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Abstract. In this paper, bilevel stochastic programming problems with
probabilistic and quantile criteria are considered. The lower level prob-
lem is assumed to be linear for fixed leader’s (upper level) variables and
fixed realizations of the random parameters. The objective function and
the constraints of the lower level problem depend on the leader’s strategy
and random parameters. The objective function of the upper level prob-
lem is defined as the value of the probabilistic or quantile functional of
the random losses on the upper level. We suggest conditions guaranteeing
that the objective function of the upper level is a normal integrand. It
is shown that these conditions are satisfied for a class of problems with
positive coefficients of the lower level problem. This allows us to sug-
gest sufficient conditions of the existence of a solution to the considered
problem. We construct sample approximations of these problems. These
approximations reduce to mixed integer nonlinear programming prob-
lems. We describe sufficient conditions of the convergence of the sample
approximations to the original problems.

Keywords: Bilevel programming · Sample approximation · Stochastic
programming · Value-at-Risk · Probabilistic criterion · Quantile
criterion

1 Introduction

Bilevel programming problems describe hierarchical interaction between two sub-
jects. The subject making decision first is called a leader. The second subject is
called a follower. Their decisions are solutions to upper and lower level problems
respectively. The parameters of the lower level problem depend on the leader’s
strategy. The leader takes into account the optimal follower’s solution when the
upper level strategy is selected. The theory of bilevel problems is described in
monographs [1–3] and in the review [4].

In this paper, we study stochastic bilevel programming problems with prob-
abilistic and quantile criteria. These criteria are used in stochastic models for
taking into account reliability requirements [5]. The probabilistic criterion is
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defined as the probability of successful work of the system modeled. The quan-
tile criterion (also known as Value-at-Risk) is the minimal losses that cannot be
exceeded with a given probability. There are a few works on using the probabilis-
tic and quantile criteria in the stochastic bilevel optimization. The probabilistic
criterion for a linear problem with fuzzy random data is studied in [6], where
an algorithm to solve the problem is suggested. The quantile criterion for a
stochastic bilevel problem with quantile criterion and discrete distribution of
the random parameters is studied in [7]. A method to reduce this problem to
a mixed integer programming problem is suggested in [7]. Another approach in
stochastic programming to deal with reliability requirements is using coherent
risk measures [8]. Properties of stochastic bilevel problems with criteria involving
coherent risk measures and optimality conditions in these problems are studied
in [9,10].

When the exact distribution of the random parameters is unknown, the objec-
tive function and the constraints of a stochastic problem can be estimated by
using a sample. Thus, original problems are replaced by their approximations.
The properties of the obtained sample approximations are studied in [11] for the
expectation criterion and in [8,12] for problems with probabilistic constraints.
In [13], the convergence of this method is studied for problems with probabilistic
and quantile criteria.

In this paper, we study sample approximations of bilevel stochastic program-
ming problems with probabilistic and quantile criteria. We reduce the sample
approximations to mixed integer programming problems and give sufficient con-
ditions of their convergence. Also, we describe conditions guaranteeing that the
loss function of the problem is a normal integrand. These conditions are required
to formulate results on the existence of an optimal solution and on the conver-
gence of the sample approximations.

2 Statement

Let X be a random vector defined on a probability space (X ,F ,P), where X is
a closed subset of Rm. The σ-algebra F is assumed to be complete, i.e., S′ ∈ F
if there exists a set S ∈ F such that S′ ⊂ S and P(S) = 0. For simplicity, we
assume that X(x) = x for all x ∈ X . This means that the sample space X is
considered as the space of realizations of the random vector X.

Let U ⊂ R
r be a set feasible values of leader’s variables. The follower’s

problem is defined by the linear programming problem

Y∗(u, x) := Arg min
y∈Rs

{
c(u, x)�y | y ∈ Y(u, x)

}
, (1)

Y(u, x) := {y ∈ R
s | A(u, x)y ≥ b(u, x), y ≥ 0} . (2)

where u ∈ U is the leader’s variable, y is the follower’s variable, A : U × X →
R

k×s, b : U × X → R
k, c : U × X → R

s are a matrix and vectors depending on u
and x. Thus, the leader’s variable u and the realization x of the random vector
X define the constraints and the objective function of the follower’s problem.
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The set-valued mappings Y∗,Y : U × X → 2R
s

are introduced by (1) and (2).
We note that Y∗(u, x) = ∅ if problem (1) is infeasible or unbounded.

Let Ψ : U × Y × X → R
∗ be a leader’s loss function, where Y is the closure

of the set ⋃

u∈U, x∈X
Y(u, x),

R
∗ = R ∪ {−∞,+∞} is the extended real line.

To describe the losses of the leader when the follower chooses an optimal
variable y ∈ Y∗(u, x), we introduce the function Φ : U × X → R

∗ by the rule

Φ(u, x) := inf
y∈Y∗(u,x)

Ψ(u, y, x). (3)

The infimum in (3) means that the follower chooses the best decision for the
leader among the optimal decisions y ∈ Y∗(u, x). Thus, the optimistic statement
of the bilevel problem formulated below will be studied. We call Φ the optimistic
leader’s loss function.

Let us consider the probability function

Pϕ(u) := P{Φ(u,X) ≤ ϕ}, (4)

where ϕ ∈ R
∗ is a fixed level of the optimistic leader’s loss function Φ. The

value Pϕ(u) in (4) is well defined when the function x 
→ Φ(u, x) is measurable.
Sufficient conditions for this will be suggested below.

The quantile function is defined by the equality

ϕα(u) := min {ϕ ∈ R
∗ | Pϕ(u) ≥ α} , (5)

where α ∈ (0, 1] is a fixed probability level.
In this paper, we study the probability maximization problem

U∗ := Arg max
u∈U

Pϕ(u), α∗ := sup
u∈U

Pϕ(u), (6)

and the quantile minimization problem

V ∗ := Arg min
u∈U

ϕα(u), ϕ∗ := inf
u∈U

ϕα(u). (7)

Problems (6) and (7) are optimistic bilevel stochastic programming problems
with probabilistic and quantile criteria respectively.

3 Existence of Optimal Solution

It is known [5,14] that problems (6) and (7) are well defined and have opti-
mal solutions if the function (u, x) 
→ Φ(u, x) is a normal integrand. When the
σ-algebra F is complete, the normal integrand can be defined as a lower semi-
continuous in u ∈ U and B(U)×F-measurable function, where B(U) is the Borel
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σ-algebra of subsets U . In this section, we suggest conditions under which the
function (u, x) 
→ Φ(u, x) is a normal integrand.

Let us consider the follower’s problem (1). According to duality theory, the
follower’s variable y ∈ R

s is optimal in (1) if y ∈ Y(u, x) and there exists a
vector λ ∈ R

k such that

A(u, x)�λ ≤ c(u, x), λ ≥ 0, (8)

(A(u, x)y − b(u, x))�
λ = 0, (9)

(
A(u, x)�λ − c(u, x)

)�
y = 0. (10)

Denote by Λ(u, y, x) the set of λ ∈ R
k satisfying (8)–(10). Let us introduce the

function

δΛ(u, y, λ, x) =

{
0 if y ∈ Y(u, x) and λ ∈ Λ(u, y, x),
+∞ otherwise.

Then the optimistic loss function Φ can be represented in the form

Φ(u, x) = min
y∈Y

min
λ∈Λ(u,y,x)

{Ψ(u, y, x) + δΛ(u, y, λ, x)} . (11)

We use the convention −∞ + ∞ = +∞ in (11) and below.
Let us denote by Y ∗ the closure of the set

⋃
u∈Ux∈X Y∗(u, x).

Theorem 1. Let the following conditions hold:

(i) the function (u, y, x) 
→ Ψ(u, y, x) is lower semicontinuous in (u, y) ∈ U ×Y
and B(U) × B(Y ) × F-measurable;

(ii) the functions (u, x) 
→ A(u, x), (u, x) 
→ b(u, x), (u, x) 
→ c(u, x) are contin-
uous in u ∈ U and measurable in x;

(iii) the set Y ∗ is bounded;
(iv) there exists a compact set Λ∗ such that Λ∗ ∩ Λ(u, y, x) �= ∅ if and only if

Λ(u, y, x) �= ∅.
Then the function (u, x) 
→ Φ(u, x) is a normal integrand.

Proof. Taking into account (iii), (iv) and (11), the optimistic loss function can
be rewritten in the form

Φ(u, x) = min
y∈Y ∗, λ∈Λ∗

{Ψ(u, y, x) + δΛ(u, y, λ, x)} . (12)

From (i) it follows that the function ((u, y), x) 
→ Ψ(u, y, x) is a normal integrand.
From (ii) it follows that functions (u, x) 
→ A(u, x), (u, x) 
→ b(u, x), (u, x) 
→
c(u, x) are normal integrands [15, Example 14.29]. Therefore, the set

{(u, y, λ, x) ∈ U × Y ∗ × Λ∗ × X | λ ∈ Λ(u, y, x)}
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is B(U) × B(Y ∗) × B(Λ∗) × F-measurable and its sections {(u, y, λ) | λ ∈
Λ(u, y, x)} are closed for all x ∈ X . Hence, the function

((u, y, λ), x) 
→ Ψ(u, y, x) + δΛ(u, y, λ, x)

defined on the set U ×Y ∗×Λ∗×X is a normal integrand. Since the set Y ∗×Λ∗ is
compact, the minimum in (12) can be written and the function (u, x) 
→ Φ(u, x)
is a normal integrand [15, Proposition 14.47]. Theorem 1 is proved.

Let us consider the case when the values of functions b and c are positive.

Corollary 1. Let conditions (i), (ii) of Theorem 1 hold. Suppose that

(v) there exist c, b ∈ R such that

inf
u∈U,x∈X

min
i=1,s

ci(u, x) > c > 0,

inf
u∈U,x∈X

min
j=1,k

bj(u, x) > b > 0;

(vi) there exists c̄ ∈ R such that

sup
u∈U,x∈X

min
y∈Y(u,x)

c(u, x)�y < c̄;

Then the function (u, x) 
→ Φ(u, x) is a normal integrand.

Proof. Let us notice that from (vi) it follows that Y(u, x) �= ∅ for all u ∈ U ,
x ∈ X . From (v) and (vi) we get

⋃

u∈Ux∈X
Y∗(u, x) ⊂

{
y ∈ R

s | sup
u∈U,x∈X

c(u, x)�y ≤ c̄, y ≥ 0
}

⊂
{

y ∈ R
s | max

i=1,s
yi ≤ c̄

c
, y ≥ 0

}
.

Thus, condition (iii) of Theorem 1 is satisfied.
From duality theory it is known that for y ∈ Y∗(u, x) there exists a vector

λ ∈ Λ(u, y, x) such that c(u, x)�y = b(u, x)�λ. Hence, the set Λ∗ satisfying
condition (iv) of Theorem 1 can be taken in the form

Λ∗ =
{

λ ∈ R
k | max

j=1,k
λj ≤ c̄

b
, λ ≥ 0

}
.

By Theorem 1, the function (u, x) 
→ Φ(u, x) is a normal integrand. Corollary 1
is proved.

Example 1. Let us consider the follower’s problem

Y∗(u, x) = Arg min
y∈R

{max{0, u}y | y � 0} ,



226 S. V. Ivanov and A. N. Ignatov

where u ∈ U = [−1, 1]. It easily seen that Y∗(u, x) = {0} if u > 0 and Y∗(u, x) =
[0,+∞) if u ≤ 0. Then for the normal integrand Ψ(u, y, x) = euy the infimum-
function Φ(u, x) = infy∈Y∗(u,x) Ψ(u, y, x) is not lower semicontinuous, because
Φ(u, x) = 1 if u ≥ 0 and Φ(u, x) = 0 if u < 0. This example shows that condition
(v) of Corollary 1 cannot be replaced by the conditions

inf
u∈U,x∈X

min
i=1,s

ci(u, x) ≥ 0, inf
u∈U,x∈X

min
j=1,k

bj(u, x) ≥ 0.

Example 2. Let us consider a production planning model. In this model, the
leader and the follower are the head office and the production division of a com-
pany. The leader can get a contract for the production of several types of prod-
ucts. The prices of these products manufactured according to the contract are
deterministic. The leader gives the follower a task to produce the products. The
leader supplies resources to the follower. The follower pays for using resources.
The prices for using resources are known when the follower produces products,
but the prices are considered to be random when the task for the follower is
stated. The leader’s variable u ∈ R

r (u ≥ 0) consists of production volumes
required by the contract. The follower’s variable y ∈ R

s (y ≥ 0) consists of vol-
umes of required resources. Let c(u,X) = c̃(X) be a random vector of prices for
using resources such that c̄ > ci(u, x) = c̃i(x) > c > 0 for all x ∈ X . The matrix
A(u, x) is constant such that A(u, x)y is the vector of manufactured products.
Let b(u, x) = u. Thus, the constraint A(u, x)y ≥ b(u, x) means that the follower
must produce the products according to the leader’s decision u. The leader’s
loss function has the form Ψ(u, y, x) = −π�u− π̃(x)�(A(u, x)y − b(u, x))+f(y),
where f(y) is the cost of buying resources y, π is the vector of prices for man-
ufactured products according to the contract, π̃(x) is a random vector of prices
for additionally manufactured products. The function f can be linear or convex
(if big volumes of resources require additional costs). Notice that the conditions
of Corollary 1 are satisfied for this model if U = {u ∈ R

r | u ≤ u ≤ ū}, where
0 < u < ū.

Let us formulate a corollary from Theorem 1 on the existence of optimal
solutions to problems (6) and (7).

Corollary 2. Let the conditions of Theorem 1 (or the conditions of Corollary 1)
hold. Let the set U be compact. Then the set U∗ of optimal solutions to problem
(6) is nonempty. If there exists a point u ∈ U such that ϕα(u) < +∞, then the
set V ∗ of optimal solutions to problem (7) is nonempty.

Proof. It is proved in [14, Theorem 6] that, if the function (u, x) 
→ Φ(u, x) is a
normal integrand, then the probability function u 
→ Pϕ(u) is upper semicontin-
uous for all ϕ ∈ R and the quantile function u 
→ ϕα(u) is lower semicontinuous
for all α ∈ (0, 1] for any normal integrand (u, x) 
→ Φ(u, x). The conditions
of Theorem 1 (or the conditions of Corollary 1) guarantees that the function
(u, x) 
→ Φ(u, x) is a normal integrand. Thus, the assertion of Corollary 2 fol-
lows from the Weierstrass theorem.
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4 Sample Approximations

In this section, we construct sample approximations of the probability maximiza-
tion problem (6) and the quantile minimization problem (7) by using a sample(
X1,X2, . . . , XN

)
generated by the random vector X. The sequence of random

vectors
(
XN

)
, N ∈ N, is defined on a complete probability space (Ω,F ′,P′).

The distribution functions of independent random variables XN coincide with
the distribution function of X.

Let us estimate the probability function (4) by the frequency of the event
{Φ(u,X) ≤ ϕ}:

P (N)
ϕ (u) :=

1
N

N∑

ν=1

χ[−∞,ϕ](Φ(u,Xν)), N ∈ N, (13)

where

χS(x) :=

{
1, x ∈ S;
0, x /∈ S.

Replacing the probability function in (5) by the estimator (13), we obtain
the sample estimator of the quantile function:

ϕ(N)
α (u) := min

{
ϕ ∈ R

∗ | P (N)
ϕ (u) ≥ α

}
.

We consider the sample approximation of the probability maximization prob-
lem in the form

U (N) := Arg max
u∈U

P (N)
ϕ (u), αN := sup

u∈U
P (N)

ϕ (u), (14)

and the sample approximation of the quantile minimization problem in the form

V (N) := Arg min
u∈U

ϕ(N)
α (u), ϕN := inf

u∈U
ϕα(u). (15)

When a realization
(
x1, x2, . . . , xN

)
of the sample

(
X1,X2, . . . , XN

)
is fixed,

problems (14) and (15) can be considered as stochastic programming problems
with discrete distribution of the random parameters. This allows us to use the
technique suggested in [16,17] for reducing the problems to deterministic mixed
integer programming problems.

Recall that Y ∗ is the closure of the set
⋃

u∈U, x∈X Y∗(u, x). Suppose that a
set Λ∗ ⊂ R

k is chosen in such a way that, for all u ∈ U , y ∈ Y ∗, x ∈ X , the set
Λ∗ ∩ Λ(u, y, x) �= ∅ if and only if Λ(u, y, x) �= ∅.

Let functions γ1 : U ×Y ×X ×R → R, γ2 : U ×Y ×X → R
k, γ3 : U ×Y ×X →

R
k, γ4 : Rk 
→ R

k, γ5 : U × R
k × X → R

s, γ6 : U × R
k × X → R

s, γ7 : Y → R
s

satisfying the following conditions be known:

1. Ψ(u, y, x) − ϕ ≤ γ1(u, y, x, ϕ) for all u ∈ U , y ∈ Y ∗, x ∈ X , ϕ ∈ R;
2. −γ2(u, y, x) ≤ A(u, x)y − b(u, x) ≤ γ3(u, y, x) for all u ∈ U , y ∈ Y ∗, x ∈ X ;
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3. λ ≤ γ4(λ) for all λ ∈ Λ∗.
4. −γ6(u, λ, x) ≤ A(u, x)�λ − c(u, x) ≤ γ5(u, λ, x) for all u ∈ U , λ ∈ Λ∗, x ∈ X ;
5. y ≤ γ7(y) for all y ∈ Y ∗.

Let us introduce the variables yν and λν corresponding to realizations xν ,
ν = 1, N , and the vectors of auxilary binary variables δ ∈ {0, 1}N , ην ∈ {0, 1}k,
ζν ∈ {0, 1}s, ν = 1, N . The sense of these variables follows from the proof of
Theorem 2 given below. The value of δν is equal to 1 if Φ(u, xν) ≤ ϕ. If δν = 1,
then zero elements of ην correspond to nonzero elements of the dual variables
for constraints A(u, xν)yν ≥ b(u, xν), zero elements of ζν correspond to nonzero
elements of the vector yν . Problem (14) reduces to the problem

1
N

N∑

ν=1

δν → max
u∈U, yν∈Y, λν∈Rk, δ∈{0,1}N , ην∈{0,1}k, ζν∈{0,1}s, ν=1,N

(16)

subject to

Ψ(u, yν , xν) ≤ ϕ + (1 − δν)γ1(u, yν , xν , ϕ), (17)

A(u, xν)yν ≥ b(u, xν) − (1 − δν)γ2(u, yν , xν), (18)

A(u, xν)yν ≤ b(u, xν) + (ην + (1 − δν)ek) ◦ γ3(u, yν , xν), (19)

0 ≤ λν ≤ ((2 − δν)ek − ην) ◦ γ4(λν), (20)

A(u, xν)�λν ≤ c(u, xν) + (1 − δν)γ5(u, λν , xν), (21)

A(u, xν)�λν ≥ c(u, xν) − (ζν + (1 − δν)es) ◦ γ6(u, yν , λν , xν), (22)

0 ≤ yν ≤ ((2 − δν)es − ζν) ◦ γ7(yν), ν = 1, N, (23)

where es, ek are vectors consisting of ones with dimension s and k respectively,
◦ denotes the element-wise product of two vectors.

Denote by
(
ū, (ȳν), (λ̄ν), δ̄, (η̄ν), (ζ̄ν)

)
the optimal solution to problem (16),

where (ȳν) := (y1, y2, . . . , yN ). Notation (λ̄ν), (η̄ν), (ζ̄ν) has the same sense.

Theorem 2. Let the conditions of Theorem 1 hold. Suppose that Λ∗ satisfies
condition (iv) of Theorem 1. Then,

1. if ū is an optimal value of the variable u in problem (16), then ū ∈ U (N);
2. if δ̄ is an optimal value of the variable δ in problem (16), then

αN =
1
N

N∑

ν=1

δ̄ν ;

3. for any optimal ũ ∈ U (N) there exist values ỹν ∈ Y , λ̃ν ∈ R
k, δ̃ ∈ {0, 1}N ,

η̃ν ∈ {0, 1}k, ζ̃ν ∈ {0, 1}s, ν = 1, N such that
(
ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)

is an optimal solution to problem (16).
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Proof. Let
(
ū, (ȳν), (λ̄ν), δ̄, (η̄ν), (ζ̄ν)

)
be an optimal solution to problem (16).

Let
K :=

{
ν | δ̄ν = 1, ν = 1, N

}
.

It follows from inequalities (18)–(23) that, for all ν ∈ K, ȳν belongs to Y(ū, xν),
and inequalities (8)–(10) hold for λ = λ̄ν , y = ȳν . Therefore, ȳν ∈ Y∗(ū, xν).
Hence, for any ν ∈ K,

Φ(ū, xν) ≤ Ψ(ū, ȳν , xν) ≤ ϕ.

Thus,

P (N)
ϕ (ū) =

1
N

N∑

ν=1

χ[−∞,ϕ](Φ(ū, xν)) ≥ 1
N

∑

ν∈K

δ̄ν =
1
N

N∑

ν=1

δ̄ν = ᾱ∗, (24)

where ᾱ∗ is the optimal objective value of problem (16). We notice that inequality
(24) is written for the fixed realization (x1, x2, . . . xN ) of the sample.

Now, let ũ be an optimal solution to problem (14). Let

K̃ :=
{
ν | Y∗(ũ, xν) �= ∅, ν = 1, N

}
. (25)

For each ν ∈ K̃ let us choose ỹν ∈ Y∗(ũ, xν), λ̃ν ∈ Λ∗ in such a way that
Φ(ũ, xν) = Ψ(ũ, ỹν , xν). The existence of such values ỹν follows from the rep-
resentation (12), because the minimum of the lower semicontinuous function
(y, λ) 
→ Ψ(ũ, y, xν) + δΛ(ũ, y, λ, xν) is attained on the compact set Y ∗ × Λ∗. If
ν /∈ K̃, then we take ỹν ∈ Y ∗, λ̃ν ∈ Λ∗ arbitrarily. If ν ∈ K̃ and Φ(ũ, xν) ≤ ϕ,
then δ̃ν = 1; otherwise δ̃ν = 0. Let ζ̃ν

i = 1 if ỹν
i = 0 and ζ̃ν

i = 0 if ỹν
i > 0, i = 1, s;

η̃ν
j = 1 if λ̃ν

j = 0 and η̃ν
j = 0 if λ̃ν

j > 0, j = 1, k. All the constraints (17)–(23) are

satisfied for the solution
(
ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)
. Thus,

P (N)
ϕ (ũ) =

1
N

N∑

ν=1

χ[−∞,ϕ](Φ(ũ, xν)) =
1
N

N∑

ν=1

δ̃ν ≤ ᾱ∗. (26)

Taking into account the optimality of ũ, we obtain from inequality (24) that

P (N)
ϕ (ũ) ≥ P (N)

ϕ (ū) ≥ ᾱ∗. (27)

Hence, 1
N

∑N
ν=1 δ̃ν = ᾱ∗. This proves the third assertion of the theorem. Com-

bining (26) and (27), we get

P (N)
ϕ (ū) = P (N)

ϕ (ũ) = ᾱ∗. (28)

This implies the first assertion of the theorem. By definition, ᾱ∗ = 1
N

∑N
ν=1 δ̄ν .

We conclude from (28) that

αN = P (N)
ϕ (ũ) = ᾱ∗ =

1
N

N∑

ν=1

δ̄ν .

This equality proves the second assertion. All the assertions of Theorem 2 are
proved.
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Remark 1. Let us consider the model from Example 2. If the sets of feasible
values of leader’s and follower’s variables are bounded then the function γi can be
taken constant. In this case, constraints (17)–(23) are linear or convex depending
on the properties of the function f .

The quantile minimization problem (15) reduces to a mixed integer program-
ming problem:

ϕ → min
ϕ∈R∗, u∈U, yν∈Y, λν∈Rk, δ∈{0,1}N , ην∈{0,1}k, ζν∈{0,1}s, ν=1,N

(29)

subject to
1
N

N∑

ν=1

δν ≥ α. (30)

and (17)–(23).

Theorem 3. Let the conditions of Theorem 1 hold. Suppose that Λ∗ satisfies
condition (iv) of Theorem 1. Then,

1. if ū is an optimal value of the variable u in problem (29), then ū ∈ V (N);
2. if ϕ̄ is the optimal value of the variable ϕ in problem (29), then ϕN = ϕ̄;
3. for any optimal ũ ∈ V (N) there exist values ỹν ∈ Y , λ̃ν ∈ R

k, δ̃ ∈ {0, 1}N ,
η̃ν ∈ {0, 1}k, ζ̃ν ∈ {0, 1}s, ν = 1, N such that

(
ϕN , ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)

is an optimal solution to problem (29).

Proof. Let
(
ϕ̄, ū, ȳν , λ̄ν , δ̄, η̄ν , ζ̄ν

)
be an optimal solution to problem (16). Due

to constraint (30),
1
N

N∑

ν=1

δ̄ν ≥ α. (31)

It follows from inequalities (18)–(23) that

Φ(ū, xν) ≤ Ψ(ū, ȳν , xν) ≤ ϕ̄. (32)

if δ̄ν = 1 (see the proof of Theorem 2). Since inequalities (31) and (32) hold,

ϕ(N)
α (ū) = min

{

ϕ | 1
N

N∑

ν=1

χ[−∞,ϕ](Φ(ū, xν)) ≥ α

}

≤ ϕ̄. (33)

Now, let ũ be an optimal solution to problem (15). For each ν ∈ K̃ let us
choose ỹν ∈ Y∗(ũ, xν), λ̃ν ∈ Λ∗ in such a way that Φ(ũ, xν) = Ψ(ũ, ỹν , xν),
where K̃ is defined in (25). If ν /∈ K̃, then we take ỹν ∈ Y ∗, λ̃ν ∈ Λ∗ arbitrarily.
Let ζ̃ν

i = 1 if ỹν
i = 0 and ζ̃ν

i = 0 if ỹν
i > 0, i = 1, s; η̃ν

j = 1 if λ̃ν
j = 0 and

η̃ν
j = 0 if λ̃ν

j > 0, j = 1, k. If ν ∈ K̃ and Φ(ũ, xν) ≤ ϕN , then δ̃ν = 1; otherwise
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δ̃ν = 0. Taking into account the definition of the sample quantile function, we
get

∑N
ν=1 δ̃ν ≥ α. Thus, all the constraints (17)–(23) and (30) are satisfied for

the solution
(
ϕN , ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)
. Hence ϕ̄ ≤ ϕN .

Since ϕN is the optimal objective value in (15), ϕN ≤ ϕ
(N)
α (ū). Due to (33),

we obtain
ϕN ≤ ϕ(N)

α (ū) ≤ ϕ̄ ≤ ϕN .

Thus, ϕ
(N)
α (ū) = ϕ̄ = ϕN . This proves assertions 1 and 2 of Theorem 3. Asser-

tion 3 follows from the existence of the solution
(
ϕN , ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)

such that ϕ̄ = ϕN . Theorem 3 is proved.

5 Convergence of the Sample Approximations

The convergence of sample approximations of stochastic programming prob-
lems with probabilistic criterion is studied in [13], where it was proved that
limN→∞ αN = α∗ almost surely (a.s.) (with respect to the probability mea-
sure P′) if the function (u, x) 
→ Φ(u, x) is a normal integrand and U is
nonempty and compact. The sufficient conditions guaranteeing that the function
(u, x) 
→ Φ(u, x) is a normal integrand are given in Theorem 1 and Corollary 1.
Let us formulate the theorem on the convergence of the sample approximations of
the bilevel stochastic programming problem with probabilistic criterion. Denote
by

D(S, T ) := sup
s∈S

inf
t∈T

‖s − t‖

the deviation of the set S ⊂ R
r from the set T ⊂ R

r.

Theorem 4. Suppose that the function (u, x) 
→ Φ(u, x) is a normal integrand.
Let the set U be nonempty and compact. Then limN→∞ αN = α∗ a.s. and
limN→∞ D

(
U (N), U∗) = 0 a.s.

Proof. The convergence of αN to α∗ a.s. is proved in [13, Theorem 7]. Also, it
was proved that, under the conditions of the theorem, that every limit point ū of
the sequence (uN ), where uN ∈ U (N), is optimal in problem (6) a.s., i.e., ū ∈ U∗

a.s. To prove the set convergence, suppose that lim supN→∞ D
(
U (N), U∗) > 0

with nonzero probability. This implies that there exists ε > 0 such that
lim supN→∞ D

(
U (N), U∗) > ε with probability β > 0. Then, with probability

β, we can find a sequence uN such that

lim sup
N→∞

inf
u∈U∗

‖uN − u‖ > ε.

From the compactness of the set U and the continuity of the function v 
→
infu∈U∗ ‖v − u‖ it follows that there exists a limit point ū of the sequence (uN )
such that infu∈U∗ ‖ū − u‖ ≥ ε. Therefore, with probability β > 0 there exists
a limit point ū (depending on the realization of the sample) such that ū /∈ U∗.
But ū ∈ U∗ a.s. This contradiction proves the theorem.
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In applied problems, it is important to know the sample size guaranteeing
a given accuracy of the approximation. This question is studied in [18, Theorem
1]. According to this result, if the set U is finite, then

P′{U (N) ⊂ Uε} ≥ β

for

N ≥ 2
ln |U | − ln(1 − β)

| ln(1 − ε2)| ,

where β ∈ (0, 1), ε ∈ (0, 1), Uε := {u ∈ U | Pϕ(u) ≥ α∗−ε} is the set of ε-optimal
solutions to problem (6). This estimation was obtained for arbitrary functions
(u, x) → Φ(u, x) being normal integrands and taking values from R. Replacing
infinite values of Φ(u, x) in definition (3) by finite values that have the same
sign does not change Pϕ(u) and P

(N)
ϕ (u). Thus, the given estimation is valid

for the considered bilevel problems (of course, if the conditions of Theorem 1 or
Corollary 1 are satisfied).

Sufficient conditions of the convergence of problems with quantile criteria are
given in [13,14].

Theorem 5 ([14, Theorem 10]). Suppose that

(i) The set U is compact and nonempty.
(ii) The function (u, x) 
→ Φ(u, x) is a normal integrand, and Φ(u, x) > −∞ for

all (u, x) ∈ U × X .
(iii) If ϕ∗ �= +∞, then for all ε > 0 there exists a pair (ũ, ϕ̃) ∈ U × R such that

|ϕ̃ − ϕ∗| ≤ ε and Pϕ̃(ũ) > α.

Then limN→∞ ϕN = ϕ∗ a.s. and every limit point of the sequence (vN ), where
vN ∈ V (N), is optimal in problem (7) a.s.

Theorem 5 was proved for arbitrary functions (u, x) → Φ(u, x) being normal
integrands and taking values from (−∞,+∞]. Thus, it holds for the considered
functions Φ in bilevel problems. Due to condition (ii), Theorem 5 is not applied
to functions Φ taking value −∞.

In the same manner as in the proof of Theorem 4, it can be proved that the
assertion on the optimality of limit points in Theorem 5 can be replaced by

lim
N→∞

D
(
V (N), V ∗

)
= 0 a.s.

The most difficult point in applying Theorem 5 is to check assumption (iii). It
is hard to describe sufficient conditions for this, because the dependence (u, x) 
→
Φ(u, x) must be known. However, in some cases (for example, in the case of
linear follower’s problem [19]) this dependence can be found. It is easy to check
that assumption (iii) of Theorem 5 holds if the function x 
→ Φ(u, x) is strictly
increasing and X has a positive on R density.



Convergence of Sample Approximations of Bilevel Problems 233

6 Conclusion

In this paper, sample approximations of the stochastic optimistic bilevel pro-
gramming problems with probabilistic and quantile criteria were studied. The
sample approximations reduced to deterministic optimization problems. These
problems can be solved by using special software for nonlinear optimization.
Conditions ensuring the convergence of the sample approximations were given.
Since these conditions require that the leader’s loss function is a normal inte-
grand, some classes of the considered problems with such leader’s loss functions
were described. Although the convergence was proved, the sufficient sample size
for the infinite set of the leader’s variables (and for the quantile minimization
problem even when the set of the variable is finite) is still unknown. This question
can be studied in future research.
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