with 0 < ¢ < n and a set of functions fi,..., f3,
and allows an honest evaluator to obtain the evaluation of a function fy if the
number of parties that are participating in the protocol is I < N < (3, for any
N € {I,...,3}. Informally, an adaptive-ad-hoc PSM protocol can be seen as
a protocol that allows evaluating a function that accepts a variable number of
inputs. We refer to the full version for the formal definition.

5 Positional Secret Sharing (PoSS)

In this section we propose new notions of secret sharing schemes, and provide an
information theoretical instantiation of them. These new definitions represent
one of the main building block of our NIMPC protocols. We now introduce the
first notion that we call Positional Secret Sharing (PoSS). Let P := {p1,...,pn}
be a set of parties and X := (x1,...,2;) be a sequence of secrets. A PoSS
scheme is defined with respect to a party p; € P. In a PoSS scheme a dealer
can compute a secret sharing of X thus obtaining s1, ..., s, and distribute s; to
p; for all i € {1,...,n}. Let P’ := {pj;,,...,pj,} be an arbitrary chosen set of
[parties with 0 < j1 < jo < -+ < ji—1 < ji < n. On input (sj,,...,s;) with
Ja = j for some «a € {1,...,1} an evaluator can compute x, and nothing more.
If there is no j, = j or less than [shares are available then all the secrets remain
protected. We now propose a formal definition of PoSS.

Definition 8 (Positional Secret Sharing). A PoSS scheme over a message
space M is a pair of PPT algorithms (ShareP>> Reconstruct™3°) where:

~ Share™SS takes as input X := (x1,...,2;), the number of parties n and an
index j € [n], and outputs n shares (s1,...,8n);

~ Reconstruct™>S takes as input | values (shares), the index j and outputs a
message in M (where M denotes the message space);

satisfying the following requirements.

80 M. Ciampi et al.

Correctness. Vzy,...,7; € MY, VS = {j1,...,5} C {1,...,n} with j; <
Jo < -0 < Jim1 < Ji, if there exists « € {1,...,1} such that jo, = j then
Problz, S Reconstruct™SS(s;,, ..., 55,,7) ¢ (S15---,5n) & SharePoSS((x,
cee 7xl)7])] =1
Standard security. V(z1,...,2;), (2},...,7)) € M, VS C {1,...,n} st
|S] <1, the following distributions are identical:

$.
{(si)ies : (51,...,80) < SharePOSS«xh),)}

$.
{(s})ies : ($hs---,sh) < SharePSS((2,....2)),5)}
Positional security. V(z1,...,2), (2},...,2]) € M, VS = {j1,...,5} C
{1,...,n} with j1 < ja < -+ < ji—1 < Ji:

1. if there exists a € {1,...,1} such that jo, = j, the following distributions
are identical:

{(8i)ies : (815, 8n) & SharePoSS (@1, ..., Ta 1, o, Tar---,T1),)}

{(sD)ics t (sh ... 8,) < SharePoSS((a),. .. 2 1, Tasasrs- - 2)),5)}-
2. if pae{1,...,1} such that jo = j, the following distributions are identical:

{(8i)ies : (S15-- -, 5n) & ShareSS((xq,...,21),7)}

{(sh)ies : (s, s) <= Share™SS((a,...,).)}

5.1 PoSS: Our Construction

We denote our scheme with (ShareP°SS*7 Reconstructmss*). SharePoSS™ takes as
input X := (z1,...,2;) and the index j and executes the following steps.

—Fori=1,...,1
e 0 1 3 A = 0 m ol _
1. Pick z;),z; < {0,1}* and compute Z; < z; ® z; & x;.
2. Construct an (i — 1)-out-of-(j — 1) secret sharing for 2 thus obtaining

Silse vy Sij—1-
3. Construct a (I — i)-out-of-(n — j) secret sharing for z} thus obtaining
Si,j4+1s---3Sin-
4. Define s; j := ;.
— Fori=1,...,nset s; = (S14,..-,504)

— Output (81,...,5n)-

The algorithm Reconstruct?SS™ takes as input (sj,,...,s;,) and the index j,
and executes the following steps.

1. If there does not exist a such that j, = j then output L else continue as
follows.

Fori=1,...,l parses sj, as (81,j,,---,51,5,)-

Use the shares s j,, .- Sa,j._, t0 reconstruct z?.

Use the shares sq,j, ., Sa,; to reconstruct 7.

Output z, < 29 @zl & 50,0+

CU

Threshold Garbled Circuits and Ad Hoc Secure Computation 81

We note passing that a PoSS scheme could be constructed from monotone
span programs [22]. However, for some of our applications we need a PoSS scheme
that is also secure under a stronger notion (enhanced PoSS). For this reason
we have provided one ad-hoc scheme that relies on standard k-out-of-m secret
sharing and that can be proven secure under the notion of PoSS and its stronger
variant.

Theorem 1. (Share”55” Reconstruct®SS") is a PoSS scheme.

For this and the proofs of all the subsequent theorems, we refer the reader to
the full version of the paper. We now present the notion of Enhanced Positional
Secret Sharing (ePoSS). An ePoSS scheme is a PoSS scheme with an additional
security property that guarantees the protection of some of the secret inputs
even when an adversary obtains more than [shares. In more detail, the notion
of PoSS guarantees that when [shares are available one of the [secret can be
reconstructed, and nothing about the other [— 1 secrets is leaked. The notion
of ePoSS guarantees that even if an adversary has [+ ¢ shares, then at least
I —c—1 secrets remain protected. In the same spirit as in the definition of PoSS,
the notion of ePoSS specifies also which secrets remain protected depending
on the indexes of the dealer (the second input of the sharing algorithm). We
show that the construction provided in the previous section already satisfies this
additional security property. The formal definition follows.

Definition 9 (Enhanced Positional Secret Sharing). An Enhanced Posi-
tional Secret Sharing scheme over a message space M is a PoSS scheme
described by the PPT algorithms (SharesPoSS Reconstruct®™°SS) which satisfies the
following additional property.

Enhanced Positional Security. V(zi,...,7),(z},...,2]) € M!, VS =
{J1,- - Jire CH{L,.. . n} with j1 < jo < -+ < Jim1 < Ji <+ < Jite:

1. If there exists « € {1,...,l + ¢} such that j, = j, and ¢ <1 then
1.1 If o < 1 then the following distributions are identical (where v =

min{c, @ — 1}):

{(8i)ies : (S15-- -, 5n)

S SharePoSS (21, ..., Ta—y1s Tamms -+ s Tam1y Tay - T1)5 §)

{(8i)ies : (S15-- -, 5n)

& Share oSS (2, @y Tayse s T Ty s)))}
1.2 If a > 1 the following distributions are identical:

{(8i)ies : (S15---,5n)

S Share®oSS (21, ..., Tac 1, Ta—cs - T1—1,%1),)}

{(si)ies (15, 8n)

& SharesPoSS((2, ... 2! |\ Taer . T1-1,21),5)}

2. if ba € {1,...,1+ ¢} such that j,, = j, the following are identical:
$.
{(si)ies : (81,1 8n) <« Shareeposs((xl, ez, N}
$.
{(s)ies : (84,...,8),) < Shareeposs((x’l, ez, i)}

82 M. Ciampi et al.

It is easy to see that for ¢ = 0 the properties of enhanced positional and
positional security are equivalent and that for ¢ > I — 1 none of the secrets is
protected.

Theorem 2. (Share”S”" Reconstruct™SS") is an Enhanced Positional Secret
Sharing scheme

6 Threshold NIMPC

In this section we show how to construct a t-secure NIMPC NIMPCH
(Setu p™", Msg™, Evalth). That is, a threshold NIMPC protocol for n parties, with
threshold [that supports up to ¢ corruptions. For our construction we make use
of the following tools.

— A t-robust NIMPC protocol NIMPC := (Setup, Msg, Eval).
— A PoSS scheme PSS := (Share55 ReconstructPo53).

At a high level our protocol NIMPC™ works as follows.

Setup: The algorithm Setup™ runs the setup algorithm of the ¢-robust NIMPC
protocol on input the unary representation of I (the number of parties that
will participate in the computation) thus obtaining po, ..., p;. Then, for each
1€ {1,...,1}, Setupth computes an encoding of the input 0 and of the input
1 using NIMPC: m? «— Msg(p;,0), m} « Msg(p;,1). As a final step, for

all + € {1,...,1}, Setupth computes a positional secret sharing of the mes-
sages (Y, ...,m}) using index i thus obtaining (s{,,...,s?,), and a positional
secret sharing of the messages (mq,...,m}), always for the index i, obtain-
ing (5}71, ey szln) The output of Setup™ corresponds to (jo, p1,. .., pn) Where
pi = (89,85)jeq1,..my foralli e {1,...,n}.

Online Messages. The party p; with input p; := (s9,,57,)je1,..ny and the
input x; € {0,1} sends m; := (95,57 ;),- -, 875, (Spis5h 4

Evaluation. The evaluator pg, on input pg,m;,,...,m; with 0 < j; <--- <
Ji < n, performs the following steps. For all i € {1,...,1}, let b; € {0,1} be such
that 1m; < ReconstructP°SS(s§:7j£, el S?:in’ . '78‘?;7jlﬂji) and m; # L. Then pg
computes and outputs Eval(pg, 1, ..., m;).

It is easy to see that in the above construction a malicious evaluator can learn
the input of the honest party p; by only inspecting the bit b;. To avoid this trivial
attack we just need to permute the shares sent by the parties to the evaluator.
We decided to not include this additional step into the informal description of
the protocol to make it easier to read. We show how the complete scheme works
in the formal description of the protocol proposed Fig. 2. Intuitively, the scheme
is secure because of the following reasons:

8 In this informal description of the protocol we assume that the algorithm
Reconstruct™5® outputs L in the case that some of the input shares are ill formed
(e.g., the input shares are the combination of different execution of the algorithm
Share™s%).

Threshold Garbled Circuits and Ad Hoc Secure Computation 83

Setup

1. Run Setup(1',1%*, f) obtaining jo, ..., .
2. Fori=1,...,1 compute m{ «— Msg(p;,0), Th} — Msg(pi, 1)

3. Fori=1,...,n pick the permutation bit b; & {0,1}, run

3.1. PSS(mY,...,m?,4) thus obtaining (sbl, .. ,sfln) and run
3.2. PSS(1a1,...,m},1) obtaining (51,1bi, .. .,s;;bi).
4. Output (po,p1,...,pn) where po := po and for i = 1,...,n, p; =

(bz"(sg,i»S;,i)jeu n})-
Online messages. On input z; € {0,1} and p; the party p; does the following.

111

1. If b; = O then set s;; «— sf and d; < x; else set s;; «— s; and
di — 1 - Tq.

2. Sends m; := ((s%i,s%,i), R T (s%yi,shyi),di).

Evaluation
1. On input po,mj,,...,my; with 0 < j1 < --- < 5 < n, for i =1,...,1
~ d d;. .

compute 1m; «— Recons‘cruc‘c%ss(sj:j'j1 U A TR ,sj:fjl ,Ji)-

2. Compute and output Eval(po, m1,...,m;).

Fig. 2. Our t-secure NIMPC

1. The standard security property of the PoSS scheme exposes only one between
Msg(p;,0) and Msg(p;, 1) for all j € [I] when i; € [n] is the index of an honest
party p;;. Indeed, an honest party p;; will not send the share sz1 f ¢ where z,
denotes the input bit of p;;. Hence there would not be enough shares to
reconstruct Msg(ps, 1 — ;).

2. The positional security guarantees that the adversary, with respect to a cor-
rupted party p;, , can obtain only the two messages Msg(p,0) and Msg(px, 1)
(where iy, € [n] and k € [I]).

3. The security of the t-robust NIMPC guarantees that even if for the corrupted
parties pe,,...,pe, the adversary obtains Msg(p;,0) and Msg(p;, 1) for each
i € [t] this does not represent a problem.

Theorem 3. If NIMPC is a t-robust NIMPC' protocol, then NIMPC™ is a t-
secure Threshold NIMPC protocol.

7 Ad Hoc PSM

We start by showing how to construct an (1,1 + ¢)-secure ad hoc PSM protocol,
for an arbitrary non-negative integer ¢, for a very simple functionality that we
call message selector and denote with fms&-sel. fmsgsel takes [inputs, and each

84 M. Ciampi et al.

input ¢ € [I] consists of 1) a list of size I of A-bit strings and 2) and integer ¢, with
io € [n] (this will represent the index of the party that is contributing to the
input). The output of f™e=¢ corresponds to the concatenation of [messages,
where the message in position j corresponds to the j—th message in the input
list of the party with the j-th greatest index that is participating in the online
phase. We propose a formal description of the function in Fig.3. We denote
our protocol with IT™&=¢ .= (Setup™e~=e Msg™e=¢ Eval™&=¢) and provide an
informal description of it for the simplified case in which the input of each party
is a list of bits (instead of list of A-bit strings). In the formal description we
consider the generic case where the input of each party is a list of A-bit strings.
At a very high level, the protocol IT™#-¢' works as follows.

Input: ((z)))kep,i1),--- (€ rep, i) where {ir,...,a} C [n], z)},... 2}l €
{0,1}*, 1 < n and n, A\ € N.

Output: Let (j1,...,Ji) be a permutation of the values (i1,...,%) such that
0<j1<ja<--<ji1 <ji <n,output z7|... ||z}

Fig. 3. fme-e

msg_sel

Setup: For each party indexed by i € {1,...,n}, Setup generates [
random bits by, ...,b that we call permutation bits. Then Setup™&® com-
putes an enhanced PoSS of (by,...,b;) for the index 4, and an enhanced
PoSS of (1 —bi,...,1—1b;) for the index i thus obtaining (s7,,...,s},) and
(sty,..., Slln) respectively. Intuitively, the party ¢ will receive as a part of p; the
permutation bits, and depending on his inputs he will send the corresponding
permutation bits. For example, if the first input in the list of p; is 0 then p;: 1)
takes the permutation bit by (if the input of p; is 1 then p; picks as the permu-
tation bit 1 — b;) 2) and sends the permutation bit together with other pieces
of information (more details will follow). The output of Setup™&=' corresponds
to (po, p1,---,pn) Where p; = (59'71‘7Sjl‘,iabj)je{l,...,n} for all i € {1,...,n} and
po = L.

Online Messages. The party p; on input p; := (s?ﬂv,sjl-’i,bj)je{lw’n} and
the input bits z1,...z; computes d; <« by if xt;1 = by and dy «— 1 — by oth-
erwise. Repeat the same for xy...x; and sends m; = ((s9;,51,),...,(s9
s}m),(dl,...,dl)).
Evaluation. The evaluator py, on input pg,mj,,...,m; with 0 < j; <
- < j1 < n, does the following steps. For all i € {1,...,l} compute 3
Reconstructh"SS(sghjl,...,S?iyjl,ji), y; «— Reconstruct”™S(s) s0 . i)
and #; + y,;’*. The output of the evaluator then corresponds to (Z1,...,%;).

The security of our protocol relies on the security of the enhanced PoSS scheme.
Informally, let X := ((z4,,%1),..., (Ziyn,in)) with N < [+ ¢ be the inputs of

Threshold Garbled Circuits and Ad Hoc Secure Computation 85

the parties participating in the protocol (recall that each input represents a
list of { bits). The notion of ad hoc PSM guarantees that a malicious evalu-
ator can learn only the output of ™% on input any possible set S where
S = ((xj,j1),---»(w5,51)) € X. Hence, the adversary can evaluate f™e=¢ on
up to (lJlrc) possible sets of inputs. Consider now the input of the party p;, be
x;, and let ¢ < I, then we have the two possible cases (when ¢ > [then the

evaluator can obtain all the inputs).

~ If @ <1 then x;_ can be placed in the a-th input slot of fM&-=¢ or in any
other position iq_1,...,iq—y with ¥ = min{c,a — 1}.

~ If @ > [then x;_ can be place in I-th input slot of f™€=¢ or in any other
position 4;_1,...,%q— given that N =1+ c.

Any other value in the input list z;, of p;_ has to be protected. We note that
this is exactly the security that an ePoSS scheme can guarantee (Fig. 4).

Common input: Input length: A, number of parties n, threshold [and c.
Setup:

1. Fori=1,...,n

1.1. For each k =1,...1, For each j = 1,..., X Pick bf & {0,1}.

1.2. Run PSS(i||...[|bY, 03| ... [|b3,..., B4 .. ||b),7) thus obtaining
(s(i),la"'7si,n)'
1.3. RunPSS(1 —b1|...|[1 = b3, 1 =3||...|[1 = B3,..., 1 = B4||...|[1 — B4, %)
thus obtaining (s1,...,8{,)-
1.4. Set B; = (bf,...,05)rep-
2. Output (po,p1,...,pn) where po := L and for ¢ = 1,...,n, p; =

(B, (S?,i, S}J)J'G{l,.“,n})
Online messages

1. Oninput 2%,...,z} € {0,1}* and p; the party p; acts as follows.
1.1. For each k € [I] parse x}, as a A bit string 2.1,..., 2k A
1.2. Foreach k € [I], j € [\ if zx,; = b¥ then set d} = b} else set df = 1—b.
1.3. Set D; « (df,...,d5)kep-
1.4. Send m; == (Di, (89,81 4), .-+, (804, 80.))-

Evaluation
1. On input po,mg,,...,mg, with 0 < ks <--- <k <n,fori=1,...,l do
the following
1.1. Compute y1,0||---||yr,0 — Reconstructp"ss(s(,;,’,,Cl7 cel, sgi’kl ki),
1.2. Compute y1,1]|...|lyr,1 — Reconstructp"ss(5,1%,617 e, s,lwkl ki)
1.3. Forj=1,..., A set c — d;, Tij < Yj.c
2. Compute and output 11| ...[|z1x, ..., zi1]] ... ||zi,x

Fig. 4. Our (1,1 + c)-secure ad hoc PSM for the message selector function f™e&-¢

86 M. Ciampi et al.

Theorem 4. I1™€-=¢ js q (1,1 + c)-secure ad hoc PSM protocol.

7.1 Ad Hoc PSM for All Functions

In this section we show how to construct a (I,1 + ¢)-secure ad hoc PSM for any
function f and any constant ¢, which has a simulator that is successful with
probability at least p = e~! (where e is the Euler number). We denote this
scheme with I775M .= (SetupPSM, Msg">M, EvaIPSM) and to construct it we make
use of the following tools.

— An (I,1+¢)-secure ad hoc PSM IT™s&-=¢! :— (Setup™E-=¢ MsgME-=¢l Eya|me-sel)
for the message selector function described in the previous section.

— A hash function H with range size \' = \2¢2.9

— A 2-party O-robust NIMPC scheme I72°¢ := (Setup, Msg, Eval) for the func-
tion gx (which will be specified later) with the following additional properties:

1. It accepts inputs of size § = 2An + nAN, where n represents the number
of parties and A is the input size allowed by ITPSM (it also represents the
security parameter);' and X is the range size of H.

2. The size of the output of Msg depends only on poly(), d) and it is inde-
pendent from the function that I72PC is computing (whereas the output
of Setup can grow with the size of the function being computed;

3. The randomness required to run Setup is % := poly(}\).

—~ A PRG PRG: {0,1}* — {0, 1}".

We start by giving a high level idea of how our construction works starting
from a scheme that does not provide security but contains most of intuitions;
then we gradually modify it until we get our final scheme.

First attempt. Let p be the output of the setup phase of I1™%€-=¢ and consider
(I— 1) instantiations of I7?P¢ which we denote with I12°C, ... IT?P¢. We denote
with R;, p¥, p} the output of the setup phase of HEPC for each i € {2,...,1}.

For each i € {2,...,1 — 1}, an instantiation IT?°¢ will be used to evaluate
the function g;. The function g; takes two inputs z° € {0,1}*, 2 € {0,1}* and
outputs Msg(pgﬂ, 20||z1). That is, g; outputs an encoding of the message x°||z?
for IT2P¢. The instantiation II77C is used to evaluate the function g;, which takes
as input x1]|z2]| ... ||zi—1 and x; and outputs f(x1,za,...,21-1, 7).

Each party p; on input = € {0,1}*, p, p3,...pt and p does the following.

1. Encode the input z for I73°¢ by running Msg(pJ, 2) thus obtaining m?.
2. For each j € {2,...,1}
2.1 Encode the input z for HfPC by running Msg(p}, =) thus obtaining m;}
3. Run Msg™e=(p, m9||md||mi||ml]|...||m}) thus obtaining /m; and output
myg.

9 This function is defined as the hash function that on input z outputs £ mod \'.
10 Qur construction would work for inputs of size poly(A), but to not overburden the
notation we consider only inputs of size A only.

Threshold Garbled Circuits and Ad Hoc Secure Computation 87

The evaluation algorithm works as follows

1. Run Eval™&* on input (vitg,, ..., 7y,) thus obtaining m9,m3,...,m} (we
denote with k1, ..., k; the indexes of the parties that are participating in the
online phase).

2. Run Eval(Rz,m?, md) thus obtaining m$.

For each j € {3,...,0l — 1} run EvaI(Rj,m?, mjl) thus obtaining m?H.

4. Output Eval(R;, my, m})

©w

Despite being correct, the above protocol suffers of a security issue. If more
than [parties participate to the protocol, then a corrupted evaluator could be
able to obtain the encoding of two different messages with respect to the same
p; for some j € {2,...,1}, and this could harm the security of H?PC.

Second Attempt. To solve this problem we give a different p; to each party. In
this way, even if two different parties encode different messages we can still rely
on the security of I7?P€. This approach requires a more sophisticated function
g;, since now the output of g; should contain an encoding of the previous inputs
under I7T?P¢ which can be combined the with the next party’s encoded message,
whoever she is. Hence, we modify g; (for any j) to output multiple encodings, one
for each party with index greater than j. Even if this approach never causes the
same p} to be used twice on different inputs, now multiple encodings of different
inputs under p? might be computed by a malicious evaluator. For example, an
evaluator could construct the first input for g; using two different sequences on
inputs (this is possible only if the evaluator has access to more than | messages
sent from the honest parties).

Our Approach. To mitigate (but not completely solve) the above problem, we
modify the above protocol as follows.

1. From the setup phase each party p; receives p;-i»’o for each sel € [\'] and each

j € [l] (note that we need to run the setup of I7?°¢)\’ times more in this
protocol).

2. Each party p; picks a random value v;, and encodes this value together with
its input by running Msg(pﬁ’o,xiHvi) for each sel € X and j € {2,...,1}.

3. The function g; now takes as input ¢°[|z° and v'||z!, computes
sel' — H(v? & v') and outputs Msg(pj-i'li?i,xo||a:1\|v0 @ o) for each i where
H is an hash function with range size \'.

This protocol remains secure as long the adversary is not able to find a
combination of the messages that yields to a collision in the hash function.
We can prove that with probability at least e~! the adversary does not find a
collision. Intuitively, this holds because each hash function can be evaluated at
most on (Hl'c) different random values. Give that c is a constant value we obtain
that the number of possible inputs of H is at most n¢. Hence, for a suitable
choice of X' we can show that our protocol is simulatable with probability e~!.
In the next section we show how to amplify the security to obtain a secure ad

hoc PSM. For the formal description of IT”M and of g we refer to Fig. 5.

88

M. Ciampi et al.

)\2c+1

Common parameters: Security parameter A, H \' = ,n, l, and c.

Setup:

- For each 4, j € [n] with i # j do the following. '
- Run Setup(1?, g2, 1) thus obtaining (R;“pég,péi)
For each k € {3,...,1 — 1}, i € [n], sel € [\'] do the following.
- Pick i & {0,1}* and compute PRG(r;;) thus obtaining 7.
- Run Setup(12, g, 1*;7) thus obtaining (Rf'l,pze'lo,pflzl).
- For each sel € [N] i € [n] run Setup(1?,g;,1*) thus obtaining
Rsel sel,0 sel,1
(lmpl i ’pl,i)

- Run Setupmsg‘se'(ln7 1',1*, f™&=!) thus obtaining (pff, p¥, ..., pi).
- For i« 1,...,n pick v; & {0,1}* and set

pi = (’Uiv(fZe,'m)je[n]seleM ke frnits (P sele N ke fB,eoni}
(PE’,?’:P%’,%)je[n]f{i},Pgh) and po := pi, {RE bsele v icinl kel

Online messages. On input z; € {0, 1}* and p; the party p; does the following.

- For each j € [n] — {i} compute mzl(; — Msg(pé’(;, (zi,v3)).
- For each j € [n] — {i} compute mg — M‘sg(p2 Z,z|\x1||vl||{r§ecgz}ce[n]).
- For each k € {3,...,1 — 2},sel € [\] compute
mz:elzl - Msg(p?ce|117Z||xi|‘vi||{r7:-lﬁi?,]>z}J€[n seIE[)\/])
- For each sel € [\'] compute mi%" «— Msg(p;"", z;)
- Compute and send

msg- iy I, .
mi — Msg™5* (o, ({m{5}jepm)— iy Am3i Fiem— iy - - {miey Yeete () 1))

Evaluation On input po, mg,,...,mk, with 0 <k <. <k <n:

1

- Run Eval(pl, mi,, - .., mk,) thus obtaining
k1,0 sel,1 sel,1 sel,1
{m1,5e| }sele[n]—{kl} {mg ko }sele —{ka}s- - {ml 1 kl 1 }sele[)\’]y {ml,kl }sele[)\’]~
k1,0 k17)

- Run Eval(R’;}k MY, ™M thus obtaining {,uS Y ictn)-

- For j « 3,...,1 — 1: Run EvaI(RselC ,,ujelko,mjfl,;;l) thus obtaining
{ujil’,?}ie[n], set sel’ « sel”.

sel sel’,0 sel’)1

- Compute y < Eval(R{%,, 1, myy,") and output y.

gk(xHUl,J"|y||v2|‘{rze-la—1,¢>j}je[n],sele[k/]) :
v vy D v, sel’ — H(v)
For eachi € {j+1,... ,n} compute
T PRG("?CeJFl ’L) (Rk+1 3] P;eLLIOmPZe|+111) - Setup(1n7 1>\>gk+1;r)'

sel’,0 sel’,0

Pry1 < MSg(Pk+1 i mHZ’JHU)

1,0
Return {437, 1), bie (j41....n}
gi(z,y) : Parse = as [bit-strings of A bits z1,...,7;—1 and compute and

output f(z1,...,Ti—1,9).

Fig. 5. Our ad hoc PSM for all functions that is secure with probability e~*.

Threshold Garbled Circuits and Ad Hoc Secure Computation 89

Theorem 5. There exists a simulator that successfully satisfies the definition
of (1,1 + c)-secure ad hoc PSM with probability at least e=1, for any constant c.

How to instantiate the 2-party O-robust NIMPC scheme IT?°¢. Our com-
piler requires non-standard requirement on the size of the messages of the
protocol IT?P€. As also noted in [9], O-robust NIMPC protocol can be con-
structed from garbled circuits. And this construction would have all the prop-
erties that we need. At a high level the construction works as follows. Let
g be a two-input function where each input is of size M. In the setup
phase a garbled circuit C for the function g and the corresponding wire keys
L071, L1,17 ce LOA,Ma LLM? RQJ, R171, N RO,M: Rl,]\/j are Computed. Then p = é
is given to the evaluator, the keys po = L1, L1,1, .. Lo,m, L1, are given to to
the party pg and the keys p1 = Ro 1, R1,1, ... Ro,am, R1,p are given to the party
p1. For the evaluation, the party py on input x € {0, 1} parses it as a bit string
Z1,...,xp and sends to the evaluator Ly, 1,...Ls,, a. The party p; does the
same for its input y but using the keys p1 = Ro 1, R1,1, ... Ro,am, Ri,am. The eval-
uator then uses the received keys and C to compute g(z,y). This construction
is provided in [13], the only difference is that in their protocol the C is sent
by one of the parties instead in our case we assume that C' is already given to
the evaluator from the setup phase. This construction has the property that we
need since the size of the keys of the garbled circuit depends only on the security
parameter and on the size of the inputs and does not depend on the size of the
function g [2]. Then can instantiate our protocol from one-way functions.

7.2 Fully Secure Ad Hoc PSM

We are now ready to provide a fully-secure ad hoc PSM ITAPSM
(SetupAPSM, MsgAPM. EvaIAPSM) that realizes any function f. We use the fol-
lowing tools.

— An (1,1 4+ ¢)-secure ad hoc PSM protocol ITPM := (Setup”>™, MsgM,
EvaIPSM) that supports up to a n parties and that is simulatable with proba-
bility % with p < e (where e is the Euler number).

— An additive (I,m,m — 1)-HSS Scheme for the function f HSS := (Share"sS
Evalf>S DecH%) where m := pA.

At a very high level our protocol consists of m instantiations of the IT°°M

where the j-th instantiation evaluates the function G; with j € [m]. The Func-
tion G; takes as input [shares of the HSS scheme, and uses them as input of
EvaltSS together with the server index j (see bottom of Fig. 6 for a formal speci-
fication of G;). Each party p; that wants to participate in the protocol computes
a secret sharing of his input thus obtaining m shares. Then p; encodes each share
by running MsgPSM (one execution of MsgPSM per share). The evaluator runs the
evaluation algorithm of the j-th instantiation of ITP°M thus obtaining y; (which
corresponds to the output of Eval>%) for each j € [m]. The output of the evalua-
tion phase then corresponds to y; & - - B ym. We show that this protocol is secure

90 M. Ciampi et al.

as long as there is at least one execution of IT7M that simulatable. Moreover,
by choosing m opportunely we can prove that at least for one instantiation of
ITPSM the simulator is successful with overwhelming probability. Hence, at least
one share of each of the inputs of the honest parties will be protected. Therefore,
because of the security offered by the HSS, also the entire input of the parties
will be protected. We refer to Fig. 6 for the formal description of ITAPSM,

Common parameters: A\, n, [, ¢ where [+ ¢ denotes the maximum number
of active parties supported by the protocol and m = pA.

Setup:
1. For each j € m run Setup™M (1™, 1!, 1)\7Gj) thus obtaining pé,p{, P
2. Output po,p1,...,pn With po = (p})jempp1 = (P1)jem),---pPn =
(Ph)jeim)
Online messages. On input z; € {0, 1}A and p; the party p; does the follow-
ing.
1. For each k € [I] run Share"5(1*, k,) thus obtaining xR

2. For each j € m run Msg™M (o7, ((mg’k)ke[l],i)) thus obtaining m?.
3. Send m; := (M) cim

Evaluation
1. On input po, my, := (mil)je[m]v C My, = (mi,)je[m] with0 <k <--- <
ki <n the evaluator does the following. _
2. For each 7 € m run EvaIPSM(pé,mil,...,mil) thus obtaining 7.

3. Output ' @ --- @ y™

The function G; with j € [m] takes as input ((:rfl)ke[l],h), . ((mfl)ke[l],il)
where {i1,...,i1} C [n], xfl,...,xfl € {0,1}*, 1 < n and n,\ € N, and
outputs Eval™®S(j, :1:}1 e ,xél) where (j1,...,7;) is a permutation of the values

(i1,...,%4) such that 0 < j; < jo < -+ < ji-1 <ji <n.

Fig. 6. Our fully secure ad hoc PSM for all functions

Theorem 6. ITAPSM s o (1,1+c)-secure ad hoc PSM protocol for any constant c.

Since ITPSM can be constructed from OWFs and since the HSS scheme can

be instantiated from the LWEs assumption [10,12] then our protocol can be
instantiated assuming LWEs.

Threshold Garbled Circuits and Ad Hoc Secure Computation 91

Adaptive-ad-hoc PSM. As we have anticipated in the introduction, it is straight-
forward to construct a (I, t)-secure adaptive-ad-hoc PSM from a (I,¢)-secure Ad
Hoc PSM protocol. We refer to the full version for more detail.

Acknowledgments. Vipul Goyal is supported in part by the NSF award 1916939,
DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Fac-
ulty Fellowship, a PNC center for financial services innovation award, and a Cylab
seed funding award. Rafail Ostrovsky is supported in part by DARPA under Coopera-
tive Agreement No: HR0011-20-2-0025, NSF Grant CNS-2001096, US-Israel BSF grant
2015782, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research
Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corpo-
ration Research Award. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of DARPA, the Department of Defense, or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes not withstanding any copyright annotation therein. Michele
Ciampi is supported by H2020 project PRIVILEDGE #780477 and the work is done
in part while consulting for Stealth Software Technologies, Inc.

References

1. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer.
In: Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 67
(2017). https://eccc.weizmann.ac.il/report /2017 /067

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations of Computer Science,
Palm Springs, CA, USA, 22-25 October 2011, pp. 120-129. IEEE Computer Society
Press (2011). https://doi.org/10.1109/FOCS.2011.40

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_1

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, 14-16 May 1990, pp. 503-513. ACM Press (1990). https://
doi.org/10.1145/100216.100287

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: Sudan,
M. (ed.) ITCS 2016: 7th Conference on Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 14-16 January 2016, pp. 81-92. Association for Com-
puting Machinery (2016). https://doi.org/10.1145/2840728.2840759

6. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387-404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22

7. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 580-608. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7_20

https://eccc.weizmann.ac.il/report/2017/067
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/2840728.2840759
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20

92

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Ciampi et al.

Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 287-318. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8_10

Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 391-419. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7-13

Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) ITCS 2018: 9th Innovations in Theoretical
Computer Science Conference, Cambridge, MA, USA, 11-14 January 2018, vol.
94, pp. 21:1-21:21. LIPIcs (2018). https://doi.org/10.4230/LIPIcs. ITCS.2018.21
Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computa-
tion. In: 48th Annual Symposium on Foundations of Computer Science, Provi-
dence, RI, USA, 20-23 October 2007, pp. 238-248. IEEE Computer Society Press
(2007). https://doi.org/10.1109/FOCS.2007.21

Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky Encryption and Its
Applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS,
vol. 9816, pp. 93-122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3_4

Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th Annual ACM Symposium on Theory of Computing, Montréal,
Québec, Canada, 23-25 May 1994, pp. 554-563. ACM Press (1994). https://doi.
org/10.1145/195058.195408

Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of
Computing, Palo Alto, CA, USA, 1-4 June 2013, pp. 555-564. ACM Press (2013).
https://doi.org/10.1145/2488608.2483678

Halevi, S., Ishai, Y., Jain, A., Komargodski, 1., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part ITI. LNCS, vol. 10626, pp. 181-211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_7

Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Sudan, M. (ed.) Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cam-
bridge, MA, USA, 14-16 January 2016, pp. 157-168. ACM (2016). https://doi.
org/10.1145/2840728.2840760

Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132-150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9_8

Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
Secure Garbled Circuits from One-Way Functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149-178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3_6

Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium
on Foundations of Computer Science, Redondo Beach, CA, USA, 12-14 November
2000, pp. 294-304. IEEE Computer Society Press (2000). https://doi.org/10.1109/
SFCS.2000.892118

https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.1007/978-3-319-63688-7_13
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1109/FOCS.2007.21
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118

20.

21.

22.

23.

24.

25.

26.

27.

Threshold Garbled Circuits and Ad Hoc Secure Computation 93

Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40-71.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_2

Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433-458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_17

Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory, pp. 102-111 (1993)

Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp. 136-155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_8

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applica-
tions. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ing6lfsdéttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486—498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3-40
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161-188 (2008). https://doi.org/10.1007/s00145-008-
9036-8

Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Feldman, S.I., Wellman, M.P. (eds.) Proceedings of the First ACM
Conference on Electronic Commerce (EC-99), Denver, CO, USA, 3-5 November
1999, pp. 129-139. ACM (1999). https://doi.org/10.1145/336992.337028

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27-29, October 1986, pp. 162-167. IEEE Computer Society Press (1986).
https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/336992.337028
https://doi.org/10.1109/SFCS.1986.25

Indistinguishability Obfuscation

®

Check for
updates

Indistinguishability Obfuscation from
Simple-to-State Hard Problems: New
Assumptions, New Techniques, and
Simplification

Romain Gay'®™) Aayush Jain?, Huijia Lin®, and Amit Sahai?

L IBM, Zurich, Switzerland
2 UCLA, Los Angeles, CA 90095, USA
{aayushjain,sahai}@cs.ucla.edu
3 University of Washington, Seattle, WA 98195, USA

rachel@cs.washington.edu

Abstract. In this work, we study the question of what set of simple-
to-state assumptions suffice for constructing functional encryption and
indistinguishability obfuscation (¢Q), supporting all functions describ-
able by polynomial-size circuits. Our work improves over the state-of-
the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple
dimensions.

NEW ASSUMPTION: Previous to our work, all constructions of ¢O from
simple assumptions required novel pseudorandomness generators involv-
ing LWE samples and constant-degree polynomials over the integers,
evaluated on the error of the LWE samples. In contrast, Boolean pseu-
dorandom generators (PRGs) computable by constant-degree polynomi-
als have been extensively studied since the work of Goldreich (2000).
(Goldreich and follow-up works study Boolean pseudorandom genera-
tors with constant-locality, which can be computed by constant-degree
polynomials.) We show how to replace the novel pseudorandom objects
over the integers used in previous works, with appropriate Boolean pseu-
dorandom generators with sufficient stretch, when combined with LWE
with binary error over suitable parameters. Both binary error LWE and
constant degree Goldreich PRGs have been a subject of extensive crypt-
analysis since much before our work and thus we back the plausibility
of our assumption with security against algorithms studied in context of
cryptanalysis of these objects.

NEwW TECHNIQUES: we introduce a number of new techniques:

— We show how to build partially-hiding public-key functional encryp-
tion, supporting degree-2 functions in the secret part of the message,
and arithmetic NC! functions over the public part of the message,
assuming only standard assumptions over asymmetric pairing groups.

— We construct single-ciphertext secret-key functional encryption for all
circuits with linear key generation, assuming only the LWE assump-
tion.

© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 97-126, 2021.
https://doi.org/10.1007/978-3-030-77883-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_4

98 R. Gay et al.

SIMPLIFICATION: Unlike prior works, our new techniques furthermore let
us construct public-key functional encryption for polynomial-sized circuits
directly (without invoking any bootstrapping theorem, nor transforma-
tion from secret-key to public key FE), and based only on the polynomial
hardness of underlying assumptions. The functional encryption scheme
satisfies a strong notion of efficiency where the size of the ciphertext grows
only sublinearly in the output size of the circuit and not its size. Finally,
assuming that the underlying assumptions are subexponentially hard, we
can bootstrap this construction to achieve iO.

1 Introduction

This paper studies the notion of indistinguishability obfuscation (¢Q) for general
programs computable in polynomial time [21,40,50], and develops several new
techniques to strengthen the foundations of iO0. The key security property for iO
requires that for any two equivalent programs Py and P; modeled as circuits of
the same size, where “equivalent” means that Po(z) = Py () for all inputs x, we
have that iO(Pg) is computationally indistinguishable to ¢{O(P;). Furthermore,
the obfuscator ¢O should run in probabilistically polynomial time.

This notion of obfuscation was coined by [21] in 2001. However, until 2013,
there was not even a single candidate construction known. This changed with the
breakthrough work of [40]. Soon after, the floodgates opened and a flurry of over
100 papers were published reporting applications of i{O (e.g. [24,33,48,54,58,73]
[38,42,53]). Not only did ¢O enable the first constructions of numerous important
cryptographic primitives, 1O also expanded the scope of cryptography, allowing
us to mathematically approach problems that were previously considered the
domain of software engineering. A simple example along these lines is the notion
of crippleware [40]: Alice, a software developer, has developed a program P using
powerful secrets, and wishes to sell her work. Before requiring payment, Alice
is willing to share with Bob a weakened (or “crippled”) version of her software.
Now, Alice could spend weeks developing this crippled version P of her software,
being careful not to use her secrets in doing so; or she could simply disable
certain inputs to cripple it yielding an equivalent P’, but this would run the
risk of Bob hacking her software to re-enable those disabled features. 1O brings
this problem of software engineering into the realm of mathematical analysis.
With O, Alice could avoid weeks of effort by simply giving to Bob iO(P’), and
because this is indistinguishable from iO(ﬁ), Alice is assured that Bob can learn
no secrets.

Not only has O been instrumental in realizing new cryptographic applica-
tions, it has helped us advance our understanding of long-standing theoretical
questions. One such recent example is that of the first cryptographic evidence
of the average-case hardness of the complexity class PPAD (which contains of
the problem of finding Nash equilibrium). In particular, [24] constructed hard
instances for the End Of the Line (EOL) problem assuming subexponentially
secure {0 and one-way functions.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 99

Our Contributions. In this work, we show how to simplify, both technically and
conceptually, the task of constructing secure O schemes. Notably, the ideas we
develop in this work helped pave the way for the recent first construction of iO
from well-studied assumptions [56], resolving the central open question in the
area of i{O. The follow-up work of [56] builds upon this paper.

We now discuss the contributions of our paper in detail.

What Hardness Assumptions Suffice for Constructing iO ? Given its importance,
a crucial question is to identify what hardness assumptions, in particular, simple
ones, suffice for constructing ¢(0. While it is hard to concretely measure simplic-
ity in assumptions, important features include i) having succinct description,
ii) being falsifiable and instance independent (e.g., independent of the circuit
being obfuscated), and iii) consisting of only a constant number of assump-
tions, as opposed to families of an exponential number of assumptions. However,
research on this question has followed a tortuous path over the past several
years, and so far, despite of a lot of progress, before our work, no known i© con-
structions [3,5,9,10,13,18,20,22,29,31,37,40,41,45,46,55,60,61,63,64,70] were
based on assumptions that have all above features.

Our New Assumption. In this work, building upon assumptions introduced
in [10,55], we introduce a new simple-to-state assumption, that satisfies all the
features enumerated above. We show how to provably achieve i©O based only on
our new assumption combined with standard assumptions, namely subexponen-
tially secure Learning With Errors (LWE) problem [71], and subexponentially
secure SXDH and bilateral DLIN assumptions over bilinear maps [27,57]. Let us
now describe, informally, our new assumption. In this introductory description,
we will omit discussion of parameter choices; however, they are crucial (even for
standard assumptions), and we discuss them in detail in our technical sections.
We start by describing the ingredients that will go into the assumption.
Constant-degree! Boolean PRGs generalize constant-locality Boolean PRGs,
as for Boolean functions, locality upper bounds the degree. The latter is tightly
connected to the fundamental topic of Constraint Satisfaction Problems (CSPs)
in complexity theory, and were first proposed for cryptographic use by Gol-
dreich [47] 20 years ago. The complexity theory and cryptography commu-
nities have jointly developed a rich body of literature on the cryptanalysis
and theory of constant-locality Boolean PRGs [14-16,26,39,47,67,68]. Our new
assumption first postulates that there exists a constant d-degree Boolean PRG,
G : {0,1}" — {0,1}™ with sufficient stretch m > nl21"(0-5+)+¢ for some con-
stants €, p > 0, whose output » = G(x) should satisfy the standard notion
of pseudorandomness. Furthermore, our assumption postulates that the pseu-
dorandomness holds even when its Boolean input € {0,1}" is embedded in
LWE samples as noises, and the samples are made public. The latter is known
as Learning With Binary Errors (LWBE), which has been studied over the

! Throughout this work, unless specified, by degree of boolean PRGs, we mean the
degree of the polynomial computing the PRG over the reals.

100 R. Gay et al.

last decade [17,35,36,66]. Our new assumption, combining Boolean PRGs and
LWBE; is as follows:

The G-LWEleak-security assumption (informal).

. n0-5+e
({ai, (@i,s) + i mod phicpn), G, G(e)) //e = (e, en) « {0,1}7, aiys 27

~ (fai (@i)+ e mod phicpn, Go7) //7 < {0,1}™

As is evident here, this assumption is quite succinct, is falsifiable and instance-
independent, does not involve an exponential family of assumptions, and does not
use multilinear maps. Furthermore, the ingredients that make up the assumption
— Constant-degree Boolean PRGs and LWBE — have a long history of study
within cryptography and complexity theory. As we discuss in detail in the full
version, this assumption avoids attacks by all known cryptanalytic techniques.
We note that the parameter n of LWBE samples is chosen to be sub-quadratic
in the length |s| of the secret. This is needed in order to avoid Arora-Ge attacks
on LWBE [17], and also avoid all known algebraic attacks [35]. Indeed, the
parameter choices we make are not possible using the previous work of [55], and
the parameters used in [55] would render LWBE insecure.

Comparison of Our Assumption with the Subsequent Follow-Up Work of [56].
Our shift to considering Boolean PRGs in the context of the approach of [55]
provided a conceptual starting point for the subsequent work of [56], which
finally achieved iO from four well-founded assumptions: LPN over F,, LWE,
Boolean PRGs in NC°, and SXDH. Indeed, the work of [56] essentially succeeds
in “separating” the two ingredients in our assumption above—that is, basing
1O on LWBE and the security of Goldreich’s PRG with appropriate parameters
separately, through a novel leveraging of the LPN over F,, assumption. Indeed,
their work goes further and actually eliminates the need for the LWBE assump-
tion entirely, and also eliminates the parameter requirements that we needed for
Goldreich’s PRG.

Complexity and Clarity in 1O Constructions. Another motivation for our work is
to address the complexity of existing iO constructions. Current constructions of
1O are rather complex in the sense they often rely on many intermediate steps,
each of which incur a complexity blow up, both in the sense of computational
complexity and in the sense of difficulty of understanding. Ideally, for the sake
of simplicity, ¢O schemes would minimize the number of such transformations,
and instead aim at a more direct construction. In our case, we solely rely on the
generic transformation of [12,25], which shows that ¢{O can be build from Func-
tional Encryption [74], a primitive that was originally formulated by [28,69].
Roughly speaking, FE is a public-key or secret-key encryption scheme where
users can generate restricted decryption keys, called functional keys, where each
such key is associated with a particular function f. Such a key allows the decryp-
tor to learn from an encryption of a plaintext m, the value f(m), and nothing
beyond that.

Previous constructions fell short in directly constructing a full-fledged FE
needed for the implication of ¢{O [12,25]. For example, the work of [55] first obtain

Indistinguishability Obfuscation from Simple-to-State Hard Problems 101

a “weak” FE that: 1) is secret-key, ii) only generates function keys associated with
function computable only by NCq circuits, iii) only ensures weak security, and iv)
is based on subexponential hardness assumptions. Then, generic transformations
are applied to “lift” the function class supported and the security level, which
inevitably makes the final FE and iO schemes quite complex.

This state of affairs motivates simplifying ¢{O constructions, for efficiency
and simplicity itself, but also for making a technically deep topic more broadly
accessible to the community. That is also one of the goals of this paper.

1.1 Our Results

Our main result is a simpler and more direct {0 construction from the following
assumptions.

Theorem 1. There is a construction of 1O for obfuscating all polynomial-sized
circuits based on the following assumptions:

— There exists a constant-degree d Boolean PRG G : {0,1}" — {0,1}™ with
sufficient stretch m > nl81:(0-5+e)+p for some constant €,p > 0, and satisfies
subexponential G-LWEleak-security,

— the subexponential LWBE assumption, and

— the subexponential bilateral DLIN and SXDH assumption over asymmetric
PaiTIng groups.

Our Techniques and Additional Results. Our construction of FE and ¢O are
enabled by our new assumption and a number of new techniques designed to
enable basing the security of i©O on simple-to-state assumptions. We briefly sum-
marize them here, but we elaborate on how they are used in the i{O construction
in the technical overview section immediately following this introduction.

Single-Ciphertext Functional Encryption with Linear Key Generation. We con-
struct, assuming only LWE, a single-ciphertext secret-key functional encryption
scheme able to give functional keys associated with any polynomial-sized circuit
with depth bounded by A, whose key generation and decryption algorithms have
certain simple structures: 1) The key generation algorithm computes a linear
function on the master secret key and randomness, and ii) the decryption algo-
rithm, given a ciphertext ct, a functional secret key sk associated with a function
f and the description of f itself, first performs some deterministic computation
on the ciphertext to get an intermediate ciphertext cty, followed by simply sub-
tracting the sk; from it, and then rounds to obtain the outcome. This object is
previously known as special homomorphic encryption in the literature [3,6,62].
However, prior constructions only handles functional keys associated with NCg
circuits (for those based on LWE) or NC? circuits (for those based on ring LWE).
In this work, we view it through the FE lens, and construct it from LWE for
all functions computable by polynomial-size circuits with any depth bounded by
the security parameter A. Constructing such single-ciphertext (or single-key) FE

102 R. Gay et al.

(that do not have compact ciphertexts) from standard assumptions is a meaning-
ful goal on its own. In the literature, there are constructions of single-ciphertext
FE from the minimal assumption of public-key encryption [51,72], and several
applications (e.g., [8]). However, they do not have the type of simple structures
(e.g., linear key generation algorithm) our construction enjoys, and consequently
cannot be used in our 7O construction. These simple structural properties may
also find uses in other applications.

Partially-Hiding Functional Encryption for NC! Public Computation and Degree-
2 Private Computation. Partially-hiding Functional Encryption (PHFE) schemes
involve functional secret keys, each of which is associated with some 2-ary func-
tion f, and decryption of a ciphertext encrypting (x,y) with such a key reveals
f(x,y), , f, and nothing more about y. Since only the input y is hidden, such
an FE scheme is called partially-hiding FE. The notion was originally intro-
duced by [51] where it was used to bootstrap FE schemes. A similar notion
of partially-hiding predicate encryption was proposed and constructed by [52].
PHFE beyond the case of predicate encryption was first constructed by [11]
for functions f that compute degree-2 polynomials on the input y and degree-1
polynomials in &, under the name of 3-restricted FE, in the secret-key setting. In
this work, we construct a PHFE scheme from standard assumptions over bilinear
pairing groups, that is public-key and supports functions f that have degree 2
in the private input y, while performs an arithmetic NC! computation on the
public input @, More precisely, f(x,y) = (g(x),¢(y)) where g is computable
by an arithmetic log-depth circuit and ¢ is a degree-2 polynomial. The previous
best constructions of partially-hiding FE were secret-key, and could only handle
NCy computation on the public input [55].

This contribution is interesting in its own right, as a step forward towards
broadening the class of functions supported by FE schemes from standard
assumptions. In particular, it can be used to combine rich access-control and
perform selective computation on the encrypted data. In that context, the pub-
lic input « represents some attributes, while the private input y is the plaintext.
Functional secret keys reveal the evaluation of a degree-2 polynomial on the
private input if some policy access, represented by an NC! arithmetic circuit
evaluates to true on the attributes. This is the key-policy variant of a class of
FE with rich access-control introduced in [2]. In the latter, the authors build
an FE scheme where ciphertexts encrypt a Boolean formula (the public input)
and a vector (the private input). Functional secret keys are associated with
attributes and a vector of weights, and decryption yields the weighted sum of
the plaintexts if the formula embedded in the ciphertext evaluates to true on the
attributes embedded in the functional secret key. Their construction, as ours,
rely on standard pairing assumptions, but only permits computation of degree-1
polynomials on the private input. They also give a lattice-based construction,
which is limited to identity-based access structures.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 103

2 Technical Overview

Below, we will use several different encryption schemes, and adopt the following
notation to refer to ciphertexts and keys of different schemes. For a scheme x
(e.g., a homomorphic encryption scheme HE, or a functional encryption scheme
FE), we denote by xct, xsk a ciphertext, or secret key of the scheme x. At times,
we write xct(m), xsk(f) to make it explicit what is the encrypted message m and
the associated function f; and write xct(k, m), xsk(k, f) to make explicit what
is the key k they are generated from. We omit these details when they do not
matter or are clear from the context.

2.1 Overview of Our FE Construction

Basic Template of FE Construction in Prior Works. We start with reviewing
the basic template of FE construction in recent works [3,10,55]. FE allows one to
generate so-called functional secret key fesk(f) associated with a function f that
decrypts an encryption of a plaintext x, fect(x) to f(x). Security ensures that
beyond the evaluation of the function f on @, nothing is revealed about x. For
constructing ¢, it suffices to have an FE scheme whose security is guaranteed
against adversaries seeing only a single functional secret key, for a function with
long output f : {0,1}" — {0,1}™ and where the ciphertexts are sublinearly-
compact in the sense that its size depends sublinearly in the output length m.
Towards this, the basic idea is encrypting the message using a Homomorphic
Encryption scheme HE, which produces the ciphertext hect(s,x), where s is
the secret key of HE. It is possible to publicly evaluate homomorphically any
function f directly on the ciphertext to obtain an so-called output ciphertext
hect(s, f(x)) «— HEEval(hect, f), that encrypts the output f(x). Then, we use
another much simpler FE scheme to decrypt hect(s, f(x)) so as to reveal f(x)
and nothing more. Using this paradigm, the computation of the function f is
delegated to HE, while the FE only computes the decryption of HE. This is
motivated by the fact that HE for arbitrary functions can be built from standard
assumptions, while existing FE schemes is either not compact, in the sense that
the ciphertext grows with the output size of the functions [49,72], or are limited
to basic functions—namely, degree-2 polynomials at most, [19,43] for the public-
key setting, [13,61] for the private-key setting? Furthermore, known HE schemes
have very simple decryption—for most of them, it is simply computing an inner
product, then rounding. That is, decryption computes (hecty, s) = p/2- f(x)+e;
(mod p) for some modulus p, where s is the secret key of HE, and ey is a small,
polynomially bounded error (for simplicity, in this overview, we assume w.l.o.g
that f(x) € {0,1}). While there are FE schemes that support computing inner
products [1,4], sublinearly compact FE that also computes the rounding are

2 As mentioned in the introduction, partially hiding functional encryption allows to
further strengthen the function class supported, by essentially adding computa-
tion on a public input, however computation on the private input is still limited
to degree 2.

104 R. Gay et al.

currently our of reach. Omitting this rounding would reveal f(x), but also ey,
which hurts the security of HE. Instead, we will essentially realize an approximate
version of the rounding—thereby hiding the noise ey.

A natural approach to hide the noises ey is to use larger, smudging noises.
Since ey depends on the randomness used by HEEnc, and the function f, the
smudging noises must be fresh for every ciphertext. Hard-wiring the smudging
noise in the ciphertext, as done in [6], leads to non-succinct ciphertext, whose
size grows linearly with the output size of the functions. Instead, we generate
the smudging noises from a short seed, using a PRG. The latter must be simple
enough to be captured by state of the art FE schemes.

Previous constructions use a weak pseudo-random generator, referred to as
a noise generator NG, to generate many smudging noises 7 = NG(sd) for hiding
es. To see how it works, suppose hypothetically that there is a noise generator
computable by degree-2 polynomials. Then we can use 2FE, an FE scheme that
support the generation of functional key for degree-2 polynomials, to compute
p/2- f(x) + ey + NG(sd), which reveals only f(x) as desired. This gives a basic
template of FE construction summarized below.

Basic Template of FE Construction (Intuition only, does not
work)

fesk(f) contains : 2fsk(g)
fect(x) contains : hect(s, x), 2fct(s||sd)

The basic idea is using HE with a one-time secret key s to perform the com-
putation and using a simple FE for degree-2 polynomials, 2FE, to decrypt
the output ciphertext and add a smudging noise generated via a noise gen-
erator NG. That is, we would like g(s||sd) = (p/2 - f(x) + ey + NG(sd)).
Howewver, there are many challenges to making this basic idea work.

Unfortunately, to make the above basic idea work, we need to overcome
a series of challenges. Below, we give an overview of the challenges, how we
solve them using new tools, new techniques, and new assumptions, and how our
solutions compare with previous solutions. In later Subsects. 2.2, 2.3, and in the
full version, we give more detail on our solutions.

Challenge 1: No Candidate Degree-2 Noise Generator. Several constraints are
placed on the structure of the noise generators NG which renders their instanti-
ation difficult.

— MINIMAL DEGREE. To use degree-2 FE to compute NG, the generator is
restricted to have only degree 2 in the secret seed sd.

— SMALL (Pory-s1zep) OuTpuTs. Existing degree-2 FE are implemented using
pairing groups: They perform the degree-2 computation in the exponent of
the groups, and obtain the output in the exponent of the target group. This
means the output p/2 - f(x) + e; + NG(sd) resides in the exponent, and the

Indistinguishability Obfuscation from Simple-to-State Hard Problems 105

only way to extract f(x) € {0,1} is via brute force discrete logarithm to
extract the whole p/2- f(x) + ey + NG(sd). This in particular restricts NG to
have polynomially bounded outputs.

Previous works [10,55] used new assumptions that combine LWE with
constant-degree polynomials over the integers (see discussion in the introduc-
tion) to instantiate the noise generator. The resulting generator do not have
exactly degree 2, but “close” to degree 2 in following sense:

Degree “2.5” Noise Generator: NG(pubsd, privsd) is a polynomial in a public
seed pubsd and a private seed privsd both of length n’, and has polynomial
stretch. The seeds are jointly sampled (pubsd, privsd) « Dgy from some dis-
tribution and pubsd is made publc. Degree 2.5 means that NG has constant
degree in pubsd and degree 2 in privsd.

Previous degree-2.5 noise generators produce small integer outputs, and can only
satisfy certain weak pseudo-randomness property (as opposed to standard pseu-
dorandomness). To get a flavor, consider the fact that the outputs of previous
candidates are exactly the outputs of some constant-degree polynomials com-
puted over the integers. Individual output elements are not uniformly distributed
in any range, and two output elements that depend on the same seed element
are noticably correlated. Hence, they are not pseudorandom or even pseudo-
independent. In this work, our new assumption combines Learning With Binary
Errors (LWBE) and constant-degree Boolean PRGs, and gives new degree-2.5
noise generators with Boolean outputs as follows:

— pubsd = {¢; = (a;, a;s+¢;) }ic[n): LWBE samples where s, a; Zgo'5+€, €; —

{0,1}.
— privsd = ®(s|| — 1)2]: tensoring (s|| — 1) for [4
— PRG(pubsd, privsd) = G(---|le; = (s, (s]| — 1))
constant degree Boolean PRG.

| times.
‘ .

--) = G(e), where G is a

When the PRG G has sufficient stretch m > nl21:054+6)+r for some constant
€,p > 0, our new generator has polynomial stretch m = |pubsd|\privsd|1+5/ for
some €' depending on ¢, p. Constant-degree Boolean PRGs are qualitatively dif-
ferent from constant-degree polynomials over the integers and have been exten-
sively studied. Furthermore, our new assumption implies that the outputs of our

generator are pseudo-random — in other words, we obtain a degree-2.5 Boolean
PRG.

106 R. Gay et al.

Not surprisingly, the stronger security property of degree-2.5 PRG lets us
significantly simplify the construction and security proof.

Challenge 2: How to Fvaluate Degree 2.5 Polynomials? To evaluate our degree-
2.5 Boolean PRG, we need an FE scheme that is more powerful than 2FE. The
notion of Partially-Hiding Functional Encryption PHFE, originally introduced
by [52] in the form of Partially Hiding Predicate Encryption (PHPE), fits exactly
this task. As mentioned in introduction, PHFE strengthens the functionality of
FE by allowing the ciphertext phfct(x, y) to encode a public input @, in addition
to the usual private input y. Decryption by a functional key phfsk(f) reveals x
and f(x,y) and nothing else. The works of [10,55] constructed private-key PHFE
for computing degree-2.5 polynomials (i.e., constant degree in & and degree 2 in
y) from pairing groups. (Like 2FE, the output is still computed in the exponent
of the target group.) This suffices for evaluating degree-2.5 noise generator or
PRG in the FE construction outlined above. The only drawback is that since
PHFE is private-key, the resulting FE is also private-key.

In this work, we give a new construction of PHFE from pairing groups that is
1) public-key and 2) supports arithmetic NC! computation on the public input—
more specifically, f(x,y) = (g(x), ¢(y)) where g is computable by an arithmetic
log-depth circuit and ¢ is a degree-2 polynomial.

Theorem 2 (Public-key (NC!,deg-2)-PHFE, Informal). There is a con-
struction of a public-key PHFE for arithmetic NC' public computation and
degree-2 private computation from standard assumptions over asymmetric pair-
mg groups.

This new construction allows us to obtain public key FE directly. Furthermore,
our construction supports the most expressive class of functions among all known
FE schemes from standard assumptions; we believe this is of independent inter-
ests.

Challenge 8: How to Ensure Integrity? Now that we have replaced 2FE with
PHFE to compute degree-2.5 polynomials, the last question is how to ensure
that PHFE decrypts only the right evaluated ciphertext hect; (instead of any
other ciphertext)? The function g we would like to compute via PHFE is
g(s, pubsd, privsd) = (hecty, s) + NG(pubsd, privsd). The difficulty is that hecty is
unknown at key-generation time or at encryption time (as it depends on both f
and hect(s, x)), and is too complex for PHFE to compute (as the homomorphic
evaluation has high polynomial depth). To overcome this, we replace homor-
mophic encryption with a single-ciphertext secret-key FE for polynomial size
circuits with depth A with linear key generation, denoted as e-1LGFE, which has
the following special structure.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 107

Single Ciphertext FE with Linear Key Generation

PPGen(1%) : generate public parameters pp

Setup(1*, pp) : generate master secret key s € Zg

Enc(pp, s) : generates a ciphertext e-1LGFE.ct
KeyGen(pp, s, f) :ppy +— EvalPP(pp, f) , 7 — ([0,B - 1]NZ)™,

output f and secret key,
e-1LGFE.sk(f) = (ppy,s) — T
Dec(e-1LGFE.ct, (f, e-1LGFE.sk)) : e-1LGFE.cty « EvalCT(e-1LGFE.ct, f)
output 2y + ey + 7 «— e-1LGFE.ct — e-1LGFE.sk,
lefloc < B

The single-ciphertext FE has i) a key generation algorithm that is linear in
the master secret key s and randomness r, and ii) decryption first performs
some computation on the ciphertext e-1LGFE.ct to obtain an intermediate
ciphertext e-1LGFE.cty, and then simply subtracts the secret key from
e-1LGFE.cty, and obtains the output y perturbed by a polynomially-bounded
noise.

We replace the ciphertext hect(s,) now with a ciphertext e-1LGFE.ct(s, x)
of e-1LGFE. By the correctness and security of e-1LGFE, revealing e-1LGFE.sk(f)
only reveals the output f(x). Hence, it suffices to use PHFE to compute the secret
key. Thanks to the special structure of the key generation algorithm, this can be
done in degree 2.5, using pseudoradnomness r expanded out via our degree-2.5
PRG. More concretely, PHFE computes the following degree-2.5 function g.

g(s||pubsd||privsd) = (ppy, s) + r = e 1LGFE.sk(f), // g has degree 2.5
log B—1
where r; = Z 2kPRG(j,1)1OgB+k(pubsd,privsd) i
k=0

One more technical caveat is that known pairing-based PHFE schemes actually
compute the secret key e-1LGFE.sk in the exponent of a target group element,
which we denote by [e-1LGFE.sk|r, where for any exponent a € Z,, [a]r = g for
a generator gp. Thanks to the special structure of the decryption algorithm of
e-1LGFE—namely, it is linear in e-1LGFE.sk—these group elements are sufficient
for decryption. A decryptor can first compute e-1LGFE.cty from e-1LGFE.ct(s, x)
and f in the clear, then perform the decryption by subtracting [e-1LGFE.cty —
€-1LGFE.sk]p in the exponent. This gives [p/2- f(x) + e + 7], whose exponent
p/2 - f(x) + ey + 7 can be extracted by enumrating all possible ey + r, which
are of polynomial size, and f(x) € {0,1}.

Our single-ciphertext FE with linear key generation is essentially the same
notion as that of Special Homomorphic Encryption (SHE) used in [3,62]. SHE are
homomorphic encryption with a special decryption equation hecty — (pp Iz s) =
p/2 - f(x) + ey where pp; (as in e-1LGFE) can be computed efficiently from
public parameters pp and f. We think it is more accurate to view this object as
a functional encryption scheme, since what the special decryption equation gives

108 R. Gay et al.

is exactly a functional key (pp;,s) + 7 where 7 are smudging noises for hiding
ey to guarantee that only p/2 - f(x) is revealed.

Viewing this through the lens of FE brought us a significant benefit. Previ-
ous works constructed SHE by modifying the Brakerski-Vankuntanathan FHE
scheme [32], but are limited to supporting NC! computations based on RLWE [6],
and NCy based on LWE [6,62]. Instead, the FE lens led us to search for ideas
in the predicate encryption literature. We show how to construct e-1LGFE for
polynomial sized circuits with depth bounded by A from LWE by modifying
the predicate encryption scheme of [52]. This new construction allowed us to
construct FE for polynomial sized circuits with depth bounded by A directly
without invoking any bootstrapping theorem from weaker function classes.

Theorem 3 (¢-1LGFE from LWE, informal). There is a construction of a
single-ciphertext FE for polynomial size circuits of depth \ with linear key gen-
eration as described above, from LWE.

In summary, putting all the pieces together, our construction of FE for poly-
nomial size circuits with depth A is depicted below. Comparing with previous
constructions, it enjoys several features: 1) it is public key, 2) it can be based
on the polynomial-hardness of underlying assumptions, 3) it has simpler proofs
(e.g., no bootstrapping theorem).

Our FE Construction

fesk(f) contains : phfsk(g)
fect(x) contains : e-1LGFE.ct(s,) phfct(s||pubsd||privsd)

FEDec(fect, (f, fesk)) : [e-1LGFE.sk]r < PHFEDec(phfct, phfsk)
e-1LGFE.cty « EvalCT(e-1LGFE.ct, f)
[y +es+r]r = ¢1LGFE.cty — [e-1LGFE.sk]r
extract y + ey + r and round to recover y

The basic idea is wusing PHFE to compute a €-1LGFE secret key
e-1LGFE.sk(f) in the exponent of the target group, and then decrypting
the ciphertext e-1LGFE.ct(s,x) to reveal f(x) only.

The only aspect of our construction that we have not discussed explicitly is
how to deal with the fact that the pseudorandom smudging error is of polynomial
size, and therefore reveals a 1/poly amount of information. We thus need to
amplify security, but because the source of our error is so simple, we are able
to achieve this amplification in a simple and direct construction (found in the
full version) that avoids any need to use hard-core measures or any other such
sophisticated and/or delicate amplification technology.

2.2 Instantiating Our Assumption

To instantiate our assumption, we need to choose a degree d PRG with a stretch
d
more than n!21(0-5+9)+r The good news is that there is a rich body of literature

Indistinguishability Obfuscation from Simple-to-State Hard Problems 109

on both ingredients of our assumption that existed way before our work to guide
the choice. Binary LWE was first considered by [17] and then by [7,34,35,66].
Goldreich PRGs have been studied even before that. There are many prior works
spanning areas in computer science devoted to cryptanalysis of these objects
from lattice reduction algorithms and symmetric-key cryptanalysis, to algebraic
algorithm tools such as the Grobner basis algorithm and attacks arising from
the Constraint Satisfaction Problem and Semi-Definite Programming literature.
Guided by them, we list three candidates below. In the full-version [44], we
survey many of these attack algorithms, and we compute approximate running
times of the attacks arising out of these algorithms on our candidates. For the
parameters we choose, all those attacks are subexponential time.

A Goldreich’s PRG G is defined by a predicate P : {0,1}¢ — {0,1}, where
¢’ is the locality of the PRG, and a bipartiate input-output dependency graph
A, which specifies for every output index j € [m], the subset A(j) C [n] of
input indexes of size ¢ it depends on — the j’th output bit is simply set to
G(j) = P(A(j)). Hence the degree of the PRG G is identical to the degree of the
predicate P. Usually, the input-output dependency graph A is chosen at random,
and the non-trivial part lies in choosing the predicate P.

Instantiation 1. The first instantiation is that of the predicate XORMAJ, which
is a poplular PRG predicate [16,39].

XORMAJLz((El - ,(EQ[) = @ie[g]xi D MAJ((E@+1, e SUQ[).

The predicate above has a degree of 2-¢; thus, our construction require expansion
m > ns++P The predicate is £4 1 wise independent and thus it provably resists
subexponential time SoS refutation attacks when m(n) < nF = for ¢ >0 [59].
All other known attacks that we consider and even the algebraic attacks when
instantiated in our combined assumption require subexponential time. We refer
the reader to the full-version [44] for a detailed discussion.

Instantiation 2. An slightly unsatisfactory aspect of the XORMAJ predicate is
that the lower bound on the stretch of the PRG instantiated by XORMAJ for it
. ; . ion is L+ .
to be useful in our FE construction is > n27° | whereas the upper bound on the
£
stretch to withstand existing attacks is very close < n#*c, leaving only a tiny
margin to work with. This motivates us to we consdier predicates with degree
lower than the locality. One such predicate was analyzed in [65] for stretch upto
nt25=¢ for ¢ > 0:

TSPA(ml, 1‘2,.%'3,.%‘47.’175) =21 Dx2s D3P ((.’L’Q D 184) A (333 (&) .1‘5)) .

What is nice about this predicate is that, it has locality 5 but only degree 3;
thus, our construction only require expansion m > nl31(0-5++s — pl+2etr Ty
[65], it was proven that the PRG istantiated with TSPA resists subexponential
time Fo linear and SoS attacks. We present analysis against other attacks in the
full-version [44], all taking subexponential time.

110 R. Gay et al.

Instantiation 3. We present a degree reduction transformation that takes as
input a non-linear predicate g : {0,1}* — {0,1} and constructs a predicate P.

Po(z1 ... Tar41) = Bichr1)%i © 9(Tht2 © 2, - .o, Takg1 © Tpp1).

We show in the full version [44] that the predicate above has a locality of 2k + 1
but a degree equal to k£ 4 1; thus, our construction requires expansion m >
n[*5510:5+6)+p The predicate is also k + 1 wise independent. We show that all
known attacks run in subexponential time even when the stretch is bounded
by m < n*3 =9 for some § > 0. Thanks to the gap between the locality and
degree, we now have a very large margin between the lower and upper bounds
on the stretch. Hence, our work motivates the interesting question of studying

such predicates.

2.3 Single Ciphertext Functional Encryption with Linear Key
Generation

We describe our construction of a single-ciphertext (secret-key) FE scheme for
all polynomial-sized circuits with depth bounded by A, that have the simple
structure outlined in Sect. 2, denoted as e-1LGFE, from LWE. In particular, the
key generation and decryption algorithms have the following form, where s is
the master secret key and pp is the public parameters.

KeyGen(pp, s, f) D PPy — EvalPP(pp, f) , » < ([0,B —1]NZ)™,

output f and secret key e-1LGFE.sk(f) = (ppf, sy —r
Dec(e-1LGFE.ct, (£, -1LGFE.sk)) : e-1LGFE.ct; « EvalCT(e-1LGFE.ct, f)

output 2y + ey + 7 «— e-1LGFE.ct — e-1LGFE.sk, |ef|oc < B’

Importantly, decryption recovers a perturbed output where the error ey + r
is polynomially bounded. As mentioned before, this object is essentially the
same as the notion of Special Homomorphic Encryption (SHE) in the litera-
ture [6,62]. Previous SHE schemes are constructed by modifying existing homo-
morphic encryption schemes of [30,32]. These constructions are recursive and
quite complex, and the overhead due to recursion prevents them from supporting
computations beyond NC!. In this work, viewing through the FE lens, we search
the literature of predicate encryption, and show how to modify the predicate
encryption scheme of [52] (GVW) to obtain single-ciphertext FE with the desired
structure. The GVW predicate encryption provide us with a single-ciphertext
encryption scheme with the following properties:

— The public parameter generation algorithm PPGen samples a collection of
random LWE matrices A;, B; < Z;*™, and sets the public parameters to
pp = ({Ai}, {B;})-

— The setup algorithm Setup samples a master secret key constaining an LWE
secret s < X" drawn from the noise distribution y.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 111

— The encryption algorithm to encrypt @, generates a ciphertext hect(x) con-
taining two sets of LWE samples of form ¢; = sTA;, + ;G + e; and
d;=s"B;+k;G+ e;-, where G' € Zp*™ is the gadget matrix, vk is a freshly
sampled secret key of a homomorphic encryption scheme, and e;, e;- — x™
are LWE noises. Furthermore, Z; is the #’th bit of a homomorphic encryption
ciphertext of under key k.

— The predicate encryption scheme of [52] provides two homomorphic proce-
dures: The EvalCT procedure homomorphically evaluate f on {¢;, A;} and
{d;,B;} to obtain cs, and the EvalPP seperately homormorphically evalu-
ates on {A;} and {B;} to obtain Ay.

— The homomorphic evaluation outcomes cy, Af, has the property that the
first coordinate cf,; of c; and the first column A of Ay satisfy the special
decryption equation.

cri—s"Ap1 = f(z)|p/2] + ey modp

The above described encryption scheme almost gives the FE scheme we want
except for the issue that it has super-polynomially large decryption error ey.
Thus, we turn to reducing the norm of the decryption error, by applying the
rounding (or modulus switch) technique in the HE literature [30]. Namely, to
reduce the error norm by a factor of p/q for a ¢ < p, we multiply c¢; and Ay,
with ¢/p over the reals and then round to the nearest integer component wise.
The rounding results satisfy the following equation

I_%Cf,l] — STI_Z%A]“J] = f(x)|q/2] + L%eﬂ +error mod p

where the rounding error error is bounded by |hesk|;+O(1), which is polynomially
bounded as the secret is sampled from the LWE noise distribution instead of
uniformly.

We are now ready to instantiate the FE scheme we want. It uses the same
public parameter generation, setup, and encryption algorithm. Now to generate
a functional key for f, it first computes Ay «— EvalPP({A;},{B;}) and sets
pp; = L%Af,ﬂ, and then outputs a functional key e-1LGFE.sk = (pp;s) — r
where 7 is a random vector of smudging noises of sufficiently large but still poly-
nomially bounded magnitude. The decryption algorithm decrypts a ciphertext
e-1LGFE.ct = ({¢;},{d;}) using a functional key e-1LGFE.sk as follows: It first
computes ¢y < EvalPP({A;,¢;},{B;,d;}), and sets e-1LGFE.ct; = [Icsq], it
then subtracts e-1LGFE.sk from it, yielding f(x)[q/2] + [les] + error + 7 as
desired.

3 Preliminaries

In this section, we describe preliminaries that are useful for rest of the paper.
We denote the security parameter by A. For any distribution X, we denote by
x — X (or «g X) the process of sampling a value z from the distribution X.

112 R. Gay et al.

Similarly, for a set X we denote by x < X (or z «—g X) the process of sampling
x from the uniform distribution over X. For an integer n € N we denote by [n]
the set {1,..,n}. A function negl : N — R is negligible if for every constant ¢ > 0
there exists an integer N, such that negl(A) < A7¢ for all A > N..

By ~. we denote the standard polynomial time computational indistin-
guishability. We say that two ensembles X = {X)\}reny and Y = {Va}ren are
(s(N), e(\))— indistinguishable if for every adversary A (modeled as a circuit) of

size bounded by s(A) it holds that: | Prya, [A(1*,) = 1] — Pry—y, [A(1*,y) =

1]| < €(A) for every sufficiently large A € N.

For a field element a € Fpmy represented in [—p/2,p/2], we say that a €
[-B, B] for some positive integer B if its representative in [—p/2,p/2] lies in
[-B, B].

Throughout, when we refer to polynomials in security parameter, we mean
constant degree polynomials that take positive value on non negative inputs. We
denote by poly(A) an arbitrary polynomial in security parameter satisfying the
above requirements of non-negativity.

3.1 Pairing Groups

Throughout the paper, we use a sequence of asymmetric prime-order pairing
groups:

G =A{(pr, Ga1,Gxr2, G, Py1,Pr2, Py, €x) baen,

where for all s € {1,2,T}, (G, s, +) is an cyclic group (for which we use additive
notation) of order py = DI G 1 and G2 are generated by Py 1 and Py o
respectively, and e : Gy 1 X Gy 2 — Gr is a non-degenerate bilinear map, that
is, satisfying ex(aPx,1,bPx2) = abPr for all integers a,b € Z,, where Pr =
e(Px,1, Py 2) is a generator of G 1. We require the group operations as well as
the pairing operation to be efficiently computable. The rest of the paper will
refer to this sequence of bilinear pairing groups, and the corresponding sequence
of prime orders of the groups {py}xen. In the full version [44], we describe the
assumptions bilateral DLIN and SXDH over such groups, which we use for our
construction.

4 Functional Encryption Definitions

We denote by F = Un,dsizecpoly ({Fan(rn).d(r).e(0).size(\) Jaen) an abstract
function class, which is parameterised by A € N and four polynomials
n(A),d(N), £(N),size(N)). We call prmtr the tuple (n,d,¢,size). In this abstract
class, every function f € F) prmer takes an input from &) prmer X Y prmer and
outputs in Zj prmtr. We will specify what the exact denotes in the exact con-
structions. Two specific instantiations of those classes are described below:

Indistinguishability Obfuscation from Simple-to-State Hard Problems 113

— The function class F f'&fmrl

Here Y prmtr consists of {0, 1}, Xy prmer is empty,
Zx prmtr = {0, 1}*. This family consists of Boolean circuits of depth d and size
size.

— The function class FE,prnEtr: Here X prmtr = Vi prmtr = Zg(") where p) is the

prime order for the group Gy. The class consists of certain kinds of arithmetic

cicuits over Z,. We describe the exact class later when we need it.

Here we provide the relevant definition regarding functional encryption (FE)
and partially-hiding FE (PHFE) along with several notions of efficiency and
security properties. FE corresponds to the particular case where the public part
of the message (referred to as X prmer below) is empty.

Definition 1. (Syntax of a PHFE Scheme.) A partially-hiding functional
encryption scheme, PHFE, for a functionality {Fx prmtr © X prmer X Y prmer —
Zx prmtr } Aprmtr, consists of the following PPT algorithms:

— PPGen(1%, prmtr) : Given as input the security parameter 1* and additional
parameters prmtr = (n, d, {,size), it outputs a string pp. We assume that pp
18 implicitly given as input to all the algorithms below.

— Setup(pp): Given as input pp, it outputs a public key pk and a master secret
key msk.

- Enc(pk, (z,y)): Given as input the public key pk and a message (x,y) with
public part x € Xy prmtr and private part y € YV prmtr, outputs the ciphertext
ct along with the input x.

— KeyGen(msk, f): Given as input the master secret key msk and a function
f € Fx prmtr, it outputs a functional decryption key sky.

— Dec(sky, (z,ct)): Given a functional decryption key sky and a ciphertext
(x,ct), it deterministically outputs a value z in Zx prmtr, or L if it fails.

Remark 1. (On Secret Key Schemes.) An FE scheme is said to be secret-key is
pk is empty, and the encryption algorithm takes as additional input the master
secret key msk.

Remark 2. (On FE vs PHFE.) The syntax of FE is identical to PHFE described
above except that for all A € N, the set Xy prmtr = 0, that is, all the input remains
private.

Definition 2. (Correctness.) A Partially hiding FE scheme PHFE for the func-
tionality F = {Fx prmtr F x,prmtr 08 correct if for security parameter A € N and every
polynomials n,d, ¢, size there exists a negligible function negl(\) such that for all
messages (,Y) € X prmtr X Va,prmtr and all functions f € F, we have:

pp « PPGen(1*, prmtr)

(pk, sk) < Setup(pp)
Pr | (x,ct) «— Enc(pk, (z,y)) | < negl(N).
sk < KeyGen(sk, f)
DeC(Skfv xz, Ct)) 7é f((ﬂ, y)

Now we give the security notions for PHFE and FE.

114 R. Gay et al.

4.1 Security Definition

We discuss two security notions. First, for any constant e € (0, 1], we present the
notion of e-simulation security below:

Definition 3 (e-simulation security). For all ¢ € (0,1], we say o« PHFE
scheme for the functionality F = {Fx prmtrirpmer denoted by PHFE s
e-stmulation secure if there exists a (possibly stateful) PPT simulator § =
(Setup, Enc, KeyGen) such that for all stateful PPT adversaries A = (A1, As),
there exists a negligible function negl such that for all security parameters A € N,
all polynomials prmtr = (n, d, ¢, size), we have:

adv,SDWFE,A(l)‘, prmtr) := | Pr[l « Real’FE(1*, prmtr)]—Pr[1 — Ideali'jEE(lA, prmtr)]| < negl(}\),

where the experiments Real}'"F(1") and IdealiﬁgE(l)‘) are defined below. The
differences between these two experiments are highlighted in red.
Real'FE (1, prmtr):

(m*7y*) S X/\,prmtr X y)\,prmtra (f] S f)\,prmtr)je[st] — Al(lA)

pp < PPGen(1*, prmtr)

(pk, msk) < Setup(pp)

(z*,ct”) < Enc(pk, (z*,y"))

Vj € [Qsk]: sky, < KeyGen(msk, f;)

o — Az(pp, pk, (sky,) jequ, €, ct”)

Output «.

deal’'¢F (1%, prmtr):

(33*, y*) S X)\,prmtr X y)\,prmtr; (f] S f)\,prmtr)je[st] — ./41(1)\)
pp < PPGen(1*, prmtr)

(pwk,tg) « Setup(pp), w < Sample(z*,y*, (fj) e[Qu)
(x*,ct*) « Enc(td, w)

Vj € Qs : sky, — KeyGen(td, f;,w)

o — A (pp, pk, (skfj)jerk, ¥, ct*)

Output «.

The algorithm Sample, given as input the tuple (x*, (fj,fj(x*,y*))je[st]),
flips a biased coin. If the outcome is tails (which happens with probability € over
the coin flip), then it outputs w = (x*, (fi, (x*,y*))je[st]), If the outcome is
heads (which happens with probability 1 — € over the coin flip), then it outputs
w= (2" y"(fj)ieiqu)-

Remark 3 (Standard simulation security). If e = 1, the algorithm Sample always
outputs w = (z*, (f;, f;(2*,y"))je[0.), Which corresponds to the standard sim-
ulation security definition.

Remark 4 (Secret-Key schemes). This definition can be easily adapted to a
secret-key scheme simply by having the encryption algorithm get the additional
input msk.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 115

Remark 5 (Subexponential security). If e = 1, and the negl above is 2’)‘9(”, then
the scheme is said to satisfy subexponential security.

Remark 6 (Number of functional decryption keys). We say a a scheme is many-
key secure if security holds for any polynomial Qs, and one-key secure if Qg = 1.
When we do not specify it explicitly, we mean one-key security.

We also give an indistinguishability-based security definition.

Definition 4 (IND security). We say an FE scheme FE for functionality F =
{Fx prmtr fren is IND secure if for all stateful PPT adversaries A, all polynomial
parameters prmtr = (n, d, £, size) there exists a negligible function negl such that,
we have:

advit24 () == 2 [1/2 — Pr[1 «— INDFF (1%, prmtr)]| < negl()),

where the experiment INDE (17, prmtr) is defined below.

INDFE(1, prmtr) -

{6, 21 }ier@a) 1 Yierou) — A1)

pp « PPGen(1*, prmtr) ‘

Where Vi € [Q] : x%)?‘xll € y)\,Prmtry Vj € [st] : fj € fA,Prmtf

(pk, msk) «— Setup(pp), b < r {0,1}

Vi € [Qut] : cti «— Enc(pk,), Vi € [Qsk] : sk; < KeyGen(msk, f7)

V' — A({cti ticiu)s {5K) }ieiQus PK) o o

Return 1 if b=10b" and Vi € [Qct], 7 € [Qsk], f7(x4) = f7(x]), O otherwise.

As for simulation security, we say that FE satisfies subexponential security if
negl(\) = -2

4.2 Efficiency Features

We now define various efficiency notions for PHFE (which are straightforward
to adapt to FE).

Definition 5 (Linear efficiency).

We say a PHFE for the functionality F = {Fx prmtr }A,prmtr Satisfies linear
efficiency if there exists a polynomial poly such that for all security parameters
X € N and all polynomial parameters prmtr = (n,d, ¢, size), all messages (x,y) €
X prmtr X Y prmtr, all pp in the support of PPGen(1*, prmtr), all (pk, msk) in the
support of Setup(pp) the size of the circuit computing Enc(pk,-) on the input
(z,y) is at most (|z|+y|) - poly(X), for some fized polynomial poly where |z| and
ly| denote the size of x and y, respectively.

Now we define the notion of sublinearity for FE scheme for the functionality
F (i.e. all polynomial circuits, defined in Sect.3). It was shown in a series of
works [12,23,25] that such FE schemes for P/poly imply obfuscation (assuming
subexponential security).

116 R. Gay et al.

Definition 6 (Sublinearity). Let FE be an FE scheme for the functionality
F = {Fprmtr } rprmtr- If there exists € € (0,1) and a polynomial poly such that
for all tuple of polynomials prmtr = (n, d, ¢, size), all X € N, all pp in the support
of PPGen(1*, prmtr), all (pk, msk) in the support of Setup(pp):

— if the size of the circuit Enc(pk, -) is at most size' ¢ -poly(n, \) then FE is said
to be sublinearly efficient. It is said to be compact if e = 1.

— if for all x € {0,1}"™, all ciphertexts ct in the support of Enc(pk, x), the size
of ct is at most size' - poly(n, \) then FE is said to be sublinearly ciphertext-
efficient.

— if for all x € {0,1}™, all ciphertexts ct in the support of Enc(pk, z), the size of
ct is at most £1=¢-poly(n, \) then FE is said to be sublinearly output-efficient.

Remark 7 (levelled linear efficiency, compactness, and sublinearity). More gener-
ally, we say that the scheme satisfies levelled linear efficiency or levelled compact-
ness, or levelled sublinearity if the multiplicative factor poly(n,) in Definition 5
or Definition 6 is replaced by poly(\, n,d), i.e. the polynomial also depends on
the depth bound d.

4.3 Structural Properties

Now we define some structural properties that are very specific to our construc-
tion. First we define the notion of special structure which captures the property
of a function key can be generated just by applying a linear function of the
master secret key over some field along with the fact that the decryption of a
ciphertext is “almost linear” (specified below).

Definition 7. (Special Structure*.) We say that a functional encryption

scheme FE for FCIRC — {ff,l;?rgntr})\yprmtf satisfies special structure® if there
exist polynomials hy, ha, hs, hy such that the following holds. Recall f/\cj'gfmr for

prmtr = (n,d, {,size) consists of all Boolean circuits with n bits of input, £ bits
of output, depth d and size size.

~ (PP Syntaz.) The pp generated by the PPGen(1*, prmtr) algorithm contains a
h1(N)-bit prime modulus p.

— (Linear secret key Structure.) The master secret key is a vector in s € ZZQ(/\).
For any function f € Fx prmr, let f = {fi}icy denote the circuit computing
it" bit of f. The functional secret key is of the form sky = {sky, };c(q where
each sky, = (ppy,, s) +e; mod p where e; < g {0,...,hz(\,n,{,d)} and ppy,
18 some deterministic polynomial time computable function of pp and f;.

— (Linear + Round Decryption with polynomial decryption error.) There exists
a deterministic poly-time algorithm such that given an encryption ct of
m € {0,1}" and a function f = (f1,...,f¢) € Fxprmr, for every i € [{],
computes cty, such that |cty, — (ppy,, 8) — fi(m)[5]| < ha(N, d, £, size). Given
the secret-key for a function f = (f1,..., fe¢), this can be used to recover

f(m) = (fr(m), ..., fe(m)).

Indistinguishability Obfuscation from Simple-to-State Hard Problems 117

Outline. In the rest of the paper, we just discuss one of the aspect, which is
to construct an from a PHFE scheme, an e-1LGFE scheme and an sPRG an
e-secure Functional Encryption scheme. We show how to construct each of these
primitives in the full version [44]. We also show in the full version how to amplify
its security resulting into a sublinearly efficient Functional Encryption scheme.
Such a scheme can be used to build iO using known results [12, 25].

5 Definition of Structured-Seed PRG

We recall the notion of a structured seed PRG sPRG [56].

Definition 8 (Syntax of Structured-Seed Pseudo-Random Generators
(sPRG)). Let 7 be a positive constant. A structured-seed Boolean PRG, sPRG,
with stretch T that maps (n-poly(X))-bit binary strings into (m = n")-bit strings,
where poly is a fized polynomial, is defined by the following PPT algorithms:

~ PPGen(1*,17) takes as input the security parameter X, and an input length 17,
which is a polynomial in \. It outputs public parameters pp, which amongst
other things contains an odd prime modulus p(\) which is poly(\) bit prime
for some polynomial independent of n.

— IdSamp(pp) samples a function index I.

— SdSamp(I) jointly samples two binary strings, a public seed and a private
seed, sd = (P,S). These are vectors over Z,. The combined dimension of
these vectors is n - poly(A).

— Eval(1,sd) computes a string in {0,1}™.

Remark 8 (The modulus p(\)). The size of the modulus p(A) is some fixed poly-
nomial in the security parameter A\ independent of n.

Remark 9 (Polynomial Stretch.). We say that an sPRG has polynomial stretch
if 7 > 1 for some constant 7.

Remark 10 (Linear Efficiency.). We say that an sPRG has linear-efficiency if the
time to sample sd is n - poly(A).

Remark 11 (On poly(A) multiplicative factor in the seed length.). As opposed
to a standard Boolean PRG definition where the length of the output is set to
be n” where n is the seed length, we allow the length of the seed to increase
multiplicatively by a fixed polynomial poly in a parameter A. Looking ahead,
one should view n as an arbitrary large polynomial in A, and hence sPRG will
be expanding in length.

Definition 9 (Security of sPRG). A structured-seed Boolean PRG, sPRG,
satisfies

118 R. Gay et al.

Pseudorandomness: Let A € N be the security parameter, let n(\) be a poly-
nomial in A. Then, following distributions are indistinguishable.

(pp, 1, P, Eval(Z,sd))
(pp, I, P, 1)

where pp « PPGen(1*,1"), I « IdSamp(pp), sd « SdSamp(I), r «
{0,1}™.

Definition 10 (Complexity and degree of sPRG). Let D € N, let A € N
and n = n(\) be arbitrary positive polynomial in A, and p = p(\) denote a prime
modulus which is sampled during PPGen. Let C be a complexity class. A sPRG
has complezity C in the public seed and degree D in private seed over Zy, denoted
as, sPRG € (C, deg D), if for every I in the support of IdSamp(1*,1™), there
exists an algorithm Processy in C and an m(n)-tuple of polynomials Qr that can
be efficiently generated from I, such that for all sd in the support of SdSamp(I),
it holds that:

Eval(I,sd) = Q;(P',S) over Z,, P' = Process;(P),
where Q1 has degree 1 in P and degree D in S.

We remark that the above definition generalizes the standard notion of fam-
ilies of PRGs in two aspects: 1) the seed consists of a public part and a private
part, jointly sampled and arbitrarily correlated, and 2) the seed may not be
uniform. In the full version, we show how to construct an sPRG from our new
assumption G-LWEleakp ,,.

6 Construction of e-Simulation Secure FE

In this section, we construct a e-simulation secure public-key functional encryp-
tion scheme FE for circuits FERC = {FLIRC 1y i) for some e € (0,1). FERC
is the function class where for all A and all polynomials prmtr = (n,d, ¢, size) it
denotes the set of Boolean circuits with input length n(\), depth at most d()),

output length ¢()), and size at most size(\). It uses the following ingredients:

— e-1LGFE: a secret-key FE scheme for the function class F'RC defined above,
satisfying the following properties:

e (Security.) 1-key single ciphertext e-simulation security as in Definition 4
for some constant € € (0, 1) specified later. Note that although the scheme
is for a single key, it however allows circuits with multiple output bits.

o (Efficiency.) levelled compactness as in Definition 5. In particular, cipher-
text size as well as the size of encryption circuit is poly(A, n,d), indepen-
dent of the function size size and output length /.

e (Structural property.) Special Structure* as per Definition 7. Recall, it
says that:

Indistinguishability Obfuscation from Simple-to-State Hard Problems 119

* (PP Syntax.) The pp generated by the PPGen(1*, prmtr) algorithm
contains a hq(A)-bit prime modulus which is the modulus of the bilin-
ear map Gy, p.
* (Linear secret key Structure.) The master secret key is a vector in
s € Z;,Q()‘). For any function f € Fx pmtr, let f = {fi}icjg denote
the circuit computing it" bit of f. The functional secret key is of the
form sky = {sky, }icjq where each sky, = (ppy,,s) +e; mod p where
e; =R 10,...,h3(A\,n,¢,d)} and pp;, is some deterministic polyno-
mial time computable function of pp and f;. For our construction
below we require that hs(\,n,£,d) = 2¢ — 1 for some natural number
t = O(log(n-d-£-size)). We can always choose an a constant € € (0,1)
for the construction in the full version [44] such that there exists an
e-1LGFE scheme with this property, satisfying e-simulation security.
We use that value of e.
* (Linear + Round Decryption with polynomial decryption error.)
There exists a deterministic poly-time algorithm such that given an
encryption ct of m € {0,1}" and a function f = (f1,...,f¢) €
ffj;"fmtr, for every i € [{], computes cty, such that |cty, — (ppy,,s) —
film)[51] < ha(A,d, ¢, size). Given the secret-key for a function f =
(f1,---, fe), this can be used to recover f(m) = (fi(m),..., fe(m)).
Such a scheme is constructed in the full version [44].

— PHFE: a public-key PHFE for the class of functions FFPHFE defined with
respect to bilinear groups of order p (which is the same as the modulus of
e-1LGFE) and is in fact the order of group Gy. FFHFE = {FPHFEL | for
every polyngmial T/Ll consists of all functions f that takes an input of the form
(z,y) € Zy x Zy , and computes f(z,y) = [3;, fir(®) y; - yelr € Gr
where f; is a constant degree polynomial over = (i.e. an arithmetic circuit
in NCO)7 and Gp denotes the target group (see def pairings). The scheme
PHFE satisfies the following properties:

e (Security.) 1-simulation security for unbounded key queries.
e (Efficiency.) Linear run-time as per Definition 5.
Such a scheme is constructed in the full version. We set n’ later.

— sPRG: a structured-seed PRG with stretch 7 > 1, linear efficiency as per
Definition 8. This sPRG works with the modulus p(\) of the bilinear map
G». The evaluation algorithm of sSPRG computes an arithmetic NC° circuit on
the public part of the seed, and a degree-2 polynomial on the secret part of

the seed, that is, SPRG € (arith-NC°, deg 2). This sPRG is implementable by
FPHFE_

‘We now describe the construction.

Parameters: For sPRG, we set the length parameter to be 07 A Thus, fsprg =
& poly(A) is the number of Z, elements in the sPRG seed for some polynomial
poly independent of the £. Define n' = ha(A, d)+£spre- Let t = logy (hs(A, n, €, d)+
1).

120 R. Gay et al.

Construction: Please refer to the construction in Fig. 1.

FE.PPGen(1*, prmtr) :

Given 1* and the tuple of polynomials prmtr = (n,size, d,¥),
it samples PHFE.pp — PHFE.PPGen(l)‘,lnl), e-1LGFE.pp —
¢-1LGFE.PPGen(1*,prmtr) and sPRG.pp — sPRG.PPGen(lA,lﬁ)‘),
I — sPRG.IdSamp(sPRG.pp). Let p denote the prime modulus of Gy. Output
pp = (PHFE.pp, e-1LGFE.pp,sPRG.pp, I, p).

FE.Setup(pp) : Run PHFE.Setup(PHFE.pp) — (PHFE.pk, PHFE.msk). Set
and output FE.pk = PHFE.pk and FE.msk = PHFE.msk.

FE.Enc(FE.pk,m € {0,1}") :

— msk’ « e-1LGFE.Setup(e-1LGFE.pp)

— cty < e1LGFE.Enc(msk’, m).

— (P,S) « SdSamp(I).

— cty « PHFE.Enc(PHFE.pk, (P, (S, msk’))).

It returns ct = (cty, cta).

FE.KeyGen(FE.msk,C) : Given as input a circuit C € Fpmy, denote

C = (Cy,...,0¢) where each C; is the circuit computing the i** output
bit of C. For every i € [{], do the following:

— let e-1LGFE.ppg, be the vector computed deterministically from e-1LGFE.pp
and C; such that sk, ~ (msk’,e-1LGFE.ppy.) (see the linear secret key
structure in Definition 7).

— Compute skg, <« PHFE.KeyGen(PHFE.msk, f;) where f; takes as input
(P, (S,msk’)) and outputs (msk’,e-lLGFE.ppci> + Zje[l,t] 2i—1. T(i=1)-t+j>
where for all # € [m], rg denotes the #’th bit output by sPRG.Eval(I,sd) €
{0,1}™.

It returns ske = (skey, - - - ske,).

FE.Dec(skc, ct) : Parse ske¢ = (sk¢y,...,skg,) and ct = (cty,cte). For ev-
ery i € [{], do the following:

— By the special structure* of e-1LGFE, compute cte,; using the ciphertext cty.

— Compute [w;]p < PHFE.Dec(skc,, ct2).

— Compute [z]r = [cte, — wi]r.

— Check if |z;| < hs(A\,n,d, £) + ha(X\,n,d,£) (by brute-force). If so set y; = 0.
Otherwise, set y; = 1. Output (y1, ..., ye)-

Fig. 1. Construction of Functional Encryption Scheme FE.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 121

Due to lack of space, we argue correctness, efficiency and security properties
in the full version [44].

Acknowledgements. Aayush Jain was partially supported by grants listed under
Amit Sahai, a Google PhD fellowship. Huijia Lin was supported by NSF grants CNS-
1528178, CNS-1929901, CNS-1936825 (CAREER), the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office (ARO) under Contract No.
WOI11NF-15-C-0236, and a subcontract No. 2017-002 through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE awards,
NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foun-
dation, ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT
Research, Google, or the U.S. Government.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733—
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. Cryptology ePrint Archive, Report 2020/577
(2020). https://eprint.iacr.org/2020/577

3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191-225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_7

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333-362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3_12

5. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps:
attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol. 12105, pp. 110-140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1.5

6. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173-205.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_7

7. Albrecht, M.R., Cid, C., Faugere, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems. ACM Commun. Comput. Algebra 49(2), 62 (2015)

8. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.. From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657-677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7_32

https://doi.org/10.1007/978-3-662-46447-2_33
https://eprint.iacr.org/2020/577
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-662-48000-7_32

122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. Gay et al.

Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Bar-
rington’s theorem. In: ACM CCS, pp. 646-658 (2014)

Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284-332. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8_10

Ananth, P.; Jain, A., Sahai, A.: Indistinguishability obfuscation without multi-
linear maps: IO from LWE, bilinear maps, and weak pseudorandomness. IACR
Cryptology ePrint Archive 2018:615 (2018)

Ananth, P.; Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308-326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6-15

Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152-181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_6

Applebaum, B.: Pseudorandom generators with long stretch and low locality from
random local one-way functions. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM
STOC, pp. 805-816. ACM Press, May 2012

Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias gen-
erators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 600-617. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_34

Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and
their countermeasures. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp.
1087-1100. ACM Press, June 2016

Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403-415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34
Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764-791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5_27

Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67-98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221-238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_13

Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_1

Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant
programs: a framework for obfuscation and witness encryption. In: Vidick, T. (ed.)
11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Seattle,
Washington, USA, 12-14 January 2020. LIPIcs, vol. 151, pp. 82:1-82:39. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2020)

https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-642-28914-9_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 123

Bitansky, N., Nishimaki, R., Passelegue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016, Part II. LNCS, vol. 9986, pp. 391-418. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5_15

Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a Nash equilibrium. In: Guruswami, V. (ed.) 56th FOCS, pp. 1480-1498. IEEE
Computer Society Press, October 2015

Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171-190. IEEE Computer
Society Press, October 2015

Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function. Comput.
Complex. 21(1), 83—-127 (2012)

Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_13

Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6_16

Brakerski, Z., Dottling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 79-109. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1_4

Brakerski, Z., Gentry, C., Vaikuntanathan, V.. (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer Sci-
ence 2012, Cambridge, MA, USA, 8-10 January 2012, pp. 309-325 (2012)
Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1-25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_1
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505-524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_29

Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188-205. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_11

Buchmann, J., Gopfert, F., Player, R., Wunderer, T.: On the hardness of LWE
with binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle
attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016.
LNCS, vol. 9646, pp. 24-43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-31517-1.2

Caho, S., Tibouchi, M., Abe, M.: Sample-time trade-off for the Arora-Ge attack
on binary LWE. In: Symposium on Cryptography and Information Theory (2019)
Sun, C., Tibouchi, M., Abe, M.: Revisiting the hardness of binary error LWE.
Cryptology ePrint Archive, Report 2020/666 (2020). https://eprint.iacr.org/2020/
666

Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577-607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0_20

https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/978-3-319-31517-1_2
https://doi.org/10.1007/978-3-319-31517-1_2
https://eprint.iacr.org/2020/666
https://eprint.iacr.org/2020/666
https://doi.org/10.1007/978-3-319-96881-0_20

124

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

R. Gay et al.

Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security
of Goldreich’s pseudorandom generator. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 96-124. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3_4

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 4049. IEEE Computer Society Press, October 2013

Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part II. LNCS, vol. 9986, pp. 241-268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5_10

Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
I1. LNCS, vol. 9815, pp. 579-604. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5-20

Gay, R.: A new paradigm for public-key functional encryption for degree-2 poly-
nomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part I. LNCS, vol. 12110, pp. 95-120. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45374-9_4

Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-
to-state hard problems: new assumptions, new techniques, and simplification.
TACR Cryptology ePrint Archive 2020:764 (2020)

Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products. In: Electronic
Colloquium on Computational Complexity (ECCC), vol. 25, p. 149 (2018)
Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. TACR Cryptology ePrint
Archive 2014:309 (2014)

Goldreich, O.: Candidate one-way functions based on expander graphs. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)
Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578-602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5_32

Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555-564. ACM Press, June
2013

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39-56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_3

Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162-179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_11

Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503-523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_25

https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Indistinguishability Obfuscation from Simple-to-State Hard Problems 125

Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715-744. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6_24

Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494-512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4_27

Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build 0. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251-281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_9

Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.
iacr.org/2020,/1003

Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385-393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028_23

Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

Kothari, P.K., Mori, R., O’'Donnell, R., Witmer, D.: Sum of squares lower bounds
for refuting any CSP. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC, pp. 132-145. ACM Press, June 2017

Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28-57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3_2

Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599-629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_20

Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018:646 (2018)
Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630-660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7_21

Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11-20. IEEE Computer Society Press, October 2016

Lombardi, A., Vaikuntanathan, V.: Minimizing the complexity of Goldreich’s pseu-
dorandom generator. IACR Cryptology ePrint Archive 2017:277 (2017)
Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21-39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2
Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NCO0. In: 44th
FOCS, pp. 136-145. IEEE Computer Society Press, October 2003

O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial
stretch. In: IEEE 29th Conference on Computational Complexity, CCC 2014, Van-
couver, BC, Canada, 11-13 June 2014, pp. 1-12. IEEE Computer Society (2014)

https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-030-17653-2_9
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-642-40041-4_2

126

69.

70.

71.

72.

73.

74.

R. Gay et al.

O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010:556 (2010)

Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500-517. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2_28

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84-93 (2005)

Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the
17th ACM Conference on Computer and Communications Security, ACM CCS
2010, pp. 463-472. ACM (2010)

Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) STOC, pp. 475-484. ACM (2014)

Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639-27

https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

®

Check for
updates

Candidate Obfuscation via Oblivious
LWE Sampling

Hoeteck Wee! and Daniel Wichs!2(5)

1 NTT Research Inc., San Francisco, USA
wichs@ccs.neu.edu
2 Northeastern University, Boston, USA

Abstract. We present a new, simple candidate construction of indis-
tinguishability obfuscation (iO). Our scheme is inspired by lattices and
learning-with-errors (LWE) techniques, but we are unable to prove secu-
rity under a standard assumption. Instead, we formulate a new falsifiable
assumption under which the scheme is secure. Furthermore, the scheme
plausibly achieves post-quantum security.

Our construction is based on the recent “split FHE” framework of
Brakerski, Déttling, Garg, and Malavolta (EUROCRYPT ’20), and we
provide a new instantiation of this framework. As a first step, we con-
struct an iO scheme that is provably secure assuming that LWE holds and
that it is possible to obliviously generate LWE samples without knowing
the corresponding secrets. We define a precise notion of oblivious LWE
sampling that suffices for the construction. It is known how to obliviously
sample from any distribution (in a very strong sense) using iO, and our
result provides a converse, showing that the ability to obliviously sample
from the specific LWE distribution (in a much weaker sense) already also
implies iO. As a second step, we give a heuristic contraction of oblivious
LWE sampling. On a very high level, we do this by homomorphically gen-
erating pseudorandom LWE samples using an encrypted pseudorandom
function.

1 Introduction

Indistinguishability —obfuscation (i0) [BGI401,GR07] is a probabilistic
polynomial-time algorithm O that takes as input a circuit C' and outputs an
(obfuscated) circuit C' = O(C) satisfying two properties: (a) functionality: C
and C’ compute the same function; and (b) security: for any two circuits Cy
and Cy that compute the same function (and have the same size), O(C;) and
O(C3) are computationally indistinguishable. Since the first candidate for iO
was introduced in [GGH+13b], a series of works have shown that iO would have
a huge impact on cryptography.

The state-of-the-art iO candidates with concrete instantiations may be
broadly classified as follows:

— First, we have fairly simple and direct candidates based on graded “multi-
linear” encodings [GGH+13b,GGH13a,GGH15,FRS17,CVW18,BGMZ18,
© International Association for Cryptologic Research 2021

A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 127-156, 2021.
https://doi.org/10.1007/978-3-030-77883-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_5

128 H. Wee and D. Wichs

CHVWI19] and that achieve plausible post-quantum security. These candi-
dates have survived fairly intense scrutiny from cryptanalysts, [CHL+15,
MSZ16,CLLT16,ADGM17,CLLT17,CGH17,Pell8, CVW18,CCH+19], and
several of them are also provably secure in restricted adversarial models that
capture a large class of known attacks. However, none of these candidates
have a security reduction to a simple, falsifiable assumption.

— Next, we have a beautiful and remarkable line of works that aims to base
iO on a conjunction of simple and well-founded assumptions, starting from
[Lin16,1V16,Lin17,LT17], through [AJL+19,Agr19,JLMS19,GJLS20], and
culminating in the very recent (and independent) work of Jain, Lin and Sahai
[JLS20] basing iO on pairings, LWE, LPN and PRG in NCO0. These construc-
tions rely on the prior constructions of iO from functional encryption (FE)
[BV15,AJ15], and proceed to build FE via a series of delicate and complex
reductions, drawing upon techniques from a large body of works, including
pairing-based FE for quadratic functions, lattice-based fully-homomorphic
and attribute-based encryption, homomorphic secret-sharing, as well as hard-
ness amplification.

— A number of more recent and incomparable candidates, including a direct can-
didate based on tensor products [GJK18] and another based on affine deter-
minant programs (with noise) [BIJ+20]; the BDGM candidate based on an
intriguing interplay between a LWE-based and a DCR-based cryptosystems
[BDGM20al; the plausibly post-quantum secure candidates in [Agr19, AP20]
that replace the use of pairings in the second line of works with direct candi-
dates for FE for inner product plus noise. All of these candidates, as with the
first line of work, do not present a security reduction to a simple, falsifiable
assumption.’

To the best of our knowledge, none of these existing approaches yields a lattice-
inspired iO candidate that is plausibly post-quantum secure and enjoys a security
reduction under a simple, falsifiable assumption referring solely to lattice-based
cryptosystems, which is the focus of this work. We further believe that there is a
certain aesthetic and minimalistic appeal to having an iO candidate whose hard-
ness distills to a single source of computational hardness (as opposed to lattice
plus pairing/number-theoretic hardness). Such a candidate is also potentially
more amenable to crypto-analytic efforts as well as further research to reduce
security to more standard lattice problems.

1.1 Owur Contributions

Our main contribution is a new candidate construction of iO that relies on
techniques from lattices and learning-with-errors (LWE). We formulate a new
falsifiable assumption on the indistinguishability of two distributions, and show
that our construction is secure under this assumption. While we are unable to

! We defer a comparison with the independent and concurrent works [GP20,
BDGM20b] to Sect. 1.3.

Candidate Obfuscation via Oblivious LWE Sampling 129

prove security under a standard assumption such as LWE, we view our construc-
tion as a hopeful step in that direction. To our knowledge, this is the first iO
candidate that is simultaneously based on a clearly stated falsifiable assump-
tion and plausibly post-quantum secure. Perhaps more importantly, we open
up a new avenue towards iO by showing that, under the LWE assumption, the
ability to “obliviously sample from the LWE distribution” (see below) prov-
ably implies i0. Unlike prior constructions of iO from simpler primitives (e.g.,
functional encryption [AJ15,BV15], succinct randomized encodings [LPST16b],
XiO [LPST16a], etc.), oblivious LWE sampling does not inherently involve any
“computation” and appears to be fundamentally different. Lastly, we believe our
construction is conceptually simpler and more self-contained (relying on fewer
disjoint components) than many of the prior candidates.

Our main building block is an “oblivious LWE sampler”, which takes as
input a matrix A € Z;"*" and allows us to generate LWE samples A -s + e
with some small error e € Z™ without knowing the secrets s, e. We discuss the
notion in more detail below (see the “Our Techniques” section), and provide
a formal definition that suffices for our construction. Our notion can be seen
as a significant relaxation of “invertible sampling” (in the common reference
string model) [IKOS10,DKR15], and the equivalent notion of “pseudorandom
encodings” [ACI+20]. The work of [DKR15] showed that, assuming iO, it is
possible to invertibly sample from all distributions, and [ACI420] asked whether
it may be possible to do so under simpler assumptions that do not imply iO.
As a side result of independent interest, we settle this question by showing that,
under LWE, even our relaxed form of invertible sampling for the specific LWE
distribution already implies iO.

Overall, our candidate iO construction consists of two steps. The first step
is a provably secure construction of iO assuming we have an oblivious LWE
sampler and that the LWE assumption holds (both with sub-exponential secu-
rity). The second step is a candidate heuristic instantiation of an oblivious LWE
sampler. On a very high level, our heuristic sampler performs a homomorphic
computation that outputs a pseudorandom LWE sample generated using some
pseudorandom function (PRF). Security boils down to a clearly stated falsifi-
able assumption that two distributions, both of which output LWE samples,
are indistinguishable even if we give out the corresponding LWE secrets. Our
assumption implicitly relies on some form of circular security: we assume that
the error term in the pseudorandom LWE sample “drowns out” any error that
comes out of the homomorphic computation over the PRF key that was used
to generate it. We also discuss how our construction/assumption avoids some
simple crypto-analytic attacks.

1.2 Technical Overview

Our iO construction is loosely inspired by the “split fully-homomorphic encryp-
tion (split FHE)” framework of Brakerski, Déttling, Garg, and Malavolta
[BDGM20a] (henceforth BDGM). They defined a new cryptographic primitive
called split FHE, which they showed to provably imply iO (under the LWE

130 H. Wee and D. Wichs

. Circuit- Non- Post-
Approach Falsifiable Independent Interactive Quantum
mmaps-based i0, cf. [GGHT13b] v
NLFE candidates [Agrl9, AP20] v v
split-FHE, DCR, LWE [BDGM?20a]
LWE, SXDH, LPN, PRG in NCO [JLS20] v v v
circular-SRL [GP20, BDGM20b)] v v
this work (Conjecture 1 HPLS) v v v v

Fig. 1. Summary of the main approaches and assumptions used for I0. The col-
umn “falsifiable” refers to whether there is a reduction to a clearly stated falsifiable
assumption (we don’t count just assuming the scheme is secure). The term “circuit-
independent” means that the assumption does not refer to computation for general
circuits (which is closely related to the notion of instance-independent assumptions
[GLW14]). We consider assumptions that quantify over worst-case inputs/parameters
to be interactive, since the adversary chooses them in the first step.

assumption). They then gave a candidate instantiation of split FHE by heuristi-
cally combining decisional composite residue (DCR) and LWE-based techniques,
together with the use of a random oracle. We rely on a slight adaptation of
their framework by replacing split-FHE with a variant that we call functional
encodings. Our main contribution is a new instantiation of this framework via
“oblivious LWE sampling”, relying only on LWE-based techniques (Fig. 1).

We first describe what functional encodings are and how to construct iO from
functional encodings. Then we describe our instantiation of functional encod-
ings via oblivious LWE sampling. We defer a detailed comparison to BDGM to
Sect. 1.3.

iO from Functional Encodings

As in BDGM, instead of constructing iO directly, we construct a simpler a prim-
itive called “exponentially efficient i10” XiO, which is known to imply iO under
the LWE assumption [LPST16a]. We first describe what XiO is, and then discuss
how to construct it from Functional Encodings via the BDGM framework.

Xi0O. An XiO scheme [LPST16al, has the same syntax, correctness and security
requirements as i0, but relaxes the efficiency requirement. To obfuscate a circuit
C with input length n, the obfuscator can run in exponential time 2°(") and
the size of the obfuscated circuit can be as large as 2"(1=¢) for some & > 0.
Such a scheme is useful when n is logarithmic in the security parameter, so that
2™ is some large polynomial. Note that there is always a trivial obfuscator that
outputs the entire truth table of the circuit C', which is of size 2". Therefore, XiO
is only required to do slightly better than the trivial construction, in that the
size of the obfuscated circuit must be non-trivially smaller than the truth table.
The work of [LPST16a] showed that XiO together with the LWE assumption
(assuming both satisfy sub-exponential security) imply full iO.

Functional Encodings. We define a variant of the “split FHE” primitive from
BDGM, which we call “functional encodings”. A functional encoding can be

Candidate Obfuscation via Oblivious LWE Sampling 131

used to encode a value x € {0, 1}€ to get an encoding ¢ = Enc(x;r), where r is
the randomness of the encoding process. Later, for any function f : {0, 1}Z —
{0,1}™, we can create an opening d = Open(f,x,r) for f, which can be decoded
to recover the function output Dec(f,c,d) = f(x). We require many-opening
simulation based security: the encoding ¢ = Enc(z;r) together with the many
openings d; = Open(fi,z,7),...,dg = Open(fg,x,r) can be simulated given
only the functions fi,..., fo and the outputs fi(z),..., fo(x). In other words,
nothing about the encoded value x is revealed beyond the function outputs
fi(x) for which openings are given. So far, we can achieve this by simply setting
the opening d to be the function output f(z). The notion is made non-trivial,
by additionally requiring succinctness: the size of the opening d is bounded by
|d| = O(m'~¢) for some € > 0, and therefore the opening must be non-trivially
smaller than the output size of the function. We do not impose any restrictions on
the size of the encoding ¢, which may depend polynomially on m. Unfortunately,
this definition is unachievable in the plain model, as can be shown via a simple
incompressibility argument. Therefore, we consider functional encodings in the
common reference string (CRS) model and only require many-opening simulation
security for some a-priori bound @ on the number of opening (i.e., Q-opening
security). We allow the CRS size, (but not the encoding size or the opening size)
to grow polynomially with the bound Q.

XiO from Functional Encodings. We construct XiO from functional encod-
ings. As a first step, we construct XiO in the CRS model. Let C' : {0,1}" —
{0,1} be a circuit of size ¢ that we want to obfuscate. We can partition the
input domain {0,1}" of the circuit into @ = 2"/m subsets S;, each contain-
ing |9;| = m inputs. We then define Q functions f; : {0,1}* — {0,1}™ such
that f;(C) = (C(x1),...,C(xy,)) outputs the evaluations of C' on all m inputs
x; € ;. Finally, we set the obfuscation of the circuit C to be

(Enc(C;r), Open(f1,C,r),...,0pen(fo,C,T)),

which is sufficient to recover the value of the circuit at all @ - m = 2™ possible
inputs. By carefully balancing between m and @ = 2"/m, we can ensure that
the obfuscated circuit size is O(2"(1=)) for some constant & > 0, and therefore
satisfies the non-triviality requirement of XiO. On a high level, we amortize the
large size of the encoding across sufficiently many openings to ensure that the
total size of the encoding and all the openings together is smaller than the total
output size.? The above gives us XiO with a strong form of simulation-based
security (the obfuscated circuit can be simulated given the truth table) in the
CRS model, which also implies the standard indistinguishability-based security
in the CRS model.

2 In detail, assume we start with a functional encoding where the encoding size is
O(m®) and the opening size is O(m'~%) for some constants a,d > 0, ignoring any
other polynomial factors in the security parameter or the input size. The size of the
obfuscated circuit above is then bounded by O(m® + lef‘s). By choosing m =
2/(@+9) and recalling Q = 2"/m, the bound becomes O(2"1 =) for £ = §/(a + §).

132 H. Wee and D. Wichs

So far, we only got XiO in the CRS model, where the CRS size can be as large
as poly(Q-m) = 290" As the second step, we show that XiO in the CRS model
generically implies XiO in the plain model. A naive idea would be to simply make
the CRS a part of the obfuscated program, but then we would lose succinctness,
since the CRS is large. Instead, we repeat a variant of the previous trick to
amortize the cost of the CRS. To obfuscate a circuit C : {0,1}" — {0,1},
we partition the domain {0,1}" into Q = 2"/m subsets containing m = 2"
inputs each, and we define @) sub-circuits C; : {0, 1}"/ — {0, 1}, each of which
evaluates C on the m = 2" inputs in the i’th subset. We then choose a single
CRS for input size n’ and obfuscate all () sub-circuits separately under this CRS;
the final obfuscated circuit consists of the CRS and all the @ obfuscated sub-
circuits. By carefully balancing between m = 27" and Q@ = 2"/m, in the same
manner as previously, we can ensure that the total size of the final obfuscated
circuit is O(2"(1=)) for some constant € > 0, and therefore the scheme satisfies
the non-triviality requirement of XiO.

Constructing Functional Encodings

We now outline our construction of a functional encoding scheme. We start
with a base scheme, which is insecure but serves as the basis of our eventual
construction. We show that we can easily make it one-opening simulation secure
under the LWE assumption, meaning that security holds in the special case
where only a single opening is ever provided (i.e., @ = 1). Then we show how to
make it many-opening secure via oblivious LWE sampling. Concretely, we obtain
a @Q-opening secure functional encoding candidate for bounded-depth circuits
f:{0,1}* = {0,1}™ with CRS size O(Q - m), encoding size O(m?) and opening
size O(1), and where O(-) hides factors polynomial in the security parameter,
input size ¢, and circuit depth.

Base Scheme. Our construction of functional encodings is based on a vari-
ant of the homomorphic encryption/commitment schemes of [GSW13, GVW15].
Given a commitment to an input x = (z1,...,2¢) € {0, 1}67 along with a circuit
f: {O,l}e — {0,1}™, this scheme allows us to homomorphically compute a
commitment to the output y = f(x). Our variant is designed to ensure that the
opening for the output commitment is smaller than the output size m.

Given a public random matrix A € Zg**"™ where m > n, we define a com-
mitment C to an input x via

C= (AR, +2:G+Eq,..., AR, + 2,G + E/)

where R; «— Zp*™184 E; — x™*™1°84 has its entries chosen from the error
distribution x, and G € Z;**™ log ¢ j5 the gadget matrix of [MP12]. Although this
looks similar to [GSW13,GVW15], we stress that the parameters are different.
Namely, in our scheme A is a tall/thin matrix while in the prior schemes it is
a short/fat matrix, we allow R; to be uniformly random over the entire space
while in the prior schemes it had small entries, and we need to add some error E;
that was not needed in the prior schemes. The commitment scheme is hiding by
the LWE assumption. We can define the functional encoding Enc(x;r) = (A, C)

Candidate Obfuscation via Oblivious LWE Sampling 133

to consist of the matrix A and the homomorphic commitment C, where r is all
the randomness used to sample the above values.

Although we modified several key parameters of [GSW13,GVW15], it turns
out that the same homomorphic evaluation procedure there still applies to our
modified scheme. In particular, given the commitment C to an input x and a
boolean circuit f : {0,1}* — {0, 1}, we can homomorphically derive a commit-
ment C; = ARy + f(z)G +E; to the output f(x). Furthermore, given a circuit
f Ao, l}é — {0,1}™ with m bit output, we can apply the above procedure
to get commitments to each of the output bits and “pack” them together using
the techniques of (e.g.,) [MW16,BTVW17,PS19, GH19,BDGM19] to obtain a
vector ¢y € Zy" such that

cr=A-rs+f(x) §+esely

n

where f(x) € {0,1}" is a column vector, ry € Z7,

error term.

A +| we [FEe A L4y

Now, observe that ry constitutes a succinct opening to f(x), since |ry| <
|f(x)| and ry allows us to easily recover f(x) from cy by computing round, /2(cy—
A -ry). Furthermore, we can efficiently compute r; by applying a homomorphic
computation on the opening of the input commitment as in [GVW15], or alter-
nately, we can sample A with a trapdoor and use the trapdoor to recover ry.
Therefore, we can define the opening procedure of the functional encoding to
output the value ry = Open(f,x,7), and the decoding procedure can recover
f(z) = Dec(f,(A,C),r;) by homomorphically computing ¢; and using r; to
recover f(z) as above. This gives us our base scheme (in the plain model), which
has the correct syntax and succinctness properties. Unfortunately, the scheme
so far does not satisfy even one-opening simulation security, since the opening
ry (along with the error term ey that it implicitly reveals) may leak additional
information about x beyond f(x).

and ey € Z™ is some small

One-Opening Security from LWE. We can modify the base scheme to get
one-opening simulation security (still in the plain model). In particular, we
augment the encoding by additionally including a single random LWE sample
b = A -s+ e inside it. We then add this LWE sample to ¢y to “randomize” it,
and release dy :=ry + s as an opening to f(x). Given the encoding (A, C,b)
and the opening d¢, we can decode f(x) by homomorphically computing c; and
outputting y = round,/o(cy +b— A -dy). Correctness follows from the fact that
cj+bx Alry +8)+ f(x)-q/2

With the above modification, we can simulate an encoding/opening pair given
only f(x) without knowing x. Firstly, we can simulate the opening without
knowing the randomness of the input commitments or the trapdoor for A. In
particular, the simulator samples dy uniformly at random from Zj, and then
“programs” the value b as b := A-dy —cy + f(x)- 4 +e. The only difference in

134 H. Wee and D. Wichs

the distributions is that in the real case the error contained in the LWE sample
b is e, while in the simulated case it is e —ey, but we can choose the error e to be
large enough to “smudge out” this difference and ensure that the distributions
are statistically close. Once we can simulate the opening without having the
randomness of the input commitments or the trapdoor for A, we can rely on
LWE to replace the input commitment to x with a commitment to a dummy
value.

Many-Opening Security via Oblivious LWE Sampling. We saw that we
can upgrade the base scheme to get one-opening simulation security by adding
a random LWE sample b = A - s + e to the encoding. We could easily extend
the same idea to achieve @Q-opening simulation security by adding) samples
b, = A-s; +e; to the encoding. However, this would require the encoding size to
grow with @), which we cannot afford. So far, we have not relied on a CRS, and
perhaps the next natural attempt would be to add the @) samples b; to the CRS
of the scheme. Unfortunately, this also does not work, since the scheme needs to
know the corresponding LWE secrets s; to generate the openings, and we would
not be able to derive them from the CRS.

Imagine that we had an oracle that took as input an arbitrary matrix A
and would output @ random LWE samples b; = A -s; + e;. Such an oracle
would allow us to construct Q-opening simulation secure functional encodings.
The encoding procedure would choose the matrix A with a trapdoor, call the
oracle to get samples b; and use the trapdoor to recover the values s; that it
would use to generate the openings. The decoding procedure would get A and
call the oracle to recover the samples b; needed to decode, but would not learn
anything else. The simulator would be able to program the oracle and choose the
values b; itself, which would allow us to prove security analogously to the one-
opening setting. We define a cryptographic primitive called an “oblivious LWE
sampler”, whose goal is to approximate the functionality of the above oracle in
the standard model with a CRS. We can have several flavors of this notion, and
we start by describing a strong flavor, which we then relax in various ways to
get our actual definition.

Oblivious LWE Sampler (Strong Flavor). A strong form of oblivious LWE
sampling would consist of a deterministic sampling algorithm Sam that takes as
input a long CRS along with a matrix A and outputs LWE samples b; =
Sam(CRS, A,4) for ¢ € [Q]. The size of CRS can grow with @ and the CRS
can potentially be chosen from some structured distribution, but it must be
independent of A. We want to be able to arbitrarily “program” the outputs
of the sampler by programming the CRS. In other words, there is a simulator
Sim that gets A and @ random LWE samples {b;} as targets; it outputs a
programmed string CRS «— Sim(A,{b;}) that causes the sampler to output
the target values b, = Sam(CRS, A,7). We want the real and the simulated
CRS to be indistinguishable, even for a worst-case choice of A for which an
adversary may know a trapdoor that allows it to recover the LWE secrets. This
notion would directly plug in to our construction to get a many-opening secure
functional encoding scheme in the CRS model. It turns out that this strong form

Candidate Obfuscation via Oblivious LWE Sampling 135

of oblivious LWE sampling can be seen as a special case of invertible sampling
(in the CRS model) as proposed by [IKOS10], and can be constructed from
iO [DKR15]. Invertible sampling is also equivalent to pseudorandom encodings
(with computational security in the CRS model) [ACI+20], and we answer one
of the main open problems posed by that work by showing that these notions
provably imply iO under the LWE assumption. Unfortunately, we do not know
how to heuristically instantiate this strong flavor of oblivious LWE sampling
(without already having iO).

Oblivious LWE Sampler (Relaxed). We relax the above strong notion in
several ways. Firstly, we allow ourselves to “pre-process” the matrix A using
some secret coins to generate a value pub « Init(A) that is given as an addi-
tional input to the sampler b; = Sam(CRS, pub, 7). We only require that the size
of pub is independent of the number of samples) that will be generated. The
simulator gets to program both CRS, pub to produce the desired outcome. Sec-
ondly, we relax the requirement that, by programming CRS, pub, the simulator
can cause the sampler output arbitrary target values b;. Instead, we now give
the simulator some target values b; and the simulator is required to program
(CRS, pub) « Sim(A, b;) to ensure that the sampled values b; = Sam(CRSpub, 7)
satisfy b; = Bi +b; for some LWE sample b; = A -§; + &; for which the simula-
tor knows the corresponding secrets s;, €;. In other words, the produced samples
b; need not exactly match the target values b; given to the simulator, but the
difference has to be an LWE sample b; for which the simulator can produce the
corresponding secrets. Lastly, instead of requiring that the indistinguishability
of the real and simulated (CRS, pub) holds even for a worst-case choice of A with
a known trapdoor, we only require that it holds for a random A, but the adver-
sary is additionally given the LWE secrets s; contained in the sampled values
b; = A -s; + ;. In other words, we require that real/simulated distributions of
(CRS, pub, {s;}) are indistinguishable.

We show that this relaxed form of an oblivious LWE sampling suffices in
our construction of functional encodings. Namely, we can simply add pub to the
encoding of the functional encoding scheme, since it is short. In the proof, we
can replace the real (CRS, pub) with a simulated one, using some random LWE
tuples b; as target values. Indistinguishability holds even given the LWE secrets
s; for the produced samples b; = Sam(CRS, pub, i), which are used to generate
the openings of the functional encoding. The b; component of the produced
samples b; = Bi -+ b; is sufficient to re-randomizes the output commitment cy,
and the additional LWE sample b; that is added in does not hurt security, since
we know the corresponding LWE secret s; and can use it to adjust the opening
accordingly.

Constructing an Oblivious LWE Sampler. We give a heuristic construction
of an oblivious LWE sampler, by relying on the same homomorphic commitments
that we used to construct our base functional encoding scheme. The high level
idea is to give out a commitment to a PRF key k and let the sampling algorithm
homomorphically compute a pseudorandom LWE sample by := A - Spef + €prf

136 H. Wee and D. Wichs

where sy, eprs are sampled using randomness that comes from the PRF. The
overall output of the sampler is a commitment to the above LWE sample, which
is itself an LWE sample! While we do not know how to construct a simulator
for this basic construction, we conjecture that it may already be sufficient to
instantiate functional encodings. To allow the simulator to program the output,
we augment the computation to incorporate the CRS. We give a more detailed
description below.

The CRS is a uniformly random string, which we interpret as consisting of
Q values CRS; € Z". To generate pub, we sample a random key k for a pseudo-
random function PRF(k,-) and set a flag bit 8 := 0. We creates a commitment
C to the input (k,3) and we set the public value pub = (A, C). The algorithm
b; = Sample(CRS, pub, i) performs a homomorphic computation of the function
g; over the commitment C, where g; is defined as follows:

gi(k,3): Use PRF(k, i) to sample b"" := A . P + e and output
bi :== b + 3. CRS;.

The output of this computation is a homomorphically evaluated commitment to
b and has the form b; = A-s8?+-e8*?+b? where 5§ e£*? come from the homo-
morphic evaluation.® Overall, the generated samples b; = Sample(CRS, pub, 7)
can be written as

b; = A - (52 + ") 4 (e + eP) + - CRS;
where s, P come from the PRF output and s, 2@ come from the homo-
morphic evaluation.

In the real scheme, the flag 3 is set to 0 and so each output of Sample is
an LWE sample b; = A - (s + s"") + (e2?! +). In the simulation, the
simulator gets some target values b; and puts them in the CRS as CRS; := bi.
It sets the flag to 6 = 1, which results in the output of Sample being b; =
A (52 +8") + (€2 + €P™) + b;. Note that the simulator knows the PRF key
k and the randomness of the homomorphic commitment, and therefore knows
the values (s + sP), (€@ + €P™). This means that the difference between
the target values b; and the output samples b; is an LWE tuple for which the
simulator knows the corresponding secrets, as required.

Security Under a New Conjecture. We conjecture that the above construc-
tion is secure. In particular, we conjecture that the adversary cannot distinguish
between 8 = 0 and § = 1 given the values:

(CRS = {CRS; = As; + &i}ic|q], pub = (A, C = Commit(k, 3)), {s; = seval 4 s?rf + B8i}iciq))

3 Recall that previously we relied on a “packed” homomorphic evaluation, where we
could evaluate a function f : {0,1}* — {0,1}™ on a commitment to x to get a
commitment ¢y = A-sy+ey+f(x)-2. The above relies on a slight variant that’s even
further packed and allows us to homomorphically evaluate a function g : {0, l}e —
Zg" over a commitment to x and derive a commitment ¢, = A - s, + €4 + g(x).

Candidate Obfuscation via Oblivious LWE Sampling 137

We refer to this as the homomorphic pseudorandom LWE samples (HPLS)
conjecture (see Conjecture 1 for a precise statement), and we argue heuristically
why we believe it to hold. Since CRS, pub completely determine the values b; =
A -s; + e;, revealing s; = s‘f"a' + sfrf + (8; also implicitly reveals e; = ef"a' +
efrf + (é;. We can think of the HPLS conjecture as consisting of two distinct
heuristic components. The first component is to argue that the values s;, e; look
pseudorandom and independent of 3 given only (CRS, A), but without getting
the commitment C. Intuitively, we believe this to hold since s,'i”f, e,frf are provably
pseudorandom (by the security of the PRF). Therefore, as long as we choose the
noise e?rf to be large enough to “smudge out” &;, we can provably argue that
s';rf +38; and e?rf + 3é; are pseudorandom and independent of 3. Unfortunately,
this does not suffice — we still need to rely on a heuristic to ague that there are
no computationally discernible correlations between these values and s‘f"a', ej"a'
respectively. We believe this should hold with most natural PRFs. Although the
first component is already heuristic, there is hope to remove the heuristic nature
of this component by explicitly analyzing the distributions s + s?rf, el +esval
for a specific PRF, and leave this as a fascinating open problem for future work.
The second heuristic component is to argue that security holds even in the
presence of the commitment C. This part implicitly involves a circular security
aspect between the pseudorandom function and the commitment. We’d like to
argue that the PRF key k and the bit § are protected by the security of the
commitment scheme, but we release s; = s +s?rf + 38;, where s£*2 depends on
the commitment randomness; nevertheless we’d like to argue that this does not
hurt commitment security since the value s?"a' is masked by the PRF output,
but this argument is circular since the PRF key is contained in the commitment!
This circularity does not easily lend itself to a proof, and we see much less hope
in removing the heuristic nature of the second component than the first. Still,
this type of circularity also seems difficult to attack: one cannot easily break the
security of the commitment without first breaking the security of the PRF and
vice versa.

Simplified Construction. In the full version, we also give a simplified direct
construction of functional encodings in the plain model that we conjecture to
satisfy indistinguishability based security. The simplified construction does not
go through the intermediate “oblivious LWE sampler” primitive. In contrast
to our main construction, which is secure under a non-interactive assumption
that two distributions are indistinguishable, the assumption that our simplified
construction is secure and interactive.

1.3 Discussion and Perspectives

Comparison to BDGM
We now give a detailed comparison of our results/techniques with those of Brak-
erski, Déttling, Garg, and Malavolta [BDGM20a] (BDGM). BDGM defined a

138 H. Wee and D. Wichs

primitive called split FHE, which they show implies iO under the LWE assump-
tion. They then gave a candidate instantiation of split FHE by heuristically com-
bining decisional composite residue (DCR) and LWE-based techniques, together
with the use of a random oracle. While they gave compelling intuition for why
they believe this construction of split FHE to be secure, they did not attempt
to formulate an assumption under which they could prove security. In our work,
we define a variant of split FHE that we call functional encodings. We then
provide an entirely new instantiation of functional encodings via oblivious LWE
sampling. The main advantages of our approach are:

— We get a provably secure construction of iO under the LWE assumption
along with an additional assumption that there is an oblivious LWE sampler,
where the latter is a clearly abstracted primitive, which we then instantiate
heuristically. In particular, we are able to confine the heuristic portion of our
construction to a single well defined component.

— We can prove security of our overall construction under a falsifiable, non-
interactive assumption that is independent of the function being obfuscated.

— Our construction of iO relies only on LWE-based techniques rather than the
additional use of DCR. In our opinion, this makes the construction conceptu-
ally simpler and easier to analyze. Furthermore, the construction is plausibly
post-quantum secure.

— We avoid any reliance on random oracles.

On a technical level, we lightly adapt the split FHE framework of BDGM.
In particular, our notion of functional encodings can be seen as a relaxed form
of split FHE, and our result that functional encodings imply iO closely follows
BDGM. The main differences between the two works, lie in the our respective
instantiations of split-FHE and functional encodings. We explain the differences
in the framework and the instantiation in more detail below.

Functional Encodings vs Split FHE. There are two differences between
our notion of functional encodings versus the split FHE framework of BDGM.
Firstly, our notion of functional encodings has a simplified syntax compared to
split FHE (in particular, we do not require any key generation or homomorphic
evaluation algorithms and the opening can depend on all of the randomness
r used to generate the encoding rather than just a secret key). While we find
the simplified syntax conceptually easier, it is not crucial, and our candidate
construction of functional encodings can be adapted to also match the syntactic
requirements of split FHE. The second difference is that we explicitly allow for
a CRS in functional encodings, and show that the CRS can be removed when
we go to XiO (in particular, we show that XiO in the CRS model implies XiO
in the plain model). In contrast, the work of BDGM considered split FHE in the
plain model (with indistinguishability rather than simulation security). Their
instantiation relies on a random oracle model and they argued heuristically that
the random oracle can be removed. The fact that we explicitly consider the

Candidate Obfuscation via Oblivious LWE Sampling 139

CRS model allows us to avoid random oracles entirely, and therefore reduce the
number of heuristic components in the final construction.*

Heuristic Instantiations. Both BDGM and our work provide a heuristic
instantiation of the main building block: split FHE and functional encodings,
respectively. These instantiations are concretely very different, and rely on dif-
ferent techniques. On a conceptual level, they also differ in the role that heuristic
arguments play. BDGM constructs a provably secure instantiation of split FHE
under the combination of LWE and DCR assumptions, in some idealized oracle
world (essentially, the oracle samples Damgard-Jurik encryptions of small val-
ues). They then give a heuristic instantiation of their oracle. However, there is
no attempt to define any standard-model notion of security that such an instan-
tiation could satisfy to make the overall scheme secure. In contrast, we construct
a provably secure instantiation of functional encodings under the LWE assump-
tion and assuming we have an “oblivious LWE sampler”, where the latter is a
cryptographic primitive in the standard model (with a CRS) with a well-defined
security requirement. We then give a heuristic construction of an oblivious LWE
sampler using LWE techniques. Although the security notion of oblivious LWE
sampling involves a simulator, our heuristic construction comes with a candidate
simulator for it. Therefore, the only heuristic component of our construction is a
clearly stated falsifiable assumption that two distributions (real and simulated)
are indistinguishable.

We conjecture that the split FHE construction of BDGM could similarly be
proven secure under the LWE assumption, DCR assumption, and some type
of “oblivious sampler” for Damgard-Jurik encryptions of random small values.
Moreover, the heuristic instantiation of the oracle in BDGM could likely be seen
as a heuristic candidate for such an oblivious sampler. However, BDGM does not
appear to have a plausible candidate simulator for this instantiation and hence
security does not appear to follow from any simple falsifiable assumption (other
than assuming that the full construction of split FHE is secure).

We note that BDGM (Sect.4.4) also presents an alternate construction of
split FHE based only the LWE assumption (without DCR) in some other ide-
alized oracle world. However, they were not able to heuristically instantiate the
oracle for this alternate construction, and hence it did not lead to even a heuris-
tic candidate for post-quantum secure iO in their work.’ Their construction
does yield a one-opening secure split-FHE / functional encoding under LWE,
and our one-opening secure scheme is in part inspired by it (and can be seen as
simplifying it). The main advantage of our scheme is that we can extend it to
many-opening security via oblivious LWE sampling, which we then instantiate
heuristically to get a candidate iO.

* We believe that this change could also be applied retroactively to remove the use of
a random oracles in BDGM.

5 As stated in BDGM Sect. 4.4: “We stress that, in contrast with the instantiation
based on the Damgard-Jurik encryption scheme (Sect.4.3), this scheme does not
satisfy the syntactical requirements to apply the generic transformations (described
in Sect. 4.2) to lift the scheme to the plain model.”.

140 H. Wee and D. Wichs

Comparison with FE
The line of work on building iO from simple, well-founded assumptions first
builds functional encryption (FE). A functional encryption scheme allows us to
encrypt a value x and generate secret keys for functions f so that decryption
returns f(z) while leaking no additional information about x. We also consider
Q-key security, where an adversary given an encryption of x and @ secret keys
for functions fi,..., fo should learn nothing about = beyond fi(z),..., fo(z).
A functional encoding scheme can be viewed as a relaxation of a secret-key
functional encryption where we allow the key for f to depend on x.

The state-of-the-art for functional encryption is analogous to that for func-
tional encoding:

— We have one-key secure public-key FE for bounded-depth circuits f :
{0,1}* — {0,1}™ from LWE with ciphertext size O(m) and key size O(1)
[GKP+13,GVW13,BGG+14].

— A construction of iO from one-key secure public-key FE for bounded-depth
circuits f : {0,1}° — {0,1}"™ with ciphertext size O(m!~¢) [BV15,AJ15]. The
latter is in turn implied by Q-key secure public-key FE for f : {0, 1}6 —{0,1}
with ciphertext size O(Q!~°).

— A construction of iO from Q-key secure secret-key FE bounded-depth circuits
f:4{0,1}" = {0,1}"™ with ciphertext size Q'~-poly(m). Our main candidate
is essentially the functional encoding analogue of such a secret-key FE scheme
(in the CRS model).

This analogue raises two natural open problems: Do the techniques in this work
also yield non-trivial FE schemes (that imply iO) with a polynomial security loss,
without passing through iO as an intermediate building block? Can we simplify
the constructions or assumptions underlying the FE schemes in [AJL+419, Agr19,
JLMS19,GJLS20,J1.S20] by relaxing the requirements from FE to functional
encodings (which would still suffice for 10)?

Comparison with Concurrent Works: [GP20,BDGM20b]

The recent work of [GP20] together with a follow-up to it [BDGM20b] (both
of which are concurrent and independent of our work), present new candidate
constructions of iO by adapting the BDGM [BDGM20a] framework. Just like
our work, they go through the route of constructing XiO in the CRS model,
and have instantiations that rely only on LWE-style techniques and are plausi-
bly post-quantum secure. While there are many high-level similarities between
these works and our work, the concrete construction and security assumption
are different. In terms of construction, the main difference lies in how the works
“re-randomize” the opening/hint that allows one to recover the output of the
computation. In our case, we do so via an “oblivious LWE sampler”, which is
instantiated by using an encrypted PRF key to produce an encrypted pseu-
dorandom LWE sample. The two works [GP20,BDGM20b] follow the original
construction of [BDGM20a] more closely and rely on homomorphically decrypt-

Candidate Obfuscation via Oblivious LWE Sampling 141

ing random ciphertexts in the CRS using a key cycle.® Our overall construction
is arguably somewhat simper than the others since it relies on a single homo-
morphic cryptosystem (a variant of GSW FHE) rather than switching between
two different homomorphic cryptosystems with different properties. In terms of
assumptions, both of the works [GP20,BDGM20b] prove security under a new
assumption that a certain cryptosystem satisfies a strong form of “circular secu-
rity” in the presence of some oracle. In the full version, we give a more detailed
comparison and our take on the circular security assumptions.

2 Preliminaries

2.1 Notations

We will denote by A the security parameter. The notation negl()\) denotes any
function f such that f(A) = A=“() and poly(\) denotes any function f such
that f(\) = O(X°) for some ¢ > 0. For a probabilistic algorithm alg(inputs),
we might explicit the randomness it uses by writing alg(inputs; coins). We will
denote vectors by bold lower case letters (e.g. a) and matrices by bold upper
cases letters (e.g. A). We will denote by a’ and AT the transposes of a and A,
respectively. We will denote by |x] the nearest integer to z, rounding towards
0 for half-integers. If x is a vector, |x] will denote the rounded value applied
component-wise. For integral vectors and matrices (i.e., those over Z), we use
the notation |r|,|R| to denote the maximum absolute value over all the entries.

We define the statistical distance between two random variables X and Y
over some domain {2 as: SD(X,Y) = 1> | X(w) — Y (w)|. We say that two
ensembles of random variables X = {X,}, Y = {Y)\} are statistically indistin-
guishable, denoted X X Y, if SD(X,,Y)) < negl(N).

We say that two ensembles of random variables X = {X,}, and Y = {Y,} are
computationally indistinguishable, denoted X ~ Y, if, for all (non-uniform) PPT
distinguishers Adv, we have |Pr[Adv(X,) = 1] — Pr[Adv(Y)) = 1]| < negl()). We
also refer to sub-exponential security, meaning that there exists some € > 0 such
that the distinguishing advantage is at most 27",

We assume familiarity with the learning-with errors (LWE) assumption
[Reg05], noise smudging (e.g., [AJL+12]), the Gadget Matrix G [MP12] and
lattice trapdoors [Ajt96, MP12]. See the full version for details.

3 Functional Encodings

3.1 Definition of Functional Encodings

A functional encoding scheme (in the CRS model) for the family Fy,; =
{f : {0,1}" = {0,1}™} of depth-t circuits consists of four PPT algorithms
crsGen, Enc, Open, Dec where Open and Dec are deterministic, satisfying the fol-
lowing properties:

5 Interestingly, since decrypting random ciphertexts is a (weak-)PRF, the two
approaches may be more similar than may appear.

142 H. Wee and D. Wichs

Syntax: The algorithms have the following syntax:
— CRS « crsGen(1*,19, Fy,n.¢) outputs CRS for security parameter 1* and
a bound @ on the number of openings;
— C « Enc(CRS,z € {0,1}";7) encodes z using randomness r;
— d <« Open(CRS, f : {0, 1}é —{0,1}™,i € [Q],x,r) computes the opening
corresponding to ¢’th function f;
— y < Dec(CRS, f,i,C,d) computes a value y for the encoding C and open-
ing d.
Correctness:

Dec(f, Enc(z,r), Open(f,z,r)) = f(z)

@-SIM Security: There exists a PPT simulator Sim such that the following
distributions for all PPT adversaries A and all =, f1,..., fQ « A(1%), the
following distributions of (CRS,C,ds,...,dq) are computationally indistin-
guishable (even given z, f1,..., f9):

— Real Distribution: CRS « crsGen(1*,19),C « Enc(CRS,z;7),d; «
Open(CRS, fi,i,2,7),i € [Q].
— Simulated Distribution: (CRS,C,dy,...,dg) < Sim({f*, fi(z)}icq)-

Succinctness: There exists a constant ¢ > 0 such that, for CRS «

crsGen(1*, 19, Fy i t), C « Enc(CRS, x;7), d < Open(CRS, f,i,z,7) we have:

|CRS| = poly(Q, A\, £, m, t),|C| = poly(A, £, m,t),|d] = ml_apoly()\,é, t).

In our discussion, we also refer to indistinguishability-based security, a relax-
ation of Q-SIM security:

Q-IND Security: For all PPT adversaries A and all xo,x1, f*,..., @ — A1Y
such that f'(xo) = f*'(x1) for all i € [Q], the following distributions of
(CRS,C,dy,...,dg) are computationally indistinguishable for § = 0 and

g=1
CRS «— crsGen(1*,19), C «— Enc(CRS, 2”;7),d; «— Open(CRS, f*,i,2°,r),i € [Q]

Remark 1 (Comparison with split-FHE). One can think of functional encodings
as essentially a relaxation of split-FHE, where we remove the explicit require-
ments for decryption (and secret keys) and for homomorphic evaluation. This
simplifies both the syntax and the security definition. In the language of BDGM,
Open corresponds to a decryption hint for an encryption of f(x), obtained by
applying partial decryption to homomorphic evaluation of f on the encryption of
x. Note that in BDGM, the hint should be computable given the decryption key,
whereas we allow the hint to depend on the encryption/commitment random-
ness. Finally, BDGM circumvents the impossibility of simulation-based security
for many-time security in the plain model by turning to indistinguishability-
based security, whereas we rely on a CRS.

Remark 2 (Comparison with functional encryption). Functional encoding is very
similar to (secret-key) functional encryption where given an encryption of 2 and
a secret key for f, we learn f(x) and nothing else about z. A crucial distinction
here is that Open also gets z as input.

Candidate Obfuscation via Oblivious LWE Sampling 143

4 Homomorphic Commitments with Short Openings

In this section, we describe a homomorphic commitment scheme with short open-
ings.

Lemma 1 (Homomorphic computation on matrices [GSW13,BGG+14]).
Fiz parameters m,q,f. Given a matric C € Z;”Xémlogq and a circuit f :
{0,1}Z — {0,1} of depth t, we can efficiently compute a matriz Cy such

that for all x € {0,1}", there exists a matriz Hc px € Zfmlogaxmlogd yth
Hc, x| = mP® such that”

(C-x'®G) Hg x=C;— f(x)G (1)

where G € Zg”mlogq is the gadget matriz. Moreover, He 5« is efficiently com-
putable given C, f,x.

Using the “packing” techniques in [MW16,BTVW17,PS19], the above rela-
tion extends to circuits with m-bit output. Concretely, given a circuit f :
{0, 1}13 — {0,1}"™ of depth ¢, we can efficiently compute a vector cs such that
for all x € {0, l}é, there exists a vector hg ¢« € ZFm o8 with lhe x| = mO®
such that

(C—x"®G) hcjx=cs— f(x) % (2)

where f(x) € {0,1}"" is a column vector. Concretely, let fi,..., fm : {0,1}"" —
{0, 1} denote the circuits computing the output bits of f. Then, we have:

cy=Y Cs-G'(1;- 9 (3)
j=1

hefx =) Heypx G (15 9)

j=1

where 1; € {0,1}" is the indicator column vector whose j’th entry is 1 and
0 everywhere else, so that f(x) = 3, fi(x) - 1,. Here, hc, s is also efficiently
computable given C, f, x.

Construction 1 (homomorphic commitments pFHC). The commitment
scheme pFHC (“packed fully homomorphic commitment”) is parameterized by
m,{ and n,q, and is defined as follows.

— Gen chooses a uniformly random matriz A « Z7**".

" Note that if we write C = [Cy | --+ | C,] where Ci,...,Cy € ZJ"*™!°87 and
x = (x1,...,2¢), then

C—x"®G=[C—x:G|...| C,—z,G]

144 H. Wee and D. Wichs

- Com(A € Zj"",x € {O,I}Z;R € Z;L”mlogq,E € zZmxtmlogdy outputs a

commitment
C:=AR+x' ® G+E e z)>mleq

Here, R — nglmlogq’E - melmlogq

~ Eval(f:{0,1}* = {0,1}™",C € zytmloed) for a boolean circuit f : {0, 1} —
{0,1}™, deterministically outputs a (column) vector cy € Z7'. Here, cy is the
same as that given in (2).

~ Evalopen(f, A € Z™" x € {0,1}* R € Zpxtmlosa | g zmxtmlosa): deter-
ministically outputs (column) vectors vy € Zj}, ey € Zy".

Lemma 2. The above commitment scheme pFHC satisfies the following proper-
ties:

— Correctness. For any boolean circuit f : {0, 1}E — {0,1}™ of depth t, any
x € {0, l}e, any A € Z;*" R € ngzmlogq,E € Zmxtmlosd ye have
C :=Com(A,x;R,E), cy:=Eval(f,C), (ry,er):=Evalpe(f, 4 ,%x R,E)

satisfies
cy ZAI‘f—I—f(X) -g—&—ef EZ;n
where f(x) € {0,1}™ is a column vector and |es| = |E| - mP®.

- Privacy. Under the LWE assumption, for all x € {0, 1}z7 we have:
A,Com(A,x) ~. A, Com(A,0)

Proof. Correctness follows from substituting C = AR + x' ® G + E into (2),
which yields

cr= (AR—‘r E) . hC,f,x + f(.%‘) . % =A-R- hC,f,x +f(],‘) . % + E- hC,f,x .
———— ———
ry ef
The bound on |e;| follows from |hg ;x| = mP®. Privacy follows readily from

the pseudorandomness of (A, AR + E), as implied by the LWE assumption.

Handling. f : {071}z — Zj'. Next, we observe that we can also augment
pFHC with a pair of algorithms Eval?, Evall__. to support bounded-depth circuits

open

£:{0,1}" — Z7" (following [PS19]). That is,

— Correctness II. For any boolean circuit f : {0, 1}6 — Z; of depth t, any
x € {0,1}, any A € Zm*» R € ZpXmloga | ¢ Zmxtmlosd e have

C:=Com(A,x;R,E), c;y:=Eval’(f,C), (ry,ey):=Evalle.(f, A% R,E)

satisfies
cy=Ar;+ f(x) +ey € Zy'

where f(x) € Z7" is a column vector and |ef| = |E| -mOW,

Candidate Obfuscation via Oblivious LWE Sampling 145
Concretely, let fi,..., fmiogq : {0,1}" — {0,1} denote the circuits computing
the output of f interpreted as bits. Then, we have:
mlogq

Z Cy-Gl(1,0g") (4)

mlogq

he px = Z Hef,x- G '(1;0g")

5 1-SIM Functional Encoding from LWE

We construct a 1-SIM functional encoding scheme for bounded-depth circuits
Fo,m.+ based on the LWE assumption. The scheme does not require a CRS. Such
a result is given in [BDGM20, Sect.4.4], starting from any FHE scheme with
“almost linear” decryption; we provide a more direct construction that avoids
key-switching.

Construction 2
- Enc(x; A, R,E,s,e). Sample
A TR XIS IO o 7 o g

Compute
C := pFHC.Com(A,x;R,E), b:= As+ e

and output
(A,C,b)

- Open(f,x;A,R,E,s,e): Compute (ry,ef) = pFHC.Evalgpen(f, A, x, R, E)
and output
d:= rg+sec ZZ

— Dec(f,(A,C,b),d): Compute cy := pFHC.Eval(f, C) and output
roundg s (cy +b — Ad) € {0,1}"

where round, /o = Zy* — {0, 1}™ is coordinate-wise rounding to the nearest
multiple of q/2.

Theorem 3. Under the LWE, ., assumption, the construction above is a
1-SIM functional encoding.

We defer the proof to the full version.

146 H. Wee and D. Wichs

Remark 3 (An attack given many openings.). We describe an attack strategy
on our 1-SIM scheme in the Q-SIM setting, namely, when the adversary gets
openings di,...,dg corresponding to many functions fr.., f9. (We stress
that this does not contradict our preceding security claim.) Observe that we

have
di =R- hC,fi,x +s

where hg fi (as defined in (2)) is efficiently computable given x, C, f*. In the
case of linear functions, hg i x does not even depend on x. This gives us Q
linear equations in the unknowns R,s, and allows us to recover R and break
many-opening security in both the indistinguishability-based and simulation-
based settings as long as we can choose f%’s in such a way that the equations
are linearly independent.

6 Oblivious Sampling from a Falsifiable Assumption

Oblivious LWE sampling allows us to compute) seemingly random LWE sam-
ples b; = As; + e; relative to some LWE matrix A, by applying some determin-
istic function to a long CRS that is independent of A along with a short public
value pub that can depend on A but whose length is independent of Q). We
require that there is a simulator that can indistinguishably program CRS, pub
to ensures that the resulting samples b; “almost match” some arbitrary LWE
samples E)Z given to the simulator as inputs. Ideally, the simulator could ensure
that b; = b; match exactly. However, we relax this and only require the simula-
tor to ensure that b; = b + b, for some LWE sample b; = AS; + &; for which
the simulator knows the corresponding secret s;. Note that the simulator does
not get the secrets §; for the target values b; = AS§; + €;, but indistinguishabil-
ity should hold even for a distinguisher that gets the secrets s; for the output
samples b; = As; + e;. In the full version, we show that we can construct a
strong form of oblivious sampling using the notion of invertible sampling (in the
CRS model) from [TKOS10,DKR15, ACI420], which can be constructed from iO.
This highlights that the notion is plausibly achievable. We then give a heuris-
tic constructions of oblivious LWE sampling using LWE-style techniques and
heuristically argue that security holds under a new falsifiable assumption.

6.1 Definition of Oblivious Sampling

An oblivious LWE sampler consists of four PPT algorithms: CRS «
crsGen(1*,19), pub — Init(A), b; = Sample(CRS, pub,i) and
(CRS, pub, {8i}iciq) Sim(lA,lQ,A,{Bi}ie[Q]). The Sample algorithm
is required to be deterministic while the others are randomized. Let
(TrapGen, LWESolve) be the lattice trapdoor algorithms for generating A with a
trapdoor and solving LWE using the trapdoor respectively.

Definition 1. An (n,m,q, X, Boiwe) oblivious LWE sampler satisfies the fol-
lowing properties:

Candidate Obfuscation via Oblivious LWE Sampling 147

Correctness: Let Q@ = Q(N\) be some polynomial. Let (A,td) «
TrapGen(1™,1™, q), CRS « crsGen(1*,19), pub « Init(A). Then, with over-
whelming probability over the above values, for all i € [Q)] there exists some
i € Zy and e; € Zg' with lleillco < Bowwe such that b; = As; + e;.

Security: The following distributions of (CRS, A, pub, {s;}icjq)) are computa-
tionally indistinguishable:

— Real Distribution: Sample (A,td) <« TrapGen(1”,1™,q), CRS «
crsGen(1*,19), pub « Init(A). For i € [Q] set b; = Sample(CRS, pub, i),
s; = LWESolve(b;). Output (CRS, A, pub, {s;}ic[q])-

— Simulated Distribution: Sample (A, td) < TrapGen(1",1™,q), 8; « Zy, &;
— X™ and let b; = A8; + &;. Sample (CRS, pub, {Si}iejq)) < Sim(1*,19,
A {E’i}ie[Q]) and let s; = 8; +8;. Output (CRS, A, pub, {s; }ic[q))-

Observe that the algorithm pub « Init(A) in the above definition does not
get @ as an input and therefore the size of pub is independent of). On the
other hand, the algorithm CRS « crsGen(1*,1%) does not get A as an input
and hence CRS must be independent of A. This is crucial and otherwise there
would be a trivial construction where either CRS or pub would consist of Q@ LWE
samples with respect to A.

Note that the security property implicitly also guarantees the following cor-
rectness property of the simulated distribution. Assume we simulate the val-
ues (CRS, A, pub, {S;}ic(q)) < Sim(1*, 19 A, {Bi}ie[Q]) where the simulator is
given LWE samples b; = AS§; + & as input. Then the resulting (CRS, A, pub)
will generate samples b; = Sample(CRS, pub, i) of the form b; = b; + b; where
BZ— = AS; + €; some small ;. This is because, in the simulation, we must have
b; = As; + e; where ||e;||cc < B as otherwise it would be trivial to distinguish
the simulation from the real case. But s; = §; + 8; and so e; = &; + €;. This
implies €; = e; — €; will be small.

Remark 4 (Naive construction fails). Consider the naive construction:
pub:=(AS+E), CRS:=(r1,...,rg), b;:=(AS+E)r;

where
A — Z;nxn’ S — Zglxmlogq, E — memlogq r; — Xmlogq

We stress that the simulator receives a random A but not the corresponding
trapdoor. Indeed, under the LWE assumption, there does not exist an efficient
simulator for the naive construction. In more detail, the simulator is required on

input (A, {Bi}ie[Q]) to output ({r;}ic(q), B, {8i}ic[q)) such that
({ri}ierq) AS + E, {Sri}iciq)) ~c ({ri}ie(q) B, {8i +8i}iciq))

We claim that checking whether Br; ~ bi+AS; yields a distinguisher for whether
(A, {f)i}ie[Q]) is drawn from LWE versus uniform distribution. The proof relies
on the fact that given ({r;};c(q), {Sri}iciq)) for @ > m, we can solve for S
via Gaussian elimination, which means that the matrix B must be of the form

148 H. Wee and D. Wichs

ASy+ Eq and therefore any b; that passes the check satisfies b; ~ A(Sor; —§;).
Note that the LWE distinguisher works even if it does not know Sg, Eg.

6.2 Heuristic Construction

We now give our heuristic construction of an oblivious LWE sampler. Let
n,m,q be some parameters and X, Xprf, X be distributions over Z that are
B,Bp,f,é bounded respectively. Let D be an algorithms that samples tuples
(s,e) where s « Z and e « Xpri- Assume that D uses v random coins, and
for r € {0,1}" define (s,e) = D(r) to be the output of D with randomness r.
Let PRF : {0,1}* x {0,1}* — {0,1}" be a pseudorandom function. We rely on
the homomorphic commitment algorithms Com, Eval?, Evalgpen with parameters
n,m,q,x from Sect. 4.

Construction 4. We define the oblivious LWE sampler as follows:

~ CRS « crsGen(1*,19): CRS := (CRSy,...,CRSg) where CRS; « Ly

— pub «— Init(A): Sample a PRF key k «— {0,1})‘ and set a flag § := 0. Set
pub := (A, C) where C «— Com(A, (k,3)).

— b; = Sample(CRS, pub,i): Let g; crs; A : {0, 1}’\+1 — Zy* be a circuit that
contains the values (i, A, CRS;) hard-coded and performs the computation:

gicrs, a(k,B): Let (s?,eP™) = D(PRF(k,)). Output As?™ + e + 3- CRS;.

Output b; = Eval?(g; crs, A, C).

~ (CRS, pub, {8 }icjq)) < Sim(1*, 19, A, {b;}iciq)): Set CRS := (by,...,bg).
Set the flag B = 1 and pub := (A,C) for C = Com((k,5);R,E)
where R,E is the randomness of the commitment. Let (r$? e$?) =
EvalZ ., (gi,crs;,as A, (k, B),R,E) and (s?",e?") = D(PRF(k,7)). Set §; =

[}
prf
rgval+si .

Form of Samples b;. Let us examine this construction in more detail and see
what the samples b; look like.

In the real case, where pub « Init(A), we have pub = (A, C) where C =
Com(A, (k,0); (R,E)). For b; = Sample(CRS, pub, i) we can write

b= A P) 4 (e 1 o))
where (sP",e”") = D(PRF(k,4)) are sampled using the PRF and (r2! egw) =
Evalg,en(9is A, (K, 0), R, E) come from the homomorphic evaluation.

In the simulated case, where CRS, pub are chosen by the simulator, we have
pub = (A, C) where C = Com(A, (k,1); (R,E)) and CRS; = b; = A§; + é;. For
b; = Sample(CRS, pub, i) we can write

Candidate Obfuscation via Oblivious LWE Sampling 149

S; €;
b = A (r2 + 877 +8)) + (e + e +&;) (6)

where (sfnc e”) = D(PRF(k, 7)) are sampled using the PRF and (reval egvdl) =

?

Evald,en(9i.crs;.a, A, (k,0), R, E) come from the homomorphic evaluatlon.

Correctness. Equation 5 implies that the scheme satisfies the correctness of an
n,m, q, X, Boiwe oblivious LWE sampler, where Boywe is a bound ||e;||e. In
particular, B < Bys + B - mo(t), where t is the depth of the circuit g;crs,; a
(which is dominated by the depth of the PRF).

6.3 Security Under a New Conjecture

The security of our heuristic oblivious sampler boils down to the indistinguisha-
bility of the real and simulated distributions, which is captured by the following
conjecture:

Congecture 1 (HPLS Conjecture). For § € {0,1}, let us define the distribution
DIST(3) over

({b; = AS; + &i}icro, A, C, {s; =t + 8" + 8- 8i}icr))
where

— A = IS — I8 — X, by = AS; + &
(k G)

—k—{0,1}", (C=A-R+E+ (k3 ®G) — Com(. (k,B); (R, E))
~ (sP",e?") := D(PRF(k,i)), (r$® e!) = Evall,..(g,5. A, (k,B),RE)
where)

9;5,. 4k,) Let (sP,eP") = D(PRF(k,4)). Output As?" + e + 3-b;.

— s = (22 1P 38,

The (sub-exponential) homomorphic pseudorandom LWE samples (HPLS) con-
jecture with parameters (n,m,q, X, X, Xprf) and pseudodrandom function PRF
says that the distributions DIST(0) and DIST(1) are (sub-exponentially) com-
putationally indistinguishable.

When we do not specify parameters, we assume the conjecture holds for
some choice of PRF and any choices of n,q, x, ¥ and any polynomial m, such
that LWE, 4, and LWE, , y assumptions hold and xn+ smudges out error of
size BJrB'mO(t), where ¢ is the depth of the circuit g; crs; a (Which is dominated
by the depth of the PRF).

150 H. Wee and D. Wichs

Observations. We begin with two simple observations about the conjecture:

— The distribution DIST(() satisfies the following consistency check for both
B =0 and § =1, namely

Evalq(gi7A§i+éi7A, C) ~ ASZ*

This means that we cannot rely on homomorphic evaluation to distinguish
between the two distributions. In addition, note that the distinguisher can
compute

| i .
e; := Eval’(g; as,+6;,4,C) — As; = e + e + 3¢

— If we omit r‘f"a' from s;, then indistinguishability follows from standard
assumptions. Concretely, under the LWE assumption and security of PRF,
we have:

({AS; + & }icigp A, C, {s, e icia)
~e ({A8; +&}icio, A, C, {8 + 81, +&}icia)

By privacy of Com, we can replace C with a commitment to 0, and then
security follows from PRF security plus noise smudging. In particular e';rf
smudges out é;.

That is, the non-standard /heuristic nature of Conjecturel arises from (1) the

eval eval

interaction and potential correlations between r{*® and S?rf (and between e$
and e™), and (2) the fact that giving out C = Com(A, (k, §)) introduces cir-
cularity between the PRF key and the commitment randomness — commitment
security is needed to ensure PRF security by making sure that the PRF key is
hidden by the commitment, while at the same time the PRF security is needed
to ensure commitment security by making sure that the values s”', e mask
any information about the commitment randomness contained in r¢"?! 3. We
defer further discussion on the conjecture, its plausibility, and analysis of zeroiz-
ing attacks to the full version.

Oblivious LWE Sampling from the New Conjecture. We now that the
conjecture implies the (sub-exponential security) of our oblivious LWE sampler
in Definition 1.

Lemma 3. Under the homomorphic pseudorandom LWE samples (HPLS) con-
jecture (Conjecture 1) (with sub-exponential security), the oblivious sampler con-
struction is (sub-exponentially) secure.

We defer the proof to the full version.
7 Q-SIM Functional Encodings from Oblivious Sampling
We construct a @-SIM functional encoding scheme (crsGen, Enc, Open, Dec)

for bounded-depth circuits F ., from LWE and an oblivious LWE sampler
(OLWE.crsGen, Init, Sample).

Candidate Obfuscation via Oblivious LWE Sampling 151

Construction 5

— crsGen(1*,19, F 1n.t). Output OLWE.crsGen(1*,19).
— Enc(CRS, x): Sample

(A, td) — TrapGen(1™,1™, q), pub < Init(CRS, A), R « z}*‘mlosd | . ymxtmlogq

Compute C := pFHC.Com(A, x; R, E) and output (pub, A, C).
— Open(fi,x): Compute

(rfi.,efi) = pFHC,Evanpe"(fi,A,x, R,E), b, :=Sample(CRS, pub,i), s;:= LWESolvey(b;)

and output d; :=ryi +s; € Zj.
— Dec(f%, (pub, A, C),d;): Compute

csi := pFHC.Eval(f,C), b; := Sample(CRS, pub, i)
and output y; := round, s (cyi +b; — Ad;) € {0,1}™.

Theorem 6. Under the LWE assumption and the existence of a (n,m,q,x, B)
oblivious LWE sampler, the construction above is a Q-SIM functional encoding.

We defer the proof to the full version.

8 IO from Functional Encodings

See the full version for how to construct XiO from functional encodings. We then
rely on the work of [LPST16a], which shows that (sub-exponentially secure) XiO
+ LWE implies iO. Below, we summarize the main results.

Theorem 7. The existence of (sub-exponentially secure) functional encoding
implies (sub-exponenitally secure) XiO. In particular, sub-exponentially secure

functional encodings and sub-exponential security of LWE imply the existence of
i0.

Corollary 1. Assuming that there ezists a sub-exponentially secure oblivious
LWE sampler and that the sub-exponentially secure LWE assumption holds, there
exists 10.

Corollary 2. Assuming the sub-exponential security of Conjecture 1 and the
sub-exponential security of LWE, there exists i0.

152 H. Wee and D. Wichs

Acknowledgments. We thank Yilei Chen and Vinod Vaikuntanathan for insightful
discussions on cryptanalysis and bootstrapping.

References

[ACI+20]

[ADGM17]

[Agrl9]

[AJ15]

[AJL+12]

[AJL+19]

[Ajt96]

[AP20]

[BDGM19]

[BDGM?20a]

[BDGM?20b)]

[BGG-+14]

[BGI+01]

Agrikola, T., Couteau, G., Ishai, Y., Jarecki, S., Sahai, A.: On pseudo-
random encodings. In: TCC, Cryptology ePrint Archive, Report 2020/445
(2020). https://eprint.iacr.org/2020/445

Apon, D., Déttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indis-
tinguishability obfuscations of circuits over GGH13. In: Chatzigiannakis,
I, Indyk, P., Kuhn, F., Muscholl, A. (eds.) ICALP 2017, LIPIcs, Schloss
Dagstuhl, vol. 80, pp. 38:1-38:16, July 2017

Agrawal, S.: Indistinguishability obfuscation without multilinear maps:
new methods for bootstrapping and instantiation. In: Ishai and Rijmen
[IR19], pp. 191-225

Ananth, P.; Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part 1. LNCS, vol. 9215, pp. 308-326. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6_15

Asharov, G., Jain, A., Lépez-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval and Johansson
[PJ12], pp. 483-501

Ananth, P.; Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability
obfuscation without multilinear maps: new paradigms via low degree weak
pseudorandomness and security amplification. In: Boldyreva and Miccian-
cio [BM19], pp. 284-332

Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th ACM STOC, pp. 99-108. ACM Press, May 1996
Agrawal, S.; Pellet-Mary, A.: Indistinguishability obfuscation without
maps: attacks and fixes for noisy linear FE. In: Canteaut and Ishai [CI20],
pp. 110-140

Brakerski, Z., Dottling, N., Garg, S., Malavolta, G.: Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles.
In: Hofheinz and Rosen [HR19], pp. 407437

Brakerski, Z., Dottling, N., Garg, S., Malavolta, G.: Candidate iO from
homomorphic encryption schemes. In: Canteaut and Ishai [CI20], pp. 79—
109

Brakerski, Z., Déttling, N., Garg, S., Malavolta, G.: Factoring and pair-
ings are not necessary for 10: Circular-secure LWE suffices. Cryptology
ePrint Archive, Report 2020/1024 (2020)

Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533-556. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5_30

Barak, B., et al.: On the (Im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

https://eprint.iacr.org/2020/445
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/3-540-44647-8_1

[BGMZ18]

[BLJ4-20]

[BM19]

[BRF13)

[BTVW17]

[BV15]

[CCH+19]

[CGH17]

[CHL+15]

[CHVW19]

[C120]

[CLLT16

[CLLT17]

[CVW18]

[DKR15]

Candidate Obfuscation via Oblivious LWE Sampling 153

Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: prov-
able security against zeroizing attacks. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 544-574. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03810-6_20

Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine
determinant programs: a framework for obfuscation and witness encryp-
tion. In: Vidick, T. (ed.) ITCS 2020, LIPIcs, vol. 151, pp. 82:1-82:39,
January 2020

Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part III. LNCS, vol.
11694. Springer, Heidelberg, August 2019

Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC.
ACM Press, June 2013

Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 264-302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2_10

Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171-190.
IEEE Computer Society Press, October 2015

Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Statistical zeroizing
attack: cryptanalysis of candidates of BP obfuscation over GGH15 mul-
tilinear map. In: Boldyreva and Micciancio [BM19], pp. 253-283

Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching
program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part III. LNCS, vol. 10212, pp. 278-307. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7_10

Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3—12. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46800-5_1

Chen, Y., Hhan, M., Vaikuntanathan, V., Wee, H.: Matrix PRFs: con-
structions, attacks, and applications to obfuscation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 55-80. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_3

Canteaut, A., Ishai, Y. (eds.): EUROCRYPT 2020, Part I. LNCS, vol.
12105. Springer, Heidelberg, May 2020

Coron, J.S.,; Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. In: Robshaw and Katz [RK16], pp. 607-628
Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on
indistinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017,
Part I. LNCS, vol. 10174, pp. 41-58. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54365-8_3

Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577—
607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0-20

Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally
composable, multiparty computation in constant rounds. In: Dodis and
Nielsen [DN15], pp. 586-613

https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-030-36030-6_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20

154 H. Wee and D. Wichs

[DN15]

[FRS17]

[GGH13a)]

[GGH+13b]

[GGH15]
[GH19]

[GIK18]

[GILS20]

[GKP+13)

[GLW14]

[GP20)]

[GRO7]

[GSW13]

[GVW13]

[GVW15]

[HR19]

Dodis, Y., Nielsen, J.B. (eds.): TCC 2015, Part II. LNCS, vol. 9015.
Springer, Heidelberg, March 2015

Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT attacks on
obfuscation with linear overhead. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 242-271. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70700-6-9

Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1-17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9_1

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40-49. IEEE Computer Society Press,
October 2013

Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis and Nielsen [DN15], pp. 498-527

Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In:
Hofheinz and Rosen [HR19], pp. 438—464

Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products.
Cryptology ePrint Archive, Report 2018/756 (2018). https://eprint.iacr.
org/2018/756

Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation
from simple-to-state hard problems: new assumptions, new techniques,
and simplification. Cryptology ePrint Archive, Report 2020/764 (2020).
https://eprint.iacr.org/2020/764

Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh
et al. [BRF13], pp. 555-564

Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part 1. LNCS, vol. 8616, pp. 426-443. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_24

Gay, R., Pass, R.: Indistinguishability obfuscation from circular security.
Cryptology ePrint Archive, Report 2020/1010 (2020)

Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194-213. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-70936-7_11

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75-92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4_5

Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Boneh et al. [BRF13], pp. 545-554

Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.)
47th ACM STOC, pp. 469-477. ACM Press, June 2015

Hofheinz, D., Rosen, A. (eds.): TCC 2019, Part II. LNCS, vol. 11892.
Springer, Heidelberg, December 2019

https://doi.org/10.1007/978-3-319-70700-6_9
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://eprint.iacr.org/2018/756
https://eprint.iacr.org/2018/756
https://eprint.iacr.org/2020/764
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5

[IKOS10]

[IR19]

[JLMS19]

[JLS20]

[KS17]

[Lin16]

[Lin17]

[LPST16a]

[LPST16b]

[LT17]

[LV16]

[MP12]

[MSZ16]

[MW16)

[Pel18]

[PJ12]

Candidate Obfuscation via Oblivious LWE Sampling 155

Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: On invertible
sampling and adaptive security. In: Abe, M. (ed.) ASTACRYPT 2010.
LNCS, vol. 6477, pp. 466—-482. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8_27

Ishai, Y., Rijmen, V. (eds.): EUROCRYPT 2019, Part I. LNCS, vol.
11476. Springer, Heidelberg, May 2019

Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of
constant-degree expanding polynomials overa R to build Q. In: Ishai
and Rijmen [IR19], pp. 251-281

Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003
(2020)

Katz, J., Shacham, H. (eds.): CRYPTO 2017, Part I. LNCS, vol. 10401.
Springer, Heidelberg, August 2017

Lin, H.: Indistinguishability obfuscation from constant-degree graded
encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part I. LNCS, vol. 9665, pp. 28-57. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3_2

Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In: Katz and Shacham [KS17], pp. 599-629

Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation
with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G.,
Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 447-462.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-
817

Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized
encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A, Part I. LNCS, vol. 9562, pp. 96-124. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9_5

Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In: Katz and Shacham [KS17], pp. 630-660
Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.)
57th FOCS, pp. 11-20. IEEE Computer Society Press, October 2016
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval and Johansson [PJ12], pp. 700-718

Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw and Katz [RK16], pp. 629-658

Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
II. LNCS, vol. 9666, pp. 735-763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5_26

Pellet-Mary, A.: Quantum attacks against indistinguishablility obfusca-
tors proved secure in the weak multilinear map model. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 153—
183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-
0-6

Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol.
7237. Springer, Heidelberg, April 2012

https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-319-96878-0_6

156

H. Wee and D. Wichs

[PS19]

[Reg05]

[RK16]

Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89-114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7_4

Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84-93. ACM Press, May 2005

Robshaw, M., Katz, J. (eds.): CRYPTO 2016, Part II. LNCS, vol. 9815.
Springer, Heidelberg, August 2016

https://doi.org/10.1007/978-3-030-26948-7_4

Non-Malleable Commitments

®

Check for
updates

Black-Box Non-interactive Non-malleable
Commitments

Rachit Garg!(®™ Dakshita Khurana?, George Lu', and Brent Waters'3

! University of Texas at Austin, Austin, USA
{rachg96,gclu,bwaters}@cs.utexas.edu
2 University of Illinois Urbana-Champaign, Urbana, USA
dakshita@illinois.edu
3 NTT Research, Sunnyvale, USA

Abstract. There has been recent exciting progress on building non-
interactive non-malleable commitments from judicious assumptions. All
proposed approaches proceed in two steps. First, obtain simple “base”
commitment schemes for very small tag/identity spaces based on a
various sub-exponential hardness assumptions. Next, assuming sub-
exponential non-interactive witness indistinguishable proofs (NIWIs),
and variants of keyless collision resistant hash functions, construct non-
interactive compilers that convert tag-based non-malleable commitments
for a small tag space into tag-based non-malleable commitments for a
larger tag space.

We propose the first black-box construction of non-interactive non-
malleable commitments. Our key technical contribution is a novel imple-
mentation of the non-interactive proof of consistency required for tag
amplification. Prior to our work, the only known approach to tag ampli-
fication without setup and with black-box use of the base scheme (Goyal,
Lee, Ostrovsky and Visconti, FOCS 2012) added multiple rounds of inter-
action.

Our construction satisfies the strongest known definition of non-
malleability, i.e., CCA (chosen commitment attack) security. In addi-
tion to being black-box, our approach dispenses with the need for sub-
exponential NIWIs, that was common to all prior work. Instead of NIWIs,
we rely on sub-exponential hinting PRGs which can be obtained based
on a broad set of assumptions such as sub-exponential CDH or LWE.

1 Introduction

Non-malleable commitments have been a well studied primitive in cryptography
since their introduction by Dolev, Dwork and Naor [11]. They are an important

This material is based on work supported in part by DARPA under Contract
No. HR001120C0024. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government or DARPA.

© International Association for Cryptologic Research 2021

A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12698, pp. 159-185, 2021.
https://doi.org/10.1007/978-3-030-77883-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77883-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-77883-5_6

160 R. Garg et al.

component of nearly all multi-party protocols including multiparty computa-
tion, coin flipping and secure auctions. These commitments ensure security in
the presence of “man in the middle” attacks. A man-in-the-middle adversary
participates in two or more instantiations of a protocol, trying to use informa-
tion obtained in one execution to breach security in the other protocol execution.
A non-malleable protocol should ensure that an adversary gains no advantage
from such behavior.

Non-Interactive Non-Malleable Commitments. For several years, provably secure
constructions of non-malleable commitments required several rounds of interac-
tion. On the other hand, practical constructions need to be highly efficient and
often non-interactive. For these reasons, in practice, we often heuristically assume
that a family of (keyless) SHA-like hash functions is non-malleable. Our tech-
nique gives the first provably secure black-box construction of non-interactive
non-malleable commitments, taking us a step closer to efficient realizations.

We will focus on perfectly binding and computationally hiding non-
interactive commitments. For these commitments, the perfect binding require-
ment asserts that a commitment cannot be opened to two different messages
m # m’. Specifically, even for a maliciously generated commitment string c,
there do not exist two openings to messages m and m’ such that m # m’. The
(computational) hiding property asserts that for any two messages, m and m’
(of the same length), the distributions of commitments com(m) and com(m’) are
computationally indistinguishable.

Loosely speaking, a commitment scheme is said to be non-malleable if no
adversary, given a commitment com(m), can efficiently generate a commitment
com(m’), such that the message m/' is related to the original message m. This is
equivalent (assuming the existence of one-way functions) to a tag-based notion
where the commit algorithm obtains an additional input, a tag € {0,1}", and
where the adversary is restricted to using a tag, or identity, that is different
from the tag used to generate its input commitment. We will rely on tag-based
definitions throughout this paper. We will also model man-in-the-middle secu-
rity as a CCA (chosen commitment attack) game between the adversary and a
challenger.

Specifically, the hiding game is modified to give the adversary oracle access to
an inefficient value function CCA.Val where on input a string ¢, CCA.Val(tag, ¢)
returns m if CCA.Com(tag, m;r) — c for some r. The adversary must first specify
a challenge tag*® along with messages mg, m]. He is then allowed oracle access
to CCA.Val(tag,-) for every tag # tag*, and can make an arbitrary (polyno-
mial) number of queries before and after obtaining the challenge commitment.!
This CCA definition is the strongest known definition of non-malleability. In the
non-interactive setting, the often-used definition of (concurrent) non-malleability

! The assumption that the commitment takes input a tag is w.l.o.g when the tag
space is exponential. As is standard with non-malleable commitments, tags can be
generically removed from this construction by setting the tag as the verification key
of a signature scheme, and signing the commitment string using the signing key.

Black-Box Non-interactive Non-malleable Commitments 161

w.r.t. commitment is implied by this definition where the adversary is only
allowed to make parallel oracle queries once it obtains the challenge commit-
ment.

Our Results, in a Nutshell. In this work, we give the first black-box construc-
tion of CCA secure commitments, under weaker assumptions than prior work.
In terms of assumptions, we substitute NIWIs with hinting PRGs [25] which can
be instantiated under several standard assumptions like CDH and LWE. Addi-
tionally, while all prior work recursively applied NIWIs to prove cryptographic
statements, making heavy non-black-box use of cryptography, our constructions
are black-box. Combining this with base schemes due to [21], we obtain CCA
secure commitments from black box use of the following assumptions: subexpo-
nential hinting PRGs, subexponential keyless collision-resistant hash functions,
subexponential one-way functions against quantum adversaries, and subexpo-
nential one-way functions in BQP with hardness against classical adversaries.
We note that subexponential hinting PRGs can be obtained based on black-box
use of any group where CDH is subexponentially hard.

We believe this takes us one step closer to the goal of building provably secure
and efficient non-interactive non-malleable commitments.

Prior Work on Non-Malleable Commitments. There has been a long line of work
constructing non-malleable commitments in the plain model, without trusted
setup. This research has been driven by two often competing goals: the first
is to reduce the round complexity of commitment, which is important because
it directly impacts the round complexity of applications like MPC. The sec-
ond goal is to achieve non-malleable commitments under the weakest possible
assumptions.

This research [1,9,11,14-16,18,26,27,29-32,34,35] culminated in three
round stand-alone secure non-malleable commitments based on injective one-
way functions [17] and concurrent secure non-malleable commitments based on
DDH/LWE [22], or subexponential injective one-way functions [8]. In the two
round setting, we now have constructions based on sub-exponential time-lock
puzzles [28] and sub-exponential DDH/LWE/QR/NR [23].

Very recently, research in non-malleable commitments moved to a final fron-
tier of achieving non-interactive non-malleable commitments from well-studied
assumptions without leveraging setup. In this non-interactive setting, Pandey,
Pass and Vaikuntanathan [30] first gave constructions of non-malleable commit-
ments based on a strong non-falsifiable assumption. The primary research chal-
lenge has been to improve assumptions while realizing non-malleability without
interaction and setup, which does not allow the use of tools like zero knowledge
proof systems.

Nevertheless, the recent works of Bitansky and Lin [4] and Kalai and
Khurana [21] made progress on improving these assumptions. All of these
works [4,21,23,28] proceed in two steps. First, they construct “base” commit-
ment schemes that only support a constant-sized space of tags. Second, they
give amplification techniques to convert commitments supporting a small space

162 R. Garg et al.

of tags into commitments that support a much larger tag space. Applying these
amplification techniques to the base scheme helps generically increase the space
of tags to {0, 1}*. We summarize known results in the non-interactive setting by
splitting up contributions into base constructions and tag amplification results.

Base Constructions. Three recent works [4,21,28] build non-interactive base
schemes: non-malleable commitments for a tag space of size cloglog k for a spe-
cific constant ¢ > 0, based on various hardness assumptions. These are typically
only secure in a setting where the adversary is restricted to using the same tag
in all its queries to the CCA.Val oracle. This is primarily achieved by using fam-
ilies of assumptions, each of which is harder than the other along some axis of
hardness. We list these assumptions below.

1. Lin, Pass and Soni [28] assume a sub-exponential variant of the hardness
of time-lock puzzles. Specifically, they define a two-dimensional variant of
the Rivest, Shamir and Wagner (RSW) repeated squaring assumption there
is a security parameter n and another parameter ¢, and it is required that

computing h = g22t cannot be done by circuits of overall size 2"° and depth
2t" for constants ¢ and .

2. Bitansky and Lin [4] rely on sub-exponentially hard one-way functions that
admit a strong form of hardness amplification. Roughly speaking, they say
that a one-way function f is amplifiable, if there is a way to combine (XOR),
say ¢ hardcore bits corresponding to ¢ independent images f(x1),..., f(z¢)
that are each hard against T-time adversaries, so that the combined bit is
2¢ _unpredicatable against T’-time adversaries; that is, the level of unpre-
dictability increases at least subexponentially as more hardcore bits are com-
bined (their assumption on unpredictability goes beyond the limit poly(%)
that is commonly imposed by known provable results on hardness amplifica-
tion).

3. Kalai and Khurana [21] assume classically sub-exponentially hard but quan-
tum easy one-way functions (which can be based, e.g., on sub-exponential
hardness of DDH), and sub-exponentially quantum hard one-way functions
(which can be based, e.g., on sub-exponential hardness of LWE).

Tag Amplification. Starting with non-malleable commitments for a tag space
of size cloglogk for a specific constant ¢ > 0 (or sometimes even smaller),
several works develop techniques to achieve non-malleable commitments for a tag
space of {0,1}*. This is achieved by several applications of a tag-amplification
compiler, that increases the tag space exponentially in each application. We also
point out that these compilers often obtain as input base schemes that are secure
against a restricted adversary; one that uses the same tag in all its queries to the
CCA.Val oracle. The end goal, however, is to obtain security against a general
adversary, that uses arbitrary tags in its oracle queries — as long as all tags in
oracle queries are different from the challenge tag.

Such compilers were developed in [4,21,28] based various assumptions, and
we summarize these results below.

Black-Box Non-interactive Non-malleable Commitments 163

— Lin, Pass and Soni [28] assume sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions
against uniform adversaries. The resulting commitments for larger tags are
secure only against uniform adversaries.

— Bitansky and Lin [4] assume sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions
with limited security against non-uniform adversaries. Such a hash func-
tion H : {0,1}3* — {0,1}"* guarantees that no superpolynomial adversary
with non-uniform description of polynomial size S can find more than K(.5)
collisions in the underlying function. Here, K is a fixed polynomial (e.g.,
quadratic). The resulting commitments for larger tags are secure against non-
uniform adversaries.

— Kalai and Khurana [21] assume sub-exponential non-interactive witness indis-
tinguishable (NIWTI) proofs and obtain security against non-uniform adver-
saries. But their compiler, on input commitments that satisfy a weaker notion
of non-malleability w.r.t. replacement generates commitments that are non-
malleable w.r.t replacement for a larger tag space.

In [4,28], NIWIs are combined with a hard-to-invert trapdoor statement to
enable weak forms of NIZKs without setup. In contrast, [21] use NIWIs without
associated trapdoors, but then only achieve weaker forms of non-malleability
(that is, w.r.t. replacement).

But a common thread among the amplification techniques is that they all
require the use of sub-exponential NIWI proofs. We remind that reader that
NIWIs are one round proof systems with statistical soundness, for which no
computationally bounded verifier can distinguish which witness in a relation
was used to create the proof.

Reliance on NIWIs results in the following less than ideal consequences:

— Subexponential NIWIs are only known based on the hardness of the decisional
linear problem over bilinear maps [19], or derandomization assumptions and
subexponential trapdoor permutations [2].

— All these compilers use NIWIs to prove complex cryptographic statements,
and therefore make non-black box use of the underlying non-malleable com-
mitment for a smaller tag space. On the other hand, from the point of view
of efficiency, it is desirable to have constructions that make black-box use of

cryptography.

Our Results. In this work, we provide a new approach to non-interactive tag
amplification for non-malleable commitments. This approach only makes black-
box use of cryptography, and achieves provable security under a more diverse
set of assumptions. Specifically, this compiler replaces the NIWI assumption
with hinting PRGs, that were introduced by Koppula and Waters [25], and can
be obtained based on CDH, LWE [25] and also ¢-hiding and DBDHI assump-
tions [13]. (One can also alternatively execute the paradigm from any projective
key-dependent secure symmetric key encryption scheme [24] which is realizable
from the LPN assumption).

164 R. Garg et al.

We summarize (a simplification of) our results via the following informal
theorems. Recall that base schemes are typically only secure in a setting where
the adversary is restricted to using the same tag in all its queries to the oracle.
In what follows, we refer to such a commitment scheme that is only secure
against this limited class of adversaries as a same-tag CCA secure commitment.
We also refer to CCA commitments where the adversary is only allowed to
make parallel oracle queries after obtaining the challenge commitment, as non-
malleable commitments.

Theorem 1. (Informal) (Removing the Same-Tag Restriction) Assuming the
existence of sub-exponentially secure hinting PRGs and keyless hash functions
that are collision-resistant against sub-erponential uniform adversaries, there
exists a compiler that on input any same-tag CCA (respectively, non-malleable)
non-interactive commitment for N tags secure against non-uniform adversaries
where N < poly(k), outputs a CCA (respectively, non-malleable) non-interactive
commitment for N tags secure against uniform adversaries.

Theorem 2. (Informal) (Tag-Amplification for CCA commitments) Assum-
ing the existence of sub-exponentially hinting PRGs and keyless hash functions
that are collision-resistant against sub-erponential uniform adversaries, there
exists a compiler that on input any CCA (respectively, non-malleable) non-
interactive commitment for N tags secure against non-uniform adversaries where
N < poly(k), outputs a CCA (respectively, non-malleable) non-interactive com-
mitment for 2N/2 tags secure against uniform adversaries.

Unfortunately, using these informal theorems to amplify tag space from
cloglogn for a small constant ¢ > 0 immediately encounters the following issue:
the input scheme to the compiler is required to be non-uniform secure, whereas
the output scheme is only uniform secure.

To enable recursion, we strengthen our CCA abstraction. Specifically, we
modify the CCA security game to allow an adversary to submit a Turing Machine
P to the challenger, and obtain the evaluation of P on an input of the adversary’s
choice. We say that a scheme is e-“computation enabled” if it is secure against
all adversaries that submit programs that run in time polynomial in 2" for con-
stant e. As such, we will substitute the non-uniform security requirement for the
base CCA scheme and instead require it to be e-“computation enabled” for an
appropriate constant e. The output of the compiler will be an e’-“computation
enabled” commitment for an appropriate constant e’. We describe this abstrac-
tion, and our techniques, in additional detail in Sect. 1.1.

1.1 Our Techniques

We now provide our technical overview. Recall that the core technical goal of our
work is to provide a method for amplifying from a commitment scheme for O(N)
sized tag space to a 2% sized space. If the computational overhead associated with
the amplification step is polynomial in N and the security parameter «, then the
process can be applied iteratively ¢+ 1 times to a base NM commitment scheme

Black-Box Non-interactive Non-malleable Commitments 165

that handles tags of size lglg---lg(k) for a c-times iterated log, for arbitrary
constant ¢ and results in a scheme that handles tags of size 2. Here, we note
that subexponential quantum hardness of LWE and subexponential hardness
of DDH [21], or subexponential hardness amplifiable one-way functions [4], or
subexponential variants of time-lock puzzles [28] imply base schemes for tags in
(clglg k) for a small constant ¢ > 0, which means they imply schemes for tags
in (Iglglgk).

Now the traditional way to amplify such a tag space can be traced back to
[11]* They suggested a method of breaking a large tag 77 (say, in [2VV]) into
N small tags t{,t},...t%, each in 2N, such that for two different large tags
T' # T?, there exists at least one index i such that ¢? & {ti,¢},...t,}. This is
achieved by setting 7 = ||T7[i], where T7[i] denotes the i bit of T7.

A scheme for tags in 2V will have an algorithm CCA.Com that commits to
a message m as CCA.Com(1”, tag, m;r) — com. To commit to m under tag
one first creates N tags t1,...ty by applying the DDN encoding to tag. Next,
these (smaller) tags are used to generate commitments of m in the smaller tag
scheme as ¢; = Small.Com(1%, (¢;),msg = m;r;) for i € [N]. Next, the com-
mitter attaches a zero knowledge (ZK) proof that all commitments are to the
same message m using the random coins as a witness. Since we are interested
in non-interactive amplification, the ZK proof will need to be non-interactive.
Additionally, we will require it to be ZK against adversaries running in time 7,
where T is the time required to brute-force break the underlying CCA scheme
for small tags.

CCA security of the scheme with larger tag space can be argued in two
basic steps. Suppose the challenger commits to either mg or mj under tag T*
(we denote the DDN encoding of T* by t7,...t%). The adversary wins if it
gets which out of m§ and m] was committed. Recall that the adversary can
request the CCA oracle to provide openings of commitment string with tags
tag # tag* € {0,1}". This oracle generates a response as follows - (1) Verify the
ZK proof in the commitment string. Return | if verification does not accept.
(2) Open the underlying commitment scheme with small tags at position 1 with
tag t1.

We will assume, for simplicity, that the adversary makes a single oracle query
in the CCA game, with tag 7', whose DDN encoding is denoted by t1,...tN.
We will focus on the index i in the adversary’s oracle query, such that the tag
& {t5, ..t}

As a first step towards proving CCA security, one can modify the oracle to
open the commitment string ¢ with small tag ¢;, in Step 2. Because of the sound-
ness of the ZK proof system, this change cannot be detected by the adversary,
except with negligible probability.

At this point, the challenge commitment is modified so that the ZK proof
is simulated and does not need the random coins used in the small tag com-
mitments anymore. To argue indistinguishability, we will need to answer the

2 This was recently further optimized by [23] but in this paper, we use the [11] tech-
nique for simplicity.

166 R. Garg et al.

adversary’s oracle queries. This will be done by extracting, via brute-force, the
value committed in the adversary’s oracle query. As such, we will need to rely on
ZK proofs where the ZK property holds even against machines that can (brute-
force) break the small tag commitments. Once this is done, we will change each
of the small tag commitments in the challenge commitment from committing to
the message m; to committing to the all 0’s string, one by one. At the same
time, the oracle will continue to open the commitment string ¢ with small tag ¢;,
in Step 2. Since t; & {t},...t%}, we can rely on CCA security of the underlying
small tag scheme and argue that the adversary will not be able to detect these
changes. By the end, all information about the bit b will be erased.

Since non-interactive zero-knowledge proofs without setup are impossible,
existing non-interactive tag amplification techniques [4,23,28] rely on weaker
variants of zero-knowledge proofs, such as ZK with super-polynomial simula-
tion and weak soundness, to perform tag amplification via the afore-mentioned
outline. These required variants of non-interactive ZK proofs are obtained by
including a trapdoor statement td. To prove that a statement x is in an NP lan-
guage L, one typically provides a NIWT to establish that (z € L) V (td is true).
The trapdoor statement helps perform simulation, whereas for soundness it is
required that the adversary cannot prove the trapdoor statement. One exception
is [21], which only relies on NIWIs and does not make use of on any trapdoor
statements, but is limited to the weaker notion of replacement security. However,
in addition to relying on NIWIs, the outline above makes non-black-box use of
the underlying base commitment scheme.

Eliminating NIWIs. Our primary goal in this paper is to perform tag amplifi-
cation without NIWIs, and while making black-box use of the underlying base
commitments. Taking a step back, the reason ZK is required in the tag amplifi-
cation argument discussed above, is that we can change the oracle to one that
opens different underlying tags, without the adversary noticing. In other words,
we would like to establish a system where the adversary cannot submit a com-
mitment such that its opening will be different under the original and new oracle
functions.

Here, inspired by recent work in chosen ciphertext secure public key encryp-
tion [25], our construction will allow the oracle to recover a PRG seed s that gives
(a good part of) the randomness used to create the underlying commitments.
Specifically, the oracle will use the commitment with a specific small tag to first
recover a candidate PRG seed s’ and then check for consistency by re-evaluating
the underlying commitment pieces, and checking them against the original.

These checks will intuitively serve as a substitution for ZK proofs. Interest-
ingly, our checking algorithm will allow some partially malformed commitments
to go through — allowing this is essential to our security argument. This is in
contrast to a ZK proof which enforces that all must be commitments to the same
message. While creating such partially malformed commitments is actually easy
for the adversary, the adversary will still not be able to differentiate between
different forms of decryption. (We note that in non-malleable encryption some
systems [7,33] allow for somewhat malformed ciphertexts to be let through.)

Black-Box Non-interactive Non-malleable Commitments 167

Importantly, unlike [25] that looked at two possible decryption strategies, we
will need to ensure that up to polynomially many such strategies decrypt the
same way. Furthermore, we will not be able rely on trusted setup to generate
verification keys for a signature scheme. Instead, we will develop a new technique
leveraging hinting PRGs, which we outline below.

We now describe our new tag amplification technique that converts CCA
commitments with 4N tags to CCA commitments with 2V tags. We point out
that our technique also applies as is to converting parallel CCA commitments
with 4N tags to parallel CCA commitments with 2V tags. First, we summarize
some of the tools we will use.

— Hinting PRGs. A hinting PRG, introduced in [25], satisfies the following
property: for a uniformly random short seed s, the matrix M obtained by first
expanding PRG(s) = 292122 - . . zn, sampling uniformly random vqvs ... v,,
and setting for all ¢ € [n], My, ; = z; and Mi_g, ; = v;, should be indistin-
guishable from a uniform matrix. Hinting PRGs are known based on CDH,
LWE [25] — more generally, any circular secure symmetric key encryption
scheme [24].

— Statistically Equivocal Commitments Without Setup. We will rely
on statistically hiding bit commitments without setup, that satisfy binding
against uniform adversaries. Additionally, these commitments will be statis-
tically equivocal, that is, with overwhelming probability, a randomly chosen
commitment string can be opened to both a 0 and a 1. These can be obtained
from keyless collision resistant hash functions against uniform adversaries,
based on the blueprint of [10] and [20], and more recently [3], in the keyless
hash setting.

Outline of Our Tag Amplification Technique. Let (Small.Com,Small.Val, Small.
Recover) be a non malleable commitment for 4V tags. We will assume tags take
identities of the form (i,3,7) € [N] x {0,1} x {0,1} and that the Small.Com
algorithm requires randomness of length ¢(k).

Our transformation will produce three algorithms, (CCA.Com, CCA.Val, CCA.
Recover). The CCA.Com algorithm on input a tag tag from the large tag space,
an input message, and uniform randomness, first samples a seed s of size n for
a hinting PRG. It uses the first co-ordinate zy of the output of the hinting PRG
on input s, as a one-time pad to mask the message m, resulting in string c.
Next, it generates n equivocal commitments {0 };c[n], one to each bit of s. We
will let 3; denote the opening of the i*" equivocal commitment (this includes the
i'" bit s; of s). Finally, it ‘signals’ each of the bits of s by generating commit-
ments {Cz.i,b}ze|N],ic[n],be{0,1} Using the small tag scheme. For every i € [n], the
commitments {cz ,0}ze[n] and {cz i1} ze[n] are generated as follows:

1. If S; = 0
(a) cg,i,0 =Small.Com(1”, (x,tag,,0), msg = y;;74.;)
(b) Cxil = Smachom(lKa (x7tagxa 1)7 msg = wax,z)

168 R. Garg et al.

2. If S; = 1

(a) cgi,0=Small.Com(1”, (z,tag,,0), msg = y;;7z.;)

(b) ¢g,i,1 = Small.Com(1%, (x,tag,, 1), msg = yi; rz.i)
where all the 7,; values are uniformly random, whereas r,; values corre-
spond to the output of the hinting PRG on seed s. The output of CCA.Com
is tag, 7{01}16[71]7 {CI,VJ)}IE [N],i€[n],be{0,1}-

On an oracle query of the form CCA.Val(tag,com), we must return the
message committed in the string com, if one exists. To do this, we parse
com = tag, ¢, {0 }icin]> {Ca.ib e [N],ic[n],be{0,1}» and then recover the values com-
mitted under small tagb (1,tag;,0) and (1,tagy, 1), which also helps recover the
seed s of the hinting PRG. Next, we check that for every ¢ € [n], the recovered
values correspond to openings of the respective o;. We also compute hinting
PRG(s), and use the resulting randomness to check that for all z € [N], the
commitments that were supposed to use the outcome of the PRG were correctly
constructed. If any of these checks fail, we know that the commitment string
com cannot be a well-formed commitment to any message. Therefore, if any of
the checks fail, the oracle outputs L. These checks are inspired by [25], and intu-
itively, ensure that it is computationally infeasible for an adversary to query the
oracle on commitment strings that lead to different outcomes differently depend-
ing on which small tag was used. If all these checks pass, the CCA.Val algorithm
uses ¢ to recover and output m.

Proving Security. We will prove that the resulting scheme is CCA secure against
uniform adversaries. To begin, we note that the set {(x,tag,)}e[n is nothing
but the DDN encoding of the tag tag. Recall that this encoding has the prop-
erty that for every tag,tag® € 2%V, there exists an index x € [N] such that
(v,tag,) & {(2",tag;~)}ze[n)- In the scheme described above, the tag used for
each set {cz,ip}ic[n] is (7,tag,,b). This means that for our particular method of
generating the commitments c; ;;, described above, for each of the adversary’s
oracle queries, there will be an index ' € [N] such that the tags (2/,tag,.,0)
and (2',tag,.,1) used to generate {cuip}icin)befo,1} in that query will differ
from all small tags used to generate the challenge commitment.

Our first step towards proving security of the resulting commitment with
large tags, will be to define an alternative CCA.ValAlt algorithm, that instead of
recovering the values committed under tags (1,tag;,0) and (1,tag,, 1), recovers
values committed under (2',tag,,0) and (2/,tag,.,1). As already alluded to
earlier, this scheme is designed so that it is computationally infeasible for a
uniform adversary to query the oracle on commitment strings for which CCA.Val
and CCA.ValAlt lead to different outcomes. Formally, we will first switch to a
hybrid that uses the CCA.ValAlt algorithm instead of CCA.Val to answer the
adversary’s oracle queries.

When making this change, because of the checks performed by the valua-
tion algorithms, we can formally argue that any adversary that distinguishes
these hybrids must query the oracle with a commitment string that has fol-
lowing property: For some i € [n],z € [N], ¢z,i,0 and ¢ ;1 are small tag com-
mitments to openings of the equivocal commitment to some bit b and 1 — b

Black-Box Non-interactive Non-malleable Commitments 169

respectively. Assuming that the equivocal commitment satisfies binding against
uniform adversaries that run in subexponential time, one can brute-force extract
these openings from ¢, ; o and ¢, ;1 to contradict the binding property.

The next hybrid is an exponential time hybrid that samples equivocal com-
mitments {0;};c[y), for the challenge commitment, together with randomness
{v0,i}iein) and {y1,i}icm) that can be used to equivocally open these commit-
ments to 0 and 1 respectively.

In the next hybrid, inspired by [25] we modify the components
{c Cri, b €[] N i€[n]be{0,1} in the challenge commitment to “drown” out informa-
tion about s via noise. In particular, while in the real game, the values ¢} ;4
are always commitments to ys, ;, in the challenge commitment these values are
modified to become commitments to y; ,, irrespective of what s; is. In the next
step, the values ¢} ; ; are modified to become commitments to y;,, irrespective
of what s; is. We rely on CCA security of the underlying small tag scheme so
that we can continue to run the CCA.ValAlt function to recover values com-
mitted under (z’,tag,,,0) and (2/,tag,,,1) while changing all the components
{c;,i,b}wE[N],iE[n],bE{O,l} in the challenge commitment. This step crucially makes
use of the fact that the tags (2, tag,,,0) and (2’ tag,,, 1) differ from all small
tags used to generate the challenge commitment. Moreover, in spite of the fact
that generating equivocal openings of {0 };c[,,] takes exponential time, the proof
of indistinguishability between this hybrid and the previous one does not need
to rely on an exponential time reduction. Instead, we observe that the equivocal
commitment strings {o;};c[, together with their openings can be fixed non-
uniformly and independently of the strings ¢} ; ,, and therefore these hybrids
can be proven indistinguishable based on non- malleablhty of the small tag com-
mitment against non-uniform adversaries. Since we must carefully manipulate
the randomness used for Cyip i both games, this hybrid requires a delicate
argument.

At this point, we have eliminated all information about the PRG seed s,
except from the randomness r,; and 7, ;. In the final hybrid, we rely on the
security of the hinting PRG to switch to using uniform randomness everywhere.
Note that we still need to answer the adversary’s oracle queries, but this can be
done by ensuring that the time required to run the CCA.ValAlt algorithm is much
smaller than that needed to break hinting PRG security. At this point, there is
no information about s, and therefore about the message being committed to in
the challenge commitment.

Issues with Recursion. At this point, it may seem like we are done, but the
careful reader may have noticed a problem. To prove security, we assumed an
input scheme that was secure against non-uniform adversaries, but due to the
use of equivocal commitments against uniform adversaries, the transformation
yields a scheme that is only secure against uniform adversaries. This would be no
problem if we say were only amplifying once from « to 2" tags. But unfortunately,
the recursion will not work if our base scheme starts with lglglg(k) size tags
(which is the number of tags allowable by most existing base schemes), as we
will need to recursively amplify multiple times.

170 R. Garg et al.

It might seem that we are fundamentally stuck. The first hybrid in our argu-
ment requires the equivocal commitment scheme to be more secure than the
underlying small tag commitment. Later hybrids require that the small tag
commitment to satisfy CCA security even when equivocal commitments with
openings to both ones and zeros are generated. If the small tag CCA scheme is
only uniformly secure, it seems impossible to satisfy this requirement without
violating the previous one.

However, if we peel the recursion back further, there appears to be a glimmer
of hope. Suppose we are applying our transformation to an underlying CCA
commitment, which is itself the result of applying the transformation one or
more times. When our proof arrives at the security of the underlying scheme,
the underlying scheme’s security will rely both on an equivocal commitment
itself, and at the deepest level the non-uniform security of the base scheme. If the
equivocal commitments in the underlying scheme use a larger security parameter
than the current one, then the lower level scheme may still be secure (and lower
level equivocal commitments may still be binding) even when equivocal openings
are found at the current level.

e-Computation Enabled Security. We capture this intuition by expanding our
abstraction to include what we call e-computation enabled CCA commitments.
Here, we modify the security game to allow an adversary to submit a Turing
Machine P to the challenger. The adversary will receive the evaluation of P on an
input of its choice. We say that a scheme is e-computation enabled if it is secure
against all adversaries that submit programs that run in time polynomial in 2%
for constant e. (The program output size itself is required to be polynomially
bounded.)

With this abstraction in place, when proving security, our reduction can pass
the task of generating equivocal openings as an appropriate program P to the
enhanced CCA security game itself. Implicitly, this allows the equivocal opening
requests to be satisfied in different ways depending on what stage the security
proof of the lower scheme is at.

While this new property provides a useful tool for recursion, we also need to
work a bit harder to prove e-computation enabled CCA security. Specifically, we
prove in Sect. 3 that given a hinting PRG and an equivocal commitment scheme
that are uniformly secure against 2+ time adversaries for § € (0,1), we can
transform an e-computation enabled CCA scheme for small tags into one that
is e’-computation enabled CCA secure for large tags, where ¢’ = ¢ - §.

In our proof, at the stages where we use a reduction to find equivocal open-

ings, the reduction will run in time 2¢° to satisfy the adversary’s program
request. When contradicting the hinting PRG, the reduction will run in time 2%

to find equivocal openings, and 25° to satisfy the adversary’s program request.
To ensure that this gives us a contradiction, we will set the security parameter
of the hinting PRG to be large enough. Finally, when the reduction is to the
underlying small tag CCA commitment, the program request of the large tag
adversary will be passed by the reduction to the interface of the underlying small

Black-Box Non-interactive Non-malleable Commitments 171

tag scheme, which is allowed since €’ < e. In the base case, we note that we start
with schemes secure against non-uniform adversaries (for 1glglg k tags). By def-
inition, any scheme that is secure against non-uniform adversaries is trivially
e-computation enabled secure for arbitrary e.

Issues due to Same-Tag Restrictions. The techniques described above capture
our main ideas for tag amplification. Unfortunately, the base schemes that we
start with may only be same-tag secure. On the other hand, we would like to end
up with CCA schemes for 2” tags that do not have this restriction. This is because
CCA commitments without such a restriction can be generically transformed,
assuming signatures into schemes that do not use tags at all. We remedy the
same-tag issue by applying a transformation that takes a scheme supporting a
tag space of N tags with same-tag only queries to one that supports NV tags
without the same-tag restriction, for any N < poly(k).

Removing the Same-Tag Requirement. We start with an underlying scheme that
has the same-tag requirement, and modify it to remove this requirement as
follows. To commit to a message with tag tag in the new scheme, commit to it
with respect to all N — 1 tags except tag in the underlying same-tag scheme.
Similar to the previous construction, we use hinting PRGs and attach a bunch
of checks to ensure that recovering the committed value from the adversary’s
queries using any one tag is computationally indistinguishable from recovering
it using a different tag.

The overall mechanics and guarantees are similar to our prior transforma-
tion. Suppose an adversary were given a challenge commitment tag* in the trans-
formed scheme, and got to make queries to several different tags tag # tag*. By
our construction, the adversary’s challenge does not contain an underlying com-
mitment with tag tag® whereas all of the adversary’s oracle queries will contain
an underlying commitment with tag tag*. We can therefore answer all of these
queries by changing the oracle valuation function to one that uses only tag tag*
in underlying scheme.

We note that since the same-tag transformation incurs a blowup proportional
to IV, it is imperative to apply it early on in the sequence of transformations. If
we first amplified the tag space to be of size 2 and then attempted to remove
the same-tag restriction, the resulting scheme would have exponential sized com-
mitments. Therefore, we start with a base scheme that is same-tag secure and
supports tags of size iterated log, ¢ times, as lglg---1lg(x) for some constant c,
we will first apply the same-tag to many-tag transformation. Next, we apply
the tag amplification transformation ¢ + 1 times. We end up with a scheme
that is polynomial sized and supports a tag space of size 2% with no same-tag
restrictions.

Non-uniform Security. Our techniques give a CCA commitment scheme secure
against uniform adversaries. One might ask whether we could use similar tech-
niques, perhaps combined with new assumptions such as non-uniformly secure
keyless hash functions [3,4] to obtain security against non-uniform adversaries.
We address this in two parts.

172 R. Garg et al.

First, taking a step back, a primary motivation for obtaining non-uniform
security is that it is useful for protocol composition. For example, if we were
using a cryptographic primitive like public key encryption as an end application
say for encrypting email, then obtaining uniform security would arguably be just
fine. As the uniform model captures attackers in the real world. However, the
extra power of non-uniform security might be helpful if our commitment scheme
were a component used in building a larger cryptosystem. Here, we observe that
our transformation actually outputs a CCA scheme with properties that are
stronger than (plain) uniform security. Specifically, the output scheme satisfies
e-computation enabled CCA security.

While the initial motivation for this abstraction was that it helps with recur-
sion; we note that it can actually be a useful property for a CCA scheme to have.
In particular, it can actually be viewed as a more fine-grained or nuanced view
of non-uniform computation. This abstraction gives any adversary non-uniform
advice so long as it can be computed in time 2°°. If e is set appropriately, then we
expect this would suffice in many circumstances, including for protocol compo-
sition. Indeed, this was true for the type of protocol composition that we needed
to recursively amplify the tag space. Thus our amplification techniques and our
abstraction can arguably deliver something that is the “best of both worlds”:
the outcome is as good as non-uniform security for many applications, but does
not make any new non-uniform assumptions about the hash function.

Second, our techniques are also meaningful for constructing black-box two-
message non-malleable commitments with (regular) non-uniform security. In our
transformation, the primitive that requires uniform security is the keyless hash-
based equivocal commitment scheme. In the two-message setting, it seems pos-
sible to slightly modify our scheme to have the receiver generate the key for
a keyed (non-uniform secure) collision-resistant hash function. All of our other
techniques appear to carry over to this setting, and it appears that one would
be able to prove that the resulting scheme is a (regular) non-uniform secure
non-malleable commitment that only makes black-box use of cryptography.

Organization. We define “computation enabled” commitments in Sect. 2, present
our tag amplification scheme in Sect. 3, and show how to compile these elements
in Sect. 4. Details on preliminaries and proof analyses, as well as recovery-from-
randomness and removing the same tag restriction can be found in our full
version [12].

2 Computation Enabled CCA Commitments

We now define what we describe as “computation enabled” CCA secure commit-
ments. Intuitively, these will be tagged commitments where a commitment to
message m under tag tag and randomness r is created as CCA.Com(tag, m;r) —
com. The scheme will be statistically binding if for all tag,tag;, ro,r1 and
mg # mq we have that CCA.Com(tag, mo; o) 7 CCA.Com(tag,, m1;r1).

Our hiding property follows along the lines of chosen commitment security
definitions [6] where an attacker gives a challenge tag tag* along with messages

Black-Box Non-interactive Non-malleable Commitments 173

mg,m1 and receives a challenge commitment com™ to either mg or m; from
the experiment. The attacker’s job is to guess the message that was commit-
ted to with the aid of oracle access to an (inefficient) value function CCA.Val
where CCA.Val(com) will return m if CCA.Com(tag, m;r) — com for some r.
The attacker is allowed oracle access to CCA.Val(-) for any tag # tag*. The tra-
ditional notion of non-malleability (as seen in [21], etc.) is simply a restriction
of the CCA game where the adversary is only allowed to simultaneously submit
a single set of decommitment queries. The proof of this is immediate and can be
found in [5].

The primary difference in our definition is that we also allow the attacker
to submit a randomized turing machine P at the beginning of the game. The
challenger will run P and output its result to the attacker at the beginning of
the game. This added property will allow us to successfully apply recursion for
tag amplification later in our scheme. In addition, we require a recover from
randomness property, which allows one to open the commitment given all the
randomness used to generate said commitment.

2.1 Definition

A computation enabled CCA secure commitment is parameterized by a tag space
of size N = N (k) where tags are in [1, N]. It consists of three algorithms:

CCA.Com(1%, tag,m;r) — com is a randomized PPT algorithm that takes as
input the security parameter k, a tag tag € [N], a message m € {0,1}* and
outputs a commitment com, including the tag com.tag. We denote the random
coins explicitly as r.

CCA.Val(com) — m U L is a deterministic inefficient algorithm that takes in a
commitment com and outputs either a message m € {0,1}* or a reject symbol
1.

CCA.Recover(com,r) — m is a deterministic algorithm which takes a commit-
ment com and the randomness r used to generate com and outputs the under-
lying message m.

We now define the correctness, efficiency properties, as well as the security
properties of perfectly binding and message hiding.

Definition 1 (Correctness). We say that our computation enabled CCA
secure commitment scheme is perfectly correct if the following holds. YVm €
{0,1}*, tag € [N] and r we have that

CCA.Val(CCA.Com(1%, tag,m;r)) = m.

Definition 2 (Efficiency). We say that our computation enabled CCA
secure commitment scheme is efficient if CCA.Com, CCA.Recover run in time
poly(|m|, k), while CCA.Val runs in time poly(|m|, 2").

174 R. Garg et al.

Definition 3 (Security). We say that our computation enabled CCA secure
commitment is perfectly binding if Vmg,my € {0,1}* s.t. mg # my there does
not exist tag,tagy, o, such that

CCA.Com(1", tag,, mo;79) = CCA.Com(1”, tag,, m1;71).

Remark 1. We remark that this is implied by Definition 1, as we know that if
CCA.Com(1*, tagg, mo;19) = CCA.Com(1”,tag,, m1;r1), then

mg = CCA.Val(CCA.Com(1”,taggy, mo;ro)) = CCA.Val(CCA.Com(1”, tag;,m1;7r1)) = m1,
but mg # mq, a contradiction.

We define our message hiding game between a challenger and an attacker.
The game is parameterized by a security parameter k.

1. The attacker sends a randomized and inputless Turing Machine algorithm P.
The challenger runs the program on random coins and sends the output to
the attacker. If the program takes more than 22" time to halt, the outputs
halts the evaluation and outputs the empty string.?

2. The attacker sends a “challenge tag” tag* € [N].

3. The attacker makes repeated commitment queries com. If com.tag = tag* the
challenger responds with L. Otherwise it sends

CCA.Val(com).

4. For some w, the attacker sends two messages mg, my € {0,1}*.

5. The challenger flips a coin b € {0, 1} and sends com* = CCA.Com(tag*, mp;)
for randomly chosen 7.

6. The attacker again makes repeated queries of commitment com. If com.tag =
tag™ the challenger sends 1. Otherwise it responds as

CCA.Val(com).

7. The attacker finally outputs a guess b'.

We define the attacker’s advantage in the game to be Pr[b/ = b] — % where the
probability is over all the attacker and challenger’s coins.

Definition 4. An attack algorithm A is said to be e-conforming for some real
value e > 0 if:

1. A is a (randomized) uniform algorithm.

2. A runs in polynomial time.

3. The program P output by A in Step 1 of the game will always terminate in
time p(25°) time and output at most q(k) bits for some polynomial functions
p,q (For all possible random tapes given to the program P).

3 The choice of 22" is somewhat arbitrary as the condition is in place so that the game
is well defined on all P.

Black-Box Non-interactive Non-malleable Commitments 175

Definition 5. A computation enabled CCA secure commitment scheme scheme
given by algorithms (CCA.Com,CCA.Val, CCA.Recover) is said to be e-
computation enabled CCA secure if for any e-conforming adversary A there
exists a negligible function negl(-) such that the attacker’s advantage in the game

is negl(k).

We also define another notion of security which we call “same tag” computa-
tion enabled secure for a weaker class of adversaries who only submit challenge
queries that all have the same tag.

Definition 6. A computation enabled CCA secure commitment scheme scheme
given by algorithms (CCA.Com, CCA.Val, CCA.Recover) is said to be “same tag”
e-computation enabled CCA secure if for any e-conforming adversary A which
generates queries such that all commitment queries submitted by A are on the
same tag, there exists a negligible function negl(-) such that the attacker’s advan-
tage in the game is negl(k).

Recovery From Randomness

Definition 7. We say that our CCA secure commitment scheme can be recov-
ered from randomness if the following holds. For all m € {0,1}*, tag € [N], and
r we have that

CCA.Recover(CCA.Com(1", tag, m;7),r) = m.

Claim. Let (CCA.Com, CCA.Val) be a set of algorithms which satisfy any of Def-
inition 1, Definition 2, Definition 3, Definition 5. Then there exists a set of algo-
rithms (CCA’.Com, CCA’.Val, CCA’.Recover) which satisfy the same properties

as well as Definition 7. We defer the construction and proof to our full version
[12].

2.2 Connecting to Standard Security

We now connect our computation enabled definition to the standard notion
of chosen commitment security. In particular, the standard notion of chosen
commitment security is simply the computation enabled above, but removing
the first step of submitting a program P. We prove two straightforward lemmas.
The first shows that any computation enabled CCA secure commitment scheme
is a standard secure one against uniform attackers. The second is that any non-
uniformly secure standard scheme satisfies e-computation enabled security for
any constant e > 0.

Definition 8. A commitment scheme (CCA.Com, CCA.Val, CCA.Recover) is said
to be CCA secure against uniform/non-uniform attackers if for any poly-time
uniform/non-uniform adversary A there ezists a negligible function negl(-) such
that A’s advantage in the above game with Step 1 removed is negl(k).

176 R. Garg et al.

Definition 9. A commitment scheme (CCA.Com, CCA.Val, CCA.Recover) is said
to be “same tag” CCA secure against uniform/non-uniform attackers if for any
poly-time uniform/non-uniform adversary A such that all commitment queries
submitted by A are on the same tag, there exists a negligible function negl(-) such
that A’s advantage in the above game with Step 1 removed is negl(k).

Claim. If (CCA.Com, CCA.Val, CCA.Recover) is an e-computation enabled CCA
secure commitment scheme for some e as per Definition 5, then it is also a scheme
that achieves standard CCA security against uniform poly-time attackers as per
Definition 8.

Proof. This follows from the fact that any uniform attacker .4 in the standard
security game with advantage e(k) = e immediately implies an e-conforming
attacker A’ with the same advantage where A’ outputs a program P that imme-