
Greg Michaelson Editor

Mathematical
Reasoning: The History
and Impact
of the DReaM Group

Mathematical Reasoning: The History and Impact
of the DReaM Group

Greg Michaelson
Editor

Mathematical Reasoning:
The History and Impact of
the DReaM Group

Editor
Greg Michaelson
Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, UK

ISBN 978-3-030-77878-1 ISBN 978-3-030-77879-8 (eBook)
https://doi.org/10.1007/978-3-030-77879-8

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-77879-8

Foreword

AI, Automated Reasoning and Mathematics: DReaM

Edinburgh, one of the most beautiful cities of the world—Athens of the north—and
the birthplace of Artificial Intelligence in Europe! Yes, this evokes fond memories
of many pleasant visits, research exchanges, a sabbatical, and the close cooperation
with Alan Bundy’s research group over so many years.

Little did I know what was to come—let alone the meaning of the two letters A
and I—when I came to England to study for an MSc in Computer Science at Essex
University in 1972. But it was going to change my life, and all my plans, forever.

It was here that I learned for the first time that there are researchers who believe
that computers can think, and that computers can have an almost human dialog
about a children’s blocks world. I also learned that computers can do mathematics—
the queen of intellectual disciplines as I used to think as the highbrowed, newly
graduated, math student I used to be—in the sense of proving novel mathematical
theorems. So when Pat Hayes came from Edinburgh to become a lecturer for AI at
Essex University and agreed to accept me as his PhD student, I turned down my
chance to go to Oxford to be supervised by Dana Scott and stayed on: a decision I
have never regretted—and it came in handy that I had a girlfriend who was doing
politics at Essex in Colchester who later became my wife.

Edinburgh, Thou City Fair and High Nisi Dominus Frustra, Psalm 127

v

vi Foreword

We learned in our AI courses that a system can do better than heuristic search,
and I remember writing an essay on “What is wrong with GPS” (not the Global
Positioning System, but Herb Simon’s General Problem Solver based on search by
a single mechanism just like a resolution theorem proving system). Pat had written
his Logician’s Folly paper,1 and so, coming back to Germany after my PhD in 1976,
I wanted to set up a research group for theorem proving, but not as a search-based
resolution system—the still dominating paradigm at CADE. The new battle cry
initiated by Carl Hewitt’s thesis at MIT, which hallmarked the paradigm change
in AI research, was: knowledge based systems. So, our theorem proving system
was still based on resolution, but it was to be guided by a supervisor, where the
mathematical knowledge should be represented. We promised our funding agent,
the DFG, two things: firstly that we could build a system that was not fundamentally
characterised by blind search, mathematically expressed by the R-value (the ratio
of the number of clauses in the final proof divided by the total number of clauses
generated in the search space); and second, that the system would be by some order
of magnitude stronger than any other system on the market, as it was knowledge
based.

After many years of development, we could show that indeed this was possible,
and for many years we had a friendly race with the then strongest system on the
market by Larry Wos and his research group at Argonne National Lab, Chicago.
This would work by sending each other problems we had solved and hoped that the
other one could not do. So sometimes Larry would call in the middle of the night,
unaware of the time difference between the continents: “Hey Siekmann, can you do
this?” and then we had a week or two, to show that his theorem, indeed followed
from the axioms he had also sent. By and by we knew the strength and weaknesses
of the Argonne system pretty well and so we sent him a problem that was a real
challenge for him, but not for us, for example, as we used a sorted logic among
other special features. So our message “Hey, Larry, can you do this?” went to the
other side of the Atlantic—but sooner or later his smart students found the trick and
solved it as well. This went on for some years with our noses still up in the air, since
our theorem prover could always do as well as theirs, but with a significantly better
R-value.

But, the total amount of computation including the supervisor was expensive,
and in one of the panel discussions Larry provoked us with something like this:
“Look, Siekmann,2 why don’t you discard your supervisor and replace it by the
strongest and best system of the world, namely our system OTTER, let it find the
proof and guide your base system smoothly to the proof with an R-value of exactly
1”. This was good thinking, in particular since our second promise to the DFG,

1Bruce Anderson and Pat Hayes. The logician’s folly, DCL Memo 54.University of Edinburgh.
1972.
2He always used my family name as opposed to the usual American custom of addressing a friend
by his first name. This was to tease me with his quirky sense of humour that would take too long to
explain here (for example, Larry was blind and sued Playboy Magazine for discriminating against
the blind by not having any touch sensitive issues). We were really good friends, who respected
each other very much.

Foreword vii

the fundamental increase in strength, did not really come about: sometimes the
pendulum swung to our side of the Atlantic but it always eventually swung back
to the American side—the “knowledge base” revolution was never in sight. Also
the guidance of the supervisor did not really work as we had hoped, and so by the
end of the funding period we were somewhat disconcerted.

And this is the point where Alan Bundy and his ideas came to the rescue.3

His paper “A Science of Reasoning” impressed us deeply and left a lasting
impression: could we not abandon the whole idea of the supervisor and build a
system on very different principles that would come much closer to the way a human
mathematician would prove a theorem? That is, to plan a proof at a more abstract
level and then refine it down to the final syntactic logical proof?

Proof Planning was born!
Unusually enough, we were given a second chance by the DFG for another

“Sonderforschungsbereich”, which meant another 12 years of continuous funding,
and this was spent on our new system OMEGA, which we considered our final word
on the issue of theorem proving. Research was from now on dominated by the close
collaboration and friendly competition with Alan’s research group in Edinburgh:
one of the most pleasant research periods in my academic life.

As a matter of principle, my PhD students had to spend at least half a year
abroad, more often than not in Great Britain, and Edinburgh was their favourite spot.
My late second wife, Erica Melis, even spent a whole year in beautiful Scotland
with Alan Bundy’s group and was full of enthusiasm not only about the wonderful
countryside, but even more about the inspiring and open research atmosphere, the
weekly discussion group, the blue notes, of which she wrote a few herself, and
not least by Alan’s advice and constructive criticism. And so, by and by, over
the years to come, we had so many student exchanges that we jokingly applied
to the Saarland Government to install a direct flight from Saarbrücken Airport to
Edinburgh to accommodate for the exchanges. Well, there is still no direct flight and
I missed many more flights and meetings in Edinburgh, because of the gruesome
traffic conditions.

But it is not all work that springs to mind when I think of our visits to Edinburgh:
the beautiful Firth of Forth (a tongue twisting pronunciation test for us non-natives);
the walk up to Arthur’s seat when you needed a break from work; relaxation during
a stroll through Princes Street Gardens between the Old Town and the New Town
(built in 1767 as J Strother Moore, an American working with Alan in Bernhard
Meltzer’s Meta-Mathematics Unit, noticed in awe); the Indian meal at Haymarket;
and Erica’s enthusiasm about the theatre scene during the Fringe Festival, where she
took me often, sometimes more than once in a day. And the unforgettable olfactory
bliss of malted barley from the city’s breweries with scents of roasted malt from the
North British Grain Distillery always reminding you that you are in Edinburgh. As
a matter of fact, an Edinburger, as the natives are called in Auld Reekie, is no child
of sadness: going out for evenings to have a beer somewhere at the Grassmarket
(I must have been one of the few foreign members of CAMRA, the Campaign for

3Bundy, A.: A Science of Reasoning, pp. 178–198. MIT Press (1991).

viii Foreword

Real Ale) or whisky tasting at the Scotch Malt Whisky Society in Queen Street—
fond memories indeed. For many years we had a competition in our group, who has
the smallest membership number of the Scotch Malt Whisky Society, and with now
only an ε away from my eighties, I used to win until one day when we hired a new
RA we could not believe it: he even had a significantly smaller number. This had to
be celebrated with a special single cask whisky.

But it was the friendly intellectually inspiring atmosphere in Alan’s research
group that was the best experience: everyone was ready for a quick witticism about

Alan Bundy was appointed CBE in the 2012 New Year Honours for services to computing science

Foreword ix

almost anything, including ourselves. It was here that I learned the best biting British
humour about the royal family, but we all fell silent when we saw the following
photograph:

The Beat Generation; Jack Kerouac, On the Road; Allen Ginsberg’s Howl and
Burrough’s “Naked Lunch”; and then the1968 student demonstrations in Berlin,
London and Paris and now that: Alan Bundy in his cut in front of the queen shaking
her hand and receiving the CBE!

Well—even Bob Dylan received the Nobel Prize.
But it was not just automated theorem proving, as this volume shows, but

many more areas in AI where Alan and his students made lasting contributions
and turned Edinburgh—the Lighthill Report not withstanding—back into one of
the most influential and outstanding research sites for symbolic AI in the world:
reconnoitring unexplored jungle, as Mateja put it. Or to phrase it using Alan’s more
sober and modest words:

My group has been characterised by its diversity of approaches to the
representation of and reasoning with knowledge, including: deduction; meta-
level reasoning; learning, especially of new reasoning methods; representation
creation and change; as well as applications to problems as diverse as formal
verification, analogical blending and computational creativity.

Yes, Alan you were more dominant and present in our life here at Saarbrücken
than you probably know!

Congratulations on your lifetime achievements!

Saarbrücken, Germany Jörg Siekmann
March 23, 2021

Preface

Overview

This timely and engaging collection constitutes a festschrift for the internationally
leading DReaMGroup (Discovery and Reasoning in Mathematics), founded and led
by Alan Bundy, at the University of Edinburgh, from 1971 to the present. In many
ways, of course, this book is also a festschrift for Alan himself, whose vision and
leadership shine throughout.

Alan, with characteristic modesty, was adamant that the Group as a whole should
be celebrated. Nonetheless, it is fundamental to acknowledge his pioneering roles,
in both Mathematical Reasoning research, and in sustaining a cutting edge group
driven by a strong ethos of mutually supportive inquisitiveness. Alan’s contributions
have been widely and deservedly recognised. Amongst other awards, he is an
elected Fellow of The Royal Society (2012) and of The Royal Society of Edinburgh
(1996), a Fellow of the Association for Computing Machinery (2014), and won the
2007 IJCAI Award for Research Excellence and Herbrand Award for Distinguished
Contributions to Automated Deduction. In the 2012 New Year Honours, he was
appointed CBE for services to Computing Science.

Under Alan’s leadership, the DReaM Group enjoyed continuous funding from
1982 to 2019, from the United Kingdom Science and Engineering Research
Council (SERC), and its successor, the Engineering and Physical Sciences Research
Council (EPSRC). Unlike the more common time-limited, focused funding, this
support was based on first Rolling, and then Platform, Grants, to underpin relevant
research within a liberal interpretation of Mathematical Reasoning. This has enabled
unparalleled support for exemplary activity, as is clear from the strength and
diversity of the work presented here.

EPSRC ended funding for all Platform Grants in 2017, so we thought that was a
good point at which to create a lasting record of the DReaM Group’s contributions.
However, as well as heralding the Group’s substantial technical achievements, we
also wished to highlight how these were nurtured by its constitution, so we asked
contributors to present their achievements in wider personal and Group contexts.

xi

xii Preface

Thus, where other festschrifts separate out scientific accounts from personal appre-
ciations, we have sought to explicitly integrate the technical and the social.

In 2018, after Group discussion, I sent out a call to the DReaM email lists
soliciting participation. All submissions were accepted, and the authors reviewed
each other, with additional reviewers, acknowledged below. Thus, while I am
formally the editor, this is very much a collective, Group endeavour.

Contents

The chapters are presented in a rough chronological order of the authors’ first
engagements with the DReaM Group.

In Chap. 1, Alan Bundy provides a thorough account of the Group’s genesis and
progress, highlighting key research themes and achievements. This chapter strongly
situates the rest of the book.

In Chap. 2, J Strother Moore recounts his impressions of the environment in
which the DReaM group first developed, in the Metamathematics Unit and the
Department of Machine Intelligence and Perception, in the early 1970s.

In Chap. 3, TobyWalsh surveys his participation in the elaboration and formalisa-
tion of the key DReaM approach of proof planning, and of the core rewrite technique
of rippling.

In Chap. 4, Paul Jackson explores systematic techniques for dynamically present-
ing proofs to varying degrees of detail, to aid accessibility and comprehension.

In Chap. 5, Jacques D. Fleuriot discusses the application of proof planning
to nonstandard analysis, and fusing mechanical discovery and proof for effective
geometric reasoning.

In Chap. 6, Gudmund Grov, Andrew Ireland, and Maria Teresa Llano describe
reasoned modelling for system design, where the ideas of proof plans are extended
to incorporate patterns of formal modelling.

In Chap. 7, Mateja Jamnik discusses the formalisation and automation of dia-
grammatic reasoning, and how best to choose representations for optimal human
understanding.

Finally, in Chap. 8, Fiona McNeill explores how reasoning about failure, another
central DReaM technique, can be applied to matching and integrating ontologies.

Edinburgh, UK Greg Michaelson

Acknowledgements

I wish to thank:

• Our additional reviewers Lilia Georgieva (Heriot Watt University) and Grant
Olney Passmore (Imandra Inc. and University of Cambridge), for their thoughtful
comments.

• Our Springer editors: Ronan Nugent, for enthusiastically embracing this project,
and Paul Drougas, for patiently seeing it through to completion.

• Jörg Siekmann, for his heartfelt foreword, which ably sets the tone for the rest of
the book.

xiii

Contents

1 The History of the DReaM Group . 1
Alan Bundy
1.1 Why DReaM?. 1
1.2 Arrival in Edinburgh . 2
1.3 The Mecho Project. 3
1.4 The Eco Project . 5
1.5 Building a Wider Community . 6
1.6 DReaM Motifs . 11
1.7 Conclusion . 30
References . 32

2 Recollections of Hope Park Square, 1970–1973 . 37
J Strother Moore
2.1 Arrival . 37
References . 48

3 Adventures in Mathematical Reasoning . 51
Toby Walsh
3.1 Introduction . 51
3.2 Rippling . 52
3.3 Proof Planning . 56
3.4 Mathematical Discovery. 58
3.5 The Meta-Level . 59
3.6 Conclusions . 59
References . 59

4 Dynamic Proof Presentation . 63
Paul B. Jackson
4.1 Introduction . 63
4.2 A Running Example of a Procedural Proof. 66
4.3 Focussing on Proof Steps in Procedural Proofs . 69
4.4 Condensing Tactic-and-Subgoal Proof Trees. 70

xv

xvi Contents

4.5 Expanding Proof Steps . 73
4.6 Dynamic Presentation of Declarative Proofs . 74
4.7 DReaM Group Contributions . 76
4.8 Technologies for Proof Presentation . 79
4.9 Relationship Between Viewing and Editing Proofs 80
4.10 Further Related Work. 80
4.11 Conclusions and Future Directions . 82
References . 84

5 Proof Mechanization: From Dream to Reality . 87
Jacques D. Fleuriot
5.1 Prologue . 87
5.2 Proof Planning . 88
5.3 Geometric Reasoning: Marrying Discovery and Proof 91
5.4 Conclusion . 101
5.5 Epilogue . 101
References . 102

6 Reasoned Modelling: Harnessing the Synergies Between
Reasoning and Modelling . 105
Gudmund Grov, Andrew Ireland, and Maria Teresa Llano
6.1 Introduction . 105
6.2 Refinement-Based Development and Event-B . 107
6.3 Reasoned Modelling Critics . 108
6.4 Refinement Plans . 111
6.5 Invariants Generation and HREMO .. 114
6.6 Design-Space Exploration. 118
6.7 Future Work and Conclusion . 122
References . 126

7 Human-Like Computational Reasoning: Diagrams and Other
Representations . 129
Mateja Jamnik
7.1 The DReaM Research Environment . 129
7.2 Diagrammatic Reasoning. 131
7.3 Heterogeneous Reasoning . 134
7.4 Accessible Diagrammatic Reasoning About Ontologies 137
7.5 How to Choose a Representation . 139
7.6 Future Directions . 143
References . 144

8 From Mathematical Reasoning to Crises in Different
Languages: The Application of Failure-Driven Reasoning to
Ontologies and Data . 147
Fiona McNeill
8.1 Introduction . 147
8.2 Agents Reasoning About Their Ontologies . 148

Contents xvii

8.3 Into Ontology Matching: The Open Knowledge Project 152
8.4 Sharing Knowledge in Crises: Failure-Driven Query Rewriting 155
8.5 Multi-Lingual and Multi-Domain Matching . 158
8.6 On to the Future. 160
References . 161

Contributors

Alan Bundy School of Informatics, University of Edinburgh, Edinburgh, UK

Jacques D. Fleuriot Artificial Intelligence and Its Applications Institute (AIAI),
School of Informatics, University of Edinburgh, Edinburgh, UK

Gudmund Grov Norwegian Defence Research Establishment (FFI), Kjeller,
Norway

Andrew Ireland Heriot-Watt University, Edinburgh, UK

Paul B. Jackson University of Edinburgh, Edinburgh, UK

Mateja Jamnik Department of Computer Science and Technology, University of
Cambridge, Cambridge, United Kingdom

Maria Teresa Llano Monash University, Melbourne, Australia

Fiona McNeill University of Edinburgh, Edinburgh, UK

Greg Michaelson Mathematical and Computer Sciences, Heriot-Watt University
Edinburgh, UK

J Strother Moore The University of Texas at Austin, Computer Science Depart-
ment Austin, TX, USA

Jörg Siekmann Universität des Saarlandes/DFKI Saarbrücken, Germany

Toby Walsh University of New South Wales, Sydney and Data61, Sydney, NSW,
Australia

xix

Chapter 1
The History of the DReaM Group

Alan Bundy

Abstract I describe the history of the DReaM Group (Discovery and Reasoning
in Mathematics), which I created after my arrival at the University of Edinburgh
in 1971. The group has been characterised by its diversity of approaches to
the representation of and reasoning with knowledge, including: deduction; meta-
level reasoning; learning, especially of new reasoning methods; representation
creation and change; as well as applications to problems as diverse as formal
verification, analogical blending and computational creativity. From 1982, we have
been supported first by a series of EPSRC rolling grants and then, when this funding
mechanism ceased, platform grants. Now that the latter mechanism has also ceased,
we felt it was time to take stock, celebrate our achievements, assess our strengths
and plan our future research. This history lays the bedrock for that self-analysis.
Inevitably, space restrictions have forced me to be highly selective in what research
I cover. I apologise to those whose excellent research I have had to omit or only
hint at. My selection has been mainly influenced by my desire to illustrate our
methodological and application diversity. I hope that the other chapters in this book
will fill some of those gaps.

1.1 Why DReaM?

I have been engaged in DReaM Group research for well over four decades. I
once turned down a five-fold salary increase in order to continue doing so. I
have worked well past my official retirement date. Over 100 fellow researchers
have enthusiastically contributed to the Group in those four decades. Why this
enthusiasm?

I love mathematics, especially logic. I am also fascinated with cognition—not
especially in the cognition of humans or of other animals, but how cognition is

A. Bundy (�)
School of Informatics, University of Edinburgh, Edinburgh, UK
e-mail: A.Bundy@ed.ac.uk

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_1&domain=pdf
mailto:A.Bundy@ed.ac.uk
https://doi.org/10.1007/978-3-030-77879-8_1

2 A. Bundy

even possible. Emulating cognition using logical reasoning then ticks all my boxes.
Such emulation cannot just be limited to deduction though. It is clear that cognition
goes well beyond this and involves a multitude of interacting reasoning processes:
abduction; analogy; planning; uncertainty; meta-level reasoning; learning; the use
of diagrams; conjecture formation; fault diagnosis; representation formation and
evolution, etc.

There is a long-standing argument as to whether computing is a branch of
engineering or of science. Of course, it is both. It can also be mathematics. What
I have been most drawn to, however, is computing as art. Art values beauty, of
course, and many computing solutions are beautiful, including ingenious algorithms
and elegant representations. For me, though, the main attraction of art is surprise:
especially pointing to new ways of thinking. As Sir William Lawrence Bragg said:

“The important thing in science is not so much to obtain new facts as to discover new ways
of thinking about them”.

Artificial intelligence is well suited to this. It often demonstrates that an aspect of
cognition that most people thought was beyond automation can, in fact, be auto-
mated. The DReaM Group has had more than its fair share of such demonstrations.
We have shown how: intermediate lemmas can be constructed; search control can
be reasoned about; proofs can consist of diagrams; interesting conjectures can be
made; concepts can be analogically blended; models of the environment can be
invented and faulty ones repaired; paintings, music and poems can be created. Even
more surprisingly, mathematics, often in the form of logic, can play a key role in the
automation of aspects of cognition that seem inherently informal.

It has been a delight to write this chapter and remind myself of these many
achievements of the DReaM Group.

1.2 Arrival in Edinburgh

I first came to Edinburgh in June 1971, having just finished a PhD in Mathematical
Logic under Reuben Louis Goodstein at Leicester. I joined Bernard Meltzer’s
Metamathematics Unit (MMU), which was a major centre for research on auto-
mated theorem proving, and was loosely attached to the Department of Machine
Intelligence and Perception (DMIP), with which it shared accommodation in Hope
Park Square. Bernard had a knack for recruiting excellent people.

Bob Kowalski: had just completed the development of Selected Literal Res-
olution [42] with Donald Kuehner and was co-founding the field of logic
programming [41].

Pat Hayes: was pioneering John McCarthy’s programme of representing common
sense reasoning using logic [53].

Bob Boyer & J Moore: J’s original PhD project was automating the understand-
ing of children’s stories supervised by Donald Michie, but switched to automated
theorem proving. BobB joined MMU at the same as me, and he and J formed the

1 The History of the DReaM Group 3

closest working partnership I have ever known, which led to the Boyer–Moore
series of inductive theorem provers [6].

Anecdote 1 (The Dangers of Being Over-Rehearsed) I first met Bernard
when he came to give a seminar at Leicester. I wanted to find a job where
I could use my logical knowledge but apply it to something practical. So I
rehearsed a little speech, which I imagined would go like this?

Me: “Do you have any logicians in your group?”
Bernard: “No.”
Me: “That’s what I thought. Are you looking for one?”

Unfortunately, how it actually went was:

Me: “Do you have any logicians in your group?”.
Bernard: “No. I suppose that was obvious from my talk.”
Me: “That’s what I thought. Are you looking for one?”

Fortunately, Bernard immediately knew what had happened and thought it
very funny.

I came to Edinburgh at a turbulent time for DMIP. It was composed of three
research groups in three separate sites, the heads of which did not get on. MMU
became embroiled by the ensuing spate of heated argument and serial reorganisa-
tion. This turmoil was fuelled by the Lighthill Report [48], which passed a damning
verdict on AI, leading to an AI Winter, during which funding was hard to get. Many
researchers left for new pastures, including BobK, Pat, BobB and J. In 1974, out
of this ferment, a new, but very small, Department of Artificial Intelligence (DAI)
crystallised. To make us viable, the University created two new lectureships. I was
lucky to get one and Gordon Plotkin got the other. My first task was to organise a
new undergraduate course, called Artificial Intelligence 2.1

1.3 The Mecho Project

MMUwas funded by a fore-runner of the rolling grant scheme. The funding agency,
which was then called SRC,2 sent a panel to inspect us every few years.

1“2” because it was a second year course.
2Later to become SERC and then EPSRC.

4 A. Bundy

Anecdote 2 (Clarity Considered Harmful) The attitude of these panels
was that they did not fully understand what Bernard’s group was doing but
thought it was good work that deserved support. For the meeting before I
arrived, BobK and Pat had decided that they would make a big effort to get
the panel to really understand the work. This succeeded, but the panel said
“Ah! Now we understand and we’ve decided not to fund you”.

We got another chance, but the pressure was on to convince the panel that our
research was worth funding.

Bernard managed to reinvigorate his research group with new people and there
was talk of a group project to consolidate us. So at the next SERC panel meeting,
I described such a project in which we would solve mechanics problems stated in
English. The panel suggested that I submit my own grant proposal to do this. I
did, and I got two tranches of SERC funding for a total of 6 years. We called our
program Mecho (for Mechanics Oracle). We took A Level applied mathematics
problems about particles, inelastic strings, friction-less pulleys, inclined planes,
etc., translated the English into a first-order logic representation, then extracted and
solved equations [12]. Martha Stone,3 Chris Mellish and Rob Milne did PhDs with
me to translate English into FOL. Lawrence Byrd, George Luger and I automated
the extraction of simultaneous equations from the FOL, and Bob Welham and I
automated solving the equations. In retrospect, this was the beginning of the DReaM
Group,4 although we did not call it that then. We were the Mecho Group. Martha
and Chris both developed international reputations for NLP. George is best known
for his successful AI textbook. Laurence joined Quintus, a Silicon Valley, logic
program-based start-up founded by David Warren. BobW joined Hewlett Packard
in Bristol. Rob became an expert-system entrepreneur in Scotland, but sadly died at
48 climbing Mount Everest—the last of his “Seven Summits” challenge.5

BobK had brought Prolog to Edinburgh and, with the work of David Warren at
Edinburgh, it became a practical programming language. TheMecho Group adopted
it for all the phases of the Mecho program, and it became the biggest Prolog program
in the world. Members of the group, including Chris Mellish, Lawrence Byrd,
Richard O’Keefe and Leon Sterling, contributed some of the key Prolog textbooks
[19, 63, 71].

Meta-level reasoning was a major focus of the Mecho project. It was used
to control search in natural language understanding, common sense inference,
representation formation and algebraic manipulation. Meta-level reasoning had been
much discussed in Bernard’s group as a way to impose methodological hygiene by
separating object-level reasoning from the heuristics used to control search. It was in

3Now Palmer.
4AKA—the Mathematical Reasoning Group.
5Climbing the highest peaks in each of seven continents.

1 The History of the DReaM Group 5

sharp contrast to the expert systems then being built, which incorporated heuristics
as additional conditions into rules, thus making it hard to separate soundness and
completeness from pragmatism. In particular, proof methods, such as isolation,
collection and attraction, were used to control the algebraic rewriting used to solve
equations in our Prolog Equation-Solving System, PRESS, which can be seen as an
early version of proof planning.

The limiting factor in the Mecho project was deciding how to represent as
Physics abstractions the real-world objects described in English. For instance, was
a ship to be represented as a particle on a horizontal plane, as used in relative
velocity problems, or as a container floating on a fluid, as in Archimedes’ Principle
problems? In school mechanics problems, we found that these choices were hinted
at using key words in the English text. This is unsatisfactory. The key skill in
engineering modelling is to choose the best representation. Mecho was not the best
vehicle for addressing this idealisation issue.

Anecdote 3 (The Importance of Dreaming) In 1979, I was head hunted by
Schlumberger to work on the application of expert systems to the exploration
of oil. My wife, Josie and I were flown out to Ridgefield, Connecticut, wined
and dined and offered 5 times my then salary. I turned them down.

The head of their research lab had a great saying about research method-
ology. “To do research you need two things:

1. You have to have a dream.
2. And you need to know what to do tomorrow”.

This was one reason for calling ourselves the DReaM Group, which stands
for Discovery and Reasoning in Mathematics.

1.4 The Eco Project

As a new lecturer I had to attend a week-long course on teaching methods, which
focused on practical skills. One of the exercises was to describe your research
project. I chose to describe Mecho. After my talk, I was approached by another
new lecturer on the course: Bob Muetzelfeldt. BobM was an ecological modeller in
the Department of Forestry and Natural Resources. Ecological models represented
the environment using differential equations to describe flows of energy between
animals, plants, etc. Writing differential equations was not a common skill among
biologists, so BobM’s vision was to build a front end that allowed users to describe
the ecological environment in biological terms, from which equations could then be
automatically extracted. In Mecho, he saw an exemplar of his vision. So, BobM and
I joined forces to construct what we decided to call the Eco System.

6 A. Bundy

Eco proved to be a good vehicle for addressing the idealisation issue. Idealisation
clues could be found, for instance, in the questions the ecologist wanted the ecolog-
ical model to answer. If the question was about comparing the milk productivity of
cattle of different ages, then classifying them into age classes was required. If it was,
instead, about the productivity of different breeds, then classifying them by breed
was required. Similarly, the environment might be divided into meadows vs. pasture
vs. woods—or just represented as a grid.

We got two tranches of SERC funding for two RAs for 6 years in total [67]. One
of the RAs was Mike Uschold, who became a founder of the ontology community
and had a successful industrial career. Our initial choice of the second RA proved
to be unsuccessful, so we had to replace him. BobM proposed a very bright
undergraduate, who proved to be a brilliant choice. Dave Robertson was a key
member of our group. At the end of the project, he became a lecturer in DAI,
founding his own group on lightweight software engineering. He later went on to
become first the Director of our Research Institute, CISA, then Head of the School
of Informatics, and is currently the head of the College of Science and Engineering
at the University of Edinburgh.

BobM’s favoured programming language was Fortran, and Eco’s differential
equations were represented as difference equations in Fortran and solved numeri-
cally. Working with us, however, he became enamoured of Prolog and switched to
that as his main programming language.

The Alvey Programme6 was a UK response to the Japanese Fifth Generation
Project.7 Alvey initiated an “Architecture Study”, and I was asked to lead a section
of this entitled “Intelligent Front Ends” (IFE). These were user-friendly interfaces
to software packages, whose aim was to make these packages accessible to non-
computer scientists. Both Mecho and Eco were reinterpreted as IFEs. Another
IFE developed in our group was Richard O’Keefe’s ASA [62], which aimed to
provide an IFE to statistics packages. The idea was for the user to describe an
experiment requiring statistical analysis and ASA to suggest appropriate commands
in a statistics package.

1.5 Building a Wider Community

1.5.1 Rolling Funding and Platform Grants

From 1980, our work on automated reasoning focused more on the PRESS system
[70]. We were now calling ourselves the Press Gang. Bernard Silver’s PhD was on
automating the learning of equation-solving methods from example solutions. Leon
Sterling was developing proof methods for inductive proof. The work was funded by

6https://en.wikipedia.org/wiki/Alvey. Accessed 26.8.19.
7https://en.wikipedia.org/wiki/Fifth_generation_computer. Accessed 26.8.19.

https://en.wikipedia.org/wiki/Alvey
https://en.wikipedia.org/wiki/Fifth_generation_computer

1 The History of the DReaM Group 7

two separate SERC grants. SERC persuaded me to merge these two grants into one
rolling funding grant. Rolling grants are reviewed every 2 or 3 years by a visiting
panel and then, if successful, extended for another 4 years. Entitled “Computational
Modelling of Mathematical Reasoning”, this first rolling grant started in 1982 and
has rolled since then, albeit becoming a platform grant in 2002. This gave our group
a great deal of security and the ability to rapidly explore new directions of research.

Anecdote 4 (Virtual Money) The rolling grants funded not just RAs, but
also equipment. We had our own network of computers and a computing
officer to support us. That meant we had to decide what to buy. Unfortunately,
the group members were frozen by the large sums involved and were unable to
make any decisions. I, therefore, proposed that we divide all prices by 100, so
that a £2,000 computer appeared to be priced at only £20. That did the trick
and we rapidly reached an agreement.

The rolling and platform grants enabled our group to grow not only in diversity
but also geographically. In 1982, the rolling grant had one principal investigator and
one site. In 2019, our final platform grant had eleven investigators and included
three sites: Edinburgh, Heriot Watt and Queen Mary London. We try to recruit
the best postdocs and postgraduate students. I learnt early in my career that the
best researchers will soon want to leave and start their own research groups.
Rather than be disappointed at losing a key team member, I am delighted at the
opportunity to establish a new collaboration. In practice, this was achieved by
adding these pathfinders as new co-investigators to the grant and exploring with
them the opportunities for new collaborations. As they took new research paths, this
added to the diversity of our research, but the coherence of the group was maintained
because many common themes continued to underpin our research.

The range of our research also grew to encompass new areas.

Rippling: In particular, we developed the rippling proof method for controlling
the step case of inductive proofs. It used wave-rules that moved and removed
differences between the induction conclusion and the induction hypothesis [11]
(see Sect. 1.6.2).

The Productive Use of Failure: Automatic analysis of a failed proof attempt can be
used to suggest missing intermediate lemmas that enable the proof attempt to
continue [36] (see Sect. 1.6.4.1).

Repair of Faulty Representations: Failures of reasoning, e.g., proving false theo-
rems or failing to prove true ones, can be automatically analysed to suggest
changes to the language of a theory [46, 47, 57] (see Sect. 1.6.4.3).

Proof Planning: Our development of proof methods and meta-level reasoning
crystallised into proof planning: specifying proof tactics so that plan formation
could be used to construct a plan for a whole proof [8] (see Sect. 1.6.5.1).

8 A. Bundy

Applications of Proof Planning to Formal Methods: Since inductive reasoning is
required for reasoning about repetition in both software and hardware, our
automation of it could be applied to software verification [37, 49, 51], hardware
verification [17] and program synthesis [27, 38, 43] (see Sect. 1.6.6.1).

Applications to Cyber Security: Inductive reasoning was also applied to discover
attacks on security protocols [69]. This work later led to work on reverse
engineering the implementations of the RSA PKCS�11 API standard for smart-
card protocols [35]. These projects revealed serious security flaws in these
protocols (see Sect. 1.6.6.2).

Tactic Learning: By detecting patterns in successful proofs, novel and useful tactics
were automatically constructed [31, 68] (see Sect. 1.6.6.3).

Theory Exploration: We developed various heuristic methods for conjecturing and
proving interesting theorems [15, 20, 40, 50, 58] (see Sect. 1.6.6.4).

Diagrammatic Reasoning: We pioneered the automation of reasoning by manip-
ulating diagrams rather than logical expressions [39, 72]. This work drew on
earlier work on the constructive omega rule [2] (see Sect. 1.6.6.5).

Analogical Reasoning: We have automated analogical reasoning using both ideas
of Lakatos and by applying colimits in Category Theory to achieve conceptual
blending [52, 66]. These have been evaluated on both mathematics and music
(see Sect. 1.6.6.6).

Computational Creativity: Members of our group pioneered computational creativ-
ity research [4, 22, 24, 32], with applications to mathematics, computer games,
art and music (see Sect. 1.6.6.6).

Representing Uncertainty: We have explored mechanisms for uncertain reasoning
in the FRANK System [16], which not only combines deductive with statistical
reasoning, but also associates error bars with numerical data and inherits them
through the inference process to the final answer. We also developed the
Incidence Calculus [7], a kind of probabilistic logic in which sets of weighted
possible worlds were associated with formulae rather than associating numeric
probabilities directly (see Sect. 1.6.6.7).

To reflect this increasing diversity, when, in 2002, the platform grant series
replaced the rolling grants, we changed the title to “The Integration and Interaction
of Multiple Mathematical Reasoning Processes”. This title change reflected not
just the broadening of our scope from deductive reasoning to planning, analogy,
learning, diagrams and failure analysis, but also to the ways these processes
cooperated to become more than the sum of their parts [9]. We retained our
mathematical methodology by requiring rigour in the theory of these reasoning
processes, but the domain of application widened to physics, multi-agents, the arts,
etc.

1 The History of the DReaM Group 9

1.5.2 Blue Book Notes and Trip Reports

Early in the history of the DReaM Group, I initiated a series of informal notes
for internal communication between group members. The first one was issued in
November 1976. They were initially kept in a blue folder and entitled blue book
notes, abbreviated BBN. Each one has a footnote on the first page that says “Notes
in this series are for ε-baked ideas, for 1 ≥ ε ≥ 0. Only exceptionally should they
be cited or distributed outwith the Mathematical Reasoning Group”. The idea was
to encourage Group members to record progress made or problems encountered,
however minor. They are typically a few pages long. The purpose of the footnote
was to encourage people to keep a record, but with no quality threshold. Both the
upper and lower bounds on the value of ε were intended to be taken seriously. The
circulation restriction to group members is intended to encourage people to be frank
and open.

I frequently find that when I record progress, the discipline required to explain
this to other people helps reveal problems that had not previously occurred to me.
Contrariwise, when I record problems, the same discipline helps reveal potential
solutions that also had not previously occurred to me. The notes can also sometimes
serve as 0th drafts of research papers. BBN 1000 has a more extended discussion
of their value. This is a note I am prepared to distribute outwith the group. One
measure of their success is that, at time of writing, we have reached BBN 1855 and
our 44th year.

At the same time, I initiated a series of trip reports. Group members attending
conferences, workshops or bilateral lab visits are strongly encouraged to write a
report for the benefit of those group members who were unable to attend. These
are best when they are issued quickly after the trip and focus on aspects of the trip
that cannot be found in published proceedings, e.g., informal discussions, pointers
to related work, suggestions for future work, the future of the conference/workshop.
They are not expected to be polished. I have taken to writing them during the talks. I
do not find this a distraction. In fact, it helps me identify the key message of the talk
so I can summarise it succinctly. Then, by the wonders of the Internet, I can even
publish them on the trip home. At time of writing, we have reached TR 485.

The trip reports were initially kept in a brown folder. Now, of course, we have
foregone hard copy, and both series are mounted on our group webpages, but still
only accessible to group members. The choice of blue and brown folders was not
accidental. You have to know that I am a grand student of Wittgenstein.

Anecdote 5 (Wittgenstein’s Vision) My PhD supervisor, Reuben Louis
Goodstein, was himself supervised by Ludwig Wittgenstein. Goodstein related
that Wittgenstein’s research group would all go to the cinema. Wittgenstein

(continued)

10 A. Bundy

Anecdote 5 (continued)
was short sighted, but too vain to wear glasses. Consequently, he insisted that
they all sat in the front row, which was a bit of a struggle for those with regular
sight.

1.5.3 International Collaboration

We have always been open to collaboration beyond the DReaM Group, especially
with European partners. One of the first opportunities to do this was by setting
up a network of fellow researchers in inductive theorem proving. Inductive proof
is needed to reason about repetition, especially in recursive or iterative programs,
but also about recursive data structures and parameterised hardware. Induction,
however, requires the solution of especially difficult search problems, compared, for
instance, to first-order deduction. For instance, even for simple inductive theorems,
it may be necessary to discover and prove intermediate lemmas that do not arise
as a side effect of backwards reasoning from the goal theorem. Discovering such
lemmas was usually thought to require human intervention, but our productive use
of failure work, outlined in Sect. 1.5.1, showed how it could be automated.

In 1992, we received 2-year EU ESPRIT funding for the Mechanising Induction
(MInd) Network, which funded a series of workshops for 10 EU sites, which we
held with a similar sized group of USA researchers. This network stimulated deeper
collaborations with the community of ATM researchers interested in induction.
We followed up especially with some of the European sites, using British Council
lab-twinning money: first, in 1993, with German sites, especially Saarbücken and
Darmstadt, and then in 1995 with Italian sites in Trento and Genoa. This funding led
to the series of CIAO workshops,8 which ran from 1992 to 2013. They were initially
focused on inductive reasoning but gradually widened their remit to include most
of the areas listed in Sect. 1.5.1. It also funded bilateral lab visits; we benefited
greatly both from visitors from the Germany and Italian sites and from having
DReaM Group members visiting them. These collaborations led to our involvement
in the EU Calculemus Training Network, which brought together ATP researchers
with Symbolic Computation ones, and spawned the Calculemus, Mathematical
Knowledge Management and Intelligent Computer Mathematics conference series.
I have written about this history of European ATP collaboration in more detail
in [10].

8http://dream.inf.ed.ac.uk/events/CIAO/.

http://dream.inf.ed.ac.uk/events/CIAO/

1 The History of the DReaM Group 11

Anecdote 6 (Cornered at Speed) I first met Fausto Giunchiglia at IJCAI-89
in Milan, where I was the Conference Chair. I had advertised a vacant RA
position and Fausto was very interested in it. He tried to meet with me, but I
was so busy with committee meetings, for which IJCAIs are notorious, that we
could not find a time. He offered to drive me to the airport, which seem like
a good solution, but I had reckoned without his outrageous driving. He drove
at enormous speed with his head turned to talk to me. To stay alive, I had to
keep my eyes focused on the road ahead—and to offer him the job!

1.6 DReaM Motifs

The breadth and diversity of the research in our growing and spreading group is
outlined in Sect. 1.5.1. What has, nevertheless, held us together are several common
motifs. These enable us to continue to relate each branch of our research to the
others.

1.6.1 Rigour and Heuristics

Many of these motifs have their origin in Meltzer’s group. For instance, one of
my first lessons was the importance of separating rigorous inference and heuristic
search. Logical reasoning describes a search space consisting of axioms, the
theorems that can be derived from them and the rules that link them together. This
search space is typically too large to search exhaustively, so heuristics are used to
decide which parts of it to search and in what order. Their role is to optimise the
chance that a proof is found of the target conjecture. It is not possible for such
heuristics to threaten the soundness of the reasoning.

This organisation facilitates proofs of the soundness of the reasoning and
the completeness of the search space. It also enables a distinction between the
completeness of both the search space and of its subspace that is actually searched.

When it is represented as a logical theory, knowledge is given a semantics. Using
this semantics, the truth of each axiom in the theory can then be independently
established. This gives an assurance that the representation is a faithful account of
what it represents.

This methodology now seems to me to be obvious and apt. One can, unfortu-
nately, find many ad hoc reasoning methodologies that break it, for instance, by
including heuristic conditions in rules.

An exemplar of our concern for rigour is our automation of conceptual blending.
“Houseboat” is an example of a conceptual blend between “house” and “boat”, in
which the boat is regarded as a house. “Boathouse” is another example, but this time

12 A. Bundy

the boat is the occupant of the house. Conceptual blending is a form of analogy,
and it is tempting to take an ad hoc approach to its automation. Our approach
to automation, however, is via the concept of colimit from Category Theory [52].
Suppose “house” and “boat” are each represented as parent logical theories, and
there is a third, general, theory of which they are both instances. The general
theory can be used to determine which parts of the two parent theories are aligned
and which distinct, e.g., is the boat aligned with the house or its occupants? The
colimit operation then merges these aligned parts to construct the conceptual blend:
houseboat or boathouse.

1.6.2 Meta-Level Reasoning

We have also extended our desire for rigour to search heuristics. Meta-level
reasoning is the encoding of such heuristic knowledge as a logical theory in its
own right. The theory whose reasoning it is then guiding is called the object theory.
The domain that the meta-theory is describing consists of the logical expressions
of the object theory, object-level derivations and the common patterns of search for
constructing them.

An illustration of meta-level reasoning is our work on rippling. This proof tactic
is used to rewrite a goal formula so that a given formula can be used in its proof.
Rippling’s precondition is that the given can be embedded in the goal, i.e., that each
symbol in the given can be mapped to one in the goal, so that the nesting of the
given is preserved. Table 1.1 shows a very simple example of such an embedding.
The result of rippling is that a subexpression of the transformed goal matches the
given.

As is usual in ATP, we work backwards from the goal. The associativity equation
(x + y) + z = x + (y + z) can be applied to the goal, left to right, in three different
ways, only one of which makes progress towards proving it. The three alternative
subgoals are:

((c + d) + a) + b = c + (d + 42) (1.1)

(c + (d + a)) + b = (c + d) + 42 (1.2)

(c + d) + (a + b) = (c + d) + 42. (1.3)

Table 1.1 A simple example that benefits from rippling

Given Goal Rules

a + b = 42 ((c + d) + a) + b = (c + d) + 42 (x + y) + z = x + (y + z)

u = v �⇒ w + u = w + v

1 The History of the DReaM Group 13

Subgoals (1.1) and (1.2) are unwanted, as they not only make no progress, but one
makes the situation worse. Subgoal (1.3) is the only one that makes progress. The
next step will be to apply monotonicity rule right to left.9 The final subgoal, a+b =
42, which we will call the target, now matches the given. In general, the given will
just be a subexpression of the target, not the whole of it.

Using rippling, we can prevent the two unwanted subgoals being inferred and
only allow the wanted one. The bits of the original goal and rewritten subgoals that
do not correspond to the given are annotated with orange boxes, which we callwave-
fronts. Those bits inside the wave-fronts that do correspond to the given are called
wave-holes. The embedding of the given in the (sub)goals is highlighted in red. This
includes both the contents of the wave-holes and all the other parts of the (sub)goals
that are not in wave-fronts.

A wave-measure can then be calculated on these annotations, which strictly
reduces on the wanted rewriting (1.3), but does not reduce on the other two: (1.1)
and (1.2). The annotated (sub)goals are shown in Table 1.2. David Basin and Toby
Walsh showed how formulae can be automatically annotated with wave-fronts via a
process they called difference unification [3].

The wave-measure is calculated as follows. Note that each wave-front can

be associated with a unique subexpression of the given, e.g., (c+d)+ . . .
↑
is

associated with 42. If we write the given as a tree, then it has three levels: = is
at the top level, + and 42 are at the middle level and a and b at the bottom level.
We sum up how many orange boxes occur at each of the three levels. For instance,
in the original goal, one box is associated with a and one with 42. So one is at the
bottom level, one in the middle level and none at the top level. We order these scores
bottom to top and write these scores in a triple [1, 1, 0], which is the measure of the
original goal. The scores of the three subgoals are given in Table 1.2.

Table 1.2 An example of rippling annotation

Label (Sub)Goals Measure

Goal ((c+d)+ a
↑
)+b = (c+d)+ 42

↑
[1,1,0]

(1.1) ((c+d)+ a
↑
)+b = c+(d+ 42)

↑
[1,1,0]

(1.2) (c+(d+ a))+b
↑

= (c+d)+ 42
↑
[1,2,0]

(1.3) (c+d)+(a+b)
↑

= (c+d)+ 42
↑
[0,2,0]

Target a+b = 42 [0,0,0]

9Recall that we are reasoning backwards from the goal.

14 A. Bundy

Anecdote 7 (Orange is a Strange Colour) Why were the wave-fronts
orange? The research started before the advent of data projectors. We used
felt tip pens on acetate sheets on overhead projectors. By trial and error, we
discovered that orange was a transparent colour, so that the formulae were
visible through the orange ink.

Unfortunately, my PhD student, Pete Madden, did not get the message and
used red ink instead. The red obscured the formulae, making his talk difficult
to follow.

The aim is to move the wave-fronts up through the levels and, ideally, to
remove them altogether, so that the given appears as an unannotated subexpression
of the final subgoal.10 The given can then be used to complete the proof. We,
therefore, order the measure tuples lexicographically, and we require rippling to
strictly decrease the measure. So, [1, 1, 0] is larger than [0, 2, 0] but smaller than
[1, 2, 0]. We now see that subgoal (1.1) leaves the measure unchanged, subgoal (1.2)
increases it and only subgoal (1.3) decreases it. Applying the monotonicity rule now
removes all wave-fronts, and the given can be used to prove this final subgoal and
complete the proof.

The rewrite rules can also be annotated with wave-fronts. We then call them
wave-rules.

Wave−Rules LHS RHS

(x+ y ↑)+z → x+(y+ z)
↑
[1,0] [0,1]

w+ u ↑ = w+ v ↑ → u= v [2,0] [0,0]

The LHS and RHS columns show the wave-measures of the left-hand and right-
hand sides of the rules. Note that the wave-measures strictly decrease from left
to right. Rewrite rules can also be automatically annotated as wave-rules so that
the wave-measures strictly decrease. During application of the wave-rules, not
only must the object-level expressions match, but so must the meta-level wave-
annotations. In this way, rippling is completely automated and is guaranteed to
terminate.

In general, rewrite rules can be annotated as wave-rules in multiple ways. For

instance, (x + y) + z = x + (y + z) can also be annotated as x+(y + z ↑) →

(x+ y)+ z
↑
. Even though this wave-rule is directed in the opposite direction from

the previous annotation, rippling will not loop. This is because the wave-annotation

10The metaphor is of ripples on a pond. Initially, they obscure the reflection of the surrounding
countryside, but as the ripples move out, the reflection is restored.

1 The History of the DReaM Group 15

must match. So, for instance, this reverse-directed wave-rule is not applicable to the
goal in Table 1.2—nor to any of the subgoals.

1.6.3 Why Prolog?

As mentioned in Sect. 1.3, Prolog was our implementation programming language
of choice for the Mecho project, and for many subsequent projects until relatively
recently. Partly, this can be explained by the strong Edinburgh involvement in
(a) the vision of computational logic and (b) the development of Prolog as a
practical programming language. There is, however, more to it than that. Prolog
is a conducive vehicle for developing meta-theories.

1.6.3.1 Meta-Level Axioms for Rippling

For instance, rippling as the successive application of wave-rules to annotated goals
can be recursively defined by the meta-theory axioms:

Subterm(given, goal) �⇒ Ripple(given, goal, goal)

Embed(given, goal) ∧ Wave(wrule, goal, subgoal) ∧
Ripple(given, subgoal, target) �⇒ Ripple(given, goal, target),

where:

• Ripple(g, g1, g2) means that subgoal g2 is the result of applying rippling w.r.t.
given g to goal g1;

• Subterm(given, goal) means that given is a subterm of goal;
• Embed(given, goal) means that given is embedded in goal; and
• Wave(wrule, g1, g2) means that subgoal g2 is the result of applying wave-rule

wrule to goal g1.

These axioms can be readily expressed as the Prolog program:

ripple(Given,Goal,Goal) :- subterm(Given,Goal), !.
ripple(Given,Goal,Target) :- embed(Given,Goal),

wave(Wrule,Goal,Subgoal),
ripple(Given,Subgoal,Target).

Functional languages, such as ML and Haskell, are widely used to implement
tactics in ATP. We have used functional and other languages in recent work. Logic
programs, however, seem especially well suited to meta-level reasoning. Compare
for instance, this functional definition of Ripple.

16 A. Bundy

Subterm(given, goal) �⇒ Ripple(given, goal) = goal

Embed(given, goal) �⇒ Ripple(given, goal)

= Ripple(given,Wave(wrule, goal)).

Unfortunately, Ripple is not a total function. It may return several results or none.
Representing it instead as a relation addresses the absence of both the existence and
uniqueness properties that define functionality.

1.6.3.2 Meta-Level Axioms Attraction

Similarly, the meta-level axioms that define the isolation, collection and attraction
equation-solving methods of PRESS (see Sect. 1.3) can be presented relationally.
Consider, for instance, Attraction, which moves occurrences of the unknown
closer together so that they can be collected into one occurrence and then this
occurrence can be isolated on the LHS of the equation. Some example attraction
rewrite rules are given in Table 1.3. When applying these rules, the meta-level
condition is that u and v be instantiated to terms containing the variable, say x,
which is to be attracted, but w must not be instantiated to a term containing x. These
applications will have the effect of moving the occurrences of x closer together. The
distances between u and v are defined to be the size of the smallest subexpression
that contains both of them. These least subexpressions are highlighted in red in
Table 1.3.

The attraction proof method can be defined by the following meta-level axioms:

Collect (x, goal, target) �⇒ Attract (x, goal, target)

AttractRule(x, arule, goal, subgoal) ∧
Attract (x, subgoal, target) �⇒ Attract (x, goal, target)

where:

• Attract (x, g1, g2) means that subgoal g2 is the result of attracting x in g1;
• AttractRule(x, arule, g1, g2) means that g2 is the result of applying attraction

rule arule to attract occurrences of x in g1.
• Collect (x, g1, g2) means that subgoal g2 is the result of collecting x in g1.

Table 1.3 Examples of
attraction rules

Attraction Rules LHS RHS
Logwu+Logwv → Logwu.v 4 2

w.u+w.v → w.(u+ v) 4 2
(wu)v → wu.v 3 2
uv.w → (uv)w 3 2

1 The History of the DReaM Group 17

We can interpret these rules as saying that we keep rewriting the goal with attraction
rules until either collection can be applied (exit with success) or we can no longer
find any applicable attraction rules (exit with failure).

1.6.4 The Productive Use of Failure

Failure to find a proof at the first attempt is not necessarily a reason to give up.
An analysis of the cause of failure can suggest a proof repair. For instance, it might
suggest trying to prove an intermediate lemma that would help move the initial proof
on. It might also suggest a change of representation that would enable a wanted
proof to succeed (or an unwanted one to fail).

The productive use of failure has been a recurring theme in the DREAM group,
not just in repairing broken proofs, but also in repairing broken representations,
plans and programs. In particular, we have an especial interest in the methods
suggested by Lakatos to cope with counter-examples to conjectures [25, 44].

1.6.4.1 Suggesting Intermediate Lemmas

Rippling can fail if, at some point, there is no wave-rule available to move the wave-
fronts up to the next level. When this happens, we know a lot about the wave-rule we
would like to have. This can often be enough to identify the wave-rule we would like
and to prove it as a new lemma to complete the proof. We call this the productive
use of failure. That is, we analyse the failure to work out how to unblock the failed
proof attempt.

Here is a very simple example. In Peano Arithmetic [65], addition is defined
recursively by the following axioms:11

x + 0 = x

x + succ(y) = succ(x + y), (1.4)

where succ is a function used to construct the natural numbers, i.e., succ(0)
represents 1, succ(succ(0)) represents 2, and so on.

Suppose we now try to prove the commutativity of +, i.e., m + n = n + m. The
proof will be by structural induction. Since the goal is symmetric in m and n, it does
not matter which we choose as the induction variable, say m. The step case of the
induction proof is

m + n = n + m �⇒ succ(m) + n = n + succ(m).

11These axioms follow Peano’s spirit but have been modified according to modern practice.

18 A. Bundy

Rippling is an ideal proof tactic for the step cases of inductive proofs. The given is
the induction hypothesis m + n = n + m, and the goal is the induction conclusion
succ(m) + n = n + succ(m). Annotating the goal with wave-fronts gives

succ(m)
↑ +n = n+ succ(m)

↑
(1.5)

and annotating (1.4), the step case of the recursive definition of +, gives

x+ succ(y)
↑ → succ(x + y)

↑
. (1.6)

Unfortunately, wave-rule (1.6) applies only to the RHS of (1.5) to give

succ(m)
↑ +n = succ(n + m)

↑
. (1.7)

The rippling process is now blocked as we lack a wave-rule to ripple the LHS.
We know a lot about the missing wave-rule. We want its LHS to match the LHS

of (1.7), and we want it to ripple the LHS wave-front out so that it surrounds the
wave-hole m + n . That is, it should have the shape:

succ(x)
↑ +y → F (x + y)

↑
, (1.8)

where F stands for the, as yet, unknown contents of the RHS wave-front. We can
represent F as a meta-level variable standing for an unknown object-level term. It
remains to instantiateF with a ground term that will enable the remaining proof to
succeed.

To complete this blocked proof, two subgoals remain: (i) prove the missing wave-
rule (1.8) as a lemma and (ii) complete the rippling of the step case. Second-order
unification can be used to instantiateF as a side effect of either of these remaining
proof subgoals. In either case, F will be instantiated to succ, so that the missing
wave-rule is

succ(x)
↑ +y → succ(x + y)

↑
,

and the next rippling step is

succ(m + n)
↑ = succ(n + m)

↑
. (1.9)

1 The History of the DReaM Group 19

The ripple can then be completed with the monotonicity axiom of =, considered as
a wave-rule:12

succ(x)
↑ = succ(y)

↑ → x = y , (1.10)

which reduces the rewritten induction conclusion to the given, which is the induction
hypothesis.

1.6.4.2 Lakatos Methods and Counter-Examples

In [44], Lakatos describes a rational reconstruction of the history of Euler’s Theorem
V − E + F = 2 about polyhedra, where V is the number of vertexes, E the number
of edges and F the number of faces. Lakatos’s aim was to describe the evolution
of mathematical methodology via the evolution of techniques to deal with counter-
examples to false conjectures. An initial “proof” is given due to Cauchy. Counter-
examples are then discovered, and a succession of repair techniques are described.
They include, for instance, strategic withdrawal and counter-example barring. In
strategic withdrawal, a key concept, e.g., the definition of polyhedra, is specialised
to exclude some counter-examples. In counter-example barring, the negation of a
concept describing some counter-examples is made into a new precondition of the
conjecture.

Simon Colton and Alison Pease’s Theorem Modifier (TM) [25] repaired false
conjectures using some of Lakatos’s methods. TM combines: the Mace counter-
example finder [56] to find counter-examples to false conjectures; Colton’s HR
system [21] to learn, from examples and non-examples, the new concepts needed for
strategic withdrawal and counter-example barring; and the OTTER theorem prover
[55] to confirm that the repaired conjecture is now a theorem. An example is given
in Fig. 1.1.

1.6.4.3 Suggesting Changes of Representation

Suppose a representation of the environment is faulty. We will consider two cases:

Incompatibility: The faulty representation enables us to prove (i.e., predict) some-
thing that is false (i.e., not consistent with our observations).

Insufficiency: The faulty representation fails to prove something that we observe to
be true.

These two cases are dual and can be addressed in a symmetric way. Most research
into representation repair works by either deleting axioms (belief revision [33]) or

12If you are concerned with the direction of the rewrite arrow, recall that we are reasoning
backwards, so the direction of implication is right to left.

20 A. Bundy

TM was given the following faulty conjecture in Ring Theory:

∀x,y. x2 ∗ y∗ x2 = e

where e is the multiplicative identity element.

Mace found 7 supporting examples and 6 counter-examples to this conjecture. Given these
two sets of examples, HR invented a concept that can be simplified to:

∀z. z2 = z+ z

and used it for strategic withdrawal. Otter was then able to prove the original conjecture for
just those rings with this new property.

Fig. 1.1 Correcting a faulty conjecture in ring theory

adding axioms (abduction [26]). These are sometimes the most appropriate repair,
but sometimes it is preferable to change the language of the representation, i.e., the
signature of the theory. In [47], Xue Li, Alan Smaill and I applied the reformation
algorithm to suggest such signature changes, for instance: splitting or merging of
predicates or constants; adding or removing arguments to predicates. The ABC
system described here combines abduction, belief revision and reformation. For
technical reasons, our implementation is currently limited to Datalog-like logical
theories [18]. The axioms are Horn clauses with no functions except constants. Any
variables in the head of a clause must also appear in the body.

Consider, for instance, the following Datalog theory, T, which is adapted from
[33]):

German(x) �⇒ European(x)

European(x) ∧ Swan(x) �⇒ White(x)

�⇒ German(Bruce) �⇒ Swan(Bruce).

From T, we can infer that White(Bruce):

White(Bruce) �⇒
European(Bruce) ∧ Swan(Bruce) �⇒ European(x) ∧ Swan(x) �⇒ White(x)

German(Bruce) ∧ Swan(Bruce) �⇒ German(x) �⇒ European(x)

Swan(Bruce) �⇒ �⇒ German(Bruce)

�⇒ �⇒ Swan(Bruce) .

This proof is by Selected Literal Resolution (SL) [42], which, for Horn clauses, has
the convenient property that each resolution step is between an axiom and a goal.
This has the advantage that we can apply any repair directly to the axiom involved in
either the current or an earlier SL resolution step in the current branch, so we do not
need to inherit the repair back up through derived clauses to an axiom. Each axiom
in the proof is given on the right-hand side of the inference step. Each proof step

1 The History of the DReaM Group 21

unifies a literal in a goal with a literal in a fact or rule head. We have highlighted
these literals in brown or red.

We use Kowalski form to present clauses:

P1 ∧ . . . ∧ Pm �⇒ Q1 ∨ . . . ∨ Qn.

For Horn clauses, n = 0 or n = 1. When n = 0, the Horn clause is a goal. When m

is also 0, it is the empty clause. The clauses on the left-hand side of the proof are all
goal clauses.

Suppose, however, that we observe that the swan Bruce is not white but black.
The proof above proves something that is false, i.e., T is incompatible. This proof is
unwanted and must be broken. In [33], Gärdenfors suggests repairs to the axioms,
e.g., adding an exception to one of the rules:

x 	= Bruce ∧ European(x) ∧ Swan(x) �⇒ White(x).

But this is a unsatisfying hack. A better repair is to split European into a European
type of object or a European resident. Bruce is not a European type of swan but
is a resident in Europe. The proof can then be broken at the red unification step.
Reformation is based on the unification algorithm. In the case of an incompatibility,
it can break a successful unification, and in the case of insufficiency, it can enable
an unsuccessful unification.

In our example, the red unification is broken by adding an extra argument to
European and ensuring that this argument will be instantiated to different constants
when the two literals are to be unified, thus preventing it from succeeding. The two
constants are named generically Normal and Abnormal. Reformation is a purely
syntactic algorithm, and we do not currently have the semantic knowledge to call
them, say, Type and Resident .

The repaired theory ν(T)13 is

German(x, y) �⇒ European(x, y)

European(x,Normal) ∧ Swan(x) �⇒ White(x)

�⇒ German(Bruce,Abnormal) �⇒ Swan(Bruce),

where the new arguments are highlighted in red. Note that the constraints of Datalog
force German to also be given a new argument, because any variable in the head of
a clause must also appear in the body.

13Pronounced “new T”.

22 A. Bundy

1.6.5 The Interaction of Multiple Reasoning Processes

As outlined in Sect. 1.5.1, the DReaM Group has always had an interest in a wide
range of reasoning processes: deduction, learning, abduction, analogy, statistics,
diagrams, failure analysis, representation formation, change of representation,
meta-level reasoning, creativity, etc. We are especially interested in how different
reasoning processes interact [9]. Some of these interactions have already been
discussed. For instance, Sects. 1.3 and 1.6.3.2 explain how meta-level reasoning was
used to control search in natural language understanding, common sense inference,
representation formation and algebraic manipulation. Sections 1.6.2 and 1.6.3
explain how meta-level reasoning can guide object-level deduction. Section 1.6.4
describes how failure analysis can suggest new lemmas and, thereby, aid deduction
and how it can suggest changes of representation. Section 1.6.4.2 describes the
combination of counter-example finding, concept learning and theorem proving to
repair faulty conjectures.

In this section, we briefly summarise some of the other interactions we have
pioneered.

1.6.5.1 Proof Planning: Abstraction of Deduction

Human mathematicians often report having a plan of a proof before tackling
the detailed steps. This plan helps them guide the search for a proof. It is not
bound to succeed, so may require re-planning to deal with unexpected obstacles.
Proof planning is an attempt to automate this process [8]. Proof planning was
originally implemented in Prolog, by Christian Horn and Frank van Harmelen, as
the CLAM/Oyster system [14]. This was later upgraded to an implementation
in λProlog, called λCLAM [29]. The current implementation is Lucas Dixon’s
IsaPlanner [30], which is built on top of Isabelle.

Anecdote 8 (A Language too Far) On paper, λProlog looked like the ideal
implementation language for our proof planner. For instance, its built-in,
higher-order unification was just what we needed for instantiating meta-
variables when speculating missing intermediate lemmas (see Sect. 1.6.4.1).
It was, however, an experimental prototype complete with bugs, but without
adequate maintenance support. So, when we inevitably stumbled on bugs,
there was no one to fix them. At one stage, we discovered that inclusion of
some redundant λProlog code could inexplicably cause a broken λ CLAM to
start working again. If it subsequently stopped working, then commenting out
the redundant code would affect another temporary fix.

1 The History of the DReaM Group 23

Proof tactics are specified, in a meta-logic, with preconditions to describe when
they are applicable and postconditions to describe their effect. For example, the
specifications of the wave tactic from Sect. 1.6.3.1 are:

Preconditions:

1. The given embeds into the goal.
2. There is a wave-rule that matches the goal and produces a new subgoal.
3. Any preconditions of that wave-rule are provable.

Postconditions: These postconditions are guaranteed by the successful applica-
tion of a wave-rule:

1. The given also embeds into the new subgoal.
2. The wave-measure of the subgoal is strictly smaller than that of the goal.

Such specifications enable a plan to be automatically constructed by matching the
preconditions of a later tactic to the postconditions of an earlier one.

Proof plans are hierarchical, i.e., a tactic can be defined in terms of subtactics,
which may include recursive calls to itself. This aids understanding, as a proof can
be inspected at the top level and optionally unpacked along one or more branches
of the plan. We can express this hierarchical structure as a hiproof [28]: a graph
in which the nodes are hiproofs. An example hiproof is displayed graphically in
Fig. 1.2.

The specifications of tactics facilitate recovery from failure [36]. Failure occurs
if the preconditions of a plan’s tactic are not satisfied. Re-planning can then take
place to bridge the gap between the effects of successful tactic applications and
those needed by the failed tactic or by an alternative tactic. Andrew Ireland and
I showed that different patterns of precondition failure suggest different kinds of

Fig. 1.2 A hiproof of an inductive proof plan

24 A. Bundy

plan repair. In inductive proofs, for instance, the analysis of failure can suggest:
intermediate lemmas (see Sect. 1.6.4.1); generalisations of the conjecture, changes
of the induction rule; and case analyses. Failure of precondition 2, for instance,
suggests a missing intermediate lemma that could serve as the required wave-rule.
On the other hand, if there is a wave-rule that partially matches, in the sense that
only the wave-front fails to match, then this suggests a change of induction rule in
order to ensure that the wave-front also matches.

Proof planning is just one method for abstracting proofs. In [34], Fausto
Giunchiglia and Toby Walsh developed a theory of the many different forms that
abstraction has taken in automated reasoning. Typically, a theory and conjecture are
abstracted by ignoring some details. A proof is then found, we hope more easily,
in this abstract theory. For instance, a first-order theory might be abstracted to a
propositional one. This abstract proof is then used as a plan to construct a proof in
the original theory.

1.6.6 Diverse Applications

The many techniques we have developed within the DReaM Group have a wide
diversity of applications. They range from formal methods to cognitive science,
via cyber security, mathematics, uncertainty, diagrammatic reasoning, analogy and
interestingness—always combining rigour with heuristics. We highlight a few of
these.

1.6.6.1 Formal Methods

Proof planning has been applied to formal verification and synthesis of both
software and hardware. In particular, inductive proof is usually required whenever
the software uses recursion or loops, and when the hardware is parameterised, e.g.,
an n-bit multiplier. One of the hardest problems in software verification is finding a
loop invariant. There is a strong relationship between loop invariants and induction
rules, so Andrew Ireland adapted our techniques for suggesting induction rules to
suggest loop invariants [37]. Yuhui Lin used ripple failures to suggest intermediate
lemmas in Event-B verification proofs [49]. As mentioned in Sect. 1.5.1, we have
also explored a variety of techniques for program synthesis [27, 38, 43].

1.6.6.2 Cyber Security

Graham Steel’s Coral system [69] found attacks on security protocols for group
key agreement by refuting incorrect inductive conjectures. This approach avoided
the need for abstraction to a group of fixed size, which can miss attacks on larger
groups. By posing inductive conjectures about the trace of messages exchanged, we

1 The History of the DReaM Group 25

could investigate novel properties of the protocol, such as tolerance to disruption,
and whether it results in agreement on a single key. This has allowed us to find
three distinct novel attacks on groups of size two and three. This work led to the
successful spin-out Cryptosense.14

Anecdote 9 (Just in Time) At 1am on 8th December 2002, Graham was just
finishing his PhD. Walking home from a night out when he passed our offices
at 80 South Bridge and saw that they were on fire. He ran to his flat further
along South Bridge and, sitting in his bay window facing onto the fire, he
logged onto the servers in the basement of number 80 and downloaded his
nearly complete PhD thesis. Minutes later the servers melted in the heat.
The fire engulfed 11 buildings and burnt for 52 h before being completely
extinguished. All the occupants of 80 South Bridge were relocated to The
Appleton Tower.

Cryptosense proposed a project to discover security flaws in smart cards [35].
Prior work had searched for flaws in the commonly used RSA PKCS�11 API
standard for smart-card protocols. In contrast, the REPROVE system automati-
cally reverse-engineered the low-level implementations of PKCS�11. Proprietary
implementations are often used in an attempt to obtain security through obscurity.
We not only showed that such implementations could be automatically decoded,
but our analysis revealed extremely serious, previously unknown flaws in these
implementations that severely compromised security.

A DReaM Group member, David Aspinall, is the founder of The Edinburgh
Cyber Security, Privacy and Trust Institute.15 This is a multidisciplinary research
and teaching network at The University of Edinburgh.

Anecdote 10 (Men vs. Machines) The Appleton Tower had won many
ugliest architecture prizes. To house us, it was refurbished floor by floor—
turning what had been lecture rooms into offices. We were then shuffled from
floor to floor. Andrew Ireland visited me when I was on the 2nd floor and
the 3rd was being refurbished. We used the lift to go to the basement, but
Appleton Tower lifts have a mind of their own, so it took us to the 3rd floor
instead. The doors opened on wooden boarding that prevented access to what
was a building site. The doors then stuck open, which prevented the lift from
moving. We were imprisoned. Fortunately, I knew exactly where to stamp to
persuade the doors to close. Men 1; machines 0.

14https://cryptosense.com/.
15https://www.ed.ac.uk/cyber-security-privacy.

https://cryptosense.com/
https://www.ed.ac.uk/cyber-security-privacy

26 A. Bundy

1.6.6.3 Machine Learning of Proof Tactics

The proof methods used in meta-level reasoning were manually designed. This
raises the question as to whether they could be learnt from examples. Bernard
Silver described the application of precondition analysis successfully to learn
the equation-solving methods of isolation, collection, attraction, homogenisation,
etc. from example solutions [68]. The implementation was called Learning PRESS
(LP). Unlike statistical machine learning techniques, precondition analysis can learn
a new proof method from a single example. Like explanation-based generalisation, it
generalises an example by abstracting away from the specific details of the example
to construct a method that will work on similar problems. To aid it in abstraction, it
has the available language of the PRESS meta-level theory.

Hazel Duncan used a statistical approach to learn Isabelle [64] tactics from
proofs in Isabelle’s librariesIn [31]. Proofs were abstracted into sequences of proof
steps. Variable-length Markov models were then used to identify patterns that
occurred more frequently than chance. These patterns were then combined by
genetic programming, using a grammar of loops and splits, to form tactics. This
enabled a pool of simple tactics to be formed.

1.6.6.4 When Is a Theorem Interesting?

Most applications of automated reasoning start with a conjecture and reason
backwards to the axioms. If you know what theorem you want to prove, this works
fine. But suppose you just want to explore a theory to discover interesting theorems?
This might be a useful aid for mathematicians to explore the foothills of a new
theory, while they have a coffee, to see whether it is worth taking further. Also, as
an alternative to discovering new lemmas on an as-needed basis (see Sect. 1.6.4.1),
you might build up a library of useful lemmas in advance.

Discovering new theorems is trivial—just reason forward from the axioms. The
trick is to discover ones that are interesting. But what do we mean by interesting?
We have conducted several experiments to address this question:

• Simon Colton compared and contrasted the measures of interestingness used
in 5 machine discovery systems, extracting general principles of truth, novelty,
surprisingness, non-triviality and understandability [23]. He then applied one of
these 5 systems, his HR system, to the automatic invention of interesting integer
sequences, seventeen of which were deemed interesting enough to have been
accepted into Sloane’s “Encyclopedia of Integer Sequences” [22].

• Moa Johansson’s IsaCoSy [40] and Omar Montano-Rivas’s IsaScheme [58] both
built systems for finding interesting theorems in recursive, equational theories.
They used different interestingness measures but still got surprisingly similar
empirical results.

IsaCoSy generated only equational conjectures between irreducible terms,
i.e., those that a set of rewrite rules cannot simplify any further. Obvious non-

1 The History of the DReaM Group 27

theorems were rejected using a counter-example checker. Newly discovered
theorems were turned into rewrite rules and added to the simplifier. This ensured
that new theorems could not be proved just by simplification but required a more
powerful proof method, such as induction.

IsaScheme used schemas representing common patterns of interesting theo-
rems, such as associative, distributive and idempotency laws. New theorems were
also normalised with Knuth–Bendix completion.

• MacCasland’s MATHsAiD system [54] explored algebraic theories. It tried to
find a balance between simplicity and non-triviality, that is, theorems were
interesting iff they could be proved in a few steps but using at least one non-
trivial method, e.g., simplification is trivial but induction is not. It was able to
prove theorems connecting two more theories, including one about Zariski spaces
that McCasland had proved in a previous career as an algebraist.

Evaluation of exploration system is challenging because there is no agreed criteria
for what counts as interesting—indeed, that is what the research is aiming to
investigate. The researcher’s above used comparisons with previously explored
theories. For instance, for IsaCoSy and IsaScheme, comparison between their
outputs and Isabelle’s libraries showed high values for precision and recall. For
MATHsAiD, a comparison of its outputs and the theorems selected for discussion
in several standard algebra textbooks showed a greater agreement between the
MATHsAiD and each of the textbooks than between the textbooks themselves.

IsaCoSy is one component of the TheoryMine16 spin-out [13]. Given an auto-
matically generated, novel, recursive theory, it generates interesting novel theorems
that customers can name.

1.6.6.5 The Constructive Omega Rule, Induction and Diagrams

The ω-rule is a complete, but infinitary, alternative to mathematical induction.

φ(1) ∧ φ(2) ∧ φ(3) ∧ . . .

∀x. φ(x)

Clearly, this is infeasible for practical theorem proving. Used backwards to prove
∀x. φ(x), it creates infinite branching. There is, however, a feasible version: the
constructive ω-rule. It has the additional requirement that the φ(n) premises be
proved in a uniform way, that is, that there exists an effective procedure, proof φ ,
which takes a natural number n as input and returns a proof of φ(n) as output. We
will write this as proof φ(n) � φ(n).

Cauchy’s proof of Euler’s formula, quoted in [44], effectively uses a polyhedral
version of the constructive ω-rule. He describes, by example, the effective procedure

16theorymine.co.uk.

http://theorymine.co.uk

28 A. Bundy

n + 1

n

Fig. 1.3 The diagram can be viewed as a proof of the equation 1 + 2 + . . . + n = n.(n + 1)/2
in the case that n = 5. The black circles represent the LHS of the equation. The whole rectangle
represents the numerator of the RHS

proof V −E+F=2 by applying it to a cube. He then invites us to recognise its generality
by claiming that it could be successfully applied to any polyhedron. It turns out
that this claim is false—as ably demonstrated by Lakatos’ many counter-examples
throughout the rest of the book. Cauchy’s proof omits an important step: to verify
that proof V −E+F=2 will always prove Euler’s theorem for any polyhedron.

Returning to the natural number version of the constructive ω-rule, we need to
prove that:

∀n. proof φ(n) � φ(n). (1.11)

We could, for instance, prove this by induction on n:

proof φ(0) � φ(0)

proof φ(n) � φ(n) �⇒ proof φ(n + 1) � φ(n + 1). (1.12)

We seem to have gone full circle: replacing induction by the constructive ω-rule
only to reintroduce it in the verification of (1.11). As Siani Baker showed in [1],
however, the induction required to prove (1.11) is often simpler than the induction it
replaces. For instance, whereas the original induction may require an intermediate
lemma, the new verification one may not.

The constructive ω-rule was also used as the basis for Mateja Jamnik’s work on
diagrammatic reasoning [39]. In [59], Nelsen showed how arithmetic theorems can
be “proved” by displaying diagrams made of dots arranged into geometric shapes.
See Fig. 1.3 for an example. Note that it exhibits only a concrete case of the theorem
e.g., φ(5). The reader is expected to see that the implied special case procedure,
proof φ(5), can be generalised to the general one, proof φ(n). Jamnik’s Diamond
system automated these proofs by extracting these special case proofs from the
diagram, generalising them and then verifying (1.11) by induction.

1.6.6.6 Category Theory and Analogy

As outlined in Sect. 1.6.1, an analogical blend occurs when two old concepts are
merged to form a new one. For instance, house and boat can be analogically blended
in two ways: houseboat and boathouse.

1 The History of the DReaM Group 29

A colimit is a construction from Category Theory that generalises constructions
such as disjoint unions, direct sums, co-products, pushouts and direct limits.17 A
morphism is defined between two parent logical theories. These match entities in
one parent theory to those in the other. The colimit operation is a bit like unification
in that it produces a minimal super-theory of the two parent theories that respects
the morphism.

The colimit construction can be implemented as a procedure that takes two parent
theories and outputs this minimal super-theory. This procedure can model analogical
blending. Ewen Maclean and Alan Smaill were part of the team that applied this
procedure to construct new mathematical concepts from old [5]. A simple example
is the construction of the integers from the natural numbers and a theory of function
inversion. The same team then applied it to construct new musical concepts [32].
An example is:

“This simple blending mechanism ‘invents’ a chord progression that embodies some
important characteristics of the Phrygian cadence (bass downward motion by semitone to
the tonic) and the perfect cadence (resolution of tritone); the blending algorithm creates a
new harmonic ‘concept’ that was actually introduced in jazz centuries later than the original
input cadences”. [5, p1]

Our approach to modelling analogy is typical of our Groups’ combination of
Mathematical Theory and Cognitive Science.

1.6.6.7 Representing Uncertainty

The Web is a vast and rapidly growing source of information. To make best use of
this information, we want, not just to retrieve known facts from it, but to combine
known information from diverse sources to infer new information. To realise this
ambition requires us to address several challenges. For instance, information is
stored in diverse formats: databases, RDF triples, description logics and natural
language. These need to be curated into a common format so that inference can
combine them. Due to its size, rapid growth and constant revision, however, it is
infeasible to curate it globally. Wemust curate it locally as we gather the information
we need for each inference task. The information is also noisy and inaccurate.
Inferred knowledge needs to be assigned some indication of our uncertainty in
asserting it.

Query answering on the Web is an ideal vehicle for exploring the interaction of
multiple reasoning processes. Deduction is not sufficient. We also want to make
predictions, for instance, estimating future populations from census data. This
calls for statistical reasoning techniques, such as regression or machine learning.
Having formed functions by regression, we need to reason directly with them
using higher-order methods, such as calculus, e.g., to estimate rates of change,
points of intersection, maxima and minima, etc. We need reasoning calculi that

17https://en.wikipedia.org/wiki/Limit_(category_theory) accessed 15.7.19.

https://en.wikipedia.org/wiki/Limit_(category_theory)

30 A. Bundy

assign uncertainty to assertions and inherit these through the reasoning methods,
including methods, such as regression, that are themselves inherently uncertain.
We need representational change to curate information into a common format. We
need to diagnose and repair faults in the information we retrieve. Kwabena Nuamah
implemented some of these techniques in the FRANK system (Functional Reasoner
for Acquiring New Knowledge) [16, 60, 61].

An earlier attempt to merge deduction and probabilistic reasoning was my
Incidence Calculus [7]. This was proposed, as an alternative to probabilistic logics,
in order to solve the problem that numeric probabilities cannot be inherited through
a derivation unless they are conditionally independent. Instead, sets of weighted
possible worlds were associated with formulae rather than numeric probabilities.
The degree of dependence between probabilities can then be represented by the
amount of overlap between these sets.

1.7 Conclusion

For more than four decades, the DReaM Group has conducted a diverse range of
innovative research projects, characterised by the motifs of: rigour combined with
heuristics; meta-level reasoning, the productive use of failure; the interaction of
diverse reasoning techniques; the learning of new reasoning methods; representa-
tional creation and evolution; and applications of rigorous mathematics to cognitive
science problems, such as analogy, music, diagrammatic reasoning, etc.

These four decades have seen a radical change in system building. In the 1970s,
AI researchers built systems from scratch, typically in Lisp, Prolog or a similar
declarative language. Mecho [12], for instance, was built in this way. The result was
often brittle systems that were slow to develop. Nowadays, large parts of systems
are constructed using third-party packages from libraries, GitHub, etc. Since these
packages have often been thoroughly tested in prior applications, they tend to be
robust. Development time is also faster, since you can build on the shoulders of
giants rather than from first principles. Our FRANK system has been built like this
[16].

There is a danger, however, as illustrated in Anecdote 8. If you rely on a package
that is not well maintained, then bugs may not be fixed, and your system can become
unusable. You may not discover this until you have invested a lot of energy and time
into a failing system for which a replacement package is not available. So, although
package use is definitely the way to go, it will repay you to carry out due diligence
on each package before you commit to it. And, of course, there is not a package for
every functionality you need, so you will still need to roll up your sleeves to write
code to fill in the gaps.

It is instructive to contrast the kind of research programme described in J Moore’s
chapter in this volume, with the kind I have described above. His career has been
devoted to constructing and applying a sequence of closely related theorem provers,
culminating in the ACL2 prover. This can be applied to verify huge industrial-

1 The History of the DReaM Group 31

strength systems, such as microprocessors. As such, it is used routinely by several
multinational hardware developers. In contrast, we have automated a diverse range
of cognitive tasks building proof-of-concept prototypes that were not intended to
be generic packages and were not widely used outside our group. We have been
pioneers reconnoitring unexplored jungle. The six-lane highways come later. Or,
you may describe our approach as “AI as art”: surprising people that it is even
possible to automate aspects of cognition that seemed inherently to require human
interaction.

Chapter 2 contrasts the 3–4-year UK PhDs with the 5–7-year US ones. The longer
PhD provides the time for robust package building, and many US PhDs follow that
pattern, with the developers offering maintenance support and community building
to facilitate the continued use of their package. This is “AI as Engineering”. Even so,
few packages attain widespread uptake, especially when the packages’ developers
move on from their PhDs, perhaps to work for someone with a different agenda.
Thus, our group’s approach to research may have been inevitable.

AI has become almost synonymous with statistical machine learning (SML). In
contrast, our group’s research has been mainly symbolic: the epitome of “Good,
Old-Fashioned AI” (GOFAI). If we cannot beat them, should we join them: mug up
on statistics and obtain some massive data? I think not. SML has some fundamental
limitations:

• It requires huge amounts of data. Humans, in contrast, can often learn from a
single example combined with background knowledge.

• It is typically used to classify objects: cats vs. dogs; good move vs. bad; mortgage
or not. Sometimes, however, it is necessary to learn compound structures, e.g.,
computer programs, that cannot be viewed as classification tasks.

• SML systems work only with the features provided by the user. Sometimes, it is
necessary to learn new concepts.

• It is inherently hard to explain the workings of a SML system. There is no logical
derivation, only a huge and complex statistical calculation. But some applications
require explanations—it may even be a legal requirement.

SML applications are beginning to confront these limitations. So, there is a future
for us in developing hybrid approaches, where symbolic and statistical techniques
complement each other. Launchbury describes a “Third Wave of AI” that advocates
this hybrid approach [45]. Members of our group have already shown considerable
enthusiasm for this third wave. Several of us attended a recent workshop at Imperial
College organised by the Human-Like Computing Network+ (HLC), which has also
embraced the third wave. The HLC Network+ has also created a community of AI
researchers and cognitive scientists to learn from each other, which will be a crucial
ingredient in the third wave, since humans can often do what is beyond SML and
vice versa.

Of the work described here, that on learning new tactics from example proofs
come closest to realising that third-wave vision (see Sect. 1.6.6.3). The work of my
PhD students Bernard Silver [68] and Simon Colton [21] were inherently logic-
based learning techniques, but Hazel Duncan’s [31] used the statistical technique

32 A. Bundy

of variable-length Markov models. The time might be ripe to re-investigate this
approach.

We are also combining deductive and statistical reasoning in the FRANK system
(see Sect. 1.6.6.7). So far, our use of statistics has been confined to regression, but
we have plans to explore a variety of SML techniques. Currently, FRANK explains
its reasoning by abstracting its deductive reasoning and associating English text
augmented with graphical displays of regression. It will be interesting to explore
the potential for explanations when more complex forms of SML are interleaved
with deduction.

Acknowledgments The research reported in this paper was mainly supported by a succession
of EPSRC rolling and platform grants. Thanks to Greg Michaelson, Kwabena Nuamah, Predrag
Janičić and two anonymous referees for feedback on earlier versions.

References

1. Baker, S.: A new application for explanation-based generalisation within automated reasoning.
In: A. Bundy (ed.) 12th International Conference on Automated Deduction, Lecture Notes in
Artificial Intelligence, Vol. 814, pp. 177–191. Springer-Verlag, Nancy, France (1994)

2. Baker, S., Ireland, A., Smaill, A.: On the use of the constructive omega rule within automated
deduction. In: A. Voronkov (ed.) International Conference on Logic Programming and
Automated Reasoning — LPAR 92, St. Petersburg, Lecture Notes in Artificial Intelligence
No. 624, pp. 214–225. Springer-Verlag (1992)

3. Basin, D.A., Walsh, T.: Difference unification. In: R. Bajcsy (ed.) Proc. 13th Intern. Joint
Conference on Artificial Intelligence (IJCAI ’93), vol. 1, pp. 116–122. Morgan Kaufmann,
San Mateo, CA (1993). Also available as Technical Report MPI-I-92-247, Max-Planck-Institut
für Informatik

4. Besold, T.R., Schorlemmer, M., Smaill, A. (eds.): Computational Creativity Research: Towards
Creative Machines, Atlantis Thinking Machines, vol. 7. Atlantis Press (2015)

5. Bou, F., Schorlemmer, M., Corneli, J., Gomez-Ramirez, D., Maclean, E., Smaill, A., Pease,
A.: The role of blending in mathematical invention. In: Proceedings of the sixth international
conference of computational creativity (2015)

6. Boyer, R.S., Moore, J.S.: Proving theorems about LISP functions. In: N. Nilsson (ed.)
Proceedings of the Third IJCAI, pp. 486–493. International Joint Conference on Artificial
Intelligence (1973). Also available from Edinburgh as DCL memo No. 60

7. Bundy, A.: Incidence calculus: A mechanism for probabilistic reasoning. Journal of Automated
Reasoning 1(3), 263–284 (1985)

8. Bundy, A.: A Science of Reasoning, pp. 178–198. MIT Press (1991)
9. Bundy, A.: Cooperating reasoning processes: more than just the sum of their parts. In:

M. Veloso (ed.) Proceedings of IJCAI 2007, pp. 2–11. IJCAI Inc (2007). Acceptance speech
for Research Excellence Award.

10. Bundy, A.: European collaboration on automated reasoning. AI Communications 27(1), 25–35
(2013). https://doi.org/10.3233/AIC-130584.

11. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for Mathematical
Reasoning, Cambridge Tracts in Theoretical Computer Science, vol. 56. Cambridge University
Press (2005)

12. Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R., Palmer, M.: Solving mechanics
problems using meta-level inference. In: B.G. Buchanan (ed.) Proceedings of IJCAI-79, pp.
1017–1027. International Joint Conference on Artificial Intelligence (1979)

https://doi.org/10.3233/AIC-130584

1 The History of the DReaM Group 33

13. Bundy, A., Cavallo, F., Dixon, L., Johansson, M., McCasland, R.L.: The theory behind
TheoryMine. In: Automatheo. FLoC (2010)

14. Bundy, A., van Harmelen, F., Horn, C., Smaill., A.: The Oyster-Clam system. 10th International
Conference on Automated Deduction (1990)

15. Bundy, A., McCasland, R., Smith, P.: Mathsaid: Automated mathematical theory exploration.
Applied Intelligence 47(3), 585–606 (2017). https://doi.org/10.1007/s10489-017-0954-8

16. Bundy, A., Nuamah, K., Lucas, C.: Automated reasoning in the age of the internet. In:
13th International Conference on Artificial Intelligence and Symbolic Computation, vol.
LNAI 11110, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99957-9_
1. Invited Talk

17. Cantu, F., Bundy, A., Smaill, A., Basin, D.: Experiments in automating hardware verification
using inductive proof planning. In: M. Srivas, A. Camilleri (eds.) Proceedings of the Formal
Methods for Computer-Aided Design Conference, no. 1166 in Lecture Notes in Computer
Science, pp. 94–108. Springer-Verlag (1996)

18. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Surveys in Computer
Science. Springer-Verlag, Berlin (1990)

19. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer Verlag (1984)
20. Colton, S.: Automated conjecture making in number theory using HR, Otter andMaple. Journal

of Symbolic Computation 39, 593–615 (2005)
21. Colton, S., Bundy, A., Walsh, T.: HR: Automatic concept formation in pure mathematics. In:

Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm,
Sweden, pp. 786–791 (1999)

22. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In: Proceedings
of the 17th National Conference on Artificial Intelligence, Austin, Texas, USA, pp. 558–563
(2000)

23. Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated mathematical
discovery. International Journal of Human Computer Studies 53(3), 351–375 (2000)

24. Colton, S., Gow, J., Torres, P., Cairns, P.: Experiments in objet trouve browsing. In: Proceedings
of the 1st International Conference on Computational Creativity (2010)

25. Colton, S., Pease, A.: The TM system for repairing non-theorems. In: W. Ahrendt, P. Baumgart-
ner, H. de Nivelle, S. Ranise, C. Tinelli (eds.) Selected papers from the IJCAR’04 disproving
workshop, Electronic Notes in Theoretical Computer Science, vol. 125 (3), pp. 87–101 (2004)

26. Cox, P.T., Pietrzykowski, T.: Causes for events: Their computation and applications. In:
J. Siekmann (ed.) Lecture Notes in Computer Science: Proceedings of the 8th International
Conference on Automated Deduction, pp. 608–621. Springer-Verlag (1986)

27. Cresswell, S., Smaill, A., Richardson, J.D.C.: Deductive synthesis of recursive plans in linear
logic. In: Proceedings of the 5th European Conference on Planning, Durham, UK, LNAI, vol.
1809. Springer Verlag (1999)

28. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree. Electronic
Notes in Theoretical Computer Science 155, 341–359 (2006)

29. Dennis, L.A., Jamnik, M., Pollet, M.: On the comparison of proof planning systems: Lambda-
Clam, Omega and IsaPlanner. In: Proceedings of 12th Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning (Calculemus 2005), Electronic Notes
in Computer Science (ENTCS) (2005). Available from http://www.cs.nott.ac.uk/~lad/work/
publications.html

30. Dixon, L., Fleuriot, J.D.: IsaPlanner: A prototype proof planner in Isabelle. In: Proceedings of
CADE’03, LNCS, vol. 2741, pp. 279–283 (2003)

31. Duncan, H., Bundy, A., Levine, J., Storkey, A., Pollet, M.: The use of data-mining for the
automatic formation of tactics. In: Workshop on Computer-Supported Mathematical Theory
Development. IJCAR-04 (2004)

32. Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos, M., Cambouropoulos, E., Codescu,
M., Schorlemmer, M., Kühnberger, K.: Computational invention of cadences and chord
progressions by conceptual chord-blending. In: Proceedings of the 24th International Joint
Conference on Artificial Intelligence (2015)

https://doi.org/10.1007/s10489-017-0954-8
https://doi.org/10.1007/978-3-319-99957-9_1
https://doi.org/10.1007/978-3-319-99957-9_1
http://www.cs.nott.ac.uk/~lad/work/publications.html
http://www.cs.nott.ac.uk/~lad/work/publications.html

34 A. Bundy

33. Gärdenfors, P.: Belief Revision. No. 29 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press (1992)

34. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2–3), 323–390
(1992)

35. Gkaniatsou, A., McNeill, F., Bundy, A., Steel, G., Focardi, R., Bozzato, C.: Getting to know
your card: Reverse-engineering the smart-card application protocol data unit. In: ACSAC 2015
Proceedings of the 31st Annual Computer Security Applications Conference, pp. 441–450.
ACM (2015). https://doi.org/10.1145/2818000.2818020

36. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of Automated
Reasoning 16(1–2), 79–111 (1996)

37. Ireland, A., Ellis, B.J., Cook, A., Chapman, R., Barnes, J.: An integrated approach to high
integrity software verification. Journal of Automated Reasoning: Special Issue on Empirically
Successful Automated Reasoning 36(4), 379–410 (2006)

38. Ireland, A., Stark, J.: Combining proof plans with partial order planning for imperative program
synthesis. Journal of Automated Software Engineering 13(1), 65–105 (2005)

39. Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic arguments.
Journal of Logic, Language and Information 8(3), 297–321 (1999)

40. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. Journal of
Automated Reasoning 47, 251–289 (2011)

41. Kowalski, R.: Logic for Problem Solving. Artificial Intelligence Series. North Holland (1979)
42. Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Artificial Intelligence

2, 227–60 (1971)
43. Kraan, I., Basin, D., Bundy, A.: Middle-out reasoning for logic program synthesis. In:

Proc. 10th Intern. Conference on Logic Programming (ICLP ’93) (Budapest, Hungary), pp.
441–455. MIT Press, Cambridge, MA (1993)

44. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge
University Press (1976)

45. Launchbury, J.: A DARPA perspective on artificial intelligence (2018). Talk with slides on
YouTube

46. Lehmann, J., Chan, M., Bundy, A.: A higher-order approach to ontology evolution in Physics.
Journal on Data Semantics pp. 1–25 (2013). https://doi.org/10.1007/s13740-012-0016-7

47. Li, X., Bundy, A., Smaill, A.: ABC repair system for Datalog-like theories. In: 10th Inter-
national Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, vol. 2, pp. 335–342. SCITEPRESS, Seville, Spain (2018). https://doi.org/10.
5220/0006959703350342

48. Lighthill, S.J.: Artificial Intelligence: A General Survey, pp. 1–21. Science Research Council
(1973)

49. Lin, Y., Bundy, A., Grov, G., Maclean, E.: Automating Event-B invariant proofs by rippling
and proof patching. Formal Aspects of Computing pp. 1–35 (2019). https://doi.org/10.1007/
s00165-018-00476-7

50. Llano, M.T., Ireland, A., Pease, A.: Discovery of invariants through automated theory
formation. Formal Aspects Computing 26(2), 203–249 (2014)

51. Maclean, E., Ireland, A., Grov, G.: Proof automation for functional correctness in separation
logic. Journal of Logic and Computation (2014). https://doi.org/10.1093/logcom/exu032

52. Martinez, M., Abdel-Fattah, A., Krumnack, U., Gomez-Ramirez, D., Smaill, A., Besold,
T.R., Pease, A., Schmidt, M., Guhe, M., Kühnberger, K.U.: Theory blending: Extended
algorithmic aspects and examples. Annals of Mathematics and Artificial Intelligence 80(1),
65–89 (2017). https://doi.org/10.1007/s10472-016-9505-y. URL http://homepages.inf.ed.ac.
uk/smaill/martinezEtAl16.pdf

53. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial
intelligence. In: B. Meltzer, D. Michie (eds.) Machine Intelligence 4. Edinburgh University
Press (1969)

54. McCasland, R.L., Bundy, A., Smith, P.F.: Ascertaining mathematical theorems. In: J. Carette,
W.M. Farmer (eds.) Proceedings of Calculemus 2005. Newcastle, UK (2005)

https://doi.org/10.1145/2818000.2818020
https://doi.org/10.1007/s13740-012-0016-7
https://doi.org/10.5220/0006959703350342
https://doi.org/10.5220/0006959703350342
https://doi.org/10.1007/s00165-018-00476-7
https://doi.org/10.1007/s00165-018-00476-7
https://doi.org/10.1093/logcom/exu032
https://doi.org/10.1007/s10472-016-9505-y
http://homepages.inf.ed.ac.uk/smaill/martinezEtAl16.pdf
http://homepages.inf.ed.ac.uk/smaill/martinezEtAl16.pdf

1 The History of the DReaM Group 35

55. McCune, W.: The Otter user’s guide. Tech. Rep. ANL/90/9, Argonne National Laboratory
(1990)

56. McCune, W.: A Davis-Putnam program and its application to finite first-order model search.
Tech. Rep. ANL/MCS-TM-194, Argonne National Laboratories (1994)

57. McNeill, F., Bundy, A.: Dynamic, automatic, first-order ontology repair by diagnosis of failed
plan execution. International Journal on Semantic Web and Information Systems 3(3), 1–35
(2007). Special issue on ontology matching.

58. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery
and concept invention. Expert Systems with Applications 39(2), 1637–1646 (2012)

59. Nelsen, R.B.: Proofs without Words: Exercises in Visual Thinking. The Mathematical Associ-
ation of America (1993)

60. Nuamah, K.: Functional inferences over heterogeneous data. Ph.D. thesis, University of
Edinburgh (2018)

61. Nuamah, K., Bundy, A.: Calculating error bars on inferences from web data. In: SAI Intelligent
Systems Conference (IntelliSys), pp. 618–640. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01057-7_48

62. O’Keefe, R.: Logic and lattices for a statistics advisor. Ph.D. thesis, University of Edinburgh
(1987)

63. O’Keefe, R.A.: The Craft of Prolog. MIT Press, Cambridge, Mass (1990)
64. Paulson, L.: Isabelle: the next 700 theorem provers. In: P. Odifreddi (ed.) Logic and Computer

Science, pp. 77–90. Academic Press (1990)
65. Peano, G.: Arithmetices Principia Novo Methodo Exposita. Bocca (1889). URL http://eudml.

org/doc/203509
66. Pease, A., Colton, S., Ramezani, R., Smaill, A., Guhe, M.: Using analogical representations

for mathematical concept formation. In: L. Magnani, W. Carnielli, C. Pizzi (eds.) Model-
based Reasoning in Science and Technology: Abduction, Logic, and Computational Discovery,
no. 341 in Studies in Computational Intelligence, pp. 301–314. Springer (2010). URL http://
springerlink.com/content/y1t348758g46q462/fulltext.pdf

67. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Uschold, M.: Eco-Logic: Logic-
Based Approaches to Ecological Modelling. MIT Press (1991)

68. Silver, B.: Meta-level inference: Representing and Learning Control Information in Artificial
Intelligence. North Holland (1985). Revised version of the author’s PhD thesis, Department of
Artificial Intelligence, U. of Edinburgh, 1984

69. Steel, G., Bundy, A.: Attacking group protocols by refuting incorrect inductive conjectures.
Journal of Automated Reasoning First Online Edition, 1–28 (2005). Special Issue on
Automated Reasoning for Security Protocol Analysis

70. Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving symbolic equations with
PRESS. J. Symbolic Computation 7, 71–84 (1982). Also available from Edinburgh as DAI
Research Paper 171.

71. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge, MA (1986)
72. Winterstein, D., Bundy, A., Gurr, C.: Dr. Doodle: A diagrammatic theorem prover. In: D. Basin,

M. Rusinowitch (eds.) Automated Reasoning, Lecture Notes in Computer Science, pp. 331–
335. Springer Berlin Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8_24

https://doi.org/10.1007/978-3-030-01057-7_48
https://doi.org/10.1007/978-3-030-01057-7_48
http://eudml.org/doc/203509
http://eudml.org/doc/203509
http://springerlink.com/content/y1t348758g46q462/fulltext.pdf
http://springerlink.com/content/y1t348758g46q462/fulltext.pdf
https://doi.org/10.1007/978-3-540-25984-8_24

Chapter 2
Recollections of Hope Park Square,
1970–1973

J Strother Moore

Abstract I reminisce about the time and place the DReaM Group started: the
Metamathematics Unit and its sister, the Department of Machine Intelligence and
Perception, in Hope Park Square, Meadow Lane, Edinburgh, in the early 1970s.
This is not meant as a scholarly history but just a personal recollection that tries to
capture the spirit of the times.

2.1 Arrival

“2 Hope Park Square, Meadow Lane, Edinburgh” read the address on my letter of
acceptance. I could not imagine a more romantic address, nor a more improbable
one for an academic department with the equally improbable name “Department
of Machine Intelligence and Perception.” It was September, 1970, and I had just
arrived from MIT where I had gotten my bachelor’s degree in mathematics. Now I
was going to start my PhD studies. My academic career seemed to keep taking me
back in time. In Texas, where I grew up, a building was old if it was built in the
1930s. Cambridge, Massachusetts, where MIT is located, pushed “old” back to the
eighteenth century. But then there was Edinburgh, whose “New Town” was started
in 1766. Parts of Hope Park Square predated that.

Hope Park Square was a collection of stone buildings surrounding an overgrown
garden that you entered through an archway. The buildings housed both Machine
Intelligence and Perception and the Metamathematics Unit.1 I went through the
arch and entered the building to be greeted by the Servitor—what a strange idea
to have a door man for an academic department. “I’m here to see Rod Burstall,” I

1The Metamathematics Unit, whose name was soon changed to the Department of Computational
Logic, became a founding member of the School of Artificial Intelligence.

J. S. Moore (�)
The University of Texas at Austin, Computer Science Department, Austin, TX, USA
e-mail: moore@cs.utexas.edu

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_2&domain=pdf
mailto:moore@cs.utexas.edu
https://doi.org/10.1007/978-3-030-77879-8_2

38 J. S. Moore

explained, and was directed up the stairs. Rod had signed my letter of acceptance,
and so it seemed natural to start with him. The next person I met turned out to be
his secretary, Eleanor Kerse, who pointed me to his door. I knocked and upon being
invited in I found him standing on his head. “I’ll be done in a few minutes,” he said.

After introductions, Rod took me to a nearby office with two desks. “There
are pencils and paper in that cupboard. This sheet explains how to log on to the
timesharing system.” He also handed me a slim silver book, “This describes the
programming language, POP-2.” He did not note that he was a co-author of it, along
with Robin Popplestone.2 POP-2 was an elegant Lisp-like programming language
with an Algol-like syntax. “We have tea every day at 11 am and 4 pm. Welcome to
Hope Park Square.” And then he left.

My research career had begun. My first surprise was how different the British
educational system was from the American one I had experienced. My office mate
in the Machine Intelligence department was Mike Gordon, who like me was a new
PhD student that year. From Mike, I learned that my undergraduate education at
MIT differed greatly from his at Cambridge. We both majored in Mathematics,
but at MIT I was required to take a broad range of science and technical courses
and consequently less maths, whereas at Cambridge Mike focused almost entirely
on maths. But the biggest difference in the systems, as I came to experience it,
was in the PhD programs. At Edinburgh, there were no classes, no lectures, no
homework, no exams—except the oral exam for my dissertation. And, at least in
my case, no direction. While I was not aware of it at the time, a PhD in Edinburgh
was typically completed in 3 years, as opposed to 5–7 in the USA. I have come
to appreciate this shortened time span because it can enable more imaginative
dissertation topics! You are unlikely to solve the problem in 3 years so you can
aim high and try to demonstrate the plausibility of an approach. While there were
no formal classes, Hope Park Square hosted a steady stream of outstanding scientists
who gave seminars on cutting edge research in AI and theorem proving—Marvin
Minksy, John McCarthy, Christopher Strachey, Dana Scott, J. Alan Robinson,
Woody Bledsoe, Danny Bobrow, Robin Milner. In addition, tea time was invariably
interesting and educational, with Burstall, Popplestone, Donald Michie, Harry
Barrow, our visitors, and half a dozen PhD students includingMike, Gordon Plotkin,
and John Darlington.

My plan in 1970 was to build a natural language understanding system that could
read and answer questions about children’s stories. My adviser was Donald Michie.

Donald and I spoke often in those early days. He sometimes talked about his
days at Bletchley Park, even though in 1970 that work was still classified. I now
know he worked on the German “Tunny” encryption, which was the British code
name for the Lorenz cipher, which was considered harder than Enigma. The work

2I got to know Robin soon after that. He had a sailboat berthed in Leith and wanted it in Inverness
so he could take his family down the Great Glen, through Loch Ness to Fort William. But he
did not want to sail his family through the North Sea. He needed someone to crew for him and
I volunteered. I had spent a lot of time in boats growing up—mainly canoes on the bayou—but
occasionally in dinghies and sail boats in Galveston Bay.

2 Recollections of Hope Park Square, 1970–1973 39

at Bletchley Park was not declassified until after I left Edinburgh, so Donald never
told me much. But he did say they did not have the code machine and so they built a
simulator for it. And I asked a really naive question without thinking: “Did you do
that in software or actually build a physical machine?” He had to remind me: they
were inventing digital computers then. “Software” was a thing of the future.

Meanwhile, I needed a job in Edinburgh. I had financed most of my MIT
education as a computer programmer. I learned to program, in Fortran, in 1964,
while in high school, by taking a Summer Science Training course sponsored by the
National Science Foundation. My first job at MIT was in the MIT Laser Research
Group, where I was hired to fetch and carry glass tubes, electrodes, machined glass,
etc., from the physics stores and machine shops to the lab. I was not very good at
that—I would often bring back the wrong thing. And while I was waiting for my
next assignment, I would watch the grad students try to figure out what was wrong
with their Fortran programs. “You need a comma there.” Or, “I think you mean X
here.” After a few weeks of unsuccessful fetch-and-carry, one of the students said
“I’ll go get the tubing. You try to fix this program.” By my second semester at
MIT, I was their programmer and I spent my time on numerical methods for solving
differential equations.

But in 1968, back home in Texas for the summer, I was an intern working for
TRW Systems Group at the Manned Spacecraft Center, debugging the Lunar Orbit
Insertion procedure for Apollo by simulating missions: preparing card decks that put
the simulator in some initial state and then simulating, second by second, 30min of
flight through variations of the events allowed by the flight plans. That summer
changed my appreciation of computing: it was not just for solving differential
equations. Inside a computer, a person could build a whole solar system—or any
world at all. I returned to MIT, finished my math requirements perfunctorily, and
focused on artificial intelligence. The next summer I helped write a page fault
simulator for IBM Cambridge to explore memory management on the then-new
System 360. And in my last year of MIT, I was a full-time employee of State Street
Bank and Trust, Boston, working on their mutual fund software in PL/1.

So when Donald spoke of simulating the coding machine, digital simulation
sprang naturally to mind. And when I needed a job in Edinburgh, the natural thing
to do was to look for a programming job. I found one next door, at 9 Hope Park
Square, in Bernard Meltzer’s Metamathematics Unit. As far as I can recall, the
Metamathematics Unit then consisted of Bernard, his quite remarkable secretary,
Jean Pollock, two post-doc research fellows, Bob Kowalski and Pat Hayes, and Don
Kuehner who was finishing up a PhD. We called the institution simply “the Unit,”
and I wore a Dr. Who pin reading “U.N.I.T.” on my blue jean jacket the entire time
I was in Edinburgh.

Kowalski and Kuehner had invented “Selected Literal (SL-) resolution,” a
restriction of resolution that was complete and enjoyed certain properties related to
proof search efficiency and the shortness of proofs. Neither Kowalski nor Kuehner
enjoyed programming and so I was hired to be Kowalski’s programmer and my job
was to create the first implementation of SL-resolution.

40 J. S. Moore

The job required getting a work permit. I remember sitting across from Bernard
in his office and him talking on the phone to some official who would pursue the
work permit. Bernard would listen to the person and then cover the phone and ask
me “How long have you been programming?” “6 years,” I replied. So Bernard said,
“We need someone with 5 or 6 years of programming experience.” Then, covering
the phone, he asked me “In what languages?” “Fortran, assembly language, PL/1,
and Lisp.” And so it went. The eventual job description probably described exactly
one person in the UK. So I got my work permit.

Bob Kowalski then described what he wanted, and I started implementing my
first theorem prover. Before the first year was out, I realized I was a lot better at
writing theorem provers than I was at getting computers to understand children’s
stories. So I went to Donald and asked if I could change advisers. He agreed and
Rod Burstall, the Machine Intelligence faculty member most familiar with logic
and mechanized proof, became my official dissertation adviser. I moved from the
Machine Intelligence office that Rod had first shown me to an office in the Unit.

The programming environment was fairly primitive, at least by the standards
of MIT in the late 1960s. Researchers at Hope Park Square shared an ICL 4130
processor with 64K bytes of 2ms memory, three 4MB disc drives, two paper tape
readers and punches, and a 300 line-per-minute line printer. It could support 8
interactive jobs, each controlled by teletype, all permanently core resident. Time
sharing was strictly round-robin with all users having equal priority. Job control
and programming was in POP-2, so from the user’s perspective it was a “POP-2
machine” akin to but pre-dating the “Lisp machine.” The CPU could be scheduled
for exclusive use at night. Memory limitations drove almost all programming
decisions. Teletypes connected Hope Park Square to the CPU, but all other hardware
were located about 10min’ walk away at Forrest Hill.

Files were edited with a software-implemented paper tape editor, a machine that
copies a paper tape by punching corresponding holes in a blank tape but permitting
the user to skip sections or manually punch different holes. To edit a file you copied
the bytes in it to another file, stopping at the first place you wanted to change. You
would type the new text and/or delete the old text and then continue copying. You
could not look at more than one byte at a time, back up, or undo. Repeated passes
through the evolving file were typically required. Editing a program was tedious
and error-prone. If you printed your file on the line printer to see the final result of
editing, you needed to walk along the Meadows to Forrest Hill to get your output.

Memory constraints made my SL-resolution prover quite limited, and my
attempts to save space by representing clauses in a compressed string format slowed
it down. But by September, 1971, I could demonstrate SL-resolution on simple sets
of clauses. Kowalski could ignore the performance issues but was disappointed by
the size of the search space. One of his responses to this was to develop an amazing
knack of creating clause sets whose refutation was straightforward, almost like the
SL-resolution engine was interpreting code.

2 Recollections of Hope Park Square, 1970–1973 41

When Don Kuehner graduated with his PhD, I bought his automobile: a diesel-
powered, decommissioned, Austin FX4 London taxi. It cost me £75 in 1971, and
I sold it for £5 in December, 1973, because it could no longer pass its MOT
inspection. In the mean time, it was an excellent vehicle for exploring Scotland—
its tight turning radius made it ideal for Highland roads—and its roomy passenger
compartment was great for hauling furniture. Don and I both regarded the taxi as a
shared resource at Hope Park Square.

In September, 1971, two very influential people joined the Unit as post-docs:
Alan Bundy and Bob Boyer.

Because Boyer and I were both from Texas, we shared an office: it was the
warmest room in Hope Park Square. Our office overlooked the bowling green and
practice range of the Royal Company of Archers, the Queen’s ceremonial bodyguard
in Scotland. At other times, there were bowlers on the green. The police bagpipe
band also practiced there.

Boyer and I began to collaborate on a variety of projects including an efficient,
structure-shared way to represent clauses in a resolution prover [BM72]. Instead of
copying clauses to rename variables apart and implement substitution and resolvent
formation, resolvents were represented by pointing to the two parents, noting which
literals were resolved upon, and storing the unifying substitution. Linear proofs
produced just stacks of frames, reminiscent to the way conventional programming
languages implement procedure calls.3

In December, 1971, J. A. Robinson—who invented resolution and who made
several long visits to Edinburgh—playfully awarded us one of my prized honors, a
handwritten certificate that reads:

Foundation for the Advancement of Computational Logic
by the Taking Out of Fingers

1971 PROGRAMMING PRIZE

In 1971, by the gift of an anonymous (he couldn’t even remember his own
name!) donor, an annual programming prize was set up, to be awarded to:

“...that person, or those persons, who, in the opinion
of the Board of Trustees, shall have, in the given year,
contributed the most valuable, beautiful, or just plain
deep and satisfying, idea to the world in the area of
actual writing of programs in computational logic, as
opposed to simply waving hands and hoping things will
work out all right on the night...”;

3The connection of structure sharing to Prolog and the Warren Abstract Machine is mentioned
later.

42 J. S. Moore

In 1971, the prize is award, by unanimous agreement of the Board, to

Robert S. Boyer
and

J Strother Moore

for their idea, explained in “The Sharing of Structure in Resolution
Programs”, of representing clauses as their own genesis. The Board
declared, on making the announcement of the award, that this idea is
“... bloody marvelous”.

Because of the state of the economy, and what with one thing and
another, the prize this first year is somewhat less than it will be
in future years.

J. A. Robinson
Secretary
December 12, 1971

Once Boyer and I got the SL-resolution prover converted into a structured-shared
clause representation, we began experimenting with proofs. But because we were
passionate about programming, we tended to focus on proofs about programs.

We formalized an assembly-like language called Baroque in predicate calculus
and used the SL-resolution prover as an interpreter for it. Then, programming in
Baroque, we axiomatized a simple subset of Pure Lisp and could use SL-resolution
to run Lisp programs and to prove simple theorems about Lisp. See pages 73–75 of
my dissertation [Moo73], where, for example, I define

MEMBER: (MEMBER X Y) -> U
WHERE
(COND Y

(COND (EQUAL X (CAR Y))
T
(MEMBER X (CDR Y)))

NIL) -> U;
END;

(At the time, we used COND as a 3-place if-then-else.) If one executed the statement

(MEMBER 2 (CONS 1 (CONS 2 (CONS 3 NIL)))) -> U;

the SL-resolution “interpreter” would bind U to T. More interesting to us at the time
was that we could “run” programs “backwards” finding input that satisfied certain
output constraints, e.g.,

(MEMBER 2 (CONS 1 (CONS X (CONS 3 NIL)))) -> T;

would bind X to 2, proving “there exists an X such that 2 is a MEMBER of (CONS
1 (CONS X (CONS 3 NIL))).

2 Recollections of Hope Park Square, 1970–1973 43

In Part I of my 1973 dissertation, I explored various capabilities allowed by
structure sharing and “programming in the predicate calculus,” including pre-
computing unifiers, “shallow binding” to short-circuit the dive through the stack
for a binding, how to attach pragmatic restrictions on variables to prevent any
instantiation from forming certain “useless” terms, and Baroque.

There were many other ramifications of structure sharing we could have
explored, but our abiding interest was in proving more interesting theorems
like the associativity of list concatenation, or that something is a MEMBER of
the concatenation of two lists iff it is a MEMBER of one or the other. These
theorems were out of reach of our SL-prover: they require induction. So we set
aside resolution and structure sharing and focused on proving inductive theorems
about Lisp functions.

Following McCarthy [McC63], we adopted a simple subset of Pure Lisp as our
logic and took turns defining functions and proving theorems at the blackboard,
questioning each move. “Why did you expand that function?” “Why induct on A?”
“Is the conjecture general enough for induction?” As strange as it may seem today,
these were groundbreaking questions in the early 1970s because “theorem proving”
was almost synonymous with uniform proof procedures for first-order predicate
calculus. After several months, we had a collection of heuristics to help decide when
to induct and what inductive argument to use, as well as heuristics for controlling
the application of axioms as rewrite rules, including the unfolding of recursively
defined functions and rudimentary generalization.

We then set about implementing this in POP-2, creating the Edinburgh Pure Lisp
Theorem Prover (PLTP), which was running by March, 1973, in the style of Woody
Bledsoe [BBH72]. The techniques developed for PLTP have been widely adopted in
virtually all modern theorem provers aimed at hardware and software verification.
Indeed, I think we founded the now-thriving field of mechanized inductive theorem
proving.

PLTP was a fully automatic, heuristic theorem prover for Pure Lisp, focused on
induction and recursion. The user presented it with Lisp function definitions and
conjectures to prove. It printed a narrative description of its evolving proof attempt.
Unlike resolution provers, PLTP did not backtrack or do much search. As I said in
my dissertation ([Moo73] page 208), “The program is designed to make the right
decision the first time, and then pursue one goal with power and perseverance.”

Its proof techniques included simplification via rewriting with Lisp axioms and
definitions, heuristic use of equality, generalization, and induction. These techniques
were tightly coupled so that induction set up simplification, simplification was used
to determine appropriate inductions, and equality substitution and generalization
were used to produce conjectures intended for inductive proofs and tended to
“discover” interesting subgoals. For example, the associativity of Peano multipli-
cation required three inductions and discovered the distributivity of multiplication
over addition and the associativity of addition—a curious level of competence
demonstrated too often by PLTP to be random or coincidental and explained years
later by Alan Bundy’s work on rippling.

44 J. S. Moore

Boyer and I kept a file containing all the definitions and theorems the prover
succeeded on. We called it “the proveall.” Every time we would change the
heuristics, we ran the proveall because we had learned from past experience that
it was easy to “improve” a theorem prover so that it could find a previously
undiscoverable proof without us realizing it could no longer discover some “old”
proofs. The proveall grew as we refined the heuristics through 1973. We established
the discipline of never accepting an “improvement” until the new system had passed
the proveall test. (We sometimes found that failures had more to do with peculiar
aspects of the statements of “old” theorems than with faulty heuristics and restated
those theorems to take advantage of new techniques.) We follow this discipline
today and highly recommend it to developers of theorem provers.

Sometime during late 1971 or early 1972, we simply could not stand to use the
paper tape editor to maintain our software. Inspired by our structure sharing work,
we invented a way to edit a file without using much memory: build a data structure
that described the edited document in terms of segments of the original file (on disk)
and the text entered by the user during the edit session. We named the editor the
“77-Editor” because it resided on disk track 77. We had help from D.J.M. Davies
dealing with some system programming issues. The editor supported the illusion
that the entire document was in memory, you could search backwards and forwards,
move around in it, undo changes, etc. [BDM73]. We used the 77-Editor extensively
to create PLTP.

For lunch, there was a little shop at the end of Meadow Lane that sold seven
kinds of sandwiches: beans, cheese, fried egg, beans and cheese, beans and fried
egg, cheese and fried eggs, and beans, cheese, and fried eggs.

When Boyer and I were stuck, we would often take walks, usually to Holyrood
Park, and often the solution would come to us there. I sometimes went jogging with
Alan Robinson around Holyrood Park. Once going up the road around Arthur’s Seat,
I said to him “I wish I had a low gear, like my bike,” and he replied “You do: take
smaller steps.”

Some afternoons Boyer and I would go out to the Meadows behind Hope Park
Square and join a pickup game of (British) football, often with school boys. They
could dribble circles around the clumsy Americans. But we paid them back when
we would play (American) football or baseball, both of which require throwing and
catching.

Once returning from the Meadows, we found a man trying to steal Boyer’s
bicycle, which was parked in the archway of Hope Park Square. Boyer chased him
with the baseball bat, and it is fortunate for the thief as well as for theorem proving
that Boyer did not catch him. As someone said when we got back to the Unit, “A
liberal is someone who’s never been robbed.”

In the summer of 1973, Rod Burstall came into the office and told me “You
should write this up.” My 3 years were ending! In the 23 months that Boyer and
I worked together in Edinburgh—creating structure sharing, a text editor, and an
inductive theorem prover—I am not sure that either of us thought about my PhD.
We were just doing research, chasing our shared dream of automated reasoning
about programs.

2 Recollections of Hope Park Square, 1970–1973 45

I wrote my dissertation that summer. Part I was about structure sharing. Part II
was about PLTP. I wrote “two” dissertations because it was impossible to separate
my contributions from Boyer’s. The PLTP proveall then contained 47 function
definitions and 67 theorems about recursive list processing (e.g., concatenation,
reverse, member, union, intersection, sorting), Peano arithmetic (e.g., addition,
multiplication, exponentiation), tree processing (copy, flatten, searching), and con-
nections between them (e.g., the length of a concatenation is the sum of the lengths).
All the PLTP theorems were proved completely automatically. Because PLTP was
the first mechanical prover designed around induction and most of these theorems
required induction, most of these theorems had never been proved mechanically
before.

My oral exam was in the Fall, 1973, and my internal examiners were Bernard
and Rod and my external examiners were David Cooper and Robin Milner. Milner
was visiting from Stanford where he was developing LCF [Mil79]; he had read
my dissertation very carefully and was especially interested in induction. We sat
in Bernard’s office and had tea over a teletype. They would challenge PLTP
and I would explain either why it failed or how it succeeded. Some of the
challenge theorems were familiar because Boyer and I had seen it prove them,
e.g., that insertion sort produced ordered output. But some were proved for the
first time during the oral exam, including that insertion sort preserved the number
of occurrences of an element. The committee objected to my use of the non-word
“normalation” as the name of the proof technique finally called “simplification.”
And, with a few edits to the dissertation, I was done.4

We left Edinburgh in December, 1973, in part because of the Lighthill Report
and the coming “AI winter” in the UK. But the ideas we developed in the
Metamathematics Unit lived on and had real impact. Structure sharing, which had
helped reify the idea of programming in the predicate calculus, played a role in the
creation and implementations of Prolog and the Warren Abstract Machine. As for
our text editor, it remained in use in the Edinburgh AI community for several years,
until the ICL 4130 was replaced by a PDP-10. More importantly, our document
representation became an integral part of Microsoft Word.

When I left Edinburgh I joined Xerox Palo Alto Research Center (PARC).
There I learned that Charles Simonyi was implementing the first WYSIWYG text
editor, Bravo, for the Xerox Alto personal computer and was facing severe memory
limitations. I explained our document representation to him and implemented a
package of text editing utilities in Interlisp as an experimental prototype of the basic
operations of search, insertion, deletion, etc. He adopted the representation in his
implementation of Bravo. I maintained the Interlisp package and added features
at his request even after I left PARC in 1976 to join Boyer at SRI [Moo81]. The
representation not only maintains a small memory footprint and facilitates undoing

4PLTP was reproduced several times in the 1970s. There are at least two modern re-
implementations, one by me in ACL2 and one by Grant Passmore in ML. See the PLTP Archive at
http://www.cs.utexas.edu/users/moore/best-ideas/pltp/index.html.

http://www.cs.utexas.edu/users/moore/best-ideas/pltp/index.html

46 J. S. Moore

but enables metadata, like font and change tracking, to be attached to text without
changing the text. When Simonyi left PARC and joined Microsoft, he created
Microsoft Word inspired in part by Bravo. He used our document representation
there too, and it is still in use in Word today.

And the Pure Lisp Theorem Prover remained the focus of Boyer’s and my work.
In subsequent years, we explored a plethora of topics to improve the prover, includ-
ing use of previously proved lemmas, verified metafunctions, integrated decision
procedures, the adoption of a subset of an ANSI standard programming language
as the logic, programming the system in its own logical language, and the dual use
of formal models as specifications and efficiently executable prototypes. By 1979,
PLTP had become Thm, the prover described in our 1979 book A Computational
Logic [BM79]; by the mid-1980s, Thm had become Nqthm [BM88, BM97]; and by
the early 1990s, Nqthm had become ACL2, A Computational Logic for Applicative
Common Lisp [KMM00b, KMM00a, KM19]. For a sketch of that evolutionary
sequence and the changes we made, see [Moo19]. I am still working on ACL2,
but for the past 26 years my co-author has been Matt Kaufmann. We release a
new version of ACL2 about twice a year. ACL2 is in routine use in industry
including ARM, AMD, Centaur, Kestrel, Intel, Oracle, and Rockwell Collins—
nightly in some cases—to verify microprocessor components and critical algorithms
[WAHKMS17], dealing with conjectures that Boyer and I could not have imagined
in 1973. The “proveall” has grown from PLTP’s 67 theorems to ACL2’s 153,823.5

To understand how remarkable the Metamathematics Unit had become with the
arrival of Boyer and Bundy, consider this: Kowalski and Kuehner were primarily
pursuing uniform proof procedures, specifically resolution in first-order predicate
calculus. Early applications focused on formalizing a robot’s world and using
theorem proving to plan a sequence of actions to achieve some goal, following the
formalization of McCarthy and Hayes’ situational calculus [MH69]. Kowalski was
particularly adept at formalizing clausal problems in a way that made SL proofs
easy to find and that probably led to his view that one could program in the predicate
calculus. Into this strictly first-order, resolution group, Meltzer added two post-docs,
Bundy and Boyer, who came at mechanized reasoning from completely different
perspectives. Bundy did his dissertation on proofs of Gödel’s incompleteness
theorems in restricted formal systems of arithmetic [Bun71], supervised by Reuben
Goodstein, a master of constructive mathematics and the foundations of logic.
Arithmetic is inherently inductive, and so Bundy’s view of theorem proving was
necessarily broader than resolution. Boyer was very familiar with resolution. His
dissertation was on a restriction of resolution [Boy71]), but his supervisor, Woody
Bledsoe, was a fierce advocate of non-uniform, heuristic provers. Boyer had co-
authored a heuristic prover with Bledsoe and W.H. Henneman [BBH72] on proofs

5This is a conservative estimate as of July, 2019, of the number of theorems explicitly stated by
users in ACL2 Community Books repository, https://github.com/acl2/acl2, which Kaufmann and
I re-run for every new version of ACL2. It is conservative because it only counts conjectures
presented with the defthm command and not conjectures required to admit definitions or
presented or generated by macros, etc.

https://github.com/acl2/acl2

2 Recollections of Hope Park Square, 1970–1973 47

of limit theorems. And then there was me, a programmer learning theorem proving.
Within a few months of Boyer’s arrival at Hope Park Square, we were exploring
inductive proofs about recursive data structures. Meltzer’s genius is indicated
by the group he assembled. We represented a wide variety of theorem proving
backgrounds, styles, and applications. He basically just turned us loose.

The result was an intense, exciting, and fascinating time full of discovery.
We discussed and debated everything from simple arithmetic challenges requiring
generalization and induction to whether logic was an appropriate way to model
human thought.

I remember discovering that some truly simple pragmas attached to “action
variables” could make many of the robot problems easy, e.g., disallow the immediate
composition of the action LET-GO onto the action PICK-UP or otherwise the
prover would pursue the possibilities allowed by picking up an object and imme-
diately letting it go, ad infinitum. Such pragmas were easily implemented in the
structure-shared representation, c.f. [Moo73], page 48.

When debating whether predicate calculus could capture English, Boyer clarified
the question.

Boyer: “Give me a sentence.”
Kowalski: “The girl guides fish.”
Boyer (writing on the black board):
At(0,’T) ∧ At(1,’h) ∧ At(2,’e) ∧ At(3,Space) ∧ At(4,’g)
On another occasion, somebody asserted “People think in predicate calculus.”

Somebody else said, “People think in English,” to which somebody else replied,
“Actually, most people think in Chinese.”

Once after a tedious argument on a question I have long forgotten Kowalski said
“Let’s vote. And then we’ll argue about who won.”

Of course, mostly we discussed theorem proving ideas: hyperresolution,
paramodulation, uniform versus non-uniform proof procedures, the role of
soundness and completeness, how to deal with the equality relation, the role of
induction, the use of lemmas, heuristics for limiting the search space, etc.

Perhaps the best picture of those years at Hope Park Square was drawn in 1971
or 1972, by Martin Pollock, FRS, husband of Bernard’s secretary Jean. Martin was
a founding father of molecular biology as a distinct field. He was also well known at
the university for his satirical cartoons. Jean frequently had to type manuscripts that
were incomprehensible to her. Below was Martin’s response to a paper by Bernard.

48 J. S. Moore

Since this book is dedicated to the research conducted by Alan Bundy’s DReaM
Group, it seems only fitting for me to comment on that work. Alan’s chapter on
the history of the DReaM group makes an interesting contrast to my history of the
evolution of PLTP to ACL2 [Moo19]. There could hardly be two more different
research styles: my focus was quite narrow and Alan’s was extraordinarily broad.
And yet it is interesting that we visited many of the same topics from our different
perspectives, e.g., rippling, lemma discovery, the value of a formal meta-theory, and,
of course, the concern over soundness and the impact of an ad hoc programming
style versus a disciplined partition between heuristic and rules of inference. And
in almost every case, he and I made different decisions: mine always driven by
pragmatic desire to build a sound and effective prover for computational problems
and his to understand how that is done. In fact, our almost half-century of pursuing-
related goals from different perspectives exemplifies the wonderful atmosphere of
the Unit.

References

BBH72 W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer proofs of limit theo-
rems. Artificial Intelligence, 3:27–60, 1972.

BDM73 R. S. Boyer, D. J. M. Davies, and J S. Moore. The 77-editor. Technical Report 62,
Department of Computational Logic, University of Edinburgh, 1973.

2 Recollections of Hope Park Square, 1970–1973 49

BM72 R. S. Boyer and J S. Moore. The sharing of structure in theorem-proving programs.
In Machine Intelligence 7, pages 101–116. Edinburgh University Press, 1972.

BM79 R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York,
1979.

BM88 R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
New York, 1988.

BM97 R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition.
Academic Press, New York, 1997.

Boy71 Robert S. Boyer. Locking: A Restriction of Resolution. Department of Mathematics,
University of Texas at Austin, 1971.

Bun71 A. Bundy. The Metatheory of the Elementary Equation Calculus. PhD thesis,
University of Leicester, August 1971.

KM19 M. Kaufmann and J S. Moore. The ACL2 home page. In http://www.cs.utexas.edu/
users/moore/acl2/ . Dept. of Computer Sciences, University of Texas at Austin,
2019.

KMM00a M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Press, Boston, MA, 2000.

KMM00b M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA, 2000.

McC63 J. McCarthy. A basis for a mathematical theory of computation. In Computer Pro-
gramming and Formal Systems. North-Holland Publishing Company, Amsterdam,
The Netherlands, 1963.

MH69 J. McCarthy and P. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In Machine Intelligence, volume 4, pages 463–502.
Edinburgh University Press, 1969.

Mil79 Robin Milner. Lcf: A way of doing proofs with a machine. In Jir̆í Bec̆vár̆, editor,
Mathematical Foundations of Computer Science 1979, pages 146–159. Lecture
Notes in Computer Science, Vol. 74, Springer, Berlin Heidelberg, 1979.

Moo73 J S. Moore. Computational logic: Structure sharing and proof of program properties.
Ph.D. dissertation, University of Edinburgh, 1973. See http://www.era.lib.ed.ac.uk/
handle/1842/2245.

Moo81 J S. Moore. Text editing primitives – the TXDT package. Technical Report
CSL-81-2 (see http://www.cs.utexas.edu/users/moore/publications/txdt-package.
pdf), Xerox PARC, 1981.

Moo19 J Strother Moore. Milestones from the Pure Lisp theorem prover to acl2. Formal
Aspects of Computing, 2019.

WAHKMS17 Jr. W. A. Hunt, M. Kaufmann, J S. Moore, and A. Slobodova. Industrial hardware
and software verification with ACL2. In Verified Trustworthy Software Systems,
volume 375. The Royal Society, 2017. (Article Number 20150399).

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.era.lib.ed.ac.uk/handle/1842/2245
http://www.era.lib.ed.ac.uk/handle/1842/2245
http://www.cs.utexas.edu/users/moore/publications/txdt-package.pdf
http://www.cs.utexas.edu/users/moore/publications/txdt-package.pdf

Chapter 3
Adventures in Mathematical Reasoning

Toby Walsh

Abstract “Mathematics is not a careful march down a well-cleared highway, but a
journey into a strange wilderness, where the explorers often get lost. Rigour should
be a signal to the historian that the maps have been made, and the real explorers
have gone elsewhere.”

W.S. Anglin, the Mathematical Intelligencer, 4 (4), 1982.

3.1 Introduction

In 1986,1 I moved to Edinburgh to start a Masters conversion course into Artificial
Intelligence after having studied mathematics at the University of Cambridge. I had
dreamed about working in AI for many years. So it was my good fortune to fall into
the gravitational attraction of Alan Bundy and become a member of the DReaM
group. Shortly after, I began a PhD under Alan’s careful supervision2 [1–3].

I would now start to dream about getting computers to do mathematics. It was
perhaps not surprising that this was the orbit into which I fell. I had always liked
mathematics, and now I could combine two of my passions: Artificial Intelligence
and mathematics.

I would stay in Edinburgh for most of the next dozen or so years, apart from
some enjoyable excursions to work at INRIA in Nancy and with Fausto Giunchiglia
at IRST in Trento. There was a lot to like about living and working in Auld Reekie.
However, fresh challenges started to emerge, and I began to build up to an escape
velocity. I took a research position in Glasgow but stayed living in Edinburgh,

1How can it be that long ago?
2I was lucky also to have one of Alan’s postdocs, Fausto Giunchiglia as a second supervisor. We
would work together closely for the next decade.

T. Walsh (�)
University of New South Wales, Sydney and Data61, Sydney, NSW, Australia
e-mail: tw@cse.unsw.edu.au

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_3

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_3&domain=pdf
mailto:tw@cse.unsw.edu.au
https://doi.org/10.1007/978-3-030-77879-8_3

52 T. Walsh

visiting the DReaM group frequently. Then I moved to York, and finally a sling
shot sent me past Cork to Sydney, Australia where I remain today.

In due course, I would leave behind the work that I had done in Edinburgh and
explore other parts of Artificial Intelligence such as constraint programming [4] and
satisfiability [5]. However, this volume offers me the chance to consider how those
ripples might have had a small influence on what followed. More importantly, it lets
me thank Alan for his mentoring. This summary is necessarily high level and will
avoid going into many of the technical details. I have a lot of ground to cover, so it
is impossible in this limited space to go deeper.

3.2 Rippling

Alan was (and is) a neat AI researcher. One strategy he promoted was to take some
scruffy research and make it neat. He even gave it a name: undertaking a “rational
reconstruction” of some past research. In the late 1980s [6], the DReaM group
embarked on a project to rationally reconstruct the rather scruffy inductive theorem
proving techniques to be found in Boyer and Moore’s NQTHM theorem prover [7].
Dieter Hutter in Karlsruhe was going about a similar task developing the INKA
prover [8] and soon became closely involved with the efforts in Scotland.

Central to the inductive theorem proving heuristics in NQTHM were the ideas
of recursion analysis (picking an induction rule and variable), and then rewriting
the step case to match the induction hypothesis in a process that became rationally
reconstructed as an annotated form of rewriting called “rippling” [9, 10]. Picking
an appropriate induction rule and variable depends on how you can simplify the
resulting step case so the two ideas are closely connected.

In the early 1990s, rippling ran into some annoying problems. In particular, the
annotations used by rippling to guide rewriting could become ill-formed, and there
was as yet no principled way to annotate terms in the first place. Alan’s newest
postdoc, David Basin, and I set about fixing these problems. I shall tell the story
backwards as it makes for a more rational reconstruction of the work.

3.2.1 A Calculus for Rippling

Rippling is a form of rewriting guided by special kinds of (meta-level) annotation.
Consider, for example, a proof that appending a list onto the empty list leaves the
list unchanged. In the step case, the induction hypothesis is

(append x nil) = x.

3 Adventures in Mathematical Reasoning 53

From this, we need to derive the induction conclusion,

(append (cons e x) nil) = (cons e x).

We can annotate the induction conclusion to highlight the differences between it and
the induction hypothesis,

(append (cons e x)
↑

nil) = (cons e x)
↑
.

The square boxes are the “wavefronts”. The underlined parts are the “waveholes”.
If we eliminate everything in the wavefronts but not in the waveholes, we get
the “skeleton” in which the induction conclusion matches exactly the induction
hypothesis.

To simplify the induction hypothesis, we will use a rewrite rule derived from the
recursive definition of append

(append (cons a b) c) =def (cons a (append b c)).

We can turn this into a rewrite rule annotated with wavefronts and waveholes,

(append (cons a b)
↑

c) ⇒ (cons a (append b c))
↑
.

This is called a “wave rule”. It preserves the skeleton (append a c) but moves the
wavefront (cons a . . .) up and hopefully out of the way. Applying this rule to the
left-hand side of the induction conclusion gives

(cons e (append x nil))
↑ = (cons e x)

↑
.

We can now simplify the left-hand side using the induction hypothesis as the rewrite
rule,

(append x nil) ⇒ x.

This rewriting step is called fertilization and leaves the following equation:

(cons e x)
↑ = (cons e x)

↑
.

The left-hand side of the rewritten induction conclusion now matches the right-hand
side. The step case therefore holds by the definition of equality.

Rewriting annotated terms in this way takes us beyond the normal rewriting of
terms. David and I therefore formalized a calculus for describing such annotated
rewriting [11, 12]. We showed that this calculus had the following four desirable
properties.

54 T. Walsh

Well-formedness: Rewriting properly annotated terms with wave rules leaves
them properly annotated.

Skeleton preservation: Rewriting properly annotated terms with wave rules pre-
serves the skeleton.

Correctness: We can perform the corresponding derivation in the underlying un-
annotated theory. Annotation is thus merely guiding search.

Termination: Given the appropriate measures on annotated terms, we can guaran-
tee rippling terminates. There are, for example, no loops.

We showed that different termination orderings can profitably used within and
outwith induction [13]. Such new orderings let us combine the highly goal-directed
features of rippling with the flexibility and uniformity of more conventional term
rewriting. For instance, we proposed two new orderings that allow unblocking,
definition unfolding, and mutual recursion to be added to rippling in a principled
(and terminating) fashion.

3.2.2 Difference Matching and Unification

But where do the annotations come from in the first place? David and I generalized
both (1-sided) matching and (2-sided) unification to annotate terms appropriately.
Difference matching extended first-order matching to make one term, the pattern
match another, the target by instantiating variables in the target, as well as by hiding
structure with wavefronts also in the target [14]. Difference unification extended
unification to make two terms syntactically equal by variable instantiation and
by hiding structure with wavefronts in both terms [15]. Difference unification is
needed, for instance, to annotate rewrite rules as wave rules.

A single difference match can be found in time linear in the size of the target. If
the pattern contains a variable, then set this to the target and put everything else in
the wavefront. If not, the pattern is ground and we can simply descend through
the term structure hiding any differences between the pattern and the target in
wavefronts. However, there can be exponentially many difference matches in the
size of the pattern in general so returning all of them can take exponential time.
In practice, though, there are usually only a few successful difference matches and
these can be found quickly.

Difference unification is more problematic computationally. Even if we limit
wavefronts to one term, deciding if two terms difference unify together is NP-
hard (Theorem 8 in [15]). Thus, supposing P 	= NP, we cannot in general find
even a single difference unifier in polynomial time. Looking again at this result
more than 25 years later, I would not leave the analysis there but would look closer
at the source of complexity. Difference unification has not proved too intractable
in practice and we can likely argue why not. The reduction showing NP-hardness
reduced a propositional satisfiability problem in m clauses to difference unifying
two m-ary functions. The functions being difference unified in this proof therefore

3 Adventures in Mathematical Reasoning 55

can have very great arity. I conjecture that difference unification is polynomial, more
precisely fixed-parameter tractable, when applied to terms of bounded arity.

An unexpected tale:
To find the difference unification with the least amount of annotation, we
proposed a new generic AI search called left-first search (LFS) [15]. Left
branches of our search tree introduced annotations, whilst right branches
matched terms. Left-first search explored leaf nodes of this search tree in order
of the number of left branches taken. I presented the search method at IJCAI
1993.

Two years later, I was listening to an IJCAI 1995 conference talk on a new
search method called limited discrepancy search (LDS) [16] when one of the
authors put up a slide showing the order of the leaf nodes explored by LDS.
This appeared identical to that of LFS, a slide I remember preparing 2 years
before. At the end of the talk, I therefore asked about the difference between
the two search methods. A colleague called it the “question from hell”, but
my intention was just to understand how they differed.

Unbeknown to me, LDS was being patented, and it set off a chain of
unfortunate events. Lawyers had to rewrite the patent application at some
significant cost. I was asked to be an expert witness in a patent dispute over
LDS. And I was considered by the authors of LDS to be a “trouble maker”.

Eventually, it would blow over as there is a simple but crucial difference.
Our search trees were small and so LFS expanded them in memory. LDS was
intended for much larger search trees and so, whilst it expanded leaf nodes in
the same order as LFS, did so in a lazy space efficient fashion by returning
repeatedly to the root node much like iterative deepening search. This adds
just a constant factor to the time asymptotically so is worth paying when space
is an issue.

Whilst difference unification was invented to deal with inductive proof, it
captures a deeper and more general idea used in mathematics. In [17], J.A. Robinson
presented a simple account of unification in terms of difference reduction. He
observed,

“Unifiers remove differences ... We repeatedly reduce the difference between the two given
expressions by applying to them an arbitrary reduction of the difference and accumulate the
product of these reductions. This process eventually halts when the difference is no longer
negotiable [reducible via an assignment], at which point the outcome depends on whether
the difference is empty or nonempty”.

Difference unification can be seen as a direct extension of Robinson’s notion of
difference reduction: we reduce differences not just by variable assignment, but
also by term structure annotation. However, what makes this extended notion of
unification attractive is that this annotation is precisely what is required for rippling

56 T. Walsh

to remove this difference. And, as we see shortly, rippling has found a useful role to
play in a number of other proof areas.

3.3 Proof Planning

An important idea explored within the DReaM group is the separation of logic
and control. Proof planning was originally developed for inductive proof [18]. It
brought together ideas of meta-level control explored in the earlier PRESS project
[19] with AI planning operators specified by pre- and post-conditions. Theorem
proving heuristics are described by general purpose proof planning methods such as
rippling and fertilization that are glued together using simple AI search techniques
like depth-first or best-first search. Since proof planning was proving useful for
inductive proof, I became keen to try to apply it elsewhere.

3.3.1 Summing Series

To explore the use of proof planning in general, and rippling in particular outside of
inductive proof, I chanced on the domain of summing series [20]. Inductive proofs
can be used to verify identities about finite sums. But where do these identities come
from in the first place?

I developed a set of proof planning methods to solve such problems. To my
surprise, rippling proved to be key to many of these methods. I will illustrate this
with the CONJUGATE method. This method transforms a finite sum of terms into the
finite sum of some conjugates. The conjugate can be one of several second-order
operations, e.g., the differential or integral of the original term, or the mapping of a
trigonometric series onto the real or imaginary part of a complex series.

Consider, for example, finding a closed-form expression for

n∑

i=0

(i + 1)xi .

The CONJUGATE method transformed this into a simpler looking sum,

n∑

i=0

dxi+1

dx
.

This now looks close to a known result, the closed-form sum of a geometric series,

3 Adventures in Mathematical Reasoning 57

n∑

i=0

xi = xn+1 − 1

x − 1
.

Difference matching our simpler looking sum against the left-hand side of this
known result gives some wavefronts we need to remove out of the way by rippling
with wave rules,

n∑

i=0

dx
i + 1

↑

dx

↑

.

Since the derivative of a sum is the sum of the derivatives, rippling gives

d
∑n

i=0 x
i + 1

↑

dx

↑

.

Rippling with a wave rule derived from the definition of exponentiation then
expands the exponent,

d
∑n

i=0 x.xi
↑

dx

↑

.

One final rewriting step uses rippling to move the constant term outside the sum,

d x.
∑n

i=0 xi

dx

↑
.

The FERTILIZE method substitutes the closed-form sum for the geometric series,

d x.
xn+1−1

x−1
dx

↑

.

Finally, a DIFFERENTIATE method then symbolically computes a closed-form
answer by algebraically differentiating the quotient. The derivation is now complete.

We subsequently looked at some other mathematical domains such as theorems
about limits [21]. Rippling and proof planning again proved up to the challenge.

58 T. Walsh

3.3.2 A Divergence Critic

Proof planning methods come with high expectations of success. Their failure can
therefore be a useful tool in patching proofs. I explored how the failure of rippling
can be used to suggest missing lemma needed to complete a proof by means of a
“divergence critic” [22, 23]. Other members of the DReaM group have explored
similar ideas in closely related settings (e.g., [24, 25]).

My divergence critic identified when a proof attempt is diverging by means of
difference matching. The critic then proposed lemmas and generalizations of these
lemmas to try to allow the proof to go through without divergence. For example,
when the prover failed to show inductively that (rev (rev x)) = x, the critic
proposed the key lemma, a missing wave rule needed to complete the proof,

(rev (append X (cons Y nil))
↑
) = (cons Y (rev X)

↑
.

In my view, such failure is something we still exploit too little in automating
mathematical reasoning. As a mathematician, I spend most of my time failing to
prove conjectures. But those failures eventually often lead me to find either a proof
when the conjecture is true, or a counter-example when it is false.

3.4 Mathematical Discovery

Mathematics is more than just proving theorems. It is also defining theories,
inventing definitions, conjecturing results, finding counter-examples, developing
proof methods, and more. One of the pleasures of the DReaM group was to witness
and contribute to automating some of these other mathematical activities.

In 1996, Alan started to supervise a young and ambitious PhD student, Simon
Colton. I was lucky enough to help out. Simon wanted to build a system to invent
new theories. Doug Lenat had shown the feasibility of doing this with the AM
and followup Eurisko systems [26, 27]. Simon set out to rationally reconstruct
Lenat’s work in his HR program [28–31]. This was named appropriately after the
famous double act, Hardy and Ramanujan. Actually, HR was not much of a rational
reconstruction of AM other than to work on the same problem as AM, and to use a
two letter name like AM.

In a wonderful example of why PhD students should not listen to their supervi-
sors, I suggested to Simon to keep well away from number theory. I reasoned that
there had been thousands of years of attention to number theory. New and automated
mathematical discoveries were more likely therefore to be found in some newer and
little studied theory like that of Moufang loops. Fortunately, Simon ignored this
advice and HR made a number of discoveries in number theory. On the other hand,
in a wonderful example of why PhD students should listen to their supervisors,
Simon was not keen to submit an update on his work to AAAI 2000. I persuaded
him to do so, and the paper won the Best Paper award.

3 Adventures in Mathematical Reasoning 59

3.5 The Meta-Level

One of the other rewards of working in the DReaM group was Alan’s attention to
the meta-level. This was not just the meta-mathematical level, but the meta-level
of doing research. Alan thought long and hard about how we do research, and how
you could do it better. I still recommend the Researcher’s Bible that Alan co-wrote
to my PhD students whether they were starting out, or writing up their thesis [32].
And when I left Edinburgh, I “borrowed” many of his techniques for doing research
on my own: writing half-formed ideas down in internal notes, trying to think of
questions to ask at every seminar, giving informal talks on any interesting papers I
had seen at summer conferences, etc.

3.6 Conclusions

Out of interest, I downloaded one of Alan’s latest paper [33]. To my surprise and
pleasure, it repeats and expands on many of the ideas I have discussed here. It
applies rippling to a new domain, invariant preservation proofs. The meta-level
guidance rippling provides is used to build proof patches to recover failed attempt
and eventually finish the proofs. And the paper ends with an appendix containing a
formal definition of rippling, along the lines of the calculus we presented 25 years
ago. It feels just like yesterday. Thank you for everything, Alan.

Acknowledgments Funded by the European Research Council under the Horizon 2020 Pro-
gramme via the Advanced Research grant AMPLify 670077.

References

1. Walsh, T.: A Theory of Abstraction. PhD thesis, University of Edinburgh (1991)
2. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence 56(2–3) (1992) 323–

390 Also available as DAI Research Paper No 516, Dept. of Artificial Intelligence, Edinburgh.
3. Giunchiglia, F., Villafiorita, A., Walsh, T.: Theories of abstraction. AI Communications 10(3,4)

(1997) 167–176
4. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Foundations of

Artificial Intelligence. Elsevier (2006)
5. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Frontiers in

Artificial Intelligence and Applications. IOS Press (2009)
6. Bundy, A., Van Harmelen, F., Hesketh, J., Smaill, A., Stevens, A.: A rational reconstruction

and extension of recursion analysis. In: Proceedings of the 11th International Joint Conference
on Artificial Intelligence. IJCAI’89, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. (1989) 359–365

7. Boyer, R., Moore, J.: A Computational Logic. Academic Press (1979) ACMmonograph series.
8. Hutter, D.: Guiding inductive proofs. In Stickel, M., ed.: 10th International Conference on

Automated Deduction, Springer-Verlag (1990) 147–161 Lecture Notes in Artificial Intelligence
No. 449.

60 T. Walsh

9. Bundy, A., van Harmelen, F., Smaill, A., Ireland, A.: Extensions to the rippling-out tactic
for guiding inductive proofs. In Stickel, M., ed.: 10th International Conference on Automated
Deduction, Springer-Verlag (1990) 132–146 Lecture Notes in Artificial Intelligence No. 449.
Also available from Edinburgh as DAI Research Paper 459.

10. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: A heuristic
for guiding inductive proofs. Artificial Intelligence 62 (1993) 185–253 Also available from
Edinburgh as DAI Research Paper No. 567.

11. Basin, D., Walsh, T.: A calculus for rippling. In: Proceedings of CTRS-94. (1994)
12. Basin, D., Walsh, T.: A calculus for and termination of rippling. Journal of Automated

Reasoning 16(1–2) (1996) 147–180
13. Basin, D., Walsh, T.: Termination orderings for rippling. In Bundy, A., ed.: 12th Conference on

Automated Deduction, Springer Verlag (1994) 466–483 Lecture Notes in Artificial Intelligence
No. 814.

14. Basin, D., Walsh, T.: Difference matching. In Kapur, D., ed.: 11th Conference on Automated
Deduction, Springer Verlag (1992) 295–309 Lecture Notes in Computer Science No. 607. Also
available from Edinburgh as DAI Research Paper 556.

15. Basin, D., Walsh, T.: Difference unification. In: Proceedings of the 13th IJCAI, International
Joint Conference on Artificial Intelligence (1993)

16. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the 14th IJCAI,
International Joint Conference on Artificial Intelligence (1995) 607–613

17. Robinson, J.: Notes on resolution. In Bauer, F., ed.: Logic, Algebra, and Computation. Springer
Verlag (1989) 109–151

18. Bundy, A.: The use of explicit plans to guide inductive proofs. In Lusk, E.L., Overbeek, R.A.,
eds.: 9th International Conference on Automated Deduction. Volume 310 of Lecture Notes in
Computer Science., Springer (1988) 111–120

19. Sterling, L., Bundy, A., Byrd, L., O’Keefe, R.A., Silver, B.: Solving symbolic equations with
PRESS. J. Symb. Comput. 7(1) (1989) 71–84

20. Walsh, T., Nunes, A., Bundy, A.: The use of proof plans to sum series. In Kapur, D., ed.: 11th
International Conference on Automated Deduction. Volume 607 of Lecture Notes in Computer
Science., Springer (1992) 325–339

21. Yoshida, T., Bundy, A., Green, I., Walsh, T., Basin, D.A.: Coloured rippling: An extension
of a theorem proving heuristic. In Cohn, A.G., ed.: Proceedings of the Eleventh European
Conference on Artificial Intelligence, John Wiley and Sons, Chichester (1994) 85–89

22. Walsh, T.: A divergence critic. In Bundy, A., ed.: 12th Conference on Automated Deduction,
Springer Verlag (1994) 14–25 Lecture Notes in Artificial Intelligence No. 814.

23. Walsh, T.: A divergence critic for inductive proof. Journal of Artificial Intelligence Research 4
(1996) 209–235

24. Ireland, A., Bundy, A.: Extensions to a generalization critic for inductive proof. In McRobbie,
M.A., Slaney, J.K., eds.: 13th International Conference on Automated Deduction. Volume 1104
of Lecture Notes in Computer Science., Springer (1996) 47–61

25. Ireland, A.: Productive use of failure in inductive proof. J. Autom. Reasoning 16(1-2) (1996)
79–111

26. Lenat, D.B., Brown, J.S.: Why AM and Eurisko appear to work. In Genesereth, M.R., ed.:
Proceedings of the National Conference on Artificial Intelligence (AAAI83), AAAI Press
(1983) 236–240

27. Lenat, D.B., Brown, J.S.: Why AM and EURISKO appear to work. Artif. Intell. 23(3) (1984)
269–294

28. Colton, S., Bundy, A., Walsh, T.: Automatic identification of mathematical concepts. In:
Proceedings of 16th IJCAI, International Joint Conference on Artificial Intelligence (1999)

29. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In: Proceedings
of the 16th National Conference on AI, Association for Advancement of Artificial Intelligence
(2000) 558–563

30. Colton, S., Bundy, A., Walsh, T.: Automatic identification of mathematical concepts. In:
Proceedings of the 17th International Conference on Machine Learning. (2000)

3 Adventures in Mathematical Reasoning 61

31. Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated mathematical
discovery. International Journal of Human-Computer Studies 53(3) (2000) 351–375

32. Bundy, A., Du Boulay, B., Howe, J., Plotkin, G.: The researchers’ bible. Department of
Artificial Intelligence, University of Edinburgh (1985)

33. Lin, Y., Bundy, A., Grov, G., Maclean, E.: Automating Event-B invariant proofs by rippling
and proof patching. Formal Asp. Comput. 31(1) (2019) 95–129

Chapter 4
Dynamic Proof Presentation

Paul B. Jackson

Abstract For several decades, there has been significant debate over the formal
proof style supported by proof assistants. For example, the merits of a declarative
style rather than a procedural (tactic) style have been argued. In much of the
debate, there has been unnecessarily rigid insistence on the languages of proof
input and proof presentation being identified. When these concepts are not shackled
together, many opportunities are opened up for dynamic proof presentation that
take full advantage of the capabilities of computer user interfaces. With dynamic
proof presentation, the proof viewer can easily focus attention on particular parts
of proofs and change the level of detail presented. One viewer might be interested
in just a proof outline, another might want to see how a large step of inference is
composed of smaller steps. Current proof assistant user interfaces do provide some
dynamic presentation capabilities, but much more could be done. Further attention
to dynamic proof presentation should help make formal proofs easier to understand
by a wider range of audiences, with minimal need to rewrite proof libraries that are
developed with huge time investments.

4.1 Introduction

4.1.1 Proof Presentation Style

The core topic this chapter addresses is that of how formal proofs created using
interactive theorem provers ought to be presented. Specifically, the concern is with
the presentation of the structure of proofs of individual lemmas, rather than the
presentation of theories grouping lemmas and definitions, or the presentation of
terms, types and formulas.

P. B. Jackson (�)
University of Edinburgh, Edinburgh, UK
e-mail: Paul.Jackson@ed.ac.uk

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_4&domain=pdf
mailto:Paul.Jackson@ed.ac.uk
https://doi.org/10.1007/978-3-030-77879-8_4

64 P. B. Jackson

Over recent decades, there has been significant discussion of this topic [9, 12,
25, 27]. It has long been recognised that tactic scripts by themselves are poor at
communicating proof structure to readers. Tactic scripts describe how the prover
should create or check full proofs, but typically do not show intermediate subgoal
formulas and often obscure the branching structure of proofs. Often, if a reader is
to understand a proof, they need access to a working version of the prover and they
have to re-execute the tactic script step by step.

Proofs in declarative proof description languages (e.g., the Mizar system lan-
guage and the Isar language of the Isabelle prover) are generally much more
readable than tactic scripts. With such languages, the proof text explicitly states
many of the intermediate formulas in a proof, nested-blocks describe hierarchical
proof structure and the syntax is designed to be reminiscent of that found in
mathematics papers and textbooks. These language features help a reader quickly
gain a level of understanding of a proof just from study of its formal text, without
running the relevant prover.

4.1.2 Ongoing Issues

The tactic style (sometimes called the procedural style) is still the norm in the user
communities of a number of theorem provers (those for Coq, HOL4 and HOL Light,
for example). A disincentive for tactic users to move to a more declarative style
is that the intermediate formulas needed for a declarative style can be tedious to
enter and can make the proof scripts considerably more verbose. This is all the
more the case when the formulas get large, as is common in formal verification
applications. The lower comprehensibility of tactic-style proofs is not so much an
issue when proofs are developed using tactics, as then the prover user interfaces
present sufficient subgoal information to orient developers.

A key limitation of current practices of writing both declarative and tactic-style
proofs is that the level of detail is fixed at proof writing time. Sometimes this level
is determined by the extent of automation provided by the prover. Some arguments
might need to be spelled out in more detail than a reader might want. Other times
automation might enable large steps whose details are non-obvious to the reader.

In general, there will be no one optimal level of detail. Different readers might
have widely different degrees of familiarity with the prover and the subject for-
malised. And readers have different interests in proofs at different times. Sometimes
readers are keen to understand the details; perhaps they wish to reproduce proofs
in another prover or perhaps they are studying the proofs for a mathematics or
computer science class. Other times, maybe they just want a high-level summary.

As mentioned above, replay of tactic-style proofs is usually essential for gaining
a good understanding of them. Replay too is often useful even for declarative proofs,
as some details of intermediate proof formulas are only viewable on replay. This
need for replay is a significant barrier to any reader who does not wish to go to the
trouble of installing the relevant prover and learning the basics of its usage. Further,

4 Dynamic Proof Presentation 65

it might take minutes or even hours to get a prover into a state where some given
proof of interest can be replayed.

Additional issues concerning readability include that proof intelligibility varies
significantly depending on the proof writer and that there is a huge body of existing
proofs, many written in a procedural style, to which it would be good to have better
access.

4.1.3 The Vision

This chapter describes how to improve support for dynamically choosing levels
of proof presentation detail. The ideas discussed are relevant to proofs in both
declarative and procedural styles, and they could make the differences between
these styles less significant. Nearly all the ideas have already been experimented
with in some way, so their further development and integration should be relatively
straightforward. This improved support could significantly ease and speed the
understanding of formal proofs.

Interest in using interactive theorem provers has been steadily increasing, both
from those wishing to use them for formal verification and from those exploring
their use for education and research in mathematics and computer science. Dynamic
proof presentation technologies would be much appreciated by many of these users
and could spur on further growth in theorem prover user communities.

4.1.4 Structure of Rest of Chapter

Section 4.1.5 includes a few notes on my interactions with the DReaM group over
the years. Sections 4.2 to 4.6 sketch out what dynamic proof presentation can
look like when both procedural and declarative proof styles are used. A number
of DReaM group members have worked on relevant topics, and Sect. 4.7 describes
this work. Sections 4.8 and 4.9 are forward looking, considering desired techni-
cal requirements for supporting dynamic proof presentation and the relationship
between proof viewing and proof editing. Further related work by the DReaM group
associates and others is considered in Sect. 4.10, and finally, Sect. 4.11 summarises
work strands that could be profitable in future.

4.1.5 My DReaM Group Connections

I came to the University of Edinburgh in 1995, having recently completed a PhD at
Cornell University with Bob Constable on enhancing the Nuprl interactive theorem
prover and using it for formalising some abstract algebra. Constable had previously

66 P. B. Jackson

visited Edinburgh on sabbatical, and the DReaM group’s Oyster interactive theorem
prover developed in the late 1980s was strongly inspired by Nuprl. Initially, I had a
post-doc in the LFCS (the Laboratory for Foundations of Computer Science) with
Rod Burstall and then, from 1998, a lectureship.

My PhD work gave me a keen interest in the central concerns of the group about
the automation of mathematical reasoning. Over the years, I have enjoyed very much
attending and participating in the DReaM group talk meetings, and I continue to do
so now. I appreciate the informality of these meetings; there can be as much or even
more time spent in lively discussion as spent by the speaker talking. It is rare that
they are like a regular seminar when there might be just a couple of polite questions
afterwards. More generally, the group for me has been a welcoming intellectual
home.

From 1998 to 2019, I was a co-investigator on grants held by the group that
funded foundational and pump-priming research. For the most part, my research has
followed paths closely related to but distinct from those of other group members;
topics I have pursued include bounded model checking, the formal verification of
software, automatic theorem proving for non-linear arithmetic and, most recently,
the verification of hybrid dynamical systems. This last topic is now also of interest
to DReaM group member Jacques Fleuriot, and we are currently planning a
collaboration in this area.

The issue of how formal proofs should be presented has been an interest of
mine ever since starting to work with Nuprl in the late 1980s. A couple of times
I was involved in discussions with DReaM group members (primarily Alan Bundy
and David Aspinall) about pursuing funding related to the topic of this chapter.
Unfortunately, neither time did we develop ideas to the stage of completing and
submitting a funding proposal. Recently, I have been enthusiastic about the rise
in prominence of the Lean theorem prover [17]. It has a rapidly growing formal
library and has attracted significant interest from mathematicians in using it in both
their teaching and their research. This has renewed my interest in formal proof
presentation, and I might well use Lean for future work in this area.

4.2 A Running Example of a Procedural Proof

To help motivate the discussion throughout this chapter, let us use a proof of a
lemma from the Nuprl system [6] that is the penultimate step in a proof of the
irrationality of

√
2. This proof was previously presented in a comparison of 17

theorem provers [26], and it follows the shape of a proof example used by Lamport
when advocating a structured proof format [14].

Figure 4.1 shows an automatically generated tactic-and-subgoal proof-tree
presentation of the proof. Nuprl is an interactive theorem prover in the LCF family: a
proof of a lemma is undertaken by running tactics—procedural proof commands—
on goals. Goals are sequents with numbered variable declarations and hypotheses
and a single conclusion. When a tactic is run on a goal, 0 or more subgoals result.

4 Dynamic Proof Presentation 67

*T root_2_irrat_over_int

� ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)
|
BY (D 0 THENM ExRepD ...a)
|
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
� False
|
BY Assert 	2 | m

|\
| � 2 | m
| |
| BY (BLemma ‘two_div_square‘ THENM Unfold ‘divides‘ 0
| THENM AutoInstConcl [] ...a)
\
5. 2 | m
|
BY Assert 	2 | n

|\
| � 2 | n
| |
| BY (BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘)
| THENM ExRepD THENM Inst [c * c
] 0
| THENM RWO "6" 4 ...)
\
6. 2 | n
|
BY (RWO "coprime_elim" 3 THENM FHyp 3 [5;6] ...a)
|
3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1
7. 2 ∼ 1
|
BY (RWO "assoced_elim" 7 THENM D (-1) ...)

Fig. 4.1 Tactic-and-subgoal proof-tree presentation

If no subgoals result, then the tactic completely proves the goal. Otherwise, the
goal the tactic is run on is only proven once the subgoals are completely proven by
further tactic runs. As tactics can be combined using tacticals into larger tactics, it is
always possible to compose a single tactic that completely proves a top-level goal.
Traditionally, this is only done in Nuprl when the proof is very straightforward.
Otherwise, proofs are presented in a tree form, with goal nodes and tactic nodes
alternating as one moves down the tree branches. That is what one sees in Fig. 4.1:
a tree of goals, separated by tactic calls after occurrences of the BY keyword.

To save space, this proof-tree presentation elides the repetition of variable
declarations, hypotheses and conclusions in the goal sequents. For example, Fig. 4.2

68 P. B. Jackson

With elision

...
|
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
� False
|
BY Assert 	2 | m

|\
| � 2 | m
| |
| ...
\
5. 2 | m
|
...

Without elision

...
|
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
� False
|
BY Assert 	2 | m

|\
| 1. m: Z

| 2. n: Z

| 3. CoPrime(m,n)
| 4. m * m = 2 * n * n
| � 2 | m
| |
| ...
\
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
� False
|
...

Fig. 4.2 A proof step with and without elision of repeated sequent components

shows the second step of the Fig. 4.1 proof presentation, with and without elision
of repeated sequent components. To construct a complete picture of some sequent
in this kind of proof presentation, the reader needs to search up the tree for any
elided components. It helps to know that proof steps in Nuprl might change existing
components of the declaration and hypothesis list, or add new components, or both,
but it is rare that components are deleted and a subgoal after a step has a shorter list.
In the event that a subgoal’s declaration and hypothesis list is shorter than that of
the parent goal, there is no elision of components in the subgoal, in order to avoid
ambiguity.

In the Fig. 4.1 proof, the first proof step shows that the proof strategy is to
assume the negation of the goal, and from this to show falsity, i.e., that we have
a contradiction. The tree presentation makes clear that the proof proceeds by first
establishing 2 divides m (hypothesis 5) and then that 2 divides n (hypothesis 6). The
contradiction then follows because hypothesis 3 claims that m and n are co-prime,
that they have no non-trivial common divisors. A divisor is trivial if it is a unit as
far as divisibility is concerned, i.e., if it is +1 or −1. We also see two side proofs in
the tree presentation: the first establishing that 2 divides m and the second, knowing
that 2 divides m, that also 2 divides n.

4 Dynamic Proof Presentation 69

*A divides b | a == ∃c:Z. a = b * c
*A assoced a ∼ b == a | b ∧ b | a
*A gcd_p GCD(a;b;y) == y | a ∧ y | b ∧

(∀z:Z. z | a ∧ z | b ⇒ z | y)
*A coprime CoPrime(a,b) == GCD(a;b;1)
*T two_div_square ∀n:Z. 2 | n * n ⇒ 2 | n
*T coprime_elim ∀a,b:Z. CoPrime(a,b) ⇐⇒

(∀c:Z. c | a ⇒ c | b ⇒ c ∼ 1)
*T assoced_elim ∀a,b:Z. a ∼ b ⇐⇒ a = b ∨ a = -b

Fig. 4.3 Definitions and lemmas

What do the tactics in Fig. 4.1 actually do? Nuprl’s tactic language, and indeed
most procedural proof languages, require study to understand. Sometimes names
are suggestive (e.g., Assert or Unfold); other times they are rather abbreviated
to save space and typing (e.g., RWO is short for rewrite once). Also lemma names
(e.g., coprime_elim, assoced_elim) and definition names (e.g., divides for the
infix | operator) provide part of the story. Once the reader sees the referenced
lemmas and the definitions used, they can sometimes make a fair guess as to what is
going on. For the lemmas and definitions relevant to the running example proof, see
the fragment of a Nuprl library listing in Fig. 4.3. Here, lines starting with *A are
for definitions (A is for abstraction, Nuprl’s terminology for a definition) and with
*T are for lemmas and theorems. Note that, when doing divisibility theory over
the integers, GCDs are unique only up to associates (as specified by the assoced

relation, with ∼ infix notation).
The next sections explore how dynamic proof presentation capabilities can

improve proof readability and understandability.

4.3 Focussing on Proof Steps in Procedural Proofs

While a tactic-and-subgoal proof tree as in Fig. 4.1 can provide a good overview
of a proof, such trees become hard to read when spread over many pages as the
vertical linearisation creates distance between a goal and its immediate subgoals. If
our attention is on some subtree, it is easy to have the presentation start at the root
goal of that subtree rather than the initial goal being proven. If the tree presentation
is in an interactive viewer, a facility for hiding subtrees that are not of immediate
interest is useful. If our attention is on a particular goal, showing just that goal
and its immediate subgoals is helpful. In Nuprl, such a view is the primary way
proofs are interactively presented, both when viewing proofs and editing proofs.
For example, Fig. 4.4 shows the view Nuprl would give of the step introducing the
2 | n hypothesis 6. As with the full tactic-and-subgoal proof trees, subgoals omit
repeated sequent components to save space and enable the reader to focus on what
has changed. A * at the start of a sequent indicates that the proof below that point
is complete. If the proof is incomplete, a # is used instead. The top 1 2 is the

70 P. B. Jackson

* top 1 2
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
� False

BY Assert 	2 | n

1* � 2 | n

2* 6. 2 | n
� False

Fig. 4.4 A proof refinement step

tree address of the top sequent. Users navigate up and down the proof tree just by
clicking on the goal or one of the subgoals in such a view.

4.4 Condensing Tactic-and-Subgoal Proof Trees

The length of a proof-tree presentation can be reduced by combining adjacent tactics
with tacticals. For example, the two steps at the end of the presentation in Fig. 4.1

6. 2 | n
|
BY (RWO "coprime_elim" 3 THENM FHyp 3 [5;6] ...a)
|
3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1
7. 2 ∼ 1
|
BY (RWO "assoced_elim" 7 THENM D (-1) ...)

could be collapsed into the single step:

6. 2 | n
|
BY (RWO "coprime_elim" 3 THENM FHyp 3 [5;6]

THENM RWO "assoced_elim" 7 THENM D (-1) ...)

The reader might be wondering what the “...” and “...a” signify in the Nuprl
tactics shown here and earlier. These are notational shorthand for calls of Nuprl’s
auto-tactic on resulting subgoals. This tactic undertakes common straightfor-
ward reasoning steps such as proving linear arithmetic facts and checking well-
formedness of terms and formulas. (In Nuprl, type checking is undecidable, and all
type checking is undertaken using proof.) The “...” variant is for running the auto-
tactic on all subgoals, and the “...a” variant is for running the auto-tactic only on
auxiliary subgoals such as well-formedness subgoals.

4 Dynamic Proof Presentation 71

Collapsing tactic steps together usually decreases hints to the reader as to what
is going on with each step, as intermediate goals are then no longer visible. It
therefore can be helpful if the proof developer can add comments explaining steps.
Indeed, a useful option is to hide the tactic text when comments are used. This
can produce readable proof outlines that are accessible to those unfamiliar with the
tactic language. Figure 4.5 shows what an outline of the whole running proof could
look like if some adjacent steps are combined, comments are inserted and tactics are
hidden.

Another possible viewing option could involve the replacement of tactic text with
automatically generated natural-language explanations of the tactics. One simple
way to realise this would be to associate every tactic with some natural-language
description template with slots for appropriate printing of any tactic arguments. See
Fig. 4.6 for a mock-up of how the running proof might look with such an approach.
While this might be more accessible to a reader not familiar with Nuprl, it still
assumes familiarity with concepts such as forward chaining, back chaining and
rewriting, and the reader needs to understand that to decompose a hypothesis or
conclusion is to apply some relevant left or right introduction rule in a backwards
fashion.

There have been more sophisticated investigations of how to produce natural-
language versions of whole tactic-based proofs. For example, see the work of
Holland-Minkley on presenting Nuprl proofs [10]. Even if easily understandable
renditions of tactic text can be automatically generated, there still is a need for
supporting display of human-written comments, as these comments might provide
higher-level motivation for why a proof is being steered some particular way.

*T root_2_irrat_over_int

� ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)
|
BY Assume negation of goal and aim for proof by contradiction
|
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
� False
|
BY From hyp 4, deduce that 2 | m
|
5. 2 | m
|
BY From hyps 4 and 5, deduce that 2 | n
|
6. 2 | n
|
BY Observe that hyps 5 and 6 contradict hyp 3

Fig. 4.5 Proof outline

72 P. B. Jackson

*T root_2_irrat_over_int

� ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)
|
BY Decompose the conclusion
| THEN Repeatedly decompose hypotheses,
| including existential quantifiers
|
1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
� False
|
BY Assert 	2 | m

|\
| � 2 | m
| |
| BY Back-chain using the lemma two_div_square
| THEN Unfold the definition of divides (|) in the conclusion
| THEN Instantiate the conclusion’s existential quantifier
| by matching the quantifier body against some hypothesis
\
5. 2 | m
|
BY Assert 	2 | n

|\
| � 2 | n
| |
| BY Back-chain using the lemma two_div_square
| THEN Unfold the definition of divides (|)
| in all hypotheses and the conclusion
| THEN Repeatedly decompose hypotheses,
| including existential quantifiers
| THEN Instantiate the conclusion’s quantifier(s)
| with the term(s) 	c * c

| THEN Rewrite hypothesis 4 using hypothesis 6
\
6. 2 | n
|
BY Rewrite hypothesis 3 using the lemma coprime_elim
| THEN Forward-chain using hypothesis 3,
| matching with hypotheses 5 and 6
|
3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1
7. 2 ∼ 1
|
BY Rewrite hypothesis 7 using lemma assoced_elim

THEN Decompose the last hypothesis
THEN Repeatedly apply straightforward reasoning techniques

Fig. 4.6 Proof-tree presentation with simple natural-language rendering of tactics

4 Dynamic Proof Presentation 73

4.5 Expanding Proof Steps

Sometimes a proof reader wishes to explore a proof step in more detail. For example,
they might want to split apart the tactic steps combined using the THENM sequencing
tactical (“then on main subgoal”) that are used to prove the 2 | n goal. See Fig. 4.7
for a copy of the original tactic-and-subgoal proof-tree fragment followed by a
proof tree for the expanded version of this fragment. Now the reader can see, in

Original proof:

1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
� 2 | n
|
BY (BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘)

THENM ExRepD THENM Inst [c * c
] 0
THENM RWO "6" 4 ...)

Expanded proof:

1. m: Z

2. n: Z

3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
� 2 | n
|
BY (BLemma ‘two_div_square‘ ...a)
|
� 2 | n * n
|
BY All (Unfold ‘divides‘)
|
5. ∃c:Z. m = 2 * c
� ∃c:Z. n * n = 2 * c
|
BY ExRepD
|
5. c: Z

6. m = 2 * c
|
BY (Inst 	c * c
 0 ...a)
|
� n * n = 2 * c * c
|
BY (RWO "6" 4 ...)

Fig. 4.7 Original and expanded proof of 2 | n

74 P. B. Jackson

the penultimate step, the definition of this variable c that is used in the term c * c

used to instantiate the existential quantifier in the conclusion.
Further expansion could be desirable for tactics such as the auto-tactic that are

defined in terms of a number of simpler tactics. Expansion of the auto-tactic at the
very end of the proof could show the linear integer arithmetic tactic used to prove
the main goal and the type checking tactic used to prove various well-formedness
goals that are a by-product of the rewriting of hypothesis 4 with hypothesis 6.

Nuprl happens to have some support for such expansion, as it stores the proof-
tree fragments created by tactic runs, and a proof editor command enables the
replacement of a tactic run by the resulting proof tree. Unfortunately, by default,
these proof-tree fragments are at the primitive rule level, which is far too detailed to
be of interest to almost all readers. To arrange that higher-level tactics can expand
into lower-level tactics, the code doing the expansion needs access to the syntax of
tactic expressions and tactic definitions. With Nuprl, these details are hidden away
in the ML compiler’s data structures and are not accessible to the ML runtime.
This is a general issue one has to face whenever tactics are expressed directly in
some programming language. It is avoided when the prover adopts a custom proof
command language and ASTs for commands are readily available. I did experiment
with specially defined tactics and tacticals that captured structural information about
tactics and enabled incremental expansion of tactic runs into lower-level tactics.
However, it was difficult to do this for all tactics and this facility never made it into
the standard Nuprl release.

4.6 Dynamic Presentation of Declarative Proofs

A declarative version of our running example proof is shown in Fig. 4.8. This uses
the Isabelle Isar declarative proof language but, within the �� quotes, keeps the
previously used Nuprl notation for terms and formulas. It has been derived from
a proof undertaken using the Isabelle 2020 system.

From a content point of view, this is not so different from our initial procedural
proof-tree presentation in Fig. 4.1. The high-level flow of the proof with the
successively introduced hypotheses CoPrime(m,n), m * m = 2 * n * n, 2 |

m, 2 | n and 2 ∼ 1 is the same. A minor difference is in how hypotheses are
referred to: here they have symbolic labels rather than numbers and the special name
this is used to refer to an unlabelled immediately previous hypothesis. Nested
proof-qed blocks capture the side proofs of several of the introduced hypotheses.
The from phrases make clear how earlier assumptions and lemmas are used in
immediately following proof steps. After the proof and by keywords are instances
ofmethods, Isabelle’s version of tactics. Because Isar proofs still involve invocations
of procedural tactics to justify declared steps, they are sometimes referred to as
being semi-declarative. In other more purely declarative systems such as Mizar,
virtually all steps are either basic steps of propositional and predicate logic or
involve a single implicitly invoked procedure.

4 Dynamic Proof Presentation 75

theorem root_2_irrat_over_int:
	¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)

proof
assume 	∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n

from this obtain m n where cop: 	CoPrime(m,n)

and eq: 	m * m = 2 * n * n
 by auto
have tdm: 	2 | m

proof (rule two_div_square)

from eq show 	2 | m * m
 by (unfold divides, simp)
qed
have tdn: 	2 | n

proof (rule two_div_square)

show 	2 | n * n

proof (unfold divides)

from tdm obtain c where 	m = 2 *c
 by (unfold divides, auto)
from this eq have 	n * n = 2 * c * c
 by simp
from this show 	∃k. n * n = 2 * k
 by simp

qed
qed
have ta1: 	2 ∼ 1

proof -

from cop coprime_elim have 	∀c. c | m ∧ c | n ⇒ c ∼ 1

by simp

from this tdm tdn show 	2 ∼ 1
 by auto
qed
show 	False

proof -

from ta1 assoc_elim have 	2 = 1 ∨ 2 = -1
 by simp
from this show 	False
 by arith

qed
qed

Fig. 4.8 Declarative proof

From a proof creation point of view, the difference between declarative proofs
and proof-tree presentations of procedural proofs is usually much more radical, as
all of the text in the declarative case has to be entered in the proof source file. The
proof developer has not only to enter the various keywords defining the shape of the
proof and suggesting what deductions depend on, but also enter all the intermediate
formulas introduced in the proof. To some extent, this further work by the proof
developer is moderated because, knowing the result of a proof step, automation can
do more to figure out how to justify a step given hints. Also, with Isabelle, the
jEdit proof editor has a command that generates formula text for case splits and
inductions, when the text can get rather tedious to figure out by hand.

With Isabelle, some practices act against readability. For example, proof method
text automatically generated by the Sledgehammer tool [4] often contains rather
more detail than many proof readers care about. (Sledgehammer is an all-purpose
tool that combines a variety of automatic reasoning engines such as SMT solvers
and first-order automatic theorem provers.) And there are some conventions for

76 P. B. Jackson

referring to parts of subgoals resulting from inductions and case splits that, while
easing typing, avoid entry of and therefore also presentation of the full formulas
involved in the subgoals.

Virtually all the ideas for dynamic proof presentation make sense in this
declarative context, and some support is available. For example, with Isabelle’s
jEdit, the user can click at any point in a declarative proof, and a separate window
shows some subgoal and context information associated with that position. And
jEdit does support folding of proof-qed blocks, so the viewer has some control
over the level of detail. It would be straightforward to allow source text to include
some marks indicating blocks to be folded by default, so say just some comments
on what the blocks do are visible. Expansion of proof commands would probably
take some work. It may be that showing some kind of command execution traces in
auxiliary windows would be easier than generating source text versions with more-
detailed proof text. Indeed, Isabelle currently allows execution traces for its simp

rewriting method to be displayed.

4.7 DReaM Group Contributions

Several DReaM group researchers have been concerned with the issue of how best
to present partial views of proof plans so that the reader easily sees relationships
between plan parts and is not overloaded with detail. The first three subsections
below survey relevant work by these researchers.

A key observation in this work was the importance of being able to view
hierarchies of both subgoals and proof methods. Later work covered in Sects. 4.7.4
and 4.7.5 formalised a notion of proof trees with these two hierarchies and used this
formalisation to help reason about proof transformations that could make proofs
easier to understand.

4.7.1 Barnacle and XBarnacle

Lowe, McLean and Bundy developed the Barnacle [15] and XBarnacle [16]
graphical user interfaces (GUIs) to the CLAM proof-planning system. These enabled
a degree of interactivity when running proof plans. The GUIs displayed proof plan
trees, traces of the executions of CLAM proof methods at some default level of detail.
Nodes in these trees were associated with method applications and were displayed
as boxes labelled with method names. Edges in these trees were associated with
goals: the parent edge of a method corresponded to the goal the method was applied
to and the child edges of a method to any subgoals generated by the method. Goal
formulas were not displayed by default but could be viewed in pop-up windows.

4 Dynamic Proof Presentation 77

If more information was desired about a method application, a pop-up window
could show a proof plan tree for the method, revealing the next greater level of
detail. Alternatively, a method could be expanded in place into its next-level-down
proof tree.

To help the user understand how planning was functioning, the user could check
the status of method preconditions and method scores that the planner used to select
methods.

Barnacle and XBarnacle were used and evaluated not only by researchers, but
also by undergraduate students on a formal methods course. Users appreciated the
graphical visualisation of proof trees and liked the ability to increase or reduce the
level of detail, as the default level was often not the most useful [15].

The challenges of displaying tactic-and-subgoal proof trees have been considered
in a number of provers. For example, PVS can generate two-dimensional display of
proof trees, where the text of PVS tactics is shown, but goal formulas are only visible
in pop-up windows that appear when goal symbols are clicked on. In my experience
of using both Nuprl and PVS, I have found it most useful to view the full story,
seeing both goals and tactics at once. I can see what is going on more quickly, and
a full view can easily be printed and studied offline. The size of goal text usually
forces a one-dimensional vertical layout of tree structure such as used in the proof-
tree presentations in this chapter. Hopefully dynamic presentation techniques can
help minimise the disadvantages of a one-dimensional layout.

4.7.2 The Orthogonal Hierarchies of Method Trees

In 2002, Bundy authored Blue Book Note 1411 with the title Representing
Orthogonal Hierarchies in Proof Plan Presentations. The orthogonal hierarchies
in question were the hierarchy of subgoals in the method-and-subgoal proof tree,
and the hierarchy of methods and their constituent methods. He considered several
alternative visual presentations of these two hierarchies. He remarked how the
expansion and contraction of method applications in XBarnacle prevented one from
seeing at a glance the relationship between a method application and its expansion.
He advanced a preference for presenting higher-level methods and their constituent
methods using nested boxes, and subgoals using edges between boxes with sequents
labelling edges hidden by default. See Fig. 1.2 in Chap. 1 for an example of such a
presentation.

Even with goals hidden, he remarked on the challenge of maintaining the
readability of such presentations as the size of the tree increases. He noted obvious
management techniques such as zooming in, making an internal node the root of the
presentation and hiding certain subtrees. He observed that such techniques can be
applied to both the method nesting hierarchy and the subgoal hierarchy.

78 P. B. Jackson

4.7.3 IsaPlanner

Dixon and Fleuriot’s IsaPlanner [8] was an exploration of importing proof-planning
ideas into the Isabelle/Isar environment. IsaPlanner’s proof techniques, enhanced
versions of tactics, would output Isar declarative proof scripts when run on a proof
goal. Particular techniques were responsible for generating script structure, and
IsaPlanner provided support for unpacking a technique into lower-level constituent
techniques. A graphical viewer was built for the generated proof plans along the
lines Bundy had previously advocated (see Sect. 4.7.2), which used nested boxes
to show how higher-level technique instances were composed of instances of more
basic techniques.

4.7.4 Hiproofs and Proof Refactoring

Denney, Power and Tourlas [7] considered mathematical models of proof trees with
hierarchies of both subgoals and methods as described above in Sect. 4.7.2. For
brevity, they referred to them as hiproofs. Aspinall, Denny and Lüth [3] defined
a simple grammar for hiproofs and a simple tactic language Hitac for generating
hiproofs, and went on to present small-step and big-step operational semantics for
Hitac. At the time, Aspinall had a strong interest in proof re-engineering, exploring
ideas analogous to software re-engineering in the world of proofs: Whiteside,
Aspinall, Dixon and Grov [24] defined a simple formal declarative proof script
language reminiscent of Isabelle/Isar and gave it an operational semantics, building
on the previous hiproof and Hitac work. They then considered a number of re-
arrangements, refactorings of declarative proofs (e.g., turning a backward proof into
a forward proof) and argued how these refactorings are formally correct.

Refactoring of software is used to improve its maintainability and understand-
ability. Proof refactoring is of interest in this chapter because it could make proofs
easier to understand.

4.7.5 HipCam and Tactician

Obua, Adams and Aspinall [18] produced two systems that can automatically
generate hiproof versions of HOL Light proofs and then graphically display them.
The issue is that the practice in HOL Light source files is to store the proof of each
lemma as a maximally condensed single tactic. If our running example lemma were
to be stored as an ML variable binding in the style used in HOL Light source files,
it might look as shown in Fig. 4.9.

In a further paper [1], Adams explains how to use Tactician to refactor packed
HOL Light proofs into sequences of individual tactic invocations on HOL Light’s

4 Dynamic Proof Presentation 79

let root_2_irrat_over_int = prove
	¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)

(D 0 THENM ExRepD

THENM
(Assert 	2 | m

THENA (BLemma ‘two_div_square‘ THENM Unfold ‘divides‘ 0
THENM AutoInstConcl []))

THENM
(Assert 	2 | n

THENA (BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘)
THENM ExRepD THENM Inst [c * c
] 0
THENM RWO "6" 4))

THENM RWO "coprime_elim" 3 THENM FHyp 3 [5;6]
THENM RWO "assoced_elim" 7 THENM D (-1) ...)

;;

Fig. 4.9 Single tactic proof

goal stack, with comments identifying the tree structure of the proofs. A HOL Light
proof is usually initially produced by running a sequence of separate tactics that
successively refine the top goal on a stack of remaining subgoals to prove. This
refactoring simplifies stepped replay and viewing of HOL Light proofs, enabling
novices to more easily study and learn from legacy HOL Light proofs and also
helping with proof maintenance as revisions are made to HOL Light libraries. The
refactoring can also be reversed, shortcutting the tedious process of transforming a
stepped proof into a packed proof.

4.8 Technologies for Proof Presentation

As remarked in the introduction, the hope is that improved dynamic presentations
of formal proofs will help to increase the ease with which formal proofs can be
understood and will broaden the audience for formal proofs. There is the potential
to engage those interested in learning topics that have been formalised and attracting
the attention of those who initially are just casually interested. There is the potential
too to support active users of theorem provers in rapidly coming up to speed on
libraries in the systems they are using and learning too from libraries in other
systems.

To achieve this, proof presentations must be accessible using standard universal
technologies, i.e., web browsers. Also access must be fast; delays must be at most
seconds. Could this level of performance be achieved by connecting to a web server
running the relevant theorem prover? Would the server need to cache pre-processed
presentation information?

It is desirable that presentations of proofs from a theorem prover be long-lasting,
remaining accessible even after the theorem prover itself is no longer actively
maintained, and perhaps after the point when running the prover on up-to-date

80 P. B. Jackson

hardware is problematic. This might steer the technology towards not relying on
the theorem prover running and instead caching all relevant data. Simple hypertext
presentations of Nuprl theories I developed 25 years ago are still readily browsable
on the web, even though it is unlikely that the version of Nuprl I used when
developing those theories still runs.

Hopefully some presentation technology could be shared across multiple theo-
rem provers, to speed adapting it to new provers.

Presentation technologies would also need to address many of the issues not
touched on here that are also highly desirable. For example, it should handle the
pretty printing of formulas and terms, with control over often hidden information
such as types, implicit arguments and implicit coercions, and the provision of
hyperlinks or tool-tip hover-texts that explain pointed-to proof commands, defini-
tions and lemma names. Modern programming IDEs, e.g., VSCode, provide good
examples of how such features can be engineered. For example, if a programmer
using VSCode wishes to see how a function being called is defined, they can easily
instruct VSCode to insert a several-line scrollable buffer immediately below the
function call position that displays the function’s definition. Indeed, the preferred
front end for the Lean prover uses VSCode, and a VSCode front end for Isabelle is
being developed that might eventually replace the current jEdit front end.

4.9 Relationship Between Viewing and Editing Proofs

Whether or not fast dynamic presentation of theorem prover libraries uses a running
instance of the theorem prover, it is certainly desirable that similar functionality
be available to proof developers on the proofs they are currently working on. Good
dynamic proof presentation should help the developer both focus on individual proof
steps and keep a good awareness of the wider proof context. It should also help them
more quickly understand why a proof step might not be running or checking as they
expect, and so speed the completion of proofs.

As stressed at this chapter start, good dynamic proof presentation separates the
concerns of how we input proofs, the required keystrokes and mouse clicks, from
the concerns of how we view and understand proofs. This could lead to simpler,
easier to learn, more robust proof guidance approaches than we currently have.

4.10 Further Related Work

The ACL2 theorem prover [13] has a number of options for controlling the kind
of information and level of detail it shows in proofs. Theorems are proved using
a single sophisticated automatic strategy. As this strategy runs, it prints subgoals
with their tree addresses and between these gives natural-language descriptions of
the reasoning techniques applied. When a proof fails, it also prints information on

4 Dynamic Proof Presentation 81

key steps in the failed proof that the user should first inspect in order to infer what
guidance is missing. Perhaps a missing prior lemma is needed or perhaps the use of
some existing previous lemma for rewriting needs to be disabled. Various options
can reduce the amount of proof information printed or trace details of particular
kinds of reasoning steps. Breakpoints can be set if one wants to interactively
examine the prover state in particular parts of a proof attempt. To help the user
appreciate how a proof is progressing, ACL2 can generate simultaneous alternate
views summarising aspects of the evolving proof such as the subgoal tree structure
or the applied rewrites.

A major difference between these dynamic presentation capabilities and those
considered in this chapter has to do with the design purpose of the capabilities. With
ACL2, the primary concern is with quickly figuring out why a proof fails and how
to go about fixing it. In this chapter, a primary concern is for capabilities that help
the user understand successful proofs. However, it is expected that capabilities that
are good for this will also help interactive proof developers to track where they are
in partial proofs and to debug faulty lines of reasoning.

Another difference concerns the extent to which the prover might construct
some proof data structure that then separately can be traversed and inspected. The
dynamic proof presentation discussed in this chapter assumes that such a data
structure exists. With ACL2 the capabilities seem designed to largely avoid the con-
struction of such data structures, perhaps because they would be prohibitively large
for the formal verification applications ACL2 is typically used for. Interestingly,
the developers of the Imandra theorem prover [19], which has automation strongly
inspired by that of ACL2 and its predecessors, are experimenting with the benefits
of creating hiproof-like proof data structures.

Siekmann et al. [21] describe a user interface for the ΩMEGA proof-planning
system. ΩMEGA has a graph data structure for storing proofs that holds the multiple
levels of detail of hierarchical proofs and additionally supports holding alternative
proofs. Different kinds of edges in the graph record proof-tree subgoal hierarchy,
how method applications are related to applications of their constituent methods,
and how there might be multiple proofs of a given subgoal. In one panel, the
interface presents a 2D layout of the interleaved subgoals and methods for a
proof tree using different colours and shapes for nodes, but no visible method or
goal information. Node colours and shapes distinguish whether, for example, a
node represents a goal, a method or a primitive inference. Another panel shows
a linearised natural-deduction view of the current proof, and when the proof is
complete, a pop-up window can display a natural-language version of the proof.
Some control is provided for restricting attention to parts of a proof. The alternate
views in the different panels are hyperlinked so clicking at a point in one takes the
user to the corresponding point in another.

Cairns and Gow [5] explored how students on a topology course handled semi-
formal hierarchical proofs in the structured proof format advocated by Lamport [14].
This format is similar to formal declarative proofs in that justifications of higher-
level steps are provided in lower-level proof blocks. Of particular interest to us is
that the web presentation of the hierarchical proofs allowed viewers to selectively

82 P. B. Jackson

hide or expand the more-detailed proof levels. The responses from a preliminary
survey of three students were mixed. The value of being able to control the level
of detail was recognised, but the unfamiliarity of the format and an awkwardness
of a numerical cross-referencing scheme were obstacles to the hierarchical proofs
helping improve understanding of the proofs.

Wiedijk [25] describes the notion of a formal proof sketch that is derived from a
formal declarative proof by omitting particular details in order to produce proofs
that are easier to read. He illustrates this using formal proofs from the Mizar
system. These formal sketches always preserve some essential formal structure of
the corresponding full formal proofs.

Kalisyk and Wiedijk [12] describe the ProofWeb system that translates arbitrary
procedural proofs in Coq into the declarative Fitch-style proofs as used in the Huth
and Ryan textbook on formal verification [11]. Further, it enables users to develop
incomplete proofs either by directly editing the Fitch-style proofs or by running
Coq tactics on statements in the declarative proofs that have not yet been justified.
Related later work by Wiedijk [27] presents a light-weight front end to HOL Light
that runs in the Unix vi editor and that supports the creation of declarative proofs in
the style of the Mizar prover (the main inspiration for the Isabelle/Isar declarative
language). The user can mix typing the declarative text in full and just typing
HOL Light tactics that run on unjustified steps and cause the system to extend the
declarative proof.

Prover developers (e.g., for Isabelle, HOL4, Mizar, Coq, Lean, Metamath)
do make efforts to have libraries browsable on the web, sometimes with useful
hyperlinks for definitions and theorems. However, only in some cases are versions
of libraries with proofs provided, and, when this happens, the proofs are usually
just static proof scripts as recorded in proof script files. One exception is with the
work by Tankink et al. [22, 23] on the Proviola system for Coq. This displays Coq
source files in a web browser in such a way that clicking on a tactic step brings up a
second pane displaying Coq’s output from that step, typically a list of the subgoals
generated. Another exception is with Pit-Claudel’s recently released Alectryon
tool [20], again for Coq libraries. As with Proviola, Coq’s output can be viewed,
but here the output is interleaved with the source, and users can click to unfold the
display of further information or to fold the information currently displayed. Special
comments can be added to source files to control what information about subgoals
and subgoals parts is folded or unfolded by default.

4.11 Conclusions and Future Directions

This chapter has discussed how dynamic proof presentation could help ease
understanding formal proofs and broaden the audience for formal proofs.

Some ideas for directions in which future research would be worthwhile are as
follows.

4 Dynamic Proof Presentation 83

Source Mark-Up for Presentation
Mark-up conventions are needed to indicate how blocks of proof are folded or
unfolded by default, how comments might replace proof blocks, and how a proof
has hierarchical structure that is not apparent from the proof syntax. Already provers
such as Coq and Isabelle support mark-up for producing document versions of
library files, and the Alectryon work [20] defines further mark-up for dynamic
presentation options.

Exploring Further Proof Presentation Techniques
Once proof editors and proof viewers can be engineered to support dynamic
proof presentation, there are opportunities for exploring ideas for presenting proofs
beyond those discussed here, perhaps bringing in too the proof refactorings and
transformations mentioned in Sects. 4.7.4, 4.7.5 and 4.10.

Handling Legacy Proofs
This is vital as many formal proofs have not been developed with the reader in
mind, yet there is interest in understanding these proofs. Again, some combination
of proof transformation technologies such as described in Sects. 4.7.4, 4.7.5 and
4.10, and dynamic presentation technologies is needed.

Proof Presentation Technologies
As discussed in Sect. 4.8, proof presentations should be viewable using web
browsers and fast to access and navigate. How should this be engineered?

Prover Input Languages
Separating the demands of the languages for entering and displaying proofs opens
up new opportunities for the input languages. In current proof languages, there are
compromises between the different needs of ease of input, readability and suitability
for instructing the theorem prover. With separation of demands, we can imagine
simplified input languages suitable for novices and more sophisticated terse input
languages for experts.

Exposing Proof-Tree Structure
Most interactive provers have tactics that transform a proof state consisting of a list
or stack of unproven goals. In doing so, the tree-shaped hierarchical structure of
proofs is obscured. It would be good if the presentation technology can expose this
tree structure so it can help with proof understanding.

Handling Meta-Variables
While Nuprl tactics always refine a single unproven subgoal, tactics in other
provers can simultaneously modify multiple subgoals in the unproven goal list. This
can make creating tactic-and-subgoal tree presentations of proofs problematic. A
prime example of when this happens is when the prover supports meta-variables—
implicitly existentially quantified variables—in goals. Deep down in one branch
of a proof, a tactic can instantiate a meta-variable that also occurs in other proof
branches. How then should tactic-and-subgoal tree presentations make such non-
local modifications of a proof tree evident?

84 P. B. Jackson

Extracting Explanations from Tactic Runs
When a tactic encapsulates a significant amount of automation, it is desirable that
the prover be able to explain tactic runs. If the tactic simply unpacks into calls
of simpler tactics, then, as discussed in Sect. 4.5, showing a tactic-and-subgoal
tree involving these simpler tactics could be appropriate. However, if it involves
rewriting or involves calls of automated provers for first-order logic or arithmetic,
then some kind of execution trace might be relevant. But such traces can often be far
too detailed. What ways are there of structuring them so detail can be incrementally
revealed?

Presenting Proof Terms
This chapter has not discussed the use of proof terms to describe proofs. This proof
style is standard with the Agda proof assistant and popular with some Lean users.
While proof terms precisely express the logical structure of proofs, they do so in
a way less naturally familiar to most readers, and careful use of syntactic sugar
and layout is needed to produce proofs with some of the readability of declarative
proofs. How could a dynamic proof presentation approach make proof terms easier
to understand?

As pointed out in Sect. 4.7, current group members Bundy, Aspinall and Fleuriot
all have a significant amount of past experience in areas closely related to those
discussed here. Further, for many years, Aspinall was the primary developer of the
Proof General user interface for interactive theorem provers [2], and Fleuriot is a
world-class expert in the Isabelle theorem prover and its Isar proof language. I hope
this chapter will be a spur to some combination of us to now push forward on some
of the topics listed here.

Acknowledgments I would like to thank the anonymous reviewers for their helpful recommen-
dations.

References

1. Adams, M.: Refactoring proofs with Tactician. In: D. Bianculli, R. Calinescu, B. Rumpe
(eds.) Software Engineering and Formal Methods - SEFM 2015 Collocated Workshops: ATSE,
HOFM, MoKMaSD, and VERY*SCART, York, UK, September 7-8, 2015, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 9509, pp. 53–67. Springer (2015). URL
https://doi.org/10.1007/978-3-662-49224-6_6

2. Aspinall, D.: Proof General: A generic tool for proof development. In: S. Graf, M.I.
Schwartzbach (eds.) Tools and Algorithms for Construction and Analysis of Systems, 6th
International Conference, TACAS 2000, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2,
2000, Proceedings, Lecture Notes in Computer Science, vol. 1785, pp. 38–42. Springer (2000).
URL https://doi.org/10.1007/3-540-46419-0_3

3. Aspinall, D., Denney, E., Lüth, C.: Tactics for hierarchical proof. Mathematics in Computer
Science 3(3), 309–330 (2010). URL https://doi.org/10.1007/s11786-010-0025-6

4. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. J.
Autom. Reasoning 51(1), 109–128 (2013). URL https://doi.org/10.1007/s10817-013-9278-5

https://doi.org/10.1007/978-3-662-49224-6_6
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1007/s11786-010-0025-6
https://doi.org/10.1007/s10817-013-9278-5

4 Dynamic Proof Presentation 85

5. Cairns, P.A., Gow, J.: A theoretical analysis of hierarchical proofs. In: A. Asperti, B. Buch-
berger, J.H. Davenport (eds.) Mathematical Knowledge Management, Second International
Conference, MKM 2003, Bertinoro, Italy, February 16-18, 2003, Proceedings, Lecture Notes
in Computer Science, vol. 2594, pp. 175–187. Springer (2003). URL https://doi.org/10.1007/
3-540-36469-2_14

6. Constable, R.L., Allen, S.F., Bromley, H., Cleaveland, W., Cremer, J., Harper, R., Howe,
D.J., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing
Mathematics with the Nuprl Development System. Prentice Hall, NJ (1986). URL http://www.
nuprl.org/book/

7. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree. Electr. Notes
Theor. Comput. Sci. 155, 341–359 (2006). URL https://doi.org/10.1016/j.entcs.2005.11.063

8. Dixon, L., Fleuriot, J.D.: A proof-centric approach to mathematical assistants. J. Applied Logic
4(4), 505–532 (2006). URL https://doi.org/10.1016/j.jal.2005.10.007

9. Harrison, J.: Proof style. In: E. Giménez, C. Paulin-Mohring (eds.) Types for Proofs and
Programs, International Workshop TYPES’96, Aussois, France, December 15-19, 1996,
Selected Papers, Lecture Notes in Computer Science, vol. 1512, pp. 154–172. Springer (1996).
URL https://doi.org/10.1007/BFb0097791

10. Holland-Minkley, A.M.: Planning proof content for communicating induction. In: Proceedings
of the International Natural Language Generation Conference, Harriman, New York, USA,
July 2002, pp. 167–172. Association for Computational Linguistics (2002). URL https://www.
aclweb.org/anthology/W02-2122/

11. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems, 2
edn. Cambridge University Press (2004)

12. Kaliszyk, C., Wiedijk, F.: Merging procedural and declarative proof. In: S. Berardi, F. Damiani,
U. de’Liguoro (eds.) Types for Proofs and Programs, International Conference, TYPES 2008,
Torino, Italy, March 26-29, 2008, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 5497, pp. 203–219. Springer (2008). URL https://doi.org/10.1007/978-3-642-02444-3_13

13. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers (2000)

14. Lamport, L.: How to write a proof. Tech. Rep. 94, DEC Systems Research Center (1993).
URL https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-94.pdf

15. Lowe, H., Bundy, A., McLean, D.: The use of proof planning for co-operative theorem proving.
J. Symb. Comput. 25(2), 239–261 (1998). URL https://doi.org/10.1006/jsco.1997.0174

16. Lowe, H., Duncan, D.: XBarnacle: Making theorem provers more accessible. In: W. McCune
(ed.) Automated Deduction - CADE-14, 14th International Conference on Automated Deduc-
tion, Townsville, North Queensland, Australia, July 13-17, 1997, Proceedings, Lecture Notes
in Computer Science, vol. 1249, pp. 404–407. Springer (1997). URL https://doi.org/10.1007/
3-540-63104-6_39

17. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean theorem prover
(system description). In: A.P. Felty, A. Middeldorp (eds.) Automated Deduction - CADE-25 -
25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, Lecture Notes in Computer Science, vol. 9195, pp. 378–388. Springer (2015).
URL https://doi.org/10.1007/978-3-319-21401-6_26

18. Obua, S., Adams, M., Aspinall, D.: Capturing Hiproofs in HOL Light. In: J. Carette,
D. Aspinall, C. Lange, P. Sojka, W. Windsteiger (eds.) Intelligent Computer Mathematics -
MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath,
UK, July 8-12, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7961, pp. 184–199.
Springer (2013). URL https://doi.org/10.1007/978-3-642-39320-4_12

19. Passmore, G.O., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kanishev, K.,
Maclean, E., Mometto, N.: The Imandra automated reasoning system (system description).
In: N. Peltier, V. Sofronie-Stokkermans (eds.) Automated Reasoning - 10th International Joint
Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, Lecture Notes
in Computer Science, vol. 12167, pp. 464–471. Springer (2020). URL https://doi.org/10.1007/
978-3-030-51054-1_30

https://doi.org/10.1007/3-540-36469-2_14
https://doi.org/10.1007/3-540-36469-2_14
http://www.nuprl.org/book/
http://www.nuprl.org/book/
https://doi.org/10.1016/j.entcs.2005.11.063
https://doi.org/10.1016/j.jal.2005.10.007
https://doi.org/10.1007/BFb0097791
https://www.aclweb.org/anthology/W02-2122/
https://www.aclweb.org/anthology/W02-2122/
https://doi.org/10.1007/978-3-642-02444-3_13
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-94.pdf
https://doi.org/10.1006/jsco.1997.0174
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-642-39320-4_12
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30

86 P. B. Jackson

20. Pit-Claudel, C.: Untangling mechanized proofs. In: R. Lämmel, L. Tratt, J. de Lara (eds.)
Proceedings of the 13th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2020, Virtual Event, USA, November 16-17, 2020, pp. 155–174. ACM
(2020). URL https://doi.org/10.1145/3426425.3426940

21. Siekmann, J.H., Hess, S.M., Benzmüller, C., Cheikhrouhou, L., Fiedler, A., Horacek, H.,
Kohlhase, M., Konrad, K., Meier, A., Melis, E., Pollet, M., Sorge, V.: LΩUI: Lovely ΩMEGA
User Interface. Formal Asp. Comput. 11(3), 326–342 (1999). URL https://doi.org/10.1007/
s001650050053

22. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof re-animation.
In: S. Autexier, J. Calmet, D. Delahaye, P.D.F. Ion, L. Rideau, R. Rioboo, A.P. Sexton
(eds.) Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th
Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France,
July 5-10, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6167, pp. 440–454.
Springer (2010). URL https://doi.org/10.1007/978-3-642-14128-7_37

23. Tankink, C., McKinna, J.: Dynamic proof pages. In: C. Lange, J. Urban (eds.) Proceedings
of the ITP 2011 Workshop on Mathematical Wikis, Nijmegen, The Netherlands, August 27th,
2011, CEUR Workshop Proceedings, vol. 767, pp. 45–48. CEUR-WS.org (2011). URL http://
ceur-ws.org/Vol-767/paper-08.pdf

24. Whiteside, I., Aspinall, D., Dixon, L., Grov, G.: Towards formal proof script refactoring. In:
J.H. Davenport, W.M. Farmer, J. Urban, F. Rabe (eds.) Intelligent Computer Mathematics
- 18th Symposium, Calculemus 2011, and 10th International Conference, MKM 2011,
Bertinoro, Italy, July 18-23, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6824,
pp. 260–275. Springer (2011). URL https://doi.org/10.1007/978-3-642-22673-1_18

25. Wiedijk, F.: Formal proof sketches. In: S. Berardi, M. Coppo, F. Damiani (eds.) Types for
Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4,
2003, Revised Selected Papers, Lecture Notes in Computer Science, vol. 3085, pp. 378–393.
Springer (2003). URL https://doi.org/10.1007/978-3-540-24849-1_24

26. Wiedijk, F. (ed.): The Seventeen Provers of the World, Foreword by Dana S. Scott, Lecture
Notes in Computer Science, vol. 3600. Springer (2006). URL https://doi.org/10.1007/11542384

27. Wiedijk, F.: A synthesis of the procedural and declarative styles of interactive theorem proving.
Logical Methods in Computer Science 8(1) (2012). URL https://doi.org/10.2168/LMCS-8(1:
30)2012

https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/978-3-642-14128-7_37
http://ceur-ws.org/Vol-767/paper-08.pdf
http://ceur-ws.org/Vol-767/paper-08.pdf
https://doi.org/10.1007/978-3-642-22673-1_18
https://doi.org/10.1007/978-3-540-24849-1_24
https://doi.org/10.1007/11542384
https://doi.org/10.2168/LMCS-8(1:30)2012
https://doi.org/10.2168/LMCS-8(1:30)2012

Chapter 5
Proof Mechanization: From Dream
to Reality

Jacques D. Fleuriot

Abstract Two research strands, namely proof planning and geometric reasoning,
from my early days in the DREAM Group have influenced my thinking and work
over the years. I explore some of the motivations, central ideas and achievements
attached to these. Along the way, I try to weave a unifying thread about building
tools and approaches that help us explore and mechanize proofs, while reminiscing
about some of the events surrounding the research.

5.1 Prologue

In 1997, Larry Paulson, my PhD supervisor at Cambridge, suggested that I should
give a seminar in the DREAMGroup on the mechanization of proofs from Newton’s
Principia Mathematica [13]. He felt that Alan Bundy’s group was the perfect place
for me to give my first talk about the work to the outside world. Little did I know
that 2 years or so later, this would become my new home.

I was a bit nervous at the prospect of travelling all the way to Edinburgh but
was reassured by the fact that Richard Boulton, who finished his PhD under Mike
Gordon a few months after I moved to Cambridge, was working in the DREAM
Group on a project that involved linking Edinburgh’s Clam proof planner with
Cambridge’s HOL proof assistant [2]. He kindly offered to meet me at the train
station and take me to the department. Alan was an excellent host on the day and
showed genuine interest in what I was doing, which as a PhD student was a great
confidence booster. The day went really well and I received some fantastic feedback,
although I still remember a probing question from Alan Smaill about my somewhat
loose use of “constructive" when talking about some of my geometric proofs.

In hindsight, the only thing I should have been nervous when it came to the whole
trip was my decision to travel to Edinburgh and back in 1 day, as I almost missed

J. D. Fleuriot (�)
Artificial Intelligence and Its Applications Institute (AIAI), School of Informatics, University of
Edinburgh, Edinburgh, UK
e-mail: jdf@ed.ac.uk

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_5&domain=pdf
mailto:jdf@ed.ac.uk
https://doi.org/10.1007/978-3-030-77879-8_5

88 J. D. Fleuriot

the last connecting train in Peterborough on the wasy back that evening. Over the
years, despite ups and downs, I could not have wished for a better environment than
the DREAM Group when it comes to exploring new ideas, regardless of how ε-
baked they might be (for 1 ≥ ε ≥ 0, as per the Blue Book Notes1). In what follows,
I revisit some of these ideas that, in some form or another, have been shaped by
my fellow DREAMers and examine how we mechanized some of our mathematical
dreams.

5.2 Proof Planning

I must admit from the outset that I had no familiarity with proof planning before
coming to Edinburgh. However, as most DREAM Group members were working
in the area, my induction (pun intended) was fairly painless and, coming from the
interactive world of Isabelle [36], it was a bit of an eye-opener how challenging the
automation of inductive proof could be.

5.2.1 Nonstandard Analysis in λClam

Fairly quickly, it seemed to me that some of the ideas from proof planning could
probably be applied to the automation of proofs in nonstandard analysis (NSA) [39],
where the ε−δ formulation of concepts such as sequences, limits and derivatives
is replaced by more intuitive ones involving infinitesimals, infinite numbers and
an infinitely close relation. The latter, an equivalence relation that holds when two
numbers only differ by an infinitesimal, made many of the mechanized proofs more
“calculational” and resulted in distinct reasoning patterns (that I had noticed when
working interactively in Isabelle). All this hinted at the possibility of using rewriting
techniques such as rippling [4]. Moreover, I had already mechanized in Isabelle
some classic results from (standard) real analysis such as Rolle’s Theorem and the
Intermediate Value Theorem (IVT), and it seemed to me that their proofs could be
recast into ones that would involve recursive approximations whose properties could
be proved inductively via proof planning. Then, as the recursion was extended to an
infinitely large number of steps, the approximations would be shown to be infinitely
close to the expected results by algebraic reasoning.

This was all very exciting to me and, as some further good news, I had a new
PhD student, Ewen Maclean who was keen to work on the topic. His undergraduate
degree in mathematics and his freshly minted MSc in AI from Informatics, where he
had been exposed to proof planning and other automated reasoning concepts, made
him the perfect match. We decided the work would be done in λClam [37] as it

1https://dream.inf.ed.ac.uk/computing/blue_notes.html.

https://dream.inf.ed.ac.uk/computing/blue_notes.html

5 Proof Mechanization: From Dream to Reality 89

supported higher-order proof plans. Ewen’s first important result, which showed
that we had a viable approach, was to fully proof plan the IVT [21]. This was
eventually followed by other non-trivial results such as Rolle’s Theorem and the
Mean Value Theorem, all of which could be captured by a collection of general plan
specifications. Along the way, he figured out ways to deal with tricky aspects such as
transferring results between the standard and nonstandard domains, also via general
proof plans.

Looking back, the nonstandard analysis proofs [22] that Ewen Maclean managed
to get through λClam are a tour-de-force that deserves wider recognition. Aside
from building a comprehensive proof planning framework for nonstandard analysis
that incorporated techniques such as coloured rippling and critics, working with
λClam tested his mettle throughout the PhD due to the brittle and buggy nature of
λProlog. Much time was spent on understanding and then fixing bugs that were due
to the experimental nature of λProlog or, when nothing else worked, waiting for a fix
from its developers. We often worried that we were building a whole infrastructure
on unsteady grounds that could bring his research to a halt.

The experience with λClam convinced me that a new proof planning framework
was worth pursuing and that Isabelle (and more specifically its higher-order object
logic) would be the right setting for this.2 This lead to my work with Lucas Dixon
on ISAPLANNER [10], which was funded by my Fast Stream grant.3

5.2.2 ISAPLANNER

The general philosophy behind ISAPLANNER was that it would be a new proof
planning system that would benefit both from the rigorous logical framework of
Isabelle and from PolyML [23], the robust programming language underpinning it.
One of my main motivations was to create a system that could plan but also execute
the proof plans within Isabelle itself to produce object-level proofs (something that
λClam could not do as it did not have an associated theorem prover). Moreover,
it should also be easy to add new tools, methods and critics to the system. This
led to the development of (what we called) a technique language. It resembled
Isabelle’s tactic language to some extent while being tailored to proof planning.
However, aside from the high-level programmability, since Isabelle exposed an API
to its proof tools and underlying data structures, the user would also be allowed
to create more advanced techniques with the help of PolyML. These would have
access to Isabelle’s term and theorem structures, could hook into its simplifier at

2It is worth noting here that I was the only Isabelle user in the DREAM Group at the time. Yet,
there still was encouraging support when I spoke about my plans.
3EPSRC’s Fast Stream scheme was for new lecturers and could provide just about enough to fund
a PhD studentship for 3 years. In this case, this was around £60k and the original idea had been to
link λClam to Isabelle.

90 J. D. Fleuriot

specific points, and use the underlying search algorithms among a plethora of other
possibilities.

Despite the lofty goals, the development of the system proceeded swiftly through
a focused process involving Lucas and I, and also the constructive feedback we
would get from the DREAMers at regular intervals. The DREAM Group, without
any doubt, was the best place to start a new proof planner from scratch. There
were multiple challenges along the way, including issues such as being unable to
modify the simplification machinery of Isabelle to suit our needs due to its inherent
complexity. However, such setbacks motivated us to investigate alternative ways of
achieving our goals and, in the end, aside from developing ISAPLANNER, we also
ended up enhancing Isabelle. A few of the highlights, aside from a nice PhD thesis
[9], that were achieved through the Fast Stream project included:

• Higher-order rippling [11], which could deal with a case study in ordinal
arithmetic setup specifically for it by Dennis and Smaill [8]. Moreover, the
process was much faster, e.g., an exponentiation theorem that took over 5min
λClam took 2 s in IsaPlanner to be fully planned and output as an Isabelle proof
script.

• An inductive theorem prover that, aside from rippling, included lemma conjec-
turing and subterm generalisation.

• The generation of intelligible proof scripts in the Isabelle/Isar language [48],
thereby presenting proofs to the user in a comprehensible fashion. Importantly,
this also aligned with our “manifesto” [12] for a proof-centric approach to proof
assistants, which asked for a departure from the goal-state-centric view and
motivated some of Wenzel’s work on achieving asynchronous proof editing in
Isabelle [47].

• A generic ordered rewriting system for Isabelle that could be accessed via Isar.
The machinery could be parameterised by a user-defined set of rules and user-
written orderings for rule application.

• An improved equational substitution tactic for Isabelle, which went beyond what
was possible using the simplifier (or the existing substitution tactic) by allowing
the introduction and instantiation of meta-variables. This resulted from the need
to support middle-out reasoning [16] and proof critics in ISAPLANNER. This
tactic is still the main one in use in Isabelle to this day.

As an additional remark about enhancing inductive proof automation in interac-
tive theorem provers, the framework [54] built by Sean Wilson in Coq [1], though
not as well known as ISAPLANNER, is also worth mentioning. This work was very
much inspired by proof planning in the way it identified common proof patterns
and then looked into how they could be automated in a dependent types setting.
Although the motivation was not to build a full proof planner in Coq, notions such
as dynamic rippling and generalisation were implemented and shown to be effective
in discharging non-trivial proof obligations. More details can be found in Sean
Wilson’s PhD thesis [52].

5 Proof Mechanization: From Dream to Reality 91

5.2.2.1 Interlude: Graduation Time for ISAPLANNER

In early Spring 2004, some discussion started in the DREAM Group about whether
we should consider abandoning λClam and move to ISAPLANNER due to numerous
issues with λProlog. There was a growing feeling that we were at an impasse with
the system with Louise Dennis, for instance, stating that “λClam is a trial not a
joy to work with and the day-to-day legwork is unrewarding both in terms of user
satisfaction and research output . . . ”.4

The potential switch was discussed at the annual review meeting of the DREAM
Group’s Platform Grant, and the recommendation from its advisory board was to
make ISAPLANNER the main vehicle for proof planning research in the DREAM
Group. Following the meeting, Alan Bundy asked me whether I was happy for this
to happen. In some ways, this meant surrendering control of ISAPLANNER’s future
direction, but I was fine with this as I felt the system was ready for broader use and
the injection of new ideas that would take it to the next step. Looking back, I am
extremely proud that my small grant and collaboration with Lucas Dixon produced a
system that became part of the fabric of the DREAM Group’s research and allowed
DREAMers, both seasoned and new PhD students to explore new research topics.

5.3 Geometric Reasoning: Marrying Discovery and Proof

Another strand I will now discuss involves our work on geometric reasoning. This
is longstanding and, over the years, has focused on aspects ranging from axiomatic
investigations to formal verification and enabled members of the DREAM Group
working in the area to be at the forefront of the Automated Deduction in Geometry
(ADG) community. In the next few sections, while I look back on theorem-proving
work, I will also focus on geometric discovery as an important tool for exploration
and mechanization.

5.3.1 Of Chairs, Tables and Beer Mugs: Hilbert’s Axiomatics

Hilbert’sGrundlagen der Geometrie (Foundations of Geometry) [17] is widely con-
sidered to be of substantial historical interest in mathematics. Although Dehlinger et
al. [7] were the first to examine its constructive aspects in Coq [1], our mechanical
investigation is probably the deepest and longest running one and, over the years, it
has uncovered a variety of hitherto unknown aspects.

Our research was initially motivated by the widely held view that theGrundlagen
is highly rigorous, despite its heavy reliance on prose-based definitions and proofs.

4Email communication to the investigators on the Platform Grant.

92 J. D. Fleuriot

Hilbert’s claim that points, lines and planes could be replaced by tables, chairs and
beer mugs using his axiomatic approach was generally taken at face value, leading
prominent mathematicians like Weyl to say that Hilbert’s deductions had no gaps
[49] and, like Hilbert himself had asserted, that there was no need for any geometric
intuition.

The reality, starting with the joint work with Laura Meikle as part of her
final-year undergraduate project, was shown to be somewhat different [27]. The
mechanization of Hilbert’s axiomatics in Isabelle uncovered that there were difficult
to explain gaps and that Hilbert did make implicit geometric assumptions in some
of the proofs when he accompanied these with diagrams. For instance, his simply
stated Theorem 3 about the existence of a collinear point between any two distinct
points relied on the distinctness of a constructed point that was evident from an
accompanying diagram but was elided from the proof despite being crucial (as was
clearly demonstrated by our mechanization). This implicit use of diagrams to guide
the reader through the reasoning provided evidence that contrary to popular belief
Hilbert’s proofs did rely on geometric intuition at times.

As we carried out more proofs, it became fairly clear that many aspects relating
to the distinctness of points and lines, incidence, collinearity and planarity were
often left implicit in Hilbert’s reasoning. Although some of these omissions (e.g.,
the one mentioned above) were difficult to explain, in later work with Phil Scott, we
managed to come up with an ad-hoc set of lemmas that could be used to manually
justify a large number of gaps related to distinctness in a fairly general fashion [40].
This strongly indicated that a systematic and automatic way of carrying out Hilbert’s
implicit reasoning might be possible. With this in mind, we decided to see whether
we could automatically plug the gaps in his proof and mechanize these as faithfully
as possible to the Grundlagen. This led us eventually to (revisit and) incorporate
geometric discovery ideas into our theorem-proving process to tackle Hilbert’s work
(see Sect. 5.3.2.2). But, before we go there, we first revisit our work on Geometry
Explorer, as this has some bearing on how we decided on the approach.

5.3.2 Geometric Discovery

Our work on geometric discovery started by looking at fully automatic theorem
proving in a way that combined dynamic geometry, automated theorem proving and
discovery, and diagrammatic proofs.

5.3.2.1 Geometry Explorer

Geometry Explorer [53] was created as part of Sean Wilson’s final-year project. In
this work, a fully automatic theorem prover based on the full-angle method by Chou
et al. [6] was rationally reconstructed and extended to deal with dynamic geometric
reasoning and diagrammatic proofs in Euclidean geometry. The prover consisted

5 Proof Mechanization: From Dream to Reality 93

of a Prolog-based engine that could do backward-chaining from the current goal
using rules such as “	 [AB,CD] = 	 [AB,EF] if CD ‖ EF ”, where the full angle
	 [AB,CD] can be thought of intuitively as the rotation required to make the line
AB parallel to line CD. However, since backward-chaining alone was not powerful
enough to find a proof for non-trivial theorems, the system also incorporated
forward-chaining. The latter was applied using rules such as “If A, B and C are
collinear then AB ‖ BC” to all the known geometry facts in the system’s database,
known as a Geometry Information Basis (GIB), to discover other geometric facts.
These new facts would then be inserted into the GIB and forward-chaining applied
again. This process happened repeatedly until no new facts could be found, with
the hope that the augmented GIB would be enough to find a proof using backward-
chaining. Geometry Explorer, despite being developed within the constraints of an
undergraduate project, was competitive with the original system by Chou et al. and
was able to prove about 100 of 110 benchmarks theorems [5] featuring many from
the American Mathematical Monthly and the International Mathematical Olympiad
(note that the 10 unproven theorems were out of scope for the system because they
seemed to use rules, e.g., about the orthocentres of triangles, that were not part of the
full-angle method). This combination of discovery and proof ended up influencing
our later work on integrating the two within an interactive theorem-proving context
(see next section). Next, we illustrate a few aspects of the approach in Geometry
Explorer using the following example:

The Nine-Point Circle Theorem (NPCT). Let the midpoints of the sides AB, BC, and
CA of �ABC be E, F , and G, respectively, and AD be the altitude on BC. Show that D,
E, F , and G are cyclic.

Initially, the input and output of Geometry Explorer were textual and given at
the command line. We had designed a small input language—in effect a domain-
specific language (DSL)—to state the problems at a level of abstraction suitable for
the full angle method, thereby avoiding the need to specify the problem directly in
Prolog (see Fig. 5.1). The output, when a proof was found, was in the form of a
step-by-step justification showing each of the rules that was used and could also be
exported as a LaTeX proof. Although this way of working with the system seemed
more adequate than for a fully automatic theorem prover, we felt that a more visual
way of interacting with the system was worth exploring. I was especially keen to
see whether we could incorporate notions from dynamic geometry [19], after seeing
several impressive demos of Cinderella [38] at Automated Deduction in Geometry
conferences.

Our aim thus became the creation of a dynamic geometry interface that would
allow the user to construct diagrams fully visually using ruler and compass tools in
the GUI and then to use this to explore both the proof and discovery process. Unlike
pen-and-paper drawings though, the constructions would be manipulable and allow
the user to move points around, with the system ensuring that constraints imposed
by the construction (e.g., collinearity, perpendicularity, etc.) were maintained. The
position of dependent constructions would then update automatically, generating
different diagrammatic instances for the same geometric statement (see Fig. 5.1).

94 J. D. Fleuriot

Fig. 5.1 Left: Specifying the Nine-Point Circle Theorem in the geometric DSL, with the point
order referring to when the points are introduced during the construction. Middle and Right:
Screenshots of alternative configurations created by manipulating the diagrammatic construction.
Notice that in the middle F is between D and C, while on the right D has been moved off the line
segment BC and the conjectured circle is no longer contained within �ABC

This approach, once realised, allowed the exploration of diagrammatic properties
and helped users discover new conjectures in ways that are not possible with static
diagrams. After specifying a conjecture diagrammatically, invoking the integrated
full-angle method theorem prover triggered a search for a proof via forward- and
backward-chaining.

Although finding a proof was the main goal, discovering interesting facts about
a conjecture was often the most exciting aspect since some of these could be quite
surprising. Visualisations, built using Graphviz [20], enabled the user to look at the
chain of discoveries, represented either textually or visually (as shown in Fig. 5.2)
as nodes in a graph. The ability to explore discovered facts was missing from the
previous work on full angles (an aspect that had made the results of the prover hard
to debug during the development phase) and, as far as we could tell, our graphical
presentation was also novel. As a side note here, we remark that Sean Wilson’s
experience with graph layout would come in handy several years later when we
worked together on building theWorkflowFM diagrammatic process composer [35].

Looking back, although the research was quite successful and had much scope
for future work, that we did not carry on with the development of Geometry Explorer
seems a bit of a missed opportunity. Having said this, some of the insights I gained
when it comes to marrying discovery and proof became extremely valuable when
dealing with implicit aspects in Hilbert’s proofs, which I discuss next.

5 Proof Mechanization: From Dream to Reality 95

Fig. 5.2 Discovering facts through forward-chaining from the hypotheses of the NPCT

96 J. D. Fleuriot

5.3.2.2 Hilbert’s Implicit Reasoning and Idle-Time Proof Discovery

As mentioned in Sect. 5.3.1, mechanizing Hilbert’s incidence reasoning was prob-
lematic. This motivated us to tackle it head-on when working on the proofs in HOL
Light [15].5

At first sight, the problem looked fairly distinct from the fully automatic
one explored with Geometry Explorer. In HOL Light, the mechanization used a
declarative (or structured) proof approach based on the Mizar Light declarative
language [51]. The user states the formulas that connect premises to the desired
conclusion and justifies these by invoking the appropriate tactics interactively in
the proof assistant. This results in proofs whose logical structure can be analysed
and compared with Hilbert’s pen-and-paper prose. However, while this proof style
provides a readable version of Hilbert’s text, it seemed to leave little scope for
automatic, “unsupervised” exploration since the user usually works out the sequence
of inference by hand. The challenge was to integrate proof discovery as a tool that
would complement rather than interfere with the user’s theorem-proving workflow.

Our approach thus involved a non-disruptive route, whereby a discovery tool
would work in the background to derive facts that followed from the current context
and make them available for use in proof as the user saw fit [43]. In order to do
this, as is often the case in automated reasoning, we first had to come up with more
appropriate representations for incidence reasoning.

Hilbert’s first group of axioms (Group I), concerned with incidence relations
between the primitives called points, lines and planes, requires 10 of his 23 axioms
(as obtained after splitting conjunctions). Thus, one would expect these to feature
significantly in proofs. However, although this is the case with the mechanized
proofs, they are seldom mentioned in Hilbert’s actual proofs. Moreover, Pasch’s
Axiom (from Group II), which asserts that any line that enters a triangle ABC on
one side and does not meet any of the vertices must leave by one of the other two
sides (see Fig. 5.3), was one of the important general incidence rules often used
implicitly by Hilbert. However, when mechanizing Hilbert’s reasoning, much work
involved discharging the preconditions of this axiom.

Our refactoring of Pasch’s Axiom and the axioms of Group I involved a
reformulation in terms of the collinearity and planarity of sets of points rather than
Hilbert’s primitive incidence relations involving points, lines and planes (denoted by
on_line and on_plane in the mechanization). Thus, new versions were derived
that aimed to capture the combinatorial nature of incidence reasoning and open
up the possibility of using set operations to facilitate the automated discovery of
relevant geometric facts. In particular, by defining the collinearity and planarity of
sets of points as

5Although our previous work on the Grundlagen had been in Isabelle, by 2009 I had decided to
move some of our research to HOL Light, partially because of the flexibility of the system when it
comes to the rapid development of reasoning tools.

5 Proof Mechanization: From Dream to Reality 97

Fig. 5.3 Pasch’s Axiom

BA

C
aa

D

E
E

FF

collinear Ps ≡ ∃a.∀P.P ∈ Ps �⇒ on_line P a

and

planar Ps ≡ ∃a.∀P.P ∈ Ps �⇒ on_plane P a

the following version of Pasch’s Axiom was obtained:

¬collinear {A,B,C} ∧ ¬collinear {A,D,E} ∧ ¬collinear {C,D,E}
∧ planar {A,B,C,D,E} ∧ between A D B

�⇒ ∃F. collinear {D,E,F } ∧ (between A F C ∨ between B F C)

and new Group I incidence theorems derived, such as

S ⊆ T ∧ collinear T �⇒ collinear S

P ∈ S ∧ P ∈ T ∧ collinear S ∧ collinear T �⇒ planar (S ∪ T)

With such incidence rules set up, these could now be used as parameters to forward-
chaining discovery engines as described briefly next.

Inspired by the approach used in Geometry Explorer, Phil Scott and I decided
to develop forward-chaining algorithms that would exhaustively search for (i.e.,
discover) new facts—including, for instance, the hoped-for assumptions that would
enable the application of Pasch’s Axiom to happen automatically—and integrate
these into the proof in an implicit way, thereby relieving the user of the burden
of discharging them. The proof script, we also hoped, would then match Hilbert’s
proof more closely. This would happen by exploiting what we called idle time during
interactive proof [43].

Generally, in proof assistants, automation needs to be explicitly invoked by
the user during proof. However, our experience showed that interactive proof
development involves much thinking and elaboration time, as well as writing down
the statements and proof commands. During that time, the proof engine is mostly
idle, making it available to run other automated tools concurrently. As we wanted
any such tool to complement the user’s interactive and declarative development of

98 J. D. Fleuriot

Fig. 5.4 Background incidence discoverer with rectangles representing five classes of derived data
and triangles representing inference rules

the proof (i.e., not disrupt their workflow), we designed the automation to use the
current proof context and derive facts that might interest the user, or even solve the
goal outright, while they investigate their own chains of deduction independently.

In the case of Hilbert’s geometry, based on our understanding of his proofs, we
worked out that incidence reasoning is naturally partitioned into five classes of data
with incidence rules connecting how they could be derived from each other as shown
in Fig. 5.4. So, for instance, rule colncolncol inferred new non-collinear triples
from a collinear set and another non-collinear triple:

collinear S ∧ ¬collinear {A,B,C} ∧ X, Y,A,B ∈ S ∧ X 	= Y

�⇒ ¬collinear {C,X, Y }

As an example, given a context with facts A 	= C, D 	= E, collinear{A,B,C,

D,E} and ¬collinear{A,B, P }, triangles ACP and DEP can be discovered
since ¬collinear{A,C, P } and ¬collinear{D,E,P } follow using the rule.

In order to capture these patterns of forward reasoning, a generic algebraic
language was specifically designed for discovery [44]. By taking a general approach,
incidence automation, as illustrated in Fig. 5.4, became just one possible (instance

5 Proof Mechanization: From Dream to Reality 99

of a) handcrafted discoverer, similar to how a technique language was devised
in ISAPLANNER on top of Isabelle’s tactic language. This led to a framework
consisting of discovery engines that could be composed [42] and output facts to a
database, whose contents could be applied by the user via new declarative language
primitives such as obviously and clearly [41] to highlight their implicitness.

With this setup, we managed to tackle most of the gaps in Hilbert’s reasoning.
Interestingly, the incidence discoverer found exciting ways to apply Pasch’s axiom,
including a novel, alternative proof for Hilbert’s fourth Theorem (which states that
there is a point that lies between two other distinct ones on a line) [43]. In the end,
the discoverer reduced the number of formalised proof steps by around a factor of
10 and enabled declarative proofs whose steps matched Hilbert’s prose ones very
closely, leading to a de Bruijn factor [50] of almost one.6 Extensive details of the
discovery language, iterative generations of facts and the integration of discovery
engines among other aspects can be found in Phil Scott’s PhD thesis [41], to which
I refer the interested reader.

5.3.3 Computational Geometry

As a final part of the current tour, I briefly examine some work on mechanizing geo-
metric algorithms, which combine formal verification and formalized mathematics.
As previously discussed, initial work with Laura Meikle on mechanising Hilbert’s
axiomatics in Isabelle had shown that his proofs did rely on intuition. This led us
to believe that the confidence in the correctness of computational geometry (CG)
algorithms, which is often argued semi-formally with the use of diagrams, could
be suspect. Little formal verification work had been done at the time in the field,
so we decided to start our investigation by formalising the well-known Graham
Scan (GS) algorithm. This is a straightforward-looking algorithm that computes the
convex hull of a set of points in two-dimensions [14], i.e., it finds the smallest convex
polygon C such that for a set of points P , every point in P either lies inside C or on
its boundary.

As we wished to investigate the algorithm in its usual imperative form—as
opposed to a functional programming style, which is relatively common when
working in Isabelle/HOL [30]—we decided to base it on an existing mechanization
of Floyd–Hoare Logic [31], which would allow us to capture its usual pseudo-code
presentation fairly faithfully [28]:

6In a nutshell, the de Bruijn factor is the ratio of the size of a formalization of a mathematical text
to the size of its pen-and-paper original.

100 J. D. Fleuriot

{ordered P ∧ 3 ≤ length P ∧ distinct P ∧ ¬all_collinear P}
i := 0;
C := [hd P, last P];
WHILE i < length P
INV {Loop Invariant}
DO

IF Left_turn C$_1$ C$_0$ P$_i$
THEN C := P$_i$ # C;

i := i+1
ELSE C := tail C
FI

OD
{(butlast C) isConvexHull P}

Although the above algorithm looks simple—its only non-trivial operation being the
test Left_turn A B C that, for any three points A, B and C, is true if C lies to
the left of the directed line from A to B—its verification in Isabelle was far from
straightforward. One of the hardest parts, as anyone familiar with formal verification
using Hoare Logic might attest, was figuring out the loop invariant. Even with the
help of a pen-and-paper proof by O’Rourke [32], the formal verification proved very
demanding, as only 5 components of the loop invariant followed and another 11 had
to be worked out in order to enable a fully formal proof, including, for instance:

l < length C − 1 ∧ j < k ∧ k < l �⇒ Left_turn Cl Ck Cj

which states that if we travel along say Cl to Ck , then we must make a left turn with
respect to vertices of the hull added after Ck . Various verification conditions were
then derived automatically using the Hoare Logic machinery of Isabelle. The one
about the body of the program preserving the loop invariant as long as the condition
of the WHILE loop held was the hardest to discharge. This is because it involved
a case-split about whether there was a left-turn or not when constructing the hull
one point at a time. At the time, given how painful the process was, Laura Meikle
and I wondered whether the work by Stark and Ireland on the automatic discovery
of loop invariants [45] might provide a way of helping such convoluted geometric
assertions. Unfortunately, we never managed to look into this and, to our knowledge,
this is still an open question.

This work showed that proving the formal verification of geometric algorithms
is much more involved than one might expect. This led us to explore how other
tools could help make the mechanization more practical. One of the outcomes
was the integration of QEPCAD [3] and Maple in Isabelle [25, 26, 29] in order to
deal with quantifier elimination over the reals and provide tractable manipulations
of algebraic expressions. Moreover, these tools provided a way of exploring the
iterative construction of loop invariants (and other statements) by easing the
discovery of implicit geometric conditions and the removal of contradictory ones.
QEPCAD, for instance, allowed the automatic generation of counterexamples that
could rule out unprovable geometric conjectures once these were translated into
coordinates, while MAPLE enabled the plotting and visualisation of problems as a

5 Proof Mechanization: From Dream to Reality 101

way of assisting the verification process. By enriching the palette of tools, Laura
Meikle went on to tackle much more complicated examples such as the Delaunay
triangulation, which involves nested WHILE loops [24].

A natural question, given the difficulties, might be: why should we go to such
lengths to reason about geometric algorithms? One answer is that geometric notions
underly many of the operations done by autonomous vehicles, e.g., convex hull
computations, and membership tests on images are needed to identify regions of
interest (such as other cars on the road) [18] and so it is highly likely that providing
formal safety guarantees will require formal reasoning about such concepts. Even
in less constrained environments, dealing with convex hulls has been shown in later,
independent work to be needed when formally proving the correctness of collision
avoidance algorithms [46].

5.4 Conclusion

Much of the research described above would not have been possible without the
nurturing environment offered by the DREAM Group and its supremo, Alan Bundy.
It is difficult to encapsulate in a few pages everything that owes a debt, in some
form or another, to the DREAMers and their support. In fact, several research areas,
such as process modelling [34] and healthcare [33], that I am currently involved
in have not been mentioned. The good news is though: there is much more for us
DREAMers to write about in the next book, as we continue to turn dreams into
reality.

5.5 Epilogue

Upon arrival in Edinburgh, I found out that I would be moving into Alan Bundy’s
office as he took on the role of Head of Department and moved to a grander locale.
His books would stay behind though as they constituted a valuable DREAM Group
resource (and he expected to come back to the office after he finished his term as
Head). As a book lover, I was delighted to hear this although it did feel like a big
responsibility. However, I would like to believe that I did a good job at the time
because Alan asked me a few years ago to look after the books once again. So, it
is as the proud Custodian of the Bundy Library, a timeless and priceless DREAM
Group asset, that this DREAMer finishes the current account of some of his research.

Acknowledgments This work was supported through grants funded by the Engineering and
Physical Sciences Research Council (EPSRC).

Beyond the people mentioned in this chapter, I wish to express my gratitude to all the
DREAMers I have had the pleasure of interacting with over the years. Thank you for helping
me turn my ε-baked dreams into real proofs and tools.

102 J. D. Fleuriot

References

1. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

2. Richard J. Boulton, Konrad Slind, Alan Bundy, and Michael J. C. Gordon. An interface
between Clam and HOL. In Theorem Proving in Higher Order Logics, 11th International
Conference, volume 1479 of Lecture Notes in Computer Science, pages 87–104. Springer,
1998.

3. Christopher Brown. QEPCAD-B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin, 37:97–108, 01 2003.

4. Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: Meta-Level Guidance
for Mathematical Reasoning. Cambridge University Press, 2005.

5. Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A collection of 110 geometry
theorems and their machine proofs based on full-angles. Technical Report 94-4, CS Dept.
WSU, Nov 1994.

6. Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Automated generation of readable
proofs with geometric invariants, II. Theorem proving with full-angles. Journal of Automated
Reasoning, 17:349–370, 1996.

7. Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck. Higher-order intuitionistic
formalization and proofs in Hilbert’s elementary geometry. In ADG ’00: Revised Papers from
the Third International Workshop on Automated Deduction in Geometry, volume 2061, pages
306–324, London, UK, 2001. Springer-Verlag.

8. Louise A. Dennis and Alan Smaill. Ordinal arithmetic: A case study for rippling in a higher
order domain. In Theorem Proving in Higher Order Logics, 14th International Conference,
volume 2152 of Lecture Notes in Computer Science, pages 185–200. Springer, 2001.

9. Lucas Dixon. A Proof Planning Framework for Isabelle. PhD thesis, University of Edinburgh,
2006.

10. Lucas Dixon and Jacques D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
Automated Deduction - CADE-19, 19th International Conference on Automated Deduction,
volume 2741 of Lecture Notes in Computer Science, pages 279–283. Springer, 2003.

11. Lucas Dixon and Jacques D. Fleuriot. Higher order rippling in IsaPlanner. In Theorem Proving
in Higher Order Logics, 17th International Conference, volume 3223 of Lecture Notes in
Computer Science, pages 83–98. Springer, 2004.

12. Lucas Dixon and Jacques D. Fleuriot. A proof-centric approach to mathematical assistants. J.
Appl. Log., 4(4):505–532, 2006.

13. Jacques Fleuriot. A Combination of Geometry Theorem Proving and Nonstandard Analysis
with Application to Newton’s Principia. Springer, 2001.

14. R.L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.
Information Processing Letters, 1(4):132 – 133, 1972.

15. John Harrison. HOL Light: a Tutorial Introduction. In Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design, volume 1166, pages 265–269.
Springer-Verlag, 1996.

16. Jane Hesketh. Using middle-out reasoning to guide inductive theorem proving. PhD thesis,
University of Edinburgh, 1992.

17. David Hilbert. Foundations of Geometry. Open Court Classics, 10th edition, 1971.
18. Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by visualizing causal

attention. In ICCV: International Conference on Computer Vision, pages 2961–2969, 10 2017.
19. Ulrich Kortenkamp. Foundations of dynamic geometry. Journal für Mathematikdidaktik,

21:161–162, 01 2000.
20. Eleftherios Koutsofios and Stephen North. Drawing graphs with dot. Technical report, AT&T

Bell Laboratories, Murray Hill, NJ, 1993.

5 Proof Mechanization: From Dream to Reality 103

21. E. Maclean, J. Fleuriot, and A. Smaill. Proof-planning non-standard analysis. In Proceedings
of the 7th International Symposium on Artificial Intelligence and Mathematics, 2002.

22. Ewen Maclean. Using proof-planning to investigate the structure of proof in non-standard
analysis. PhD thesis, University of Edinburgh, 2004.

23. David C J Matthews. The Poly and Poly/ML distribution. Technical Report 161, University of
Cambridge, Computer Laboratory, February 1989.

24. Laura Meikle. Intuition in formal proof: a novel framework for combining mathematical tools.
PhD thesis, University of Edinburgh, 2014.

25. Laura Meikle and Jacques Fleuriot. Combining Isabelle and QEPCAD-B in the Prover’s
Palette. In Intelligent Computer Mathematics, Lecture Notes in Artificial Intelligence, pages
315–330, 07 2008.

26. Laura Meikle and Jacques Fleuriot. Prover’s Palette: A user-centric approach to verification
with Isabelle and QEPCAD-B. In Computer Aided Verification, volume 5123 of Lecture Notes
in Computer Science, pages 309–313, 07 2008.

27. Laura I. Meikle and Jacques D. Fleuriot. Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In
Theorem Proving in Higher Order Logics, volume 2758, pages 319–334. Springer, 2003.

28. Laura I. Meikle and Jacques D. Fleuriot. Mechanical Theorem Proving in Computational
Geometry. In Automated Deduction in Geometry, pages 1–18, 2004.

29. Laura I. Meikle and Jacques D. Fleuriot. Integrating systems around the user: Combining
Isabelle, Maple, and QEPCAD in the prover’s palette. Electron. Notes Theor. Comput. Sci.,
285:115–119, 2012.

30. Tobias Nipkow. Programming and proving in Isabelle/HOL. https://isabelle.in.tum.de/doc/
prog-prove.pdf.

31. Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and R. Steinbrüggen,
editors, Proof and System-Reliability, pages 341–367. Kluwer, 2002.

32. Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, USA, 2nd
edition, 1998.

33. Petros Papapanagiotou and Jacques D. Fleuriot. Formal verification of collaboration patterns
in healthcare. Behav. Inf. Technol., 33(12):1278–1293, 2014.

34. Petros Papapanagiotou and Jacques D. Fleuriot. WorkflowFM: A logic-based framework
for formal process specification and composition. In Automated Deduction - CADE 26 -
26th International Conference on Automated Deduction, volume 10395 of Lecture Notes in
Computer Science, pages 357–370. Springer, 2017.

35. Petros Papapanagiotou, Jacques D. Fleuriot, and SeanWilson. Diagrammatically-driven formal
verification of web-services composition. In Diagrammatic Representation and Inference - 7th
International Conference, volume 7352 of Lecture Notes in Computer Science, pages 241–255.
Springer, 2012.

36. Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in Lecture Notes in
Computer Science. Springer, 1994.

37. Julian Richardson, Alan Smaill, and Ian Green. System description: Proof planning in higher-
order logic with λClam. In Automated Deduction, CADE-15, volume 1421 of Lecture Notes in
Computer Science, pages 129–133, 02 1998.

38. Jürgen Richter-Gebert and Ulrich Kortenkamp. The Interactive Geometry Software Cinderella.
Springer, 1999.

39. Abraham Robinson. Non-standard Analysis. Princeton University Press, 1974.
40. Phil Scott. Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master’s thesis,

University of Edinburgh, 2008.
41. Phil Scott. Ordered geometry in Hilbert’s Grundlagen der Geometrie. PhD thesis, University

of Edinburgh, 2015.
42. Phil Scott and Jacques D. Fleuriot. Composable discovery engines for interactive theorem

proving. In Interactive Theorem Proving, volume 6898 of Lecture Notes in Computer Science,
pages 370–375. Springer, 2011.

https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf

104 J. D. Fleuriot

43. Phil Scott and Jacques D. Fleuriot. An investigation of Hilbert’s implicit reasoning through
proof discovery in idle-time. In Proceedings of the 8th International Conference on Automated
Deduction in Geometry, Lecture Notes in Computer Science, pages 182–200, Berlin, Heidel-
berg, 2011. Springer.

44. Phil Scott and Jacques D. Fleuriot. A combinator language for theorem discovery. In Intelligent
Computer Mathematics - 11th International Conference, volume 7362 of Lecture Notes in
Computer Science, pages 371–385. Springer, 2012.

45. Jamie Stark and Andrew Ireland. Invariant discovery via failed proof attempts. In Logic
Programming Synthesis and Transformation, 8th International Workshop, volume 1559 of
Lecture Notes in Computer Science, pages 271–288. Springer, 1998.

46. Holger Täubig, Udo Frese, Christoph Hertzberg, Christoph L uth, Stefan Mohr, Elena
Gorbachuk, and Dennis Walter. Guaranteeing functional safety: Design for provability and
computer-aided verification. Autonomous Robots, 32:303–331, 04 2012.

47. Makarius Wenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit.
Electron. Notes Theor. Comput. Sci., 285:101–114, 2012.

48. Markus Wenzel. Isar - A generic interpretative approach to readable formal proof documents.
In Theorem Proving in Higher Order Logics, 12th International Conference, volume 1690 of
Lecture Notes in Computer Science, pages 167–184. Springer, 1999.

49. HermannWeyl. David Hilbert and his mathematical work. Bulletin of the American Mathemat-
ical Society, 50:635, 1944.

50. Freek Wiedijk. The De Bruijn factor. https://www.cs.ru.nl/~freek/factor/factor.pdf, 2000.
51. Freek Wiedijk. Mizar Light for HOL Light. In Richard J. Boulton and Paul B. Jackson, editors,

Theorem Proving in Higher Order Logics, 14th International Conference, volume 2152 of
Lecture Notes in Computer Science, pages 378–394. Springer, 2001.

52. Sean Wilson. Supporting dependently typed functional programming with proof automation
and testing. PhD thesis, University of Edinburgh, 2011.

53. Sean Wilson and Jacques D. Fleuriot. Geometry Explorer: Combining Dynamic Geometry,
Automated Geometry Theorem Proving and Diagrammatic Proofs. In Proceedings of UITP
2005 (User Interfaces for Theorem Provers), Apr 2005.

54. Sean Wilson, Jacques D. Fleuriot, and Alan Smaill. Automation for dependently typed
functional programming. Fundam. Inform., 102(2):209–228, 2010.

https://www.cs.ru.nl/~freek/factor/factor.pdf

Chapter 6
Reasoned Modelling: Harnessing the
Synergies Between Reasoning and
Modelling

Gudmund Grov, Andrew Ireland, and Maria Teresa Llano

Abstract Conventional formal modelling requires a designer to have expertise in
formal reasoning as well as design. We describe an approach to formal modelling
called reasoned modelling that aims to allow the designer to focus on their design,
with the low-level formal reasoning hidden from view. The approach builds directly
upon the ideas of proof plans in that we make explicit use of modelling knowledge
and patterns. This enables us to harness the synergies that exist between modelling
and reasoning. A number of aspects of reasoned modelling have been investigated.
Here we summarise the key contributions that have been previously published.
First, when faced with low-level reasoning failures, we illustrate how modelling
knowledge can be used to constrain the search for high-level design guidance.
Second, we describe how common patterns of refinement can be used to help
guide a designer. Third, we outline how common patterns of modelling can be
used in suggesting design abstractions. Finally, as is the case with proof plans,
reasoned modelling requires a mechanism for instantiating patterns. We describe
how automated theory formation was used to instantiate patterns that arose within
reasoned modelling.

6.1 Introduction

The use of formal modelling and analysis in the design of complex systems brings
significant benefits as well as challenges. Working with a formal design model

G. Grov
Norwegian Defence Research Establishment (FFI), Kjeller, Norway
e-mail: Gudmund.Grov@ffi.no

A. Ireland (�)
Heriot-Watt University, Edinburgh, UK
e-mail: A.Ireland@hw.ac.uk

M. T. Llano
Monash University, Melbourne, Australia
e-mail: Teresa.Llano@monash.edu

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_6&domain=pdf
mailto:Gudmund.Grov@ffi.no
mailto:A.Ireland@hw.ac.uk
mailto:Teresa.Llano@monash.edu
https://doi.org/10.1007/978-3-030-77879-8_6

106 G. Grov et al.

allows for strong correctness guarantees to be established early on within the
development of a system. In contrast, when using informal modelling notions,
such rigour is not possible, and critical design errors may go undetected until
the system has been implemented or deployed. On the road to establishing such
guarantees, one typically encounters failure, where the process of failure analysis
will often give insights into how to progress the design process. Such failures
manifest themselves as unproven proof obligations (POs). A broad range of factors
may give rise to such failures, e.g., bad design decisions and inconsistencies at
the level of the specification. The challenge comes in relating failures at the level
of proof obligations to higher-level design decisions and specifications. This is a
challenge because it requires the designer to have expertise in both design and
formal reasoning.

Our approach to addressing this challenge is to combine both the formal
reasoning and modelling aspects in such a way that design and specification are
the sole focus of a designer. This involves maintaining a link between the logic and
the modelling so that proof failures can be automatically presented in terms of errors
at the level of design and specification.

The proof planning approach to theorem proving provides the inspiration for our
approach. Having an explicit representation of a common pattern of proof provides
guidance in the search for proof instances. But crucially, when failure is encountered
in the proof search, the constraints of the pattern can be used in overcoming the
failure, e.g., conjecture generalisation and lemmas discovery. Proof planning for
automatically discharging the proof obligations arising from formal models was the
topic of Yuhui Lin’s PhD thesis [27, 28].

A key difference, however, between proof planning and what we call reasoned
modelling is the need for interaction as well as automation. That is, in address-
ing a proof failure, we are typically not interested in intermediate lemmas or
generalisations—we simply want to know if a conjecture is a theorem. However,
proof-failure analysis may also suggest changes to the conjecture. In the case
for formal modelling, such changes may affect the design of a system. As a
consequence, such changes must be presented to as design alternatives, with the
designer in full control of the decision-making.

Figure 6.1 gives a high-level depiction of how user interaction changes with
reasoned modelling. On the left, we see that a designer needs expertise to guide both
the formal reasoning and the formal modelling aspects of the development, while
on the right we see that the goal of reasoned modelling is to reduce this interaction
to the modelling aspect only.1 An anecdote to this change in user interaction can
be found for program verifiers. In modern verifiers, such as Dafny [26] and Spark
20142, the user will work with the program text only, while the more traditional
approach entailed working with a theorem prover in addition to the program text.

1Even in the presence of fully automatic provers only, a designer will still need to be able to analyse
proof failure in order to determine how the models will need to change.
2See https://www.adacore.com/about-spark.

https://www.adacore.com/about-spark

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 107

Fig. 6.1 User interaction for posit-and-prove (left) and augmented with reasoned modelling (right)

This chapter provides the first comprehensive presentation of reasoning mod-
elling and is directly based on a corpus of published work and theses [12, 13, 19,
21, 25, 29, 32].

6.2 Refinement-Based Development and Event-B

In this chapter, we focus on a layered style of formal modelling, where a design
is developed as a series of abstract models—level-by-level concrete details are
progressively introduced via provably correct refinement steps.

Event-B [2] is an example of a formal framework following this style of
modelling and is mechanised through the Rodin toolset [1]. Here, each step of
a development is underpinned by formal reasoning. As a result, there is strong
interplay between modelling and reasoning—partly supported by the Rodin toolset.
This interplay requires skilled user interaction, i.e., typically a user will analyse
failed proofs and translate the analysis by hand into corrective actions at the
level of modelling. This is exemplified in [2, 4]. Typical corrective actions include
strengthening invariants and guards or modifying actions.

Reasoned modelling aims to provide high-level decision support, by automating
the generation, filtering and ranking of modelling suggestions. Event-B models and
POs are closely aligned [2], while Rodin [1] is an extensible framework. Event-
B and the Rodin toolset thus represent a unique opportunity for us to investigate
reasoned modelling.

An Event-B development is structured into machines and contexts. A context
describes the static part of a system, e.g., constants and their axioms, while a
machine describes the dynamic part. Machines are themselves composed of three
components: variables, events and invariants. Variables represent the state of the
system, events are guarded actions that update the variables and invariants are

108 G. Grov et al.

constraints on the variables. We will use the term models for both Event-B contexts
and machines. The most basic events are

EVENT 〈name〉 =̂ BEGIN 〈action〉 END
EVENT 〈name〉 =̂ WHEN 〈guard〉 THEN 〈action〉 END

where the event’s action is only executed when the guard holds. INITIALISATION
is a special event without guards defining the initial state. In addition, we will see
examples of the following event patterns:

EVENT 〈nameC〉 =̂ REFINES 〈nameA〉 . . .

EVENT 〈name〉 =̂ . . . ANY 〈var1〉 . . . 〈var1〉 . . .

The first event is an example of refinement where the event refines another event (of
the abstract model being refined). The second event illustrates how (among other
things) arguments to an event can be modelled in Event-B.

6.3 Reasoned Modelling Critics3

For any creative activity, understanding our failures often plays a pivotal part in
achieving success. This was the motivation for introducing the notion of a proof
critic [16], a mechanism that supports the analysis and patching of failed proof
attempts within the context of proof planning [17]. A proof critic typically exploits
partial success in the application of a proof plan. Moreover, it uses partial success to
bridge the gap between failed proof attempt(s) and a complete proof. As described
by Alan Bundy in his chapter, proof critics have been applied successfully to the
problems of inductive lemmas discovery and conjecture generalisation [3, 17, 18],
along with the related problem of loop invariant discovery [20]. Proof critics have
also been developed for patching faulty conjectures using abduction [31].

Within the context of classical formal verification, a verification task is reduced
to a set of purely logical statements. This represents a very powerful divide-and-
conquer strategy. However, as a consequence, proof plans and critics cannot take
into account the context in which a verification task arose. In terms of proof-failure
analysis, this can be problematic. To illustrate, consider an invariant of the form:

P ⇒ Q

Now consider the situation where the verification of the corresponding proof
obligation fails. An analysis at the level of atomic propositions can be used to
determine how the failure can be overcome. That is, how can we make antecedent

3This section is based on [19, 21].

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 109

P false or how can we make consequent Q true? To achieve such effects requires
changes to the context in which the proof obligation arose—the system and its
environment. Armed with such contextual knowledge, it is then possible to rule-
out changes that are infeasible, e.g., changes that violate safety constraints, or are
impossible, e.g., changes that violate physical constraints. Moreover, certain aspects
of a system may be more constrained than others, e.g., safety features. Only a
domain expert and/or designer can make such judgements. What we are arguing
is that if such knowledge is explicitly represented within the design model, then it
can be used to automatically filter modelling changes when a verification attempt
fails. This led us to consider how the ideas underpinning the notion of a proof
critic evolved so as to combine knowledge of the domain being modelled as well
as knowledge of proof—to give the notion of a reasoned modelling critic.

To illustrate these ideas, we will consider a simple cruise control system where
the variable brake is used to represent the state of the brakes and cc is used to
represent the state of the cruise controller. Initially, both variables are off (where
the || operator denotes the actions within the initialisation event being executed in
parallel):

INITIALISATION =̂ BEGIN brake := off || cc := off END

We will focus on two events associated with the system. The first occurs when the
cruise controller is enabled:

EVENT enable_cc =̂ BEGIN cc := on END

The second occurs when a driver presses the brakes, as defined by the event:

EVENT pressbrake =̂ BEGIN brake := on END

A key safety constraint associated with the system is that the brakes (brake) cannot
be on, while the cruise controller (cc) is enabled. Logically, this can be formalised
as an invariant of the form:

cc = on ⇒ brake = off

Now turning to the verification proofs. The enable_cc event gives rise to a proof
obligation of the form (where {x �→ y}T denotes a substitution of x to y in T):

cc = on ⇒ brake = off � {cc �→ on}(cc = on ⇒ brake = off) (6.1)

which can be reduced to the unprovable goal:

cc = on ⇒ brake = off � brake = off .

110 G. Grov et al.

Similarly, the pressbrake event creates the following proof obligation:

cc = on ⇒ brake = off � {brake �→ on}(cc = on ⇒ brake = off) (6.2)

which, when simplified, becomes false:

cc = on, brake = off � false

In terms of overcoming these proof failures, we focus here upon changes to the
associated events. Specifically, how the addition of actions and/or guards will lead
to successful proofs.

The failure to prove (6.1) is associated with the event enable_cc. Proof-failure
analysis tells us that we can overcome the failure by making the consequent brake =
off true. At the modelling level, this can be achieved by the addition of an action:

EVENT enable_cc =̂ BEGIN cc := on ||brake := off END

Alternatively, we can achieve the same effect by the addition of a guard:

EVENT enable_cc =̂ WHEN brake = off BEGIN cc := on END

Note that the first alternative change results in the brakes being released, i.e., brake
is set to off, as a side effect of enabling of the cruise controller (enable_cc). While
this overcomes the proof failure, it is obviously an unsafe event. In contrast, the
second alternative change ensures that the cruise controller (enable_cc) can only
be enabled when the brake has not been applied, i.e., brake = off . The desirable
solution requires the introduction of the guard that ensures that the cruise controller
cannot override the brakes.

Now consider the failure to prove (6.2), which is associated with the event
pressbrake. Proof-failure analysis tells us that we can overcome the failure by
making the antecedent cc = on false. At the modelling level, this can be achieved
by the addition of an action:

EVENT pressbrake =̂ BEGIN brake := on ||cc := off END

or alternatively, we can achieve the same effect by introducing a guard:

EVENT pressbrake =̂ WHEN cc = off BEGIN brake := on END

Here, the first alternative change results in the cruise controller being disabled, i.e.,
cc is set to off, as a side effect of the brake being pressed (pressbrake). In contrast,
the second alternative change ensures that the brake can only be pressed when the
cruise controller has been disabled, i.e., cc = off . The desirable solution requires
the introduction of the action that ensures that the cruise controller cannot override
the brakes.

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 111

As highlighted earlier, knowledge of the domain being modelled is required in
order to identify desirable solutions. For the given example, being able to brake is
clearly more important than driving with the cruise control enabled. This suggests
that certain variables within a model have higher priority than others. Moreover,
this notion of priority can be used to heuristically rank, or even prune, certain
undesirable changes:

H1: If the priority of the candidate variable is lower than the priorities of all the
variables updated by the event, then it is strongly suggestive that the change
should be achieved via a new action.

H2: If the priority of the candidate variable is higher than the priorities of all the
variables updated by the event, then it is strongly suggestive that the change
should be achieved via a new guard.

As emphasised earlier, domain knowledge, such as the priority of variables that
occur within model, must be supplied by the designer or domain expert.

While clearly a very simple example, it illustrates how combining domain
knowledge with proof-failure analysis can deliver more relevant guidance to a
designer. More details on the modelling critics ideas can be found in [19]. The paper
describes how the critic frame can be extended to combine both models and proof
obligations. It also discusses the potential for generating more general modelling
changes by combining the analysis of multiple proof failures.

6.4 Refinement Plans4

A proof critic handles a special pattern of failure (or partial matches) of a proof plan.
Analogically, a modelling critic should handle a partial match of a “modelling plan”.
In Event-B, a common approach to developing formal models is through step-wise
refinement, and for this type of modelling, we have captured a set of “modelling
plans” that we have called refinement plans.

By analysing a range of Event-B case studies from the literature, eight basic
refinement plans have been identified and grouped into a hierarchy as shown in
Fig. 6.2. Each refinement plan contains patterns of refinement identified by syntactic
features of abstract and concrete models, as well as patterns of the underlying POs
to justify the refinement. Modelling critics can then be associated to partial matches
of these patterns.

The classification from Fig. 6.2 provides us with a better understanding of what
a user is trying to achieve in a refinement step as well as facilitates the matching
process. We first briefly summarise each refinement plan before illustrating use of
one of them:

4This section is based on [12].

112 G. Grov et al.

Fig. 6.2 Hierarchy of refinement patterns

Case split: refers to refinement steps in which an abstract event is refined in the
concrete model by two or more events.

Control elaboration: relates to models that constrain the application of existing
events based on extensions of the state and independently from the operation
of new events at the concrete level.

Accumulator: deals with models in which actions of an abstract atomic event are
performed in the concrete model via iteration.

Plain decomposition: makes reference to models in which an abstract event is
refined by a sequence of new and refined events. New events are used to pre-
process data used in the abstract event.

Set to partition: refers to models in which an abstract variable is refined by
partitioning it through a set of new variables in the concrete model.

Partition to function: involves refinement steps in which an abstract partition of
variables is refined into a function in the concrete model.

Data extension: refers to models in which an abstract variable is refined into
a concrete variable that extends the abstract data type in order to control
membership of data in the variable.

Redundant data removal: involves the elimination of data from the abstract level
that is not being used to control the operation of any event.

We will only focus on the accumulator refinement plan (RP_3) and two of its
associated critics. This refinement plan has its roots in earlier work on accumulators,
both in recursive and iteration program verification, and intuitively deals with
models in which actions of an abstract atomic event are performed in the concrete
model via iteration. This iteration is achieved through the use of new events that
iteratively accumulate the value from the abstract action, and the plan has been
taken from work by Butler and Yadav [4], which was further developed in [5, 9, 10].

The key difference with our work compared with Butler et al is that as well as the
modelling patterns, we are also interested in the deductive patterns and in providing
guidance when a pattern breaks in a development.

We illustrate the plan with a simple model taken from [8], where an event incr
adds a value y to a variable x:

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 113

EVENT incr =̂ BEGIN x := x + y END

The concrete model, which refines this abstract model, has a set of accumulator
variables and three events:

EVENT start =̂
WHEN
flag = TRUE

THEN
n := 0

x_tmp := x

flag := FALSE

END

EVENT step =̂
WHEN
n < y

flag = FALSE

THEN
x_tmp := x_tmp + 1

n := n + 1

END

EVENT end_ok =̂
REFINES incr

WHEN
flag = FALSE

THEN
x := x_tmp

flag := TRUE

END

Event start is the initialisation event, event step is an “accumulator event” and
end_ok is a “refining event”. A new counter n is initialised to 0 by event start,
and this is used by event step to iteratively assign the value of y via an accumulator
variable x_tmp. At the end of the iteration, event end_ok assigns the value of x_tmp
to (the abstract) variable x.

The pattern requires an invariant that explains the refinement, meaning that the
content of the accumulator variable(s) is contained within the value assigned in
the abstract model. The main properties are that initialisation, accumulator(s) and
refined events must preserve the invariant and that the refined event must preserve
the behaviour of the abstract event.

For the example, the invariant is missing and the corresponding proofs fail; thus,
the example illustrates a flawed, or partly matching, instance of the pattern. To
overcome such a failure, a set of critics are defined, and we will illustrate two such
critics for the accumulator plan:

postGuard_speculation critic: considers the case when the guard of the refined
event that ensures the accumulation process is complete is either flawed or
missing.

invariant_speculation critic: handles the case when the accumulator invariant is
wrong or missing.

The critics are triggered by combining partial matching of the modelling patterns
with failure analysis. This is used to automatically generate modelling guidance.
Both the above critics are applicable in this example.

The postGuard_speculation critic will add a guard with the shape of an equality
to the refined event. In our case, this event is end_ok and the critic will use the
variables x_tmp,n, x,y to instantiate the guard, which will result in an additional
guard y = n being added to the event.

This moves the model to be closer to correct, but since the invariant is also
missing, the failure persists even after adding this guard—thus triggering the

114 G. Grov et al.

invariant_speculation critic. It will speculate an invariant of the shape H1 ⇒ F�(W ,
V2), where F� denotes an inequality, which will be added to the concrete model. In
our case, this is

(f lag = FALSE) ⇒ F≤(x_tmp, n, x, y)

which is instantiated to

f lag = FALSE ⇒ x_tmp = x + n

This completes the refinement.
It is important to note that the critics provide guidance in the form of partially

instantiated schemas. The process of completing the instantiation has been tackled
by a range of techniques that have been developed within the DReaM Group over a
number of years.

First, in his chapter, Alan Bundy illustrated how meta-variables can be used
to specify intermediate lemmas and how the constraints of rippling can be used
to instantiate the specification. This approach, often referred to as middle-out
reasoning, has also been applied to the problems of conjecture generalisation
and loop invariant discovery. Higher-order unification played a central part of the
technique, with the rippling annotations being used to divide the unification task
into smaller tasks. However, in general, the constraints of rippling were not sufficient
and required the piece-wise unification needed to be interleaved with a process of
projection and conjecture disproving [17].

Second, a radical and highly successful alternative is the bottom-up generate-
and-test approach known as term synthesis [24, 30].

Here, we investigated yet another radically different approach to discovering
unknowns—automated theory formation (ATF). Specifically, we automated the
instantiation of invariant patterns within refinement plans by applying ATF to
simulation traces of our Event-B design models. Our application of ATP was
embedded in a tool called HREMO, which is described in the next section.

6.5 Invariants Generation and HREMO5

Refinement plans provide instantiations of well-knownmodelling patterns; however,
the partial and static nature of these instantiations limited their application to known
types of failures. One of the tasks faced by developers when a refinement step
fails is to supply invariants that relate to their design decisions. Following one
of the DReaM Group’s motifs on the productive use of failure, we developed a
heuristic approach that supports the activity of formal modelling, and complemented

5This section is based on [32].

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 115

Variables Invariants Events
full full ∈ BOOL INITIALISATION =̂ BEGIN full := false END

EVENT addA =̂WHEN full = false BEGIN full :∈ BOOL END
(a) Abstract Level

Variables Invariants Events
x m x ∈ N INITIALISATION =̂ BEGIN x := 0 ‖ m := 3 END

m ∈ N EVENT addC =̂ REFINES addAWHEN x < m
WITH full=false ⇔ x<m BEGIN x := x+1 END

(b) Concrete Level

Fig. 6.3 Flawed Event-B model

refinement patterns, by automatically discovering invariants. Briefly, the approach
requires:

1. A formal modelling component that supports proof
2. A simulation component that generates system traces
3. Automated theory formation (ATF), a technique that identifies patterns from

examples of a background domain, which generates conjectures from the analysis
of the traces

To illustrate this, observe the model in Fig. 6.3. At the abstract level, the Boolean
variable full is modified in event addA through a non-deterministic action when
full is false. Note that the non-deterministic action, i.e., full :∈ BOOL, specifies that
variable full is non-deterministically assigned a Boolean value. At the concrete level,
the state of the system is refined by replacing the abstract variable full by concrete
variables x andm. Moreover, the abstract event addA is refined by the concrete event
addC, which gradually increments variable x by one unit when x is less than m.

As it stands, the model generates a PO to capture correct strengthening of the
guard. This fails to prove as shown in (6.3). This PO specifies that the concrete
guard x < m must imply the abstract guard f ull = f alse.

x < m � full = false (6.3)

The failure is generated because the relationship between the abstract and concrete
states, captured by a special type of invariant called a gluing invariant, has not been
defined.

We use ATF, and specifically the HR system [6, 7], to search for the missing
invariant. HR forms theories about a domain through an iterative application of
general-purpose production rules (PRs) for concept invention. PRs are either unary
or binary; this means that a PR must be applied to either one or two input data tables
(depending on their operation). Data tables represent concepts by means of a set
of examples, and applying a unary or binary PR results in a new data table, i.e., a
new concept. HR then examines whether the new concept is: (i) equivalent to an
existing concept; (ii) subsumed by or subsumes an existing concept or (iii) empty.
These relationships take the form of equivalence, implication, or non-existence
conjectures, respectively.

116 G. Grov et al.

Fig. 6.4 Simulation trace
generated by the ProB
simulator

Animation steps
Variables S1 S2 S3 S4

Abstract full false false false true
Concrete x 0 1 2 3

m 3 3 3 3

Particular to the invariant discovery process, the first step is to provide informa-
tion about the domain for which the theory will be formed, i.e., the Event-B model.
Specifically, HR requires: (i) user-given concepts that enumerate the objects of
interest (we call these T1 concepts) and (ii) user-given concepts that define features
of the objects of interest (we call these T2 concepts). Within Event-B, T1 concepts
are given by the context (static part), while T2 concepts are formed by variables and
constants. For the model (M) in Fig. 6.3, these correspond to

conceptsT 1(M) = {boolean, integer}
conceptsT 2(M) = {f ull, x,m}

Additionally, for each concept, HR requires a set of examples in order to apply its
PRs. Within the context of Event-B, simulation provides a source of such examples.
Through simulation, it is possible to analyse the operation of an Event-B model
by observing how its state changes when different scenarios are explored. The
simulation trace shown in Fig. 6.4 is produced by the ProB simulator [15] for the
flawed Event-B model. The trace shows the value of the abstract and concrete
variables at each step of the simulation.

The information from the simulation traces is then transformed into data tables
formed of the following tuples: state(A) = {〈S1〉, 〈S2〉, 〈S3〉, 〈S4〉}, boolean(B)
= {〈true〉, 〈f alse〉}, integer(C) = {〈0〉, 〈1〉, 〈2〉, 〈3〉}, full(A,B) = {〈S1, f alse〉,
〈S2, f alse〉, 〈S3, f alse〉, 〈S4, true〉}, x(A,C) = {〈S1, 0〉, 〈S2, 1〉, 〈S3, 2〉, 〈S4, 3〉},
m(A,C) = {〈S1, 3〉, 〈S2, 3〉, 〈S3, 3〉, 〈S4, 3〉}—where A specifies an argument of
type state, B an argument of type boolean and C an argument of type integer . The
concept state represents every step of the simulation trace, the concepts boolean and
integer are the data types and the concepts full, x and m are the abstract and concrete
variables of the model. We call this set of input concepts core concepts.

With this background information, HR begins the theory formation process by
applying all possible combinations of concepts and production rules in order to
generate new concepts, which we call non-core concepts, and identify relationships
between them, i.e., the conjectures.

In order to focus the output produced by HR, we apply two types of heuristics:
Configuration Heuristics (CH) and Filtering Heuristics (FH). We use the CH
heuristics to influence how HR organises the concepts to be explored and to
constrain the applicable PRs during theory formation, while the FH heuristics focus
in finding conjectures that would address the failures expressed by the POs. The
heuristics are as follows (we show the application of the heuristics to the model in
Fig. 6.3, and failed PO (6.3)):

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 117

Configuration heuristics

CH1: Prioritise core and non-core concepts that occur within the failed POs:
focusing HR’s interest on concepts related to the failures that arose within the
model. For example, the application of heuristic CH1 results in the following
sets of prioritised core and non-core concepts:

prioritised core concepts = {full, x, m}

prioritised non-core concepts = {full=false, x<m}

CH2: Select the subset of PRs that are most relevant to the given failed POs:
selecting in this way PRs that focus HR’s theory formation on potential syntactic
similarities between the failed POs and the missing invariants. Applying CH2
to the example produces a set of 5 PRs: the compose, disjunct and negate PRs,
which are enabled by default for the task of invariant discovery as they perform
basic logic operations (conjunction, disjunction and complement, respectively)
commonly seen in Event-B invariants; the split PR, which allows HR to focus
on specific examples of the data table, is selected because of the presence of the
value false in the goal of the PO (i.e., we will focus on examples of the variable
full that are set to false); and the numrelation PR, which performs arithmetic
comparisons (<, >, ≤, ≥), is selected because of the occurrence of operator <

in the hypothesis.

Filtering heuristics

FH1: Select conjectures that focus on prioritised core and non-core concepts: In
other words, we are interested only in equivalence and implication conjectures
where either the left- or right-hand side represents a prioritised concept, as
well as in all non-existence conjectures where a prioritised concept occurs.
Applying heuristic FH1 to the example results in the selection of 14 conjectures:
2 equivalences, 4 implications and 8 non-existence conjectures.

FH2: Select conjectures where the sets of variables occurring on the left- and
right-hand sides are disjoint: identifying only those that do not contain multiple
occurrences of a variable—typically the set of variables involved in an invariant
does not contain duplicates. The application of the heuristic does not reduce the
number of conjectures. This may occur because of the simplicity of the model.

FH3: Select only the most general conjectures: eliminating redundancies among the
selected conjectures by removing those that are logically implied by more general
conjectures. Applying this heuristic to the example reduces the set of selected
conjectures to 7: 1 equivalence, 3 implications and 3 non-existence conjectures.

FH4: Select conjectures that discharge the failed POs: so that only conjectures that
help overcome the failures are selected. Applying this heuristic to the example
results in the selection of only two conjectures: 1 equivalence and 1 implication.

FH5: Select conjectures that minimise the number of additional proof failures that
are introduced: since overcoming a proof failure potentially leads to new proof

118 G. Grov et al.

failures. Regarding the example, the two conjectures selected by heuristic FH4
discharge the failed PO and do not produce any extra failure; thus, both of them
are presented to the user as candidate invariants:

full = FALSE ⇔ x < m (6.4)

x 	= m ⇒ full = FALSE (6.5)

Through manual inspection, conjecture (6.4) is identified as the missing invariant
of the flawed model.

As has been observed throughout this section, our heuristic approach exploits the
strong interplay between modelling and reasoning in Event-B by using the feedback
provided by failed POs to make decisions about how to configure HR. Furthermore,
using proof-failure analysis to prune the wealth of conjectures HR discovers, these
heuristics have proven highly effective at identifying missing invariants.

6.6 Design-Space Exploration6

A drastic alternative to our previously explained ideas of applying proof plans and
critics to the modelling level is to apply ATF to this modelling level—which we call
design-space exploration (DSE).

We will illustrate this approach through a worked example of a simplified proto-
col for transferring money between bank accounts with the following requirements:

R1: The sum of money across all accounts should remain constant.
R2: Transactions can only be completed if the source account has enough funds.
R3: If an amount m is debited from a source account, the target account should be

credited by m.
R4: Progress should always be possible (no deadlocks).

A designer might choose to represent the protocol as follows in Event-B:7

EVENT start =̂ ANY a1 a2 m

WHEN a1 /∈ active

THEN pend := pend ∪ {((a1, a2),m)} || active := active ∪ {a1}
EVENT debit =̂ ANY a1 a2 m

WHEN ((a1, a2),m) ∈ pend ∧ bal(a1) ≥ m

THEN bal(a1) := bal(a1) − m || pend := pend \ {((a1, a2),m)} ||
trans := trans ∪ {((a1, a2),m)}

EVENT credit =̂ ANY a1 a2 m

WHEN ((a1, a2),m) ∈ trans

6This section is based on [13, 25].
7 To ease presentation, we make an implicit assumption that for a given time there is only a single
transaction between two accounts. Consequently, trans can be treated as a function from a pair of
accounts to a value, written trans(a1, a2) = m for ((a1, a2),m) ∈ trans.

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 119

THEN bal(a2) := bal(a2) + m || trans := trans \ {((a1, a2),m)} ||
active := active \ {a1}

The chosen representation involves three steps, each of which is represented
through an event that is parametrised by the names of the source (a1) and target (a2)
accounts, along with the value of money (m) associated with the transfer. Step one
(event start) initiates a transfer by adding the transaction to a pending set (pend)
and uses a set (active) to ensure that an account can only be the source of one
transfer at a time. The second step (event debit) removes the funds from the source
account if sufficient funds exist—bal denotes a function that maps an account to
its balance. If successful, the transaction is removed from the pending set and is
added to the transfer set. The final step (event credit) completes the transaction by
adding the funds to the target account, as well as updating the trans and active sets
accordingly. Finally, requirement R1 is formalised as an invariant,

I1: Σa∈dom(bal)bal(a) = C

where C is a constant that represents the sum of money across all accounts.
Key to DSE is abstraction—the ability to create a design at the right level of

detail and to “glue” it to any abstract model through a set of gluing invariants.
Trial-and-error is very much part of the expert methodology, where low-level
proof failures are examined, and design alternatives in terms of abstractions are
experimented manually (see [4]). Within DSE, our goal is to automate much of
the low-level grind associated with the trial-and-error nature of formal modelling
and provide a designer with high-level modelling advice in real time. In particular,
the aim is to generate alternative models at a higher level of abstraction than the
original model to deal with a flaw. The intuition is that the flaw is a result of being
too concrete. Moreover, within a correct abstraction, the designer has the additional
burden of correctly defining the system behaviour and supplying numerous auxiliary
invariants that are required for the formal verification process. To support this,
adaptations of the initial model are suggested at the same level of abstraction.
This could be for instance in terms of additional invariants, or even changes to the
behaviour of the system.

Unconstrained generation of new models will result in an enormous search space
that will be infeasible in practice. To overcome this, ATP and HREMO are first
utilised to highlight problematic areas in order to pinpoint where the problem lies
and what the problem might be. This will be used to explore alternative abstractions
and adaptations of the model. These are generated through a set of low-level
but generic “atomic operators” that make small changes to a model, e.g., “delete
variable” and “merge events”. These atomic operators can then be combined in order
to generate new models and constrained to reduce the number of possible models
generated. Common modelling patterns play a central role in finding the right
combination of operators. These will be at a very high level to enable flexibility in
terms of their application and therefore enable us to provide assistance in situations
where there are no applicable design patterns. Abstraction patterns are essentially

120 G. Grov et al.

inverse application of refinement patterns, and we will next illustrate two such
patterns:

1. “Undoing” bad behaviour by introducing a special error (or exception) case.
2. Abstracting away the problem when it can be pinpointed between certain events.

This amounts to “atomising” sequential events into a single event.

Consider again the user provided model of a money transfer protocol given
above. As it stands, the model is flawed since R4 is violated when all accounts have
started a transaction but none of the source accounts have sufficient funds. Moreover,
event debit violates invariant I1 since the amount removed from the source account
is not accounted for in the invariant, which breaks requirement R2. Our aim in such
situations will be to offer the designer modelling alternatives that address the flaws.
Figure 6.5 summarises the alternatives generated through our approach, and below
we outline how this was achieved.8

(Abstraction A1) Applying ATF indicates “bad behaviour” associated with event
debit and variable active. We can apply the “abstract away” pattern to this violation.
One implementation of this pattern is to remove the variable that two (sequential)
events use to communicate an intermediate result, and then combine this sequence
into an atomic event. One (out of two) such combined event involving both debit
and active is

Fig. 6.5 A diagrammatic summary of a small design-space exploration: Starting from the initial
development, abstraction (A1) and adaptation (A2) are suggested to deal with violation of
requirement R4. Given that I1 is a near-invariant, a new invariant is suggested in (A3) or an
abstraction (A4) with the required gluing invariant

8More details of the examples are available on arXiv [11].

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 121

EVENT debitabs =̂ ANY a1 a2 m

WHEN a1 /∈ active ∧ bal(a1) ≥ m

THEN active := active ∪ {a1}
|| bal(a1) := bal(a1) − m

|| trans := trans ∪ {((a1, a2),m)}

(Adaptation A2) An alternative analysis is to apply the error-case pattern.
Intuitively, this means introducing a new “error-handling” event that will “undo”
some previous state changes when the desired path is not applicable. This can be
implemented so that it reverses a previous action in cases when an event of the
desired path stays disabled. This requires transformations to negate an event’s guard,
reverse an action of an event and combine the guards of one event with the actions of
another. One (out of seven) such error-handling events that can be generated, given
the constraints w.r.t. debit and active, is

EVENT debiterr =̂ ANY a1 a2 m

WHEN ((a1, a2),m) ∈ pend ∧ bal(a1) < m

THEN pend := pend \ {((a1, a2),m)}
|| active := active \ {a1}

Event debiterr handles the case when the source account does not have enough
funds.

(Adaptation A3) Let us assume the user selects abstraction A1. Through analysis
of this alternative, we can see that we are in a “bad state” when trans and active are
not empty, i.e., when there are transactions currently in progress. As a result, ATF
will be used to search for conjectures that involve the concepts trans and active as
well as the invariant itself, i.e.,

C = Σa∈dom(bal) bal(a)

ATF is then able to generate an adaptation of the invariant I1 that addresses the
violation by debitabs. The Event-B representation of the invariant, which replaces
I1, is

I2: Σa∈dom(bal)bal(a) + Σ(a1,a2)∈dom(trans)trans(a1, a2) = C

(Abstraction A4) Although correct, invariant I2 is not a natural representation
of R1, as compared with near-invariant I1. The designer may wish to explore an
alternative abstraction in which I1 is an invariant. Our final alternative A4 represents
such an abstraction. Based on the analysis for alternative A1, we can re-apply our
“abstract away” pattern, albeit with a slightly modified configuration that deletes

122 G. Grov et al.

two variables. Constrained by the analysis, two such alternatives can be generated
with one of them being the desired transfer event:9

EVENT transfer =̂ ANY a1 a2 m

WHEN abal(a1) ≥ m ∧ a1 	= a2
THEN abal(a1) := abal(a1) − m ||

|| abal(a2) := abal(a2) + m

Finally, in order to prove the consistency between the abstract and concrete models,
a gluing invariant is required, where ATF and HREMO are used to form a theory
of the refinement step and search for the invariant. HREMO is able to figure out
the relation between the abstract variable abal and the concrete representation, i.e.,
variables bal and trans. A key challenge here will be tailoring HREMO for the
formal methods context so that invariants such as the gluing invariant required in
this refinement step can be formed.

6.7 Future Work and Conclusion

In this chapter, we have given an overview of our reasoning modelling paradigm—
both the overall ideas and specific approaches we have explored. It is also important
to note that even if we have focused here on illustration of the concepts through
examples, all the ideas presented have been implemented in proof-of-concept
prototypes.

While our work on reasoned modelling has been grounded in the Event-B
formalism, we believe there is a more generic story to reasoned modelling. We
therefore end our discussion by sketching how we are currently developing the core
ideas in a range of new directions.

6.7.1 Requirements, Domain Properties and Specifications

As emphasised in Sect. 6.3, failure analysis that focuses purely on logic will typi-
cally generate many modelling suggestions that are either infeasible or impossible
given the knowledge about the domain of application. While we have focused
here on the modelling of discrete systems, and specifically Event-B, the ideas are
more widely applicable. For example, while proof failure may be overcome by
revising design decisions, it may also require revisions to the assumptions that have
been made about the application domain. Alternatively, proof-failure analysis may
highlight infeasible system-wide requirements. The problem frames approach [23]

9To simplify presentation we abuse the Event-B notation slightly here.

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 123

to requirements engineering was developed with the aim of making specifications,
domain properties and requirements explicit. There are links between proof plans
and problem frames. While the former captures common patterns of reasoning, the
latter captures common patterns of problem within the context of software systems.
We are currently investigating how our modelling critics ideas can be used to support
the problem frames methodology.

6.7.2 Hazard Analysis—What-if Style Scenarios

Current approaches to safety analysis are limited to the information provided by
the requirements and to the capacities of the designers to question the possible
failures that can arise. However, complex systems involve different participants
whose behaviour is not consistent with the modelled processes, components that
are distributed all across the environment and events that are out of the participants
control. All these can produce hazardous situations difficult to imagine to the
designers of the system. Take for instance the case of the Hull Paragon accident
occurred on February 14, 192710 where a railway operator changed a signal before
time, while another operator pulled the wrong lever, causing two trains travelling
in opposite directions to be on the same track and crash. The simultaneous nature
of the events, coupled with other human-related factors, had not been previously
identified by the designers of the signalling system.

In [22], we studied how dysfunctional behaviour could be identified by relying
on meta-knowledge to constrain the search for properties that lead to hazardous
situations. This meta-knowledge can be provided by the designer, as proposed in
[22], but could also be obtained through other sources of knowledge by exploring
how unnatural chains of events can occur within a system. Our work on computa-
tional creativity has analysed the use of NLP techniques to semantically manipulate
information from knowledge bases in order to generate fictional scenarios. Here,
we are interested in applying this type of creative mechanisms for studying how
to generate “plausible scenarios” for a given system model. That is, we want to
study how we can use information from a system’s records (e.g., log files, models’
simulations, etc.) in order to generate What-if like scenarios of situations that may
produce accidents. For instance, we expect to find scenarios such as: “What if a
plane landed on a wet runaway?”, “What if a person opened the door of an active
washing machine?”, “What if a railway operator fell asleep during their shift?”, etc.
These scenarios could be fed back to the designers and when possible to the model
as meta-knowledge, opening up the knowledge about the system and its environment
in order to discover possible hazardous scenarios.

10http://www.railwaysarchive.co.uk/docsummary.php?docID=308.

http://www.railwaysarchive.co.uk/docsummary.php?docID=308

124 G. Grov et al.

6.7.3 Enterprise Security Architecture

Enterprise security architecture (ESA) is a term often used for the security aspects
of an enterprise architecture (EA)—a holistic view of an enterprise including how
different aspects of the enterprise are related. Such aspects could include everything
from overall capabilities, business processes and computer systems. Security is an
all-encompassing concern for an enterprise and therefore found in most, if not all,
of the aspects. As a result, analysis of security concerns often requires the analyst
to simultaneously address several aspects of the enterprise, which is infeasible as
a purely manual task. We have therefore started to address automated reasoning in
this context [14].

While such formal reasoning is an important step forward, it will still only get us
to the left-hand side of Fig. 6.1, where security architects need automated reasoning
skills in addition to the required expertise in enterprise modelling and security.

The idea of “hiding” the reasoning and communication at the modelling level
only (right-hand side of Fig. 6.1) is just as important here. Moreover, EA exhibits
a hierarchical structure between certain aspects, where the higher level provides a
form of abstraction of the lower levels. A desirable feature is consistency between
these layers, providing a clear link to refinement and refinement plans. Generation
of abstractions from the low-level (and typical technical layers) to the high-level
(typical business) layers—as in design-space exploration—is another desirable
feature for an EA/ESA that would be worth exploring.

6.7.4 Conclusion

As well as a powerful automated reasoning technique, the proof planning paradigm
provides a computational framework to investigate and explain proof strategies—
providing a kind of how-to-guide for proving theorems! As noted above, this led to
our ability to automatically analyse and patch a broad range of proof failures through
proof critics. Moreover, the explanatory nature inspired us to investigate how one
can combine proof and design through reasoned modelling. And as indicated above,
this represents a rich vein of future research opportunities.

Acknowledgements and Final Reflections

We are indebted to many past and present members of the group for their support
and guidance. We are particularly indebted to Colin O’Halloran (D-RisQ) and Ben
Gorry (BAE Systems), both of whom have had a long association with the group
and have supported our work in particular. In addition, we would like to thank the

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 125

reviewers for their detailed and encouraging feedback on a previous version of the
paper, and to Greg [Michaelson] for his work on putting together this book.

Finally, turning to the DReaM Group and Alan Bundy’s leadership. The group
has provided a unique environment for nurturing young researchers for over 40
years. Alan’s generosity, creativity and passion for getting to the heart of research
problems continues to inspire. He has mentored countless researchers that have gone
on to develop highly successful academic careers—for which we owe a huge debt
of gratitude. We end the paper with some individual reflections on our relationship
to the DReaM research environment.

Andrew I joined the then Department of Artificial Intelligence in October 1988 as
a “University Demonstrator”. While supporting students on the Knowledge-Based
Systems MSc programme, I spent my evenings writing-up my PhD thesis (entitled
“Mechanization of Program Construction in Martin-Löf’s Theory of Types”), which
I had undertaken at the University of Stirling. I joined the DReaM Group on January
1st 1990 as a Post-doctoral Research Associate. Before joining the group, I was
unsure whether I could build an academic career. Up until this point in time, I had
found research a very solitary experience. The culture of the DReaMGroup changed
this. The group had, and continues to provide, a vibrant and nurturing environment
in which to develop and test new ideas—however “half-baked” they may seem to
begin with! I was also lucky in joining the group just as the rippling technique and
proof planning were starting to make an impact. Through the group, and Alan’s
guidance, I have developed the career that I thought was beyond me. I will always
be thankful and proud to have been part of the DReaM Group.

Gudmund I first experienced the DReaM Group as a PhD student at Heriot-Watt
under the supervision of Andrew and Greg [Michaelson], then as a post-doc working
with Alan [Bundy] in Edinburgh, and finally, as a lecturer at Heriot-Watt. My PhD,
entitled “Reasoning about Correctness Properties of a Coordination Language”,
was my first real exposure to a research environment. At that point, I probably did
not appreciate the emphasis of the group on sharing ideas (no matter how silly and
undeveloped they may be) and the strong mantra of supporting and developing the
careers of young researchers. This is something I have come to appreciate more
and more over the years and I will always be indebted to Alan, Andrew and Greg
for where I am today. They, and the DReaM Group as a whole, have played a major
part in forming me as a researcher and I will always feel a part of the group wherever
I may be in the future.

Teresa I joined the DReaM Group while I was doing my PhD (entitled “Invariant
Discovery and Refinement Plans for Formal Modelling in Event-B”) under the
supervision of Andrew at Heriot-Watt University. Doing research was a very new
and challenging experience for me, and initially I found it very nerve-racking to
be part of a group whose members were so incredibly brilliant. However, I found
the environment in the group to be very welcoming for young and inexperienced
researchers. I also found the support given by the group through the EPSRC

126 G. Grov et al.

Platform Grants to be a unique factor. It provided some sense of security in the world
of academia that, as a young researcher, is very uncertain. The Platform Grants
managed by Alan, and then by Andrew, gave me the possibility to continue my
career in academia and led me in the path of pursuing my current research interests
on computational creativity along with Simon Colton. I am very grateful to have
been part of the DReaM Group, in particular for having been so lucky to be working
with Andrew, who has been not only a guide for me in my work, but has also been
a role model at the personal level; and Simon, who has led me to discover new
exciting and innovative research paths.

References

1. J-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environment for
Event-B. In ICFEM, LNCS 4260, pages 588–605. Springer, 2006.

2. J-R. Abrial. Modelling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

3. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for Mathemati-
cal Reasoning. Cambridge University Press, 2005.

4. M. Butler and D. Yadav. An incremental development of the Mondex System in Event-B.
Formal Aspects of Computing, 20(1), 2008.

5. M. Butler. Decomposition structures for Event-B. In iFM, LNCS 5423, 2009.
6. S. Colton. Automated Theory Formation in Pure Mathematics. Springer, 2002.
7. S. Colton and S. Muggleton. Mathematical applications of Inductive Logic Programming.

Machine Learning, 64:25–64, 2006.
8. K. Damchoom. An Incremental Refinement Approach to a Development of a Flash-Based File

System in Event-B. PhD thesis, University of Southampton, 2010.
9. A.S Fathabadi and M. Butler. Applying Event-B atomicity decomposition to a multi-media

protocol. In FMCO, LNCS 6286, 2010.
10. A.S. Fathabadi, A. Rezazadeh, and M. Butler. Applying atomicity and model decomposition

to a space craft system in Event-B. In NFM, LNCS 6617, 2011.
11. G. Grov, A. Ireland, M.T. Llano, P. Kovacs, S. Colton, and J. Gow. Semi-Automated Design

Space Exploration for Formal Modelling. arXiv:1603.00636.
12. G. Grov, A. Ireland, and M.T. Llano. Refinement plans for informed formal design. In

International Conference on Abstract State Machines, Alloy, B, VDM, and Z, pages 208–222.
Springer, 2012.

13. G. Grov, A. Ireland, M.T. Llano, P. Kovacs, S. Colton, and J. Gow. Semi-automated design
space exploration for formal modelling. In International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, pages 282–289. Springer, 2016.

14. G. Grov, F. Mancini, and E. Mestl. Challenges for Risk and Security Modelling in Enterprise
Architecture. In The Practice of Enterprise Modeling, pages 215–225, Cham, 2019. Springer.

15. S. Hallerstede, M. Leuschel, and D. Plagge. Refinement-Animation for Event-B - Towards a
method of validation. In ABZ, volume 5977 of LNCS, pages 287–301. Springer, 2010.

16. A. Ireland. The use of planning critics in mechanizing inductive proofs. In A. Voronkov, editor,
International Conference on Logic Programming and Automated Reasoning (LPAR’92), St.
Petersburg, Lecture Notes in Artificial Intelligence No. 624, pages 178–189. Springer-Verlag,
1992. Also available from Edinburgh as DAI Research Paper 592.

17. A. Ireland and A. Bundy. Productive use of failure in inductive proof. 16(1–2):79–111, 1996.
Also available as DAI Research Paper No 716, Dept. of Artificial Intelligence, Edinburgh.

6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling 127

18. A. Ireland and A. Bundy. Automatic verification of functions with accumulating parameters.
Journal of Functional Programming: Special Issue on Theorem Proving & Functional Pro-
gramming, 9(2):225–245, March 1999. A longer version is available from Dept. of Computing
and Electrical Engineering, Heriot-Watt University, Research Memo RM/97/11.

19. A. Ireland, G. Grov, M.T. Llano, and M. Butler. Reasoned modelling critics: turning failed
proofs into modelling guidance. Science of Computer Programming, 78(3), 2013.

20. A. Ireland and J. Stark. Proof planning for strategy development. Annals of Mathematics
and Artificial Intelligence, 29(1-4):65–97, February 2001. An earlier version is available
as Research Memo RM/00/3, Dept. of Computing and Electrical Engineering, Heriot-Watt
University.

21. A. Ireland, G. Grov, and M. Butler. Reasoned modelling critics: turning failed proofs into
modelling guidance. In International Conference on Abstract State Machines, Alloy, B and Z,
pages 189–202. Springer, 2010.

22. A. Ireland, M.T. Llano, and S. Colton. The use of automated theory formation in support of
hazard analysis. In Aaron Dutle, César A. Muñoz, and Anthony Narkawicz, editors, NASA
Formal Methods - 10th International Symposium, NFM 2018, Newport News, VA, USA, April
17-19, 2018, Proceedings, volume 10811 of Lecture Notes in Computer Science, pages 237–
243. Springer, 2018.

23. M.A. Jackson. Problem Frames: Analysing and Structuring Software Development Problems.
ACM Press books. Addison-Wesley/ACM Press, 2001.

24. M. Johansson, L. Dixon, and A. Bundy. Conjecture synthesis for inductive theories. J.
Automated Reasoning, 47:251–289, 10 2011.

25. P. Kovacs. Automating abstractions in formal modelling. BSc honour’s thesis, Heriot-Watt
University, 2015.

26. K.R.M. Leino. Dafny: An automatic program verifier for functional correctness. In Inter-
national Conference on Logic for Programming Artificial Intelligence and Reasoning, pages
348–370. Springer, 2010.

27. Y. Lin. The use of rippling to automate Event-B invariant preservation proofs. PhD thesis,
University of Edinburgh (School of Informatics), 2015.

28. Y. Lin, A. Bundy, G. Grov, and E. Maclean. Automating Event-B invariant proofs by rippling
and proof patching. Formal Aspects of Computing, 31(1):95–129, 2019.

29. M.T. Llano, A. Ireland, and A. Pease. Discovery of invariants through automated theory
formation. Formal Aspects of Computing, 26, 2011.

30. E. Maclean, A. Ireland, and G. Grov. Proof automation for functional correctness in separation
logic. Journal of Logic and Computation, 2014.

31. R. Monroy, A. Bundy, and A. Ireland. Proof Plans for the Correction of False Conjectures.
In F. Pfenning, editor, 5th International Conference on Logic Programming and Automated
Reasoning, LPAR’94, Lecture Notes in Artificial Intelligence, v. 822, pages 54–68, Kiev,
Ukraine, 1994. Springer-Verlag. Also available from Edinburgh as DAI Research Paper 681.

32. M.T. Llano. Invariant discovery and refinement plans for formal modelling in Event-B. PhD
thesis, Heriot-Watt University, UK, 2013.

Chapter 7
Human-Like Computational Reasoning:
Diagrams and Other Representations

Mateja Jamnik

Abstract In this chapter, I give a personal account of my experience in Alan
Bundy’s DReaM group in the Department of Artificial Intelligence at the University
of Edinburgh between the years of 1995 and 1998. Of course, the impact of this
experience has been profound and long-lasting to this day. The culture and the
nature of research work, the collaborations, the interests and the connections have
endured, evolved and multiplied throughout this time. My own work in the DReaM
group started by investigating human “informal” reasoning and formalising it in a
diagrammatic theorem prover. After leaving Edinburgh, this work naturally evolved
into combining diagrams with other representations in a uniform framework, as
well as applying visual representations in other domains, such as reasoning with
ontologies. But one of the fundamental questions remained unanswered, namely,
how do we choose the right representation of a problem and for a particular user in
the first place?

7.1 The DReaM Research Environment

Few factors influence a researcher’s ethos regarding their work more than where
and with whom they did their PhD project. I arrived to Alan Bundy’s DReaM
research group in the autumn of 1995, fresh from finishing a post-graduate Diploma
in Computer Science at Cambridge. This was not exactly planned: I actually applied
to do a PhD in the Cognitive Science Department at the University of Edinburgh.
I was interested in humans, not machines. But given that I was a mathematician
by my undergraduate degree and that I just finished a post-graduate degree in
Computer Science, my application made it to Alan Bundy in the Department of
Artificial Intelligence. I am so glad for this serendipity because the privilege has
been immeasurable.

M. Jamnik (�)
Department of Computer Science and Technology, University of Cambridge, Cambridge,
United Kingdom
e-mail: mateja.jamnik@cl.cam.ac.uk

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_7

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_7&domain=pdf
mailto:mateja.jamnik@cl.cam.ac.uk
https://doi.org/10.1007/978-3-030-77879-8_7

130 M. Jamnik

The DReaM group at that time was a large and thriving community across
multiple sites, covering the Universities of Edinburgh, Heriot-Watt and Napier,
of very diverse people working on equally diverse research topics. The academic
staff were Alan Bundy, Alan Smaill, Andrew Ireland and Helen Lowe.1 They were
working with numerous post-doctoral researchers including Ian Green, Toby Walsh,
Richard Boulton, Julian Richardson and Geraint Wiggins. During my time in the
group, I was part of a cohort of PhD students including Louise Dennis, Jon Whittle,
Raul Monroy, Simon Colton, Francisco Cantu, Ian Frank, Jeremy Gow, Stephen
Creswell and Jim Molony. We also collaborated internationally with scientists
like Fausto Giunchiglia, Alessandro Armando and their groups in Italy, and Jörg
Siekmann, Erica Melis, Dieter Hutter and their groups in Germany. Of course, the
DReaM’s ethos of creativity of thought and rigour of methodology have since spread
around the world as we have pursued our careers across the globe and inevitably
passed these values and skills to the next generation of researchers.

I could perhaps describe the diverse topics in mathematical reasoning that the
DReaM members pursued as either formalising symbolic reasoning or formalising
human-like reasoning.2 Symbolic reasoning directions included proof planning,
rippling, the systems Clam and λClam, induction, co-induction and hardware
verification (Chaps. 1–4). Human-like reasoning directions included analogy, dia-
grammatic reasoning, ontologies and concept formation (Chaps. 5–8). Inevitably,
this list is only partial, and all the chapters of this volume hopefully fill some of
the gaps. I was particularly interested in the kinds of human-like reasoning that
we could perhaps call “intuitive”, or the kind that is inherently human and that is
quite different to machine-oriented reasoning. Examples include the use of analogy,
symmetry and diagrams.

Our daily lives as researchers were enriched by the visits of numerous scientists
who shared their expertise and thoughts with us. Three visitors strongly shaped
the direction that I took in my PhD research. Erica Melis from Saarbrücken was
working on analogy reasoning at the time [23]. I was intrigued at how one can
use examples of solutions in one problem to inspire and help us find a solution to
a related problem. Erica mechanised this process in the context of proof. Whilst
I did not use her work directly in my PhD, it turns out that my first project after
my PhD was to mechanise learning of proof methods by analogy [17]. The second
most memorable visitor was Predrag Janićič from Belgrade. He was interested in
geometrical reasoning [18], which very much coincided with my interest in human
visual reasoning. Predrag also became a close friend, and I could speak his language,
so we had our own way of communicating. Finally, perhaps the most influential
visitor in the DReaM group for me was Alan Robinson. He came to Edinburgh early

1I apologise if my poor memory is not serving me well and I mixed people up or inevitably forgot
to mention some.
2This divide is perhaps a little artificial since all of our work was motivated by the goals of artificial
intelligence, namely we were trying to computationally model human mathematical reasoning.
Alan Bundy’s Chap. 1 of this volume gives a more precise overall description of our work.

7 Human-Like Computational Reasoning 131

on in my PhD and was interested, like me, in “intuitive” or “informal” reasoning.
Our discussions surrounded the distinction between a visual or spatial representation
and the more usual machine symbolic representation. Alan Robinson showed me a
number of “proofs without words” that he encountered, and some of them became
my toy or working examples to represent, solve and mechanise the process. He
believed that our ability to “see” the truthfulness of a statement is one of the
really fundamental components of the human mathematical cognitive repertoire.
Later, when my PhD research was published in a book [15], he kindly wrote in the
foreword that in this work I “found an explanation of at least part of the mystery of
how humans are able to ‘see’ the truth of certain mathematical propositions merely
by contemplating appropriate diagrams and constructions”.

What struck me most about the DReaM group was his openness to discuss any
topic that anybody was interested in. Clearly, Alan Bundy nurtured a kind and
supportive research environment in which everyone could do their best work. His
intellectual generosity was boundless. The Blue Book Notes (see Chap. 1) provided
the opportunity for sharing and discussing our research with the group. They laid
the ground for exploring novel and half-baked ideas that most often developed
into mature and original scientific contributions. Alan led the DReaM group in
an organised way that taught me how to be a supervisor and a mentor to my own
students and post-docs. This is perhaps best demonstrated by numerous “How-to...”
guides that Alan wrote, for example, “How to be my student”, “How to write an
informatics paper”, “Writing a good grant proposal”, “The Researchers Bible” and
“How to say no”.3

If I were to summarise the enduring influence that the DReaM group had
on me, then I would put in the first place the intellectual generosity that I try
to bestow on my own research group today. I learnt the importance of rigorous
methodology and the place for heuristics to guide the automation of reasoning.
Perhaps uniquely at that time, our work provided a human-oriented perspective on
artificial intelligence that remained the main motivation for my research. Finally, my
time in Alan’s DReaM group instilled in me the importance of an interdisciplinary
and collaborative approach to research, which I think is key to innovation in AI
today.

7.2 Diagrammatic Reasoning

Despite the fact that diagrams have been used in mathematics since the time of
Aristotle and Euclid, the invention of formal axiomatic logic at the end of the
nineteenth century in the sense of Frege, Russell and Hilbert denied diagrams a
formal role in theorem proving. Diagrams were only used informally for illustrating
a formal proof and for suggesting proof steps but were formally superfluous.

3Many of these can be found on Alan Bundy’s web page: https://sweb.inf.ed.ac.uk/bundy/.

https://sweb.inf.ed.ac.uk/bundy/

132 M. Jamnik

Fortunately, the end of the twentieth century started to see a redressing of this
issue [2, 5]. Examples include formalised logical systems of diagrams [10, 13, 35].
This directly abolished the widely held Hilbertian theoretical objections to diagrams
being used in proofs. Our work on Diamond was amongst these: it pioneered the
construction of purely diagrammatic proofs where diagrams and their manipulations
are the proof [15, 16].4 The motivation for this work was rooted in formalising some
of the “informal” reasoning that humans do in mathematics when using diagrams.

Take for example, the diagram in Fig. 7.1. It takes only secondary school-level
knowledge of mathematics to understand that the diagram is about the sum of odd
natural numbers. We can “see” that the theorem is true not only for the example in
the diagram of n = 6, but for any value of n. In other words, the simple procedure
of splitting a square into the so-called ells works in general. Diamond tackles this
problem, in addition to a number of other, the so-called proofs without words, many
of which can be found in Nelsen’s books [25, 26] and Gardner’s mathematical
recreations [8, 9].

Diamond’s theorems are in the domain of algebraic mathematics about natural
numbers that can be expressed as diagrams in a discrete space and are inductive over
a parameter. But there is a problem, namely, such diagrams are concrete in nature,
so abstractions such as ellipsis need to be used to express the general diagram (and
proof) for all values of the parameter. These abstractions are difficult to keep track
of whilest manipulating. So we proposed a solution: to use schematic proofs.

Schematic proofs are based on the mathematical notion of the ω-rule that says
that for the natural numbers 0, 1, 2, . . .:

1 + 3 + 5 + … + (2n − 1) = n2

Fig. 7.1 The theorem is about the sum of the first n odd natural numbers. It represents the example
of a case for n = 6. The proof starts from the RHS of the theorem n2 and takes a square. Then,
the square is split into a sequence of nesting and increasing in size, the so-called ells. Each ell
represents a subsequent natural number: there are two edges, each of size n, but the joining vertex
has been counted twice; hence an ell is 2n − 1

4This work was done for my PhD with Alan Bundy and Ian Green as my supervisors.

7 Human-Like Computational Reasoning 133

φ(0), φ(1), φ(2), . . .

∀x.φ(x)
.

That is, if we can prove φ(n) for n = 0, 1, 2, . . ., then we can infer that φ(x) for
all natural numbers x. Clearly, the ω-rule is not very practical for automation, since
it requires the proof of an infinite number of premises to prove its conclusion. A
more practical alternative is the constructive ω-rule that has an additional condition:
if all premises φ(n) can be proved in a uniform way, that is, there exists an effective
procedure, proof φ , which takes a natural number n as input and returns a proof of
φ(n) as output, then we can conclude the universal statement:5

proof φ(n) � φ(n).

One such effective procedure is, for example, a recursive program. Now proof φ can
be a recursive procedure that formalises our notion of schematic proof where the
number of steps in the proof depends on the parameter n. We used this notion in
formalising diagrammatic proofs in Diamond.6

Diamond’s theorems are expressed as diagrams for some concrete values, that
is, ground instantiations of a theorem. The initial diagram is manipulated using
some geometric operations. The sequence of geometric operations on a diagram
represents the inference steps of a diagrammatic proof. In the above example, the
inference step is splitting an ell from a square to produce an ell and a smaller square.
The set of all available operations defines the proof search space. Next, Diamond
automatically extracts a general pattern from these proof instances and captures it in
a recursive program that constitutes a general diagrammatic proof for the universally
quantified theorem. The constructive ω-rule justifies the step from schematic proofs
to theoremhood. In Diamond, the diagrammatic schematic proof is formalised as

proofφ(n + 1) = A (n + 1), proofφ(n)

proofφ(0) = B,

whereA (n+1) consists of a sequence of diagrammatic operations, and the number
of applications of each operation is (linearly) dependent on n.B is a possibly empty
basis, that is, no additional operation is required to complete the proof.

The generated program capturing the schematic proof still needs to be verified
to be correct. This is something that human mathematicians often omit, and hence
history of mathematics is full of erroneous proofs (see Cauchy’s proof of Euler’s
theorem as reported by Lakatos in [21] and in Chap. 1 of this volume). The

5From the logical point of view, the constructive ω-rule (and also the ω-rule) is a stronger
alternative to mathematical induction, where the generation of proofs for all instances is satisfied
by the requirement for the effective procedure, such as a recursive function.
6The constructive ω-rule and schematic proofs have previously been implemented for arithmetic
theorems and their symbolic proofs by another DReaM member, Siani Baker [3].

134 M. Jamnik

verification requires meta-level reasoning about the proof, rather than the object-
level theorem, and is done by induction:

proof φ(0) � φ(0)

proof φ(n) � φ(n) �⇒ proof φ(n + 1) � φ(n + 1).

The work on automation of diagrammatic proofs in Diamond provides impor-
tant information on proof procedure construction. It exposes the importance of
representing diagrammatic expressions so that general reasoning techniques can be
applied to them. Furthermore, it provides an insight into how diagrams and purely
diagrammatic inferences can be used in formal proofs.

7.3 Heterogeneous Reasoning

Picking up any mathematical book reveals that many theorems are proved using
symbolic inference steps as well as diagrams. We call these heterogeneous proofs:
examples of two such proofs can be seen in Fig. 7.2. In the first example, a theorem
about triangular numbers is proved by transforming it with symbolic inferences
into an expression that then has a compelling diagrammatic proof.7 In the second
example, the theorem asserts a statement about a bitmap image that clearly requires
the use of image processing steps to then combine them with symbolic inferences.

There exist tools for combining diverse systems (e.g., OpenBox [4], Omega [36],
HETS [24]), but they do not allow mixing of representations. Indeed, most mech-
anised theorem provers use only symbolic representations, like different types of
logic. Whilst Diamond (and other diagrammatic theorem provers like Speedith [42])
constructs proofs using only diagrammatic inference steps, not all theorems can
be expressed with diagrams. Moreover, human mathematicians typically use not
only multiple, but also informal representations such as natural language or images
within the same problem for different parts of the solution.

We designed and built a heterogeneous reasoning framework MixR [41] where
different existing symbolic as well as diagrammatic reasoners can be used at
the same time so that symbolic and diagrammatic proof steps can be interleaved
within the same proof.8 Furthermore, when logical formalisation of a particular
representation (e.g., images, natural language or audio) is not tractable, we can
embed such data in existing provers and still enable informal heterogeneous
reasoning with these opaque objects within an otherwise formal proof.

The MixR framework provides a generic infrastructure for extending existing
general-purpose theorem provers with heterogeneous reasoning in the form of

7Notice that there is no compelling completely diagrammatic proof of the original expression of
the theorem, thus the need to mix symbolic and diagrammatic inference steps.
8This work was done in collaboration with my PhD student Matej Urbas.

7 Human-Like Computational Reasoning 135

(a)

(b)

Fig. 7.2 Examples of two heterogeneous proofs: (a) a few symbolic steps are followed by
transformation of the formula into a diagram followed by diagrammatic proof steps to prove a
theorem about triangular numbers; (b) here the heterogeneous proof consists of three proof steps:
the ComputeArea inference step is heterogeneous and takes a bitmap image and extracts some
information (the area of the square) that is expressed in the symbolic language; the ArithSimp
inference step is symbolic; the ComputeShape is also a heterogeneous inference step—it extracts
that the bitmap shape is a square and thus resolves the implication

heterogeneous logic. The crucial part of our heterogeneous logic is the mechanism,
called placeholders, which embeds foreign data into formulae of existing theorem
provers so that it can be dealt with using external tools. This data is directly
embedded into formulae of a prover that treats them as primitive objects that can
be reasoned with its standard inference engine. When required, the reasoner can
invoke external tools on this data to obtain new knowledge. Our approach using

136 M. Jamnik

Driver A
provides goals
accepts goals
proof replay
formula format

Master
reasoner

MixR

driver coordination
managers
general UI components

Driver C
translation
between A and B

Driver B
inference
rules
visualisation
formula format

Slave
reasoner

Plug points (contracts):

translation contract goal provider contract formula presenter
contract

goal transformer
contract

formula format
provider contract

Fig. 7.3 MixR’s architecture with hypothetical drivers. The central box represents MixR’s core.
It contains the implementation of heterogeneous logic components, general UI components and
driver plug points. Drivers surround MixR’s core and plug into it through the plug points

placeholders removes the need for translations between representations, which is
particularly useful when no such translation is available or even possible (e.g.,
diagrammatic representations from CAD tools, images and signal processing).

MixR is an implementation of this heterogeneous logic and placeholders and
enables the integration of arbitrary existing theorem provers of any modality with
each other into new heterogeneous systems. A tool developer can plug their chosen
reasoners into MixR by writing MixR drivers for them. MixR, in turn, integrates
them with each other into a new heterogeneous reasoning system. For example, we
plugged Speedith [42] for spider diagrams and Isabelle [28] for sentential higher-
order logic into MixR to create the Diabelli [40] heterogeneous reasoning system.
We also integrated image processing with symbolic reasoning into PicProc [41]
that can prove a theorem in Fig. 7.2b. MixR provides a user interface as well as an
application programming interface (API) for drivers. Using the API, the drivers can
share, translate and visualise formulae of various modalities. They may also apply
foreign inference steps and query other drivers to invoke foreign reasoning tools.
The architecture of MixR is illustrated in Fig. 7.3.

Many reasoning tools, representations and visualisation aids in artificial intelli-
gence exist mostly in isolation, specialised in their specific domains. Bringing them
together in a simple, flexible and formal way, as in MixR, allows them to contribute
to the problem-solving/theorem-proving tasks. This better models what people do

7 Human-Like Computational Reasoning 137

in problem solving, it allows developers to easily design systems that are flexible
according to the needs of the end users, and it enables us to take advantage of the
existing powerful technology in a novel and sustainable way.

7.4 Accessible Diagrammatic Reasoning About Ontologies

One of our main motivating factors for computationally modelling reasoning with
diagrams has been the fact that people use them and find them intuitive and accessi-
ble. The barrier to entry for explaining problems and their solutions is lower using
diagrams than symbolic logical formalisms. One domain that routinely requires
some level of formal reasoning but involves a range of different stakeholders
is ontologies. Ontologies are a common knowledge representation paradigm, but
they frequently have accessibility issues due to unfamiliarity of domain experts
with symbolic notations (e.g., DL, OWL). Some visualisation facilities have been
implemented [14, 22], but their focus is expressing and editing ontologies rather
than reasoning with and about ontologies.

Ontologies represent knowledge in a domain with definitions of concepts, their
properties and relations between concepts. Reasoning with ontologies is done with
a justification algorithm [19] that selects a minimal set of axioms responsible
for entailment. There is empirical evidence [12] that confirms that stakeholders
find it difficult to get from the justification to the explanation of the reasons
for the particular selected axioms entailing the problem. Thus, a number of
symbolic theorem provers have been implemented, which construct a symbolic
explanation for justification–entailment pair. Unfortunately, these proofs have the
same inaccessibility issues as before: domain experts are not familiar with their
symbolic notations.

In order to address the inaccessibility of symbolic notations, we devised a
visual theorem prover, iCon, that uses a visual language to represent and reason
with ontologies.9 The input to iCon is a justification–entailment pair expressed
as diagrammatic axioms (justifications) and a diagrammatic theorem (ontology
entailment). The output is an interactively constructed proof using applications of
diagrammatic inference rules that explains how the entailment follows from the
axioms.

The visual language of iCon, concept diagrams [37], covers almost all of the
standard ontology language OWL 2. Empirical studies demonstrate the accessi-
bility of concept diagrams compared to competing diagrammatic and symbolic
notations [33]. Concept diagrams consist of curves (circles, as in Euler and Venn
diagrams) that represent ontology classes (they are sets), dots and spiders that

9This work was done during the Leverhulme Trust funded project “ARD: Accessible Reasoning
with Diagrams” in collaboration with Gem Stapleton, Zohreh Shams, Yuri Sato, Sean Mcgrath and
Andrew Blake.

138 M. Jamnik

Fig. 7.4 Example of a concept diagram

represent individuals in classes, and arrows that represent object properties. There
are also boundary rectangles to denote all individuals in the world, and shading
to place an upper bound on the cardinality of the sets. Complete formalisation of
concept diagrams is given in [38].

Figure 7.4 shows a concept diagram that has 2 bounding rectangles. Spatial
relationships between parts of the diagram convey information, for example, that
Person and Animal represent disjoint sets, since the two corresponding curves are
disjoint. We can also see that Helen is a Female person, due to the location of the
(red) dot labelled Helen. A dot connected by a line to another dot is called a spider,
and it signals that it is not clear which set an individual belongs to. For example,
in Fig. 7.4, Rex could be either a Cat or a Dog. The region outside of Other, Male
and Female is shaded, which means that there is no person who is neither a Female,
a Male nor Other. The dashed arrow ownsPet connects the dot Helen to Rex. This
means that Helen owns Rex as her pet, but she can own pets of other types too.
Unlike dashed arrows, solid arrows mean that the source is related to only the target.
So, the colours that an animal can have cannot be outside the set Colour. Together
with the arrow annotation ≥ 1, this means that all animals have at least one colour.

iCon consists of an inference engine and the graphical user interface. The
inference engine contains a collection of inference rules, applies inference rules
to diagrams and manages proofs. The inference rules can be either symbolic
(conjunction elimination or identity) or diagrammatic. The diagrammatic inference
rules come from the ontology community’s standard set of inference rules for
OWL 2 RL [27], introduced by the W3C in [43]. In order to construct a proof
for a justification–entailment pair, we equipped iCon’s inference engine with dia-
grammatic versions of the symbolic inference rules for OWL 2 RL. Diagrammatic
inference rules rewrite the diagrams representing the premises of a proof state
in order to make them identical to the goal of the proof state. In contrast to a
symbolic proof, which is typically inaccessible to domain experts, this results in
a diagrammatic proof, which is empirically evidenced to be more accessible [1, 33].
Figure 7.5 illustrates an example of such a diagrammatic inference rule. Reasoning
in ontologies most commonly involves entailments, that is, checking if the set of
axioms is consistent, coherent or for query answering. Thus, proofs will often be
about finding out why a set of axioms is inconsistent or incoherent so that the
ontology can be repaired. An example of both a symbolic and iCon’s diagrammatic
proofs of a theorem about inconsistency can be seen in [34].

7 Human-Like Computational Reasoning 139

Fig. 7.5 Example of iCon’s diagrammatic inference rule

Ontologies are frequently used in the real world by diverse stakeholders, so it
is paramount to make working with them accessible. Current symbolic reasoners
for ontologies provide only a minimal set of axioms for entailments without
explanations for these entailments or indeed lack of entailment. In contrast, iCon’s
diagrammatic proof provides not only an explanation for the entailment that exposes
the interaction between the minimal set of axioms, but also an accessible evidence
and clues for how to repair the ontology when it is found inconsistent or incoherent.
Thus, iCon can be effectively used for reasoning about and debugging of ontologies.

7.5 How to Choose a Representation

So far, we showed how diagrams can be used for formal reasoning, how archi-
tectures can be built to enable reasoning with diverse types of representations and
indeed tools, and how we can formally reason with diagrams about ontologies. But
the question remains: given a problem that we want to solve, how do we choose
the representation that is best suited for solving it and that is most appropriate for
the user who is trying to solve it? Cognitive science has firmly established that
choosing an effective representation can yield dramatic improvements in human
problem-solving performance [7, 20] and substantially enhance learning [6]. This is
what we are currently investigating in an interdisciplinary project on human-like
computing, which has Alan Bundy as one of its advisers.10 We are combining
artificial intelligence, mathematics and cognitive science to investigate human
cognitive abilities to find representations that suitably match problems, and the
process by which humans adapt or switch between representations. We are devising
a foundational theory and building computational models of the critical role that

10This work started during the EPSRC funded projects “How to (Re)represent it?” and “Automat-
ing Representation Choice for AI Tools” in collaboration with Peter Cheng, Daniel Raggi (also an
ex-DReaMer), Grecia Garcia Garcia, Aaron Stockdill, Holly Sutherland and Gem Stapleton.

140 M. Jamnik

(a)
1/4

3/4

1/3

2/3

1/4
1/4

1

Birds
Fl
yi
ng

bi
rd
s

Flying animals
A
ni
m
al
s

(b)

birds non-birds total
flying (2/3)(1/4) (2/3)(1/4)
non-flying 3/4− (2/3)(1/4)
total 1/4 3/4 1

(c)

Pr(b̄∩ f̄) = Pr(b̄)−Pr(b̄∩ f)

= Pr(b̄)−Pr(b∩ f)

= (1−Pr(b))−Pr(f |b)Pr(b)
= 3

4 − 2
3

1
4

)
= 7

12

Fig. 7.6 Bird probability example. (a) Geometric representation—the solution is the area of the

solid shaded region 3
4 −

(
2
3

) (
1
4

)
= 7

12 . (b) Contingency table representation—the solution is in

the shaded cell. (c) Bayesian representation

representations play in problem solving, and automating them in a new generation
of adaptive AI systems [30–32, 39].

To illustrate our approach, consider this problem in probability:

One quarter of all animals are birds. Two thirds of all birds can fly. Half of all flying animals
are birds. Birds have feathers. If X is an animal, what is the probability that it’s not a bird
and it cannot fly?

Here are three different ways one can go about solving this (see Fig. 7.6):

1. You could divide areas of a rectangle to represent parts of the animal population
that can fly and parts that are birds.

2. You could use contingency tables to enumerate in its cells all possible divisions
of animals with relation to being birds or being able to fly.

3. You could use formal Bayesian notation about conditional probability.

Which of these is the most effective representation for the problem? It depends;
the first is probably best for school children; the last for more advanced mathemati-
cians. How can this choice of appropriate representation be mechanised? We are
interested to find out:

• What are the formal mathematical and cognitive foundations for choosing an
effective representation of a problem?

• Can we develop new cognitive theories that allow us to understand the relative
benefits of different representations of problems and their solutions, including
taking into account individual differences?

• How can we automate an appropriate choice of problem representation for both
humans, taking into account individual differences, and machines to improve
human–machine communication?

7 Human-Like Computational Reasoning 141

• Can we build an AI tutoring system, aimed at mathematical problems, that
incorporates personalised representation choices and improves users’ abilities to
solve problems?

We distinguish between cognitive and formal properties of a representation, in
an approach that radically, but systematically, reconfigures previously descriptive
accounts of the nature of representations [11]. We use this to devise methods for
measuring competency in alternative representation use and also to engineer a
system to automatically select representations. Cognitive properties characterise
cognitive processes demanded of a particular representation (e.g., problem state
space characteristics; applicable state space search methods; attention demands of
recognition; inference operator complexity [6]). Formal properties characterise the
nature of the content of the representation domain (e.g., operation types like asso-
ciative or commutative, symmetries, coordinate systems, quantity or measurement
scales).

We devised a novel encoding for taxonomising formal and cognitive properties
of problems and representational systems [30, 32]. We catalogue formal properties
using templates of attributes that (currently) the developer of the system assigns
values to. The attributes encode the informational content of the question and a
representational system. Table 7.1 gives snippets from a formal property catalogue
for the above Birds problem stated in the natural language representation. The
colours code the importance of the property relative to the information content (top
to bottom in decreasing importance). Table 7.2 gives snippets of the catalogue of
formal properties for the Bayesian representational system (used in the solution in
Fig. 7.6c). Any representational system and problem expressed in it can be encoded
using this description language.

We built algorithms that automatically analyse these encodings for a given
problem (like the one in Table 7.1) with respect to candidate representational
systems (like the one in Table 7.2) in order to rank the representations, and
ultimately suggest the most appropriate one. This analysis is largely based on
correspondences between the properties of representational systems and their
relative importance for a given problem. For example, the correspondences
between the natural language formulation of the example and the Bayesian
one are translational/morphism-like pairs, such as ratio�real, given� |,
probability�Pr and intersection�∩.

Similarly to formal properties, we devised a catalogue of 9 critical cognitive
properties. They span spatial and temporal scales (icons to whole displays and
seconds to tens of minutes), numerous cognitive processes and the mapping of
information between symbols/expressions and concepts. The attributes of cognitive
properties characterise the cognitive cost, that is, the difficulty of using that
representational system for problem solving. We designed weighting functions to
compute overall values of the cognitive cost for each property: they are based on a
problem at hand, a typical user and utilise the taxonomy of formal properties.

To adjust cognitive costs from a typical user to individual’s abilities, we devised
a small but diverse set of user profiling tests. The measures extracted from these

142 M. Jamnik

Table 7.1 Formal properties of the Birds problem in its natural language representation (note
colour)

Kind Value

Error allowed 0

Answer type Ratio

Primitives Probability, and, not

Types Ratio, class

Patterns :ratio of :class are :class, probability of :class and :class

Facts Bayes’ theorem, law of total probability, unit measure, additive
inverse, . . .

Tactics Deduce, calculate

Primitives One, quarter, all, animals, birds, two, thirds, can, fly, half, flying, X,
animal, probability, cannot

Related primitives Times, divided_by, plus, minus, equals, union, intersection, proba-
bility, zero, . . .

of primitives 67

of distinct primitives 31

of statements 5

Primitives Feathers

Related primitives Beast, animate, creature, wing, aviate, flock, fowl, dame, carnal,
being, fauna, . . .

Table 7.2 A section of formal properties for Bayesian representational system

Kind Value

Types Real, event

Primitives Ω , ∅, 0, 1, =, +, −, ∗, ÷, ∪, ∩, \, ¯ , Pr, |
g-complexity Type-2

Facts Bayes’ theorem, law of total probability, non-negative probability, unit
measure, sigma additivity, commutativity . . .

Tactics Rewrite, arithmetic calculation

i-complexity 3

Rigorous TRUE

profiles enable us to scale the level of contributions of each cognitive property to
the overall cost of a representational system for an individual. We operationalised
the encoding of cognitive properties by automating heuristics that encode user
preferences and level of expertise to influence the ranking of potential candidate
representational systems.

In this chapter, we are laying the foundations for understanding formal and
cognitive properties that affect the choice of representations in problems solving.
Our prototype implementations of the algorithms that carry out this analysis show
that it is possible to model such processes computationally. We are now applying
these foundations in applications such as personalised AI tutoring systems.

7 Human-Like Computational Reasoning 143

7.6 Future Directions

The overarching theme of the work reported here, and common to many past
and present DReaM group members, is about computationally modelling human
reasoning. The enduring legacy of the DReaM group and our common interests
mean that in a number of these projects we continue with existing and establish
new collaborations with the past and present DReaMers. For example, Alan Bundy
is serving on the advisory board of my project about representation choice and AI
tools, and Alison Pease is helping us with her HRL system [29] in our mathematical
education project.

The aim of my work is to make AI systems more human-like in the way they
interact with users, in the representations that they choose for this interaction,
in the methods that they employ to solve problems and in the explanations that
they provide alongside their solutions. There are many future directions, especially
with respect to fully automating some of these processes and scaling them up to
general real-world AI systems. In particular, we are currently developing automated
methods for a diagrammatic reasoning system to discover new, intuitive solutions
to mathematical problems. We are also investigating how we can make theorem
provers construct proofs with methods at a level of abstraction and with a level
of automation that human mathematicians find appealing. Furthermore, we are
marrying statistical with symbolic and knowledge-based approaches to machine
learning in order to enhance machine-oriented with human-oriented inference. The
results are AI systems that produce solutions from fewer examples and with better
explanations of the solutions. There are many applications of this work, but we
are focusing on education and developing a new generation of adaptive AI tutoring
systems, and on medicine and building integrative data models for clinical decision
support systems in personalised cancer medicine.

There is currently much excitement about artificial intelligence and its impact
on society. Most of the work that is generating this excitement is due to impressive
results of statistical machine learning. However, these machine-oriented methods
produce solutions that often lack explanations and use representations that are
inaccessible to humans. My research is motivated by human reasoning, so I employ
symbolic learning and knowledge-based reasoning as well as diverse representations
to enhance this learning and inference. Interdisciplinarity and collaboration have
always been at the centre of the DReaM group research ethos, and they have
therefore undoubtedly shaped me and my work. Both are key to advancing the
field and building a new generation of AI systems that are transparent and have
a good cognitive model of the user to be adaptable and to produce explanations
understandable to humans.

Acknowledgments I am thankful to all of my collaborators in the work reported here, including
Alan Bundy, Ian Green, Matej Urbas, Gem Stapleton, Zohreh Shams, Yuri Sato, Sean Mcgrath,
Andrew Blake, Peter Cheng, Daniel Raggi, Aaron Stockdill, Grecia Garcia Garcia and Holly
Sutherland.

144 M. Jamnik

References

1. Alharbi, E., Howse, J., Stapleton, G., Hamie, A., Touloumis, A.: Visual logics help people: An
evaluation of diagrammatic, textual and symbolic notations. In: IEEE Symposium on Visual
Languages and Human-Centric Computing, pp. 255–259. IEEE (2017)

2. Anderson, M., Meyer, B., Oliver, P. (eds.): Diagrammatic Representation and Reasoning.
Springer (2001)

3. Baker, S., Smaill, A.: A proof environment for arithmetic with the omega rule. In: J. Calmet,
J. Campbell (eds.) Integrating Symbolic Mathematical Computation and Artificial Intelligence,
no. 958 in Lecture Notes in Computer Science, pp. 115–130. Springer (1995)

4. Barker-Plummer, D., Etchemendy, J., Liu, A., Murray, M., Swoboda, N.: Openproof: A flexible
framework for heterogeneous reasoning. In: G. Stapleton, J. Howse, J. Lee (eds.) Diagrams,
Lecture Notes in Artificial Intelligence, vol. 5223, pp. 347–349. Springer (2008)

5. Chandrasekaran, B., Glasgow, J., Narayanan, N. (eds.): Diagrammatic Reasoning: Cognitive
and Computational Perspectives. AAAI Press/MIT Press, Cambridge, MA (1995)

6. Cheng, P.: Electrifying diagrams for learning: principles for effective representational systems.
Cognitive Science 26(6), 685–736 (2002)

7. Cheng, P., Lowe, R., Scaife, M.: Cognitive science approaches to diagrammatic representa-
tions. Artificial Intelligence Review 15(1-2), 79–94 (2001)

8. Gardner, M.: Mathematical Circus. Vintage, New York (1981)
9. Gardner, M.: Knotted Doughnuts and Other Mathematical Entertainments. W.H. Freeman and

Company, New York (1986)
10. Hammer, E.: Logic and visual information. CSLI Press, Stanford, CA (1995)
11. Hegarty, M.: The cognitive science of visual-spatial displays: Implications for design. Topics

in Cognitive Science 3, 446–474 (2011)
12. Horridge, M., Parsia, B., Sattler, U.: Lemmas for justifications in OWL. In: 22nd International

Workshop on Description Logics, vol. 477. CEUR-WS.org (2009)
13. Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS JCM 8, 145–194 (2005)
14. Itzik, N., Reinhartz-Berger, I.: SOVA - A tool for semantic and ontological variability analysis.

In: Joint Proceedings of the CAiSE 2014 Forum and CAiSE 2014 Doctoral Consortium, vol.
1164, pp. 177–184. CEUR-WS.org (2014)

15. Jamnik, M.: Mathematical Reasoning with Diagrams: From Intuition to Automation. CSLI
Press, Stanford, CA (2001)

16. Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic arguments.
Journal of Logic, Language and Information 8(3), 297–321 (1999)

17. Jamnik, M., Kerber, M., Pollet, M.: Automatic learning in proof planning. In: F. van Harmelen
(ed.) Proceedings of 15th ECAI, pp. 282–286. European Conference on Artificial Intelligence,
IOS Press (2002)

18. Janicic, P.: GCLC - A tool for constructive Euclidean geometry and more than that. In:
A. Iglesias, N. Takayama (eds.) Mathematical Software - ICMS, Lecture Notes in Computer
Science, vol. 4151, pp. 58–73. Springer (2006)

19. Kalyanpur, A.: Debugging and repair of owl ontologies. Ph.D. thesis, The University of
Maryland (2006)

20. Kotovsky, K., Hayes, J.R., Simon, H.A.: Why are some problems hard? Cognitive Psychology
17, 248–294 (1985)

21. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge
University Press, Cambridge, UK (1976)

22. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semantic Web
7(4), 399–419 (2016)

23. Melis, E.: A model of analogy-driven proof-plan construction. In: C. Mellish (ed.) Proceedings
of the 14th IJCAI, pp. 182–189. International Joint Conference on Artificial Intelligence,
Morgan Kaufmann, San Francisco, CA (1995)

24. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS. In: TACAS,
LNCS, vol. 4424, pp. 519–522. Springer (2007)

7 Human-Like Computational Reasoning 145

25. Nelsen, R.: Proofs without Words: Exercises in Visual Thinking. Mathematical Association of
America, Washington, DC (1993)

26. Nelsen, R.: Proofs without Words II: Exercises in Visual Thinking. Mathematical Association
of America, Washington, DC (2001)

27. The OWL2 web ontology language. URL https://www.w3.org/TR/owl2-direct-semantics/.
Retrieved Dec 2019

28. Paulson, L.: Isabelle: A generic theorem prover. No. 828 in Lecture Notes in Computer Science.
Springer (1994)

29. Pease, A.: A computational model of Lakatos-style reasoning. Ph.D. thesis, Edinburgh
University, UK (2007)

30. Raggi, D., Stapleton, G., Stockdill, A., Jamnik, M., Garcia Garcia, G., C.-H. Cheng, P.: How to
(Re)represent it? In: 32th IEEE International Conference on Tools with Artificial Intelligence,
pp. 1224–1232. IEEE (2020)

31. Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H., C.-H. Cheng, P.:
Dissecting representations. In: A. Pietarinen, P. Chapman, L. Bosveld-de Smet, V. Giardino,
J. Corter, S. Linker (eds.) Diagrams: Diagrammatic Representation and Inference, LNCS, vol.
12169, pp. 144–152. Springer (2020)

32. Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H., Cheng, P.: Inspection
and selection of representations. In: C. Kaliszyk, E. Brady, A. Kohlhase, C. Sacerdoti-Coen
(eds.) Intelligent Computer Mathematics (CICM), Lecture Notes in Computer Science, vol.
11617, pp. 227–242. Springer (2019)

33. Sato, Y., Stapleton, G., Jamnik, M., Shams, Z.: Human inference beyond syllogisms: an
approach using external graphical representations. Cognitive Processing 20(1), 103–115 (2019)

34. Shams, Z., Jamnik, M., Stapleton, G., Sato, Y.: iCon: A diagrammatic theorem prover for
ontologies. In: F. Wolter, M. Thielscher, F. Toni (eds.) Principles of Knowledge Representation
and Reasoning: Proceedings of the 16th International Conference, KR 2018, pp. 204–205.
AAAI Press (2018)

35. Shin, S.: The Logical Status of Diagrams. Cambridge University Press, Cambridge, UK (1995)
36. Siekmann, J., Benzmüller, C., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Franke, A.,

Horacek, H., Kohlhase, M., Meier, A., Melis, E., Moschner, E., Normann, I., Pollet, M., Sorge,
V., Ullrich, C., Wirth, C.P., Zimmer, J.: Proof development with Ω . In: A. Voronkov (ed.) 18th
Conference on Automated Deduction, no. 2392 in Lecture Notes in Artificial Intelligence, pp.
144–149. Springer (2002)

37. Stapleton, G., Compton, M., Howse, J.: Visualizing OWL 2 using diagrams. In: IEEE
Symposium on Visual Languages and Human-Centric Computing, pp. 245–253. IEEE (2017)

38. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: Formalizing concept
diagrams. In: Visual Languages and Computing, pp. 182–187. Knowledge Systems Institute
(2013)

39. Stockdill, A., Raggi, D., Jamnik, M., Garcia Garcia, G., Sutherland, H., Cheng, P., Sarkar,
A.: Correspondence-based analogies for choosing problem representations. In: C. Anslow,
F. Hermans, S. Tanimoto (eds.) IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2020, pp. 1–5. IEEE (2020)

40. Urbas, M., Jamnik, M.: Diabelli: A heterogeneous proof system. In: B. Gramlich, D. Miller,
U. Sattler (eds.) IJCAR, Lecture Notes in Artificial Intelligence, vol. 7364, pp. 559–566.
Springer (2012)

41. Urbas, M., Jamnik, M.: A framework for heterogeneous reasoning in formal and informal
domains. In: T. Dwyer, H. Purchase, A. Delaney (eds.) Diagrams, Lecture Notes in Computer
Science, vol. 8578, pp. 277–292. Springer (2014)

42. Urbas, M., Jamnik, M., Stapleton, G.: Speedith: A reasoner for spider diagrams. Journal of
Logic, Language and Information 24(4), 487–540 (2015)

43. Reasoning in OWL 2 RL and RDF graphs using rules. https://www.w3.org/TR/owl2-profiles/#
Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules. Retrieved Dec 2019

https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Chapter 8
From Mathematical Reasoning to Crises
in Different Languages: The Application
of Failure-Driven Reasoning to
Ontologies and Data

Fiona McNeill

Abstract Reasoning about failure has been a central pillar of DReaM Group
research for a long time. But failure happens not just in maths but in all kinds of
spheres. While failure can—and often does—occur during human communication,
people are actually pretty good at identifying and correcting errors, and at com-
municating effectively even when they do not completely understand one another or
have a different world view. But the ability to facilitate automated communication—
for example, in peer-to-peer systems, or through automated data identification and
integration—is difficult because misalignment and heterogeneity are common. In
this chapter, I discuss my work over the years within the DReaM group, looking at
different aspects of this problem.

8.1 Introduction

I first drifted into the DReaM group during my masters, when I was one of six
students (with fellow future DReaMers Alison Pease and Dan Winterstein) taking
Alan Bundy’s Advanced Automated Reasoning course. Although at the time we
were terrified by the grown up things he made us do (lead classes, give our own
opinions on published work that had been done by real researchers, etc.), it was an
excellent introduction to research life. I did my MSc dissertation with Alan and
Jacques Fleuriot looking at dependencies in theorem proving to help determine
the impact of making changes, from which I chiefly remember how long I spent
developing perfect colours to highlight different kinds of dependencies. I then
swanned off to Fiji and Australasia for a year off, leaving Alan to find me some
funding to do a PhD. I got his email confirming his success in this while drinking
cocktails in a beach bar in Ko Chang, Thailand, and then made my leisurely way

F. McNeill (�)
University of Edinburgh, Edinburgh, UK
e-mail: f.j.mcneill@ed.ac.uk

© Springer Nature Switzerland AG 2021
G. Michaelson (eds.), Mathematical Reasoning: The History and Impact of the
DReaM Group, https://doi.org/10.1007/978-3-030-77879-8_8

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77879-8_8&domain=pdf
mailto:f.j.mcneill@ed.ac.uk
https://doi.org/10.1007/978-3-030-77879-8_8

148 F. McNeill

back overland through Asia and Europe to take up my PhD position in September
2001, settling into my South Bridge office about a year before it burnt down.

Although my inclination to travel never went away (I once got to a conference
in Vancouver by taking the train from Edinburgh to Vladivostok, sailing to Japan,
and then flying on from Tokyo), once ensconced in the DReaM group, I determined
to remain and—though moving between different DReaM group sites, taking up
a lectureship at Heriot-Watt before eventually moving back to the University of
Edinburgh for a Readership—I always have.

Two key focuses that have underpinned a lot of what has been achieved within
the DReaM group are:

• The application of failure-driven reasoning, in which reasoning about the circum-
stances around some kind of failure can be used to analyse potential problems in
representation or reasoning

• The tension between representation and reasoning, where the richer and deeper
the representation used to express information, the more difficult it is to reason
over that information.

My research over the past 20 years has been rooted in these ideas and has focused
on taking them outside the sphere of mathematical reasoning and into the world of
language and communication.

In this chapter, I discuss the various different ways in which I have attempted
to do this—each building on the last—and the domains to which this has been
applied. I discuss the power—and also the limitations—of applying mathematical
reasoning techniques in the complex and messy world of human language. In
Sect. 8.2, I discuss how these approaches can help planning agents detect and
correct ontology mismatches that are causing plan execution failure. In Sect. 8.3,
I explain how some of the techniques developed in that work were integrated into
a system to allow agents in a peer-to-peer network to map their abilities and goals
onto interaction protocols. In Sect. 8.4, I take the structural and semantic matching
techniques involved in that project and apply them to the automatic and semi-
automatic rewriting of failed queries, and discuss the application of this in a crisis
response and management environment. In Sect. 8.5, I consider the application of
such techniques within and between specific domains, in which language is used in a
domain-specific way, and between different natural languages. Finally, in Sect. 8.6, I
consider where I will be applying this approach in future, and conclude this chapter.

8.2 Agents Reasoning About Their Ontologies

“To learn, a learner needs to formulate plans, monitor the plan execution to detect violated
expectations, and then diagnose and rectify errors which the disconfirming data reveal”.
Frederick Hayes-Roth (Hayes-Roth, 1983)

The first instantiation of these ideas was in my PhD. The central idea—initially
from Alan and then developed between the two of us and my second supervisors,

8 From Mathematical Reasoning to Crises in Different Languages 149

first ChrisWalton and thenMarco Schorlemmer—was that representation is a fluent.
Just as in mathematical reasoning, the way in which representation is used has
a profound effect on what can be said and proved, so too in the language-based
world of ontologies. By considering representation to be fluid, we are interested
in changes and mismatches not just in the facts themselves but in the language in
which the facts are expressed and in the range of things that can be expressed in
a given formalisation. There has been a significant amount of work done in the
field of ontology matching (see, for example, [1]), but this mostly focuses on the
semantics of terms as defined through is—a hierarchies, rather than looking at the
language of the underlying representation. We were interested in the pragmatic
question of how an entity using an ontology (i.e., a virtual agent) can use that
ontology to successfully navigate its world and achieve its goals even though its
ontology is unlikely to be a perfect representation of that environment. Because
our goals are pragmatic, action is only instigated by failure—in our case, failure
of plans to execute correctly that appeared to be workable—and repair is only
considered necessary to the extent that it allows a replay of the plan execution
so that that particular failure no longer occurs. We particularly focused on the
domain of peer-to-peer agents, where plans are based on communication with other
agents, and failure happens either when that communication breaks down or when,
having assumed that the communication is successful, the expected outcome of the
communication does not transpire.

The key differences between our approach and standard ontology matching are
that:

• Ontology matching focuses on matching two different ontologies together,
whereas we were interested only in one ontology—that of our agent—and how
well it helps that agent to navigate its world. Feedback in our context came from
interaction with other agents in a peer-to-peer system, but the same philosophy
could apply to robots learning from the physical world, for example. In our world,
an ontology is good enough if it allows the agent to achieve its goals within its
domain.

• Most often, ontology matching creates maps between ontologies, leaving the
ontologies themselves unchanged. We were interested in diagnosing and then
implementing necessary changes to overcome obstacles, based on feedback
around failure.

• We were interested in minimal matching and repair, concerned only with
mismatches that are responsible for some kind of failure and anything else in the
ontology that is directly affected by the repaired mismatch. As well as making
the matching more tractable, this also has the advantage of requiring that only
minimal parts of an ontology are shared, thus allowing for significant privacy.

• Since we were concerned with agent communication, we needed to think
about semantic matching such as is commonly done in ontology matching—for
example, when one agent uses the term person and the other uses the term man

150 F. McNeill

are they talking about the same thing1? But our main focus was on mismatches
in the representation language in which the ontology is written, which is not
addressed in standard ontology matching.

Here, ORS—the Ontology Repair System—that we developed to address this
problem is briefly described.

We are concerned with the resolution of the problem of ontological mismatch
within a planning context, such as would be necessary for an agent to orchestrate
Semantic Web services to reach a goal. An agent forms plans to achieve a goal based
on its understanding of the domain and then attempts to execute these plans through
communication with other agents. Planning in complex and dynamic environments
is very difficult because any incomplete, incorrect, or out-of-date information
can cause an inexecutable plan to be developed because the environment is
changing while planning is being performed. However, by adopting our approach
to ontological repair, these cases of plan execution failure can be considered to
be opportunities to learn more about the domain through repairing a mismatched
ontology. Executing plans, in our environment, is done by interacting with agents
who can perform the necessary tasks of the plan: for example, buying a ticket is
performed by successfully interacting with a ticket-selling agent. Information about
the cause of failure is extracted from observation of the communication surrounding
plan failure, augmented by further communication with the other agents involved.
Once the point of failure has been located, repair techniques are implemented to fix
the problem, and a new plan is developed using the updated ontology. This plan is,
in general, more likely to succeed than the previous plan. This procedure is repeated
until the goal is successfully reached, or until it becomes impossible to form a plan
to achieve the goal from the updated ontology. Because the point is for an agent to
update its ontology to better match the specific ontology of the agent it is currently
interacting with, this does not represent a move towards a better ontology in any kind
of global sense but rather an ability to interact correctly in the specific situation it is
currently in. Further interaction with other agents may lead to repairs being undone
or different changes made. Repair is used retrospectively rather than proactively.
That is, ORS does not assume that unexpected communications are problematic
and immediately investigate; instead, it stores unexpected communications—which
we term surprising questions—and carries on regardless, only revisiting these
surprising questions as part of the diagnostic process if failure occurs at some
subsequent point. A surprising question is anything that does not completely align
with a communication the agent expected to receive at a given point.

We consider that there are three essential elements to creating such a dynamic
ontology repair system:

1As an aside, the brilliant Invisible Women by Caroline Criado Perez [2] is all about how we almost
always do make this assumption—hence women being almost invisible in the data, with all kinds
of negative consequences.

8 From Mathematical Reasoning to Crises in Different Languages 151

• The ability to link the relevant information about the underlying ontology to the
plan

• The ability to use this information to diagnose the exact source of the problem
where possible, or at least to narrow it down

• The ability to select and apply appropriate techniques for altering the ontology

We focused on agents that were using first-order ontology representations. This
is more expressive than most ontological representations, but a richer representation
is necessary for agents forming complex plans. The tension between a rich
representation—necessary for representing complex relationship between objects
and individuals—and a representation that can be reasoned over efficiently—
necessary for complex planning—is discussed in [3]. Our solution was to use KIF, a
first-order ontology language, for representing agents’ knowledge and then translate
into PDDL, a simplified representation, for developing plans. We developed the
notion of pseudo-variables to create a closed-world representation of an open-world
environment. Pseudo-variables are objects that are presented to the planner to be
constants, thus making plan development tractable, but which were interpreted
within the ontology as variables.

We defined four kinds of mismatches—both abstractions (where we need to be
more general) and refinements (where we need to be more specific), based on the
abstractions defined in [4]:

1. Predicate abstraction (conversely, predicate refinement), where predicate
names are matched in some uniform way: e.g., (Bottle?X), (Cup?X) map
onto (Container?X)

2. Domain abstraction (conversely, domain refinement), where constants and
function symbols are matched in some uniform way: e.g., (Prime 3), (Prime 5)
map onto (Prime Oddnumber)

3. Propositional abstraction (conversely, propositional refinement), where some
or all of the arguments to predicates are dropped: e.g., (Abelian GroupA),
(Abelian GroupB) map onto (Abelian)

4. Precondition abstraction (conversely, precondition refinement), where precon-
ditions are dropped, e.g.: (Has Ticket Me) → (Can-Travel Me) maps onto
(Can-Travel Me)

All potential changes to first-order terms or to planning rules formed of first-
order pre- and postconditions can be matched by combining these repairs. In
[5], we demonstrate that ORS will always diagnose a specific mismatch to be
repaired. In most cases, this is a precise and correct diagnosis, though in some
cases it is a guess at the most likely cause. ORS then attempts to implement
a repair of the mismatch. In the case of abstraction—i.e., when detail needs to
be removed—this can be done automatically. Automatic repair is also sometimes
possible for refinement—when detail needs to be added—because full information
of the missing details can be gleaned from agent communication. However, it is
often not possible to make such repair automatically. For example, it is not difficult
to diagnose precondition refinement—essentially, that a precondition is missing—

152 F. McNeill

but it is usually impossible to determine automatically what this. Likewise, in the
case of predicate refinement—where an argument needs to be added—it is possible
to add an argument of the correct type automatically and instantiate it correctly for
the specific instantiation where the mismatch was diagnosed, but if this predicate
appears at other places in the agent’s ontology, then it is not usually possible to
determine automatically how to instantiate all the other instances.

Evaluating ORS across seven different ontologies containing 325 different
mismatches, it correctly diagnosed 70.8% of the relevant mismatches—that is,
mismatches that had some relevance to an automated system (so ignoring changing
in commenting, for example) and mismatches that could be diagnosed in a planning
environment (e.g., excluding the removal of instances from an ontology). The
additional 29.2% of the mismatches highlighted extensions that could be made to
improve the functionality of ORS.

8.3 Into Ontology Matching: The Open Knowledge Project

After my PhD, I spent a few months working with Alan, Harry Halpin, and Ewen
Klein on a short project looking at comparing different versions of classic children’s
stories by extracting first-order terms from natural language and matching them [6]
(this proved only to be feasible for very simple narratives) and then started work
on the EU-funded Open Knowledge Project. The project was coordinated by Dave
Robertson (a former DReaMer) and involved a wide range of brilliant people, some
of whom became long-term collaborators and friends: Fausto Giunchiglia in Trento,
Frank van Harmelen in Amsterdam (both former DReaMers), Carles Sierra and
Marco Schorlemmer in Barcelona, Enrico Motta at the Open University and, as
well as Dave, Paolo Besana and Nadine Osman in Edinburgh. Southampton, led by
Nigel Shadbolt, also brought Tim Berners-Lee into the project—a fun colleague for
my first job. Unfortunately, he was too busy to attend a single meeting of the project.
This did not go down brilliantly—in the words of our EU contact, if you advertise a
concert with Pavarotti, you had better produce him at some point or people will go
away disappointed . . .

Alan helpfully encouraged Dave to give me a job by suggesting Dave to take
me along to Trento for a planning meeting when the proposal was being developed,
and with both my former PhD second supervisors on the project and the central
involvement of Fausto, on whose work much of my PhD was based, it was an
obvious next step for me. Although I was based in Edinburgh throughout the project,
I worked almost exclusively with Trento—primarily with Fausto and his group on
matching, and also with Maurizio Marchese on Emergency Response, one of the
two application domains.

The Open Knowledge project focused on facilitating interaction between peers in
a Semantic Web environment. This was done by providing interaction models that
could be shared and reused, and detailed how interactions with certain outcomes
would unfold. Peers could choose to take on roles in the interactions if their

8 From Mathematical Reasoning to Crises in Different Languages 153

skills/knowledge/abilities were aligned with the preconditions of the actions that
role had to take, and the outcomes of the role were aligned with their goals.
Preconditions and outcomes were expressed in first-order logic, so in order to
determine the suitability of a role, peers needed a way to measure the closeness of
first-order terms: their abilities and goals mapped to those of the role. The challenge
for the matching part of the project was to develop a system that would take in first-
order terms and output a map between those terms and a numerical judgement of
how similar they were.

For this, we developed the Structure-Preserving Semantic Matching (SPSM)
algorithm [7]. This was built on top of the S-Match system [8], an ontology
matching system developed by Fausto’s group in Trento. First-order terms were
represented as trees, and the matching problem was broken into two steps: node
matching, performed by S-Match, and treematching, which takes the results of node
matching as input and then uses a tree-edit distance (TED) algorithm to measure
the distance between the trees. This produces two outputs: (i) a map between the
two terms, so that the agent can understand how to interpret the requirements and
outcomes of the role in terms of its abilities and goals; (ii) a score in [0 1] indicating
the similarity. This allows an agent to judge whether its map to the role is good
enough for it to want to go ahead with it. It also allows an agent to communicate
to other agents how well it will be able to perform a role, and they can then decide
whether they view it as a suitable collaborator for the given interaction model.

For example, consider an agent that is attempting to get information about
wine—it wants to know about region, country, price, colour, and number of bottles.
It finds an interaction model that involves exchanging information about wine, but
it is ordered slightly differently. Figure 8.1 shows how this might be mapped.

SPSM calculates the cost of moving from one tree to another, considering the
cost of the node mapping returned by S-Match and structural manipulation returned
by the TED. Figure 8.2 shows the costs associated with this.

Fig. 8.1 Two approximately matched web services represented as trees: T1: get wine (Region,
Country, Colour, Price, Number of bottles) and T2: get wine (Region (Country, Area), Colour,
Cost, Year, Quantity). Functions are in rectangles with rounded corners; they are connected to
their arguments by dashed lines. Node correspondences are indicated by arrows

154 F. McNeill

Fig. 8.2 The correspondence between abstraction operations, tree-edit operations, and costs

The similarity between trees is calculated by considering the cost of moving from
one to the other, as calculated in Equation 8.1.

Cost = min
∑

i∈S

ki ∗ Costi, (8.1)

where S stands for the set of the allowed tree-edit operations; ki stands for the
number of i(th) operations necessary to convert one tree into the other, and Costi
defines the cost of the i(th) operation. Our goal here is to define the Costi in a way
that models the semantic distance.

We exploit the following equation to convert the distance produced by a tree-edit
distance into the similarity score:

T reeSim = 1 − Cost

max(T1, T2)
, (8.2)

where Cost is taken from Eq. 8.1 and is normalised by the size of the biggest tree.
Note that for the special case of Cost equal to∞, TreeSim is estimated as 0. Finally,
the highest value of TreeSim computed for CostT 1=T 2, CostT 1≤T 2 and CostT 1≥T 2
is selected as the one ultimately returned. For example, in the case of example of
Fig. 8.1, when we match T 1 with T 2, this would be 0.62 for both CostT 1=T 2 and
CostT 1≤T 2.

Beyond the Open Knowledge project, the SPSM algorithm has been used in
many contexts. A significant extension was to integrate it with evaluations of trust to
provide algorithms for determining the best peer to interact with based on both their
skills (evaluated by SPSM) and their reliability [9]. This integrated work was used,
for example, to rank moderators in online sports sites, in supplier management, and
in finding good sales managers.

8 From Mathematical Reasoning to Crises in Different Languages 155

8.4 Sharing Knowledge in Crises: Failure-Driven Query
Rewriting

The fundamental idea of SPSM—determining similarity of structured semantic
terms in a format that can be translated into trees—is fairly general, and over the
next few years, I developed the concept in different domains. Alan and I had a few
year-long grants after the Open Knowledge project, some with him as PI, some
with me as PI, and some with him pretending to be PI for grants I wrote because
of stringent EPSRC rules against PIs funding themselves from research grants. In
2013, I made the biggest move of my academic life—seven miles west to Heriot-
Watt University in the Pentland hills. I took this research with me and developed it
over the years into the basis of an approach to dynamic querying during crises.

Fast, effective data sharing is a requirement in many fields—for example, during
crisis situations, in online retailing, and many Semantic Web applications. This will
often take the form of queries from one organisation being sent to data sources
belonging to other organisations. Automated query answering is a well-studied field.
But successful querying of a data source depends on a good understanding of that
data source, thereby ensuring that the schema and the data of the query correctly
align with the schema and data of the queried data source. If data querying is part
of an automated process, such knowledge depends on being able to anticipate in
advance exactly what data sources will be relevant and knowing accurately what the
schema and data representations of that source will be at the time of querying. If
such knowledge is possible, then effective communication is best addressed by pre-
alignment of data sources; in an ideal situation, these data sources would even use
the same fixed vocabulary for easy integration. However, in the general case, such
an approach is unrealistic. In a highly dynamic environment, it is usually not valid
to assume we will know, in advance, exactly with whom we will need to interact
or exactly what the context of this interaction will be. Assuming so precludes the
possibility of dynamic interaction with new organisations, not anticipated at design
time, and of interacting with known organisations that have updated or altered their
data in some way. While pre-alignment is desirable where possible, depending only
on this enormously limits the possible interactions during the response.

I addressed the problem through the development of the CHAIn (Combining
Heterogeneous Agencies’ Information) system [10], which built on the structural-
semantic matching of the SPSM algorithm and applied it to query rewriting. It can be
used by the owner of a data source to interactively formulate appropriate responses
to incoming queries, even when these queries fail to match the data source at the
schema level and/or the data level.2

CHAIn has the capability to perform in a fully automated manner and send
responses ranked purely through automated matching. But it can also be used inter-

2A mismatch at the schema level is one where the structure of the data differs: for example, the
columns of a database are in a different order. A mismatch at the data level is one where the
schemas match at this particular point, but the specific data differs.

156 F. McNeill

actively, with humans employed by the data owners filtering the automated ranking
in order to return the best options. This is more expensive than full automation
but has the advantage of providing context to matching that would otherwise be
context-free. There is a lot of knowledge and intuition within institutions about how
specific terminology is used locally and what aspects of data are crucial for specific
tasks, and this local knowledge is hard or impossible to encode in a data source.
Because of this innate unformalised knowledge, however high quality the automated
matching is, better results are achieved with some input from humans who have
this knowledge, and CHAIn then acts as a tool for fast, efficient human interaction
with large data sources. The choice whether to run CHAIn fully automatically or
interactively would depend on the task: whether speed or precision is preferred,
whether there are suitably qualified humans available, etc.

In many (or most) cases, there will not be a single entry in the target data source
that provides an exact match for the incoming query; it will often be the case that
there are many approximate matches. Matches in CHAIn receive a numerical score
based on the SPSM algorithm, and all matches that pass a given threshold are
returned to the human user, ranked according to score. Effective ranking is essential;
the task of the human is made tractable by the automated system returning a small
number of highly relevant responses appropriately ranked, so that the human user
can quickly hone in on the best response. If CHAIn is operating fully automatically,
the highest ranked match is assumed to be the correct one.

The lifecycle of CHAIn is as follows:

0. The schemas of the target organisation D are extracted and translated into first-
order terms, Df ol = d1, d2,, dn, where n is the number of terms in the
dataset. This will be done for every dataset the target organisation owns. This
happens offline when CHAIn is installed locally. The rest of the process of
CHAIn is triggered by an incoming query failing.

1. Once a failed query Q is sent to CHAIn, CHAIn extracts a first-order term, Qf ol

from the query.
2. The predicate P of this first-order term is extracted and used to narrow down the

datasetsD of the target organisation to a small subset of dataNDS, and their cor-
responding representations in first-order terms, nds1, nds2,, ndsm,∀ndsx ∈
Df ol,m ≤ n, that are potentially relevant.

3. Qf ol is sent pairwise with all dxf ol, x = [1, . . . , n] to the Structure-Preserving
Semantic Matching algorithm (SPSM). SPSM determines mappingsMx between
each pair and gives them a score Sx ∈ [0 1]. If Sx > T , where T is a
given threshold ∈ [0 1], SPSM returns a potential match PMx , where PMx =
{ndsx,Mx , Sx}.

4. The returned matches are ordered according to their scores Sx . If desired, these
results can be passed to a human in the target organisation, who may reorder the
list and reject some or all of the proposed matches, to create a new list L. This
results in a list L of ranked potential matches to Qf ol .

5. The potential matches in L are rewritten into queries based on the format of the
original queryQ and sent one by one to datasets. For each queryQx that returns a

8 From Mathematical Reasoning to Crises in Different Languages 157

set of responses Rx , a list containing Mx and Rx is added to a list R of responses
for the querying organisation.

6. Queries derived from L that fail to return a response are removed from L and
returned to CHAIn for rewriting mismatches at the data level. If these exceed the
threshold T , they are either added automatically to L or again sent to a human if
required and added to L on the human user’s approval.

7. The list L of results is returned to the querying organisation.

While the potential application of this is pretty general, my main interest in its
application was within the crisis management domain. This is a domain particularly
suited to this approach as, although extensive pre-event preparedness is essential,
crisis events are characterised by their unpredictability, and layering a dynamic
response to unexpected events, including engaging with unexpected partners, on top
of pre-crisis planning is always necessary. It is extremely common for post-disaster
reports to highlight a failure to share data effectively: crucial information that would
have altered key decisions was out there but was not with the decision-makers at the
crunch moment. This is because it is extremely difficult to source and consume
any and all potentially relevant data, in part because this data is heterogeneous on
multiple levels, making it hard to use automated methods to identify it. This is the
problem I am attempting to solve.

I worked with many responders, particularly within the ISCRAM3 community
to develop this concept. My main focus has been on the technical underpinning of
the matching and integrating of heterogeneous data sources, but the development
of functional tools that could be relied on during a crisis is multi-faceted and
depends on various technologies. For example, one big issue for responders is
understanding where data comes from and how it was created so that they can
make judgements about what data they want to trust. This led to a joint project
with Newcastle and Coventry Universities during which we developed the CEM-
DIT4 system [11], which looked at integrating information about relevance of data
(through the CHAIn system) with graphical depictions of the provenance of the
data—for example, information such as which organisation provided the data, how
figures used in the data were calculated, which tools were used to create images,
and so on. Decision-makers in crises can explore the provenance at different depths
until they are satisfied that they can make a judgement about the reliability of that
data.

Another complicated aspect of this kind of data matching, and of matching in
general, is evaluation. When matching is approximate and ranked, how is it possible
to validate that the matches returned are the best ones available, and ranked in a
way that is optimal? The main attempt to address this is the Ontology Alignment
Evaluation Initiative (OAEI), which is run annually at the Ontology Matching
Workshop. We make use of this resource as much as we can, but it has to be

3Information Systems for Crisis Response and Management.
4Communication in Emergency Management through Data Integration and Trust.

158 F. McNeill

repurposed fairly significantly as it is not designed to evaluate the problem we are
working with. We therefore developed a system that automatically corrupts queries
according to various criteria in order to generate test sets for evaluation of CHAIn
[12]. This is a useful tool but still limited in significant ways because to be effective
it requires extensive lexicographic input to ensure the corruptions are plausible and
valid. Again, we use WordNet for this, but the tool would be more effective where
good-quality domain-dependent resources were available.

8.5 Multi-Lingual and Multi-Domain Matching

My work has primarily focused on English-language data and depends on general-
purpose resources such as WordNet.5 However, this is limited. One thing that
became apparent during my work in crisis management is that language is used in
a particular way in that domain—for example, words in general use in the language
being used in a more specific, restricted way within the domain, and the use of
jargon and terminology that are mainstream in the domain but unknown outwith.
Automated matching tools with no way of interpreting and accounting for this
domain specificity will produce results of limited functionality. Francisco Quesada-
Real, a PhD student, looked into the application of this within the medical domain
[13]. A different but related problem is that of integrating sources written in different
languages. This has relevance in the crisis management world, where international
and cross-border responses often involve organisations that hold resources in
multiple languages. My work on multi-lingual and domain matching has been
done jointly with Fausto Giunchiglia’s KnowDive group in Trento, particularly
with Gábor Bella [14]. It feeds into the work of the KnowDive group on the
development of DataScientia—a soon-to-be-established not-for-profit organisation
whose ultimate aim is the creation of a grass-roots community centred around the
development and dissemination of a unitary knowledge-driven understanding of the
people’s diversity, as it is represented by the data in the Internet.6

Ontologies and other knowledge organisation systems, while usually serving a
purpose of standardisation or generalisation, stem from local needs and practices.
By local we understand within an administrative unit such as a country or a
region as well as within an application domain such as medicine or transport.
Accordingly, ontologies tend to target specific domains, and the labels annotating
their elements—concepts, relations, metadata—tend to be expressed in the local
language. This is especially true for lightweight ontologies [15]: classification
hierarchies, taxonomies, and other tree-structured data schemas widely used around
the world as simple, well-understood, semi-formal resources for knowledge organ-
isation. Such resources often play normative roles on the national level in public

5https://wordnet.princeton.edu.
6http://datascientia.disi.unitn.it.

https://wordnet.princeton.edu
http://datascientia.disi.unitn.it

8 From Mathematical Reasoning to Crises in Different Languages 159

services, industry, or commerce, as a means for classification (of documents, books,
open data, commercial products, web pages, etc.) as well as being sources of shared
vocabularies for actors cooperating in a given domain.

Activities on supra-national levels such as international trade and mobility
need to rely on the interoperability and integration of knowledge organisation
resources across countries, languages, and sometimes across domains. Cross-
lingual matching is a specific case of language-aware matching when ontologies
in different languages need to be aligned. Likewise, cross-domain matching is used
to match ontologies pertaining to different domains of knowledge. An example of
a simultaneously cross-lingual and cross-domain matching problem is the case of
cross-border emergency response where responders from different countries and
from different domains (geography, geology, medicine, police, military, transporta-
tion, etc.) need to share data. In [16], we apply the domain-aware matching approach
presented in this chapter to this particular use case.

State-of-the-art cross-lingual matchers invariably use translation-based
techniques—most often online machine translation services from Microsoft or
Google—in order to reduce the problem of multilingualism to the well-researched
problem of monolingual English-to-English matching (e.g., [17–19]). With the
constant improvement of such services, translation-based matchers are able to
provide usable results and are able to deal with a wide range of languages. State-
of-the-art machine translators today mainly use statistical methods and are trained
on large amounts of bilingual parallel or comparable corpora for each language pair
they support.

A known problem of statistical machine translation, however, is the decrease
of translation accuracy on corpora significantly different from those on which the
system was trained. This typically happens on domain classifications and ontologies
that contain specialised terminology. The adaptation of a statistical system to a
new domain requires re-training on corpora extended with a significant amount of
domain-specific text (ideally bilingual parallel corpora that is hard to find). At the
same time, the systems typically used by ontology matchers are online commercial
services (such as Bing and Google Translate) that, while offering the best available
translation quality, are not adaptable or customisable by the user.

The shortness of labels typically found in ontologies is another difficulty that
state-of-the-art approaches face, as the sparseness of textual context within labels
makes the translation task more error-prone. Furthermore, the often non-standard
orthography and syntax of ontology labels—that we described in [9] as a form of
specialised block language—make label parsing even harder.

We followed a different approach to language- and domain-aware matching, so
far hardly investigated, that does not rely on external translation tools. The method
is based on combining two types of resources: on the one hand, multi-lingual
natural language processing tools that are adapted to the language of structured data,
and, on the other hand, offline multi-lingual lexical databases connecting words
and expressions of natural language to language-independent but domain-aware
meanings.

160 F. McNeill

Our work is motivated by the following considerations. First, while both
approaches evoked above are resource-intensive, the types of resources they feed on
are markedly different: on the one hand, machine translation requires large amounts
of bilingual parallel or comparable corpora relevant to the target domain, and on
the other hand, our approach uses lexical, terminological, and NLP resources for
each supported language. In both cases, a wide range of open-source resources are
already available. Based on their availability and conditions of use, for specific
use cases, one approach or the other may be more cost-effective or faster to
implement. Our knowledge-based label matching approach can thus be seen as an
alternative when no good-quality language- or domain-specific machine translator
is available. Second, we are interested in comparing the strengths and weaknesses
of the two approaches, which turn out to be rather complementary. Our evaluations
use two machine translation systems: Google Translate, currently the best available
online translator, and Apertium, which is free and can also be used offline. We
conduct evaluations on three language pairs: English–Spanish, English–Italian, and
Spanish–Italian. Finally, based on the complementarity of the two approaches, we
investigate the idea of combining them—using multi-lingual lexical resources on
the one hand and machine translation on the other hand—into a single matcher.
The resulting system, as demonstrated by our evaluation results, clearly outperforms
either method alone.

The result of our work is implemented in NuSMATCH (NuSM for short), an
upcoming release of the open-source SMATCH system with built-in capabilities for
language- and domain-aware matching.

Gábor and I have also worked with Sabhal Mòr Ostaig at the University of
the Highlands and Islands to develop a lexical resource for Gaelic, which is again
feeding into the DataScientia project (publication in progress).

8.6 On to the Future

The challenges around data integration and matching are huge, and there are many
different directions this work could be taken. One of my main interests at the
moment is around how people interface with data. For example, if a decision-
maker in a crisis sends out requests for specific data and gets multiple results back
from a system like CHAIn, possibly with multiple annotations such as provenance
data through the CEM-DIT system, what is the best way to facilitate that person
effectively sorting through the data to be able to make optimal decisions? How
can the right amount of data to provide be determined, so that users have access
to what they need to make decisions, and the potential to explore that in more
depth if they would like, without overwhelming them with more data than can be
processed? What are the social barriers—for example, institutional disinclination to
trust data from other organisations, and the need to navigate what happens when
poor outcomes occur following decisions made with the support of such systems?

8 From Mathematical Reasoning to Crises in Different Languages 161

I am also interested in the application of these approaches to other domains,
particularly education. Computing and STEM education is something that I, like
Alan Bundy, have been involved in for much of my career, and there are interesting
issues relating to data matching and integration that arise in the field. For example,
many teachers develop high-quality teaching materials that could be of huge value
to other teachers, but these are rarely shared widely, in part because this is difficult
to do. To be widely accessible, such materials would need to be suitably marked
up with relevant metadata around what they were about, what age range, ability
level, etc., they were aimed at and so on. Sharing materials on a broad basis
would require ontologies describing what kinds of things you might want to say
about educational materials, and ontologies describing how different international
educational systems and curricula relate to one another. Because there will be a
huge variety in how teachers describe their material, sophisticated, domain-specific,
interlingual matching would be necessary to make these materials fully accessible.
This again raises interesting questions about how people interact with data: how
does one engender trust and a willingness to engage with systems that automatically
manipulate data?

The problems around the application of matching tools to databases, ontology,
and natural language are profound—in part because they rely on humans labelling
and describing their knowledge accurately, clearly, and consistently, which in
practice hardly ever happens. But the potential to develop tools that can work with
humans to help them navigate a world of massively heterogeneous data and support
them in sharing data and knowledge more effectively is huge, and I look forward to
working with DReaMers past and present towards solving these issues.

References

1. J. Euzenat and P. Shvaiko, Ontology Matching. Berlin, Heidelberg: Springer-Verlag, 2007.
2. C. C. Perez, Invisible women: data bias in a world designed for men. Vintage, 2019.
3. A. B. Fiona McNeill and C. Walton, “An automatic translator from KIF to PDDL,” in

Proceedings of the Planning Special Interest Group (PlanSIG), 2004.
4. F. Giunchiglia and T. Walsh, “A theory of abstraction,” Artificial Intelligence, vol. 56, 1992.
5. F. McNeill and A. Bundy, “Dynamic, automatic, first-order ontology repair by diagnosis

of failed plan execution,” IJSWIS (International Journal on Semantic Web and Information
Systems) special issue on Ontology Matching, vol. 3, pp. 1–35, 2007.

6. F. McNeill, H. Halpin, E. Klein, and A. Bundy, “Merging stories with shallow semantics,”
in Proceedings of the Knowledge Representation and Reasoning for Language Processing
Workshop at the European Association for Computational Linguistics (EACL) conference
(KRAQ 2006), 2006.

7. F. Giunchiglia, F. McNeill, M. Yatskevich, J. Pane, P. Besana, and P. Shvaiko, “Approximate
structure-preserving semantic matching,” inOn theMove to Meaningful Internet Systems: OTM
2008, pp. 1217–1234, Springer, 2008.

8. F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-Match: An algorithm and an implementation
of semantic matching,” in ESWS, vol. 3053, pp. 61–75, Springer, 2004.

9. N. Osman, C. Sierra, F. McNeill, J. Pane, and J. Debenham, “Trust and matching algorithms
for selecting suitable agents,” ACM Trans. Intell. Syst. Technol., vol. 5, pp. 16:1–16:39, Jan.
2014.

162 F. McNeill

10. F. McNeill and A. Gkanaitsou, “Dynamic data sharing from large data sources,” in Proceedings
of the ISWC Workshop on Discovering Meaning on the go in Large Heterogenous Data,
(Boston, USA), November 2012.

11. F. McNeill, D. Bental, P. Missier, J. Steyn, T. Komar, and J. Bryans, “Communication in
emergency management through data integration and trust: an introduction to the CEM-DIT
system,” in In Proceedings of 16th International Conference on Information Systems for Crisis
Response and Management (ISCRAM), 2018.

12. F. McNeill, D. Bental, A. J. Gray, S. Jedrzyejczyk, and A. Alsadeequi, “Generating corrupted
data sources for the evaluation of matching systems,” in In Proceedings of the 14th Interna-
tional Workshop on Ontology Matching, 2019.

13. F. J. Real, F. McNeill, G. Bella, and A. Bundy, “Improving dynamic information exchange
in emergency response scenarios,” in In Proceedings of 15th International Conference on
Information Systems for Crisis Response and Management (ISCRAM), 2017.

14. G. Bella, F. Giunchiglia, and F. McNeill, “Language and domain aware lightweight ontology
matching,” Journal of Web Semantics, vol. 43, pp. 1–17, 3 2017.

15. F. Giunchiglia, M. Marchese, and I. Zaihrayeu, “Encoding classifications into lightweight
ontologies,” in Journal on Data Semantics VIII (S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J. Trujillo, and I. Zaihrayeu, eds.),
(Berlin, Heidelberg), pp. 57–81, Springer Berlin Heidelberg, 2007.

16. G. Bella, A. Zamboni, and F. Giunchiglia, “Domain-based sense disambiguation in multilin-
gual structured data,” in Proceedings of International Workshop on Diversity-Aware Artificial
Intelligence (Diversity @ ECAI 2016), pp. 53–61, 8 2016.

17. G. Bella, F. Giunchiglia, A. AbuRa’ed, and F. McNeill, “A multilingual ontology matcher,”
in Proceedings of the 10th Workshop on Ontology Matching, CEUR Workshop Proceedings,
pp. 13–24, CEUR-WS, 10 2015.

18. L. Bentivogli, A. Bocco, and E. Pianta, “ArchiWordNet: Integrating WordNet with domain-
specific knowledge,” 2004.

19. F. Bond and R. Foster, “Linking and extending an open multilingual WordNet,” in Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), (Sofia, Bulgaria), pp. 1352–1362, Association for Computational Linguistics, Aug.
2013.

	Foreword
	AI, Automated Reasoning and Mathematics: DReaM

	Preface
	Overview
	Contents

	Acknowledgements
	Contents
	Contributors
	1 The History of the DReaM Group
	1.1 Why DReaM?
	1.2 Arrival in Edinburgh
	1.3 The Mecho Project
	1.4 The Eco Project
	1.5 Building a Wider Community
	1.5.1 Rolling Funding and Platform Grants
	1.5.2 Blue Book Notes and Trip Reports
	1.5.3 International Collaboration

	1.6 DReaM Motifs
	1.6.1 Rigour and Heuristics
	1.6.2 Meta-Level Reasoning
	1.6.3 Why Prolog?
	1.6.3.1 Meta-Level Axioms for Rippling
	1.6.3.2 Meta-Level Axioms Attraction

	1.6.4 The Productive Use of Failure
	1.6.4.1 Suggesting Intermediate Lemmas
	1.6.4.2 Lakatos Methods and Counter-Examples
	1.6.4.3 Suggesting Changes of Representation

	1.6.5 The Interaction of Multiple Reasoning Processes
	1.6.5.1 Proof Planning: Abstraction of Deduction

	1.6.6 Diverse Applications
	1.6.6.1 Formal Methods
	1.6.6.2 Cyber Security
	1.6.6.3 Machine Learning of Proof Tactics
	1.6.6.4 When Is a Theorem Interesting?
	1.6.6.5 The Constructive Omega Rule, Induction and Diagrams
	1.6.6.6 Category Theory and Analogy
	1.6.6.7 Representing Uncertainty

	1.7 Conclusion
	References

	2 Recollections of Hope Park Square, 1970–1973
	2.1 Arrival
	References

	3 Adventures in Mathematical Reasoning
	3.1 Introduction
	3.2 Rippling
	3.2.1 A Calculus for Rippling
	3.2.2 Difference Matching and Unification

	3.3 Proof Planning
	3.3.1 Summing Series
	3.3.2 A Divergence Critic

	3.4 Mathematical Discovery
	3.5 The Meta-Level
	3.6 Conclusions
	References

	4 Dynamic Proof Presentation
	4.1 Introduction
	4.1.1 Proof Presentation Style
	4.1.2 Ongoing Issues
	4.1.3 The Vision
	4.1.4 Structure of Rest of Chapter
	4.1.5 My DReaM Group Connections

	4.2 A Running Example of a Procedural Proof
	4.3 Focussing on Proof Steps in Procedural Proofs
	4.4 Condensing Tactic-and-Subgoal Proof Trees
	4.5 Expanding Proof Steps
	4.6 Dynamic Presentation of Declarative Proofs
	4.7 DReaM Group Contributions
	4.7.1 Barnacle and XBarnacle
	4.7.2 The Orthogonal Hierarchies of Method Trees
	4.7.3 IsaPlanner
	4.7.4 Hiproofs and Proof Refactoring
	4.7.5 HipCam and Tactician

	4.8 Technologies for Proof Presentation
	4.9 Relationship Between Viewing and Editing Proofs
	4.10 Further Related Work
	4.11 Conclusions and Future Directions
	References

	5 Proof Mechanization: From Dream to Reality
	5.1 Prologue
	5.2 Proof Planning
	5.2.1 Nonstandard Analysis in λClam
	5.2.2 IsaPlanner
	5.2.2.1 Interlude: Graduation Time for IsaPlanner

	5.3 Geometric Reasoning: Marrying Discovery and Proof
	5.3.1 Of Chairs, Tables and Beer Mugs: Hilbert's Axiomatics
	5.3.2 Geometric Discovery
	5.3.2.1 Geometry Explorer
	5.3.2.2 Hilbert's Implicit Reasoning and Idle-Time Proof Discovery

	5.3.3 Computational Geometry

	5.4 Conclusion
	5.5 Epilogue
	References

	6 Reasoned Modelling: Harnessing the Synergies Between Reasoning and Modelling
	6.1 Introduction
	6.2 Refinement-Based Development and Event-B
	6.3 Reasoned Modelling Critics
	6.4 Refinement Plans
	6.5 Invariants Generation and HREMO
	6.6 Design-Space Exploration
	6.7 Future Work and Conclusion
	6.7.1 Requirements, Domain Properties and Specifications
	6.7.2 Hazard Analysis—What-if Style Scenarios
	6.7.3 Enterprise Security Architecture
	6.7.4 Conclusion
	Acknowledgements and Final Reflections

	References

	7 Human-Like Computational Reasoning: Diagrams and Other Representations
	7.1 The DReaM Research Environment
	7.2 Diagrammatic Reasoning
	7.3 Heterogeneous Reasoning
	7.4 Accessible Diagrammatic Reasoning About Ontologies
	7.5 How to Choose a Representation
	7.6 Future Directions
	References

	8 From Mathematical Reasoning to Crises in Different Languages: The Application of Failure-Driven Reasoning to Ontologies and Data
	8.1 Introduction
	8.2 Agents Reasoning About Their Ontologies
	8.3 Into Ontology Matching: The Open Knowledge Project
	8.4 Sharing Knowledge in Crises: Failure-Driven Query Rewriting
	8.5 Multi-Lingual and Multi-Domain Matching
	8.6 On to the Future
	References

