
Chapter 7
Human-Like Computational Reasoning:
Diagrams and Other Representations

Mateja Jamnik

Abstract In this chapter, I give a personal account of my experience in Alan
Bundy’s DReaM group in the Department of Artificial Intelligence at the University
of Edinburgh between the years of 1995 and 1998. Of course, the impact of this
experience has been profound and long-lasting to this day. The culture and the
nature of research work, the collaborations, the interests and the connections have
endured, evolved and multiplied throughout this time. My own work in the DReaM
group started by investigating human “informal” reasoning and formalising it in a
diagrammatic theorem prover. After leaving Edinburgh, this work naturally evolved
into combining diagrams with other representations in a uniform framework, as
well as applying visual representations in other domains, such as reasoning with
ontologies. But one of the fundamental questions remained unanswered, namely,
how do we choose the right representation of a problem and for a particular user in
the first place?

7.1 The DReaM Research Environment

Few factors influence a researcher’s ethos regarding their work more than where
and with whom they did their PhD project. I arrived to Alan Bundy’s DReaM
research group in the autumn of 1995, fresh from finishing a post-graduate Diploma
in Computer Science at Cambridge. This was not exactly planned: I actually applied
to do a PhD in the Cognitive Science Department at the University of Edinburgh.
I was interested in humans, not machines. But given that I was a mathematician
by my undergraduate degree and that I just finished a post-graduate degree in
Computer Science, my application made it to Alan Bundy in the Department of
Artificial Intelligence. I am so glad for this serendipity because the privilege has
been immeasurable.
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The DReaM group at that time was a large and thriving community across
multiple sites, covering the Universities of Edinburgh, Heriot-Watt and Napier,
of very diverse people working on equally diverse research topics. The academic
staff were Alan Bundy, Alan Smaill, Andrew Ireland and Helen Lowe.1 They were
working with numerous post-doctoral researchers including Ian Green, Toby Walsh,
Richard Boulton, Julian Richardson and Geraint Wiggins. During my time in the
group, I was part of a cohort of PhD students including Louise Dennis, Jon Whittle,
Raul Monroy, Simon Colton, Francisco Cantu, Ian Frank, Jeremy Gow, Stephen
Creswell and Jim Molony. We also collaborated internationally with scientists
like Fausto Giunchiglia, Alessandro Armando and their groups in Italy, and Jörg
Siekmann, Erica Melis, Dieter Hutter and their groups in Germany. Of course, the
DReaM’s ethos of creativity of thought and rigour of methodology have since spread
around the world as we have pursued our careers across the globe and inevitably
passed these values and skills to the next generation of researchers.

I could perhaps describe the diverse topics in mathematical reasoning that the
DReaM members pursued as either formalising symbolic reasoning or formalising
human-like reasoning.2 Symbolic reasoning directions included proof planning,
rippling, the systems Clam and λClam, induction, co-induction and hardware
verification (Chaps. 1–4). Human-like reasoning directions included analogy, dia-
grammatic reasoning, ontologies and concept formation (Chaps. 5–8). Inevitably,
this list is only partial, and all the chapters of this volume hopefully fill some of
the gaps. I was particularly interested in the kinds of human-like reasoning that
we could perhaps call “intuitive”, or the kind that is inherently human and that is
quite different to machine-oriented reasoning. Examples include the use of analogy,
symmetry and diagrams.

Our daily lives as researchers were enriched by the visits of numerous scientists
who shared their expertise and thoughts with us. Three visitors strongly shaped
the direction that I took in my PhD research. Erica Melis from Saarbrücken was
working on analogy reasoning at the time [23]. I was intrigued at how one can
use examples of solutions in one problem to inspire and help us find a solution to
a related problem. Erica mechanised this process in the context of proof. Whilst
I did not use her work directly in my PhD, it turns out that my first project after
my PhD was to mechanise learning of proof methods by analogy [17]. The second
most memorable visitor was Predrag Janićič from Belgrade. He was interested in
geometrical reasoning [18], which very much coincided with my interest in human
visual reasoning. Predrag also became a close friend, and I could speak his language,
so we had our own way of communicating. Finally, perhaps the most influential
visitor in the DReaM group for me was Alan Robinson. He came to Edinburgh early

1I apologise if my poor memory is not serving me well and I mixed people up or inevitably forgot
to mention some.
2This divide is perhaps a little artificial since all of our work was motivated by the goals of artificial
intelligence, namely we were trying to computationally model human mathematical reasoning.
Alan Bundy’s Chap. 1 of this volume gives a more precise overall description of our work.
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on in my PhD and was interested, like me, in “intuitive” or “informal” reasoning.
Our discussions surrounded the distinction between a visual or spatial representation
and the more usual machine symbolic representation. Alan Robinson showed me a
number of “proofs without words” that he encountered, and some of them became
my toy or working examples to represent, solve and mechanise the process. He
believed that our ability to “see” the truthfulness of a statement is one of the
really fundamental components of the human mathematical cognitive repertoire.
Later, when my PhD research was published in a book [15], he kindly wrote in the
foreword that in this work I “found an explanation of at least part of the mystery of
how humans are able to ‘see’ the truth of certain mathematical propositions merely
by contemplating appropriate diagrams and constructions”.

What struck me most about the DReaM group was his openness to discuss any
topic that anybody was interested in. Clearly, Alan Bundy nurtured a kind and
supportive research environment in which everyone could do their best work. His
intellectual generosity was boundless. The Blue Book Notes (see Chap. 1) provided
the opportunity for sharing and discussing our research with the group. They laid
the ground for exploring novel and half-baked ideas that most often developed
into mature and original scientific contributions. Alan led the DReaM group in
an organised way that taught me how to be a supervisor and a mentor to my own
students and post-docs. This is perhaps best demonstrated by numerous “How-to...”
guides that Alan wrote, for example, “How to be my student”, “How to write an
informatics paper”, “Writing a good grant proposal”, “The Researchers Bible” and
“How to say no”.3

If I were to summarise the enduring influence that the DReaM group had
on me, then I would put in the first place the intellectual generosity that I try
to bestow on my own research group today. I learnt the importance of rigorous
methodology and the place for heuristics to guide the automation of reasoning.
Perhaps uniquely at that time, our work provided a human-oriented perspective on
artificial intelligence that remained the main motivation for my research. Finally, my
time in Alan’s DReaM group instilled in me the importance of an interdisciplinary
and collaborative approach to research, which I think is key to innovation in AI
today.

7.2 Diagrammatic Reasoning

Despite the fact that diagrams have been used in mathematics since the time of
Aristotle and Euclid, the invention of formal axiomatic logic at the end of the
nineteenth century in the sense of Frege, Russell and Hilbert denied diagrams a
formal role in theorem proving. Diagrams were only used informally for illustrating
a formal proof and for suggesting proof steps but were formally superfluous.

3Many of these can be found on Alan Bundy’s web page: https://sweb.inf.ed.ac.uk/bundy/.

https://sweb.inf.ed.ac.uk/bundy/
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Fortunately, the end of the twentieth century started to see a redressing of this
issue [2, 5]. Examples include formalised logical systems of diagrams [10, 13, 35].
This directly abolished the widely held Hilbertian theoretical objections to diagrams
being used in proofs. Our work on Diamond was amongst these: it pioneered the
construction of purely diagrammatic proofs where diagrams and their manipulations
are the proof [15, 16].4 The motivation for this work was rooted in formalising some
of the “informal” reasoning that humans do in mathematics when using diagrams.

Take for example, the diagram in Fig. 7.1. It takes only secondary school-level
knowledge of mathematics to understand that the diagram is about the sum of odd
natural numbers. We can “see” that the theorem is true not only for the example in
the diagram of n = 6, but for any value of n. In other words, the simple procedure
of splitting a square into the so-called ells works in general. Diamond tackles this
problem, in addition to a number of other, the so-called proofs without words, many
of which can be found in Nelsen’s books [25, 26] and Gardner’s mathematical
recreations [8, 9].

Diamond’s theorems are in the domain of algebraic mathematics about natural
numbers that can be expressed as diagrams in a discrete space and are inductive over
a parameter. But there is a problem, namely, such diagrams are concrete in nature,
so abstractions such as ellipsis need to be used to express the general diagram (and
proof) for all values of the parameter. These abstractions are difficult to keep track
of whilest manipulating. So we proposed a solution: to use schematic proofs.

Schematic proofs are based on the mathematical notion of the ω-rule that says
that for the natural numbers 0, 1, 2, . . .:

1 + 3 + 5 + … + (2n − 1) = n2

Fig. 7.1 The theorem is about the sum of the first n odd natural numbers. It represents the example
of a case for n = 6. The proof starts from the RHS of the theorem n2 and takes a square. Then,
the square is split into a sequence of nesting and increasing in size, the so-called ells. Each ell
represents a subsequent natural number: there are two edges, each of size n, but the joining vertex
has been counted twice; hence an ell is 2n − 1

4This work was done for my PhD with Alan Bundy and Ian Green as my supervisors.
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φ(0), φ(1), φ(2), . . .

∀x.φ(x)
.

That is, if we can prove φ(n) for n = 0, 1, 2, . . ., then we can infer that φ(x) for
all natural numbers x. Clearly, the ω-rule is not very practical for automation, since
it requires the proof of an infinite number of premises to prove its conclusion. A
more practical alternative is the constructive ω-rule that has an additional condition:
if all premises φ(n) can be proved in a uniform way, that is, there exists an effective
procedure, proof φ , which takes a natural number n as input and returns a proof of
φ(n) as output, then we can conclude the universal statement:5

proof φ(n) � φ(n).

One such effective procedure is, for example, a recursive program. Now proof φ can
be a recursive procedure that formalises our notion of schematic proof where the
number of steps in the proof depends on the parameter n. We used this notion in
formalising diagrammatic proofs in Diamond.6

Diamond’s theorems are expressed as diagrams for some concrete values, that
is, ground instantiations of a theorem. The initial diagram is manipulated using
some geometric operations. The sequence of geometric operations on a diagram
represents the inference steps of a diagrammatic proof. In the above example, the
inference step is splitting an ell from a square to produce an ell and a smaller square.
The set of all available operations defines the proof search space. Next, Diamond
automatically extracts a general pattern from these proof instances and captures it in
a recursive program that constitutes a general diagrammatic proof for the universally
quantified theorem. The constructive ω-rule justifies the step from schematic proofs
to theoremhood. In Diamond, the diagrammatic schematic proof is formalised as

proofφ(n + 1) = A (n + 1), proofφ(n)

proofφ(0) = B,

where A (n+1) consists of a sequence of diagrammatic operations, and the number
of applications of each operation is (linearly) dependent on n. B is a possibly empty
basis, that is, no additional operation is required to complete the proof.

The generated program capturing the schematic proof still needs to be verified
to be correct. This is something that human mathematicians often omit, and hence
history of mathematics is full of erroneous proofs (see Cauchy’s proof of Euler’s
theorem as reported by Lakatos in [21] and in Chap. 1 of this volume). The

5From the logical point of view, the constructive ω-rule (and also the ω-rule) is a stronger
alternative to mathematical induction, where the generation of proofs for all instances is satisfied
by the requirement for the effective procedure, such as a recursive function.
6The constructive ω-rule and schematic proofs have previously been implemented for arithmetic
theorems and their symbolic proofs by another DReaM member, Siani Baker [3].
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verification requires meta-level reasoning about the proof, rather than the object-
level theorem, and is done by induction:

proof φ(0) � φ(0)

proof φ(n) � φ(n) �⇒ proof φ(n + 1) � φ(n + 1).

The work on automation of diagrammatic proofs in Diamond provides impor-
tant information on proof procedure construction. It exposes the importance of
representing diagrammatic expressions so that general reasoning techniques can be
applied to them. Furthermore, it provides an insight into how diagrams and purely
diagrammatic inferences can be used in formal proofs.

7.3 Heterogeneous Reasoning

Picking up any mathematical book reveals that many theorems are proved using
symbolic inference steps as well as diagrams. We call these heterogeneous proofs:
examples of two such proofs can be seen in Fig. 7.2. In the first example, a theorem
about triangular numbers is proved by transforming it with symbolic inferences
into an expression that then has a compelling diagrammatic proof.7 In the second
example, the theorem asserts a statement about a bitmap image that clearly requires
the use of image processing steps to then combine them with symbolic inferences.

There exist tools for combining diverse systems (e.g., OpenBox [4], Omega [36],
HETS [24]), but they do not allow mixing of representations. Indeed, most mech-
anised theorem provers use only symbolic representations, like different types of
logic. Whilst Diamond (and other diagrammatic theorem provers like Speedith [42])
constructs proofs using only diagrammatic inference steps, not all theorems can
be expressed with diagrams. Moreover, human mathematicians typically use not
only multiple, but also informal representations such as natural language or images
within the same problem for different parts of the solution.

We designed and built a heterogeneous reasoning framework MixR [41] where
different existing symbolic as well as diagrammatic reasoners can be used at
the same time so that symbolic and diagrammatic proof steps can be interleaved
within the same proof.8 Furthermore, when logical formalisation of a particular
representation (e.g., images, natural language or audio) is not tractable, we can
embed such data in existing provers and still enable informal heterogeneous
reasoning with these opaque objects within an otherwise formal proof.

The MixR framework provides a generic infrastructure for extending existing
general-purpose theorem provers with heterogeneous reasoning in the form of

7Notice that there is no compelling completely diagrammatic proof of the original expression of
the theorem, thus the need to mix symbolic and diagrammatic inference steps.
8This work was done in collaboration with my PhD student Matej Urbas.
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(a)

(b)

Fig. 7.2 Examples of two heterogeneous proofs: (a) a few symbolic steps are followed by
transformation of the formula into a diagram followed by diagrammatic proof steps to prove a
theorem about triangular numbers; (b) here the heterogeneous proof consists of three proof steps:
the ComputeArea inference step is heterogeneous and takes a bitmap image and extracts some
information (the area of the square) that is expressed in the symbolic language; the ArithSimp
inference step is symbolic; the ComputeShape is also a heterogeneous inference step—it extracts
that the bitmap shape is a square and thus resolves the implication

heterogeneous logic. The crucial part of our heterogeneous logic is the mechanism,
called placeholders, which embeds foreign data into formulae of existing theorem
provers so that it can be dealt with using external tools. This data is directly
embedded into formulae of a prover that treats them as primitive objects that can
be reasoned with its standard inference engine. When required, the reasoner can
invoke external tools on this data to obtain new knowledge. Our approach using
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Fig. 7.3 MixR’s architecture with hypothetical drivers. The central box represents MixR’s core.
It contains the implementation of heterogeneous logic components, general UI components and
driver plug points. Drivers surround MixR’s core and plug into it through the plug points

placeholders removes the need for translations between representations, which is
particularly useful when no such translation is available or even possible (e.g.,
diagrammatic representations from CAD tools, images and signal processing).

MixR is an implementation of this heterogeneous logic and placeholders and
enables the integration of arbitrary existing theorem provers of any modality with
each other into new heterogeneous systems. A tool developer can plug their chosen
reasoners into MixR by writing MixR drivers for them. MixR, in turn, integrates
them with each other into a new heterogeneous reasoning system. For example, we
plugged Speedith [42] for spider diagrams and Isabelle [28] for sentential higher-
order logic into MixR to create the Diabelli [40] heterogeneous reasoning system.
We also integrated image processing with symbolic reasoning into PicProc [41]
that can prove a theorem in Fig. 7.2b. MixR provides a user interface as well as an
application programming interface (API) for drivers. Using the API, the drivers can
share, translate and visualise formulae of various modalities. They may also apply
foreign inference steps and query other drivers to invoke foreign reasoning tools.
The architecture of MixR is illustrated in Fig. 7.3.

Many reasoning tools, representations and visualisation aids in artificial intelli-
gence exist mostly in isolation, specialised in their specific domains. Bringing them
together in a simple, flexible and formal way, as in MixR, allows them to contribute
to the problem-solving/theorem-proving tasks. This better models what people do
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in problem solving, it allows developers to easily design systems that are flexible
according to the needs of the end users, and it enables us to take advantage of the
existing powerful technology in a novel and sustainable way.

7.4 Accessible Diagrammatic Reasoning About Ontologies

One of our main motivating factors for computationally modelling reasoning with
diagrams has been the fact that people use them and find them intuitive and accessi-
ble. The barrier to entry for explaining problems and their solutions is lower using
diagrams than symbolic logical formalisms. One domain that routinely requires
some level of formal reasoning but involves a range of different stakeholders
is ontologies. Ontologies are a common knowledge representation paradigm, but
they frequently have accessibility issues due to unfamiliarity of domain experts
with symbolic notations (e.g., DL, OWL). Some visualisation facilities have been
implemented [14, 22], but their focus is expressing and editing ontologies rather
than reasoning with and about ontologies.

Ontologies represent knowledge in a domain with definitions of concepts, their
properties and relations between concepts. Reasoning with ontologies is done with
a justification algorithm [19] that selects a minimal set of axioms responsible
for entailment. There is empirical evidence [12] that confirms that stakeholders
find it difficult to get from the justification to the explanation of the reasons
for the particular selected axioms entailing the problem. Thus, a number of
symbolic theorem provers have been implemented, which construct a symbolic
explanation for justification–entailment pair. Unfortunately, these proofs have the
same inaccessibility issues as before: domain experts are not familiar with their
symbolic notations.

In order to address the inaccessibility of symbolic notations, we devised a
visual theorem prover, iCon, that uses a visual language to represent and reason
with ontologies.9 The input to iCon is a justification–entailment pair expressed
as diagrammatic axioms (justifications) and a diagrammatic theorem (ontology
entailment). The output is an interactively constructed proof using applications of
diagrammatic inference rules that explains how the entailment follows from the
axioms.

The visual language of iCon, concept diagrams [37], covers almost all of the
standard ontology language OWL 2. Empirical studies demonstrate the accessi-
bility of concept diagrams compared to competing diagrammatic and symbolic
notations [33]. Concept diagrams consist of curves (circles, as in Euler and Venn
diagrams) that represent ontology classes (they are sets), dots and spiders that

9This work was done during the Leverhulme Trust funded project “ARD: Accessible Reasoning
with Diagrams” in collaboration with Gem Stapleton, Zohreh Shams, Yuri Sato, Sean Mcgrath and
Andrew Blake.
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Fig. 7.4 Example of a concept diagram

represent individuals in classes, and arrows that represent object properties. There
are also boundary rectangles to denote all individuals in the world, and shading
to place an upper bound on the cardinality of the sets. Complete formalisation of
concept diagrams is given in [38].

Figure 7.4 shows a concept diagram that has 2 bounding rectangles. Spatial
relationships between parts of the diagram convey information, for example, that
Person and Animal represent disjoint sets, since the two corresponding curves are
disjoint. We can also see that Helen is a Female person, due to the location of the
(red) dot labelled Helen. A dot connected by a line to another dot is called a spider,
and it signals that it is not clear which set an individual belongs to. For example,
in Fig. 7.4, Rex could be either a Cat or a Dog. The region outside of Other, Male
and Female is shaded, which means that there is no person who is neither a Female,
a Male nor Other. The dashed arrow ownsPet connects the dot Helen to Rex. This
means that Helen owns Rex as her pet, but she can own pets of other types too.
Unlike dashed arrows, solid arrows mean that the source is related to only the target.
So, the colours that an animal can have cannot be outside the set Colour. Together
with the arrow annotation ≥ 1, this means that all animals have at least one colour.

iCon consists of an inference engine and the graphical user interface. The
inference engine contains a collection of inference rules, applies inference rules
to diagrams and manages proofs. The inference rules can be either symbolic
(conjunction elimination or identity) or diagrammatic. The diagrammatic inference
rules come from the ontology community’s standard set of inference rules for
OWL 2 RL [27], introduced by the W3C in [43]. In order to construct a proof
for a justification–entailment pair, we equipped iCon’s inference engine with dia-
grammatic versions of the symbolic inference rules for OWL 2 RL. Diagrammatic
inference rules rewrite the diagrams representing the premises of a proof state
in order to make them identical to the goal of the proof state. In contrast to a
symbolic proof, which is typically inaccessible to domain experts, this results in
a diagrammatic proof, which is empirically evidenced to be more accessible [1, 33].
Figure 7.5 illustrates an example of such a diagrammatic inference rule. Reasoning
in ontologies most commonly involves entailments, that is, checking if the set of
axioms is consistent, coherent or for query answering. Thus, proofs will often be
about finding out why a set of axioms is inconsistent or incoherent so that the
ontology can be repaired. An example of both a symbolic and iCon’s diagrammatic
proofs of a theorem about inconsistency can be seen in [34].
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Fig. 7.5 Example of iCon’s diagrammatic inference rule

Ontologies are frequently used in the real world by diverse stakeholders, so it
is paramount to make working with them accessible. Current symbolic reasoners
for ontologies provide only a minimal set of axioms for entailments without
explanations for these entailments or indeed lack of entailment. In contrast, iCon’s
diagrammatic proof provides not only an explanation for the entailment that exposes
the interaction between the minimal set of axioms, but also an accessible evidence
and clues for how to repair the ontology when it is found inconsistent or incoherent.
Thus, iCon can be effectively used for reasoning about and debugging of ontologies.

7.5 How to Choose a Representation

So far, we showed how diagrams can be used for formal reasoning, how archi-
tectures can be built to enable reasoning with diverse types of representations and
indeed tools, and how we can formally reason with diagrams about ontologies. But
the question remains: given a problem that we want to solve, how do we choose
the representation that is best suited for solving it and that is most appropriate for
the user who is trying to solve it? Cognitive science has firmly established that
choosing an effective representation can yield dramatic improvements in human
problem-solving performance [7, 20] and substantially enhance learning [6]. This is
what we are currently investigating in an interdisciplinary project on human-like
computing, which has Alan Bundy as one of its advisers.10 We are combining
artificial intelligence, mathematics and cognitive science to investigate human
cognitive abilities to find representations that suitably match problems, and the
process by which humans adapt or switch between representations. We are devising
a foundational theory and building computational models of the critical role that

10This work started during the EPSRC funded projects “How to (Re)represent it?” and “Automat-
ing Representation Choice for AI Tools” in collaboration with Peter Cheng, Daniel Raggi (also an
ex-DReaMer), Grecia Garcia Garcia, Aaron Stockdill, Holly Sutherland and Gem Stapleton.
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representations play in problem solving, and automating them in a new generation
of adaptive AI systems [30–32, 39].

To illustrate our approach, consider this problem in probability:

One quarter of all animals are birds. Two thirds of all birds can fly. Half of all flying animals
are birds. Birds have feathers. If X is an animal, what is the probability that it’s not a bird
and it cannot fly?

Here are three different ways one can go about solving this (see Fig. 7.6):

1. You could divide areas of a rectangle to represent parts of the animal population
that can fly and parts that are birds.

2. You could use contingency tables to enumerate in its cells all possible divisions
of animals with relation to being birds or being able to fly.

3. You could use formal Bayesian notation about conditional probability.

Which of these is the most effective representation for the problem? It depends;
the first is probably best for school children; the last for more advanced mathemati-
cians. How can this choice of appropriate representation be mechanised? We are
interested to find out:

• What are the formal mathematical and cognitive foundations for choosing an
effective representation of a problem?

• Can we develop new cognitive theories that allow us to understand the relative
benefits of different representations of problems and their solutions, including
taking into account individual differences?

• How can we automate an appropriate choice of problem representation for both
humans, taking into account individual differences, and machines to improve
human–machine communication?
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• Can we build an AI tutoring system, aimed at mathematical problems, that
incorporates personalised representation choices and improves users’ abilities to
solve problems?

We distinguish between cognitive and formal properties of a representation, in
an approach that radically, but systematically, reconfigures previously descriptive
accounts of the nature of representations [11]. We use this to devise methods for
measuring competency in alternative representation use and also to engineer a
system to automatically select representations. Cognitive properties characterise
cognitive processes demanded of a particular representation (e.g., problem state
space characteristics; applicable state space search methods; attention demands of
recognition; inference operator complexity [6]). Formal properties characterise the
nature of the content of the representation domain (e.g., operation types like asso-
ciative or commutative, symmetries, coordinate systems, quantity or measurement
scales).

We devised a novel encoding for taxonomising formal and cognitive properties
of problems and representational systems [30, 32]. We catalogue formal properties
using templates of attributes that (currently) the developer of the system assigns
values to. The attributes encode the informational content of the question and a
representational system. Table 7.1 gives snippets from a formal property catalogue
for the above Birds problem stated in the natural language representation. The
colours code the importance of the property relative to the information content (top
to bottom in decreasing importance). Table 7.2 gives snippets of the catalogue of
formal properties for the Bayesian representational system (used in the solution in
Fig. 7.6c). Any representational system and problem expressed in it can be encoded
using this description language.

We built algorithms that automatically analyse these encodings for a given
problem (like the one in Table 7.1) with respect to candidate representational
systems (like the one in Table 7.2) in order to rank the representations, and
ultimately suggest the most appropriate one. This analysis is largely based on
correspondences between the properties of representational systems and their
relative importance for a given problem. For example, the correspondences
between the natural language formulation of the example and the Bayesian
one are translational/morphism-like pairs, such as ratio�real, given� |,
probability�Pr and intersection�∩.

Similarly to formal properties, we devised a catalogue of 9 critical cognitive
properties. They span spatial and temporal scales (icons to whole displays and
seconds to tens of minutes), numerous cognitive processes and the mapping of
information between symbols/expressions and concepts. The attributes of cognitive
properties characterise the cognitive cost, that is, the difficulty of using that
representational system for problem solving. We designed weighting functions to
compute overall values of the cognitive cost for each property: they are based on a
problem at hand, a typical user and utilise the taxonomy of formal properties.

To adjust cognitive costs from a typical user to individual’s abilities, we devised
a small but diverse set of user profiling tests. The measures extracted from these
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Table 7.1 Formal properties of the Birds problem in its natural language representation (note
colour)

Kind Value

Error allowed 0

Answer type Ratio

Primitives Probability, and, not

Types Ratio, class

Patterns :ratio of :class are :class, probability of :class and :class

Facts Bayes’ theorem, law of total probability, unit measure, additive
inverse, . . .

Tactics Deduce, calculate

Primitives One, quarter, all, animals, birds, two, thirds, can, fly, half, flying, X,
animal, probability, cannot

Related primitives Times, divided_by, plus, minus, equals, union, intersection, proba-
bility, zero, . . .

# of primitives 67

# of distinct primitives 31

# of statements 5

Primitives Feathers

Related primitives Beast, animate, creature, wing, aviate, flock, fowl, dame, carnal,
being, fauna, . . .

Table 7.2 A section of formal properties for Bayesian representational system

Kind Value

Types Real, event

Primitives Ω , ∅, 0, 1, =, +, −, ∗, ÷, ∪, ∩, \, ¯ , Pr, |
g-complexity Type-2

Facts Bayes’ theorem, law of total probability, non-negative probability, unit
measure, sigma additivity, commutativity . . .

Tactics Rewrite, arithmetic calculation

i-complexity 3

Rigorous TRUE

profiles enable us to scale the level of contributions of each cognitive property to
the overall cost of a representational system for an individual. We operationalised
the encoding of cognitive properties by automating heuristics that encode user
preferences and level of expertise to influence the ranking of potential candidate
representational systems.

In this chapter, we are laying the foundations for understanding formal and
cognitive properties that affect the choice of representations in problems solving.
Our prototype implementations of the algorithms that carry out this analysis show
that it is possible to model such processes computationally. We are now applying
these foundations in applications such as personalised AI tutoring systems.
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7.6 Future Directions

The overarching theme of the work reported here, and common to many past
and present DReaM group members, is about computationally modelling human
reasoning. The enduring legacy of the DReaM group and our common interests
mean that in a number of these projects we continue with existing and establish
new collaborations with the past and present DReaMers. For example, Alan Bundy
is serving on the advisory board of my project about representation choice and AI
tools, and Alison Pease is helping us with her HRL system [29] in our mathematical
education project.

The aim of my work is to make AI systems more human-like in the way they
interact with users, in the representations that they choose for this interaction,
in the methods that they employ to solve problems and in the explanations that
they provide alongside their solutions. There are many future directions, especially
with respect to fully automating some of these processes and scaling them up to
general real-world AI systems. In particular, we are currently developing automated
methods for a diagrammatic reasoning system to discover new, intuitive solutions
to mathematical problems. We are also investigating how we can make theorem
provers construct proofs with methods at a level of abstraction and with a level
of automation that human mathematicians find appealing. Furthermore, we are
marrying statistical with symbolic and knowledge-based approaches to machine
learning in order to enhance machine-oriented with human-oriented inference. The
results are AI systems that produce solutions from fewer examples and with better
explanations of the solutions. There are many applications of this work, but we
are focusing on education and developing a new generation of adaptive AI tutoring
systems, and on medicine and building integrative data models for clinical decision
support systems in personalised cancer medicine.

There is currently much excitement about artificial intelligence and its impact
on society. Most of the work that is generating this excitement is due to impressive
results of statistical machine learning. However, these machine-oriented methods
produce solutions that often lack explanations and use representations that are
inaccessible to humans. My research is motivated by human reasoning, so I employ
symbolic learning and knowledge-based reasoning as well as diverse representations
to enhance this learning and inference. Interdisciplinarity and collaboration have
always been at the centre of the DReaM group research ethos, and they have
therefore undoubtedly shaped me and my work. Both are key to advancing the
field and building a new generation of AI systems that are transparent and have
a good cognitive model of the user to be adaptable and to produce explanations
understandable to humans.
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