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Preface

This volume contains the refereed proceedings of the 20th International Conference on
Mathematical Optimization Theory and Operations Research (MOTOR 2021)1 held
during July 5–10, 2021, at Lake Baikal, near Irkutsk, Russia.

MOTOR 2021 was the third joint scientific event unifying a number of well-known
international and Russian conferences that had been held in Ural, Siberia, and the Far
East for a long time:

– The Baikal International Triennial School Seminar on Methods of Optimization and
Their Applications (BITSS MOPT) established in 1969 by academician N.
N. Moiseev; the 17th event2 in this series was held in 2017 in Buryatia

– The All-Russian Conference on Mathematical Programming and Applications
(MPA) established in 1972 by academician I. I. Eremin; was the 15th conference3 in
this series was held in 2015 near Ekaterinburg

– The International on Discrete Optimization and Operations Research (DOOR) was
organized nine times since 1996 and the last event4 was held in 2016 in Vladivostok

– The International Conference on Optimization Problems and Their Applications
(OPTA) was organized regularly in Omsk since 1997 and the 7th event5 was held in
2018

First two events of this series, MOTOR 20196 and MOTOR 20207, were held in
Ekaterinburg and Novosibirsk, Russia, respectively.

As per tradition, the main conference scope included, but was not limited to,
mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical guarantees and
approximation schemes, heuristics and meta-heuristics, game theory, optimal control,
optimization in machine learning and data analysis, and their valuable applications in
operations research and economics.

In response to the call for papers, MOTOR 2021 received 181 submissions. Out of
102 full papers considered for reviewing (79 abstracts and short communications were
excluded for formal reasons) only 30 papers were selected by the Program Committee
(PC) for publication in this volume. Each submission was reviewed by at least three PC
members or invited reviewers, experts in their fields, in order to supply detailed and
helpful comments. In addition, the PC recommended 34 papers for inclusion in the

1 https://conference.icc.ru/event/3/.
2 http://isem.irk.ru/conferences/mopt2017/en/index.html.
3 http://mpa.imm.uran.ru/96/en.
4 http://www.math.nsc.ru/conference/door/2016/.
5 http://opta18.oscsbras.ru/en/.
6 http://motor2019.uran.ru.
7 http://math.nsc.ru/conference/motor/2020/.
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supplementary volume after their presentation and discussion during the conference
and subsequent revision with respect to the reviewers’ comments.

The conference featured nine invited lectures:

– Dr. Christian Blum (Artificial Intelligence Research Institute, Spain), “On the
Design of Matheuristics that make Use of Learning”

– Prof. Emilio Carrizosa (Institute of Mathematics, University of Seville, Spain),
“Optimal Classification and Regression Trees”

– Prof. François Clautiaux (Université de Bordeaux, France), “Integer Programming
Formulations Based on Exponentially Large Networks: Algorithms and
Applications”

– Prof. Andreas Griewank (Institute of Mathematics, Humboldt University,
Germany), “Beyond Heuristic Gradient Descent in Machine Learning”

– Prof. Klaus Jansen (Christian-Albrechts-Universität, Germany) “Integer Program-
ming and Convolution, with Applications”

– Prof. Sergey Kabanikhin (Institute of Numerical Mathematics and Mathematical
Geophysics, Russia) “Optimization and Inverse Problems”

– Prof. Nenad Mladenovic (Khalifa University, United Arab Emirates), “Minimum
Sum of Squares Clustering for Big Data – Heuristic Approach”

– Prof. Claudia Sagastizábal (IMECC - University of Campinas, Brazil), “Exploiting
Structure in Nonsmooth Optimization”

– Prof. Mikhail Solodov (Institute for Pure and Applied Mathematics, Brazil),
“State-of-the-art on Rates of Convergence and Cost of Iterations of Augmented
Lagrangian Methods”

The following three tutorials were given by outstanding scientists:

– Prof. Alexander Gasnikov (Moscow Institute of Physics and Technology, Russia),
“Reinforcement Learning from the Stochastic Optimization Point of View”

– Prof. Alexander Krylatov (Saint Petersburg State University, Russia), “Equilibrium
Traffic Flow Assignment in a Multi-Subnet Urban Road Network”

– Prof. Alexander Strekalovsky (Matrosov Institute for System Dynamics and Control
Theory, Irkutsk, Russia), “A Local Search Scheme for the Inequality-Constrained
Optimal Control Problem”

We thank the authors for their submissions, the members of the Program Committee
(PC), and the external reviewers for their efforts in providing exhaustive reviews. We
thank our sponsors and partners: the Mathematical Center in Akademgorodok, Huawei
Technologies Co., Ltd., the Sobolev Institute of Mathematics, the Krasovsky Institute
of Mathematics and Mechanics, the Ural Mathematical Center, the Center for Research
and Education in Mathematics, the Higher School of Economics (Campus Nizhny
Novgorod), and the Matrosov Institute for System Dynamics and Control Theory. We
are grateful to the colleagues from the Springer LNCS and CCIS editorial boards for
their kind and helpful support.

July 2021 Panos Pardalos
Michael Khachay

Alexander Kazakov
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Abstracts of Invited Talks



On the Design of Matheuristics that make Use
of Learning

Christian Blum

Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain
christian.blum@iiia.csic.es

Abstract. Approximation techniques for solving combinatorial optimization
problems, such as metaheuristics, often make use of learning. Examples include
evolutionary algorithms and ant colony optimization. On the other side,
matheuristics — that is, heuristic techniques making use of mathematical pro-
gramming - rarely include a learning component. Most variants of large
neighbourhood search, for instance, do not take profit from learning. In this talk
I will present examples of our recent work in which we design matheuristics that
make successful use of learning, considering both positive and negative
feedback.

Keywords: Combinatorial optimization • Approximation • Learning

http://orcid.org/0000-0002-1736-3559


Optimal Classification and Regression Trees

Emilio Carrizosa

Institute of Mathematics, University of Seville, Spain
ecarrizosa@us.es

Abstract. Classification and Regression Trees are very powerful Machine
Learning tools. Their design expressed as an optimization problem enables us to
obtain excellent accuracy performance, and, at the same time, to have some
control on important issues such as sparsity, explainability or fairness. In this
talk, some recent advances in the field and future research lines will be dis-
cussed.

Keywords: Classification • Regression trees

http://orcid.org/0000-0002-0832-8700


Integer Programming Formulations Based
on Exponentially Large Networks: Algorithms

and Applications

François Clautiaux

University of Bordeaux, France
francois.clautiaux@math.u-bordeaux.fr

Abstract. The last ten years have seen much progress in the field of so-called
extended formulations, which aims at reformulating effectively a
problem/polyhedron with the help of (exponentially many) additional variables.
In particular, network-flow formulations have received an increasing interest
from the community. A considerable difficulty to overcome when dealing with
such a formulation is to handle its size. In this talk we recall some key results
concerning these formulations, and present several recent successful applications
that have been obtained using innovative aggregation/disaggregation techniques.

Keywords: Exponential size MIP models • Integer programming

http://orcid.org/0000-0002-9171-8012


Beyond Heuristic Gradient Descent in Machine
Learning

Andreas Griewank

Institute of Mathematics, Humboldt University, Germany
griewank@mathematik.hu-berlin.de

Abstract. In neural network training and other large scale applications, deter-
ministic and stochastic variants of Cauchy’s steepest descent method are widely
used for the minimization of objectives that are only piecewise smooth. From the
classical optimization point of view the roaring and almost exclusive success of
this most basic approach is somewhat puzzling. The lack of convergence analysis
typically goes along with a large number of method parameters that have to be
adjusted by trial and error. We explore several ideas to derive more rigorous but
still efficient methods for classification problems. One is a Newton adaptation
that can exploit the internal structure of the so-called sparse-max potential, the
other a generalization of Wolfe's conjugate gradient method to nonsmooth and
nonconvex problems. Our observations and results are demonstrated on the well
known MNIST and CIFAR problems with one- and multilayer prediction
functions.

Keywords: Neural networks • Conjugate gradient method

http://orcid.org/0000-0001-9839-1473


Integer Programming and Convolution,
with Applications

Klaus Jansen

Christian-Albrechts-Universität, Kiel, Germany
kj@informatik.uni-kiel.de

Abstract. Integer programs (IP) with m constraints are solvable in pseudo-
polynomial time. We give a new algorithm based on the Steinitz Lemma and
dynamic programming with a better pseudo-polynomial running time than pre-
vious results. Moreover, we establish a strong connection to the problem (min,+)
- convolution. (min,+) - convolution has a trivial quadratic time algorithm and it
has been conjectured that this cannot be improved significantly. Finally we show
for the feasibility problem also a tight lower bound, which is based on the Strong
Exponential Time Hypothesis (SETH), and give some applications for knapsack
and scheduling problems. This is joint work with Lars Rohwedder.

Keywords: Integer program • Strong exponential time hypothesis •
Pseudo-polynomial time

http://orcid.org/0000-0001-8358-6796


Optimization and Inverse Problems

Sergey Kabanikhin

Institute of Numerical Mathematics and Mathematical Geophysics,
Novosibirsk, Russia
Ksi52@mai.ru

Abstract. Inverse problems arise in many applications in science and engi-
neering. The term “inverse problem” is generally understood as the problem of
finding a specific physical property, or properties, of the medium under inves-
tigation, using indirect measurements. In general, an inverse problem aims at
recovering the unknown parameters of a physical system which produces the
observations and/or measurements. Such problems are usually ill-posed. This is
often solved via two approaches: a Bayesian approach which computes a pos-
terior distribution of the models given prior knowledge and the regularized data
fitting approach which chooses an optimal model by minimizing an objective
taking into account both fitness to data and prior knowledge. Optimization plays
an important role in solving many inverse problems. Indeed, the task of inversion
often either involves or is fully cast as a solution to an optimization problem. In
this talk, we discuss current state-of-the-art optimization methods widely used in
inverse problems. We then survey recent related advances in addressing similar
challenges in problems faced by the machine learning community and discuss
their potential advantages for solving inverse problems.

Keywords: Inverse problem • Optimization • Machine learning

http://orcid.org/0000-0003-4772-1481


Minimum Sum of Squares Clustering for Big
Data – Heuristic Approach

Nenad Mladenovic

Khalifa University, United Arab Emirates
nenadmladenovic12@gmail.com

Abstract. We first present a review of local search methods that are usually used
to solve the minimum sum-of-square clustering (MSSC) problem. We then
present some their combinations within Variable neighbourhood descent
(VND) scheme. They combine k-means, h-means and j-means heuristics in a
nested and sequential way. To show how these local searches can be imple-
mented within a metaheuristic framework, we apply the VND heuristics in the
local improvement step of variable neighbourhood search (VNS) procedure.
Computational experiments are carried out which suggest that this new and
simple application of VNS is comparable to the state of the art. Then we discuss
some decomposition and aggregation strategies for solving MSSC problem with
huge data sets. Following the recent Less is more approach, the data set is divided
randomly into a few smaller subproblems and after solving, the centroids of each
subproblem is chosen to represent its cluster for a new aggregation stage.
Encouraging computational results on instances of several million entities are
presented.

Keywords: Minimum sum-of-square clustering •Variable neighbourhood search •
Decomposition

http://orcid.org/0000-0001-6655-0409


Exploiting Structure in Nonsmooth
Optimization

Claudia Sagastizábal

IMECC - University of Campinas, Brazil
sagastiz@unicamp.br

Abstract. In many optimization problems nonsmoothness appears in a structured
manner. Composite structures are found in LASSO-type problems arising in
machine-learning. Separable structures result from applying some decomposition
technique to problems that cannot be solved directly. This context is frequent in
stochastic programming, bilevel optimization, equilibrium problems. The talk
will give a panorama of techniques that have proven successful in exploiting
structural properties that are somewhat hidden behind nonsmoothness.
Throughout the presentation the emphasis is put on transmitting the main ideas
and concepts, illustrating with examples the presented material.

Keywords: Optimization • Structural properties

http://orcid.org/0000-0002-9363-9297


State-of-the-Art on Rates of Convergence
and Cost of Iterations of Augmented

Lagrangian Methods

Mikhail Solodov

Institute for Pure and Applied Mathematics, Brazil
solodov@impa.br

Abstract. We discuss state-of-the-art results on local convergence and rate of
convergence of the classical augmented Lagrangian algorithm. The local
primal-dual linear/superlinear convergence is obtained under the sole assump-
tion that the dual starting point is close to a multiplier satisfying the
second-order sufficient optimality condition. In fact, in the equality-constrained
case, even the weaker noncriticality assumption is enough. In particular, no
constraint qualifications of any kind are needed. Classical literature on the
subject required the linear independence constraint qualification (in addition to
other things). In addition to the most standard form of the augmented Lagran-
gian algorithm, the general lines of analysis apply also to its variant with partial
penalization of the constraints, to the proximal-point version, and to the mod-
ification with smoothing of the max-function. Moreover, we show that to
compute suitable approximate solutions of augmented Lagrangian subproblems
which ensure the superlinear convergence of the algorithm, it is enough to make
just two Newtonian steps (i.e., solve two quadratic programs, or two linear
systems in the equality-constrained case). The two quadratic programs are
related to stabilized sequential quadratic programming, and to second-order
corrections, respectively.

Keywords: Convex programming • Augmented Lagrangian methods •
Convergence rates



Abstracts of Tutorials



Reinforcement Learning from the Stochastic
Optimization Point of View

Alexander Gasnikov

Moscow Institute of Physics and Technology, Russia
gasnikov@yandex.ru

Abstract. We consider the problem of learning the optimal policy for
infinite-horizon Markov decision processes (MDPs). We discuss lower bounds
and optimal algorithms for discount and average-reward MDPs with a genera-
tive model. We also pay attention to parallelization aspects. In the core of the
described approaches lies the idea to relate the problem of learning the optimal
policy for MDP with the stochastic optimization algorithms (Mirror Descent
type) for optimization reformulations, based on Bellmans’ equations (D.
Bertsekas).

Keywords: Markov decision process • Reinforcement learning • Stochastic
optimization



Equilibrium Traffic Flow Assignment
in a Multi-subnet Urban Road Network

Alexander Krylatov

Saint-Petersburg State University, Russia
aykrylatov@yandex.ru

Abstract. Today urban road network of a modern city can include several
subnets. Indeed, bus lanes form a transit subnet available only for public vehicles.
Toll roads form a subnet, available only for drivers who ready to pay fees for
passage. The common aim of developing such subnets is to provide better urban
travel conditions for public vehicles and toll-paying drivers. The present paper is
devoted to the equilibrium traffic flow assignment problem in a multi-subnet
urban road network. We formulate this problem as a non-linear optimization
program and prove that its solution corresponds to the equilibrium traffic
assignment pattern in a multi-subnet road network. Moreover, we prove that
obtained equilibrium traffic assignment pattern guarantees less or equal travel
time for public vehicles and toll-paying drivers than experienced by all other
vehicles. The findings of the paper contribute to the traffic theory and give fresh
managerial insights for traffic engineers.

Keywords: Non-linear optimization • Traffic assignment problem • Multi-subnet
urban road network

http://orcid.org/0000-0002-6634-1313


A Local Search
Scheme for the Inequality-Constrained

Optimal Control Problem

Alexander Strekalovsky

Matrosov Institute for System Dynamics and Control Theory,
Irkutsk, Russiaa

strekal@icc.ru

Abstract. This paper addresses the nonconvex optimal control (OC) problem
with the cost functional and inequality constraint given by the functionals of
Bolza. All the functions in the statement of the problem are state-DC, i.e. pre-
sented by a difference of the state-convex functions. Meanwhile, the control
system is state-linear. Further, with the help of the Exact Penalization Theory we
propose the state-DC form of the penalized cost functional and, using the lin-
earization with respect to the basic nonconvexity of the penalized problem, we
study the linearized OC problem. On this basis, we develop a general scheme
of the special Local Search Method with a varying penalty parameter. Finally, we
address the convergence of the proposed scheme.

Keywords: Nonconvex optimal control • DC-functions • Local search

http://orcid.org/0000-0002-4664-6961
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in a Multi-subnet Urban Road Network

Alexander Krylatov1,2(B)

1 Saint Petersburg State University, Saint Petersburg, Russia
a.krylatov@spbu.ru

2 Institute of Transport Problems RAS, Saint Petersburg, Russia

Abstract. Today urban road network of a modern city can include sev-
eral subnets. Indeed, bus lanes form a transit subnet available only for
public vehicles. Toll roads form a subnet, available only for drivers who
ready to pay fees for passage. The common aim of developing such sub-
nets is to provide better urban travel conditions for public vehicles and
toll-paying drivers. The present paper is devoted to the equilibrium traf-
fic flow assignment problem in a multi-subnet urban road network. We
formulate this problem as a non-linear optimization program and prove
that its solution corresponds to the equilibrium traffic assignment pat-
tern in a multi-subnet road network. Moreover, we prove that obtained
equilibrium traffic assignment pattern guarantees less or equal travel time
for public vehicles and toll-paying drivers than experienced by all other
vehicles. The findings of the paper contribute to the traffic theory and
give fresh managerial insights for traffic engineers.

Keywords: Non-linear optimization · Traffic assignment problem ·
Multi-subnet urban road network

1 Introduction

An urban road area of a modern city is a multi-subnet complex composited
network, which has been permanently growing over the past 40 years due to
the worldwide urbanization process [8]. Indeed, the scale of many actual urban
road networks today is truly incredible [20]. The continuing growth of large cities
challenges authorities, civil engineers, and researchers to face a lot of complicated
problems at all levels of management [15]. The service of huge urban networks
requires a large budget which takes a significant part in the budget of a city [12].
Thus, errors in urban road network planning can affect adversely the budget
policy of a city authority. Therefore, the development of intelligent systems for
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decision-making support in the field of large urban road network design seems
to be of crucial interest [1,19].

Comprehensive review on approaches and techniques for transit network
planning, operation and control is given in [4]. Transit network planning is com-
monly divided into subproblems that span tactical, strategical, and operational
decisions [3], any of which is an NP-hard computational problem [14]. Thus,
since a transit network design problem includes all these items simultaneously,
it is can not be solved precisely. Hence, network planners are often equipped only
by general recommendations and methodological tools for decision-making sup-
port. However, inspired by the recent findings on a composited complex network
of multiple subsets [11,16], and traffic assignment in a network with a transit
subnetwork [5,6,18], this paper investigates the traffic assignment problem in a
multi-subnet composited urban road network, which can be solved precisely.

In the paper we consider a multi-subnet urban road network under arc-
additive travel time functions. Section 2 presents a multi-subnet urban road
network as a directed graph, while Sect. 3 is devoted to equilibrium traffic assign-
ment in such kind of network. We formulate the equilibrium assignment problem
in a multi-subnet urban road network as a non-linear optimization program and
prove that its solution corresponds to the equilibrium traffic assignment pattern
in a multi-subnet road network. Section 4 gives important analytical results for
a road network with disjoint routes, which are directly applied in Sect. 5 for
toll road design. Actually, the simple case of a road network topology allows us
to consider different scenarios, concerning subnetwork design, and analyze the
decision-making process. Section 6 contains the conclusions.

2 Multi-subnet Urban Road Network

Let us consider a multi-subnet urban road network presented by a directed graph
G = (E, V ), where V represents a set of intersections, while E ⊆ V ×V represents
a set of available roads between the adjacent intersections. If we define S as
the ordered set of selected vehicle categories, then G = G0 ∪ ⋃

s∈S Gs, where
G0 = (E0, V0) is the subgraph of public roads, which are open to public traffic,
and Gs = (Es, Vs) is the subgraph of roads, which are open only for the s-th
category of vehicles, s ∈ S. Denote W ⊆ V × V as the ordered set of pairs of
nodes with non-zero travel demand Fw

0 > 0 and/or Fw
s > 0, s ∈ S, for any

w ∈ W . W is usually called as the set of origin-destination pairs (OD-pairs),
|W | = m. Any set of sequentially linked arcs initiating in the origin node of
OD-pair w and terminating in the destination node of the OD-pair w we call
route between the OD-pair w, w ∈ W . The ordered sets of all possible routes
between nodes of the OD-pair w, w ∈ W , we denote as Rw

0 for the subgraph
G0 and Rw

s for the subgraph Gs, s ∈ S. Demand Fw
s > 0 for any s ∈ S and

w ∈ W seeks to be assigned between the available public routes Rw
0 and routes

for vehicles of s-th category Rw
s . Thus, on the one hand,

∑
r∈Rw

s
pwr = Pw

s , where
pwr is the variable corresponding to the traffic flow of the s-th category vehicles
through the route r ∈ Rw

s , while Pw
s is the variable corresponding to the overall
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traffic flow of the s-th category vehicles through the routes Rw
s . On the other

hand, the difference (Fw
s − Pw

s ) is the traffic flow of the s-th category vehicles,
which can be assigned between the available public routes Rw

0 for any s ∈ S and
w ∈ W , since the variable Pw

s satisfies the following condition: 0 ≤ Pw
s ≤ Fw

s

for any s ∈ S, w ∈ W . Therefore, demand Fw
0 > 0 seeks to be assigned between

the available public routes Rw
0 together with the traffic flow

∑
s∈S(Fw

s − Pw
s ):∑

r∈Rw
0

fw
r = Fw

0 +
∑

s∈S(Fw
s − Pw

s ), where fw
r is the variable corresponding

to the traffic flow through the public route r ∈ Rw
0 between nodes of OD-pair

w ∈ W .
Let us introduce differentiable strictly increasing functions on the set of real

numbers te(·), e ∈ E. We suppose that te(·), e ∈ E, are non-negative and
their first derivatives are strictly positive on the set of real numbers. By xe

we denote traffic flow on the edge e, while x is an appropriate vector of arc-
flows, x = (. . . , xe, . . .)T, e ∈ E. Defined functions te(xe) are used to describe
travel time on arcs e, e ∈ E, and they are commonly called arc delay, cost or
performance functions. In this paper we assume that the travel time function of
the route r ∈ Rw

0 ∪⋃
s∈S Rw

s between OD-pair w ∈ W is the sum of travel delays
on all edges belonging to this route. Thus, the travel time through the route
r ∈ Rw

0 ∪ ⋃
s∈S Rw

s between OD-pair w ∈ W can be defined as the following
sum: ∑

e∈E

te(xe)δwe,r ∀r ∈ Rw
0 ∪

⋃

s∈S

Rw
s , w ∈ W,

where, by definition,

δwe,r =
{

1, if edge e belongs to the route r ∈ Rw
0 ∪ ⋃

s∈S Rw
s ,

0, otherwise. ∀e ∈ E,w ∈ W,

while, naturally,

xe =
∑

w∈W

∑

s∈S

∑

r∈Rw
s

pwr δwe,r +
∑

w∈W

∑

r∈Rw
0

fw
r δwe,r, ∀e ∈ E,

i.e., traffic flow on the arc is the sum of traffic flows through those routes, which
include this arc.

3 Equilibrium Assignment in a Multi-subnet Road
Network

The traffic assignment problem (TAP) is an optimization problem with non-
linear objective function and linear constraints, which allows one to find traffic
assignment in a road network by given travel demand values. The solution of
TAP is proved to satisfy so called user equilibrium (UE) behavioural principle,
formulated by J. G. Wardrop as follows: “The journey times in all routes actually
used are equal and less than those that would be experienced by a single vehicle
on any unused route” [13]. Therefore, the equilibrium traffic assignment prob-
lem is a well-known problem for the urban road network without subnets, i.e.,
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the network consisting of public roads only that serve all the traffic. The first
mathematical formulation of such a problem was given by Beckmann et al. [2].
Thus, under separable travel time functions, TAP has a form of the following
optimization program [9,10]:

min
x

∑

e∈E

∫ xe

0

te(u)du, (1)

subject to ∑

r∈Rw
0

fw
r = Fw

0 +
∑

s∈S

Fw
s , ∀w ∈ W, (2)

fw
r ≥ 0 ∀r ∈ Rw

0 , w ∈ W, (3)

where, by definition,

xe =
∑

w∈W

∑

r∈Rw
0

fw
r δwe,r ∀e ∈ E. (4)

An arc-flow assignment pattern and corresponding route-flow assignment pat-
tern, satisfying (1)–(4), are proved to reflect user equilibrium traffic assignment
or such an assignment that

∑

e∈E

te(xe)δwe,r

{
= tw, if fw

r > 0,
≥ tw, if fw

r = 0,
∀r ∈ Rw

0 , w ∈ W, (5)

where tw is called an equilibrium travel time or travel time on actually used
routes between OD-pair w, w ∈ W [7].

Let us develop the equilibrium traffic assignment problem for a multi-subnet
urban road network. For this purpose, we specify the principle, like the user-
equilibrium one (5), which should be satisfied by the equilibrium traffic assign-
ment pattern in a multi-subnet urban road network: “The journey times in all
routes actually used are equal and less than those that would be experienced by
a single vehicle on any unused route, as well as the journey times in all routes
actually used in any subnet less or equal than the journey times in all routes
actually used in a public road network”. The following theorem gives a formu-
lation of the multi-subnet equilibrium traffic assignment problem in the form of
an optimization program.

Theorem 1. Equilibrium traffic flow assignment in a multi-subnet urban road
network is obtained as a solution of the following optimization program:

min
x

∑

e∈E

∫ xe

0

te(u)du, (6)

with constraints ∀ w ∈ W
∑

r∈Rw
s

pwr = Pw
s , ∀s ∈ S, (7)
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∑

r∈Rw
0

fw
r = Fw +

∑

s∈S

(
Fw
s − Pw

s

)
, (8)

pwr ≥ 0 ∀r ∈ Rw
s ,∀s ∈ S, (9)

fw
r ≥ 0 ∀r ∈ Rw

0 , (10)

0 ≤ Pw
s ≤ Fw

s ∀s ∈ S, (11)

with definitional constraint

xe =
∑

w∈W

∑

s∈S

∑

r∈Rw
s

pwr δwe,r +
∑

w∈W

∑

r∈Rw
0

fw
r δwe,r, ∀e ∈ E. (12)

Proof. Since functions te(xe), e ∈ E, are strictly increasing, then the goal func-
tion (6) is convex. Hence, the optimization problem (6)–(11) has the unique
solution, which has to satisfy the Karush–Kuhn–Tucker conditions. Let us con-
sider the Lagrangian of the problem:

L =
∑

e∈E

∫ xe

0

te(u)du +
∑

w∈W

⎡

⎣
∑

s∈S

tws

⎛

⎝Pw
s −

∑

r∈Rw
s

pwr

⎞

⎠

+tw0

⎛

⎝Fw +
∑

s∈S

(
Fw
s − Pw

s

)
−

∑

r∈Rw
0

fw
r

⎞

⎠

+
∑

s∈S

∑

r∈Rw
s

(−pwr )ηw
r +

∑

r∈Rw
0

(−fw
r )ξwr +

∑

s∈S

(( − Pw
s

)
γw
s + (Pw

s − Fw
s ) ζws

)
]

,

where tw0 , tws , s ∈ S, ηw
r ≥ 0, r ∈ Rw

s and s ∈ S, ξwr ≥ 0, r ∈ Rw
0 , γw

s ≥ 0, ζws ≥ 0,
s ∈ S, for any w ∈ W are Lagrangian multipliers. According to Karush–Kuhn–
Tucker conditions, the following equalities hold for any w ∈ W :

∂L

∂pwr
=

∂

∂pwr

∑

e∈E

∫ xe

0

te(u)du − tws − ηw
r = 0, ∀r ∈ Rw

s , s ∈ S, (13)

∂L

∂fw
r

=
∂

∂fw
r

∑

e∈E

∫ xe

0

te(u)du − tw0 − ξwr = 0, ∀r ∈ Rw
0 , (14)

∂L

∂Pw
s

= tws − tw0 − γw
s + ζws = 0, ∀s ∈ S. (15)

Note that, according to (12), for any r ∈ Rw
s , s ∈ S and w ∈ W :

∂

∂pwr

∑

e∈E

∫ xe

0

te(u)du =
∑

e∈E

∂

∂xe

(∫ xe

0

te(u)du

)
∂xe

∂pwr
=

∑

e∈E

te(xe)δwe,r,
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and for any r ∈ Rw
0 and w ∈ W :

∂

∂fw
r

∑

e∈E

∫ xe

0

te(u)du =
∑

e∈E

∂

∂xe

(∫ xe

0

te(u)du

)
∂xe

∂fw
r

=
∑

e∈E

te(xe)δwe,r.

Therefore, equations (13)–(15) can be re-written as follows:
∑

e∈E

te(xe)δwe,r = tws + ηw
r , ∀r ∈ Rw

s , s ∈ S,w ∈ W, (16)

∑

e∈E

te(xe)δwe,r = tw0 + ξwr , ∀r ∈ Rw
0 , w ∈ W, (17)

tws = tw0 + γw
s − ζws , ∀s ∈ S,w ∈ W. (18)

Moreover, a restriction in the inequality form has to satisfy the complementary
slackness condition, i.e., for restrictions (9)–(11) the following equalities hold for
any w ∈ W :

(−pwr )ηw
r = 0 ∀r ∈ Rw

s , s ∈ S, (−fw
r )ξwr = 0 ∀r ∈ Rw

0 ,

( − Pw
s

)
γw
s = 0 ∀s ∈ S, (Pw

s − Fw
s ) ζws = 0 ∀s ∈ S.

(19)

Once (19) holds for any w ∈ W , then:

– the equality (16) can be re-written as follows:

∑

e∈E

te(xe)δwe,r

{
= tws for pwr > 0,
≥ tws for pwr = 0, ∀r ∈ Rw

s , s ∈ S,w ∈ W, (20)

since ηw
r ≥ 0 for any r ∈ Rw

s , w ∈ W ;
– the equality (17) can be re-written as follows:

∑

e∈E

te(xe)δwe,r

{
= tw0 for fw

r > 0,
≥ tw0 for fw

r = 0, ∀r ∈ Rw
0 , w ∈ W, (21)

since ξwr ≥ 0 for any r ∈ Rw
0 , w ∈ W ;

– the equality (18) can be re-written for all w ∈ W as follows:

tws

⎧
⎨

⎩

≤ tw0 for Pw
s = Fw

s ,
= tw0 for 0 < Pw

s < Fw
s ,

≥ tw0 for Pw
s = 0,

∀s ∈ S,w ∈ W, (22)

since γw
s ≥ 0 and ζws ≥ 0 for any s ∈ S, w ∈ W .

Therefore, the unique solution of the optimization problem (6)–(11) satisfies
conditions (20)–(22). In other words, according to (20) and (21), the journey
times in all routes actually used are equal and less than those that would be
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experienced by a single vehicle on any unused route, while, according to (22),
the journey times in all routes actually used in any subnet less or equal than
the journey times in all routes actually used in a public road network. Thus, the
solution of the optimization problem (6)–(11) is indeed the equilibrium traffic
assignment in a multi-subnet urban road network. �	

The theorem on equilibrium traffic assignment in a multi-subset urban road
network is proved. Let us note that the proof of the theorem on equilibrium
traffic assignment in the urban road network with only one subnet was earlier
given by the author as the contribution to the paper [17].

Remark. We suggest calling Lagrange multiplier tw0 , w ∈ W , as the equi-
librium travel time for the public road network, while Lagrange multiplier tws ,
s ∈ S, w ∈ W , as the equilibrium travel time for the subnet s, s ∈ S.

4 Multi-subnet Road Network with Disjoint Routes

Let us consider the particular case of a multi-subnet urban road network pre-
sented by the directed graph G = (V,E). The set S is still the set of selected
vehicle categories and G = G0 ∪ ⋃

s∈S Gs, where G0 = (V0, E0) is the subgraph
of public roads, which are open to public traffic, and Gs = (Vs, Es) is the sub-
graph of roads, which are open only for the s-th category of vehicles, s ∈ S. We
also believe that there is only one OD-pair with non-zero travel demands, i.e.,
|W | = 1, F0 > 0 and Fs > 0, s ∈ S. We assume that the topology of the graph G
is such that any route initiating in the origin node of the OD-pair and terminat-
ing in its destination node has no common arcs with all other available routes
between this OD-pair. The ordered sets of all possible routes between nodes of
the single OD-pair we denote as R0, |R0| = n0, for the subgraph G0 and Rs,
|Rs| = ns, for the subgraph Gs, s ∈ S. Demand Fs > 0 for any s ∈ S seeks to be
assigned between the available public routes R0 and routes for vehicles of s-th
category Rs. Thus, on the one hand,

∑
r∈Rs

pr = Ps, where pr is the variable
corresponding to the traffic flow of the s-th category vehicles through the route
r ∈ Rs, while Ps is the variable corresponding to the overall traffic flow of the
s-th category vehicles through the routes Rs. On the other hand, the difference
(Fs − Ps) is the traffic flow of the s-th category vehicles, which can be assigned
between the available public routes R0 for any s ∈ S, since the variable Ps sat-
isfies the following condition: 0 ≤ Ps ≤ Fs for any s ∈ S. Therefore, demand
F0 > 0 seeks to be assigned between the available public routes R0 together with
the traffic flow

∑
s∈S(Fs − Ps):

∑
r∈R0

fr = F0 +
∑

s∈S(Fs − Ps), where fr is
the variable corresponding to the traffic flow through the public route r ∈ R0

between nodes of OD-pair w ∈ W .
Let us also introduce linear strictly increasing functions on the set of real

numbers tr(·), r ∈ R0 ∪ ⋃
s∈S Rs, which are travel cost functions for the defined

graph. We assume that tr(pr) = as
r + bsrpr, as

r ≥ 0, bsr > 0, for any r ∈ Rs, s ∈ S,
and tr(fr) = a0

r + b0rfr, a0
r ≥ 0, b0r > 0, for any r ∈ R0. Moreover, without loss

of generality we believe that

a0
1 ≤ . . . ≤ a0

n0
and as

1 ≤ . . . ≤ as
ns

∀s ∈ S. (23)
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Fortunately, the equilibrium traffic assignment pattern can be found explicitly
for this particular case of multi-subnet road network.

Theorem 2. Equilibrium in the single-commodity multi-subnet urban road net-
work with disjoint routes and linear cost functions is obtained by the following
traffic assignment pattern:

pr =

⎧
⎪⎪⎨

⎪⎪⎩

1
bsr

Ps+
ks∑

i=1

as
i

bs
i

ks∑

i=1

1
bs
i

− as
r

bsr
for r ≤ ks,

0 for r > ks,

∀r ∈ Rs, s ∈ S, (24)

where 0 ≤ ks ≤ ns, s ∈ S, is such that

for r ≤ ks, as
r <

for r > ks, as
r ≥

} Ps +
ks∑

i=1

as
i

bsi

ks∑

i=1

1
bsi

∀s ∈ S, (25)

and

fr =

⎧
⎪⎪⎨

⎪⎪⎩

1
b0r

F0+
∑

s∈S

(Fs−Ps)+
k0∑

i=1

a0
i

b0
i

k0∑

i=1

1
b0
i

− a0
r

b0r
for r ≤ k0,

0 for r > k0,

∀r ∈ R0, (26)

where 0 ≤ k0 ≤ n0 is such that

for r ≤ k0, a0
r <

for r > k0, a0
r ≥

} F0 +
∑

s∈S

(Fs − Ps) +
k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

, (27)

while for any s ∈ S:

Ps +
ks∑

i=1

as
i

bsi

ks∑

i=1

1
bsi

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

≤

=

≥

F0 +
∑

s∈S

(Fs − Ps) +
k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

if Ps = Fs,

if 0 < Ps < Fs,

if Ps = 0.

(28)

Proof. According to the proof of Theorem 1, equilibrium traffic flow assignment
pattern in a multi-subnet urban road network has to satisfy conditions (20)–
(22). For the single-commodity multi-subnet road network with disjoint routes
conditions (20)–(22) have the following form:

tr(pr)
{

= ts for pr > 0,
≥ ts for pr = 0, ∀r ∈ Rs, s ∈ S, (29)
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tr(fr)
{

= t0 for fr > 0,
≥ t0 for fr = 0, ∀r ∈ R0, (30)

ts

⎧
⎨

⎩

≤ t0 for Ps = Fs,
= t0 for 0 < Ps < Fs,
≥ t0 for Ps = 0,

∀s ∈ S. (31)

Firstly, due to linear travel cost functions, expression (29) can be re-written
as follows:

as
r + bsrpr

{
= ts for pr > 0,
≥ ts for pr = 0, ∀r ∈ Rs, s ∈ S,

or

pr =

{
ts−as

r

bsr
if as

r ≤ ts,
0 for as

r > ts,
∀i ∈ Rs, s ∈ S.

Once condition (23) holds, then there exists ks, 0 ≤ ks ≤ ns, such that

for r ≤ ks, as
r <

for r > ks, as
r ≥

}

ts ∀s ∈ S.

Hence, the following equalities hold:

ns∑

i=1

pi =
ks∑

i=1

pi = ts

ks∑

i=1

1
bsi

−
ks∑

i=1

as
i

bsi
= Ps ∀s ∈ S,

thus

ts =
Ps +

∑ks

i=1
as
i

bsi
∑ks

i=1
1
bsi

∀s ∈ S. (32)

Therefore, conditions (24) and (25) do hold.
Secondly, due to linear travel cost functions, expression (30) can be re-written

as follows:

a0
r + b0rfr

{
= t0 for fr > 0,
≥ t0 for fr = 0, ∀r ∈ R0,

or

fr =

{
t0−a0

r

b0r
if a0

r ≤ t0,
0 for a0

r > t0,
∀r ∈ Rs, s ∈ S. (33)

Once condition (23) holds, then there exists k0, 0 ≤ k0 ≤ n0, such that

for r ≤ k0, a0
r <

for r > k0, a0
r ≥

}

t0.

Hence, the following equalities hold:

n0∑

i=1

fi =
k0∑

i=1

fi = t0

k0∑

i=1

1
b0i

−
k0∑

i=1

a0
i

b0i
= F0 +

∑

s∈S

(Fs − Ps) ∀s ∈ S,
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thus

t0 =
F0 +

∑
s∈S (Fs − Ps) +

∑k0
i=1

a0
i

b0i
∑k0

i=1
1
b0i

. (34)

Therefore, conditions (26) and (27) do hold.
Eventually, if we substitute (32) and (34) into (31), then we obtain (28). �	
The algorithm for the equilibrium traffic assignment search in the multi-

subnet road network with only disjoint routes and linear travel cost functions
follows directly from the proved theorem. Let us consider its application to toll
road design in a simple topology network.

5 Toll Road Design in a Simple Topology Road Network

In Fig. 1, we consider a simple topology network, which consists of 4 nodes and 4
arcs, and single OD-pair (1,3). We assume that the travel demand from origin 1
to destination 3 in the presented network includes drivers who are ready to pay
fees for better passage conditions (less travel time) and drivers who are not ready
to pay fees for passage. In other words, the overall travel demand from origin 1
to destination 3 is F0 + F1, where F1 is drivers who are ready to pay fees for
better travel conditions, while F0 is drivers who are not ready to pay fees. The
overall travel demand seeks to be assigned between the available disjoint public
routes R0, where R0 consists of two routes: 1 → 2 → 3 and 1 → 4 → 3. We
believe that travel time through both alternative routes is modeled by linear
functions: tr(fr) = a0

r + b0rfr, a0
r ≥ 0, b0r > 0 for any r ∈ R0, where fr is the

traffic flow through route r, r ∈ R0.

Fig. 1. Public road network Fig. 2. Toll road subnetwork within the
public road network
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Suppose that an investor ready to build a toll road with less travel time from
origin 1 to destination 3 and wants to evaluate the toll road project from the
perspectives of its value for drivers (Fig. 2). In other words, the investor needs
to know if drivers will use this toll road in order to decrease their travel time.
Therefore, the investor faces the multi-subnet urban road network with disjoint
routes and one toll road subnet. Indeed, demand F1 of drivers who are ready to
pay fees for better passage conditions seeks to be assigned between the available
disjoint public routes R0 and routes for toll-paying drivers R1, where R1 in our
example consists of a single route 1 → 3. Thus, on the one hand,

∑
r∈R1

pr = P1,
where pr is the variable corresponding to the traffic flow of the toll-paying drivers
through the route r ∈ R1, while P1 is the variable corresponding to the overall
traffic flow of the toll-paying drivers through the routes R1. On the other hand,
the difference (F1 − P1) is the traffic flow of the drivers who are ready to pay
fees, but assigned between the available public routes R0, since the variable P1

satisfies the following condition: 0 ≤ P1 ≤ F1. Therefore, demand F0 > 0 seeks
to be assigned between the available public routes R0 together with the traffic
flow (F1−P1):

∑
r∈R0

fr = F0+(F1−P1), where fr is the variable corresponding
to the traffic flow through the public route r ∈ R0 from origin 1 to destination 3.
We believe that travel time through subnet routes is modeled by linear functions:
tr(pr) = a1

r + b1rpr, a1
r ≥ 0, b1r > 0 for any r ∈ R1, where pr is the traffic flow

through route r, r ∈ R1.
According to Theorem 2, the equilibrium traffic assignment pattern in the

one-subnet urban road network with disjoint routes and linear cost functions
satisfies (24), (26), while actually used routes in toll road subnetwork within the
public road network can be found due to (25), (27), and the overall traffic flow
of the toll-paying drivers through the routes R1 can be found due to (28). Let us
mention that for one-subnet urban road network with disjoint routes and linear
travel time functions, the condition (28) can be relaxed. Indeed, if there exists
k0, 1 ≤ k0 ≤ n0, such that

a1
1 >

F0 + F1 +
k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

(35)

then P1 = 0. In other words, condition (35) means that free travel time through
toll road subnetwork exceeds the equilibrium travel time in public road net-
work, i.e. no one driver can experience less travel time in toll road subnetwork.
However, if there exist k0, 1 ≤ k0 ≤ n0, and k1, 1 ≤ k1 ≤ n1, such that

F1 +
k1∑

i=1

a1
i

b1i

k1∑

i=1

1
b1i

≤
F0 +

k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

(36)

then P1 = F1. In other words, condition (36) means that the equilibrium travel
time in toll road subnetwork is less than equilibrium travel time in public road
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network, i.e. no one toll-paying driver can experience less travel time in public
road network. Eventually, if neither condition (35) nor condition (36) holds, then
0 < P1 < F1 and there exist k0, 1 ≤ k0 ≤ n0, and k1, 1 ≤ k1 ≤ n1, such that

P1 +
k1∑

i=1

a1
i

b1i

k1∑

i=1

1
b1i

=
F0 + F1 − P1 +

k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

and, hence,

P1 =

(

F0 + F1 +
k0∑

i=1

a0
i

b0i

)
k1∑

i=1

1
b1i

−
k1∑

i=1

a1
i

b1i

k0∑

i=1

1
b0i

(
k1∑

i=1

1
b1i

+
k0∑

i=1

1
b0i

) . (37)

Table 1. Scenarios for decision-making support.

Evaluation Scenario Decision

Inequality
(35) holds

Free travel time through toll road
subnetwork exceeds the equilibrium travel
time in public road network, i.e. no one
driver can experience less travel time
in toll road subnetwork

Reject the
project

Inequality
(36) holds

The equilibrium travel time in toll road
sub-network is less than equilibrium travel
time in public road network, i.e. no one
toll-paying driver can experience less
travel time in public road network

Accept the
project

Inequalities
(35) and (36)
do not hold,
equality (37)
holds

The equilibrium travel time in toll road
sub-network is equal to the equilibrium
travel time in public road network, i.e. the
demand of drivers who are ready to pay
toll for better passage conditions is not
fully satisfied

Improve the
project

In other words, condition (37) means that the equilibrium travel time in toll
road subnetwork is equal to the equilibrium travel time in public road network,
i.e. the demand of drivers who are ready to pay toll for better passage conditions
is not fully satisfied.

Therefore, obtained conditions (35)–(37) allow the investor to evaluate the
toll road project. Table 1 reflects available scenarios that can support decision-
making.
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6 Conclusion

The present paper is devoted to the equilibrium traffic flow assignment problem
in a multi-subnet urban road network. We formulated this problem as a non-
linear optimization program and proved that its solution corresponded to the
equilibrium traffic assignment pattern in a multi-subnet road network. More-
over, we proved that obtained equilibrium traffic assignment pattern guaranteed
less or equal travel time for selected categories of vehicles in any subnet than
experienced by public traffic. The findings of the paper contribute to the traffic
theory and give fresh managerial insights for traffic engineers.
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Optimal Control Problem
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Abstract. This paper addresses the nonconvex optimal control (OC)
problem with the cost functional and inequality constraint given by the
functionals of Bolza. All the functions in the statement of the problem
are state-DC, i.e. presented by a difference of the state-convex functions.
Meanwhile, the control system is state-linear. Further, with the help of
the Exact Penalization Theory we propose the state-DC form of the
penalized cost functional and, using the linearization with respect to the
basic nonconvexity of the penalized problem, we study the linearized OC
problem.

On this basis, we develop a general scheme of the special Local Search
Method with a varying penalty parameter. Finally, we address the con-
vergence of the proposed scheme.

Keywords: Nonconvex optimal control · State-convex functions ·
State-DC functions · Exact penalty · Linearized problem · Local search
scheme

1 Introduction

In the last decades, specialists in the optimal control pay more attention to the
problems from various applications areas, which are (implicitly or explicitly)
nonconvex in the sense that there exists a huge number of local pitfalls from
which one can not escape using the standard optimal control (OC) tools [1–11].

Moreover, such objectives as an equilibrium search (say, of Nash), multilevel
dynamical optimization, the inverse problem from various applied fields etc.,
produce generic nonconvexities that are difficult to overcome when it comes to
finding a global solution [1–11].

This situation makes change in the field of producing new approaches and
generates, for instance, the direct approach, B&B and bioinitiated families of
methods etc., which are now so popular and world-spread.

It is worth noting that the demands from the real-world applications [2],
which usually have the form of nonlinear control systems or/and nonconvex con-
straints and cost functionals, include not only a quick solution but also immediate
consultations with practical suggestions for a management team.
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-77876-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77876-7_2&domain=pdf
http://orcid.org/0000-0002-4664-6961
https://doi.org/10.1007/978-3-030-77876-7_2


18 A. S. Strekalovsky

This leads to the above family of “simple” methods suffering the well-known
“course of dimensionality”, when the volume of computational efforts increases
exponentially with the problem dimension.

On the other hand, the OC theory seems to be in a satisfactory position
due to Pontryaguin’s Principle (the PMP) and the Dynamical Programming
based on the HJB-equation [1–11]. However, from the point of view of numerical
methods of the OC it is rather difficult to find a global solution even in the
case of nonlinear control systems or, even to escape a stationary control (say, in
the sense of the PMP) while improving the cost functionals (see, for instance,
examples in [3–11] ).

Of course, the new mathematical tools often allow one to do it in some
particular OC problems (see [3,5,6]), even in applied problems. However, there
exists no general methodology, for instance, for constructing numerical proce-
dures capable of attacking nonlinear, nonconvex OC problem, as it was done,
for example, for some cases in [3,5–8,10,11].

It seems that now experts in the OC theory have to separate the set of nonlin-
ear, nonconvex OC problems into several classes to advance different approaches
more effectively by finding globally optimal controls as in [3–8,10,11].

It is worth mentioning that for the finite-dimensional optimization the new
mathematical tools developed in [23,26–29,32–34] allowed one to successfully
solve a specter of different applied problems provided by equilibrium problems,
hierarchical optimization problems and even some OC problems [23–26,30,31,
33].

Since it was done for the case of DC optimization problems of various kinds
and, taking into account that any continuous function on a compact can be
approximated (at any accuracy!) by a DC function, it would be natural to try
to apply the advanced methodology for the suitable cases of OC problems.

Here, in this paper, we intend to propose a special local search method for
the case of the linear control system and a system of inequality constraints given
with the help of DC functions in the terminal and integrand terms.

In addition, our goal is to study convergence of this new numerical tool,
which is not a simple problem as was demonstrated by the results obtained.

It is worth noting that special local search procedures play a very important
and useful role in the global search in nonconvex optimization problems, pro-
viding not only the KKT points or the Pontryaguin’s extremal, but often more
strong control processes.

Taking this into account, we reduce the original OC problem to the problem
without inequality constraints via the Exact Penalization Theory.

In turn, the penalized problem is linearized with respect to the basic non-
convexity, which delivers us the (partially) linearized OC problem. Using the
linearization at every current iteration, we obtain a scheme of local search,
some convergency points of which allow us to say a few words on some future
researches.
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2 Statement of the Problem and Exact Penalization

Let us address the state-linear control system (CS) as follows:

ẋ(t) = A(t)x(t) + B(u(t), t)
◦
∀ t ∈ T :=]t0, t1[,

x(t0) = x0;

}
(1)

u(·) ∈ U := {u(·) ∈ Lr
∞(T ) | u(t) ∈ U

◦
∀ t ∈ T} (2)

(where
◦
∀ denotes “almost everywhere” in the sense of the Lebesque measure)

under standard assumptions [3–11] when the matrix A(t) = [aij(t)]ni,j=1 and the
vector B(u, t) are continuous with respect to the variables t ∈ T = [t0, t1] and
u(t) ∈ U, t ∈ T , where U is a compact from IRr. Then, as well-known [3–10],
for any feasible control u(·) ∈ U and ∀x0 ∈ IRn the system of ODEs (1) has a
unique absolutely continuous solution

x(·, u) ∈ ACn(T ) =: X, x(t) = x(t, u), t ∈ T .

Furthermore, let us consider the functionals Ji(x(·), u(·)) := Ji(x, u), i ∈
{0} ∪ I, I = {1, ...,m}, of the form

Ji(x, u) = ϕ1i(x(t1)) +
∫
T

ϕi(x(t), u(t), t)dt, (3)

where the functions ϕ1i(x), ϕ1i : IRn → IR, i ∈ {0} ∪ I, can be represented as
follows

ϕ1i(x) := g1i(x) − h1i(x) ∀x ∈ Ω1 ⊂ IRn, (4)

where Ω1 is an open convex subset of IRn containing the reachable set R(t1) of
the control system (1)–(2) at the final moment t1 : R(t1) ⊂ Ω1, meanwhile the
functions g1i(·) and h1i(·) are convex on Ω1, so that ϕ1i(·) turns out to be DC
functions, i ∈ {0} ∪ I [12–15].

In addition, the functions ϕi(x, u, t), ϕi : Ω(t) × U × T → IR have the
following decompositions

ϕi(x, u, t) := gi(x, u, t) − hi(x, t), i ∈ {0} ∪ I, (5)

∀x ∈ Ω(t), ∀(u, t) ∈ U × T , where Ω(t) ⊂ IRn is a rather large open convex
subset of IRn, such that R(t) ⊂ Ω(t), t ∈ T . Besides, the functions gi(x, u, t) are
continuous in the variables (x, u, t) ∈ IRn+r+1, and the mappings x → gi(x, u, t) :
Ω(t) → IR are convex ∀(u, t) ∈ U × T [12–15].

Similarly, the functions hi(x, t) are continuous on (x, t) ∈ Ω(t) × T , and the
mappings x → hi(x, t) are convex on Ω(t) ∀t ∈ T . forth, we will call the convexity
property of the functions g1i(x), gi(x, u, t), h1i(x), hi(x, t) with respect to the
variable x ∈ IR as state-convexity, meanwhile, the properties of the functions
ϕ1i(x), ϕi(x, u, t) to be represented as in (4) and (5), will be said to be state-
DC.
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On the other hand, taking into account that x(·) = x(·, u)), u ∈ U , is the
unique solution to the system (1) of ODEs corresponding to a control u(·) ∈
U , the following notations look rather natural and comprehensible: Ji(u) :=
Ji(x(·, u), u), i ∈ I ∪ {0}. In addition, assume that the data from the above
is smooth with respect to the state. Then, due to the state-convexity of the
functions above, in particular, the following inequalities hold true (∇ := ∇x)
[7,12–15]:

(a) : 〈∇h1i(y), x − y〉 ≤ h1i(x) − h1i(y) ∀x, y ∈ Ω1,
(b) : 〈∇hi(y(t)), x(t) − y(t)〉 ≤ hi(x(t), t) − hi(y(t), t)

∀x(t), y(t) ∈ Ω(t), i ∈ {0} ∪ I.

⎫⎬
⎭ (6)

Let us now address the following optimal control (OC) problem:

(P) :
J0(u)

�
=J0(x(·, u), u(·)) ↓ min

u
, u(·) ∈ U ,

Ji(u)
�
=Ji(x(·, u), u(·)) ≤ 0, i ∈ I = {1, ...m}.

⎫⎬
⎭ (7)

It is clear, that, in virtue of nonconvexity (with respect to the state x(·, u),
(x(t, u) = x(t), t ∈ T, u ∈ U) of the terminal parts ϕ1i(·) and the integrands
ϕi(x, u, t), every functional Ji(x, u), i ∈ {0} ∪ I, the feasible region of Problem
(P), and Problem (P) itself, as a whole, turn out to be nonconvex. It means that
Problem (P) might possess a big number of locally optimal and stationary (say,
in the sense of the PMP) processes, which may be rather far from a set Sol(P)
of global solutions (globally optimal controls, processes, if one exists), even with
respect to the value of the cost function.

To solve Problem (P), let us now apply a very popular approach of the
Exact Penalization [16–22]. To this end, introduce the penalty function π(x, u)
for Problem (P) in the following way

π(x, u) := π(u) = max{0, J1(u), ..., Jm(u)} (8)

and address the auxiliary (penalized) problem

(Pσ) : Jσ(u) := Jσ(x(·, u), u(·)) ↓ min
u

, u(·) ∈ U , (9)

with the cost function defined as follows

Jσ(u) := J0(x(·, u), u(·)) + σπ(x(·, u), u(·)), (10)

where σ ≥ 0 is a penalty parameter.
Recall that the key feature of the Exact Penalization Theory [16–22] consists

in the existence of the threshold value σ∗ > 0 of the penalty parameter for which
Problems (P) and (Pσ) are equivalent in the sense that

V(P) = V(Pσ) and Sol(P) = Sol(Pσ) ∀σ > σ∗, (11)

(see [12], Chapter VII, Lemma 1.2.1 and [17–21]).
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Hence, the existence of the exact (threshold) value σ∗ of the penalty parame-
ter implies that instead of solving a sequence {(Pσk

)} of unconstrained problems
with σk ↑ ∞ we need to consider a single problem (Pσ) with the penalty param-
eter σ ≥ σ∗.

On the other hand, it is well-known that if a process (z(·), w(·)) (a control
w(·)) is a global solution to Problem (Pσ): (z, w) ∈ Sol(Pσ), z(t) = x(t, w), t ∈ T ,
w(·) ∈ U , and, besides, (z(·), w(·)) is feasible in Problem (P), i.e. Ji(z, w) ≤ 0,
i ∈ I, then (z(·), w(·)) is a global solution to Problem (P). It is worth noting
that the inverse assertion, in general, does not hold.

Moreover, under various Constraint Qualification (CQ) conditions (e.g.
MFCQ, Slater, etc.), the error bound properties, the calmness of the constraint
system etc., one can prove the existence of the exact penalty (threshold) value
σ∗ > 0 for local and global solutions. In what follows, let us assume that some
regularity conditions, ensuring the existence of the threshold value σ∗ > 0 of the
penalty parameter in Problem (P), are satisfied (see [16–22]).

3 DC Decomposition of Problem (Pσ)

First of all, let us show that every functional Ji(u) = Ji(x, u) defined in (3) can
be represented in the form

Ji(u) = Gi(x, u) − Fi(x), i ∈ {0} ∪ I, (12)

where Gi(·) and Fi(·) are state-convex.
Indeed, employing the formulae (3)–(5), we have

(a) : Gi(x, u) := g1i(x(t1)) +
∫
T

gi(x(t), u(t), t) dt,

(b) : Fi(x) := h1i(x(t1)) +
∫
T

hi(x(t), t) dt, i ∈ {0} ∪ I;

⎫⎬
⎭ (12′)

which yields the desirable state-convexity property. In particular, for the func-
tions Fi(x) we obtain the feature similar to the convexity inequalities (6).

Actually, under the above assumptions, a differential of the functional Fi(·)
can be defined as follows

〈〈∇Fi(y(·)), x(·)〉〉 := 〈∇h1i(y(t1)), x(t1)〉 +
∫
T

〈∇hi(y(t), t), x(t)〉 dt, (13)

where 〈·, ·〉n is the inner product in IRn, x(·), y(·) ∈ X
�
= ACn(T ). Therefore,

we can consider the pair (∇h1i(y(t1)),∇hi(y(·), ·)) as a gradient of Fi(·) at a

function y(·) ∈ X
�
= ACn(T ): ∇Fi(y(·)) := (∇h1i(y(t1)),∇hi(y(t), t), t ∈ T ).

As a consequence, due to (6) and (13), the following inequality holds

〈〈∇Fi(y(·)), x(·) − y(·)〉〉 ≤ Fi(x(·)) − Fi(y(·))
∀(x(·), y(·)) ∈ X

�
= ACn(T ), (i ∈ {0} ∪ I).

(6′)
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Furthermore, it can be readily seen that, thanks to the presentations (5), (8)–
(10), (12)–(12′), the cost function Jσ(x, u) of the penalized Problem (Pσ)–(9),
(10) can be represented as follows

Jσ(x, u) := G0(x, u) − F0(x) + σπ(x, u)
�
=

= G0(x, u) − F0(x) + σ max{0; [Gi(x, u) − Fi(x)], i ∈ I}.
(10′)

Moreover, let us show now that the penalty function π(x, u) defined in (8)
can also be represented as a state-DC functional, i.e. π(x, u) = Gπ(x, u)−Fπ(x),
where Gπ(·) and Hπ(·) also have the state-convexity property. Then, obviously,
Jσ(x, u) will be state-DC (i.e., x(·) → Jσ(x, u) is a DC functional ∀u(·) ∈ U).
Indeed, from (8) it is clear that

π(x, u) := max{0; [Gi(x, u) − Fi(x)], i ∈ I} ± ∑
j∈I

Fj(x)

= max

{∑
j∈I

Fj(x);

[
Gi(x, u) +

p	=i∑
p∈I

Fp(x)

]
, i ∈ I

}
− ∑

j∈I

Fj(x).
(14)

Therefore, using the notations

(a) : Gπ(x, u) := max

{∑
i∈I

Fi(x);

[
Gi(x, u) +

p	=i∑
p∈I

Fp(x)

]
, i ∈ I

}

(b) : Fπ(x) :=
∑
i∈I

Fi(x),
(15)

one gets the following DC decomposition of the penalty function

π(x, u) = Gπ(x, u) − Fπ(x), (16)

where the functions Gπ(·) and Fπ(·) clearly preserve the state-convexity property
due to (12), (12′) and (15) [7,12–15].

Moreover, as claimed above, the cost function Jσ(x, u) defined in (10),
because of (10′), (14)–(16) has the following DC-state decomposition

Jσ(x, u)
�
= G0(x, u) − F0(x) + σ[Gπ(x, u) − Fπ(x)]

= [G0(x, u) + σGπ(x, u)] − [F0(x) + σFπ(x)] = Gσ(x, u) − Fσ(x),
(17)

where, thanks to (12′), we have (see (15))

Gσ(x, u) := G0(x, u) + σGπ(x, u) = g10(x(t1))

+
∫
T

g0(x(t), u(t), t)dt + σ max

⎧⎨
⎩

∑
j∈I

⎡
⎣h1j(x(t1)) +

∫
T

hj(x(t), t)dt

⎤
⎦ ;

⎡
⎣g1i(x(t1)) +

∫
T

gi(x(t), u(t), t)dt

+
p	=i∑
p∈I

(
h1p(x(t1)) +

∫
T

hp(x(t), t)dt

)]
, i ∈ I

}
;

(18)
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Fσ(x) := F0(x) + σFπ(x)
�
=

= h10(x(t1)) +
∫
T

h0(x(t), t) dt + σ
∑
i∈I

⎡
⎣h1i(x(t1)) +

∫
T

hi(x(t), t) dt

⎤
⎦

= h10(x(t1)) + σ
∑
i∈I

h1i(x(t1)) +
∫
T

[
h0(x(t), t)dt + σ

∑
i∈I

hi(x(t), t)

]
dt.

(19)

It is not difficult to see from (17)–(19) that the functionals Gσ(x, u) and
Fσ(x) are also endowed with the state-convexity property [7,12–15].

On the other hand, from (6) and (13), (19) it can be readily seen that the
functional Fσ(x(·)) is differentiable in the sense that ∀y(·) ∈ X we have

〈〈∇Fσ(y(·)), x(·)〉〉 �
= 〈x(t1),∇h10(y(t1)) + σ

∑
i∈I

∇h1i(y(t1))〉

+
∫
T

〈x(t),∇h0(y(t), t) + σ
∑
i∈I

∇hi(y(t), t)〉dt.
(20)

Hence, due to the state-convexity of Fσ(·), one has the following inequality
(∀u(·) ∈ U):

〈〈∇Fσ(y(·)), x(·, u) − y(·)〉〉 ≤ Fσ(x(·, u)) − Fσ(y(·)). (21)

4 Linearized Problem

Let us return now to the original Problem (P)–(7), assuming that the feasible
set of (P) is not empty, i.e.

F := {(x(·), u(·)) | x(t) = x(t, u), t ∈ T, u(·) ∈ U ; Ji(u) ≤ 0, i ∈ I} �= ∅, (22)

and the optimal value V(P) of Problem (P) is finite, i.e.

(A0) : V(P) := inf
u(·)

{J0(u) | u(·) ∈ U , (x(·, u), u(·)) ∈ F} > −∞. (23)

Furthermore, let us address the (partially) linearized at y(·) ∈ X=ACn(T ) opti-
mal control (OC) problem (caused by (Pσ)) as follows

(PσL(y)) :
Φσy(x(·), u(·)) := Φσy(u) :=

= Gσ(x(·), u(·)) − 〈〈∇Fσ(y(·)), x(·)〉〉 ↓ min
u

, u(·) ∈ U ,

}
(24)

along the control system (1) of ODEs, i.e. x(·) = x(·, u).
It can be readily seen, that the functional Φσy(u) preserve the state-convexity

property, because the “anticonvex” term (−Fσ(x(·))) in the DC-state-decomposi-
tion (17) is linearized at y(·) ∈ X [12–15].
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Moreover, the linearization is performed only with respect to the functional
Fσ(x) which accumulates all nonconvexities of the original problem (Pσ)–(9)–
(10). On the other hand, it is worth noting that Problem (PσL(y)) remains
non-differentiable because Gσ(x, u) is nonsmooth (see (15) and (18)), so that

Gσ(x, u)
�
= G0(x, u) + σGπ(x, u) := G0(x, u)

+σ max

{∑
j∈I

Fj(x);

[
Gi(x, u) +

p	=i∑
p∈I

Fp(x)

]
, i ∈ I

}
.

(15′)

In order to avoid the obstacle, one can apply Lemma 4.1 from [28] (see also
[22]), which allows us to address, instead of Problem (PσL(y))–(24), the auxiliary
OC problem (with state-convex inequality constraints and the supplementary
parameter γ ∈ IR) of the form

(APσL(y)) : G0(x(·, u), u) + σγ − 〈〈∇Fσ(y(·)), x(·, u)〉〉 ↓ min
u,γ

,

(a) :
∑
j∈I

Fj(x(·, u)) ≤ γ, γ ∈ IR, u(·) ∈ U ,

(b) : Gi(x(·, u), u) +
p	=i∑
p∈I

Fp(x(·, u)) ≤ γ, i ∈ I;

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(25)

(along the control system (1) of ODEs).
At first, it can be readily seen that Problem (APσL(y))–(25) is state-convex

due to (4)–(5), the presentations (12′), (15) and the linearization of the func-
tional Fσ(·). Further, the data of Problem (P)–(7) was assumed to be state-
differentiable. Therefore, the data of Problem (APσL(y))–(25) remain state-
smooth. Henceforth, let us assume that we are able to solve Problem (APσL(y))–
(25) globally employing its state-convexity. It can be readily seen that then one
can obviously calculate the value of Gσ(x∗(·), u∗(·)) at the solution (x∗(·), u∗(·))
to the problem (25) and, moreover, to compute the value of the objective func-
tional Φσy(x∗(·), u∗(·)) of Problem (PσL(y))–(24).

5 Local Search Scheme

In this section, we are going to develop a theoretical scheme of Local search
for the original Problem (P)–(7) via the penalized Problem (Pσ)–(9)–(10). The
idea of the procedure consists in a consecutive approximate solution to Problem
(PσL(y))–(24) and the usage of the auxiliary Problem (APσL(y))–(25)(see [23]).

Let us be given the number sequences

{δk} : δk > 0, k = 0, 1, 2, . . . ,
∞∑

k=0

δk < +∞;

{σk} : σk > 0, k = 0, 1, 2, . . . .
(26)

Furthermore, let us be given a starting control u0(·) ∈ U and a current
control iterate uk(·) ∈ U . Then the corresponding states x0(·), xk(·) ∈ X,
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x0(t) = x(t, uo), and xk(t) = x(t, uk), t ∈ T , are the solutions of the control
system (CS) (1) of ODEs with u(·) = u0(·) and u(·) = uk(·), respectively.

Everywhere below we will use the notation

Φk(·) := Φσk
(·), Gk(·) := Gσk

(·), Fk(·) := Fσk
(·), (PkLk) := (Pσk

L(xk)).

Let us now address the following OC problem

(PkLk) : Φk(x(·), u(·)) := Φσk
(u) := Gk(x(·), u(·))

−〈〈∇Fk(xk(·)), x(·)〉〉 ↓ min
u

, u(·) ∈ U ,

}
(27)

along the control system (1) of ODEs.
Recall that Problem (PkLk)–(27) can be solved with the help of the corre-

sponding Problem of type (APσL(y))–(25).
Therefore, given an iterate uk(·) ∈ U , one can define the next control iterate

uk+1(·) ∈ U as an approximate solution to Problem (PkLk), i.e. according to the
following inequality

Φk(xk+1(·), uk+1(·)) ≤ V(PkLk) + δk. (28)

It means that uk+1(·) solves Problem (PkLk)–(27) with the accuracy δk >
0, and xk+1(·) ∈ X is the solution to the CS (1) of ODEs corresponding to
uk+1(·) ∈ U , i.e. xk+1(t) = x(t, uk+1), t ∈ T.

Hence, on account (27) and (28), the principal rule (28) of the method can
be rewritten as follows

Gk(xk+1(·), uk+1(·)) − 〈〈∇Fk(xk(·)), xk+1(·)〉〉
≤ Gk(x(·, u), u(·)) − 〈〈∇Fk(xk(·)), x(·, u)〉〉 + δk ∀u(·) ∈ U .

(28′)

It is possible now to develop the first general variant (a scheme) of a Local
Search Method (LSM) for Problem (Pσ)–(9), (10) which has some relations to
the original Problem (P)–(7), due to the properties of the exact Penalization
Theory [16–22].

Recall that the principal (and simple) idea of the first version of the LSM
for Problem (P) consists in a consecutive solution of the linearized Problem
(PkLk)–(27) (or (APσL(xk))–(25)) with a variation of the penalty parameter
σ > 0. In addition to the assumptions made above, let there be given an initial
value σin > 0 (say, σin = 1) of the penalty parameter along with two parameters
η1 ∈]0, 1[ and η2 ∈ [2, 10]. Consider now the following procedure.

Local Search Scheme 1(LSSQ1)

Step 0. Set k := 0, uk(·) := u0(·), xk(·) = x(·, uk), σk := σin.
Step 1. Solve Problem (PkLk)–(27) to get the control ū(·) ∈ U providing
an approximate solution to Problem (PkLk): (x̄(·), ū(·)) ∈ δk − Sol(PkLk),
where x̄(t) = x̄(t, ū), t ∈ T , is the solution of the CS (1) with u(·) = ū(·).
Step 2. IF π(x̄(·), ū(·)) = 0, i.e. the process (x̄(·), ū(·)) is feasible in Prob-
lem (P)–(7), THEN set σ+ := σk, u+(·) := ū(·), x+(·) := x̄(·) and go to
Step 6.
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Step 3. (π(x̄(·), ū(·)) > 0) IF the inequality

Φk(xk(·), uk(·))−Φk(x̄(·), ū(·)) ≥ η1σk

[
π(xk(·), uk(·))−π(x̄(·), ū(·))] , (29)

is true, THEN set σ+ := σk, u+(·) := ū(·), x+(·) := x̄(·), and go to Step 6.
Step 4. (Else) Increase σk > 0, so that σ+ := η2σk with η2 ∈ [2, 10], and
solve the next linearized problem

(P+L+) : Φ+(x(·, u), u(·)) := G+(x(·, u), u(·))
−〈〈∇F+(x̄(·)), x(·, u)〉〉 ↓ min

u(·)
, u(·) ∈ U+,

}
(30)

(along the control system (1)) with G+(·) := Gσ+(·), F+(·) := Fσ+(·).
Let the process (x+(·), u+(·)) be an approximate (δk) solution to Problem
(P+L+)–(30), so that (x+(·), u+(·)) ∈ δk − Sol(P+L+).
Step 5. Set x̄(·) := x+(·), ū(·) := u+(·), σk := σ+, and go to Step 2.
Step 6. Set σk+1 := σ+, xk+1(·) := x̄(·), uk+1(·) := ū(·), k := k + 1, and
loop to Step 1.

It is not difficult to point out that the above scheme is not yet to become a
proper algorithm, because, for instance, there is still no stopping criteria for the
LSS1 (see [32–34]).

6 Convergence of the LSS1

Let us begin the study of the convergence properties of the LSS1 from above by
the next assumption

(Aπ) :
(a) ξk := (σk+1 − σk)π(xk(·), uk(·)) ≥ 0, k = 0, 1, 2, . . .

(b)
∞∑

k=0

ξk
�
=

∞∑
k=0

(σk+1 − σk)π(xk(·), uk(·)) < +∞.

⎫⎬
⎭ (31)

Whence we immediately derive that

σk+1 ≥ σk > 0. (31′)

It is worth noting that in the LSS1 one does not use the cost functional

Jσ(u)
�
= Gσ(x(·, u), u) − Fσ(x(·, u))

of the penalized Problem (Pσ)–(9), (10), but only the linearized one (with respect
to the “anticonvex” part Fσ(x(·))) functional Φσk

(x(·), u(·)) defined in (27), or,
more precisely, Φk(·) := Φσk

(·).
Then, it can be readily seen that, employing the principal inequality of the

LSS1 (see (28), (28′), with Fk(·) := Fσk
(·), Gk(·) := Gσk

(·)), we have

Φk(xk+1(·), uk+1(·)) �
=(Gk(xk+1(·), uk+1(·))−〈〈∇Fk(xk(·)), xk+1(·)〉〉

≤Φk(xk(·), uk(·))+δk
�
= Gk(xk(·), uk(·))−〈〈∇Fk(xk(·)), xk(·)〉〉+δk.

(32)
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The chain (32) implies the solution of Problem (PkLk)–(27), and then one can
show that, like it was done in [32–34], under the assumption (Aπ)–(31) and with
the help of the convexity inequality (21) we obtain

Jk+1(uk+1) ≤ Jk(uk) + ξk, k = 0, 1, 2, (33)

(where Jk(u) := Jσk
(u), k = 0, 1, 2, . . .). The inequality (33) provides the fol-

lowing result (see [32–34]).

Proposition 1. Let the assumptions (A0)–(23) and (Aπ)–(31) be fulfilled.
Then the sequence {xk(·), uk(·)}, produced by the LSS1, satisfies the following

conditions.
The number sequences {Jk(uk)} and {ΔΦk+1}, where

ΔΦk+1 := Φk+1(xk(·), uk(·)) − Φk+1(xk+1(·), uk+1(·)) �
=(Gk+1(xk(·), uk(·))

−(Gk+1(xk+1(·), uk+1(·))+〈〈∇Fk+1(xk(·)), xk+1(·) − xk(·)〉〉,
converge so that

(a) : lim
k↑∞

Jk(xk(·), uk(·)) =: J∗ > −∞
(b) : lim

k↑∞
ΔΦk+1 = 0.

⎫⎬
⎭ (34)

Furthermore, let the following assumptions hold:

(Astr) :

(a) At least one of the functions h1i(·), i ∈ {0} ∪ I,
is strongly convex on the convex set Ω1 ⊂ IRn;

(b) at least one of the functions x → hi(x, t), i ∈ {0} ∪ I,
is strongly convex on the convex open set Ω(t) ∈ IRn

containing a reachable set R(t) ⊂ Ω(t) ∀t ∈ T.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(35)

It is not difficult to verify that under the assumptions (Astr)–(35), the functional
Fσ(x(·)) defined in (19) satisfies the following chain (x(·), y(·) ∈ X = ACn(T ))
(see (20))

Fσ(x(·)) − Fσ(y(·)) �
= h10(x(t1)) − h10(y(t1)) + σ

∑
i∈I

[h1i(x(t1))

−h1i(y(t1))]+
∫
T

{h0(x(t), t)−h0(y(t), t) +σ
∑
i∈I

[hi(x(t), t) − hi(y(t), t)]}dt

≥〈〈∇Fσ(y(·)), x(·) − y(·)〉〉+ ρ1
2

||x(t1) − y(t1)||2+
∫
T

ρ(t)
2

||x(t)−y(t)||2dt

(36)

where ρ1 > 0, and ρ(t) > 0
◦
∀ t ∈ T, ρ(·) ∈ L2(T ). Therefore, with the help of

(32), we derive

−δs ≤ Φk(xk, uk) − Φk(xk+1, uk+1)
�
= Gk(xk, uk) − Gk(xk+1, uk+1) + 〈〈∇Fk(xk(·)), xk+1 − xk〉〉
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and, on account of (36), we obtain

ρ1
2

||xk+1(t1) − xk(t1)||2 +
1
2

∫
T

ρ(t)||xk+1(t)−xk(t)||2dt

≤ Gk(xk, uk) − Gk(xk+1, uk+1) + Fk(xk+1) − Fk(xk) + δk

= Jk(xk(·), uk(·)) − Jk(xk+1(·), uk+1(·)) + δk.

Hence, in virtue of the relations (26),(33) and (34)(a), we finally obtain

(a) : lim
k↑∞

||xk+1(t1) − xk(t1)|| = 0;

(b) : lim
k↑∞

∫
T

ρ(t)||xk+1(t) − xk(t)||2dt = 0.

⎫⎬
⎭ (37)

It means that the sequence of the states {xk(·)} xk(t) = x(t, uk), t ∈ T ,
uk(·) ∈ U , k = 0, 1, 2, . . . produced by the LSS1, is such that the terminal
states {xk(t1)} form the sequence of Cauchy in IRn and therefore there exists
x∗ ∈ IRn such that

lim
k↑∞

xk(t1) = x∗. (in IRn). (38)

Suppose now that one can find a number c > 0 such that

ρ(t) ≥ c > 0
◦
∀ t ∈ T.

Then from the condition (37)(b) it follows that

lim
k↑∞

∫
T

||xk+1(t) − xk(t)||2dt = 0. (37′)

In other words, the sequence {xk(·)} of the states, xk(t) = x(t, uk), uk(·) ∈ U ,
k = 0, 1, 2, . . . , produced by the LSS1 turns out to be fundamental (of Cauchy) in
Ln
2 (T ). Therefore, there exists a function x∗(·) ∈ Ln

2 (T ) which is a limit function
for {xk(·)}:

lim
k↑∞

xk(·) = x∗(·) in Ln
2 (T ) (38′)

Suppose now that the next assumption holds

(Aσ) : ∃σup ∈ IR : σup ≥ σk, k = 0, 1, 2, . . . (39)

Then, with the help of (31′) and (39), we derive that

∃σ∗ > 0 : σ∗ = lim
k↑∞

σk. (40)

One can see, in addition, that the corresponding sequence {uk(·)} ⊂ U (i.e.

uk(t) ∈ U
◦
∀ t ∈ T , where U is a compact set in IRr) is bounded in Lr

2(T ), for
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example. Therefore, it is clear that at the accuracy of a subsequence {ukp , p =
1, 2, . . .}, the sequence {uk(·)} turns out to be weekly converging in Lr

2(T ) [7].
Hence, we get the number sequences {δk}, {σk}, {Jk(uk)}, {Φk(xk+1(·),

uk+1(·) − Vk}, {Φk(xk+1(·), uk+1(·)}, {Vk} which are proved to be converging
(or can be proved as was done in [32–34]).

In addition, we have the sequences of functions {xk(·)} and {uk(·)}, xk(t) =
x(t, uk), t ∈ T, uk(·) ∈ U , which also converge, but each in its own sense.

Nevertheless, it can be readily seen that all depend on possibility of solving
the linearized problem (PkLk)–(27) or, more precisely, on the possibility of pro-
ducing the next control iterate uk+1(·) ∈ U , using the already known process
(xk(·), uk(·)), xk(t) = x(t, uk), t ∈ T, uk(·) ∈ U . In order to realize what we
need for this, let us recall the precise form of the cost functional

Φk(x(·), u(·)) = Gk(x(·), u(·)) − 〈〈∇Fk(xk(·)), x(·)〉〉
of the linearized problem (PkLk)–(27) .

Using (18)–(20), we derive the next presentation

Φk(x(·), u(·))=[G0(x(·), u(·))+σkGπ(x(·), u(·))]
−〈〈∇F0(xk(·))+σk∇Fπ(xk(·)), x(·)〉〉

=g10(x(t1))+
∫
T

g0(x(t), u(t), t)dt+σk max

⎧⎨
⎩

∑
j∈I

⎡
⎣h1j(x(t1))+

∫
T

hj(x(t), t)dt

⎤
⎦;

⎡
⎣g1i(x(t1))+

∫
T

gi(x(t), u(t), t)dt+
p	=i∑
p∈I

⎛
⎝h1p(x(t1))+

∫
T

hp(x(t), t)dt

⎞
⎠

⎤
⎦, i∈I

⎫⎬
⎭

−〈∇h10(xk(t1))+σk

∑
i∈I

∇h1i(xk(t1)), x(t1)〉

−
∫
T

〈∇h0(xk(t), t)+σk

∑
i∈I

∇hi(xk(t), t), x(t)〉dt.

(41)

Thus, we have to minimize this state-convex functional Φk(x(·), u(·)) along the
state-linear control system (1) of ODEs with u(·) ∈ U defined in (2). To this
end, we are going to use the famous Pontryaguin’s Principle which for this OC
problem seems to be rather relevant, promising and effective. This problem is
the object of future investigations.

7 Conclusion

In the present paper, a difficult nonconvex optimal control (OC) Problem (P)–(7)
with the goal functional and the inequality constraints given by the functionals
of Bolza was considered. More precisely, the terminal parts and the integrands
of the functionals are state-DC functions, while the control system (1) is state-
linear.

Along with Problem (P) we addressed the penalized Problem (Pσ)–(9)–(10)
which was proven to be also state-DC.
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Furthermore, with the help of linearization of the nonconvex part of the cost
functional Jσ(·) of Problem (Pσ), we obtained the linearized Problem (PσL(y)).
Then the idea of Local Search Scheme consists in a consecutive solution of the
linearized Problem (PkL(xk)).

After we studied the first convergence properties of the sequence {(xk(·),uk(·))}
produced by the Local Search Scheme, we precised the principal OC problem
which one has to solve for constructing the sequence {uk(·)}.

Hence, the direction for future research is now defined.
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Abstract. We consider a variant of the offline Dial-a-Ride problem with
a single server where each request has a source, destination, and a prize
earned for serving it. The goal for the server is to serve requests within
a given time limit so as to maximize the total prize money. We con-
sider the variant where prize amounts are uniform which is equivalent
to maximizing the number of requests served. This setting is applicable
when all rides may have equal importance such as paratransit services.
We first prove that no polynomial-time algorithm can be guaranteed to
serve the optimal number of requests, even when the time limit for the
algorithm is augmented by any constant factor c ≥ 1. We also show that
if λ = tmax/tmin, where tmax and tmin denote the largest and smallest
edge weights in the graph, the approximation ratio for a reasonable class
of algorithms for this problem is unbounded, unless λ is bounded. We
then show that the segmented best path (sbp) algorithm from [8] is
a 4-approximation. We then present our main result, an algorithm, k-
Sequence, that repeatedly serves the fastest set of k remaining requests,
and provide upper and lower bounds on its performance. We show k-
Sequence has approximation ratio at most 2+�λ�/k and at least 1+λ/k
and that 1 + λ/k is tight when 1 + λ/k ≥ k. Thus, for the case of k = 1,
i.e., when the algorithm repeatedly serves the quickest request, it has
approximation ratio 1 + λ, which is tight for all λ. We also show that
even as k grows beyond the size of λ, the ratio never improves below 9/7.

1 Introduction

In the Dial-a-Ride Problem (DARP) one or more servers must schedule a collec-
tion of pickup and delivery requests, or rides. Each request specifies the pickup
location (or source) and the delivery location (or destination). In some DARP
variants the requests may be restricted so that they must be served within a
specified time window, they may have weights associated with them, or details
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about them may be known only when they become available. For most variations
the goal is to find a schedule that will allow the server(s) to serve requests within
the constraints, while meeting a specified objective. Much of the motivation for
DARP arises from the numerous practical applications of the transport of both
people and goods, including delivery services, ambulances, ride-sharing services,
and paratransit services. For a comprehensive overview of DARP please refer to
the surveys The dial-a-ride problem: models and algorithms [10] and Typology
and literature review for dial-a-ride problems [14].

In this work we study offline DARP on weighted graphs with a single server
where each request has a source, destination, and prize amount. The prize
amount may represent the importance of serving the request in settings such
as courier services. In more time-sensitive settings such as ambulance routing,
the prize may represent the urgency of a request. In profit-based settings, such
as taxi and ride-sharing services, a request’s prize amount may represent the
revenue earned from serving the request. The server has a specified deadline
after which no more requests may be served, and the goal is to find a schedule
of requests to serve within the deadline that maximizes the total prize money.
We study the variant where prizes are uniform so the goal is equivalent to maxi-
mizing the number of requests served within the deadline. This variant is useful
for settings where all requests have equal importance, such as nonprofit trans-
portation services for elderly and disabled passengers and courier services where
deliveries are not prioritized. For the remainder of this paper, we will refer to
this time-limited variant with the objective of maximizing the number requests
served as TDARP.

One related problem is the Prize Collecting Traveling Salesperson Problem
(PCTSP) where the server earns a prize for every location it visits and a penalty
for every location it misses, and the goal is to collect a specified amount of prize
money while minimizing travel costs and penalties. PCTSP was introduced by
Balas [4] but the first approximation algorithm, with ratio 2.5, was given by
Bienstock et al. [5]. Later, Goemans and Williamson [12] developed a primal-
dual algorithm to obtain a 2-approximation. Building off of the work in [12],
Archer et al. [3] improved the ratio to 2 − ε, a significant result as the barrier
of 2 was thought to be unbreakable. More recently, Paul et al. [15,16] studied a
special case of our problem; namely, the budgeted variant of PCTSP where the
goal is to find a tour that maximizes the number of nodes visited given a bound
on the cost of the tour. They present a 2-approximation when the graph is not
required to be complete and the tour may visit nodes more than once.

Blum et al. [6] presented the first constant-factor approximation algorithm
for a special case of the problem we consider; namely, the Orienteering Problem
where the input is a weighted graph with rewards on nodes and the goal is to find
a path that starts at a specified origin and maximizes the total reward collected,
subject to a limit on the path length. Our problem is a generalization of this
problem – while the Orienteering Problem has as input a set of points/cities
to visit, our problem has a set of requests, each with two distinct points to be
visited: a source and a destination.
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To our knowledge, despite its relevance to modern-day transportation sys-
tems, aside from the work in [1] the request-maximizing time-limited version of
DARP we investigate in this paper has not been previously studied in the offline
setting. In [1] we presented a 3/2-approximation algorithm, twochain, for the
more restrictive uniform edge weight version of the problem.

Our Results. In Sect. 2 we begin by establishing some impossibility results.
In Sect. 2.1 we prove that no polynomial-time algorithm can be guaranteed to
serve as many requests as the optimal schedule, even when the time limit T
for the algorithm is augmented by c for any constant c ≥ 1. We also show
that if λ = tmax/tmin, where tmax and tmin denote the largest and smallest
edge weights in the graph, the approximation ratio for a reasonable class of
TDARP algorithms is unbounded, unless λ is bounded. In Sect. 2.2 we revisit the
segmented best path (sbp) algorithm that was proposed in [8] for TDARP in
the online setting. We show that sbp in the offline setting is a 4-approximation,
and we also show this is a tight bound.

In Sect. 3 we present k-Sequence (k-seq), a family of algorithms parame-
terized by k, for TDARP on weighted graphs. Informally, the k-seq algorithm
repeatedly serves the fastest set of k remaining requests where a determination
of fastest is made by considering both the time to serve the requests and any
travel time necessary to serve those requests. Naturally, k is a positive integer.
Our approximation ratio depends on λ, a property of the graph, similar to the
graph-property dependencies in [7,11]. In many real-world settings, λ may be
viewed as a constant [9,13,17]. We prove that k-seq has approximation ratio
2 + �λ�/k. In Sect. 3.1 we show that when 1 + λ/k ≥ k, the approximation ratio
for k-seq improves to 1 + λ/k. Thus, for the case of k = 1, i.e., the polynomial-
time algorithm which repeatedly serves the quickest request, the approximation
ratio is 1 + λ and this is tight. Finally, in Sect. 4, we show that k-seq has
approximation ratio at least 1 + λ/k, which matches the upper bound for when
1 + λ/k ≥ k. We also show that the algorithm has a lower bound of 9/7 for
k > λ.

We summarize our results on the approximation ratio for k-seq, for particular
λ and k, as follows.

1. When λ ≥ k(k − 1), or equivalently 1 + λ/k ≥ k, the ratio is 1 + λ/k, and
this is tight. So when k = 1 (for any λ), the ratio is 1 + λ, and this is tight.

2. When k ≤ λ < k(k − 1), then the ratio is in the interval [1 + λ/k, 2 + �λ�/k].
3. When λ < k, the ratio is in the interval [max{9/7, 1 + λ/k}, 2 + �λ�/k].

2 Preliminaries

We formally define TDARP as follows. The input is an undirected complete
graph G = (V,E) where V is the set of vertices (or nodes) and E = {(u, v) :
u, v ∈ V, u �= v} is the set of edges. For every edge (u, v) ∈ E, there is a distance
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dist(u, v) > 0, which represents the amount of time it takes to traverse (u, v).1

We also note that the input can be regarded as a metric space if the weights
on the edges are expected to satisfy the triangle-inequality. Indeed, all of our
results apply to both complete graphs as well as metric spaces.

One node in the graph, o, is designated as the origin and is where the server
is initially located (i.e. at time 0). The input also includes a time limit T and
a set of requests, S, that is issued to the server. Each request in S can be
considered as simply a pair (s, d) where s is the source node or starting point of
the request, and d is the destination node. The output is a schedule of requests,
i.e. a set of requests and the time at which to serve each. To serve a request, the
server must move from its current location x to s, then from s to d, and remain
at d until it is ready to move again. The total time for serving the request is
dist(x, s) + dist(s, d), where dist(x, s) = 0 if x = s.

Every movement of the server can be characterized as either an empty drive
which is simply a repositioning move along an edge but not serving a request, or
a service drive in which a request is being served while the server moves. We let
driveTime(C) denote the minimum total time for the server to travel from its
current location and serve the collection of requests C ⊆ S, where the minimum
is taken over all permutations of the requests in C.

We use |alg(I)| to denote the number of requests served by an algorithm
alg on an instance I of TDARP and we drop the I when the instance is clear
from context. Similarly we use |opt(I)| for the number of requests served by the
optimal solution opt on instance I.

2.1 Impossibility Results

In this section we present two impossibility results. The first is an inapprox-
imability result. The second demonstrates that any algorithm of a class of algo-
rithms that k-seq belongs to will have unbounded approximation ratio, unless
λ is bounded. Accordingly, this provides some justification for the presence of
the parameter λ in our main results.

2.1.1 c-Time Inapproximability
We prove that, unless P = NP, no polynomial-time algorithm can be guaranteed
to serve as many requests as the optimal schedule, even when the time limit T
for the algorithm is augmented by any constant factor. Let I = (G,S, T ) denote
an instance of TDARP, where G is the input graph, S is the set of requests,
and T is the time limit. We define alg to be a ρ-time-approximation if alg
serves at least as many requests as opt on the instance (G,S, ρT ). The proof
idea is to show that a polynomial-time c-time-approximation to TDARP yields
a polynomial-time decider for the directed Hamiltonian path problem. Please
see the full version of the paper (preprint available at [2]) for the proof.
1 We note that any simple, undirected, connected, weighted graph is allowed as input,

with the simple pre-processing step of adding an edge wherever one is not present
whose distance is the length of the shortest path between its two endpoints.



Serving Rides of Equal Importance for Time-Limited Dial-a-Ride 39

Theorem 1. If P �= NP , then there is no polynomial-time c-time-
approximation to TDARP for any constant c ≥ 1.

2.1.2 Inductive Stateless Greedy Algorithms

Recall that λ = tmax/tmin, where tmax and tmin denote the largest and smallest
edge weights in the graph, respectively. We now show that if a deterministic
algorithm satisfies certain properties, then it cannot have a bounded approx-
imation ratio, unless λ is bounded. Consider the following three properties of
an algorithm. (Note these are abbreviated summaries of each property; please
see the full version of the paper for more detailed definitions and the proof of
Theorem 2).

1. Inductive. The algorithm chooses paths to take in stages.
2. Stateless. In each stage the algorithm does not use state information from a

previous stage.
3. Greedy. The algorithm makes decisions by optimizing an objective function

at each stage, where the function takes as input a set of possible paths to
choose from and outputs a chosen path.

Theorem 2. Let M be a constant and let alg be a deterministic inductive
stateless greedy algorithm such that the algorithm considers only candidate paths
with at most M edges. If λ is not bounded, then alg has an unbounded approx-
imation ratio.

2.2 The Segmented Best Path (SBP) Algorithm

Before we present our main results, we will now analyze an algorithm that is
based on the previously-studied segmented best path (sbp) algorithm from
[8], which was proposed for the online variant of DARP with non-uniform prize
amounts. Specifically, we adapt sbp to apply in our offline setting with uniform
prize amounts. Since our problem assumes uniform prizes, we unsurprisingly
have a tighter upper bound than the bound of [8], but we show that the lower
bound carries over. We note that Theorem 2 does not apply to sbp because there
is no constant that bounds the number of edges in the paths considered by sbp
in each iteration.
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Algorithm 1: Segmented Best Path (sbp) Algorithm as adapted
from [8]. Input: origin o, time limit T > 0, a complete graph G (see foot-
note 1 in Section 2) with T ≥ 2tmax, and a set of requests S given as
source-destination pairs.

1: Let t1, t2, . . . tf denote time segments of length T/f ending at times
T/f, 2T/f, . . . , T , respectively, where f = 2�T/(2tmax)�.

2: Let i = 1.
3: while i < f and there are still unserved requests do
4: At the start of ti, find the max-cardinality-sequence, R.
5: Move to the source location of the first request in R.
6: At the start of ti+1, serve the requests in R.
7: Let i = i + 2.
8: end while

As described in Algorithm 1, the offline version of sbp starts by splitting
the total time T into f ≥ 2 time segments each of length T/f where f is the
largest even integer such that tmax ≤ T/f , which ensures any move, including
one serving a request, can be completed entirely in a single segment. At the
start of a time segment, the server determines the max-cardinality-sequence, R,
i.e. the maximum length sequence of requests that can be served within one time
segment, and moves to the source of the first request in this set. During the next
time segment, it serves the requests in this set. It continues this way, alternating
between determining and moving to the source of the first request in R during
one time segment, and serving the requests in R in the next time segment.2

Finding the max-cardinality-sequence may require enumeration of all possible
sequences of unserved requests which takes time exponential in the number of
unserved requests. However, in many real world settings, the number of requests
will be small relative to the input size and in settings where T/f is small, the
runtime is further minimized. Therefore it should be feasible to execute the
algorithm efficiently in many real world settings.

Let opt(S, T, o) and sbp(S, T, o) denote the schedules returned by opt and
sbp, respectively, on the instance (S, T, o).

Theorem 3. sbp is a 4-approximation i.e., |opt(S, T, o)| ≤ 4|sbp(S, T, o)| for
any instance (S, T, o) of TDARP, and this is tight.

Proof. We first note that the lower bound instance of [8], in which sbp earns
total prize money of no more than opt/4 in the online setting, also applies to
this offline setting with uniform prizes, since in that instance prize amounts are

2 Note that the algorithm need not take a full time segment to move from one set of
requests to another, but it is specified this way for convenience of analysis. Excluding
this buffer time in the algorithm specification does not improve its approximation
ratio since one can construct an instance where each move requires the full time
segment.
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uniform and no requests are released after time 0. (For the full proof of the lower
bound, please see the full version of the paper.)

For the upper bound, consider a schedule opt2, which is identical to opt
except it is allowed one extra empty drive at the start that does not add to the
overall time taken by the algorithm. More formally, if the first move in opt is
from o to some node n1, then opt2 may have an additional (non-time-consuming)
move at the start such that its first move is from o to some other node n′

1 and
its second move is from n′

1 to n1. Since opt2 is allowed one additional empty
drive, we know |opt2(S, T, o)| ≥ |opt(S, T, o)|. We claim that |sbp(S, T, o)| ≥
|opt2(S, T, o)|/4, which implies that |sbp(S, T, o)| ≥ |opt(S, T, o)|/4.

We proceed by strong induction on the number of time windows w = f/2
where a time window is two consecutive time segments. For the base case let Q
and R denote the set of requests served by opt2 and sbp, respectively, in the
first time window and let q and r denote their respective cardinalities. Recall
the greedy nature of sbp which serves requests during every other time segment.
If q = 1, since f ≥ 2, sbp can serve the one request in Q within the two time
segments so r = q. If q > 1, then if q is even, r ≥ q/2 since splitting the window
in half leaves at least half of the requests in one of the two time segments, and
if q is odd then r ≥ (q − 1)/2.

So if w = 1, in all three cases, we have r ≥ q/4, completing the base case.
For the inductive step, let P denote the path traversed by opt2, let p =

|opt2| ≥ |opt| denote the number of requests served in P , and let u denote
the first node opt2 visits after the end of the first time window. Consider the
subpath, P ′, of P that starts at u. Since P may contain a request that straddles
the first two windows, P ′ contains at least p− (q+1) requests. Let s1 denote the
last node sbp visits before the start of the second time window. After the first
window, sbp is left with a smaller instance of the problem (Snew, Tnew, onew)
where Snew = S − R, Tnew = T − T/f , and onew = s1. So P ′ contains at least
p−(q+1)−r requests from this smaller instance and opt2 on (Snew, Tnew, onew)
can move from onew to u and serve these requests. By induction, on the smaller
instance sbp will serve at least (p − q − 1 − r)/4. Thus

|sbp(S, T, o)| = r + |sbp(Snew, Tnew, onew)| ≥ r + (p − q − 1 − r)/4
≥ p/4 + (−q − 1 + 3r)/4. (1)

There are three cases for q and r.

1. Case: q ≥ 5. Then since r ≥ (q − 1)/2, from (1) we have: |sbp(S, T, o)| ≥
p/4 + (−q − 1 + 3(q − 1)/2)/4 ≥ p/4 + (q/2 − 5/2)/4 ≥ p/4.

2. Case: q ≤ 4 and r ≥ 2. From (1) we have: |sbp(S, T, o)| ≥ p/4 + (−4 − 1 +
6)/4 ≥ p/4.

3. Case: q ≤ 4 and r ≤ 1. If r = 0, then |sbp(S, T, o)| = |opt2(S, T, o)| = 0,
so the theorem is trivially true, therefore, we assume r = 1. We first show
by contradiction that every time window in opt2’s schedule has fewer than
4 requests that end in that window. Suppose there is a window i in opt2’s
schedule that has 4 or more requests that end in window i. Then there are at
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least 3 requests that start and end in window i. This implies that at least one
time segment of window i contains at least 2 requests which, by the greediness
of sbp, implies r ≥ 2, which is a contradiction since we are in the case where
r = 1. Let w′ denote the number of windows in which opt2 serves at least 1
request. We have |opt2(S, T, o)| < 4w′ and |sbp(S, T, o)| ≥ min(w, |S|) ≥ w′,
so |sbp(S, T, o)| ≥ |opt2(S, T, o)|/4. �

3 k-Sequence Algorithm and Upper Bound

We now present k-Sequence (k-seq), our family of algorithms parameterized by
k, for TDARP (see Algorithm 2). For any fixed k, the algorithm repeatedly serves
the fastest set of k remaining requests where a determination of fastest is made by
considering both the time to serve the requests and any travel time necessary to
serve those requests. If there are fewer than k requests remaining, the algorithm
exhaustively determines how to serve all remaining requests optimally. If the
remaining time is insufficient to serve any collection of k requests, the algorithm
likewise serves the largest set of requests that can be served within the remaining
time. We suggest that when using the algorithm in practice, k can be set as a
small constant. The algorithm will run in time O(|S|k+1) where S is the set of
requests, as each of the at most |S| iterations may require time O(|S|k).

Algorithm 2: Algorithm k-Sequence (k-seq). Input: origin o, time limit
T > 0, a complete graph G (see footnote 1 in Section 2), and a set of
requests S given as source-destination pairs.

1: Set t := T .
2: while there are at least k unserved requests remaining do
3: Let C be the collection of k requests with fastest driveT ime(C), where

driveT ime(C) denotes the minimum total time to serve C.
4: if t ≥ driveT ime(C) then
5: Serve C, update t := t − driveT ime(C), and update S = S − C.
6: else
7: Exit while loop.
8: end if
9: end while

10: Find the largest x ≤ k − 1 s.t. driveT ime(C′) ≤ t for some C′ with |C′| = x.
11: If |C′| �= 0, serve C′.

Theorem 4. k-seq is a (2 + �λ�/k)-approximation for TDARP.

Proof. First, note that without loss of generality, we may assume that it is
possible to serve k requests during the allotted time T . If there was insufficient
time to serve any collection of k requests, then k-seq will serve the largest set
of requests that can be served within time T , which is thus optimal. If there
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are fewer than k requests available, k-seq will serve all available requests, again
achieving an optimal solution.

We now proceed with a proof by induction on an instance in which at least
k requests can be served in time T . For the base case, we have 	T/tmin
 = 0, so
T < tmin and thus k-seq and opt both serve 0 requests, so we are done. For the
inductive case, let 	T/tmin
 = d ≥ 1. Suppose by induction that the theorem is
true whenever 	T/tmin
 < d.

Let s = o be the start location. k-seq starts by serving exactly k requests in
time T1, ending at a location we refer to as s1. Let opt serve m requests in total.
Note that since T1 is, by construction of k-seq, the time required to serve the
fastest k requests, opt serves at most k requests during the initial T1 time.

Let y′ be the location on the opt path at time T1, noting that y′ need not
be at a node. Then define y to be y′ if y′ is a node, or the next node on opt’s
path after y′ otherwise.

To develop our inductive argument, we will now create a new instance with
new start location s1, time Tnew = T − T1, and the k requests that were served
by k-seq removed from S, leaving us with Snew.

We consider P , a feasible path for this new instance (see Fig. 1). This
path P starts at s1, proceeds to y, and then traverses as much as it can of
the remainder of the original opt path from y in the remaining time, that is
T − T1 − dist(s1, y) ≥ T − T1 − tmax.3 Since such a path P is feasible, opt’s
path must contain at least as many requests as P . Observe that the segment of
the opt path that P uses from y onward has a distance of at most T − T1.

Since P has time at least T − T1 − tmax left when at y, then P misses at
most (T − T1) − (T − T1 − tmax) = tmax time of the tail of the original opt
path in addition to missing the initial T1 time of the head of the original opt
path. Thus, P misses at most k requests from the head of the original opt path
and at most �λ� from the tail of the original opt path, ensuring that P serves
at least m − k − �λ� requests from the original instance. Since the new instance
had k requests from the original instance removed, we can now say that P serves
at least m − 2k − �λ� requests from the new instance. Naturally, opt must also
serve at least m − 2k − �λ� requests on the new instance.

Note tmin and tmax, and therefore λ, remain the same in the new instance.
The allotted time for the new instance is Tnew = T − T1 ≤ T − tmin, giving
	(T − T1)/tmin
 ≤ 	(T − tmin)/tmin
 = 	T/tmin
 − 1. Hence by induction, the
theorem is true for this new instance. In other words, the number of requests
served by k-seq on the new instance is at least k/(2k + �λ�) times the number
of requests served by opt on the new instance. Thus, |k-seq(S, T, o)| = k +
|k-seq(Snew, Tnew, s1)| ≥ k +k/(2k + �λ�)(m−2k −�λ�) ≥ k +km/(2k + �λ�)+
k(−2k − �λ�)/(2k + �λ�) = km/(2k + �λ�), completing the induction. �

3 Note that when the graph is complete, tmax (tmin) is the maximum (minimum)
distance over all pairs of nodes. Otherwise, using the pre-processing described in
the footnote 1 in Sect. 2, we have that the distance between any two non-adjacent
nodes is the shortest distance between those nodes, and tmax (tmin) is the maximum
(minimum) distance over all of these distances.
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Fig. 1. An illustration of the paths taken by opt and k-seq in Theorem 4. T1 is the
time needed for k-seq to serve its initial group of k requests, ending at s1. The first
node on the path of opt after time T1 is y. A feasible path P starting at time T1 is from
s1 to y and then proceeds to the right. (It is possible for s1 and y to be collocated.)

3.1 k-Sequence Upper Bound for Large λ

We will now show that for sufficiently large constant λ, the k-seq algorithm is a
(1 + λ/k)-approximation, a better ratio than the result obtained in Theorem 4
for sufficiently large λ. However, Theorem 4 remains better when 2 + λ/k < k.
We note that when 1 + λ/k ≥ k, this upper bound of (1 + λ/k) matches the
lower bound which will be discussed in Sect. 4.

Theorem 5. For any instance I of TDARP,

|opt(I)| ≤ max{(1 + λ/k)|k-seq(I)| + λ(k − 1)/k + 1, k|k-seq(I)| + k}.

I.e., when 1 + λ/k ≥ k, we have |opt(I)| ≤ (1 + λ/k)|k-seq(I)| + max{λ(k −
1)/k + 1, k}, so k-seq is a (1 + λ/k)-approximation in this case.4

Proof. Let m = |opt|, and n = |k-seq|. Suppose that m < kn + k. Then
|opt| < kn+k = k|k-seq|+k, giving our desired result. Thus, for the remainder
of the proof, we assume that m ≥ kn + k, and proceed to show that |opt| <
(1 + λ/k)|k-seq| + λ(k − 1)/k + 1.

Let the opt path serve, in order, requests r1, r2, . . . , rm, whose respective
service times are y1, y2, . . . , ym. Let xj be the time taken by an empty drive
required between request rj−1 and request rj for 2 ≤ j ≤ m, and let x1 be the
time taken to get from the origin to request r1. Note that any xj may be 0.
Thus, the driveTime taken by the opt path is:

x1 + y1 + x2 + y2 + · · · + xm + ym ≤ T. (2)

Let rm+1, rm+2, . . . be some fixed arbitrary labeling of the requests not served
by opt. Now we consider the k-seq algorithm and denote the requests served
by k-seq as rα1 , . . . , rαn

. Denote by q the number of times that k-seq searches

4 Note that if 1 + λ/k ≥ k, then λ(k − 1)/k + 1 ≥ k.
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for the fastest sequence of k requests to serve; q = �n/k�. Then n = k(q − 1)+ ρ
for some 1 ≤ ρ ≤ k.

We can find q − 1 disjoint subsequences of k consecutive integers from
{1, . . . , m}, and a qth disjoint subsequence of ρ consecutive integers from
{1, . . . , m}, i.e. for i1 = 1 we have:

i1, . . . , i1 + k − 1, . . . , iq−1, . . . , iq−1 + k − 1, iq, . . . , iq + ρ − 1 where

{ij , ..., ij + k − 1} ∩ {α1, . . . , αK(j−1)} = ∅, for 2 ≤ j ≤ q − 1,

{ij , ..., ij + ρ − 1} ∩ {α1, . . . , αK(j−1)} = ∅, for j = q.

The proof of this existence claim can be found in Lemma 2 of the full version of
the paper (preprint available at [2]).

Since both k-seq and opt start at the same origin, the greedy nature of k-seq
ensures the time k-seq spends on its first set of k requests, including any empty
drives to those requests, is at most x1+y1+ · · ·+xk +yk. By the aforementioned
Lemma 2 in [2], we know {ij , . . . , ij + k − 1} is disjoint from {α1, . . . , αK(j−1)},
so for the jth set of k requests with 2 ≤ j ≤ q − 1, the path resulting from going
to requests {rij , . . . , rij+k−1} is available and so by the greedy nature of k-seq,
the time spent by k-seq is at most tmax + yij + xij+1 + · · · + yij+k−1, since
tmax is the maximum time needed to get to request rij . And finally by the same
reasoning the time spent by k-seq on the last set of ρ requests, still including
any drives to those requests, is at most tmax + yiq +xiq+1 + · · · + yiq+ρ−1. Thus,
the total time spent by k-seq is at most

T0 :=(q − 1)tmax + x1 + y1 + · · · + xk + yk

+
q−1∑

j=2

(yij + xij+1 + · · · + yij+k−1) + yiq + xiq+1 + · · · + yiq+ρ−1. (3)

Now, let rJ be any request served by opt where J is not any of the indices
appearing in the right hand side of (3). If T0 + tmax + yJ ≤ T , then k-seq
could have served another request, a contradiction. Therefore, we must have
T0 + tmax + yJ > T . Combining this observation with (2), we have:

(q − 1)tmax + x1 + y1 + · · · + xk + yk +
q−1∑

j=2

(yij + xij+1 + · · · + yij+k−1) + yiq

+ xiq+1 + · · · + yiq+ρ−1 + tmax + yJ > x1 + y1 + · · · + xm + ym. (4)

By construction, in the left hand side of (4), the x terms all have distinct
indices, the y terms all have distinct indices, and these terms also appear on the
right hand side.

Let I be the set of these indices on the left hand side. So I ⊆ {1, . . . , m}.
Then subtracting these terms from both sides of the equation yields qtmax >
xJ +

∑{xj : j ∈ {1, . . . , m}\I}+
∑{yj : j ∈ {1, . . . , m}\I}, so: qtmax >

∑{yj :
j ∈ {1, . . . ,m}\I}. Since |I| = n + 1, there are m − n − 1 of the yj terms on
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the right hand side. Since each yj ≥ tmin, we have qtmax > (m − n − 1)tmin.
Thus qλ > m − n − 1. Because q = �n/k�, then q ≤ (n + k − 1)/k. Then
m ≤ (n + k − 1)λ/k + n + 1 ≤ (1 + λ/k)n + λ(k − 1)/k + 1 as desired. �

Note that for k = 1, k-seq is the polynomial time algorithm that repeatedly
finds and serves the quickest request. Theorem 5 (in this section) and Theorem 6
(in the next section) yield the following corollary regarding this algorithm.

Corollary 1. 1-seq (i.e., k-seq with k = 1) has approximation ratio 1 + λ,
which is tight for all λ (see Fig. 2 for an illustration of the lower bound).

4 k-Sequence Lower Bound

We now present lower bounds on k-seq; specifically, the lower bound is 1 + λ
for k = 1, shrinking to 2 for k = λ, and shrinking further towards 9/7 for k > λ.
Note that Theorem 6 matches the upper bound of Theorem 5 when 1+λ/k ≥ k.

Fig. 2. The instance described in Theorem 6 when k = 1. Note that the graph is
complete, and any edge (u, v) that is not shown has distance equal to the minimum
of λ and the shortest-path distance along the edges shown between u and v. The bold
edges represent requests. k-seq serves requests along the top path while opt serves
along the bottom.

Theorem 6. The approximation ratio of k-seq for TDARP has lower bound
1 + λ/k.

Proof. Consider an instance (see Fig. 2 for the case of k = 1) where there are two
“paths” of interest, both a distance of λ away from the origin. Any edge (u, v)
that is not shown has distance equal to the minimum of λ and the shortest-path
distance along the edges shown between u and v. There is one long chain of T
requests, which is the path chosen by the optimal solution (the bottom path in
Fig. 2), and another “broken” chain (the top path in Fig. 2) that consists of k
sequential requests at a time with a distance of λ from the end of each chain to
any other request in the instance. (Generalizing Fig. 2, for k > 1, these requests
occur in chains of length k instead of single requests.) Note this graph satisfies
the properties of a metric space.
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The algorithm may choose to follow the path of the broken chain, serving
k requests at a time, but being forced to move a distance of λ between each
k-chain. In this manner, for every k requests served, the algorithm requires k+λ
units of time, while the optimal solution can serve k requests every k time units
(after the first λ time units). Thus the approximation ratio of k-seq is at least
1 + λ/k. �

We now show, however, that as k grows relative to λ the ratio of k-seq
improves but does not reach (or go below) 9/7.

Fig. 3. Top: An instance where opt serves no fewer than 9/7 the number of requests
served by k-seq. Bottom: A depiction of the top instance illustrating the path taken
by k-seq. Bold edges indicate requests served. k-seq starts at o, serves the k requests
from aL−k to aL, and then spends time moving to aL−2k to serve the next collection
of k requests, continuing similarly until the time limit. In both figures the graph is
complete but only relevant edges are shown.

Theorem 7. The approximation ratio of k-seq has lower bound no better than
9/7 for any k > λ.

Proof. Refer to Fig. 3 with nodes o, a0, a1, . . . , aL, bk+λ+1, . . . , bL. The distances
are: o is λ away from every node, dist(ai−1, ai) = 1 for all i = 1, . . . , L, and
dist(ai, bi) = dist(bi, ai) = 1 for all i = K + λ + 1, ..., L.

Consider the edges shown in Fig. 3 (Top) as forming a connected spanning
subgraph G′. Define the distance between any two nodes whose distance is not
yet defined as the length of the shortest path within G′ between the two nodes,
capping the distance at λ; that is, for any i �= j, dist(ai, aj) = min{λ, |i − j|}
and dist(ai, bj) = min{λ, |i − j| + 1}. A distance defined this way satisfies the
properties of a metric space.

The requests are: (ai−1, i) for i = 1, . . . , L (the “spine”), (ai, bi) and (bi, ai)
for i = k+λ+1, k+λ+2, . . . , L (a “loop”). Note there are no loops for i ≤ k+λ.

opt serves all requests via the path o, a0, a1, a2, . . . , ak+λ, ak+λ+1, bk+λ+1,
ak+λ+1, ak+λ+2, bk+λ+2, ..., aL. This serves L + 2(L − k − λ) = 3L − 2λ − 2k
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requests in time λ+3L−2λ−2k = 3L−λ−2k. Meanwhile, k-seq will serve the
path that begins with the segment o, aL−k, aL−k+1, . . . , aL, followed by an empty
drive to the segment aL−2k, aL−2k+1, . . . , aL−k, followed by an empty drive, and
so on, until the final segment of k requests a0, a1, . . . , ak.

Note that because 2k > λ, then dist(aL, aL−2k) = λ. So the entire k-seq
path then takes total time (λ + k)L/k since there are L/k segments, and k-seq
initially serves L requests during these (λ + k)L/k units of time. There is time
remaining, namely T ′ = 3L − λ − 2k − (λ + k)L/k = (3 − (λ + k)/k)L − λ − 2k.
Since k > λ/2, we have (λ+k)/k < 3, so T ′ is positive for large enough L. There
are now disconnected two-cycles (ai, bi), (bi, ai) for i = λ + k + 1, ..., L left for
k-seq. With time T ′ left, k-seq is now at ak. Note that these are all distance λ
away from ak. There are two cases based on the parity of k.

Case 1: k is even. Moving to the group (i.e. a sequence of k requests consisting
of k/2 consecutive two-cycles) {(ai, bi), (bi, ai) for i = j, . . . , j + k/2− 1} for any
j with k + λ + 1 ≤ j ≤ L − k/2 + 1 serves k requests in time k + λ + k/2 − 1 =
λ + 3k/2 − 1 because of the required empty drive of time λ to get to the first
request and the (k/2− 1) empty drives between the k/2 two-cycles. Then k-seq
from ak would move to this group with j = L − k/2 + 1, followed by this group
with j = L − k + 1, and so on, subtracting k/2 from j each time. Thus k-seq
serves T ′k/(λ + 3k/2 − 1) additional requests in the remaining time T ′; note for
simplicity we can choose L so that T ′k is evenly divisible by (λ + 3k/2 − 1).

Case 2: k is odd. The behavior of k-seq is similar to the even k case except
that in each iteration, k-seq serves (k − 1)/2 two-cycles and one additional
request. Specifically, from ak, k-seq would move to the group of k requests

{(aj , bj),(bj , aj), (aj+1, bj+1), (bj+1, aj+1), . . . , (aj+(k−1)/2−1, bj+(k−1)/2−1),
(bj+(k−1)/2−1, aj+(k−1)/2−1), (aj+(k−1)/2, bj+(k−1)/2)}

where we here set j = L − (k − 1)/2. This serves k requests in time λ + k + (k −
1)/2 = λ + 3k/2 − 1/2. But the next group of k requests would be (still setting
j = L − (k − 1)/2, and continuing from bj+(k−1)/2):

{(bj−(k−1)/2, aj−(k−1)/2),(aj−(k−1)/2+1, bj−(k−1)/2+1), (bj−(k−1)/2+1, aj−(k−1)/2+1),
(aj−(k−1)/2+2, bj−(k−1)/2+2), . . . , (bj−1, aj−1)}.

This group serves k requests in time k + λ + (k − 1)/2 − 1 = λ + 3k/2 − 3/2.
Together these two sequences serves 2k requests in time 2λ+3k−2. Then k-seq
repeats these two sequences with j decreasing by k each time until time runs
out. Thus k-seq serves T ′2k/(2λ + 3k − 2) additional requests in the remaining
time T ′. Note this is identical to the case of even k.

In both cases, k-seq serves a total of L+T ′·k
(λ+3k/2−1) = (7kL−2L−2kλ−4k2)

(3k+2λ−2)

requests. Then |opt|
|k-seq| is (3L−2λ−2k)(3k+2λ−2)

7kL−2L−2kλ−4k2 . As L grows, this approaches
3(3k+2λ−2)

(7k−2) . Note that because λ ≥ 1 and k ≥ 1, this ratio is ≥ 9/7; thus 9/7 is
a lower bound. �
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Note that when k ≤ λ, Theorem 6 gives a lower bound of 1 + λ/k ≥ 2; so we
have a lower bound of 9/7 for any k, λ.

5 Final Remarks

Observe that if we let N denote the maximum number of requests that can
be served within time tmax, then it is possible to show that our upper bound
theorems above hold with λ replaced by N + 1 and the lower bound theorems
hold with λ replaced by N . Note that N ≤ λ; the hypothetically modified
upper bound theorems would be improvements in the case where N + 1 < λ.
Additionally, we could have defined tmin as the minimum request service time
when there is at least one request, leaving tmax as the maximum edge weight,
and the theorems above would still hold.

It remains open whether our lower bound of 9/7 from Theorem 7 is tight
when k > λ. Another open problem is to close the gap between the upper and
lower bounds in the approximation ratio when k ≤ λ ≤ k(k − 1).
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Abstract. We consider a real-world vehicle routing problem with time
windows, arising in drilling rigs routing and well servicing on a set of sites
with different geographical locations. Each site includes a predetermined
number of wells which must be processed within a given time window.
The same rig can visit a site several times, but the overall number of
site visits by rigs is bounded from above. Each well is drilled by one
rig without preemptions. It is required to find the routes of the rigs,
minimizing the total traveling distance. We also consider a stochastic
generalization of the problem, where the drilling times are supposed to be
random variables with known discrete distributions. New mixed-integer
linear programming models are formulated and tested experimentally.
A randomized greedy algorithm is proposed for approximate solving the
problem in stochastic formulation, if the number of possible realizations
of drilling times is so high that existing MIP solvers are not suitable.

Keywords: Vehicle routing problem · Multiple visits · Stochastic
duration

1 Introduction

The area of exploration or production of gas and oil raises a number of opti-
mization problems for managing the drilling rigs activities that include drilling
and traveling between wells. The widely used approach to modeling and solution
of such problems is based on the Mixed Integer Linear Programming (MILP).
One of the earliest studies in this direction [4], considers a rather complex and
detailed problem of scheduling the drilling and other tasks for several offshore oil
production platforms to maximize the total profit. For the rigs, only the num-
ber of moves are counted, but not the travel distances. In [14], a simpler model
optimizing the drilling durations and travel times is proposed. It also considers
the possibility of rigs outsourcing and compatibilities of rigs and wells. No indi-
vidual time windows for each well are given, but rather a common deadline for
the whole project.
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The problem of our interest was introduced in [7]. In this problem, several
rigs travel between a set of sites, and each site has a certain number of wells to
drill. This problem was classified as the Split Delivery Vehicle Routing Problem
with Time Windows (SDVRPTW). A MIP model based on the classical VRP
model with time windows (see e.g. [15]) was proposed, and solutions found by
a commercial MIP solver were compared to those from Variable Neighborhood
Search metaheuristic [7,8]. In our paper, we consider a generalization of this
problem, in which it is allowed to re-visit the same site by the same rig. This
feature can be beneficial from the real-life production perspective, but makes
the problem more complicated.

In the mentioned above papers, all the necessary data are supposed to be
deterministic. Here we extend the study to the case of uncertain drilling dura-
tions, assuming that they are random variables with known discrete distribu-
tions. Note that a similar assumption is considered in [1] for the scheduling of
a set of offshore oil rigs given that the drilling time is a random variable with
a known distribution. The authors propose a Monte-Carlo approach, in which
the samples of drilling times are simulated and then are used as input data in
the GRASP heuristic. As a result, a set of approximate solutions is built and its
properties are investigated statistically.

Among the classic problems, the closest one to our formulation seems to be
the Split Delivery Vehicle Routing Problem with Time Windows and Uncertain
Service Times. There are many papers devoted to some particular aspects of
this problems, but we are not aware of any research on the case combining all
the indicated problem settings. The problem with random travel and service
times originated from [9]. In [3], this case is extended with the time windows
constraints. Many papers deal with the robust approach, in which the probability
distribution of uncertain parameters are not given, and the solution to be found
must be suitable for all possible realizations of uncertain data. Among these
papers we can mention [10,13], in which the service times vary within some
convex set. A comprehensive survey of stochastic and robust solution of different
VRP type problems can be found in [11].

The SDVRPTW with possibility to re-visit sites has a similarity with pro-
duction scheduling problems, if one considers rigs as machines, wells as prod-
uct orders, and sites as orders of the same type. The distances between the
sites correspond to setup or changeover times, which should be minimized,
while all products should be produced within the given time windows. The pro-
duction scheduling problems of such kind were successfully solved using time-
decomposition techniques and MIP-formulations based on the event points app-
roach (see e.g. [2,5,12]).

In our work, we aim at the following three main goals: (i) to compare two
different approaches to defining a MIP formulation of the problem, the one based
on the classical VRP model with time windows (as in [7,15] etc.) and the one
based on the event points approach [5], (ii) to extend the deterministic problem
formulation to a stochastic optimization problem where the drilling time at each
site is a random value with a known discrete distribution, testing the MIP-solving
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techniques for finding exact and approximate solutions to this problem, (iii) to
develop a heuristic capable of solving approximately the stochastic optimization
problems of higher dimension, compared to MIP-solvers.

In order to reach the second goal, we apply a quantille optimization approach
from [6]. This approach is more general than required for our stochastic problem
formulation, since in our case the objective function of any fixed solution (which
consists of a set of rig routes and the assignment of drilling tasks to rigs) is the
total traveling length and does not depend on the random variables. The latter
ones only influence on the feasibility of a solution with respect to time window
constraints. In the stochastic formulation, we assume that a threshold α ∈ (0, 1]
is given and it is required that the obtained solution should satisfy all time
window constraints with a probability not less than α.

2 Deterministic Problem Formulation

We have a set of sites I = {i1, . . . , i|I|} which must be served by a set of vehicles
U = {u1, . . . , u|U |} (drilling rigs). Each site i ∈ I is characterized by the total
number of planned wells ni and the time window (ai, bi], in which all wells should
be drilled. A vehicle can visit site i ∈ I several times, but the total number of
visits of i by all vehicles is bounded by mi ≤ ni. Each well is drilled by one rig
without preemptions. Drilling a well of site i ∈ I by vehicle u ∈ U requires dui
time units. A subset Iu of sites, that can be served by vehicle u ∈ U , is given.
Each vehicle u is initially located at an individual depot idu. The traveling time
between sites i and j for vehicle u is denoted by suij . It is required to find
rigs routes between sites and assignments of wells to rigs minimizing the total
traveling time.

In this section, we propose two models for the considered problem. The first
one is based on the event point approach and the second one uses the classic
approach from VRP theory. Before that, we provide an example which indicates
that there are instances where the same rig visits a site several times in any
optimal solution.

2.1 Illustrative Example

Consider an instance with 6 sites (see Fig. 1) and the following input data. The
number of wells at the sites with odd indices is 5, the number of wells at the
sites with even indices is 8. Time windows:

a1 = 20, b1 = 30, a2 = 10, b2 = 40, a3 = 30, b3 = 40,
a4 = 20, b4 = 50, a5 = 40, b5 = 50, a6 = 30, b6 = 60.
There are 3 drilling rigs. The durations of wells drilling at all sites do not

depend on the assignment of vehicles to wells and all equal to 2 (i.e. dui = 2).
In this example, we suppose that the rigs are identical, i.e., the traveling time
between sites i and j is the same for all vehicles (suij do not depend on u).
The distances between pairs of sites are indicated for each edge, if a direct
transportation is possible. Direct transportation is prohibited between all other
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pairs of sites (i.e. suij = ∞). Vertex id corresponds to the initial location of the
rigs here (a common depot).

Odd-numbered sites have narrow time windows. For each pair of time win-
dows (ai, bi] and (ai+1, bi+1] for i = 1, 2, 3, the following condition holds:
(ai, bi] ⊂ (ai+1, bi+1], i.e. the i-th window is contained in the i + 1-st, divid-
ing it into three parts with durations equal to 10. Thus, if returns of the rigs to
previously visited sites are prohibited, then moving from site i + 1 to site i is
impossible. The optimal solution with f = 24 is uniquely determined up to the
assignment of rigs to the routes. It is shown in Fig. 1 on the left. The route of
each rig has a unique marking.

If returns to the previously visited sites are allowed, then for each pair of
sites i, i + 1 for i = 1, 2, 3, the drilling rig can perform part of the work (drill 4
wells) on site i + 1, then move to site i, do all the work there, return to the site
i + 1 to process the remaining wells there. The optimal solution with f = 21 is
shown in Fig. 1 on the right. The value of the objective function is smaller by 3,
compared to the case where returns are prohibited.

Based on this example, it is easy to build a family of problems with 6k
sites and 3k machines, with the values of objective function 21k (if returns are
allowed) or 24k (if returns are prohibited) for k ∈ N .

Fig. 1. Optimal solutions in the case of single visits (left) and multiple visits (right).

2.2 MIP Model Based on Event Points

The set of event points for each vehicle u is defined as Ku = {1, 2, . . . , kmax
u },

where kmax
u ≤ ∑

i∈Iu
mi. Let Ui denote the subset of rigs suitable for site i ∈ I,

i.e. Ui = {u ∈ U : i ∈ Iu}. Introduce the variables:

xuik ∈ {0, 1} such that xuik = 1 iff vehicle u visits site i in event point k;
yuik ∈ Z

+ is the number of wells of site i drilled by vehicle u in event point k;
tsuk ≥ 0 is the starting time of works for vehicle u in event point k;
tfuk ≥ 0 is the completion time of works for vehicle u in event point k;
twuk ≥ 0 is the traveling time and waiting time between sites in event points
k − 1 and k.
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tuk ≥ 0 is the traveling time between sites in event points k − 1 and k.

Then the set of feasible solutions is defined as follows:

1 ≤
∑

u∈Ui

∑

k∈Ku

xuik ≤ mi, i ∈ I, (1)

∑

i∈Iu

xuik ≤ 1, u ∈ U, k ∈ Ku, (2)

∑

i∈Iu

xu,i,k−1 ≥
∑

i∈Iu

xuik, u ∈ U, k ∈ Ku, k > 2, (3)

xu,idu,1 = 1, xu,idu,k = 0, xu,i,1 = 0, u ∈ U, i ∈ Iu, k ∈ Ku, k > 1, (4)
∑

u∈Ui

∑

k∈Ku

yuik = ni, i ∈ I, (5)

yuik ≥ xuik, i ∈ I, u ∈ Ui, k ∈ Ku, (6)

yuik ≤ nixuik, i ∈ I, u ∈ Ui, k ∈ Ku, (7)

twuk ≥
∑

i∈Iu∪{idu}
suijxu,i,k−1 − smax(1 − xujk), (8)

u ∈ U, j ∈ Iu, k ∈ Ku, k > 1,
∑

1<k′≤k

∑

i∈Iu

duiyu,i,k′ +
∑

1<k′≤k

twu,k′ ≤
∑

i∈Iu

bixuik + bmax(1 −
∑

i∈Iu

xuik), (9)

u ∈ U, k ∈ Ku, k > 1,
∑

1<k′<k

∑

i∈Iu

duiyu,i,k′ +
∑

1<k′≤k

twu,k′ ≥
∑

i∈Iu

aixuik, u ∈ U, k ∈ Ku, k > 1. (10)

Here bmax = maxi∈I bi, smax = maxi,j∈I, u∈Ui∩Uj
suij . Inequality (1) provides

the upper bound on the number of visits of a site. Constraint (2) implies that in
any event point on rig u at most one site may be served. Constraints (3) ensure
continuous usage of event points, i.e. if an event point is used for visiting some
site, then the previous one is used as well. The initial positions of vehicles are
given by constraints (4). Conditions (5) guarantee that all wells of site i will be
drilled. If a site i is not served by rig u in the event point k (i.e. xuik = 0) then
the number of drilled wells should be zero – this is ensured by inequality (7).
Constraint (6) indicates that at least one well must be drilled if a rig visits site
i. Conditions (9) and (10) ensure rigs routes feasibility with respect to time
windows. The traveling time plus waiting time between event points k − 1 and
k is calculated in (8).

We also can modify constraint (1) for the case of the upper bounds on the
number visits m′

i for each rig instead of all rigs:
∑

k∈Ku

xuik ≤ m′
i, i ∈ I, u ∈ Ui. (11)
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The optimization criterion for the presented model is formulated in the fol-
lowing form: minimize

f =
∑

u∈U

∑

k∈Ku, k>1

tuk, (12)

tuk ≥
∑

i∈Iu∪{idu}
suijxu,i,k−1 − smax(1 − xujk), (13)

u ∈ U, j ∈ Iu, k ∈ Ku, k > 1.

The traveling time between event points k−1 and k is calculated in (13), and the
objective function (12) summarizes the traveling times between all event points.

Using additional variables tsuk ≥ 0 and tfuk ≥ 0, we can rewrite constraints
(9) and (10) in the equivalent form

tfuk ≥ tsuk +
∑

i∈Iu

duiyuik, u ∈ U, k ∈ Ku, (14)

tsuk ≥ tfu,k−1 + tuk − bmax(1 −
∑

i∈Iu

xuik), u ∈ U, k ∈ Ku, k > 1, (15)

tfuk ≤
∑

i∈Iu

bixuik, u ∈ U, k ∈ Ku, (16)

tsuk ≥
∑

i∈Iu

aixuik, u ∈ U, k ∈ Ku. (17)

Our preliminary computational experiment shows that model (1)–(7),
(12)–(17) is more appropriate for commercial solvers (CPLEX, GUROBI)

than model (1)–(10), (12)–(13). The model contains
∑

u∈U

(
∑

i∈Iu

mi

)

·|Iu| Boolean

variables as well as integer variables.

3 Stochastic Model

In this section we consider a stochastic version of the problem, and construct
mixed integer linear programming model similar to model (1)–(7), (12)–(17).

Suppose that drilling times dui of wells on sites are discrete random vari-
ables with values duih and probabilities pih, h = 1, . . . , vi,

∑vi

h=1 pih = 1. Here
we assume that these probabilities do not depend on u, in other words each
outcome h defines the whole vector (du1,ih, ..., du|U|,ih). Considering all possible
combinations of drilling times at sites, we form the total set of possible scenarios
SC with cardinality v =

∏
i∈I vi. Let du,i,sc denote the drilling time of a well

of site i by rig u in accordance with scenario sc, and psc be the probability of
scenario sc. Now our goal will be to define the rig routes and assign the number
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of wells drilling to each rig in each visit to a site, minimizing the traveling dis-
tance, s.t. the probability of satisfying all time windows constraints is not less
than a given threshold level α.

Given some values of all Boolean variables x = (xuik) and integer variables
y = (yuik) from MIP problem (1)–(7), (12)–(17) and given a specific realiza-
tion sc of the random scenario, one can define a function Q(x,y, sc) to be 0 if
the system of constraints (14)–(17) is consistent for the fixed x,y, sc, and define
Q(x,y, sc) = 1 otherwise. Using this function, the problem from Sect. 2 for a
single fixed scenario sc may be defined as an optimization problem w.r.t. two
vectors of variables x, y and a vector t = (tuk), asking to minimize the objective
function (12), subject to the set of constraints (1)–(7), (13), and Q(x,y, sc) ≤ 0.

Let us denote the system of constraints (1)–(7), (13) on variables x, y, t by
(x,y, t)R ≤ r, where matrix R and a row-vector r are defined appropriately on
the basis of the input data. Then the stochastic optimization problem mentioned
above may be formulated as

min
x,y,t

∑

u∈U

∑

k∈Ku, k>1

tuk,

(x,y, t)R ≤ r,

Pr{Q(x,y, sc) ≤ 0} ≥ α.

Let w = (w1, . . . , w|SC|) be a vector of scenario indicators. Application of
Theorem 1 from [6] shows that the stochastic optimization problem is equivalent
to the following deterministic MIP problem.

min
x,y,t,w

∑

u∈U

∑

k∈Ku, k>1

tuk,

(x,y, t)R ≤ r,

Q(x,y, sc) ≤ 1 − wsc, sc ∈ SC,
∑

sc∈SC

wscpsc ≥ α.

Here the confidence set of level α is formed by the Boolean variables wsc such
that wsc = 1 if scenario sc belongs to the confidence set, and wsc = 0 otherwise.

An equivalent of the constraint Q(x,y, sc) ≤ 1−wsc with variables for start-
ing times and completion times may be written as follows.

tfu,k,sc ≥ tsu,k,sc +
∑

i∈Iu

du,i,scyuik, u ∈ U, k ∈ Ku, sc ∈ SC, (18)

tsu,k,sc ≥ tfu,k−1,sc + tuk − bmax(1 −
∑

i∈Iu

xuik), (19)

u ∈ U, k ∈ Ku, k > 1, sc ∈ SC,
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tfu,k,sc ≤
∑

i∈Iu

bixuik + bmax(1 − wsc), u ∈ U, k ∈ Ku, sc ∈ SC, (20)

tsu,k,sc ≥
∑

i∈Iu

aixuik − bmax(1 − wsc), u ∈ U, k ∈ Ku, sc ∈ SC, (21)

∑

sc∈SC

wscpsc ≥ α. (22)

3.1 Illustrative Example

Consider an instance with two rigs and one site including two wells. The site has
a time window (0, 4], and the drilling time may be 2 or 3 with some probability.
The traveling time from rig deports to the site is 1. It is easy to see that if wells
are drilled for 2 time units then only one rig visits the site and the objective is 1,
but if the wells are drilled for 3 time units then both rigs visit the site and the
objective is 2.

4 MIP Model Based on VRP Approach

The proposed VRP-based model is similar to the model from [7], but allows to
visit a site by the same rig several times.

For each site i ∈ I we create mi copies and introduce a new set of sites I ′. All
copies of the same original site have identical set of wells. Denote by I ′

i all copies
of the original site i, I ′ = ∪i∈II

′
i. Traveling times between site copies from I ′

i are
equal to zero, traveling times between copies of different sites are equal to the
traveling times between these sites. Introduce a dummy site fs corresponding to
starting and completion point of the rout of each rig, set I ′

f := I ′ ∪ {fs}. Put
traveling times su,fs,i′ := su,idu,i and su,i′,fs := 0 for i′ ∈ I ′

i, i ∈ I. All rigs are
suitable for the dummy site fs, i.e. Ufs = U . Set I ′

u := ∪i∈IuI ′
i ∪ {fs} for all

u ∈ U and Ui′ = Ui for all i′ ∈ I ′
i, i ∈ I.

Introduce Boolean variables xui′j′ such that xui′j′ = 1 if rig u visits site-
copy i′ and travels to site-copy j′, and xui′j′ = 0 otherwise. Let Real variables
tsui′ defines the starting time of works for vehicle u on site-copy i′, and integer
variables yui′ counts the number of wells of site-copy i′ drilled by vehicle u. We
formulate the following mixed integer linear programming model: minimize

f =
∑

u∈U

∑

i′∈I′
f

∑

j′∈I′
f

sui′j′xui′j′ , (23)

∑

j′∈I′
f

xui′j′ =
∑

j′∈I′
f

xuj′i′ , u ∈ U, i′ ∈ I ′
u \ {fs}, (24)

∑

u∈Uj′

∑

i′∈I′
u

xui′j′ ≤ 1, j′ ∈ I ′, (25)
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∑

i′∈I′
i

∑

u∈Ui

yui′ = ni, i ∈ I, (26)

yui′ ≥
∑

j′∈I′
u

xuj′i′ , i′ ∈ I ′, u ∈ Ui′ , (27)

yui′ ≤ ni

∑

j′∈I′
u

xuj′i′ , i′ ∈ I ′, u ∈ Ui′ , (28)

tsui′ + yui′dui + su,i′,j′ ≤ tsu,j′ + bmax(1 − xui′j′), (29)

i′ �= j′ ∈ I ′, i : i′ ∈ I ′
i, u ∈ Ui′ ∩ Uj′ ,

su,fs,j′ ≤ tsuj′ + bmax(1 − xu,fs,j′), j′ ∈ I ′, u ∈ Uj′ , (30)

tsui′ ≥
∑

j′∈I′
u

aixuj′i′ , i ∈ I, i′ ∈ I ′
i, u ∈ Ui, (31)

tsui′ + yui′dui ≤
∑

j′∈I′
u

bixuj′i′ , i ∈ I, i′ ∈ I ′
i, u ∈ Ui, (32)

∑

i′∈I′
u

xu,fs,i′ = 1, u ∈ U, (33)

∑

i′∈I′
u

xu,i′,fs = 1, u ∈ U. (34)

Constraints (24) guarantee that each site-copy has exactly one predecessor
and one successor in the route. Inequalities (25) indicate that each rig visits each
site-copy at most ones. Conditions (26)–(28) ensure that the required number
of wells are drilled at each site, and each well is drilled by one rig. Constraints
(29)–(30) set the starting times of the works on sites for rigs. Inequalities (31)–
(32) ensure feasibility of rig routes with respect to time windows. Conditions
(33)–(34) indicate that each rig starts and completes its rout in depot.

The model contains
∑

u∈U

(
∑

i∈Iu

mi

)2

Boolean variables and
∑

u∈U

∑

i∈Iu

mi inte-

ger variables.

4.1 Stochastic Version

In the stochastic version, as in Sect. 3, we introduce binary variables wsc equipped
with the constraint (22), add the scenario index to variables tsu,i and replace
constraints (29)–(32) by the following scenarios-based conditions:

tsu,i′,sc + yui′du,i,sc + sui′j′ ≤ tsu,j′,sc + bmax(2 − xui′j′ − wsc), (35)

i′ �= j′ ∈ I ′, i : i′ ∈ I ′
i, u ∈ Ui′ ∩ Uj′ , sc ∈ SC,

su,fs,j′ ≤ tsuj′sc + bmax(2 − xu,fs,j′ − wsc), j′ ∈ I ′, u ∈ Uj′ , sc ∈ SC, (36)
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tsu,i′,sc ≥
∑

j′∈I′
u

aixuj′i′ − bmax(1 − wsc), i ∈ I, i′ ∈ I ′
i, u ∈ Ui, sc ∈ SC, (37)

tsu,i′,sc + yui′du,i,sc ≤
∑

j′∈I′
u

bixuj′i′ + bmax(1 − wsc), (38)

i ∈ I, i′ ∈ I ′
i, u ∈ Ui, sc ∈ SC.

5 Greedy Algorithm for Stochastic Optimization

The number of binary variables wsc grows exponentially in the number of sites
with uncertain drilling time. Therefore, a straightforward application of a MIP
solver allows to solve only small-sized instances. In order to treat larger instances,
we propose a simple randomized greedy heuristic.

Recall that each scenario sc is some realization of random drilling times and
it is represented as an |I|-dimensional vector (sc1, . . . , sc|I|). Let us say that
scenario sc dominates scenario sc′ iff sci ≥ sc′

i for all i. Clearly, in this case
if there is a solution to the considered stochastic problem with wsc = 1 one
may always set wsc′ = 1 in this solution without violation of its feasibility or
worsening the objective function value. For any subset of scenarios S ⊂ SC
define D(S) ⊂ SC as the set of all scenarios that are dominated by at least
one element of S (note that each scenario dominates itself, so S ⊆ D(S)). For
a subset S consider a stochastic optimization problem in which the constraint∑

sc psc · wsc ≥ α is excluded, all variables wsc, sc ∈ S are fixed to one, and all
other wsc are fixed to zero. Denote this problem as P (S).

With these notations, we may reformulate our stochastic problem as follows:
Find a subset of scenarios S such that the total probability of D(S) is not
less than α and an optimal value of the objective function of problem P (S) is
minimal. The proposed greedy algorithm is aimed at finding such a subset S and
its outline is given below.

Algorithm 1. Randomized Greedy Algorithm
1: Set S := ∅, p := 0.
2: Repeat until p ≥ α or the running time exceeds the given limit.

2.1 Choose scenarios sc1, ..., scr ∈ SC uniformly at random.
2.2 Solve r stochastic optimization problems P (S ∪ {sc1}), ...P (S ∪ {scr}) and let

f1, ..., fr be the objective function values for the obtained solutions.
2.3 Choose scj with the minimal value f j , add it to S, and remove all dominated

scenarios: S := S ∪ {scj}, SC := SC \ D({scj}).
2.4 Update the current value of p as the total probability of D(S).

The solution of stochastic optimization problems at Step 2.2 can be done in
parallel. Due to the random nature of the algorithm, it is reasonable to run it
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several times and choose the best result. One positive feature of the algorithm
is that it produces a sequence of solutions with increasing probability values p
and the corresponding values of f , which gives a better understanding of the
problem structure to a decision maker (this will be illustrated in Sect. 6.3).

6 Implementation and the Computer Experiments

In the experiments, we used a server with two AMD EPYC 7502 processors (each
one has 32 cores, hyper-threading mode on), OS Ubuntu 20.04. MILP solver
Gurobi (version 9.0.3) was applied to solve MIP problems1 coded in GAMS.

6.1 Testing Deterministic Models

First, we tested the event-point-based and the VRP-based models on instances
with 50 sites from [8], where the results of Gurobi were presented for the VRP-
based model version with no returns. Two versions of the models are investigated,
when two and when three visits of sites are allowed for rigs. Computational
experiment with the same parameters as in [8] did not improve the objective
values. We believe that this is due to the structure of the instances from [8],
where time windows for objects are uniformly distributed during the planing
horizon and have lengths less than or equal to the total drilling time of wells
on the objects. The event-point-based model demonstrated slightly worse results
than VRP-based model.

Second, we compared the two deterministic models on a family D of problems
Dk, k ∈ N , constructed on the basis of the example from Subsect. 2.1. Problem
Dk consists of k subproblems with the structure as shown in Fig. 1 and the same
initial data. It has 6k sites and 3k drilling rigs. Each subproblem has the set of
sites Gv = {6v − 5, 6v − 4, ..., 6v}, the set of rigs Uv = {3v − 2, 3v − 1, 3v} and
the point of the initial location of rigs idv for v = 1, .., k. Rigs of Uv can serve
all sites from Gv, as well as the first site from the set with the next index (i.e.
Gv+1). In the distance matrices, we put su,i,6v+1 = su,6v+1,i = i + 10 for v =
1, ..., k − 1, i ∈ Gv, u ∈ Uv. For all v and i ∈ Gv, u ∈ Uv, put su,idv,i = 5. Direct
transportation is prohibited between all other pairs of sites. For the forbidden
movements of drilling rigs, we will assign sufficiently large values as distances.
In the experiment, we set this value to 265.

For the VRP-based model, the Gurobi solver was used with the parame-
ters Presolve = 2, GomoryPasses = 0, Method = 0, MinRelNodes = 10627,
ImproveStartTime = 8640. For MIP model based on event points we did not
find any parameters settings better than the default ones, so the default settings
were used. The results for k = 1, 2, .., 6 are shown in Table 1. In the case of
one visit, these instances required little solving time in both models, although
1 The choice of this solver was based on a preliminary experiment, which indicated

that on the MIP instances considered here Gurobi has an advantage to other
solvers available to us (e.g. it was approximately twice as fast in comparison with
CPLEX 12.10.0.0).
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the VRP-based model required less time for most instances. In the case of two
visits, as k grows, the problems become more difficult for both models. For all
instances, solutions with the optimal value of the objective function were found,
but using the VRP-based model, the solver failed to prove the obtained solutions
optimality in 10 h of CPU time for k ≥ 4. The EP-based model yields the best
results for this series.

Table 1. Comparison of models on series D.

k |I| |U | At most 1 visit At most 2 visits

Obj Time Obj Time

EP-based VRP-based EP-based VRP-based

1 6 3 24 0,89 0,21 21 2,50 1,82

2 12 6 48 7,14 1,55 42 149,36 114,93

3 18 9 72 77,94 7,41 63 576,40 10502,38

4 24 12 96 328,89 11,71 84 703,38 >36000

5 30 15 120 97,46 7,95 105 5888,08 >36000

6 36 18 144 40,11 88,36 126 10695,31 >36000

6.2 Testing Stochastic Models

The experiments were done on subinstances of the instances from [8]. In two
series S1 and S1′ (10 instances in each series) we take the first seven or the first
ten sites, and all given six rigs. Sites have from 5 to 30 wells. Note that instances
from S1′ are characterized by shorter time windows than instances from S1.

For five random sites of each instance we suppose that drilling time can take
two values 2 or 3, and the probability of value 2 is generated randomly from the
interval [0.75, 0.85]. Drilling times are equal to 2 for the rest of the sites. For the
sake of simplicity, we assume that du,i,sc do not depend on u, i.e. they are the
same for any fixed pair i and sc.

We test event-point-based and VRP-based models for threshold levels α =
0.5; 0.6; 0.7; 0.8; 0.9; 0.99 in two versions, when one and when two visits of sites
are allowed for rigs. The results for two instances with seven sites of series S1
are presented in Table 2 (the full results for all instances are available at https://
gitlab.com/YuliaKovalenko-gl/stochastic-vrp-problem.git). The running time of
Gurobi is greater on series S1′ than on series S1 due to the structure of the
instances in this series.

In most of the instances the optimal stochastic solution at level α = 0.8 has a
lower traveling distance, compared to the worst-case scenario, where all drilling
times are equal to 3. In the instances presented in Table 2, the version allowing
up to two visits yields a solution with a lower objective traveling distance, com-
pared to the version with no returns. As we can see the running time of Gurobi

https://gitlab.com/YuliaKovalenko-gl/stochastic-vrp-problem.git
https://gitlab.com/YuliaKovalenko-gl/stochastic-vrp-problem.git
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has no specific tendency as a function of threshold α. In the two-visit-version,
none of the considered models clearly dominates the other one in terms of run-
ning time of Gurobi. The VRP-based model demonstrates better results in a
majority of the cases with no returns.

Table 2. Comparison of models on series with 7 sites.

α At most 1 visit At most 2 visits

Obj Time Obj Time

EP-based VRP-based EP-based VRP-based

Instance 7 2

0.5 10 34,86 0,63 9 22,09 3,12

0,6 10 24,54 6,70 10 64,34 41,14

0,7 10 29,38 6,07 10 60,62 29,09

0,8 11 74,47 9,65 10 62,67 63,48

0,9 13 410,16 30,88 11 211,69 727,08

0,99 13 133,62 23,92 13 315,74 381,81

Instance 7 3

0,5 16 20,65 4,35 16 29,59 51,6

0,6 16 4,33 3,07 16 13,42 27,08

0,7 17 8,64 4,64 17 22,56 113,11

0,8 19 62,14 9,95 18 24,28 143,03

0,9 21 21,88 17,35 20 56,21 159,91

0,99 22 13,47 4,06 21 7,03 51,46

6.3 Evaluation of the Greedy Algorithm

For testing the greedy algorithms, two instances from previous section, namely
7 2 and 7 3, were taken and four larger problems were generated on the basis of
the instances S1.1, S1.2, S1.3, S1.4 from [8]. The original instances contain 50
sites and 6 rigs. Here only the first 12 sites are extracted. All the travel times are
kept unchanged, but the drilling times du,i now take value 1 with probability 0.8
and value 3 with probability 0.2 for each site. The total number of scenarios is
then 212 = 4096. The MIP model for the first instance has 547980 columns, 7216
discrete-columns, and 3858896 rows. The straightforward application of Gurobi
with α = 0.7 could not find a feasible solution in five hours.

In the implementation of the greedy algorithm, at Step 2.1, the number of
considered scenarios is r = 3, and in case of large instances they are chosen
at random among the scenarios, in which du,i,sc have value 3 for more than
five sites, otherwise the probability of D({sc}) is negligibly small. At Step 2.2,
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three problems are solved in parallel by Gurobi, each process is allowed to use
up to four CPU cores, and the solving time of one problem is limited by 180 s.
The algorithm stops when it reaches the level α = 0.95, or when the running
time exceeds the overall time limit, which was set to one hour. Although the
algorithm may work with both EP and VRP based models, the VRP case was
chosen, because it showed better performance in earlier tests with no returns.

For each problem instance, five independent runs of the greedy algorithm
were made and the best results were collected and summarized in Table 3. As
before, the smaller problems were solved in two variants: with at most one or
at most two visits of each site (this is marked with “1v” or “2v” in the table).
Column “optimistic” shows the objective function values of the solution with
the best realization of the drilling times, i.e. the scenario sc with all du,i,sc = 1;
similarly, column “pessimistic” corresponds to the worst-case scenario with all
du,i,sc = 3. The other columns show the best results provided by the algorithm
after reaching the given probability threshold. The cells, for which no feasible
solutions were obtained are marked with “–”. For example, let us fix α = 0.8,
then for instance S2.1 there exists a solution with the cost f = 35 that is valid
with probability at least α. For the smaller problems, the obtained solutions
are quite close to the optimal ones (results known to be optimal are marked by
“*”, compare to Table 2). For problems S2.1...S2.4, which can not be straight-
forwardly solved by the MIP solver in practically acceptable time, the greedy
algorithm still yields reasonable solutions.

Table 3. Results of the greedy algorithm

Instance Optimistic p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 0.95 Pessimistic

7 2(1v) 10 10* 10* 11* 13* 13* 13

7 2(2v) 9 10* 10* 11 11* 13 13

7 3(1v) 16 16* 18 19* 21* 22 22

7 3(2v) 15 16* 18 19 20* 21 21

S2 1(1v) 13 29 33 35 44 – –

S2 2(1v) 10 21 22 29 31 31 31

S2 3(1v) 16 39 39 42 43 45 45

S2 4(1v) 12 35 40 42 – – –

7 Conclusions

In this paper, we have studied a generalization of the drilling rig routing problem
suggested by I. Kulachenko and P. Kononova, allowing to re-visit the same site by
the same rig and assuming that at some sites the drilling durations are random
variables with known discrete distributions. We have compared two different
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approaches to defining a MIP formulation of the problem, a one based on the
classical VRP model with time windows and a one based on the event points
approach. Also, we have carried out a computational experiment, comparing
the performance of Gurobi solver on these MIP models and found out that in
different cases either one of the models has an advantage. To solve approximately
the stochastic optimization problems of higher dimension, we have developed a
randomized greedy heuristic, which demonstrated promising results.

Acknowledgement. The research is supported by Russian Science Foundation
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Abstract. We consider the intractable problem of finding several edge-
disjoint spanning trees of a given diameter in an graph with random
edge weights. Earlier, we have implemented an asymptotically optimal
approach for this problem in the case of directed graphs. The direct use of
this result for the case of undirected graphs turned out to be impossible
due to the issues associated with the summation of dependent random
variables. In this work we give an O(n2)-time algorithm with conditions
of asymptotic optimality for the case of undirected graphs.

Keywords: Given-diameter Minimum Spanning Tree · Approximation
algorithm · Probabilistic analysis · Asymptotic optimality.

1 Introduction

The Minimum Spanning Tree (MST) problem is one of the well-known dis-
crete optimization problems. It consists of finding a spanning tree (connected
acyclic subgraph) of a minimal weight in a given edge-weighted undirected graph
G = (V,E). The polynomial solvability of the problem was shown in the classic
algorithms by Boruvka (1926), Kruskal (1956) and Prim (1957). These algo-
rithms have complexities O(u log n), O(u log u) and O(n2), where u = |E| and
n = |V |. It must be noted that the mathematical expectation for an MST’s
weight in a graph with edge weights from the class of random variables with a
uniform distribution on the interval (0; 1) is close to 2.02 w.h.p. (with a high
probability) [3]. Also interested reader may refer to [1,2].
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One of the possible generalizations of the above problem may be the problem
of finding a bounded diameter MST problem. The diameter of a tree is the
number of edges in the longest simple path within the tree connecting a pair of
vertices. This problem is as follows. Given an edge-weighted undirected graph
and a number d = dn, the goal is to find in the graph a spanning tree T of
minimal total weight having its diameter bounded above to given number d, or
from below to given number d. Both problems are NP -hard in general.

Earlier in the papers [6,7,9–12], it was studied an asymptotically optimal
approach to a bounded MST problem with a graph diameter bounded either
from below or above.

Recently, we began to study another modification of the problem, when the
diameter of the desired spanning tree is a given number. The work [13] gives a
probabilistic analysis of an effective algorithm for solving a given-diameter MST
problem in the case of complete directed graph. Unfortunately, the algorithm
analysis, presented in this work becomes unacceptable for a problem on undi-
rected graphs. The appearance of the difficulty of probabilistic analysis in the
case of the undirected graph arises from the need to take into account the possible
dependence between different random variables in the course of the algorithm.

In current paper we consider problem of finding m edge-disjoint MSTs with a
given diameter d in the complete undirected graph (m-d-UMST). We introduce a
polynomial-time approximation algorithm to solve this problem and provide con-
ditions for this algorithm to be asymptotically optimal. A probabilistic analysis
is carried out under conditions that edge weights of given graph are identically
independent distributed random variables. Our algorithm can be transformed
to solve the problem of finding m edge-disjoint MSTs with bounded diameter
from below or above. So all the applications for these problems are valid for
m-d-UMST (see, for example, [14]).

2 Finding Several Edge-Disjoined MSTs with a Given
Diameter

Given a edge-weighted complete undirected n-vertex graph G = (V,E) and
positive integers m ≥ 2, d such that m(d + 1) ≤ n, the problem is to find m
edge-disjoint spanning trees T1, . . . , Tm with a given diameter d = dn < n

m of
minimum total weight. We assume that the weights of the edges are independent
and identically distributed random reals, with probability distribution function
f(x) defined on (an; bn).

Description of the Algorithm A

Preliminary Step 0. In graph G, choose an arbitrary (n − m(d + 1))-vertex
subset V ′, and arbitrary split the remaining m(d+1) vertices into (d+1)-vertex
subsets V1, . . . , Vm.

Step 1. For each l = 1, . . . , m, starting at arbitrary vertex in the subgraph G(Vl),
construct in it a Hamiltonian path Pl of length d = dn, using the approach “Go
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to the nearest unvisited vertex”. After the construction of entire path Pl we put
Tl = Pl.

Step 2. We assume without loss of generality that d is odd. For each pair of
paths Pi and Pj , 1 ≤ i < j ≤ m, we connect them in a special way by the set Eij

of 2(d+1) edges, so that the constructed subgraph was composed of two 2(d+1)-
vertex edge-disjoint subtrees with a diameter equals d. We represent each path
as two halves (first and second) P 1

l and P 2
l , 1 ≤ l ≤ m. Each half contains one

end vertex and d−1
2 inner vertices, d+1

2 vertices totally. We construct the set of
connecting edges as follows.

2.1. Connect each inner vertex of P 1
i by the shortest edge to the inner vertex

of P 1
j . So we add this edge to Tj .

2.2. Connect each inner vertex of P 2
i by the shortest edge to the inner vertex

of P 2
j . We add this edge to Tj .

2.3. Connect each inner vertex of P 1
j by the shortest edge to the inner vertex

of P 2
i . Thus, we add this edge to Ti.

2.4. Connect each inner vertex of P 2
j by the shortest edge to the inner vertex

of P 1
i . We add this edge to Ti.

2.5. Connect each end vertex of the path Pi by the shortest edge to the inner
vertex of the path Pj . We add this edge to Tj .
2.6. Connect each end vertex of the path Pj by the shortest edge to the inner
vertex of the path Pi. So we add this edge to Ti.

Step 3. For l = 1, . . . ,m each vertex of the subgraph G(V ′) connect by the
shortest edge to the inner vertex of the path Pl. Thus, we add this edge to
corresponding Tl.

The construction of all m edge-disjoint spanning trees T1, . . . , Tm is com-
pleted.

Denote by WA the total weight of all trees T1, . . . , Tm constructed by Algo-
rithm A. Denoting summary weights of edges, obtained on Steps 1, 2 and 3 by
W1, W2 and W3, we have WA = W1 + W2 + W3.

Let us formulate two statements concerning Algorithm A.

Statement 1. Algorithm A constructs a feasible solution for the m-d-UMST.

Proof. Each of the edge-disjoint constructions consists of n vertices and n − 1
edges since we firstly create the tree as the path on d + 1 vertices during Step 1
and then we add edges to the tree by connecting all other vertices to the vertices
in path on Steps 2–3, totally we obtain m such constructions, and we indeed get
feasible solution for the m-d-UMST.

Statement 2. Running time of Algorithm A is O(n2).

Proof. Preliminary Step 0 takes O(n) time.
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At Step 1 each path is built in O(d2) time, thus, it takes O(md2) or O(nd)
time to construct all paths.

At Steps 2.1–2.4 each pair (Pi, Pj), 1 ≤ i < j ≤ m, of paths is connected with
the edge set Eij in O(d2) time, and for all m(m−1)

2 pairs of paths it is required
O(m2d2), or (since m(d + 1) ≤ n) O(n2)-running time.

Steps 2.5–2.6 are carried out in O(md) time.
Step 3 takes O(mn) operations since we connect |G(V ′)| ≤ n vertices by

the shortest edge to the inner vertex of the path Pl for each spanning tree Tl,
1 ≤ l ≤ m.

So, the total time complexity of the Algorithm A is O(n2) (Figs. 1, 2 and 3).

Fig. 1. Initial vertices of the graph and Step 0 of the work of the Algorithm A on
16-vertex complete graph, m = 2, d = 5.

Fig. 2. Step 1 and Step 2 of the work of the Algorithm A on 16-vertex complete graph,
m = 2, d = 5. The hatched vertices are end vertices. The solid edges are edges of T1.
The dotted edges are edges of T2.

3 A Probabilistic Analysis of Algorithm A
We perform the probabilistic analysis of Algorithm A under conditions that
weights of graph edges are random variables η from the class UNI(an; bn),
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Fig. 3. Step 3 of the work of the Algorithm A on 16-vertex complete graph, m = 2,
d = 5. The hatched vertices are end vertices. The solid edges are edges of T1. The
dotted edges are edges of T2.

namely, are independent identically distributed random variables with uniform
distribution on a set (an; bn), 0 < an ≤ bn < ∞. Obviously, normalized variables
ξ = η−an

bn−an
∈ (0; 1) belong to the class UNI(0; 1).

By FA(I) and OPT (I) we denote respectively the approximate (obtained
by some approximation algorithm A) and the optimum value of the objective
function of the problem on the input I. An algorithm A is said to have estimates
(performance guarantees)

(
εn, δn

)
on the set of random inputs of the n-sized

problem (it is the problem with parameter n, where n is amount of input data
required to describe the problem, see [4]), if

P
{

FA(I) >
(
1 + εn

)
OPT (I)

}
≤ δn, (1)

where εn = εA(n) is an estimation of the relative error of the solution obtained
by algorithm A, δn = δA(n) is an estimation of the failure probability of the
algorithm, which is equal to the proportion of cases when the algorithm does
not hold the relative error εn or does not produce any answer at all.

Following [5] we say that an approximation algorithm A is called asymp-
totically optimal on the class of input data of the problem, if there exist such
performance guarantees that for all input I

εn → 0 and δn → 0 as n → ∞.

Further we suppose that the parameter d is defined on the set of values d in
two ranges

Case 1: ln n ≤ d < n/ ln n and Case 2: n/ ln n ≤ d < n.

We denote random variable equal to minimum over k variables from the class
UNI(an; bn) (from UNI(0; 1)) by ηk (ξk, correspondingly).
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Further, for simplicity, we assume that the parameter d is odd.
According to the description of Algorithm A the weight WA of all constructed

spanning trees T1, . . . , Tm is a random value equal to

WA = (n − 1)an + (bn − an)W ′
A,

where
W ′

A = W ′
1 + W ′

2 + W ′
3.

W ′
1, W ′

2, W ′
3 are normalized random variables for values W1, W2, W3, respec-

tively.
Let ξk be normalized random variable modeling the construction of the edge

during the process of Algorithm A.
W ′

1 =
∑m

i=1

∑d
k=1 ξk since we construct the path Pi consists of d edges and

repeat this construction m times during Step 1.
W ′

2 = C2
m

(
4d−1

2 ξ(d−1)/2 + 4ξ(d−1)

)
, because for each pair of paths (totally,

C2
m = m(m−1)

2 such pairs) we connect each inner vertex of a one half of a path
(d−1

2 such vertices) by the shortest edge to the inner vertex of a half of another
path on the Step 2.5. Since we connect first and second halves of a path to
first and second halves of every another path, multiplication of 4 arises in a
resulting estimation for ξ(d−1)/2. And finally, we connect each end vertices in
each pair of paths by the shortest edge to the inner vertex of path on the Step
2.6. (we can compute this shortest edge by looking over all (d− 1) inner vertices
of corresponding path). Since every pair of paths has 4 end vertices we multiply
the estimation for ξ(d−1) by 4.

W ′
3 = m(n − m(d + 1))ξ(d−1) since we connect each vertex from G(V ′)

(|G(V ′)| = n − m(d + 1)) by the shortest edge to the inner vertex of the path Pl

((d − 1) such vertices), 1 ≤ l ≤ m. And we repeat this construction m times.

Lemma 1. For E(W ′
A) such inequality is true

E(W ′
A) ≤ m ln d +

2mn

d
.

Proof. Consider separately expectations of random variables for values W1, W2

and W3.

EW ′
1 =

m∑

i=1

d∑

k=1

Eξk = m
d∑

k=1

1
k + 1

≤ m ln d;

EW ′
2 = C2

m

(
4
d − 1

2
Eξ(d−1)/2 + 4Eξ(d−1)

)
=

m(m − 1)

2

( 4(d − 1)/2

(d − 1)/2 + 1
+

4

d

)
≤ 2m2.

EW ′
3 = m(n − m(d + 1))Eξ(d−1) = m

n − m(d + 1)
d

≤ mn

d
− m2.

From the previous equations we get

E(W ′
A) = E

(
W ′

1 + W ′
2 + W ′

3

)
≤ m ln d + 2m2 +

mn

d
− m2 ≤ m ln d +

2mn

d
.
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Lemma 2. Algorithm A for solving the m-d-UMST on n-vertex complete graph
with weights of edges from UNI(an; bn) has the following estimates of the relative
error εn and the failure probability δn:

εn = (1 + λn)
(bn − an)

m(n − 1)an
ẼW

′
A, (2)

δn = P
{

W̃ ′
A > λn

˜EW ′
A

}
, (3)

where λn > 0, ẼW
′
A is some upper bound for expectation EW ′

A.

Proof.

P
{

WA > (1 + εn)OPT

}
≤ P

{
WA > (1 + εn)m(n − 1)an

}

= P
{

m(n − 1)an + (bn − an)W ′
A > (1 + εn)m(n − 1)an

}

= P
{

W ′
A − EW ′

A >
εnm(n − 1)an

(bn − an)
− EW ′

A

}

= P
{

W̃ ′
A >

εnm(n − 1)an

(bn − an)
− EW ′

A

}

≤ P
{

W̃ ′
A >

εnm(n − 1)an

(bn − an)
− ˜EW ′

A

}
= P

{
W̃ ′

A > λn
˜EW ′

A

}
= δn.

Further for the probabilistic analysis of Algorithm A we use the following
probabilistic statement

Petrov’s Theorem [15]. Consider independent random variables X1, . . . , Xn.
Let there be positive constants T and h1, . . . , hn such that for all k = 1, . . . , n
and 0 ≤ t ≤ T the following inequalities hold:

EetXk ≤ e
hkt2

2 . (4)

Set S =
∑n

k=1 Xk and H =
∑n

k=1 hk. Then

P{S > x} ≤
{

exp
{− x2

2H

}
, if 0 ≤ x ≤ HT,

exp
{−Tx

2

}
, if x ≥ HT.

Lemma 3. Let ξk be random variable equal to minimum over k independent
random variables from the class UNI(0; 1). Given constants T = 1 and hk =

1
(k+1)2 . Then for variables ξ̃k = ξk − Eξk the condition (4) of Petrov’s Theorem
holds for each t ≤ T and 1 ≤ k < n.
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Proof. Evidently, Eξk = 1
k+1 . Denote α = t

k+1 . Using the formula

Eetξk =
∞∑

i=0

ti

(k + 1) · · · (k + i)

(see in the book [8], p. 120), we estimate the value Eetξk from above:

Eetξk ≤ 1+α+α2 (k + 1)
(k + 2)

∞∑

i=0

(
t

k + 3

)i

= 1+α+α2·Qk,t ≤ eα+α2
2 = etEξk ·ehkt2

2 .

where Qk,t = (k+1)
(k+2)(1− t

k+3 )
≤ Qk,T = (k+1)(k+3)

(k+2)2 < 1 if k ≥ 1. From this we have

Eet(ξk−Eξk) = Eet˜ξk ≤ e
hkt2

2 .

Lemma 3 is proved.

Lemma 4. In the case ln n ≤ d < n the following upper bound for the sum of
constants hk = 1

(k+1)2 that correspond to edges of the spanning tree Tl,
l ∈ {1, . . . , m}

H ≤ mn

d
.

Proof. In the case ln n ≤ d < n the parameter H equal to the sum of H1, H2 and
H3 according to the steps of Algorithm A number 1, 2, 3, respectively. Knowing
that notation and estimates from above, we obtain

H1 = m
d∑

k=1

hk = m
d∑

k=1

1
(k + 1)2

< ψm,

where ψ = 0.645. We have used the well-known Euler’s estimate for the inverse
square equation 1 + 1

22 + 1
32 + 1

42 + . . . = π2

6 < 1.645 in the calculation of H1.

H2 = 4C2
m(d′hd′ + hd−1) ≤ 2m2

( d′

(d′ + 1)2
+

1

d2

)
= 2m2

(2(d − 1)

(d+ 1)2
+

1

d2

)
≤ 4m2 d

(d+ 1)2
.

H3 = m
(
n − m(d + 1)

)
h(d−1) ≤ mn

d2
− m2 d

(d + 1)2
.

Since n ≥ m(d + 1) and m ≥ 2 we get

H = H1 + H2 + H3 < ψm + 4m2 d

(d + 1)2
+

(mn

d2
− m2 d

(d + 1)2
)

≤

=
mn

d

(dψ

n
+

1
d

)
+ 3m2 d

(d + 1)2
≤

( ψd

2(d + 1)
+

1
d

+
3d2

(d + 1)3
)mn

d
≤ mn

d
.

Lemma 4 is proved.
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Theorem 1. Let the parameter d = dn be defined so that

ln n ≤ d < n, (5)

Then Algorithm A gives asymptotically optimal solutions for the problem m-
d-UMST on n-vertex complete undirected graph with weights of edges from
UNI(an; bn) with the failure probability

δn = n−m → 0, as n → ∞, (6)

and the following conditions of asymptotical optimality

bn

an
=

{
o(d), if ln n ≤ d < n/ ln n,
o( n

lnn ), if n/ ln n ≤ d < n.
(7)

Proof. First of all, we note that in the course of the Algorithm A we are dealing
with random variables of the type ξk. 1 ≤ k ≤ d. In the case of graphs with
weights of edges from UNI(an; bn) these variables satisfy the conditions of the
Petrov’s theorem for constants T = 1 and hk = 1

(k+1)2 (see Lemma 3).

We will carry out a proof for two cases of possible values of the parameter d:
ln n ≤ d < n/ ln n and n/ ln n ≤ d < n.

Case 1: ln n ≤ d < n/ ln n.

Lemma 5. In the case ln n ≤ d < n/ ln n the following upper bound for EW ′
A

holds:
ẼW

′
A =

3mn

d
.

Proof. Given the fact that ln d ≤ ln n and d < n
lnn we have:

EW ′
A ≤ m ln d +

2mn

d
≤ m ln n +

2mn

d
< m

n

d
+

2mn

d
=

3mn

d
= ẼW

′
A.

Lemma 5 is proved.

According to Lemma 5 and the formula (2) for the relative error we have

εn = (1+λn)
(bn − an)

m(n − 1)an
ẼW

′
A = (1+λn)

(bn − an)

m(n − 1)an

3mn

d
≤ (1+λn)

3n

(n − 1)

(bn/an)

d
.

Setting λn = 1 we see that εn → 0 under the condition

bn

an
= o(dn).

Now using Petrov’s Theorem and Lemma 5, estimate the failure probability:

δn = P
{
W̃ ′

A > λnẼW
′
A

}
= P

{
W̃ ′

A > λn
3mn

d

}
= P

{
W̃ ′

A >
3mn

d

}
.
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Define constants T = 1 and hk = 1
(k+1)2 for each variable, whose weight

corresponds to a random variable ξk, and which are included to the constructed
spanning tree.

From Lemma 4 and the inequality: d < n
lnn we have

TH ≤ mn

d
<

3mn

d
= x

According to Petrov’s Theorem, we have an estimate for the failure proba-
bility of Algorithm A:

δn = P{W̃ ′
A > x} ≤ exp

{
− Tx

2

}
.

Since ln n < n
d it holds that

Tx

2
=

3mn

2d
> m ln n.

From this it follows that

δn = P{W ′
A > x} ≤ exp

{
− Tx

2

}
< exp(−m ln n) =

1
nm

→ 0.

So in the Case 1 Algorithm A gives asymptotically optimal solution for the
problem m-d-UMST on n-vertex complete graph with weights of edges from
UNI(an; bn).

Case 2: n/ ln n ≤ d < n.

Lemma 6. In the Case 2 (n/ ln n ≤ d < n) the following inequality holds:

EW ′
A ≤ 3m ln n = ẼW

′
A.

Proof. For all d, n/ ln n ≤ d < n the following inequality holds:

n

d
≤ ln n. (8)

According to the Lemma 1, and taking into account the inequality (8), we
have

EW ′
A ≤

(
m ln d +

2mn

d

)
≤ 3m ln n = ẼW

′
A.

Lemma 6 is proved.
According to the Lemma 6 and formula (2), for the relative error we have

εn = (1 + λn)
(bn − an)
(n − 1)an

ẼW
′
A = (1 + λn)

(bn − an)
m(n − 1)an

· 3m ln n

≤ (1 + λn)
3(bn/an) ln n

(n − 1)
.
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Setting λn = 1 we see, that εn → 0 under condition

bn

an
= o

( n

ln n

)
.

Now using Petrov’s Theorem and Lemma 6, we estimate the failure proba-
bility

δn = P
{
W̃ ′

A > λnẼW
′
A

}
= P

{
W̃ ′

A > 3m ln n
}
,

Set the constants hk as in the Case 1. Define T = 1 and x = 3m ln n. Taking

into account Lemma 4 and the values x, T , H and d ≥ n
lnn , the following

inequality is true:
TH ≤ mn

d
< 3m ln n = x.

According to Petrov’s Theorem, we have an estimate for the failure proba-
bility of Algorithm A. Since Tx

2 > m ln n:

δn = P{W ′
A > x} ≤ exp

{
− Tx

2

}
≤ exp(−m ln n) =

1
nm

→ 0.

From this it follows that in the Case 2 Algorithm A also gives asymptotically
optimal solution for the problem m-d-UMST on n-vertex complete graph with
weights of edges from UNI(an; bn).

We conclude, that within the values of the parameter d for both cases, under
conditions (7) we have estimates of the relative error εn → 0 and the failure
probability δn → 0 as n → ∞. Theorem 1 is completely proved.

4 Conclusion

In this work, we have described an algorithm for solving several edge-disjoint
given-diameter Minimal Spanning Tree problem in a complete edge-weighted
undirected graph. We also have obtained asymptotic optimality conditions for
this algorithm in the case of a uniform distribution for the weights of the graph
edges. It would be interesting to investigate this problem on input data with
infinite support like exponential or truncated-normal distribution and on discrete
distributions. It is interesting to consider asymptotic optimality of the problem
of finding several edge-disjoined spanning trees with a given or bounded diameter
using an algorithmic scheme without representing the paths in the form of the
corresponding halves, as was done at Step 2 of the described algorithm. It would
also be desirable to consider the problem of finding m edge-disjoint Maximum
Spanning Trees with given or bounded diameter in future works.
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An FPTAS for the Δ-Modular
Multidimensional Knapsack Problem
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Abstract. It is known that there is no EPTAS for the m-dimensional
knapsack problem unless W [1] = FPT . It is true already for the case,
when m = 2. But, an FPTAS still can exist for some other particular
cases of the problem.

In this note, we show that the m-dimensional knapsack problem with
a Δ-modular constraints matrix admits an FPTAS, whose complexity
bound depends on Δ linearly. More precisely, the proposed algorithm
arithmetical complexity is O(n · (1/ε)m+3 · Δ), for m being fixed. Our
algorithm is actually a generalisation of the classical FPTAS for the 1-
dimensional case.

Strictly speaking, the considered problem can be solved by an exact
polynomial-time algorithm, when m is fixed and Δ grows as a polynomial
on n. This fact can be observed combining results of the papers [9,12,28].
We give a slightly more accurate analysis to present an exact algorithm
with the complexity bound O(n · Δm+1), for m being fixed. Note that the
last bound is non-linear by Δ with respect to the given FPTAS.

The goal of the paper is only to prove the existence of the described
FPTAS, and a more accurate analysis can give better constants in expo-
nents. Moreover, we are not worry to much about memory usage.

Keywords: Multidimensional knapsack problem · Δ-modular integer
linear programming · FPTAS · Δ-modular matrix · Approximation
algorithm

1 Introduction

1.1 Basic Definitions and Notations

Let A ∈ Z
m×n be an integer matrix. We denote by Aij the ij-th element of

the matrix, by Ai∗ its i-th row, and by A∗j its j-th column. The set of integer
values from i to j, is denoted by i :j = {i, i + 1, . . . , j}. Additionally, for subsets
I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, the symbols AIJ and A[I, J ] denote the
sub-matrix of A, which is generated by all the rows with indices in I and all
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the columns with indices in J . If I or J are replaced by ∗, then all the rows
or columns are selected, respectively. Sometimes, we simply write AI instead of
AI∗ and AJ instead of A∗J , if this does not lead to confusion.

The maximum absolute value of entries in a matrix A is denoted by ‖A‖max =
maxi,j |Ai j |. The lp-norm of a vector x is denoted by ‖x‖p.

Definition 1. For a matrix A ∈ Z
m×n, by

Δk(A) = max{|det AIJ | : I ⊆ 1:m, J ⊆ 1:n, |I| = |J | = k},

we denote the maximum absolute value of determinants of all the k × k sub-
matrices of A. Clearly, Δ1(A) = ‖A‖max. Additionally, let Δ(A) = Δrank(A)(A).

1.2 Description of Results and Related Work

Let A ∈ Z
m×n
+ , b ∈ Z

m
+ , c ∈ Z

n
+ and u ∈ Z

n
+. The bounded m-dimensional

knapsack problem (shortly m-BKP) can be formulated as follows:

c�x → max
⎧
⎪⎨

⎪⎩

Ax ≤ b

0 ≤ x ≤ u

x ∈ Z
n .

(m-BKP)

It is well known that the m-BKP is NP -hard already for m = 1. However,
it is also well known that the 1-BKP admits an FPTAS. The historically first
FPTAS for the 1-BKP was given in the seminal work of O. Ibarra and C. Kim
[17]. The results of [17] were improved in many ways, for example in the works
[5,14,16,18,20–22,27,29,30,34]. But, it was shown in [25] (see [23, p. 252] for a
simplified proof) that the 2-BKP does not admit an FPTAS unless P = NP .
Due to [26], the 2-BKP does not admit an EPTAS unless W [1] = FPT . However,
the m-BKP still admits a PTAS. To the best of our knowledge, the state of the
art PTAS is given in [4]. The complexity bound proposed in [4] is O(n� m

ε �−m).
The perfect survey is given in the book [23].

Within the scope of the article, we are interested in studying m-BKP prob-
lems with a special restriction on sub-determinants of the constraints matrix
A. More precisely, we assume that all rank-order minors of A are bounded in
an absolute value by Δ. We will call this class of m-BKPs as Δ-modular m-
BKPs. The main result of the paper states that the Δ-modular m-BKP admits
an FPTAS, whose complexity bound depends on Δ linearly, for any fixed m.

Theorem 1. The Δ-modular m-BKP admits an FPTAS with the arithmetical
complexity bound

O(TLP · (1/ε)m+3 · (2m)2m+6 · Δ),

where TLP is the linear programming complexity bound.
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Proof of the theorem is given in Sect. 2.
Due to the seminal work of N. Megiddo [31], the linear program can be solved

by a linear-time algorithm if m is fixed.

Corollary 1. For fixed m the complexity bound of Theorem 1 can be restated as

O(n · (1/ε)m+3 · Δ).

We need to note that results of the papers [9,12,28] can be combined to
develop an exact polynomial-time algorithm for the considered Δ-modular m-
BKP problem, and even more, for any Δ-modular ILP problem in standard form
with a fixed number of constraints m. But, the resulting algorithm complexity
contains a non-linear dependence on Δ in contrast with the developed FPTAS.
The precise formulation will be given in the following Theorem 2 and Corollary
2. First, we need to make some definitions:

Definition 2. Let A ∈ Z
m×n, b ∈ Z

m, c ∈ Z
n, u ∈ Z

n
+, rank(A) = m and

Δ = Δ(A). The bounded Δ-modular ILP in standard form (shortly m-BILP)
can be formulated as follows:

c�x → max
⎧
⎪⎨

⎪⎩

Ax = b

0 ≤ x ≤ u

x ∈ Z
n .

(m-BILP)

The main difference between the problems m-BILP and m-BKP is that the
input of the problem m-BILP can contain negative numbers. The inequalities of
the problem m-BKP can be turned to equalities using slack variables.

Definition 3. Consider the problem m-BILP. Let z∗ be an optimal solution of
m-BILP and x∗ be an optimal vertex-solution of the LP relaxation of m-BILP.
The l1-proximity bound H of the problem m-BILP is defined by the formula

H = max
x∗ min

z∗ ‖x∗ − z∗‖1.

It is proven in [9] that

H ≤ m · (2m · Δ1 + 1)m, where Δ1 = Δ1(A) = ‖A‖max. (1)

It was noted in [28, formula (4)] that this proximity bound (1) of the paper
[9] can be restated to work with the parameter Δ(A) instead of Δ1(A). More
precisely, there exists an optimal solution z∗ of the m-BILP problem such that

H ≤ m · (2m + 1)m · Δ, where Δ = Δ(A).

Theorem 2. The m-BILP problem can be solved by an algorithm with the fol-
lowing arithmetical complexity:

n · O(H + m)m+1 · log2(H) · Δ + TLP .



82 D. V. Gribanov

The previous complexity bound can be slightly improved in terms of H:

n · O(log m)m2 · (H + m)m · log2(H) · Δ + TLP .

Additionally, for problems with non-negative A, we can remove the log2(H)
term in the complexity bound:

n · O(log m)m2 · (H + m)m · Δ + TLP .

The proof can be found in Sect. 3.

Remark 1. The algorithms described in the proof of Theorem 2 are using hash
tables with linear expected constructions time and constant worst-case lookup
time to store information dynamic tables. An example of a such hash table can
be found in the book [7]. So, strictly speaking, algorithms of Theorem 2 are
randomized.

Randomization can be removed by using any balanced search-tree, for exam-
ple, RB-tree [7]. It will lead to additional logarithmic term in the complexity
bound.

Applying the proximity bounds (3) and (1) to the previous Theorem 2, we
can obtain estimates that are independent of H. For example, we obtain the
following corollary:

Corollary 2. The problem m-BILP can be solved by an algorithm with the fol-
lowing arithmetical complexity bound:

n · O(log m)m2 · O(m)m2+m · Δm+1 · log2 Δ + TLP and

n · Δm+1 · log2 Δ, for m being fixed.

For problems with non-negative matrix A we can improve the complexity
bound by removing of log2 Δ term.

Remark 2. Taking m = 1 in the previous corollary we obtain the O(n · Δ2)
complexity bound for the classical bounded knapsack problem, where Δ is the
maximal absolute value of item weights. Our bound is better than the previous
state of the art bounds O(n2 · Δ2) and O(n · Δ2 · log2 Δ) due to [9].

Better complexity bound for searching of an exact solution can be achieved
for the unbounded version of the m-BILP problem. More precisely, for this case,
the paper [19] gives the complexity bound

O(
√

mΔ)2m + TLP .

We note that the original complexity bound from the work [19] is stated with
respect to the parameter Δ1(A) = ‖A‖∞ instead of Δ(A) (see the next Remark
3), but, due to Lemma 1 of [12], we can assume that Δ1(A) ≤ Δ(A).
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Remark 3. Another interesting parameter of the considered problems m-BKP
and m-BILP is Δ1(A) = ‖A‖max. Let us denote Δ1 = Δ1(A). The first exact
quasipolynomial-time algorithm for m-BILP was constructed in the seminal work
of C. H. Papadimitriou [32]. The result of [32] was recently improved in [9], where
it was shown that the m-BILP can be solved exactly by an algorithm with the
arithmetical complexity

n · O(m)(m+1)2 · Δ
m(m+1)
1 · log2(mΔ1) + TLP and

n · Δ
m(m+1)
1 · log2(Δ1), for m being fixed. (2)

Due to the results of [19], the unbounded version of the problem can be solved
by an algorithm with the arithmetical complexity

O(
√

mΔ1)2m + TLP . (3)

The results of our note can be easily restated to work with the Δ1 parameter.
Using the Hadamard’s inequality, the arithmetical complexity bound of Corollary
2 becomes

n · O(log m)m2 · O(m)m2+3/2m · Δm(m+1) · log2(Δ1) + TLP and

n · Δ
m(m+1)
1 · log2(Δ1), for m being fixed,

which is slightly better, than the bound (2) of [9]. For non-negative matrices A
the log2 Δ1 term can be removed.

Additionally, Corollary 2 gives currently best bound O(n·Δ2
1) for the classical

1-dimensional bounded knapsack problem, see Remark 2.
For our FPTAS we give here a better way, than to use the Hadamard’s

inequality. Definitely, for γ > 0 and M = {y = Ax : x ∈ R
n
+, ‖x‖1 ≤ γ} we

trivially have |M∩Z
m | ≤ (γΔ1)m. Applying the algorithm from Section 2 to this

analogue of Corollary 3, it gives an algorithm with the arithmetical complexity

O(TLP · (1/ε)m+3 · m2m+6 · (2Δ1)m) and

O(n · (1/ε)m+3 · Δm
1 ), for m being fixed.

For sufficiently large ε the last bounds give a better dependence on m and
Δ1, than bounds (2) from [9].

Remark 4 (Why Δ-modular ILPs could be interesting?). It is well known that
the Maximal Independent Set (shortly MAX-IS) problem on a simple graph
G = (V,E) can be formulated by the ILP

1� x → max
{

A(G)x ≤ 1
x ∈ {0, 1}|V |,

(MAX-IS)
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where A(G) ∈ {0, 1}|E|×|V | is the edge-vertex incidence matrix of G. Due to the
seminal work [13]

Δ(A(G)) = 2ν(G),

where ν(G) is the odd-cycle packing number of G. Hence, the existence of a
polynomial-time algorithm for Δ-modular ILPs will lead to the existence of a
polynomial-time algorithm for the MAX-IS problem for graphs with a fixed
ν(G) value. Recently, it was shown in [2] that 2-modular ILPs admit a strongly
polynomial-time algorithm, and consequently, the MAX-IS ∈ P for graphs with
one independent odd-cycle. But, existence of a polynomial-time algorithms even
for the 3-modular or 4-modular ILP problems is an interesting open question,
as well as existence of a polynomial-time algorithm for the MAX-IS problem on
graphs with ν(G) = 2. Finally, due to [1], if Δ(Ā) is fixed, where Ā =

(
1�

A(G)

)
is

the extended matrix of the ILP MAX-IS, then the problem can be solved by a
polynomial time algorithm. The shorter proof could be found in [10,11], as well
as analogue results for vertex and edge Maximal Dominating Set problems. For
recent progress on the MAX-IS problem with respect to the ν(G) parameter see
the papers [3,6,15].

Additionally, we note that, due to [3], there are no polynomial-time algo-
rithms for the MAX-IS problem on graphs with ν(G) = Ω(log n) unless the
ETH (the Exponential Time Hypothesis) is false. Consequently, with the same
assumption, there are no algorithms for the Δ-modular ILP problem with the
complexity bound poly(s) ·ΔO(1), where s is an input size. Despite the fact that
algorithms with complexities poly(s) · Δf(Δ) or sf(Δ) may still exist, it is inter-
esting to consider existence of algorithms with a polynomial dependence on Δ
in their complexities for some partial cases of the Δ-modular ILP problem. It is
exactly what we do in the paper while fixing the number of constraints in ILP
formulations of the problems m-BKP and m-BILP.

Due to the Hadamard’s inequality, the existence of an ILP algorithm, whose
complexity depends on Δ linearly, can give sufficiently better complexity bounds
in terms of Δ1, than the bounds of Remark 3.

Remark 5 (Some notes about lower bounds for fixed m.). Unfortunately, there
are not many results about lower complexity bounds for the problem m-BILP
with fixed m. But, we can try to adopt some bounds based on the Δ1 parameter
to our case. For example, the existence of an algorithm with the complexity
bound

2o(m) · 2o(log2 Δ) · poly(s)

will contradict to the ETH. It is a straightforward adaptation of [8, Theorem 3].
The Theorem 13 of [19] states that for any δ > 0 there is no algorithm with

the arithmetical complexity bound

f(m) · (n2−δ + Δ2m−δ
1 ),

unless there exists a truly sub-quadratic algorithm for the (min,+)-convolution.
Using Hadamard’s inequality, it adopts to

f(m) · (n2−δ + Δ2−δ/m).
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The best known bound in terms of m is given in [24, Corollary 2]. More
precisely, the existence of an algorithm with the complexity bound

2o(m log m) · Δ
f(m)
1 · poly(s)

will contradict to the ETH. But, we does not know how to adopt it for Δ-modular
case at the moment.

Unfortunately, all mentioned results are originally constructed for the version
of m-BILP with unbounded variables and it is the main reason, why their bounds
are probably weak with respect to the dependence on the Δ parameter. And it
would be very interesting to construct a lower bound of the form

f(m) · ΔΩ(m) · poly(s)

for the m-BILP problem. Additionally, at the moment we does not know any
FPTAS lower bounds for the m-BKP problem. These questions are good direc-
tions for future research.

2 Proof of the Theorem 1

2.1 Greedy Algorithm

The 1/(m + 1)-approximate algorithm for the m-BKP is presented in [4] (see
also [23, p. 252]) for the case u = 1. This algorithm can be easily modified to
work with a generic upper bounds vector u.

Algorithm 1. The greedy algorithm
Require: an instance of the (m-BKP) problem;
Ensure: return 1/(m + 1)-approximate solution of the (m-BKP);
1: compute an optimal solution xLP of the LP relaxation of the (m-BKP);
2: y := �xLP � — a rounded integer solution;
3: F := {i : xLP

i /∈ Z} — variables with fractional values;
4: return Cgr := max{c�y,maxi∈F {ci}};

Since the vector xLP can have at most m fractional coordinates and

c�y +
∑

i∈F

ci = c�
xLP � ≥ c�xLP ≥ Copt, (4)

we have Cgr ≥ 1
m+1 Copt.

2.2 Dynamic Programming by Costs

The dynamic programming by costs is one of the main tools in many FPTASes
for the 1-BKP. Unfortunately, it probably can not be generalized to work with
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m-BKPs for greater values of m. However, such generalizations can exist for
some partial cases such as the Δ-modular m-BKP.

Suppose that we want to solve the m-BKP, and it is additionally known
that ‖x‖1 ≤ γ, for any feasible solution x and some γ > 0. Then, to develop
a dynamic program it is natural to consider only integer points x that satisfy
to ‖x‖1 ≤ γ. The following simple lemma and corollary help to define such a
program.

Lemma 1. Let A ∈ Z
m×n and B ∈ Z

m×m be the non-degenerate sub-matrix of
A. Let additionally γ ∈ R>0, Δ = Δ(A), δ = |det B| and

M = {y = Ax : x ∈ R
n, ‖x‖1 ≤ γ},

then |M ∩ Z
m | ≤ 2m · 
1 + γ · Δ

δ
�m · Δ.

Points of M ∩ Z
m can be enumerated by an algorithm with the arithmetical

complexity bound:
O(m2 · 2m · D),

where D = Δ · (
γ · Δ

δ

)m
.

Proof. W.l.o.g. we can assume that first m columns of A form the sub-matrix
B. Consider a decomposition A = B

(
I U

)
, where

(
I U

)
is a block-matrix, I is

the m × m identity matrix and the matrix U is determined uniquely from this
equality. Clearly, Δ(

(
I U

)
) = Δ

δ , so Δk(U) ≤ Δ
δ for all k ∈ 1 :m. Consider the

set
N = {y = 
1 + γ · Δ

δ
�Bx : x ∈ (−1, 1)m}.

Let us show that M ⊆ N . Definitely, if y = Ax for ‖x‖1 ≤ γ, then y =
B

(
I U

)
x = Bt, for some t ∈ [−γ, γ]m · Δ

δ . Finally, 1
�1+γ· Δ

δ � t ∈ (−1, 1)m and
y ∈ N .

To estimate the value |N ∩ Z
m | we just note that N can be covered by

2m parallelepipeds of the form {y = Qx : x ∈ [0, 1)m}, where Q ∈ Z
m×m and

|det Q| = 
1 + γ · Δ
δ �m · Δ. It is well known that the number of integer points in

such parallelepipeds is equal to |det Q|, see for example [36] or [35, Section 16.4].
Hence, |M ∩ Z

m | ≤ |N ∩ Z
m | ≤ 2m · 
1 + γ · Δ

δ �m · Δ. Points inside of the
parallelipiped can be enumerated by an algorithm with arithmetical complexity

O(m · min{log(|det Q|),m} · |det Q|),

see for example [12]. Applying the last formula, we obtain the desired complexity
bound to enumerate all integer points inside N .

Corollary 3. Let A ∈ Z
m×n, γ ∈ R>0, Δ = Δ(A) and

M = {y = Ax : x ∈ R
n, ‖x‖1 ≤ γ},

then |M ∩ Z
m | ≤ 2m · 
1 + γ�m · Δ.
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Points of M ∩ Z
m can be enumerated by an algorithm with the arithmetical

complexity bound:
O(log m)m2 · Δ · γm.

Proof. W.l.o.g. we can assume that rank(A) = m. Let us choose B ∈ Z
m×m, such

that |det B| = Δ, then the desired |M ∩ Z
m |-bound follows from the previous

Lemma 1. Due to [37], we can compute a matrix B̂ ∈ Z
m×m such that Δ =

O(log m)m · δ, where δ = |det B̂|, by a polynomial time algorithm. Finally, we
take a complexity bound of the previous Lemma 1 with D = Δ ·γm ·O(log m)m2

.

We note that in the current section we need only first parts of these Lemma
1 and Corollary 3 that only estimate number of points nor enumerate them.

Assume that the goal function of the m-BKP is bounded by a constant C.
Then, for any c0 ∈ 1 : C and k ∈ 1 : n we denote by DP (k, c0) the set of all
possible points y ∈ Z

m
+ that satisfy to the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c�
1:kx = c0

y = A1:kx

A1:kx ≤ b

0 ≤ x ≤ u1:k

x ∈ Z
k .

In particular, the optimal value of the m-BKP can be computed by the
formula

c�xopt = max{c0 ∈ [1, C] ∩ Z : DP (n, c0) = ∅}.
The set DP (k, c0) can be recursively computed using the following algorithm:

Algorithm 2. An algorithm to compute DP (k, c0)
1: for all z ∈ [0, γ] ∩ [0, uk] ∩ Z do
2: for all y ∈ DP (k − 1, c0 − zck) do
3: if y + Akz ≤ b then
4: add y + Akz into DP (k, c0)
5: end if
6: end for
7: end for

By Corollary 3, we have |DP (k, c0)| ≤ 2m · 
1 + γ�m · Δ. Consequently, to
compute DP (k, c0) we need at most O(m · (2γ)m+1 · Δ) arithmetic operations.
The total complexity bound is given by the following trivial lemma.

Lemma 2. The sets DP (k, c0) for c0 ∈ 1 :C and k ∈ 1 :n can be computed by
an algorithm with the arithmetical complexity

O(n · C · m · (2γ)m+1 · Δ).



88 D. V. Gribanov

2.3 Putting Things Together

Our algorithm is based on the scheme proposed in the seminal work [17] of
O. Ibarra and C. Kim. Our choice of an algorithmic base is justified by the fact
that it is relatively easy to generalize the approach of [17] to the m-dimensional
case. On the other hand, more sophisticated schemes described in the papers
[21,22,27,30] give constant improvements in the exponent or improvements in
the memory usage only.

First of all, let us define two parameters α, β ∈ Q>0, whose purpose will
be explained later. Let Cgr be the value of the greedy algorithm applied to the
original Δ-modular m-BKP, xopt be its integer optimal point and Copt = c�xopt.
As it was proposed in [17], we split items into heavy and light: H = {i : ci >
α Cgr} and L = {i : ci ≤ α Cgr}.

It can be shown that ‖xopt
H ‖1 ≤ m+1

α . Definitely, if ‖xopt
H ‖1 > m+1

α , then
Copt = c�xopt ≥ c�

Hxopt
H > αCgr m+1

α = (m + 1)Cgr ≥ Copt.
Let s = β Cgr, we put w = � c

s�. Consider a new Δ-modular m-BKP that
consists only from heavy items of the original problem with the scaled costs w.

w�
Hx → max

⎧
⎪⎨

⎪⎩

AHx ≤ b

0 ≤ x ≤ uH

x ∈ Z
|H| .

(HProb)

It follows that ‖x‖1 ≤ m+1
α for any feasible solution of (HProb). Additionally,

we have w�
Hx ≤ 1

s c�
Hx ≤ m+1

s Cgr ≤ m+1
β , for any x being feasible solution of

(HProb). Hence, we can apply Lemma 2 to construct the sets DPH(k, c0) for
k ∈ 1 : n and c0 ∈ 1 : 
m+1

β �. Due to Lemma 2, the arithmetical complexity of
this computation is bounded by

O(n · m(m + 1)
β

· (2
m + 1

α
)m+1 · Δ). (5)

To proceed further, we need to define a new notation Pr(I, t). For a set of
indexes I ⊆ 1 : n and for a vector t ∈ Z

m
+ , we denote by Pr(I, t) the optimal

value of the sub-problem, induced by variables with indexes in I and by the
right hand side vector t. Or by other words, Pr(I, t) is the optimal value of the
problem

c�
I x → max

⎧
⎪⎨

⎪⎩

AIx ≤ t

0 ≤ x ≤ uI

x ∈ Z
|I| .

After DPH(n, c0) being computed we can construct resulting approximate
solution, which will be denoted as Capr, by the following algorithm.
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Algorithm 3. An FPTAS for (m-BKP)
1: for all c0 ∈ 1:�m+1

β
� do

2: for all y ∈ DPH(n, c0) do
3: compute an approximate solution q of the problem Pr(L, b − y)

c�
Lx → max

⎧
⎪⎨

⎪⎩

ALx ≤ b − y

0 ≤ x ≤ uL

x ∈ Z
|L|

using the greedy algorithm.
4: Capr := max{Capr, s c0 + q}.
5: end for
6: end for

Due to Corollary 3, the arithmetical complexity of the algorithm can be
estimated as

O(TLP · m

β
· (2

m + 1
α

)m · Δ). (6)

Clearly, xopt = xopt
H + xopt

L . We denote Copt
H = c�

Hxopt
H , Copt

L = c�
Lxopt

L and
c∗
0 = w�

Hxopt
H . The value of c∗

0 will arise in some evaluation of Line 1 of the
proposed algorithm. Or by other words, we will have c0 = c∗

0 in some evaluation
of Line 1. Let y∗ be the value of y ∈ DPH(n, c∗

0) such that s c∗
0 + Pr(L, b − y∗)

is maximized and q∗ be the approximate value of Pr(L, b − y∗), given by the
greedy algorithm in Line 3. Clearly, Capr ≥ s c∗

0 + q∗, so our goal is to chose
parameters α, β in such a way that the inequality s c∗

0 + q∗ ≥ (1 − ε)Copt will
be satisfied.

Firstly, we estimate the difference Copt
H −s c∗

0:

Copt
H −s c∗

0 ≤ (c�
H − sw�

H)xopt
H ≤ s {c�

H/s}xopt
H ≤

≤ s
m + 1

α
=

(m + 1)β Cgr

α
≤ (m + 1)β Copt

α

To estimate the difference Copt
L −q∗ we need to note that Pr(L, b − y∗) ≥

Pr(L, b − AHxopt
H ) = Copt

L . It follows from optimality of y∗ with respect to
the developed dynamic program. Next, since ci ≤ αCgr for i ∈ L, due to the
inequality (4), we have

q∗ ≥ Pr(L, b − y∗) − mαCgr ≥ Pr(L, b − y∗) − (m + 1)αCopt .

Finally, we have

Copt
L −q∗ ≤ Pr(L, b − y∗) − q∗ ≤ (m + 1)αCopt .
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Putting all inequalities together, we have

Copt −Capr ≤ (Copt
H −s c∗

0) + (Copt
L −q∗) ≤

≤ (m + 1)(α +
β

α
)Copt

and
Capr ≥ (1 − (m + 1)(α +

β

α
))Copt . (7)

The total arithmetical complexity can be estimated as

O(TLP · 1
β

· (2m)m+3 ·
(

1
α

)m+1

· Δ). (8)

Finally, after the substitution β = α2 and α = ε
2(m+1) to (7) and (8), we

have
Capr ≥ (1 − ε)Copt

and a complexity bound

O(TLP · (1/ε)m+3 · (2m)2m+6 · Δ)

that finishes the proof.

3 Proof of Theorem 2

Let x∗ be an optimal vertex solution of the LP relaxation of the Δ-modular
m-BILP problem. After a standard change of variables x → x+�x∗� the original
m-BILP transforms to an equivalent ILP with different upper bounds on vari-
ables and a different right-hand side vector b. We can think that lower bounds
on variables does not change because a new vertex optimal solution x∗ − �x∗�
of the obtained problem has non-zero coordinates.

Any optimal vertex solution of the LP problem has at most m non-zero
coordinates, so we have the following bound on the l1-norm of an optimal ILP
solution z∗ − �x∗� of the new problem:

‖z∗ − �x∗�‖1 ≤ ‖x∗ − z∗‖1 + ‖x∗ − �x∗�‖1 ≤ H + m.

3.1 First Complexity Bound

Consider a weighted digraph G = (V,E), whose vertices are triplets (k, h, l), for
k ∈ 1 :n, l ∈ 0 : (H + m) and h ∈ {Ax : ‖x‖1 ≤ l} ∩ Z

m. Using Corollary 3, we
bound the number of vertices |V | by O(n · 2m · (H + m)m+1 · Δ). By definition,
any vertex (k, h, l) has an in-degree equal to min{uk, l} + 1. More precisely, for
any j ∈ 0 : min{uk, l} there is an arc from (k − 1, h − Akj, l − j) to (k, h, l),
this arc is weighted by ckj. Note that vertex (k − 1, h − Akj, l − j) exists only if
j ≤ l. Additionally, we add to G a starting vertex s, which is connected with all
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vertices of the first level (1, ∗, ∗), weights of this arcs correspond to solutions of
1-dimensional sub-problems. Clearly, the number of arcs can be estimated by

|E| = O(|V | · (H + m)) = O(n · 2m · (H + m)m+2 · Δ).

The m-BILP problem is equivalent to searching of the longest path starting
from the vertex s and ending at the vertex (n, b,H + m) in G. Since the graph
G is acyclic, the longest path problem can be solved by an algorithm with the
complexity bound O(|V | + |E|) = O(n · 2m · (H + m)m+2 · Δ).

We note that during the longest path problem solving, the graph G must be
evaluated on the fly. In other words, the vertices and arcs of G are not known
in advance, and we build them online. To make constant-time access to vertices
we can use a hash-table data structure with constant-time insert and search
operations (see Remark 1).

Finally, using the binarization trick, described in the work [9], we can sig-
nificantly decrease the number of arcs in G. The idea of the trick is that
any integer j ∈ [0,min{uk, l}] can be uniquely represented using at most
O(log2(min{uk, l})) = O(log2(H + m)) bits. More precisely, for any interval
[0,min{uk, l}] there exist at most O(log2(H + m)) integers s(k, i) such that any
integer j ∈ [0,min{uk, l}] can be uniquely represented as

j =
∑

i

s(k, i)xi, where xi ∈ {0, 1}, and

∑

i

s(k, i)xi ∈ [0,min{uk, l}], for any xi ∈ {0, 1}.

Using this idea, we replace the part of the graph G connecting vertices of the
levels (k−1, ∗, ∗) and (k, ∗, ∗) by an auxiliary graph, whose vertices correspond to
the triplets (i, h, l), where i ∈ {0, 1, . . . , O(log2(H +m))}, and any triplet (i, h, l)
has in-degree two. More precisely, the vertex (i, h, l) is connected with exactly
two vertices: (i− 1, h, l) and (i− 1, h− s(k, i)Ak, l − s(k, i)). The resulting graph
will have at most O(log2(H + m)|V |) vertices and arcs, where |V | corresponds
to the original graph. Total arithmetical complexity can be estimated as

O(n · 2O(m) · (H + m)m+1 · log2 H · Δ).

3.2 Second Complexity Bound

Consider a weighted digraph G = (V,E), whose vertices are pairs (k, h), for
k ∈ 1 : n and h ∈ {Ax : ‖x‖1 ≤ H + m} ∩ Z

m. The edges of G have the same
structure as in the graph from the previous subsection. More precisely, for any
j ∈ 0 :uk we put an arc from (k − 1, h − Akj) to (k, h), if such vertices exist in
V , the arc is weighted by ckj.

The main difference here is that we compute all vertices of G directly, using
Corollary 3. Arithmetical complexity of this step is bounded by O(log m)m2 ·(H+
m)m·Δ. Due to Corollary 3, |V | = O(n·2m·(H+m)m·Δ) and |E| = O(n·2m·(H+
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m)m+1 ·Δ), since an in-degree of any vertex in G is bounded by H+m+1. Again,
using the binarization trick, described in the previous subsection, we reduce the
total number of arcs and vertices to O(n · 2O(m) · (H + m)m · log(H) · Δ). The
total complexity can be roughly estimated as

n · O(log m)m2 · (H + m)m · log2(H) · Δ.

3.3 Third Complexity Bound

Let us show how to remove the log2(H) term in the previous complexity bound
using non-negativity of elements of A. The main idea is taken from the work [33]
(see also [23, Section 7.2.2]).

Consider the graph G, constructed in the previous subsection, without using
of the binarization trick. Let us fix a some vertex-level (k, ∗) of G for some
k ∈ 1:n, and consider an auxiliary graph Fk, whose vertices are exactly elements
h ∈ {Ax : ‖x‖1 ≤ H +m}∩Z

m. For two vertices h1, h2 of F , we put an arc from
h1 to h2 if h2−h1 = Ak. Since the matrix A has non-negative elements and since
”in” and ”out” degrees of any vertex in Fk are at most one, the graph Fk is a
disjoint union of paths. This decomposition can be computed by an algorithm
with complexity O(|V (Fk)|) = O(2m · (H + m)m · Δ). Let (h1, h2, . . . , hs) be
some path of the decomposition, and longest(k, h) be the value of the longest
path in G starting at s and ending at (k, h). Clearly, for any i ∈ 1 :s, the value
of longest(k, hi) can be computed by the formula

longest(k, hi) = max
j∈min{uk,i−1}

longest(k − 1, hi−j) + ckj. (9)

Consider a queue Q with operations: Enque(Q,x) that puts an element x
into the tail of Q, Decue(Q) that removes an element x from the head of Q,
GetMax(Q) that returns maximum of elements of Q. It is known fact that
queue can be implemented such that all given operations will have amortized
complexity O(1). Now, we compute longest(k, hi), for hi ∈ (h1, h2, . . . , hs) using
the following algorithm:

Algorithm 4. Compute longest path with respect to (h1, h2, . . . , hs)
1: Create an empty queue Q;
2: t := min{uk, s};
3: for j := 0 to t do
4: Enque(Q, longest(k − 1, hs−j) + ckj);
5: end for
6: for i := s down to 1 do
7: longest(k, hi) := GetMax(Q) − ck(s − i);
8: Decue(Q);
9: if i ≥ t + 1 then
10: Enque(Q, longest(k − 1, hi−t−1) + ck(s − i + 1));
11: end if
12: end for
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Correctness of the algorithm follows from the formula (9). The algorithm’s
complexity is O(s).

Let us estimate the total arithmetical complexity of the whole procedure. It
consists from the following parts:

1. Enumerating of points in the set M = {Ax : ‖x‖1 ≤ H + m} ∩ Z
m. Due to

Corollary 3, the complexity of this part is O(log m)m2 · (H + m)m · Δ;
2. Constructing the graphs Fk for each k ∈ 1 : n. The number of edges and

vertices in Fk can be estimated as O(|M |). Hence, due to Corollary 3, the
complexity of this part can be estimated as O(n·|M |) = O(n·2m·(H+m)m·Δ).

3. For each Fk, compute a path decomposition of Fk. For each path in the
decomposition, apply an Algorithm 4. The complexity of this part is clearly
the same as in the previous step.

Therefore, the total complexity bound is roughly

n · O(log m)m2 · (H + m)m · Δ.

Conclusion

The paper considers the m-dimensional bounded knapsack problem (m-BKP)
and the bounded ILP in the standard form (m-BILP). For the problem m-BKP
it gives an FPTAS with the arithmetical complexity bound

O(n · (1/ε)m+3 · Δ),

where n is the number of variables, m is the number of constraints (we assume
here that m is fixed) and Δ = Δ(A) is the maximal absolute value of rank-order
minors of A. For details see Theorem 1 and Corollary 1.

For the problem m-BILP it gives an exact algorithm with the complexity
bound

O(n · Δm+1 · log2 Δ).

For the problems with non-negative elements of the matrix A the last bound can
be slightly improved:

O(n · Δm+1).

Taking m = 1 it gives
O(n · Δ2)

arithmetical complexity bound for the classical bounded knapsack problem. For
details see Theorem 2 and Corollary 2.
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R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 400–414. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8 30

37. Marco, Di S., Friedrich, E., Faenza, Y., Moldenhauer, C.: On largest volume sim-
plices and sub-determinants. In: SODA 2015: Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 315–323 (2015).
https://doi.org/10.5555/2722129.2722152

https://arxiv.org/abs/1803.04744
https://doi.org/10.4230/LIPIcs.ICALP.2019.76
https://doi.org/10.1023/A:1009813105532
https://doi.org/10.1023/A:1009813105532
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.4230/LIPIcs.STACS.2019.44
https://doi.org/10.1016/B978-0-12-468662-5.50020-3
https://doi.org/10.1016/B978-0-12-468662-5.50020-3
https://doi.org/10.1016/j.ipl.2010.05.031
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1007/978-3-030-53262-8_10
https://doi.org/10.1007/978-3-030-53262-8_10
https://arxiv.org/abs/1902.00919
https://doi.org/10.1016/0377-2217(81)90175-2
https://doi.org/10.1016/0377-2217(81)90175-2
https://doi.org/10.1016/0167-6377(93)90041-E
https://doi.org/10.1016/0167-6377(93)90041-E
https://doi.org/10.1145/322276.322287
https://doi.org/10.1007/s006070050042
https://doi.org/10.1007/3-540-48777-8_30
https://doi.org/10.5555/2722129.2722152


A Column Generation Based Heuristic
for a Temporal Bin Packing Problem

Alexey Ratushnyi1(B) and Yury Kochetov2

1 Novosibirsk State University, Novosibirsk, Russia
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract. We introduce a new temporal bin packing problem that orig-
inated from cloud computing. We have a finite set of items. For each
item, we know an arriving time, processing time, and two weights (CPU,
RAM). Some items we call large. Each bin (server) has two capacities
and is divided into two identical parts (left and right). A regular item
can be placed in one of them. A large item is divided into two identical
parts and placed in both parts of a bin. Our goal is to pack all items
into the minimum number of bins. For this NP-hard problem, we design
a heuristic that is based on column generation to get lower and upper
bounds. Preliminary computational experiments for real test instances
indicate a small gap between the bounds. The average relative error is at
most 0.88% for one week planning horizon and about 50000 items. The
average running time is 21 s for a personal computer.

Keywords: Knapsack problem · Column generation · Virtual
machine · Bin packing

1 Introduction

We consider a new temporal problem of allocating resources for virtual machines
with different configurations and time requirements on identical servers. This
problem is strongly NP-hard as the generalized case of d-dimensional bin pack-
ing problem (d ≥ 1) [8], where d is the number of different types of virtual
machine resources. As a rule, only one of all resources is selected as the most
demanded and the others have proportional values [1]. However, we use data
sets for computational experiments where the combinations of virtual machine
(VM) resource requirements are quite diverse, and in different cases, different
resources show strong demand. All possible information about VMs is assumed
to be known in advance (the creation and deletion times, the required amount
of RAM and CPU cores, and the size of VM). Thus, we deal with the problem of
specifying the location of VMs on servers for performing computations in such
a way as to minimize the maximum number of servers involved for the entire
planning horizon. We guess that the model can be useful to analyze possible
economic benefits, as well as to identify general patterns to help in the detailed
configuration of the online algorithms.
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The relevance of the temporal bin packing problem gives rise to quite a lot
of different variations and studies. In [10], authors suggest an approach based on
placement templates to build a fast online algorithm. In [3], several heuristics
are proposed including one based on column generation method as well as a way
to reduce the number of time points in this problem. In addition to the number
of servers involved, a large number of resources are consumed when switching
the servers. Thus, the study [1] considers a variation of the temporal bin packing
problem with two objectives. In [2], the authors provide a temporal model for
this problem and several rules to break the symmetries. A fairly thorough clas-
sification of the virtual machines placement problems and solution techniques is
offered in [9].

In this paper we present the lower and upper bounds for new temporal bin
packing problem with Non-Uniform Memory Access (NUMA) architectures of
the servers [7]. We propose an algorithm based on column generation method
[4], which can provide suitable results in a short amount of time. First of all, a
static problem is solved at a time point with the maximum computational load
on the cloud using mathematical modeling and optimization solver [5]. Later on,
we apply a procedure that propagates the resulting solution back and forth in
time horizon using the First Fit heuristic [6] and design a feasible solution for all
time points. Both stages are executed independently of each other, which allows
us to carefully configure them or improve if necessary.

The rest of the paper is organized as follows. Section 2 gives the details and
notations of the problem (server architecture and components, types of virtual
machines, etc.). Section 3 presents models for the two-dimensional packing prob-
lem and the bounded knapsack problem that are used in obtaining the lower and
upper bounds. It also describes the algorithm for column generation. The algo-
rithm developed for constructing a solution for a temporal problem is given in
Sect. 4. Section 5 contains a description of the data sets generated using real data
and the results of computational experiments. In Sect. 6, we briefly summarize
the paper.

2 Model Description

We consider a set S of identical servers which are located on a data center. Each
server has the amount of RAM C1 and the number of CPU cores C2. All servers
have NUMA architecture (Fig. 1). It means that they consist of two NUMA-
nodes with the same resources. Each NUMA-node has C1/2 of RAM and C2/2
of CPU cores. In this problem, we do not take into account any restrictions on the
relationship between servers and virtual machines. We assume that each server
can serve any number of VMs, regardless of their configurations and duration as
long as it has enough resources.

Each VM m ∈ M is characterized by a corresponding type i ∈ L, which
defines the required amount of RAM dm1 and CPU cores dm2, for example, 1
core and 1 GB of RAM (small VM) or 32 cores and 64 GB of RAM (large
VM). The size of every virtual machine is determined by the number of required



98 A. Ratushnyi and Y. Kochetov

Fig. 1. NUMA architecture

cores. We assume that the set M of VMs consists of two disjoint subsets: large
VMs M l and small VMs Ms. A small VM must be fully placed on one of a
server’s NUMA-nodes. A large VM is placed on both NUMA-nodes taking half
of the VM’s requirements from each of the nodes. After placement on the server,
the virtual machine cannot be moved. Thus, the VM m takes up the allocated
resources at all time points t from the interval αm ≤ t < ωm. The creation αm

and deletion ωm times are selected by a user, while the type of a virtual machine
is selected from a set of possible options L which is defined by the cloud provider.

Let us introduce the following notations: N is the set of NUMA-nodes (N =
{1, 2}), R is the set of resource types (R = {1, 2}), τ is the set of time points,
M l

t and Ms
t are the sets of large and small VMs that are used at time point t.

The decision variables are as follows: xmsn,m ∈ Ms, s ∈ S, n ∈ N equals 1
if the small virtual machine m is placed on the node n of the server s and 0
otherwise; yms,m ∈ M l, s ∈ S equals 1 if the large virtual machine m is placed
on the server s and 0 otherwise; zst, s ∈ S, t ∈ τ equals 1 if the server s is active
at the time point t and 0 otherwise; F is the maximum number of simultaneously
active servers.

The optimization model takes the following form:

min
F,(xmsn),(yms),(zst)

F (1)

s.t. F ≥
∑

s∈S

zst, t ∈ τ , (2)

∑

s∈S

∑

n∈N

xmsn = 1, m ∈ Ms, (3)

∑

s∈S

yms = 1, m ∈ M l, (4)
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∑

n∈N

xmsn ≤ zst, m ∈ Ms, αm ≤ t ≤ ωm, s ∈ S, (5)

yms ≤ zst, m ∈ M l, αm ≤ t ≤ ωm, s ∈ S, (6)
∑

m∈Ms
t

dmrxmsn +
1
2

∑

m∈M l
t

dmryms ≤ Cr

2
zst, t ∈ τ , s ∈ S, n ∈ N, r ∈ R, (7)

xmsn, yms, zst ∈ {0, 1}. (8)

Inequalities (2) define the number of active servers. Constraints (3)–(4) ensure
that all VMs are placed on the servers. According to inequalities (5)–(6), the
server is active if it serves at least one VM. Constraints (7) limit resource usage
on each server.

Despite the small number of NUMA-nodes on each server and the types of
resources, the finding optimal solution for the model is time consuming for real
world applications. For instances with 2000 VMs, the Gurobi solver (version 9.1
with standard parameters) takes about 5 min. However, the optimal solutions
for instances with 50000 VMs (see Sect. 5) could not be obtained in one hour.
Therefore, alternative ways to get the lower and upper bounds are proposed
below.

3 Lower Bounds

An important part of constructing the algorithm is the way to find lower bounds
for evaluating the quality of solutions. To this end, we will use the column
generation approach. We apply it to static problem at two time moments: the
moment with the highest RAM load t1h and the moment with the highest CPU
cores load t2h. Since at every time point the current virtual machines with the
same type i do not differ from each other, we consider VM types instead of VMs
in all the following notations. To describe the algorithm, we need to introduce
additional mathematical models.

The first model describes the packing of VMs on the servers at the given time
point. Let J denotes the set of all possible packing patterns for a single server and
J ′ ⊂ J is a subset of this set. We will use this subset to get feasible solutions.
Value aij is the number of virtual machines that are configured according to
type i ∈ L in the pattern j ∈ J ′. Thus, the packing pattern j can be associated
with the following vector: (a1j , ..., a|L|j). The value ni represents the number
of requests to virtual machines with the type i. Variables xj are equal to the
numbers of servers packed according to the pattern j ∈ J ′.

The well-known static model for the subset J ′ takes the following form:

min
∑

j∈J ′
xj (9)

s.t.
∑

j∈J ′
aijxj ≥ ni, i ∈ L, (10)

xj ≥ 0, j ∈ J ′. (11)
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The goal function (9) represents the number of active servers. Inequality (10)
ensures that all VMs will be packed. Since our goal is to obtain the lower bound,
we do not require variables xj to be integers.

The dual problem is the following:

max
∑

i∈L

niλi (12)

s.t.
∑

i∈L

aijλi ≤ 1, j ∈ J ′, (13)

λi ≥ 0, i ∈ L. (14)

Let λ∗
i be the optimal values of dual variables to the problem (12)–(14) and x∗

j

be the optimal values to the problem (9)–(11). If the following inequality
∑

i∈L

aijλ
∗
i ≤ 1 (15)

holds for all possible patterns j ∈ J , then

xj =

{
x∗
j , j ∈ J ′

0, j ∈ J\J ′

is the optimal solution to the problem (9)–(11) for the entire set of patterns J
and H =

∑
j∈J ′ x∗

j is the desired lower bound.
To check the inequality (15), we consider a new knapsack problem with

NUMA-nodes. Let new integer variables yi define the number VMs with type
i ∈ L in the server and new integer variables zni define the number of small VMs
of type i ∈ L on the NUMA-node n ∈ N . Ls and Ll are the sets of VM types
that correspond to the sets of virtual machines Ms and M l.

Now the knapsack problem with NUMA-nodes takes the following form:

max α =
∑

i∈L

λ∗
i yi (16)

s.t. yi ≤ ni, i ∈ L, (17)
∑

n∈N

zni = yi, i ∈ Ls, (18)

∑

i∈Ls

dirz
n
i +

1
2

∑

i∈Ll

diryi ≤ Cr

2
, r ∈ R,n ∈ N, (19)

yi ≥ 0, integer, i ∈ L, (20)
zni ≥ 0, integer, i ∈ Ls, n ∈ N. (21)

Equalities (18) ensure that each small VM on the server is located on one of
the NUMA-nodes and nowhere else. Inequalities (19) check the resources (RAM
and CPU cores) on each NUMA-node of the server taking into account the large
VMs.
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If α∗ ≤ 1 then the inequality (15) holds for all patterns j ∈ J . Otherwise, we
have a new pattern (y1, ..., y|L|) and include it into the set J ′ [8]. The pseudocode
of the algorithm for finding the lower bound has the following form:

Algorithm 1: The general scheme for obtaining the lower bound
Input: A subset of columns J ′ ⊂ J , A set of virtual machines V M at

moment t;
Output: A lower bound LB, A supplemented set J ′;

1 Initialization: α∗ ← ∞;
2 while α∗ > 1.0 do
3 λ∗

i ← solveDualProblem(J ′, V M); // Solve the problem
(12)-(14) and save a vector {λ1, ..., λ|L|}

4 y∗
i , α∗ ← solveKnapsackModel(λ∗

j , V M); // Solve the problem

(16)-(21) to get a value of α∗ and a column {y∗
1 , ..., y

∗
|L|}

5 J ′.append({y∗
1 , ..., y

∗
|L|});

6 end
7 LB ← �∑i∈L niλ

∗
i 	 ; // Compute the lower bound

8 return: LB, J ′;

Note that in line 4, we do not need to look for optimal solution for the model
(16)–(21). It is sufficient to find a feasible solution such that α > 1+ε. We include
the inequality:

∑
i∈L λ∗

i yi > 1 + ε into the model and also specify an additional
parameter for Gurobi to terminate computations when a feasible solution is
obtained. Thus, we significantly reduce the running time of the Algorithm 1.

To initialize the set J ′, we can apply any heuristic for the bin packing problem
[6]. Nevertheless, we propose an algorithm based on the model (16)–(21).

Algorithm 2: Generation of an initial set J ′

Input: A set of VMs at time moment t;
Output: The set of initial patterns J ′;

1 Initialization: λ∗
i ← di1, J ′ ← empty, ni; // The weights are equal

to the number of cores of each VM type, the values of ni can
be calculated using a V M set

2 while ∃ ni �= 0 do
3 y∗

i ← solveKnapsackModel(λ∗
j , V M); // Solve the problem

(16)-(21)
4 J ′.append({y∗

1 , ..., y
∗
|L|}); // Add a new pattern

5 ni ← ni − yi, ∀i ∈ L; // Remove the packed VMs from the set
V M and change the corresponding values ni

6 end
7 return: The initial set J ′ of patterns;

We compute the lower bounds at time moments t1h and t2h and choose the
largest value: LB = max{H(t1h),H(t2h)}. The values of the weights λ∗

i do not
affect the value of the lower bound, but play a role in the construction of the
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solution with integer variables that will be used later. To solve the models we
use the Gurobi solver [5] version 9.1 with default parameters.

4 Upper Bounds

To obtain the lower bound, we create the set of patterns J ′ by Algorithm 2 and
enlarge it with new columns by Algorithm 1. Now we use the final set of patterns
J ′ in the model (22)–(24) which is an integer version of the model (9)–(11).

min
∑

j∈J ′
xj (22)

∑

j∈J ′
aijxj ≥ ni, i ∈ L, (23)

xj ≥ 0, integer, j ∈ J ′. (24)

Our goal is to get a feasible solution to this static problem at each time points
t1h or t2h. We select point T as one of them (see Fig. 2) and divide the set M
into three disjoint sets M1,M2 and M3: M1 = {m ∈ M |αm ≤ T < ωm},
M2 = {m ∈ M |αm > T}, M3 = {m ∈ M |T ≥ ωm}.

Fig. 2. The total load of servers

For the set M1 we solve the static problem by Gurobi solver. For the sets
M2 and M3, we apply the greedy FF heuristic (Algorithm 3). As a result, we
get two upper bounds for time points t1h or t2h and select the best of them.
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Algorithm 3: First Fit based heuristic
Input: A set of virtual machines V M ;
Output: A solution for a temporal bin packing problem;

1 M1,M2,M3 = splitVirtualMachines(V M);
2 J ′ ← Algorithm2(M1);
3 J ′ ← Algorithm1(J ′, M1); // Get a supplemented set of columns
4 servers ← solveStaticProblem(J ′, M1); // Solve (22)-(24)
5 sort(M2); // Sort the VMs in non-decreasing order of times αm

6 for every m ∈ M2 do
7 isP laced ← false;
8 for every server s ∈ servers do
9 for every m′ ∈ s do

10 if ωm′ ≤ αm then
11 remove m′ from the server s;
12 end
13 end
14 isP laced ← Algorithm4(m);
15 if isP laced = true then
16 break;
17 end
18 end
19 if isP laced �= true then
20 create newServer;
21 place VM m on the first NUMA-node of newServer;
22 isP laced ← true;
23 servers.append(newServer);
24 end
25 end

Algorithm 3 is described for the set M2. For the set M3, the algorithm has
minor changes due to the inverted direction of time. First, in line 5, the VMs
should be sorted in non-increasing order of times ωm. Second, in lines 9–13,
we remove the virtual machines for which the inequality αm′ ≥ ωm is true.
The placement of VMs on the server with NUMA architecture is described by
Algorithm 4.

Note that points t1h and t2h may coincide as in Fig. 2. In such a case we
can select several local maximum. This approach will significantly increase
the running time (about as many times as the number of points) and will
give a fairly small improvement in the results, judging by our experiments.
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Algorithm 4: Place a virtual machine on a server
Input: A server s and a virtual machine m;
Output: The answer is it possible to put this VM on this server;

1 isP laced ← false;
2 if both NUMA-nodes of the server s have sufficient resources for VM m
then

3 select NUMA-node which minimizes the value of
max{AvailableRAM/C1, AvailableCores/C2}; // Select the least
loaded NUMA-node

4 place VM m on the selected NUMA-node;
5 isP laced ← true;
6 else if first NUMA-node of the server s has sufficient resources for VM m
then

7 place VM m on the first NUMA-node of the server s;
8 isP laced ← true;
9 else if second NUMA-node of the server s has sufficient resources for VM

m then
10 place VM m on the second NUMA-node of the server s;
11 isP laced ← true;
12 return: isP laced;

5 Computational Experiments

To conduct experiments, we have sampled virtual machines from real data for
several data sets, so that each of them satisfies certain rules. Below we present
several tables with the results in total for 64 instances. Each of them includes
the following columns: SimpleLB = max{∑m∈M1

dm1/C1;
∑

m∈M1
dm2/C2}),

ColGenLB (lower bounds obtained by Algorithm 1), CGLB Time (the running
time for two points t1h and t2h), M1Solution (the number of active servers at point
T ), ColGen (the results of Algorithm 3), ColGen0 (the results of Algorithm
3 with T = 0), Colgen Time (the running time of Algorithm 3 in seconds),
Gap = (ColGen−ColGenLB)/ColGen∗100%). The algorithms are implemented
in C++17. All tests are performed on PC with AMD Ryzen 5 3500U, RAM 16
Gb. In the data sets for Tables 1, 2, 3 and 4, we have 5e+4 virtual machines and
14 different VM types.

Table 1 corresponds to instances with a large number of long-lived VMs, i.e.
about 73% of all virtual machines last for almost the entire selected period.
Therefore, the final solution strongly depends on the solution of the static prob-
lem at point T for the set M1. The average running time of the algorithm is
30.5 s, the average deviation is 0.347% and the maximum deviation does not
exceed 1%.
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Table 1. Many VMs with long-time requirements

N SimpleLB ColGenLB CGLB

Time,

seconds

M1Solution ColGen 0,

T=0

ColGen ColGgen

Time,

seconds

Gap, %

1 820 820 8 820 872 825 22 0.6

2 847 847 8 848 896 849 32 0.2

3 871 871 8 871 917 876 26 0.57

4 898 898 8 899 927 901 30 0.33

5 919 919 9 919 944 926 28 0.75

6 984 984 9 984 1018 986 36 0.2

7 1047 1047 10 1047 1082 1049 28 0.19

8 1105 1105 9 1106 1173 1112 26 0.62

9 1101 1101 9 1101 1149 1105 34 0.36

10 1227 1227 11 1227 1449 1227 34 0

11 1249 1249 10 1249 1385 1249 40 0

Table 2 shows the results for the data with the ratio of CPU cores require-
ments to RAM requirements close to 1 (

∑
m∈M dm1/

∑
m∈M dm2 ≈ 1). In this

way, the effects observed in Fig. 2 can be avoided. For half of the instances, the
gap is 0%, although in other cases it is quite high and even reaches 2.71%. The
average running time is 23.6 s. In three cases (2,8,9), ColGenLB shows a better
lower bound than SimpleLB.

Table 2. Balanced RAM and CPU cores

N SimpleLB ColGenLB CGLB

Time,

seconds

M1Solution ColGen 0,

T=0

ColGen ColGgen

Time,

seconds

Gap, %

1 747 747 7 747 842 748 26 0.13

2 660 664 7 665 780 669 22 0.74

3 727 727 8 727 859 727 22 0

4 691 691 8 691 813 696 22 0.72

5 878 878 9 878 1092 878 22 0

6 828 828 8 828 1034 828 36 0

7 823 823 7 823 1053 831 20 0.96

8 751 752 7 752 954 752 18 0

9 713 718 8 719 903 738 16 2.71

10 884 884 10 884 1121 884 22 0

11 1178 1178 10 1178 1382 1178 34 0

For the data set in Table 3, virtual machines were selected from real data in
such a way that the ratio of large VMs to all was quite high - about 20%. The
average running time is 17.8 s, the average gap is 0.492%, although the maximum
is almost four times larger - 1.8%.

The data for Table 4 has the opposite feature—only about 1% of large VMs.
The average gap is 0.63%, and the average running time is 20 s. For these
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Table 3. Many large VMs

N SimpleLB ColGenLB CGLB

Time,

seconds

M1Solution ColGen 0,

T=0

ColGen ColGgen

Time,

seconds

Gap, %

1 676 676 7 677 903 677 20 0.15

2 689 689 6 689 933 691 14 0.2

3 720 720 6 720 986 727 14 0.29

4 695 695 6 695 954 696 14 0.14

5 638 638 8 638 869 638 18 0

6 648 648 15 648 864 660 42 1.8

7 621 621 8 621 804 629 12 1.27

8 643 643 7 644 841 650 18 1.07

9 747 747 9 747 994 747 14 0

10 745 745 7 745 971 745 12 0

Table 4. Few large VMs

N SimpleLB ColGenLB CGLB

Time,

seconds

M1Solution ColGen 0,

T=0

ColGen ColGgen

Time,

seconds

Gap, %

1 770 770 6 770 802 772 18 0.26

2 777 777 5 777 811 793 16 2.01

3 833 833 6 833 872 837 18 0.48

4 756 756 6 757 786 757 16 0.13

5 758 758 6 758 781 761 24 0.39

6 826 826 6 826 851 826 22 0

7 731 731 7 732 753 738 16 0.95

8 848 848 7 848 881 854 34 0.7

9 848 848 6 848 885 848 22 0

10 782 782 6 782 817 793 14 1.38

instances, the ColGen0 algorithm showed much better results compared to the
instances from Table 3. Noted that for both data sets 3 and 4, the lower bound
SimpleLB and ColGenLB coincide.
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Table 5. Large virtual machines

N SimpleLB ColGenLB CGLB

Time,

seconds

M1Solution ColGen 0,

T=0

ColGen ColGgen

Time,

seconds

Gap, %

1 533 562 2 562 662 562 2 0

2 541 571 2 571 682 572 2 0.17

3 549 579 3 579 686 579 3 0

4 550 578 2 578 678 578 2 0

5 762 773 4 774 1024 773 4 0

6 734 750 4 750 985 750 4 0

7 784 796 4 796 1056 796 4 0

8 796 808 5 808 1069 808 5 0

9 775 797 4 797 1038 797 4 0

10 819 836 4 836 1108 836 4 0

11 659 705 4 706 869 706 4 0.14

12 616 646 4 646 766 646 4 0

For Table 5, virtual machines of only large sizes were selected from real data.
The load on memory and cores also turned out to be quite balanced. The number
of virtual machines varies between 7 and 22 thousand for different instances. The
number of VM types is only 5. The running time and the gap of the solutions are
very small. The SimpleLB shows significantly worse results in all cases compared
to ColGenLB. In this case, the NUMA architecture does not affect the solution,
since there is no choice of NUMA-node for large machines.

For Table 6, virtual machines were randomly selected from real data without
taking into account any properties. Thus, these instances are quite similar to the
real applications. The number of virtual machines and their types are the same
as for Tables 1, 2, 3 and 4. Here we can see a very significant improvement in
the ColGenLB compared to the SimpleLB. Also, the average gap has become
slightly higher than in previous cases and equals 2.55%.

The comparison of the columns ColGenLB and M1Solution shows that the
proposed method for solving the static problem at time moment T reaches the
lower bound in most cases. What justifies its rather long running time and allows
us to build solutions for the entire temporal problem with small gap.

The ColGen0 algorithm in all cases works worse than the ColGen algorithm,
although the running time of ColGen0 is significantly lower due to the lack of
need to solve the model (15)–(17) for a large set of virtual machines. A graphical
comparison of the algorithms is shown in Fig. 3 and Fig. 4. It demonstrates the
presence of oscillation when using the algorithm ColGen0, which leads to a large
loss of energy resources when switching on and off servers, and as a result, large
costs.
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Table 6. Random sampling from real data

N SimpleLB ColGenLB CGLB

Time,

seconds

M1Solution ColGen 0,

T=0

ColGen ColGgen

Time,

seconds

Gap, %

1 796 1103 5 1104 1137 1122 10 1.69

2 1253 1739 7 1739 1783 1752 14 0.74

3 1016 1218 4 1219 1231 1219 9 0.08

4 873 1076 3 1077 1094 1092 7 1.46

5 818 948 3 948 1006 998 6 5.27

6 313 314 5 317 358 317 16 0.94

7 1102 1507 5 1507 1595 1569 12 3.95

8 594 797 3 797 892 845 13 5.68

9 167 167 4 167 184 175 11 4.57

10 335 335 6 335 353 339 19 1.17

Fig. 3. Solution for instance 9 in Table 2 with ColGen algorithm

Fig. 4. Solution for instance 9 in Table 2 with ColGen0 algorithm
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The presence of a significantly larger number of virtual machines, relative
to different types, is reflected in the presence of VMs in the data that have the
same requirements and follow each other. Thus, we can reduce the number of
requests by combining a sequence of such requests into one. However, despite the
good results in Table 1 for virtual machines with long-time requirements, this
procedure does not provide an advantage for other data sets. A modification
of the algorithm that leaves new requests in the same places as the previous
requests with the same configurations shows an improvement of no more than 1
server, although in some cases, the opposite situation occurs, and 1 more server
is required for the entire problem.

Despite the good results, considering only two points in time to get the
lower bound has its drawbacks. One way to generate data in such a way that
ColGenLB will show results that are far from optimal is to try to use the
dynamic component of the problem. For example, to select virtual machines so
that the optimal solutions of a static problems at close time points (t1 and t2)
will be very different from each other in such a way that it will be impossible to
move from the optimal solution at time t1 to the optimal solution at time t2. In
this case, the dynamic solution will require significantly more servers at one of
this two points than the static solution. Thus, the results ColGenLB will not
be very accurate.

6 Conclusions

In this paper, we have considered new bin packing problem for virtual machines
and servers with NUMA architecture. The heuristic based on column generation
and the First Fit algorithm was proposed and tested. Computational experiments
were carried out on data sets with different features, and strong results were
demonstrated. We also showed the advantage of the considered lower bounds over
the primitive lower bounds and confirmed that in most cases it is accurate. The
method can also be generalized to other variations of the bin packing problem.

For further research, it may be interesting to modify this algorithm to reduce
the number of servers at points where the load reaches a local maximum, see
Fig. 3. Such a modification can be a local search for initial solutions at point T
or replacing the First Fit algorithm with a more suitable one.
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Abstract. In this paper we describe a new evolutionary strategy. It is
based on the common (1+1) random mutation scheme which was aug-
mented with metaheuristic technique named merging variables principle,
that was proposed by us in previous works. We show that the new vari-
ant of (1+1)-EA has asymptotically lower worst case estimation than
the original (1+1)-EA. In the experimental part we conduct comparison
of the proposed strategy with several known variants of (1+1)-EA and
demonstrate its practical applicability for a number of hard instances of
MaxSAT problem.

Keywords: Boolean satisfiability problem · MaxSAT problem ·
Evolutionary algorithms · Merging variables principle

1 Introduction

(1+1)-Evolutionary Algorithm ((1+1)-EA) is a fairly popular subject for
research in both the theoretical and practical sense. It is impossible to cite every
paper that considered various theoretical properties of this algorithm. Let us
only mention several key works: [1,3–7,12,19,22,24], etc. The random mutation
scheme that lies in the basis of the classical (1+1)-EA is very attractive as a
basic operation for many variants of evolutionary and genetic algorithms. In the
present paper we propose several new modifications of the random mutation
that follow the (1+1)-principle. For the proposed modifications of (1+1)-EA we
provide the theoretical estimations of their effectiveness for arbitrary pseudo-
Boolean black-box functions.

Let us give a brief outline of our paper. In the next section we cover the
background required to evaluate the main results. Based on the ideas from [6]
we describe the simple (1+1) Switching Evolutionary Algorithm, that alternates
between standard (1+1)-EA and completely random search with some probabil-
ities. In the third section we consider the variant of the (1+1) random mutation

c© Springer Nature Switzerland AG 2021
P. Pardalos et al. (Eds.): MOTOR 2021, LNCS 12755, pp. 111–124, 2021.
https://doi.org/10.1007/978-3-030-77876-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77876-7_8&domain=pdf
http://orcid.org/0000-0001-6172-4801
http://orcid.org/0000-0001-5209-1803
http://orcid.org/0000-0003-0361-2582
https://doi.org/10.1007/978-3-030-77876-7_8


112 A. Semenov et al.

operator, which employs the so-called merging variables procedure ((1+1) Merg-
ing Variables Evolutionary Algorithm, (1+1)-MVEA), and determine some of its
theoretical properties. In the computational part of our work we evaluate the
effectiveness of all considered algorithms on a special class of instances of a well
known MaxSAT problem. The main feature of the considered class of instances
consists in that the problem of finding a Boolean vector, which maximizes the
fitness function corresponding to the original problem, can be carried out over
the set with significantly smaller cardinality comparing the number of variables
in an original CNF. Concretely, as computational tests we used MaxSAT encod-
ings of finding preimages of cryptographic hash functions SHA-1 and SHA-256
with additional conditions for hash value.

2 Preliminaries

Consider the problem of finding a point of the Boolean hypercube {0, 1}n at
which an arbitrary pseudo-Boolean function [2]

f : {0, 1}n → R (1)

achieves its maximum. A single iteration of the original (1+1)-EA in application
to the problem of finding the maximum of a function (1) looks as follows ([7]):

1. Choose an initial point α ∈ {0, 1}n

2. Repeat the following random mutation step: perform n independent Bernoulli
trials with success probability p = 1

n (this probability is referred to as muta-
tion rate). If a trial number i, i ∈ {1, . . . , n} is successful then change bit αi

in word α to the supplementary bit. Otherwise, leave αi as is. If as the result
of a mutation there was obtained α′ ∈ {0, 1}n : f(α′) ≥ f(α), then α ← α′,
else α ← α.

In theory, (1+1)-EA is effective in application to the optimization of some
‘model’ functions, such as ONEMAX, linear functions [12], [7], but extremely
inefficient in the worst case scenario (for any pseudo-Boolean function (1)).
According to [7], the corresponding worst-case estimation for (1+1)-EA is defined
as the expected value of the number of random mutations until achieving the
global extremum of (1), i.e. nn, which is even worse than the similar estimation
for the algorithm, that randomly chooses the vectors from {0, 1}n in accordance
with a uniform distribution (which can be viewed as the (1+1)-EA variant with
mutation rate p = 1/2).

Despite its simplicity and theoretical ineffectiveness, (1+1)-EA is sometimes
surprisingly good in practice. For some hard pseudo-Boolean optimization prob-
lems, (1+1)-EA shows comparable or better results than that demonstrated by
local-search-based algorithms or genetic algorithms [18,25]. As it was mentioned
in [22], the practical effectiveness of (1+1)-EA can be partially justified by the
fact that on average the algorithm acts just like Hill Climbing that works with
Hamming neighborhoods of radius 1 in {0, 1}n. Indeed, it is quite clear that the
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expected value of the number of bits flipped during the mutation is 1. Thus,
(1+1)-EA is capable of adapting towards the landscape of function (1) graphic.
On the other hand, unlike local search methods (1+1)-EA does not suffer once
it stumbles upon local extrema.

In the present paper we consider only black box functions of the kind (1),
i.e. we assume that the value of this function in an arbitrary point α ∈ {0, 1}n

is given by some oracle. Let us consider the question how to improve the effec-
tiveness of the basic (1+1)-EA for any pseudo-Boolean black box function (1).
First we would like to clarify some terminological details. Hereinafter, by (1+1)-
mutation operator we mean the basic mutation scheme: when there is a sin-
gle predecessor for which its offspring is formed by flipping several bits. By
(1+1)-algorithm we mean an algorithm in the course of which 1 predecessor
transforms into 1 offspring, but the process can be more complex than that in
(1+1)-mutation operator. In particular, the algorithm can use (1+1)-mutation
operator at some stages.

We are aware of a number of attempts to improve the theoretical effective-
ness of the original (1+1)-EA. From our point of view, one of the most interest-
ing approaches was proposed in [6], where the so-called (1+1)-Fast Evolutionary
Algorithm (or (1+1)-FEAβ) was proposed. The key feature of this algorithm lies
in the use of a variable mutation rate. In particular, the (1+1)-FEAβ uses a ran-
dom variable denoted by λ, that takes value from the set Sλ = {1, 2, . . . , n

2 } w.r.t.
the so-called ‘power-law distribution Dβ

n/2’ [6]. A single mutation in the context

of (1+1)-FEAβ looks as follows: first, in accordance with the distribution Dβ
n/2

(for the fixed β) the value of λ ∈ {1, . . . , n
2 } is generated, and then the random

mutation with mutation rate p = λ
n is applied to the current vector α ∈ {0, 1}n.

Among the many properties of (1+1)-FEAβ studied in [6], we are interested
in the fact that its worst case estimation for any black box function (1) is signifi-
cantly smaller than that for the original (1+1)-EA. A simple way for constructing
such an estimation looks as follows. It is quite easy to see that for the mutation
rate p ∈ { 1

n , . . . , 1
2} the smallest probability of the transition α → α∗ takes place

in the situation when each of the n bits in α must be flipped, i.e. in the situation
when dH(α, α∗) = n (hereinafter by dH we denote the Hamming distance). In
(1+1)-FEAβ the probability of transition α → α∗ is the probability of a complex
event which occurs together with one of the events from B1, . . . , Bn/2. An arbi-
trary Bλ, λ ∈ {1, . . . , n/2} is defined as choosing a value of λ in accordance with
the distribution Dβ

n/2. Thus, Pr{α → α∗} =
∑n/2

λ=1 Pr{α → α∗|Bλ} · Pr{Bλ}
from which we have, that

Pr{α → α∗} > Pr{α → α∗ | Bn/2} · Pr{Bn/2} (2)

Now let us assume that dH(α, α∗) = n (i.e. the worst case scenario). Then

Pr{α → α∗|Bn/2} = 1
2n . Apart from that, Pr{Bn/2} =

(
Cβ

n/2

)−1

· 2β

nβ , where

Cβ
n/2 is a normalization constant [6], which is asymptotically equal to ζ(β),

where ζ(·) is the Riemann zeta function. Therefore, from (2) the probability of
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transition α → α∗ is at least c
nβ ·2n for some constant c. Thus, we have (w.r.t

geometric distribution) the following upper bound for the complexity of (1+1)-
FEAβ :

E(1+1)−FEAβ
= O(nβ · 2n) (3)

As β is a constant, then (3) is of course not comparable to nn.
The bound (3) ‘is not free’: in the case of (1+1)-FEAβ the expected value of

the number of flipped bits after a single random mutation (let us denote it as
E(dH(α, α′))) is greater than 1. For β < 3 this value increases with the increase
of n. For β = 3 from [6] we have E[dH(α, α′)] ≈ 1.3685.

Based on the ideas from [6] one can construct different variants of the (1+1)-
EA algorithm, in which the switch between the different values of the mutation
rate happens in accordance to significantly simpler distributions compared to
Dβ

n/2. Let us describe the simple case, to which we will refer as to (1+1)-SEAδ

((1+1)-Switching Evolutionary Algorithm with parameter δ). Thus, assume, that
similar to (1+1)-FEA we first choose the mutation rate pδ, that, with probability
(1− δ

n ), δ ∈ (0, 1] is set to 1
n and with probability δ

n is set to 1
2 . Then we perform

the random mutation w.r.t common (1+1) scheme using the obtained value of
mutation rate. Similar to (2) we have

Pr{α → α∗} =
δ

n
· 1
2n

+
(

1 − 1
n

)

· 1
nn

>
δ

n · 2n

Thus, the analogue of (3) for (1+1)-SEAδ looks as follows

E(1+1)−SEAδ
= O(n · 2n) (4)

Now let us estimate E[dH(α, α′)] for (1+1)-SEAδ. Using the conditional
expected values we have:

E[dH(α, α′)] = E
[
dH(α, α′) | pδ = 1

2

] · Pr
{
pδ = 1

2

}
+ E

[
dH(α, α′) | pδ = 1

n

]

× Pr
{
pδ = 1

n

}
= n

2 · δ
n + 1 · (

1 − δ
n

)
= 1 + δ · (

1
2 − 1

n

)

(5)
Thus, for example, when δ = 0.5, from (5) we have that E[dH(α, α′)] = 1.25 −
o(1), i.e. in the context of the above, (1+1)-SEA0.5 is on average behaves more
similarly to Hill Climbing compared to (1+1)-FEA3.

Both (1+1)-FEAβ and (1+1)-SEAδ can be referred to as switching algo-
rithms. The analysis of the phenomena of significantly lower complexity upper
bounds for these algorithms compared to the original (1+1)-EA leads to the con-
clusion that such estimations directly follow from the ability of the algorithm to
switch into the mode where it acts as a random search. But, let us suppose that
while the algorithm worked as the original (1+1)-EA, it was able to approach
the global extremum by exploiting the landscape of function (1). In this case
switching to the random search mode can negate all the accumulated gains.

Taking into account all said above, we believe that it to be relevant to propose
the variant of (1+1)-EA with the following properties:
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1. Constant mutation rate.
2. The expected value of flipped bits after mutation equal to 1.
3. Worst case estimation asymptotically less than nn.

We describe such an algorithm in the following section.

3 (1+1)-MVEA and Its Theoretical Properties

For the first time, (1+1)-MVEA was proposed in [20]. In this section we comment
on a number of known properties of (1+1)-MVEA, and also establish some new
ones.

Consider the problem of finding a global maximum of an arbitrary function
(1). Associate with an arbitrary vector α ∈ {0, 1}n the set of Boolean variables
X = {x1, . . . , xn} and consider an arbitrary subjective mapping

μ : X → Y (6)

where Y = {y1, . . . , yr}: 1 ≤ r < n. Let us refer to any μ of this kind as to
merging mapping. For an arbitrary yj ∈ Y , j = 1, . . . , r denote by Xj the set of
preimages of yj under the mapping (6). Let us refer to such set as to the j-th
basket and let lj = |Xj |. For a fixed merging mapping μ a single iteration of
(1+1)-Merging Variables Evolutionary Algorithm ((1+1)-MVEA) is defined as
follows.

1. Choose an initial point α ∈ {0, 1}n and assume that the coordinates of α are
the values of variables from X (w.r.t. some fixed order).

2. Define random mutation in the following manner: for each j ∈ {1, . . . , r}
perform a Bernoulli trial with success probability 1

r . If the trial is successful,
then consider the basket Xj , |Xj | = lj to be chosen. Let Xj be an arbi-
trary chosen basket, xj

1, . . . , x
j
lj

be the variables that were put in Xj and

αj =
(
αj
1, . . . , α

j
lj

)
be the assignment of these variables in α. Let us apply

the standard random mutation with rate 1
lj

to vector αj . Perform similar
operation for each chosen basket. Let α′ be the result of application of the
mutation to α. If f(α′) ≥ f(α) then α ← α′, else α ← α.

Below we present the basic properties of (1+1)-MVEA.

Proposition 1. Let α′ be the result of random mutation of α in the context of
(1+1)-MVEA. Then E[dH(α, α′)] = 1.

Proof. Fix an arbitrary merging mapping (6) and consider the following random
variables: ζj , j ∈ {1, . . . , r}: ζj ∈ {0, 1} with distribution

{
1 − 1

r , 1
r

}
; ξj is the

number of bits in vector
(
αj
1, . . . , α

j
lj

)
, which were flipped by standard random

mutation with rate 1
lj

. It is easy to see that dH(α, α′) =
∑r

j=1 ζj ·ξj . The variables
ζj and ξj are independent, therefore:

E[dH(α, α′)] =
r∑

j=1

E[ζj ] · E[ξj ] =
1
r

·
r∑

j=1

1 = 1
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The following theorem determines the upper bound for the complexity of (1+1)-
MVEA (in form of the estimation of the expected value of the number of itera-
tions of the algorithm required to transition into global extremum).

Theorem 1 ([20]). Let us describe any fixed μ : X → Y , |X| = n, |Y | = r:
1 ≤ r < n for which the following holds: lj = |Xj | ≥ 2 for all j ∈ {1, . . . , r}, and
l = max{l1, . . . , lr}. Then:

Eμ
(1+1)−MV EA ≤ rr · ln (7)

By Eμ
(1+1)−MV EA in (7) we denote the expected value of the number of iterations

of the algorithm (w.r.t. fixed μ) before transitioning into a global extremum of
function (1). It is possible to fill the baskets almost uniformly: the maximum
number of variables in a basket exceeds their minimum number by at most
1. The corresponding mapping μ is called uniform merging mapping [20]. The
following corollary holds.

Corollary 1 ([20]). Let μ be an arbitrary fixed uniform merging mapping and
lj ≥ 2 for all j ∈ {1, . . . , r}. Then there exists a function ε(n) : 1 < ε(n) ≤ n
that the following estimation holds:

Eμ
(1+1)−MV EA ≤ n

n
(

1
ε(n)− logn ε(n)

ε(n) +logn(ε(n)+1)
)

(8)

In fact, ε(n) = n/r, and for the uniform merging mapping we have �n
r 	 ≤

lj ≤ 
n
r � for all j ∈ {1, . . . , r}. It is always possible to pick such r that the

estimation (8) will be asymptotically better than nn. Therefore, the following
question arises: how beneficial (from the point of view of decreasing the upper
bound for Eμ

(1+1)−MV EA) can be such a choice of r? The following theorem gives
the answer.

Theorem 2. For each d ∈ R+, d > 1 consider a family of uniform merging
mappings for which r = 
n d−1

d �, n ∈ N and assume that lj ≥ 2 for all j ∈
{1, . . . , r}. Then for any d > 1 there exists such n(d) that for all n : n ≥ n(d)
the following estimation holds:

Eμ
(1+1)−MV EA ≤ nn( 1

d−1+o(1)) (9)

Proof. The estimation (9) can be formed by analyzing the expression from the
right part of (8). So, assume that the conditions of the theorem are satisfied and
(8) holds. Let r =

⌈
n

d−1
d

⌉
and ε(n) = n

r . It is clear that

n
⌈
n

d−1
d

⌉ ≤ n
1
d (10)

Taking (10) into account we have that logn(ε(n)+1) ≤ logn

(
n

1
d + 1

)
. It is easy

to see, that for any d > 1 there must exist such n(d) that for any n > n(d) it
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will hold that logn

(
n

1
d + 1

)
< 1

d−1 . Now consider the value 1−logn ε(n)
ε(n) . Due to

the properties of the function 
·� and (10), we have:

1 − logn ε(n)
ε(n)

≤

⎛

⎝1 − logn

⎛

⎝ n⌈
n

d−1
d

⌉

⎞

⎠

⎞

⎠ ·
(
n

d−1
d + 1

)

n

As d > 1 we can conclude that the value in the right part of the latter inequality
tends to 0 with the increase of n. Thus,

1 − logn ε(n)
ε(n)

= o(1)

From the above and formula (8) we can conclude that (9) holds.

The next step is outlining the algorithm in which the MVEA technique is
combined with switching to the random search mode in the same manner as it
is done in (1+1)-SEA. In particular, let μ : X → Y be an arbitrary merging
mapping and n, r be the parameters of μ. As it follows from the definition of
(1+1)-MVEA, in this algorithm there are two types of random mutation: the
first one (let us refer to it as a mutation of higher level) corresponds to choosing
the baskets in which we perform the mutation of lower level. In the algorithm we
consider below, we believe it to be rational to use the standard (1+1) mutation
on the lower level, but on the higher level to employ the scheme with switching
mutation rate similar to the way it is done in (1+1)-SEA. Let us refer to the
corresponding algorithm as (1+1)-SMVEAδ.

Assume that a merging mapping μ : X → Y , |X| = n, |Y | = r, is defined,
and it induces the separation of X into baskets Xj , j ∈ {1, . . . , r}.

1. Choose an initial point α ∈ {0, 1}n and suppose that the coordinates of α are
the values of variables from X (w.r.t. some fixed order).

2. For an arbitrary fixed δ ∈ (0, 1] with probability
(
1 − δ

r

)
choose pδ = 1

r , and
with probability δ

r set pδ = 1
2 .

3. for each j ∈ {1, . . . , r} perform Bernoulli trial with success probability pδ. If
the trial is successful, then consider the basket Xj , |Xj | = lj to be chosen. Let
Xj be an arbitrary chosen basket, xj

1, . . . , x
j
lj

be the variables that were put in

Xj and αj =
(
αj
1, . . . , α

j
lj

)
to be the assignment of these variables in α. Apply

the standard random mutation with rate 1
lj

to vector αj . Perform the same
operation with each chosen basket. Let α′ be the result of the application of
the mutation to α. If f(α′) ≥ f(α) then α ← α′, otherwise α ← α.

Let us now state some of the theoretical properties of (1+1)-SMVEAδ.

Theorem 3. Let us describe any fixed μ : X → Y , |X| = n, |Y | = r: 1 ≤
r < n for which the following holds: lj = |Xj | ≥ 2 for all j ∈ {1, . . . , r}, and
l = max{l1, . . . , lr} then:
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1. Eμ
(1+1)−SMV EAδ

= O(r · 2r · ln)
2. E[dH(α, α′)] = 1 + δ · (

1
2 − 1

r

)

Proof. To determine the validity of the first fact let us modify the proof of Theo-
rem 2 from [20]. By analyzing this proof we can see that for the considered algo-
rithm the situation when dH(α, α∗) = n yields the smallest probability of tran-
sition α → α∗. In this case every basket must be chosen and the values of all
variables in each basket must be inverted. If the mutation rate of pδ = 1

2 is chosen
(remind, that the probability of this is δ

r then the probability with which all bas-
kets become chosen is 1

2r . As the probability of flipping all bits in a basket number
j is l

−lj
j , it means that the probability of transition α → α∗ for the considered case

isn’t less than l−
∑r

j=1 lj = l−n. Taking into account the fact that

Pr{α → α∗} = Pr
{

α → α∗ | pδ =
1
r

}

·
(

1 − δ

r

)

+ Pr
{

α → α∗ | pδ =
1
2

}

· δ

r

we have that
Pr{α → α∗} ≥ δ

r · 2r · ln

from which we can conclude that the estimation for Eμ
(1+1)−SMV EAδ

from the
formulation of the theorem is correct. Now let us construct a similar estima-
tion for the expected value of dH(α, α′). Let us use conditional expected values
(similar to (5)):

E[dH(α, α′)] = E

[

dH(α, α′) | pδ =
1
r

]

·
(

1 − δ

r

)

+ E

[

dH(α, α′)] | pδ =
1
2

]

· δ

r

Note that the expected value of the number of flipped bits in each chosen basket
is 1. Then use the scheme from the proof of Proposition 1. Then

E

[

dH(α, α′) | pδ =
1
r

]

= 1, E

[

dH(α, α′)] | pδ =
1
2

]

=
r

2

Therefore,

E[dH(α, α′)] =
(

1 − δ

r

)

+
r

2
· δ

r
= 1 + δ ·

(
1
2

− 1
r

)

Thus, Theorem 3 is proven.

4 On One Special Class of MaxSAT Problem

In this section we consider one special subclass of the well known MaxSAT
problem. This problem consists in maximization of a function of the kind (1)
fC : {0, 1}n → {1, . . . , m}, the value of which is equal to the number of satisfied
clauses in Conjunctive Normal Form (CNF) C over the set of variables X, |X| =
n; it is assumed that the total number of clauses in C is m [10]. The MaxSAT
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problem is NP-hard, thus one can effectively reduce to it the combinatorial
problems from various classes. In some cases such problems have a number of
additional features, and taking them into account often allows one to significantly
increase the effectiveness of solving for the corresponding MaxSAT instance. In
our case these features were studied in paper [17]. In particular, we will consider
a CNF that encodes the problem of finding the preimages of a discrete function
of the kind g : {0, 1}p → {0, 1}q defined by some algorithm Ag. Based on this
algorithm Ag the so-called template CNF Cg is constructed first [21]. Then,
once a fixed γ ∈ Range(g) is substituted into Cg, the obtained CNF is denoted
as Cg(γ). The goal is to find the assignment of variables from X that satisfies
Cg(γ). If such a satisfying assignment is found, then it is possible to effectively
extract from it such an α ∈ {0, 1}p, that g(α) = γ.

If the CNF Cg was constructed in accordance with the rules described in [21],
then the problem of finding α can be considered in the form of the problem of
maximizing a function

φ : {0, 1}p → {1, . . . , m} (11)

where m is the number of clauses in CNF Cg(γ).
For this purpose we exploit the fact that the set of variables Xin : |Xin| = p

in Cg(γ), that encode the inputs of function g is a Strong Unit Propagation
Backdoor Set (SUPBS) [23] for Cg(γ). The details describing this fact can be
found in [17]. That said, for an arbitrary assignment α ∈ {0, 1}p we can use the
simple Unit Propagation rule to effectively (in linear time) derive the assignments
of all the other variables from Cg(γ). Denote this assignment as λα. The value
of φ on the input α is determined as the number of clauses in Cg(γ) that are
satisfied over the vector λα. In [17] it was shown that function φ gets the value
of m (i.e. achieves its maximum) only on such an α that g(α) = γ. Therefore,
we can view {0, 1}p as a search space for maximizing φ on which we can use any
pseudo-Boolean optimization algorithms.

In the computational experiments that we show in the next section, we used
the benchmarks encoding the problems of inversion of cryptographic functions
from SHA family. It should be noted that cryptanalysis of cryptographic hash
functions using SAT is a fairly popular research topic [8,9,14,15,21], etc. In our
case we considered the problems of finding a 512-bit message, for which the first
k bits of the hash value (produced via a corresponding hash function) are zeroes.
These problems pose some interest in the context of cryptocurrency mining [13].
They were reduced to SAT using the Transalg system [16].

5 Computational Experiments

In our computational experiments we considered the MaxSAT instances, encod-
ing the problems of finding preimages of the SHA-1 and SHA-256 hash functions
for which the hash values were required to have at least k first bits equal to 0. We
considered k ∈ {16, 18, 20, 22, 24}. In order to study these problems, the following
algorithms were applied: (1+1)-EA, (1+1)-FEA3, (1+1)-SEA0.5, (1+1)-MVEA
and (1+1)-SMVEA0.5.
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The computational experiments were launched on the computational cluster
[11] on the nodes, equipped with 2 Intel Xeon E5-2695 v4 “Broadwell” CPUs
(18 cores per CPU).

An interesting fact is that on the considered class of instances all the algo-
rithms stagnated quite fast, by getting into the points, where the value of func-
tion (11) differs from its maximum value by just several clauses. In order to
traverse a larger part of the search space, all tested algorithms were augmented
with a special procedure for exiting such points. In particular, this procedure
acts as an extension for any of the listed algorithms.

The resulting algorithm, to which we further refer as Ã was implemented as
a multithreaded application for a computing cluster. In each launch each version
of the algorithm used 36 threads of a single cluster node.

We would like to note here, that the theoretical properties of multi-threaded
(1+1)-algorithms differ from that of single-threaded, however, showing it is not
a goal of the present paper. In fact, we can define q-thread (1+1)-mutation
operator as a simultaneous independent application of the standard (1+1)-
mutation operator to a considered word. The probability of success of such a
multi-threaded mutation is then defined as the probability that the transition
α → α∗ occurs in at least one thread. It is easy to see that the lower bound
on the probability of success is at least 1 − ∏q

i=1 (1 − pi), where pi is the lower
bound on the probability of transition α → α∗ for a single-threaded case. The
latter expression in case of a standard (1+1)-EA yields the probability of success
at least 1 − e− q

nn . The same procedure can be applied to evaluate the success
probabilities for the remaining algorithms.

Let us give now an informal description of Ã; by A we mean any of the 5
variants of (1+1)-EA mentioned before. We assume that Ã uses computational
threads T1, . . . , Tr. All threads start from the initial point α0 (for example, zero
vector from {0, 1}n), f(α0) is the current Best Known Value (BKV). The control
thread sends the current point to all threads. For an arbitrary Tj , j ∈ {1, . . . , r}
let α be the current point. Assume that ν = α and view ν as a working point.
Initialize the number of mutations with 0. For an arbitrary working point ν
mutate ν in accordance with algorithm A. Denote the result of mutation as ν′.
Check the following conditions:

1. If f(ν′) > f(α) then consider ν′ to be the new current point α ← ν′, ν ← α.
2. If f(ν′) ≤ f(α) and dH(ν′, α) ≤ R (R is a fixed constant) then ν ← ν′.
3. If f(ν′) ≤ f(α) and dH(ν′, α) > R then ν ← α (return to the current point).

After each mutation we increase the corresponding counter by 1. Once the
value of the counter exceeds some threshold Q, the thread Tj sends the current
BKV to the control thread. The control thread chooses among all the obtained
values of BKV from different threads the best one and sends the corresponding
point from {0, 1}n to all the threads as the new current point. If the new value
of BKV did not improve the previous BKV then this situation is viewed as
stagnation. In the case of the algorithms that use merging variables, after several
stagnations they construct a new merging mapping.
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Algorithm 1: Multi-threaded algorithm based on the (1+1)-mutation scheme

Input: Starting point α0, Hamming distance R, number of mutations Q
1 α ← α0

2 while f(α) < fmax do
3 T1, . . . , Tr ← α
4 for Ti ∈ {T1, . . . , Tr} do
5 ν ← α
6 for t ∈ {1, . . . , Q} do
7 ν′ ← ApplyMutationAlgorithm(ν)
8 if Distance(ν, ν′) = 0 then
9 continue

10 if f(ν′) > f(α) then
11 α ← ν′

12 ν ← ν′

13 continue

14 if Distance(α, ν′) ≤ R then
15 ν ← ν′

16 else
17 ν ← α

/* Collect the records from all threads and choose the best. */

18 α′ ← GetCurrentRecordPoint(T1, . . . , Tr)
/* If record updated, then update current point. */

19 if f(α′) > f(α) then
20 α ← α′

21 stagnations ← 0

22 else
/* Stagnation, remain in the current point */

23 stagnations ← stagnations+ 1

24 if stagnations = S then
25 α ← MakeRemerging(α)
26 stagnations ← 0

For the (1+1)-MVEA algorithm we considered 4 versions with the basket
sizes of 2, 4, 8, 32 (the merge size parameter (ms)). Thus, we tested 8 variants of
(1+1)-EA.

In the experiments, for each hash function (SHA-1, SHA-256) and the value
of the number k of zeroed first bits in the hash value (k = 16, 18, 20, 22, 24) and
for each tested algorithm we performed 10 independent launches. The results
are shown below on Figs. 1 and 2. For each function we compare all algorithms
across all launches. On the plots, the horizontal axis represents the number of
solved instances, while the vertical axis shows the time spent. In all cases the
runtime of the algorithm was limited by 1800 s.

From the results of experiments it is possible to conclude that none of the
considered algorithms dramatically outperforms the others. It is quite interesting
that the basic (1+1)-EA showed comparable performance to that of the switch-
ing algorithms ((1+1)-FEA3, (1+1)-SEA0.5, (1+1)-SMVEA0.5) despite having
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Fig. 1. The results of experiments for SHA-1

Fig. 2. The results of experiments for SHA-256

significantly larger worst case estimation. At least on the considered class of test
problems.

6 Conclusion

In this paper we described a new variant of the (1+1) random mutation strategy
that is based on the technique of merging variables proposed in [20]. We deter-
mined several theoretical properties of the proposed algorithm and performed
computational experiments in which we compare new and existing variants of
(1+1)-EA in application to solving special variants of the MaxSAT problem. In
particular, we considered the SAT instances encoding the problems of finding
preimages of cryptographic hash functions SHA-1 and SHA-256. The proposed
algorithms were compared with “classic” (1+1)-EA [12] and (1+1)-FEA3 [6]. In
the computational experiments all algorithms showed comparable performance
on this class of test instances.
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Abstract. This paper considers computationally intensive multi-
objective optimization problems which require computing multiple
Pareto-optimal decisions. It is also assumed that efficiency criteria may
be multiextremal, and the cost of calculating function values may be
quite high. The proposed approach is based on the reduction of multi-
objective optimization problems to one-dimensional global optimization
problems that can be solved using efficient information-statistical algo-
rithms of global search. One key innovation of the developed approach
consists in the possibility of solving several global optimization prob-
lems simultaneously, which allows multiple Pareto-optimal decisions to
be obtained. Besides, such approach provides for reuse of the computed
search information, which considerably reduces computational effort for
solving multi-objective optimization problems. Computational experi-
ments confirm the potential of the proposed approach.

Keywords: Multi-objective optimization · Multiple global
optimization · Dimensionality reduction · Optimization method ·
Search information · Computational complexity

1 Introduction

Choosing the optimal decisions (decision making) in situations with many dif-
ferent alternatives is a problem that occurs in almost every domain of human
activity. In many cases, decision making problems can be viewed as optimization
problems of various kinds such as convex programming, discrete optimization,
nonlinear programming, etc. In more complex situations, the objective func-
tions that determine the effectiveness of decisions can be multiextremal, and
decision making will require solving global optimization problems. In the most
general case, however, the effectiveness of decisions may be determined by several
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objective criteria, which makes it necessary to solve multi-objective optimization
(MOO) problems. Thus, MOO problems are the most common decision making
statements that one has to solve in many scientific and technical applications.
A large number of approaches and methods have been developed to solve such
problems and they have been used to solve many decision making problems in
various fields of practical applications – see e.g. [1–9].

One of the approaches most commonly used in the search for efficient deci-
sions is scalarization of the vector efficiency criterion, when a MOO problem is
reduced to solving one or several scalar (in the general case, global) optimization
problems in which the objective functions are converted to the integrated scalar
function. The family of optimization problems generated in such approach is
further referred to as multiple global optimization (MGO) problem. Within this
approach, we can distinguish lexicographic optimization methods where objec-
tive functions are ordered by importance, thus allowing the optimization of the
functions to be carried out sequentially as their importance decreases [10]. Possi-
ble scalarization methods also include various methods of the efficiency criteria
convolution such as the weighted sum method, the compromise programming
method, the reference point method, the weighted min-max method, etc. – see,
for example, [2,11,12].

One common property of methods based on scalarization of the vector effi-
ciency criterion is the existence of some scalarization coefficients that can be
varied to obtain different solutions from the Pareto set. Thus, the scalarization
coefficients may be interpreted as measures of the importance of the efficiency
criteria determined by the decision maker (DM) according to their perception
of the required optimality of the decisions to be made. As a result, the general
scheme for solving the MOO problem can be represented as a sequence of steps;
at each step, DM sets the necessary scalarization coefficients, then the result-
ing scalar optimization problem is solved, after that DM analyzes the efficient
decision found and, if necessary, the above steps are repeated.

The general scheme discussed above can be extended by the possibility of
selecting not one but several different scalarization coefficient options at each
step. With this possibility, the task of coefficient assignment becomes less com-
plex for DM. Solving several generated scalar optimization problems simultane-
ously allows one to get efficient decision estimates at the very early stages of
computations thus making it possible to change dynamically (in the process of
computations) the set of problems being solved: to stop solving obviously unpro-
ductive (from DM’s point of view) ones or to add new optimization problems.

It is also important to note that by solving simultaneously a large num-
ber of scalar optimization problems thus generated it is possible to signifi-
cantly decrease computational complexity of each separate problem. This effect
is achieved due to the fact that all such scalar problems are based on the same
MOO problem and, consequently, all computed values of the efficiency criteria of
the MOO problem can be reduced to values of any scalar problem being solved
simultaneously without any time consuming calculations. In such cases, all the
search information obtained in solving any single scalar problem can be used for
solving all other scalar problems of the same set.
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This paper presents the results of the authors’ continuing research aimed
to develop efficient methods for solving MOO problems [13–16]. In [13], some
methods for solving global optimization problems are considered, in [14], a gen-
eral decision-making model based on MOO problems is proposed, and in [15], a
theoretical analysis is presented regarding the effectiveness of the use of search
information when solving MOO problems. In [16], we consider MOO problems in
which the efficiency criteria can be ordered by importance (lexicographic multi-
objective optimization). In this case, MOO problems are reduced to global opti-
mization problems with non-convex constraints for which constrained optimiza-
tion methods should be applied. In this paper, we propose new computational
schemes for using search information that significantly reduce the amount of
calculations required to solve MOO problems.

The structure of the paper is as follows. In Sect. 2, we give the statement of the
multi-objective optimization problem. Section 3 presents a scheme for reduction
of multi-objective optimization problems to one-dimensional global optimization
problems as well as some methods for solving such problems. Section 4 considers
the proposed approach for simultaneous solution of several global optimization
problems yielding several Pareto-optimal decisions at a time. Section 5 contains
the results of numerical experiments confirming the effectiveness of the proposed
approach. In conclusion, the results obtained are discussed and possible main
directions of further research are outlined.

2 Problem Statement

In the most general form, the MOO problem can be formulated as follows

f(y) = (f1(y), f2(y), . . . , fs(y)) → min, y ∈ D, (1)

where f(y) = (f1(y), f2(y), . . . , fs(y)) are objective functions (efficiency criteria),
y = (y1, y2, . . . , yN ) is the vector of varied parameters, and N is the dimensional-
ity of the multi-objective optimization problem to be solved. The set of possible
parameter values (search domain) D is usually an N -dimensional hyperinterval

D = {y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N} (2)

for given boundary vectors a and b.
Without loss of generality, it is assumed that objective functions should be

minimized to improve the decision efficiency y ∈ D. It is also assumed that fi(y),
1 ≤ i ≤ s, are multiextremal and have the form of time-consuming “black-box”
computational procedures. It is also assumed that the objective functions fi(y),
1 ≤ i ≤ s, satisfy the Lipschitz condition

|fi(y′) − fi(y′′)| ≤ Li‖y′ − y′′‖, y′, y′′ ∈ D, 1 ≤ i ≤ s, (3)

where Li, 1 ≤ i ≤ s, are the Lipschitz constants and ‖ ∗ ‖ denotes the Euclidean
norm in RN . Condition (3) means that for variations of the parameter y ∈ D,
the corresponding changes in the values of the functions fi(y), 1 ≤ i ≤ s, are
bounded.
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3 Reducing the Problem of Multi-objective Optimization
to the Problems of One-Dimensional Global
Optimization

As mentioned earlier, in the framework of the proposed approach the solution
of MOO problems is reduced to solving one or several scalar global optimization
problems in which a single efficiency criterion is generated using some scalar-
ization methods of multiple objective functions. Below, we consider a general
scheme for such reduction of the MOO problem and present a method for solv-
ing the generated global optimization problems.

3.1 Scalarization of Multiple Objective Functions

In the most general form, the global optimization problem generated by the
scalarization of multiple objective functions of the MOO problem can be repre-
sented in the form

min
y∈D

ϕ(y) = min
y∈D

F (λ, y), (4)

where F is a scalar multiextremal function generated as a result of scalarization
of objective functions fi, 1 ≤ i ≤ s, λ is the vector of parameters of the applied
convolution of functions, and D is the search domain from (1). In the proposed
approach, we use for scalarization the compromise programming method [2,11],
where solution of the MOO problem consists in finding the efficient decision cor-
responding most closely to the values of the objective functions of the specified
reference decision y0 ∈ D. In this case, a possible statement of scalar optimiza-
tion problem can have the form

min
y∈D

F (λ, y) = min
y∈D

{
1
s

s∑
i=1

λi(fi(y) − fi(y0))2
}

, (5)

where F (λ, y) is the standard deviation of the values of the objective functions
fi, 1 ≤ i ≤ s, for the decision y ∈ D and for the specified reference decision
y0 ∈ D, while the coefficients λi, 0 ≤ λi ≤ 1, 1 ≤ i ≤ s, are measures of
the importance of the approximation accuracy for each variable yi, 1 ≤ i ≤ N ,
separately. Without loss of generality, we can assume that the domain of possible
values of the coefficients λ is a set

λ = (λ1, λ2, . . . , λs) ∈ Λ ⊂ Rs :
s∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ s. (6)

The reference decision y0 ∈ D in (5) can be known a priori or determined
on the basis of some known prototype. In many cases, an abstract ideal decision
y0 ∈ D is used as the reference decision y∗ ∈ D in which the objective functions
fi, 1 ≤ i ≤ s, have minimal possible values, i.e.

f∗
i = fi(y∗) = min

y∈D
fi(y), 1 ≤ i ≤ s. (7)
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Note that by virtue of (3) the scalar function F (λ, y) from (5) also satisfies
the Lipschitz condition with some constant L, i.e.

|F (λ, y′) − F (λ, y′′)| ≤ L‖y′ − y′′‖, y′, y′′ ∈ D. (8)

3.2 Dimensionality Reduction

As already mentioned, problem (4) is a multidimensional global optimization
problem. Problems of this kind are computationally complex and are known to
be subject to the “curse of dimensionality” – computational complexity increases
exponentially with increasing dimensionality of the optimization problem being
solved [17–24]. Nevertheless, the computational complexity of global optimiza-
tion algorithms can be significantly reduced by dimensionality reduction based
on the use of a Peano space-filling curve (or evolvent) y(x) that uniquely and
continuously maps the segment [0, 1] on an N -dimensional domain D – see, for
example, [19,25]. As a result of such reduction, multidimensional global opti-
mization problems (4) are reduced to one-dimensional problems

min
x∈[0,1]

ϕ(y(x)) = min
y∈D

ϕ(y). (9)

The resulting one-dimensional functions ϕ(y(x)) satisfy the uniform Hölder
condition, i.e.

|ϕ(y(x′)) − ϕ(y(x′′))| ≤ H|x′ − x′′|1/N , x′, x′′ ∈ [0, 1], (10)

where the constant H is defined by the relation H = 2L
√

N + 3, L is the Lips-
chitz constant from (8), and N is the dimensionality of the MOO problem (1).

3.3 Solving the One-Dimensional Reduced Optimization Problem

Using the dimensionality reduction results in one more additional advantage of
the proposed approach: many well-known one-dimensional global search algo-
rithms (possibly, after some additional generalisation) can be used to solve the
initial multidimensional MOO problem from (1) [26–33]. At the same time, it
should be noted that most works where dimensionality reduction is a key feature
for solving multiextremal problems like (4) rely on the information-statistical
theory of global search [19]. This theory has provided the basis for developing a
large number of efficient methods for multiextremal optimization [13–15,32–38].

Within the framework of information-statistical theory, a general computa-
tional scheme of global optimization algorithms was proposed which in brief is
as follows [13,19,34].

Let k, k ≥ 2, global search iterations aimed to minimize the function ϕ(y(x))
from (9) were completed. Then, to perform adaptive choice of the points of next
iterations, the optimization algorithm estimates the possibility that the global
minimum is located in the intervals, into which the initial segment [0, 1] is divided
by the points of earlier global search iterations

x1 < x2 < · · · < xk. (11)
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This estimate is determined by means of characteristics R(i) of intervals
(xi−1, xi), 1 < i ≤ k, whose values should be proportional to the degree of
possibility that the global minimum is located in these intervals. The type of
these characteristics depends on the global optimization algorithm used – thus,
for example, for an algorithm which constructs a uniform dense grid in the global
search domain, the characteristic is simply the interval length

R(i) = (xi − xi−1), 1 < i ≤ k. (12)

For the algorithms proposed in [26,27], when dimensionality reduction is
applied, the characteristic is an estimate of the minimum possible value of the
function ϕ(y(x)) to be minimized on the interval (xi−1, xi), 1 < i ≤ k, i.e.

R(i) = 0.5Hρi − 0.5(zi−1 + zi), ρi = (xi − xi−1)1N , 1 < i ≤ k, (13)

where H is the Hölder constant from (10) for the reduced global optimization
problem being solved (9), zi = ϕ(y(zi)), 1 ≤ i ≤ k, and N is the dimensionality
of the problem from (1). For the global search algorithm (GSA) [19,28] developed
in the framework of the information-statistical approach, the characteristic is

R(i) = mρi +
(zi − zi−1)2

mρi
− 2(zi−1 + zi), ρi = (xi − xi−1)1/N , 1 < i ≤ k, (14)

where m is a numerical estimate of the Hölder constant derived from available
search information

m = rM,M = max{|zi − zi−1|ρi, 1 < i ≤ k} (15)

(r > 1 is a parameter of the GSA algorithm).
The presence of interval characteristics makes it possible to describe the

procedure of global search iteration as the following sequence of steps [19].
Step 1. Calculate characteristics of the intervals R(i), 1 < i ≤ k, and deter-

mine the interval with the maximum characteristic

R(t) = max{R(i), 1 < i ≤ k}. (16)

Step 2. Select the next iteration point in the interval with the maximum
characteristic (the rule X for selecting the point xk+1 of the next iteration in
the interval (xt−1, xt) is stated by the global optimization algorithm)

xk+1 = X(xt−1, xt), (17)

calculate the value zk+1 of the function to be minimized at this point (the
procedure for calculating the function value will be further referred to as a trial).

Step 3. Check the stopping condition

ρt ≤ ε, (18)
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where ρt = (xt − xt−1)1N , t is from (16) and ε > 0 is the specified accuracy
of the solution. If the stopping condition (18) is met, then the solving of the
optimization problem is stopped, otherwise k = k + 1 is assumed and the next
global search iteration begins.

After completing the calculations, the lowest computed value of the function
being minimized can be taken as the global minimum estimate

z∗
k = min{zi, 1 ≤ i ≤ k}. (19)

It should be noted again that the computational scheme discussed above
is quite general. Many global search algorithms can be represented within this
scheme, as evidenced, in particular, by examples (12)–(14) and other global
optimization algorithms – see, for example, [13–15,32–38].

Convergence conditions of the algorithms are formulated in the form (16)–
(18) depend on the properties of the interval characteristics used. One of suffi-
cient conditions for convergence of algorithms is, for example, the requirement
that the characteristic of the interval containing the global minimum point
should take on the maximum value at step 1 of the scheme (16)–(18) during the
global search iterations. This condition is satisfied, for example, for the multidi-
mensional generalized algorithms proposed in [26,27] when the Hölder constant
from (10) is specified exactly. For GSA, a sufficient condition for convergence is
the relation

m ≥ 23−1NL
√

N + 3, (20)

which must be fulfilled starting from some iteration k > 1 of the global search (L
is the Lipschitz constant from (8)) [19]. Moreover, if condition (20) is satisfied,
only the points of the global minimum of the function ϕ(y) from (4) will be the
limit points of the trial sequence {yk = y(xk)} generated by the GSA algorithm.

4 An Approach for Simultaneous Finding of Multiple
Efficient Decisions in Multi-objective Optimization
Problems

In this Section, the proposed approach for finding p, p > 1 Pareto-optimal deci-
sions of the MOO problem is presented. This problem is formulated as the prob-
lem of solving the set Φp(y), p > 1 of global optimization problems (see Sect. 4.1).
To solve this set of optimization problems, two efficient computational schemes
are proposed. The first scheme is based on the traditional sequential proce-
dure for solving multiple problems, however, to solve each subsequent optimiza-
tion problem, all the search information obtained during previous calculations is
taken into account. This accumulated search information can significantly reduce
the number of global search iterations required to solve the next optimization
problems of the set Φp(y) (see Sect. 4.2 and Sect. 5). In the second scheme, all
the problems of the set Φp(y) are solved simultaneously, but the search informa-
tion obtained when solving each problem is also used for solving all the other
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problems of the set Φp(y) (see Sect. 4.3). This useful exchange of search infor-
mation also significantly reduces the amount of required calculations for solving
the problems of the set Φp(y).

4.1 The Need to Solve Multiple Global Optimization Problems

As mentioned earlier, in the process of solving the MOO problem, it may be
necessary to find several different efficient decisions due to possible changes in the
optimality requirements. Obtaining different efficient decisions in the proposed
approach is achieved by choosing different convolution coefficients (importance
indicators) for the objective functions fi(y), 1 ≤ i ≤ s, which results in obtaining
different scalar multiextremal functions F (λ, y) from (4). These functions F (λ, y)
can be optimized sequentially. This determines a multi-stage scheme for solving
the MOO problem, when at each stage DM specifies the necessary scalarization
coefficients, then the resulting scalar optimization problem is solved, after which
DM analyzes the efficient decisions found.

The general scheme considered above can be extended by the possibility of
selecting not one but several different scalarization coefficients at each stage.
Having such an option makes it easier for DM to specify importance coefficients
λ ∈ Λ of the objective functions fi(y), 1 ≤ i ≤ s. By solving simultaneously
several generated scalar optimization problems, one can obtain the estimates of
efficient decisions at the earliest stages of computing, which makes it possible to
dynamically (in the process of computations) change the set of problems being
solved – to stop solving those that obviously have no prospect of success (from
DM’s point of view) or to add new optimization problems.

Such generalization of the process of solving a MOO problem means that at
each current moment of calculations there is a set of functions being optimized
simultaneously having the form

Φp(y) = {F (λ1, y), F (λ2, y), . . . , F (λp, y)}, λi ∈ Λ, 1 ≤ i ≤ p, (21)

which can be changed dynamically in the course of the calculations by adding
new or removing existing optimization functions F (λ, y) from (4).

4.2 Step-by-Step Solution of a Set of Global Optimization Problems

As shown in Sect. 3, the information-statistical multiextremal optimization algo-
rithms used in the proposed approach determine the points of consecutive iter-
ations of the global search taking into account the search information

Ak = {(xi, zi, fi)T : 1 ≤ i ≤ k} (22)

obtained in the calculations (see (14)–(17)). In (22), xi, 1 ≤ i ≤ k, are the
reduced points of performed global search iterations ordered in ascending order
of coordinates, zi, fi, 1 ≤ i ≤ k, are the values of the scalar function F (λ, y)
from (4) and the objective functions fi(y), 1 ≤ i ≤ s, from (1) of the current
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optimization problem to be solved at the points xi = y(xi), 1 ≤ i ≤ k. By
using search information Ak from (22) when choosing next search iterations it
is possible to solve global optimization problems more efficiently and to provide
convergence of algorithms only to the global minima of multiextremal functions
being minimized.

It is important to note that since the set Φp(y) of functions being optimized
simultaneously is generated from the same MOO problem from (1), the existence
of the set Ak from (22) allows us to adjust the results of all previously performed
calculations of the values of the objective functions fi(y), 1 ≤ i ≤ s, to the
values of the next optimized function F (λ, y) from (4) without repeating any
time consuming calculations of values, i.e.

(xi, fi) → zi = F (λ, y(xi)), 1 ≤ i ≤ k. (23)

Thus, all the search information Ak from (22), recalculated according to (23),
can be reused to continue solving the problems of the set Φp(y). Such a possibility
provides a significant reduction in computations up to performing only a limited
set of global search iterations (see the results of numerical experiments in Sect. 5).

This type of information connectivity of functions in the set Φp(y) from (21)
makes it possible to generalize the computational scheme (16)–(18) for solving
a single global optimization problem for the case of optimizing the functions of
the set Φp(y) from (21) by adding a preliminary step of the search information
transformation.

Step 0. Adjust the state of search information Ak from (22) to the values of
the function F (λ, y) from the set Φp(y) according to rule (23).

The GSA algorithm applied to optimize the functions of the set Φp(y) from
(21) and using the search information Ak will be further referred to as the
Multiple Global Search Algorithm (MGSA).

4.3 Simultaneous Solution of a Set of Global Optimization Problems

Information connectivity makes it possible to propose a more general scheme for
simultaneous optimization of all the functions of the set Φp(y) from (21). In this
case, the search information Ak from (22) will contain the computed values of
all simultaneously optimized functions F (λi, y), 1 ≤ i ≤ p, i.e.

Ak = {(xi,
−→zi , fi)T : 1 ≤ i ≤ k}, (24)

where the values of −→zi , 1 ≤ i ≤ k, represent vectors

−→zi = (zi(1), zi(2), . . . , zi(p)), zi(j) = F (λj , y(xi)), 1 ≤ i ≤ k, 1 ≤ j ≤ p. (25)

Accordingly, for each interval (xi−1, xi), 1 < i ≤ k, into which the segment
[0,1] is divided, the following set of characteristics will be calculated:

−→
R (i) = {R1(i), R2(i), . . . , Rp(i)}, (26)
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where

Rj(i) = mjρi+
(zi(j) − zi−1(j))2

mjρi
−2(zi−1(j)+zi(j)), 1 < i ≤ k, 1 ≤ j ≤ p, (27)

ρi = (xi − xi−1)1/N , 1 ≤ i < k, (28)

mj = rMj ,Mj =
{

max |zi(j) − zi−1(j)|
ρi

, 1 < i ≤ k, 1 ≤ j ≤ p

}
. (29)

(mj , 1 ≤ j ≤ p, are the estimates of the Hölder constant in the condition (10)
for the functions F (λj , y), 1 ≤ j ≤ p, of the set Φp(y) from (21)).

The algorithm for simultaneous optimization of all functions of the set
Φp(y) from (21) (further denoted as SGSA) can be represented as the following
sequence of steps.

Step 1. Compute characteristics of the intervals Rj(i), 1 < i ≤ k, 1 ≤ i ≤
p, and determine the function F (λj , y), 1 ≤ j ≤ p, whose search information
contains the interval with the maximum characteristic

Rq(t) = max {Rj(i), 1 < i ≤ k, 1 ≤ i ≤ p} . (30)

Step 2. Select the point of the next iteration in the interval with the maximum
characteristic

xk+1 = X(xt−1, xt) (31)

and calculate the value −→z k+1 of all simultaneously optimized functions F (λj , y),
1 ≤ j ≤ p, at the point xk+1 (when calculating the point xk+1 the values zi(q),
1 ≤ i ≤ k, of the function F (λq, y(xi)) whose number was determined at Step 1
should be used).

Step 3. Check the stopping condition according to (18)

ρt ≤ ε. (32)

When the functions F (λj , y), 1 ≤ j ≤ p, are optimized simultaneously, it
should be kept in mind that the values of these functions at their global minima
may differ. To ensure convergence to global minima of all the functions being
optimized simultaneously, the SGSA algorithm has to be supplemented by a
preliminary step of homogenizing the functions F (λj , y), 1 ≤ j ≤ p.

Step 0. Convert F (λj , y), 1 ≤ j ≤ p, according to the rule

F ′(λj , y) =
F (λj , y) − zmin(j)

Hj
, 1 ≤ j ≤ p, (33)

where zmin(j), 1 ≤ j ≤ p, is the minimum value of the function F (λj , y), 1 ≤
j ≤ p, i.e.

zmin(j) = min
y∈D

{F (λj , y)}, 1 ≤ j ≤ p, (34)

and Hj , 1 ≤ j ≤ p, are the Hölder constants for the functions F (λj , y), 1 ≤ j ≤ p.
In the case where the values of zmin(j), Hj , 1 ≤ j ≤ p, are not known

a priori, these values can be replaced by estimates calculated on the basis of
available search information Ak from (22) according to expressions (19) and
(29).
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5 Results of Numerical Experiments

Numerical experiments were performed on the Lobachevsky supercomputer of
the University of Nizhni Novgorod (operating system – CentOS 6.4, management
system – SLURM). One supercomputer node has 2 Intel Sandy Bridge E5-2660
2.2 GHz processors, 64 Gb RAM. The CPU is 8-core (i.e. a total of 16 CPU cores
are available on the node). The numerical experiments were performed using the
Globalizer system [39].

The first series of experiments was performed to compare the MGSA algo-
rithm with a number of well-known multi-objective optimization algorithms by
solving a bi-criteria test problem [41]

f1(y) = (y1 − 1)y2
2 + 1, f2(y) = y2, 0 ≤ y1, y2 ≤ 1. (35)

In the course of the experiments, a numerical approximation of the Pareto
domain was carried out to solve the problem (35), and the quality of the approx-
imation was evaluated using the hypervolume (HV) and distribution uniformity
(DU) indices [15,41]. The first of these indices characterizes the completeness
of approximation (a larger value corresponds to a more complete coverage of
the Pareto domain), while the second one shows the uniformity of coverage (a
smaller value corresponds to a more uniform coverage of the Pareto domain).

Five multi-objective optimization algorithms were compared in this experi-
ment: the Monte-Carlo (MC) method, the genetic algorithm SEMO from the
PISA library [43], the Non-Uniform Coverage (NUC) method [41], the Bi-
objective Lipschitz Optimization (BLO) method [40] and the MGSA algorithm
proposed in this paper. For the first three algorithms, the numerical results were
used from [42]. The results of the BLO method were presented in [40].

For MGSA, 100 problems (4) with different values of convolution coefficients
λ uniformly distributed in Λ were solved. The results of the experiments per-
formed are presented in Table 1.

Table 1. Comparison of the efficiency of multi-objective optimization algorithms

Solution method MC SEMO NUC BLO MGSA

Number of method iterations 500 500 515 498 338

Number of points found in
the Pareto domain

67 104 29 68 115

HV index 0.300 0.312 0.306 0.308 0.318

DU index 1.277 1.116 0.210 0.175 0.107

As the experimental results show, the MGSA algorithm has a distinct advan-
tage over the other multi-objective optimization methods considered, even for
solving relatively simple MOO problems.
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In the second series of numerical experiments, we solved bi-criteria two-
dimensional MOO problems, i.e. with N = 2, s = 2. We used multiextremal func-
tions obtained with the help of the GKLS generator [44] as objective functions of
the MOO problem. During the experiments, we solved 100 multi-objective prob-
lems of this class, for each of them the set Φp(y) from (21) comprised 5, 10 and
25 simultaneously optimized functions respectively (the convolution coefficients
λ ∈ Λ from (6) for the functions of the set Φp(y) being uniformly distributed
in Λ). To check the accuracy of the solution of MOO problems, the computed
estimates of the efficient solutions were checked to confirm they belonged to the
Pareto domain. For the parameters of the MGSA algorithm, the following values
were used: accuracy ε = 0.01, reliability r = 5.6. The computational results were
averaged over the number of MOO problems solved.

The results of numerical experiments are presented in Table 2 and Fig. 1.
The Table shows in the first column the number of functions Φp(y) from (21)
being optimized. The columns named Iters contain the average number of iter-
ations performed by the algorithm to solve the MOO problem. The columns
named HV and DU contain the values of the HV and DU indicators. The results
of the numerical experiments are divided with respect to the three algorithms
used: GSA is described in Sect. 3, MGSA is discussed in Subsect. 3.2, SGSA is
presented in Subsect. 4.3.

Table 2. Results of numerical experiments on solving bi-criteria two-dimensional MOO
problems

Number of
functions
in Φp(y)

Algorithms

GSA MGSA SGSA

Iters HV DU Iters HV DU Iters HV DU

5 3771.8 6.455 0.25 1823.4 6.481 0.208 2090.5 6.479 0.217

10 7941.6 6.485 0.183 1955.5 6.486 0.205 2224.4 6.486 0.191

25 20456.2 6.504 0.143 2135.8 6.490 0.209 2456.1 6.493 0.188

The experimental results show that by reusing search information when opti-
mizing 25 functions from the set Φp(y), the total computational iterations can
be reduced by more than 9.5 times without resorting to any additional compu-
tational resources. At the same time, the MGSA algorithm performs the least
number of iterations (the number of calculations of objective function values),
while the SGSA algorithm provides a better approximation of the Pareto domain
both in terms of approximation completeness and coverage uniformity. It is also
noteworthy that the average number of iterations to optimize one function from
the set Φp(y) decreases by more than 4 times as the number of functions in the
set Φp(y) increases – see Table 3.

In the third series of numerical experiments, 10 bi-criteria five-dimensional
MOO problems were solved, i.e. N = 5, s = 2. The objective functions of the
MOO problems were determined, as before, using the GKLS generator [44].
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Fig. 1. The average number of iterations for solving bi-criteria two-dimensional MOO
problems

Table 3. Average number of iterations required to optimize one function from the set
Φp(y)

Number of
functions in Φp(y)

Average number of iterations

GSA MGSA SGSA

5 754.4 364.7 418.1

10 794.2 195.6 222.4

25 818.2 85.4 98.2

When solving the problems, the accuracy ε = 0.05 and the reliability r = 5.6
were used. The results of numerical experiments are presented in Table 4 and
Fig. 2.

Table 4. The results of a series of experiments to solve bi-criteria five-dimensional
MOO problems

Number of
functions
in Φp(y)

Algorithms

GSA MGSA SGSA

Iters HV DU Iters HV DU Iters HV DU

25 1030039.6 2.440 0.543 619755.6 2.441 0.681 669743.8 2.364 0.668

50 2061634.2 2.502 0.572 647508.2 2.533 0.691 710418.6 2.417 0.680

100 4104694.4 2.504 0.686 683410.5 2.555 0.696 728485.3 2.483 0.696

The results of our experiments show that with increasing dimensionality of
the MOO problems to be solved, the trend that has been identified continues:
the amount of computation (the number of global search iterations) is reduced
by more than 5.6 times due to reuse of search information, the MGSA algorithm
performs the least number of iterations, and the SGSA algorithm provides the
best approximation of the Pareto domain.
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Fig. 2. The average number of iterations for solving bi-criteria five-dimensional MOO
problems

Conclusion

This paper proposes an efficient approach for solving computationally intensive
multi-objective optimization problems which require computing several Pareto-
optimal decisions. It is also assumed that objective functions may be multiex-
tremal, and computation of function values may require a large amount of cal-
culations. The proposed approach is based on the reduction of multi-objective
optimization problems to one-dimensional global optimization problems that
can be solved using efficient information-statistical algorithms of global search.
The novelty of the proposed approach consists in the possibility of solving sev-
eral global optimization problems simultaneously, which allows multiple Pareto-
optimal decisions to be obtained. Besides, such approach provides for reuse of the
computed search information, which considerably reduces computational effort
for solving multi-objective optimization problems.

The results of numerical experiments show that by using the developed app-
roach it is possible to achieve a significant reduction of computational complexity
when solving multi-objective optimization problems.

It should be noted in conclusion that the proposed approach is promising
and requires further research in this area. First of all, it is necessary to continue
numerical experiments on solving multi-objective optimization problems with a
greater number of objective functions and for higher dimensionality of optimiza-
tion problems to be solved. The possibility of organizing parallel computations
for high-performance systems should also be evaluated.
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40. Žilinskas, A., Zilinskas, J.: Adaptation of a one-step worst-case optimal univari-
ate algorithm of bi-objective Lipschitz optimization to multidimensional problems.
Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 89–98 (2015). https://doi.org/
10.1016/j.cnsns.2014.08.025

41. Evtushenko, Y., Posypkin, M.: A deterministic algorithm for global multiobjective
optimization. Optim. Methods Softw. 29(5), 1005–1019 (2014) https://doi.org/10.
1080/10556788.2013.854357

https://doi.org/10.1007/978-1-4614-9093-7
https://doi.org/10.1007/978-1-4939-7199-2
https://doi.org/10.1007/978-1-4939-7199-2
https://doi.org/10.1007/978-1-4614-8042-6
https://doi.org/10.1007/978-1-4614-8042-6
https://doi.org/10.1016/j.cnsns.2014.08.025
https://doi.org/10.1016/j.cnsns.2014.08.025
https://doi.org/10.1080/10556788.2013.854357
https://doi.org/10.1080/10556788.2013.854357


Finding of Multiple Efficient Decisions in MOO Problems 143

42. Evtushenko, Y., Posypkin, M.: Method of non-uniform coverages to solve the multi-
criteria optimization problems with guaranteed accuracy. Autom. Remote Control
75(6), 1025–1040 (2014)

43. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and program-
ming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-
8 35

44. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Ya.D.: Software for generation of
classes of test functions with known local and global minima for global optimiza-
tion. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

https://doi.org/10.1007/3-540-36970-8_35
https://doi.org/10.1007/3-540-36970-8_35


One-Point Gradient-Free Methods
for Smooth and Non-smooth Saddle-Point

Problems

Aleksandr Beznosikov1,2(B), Vasilii Novitskii1, and Alexander Gasnikov1,2,3

1 Moscow Institute of Physics and Technology, Moscow, Russia
beznosikov.an@phystech.edu

2 Higher School of Economics, Moscow, Russia
3 Caucasus Mathematical Center, Adyghe State University, Maykop, Russia

Abstract. In this paper, we analyze gradient-free methods with one-
point feedback for stochastic saddle point problems minx maxy ϕ(x, y).
For non-smooth and smooth cases, we present an analysis in a general
geometric setup with the arbitrary Bregman divergence. For problems
with higher order smoothness, the analysis is carried out only in the
Euclidean case. The estimates we have obtained repeat the best currently
known estimates of gradient-free methods with one-point feedback for
problems of imagining a convex or strongly convex function. The paper
uses three main approaches to recovering the gradient through finite dif-
ferences: standard with a random direction, as well as its modifications
with kernels and residual feedback. We also provide experiments to com-
pare these approaches for the matrix game.

Keywords: Saddle-point problem · Zeroth order method · One-point
feedback · Stochastic optimization

1 Introduction

This paper is devoted to solving the saddle-point problem:

min
x∈X

max
y∈Y

ϕ(x, y). (1)

It has many practical applications. These are the already well-known and classic
matrix game and Nash equilibrium, as well as modern machine learning prob-
lems: Generative Adversarial Networks (GANs) [12] and Reinforcement Learning
(RL) [13]. We assume that only zeroth-order information about the function is
available, i.e. only its values, not a gradient, hessian, etc. This concept is called
a Black-Box and arises in optimization [14], adversarial training [8], RL [10]. To
make the problem statement more complex, but close to practice, it is natural
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to assume that we have access inexact values of function ϕ(x, y, ξ), for exam-
ple, with some random noise ξ. But even with the help of such an oracle, it is
possible to recover some estimate of the gradient of a function in terms of finite
differences.

Let us highlight two main approaches to such gradient estimates. The first
approach is more well researched in the literature and is called a two-point
feedback:

n

2τ
(ϕ(x + τex, y + τey, ξ) − ϕ(x − τex, y − τey, ξ))

(
ex

−ey

)
.

An important feature of this approach is that it is assumed that we were able to
obtain the values of the function in points (x+τex, y+τey) and (x−τex, y−τey)
with the same realization of the noise ξ. From the point of view of theoretical
analysis, such an assumption is strong and gives good guarantees of convergence
[9,14,17]. But from a practical point of view, this is a very idealistic assumption.
Therefore, it is proposed to consider the concept of one-point feedback (which
this paper is about):

n

2τ
(ϕ(x + τex, y + τey, ξ+) − ϕ(x − τex, y − τey, ξ−))

(
ex

−ey

)
.

In general ξ+ �= ξ−. As far as we know, the use of methods with one-point
approximation for saddle-point problems has not been studied at all in the lit-
erature. This is the main goal of our work.

1.1 Related Works

Since the use of one-point feedback for saddle-point problems is new in the
literature, we present related papers in two categories: two-point gradient-free
methods for saddle-point problems, and one-point methods for minimization
problems. Partially the results of these works are transferred to Table 1.

Two-Point for Saddle-Point Problems. Here, we first highlight work for
non-smooth saddle-point problems [6], as well as work for smooth ones [16].
Note that in these papers an optimal estimate was obtained in the non-smooth
case, and in the smooth case only for a special class of “firmly smooth” saddle-
point problems. Also note the work devoted to coordinated methods for matrix
games [7], which is also close to our topic.

One-Point for Minimization Problems. First of all, we present works that
analyze functions with higher order smoothness: [1,2,15]. These works are united
by the technique of special random kernels, which allow you to use the smooth-
ness of higher orders. Note that there is an error in work [2], therefore Table 1
shows the corrected result (according to the note from [1]). The special case
of higher order smoothness is also interesting – the ordinary smoothness, it is
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also analyzed in [1,2,15], in addition we note the papers [11,18]. A nonsmooth
analysis is presented in [11,18]. Note that in paper [11], not only the Euclidean
setup is analyzed, but also the general case with the arbitrary Bregman diver-
gence, which gives additional advantages in the estimates of the convergence (see
Table 1).

1.2 Our Contribution

In the nonsmooth case, we consider convex-concave and strongly-convex-
strongly-concave problems with bounded ∇xϕ(x, y), ∇yϕ(x, y) on the optimiza-
tion set. Our algorithm is modification of Mirror Descent with the arbitrary
Bregman divergence. The estimates we obtained coincide with the estimates
for convex optimization with one-pointed feedback [11,18]. Using the correct
geometry helps to reduce the contribution of the problem dimension to the final
convergence estimate. In particular, in the entropy setting, convergence depends
on the dimension of the problem linearly (see Table 1 for more details in convex-
concave case and Table 2 – in strongly-convex-strongly-concave).

In the smooth case we obtained the estimates of the convergence rate with the
arbitrary Bregman divergence for convex-concave case and in Euclidean setup
for strongly-convex-strongly-concave case. These estimates also coincide with the
estimates for convex optimization with one-point feedback [11].

To the best of our knowledge this is the first time when exploiting higher-
order smoothness helps to improve performance in saddle-point problems in
both strongly-convex-strongly-concave and convex-concave cases. The results
also coincide with the estimates for minimization [1,15].

In Tables 1 and 2 one can find a comparison of the oracle complexity of
known results with zeroth-order methods for saddle-point problems in related
works. Factor q depends on geometric setup of our problem and gives a benefit
when we work in the Hölder, but non-Euclidean case (use non-Euclidean prox),
i.e. ‖·‖ = ‖·‖p and p ∈ [1; 2], then ‖·‖∗ = ‖·‖q, where 1/p+1/q = 1. Then q takes
values from 2 to ∞, in particular, in the Euclidean case q = 2, but when the
optimization set is a simplex, q = ∞. In higher-order smooth case we consider
functions satisfying so called generalized Hölder condition with parameter β > 2
(see inequality (16) below). Note that it is prefer to use higher-order smooth
methods rather than smooth methods only if β > 3.

2 Preliminaries

To begin with, we introduce some notation and definitions that we use in the
work.

2.1 Notation

We use 〈x, y〉 def=
∑n

i=1 xiyi to denote inner product of x, y ∈ R
n where xi is

the i-th component of x in the standard basis in R
n. Then it induces �2-norm
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Table 1. Comparison of oracle complexity of one-point/two-point 0th-order methods
for non-smooth/smooth convex minimization (Min) and convex-concave saddle-
point (SP) problems under different assumptions. ε means the accuracy of the solution,
n – dimension of the problem, q = 2 for the Euclidean case and q = ∞ for setup of
‖ · ‖1-norm.

Case Oracle Prob. Complexity Reference

Non-smooth Two-point SP O
(
n

2
q · ε−2

)
[6]

One-point Min O
(
n
1+ 2

q · ε−4
)

[11]

SP O
(
n
1+ 2

q · ε−4
)

This paper

Smooth Two-point SP O
(
[n

2
q or n] · ε−2

)
[16]

One-point Min Õ (
n2 · ε−3

)
[11]

SP Õ (
n2 · ε−3

)
This paper

Higher order smooth One-point Min Õ
(
n
2+ 2

β−1 · ε
−2− 2

β−1

)
[1,15]

SP Õ
(
n
2+ 2

β−1 · ε
−2− 2

β−1

)
This paper

Table 2. Comparison of oracle complexity of one-point/two-point 0th-order methods
for non-smooth/smooth strongly-convex minimization (Min) and strongly-convex-
strongly-concave saddle-point (SP) problems under different assumptions.

Case Oracle Prob. Complexity Reference

Non-smooth One-point Min Õ (
n2 · ε−3

)
[11]

SP Õ (
n2 · ε−3

)
This paper

Smooth Two-point SP O (
n · ε−1

)
[16]

One-point Min Õ (
n2 · ε−2

)
[11]

SP Õ (
n2 · ε−2

)
This paper

Higher order smooth One-point Min Õ
(
n
2+ 1

β−1 · ε
− β

β−1

)
[1,15]

SP Õ
(
n
2+ 1

β−1 · ε
− β

β−1

)
This paper

in R
n in the following way ‖x‖2 def=

√〈x, x〉. We define �p-norms as ‖x‖p
def=

(
∑n

i=1 |xi|p)1/p for p ∈ (1,∞) and for p = ∞ we use ‖x‖∞
def= max1≤i≤n |xi|.

The dual norm ‖ · ‖q for the norm ‖ · ‖p is denoted in the following way:

‖y‖q
def= max {〈x, y〉 | ‖x‖p ≤ 1}. Operator E[·] is full mathematical expectation

and operator Eξ[·] express conditional mathematical expectation.

Definition 1 (μ-strong convexity). Function f(x) is μ-strongly convex w.r.t.
‖·‖-norm on X ⊆ R

n when it is continuously differentiable and there is a constant
μ > 0 such that the following inequality holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
μ

2
‖y − x‖2, ∀ x, y ∈ X .



148 A. Beznosikov et al.

Definition 2 (Prox-function). Function d(z) : Z → R is called prox-function
if d(z) is 1-strongly convex w.r.t. ‖ · ‖-norm and differentiable on Z.

Definition 3 (Bregman divergence). Let d(z) : Z → R is prox-function. For
any two points z, w ∈ Z we define the Bregman divergence Vz(w) associated with
d(z) as follows:

Vz(w) = d(z) − d(w) − 〈∇d(w), z − w〉.
We denote the Bregman-diameter ΩZ of Z w.r.t. Vz1(z2) as

ΩZ
def= max{√2Vz1(z2) | z1, z2 ∈ Z}.

Definition 4 (Prox-operator). Let Vz(w) the Bregman divergence. For all
x ∈ Z define prox-operator of ξ:

proxx(ξ) = arg min
y∈Z

(Vx(y) + 〈ξ, y〉) .

Now we are ready to formally describe the problem statement, as well as the
necessary assumptions.

2.2 Settings and Assumptions

As mentioned earlier, we consider the saddle-point problem (1), where ϕ(·, y)
is convex function defined on compact convex set X ⊂ R

nx , ϕ(x, ·) is concave
function defined on compact convex set Y ⊂ R

ny . For convenience, we denote
Z = X × Y and then z ∈ Z means z

def= (x, y), where x ∈ X , y ∈ Y. When we
use ϕ(z), we mean ϕ(z) = ϕ(x, y).

Assumption 1 (Diameter of Z). Let the compact set Z have diameter Ω.

Assumption 2 (M-Lipschitz continuity). Function ϕ(z) is M -Lipschitz
continuous in certain neighbourhood of Z with M > 0 w.r.t. norm ‖ · ‖2 when

|ϕ(z) − ϕ(z′)| ≤ M‖z − z′‖2, ∀ z, z′ ∈ Z.

One can prove that for all z ∈ Z we have

‖∇̃ϕ(z)‖2 ≤ M. (2)

Assumption 3 (μ-strong convexity–strong concavity). Function ϕ(z) is
μ-strongly-convex-strongly-concave in Z with μ > 0 w.r.t. norm ‖ · ‖2 when
ϕ(·, y) is μ-strongly-convex for all y and ϕ(x, ·) is μ-strongly-concave for all x
w.r.t. ‖ · ‖2.
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Hereinafter, by ∇̃ϕ(z) we mean a block vector consisting of two vectors
∇xϕ(x, y) and −∇yϕ(x, y). Recall that we do not have access to oracles
∇xϕ(x, y) or ∇yϕ(x, y). We only can use an inexact stochastic zeroth-order
oracle ϕ̃(x, y, ξ, δ) at each iteration. Our model corresponds to the case when
the oracle gives an inexact noisy function value. We have stochastic unbiased
noise, depending on the random variable ξ and biased deterministic noise δ. One
can write it the following way:

ϕ̃(x, y, ξ) = ϕ(x, y) + ξ + δ(x, y). (3)

Note that δ depends on point (x, y), and ξ is generated randomly regardless of
this point.

Assumption 4 (Noise restrictions). Stochastic noise ξ is unbiased with
bounded variance, δ is bounded, i.e. there exists Δ,σ > 0 such that

Eξ = 0, E
[
ξ2

] ≤ σ2, |δ| ≤ Δ. (4)

3 Theoretical Results

Since we do not have access to ∇xϕ(x, y) or ∇yϕ(x, y), it is proposed to
replace them with finite differences. We present two variants: using a random
euclidean direction [11,17] in non-smooth case and a kernel approximation [1,15]
in smooth. These two concepts will be discussed in more detail later in the
respective sections. As mentioned earlier, we work with one-point feedback. We
use Mirror Descent as the basic algorithm, but with approximations instead of
gradient.

This version of the paper contains no proofs. For the complete version see
[5].

3.1 Non-smooth Case

Random Euclidean Direction. For e ∈ RSn
2 (1) (a random vector uniformly

distributed on the Euclidean unit sphere) and some constant τ let ϕ̃(z+τe, ξ) def=
ϕ̃(x + τex, y + τey, ξ), where ex is the first part of e size of dimension nx, and
ey is the second part of dimension ny. Then define estimation of the gradient
through the difference of functions:

g(z, e, τ, ξ±) =
n (ϕ̃(z + τe, ξ+) − ϕ̃(z − τe, ξ−))

2τ

(
ex

−ey

)
, (5)
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Algorithm 1. zoopMD
Input: z0, N , γ, τ .
for k = 0, 1, 2, . . . , N do

zk+1 = proxzk
(γk · g(zk, ek, τ, ξ±k ).

end for
Output: z̄N .

where n = nx + ny. It is impor-
tant that ξ+ and ξ− are different
variables – this corresponds to the
one-point concept. Next, we present
Algorithm 1 – a modification of Mir-
ror Descent with (5). Note that the
Bregman divergence can be used in
the prox operator. This allows us
to take into ac-count the geometric

setup of the problem. ek and ξ±
k are generated independently of the previous

iterations and of each other. Here z̄N = 1
N+1

∑N
i=0 zi. Below we give technical

facts about (5).

Lemma 1 (see Lemma 2 from [4] or Lemma 1 from [6]). For g(z, e, τ, ξ±)
defined in (5) under Assumptions 2 and 4 the following inequality holds:

E
[‖g(z, e, τ, ξ±)‖2q

] ≤ 3a2
q

(
3nM2 +

n2(σ2 + Δ2)
τ2

)
, (6)

where a2
q is determined by E[‖e‖2q ] ≤

√
E[‖e‖4q ] ≤ a2

q and the following statement
is true

a2
q = min{2q − 1, 32 log n − 8}n

2
q −1, ∀n ≥ 3. (7)

Next we define an important object for further theoretical discussion – a
smoothed version of the function ϕ (see [14,17]).

Definition 5. Function ϕ̂(z) defines on set Z satisfies:

ϕ̂(z) = Ee [ϕ(z + τe)] . (8)

To define smoothed version correctly it is important that the function ϕ is
specified not only on an admissible set Z, but in a certain neighborhood of it.
This is due to the fact that for any point z belonging to the set, the point z + τe
can be outside it.

Lemma 2 (Lemma 8 from [17]). Let ϕ(z) is μ-strongly-convex-strongly-
concave (convex-concave with μ = 0) and e be from RSn

2 (1). Then function
ϕ̂(z) is μ-strongly-convex-strongly-concave and under Assumption 2 satisfies:

sup
z∈Z

|ϕ̂(z) − ϕ(z)| ≤ τM. (9)

Lemma 3 (Lemma 10 from [17] and Lemma 2 from [4]). Under Assump-
tion 4 it holds that

∇̃ϕ̂(z) = Ee

[
n (ϕ(z + τe) − ϕ(z − τe))

2τ

(
ex

−ey

)]
, (10)

‖Ee,ξ[g(z, e, τ, ξ±)] − ∇̃ϕ̂(z)‖q ≤ Δnaq

τ
. (11)
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Now we are ready to present the main results of this section. Let begin with
convex-concave case (Assumption 3 with μ = 0)

Theorem 1. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with the oracle (5). Assume, that the set Z, the convex-concave function ϕ(x, y)
and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 2, 4. Denote by N
the number of iterations and set γk = γ = const. Then the rate of convergence
is given by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γM2
all

2
+

ΔΩnaq

τ
+ 2τM.

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+Δ2)

τ2

)
a2

q and

εsad(z̄N ) = max
y′∈Y

ϕ(x̄N , y′) − min
x′∈X

ϕ(x′, ȳN ). (12)

Let analyze the results:

Corollary 1. Under the assumptions of Theorem 1 let ε be accuracy of the
solution of problem (1) obtained using Algorithm 1. Assume that

γ = Θ

(
Ω

n
1
4+

1
2q MN

3
4

)
, τ = Θ

(
σ

M
· n

1
4+

1
2q

N
1
4

)
, Δ = O

(
ετ

Ωnaq

)
, (13)

then the number of iterations to find ε-solution

N = O
(

n1+ 2
q

ε4
[
C4(n, q)M4Ω4 + σ4

])
,

or with

γ = Θ

(
Ω

n
1
q MN

3
4

)
, τ = Θ

(
σ

M
· n

1
2

N
1
4

)
, Δ = O

(
ετ

Ωnaq

)
,

N = O
(

n
4
q C4(n, q)

ε4
M4Ω4 +

n2

ε4
σ4

)
,

where C(n, q)
def
= min{2q − 1, 32 log n − 8}.

Analyse separately cases with p = 1 and p = 2 (Table 3).
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Table 3. Summary of convergence estimation for non-smooth case: p = 2 and p = 1.

p, (1 � p � 2) q, (2 � q � ∞) N , Number of iterations

p = 2 q = 2 O (
n2ε−4

)

p = 1 q = ∞ O (
n log4 n · ε−4

)

Next we consider μ-strongly-convex-strongly-concave. Here we work
with Vz(w) = 1

2‖z − w‖22.
Theorem 2. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with Vz(w) = 1

2‖z−w‖22 and the oracle (5). Assume, that the set Z, the function
ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 2, 3, 4. Denote
by N the number of iterations and γk = 1

μk . Then the rate of convergence is given
by the following expression:

E [ϕ(x̄N , y∗) − ϕ(x∗, ȳN )] ≤ M2
all log(N + 1)
2μ(N + 1)

+
ΔnΩ

τ
+ 2τM

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+Δ2)

τ2

)
.

From here one can get

Corollary 2. Under the assumptions of Theorem 2 let ε be accuracy of the
solution of problem (1) obtained using Algorithm 1. Assume that

τ = Θ

(
3

√
σ2

μM
· 3

√
n2

N

)
, Δ = O

( ετ

Ωn

)
,

then the number of iterations to find ε-solution

N = Õ
(

nM2

με
+

M2n2σ2

με3

)
.

3.2 Smooth Case

Assumption 5 (Gradient’s Lipschitz continuity). The gradient ∇ϕ(z) of
the function ϕ is L-Lipschitz continuous in certain neighbourhood of Z with
L > 0 w.r.t. norm ‖ · ‖2 when

|∇ϕ(z) − ∇ϕ(z′)| ≤ L‖z − z′‖2, ∀ z, z′ ∈ Z.

Lemma 4 (Lemma A.3 from [1]). Let ϕ(z) be convex-concave (or μ-strongly-
convex-strongly-concave) and e be from RSn

2 (1). Then function ϕ̂(z) is convex-
concave (μ-strongly-convex-strongly-concave) too and under Assumption 5 satis-
fies:

sup
z∈Z

|ϕ̂(z) − ϕ(z)| ≤ Lτ2

2
. (14)
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Theorem 3. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with the oracle (5). Assume, that the set Z, the convex-concave function ϕ(x, y)
and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 4, 5. Denote by N
the number of iterations and γk = γ = const. Then the rate of convergence is
given by the following expression:

E [εsad(z̄N )] ≤ 3Ω2

2γ(N + 1)
+

3γM2
all

2
+

ΔΩnaq

τ
+ Lτ2.

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+Δ2)

τ2

)
a2

q.

Let’s analyze the results:

Corollary 3. Under the assumptions of Theorem 3 let ε be accuracy of the
solution of problem (1) obtained using Algorithm 1. Assume that

γ = Θ

(
Ω

n
1
3+

2
3q MN

2
3

)
, τ = Θ

(
σ

M
· n

1
6+

1
3q

N
1
6

)
, Δ = O

(
ετ

Ωnaq

)
, (15)

then the number of iterations to find ε-solution

N = O
(

n1+ 2
q

ε3

[
M3Ω3 +

L3σ3

M3

])
.

Theorem 4. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with Vz(w) = 1

2‖z−w‖22 and the oracle (5). Assume, that the set Z, the function
ϕ(x, y) and its inexact modification ϕ̃(x, y) satisfy Assumptions 1, 3, 4, 5. Denote
by N the number of iterations and γk = 1

μk . Then the rate of convergence is given
by the following expression:

E [ϕ(x̄N , y∗) − ϕ(x∗, ȳN )] ≤ M2
all log(N + 1)
2μ(N + 1)

+
ΔnΩ

τ
+ Lτ2.

Ω is a diameter of Z, M2
all = 3

(
3nM2 + n2(σ2+Δ2)

τ2

)
.

Let’s analyze the results:

Corollary 4. Under the assumptions of Theorem 4 let ε be accuracy of the
solution of problem (1) obtained using Algorithm 1. Assume that

τ = Θ

(
4

√
σ2

μL
· n

1
2

N
1
4

)
, Δ = O

( ετ

Ωn

)
,

then the number of iterations to find ε-solution

N = Õ
(

nM2

με
+

Ln2σ2

με2

)
.
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3.3 Higher-Order Smooth Case

In this paragraph we study higher-order smooth functions ϕ functions satisfying
so called generalized Hölder condition with parameter β > 2 (see inequality (16)
below).

Higher Order Smoothness. Let l denote maximal integer number strictly
less than β. Let Fβ(Lβ) denote the set of all functions ϕ : Rn → R which are
differentiable l times and for all z, z0 ∈ Uε0(Z) satisfy Hölder condition:∣∣∣∣∣ϕ(z) −

∑
0≤|m|≤l

1
m!

Dmϕ(z0)(z − z0)m

∣∣∣∣∣ ≤ Lβ‖z − z0‖β , (16)

where Lβ > 0, the sum is over multi-index m = (m1, . . . ,mn) ∈ N
n, we use the

notation m! = m1! · · · · · mn!, |m| = m1 + · · · + mn and we defined

Dmϕ(z0)zm =
∂|m|ϕ(z0)

∂m1z1 . . . ∂mnzn
zm1
1 · · · · · zmn

n , ∀z = (z1, . . . , zn) ∈ R
n.

Let Fμ,β(Lβ) denote the set of μ-strongly-convex-strongly-concave functions
ϕ ∈ Fβ(Lβ).

To use the higher-order smoothness we propose smoothing kernel though
this is not the only way. We propose to use Algorithm 2 which uses the ker-
nel smoothing technique. In fact Algorithm 2 arises from Algorithm 1 in the
Euclidean setting (Vz(w) = 1

2‖z − w‖22).

Algorithm 2. Zero-order Stochastic Projected Gradient
Requires: Kernel K : [−1, 1] → R, step size γk > 0, parameters τk.
Initialization: Generate scalars r1, . . . , rN uniformly on [−1, 1] and vectors
e1, . . . , eN uniformly on the Euclidean unit sphere Sn = {e ∈ R

n : ‖e‖ = 1}.
for k = 1, . . . , N do
1. ϕ̃+

k := ϕ(zk + τkrkek) + ξ+k , ϕ̃−
k := ϕ(zk − τkrkek) + ξ−k

2. Define g̃k := n
2τk

(ϕ̃+
k − ϕ̃−

k )

(
(ek)x

−(ek)y

)
K(rk)

3. Update zk+1 := ΠQ(zk − γkg̃k)
end for
Output: {zk}N

k=1.

To use the higher-order smoothness we propose we need to introduce addi-
tional noise assumption:

Assumption 6. For all k = 1, 2, . . . , N it holds that

1. E[ξ+2
k ] ≤ σ2 and E[ξ−2

k ] ≤ σ2 where σ ≥ 0;
2. the random variables ξ+k and ξ−

k are independent from ek and rk, the random
variables ek and rk are independent.

In other words we assume that δ(x, y) in (3) is equal to zero. We do not
assume here neither zero-mean of ξ+k and ξ−

k nor i.i.d of {ξ+k }N
k=1 and {ξ−

k }N
k=1

as item 2 from Assumption 6 allows to avoid that.
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Kernel. For gradient estimator g̃k we use the kernel

K : [−1, 1] → R,

satisfying

E[K(r)] = 0, E[rK(r)] = 1, E[rjK(r)] = 0, j = 2, . . . , l, E
[|r|β |K(r)|] ≤ ∞,

(17)
where r is a uniformly distributed on [−1, 1] random variable. This helps us
to get better bounds on the gradient bias ‖g̃k − ∇f(xk)‖ (see Theorem 5 for
details). The examples of possible kernels are presented in the complete version
of this article [5].

For Theorem 5 and Theorem 6 we need to introduce the constants

κβ =
∫

|u|β |K(u)| du (18)

and
κ =

∫
K2(u) du. (19)

It is proved in [2] that κβ and κ do not depend on n, they depend only on β:

κβ ≤ 2
√

2(β − 1), (20)

κ ≤
√

3β
3/2. (21)

Theorem 5. Let ϕ ∈ Fμ,β(L) with μ, L > 0 and β > 2. Let Assumption 6
hold and let Z be a convex compact subset of Rn. Let ϕ be M -Lipschitz on the
Euclidean τ1-neighborhood of Z (τk when k = 1, see parameter τk below).

Then the rate of convergence of Algorithm 2 with parameters

τk =
(

3κσ2n

2(β − 1)(κβL)2

) 1
2β

k− 1
2β , αk =

2
μk

, k = 1, . . . , N

is given by the following expression

E [ϕ(xN , y∗) − ϕ(x∗, yN )] ≤ max
y∈Y

E [ϕ(xN , y)] − min
x∈X

E [ϕ(x, yN )]

≤ 1
μ

(
n2− 1

β
A1

N
β−1

β

+ A2
n(1 + lnN)

N

)
,

where xN = 1
N

N∑
k=1

xk, yN = 1
N

N∑
k=1

yk, A1 = 3β(κσ2)
β−1

β (κβL)
2
β , A2 = 9κG2,

κβ and κ are constants depending only on β, see (20) and (21).

We emphasize that the usage of kernel smoothing technique, measure con-
centration inequalities and the assumption that ξk is independent from ek or
rk (Assumption 6) lead to the results better than the state-of-the-art ones for
β > 2. The last assumption also allows us to not assume neither zero-mean of
ξ+k and ξ−

k nor i.i.d of {ξ+k }N
k=1 and {ξ−

k }N
k=1.
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Theorem 6. Let ϕ ∈ Fβ(L) with L > 0 and β > 2. Let Assumption 6 hold and
let Z be a convex compact subset of Rn. Let ϕ be M -Lipschitz on the Euclidean
τ1-neighborhood of Z.

Let’s define N(ε):

N(ε) = max

{(
R

√
2A1

) 2β
β−1 n2+ 1

β−1

ε2+
2

β−1
,
(
R

√
2c′A2

)2(1+ρ) n1+ρ

ε2(1+ρ)

}
,

where A1 = 3β(κσ2)
β−1

β (κβL)
2
β , A2 = 9κG2 – constants from Theorem 5, ρ > 0

– arbitrarily small positive number, c′ – constant which depends on ρ.
Then the rate of convergence is given by the following expression:

E [ϕ(xN , y∗) − ϕ(x∗, yN )] ≤ max
y∈Y

E [ϕ(xN , y)] − min
x∈X

E [ϕ(x, yN )] ≤ ε (22)

after N(ε) steps of Algorithm 2 with settings from Theorem 5 for the regularized
function: ϕμ(z) := ϕ(z)+ μ

2 ‖x−x0‖2− μ
2 ‖y−y0‖2, where μ ≤ ε

R2 , R = ‖z0−z∗‖,
z0 ∈ Z – arbitrary point. xN = 1

N

N∑
k=1

xk, yN = 1
N

N∑
k=1

yk, τ1 (τk when k = 1) is

the parameter from Theorem 5 for the regularized function ϕμ(z).

4 Experiments

In our experiments we consider the classical bilinear problem on a probability
simplex:

min
x∈Δn

max
y∈Δk

[
yT Cx

]
, (23)

This problem has many different applications and interpretations, one of the
main ones is a matrix game (see Part 5 in [3]), i.e. the element cij of the matrix
are interpreted as a winning, provided that player X has chosen the ith strategy
and player Y has chosen the jth strategy, the task of one of the players is to
maximize the gain, and the opponent’s task – to minimize.

The step of our algorithms can be written as follows (see [6]):

[xk+1]i =
[xk]i exp(−γk[gx]i)

n∑
j=1

[xk]j exp(−γk[gx]j)
, [yk+1]i =

[yk]i exp(γk[gy]i)
n∑

j=1

[yk]j exp(γk[gy]j)
,

where under gx, gy we mean parts of g which are responsible for x and for y.
Note that we do not present a generalization of Algorithm 2 in the arbitrary
Bregman setup, but we want to check in practice.

We take matrix 50 × 50. All elements of the matrix are generated from the
uniform distribution from 0 to 1. Next, we select one row of the matrix and
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generate its elements from the uniform from 5 to 10. Finally, we take one element
from this row and generate it uniformly from 1 to 5. Finally, the matrix is
normalized. Further, with each call of the function value yT Cx we add stochastic
noise with constant variance (which is on average 5% or 10% of the function
value).

The main goal of our experiments is to compare three gradient-free
approaches: Algorithm 1 with (5) and its modification with residual feedback
(see complete paper [5] or original paper [18] for details) approximations, as well
as Algorithm 2. We also added a first order method for comparison. Parameters
γ and τ are selected with the help of grid-search so that the convergence is the
fastest, but stable. See Fig. 1 for results.

Fig. 1. Algorithm 1 with (5) (ZO Std) approximation and its modification with residual
feedback [18] (ZO RF), Algorithm 2 (ZO Ker) and Mirror Descent (FO) applied to solve
saddle-problem (23) with noise level: (a) 5%, (b) 10%. The experiment was carried out
10 times for each method: the bold line denotes the mean trajectory, the shaded area
denotes the standard deviation from the mean trajectory.

Based on the results of the experiments, we note that the gradient-free meth-
ods converge slower than the first-order method – which is predictable. The con-
vergence of zeroth-order methods is approximately the same, the only thing that
can be noted is that the method with a kernel is subject to larger fluctuations.
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paper consists in the developing of a new stopping rule for accelerated gradient
methods with inexact gradient.

Following the works [6,12,27] we develop new approaches to solve convex
optimization problems in Hilbert space [14,22]. The main difference from the
existing approaches is that we don’t approximate an infinite-dimensional prob-
lem by the finite one (see [6,27]). We try to solve the problem in Hilbert space
(infinite-dimensional). But we try to do it with the conception of the inexact
oracle. That is we use an approximation of the problem only when we calculate
the gradient (Frechet derivative) of the functional. This generates inexactness
in gradient calculations. We try to combine known results in this area and to
understand the best way to solve convex optimization problems in Hilbert space
with application to ill-posed and inverse problems [12].

It’s important to note, that in the paper we consider only gradient type
procedures without 1D-line search. So it means that very popular in practice
methods, like steepest descent and conjugate gradient [7,20] and their nonlinear
analogues [18], do not take into account. The reason is that we try to develop
an approach that justified theoretically. For all of these methods, there exist
some troubles with error accumulation [21]. In the worth case, algorithms may
diverge. In this paper, we describe how to control this divergence and stop in
time for gradient-type methods without a 1D-line search. Fortunately, there exist
alternative procedures to 1D-line search (Armijo, Wolf, Nesterov rules [7,17,20])
that perform the same function as 1D-line search. We will use Nesterov’s rule
[5,7,17]. It allows us to choose an adaptive stepsize policy.

The important part of the paper is an adaptation of the modern results
developed for convergence of gradient type methods with inexact gradient for
a specific class of inverse ill-posed convex problems in Hilbert space. The basic
algorithms are gradient descent [7,20], fast (accelerated) gradient method in
variant of Similar Triangles Method (STM) [9] and its combinations [3,13]. For
these algorithms, the theory of gradient error accumulation is well developed
[3,7,10,13,23,24]. Basically, the theoretical foundation of the facts we use in
this paper can be found in the paper [13] and recent arXive preprint [23].

The structure of the paper is as follows. In Sect. 2 we described primal
approaches (we solve exactly the problem we have) based on contemporary ver-
sions of fast gradient descent methods and their adaptive variants.

In Sect. 3 we described dual approaches (we solve a dual problem) based on
the same methods. We try to describe all the methods with the exact estimations
of their convergence. But every time we have in mind concrete applications. Since
that we include in the description of algorithms such details that allow methods
to be more practical.

Section 4 contains a new result about the proper stopping rule for STM when
the noise in gradient is additive. This result can be briefly formulated as follows.
Having δ-inexact gradient (inexactness is additive), gradient descent and accel-
erated gradient descent (we consider STM) converge almost like their noise-free
analogues up to an accuracy in function ∼ δR, where R corresponds to the size of
the solution. After that, we should stop the algorithm, since an error can be fur-
ther accumulated and caused a divergence of the method [21]. This result seems
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to be rather unexpected for accelerated algorithms, due to pessimistic results,
mentioned in Sect. 3, about the accumulation of the error in another conception
of noise.

The rest part of the paper is devoted to applications of the described results to
elliptic ill-posed inverse problems. This part experimentally confirms conclusions
that have been done in Sects. 2, 3 and 4.

2 Primal Approaches

Assume that q ∈ H, where H is a Hilbert space with a scalar product denoted
by 〈 , 〉 (H isn’t necessarily finite). In this paper, we investigate the following
optimization problem

J (q) → min
q∈H

, (1)

where J is a convex functional in H.
Let y0 ∈ H is a starting point pro an iterative method for solving (1), and

R =
∥
∥y0 − q∗

∥
∥
2
,

where q∗ is a solution of (1) that gives R the smallest value. We assume that at
least one solution exists [27].

Assume that J (q) has Lipchitz Frechet derivative, i.e. there exist L > 0, such
that

‖∇J (q2) − ∇J (q1)‖2 ≤ L ‖q2 − q1‖2 , (2)

where ‖q‖22 = ‖q‖2H = 〈q, q〉H . In (2) we also use that due to the Riesz represen-
tation theorem [11], one may consider ∇J (q) to be an element of H∗ = H.

Example Assume that we have linear operator A from Hilbert space H1 to
another Hilbert space H2, i.e. A : H1 → H2 and b ∈ H2. Let’s consider the
following convex optimization problem [12,27]:

J (q) =
1
2

‖Aq − b‖2H2
→ min

q∈H
.

Note that
∇J (q) = A∗ (Aq − b) .

Formula (2) is equivalent to

〈Aq,Aq〉H2
= ‖Aq‖2H2

≤ L ‖q‖2H1
= L 〈q, q〉H1

,

i.e. L = ‖A‖2H1→H2
. �

Now following to [9,25,26] (most of the ideas below goes back to the pio-
neer’s works of B.T. Polyak, A.S. Nemirovski and Yu.E. Nesterov) we describe
optimal (up to absolute constant factor or logarithmic factor in strongly convex
case) numerical methods [16,19,22] (in terms of the number of ideal calcula-
tions of ∇J (q) and J (q)) for solving problem (1). The rates of convergence
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obtained in Theorems 1, 2 can be reached (in the case of Example 2) also by
conjugate-gradient methods [12,27], but we lead these estimates under more
general conditions.

Algorithm 1. Similar Triangular Method STM
(

y0, L
)

Input: A0 = α0 = 1/L, q0 = u0 = y0 − α0∇J
(

y0
)

.
1: Put k = 0,
2: Calculate

αk+1 =
1

2L
+

√

1
4L2

+
Ak

L
, Ak+1 = Ak + αk+1,

yk+1 =
αk+1u

k + Akqk

Ak+1
,

uk+1 = uk − αk+1∇J
(

yk+1
)

,

qk+1 =
αk+1u

k+1 + Akqk

Ak+1
.

3: If stopping rule doesn’t satisfy, put k := k + 1 and go to 2.

If J (q∗) = 0 (see Example 1) then stopping rule has the form J
(

qk
) ≤ ε for

some ε > 0.

Theorem 1 (see [9]). Assume that (2) holds. Then after N iterations of
STM

(

y0, L
)

we have the following estimate:

J
(

qN
)− J (q∗) ≤ 4LR2

N2
.

Sometimes it’s hardly possible to estimate the parameter L, used in STM.
Moreover, even when we can estimate L we have to use the worth one (the largest
one). Is it possible to change the worth case L to the average one (among all the
iterations)? The answer is YES [9] (see ASTM below).

Theorem 2 (see [9]). Assume that (2) holds. Then after N iterations of
ASTM

(

y0
)

we have the following estimate:

J
(

qN
)− J (q∗) ≤ 8LR2

N2
.

The average number of calculations of J (q) per iteration roughly equals 4 and
the average number of calculations Frechet derivative ∇J (q) per iteration roughly
equals 2.
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2.1 Gradient Descent

In the literature, one can typically meet non-accelerated simple gradient descent
method GD

(

q0 = y0, L
)

[3,12,27]

qk+1 = qk − 1
L

∇J
(

qk
)

(3)

Algorithm 2. Adaptive Similar Triangular Method ASTM
(

y0
)

Input: A0 = α0 = 1
/

L0
0 = 1, k = 0, j0 = 0; q0 := u0 := y0 − α0∇J

(

y0
)

.

1: while J
(

q0
)

> J
(

y0
)

+
〈∇J

(

y0
)

, q0 − y0
〉

+ L
j0
0
2

∥
∥q0 − y0

∥
∥
2

2
do

2: j0 := j0 + 1;Lj0
0 := 2j0L0

0; (A0 :=)α0 := 1

L
j0
0

, q0 := u0 := y0 −
α0∇J

(

y0
)

.
3: end while
4: Put L0

k+1 = Ljk

k

/

2, jk+1 = 0.

αk+1 :=
1

2L0
k+1

+

√

1

4
(

L0
k+1

)2 +
Ak

L0
k+1

, Ak+1 := Ak + αk+1,

yk+1 =
αk+1u

k + Akqk

Ak+1
,

uk+1 = uk − αk+1∇J
(

yk+1
)

,

qk+1 =
αk+1u

k+1 + Akqk

Ak+1
.

5: while J
(

yk+1
)

+
〈∇J

(

yk+1
)

, qk+1 − yk+1
〉

+
L

jk+1
k+1
2

∥
∥qk+1 − yk+1

∥
∥
2

2
<

J
(

qk+1
)

do
6:

jk+1 := jk+1 + 1;Ljk+1
k+1 = 2jk+1L0

k+1;

αk+1 :=
1

2L
jk+1
k+1

+

√
√
√
√

1

4
(

L
jk+1
k+1

)2 +
Ak

L
jk+1
k+1

, Ak+1 := Ak + αk+1;

yk+1 :=
αk+1u

k + Akqk

Ak+1
, uk+1 := uk − αk+1∇J

(

yk+1
)

,

qk+1 :=
αk+1u

k+1 + Akqk

Ak+1
.

7: end while
8: If stopping rule doesn’t satisfy, put k := k + 1 and go to 4.
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or GD
(

y0, L
)

, q0 = 0
{

yk+1 = yk − 1
L∇J

(

yk
)

,
qk+1 = k

k+1qk + 1
k+1yk+1.

(4)

In case (2) method (4) requires O
(

LR2
/

ε
)

calculations of ∇J (q) for J
(

qN
) −

J (q∗) ≤ ε.
One can easily propose an adaptive version of GD and GD (AGD and AGD)

see the full version of the paper [15].

3 Dual Approaches

Now we concentrate on Example 1. The described below approaches go back to
the Yu.E. Nesterov and A.S. Nemirovski (see historical notes in [1,2]).

Assume that we have to solve the following convex optimization problem

g(q) → min
Aq=f

, (5)

where g(q) is 1-strongly convex in H1. We build the dual problem

φ (λ) = max
q

{〈λ, f − Aq〉 − g (q)} = 〈λ, f − Aq (λ)〉 − g (q (λ)) → min
λ≥0

. (6)

Note, that ∇φ (λ) = f − Aq (λ).
Let (A)STM with y0 = 0 for problem (6) generates points

{

yk
}N

k=0
,
{

uk
}N

k=0

and
{

λk
}N

k=0
(in (A)STM we denote the last ones by

{

qk
}N

k=0
). Put

qN =
N∑

k=0

αk

AN
q(yk).

Let q∗ be the solution of (5) (this solution is unique due to the strong convexity
of g (q)). Then

g(qN ) − g(q∗) ≤ φ(λN ) + g(qN ).

The next theorem [1,2] allows us to calculate the solution of (5) with pre-
scribed precision.

Theorem 3. Assume that we want to solve problem (5) by passing to the dual
problem (6), according to the formulas mentioned above. Let’s use (A)STM to
solve (6) with the following stopping rule

φ
(

λN
)

+ g
(

qN
) ≤ ε,

∥
∥AqN − f

∥
∥

H2
≤ ε̃.

Then (A)STM stops by making no more than

6 · max

⎧

⎪⎨

⎪⎩

√

L
�

R
2

ε
,

√

L
�

R

ε̃

⎫

⎪⎬

⎪⎭

(7)
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iterations, where L = ‖A∗‖2H2→H1
= ‖A‖2H1→H2

,
�

R = ‖λ∗‖H2
, λ∗ is a solution

of problem (6) (if the solution is not unique then we can choose such a solution

λ∗ that minimizes
�

R).
For ASTM the average number of calculations of φ (λ) per iteration roughly

equals 4 and the average number of calculations Frechet derivative ∇φ (λ) =
f − Aq (λ) per iteration roughly equals 2.

Example 2 (see [1,8]). Let us consider the following optimization problem

1
2

‖q‖2H1
→ min

Aq=f
.

One can build the dual problem

min
Aq=f

1
2

‖q‖2H1
= min

q
max

λ

{
1
2

‖q‖2H1
+ 〈f − Aq, λ〉

}

= max
λ

min
q

{
1
2

‖q‖2H1
+ 〈f − Aq, λ〉

}

= max
λ

{

〈f, λ〉 − 1
2

‖A∗λ‖2H1

}

. (8)

We assume that Aq = f is compatible, hence for Fredgolm’s theorem it’s not
possible that there exists such a λ: A∗λ = 0 and 〈b, λ〉 > 0.1 Hence the dual
problem is solvable (but the solution isn’t necessarily unique). Let’s denote λ∗
to be the solution of the dual problem

φ (λ) =
1
2

‖A∗λ‖2H1
− 〈f, λ〉 → min

λ

with minimal H2-norm. Let’s introduce (from the optimality condition in (8) for
q): q (λ) = A∗λ. Using (A)STM for the dual problem one can find (Theorem 3)

∥
∥AqN − f

∥
∥

H1
= O

(

L
�

R

N2

)

, (9)

where L = ‖A∗‖2H2→H1
= ‖A‖2H1→H2

(as in Example 2),
�

R = ‖λ∗‖H2
.

If one will try to solve the primal problem in Example (1)

1
2

‖Aq − f‖2H2
→ min

q

1 Indeed, if there exists q such that Aq = f then for all λ we have 〈Aq, λ〉 = 〈f, λ〉.
Hence, 〈q, A∗λ〉 = 〈f, λ〉. Assume that there exists a λ, such that A∗λ = 0 and
〈f, λ〉 > 0. If it is so we observe a contradiction:

0 = 〈q, A∗λ〉 = 〈f, λ〉 > 0.

.
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by (A)STM, one can obtain the following estimate

∥
∥AqN − f

∥
∥

H2
= O

(√
LR

N

)

, (10)

where L = ‖A‖2H1→H2
, R = ‖q∗‖H1

. The estimate (10) seems worse than (9).
But the estimate (10) cannot be improving up to a constant factor [16]. There is

no contradiction here since in general
�

R can be big enough, i.e. this parameter is
uncontrollable. But in real applications, we can hope that this (dual) approach
leads us to a faster convergence rate (9). �

Indeed, all the mentioned above methods (expect (A)GD) are primal-dual
ones [1,2,8] (if we use their non strongly convex variants). That is for these
methods analogues of Theorem 3 holds true with proper modification of (7) for
(A)GD

3 · max

⎧

⎨

⎩

L
�

R2

ε
,
L

�

R

ε̃

⎫

⎬

⎭
.

This means that we can apply the results of Sect. 2 for this approach.
Now let’s describe the main motivating example for this paper.

Example 3 (inverse problem for elliptic initial-boundary value prob-
lem). Let u be the solution of the following problem (P)

uxx + uyy = 0, x, y ∈ (0, 1) ,

ux (0, y) = 0, y ∈ (0, 1) ,

u (1, y) = q (y) , y ∈ (0, 1) ,

u (x, 0) = u (x, 1) = 0, x ∈ (0, 1) .

And the corresponding dual problem (D)

ψxx + ψyy = 0, x, y ∈ (0, 1) ,

ψx (0, y) = λ (y) , y ∈ (0, 1) ,

ψ (1, y) = 0, y ∈ (0, 1) ,

ψ (x, 0) = ψ (x, 1) = 0, x ∈ (0, 1) .

Let’s introduce the operator

A : q(y) := u(1, y) �→ u(0, y).

Here u(x, y) is a solution of problem (P). It was shown in [12] that

A : L2(0, 1) → L2(0, 1).
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The conjugate is defined as follows operator

A∗ : λ(y) := ψx(0, y) �→ ψx(1, y), A∗ : L2(0, 1) → L2(0, 1).

Here ψ(x, y) is the solution of problem (D) [12]. To obtain these formulas one
may use the general approach, described, for example, in § 7, Chap. 8 [27] (see
also Chap. 4 in [6]).

Let us formulate the inverse problem [12]: find the function q by known
additional information

u (0, y) = f (y) .

The inverse problem is reduced to the optimization problem of the following cost
functional

J (q) = ‖Aq − f‖L2(0,1) → min
q

,

‖q‖2H → min
Aq=f

// φ (λ) = ‖A∗λ‖2H − 〈f, λ〉 → min
λ

.

It is obvious that ∇J (q) = A∗ (Aq − f) and ∇J (q) can be found by the following
formula:

∇J (q) (y) = ψx (1, y) .

Here ψ(x, y) is the solution of (D) with λ (y) = 2(u(0, y) − f(y)).
For Example 2 one can obtain that ∇φ (λ) = 2(f − A (A∗λ)), ∇φ (λ) ∈

L2(0, 1) and
∇φ (λ) (y) = 2 (f (y) − u (0, y)) .

Note, that for this example L = 1 [12], see (2) for definition of L. �

4 Stopping Rule for STM

Let us consider STM(y0, L) in the following conception of inexact oracle [21]:
for all q1, q2 ∈ H

‖∇J(q1) − ∇̃J(q2)‖2 � δ̃.

Using inequality (2), convexity of J and Fenchel inequality we can get, that: for
all q1, q2 ∈ H

J(q1) � J(q2) + 〈J(q2), q1 − q2〉 +
2L

2
‖q1 − q2‖22 +

δ̃2

2L
,

J(q2) + 〈∇̃J(q2), q1 − q2〉 − δ̃‖q1 − q2‖2 � J(q1).

If we introduce:

ψk(q) =
1
2
‖q − y0‖22 +

k∑

j=0

(

J(yj) + 〈∇̃J(yj), q − yj〉
)

.
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It can be shown, that in general degenerate situation (not strongly convex case)
the following estimates hold [4,23]:2

AkJ(qk) � ψk(uk) + δ̃2

2L

k∑

j=0

Aj + δ̃

k∑

j=1

αj‖yj − uj−1‖22,

J(qN ) − J(q∗) � 4LR2

N2 + 3R̃δ̃ + N δ̃2

2L ,

R̃ = maxk�N{‖q∗ − yk‖2, ‖q∗ − uk‖2, ‖q∗ − qk‖2}.

(11)

Note, that if we know, that ‖uk−q∗‖2 � R we can easily show that ‖yk−q∗‖2 � R
and ‖qk − q∗‖2 � R:

‖yk − q∗‖2 � Ak−1

Ak
‖qk−1 − q∗‖2 +

αk

Ak
‖uk−1 − q∗‖2 � R.

Similarly for the sequence qk. Therefore, we show how, using the stopping crite-
rion, to obtain this inequality for the sequence uk. If we know the value of J(q∗)
and such bound R∗ > 0, that ‖q∗‖2 � R∗. Then by choosing y0 = 0 (obviously,
that in this case R ≤ R∗), we can formulate a computable stopping criterion:
for all ζ > 0:

J(qk) − J(q∗) � k
δ̃2

2L
+ 3R∗δ̃ + ζ.

Then, using the convexity of the function ψk we get:

AkJ(qk) +
1
2
‖uk − q∗‖22 � 1

2
‖uk − q∗‖2 + ψk(uk) +

δ̃2

2L

k∑

j=0

Aj

+ δ̃

k∑

j=1

αj‖q̃j − uj−1‖2 � ψk(q∗) + δ̃

k∑

j=1

αj‖q̃j − uj−1‖2 � δ̃2

2L

k∑

j=0

Aj

+
1
2
R2 + AkJ(q∗) + δ̃

k∑

j=1

αj‖q̃j − uj−1‖2 + δ̃

k∑

j=0

αj‖uk − q∗‖2

� 1
2
R2 + Ak3δ̃R∗ +

δ̃2

2L

k∑

j=0

Aj + AkJ(q∗)

⇒ 1
2
(R2 − ‖uk − q∗‖2) � Ak

(

(

J(qk) − J(q∗)
)−

(

k
δ̃2

2L
+ 3R∗δ̃ + ζ

))

� 0.

Also this criterion is achievable:

J(qN ) − J(q∗) � 4LR2

N2
+ 3R∗δ̃ + N

δ̃2

2L
,

4LR2

N2
� ζ,N � 2

√

LR2

ζ
,N = O

(√

LR2

ζ

)

.

2 Recall that R =
∥
∥q∗ − y0

∥
∥
2
.
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That is N iterations is enough to reach the stopping criterion. Finally we get
the following theorem:

Theorem 4. Assume that we solve problem (1) and we know the value J(q∗)
and the bound R∗ > 0 for ‖q∗‖2. Using STM(0, L) with stopping rule:

J(qk) − J(q∗) � δ̃2

2L
k + 3R∗δ̃ + ζ.

We get the following estimation:

R̃ � R, R̃ = max
k�N

{‖q∗ − yk‖2, ‖q∗ − uk‖2, ‖q∗ − qk‖2}.

And it is guaranteed, that the criteria will be reached by:

N = O

(√

LR2

ζ

)

.

Using this theorem we can get, that solving the problem:

J(qN ) − J(q∗) � ε. (12)

We can choose ζ ∼ ε and δ̃ ∼ ε
R∗

and the number of iterations will be estimated
as

N = O

(√

LR2

ε

)

. (13)

Similar results can be formulated for all other methods from Sect. 2 including
adaptive ones, since (11) holds for this generality too [23]. As an example, we
remark that for GD (12) takes place with the same requirement for δ̃ ∼ ε

R∗
, but

with a worse bound on

N = O

(
LR2

ε

)

. (14)

From this, we may expect that with the same level of noise in the gradient δ̃
accelerated algorithms (STM) reach the same quality J(qN )−J(q∗)  δ̃R as non-
accelerated ones (GD), but they do it faster (compare (13) and (14)). Therefore
we may expect that with a proper stopping rule STM must outperform GD for
degenerate (non strongly convex) problems. That was confirmed in the numerical
experiments described in Sect. 5.

5 Numerical Results

We consider the following continuation problem in the domain Ω = {(x, y, z) ∈
[0, 1]2 × [0,H]}:3

Δu(x, y, z) ≡ uxx + uyy + uzz = h(x, y, z), (x, y, z) ∈ Ω
u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0,

uz|z=0 = 0, u|z=H = q(x, y)
3 The mathematical background of the described example see in the full version of the

paper [15].
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The problem is to determine the unknown function q(x, y) by using the additional
information of the function u(x, y, z) on the boundary z = 0:

u|z=0 = f(x, y).
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Fig. 1. Test1 - True solution

We solve the formulated problem by using different versions of STM and
GD methods. The structure of the gradient of the functional has the like in
Example 3. We choose the test solution as follows:

q(x, y) =

{

el1(x)+l2(y), (x, y) ∈ [0.1, 0.9] × [0.3, 0.7]
0, if else

Here l1(x) = 1 + 0.16
(x−0.5)2−0.16 , l2(y) = 1 + 0.04

(y−0.5)2−0.04 . The structure of this
function is presented on the Fig. 1. We solve the direct problem, using q(x, y) as
a given function, to calculate true data f(x, y).

For the first series of tests we use the following parameters: H = 0.5, Niter =
1000. We consider the similar triangles method (STM), simple gradient descent
method and steepest descent method. We used initial approximation q(x, y) = 0
for all methods. Due to the fact, that it is hard to get the accurate estimation
for the norm of the operator, we couldn’t get the precise values for the param-
eters L,α of the STM and GD methods correspondingly during the numerical
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GD (α = 1.0) GD (α = 10.0)

STM (L = 1.0) STM (L = 0.1)

Fig. 2. Test 1 - solution of continuation problem by GD and STM methods

solution. Thus, we choose the parameters of STM and GD methods by trials and
errors. However, in the case of the homogeneous right hand side and boundary
conditions we use analytic expression for the descent parameters of the steepest
descent method: αn = |J ′(qn)|2

2|A(J ′(qn))|2 . The results of computations are presented
on Figs. 2, 3 and 4.

The similar triangles method provides the most efficient results of the con-
sidered methods. The steepest descent methods converge faster on the first iter-
ations, but eventually, the STM method provides better results in terms of both
the residual and errors. The accuracy of the methods is acceptable (if suitable
parameters of the methods were chosen). In order to illustrate the influence
of the parameter L on the problem, we considered two different values of the
parameter of the STM method during this experiment.
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Fig. 3. Test 1 - The residual functional
(logarithmic scale)

Fig. 4. Test 1 - The errors of the GD,
SGD, STM methods
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Fig. 5. Test 3 (increased number of iter-
ations) - The residual functional (loga-
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For the second series of tests, we added some non-homogeneous boundary
conditions, and the right-hand side of the following form:

h(x, y, z) = (1 − z)cos(πx)cos(πy)

We increased the depth to H = 1.0. The structure of the function q(x, y) remains
the same. However, the increased depth significantly decreases the influence of
data, that we have during the experiments with synthetic data, that we bal-
ance by increasing the number of iterations to Niter = 16000. The behavior of
the functional is presented on the Figs. 6 and 7. This allows us to provide the
solution, almost identical to exact one. During the last series of test we consid-
ered the medium number of iterations Niter = 6000 and the depth H = 1.25
to study the variation of STM method with restarts. The computational results



Convex Optimization with Inexact Gradients in Hilbert Space 173

GD (α = 100) STM (no restarts)

STM (restart every 2000 iterations) STM (restart every 2800 iterations)

Fig. 7. Test 2 (increased depth) - solution of continuation problem by GD and STM
methods.

Fig. 8. Test 2 - The residual functional
(logarithmic scale)

Fig. 9. Test 2 (increased depth) - The
errors of the methods
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are presented on Figs. 7, 8 and 9. We notice that the similar triangles method
provides significantly better results, compared to simple gradient descent. The
usage of restart technique allows obtaining better results in terms of residual,
but the effects of the restarts are much less significant in terms of errors. The
cause of this difference is the ill-posedness of the problem, which becomes more
noticeable with the increase of depth.

References

1. Anikin, A., Gasnikov, A., Dvurechensky, P., Turin, A., Chernov, A.: Dual
approaches to the strongly convex simple function minimization problem under
affine restrictions. arXiv preprint arXiv:1602.01686 (2016)

2. Chernov, A., Dvurechensky, P., Gasnikov, A.: Fast primal-dual gradient method
for strongly convex minimization problems with linear Constraints. In: Kochetov,
Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016.
LNCS, vol. 9869, pp. 391–403. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44914-2 31

3. Devolder, O.: Exactness, inexactness and stochasticity in first-order methods for
large-scale convex optimization. Ph.D. thesis (2013)

4. Dvinskikh, D., Gasnikov, A.: Decentralized and parallel primal and dual acceler-
ated methods for stochastic convex programming problems. J. Inverse Ill-posed
Problems (2021)

5. Dvurechensky, P.E., Gasnikov, A.V., Nurminski, E.A., Stonyakin, F.S.: Advances
in low-memory subgradient optimization. In: Bagirov, A.M., Gaudioso, M., Kar-
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Abstract. This article is devoted to one particular case of using uni-
versal accelerated proximal envelopes to obtain computationally efficient
accelerated versions of methods used to solve various optimization prob-
lem setups. We propose a proximally accelerated coordinate descent
method that achieves the efficient algorithmic complexity of iteration
and allows taking advantage of the data sparseness. It was considered an
example of applying the proposed approach to optimizing a SoftMax-like
function, for which the described method allowing weaken the depen-
dence of the computational complexity on the dimension n in O(

√
n)

times and, in practice, demonstrates a faster convergence in comparison
with standard methods. As an example of applying the proposed app-
roach, it was shown a variant of obtaining on its basis some efficient
methods for optimizing Markov Decision Processes (MDP) in a minimax
formulation with a Nesterov smoothed target function.

Keywords: Proximal accelerated method · Catalyst · Accelerated
coordinate descent method · SoftMax · Markov decision processes

1 Introduction

One of the most important theoretical results in convex optimization was the
development of accelerated optimization methods [23]. At the initial stage of
implementation of this concept, many accelerated algorithms for different prob-
lem setups were proposed. But each such case required special consideration of
the possibility of acceleration. Therefore, the proposed designs were significantly
different and did not allowing assume a way to generalize them. A significant
step towards the development of a universal scheme for accelerating optimization
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methods was the paper in which an algorithm called Catalyst proposed, based on
the idea of [26,27] and allowing to accelerate other optimization methods, using
them for the sequential solving of several Moreau–Yosida regularized auxiliary
problems [18,19]. Following these ideas, many variants of the applications of this
method and its modifications [14,17,25] were proposed. Among the most recent
results until the time of writing this paper, the generalizations of the discussed
approach to tensor methods [5,10,11,20] were also described. The corresponding
form of the accelerated proximal envelope to the authors’ knowledge is the most
general of those described in the literature, and therefore, this paper is focused
primarily on the methods proposed in the papers [10,11].

main motivation of this paper is to describe the possibilities of the prac-
tical application of universal accelerated proximal envelopes for constructing
computationally and oracle efficient optimization methods. Let us consider the
classical coordinate descent method [4], the iteration of which for the convex
function f : Rn → R is of the form:

xi
k+1 = xi

k − η∇if(xk), i ∼ U{1, ..., n}, η > 0.

One of the many applications of this method is the optimization of functions,
for which the calculation of the one component of the gradient is significantly
more efficient than the calculation of the full gradient vector (in particular,
many problems in the case of sparse formulations satisfy this condition). The
oracle complexity of this method, provided that the method stops when the ε-
small function value residual is reached, is O

(
nLR2

ε

)
, where R2 = ‖x0 − x∗‖22,

L = 1
n

∑n
i=1 Li is the average of the Lipschitz constants of the gradient compo-

nents. However, this estimate is not optimal for the class of convex problems.
Let us now consider the accelerated coordinate descent method proposed by
Yu.E. Nesterov [24]. The oracle complexity of this method corresponds to the

optimal bound: O
(

n

√
˜LR2

ε

)
, where

√
L̃ = 1

n

∑n
i=1

√
Li is the mean of square

roots of the Lipschitz constants of the gradient components. At the same time,
the situation changes drastically when the algorithmic complexity of the method
considered. Namely, even if the computation of one component of the gradient
has the complexity O(s), s � n, the complexity of the whole iteration of the
accelerated coordinate descent method will be O(n), unlike the standard method,
the iteration complexity of which is O(s). It means that the sparseness of the
problem when using the accelerated coordinate descent method does not sig-
nificantly affect the complexity of the algorithm, and besides, the complexity
in this case quadratically depends on the dimension of the problem. Together,
this somewhat devalues the use of the coordinate descent method in this case.
Thus, an interesting problem is the construction of an accelerated coordinate
descent method, the iteration complexity of which, as in the standard version
of the method, is O(s). This is possible due to the application of the universal
accelerated proximal envelope “Accelerated Meta-algorithm” [11].

This article consists of an introduction, conclusion and the main Sect. 2. It
describes the theoretical results on the convergence and algorithmic complexity
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of the coordinate descent method, accelerated by using the “Accelerated Meta-
algorithm” envelope (Sect. 2.1). Using the example of the SoftMax-like function
optimization problem, it was experimentally tested method’s effectiveness with
relation to its working time. There were also described the possibilities of its
computationally efficient implementation, and carried out a comparison with
standard methods (Sect. 2.2). Further, as an example of applying the proposed
approach, it was provided a method for optimizing Markov Decision Processes
in a minimax formulation, based on applying the method introduced in this
paper to the Nesterov smoothed target function. The proposed approach obtains
estimates close to that for several efficient and practical methods for optimizing
the discounted MDP and matches the best estimates for the averaged MDP
problem (Sect. 2.3).

2 Accelerated Meta-algorithm and Coordinate Descent

2.1 Theoretical Guarantees

Let us consider the following optimization problem of the function f : Rn → R:

min
x∈Rn

f(x),

subject to:

1. f is differentiable on R
n;

2. f is convex on R
n;

3. ∇if is component-wise Lipschitz continuous, i.e. ∀x ∈ R
n and u ∈ R,

∃ Li ∈ R (i = 1, . . . , n), such that

|∇if (x + uei) − ∇if(x)| ≤ Li|u|,

where ei is the i-th unit basis vector, i ∈ {1, ..., n};
4. ∇f is L-Lipschitz continuous.

Let us turn to the content of the paper [11], where a general version of
the “Accelerated Meta-algorithm” for solving convex optimization problems for
composite functionals in form of F (x) = f(x) + g(x) was proposed. For the
considered formulation of the problem, such generality is not required. It is
sufficient to apply a special case of the described scheme for p = 1, f ≡ 0 (using
the designations of the corresponding paper), in which the described envelope
takes the form of an accelerated proximal gradient method. The method used is
listed as Algorithm 1.

Before formulating any results on the convergence of the proposed acceler-
ated coordinate descent method described below, it is necessary to start with a
detailed consideration of the process of solving the auxiliary problems, where its
analytical solution is available only in rare cases. Therefore, one should apply
numerical methods to find its approximate solution, and that is inaccurate. The
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Algorithm 1: Accelerated Meta-algorithm for First-order Method M
Input: H > 0, x0 ∈ R

n;

λ ← 1/2H;
A0 ← 0; v0 ← x0;

for k = 0, ..., ˜N − 1 do

ak+1 ← λ +
√

λ2 + 4λAk

2
;

Ak+1 ← Ak + ak+1;

x̃k ← Akvk + ak+1xk

Ak+1
;

By running the method M,
find the solution of the following auxiliary problem
with an accuracy ε by the argument:

vk+1 ∈ Argε min
y∈Rn

{

f(y) +
H

2
‖y − x̃k‖2

2

}

;

xk+1 ← xk − ak+1∇f(vk+1);

end
return v

˜N ;

process of solving the auxiliary problem should continue until the following stop-
ping condition is satisfied ([16], Appendix B):

∥∥∥∥∇
{

F (y�) := f(y�) +
H

2
‖y� − x̃k‖22

}∥∥∥∥
2

≤ H

2
‖y� − x̃k‖2, (1)

where y� is an approximate solution of the auxiliary problem, returned by inter-
nal method M. Due to the ‖∇F (y∗)‖2 = 0 (where y∗ denotes an exact solution
of the considered problem), and due to the (L + H)-Lipschitz continuity of ∇F ,
we have got:

‖∇F (y�)‖2 ≤ (L + H)‖y� − y∗‖2. (2)

Writing out the triangle inequality: ‖x̃k − y∗‖2 − ‖y� − y∗‖2 ≤ ‖y� − x̃k‖2, and
using it together the inequalities (1) and (2), we have got the final form of the
stopping condition:

‖y� − y∗‖2 ≤ H

3H + 2L
‖x̃k − y∗‖2. (3)

This implies that the required argument accuracy of solving the auxiliary
problem does not depend on the accuracy required for the main problem solution.
That makes it possible to significantly simplify the inference of further results.

Let us now consider the main method used for solving auxiliary problems.
Coordinate Descent Method in version of [22] (in the particular case, when γ = 1)
is listed as Algorithm 2. For this method, in the case of the considered auxiliary
problems, the following result holds:
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Algorithm 2: Coordinate descent method
Input: y0 ∈ R

n;

Z ← ∑n
i=1(H + Li);

pi ← (H + Li)/Z, i ∈ {1, ..., n};
Discrete probability distribution π
with probabilities pi;

for k = 0, ..., N − 1 do
i ∼ π{1, ..., n};
yk+1 ← yk;

yi
k+1 = yi

k − 1

H + Li
∇iF (yk);

end
return yN ;

Theorem 1 ([4], theorem 6.8). Let F be H-strongly convex function with respect
to ‖ · ‖2. Then for the sequence {yk}N

k=1 generated by the described coordinate
descent algorithm 2, it holds the following inequality:

E[F (yN )] − F (y∗) ≤
(

1 − 1
κ

)N

(F (y0) − F (y∗)), (4)

where κ =
H

Z
, Z =

n∑
i=1

(H + Li), (5)

where E[·] denotes the mathematical expectation of the specified random variable
with respect to the randomness of methods trajectory induced by a random choice
of components i at each iteration.

Using this result, lets formulate the following statement on the number of itera-
tions of the coordinate descent method sufficient to satisfy the stopping condition
(3).

Corollary 1. The expectation E[yN ] of the point resulting from the coordinate
descent method (Algorithm 2) satisfies the condition (3) if the following inequal-
ity on iterations number holds:

N ≥ N(ε̃) =

⌈
Z

H
ln

{(
1 +

L

H

)(
3 +

2L

H

)2
}⌉

, (6)

where ε̃ =
H

2

(
H

3H + 2L

)2

‖y0 − y∗‖22. (7)

Proof. Is in Appendix A1.
1 For the detailed proofs see appendices in full paper version on https://arxiv.org/

abs/2103.06688.

https://arxiv.org/abs/2103.06688
https://arxiv.org/abs/2103.06688
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Now that the question of the required accuracy and oracle complexity of
solving the auxiliary problem using the proposed coordinate descent method is
clarified, we can proceed to the results on the convergence of the Accelerated
Meta-algorithm. For the used stopping condition (3), the following result on the
convergence of the Accelerated Meta-algorithm holds.

Theorem 2 ([11], theorem 1). For H > 0 and the sequence {vk} ˜N
k=1 generated

by the Accelerated Meta-algorithm with some non-stochastic internal method, it
holds the following inequality:

f(v
˜N ) − f(x∗) ≤ 48

5
H‖x0 − x∗‖22

Ñ2
. (8)

Based on the last statement, one can formulate a theorem on the convergence of
the Accelerated Meta-algorithm in the case of using the stochastic method and,
in particular, coordinate gradient descent method.

Theorem 3. For H > 0 and some 0 < δ < 1, the point v
˜N resulting from the

Accelerated Meta-algorithm using coordinate descent method to solve the auxil-
iary problem, solving it within Nδ iterations, satisfies the condition

Pr(f(v
˜N ) − f(x∗) < ε) ≥ 1 − δ,

where Pr(·) denotes the probability of the specified event, if

Ñ ≥
⌈

4
√

15
5

√
H‖x0 − x∗‖22

ε

⌉
, (9)

Nδ ≥ N

(
ε̃δ

Ñ

)
=

⌈
Z

H
ln

{
Ñ

δ

(
1 +

L

H

)(
3 +

2L

H

)2
}⌉

. (10)

Proof. The Corollary 1 presents an estimate of the number of iterations sufficient
to satisfy the following condition for the expected value of the function at the
resulting point of the method:

E[F (yN(ε̃))] − F (y∗) ≤ ε̃.

Lets use the Markov inequality and obtain the formulation of this condition in
terms of the bound for the probability of large deviations [1]: deliberately choose
the admissible value of the probability of non-fulfilment of the stated condition,
so that 0 < δ/Ñ < 1, where Ñ expressed from (8); then

Pr
(
F
(
yN(ε̃δ/ ˜N)

)
− F (y∗) ≥ ε̃

)
≤ δ

Ñ
·
E

[
F
(
yN(ε̃δ/ ˜N)

)]
− F (y∗)

ε̃ · δ/Ñ
=

δ

Ñ
.

Since the probability that the obtained solution of some separately taken aux-
iliary problem will not satisfy the stated condition is equal to δ/Ñ . It means
that the probability that for Ñ iterations of the Accelerated Meta-algorithm the
condition will not be satisfied for at least one of the problems is Ñ · δ/Ñ = δ,
whence the proved statement follows.
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Further, combining the estimates given in Theorem 3, we can obtain an
asymptotic estimate for the total number of iterations of the coordinate descent
method, sufficient to obtain a solution of the considered optimization problem
with a certain specified accuracy, as well as an estimate for the optimal H value:

Corollary 2. In order to the point v
˜N , which is the result of the Accelerated

Meta-algorithm, to satisfy the condition

Pr(f(v
˜N ) − f(x∗) < ε) ≥ 1 − δ,

it is sufficient to perform a total of

N̂ ≥ Ñ · Nδ = O
(

Z‖x0 − x∗‖2√
H

· 1
ε1/2

log
{

1
ε1/2δ

})
(11)

iterations of coordinate descent method to solve the auxiliary problem. In this
case, the optimal value of the regularization parameter H of the auxiliary problem
should be chosen as H � 1

n

∑n
i=1 Li (� denotes equality up to a small factor of

the log order).

Proof. The expression for N̂ can be obtained by the direct substitution of one
of the estimates given in (9) into another, and their subsequent multiplication.
If we exclude from consideration a small factor of order log(L/H), the constant
in the estimate will depend on H as:

√
H · Z/n

H
=

√
H

(
1 +

1
n

∑n
i=1 Li

H

)
.

By minimizing the presented expression by H, we get the specified result.

A similar statement can be formulated for the expectation of the total itera-
tions number without resorting to bound for the probabilities of large deviations,
following the reasoning scheme proposed in [9]:

Theorem 4. The expectation E[N̂ ] of the sufficient total number of the itera-
tions of the coordinate descent method, to obtain a point v

˜N satisfying the fol-
lowing condition:

f(v
˜N ) − f(x∗) < ε

can be bounded as follows:

E[N̂ ] ≤ Ñ · (N(ε̃)+1) = O
⎛
⎝
√

L‖x0 − x∗‖22
ε

⎞
⎠ , where L = Z/n =

1
n

n∑
i=1

Li.

Proof. Is in Appendix B.

As we can see, the proposed scheme of reasoning allows us to reduce the log-
arithmic factor in estimate for the number of iterations of the method. However,
this result is less constructive than the presented one in Corollary 2. Indeed, in
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the above reasoning, we operated with the number of iterations N , after which
the stopping condition for the internal method is satisfied. But in the program
implementation, stopping immediately after fulfilment of this condition is not
possible, if only because it is impossible to verify this criterion due to the natural
lack of information about y∗. So the last result is more relevant from the point
of view of evaluating the theoretical effectiveness of the method, while when
considering specific practical cases, one should rely on the estimate (11).

Let us now consider in more detail the issue of the algorithmic complexity of
the proposed accelerated coordinate descent method.

Theorem 5. Let the complexity of computing one component of the gradient of
f is O(s). Then the algorithmic complexity of the Accelerated Meta-algorithm
with coordinate descent as internal method is

T = O
⎛
⎝s · n ·

√
L‖x0 − x∗‖22

ε
log
{

1
ε1/2δ

}⎞
⎠ .

Proof. Is in Appendix C.

Note also that the memory complexity of the method is O(n), as well as the
complexity of the preliminary calculations (for the coordinate descent method,
there is no need to perform them again for every iteration).

Let us compare the estimates obtained for proposed approach (Catalyst
CDM) with estimates for other methods that can be used to solve problems
in the described setting: Fast Gradient Method (FGM), classical Coordinate
Descent Method (CDM) and Accelerated Coordinate Descent Method in the
version of Yu.E. Nesterov (ACDM). The estimates are shown in Table 1 below.
As can be seen from the above asymptotic estimates of the computational com-
plexity, the proposed method allows to achieve a convergence rate that is not
inferior to other methods with respect to the dependence on the dimension n and
the required accuracy ε (for a certain price, in the form of additional logarith-
mic factor). Note, in addition, that despite the significant similarity of estimates,
between the two most efficient methods in the table (FGM and Catalyst CDM)
there is also a difference in the constants characterising the smoothness of the
function. Namely, L in FGM and L in Catalyst CDM. Thus the behaviour of
the considered method for various problems directly depends on the character
of its component-wise smoothness.

2.2 Numerical Experiments

This section describes the character of the practical behaviour of the proposed
method by the example of the following SoftMax-like function optimization prob-
lem:

min
x∈Rn

{f(x) = γ ln

⎛
⎝

m∑
j=1

exp
( [Ax]j

γ

)⎞
⎠− 〈b, x〉}, (12)
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Table 1. Comparison of the effectiveness of methods

Algorithm Iteration complexity Comp. complexity Source

FGM O (s · n) O
(

s · n · 1

ε1/2

)

[23]

CDM O (s) O
(

s · n · 1

ε

)

[4]

ACDM O (n) O
(

n2 · 1

ε1/2

)

[24]

Catalyst CDM O (s) ˜O
(

s · n · 1

ε1/2

)

This paper

where b ∈ R
n, A ∈ R

m×n, γ ∈ R+. Similar problems are essential for many
applications. In particular, they arise in entropy-linear programming problems
as a dual problem [8,12], in particular in optimal transport problem, is also a
smoothed approximation of the max function (which gave the function the name
SoftMax) and, accordingly, of the norm ‖ · ‖∞, which may be needed in some
formulations of the PageRank problem or for solving systems of linear equations.
Moreover, in all the described problems, an important special case is the sparse
setting, in which the matrix A is sparse, that is, the average number of nonzero
entries in the row Aj does not exceed some s � n (it will also be convenient to
assume that the one of the rows Aj is non-sparse).

Let us formulate the properties possessed by the function f [13]:

1. f is differentiable;
2. ∇f satisfies the Lipschitz condition with the constant L = maxj=1,...,m ‖Aj‖22;
3. ∇if satisfy the component-wise Lipschitz condition with the constants Li =

maxj=1,...,m |Aji|.
Let us write the expression for the i-th component of the gradient of the

function f :

∇if(x) =

∑m
j=1 Aji exp

(
[Ax]j

)

∑m
j=1 exp

(
[Ax]j

) .

As we can see, the naive calculation of this expression can take time comparable
to the calculation of the whole gradient and it will significantly affect the com-
putational complexity and the working time of the method. At the same time,
many terms in this expression can be recalculated either infrequently or in a
component-wise manner, and used as additional sequences when performing a
step of method. Using this approach, the complexity of the iteration will remain
efficient, and the use of the coordinate descent methods will be justified. For the
convenience of describing the computational methods used, we write the step of
the coordinate descent algorithm in the form of

yk+1 = yk + ηei,
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where η is the step size, multiplied by the corresponding gradient component, ei

is the i-th unit basis vector.
So, let us describe the additionally introduced computational procedures:

1. We will store a sequence of values
{

exp
(
[Ayk]j

)}m

j=1
, used to calculate the

sum in the numerator. Updating these values after executing a method step
takes O(s) algorithmic complexity, due to the Ayk+1 = Ayk+ηAi and that Ai

has at most s nonzero components, which means that it will be necessary to
calculate not more than s correcting factors and multiply the corresponding
values from the sequence by them.

2. From the first point, it can be understood that the multiplication of sparse
vectors should be performed in O(s), considering only nonzero components.
In terms of program implementation, this means the need to use a sparse
representation for cached values and for rows of the matrix A, that is, storing
only index-value pairs for all nonzero elements. Then, obviously, the com-
plexity of arithmetic operations for such vectors will be proportional to the
complexity of a loop with elementary arithmetic operations, the number of
iterations of which is equal to the number of nonzero elements (in the python
programming language, for example, this storage format is implemented in
the method scipy.sparse.csr matrix [28]).

3. Similarly, we will store the value
∑m

j=1 exp
(
[Ayk]j

)
, which is the denomi-

nator of the presented expression. Its updating is carried out with the same
complexity as updating a sequence (by calculating the sum of nonzero terms
added to each value from the sequence).

4. Since evaluating the specified expression requires evaluating exponent values,
the type overflow errors can occur. To solve this problem, it will be used
the standard technique of exp-normalize trick [3]. However, to use it, one
should also store the value maxj=1,...,m [Ayk]j . At the same time, there is no
need to maintain exactly this value. Indeed, it is sufficient to use only an
approximation of it to keep the exponent values small, so this value can be
recalculated much rarely: for example, once in m iterations (in this case, the
amortized complexity will also be equal to O(s)).

So, in the further reasoning, one can assume that the iteration of the coor-
dinate descent algorithm for solving the corresponding auxiliary problem has
amortized complexity O(s).

Further, let us consider in more detail the question of the values of the
smoothness constants of this function. We can write down asymptotic formulas
for L and L = 1

n

∑n
i=1 Li:

L = max
j=1,...,m

‖Aj‖22 = O(n), L =
1
n

n∑
i=1

max
j=1,...,m

|Aji| = O(1).
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Using these estimates, let us refine the computational complexity of the FGM
and Catalyst CDM (CCDM) methods as applied to this problem:

TFGM = O
(

s · n3/2 · 1
ε1/2

)
, TCCDM = Õ

(
s · n · 1

ε1/2

)
.

Thus, in theory, the application of the Catalyst CDM method for solving this
problem allows, in comparison with FGM, to reduce the factor of order O(

√
n)

in the asymptotic estimate of the computational complexity. In practice, this
means that it is very reasonable to apply the proposed method to problems of
large dimensions.

Let us now compare the performance of the proposed approach (Catalyst
CDM) with a number of alternative approaches: Gradient Method (GM), Fast
Gradient Method (FGM), Coordinate Descent Method (CDM) and Accelerated
Coordinate Descent Method (ACDM), by the example of the problem (12) with
an artificially generated matrix A in two different ways. Figures 1 and 2 present
plots of the convergence of the methods under consideration: the x-axis shows the
working time of the methods in seconds, and the y-axis shows the function value
residual in a logarithmic scale (f∗ calculated by searching for the corresponding
point x∗ using the FGM method, tuned for an accuracy that is obviously much
higher than that possible to achieve at the selected time interval).

lo
g 

sc
al

e

s

Fig. 1. Convergence of methods for the
SoftMax problem (12) with a uniformly
sparse random matrix.

lo
g 

sc
al

e

s

Fig. 2. Convergence of methods for the
SoftMax problem (12) with heteroge-
neously sparse matrix.

In Fig. 1, the case is presented for which all elements of the matrix A are
i.i.d. random variables from the discrete uniform distribution Aji ∈ U{0, 1}, the
number of nonzero elements is s ≈ 0.2m, and the parameter γ = 0.6 (as well
as in the second case). In this setting, the proposed method demonstrates faster
convergence compared to all methods under consideration, except the FGM. At
the same time, in the setting shown in Fig. 2, in which the number of nonzero
elements, in comparison with the first case, is increased to s ≈ 0.75m, and the
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matrix is generated heterogeneously in accordance with the rule: 0.9m rows with
0.1n nonzero elements and 0.1m rows with 0.9n nonzero elements, and also one
row of the matrix is completely nonsparse, the proposed method (Accelerated
Meta-algorithm with coordinate descent as internal method) converges faster
than FGM. This is explained by the fact that in this case L = n, but L is
still quite small and, as a result, the constant in the proposed method has a
noticeably smaller effect on the computational complexity than in the case of
FGM. From the results of the experiment, it can also be noted that the character
of its componentwise smoothness affects the efficiency of the proposed method
much more significantly than the sparseness of the problem.

2.3 Application to Optimization of Markov Decision Processes

We denote an MDP instance by a tuple MDP := (S,A,P, r, γ) with components
defined as follows:

1. S is a finite set of states, |S| = n;
2. A =

⋃
i∈S Ai is a finite set of actions that is a collection of sets of actions Ai

for states i ∈ S, |A| = m;
3. P is the collection of state-to-state transition probabilities where P :=

{pij(ai)|i, j ∈ S, ai ∈ Ai};
4. r is the vector of state-action transitional rewards where r ∈ [0, 1]A, ri,ai

is
the instant reward received when taking action ai at state i ∈ S;

5. γ is the discount factor of MDP, by which one down-weights the reward in
the next future step. When γ ∈ (0, 1), we call the instance a discounted MDP
(DMDP) and when γ = 1, we call the instance an average-reward MDP
(AMDP).

Let as denote by P ∈ R
A×S the state-transition matrix where its (i, ai)-th

row corresponds to the transition probability from state i ∈ S where ai ∈ Ai to
state j. Correspondingly we use Î as the matrix with ai-th row corresponding
to ei, for all i ∈ S, ai ∈ Ai. Our goal is to compute a random policy which
determines which actions to take at each state. A random policy is a collection
of probability distributions π := {πi}i∈S , where πi ∈ Δ|Ai|, πi(aj) denotes the
probability of taking aj ∈ Ai at state i. One can extend πi to the set of Δm by
filling in zeros on entries corresponding to other states j �= i. Given an MDP
instance MDP = (S,A,P, r, γ) and an initial distribution over states q ∈ Δn ,
we are interested in finding the optimal π� among all policies π that maximizes
the following cumulative reward vπ of the MDP:

π� := arg max
π

vπ,

vπ :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E
π

[ ∞∑
t=1

γt−1rit,at

∣∣i1 ∼ q

]
in the case of DMDP,

lim
T→∞

1
T
E

π

[
T∑

t=1

rit,at

∣∣i1 ∼ q

]
in the case of AMDP.
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For AMDP, v� is the optimal average reward if and only if there exists a
vector v� = (v�

i )i∈S satisfying its corresponding Bellman equation [2]:

v� + v�
i = max

ai∈Ai

⎧
⎨
⎩
∑
j∈S

pij(ai)v�
j + ri,ai

⎫
⎬
⎭ ,∀i ∈ S.

For DMDP, one can show that at optimal policy π�, each state i ∈ S can be
assigned an optimal cost-to-go value v�

i satisfying the following Bellman equa-
tion:

v�
i = max

ai∈Ai

⎧
⎨
⎩
∑
j∈S

γpij(ai)v�
j + ri,ai

⎫
⎬
⎭ ,∀i ∈ S.

One can further write the above Bellman equations equivalently as the following
primal linear programming problems.

min
v,v

v s.t. v1 + (Î − P )v − r ≥ 0 (LP AMDP)

min
v

(1 − γ)q�v s.t. (Î − γP )v + r ≥ 0 (LP DMDP)

By standard linear duality, we can recast the problem formulation using the
method of Lagrangian multipliers, as bi-linear saddle-point (minimax) problem.
The equivalent minimax formulations are

min
v∈Rn

{
F (v) = max

μ∈Δm

(
μ�((P − Î)v + r)

)}
(AMDP)

min
v∈Rn

{
Fγ(v) = max

μ∈Δm

(
(1 − γ)q�v + μ�((γP − Î)v + r)

)}
(DMDP)

Then, one can apply the Nesterov smoothing technique to the presented
max-type function, according to [21]. (The calculation is presented for the case
of DMDP, as a more general one. A smoothed version of the AMDP function is
obtained similarly with the re-designations A := P − Î and γ = 1):

Fγ(v) = max
μ∈Δm

⎛
⎝(1 − γ)q�

︸ ︷︷ ︸
b

v + μ�((γP − Î)︸ ︷︷ ︸
A

v + r)

⎞
⎠ = max

μ∈Δm

⎛
⎝

m∑
j=1

μj([Av]j + rj)

⎞
⎠ + 〈b, v〉

→ max
μ∈Δm

⎛
⎝

m∑
j=1

μj([Av]j + rj) − σ

m∑
j=1

μj ln

(
μj

1/m

)⎞
⎠ + 〈b, v〉

= σ ln

⎛
⎝

m∑
j=1

exp

(
[Av]j + rj

σ

)⎞
⎠ − σ lnm − 〈b, v〉 =: fγ(v), where σ := ε/(2 lnm).

The resulting problem is of the form of SoftMax function, discussed in detail
in the previous section. Taking into account the form of the matrix A, we can
calculate the average component-wise Lipschitz constant:

Pji ∈ [0, 1], Îji ∈ {0, 1} =⇒ L =
1
σ

1
n

n∑
i=1

max
j=1,...,m

|Aji| ≤ γ

σ
=

2γ ln m

ε
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So, one can get the following estimates, which are also given in the Tables 2
and 3 (transition from the duality gap accuracy ε in matrix game setting to the
ε̃ accuracy to obtain the ε̃-approximate optimal policy satisfying the condition
in expectation Evπ ≥ v� − ε̃ is carried out according to the rules described in
more detail in the paper [15]):

ε ∼ 1
2

· ε̃

3
=⇒ TCCDM = Õ

(
nnz(P )

√
log m · ε̃−1

)
,

εγ ∼ 1
2

· (1 − γ)ε̃
3

=⇒ TCCDM,γ = Õ
(
γ1/2(1 − γ)−1 · nnz(P )

√
log m · ε̃−1

)
,

where nnz(P ) ≤ n · m denotes the number of nonzero elements in matrix P .
In addition to the result corresponding to the considered method, the Tables 2
and 3 contain complexity bounds of other known approaches to solve matrix
games and MDP problems (for the sake of compactness, it is used the notation
nnz′(P ) = nnz(P )+(m+n) log3(mn)). It can be seen that for the case of γ = 1,
the described approach allowing to obtain one of the best among the known
estimates, and in the case of γ < 1 it is close in efficiency to many modern
approaches. Moreover, to describe the method used in this article, it was enough
to apply only a special case of the universal accelerated proximal envelope for the
classical coordinate descent method. This approach is conceptually much simpler
than the other methods cited here (which, by the way, are often applicable only
to very particular settings), and allows one to obtain complexity bounds for
AMDP problem that notedly competitive with the best alternatives.

Table 2. Comparison of the effectiveness of approaches (γ = 1 case)

Computational complexity Source

˜O
(

nnz(P )
√

log m · ε̃−1
)

This paper

˜O
(

nnz(P )
√

m/n · ε̃−1
)

[6]

˜O
(

log3(mn)
√

nnz(P ) · nnz′(P ) · ε̃−1
)

[7]

Table 3. Comparison of the effectiveness of approaches (γ ∈ (0, 1) case)

Computational complexity Source

˜O
(

γ1/2(1 − γ)−1 nnz(P )
√

log m · ε̃−1
)

This paper

˜O
(

γ(1 − γ)−1 nnz(P )
√

m/n · ε̃−1
)

[6]

˜O
(

γ(1 − γ)−1 log3(mn)
√

nnz(P ) · nnz′(P ) · ε̃−1
)

[7]

˜O (

nm
(

n + (1 − γ)−3) · log
(

ε̃−1)) [29]
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3 Conclusion

In this paper, we propose a version of the Coordinate Descent Method, acceler-
ated using the universal proximal envelope “Accelerated Meta-algorithm”. The
performed theoretical analysis allows us to assert that the dependence of its
computational complexity on the dimensionality and required solution accuracy
is not inferior to other methods used to optimize convex Lipschitz smooth func-
tions. Moreover, its computational complexity is comparable to that of the Fast
Gradient Method. At the same time, the proposed scheme retains the properties
of the classical Coordinate Descent Method, including the possibility of using the
properties of component-wise smoothness of the function. The given numerical
experiments confirm the practical efficiency of the method, and also emphasize
the particular relevance of the proposed approach for the SoftMax-like function
optimization problem that often arises in various applications. As an example of
such an application, it was considered the problem of optimizing the MDP, and
using the described approach, a method was proposed for solving the averaged
version of the MDP problem, which gives a complexity bound that competes
with the most efficient known ones.
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Abstract. The paper examines a class of algorithms called Weak
Biorthogonal Greedy Algorithms (WBGA) designed for the task of find-
ing the approximate solution to a convex cardinality-constrained opti-
mization problem in a Banach space using linear combinations of some
set of “simple” elements of this space (a dictionary), i.e. the problem of
finding the infimum of a given convex function over all linear combina-
tions of the dictionary elements with the given cardinality. An important
issue when one computationally solves optimization problems is to obtain
an estimate of the proximity to an optimal solution, that can be used to
effectively check that the approximate solution is with a given accuracy.
A similar idea that has already been applied to solving some optimiza-
tion problems, in which such an estimate of the proximity (certificate) to
the optimal solution is called the “duality gap”. We introduce the notion
of the duality gap for greedy optimization in Banach Spaces and obtain
dual convergence estimates for sparse-constrained optimization by means
of algorithms from the WBGA class.
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1 Introduction

Let X be a Banach space with norm ‖ · ‖. A set of elements D from the space
X is called a dictionary (see, e.g. [25]) if each element g ∈ D has norm bounded
by one, ‖g‖ ≤ 1, and the closure of span D is X, i.e. spanD = X. A dictionary
D is called symmetric if −g ∈ D for every g ∈ D. In this paper we assume that
the dictionary D is symmetric.

Let E be a convex function defined on X. In many applied problems it is
often necessary to find an approximate representation of the solution to the
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minimization problem
E(x) → min

x∈X
(1)

as a linear combination of elements from the dictionary D. Moreover, it is highly
desirable that the solutions of the optimization problem to be sparse with respect
to the dictionary D, i.e. the aim is to solve the following problem:

E(X) → inf
x∈Σm(D)

, (2)

where Σm(D) is the set of all m-term polynomials with respect to D:

Σm(D) =
{

x ∈ X : x =
m∑

i=1

cigi, gi ∈ D
}

. (3)

In many real applications the dimension of the search space while is finite,
but is too large. Therefore, our interest lies in obtaining estimates on the rate
of convergence not depending on the dimension of X. Obviously, results for the
infinite Banach spaces provide such estimates on the convergence rate. Following
[25], we examine the problem in an infinite dimensional Banach space setting.

One of the apparent choices among constructive methods for finding the
best m-term optimizations are greedy algorithms. Applicability of the greedy
algorithms on a finite combinatorial structure is connected with Matroid Theory.
The design of greedy algorithms allows us to obtain sparse solutions with respect
to D. Obtaining sparse solutions is of interest in many real applications including
compressed sensing in which one need to decode a sparse signal by means of a
small number of linear measurements [2,8], portfolio selection and economic
applications [9,23] and many other.

Perhaps, the Frank-Wolfe method [10], which is also known as the ’condi-
tional gradient’ method [17], is one of the most prominent algorithms for finding
optimal solutions of constrained convex optimization problems. Important con-
tributions to the development of Frank-Wolfe type algorithms can be found in
[3,11,14]. The paper [14] provides general primal-dual convergence results for
Frank-Wolfe-type algorithms by extending the duality concept presented in the
work [3]. Recent convergence results for greedy algorithms one can find in the
works [1,4,6,7,12,13,15,16,18,21,22,26,27].

The paper [5] presents a unified way of examining a certain type of greedy
algorithms in Banach spaces. The authors of [5] describe the class of Weak
Biorthogonal Greedy Algorithms (WBGA) and obtain the convergence results
for the corresponding algorithms belonging to the class.

This paper also examines algorithms from the WBGA class which are aimed
in finding solutions of optimization problem (3), which are sparse with respect to
a dictionary, in Banach spaces. Primal convergence results for the weak relaxed
greedy algorithms were obtained in [5].

In this paper, extending the ideas of [3,14] we introduce the notion of the
duality gap for algorithms from the WBGA class to obtain dual convergence
estimates for sparse-constrained optimization problems of type (3). In contrast
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to paper [5], in this paper we focus on obtaining dual convergence results based on
duality gap analysis. Note that estimates for the duality gap for some algorithms
were obtained in papers [18,22,24]. However, in this paper we present estimates
for the duality gap for a wider class of algorithms class of algorithms called Weak
Biorthogonal Greedy Algorithms (WBGA), rather that for particular algorithms.

2 Greedy Optimization Algorithms in Banach Spaces

A greedy algorithm is to iteratively construct an approximate solution (Gm) to
the problem (1) by a linear combination of appropriate elements of a given set
D ⊂ X (the dictionary) in accordance with the following general steps:

– (A) Find a fitting element φm ∈ D;
– (B) Update a solution Gm to the problem (1) using Gm−1 and φm.

Let E be a convex function defined on X. In this paper it is supposed that
function E is Fréchet differentiable. Let E′(x) denote Fréchet differential of E
at x. Then it follows from convexity of E that

E(y) ≥ E(x) + 〈E′(x), y − x〉,
for any x, y.

One of the approaches for choosing φm is based on the use of the Fréchet
differential, so φm is selecting from the solution of the problem

〈−E′(x), φm − Gm−1〉 = sup
s∈D

〈−E′(Gm−1), s − Gm−1〉. (4)

The algorithms that exploit the Fréchet differential for selecting of φm at step
(A) are belonged to the class of dual greedy algorithms.

Let Ω := {x ∈ X : E(x) ≤ E(0)} and suppose that Ω is bounded. As it
turns out, the convergence analysis of greedy algorithms essentially depends on
a measure of non-linearity of the objective function E over set Ω, which can be
depicted via the modulus of smoothness of function E.

Let us remind that the modulus of smoothness of function E on the bounded
set Ω can be defined as

ρ(E, u) =
1
2

sup
x∈Ω,‖y‖=1

|E(x + uy) + E(x − uy) − 2E(x)|, u > 0. (5)

E is called uniformly smooth function on Ω if limu→0 ρ(E, u)/u = 0.
The paper [5] introduces the class of Weak Biorthogonal Greedy Algorithms

(WBGA) that is consisted of algorithms in which sequences of approximate
solutions {Gm}, and selected elements φm satisfy the following conditions at
every iteration m ≥ 1:

– (1) Greedy selection:
〈−E′(Gm−1), φm − Gm−1〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s − Gm−1〉;
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– (2) Error reduction: E(Gm) ≤ infλ≥0 E(Gm−1 + λφm);
– (3) Bi-orthogonality: 〈E′(Gm), Gm〉 = 0.

The well-known examples of algorithms from the WBGA class are
Week Chebyshev Greedy Algorithm (WCGA), Weak Greedy Algorithm with
Free Relaxation (WGAFR) and Rescaled Weak Relaxed Greedy Algorithm
(RWRGA) (see Algorithms 1, 2 and 3, respectively).

Algorithms from the WBGA for solving (2) have some advantages compared
to other greedy algorithms. To solve the sub-problem sups∈D〈−E′(Gm−1), s −
Gm−1〉 exactly may be too expensive in many real cases. WBGA algorithms
use the weakness sequence in the greedy selection step to finding an approxi-
mate minimizer instead, which has approximation quality at least tm in step m.
Another advantage, for example, in comparison with the Frank-Wolfe algorithm,
is that algorithms from the WBGA are aimed to solve unconditional optimiza-
tion problems, whereas the Frank-Wolfe algorithm solves optimization problems
with linear constraints.

It was shown in [5] that the WCGA, the WGAFR and the RWRGA belong
to the class WBGA. Moreover, they proved that the algorithms converge to the
solution of the unconstrained problem (1) as m → ∞ and find the rate of the
convergence. Let us present their results in more detail.

Let τ = {tm} be a weakness sequence, 0 < θ ≤ 1
2 . Let ξm := ξm(ρ, τ, θ) be

defined as the root of the equation

ρ(u) = θtmu. (6)

Theorem 1. Let E be a uniformly smooth function on Ω with the modulus of
smoothness ρ(u). Let τ = {tm} be a sequence that for any θ > 0 the equality∑∞

m=1 tmξm(ρ, τ, θ) = ∞ holds. Then an algorithm from the WBGA with the
weakness sequence τ converges to the solution of the unconstrained problem (1)
as m → ∞.

Algorithm 1: Week Chebyshev Greedy Algorithm (WCGA)

begin
· Let G0 = 0;
for each m = 1, 2, . . . , M do

· (Greedy selection) Find the element φm ∈ D such that
〈−E′(x), φm − Gm−1〉 = sup

s∈D
〈−E′(Gm−1), s − Gm−1〉;

· (Chebyshev-type search) Find Sm ∈ Φm := span(φ1, . . . , φm), such that
Sm = argminG∈Φm

E(G);
· (Update step) Gm = Sm;

end

Denote A1(D) the convex hull of the dictionary D. Denote

x∗ := arg inf
x∈X

E(x),
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Theorem 2. Let E be a uniformly smooth convex function on Ω with the mod-
ulus of smoothness ρ(u) such that ρ(u) ≤ γuq with 1 < q ≤ 2. Let ε ≥ 0 and
xε ∈ X be such that

E(xε) − E(x∗) ≤ ε, xε/A(ε) ∈ A1(D)

with some A(ε) > 1. Then for an algorithm from the WBGA with the weakness
sequence τ we have

E(Gm) − E∗ ≤ max

⎧⎨
⎩2ε, C(q, γ)A(ε)q

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q
⎫⎬
⎭ ,

where p = q
q−1 .

Corollary 1. Let E be a uniformly smooth convex function on Ω, with the mod-
ulus of smoothness ρ(u) such that ρ(u) ≤ γuq, 1 < q ≤ 2. If argminx∈X E(x) ∈
A1(D) then for any algorithm from the class WBGA we have

E(Gm) − E∗ ≤ C(q, γ)

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q

,

where p = q
q−1 .

Algorithm 2: Weak Greedy Algorithm with Free Relaxation
(WGAFR)

begin
· Let G0 = 0;
for each m = 1, 2, . . . , M do

· (Greedy selection) Find the element φm ∈ D such that
〈−E′(x), φm − Gm−1〉 = sup

s∈D
〈−E′(Gm−1), s − Gm−1〉;

· (Two-dimensional search) Find ωm ∈ R and λm ≥ 0 such that
E((1 − ωm)Gm−1 + λmφm) = infλ≥0,ω∈R E((1 − ω)Gm−1 + λφm) ;

· (Update step) Let Gm = (1 − ωm)Gm−1 + λmφm;

end

3 Duality Gap Estimates for Greedy Approximation in
Banach Spaces

3.1 Duality Gap

This section presents dual results on convergence for algorithms from the class
of Weak Biorthogonal Greedy Algorithms (WBGA).
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Algorithm 3: Rescaled Weak Relaxed Greedy Algorithm
(RWRGA)

begin
· Let f0 = f , G0 = 0;
for each m = 1, 2, . . . , M do

· (Greedy selection) Find the element φm ∈ D such that
〈−E′(x), φm − Gm−1〉 = sup

s∈D
〈−E′(Gm−1), s − Gm−1〉;

· (Two one-dimensional searches) (a) Find λm ≥ 0 such that
E(Gm−1 − λmφm) = infλ≥0 E(Gm−1 − λφm);

(b) Find μm ∈ R such that
E(μm(Gm−1 + λmφm)) = infμ∈R E(μ(Gm−1 + λmφm)) ;
· (Update step) Let Gm = μm(Gm−1 + λmφm);

end

An important problem when performing computations when solving opti-
mization problems is to obtain an estimate of the proximity to the optimal
solution, which can be used to effectively check that the approximate solution is
built with a given accuracy. The idea has already been applied to solving opti-
mization problems, in which such an estimate of the proximity (certificate) to
the optimal solution is called the “duality gap”. For example, [19] examines the
concept of certificates in the context of convex computational problems. Opti-
mization methods, in which it is possible to obtain estimates of the proximity
to the optimal solution, belong to the class of primal-dual methods.

It should be noted that the accuracy certificate, on the one hand, allows
substantiating the direct duality of the investigated method [19], and on the
other hand, the accuracy certificate is computable and therefore can be used
as an estimate of the proximity of the current solution to the optimal. Further
development of these ideas can be found in [20].

If a convex function f is defined on finite dimensional Euclidean space X =
R

n and A ⊂ R
n is a compact convex set, then the duality gap for the constrained

optimization problem f(x) → minx∈A is defined as (see e.g. [14])

g(G) = max
s∈A

〈−∇f(G), s − G〉, (7)

where ∇f(G) is the gradient of f at G.
In this paper, we propose to use the “proximity” certificate to optimal solu-

tions of the optimization problem (2) based on the duality gap. We need a defi-
nition different from (7), since the problem (2) is unconstrained and its solution
does not have to lie in A1(D).

Let E be a uniformly smooth convex function. Take ε ≥ 0 and let xε from X
be such that E(xε) − E(x∗) ≤ ε and xε/Aε ∈ A1(D).
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Definition 1. Let the duality gap for function E : X → R, element G ∈ Ω and
error ε ≥ 0 be defined as follows:

g(G) = g(G, ε) =: sup
s∈D

〈−E′(G), Aεs − G〉. (8)

The duality gap value is implicitly computed at each iteration of the greedy
algorithm. As will be shown below, the value of the duality gap estimates from
above the error between the current approximate solution Gm and the opti-
mal optimization. In other words, the duality gap is the upper bound for the
difference between the value of goal function E at the current iteration of the
algorithm and the value of goal function E at the optimal point. Since we do
not know the optimal solution, as well as the corresponding error, the current
values of the duality gap can be used, for example, in the criteria for stopping a
greedy algorithm. In this paper, we find estimates for the values of the duality
gap depending on the number of iterations for the considered class of greedy
algorithms.

The notion of the duality gap for algorithms from the WBGA class similar
to the notion in [14], but has a key difference. Aε is a scaling parameter, we use
it to associate each element of a dictionary to an element of a unit ball that
contains the optimal solution.

We need the following well-known Lemma (see, e.g. [25]).

Lemma 1. For any bounded linear functional F and any dictionary D, we have

‖F‖D = sup
g∈D

F (g) = sup
g∈A1(D)

F (g).

A useful property of the duality gap is described by the following proposition.

Proposition 1. Let E be a uniformly smooth convex function defined on
Banach space X. Let x∗ denote the optimal solution to the problem (1). Then
for any x ∈ Ω := {x ∈ X : E(x) ≤ E(0)} we have

E(x) − E(x∗) ≤ g(x, ε) + ε.

Proof. Let xε be such that E(xε) − E(x∗) < ε and xε/Aε ∈ A1(D), i.e. xε ∈
LAε

:= Aε · A1(D). First we will show that

E(x) − E(xε) ≤ g(x).

It follows from the convexity of E on X that for any x ∈ Ω we get

E(xε) ≥ E(x) + 〈E′(x), xε − x〉. (9)

From inclusion xε ∈ LAε
we have

E(x) + 〈E′(x), xε − x〉 ≥
E(x) − sup

s∈LAε

〈E′(x), x − s〉 = E(x) − Aε sup
s∈LAε

〈E′(x), xA−1
ε − sA−1

ε 〉

= E(x) − Aε sup
s′∈A1(D)

〈E′(x), xA−1
ε − s′〉

= E(x) − Aε sup
s′∈D

〈E′(x), xA−1
ε − s′〉, (10)
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with use of Lemma 1.
It follows from (9) and (10) that

E(x) − E(xε) ≤ Aε sup
s′∈D

〈E′(x), xA−1
ε − s′〉 =: g(x), (11)

and then the proposition follows from the inequality E(xε) − E(x∗) < ε.
�

Thus, the practical applicability of the duality gap is related to the fact that
the duality gap g(x) is an estimate of how close the current solution E(G) is to
the best optimization E∗.

We need the following auxiliary result.

Lemma 2. Let X be a uniformly smooth convex function defined on Banach
space X, with the modulus of smoothness ρ(E, u), ρ(E, u) ≤ γuq, 1 < q ≤ 2. Let
τ = {tm}∞

m=1 be a weakness sequence, 0 < tk ≤ 1, k = 1, 2, . . .. Take ε ≥ 0 and
let f, f ε from X be such that E(f) − E(f ε) ≤ ε and f ε/Aε ∈ A1(D). Then for
any algorithm from WBGA, the inequality

E(Gm) ≤ E(Gm−1) + inf
λ≥0

(−λtmA−1
ε g(Gm−1) + 2ρ(E, λ)

)

holds for any m = 1, 2, . . ..

Proof. It follows from the definition of modulus of smoothness (8) that

E(Gm−1 + λφm) ≤ 2E(Gm−1) − E(Gm−1 − λφm) + 2ρ(E, λ).

From the convexity of E on X we have

E(Gm−1 − λφm) ≥ E(Gm−1) + λ〈−E′(Gm−1), φm〉.
Combining together two above inequalities we get

E(Gm−1 + λφm) ≤ E(Gm−1) − λ〈−E′(Gm−1), φm〉 + 2ρ(E, λ). (12)

The first step of iteration m for an algorithm from the WBGA implies

〈−E′(Gm−1), φm〉 ≥ tm sup
s∈D

〈−E′(Gm−1), s〉

= tmA−1
ε sup

s∈D
〈−E′(Gm−1), Aεs − Gm−1〉 = tmA−1

ε g(Gm−1),

where we use the equality 〈E′(Gm), Gm〉 = 0, i.e. the biorthogonality of E′.
Substitute previous result in (12) we have

E(Gm−1 + λφm) ≤ E(Gm−1) − λtmA−1
ε g(Gm−1) + 2ρ(E, λ).

Error reduction step for an algorithm from the WBGA:

E(Gm) ≤ inf
λ≥0

E(Gm−1 + λφm). (13)

Then lemma follows from (12) and (13). �



200 S. Sidorov and K. Spiridinov

Denote
LM := {s ∈ X : s/M ∈ A1(D)},

Aε := A(f, ε) = inf{M : ∃y ∈ LM s.t. E(y) − E∗ ≤ ε},

A0 := inf{M : x∗ ∈ LM}.

The following dual result is valid for the algorithms from the class of Weak
Biorthogonal Greedy Algorithms (WBGA).

Theorem 3. Let X be a uniformly smooth convex function with the modulus of
smoothness ρ(E, u), ρ(E, u) ≤ γuq, 1 < q ≤ 2. Let τ = {tm}∞

m=1 be a weakness
sequence, 0 < θ < tk < 1, k = 1, 2, . . .. Take ε ≥ 0 and let x, xε from X be such
that E(x) − E(xε) ≤ ε and xε/Aε ∈ A1(D). Suppose that for an algorithm from
WBGA runs for N > 2 iterations. Then there exists an iteration 1 ≤ m̃ ≤ N
such that

g(Gm̃) ≤ βC(q, γ)Aq
0N

1−q, (14)

where β > 0 does not depend on N .

Proof. Suppose that
g(Gm) > βC(q, γ)Aq

0N
1−q, (15)

for all m ∈ [�μN�, N ]. Parameter 0 < μ < 1 is arbitrary fixed and will be defined
later.

By Lemma 2 we have

E(Gm) − E∗ ≤ E(Gm−1) − E∗ + inf
λ≥0

(−λtmA−1
ε g(Gm−1) + 2ρ(E, λ)

)
≤ E(Gm−1) − E∗ − λtmA−1

ε g(Gm−1) + 2ρ(E, λ).

By assumption (15) we have

E(Gm) − E∗ < E(Gm−1) − E∗ − λtmA−1
ε βC(q, γ)Aq

0N
1−q + 2ρ(E, λ).

Weakness sequence τ satisfies the condition 0 < θ < tk < 1, hence

E(Gm) − E∗ < E(Gm−1) − E∗ − λθA−1
ε βC(q, γ)Aq

0N
1−q + 2ρ(E, λ).

Modulus of smoothness has upper bound and therefore

E(Gm) − E∗ < E(Gm−1) − E∗ − λθA−1
ε βC(q, γ)Aq

0N
1−q + 2γλq.

Denote m0 = �μN� and sum up above inequality for all m ∈ [m0, N ]. Note
that N − m0 + 1 = N − �μN� + 1 ≥ (1 − μ)N .

E(GN ) − E∗ < E(Gm0) − E∗ − (N − m0 + 1)
(
λθA−1

ε βC(q, γ)Aq
0N

1−q − 2γλq
)

≤ E(Gm0) − E∗ − (1 − μ)N
(
λθA−1

ε βC(q, γ)Aq
0N

1−q − 2γλq
)
.
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By Corollary 1 and take λ = N−1 we have

E(GN ) − E∗ < C(q, γ)

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q

−(1 − μ)N1−q
(
θA−1

ε βC(q, γ)Aq
0 − 2γ

)
. (16)

It follows from condition of the Theorem that 1 < q ≤ 2, p = q
q−1 and N > 2,

therefore −1 ≤ 1 − q < 0 and

(
C(E, q, γ) +

m∑
k=1

tpk

)1−q

≤ (C(E, q, γ) + m0θ
p)1−q

≤ (C(E, q, γ) + (μN − 1)θp)1−q = ((C(E, q, γ) − θp) + μNθp)1−q ≤ (μN)1−qθ−q.

Substitute above estimate in (16)

E(GN ) − E∗ < C(q, γ)(μN)1−qθ−q − (1 − μ)N1−q
(
θA−1

ε βC(q, γ)Aq
0 − 2γ

)
= N1−q(C(q, γ)μ1−qθ−q − (1 − μ)

(
θA−1

ε βC(q, γ)Aq
0 − 2γ

)
).

We can choice β an arbitrary large,

β >
2γ + C(q,γ)μ1−qθ−q

(1−μ)

θA−1
ε C(q, γ)Aq

0

,

and therefore E(GN ) − E∗ < 0. We arrive at the contradiction that the primal
error become negative. Parameter μ can be such that:

μ∗ = argmin
0<μ<1

{
2γ +

C(q, γ)μ1−qθ−q

(1 − μ)

}
.

�

4 Empirical Results

In this section let us consider a simple example to illustrate the dynamic behavior
of the duality gap and to demonstrate that the empirical behavior of the duality
gap is well predicted by Theorem 3 from the previous section.

Let B[0, 1] be the Banach space of bounded functions with norm ‖f‖ =
maxx∈[0,1] |f(x)|. A function z ∈ B[0, 1] is said to be monotone if for every pair
x2 > x1 the inequality z(x2)−z(x1) ≥ 0 holds. Denote Δ1 the set of all monotone
functions from B[0, 1].

The problem of constructing a monotone regression can be formulated as
a convex optimization problem as follows: it is necessary to find the function
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z ∈ B[0, 1] with the smallest approximation error of the function y ∈ B[0, 1] in
the norm Lq[0, 1], q ∈ (1, 2], provided that z is monotonic:

E(z) =
∫ 1

0

(z(x) − y(x))qdx → min
z∈Δ1

. (17)

Denote

θa(x) =

{
0, x < a,

1, x ≥ a.

Then the set D = {θa : a ∈ (0, 1)}. is a dictionary in B[0, 1], since the norm of
each function g from D is bounded by 1, ‖g‖1 ≤ 1, and the closure of all linear
combinations of elements from D is B[0, 1], i.e. span D = B[0, 1].

Therefore, the solution of the problem (17) should be a linear combination
of elements from the dictionary: z =

∑n
i=1 biθai

, where a1 < a2 < . . . < an and
bi ≥ 0, i = 1, . . . , n, n ∈ N, and

z(1) − z(0) =
n∑

i=1

bi = sup
x∈[0,1]

y(x) − inf
x∈[0,1]

y(x).

Let S(D) be the closure all such z in B[0, 1].
In this section, we consider a greedy algorithm for finding solutions to the

convex optimization problem (17), which are sparse with respect to the dictio-
nary, in the space B[0, 1].

Note that the function E is Fréchet differentiable. Let 〈E′(x), y〉 denote the
value of functional E′(x) at point y. To solve the problem (17), we will use
Algorithm 4. For each m ≥ 1, the algorithm finds the next element Gm by
induction with the use of the current iteration function Gm−1 and a dictionary
element θam

, obtained on the greedy step.

Algorithm 4: Weak Greedy Algorithm for finding monotone regression
begin

· Let G0 = 0;
for each m = 1, 2, . . . , M do

· (Greedy step) Find am ∈ (0, 1) (i.e. θam ∈ D) such that
〈−E′(Gm−1), θam〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s〉;

· (Linear search) Find 0 ≤ λm ≤ 1 such that
E ((1 − λm)Gm−1 + λmθam) = inf

0≤λ≤1
E ((1 − λ)Gm−1 + λθam);

· (Update step) Gm = (1 − λm)Gm−1 + λmθam ;

end

The algorithm was implemented in the R language. The algorithm was run
for synthetic data generated as follows: we took some monotonically increasing
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function f and added to its values a random normally distributed variable. The
obtained in such a way element from space B[0, 1] is not monotonic, but the
original function f could be used as an unknown (”ideal”) solution. Figure 1
shows the dynamics of

– the primal error (defined as the norm of the difference between the solution
obtained at an iteration and the ideal solution f),

– the dynamics of the duality gap.

For this example we constructed a input data as follows: f = ln(x + 10ξ),
ξ ∼ N(0, 1). The figure shows that the duality gap is always greater than the
corresponding primal error. However, no matter what iteration we take, there is
a preceding iteration, for which the value of the duality gap is close to the value
of the corresponding primal error.

It should be noted that the value of the duality gap depends on E′(G) and
Aεs − G which are changing at each iteration. Hence, the duality gap may oscil-
lates as it can be seen at Fig. 1.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

m, the number of iterations

Primal error
Duality gap

Fig. 1. Dynamics of primal errors and duality gaps

5 Conclusion

All algorithms from the Weak Biorthogonal Greedy Algorithms class (WCGA,
WGAFR, RWRGA) have primal errors that depend on geometric properties of
the objective function E (Theorem 2 and Corollary 1). In many real applica-
tions very often value of goal function E at the optimal point is unknown, and
therefore, estimates for the quality of current approximation to optimal solution
are considerably in demand. Following ideas of [3,14], we introduced the notion
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of the duality gap for algorithms from the WBGA class by the equality (8).
The values of duality gap are calculating on each iteration of WCGA, WGAFR
and RWRGA at the greedy selection step, and therefore, they are upper bounds
for primal errors, i.e. differences between values of objective function at current
and optimal points on each step. We obtain dual convergence estimates for the
above-mentioned algorithms. Our empirical results in Sect. 4 demonstrated that
the empirical behavior of the duality gap is well predicted by Theorem 3.
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Abstract. The paper focuses on linear programming problems with
two-sided constraints whose number is much larger than the number
of variables. The solution approach is based on a non-smooth convex
penalty function. An appropriate penalty parameter ensures the equiv-
alence between the original problem and the problem of minimizing the
penalty function. The latter problem is tackled by means of a modifica-
tion of the r-algorithm, i.e., of an iterative subgradient method with an
adaptive step adjustment and a constant coefficient of space dilation in
the direction of the difference of two successive subgradients. Based on
an implementation of this LPralg algorithm with GNU Octave, computa-
tional results on randomly generated instances with 20.000 to 1.500.000
two-sided constraints and up to 300 variables are presented. The results
turn out to be very promising compared to well-known linear program-
ming software, such as the GLPK package as well as CPLEX and Gurobi
solvers. Among other problems, the new approach can be applied to
robust linear programs with a finite uncertainty set.

Keywords: Linear programming · Non-smooth penalty method ·
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1 Introduction

Linear programs (LPs) that possess much more constraints than variables play a
significant role in several fields. Examples are robust linear optimization problems,
Danzig-Wolfe and Benders decomposition schemes, minimax and maximin prob-
lems, approximation problems with Chebyshev’s minimax criterion, and Boolean
estimation problems. Here, we are interested in robust linear optimization (for
more general cases, see [1,8], for example), i.e., we consider problems of the form
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min
x∈Rn

{
c�x : B (ξ) x − b (ξ) ≤ 0 ∀ξ ∈ U

}
. (1)

The vector c ∈ R
n is given, the parameter vector ξ belongs to an uncertainty set

U , and the matrix B(ξ), as well as the right-hand-side b(ξ) may depend on ξ ∈ U .
Let us further assume that the set U is finite, but contains up to thousands or
millions of given parameters. Then, the robust LP (1) is nothing else than a
usual LP, but may have a relatively small number of variables compared to a
very large number of constraints. Due to this, using standard software for such
LPs is either impossible or impractical because it would require significant com-
puting resources. Therefore, new approaches to the construction of algorithms
for solving such LPs become of interest.

In the following, we suggest a solution approach for robust LPs with two-
sided constraints. This approach is based on a non-smooth penalty function
[5,6,10–13]. A reasonable choice of the penalty parameter ensures the equivalence
between the original LP and the problem of minimizing the penalty function.
Our main contribution is to tackle the latter problem by a modification of the
r-algorithm [12–17], i.e., an iterative subgradient method with an adaptive step
adjustment and a constant coefficient of space dilation towards the difference
of two successive subgradients. This approach yields the algorithm LPralg and
is implemented with GNU Octave [4]. Based on this, computational results on
randomly generated LP-instances with up to 1.500.000 two-sided constraints and
up to 300 variables are presented. The results are promising if compared to well-
known linear programming software, such as the GLPK package [20], Gurobi
and CPLEX solvers [18,19].

The paper is organized as follows. In Sect. 2, after stating the LP with two-
sided constraints, an equivalent auxiliary problem of unconstrained minimization
is constructed based on a non-smooth penalty function. Thereafter, in Sect. 3,
the r(α)-algorithm is described, which results in the LPralg algorithm and its
Octave implementation for solving the auxiliary problem. Finally, results of test
experiments on applying LPralg algorithm to problems with a large number of
two-sided constraints are presented in Sect. 4.

2 Linear Programs with Two-Sided Constraints and
Their Equivalence to a Non-smooth Optimization
Problem

Let a matrix A ∈ R
m×n, vectors l, u ∈ R

m of lower and upper bounds, and
c ∈ R

n be given. Then, we consider the following LP with two-sided constraints

min
x∈Rn

c�x subject to l ≤ Ax ≤ u. (2)

Throughout, we assume that (2) has a solution x∗, where c∗ := c�x∗ denotes
the optimal value, and X∗ ⊂ R

n is the set of all solutions (minimizers).
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For a moment, let us consider an LP with only one-sided constraints, say
Ax ≤ u, then such constraints can be reformulated by means of a sufficiently
large M > 0, e.g., by l := −Me ≤ Ax ≤ u, where e = (1, . . . , 1)� ∈ R

m. An
appropriate number M can be computed if lower and upper bounds for a solution
x∗ ∈ X∗ are known. In a simple case, let ‖x∗‖∞ ≤ μ be satisfied for some known
value μ > 0. Then, ‖Ax∗‖∞ ≤ ‖A‖∞‖x∗‖∞ ≤ ‖A‖∞μ yields M := ‖A‖∞μ.
Note that replacing Ax ≤ u by −Me ≤ Ax ≤ u may yield a smaller solution set
that, however, at least contains x∗.

Our aim is to develop a subgradient method for the solution of problem (2).
To this end, we first introduce the penalty function cP : Rn → R by

cP (x) := c�x + P · max {‖(Ax − u)+‖∞, ‖(l − Ax)+‖∞} ,

where v+ := (max{0, v1, }, . . . ,max{0, vm})� for any v ∈ R
m and P > 0 denotes

a penalty parameter. Obviously, cP (x) = c�x holds if and only if x belongs to
the feasible set of (2). The function cP is convex and piecewise linear. Moreover
let XP denote the set of minimizers of cP , i.e.,

XP =
{

x̂ ∈ R
n : cP (x̂) = min

x∈Rn
cP (x)

}
.

Note that this set might be empty for smaller P , see Theorem 1 below.
Due to the above assumption that the LP (2) has at least one solution x∗,

there are Lagrange multiplier vectors λ∗ ∈ R
m (associated to the constraints

l − Ax ≤ 0) and Λ∗ ∈ R
m (associated to Ax − u ≤ 0) so that (x∗, λ∗, Λ∗) satisfy

the Karush-Kuhn-Tucker conditions

c − A�λ + A�Λ = 0,
(l − Ax)�λ = 0, (Ax − u)�Λ = 0, λ ≥ 0, Λ ≥ 0, l ≤ Ax ≤ u

(3)

for problem (2). Now, the following theorem can be obtained by applying The-
orem 27 in [13] to problem (2).

Theorem 1. Let x∗ be a solution of problem (2) and λ∗, Λ∗ Lagrange multiplier
vectors so that (x∗, λ∗, Λ∗) satisfies the Karush-Kuhn-Tucker conditions (3).

(a) If P ≥ P∗ := ‖λ∗‖1 + ‖Λ∗‖1, then min
x∈Rn

cP (x) = c∗ holds.

(b) If P > P∗, then the set XP of minimizers of cP coincides with X∗.

In general, a number P > P∗ is not known in advance. Conceptually, P can be
updated as follows. If, for some P > 0, the vector xP is a solution of min

x∈Rn
cP (x)

and if the condition max{0, Ax − u, l − Ax} ≤ 0 is fulfilled, then this P is used.
Otherwise, the value of P is multiplied by a predefined factor larger than 1 until
the condition is met.

We now provide just one subgradient of cP at some x ∈ R
n. The function cP is

convex, but nondifferentiable at certain points so that the subdifferential ∂cP (x)
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may consist of infinitely many subgradients for those points. Given x ∈ R
n, we

use the following subgradient gcP (x) ∈ ∂cP (x):

gcP (x) = c + P ·
⎧
⎨

⎩

0 ∈ R
n, if t1 ≤ 0 and t2 ≤ 0,

(ai11, . . . , ai1n)�, if t1 > 0 and t1 ≥ t2,
−(ai21, . . . , ai2n)�, if t2 > 0 and t2 > t1,

(4)

where A = (aij) ∈ R
m×n and the numbers t1, t2 as well as the indices i1, i2 are

defined by

t1 := (Ax − u)i1 ≥ (Ax − u)i ∀i = 1, . . . , m,
t2 := (l − Ax)i2 ≥ (l − Ax)i ∀i = 1, . . . , m.

In Table 1, we show the Octave function fgLP, which implements formula
(4) (with g denoting gcP (x) as well as the formula for computing the function
value cP (x) denoted by f). Note that the parameters c, A, l, u, n, m, and P are
defined as global variables.

Table 1. Octave code fgLP for the implementation of formula (4)

1 function [f,g] = fgLP(x)

2 global c A l u n m P

3 f = sum(c.*x); g = c;

4 tmp0 = A*x;

5 tmp = [l-tmp0; tmp0-u];

6 [tmpmax imax] = max(tmp);

7 if (tmpmax > 0.d0)

8 if (imax <= m)

9 f = f + P*tmpmax;

10 g = g - P*A(imax,1:n)’;

11 endif

12 if (imax > m)

13 f = f + P*tmpmax;

14 g = g + P*A(imax-m,1:n)’;

15 endif

16 endif

17 endfunction #fgLP

3 The r(α)-Algorithm with Adaptive Steps

In this section, the general problem of iteratively approximating a minimizer of
a convex function f : Rn → R is considered, see [15,16]. In Sect. 4, the r(α)-
algorithm we suggest below will be applied to the problem min

x∈Rn
cP (x) described
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in Sect. 2. In addition to the mathematical formulation of the algorithm, we also
provide the Octave source code as it will be used in Sect. 4.

Definition 1. Let f : Rn → R be a convex function and gf (x) an element of
the subdifferential ∂f(x) for x ∈ R

n. Moreover, let x0 ∈ R
n, h0 > 0, B0 := I ∈

R
n×n, and α > 1 be given. Then, the r(α)-algorithm is an iterative procedure

that constructs sequences {xk} ⊂ R
n, {hk} ⊂ (0,∞), {ξk} ⊂ R

n, {ηk} ⊂ R
n,

and {Bk} ⊂ R
n×n according to the following scheme:

xk+1 := xk − hkBkξk, Bk+1 := BkRβ(ηk), k = 0, 1, 2, . . . , (5)

where

ξk := B�
k gf (xk)

‖B�
k gf (xk)‖ , hk ≥ h∗

k := argmin
h≥0

f(xk − hBkξk), (6)

ηk := B�
k rk

‖B�
k rk‖ , rk := gf (xk+1) − gf (xk), (7)

Rβ(ηk) := I + (β − 1)ηkη�
k , β := 1

α ,

provided that no zero denominator appears.

Obviously, x0 is the starting point of the r(α)-algorithm. For scaling purposes,
the matrix B0 ∈ R

n×n can be any diagonal matrix with only positive coefficients
on the diagonal. Moreover, hk plays the role of a step size with the aim of
minimizing f in direction −Bkξk. The operator Rβ(η) = I + (β − 1)ηη� is
used for updating Bk and yields a compression of the transformed subgradient
space (spanned by B�

k (gf (xk+1) − gf (xk))) in the normalized direction η with
the coefficient β = 1/α < 1, see also Remark 1 below. Moreover, the definition
of Rβ(η) guarantees that all matrices Bk generated by the r(α)-algorithm are
nonsingular. To stop the r(α)-algorithm after xk is obtained, the termination
criteria

– ‖xk − xk−1‖2 ≤ εx,
– ‖gf (xk)‖2 ≤ εg,
– k ≥ maxitn

are used. If one of them is satisfied, we set k∗ := k. The parameters εx > 0,
εg > 0, and a large natural number maxitn are predefined values. If the last
criterion is satisfied, the function f might be unbounded from below.

For further details, in particular on the choice of the step lengths hk, we
refer to [13, Section 3.4]. Details related to the implementation can be found in
Sect. 4.

Remark 1. For any fixed k, let us define the function ϕ : Rn → R by ϕ(y) :=
f(Bky). One can easily check that ϕ inherits the convexity of f and that a
subgradient gf (xk) ∈ ∂f(xk) provides a subgradient gϕ(yk) := B�

k gf (xk) in
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∂ϕ(yk). Since the matrices Bk are nonsingular, the mapping x 
→ y := B−1
k x is

bijective and we can transform the iteration (5) to

yk+1 = B−1
k xk+1 = B−1

k xk−hkξk = yk−hk
B�

k gf (xk)∥
∥B�

k gf (xk)
∥
∥ = yk−hk

gϕ(yk)
‖gϕ(yk)‖ (8)

and back.

The r(α)-algorithm as described above and with the step length adjustment
in [13, Section 3.4] has been implemented in Octave as ralgb5 [15]. In the imple-
mentation ralgb5a [17], the step length adjustment has been simplified. The let-
ter “b” refers to the use of the matrices Bk instead of employing Hk := BkB�

k ,
cf. [13, Section 3.4]. Moreover, “5” means that one step by ralgb5 (without
the expenses for computing function values and subgradients) requires 5n2 mul-
tiplications, where other arithmetic operations are neglected. The code of the
Octave function ralgb5a is given in Table 2. This function calls the function
calcfg that, for x ∈ R

n, provides f(x) as well as a subgradient gf (x) ∈ ∂f(x).
Since we are interested in minimizing the function cP and in solving the LP (2),
the function calcfg appearing as an input parameter of ralgb5a is substituted
by the function fgLP in Sect. 4. The Octave code of the latter function is shown
in Table 1. The input and output parameters of ralgb5 are

– x (starting point x0),
– alpha (parameter α for space dilation, see above),
– h0 and q1 (parameters for computing the step lengths hk),
– epsx, epsg, maxitn (termination parameters εx, εg, maxitn, see above),
– intp (after each intp steps, some intermediate progress report is printed),
– xr, fr (record point xr with best found function value fr),
– itn (number of iterations),
– nfg (number of calls of the function calcfg or fgLP, resp.),
– ist (shows the reason for termination).

Finally, we note that putting the Octave functions ralgb5a and fgLP
(instead of the function calcfg) together yields our implementation of algorithm
LPralg. This implementation is used for experiments in Sect. 4. For an empirical
study on the computational expense of the r(α)-algorithm, see [14].

4 Computational Experiments

In this section, results of two computational experiments on test LP-problems of
type (2) with a quite large number of constraints and a small number of variables
are presented. The first experiment is done, on the one hand, with the Octave
implementation of LPralg as described above (GNU Octave version 5.1.0). On
the other hand, we apply the GLP PRIMAL solver from the GNU Linear Pro-
gramming Kit (GLPK) to directly solve these test problems. Both algorithms
were run on the same machine, an Intel Core i5-9400f processor with 2.9 GHz
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and 16 GB RAM. Moreover, for the second experiment, we run test problems on
the NEOS server [2,3,9] with solvers from CPLEX [19] and Gurobi [18].

Table 2. Octave code ralgb5a for the algorithm LPralg

1 function [xr,fr,itn,nfg,ist] = ralgb5a(calcfg,x,alpha,

2 h0,q1,epsg,epsx,maxitn,intp);

3 itn = 0; B = eye(length(x)); hs = h0; lsa = 0; lsm = 0;

4 xr = x; [fr,g0] = calcfg(xr); nfg = 1;

5 if (intp>0)

6 printf("itn %4d f%16.6e fr%16.6e nfg %4d\n",itn,fr,fr,nfg);
7 endif

8 if(norm(g0) < epsg) ist = 2; return; endif

9 for (itn = 1:maxitn)

10 dx = B * (g1 = B’ * g0)/norm(g1);

11 d = 1; ls = 0; ddx = 0;

12 while (d > 0)

13 x -= hs * dx; ddx += hs * norm(dx);

14 [f, g1] = calcfg(x); nfg ++;

15 if (f < fr) fr = f; xr = x; endif

16 if(norm(g1) < epsg) ist = 2; return; endif

17 ls ++; (mod(ls,3) == 0) && (hs *= 1.1);

18 if(ls > 500) ist = 5; return; endif

19 d = dx’ * g1;

20 endwhile

21 (ls == 1) && (hs *= q1); lsa=lsa+ls; lsm=max(lsm,ls);

22 if(mod(itn,intp)==0)

23 if (intp>0)

24 printf("itn %4d f %14.6e fr %14.6e", itn, f, fr);

25 printf(" nfg %4d lsa %3d lsm %3d\n", nfg, lsa, lsm);

26 endif

27 lsa=0; lsm=0;

28 endif

29 if(ddx < epsx) ist = 3; return; endif

30 xi = (dg = B’ * (g1 - g0) )/norm(dg);

31 B += (1 / alpha - 1) * B * xi * xi’;

32 g0 = g1;

33 endfor

34 ist = 4;

35 endfunction #ralgb5a
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For both experiments, the entries of the vector c and the matrix A = (aij) in
the test problems were generated randomly by means of the standard uniform
distribution U(0, 1), namely

cj ∼ U(0, 1), aij ∼ U(0, 1) for i, . . . ,m and j = 1, . . . , n.

In addition, the entries of the lower and upper bound vectors l and u were
defined by

li := 0.9
n∑

j=1

aij , ui := 1.1
n∑

j=1

aij for i, . . . ,m.

Individual details for the two experiments will be given below.
For the first experiment, the following parameters were used:

x := 0 ∈ R
n, alpha := 4, q1 := 1.0, h0 := 1. (9)

The termination parameters are given by

epsx := 10−10, epsg := 10−8, maxitn := 10.000 intp := 1.000.

The meaning of these input parameters for ralgb5a can be found in Sect. 3. The
penalty parameter P (to be used in the function fgLP) was always set to 10. All
generated test problems are characterized by a small number n ∈ {100, 200, 300}
of variables and a much larger number m of two-sided constraints with m ∈
{20.000, 50.000, 100.000, 200.000}. The Octave implementation of ralgb5a is
shown in Table 2, whereas Table 3 presents the code for setting up and running
the first experiment.

The run times for approximately solving the test problems are denoted by
tGLPK for the GPLK solver and by tLPralg for the LPralg algorithm. In addition
to these run times, Table 4 also shows the Euclidean distance Δ between the
approximate solutions obtained by the two methods. The computational results
in all tables are rounded. Table 4 demonstrates that the GLPK solver needs 4–12
times longer for test problems than LPralg. The last column of this table shows
that the deviation between the two approximate solutions obtained after GLPK
and LPralg terminated is very small, which means that both programs yield very
similar approximate solutions of the test problems.

In the second experiment, we intend to compare run times spent by LPralg
and commercial solvers CPLEX and Gurobi. Currently, we were just able to
run the latter two solvers on the NEOS server. To compare the performance of
CPLEX and Gurobi on NEOS and on our machine described above, we per-
formed computational tests, which showed that the NEOS run times are close to
those produced on our machine. Therefore, we first present the results of apply-
ing LPralg to 3 test examples of different size on this machine (Table 5). Then,
Table 6 shows the times for the NEOS server for the same test problems.

For LPralg, the same parameters as in (9) are used. The termination param-
eters are now epsx := 10−9, epsg := 10−8, maxitn := 20.000, intp := 1.000.
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Table 3. Octave code for the first experiment

1 # Code for First Experiment: LPralg and GLPK

2 global c A l u n m P

3 printf("\n"); # set parameters for r-algorithm

4 alpha = 4.0, h0 = 1.0, q1 = 1.0,

5 epsx = 1.e-10, epsg = 1.e-8, maxitn = 20000, intp = 1000,

6 P = 10, nmtest = [100 20000; 100 50000; 100 100000; 100 200000],

7 #P = 10, nmtest = [200 20000; 200 50000; 200 100000; 200 200000],

8 #P = 10, nmtest = [300 20000; 300 50000; 300 100000; 300 200000],

9 rand("seed", 2020); time12 = fopt = delta = [];

10 for itest = 1:rows(nmtest)

11 printf("\n");
12 n = nmtest(itest,1), m = nmtest(itest,2),

13 c = rand(n,1); A = rand(m,n); x0 = ones(n,1);

14 rhs = A*x0; l = 0.9*rhs; u = 1.1*rhs;

15 # run glpk

16 a=[A; -A]; b=[u; -l];

17 lb = -10*ones(n,1); ub = 10*ones(n,1);

18 ctype = repmat(’U’,1,2*m); vartype = repmat(’C’,1,n);

19 sense=1, tstart=time();

20 [xmin, fmin, status] = glpk(c, a, b, lb, ub, ctype, vartype, sense);

21 time1 = time()-tstart;

22 fmin, status, time1,

23 # set start point and run r-algorithm

24 x0 = zeros(n,1); tstart=time();

25 [xr,fr,itn,nfg,ist] = ralgb5a(@fgLP,x0,alpha,h0,q1,

26 epsg,epsx,maxitn,intp);

27 time2=time()-tstart,

28 printf("..itn %4d fr %23.15e ist %d nfg %4d\n",itn,fr,ist,nfg);
29 fr, ctxr = c’*xr, time2,

30 time12 = [time12; time1 time2]; dnorm1 = norm(xmin-xr),

31 fopt = [ fopt; fmin c’*xr fr]; delta = [delta dnorm1];

32 endfor

33 nmtest, fopt,

34 printf("\n n m .t1.. .t2.. t1/t2 delta ");

35 for itest = 1:rows(nmtest)

36 n = nmtest(itest,1); m = nmtest(itest,2);

37 t1 = time12(itest,1); t2 = time12(itest,2);

38 dn = dnorm(1, itest);

39 printf("\n %3d %6d %7.2f %7.2f %7.2f %9.2e",n,m,t1,t2,t1/t2,dn),

40 endfor

41 printf("\n");
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Table 4. First experiment: results for GLPK and LPralg (run time in seconds)

n m tGLPK tLPralg tGLPK/tLPralg Δ

100 20.000 23.7 3.4 7.0 2.7e−08

50.000 81.0 6.5 12.5 2.0e−08

100.000 107 17.6 6.1 8.5e−09

200.000 271 35.5 7.6 2.8e−08

200 20.000 58.6 13.2 4.4 4.4e−08

50.000 155 30.5 5.1 2.3e−08

100.000 325 61.6 5.3 4.2e−08

200.000 708 139 5.1 5.1e−08

300 20.000 125 27.6 4.5 3.3e−07

50.000 323 65.5 4.9 4.1e−08

100.000 672 172 3.9 1.4e−07

200.000 2 025 388 5.2 4.4e−07

Table 5. Second experiment: run times for LPralg (in seconds)

n m q1 = 0.95 q1 = 1.0

100 300.000 164 58.3

50 600.000 59.7 46.4

20 1.500.000 33.5 24.3

Table 5 shows the run times of LPralg not only for q1 := 1.0 as in (9) but
also for q1 := 0.95. In addition to the results of the computations shown in
Table 5, we remark that the corresponding approximate solutions xr satisfy
max {‖(Axr − u)+‖∞, ‖(l − Axr)+‖∞} < 10−5.

To finally apply CPLEX and Gurobi to the same test problems as used in
Table 5, Table 6 shows the results obtained with the NEOS server. To reduce time
differences, which result from concrete situations at NEOS (like the number of
parallel jobs, machine used), we have performed 4 runs for the same test problem
for each of the two solvers. Table 6 presents the average run time. Note that the
code, we provided to the NEOS server, is in AMPL [7] and uses two constraints
for each two-sided constraint. If we compare the results in Table 6 with those
in Table 5, we see that LPralg is comparable and often seems to be faster by a
factor of 2–4 than CPLEX or Gurobi.
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Table 6. Second experiment: averaged run times (in seconds) on the NEOS server

CPLEX

n m Averaged run time

100 300.000 202

50 600.000 151

20 1.500.000 142

Gurobi

n m Averaged run time

100 300.000 108

50 600.000 148

20 1.500.000 84

5 Conclusion

The paper presents the algorithm LPralg (Linear Programming by r-algorithm)
and its software implementation in the Octave programming language. LPralg is
particularly intended to solve linear programs with many two-sided constraints.
The algorithm applies a penalty approach to reformulate a linear program equiv-
alently as an unconstrained problem of minimizing a non-smooth convex penalty
function. The later is tackled by a modified version of Shor’s r-algorithm with
an adaptive step length adjustment. The results for cases with much more two-
sided constraints than variables and comparisons with linear programming codes
are limited but quite promising. Moreover, there is plenty of things that remain
to investigate. For example, how LPralg can deal with more general linear pro-
grams, with programs less restricted in the choice of data, and how sensitive
LPralg is with respect to parameters like q1 and P .
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9. Gropp, W., Moré, J.J.: Optimization environments and the NEOS server. In: Buh-
mann, M.D., Iserles, A. (eds.) Approximation Theory and Optimization, pp. 167–
182. Cambridge University Press, Cambridge (1997)

10. Polyakova, L.N.: Nonsmooth penalty functions. IFAC Proc. Vol. 33(16), 287–291
(2000). https://doi.org/10.1016/S1474-6670(17)39644-1

11. Polyakova, L., Karelin, V.: Exact penalty methods for nonsmooth optimization.
In: 20th International Workshop on Beam Dynamics and Optimization (BDO),
pp. 1–2 (2014). https://doi.org/10.1109/BDO.2014.6890067

12. Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. Springer,
Berlin (1985). https://doi.org/10.1007/978-3-642-82118-9

13. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer Aca-
demic Publishers, Dordrecht (1998). https://doi.org/10.1007/978-1-4757-6015-6

14. Shor, N.Z., Zhurbenko, N.G., Likhovid, A.P., Stetsyuk, P.I.: Algorithms of nondif-
ferentiable optimization: development and application. Cybern. Syst. Anal. 39(4),
537–548 (2003). https://doi.org/10.1023/B:CASA.0000003503.25710.84

15. Stetsyuk, P.I.: Theory and software implementations of Shor’s r-algorithms.
Cybern. Syst. Anal. 53(5), 692–703 (2017). https://doi.org/10.1007/s10559-017-
9971-1

16. Stetsyuk, P.I.: Shor’s r-algorithms: theory and practice. In: Butenko, S., Pardalos,
P.M., Shylo, V. (eds.) Optimization Methods and Applications. SOIA, vol. 130, pp.
495–520. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68640-0 24

17. Stetsyuk, P., Fischer, A.: Shor’s r-algorithms and octave-function ralgb5a. In:
International Conference on “Modern Informatics: Problems. Achievements and
Prospects for Development”, pp. 143–146. V.M. Glushkov Institute of Cybernetics
of the NAS of Ukraine, Kyiv (2017). (in Russian)

18. Gurobi Optimization Inc.: Gurobi Optimizer Reference Manual. http://www.
gurobi.com/documentation/

19. IBM: CPLEX User’s Manual, Version 12 Release 8. https://www.ibm.com/
support/knowledgecenter/SSSA5P 12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf

20. Free Software Foundation Inc.: GNU Linear Programming Kit (GLPK). http://
www.gnu.org/software/glpk/glpk.html

https://doi.org/10.1134/S000511791410004X
https://doi.org/10.1016/S1474-6670(17)39644-1
https://doi.org/10.1109/BDO.2014.6890067
https://doi.org/10.1007/978-3-642-82118-9
https://doi.org/10.1007/978-1-4757-6015-6
https://doi.org/10.1023/B:CASA.0000003503.25710.84
https://doi.org/10.1007/s10559-017-9971-1
https://doi.org/10.1007/s10559-017-9971-1
https://doi.org/10.1007/978-3-319-68640-0_24
http://www.gurobi.com/documentation/
http://www.gurobi.com/documentation/
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html


Bilevel Optimization



Sample Approximations of Bilevel
Stochastic Programming Problems with

Probabilistic and Quantile Criteria

Sergey V. Ivanov(B) and Aleksei N. Ignatov

Moscow Aviation Institute (National Research University),

Volokolamskoe Shosse, 4, Moscow 125993, Russia

Abstract. In this paper, bilevel stochastic programming problems with
probabilistic and quantile criteria are considered. The lower level prob-
lem is assumed to be linear for fixed leader’s (upper level) variables and
fixed realizations of the random parameters. The objective function and
the constraints of the lower level problem depend on the leader’s strategy
and random parameters. The objective function of the upper level prob-
lem is defined as the value of the probabilistic or quantile functional of
the random losses on the upper level. We suggest conditions guaranteeing
that the objective function of the upper level is a normal integrand. It
is shown that these conditions are satisfied for a class of problems with
positive coefficients of the lower level problem. This allows us to sug-
gest sufficient conditions of the existence of a solution to the considered
problem. We construct sample approximations of these problems. These
approximations reduce to mixed integer nonlinear programming prob-
lems. We describe sufficient conditions of the convergence of the sample
approximations to the original problems.

Keywords: Bilevel programming · Sample approximation · Stochastic
programming · Value-at-Risk · Probabilistic criterion · Quantile
criterion

1 Introduction

Bilevel programming problems describe hierarchical interaction between two sub-
jects. The subject making decision first is called a leader. The second subject is
called a follower. Their decisions are solutions to upper and lower level problems
respectively. The parameters of the lower level problem depend on the leader’s
strategy. The leader takes into account the optimal follower’s solution when the
upper level strategy is selected. The theory of bilevel problems is described in
monographs [1–3] and in the review [4].

In this paper, we study stochastic bilevel programming problems with prob-
abilistic and quantile criteria. These criteria are used in stochastic models for
taking into account reliability requirements [5]. The probabilistic criterion is
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defined as the probability of successful work of the system modeled. The quan-
tile criterion (also known as Value-at-Risk) is the minimal losses that cannot be
exceeded with a given probability. There are a few works on using the probabilis-
tic and quantile criteria in the stochastic bilevel optimization. The probabilistic
criterion for a linear problem with fuzzy random data is studied in [6], where
an algorithm to solve the problem is suggested. The quantile criterion for a
stochastic bilevel problem with quantile criterion and discrete distribution of
the random parameters is studied in [7]. A method to reduce this problem to
a mixed integer programming problem is suggested in [7]. Another approach in
stochastic programming to deal with reliability requirements is using coherent
risk measures [8]. Properties of stochastic bilevel problems with criteria involving
coherent risk measures and optimality conditions in these problems are studied
in [9,10].

When the exact distribution of the random parameters is unknown, the objec-
tive function and the constraints of a stochastic problem can be estimated by
using a sample. Thus, original problems are replaced by their approximations.
The properties of the obtained sample approximations are studied in [11] for the
expectation criterion and in [8,12] for problems with probabilistic constraints.
In [13], the convergence of this method is studied for problems with probabilistic
and quantile criteria.

In this paper, we study sample approximations of bilevel stochastic program-
ming problems with probabilistic and quantile criteria. We reduce the sample
approximations to mixed integer programming problems and give sufficient con-
ditions of their convergence. Also, we describe conditions guaranteeing that the
loss function of the problem is a normal integrand. These conditions are required
to formulate results on the existence of an optimal solution and on the conver-
gence of the sample approximations.

2 Statement

Let X be a random vector defined on a probability space (X ,F ,P), where X is
a closed subset of Rm. The σ-algebra F is assumed to be complete, i.e., S′ ∈ F
if there exists a set S ∈ F such that S′ ⊂ S and P(S) = 0. For simplicity, we
assume that X(x) = x for all x ∈ X . This means that the sample space X is
considered as the space of realizations of the random vector X.

Let U ⊂ R
r be a set feasible values of leader’s variables. The follower’s

problem is defined by the linear programming problem

Y∗(u, x) := Arg min
y∈Rs

{
c(u, x)�y | y ∈ Y(u, x)

}
, (1)

Y(u, x) := {y ∈ R
s | A(u, x)y ≥ b(u, x), y ≥ 0} . (2)

where u ∈ U is the leader’s variable, y is the follower’s variable, A : U × X →
R

k×s, b : U × X → R
k, c : U × X → R

s are a matrix and vectors depending on u
and x. Thus, the leader’s variable u and the realization x of the random vector
X define the constraints and the objective function of the follower’s problem.
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The set-valued mappings Y∗,Y : U × X → 2R
s

are introduced by (1) and (2).
We note that Y∗(u, x) = ∅ if problem (1) is infeasible or unbounded.

Let Ψ : U × Y × X → R
∗ be a leader’s loss function, where Y is the closure

of the set ⋃

u∈U, x∈X
Y(u, x),

R
∗ = R ∪ {−∞,+∞} is the extended real line.

To describe the losses of the leader when the follower chooses an optimal
variable y ∈ Y∗(u, x), we introduce the function Φ : U × X → R

∗ by the rule

Φ(u, x) := inf
y∈Y∗(u,x)

Ψ(u, y, x). (3)

The infimum in (3) means that the follower chooses the best decision for the
leader among the optimal decisions y ∈ Y∗(u, x). Thus, the optimistic statement
of the bilevel problem formulated below will be studied. We call Φ the optimistic
leader’s loss function.

Let us consider the probability function

Pϕ(u) := P{Φ(u,X) ≤ ϕ}, (4)

where ϕ ∈ R
∗ is a fixed level of the optimistic leader’s loss function Φ. The

value Pϕ(u) in (4) is well defined when the function x 
→ Φ(u, x) is measurable.
Sufficient conditions for this will be suggested below.

The quantile function is defined by the equality

ϕα(u) := min {ϕ ∈ R
∗ | Pϕ(u) ≥ α} , (5)

where α ∈ (0, 1] is a fixed probability level.
In this paper, we study the probability maximization problem

U∗ := Arg max
u∈U

Pϕ(u), α∗ := sup
u∈U

Pϕ(u), (6)

and the quantile minimization problem

V ∗ := Arg min
u∈U

ϕα(u), ϕ∗ := inf
u∈U

ϕα(u). (7)

Problems (6) and (7) are optimistic bilevel stochastic programming problems
with probabilistic and quantile criteria respectively.

3 Existence of Optimal Solution

It is known [5,14] that problems (6) and (7) are well defined and have opti-
mal solutions if the function (u, x) 
→ Φ(u, x) is a normal integrand. When the
σ-algebra F is complete, the normal integrand can be defined as a lower semi-
continuous in u ∈ U and B(U)×F-measurable function, where B(U) is the Borel
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σ-algebra of subsets U . In this section, we suggest conditions under which the
function (u, x) 
→ Φ(u, x) is a normal integrand.

Let us consider the follower’s problem (1). According to duality theory, the
follower’s variable y ∈ R

s is optimal in (1) if y ∈ Y(u, x) and there exists a
vector λ ∈ R

k such that

A(u, x)�λ ≤ c(u, x), λ ≥ 0, (8)

(A(u, x)y − b(u, x))�
λ = 0, (9)

(
A(u, x)�λ − c(u, x)

)�
y = 0. (10)

Denote by Λ(u, y, x) the set of λ ∈ R
k satisfying (8)–(10). Let us introduce the

function

δΛ(u, y, λ, x) =

{
0 if y ∈ Y(u, x) and λ ∈ Λ(u, y, x),
+∞ otherwise.

Then the optimistic loss function Φ can be represented in the form

Φ(u, x) = min
y∈Y

min
λ∈Λ(u,y,x)

{Ψ(u, y, x) + δΛ(u, y, λ, x)} . (11)

We use the convention −∞ + ∞ = +∞ in (11) and below.
Let us denote by Y ∗ the closure of the set

⋃
u∈Ux∈X Y∗(u, x).

Theorem 1. Let the following conditions hold:

(i) the function (u, y, x) 
→ Ψ(u, y, x) is lower semicontinuous in (u, y) ∈ U ×Y
and B(U) × B(Y ) × F-measurable;

(ii) the functions (u, x) 
→ A(u, x), (u, x) 
→ b(u, x), (u, x) 
→ c(u, x) are contin-
uous in u ∈ U and measurable in x;

(iii) the set Y ∗ is bounded;
(iv) there exists a compact set Λ∗ such that Λ∗ ∩ Λ(u, y, x) �= ∅ if and only if

Λ(u, y, x) �= ∅.
Then the function (u, x) 
→ Φ(u, x) is a normal integrand.

Proof. Taking into account (iii), (iv) and (11), the optimistic loss function can
be rewritten in the form

Φ(u, x) = min
y∈Y ∗, λ∈Λ∗

{Ψ(u, y, x) + δΛ(u, y, λ, x)} . (12)

From (i) it follows that the function ((u, y), x) 
→ Ψ(u, y, x) is a normal integrand.
From (ii) it follows that functions (u, x) 
→ A(u, x), (u, x) 
→ b(u, x), (u, x) 
→
c(u, x) are normal integrands [15, Example 14.29]. Therefore, the set

{(u, y, λ, x) ∈ U × Y ∗ × Λ∗ × X | λ ∈ Λ(u, y, x)}
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is B(U) × B(Y ∗) × B(Λ∗) × F-measurable and its sections {(u, y, λ) | λ ∈
Λ(u, y, x)} are closed for all x ∈ X . Hence, the function

((u, y, λ), x) 
→ Ψ(u, y, x) + δΛ(u, y, λ, x)

defined on the set U ×Y ∗×Λ∗×X is a normal integrand. Since the set Y ∗×Λ∗ is
compact, the minimum in (12) can be written and the function (u, x) 
→ Φ(u, x)
is a normal integrand [15, Proposition 14.47]. Theorem 1 is proved.

Let us consider the case when the values of functions b and c are positive.

Corollary 1. Let conditions (i), (ii) of Theorem 1 hold. Suppose that

(v) there exist c, b ∈ R such that

inf
u∈U,x∈X

min
i=1,s

ci(u, x) > c > 0,

inf
u∈U,x∈X

min
j=1,k

bj(u, x) > b > 0;

(vi) there exists c̄ ∈ R such that

sup
u∈U,x∈X

min
y∈Y(u,x)

c(u, x)�y < c̄;

Then the function (u, x) 
→ Φ(u, x) is a normal integrand.

Proof. Let us notice that from (vi) it follows that Y(u, x) �= ∅ for all u ∈ U ,
x ∈ X . From (v) and (vi) we get

⋃

u∈Ux∈X
Y∗(u, x) ⊂

{
y ∈ R

s | sup
u∈U,x∈X

c(u, x)�y ≤ c̄, y ≥ 0
}

⊂
{

y ∈ R
s | max

i=1,s
yi ≤ c̄

c
, y ≥ 0

}
.

Thus, condition (iii) of Theorem 1 is satisfied.
From duality theory it is known that for y ∈ Y∗(u, x) there exists a vector

λ ∈ Λ(u, y, x) such that c(u, x)�y = b(u, x)�λ. Hence, the set Λ∗ satisfying
condition (iv) of Theorem 1 can be taken in the form

Λ∗ =
{

λ ∈ R
k | max

j=1,k
λj ≤ c̄

b
, λ ≥ 0

}
.

By Theorem 1, the function (u, x) 
→ Φ(u, x) is a normal integrand. Corollary 1
is proved.

Example 1. Let us consider the follower’s problem

Y∗(u, x) = Arg min
y∈R

{max{0, u}y | y � 0} ,
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where u ∈ U = [−1, 1]. It easily seen that Y∗(u, x) = {0} if u > 0 and Y∗(u, x) =
[0,+∞) if u ≤ 0. Then for the normal integrand Ψ(u, y, x) = euy the infimum-
function Φ(u, x) = infy∈Y∗(u,x) Ψ(u, y, x) is not lower semicontinuous, because
Φ(u, x) = 1 if u ≥ 0 and Φ(u, x) = 0 if u < 0. This example shows that condition
(v) of Corollary 1 cannot be replaced by the conditions

inf
u∈U,x∈X

min
i=1,s

ci(u, x) ≥ 0, inf
u∈U,x∈X

min
j=1,k

bj(u, x) ≥ 0.

Example 2. Let us consider a production planning model. In this model, the
leader and the follower are the head office and the production division of a com-
pany. The leader can get a contract for the production of several types of prod-
ucts. The prices of these products manufactured according to the contract are
deterministic. The leader gives the follower a task to produce the products. The
leader supplies resources to the follower. The follower pays for using resources.
The prices for using resources are known when the follower produces products,
but the prices are considered to be random when the task for the follower is
stated. The leader’s variable u ∈ R

r (u ≥ 0) consists of production volumes
required by the contract. The follower’s variable y ∈ R

s (y ≥ 0) consists of vol-
umes of required resources. Let c(u,X) = c̃(X) be a random vector of prices for
using resources such that c̄ > ci(u, x) = c̃i(x) > c > 0 for all x ∈ X . The matrix
A(u, x) is constant such that A(u, x)y is the vector of manufactured products.
Let b(u, x) = u. Thus, the constraint A(u, x)y ≥ b(u, x) means that the follower
must produce the products according to the leader’s decision u. The leader’s
loss function has the form Ψ(u, y, x) = −π�u− π̃(x)�(A(u, x)y − b(u, x))+f(y),
where f(y) is the cost of buying resources y, π is the vector of prices for man-
ufactured products according to the contract, π̃(x) is a random vector of prices
for additionally manufactured products. The function f can be linear or convex
(if big volumes of resources require additional costs). Notice that the conditions
of Corollary 1 are satisfied for this model if U = {u ∈ R

r | u ≤ u ≤ ū}, where
0 < u < ū.

Let us formulate a corollary from Theorem 1 on the existence of optimal
solutions to problems (6) and (7).

Corollary 2. Let the conditions of Theorem 1 (or the conditions of Corollary 1)
hold. Let the set U be compact. Then the set U∗ of optimal solutions to problem
(6) is nonempty. If there exists a point u ∈ U such that ϕα(u) < +∞, then the
set V ∗ of optimal solutions to problem (7) is nonempty.

Proof. It is proved in [14, Theorem 6] that, if the function (u, x) 
→ Φ(u, x) is a
normal integrand, then the probability function u 
→ Pϕ(u) is upper semicontin-
uous for all ϕ ∈ R and the quantile function u 
→ ϕα(u) is lower semicontinuous
for all α ∈ (0, 1] for any normal integrand (u, x) 
→ Φ(u, x). The conditions
of Theorem 1 (or the conditions of Corollary 1) guarantees that the function
(u, x) 
→ Φ(u, x) is a normal integrand. Thus, the assertion of Corollary 2 fol-
lows from the Weierstrass theorem.
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4 Sample Approximations

In this section, we construct sample approximations of the probability maximiza-
tion problem (6) and the quantile minimization problem (7) by using a sample(
X1,X2, . . . , XN

)
generated by the random vector X. The sequence of random

vectors
(
XN

)
, N ∈ N, is defined on a complete probability space (Ω,F ′,P′).

The distribution functions of independent random variables XN coincide with
the distribution function of X.

Let us estimate the probability function (4) by the frequency of the event
{Φ(u,X) ≤ ϕ}:

P (N)
ϕ (u) :=

1
N

N∑

ν=1

χ[−∞,ϕ](Φ(u,Xν)), N ∈ N, (13)

where

χS(x) :=

{
1, x ∈ S;
0, x /∈ S.

Replacing the probability function in (5) by the estimator (13), we obtain
the sample estimator of the quantile function:

ϕ(N)
α (u) := min

{
ϕ ∈ R

∗ | P (N)
ϕ (u) ≥ α

}
.

We consider the sample approximation of the probability maximization prob-
lem in the form

U (N) := Arg max
u∈U

P (N)
ϕ (u), αN := sup

u∈U
P (N)

ϕ (u), (14)

and the sample approximation of the quantile minimization problem in the form

V (N) := Arg min
u∈U

ϕ(N)
α (u), ϕN := inf

u∈U
ϕα(u). (15)

When a realization
(
x1, x2, . . . , xN

)
of the sample

(
X1,X2, . . . , XN

)
is fixed,

problems (14) and (15) can be considered as stochastic programming problems
with discrete distribution of the random parameters. This allows us to use the
technique suggested in [16,17] for reducing the problems to deterministic mixed
integer programming problems.

Recall that Y ∗ is the closure of the set
⋃

u∈U, x∈X Y∗(u, x). Suppose that a
set Λ∗ ⊂ R

k is chosen in such a way that, for all u ∈ U , y ∈ Y ∗, x ∈ X , the set
Λ∗ ∩ Λ(u, y, x) �= ∅ if and only if Λ(u, y, x) �= ∅.

Let functions γ1 : U ×Y ×X ×R → R, γ2 : U ×Y ×X → R
k, γ3 : U ×Y ×X →

R
k, γ4 : Rk 
→ R

k, γ5 : U × R
k × X → R

s, γ6 : U × R
k × X → R

s, γ7 : Y → R
s

satisfying the following conditions be known:

1. Ψ(u, y, x) − ϕ ≤ γ1(u, y, x, ϕ) for all u ∈ U , y ∈ Y ∗, x ∈ X , ϕ ∈ R;
2. −γ2(u, y, x) ≤ A(u, x)y − b(u, x) ≤ γ3(u, y, x) for all u ∈ U , y ∈ Y ∗, x ∈ X ;
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3. λ ≤ γ4(λ) for all λ ∈ Λ∗.
4. −γ6(u, λ, x) ≤ A(u, x)�λ − c(u, x) ≤ γ5(u, λ, x) for all u ∈ U , λ ∈ Λ∗, x ∈ X ;
5. y ≤ γ7(y) for all y ∈ Y ∗.

Let us introduce the variables yν and λν corresponding to realizations xν ,
ν = 1, N , and the vectors of auxilary binary variables δ ∈ {0, 1}N , ην ∈ {0, 1}k,
ζν ∈ {0, 1}s, ν = 1, N . The sense of these variables follows from the proof of
Theorem 2 given below. The value of δν is equal to 1 if Φ(u, xν) ≤ ϕ. If δν = 1,
then zero elements of ην correspond to nonzero elements of the dual variables
for constraints A(u, xν)yν ≥ b(u, xν), zero elements of ζν correspond to nonzero
elements of the vector yν . Problem (14) reduces to the problem

1
N

N∑

ν=1

δν → max
u∈U, yν∈Y, λν∈Rk, δ∈{0,1}N , ην∈{0,1}k, ζν∈{0,1}s, ν=1,N

(16)

subject to

Ψ(u, yν , xν) ≤ ϕ + (1 − δν)γ1(u, yν , xν , ϕ), (17)

A(u, xν)yν ≥ b(u, xν) − (1 − δν)γ2(u, yν , xν), (18)

A(u, xν)yν ≤ b(u, xν) + (ην + (1 − δν)ek) ◦ γ3(u, yν , xν), (19)

0 ≤ λν ≤ ((2 − δν)ek − ην) ◦ γ4(λν), (20)

A(u, xν)�λν ≤ c(u, xν) + (1 − δν)γ5(u, λν , xν), (21)

A(u, xν)�λν ≥ c(u, xν) − (ζν + (1 − δν)es) ◦ γ6(u, yν , λν , xν), (22)

0 ≤ yν ≤ ((2 − δν)es − ζν) ◦ γ7(yν), ν = 1, N, (23)

where es, ek are vectors consisting of ones with dimension s and k respectively,
◦ denotes the element-wise product of two vectors.

Denote by
(
ū, (ȳν), (λ̄ν), δ̄, (η̄ν), (ζ̄ν)

)
the optimal solution to problem (16),

where (ȳν) := (y1, y2, . . . , yN ). Notation (λ̄ν), (η̄ν), (ζ̄ν) has the same sense.

Theorem 2. Let the conditions of Theorem 1 hold. Suppose that Λ∗ satisfies
condition (iv) of Theorem 1. Then,

1. if ū is an optimal value of the variable u in problem (16), then ū ∈ U (N);
2. if δ̄ is an optimal value of the variable δ in problem (16), then

αN =
1
N

N∑

ν=1

δ̄ν ;

3. for any optimal ũ ∈ U (N) there exist values ỹν ∈ Y , λ̃ν ∈ R
k, δ̃ ∈ {0, 1}N ,

η̃ν ∈ {0, 1}k, ζ̃ν ∈ {0, 1}s, ν = 1, N such that
(
ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)

is an optimal solution to problem (16).
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Proof. Let
(
ū, (ȳν), (λ̄ν), δ̄, (η̄ν), (ζ̄ν)

)
be an optimal solution to problem (16).

Let
K :=

{
ν | δ̄ν = 1, ν = 1, N

}
.

It follows from inequalities (18)–(23) that, for all ν ∈ K, ȳν belongs to Y(ū, xν),
and inequalities (8)–(10) hold for λ = λ̄ν , y = ȳν . Therefore, ȳν ∈ Y∗(ū, xν).
Hence, for any ν ∈ K,

Φ(ū, xν) ≤ Ψ(ū, ȳν , xν) ≤ ϕ.

Thus,

P (N)
ϕ (ū) =

1
N

N∑

ν=1

χ[−∞,ϕ](Φ(ū, xν)) ≥ 1
N

∑

ν∈K

δ̄ν =
1
N

N∑

ν=1

δ̄ν = ᾱ∗, (24)

where ᾱ∗ is the optimal objective value of problem (16). We notice that inequality
(24) is written for the fixed realization (x1, x2, . . . xN ) of the sample.

Now, let ũ be an optimal solution to problem (14). Let

K̃ :=
{
ν | Y∗(ũ, xν) �= ∅, ν = 1, N

}
. (25)

For each ν ∈ K̃ let us choose ỹν ∈ Y∗(ũ, xν), λ̃ν ∈ Λ∗ in such a way that
Φ(ũ, xν) = Ψ(ũ, ỹν , xν). The existence of such values ỹν follows from the rep-
resentation (12), because the minimum of the lower semicontinuous function
(y, λ) 
→ Ψ(ũ, y, xν) + δΛ(ũ, y, λ, xν) is attained on the compact set Y ∗ × Λ∗. If
ν /∈ K̃, then we take ỹν ∈ Y ∗, λ̃ν ∈ Λ∗ arbitrarily. If ν ∈ K̃ and Φ(ũ, xν) ≤ ϕ,
then δ̃ν = 1; otherwise δ̃ν = 0. Let ζ̃ν

i = 1 if ỹν
i = 0 and ζ̃ν

i = 0 if ỹν
i > 0, i = 1, s;

η̃ν
j = 1 if λ̃ν

j = 0 and η̃ν
j = 0 if λ̃ν

j > 0, j = 1, k. All the constraints (17)–(23) are

satisfied for the solution
(
ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)
. Thus,

P (N)
ϕ (ũ) =

1
N

N∑

ν=1

χ[−∞,ϕ](Φ(ũ, xν)) =
1
N

N∑

ν=1

δ̃ν ≤ ᾱ∗. (26)

Taking into account the optimality of ũ, we obtain from inequality (24) that

P (N)
ϕ (ũ) ≥ P (N)

ϕ (ū) ≥ ᾱ∗. (27)

Hence, 1
N

∑N
ν=1 δ̃ν = ᾱ∗. This proves the third assertion of the theorem. Com-

bining (26) and (27), we get

P (N)
ϕ (ū) = P (N)

ϕ (ũ) = ᾱ∗. (28)

This implies the first assertion of the theorem. By definition, ᾱ∗ = 1
N

∑N
ν=1 δ̄ν .

We conclude from (28) that

αN = P (N)
ϕ (ũ) = ᾱ∗ =

1
N

N∑

ν=1

δ̄ν .

This equality proves the second assertion. All the assertions of Theorem 2 are
proved.
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Remark 1. Let us consider the model from Example 2. If the sets of feasible
values of leader’s and follower’s variables are bounded then the function γi can be
taken constant. In this case, constraints (17)–(23) are linear or convex depending
on the properties of the function f .

The quantile minimization problem (15) reduces to a mixed integer program-
ming problem:

ϕ → min
ϕ∈R∗, u∈U, yν∈Y, λν∈Rk, δ∈{0,1}N , ην∈{0,1}k, ζν∈{0,1}s, ν=1,N

(29)

subject to
1
N

N∑

ν=1

δν ≥ α. (30)

and (17)–(23).

Theorem 3. Let the conditions of Theorem 1 hold. Suppose that Λ∗ satisfies
condition (iv) of Theorem 1. Then,

1. if ū is an optimal value of the variable u in problem (29), then ū ∈ V (N);
2. if ϕ̄ is the optimal value of the variable ϕ in problem (29), then ϕN = ϕ̄;
3. for any optimal ũ ∈ V (N) there exist values ỹν ∈ Y , λ̃ν ∈ R

k, δ̃ ∈ {0, 1}N ,
η̃ν ∈ {0, 1}k, ζ̃ν ∈ {0, 1}s, ν = 1, N such that

(
ϕN , ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)

is an optimal solution to problem (29).

Proof. Let
(
ϕ̄, ū, ȳν , λ̄ν , δ̄, η̄ν , ζ̄ν

)
be an optimal solution to problem (16). Due

to constraint (30),
1
N

N∑

ν=1

δ̄ν ≥ α. (31)

It follows from inequalities (18)–(23) that

Φ(ū, xν) ≤ Ψ(ū, ȳν , xν) ≤ ϕ̄. (32)

if δ̄ν = 1 (see the proof of Theorem 2). Since inequalities (31) and (32) hold,

ϕ(N)
α (ū) = min

{

ϕ | 1
N

N∑

ν=1

χ[−∞,ϕ](Φ(ū, xν)) ≥ α

}

≤ ϕ̄. (33)

Now, let ũ be an optimal solution to problem (15). For each ν ∈ K̃ let us
choose ỹν ∈ Y∗(ũ, xν), λ̃ν ∈ Λ∗ in such a way that Φ(ũ, xν) = Ψ(ũ, ỹν , xν),
where K̃ is defined in (25). If ν /∈ K̃, then we take ỹν ∈ Y ∗, λ̃ν ∈ Λ∗ arbitrarily.
Let ζ̃ν

i = 1 if ỹν
i = 0 and ζ̃ν

i = 0 if ỹν
i > 0, i = 1, s; η̃ν

j = 1 if λ̃ν
j = 0 and

η̃ν
j = 0 if λ̃ν

j > 0, j = 1, k. If ν ∈ K̃ and Φ(ũ, xν) ≤ ϕN , then δ̃ν = 1; otherwise
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δ̃ν = 0. Taking into account the definition of the sample quantile function, we
get

∑N
ν=1 δ̃ν ≥ α. Thus, all the constraints (17)–(23) and (30) are satisfied for

the solution
(
ϕN , ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)
. Hence ϕ̄ ≤ ϕN .

Since ϕN is the optimal objective value in (15), ϕN ≤ ϕ
(N)
α (ū). Due to (33),

we obtain
ϕN ≤ ϕ(N)

α (ū) ≤ ϕ̄ ≤ ϕN .

Thus, ϕ
(N)
α (ū) = ϕ̄ = ϕN . This proves assertions 1 and 2 of Theorem 3. Asser-

tion 3 follows from the existence of the solution
(
ϕN , ũ, (ỹν), (λ̃ν), δ̃, (η̃ν), (ζ̃ν)

)

such that ϕ̄ = ϕN . Theorem 3 is proved.

5 Convergence of the Sample Approximations

The convergence of sample approximations of stochastic programming prob-
lems with probabilistic criterion is studied in [13], where it was proved that
limN→∞ αN = α∗ almost surely (a.s.) (with respect to the probability mea-
sure P′) if the function (u, x) 
→ Φ(u, x) is a normal integrand and U is
nonempty and compact. The sufficient conditions guaranteeing that the function
(u, x) 
→ Φ(u, x) is a normal integrand are given in Theorem 1 and Corollary 1.
Let us formulate the theorem on the convergence of the sample approximations of
the bilevel stochastic programming problem with probabilistic criterion. Denote
by

D(S, T ) := sup
s∈S

inf
t∈T

‖s − t‖

the deviation of the set S ⊂ R
r from the set T ⊂ R

r.

Theorem 4. Suppose that the function (u, x) 
→ Φ(u, x) is a normal integrand.
Let the set U be nonempty and compact. Then limN→∞ αN = α∗ a.s. and
limN→∞ D

(
U (N), U∗) = 0 a.s.

Proof. The convergence of αN to α∗ a.s. is proved in [13, Theorem 7]. Also, it
was proved that, under the conditions of the theorem, that every limit point ū of
the sequence (uN ), where uN ∈ U (N), is optimal in problem (6) a.s., i.e., ū ∈ U∗

a.s. To prove the set convergence, suppose that lim supN→∞ D
(
U (N), U∗) > 0

with nonzero probability. This implies that there exists ε > 0 such that
lim supN→∞ D

(
U (N), U∗) > ε with probability β > 0. Then, with probability

β, we can find a sequence uN such that

lim sup
N→∞

inf
u∈U∗

‖uN − u‖ > ε.

From the compactness of the set U and the continuity of the function v 
→
infu∈U∗ ‖v − u‖ it follows that there exists a limit point ū of the sequence (uN )
such that infu∈U∗ ‖ū − u‖ ≥ ε. Therefore, with probability β > 0 there exists
a limit point ū (depending on the realization of the sample) such that ū /∈ U∗.
But ū ∈ U∗ a.s. This contradiction proves the theorem.
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In applied problems, it is important to know the sample size guaranteeing
a given accuracy of the approximation. This question is studied in [18, Theorem
1]. According to this result, if the set U is finite, then

P′{U (N) ⊂ Uε} ≥ β

for

N ≥ 2
ln |U | − ln(1 − β)

| ln(1 − ε2)| ,

where β ∈ (0, 1), ε ∈ (0, 1), Uε := {u ∈ U | Pϕ(u) ≥ α∗−ε} is the set of ε-optimal
solutions to problem (6). This estimation was obtained for arbitrary functions
(u, x) → Φ(u, x) being normal integrands and taking values from R. Replacing
infinite values of Φ(u, x) in definition (3) by finite values that have the same
sign does not change Pϕ(u) and P

(N)
ϕ (u). Thus, the given estimation is valid

for the considered bilevel problems (of course, if the conditions of Theorem 1 or
Corollary 1 are satisfied).

Sufficient conditions of the convergence of problems with quantile criteria are
given in [13,14].

Theorem 5 ([14, Theorem 10]). Suppose that

(i) The set U is compact and nonempty.
(ii) The function (u, x) 
→ Φ(u, x) is a normal integrand, and Φ(u, x) > −∞ for

all (u, x) ∈ U × X .
(iii) If ϕ∗ �= +∞, then for all ε > 0 there exists a pair (ũ, ϕ̃) ∈ U × R such that

|ϕ̃ − ϕ∗| ≤ ε and Pϕ̃(ũ) > α.

Then limN→∞ ϕN = ϕ∗ a.s. and every limit point of the sequence (vN ), where
vN ∈ V (N), is optimal in problem (7) a.s.

Theorem 5 was proved for arbitrary functions (u, x) → Φ(u, x) being normal
integrands and taking values from (−∞,+∞]. Thus, it holds for the considered
functions Φ in bilevel problems. Due to condition (ii), Theorem 5 is not applied
to functions Φ taking value −∞.

In the same manner as in the proof of Theorem 4, it can be proved that the
assertion on the optimality of limit points in Theorem 5 can be replaced by

lim
N→∞

D
(
V (N), V ∗

)
= 0 a.s.

The most difficult point in applying Theorem 5 is to check assumption (iii). It
is hard to describe sufficient conditions for this, because the dependence (u, x) 
→
Φ(u, x) must be known. However, in some cases (for example, in the case of
linear follower’s problem [19]) this dependence can be found. It is easy to check
that assumption (iii) of Theorem 5 holds if the function x 
→ Φ(u, x) is strictly
increasing and X has a positive on R density.
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6 Conclusion

In this paper, sample approximations of the stochastic optimistic bilevel pro-
gramming problems with probabilistic and quantile criteria were studied. The
sample approximations reduced to deterministic optimization problems. These
problems can be solved by using special software for nonlinear optimization.
Conditions ensuring the convergence of the sample approximations were given.
Since these conditions require that the leader’s loss function is a normal inte-
grand, some classes of the considered problems with such leader’s loss functions
were described. Although the convergence was proved, the sufficient sample size
for the infinite set of the leader’s variables (and for the quantile minimization
problem even when the set of the variable is finite) is still unknown. This question
can be studied in future research.
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Abstract. This paper addresses the optimistic statement of one class
of bilevel optimization problems (BOPs) with a nonconvex lower level.
Namely, we study BOPs with a convex quadratic objective function at
the upper level and with a bimatrix game at the lower level. It is known
that the problem of finding a Nash equilibrium point in a bimatrix game
is equivalent to the special nonconvex optimization problem with a bilin-
ear structure. Nevertheless, we can replace such a lower level with its
optimality conditions and transform the original bilevel problem into a
single-level nonconvex optimization problem. Then we apply the origi-
nal Global Search Theory (GST) for general D.C. optimization problems
and the Exact Penalization Theory to the resulting problem. After that,
a special method of local search, which takes into account the structure
of the problem under consideration, is developed.

Keywords: Bilevel optimization · Bilevel problems with a nonconvex
lower level · Optimistic solution · Bimatrix game · Nash equilibrium ·
Reduction theorem · Problem with D.C. constraints · Global search
theory · Exact penalization theory · Local search

1 Introduction

Nowadays, bilevel optimization is a highly developing area of optimization [1,2].
Bilevel optimization problems (BOPs) have a hierarchical structure involving two
decision-makers: a leader (an upper level) and a follower (a lower level). These
problems have a big number of practical applications, which are characterized
by the unequal status of the participants (see, for example, [3–5], as well as
Chapters 5, 6, and 20 in [2]).

The year 2019 marked the 85th anniversary of the famous book by Heinrich
von Stackelberg [6] who can be considered as one of the founders of bilevel opti-
mization. In 2020, Springer published a large volume dedicated to this event [2]. It
largely consists of surveys on different topics of the modern bilevel optimization.
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The up-to-date challenge in studying bilevel optimization problems is finding
a global solution to the bilevel problems with a nonconvex lower level, because
the majority of existing solution algorithms require a preliminary transformation
of the problem in question to a standard single-level optimization problem (e.g.
by the KKT-conditions) [1,2]. This can be easily done only if the lower level of
the original bilevel problem is convex with respect to the follower variable.

There are some interesting works concerning attempts to tackle bilevel prob-
lems with a nonconvex lower level. For example, in [7] a method based on the
bounding technique with heuristics is suggested, in [8] G.-H. Lin et al. studied
a special reformulation of simple bilevel problems (when the constraint set of
the lower level does not depend on the variable of the upper level) based on the
value function of the lower level problem, and in [9] four special types of bilevel
problems with min–max optimization problems at the lower level are considered.

It can be noted that at the moment the range of publications related to the
study of bilevel problems with a nonconvex lower level is rather small. It can be
explained by the extreme complexity of this type of problems. Researchers are
forced to apply various tricks and simplifications in order to somehow arrive at
the development of methods for solving bilevel problems with a nonconvex lower
level. In particular, it seems reasonable to distinguish some classes of problems
with a similar structure and develop special methods for each class that uses
this structure and special properties of the problems under study.

Simultaneously, the study of bilevel problems with many players at
the lower (Single-Leader-Multi-Follower-Problem (SLMFP)) or at the upper
level (Multi-Leader-Single-Follower-Problem (MLSFP)), or even Multi-Leader-
Follower-Problems (MLFPs), with one or more Nash games at each level, is
gaining popularity (see [10–12] and Chapter 3 in [2]). The research in this field
is essentially motivated by real-life applications, but at the present time, there
is no standard approach to constructing numerical methods for such problems,
because, in general, a problem of finding a Nash equilibrium is nonconvex from
the optimization point of view (whenever it is possible to make a corresponding
transformation).

In this paper, we propose to approach this issue by studying one of the classes
of bilevel problems with a so-called non-normalized parametric bimatrix game at
the lower level [13,14], where the leader’s objective function is convex quadratic
subject to linear constraints.

In our recent work [15], an attempt was made to address a bilevel problem
with a matrix game at the lower level. It is known that a matrix game is a con-
vex problem because it is equivalent to a pair of linear programming problems
[13,14]. From a practical perspective, such a model does not seem to be general
enough, since the conflict between the players of a matrix game has an antag-
onistic character. In the present work, we are trying to extend the developed
approach to a more difficult non-antagonistic conflict between two players at the
lower level. So, we consider a bilevel problem with a special bimatrix game at
the lower level (which is already a nonconvex problem from the optimization
point of view).
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In order to construct numerical methods for solving BOPs with such equilib-
rium at the lower level, we transform it, just as before, to a standard optimization
problem using the special optimality conditions. The resulting problem is a global
optimization problem with D.C. constraints (see, e.g., [16–18]). It is known that
classical convex optimization methods do not allow to solve nonconvex optimiza-
tion problems globally [18–20]. Therefore, to find global solutions to the reduced
single-level problem, we employ an original Global Search Theory (GST) devel-
oped by A.S. Strekalovsky for D.C. optimization problems [18,21,22]. Lately,
the GST has proven to be a powerful tool for developing numerical methods to
solve different nonconvex problems of Operations Research (including problems
with hierarchical and equilibrium structures), see [14,18,23–31].

In this connection, the structure of the paper is the following. Section 2 deals
with the problem statement and properties of the non-normalized bimatrix game,
which is formulated in Sect. 3 at the lower level of the bilevel problem. Then the
transformation of the original bilevel problem to the single-level one is carried
out. Section 4 addresses a D.C. decomposition for each nonconvex function from
the latter formulation. In Sect. 5, Exact Penalization and the Global Optimality
Conditions (GOCs) are formulated in terms of the obtained nonconvex prob-
lem. Section 6 is devoted to the Special Local Search Method. Section 7 presents
concluding remarks.

2 Non-normalized Bimatrix Game and Its Properties

First of all, we need to study a so-called non-normalized 2-players bimatrix
game and its basic properties. In particular, we are interested in such optimality
conditions for the game (in a sense of a Nash equilibrium) that can be represented
as a finite set of equalities and inequalities. Note, if a term like yB1 is used, it
means that y is a row vector, whereas the expression B1z implies that z is a
column vector.

Let us formulate the non-normalized bimatrix game in mixed strategies,
which differs from a classical bimatrix game (see, e.g. [13,14]) in scalar parame-
ters ξ1, ξ2 (y is the variable of Player 1, z is the variable of Player 2):

〈y,B1z〉 ↑ max
y

, y ∈ Y = {y ∈ IRn1 | y ≥ 0, 〈en1 , y〉 = ξ1 > 0},

〈y,B2z〉 ↑ max
z

, z ∈ Z = {z ∈ IRn2 | z ≥ 0, 〈en2 , z〉 = ξ2 > 0},

}
(ΓB)

where B1, B2 are (n1 × n2)-matrices, en1 = (1, ..., 1), en2 = (1, ..., 1) are vectors
of appropriate dimension. It can be readily seen that we consider the game with
simplexes depending on the parameters ξ1 and ξ2, instead of canonical simplexes.

A definition of a Nash equilibrium point in the game (ΓB) is the following.

Definition 1. A pair (y∗, z∗) ∈ Y × Z satisfying the inequalities

α∗
�
= 〈y∗, B1z

∗〉 ≥ 〈y,B1z
∗〉 ∀y ∈ Y,

β∗
�
= 〈y∗, B2z

∗〉 ≥ 〈y∗, B2z〉 ∀z ∈ Z.
(1)
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where α∗ and β∗ are the payoffs of Player 1 and Player 2 in the situation (y∗, z∗),
respectively, is said to be a Nash equilibrium point (or a Nash equilibrium) of the
game (ΓB) ((y∗, z∗) ∈ NE(ΓB)).

The following optimality conditions for the non-normalized bimatrix game
(ΓB) (in the sense of finding a Nash equilibrium) are a generalization of known
optimality conditions for a classical bimatrix game [13,14].

Theorem 1. The situation (y∗, z∗) ∈ NE(ΓB), if and only if the following
inequalities and equalities hold:

ξ1(B1z
∗)i ≤ 〈y∗, B1z

∗〉 ∀i = 1, ..., n1, z∗ ≥ 0, 〈en2 , z
∗〉 = ξ2;

ξ2(y∗B2)j ≤ 〈y∗, B2z
∗〉 ∀j = 1, ..., n2, y∗ ≥ 0, 〈en1 , y

∗〉 = ξ1.

}
(2)

Proof. Necessity. Let yi = (0, ...,
i

ξ1, ..., 0) ∈ Y ∀i = 1, ..., n1 and

zj = (0, ...,
j

ξ2, ..., 0) ∈ Z ∀j = 1, ..., n2 in (1). Then we arrive at (2).
Sufficiency. Scalarly multiplying the first inequality in (2) by an arbitrary y ∈ Y
and the first inequality in the second line of (2) by an arbitrary z ∈ Z, we obtain:

ξ1〈y,B1z
∗〉 ≤ 〈y∗, B1z

∗〉
n1∑
i=1

yi ∀y ∈ Y ;

ξ2〈y∗, B2z〉 ≤ 〈y∗, B2z
∗〉

n2∑
j=1

zj ∀z ∈ Z.

Hence, we obtain (1), because of
n1∑
i=1

yi = ξ1 and
n2∑

j=1

zj = ξ2. 	

On the basis of Theorem 1, we can prove the following result.

Theorem 2. The pair (y∗, z∗) ∈ NE(ΓB), if and only if there exist numbers
α∗ and β∗, such that the following system takes place:

ξ1(B1z
∗) ≤ α∗en1 , z∗ ∈ Z, ξ2(y∗B2) ≤ β∗en2 , y∗ ∈ Y,

〈y∗, (B1 + B2)z∗〉 = α∗ + β∗.

}
(3)

Proof. Necessity. Let (y∗, z∗) ∈ NE(ΓB). Set α∗ := 〈y∗, B1z
∗〉, β∗ := 〈y∗, B2z

∗〉.
Then, obviously, the last equality in the system (3) holds. Inequalities in the system
(3) follow from the optimality conditions (2) written in vector form.
Sufficiency. Now, let a 4-tuple (y∗, z∗, α∗, β∗) ∈ Y ×Z×IR×IR satisfy the system
(3). Scalarly multiplying the first inequality in (3) by an arbitrary y ∈ Y and
the second inequality in (3) by an arbitrary z ∈ Z, we get:

ξ1〈y,B1z
∗〉 ≤ α∗〈en1 , y〉,

ξ2〈y∗, B2z〉 ≤ β∗〈en2 , z〉.
}

(4)

Therefore, when y = y∗ and z = z∗, we obtain:

〈y∗, B1z
∗〉 ≤ α∗, 〈y∗, B2z

∗〉 ≤ β∗.
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At the same time, according to the system (3), it should be α∗+β∗ = 〈y∗, (B1+B2)z∗〉.
This means that the last inequalities can be fulfilled only as equalities:
α∗ = 〈y∗, B1z

∗〉, β∗ = 〈y∗, B2z
∗〉. Substituting these values of α∗ and β∗ to

the system (4), we obtain Definition 1 of a Nash equilibrium point in the game
(ΓB). 	


This theorem is a generalization of the known theorem of Mangasaryan-Stone
[32]. The latter is used for solving bimatrix games by their transformation to
a problem of mathematical optimization [14,24]. So, it seems that the system
(3) fits our purposes better than the system (2) as optimality conditions for the
non-normalized bimatrix game (ΓB). It is easy to see that the last equality with
respect to a couple of variables y and z is nonconvex.

Now, let us formulate the bilevel optimization problem with the nonconvex
non-normalized bimatrix game at the lower level.

3 Bilevel Problem Formulation and Transformation

We will consider the BOPs with equilibrium at the lower level in the following
formulation:

〈x,Cx〉 + 〈c, x〉 + 〈y,D1y〉 + 〈d1, y〉 + 〈z,D2z〉 + 〈d2, z〉 ↑ max
x,y,z

,

x ∈ X, (y, z) ∈ NE(ΓB(x)),

}
(BPΓB)

where X = {x ∈ IRm | Ax ≤ a, x ≥ 0, 〈b1, x〉 + 〈b2, x〉 = 1}, NE(ΓB(x)) is a
set of Nash equilibrium points of the game

〈y,B1z〉 ↑ max
y

, y ∈ Y (x) = {y | y ≥ 0, 〈en1 , y〉 = 〈b1, x〉},

〈y,B2z〉 ↑ max
z

, z ∈ Z(x) = {z | z ≥ 0, 〈en2 , z〉 = 〈b2, x〉};

}
(ΓB(x))

c, b1, b2 ∈ IRm; y, d1 ∈ IRn1 ; z, d2 ∈ IRn2 ; a ∈ IRm1 ; b1 ≥ 0, b1 �= 0,
b2 ≥ 0, b2 �= 0; A,B1, B2, C,D1,D2 are matrices of appropriate dimension.
C = CT , D1 = DT

1 , D2 = DT
2 are positive semidefinite matrices, so, the objective

function of the leader is convex.
It is easy to see that at the lower level we formulate a non-normalized

bimatrix game with mixed strategies from the previous section, where
ξ1 = 〈b1, x〉, ξ2 = 〈b2, x〉. The equality 〈b1, x〉 + 〈b2, x〉 = 1 can be explained
as some resource, which should be distributed by the leader among the follow-
ers.

Note that the problem (BPΓB) is written in the so-called optimistic formu-
lation when the interests of the leader can be agreed with the actions of the
followers [1,2]. In order to study the conditions guaranteeing the existence of a
global solution in such formulation, one can use the corresponding theoretical
results of bilevel optimization [1,2].

As for developing numerical methods for finding solutions to the bilevel prob-
lem (BPΓB), we need to rewrite it as a single-level problem. For this purpose, we
can employ Theorem 2 and replace the lower level of (BPΓB) with the system
(3) where ξ1 := 〈b1, x〉, ξ2 := 〈b2, x〉 (x is fixed).
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Therefore, it is possible to formulate the following single-level optimization
problem which is equivalent to the bilevel problem (BPΓB), from the global
solutions point of view:

−f0(x, y, z)
�
= 〈x,Cx〉 + 〈c, x〉 + 〈y,D1y〉 + 〈d1, y〉

+ 〈z,D2z〉 + 〈d2, z〉 ↑ max
x,y,z,α,β

,

(x, y, z) ∈ S
�
= {x, y, z | Ax ≤ a, x ≥ 0, 〈b1, x〉 + 〈b2, x〉 = 1,

y ≥ 0, 〈en1 , y〉 = 〈b1, x〉, z ≥ 0, 〈en2 , z〉 = 〈b2, x〉},
〈b1, x〉(B1z) ≤ αen1 , 〈b2, x〉(yB2) ≤ βen2 ,

〈y, (B1 + B2)z〉 = α + β.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(PB)

More precisely, the following result is valid.

Theorem 3. The 3-tuple (x∗, y∗, z∗) is a global (optimistic) solution to the
bilevel problem (BPΓB) ((x∗, y∗, z∗) ∈ Sol(BPΓB)), if and only if there exist
numbers α∗ and β∗ such that the 5-tuple (x∗, y∗, z∗, α∗, β∗) is a global solution
to the problem (PB).

Proof. Necessity. Let the 3-tuple (x∗, y∗, z∗) ∈ Sol(BPΓB). Then, obviously,
(y∗, z∗) ∈ NE(ΓB(x∗)) and Theorem 2 takes place. Hence, there exist α∗ and
β∗ such that the conditions (3) are fulfilled under ξ1 = 〈b1, x∗〉 and ξ2 = 〈b2, x∗〉.
So far as x∗ ∈ X, then the 5-tuple (x∗, y∗, z∗, α∗, β∗) is feasible in the problem
(PB).

Let, on the contrary, (x∗, y∗, z∗, α∗, β∗) �∈ Sol(PB). Then there exists a 5-
tuple (x̄, ȳ, z̄, ᾱ, β̄) which is feasible in the problem (PB) and

〈x̄, Cx̄〉 + 〈c, x̄〉 + 〈ȳ, D1ȳ〉 + 〈d1, ȳ〉 + 〈z̄, D2z̄〉 + 〈d2, z̄〉
> 〈x∗, Cx∗〉 + 〈c, x∗〉 + 〈y∗,D1y

∗〉 + 〈d1, y∗〉 + 〈z∗,D2z
∗〉 + 〈d2, z∗〉. (5)

Simultaneously, the conditions (3) take place for the 5-tuple (x̄, ȳ, z̄, ᾱ, β̄) (where
ξ1 = 〈b1, x̄〉, ξ2 = 〈b2, x̄〉, and (y∗, z∗, α∗, β∗) = (ȳ, z̄, ᾱ, β̄)) since this 5-tuple is
feasible in the problem (PB). Therefore, by Theorem 2 (ȳ, z̄) ∈ NE(ΓB(x̄)),
and the 3-tuple (x̄, ȳ, z̄) is feasible in the problem (BPΓB), because x̄ ∈ X. So
far as the objective functions of the problems (BPΓB) and (PB) coincide, the
inequality (5) contradicts the fact that (x∗, y∗, z∗) ∈ Sol(BPΓB).

Sufficiency. Now let the 5-tuple (x∗, y∗, z∗, α∗, β∗) ∈ Sol(PB). Then x∗ ∈ X
and the conditions (3) are fulfilled for the 5-tuple (x∗, y∗, z∗, α∗, β∗) (where
ξ1 = 〈b1, x∗〉 and ξ2 = 〈b2, x∗〉). Then by Theorem 2, (y∗, z∗) ∈ NE(ΓB(x∗))
and the 3-tuple (x∗, y∗, z∗) is feasible in the problem (BPΓB).

Next, suppose that there exists a 3-tuple (x̃, ỹ, z̃) which is feasible in the
problem (BPΓB) and

− f0(x̃, ỹ, z̃) > −f0(x∗, y∗, z∗). (6)

According to Theorem 2, again there exist numbers α̃ and β̃ such that
the optimality conditions (2) are valid for the 5-tuple (x̃, ỹ, z̃, α̃, β̃) (where
ξ1 = 〈b1, x̃〉, ξ2 = 〈b2, x̃〉, and (y∗, z∗, α∗, β∗) = (ỹ, z̃, α̃, β̃)). In that case, the
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5-tuple (x̃, ỹ, z̃, α̃, β̃) is feasible in the problem (PB) and the inequality (6) takes
place. As above, this contradicts the fact that (x∗, y∗, z∗, α∗, β∗) ∈ Sol(PB). 	


It is easy to see that the optimization problem (PB) has a nonconvex feasible
set (see, e.g., [16–18]). The structure of this problem differs from the problem
arising in the study of bilevel problems with a matrix game at the lower level
(see [15]) in the presence of an additional equality bilinear constraint. So, a non-
convexity in the problem (PB) is produced by the (n1 + n2) inequality bilinear
constraints and by the single equality bilinear constraint. All of these constraints
have arisen from the optimality conditions for a followers’ game (ΓB(x)). As
well-known, a bilinear function is a D.C. function, i.e. it can be decomposed into
a difference of two convex functions [14,25]. In order to solve the problem (PB)
with D.C. constraints [18,21,22,33], we will employ the Global Search Theory
(GST) mentioned above.

In this connection, first of all, we need to construct explicit representations
of all nonconvex functions from the problem formulation as a difference of two
convex functions.

4 D.C. Representation

First, let us find an explicit D.C. decomposition of the i-th scalar constraint in
the first group of n1 inequality constraints:

fi(x, z, α) = 〈b1, x〉〈(B1)i, z〉 − α ≤ 0, i = 1, . . . , n1, (7)

where (B1)i is an i-th row of the matrix B1.
Let QT

i = (b(1)1 (B1)i; b
(2)
1 (B1)i; . . . ; b

(m)
1 (B1)i), where b

(1)
1 , b

(2)
1 ..., b

(m)
1 are

components of the vector b1,Q is a (m×n2)-matrix.Thenwe can transformbilinear
inequalities (7) to a vector form fi(x, z, α) = 〈xQi, z〉−α ≤ 0, i = 1, . . . , n1. In that
case, functions fi have the following decomposition based on the known feature of
a scalar product [14,25]:

fi(x, z, α) = gi(x, z, α) − hi(x, z), (8)

where gi(x, z, α) =
1
4
‖xQi + z‖2 − α, hi(x, z) =

1
4
‖xQi − z‖2.

In the same way, if we take the matrix RT
j−n1

=(b(1)2 (B2)T
j−n1

; b
(2)
2 (B2)T

j−n1
;

. . . ; b(m)
2 (B2)T

j−n1
) ((B2)j−n1 is a (j − n1)-th column of the matrix B2, R is a

(m×n1)-matrix), we get a D.C. decompositions of n2 inequality constraints from
the second group:

fj(x, y, β) = 〈b2, x〉〈y, (B2)j〉 − β = gj(x, y, β) − hj(x, y), j = n1 + 1, ..., n1 + n2,
(9)

where gj(x, y, β) =
1
4
‖xRj−n1 + y‖2 − β, hj(x, y) =

1
4
‖xRj−n1 − y‖2.

Afterwards, we can write the D.C. representation of the last equality bilinear
constraint based on the same property of a scalar product:

fn1+n2+1(y, z, α, β) = gn1+n2+1(y, z, α, β) − hn1+n2+1(y, z), (10)
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where gn1+n2+1(y, z, α, β) =
1
4
‖y + B1z‖2 +

1
4
‖yB2 + z‖2 − α − β,

hn1+n2+1(y, z) =
1
4
‖y − B1z‖2 +

1
4
‖yB2 − z‖2.

Note that in every group of constraints the functions h(·) which generate
the so-called basic nonconvexity of the problem (PB) depend on various groups
of variables. Moreover, in each case the number of variables in functions h(·) is
less than the number of variables in functions g(·). This means that the problem
(PB) has the property of the so-called incomplete-sized nonconvexity [14,24,28].

So, we can formulate the problem (PB) as the minimization problem with a
convex quadratic objective function and (n1 + n2 + 1) D.C. constraints:

f0(x, y, z) ↓ min
x,y,z,v

, (x, y, z) ∈ S,

fi(x, z, α) := gi(x, z, α) − hi(x, z) ≤ 0, i ∈ {1, . . . , n1} =: I,
fj(x, y, β) := gj(x, y, β) − hj(x, y) ≤ 0, j ∈ {n1 + 1, . . . , n1 + n2} =: J ,

fn1+n2+1(y, z, α, β) := gn1+n2+1(y, z, α, β) − hn1+n2+1(y, z) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(DCC)

where the functions f0; gi, hi ∀i ∈ I = {1, ..., n1}; gj , hj ∀j ∈ J = {n1 +
1, ..., n1+n2}; gn1+n2+1, and hn1+n2+1, are convex with respect to the aggregate
of all their variables; and the set

S ={x, y, z≥ 0 | Ax ≤ a, 〈b1, x〉+〈b2, x〉=1, 〈en1 , y〉=〈b1, x〉, 〈en2 , z〉=〈b2, x〉} ,

is, obviously, convex too.
Let F be a feasible set of the problem (DCC) (N := n1 + n2 + 1):

F := {(x, y, z, α, β) | (x, y, z) ∈ S; fi(x, z, α) ≤ 0, i ∈ I;
fj(x, y, β) ≤ 0, j ∈ J ; fN (y, z, α, β) = 0}.

Note that the basic nonconvexity of the problem (DCC) is generated, in par-
ticularly, by the functions hi(x, z), i ∈ I and hj(x, y), j ∈ J . As for the last
equality constraints, it is easy to see that, in general, both functions gN (·) and
hN (·) make a nonconvexity because they are not affine. And whatever function
(gN (·) or hN (·)) we put hypothetically equal to zero, we get the nonconvex equal-
ity constraint. Nevertheless, it is possible to prove that under certain regularity
conditions, when hN (y, z) ≡ 0, we can reduce the equality nonconvex constraint
to a convex inequality constraint (see, e.g., [23]). In other words, we can assume
that it is the function hN (y, z) that contributes to the basic nonconvexity of
the problem (DCC). For convenience, here and in what follows, we use the term
“nonconvex constraint” when the constraint defines a nonconvex feasible set in
the problem under consideration, and the term “convex constraint” is specified
similarly.

Of course, like any D.C. decomposition, the obtained D.C. decomposition is
not unique [18]. In this case, the inclusion of the linear components of the repre-
sentations to the functions g(·) is due to the need to “lighten” the functions h(·),
which generate the nonconvexities, as much as possible. The simplest possible
structure of functions h(·) allows more convenient work with the approximation



On Solving BOPs with a Nonconvex Lower Level 243

of the level surface at the Global Search phase [18,21,22]. Now let us focus on
how to apply the GST to the problem (DCC).

In order to solve the problem (DCC), we should develop the Global Search
Algorithm (GSA) based on the Global Search Theory (GST) [18,21,22] using
the D.C. decomposition (7)–(10) constructed above. According to the GST, this
GSA consists of two main phases:

1) a special Local Search Method (LSM), which addresses the formulation of
the problem under study [18,33];

2) the procedure of improving the point obtained at the Local Search phase,
based on the Global Optimality Conditions (GOCs) [18,21,22].

In contrast to the nonconvex problem constructed in the study of a bilevel
problem with a matrix game at the lower level [15], the problem (DCC) has an
additional nonconvex equality constraint. This means that it is impossible to
apply the local search method from [33] to it, since this method was developed
only for problems with inequality constraints. Instead, we propose the further
transformation of the problem using the Exact Penalization Theory.

5 Exact Penalty and Global Optimality Conditions

Consider the penalized problem (θ := (x, y, z, α, β)):

Φσ(θ) := f0(x, y, z) + σW (θ) ↓ min
θ

, (x, y, z) ∈ S, (DC(σ))

where σ > 0 is a penalty parameter, and the function W (·) is the penalty function
for the problem (DCC):

W (x, y, z, α, β) := max{0, f1(x, z, α), . . . , fn1(x, z, α),
fn1+1(x, y, β), . . . , fn1+n2(x, y, β)} + |fN (y, z, α, β)| .

It can be readily seen that the objective function of the problem (DC(σ)) can
be represented as a difference of two convex functions. Therefore, this problem
belongs to the class of D.C. minimization problems [18] with a convex feasible
set when σ is fixed.

From the Classical Penalty Theory [19,20] we know that if for some value of
the parameter σ the 5-tuple (x(σ), y(σ), z(σ), α(σ), β(σ)) =: θ(σ) is a solution
to the problem (DC(σ)) (θ(σ) ∈ Sol(DC(σ))), and θ(σ) is feasible in the problem
(DCC) (θ(σ) ∈ F), i.e. W (θ(σ)) = 0, then θ(σ) is a global solution to the problem
(DCC) [19–22].

It is also well-known that if the equality W (θ(σ)) = 0 takes place for some
σ := σ̂ at a solution θ(σ), then this solution to the problem (DC(σ)) is a solution
to the problem (DCC) for all σ ≥ σ̂.

The key point of the Exact Penalization Theory is the existence of a threshold
value σ̂ > 0 of the penalty parameter σ : W (θ(σ)) = 0 ∀σ ≥ σ̂. Let us assume
that the certain regularity conditions ensuring the existence of this value are ful-
filled (see [21,22,30]) Then we can prove the following result concerning problems
(DCC) and (DC(σ)).
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Proposition 1 [19–22]. Suppose, the 5-tuple (x∗, y∗, z∗, α∗, β∗) =: θ∗ is a global
solution to the problem (DCC). In that case, there exists σ̂ > 0 such that θ∗ is
a global solution to the problem (DC(σ̂)). Furthermore, ∀σ > σ̂ any solution
θ(σ) to the problem (DC(σ)) is feasible in the problem (DCC), i.e. W (θ(σ)) = 0,
and, therefore, θ(σ) is a solution to the problem (DCC), so that Sol(DCC) ⊂
Sol(DC(σ)). The latter inclusion ensures the equality

Sol(DCC) = Sol(DC(σ)) ∀σ > σ̂, (11)

so that the problems (DCC) and (DC(σ)) turn out to be equivalent (in the sense
of (11)).

Therefore, combining Proposition 1 with Theorem 3, we can infer that the
declared interconnection between the problems (DC(σ)) and (DCC) allows us to
find an optimistic solution to the problem (BPΓB) by solving the single problem
(DC(σ)) (where σ > σ̂ is fixed) instead of the problem (DCC).

Next, we need to construct an explicit D.C. decomposition of the objective
function Φσ(θ). Using the well-known properties of “max” (see [16,18], and [30]),
it is easy to prove that

Φσ(θ)
�
= f0(x, y, z) + σ max{0, fi(x, z, α), i ∈ I; fj(x, y, β), j ∈ J }

+ σ|fN (y, z, α, β)| = Gσ(θ) − Hσ(θ),
(12)

where

Gσ(θ) := f0(x, y, z) + σ max
{ ∑

k∈I
hk(x, z, α) +

∑
k∈J

hk(x, y, β);

[
gl(·)+

k �=l∑
k∈I∪J

hk(·)
]
, l∈I ⋃ J

}
+ 2σ max{gN (y, z, α, β);hN (y, z)},

(13)

Hσ(θ) := σ
[∑

i∈I
hi(x, z) +

∑
j∈J

hj(x, y) + gN (y, z, α, β) + hN (y, z)
]
. (14)

Note that in some cases, for simplicity, here we have to use the expressions gl(·)
and hk(·) without indicating the variables. It is explained by the fact that gl(·)
and hk(·) when k, l ∈ I and k, l ∈ J depend on different groups of variables.

It can be readily seen that functions Gσ(·) and Hσ(·) are both convex func-
tions. Now, denote S′ := {(x, y, z, α, β) ∈ IRm+n1+n2+2 | (x, y, z) ∈ S} and
formulate the necessary GOCs in terms of the problem (DC(σ)) that represent
the foundation of the Global Search Theory.

Theorem 4 [21,22]. Suppose, a feasible point θ∗ ∈ F ⊂ IRm+n1+n2+2, ζ := f0(x∗, y∗, z∗)

is a global solution to the problem (DCC), and a number σ : σ ≥ σ̂ > 0
is fixed, where σ̂ is a threshold value of the penalty parameter, such that
Sol(DCC) = Sol(DCσ) ∀σ ≥ σ̂.

Then ∀(η, γ) ∈ IRm+n1+n2+2 × IR, such that

Hσ(η) = γ − ζ, (15)
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the inequality
Gσ(θ) − γ ≥ 〈∇Hσ(η), θ − η〉 ∀θ ∈ S′ (16)

holds. 	

The conditions (15)–(16) possess the so-called constructive (algorithmic)

property (see [18,21,22], and [30]). It means that if the main inequality (16)
of the GOCs are violated, we can construct a feasible point that will be better
than the current point.

Also, Theorem 4 produces the following convex (linearized) problems

Ψση(θ) := Gσ(θ) − 〈∇Hσ(η), θ〉 ↓ min
θ

, θ ∈ S′, (PσL(η))

depending on η ∈ IRm+n1+n2+2 which satisfy the equality (15). The lineariza-
tion is realized here with respect to the ”unified” nonconvexity of the problem
(DC(σ)) incorporated to the function Hσ(·).

And our task is to vary the parameters (η, γ) with the aim of violating the
inequality (16). It is known [18,21,22] that it is convenient to carry this out
together with a local search. Therefore, constructing a special Local Search
Method that takes into account special properties of the problem under con-
sideration is the primary task before developing a Global Search Algorithm
[14,18,23,28].

6 Local Search Scheme

If a value of the penalty parameter σ := σ̄ > 0 is fixed, then the problem
(DC(σ)) belongs to one of the canonical nonconvex optimization classes, namely,
D.C. minimization (on a convex feasible set). Therefore, in order to implement a
local search in this problem, we can apply the well-known Special Local Search
Method (SLSM) (DCA) [18,34]. This method consists in a consecutive solution
of the linearized problems (see (PσL(η))), where the linearization is realized
with respect to the function Hσ(·) that accumulated all of the nonconvexities
of the problem (DC(σ)) and, counsequently, (DCC). Similar to the study of the
nonlinear bilevel problem [30], in that case, a question about a threshold value
of the penalty parameter should be solved in advance, before implementing a
local search.

In this connection, unlike [15], in this work we suggest seeking a threshold
value of the penalty parameter at the stage of a local search (as well as in [30]). To
this end, we will use the Special Penalty Local Search Method (SPLSM) [30,35].
Keeping the ideology of linearization, it contains some steps for dynamic update
of the penalty parameter.

Let there be given a starting point (x0, y0, z0) ∈ S and an initial value
σ0 > 0 of the penalty parameter σ. Suppose, at the iteration s of the SPLSM,
we have obtained the triple (xs, ys, zs) ∈ S and the value σs ≥ σ0 of the penalty
parameter. Calculate αs := 〈ys, B1z

s〉, βs := 〈ys, B2z
s〉. Introduce the following

notations: Gs(·) := Gσs
(·), Hs(·) := Hσs

(·), θs := (xs, ys, zs, αs, βs).
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The linearized problem (PsL) = (Pσs
L(θs)) at the iteration s has the follow-

ing statement:

Ψs(θ) := Gs(θ) − 〈∇Hs(θs), θ〉 ↓ min
θ

, θ ∈ S′. (PsL)

According to the scheme of the SPLSM [30,35], we need to represent the
penalty function W (θ) as a difference of two convex functions using the D.C.
decomposition (12)–(14):

W (θ) = GW (θ) − HW (θ),

where
GW (θ) :=

1
σ

[Gσ(θ) − f0(x, y, z)], HW (θ) :=
1
σ

[Hσ(θ)].

Then introduce the following auxiliary convex problem, related to minimization
of the penalty function W (θ):

ΨW (θ) := GW (θ) − 〈∇HW (θ(σs)), θ〉 ↓ min
θ

, θ ∈ S′, (APW Ls)

where θ(σs) is a solution to the problem (PsL).
The scheme of the SPLSM in the problem (DC(σ)) is the following.
Let there be given two scalar parameters μ1, μ2 ∈]0, 1[ of the method.
Step 0. Set s := 0, σs := σ0; (xs, ys, zs) := (x0, y0, z0), αs := 〈ys, B1z

s〉,
βs := 〈ys, B2z

s〉, and θs := (xs, ys, zs, αs, βs).
Step 1. Solve the linearized problem (PsL) to obtain θ(σs) ∈ Sol(PsL).
Step 2. If W (θ(σs)) = 0 then set σ+ := σs, θ(σ+) := θ(σs) and move to

Step 7.
Step 3. Else (if W (θ(σs)) > 0), by solving the subproblems (APW Ls) find

θs
W ∈ Sol(APW Ls).

Step 4. If W (θs
W ) = 0 then solve several problems (PσL(θs

W )) (by
increasing, if necessary, σs), trying to obtain σ+ > σs and the vector
θ(σ+) ∈ Sol(Pσ+L(θs

W )), such that W (θ(σ+)) = 0 and move to Step 7.
Step 5. Else, if W (θs

W ) > 0, or the value σ+ > σs such that W (θ(σ+)) = 0
is not found at the previous step, then find σ+ > σs satisfying the inequality

W (θ(σs)) − W (θ(σ+)) ≥ μ1[W (θ(σs)) − W (θs
W )]. (17)

Step 6. Increase σ+, if necessary, to fulfil the inequality

Ψs(θ(σs)) − Ψσ+(θ(σ+)) ≥ μ2σ+[W (θ(σs)) − W (θ(σ+))]. (18)

Step 7. σs+1 := σ+, θs+1 := θ(σ+), s := s + 1 and loop to Step 1. 	

Note that the convex linearized problems (PsL) and (APW Ls) have non-

differentiable objective functions. To solve these problems, we can reformulate
them in order to eliminate non-smoothness (see, e.g. [35]) or use one of the
appropriate methods of convex non-differentiable optimization [19,36].

In order to apply the presented SPLSM in practice, we also should take into
account the possibility of approximate solution of the linearized problems (PsL)
and (APW Ls), as well as elaborate the stopping criteria. It should be noted that
if we use only the obvious criterion W (θ(σ+)) = 0 (or W (θ(σ+)) ≤ ε), it will
not be enough for the local search goals [35].
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7 Concluding Remarks

In this paper, we proposed a new approach to finding optimistic solutions to
one class of bilevel optimization problems (BOPs) with a nonconvex lower
level. The BOPs with an equilibrium (namely, with a parametric bimatrix
game) at the lower level were studied. The approach is based on the original
A.S. Strekalovsky’s Global Search Theory for general D.C. optimization prob-
lems using the Exact Penalization Theory.

We presented and substantiated the reduction of the original bilevel problem
to a nonconvex single-level problem, obtained an explicit D.C. representation
of all functions from the problem statement, described the Global Optimality
Conditions and Special Penalty Local Search Method in terms of the problem
under consideration.

The present paper is the first phase of studying one class of bilevel opti-
mization problems with a nonconvex equilibrium problem at the lower level. In
our future research, we will build a range of test examples that belong to this
class of bilevel problems, elaborate and test the described local search scheme,
as well as construct and test a global search method for such bilevel problems,
using the considered theoretical foundations. Based on our recent computational
experience (see, for example, the results on the solution of other bilevel prob-
lems [26,27,29,31]), we hope that the proposed approach can also be used for
the efficient numerical solution of bilevel problems with a nonconvex equilibrium
problem at the lower level.

Acknowledgement. The research was funded by the Ministry of Education and
Science of the Russian Federation within the framework of the project “Theoreti-
cal foundations, methods and high-performance algorithms for continuous and dis-
crete optimization to support interdisciplinary research” (No. of state registration:
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Abstract. We consider a routing open shop problem being a natural
generalization of the metric TSP and the classic open shop scheduling
problem. The maximal possible ratio of the optimal makespan and the
standard lower bound for the routing open shop has already been inves-
tigated in the last few years. The two-machine case is mostly covered. It
is constructively proven in 2013 that the ratio mentioned above cannot
be greater than 4/3, however, we do not know of any problem instance
with the value of that ratio greater than 6/5. The latter ratio is achiev-
able for a simplest case with two nodes. On the other hand, it is known
that optimal makespan is at most 6/5 of the standard lower bound for
at least a few special cases of the transportation network: one is with at
most three nodes, and another is a tree.

In this paper, we introduce an ultimate instance reduction technique,
which allows reducing the general problem into a case with at most four
nodes and at most six jobs. As a by-product, we propose a new polyno-
mially solvable case of the two-machine routing open shop problem.

Keywords: Routing open shop · Standard lower bound · Optima
localization · Instance reduction · Efficient algorithm

1 Introduction

One of important directions in the research of scheduling problems is establishing
useful structural properties of optimal solutions. One classic example is the inves-
tigation of the properties of an optimal permutation for two-machine flow shop
problem [14]. Those properties were used to describe an efficient exact algorithm
for the problem. As other examples, important properties for preemptive flow
shop and job shop problems were investigated in [16] and [17], respectively. These
properties allow to describe finite (although obviously not efficient) algorithms
to solve those problems to the optimum—a task, trivial for problems without
preemption, is however difficult for the cases, when preemption is allowed.
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I I

S S

ϕ

ϕ∗

Fig. 1. An illustration for the instance transformation concept.

In this paper we want to address another approach to establish some prop-
erties of any problem instance by means of an instance reduction. Assume I is
the set of instances of the given problem, and we want to verify that for some
property P

∀I ∈ I (P(I) holds) .

Suppose we have some transformation ϕ : I → I such that

∀I ∈ I (P(ϕ(I)) → P(I)) .

In this case, it is sufficient to establish the property P for the image ϕ(I) of
the transformation ϕ in order to obtain the global result. We refer to the set of
instances ϕ(I) as to a kernel of I with respect to P.

Further we aim to establish properties for the optimal schedules for instances
from I in the following form:

∀I ∈ I ∃ feasible schedule S(I) such that P(S(I)) holds.

We call a transformation ϕ reversible for the property P, if there exists a transfor-
mation procedure ϕ∗ for schedules, such that for any feasible schedule S(ϕ(I))
schedule ϕ∗(S(ϕ(I))) is feasible for I, and ϕ∗ preserves the property P. Evi-
dently, for any reversible ϕ its image ϕ(I) is a kernel of I with respect to P.

Naturally, we want the property P for the kernel to be provable easier, than
for the whole set I. If the kernel contains constrained instances, obeying some
strict properties, making those instances simpler. For example, for scheduling
problems transformation might drastically reduce the number of jobs (hence the
name instance reduction). So, our goal is to choose as restricted kernel as
possible.

That approach can also be useful for designing either exact or approxima-
tion efficient algorithms for the problem under consideration, providing that
transformations ϕ and ϕ∗ are doable in polynomial time. Then one can take
any instance I, reduce it to a simplified instance I ′, build an optimal (or good
enough) schedule S′ for I ′ and use it to restore an approximate solution S for
the initial instance I. This idea is pictured in Fig. 1. The approximation ratio
for such an approach depends on the property P, as well as on the quality of the
schedule S′.

In this paper we demonstrate this approach on the following routing open
shop problem (introduced in [1,2]), which is a natural combination of two classic
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discrete optimization problems: well-known metric traveling salesman problem
[12] and open shop scheduling problem [13].

In the routing open shop problem a fleet of mobile machines has to process
a set of immovable jobs, located at the nodes of some transportation network,
described by an undirected edge-weighted graph G = 〈V ;E〉. Each node contains
at least one job, and weight dist(u, v) represents travel time of any machine
between nodes u and v. Each machine Mi has to perform an operation Oji

on each job Jj , providing that operations of the same jobs are not performed
simultaneously. The processing times pji are given for each operation Oji in
advance. All the machines start from the same node v0 referred to as the depot,
and have to return to the depot after processing all the job. No restriction on
the machines’ traveling are in order: any number of machines can travel over the
same edge of the network simultaneously in any direction, machines are allowed
to visit each node multiple times, or to bypass a node without performing any
operation at that node. However, machine has to reach a node prior to be able
to process jobs located there. Without loss of generality we assume, that triangle
inequality for distances holds.

The goal is to minimize the makespan Rmax, i.e. the completion time of
the last machine’s activity (either traveling back to the depot or performing an
operation on a job, located at the depot). The problem is clearly a generalization
of the metric traveling salesman problem and therefore is NP-hard in strong sense
even in a single machine case. On the other hand, it generalizes the classical
open shop problem, which is well-known to be NP-hard for the case of three
and more machines, and is polynomially solvable for the two-machine case [13].
Surprisingly, the routing open shop is NP-hard even in the two-machine case on
the transportation network consisting of at least two nodes (including the depot)
[2]. We use notation ROm||Rmax for the routing open shop with m machines.
Optional notation G = X in the second field is used in case we want to specify the
structure of the transportation network, with X being the name of the structure
(e.g. Kp or tree). A set of instances of the ROm|G = X|Rmax problem is denoted
by IX

m (or Im for a general case of unspecified X).
The property we aim to establish is tightly connected with the following

standard lower bound on the optimal makespan, introduced in [1]:

R̄ = max
{

�max + T ∗,max
v∈V

(dmax(v) + 2dist(v0, v))
}

. (1)

Here �max = max
i

�i = max
i

n∑
j=1

pji is the maximum machine load, dmax(v) =

max
j∈J (v)

dj = max
j∈J (v)

(
m∑

i=1

pji

)
is the maximum length of job from node v, with J (v)

being the set of jobs located at v, while T ∗ is the TSP optimum on G. Values �i

and dj are called the machine load of Mi and job length of Jj , respectively. The
property under research is so-called optima localization and can be described
as follows: how much (by which factor) can optimal makespan differ from the
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standard lower bound R̄ for a given class of instances K? More precisely, for
some class K we want to find

α (K) = sup
I∈K

α(I) = sup
I∈K

R∗
max(I)
R̄(I)

.

Here R∗
max(I) and R̄(I) denote optimal makespan and the value of R̄ for I,

respectively, and α(I) is referred to as the abnormality of instance I.
Not only the optima localization gives us an estimation on how tight the

standard lower bound is for a given class of instances, it also can be used for the
design of approximation algorithms (using the concept, showed in Fig. 1) with the
best theoretically possible approximation ratio with respect to the standard lower
bound. Moreover, often the underlying procedures ϕ and ϕ∗ can be done in linear
time, which is smallest theoretically possible running time for any algorithm,
which needs to specify a starting time for each operation.

It is known that for the classical two-machine open shop (which can be
denoted as RO2|G = K1|Rmax for consistency) optimal makespan always coin-
cides with the standard lower bound, therefore α

(
IK1
2

)
= 1 [13]. It is not the

case for the three-machine problem, where optimal makespan can reach as much
as 4

3 R̄. It was actually proved in [18] that α
(
IK1
3

)
= 4

3 . This result was recently

generalized in [7] for G = K2 case: α
(
IK2
3

)
= 4

3 . As for the classical open shop,

the value α
(
IK1
4

)
is still an open question, however we have no evidence that

it is greater than 4
3 .

Optima localization research for m = 2 is now completed only for small
number of nodes and for the tree structure of the transportation network. All
the results, known up to the moment, are shown in Table 1.

Table 1. Known optima localization results for the routing open shop problem.

Problem Abnormality Year Reference

RO2|G = K1|Rmax 1 1976 [13]

RO3|G = K1|Rmax 4/3 1998 [18]

RO2|G = K2|Rmax 6/5 2005 [1]

RO2|G = K3|Rmax 6/5 2016 [8]

RO3|G = K2|Rmax 4/3 2020 [7]

RO2|G = tree|Rmax 6/5 To appear [5]

In this paper we focus on the two-machine case. The general question is,
what is the value α (I2)? We have a lower bound 6

5 from [1]. On the other
hand, there is an algorithm [4] that provides a schedule with makespan not
greater that 4

3 R̄(I) for any problem instance I ∈ I2, therefore 6
5 � α (I2) � 4

3 .
(It should be mentioned that this algorithm has polynomial running time only
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under the assumption, that the optimal solution to the underlying TSP is known.
Otherwise, obviously, the minimal approximation factor we could hope to achieve
for the RO2||Rmax problem is 3

2 , as soon as the best approximation algorithm
for the metric TSP known up to date is 3

2 -approximation by Christofides and
Serdyukov [3,11,15]).

Although we have no evidence that α (I2) is greater than 6
5 , how this bound

can be proved? There is still a possibility, that the abnormality depends on
the structure of the transportation network, and/or on the number of nodes.
The proofs from [1,5,8] are heavily utilizing the specific graph structure in each
case. One could try to continue this line of work to find the values α

(
IK4
2

)
, or

α
(
Ipseudotree
2

)
for instance, but how to stop this infinite series of incremental

results and still reach the ultimate goal of discovering the general value α (I2)?
This is exactly the question we address in this paper. The answer is: we need
the ultimate instance reduction procedure, allowing us to describe a relatively
small and simple kernel of I2 with respect to the desired property.

The structure of this paper is as follows. In Sect. 2 we discuss known instance
simplification techniques and suggest some new ones. In Sect. 3 we provide a new
polynomially solvable subcase of RO2||Rmax (Corollary 1) and prove the main
result, describing a kernel of I2 with respect to the optima localization (Theorem
2). Each instance from that kernel consists of at most six jobs, located at four
or less nodes. Conclusions and open questions for the future research are given
in Sect. 4.

2 Instance Transformations

The property P, connected with optima localization for some class of instances
K is the following: is it true that for any instance I ∈ K its optimal makespan
belongs to the interval [R̄(I), ρ∗R̄(I)]? Here ρ∗ = α(K). This condition is equiv-
alent to the following

∀I ∈ K ∃ feasible schedule S for I | Rmax(S) � ρ∗R̄(I).

The following proposition gives sufficient conditions for a transformation ϕ
to produce a kernel with respect to P.

Proposition 1. Let ϕ be a transformation of K, and I ′ denotes ϕ(I). Suppose
ϕ obeys the following conditions:

∀I ∈ K R̄(I ′) = R̄(I), (2)
∀ feasible schedule S(I ′) Rmax(ϕ∗(S(I ′))) = Rmax(S(I ′)). (3)

Then ϕ(K) is a kernel of K with respect to P, and ϕ is reversible for the property
P.

Proof. Conditions (2) and (3) imply that α(I ′) � α(I), therefore if P holds for
I ′, then P holds for I. �	
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Transformations, obeying the conditions of the Proposition 1 will be referred
to as valid ones. In this section we describe several valid instance transformation
operations, which can be used for our purposes of describing optima localization
kernels.

The first operation worth mentioning is a well-known transformation, which
reduces the number of jobs, referred to as job aggregation or job grouping. The
idea is to combine a set of jobs from the same node into a single one, adding
up the processing times independently for each machine. Such a procedure was
used, e.g., in [18] for the classic open shop problem, and in [8] for the two-
machine routing open shop. While the procedure is clearly reversible (one can
treat an operation of an aggregated job as a sequence of the initial operation),
its validity has to be maintained explicitly. More precisely, let v be some node
of the transportation network, and O be a subset of jobs from J (v). Then (1)
implies, that job aggregation of the set O is valid if and only if

∑
j∈O

dj � R̄ − 2dist(v0, v). (4)

As for the classical open shop, it is possible to perform valid job aggregations
for any instance of Om||Cmax so that the resulting instance would contain at
most 2m − 1 jobs [18]. As for RO2||Rmax, one can aggregate jobs in such a
valid manner that every node (except for at most one) has a single job, and the
“exceptional” one (if any) contains at most 3 jobs [8]. Such an exceptional node
v is referred to as overloaded, as the total load Δ(v) of the node v should be big
enough:

Δ(v) =
∑

j∈J (v)

dj > R̄ − 2dist(v0, v).

It follows from [8], that any instance of the RO2||Rmax problem contains at most
one overloaded node. As for the general ROm||Rmax, it was shown in [7], that
any instance of the ROm||Rmax problem contains at most m − 1 overloaded
nodes, and a valid aggregation can be performed in such a way, that the total
number of jobs in all the overloaded nodes together doesn’t exceed 2m − 1. All
the described aggregations can be done in linear time [7,8,18].

However, it would be of the most interest to describe some valid transforma-
tions to simplify the structure of G. An example of such a reduction is so-called
terminal edge contraction, which can be described as follows. Suppose G contains
a terminal node v 
= v0 with a single job Jj in J (v). Let u be the node adjacent
to v, and τ = dist(u, v). The transformation is the following: we translate the
job Jj to the node u, increase its operations’ processing times by 2τ each, and
eliminate the obsolete node v. Such a transformation is reversible, as one can
treat the processing of a new operation Oji as a concatenation of traveling of
Mi from u to v, processing of the initial operation and traveling back to u (see
Fig. 2). It is proved in [9] that for any instance I ∈ I2 one can perform a valid
transformation I → I ′ such that the transportation network in I ′ contains at
most two terminal nodes. This helps to efficiently reduce any tree to a chain.
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G e
u

v
J = ( a

b )
τ = dist(u, v)

→ G u
J = a+2τ
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M1 · · ·
J

τ
J

τ

J
τ

J
τ

Fig. 2. The reversibility of a terminal edge contraction.

Similar operation called terminal cycle contraction was introduced in [6]. It
can be described as follows. Consider a cycle C in graph G. Node v ∈ C is called
a gate, if its degree if either greater than 2, or v = v0. Any cycle with a single
gate is referred to as terminal one.

Let C be a terminal cycle with gate u, T is the length of C (total weight of its
edges), and J (C\{u}) is the set of all jobs from C\{u}. Let us replace all the jobs
from C, except the ones in u, with a new single job J ′ with operations processing
times p′

i = T +
∑

j∈J (C\{u})
pji, and locate J ′ at u. Obsolete nodes of C (all except

u) can now be removed from G. Such a transformation is reversible, as soon as
we can treat the processing of operations of job J ′ as traveling along the cycle
C and processing the jobs on the way. Actually, terminal edge contraction can
be seen as a special case of terminal cycle contraction, as edge can be replaced
with a 2-cycle.

Let Q be some terminal element (edge or cycle) with gate u, and W (Q) is
its weight, defined as follows:

– if Q is an edge [u, v] of length τ with single job Jj in v, W (Q) = dj + 2mτ ,
– if Q is a cycle C of length T , W (Q) = mT +

∑
j∈J (C\{u})

dj .

In other words, W (Q) is the length of a new job J ′ constructed by the contraction
of Q.

Proposition 2. Let Q be a terminal element with gate u. Contraction of Q is
valid if and only if

W (Q) � R̄ − 2dist(v0, u). (5)

Proof. Straightforward from (1). �	
On the other hand, a graph might have a complex structure even without

terminal elements. Below we describe a new approach to the instance reduction
which allows to significantly simplify the structure of a transportation network
in a valid manner. From now on we focus on a case m = 2.
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Let cycle σ be an optimal solution of the underlying TSP. Any edge e /∈ σ
is referred to as chord. A chord e is referred to as critical if removing it from G
increases the standard lower bound R̄. The distance between nodes u, v along

the cycle σ (using only edges from σ) will be denoted as
�

dist(u, v). Note that

removing any chord [u, v] doesn’t affect
�

dist(u, v) and

dist(u, v) �
�

dist(u, v) � T ∗

2
. (6)

Remark 1. It is possible, that some chord e only becomes critical after removing
another chord e′.

Lemma 1. Let I ∈ I2 and the transportation network G of I is a complete
graph with metric weights of edges. Then removing all the chords which are not
incident to the depot v0 doesn’t increase the standard lower bound R̄.

Proof. Evidently, removing all of those chords cannot affect distances dist(v0, v)
for any v ∈ V . Now it is sufficient to note, that the standard lower bound (1)
doesn’t depend on any distance between any two non-depot node. �	

Consider an instance I ∈ I2. Let Δ =
∑
j

dj be the total load if I. Note that

(1) implies
Δ � 2�max � 2(R̄ − T ∗). (7)

Lemma 2. Let instance I ∈ I2 contain a critical chord [v0, v]. Then removing
all other chords doesn’t affect the standard lower bound R̄.

Proof. Chord e = [v0, v] is critical, therefore R̄ < 2
�

dist(v0, v) + dmax(v) � T ∗ +
dmax(v). Assuming we have another critical chord [v0, u], we have R̄ < T ∗ +
dmax(u). Combining those two inequalities we obtain 2R̄ < dmax(u) + dmax(v) +
2T ∗ � Δ + 2T ∗. Lemma is proved by contradiction with (7). �	
Lemma 3. Let I ∈ I2, node v is overloaded and chord [v0, u] is critical. Then
u = v.

Proof. We have Δ(v) > R̄−2dist(v0, v) � R̄−T ∗ and dmax(u) > R̄−T ∗. Assume
u 
= v, then Δ � Δ(v)+dmax(u) > 2(R̄−T ∗). Lemma is proved by contradiction
with (7). �	

Combining Lemmas 1–3 we can describe the following valid transformation:

1. Consider the transitive closure of graph G.
2. Choose some optimal tour σ.
3. Remove all chords which are not incident to the depot v0.
4. Remove all the other chords, except at most one critical.

This transformation is valid (although not always polynomial, due to Step
2), and helps to reduce the order of magnitude of the number of edges. However,
it doesn’t affect the number of nodes. In the next section we are going to deal
with that problem.
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3 The Main Result

The first minor result is the following

Theorem 1. Let I ∈ I2 such that the depot v0 is overloaded. Then α(I) = 1.

Proof. Note that Δ(v0) > R̄. It follows from Lemma 3 that I contains no critical
chords, therefore eliminating all the chords is a valid transformation of I. Now
the transportation network is cyclic, therefore the cycle σ is terminal (with single
gate v0). Note that W (σ) = 2T ∗ + Δ − Δ(v0). Let us prove that contraction of
σ is valid. Suppose otherwise, then by Proposition 2 W (σ) > R̄. Then

2R̄ < W (σ) + Δ(v0) = Δ + 2T ∗,

which contradicts (7).
Performing the contraction of σ, we obtain a single-node instance I ′, which

actually is an instance of a classical O2||Cmax problem, therefore α(I ′) = 1.
Validity of the transformation I → I ′ confirms that α(I) = α(I ′) = 1. �	

Note that the transformation described in the proof of Theorem 1 can be done
in O(n) time, providing that the have the knowledge of an optimal Hamiltonian
walk on graph G. Therefore we have the following

Corollary 1. Let I ∈ I2 such that the depot v0 is overloaded. Then a feasible
schedule of makespan R̄ can be constructed in O(n + tTSP ) time, where tTSP is
time needed to solve the TSP on G(I).

This corollary actually describes a polynomially solvable subcase of
RO2||Rmax on the subclass of instances, obeying the following properties:

1. The TSP on graph G is solvable in polynomial time (for instance, due to the
simple structure of G, or special properties of the matrix of distances);

2. Δ(v0) > R̄.

This can be considered as an improvement on the similar polynomially solv-
able subclass of RO2||Rmax, described in [10], which requires stronger conditions
on the load of the depot Δ(v0).

Now we describe a chain contraction transformation. Suppose G contains a
chain C = (v1 − v2 − · · · − vk) consisting of non-depot nodes, such that all the
nodes v2, . . . , vk−1 are of degree 2. Let τ be the length of chain (the distance
between v and u along C) and J (C) is the set of jobs from nodes v1, . . . , vk.
The transformation is the following: we replace the chain (v1 − · · · − vk) with
a new special node vC containing single job JC with processing times pCi =
τ +

∑
Jj∈J (C)

pji. Processing of operation of JC can be treated as traveling of the

machine along C and processing operations of its jobs on the way (Fig. 3).
Such a transformation is not reversible in general. To make it reversible we

need to apply certain restriction on schedules for the transformed instance:
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v1 v2 · · · vk

JC

B

A · · ·
JC

· · ·
JC

· · ·

Fig. 3. An illustration of chain contraction transformation. Rectangle denotes the new
special node.

1. If machine arrives at JC from one end, the machine is considered to be at
another end after the completion of operation of job JC .

2. Any machine can bypass the node vC , but this takes τ time units.

We say that the chain contraction transformation is conditionally reversible,
meaning that a schedule is reversible under condition of a special treatment
(described above) of nodes, obtained by chain contractions. Such nodes will be
called special and denoted in figures as rectangles.

Consider the contraction of a chain C = (v1, . . . , vk) of length τ . We use the
following notation:

– W (C) =
∑k

t=1 Δ(vt) + 2τ—the weight of chain C (again, it coincides with
the length of new job JC),

– dist(v, C) = min{dist(v, v1),dist(v, vk)}—the distance from v to chain C.

Remark 2. The chain contraction, as described above, is (conditionally) valid, if
and only if chain C belongs to the optimal Hamiltonian walk over G and

2dist(v0, C) + W (C) � R̄. (8)

Indeed, by chain contraction, the load of each machine is increased by τ , but
on the other hand, the length of optimal Hamiltonian walk (TSP optimum) is
decreased by the same value. Now it is sufficient to note that it is possible to
process job JC in time 2dist(v0, C)+W (C) while obeying the special restrictions,
described above. To that end, machine M1 travels to the farthest end of C (say,
vk) and waits until machine M2 processes jobs starting from another end (Fig. 4).

The main result of this paper is the following description of the kernel of I2

with respect to the optima localization property.

Theorem 2. For any instance I ∈ I2 there exists a combination of job aggre-
gations, valid chord eliminations and chain/cycle contractions I → I ′, such that
I ′ contains at most 6 jobs and at most four nodes, from which at most two are
special.
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M1

M2

dist(v0, v1) dist(v0, vk)

dist(v0, vk) dist(v0, v1)

Fig. 4. How to process contracted chain in time.

Proof. Assume instance I contains more than four nodes. The main goal of the
transformation is to reduce the number of nodes of the transportation network to
at most four. After that, we can apply job aggregation, described in [8] to reduce
the number of jobs to at most six: at most three at the possible overloaded node,
and exactly one at each of other nodes, which gives a total of at most six.

Let σ be an optimal TSP solution. We start with elimination of non-critical
chords, as described in the previous section.

Enumerate the nodes v0, v1, . . . , vp along the cycle σ, and denote
�

dist(vi, vi+1)
by τi (for consistency, vp+1 = v0).

Case 1. All the chords are removed (there is no critical one).
Let s be maximal index such that

s∑
t=1

(2τt−1 + Δ(vt)) � R̄.

Now let w be such a minimal index, greater that s, that

p∑
t=w

(2τt + Δ(vt)) � R̄.

Due to remark 2, contractions of both chains C1 = (v1, . . . , vs) and C2 =
(vw, . . . , vp) are valid. Indeed, dist(v0, C1) = τ0 and dist(v0, C2) = τp, thus (8)
follows.

Let us prove that w � s + 2. Suppose otherwise. By the choice of s and w
we have

s+1∑
t=1

(2τt−1 + Δ(vt)) > R̄,

p∑
t=w−1

(2τt + Δ(vt)) > R̄.

Combining those inequalities, we have a contradiction with (7).
There is at most one non-depot node not covered by chains C1 and C2.

Therefore, we reduced the transportation network into a cycle of at most four
nodes (might be less, if one of the chains is empty, or w = s+1). All the possible
results are pictured in Fig. 5a)–d).
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Case 2. There is a critical chord [v0, vs+1].
Due to the criticality, there is a job Jj at vs+1 such that

R̄ < 2
�

dist(v0, vs+1) + dj � T ∗ + dj . (9)

Let us prove, that contraction of the chain C1 = (v1, . . . , vs) is valid. Note
that

dist(v0, C1) +
s−1∑
t=1

τt �
s∑

t=0

τt � T ∗ −
�

dist(v0, vs+1). (10)

Indeed, either
s∑

t=0
τt =

�

dist(v0, vs+1) � 1
2T ∗, or

�

dist(v0, vs+1) =
p∑

t=s+1
τt and

T ∗ =
s∑

t=0
τt +

�

dist(v0, vs+1).

Assume (8) does not hold for C1:

2dist(v0, C1) + W (C) = 2(dist(v0, C1) +
s−1∑
t=1

τt) +
s∑

t=1

Δ(vt) > R̄,

and by (10) R̄ < 2(T ∗ −
�

dist(v0, vs+1) +
s∑

t=1
Δ(vt). Combining this with (9) we

have a contradiction with (7). Similar consideration works for the chain C2 =
(vs+2, . . . , vp):

The result of the transformation is shown in Fig. 5e). �	

v0 vx

a)

v0

vx

vy

b)

v0

vx

vp

c)

v0

vx

vy

vs+1

d)

v0

vx

vy

u

e)

Fig. 5. Possible results of instance reduction, Theorem 2.

4 Conclusions

Although we still don’t know the value α(I2), Theorem 2 allows to finally perform
that research. One just need to consider special case with at most four nodes.
Moreover, the structure of the resulting instances from the kernel is not arbitrary:
all the possible variants are shown in Fig. 5. Case a) is trivial: for such an instance
a schedule of makespan R̄ can be easily constructed. For the triangular network
(cases b) and c)) the research is partly performed in [8], however, the proof has
to be revised in order to confirm special treatment of special nodes. Our working
conjecture is that α(I2) = 6

5 .
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We should note that instance transformation, described in Theorem 2 relies
on the knowledge of the optimal solution for the underlying TSP and, there-
fore, cannot be done in polynomial time in general case. This doesn’t break the
theoretical result, but can serve as a basis for a approximation algorithm (sup-
posedly 6

5 -approximation) only for the special cases with simple structure of the
transportation network, allowing polynomial-time solution of the TSP.

We suggest the following directions for the future research.

1. Complete the investigation of α(I2).
2. Generalize the main result for the ROm||Rmax problem.
3. Perform the similar research for a generalization RO2|Qtt|Rmax, in which

each machine travels with its own speed (and therefore, travel times are pro-
portional).

4. Note that this idea doesn’t work for the general RO2|Rtt|Rmax problem,
in which travel times of machines are unrelated, because in this case optimal
routes for two machines might be different. This makes the research of optima
localization in this case even more interesting.
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Abstract. We consider the problem of scheduling multiprocessor jobs
to minimize the total completion time under the given energy budget.
Each multiprocessor job requires more than one processor at the same
moment of time. Processors may operate at variable speeds. Running a
job at a slower speed is more energy efficient, however it takes longer
time and affects the performance. The complexity of both parallel and
dedicated versions of the problem is investigated. We propose approxima-
tion algorithms for various particular cases. In our algorithms, initially
a sequence of jobs and their processing times are calculated and then a
feasible solution is constructed using list-type scheduling rule.

Keywords: Multiprocessor job · Speed scaling · Scheduling ·
Approximation algorithm · NP-hardness

1 Introduction

We investigate the problem of non-preemptive scheduling a set of jobs J =
{1, . . . , n} on m speed scalable parallel processors. Each job j ∈ J is charac-
terized by processing volume (work) Vj and the number sizej or the set fixj

of required processors. Note that parameter sizej for job j ∈ J indicates that
the job can be processed on any subset of parallel processors of the given size.
Such jobs are called rigid jobs [5]. Parameter fixj states that the job uses the
prespecified subset of dedicated processors. Such jobs are called single mode
multiprocessor jobs [5]. We also consider moldable jobs [5]. In contrast to the
previous job types, a moldable job j may be performed on any number of pro-
cessors lower or equal to the given upper bound δj .

The standard homogeneous model in speed-scaling is considered. When a
processor runs at a speed s, then the rate with which the energy is consumed (the
power) is sα, where α > 1 is a constant (usually, α ≈ 3). Each of m processors
may operate at variable speed. However, we assume that the total work Vj of a
job j ∈ J should be uniformly divided between the utilized processors, i.e. if job
j uses mj processors, then processing volumes are the same for all mj processors
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(denoted by Wj := Vj

mj
), and all these processors run at the same speed. It is

supposed that a continuous spectrum of processor speeds is available.
The aim is to find a feasible schedule with the minimum sum of completion

times
∑

Cj so that the energy consumption is not greater than a given energy
budget E. This is a natural assumption in the case when the energy of a battery
is fixed, i.e. the problem finds applications in computer devices whose lifetime
depends on a limited battery efficiency (for example, multi-core laptops). More-
over, the bicriteria problems of minimizing energy consumption and a scheduling
metric arise in real practice. The most obvious approach is to bound one of the
objective functions and optimize the other. The energy of the battery may rea-
sonably be estimated, so we bound the energy used, and optimize the regular
timing criterion.

The non-preemptive rigid, moldable and single-mode variants of the speed-
scaling scheduling subject to bound on energy consumption are denoted
by P |sizej , energy|∑ Cj , P |var, δj , energy|∑ Cj and P |fixj , energy|∑ Cj ,
respectively.

2 Previous Research

Pruhs et al. [14] investigated the single-processor problem of minimizing the
average flow time of jobs, given a fixed amount of energy and release times of
jobs. For unit-work jobs, they proposed a polynomial-time algorithm that simul-
taneously computes, for each possible energy level, the schedule with smallest
average flow time. Bunde [3] adopted the approach to multiple processors. O(1)-
approximation algorithm, allowing an additional factor of (1 + ε) energy, has
been proposed for scheduling arbitrary work jobs on single processor. Albers
and Fujiwara [1] have investigated online and offline versions of single-processor
scheduling to minimize energy consumption plus job flow times. A determin-
istic constant competitive online algorithm and offline dynamic programming
algorithm with polynomial time complexity were proposed for unit-work jobs.

Shabtay et al. [16] analyzed a closely related problem of scheduling single-
processor jobs on identical parallel processors, where job-processing times pj are
controllable through the allocation of a nonrenewable common limited resource
as pj(Rj) =

(
Wj

Rj

)κ

. Here Wj is the workload of job j, Rj is the amount of
resource allocated to processing job j and 0 < κ ≤ 1 is a positive constant. Exact
polynomial time algorithm was proposed for the multiprocessor non-preemptive
instances of minimizing the sum of completion times. The algorithm can be
adopted to the speed scaling scheduling of single-processor jobs.

The speed scaling scheduling with makespan criterion has been widely inves-
tigated. Various approaches to construct approximation algorithms for single-
processor and multiprocessor jobs were proposed (see, e.g., [3,11,14]).

Now we review the known results for the the classic problem of scheduling
multiprocessor jobs with given durations and without energy constraint. The
non-preemptive problem with rigid jobs is strongly NP-hard even in the case of
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two processors [13], the preemptive one is NP-hard when the number of pro-
cessors is a part of the input [6]. For the non-preemptive instances constant
factor approximation algorithms were proposed. These algorithms use list-type
scheduling [17] and scheduling to minimize average response time (SMART) [15].
The non-preemptive single-mode problem is NP-hard in the case of two proces-
sors [10] and strongly NP-hard in the case of two-processor jobs [12]. The strat-
egy from preemptive schedule to the non-preemptive one gives a 2-approximation
algorithm for two-processor problem [4], and First Fit Coloring strategy allows
to obtain a 2-approximate solution for unit-work two-processor jobs [7].

Our Results. We prove NP-hardness of problems P |sizej ≤ m
2 , energy|∑ Cj

and P |fixj , |fixj | = 2, energy|∑ Cj , and develop two-stage approximation
algorithms for the following particular cases:

– rigid jobs requiring at most m
2 processors,

– moldable jobs,
– two-processor dedicated instances.

At the first stage, we obtain a lower bound on the total completion time and cal-
culate a sequence and processing times of jobs using an auxiliary convex program.
Then, at the second stage, we transform our problem to the classic scheduling
problem without speed scaling, and we use “list-scheduling” algorithms to obtain
feasible solutions. Whenever a subset of processors falls idle, a “list-scheduling”
algorithm schedules from a given priority list the first job that does not require
more processors than are available.

3 Rigid Jobs

In this section we consider rigid jobs. Firstly, we prove that the problem is NP-
hard. Secondly, 2-approximation algorithm is presented for jobs, which require
at most m

2 processors and have identical workloads on utilized processors (i.e.
Vj = W · sizej).

3.1 NP-Hardness

Theorem 1. Problem P |sizej ≤ m
2 ,Wj = 1, energy|∑ Cj is NP-hard in the

strong sense.

Proof. We show that the strongly NP-complete 3-PARTITION problem
polynomially transforms to the decision version of scheduling problem P |sizej ≤
m
2 ,Wj = 1, energy|∑ Cj .

We consider an instance of the 3-PARTITION problem: Given a set of 3q
elements with weights aj , j = 1, . . . , 3q, where

∑3q
j=1 aj = Bq and B

4 ≤ aj ≤ B
2 .

Could the set be partitioned into q subsets A1, . . . , Aq such that
∑

j∈Ai
aj = B?
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An instance of P |sizej , energy|∑ Cj is constructed as follows. Put the num-
ber of jobs n = 3q, the number of processors m = B, and the energy budget E =
Bq. For every aj we generate a job j, j = 1, . . . , 3q. We set Wj = 1, sizej = aj ,
Vj = aj for j ∈ J . In the decision version of P |sizej ,Wj = 1, energy|∑ Cj it is
required to answer the question: Is there a schedule with

∑
Cj value not greater

than a given threshold T?
In order to determine the value of T we solve an auxiliary problem with∑3q

j=1 aj single-processor jobs of unit works, i.e. each rigid job is replaced by
sizej single-processor jobs. Such problem has the unique optimal solution (with
the accuracy of placing jobs on processors and permuting jobs on each proces-
sor), where each processor executes q jobs and uses energy budget q. Now we
find optimal durations of jobs on each processor, solving the following convex
program:

q∑

j=1

pj(q − j + 1) → min, (1)

q∑

j=1

p1−α
j = q, (2)

pj ≥ 0, j = 1, . . . , q. (3)

Here pj is the execution time of j-th job on a processor, j = 1, . . . , q.
We compose the Lagrangian function L(pj , λ) =

∑q
j=1 pj(q − j + 1)+

λ
(∑q

j=1 p1−α
j − q

)
and calculate the optimal solution by equating to zero partial

derivatives:

p∗
j =

(∑q
j=1(n − j + 1)

α−1
α

) 1
α−1

q
1

α−1 (q − j + 1)
1
α

, j = 1, . . . , q,

∑
C∗

j =
q∑

j=1

pj(q − j + 1) =

⎛

⎝
q∑

j=1

(n − j + 1)
α−1

α

⎞

⎠

α
α−1

q
1

1−α .

Note that each next job has more duration than the previous one. The opti-
mal schedule for each processor does not have idle times. The optimal total
completion time for all processors is equal to m

∑
C∗

j .
Set the threshold T := 3

∑
C∗

j , since at most 3 rigid jobs can be exe-
cuted in parallel. We show that a positive answer (a negative answer) to 3-
PARTITION implies a positive answer (a negative answer) to the constructed
P |sizej , energy|∑ Cj with

∑
Cj ≤ T .

Firstly, we assume that the answer to 3-Partition is positive. Then there is
a feasible schedule with

∑
Cj ≤ T , where three jobs, corresponding to three

elements forming set Ai, i = 1, . . . , q such that
∑

j∈Ai
aj = B, are executed in
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parallel. This schedule is similar to the optimal schedule of the corresponding
problem with single-processor jobs. The value of criterion is equal to 3

∑
C∗

j .
Secondly, we show that the negative answer to 3-Partition implies the neg-

ative answer to our speed scaling scheduling problem. Indeed, in this case we
can not construct a schedule, which is identical to the optimal schedule for the
corresponding single-processor jobs (with the accuracy of placing jobs on pro-
cessors and permuting jobs on each processor). In other words, in any feasible
schedule the sum of completion times is greater than 3

∑
C∗

j as this schedule
has idle times.

The presented transformation is polynomial. So, problem P |sizej ≤ m
2 ,Wj =

1, energy|∑ Cj is strongly NP-hard. ��
In the next subsection, we present a polynomial time approximation algo-

rithm with constant factor approximation guarantee. Processing times of jobs
are calculated using convex program and approximate schedule is constructed
by “list-scheduling” algorithm.

3.2 Approximation Algorithm

The sequence of jobs and the completion time of each job are important in the
problems with criterion

∑
Cj . Now we compute a lower bound for the case when

a jobs sequence is given. Suppose that the jobs are started in accordance with
permutation π = (π1, . . . , πn). Using the lower bound on the total completion
time presented in [17] for rigid jobs with the given durations, we formulate the
following convex program:

1
m

n∑

j=1

j∑

i=1

sizeπi
pπi

+
1
2

n∑

j=1

pπj
− 1

2m

n∑

j=1

sizeπj
pπj

→ min, (4)

n∑

j=1

Wα
j p1−α

j sizej ≤ E. (5)

pj ≥ 0, j ∈ J . (6)

We solve the program by means of the Lagrangian method. Define the
Lagrangian function L(pπj

, λ) as

L(pπj
, λ) =

1
m

n∑

j=1

j∑

i=1

sizeπi
pπi

+
1
2

n∑

j=1

(

1 − sizeπj

m

)

pπj

+λ

⎛

⎝
n∑

j=1

Wα
πj

p1−α
πj

sizeπj
− E

⎞

⎠ .

The necessary and sufficient conditions for an optimal solution are (partial
derivatives are equal to zero):
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∂L

∂pπi

=
1
m

sizeπi
(n − i + 1) +

1
2

(

1 − sizeπi

m

)

+ λWα
πi

sizeπi
(1 − α)p−α

πi
= 0,

i = 1, . . . , n.

Rewriting the expressions, we obtain

pπi
= ((α − 1)λm)

1
α

Wπi
size

1
α
πi

(sizeπi
(n − i + 0.5) + 0.5m)

1
α

,

i = 1, . . . , n.

The processing times are placed into equation

∂L

∂λ
=

n∑

j=1

Wα
j p1−α

j sizej − E = 0.

As a result we calculate the durations of jobs

pπi =
E

1
1−α Wπisize

1
α
πi

(sizeπi(n− i + 0.5) + 0.5m)
1
α

·
⎛
⎝

n∑
j=1

Wπjsize
1
α
πj(

sizeπj (n− j + 0.5) + 0.5m
) 1−α

α

⎞
⎠

1
α−1

,

i = 1, . . . , n.

The obtained values for execution times are placed in expression (4) and the
lower bound on

∑
Cj in the general case for an arbitrary permutation π of jobs

is calculated as follows

LB(π) =
E

1
1−α

m

(
n∑

i=1

Wπi
size

1
α
πi (sizeπi

(n − i + 0.5) + 0.5m)
α−1

α

) α
α−1

. (7)

Here πi is the i-th job in accordance with permutation π. So, it is required to
find permutation, that gives minπ LB(π).

From now on, we suppose that the processing works of jobs on processors are
identical, i.e. Wj = W, j ∈ J . Then the minimization of (7) is equivalent to the
minimization of

G(π) =
n∑

i=1

Wsizeπi

(

n − i + 0.5 +
0.5m

sizeπi

)α−1
α

.

We define vectors WSπ = (Wsizeπ1 ,Wsizeπ2 , . . . , Wsizeπn
) and NSπ =((

n − 0.5 + 0.5m
sizeπ1

)α−1
α

,
(
n − 1.5 + 0.5m

sizeπ2

)α−1
α

, . . . ,
(
0.5 + 0.5m

sizeπn

)α−1
α

)

. Then

G(π) can be expressed as the following scalar product WSπ · (NSπ)T. It is
easy to see that the minimum of WSπ · (NSπ)T is reached on the permutation,
where the jobs are ordered by non-decreasing of the required processors numbers
sizej , j ∈ J . Indeed, in this case the first vector is ordered nondecreasingly, the
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second one is ordered nonincreasingly and the scalar product is minimal (the
proof is based on the permutation approach).

Let the jobs are ordered by non-decreasing of sizej . We denote by p̄j

the durations of jobs, and by LB(p̄j) = 1
m

∑n
j=1

∑j−1
i=1 sizej p̄j + 1

2

∑n
j=1 p̄j +

1
2m

∑n
j=1 sizej p̄j the lower bound corresponding to the optimal solution of prob-

lem (4)–(6). We construct the schedule using “list-scheduling” algorithm with
processing times p̄j , j ∈ J : The first job is scheduled at time 0. The next job is
scheduled at the earliest time such that there are enough processors to execute
it. Recall that each job requires at most m

2 processors and Wj = W .
“List-scheduling” algorithm has time complexity O(n2) and allows to con-

struct 2-approximate schedule. Indeed, the starting time of the j-th job is not
greater than 2

(
1
m

∑j−1
i=1 sizeip̄i

)
, as at least m

2 processors are busy at each time
moment in the schedule. The completion time of the j-th job satisfies condition
Cj ≤ 2

m

∑j−1
i=1 sizeip̄i + p̄j . In the sum we have

∑

j∈J
Cj ≤ 2

⎛

⎝ 1
m

n∑

j=1

j−1∑

i=1

sizeip̄i +
1
2

n∑

j=1

p̄j

⎞

⎠ .

We compare this value with the lower bound LB(p̄j) and conclude that∑
j∈J Cj ≤ 2LB(p̄j).
Therefore, the following theorem takes place.

Theorem 2. A 2-approximate schedule can be found in polynomial time for
problem P |sizej ,Wj = W, sizej ≤ m

2 , energy|∑ Cj.

4 Moldable Jobs

Now we provide 2-approximation algorithm for moldable jobs with identical
works. Recall that Vj denote the total processing volume of job j, i.e. the exe-
cution time of this job on one processor with unit speed. Let δj ≤ m be the
maximal possible number of processors, that may be utilized by job j.

In order to obtain a lower bound on the sum of completion times, we formu-
late the following convex model in the case of the given sequence π of jobs

1
m

n∑

j=1

j∑

i=1

pπi
+

1
2

n∑

j=1

pπj

δπj

− 1
2m

n∑

j=1

pπj
→ min, (8)

n∑

j=1

V α
j p1−α

j ≤ E. (9)

Here pj is the execution time of job j on one processor in the total volume Vj .
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Using the same arguments as in Subsect. 3.2, we can show that the minimum
of (8), say

LB :=
E1/1−α

m

⎛

⎝
n∑

j=1

Vπj

(

n − j + 0.5 +
0.5m

δπj

)α−1/α
⎞

⎠

α/α−1

,

is reached on the permutation π, where the jobs are ordered by non-decreasing of
the maximum processors numbers δj , j ∈ J , in the case when works of jobs Vj

are identical or the non-decreasing order of Vj corresponds to the non-decreasing
order of δj (i.e. Vi < Vj implies δi ≤ δj). The corresponding durations of jobs
will be denoted by p̄j , j ∈ J .

Now we assign the number of processors mj for jobs as follows

mj =

{
δj if δj <

⌈
m
2

⌉
,

⌈
m
2

⌉
if δj ≥ ⌈

m
2

⌉
,

and construct the schedule using “list-scheduling” algorithm based on the order
of jobs in non-decreasing of δj , j ∈ J . Let us prove that the total completion
time

∑
Cj(p̄j) ≤ 2LB. Indeed,

∑
Cj(p̄j) ≤ 2

m

n∑

j=1

j−1∑

i=1

p̄i +
n∑

j=1

p̄j

mj
=

2
m

n∑

j=1

j∑

i=1

p̄i +
n∑

j=1

p̄j

mj
− 2

m

n∑

j=1

p̄j

=
2
m

n∑

j=1

j∑

i=1

p̄i +
n∑

j=1

p̄j

(
1

mj
− 2

m

)

≤ 2
m

n∑

j=1

j∑

i=1

p̄i +
n∑

j=1

p̄j

(
1
δj

− 1
m

)

≤ 2LB.

Therefore, we have

Theorem 3. A 2-approximate schedule can be found in polynomial time for
problem P |any, Vj = V, δj , energy|∑ Cj.

We note here, that the complexity status of speed scaling scheduling problem
P |any, Vj = V, δj , energy|∑ Cj is open.

5 Single Mode Multiprocessor Jobs

In this section we consider single-mode multiprocessor jobs. Firstly, we prove
that the problem is NP-hard. Then we provide a polynomial time algorithm for
two-processor instances.
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5.1 NP-Hardness

Theorem 4. Problem P |fixj , |fixj | = 2, Vj = 2, energy|∑ Cj is NP-hard in
the strong sense.

Proof. The proof is similar to the proof of Theorem 1, but it is based on the
polynomial reduction of the strongly NP-complete Chromatic Index problem for
cubic graphs [9].

The chromatic index of a graph is the minimum number of colors required
to color the edges of the graph in such a way that no two adjacent edges have
the same color. Consider an instance of the Chromatic Index problem on a cubic
graph G = (V,A), which asks whether the chromatic index χ′(G) is three. It is
well-know that χ′(G) = 3 or 4, and |V | is even. Moreover, χ′(G) = 3 if and only
if each color class has exactly 1

2 |V | edges.
We construct an instance of P |fixj , energy|∑ Cj as follows. Put the number

of jobs n = |A|, the number of processors m = |V | and the energy budget
E = 2|A| = 3|V |. Vertices correspond to processors. For every edge {uj , vj}
we generate a job j with fixj = {uj , vj}, j = 1, . . . , |A|. We set Vj = 2 and
Wj = Vj

|fixj | = 1 for all j = 1, . . . , n. In the decision version of P |fixj ,Wj =
1, energy|∑ Cj it is required to answer the question: Is there a schedule, in
which the total completion time is not greater than a given threshold T?

In order to define the value of T we solve auxiliary problem with 2n single-
processor jobs, i.e. each two processor job is replaced by two single-processor jobs.
Such problem has the unique optimal solution (with the accuracy of permuting
jobs on processors), where each processor execute tree jobs and uses energy
budget 3. Now we find optimal durations of jobs on each processor, solving the
following convex program:

p1 + 2p2 + p3 → min, (10)

3∑

j=1

p1−α
j = 3, (11)

pj ≥ 0, j = 1, . . . , n. (12)

Here pj is the execution time of j-th job on a processor.
We compose the Lagrangian function

L(pj , λ) = (3p1 + 2p2 + p3) + λ
(
p1−α
1 + p1−α

2 + p1−α
3 − 3

)

and calculate

p∗
j =

31/1−α

(4 − j)1/α

(
3α−1/α + 2α−1/α + 1

)1/α−1

, j = 1, 2, 3, (13)

∑
C∗

j =

((
3α−1/α + 2α−1/α + 1

)α

3

)1/α−1

. (14)
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The sum of job completion times on all processors is equal to m
∑

C∗
j . The

optimal schedule does not have idle times. Set the threshold T := m
2

∑
C∗

j

because at most m
2 two processor jobs can be executed in parallel. We prove that

a positive answer (a negative answer) to Chromatic Index problem corresponds
a positive answer (a negative answer) to the constructed decision version of
P |fixj ,Wj = 1, energy|∑ Cj .

Now we assume that the answer to Chromatic Index problem is positive. Then
there is a feasible schedule, where m

2 jobs, corresponding to m
2 edges forming one

coloring class, are executed in parallel. This schedule is similar to the optimal
schedule of the corresponding problem with single-processor jobs. The value of
criterion is equal to m

2

∑
C∗

j .
It is easy to see that the negative answer to Chromatic Index problem implies

the negative answer to our scheduling problem. Indeed, in this case we can not
construct a schedule, which is identical to the optimal schedule for the corre-
sponding single-processor jobs (with the accuracy of permuting jobs on proces-
sors). In other words, any feasible schedule has idle times, and, therefore, the
total sum of completion times is greater than m

2

∑
C∗

j .
The presented reduction is polynomial. So, speed scaling scheduling problem

P |fixj ,Wj = 1, energy|∑ Cj is strongly NP-hard. ��

5.2 Two-Processor Instances

Now we consider the non-preemptive problem with two processors and pro-
pose polynomial time algorithm with constant-factor approximation guarantee.
Denote by Ji the set of jobs using only processor i = 1, 2 and by J12 the set of
two-processors jobs, J = J1 ∪J2 ∪J12. In order to obtain a lower bound on the
total completion time we identify two subproblems: the first one schedules only
jobs from J ′ = J1 ∪ J12, |J ′| = n′, the second one schedules only jobs from
J ′′ = J2 ∪ J12, |J ′′| = n′′.

The optimal solution of the first subproblem in the case of the given sequence
π of jobs can be found by solving the following convex program:

n′
∑

i=1

(n′ − i + 1)pπi
→ min,

∑

i∈J ′
|fixi|(pi)

1−α
Wα

i ≤ E.

Solving this subproblem via KKT-conditions, we obtain durations of jobs

pπi
=

(
E

∑n′
j=1 Wπj

|fixπj
|1/α(n′ − j + 1)α−1/α

)1/1−α
Wπi

|fixπi
|1/α

(n′ − i + 1)1/α
,

i = 1, . . . , n′,
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and the sum of completion times

∑
C1

j (π) = (E)1/1−α

⎛

⎝
n′

∑

j=1

Wπj
|fixπj

|1/α(n′ − j + 1)α−1/α

⎞

⎠

α/α−1

.

So, the minimum sum of completion times is reached on the permutation π′,
where the jobs are ordered by non-decreasing of Wi|fixi|1/α, i ∈ J ′, since
values (n′ − j + 1) decrease.

Using the same approach for the second subproblem we conclude that
the minimum sum of completion times

∑
C2

j is reached on the permuta-
tion π′′, where the jobs are ordered by non-decreasing of Wi|fixi|1/α, i ∈
J ′′. So, the lower bound LB for the general problem can be calculated as
max{∑

C1
j (π′),

∑
C2

j (π′′)}. Note that subsequences of two-processor jobs are
identical in optimal solutions of both subproblems.

Decreasing the energy budget in both subproblems in two times, we obtain
21/α−1-approximate solutions S′ and S′′ for them with the same sequences of
jobs as in case of energy budget E. Let C ′

j and C ′′
j (p′

j and p′′
j ) denote the

completion times (the processing times) of two processor job j in S′ and S′′,
respectively. Now we construct a preemptive schedule for the general problem,
and then transform this schedule to the non-preemptive one.

In the constructed preemptive schedule each two-processor job j is executed
without preemptions in interval (max{C ′

j , C
′′
j } − min{p′

j , p
′′
j }, max{C ′

j , C
′′
j }].

Note that execution intervals of two-processor jobs do not intersect each other.
Single-processor jobs are performed in the same order and with the same dura-
tions as in S′ and S′′, but may be preempted by two-processor jobs (idle times
between single-processor jobs are not allowed). It is easy to see that the sched-
ule is feasible, and has the total completion time

∑
Cj ≤ 2 · 21/α−1LB as the

completion times of single-processor jobs are no later than in S′ and S′′ by
construction.

Now we go to calculate a non-preemptive feasible schedule. The obtained
preemptive schedule may be reconstructed without increasing the completion
times of jobs such that at most one single-processor job is preempted by each two-
processor job (if a two-processor job j preempts two single-processor jobs, then
moving j slightly earlier will lower the completion time of j without affecting the
completion times of any other jobs). Let S′(j) and C ′(j) denote the starting time
and completion time, respectively, of any job j in the reconstructed preemptive
schedule. Identify single-processor jobs ji1 , ji2 , . . . , jik

that are preempted by
some two-processor jobs. Suppose that these jobs are ordered by increasing of
starting times S′(ji1) < · · · < S′(jik

), and therefore completion times satisfy
C ′(ji1) < · · · < C ′(jik

). Let F (jil
) be the last two-processor job that preempts

jil
, g(jil

) be the amount of processing time of jil
scheduled before the starting

time of F (jil
), h(jil

) be the number of jobs that complete later than F (jil
), l =

1, . . . , k. The construction procedure consists of k steps. At step l we insert an idle
time period of length g(jil

) on both processors immediately after the completion
of F (jil

). Change the start time of jil
to the completion time of F (jil

). So, at
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step l, inserting the idle time period will increase the total completion time of
the schedule by g(jil

) · h(jil
), and in total after all steps the non-preemptive

schedule has the objective value

∑
Cnpr

j ≤
∑

Cj +
k∑

l=1

g(jil
) · h(jil

).

Since each two-processor job preempts at most one single-processor job, the time
intervals (S′(ji1), C

′(F (ji1)], (S′(ji2), C
′(F (ji2)],. . . , (S′(jik

), C ′(F (jik
)] do not

overlap with each other. Therefore,

∑
Cj ≥

k∑

l=1

(C ′(F (jil
)) − S′(jil

)) · h(jil
) >

k∑

l=1

g(jil
) · h(jil

).

As a result we have the following bound on the total completion time

∑
Cnpr

j ≤
∑

Cj +
k∑

l=1

g(jil
) · h(jil

) < 2
∑

Cj ≤ 22α−1/α−1LB.

Theorem 5. A 22α−1/α−1-approximate schedule can be found in polynomial
time for problem P2|fixj , energy|∑ Cj.

Corollary 1. A 2α/α−1-approximate schedule can be found in polynomial time
for problem P2|fixj , pmtn, energy|∑ Cj.

The complexity status of both preemptive and non-preemptive problems with
two processors is open.

Conclusion

NP-hardness of both parallel and dedicated versions of the speed scaling prob-
lem with the total completion time criterion under the given energy budget is
proved. We propose an approach to construct approximation algorithms for var-
ious particular cases of the problem. In our algorithms, initially a sequence of
jobs and their processing times are calculated and then a feasible solution is
constructed using list-type scheduling rule.

Further research might address the approaches to the problems with more
complex structure, where processors are heterogeneous and jobs have alternative
execution modes with various characteristics. Open questions are the complexity
status of the problem with moldable jobs and two-processor dedicated problem,
and constant factor approximation guarantee for two-processor jobs in the sys-
tem with arbitrary number of processors.

Acknowledgements. The reported study was funded by RFBR, project number
20-07-00458.
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Abstract. The paper considers scheduling on parallel machines under
the constraint that some pairs of jobs cannot be processed concurrently.
Each job has an associated weight, and all jobs have the same dead-
line. The objective is to maximise the total weight of on-time jobs. The
problem is known to be strongly NP-hard in general. A polynomial-time
algorithm for scheduling unit execution time jobs on two machines is pro-
posed. The performance of a broad family of approximation algorithms
for scheduling unit execution time jobs on more than two machines is
analysed. For the case of arbitrary job processing times, two integer lin-
ear programming formulations are proposed and compared with two for-
mulations known from the earlier literature. An iterated variable neigh-
borhood search algorithm is also proposed and evaluated by means of
computational experiments.

Keywords: Scheduling · Parallel machines · Total weight of on-time
jobs · Conflict graph

1 Introduction

The paper is concerned with scheduling a set N of n jobs on m > 1 identical
parallel machines under the restriction that some pairs of jobs cannot be pro-
cessed concurrently. The jobs are numbered from 1 to n and are referred to by
these numbers, i.e. N = {1, ..., n}. In order to be completed, a job j should
be processed during pj units of time, where the processing time pj is integer.
Each job can be processed by only one of the machines, and if a machine starts
processing a job j, then it should process it without interruptions (without pre-
emptions) for the entire job’s processing time pj . At any point in time a machine
can process at most one job. The only exceptions are the points in time when
one job finishes processing and another commences its processing.
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The undirected graph G(N,E), where the set of jobs N is the set of nodes
and the set of edges E is the set of all pairs of jobs that cannot be processed
concurrently, usually is referred to as the conflict graph. The complement of the
conflict graph G(N,E), that is the graph with the same set of nodes N and with
the set of edges that is comprised of all edges that are not in E, will be referred
to as the agreement graph. So, jobs can be processed concurrently only if they
induce a complete subgraph (a clique) of the agreement graph.

The processing of jobs commences at time t = 0. A schedule σ specifies
for each j ∈ N its starting time Sj(σ). Since preemptions are not allowed, the
completion time of job j in this schedule is

Cj(σ) = Sj(σ) + pj .

Each job j has an associated positive weight wj and all jobs have the same
deadline D. The objective is to find a schedule with the largest total weight of
on-time jobs (also referred to as the weighted number of on-time jobs)

F (σ) =
∑

j∈J

wj(1 − U(Cj(σ))), (1)

where

U(t) =
{

1 if t > D
0 otherwise .

The situation when some jobs cannot be processed concurrently due to tech-
nological restrictions and when it may not be possible to complete all jobs during
the given time period, arises in planning of maintenance. Thus, an operator of a
communication network faces such a situation when it is needed to execute on
the parallel computers the so called change requests that modify some parts of
this network [19]. Each computer can execute only one program (change request)
at a time, and each change request can be assigned to only one computer. Any
two change requests which affect overlapping parts of the network, cannot be
executed concurrently. Every change request is initiated by a technician who
remains involved during the entire period of the request’s execution, and it may
not be possible to execute all change requests during one shift. The change
requests have different importance, which is modelled by associating with each
change request a certain positive number (weight). The goal is to maximise the
total weight of the change requests that are executed during the current shift.

The considered scheduling problem also arises in various make-to-order sys-
tems [1], where D producers are to be assigned to jobs, each of which is a certain
production process during the time interval specified by this job. Each job can be
allocated to at most one producer, and each producer can be assigned to any job
subject to the following two restrictions: jobs cannot be allocated to the same
producer if their time intervals overlap and each producer cannot be assigned to
more than m > 1 jobs, where m is an integer. Each job has a weight, for example,
the associated profit. The goal is to maximise the total weight of all allocated
jobs. The problem of assigning the producers to jobs in such a make-to-order
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system is equivalent to the problem of scheduling jobs on m parallel identical
machines under the restrictions imposed by a conflict graph. Indeed, associate
with each job in the make-to-order system a job which can be processed on any
of these m parallel machines and which requires one unit of processing time.
In the literature on scheduling, jobs with unit processing (execution) time are
referred to as UET jobs. Let N be the set of all UET jobs and let G(N,E) be
the conflict graph where the set of edges is the set of all pairs of UET jobs for
which the corresponding jobs in the make-to-order system overlap. Then, the
two problems are equivalent if all UET jobs have the same deadline D and each
UET job has the same weight as the corresponding job in the make-to-order
system. Observe that in the make-to-order systems the conflict graphs have a
special structure. Such graphs are called interval graphs [3].

The scheduling problems with parallel machines and the restrictions imposed
by a conflict graph, are an area of intensive research. The main focus in this
research was on the minimisation of the makespan

Cmax(σ) = max
j∈N

Cj(σ), (2)

and despite of various applications and the challenging mathematical nature, the
maximisation of (1) has attracted much less attention than it deserves. The paper
addresses this gap in the knowledge by establishing the existence of a polynomial-
time algorithm, analysing the performance of approximation algorithms, and by
presenting integer linear programming formulations and heuristics together with
their comparison by means of computational experiments.

2 Related Work

As has been mentioned above, the majority of publications on scheduling on
parallel identical machines under the restrictions imposed by a conflict graph,
pertain to the makespan minimisation [2,4–7,9,13–15,20,21,24]. The publica-
tions on the scheduling problems with UET jobs constitute considerable part
of the generated literature, including, in particular, [2,13–15,20] from the list
above. As has been shown in [2], the problem of scheduling UET jobs on parallel
identical machines with a conflict graph and the objective function (2) arises in
balancing the load on parallel processors when partial differential equations are
solved using the domain decomposition. In this application, each region of the
domain is viewed as a job and each pair of regions which have common points is
viewed as an edge in the conflict graph. Another application of the UET case of
the makespan minimisation, mentioned in [2], is the exams timetabling problem,
where two exams cannot be scheduled concurrently if some students must sit for
both of them.

The makespan minimisation problem with parallel identical machines, UET
jobs and a conflict graph closely relates to two problems that are among the
central in the graph theory: the graph coloring problem [10] and the maximum
matching problem [22]. In the graph coloring problem, each color class is the
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set of jobs that are processed concurrently, and therefore, this problem has an
additional restriction that the cardinality of each color class cannot exceed the
limit imposed by the number of machines. Since the problem of partitioning a
graph into triangles is NP-complete in the strong sense [16], the graph coloring
problem (and the equivalent makespan minimisation problem) is NP-hard in the
strong sense even in the case when each color class cannot have more than three
nodes. Therefore, the research on the graph coloring with a limit on the size
of each color class was focused on various particular classes of graphs [8]. The
relevance of the maximum matching problem follows from the observation that
any two jobs, which can be processed concurrently, correspond to an edge in the
agreement graph and the minimisation of the makespan for m = 2 is equivalent
to finding the largest number of edges in the agreement graph that do not have
common nodes [2]. Observe that the maximum matching problem as well as the
maximum weight matching problem can be solved in polynomial time [11,12].

If all jobs can be completed by the deadline D, then the corresponding sched-
ule is optimal for (1). Therefore, NP-hardness results for the makespan imply the
NP-hardness for the total weight of on-time jobs. Furthermore, the well known
result of [28] established that, for all ε > 0, it is NP-hard to find an approxima-
tion for the maximum clique problem even within n1−ε. The latter implies the
inapproximability of the maximisation of (1) in the case when m = n, D = 1,
and the jobs are UET jobs with equal weights.

3 Scheduling UET Jobs

This section assumes that the optimal makespan is greater than D, because
otherwise the maximisation of (1) is equivalent to the makespan minimisation.

3.1 Polynomial-Time Algorithm for m = 2

As has been mentioned above, if m = 2, a schedule that minimises the makespan
can be found by constructing a maximum matching in the agreement graph. This
can be done in O(

√
κχ) by the algorithm of Micali and Vazirani, where κ and χ

are the number of nodes and the number of edges. In contrast, it can be shown
that a maximum weight matching may contain no edges which represent pairs of
jobs executed concurrently in any schedule that maximises (1). As will be shown
below, this scheduling problem can be solved in polynomial time by using the
idea suggested in [25] for the generalisation of the maximum weight matching
called in [25] the constrained matching.

Let G(N,Ec) be the complement of the conflict graph G(N,E). This agree-
ment graph is transformed in two steps. According to the first step, each edge
e = {j, g} in Ec is assigned the weight ue = wj + wg and, for each job j ∈ N ,
a new node j′ and the edge e = {j, j′} with the weight ue = wj are intro-
duced. This doubles the number of nodes and increases the number of edges
by n. Denote the set of new nodes by N ′ and the set of new edges by E′. The
second step is based on the idea in [25]: the introduction of the set Q of 2(n−D)
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additional nodes together with the set EQ of 2(n − D)|N ∪ N ′| edges, all of the
same weight u = 0, that link each node in Q with every node in N ∪ N ′.

Any optimal schedule σ induces a perfect matching M in G(N ∪N ′ ∪Q,Ec ∪
E′ ∪EQ), where each pair of jobs j and g, processed concurrently and completed
on time, induces the edge {j, g}; each job j, which is completed on time and
is not processed concurrently with any other job, induces the edge in E′ that
covers this job; and the remaining 2(n − D) edges are from EQ, each covering a
distinct node in N ∪N ′, which is not covered by the induced edges from Ec ∪E′,
with a distinct node in Q.

Conversely, any maximum weight perfect matching M in G(N ∪N ′ ∪Q,Ec ∪
E′ ∪ EQ) induces a schedule σ, where two jobs j and g are processed in σ
concurrently only if {j, g} ∈ M ; the jobs, covered by the edges in EQ, are tardy
(being perfect, M must contain 2(n − D) edges from EQ) and the remaining
jobs, covered by the remaining D edges (all these edges are from Ec ∪ E′) are
completed on time.

In the discussion above, the weight of the matching M induced by σ, is
equal to F (σ), and F (σ) for the schedule σ induced by the matching M , is
equal to the weight of M . Therefore, any maximum weight perfect matching
(constructed by Gabow’s algorithm in O(ξ(ζ + ξ log ξ)) where ξ = |N ∪ N ′ ∪ Q|
and ζ = |Ec ∪ E′ ∪ EQ|) induces an optimal schedule.

3.2 Approximation Algorithms for m > 2

This subsection is concerned with the performance of the algorithms that con-
struct a schedule for arbitrary m, using as a subroutine the method of con-
structing an optimal schedule for m = 2. For any algorithm A, denote by σA a
schedule constructed according to this algorithm. For any schedule σ, let J(σ)
be the set of jobs that are completed on time in this schedule. Denote by σ∗

an optimal schedule, i.e. a schedule with the largest value of (1), and by σ2 a
schedule with the largest total weight of on-time jobs for the problem, obtained
from the original problem by replacing the original number of machines m by
2. Observe that σ2 can be constructed in polynomial time, using the method
described in the previous subsection. Let A be the set of all algorithms A such
that J(σ2) ⊆ J(σA).

Theorem 1. For each A ∈ A,

F (σ∗) ≤ m

2
F (σA)

and this performance guarantee is tight.

Proof. For each integer 1 ≤ t ≤ D, denote by k(t) the number of jobs processed in
schedule σ∗ in the time slot [t−1, t], i.e. the number of jobs j such that Cj(σ∗) = t.
By virtue of the assumption that the makespan is greater than D, for all considered
integers, k(t) ≥ 1. Let jt,1, ..., jt,k(t) be the jobs, processed in the time slot [t−1, t]
and numbered in a nonincreasing order of their weights, i.e.

wt,1 ≥ ... ≥ wt,k(t), (3)
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and denote

u(t) =
{

0 if k(t) ≤ 2
wt,3 otherwise .

Let σ∗
2 be any schedule for the agreement graph G(N,Ec) and two machines

such that, for any integer 1 ≤ t ≤ D and each integer 1 ≤ i ≤ min[2, k(t)],
Cjt,i(σ

∗
2) = t. Then, taking into account (3), for each integer 1 ≤ t ≤ D,

u(t) ≤ 1
2

∑

{j: Cj(σ∗
2 )=t}

wj

and consequently, using J(σ2) ⊆ J(σA),

F (σ∗) =
∑

1≤t≤D

∑

{j: Cj(σ∗)=t}
wj ≤

∑

1≤t≤D

⎡

⎣
∑

{j: Cj(σ∗
2 )=t}

wj + (m − 2)u(t)

⎤

⎦

≤ m

2

∑

1≤t≤D

∑

{j: Cj(σ∗
2 )=t}

wj ≤ m

2
F (σ2) ≤ m

2
F (σA).

The performance guarantee m
2 is tight for each algorithm A ∈ A, because, as

will be shown below, for any ε > 0, there exists an instance for which

F (σ∗) >
(m

2
− ε

)
F (σA). (4)

Indeed, assume that ε ≤ 1
2

and consider the instance where the agreement
graph is comprised of a complete graph of mD nodes and D disjoint edges. All
jobs, constituting the complete graph, have the same weight w, whereas all jobs,
constituting the disjoint edges, have the same weight w + δ, where

0 < δ <
2εw

m − 2ε
. (5)

Since each job, covered by the D disjoint edges, has a weight greater than the
weight of any job that is not covered by these D edges, the set J(σ2) is the set
of all jobs covered by the D disjoint edges, and

F (σ2) = 2D(w + δ).

On the other hand, any job covered by one of the D disjoint edges, can be
processed concurrently only with one job, namely the job covered by the same
edge. Furthermore, since, for all m ≥ 3,

2εw

m − 2ε
≤ (m − 2)w

2
,

by virtue of (5),
mw > 2(w + δ),
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and therefore, F (σ∗) = mwD. Consequently, taking into account (5),

F (σ∗)
F (σA)

=
mwD

2D(w + δ)
=

m(w + δ)
2(w + δ)

− mδ

2(w + δ)
>

m

2
− ε,

which implies (4). �	

4 Scheduling Jobs with Arbitrary Processing Times

4.1 Integer Linear Programming Formulations

Two integer linear programming formulations for the case of arbitrary processing
times were proposed in [19]. This section presents two new formulations, based
on the approach from [26]. Let M = {1, . . . , m} be the set of available machines.
Note that the maximum position on which an on-time job may be scheduled on
a machine is at most kmax = min{n, 
D/minn

j=1{pj}�}. Let K = {1, . . . , kmax}
be the set of available positions of on-time jobs. Let e denote the number of
conflicting pairs of jobs.

For the first formulation, denoted by ILP1, define for all j ∈ N , k ∈ K and
l ∈ M binary variables ujkl such that ujkl = 1 if job j is not tardy and is
scheduled at position k on machine l, and ujkl = 0 otherwise. For any j ∈ N ,
let Uj = 1 if job j is tardy, and Uj = 0 if it is completed on time. Moreover, for
any two conflicting jobs j, g ∈ N , let yjg = 0 if job j precedes job g, i.e., job j
finishes before g starts, and yjg = 1 otherwise. Finally, let tkl denote the starting
time of the job at position k on machine l, and let τj be the starting time of job
j. The considered problem can be stated as follows.

(ILP1) minimise
n∑

j=1

wjUj (6)

s.t.
n∑

k=1

m∑

l=1

ujkl + Uj = 1 ∀ j ∈ N (7)

n∑

j=1

ujkl ≤ 1 ∀ k ∈ K, l ∈ M (8)

tkl +
n∑

j=1

pjujkl ≤ tk+1,l ∀ k ∈ K \ {kmax}, l ∈ M (9)

tkl +
n∑

j=1

pjujkl ≤ D ∀ k ∈ K, l ∈ M (10)

τj + D(1 − ujkl) ≥ tkl ∀ j ∈ N, k ∈ K, l ∈ M (11)

tkl + D(1 − ujkl) ≥ τj ∀ j ∈ N, k ∈ K, l ∈ M (12)

τj + pj(1 − Uj) − Dyjg ≤ τg ∀ (j, g) ∈ E (13)
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yjg + ygj ≤ 1 ∀ (j, g) ∈ E, j < g (14)

tkl ≥ 0 ∀ k ∈ K, l ∈ M (15)

τj ≥ 0 ∀ j ∈ N (16)

Uj ∈ {0, 1} ∀ j ∈ N (17)

ujkl ∈ {0, 1} ∀ j ∈ N, k ∈ K, l ∈ M (18)

yjg ∈ {0, 1} ∀ (j, g) ∈ E (19)

The objective in the above program is to minimise the weighted number of
tardy jobs (6), which is equivalent to maximising the weighted number of on-
time jobs. Equations (7) guarantee that each job is either tardy or scheduled
at exactly one position on one machine. By (8), at most one job is scheduled
at each position on each machine. Constraints (9) ensure that no two jobs are
executed at the same time on the same machine. According to (10), a job that
is scheduled at position k on machine l is completed by time D. Inequalities
(11) and (12) ensure that if job j is scheduled at position k on machine l, then
τj = tkl. Constraints (13) guarantee that for any two conflicting jobs j and g,
if j is scheduled and yjg = 0, then j is finished before job g starts. By (14),
no two conflicting jobs are executed at the same time. The program (6)–(19)
contains O(nmkmax + e) binary variables, O(mkmax + n) continuous variables,
and O(nmkmax + e) constraints.

To construct the second formulation, denoted by ILP2, let binary variables Uj

and yjg be defined as in ILP1. Additionally, for each j ∈ N and t ∈ {0, . . . , D −
pj}, let vjt = 1 if job j starts at time t (on an arbitrary machine), and vjt = 0
otherwise. The optimal schedule can be found in the following way.

(ILP2) minimise
n∑

j=1

wjUj (20)

s.t.
D−pj∑

t=0

vjt + Uj = 1 ∀ j ∈ N (21)

n∑

j=1

min{t,D−pj}∑

s=max{0,t−pj+1}
vjs ≤ m ∀ t = 0, . . . , D − 1 (22)

D−pj∑

t=0

tvjt + pj(1 − Uj) − Dyjg ≤
D−pg∑

t=0

tvgt ∀ (j, g) ∈ E (23)

yjg + ygj ≤ 1 ∀ (j, g) ∈ E, j < g (24)

vjt ∈ {0, 1} ∀ j ∈ N, t = 0, . . . , D − pj (25)

Uj ∈ {0, 1} ∀ j ∈ N (26)

Once again, the weighted number of tardy jobs is minimised (20). Constraints
(21) guarantee that each job j is either tardy or scheduled to start at exactly
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one moment t ≤ D − pj . At most m jobs are executed at any time t by (22).
Inequalities (23) ensure that for any two conflicting jobs j and g, if j is scheduled
and yjg = 0, then j is finished before job g starts. Conflicting jobs are not
executed at the same time by (24). The program (20)–(26) contains O(nD + e)
binary variables and O(nD + e) constraints.

4.2 Heuristic Algorithms

This section presents heuristic algorithms for the analysed problem. In the sched-
ule representation used, a list of assigned jobs and their starting times is stored
for each machine. Additionally, a separate list of tardy jobs is maintained.

Firstly, a variable neighborhood search algorithm VNS is proposed. Variable
neighborhood search is a metaheuristic for solving combinatorial optimisation
problems, introduced by [23]. It consists in a systematic change of neighborhood
within a local search algorithm. There exist many variants of variable neighbor-
hood search, which have been successfully applied in many areas [17]. In this
work, the variable neighborhood descent method is used. Consider kmax neigh-
borhoods N1, . . . , Nkmax

. Let x be the initial solution passed to the algorithm.
At the beginning, the current neighborhood number is k = 1. In each iteration
of the algorithm, the best solution x′ in neighborhood Nk(x) is found. If an
improvement is obtained, i.e. x′ is better than x, then x is updated to x′ and k
is set to 1. Otherwise, k is increased by 1 and the next neighborhood Nk(x) is
considered. The process continues until k exceeds kmax.

In the proposed variable neighborhood search, the initial schedule is delivered
by a list scheduling algorithm which processes the jobs in the weighted shortest
processing time order. Thus, jobs are first sorted in such a way that p1/w1 ≤
· · · ≤ pn/wn. Afterwards, each consecutive job j is assigned to the machine
that is the first to finish processing assigned jobs in the current schedule. The
earliest possible starting time of job j is then computed, taking into account the
time when processing on the selected machine finishes, as well as the processing
intervals of already scheduled jobs conflicting with j. If it is not possible to
finish job j by time D, this job is removed from the machine’s list and added to
the list of tardy jobs. After the initial schedule is constructed, the following six
neighborhoods are considered in the search procedure.

– N1(σ) consists of all schedules obtained from σ by swapping a single pair of
jobs on one machine;

– N2(σ) consists of all schedules obtained from σ by moving one job to a dif-
ferent position on the machine it is assigned to;

– N3(σ) consists of all schedules obtained from σ by swapping a pair of jobs
assigned to different machines;

– N4(σ) consists of all schedules obtained from σ by moving a job scheduled on
any machine i to an arbitrary position on a different machine;

– N5(σ) consists of all schedules obtained from σ by replacing an arbitrary
scheduled job by an arbitrary tardy job;

– N6(σ) consists of all schedules obtained from σ by moving an arbitrary tardy
job to an arbitrary position on any machine.
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The order of the neighborhoods was selected on the basis of preliminary compu-
tational experiments, which suggested that the best results are produced when
the neighborhoods obtained by changes on a single machine are considered first,
and the neighborhoods obtained by assigning to machines the jobs from the
tardy list are considered last. Naturally, after changing the assignment of jobs
to machines and positions, the starting times of the jobs have to be recomputed,
taking into account job conflicts. If due to the changes made, a job that was
assigned to a machine becomes tardy, it is removed from the machine’s list of
jobs and added to the list of tardy jobs. Moreover, after executing the changes,
the list of tardy jobs is scanned in the weighted shortest processing time order,
and additional jobs from this list are assigned to the least loaded machines, if
possible.

Secondly, the proposed VNS algorithm is embedded in the iterated search
framework. The iterated variable neighborhood search algorithm IVNS starts
with executing the VNS. The obtained schedule is then modified by making
0.05n� changes consisting in moving a random (scheduled or tardy) job to a
random position on a random machine. Job starting times are recomputed, and
additional jobs are scheduled if possible, as explained in the description of the
VNS algorithm. After this shaking step, the variable neighborhood search is run
again. The whole procedure is repeated r = 10 times. The number of changes
made in the shaking procedure was selected on the basis of preliminary compu-
tational experiments. The number of iterations r was chosen as a compromise
between solution quality and the running time of the algorithm.

5 Computational Experiments

In this section, the results of computational experiments on the quality of the
proposed algorithms are presented. The algorithms were implemented in C++,
and integer linear programs were solved using Gurobi. In addition to the algo-
rithms presented in Sect. 4, integer linear programming formulations F1 and F2
proposed in [19] were implemented. The experiments were performed on an Intel
Core i7-7820HK CPU @ 2.90 GHz with 32 GB RAM.

In the generated test instances, the number of machines was m ∈ [2, 10],
and the number of jobs was n ∈ {5m, 10m}. The job processing times pj were
chosen randomly from the interval [50, 150], and the job weights wj from the
interval [1, 5]. A parameter δ > 0 was used to control the ratio between the
available time window and the expected amount of work per machine. Since the
expected duration of a job was 100, the common deadline of all jobs was set to
D = 100δn/m. The number of conflicting jobs was controlled by a parameter
c ∈ (0, 1). For a given value of c, the conflict graph G contained c

(
n
2

)
randomly

chosen edges. In the experiments presented in this paper, c = 0.1 was used. For
each analysed combination of instance parameters, 30 tests were generated.

Many instances could not be solved to optimality in reasonable time using
the integer linear programs. Therefore, a one hour time limit was imposed on
algorithms ILP1, ILP2, F1 and F2. Since the optimum solutions were not known
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in all cases, the total weights of on-time jobs returned by the respective algo-
rithms were compared to an upper bound UB defined as the smallest upper
bound obtained by Gurobi while solving the integer linear programs. Schedule
quality was measured by the relative percentage error with respect to UB.

Table 1. Performance of the integer linear programs.

Algorithm m = 2, n = 10 m = 2, n = 20 m = 4, n = 40

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

ILP1 0.00 4.22E−2 0.00 2.12E−1 0.00 1.50E+2

ILP2 0.00 2.36E+0 0.00 1.55E+1 0.00 2.45E+2

F1 [19] 0.00 1.71E+2 0.00 3.61E+3 1.09 3.61E+3

F2 [19] 0.00 2.14E+1 0.00 3.61E+3 1.68 3.61E+3
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Fig. 1. Algorithm performance vs. m for n = 5m, δ = 0.3. a) Average quality, b)
average execution time.

In the first experiment, the performance of integer linear programs ILP1,
ILP2, F1 and F2 was compared on instances of various sizes with δ = 0.7. The
obtained results are presented in Table 1. All analysed algorithms were able to
solve all the instances with m = 2 and n = 10 within the imposed time limit.
Still, the running times of the algorithms differed significantly. ILP1 had the best
average running time, followed by ILP2, then F2, and finally F1, which was four
orders of magnitude slower than ILP1. The optimum schedules were also found
by all algorithms for all instances with m = 2 and n = 20. However, F1 and F2
did not finish their computations within an hour for any such tests. Although
the optimum solutions were found, the upper bounds computed during one hour
using these formulations were larger. All generated instances with m = 4, n = 40
were solved to optimality by ILP1 and ILP2, but F1 and F2 did not find the best
schedules for some of these tests. Their average errors were 1.09% and 1.68%,
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correspondingly. It can be concluded that the formulations ILP1 and ILP2 are
more efficient than F1 and F2 proposed in [19]. As the running times of F1 and
F2 were very long even for small instances, these two algorithms were not used
in the remaining experiments.

Figure 1 presents the results obtained for instances with m = 2, . . . , 10, n =
5m and δ = 0.3. All tests in this group were solved to optimality by both ILP1
and ILP2 (see Fig. 1a). VNS produced good schedules, its average error is below
2% for all m ≤ 9, and only reaches 2.17% for m = 10. Using IVNS leads to
obtaining substantially better results, although at a higher computational cost.
All tests with m ≤ 5 were solved to optimality by this algorithm, and the largest
average error, obtained for m = 10, is only 0.77%. Naturally, the running times of
all algorithms increase with growing m (cf. Fig. 1b). VNS is the fastest among the
analysed algorithms. ILP1 is faster than IVNS and ILP2 for m ≤ 9, which means
that it is very suitable for solving small instances with a small δ. However, its
average running time rapidly increases when m = 10. This is caused by the fact
that ILP1 reached the time limit of 1 h for one instance with m = 10. Contrarily,
ILP2 is slower than IVNS for m ≤ 7, but faster than IVNS for m ≥ 8.
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Fig. 2. Algorithm performance vs. m for n = 5m, δ = 0.7. a) Average quality, b)
average execution time.

The results obtained for tests with m = 2, . . . , 10, n = 5m and δ = 0.7 are
shown in Fig. 2. ILP1 found optimal solutions for all instances with m ≤ 5 but
was unsuccessful at some tests for each larger m. In particular, it was not able to
finish computations within an hour for any instances with m ≥ 9. The average
ILP1 error is below 1% for m ≤ 8 and reaches 2.72% for m = 10. ILP2 performed
much better, finding the optimum schedules for all instances with m ≤ 9. Even
for m = 10, the average error of ILP2 is only 0.13%. The distance between VNS
and IVNS schedules is small for m ∈ {2, 3}, but increases for larger m. The
errors obtained by VNS are below 6.5%, and the IVNS errors are smaller than
4%. Thus, instances with δ = 0.7 are in general more demanding than those
with δ = 0.3. In the group of tests with δ = 0.7, the running time of ILP1 is
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close to that of IVNS only for m = 2. For m ≥ 3, the running time of ILP1
significantly increases, and ILP1 becomes the slowest of all analysed algorithms.
In particular, for m ≥ 9, the average running time of ILP1 is one hour, since
it solved no instances within the imposed time limit. In contrast, the average
execution time of ILP2 is 985 s for m = 10.
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Fig. 3. Algorithm performance vs. m for n = 10m, δ = 0.7. a) Average quality, b)
average execution time.

The results obtained for the largest instances, with variable m, n = 10m and
δ = 0.7, are shown in Fig. 3. In this group, no tests with m ≥ 7 were solved
within the time limit by ILP1, and no tests with m ≥ 8 were solved within the
time limit by ILP2. Hence, the running times of both these algorithms stabilise
at one hour for large m. There are significant differences between the qualities of
solutions obtained by ILP1 and ILP2. For m ≤ 4, both these algorithms always
find optimum solutions, but for larger m, ILP2 clearly outperforms ILP1. For
m = 10, the average distance from UB is 1.68% in the case of ILP2 solutions,
and 5.66% in the case of ILP1 schedules. Moreover, ILP1 is outperformed by
both VNS and IVNS for such m. Thus, ILP1 is not recommended for solving
large instances. It is interesting that VNS and IVNS obtain here better results
than for the tests with n = 5m and δ = 0.7. The average errors of VNS reach
4.01% for m = 10 and the average distance of IVNS schedules from the upper
bound is below 3% for all m.

In addition to the above experiments, a preliminary comparison of the meth-
ods in this paper with the ones in communications [27] and [18] is presented.
The communications [27] and [18] appeared after this paper has been completed.
The algorithms ILP2 and IVNS are compared with the integer linear program-
ming formulation F3 from [18], and the integer linear program FT and heuristic
HE from [27]. The comparison is preliminary because of the use of different
computers and the possible differences between Gurobi and CPLEX.

Algorithms F3, ILP2 and IVNS were run on the set of 432 instances
used in [18], obtained from the authors. Algorithm ILP2 solved optimally 430
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instances, and its average error was 0.02%. Formulation F3 delivered optimal
solutions for 394 tests, and had an average error of 0.58%. The average execu-
tion time was 149 s in the case of ILP2 and 489 s in the case of F3. Thus, it
seems that ILP2 is more efficient than F3. Heuristic IVNS obtained 339 optimal
solutions, average error 0.70% and average execution time 1.42 s.

Furthermore, algorithms ILP2 and IVNS were executed on the set of 3840
large instances used in [27], which are publicly available. Algorithm ILP2 solved
all of them optimally in the average time of 1.76 s, while FT is reported in [27]
to solve all but one instance optimally, in the average time of 35 s. These results
cannot be compared directly because different computers and different solvers
were used to run both algorithms. However, the difference between the execution
times seems significant. Algorithm IVNS solved optimally 2430 instances, and
HE found optimum solutions for 1851 tests [27]. The average error of HE on
instances not solved optimally is reported to be 1.91%, which gives the average
error of 0.99% overall, while the average error of IVNS was 0.56%. The average
computation time of HE is 0.21 s according to [27], and the average running
time of IVNS was 4.77 s. Again, the time results cannot be compared directly.
Still, it seems that IVNS obtains better solutions than HE, but at a higher
computational cost.

It is worth noting that the integer linear programs ILP2, F3 and FT, which
use time-indexed variables, significantly outperform formulations F1 and F2 (as
shown here and in [18,27]), which do not use such variables. Thus, it seems that
the time-indexed approach to the considered problem is particularly efficient.

6 Conclusions

For the problem of maximising the total weight of on-time jobs with a common
deadline, scheduled on parallel machines subject to a conflict graph, the paper
presents a polynomial-time algorithm for the case of two parallel machines, and
a performance guarantee which is tight for a broad family of algorithms for an
arbitrary number of machines. Both these results were obtained for UET jobs.
For jobs with general processing times, the paper presents two new integer linear
programming formulations and a variable neighborhood search algorithm, which
is embedded in an iterated search framework. Computational experiments show
that both proposed integer linear programs obtain better results than those
in [19], ILP2 is particularly efficient for large instances, and the heuristic algo-
rithm IVNS obtains good results in a reasonable time. Further development of
such optimisation procedures, and their experimental evaluation, should be one
of the main directions of future research. In particular, the experiments should
include a more detailed comparison of the proposed algorithms with the methods
recently announced in [18,27].
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Abstract. We consider the problem of optimal boundary control of
string vibrations with given initial and final conditions and a given value
of the string deflection function at some intermediate time moment and
with a quality criterion given over the entire time interval. It is controlled
by the displacement of one end while the other end is fixed. A construc-
tive approach to constructing the optimal boundary control action is
proposed. A computational experiment was carried out with the con-
struction of the corresponding graphs and their comparative analysis,
which confirm the results obtained.

Keywords: Boundary control · Optimal control of vibrations ·
Intermediate conditions · Separation of variables

1 Introduction

Controlled vibration systems are widely used in various theoretical and applied
fields of science. The need for control and optimal control of vibrational pro-
cesses with both distributed and boundary actions is an urgent problem, the
solution of which is paid attention to by many researchers [1–13]. In practice,
problems of boundary control and optimal control often arise, in particular, when
it is necessary to generate vibrations with predetermined (desired) intermediate
parameters (deflection shape, speed of string points, etc.). Modeling and con-
trol of dynamical systems described by both ordinary differential equations and
partial differential equations with intermediate conditions are an actively devel-
oping area in modern control theory. In particular, papers [8–15] are devoted to
the study of such problems.
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The purpose of this work is to develop a constructive approach to building
a function of optimal boundary control of string vibrations by displacement of
one end while the other end is fixed with a given shape of the string deflection
at a certain moment in time and with a quality criterion set over the entire time
interval.

2 Statement of the Problem and Its Reduction to a
Problem with Zero Boundary Conditions

Consider small transverse vibrations of a stretched homogeneous string. They
are described by the function Q(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T , which satisfies the
wave equation

∂2Q

∂t2
= a2 ∂2Q

∂x2
, 0 < x < l, t > 0 (1)

with the boundary conditions

Q(0, t) = u(t), Q(l, t) = 0, 0 ≤ t ≤ T. (2)

Let the initial and final conditions be given

Q(x, 0) = ϕ0(x),
∂Q

∂t

∣
∣
∣
∣
t=0

= ψ0(x), 0 ≤ x ≤ l, (3)

Q(x, T ) = ϕT (x) = ϕ2(x),
∂Q

∂t

∣
∣
∣
∣
t=T

= ψT (x) = ψ2(x), 0 ≤ x ≤ l, (4)

where T is some given finite moment of time. In Eq. (1) a2 = T0
ρ , where T0 is the

string tension, ρ is the density of the homogeneous string, and function u (t) is
the boundary control. It is assumed that the function Q (x, t) ∈ C2(ΩT ), where
the set ΩT = {(x, t) : x ∈ [0, l] , t ∈ [0, T ]}. Let at some intermediate moment of
time t1 (0 = t0 < t1 < t2 = T ) the values of the velocities of the string points
are given in the form:

Q(x, t1) = ϕ1(x), 0 ≤ x ≤ l. (5)

We formulate the following boundary control problem of string vibrations with
a given value of the deflection function at an intermediate point in time.

Among the possible boundary controls for u (t), 0 ≤ t ≤ T , (2) it is required
to find such optimal control u0 (t) under the influence of which the vibrational
motion of system (1) from a given initial state (3) goes into the final state (4),
ensuring that condition (5) is satisfied and minimizing functional

T∫

0

u2(t)dt. (6)
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We assume that the functions ϕi(x) (i = 0, 1, 2) belong to the C2[0, l], and
functions ψ0(x) and ψT (x) belong to the C1[0, l]. It is also assumed that all
functions are such that the compatibility conditions below are satisfied:

u (0) = ϕ0 (0) , u′ (0) = ψ0 (0) , ϕ0 (l) = ψ0 (l) = 0, (7)

u(t1) = ϕ1(0), ϕ1(l) = 0, (8)

u (T ) = ϕT (0) , u′ (T ) = ψT (0) , ϕT (l) = ψT (l) = 0. (9)

As the boundary conditions (2) are non-homogeneous, the solution of the
stated problem is reduced to a problem with zero boundary conditions. Thus,
following [16], the solution to Eq. (1) is sought in the form of a sum

Q(x, t) = V (x, t) + W (x, t), (10)

where V (x, t) is an unknown function to be determined with the homogeneous
boundary conditions

V (0, t) = V (l, t) = 0, (11)

and the function W (x, t) is solution to Eq. (1) with the non-homogeneous bound-
ary conditions

W (0, t) = u (t) , W (l, t) = 0.

The function W (x, t) has the form

W (x, t) =
(

1 − x

l

)

u (t) . (12)

Substituting (10) into (1) and taking into account (12), we obtain the following
equation for determining the function V (x, t):

∂2V

∂t2
= a2 ∂2V

∂x2
+ F (x, t), F (x, t) =

(x

l
− 1

)

u′′ (t) . (13)

The function V (x, t) by virtue of conditions (2)–(5) and the compatibility con-
ditions (7)–(9) must satisfy the initial, intermediate and final conditions

V (x, 0) = ϕ0(x) +
(x

l
− 1

)

ϕ0(0),
∂V

∂t

∣
∣
∣
∣
t=0

= ψ0(x) +
(x

l
− 1

)

ψ0(0), (14)

V (x, t1) = ϕ1(x) +
(x

l
− 1

)

ϕ1(0), (15)

V (x, T ) = ϕT (x)+
(x

l
− 1

)

ϕT (0) ,
∂V

∂t

∣
∣
∣
∣
t=T

= ψT (x)+
(x

l
− 1

)

ψT (0) . (16)

Thus, the solution of the problem of optimal boundary control of string
vibrations with a given shape of the points deflection at an intermediate time
instant is reduced to the problem of controlling vibrational motion (13) with
boundary conditions (11) and minimized functional (6), which is formulated as
follows: it is required to find such optimal boundary control u0 (t), 0 ≤ t ≤ T
that transfers the vibration described by Eq. (13) with boundary conditions (11)
from the given initial state (14) through the intermediate state (15) to the final
state (16) and minimizes functional (6).



302 V. Barseghyan and S. Solodusha

3 Reduction of the Solution of a Problem with Zero
Boundary Conditions to the Problem of Moments

Taking into account that the boundary conditions (11) in problem (13) are homo-
geneous and the compatibility conditions are satisfied (7)–(9), according to the
theory of Fourier series, we seek the solution to Eq. (13) in the form

V (x, t) =
∞∑

k=1

Vk(t) sin
πk

l
x, Vk(t) =

2
l

l∫

0

V (x, t) sin
πk

l
xdx. (17)

We represent the functions F (x, t), ϕi(x) (i = 0, 1, 2) and ψi(x) (i = 0, 2)
in the form of Fourier series and, substituting their values together with V (x, t)
into Eq. (13) and conditions (7)–(9), we obtain

V̈k(t) + λ2
kVk(t) = Fk(t), λ2

k =
(

aπk

l

)2

, Fk(t) = − 2a

λkl
u′′(t), (18)

Vk(0) = ϕ
(0)
k − 2a

λkl
ϕ0(0), V̇k(0) = ψ

(0)
k − 2a

λkl
ψ0(0), (19)

Vk(t1) = ϕ
(1)
k − 2a

λkl
ϕ1(0), (20)

Vk(T ) = ϕ
(T )
k − 2a

λkl
ϕT (0), V̇k(T ) = ψ

(T )
k − 2a

λkl
ψT (0), (21)

where Fk(t), ϕ
(i)
k (i = 0, 1, 2) and ψ

(i)
k (i = 0, 2) denote the Fourier coefficients,

corresponding to the functions F (x, t), ϕi(x) (i = 0, 1, 2) and ψi(x) (i = 0, 2).
The general solution to Eq. (18) with initial conditions (19) has the form

Vk(t) = Vk(0) cos λkt +
1
λk

V̇k(0) sin λkt +
1
λk

t∫

0

Fk(τ) sin λk(t − τ)dτ. (22)

Now, taking into account the intermediate (20) and final (21) conditions, from
(22) with conditions (14)–(16), we obtain that the function u(τ) for each k must
satisfy the following system of equalities:

T∫

0

u(τ) sin λk (T − τ) dτ = C1k(T ),

T∫

0

u(τ) cos λk (T − τ) dτ = C2k(T ), (23)

T∫

0

u(τ)h(1)
k (τ) dτ = C1k(t1), k = 1, 2, ... ,

where

h
(1)
k (τ) =

{
sin λk(t1 − τ), 0 ≤ τ ≤ t1,
0, t1 < τ ≤ T,
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C1k(T ) =
1
λ2

k

[
λkl

2a
C̃1k(T ) + X1k

]

,

C̃1k(T ) = λkVk(T ) − λkVk(0) cos λkT − V̇k(0) sin λkT,

C2k(T ) =
1
λ2

k

[
λkl

2a
C̃2k(T ) + X2k

]

,

C̃2k(T ) = V̇k(T ) + λkVk(0) sin λkT − V̇k(0) cos λkT, (24)

C1k(t1) =
1
λ2

k

[
λkl

2a
C̃1k(t1) + X

(1)
1k

]

,

C̃1k(t1) = λkVk(t1) − λkVk(0) cos λkt1 − V̇k(0) sin λkt1,

X1k = λkϕT (0) − ψ0(0) sin λkT − λkϕ0(0) cos λkT,

X2k = ψT (0) − ψ0(0) cos λkT + λkϕ0(0) sin λkT,

X
(1)
1k = λkϕ1(0) − ψ0(0) sin λkt1 − λkϕ0(0) cos λkt1.

Thus, the solution of the posed problem of optimal control is reduced to
finding the optimal boundary control u0 (t), 0 ≤ t ≤ T , which for each k = 1, 2, ...
satisfies the integral relations (23) and minimizes functional (6). Since functional
(6) is the square of the norm of a linear normed space, and integral relations
(23), generated by the function u(t), are linear, the problem of determining
the optimal control for each k = 1, 2, ... can be regarded as a moment problem
[1,14,17]. Therefore, a solution can be constructed using an algorithm for solving
the problem of moments.

4 The Problem Solution

In practice, the first n harmonics of the vibrations are chosen and the con-
trol synthesis problem is solved using the methods of control theory for finite-
dimensional systems. Therefore, we construct a solution of problem (6) and (23)
for k = 1, 2, ..., n using the algorithm for solving the problem of moments. To
solve the finite-dimensional (for k = 1, 2, ..., n) moment problem (6) and (23),
following [17], it is necessary to find the values pk, qk, γk, k = 1, ..., n, related
by the condition

n∑

k=1

[pkC1k(T ) + qkC2k(T ) + γkC1k(t1)] = 1, (25)

for which

(ρ0n)2 = min
(25)

T∫

0

h2
1n(τ)dτ, (26)
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where

h1n(τ) =
n∑

k=1

[

pk sin λk (T − τ) + qk cos λk (T − τ) + γkh
(1)
k (τ)

]

. (27)

To determine the values p0k, q0k, γ0
k, k = 1, ..., n minimizing (26), we apply

the Lagrange’s method of undetermined multipliers. For this purpose, we intro-
duce the function

fn =

T∫

0

(h1n(τ))2 dτ + βn

[
n∑

k=1

(pkC1k(T ) + qkC2k(T ) + γkC1k(t1)) − 1

]

,

where βn—undetermined Lagrange multiplier. Based on this method, calculating
the derivatives of the function fn with respect to pk, qk, γk, k = 1, ..., n and
equating them to zero with notation (27), we obtain the following system of
integral relations

n∑

j=1

T∫

0

[pj sin λj (T − τ) + qj cos λj (T − τ)

+ γjh
(1)
j (τ)

]

sin λk (T − τ) dτ = −βn

2 C1k(T ),

n∑

j=1

T∫

0

[pj sin λj (T − τ) + qj cos λj (T − τ)

+ γjh
(1)
j (τ)

]

cos λk (T − τ) dτ = −βn

2 C2k(T ),
(28)

n∑

j=1

T∫

0

[pj sin λj (T − τ) + qj cos λj(T − τ)

+ γjh
(1)
j (τ)

]

h
(1)
k (τ)dτ = −βn

2 C1k(t1), k = 1, ..., n.

Calculating the integrals on the left sides of Eqs. (28), with notation (24)
and adding condition (25) to the resulting equations, we obtain closed system of
3n + 1 linear algebraic equations in as many unknowns pk, qk, γk, k = 1, ..., n
and βn:

n∑

j=1

(ajkpj + bjkqj + cjkγj) = −βn

2
C1k(T ),

n∑

j=1

(djkpj + ejkqj + fjkγj) = −βn

2
C2k(T ), (29)

n∑

j=1

(

a
(1)
jk pj + b

(1)
jk qj + gjkγj

)

= −βn

2
C1k(t1), k = 1, ..., n,

n∑

k=1

[pkC1k(T ) + qkC2k(T ) + γkC1k(t1)] = 1,
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where

ajk =

T∫

0

sin λj (T − τ) sin λk (T − τ) dτ, bjk =

T∫

0

cos λj (T − τ) sin λk (T − τ) dτ,

cjk =

T∫

0

h
(1)
j (τ) sin λk (T − τ) dτ, djk =

T∫

0

sin λj (T − τ) cos λk (T − τ) dτ,

ejk =

T∫

0

cos λj (T − τ) cos λk (T − τ) dτ, fjk =

T∫

0

h
(1)
j (τ) cos λk (T − τ) dτ,

a
(1)
jk =

T∫

0

sin λj (T − τ) h
(1)
k (τ) dτ, b

(1)
jk =

T∫

0

cos λj (T − τ) h
(1)
k (τ) dτ,

gjk =

T∫

0

h
(1)
j (τ) h

(1)
k (τ) dτ.

Let the values p0k, q0k, γ0
k, k = 1, ..., n and β0

n, are the solution to system (29).
Then, according to (27), (26) we have

h0
1n(τ) =

n∑

k=1

[

p0k sin λk (T − τ) + q0k cos λk (T − τ) + γ0
kh

(1)
k (τ)

]

, (30)

where

(ρ0n)2 =

T∫

0

(

h0
1n(τ)

)2
dτ.

Following [17], the optimal boundary controls u0
n (τ), according to formulas

(24) and (30), for any n = 1, 2, ... will be represented as follows:

u0
n(τ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
(ρ0

n)
2

n∑

k=1

[

p0ksinλk(T − τ) + q0kcosλk(T − τ)

+ γ0
ksinλk(t1 − τ)

]

, 0 ≤ τ ≤ t1,

1
(ρ0

n)
2

n∑

k=1

[

p0ksinλk (T − τ) + q0kcosλk(T − τ)
]

, t1 < τ ≤ t2 = T.

(31)
It should be noted that the values of the optimal control u0

n(τ) at the end of the
interval [0, t1] coincide with the values at the beginning of the interval (t1, T ],
and this value has the following form:

u0
n (t1) =

1
(ρ0n)2

n∑

k=1

[

p0ksinλk (T − t1) + q0kcosλk (T − t1)
]

.
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Thus, the constructed optimal boundary controls u0
n(τ), as functions of time,

are continuous on the interval [0, T ].
Now we construct the deflection function corresponding to the optimal con-

trol u0
n(τ). Substituting the obtained expressions for the optimal controls u0

n(τ)
from (31) into (18), and the expression obtain for F 0

k (t) into (22), we obtain the
function V 0

k (t), t ∈ [0, T ], k = 1, ..., n. Further, from formula (17), we have

V 0
n (x, t) =

n∑

k=1

V 0
k (t) sin

πk

l
x, (32)

and from (12) the function W 0
n(x, t) has the form

W 0
n(x, t) =

(

1 − x

l

)

u0
n(t). (33)

Thus, according to (10), for the first n harmonics, the optimal string deflection
function Q0

n(x, t) can be written in the form

Q0
n(x, t) = V 0

n (x, t) + W 0
n(x, t). (34)

5 Constructing the Solution for Case n = 1

Applying the above proposed approach, we construct a boundary control for
n = 1 (i.e., k = 1). Then, according to (29), we have

a11p1 + b11q1 + c11γ1 = −β1

2
C11(T ), d11p1 + e11q1 + f11γ1 = −β1

2
C21(T ), (35)

a
(1)
11 p1 + b

(1)
11 q1 + g11γ1 = −β1

2
C11(t1), p1C11(T ) + q1C21(T ) + γ1C11(t1) = 1,

where

a11 =
T

2
− 1

2λ1
sin λ1T cos λ1T, b11 = d11 =

1
2λ1

sin2 λ1T,

c11 = a
(1)
11 =

t1
2

cos λ1 (T − t1) − 1
2λ1

sin λ1t1 cos λ1T,

e11 =
T

2
+

1
2λ1

sin λ1T cos λ1T, g11 =
t1
2

− 1
2λ1

sin λ1t1 cos λ1t1,

f11 = b
(1)
11 =

1
2λ1

sin λ1t1 sin λ1T − t1
2

sin λ1 (T − t1) , (36)

C11(T ) = l
2aλ1

[

λ1V1(T ) − λ1V1(0) cos λ1T − V̇1(0) sin λ1T
]

+ 1
λ2
1

[λ1ϕT (0) − ψ0(0) sin λ1T − λ1ϕ0(0) cos λ1T ] ,
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C21(T ) = l
2aλ1

[

V̇1(T ) + λ1V1(0) sin λ1T − V̇1(0) cos λ1T
]

+ 1
λ2
1

[ψT (0) − ψ0(0) cos λ1T + λ1ϕ0(0) sin λ1T ] ,

C11(t1) = l
2aλ1

[

λ1V1(t1) − λ1V1(0) cos λ1t1 − V̇1(0) sin λ1t1

]

+ 1
λ2
1

[λ1ϕ1(0) − ψ0(0) sin λ1t1 − λ1ϕ0(0) cos λ1t1] .

Next, we find a solution to system (35), i.e. values p01, q01 , γ0
1 and β0

1 :

p01 = 1
2Δ

((

f2
11 − e11g11

)

C11(T ) + (b11g11 − c11f11) C21(T )
+ (e11c11 − b11f11) C11(t1)) ,

q01 = 1
2Δ

(

(b11g11 − c11f11) C11(T ) +
(

c211 − a11g11
)

C21(T )
+ (a11f11 − b11c11) C11(t1)) ,

(37)

γ0
1 = 1

2Δ ((e11c11 − b11f11) C11(T ) + (a11f11 − b11c11) C21(T )
+

(

b211 − a11e11
)

C11(t1)
)

,

β0
1 =

1
Δ

(

a11g11e11 + 2c11b11f11 − a11f
2
11 − e11c

2
11 − g11b

2
11

)

,

where

Δ = 1
2

[(

f2
11 − e11g11

)

C2
11(T ) +

(

c211 − a11g11
)

C2
21(T )

+
(

b211 − a11e11
)

C2
11(t1)

]

+ (e11c11 − b11f11) C11(t1)C11(T ) + (b11g11 − c11f11) C21(T )C11(T )
+ (a11f11 − b11c11) C11(t1)C21(T ).

Following (31), we obtain

u0
1(τ) =

⎧

⎪⎪⎨

⎪⎪⎩

1
(ρ0

1)
2

(

p01 sin λ1(T − τ) + q01 cos λ1(T − τ)+

+γ0
1 sin λ1(t1 − τ)

)

, 0 ≤ τ ≤ t1,

1

(ρ0
1)

2

(

p01sinλ1 (T − τ) + q01cosλ1 (T − τ)
)

, t1 < τ ≤ t2 = T,

(38)

where
(

ρ01
)2 = T

2

((

q01
)2 +

(

p01
)2

)

+ t1
2

(

(γ0
1)2 + 2γ0

1

[

p01 cos λ1(T − t1)

−q01 sin λ1(T − t1)
])

+ 1
λ1

(

p01q
0
1 sin2 λ1T − (γ0

1)
2

2 sin λ1t1 cos λ1t1

+ γ0
1

(

q01 sin λ1T − p01 cos λ1T
)

sin λ1t1 + (q0
1)

2−(p0
1)

2

2 sin λ1T cos λ1T

)

.

The optimal function of the string deflection Q0
n(x, t) according to formula

(34) will have the form:

Q0
1(x, t) = V 0

1 (x, t) + W 0
1 (x, t) = V 0

1 (t) sin
π

l
x +

(

1 − x

l

)

u0
1(t). (39)
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6 Numerical Experiment

We present the results of a computational experiment for a given initial, inter-
mediate, and final state of the string. For simplicity, we assume that

t1 = 4
l

a
, T = 8

l

a
, λ1 =

aπ

l
,

so that
t1λ1 = 4π, Tλ1 = 8π, λ1(T − t1) = 4π.

Then, according to (36) and (37), we obtain

p01 =
2 (C11(T ) − C11(t1))

δ1
, q01 =

C21(T )
δ1

, γ0
1 =

2 (2C11(t1) − C11(T ))
δ1

,

β0
1 = − 8l

aδ1
, δ1 = 4C2

11 (t1) + C2
21 (T ) − 4C11 (t1) C11 (T ) + 2C2

11 (T ) .

Thus, according to (38), we have

u0
1 (τ) =

{
a
4lC21(T )cosλ1τ − a

2lC11(t1)sinλ1τ, 0 ≤ τ ≤ t1,

a
4lC21(T )cosλ1τ − a

2l (C11(T ) − C11(t1)) sinλ1τ, t1 < τ ≤ t2 = T.
(40)

Let us present the results of a numerical experiment for a given initial, inter-
mediate, and final state of a string, under the assumption that a = 1

4 , l = 1
and compare the behavior of the string deflection function with the given initial
functions. For the chosen values a and l we have

t1 =
4l

a
= 16, T =

8l

a
= 32, λ1 =

π

4
.

Let the following initial state be given for t0 = 0:

ϕ0(x) = −1
2
x3 +

3x2

10
+

1
5
x, ψ0(x) = x2 − x,

for t1 = 16 an intermediate state is given:

ϕ1(x) = x2 − 9x

10
− 1

10
,

and for T = 32 the final state is given:

ϕT (x) = 0, ψT (x) = 0.

The Fourier coefficients for the functions ϕ0 (x), ψ0 (x), ϕ1 (x), ϕT (x), ψT (x)
are equal:

ϕ
(0)
1 =

18
5π3

, ψ
(0)
1 = − 8

π3
, ϕ

(1)
1 = − 8

π3
− 1

5π
, ϕ

(T )
1 = 0, ψ

(T )
1 = 0,
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respectively. The values of these functions at the edges of the string are as
follows:

ϕ1(0) = − 1
10 , ϕ0(0) = ϕT (0) = ψT (0) = ψ0(0) = ϕ0(1)

= ϕ1(1) = ϕT (1) = ψT (1) = ψ0(1) = 0.

From (19)–(21) we have

V1(0) =
18
5π3

, V̇1(0) = − 8
π3

, V1(t1) = − 8
π3

, V1(T ) = 0, V̇1(T ) = 0.

And according to (36) we have

C11(T ) =
l

2a
(V1(T ) − V1(0)) +

ϕT (0) − ϕ0(0)
λ1

= − 36
5π3

,

C21(T ) =
l

2aλ1

(

V̇1(T ) − V̇1(0)
)

+
ψT (0) − ψ0(0)

λ2
1

=
64
π4

, (41)

C11(t1) =
l

2a
(V1(t1) − V1(0)) +

ϕ1(0) − ϕ0(0)
λ1

= −116
5π3

− 2
5π

.

From formulas (40), (41) we have

u0
1 (t) =

{
4

π4 cosπ
4 t + π3+58π

20π4 sinπ
4 t, 0 ≤ t ≤ t1,

4
π4 cosπ

4 t − π3+40π
20π4 sinπ

4 t, t1 < t ≤ t2 = T.
(42)

Graph of function u0
1(t) is shown in Fig. 1. Note that

u0
1 (t1) =

4
π4

, max
0≤ t ≤T

∣
∣u0

1(t)
∣
∣ ≈ 0.1169.

Taking into account (42) for the function V 0
1 (t) we obtain:

V 0
1 (t) =

{(
144−29t
40π3 − t

80π

)

cosπ
4 t +

(
10t−291
10π4 + 1

20π2

)

sinπ
4 t, 0 ≤ t ≤ t1,

(
t−32
2π3 + t−32

80π

)

cosπ
4 t +

(
t−34
π4 − 1

20π2

)

sinπ
4 t, t1 < t ≤ t2 = T.

(43)
Graph of function V 0

1 (t) is illustrated in Fig. 2. According to formula (39), using
(42) and (43) we obtain at t ∈ [0, 16]

Q0
1(x, t) =

((
144−29t
40π3 − t

80π

)

cosπ
4 t +

(
10t−291
10π4 + 1

20π2

)

sinπ
4 t

)

sin πx

+ (1 − x)
(

4
π4 cosπ

4 t + π3+58π
20π4 sinπ

4 t
)

,

at t ∈ (16, 32]

Q0
1(x, t) =

((
t−32
2π3 + t−32

80π

)

cosπ
4 t +

(
t−34
π4 − 1

20π2

)

sinπ
4 t

)

sin πx

+(1 − x)
(

4
π4 cosπ

4 t − π3+40π
20π4 sinπ

4 t
)

.
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Fig. 1. Graph of u0
1(t).

Fig. 2. Graph of V 0
1 (t).

Let us give the form of the functions Q0
1(x, t), Q̇0

1(x, t), at fixed times t = 0,
16, 32:

Q0
1(x, 0) =

18
5π3

sin πx +
4
π4

(1 − x),

∂Q0
1(x, t)
∂t

∣
∣
∣
∣
t=0

= Q̇0
1(x, 0) = − 8

π3
sin πx +

58 + π2

80π2
(1 − x),

Q0
1(x, 16) = −

(
8
π3

+
1
5π

)

sin πx +
4
π4

(1 − x),

Q0
1(x, 32) =

4
π4

(1 − x),
∂Q0

1(x, t)
∂t

∣
∣
∣
∣
t=32

= Q̇0
1(x, 32) = −40 + π2

80π2
(1 − x).

Note that the value of the deflection function Q0
1(x, 16) at the end moment of

the first interval coincides with the value at the beginning of the second interval.

Graphical representations of functions Q0
1(x, 0) and ϕ0(x), Q̇0

1(x, 0) and
ψ0(x), Q0

1(x, 16) and ϕ1(x), Q0
1(x, 32) and Q̇0

1(x, 32) are illustrated in Fig. 3
respectively. Let us introduce the following notation

ε1(x, tj) =
∣
∣Q0

1(x, tj) − ϕj(x)
∣
∣ ,

�
ε 1 (x, tm) =

∣
∣
∣Q̇0

1(x, tj) − ψm(x)
∣
∣
∣ ,

where j = 0, 2, m = 0, 2 (j = m = 2 correspond to the moment in time t2 = T ).
Then

max
0≤x≤1

ε1(x, 0) ≈ 0.0411,

1∫

0

ε1 (x, 0) dx ≈ 0.0293,

max
0≤x≤1

�
ε 1 (x, 0) ≈ 0.0860,

1∫

0

�
ε 1 (x, 0) dx ≈ 0.0454,

max
0≤x≤1

ε1(x, 16) ≈ 0.0411,

1∫

0

ε1 (x, 16) dx ≈ 0.0365,
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Fig. 3. Graphs of functions: a) Q0
1(x, 0) (solid line) and ϕ0(x) (dashed line); b) Q̇0

1(x, 0)
(solid line) and ψ0(x) (dashed line); c) Q0

1(x, 16) (solid line) and ϕ1(x) (dashed line);
d) Q0

1(x, 32) (solid line); e) Q̇0
1(x, 32) (solid line).

max
0≤x≤1

ε1(x, 32) ≈ 0.0411,

1∫

0

ε1 (x, 32) dx ≈ 0.0205,

max
0≤x≤1

�
ε 1 (x, 32) ≈ 0.0632,

1∫

0

�
ε 1 (x, 32) dx ≈ 0.0316.

Thus, the results of the analysis showed that under the influence of the con-
structed control, the behavior of the string deflection function and its derivative
are sufficiently close to the given initial functions.

7 Conclusion

A constructive method is proposed for constructing the optimal boundary con-
trol of vibrations of a homogeneous string by displacement of one end at a
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fixed other end with a given shape of deflection and speed of points at different
intermediate times. The results can be used in designing the optimal boundary
control of the vibration processes. The proposed method can be extended to
other multidimensional vibrating systems.

References

1. Butkovskii, A.G.: Control Methods for Systems with Distributed Parameters.
Nauka, Moscow (1975). (in Russian)

2. Znamenskaya, L.N.: Control of Elastic Vibrations. Fizmatlit, Moscow (2004).
(in Russian)

3. Abdukarimov, M.F.: On optimal boundary control of displacements in the process
of forced vibrationson both ends of a string. Dokl. Akad. Nauk Resp. Tadzhikistan
56(8), 612–618 (2013). (in Russian)

4. Gibkina, N.V., Sidorov, M.V., Stadnikova, A.V.: Optimal boundary control of
vibrations of uniform string. Radioelektronika i informatika Nauchno-tekhnicheskij
zhurnal HNURE 2, 3–11 (2016). (in Russian)

5. Il’in, V.A., Moiseev, E.I.: Optimization of boundary controls of string vibrations.
Russ. Math. Surv. 60(6), 1093–1119 (2005). https://doi.org/10.4213/rm1678

6. Moiseev, E.I., Kholomeeva, A.A.: On an optimal boundary control problem with a
dynamic boundary condition. Differ. Eqn. 49(5), 640–644 (2013). https://doi.org/
10.1134/S0012266113050133

7. Kopets, M.M.: The problem of optimal control of the string vibration process.
In: The Theory of Optimal Solutions, pp. 32–38. V. M. Glushkov Institute of
Cybernetics NAS of Ukraine, Kiev (2014). (in Russian)

8. Barseghyan, V.R.: Optimal control of string vibrations with nonseparate state
function conditions at given intermediate instants. Autom. Remote Control 81(2),
226–235 (2020). https://doi.org/10.1134/S0005117920020034

9. Barseghyan, V.R.: About one problem of optimal control of string oscillations
with non-separated multipoint conditions at intermediate moments of time. In:
Tarasyev, Alexander, Maksimov, Vyacheslav, Filippova, Tatiana (eds.) Stabil-
ity, Control and Differential Games. LNCISP, pp. 13–25. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-42831-0 2

10. Barsegyan, V.R.: The problem of optimal control of string vibrations. Int. Appl.
Mech. 56(4), 471–480 (2020). https://doi.org/10.1007/s10778-020-01030-w

11. Barseghyan, V.R., Saakyan, M.A.: The optimal control of wire vibration in the
states of the given intermediate periods of time. Proc. NAS RA Mech. 61, 52–60
(2008). (in Russian)

12. Barseghyan, V.R., Solodusha, S.V.: The problem of boundary control of string
vibrations by displacement of the left end when the right end is fixed with the
given values of the deflection function at intermediate times. Russian Universities
Reports. Mathematics 25(130), 131–146 (2020). https://doi.org/10.20310/2686-
9667-2020-25-130-131-146. (in Russian, Abstr. in Engl.)

13. Barseghyan, V.R., Movsisyan, L.A.: Optimal control of the vibration of elastic
systems described by the wave equation. Int. Appl. Mech. 48(2), 234–239 (2012).
https://doi.org/10.1007/s10778-012-0519-9

14. Barseghyan, V.R.: Control of Composite Dynamic Systems and Systems with Mul-
tipoint in Termediate Conditions. Nauka, Moscow (2016). (in Russian)

https://doi.org/10.4213/rm1678
https://doi.org/10.1134/S0012266113050133
https://doi.org/10.1134/S0012266113050133
https://doi.org/10.1134/S0005117920020034
https://doi.org/10.1007/978-3-030-42831-0_2
https://doi.org/10.1007/s10778-020-01030-w
https://doi.org/10.20310/2686-9667-2020-25-130-131-146
https://doi.org/10.20310/2686-9667-2020-25-130-131-146
https://doi.org/10.1007/s10778-012-0519-9


Optimal Boundary Control of String Vibrations 313

15. Korzyuk, V.I., Kozlovskaya, I.S.: Two-point boundary problem for string oscillation
equation with given velocity in arbitrary point of time. II. Tr. In-ta mat. NAN
Belarusi 19(1), 62–70 (2011). (in Russian)

16. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Nauka,
Moscow (1977). (in Russian)

17. Krasovsky, N.N.: The Theory of Motion Control. Nauka, Moscow (1968).
(in Russian)



A Discrete Game Problem
with a Non-convex Terminal Set

and a Possible Breakdown in Dynamics

Igor’ V. Izmest’ev1,2(B) and Viktor I. Ukhobotov1,2

1 N.N. Krasovskii Institute of Mathematics and Mechanics, S. Kovalevskaya Street,
16, 620108 Yekaterinburg, Russia

ukh@csu.ru
2 Chelyabinsk State University, Br. Kashirinykh Street, 129,

454001 Chelyabinsk, Russia

Abstract. A one-dimensional discrete game problem with a given end-
point is considered. A terminal set is a union of an infinite number of
disjoint segments of equal length. This terminal set has the meaning of
the neighborhood of the desired state of the system, taking into account
the periodicity. It is believed that one breakdown is possible, which leads
to a change in the dynamics of the controlled process. The breakdown
time is not known in advance. The first player’s control is based on the
principle of minimizing the guaranteed result. The opposite side is the
second player and the moment of the breakdown. In this paper, we have
found necessary and sufficient termination conditions and constructed
the corresponding controls of the players. As an example, we consider
the problem of controlling a rotational mechanical system with distur-
bance and possible breakdown.

Keywords: Game · Control · Breakdown

1 Introduction

This article deals with a discrete conflict-controlled process (see as example
[5, p. 44–63], [4,11]). Discrete control processes arise, as a rule, when solving
applied problems. This is because it is possible to obtain information about the
state of real controlled systems and adjust the controls in them only at discrete
time moments.

A control problem with possible changes in the dynamics as a result of a
breakdown can be analyzed within an approach based on the principle of opti-
mization of the guaranteed result [9]. Such an approach is natural if we know
only a time interval when a breakdown may happen. The paper [10] is among the
first studies devoted to control problems with a breakdown in this formulation.
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In the present paper, continuing the research begun in [7,8], we consider
a discrete game problem, in which the terminal set is the union of an infinite
number of disjoint segments of equal length. This terminal set has the meaning
of ε-neighborhood of the target position of the system, taking into account the
periodicity. The goal of the first player is to lead the phase variable at a given time
to the terminal set. The goal of the second player is the opposite. Also, we assume
the possibility of one breakdown, which results in a change in the dynamics
of the first player. The time of the breakdown is not known in advance. The
control of the first player is constructed based on the principle of minimization
of the guaranteed result. Necessary and sufficient conditions for the possibility
of termination are found.

The obtained results can find application in solving problems of controlling
rotational mechanical systems (see as example [1,2,6–8,12]) with uncontrolled
disturbance, in which the control goal in the original problem acquires the mean-
ing of minimizing the modulus of deviation of the angle from the desired state.

In this paper, as an example of illustrating the theory, we consider the prob-
lem of controlling the rod, which is attached to the rotor of the electric motor.
The control is the value of the voltage applied to the electric motor. The goal of
control is to bring the rod to ε-neighborhood of the target position at a given
time, taking into account the periodicity.

2 Problem Statement

Consider discrete game problem

z(k + 1) = z(k) − a(k)u(k) + b(k)v(k), (1)

where z ∈ IR, a(k) ≥ 0, b(k) ≥ 0, u(k) ∈ S, v(k) ∈ S, k = 0, N − 1. Here, u(k)
is control of the first player, v(k) is control of the second player, S = [−1, 1].

Rule of transition from z(k) to z(k + 1), k = 0, N − 1. At the moment
of time k, knowing the value of z(k), the first player chooses control u(k) ∈ S
and informs the second player about his choice. After that, the second player,
knowing z(k) and the chosen control of the first player u(k), chooses control
v(k) ∈ S. Then, for the selected pair of controls by the formula (1) z(k + 1) is
realized.

The sequences of controls u(k) and v(k), k = 0, N − 1 formed according
to this rule will be called admissible strategies of the first and second players,
respectively.

The numbers α, ε ∈ IR are given such that 0 ≤ 2ε < α. The goal of the first
player is to lead the point z at the time moment N to the terminal set Z:

z(N) ∈
⋃

i∈I

[iα − ε, iα + ε].

Here, I = 0,±1,±2,±3, . . .. The goal of the second player is the opposite.
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3 Necessary and Sufficient Conditions of Termination

Define function

f(k) =
N−1∑

j=k

(a(j) − b(j)) for 0 ≤ k ≤ N − 1 and f(N) = 0. (2)

Denote

q1 = min{k ∈ 0, N : ε + f(j) < α − ε − f(j) for all j ∈ k,N}, (3)

q2 = min{k ∈ 0, N − 1 : 0 ≤ ε + f(j + 1) − b(j) for all j ∈ k,N − 1} (4)

for ε − b(N − 1) ≥ 0 and q2 = N for ε − b(N − 1) < 0.
Define sets W (k) for k ∈ 0, N as follows:

W (k) =

⎧
⎨

⎩

⋃
i∈I [iα − ε − f(k), iα + ε + f(k)] for max(q1, q2) ≤ k ≤ N,

IR for k < q1, q2 < q1,
∅ for k < q2, q1 ≤ q2.

(5)

Here, ∅ denotes empty set.

Theorem 1. Let z(k) ∈ W (k), then there exists a control of the first player
u(k) ∈ S that guarantees the fulfilment of the inclusion z(k + 1) ∈ W (k + 1) for
any control of the second player v(k) ∈ S.

Proof. Case 1. If W (k) �= IR, then condition z(k) ∈ W (k) is equivalent to the
following (see (5)): there exists i∗ ∈ I such that

z(k) ∈ [αi∗ − f(k) − ε, αi∗ + f(k) + ε].

This inclusion can be written as the inequality

|z(k) − αi∗| ≤ ε + f(k). (6)

Using (1), we obtain

z(k + 1) − αi∗ = z(k) − αi∗ − a(k)u(k) + b(k)v(k). (7)

Case 1.1. Let
|z(k) − αi∗| > a(k),

then the first player chooses control

u(k) = sign(z(k) − αi∗). (8)

Substituting control (8) in (7), we obtain

|z(k + 1) − αi∗| ≤ |z(k) − αi∗| − a(k) + b(k) ≤ f(k + 1). (9)

Here, we use formulas (2) and (6).
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From (9) we obtain inclusion

z(k + 1) ∈ [αi∗ − f(k + 1) − ε, αi∗ + f(k + 1) + ε].

Hence z(k + 1) ∈ W (k + 1).
Case 1.2. Let

|z(k) − αi∗| ≤ a(k),

then the first player chooses control

u(k) =
z(k) − αi∗

a(k)
for a(k) > 0. (10)

and any u(k) ∈ S for a(k) = 0.
Substituting control (10) in (7), we obtain

|z(k + 1) − αi∗| ≤ b(k) ≤ ε + f(k + 1).

Last inequality holds because W (k) �= ∅ and W (k) �= IR that imply q2 ≤ k and,
therefore, 0 ≤ ε + f(k + 1) − b(k) (see (4)).

Case 2. Let W (k) = IR and W (k + 1) �= IR. From this and formulas (3) and
(5), we obtain the inequality

ε + f(k) ≥ α − ε − f(k).

Hence
α

2
≤ ε + f(k).

On the other hand, there exists i∗ ∈ I such that

|z(k) − i∗α| ≤ α

2
.

Therefore, the inequality |z(k) − i∗α| ≤ ε + f(k) holds. Thus, we go to the case
1 of the proof.

Case 3. If W (k+1) = IR, then the first player can choose any control u(k) ∈ S.

Theorem 2. Let z(k) /∈ W (k), then for any control of the first player u(k) ∈
S there exists a control of the second player v(k) ∈ S, which guarantees the
fulfilment of the condition z(k + 1) /∈ W (k + 1).

Proof. Case 1. If W (k) �= ∅, then condition z(k) /∈ W (k) is equivalent to the
following: there exists i∗ ∈ I such that

z(k) ∈ (αi∗ + f(k) + ε, α(i∗ + 1) − f(k) − ε).

This inclusion can be written as the inequality

|z(k) − α(i∗ + 0.5)| < 0.5α − ε − f(k). (11)
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Using (1), we obtain

z(k + 1) − α(i∗ + 0.5) = z(k) − α(i∗ + 0.5) − a(k)u(k) + b(k)v(k). (12)

Case 1.1. Let

|z(k) − α(i∗ + 0.5) − a(k)u(k)| > b(k),

then the second player chooses control

v(k) = −sign(z(k) − α(i∗ + 0.5) − a(k)u(k)).

Substituting this control in (12), we obtain

|z(k + 1) − αi∗(i∗ + 0.5)| ≤ |z(k) − α(i∗ + 0.5) − a(k)| − b(k)
≤ |z(k) − α(i∗ + 0.5)| + a(k) − b(k) < 0.5α − ε − f(k + 1). (13)

Here, we use formulas (2) and (11).
From (13) we obtain inclusion

z(k + 1) ∈ (αi∗ + f(k + 1) + ε, α(i∗ + 1) − f(k + 1) − ε).

Hence z(k + 1) /∈ W (k + 1).
Case 1.2. Let

|z(k) − α(i∗ + 0.5) − a(k)u(k)| ≤ b(k),

then the second player chooses control

v(k) = −z(k) − α(i∗ + 0.5) − a(k)u(k)
b(k)

for b(k) > 0

and any v(k) ∈ S for b(k) = 0.
Substituting this control in (12), we obtain

|z(k + 1) − α(i∗ + 0.5)| = 0.

Note that W (k + 1) �= IR, therefore 0 < 0.5α − ε − f(k + 1). Thus, we obtain

|z(k + 1) − α(i∗ + 0.5)| < 0.5α − ε − f(k + 1).

Case 2. Let W (k) = ∅ and W (k + 1) �= ∅. These equality imply that

ε + f(k) < 0.

On the other hand, there exists i∗ ∈ I such that

|z(k) − α(i∗ + 0.5)| ≤ α

2
.

From here we obtain

|z(k) − α(i∗ + 0.5)| <
α

2
− ε − f(k).

Thus, we go to case 1 of the proof.
Case 3. If W (k + 1) = ∅, then the second player can choose any control

v(k) ∈ S.
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4 Problem with an Unknown Moment of Change in the
Dynamics of the First Player

Consider a modification of the original problem in which

a(k, τ) = a1(k) for k < τ, a(k, τ) = 0 for τ ≤ k < τ + Δ, (14)

a(k, τ) = a1(k) for τ + Δ ≤ k, (15)

where a1(k, τ) ≥ 0, k = 0, N − 1.
The reason for this change in dynamics may be a breakdown. The moment

of breakdown τ ∈ 0, N is not known to the first player in advance. It takes
Δ > 0 time (Δ is integer number) to fix the breakdown. According to (14),
for moments τ ≤ k < min(N ; τ + Δ), the right-hand side of the equation of
motion (1) does not depend on the control u(k) of the first player. The first
player receives information about whether a breakdown has occurred or not at
the beginning of each move before choosing his control u(k). If a breakdown
occurs, the first player remembers this moment in time.

Consider the case when the moment of change in the dynamics of the first
player τ is chosen by the second player once before the start of the game process.

Define for τ ∈ 0, N the following function:

f(k, τ) =
N−1∑

j=k

(a(j, τ) − b(j)) for 0 ≤ k ≤ N − 1 and f(N, τ) = 0.

Denote

q1(τ) = min{k ∈ 0, N : ε + f(j, τ) < α − ε − f(j, τ) for all j ∈ k,N},

q2(τ) = min{k ∈ 0, N − 1 : 0 ≤ ε + f(j + 1, τ)) − b(j) for all j ∈ k,N − 1}
for ε − b(N − 1) ≥ 0 and q2(τ) = N for ε − b(N − 1) < 0.

Define sets W (k, τ) for k ∈ 0, N and fixed τ ∈ 0, N as follows:

W (k, τ) =

⎧
⎨

⎩

⋃
i∈I [iα − ε − f(k, τ), iα + ε + f(k, τ)] for max(q1(τ), q2(τ)) ≤ k,

IR for k < q1(τ), q2(τ) < q1(τ),
∅ for k < q2(τ), q1(τ) ≤ q2(τ).

Furthermore, we define sets W ∗(k) for k ∈ 0, N :
W ∗(k) = ∅, if there exists τ ∈ k,N such that k < q2(τ), q1(τ) ≤ q2(τ);
W ∗(k) = IR, if k < q1(τ), q2(τ) < q1(τ) for all τ ∈ k,N ;

W ∗(k) =
⋃

i∈I

[iα − ε − min
τ∈T (k)

f(k, τ), iα + ε + min
τ∈T (k)

f(k, τ)],

if q2(τ) ≤ k or q2(τ) < q1(τ) for all τ ∈ k,N , and, in addition, T (k) �= ∅. Here,

T (k) = {τ ∈ k,N : q1(τ) ≤ k}.
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Theorem 3. Let z(0) ∈ W ∗(0), then there exists an admissible strategy of the
first player that guarantees the fulfillment of the inclusion z(N) ∈ Z for any
breakdown moment τ ∈ 0, N and any admissible strategy of the second player.

Proof. Assume that inclusion z(k) ∈ W ∗(k) holds for some k ∈ 0, N − 1, and
until moment k breakdown has not occurred.

Case 1. Let the breakdown not occur at the moment k.
Case 1.1. Let W ∗(k) �= IR and W ∗(k + 1) �= IR. Then we can choose i∗ ∈ I

such that
|z(k) − αi∗| ≤ ε + min

τ∈T (k)
f(k, τ). (16)

Also, it can be shown that inequality

min
τ∈T (k)

f(k, τ) ≤ min
τ∈T (k+1)

f(k + 1, τ) + a(k) − b(k) (17)

holds.
Case 1.1.1. Let |z(k)−αi∗| > a1(k). Then using (7), (16) and (17), by analogy

with case 1.1 of the proof of Theorem 1, we can proof that the control of the
first player (8) guarantees the inequality

|z(k + 1) − αi∗| ≤ ε + min
τ∈T (k+1)

f(k + 1, τ). (18)

Therefore, z(k + 1) ∈ W ∗(k + 1).
Case 1.1.2. Let |z(k)−αi∗| ≤ a1(k). Then using (7), by analogy with case 1.2

of the proof of Theorem 1, we can show that the control of the first player (10)
(in the definition of which a(k) is replaced by a1(k)) guarantees the inequality

|z(k + 1) − αi∗| ≤ b(k).

It can be shown that if W (k) �= ∅ and W (k) �= IR, then

b(k) ≤ ε + min
τ∈T (k+1)

f(k + 1, τ).

From this, we obtain inequality (18) and, consequently, the required inclusion.
Case 1.2. Let W ∗(k) = IR and W ∗(k + 1) �= IR. These formulas imply that

W ∗(k + 1) =
⋃

i∈I

[αi − ε − min
τ∈T (k+1)

f(k + 1, τ), αi + ε + min
τ∈T (k+1)

f(k + 1, τ)].

There exists τ∗ ∈ T (k + 1) such that

W ∗(k + 1) =
⋃

i∈I

[αi − ε − f(k + 1, τ∗), αi + ε + f(k + 1, τ∗)] = W (k + 1, τ∗).

On the other hand, if W ∗(k) = IR, then W (k, τ∗) = IR. Therefore, we can con-
struct the control of the first player u(k) (see case 1.2 of the proof of Theorem 1),
which guarantees inclusion z(k+1) ∈ W (k+1, τ∗). Therefore z(k+1) ∈ W ∗(k+1)
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Case 1.3. If W ∗(k + 1) = IR, then the first player can choose any control
u(k) ∈ S.

Case 2. Let a breakdown occur at time k. Show that W ∗(k) ⊆ W (k, k).
Indeed, if W (k, k) = IR, then this inclusion is obvious. If W (k, k) �= IR and
W (k, k) �= ∅, then q1(k) ≤ k. Therefore k ∈ T (k) and

min
τ∈T (k)

f(k, τ) ≤ f(k, k).

From this, we obtain the required inclusion.
Thus, z(k) ∈ W (k, k). Next, the first player constructs his controls u(j),

j = k,N − 1 as described in the proof of Theorem 1.

Theorem 4. Let z(0) /∈ W ∗(0), then there exists a breakdown moment τ ∈
0, N such that for any admissible strategy of the first player there exists an
admissible strategy of the second player that guarantees the fulfillment of the
condition z(N) /∈ Z.

Proof. Let the second player takes a moment of breakdown τ∗ ∈ 0, N such that
W ∗(0) = W (0, τ∗). Let us show that such τ∗ moment exists. Indeed, if W ∗(0) = ∅
then there exists τ∗ ∈ 0, N such that 0 < q2(τ∗), q1(τ∗) ≤ q2(τ∗). For this τ∗
W (0, τ∗) = ∅. If W ∗(0) �= ∅ and W ∗(0) �= IR. Then T (0) �= ∅, and there exists
τ∗ ∈ T (0) such that

min
τ∈T (0)

f(0, τ) = f(0, τ∗).

Thus, z(0) /∈ W (0, τ∗). Next, the second player constructs his controls v(k),
k = 0, N − 1 as described in the proof of Theorem 2.

5 Example

The rotor axis of the electric motor passes through the point O perpendicular
to the plane of the figure (see Fig. 1). One end of the rod OA is rigidly attached
to the axis of the rotor so that it can rotate together with the rotor about its
axis in the plane of the figure.

The rotation angle of the rod is denoted by φ. Mass of the rod is equal to m.
The moment of inertia of a system consisting of the rotor and the rod, concerning
the rotor axis, is denoted by J .

Neglecting the inductance in the motor rotor circuit, we assume [2,12] that the
moment of electromagnetic forces applied to the rotor on the side of the stator
is equal to c1ξ − c2φ̇, ci > 0, i = 1, 2. Here, ξ is voltage applied to the motor.
Geometric constraint |ξ| ≤ σ is imposed on ξ, where the number σ > 0 is given.
Product c2φ̇ describes moment of forces, which arise because of counter-emf.

Denote by l distance from point O to the center of mass of the rod and write
down the Lagrange equation, which describes the motion of the system

Jφ̈ = −mgl sinφ − c2φ̇ + c1ξ.
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Fig. 1. The problem of controlling the rod using the rotor of the electric motor.

Angle φ∗ and time moment p > 0 are given. The goal of choice of applied
voltage ξ(t) is to implement the inclusion from a given initial position φ(0)

φ(p) − φ∗ ∈
⋃

i∈I

[2πi − ε, 2πi + ε].

Here, 0 ≤ ε < π.
Following [3], we take nonlinear addend in the Lagrange equation as distur-

bance
η = −mgl

J
sin φ.

It is believed that for distance l we know only the estimate of its value
0 < l ≤ l∗. Then for disturbance constraint

|η| ≤ δ, δ =
mgl∗

J

holds.
Denote

x1 = φ, x2 = φ̇, γ =
c2
J

, β =
c1
J

.

Write down the considered problem as a control system under disturbance
(

ẋ1

ẋ2

)
=

(
0 1
0 −γ

)(
x1

x2

)
+

(
0
β

)
ξ +

(
0
1

)
η, |ξ| ≤ σ, |η| ≤ δ,

in which the terminal condition takes the form

x1(p) − φ∗ ∈
⋃

i∈I

[2πi − ε, 2πi + ε].
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Introduce a variable

z = x1 +
1
γ

(
1 − e(t−p)γ

)
x2 − φ∗.

Then

ż = −βσ

γ

(
1 − e(t−p)γ

)
u+

δ

γ

(
1 − e(t−p)γ

)
v̂, u = − ξ

σ
, v̂ =

η

δ
, |u| ≤ 1, |v̂| ≤ 1.

(19)
Since z(p) = x1(p) − φ∗, then the terminal condition takes the form

z(p) ∈
⋃

i∈I

[2πi − ε, 2πi + ε]. (20)

Let’s fix the sequence of numbers 0, N so that N = p, otherwise we scale the
time.

Define

a1(k) =
βσ

γ

∫ k+1

k

(
1 − e(r−N)γ

)
dr =

βσ

γ

(
1 +

1
γ

(
e(k−N)γ − e(k+1−N)γ

))
,

b(k) =
δ

γ

∫ k+1

k

(
1 − e(r−N)γ

)
dr =

δ

γ

(
1 +

1
γ

(
e(k−N)γ − e(k+1−N)γ

))
.

We assume that controls u can be chosen only piecewise constant:

u(t) = u(k) = const for t ∈ [k, k + 1).

It can be shown that there exists v(k) ∈ S such that

δ

γ

∫ k+1

k

(
1 − e(r−N)γ

)
v̂(r)dr = b(k)v(k).

We assume that at some time moment τ ∈ 0, N a breakdown may occur in
the dynamics as defined in formulas (14), (15).

Thus, taking into account the previous assumptions and notation, the equa-
tion of motion of the system (19) takes the form

z(k + 1) = z(k) − a(k, τ)u(k) + b(k)v(k), u(k) ∈ S, v(k) ∈ S.

Taking disturbance v(k) as the control of the second player, we can construct
the set W ∗(0).

Assume that z(0) ∈ W ∗(0). Let us write down the values of the applied
voltages ξ(k), k = 0, N − 1, which guarantees the fulfilment of the terminal
condition (20).

Case 1. Let a(t, τ) > 0 and the following condition is satisfied: W ∗(k+1) �= IR,
if no breakdown occurred before moment k; W (k + 1, τ) �= IR, if a breakdown
occurs at moment τ ≤ k.
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Case 1.1. Let |z(k) − 2πi∗| > a1(k), then

ξ(k) = −σsign(z(k) − 2πi∗).

Case 1.2. Let |z(k) − 2πi∗| ≤ a1(k), then

ξ(k) = −σ
z(k) − 2πi∗

a1(k)
.

Case 2. Let a(t, τ) = 0 or the following condition is satisfied: W ∗(k+1) = IR,
if no breakdown occurred before moment k; W (k + 1, τ) = IR, if a breakdown
occurs at moment τ ≤ k. Then we can choose any voltage ξ(k) ∈ σS.

6 Conclusion

In this paper, we consider a one-dimensional discrete game of pursuit. The ter-
minal set in this game is the union of an infinite number of disjoint segments.
This terminal set has the meaning of ε–neighborhood of the target position of
the system, taking into account the periodicity. For this problem, we find the
necessary and sufficient conditions for the possibility of termination and con-
structed the corresponding controls of the players. Also, a modification of the
original problem is considered, in which a change (breakdown) occurs in the
dynamics of the first player at an unknown time moment.

As an example, we consider the problem of controlling the rod, which is
attached to the rotor of the electric motor. The theoretical results obtained can
also find application in solving other problems of controlling rotational mechan-
ical systems.

In the future, this problem can be considered in the case, when the moment
of change in dynamics does not depend on the choice of the second player.
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Abstract. We consider a model of renewable resource extraction
described by a differential game with infinite horizon. The environmen-
tal problems are often considered from cooperative prospective as self-
ish behavior of the players may negatively affects not only on other play-
ers’ profits, but also on the environment. The reason is the joint stock of
resource which is influenced by all players. We characterize the Berge and
altruistic equilibrium in a differential game of renewable resource extrac-
tion and compare them with the Nash equilibrium. According to the con-
cept of altruistic equilibrium players can choose the part of the other play-
ers’ payoffs they support and summarize with the part of their own profit.
This equilibrium can be considered as an intermediate between Berge and
Nash equilibria. We make numerical simulations and demonstrate theo-
retical results for the case of n symmetric players.

Keywords: Dynamic games · Berge equilibrium · Altruistic
equilibrium · Renewable resources

1 Introduction

We consider a game-theoretical model of renewable resource extraction played by
many players in continuous time. The players (countries or companies) extract
some resource on a joint territory (harvest fish from the lake, cut the trees
at the forest). Traditionally, this problem is modeled from a selfish behavior
prospective when the players try to maximize their own profits in a competitive
environment. Another approach in the literature is to examine a full coopera-
tive situation when all players form a grand coalition and maximize their joint

The work is supported by the Russian Science Foundation (grant no. 17-11-01079).

c© Springer Nature Switzerland AG 2021
P. Pardalos et al. (Eds.): MOTOR 2021, LNCS 12755, pp. 326–339, 2021.
https://doi.org/10.1007/978-3-030-77876-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77876-7_22&domain=pdf
http://orcid.org/0000-0002-2800-9037
http://orcid.org/0000-0003-3976-7180
https://doi.org/10.1007/978-3-030-77876-7_22


Altruistic-Like Equilibrium in a Game of Renewable Resource Extraction 327

profit. Here we consider an altruistic approach when the players want to apply
“positive” behavior with respect to other players and maximize the part of the
other players’ profits summarized with their own costs. This approach recently
has appeared in the literature on cooperative economic behavior and it can be
compared with the Berge equilibrium.

In 1957, Claude Berge proposed a new concept of an equilibrium, according
to which in a coalition game, members of a coalition can work together to maxi-
mize the profits of the players in other coalition [5]. On the basis of the notion of
equilibrium for a coalitional game introduced by Berge, Zhukovskii introduced
the Berge equilibrium for non-cooperative games [21]. This equilibrium can be
used as an alternative solution when there is no Nash equilibrium (see [7]) or
when there are many of them. In this equilibrium, each player obtains his max-
imal payoff if the situation is favorable for him: by obligation or willingness, the
other players choose strategies favorable for him. The Berge equilibrium concept
formalizes mutual support among players motivated by the altruistic social value
orientation in the games. The relationship between mutually beneficial practices
like creation of teams and Berge equilibria is examined in [8].

In [1–4], Abalo and Kostreva introduce a more general definition of the Berge
equilibrium. They also provide a theorem for existence of this equilibrium [1,2],
based on an earlier Radjef’s theorem [19]. Nessah et al. in [17] describe a simple
game that verifies the assumptions of Abalo and Kostreva’s theorem without
Berge equilibrium in the sense of Zhukovskii, which is a particular case of Berge
equilibrium in the sense of Abalo and Kostreva. Colman et al. prove some basic
results for Berge equilibria and its connection with the Nash equilibria, and
provide a straightforward method for finding the Berge equilibria in n-person
games [7]. They explain how the Berge equilibrium provides a compelling model
of cooperation in social dilemmas. Kudryatsev et al. proposed a concept of a
weak Berge equilibrium (WBE) in a non-cooperative game (N, fi(x), i ∈ N)
according to which a profile of strategies x∗ is the WBE if this profile is the Nash
equilibrium in game (N,

∑
j �=i fj(x), i ∈ N) (see [12]). The Berge equilibrium

concept is described in details in the review of Larbani and Zhukovskii [13] and
the book of Salukvadze and Zhukovskiy [20].

Nevertheless, the Berge equilibrium concept has some drawbacks. One of
these drawbacks is that the Berge equilibrium rarely exists in pure strategies.
Pukacz et al. found an example where in n-person game (n ≥ 3) with a finite
set of strategies, Berge equilibrium may not exist in the class of mixed strate-
gies [18]. Another concern about the Berge equilibrium is that the players need
to cooperate to maximize any player’s payoff. But this assumption takes addi-
tional requirements on the concept which are not considered in the definition of
the Berge equilibrium.

We use the concepts of altruistic equilibrium in a dynamic game of renewable
resource extraction. Cooperation in environmental problems leads to lower values
of pollution stock [11] or higher levels of renewable resource [14]. The cooperation
in non-renewable resource extraction with random initial time is examined in [9].
However, cooperation can be difficult to realize (see [6] for stability of coalitions
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in a pollution game). In the altruistic equilibrium examined in our paper it is
supposed that the players are interested in maximizing the benefits of other
players and minimizing their own costs at the same time. Therefore, the scheme
of altruistic equilibrium is an intermediate one between the Nash equilibrium
(selfish behavior) and Berge equilibrium (full altruistic behavior). The altruistic
equilibrium concept can be applied to other environmental games including the
fish wars ([15], see [10] for a survey on dynamic games in environmental sciences).

In the paper, we characterize the altruistic equilibrium in a differential game
of renewable resource extraction and compare the equilibrium strategies, state
trajectories and player’s payoffs with the Nash and Berge equilibria. As expected,
the altruistic equilibrium lies in between the Nash and Berge equilibria. We
present comparative analysis of all equilibria on the numerical simulations.

The remainder of the paper is organized as follows. Section 2 introduces the
model. In Sect. 2.1 we define the equilibrium concepts including the Nash, Berge
and altruistic equilibria. Section 3 contains the main results about equilibria in
a differential game of renewable resource extraction. In Sect. 4 we represent the
results of numerical simulations, while in Sect. 5 we briefly conclude.

2 The Model

We consider an economy of n players (countries) over an infinite planning horizon
in continuous time. The set of players is N = {1, . . . , n}. We denote by ui(t) ≥ 0
a player i’s extraction level at time t ∈ [0,∞). We assume that the profit of a
player is proportional to the extraction level, that is qiui(t) with qi > 0 for any
i ∈ N . Therefore, the revenue of player i at time t is defined as

Ri(ui(t)) = qiui(t). (1)

We also assume that each player bears the costs extracting the resource, that
is the convex increasing function of strategy:

Ci(ui(t)) = ciu
2
i (t) (2)

with ci > 0.
Denote by u(t) = (u1(t), . . . , un(t)) the vector of players’ strategies at time

t, and by x(t) ∈ X ⊂ R
+ the resource stock at this time. We assume that the

stock growth is affected by the players’ strategies. The evolution of this stock is
defined by the following differential equation:

ẋ(t) = αx(t) −
n∑

i=1

ui(t), (3)

with a given initial stock x(0) = x0, where α ≥ 1 is the natural growth rate.
The instant profit of any player i is given by function

Πi(t, u, x) = Ri(ui(t)) − Ci(ui(t)). (4)
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The player i’s profit in a differential game is

Ji =
∫ ∞

0

e−rtΠi(t, u(t), x(t))dt =
∫ ∞

0

e−rt {Ri(ui(t)) − Ci(ui(t))} dt (5)

=
∫ ∞

0

e−rt
{
qiui(t) − ciu

2
i (t)

}
dt

subject to state dynamics (3) with initial state x0 given.
We consider feedback information structure when any player i’s strategy φi

is a function of time and state, i.e., φi = φi(t, x(t)). We denote the profile of
feedback strategies at time t by φ(t, x) = (φ1(t, x), . . . , φn(t, x)).

2.1 Equilibrium Concepts

We consider the Nash equilibrium as a basic equilibrium concept in the non-
cooperative game [16].

Definition 1. The Nash equilibrium (in feedback strategies) is the profile of
strategies φ∗(t, x) = (φ∗

1(t, x), . . . , φ∗
n(t, x)) the following inequality holds:

Ji(φ∗(·)) ≥ Ji(φi(·), φ∗
−i(·))

for any admissible feedback strategy φi(·) of player i ∈ N . Here φ∗
−i(·) is a vector

of feedback strategies of the players from set N\i.

We also consider two more solution concepts which involve assumptions about
altruistic behavior of the players. First, we define the Berge equilibrium in a
differential game according to which any player is supported by all other players
in the sense that all other players maximize his payoff in a differential game.

Definition 2. The Berge equilibrium (in feedback strategies) is the profile of
strategies φb(t, x) = (φb

1(t, x), . . . , φb
n(t, x)) such that for any i ∈ N and any

φ−i(t, x) the following inequality holds:

Ji(φb(·)) ≥ Ji(φb
i (·), φ−i(·)).

In the Berge equilibrium, the payoff of player i is maximized over the product set
of other players’ strategies1, i.e. the players from the set N\i solve the following
maximization problem:

max
φ−i(·)

Ji(φi(·), φ−i(·))

for any player i.
In the so-called altruistic equilibrium any player maximizes the sum of the

profits of other players with the exception of their costs, summarized with his
personal costs, i.e., he/she maximizes

J ′
i =

∫ ∞

0

e−rt
{ ∑

j∈N,j �=i

Rj(t, u(t), x(t)) − Ci(ui(t))
}

dt. (6)

1 When n = 2, to find the Berge equilibrium one needs to find the Nash equilibrium
in the game when players exchange their payoff functions.
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Definition 3. The altruistic equilibrium (in feedback strategies) is the profile
of strategies φa(t, x) = (φa

1(t, x), . . . , φa
n(t, x)) such that for any i ∈ N and any

feasible feedback strategy φi(t, x) the following inequality holds:

J ′
i(φ

a(·)) ≥ J ′
i(φi(·), φa

−i(·)).
We refer the Berge and altruistic equilibria as altruistic-like equilibria as they

reflect the idea of maximizing the payoffs of other players in different manners.

3 Altruistic-Like Equilibria in a Differential Game of
Renewable Resource Extraction

In this section, we characterize the altruistic and Berge equilibria for the defined
differential game. Then we make a comparison of the equilibrium strategies and
trajectories in these equilibria with the Nash equilibrium ones.

We consider symmetric players, i.e., qi = q, ci = c for any i ∈ N . The
main tool to find the equilibria from Definitions 1–3 in feedback strategies is the
Hamilton-Jacobi-Bellman (HJB) equation. To use HJB equation for the value
function Vi(x, t) we specify the linear-quadratic form of the value function for
any problem:

Vi(x, t) = Vi(x) = Ax2 + Bx + D.

The next two propositions characterize the altruistic and Berge equilibria defined
in Sect. 2.1.

Proposition 1. The altruistic equilibria in dynamic game with symmetric play-
ers and payoff functions (6), and state dynamics given by (3) with initial con-
dition x(0) = x0, is the profile of strategies

ua
i (x(t)) =

2α − r

2n − 1
x − q(n − 1)(2α − r)

2αc(2n − 1)
, i ∈ N,

and the corresponding state trajectory for altruistic equilibrium is

xa(t) =
(

x0 − qn(n − 1)(2α − r)
2αc(α − nr)

)

e− α−nr
2n−1 t +

qn(n − 1)(2α − r)
2αc(α − nr)

. (7)

The value function of any player i ∈ N is

V a
i (x) = − (2α − r)

4α2c(2n − 1)
(2αcx − q(n − 1))2.

Proof. We assume a linear-quadratic form of the value function Vi(x, t) = Ax2+
Bx + D. The HJB equation for player i is

rVi(x, t) = max
ui≥0

⎧
⎨

⎩

∑

j∈N,j �=i

qjuj − ciu
2
i +

∂Vi(x, t)
∂x

(αx −
n∑

j=1

uj)

⎫
⎬

⎭
. (8)
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Taking into account the form of the value function and the symmetric form of
the game, we substitute an expression of the value function into (8) and find the
maximum of RHS in (8) and obtain ui:

ua
i (x) = −A

c
x − B

2c
(9)

for any player i ∈ N .
From Eq. (8) we obtain the system to find coefficients A,B,D in the value

function:

rA =
2n − 1

c
A2 + 2Aα,

rB =
2n − 1

c
AB − (n − 1)q

c
A + αB,

rD =
(2n − 1)B2 − 2(n − 1)qB

4c
.

Simplifying this system we obtain the solution:

A = −c(2α − r)
2n − 1

,

B =
q(n − 1)(2α − r)

(2n − 1)α
,

D = −q2(n − 1)2(2α − r)
4α2c(2n − 1)

.

Notice that A is negative when α > r/2. The equilibrium strategy has the form

ua
i (x) =

2α − r

2n − 1
x − q(n − 1)(2α − r)

2αc(2n − 1)
, i ∈ N, (10)

and the value function is

V a
i (x) = V a(x) = − (2α − r)

4α2c(2n − 1)
(2αcx − q(n − 1))2.

The value function of any player in the altruistic equilibrium is

V a
i (x0) = − (2α − r)

4α2c(2n − 1)
(2αcx0 − q(n − 1))2.

We should notice that the payoff of any player given by function (5) can be
calculated substituting the equilibrium state and strategies into (5).

The corresponding state trajectory can be found by substituting the altruistic
equilibrium strategies given by (9) into state equation (3), which yields

ẋ(t) =
nr − α

2n − 1
x(t) +

qn(n − 1)(2α − r)
2αc(2n − 1)

, x(0) = x0. (11)
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The solution of Eq. (11) is

xa(t) =
(

x0 − qn(n − 1)(2α − r)
2αc(α − nr)

)

e− α−nr
2n−1 t +

qn(n − 1)(2α − r)
2αc(α − nr)

. (12)

This finishes the proof.

Remark 1. The altruistic equilibrium state trajectory is defined by Eq. (12). The
game state dynamics have a globally asymptotically stable steady state if α > nr.
When t → ∞, the state xa tends to the steady state

xa(∞) =
qn(n − 1)(2α − r)

2αc(α − nr)
,

which is an increasing function of n.

Proposition 2. The Berge equilibrium in dynamic game with symmetric play-
ers, payoff functions defined by (5), and state dynamics given by (3) with initial
condition x(0) = x0 is represented by the strategy

ub
i (x, t) = 0, i ∈ N,

and the corresponding state trajectory for the Berge equilibrium is xb(t) = x0e
αt,

t ≥ 0. The Berge equilibrium payoff of any player i ∈ N is Jb
i = 0.

Proof. The HJB equation for player i is

rVi(x, t) = max
uj≥0,j �=i

{

qiui − ciu
2
i +

∂Vi(x, t)
∂x

(αx −
n∑

k=1

uk)

}

. (13)

Taking into account the form of the value function and the symmetric form of the
game, we substitute an expression of the value function Vi(x, t) = Ax2 +Bx+D
into (13) and find the maximum of RHS in (13) and obtain ui:

ub
i (x, t) = 0 (14)

for any player i ∈ N assuming ∂Vi(x,t)
∂x > 0.

From Eq. (13) we obtain that the coefficients A,B,D are all equal to zero.
The corresponding state trajectory is defined as a solution of equation

ẋ(t) = αx(t), x(0) = x0, (15)

which is
xB(t) = x0e

αt. (16)

The payoff of any player in the Berge equilibrium is zero.

In the following proposition we determine the Nash equilibrium strategies
and corresponding state trajectory. We provide this result for further comparison
with the Berge and altruistic equilibria.
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Proposition 3. The Nash equilibrium in the dynamic game with symmetric
players, payoff functions defined by (5), and state dynamics given by (3) with
initial condition x(0) = x0, is the profile of strategies

u∗
i (x) =

2α − r

2n − 1
x − q(α − nr)

2cα(2n − 1)
, i ∈ N,

and the corresponding state trajectory is

x∗(t) =
(
x0 − nq

2cα

)
e− α−nr

2n−1 t +
nq

2cα
.

The Nash equilibrium payoff of any player i ∈ N is equal to

J∗
i = − (2α − r)r(2αcx0 − nq)2 − α2(2n − 1)

4α2cr(2n − 1)
.

The proof is given in AppendixA.

Remark 2. The game state dynamics have a globally asymptotically stable
steady state if α > nr. When t → ∞, the state x∗ tends to a steady state

x∗(∞) =
nq

2cα
.

In the steady state the strategy of any player is

u∗(∞) =
(2α − r)q

2αc(2n − 1)

(
nr(2α − 1) − α

2n − 1
− n + 1

)

.

Remark 3. The following properties immediately follow from Propositions 1–3:

1. The resource stock is larger with the altruistic equilibrium than with the Nash
equilibrium:

xa(t) > x∗(t)

for any t > 0. This can be easily proved considering the difference

xa(t) − x∗(t) =
[
qn(n − 1)(2α − r)

2αc(α − nr)
− nq

2cα

](
1 − e− α−nr

2n−1 t
)

=
qn(n − 1)(α(2n − 3) + r)

2αc(α − nr)

(
1 − e− α−nr

2n−1 t
)

> 0

for any t > 0 and n > 1.
2. At the initial state x(0) = x0, the equilibrium strategy in the Nash equilibrium

is larger than in the altruistic equilibrium which is positive,

u∗
i (0) > ua

i (0) > ub
i (0) = 0

for any player i ∈ N . As the stock in the altruistic equilibrium is larger
than in the Nash one, then for some time instant t > 0 it can appear that
u∗

i (t) < ua
i (t).
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3. The difference in the steady states in the altruistic and Nash equilibria is

xa(t) − x∗(t) =
qn(n − 1)(α(2n − 3) + r)

2αc(α − nr)
,

which is positive and an increasing function of n.

For the players, the Nash equilibrium behavior is preferable in comparison with
the altruistic one if we take into account only their payoffs. But from the Nature’s
prospective, the altruistic equilibrium is better than the Nash equilibrium as the
resource stock is larger in the altruistic equilibrium in comparison with the Nash
equilibrium. We demonstrate the properties of the equilibria and the dependence
of equilibrium strategies, states and profits on the number of players in the next
section on the numerical examples.

4 Numerical Simulations

Example 1. Let the parameters of the game be n = 2, x0 = 4, α = 2.0,
c = 0.65, q = 2.9, r = 0.4. The altruistic and Nash equilibrium state trajectories
are

xa(t) = 6.69231 − 2.69231e−0.4t,

x∗(t) = 2.23077 + 1.76923e−0.4t.

The altruistic and Nash equilibrium strategies are

ua(x) = −1.33846 + 1.2xa(t),
u∗(x) = −0.446154 + 1.2x∗(t).

The equilibrium state trajectory and equilibrium strategies are represented in
Fig. 1. As expected, the resource level in altruistic equilibrium is higher than in
the Nash equilibrium. We can also observe the steady state for both equilibria,
xa(∞) = 6.69231, x∗(∞) = 2.23077.

The equilibrium payoffs of any player in the altruistic and the Nash equilibria
are Ja

i = −6.49038, J∗
i = 5.645 respectively. We should notice that in the Berge

equilibrium, the strategies are zero and the players’ payoffs are also zero. As
expected the real payoff of any player in the altruistic equilibrium is less than
in the Nash equilibrium. The player’s payoff in the altruistic equilibrium is not
equal to the value function given in Proposition 1 because any player maximizes
the value of function (6) but not his own profit.

Example 2. Now we increase the number of players up to n = 3 while other
parameters are kept at the same level. The state trajectories are

xa(t) = 30.1154 − 26.1154e−0.14t,

x∗(t) = 3.34615 + 0.653846e−0.14t.



Altruistic-Like Equilibrium in a Game of Renewable Resource Extraction 335

(a) (b)

Fig. 1. (a) State x(t) and (b) strategy u(t) in the Berge (green), altruistic (blue), Nash
(red) equilibrium in the game from Example 1 when n = 2. (Color figure online)

(a) (b)

Fig. 2. (a) State x(t) and (b) strategy u(t) in the Berge (green), altruistic (blue), Nash
(red) equilibrium in the game from Example 2 when n = 3. (Color figure online)

The altruistic and Nash equilibrium strategies are

ua(x) = −1.60615 + 0.72xa(t),
u∗(x) = 0.178462 + 0.72x∗(t).

The equilibrium state trajectory and equilibrium strategy are represented in
Fig. 2. We can also see the steady state for both equilibria, xa(∞) = 30.1154,
x∗(∞) = 3.34615. In the altruistic equilibrium, the resource stock is larger with
three players than with two. And we should also notice that the equilibrium
stock in the Nash equilibrium with three players is larger with two players.

The equilibrium payoffs of any player in the altruistic and the Nash equilibria
with three players are Ja

i = −49.6495, J∗
i = 7.88646 respectively. It is interesting

that the players in the altruistic equilibrium earns less with the larger number of
players, and in the Nash equilibrium they have larger profits with three players
than with two. The smaller payoffs in the altruistic equilibrium with the larger
number of players can be explained by the larger number of players that each
player supports which leads to higher costs for him.
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If we compare the equilibrium strategies with two and three players, we
conclude that the slope of both u functions becomes less with an increase of the
number of players.

We have the following observations about the equilibrium stock under two
equilibrium concepts: (i) the resource stock is larger with the altruistic equilib-
rium that with the Nash equilibrium; (ii) both equilibria tend to steady states
when the horizon tends to infinity under the conditions given in the proofs of
Propositions 1 and 3.

5 Conclusion

In the paper, we have considered the altruistic-like concepts of the solutions in
dynamic games. The Berge equilibrium is a theoretical implication of the altru-
istic social value orientation, in which a player’s utility function is maximized by
all other players. We also find the altruistic equilibrium when players maximize
the summarized benefits of other players minus his own costs.

From cooperative dynamic game prospective, the Berge equilibrium provides
an attractive model of cooperation in the society. In cooperative dynamic game
theory, one can usually compare cooperative and selfish behavior. In the first
case, the optimal control problem is solved, and in the latter case, the Nash
equilibrium is considered as a basic equilibrium concept. As a rule, in the opti-
mal control problem, the target function is selected as the sum of the utilities of
all players. This causes some criticism, because all players are different and this
criterion is unfair. Generally speaking, cooperation involves some kind of discus-
sion and negotiation. The Berge and other altruistic-like equilibrium concepts
presented in the paper can serve as an argument for negotiations.

We demonstrate the altruistic equilibrium approach on the problem of renew-
able resource extraction when several countries or players exploit a common
resource. The problem is modeled as a differential game with infinite horizon.
We have shown that the altruistic equilibrium is better for the Nature to have
higher resource stock. Thus, when modeling cooperative dynamic games, we can
choose the Berge or other altruistic-like equilibrium as a cooperative solution
and then use regularization to achieve compliance with this solution for all par-
ticipants.

In the future, we plan to consider this approach for the dynamic games in
finite horizon and different games in environmental management sciences. We
can also extend the results for a general form of a linear-quadratic games with
finite and infinite horizons (see also [22]).



Altruistic-Like Equilibrium in a Game of Renewable Resource Extraction 337

Appendix A (Proof of Proposition 3)

Proof. We assume a linear-quadratic form of the value function Vi(x, t) = Ax2+
Bx + D. The HJB equation for player i is

rVi(x, t) = max
ui≥0

⎧
⎨

⎩
qiui − ciu

2
i +

∂Vi(x, t)
∂x

(αx −
n∑

j=1

uj)

⎫
⎬

⎭
. (17)

Taking into account the form of the value function and the symmetric form of
the game, we substitute an expression of the value function into (17) and find
the maximum of RHS in (17) and obtain ui:

u∗
i (x) = −A

c
x +

q − B

2c
(18)

for any player i ∈ N .
From Eq. (17) we obtain the system to find coefficients A,B,D in the value

function:

rA =
2n − 1

c
A2 + 2Aα,

rB =
2n − 1

c
AB − qn

c
A + αB,

rD =
(2n − 1)B2 − 2nqB + q2

4c
.

Simplifying this system we obtain the solution:

A = −c(2α − r)
2n − 1

,

B =
nq(2α − r)
(2n − 1)α

,

D =
q2(α − nr)((2n − 1)α − nr)

4α2cr(2n − 1)
.

Coefficient A is negative if α ≥ r/2.
The equilibrium is defined by strategy

ui(x) =
2α − r

2n − 1
x − q(α − nr)

2cα(2n − 1)
, i = 1, . . . , n, (19)

and the value function is

Vi(x) = V (x) = − (2α − r)r(2αcx − nq)2 − α2(2n − 1)
4α2cr(2n − 1)

.

The corresponding state trajectory can be found by substituting (7) into state
equation (1), which yields

ẋ(t) = −α − nr

2n − 1
x(t) +

nq(α − nr)
2(2n − 1)cα

, x(0) = x0. (20)
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The solution of Eq. (20) is

x(t) =
(
x0 − nq

2cα

)
e− α−nr

2n−1 t +
nq

2cα
. (21)

and the Nash equilibrium player’s payoff is

J(u∗) = V (x0) = − (2α − r)r(2αcx0 − nq)2 − α2(2n − 1)
4α2cr(2n − 1)

, i ∈ N. (22)

This finishes the proof.
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Abstract. We consider a dynamic, discrete-time, game model where the
players use a common resource and have different criteria to optimize.
Moreover, the planning horizon is assumed to be random. To construct a
multicriteria Nash equilibrium the bargaining solution is adopted. To
obtain a multicriteria cooperative equilibrium, a modified bargaining
scheme that guarantees the fulfillment of rationality conditions is applied.
To stabilize the multicriteria cooperative solution a time-consistent pay-
off distribution procedure is constructed. To illustrate the presented
approaches, a dynamic bi-criteria bioresource management problem with
many players and random planning horizon is investigated.

Keywords: Dynamic games · Multicriteria games · Nash bargaining
solution · Random horizon

1 Introduction

Game-theoretic models that take into account the presence of several objective
functions of participants [19] are closer to reality. Players often seek to achieve
several goals simultaneously, which can be incomparable. For example, in biore-
source management problems the players wish to maximize their exploitation
rates and to minimize the harm to the environment. The multicriteria approach
helps to determine an optimal behavior in such situations.

In static multicriteria games, the solution concepts are usually based on the
Pareto set [2,19] or some convolutions of the criteria [1]. Recently, some other
approaches have been suggested to solve multicriteria games (for example, the
ideal equilibrium [21], the E-equilibrium [13]). However, Pareto equilibrium is
the most studied concept in static multicriteria game theory.
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The methods of static multicriteria games are not applicable to the dynamic
statements. A key issue addressed to the research is to find optimal compromise
solutions for game-theoretic models with vector payoffs. Hence, in the series of
papers [14–17], new approaches to obtain players’ optimal behavior in dynamic
multicriteria games were suggested. The noncooperative equilibrium was con-
structed combining the ideas of multi-objective optimization (nadir points [23])
and the classical concept of Nash equilibrium. The Nash bargaining approach
[8,9,20] was applied to determine the cooperative behavior of the players in [15].
To guarantee the rationality of cooperative behavior, a method to construct
cooperative strategies and payoffs that combines compromise programming [23]
and the Nash bargaining scheme was presented in [16]. It was shown [15,17]
that the obtained cooperative behavior in dynamic multicriteria resource man-
agement problems with finite and infinite planning horizons is beneficial for the
players and, that is more important, improves the ecological situation.

As is well known, the Nash bargaining scheme is not dynamically stable
[4]. The concept of time-consistency (dynamic stability) was introduced by Pet-
rosyan L.A. [11]. Petrosyan L.A. and Danilov N.N. [12] have developed the notion
of time-consistent imputation distribution procedure. The designing of dynami-
cally stable payoff distribution procedures for dynamic games with random hori-
zon has been studied in a series of papers [3,10,22]. Different payoff distribu-
tion procedures, including the time-consistent ones, for multicriteria multistage
games were presented in [5–7]. To stabilize the cooperative solution in dynamic
multicriteria games with finite horizon the idea of payoff distribution procedure
was applied in [16,17]. Moreover, in [17], the conditions for rational behavior
were defined for dynamic multicriteria games.

The main purpose of this paper is to adopt the presented approaches to the
multicriteria dynamic game with random horizon. This extension of the model
is most appropriate to describe reality as external random factors can cause a
game breach. For example, in management problems, negative factors include
an economic crisis, variations in the rate of inflation, international economic
and political situations. In bioresource exploitation process, the firms can go
bankrupt, their exploitation tools can be damaged, etc. All these processes can
possibly interrupt the game process, and the solution concept should capture
the possibility of the players’ leaving the game.

We consider a dynamic, discrete-time, game model where the players use a
common resource and have different criteria to optimize. Moreover, the planning
horizon is assumed to be random. To construct a multicriteria Nash equilibrium
the bargaining solution is adopted [14]. To design a multicriteria cooperative
equilibrium, a modified bargaining scheme [16] that guarantees the fulfillment
of rationality conditions is applied. To stabilize the multicriteria cooperative
solution a time-consistent payoff distribution procedure [17] is constructed. To
illustrate the presented approaches, a dynamic bi-criteria bioresource manage-
ment problem with many players and random planning horizon is investigated.
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Further exposition has the following structure. Section 2 describes the non-
cooperative and cooperative solution concepts for a multicriteria dynamic game
with many players and random horizon. The time-consistent payoff distri-
bution procedure is presented in Sect. 2.3. A bi-criteria discrete-time game-
theoretic bioresource management model (harvesting problem) is treated in
Sect. 3. Finally, Sect. 4 provides the basic results and their discussion.

2 Dynamic Multicriteria Game with Random Horizon

Consider a multicriteria dynamic game in discrete time. Let N = {1, . . . , n} play-
ers exploit a common resource and each of them wishes to optimize k different
criteria. The state dynamics is in the form

xt+1 = f(xt, u1t, . . . , unt) , x1 = x , (1)

where xt ≥ 0 is the resource size at time t ≥ 0, f(xt, u1t, . . . , unt) denotes the
natural growth function, and uit ≥ 0 gives the exploitation rate of player i at
time t, i ∈ N .

By assumption, the players stop exploitation at random time step as external
stochastic processes can cause a game breach. In [18] two-players bi-criteria
dynamic game with different random planning horizons was investigated. Here,
the planning horizon is assumed to be identical for all the players. For example,
participants possess similar economic or political conditions and their random
changes simultaneously stop the game for all of the players.

Suppose that the players exploit a common resource during T steps. Here T
represents a discrete random variable taking values {1, . . . , m} with the corre-
sponding probabilities {θ1, . . . , θm}.

Each player has k goals to optimize. The vector payoffs of the players are
determined via the expectation operator:

Ji =

⎛
⎜⎜⎜⎜⎝

J1
i = E

{ T∑
t=1

δtg1i (xt, u1t, . . . , unt)
}

. . .

Jk
i = E

{ T∑
t=1

δtgk
i (xt, u1t, . . . , unt)

}

⎞
⎟⎟⎟⎟⎠

, i ∈ N , (2)

where gj
i (u1t, . . . , unt) ≥ 0 gives the instantaneous utility, i ∈ N , j = 1, . . . , k,

δ ∈ (0, 1) denotes the discount factor.
Assuming that the distribution function of the planning horizon T is known

to the players we can rewrite the payoff function in the following form:
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Ji =

⎛
⎜⎜⎜⎜⎝

J1
i =

m∑
T=1

θT

T∑
t=1

δtg1i (xt, u1t, . . . , unt)

. . .

Jk
i =

m∑
T=1

θT

T∑
t=1

δtgk
i (xt, u1t, . . . , unt)

⎞
⎟⎟⎟⎟⎠

, i ∈ N . (3)

2.1 Multicriteria Nash Equilibrium

We design the noncooperative behavior in dynamic multicriteria game applying
the bargaining products and the classical concept of Nash equilibrium [14,15].
Therefore, we begin with the construction of guaranteed payoffs which play the
role of status quo points.

The possible concepts to determine the guaranteed payoffs for the game with
two players were presented in [14]. As it was demonstrated, the variant where
the guaranteed payoffs are obtained as the Nash equilibrium solutions is the best
for the state of the exploited system and profitable for the players. Therefore,
for the multicriteria game with random horizon we adopt this concept. Namely,

G1
1, . . . , G

1
n are the Nash equilibrium payoffs in the dynamic game with ran-

dom horizon 〈x,N, {Ui}n
i=1, {J1

i }n
i=1〉,

. . .
Gk

1 , . . . , G
k
n are the Nash equilibrium payoffs in the dynamic game with ran-

dom horizon 〈x,N, {Ui}n
i=1, {Jk

i }n
i=1〉,

where the state dynamics is in the form (1).
To construct multicriteria payoff functions, we adopt the Nash products

where the guaranteed payoffs play the role of the status quo points:

H1(u1t, . . . , unt) = (J1
1 (xt, u1t, . . . , unt) − G1

1) · . . . · (Jk
1 (xt, u1t, . . . , unt) − Gk

1) ,

. . .

Hn(u1t, . . . , unt) = (J1
n(xt, u1t, . . . , unt) − G1

n) · . . . · (Jk
n(xt, u1t, . . . , unt) − Gk

n) .

The multicriteria Nash equilibrium strategies are constructed in the feedback
form uN

it = uN
it (xt), i ∈ N .

Definition 1. A strategy profile uN
t = uN

t (xt) = (uN
1t, . . . , u

N
nt) is called a mul-

ticriteria Nash equilibrium [14] of the problem (1), (3) if

Hi(uN
t ) ≥ Hi(uN

1t, . . . , u
N
i−1 t, uit, u

N
i+1 t, . . . , u

N
nt) ∀uit ∈ Ui , i ∈ N . (4)

For the duration of the game, the expected payoffs of the players have the
form

V j
i (1, x) =

m∑
T=1

θT

T∑
t=1

δtgj
i (xt, u1t, . . . , unt), i ∈ N, j = 1, . . . , k. (5)
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Further the payoffs obtained by the players as the game reaches step τ ,
τ = 1, . . . ,m, are considered. Note that the probabilities that a player continues
exploitation for τ, τ + 1, . . . , m steps are

θτ
m∑

l=τ

θl

,
θτ+1
m∑

l=τ

θl

, . . . ,
θm
m∑

l=τ

θl

.

Hence, as step τ occurs, the expected payoffs V j
i (τ, xτ ), i ∈ N , j = 1, . . . , k,

of the players take the form

V j
i (τ, xτ ) =

m∑
T=τ

θT
m∑

l=τ

θl

T∑
t=τ

δtgj
i (xt, u1t, . . . , unt) . (6)

Next, we obtain a relationship between the expected payoffs when steps τ
and τ + 1 occur in the game, V j

i (τ, xτ ) and V j
i (τ + 1, xτ+1), respectively. Let us

rewrite the expected payoff of player i on j’s criterion (6) as the game reaches
step τ :

V j
i (τ, xτ ) =

θτ
m∑

l=τ

θl

δτgj
i (xτ , uτ ) +

m∑
T=τ+1

θT
m∑

l=τ

θl

T∑
t=τ

δtgj
i (xt, ut)

=
θτ

m∑
l=τ

θl

δτgj
i (xτ , uτ ) +

m∑
T=τ+1

θT
m∑

l=τ

θl

[ T∑
t=τ+1

δtgj
i (xt, ut) + δτgj

i (xτ , uτ )
]

= δτgj
i (xτ , uτ ) +

m∑
T=τ+1

θT
m∑

l=τ

θl

T∑
t=τ+1

δtgj
i (xt, ut)

= δτgj
i (xτ , uτ ) +

m∑
T=τ+1

θT
m∑

l=τ+1

θl

m∑
l=τ+1

θl

m∑
l=τ

θl

T∑
t=τ+1

δtgj
i (xt, ut)

= δτgj
i (xτ , uτ ) + Θτ+1

τ V j
i (τ + 1, xτ+1), (7)

where

Θτ+1
τ =

m∑
l=τ+1

θl

m∑
l=τ

θl

. (8)
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According to Definition 1 to construct the multicriteria Nash equilibrium
strategies it is required to solve the problem (4), hence

(V 1N
1 (1, x) − G1

1) · . . . · (V kN
1 (1, x) − Gk

1)

=
( m∑

T=1

θT

T∑
t=1

δtg11(x
N
t , uN

1t, . . . , u
N
nt) − G1

1

)
· . . . ·

·
( m∑

T=1

θT

T∑
t=1

δtgk
1 (xN

t , uN
1t, . . . , u

N
nt) − Gk

1

)

= max
u11,...,u1m

{
(V 1N

−1 (1, x) − G1
1) · . . . · (V kN

−1 (1, x) − Gk
1)

}
,

. . .

(V 1N
n (1, x) − G1

n) · . . . · (V kN
n (1, x) − Gk

n)

=
( m∑

T=1

θT

T∑
t=1

δtg1n(xN
t , uN

1t, . . . , u
N
nt) − G1

n

)
· . . . ·

·
( m∑

T=1

θT

T∑
t=1

δtgk
n(xN

t , uN
1t, . . . , u

N
nt) − Gk

n

)

= max
un1,...,unm

{
(V 1N

−n (1, x) − G1
n) · . . . · (V kN

−n (1, x) − Gk
n)

}
,

where V jN
−i (τ, xτ ) take the form

V jN
−i (τ, xτ ) =

m∑
T=τ

θT
m∑

l=τ

θl

T∑
t=τ

δtgj
i (xt, u

N
1t, . . . , u

N
i−1t, uit, u

N
i+1t, . . . , u

N
nt)

and satisfy the relations (7), Gj
i are the guaranteed payoff points, i ∈ N , j =

1, . . . , k, noncooperative trajectory xN
t is defined by (1) where uit = uN

it , i ∈ N .

2.2 Multicriteria Cooperative Equilibrium

The multicriteria cooperative equilibrium was obtained as a solution of the Nash
bargaining scheme with the multicriteria Nash equilibrium payoffs acting as the
status quo points in [15]. Namely, in accordance with this approach, the product
of the distances from the sum of the players’ payoffs to the sum of the noncoop-
erative payoffs for all the criteria was applied to determine the cooperative ones.
As the presented scheme does not guarantee the fulfillment of the individual
rationality conditions that is the key point to maintain cooperative behavior a
new approach to determine cooperative strategies in dynamic multicriteria game
with asymmetric players was presented in [16]. This solution concept guarantees
the rationality of cooperative behavior as the cooperative payoffs of the players
are greater than or equal to the multicriteria Nash payoffs. Moreover, this app-
roach is similar to the classical definition of cooperative behavior as the players
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seek to maximize the sum of their individual payoffs. The goal of each player is
to maximize the distance to the noncooperative payoffs, and under cooperation
the players prefer to do it jointly.

More specifically, the cooperative strategies and payoffs of the players are
determined from the modified bargaining solution that combines compromise
programming [23] and the Nash bargaining scheme [8,9]. The status quo points
are the noncooperative payoffs obtained by the players using the multicriteria
Nash equilibrium strategies uN

t :

JN
i =

⎛
⎜⎜⎜⎜⎝

J1N
i = E

{ T∑
t=1

δtg1i (xN
t , uN

t )
}

. . .

JkN
i = E

{ T∑
t=1

δtgk
i (xN

t , uN
t )

}

⎞
⎟⎟⎟⎟⎠

, i ∈ N . (9)

The cooperative strategies in the feedback form uc
it = uc

it(xt), i ∈ N , and
payoffs are obtained from the following problem:

(V 1c
1 (1, x) − J1N

1 ) · . . . · (V kc
1 (1, x) − JkN

1 ) + . . . +
+(V 1c

n (1, x) − J1N
n ) · . . . · (V kc

n (1, x) − JkN
n )

= (E
{ T∑

t=1

δtg11(x
c
t , u

c
1t, . . . , u

c
nt)

}
− J1N

1 ) · . . . ·

·(E
{ T∑

t=1

δtgk
1 (xc

t , u
c
1t, . . . , u

c
nt)

}
− JkN

1 ) + . . .

+(E
{ T∑

t=1

δtg1n(xc
t , u

c
1t, . . . , u

c
nt)

}
−J1N

n ) · . . . ·

·(E
{ T∑

t=1

δtgk
n(xc

t , u
c
1t, . . . , u

c
nt)

}
− JkN

n )

= max
u1t,...,unt

{
(V 1

1 (1, x) − J1N
1 ) · . . . · (V k

1 (1, x) − JkN
1 ) + . . . +

+(V 1
n (1, x) − J1N

n ) · . . . · (V k
n (1, x) − JkN

n )
}

, (10)

where JjN
i are the noncooperative payoffs given by (9), V j

i (1, x) have the forms
(6) and satisfy the relations (7), i ∈ N , j = 1, . . . , k, cooperative trajectory xc

t

is defined by (1) where uit = uc
it, i ∈ N .

Definition 2. A strategy profile uc
t = uc

t(xt) = (uc
1t, . . . , u

c
nt) is a rational mul-

ticriteria cooperative equilibrium [16] of problem (1), (3) if it is the solution of
problem (10).
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2.3 Time-Consistent Payoff Distribution Procedure

The players’ expected cooperative payoffs for the duration of the game can be
calculated as

Jc
i (1, x) =

⎛
⎜⎜⎜⎜⎝

J1c
i (1, x) = E

{ T∑
t=1

δtg1i (x, uc
t(x))

}

. . .

Jkc
i (1, x) = E

{ T∑
t=1

δtgk
i (x, uc

t(x))
}

⎞
⎟⎟⎟⎟⎠

, i ∈ N , (11)

where uc
t = (uc

1t, . . . , u
c
nt) are the cooperative strategies obtained from (10).

Similarly we determine the cooperative payoffs Jc
i (t, xc

t), i = 1, . . . , n, for
every subgame started from the state xc

t at a time t.
To stabilize the cooperative solution in multicriteria dynamic game with

random horizon we adopt the time-consistent payoff distribution procedure
[5,11,12,17]. The main idea of this scheme is to distribute the cooperative gain
along the game path. Dynamic stability guarantees that the players following
the cooperative trajectory are guided by the same optimal behavior determina-
tion approach (10) at each current time and hence do not have any incentives
to deviate from the cooperation agreement.

The payment to player i, i ∈ N , in all criteria at a time t is defined from the
following definitions.

Definition 3. A vector

β(t, xt) = (β1(t, xt), . . . , βn(t, xt)) ,

where

βi(t, xt) =

⎛
⎝

β1
i (t, xt)
. . .

βk
i (t, xt)

⎞
⎠ , i ∈ N ,

is a payoff distribution procedure (PDP) for the dynamic multicriteria game with
random horizon (1), (3), if

Jjc
i (1, x) = E

{ T∑
t=1

δtβj
i (t, xt)

}
, i ∈ N, j = 1, . . . , k . (12)

Definition 4. A vector β(t, xt) = (β1(t, xt), . . . , βn(t, xt)) is a time-consistent
[11,12] PDP for dynamic multicriteria game with random horizon (1), (3), if
for every t ≥ 0

Jjc
i (1, x) =

t∑
l=1

δlβj
i (l, xl) + Jjc

i (t + 1, xt+1) , i ∈ N , j = 1, . . . , k . (13)
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Theorem 1. A vector β(t, xt) = (β1(t, xt), . . . , βn(t, xt)), where

βi(t, xt) =
1
δt

[Jc
i (t, xt) − Θt+1

t Jc
i (t + 1, xt+1)] , i ∈ N , (14)

is a time-consistent payoff distribution procedure for dynamic multicriteria game
with random horizon (1), (3).

Proof. Conditions (12) of Definition 3 are satisfied:

E
{ T∑

t=1

δtβj
i (t, xt)

}
=

m∑
T=1

θT

m∑
t=1

δt 1
δt

[Jjc
i (t, xt) − Θt+1

t Jjc
i (t + 1, xt+1)]

=
m∑

t=1

θT Jjc
i (1, x) − Jjc

i (2, x2)Θ2
1

m∑
T=1

θT + Jjc
i (2, x2)

m∑
T=2

θT − . . . −

−Jjc
i (m,xm)Θm

m−1

m∑
T=m−1

θT + Jjc
i (m,xm)θm − Θm+1

m Jjc
i (m + 1, xm+1)θm

= Jjc
i (1, x)

as Jjc
i (m + 1, xm+1) = 0, i ∈ N , j = 1, . . . , k.
Conditions (13) follow from the equalities

Jjc
i (1, x) − Jjc

i (t + 1, xt+1) = E
{ T∑

l=1

δlβj
i (l, xl)

}
−E

{ T∑
l=t+1

δlβj
i (l, xl)

}

= E
{ t∑

l=1

δlβj
i (l, xl)

}
=

t∑
l=1

δlβj
i (l, xl) , i ∈ N, j = 1, . . . , k .

As the non-negativity of PDP (14) is not guaranteed, the approaches to
overcome this drawback such as [3,10] are planned to be applied in the future
research.

Next, we consider a dynamic bi-criteria model with many players and random
planning horizon related with the bioresource management problem (harvesting)
to illustrate the suggested concepts.

3 Dynamic Bi-criteria Resource Management Problem
with Random Horizon

Consider a bi-criteria discrete-time dynamic resource management model. Let n
players (countries or firms) exploit a bioresource during T steps. T is a discrete
random variable taking values {1, . . . , m} with the corresponding probabilities
{θ1, . . . , θm}.

The bioresource evolves according to the equation

xt+1 = εxt − u1t − . . . − unt , x1 = x , (15)
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where xt ≥ 0 is the resource size at a time t ≥ 0, ε ≥ 1 denotes the natural birth
rate, and uit = uit(xt) ≥ 0 specifies the exploitation strategy of player i at a
time t ≥ 0, i ∈ N = {1, . . . , n}.

Each player seeks to achieve two goals: to maximize the revenue from resource
sales and to minimize the exploitation costs. Assume that the players have differ-
ent market prices but the same costs that depend quadratically on the exploita-
tion rate. The vector payoffs of the players take the form

J1 =

⎛
⎜⎜⎝

J1
1 = E

{ T∑
t=1

δtp1u1t(xt)
}

J2
1 = −E

{ m∑
t=1

δtcu2
1t(xt)

}

⎞
⎟⎟⎠ , . . . , Jn =

⎛
⎜⎝

J1
n = E

{ m∑
t=1

δtpnunt(xt)
}

J2
n = −E

{ m∑
t=1

δtcu2
nt(xt)

}

⎞
⎟⎠ ,

(16)
where pi ≥ 0 is the market price of the resource for player i, i ∈ N , c ≥ 0
indicates the catching cost, and δ ∈ (0, 1) denotes the discount factor.

3.1 Multicriteria Nash Equilibrium

First, we construct the guaranteed payoffs adopting one of the modifications
from [14]. The guaranteed payoff points G1

1, . . . , G
1
n will be defined as the Nash

equilibrium in the game 〈x,N, {Ui}n
i=1, {J1

i }n
i=1〉.

Let Vi(τ, x) be a value function for player i, i ∈ N . Assume that the value
functions have the linear forms Vi(τ, x) = Aτ

i x + Bτ
i , i ∈ N , similarly to the

relations (7) these functions satisfy

Aτ
i x + Bτ

i = max
uiτ

{δτpiuiτ + Θτ+1
τ (Aτ

i (εx − u1τ − . . . − unτ ) + Bτ
i )} .

Searching for the linear strategies, we obtain that the Nash equilibrium
strategies coincide and take the form

u1τ = . . . = unτ = γτxτ =
Θτ+1

τ ε − 1
(n − 1)Θτ+1

τ

xτ ,

and the guaranteed payoff points have the form

G1
1 = p1Ax , . . . , G1

n = pnAx, (17)

where A = δm−1

Θm
m−1

.
Similarly, determining the Nash equilibrium in the game with the second

criteria of all players 〈x,N, {Ui}n
i=1, {J2

i }n
i=1〉, yields the equilibrium strategies

u1τ = . . . = unτ =
εΘτ+1

τ G

δτ − nΘτ+1
τ G

xτ ,

and n more guaranteed payoffs points

G2
1 = . . . = G2

n = cGx2 , (18)
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where G = − δm−1

2n2Θm
m−1

[2n − εΘm
m−1 + ε(Θm

m−1(ε
2Θm

m−1 + 4n(n − 1)))1/2].

According to Definition 1, to determine the multicriteria Nash equilibrium
of the game (15), (16) the following problem has to be solved:

p1c(E
{ T∑

t=1

δtu1t(xt)
}

− Ax)(−E
{ T∑

t=1

δtu2
1t(xt)

}
− Gx2) → max

u11,...,u1m

,

. . .

pnc(E
{ T∑

t=1

δtunt(xt)
}

− Ax)(−E
{ T∑

t=1

δtu2
nt(xt)

}
− Gx2) → max

un1,...,unm

. (19)

Proposition 1. The multicriteria Nash equilibrium payoffs in the problem (15),
(16) have the form

V 1N
i (m − k, x) = pi(δm−kγN

m−k + (ε − nγN
m−k)BN

m−k+1)x

= piṼ
1N (m − k, x)x , i ∈ N ,

V 2N
i (m − k, x) = −c(δm−k(γN

m−k)2 + (ε − nγN
m−k)2DN

m−k+1)x
2

= −cṼ 2N (m − k, x)x2 , i ∈ N , k = 1, . . . ,m − 1 , (20)

where Ṽ 1N
i (τ, x) = 1

pi
V 1N

i (τ, x), Ṽ 2N
i (τ, x) = 1

cV 1N
i (τ, x),

BN
m−k+1 =

m−1∑
j=m−k+1

δjγN
j

ε − nγN
j

j∏
l=m−k+1

Θl
l−1(ε − nγN

l ) + A

m−1∏
l=m−k

Θl+1
l (ε − γN

l ) ,

DN
m−k+1 = −

m−1∑
j=m−k+1

δj(γN
j )2

(ε − nγN
j )2

j∏
l=m−k+1

Θl
l−1(ε − nγN

l )2

+G
m−1∏

l=m−k

Θl+1
1 (ε − nγN

l )2 .

The multicriteria Nash equilibrium strategies take the form

uN
1m−k = . . . = uN

nm−k = γN
m−kxm−k , k = 2, . . . , m − 1 ,

and are related by

P (γN
m−1)

m−k∏
j=2

(ε − nγN
m−j)

=
γN

m−k − δΘm−k+1
m−k γN

m−k+1(ε − nγN
m−k)(ε − (n + 1)γN

m−k+1)

1 − δΘm−k+1
m−k (ε − (n + 1)γN

m−k+1)
, (21)

where

P (γN
m−1) =

δm−1γN
m−1 + Θm

m−1G(ε − nγN
m−1)

δm−1 − Θm
m−1A

.
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The strategy of the players when the penult step occurs (the quantity γN
m−1)

is evaluated through the following equation

(Ṽ 2N (1, x) − G) = P (γN
m−1)(Ṽ

1N (1, x) − A) .

Proof. Let us denote Ṽ 1
−i(τ, x) = 1

pi
V 1

−i(τ, x), Ṽ 2
−i(τ, x) = 1

cV 1
−i(τ, x).

The analysis begins with step m occurs in the game. The players have zero
payoffs at the next step m+1. Hence, the optimal Nash strategies coincide with
the guaranteed ones, and the payoffs have the form

Ṽ 1N
i (m,x) = Ax , Ṽ 2N

i (m,x) = Gx2 , i ∈ N .

Now, suppose that the game reaches step m − 1. The problem (19) takes the
form

(Ṽ 1N
−1 (m − 1, x) − Ax)(Ṽ 2N

−1 (m − 1, x) − Gx2) → max
u1m−1

,

. . .

(Ṽ 1N
−n (m − 1, x) − Ax)(Ṽ 2N

−n (m − 1, x) − Gx2) → max
unm−1

,

where

Ṽ 1N
−i (m − 1, x) = δm−1uim−1

+Θm
m−1Ṽ

1N
i (m, εx−uN

1m−1−. . .−uN
i−1m−1−uim−1−uN

i+1m−1−. . .−uN
nm−1) ,

Ṽ 2N
−i (m − 1, x) = −δm−1(uim−1)2

+Θm
m−1Ṽ

2N
i (m, εx−uN

1m−1−. . .−uN
i−1m−1−uim−1−uN

i+1m−1−. . .−uN
nm−1) .

As usual, we seek for the strategies of the linear form uN
im−1 = γN

im−1x, i ∈ N .
Notice that all the strategies coincide γN

1m−1 = . . . = γN
nm−1 = γN

m−1 and can be
obtained from the first-order condition

(δm−1 − AΘm
m−1)[−δm−1(γN

m−1)
2 + Θm

m−1G(ε − nγN
m−1) − G]

= 2(δm−1γN
m−1 − Θm

m−1G(ε − nγN
m−1))[δ

m−1γN
m−1 + Θm

m−1A(ε − nγN
m−1) − A] .

Now, we study the situation when step m − 2 occurs in the game. Then the
problem (19) takes the form

(Ṽ 1N
−1 (m − 2, x) − Ax)(Ṽ 2N

−1 (m − 2, x) − Gx2) → max
u1m−1,u1m−2

,

. . .

(Ṽ 1N
−n (m − 2, x) − Ax)(Ṽ 2N

−n (m − 2, x) − Gx2) → max
u1m−1,unm−2

,

where

Ṽ 1N
−i (m − 2, x) = δm−2uim−2

+Θm−1
m−2Ṽ

1N
−i (m−1, εx−uN

1m−2−. . .−uN
i−1m−2−uim−2−uN

i+1m−2−. . .−uN
nm−2),

Ṽ 2N
−i (m − 2, x) = −δm−2(uim−2)2

+Θm−1
m−2Ṽ

2N
−i (m−1, εx−uN

1m−2−. . .−uN
i−1m−2−uim−2−uN

i+1m−2−. . .−uN
nm−2).
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Searching for the linear strategies uN
it = γN

it x, i ∈ N , t = m − 2,m − 1, again
notice that all the strategies coincide γN

1t = . . . = γN
nt = γN

t , t = m − 2,m − 1.
From the first-order optimality conditions we obtain the following relation-

ship between the equilibrium strategies of the players when the game reaches
steps m − 2 and m − 1:

(ε − nγN
m−2)(1 − δΘm−1

m−2(ε − (n + 1)γN
m−1))[δ

m−1γN
m−1 + Θm

m−1G(ε − nγN
m−1)]

= (γN
m−2 − δΘm−1

m−2γ
N
m−1(ε − nγN

m−2)(ε − (n + 1)γN
m−1))[δ

m−1 − Θm
m−1A] .

By continuing the process until the game reaches step k, we obtain the payoffs
(20) and the relations to determine the Nash equilibrium strategies of the form
(21).

3.2 Cooperative Equilibrium

To construct the cooperative payoffs and strategies the modified bargaining
scheme [16] will be applied. First, we have to determine the noncooperative
payoffs gained by the players using the multicriteria Nash strategies. Then, we
construct the sum of the Nash products with the noncooperative payoffs of play-
ers acting as the status quo points.

In view of Proposition 1, the noncooperative payoffs have the form

J1N
i (x) = piṼ

1N (1, x)x ,

J2N
i (x) = −cṼ 2N (1, x)x2 , i ∈ N .

According to Definition 2, to construct the multicriteria cooperative equilib-
rium the following problem has to be solved:

p1(E
{ T∑

t=1

δtu1t(xt)
}

− Mx)(−E
{ T∑

t=1

δtu2
1t(xt)

}
+ Kx2) + . . .

+pn(E
{ T∑

t=1

δtunt(xt)
}

− Mx)(−E
{ m∑

t=1

δtu2
nt(xt)

}
+ Kx2)→ max

u1t,...,unt

, (22)

where M = Ṽ 1N (1, x), K = Ṽ 2N (1, x).
Considering the process starting when step m occurs in the game till the game

reaches step k and seeking the strategies in linear form, we construct cooperative
behavior.

Proposition 2. The multicriteria cooperative equilibrium payoffs in the problem
(15), (16) have the form

V 1c
i (m − k, x)

= pi(δm−kγc
im−k+(ε−γc

1m−k−. . .−γc
nm−k)Bc

im−k+1)x, k = 1, . . . , m − 1,

V 2c
i (m − k, x)

= −c(δm−k(γc
im−k)2+(ε−γc

1m−k−. . .−γc
nm−k)2Dc

im−k+1)x
2, i ∈ N,(23)
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where

Bc
im−k+1=

m−1∑
j=m−k+1

δjγc
ij

ε − γc
1j − . . . − γc

nj

j∏
l=m−k+1

Θl
l−1(ε − γc

1l − . . . − γc
nl)

+M

m−1∏
l=m−k

Θl+1
l (ε − γc

1l − . . . − γc
nl) ,

Dc
im−k+1=−

m−1∑
j=m−k+1

δj(γc
ij)

2

(ε−γc
1j −. . .−γc

nj)2

j∏
l=m−k+1

Θl
l−1(ε − γc

1l − . . . − γc
nl)

2

+K

m−1∏
l=m−k

Θl+1
l (ε − γc

1l − . . . − γc
nl)

2 .

The multicriteria cooperative equilibrium strategies take the form

uc
im−k = γc

im−kx , i ∈ N , k = 2, . . . ,m − 1 ,

and are related by

ε − γc
1m−k − . . . − γc

nm−k =
γc

im−k − γc
jm−k

γc
im−k+1 − γc

jm−k+1

, i, j = 1, . . . , n, i �= j . (24)

The strategies of the players when the penult step occurs (the quantities
γc

im−1) are evaluated through the following system of equations

pi(V 2c
i (1, x) − M) − pj(V 2c

j (1, x) − M) =

= 2[piγim−1(V 1c
i (1, x) + K) − pjγjm−1(V 1c

j (1, x) + K)] , i, j = 1, . . . , n, i �= j .

Proof. Similar to noncooperative case.

Proposition 3. The time-consistent payoff distribution procedure in the prob-
lem (15), (16) takes the form

βi(t, xt) =
(

β1
i (t, xt)

β2
i (t, xt)

)
, i ∈ N ,
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where

β1
i (t, xt) = piγ

c
im−txt +

pi

δt
xt ·

·[
m−2∑

j=m−t

δj+1γc
ij+1(ε − γc

1j − . . . − γc
nj − 1)

ε − γc
1j − . . . − γc

nj

j∏
l=m−t

Θl+1
l (ε − γc

1l − . . . − γc
nl)

+M
m−2∏

l=m−t

Θl+1
l (ε − γc

1l − . . . − γc
nl)(ε − γc

1m−1 − . . . − γc
nm−1 − 1)] ,

β2
i (t, x) = −c(γc

im−t)
2x2

t − c

δt
x2

t ·

·[
m−2∑

j=m−t

δj+1γc
ij+1((ε − γc

1j − . . . − γc
nj)

2 − 1)
(ε − γc

1j − . . . − γc
nj)2

j∏
l=m−t

Θl+1
l (ε − γc

1l − . . . − γc
nl)

2

+K

m−2∏
l=m−t

Θl+1
l (ε − γc

1l − . . . − γc
nl)

2((ε − γc
1m−1 − . . . − γc

nm−1)
2 − 1)] .

Proof. Follows from Theorem 1 and the form of cooperative payoffs given in
Proposition 2.

4 Conclusions

The multicriteria dynamic games with random planning horizon has been investi-
gated. First, the multicriteria Nash equilibrium has been obtained. Second, the
multicriteria cooperative strategies and payoffs have been constructed via the
modified bargaining scheme. We have adopted the concept of dynamic stability
for multicriteria dynamic games with random horizon and have constructed the
time-consistent payoff distribution procedure.

To illustrate the presented approaches, we have studied a bi-criteria discrete-
time bioresource management problem with random planning horizon. Multicri-
teria Nash and cooperative equilibria strategies have been derived analytically
in linear forms. As cooperative behavior improves the ecological situation, the
dynamic stability concept has been applied to stabilize the cooperative agree-
ment. The time-consistent payoff distribution procedure has been also derived
analytically.

The results presented in this paper can be applied in biological, economic
and other game-theoretic models with vector payoffs.
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Abstract. The paper deals with an optimal control problem for the
simplest version of a “reduced” linear impulsive continuity equation.
The latter is introduced in our recent papers as a model of dynami-
cal ensembles enduring jumps, or impulsive ODEs having a probabilistic
uncertainty in the initial data. The model, addressed in the manuscript,
is, in fact, equivalent to the mentioned impulsive one, while it is stated
within the usual, continuous setup. The price for this reduction is the
appearance of an integral constraint on control, which makes the prob-
lem non-standard.

The main focus of our present study is on the theory of so-called feed-
back necessary optimality conditions, which are one of the recent achieve-
ments in the optimal control theory of ODEs. The paradigmatic version
of such a condition, called the feedback maximum (or minimum) princi-
ple, is formulated with the use of standard constructions of the classical
Pontryagin’s Maximum Principle but is shown to strengthen the latter (in
particular, for different pathological cases). One of the main advantages
of the feedback maximum principle is due to its natural algorithmic prop-
erty, which enables using it as an iterative numeric algorithm.

The paper presents a version of the feedback maximum principle for
linear transport equations with integrally bounded controls.
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1 Introduction

In the paper, we consider a specific optimal control problem for a simple dis-
tributed system, namely, a linear transport equation on the space of probability
measures. The problem (P ) writes:
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Minimize I[u] =
∫
Rn

�(x) dμT (x) (1)

subject to

∂tμt + div (vu μt) = 0, μ0 = ϑ, (2)

vu
.= (1 − |u|) f + g u, |u| ≤ 1, (3)

and an extra constraint on the control of the “energy” type:

∫ T

0

|u(t)|dt = M. (4)

Here, � : R
n → R is a given cost function; ϑ is a fixed probability measure

on the vector space R
n; f, g : R

n → R
n are given vector fields; M,T > 0 are

constants, and M < T is the “total energy” (resource) of the controller; input
functions u = u(·) are (Borel) measurable maps [0, T ] �→ [−1, 1]; div .= ∇· stands
for the divergence operator, while “·” denotes the scalar product, and ∇ .= ∂

∂x .
Equation (2) is understood in the distributional sense [1].

Systems of type (2) are familiar in mathematical modeling of multi-agent
dynamic systems. They typically arise as a way of macroscopic representation
(“mean field approximation”) of infinite dynamic ensembles of indistinguishable
microscopic objects (called agents, or particles). Such a lifting to the macro-
scopic level is achieved by considering, instead of the set of individual states
xi(t), their distribution over R

n at time t, described by a measure μt from the
space of probabilities P(Rn). The bibliography on such systems and associated
control problems is rich enough, including different aspects of modeling, func-
tional properties of measure-valued solutions, and control-theoretical issues like
necessary optimality conditions, dynamic programming, and viability. To men-
tion a few, [2–4,10–12].

Let us stress that control signals u in problem (P ) are functions of time
variable only, and do not depend on the spatial position x ∈ R

n. On the language
of multi-agent systems, this is to say that (P ) is a problem of ensemble control.
Such problems appear in several applications to mathematical biology, physics,
and control engineering, see, e.g. [12]. As a paradigmatic example, one can recall
the problem of focusing a beam of charged particles in a common magnetic field
regarded as control.

Notice that (2), (4) can be equivalently represented in the form of a coupled
system, where PDE (2) is paired with the simplest scalar ODE subject to a
terminal constraint :

{
∂tμt + div (vu μt) = 0, μ0 = ϑ,
ẏ = |u|, y(0) = 0, y(T ) = M.

(5)
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The presence of such a terminal condition (constraint (4)) brings a principal
feature of the addressed model by establishing its connection with impulsive
continuity equations of the sort [14,15,19–21].

The result, we are going to obtain, is trivially extended to systems (2) driven
by vector fields of a more general structure:

vu = (1 − |u|) f0 +
m∑

k=1

fk uk, (6)

where
u = (u1, . . . , um) ∈ R

m,

is subject to the same constraint (4) (| · | is already a norm in R
m), and

fk : R
n → R

n, k = 0,m,

are given functions of sufficient regularity. The restriction to the case of scalar
u is not crucial, but it essentially simplifies the presentation.

As a final introductory remark, we recall that systems of type (2), (4), (6)
are derived from linear impulsive continuity equations via the so-called discon-
tinuous time reparameterization. We skip the details and refer to [19], where
the mentioned relationship with the impulsive control framework is accurately
discussed.

1.1 Notations

Given a metric space X, we denote by C([0, T ];X) the space of continuous
mappings [0, T ] �→ X, and endow this space with the usual sup-norm.

By L1([0, T ];Rn) and L∞([0, T ];Rn) we mean the Lebesgue quotient spaces
of Lebesgue integrable and bounded measurable functions [0, T ] �→ R

n,
respectively.

P = P(Rn) stands for the set of probability measures on R
n, and P1 =

P1(Rn) denotes the subset of P composed by measures having finite first
moment, i.e., such that

m1(μ) .=
∫
Rn

|η| dμ(η) < ∞.

Recall that P1 turns into a complete separable metric space as soon as it is
endowed with the 1-Kantorovich (Wasserstein) distance

W1(μ, ν) .= sup
{∫

Rn

ϕd(ν−μ)
∣∣∣∣ ϕ ∈ C(Rn;R),

Lip(ϕ) ≤ 1

}
,

(here, Lip is the minimal Lipschitz constant of a function).
Given μ ∈ P and a Borel measurable map F : R

n �→ R
n, we use the standard

notation F�μ for the push-forward μ ◦ F−1 of μ through F .
Ln designates the n-dimensional Lebesgue measure.

In what follows, we agree to abbreviate
∫
Rn

=
∫

and drop the arguments of

integrands when it is possible, to shorten the notation.
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1.2 Regularity Hypotheses

We accept the standard regularity assumption

(H1): There exists L > 0 such that, for all x, y ∈ R
n, it holds

∣∣f(x) − f(y)
∣∣ + |g(x) − g(y)| ≤ L |x − y|.

The space L∞([0, T ]; [−1, 1]) is assumed to be endowed with the weak* topol-
ogy σ(L∞, L1).

2 Pontryagin’s Maximum Principle

Recall the formulation of Pontryagin’s Maximum Principle (PMP) for problem
(P ), proved in [14]:

Proposition 1. Assume that hypothesis (H1) holds together with

(H2): f and g are continuously differentiable in x.

Let a control process σ̄ = (μ̄, ū) be optimal for (P ). Then there exists λ ∈ R such
that the following maximum condition holds for L1-a.a. t ∈ [0, T ]:

(1 − |ū(t)|) (
f(t) + λ

)
+ g(t) ū(t) = max

{
f(t) + λ, |g(t)|}, (7)

where
f(t) .=

∫
∇p̄t · f dμ̄t, g(t) .=

∫
∇p̄t · g dμ̄t, (8)

and p̄ = p̄t(x) is a solution of the dual transport equation

∂t pt + vū · ∇pt = 0, pT = −�. (9)

From (7) we see that an optimal control provides an interplay of the two
alternatives, f + λ and |g|. In terms of impulsive control, the domination of the
first option implies that the regular dynamics under the vector field f should be
switched on, while another option says that it is time to jump along the vector
field g.

Note that PMP is not a sufficient optimality condition for problem (P ) even
if constraint (4) is dropped, since the problem is non-linear (in fact, it is a sort of
“bi-linear” problem: the cost functional is linear in μ, and the dynamics contains
a product uμ).

3 Feedback Maximum Principle

Feedback necessary optimality conditions, developed for continuous and impulsive
ODEs in a series of papers [5–7,9,16,18], bring a sort of compromise between the
constructive feature of PMP and the global nature of the Dynamic Programming.
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The idea is roughly to recruit the maximum condition (7) for the identifica-
tion of feedback controls with an “extremal property”, which should be related
with a given reference process (use the local information), and, at the same time,
produce relatively strong, “nonlocal” variation of the reference control.

Though, in general, this idea relies on rather subtle arguments involving
weakly monotone functions—solutions of a Hamilton-Jacobi inequality,—in our
particular case, the intuition is pretty simple.

3.1 “Exact” Increment Formula of the Cost Functional: An
Informal Discussion

In this section, we propose a hint as why the above mentioned idea “to use
feedback controls of the PMP extremal structure” would work for problem (P ).

To simplify the arguments, we assume that ϑ = ρ0 Ln, where ρ0 : R
n → R is

a compactly supported density function. Hence, for any t and u, the respective
solution t �→ μt[u] of (2) takes the form μt = ρtLn with certain ρt : R

n → R,
where all ρt, t ∈ [0, T ], are supported on a common compact subset of Rn [15,
Lemma A.2]. Note that for the case of general measure the desired increment
formula is obtained in [14].

Consider problem (P ) in its equivalent form (1), (3), (5). As it is standard for
optimal control problems with terminal constraints, we introduce the respective
Lagrangian

L
.= I + λ(y(T ) − M).

Given a couple of admissible (satisfying all the conditions (3), (5)) triples
σ̄ = (μ̄, ȳ, ū) and σ = (μ, y, u), define by p̄ the solution of the dual PDE (9)
under the control ū, and consider the increment

ΔuL
.= L[u] − L[ū] = ΔuI + λΔuy(T ).

Clearly,
ΔuL = I[u] − I[ū] .= ΔuI,

as soon as ū and u satisfy (4).
Now, we shall derive an exact representation of ΔuL (and therefore, for ΔuI)

by the standard trick. Rewrite

ΔuL
.=

∫
� dΔuμT + λΔuy(T ) = −

∫
p̄T ΔuρT dx − λ

∫ T

0

Δ|u|dt.

Adding the term 0 ≡
∫

p̄0 Δuρ0 dx, we can formally write (believing that the

derivatives below make sense):

ΔuL + λ

∫ T

0

Δ|u|dt = −
∫

dx

∫ T

0

∂t (p̄t Δuρt) dt
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= −
∫

dx

∫ T

0

(∂tp̄t Δuρt + p̄t ∂tΔuρt) dt

=
∫

dx

∫ T

0

(∇p̄t · vū Δuρt + p̄t div Δu(vρt)
)
dt.

Note that ∫
dx

∫ T

0

p̄t div Δu(vρt) dt = −
∫ T

0

dt

∫
∇p̄t · Δu(vρt) dx,

and we come to

ΔuL =
∫ T

0

(
λΔ(1 − |u(t)|) +

∫
∇p̄t · (

vu(t) − vū(t)

)
dμt

)
dt.

In view of the structure of the vector field vu, the latter expression rewrites:

ΔuL = −
∫ T

0

ΔuHλ (μt, p̄t, u(t)) dt, (10)

where we denote

Hλ(μ, p, u) = (1 − |u|) (
f[μ, p] + λ

)
+ u g[μ, p],

and
f[μ, p] .=

∫
∇p · f dμ, g[μ, p] .=

∫
∇p · g dμ, (11)

Based on the increment formula (10) and aimed at the “improvement” of the
reference control ū,

ΔuI < 0,

we shall decide to take the “new” control u in the ensemble-feedback form

ut[μ] ∈ Uλ
t (μ) .= Wλ(μ, p̄t), (12)

defined via the contraction of the extremal multivalued map

Wλ(μ, p) .= arg max
|u|≤1

Hλ(μ, p, u) (13)

to the reference dual trajectory p̄. The structure of our control system allows us
to find Wλ(μ, p) explicitly:

Wλ(μ, p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0}, if |g[μ, p]| − f[μ, p] < λ,
sign g[μ], if |g[μ, p]| − f[μ, p] > λ,

[0, 1], if |g[μ, p]| − f[μ, p] = λ > 0,

[−1, 0], if |g[μ, p]| + f[μ, p] = −λ > 0,

[−1, 1], otherwise.

If a realization of a feedback control ut[μ] ∈ Uλ
t (μ) led to a “usual” solution

t �→ μt such that the composition t �→ ut[μt] were an admissible open-loop
control (to meet the integral constraint (4) we find an appropriate λ), then we
could have a reason to expect the desired improvement. However, operating with
(12) requires an accurate approach: the situation here is the same as in the case
of discontinuous ODEs.
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3.2 Ensemble-Feedback Controls and Sampling Solutions

The notion of feedback control we use is adopted from the finite-dimensional
control theory. By a feedback control we mean an arbitrary single-valued map

u : [0, T ] × P → [−1, 1].

Its realization as a control signal of system (2) is given by the usual Krasovskii-
Subbotin sampling scheme (Euler polygons), based on a step-by-step integration
of the continuity equation with a piecewise constant control, computed over the
data from the previous step.

Sampling Scheme: Given u, and a partition π = {tk}K
k=0 of the interval [0, T ],

t0 = 0, tk−1 < tk, k = 1,K, tK = T,

the polygonal arc
t �→ μπ

t [u] ∈ P
is calculated via step-by-step integration of (2) on intervals [tk−1, tk], as k = 1,K:

μπ
t [u] = μk

t , t ∈ [tk−1, tk), (14)

where
μ0 ≡ ϑ, μk .= μ

[
utk−1 [μ

k−1
tk

]
]
(tk−1, μ

k−1
tk

), (15)

and μ[u](τ, ϑ) denotes the distributional solution of the continuity equation
under control u, starting from the position μτ = ϑ.

Together with the polygonal arc, we define the piecewise constant control

uπ .= utk−1 [μ
k−1] on [tk−1, tk), k = 1,K. (16)

Finally, by a sampling solution (Krasovskii-Subbotin constructive motion),
we mean any partial limit in C([0, T ];P1) of a sequence of the above polygons
as

diam(π) .=
K

max
k=1

(tk − tk−1) → 0.

The set of all sampling solutions produced by feedback u is denoted by SKS(u).

Proposition 2. Assume that (H1) hold. Then SKS(u) 
= ∅, for any u ∈ U.

Proof of this assertion is a simple consequence of the Arzela-Ascoli theorem.
Indeed, by hypothesis (H1), polygonal arcs μπ

t ∈ C([0, T ];P1) are uniformly
Lipschitz continuous with a constant depending only on C, T , and m1(ϑ) [13,
Lemma 3], and therefore the family of polygons is equicontinuous and uniformly
bounded by standard arguments based on the Gronwall’s inequality.

Along with sampling solutions, we shall consider classical feedback solu-
tions such that the following coincidence holds for some open-loop control
u ∈ L∞([0, T ]; [−1, 1]) satisfying (3), (4):

u(t) = v(t) L1-a.e. on [0, T ],
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where
v(t) = ut

[
μ[u]

] L1-a.e. on [0, T ],

and μ[u] denotes the solution of (2) under control input u.
In general, for an arbitrary u, the existence of a classical feedback solution

is not guaranteed (not to mention that its definition is not constructive). Such
solutions come on scene out of the PMP extremality. We denote the (possibly
empty) set of classical u-solutions by SC(u) and abbreviate

S(u) .= SKS(u) ∪ SC(u).

3.3 Integral Constraint on Control

Now we shall discuss, how to take care of the energy bound (4) during the
sampling scheme. Again, we shall regard system (2)–(4) as a coupled system
(5). As it is clear, sampling solutions, produced by feedback controls w ∈ Ũλ

t

generically violate the terminal condition y(T ) = M . Here, we can adapt the
idea from [16] and provide a “correction” of extremal multifunction Ũλ

t using a
simple description of the controllability set of the state y to the point (T,M):

Ũλ
t (μ, y) =

⎧⎨
⎩

Sign g(x, p̄t), y ≤ t − T + M,
{0}, y ≥ M,
Uλ

t (μ), otherwise.
(17)

As one can easily check, realization of feedback controls w ∈ Ũλ
t (μ, y) via the

sampling scheme results in open loop controls uπ with the property:
∣∣∣∣∣
∫ T

0

|uπ|dt − M

∣∣∣∣∣ → 0 as diam(π) → 0.

Note that the use of corrected extremal multifunction is possible thanks to the
simplest form of the ODE in (5). In general, tackling terminal constraints in
FMP turns to be a much more delicate problem, see e.g. [8].

3.4 Formulation of the Feedback Maximum Principle

Given a reference process
σ̄ = (μ̄, ȳ, ū),

introduce the following accessory problem (APσ̄):
∫

�dξT → inf, ξ ∈
⋃
λ∈R

⋃
w∈ ˜Uλ

t

S(w).

Note that the accessory problem is associated with a reference process, whose
optimality is to be checked.

The feedback maximum principle (FMP) is formulated as follows.
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Theorem 1. Assume that (H1) holds, and let σ̄ = (μ̄, ȳ, ū) be optimal for (P ).
Then σ̄ is also optimal for (APσ̄).

Proof of this assertion is simple and almost literally repeats [16, Theorem 3.1]; it
is based on the two obvious facts: 1) optimality (and therefore, PMP extremality)
of σ for (P ) implies its admissibility in (APσ̄), and 2) any sampling solution is
uniformly approximated by usual solutions corresponding to piecewise constant
controls, and therefore, to find w ∈ Ũλ

t and ξ ∈ SKS(w) with
∫

�dμ̄T >

∫
�dξT

would imply ∫
�dμ̄T >

∫
�dξπ

T

for certain polygonal approximation ξπ of ξ, which should contradict the opti-
mality of σ̄.

As in the case of ODEs, the constructive property of FMP comes out of
its counter-positive version, i.e., its interpretation as a sufficient condition for
non-optimality. In other words, one can use Theorem 1 to discard non-optimal
processes (in particular, local PMP extremals) via the qualification condition:

∫
�dμ̄T ≤

∫
�dξT ∀ξ ∈ S(w) ∀w ∈ Ũλ

t , λ ∈ R. (18)

For practical implementation of this condition, the interval of variation of the
parameter λ can be specified, based on a priori estimates of the initial data,
similarly to [16, §4].

In the following simple example, PMP does not distinguish the worst process
(giving the absolute maximum) from the best one (corresponding to the absolute
minimum), while FMP does.

3.5 Example: Discarding a PMP Extremal by FMP

Let n = 2, �(a, b) = b,

f(a, b) ≡ 0, g(a, b) =
(

1
−a

)
,

and
T = 3, ϑ(a, b) = δ0(a) ⊗ η(b),

where η ∈ P(R) is an arbitrary measure. Take

ū(t) =

⎧⎨
⎩

0, t ∈ [0, 1),
1, t ∈ [1, 2),

−1, t ∈ [2, 3].
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The respective curve μ̄ and dual state p̄ can be constructed via the flow t �→
Φt(a, b) of the characteristic ODE

ẋ = gū.

The reference state is defined as

μ̄t = (Φt)�ϑ, t ∈ [0, T ],

where

Φt(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

(a, b), t ∈ [0, 1),(
a − 1 + t, b + a − 1

2 + (1 − a) t − t2

2

)
, t ∈ [1, 2),(

a + 3 − t, b − 3a − 9
2 + (a + 3) t − t2

2

)
, t ∈ [2, 3],

and the dual one takes the form

−p̄t(a, b) = −�
(
Φ−1

t (a, b)
)

=

⎧⎨
⎩

b, t ∈ [0, 1),
b + (t − 1)a − 1

2 + t − t2

2 , t ∈ [1, 2),
b + (3 − t)a − 9

2 + 3t − t2

2 , t ∈ [2, 3],

in which construction we use the inverse of Φt:

Φ−1
t (a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a, b), t ∈ [0, 1),(
a + 1 − t, b + (t − 1)a − 1

2 + t − t2

2

)
, t ∈ [1, 2),(

a − 3 + t, b + (3 − t)a − 9
2 + 3t − t2

2

)
, t ∈ [2, 3].

The Hamiltonian boils down to

Hλ(μ, p, u) = (1 − |u|)λ + u

∫
∇p · g dμ,

and, observed that

∇p̄t(a, b) =

⎧⎨
⎩

(0,−1), t ∈ [0, 1),
(1 − t,−1), t ∈ [1, 2),
(t − 3,−1), t ∈ [2, 3],

we have
Hλ(μ, p̄t, u) = (1 − |u|)λ + uht[μ],

where

ht[μ] =

⎧⎨
⎩

ξ[μ], t ∈ [0, 1),
1 − t + ξ[μ], t ∈ [1, 2),
t − 3 + ξ[μ], t ∈ [2, 3],

and
ξ[μ] .=

∫
adμ(a, b).
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Finally, the multivalued map Uλ
t (μ) .= Wλ(μ, p̄t) is specified as

Uλ
t (μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0}, if |ht[μ]| < λ,
sign ht[μ], if |ht[μ]| > λ,

[0, 1], if ht[μ] = λ > 0,

[−1, 0], if ht[μ] = λ < 0,

[−1, 1], otherwise.

Now, noted that

ξ[ϑ] .=
∫

adϑ =
∫

adδ0(a) = 0,

and

ξ[μ̄t]
.=

∫
ad(Φt)�ϑ =

∫
Φ1

t dϑ =

⎧⎨
⎩

0, t ∈ [0, 1),
t − 1, t ∈ [1, 2),
3 − t, t ∈ [2, 3]

(Φ1
t denotes the first component of Φt), it is easy to check the inclusion

ū(t) ∈ Uλ̄
t (μ̄) = [−1, 1] with λ̄ = 0,

which means that σ̄ = (μ̄, ū) is a PMP extremal.
Now we are going to apply Theorem 1. Let λ = λ̄ = 0. The structure of the

extremal map Uλ
t (μ) leaves us an option to choose any signal u ∈ [−1, 1] as a

matter of the initial guess. To our preference, take u = ū = 0.
Sampling along [0, 1) leaves this strategy intact, and the respective solution

stays in rest:
μt ≡ ϑ, Uλ

t (μt) = [−1, 1], t ∈ [0, 1).

At t = 1, we switch the control signal to another admissible option u = 1.
The resulted vector field starts to shift the mass distributed on the axis a = 0
to the right half plane (a > 0), and sampling over the interval [1, 3] gives:

μt = (Ψt)�ϑ, Ψt(a, b) =
(

a − 1 + t, b + a − 1
2

+ (1 − a)t − t2/2
)

, t ∈ [1, 3],

ξ[μt] =
{

0, t ∈ [0, 1),
t − 1, t ∈ [1, 3], ⇒ ht[μt] =

{
0, t ∈ [0, 2),
2t − 4 ≥ 0, t ∈ [2, 3],

and the inclusion

u(t) = u[μt] ∈ Uλ
t (μt) =

{
[−1, 1], t ∈ [0, 2),
{1}, t ∈ [2, 3],

does hold, indeed.
It remains to notice that∫

b dη(b) − 2 =
∫

b d(Ψ3)�ϑ(a, b) .= I[u] < I[ū] =
∫

b dη(b).
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We thus conclude that the reference extremal (ū, μ̄) is improved, and therefore,
it is non-optimal. One can check that the obtained process is, in fact, a global
solution (and the choice u = −1 above would lead to the same result).

Finally, note that, when designing u, we used the “pure”, uncorrected
extremal multifunction Uλ

t .

3.6 Concluding Remark: FMP as Numerical Method

As a concluding note, we shall comment on the algorithmic feature of FMP.
As it immediately comes to mind, by applying Theorem 1 iteratively, we can
generate a sequence of control processes, which is monotone with respect to
the cost functional. In other words, FMP can be realized as a so-called control
“improvement” algorithm for optimal control. In the case of ODEs, such an
algorithm demonstrates its efficiency as a global search numerical method [17].
Our present case is, however, much more delicate than the one, addressed by
[17], since now we shall deal with the numerical solution of hyperbolic PDEs.
For example, the numerical integration of the dual transport equation (9) turns
to be a surprisingly complicated task from the computational viewpoint, even for
the 1D case. At the same time, we do not see alternative continuous algorithms
for a such type of optimal control problems in the available literature. Practical
elaboration of the numeric algorithm, based on FMP thus remains a challenging
direction of our future study.
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Abstract. A new approach to optimization of state-quadratic optimal
control problems with terminal constraints based on the sequential solu-
tion of control improvement problems in the form of special boundary
value problems is considered. The developed approach for improving the
admissible controls is based on the formulas for the functional increment
without the remainder of the expansions. Such formulas make it possible
to avoid the laborious operation of parametric variation to improve con-
trol, which ultimately leads to increased efficiency of the developed opti-
mization procedures. The nonlocality of improving control is achieved
by solving a special boundary value problem, which is much simpler
than the boundary value problem of the maximum principle. To solve
the boundary-value improvement problem, an iterative algorithm is con-
structed with the fulfillment of all terminal constraints at each itera-
tion, based on the known perturbation principle. The proposed app-
roach allows the formulation of new necessary optimality conditions that
strengthen the known maximum principle in the class of problems under
consideration and makes it possible to strictly improve non-optimal con-
trols that satisfy the maximum principle. The comparative efficiency of
the considered nonlocal methods with the known methods is illustrated
by numerical calculations of model examples.

Keywords: Quadratic control system · Terminal constraints · Control
improvement problem · Optimality conditions · Iterative algorithm

Introduction

In [1], methods of non-local improvement of controls in the class of state-linear
optimal control problems with a free right endpoint with a linear and quadratic
state-oriented objective functional are proposed. These methods are based on
special formulas for the increment of the objective functional without the remain-
der of the expansions and do not contain the laborious operation of parametric
variation of the control in the vicinity of the current approximation. Improving
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control is achieved at the cost of solving two special Cauchy problems. The indi-
cated features of the methods are essential factors for increasing the efficiency
of solving problems of the class under consideration.

In [2], methods were developed for the non-local improvement of control in
the class of state-polynomial optimal control problems with a free right endpoint,
generalizing methods [1]. These methods are based on the formulas for the incre-
ment of the objective functional without the remainder of the increments, which
were obtained using modifications of the adjoint system. In this case, to improve
control, it is required to solve a special boundary-value improvement problem. To
solve the indicated boundary value problem, the perturbation approach known
in mathematics is used.

In papers [3,4], methods of nonlocal improvement [1] are generalized to the
class of quadratic in state and linear in control optimal control problems with a
partially fixed right endpoint. To improve the admissible control while preserving
all terminal constraints, it is required to solve a special boundary value problem.

In this article, to solve this boundary value problem, it is proposed to use
an iterative method for solving a system of functional equations in the control
space, which is equivalent to the boundary value problem.

1 Improving Control Problem

We consider a class of optimal control problems with terminal constraints, which
reduce to a quadratic in state and linear in control optimal control problem with
one terminal constraint

ẋ = A(x, t)u + b(x, t), t ∈ T = [t0, t1], (1)

x(t0) = x0, u(t) ∈ U, (2)

Φ(u) = 〈c, x(t1)〉 → min, (3)

x1(t1) = x1
1. (4)

The functions A(x, t) and b(x, t) are quadratic in x and continuous in t on
the set Rn × T ; c ∈ Rn is a given vector, and c1 = 0; time interval T and end
state x1

1 are set.
By accessible controls in problem (1), (2), (3) and (4) we mean functions that

are piecewise continuous on an interval and have values in a compact and convex
set U ⊂ Rr:

V = {u ∈ PCr(T ) : u(t) ∈ U, t ∈ T} .

For accessible control v ∈ V , we denote x(t, v), t ∈ T the solution of the
Cauchy problem (1), (2) for u = v(t), t ∈ T .

By admissible controls W we mean accessible controls if the terminal con-
straint is satisfied (4):

W =
{
u ∈ V : x1(t1, u) = x1

1

}
.
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In problem (1), (2), (3) and (4), we define the Pontryagin function with the
conjugate variable p ∈ Rn:

H(p, x, u, t) = H0(p, x, t) + 〈H1(p, x, t), u〉,
where H0(p, x, t) = 〈p, b(x, t)〉, H1(p, x, t) = A(x, t)T p.

Consider the regular Lagrange functional:

L(u, λ) = 〈c, x(t1)〉 + λ(x1(t1) − x1
1), λ ∈ R.

Following [2], the formula for the increment of the Lagrange functional, which
does not contain the remainder of the expansion, takes the form:

ΔvL(u0, λ) = −
∫

T

〈H1(p(t, u0, v, λ), x(t, v), t), v(t) − u0(t)〉dt,

where (u0, v) are accessible controls; p(t, u0, v, λ), t ∈ T is a solution of the
modified conjugate system

ṗ = −Hx(p, x, u, t) − 1
2
Hxx(p, x, u, t)y,

p1(t1) = −λ,

pi(t1) = −ci, i = 2, n,

for u = u0(t), x = x(t, u0), y = x(t, v) − x(t, u0).
For accessible control u0 ∈ V and a fixed projection parameter α > 0 simi-

larly to [2], we form the vector function

uα(p, x, t) = PU

(
u0(t) + αH1(p, x, t)

)
, p ∈ Rn, x ∈ Rn, t ∈ T, α > 0,

where PU is an operator of projection onto a set U in the Euclidean norm.
It was shown in [5] that for nonlocal improvement of an admissible control

u0 ∈ W it suffices to solve the following boundary value problem:

ẋ = A(x, t)uα(p, x, t) + b(x, t), t ∈ T,
ṗ = −Hx(p, x(t, u0), u0(t), t) − 1

2Hxx(p, x(t, u0), u0(t), t)(x − x(t, u0)),
x(t0) = x0, x1(t1) = x1

1, pi(t1) = −ci, i = 2, n.
(5)

Let the pair (x(t), p(t)), t ∈ T is a solution to the boundary value problem
(5). Let’s form the output control v(t) = uα(p(t), x(t), t), t ∈ T . Improvement is
assessed:

ΔvΦ(u0) ≤ − 1
α

∫

T

||v(t) − u0(t)||2dt.

It follows from the estimate that if control v differs from control u0, then a
strict improvement of the target functional is provided.

Based on the estimate in [5], it is also shown that the non-uniqueness of the
solution to the boundary value improvement problem (5) allows us to strictly
improve the admissible control u0 ∈ V , that satisfies the maximum principle
in the regular problem (1)–(4). In this case, the maximum principle can be
formulated as follows.
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Theorem 1. Let the control u0 ∈ V is optimal in the regular problem (1)–(4).
Then u0 ∈ V is the output control of the boundary value problem (5) for some
α > 0.

This estimate allows us to formulate a strengthened necessary optimality
condition in the regular problem (1)–(4).

Theorem 2. Let the control u0 ∈ V be optimal in the regular problem (1)–(4).
Then for all α > 0, control u0 ∈ V is the only output control of the boundary
value problem (5).

Indeed, in the case of the existence of some α > 0 output control v �= u, by
the estimate, we obtain a strict improvement ΔvΦ(u0) < 0, which contradicts
the optimality of the control u0 ∈ V .

The nonlocal optimization methods proposed in this paper are based on the
following statement.

Theorem 3. Boundary value problem (5) is equivalent to a system of functional
equations in the control space with some λ ∈ R :

v(t) = uα(p(t, u0, v, λ), x(t, v), t), α > 0, t ∈ T,
x1(t1, v) = x1

1.
(6)

Indeed, let the pair (x(t), p(t)), t ∈ T is a solution to the boundary value
problem (5). Let’s build the output control v(t) = uα(p(t), x(t), t), t ∈ T . Then
x(t) = x(t, v), p(t) = p(t, u0, v, λ), t ∈ T for λ = −p1(t1). Consequently, the
control v(t), t ∈ T , satisfies the system of equations (6) with the indicated λ ∈ R.

Conversely, let the control v(t), t ∈ T is a solution to system (6) for some λ ∈
R. Then the pair (x(t, v), p(t, u0, v, λ)), t ∈ T obviously satisfies the boundary
value problem (5).

The system of equations (6) is considered as a fixed point problem in the
control space with an additional algebraic equation. This allows us to apply and
modify the well-known iterative fixed-point methods to solve the system (6).

2 Iterative Methods

To solve the system (6), the well-known algorithm of the method of simple
iteration [6] is modified in the following implicit form to k ≥ 0:

vk+1(t) = uα(p(t, u0, vk, λk), x(t, vk+1), t), t ∈ T,
x1(t1, vk+1) = x1

1.
(7)

As an initial approximation of the iterative process (7), the control v0 ∈ V
is chosen.

To implement the proposed implicit iterative process, at each iteration, an
auxiliary boundary value problem is considered:
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ẋk+1 = A(xk+1, t)uα(pk+1, xk+1, t) + b(xk+1, t), t ∈ T,
ṗk+1 = −Hx(pk+1, x(t, u0), u0(t), t)

− 1
2Hxx(pk+1, x(t, u0), u0(t), t)(xk(t) − x(t, u0)),

xk+1(t0) = x0, xk+1
1 (t1) = x1

1, pk+1
i (t1) = −ci, i = 2, n.

(8)

In problem (8), the equation for conjugate variables does not depend on x.
Thus, to the solution of the problem (8), we can apply, in analogy with [3], a
modification of the well-known [6] shooting method.

We put p1(t1) = μ, where μ ∈ R is the unknown parameter to be determined.
Let us denote pμ(t), t ∈ T the solution of the Cauchy problem:

ṗ = −Hx(p, x(t, u0), u0(t), t)
− 1

2Hxx(p, x(t, u0), u0(t), t)(xk(t) − x(t, u0)),
p1(t1) = μ, pk+1

i (t1) = −ci, i = 2, n.
(9)

Let xμ(t), t ∈ T the solution to the special Cauchy problem:

ẋ = A(x, t)uα(pμ(t), x, t) + b(x, t), t ∈ T, x(t0) = x0.

Then the solution to a problem (8) is reduced to finding a solution to the
equation concerning the parameter μ:

xμ
1 (t) = x1

1. (10)

Consider (xk+1(t), pk+1(t)), t ∈ T is a solution of the auxiliary boundary-
value problem (8) with a parameter μ, that is a solution to equation (10). Then

pk+1(t) = p(t, u0, vk, λk),

where λk = −pk+1
1 (t1).

We form the next control approximation according to the rule:

vk+1(t) = uα(pk+1(t), xk+1(t), t), t ∈ T.

It is clear that xk+1(t) = x(t, vk+1), t ∈ T .
Thus, the implementation of the implicit process (7) at each iteration is

reduced to solving the algebraic equation (10).
Another modification of the algorithm of the simple iteration method for

solving system (6) has a more familiar standard explicit form for k ≥ 0:

vk+1(t) = uα(p(t, u0, vk, λk), x(t, vk), t), t ∈ T,
x1(t1, vk+1) = x1

1.
(11)

For this modification, at each iteration of the process (11), after calculat-
ing the solution pμ(t), t ∈ T to the conjugate Cauchy problem (11) with the
parameter μ ∈ R the control is formed:

vμ(t) = uα(pμ(t), xk(t), t), t ∈ T.
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For the obtained control, a solution x(t, vμ), t ∈ T to the standard Cauchy
problem is found

ẋ = A(x, t)vμ(t) + b(x, t), t ∈ T, x(t0) = x0.

The parameter μ ∈ R at each iteration of the process (11) is selected from
the condition of the terminal constraint:

x1(t1, vμ) = x1
1. (12)

For the obtained solution μ ∈ R of Eq. (12), the following control approxi-
mation is determined vk+1(t) = vμ(t), t ∈ T .

A feature of the proposed iterative algorithms for solving the fixed point
problem (6) is the execution of the terminal constraint at each iteration of the
process of successive control approximations. In this case, the initial approxi-
mation of iterative processes may not satisfy the terminal constraint, which is
important for the practical implementation of algorithms.

The convergence of iterative processes can be substantiated using the per-
turbation principle similarly [2].

Iterative processes are applied until the first improvement in control u0. Next,
a new improvement task is constructed for the obtained control, and the process
is repeated. The criterion for stopping the control improvement iterations is the
absence of control improvement in terms of the target functional.

Thus, iterative methods for constructing relaxation sequences of admissible
controls are formed, i.e. satisfying the terminal constraint.

3 Example

A state-quadratic problem of optimal control of the immune process is consid-
ered. In dimensionless form, the controlled model has the form [7]

ẋ1 = h1x1 − h2x1x2 − ux1, t ∈ T = [0, t1],
ẋ2 = h4(x3 − x2) − h8x1x2, u(t) ∈ [0, umax], t ∈ T,

ẋ3 = h3x1x2 − h5(x3 − 1),
ẋ4 = h6x1 − h7x4,

x1(0) = x0
1 > 0, x2(0) = 1, x3(0) = 1, x4(0) = 0,

Φ0(u) = x1(t1) → min,

(13)

Φ1(u) =
∫

T

x4(t)dt ≤ m,m > 0. (14)

Here x1 = x1(t) characterizes an infectious pathogen (virus), variables
x2 = x2(t), x3 = x3(t) characterize the body’s defenses (antibodies and plasma
cells), x4 = x4(t) is a degree of damage to the body, hi > 0, i = 1, 8 are given
constant coefficients. Initial conditions simulate the situation of infection of the
organism with a small initial dose of the virus at the initial moment t = 0.
The control effect u(t), t ∈ T characterizes the intensity of the administration of
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immunoglobulins that neutralize the virus. Control u(t) ≡ 0, t ∈ T corresponds
to the case of no treatment. In this case, the model describes the acute course
of the disease with recovery.

The values of the coefficients in the case under consideration:

h1 = 2, h2 = 0.8, h3 = 104, h4 = 0.17, h5 = 0.5,

h6 = 10, h7 = 0.12, h8 = 8, m = 0.1.

The initial value x0
1 was set equal to 10−6.

In the model under consideration, a unit of time corresponds to one day. The
maximum value of the control action was set equal to umax = 0.5. The time
interval T was set equal to 20 days: t1 = 20.

The purpose of the control is to minimize the concentration of the virus by
the end of treatment at a given time interval while limiting the damage to the
body by introducing immunoglobulins that neutralize the virus.

The limitation (14) is significant when modeling an acute form of a viral
disease when the consequences of damage to the body cannot be neglected and
one of the goals of treatment is to limit the total load of damage to the body.

Integral constraint (14) by introducing an additional variable according to
the rule

ẋ5 = x4, x5(0) = 0 (15)

can be reduced to a terminal constraint.
As a result, the considered problem (13), (14) is reduced to a state-quadratic

problem with a terminal constraint

x5(t1) ≤ m,m > 0.

In the course of computational experiments, the activity of the indicated
functional inequality constraint (15) was established. As a result, the optimal
control problem with a partially fixed right end was considered

Φ1(u) = x5(t1) − m = 0, m > 0. (16)

To solve a problem (13), (15), (16), we used the method of nonlocal improve-
ment (M2) with exact fulfillment of the terminal constraint with implementation
according to rule (7) and the method of penalties (M1), which consists in solving
a sequence of optimal control problems with a free right end with penalty target
functional

Φ(u) = Φ0(u) + γsΦ
2
1(u) → min, (17)

where the penalty parameter γs > 0, s ≥ 1.
Calculation of auxiliary penalty problems (13), (15), (17) was carried out

by the conditional gradient method [8]. The practical criterion for stopping the
calculation of the penalty problem at a fixed value of the penalty parameter
γs > 0 was the condition

|Φ(uk+1) − Φ(uk)| < ε1|Φ(uk)|, (18)
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where k > 0 is an inner iteration number of the conditional gradient method,
ε1 = 10−5.

Under condition (18), if the specified accuracy of the terminal constraint was
not achieved

|x5(t1, uk+1) − m| < ε2, (19)

where ε2 = 10−4, then the penalty parameter γs > 0 was recalculated according
to the rule

γs+1 = βγs.

The multiplier value β > 1 was set equal to 10. The initial value of the
penalty parameter γ0 was set equal to 10−10.

As an initial approximation for the conditional gradient method when cal-
culating a new penalty problem, the obtained computational control uk+1 for
the previous penalty problem was chosen. The final criterion for stopping the
calculation by the M1 method was the simultaneous achievement of conditions
(18) and (19).

The numerical solution of the phase and conjugate Cauchy problems was car-
ried out by the Runge-Kutta-Werner method of variable (5–6) order of accuracy
using the DIVPRK program of the IMSL Fortran PowerStation 4.0 library [9].
The values of the controlled, phase and conjugate variables were stored in the
nodes of a fixed uniform grid Th with a sampling step h on an interval T . In the
intervals between adjacent grid nodes Th, the control value was taken constant
and equal to the value at the left node.

In the M2 method, the solution to equation (10) was calculated using the
standard procedure of the Fortran DUMPOL software package [9], which imple-
ments the deformable polyhedron method, with criterion (19) to achieve the
specified accuracy of the terminal constraint.

A practical criterion for stopping the calculation of sequential improvement
problems in the M2 method was the condition

|Φ0(uk+1) − Φ0(uk)| < ε3|Φ0(uk)|,
where k > 0 is an iteration number, ε3 = 10−5.

In both methods, the control was chosen as the initial approximation u(t) ≡
0, t ∈ T .

Comparative calculation results are shown in Table 1.

Table 1. Comparative calculation results

Method Φ0 |Φ1| N Note

M1 2.686698 × 10−19 1.854861 × 10−5 464 10−6

M2 1.172261 × 10−20 1.534792 × 10−5 88 103

In Table 1 Φ0 is a calculated value of the objective functional of the problem,
|Φ1| is a module of the calculated value of the functional-constraint (16), N is a
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total number of solved Cauchy problems. In the note for method M1, the value
of the penalty parameter is given, at which the specified accuracy (19) of the
terminal constraint execution is provided; for the proposed method M2 is a value
of the projection parameter α providing convergence.

The computational control in the M1 and M2 methods, with an accuracy of
a day, is a piecewise constant function with a switching point at the moment
t = 5 from the maximum value to the minimum and reverse switching at the
moment t = 14.

Within the framework of the example, the proposed approach makes it possi-
ble to achieve a significant reduction in the computational complexity, estimated
by the total number of calculation Cauchy problems, in comparison with the
standard penalty method.

Conclusion

In the class of state-quadratic and control-linear optimal control problems with
constraints for the regular case, the following results are obtained.

1. Based on the well-known condition for a nonlocal condition for improving
control in the form of a special boundary value problem with a projection
operator, the necessary conditions for optimality of control in terms of the
boundary value problem are obtained.

2. A new condition for nonlocal improvement of control is constructed in the
form of a fixed point problem in the control space, which is equivalent to a
special boundary value problem.

3. Based on the constructed condition for improving control in the form of a
fixed point problem, nonlocal optimization methods are constructed in the
class of problems under consideration.

4. On a model problem, a comparative analysis of the computational efficiency
of one of the designed optimization methods with the well-known gradient
method based on penalties is carried out.

The proposed methods for the nonlocal improvement of admissible controls
in the considered class of quadratic problems with constraints are characterized
by the following properties:

1. the absence of a procedure for varying the control in a small neighborhood of
the improved control, which is typical for gradient methods;

2. the exact fulfillment of terminal constraints at each iteration of control
improvement;

3. the possibility of strict improvement of management that satisfies the princi-
ple of maximum. Gradient methods do not have this capability.

The indicated properties of the methods are important factors for increasing
the efficiency of solving optimal control problems with functional constraints.
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Identification of the Thermal
Conductivity Coefficient of a Substance

from a Temperature Field in a
Three-Dimensional Domain
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Abstract. The problem of determining the temperature-dependent
thermal conductivity coefficient of a substance in a parallelepiped is con-
sidered and investigated. The consideration is carried out on the basis of
the first boundary value problem for a three-dimensional non-stationary
heat conduction equation. The inverse coefficient problem is reduced to
a variational problem and is solved numerically using gradient methods
for minimizing the cost functional. The mean-root-square deviations of
the temperature field from the experimental data is used as the cost
functional. It is well known that it is very important for the gradient
methods to determine accurate values of the gradients. For this reason,
in this paper we used the efficient Fast Automatic Differentiation tech-
nique, which gives the exact functional gradient for the discrete optimal
control problem. In this work special attention is paid to the practi-
cally important cases when the experimental field is specified only in the
subdomain of the object under consideration. The working capacity and
effectiveness of the proposed approach are demonstrated by solving a
number of nonlinear inverse problems.

Keywords: Heat conduction · Inverse coefficient problems ·
Gradient · Fast automatic differentiation · Numerical algorithm

1 Introduction

In [1–7] the inverse coefficient problem of identification of the temperature-
dependent thermal conductivity coefficient of a substance was studied in one-
and two-dimensional variants. However, in practice experimental data is col-
lected for three-dimensional objects. Therefore, it is desirable to solve the prob-
lem of identifying the thermal conductivity coefficient in the three-dimensional
formulation.
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In this paper the consideration of the inverse problem for a three-dimensional
object is carried out on the basis of the first boundary value problem for a three-
dimensional non-stationary heat conduction equation. The inverse coefficient
problem is reduced to a variational problem. The mean-root-square deviation
of the temperature field from the experimental data is used as the cost func-
tional. The optimization problem is solved numerically using gradient meth-
ods for minimizing the cost functional, and to calculate the gradient an effec-
tive methodology of Fast Automatic Differentiation (FAD-methodology) is used
(see [8,9]).

One of the difficulties that one has to face when solving a problem in a three-
dimensional formulation is associated with solving a direct problem. In [10],
using the examples of a number of nonlinear problems for a three-dimensional
heat equation whose coefficients depend on temperature, a comparative anal-
ysis of several schemes of alternating directions was performed. The follow-
ing schemes were examined: a locally one-dimensional scheme [11], a Douglas-
Reckford scheme [12], and a Pisman-Reckford scheme [13]. When comparing
methods, the accuracy of the obtained solution and the computer time to achieve
the required accuracy were taken into account.

The conjugate equations and the formula for calculating the gradient of the
cost functional, used in this work, were obtained on the basis of a locally one-
dimensional scheme, since the results of numerical experiments showed that it
was the least “capricious”.

The problem of identifying the thermal conductivity coefficient of a substance
is related to the study of the characteristics of newly created materials. When
experimental studies are being carrying out, as a rule, samples of material of a
simple form are used (usually this is a parallelepiped). It is reasonable to consider
the inverse coefficient problem arising in the three-dimensional case also for a
parallelepiped object.

In this work, special attention is paid to the practically important cases when
the experimental field is specified only in the subdomain of the object under
consideration. The working capacity and effectiveness of the proposed approach
are demonstrated by solving a number of nonlinear inverse problems.

2 Formulation of the Problem

Suppose that the specimen under study is a parallelepiped of length R, width E
and height H. The initial temperature T of the parallelepiped is known. The law
of temperature variation on the surfaces of the parallelepiped is also known. For
a mathematical description of the heat conduction process in a parallelepiped
we use the Cartesian coordinates x, y and z. The points s = (x, y, z) of the
parallelepiped create a domain Q = {[0, R] × [0, E] × [0,H]} with a boundary
Γ = ∂Q. The temperature field at each time is described by the initial-boundary
value (mixed) problem:
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C(s)
∂T (s, t)

∂t
= divs(K(T (s, t))∇sT (s, t)), (s, t){∈ Q × (0, Θ]}, (1)

T (s, 0) = w0(s), s ∈ Q, (2)

T (s, t) = wΓ (s, t), s ∈ Γ, 0 ≤ t ≤ Θ. (3)

Here t is time; T (s, t) ≡ T (x, y, z, t) is the temperature of the material at the
point s with the coordinates (x, y, z) at time t; C(s) is the volumetric heat
capacity of the material; K(T ) is the thermal conductivity coefficient; w0(s) is
the given temperature at the initial time t = 0; wΓ (s, t) is the given temperature
on the boundary of the object. The volumetric heat capacity of a substance C(s)
is considered as known function of the coordinates. If the dependence of the
thermal conductivity coefficient K(T ) on the temperature T is known, then we
can solve the mixed problem (1)–(3) to find the temperature distribution T (s, t)
in Q × [0, Θ].

The inverse coefficient problem is reduced to the following variational prob-
lem: it is required to find such a dependence of the thermal conductivity coef-
ficient of a substance on temperature at which the temperature field T (s, t)
obtained as a result of solving the direct problem (1)–(3) differs little from the
temperature field Y (s, t) obtained experimentally. The quantity:

Φ(K(T )) =

Θ∫

0

∫

Q

[T (s, t) − Y (s, t)]2 · μ(s, t)dsdt (4)

can be used as the measure of difference between these functions. Here, μ(s, t) ≥
0 is given weight function. Thus, the optimal control problem is to find the
optimal control K(T ) and the corresponding solution T (s, t) of problem (1)–(3)
that minimize functional (4).

3 Numerical Solution of the Inverse Coefficient Problem

The optimal control problem formulated above was solved numerically. Spatial
and time grids (generally nonuniform) have been introduced to solve the problem
numerically.

The time grid was constructed by a set of nodal values
{
tj

}J

j=0
, t0 = 0,

tJ = Θ. The steps τ j of this grid were determined by the relations τ j = tj+1−tj ,
j = 0, J − 1.

A spatial grid is based by a set of points {xn, yi, zl}, where n = 0, N , i = 0, I,
l = 0, L, hx

n is the distance between xn and xn+1, i.e. hx
n = xn+1 − xn, n =

0, N − 1. Similarly: hy
i = yi+1−yi, i = 0, I − 1 and hz

l = zl+1−zl, l = 0, L − 1. At
each node of the computational domain Q×[0, Θ] all the functions are determined
by their point values.

The temperature interval [a, b] (the interval of interest) on which the function
K(T ) will be restored is defined as the set of values of the given functions w0(s)
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and wΓ (s, t). This interval is partitioned by the points T̃0 = a, T̃1, T̃2, . . . , T̃M = b

into M parts (they can be equal or of different lengths). Each point T̃m (m =
0, . . . , M) is connected with a number km = K(T̃m). The function K(T ) to be
found is approximated by a continuous piecewise linear function with the nodes

at the points
{

(T̃m, km)
}M

m=0
so that K(T ) = km−1 + km−km−1

˜Tm− ˜Tm−1
(T − T̃m−1)

for T̃m−1 ≤ T ≤ T̃m, (m = 1, . . . , M). If the temperature at the point fell
outside the boundaries of the interval [a; b], then the linear extrapolation was
used to determine the function K(T ).

One of the main elements of the proposed numerical method for solving
inverse coefficient problem is the solution of the mixed problem (1)–(3). To
approximate the heat equation was used the locally one-dimensional scheme that
is a scheme of alternating directions. The cost functional (4) was approximated
by a function F (k0, k1, . . . , kM ) of the finite number of variables using the method
of rectangles. Minimization of the function F (k0, k1, . . . , kM ) was carried out
numerically using the gradient method.

It is well known that it is very important for the gradient methods to deter-
mine accurate values of the gradients. For this reason, we used the efficient
approach of Fast Automatic Differentiation to calculate the components of gra-
dient. The effectiveness of this methodology is ensured by using the solution of
the conjugate problem for calculating the gradient of the function. The FAD-
methodology allows us to formulate such adjoint problem that is coordinated
with the chosen approximation of the direct problem. As a result, the FAD-
methodology delivers canonical formulas by means of which the calculated value
of the gradient of the cost functional is precise for the chosen approximation of
the optimal control problem.

To verify the performance of the proposed algorithm a huge number of numer-
ical experiments were carried out. The most interesting of them are given in this
section in the form of three series of calculations.

The difficulties that one has to face when solving the problem of identify-
ing the thermal conductivity coefficient in a three-dimensional formulation are
associated not only with the choice of the discretization scheme for the direct
problem, but also with the choice of the computational grid. The analysis of the
obtained numerical results showed that if the number of nodes of the spatial
grid is not less than 20 in each direction, then the thermal conductivity coeffi-
cient is restored with a sufficiently high accuracy, provided that the time step is
correctly selected.

The variational problem, associated with the problem of identifying the ther-
mal conductivity coefficient is reduced, was solved for all examples on several
computational grids. For each grid, calculations were performed using different
initial approximations.

The locally one-dimensional scheme approximating the heat equation chosen
in this paper is stable and allows working with a sufficiently large time step.
Nevertheless, it is necessary to carry out studies concerning the selection of the
time grid, not only for each spatial grid used, but also for each division of the



Identification of the Thermal Conductivity Coefficient 383

temperature interval on which the thermal conductivity coefficient is restored.
Studies have shown that the greater the number of partitions of the temperature
interval, the smaller the time step should be.

Two criteria were used to evaluate the accuracy of the obtained numerical
solutions of the inverse problem:

ε1 = max
0≤m≤M

|Kopt(T̃m) − K(T̃m)|
K∗ (5)

and

ε2 =
1

K∗

√√√√ M∑
m=0

(Kopt(T̃m) − K(T̃m))2

M + 1
, (6)

where K(T̃m) are the values of the analytical thermal conductivity coefficient
calculated at the reference points of the temperature interval, Kopt(T̃m) are the
values of the thermal conductivity coefficient obtained as a result of solving the
optimization problem, and K∗ is some characteristic value of the function K(T ).

In the paper K∗ =

M
∑

m=0
K(˜Tm)

M+1 was used.
The numerical experiments carried out have shown that the quality of the

recovery of the thermal conductivity coefficient strongly depends on the distri-
bution of the “experimental” temperature field. There are cases when in some
sections of the segment [a, b] there is too little data necessary to identify the
thermal conductivity coefficient. Therefore, in each specific case, it is necessary
to analyze the distribution of experimental data over the intervals of the tem-
perature segment of interest to us.

3.1 The First Series of Calculations

In the first series of calculations, the problem of finding the thermal conductivity
coefficient of a substance was considered for the following input data: the traces
of the function

Λ(x, y, z, t) =
1
2

√
x2 + y2 + z2

3 − 2t
(7)

were chosen as the initial function w0(x, y, z) and as the boundary function
wΓ (x, y, z, t) on the parabolic boundary of the domain Q × (0, Θ) = (0, 1) ×
(0, 1) × (0, 1) × (0, 1). In this case, function (7) is a solution of the mixed
problem (1)–(3) for C(x) = 1 and K(T ) = T 2. The temperature at the parabolic
boundary of the considered domain varies from a = 0.0 to b = 0.866. In this series
of calculations, it was assumed that in the cost functional (4) the weight function
μ(x, y, z, t) ≡ 1, (x, y, z) ∈ Q.

To analyze the distribution of experimental data over the intervals of the
temperature segment of interest we introduce the function W∗(T ) of the relative
measure of that subdomain of the domain Q × (0, Θ) in which the function
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Λ(x, y, z, t) satisfies the condition Λ(x, y, z, t) < T , and denote by W (T ) the
derivative of the function W∗(T ) with respect to the variable T .

Figure 1 shows the distribution of the function W (T ) along the segment
[0.0, 0.866]. Analysis of this distribution shows that too few “experimental” data
correspond to the right end of the segment [0.0, 0.866]. Therefore, it can be
assumed that there will be difficulties in restoring the thermal conductivity coef-
ficient for T > 0.8. The calculations carried out confirmed this assumption: when
the temperature segment is evenly divided into M = 80 intervals, the last two
components of the control vector do not change (the gradient components are
zero with machine accuracy).

Fig. 1. Distribution of the function W (T ).

All calculations in this series can be divided into two groups.

In the calculations of the first group the “analytical” field was used as an
“experimental” temperature field:

Y j
nil = Λ(xn, yi, zl, t

j) =
1
2

√
x2

n + y2
i + z2l

3 − 2tj

(n = 1, N − 1, i = 1, I − 1, l = 1, L − 1, j = 1, J).

The calculations of this group revealed the dependence of the numerical solu-
tion of the inverse problem on the accuracy of the solution of the direct problem.
All the results of calculations of the first group presented below were obtained
using a uniform spatial grid with parameters N = I = L = 25. The number J
of intervals for dividing the time segment [0, Θ] varied.

a) A Uniform Time Grid with a Number J = 25 of Intervals was
Used.
To accelerate the iterative process of descent along the gradient, in all the exam-
ples presented in this work, the approach proposed in [4] was used. It is based
on a sequential increase in the number M of partitions of a segment [a, b]. It is
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advisable to start the process with M = 1. After obtaining the optimal solution,
it should be used as an initial approximation for variant with M = 2. Having
obtained the optimal solution for M = 2, use it as an initial approximation for
M = 4, etc.

Figure 2 shows the functions at different stages of the iterative process in the
case when the function Kini(T ) = 2.5 was chosen as the initial approximation.
There the function K(T ) = T 2 and optimal controls obtained for M = 1, M = 2,
and M = 4 are shown. It is seen that the support points of the piecewise-linear
optimal control obtained at M = 4 almost lie on the line K(T ) = T 2. As for
the optimal controls obtained for M = 8 and M = 16, they practically coincide
with the function K(T ) = T 2. For M = 8 the deviations of the obtained thermal
conductivity coefficient Kopt(T ) from its analytical value K(T ) = T 2 calculated
by formulas (5) and (6) are ε1 = 2.1267·10−2 and ε2 = 1.3190·10−2, respectively.
For M = 16 ε1 = 1.8367 · 10−2 and ε2 = 1.0468 · 10−2.

Fig. 2. Control functions at different stages of the iterative process.

However, further dividing the temperature segment into smaller intervals
does not lead to the desired results on the selected space-time grid. Figure 3 shows
the function K(T ) = T 2 and optimal control obtained for M = 80. It is seen that
the obtained solution contains oscillations. Apparently, this is due to the fact
that the solution of the direct problem is determined insufficiently accurately
on the computational grid used. The use of a small number of partitions (for
example, M = 8 or M = 16) of the temperature segment in this case acts as a
smoothing factor in solving the problem.
b) A Uniform Time Grid with a Number J = 100 of Intervals was
Used.
As a result of solving the inverse problem at M = 80, a smooth, oscillation-free
solution of the inverse problem was obtained, the graph of which coincides with
the graph of the function K(T ) = T 2. In the process of solving the optimization
problem, the cost functional varies from 3.9708 · 10−4 under the initial control
(Kini(T ) = 2.5) to 7.5517 · 10−9 under the optimal control. At the same time,
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Fig. 3. Control functions at M = 80 and analytical thermal conductivity coefficient.

the maximum modulus of the gradient decreased from 1.2422 · 10−5 to 1.4525 ·
10−10. Calculated by formulas (5) and (6), the deviation of the obtained thermal
conductivity coefficient Kopt(T ) from its analytical value K(T ) = T 2 on the
segment [0.0, 0.844] is ε1 = 1.2764 · 10−2 and ε2 = 3.8048 · 10−3, respectively.

It should also be noted that for the example under consideration, the solution
to the inverse problem is unique. Calculations performed for different initial
approximations Kini(T ) always led to the same solution.

In the calculations of the second group the field obtained as a result of
the numerical solution of problem (1)–(3) with a known thermal conductivity
coefficient K(T ) = T 2 was used as an “experimental” temperature field.

In this case, for dividing the temperature segment into M = 80 parts, the
thermal conductivity coefficient was identified with high accuracy even when
using a uniform spatial grid with parameters N = I = L = 25 and the number
J = 25 of time intervals. The calculation results obtained on this grid practically
do not differ from those obtained as a result of solving the optimization problem
on a grid with a time step 4 times less (J = 100). In both these cases, the
cost functional dropped to values less than 10−20, the maximum of the gradient
modulus decreased to 3 · 10−14, ε1 = 4.2 · 10−6 and ε2 < 10−6.

3.2 The Second Series of Calculations

In the second series of calculations, the problem of finding the thermal conduc-
tivity coefficient of a substance was considered for the following input data: the
traces of the function

Λ(x, y, z, t) =

√
9(x + 1)2 + 20y2 + 25z2

9 − 8t
(8)
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were chosen as the initial function w0(x, y, z) and as the boundary function
wΓ (x, y, z, t) on the parabolic boundary of the domain Q × (0, Θ) = (0, 1) ×
(0, 1) × (0, 1) × (0, 1).

In this series of calculations, it was assumed that in the cost functional (4)
the weight function μ(x, y, z, t) ≡ 1, (x, y, z) ∈ Q. As the experimental field
Y (x, y, z, t) was chosen the temperature field, which was obtained as a result of
solving the direct problem (1)–(3) at C(s) = 1 and with the thermal conductivity
coefficient K(T ) = k(T ), where the function k(T ) is determined by the following
equality:

k(T ) =
{

0.1(T − 3)(T − 6)(T − 7) + 3.4, T ≥ 3,
1.2(T − 3) + 3.4, T < 3.

The temperature at the parabolic boundary of the considered domain varies
from a = 1.0 to b = 9.0. The segment [1.0, 9.0] was divided into 32 intervals, i.e.
M = 32. Figure 4 shows the distribution of the function W (T ) along the segment
[1.0, 9.0]. Analysis of this distribution shows that too few “experimental” data
correspond to the right end of the segment [1.0, 9.0] (for T > 8). Therefore, it can
be assumed that there will be difficulties in restoring the thermal conductivity
coefficient for T > 8.

Fig. 4. Distribution of the function W (T ).

Numerical calculations were carried out on a uniform spatial grid with param-
eters N = I = L = 25 and the number J = 50 of time intervals. As in the first
series of calculations, to speed up the iterative process we begin with M = 1.
Figure 5 shows the functions at different stages of the iterative process in the
case when the function Kini(T ) = 2.5 was chosen as the initial approximation.
There the function K(T ) = k(T ) and optimal controls obtained for M = 1,
M = 2, M = 4 and M = 8 are given. It can be seen that the support points
of the piecewise linear optimal control obtained at M = 8 almost lie on the line
K(T ) = k(T ). As for the optimal controls obtained for M = 16 and M = 32,
they practically coincide with the function K(T ) = k(T ). A small deviation is
noted only at the right end of the temperature range, i.e. where there is no
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experimental data. For dividing the temperature interval into parts M = 32
the deviations of the obtained thermal conductivity coefficient Kopt(T ) from its
analytical value K(T ) = k(T ) on the segment [1.0, 8.0] are ε1 = 7.2876 · 10−6

and ε2 = 1.5006 · 10−6, respectively.

Fig. 5. Control functions at different stages of the iterative process.

3.3 The Third Series of Calculations

The third series of calculations is devoted to the practically important case when
the experimental field is given only in a subdomain of the object under consid-
eration. Here we considered the problem of finding the thermal conductivity
coefficient with the same input data as in the second series. The third series
differs from the second only in the choice of the weighting function in the cost
functional.

Numerical calculations were carried out on a uniform spatial grid with param-
eters N = I = L = 25 and the number J = 50 of time intervals.

In the first example of this series, the weighting function had a δ-shaped
character and in the numerical algorithm was determined by the formula (216
“control” points in the functional):

μj
nil =

{
1, n, i, l = 3, 7, 11, 15, 19, 23,
0, in other cases.

The function Kini(T ) = 2.5 was chosen as an initial approximation. The dis-
tribution of experimental data along the temperature segment [1.0, 9.0] at the
above weighting function is qualitatively similar to that shown in Fig. 4, but
quantitatively there are much less data here than in the second series of calcu-
lations. However, despite this and the “discrete” nature of the weight function
in this case, no qualitative differences from the previous example were noticed
when solving the optimization problem. For dividing the temperature interval
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into M = 32 parts the deviations of the obtained thermal conductivity coeffi-
cient Kopt(T ) from its analytical value K(T ) = k(T ) on the segment [1.0, 8.0]
are ε1 = 8.8594 · 10−6 and ε2 = 1.6499 · 10−6, respectively.

Fig. 6. Distribution of the function W (T ).

In the second example of this series, the weight function in the cost functional
has the form

μj
nil =

{
1, i ≤ 3,
0, in other cases.

Figure 6 shows the distribution of experimental data along the temperature seg-
ment [1.0, 9.0]. Analysis of this distribution shows that there is very little “exper-
imental” data at the right end of the temperature interval at T > 8.0.

In this example, a function Kini(T ) = 7.0 was chosen as the initial approx-
imation. Figure 7 presents solutions to this inverse problem for M = 2, M = 4,
M = 8 and function k(T ). Figure 8 presents the obtained thermal conductivity
coefficient Kopt(T ) for M = 32 and function k(T ). Despite the fact that there
are fewer experimental data, and that another function was chosen as the initial
approximation, nevertheless, the iterative process proceeded in a similar way
as in the previous example. In this case, there is also a convergence of optimal
solutions to the function “opt” with increasing number M , but this function
differs from k(T ) when T > 8. As for the restoration of the thermal conductivity
coefficient for a given experimental field on the interval [1.0, 8.0], here the graphs
of the functions Kopt(T ) and k(T ) completely coincide, and the deviations of the
obtained thermal conductivity coefficient from its analytical value K(T ) = k(T )
are ε1 = 3.6477 · 10−2 and ε2 = 6.7738 · 10−3, respectively.

In the third example of this series, the weight function in the cost functional
has the form

μj
nil =

{
1, xn + yi + zl + tj ≥ 3.5,
0, in other cases.

Figure 9 shows the distribution of experimental data along the temperature seg-
ment [1.0, 9.0] at the above weighting function. The analysis of this distribution
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Fig. 7. Control functions at different stages of the iterative process.

Fig. 8. The thermal conductivity coefficient Kopt(T ) for M = 32 and function k(T ).

Fig. 9. Distribution of the function W (T ).
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Fig. 10. Control functions at different stages of the iterative process.

Fig. 11. The thermal conductivity coefficient Kopt(T ) for M = 32 and function k(T ).

shows that here most of the “experimental” data is concentrated on the interval
[4.0, 9.0]. However, there are practically no “experimental” data at T < 4.0. In
this example, a function Kini(T ) = 2.5 was chosen as the initial approximation.
Figure 10 presents solutions to this inverse problem for M = 4, M = 8 and
function k(T ). Figure 11 presents the obtained thermal conductivity coefficient
Kopt(T ) for M = 32 and function k(T ). In this case, there is a convergence
of optimal solutions to the function “opt” with increasing number M , but this
function differs from k(T ) when T < 4. As for the restoration of the thermal
conductivity coefficient for a given experimental field on the interval [4.0, 9.0],
here the graphs of the functions Kopt(T ) and k(T ) completely coincide, and the
deviations of the obtained thermal conductivity coefficient from its analytical
value K(T ) = k(T ) are ε1 = 3.6477 · 10−2 and ε2 = 6.7738 · 10−3, respectively.
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4 Conclusion

An algorithm is proposed to determine the thermal conductivity of the substance
with the help of a given experimental three-dimensional temperature field. On
the basis of the calculations, it is concluded that the thermal conductivity is
more effectively determined in the temperature range, which corresponds to a
larger number of experimental data. If it is important to determine the thermal
conductivity in a particular temperature interval, then the experimental data in
which the temperature belongs to the desired interval should be used.
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Dixit-Stiglitz-Krugman Model
with Investments in R&D

Igor Bykadorov(B)

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Abstract. We study a monopolistic competition model in the open
economy case. The utility of consumers is additive separable. The pro-
ducers can choose the technology (R&D) endogenously. We examine the
local comparative statics of market equilibrium with respect to transport
cots (of iceberg type). Early, we find the following preliminary result:
increasing transport cost has opposite impacts on the mass of firms and
productivity. In the present paper, we study, mainly, the local compar-
ative statics w.r.t. transport costs for the case of autarky (the very big
transport costs). For the case of linear production costs, the known (and
counter-intuitive!) result is that the social welfare increases near autarky.
We generalize this result for the model with investments in R&D, this is
the main result of the paper.

Keywords: Dixit-Stiglitz-Krugman model · Market equilibrium ·
Investments in R&D · Comparative statics · Social welfare · Autarky

1 Introduction

The monopolistic competition theory [16] began to develop rapidly after the
famous works of Dixit and Stiglitz [18] and Krugman [20]. Usually, the study is
in the framework of linear production costs. The more economically adequate
case, when marginal costs decrease when fixed costs (“investments in R&D”)
increase, is studied not enough.1

In [14] we get the results for the model of a closed economy. In [11] we expand
this analysis to the trade model. Usually, in monopolistic competition trade
models, the study focuses in the comparative statics (with respect to transport
costs) of equilibrium variables – individual consumption, the mass of firm, size
of the firm, price, etc. The social welfare studies do not a lot.

In 2012, Arkolakis et al. (see [2]), by studying international trade in the USA,
concluded: How large are the welfare gains from trade? A crude summary of our
results is: “So far, not much.”

Because of this famous work, there was a great interest in the theoretical
study of the consequences of the “disappearance” of international trade.

1 Some stylized facts for theory are, e.g., in [1,15,19,25,26].
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Some results about social welfare can be found in [3,22,23], where the linear
productions costs are considered. As to non-linear production costs, the results
are not strong (see, e.g., [6,7]).

In [12] (and later in [24]), for the case of linear production costs, the following
(counter-intuitive!) result has got: near autarky, the social welfare increases. The
question arises: can investments in R&D help avoid this effect?

In this paper, we show that the answer is “no”: even if the producers can
choose the investments in R&D to decrease the marginal costs, near autarky,
the social welfare increases.2

The paper is organized as follows. In Sect. 2, we set the model, the main
notations, describe the equilibrium, and discuss the main equilibrium equations.
In Sect. 3, we study the comparative statics with respect to transport costs in the
situation of autarky. Here we formulate the main result (see Proposition 1): near
autarky, the Social welfare increases. Besides, we study individual consumptions,
size of the firms, mass of the firms, and prices (inverse demand), see Proposition
2. In Sect. 4 the reader can find proofs of Proposition 1 and Proposition 2.
Section 5 concludes.

2 Model

The setting of the model is as in [11], but taking into account the symmetry of
the countries.

The model of monopolistic competition [4,5,8–10,13,17,18,20,21,29] is based
on the following assumptions:

– the manufacturers produce goods of the same nature, but not completely
interchangeable (product diversity);

– each firm produces one type of product diversity and sets its price;
– the number (mass) of firms is large enough;
– the firms enter the market as long as their profits are positive.

In this paper, for simplicity, we consider the very stylized model of monop-
olistic competition with the trade of two symmetric (on population) countries.
There are one industry and one production factor, interpreted as labor. We
introduce the basic concepts and notation. Let

– L be the number of consumers in a country,
– N be the mass of firms in a country;
– Xi = X(i) be the individual domestic consumption of the goods produced by

the firm i ∈ [0, N ] ;
– Zi be the individual foreign consumption of the goods produced by the firm

i ∈ [0, N ];
– Qi be the output (size) of the firm i ∈ [0, N ];
– ω be the wage in a country, normalized to 1.
2 For simplicity, we study the case of two symmetric (on population) countries. Of

course, the result can be developed for non-symmetric countries.
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2.1 Consumers

We assume that each consumer share the same twice differentiable sub-utility
function, such that

u (0) = 0, u′(ξ) > 0, u′′(ξ) < 0. (1)

Thus, function u is increasing and strictly concave.

The problem of a representative consumer in each country is

∫ N

0

u (Xi) di +
∫ N

0

u (Zi) di → max
Xi≥0,i∈[0,N ],Zi≥0,i∈[0,N ]

subject to ∫ N

0

pX
i (Xi) di +

∫ N

0

pZ
i Zidi ≤ w ≡ 1.

From the consumer’s First Order Conditions (FOC), we get the inverse
demand functions

pX
i (Xi, Λ) =

u′ (Xi)
Λ

, pZ
i (Zi, Λ) =

u′ (Zi)
Λ

, i ∈ [0, N ] . (2)

where Λ is the Lagrange multiplier of the problem of a representative consumer.
Note that

Λ > 0 (3)

due to (1), (3).

2.2 Producers

Let F be fixed costs (chosen endogenously); c (F ) be the corresponding marginal
costs. We assume that c′ (·) < 0. Besides, let us assume, standardly, that the
trade incurs some transport costs of “iceberg type”3. Then the sizes of the firms
are

Qi = LXi + τLZi , i ∈ [0, N ] . (4)

while the production costs are

V (Qi, F ) = c(F )Qi + F, i ∈ [0, N ] . (5)

Let
R (ξ) = u′ (ξ) · ξ (6)

3 To sell a unit, the firm produces τ · 1.
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be the “normalized” revenue. Note that, due to (2), the normalized rev-
enue equals the costs that one consumer spends on the purchase of prod-
ucts of one company (divided by the Lagrange multiplier). Moreover, R′ (ξ) =
u′ (ξ) (1 − ru (ξ)) , where

rg (ξ) = −g′′ (ξ) ξ

g′ (ξ)
= −εg′ (ξ) (7)

is Arrow-Pratt measure of function g while εh is the elasticity of function h:

εh (ξ) =
h′ (ξ) ξ

h (ξ)
. (8)

Using the inverse demand functions (2) and “normalized” revenue (6), the
profit of firm i in each country can be written as

Πi = L · R (Xi)
Λ

+ L · R (Zi)
Λ

− wV (Qi, F ) , i ∈ [0, N ] . (9)

Labor Balance. In each country, the labor balance (“total production costs
equal total labor”) is ∫ N

0

V (Qi, F ) di = L. (10)

2.3 Symmetric Case

In each country, all consumers are assumed identical. So we will consider the
symmetric case, omitting index i. This way, the individual consumptions are

Xi = X, Zi = Z, i ∈ [0, N ] .

Therefore, we rewrite the inverse demand functions (2) as

p (X,Λ) =
u′ (X)

Λ
, p (Z,Λ) =

u′ (Z)
Λ

, (11)

sizes of the firms (4) as
Q = LX + τLZ, (12)

production costs (5) as
V (Q,F ) = c(F )Q + F, (13)

profits (9) as

Π = L · R (X)
Λ

+ L · R (Z)
Λ

− V (Q,F ) , (14)

labor balance (10) as
N · V (Q,F ) = L. (15)
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2.4 Symmetric Equilibrium

Here, size of the firms are (12), the production costs are (13), the profits are
(14).

As it is usual in monopolistic competition, we assume that firms enter the
market while their profit remains positive, which implies zero-profit (free-entry)
conditions. In the symmetric case, we get

Π = 0. (16)

Each firm maximizes its profits:

Π → max
X,Z,F≥0

.

Thus, the Producer’s First order conditions (FOC) in the symmetric case are

∂Π

∂X
= 0,

∂Π

∂Z
= 0,

∂Π

∂F
= 0. (17)

Second order conditions (SOC) are that the matrix

Π ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Π

∂X2
0

∂2Π

∂X∂F

0
∂2Π

∂Z2

∂2Π

∂Z∂F

∂2Π

∂X∂F

∂2Π

∂Z∂F

∂2Π

∂F 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

is negatively defined. In particular,

∂2Π

∂X2
< 0,

∂2Π

∂Z2
< 0,

∂2Π

∂F 2
< 0 (18)

and

∂2Π

∂X2
· ∂2Π

∂Z2
· ∂2Π

∂F 2
− ∂2Π

∂X2
·
(

∂2Π

∂Z∂F

)2

− ∂2Π

∂Z2
·
(

∂2Π

∂X∂F

)2

< 0. (19)

Symmetric equilibrium is a bundle

(X∗, Z∗, F ∗, N∗, Λ∗, )

satisfying the following:

– profit maximization (17) – (19);
– free entry conditions (16);
– labor balance (15).
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Note that the equilibrium prices (inverse demand functions)

p (X∗, Λ∗) , p (Z∗, Λ∗)

can be obtained from (11). Moreover, First Order Conditions (17) are

R′ (X)
Λ

= c (F ) ,
R′ (Z)

Λ
= τc (F ) , c′ (F ) qH = −1. (20)

Due to (3), Second Order Conditions (18) are

R′′ (X) ≡ u′′ (X) (2 − ru′ (X)) < 0, R′′ (Z) ≡ u′′ (Z) (2 − ru′ (Z)) < 0, c′′ (F ) > 0,
(21)

while Second Order Condition (19) is

R′′ (X)
R′ (X)

· τ +
R′′ (Z)
R′ (Z)

− R′′ (X)
R′ (X)

·R
′′ (Z)

R′ (Z)
· rc (F )
Ec (F )

· Q

L
> 0. (22)

3 The Local Comparative Statics w.r.t. τ

The system of equilibrium equations is

∂Π

∂X
= 0

∂Π

∂Z
= 0

∂Π

∂F
= 0

Π = 0

Thus, the system of the local comparative statics w.r.t. τ is

d

dτ

(
∂Π

∂X

)
= 0

d

dτ

(
∂Π

∂Z

)
= 0

d

dτ

(
∂Π

∂F

)
= 0

dΠ

dτ
= 0

i.e., due to (20),

R′′ (X)
R′ (X)

· dX

dτ
− c′ (F )

c (F )
· dF

dτ
− 1

Λ
· dΛ

dτ
= 0
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R′′ (Z)
R′ (Z)

· τ · dZ

dτ
− c′ (F )

c (F )
· τ · dF

dτ
− τ

Λ
· dΛ

dτ
= 1

−dX

dτ
− τ · dZ

dτ
− c′′ (F )

c′ (F )
· Q

L
· dF

dτ
= Z

1
Λ

· dΛ

dτ
= − c (F )

c (F ) Q + F
· L · Z

In what follows, we will consider not only elasticity of function with respect
to a variable (see (7) and (8)), but also elasticity of variable ξ with respect to
parameter τ , i.e.,

Eξ = Eξ/τ =
dξ

dτ
· τ

ξ
.

Thus, the system of the local comparative statics w.r.t. τ is

dX

dτ
=

1
τ

· R′ (X)
R′′ (X)

· (Ec (F ) · EF + EΛ) (23)

τ · dZ

dτ
=

R′ (Z)
R′′ (Z)

· (Ec (F ) · EF + EΛ + 1) (24)

dX

dτ
+ τ · dZ

dτ
= rc (F ) · Q

L
· 1
τ

· EF − Z (25)

EΛ = − c (F )
c (F ) Q + F

· L · τ · Z (26)

As to Social Welfare
W = N · (u (X) + u (Z)) ,

we get due to Labor Balance (15)

W = L · (u (X) + u (Z))
c (F ) · Q + F

.

Hence

dW

dτ
= −N · W

L
·
(

c′ (F ) · Q · dF

dτ
+ c (F ) · L ·

(
dX

dτ
+ τ · dZ

dτ

)
+

dF

dτ

)

+N ·
(

u′ (X) · dX

dτ
+ u′ (Z) · dZ

dτ

)
=

(since c′ (F ) · Q + 1 = 0 due to (20))

= −N ·
(

W · c (F ) ·
(

dX

dτ
+ τ · dZ

dτ

)
+ u′ (X) · dX

dτ
+ u′ (Z) · dZ

dτ

)
.

Thus, due to (25),

dW

dτ
= −N ·

(
W · c (F ) ·

(
rc (F ) · Q

L
· EF

τ
− Z

)
+ u′ (X) · dX

dτ
+ u′ (Z) · dZ

dτ

)
.

(27)
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3.1 Autarky

In autarky, τ is such that Z∗ = 0.
Note that the questions of the existence and uniqueness of equilibrium and

optimality are separate problems (often not quite simple), which is not the sub-
ject of this study. Moreover, we do not study the existence of autarky. Note that
if u (·) is so-called CES-function

u (ξ) = ξρ, ρ ∈ (0, 1) ,

the autarky is not possible. So we consider non-CES sub-utility. More precisely,
we consider so-called “pro-competitive” sub-utilities, i.e., such that Arrow-Pratt
measure ru is increasing function. Moreover, in addition to (1), in what follows
we will assume that

u′(0) < ∞, u′′(0) > −∞, −∞ < u′′′(0) < ∞. (28)

Obviously, conditions (28) not valid for CES-function.
Thus, Q = L · X, moreover, (23)–(26) are

dX

dτ
=

1
τ

· R′ (X)
R′′ (X)

· Ec (F ) · EF (29)

τ · dZ

dτ
=

R′ (0)
R′′ (0)

· (Ec (F ) · EF + 1) (30)

((
1
τ

· R′ (X)
R′′ (X)

+
R′ (0)
R′′ (0)

)
· Ec (F ) − rc (F ) · X

τ

)
· EF = − R′ (0)

R′′ (0)
(31)

EΛ = 0 (32)

Note that, due to (28),
R′ (0) = u′ (0) > 0

and
R′′ (0) = 2u′′ (0) < 0.

Moreover, (22) is

R′′ (X)
R′ (X)

· τ +
R′′ (0)
R′ (0)

− R′′ (X)
R′ (X)

·R
′′ (0)

R′ (0)
· rc (F )
Ec (F )

· X > 0,

i.e. (let us recall that Ec (F ) < 0),
(

1
τ

· R′ (X)
R′′ (X)

+
R′ (0)
R′′ (0)

)
· Ec (F ) − rc (F ) · X

τ
< 0.

Hence

EF = − R′ (0)
R′′ (0)

· 1(
1
τ

· R′ (X)
R′′ (X)

+
R′ (0)
R′′ (0)

)
· Ec (F ) − rc (F ) · X

τ

< 0. (33)

Now, let us formulate the main result of the paper.



Dixit-Stiglitz-Krugman Model with Investments in R&D 405

Proposition 1. Near autarky, the Social welfare increases.

Moreover, (33) admits us to understand the behavior of the individual con-
sumptions, the size of the firms, the mass of the firms, and prices (inverse
demand).

Proposition 2. Near autarky,

dX

dτ
< 0,

dZ

dτ
< 0,

dQ

dτ
< 0,

dN

dτ
> 0,

d

dτ
(p (X,Λ)) > 0,

d

dτ
(p (Z,Λ)) > 0.

4 Proofs

4.1 Proof of Proposition 1

Due to (27),

dW

dτ
= −N ·

(
W · c (F ) · rc (F ) · X

τ
·EF + u′ (X) · dX

dτ
+ u′ (0) · dZ

dτ

)
. (34)

Note that
u′ (X) · dX

dτ
+ u′ (0) · dZ

dτ

=
u′ (X)

τ
· R′ (X)
R′′ (X)

· Ec (F ) · EF +
u′ (0)

τ
· R′ (0)
R′′ (0)

· (Ec (F ) · EF + 1)

=
(

u′ (X)
τ

· R′ (X)
R′′ (X)

+
u′ (0)

τ
· R′ (0)
R′′ (0)

)
· Ec (F ) · EF +

u′ (0)
τ

· R′ (0)
R′′ (0)

(due to (31))

=
(

u′ (X)
τ

· R′ (X)
R′′ (X)

+
u′ (0)

τ
· R′ (0)
R′′ (0)

)
· Ec (F ) · EF

− u′ (0)
τ

·
((

1
τ

· R′ (X)
R′′ (X)

+
R′ (0)
R′′ (0)

)
· Ec (F ) − rc (F ) · X

τ

)
· EF

=
((

u′ (X)
τ

· R′ (X)
R′′ (X)

− u′ (0)
τ2

· R′ (X)
R′′ (X)

)
· Ec (F ) +

u′ (0)
τ

· rc (F ) · X

τ

)
· EF

=
1
τ

·
(

R′ (X)
R′′ (X)

·
(

u′ (X) − R′ (0)
τ

)
· Ec (F ) +

R′ (0)
τ

· rc (F ) · X

)
· EF .

Thus, since
R′ (0) = R′ (X) · τ

due to (20),

u′ (X) · dX

dτ
+ u′ (0) · dZ

dτ
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=
1
τ

·
(

R′ (X)
R′′ (X)

· (u′ (X) − R′ (X)) · Ec (F ) + R′ (X) · rc (F ) · X

)
· EF .

Hence

dW

dτ
= −N ·

(
W · c (F ) · rc (F ) · X

τ
·EF + u′ (X) · dX

dτ
+ u′ (0) · dZ

dτ

)

= −N ·
(

W · c (F ) · rc (F ) · X

τ

)
· EF

−N · 1
τ

·
(

R′ (X)
R′′ (X)

· (u′ (X) − R′ (X)) · Ec (F ) + R′ (X) · rc (F ) · X

)
· EF

= −N

τ
·
(

R′ (X)
R′′ (X)

· (u′ (X) − R′ (X)) · Ec (F )
)

· EF

− N

τ
· ((W · c (F ) · X + R′ (X)) · rc (F ) · X) · EF

= −N

τ
·
(

−R (X) · Ec (F ) +
(

c (F ) · L · X

V (Q,F )
· u (X) + R′ (X)

)
· rc (F ) · X

)
· EF .

Note that
c (F ) · L · X

V (Q,F )
=

R′ (X) · X

R (X)
= ER (X)

due to (16) and (20). Hence

dW

dτ
= −N

τ
· (−R (X) · Ec (F ) + (ER (X) · u (X) + R′ (X)) · rc (F ) · X) · EF

= −N

τ
· (−R (X) · Ec (F ) + ER (X) · (u (X) + u′ (X)) · rc (F ) · X) · EF > 0.

4.2 Proof of Proposition 2

Due to (29), (30), (21), and (33),

dX

dτ
< 0,

dZ

dτ
< 0.

Further,

dQ

dτ
= L ·

(
dX

dτ
+ τ · dZ

dτ
+ Z

)
= L ·

(
dX

dτ
+ τ · dZ

dτ

)
< 0.

Further,
dN

dτ
=

d

dτ

(
L

V (Q,F )

)

= − L

(V (Q,F ))2
·
(

∂V (Q,F )
∂Q

· dQ

dτ
+

∂V (Q,F )
∂F

· dF

dτ

)
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= − L

(V (Q,F ))2
·
(

c (F ) · dQ

dτ
+ (c′ (F ) · Q + 1) · dF

dτ

)

= − L · c (F )
(V (Q,F ))2

· dQ

dτ
> 0.

Further,

Ep(X,Λ) = Eu′(X)
Λ

= Eu′(X) − EΛ = Eu′ (X) · EX − EΛ = −ru (X) · EX > 0.

Finally,

d

dτ
(p (Z,Λ)) =

d

dτ

(
u′ (Z)

Λ

)
= −

u′ (Z) · Λ · dZ

dτ
− u′ (Z) · dΛ

dτ
Λ2

= −u′ (Z)
Λ

· dZ

dτ
= −p (Z,Λ) · dZ

dτ
> 0.

5 Conclusion

In this paper, we continue to examine the impact of R&D investment on market
equilibrium in the Dixit–Stiglitz–Krugman model.

In contrast to previous work, here we focus on the behavior of social welfare
near autarky when transport costs are too high. We show that, near autarky,
social welfare increases with respect to transport costs. This result seems counter-
intuitive, it was previously known only for the linear production cost case.

For simplicity, we study the case of two symmetric (on population) countries.
Note that the result can be developed for non-symmetric countries But in this
case, it is necessary to use the addition condition – so-called “trade balance” (cf.
[12]). We plan to study the “asymmetric” case in the near future.

Moreover, it seems interesting to generalize the result for the trade with
retailing (cf. [27,28]).

For policy-making, our topic may be interesting because of a new understand-
ing of gains from trade: technological changes in response to trade liberalization.
Furthermore, for modernization and active industrial policy practiced in some
countries it can be interesting, which equilibrium outcome in various sectors may
follow from some stimulating measures like tax reductions conditional on R&D.
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Abstract. The paper investigates a contractual approach and studies
economies with non-convex production. The contractual theory devel-
oped in [15,16] for exchange and in [19] for production economies is
modified and adapted to the models with non-convex and non-smooth
production sector. We clarify an appropriate notion of the web of con-
tracts, their dominance by coalitions, the partial break of contracts,
etc. A generalized notion of marginal contractual allocation (called K-
marginal fuzzy contractual) is introduced and used in equilibrium analysis
together with marginal cost pricing (MCP -equilibrium) that is applied
in literature instead of Walrasian equilibrium for production economies
with increasing returns to scale. We analyze marginal pricing rules that
can be specified as Clark’s derivative and similar ones. The equivalence
between MCP -equilibria and K-marginal fuzzy contractual allocations
(K is a convex cone) presents the main result. It can be viewed as a theo-
retical substantiation of the concept of MCP -equilibrium in non-convex
economies. The work develops a contractual approach as a universal way
for perfect competition modeling.

Keywords: Contractual production economies · Non-convex
technologies · Marginal cost pricing · MCP-equilibrium · Clark’s
derivative

1 Introduction

One of the major objectives of the economic theory and its basic part—General
Equilibrium Theory—consists of the description of resource allocation imple-
mented via the system of the markets. In the classical Arrow–Debreu model result-
ing allocation arrives as Walrasian (competitive) equilibrium that is the basic
object of the theoretical analysis, see [1,2,14,20], etc. Arrow–Debreu economies
were developed and generalized in different directions, one of them being the study
of models with non-convex technological sets. Structurally they are Arrow–Debreu
models for which increasing returns from the scale in production is possible; the
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convexity of technological sets (and sets of the preferred consumption bundles) is
a very important assumption, otherwise, equilibria may not exist. However, non-
convexity in technologies is a characteristic property for many modern industrial
spheres (for example, for private municipal enterprises). Therefore, the case of non-
convex technological sets is a very important theoretical problem.

The non-convexity in technologies leads to the known concept of equilibrium
with pricing by marginal costs, so-called MCP -equilibrium. For the first time,
the existence of MCP -equilibrium for a monopolistic economy with one firm
has been established in [13]. Further, in [3] the existence of an equilibrium with
marginal costs pricing has been proved for several firms with non-convex tech-
nologies, most general results have been obtained in [4,5]; a survey of literature
one can find in [6]. Notice that equilibrium with marginal costs pricing imple-
ments only necessary conditions for Pareto optimality of current (equilibrium)
production allocation. In general, MCP -equilibrium may not be Pareto optimal;
however, these conditions are sufficient in a convex case and correspond with the
profit maximization of producers.

Our analysis is based on a contractual approach extended to the production
model in an appropriate way. In the consumption sector, we consider barter con-
tracts delivering commodities for exchange, but for production contracts, agents
have taken material expenses related to the production of goods. The collections
of contracts can be transformed via concluding new mutually beneficial barter
contracts and breaking (possible partial) existing ones, production plans can now
also be changed. For non-convex technologies, a transformation of the produc-
tion program is possible only within the limits of the specific marginal convex
cone. Stable collections (webs) of contracts are the subject of the study, these
webs allow to characterize Walrasian equilibrium for the convex economy and
with MCP -pricing (marginal cost pricing) equilibrium for non-convex one. A
specific property of the contractual approach is that all processes of production
and exchange are going without any kind of value parameters.

In the next section, we describe production economies, study the Pareto
frontier in non-convex and non-differential case, and present crucial necessary
conditions in terms of tangent cones. In the third section, we introduce specific
generalized MCP -equilibrium and study contractual approach for non-convex
case: the model is presented here and the equivalence theorem is proved.

2 Non-convex Technologies in Arrow–Debreu Economies

2.1 Production Economies

The formal classical Arrow–Debreu economy in its shortest form is presented by
the following bundle of parameters:

EAD = 〈 I,J , Rl, {Xi,Pi(·), ei, {θi}}i∈I , {Yj}j∈J 〉. (1)

Here I = {1, . . . , n} is the set of consumers, J = {1, . . . , m} is the set of produc-
ers (firms), l is a number of commodities and R

l = L is the commodity space.
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Consumption sets are denoted as Xi ⊂ R
l and X =

∏
i∈I Xi; agents’ pref-

erences are presented by point-to-set mappings Pi : Xi ⇒ Xi, i ∈ I where
Pi(xi) = {yi ∈ Xi | yi �i xi} is a set of all consumption bundles strictly preferred
by the i-th agent to the bundle xi. It is also applied the notation yi �i xi which is
equivalent to yi ∈ Pi(xi). Consumers have also initial endowments ei ∈ Xi, i ∈ I.
Determine e = (e1, . . . , en). A producer j ∈ J is described by a technological set
Yj ⊂ L, Y =

∏
j∈J Yj , defined in terms of material flows, i.e., a non-negative com-

ponent of yj ∈ Yj is an output but if it is negative then it is an input of commodity
in the units of counting. Now for a vector of prices p = (p1, . . . , pl) ∈ L′ = R

l

profit πj(p, yj) for a plan yj ∈ Yj can be calculated in the form of inner product
πj(p, yj) = 〈p, yj〉 = p · yj . There are also nm scalar values θj

i ≥ 0 they being
the components of vectors θi = (θ1i , . . . , θm

i ) present the shares of i in the profits

πj of producers j ∈ J ; by the definition
n∑

i=1

θi = (1, . . . , 1). Further, I recall the

definition of competitive (Walrasian) equilibrium.

Definition 1. A triplet (x, y, p), where x = (xi)i∈I ∈ X is a family of con-
sumption plans, y = (yj)j∈J ∈ Y are production plans and p = (p1, . . . , pl) 	= 0,
p ∈ L′ is a price vector is said to be quasi-equilibrium, if 1:

p · yj ≥ 〈p, Yj〉 ∀j ∈ J , (2)

〈p,Pi(xi)〉 ≥ p · ei +
m∑

j=1

θj
i p · yj = p · xi ∀i ∈ I, (3)

n∑

i=1

xi =
n∑

i=1

ei +
m∑

j=1

yj . (4)

If all inequalities in (3) have strict sign then the triplet (x, y, p) is called com-
petitive (Walrasian) equilibrium.

Requirements (2)–(4) have a familiar economic sense. If inequality (3) has
strict form it means that consumption plan xi is an optimal choice (demand) for
individual i under his/her budget constraint p·zi ≤ p·ei+

∑m
j=1 θj

i p·yj = ri(p, y),
zi ∈ Xi, where the right-hand side presents the total agent’s income from all
channels under prices p = (p1, . . . , pl) ∈ L′. Condition (2) says that producers
maximize profit and (4) is a material balance condition, that usually is presented
as the equality of demand and supply.

Conditions guaranteeing the existence of equilibria in Arrow–Debreu model
are well known in the literature, e.g. see [1,17,20]. In the consumption sec-
tor, they are the continuity (different versions are applied), open-convex values,
irreflexivity, and local non-satiation of agents’ preferences Pi : Xi ⇒ Xi ∀i ∈ I.
Consumption sets have to be convex and closed; moreover, they have to provide
a bounded (compact) set of all feasible allocations. These requirements are suffi-
cient for quasi-equilibria or more refined notion of equilibria with non-standard
prices do exist in exchange economy, see [11,17]. For strict equilibria to exist one

1 〈A,B〉 = {〈a, b〉 = a · b | a ∈ A, b ∈ B} for all A,B ⊂ L; A ≥ b ⇐⇒ a ≥ b ∀a ∈ A.
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needs to require additional survival assumptions: it may be resource relatedness,
irreducibility, or something like this one. Further, let us turn to the production
sector and consider it in more detail.

For the production sector, it is usually assumed that for all j ∈ J techno-
logical sets Yj have the following properties:

• Yj—convex, closed sets (i.e., limit and mixed technological processes are per-
missible),

• Yj − R
l
+ ⊂ Yj—free disposal condition,

• Yj

⋂
R

l
+ = {0}—no free lunch, where R

l
+ is a positive orthant of commodity

space,
• Y

⋂
(−Y ) = {0}—the irreversibility of production processes.

In spite of the latter three requirements have an own economic sense, they are
really needed to provide, together with consumption sets properties (bounded-
ness from below), that the set of all feasible (balanced) allocations is bounded
one. Nowadays one can often meet a direct requirement for the feasible alloca-
tion set to be bounded. The first assumption is for us now the most of interest
and as a part of it the convexity of production sets. Without this requirement,
equilibria may not exist.

2.2 Pareto Frontier and Tangent Cones

We start our analysis from the characterization of Pareto optimality. Everywhere
below we will suppose

(A) For each i ∈ I, Xi is a convex solid2 closed set, ei ∈ Xi, and for every
xi ∈ Xi there exists an open convex Gi ⊂ L such that Pi(xi) = Gi ∩ Xi and if
Pi(xi) 	= ∅ (non-satiated preferences) then xi ∈ cl Pi(xi)\Pi(xi).3

Let us specify the set of all feasible allocations in model E
A(E) = {z = (x, y) ∈ X × Y |

∑

i∈I
xi =

∑

i∈I
ei +

∑

j∈J
yj}.

Now I recall a standard definition of Pareto optimality.

•A feasible allocation (x, y) ∈ A(E) is said to be (weakly) Pareto optimal if
there is no a family ((x′

i)i′∈I , (y′
j)j∈J ) ∈ A(E) such that x′

i �i xi for all i ∈ I.

In our analysis we shall apply several notions of tangent cones, see [7,8,21].
Now first I recall some Minkowski algebraic operations. The product by the
number, the sum and the difference of Minkowski are determined by the formulas:
if A,B ⊂ L, λ ∈ R then

λA = {λa | a ∈ A}, A + b = b + A = {a + b | a ∈ A}, b ∈ L,

A + B = {a + b | a ∈ A, b ∈ B}, A
∗− B = {a ∈ L | a + B ⊆ A},

�(b, A) = inf{||b − a|| | a ∈ A} − is distance from a point b ∈ L to the set A.

2 Here “solid” is equivalent to “having a nonempty interior.”.
3 The symbol clA denotes the closure of A and \ is set for the set-theoretical difference.

The requirement means the preferences are locally non-satiated.
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Let Ω ⊂ R
l be a set and a ∈ cl(Ω). A vector g is called an admissible direction

of the set Ω at a point a if there is a number αg > 0 such that

a + αg ∈ Ω, α ∈ (0, αg).

The set TA(Ω, a) of all admissible directions is called adjacent tangent cone to
Ω ⊂ R

l at a ∈ cl(Ω). It can be shortly presented as

TA(Ω, a) = lim
α→+0

Ω − a

α
=

⋃

α0>0

⋂

α∈(0,α0)

Ω − a

α
.

The vector g is called the tangent direction at the point a to the set Ω, if for
α → +0 there is o(α) : (0, α0) → R

l such that

a + αg + o(α) ∈ Ω,

where o(α) is so that o(α)
α → 0 for α → +0. The set TL(Ω, a) of all tangent

directions is called (lower) tangent cone to Ω ⊂ R
l at a ∈ cl(Ω) and can also be

presented in the form

TL(Ω, a) = lim inf
α↓0

Ω − a

α
= {g ∈ Ω | lim

α↓0
�(g, α−1(Ω − a)) = 0}.

An element g ∈ R
l is called the possible tangent direction to Ω at a, if there

is a sequence gk ∈ R
l, k ∈ N and a sequence of positive real numbers αk > 0,

k ∈ N so that
gk → g, αk ↓ 0, a + αkgk ∈ Ω.

The set TB(Ω, a) of all tangent vectors is called the contingent cone (or the
Bouligand tangent cone) to Ω ⊂ R

l at a ∈ cl(Ω). In a short form, it is

TB(Ω, a) = lim sup
α↓0

Ω − a

α
= {g ∈ R

l | lim inf
α↓0

�(g, α−1(Ω − a)) = 0}.

An element g ∈ R
l belongs to Clarke cone if for any sequences xk ∈ Ω and

positive real numbers αk > 0, k ∈ N such that xk → a, αk ↓ 0 there exists a
sequence gk ∈ R

l for which xk + αkgk ∈ Ω.4 So, the Clarke tangent cone to a
set Ω at a point a can be described as

TC(Ω, a) = lim inf
α↓0,x→a

Ω − x

α
= {g ∈ R

l | lim
α↓0,x→a

�(g, α−1(Ω − a)) = 0}.

where the convergence x → a occurs over the set Ω.
The inclusions are obvious

TC(Ω, a) ⊆ TL(Ω, a) ⊆ TB(Ω, a).

If the set Ω is convex (or locally convex), then all the three indicated cones are
equal. Clearly also that TA(Ω, a) ⊆ TL(Ω, a).
4 This is not Clarke’s original definition from [7], but it is equivalent to it.
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Lemma 1. Let an economy E obey (A) and be non-satiated at a point
((x̄i)i∈I , (ȳj)j∈J ) ∈ A(E). Assume that for each j ∈ J there is a convex cone
Kj(ȳj) ⊂ R

l such that Kj(ȳj) ⊂ TB(Yj , ȳj). Now if the allocation (x̄, ȳ) ∈ A(E)
is Pareto optimal then ȳj ∈ ∂Yj ∀j ∈ J and there is p ∈ R

l, p 	= 0 such that

〈Pi(x̄i), p〉 ≥ 〈x̄i, p〉, i ∈ I, (5)

〈Kj(ȳj), p〉 ≤ 0, j ∈ J . (6)

Proof. The Pareto optimality of an allocation can be rewritten in the following
form: ((x̄i)i∈I , (ȳj)j∈J ) ∈ A(E),

[
∑

i∈I
Pi(x̄i) −

∑

i∈I
ei]

⋂ ∑

j∈J
Yj = ∅. (7)

Assume ȳj′ ∈ int Yj′ for some j′ ∈ J . Now via (A) one can find x′
i ∈ Pi(x̄i)

enough close to x̄i, i ∈ I and such that
∑

i∈I
(x′

i − x̄i) + ȳj′ = y′
j′ ∈ int Yj′ ⇒

∑

i∈I
x′

i =
∑

j �=j′,j∈J
ȳj + y′

j′ +
∑

i∈I
ei.

So we find an allocation (x′, (y′
j)j∈J ), where y′

j = ȳj for j 	= j′, which dominates
(x̄, ȳ), that is impossible for Pareto optimal allocation.

Further, due to
∑

i∈I x̄i − ∑
i∈I ei =

∑
j∈J ȳj , (7) and Bouligand tangent

cone definition one concludes

[
∑

i∈I
int Pi(x̄i) −

∑

i∈I
ei]

⋂
⎛

⎝
∑

j∈J
ȳj + TB(

∑

j∈J
Yj ,

∑

j∈J
ȳj)

⎞

⎠ = ∅.

Now since TB(
∑

j∈J Yj ,
∑

j∈J ȳj) ⊇ ∑
j∈J TB(Yj , ȳj) we find

[
∑

i∈I
int Pi(x̄i) − ∑

i∈I
ei]

⋂ ∑

j∈J
[ȳj + TB(Yj , ȳj)] = ∅ ⇒

[
∑

i∈I
int Pi(x̄i) − ∑

i∈I
ei]

⋂ ∑

j∈J
[ȳj + Kj(ȳj)] = ∅.

Here two convex sets have empty intersection, one of which has a nonempty
interior. We can apply separation theorem and find p ∈ R

l, p 	= 0 such that

〈p,
∑

i∈I
int Pi(x̄i) −

∑

i∈I
ei〉 ≥ 〈p,

∑

j∈J
[ȳj + Kj(ȳj)]〉.

The set of values on the right-hand side of this inequality is upper-bounded,
therefore because every Kj(ȳj) is a conic set with a vertex at zero, we conclude

〈p,Kj(ȳj)〉 ≤ 0 ∀j ∈ J & 〈p,
∑

i∈I
int Pi(x̄i) −

∑

i∈I
ei〉 ≥ 〈p,

∑

j∈J
ȳj〉.
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The left inequality states (6). Now applying x̄i ∈ cl Pi(x̄i), i ∈ I, taking into
account

∑
i∈I x̄i =

∑
i∈I ei +

∑
j∈J ȳj , passing to the limits5 and transforming

the right inequality we yield: for each i′ ∈ I
∑

i�=i′,i∈I
〈p, x̄i〉 + 〈p,Pi′(x̄i′)〉 ≥ 〈p,

∑

i∈I
ei〉 + 〈p,

∑

j∈J
ȳj〉 =

∑

i�=i′,i∈I
〈p, x̄i〉 + 〈p, x̄i′〉.

Omitting identical terms this proves (5). ��
So, Lemma 1 presents specific necessary conditions for an allocation to be

Pareto optimal and this is an analog of the Second Welfare Theorem. Here the
family of cones Kj(ȳj) ⊂ TB(Yj , ȳj), j ∈ J accumulates the form of efficiency in
this specification: wider cones provide a better description, and the best among
them is a collection of half-spaces. Of course one can also try to apply the
asymptotic cones described above, but among them only the Clarke cone is
convex. The way to overcome this obstacle is to transform these cones using
the method suggested in [21,22] for specifying the derivatives of the point-to-set
mapping: I describe this construction below. It is based on the crucial property of
Minkowski geometrical difference presented in the following lemma (see Lemma
1.1.4 in [22]).

Lemma 2. For any cone K, the set K
∗− K is its convex subcone. For the

convex cone K, the equality K = K
∗− K holds. If K is closed then K

∗− K is
closed and

TC(K, 0) = K
∗− K.

Proof. For x ∈ (K ∗− K) and real λ > 0 one has λ(x + K) ⊂ λK = K ⇒
λx + K ⊂ K. So, K

∗− K is a cone. Moreover, since for x, y ∈ (K ∗− K) one
has x + (y + K) ⊆ x + K ⊆ K one concludes x + y ∈ (K ∗− K), i.e., K

∗− K

is a convex cone. The closeness of K
∗− K for closed K is obvious. The proof of

relation TC(K, 0) = K
∗− K can be found in [22], Lemma 1.4.5, p. 45. ��

There is another way to associate a cone with the given set.

Definition 2. Let Ω ⊂ L. The set

O+Ω = {x ∈ L | ∀a ∈ Ω,∀λ ∈ R, λ ≥ 0, a + λx ∈ Ω}. (8)

is called the asymptotic cone of Ω.

It is easy to see that O+Ω is convex and in general, it can be non-closed. The
asymptotic cone is closely related with the cones specified via Minkowski geo-
metrical difference, it can be alternatively defined as

O+Ω = Ω
∗− Ω.

5 Here ∀p ∈ R
l 〈p, cl Pi(x̄i)〉 ≥ b ⇐⇒ 〈p,Pi(x̄i)〉 ≥ b ⇐⇒ 〈p, int Pi(x̄i)〉 ≥ b, ∀b ∈ R.
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Now applying the geometrical difference to the cones introduced above we are
going to the specification of convex approximating cones. They are the following:
if a ∈ clΩ, Ω ⊂ L; then asymptotic lower tangent cone is

TAL(Ω, a) = TL(Ω, a) ∗− TL(Ω, a),

and the asymptotic upper tangent cone is

TAB(Ω, a) = cl
[
(TB(Ω, a) ∗− TB(Ω, a)) + TAL(Ω, a)

]
.

The most important properties of these cones are summarized in the following
theorem (see Theorem 1.4.1 in [22]).

Theorem 1 (Polovinkin). The cones TAL(Ω, a) and TAB(Ω, a) are convex
and closed. Moreover, the equalities and inclusions are valid:

TAL(Ω, a) = TC(TL(Ω, a); 0), (9)

TAB(Ω, a) = cl [TC(TL(Ω, a); 0) + TC(TB(Ω, a); 0)] (10)

TC(Ω, a) ⊆ TAL(Ω, a) ⊆ TAB(Ω, a) ⊆ TB(Ω, a). (11)

Moreover, all inclusions in (11) can be strict.

Proof of the theorem can be found in [22]. A useful characterization of the
Clarke cone is presented in the following theorem. This specification is based on
Theorem 1.2 from [8], p. 84, I omit a detailed proof here.

Theorem 2. Let Y ⊂ R
l be a technological set, satisfying standard assumptions

and ȳ ∈ ∂Y . Then

• For almost all boundary points Ω ⊂ ∂Y , every point has a tangent hyperplane,
i.e. it is the differentiability point of a function f which graph presents

Y = {y ∈ R
l | f(y) ≤ 0}, ∂Y = {y ∈ R

l | f(y) = 0}.

• Clarke tangent cone at ȳ ∈ Y is a normal cone to

Δ(ȳ) =
{

h ∈ R
l | ∃yt ∈ Ω, t ∈ N : yt →

t→∞ ȳ & ∇f(yt)
||∇f(yt)|| →

t→∞ h
}

, i.e.

TC(Y, ȳ) = {κ ∈ R
l | 〈h, κ〉 ≤ 0 ∀h ∈ Δ(ȳ)}.

Proof. According to the assumptions for every z ∈ R
l one can find the only real

λ = λ(z) such that [z − λ(1, 1, . . . , 1)] ∈ ∂Y . Now we have

Y = {z ∈ R
l | λ(z) ≤ 0}.

Define f(z) = λ(z), z ∈ R
l. Clearly, because of assumptions, f(·) satisfies the

Lipschitz condition and, therefore, is an absolutely continuous function. It is
known that functions of this type are differentiable almost everywhere. The
second statement of the theorem follows from the characterization of Clarke
subdifferential for Lipschitz functions presented in Theorem 1.2 from [8]. ��
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Fig. 1. a) A non-convex set Y ; b) Lower tangent cone TL(Y, y)
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y
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Fig. 2. c) Bouligand tangent cone TB(Y, y); d) Tangent cones to Y at y ∈ Y

So, as an application one can describe the necessary conditions for an allo-
cation to be Pareto optimal, the best option is to choose an asymptotic upper
tangent cone TAB(Yj , ȳj). In contrast, the worst choice is the Clarke cone
TC(Yj , ȳj). Let us call a convex closed cone K ⊆ L marginal (at a point ȳj ∈ Yj)
iff

TC(Yj , ȳj) ⊆ K ⊆ TAB(Yj , ȳj). (12)

A specification of the related equilibrium concepts and related contractual
notions is presented in the next section. Below, I give an example showing that
the cones presented above can be really different ones.

Example 1. On the two-dimensional plane, Fig. 1 and 2 present possible non-
convex technological set Y and mentioned above cones associated with the point
y ∈ Y . In Fig. 1b) dark area presents a lower tangent cone at y (it is convex now),
in Fig. 2c) non-convex Bouligand tangent cone is denoted as a light gray area
with a solid boundary line; from this, an asymptotic cone TB

∗− TB is derived,
it is shown as a dark gray area. Figure 2d) presents all conic types: negative
orthant coincides with TC(Y, y) since (1, 0), (0, 1) ∈ Δ(y) (see Theorem 2), wider
middle gray area corresponds to lower tangent cone TL(Y, y) and the widest
one is asymptotic upper cone TAB(Y, y), now it is a half-space, bounder by the
diagonal solid line. ��
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3 MCP-Equilibrium and Contracts in Economies with
Non-convex Technologies

3.1 Marginal Cost Pricing

Below we study an economy E with non-convex production sets but our approach
covers also the convex case as a particular one. Nonconvexity in production
may occur, for example, due to increasing returns to scale (firm revenues are
increasing per-unit costs). For example, the recording of the CD-ROM is costlier
than its replication, overwriting occurs at low cost. However, this possibility
(because of technical-mathematical reasons) has not been studied in the classical
version of the existence theory. Of course, in order for an equilibrium to exist
under non-convex technology, the concept should be appropriately modified.
However, this modification should be such that the new concept is resulted in
(or at least has chances) the Pareto optimal allocation, as it is in the convex
case. Pricing on the basis of average costs does not satisfy this requirement.
The key idea of MCP -equilibrium is that profit maximization is replaced by
the (necessary) first-order condition (let us say expressed in terms of gradients
of the functions that define the production sets), which in the convex case is
also sufficient for a plan to be a profit maximizer. Thus the concept directly
generalizes the usual competitive equilibrium. As the subject of interpretation,
one is usually talking about the social planner, who has the ability to “evaluate”
the price obtained according to the principle of marginal cost pricing (MCP ),
and then force the manufacturers to adhere to the specified production plans.
Let’s first analyze the simplest version of a non-convex manufacturing sector,
described by differentiable functions.

Assume that the production sets Yj are described via differentiable functions
ϕj by formula

Yj = {y ∈ L | ϕj(y) ≤ 0}, j ∈ J . (13)

and, moreover, in this case the boundary of production sets can be defined as6

∂Yj = {y ∈ L | ϕj(y) = 0} 	= Yj , j ∈ J . (14)

Define X =
∏

i∈I
Xi, Y =

∏

j∈J
Yj . The following definition of MCP -equilibrium

can be found in [6,13].

Definition 3. MCP–equilibrium (marginal cost pricing) is a triplet (x, y, p),
where x = (xi)i∈I ∈ X is a family of consumption plans, y = (yj)j∈J ∈ Y are
production plans and p = (p1, . . . , pl) 	= 0 is a price vector, that satisfies the
following conditions:

y ∈
∏

j∈J
∂Yj & ∃λj > 0 : p = λj∇ϕj(yj), ∀j ∈ J , (15)

6 Clearly, in the general case, the topological boundary of the set may be narrower
than the set described in (14).
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〈p,Pi(xi)〉 > p · ei +
∑

j∈J
θj

i p · yj = p · xi, ∀i ∈ I, (16)

∑

i∈I
xi =

∑

j∈J
yj +

∑

i∈I
ei. (17)

The requirement (15) is the above-mentioned first-order conditions which the
equilibrium production plans must satisfy instead of the condition of profit maxi-
mization (2). Conditions (16), (17) present the optimum of consumer preferences
under budget and other constraints and the balance of commodity markets.

In the latter definition, it is implicitly assumed that production can be
unprofitable, but total taxes cover the losses of firms with nonconvex production
sets. It is important to note that if all firms have convex technologies, the concept
of equilibrium with marginal cost pricing is turning to be the Walrasian equilib-
rium in the classical Arrow–Debreu model. Further well-known in the literature
and one of the simplest results (see [6]) on the existence of MCP -equilibria is
stated.

Consider a model with one firm and let assumptions (13), (14) hold. In addi-
tion, let us assume 0 ∈ Y , Y − R

l
+ ⊆ Y , the set (Y +

∑
I ei) ∩ R

l
+ is bounded

and if y +
∑

I ei ∈ ∂Y ∩ R
l
+, then ∇ϕ(y) � 0.

Let for all i ∈ I consumption sets Xi = R
l
+, and preferences are determined

via utility functions ui : Xi → R, which are continuous, strictly concave, and
locally non-satiated ones.

Theorem 3 (Mantel, 1979). Under presented assumptions an equilibrium
with marginal cost pricing does exist.

Essentially stronger results can be found in [4,5]. Here many firms are con-
sidered and they may have a non-smooth boundary, as well as a general rule
of pricing is analyzed. In this context, the mapping ψ :

∏
J ∂Yj → R

l
+ is con-

sidered, which maps a vector of production plans to a set of production prices.
Requirements on the map ψ(·) are very general and this approach can present
the marginal cost pricing as soon as average cost pricing—ACP , and also other
variants, see [4,6]. Nevertheless, the most interesting variants of the price rule
are presented in the form of the requirement for prices to satisfy the necessary
(first-order) conditions for the Pareto optimality of the equilibrium distribution.
In [4] there are several price rules, each can be multi-valued and specified as
Clark normal cone:

gj(yj) = {p ∈ R
l | 〈p, TC(Yj , yj)〉 ≤ 0}, yj ∈ ∂Yj , j ∈ J .

Now condition (15) in Definition 3 is changed to

y ∈
∏

j∈J
∂Yj & p ∈ gj(ȳj), ∀j ∈ J .

This replacement leads us to MCP-equilibrium by Bonnisseau–Cornet. One can
continue the generalization and apply another normal tangent cone, but he/she
only needs that presented tangent cone is convex. So, one can apply

gj(yj) = {p ∈ R
l | 〈p, TAB(Yj , yj)〉 ≤ 0}, yj ∈ ∂Yj , j ∈ J ,
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where TAB(Yj , yj) was defined in (10).
Further, we are passing on the major purpose of the paper—the analysis of

the contractual approach in Arrow–Debreu model with non-convex technologies.

3.2 Contracts in Non-convex Arrow–Debreu Model

First I recall briefly the conceptual apparatus of the theory of barter contracts,
see [16,18,19], while adapting it to the model with the production sector.

Any vector v = (vi)i∈I ∈ LI satisfying
∑

i∈I vi = 0 is called a barter
(exchange) contract. Such barter contracts are used in pure exchange economies,
as well as in the consumption sector in the economy with production. In what fol-
lows, we assume that any barter agreement is valid. With every finite collection
V of (permissible) contracts, it can be associated allocation x(V ) = e+

∑
v∈V v,

where e = (e1, . . . , en) ∈ X is an initial resource allocation. If e +
∑

v∈U v ∈ X
∀U ⊆ V , i.e., if any part of the contracts is broken one can get anyway a feasible
allocation, then we call V a web of contracts.

How can contractual concepts be modified and adapted to an economy with
production? For the beginning, one can study the model with individualized
production, to which the standard convex Arrow–Debreu model can be easily
reduced. Indeed, specifying Ȳi =

∑
j∈J θj

i Yj one arrives at an equivalent model.
In such a case one can introduce the notion of contract as a pair (v, y) ∈ LI ×LI ,
where v is an ordinary barter contract but y = (y1, . . . , yn) is a vector that
corresponds to production programs yi for individuals i ∈ I. Now if (v, y) ∈
LI × ∏

i∈I Ȳi, i.e., if each production program is feasible, yi ∈ Ȳi, i ∈ I, then
contract (v, y) is permissible. For a finite collection V of contracts in the model
(1) one can put into correspondence (consumption) allocation

x(V ) = e +
∑

(v,y)∈V

y +
∑

(v,y)∈V

v.

This method is well working for convex production economies and was success-
fully applied in [18,19]. For a non-convex economy, the presented reduction works
incorrectly because leads to an arbitrary change of the model since now relation∑

i∈I Ȳi =
∑

j∈J Yj is violated (it is true only for convex Yj , j ∈ J ).
The crucial idea for the comparing of production programs is that the dif-

ference between a new production plan y′
j ∈ Yj and an old one yj ∈ Yj has to

belong to a (convex) marginal tangent cone specified at the point yj for the set
Yj . In other words, one needs

y′
j − yj ∈ Kj(yj), j ∈ J

to be able to compare a bundle (y′
j)j∈J = y′ ∈ Y of production plans with

the initial bundle (yj)j∈J = y ∈ Y . Cones Kj(yj) are associated with the con-
tractual interaction and present the first-order conditions specified in Sect. 2.2
and Lemma 1. In particular these cones can be chosen as TC(Yj , yj) either
TAL(Yj , yj), or TAB(Yj , yj) defined in Sect. 2.2. Now we introduce the concept
of the web of contracts and their domination in production economies.
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Again we specify contract as is a pair (v, y) ∈ LI × LJ , where v is an
ordinary barter contract v = (v1, v2, . . . , vn) and y = (y1, . . . , ym) is a bundle
of production programs yj ∈ Yj , j ∈ J . Now a reallocation z = (z1, . . . , zn) of
production plans can be added to individual consumptions, it can be specified
as follows

zi =
∑

j∈J
θj

i yj , i ∈ I.

So, if we have (v, y) ∈ LI ×Y and
∑

i∈I vi = 0, then contract (v, y) is permissible
and it implies consumptions xi = ei + vi + zi ∈ L, i ∈ I. Now we can define
a web of contracts (V, y) associated with the family of production plans y ∈ Y :
here V is a finite set of barter contracts such that

∑

v∈U

v + z + e ∈ X, ∀U ⊆ V ⇐⇒ ei + zi +
∑

v∈U

vi ∈ Xi, ∀i ∈ I, ∀U ⊆ V,

i.e., under the current endowments e ∈ X and production plans y ∈ Y , individ-
uals enter into contractual relationships so that they can break any contracts.
Specify:

x(V, y) = e + z(y) +
∑

v∈V

v ∈ LI .

I pay your attention that we apply the only family of production plans y = (yj)J .
Now let us pass to the definition of webs domination. This domination assumes
that some contracts from a web can be broken (as a whole), some new contracts
concluded and new production plans generated.

A web of contracts (W, y′) dominates a web (V, y) by coalition S ⊆ I, written
as (W, y′) �S (V, y), iff

• ∀v ∈ V \W , S ∩ {i ∈ I | vi 	= 0} 	= ∅—consumers from S can break contracts
from V \W ;

• ∀v ∈ W\V , S ⊇ {i ∈ I | vi 	= 0}—only consumers from S can sign new
contracts;

• (y′
j − yj) ∈ Kj(yj), j ∈ J ;

• xi(W, y′) �i xi(V, y) ∀i ∈ S.

An allocation that cannot be dominated is called contractual.
The described contractual interaction also allows us to introduce a concept

of contractual core, specified for non-convex production. This weak concept is
related with a bundle of marginal conic sets Kj(yj) ⊆ L, j ∈ J and is so that
MCP-equilibrium with prices from the normal cone, i.e., prices p ∈ L′, p 	= 0
satisfying

〈p,Kj〉 ≤ 0, j ∈ J ,

belongs to the core.

Definition 4. Coalition S ⊆ I dominates an allocation (x, y) ∈ A(E) via
marginal cones K = (Kj)j∈J ⊂ LJ if there is (xS , zS) ∈ ∏

i∈S Xi × LS such
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that for some y′
j ∈ Yj satisfying (y′

j − yj) ∈ Kj, j ∈ J one has zS
i =

∑
j∈J θj

i y
′
j

and
∑

S xS
i =

∑
S ei +

∑
S zS

i so that xS
i �i xi ∀i ∈ S.

The set CK(E) ⊂ A(E) of all allocations that can be dominated by no coalition
is called weak K-core.

This core is really weaker than the standard one as soon as the possibilities of
a coalition to dominate are reduced and the core may contain allocations that
are not Pareto optimal. An advantage of the concept is that generalized MCP -
equilibrium allocation (presented below) always is an element of the core and
it is nonempty. It can be easily proved by arguing by contradiction. Moreover,
we can consider the classical method of modeling perfect competition and apply
the replicas of the economy, having in mind the asymptotic theorem on the
coincidence of the core and equilibrium.

Now we are passing to a discussion of partially broken contracts. It leads us
to the notions of proper and fuzzy contractual allocations.

The simplest contractual model admitting partial break of contracts can be
presented in the following way. Let (V, y) be a web. For real α define

αV = {α · v | v ∈ V }.

So, αV is a web, yielded from V by multiplying contracts on α. For 0 ≤ α ≤ 1
consider web U = αV ∪(1−α)V , which obviously implements the same allocation
x(U, y) = x(V, y). The web U = αV ∪ (1 − α)V is called α-partition of the web
V . An allocation x = x(V, y) is properly contractual if α-partition of V is stable
for every α ∈ [0, 1]. For the model of an economy with individualized production,
I present below a narrative definition in substantial terms.

Definition 5 (Marakulin, 2014). A pair (x, y) ∈ X × Y is called properly
contractual allocation if there is a web V such that the following conditions are
satisfied:

(i) x = x(V, y) =
∑

v∈V

v + e + y.

(ii) There is no coalition S, for which it is profitable:
(α) to partially break barter contracts;
(β) to transit from the programs y = (yS , yI\S) to new production programs

y′ = (y′
S , yI\S), where y′

S ∈ ∏

i∈S

Yi and yI\S ∈ ∏

i∈I\S

Yi;

(γ) to sign a new contract.

In [19] it has been proven that for the smooth convex Arrow–Debreu
economies every interior properly contractual allocation is an equilibrium, see
also [18]. Moreover, this result has been extended to the non-convex Arrow–
Debreu model with respect to MCP -equilibrium and technological sets having
smooth boundaries. Below we introduce and study the concept of fuzzy contrac-
tual allocation and prove the equivalence of it with MCP -equilibrium in a very
general context for non-smooth, non-convex economies and do not assuming an
interior point.
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Definition 6. Let K = (Kj)j∈J ⊂ LJ be a family of marginal cones. An allo-
cation (x̄, ȳ) ∈ A(E) implemented by a web of barter contracts V = {v}, where

v = x̄ − z̄ − e, z̄ = (z̄i)i∈I , z̄i =
∑

j∈J
θj

i ȳj

is called K-marginal fuzzy contractual if for every t = (ti)i∈I , 0 ≤ ti ≤ 1,
∀i ∈ I, there are no other production programs yi

j ∈ L, yi
j − ȳj ∈ Kj, j ∈ J and

a barter contract w = (w1, . . . , wn) ∈ LI ,
∑

i∈I wi = 0 such that for

ξi = ξi(t, v, w, y) = ei + tivi + wi + zi, zi =
∑

j∈J
θj

i y
i
j , i ∈ I (18)

one takes place
ξi �i x̄i ∀i : ξi 	= x̄i. (19)

This definition describes the following contractual interaction. First, the individ-
uals are going to partially break barter contracts, each in the measure (1 − ti)
and it is private information: nobody else knows about it. Second, they change
production plans for yi

j ∈ L in a part θj
i that they can control and under the

condition yi
j ∈ ȳj + Kj , j ∈ J : this is a form of social production efficiency

(notice that
∑

i∈I θj
i y

i
j = yj ∈ ȳj + Kj since Kj is a convex set). Finally, agents

conclude a new barter contract w = (w1, . . . , wn). As a result of this interac-
tion, each involved individual has to benefit. Notice that due to (19) contract
w = 0 is also possible and thereby only partial break can be realized. So, if there
is no domination of this kind, then an allocation is called K-marginal fuzzy
contractual.

The following lemma characterizes fuzzy contractual allocations in “geo-
metrical” categories. Recall that an allocation (x̄, ȳ) ∈ A(E) is called stable
relative to asymmetrical partial break (lower stable) iff ∀i ∈ I ∀zi ∈ Zi =∑

j∈J θj
i (ȳj + Kj) 7

zi + (1 − λ)x̄i + λ(ei + z̄i) �i x̄i ∀0 ≤ λ ≤ 1 ⇐⇒
∀i ∈ I (Zi + [x̄i, ei + z̄i])

⋂ Pi(x̄i) = ∅. (20)

The specificity of condition (20) is that if it is not true, then there is an individual
who acting separately certainly changes the web as soon as it is beneficial for
him. Here, there is no contractual interaction.

Lemma 3. Let (x̄, ȳ) ∈ A(E) be an allocation lower stable relative to a par-
tial break and K = (Kj)j∈J ⊂ LJ be a family of marginal cones specified for
(ȳj)j∈J = ȳ. Then (x̄, ȳ) is K-fuzzy contractual if and only if

A(LI)
⋂ ∏

i∈I

(
(Pi(x̄i) − Zi + co{(ei + z̄i − x̄i), 0})

⋃
{ei}

)
= {e}. (21)

7 It means that nobody wants to partially break a barter contract without concluding
a new one.
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Here Zi =
∑

j∈J θj
i (ȳj + Kj), z̄i =

∑
j∈J θj

i ȳj, i ∈ I, e = (e1, e2, . . . , en) and
A(LI) is a subspace that corresponds to the material balance constraints:

A(LI) = {(ζi)i∈I ∈ LI |
∑

i∈I
ζi =

∑

i∈I
ei}.

This characterization works very efficiently in applications, but one has to apply
(21) and (20) simultaneously. In particular, applying it below we state the equiv-
alence between fuzzy contractual allocations and MCP -equilibria. To do it one
has to separate sets from the left-hand part of (21) by linear functional and
analyze the result.

Proof. Necessity. Let (21) be false. Therefore in the left-hand side of the inter-
section (21), there is ζ = (ζi)i∈I 	= e. Define

S = {i ∈ I | ζi 	= ei} 	= ∅.

Further, find a new contract with this support and the appropriate amounts of
contracts breaking. Define wi = ζi − ei that gives

∑
i∈I wi = 0 since ζ ∈ A(LI).

For i /∈ S one obviously has wi = 0, i.e., supp (w) = S. Also for i ∈ S one has

ζi ∈ (Pi(x̄i) − Zi + co{0, (ei + z̄i − x̄i)}),

that allows to conclude ∃ 0 ≤ ti ≤ 1 and ξi �i x̄i such that:

ei + wi = ζi = ξi − zi + ti(ei + z̄i − x̄i) ⇒ ξi = ei + tivi + zi + wi,

for vi = x̄i − ei − z̄i, i ∈ S (for i /∈ S one puts ti = 1 & zi = z̄i ⇒ ξi = x̄i).
Here due to

∑
I x̄i =

∑
I ei +

∑
I z̄i we have

∑
I vi = 0. This contradicts the

definition of K-fuzzy contractual allocation.
Sufficiency. Let (21) be true for (x̄, ȳ) ∈ A(E), and in addition, let the alloca-

tion be lower stable relative to the partial breaking. Assume this is not K-fuzzy
contractual. Then there are t = (ti)I , plans zi ∈ Zi, i ∈ I, and a barter contract
w = (w1, . . . , wn) ∈ R

ln,
∑

I wi = 0, satisfying all Definition 6 requirements.
This for vi = x̄i − z̄i − ei due to (18) for the members of a nonempty coalition
yields

∃ξi ∈ Pi(x̄i) : xi = ξi + ti(ei + z̄i − x̄i) = ei + wi + zi. (22)

Summing over i by the definition of contract one concludes
∑

I xi =
∑

I ei +∑
I zi, i.e., for ζi = xi − zi, i ∈ I allocation ζ = (ζi)I belongs to the intersection

in the left-hand part of (21). If one supposes ζ = e, then xi = ei + zi ∀i ∈ I,
that being substituted to the right-hand part of (22) yields wi = 0, ∀i ∈ I
⇒ supp (w) = ∅. Hence, domination is carried out without the exchange and
only via a partial break of the gross contract v = x̄ − z̄ − e. However, this
contradicts the lower stability relative to a partial break. Therefore, one finds
an allocation ζ 	= e which belongs to the intersection of the left-hand side (21);
it is a contradiction. ��
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Now we formalize generalized MCP -equilibrium and then state equivalence
of it and K-marginal fuzzy contractual allocation.

Definition 7. Let (x, y, p) be a triplet such as x = (xi)i∈I ∈ X is a family of
consumption plans, y = (yj)j∈J ∈ Y are production plans and p = (p1, ..., pl) 	= 0
is a price vector. Given a family K = (Kj(yj))j∈J of marginal cones at points
(yj)j∈J , triplet (x, y, p) is called K-MCP-quasi-equilibrium if it obeys the
following conditions:

yj ∈ ∂Yj & 〈p,Kj〉 ≤ 0 ∀j ∈ J , (23)

〈p,Pi(xi)〉 ≥ p · ei +
∑

j∈J
θj

i p · yj = p · xi ∀i ∈ I, (24)

∑

i∈I
xi =

∑

j∈J
yj +

∑

i∈I
ei. (25)

If all inequalities in (24) have strict signs, then the triplet (x, y, p) is called
K-MCP-equilibrium.

Here, in contrast to the convex case, the freedom of the individual in choosing
a production plan is limited. It is assumed that mutual cooperation or some
authority establishes joint production plans, and the individuals still have the
right to decide: do it or not (a specific form of non-binding agreement). However,
the individual deviations from a given production plan are only possible within
the sets Kj ∩ Yj in a part that an individual i ∈ I can control, i.e. θj

i Kj . Again,
in the case of convex production, this requirement and standard one coincide.

Finally, we note that similarly to the convex Arrow–Debreu economy for non-
convex case one can introduce the notion of a fuzzy core that is closely related to
fuzzy contractual allocations. The main theoretical value of the fuzzy core is that
it can be effectively applied to develop a theory of the existence of competitive
equilibria and, in view of results presented here, fuzzy contractual allocations. I
omit this presentation, the general methodology of this approach (with regard
to the existence of equilibrium in convex economies) one can find in [1], and the
most advanced mathematical results in [9,10] and [17], etc.

Remark 1. The existence of MCP -equilibria and the non-emptiness of weak K-
core is not studied in this paper, we left this problem for further research. In the
literature, it is well known that these problems are closely related and the exis-
tence of one can be derived from another one. For Clarke cones K = KC(Yj , yj)
we deal with MCP -equilibrium by Bonnisseau–Cornet, which existence was
stated in [5] that clearly implies the non-emptiness of our weak core. Notice
that under standard assumptions for production set Y ⊂ R

l a point-to-set map-
ping y ⇒ TC(Y, y) has good mathematical properties, it is lower semicontinuous
correspondence with non-empty, convex, and closed values. This simplifies the
existence problem, for other chosen cones (e.g. K = TAB(Y, y)) it is not true and
it can be a difficult obstacle. ��
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Relationship between K-marginal fuzzy contractual allocation and K-MCP -
equilibrium is established in the following

Theorem 4. Let (x̄, ȳ) ∈ A(E) be an allocation in Arrow–Debreu economy and
K = (Kj(ȳj))j∈J be a family of closed convex cones such that

TC(Yj , ȳj) ⊆ Kj(ȳj) ⊆ TAB(Yj , ȳj), j ∈ J .

If (x̄, ȳ) is K-marginal fuzzy contractual, then it is K-MCP-quasi-equilibrium.
On the contrary, assume that there are prices p̄ ∈ L′ such that (x̄, ȳ, p̄) is K-
MCP-equilibrium. Then (x̄, ȳ) is K-marginal fuzzy contractual.

In the theory of the existence of Walrasian equilibrium, the conditions under
which each quasi-equilibrium turns into a strict equilibrium are well known: it is
necessary to require additionally some survival assumptions, the representative
of which can be irreducibility. Here we omit the description of these methods
and refer the interrogated reader to [17].

Proof. Necessity. Our analysis is based on Lemma 3 and the application of rela-
tion (21). Indeed, (x̄, ȳ) is K-fuzzy contractual iff (21) and (20) hold. Excluding
ei from the left-hand side of (21), one concludes

A(LI)
⋂ ∏

i∈I
(Pi(x̄i) − Zi + co{(ei + z̄i − x̄i), 0}) = ∅.

Here affine subspace A(LI) is intersected with a convex solid set. Applying
classical separation theorem we can find a nonzero linear functional (vector)
f = (f1, . . . , fn) ∈ LI separating these sets, that is

〈f,A(LI)〉 ≤ 〈f,
∏

i∈I
(Pi(x̄i) − Zi + co{(ei + z̄i − x̄i), 0})〉.

The left-hand side of the inequality is upper bounded and, since A(LI) is a
subspace, one concludes

〈(f1, . . . , fn), {(ζ1, . . . , ζn) ∈ Ln |
n∑

i=1

ζi = 0}〉 = 0 ⇒
fi = fk = p 	= 0 ∀i, k ∈ I.

Now, substituting this to the latter inequality and transforming it we obtain
∑

i∈I
〈p,Pi(x̄i) − Zi + co{(ei + z̄i − x̄i), 0}〉 ≥

∑

i∈I
pei. (26)

Now we recall that Zi = z̄i +
∑

j∈J θj
i Kj where every Kj is a convex conic set,

that due to
∑

i∈I
∑

j∈J θj
i Kj =

∑
j∈J Kj and the last inequality allows us to

conclude
〈p,−

∑

j∈J
Kj〉 ≥ 0 ⇒ 〈p,Kj〉 ≤ 0 ∀j ∈ J ,
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that proves (23). Further, notice that x̄i ∈ cl Pi(x̄i) ∀i ∈ I implies

x̄i − z̄i + ei + z̄i − x̄i = ei ∈ cl[Pi(x̄i) − Zi + co{(ei + z̄i − x̄i), 0}],

that substituting it into left hand side of (26) for j 	= i and then omitting
identical terms yields

∀i ∈ I 〈p,Pi(x̄i)−Zi +co{(ei + z̄i − x̄i), 0}〉 ≥ pei ⇒ 〈p,Pi(x̄i)− z̄i〉 ≥ pei.

Again, taking into account x̄i ∈ cl Pi(x̄i) and specification of z̄i the last one
implies

〈p,Pi(x̄i)〉 ≥ pei +
∑

j∈J
θj

i pȳj & px̄i ≥ pei +
∑

j∈J
θj

i pȳj i ∈ I.

Because (x̄, ȳ) ∈ A(E), one concludes px̄i = pei +
∑

j∈J θj
i pȳj for all i ∈ I that

finishes the proving (x̄, ȳ, p) is in fact a quasi-equilibrium by Definition 7.
Sufficiency. Let (x̄, ȳ, p̄) be a K-MCP -equilibrium. It easy to see that now

condition (24) in its strict form and (23) for each (fixed) i ∈ I imply that

〈p̄, (Pi(x̄i) − Zi + co{(ei + z̄i − x̄i), 0})〉 > p̄ei.

We always have
∑

i′∈I,i′ �=i

〈p̄, (Pi′(x̄i′) − Zi′ + co{(ei′ + z̄i′ − x̄i′), 0}) ∪ {ei′}〉 ≥
∑

i′∈I,i′ �=i

p̄ei′ .

Summing this and latter one we get a strict inequality that is true for every
i ∈ I. This can be true only if (21) holds. Condition (20) is also true, it follows
from (23), (24) and via Zi, i ∈ I specification. Theorem 4 is proved. �
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Optimization of Regulation and
Infrastructure of the Electricity Market

Alexander Vasin and Olesya Grigoryeva(B)

Lomonosov Moscow State University, Moscow 119991, Russia

Abstract. This research examines a model of a wholesale electricity
market including consumers and producers located at several nodes,
transmitting lines, and energy storages. Tariff regulation aimed at shift-
ing some part of consumption from peak zones of the schedule to off-peak
time of the day is considered. Among producers, we distinguish renewable
energy sources with stochastic production volumes. They can be used
to replace more expensive energy sources, but under adverse conditions
should be replaced by reserve capacities with conventional technologies
or energy storages. Problems of optimal regulation aimed at maximizing
the expected social welfare are studied. We prove that optimal tariffs
for consumers at every node and each time interval should correspond
to average marginal supply costs for the node and the time. Optimal
control strategies for energy storages are determined with account of
their total charge volumes and maximum charging rates. We prove that,
for every storage, the strategy corresponds to maximization of its profit
from energy resale at the competitive market. A problem of the market
infrastructure optimization is also studied. Proceeding from Lagrange
theorem, we obtain the system of equations for determination of optimal
parameters of the storages.

Keywords: Energy storages · Optimal control · Lagrange theorem

1 Introduction

Energy storage is a new tool for increasing the efficiency of wholesale electricity
markets. Electric capacity storage devices (storages) permit to redistribute the
energy produced within the day, to provide the balance of the supply and the
demand at every time and reduce the total production costs. In particular, stor-
ages facilitate the efficient use of renewable energy sources (RES). The volume
of power they supply is a random variable depending on weather conditions.
In a situation where it is necessary to guarantee the supply of energy to all
consumers, under adverse conditions it should be replaced by the energy from
other sources. Energy storages provide the efficient substitution. Another tool
for the same purpose is tariff regulation aimed at transferring part of consump-
tion from the peak zone of the schedule to off-peak time of the day. Aligning
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the curves of the daily load of consumers reduces the demand for generating
capacity, transmission and production costs.

The present paper aims to develop mathematical models for computation
of the optimal tariff rates and the optimal control of energy storages for the
wholesale electricity market. We study the case where the storage control is
based on the reliable forecast of the random factors for the planning interval (for
the day ahead). Below we find out the rule that determines the optimal tariff
rates under these conditions. We also discuss the problem of computation of
optimal parameters of the storages. Our previous research [1,2] examined some
situations with incomplete information on the random factors. On the other
hand, the tariff rates are set for a long time, proceeding from the probabilistic
distribution of the random factors.

Models of the electricity market, taking into account the mentioned new
factors, have been developed in a number of scientific papers. In [3], inelastic
demand from consumers is considered, which includes the hourly components of
the required volume, as well as the shiftable load, which can be redistributed
during the day, taking into account the cost of transferring from the most favor-
able time at less convenient. Using the theory of contracts, the authors study
the problem of optimizing the operation of the energy system by introducing
tariffs that encourage consumers to shift the shiftable load at off-peak times.
The paper [4] discusses the problem of creating an optimal generation schedule
in terms of minimizing costs and emissions. The optimal planning schedule is
based on the use of different electricity prices for consumers in the day-ahead
market, as well as energy storage systems to achieve optimal volumes of produc-
tion and consumption. The results show that shiftable loads should be moved
at off-peak periods, in particular at midnight. Another conclusion is that the
presence of a large number of available blocks with low generating power is
preferable to the presence of one block with a large output power. While cost
minimization and emission minimization are conflicting goals, a solution can be
found that optimizes the vector criterion. Paper [5] considers a similar problem
of minimizing costs and emission in framework of a stochastic model and employs
the probabilistic concept of confidence intervals in order to evaluate forecasting
uncertainty. Particular optimization problems by means of the mentioned tools
were also considered in [1,6–8] for energy systems of various scales.

The main focus of the present research is on maximizing the social welfare
for the wholesale electricity market by means of energy storage devices and
tariff regulation. Section 2 introduces a model of a network wholesale electricity
market with RES and energy storages and establishes the first-order conditions
that determine the optimal control of the storages, proceeding from the Welfare
Theorem [9]. Section 3 specifies the optimal control and price dynamics for some
special cases, where constraints on the storage volume or on the charging rate are
not binding. Section 4 studies the problem of computation of optimal parameters
of the storage. Section 5 examines the optimal tariff rates. In conclusion, we
discuss the main results and some tasks for the future.
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2 Spot Market Model and Formulation of Optimization
Problem

Consider a model of an electricity market consisting of several local markets and
a network transmission system (see [10–12]). Let N be the set of nodes, and
L ⊆ N × N be the set of edges in this network. Every node i ∈ N corresponds
to a local perfectly competitive market. Since the demand for electricity varies
significantly during the day, we consider the functioning of the system depending
on time t ∈ Θ = 1, T , where t is a period of the time with approximately constant
needs, T is the length of the planning interval. In particular, an hour of the day
may be denoted by t. For any (i, j) ∈ L, the transmission line is characterized by
the transmission capacity Q0

ij and loss coefficient kij . The energy flow qt
ij from

node i to node j at any time t is limited by Q0
ij .

Consider the main groups of agents (producers and consumers) operating in
the market. Let A1(i) denote the set of electricity producers with traditional
technologies at node i. Each a ∈ A1(i) is characterized by the cost function
Ca(v) for providing capacity v at any time. The supply function Sa(pi) =
Arg max

v≥0
(vpi − Ca(v)) determines the optimal production volume for a given

period depending on the price. The total supply function Si(pi) =
∑

a∈A1(i)

Sa(pi)

characterizes aggregated behavior for this group and determines its total produc-
tion vt

1i at time t depending on the price pt
i. Below we consider the aggregated

cost function Ci(v) corresponding to this supply function (see [1]). Denote A2(i)
as the set of producers using RES at this node. For them, the total amount of
supplied power is a random variable vt

2i depending on the time and weather con-
ditions at node i. The variable costs for solar panels and wind turbines are close
to 0, so the capacities of these producers can be used to replace more expensive
energy sources. However, under adverse conditions they must be replaced by
reserve capacities with conventional technologies.

Consider electricity consumption. Denote Bi as the set of consumers at node
i. Each consumer b ∈ Bi has needs associated with a specific time t (for example,
space heating and lighting), as well as several types of needs l = 1, L, which can
be satisfied at different times. In the general case, the utility functions of con-
sumers can be described as follows. For every b, his consumption is characterized
by vector −→v b = (vt

bl, t ∈ Θ, l = 0, L), where the volume vt
b0 is the consumption

associated with the needs for a given hour t. The functions ut
b0(v

t
b0, ψ

t
b), t ∈ Θ,

show the utility of such consumption depending on the random factor ψt
b char-

acterizing the weather conditions and other random events affecting the need
for electricity. We assume below that ut

b0(v
t
b0, ψ

t
b) = ut

b0(v
t
b0 + ψt

b). The volume
vt

bl ≥ 0 determines the energy consumption associated with the target l in the
period t. For each type l, the utility of consumption depends on the total amount
of energy allocated to the corresponding target l, taking into account the costs
et
bl of shifting this consumption to time t. Thus, the total utility of the consumer

is as follows:
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Ub(−→v b,
−→
ψ b) =

T∑

t=1

ut
b0(v

t
b0, ψ

t
b) +

L∑

l=1

(ubl(
T∑

t=1

vt
bl) −

T∑

t=1

vt
ble

t
bl).

In the whole paper below, the cost and the utility functions meet stan-
dard assumptions for micro-economic models (see [13]): they are monotonously
increasing, cost functions are convex, utility functions are concave.

Typically consumers cannot plan daily consumption schedules based on cur-
rent wholesale prices, but determine them proceeding from tariff rates −→π b =
(πt

b, t ∈ Θ) set for a long time (about a year), taking into account mean values of
the random factors affecting their consumption during the day. Demand function−→
Db(−→π b), where

−→
Db = (Dt

bl, t ∈ Θ, l = 0, L), shows the optimal volume consumer
b purchases at each time period t for every target l. The vector

−→
Db is a solution

to the following optimization problem:

−→v ∗
b → max

[ T∑

t=1

ut
b0(v

t
b0) +

L∑

l=1

(ubl(
T∑

t=1

vt
bl) −

T∑

t=1

vt
ble

t
bl)

−
T∑

t=1

pt
b(v

t
b0 +

L∑

l=1

vt
bl − Eψt

b)
]
.

(1)

Note that, here vt
b0 is a planed consumption volume and the actual consumption

volume for each period t is vt
bo − ψt

b. We bound our study with the case where
during all periods the consumption volume of each consumer remains positive,
that is, a random factor does not nullify his demand.

The present model takes into account the possibility of using energy storages
to optimize the functioning of the system. The characteristics of the storage at
node i are the capacity, the rates and the efficiency coefficients of charging and
discharging. Following the works [6,13], describe them as follows. Denote as Emin

i

and Emax
i respectively, the minimum and the maximum allowable charge levels

of the storage, V ch
i and V dis

i —maximum rates of charging and discharging, ηch
i

and ηdis
i —as charging and discharging efficiency coefficients, respectively. Denote

as vt
iBat the amount of energy the storage charges or discharges during period

t, a positive value corresponds to charging; v0
iBat shows the initial charge. The

storage control strategy is specified by vector −→v iBat = (vt
iBat, t ∈ Θ). Feasible

controls satisfy the following constraints: ∀i ∈ N , ∀t ∈ Θ

0 ≤ −vt
iBat/ηdis

i ≤ V dis
i for discharging rates; (2)

0 ≤ ηch
i vt

iBat ≤ V ch
i for charging rates; (3)

Emin
i ≤

t∑

k=0

vk
iBat ≤ Emax

i ; (4)
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T∑

t=1

vt
iBat = 0. (5)

In order to simplify formulas below, let Emin
i = 0, Emax

i = Ei, ηch
i = ηdis

i =
ηi, V dis

i = V ch
i = V , v0

iBat = 0, ∀i ∈ N .
The social welfare in this model is determined as follows. Under given tariff

vector −→p , storage control strategies −→v iBat, i ∈ N , and energy flows −→q = (qt
ij , t ∈

Θ, (i, j) ∈ L), where qt
ij = −qt

ji, the production volumes −→v 1 = (vt
1i, t ∈ Θ, i ∈ N)

should meet the required electricity supply and provide the energy balance at
every node i and any time t. That is, the volumes proceed from the equations:

∑

b∈Bi

Dt
b(

−→π ) − ψt
i = v1

t
i + v2

t
i − vBat

t
i +

∑

l:(l,i)∈L

qt
li(1 − kli(qt

li)), (6)

where kli(q) =

{
kli, if q > 0,

0, otherwise.
(7)

The total social welfare for the network electricity market under given control
strategies is

W (
−→
p ,−→v Bat,

−→q ,
−→
ψ ) =

∑

i∈N

(
∑

b∈Bi

ub(Db(
−→
p )) −

∑

t∈Θ

ci(
∑

b∈Bi

Dt
b(

−→
p )

+ ηt
iv

t
iBat − ψt

i − v2
t
i −

∑

l:(l,i)∈L

qt
li(1 − kli(qt

li)))),
(8)

where ηt
i =

{
ηch

i , if vt
iBat > 0;

1
ηdis
i

, if vt
iBat < 0.

This is the total utility of the consumption minus the costs of the production with
account of the energy transmission and exchange with the storages. For every
node, it includes two stochastic components: the total energy production by the
RES and the random change of the planned demand. First, we study the case
where the values of the random variables are known till the end of the planning
interval, so the control depends on these values. Below we assume that vector−→
ψ shows the sum of the two random variables. The problem of optimization of
the mathematical expectation of the social welfare is formulated as

max
−→π ,−→v Bat(

−→
ψ ),−→q (

−→
ψ )

EW (
−→
p ,−→v Bat,

−→q ,
−→
ψ ) (9)

under conditions (2–5) and qij ≤ Q0
ij for any (i, j) ∈ L.
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The rest of this section and Sects. 3, 4 examine the corresponding problem
of optimization of the social welfare by consumption volumes (instead of tariff
rates) under the known random variables:

W (−→v ,−→v Bat,
−→q ) =

∑

i∈N

(
∑

b∈Bi

ub(−→v b) −
∑

t∈Θ

ci(
∑

b∈Bi

∑

l

vt
bl + ηt

iv
t
iBat

−ψt
i −

∑

l:(l,i)∈L

qt
li(1 − kli(qt

li))))) → max.
(10)

With this optimization problem, we can match a competitive network mar-
ket with several products gt, t ∈ Θ, where good gt corresponds to the energy
consumed in period t. Each product is produced by generating companies of the
sets A1i and A2i specified above. For every node i, the cost function is deter-
mined as ct

i(v) = ci(v−ψt
i), where ci() is the minimum cost function determined

above for the set of companies A1i. Besides that, product gt may be produced
by energy storages. In this context, we consider the storage at node i as a pro-
ducing capacity: at every time t it can use the energy produced in the previous
periods as the resource for energy production at this time. For storage i, his pro-
duction strategy is determined by vector −→v iBat, which meets conditions (2–5).
Under a given strategy, the profit is

∑

t
ηt

iviBat
tpt

i. In order to obtain conditions

of the competitive equilibrium for this sector, consider the Lagrange function

for every storage i: Li(−→v iBat,
−→
λ ) =

∑

t
ηt

iv
t
iBatp

t
i +

∑

t∈Θ

5∑

r=1
λt

irg
t
r(

−→v iBat), where

∀i ∈ N, t ∈ Θ gt
i1(

−→v iBat) := viBat
t/ηdis

i + V dis
i , gt

i2(
−→v iBat) := V ch

i − ηch
i viBat

t,

gt
i3(

−→v iBat) :=
t∑

k=0

viBat
k, gt

i4(
−→v iBat) := Ei −

t∑

k=0

viBat
k, gi5(−→v iBat) :=

T∑

t=1
vt

iBat.

Inequalities gt
ik(...) ≥ 0, t ∈ Θ, k = 1, 4, correspond to constraints (2–4) imposed

on the storage control, and equality gi5(−→v iBat) = 0—to constraint (5).
Consider also the first-order condition for −→v iBat to maximize the Lagrange

function:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt
iBat > 0 ⇒ ηpt

i =
T∑

k=t

(λk
i3 − λk

i4) + λi5 − ηiλ
t
i2,

vt
iBat < 0 ⇒ pt

i = λt
i1 + ηi(

T∑

k=t

(λk
i3 − λk

i4) + λi5),

vt
iBat = 0 ⇒ ηi(

T∑

k=t

(λk
i3 − λk

i4) + λi5) ≥ pt
i ≥ (

T∑

k=t

(λk
i3 − λk

i4) + λi5)/ηi.

(11)
The conditions of complementary slackness for the constraints (2, 3, 5) are

λt
i1(V

dis
i + vt

iBat

ηdis
i

) = 0, λt
i2(V

ch
i − ηch

i vt
iBat) = 0, λt

i3(
∑t

k=0 vk
iBat − Emin

i ) = 0,

λt
i4(E

max
i − ∑t

k=0 vk
iBat) = 0.
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The collection consisting of price vector −→p = (pt
i, t ∈ Θ, i ∈ N), consumption

volume vector −→v = (−→v b, b ∈ Bi) and flow vector −→q = (qt
ij , t ∈ Θ, (i, j) ∈ L), is

called a competitive equilibrium of the given market if it satisfies (11) and the
following conditions (12–16):

(vt
bl > 0) ⇒ pt

i + et
bl = arg min

τ∈Θ
(pτ

i + eτ
bl) = u′

bl(
∑

τ∈Θ

vτ
bl)

∀t ∈ Θ, b ∈ Bi, l = 1, L,

(12)

that is, every consumer b, for any target l, chooses a consumption vector that
maximizes his utility, taking into account the cost of purchasing energy and the
costs of transferring the consumption to a less convenient time;

∀t ∈ Θ, b ∈ Bi ut
b0

′(vt
b0) = pt

i, (13)

that is, the volume of the current consumption in period t is determined from
the equity of the marginal utility of consumption to the energy price;

∀t, i c′
i(

∑

b∈Bi

∑

l

vt
bl − ψt

i + ηt
iviBat

t −
∑

(j,i)∈L

qt
ji(1 − kji(qt

ji))) = pt
i, (14)

that is, in each period at every node i the marginal cost of production is equal
to the price of energy;

∀t, (i, j) ∈ L (1/(1 − kij) > pt
i/pt

j > 1 − kij) ⇒ qt
ij = 0; (15)

qt
ij ∈ (0, Q0

ij) ⇒ pt
i = (1 − kij)pt

j , p
t
j(1 − kij) > pt

i,⇒ qt
ij = Q0

ij . (16)

These relations mean that the flow between nodes i and j grows as long as
the commodity transportation is profitable for a small dealer (arbitrager).

Theorem 1. Problem (10) of the social welfare optimization is a convex pro-
gramming problem. The set of its solutions corresponds to the set of competitive
equilibria given by relations (11–16) for the specified market.

Proof. The market under consideration meets the conditions of the Welfare The-
orem, (see [1]). The set of strategies in problem (10) is convex and closed. Given
that ci(v) → ∞ under v → ∞, the area, where the objective function is positive,
is bounded. The properties of functions ci(v), ub(v) imply concavity of the objec-
tive function. Therefore (10) is a convex programming problem. The first-order
conditions (11–16) determine its solutions. According to the Welfare Theorem,
each solution is a competitive equilibrium.
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3 Optimal Control of the Storage at the Local Market

Below we specify the optimal control for some particular cases of problem (10). In
order to simplify formulas, consider a local market with one storage. The results
are easy to generalize to a network market. First, examine the case where the
storage volume is relatively small, so the optimal control does not change the
general structure of the price dynamics, and the constraint on the charging rate
is not binding.

Consider equilibrium prices p0(t), t ∈ Θ, under the unused storage, that is,
under −→v Bat = 0. Let pM

0 and pm
0 denote the maximal and the minimal prices. If

pM
0 ≤ η2

i pm
0 then the prices and the storage control −→v Bat = 0 correspond to the

competitive equilibrium since condition (11) holds. Otherwise, consider essential
local extremums t1 < t1 < t2 < t2 < . . . < tk < tk such that t1, . . . , tk are local
minimums, t1, . . . , tk are local maximums which meet the following conditions:

∀t ∈ (tl, tl) ptl
0 ≥ pt

0 ≥ ptl
0 , ∀t′ ∈ (t, tl) η2pt′

0 > pt
0,

∀t ∈ (tl, tl+1) ptl
0 ≥ pt

0 ≥ p
tl+1
0 , ∀t′ ∈ (t, tl+1) pt′

0 < η2pt
0,

∀l ptl
0 > η2ptl

0 , ptl
0 > η2p

tl+1
0 , here k + 1 := 0.

(17)

These conditions mean that, under fixed prices pt
0, t ∈ Θ, for the storage

it is profitable to buy the maximal amount of energy at time tl and sell it at
time tl for every l = 1, k, and it is unprofitable to buy or sell energy in any
other periods. Figure 1 shows some examples of essential and unessential local
extremums.

Determine the equilibrium prices and the storage control that meet conditions

(11–16). Let E(t) =
t∑

k=1

vk
Bat. For every l = 1, k we find time interval (tst

l , tfin
l ) 


tl, storage charging rates vt∗
Bat, t ∈ (tst

l , tfin
l ), and price pm

l such that

E(tst
l − 1) = 0, E(tfin

l ) = E,

∀t ∈ (tst
l , tfin

l ) vt
Bat ≥ 0, pt ≥ pm

l , pt > pm
l ⇒ vt

Bat = 0.
(18)

These conditions mean that the storage is completely charged up to the end
of the interval, and the price stays the same in all periods when vt∗

Bat > 0. In a
similar way, we determine time interval (tst

l , t
fin
l ) 
 tl, storage discharging rates

vt∗
Bat, t ∈ (tst

l , t
fin
l ), and price pM

l such that

E(tst
l − 1) = E, E(tfin

l ) = 0,

∀t ∈ (tst
l , t

fin
l ) vt

Bat ≤ 0, pt ≤ pm
l , pt < pm

l ⇒ vt
Bat = 0.

(19)

We set

vt∗
Bat = 0 ∀t /∈ ∪l(tst

l , tfin
l ) ∪ (tst

l , t
fin
l ) (20)
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Fig. 1. Initial prices pt0 and equilibrium prices pt under binding constraint on the
storage volume.

and check conditions

∀t ∈ (tfin
l , t

st
l ) pt ∈ (pm

l , pM
l ), ∀t′ ∈ (t, tl) η2pt′

0 > pt
0,

∀t ∈ (tfin
l , tst

l+1) pt ∈ (pm
l+1, p

M
l ), ∀t′ ∈ (t, tl+1) pt′

0 < η2pt
0.

(21)

Note 1. The equilibrium prices in intervals (tfin
l , t

st
l ) and (tfin

l , tst
l+1) do not

change (pt = pt
0) if the shiftable loads stay the same there. Then conditions (21)

hold. Figure 1, 2 and 3 represent this case.
Note that, for every l, the intervals monotonously extend, the price pm

l

monotonously and continuously increases, and the price pM
l monotonously and

continuously decreases by the storage volume E. Thus, under sufficiently small
E, there exists collection (−→v ,−→v Bat,

−→p ) that meets conditions (12–14). In order
to be a competitive equilibrium, the collection should also meet relations (11).
The necessary and sufficient conditions for this are (21) and

∀l η2pm
l ≤ min(pM

l−1, pM
l ), where pM

0 := pM
k . (22)

Thus, we obtain the following result.

Theorem 2. Let prices pm
l and pM

l , l = 1, k, determined according to condi-
tions (18, 19), meet inequality (22). Consider consumption volume vector −→v ∗,
price vector −→p ∗ and storage control −→v ∗

Bat, proceeding from conditions (12–14)
and (18–20). If the prices meet also (21) then this collection corresponds to the
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competitive equilibrium of the market, and −→v ∗
Bat determines the optimal control

of the storage for problem (10).

Consider the other case where the constraint on the charging rate may be
binding, while the constraint on the storage volume is never binding. Then con-
dition (11) shows that pt = −λt

2 + λ5/η in periods with the maximal charging
rate, pt = λt

1 + λ5η in periods with the maximal discharging rate. The results
of our previous research ([2], theorems 4 and 5) imply the next theorem for this
case (see also Fig. 2).

Fig. 2. Initial prices pt0 and equilibrium prices pt under binding constraint on the
charging rate.

Theorem 3. If the constraint on the storage volume is never binding then the
optimal collection (−→v ∗,−→v Bat,

−→p ) for problem (10) satisfies the following condi-
tions: there is a price p∗, such that:

– if price pt in period t meets condition pt > p∗η, then the storage is discharged
at the maximal rate: vt

Bat = −V η;
– if pt = p∗η, then the storage is discharged;
– if p∗

η < pt < p∗η, then the storage is not charged or discharged, vt
Bat = 0;

– if pt = p∗

η , then the storage is charged;

– if pt < p∗

η , then the storage is charged at the maximal rate: vt
Bat = V/η.
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The optimal values vt
Bat, t ∈ Θ, obtained from the first-order conditions,

monotonously increase by p∗, so this price is uniquely determined from equa-

tion:
T∑

t=1
vt

Bat(p
∗) = 0.

An interesting particular case is where volume E and maximal rate V are so
large that none of constraints (2–4) is binding. Then the optimal control almost
equalizes the equilibrium prices: ∀t p∗/η ≤ pt ≤ p∗η; if pt ∈ (p∗/η, p∗η) then
v∗

Bat = 0. Figure 3 shows the price dynamics under the optimal control for the
same initial prices.

Fig. 3. The case without binding constraints.

Next, consider the opposite case: the storage volume is relatively small, so
the optimal control does not change the general structure of the price dynam-
ics, and the constraint on the charging rate is binding in some periods. Then
the equilibrium prices and the optimal control are similar to those determined
by Theorem 2, with the following modifications. In rule (18) for determination
of the time intervals, when the storage accumulates the energy, we change
condition ∀t ∈ (tst

l , tfin
l ), l = 1, k, pt ≥ pm

l for ∀t ∈ (tst
l , t

fin
l ), l = 1, k,

(pt
b < pm

l ) ⇒ vt∗
Bat = V/η. Sometimes in these intervals the charging rate V is

insufficient to increase the equilibrium price pt to pm
l . In a similar way, condition
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∀t ∈ (tst
l , tfin

l )(pt > pm
l ) ⇒ vt∗

Bat = −V η substitutes ∀t ∈ (tst
l , t

fin
l ) pt ≤ pM

l in
rule (19) for determination of the time intervals, when the storage returns the
energy to the market. With these changes, Theorem 2 holds for this case.

4 Optimization of the Storage Parameters

Assume that the storage volume and the charging rate can be increased, the
initial values are E0 and V0, and functions C1(E) and C2(V ) determine the
costs of their increasing, reduced to the planning interval Θ (see [14]). Then E
and V become the components of control vector u = (vt

Bat, t ∈ Θ,E, V ) that
should meet conditions (2–5) and E ≥ E0, V ≥ V0. Consider the corresponding
problem of optimization of the social welfare:

W (−→v Bat, u) =
T∑

t=1

[ut(vt) − c(vt + ηt(vt
Bat)v

t
Bat)] − C1(E) − C2(V ) → max .

(23)
Let marginal costs C

′
1(E) and C

′
2(V ) monotonously increase and tend to ∞

as the arguments tend to ∞. Consider the Lagrange function for the problem
of optimization by u: L(−→v Bat,

−→
λ ,E, V ) = L(−→v Bat,

−→
λ ) − C1(E) − C2(V ). Let

E∗ > E0, V ∗ > V0. The first-order conditions include, besides (11), also the
following equations:

C
′
1(E) =

T∑

t=1

λt
4; C

′
2(V ) =

T∑

t=1

(λt
1 + λt

2). (24)

Theorem 4. Problem (23) of the social welfare optimization is a convex pro-
gramming problem. Any optimal strategy (−→v ∗

Bat, u
∗) satisfies conditions (11–14,

24).

Next, consider the case where the optimal storage volume E∗ is relatively
small, so the optimal control does not change the general structure of the price
dynamics, and the constraint on the charging rate is never binding, so V ∗ = V0.
The conditions for this are similar to (18–21). Let pm

l (E), pM
l (E), l = 1, k, denote

the prices proceeding from this system under a given volume E.

Theorem 5. Let time intervals (tst
l , tfin

l ) and (tst
l , t

fin
l ), l = 1, k, prices pt,

t ∈ Θ, storage control vector −→v ∗
Bat, consumption volume vector −→v ∗, and storage

volume E∗ ≥ E0 meet conditions (12–14, 18–22) and

k∑

l=1

(pM
l (E) − pm

l (E)) = C
′
1(E). (25)

Then these values correspond to the competitive equilibrium of the market, and
(−→v ∗

Bat, E
∗) determines the optimal control of the storage for problem (23). If

E∗ < E0 while the other conditions hold, then E0 is the optimal volume.
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Proof. In this case λt
1 = λt

2 = 0 for any t ∈ Θ; ptstl = ptfin
l = pm

l (E), ∀t ∈
[tst

l , tfin
l ) λt

3 = λt
4 = 0; ∀t ∈ [tst

l , t
fin
l ) pt = pM

l , pt
st
l = pt

fin
l = pM

l (E);
∀t ∈ [tst

l , t
fin
l ] λt

3 = 0, and, proceeding from (11), let λt
4 = pt+1 − pt;

∀t ∈ [tst
l , tfin

l ] λt
4 = 0, and, proceeding from (11), let λt

3 = pt − pt+1. Thus,
∑

t∈Θ

λt
3 =

∑

t∈Θ

λt
4 =

k∑

l=1

(pM
l (E) − pm

l (E)) = C
′
1(E).

Now, consider the case where only constraints (2, 3) on the charging rates
may be binding. Then E∗ = E0, and for any V , Theorem 3 determines the
optimal storage control, the threshold price p∗(V ) and the equilibrium prices
pt(V ). Proceeding from conditions (11), we obtain for this case: λt

3 = λt
4 = 0 for

any t ∈ Θ; λt
2 = p∗/η−pt ≥ 0 if vt

Bat = V/η, otherwise λt
2 = 0; λt

1 = pt −ηp∗ ≥ 0
if vt

Bat = −V η, otherwise λt
1 = 0. Condition (24) implies the next result:

Theorem 6. If
∑

t:pt(V0)<p∗/η

(p∗(V0)/η−pt(V0))+
∑

t:pt(V0)>p∗η

(pt(V0)−ηp∗(V0)) <

C
′
2(V0) then V ∗ = V0, otherwise the optimal charging rate V ∗ meets equation

∑

t:pt(V )<p∗/η

(p∗(V )/η − pt(V )) +
∑

t:pt(V )>p∗η

(pt(V ) − ηp∗(V )) = C
′
2(V ).

5 The Optimal Control for the Stochastic Problem

Now, return to problem (9), where, instead of consumption volumes, tariff rates
for consumers are the components of the control. Under the known random vari-
ables

−→
ψ , the optimal values of social welfare are the same for problems (9) and

(10): it is enough to set tariff rates equal to the equilibrium prices specified in
Theorem 1, then the demand functions determine the optimal consumption vol-
umes meeting conditions (12–14). However, in reality many consumers cannot
plan daily consumption schedules based on current wholesale prices, but deter-
mine them, proceeding from random factors and tariff rates set for a long time.
Assume that behaviour of consumers meets relation (1). Then, any fixed tariff
rates −→π determine the corresponding consumption volumes −→v (−→π ). Under the
given volumes and random variables

−→
ψ , consider optimization of the welfare

in (10) by −→v Bat and −→q . The optimal values (−→v Bat,
−→q )(−→v ,

−→
ψ ) are determined

according to Theorem 1: as well as the equilibrium prices, they proceed from
conditions (11, 14–16). Next, consider optimization of the welfare by consump-
tion volumes in problem (10). The optimal volumes −→v ∗∗ meet the following
first-order conditions:

(vt
bl > 0) ⇒ πt

b + et
bl = arg min

τ∈Θ
(πτ

b + eτ
bl) = u′

bl(
∑

τ∈Θ

vτ
bl)

∀t ∈ Θ, b ∈ Bi, l = 1, L;
(26)

∀t ∈ Θ, b ∈ Bi ut
b0

′(vt
b0) = πt

b. (27)
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For problem (9), we obtain the same value of the welfare if we set:

−→π = E(−→p (
−→
ψ )). (28)

Then the optimal volumes determined by demand functions Db(−→p ) coincide
with −→v ∗∗ since they meet the same first-order conditions. On the other hand,
the optimal value of problem (9) does not exceed the optimal value in problem
(10), since determination of consumption volumes by the demand function is a
special case of an arbitrary choice of volume vectors in problem (10). Finally we
obtain the following result.

Theorem 7. The optimal tariff rates −→π ∗∗, storage control and energy flows
(−→v ∗∗

Bat,
−→q ∗∗)(

−→
ψ ) for problem (9) proceed from system (11, 14–16, 26–28).

Thus, the optimal tariff rates are equal to the average values of the
equilibrium wholesale prices. Note that storage control and energy flows
(−→v ∗∗

Bat,
−→q ∗∗)(

−→
ψ ), as well as the equilibrium wholesale prices p̃(

−→
ψ ), do not coin-

cide with the similar values for the model with completely rational and informed
consumers studied in the previous sections.

Let W (E, V ) denote the optimal value of the expected social welfare depend-
ing on parameters of the storage for a local market. In practice, these values do
not change for a long time including many planning intervals. Thus, the optimal
values correspond to the solution of the following optimization problem:

W (E, V ) − C1(E) − C2(V ) → max .

The solution may be obtained from the first-order conditions in a similar way
as for the model in Sect. 3.

6 Conclusion

The present paper examined several problems of optimal regulation of the elec-
tricity market. The regulation aims to maximize the social welfare. We looked at
the network wholesale market that uses renewable energy sources, tariff regula-
tion and energy storages. The case, where random variables (energy generation
by RES, random components of the energy consumption) are known for the
planning interval (the day ahead), was completely examined. We proved the
convexity of the problems and obtained the first-order conditions for computa-
tion of the optimal energy flows and the optimal control of the energy storages.
Also, conditions were obtained to determine the optimal storage volume and
charging rate at the local market. For the stochastic problem of choosing the
rates of electricity tariffs, it is proved that the optimal rates should correspond
to the average marginal costs of energy production.

An important task for future research is the solution of similar problems with
incomplete information about the values of random variables in the planning
interval.
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Abstract. We solve a weakly supervised regression problem. Under
“weakly” we understand that for some training points the labels are
known, for some unknown, and for others uncertain due to the presence
of random noise or other reasons such as lack of resources. The solu-
tion process requires to optimize a certain objective function (the loss
function), which combines manifold regularization and low-rank matrix
decomposition techniques. These low-rank approximations allow us to
speed up all matrix calculations and reduce storage requirements. This
is especially crucial for large datasets. Ensemble clustering is used for
obtaining the co-association matrix, which we consider as the similar-
ity matrix. The utilization of these techniques allows us to increase the
quality and stability of the solution. In the numerical section, we applied
the suggested method to artificial and real datasets using Monte-Carlo
modeling.

Keywords: Weakly supervised learning · Manifold regularization ·
Low-rank matrix decomposition · Cluster ensemble · Co-association
matrix

1 Introduction

Nowadays, machine learning (ML) theory and methods are rapidly developing
and increasingly used in various fields of science and technology. An urgent
problem remains a further improvement of ML methodology: the development of
methods that allow obtaining accurate and reliable solutions in a reasonable time
in conditions of noise distortions, large data size, and lack of training information.
In many applications, only a small part of the data can be labeled, i.e., the values
of the predicted feature are not provided for all data objects. In the case of a
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large amount of data and limited resources for its processing, some data objects
can be inaccurately labeled.

As a real-world example of such a problem, one can address the task of
manual annotation of a large number of computed tomography (CT) digital
images. In order to distinguish the brain areas affected by stroke, it is required
to engage a highly qualified radiologist, and the process is rather time-consuming.
It is possible that some parts of the images will stay without specifying specific
regions (for example, it is simply indicated that pathological signs are present in
the given CT scan) or are labeled inaccurately. In this case, the assumed region
can be outlined with a frame; the closer to the center of the frame, the greater
the confidence that the brain tissue is damaged.

Weakly supervised learning is a part of ML research aimed at elaborating
models and methods for the analysis of such type of information. In the formu-
lation of a weakly supervised learning problem, it is assumed that some of the
sample objects are labeled inaccurately. This inaccuracy can be understood in
different ways [29].

In the case of coarse grained label information, class labels are provided
only for sets of objects. For example, a collection of regulatory SNPs (Single-
Nucleotide Polymorphisms) in DNA can be marked as a group linked to a
pathology-associated gene. It is required to predict the class (its label) of a new
group of objects. This task is also called multi-instance learning. This problem
is considered, for example, in [26], in which a modification of the SVM method
is proposed for the solution.

In another setting, it is assumed that there is an uncertainty in the indica-
tion of the exact class label arising from errors or due to the limitations of the
observation method itself. Over time various solutions to the problem have been
proposed. One of them is based on finding potentially erroneous labels and cor-
recting them [23]. A similar idea (called censoring of the sample) was developed
in [8]. This approach usually relies on information about the nearest neighbors
of points. Therefore it becomes less reliable in high-dimensional feature spaces
since the points become approximately equidistant from each other.

Another methodology is used when the labeling is performed by many inde-
pendent workers (i.e., crowd-sourcing technique); among them can be both expe-
rienced and inexperienced members (and even deliberately mistaken). To solve
the problem, probabilistic or ensemble methods are used [24,28].

The following approach is based on minimizing theoretical risk estimates
taking into account the random labeling error. The authors of [11] propose a
method based on the fact that the empirical risk functional can be divided into
two parts. The first part does not depend on the noise. Only the second part is
affected by noisy labels.

Methods based on the cluster assumption and the manifold assumption are
also used [2,16]. In [12], the upper bounds of the labels’ noise characteristics are
obtained, and an algorithm for estimating the degree of noise is proposed using
preliminary data partitioning into clusters.
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In this paper, we consider a weakly supervised regression problem in the
transductive learning setting. It means that the test sample is known, and the
values of the predictors can be used as additional information for the target
feature prediction.

We propose a novel method using a combination of manifold regularization
methodology, cluster ensemble, and low-rank matrix representation. We assume
the existence of the dependence between clusters presented in the data and the
predicted continuous target feature (cluster assumption). Such dependence can
be found, for example, when some hidden structures are present in data, and
the belonging of objects to the same structural unit affects the similarity of their
target feature values.

In the rest of the paper, we give the formal statement of the problem (Sect. 2),
describe the details of the suggested method (Sects. 3 and 4), and present the
results of numerical experiments (Sect. 5). Finally, we give some concluding
remarks.

2 Problem Description and Notation

Consider a dataset X = {x1, . . . , xn}, where xi ∈ R
d is a feature vector, d the

dimensionality of feature space, and n the sample size. Suppose that each data
point is sampled from an unknown distribution PX(x).

Fully supervised learning assumes we are given a set Y = {y1, . . . , yn}, yi ∈
DY , of target feature labels for each data point. In the regression problem, values
from a continuous compact set DY ⊂ R are understood as target feature labels.

The objective is to find a decision function y = f(x), which should forecast
the target feature for new examples from the same distribution. The decision
function should optimize a quality metric, e.g., minimize an estimate of the
expected loss.

In an unsupervised learning problem, the target feature is not specified. It
is necessary to find a meaningful representation of data, i.e., find a partition
P = {C1, . . . , CK} of X on a relatively small number K of homogeneous clus-
ters describing the structure of data. The homogeneity criterion depends on the
similarity of observations within clusters and the distances between them. Quite
often, the optimal number of clusters is unknown and should be determined
using a cluster validity index.

The obtained cluster partition can be uncertain due to a lack of knowledge
about data structure, vagueness in setting optional parameters of the learning
algorithm, or dependence on random initializations. In this case, ensemble clus-
tering is a way of obtaining a robust clustering solution. This methodology aims
at finding consensus partition from different partition variants [7]. A properly
organized ensemble (even composed of “weak” algorithms) often significantly
improves the clustering quality.

In the problem of semi-supervised transductive learning, the target feature
labels are known only for a part of the data set X1 ⊂ X (of comparatively
small size as usual). We assume that X1 = {x1, . . . , xn1}, and the unlabeled
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part is X0 = {xn1+1, . . . , xn}. The set of labels for points from X1 is denoted by
Y1 = {y1, . . . , yn1}. It is required to predict labels Y0 = (yn1+1, . . . , yn) in the
best way for the unlabeled sub-sample X0.

This task is essential because in many applied problems only a small part
of available data can be labeled due to the considerable cost of target feature
registration.

We consider a weakly supervised learning context, i.e., we suppose that for
some data points, the labels are known, for some unknown, and for others uncer-
tain due to reasons such as lack of resources for their careful labeling or presence
of random distortions arising in the label identification process.

To model the uncertainty in the label identification, we suppose that for each
ith data point, i = 1, . . . , n1, the value yi of the target feature is a realization of
a random variable Yi with cumulative distribution function (cdf) Fi(y) defined
on DY . We suppose that Fi(y) belongs to a given distribution family.

In this paper, the regression problem is considered, i.e., the predicted feature
is continuous. Further we assume the following normal distribution model for
the uncertain target variable:

Yi ∼ N (ai, σi), (1)

where ai, σi are the mean and the standard deviation respectively. The larger
σi, the more uncertain is the labelling. It is presumed that parameters ai = yi

and σi = si are known for each (weakly) labeled observation, i = 1, . . . , n1. For
strictly determined observation yi, we nevertheless postulate a normal uncer-
tainty model with ai = yi and small standard deviation σi ≈ 0.

We aim at finding a weak labeling of points from X0, i.e., determining Fi(y)
for i = n1 + 1, . . . , n following an objective criterion.

3 Manifold Regularization

Semi-supervised learning and weakly supervised learning assume two basic
assumptions: cluster assumption and the assumption that the data with sim-
ilar labels belong to a low-dimensional manifold.

According to the cluster assumption, one believes that objects from the same
cluster often have the same labels or labels close to each other.

The manifold assumption is based on the hypothesis that there is a smooth
manifold (for example, a two-dimensional surface in multidimensional space) to
which points with similar labels belong. Manifold regularization [2,25] is based
on this assumption. In addition to the learning error, the regularizing compo-
nent is minimized during the model fitting stage. The component characterizes
the smoothness of the decision function change. In dense regions, the decision
function must change slowly, so its gradient must be small. In other words, data
points from X lie on a low-dimensional non-linear manifold M , and the deci-
sion function is smooth on this manifold, i.e., points close to each other possess
similar labels.
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In semi-supervised learning, the regularization functional to be minimized
can be written as following:

J(f) =
1
n1

∑

xi∈X1

V (yi, fi) + γ ‖f‖2M ,

where f = (f1, . . . , fn) is a vector of predicted labels, V a loss function, γ >

0 a regularization parameter, and ‖f‖2M characterizes the smoothness of the
function. In dense regions, the decision function should change slowly, i.e., its
gradient ∇Mf(x) should be small. Thus, the manifold regularizer can be chosen
in this way:

‖f‖2M =
∫

x∈M

‖∇Mf(x)‖2 dPX(x).

Graph Laplacian (GL) [2,27] is a convenient tool for ‖f‖2M estimation. Let
G = (V,E) be a weighted non-oriented complete graph, in which the set of
vertices V corresponds to points from X, and the set of edges E corresponds
to pairs (xi, xj), i, j = 1, . . . , n, i �= j. Each edge (xi, xj) is associated with a
non-negative weight Wij (the degree of similarity between the points).

The degree of similarity can be calculated by using an appropriate function,
for example from the Matérn family [22]. The Matérn function depends only on
the distance h := ‖xi − xj‖ and is defined as

W (h) =
σ2

2ν−1Γ (ν)

(
h

�

)ν

Kν

(
h

�

)

with three parameters �, ν, and σ2. For instance, ν = 1/2 gives the well-known
exponential kernel W (h) = σ2 exp(−h/�), and ν → ∞ gives the Gaussian kernel
W (h) = σ2 exp(−h2/2�2). In this paper we use the Gaussian covariance function,
also called the radial basis function (RBF kernel), with σ = 1:

Wij = exp
(

−‖xi − xj‖2
2�2

)
. (2)

By L := D−W we denote the standard GL, where D is a diagonal matrix with
elements Dii =

∑
j

Wij . There are also normalized GL: Lnorm = D−1/2W D−1/2

and the random walk GL: Lrw = D−1W .
One can show that in semi-supervised regression, the regularization term can

be expressed as following:

‖f‖2M ≈ 1
n2

f�Lf =
1
n2

∑

xi,xj∈X

Wij(fi − fj)2.

4 Proposed Method

Consider a modification of the manifold regularization scheme for a considered
weakly supervised transductive learning problem.

Let F = {F1, . . . , Fn} denote the set of cdfs for data points; each cdf Fi is
represented by a pair of parameters (ai, σi).
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4.1 Objective Functional

Consider the following optimization problem:

find F ∗ = arg min
F

J(F ), where

J(F ) =
∑

xi∈X1

D(Yi, Fi) + γ
∑

xi,xj∈X

D(Fi, Fj)Wij . (3)

Here D is a statistical distance between two distributions (such as the Wasser-
stein distance, Kullback-Leibler divergence, or other metrics). The first sum in
the right side of (3) is aimed to reduce the dissimilarity on labeled data; the sec-
ond component plays the role of a smoothing function: its minimization means
that if two points xi, xj (either labeled or unlabeled) are similar, their labeling
distribution should not be very different.

In this work, we use the Wasserstein distance wp [6] (also known as the
Kantorovich-Rubinstein distance or transportation metric) between distribu-
tions P and Q over a set DY as a measure of their dissimilarity:

wp(P,Q) :=
(

inf
γ∈Γ (P,Q)

∫

DY ×DY

ρ(y1, y2)p dγ(y1, y2)
)1/p

,

where Γ (P,Q) is a set of all probability distributions on DY ×DY with marginal
distributions P and Q, ρ a distance metric, and p ≥ 1.

It is known that for normal distributions Pi = N (ai, σi), Qj = N (aj , σj) and
the Euclidean metric, the w2 distance is equal to [9]

w2(Pi, Qj) = (ai − aj)2 + (σi − σj)2.

We use the w2 distance in (3) for weakly supervised regression and slightly
modify the objective functional in (3) adding an L2 regularizer:

J(a, σ) =
n1∑
i=1

(
(yi − ai)2 + (si − σi)2

)

+ γ
n∑

i,j=1

(
(ai − aj)2 + (σi − σj)2

)
Wij + β(‖a‖2 + ‖σ‖2), (4)

where β > 0 is a regularization parameter, a = (a1, . . . , an)�, σ = (σ1, . . . , σn)�.

4.2 Optimal Solution

To find the optimal solution, we differentiate (4) and get:

∂J

∂ai
= 2(ai − yi) + 4γ

n∑

j=1

(ai − aj)Wij + 2βai = 0, i = 1, . . . , n1, (5)

∂J

∂ai
= 4γ

n∑

j=1

(ai − aj)Wij + 2βai = 0, i = n1 + 1, . . . , n. (6)
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Denote Y1,0 = (y1, . . . , yn1 , 0, . . . , 0︸ ︷︷ ︸
n−n1

)� and let B be a diagonal matrix with ele-

ments
Bii =

{
β+1, i=1,...,n1
β, i=n1+1,...,n.

Combining (5), (6) and using vector-matrix notation, we finally get:

(B + 2γL)a = Y1,0,

thus the optimal solution is

a∗ = (B + 2γL)−1Y1,0. (7)

Similarly, one can obtain the optimal value of σ:

σ∗ = (B + 2γL)−1S1,0, (8)

where S1,0 = (s1, . . . , sn1 , 0, . . . , 0︸ ︷︷ ︸
n−n1

)�.

4.3 Low-Rank Similarity Matrix Representation

For large-scale problems, the dimensionality of matrices to be inverted in (7),
(8) is very large and the inversion is costly. In many applications, a low-rank
matrix decomposition is a useful tool for obtaining computationally efficient
solutions [13]. Nyström method (see, e.g., [10]) or hierarchical low-rank matrix
approximations [14,15,18–21] can be used for obtaining such a decomposition.

Let the similarity matrix be presented in the low-rank form

W = AA�, (9)

where matrix A ∈ R
n×m, m � n. Further, we have

B + 2γL = B + 2γD − 2γAA� = G − 2γAA�, (10)

where G = B + 2γD.
The following Woodbury matrix identity is well-known in linear algebra:

(S + UV )−1 = S−1 − S−1U(I + V S−1U)−1V S−1, (11)

where S ∈ R
n×n is an invertible matrix, U ∈ R

n×m and V ∈ R
m×n.

Let S = G, U = −2γA and V = A�. One can see that

G−1 = diag (1/(B11 + 2γD11), . . . , 1/(Bnn + 2γDnn)) . (12)

From (7), (10), (11) and (12) we obtain:

a∗ = (G−1 + 2γG−1A(I − 2γA�G−1A)−1A�G−1) Y1,0. (13)

Similarly, from (8), (10), (11) and (12) we have:

σ∗ = (G−1 + 2γG−1A(I − 2γA�G−1A)−1A�G−1) S1,0. (14)

Note that in (13) and (14) one needs to invert a matrix of significantly smaller
dimensionality m×m instead of n×n matrix in (7) and (8). The computational
complexity of (13) and (14) can be estimated as O(nm + m3).
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4.4 Co-association Matrix of Cluster Ensemble

We use a co-association matrix of cluster ensemble as a similarity matrix in
(4) [5]. The co-association matrix is calculated in the process of cluster ensemble
creation.

Let us consider a set of partition variants {Pl}r
l=1, where Pl = {Cl,1, . . . ,

Cl,Kl
}, Cl,k ⊂ X, Cl,k

⋂
Cl,k′ = ∅ and Kl is the number of clusters in lth parti-

tion. For each partition Pl we determine matrix Hl = (hl(i, j))n
i,j=1 with elements

indicating whether a pair xi, xj belong to the same cluster in lth variant or not.
We have

hl(i, j) = I[cl(xi) = cl(xj)],

where I(·) is the indicator function with I[true] = 1, I[false] = 0, and cl(x) is
the cluster label assigned to x. The weighted averaged co-association matrix is

H =
r∑

l=1

ωlHl, (15)

where ω1, . . . , ωr are weights of ensemble elements, ωl ≥ 0,
∑

ωl = 1. The
weights are used to assess the importance of base clustering variants [3].
They depend on the evaluation function Γ (e.g., cluster validity index) [3]:
ωl = γl/

∑
l′

γl′ , where γl = Γ (l) is an estimate of the clustering quality for

the lth partition.
The matrix H can be considered as a pairwise similarity matrix which deter-

mines the similarity between points in a new feature space obtained with an
implicit transformation of data.

It is easy to see that H admits a low-rank decomposition in the form:

H = RR�, (16)

where R = [R1R2 . . . Rr], R is a block matrix, Rl =
√

ωl Zl, Zl is (n × Kl)
cluster assignment matrix for lth partition: Zl(i, k) = I[c(xi) = k], i = 1, . . . , n,
k = 1, . . . ,Kl.

As a rule, m =
∑

l Kl � n, thus (16) gives us an opportunity of saving
memory by storing (n × m) sparse matrix instead of full (n × n) co-association
matrix.

The Graph Laplacian matrix for H can be written in the form:

L = D′ − H,

where D′ = diag(D′
11, . . . , D

′
nn), D′

ii =
∑
j

H(i, j). One can see that

D′
ii =

n∑

j=1

r∑

l=1

ωl

Kl∑

k=1

Zl(i, k)Zl(j, k) =
r∑

l=1

ωlNl(i), (17)

where Nl(i) is the size of the cluster which includes point xi in lth partition
variant.
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Using H in the low-rank representation (16) instead of the similarity matrix
W in (9), and the matrix D′ defined in (17), we obtain cluster ensemble based
predictions in the form given by (13), (14).

4.5 WSR-LRCM Algorithm

The basic steps of the suggested weakly supervised regression algorithm based
on the low-rank representation of the co-association matrix (WSR-LRCM) are
as follows.

Input:
X: dataset including both labeled, inaccurately labeled and unlabeled samples;
ai, σi, i = 1, . . . , n1: uncertain input parameters for labeled and inaccurately
labeled points;
r, Ω: number of runs and set of parameters for the k-means clustering (num-
ber of clusters, maximum number of iterations, parameters of the initialization
process).
Output:
a∗, σ∗: predicted estimates of uncertain parameters for objects from sample X
(including predictions for the unlabeled sample).
Steps:
1. Generate r variants of clustering partition for parameters randomly chosen
from Ω; calculate weights ω1, . . . , ωr.
2. Find graph Laplacian in the low-rank representation using (16) and D′ in
(17);
3. Calculate predicted estimates of uncertainty parameters using (13) and (14).
end.

5 Monte-Carlo Experiments

This section presents the results of numerical experiments with the proposed
WSR-LRCM algorithm. The regression quality and running time are experi-
mentally evaluated on synthetic examples with different sample sizes and noise
levels and on a real example.

5.1 First Example with Artificial Data

We consider datasets generated from a mixture of two multidimensional normal
distributions N (m1, σXI), N (m2, σXI) with equal weights; m1, m2 ∈ R

d, d = 8,
σX is a parameter. To investigate the robustness of the algorithm, we added noise
to data by appending two independent features of a uniform distribution U(0, 1).

Let the ground truth target feature is equal to Y = 1+ε for points generated
from the first component, otherwise Y = 2+ε, where ε is a normally distributed
random value with zero mean and variance σ2

ε .
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During Monte Carlo simulations, we generate samples of the given size n
according to the specified distribution mixture. Two-thirds of the sample points
are included into the training part Xtrain, and the remaining points compose the
test sample Xtest. In the training sample, 10% of the points selected at random
from each component comprise a fully labeled sample; 20% of the sample consists
of inaccurately labeled objects; the remaining part contains the unlabeled data.
This partitioning mimics a typical situation in the weakly supervised learning: a
small number of accurately labeled instances, medium sized uncertain labelings
and a lot of unlabeled examples. To model the inaccurate labeling, we use the
parameters defined in (1): σi = δ · σY , where σY is a standard deviation of Y
over labeled data, δ > 0 is a parameter.

The ensemble variants are generated by random initialization of centroids;
to increase the diversity of base clusterings, we set the number of clusters in
each run as K = 2, . . . ,Kmax, where Kmax = 2 + r, and r = 10 is the ensemble
size. The weights of ensemble elements are the same: ωl ≡ 1/r. The regulariza-
tion parameters β, γ have been estimated using grid search and cross-validation
technique. In our experiments, the best results were obtained for β = 0.001 and
γ = 0.001.

The quality of prediction is estimated on the test sample as the mean Wasser-
stein distance between the predicted according to (13), (14) and ground truth
values of the parameters:

MWD =
1

ntest

∑

xi∈Xtest

(
(atrue

i − a∗
i )

2 + σ∗2
i

)
,

where ntest is the test sample size, and atrue
i = ytrue

i the true value of the target
feature. Note that the standard Mean squared error (MSE) quality metric can
be considered as a special case of MWD for accurate labeling.

We compare the suggested method with its simplified version (called WSR-
RBF), which uses the standard similarity matrix evaluated with RBF kernel (2).
Different values of parameter � were considered, and the quasi-optimal � = 1.85
was determined. The output predictions were calculated according to (7) and
(8).

To increase the statistical reliability of the results, we average the obtained
estimates over 40 Monte Carlo repetitions (except for large data size n ≥ 105).

Table 1 shows the results of experiments for different sample sizes and values
of parameter σε. Averaged values of MWD metric and execution times for the
algorithms (working on dual-core Intel Core i5 processor with a clock frequency
of 2.4 GHz and 8 GB RAM) are given. We use the following parameters in the
data generation procedure: m1 = (0, . . . , 0)�, m2 = (10, . . . , 10)�, σX = 3, and
δ = 0.1.

The table demonstrates that WSR-LRCM produces nearly the same or better
results than WSR-RBF with respect to the WMD metric. At the same time,
WSR-LRCM runs much faster. For large sample sizes (n ≥ 105) WSR-RBF
failed due to unacceptable memory demands.
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Table 1. Results of experiments with a mixture of two distributions: averaged MWD
estimates and running time for two algorithms. For n ≥ 105, WSR-RBF failed due to
unacceptable memory demands.

n σε WSR-LRCM WSR-RBF

MWD Time (sec) MWD Time (sec)

1000 0.01 0.002 0.04 0.007 0.04

0.1 0.012 0.04 0.017 0.04

0.25 0.065 0.04 0.070 0.04

5000 0.01 0.001 0.14 0.004 1.71

0.1 0.011 0.14 0.014 1.72

0.25 0.064 0.15 0.067 1.75

10000 0.01 0.001 0.33 0.002 9.40

0.1 0.011 0.33 0.012 9.35

0.25 0.064 0.33 0.065 9.36

105 0.01 0.001 6.72 – –

106 0.01 0.001 89.12 – –

In the next experiment, we compare the proposed WSR-LRCM with semi-
supervised regression algorithm SSR-RBF considered in our previous work [4].
Because in semi-supervised learning, only labeled and unlabeled instances can
be used, in this algorithm, we look at inaccurately labeled objects as they were
unlabeled. The same RBF kernel is applied in this algorithm as in WSR-RBF.
The parameters of the data generation procedure remain unchanged, n = 1000,
σε = 0.1. Table 2 shows the results of the experiments. MWD metric is utilized
for quality evaluation in both cases.

Table 2. Results of experiments with WSR-LRCM and SSR-RBF algorithms. Aver-
aged MWD estimates are calculated for different values of parameter δ.

δ 0.1 0.25 0.5

WSR-LRCM 0.012 0.017 0.038

SSR-RBF 0.051 0.051 0.051

From this table, one may conclude that additional information on uncertain
labelings improves the quality of forecasting in WSR-LRCM. The parameter δ
accounts for the degree of uncertainty: the larger its value, the more similar the
results of weakly supervised and semi-supervised regression become.
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5.2 Second Example with Real Data

In the second example, we analyse the Gas Turbine CO and NOx Emission Data
Set [1,17]. This dataset includes measurements of 11 features describing working
characteristics (temperature, pressure, humidity, etc.) of a gas turbine located
in Turkey. The monitoring was carried out during 2011–2015. Carbon monoxide
(CO) and Nitrogen oxides (NOx) are the predicted outputs. The forecasting of
these harmful pollutants is necessary for controlling and reducing the emissions
from power plants.

We make predictions for CO over the year 2015 (in total, 7384 observations)
and use the following experiment’s settings. The dataset is randomly partitioned
on learning and test samples in the proportion 2:1. The volume of the accurately
labeled sample is 1% of overall data; 10% of data are considered as inaccurately
labeled instances; the remaining data are regarded as unlabeled samples. As
in the previous example, we use the k-means clustering as the base ensemble
algorithm (the number of clusters varies from 100 to 100 + r). All other settings
are the same.

As a result of forecasting, the averaged MWD for WSR-LRCM takes the
value 1.85 and for SSR-RBF the value 5.18.

In order to compare WSR-LRCM with fully supervised algorithms, we cal-
culate the standard Mean Absolute Error (MAE) using estimates of a∗ defined
in (13) as the predicted feature outputs:

MAE =
1

ntest

∑

xi∈Xtest

|ytrue
i − a∗

i |.

A Random Forest (RF) and Linear Regression (LR) methods are evaluated
taking accurately labeled examples as the learning sample. The averaged MAE
is 0.634 for WSR-LRCM, 0.774 for RF (with 300 trees), and 0.873 for LR. The
averaged computing time is 1.99 s for WSR-LRCM, 0.35 s for RF, and 0.38 s for
LR. The growth in the computing time for WSR-LRCM in this experiment can
be explained by a large number of clusters (>100) as k-means parameter.

From the experiments, one may conclude that the proposed WSR-LRCM
gives more accurate predictions than other compared methods in case of a small
proportion of labeled sample.

Conclusion

In this work we have introduced a weakly supervised regression method using
the manifold regularization technique. We have considered the case where the
learning sample includes both labeled and unlabeled instances, as well as inac-
curately labeled data objects. To model the uncertain labeling, we have used the
normal distribution with different parameters. The measure of similarity between
uncertain labelings was formulated in terms of the Wasserstein distance between
probability distributions.
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Two variants of the algorithm were proposed: WSR-RBF, which is based
on the standard RBF kernel, and WSR-LRCM, which uses a low-rank repre-
sentation of the co-association matrix of cluster ensemble. The reason for this
modification is that the low-rank decomposition reduces the memory require-
ment and computing time. The ensemble clustering allows a better discovering of
more complex data structures under noise distortions. The co-association matrix
depends on the decisions of clustering algorithms and is less noise-dependent
than standard similarity matrices.

The efficiency of the suggested methods was studied experimentally. Monte
Carlo experiments have demonstrated a significant decrease in running time
for WSR-LRCM in comparison with WSR-RBF. It has shown that taking into
consideration the additional information on uncertain labelings improves the
regression quality.

We plan to improve our method by using deep learning methodology (in
particular, deep autoencoder) at the stage of ensemble clustering. It would be
interesting to investigate different variants of hierarchical low-rank decomposi-
tion techniques. Applications of this method in various fields are also planned,
especially for spatial data processing, analysis of computed tomography images
and studying the relationships between single nucleotide polymorphisms in DNA
sequences.
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Abstract. Clustering is one of the basic tasks in machine learning and
data mining. Euclidean minimum-sum-of-squares clustering problem is
probably the most common clustering model. It consists in finding k
cluster centers or representatives so as the sum of squared Euclidean dis-
tances from a set of points and their closest centers is minimized. The
problem is known to be nonconvex and NP-hard even in the planner
case. In this paper, we propose a new DC programming approach to
the problem. First, we cast the original nonconvex problem as a con-
tinuous optimization problem with the objective function represented
as a DC function. We then devise a solution algorithm, resting upon
the global optimality conditions and global search scheme for DC min-
imization problems proposed by A.S. Strekalovsky. We implement the
developed algorithm and compare it with k-means clustering algorithms
on generated datasets.

Keywords: Minimum-sum-of-squares clustering · Nonconvex
optimization · DC programming · Local search · Global search scheme

1 Introduction

Clustering is one of the basic subroutines and important tasks in machine learn-
ing and data mining. It is widely applied in a large number of diverse fields,
e.g. computer vision, bio- and cheminformatics, pharmacogenomics, etc. In its
most simple form, clustering is to group objects or data items from a given set
into non-overlapping subsets (clusters) such that each cluster consists of simi-
lar objects, while objects from different clusters are different. Since the prob-
lem of clustering is actually ill-posed, there are numerous approaches to how
define clusters and how clustering should be performed. There are several ways
of categorizing clustering algorithms, e.g. one often distinguishes density-based
algorithms, hierarchical clustering algorithms, and statistical approaches (e.g.
based on Gaussian mixture models). However, ones of the most popular cluster-
ing approaches are the so-called partition-based algorithms that fulfil clustering
by solving a nonconvex optimization problem [15]. Usually, such optimization
problems are to maximize separation of clusters or minimize their homogeneity
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subject to some constraints. The most popular clustering objectives express-
ing homogeneity of clusters are minimum-sum-of-stars (k-medoids), minimum
sum-of-cliques, and minimum sum-of-squares (k-means) clustering [15,22]. Note
that the last problem is probably the most famous and widely applied cluster-
ing model. Moreover, it is one of the first clustering problems formulated as a
mathematical programming problem [37].

Given a finite set J = {1, . . . , m} of data items, each of which is expressed
by a feature vector aj ∈ R

n, j ∈ J . The minimum-sum-of-squares clustering
problem (MSSC) is to find k cluster centers ci ∈ R

n, i ∈ I = {1, . . . , k} so as
to minimize the overall sum of squared Euclidean distances between data items
and their closest centers. Thus, the problem can be expressed as follows:

min
C⊂Rn

{ m∑
j=1

min
c∈C

‖aj − c‖2, |C| = k
}

, (1)

where ‖ · ‖ is the Euclidean distance. It can be viewed as a center-based model
where one needs to find a cluster representative so as to minimize the dissim-
ilarities between data items of a cluster and their representative. The problem
MSSC is known to be NP-hard even in the plane for arbitrary k [26]. Moreover,
it is NP-hard in general dimension even for k = 2 [1] and NP-hard when the
dimension is a part of the input and the number of clusters is not [9]. However,
for fixed dimension n and number of clusters k, the problem can be solved in
O(mnk+1) time. Thus, the problem is challenging even for small-size problem
instances.

MSSC has widely been studied in the literature, hence there are hundreds of
heuristics and exact methods proposed to solve it. The most well-known heuris-
tic for MSSC is k-means (also known as Lloyd’s algorithm), which is probably
the most popular clustering algorithm to date due to its speed and simplicity.
Note that in machine learning literature the objective of MSCC and the prob-
lem itself are often referred to as k-means cost function and k-means problem,
respectively. Any feasible solution of MSSC is often said to be a k-means cluster-
ing. Lloyd’s algorithm is an alternate heuristic that starts from an initial set of
cluster centers and iteratively repeat two steps: (i) assigning each data item to
the closest cluster centers (according to the squared Euclidean distance) - note
that data items assigned to the same center form a cluster, and (ii) computing
the new cluster centers as the means of the data items assigned to the same
clusters. Note that an iteration of the algorithm requires O(mnk) time, and the
algorithm has superpolynomial running time in the worst case. Other notable
traditional heuristic algorithms for MSSC are MacQueen’s algorithm which is
actually an online version of Lloyd’s algorithm and Hartigan-Wong’s algorithm
that is an exchange type local search heuristic. The latter tries to improve an
initial partition by performing swaps of data items between clusters. If such a
swap results in a better value of the objective function, it is accepted and the
next data item is picked.

The further research on MSSC may be broadly divided into several strands.
As the k-means clustering algorithms are local search heuristics, they in gen-
eral converge only to local optima. Consequently, the algorithms are heavily
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dependent on the choice of initial solution (cluster centers) and have to rerun
several times in order to find a quality partition. It is known that k-means
algorithms (e.g. Lloyd’s) can provide arbitrary bad solutions with respect to
the objective value [3]. Thus, a lot of research has been focused on develop-
ing seeding procedures and obtaining theoretical guarantees on solution quality
(e.g. see [29] and references therein). One of the most well-known such modifica-
tions of Lloyd’s algorithm is k-means++ [3] where a seeding procedure allowing
one to obtain Θ(log k)-competitive solution was proposed. Other closely related
research was devoted to the development of approximation algorithms for MSSC,
e.g. a PTAS proposed for a fixed number of clusters k and dimension n [28] and
a linear-time PTAS [23] for a fixed k, as well as the techniques for reducing the
time complexity of the traditional k-means algorithms (e.g. see [20]).

Another strand of research was focused on developing various heuristics for
MSSC aimed at improving traditional k-means algorithms, e.g. by employing
various local search and metaheuristic techniques. For example, modern heuris-
tics include global k-means [4,24], j-means [16], harmonic clustering [6], I-k-
means-+ [19], and plenty of metaheuristics like the scatter search [30], genetic
algorithms [12], tabu search [25], memetic algorithm [27] etc.

There are also exact methods for MSSC, however the research on this direc-
tion is not so flourishing. For example, one of the first branch and bound algo-
rithms for MSSC was proposed in [8]. In [10] a column generation algorithm that
combines an interior point method and a branch and bound algorithm was devel-
oped. In the prominent paper [31] the authors proposed a branch and bound
method where lower bounds for the objective value are found using a linear
programming relaxation obtained with the so-called reformulation-linearization
technique. The authors reported promising results on relatively large prob-
lem instances. Recently, the aforementioned column generation algorithm was
improved in [2] where a new approach to finding solutions of the auxiliary prob-
lem was proposed. The authors demonstrated that their algorithm was able to
find optimal solutions of instances with more than 2000 data items.

Finally, there is also a relatively small strand of literature exploiting an idea of
DC decomposition of the MSSC objective function and/or DC programming [5,
7,17,21]. For example, in [5] the authors considered a DC representation of
nonsmooth problem (1) and developed a DC algorithm based on this nonsmooth
representation. In [17] the authors proposed an efficient DC Algorithm (DCA)
for MSSC cast as a mixed integer program which is then reformulated as a
continuous optimization problem using an exact penalty approach.

In this paper we develop and implement a solution algorithm for MSSC using
its continuous formulation. Our approach is based on a decomposition of the
objective function into the difference of two convex functions. Then, we develop a
solution approach based on a special global search strategy and global optimality
conditions. We report the results of computational experiments on test problem
instances and compare the proposed approach with the most popular k-means
clustering algorithms.
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2 Problem Statement

There are several formulations for MSSC, including the nonsmooth one (1).
However, the problem can also be formulated as a mixed integer program. Recall
that we are given a set of data items J that must be divided into clusters. The
goal is to find cluster centers such that the total sum of squared Euclidean
distances between data items and their closest centers is minimized.

Let us introduce the following binary variables

xij =
{

1, if data item j is assigned to cluster i,
0, otherwise, i = 1, . . . , k, j = 1, . . . , m.

which are often referred to as assignment variables.
We also suppose that the unknown locations of k cluster centers are decision

variables yi ∈ IRn, i = 1, . . . , k. Obviously, we suppose that the number of data
items is greater than k, otherwise the problem is trivially solved. With these
notations, MSSC can be cast as the following mixed integer program:

k∑
i=1

m∑
j=1

xij‖yi − aj‖2 ↓ min
(x,y)

, (2)

k∑
i=1

xij = 1 ∀ j = 1, . . . , m; (3)

xij ∈ {0, 1} ∀i = 1, . . . , k; ∀j = 1, . . . , m. (4)

The objective function (2) minimizes the sum of squared distances and con-
straints (3) guarantee that each data item is assigned to exactly one cluster.
One should note that for any fixed assignments xij of data items, the objective
function is convex, hence according to the first order optimality conditions

m∑
j=1

xij(a
j
l − yi

l) = 0 =⇒ yi
l =

m∑
j=1

xija
j
l

m∑
j=1

xij

∀i = 1, . . . , k; l = 1, . . . , n.

Thus, the optimal centers of clusters are the means (centroids) of the correspond-
ing clusters. On the other hand, for fixed centers yi, the assignment variables xij

take binary values in the corresponding optimal solution, since data items are
always assigned to the closest cluster centers. Consequently, in our approach we
consider a natural relaxation of (2)–(4) where the binary constraints xij ∈ {0, 1}
are replaced with xij ∈ [0, 1]. The resultant problem is to minimize a nonconvex
function over a convex feasible set:

f(x, y) =
k∑

i=1

m∑
j=1

xij‖yi − aj‖2 ↓ min
(x,y)

, x ∈ S, y ∈ IRn, (5)

where S = {xij ∈ [0, 1] :
k∑

i=1

xij = 1, j = 1, . . . , m}.
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3 DC Representations of the Objective Function

In order to apply the Global Search Theory for DC minimization developed by
A.S. Strekalovsky [33,34], we need an explicit DC representation of the noncon-
vex objective function.

It is well-known that DC representation is not unique. We propose to repre-
sent the objective function of the problem (5) as the following difference of two
convex functions

f(x, y) = g(x, y) − h(x, y), (6)

where

g(x, y) =
k∑

i=1

m∑
j=1

[
d1 ‖ yj − ai ‖2 + d2x

2
ij

]
,

h(x, y) =
k∑

i=1

m∑
j=1

[
d1 ‖ yj − ai ‖2 + d2x

2
ij − xij‖ yj − ai ‖2] ,

with some constants d1, d2 > 0.
It is obvious, that the function g(·) is convex. To prove the convexity of

function h(·), let us fix i and j, introduce a vector v ∈ IRn+1 : vl = yj
l , l =

1, . . . , n, vn+1 = xij and consider the following ij-term in the sum of the
function h(·)

φ(v) = d1 ‖ v−a ‖2n + d2v
2
n+1−vn+1 ‖ v−a ‖2n = d2v

2
n+1+(d1−vn+1)

n∑
l=1

(vl−al)2.

To form Hessian, we obtain the second-order partial derivatives of the func-
tion φ(·)

∇2
vlvl

φ = 2d1 − 2vn+1, ∇2
vlvt

φ = 0,
∇2

vn+1vn+1
φ = 2d2, ∇2

vlvn+1
φ = −2(vl − al),

l, t = 1, . . . , n.

After reducing Hessian to a diagonal form, we obtain the following (n+1)×(n+1)
matrix

H(v) =

⎛
⎜⎜⎜⎜⎝

2(d1 − vn+1) 0 . . . 0 −2(v1 − a1)
0 2(d1 − vn+1) . . . 0 −2(v2 − a2)

. . . . . . . . . . . . . . .

0 0 . . . 0 2d2 − ‖ v − a ‖2n
d1 − vn+1

⎞
⎟⎟⎟⎟⎠

.

A matrix is positive definite if all of its corner minors are positive. Since vn+1 =
xij ∈ [0, 1], hence 2(d1 − vn+1) > 0 if d1 > 1. In this case, all corner minors of
the matrix H(v) up to n order inclusively turn out to be positive. The following
last minor

M(n+1)(n+1) = 2n(d1 − vn+1)n
(

2d2 − ‖ v − a ‖2n
d1 − vn+1

)
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must also be positive. Therefore, if we choose d2 >
1

2(d1 − vn+1)
max

v
‖ v − a ‖2n

then the function φ(v) is convex.
With the proposed constants d1, d2 ∈ IR, the function h(·) in the representa-

tion (6) is convex as it is the sum of convex functions.

4 Local Search

In order to find a local solution of the problem (5), which is turned out to be
the following DC minimization problem

f(x, y) = g(x, y) − h(x, y) ↓ min
(x,y)

, x ∈ S, y ∈ IRn, (P)

we apply the well-known DC Algorithm [18,32,34]. It consists of linearizing,
at a current point, the function h(·) which defines the basic nonconvexity of
Problem (P). The resultant convex approximation of the objective function f(·)
obtained by replacing the nonconvex part with its linearization is then mini-
mized. It is easy to see that such an approach allow finding local solutions by
employing conventional convex optimization techniques.

Thus, we start with an initial point (x0, y0) : y0 ∈ IRn, x0 ∈ S. Suppose a
point (xs, ys), xs ∈ S, is provided. Then, we find (xs+1, ys+1) as an approximate
solution to the linearized problem

Φs(x, y) = g(x, y) − 〈∇h(xs, ys), (x, y)〉 ↓ min
(x,y)

, x ∈ S, y ∈ IRn. (PLs)

It means that the next iteration (xs+1, ys+1) satisfies the following inequality:

g(xs+1, ys+1) − 〈∇h(xs, ys), (xs+1, ys+1)〉
≤ inf

y∈IRn, x∈S
{g(x, y) − 〈∇h(xs, ys), (x, y)〉} + δs,

(7)

where the sequence {δs} satisfies the following conditions:

δs ≥ 0, s = 0, 1, 2, . . . ;
∞∑
s=0

δs < ∞.

Note that the linearized Problem (PLs) is quadratic and convex, whereas Prob-
lem (P) is nonconvex.

As it was suggested in [32,34], one of the following inequalities can be
employed as a stopping criterion:

f(xs, ys) − f(xs+1, ys+1) ≤ τ

2
,

Φs(xs, ys) − Φs(xs+1, ys+1)
�
= g(xs, ys) − g(xs+1, ys+1)

+ 〈∇h(xs, ys), (xs+1, ys+1) − (xs, ys)〉 ≤ τ

2
,

(8)

where τ is a given accuracy.
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If one of the inequalities (8) holds, it can be easily shown that the point
(xs, ys) is a critical point to Problem (P) with the accuracy τ and under the
condition δs ≤ τ

2
. Indeed, (8) together with the inequality (7) imply that

g(xs, ys) − 〈∇h(xs, ys), (xs, ys)〉
≤ τ

2
+ g(xs+1, ys+1) − 〈∇h(xs, ys), (xs+1, ys+1)〉

≤ inf
x∈S

{g(x, y) − 〈∇h(xs, ys), (x, y)〉} +
τ

2
+ δs.

Therefore, if δs ≤ τ

2
, the point (xs, ys) is a τ -solution to Problem (PLs).

Applying the DC representation (6), we have to solve a series of the following
linearized problems for MSSC:

m∑
j=1

k∑
i=1

[
d1 ‖ yj − ai ‖2 + d2x

2
ij

] − 〈∇h(xs, ys), (x, y)〉 ↓ min
(x,y)

, x ∈ S, y ∈ IRn,

(9)

where ∇y h(xs, ys) = 2
m∑
j=1

(ysj
l − ai

l)(d1 − xs
ij),

∇x h(xs, ys) = 2d2x
s
ij − ‖ ysj − ai ‖2,

i = 1, . . . , k, j = 1, . . . , m, l = 1, . . . , n.

We denote the solution obtained by the local search method as z = (x, y)
(z ∈ Sol(9)).

In the next section we will show how to escape from local solutions provided
by the local search method.

5 Optimality Conditions and the Global Search Scheme

Let us recall the fundamental result of the Global Search Theory for DC mini-
mization problem.

Theorem 1 [33,34]. Suppose that ∃ q = (x̃, ỹ) : x̃ ∈ S f(q) < f(z) = ζ.
Then, a point z = (x̂, ŷ) : x̂ ∈ S, is a global solution to Problem (P) if and

only if
∀(w, β) ∈ IRk(n+m) × IR : h(w) = β − ζ,
g(w) − β ≥ 〈∇h(w), (x, y) − w〉 ∀(x, y) : x ∈ S.

}
(E)

As we can see, the verifying condition (E) for a given w requires solving the
convex program (PL(w)):

g(x, y) − 〈∇h(w), (x, y)〉 ↓ min, x ∈ S, (10)

depending on ‘perturbation’ parameters (w, β) satisfying h(w) = β + ζ.
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According to Theorem 1, in order to determine whether a given point z is a
global solution to Problem (P), we need to solve a family of linearized problems
(10) with any conventional convex optimization method.

On the other hand, we can see that if the condition (E) is violated at a given
tuple (w̃, β̃, u), u = (u1, u2) : u1 ∈ S, u2 ∈ IRn,

g(u) − β̃ < 〈∇h(w̃), u − w̃〉,
due to convexity of h(·), then we get g(u) < β̃ + h(u) − h(w̃) and conclude that
z = (x̂, ŷ) : x̂ ∈ S is not optimal.

Moreover, on each level ζp = f(zp), p = 1, 2, . . . , it is not necessary to
investigate all pairs of (w, β) satisfying (E), ζp = h(w)−β, but it is sufficient to
discover the violation of inequality (E) only for one pair (w̃, β̃) and u = (u1, u2) :
u1 ∈ S, u2 ∈ IRn.

The properties of the Optimality Conditions (E) allow developing an algo-
rithm for solving DC minimization problems. The algorithm comprises two prin-
cipal stages:

a) local search to find an approximate local minimizer zp with the value corre-
sponding to the objective function ζp = f(zp);

b) procedures of escaping from local pits, which are based on the Optimality
Conditions (E).

Global Search Scheme.

1. Run the local search method and find a local minimizer zp in Problem (P).
2. Choose a number β : inf(g, S) ≤ β ≤ sup(g, S).

For instance, βp = g(zp), ζp = f(zp) = g(zp) − h(zp).
3. Construct a finite approximation

Rp(β) = {w1, . . . , wNp | h(wi) = β − ζp, t = 1, . . . , Np}
of the level surface {h(x, y) = β − ζp} of the function h(·).

4. Find a δp-solution ūt of the following Linearized Problem:

g(x, y) − 〈∇h(wt), (x, y)〉 ↓ min
(x,y)

, x ∈ S, (PLt)

so that g(ūt) − 〈∇h(wt), ūt〉 − δp ≤ inf
(x,y)

{g(x, y) − 〈∇h(wt), (x, y)〉}.

5. Starting from the point ūt, find a local minimizer ut with the local search
method.

6. Choose the best point û : f(û) ≤ min
t=1,...,Np

f(ut).

7. If f(û) < f(zp), then set zp+1 := û, p := p + 1 and go to Step 2.
8. Otherwise, choose a new value of β (for instance, β + Δβ) and go to Step 3.

One of the principal features of the Global Search Scheme is an approxima-
tion of the level surface of the convex function h(·) which generates the basic
nonconvexity in Problem (P) (Step 3). There are many ways and techniques to
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construct the approximation. To take into account the particularities of MSSC,
we construct the approximation by varying only variables yj , j ∈ J (cluster
centers) of the function h(·). Thus, the approximation Rp(β) of the level sur-
face {h(·) = β − ζ} for each pair (β, ζp), ζp = f(zp), can be constructed by the
following rule [11,13]:

wjl = zj + μjle
l, j = 1, . . . , k, l = 1, . . . , n, (11)

where el is the unit vector from the Euclidean basis of IRn.
The search of μjl is simple and, actually, analytical (i.e. it is reduced to

solving the following quadratic equation of one variable μjl) for the quadratic
(with fixed variable x) function h(x̂, y):

μ2
jl

m∑
i=1

(d1 − x̂ij) − 2μjl

m∑
i=1

(d1 − x̂ij)ai
l + γ = 0,

where γ = h(zj) − β + ζp +
m∑
i=1

(d1 − x̂ij)(ai
l)

2. If for some indexes ĵ l̂ the dis-

criminant turns out to be negative, then the point wĵl̂ is not included into the
approximation.

Based on the presented Global Search Scheme, we developed the algorithm
GSA. The results of the computational simulation is demonstrated in the next
section.

6 Computational Experiments

In this section we report some computational experiments to test the proposed
global search algorithm (GSA) for MSSC. We compare our approach to the
most popular k-means clustering algorithms: Lloyd’s algorithm (k-means) and
k-means++. We implemented all the competing algorithms using C++ and run
them on a PC with Intel Core i7-4790K CPU 4.0 GHz. To solve the convex
(linearized) quadratic problems, we use GUROBI 9.1 solver freely available for
non-commercial research. Beside the value of the objective function, we also
use the following external measures to assess accuracy of a clustering: pairwise
precision, recall and F -measure:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

where TP are true positive pairs of data items (correctly clustered), FP—false
positive pairs, and FN—false negative pairs. The pairwise F-measure is defined
as harmonic mean of pairwise precision and recall:

F − measure =
2 · Precision · Recall

Precision + Recall
.

The initial solutions were taken at random. As the k-means algorithms are
local search heuristics that are heavily dependent on initial solutions, we restart
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Table 1. The testing of GSA on synthetically generated test problems

Type I

m k Start Obj. Val. Best Obj. Val. St PL

200 16 17788.36 3068.13 9 3955

300 16 39403.38 5958.51 4 3597

400 16 25715.84 5726.85 8 4476

500 25 30378.78 6527.64 5 11606

600 25 61401.54 10199.58 6 17568

Type III

m k Start Obj. Val. Best Obj. Val. St PL

200 16 1175.66 147.52 8 4923

300 16 1611.07 298.96 14 16723

400 16 2558.94 438.78 9 8828

500 25 4527.55 856.91 11 14947

600 25 6757.46 995.33 8 23551

k-means and k-means++ 5 times and report the best solutions found. Our k-
means algorithms were set to halt when the number of iterations exceeds 500 or
when the fraction of data items that changed their cluster assignment is below
0.001. Our test bed consists of two benchmark types of data sets generated as
suggested in [38]. Note that our test problems are two dimensional Gaussian mix-
ture data instances that widely used in testing solution algorithms for clustering
and facility location problems [14,35,36]. For our experiments, we generated
instances of Types I and III, which differ in their complexity. The problems of
Type I are considered to be easier to solve and those of Type III are harder. The
test problems contain from 200 to 600 points on the plane, while the numbers
of clusters vary from 16 to 25 and depend on the problem size.

First, we report the computational results on the developed global search
algorithm (GSA) in Table 1, where the following denotations are employed:

– m is the number of data items;
– k stands for the number of clusters;
– Start Obj.V al. is the value of the objective function to the problem (5) at

the starting point;
– Best Obj.V al. stands for the value of the objective function at the solution

provided by the GSA;
– St is the number of the local solutions passed by the GSA;
– PL stands for the number of Linearized Problems solved.

The results on the computational testing of GSA confirmed the difference
in complexity between the two types of instances. Indeed, though the problem
instances of both classes are identical in terms of number of points and clusters,
GSA required solving a larger number of linearized problems (column PL in
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Table 1) for the instances of Type III. GSA managed to improve the value of the
objective function to the problem (5) by 4 to 14 times (column St in Table 1),
which proves the efficiency of the procedures of escaping from local pits.

The results of computational comparison of GSA with popular k-means and
k-means++ are presented in Tables 2 and 3, where we report the best objective
values found by the competing algorithms as well as the values of external mea-
sures. Observe that we compare our algorithm with k-means and k-means++
with respect to solution quality only. Our approach is not competitive against
these algorithms with respect to run time.

One can see that our approach obtained very competitive results, e.g. for
the problems of Type III GSA found solutions which are, in general, similar to
ones found by k-means and k-means++. However, for the problems of Type I
our approach outperformed both competing algorithms that stuck in relatively
similar local optima. For example, for problem with 400 points and 16 clusters
GSA found a solution which has 23% better objective value than ones found by k-
means and k-means++ (see Table 2). This behaviour of the k-means algorithms
is expected, since, for the problems with relatively large number of clusters, they
may require large number of reruns to find a quality partition. It is interesting to
note that solution quality according to objective value does not always correlate
to that according to the external measures. For example, for the problem of
Type III with 400 points and 16 clusters, we can see that GSA found slightly

Table 2. Clustering results on problem instances of Type I. Our approach is compared
with k-means and k-means++

Type I

m k Best Obj. Val. Precision Recall F-meas. Algorithm

200 16 3877.55 0.799 0.852 0.824 k-means

3099.05 0.847 0.894 0.870 k-means++

3068.13 0.863 0.889 0.876 GSA

300 16 6350.60 0.825 0.845 0.835 k-means

6116.75 0.815 0.845 0.830 k-means++

5958.51 0.840 0.885 0.862 GSA

400 16 7590.27 0.850 0.895 0.872 k-means

7483.61 0.850 0.896 0.872 k-means++

5726.85 0.954 0.954 0.954 GSA

500 25 8449.67 0.872 0.929 0.900 k-means

6533.00 0.956 0.959 0.958 k-means++

6527.64 0.957 0.960 0.958 GSA

600 25 10810.05 0.884 0.932 0.908 k-means

10292.67 0.898 0.917 0.908 k-means++

10199.58 0.884 0.910 0.897 GSA
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Table 3. Clustering results on problem instances of Type III. Our approach is com-
pared with k-means and k-means++.

Type III

m k Best Obj. Val. Precision Recall F-meas. Algorithm

200 16 168.96 0.637 0.830 0.720 k-means

137.79 0.639 0.845 0.728 k-means++

147.52 0.648 0.890 0.750 GSA

300 16 312.05 0.681 0.776 0.726 k-means

298.29 0.693 0.809 0.746 k-means++

298.96 0.669 0.791 0.725 GSA

400 16 528.80 0.594 0.803 0.683 k-means

438.70 0.610 0.829 0.703 k-means++

438.78 0.569 0.863 0.686 GSA

500 25 1024.93 0.648 0.766 0.702 k-means

879.15 0.610 0.782 0.685 k-means++

856.91 0.699 0.827 0.758 GSA

600 25 1094.19 0.671 0.822 0.738 k-means

1008.80 0.653 0.829 0.731 k-means++

995.33 0.786 0.838 0.811 GSA

worse solution than k-means++. However, it has slightly better Recall. This
may happen due to mislabelled outliers.

7 Conclusion

In this paper we addressed the so-called minimum-sum-of-squares (k-means)
clustering problem, one of the best known clustering models. This problem can
be formulated as a nonconvex mathematical programming problem, i.e. a prob-
lem of minimizing a DC function over a convex set. Using the special global
search scheme based on global optimality conditions by A.S. Strekalovsky, we
developed an algorithm for finding quality clustering solutions. In our computa-
tional experiments we demonstrated that the proposed approach is competitive
with conventional k-means heuristics and, in most cases, provides better solu-
tions for problem instances of relatively small size.

Our further research will be focused on improving the proposed methodology
to make our algorithm tractable for large-scale problem instances involving thou-
sands of data items. Our research will also aim at adaptation of the algorithm
for other clustering problems with different dissimilarity measures.
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28. Matoušek, J.: On approximate geometric k-clustering. Discrete Comput. Geom.
24, 61–84 (2000). https://doi.org/10.1007/s004540010019

29. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-
type methods for the k-means problem. J. ACM 59(6) (2013). https://doi.org/10.
1145/2395116.2395117

30. Pacheco, J.A.: A scatter search approach for the minimum sum-of-squares clus-
tering problem. Comput. Oper. Res. 32(5), 1325–1335 (2005). https://doi.org/10.
1016/j.cor.2003.11.006

31. Sherali, H.D., Desai, J.: A global optimization RLT-based approach for solving the
hard clustering problem. J. Glob. Optim. 32, 281–306 (2005). https://doi.org/10.
1007/s10898-004-2706-7

https://doi.org/10.1016/S0031-3203(99)00216-2
https://doi.org/10.1016/S0031-3203(99)00216-2
https://doi.org/10.1016/j.patcog.2013.07.012
https://doi.org/10.1007/s10479-004-5022-1
https://doi.org/10.1016/j.patcog.2018.02.015
https://doi.org/10.1016/j.patcog.2018.02.015
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1016/j.ejor.2017.06.010
https://doi.org/10.1016/j.ejor.2017.06.010
https://doi.org/10.1134/S0965542509110128
https://doi.org/10.1109/FOCS.2004.7
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/j.ins.2008.01.022
https://doi.org/10.1016/j.ins.2008.01.022
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1016/j.patcog.2021.107849
https://doi.org/10.1016/j.patcog.2021.107849
https://doi.org/10.1007/s004540010019
https://doi.org/10.1145/2395116.2395117
https://doi.org/10.1145/2395116.2395117
https://doi.org/10.1016/j.cor.2003.11.006
https://doi.org/10.1016/j.cor.2003.11.006
https://doi.org/10.1007/s10898-004-2706-7
https://doi.org/10.1007/s10898-004-2706-7


476 T. V. Gruzdeva and A. V. Ushakov

32. Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math.
Comput. 255, 73–83 (2015)

33. Strekalovsky, A.: On the minimization of the difference of convex functions on a
feasible set. Comput. Math. Math. Phys. 43, 380–390 (2003)

34. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex struc-
tures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Sci-
ence and Engineering, pp. 465–502. Springer, New York (2014). https://doi.org/
10.1007/978-1-4939-0808-0 23

35. Ushakov, A.V., Vasilyev, I.: Near-optimal large-scale k-medoids clustering. Inf. Sci.
545, 344–362 (2021). https://doi.org/10.1016/j.ins.2020.08.121

36. Ushakov, A.V., Vasilyev, I.L., Gruzdeva, T.V.: A computational comparison of the
p-median clustering and k-means. Int. J. Artif. Intell. 13(1), 229–242 (2015)

37. Vinod, H.D.: Integer programming and the theory of grouping. J. Am. Stat. Assoc.
64(326), 506–519 (1969). https://doi.org/10.2307/2283635

38. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm
and its applications. Data Min. Knowl. Discov. 1(2), 141–182 (1997). https://doi.
org/10.1023/A:1009783824328

https://doi.org/10.1007/978-1-4939-0808-0_23
https://doi.org/10.1007/978-1-4939-0808-0_23
https://doi.org/10.1016/j.ins.2020.08.121
https://doi.org/10.2307/2283635
https://doi.org/10.1023/A:1009783824328
https://doi.org/10.1023/A:1009783824328


Machine Learning Algorithms of
Relaxation Subgradient Method with

Space Extension

Vladimir N. Krutikov1 , Vladimir V. Meshechkin1, Elena S. Kagan1,
and Lev A. Kazakovtsev2(B)

1 Kemerovo State University, 6 Krasnaya Street, Kemerovo 650043, Russia
2 Reshetnev Siberian State University of Science and Technology,
prosp. Krasnoyarskiy Rabochiy 31, Krasnoyarsk 660031, Russia

levk@bk.ru

Abstract. In relaxation subgradient minimization methods, a descent
direction, which is based on the subgradients obtained at the iteration,
forms an obtuse angle with all subgradients in the neighborhood of the
current minimum. Minimization along this direction enables us to go
beyond this neighborhood and avoid method looping. To find the descent
direction, we formulate a problem in a form of systems of inequalities and
propose an algorithm with space extension close to the iterative least
squares method for solving them. The convergence rate of the method
is proportional to the valid value of the space extension parameter and
limited by the characteristics of subgradient sets. Theoretical analysis
of the learning algorithm with space extension enabled us to identify
the components of the algorithm and alter them to use increased val-
ues of the extension parameter if possible. On this basis, we propose
and substantiate a new learning method with space extension and corre-
sponding subgradient method for nonsmooth minimization. Our compu-
tational experiment confirms their efficiency. Our approach can be used
to develop new algorithms with space extension for relaxation subgradi-
ent minimization.

Keywords: Subgradient methods · Space extension · Relaxation

1 Introduction

We consider a problem of minimizing a convex, not necessarily differentiable
function f(x), x ∈ IRn. One of the possible approaches to constructing nons-
mooth optimization methods is based on smooth approximations [1–3]. For min-
imizing such functions, Shor [4] proposed an iterative subgradient minimization
algorithm, which was further developed and summarized in [5,6].

Space extension (dilation) methods, or r-algorithms [4], are based on succes-
sive extension in specially selected directions. The method constructs a certain
linear transformation which alters the metric of the space at each iteration, and
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uses the direction opposite to the subgradient in the space with transformed
metric. Such a direction forms an acute angle with the direction from the given
point to the point of minimum for convex functions. The first relaxation subgra-
dient minimization methods (RSMMs) were considered in [7,8], and their ver-
sions with space extension [9,10] led to the emergence of a number of effective
approaches such as the subgradient method with space extension in the subgra-
dient direction [10] that are relaxation by distance to the extremum [6,11,12].
Using the concepts of machine learning (ML) theory [13] led to the construction
of a number of effective RSMMs [14–16] and formed a theoretical basis for their
development. In RSMMs, the structure of the method is defined, where the pro-
cedure for solving inequalities based on a certain learning algorithm is embedded.
We present an approach to accelerating the convergence of RSMM algorithms
with space extension and give an example of its effective implementation.

In the RSMM, successive approximations [7,8,14,16,17] are:

xk+1 = xk − γksk+1, γk = arg min
γ

f(xk − γsk+1), (1)

where x0 is a given starting point, k is the iteration number, γk is a step size,
descent direction sk+1 is a solution of a system of inequalities on s ∈ IRn [8]:

(s, g) > 0, ∀g ∈ G. (2)

Hereinafter (s, g) is a dot product of vectors. In (2), G is a set of subgradients
calculated on the descent trajectory of the algorithm at a point xk.

For smooth functions, a subgradient set consists of a single gradient vec-
tor, and subgradient methods for unconstrained problems use the same search
direction as the steepest descent. Nevertheless, when following a narrow ravine,
the method for solving the inequalities of the subgradient method based on the
gradient values finds the direction along the ravine.

Denote S(G) as a set of solutions to inequality (2), ∂f(x) as a subgradient
set at point x. If the function is convex, G = ∂εf(xk) is an ε-subgradient set at
point xk, and sk+1 is an arbitrary solution of the system (2), then the function
will be reduced by at least ε [8] after iteration (1). Since there is no explicit
assignment of ε-subgradient sets, we use subgradients gk ∈ ∂f(xk) calculated on
the algorithm descent trajectory and satisfying the condition

(sk, gk) ≤ 0. (3)

Thus, we use vectors violating (2). According to this principle, the choice of
learning vectors is also made in the perceptron method (for instance, [13,18]).
A sequence of vectors gk ∈ ∂f(xk), k = 0, 1, ..., is not predetermined, but deter-
mined by the minimization algorithm according to (1) with a built-in method
for finding the vector at each iteration sk+1 by a ML algorithm.

Let a convex set G ⊂ IRn belong to a hyperplane, and its vector η nearest to
the origin be also a hyperplane vector closest to the origin. Then a solution of
the system (s, g) = 1 ∀g ∈ G is also a solution of (2) [14]. It can be found as a
solution to a system of equations using a sequence of vectors from G [14]:

(s, gi) = 1, gi ∈ G, i = 0, 1, ...k. (4)
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Based on the iterative least squares (ILS) method, paper [14] proposes a method
for minimizing the quality functional with special weights wi and quadratic regu-
larization F (s) =

∑k
i=1 wiQi(s)+ 1

2

∑n
i=1 s2i , Qi(s) = 1

2 (1−(s, gi))2. Taking into
account the specifics of subgradient sets, a modified iterative process is proposed
for solving the system of inequalities (2) based on (4):

sk+1 = sk +
Hkgk[1 − (sk, gk)]

(gk,Hkgk)
, (5)

Hk+1 = Hk − (1 − 1
α2

k

)
HkgkgT

k HT
k

(gk,Hkgk)
. (6)

Here, αk > 1 is a space extension parameter, Hk is a symmetric matrix, s0 =
0, H0 = I.

The use of the quality functional Qk(s) = 1
2 (1 − (s, g))2 enables us to imple-

ment various gradient ML algorithms where the maximum weight is automati-
cally given to the last observation. Taking into account the specifics of a problem,
at the learning step, the gradient consistency condition (sk+1, gk) > 0 for the
descent direction must be fulfilled, which requires specialization of the applied
ML algorithm.

The convergence rate of the ML method (5)–(6) grows with an increase in
the admissible value of α in (6) [14], and depends on the characteristics of the set
G. In algorithm (5)–(6), we distinguish 2 stages: correction stage (5) reducing
the residual between the optimal solution s∗ and sk, and extension stage (6)
resulting in the increase of the residual in the extended space without exceeding
its initial value, which limits the magnitude of the extension parameter. To create
more efficient algorithms for solving systems of inequalities, we have to choose
the directions of correction and extension so that it enables us to increase the
extension parameter value.

The paper presents one of the special cases of the correction stage and exten-
sion stage implementation. It was proposed to use linear combinations of vectors
gk−1, gk in transformations (5)–(6) instead of a vector gk when it is appropriate:

sk+1 = sk +
Hkpk[1 − (sk, gk)]

(gk,Hkpk)
, (7)

Hk+1 = Hk − (1 − 1
α2

k

)
HkykyT

k HT
k

(yk,Hkyk)
. (8)

Here,

yk = gk − gk−1, pk = gk − gk−1(gk,Hkgk−1)
(gk−1,Hkgk−1)

. (9)

Iterations (7)–(8) are conducted under the condition:

(gk,Hkgk−1) ≤ 0. (10)

For the proposed ML algorithm, the convergence in a finite number of iterations
is proved when solving problem (2) on separable sets. Based on the proposed
ML algorithm, we have developed a method for minimizing nonsmooth functions
and substantiate its convergence on convex functions.
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2 A Space Extension Method for Solving Systems of
Inequalities on Separable Sets

If condition (10) is satisfied, our new Algorithm 1 includes iterations (7)–(8)
instead of (5)–(6). The algorithm scheme does not define a method for setting
parameters α > 1 and αyk2. Below, we define the dependences of the admissible
space extension parameters on the set G characteristics.

Algorithm 1. Method for solving systems of inequalities
1: Set k ← 0, s0 ← 0, g−1 ← 0, H0 ← I. Set α > 1, where α is the limit for

choosing the admissible value of the parameter αk in the case of transfor-
mations (5)-(6).

2: Find gk ∈ G, satisfying the condition (3)
3: If such a vector does not exist then
4: the solution sk ∈ S(G) is found, stop the algorithm. End if
5: If k = 0 and condition (10) is not satisfied then
6: go to step 10. End if
7: Calculate the limit of the admissible value of the squared extension param-

eter αyk for combination of transformations (7)-(8).
8: If αyk2 < α2 then go to step 10
9: else set αk so that α2 ≤ α2

k ≤ αyk2; perform (7)-(8); go to step 11. End if
10: Set αk so that α2

k ≤ α2 and perform transformations (5)-(6).
11: Increase k by one and go to step 2.

Let us make assumptions on the separable set G. Vector η is the shortest
vector from G. Denote the length of the minimal vector of the set by ρ = ‖η‖, the
length of the maximal vector of the set by R = maxg∈G ‖g‖, normalized vector
η by μ = η/ρ , a vector associated with the sought solution of the systems (2)
and (4), when analyzing the ML algorithm, by s∗ = μ/ρ, an upper bound value
of the set G in the direction μ by Rs = maxg∈G(μ, g), the ratio of the upper
and lower bounds of the set along μ by M = Rs/ρ, the ratio of the minimal and
maximal vectors of the set by r = ρ/Rs = M−1, V = ρ/R. We use the denoted
characteristics as functions of a set Q, for example, η(Q), r(Q).

Assumption 1. Set G is convex, closed, limited (R < ∞) and satisfies the
separability condition, i.e. ρ > 0.

Parameters ρ and Rs characterize the thickness of the set G in the direction
μ, which can be formulated as a two-sided inequality:

ρ ≤ (μ, g) ≤ Rs, ∀g ∈ G. (11)

From (11), taking into account the form of s∗, we get:

1 ≤ (s∗, g) ≤ Rs/ρ = M, ∀g ∈ G. (12)

Taking into account (11), Rs satisfies the constraints: ρ ≤ Rs ≤
‖μ‖maxg∈G ‖g‖ ≤ R. At zero thickness of the set, when RS = ρ, we have
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the case of a flat set, and the work of the ML algorithm is reduced to solving
the system (4).

Denote the algorithm approximation sequence by sk, residual vector by Δk =
s∗ − sk. While vector sk is not a solution to (2) for vectors gk selected in step 2
of Algorithm 1, from (3) and (12), the inequality holds:

(Δk, gk) = (s∗ − sk, gk) = (s∗, gk) − (sk, gk) ≥ 1. (13)

Denote Ak = H−1
k . Applying the Sherman-Morrison equation to (6) and (8),

we obtain a matrix transformation equation:

Ak+1 = Ak + (α2 − 1)
gkgT

k

(gk,Hkgk)
. (14)

Similarly, for (8), we obtain

Ak+1 = Ak + (α2
k − 1)

ykyT
k

(yk,Hkyk)
. (15)

For a symmetric strictly positive definite matrix A, we will use the notation
A > 0. For a matrix A > 0, denote a matrix A1/2 such that A1/2 > 0 and
A1/2A1/2 = A. For vectors sk and gk of Algorithm 1 from (13), using the Schwarz
inequality, we obtain:

1 ≤ (Δk, gk)2 = (Δk, A
1/2
k H

1/2
k gk)2 ≤ (Δk, AkΔk)(gk,Hkgk). (16)

Inequality (16) is a key point in justifying the convergence rate of Algorithm 1.
The choice of extension parameters should ensure that the values (Δk, AkΔk) do
not increase when the values (gk,Hkgk) decrease at the geometric progression
speed. Successively, after a finite number of iterations, the right side of (16)
will be less than one. The resulting contradiction will mean that problem (2) is
solved, and our assumption that we have find a vector gk satisfying condition (3)
is false.

Denote τk = min0≤j≤k−1[(gj ,Hjgj)/(gj , gj)]. With respect to the decreasing
rate of the sequence {τk}, the following theorem [16] was formulated.

Theorem 1. Let a sequence {Hk} be a transformation result (6) with H0 =
I, αk = α > 1 and arbitrary gk ∈ IRn, gk 
= 0, k = 0, 1, 2, .... Then

τk ≤ k(α2 − 1)/[n(α2k/n − 1)], k ≥ 1. (17)

Let us show that for Algorithm 1 with fixed values of the parameter α, estimates
similar to (24) are valid and get expressions for the admissible parameters αk

in (6), (8) at which the values (Δk, AkΔk) do not increase. To simplify the
analysis, the corresponding vectors and matrices of iterations (5)–(6) and (7)–
(8) are transformed by equations ŝ = A

1/2
k s, ĝ = H

1/2
k g, Âk = H

1/2
k AkH

1/2
k =

I, Ĥk = A
1/2
k HkA

1/2
k = I. To switch to new variables, we multiply Eq. (5) on
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the left by H
1/2
k , Eq. (6) on the left and right by A

1/2
k , and (14) on the left and

right by H
1/2
k . The transformed equations of the algorithm are:

ŝk+1 = ŝk +
ĝk[1 − (ŝk, ĝk)]

(ĝk, ĝk)
, (18)

Ĥk+1 = I − (1 − 1
α2

k

)
ĝkĝT

k

(ĝk, ĝk)
, (19)

Âk+1 = I + (α2
k − 1)

ĝkĝT
k

(ĝk, ĝk)
. (20)

Similarly, we transform expressions (7)–(9) and (15): ŝk+1 = ŝk + p̂k[1−(ŝk,ĝk)]
ĝk,p̂k

,

Ĥk+1 = I − (1 − 1
α2

k
) ŷkŷT

k

(ŷk,ŷk)
,

ŷk = ĝk − ĝk−1, p̂k = ĝk − ĝk−1(ĝk, ĝk−1)
(ĝk−1, ĝk−1)

, (21)

Âk+1 = I + (α2
k − 1) ŷkŷT

k

(ŷk,ŷk)
.

For the residual, the equality (Δk, AkΔk) = (Δ̂k, Δ̂k) holds. From equality
(s, g) = (A1/2

k s,H
1/2
k g) = (ŝ, ĝ), inequalities (12) for new variables are:

1 ≤ (ŝ∗, ĝ) ≤ Rs/ρ = M, ∀ĝ ∈ Ĝ. (22)

Let Z be a plane formed by vectors g̃k, g̃k−1. Characteristics of set Ĝ in the
plane of vectors Z are shown on Fig. 1. Here, lines W1, WM are projections
of hyperplanes, i.e. corresponding inequality (22) boundaries for vector ŝ∗ pro-
jection defined by the normal g̃k−1. Similarly, lines Z1, ZM are boundaries of
inequalities (22) for vector ŝ∗ projection, defined by the normal g̃k. For the
indicated points on Fig. 1, we denote the segment by AB, its length by |AB|,
and the vector with the origin at point A by

−−→
AB. Let ψ be the angle between

vectors g̃k, g̃k−1. On Fig. 1, angle ψ is obtuse, i.e. condition (10) is satisfied:
(gk,Hkgk−1) = (g̃k, g̃k−1) ≤ 0. Hence, angle ϕ, formed by lines W1 and Z1,
showed on Fig. 1, is acute. Since vectors g̃k, g̃k−1 are normals for the lines W1 and
Z1 (see Fig. 1), ϕ = π −ψ. Hence, from the angle ψ definition, sin2ϕ = sin2(ψ),

cos2ϕ = cos2ψ =
(g̃k, g̃k−1)2

(g̃k, g̃k)(g̃k−1, g̃k−1)
=

(gk,Hkgk−1)2

(gk,Hkgk)(gk−1,Hkgk−1)
. (23)

Lemma 1. Let the values a, b, c, β satisfy the constraints a ≥ am ≥ 0, b > 0,
c > 0 and 0 ≤ β ≤ 1, then:

min
α,β

(
(a + βb)2 − β2b2

β2c2

)

=
a2

m + 2amb

c2
=

(am + b)2 − b2

c2
. (24)

Proof. Proof is obtained by expanding the parentheses in (24). �
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Fig. 1. The set G characteristics in the plane of vectors g̃k, g̃k−1.

The next lemma enables us to calculate the line segment lengths.

Lemma 2. Let vectors p1, p2 and g be linked by equalities (p1, g) = a, (p2, g) =
b, the difference of vectors p2 − p1 be collinear to the vector p, and ξ be an angle
between p and g. Then:

‖p1 − p2‖2 =
(a − b)2

(g, p)2
‖p‖2 =

(a − b)2

‖g‖2cos2ξ . (25)

Proof. From the collinearity of vectors p1 − p2 = γp, based on equality (p1 −
p2, g) = (γp, g) = (a − b), we find γ = (a − b)/(p, g). This implies (25). �

Lemma 3. As a result of (5) in step 10 of Algorithm 1, the equality holds

(sk+1, gk) = (ŝk+1, ĝk) = 1, (26)

and as a result of (7) in step 7, we have:

(sk+1, gk−1) = (ŝk+1, ĝk−1) = 1. (27)

Proof. Equality (26) is established by verification. From (21), we have
(p̂k, ĝk−1) = 0. Consequently, after transformation (7) in step 7, the equality
(sk, gk−1) = (ŝk, ĝk−1) = 1 is preserved, which proves (27). �

Lemma 4. Let a set G satisfy Assumption 1. Then the limit α of the
admissible parameter value αk ≤ α in Algorithm 1 providing inequality
(Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) in the case of transformations (5)–(6) is given
by equation

α2 = M2/(M − 1)2 = 1/(1 − r)2. (28)

Proof. Let us examine changes in (Δ̂k, Δ̂k) as a result of transformations (18)
and (19) carried out in step 10. According to constraints (22), the admissible
projection area ŝ∗ on Fig. 1 has the form of stripes between lines W1, WM
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and Z1, ZM , and belongs to parallelogram DEFJ . Vector
−→
OA is ŝk projection.

Residual Δ̂k, according to (18) and (19), changes only in the direction ĝk. As a
result (18), we pass from point A to point B. According to step 2, at point A,
(ŝk, ĝk) ≤ 0, and at point B, according to the results of Lemma 3, equality (26)
holds. Using Lemma 2, where g = p = ĝk, we get an equation for the length of
the segments |AB| and |BC| and limitation of their lengths

|AB| =
(1 − (ŝk, ĝk))

‖ĝk‖ ≤ 1
‖ĝk‖ , |BC| =

(M − 1)
‖ĝk‖ . (29)

Denote by U a projection point ŝ∗ onto line segment BC.

|BU | = β|BC| = β(M − 1)/‖ĝk‖, 0 ≤ β ≤ 1. (30)

As a result of transformation (18), the squared residual will decrease:

(Δ̂k, Δ̂k) − (Δ̂k+1, Δ̂k+1) = (|AB| + |BU |)2 − |BU |2. (31)

After transformation (19) according to (20), the squared residual increases by

(Δ̂k+1, Âk+1Δ̂k+1) − (Δ̂k+1, Δ̂k+1) = (α2
k − 1)|BU |2. (32)

Let us formulate a condition that the residual does not increase in the extended
space for a given location of the point U . From (31), (32), we have
(Δ̂k+1, Âk+1Δ̂k+1) ≤ (Δ̂k, Δ̂k), or

(α2
k − 1)|BU |2 ≤ (|AB| + |BU |)2 − |BU |2. (33)

Hence, we obtain the limitation for the space extension parameter α2
k − 1 ≤

(|AB|+|BU |)2−|BU |2
|BU |2 Taking into account the possible position of points A and U,

using (29), (30) and (24) of Lemma 1, setting a = 1/‖ĝk‖, am = |AB|, b =
|BC|, βb = |BU |, we obtain an estimate which is valid for an arbitrary position
of the point U : α2

k − 1 ≤ min|AB|,|BU |{ (|AB|+|BU |)2−|BU |2
|BU |2 } = M2−(M−1)2

(M−1)2 =
M2

(M−1)2 − 1. From this, we obtain the estimate (28). �

Lemma 5. Let set G satisfy Assumption 1. Then the limit αyk for the admis-
sible value of parameter αk in step 7 of Algorithm 1 providing inequality
(Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) in the case of transformations (7)–(8), is
given as

α2
yk = min{α2

Ek, α2
Jk}, (34)

where

α2
Ek = 1 +

(2M − 1)(yk,Hkyk)
(M − 1)2(gk,Hkgk)sin2ϕ

, (35)

α2
Jk = 1 +

(yk,Hkyk)
(M − 1)2(gk,Hkgk)sin2ϕ

(1 +
2(M − 1)(gk,Hkgk)1/2cosϕ

(gk−1,Hkgk−1)1/2
), (36)

the value cos2ϕ is defined in(23), and sin2ϕ = 1 − cos2ϕ.
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Proof. We assume that the projection ŝ∗ is on the segment EE1 orthogonal to
the line W1. Then

(Δ̂k, Δ̂k)−(Δ̂k+1, Δ̂k+1) = (|AD|+ |DE|)2−|DE|2 =
(|AB| + |BC|)2 − |BC|2

sin2ϕ
.

(37)
Denote a vector of minimum length from the shell of vectors g̃k, g̃k−1 by

v. It possesses the property of equality of dot products (v, g̃k−1) = (v, g̃k) and
orthogonal to the vector ŷk, (v, ŷk) = 0. Therefore, the ray along this vector
passes through the points O,D,F . The deviations of ŝ∗ from the segment DF
along ŷk are maximum when its projection is at points J and E. Based on (25)
in Lemma 2, we find the length of the segment |EEy| = |JJy|. Since vector−−−→
OEy is parallel to v, (

−−−→
OEy, ŷk) = 0. Taking into account the properties of lines

Z1, ZM , we obtain (
−−−→
OEy, ŷk) = (M − 1). Assuming in (25) p = g = ŷk, taking

into account the last equalities, we find the length of the segments

|JJy| = |EEy| = (M − 1)/‖ŷk‖, (38)

with extension

(Δ̂k+1, Âk+1Δ̂k+1) − (Δ̂k+1, Δ̂k+1) = (α2
k − 1)|EEy|2. (39)

Based on the condition that the residual does not increase in an extended space,
similarly to (33), using (39), we have

(Δ̂k+1, Âk+1Δ̂k+1) ≤ (Δ̂k, Δ̂k), (40)

or ((α2
k − 1)|EEy|)2 ≤ (|AD| + |DE|)2 − |DE|2. Thus,

α2
k − 1 ≤ min

AD
{ (|AD| + |DE|)2 − |DE|2

|EEy|2 }. (41)

According to Fig. 1, the maximum deviations along the segment DF are at
the boundaries of the parallelogram DEFJ. In triangle DEF, the position of the
projection ŝ∗ on the boundary EF will just increase the estimate (41), since the
numerator of the expression will grow, and the component along ŷk will decrease.
An estimate similar to (41) for the position of the projection ŝ∗ on the boundary
DE also leads to an increase in the estimate for the extension parameter, which is
easy to show using the result of Lemma 1. Therefore, estimate (41) is the smallest
estimate of the space extension parameter at the position of the projection ŝ∗

in the triangle DEF. With the projection ŝ∗ position in the triangle DEF, based
on (41), using (37), (38), we obtain the estimate (35) of the admissible limit of
the space extension parameter.

Segment JL is parallel to the vector g̃k−1. Since the points of the segment
are located on the lines W1, WM based on inequalities (12) and equality (25)
in Lemma 2, we find its length |JL| = (M − 1)/‖g̃k−1‖. Since triangle DJL is
rectangular, we obtain:

|DL|2 = |JL|2 cos2ϕ

sin2ϕ
=

(M − 1)2cos2ϕ
‖ĝk−1‖2sin2ϕ

. (42)
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Taking into account the equality |JJy| = |EEy|, similarly to (40)–(41),
using (38), (42), we get the estimate of αk:

α2
k − 1 ≤ min

AD

{
(|AD| + |DL|)2 − |DL|2

|JJy|2
}

= min
AD

{ |AD|2 + 2|AD||DL|
|JJy|2

}

=
‖ŷk‖2

(M − 1)2‖ĝk‖2sin2ϕ
(1 +

2(M − 1)‖ĝk‖cosϕ

‖ĝk−1‖ ).

Returning to the original variables, we get the estimate of (36). Estimate (36)
is the smallest estimate of the space extension parameter for the position of
projection ŝ∗ in the triangle DJF, which can be shown similarly. �

In the next theorem, an estimate similar to (17) is obtained directly for vectors
gk generated by Algorithm 1.

Theorem 2. Let set G satisfy Assumption 1, and the sequence {πk =
min0≤j≤k−1(gj ,Hjgj) = (gJk,HJkgJk)} be calculated based on the character-
istics of Algorithm 1 for fixed values of the space extension parameters α2

k = α2

specified in steps 7 and 10, where parameter α is specified according to (28).
Then:

πk = (gm,Hmgm) ≤ 4R2k(α2 − 1)
n[α2k/n − 1]

, k ≥ 1, (43)

where m = arg min0≤j≤k−1(gj ,Hjgj).

Proof. If transformation (6) is performed at the iteration of Algorithm 1, then
estimate (17), taking into account the inequality ‖gm‖2 ≤ R2

G, proves (43). Let
transformation (8) be performed at the m-th iteration, where ym has part. In
this case (6), based on the condition (gm,Hmgm−1) < 0, we get (ym,Hmym) =
(gm,Hmgm) + (gm−1,Hmgm−1) − 2(gm,Hmgm−1) ≥ (gm,Hmgm). This implies
(ym,Hmym)
(ym,ym) ≥ (gm,Hmgm)

(‖gm‖+‖gm−1‖)2 ≥ (gm,Hmgm)
4R2

G
. With (17), this proves (43) �

Theorem 3. Let a set G satisfy Assumption 1, and the sequence {(Δk, AkΔk)}
be calculated based on the characteristics of Algorithm 1, extension parameter α
satisfy constraint (28), admissible value α2

yk be given by (34). Then:

(Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) ≤ (Δ0,Δ0) = ρ−2, k = 0, 1, 2... (44)

Proof. According to the condition of the theorem, for Algorithm 1, all constraints
on the space extension parameters are satisfied, which are necessary to fulfill the
conditions of Lemmas 4, 5, in which the first of inequalities (44) is proved for
each of the space extension cases in steps 7 and 10 of Algorithm 1. Continuing the
chain of inequalities, we obtain the proof of (44). In (44), equality (Δ0,Δ0) =
ρ−2 follows from s0 = 0 in step 1 and definition s∗ = μ/ρ �

For fixed values of the space extension parameter with respect to the convergence
of Algorithm 1, the following theorem holds.
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Theorem 4. Let the set G satisfy Assumption 1, in Algorithm 1, the values of
the space extension parameters specified in steps 7 and 10 be fixed α2

k = α2, and
parameter α be given according to constraints (28). Then a solution to system (2)
will be found by Algorithm 1 in a finite number of iterations, which does not
exceed K0 equal to the minimum integer k satisfying the inequality

4kR2(α2 − 1)
nρ2[α2k/n − 1]

=
4k(α2 − 1)

nV 2[α2k/n − 1]
< 1. (45)

In this case, until a solution is found, the inequalities hold:

(gk,Hkgk) ≥ ρ2, (46)

(gk,Hkgk)
(gk, gk)

≥ ρ2

R2
= V 2. (47)

Proof. Conditions of Theorems 3 and 4 are satisfied. Inequality (46) follows
from (16) and (44), and (47) follows from (46) and definition of R. Using (16),
taking into account (43), (44) and notations of Theorem 2, we get an estimate:

1 ≤ (Δm, AmΔm)(gm,Hmgm) ≤ 4kR2(α2 − 1)
nρ2[α2k/n − 1]

=
4k(α2 − 1)

nV 2[α2k/n − 1]
. (48)

The right side of (48) decreases with increasing k and becomes less than 1 after
a finite number of iterations if, as before, step 2 of Algorithm 1 allows us to
find a vector gk ∈ G satisfying (3). Due to (16), this is impossible. Therefore,
after a finite number of iterations, there are no vectors gk ∈ G satisfying (3), i.e.
system (2) solution is found. As follows from (48), a guaranteed estimate of the
number of iterations required to obtain a solution to the inequalities is given by
the minimal integer k = K0, at which inequality (45) does not hold �

For the purposes of analyzing the properties of the subgradients set obtained
on the minimization method trajectory, we will study the behavior of the set
characteristics depending on the degree of its perturbation. Denote by Sε(G) =
{z ∈ IRn|‖z − x‖ ≤ ε, ∀x ∈ G} neighborhood of the set G.

Lemma 6. Let the set G satisfies the Assumption 1. Then with 0 ≤ ε < ρ(G)
the following relations will hold [14]

R(Sε(G)) ≤ R(G) + ε, Rs(Sε(G)) ≤ Rs(G) + ε, ρ(Sε(G)) ≥ ρ(G) − ε, (49)

r(Sε(G)) ≥ r(G) − 2ε

Rs
, V (Sε(G)) ≥ V (G) − 2ε

RG
. (50)

3 Minimization Algorithm

An iteration of the stated minimization method includes step (1). Due to exact
1-dimensional search in the subgradient set at point xk+1, there is always a sub-
gradient satisfying condition (3): (sk+1, gk+1) ≤ 0. In the built-in algorithm for
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solving systems of inequalities, the extension parameter is set to enable us to
solve the system of inequalities for combining subgradient sets in some neigh-
borhood of a current approximation xk. This allows the minimization algorithm
to get out of the neighborhood after a finite number of iterations. In order to
exclude situations of a significant subgradients set expansion, we introduce an
update to the algorithm for solving systems of inequalities. To track the updates,
we used a stopping criterion, formulated based on Theorem 4. Description of the
minimization method is given in Algorithm 2.

Algorithm 2. RA(α)
1: Set x0 ∈ IRn, w0 ← x0, k, q, l ← 0, s0 ← 0, H0 ← I. Set σ > 0, parameters

M > 0, r ← 1/M and the limit α for extension parameter according to
equality (28). Calculate g0 ∈ ∂f(x0).

2: If gk = 0 then stop the algorithm. End if
3: If (gk,Hkgk)/(gk, gk) < σ then
4: update q ← q + 1, wq ← xk, l ← 0, Hk ← I, sk ← 0. End if
5: If l = 0 and condition (10) is not satisfied then
6: go to step 10. End if
7: Calculate the limit of the admissible value of the squared extension param-

eter αyk for a combination of transformations (7), (8)
8: If α2

yk < α2 then go to step 10
9: else set αk so that α2 ≤ α2

k ≤ α2
yk; perform (7), (8); go to step 11. End if

10: Set α2
k ≤ α2 and perform the transformations (5), (6).

11: Calculate a new approximation of the minimum point xk+1 ← xk −
γksk+1, γk ← arg minγ f(xk − γsk+1).

12: Calculate subgradient gk+1 ∈ ∂f(xk+1) from the condition (gk+1, sk+1) ≤ 0.

13: Increase k and l by 1; go to step 2.

In step 12, due to exact 1-dimensional descent condition in step 12, the
desired subgradient always exists, which follows from the condition for the 1-
dimensional function extremum. For the sequence of approximations of the algo-
rithm, due to the exact 1-dimensional descent in step 11, Lemma 7 holds [8].

Lemma 7. Let function f(x) be strictly convex on IRn, set D(x0) be limited, and
the sequence {xk}∞

k=0 be such that f(xk+1) = minγ∈[0,1] f(xk + γ(xk+1 − xk)).
Then limk−→∞ ‖xk+1 − xk‖ = 0.

Denote D(z) = {x ∈ IRn | f(x) ≤ f(z)}, let x∗ be a minimum point of function,
x∗ be limit points of the sequence {wq} generated by Algorithm 2. The existence
of limit points of a sequence {wq} when the set D(x0) is bounded follows from
wq ∈ D(x0). Concerning the algorithm convergence, we formulate Theorem 5:

Theorem 5. Let function f(x) be strictly convex on IRn, set D(x0) be limited,
and for x 
= x∗,

r(∂f(x)) ≥ r0 > 0, V (∂f(x)) ≥ V0 > 0, (51)
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where parameters M, r and α of Algorithm 2 are given according to the equalities

M =
4
3
r0, r =

3
4
r0, α =

1
1 − 3r0/4

, (52)

and parameters αk, set in steps 7 and 10, are fixed αk = α. If σ = (3V0/4)2 then
any limit point of sequence {wq} generated by Algorithm 2 is a minimum point
on IRn.

Proof. Assume that the statement of the theorem is false: suppose that some
subsequence wqs

−→ x∗, but x∗ 
= x∗. Then at this point the conditions (51)
hold. Set ε = ρ(∂f(x∗))/8. Choose δ > 0, such that

∂f(x) ⊂ Sε(∂f(x∗)) ≡ Sε
∗ ∀x ∈ Sδ(x∗). (53)

Such a choice is possible due to the upper semicontinuity of the point-to-set
mapping ∂f(x) [8].

For the set Sε
∗ characteristics according to (50), (51), taking into account

the choice of ε, estimates can be obtained:

r(S∗
ε ) ≥ r(∂f(x∗)) − 2ε

Rs(∂f(x∗))
=

3r(∂f(x∗))
4

≥ 3r0
4

, (54)

V (S∗
ε ) ≥ V (∂f(x∗)) − 2ε

R(∂f(x∗))
=

3V (∂f(x∗))
4

≥ 3V0

4
. (55)

In the minimization algorithm, the method for solving inequalities works, and
according to (52), the parameters of Algorithm 2 correspond to the characteris-
tics of the set G = S∗

ε . Therefore, by virtue of definitions (53), for the method for
solving inequalities, all results with the set G = S∗

ε will be valid as long as the
search trajectory {xk} is in the set Sδ(x∗). By virtue of the exact 1-dimensional
search and the conditions of the theorem, the conditions of Lemma 7 are satis-
fied. Hence, the value ‖xk+1 − xk‖ decreases and for a sufficiently large k, due
to the insignificance of changes, the sequence {xk} will not leave the Sδ(x∗)
neighborhood for a period greater than the period between updates in step 3
of the algorithm. This period for the built-in algorithm for solving inequalities
is more abundantly determined by the number of iterations required to violate
inequality (47) for the characteristics of the set (54), (55).

On set S∗
ε for characteristics (54), (55), according to (43), the sequence

(gk,Hkgk) will decrease until an update occurs in step 3, taking into account
the value σ = (3V0/4)2, under the condition (gk,Hkgk)/(gk, gk) < (3V0/4)2.
An update necessarily occurs due to the validity of estimate (43) and con-
straints (49) for the perturbed set S∗

ε . According to Theorem 4, taking into
account estimate (54) for S∗

ε , violation of (47) is fulfilled only if the sequence xk

goes beyond the set Sδ(x∗). This is a contradiction �
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4 Computational Experiment

Tables 1, 2 show calculation results for various algorithms with space extension
at fixed α2 = 6. Denote relaxation method with space extension in the direc-
tion of the subgradient [14] by SSM, r-algorithm [4], implemented in [14,16],
by rOM (α), r-algorithm [4] by r(α). Algorithm 2 was implemented with a fixed
value (RA(α = const)) for α2 = 6 and dynamically selected extension parameter
(RA(αk)) for α2 = (M/(M−1))2 = 6. We used 1-dimensional search [14,16] with
simultaneous calculation of the function and gradient. Quadratic and piecewise
linear test functions with a high degree of the level surfaces elongation, which
increases with dimension are: f1(x) =

∑n
i=1 x2

i i
6, x0 = (10/1, 10/2, ..., 10/n),

f2(x) =
∑n

i=1 |xi|i3, x0 = (10/1, 10/2, ..., 10/n). Tables 1, 2 show the number of
function and subgradient calculations spent on achieving the required accuracy
for the function f(xk) − f∗ ≤ ε. The RA(α = const) algorithm outperforms the
SSM, rOM (α) and r(α) methods, and with dimension increase, its superiority
grows. Therefore, the change in the directions of correction and space exten-
sion have a positive effect on the convergence rate. In the RA(αk) algorithm
compared to RA(α = const), an additional factor of convergence acceleration
is involved due to an increase in the space extension parameter, which, accord-
ing to the results of Tables 1, 2, led to the convergence rate increase. None of
presented problems can be solved by the multistep minimization method [12].

Table 1. Function f1(x) mini-
mization results for ε = 10−10.

n RA(αk) RA(α

= const)
SSM rOM (α) r(α)

100 1494 1834 2127 2333 2637

200 3474 3896 4585 5244 6572

300 5507 6317 7117 8480 10634

400 7690 8548 9791 11773 15058

500 9760 11510 12366 15281 19370

600 12133 13889 15537 19073 24536

700 13933 16394 18450 22500 29218

800 16492 18721 21387 26096 33473

Table 2. Function f2(x) mini-
mization results for ε = 10−4.

n RA(αk) RA(α =
const)

SSM rOM (α) r(α)

100 2248 2714 3006 3817 4152

200 4988 6010 9939 8494 8862

300 7680 9301 11114 14050 14812

400 10625 12808 23687 19549 19392

500 13490 16656 28037 24865 25981

600 16466 20207 39703 31502 32757

700 20122 22850 44573 38796 38133

800 23016 27653 52380 44200 44287

5 Conclusion

We presented a RSMM with space extension and a ML algorithm [14,16] orig-
inating in the iterative least squares method. Taking into account the specific
problem formulation of solving systems of inequalities in minimization meth-
ods, we determined the structure of the ML algorithm and altered the method
of filling the structure of known ML algorithm [14]. A significant increase in
the convergence rate was achieved due to altering the directions of correction
and space extension in the ML algorithm, as well as by the use of the method
for choosing the extension parameter at iterations. Algorithms of this type are
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of great practical importance due to their fast convergence with non-convex
functions, e.g., when estimating the parameters of mathematical models under
conditions of nonsmooth regularization [19–21].
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