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Abstract. We present a bootstrapping procedure for the full-RNS vari-
ant of the approximate homomorphic-encryption scheme of Cheon et al.,
CKKS (Asiacrypt 17, SAC 18). Compared to the previously proposed
procedures (Eurocrypt 18 & 19, CT-RSA 20), our bootstrapping proce-
dure is more precise, more efficient (in terms of CPU cost and number
of consumed levels), and is more reliable and 128-bit-secure. Unlike the
previous approaches, it does not require the use of sparse secret-keys.
Therefore, to the best of our knowledge, this is the first procedure that
enables a highly efficient and precise bootstrapping with a low proba-
bility of failure for parameters that are 128-bit-secure under the most
recent attacks on sparse R-LWE secrets.

We achieve this efficiency and precision by introducing three novel
contributions: (i) We propose a generic algorithm for homomorphic
polynomial-evaluation that takes into account the approximate rescal-
ing and is optimal in level consumption. (ii) We optimize the key-switch
procedure and propose a new technique for linear transformations (dou-
ble hoisting). (iii) We propose a systematic approach to parameterize the
bootstrapping, including a precise way to assess its failure probability.

We implemented our improvements and bootstrapping procedure in
the open-source Lattigo library. For example, bootstrapping a plaintext
in C

32768 takes 18 s, has an output coefficient modulus of 505 bits, a
mean precision of 19.1 bits, and a failure probability of 2−15.58. Hence,
we achieve 14.1× improvement in bootstrapped throughput (plaintext-
bit per second), with respect to the previous best results, and we have a
failure probability 468× smaller and ensure 128-bit security.

Keywords: Fully homomorphic encryption · Bootstrapping ·
Implementation

1 Introduction

Homomorphic encryption (HE) enables computing over encrypted data without
decrypting them first; thus, it is becoming increasingly popular as a solution
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for processing confidential data in untrustworthy environments. Since Gentry’s
introduction of the first fully homomorphic-encryption (FHE) scheme over ideal
lattices [14], continuous efficiency improvements have brought these techniques
closer to practical application domains. As a result, lattice-based FHE schemes
are increasingly used in experimental systems [23,26,27], and some of them are
now proposed as an industry standard [2].

Cheon et al. [11] introduced a leveled encryption scheme for approximate
arithmetic (CKKS); the scheme is capable of homomorphically evaluating arbi-
trary polynomial functions over encrypted complex-number vectors. Although
the family of leveled cryptosystems enables only a finite multiplicative depth,
with each multiplication consuming one level, the CKKS scheme enables the
homomorphic re-encryption of an exhausted ciphertext into an almost fresh one.
This capability, commonly called bootstrapping, theoretically enables the evalu-
ation of arbitrary-depth circuits. In practice, however, the bootstrapping proce-
dure for CKKS is approximate, and its precision and performance determine the
actual maximum depth of a circuit.

Since the initial CKKS bootstrapping procedure by Cheon et al. [10] and until
the most recent work by Han and Ki [20] that operates on the full-RNS (residue
number systems) version of CKKS, the bootstrapping efficiency has improved
by several orders of magnitude. However, this operation remains a bottleneck
for its potential applications, and its performance is crucial for the adoption
of the scheme. Bootstrapping performance can be improved by following two
approaches: (i) adapting the bootstrapping circuit representation by using HE-
friendly numerical methods. (ii) optimizing the scheme operations themselves,
which also improves the overall scheme performance.

All current CKKS bootstrapping approaches [6,10,20] rely, so far, on sparse
secret-keys to reduce the depth of their circuit representation, and none of them
has proposed parameters with an equivalent security of at least 128 bits under the
recent attacks on sparse R-LWE secrets [9,29]. The lack of stability in the secu-
rity of sparse R-LWE secrets has lead the standardization initiatives to exclude
sparse keys, hence also the bootstrapping operation, from the currently proposed
standards [2]. This raises the question about the practicality of a bootstrapping
procedure that would not require the use of sparse secret-keys.

1.1 Our Results

We propose an efficient bootstrapping procedure for the full-RNS CKKS scheme;
it does not necessarily require the use of sparse secret-keys and provides a greater
throughput than the current state of the art (Definition 1 in Sect. 7.1). To achieve
this, we make the following contributions:

Homomorphic Polynomial Evaluation (Sect. 3). The full-RNS variant of
the CKKS scheme restricts the re-scale operation only to the division by the fac-
tors qi of the ciphertext modulus Q. As the choice of these factors is constrained
to those enabling a number theoretic transform (NTT), the rescale cannot be
done by a power of two (as in the original CKKS scheme) and it introduces a
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small scale deviation in the process. For complex circuits, such as polynomial
evaluations, additions between ciphertexts of slightly different scales will even-
tually occur and will introduce errors.

We observe that this problem is trivially solved for linear circuits, by scaling
the plaintext constants by the modulus qi by which the ciphertext will be divided
during the next rescale. By doing so, the rescale is exact and the ciphertext scale
is unchanged after the operation. As a polynomial can be computed by recursive
evaluations of a linear function, the linear case can be generalized. In this work,
we propose a generic algorithm that consumes an optimal number of �log(d+1)�
levels to homomorphically evaluate degree-d polynomial functions. Starting from
a user-defined output scale, the intermediate scales can be back-propagated in
the recursion, thus ensuring that each and every homomorphic addition occurs
between ciphertexts of the same scale (hence is errorless). Our algorithm is,
to the best of our knowledge, the first general solution for the problem of the
approximate rescale arising from the full-RNS variant of the CKKS scheme.

Faster Matrix × Ciphertext Products (Sect. 4). The most expensive
CKKS homomorphic operation is the key-switch. This operation is an integral
building block of the homomorphic multiplication, slot rotations, and conjuga-
tion. The CKKS bootstrapping requires two linear transformations that involve
a large number of rotations (key-switch operations), so minimizing the number
of key-switch and/or their complexity has a significant effect on its performance.

Given an n × n plaintext matrix M and an encrypted vector v, all previous
works on the CKKS bootstrapping [6,10,20] use a baby-step giant-step (BSGS)
algorithm, proposed by Halevi and Shoup [18], to compute the encrypted product
Mv in O(

√
n) rotations. These works treat the key-switch procedure as a black-

box and try to reduce the number of times it is executed. Therefore, they do not
exploit the hoisting proposed by Halevi and Shoup [19].

We improve this BSGS algorithm by proposing a new format for rotation
keys and a modified key-switch procedure that extends the hoisting technique to
a second layer. This strategy is generic and it reduces the theoretical minimum
complexity (in terms of modular products) of any linear transformation over
ciphertexts. In our bootstrapping it reduces the cost of the linear transformations
by roughly a factor of two compared to the previous hoisting approach.

Improved Bootstrapping Procedure (Sect. 5). We integrate our proposed
improvements in the bootstrapping circuit proposed by Cheon et al. [10], Chen
et al. [6], Cheon et al. [7] and Han and Ki [20]. We propose a new high-precision
and faster bootstrapping circuit with updated parameters that are 128-bit secure,
even if considering the most recent attacks on sparse keys [9,29].

Parameterization and Evaluation (Sect. 6). We discuss the parametrization
of the CKKS scheme and its bootstrapping circuit, and we propose a procedure
to choose and fine-tune the parameters for a given use-case.

We implemented our contributions, as well as our bootstrapping, in the
open source library Lattigo: https://github.com/ldsec/lattigo. To the best of
our knowledge, this is the first public and open-source implementation of the
bootstrapping for the full-RNS variant of the CKKS scheme.

https://github.com/ldsec/lattigo


590 J.-P. Bossuat et al.

2 Background and Related Work

We now recall the full-RNS variant of the CKKS encryption scheme and review
its previously proposed bootstrapping procedures.

2.1 The Full-RNS CKKS Scheme

We consider the CKKS encryption scheme [11] in its full-RNS variant [8]: the
polynomial coefficients are always represented in the RNS and NTT domains.

Notation. For a fixed power-of-two N and L + 1 distinct primes q0, . . . , qL, we
define QL =

∏L
i=0 qi and RQL

= ZQL
[X]/(XN + 1), the cyclotomic polynomial

ring over the integers modulo QL. Unless otherwise stated, we consider elements
of RQL

as their unique representative in the RNS domain: Rq0 ×Rq1 × ...×RqL
∼=

RQL
: a polynomial in RQL

is represented by a (L+1)×N matrix of coefficients.
We denote single elements (polynomials or numbers) in italics, e.g., a, and vectors
of such elements in bold, e.g., a, with a||b the concatenation of two vectors. We
denote a(i) the element at position i of the vector a or the degree-i coefficient
of the polynomial a. We denote ||a|| the infinity norm of the polynomial (or
vector) a in the power basis and hw(a) the Hamming weight of the polynomial
(or vector) a. We denote 〈a,b〉 the inner product between the vectors a and b.
Given two vectors a and b, each of n values, we denote log(ε−1) the negative log
of the L1 norm of their difference: ε = 1

n

∑n−1
i=0 |a(i)−b(i)|. [x]Q denotes reduction

of x modulo Q and �x	, �x�, �x� the rounding of x to the previous, the next, and
the closest integer, respectively (if x is a polynomial, the operation is applied
coefficient-wise). Unless otherwise stated, logarithms are in base 2.

Plaintext and Ciphertext Space. A plaintext is a polynomial pt = m(Y ) ∈
R[Y ]/(Y 2n + 1) with Y = XN/2n and n a power-of-two smaller than N . We
define the following plaintext encodings: (i) The coefficient encoding for which
the message m ∈ R

2n is directly encoded as the coefficients of a polynomial
in Y . (ii) The slots encoding for which the message m ∈ C

n is subjected to
the canonical embedding C

n → Y 2n for which the negacyclic convolution in
R[Y ]/(Y 2n + 1) results in a Hadamard product in C

n.
We represent plaintexts and ciphertexts, respectively, by the tuples

{pt, Q�,Δ} and {ct, Q�,Δ}, where, for a secret s ∈ RQL
, pt is a degree-zero

polynomial in s, i.e. of RQ�
, and ct is a degree-one polynomial in s, i.e. of R2

Q�
.

We define Q� =
∏�

i=0 qi as the modulus at level � and Δ as a scaling factor. We
denote L as the maximum level and use 0 ≤ � ≤ L to represent a level between
the smallest level 0 and the highest level L. We refer to the depth of a circuit as
the number of levels required for the evaluation of the circuit.
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Scheme RNS-CKKS – Basic Operations

• Setup(N,h, b, σ): For a power-of-two ring degree N , a secret-distribution Ham-
ming weight h, a standard deviation σ, and a modulus bit-size b: Select the
moduli chains {q0, . . . , qL} and {p0, . . . , pα−1} composed of pairwise different
NTT-friendly primes (i.e. qi ≡ 1 mod 2N) close to powers of two such that
log(

∏L
i=0 qi × ∏α−1

j=0 pj) ≤ b. Set QL =
∏L

i=0 qi, P =
∏α−1

j=0 pj .
Define the following distributions over R: χkey with coefficients uniformly dis-
tributed over {−1, 0, 1} and exactly h non-zero coefficients. χpkenc with coeffi-
cients distributed over {−1, 0, 1} with respective probabilities {1/4, 1/2, 1/4}.
χerr with coefficients distributed according to a discrete Gaussian distribution
with standard deviation σ and truncated to [−�6σ	, �6σ	].

• Encode (m, Δ, n, �) (coefficients→slots): For a message m ∈ C
n with 1 ≤ n <

N , where n divides N , apply the canonical map C
n → R[Y ]/(Y 2n+1) → RQ�

with Y = XN/2n. Compute m′ = FFT−1
n (m) and set m′

0||m′
1 ∈ R

2n, with
m′

0 = 1
2 (m′ + m′) and m′

1 = −i
2 (m′ − m′), as a polynomial in Y . Finally,

scale the coefficients by Δ and round them to the nearest integer, apply the
change of variable Y → X and return {pt, Q�,Δ}.

• Decode({pt, Q�,Δ}, n) (slots→coefficients): For 1 ≤ n < N , where n divides
N , apply the inverse of the canonical map RQ�

→ R[Y ]/(Y 2n + 1) → C
n,

with Y = XN/2n. Map pt to the vector m′
0||m′

1 ∈ R
2n and return m =

FFTn(Δ−1 · (m′
0 + i · m′

1)).
• SecKeyGen(·): Sample s ← χkey and return the secret key s.
• SwitchKeyGen(s, s′,w): For w an integer decomposition basis of β elements,

sample ai ∈ RPQL
and ei ← χerr and return the key-switch key: swk(s→s′) =

(swk
(0)
(s→s′), . . . , swk

(β−1)
(s→s′)), where swk

(i)
(s→s′) = (−ais

′ + sw(i)P + ei, ai).
• PubKeyGen(s): Set the public encryption key pk ← SwitchKeyGen(0, s, (1)),

the relinearization key rlk ← SwitchKeyGen(s2, s,w), the rotation keys rotk ←
SwitchKeyGen(s5

k

, s,w) (a different key has to be generated for each differ-
ent k), and the conjugation key conj ← SwitchKeyGen(s−1, s,w) and return:
(pk, rlk, {rotk}k, conj).

• Enc({pt, Q�,Δ}, s): Sample a ∈u RQ�
and e ← χerr, set ct = (−as + e, a) +

(pt, 0) and return {ct, Q�,Δ}.
• PubEnc({pt, Q�,Δ}, pk): Sample u ← χpkenc and e0, e1 ← χerr, set:

ct = SwitchKey(u, pk) + (pt + e0, e1) and return {ct, Q�,Δ}.
• SwitchKey(d, swks→s′): For d ∈ RQ�

a polynomial1, decompose d base w
such that d = 〈d,w〉 and return (d0, d1) = �P−1 · 〈d, swks→s′〉� mod Q� for
P−1 ∈ R.

• Dec({ct, Q�,Δ}, s): For ct = (c0, c1), return {pt = c0 + c1s,Q�,Δ}.

The homomorphic operations of CKKS are detailed in the extended version
of the paper [4].

1 SwitchKey does not act directly in a ciphertext; instead, we define it as a generalized
intermediate function used as a building block that takes a polynomial as input.



592 J.-P. Bossuat et al.

2.2 CKKS Bootstrapping

Let ct = (c0, c1) be a ciphertext at level � = 0, and s a secret key of Ham-
ming weight h, such that Decrypt(ct, s) = [c0 + c1s]Q0 = pt. The goal of the
bootstrapping operation is to compute a ciphertext ct′ at level L − k > 0
(where k is the depth of the bootstrapping circuit) such that QL−k � Q0 and
[c′

0 + c′
1s]QL−k

≈ pt. Since [c0 + c1s]QL
= pt + Q0 · I, where I is an integer

polynomial [10], bootstrapping is equivalent to an extension of the CRT basis,
followed by a homomorphic reduction modulo Q0.

Cheon et al. proposed the first procedure [10] to compute this modular reduc-
tion, by (i) homomorphically applying the encoding algorithm, to enable the par-
allel (slot-wise) evaluation, (ii) computing a modular reduction approximated by
a scaled sine function on each slot, and (iii) applying the decoding algorithm to
retrieve a close approximation of pt without the polynomial I:

Encode(pt + Q0 · I) = pt′
︸ ︷︷ ︸

(i) SlotsToCoeffs(pt+Q0·I)

⇒ Q0

2π
sin

(
2πpt′

Q0

)

= pt′′

︸ ︷︷ ︸
(ii) EvalSine(pt′)

⇒ Decode(pt′′) ≈ pt
︸ ︷︷ ︸
(iii) CoeffsToSlots(pt′′)

.

The complexity of the resulting bootstrapping circuit is influenced by two
parameters: The first one is the secret-key Hamming weight h, which directly
impacts the depth of the bootstrapping circuit. Indeed, Cheon et al. show that
||I|| ≤ O(

√
h) with very high probability. A denser key will therefore require

evaluating a larger-degree polynomial, with a larger depth. The second parame-
ter is the number of plaintext slots n that has a direct impact on the complexity
of the circuit (but not on its depth). By scaling down the values to compress
them closer to the origin, Cheon et al. are able to evaluate the sine function
by using a low-degree Taylor series of the complex exponential and then use
repeated squaring (the double angle formula) to obtain the correct result. In
their approach, the sine evaluation dominates the circuit’s depth, whereas the
homomorphic evaluation of the encoding and decoding algorithms, which they
express as an n × n matrix-vector product, dominates its width.

In a subsequent work, Chen et al. [6] propose to compute the encoding by
homomorphically evaluating the Cooley-Tukey algorithm. This approach needs
log(n) depth (the number of iterations of the algorithm); to reduce this depth,
Chen et al. merge several iterations together, at the cost of an increased com-
plexity. In a concurrent work, Cheon et al. [7] explored techniques to efficiently
evaluate DFTs on ciphertexts. They show how to factorize the encoding matri-
ces into a series of logr(n) sparse matrices, where r is a power-of-two radix. The
contributions in [6,7] enabled the acceleration of the homomorphic evaluation of
the encoding functions by two orders of magnitude. Chen et al. [6] also improved
the approximation of the scaled sine function by using a Chebyshev interpolant.

More recently, Han and Ki port the bootstrapping procedure to the full-
RNS variant of CKKS, with several improvements to the bootstrapping circuit
and to the CKKS scheme [20]. They propose a generalization of its key-switch
procedure by using an intermediate RNS decomposition that enables a trade-off



Efficient Bootstrapping with Non-sparse Keys 593

between the complexity of the key-switch and the homomorphic capacity of a
fresh ciphertext. They also give an alternative way to approximate the scaled
sine function, which accounts for the magnitude of the underlying plaintext and
uses the cosine function and the double angle formula. Combined, these changes
yield an acceleration factor of 2.5 to 3, compared to the work of Chen et al. [6].

Both works [6,7] were implemented with HEAAN [21], yet the implementa-
tion of only the former was published. The work of [20] was implemented using
SEAL [28], but the implementation has still not been published.

2.3 Security of Sparse Keys

One commonality between all the aforementioned works is the use of sparse
secret-keys with a Hamming weight h = 64. A key with a small Hamming weight
enables a low-depth bootstrapping circuit, essential for its practicality. However,
recent advances in the cryptanalysis of the R-LWE problem prove that hybrid
attacks specifically targeting such sparse keys can severely affect its security
[9,29]. In light of the most recent attacks, Curtis and Player [12] estimate that,
for a sparse key with h = 64 and a ring degree N = 216, the modulus needs to be
at most 990 bits to achieve a security of 128 bits. In their initial bootstrapping
proposal, Cheon et al. [10] use the parameters {N = 216, log(Q) = 2480, h = 64,
σ = 3.2} and estimate the security of these parameters to 80 bits. In their work,
Han and Ki [20] propose new parameter sets, one of which they claim has 128-bit
of security: {N = 216, log(Q) = 1450, h = 64, σ = 3.2}. However, these estimates
are based on results obtained using Albrecht’s estimator [1] that, at the time,
did not take into account the most recent attacks on sparse keys. The security
of the parameter set {N = 216, log(Q) = 1250, h = 64, σ = 3.2} is estimated
at 113 bits in the more recent work by Son and Cheon [29]. This sets a loose
upper bound to security of the parameters (which have a 1450-bit modulus)
proposed by Han and Ki [20]. Therefore, the bootstrapping parameters must be
updated to comply with the most recent security recommendations, as none of
the parameters proposed in the current works achieve a security of 128 bits.

3 Homomorphic Polynomial Evaluation

The main disadvantage of the full-RNS variant of CKKS stems from its rescale
operation that does not divide the scale by a power-of-two, as in the original
scheme, but by one of the moduli. Those moduli are chosen, for efficiency pur-
poses, as distinct NTT-friendly primes [8]; under this constraint, the power-of-
two rescale of the original CKKS scheme can only be approximated. As a result,
ciphertexts at the same level can have slightly different scales (depending on the
previous homomorphic operations) and additions between such ciphertexts will
introduce an error proportional to the difference between their scale. Addressing
this issue in a generic and practical way is crucial for the adoption of CKKS.

For a significant step toward this goal, we introduce a homomorphic
polynomial-evaluation algorithm that is depth-optimal and ensures that addi-
tions are always made between ciphertexts with the exact same scale.
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Algorithm 1: BSGS alg. for polynomials in Chebyshev basis

Input: p(t) =
∑d

i=0 ciTi(t).
Output: The evaluation of p(t).

1 m ← �log(d + 1)�
2 l ← �m/2�
3 T0(t) = 1, T1(t) = t
4 Evaluate T2(t), T3(t), . . . , T2l−1(t) and T2l(t), T2l+1(t), . . . , T2m−1(t) using

Ti=a+b(t) ← 2Ta(t)Tb(t) − T|a−b|(t).
5 Find q(t) and r(t) such that p(t) = q(t) · T2m−1(t) + r(t).
6 Recurse on step 5 by replacing p(t) by q(t) and r(t) and m by m − 1, until the

degree of q(t) and r(t) is smaller than 2l.
7 Evaluate q(t) and r(t) using Tj(t) for 0 ≤ j ≤ 2l − 1.
8 Evaluate p(t) using q(t), r(t) and T2m−1(t).
9 return p(t)

3.1 The Baby-Step Giant-Step (BSGS) Algorithm

In order to minimize the number of ciphertext-ciphertext multiplications in their
bootstrapping circuit, Han and Ki [20] adapt a generic baby-step giant-step
(BSGS) polynomial-evaluation algorithm for polynomials expressed in a Cheby-
shev basis. Algorithm 1 gives a high-level description of the procedure.

For a polynomial p(t) of degree d, with m = �log(d + 1)� and l = �m/2	,
the algorithm first decomposes p(t) into

∑�d/l�
i=0 ui,2l(t) · T2i·l(t), with ui,2l(t) =

∑2l−1
j=0 ci,j · Tj(t), ci,j ∈ C and T0≤j<2l a pre-computed power basis. We denote

u�d/l�,2l(t) as umax. The BSGS algorithm then recursively combines the monomi-
als ui,2j+1(t) = ui+1,2j (t) ·T2j (t)+ui,2j (t) in a tree-like manner by using a second
pre-computed power basis T2l<i<m(t) to minimize the number of non-scalar mul-
tiplications. The algorithm requires 2m−l +2l +m− l−3+�(d+1)/2l� non-scalar
products and has, in the best case, depth m.

3.2 Errorless Polynomial Evaluation

We address the errors introduced by the approximate rescale for the evaluation
of a polynomial p(t). We scale each of the leaf monomials ui,2l(t) by some scale
Δ such that all evaluations of the subsequent monomials ui,2j+1(t) = ui+1,2j (t) ·
T2j (t) + ui,2j (t) are done with additions between ciphertexts of the same scale.
More formally, let Δui,2j+1 (t) be the scale of ui,2j+1(t) (the result of the monomial
evaluation), ΔT2j (t) the scale of the power-basis element T2j (t), and qT2j (t) the
modulus by which the product ui+1,2j (t) ·T2j (t) is rescaled. We set Δui+1,2j (t) =
Δui,2j+1 (t) · qT2j (t)/ΔT2j (t) and Δui,2j (t) = Δui,2j+1 (t). Starting from a target
scale Δp(t) and p(t) = u0,2m(t) = u1,2m−1(t) · T2m−1(t) + u0,2m−1(t), we recursively
compute and propagate down the tree the scale each ui,2j (t) should have. The
recursion ends when reaching ui,2l , knowing the scale that they must have. Since

ui,2l(t) =
∑2l−1

j=0 ci,jTj(t), we can use the same technique to derive by what value
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Algorithm 2: EvalRecurse

Input: A target scale Δ, an upper-bound m, a stop factor l, a degree-d
polynomial p(t) =

∑d
i=0 ciTi(t), and the power basis {T0, T1, . . . , T2l−1}

and {T2l , T2l+1 , . . . , T2m−1}, pre-computed for a ciphertext ct.
Output: A ciphertext encrypting the evaluation of p(ct).

1 if d < 2l then

2 if p(t) = umax(t) and l > 2m - 2l−1 and l > 1 then
3 return EvalRecurse(Δ, m = �log(d + 1)�, l = ��log(d + 1)�/2�, p(t), T )
4 else
5 ct ← �c0 · Δ · qTd�
6 for i = d; i > 0; i = i − 1 do
7 ct ← Add(ct, MultConst(Ti, �(ci · Δ · qTd)/ΔTi�))
8 end
9 return Rescale(ct)

10 end

11 end
12 Express p(t) as q(t) · T2m−1 + r(t)
13 ct0 ← EvalRecurse((Δ · qT2m−2 )/ΔT2m−1 , m − 1, l, q(t), T )

14 ct1 ← EvalRecurse(Δ, m − 1, l, r(t), T )
15 ct0 ← Mul(ct0, T2m−1)
16 if level(ct0) > level(ct1) then
17 ct0 ← Add(Rescale(ct0), ct1)
18 else
19 ct0 ← Rescale(Add(ct0, ct1))
20 end
21 return ct0

each of the coefficients ci,j must be scaled, so that the evaluation of ui,2l(t) is
also done with exact additions and ends up with the desired scale.

Algorithm 2 is our proposed solution: it integrates our scale-propagation
technique to the recursive decomposition of p(t) into q(t) and r(t). We compare
Algorithms 1 and 2 in Table 1 by evaluating a Chebyshev interpolant of the
homomorphic modular reduction done during the bootstrapping circuit. This
function plays a central role in the bootstrapping hence is an ideal candidate for

Table 1. Comparison of the homomorphic evaluation of a Chebyshev interpolant of
degree d of cos(2π(x−0.25)/2r) in the interval (−K/2r, K/2r) followed by r evaluations
of cos(2x) = 2 cos2(x) − 1. The scheme parameters are N = 216, n = 215, h = 196 and
qi ≈ 255. Δε = |Δin − Δout| · Δ−1

in .

log(1/ε) for (K, d, r)
Δε (12, 34, 2) (15, 40, 2) (17, 44, 2) (21, 52, 2) (257, 250, 3)

Algorithm 1 ([20]) 2−31.44 30.36 30.05 29.73 29.19 25.00

Algorithm 2 (ours) 0 37.37 37.16 37.15 37.04 29.46
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evaluating the effect of the proposed approaches (see Sect. 5.4). To verify that
our algorithm correctly avoids additions between ciphertexts of different scales,
we forced both algorithms to always rescale a ciphertext before an addition (in
practice, it is better to check the levels of the ciphertexts before an addition,
and dynamically assess if a level difference can be used to scale one ciphertext to
the scale of the other). We observe that our algorithm yields two advantages: It
enables (i) a scale-preserving polynomial evaluation (the output-scale is identical
to the input scale), and (ii) a much better precision by successfully avoiding
errors due to additions between ciphertexts of different scales.

3.3 Depth-Optimal Polynomial Evaluation

In practice, Algorithm 1 will consume more than the optimal m levels for a
specific class of d due to the way the rescale and level management work in the
full-RNS variant of the CKKS scheme. This discrepancy arises from the following
interactions (recall that Algorithm 1 evaluates each ui(t) as a linear combination
of a pre-computed power-basis {T0(t), T1(t), . . . , T2l−1(t)}):

1. If l > 1, then the depth to evaluate T2l−1(t) is l and evaluating the ui(t) will
necessarily cost l + 1 levels due to the constant multiplications.

2. If l = 1, then the depth to evaluate T1(t) is zero, hence the depth to evaluate
the ui(t) is and remains l.

3. If d > 8, then Algorithm 1 sets l > 1.
4. If 2m − 2l−1 ≤ d < 2m, then all the elements of the power basis

{T2l , T2l+1 , . . . , T2m−1} need to be used during the recombination step of
Algorithm 1.

Hence, if l > 1 and d > 2m − 2l−1, the total depth to execute Algorithm 1 is
necessarily m + 1. This could be avoided by always setting l = 1 regardless of
d, but it would lead to a very costly evaluation, as the number of non-scalar
multiplications would grow proportionally to d. To mitigate this additional cost,
we only enforce l = 1 on the coefficient of p(t) whose degree is ≥ 2m − 2l−1.
Hence, Algorithm 2 first splits p(t) into p(t) = a(t) + b(t) · T2m−2l−1(t). It then
evaluates a(t) with the optimal l and recurses on b(t) until l = 1. The number of
additional recursions is bounded by log(m), because each recursion sets the new
degree to half of the square root of the previous one. In practice, these additional
recursions add only �log(d+1−(2m−2l−1))� non-scalar multiplications but enable
the systematic evaluation of any polynomial by using exactly m levels.

3.4 Conclusions

For an extra cost of �log(d + 1 − (2m − 2l−1))� ciphertext-ciphertext products,
our proposed algorithm guarantees an optimal depth hence an optimal-level con-
sumption. This extra cost is negligible, compared to the base cost of Algorithm 1,
i.e., 2m−l+2l+m−l−3+�(d+1)/2l�. It also guarantees exact additions throughout
the entire polynomial evaluation, hence preventing the precision loss related to
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additions between ciphertexts of different scales and making the procedure easier
to use. It also enables the possibility to choose the output scale that can be set to
the same as the input scale, making the polynomial evaluation scale-preserving.
As linear transformations and constant multiplications can already be made to
be scale-preserving, our polynomial evaluation is the remaining building block
for enabling scale-preserving circuits of arbitrary depth.

4 Key-Switch and Improved Matrix-Vector Product

The key-switch procedure is the generic public-key operation of the CKKS
scheme. By generating specific public key-switch keys derived from secret keys
s′ and s, it is possible to enable the public re-encryption of ciphertexts from key
s′ to s. Beyond the public encryption procedure (switching from s′ = 0 to s), a
key-switch is required by most homomorphic operations to cancel the effect of
encrypted arithmetic on the decryption circuit, thus ensuring the compactness of
the scheme. In particular, homomorphic multiplications require the re-encryption
from key s2 back to s, whereas slot-rotations require the re-encryption from the
equivalent rotation of s back to s. The cost of the key-switch dominates the
cost of these operations by one to two orders of magnitude because it requires
many NTTs and CRT reconstructions. Hence, optimizations of the key-switch
algorithm have a strong effect on the overall efficiency of the scheme.

We propose an optimized key-switch key format and key-switch algorithm
(Sect. 4.1). We then apply them to rotation-keys and further improve the hoisted-
rotation technique (Sect. 4.2) introduced by Halevi and Shoup [19]. Finally,
we propose a modified procedure for matrix-vector multiplications over packed
ciphertexts (Sect. 4.3) which features a novel double-hoisting optimization.

4.1 Improved Key-Switch Keys

Given a ciphertext modulus QL =
∏L

j=0 qj , we use a basis w composed of
products among the qj , as described by Han and Ki [20]. We also include the
entire basis w in the keys, as done by Bajard et al. and Halevi et al. [3,16]; this
saves one constant multiplication during the key-switch and enables a simpler
key-switch keys generation. A more detailed overview of these works can be
found in the extended version of the paper [4].

We propose a simpler and more efficient hybrid approach. Specifically, we use
the basis w(i) = QL

qαi
[(QL

qαi
)−1]qαi

with qαi
=

∏min(α(β+1)−1,L)
j=αi

qj for 0 ≤ i < β,
β = �(L + 1)/α� and α a positive integer. In other words, Q is factorized into β
equally-sized composite-numbers qαi

, each composed of up to α different primes.
Thus, our key-switch keys have the following format:

(
swk0qαi

, swk1qαi

)
=

(
[−ais + s′ · P · QL

qαi
· [(QL

qαi
)−1]qαi

+ ei]PQL
, [ai]PQL

)
.

We set P =
∏α−1

j=0 pj , and the bit-size of P such that qαi
≤ P, ∀αi. As

shown by Gentry et al. [15], this leads to a negligible error introduced by the
key-switch operation. Algorithm 3 describes the associated key-switch procedure
that corresponds to the standard one adapted to our keys.
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Algorithm 3: Key-switch

Input: c ∈ RQ�
, the key-switch key swks→s′ .

Output: (a, b) ∈ R2
Q�

.
1 d ← [

[c]qα0≤i<β

]
PQ�

2 (a, b) ← (〈d, swk0〉, 〈d, swk1〉)
3 (a, b) ← (�P−1 · a�, �P−1 · b�)
4 return (a, b)

4.2 Improved Hoisted-Rotations

The slot-rotation operation in CKKS is defined by the automorphism φk : X →
X5k

(mod XN + 1). It rotates the message slots by k positions to the left. After
a rotation, the secret under which the ciphertext is encrypted is changed from s
to φk(s), and a key-switch φk(s) → s is applied to return to the original key.

Halevi and Shoup [19] show that as φk is an automorphism, it distributes over
addition and multiplication, and commutes with the power-of-two base decom-
position. As φk acts individually on the coefficients by permuting them without
changing their norm (the modular reduction by XN + 1 at most induces a sign
change), it also commutes with the special RNS decomposition (see Supplemen-
tary material in the extended version of the paper [4]): [φk(a)]qαi

= φk([a]qαi
).

Hence, when several rotations have to be applied on the same cipher-
text, [a]qαi

can be pre-computed and re-used for each subsequent rotation:∑
φk([a]qαi

) · rotk,qαi
. This technique proposed by Halevi et al., called hoist-

ing, significantly reduces the number of NTTs and CRT reconstructions, at the
negligible cost of having to compute the automorphism for each of the [a]qαi

.
We further exploit the properties of the automorphism to reduce its execution

cost, by observing that φ−1
k can be directly pre-applied on the rotation keys:

(
r̃ot

0

k,qαi
, r̃ot

1

k,qαi

)
=

(
[−aiφ

−1
k (s) + s · P · QL

qαi
· [(QL

qαi
)−1]qαi

+ ei]PQL
, [ai]PQL

)

Compared to a rotk,qαi
, a traditional rotation-key as defined in Sect. 2.1, this

reduces the number of automorphisms per-rotation to only one:

〈φk(a), rotk〉 = φk

(〈a, r̃otk〉) .

Our improved algorithm for hoisted rotations is detailed in Algorithm 4.

4.3 Faster Matrix-Vector Operations

We now discuss the application of homomorphic slot-rotations to the computa-
tion of matrix-vector products on packed ciphertexts. The ability to efficiently
apply generic linear transformations to encrypted vectors is pivotal for a wide
variety of applications of homomorphic encryption. In particular, the homomor-
phic evaluation of the CKKS encoding and decoding procedures, which are linear
transformations, dominates the cost in the original bootstrapping procedure.



Efficient Bootstrapping with Non-sparse Keys 599

Algorithm 4: Optimized Hoisting-Rotations

Input: ct = (c0, c1) ∈ R2
Q�

and a set of r rotation keys r̃otrk .
Output: v a list containing each rk rotation of ct.

1 d ← [
[c1]qα0≤i<β

]
PQ�

// (Decompose )

2 foreach rk do

3 (a, b) ← (〈d, r̃ot
0
rk

〉, 〈d, r̃ot
1
rk

〉) // (MultSum )

4 (a, b) ← (�P −1 · a�, �P −1 · b�) // (ModDown )

5 vrk ← (φrk (c0 + a), φrk (b)) // (Permute )

6 end
7 return v

Halevi and Shoup propose to express an n × n matrix M in diagonal form
and to use a baby-step giant-step (BSGS) algorithm (Algorithm 5) to evaluate
the matrix product in O(

√
n) rotations [17,18]. At the time of this writing, all

the existing bootstrapping procedures for the CKKS scheme are based on this
approach and are not reported to use hoisting, unlike done for BGV [18,19]. We
now break down the cost of this BSGS algorithm, analyze its components and,
using our observations, we present our improvements to this approach.

Algorithm 5: BSGS Algorithm of [19] For Matrix × Vector Multiplication

Input: ct a ciphertext encrypting m ∈ C
n, Mdiag the diagonal rows of M

a n × n matrix with n = n1n2.
Output: The evaluation ct′ = M × ct.

1 for i = 0; i < n1; i = i + 1 do
2 cti ← Rotatei(ct)
3 end
4 ct′ ← (0, 0)
5 for j = 0; j < n2; j = j + 1 do
6 r ← (0, 0)
7 for i = 0; i < n1; i = i + 1 do
8 r ← Add(r,Mul(cti,Rotate−n1·j(M

(n1·j+i)
diag )))

9 end
10 ct′ ← Add(ct′,Rotaten1·j(r))
11 end
12 ct′ ← Rescale(ct′)
13 return ct′

Dominant Complexity of Rotations. The dominant cost factor of
Algorithm 5 is the number of rotations, as each rotation requires key-switch
operations. These rotations comprise four steps (see Algorithm 4):

1. Decompose: Decompose a polynomial of RQ�
in base w and return the result

in RPQ�
. This operation requires NTTs and CRT basis extensions.

2. MultSum: Compute a sum of products of polynomials in RPQ�
. This operation

only requires coefficient-wise additions and multiplications.
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Fig. 1. Normalized complexity of each step (op.) of a rotation. The complexity for
each operation was computed with N = 216, 0 ≤ � ≤ 23 and α = 4. The complexity
derivation can be found in the extended version of the paper [4].

3. ModDown: Divide a polynomial of RPQ�
by P and return the result in RQ�

.
This operation requires NTTs and CRT basis extensions.

4. Permute: Apply the automorphism φk on a polynomial of RQ�
. It represents

a permutation of the coefficients and has in theory no impact on complexity.

Let n be the number of non-zero diagonals of M , and n1, n2 be two integers
such that n = n1n2; the complexity of the original BSGS algorithm (Algorithm 5)
is n1 + n2 rotations and it is minimized when n1 ≈ n2:

(n2 + n1) · (Decompose + MultSum + ModDown + Permute),

to which 2n2n1 multiplications in RQ�
should also be added (line 8 of

Algorithm 5). We denote inner-loop and outer-loop the lines that depend, respec-
tively, on n1 and n2. Figure 1 shows the weight of each of the four steps in the
total complexity. The complexity of the steps MultSum and Permute is negligi-
ble compared to the complexity of Decompose and ModDown, as products and
additions are very inexpensive compared to NTTs and CRT basis extensions.
We base our optimization on this observation.

Improved BSGS Algorithm. We propose a new optimization that we refer to
as double-hoisting. This optimization improves the hoisting technique proposed
by Halevi and Shoup [19] and further reduces the complexity related to the
inner-loop rotations by adding a second layer of hoisting.

The first level, proposed by Halevi and Shoup [19], applies to the inner-
loop rotations (line 8 of Algorithm 5). This renders the computation devoted to
Decompose independent of the value n1, so the complexity is reduced to

n2 · (Decompose + MultSum + ModDown + Permute)
+ n1 · (MultSum + ModDown + Permute) + Decompose.

The second level, which we propose, introduces an additional hoisting for
the inner-loop rotations, as the ModDown step is a coefficient-wise operation.
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Algorithm 6: Double-hoisting BSGS matrix×vector algorithm

Input: ct = (c0, c1) ∈ R2
Q�

, Mdiag ∈ RPQ� the pre-rotated diagonals of Mn×n,
n1n2 = n, roti ∈ R2

PQ�
the set of necessary rotations keys.

Output: The evaluation of M × ct.
1 d ← [

[c1]qα0≤i<β

]
PQ�

// Q� → PQ�

2 for i = 0; i < n1; i = i + 1 do

3 (ai, bi) ← (P · c0 + 〈d, r̃ot
0
i 〉, 〈d, r̃ot

1
i 〉) // ∈ PQ�

4 end
5 (r0, r1), r2 ← (0, 0), (0)
6 for j = 0; j < n2; j = j + 1 do
7 (u0, u1) ← (0, 0)
8 for i = 0; i < n1; i = i + 1 do

9 (u0, u1) ← (u0, u1) + (ai, bi) · M(n1·j+i)
diag // ∈ PQ�

10 end
11 (u0, u1) ← (�P −1 · u0�, �P −1 · u1)� // (PQ� → Q�)

12 d ← [
[u1]qα0≤i<β

]
PQ�

// Q� → PQ�

13 (r0, r1) ← (r0, r1) +
(
φn1·j

(
〈d, r̃ot

0
n1·j〉

)
, φn1·j

(
〈d, r̃ot

1
n1·j〉

))
// ∈ PQ�

14 r2 ← r2 + φn1·j(u0) // ∈ Q�

15 end
16 (r0, r1) ← (�P −1 · r0�, �P −1 · r1�) // (PQ� → Q�)

17 return (r0 + r2, r1)

Similarly to the Decompose step, this operation commutes with the Permute step
and the ciphertext-plaintext multiplications (line 8 of Algorithm 5). Therefore,
we need to apply it only once after the entire inner-loop of n1 rotations. Applying
the same reasoning for the ModDown step of the outer-loop rotations we can
reduce the number of key-switch operations from n1 + n2 to n2 + 1:

n2 · (Decompose + MultSum + ModDown + Permute)
+ n1 · (MultSum + Permute) + Decompose + ModDown.

Algorithm 6 describes our double-hoisting BSGS for matrix-vector products.

Discussion. In addition to benefiting from our improved key-switch (Sect. 4.1)
and rotation (Sect. 4.2) procedures, Algorithm 6 introduces a trade-off: The Mod-
Down step in the inner-loop now depends on the value n2, and the ModDown
step of the outer-loop is performed only once. However, the 2n1n2 multiplica-
tions and additions are performed in RPQ�

instead of RQ�
. Hence, the complexity

dependency on n1 is significantly reduced at the cost of slightly increasing the
dependency on n1n2. Applying the ModDown step at the end of each loop has
the additional benefit of introducing the rounding error only once.

Table 2 compares the complexity of a non-hoisted, single-hoisted
(Algorithm 5) and double-hoisted (Algorithm 6) BSGS, each with its optimal
ratio n1/n2. Our approach minimizes the complexity when 23 ≤ n1/n2 ≤ 24.
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Table 2. Complexity of Algorithm 5 [17], 1-hoisted Algorithm 5 [19] and our 2-hoisted
Algorithm 6. M is a 215 × 215 matrix with n = n1n2 non zero diagonals. The used
parameters are N = 216, n = 215, � = 18, α = 4. The speed-up factor is the ratio
between the #MulZp , taking as baseline the 1-hoisted approach.

No hoisting [17] 1-hoisted [19] 2-hoisted (proposed)
n n1/n2 log(#MulZp ) Speed-up n1/n2 log(#MulZp ) n1/n2 log(#MulZp ) Speed-up

32768 2 37.276 0.777× 2 36.913 8 36.813 1.071×
16384 1 36.500 0.765× 4 36.114 16 35.903 1.157×
8192 2 35.865 0.706× 2 35.364 8 35.055 1.238×
4096 1 35.152 0.705× 4 34.648 16 34.205 1.359×
2048 2 34.597 0.652× 2 33.981 8 33.446 1.448×
1024 1 33.927 0.664× 4 33.337 16 32.672 1.585×
512 2 33.422 0.619× 2 32.732 8 32.014 1.644×
256 1 32.769 0.645× 4 32.137 16 31.318 1.764×
128 2 32.282 0.609× 2 31.568 8 30.753 1.759×
64 1 31.614 0.649× 4 30.992 16 30.127 1.821×
32 2 31.112 0.623× 2 30.430 8 29.637 1.732×
16 1 30.375 0.682× 4 29.842 16 29.311 1.445×
8 2 29.792 0.685× 2 29.248 2 29.116 1.094×

This shows that the strategy of the previously proposed bootstrapping proce-
dures [6,10,20], which minimize the number of rotations by setting n1 ≈ n2,
is not optimal anymore. The maximum gain occurs when n (the number of
non zero diagonals) is around 128. This can be exploited by factorizing the lin-
ear transforms, used during the bootstrapping, into several sparse matrices (see
Sect. 5.3).

Increasing the ratio from n2/n1 ≈ 1 to n2/n1 ≈ 16 in our bootstrapping
parameters (Sect. 6) increases the number of keys by a factor around 1.6 and
reduces the computation time by 20%. Hence, Algorithm 6 reduces the overall
complexity of matrix-vector products, by introducing a time-memory trade-off.

We also observe that these improvements are not restricted to plaintext
matrices or to the CKKS scheme and can be applied to other R-LWE scheme,
such as BGV [5] or BFV [13], as long as the scheme (or its implementation)
allows for the factorization of an expensive operation. For example, in the BFV
scheme, the quantization (division by Q/t) (as well as the re-linearization if the
matrix is in ciphertext) can be delayed to the outer-loop.

5 Bootstrapping for the Full-RNS CKKS Scheme

We present our improved bootstrapping procedure for the full-RNS variant of
the CKKS scheme. We follow the high-level procedure of Cheon et al. [10] and
adapt each step by relying on the techniques proposed in Sects. 3 and 4.

The purpose of the CKKS bootstrapping [10] is, in contrast with BFV’s [13],
not to reduce the error. Instead, and similarly to BGV [5] bootstrapping, it
is meant to reset the ciphertext modulus to a higher level in order to enable



Efficient Bootstrapping with Non-sparse Keys 603

further homomorphic multiplications. The approximate nature of CKKS, due
to the plaintext and ciphertext error being mixed together, implies that each
homomorphic operation decreases the output precision. As a result, all the cur-
rently proposed bootstrapping circuits only approximate the ideal bootstrapping
operation, and their output precision also determines their practical utility.

5.1 Circuit Overview

Let {ct = (c0, c1), Q0,Δ} be a ciphertext that encrypts an n-slot message under
a secret-key s with Hamming weight h, such that Decrypt(ct, s) = c0 + sc1 =
�Δ·m(Y )�+e ∈ Z[Y ]/(Y 2n+1), where Y = XN/2n. The bootstrapping operation
outputs a ciphertext {ct′ = (c′

0, c
′
1), QL−k,Δ} such that c′

0 + sc′
1 = �Δ ·m(Y )�+

e′ ∈ Z[Y ]/(Y 2n + 1), where k < L is the number of levels consumed by the
bootstrapping and ||e′|| ≥ ||e|| is the error that results from the combination of
the initial error e and the error induced by the bootstrapping circuit.

The bootstrapping circuit is divided into the five steps detailed below. For the
sake of conciseness, we describe the plaintext circuit and omit the error terms.

1. ModRaise: ct is raised to the modulus QL by applying the CRT map Rq0 →
Rq0 × Rq1 × · · · × RqL

. This yields a ciphertext {ct, QL,Δ} for which

[c0 + sc1]QL
= Q0 · I(X) + �Δ · m(Y )� = m′,

where Q0 · I(X) =
[ − [sc1]Q0 + sc1

]
QL

is an integer polynomial for which

||I(X)|| is O(
√

h) [10]. The next four steps remove this unwanted Q0 · I(X)
polynomial by homomorphically evaluating an approximate modular reduc-
tion by Q0.

2. SubSum: If 2n �= N , then Y �= X and I(X) is not a polynomial in Y . SubSum
maps Q0 ·I(X)+�Δ ·m(Y )� to (N/2n) ·(Q0 · Ĩ(Y )+�Δ ·m(Y )�), a polynomial
in Y [10].

3. CoeffsToSlots: The message m′ = Q0 · Ĩ(Y ) + �Δ · m(Y )� is in the coefficient
domain, which prevents slot-wise evaluation of the modular reduction. This
step homomorphically evaluates the inverse discrete-Fourier-transform (DFT)
and produces a ciphertext encrypting Encode(m′) that enables the slot-wise
evaluation of the approximated modular reduction.
Remark : This step returns two ciphertexts, each encrypting 2n real values. If
4n ≤ N , these ciphertexts can be repacked into one. Otherwise, the next step
is applied separately on both ciphertexts.

4. EvalSine: The modular reduction f(x) = x mod 1 is homomorphically eval-
uated on the ciphertext(s) encrypting Encode(m′). This function is approxi-

mated by
Q0

2πΔ
· sin

(
2πΔx

Q0

)

, which is tight when Q0/Δ � ||m(Y )||. As the

range of x is determined by ||Ĩ(Y )||, the approximation needs to account for
the secret-key density.

5. SlotsToCoeffs: This step homomorphically evaluates the DFT on the cipher-
text encrypting f(Encode(m′)). It returns a ciphertext at level L − k that
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encrypts Decode(f(Encode(m′))) ≈ f(m′) ≈ �Δ · m(Y )�, which is a close
approximation of the original message.

We now detail our approach for each step.

5.2 ModRaise and SubSum

We base the ModRaise and SubSum operations directly on the initial bootstrap-
ping of Cheon et al. [10]. The SubSum step multiplies the encrypted message by
a factor N/2n that needs to be subsequently cancelled. We take advantage of the
following CoeffsToSlot step, a linear transformation, to scale the corresponding
matrices by 2n/N . As we also use this trick for grouping other constants, we
elaborate more on the matrices scaling in Sect. 5.5.

5.3 CoeffsToSlots and SlotsToCoeffs

Let n be a power-of-two integer such that 1 ≤ n < N ; the following holds for any
two vectors m,m′ ∈ C

n due to the convolution property of the complex DFT

Decoden(Encoden(m) ⊗ Encoden(m′)) ≈ m � m′,

where ⊗ and � respectively denote the nega-cyclic convolution and Hadamard
multiplication. I.e., the encoding and decoding algorithms define an isomorphism
between R[Y ]/(Y 2n +1) and C

n [11]. The goal of the CoeffsToSlots and SlotsTo-
Coeffs steps is to homomorphically evaluate this isomorphism on a ciphertext.

Let ψ = eiπ/n be a 2n-th primitive root of unity. As 5 and −1 mod 2n

span Z2n, {ψ5k

, ψ5k , 0 ≤ k < n} is the set of all 2n-th primitive roots of unity.
Given a polynomial m(Y ) ∈ R[Y ]/(Y 2n + 1) with Y = XN/2n, the decoding
algorithm is defined as the evaluation of this polynomial at each root of unity
Decoden(m(Y )) = (m(ψ),m(ψ5), . . . ,m(ψ52n−1

)). The decoding isomorphism is
fully defined by the n×n special Fourier transform matrix SFn,(j,k) = ψj5k

, with

inverse (the encoding matrix) SF−1
n = 1

nSF
T

n [7]. Its homomorphic evaluation can
be expressed in terms of plaintext matrix-vector products:

1. CoeffsToSlots(m) : t0 = 1
2

(
SF−1

n × m + SF−1
n × m

)
, t1 = − 1

2 i(SF−1
n × m −

SF−1
n × m

)

2. SlotsToCoeffs(t0, t1) : m = SFn × (t0 + i · t1).

DFT Evaluation. In their initial bootstrapping proposal, Cheon et al. [10]
homomorphically compute the DFT as a single matrix-vector product in O(

√
n)

rotations and depth 1, by using the baby-step giant-step (BSGS) approach of
Halevi and Shoup [18] (Algorithm 5 in Sect. 4.3). To further reduce the com-
plexity, two recent works from Cheon et al. [7] and Chen et al. [6] exploit the
structure of the equivalent FFT algorithm by recursively merging its iterations,



Efficient Bootstrapping with Non-sparse Keys 605

Fig. 2. Theoretical complexity of CoeffToSlots for different ρ
SF−1

n
using Algorithm 5

with no hoisting, single hoisting, and double hoisting (Algorithm 6).

reducing the complexity to O(
√

r logr(n)) rotations at the cost of increasing the
depth to O(logr(n)), for r a power-of-two radix between 2 and n.

We base our approach on the work of [7] and [6], and we use our dou-
ble hoisting BSGS to evaluate the matrix-vector products (see Sect. 4.3 and
Algorithm 6). This step is parameterized by ρ = �logr(n)�, the depth of the
linear transformation (i.e., the number of matrices that we need to evaluate).

Figure 2 shows the effect of our algorithm on the CoeffsToSlots step, com-
pared with the original BSGS algorithm for ρSF−1

n
= {2, 3, 4}. The complexity is

computed as the number of products in Zp, with parameters N = 216, a target
� = 17 (the level after CoeffsToSlots) and n = 215 slots.

Each level of hoisting reduces the total complexity by a noticeable amount.
Regular hoisting, as proposed by Halevi and Shoup [19], achieves its minimum
complexity when n1 ≈ 22n2 instead of n1 ≈ n2. Using our double hoisting, the
minimum complexity is further shifted to n1 ≈ 24n2. On average, our method
reduces the complexity of the linear transformations in the bootstrapping by a
factor of 2× compared to the single hoisting technique of Halevi and Shoup.

Efficient Repacking of Sparse Plaintexts. The first part of CoeffsToSlots
is a DFT that outputs a vector of Cn values; the second part of CoeffsToSlots
applies the map C

n → R
2n to this vector. During the decoding, the inverse

mapping R
2n → C

n is used. This map can be computed with simple operations,
e.g., conjugation, multiplication by −i, and additions. If the original ciphertext
is not fully packed (0 < n < N/2 slots), the two resulting ciphertexts can be
merged into one, requiring one evaluation of EvalSine instead of two.

We observe that decoding a plaintext m ∈ C
n by using the decoding algo-

rithm for a plaintext of C2kn slots (assuming that 2kn < N) outputs a vector
comprising 2k concatenated replicas of m. Therefore, a ciphertext that encrypts
m ∈ C

n can also be seen as a ciphertext encrypting m′ ∈ C
2n for m′ = m||m.

This property can be used to save two levels when repacking and unpacking
ciphertexts before and after the EvalSine:
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• Repacking before the EvalSine (Cn → R
2n): Repacking into one ciphertext

is done by extending the domain of the plaintext vectors of the last matrix of
the CoeffsToSlots step from C

n to C
n||0n. Thus, the last n slots are set to zero

and can be used to store the imaginary part of the first n slots. This repacking
involves one additional rotation and it does not consume any additional levels.

• Unpacking after the EvalSine (R2n → C
n): For this operation, we evaluate

the following 2n × 2n matrix on the ciphertext before the DFT
[
In i · In

In i · In

]

,

where In is the n×n identity matrix. Its effect is to homomorphically apply the
map R

2n → C
n||Cn, which is a valid encoding of Cn, due to the properties of

the encoding algorithm. This additional matrix (transformation) is combined
with the first group of the SlotsToCoeffs matrices, thus slightly increasing its
density.

5.4 EvalSine

EvalSine implements the homomorphic modular reduction of the message m′ =
Q0 · Ĩ(Y ) + Δ · m(Y ) modulo Q0. The modular reduction is approximated by

f(x) =
Q0

Δ

1
2π

sin
(

2πx
Δ

Q0

)

≈ Q0

Δ
·
(

Δ

Q0
x mod 1

)

,

which scales the message m′ down to Ĩ(Y ) + (Δ/Q0) · m(Y ), removes the Ĩ(Y )
polynomial by reducing the message modulo 1, and scales the message back to
Δ · m(Y ). As Ĩ(Y ) determines the range and degree of the approximation, the
EvalSine step has to account for the secret-key density h. In particular, the range
of the approximation (−K,K) is chosen such that Pr[||Ĩ(Y )|| > K] ≤ κ for a
user-defined κ. We elaborate more on how we parameterize K, in Sect. 6.2.

Previous Work. Chen et al. [6] directly approximate the function 1
2π ·sin(2πx)

by using a standard Chebyshev interpolant of degree d = 119 in an interval
of (−K,K) for K = 12 (using a sparse key with h = 64). Han and Ki [20]
approximate cos(2π 1

2r (x − 0.25)) followed by r iterations of the double angle
formula cos(2x) = 2 cos(x)2 − 1 to obtain sin(2πx). The factor 1/2r reduces the
range of the approximation to (−K/2r,K/2r), enabling the use of a smaller-
degree interpolant. They combine it with a specialized Chebyshev interpolation
that places the node around the expected intervals of the input. This reduces
the degree of the approximation and the cost of its evaluation. In their work,
they use an interpolant of degree 30 with a scaling factor r = 2 (they also use a
sparse key with h = 64).
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In a recent work, Lee et al. [25] propose to compose the sine/cosine function
with a low degree arcsine. This additional step corrects the error introduced by
the sine, especially if Q0/Δ is small (when the values are not close to the origin).
This improves the overall precision of the bootstrapping and enables bootstrap-
ping messages with larger values. However, this comes at the cost of increasing
the depth of the EvalSine step, as a second polynomial must be evaluated.

Our Work. Both the methods of Chen et al. and Han and Ki have d = O(K),
therefore doubling K requires at most doubling d, and the evaluation will require
at most one additional level, as the Chebyshev interpolant can be evaluated in
O(log(K)) levels. Hence, precision put aside, the level consumption should not be
a fundamental problem when evaluating the large degree interpolant (as required
by dense keys). However, the effects of the approximate rescale procedure, if not
properly managed, can significantly reduce the output precision. Our EvalSine
makes use of our novel polynomial evaluation technique (Sect. 3).

We propose a more compact expression of the modular reduction function
f(x) = 1

2π sin(2πx), which is approximated by gr(x), a modified scaled cosine
followed by r iterations of the double-angle formula:

g0(x) =
1

2r√
2π

cos
(
2π 1

2r (x − 0.25)
)

and gi+1 = 2g2i −
(

1
2r√

2π

)2i

.

We include the 1/2π factor directly in the function we approximate, even
when using the double angle formula, without consuming an additional level,
impacting the precision, or fundamentally changing its evaluation. We observed
that even though the approximation technique of Han and Ki is well suited for
small K, the standard Chebyshev interpolation technique, as used by Chen et
al., remains more efficient when K is large. The reason is that Han and Ki’s
interpolant has a minimum degree of 2K − 1, so it grows in degree with respect
to K much faster than the standard Chebyshev interpolation. Hence, we use the
approximation method of Han and Ki when K is small (for sparse keys) and the
standard Chebyshev approximation, as done by Chen et al., for dense keys.

As suggested by Lee et al. [25], we can further improve this step by com-
posing it with arcsin(x), i.e., 1

2π arcsin(sin(2πx)), which corrects the error
egr(x) = |gr(x) − x mod 1|. Unlike Lee et al., we do not interpolate the arc-
sine, rather we choose to use a low degree Taylor polynomial and show in our
results (see Sect. 7.2) that it is sufficient to achieve similar results.

Algorithm 7 details our implementation of the EvalSine procedure. The
ciphertext must be multiplied by several constants, before and after the polyno-
mial evaluation. For efficiency, we merge these constants with the linear trans-
formations. See Sect. 5.5 for further details.
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Algorithm 7: EvalSine

Input: {ct, Q�, Δ} a ciphertext, p(t) a Chebyshev interpolant of degree d of
f(x) = x mod 1, K the range of interpolation, r a scaling factor.

Output: The evaluation ct′ = �Q0/Δ� · p(�Q0/Δ�−1 · ct).
1 Δ ← Δ · �Q0/Δ� // Division by �Q0/Δ�
2 T0 ← 1
3 T1 ← AddConst(ct, −0.5/(2r+1K))
4 m ← �log(d + 1)�
5 l ← �m/2�
6 T ← {T0, T1, . . . , T2l ; T2l+1 , . . . , T2m−1} // Compute the power basis

7 for i = 0; i < r; i = i + 1 do

8 Δ ← √
Δ · qL−CtS depth−EvalSine depth−r+i // Pre-compute target Δ

9 end
10 ct′ ← EvalRecurse(Δ, m, l, p(t), T ) (Algorithm 2) // Outputs ct’ with target

Δ scale

11 for i = 0; i < r; i = i + 1 do

12 ct′ ← AddConst(2 · Mul(ct′, ct′), −(1/2π)1/2r−i

)
13 ct′ ← Rescale(ct′) // Δ ← Δ2/qL−CtS depth−EvalSine depth−i

14 end
15 Δ ← Δ · �Q0/Δ�−1 // Multiplication by �Q0/Δ�
16 return ct′

5.5 Matrix Scaling

Several steps of the bootstrapping circuit require the ciphertexts to be multiplied
by constant plaintext values. This is most efficiently done by merging them and
pre-multiplying the resulting constants to the SF−1

n and SFn matrices.
Before EvalSine, the ciphertext has to be multiplied (i) by 1/N to cancel the

N/2n and 2n factors introduced by the SubSum and CoeffsToSlots steps, (ii)
by 1/(2rK) for the scaling by 1/2r and change of variable for the polynomial
evaluation in Chebyshev basis, and (iii) by Q0/2�log(Q0)	 to compensate for the
error introduced by the approximate division by �Q0/Δ�. Therefore, the matrices
resulting from the factorization of SF−1

n are scaled by

μCtS =

(
1

2rKN
· Q0

2�log(Q0)	

) 1
ρSF−1

n ,

where ρSF−1
n

is the degree of factorization of SF−1
n . Evenly spreading the scaling

factors across all matrices ensures that they are scaled by a value as close as
possible to 1.

After EvalSine, the ciphertext has to be multiplied (i) by 2�log(q0)	/Q0 to com-
pensate for the error introduced by the approximate multiplication by �Q0/Δ�,
and (ii) by Δ/δ, where Δ is the scale of the ciphertext after the EvalSine step
and δ is the desired ciphertext output scale. Therefore, the matrices resulting
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Table 3. Modulus size log(QP ) for different secret-key densities h (λ ≥ 128).

h
log(QP )

log(QP, N), λ ≥ 128 N = 215 N = 216

64 0.015121N − 8.248756 496 982
96 0.018896N − 3.671642 619 1234
128 0.021370N − 3.601990 699 1396
192 0.023448N − 3.611940 767 1533
N/2 [12] 881 1782

from the factorization of SFn are scaled by

μStC =

(
Δ

δ
· 2�log(Q0)	

Q0

) 1
ρSFn

,

where ρSFn is the degree of factorization of SFn.

6 Parameter Selection

A proper parameterization is paramount to the security and correctness of the
bootstrapping procedure. Whereas security is based on traditional hardness
assumptions, setting the correctness-related parameters is accomplished mostly
through experimental processes for finding appropriate trade-offs between the
performance and the probability of decryption errors. In this Section, we discuss
various constraints and inter-dependencies in the parameter selection. Then, we
propose a generic procedure for finding appropriate parameter sets.

6.1 Security

For each parameter set, we select a modulus size with an estimated security of
128 bits. These values are shown in Table 3 for several choices of the secret-key
Hamming weight h, and are based on the work of Curtis and Player [12]. According
to the authors, these parameters result from conservative estimations, and account
for hypothetical future improvements to the most recent attacks of Cheon et al. [9]
and Son et al. [29]. Therefore, their actual security is underestimated.

6.2 Choosing K for EvalSine

Each coefficient of the polynomial Ĩ(Y ) ∈ R[Y ]/(Y 2n+1) is the result of the sum
of h + 1 uniformly distributed variables in ZQ0 [10], hence it follows an Irwin–
Hall distribution [25]. By centering and normalizing the coefficients of Ĩ(Y ),
we get instead the sum of h + 1 uniformly distributed variables in (−0.5, 0.5).
The probability Pr[||Ĩ(Y )|| > K] can be computed by adapting the cumulative
probability function of the Irwin-Hall distribution:
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Table 4. Pr[||Ĩ(Y )|| > K] ≈ 2−16 for n = 215 and variable h.

log2(h) 6 7 8 9 10 11 12 13 14 15

K 14 20 29 41 58 82 116 163 232 328

log2(Pr[||Ĩ(Y )|| > K]) -14.6 -14.6 -15.7 -15.6 -15.5 -15.4 -15.4 -15.4 -15.4 -15.4

K/
√

h 1.75 1.76 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81

1 −
⎛

⎝

⎛

⎝ 2
(h + 1)!

�K+0.5(h+1)�∑

i=0

(−1)i

(
h + 1

i

)

(K + 0.5(h + 1) − i)h+1

⎞

⎠ − 1

⎞

⎠

2n

.

(1)
The previous works [6,7,10,20] use a sparse key with h = 64 and K = 12,

which regardless of the security, gives a failure probability of 2−14.7 and 2−6.7 for
n = 27 and n = 215 respectively, according to Eq. (1). Clearly, these parameters
were not chosen for large n and are most likely an artifact of the first proposal
for a bootstrapping for CKKS [10], for which only a small number of slots was
practical. In our work, we increase h to ensure an appropriate security and use a
much larger number of slots (e.g., n = 215), hence we need to adapt K. Table 4
shows that if we target a failure probability ≤ 2−15.0 for n = 215 slots and take
h as a parameter, then K ≈ 1.81

√
h.

6.3 Finding Parameters

We describe a general heuristic procedure for selecting and fine-tuning boot-
strapping parameters. Each operation of the bootstrapping requires a different
scaling and a different precision, therefore different moduli. Choosing each mod-
ulus optimally for each operation not only leads to a better performance and a
better final precision but also optimizes the bit consumption of each operation
and increases the remaining homomorphic capacity after the bootstrapping.

We describe our procedure to find suitable parameters for the bootstrapping
in Algorithm 8 and propose five reference parameter sets that result from this
algorithm. The parameter sets were selected for their performance and similarity
with those in previous works, thus enabling a comparison. For each set, Table 5
shows the parameters related to CKKS and to the bootstrapping circuit.

7 Evaluation

We implemented the improved algorithm of Sects. 3 and 4, along with the boot-
strapping procedure of Sect. 5 in the Lattigo library [24]. We evaluated it by using
the parameters of Sect. 6.3. Lattigo is an open-source library that implements
the RNS variants of the BFV [3,13,16] and CKKS [8] schemes in Golang [30].
All experiments were conducted single-threaded on an i5-6600k at 3.5 GHz with
32 GB of RAM running Windows 10 (Go version 1.15.6, GOARCH = amd64,
GOOS = windows).
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Table 5. The sets of parameters of the full-RNS CKKS used to evaluate the perfor-
mance of our bootstrapping code. + means concatenation in the chain and a ·b denotes
the consecutive concatenation of a different moduli of size b. Moduli with fractional a
are only partially used by the step they are allocated to.

Parameters

Set h N Δ log(QP ) L
log(qi) log(pj)q0≤i≤(L−k) StC Sine CtS

I 192

216

240 1546 25 60 + 9 · 40 3 · 39 8 · 60 4 · 56 5 · 61
II 192 245 1547 24 60 + 5 · 45 3 · 42 11 · 60 4 · 58 4 · 61
III 192 230 1553 21 55 + 7.5 · 60 1.5 · 60 8 · 55 4 · 53 5 · 61
IV 32768 245 1792 28 50 + 9 · 40 56 + 28 12 · 60 4 · 53 6 · 61

V 192 215 225 768 14 33 + 50 + 25 60 8 · 50 2 · 49 2 · 50

7.1 The Bootstrapping Metrics

Although CPU costs are an important aspect when evaluating a bootstrapping
procedure, these factors have to be considered together with other performance-
related metrics such as the size of the output plaintext space, the failure prob-
ability, the precision, and the remaining multiplicative depth. To compare our
bootstrapping procedure with the existing ones, we use the same concept of a
bootstrapping utility metric, as introduced by Han and Ki [6].

Definition 1 (Bootstrapping Throughput). For n a number of plaintext
slots, log(ε−1) the output precision, log(QL−k) the output coefficient-modulus
size after the bootstrapping (remaining homomorphic capacity) and complexity
a measure of the computational cost (in CPU time), the bootstrapping throughput
is defined as:

throughput =
n × log(ε−1) × log(QL−k)

complexity
.

Note that we express the remaining homomorphic capacity in terms of the mod-
ulus size, instead of the number of levels, because QL−k can be re-allocated
differently at each bootstrapping call, e.g., a small number of moduli with a
large plaintext scale or a large number of moduli with a small plaintext scale.

As κ, the bootstrapping failure probability, is a probability and not a metric,
we chose to not include it directly in Definition 1. However, we still believe it
should be taken into account as an opportunity-cost variable. Indeed, the event of
a bootstrapping failure will likely result in the need to re-run the entire circuit.
Hence, the probability of failure should be weighed vs. the cost of having to
re-run a circuit to determine if κ is in an acceptable range.

7.2 Results

We run our benchmarks and report the bootstrapping performance for each
parameter set of Table 5, and we compare them with the previous works of Chen
et al. [6], Han and Ki [20], and the recent and concurrent work of Lee et al.
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Algorithm 8: Heuristic Parameter Selection

Input: λ a security parameter.
Output: The parameters (N, n, h, QL, P, κ, α, dsin, r, darcsin, ρ

SF−1
n

, ρSFn).

1 Select n, N and h and derive log(PQL) according to λ.
2 Given Δ (the scale of the message), compute the ratio Q0/Δ and select the

bootstrapping output precision δ.
3 Given a target failure probability κ, estimate K using Equation (1).
4 Given the bootstrapping output precision δ, find dsin (the degree of the sine

polynomial), r (the number of double angle) and darcsin (the degree of the
arcsine polynomial) such that the polynomial approximation of x mod 1 of the
EvalSine step in the interval (−K/2r, K/2r) gives a precision greater than
log(Q0/Δ) + δ bits.

5 Select ρ
SF−1

n
and ρSFn (the depth of the CoeffsToSlots and SlotsToCoeffs steps).

6 Allocate the qj of the CoeffsToSlots, EvalSine and SlotsToCoeffs steps, with the
maximum possible bit-size for all qj .

7 Select α and allocate P =
∏α−1

j=0 pj , ensuring that P ≈ β||qαi ||.
8 Run the bootstrapping and find the minimum values for dsin, r and darcsin such

that the output has δ bits of precision.
9 Run the bootstrapping and find the minimum bit-size for the qj of the EvalSine

such that the output reaches the desired precision or until it plateaus.
10 Run the bootstrapping and find the minimum bit-size for the qj of the

CoeffsToSlots such that the output precision is not affected.
11 Run the bootstrapping and find the minimum bit-size for the qj of the

SlotsToCoeffs such that the output precision is not affected.
12 Allocate the rest of the moduli of QL such that log(PQL) ensures a security of

at least λ and check again step 7.
13 If additional residual homomorphic capacity is needed or the security λ cannot

be achieved
1. Reduce α, ρ

SF−1
n

and/or ρSFn and check again line 6.

2. Increase h to increase log(PQL) and restart at line 1.
3. Increase N to increase log(PQL) and restart at line 1.

return (N, n, h, QL, P, κ, α, dsin, r, darcsin, ρ
SF−1

n
, ρSFn)

[25]. Unfortunately, the implementations of these works have not been publicly
released and we were not able to reproduce their results on our own hardware for
a fair comparison. The parameters and results are summarized in Table 6 and 7,
respectively. Reports on experiments that demonstrate the numerical stability
of our bootstrapping can be found in the extended version of the paper [4].

Focusing only on the overall performance, our most performing set (Set III)
achieves throughput 14.1× and 28.4× larger than the best result reported by
Han and Ki [20] and Lee et al. [25] respectively. Our Set IV uses dense keys and
achieves a throughput 4.6× and 9× larger than the work of Han and Ki and
Lee et al. respectively. Both these works use SEAL [28] and are evaluated on
similar hardware. Our sets III and IV achieve a throughput 54.2× and 17.4×
larger than the best result reported by Chen et al. [6], implemented using the
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Fig. 3. Bootstrapping throughput comparison. We plot the results for our best per-
forming parameter set against the state of the art. Nodes are labeled with n, the number
of plaintext slots.

Table 6. Parameter comparison of [6,20,25] and our work. “–” means that value was
not reported. Lee et al.’s [25] parameters are based on our Set III.

Bootstrapping Parameters

Set N log(QP ) h λ ρ
SF−1

n
ρSFn Q0/Δ K dsin(x) r darcsin(x)

[25]

216

1553 192 ≈ 128 2 2
256

25
66

2
0

8 68 5
[6] 2480 64 < 80 4 4 1024 12 119 0 0
[20] 1452 64 < 100 - - 1024 12 31 2 0
I 1546 192 ≈ 128 4 3 256 25 63 2 0
II 1547 192 ≈ 128 4 3 256 25 63 2 0
III 1553 192 ≈ 128 4 3 4 25 63 2 7
IV 1792 32768 ≈ 128 4 3 256 325 255 4 0

[6]
215

1240 64 < 80 2 2 1024 12 119 0 0
[20] 910 64 < 90 - - 1024 12 31 2 0
V 768 192 ≈ 128 2 2 256 25 63 2 0

HEAAN library [21]. HEAAN does not implement the full-RNS variant of CKKS,
hence the latter comparison shows the significant performance gains that can be
achieved by combining optimized algorithms with a full-RNS implementation.

The implementation of Lee et al. makes use of the recent work of Kim et al.
[22] which proposes new techniques to minimize the error during computation,
notably a delayed rescaling that consists in rescaling the ciphertext before a
multiplication and not after, so that the error is as small as possible when doing
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Table 7. Comparison of the bootstrapping performances of [6,20,25] and our proposed
bootstrapping for the full-RNS variant of CKKS with parameter sets I, II, III, IV and V.
MU, SS, CtS, StC designate ModUp, SubSum, SlotstoCoeffs, CoeffstoSlots.“–” indicates
that the prior work did not report the value. All timings are single threaded. The
plaintext real and imaginary part are uniformly distributed in the interval −1 and 1.

Bootstrapping Performances

Set n
Timing(s)

log (QL−k ) log (ε−1) log (bits/s) log (κ)
MU SS CtS StC Sine Total

[25] 214 - - - - - 461.5 653 27.2 19.26 -16.58
[25] 214 - - - - - 451.5 533 32.6 19.26 -16.58

[6] 214 119.8 38.5 158.3 172 18.6 18.33 -7.70
[6] 212 127.5 40.4 167.9 301 20.9 17.22 -9.70

[20] 214 - - - - - 52.8 370 10.8 20.24 -7.70
[20] 210 - - - - - 37.6 370 15.3 17.23 -11.70

I 215 0.06 0 6.5 3.7 12.8 23.0 420 25.7 23.87 -15.58
I 214 0.06 0.3 6.3 3.8 6.3 16.9 420 26.0 23.33 -16.58

II 215 0.06 0 6.8 2.2 14.2 23.4 240 31.5 23.33 -15.58
II 214 0.06 0.3 6.0 2.4 7.1 16.0 240 31.6 22.88 -16.58

III 215 0.06 0 5.4 2.4 10.1 18.1 505 19.1 24.06 -15.58
III 214 0.06 0.3 5.0 2.6 5.0 13.1 505 18.9 23.50 -16.58

IV 215 0.07 0 7.9 28.2 3.0 39.2 410 16.8 22.45 -14.90
IV 214 0.07 0.4 7.1 14.1 3.2 24.9 410 17.3 22.15 -15.90

[6] 210 28.8 9.5 38.3 150 6.9 14.75 -11.70
[6] 28 16.9 9.2 26.0 75 10.03 12.85 -13.70

[20] 22 - - - - - 7.5 185 15.0 10.53 -19.70
[20] 21 - - - - - 7.0 185 16.8 9.79 -20.70

V 214 0.02 0 3.7 0.7 2.9 7.5 110 15.5 21.82 -16.58
V 213 0.02 0.4 1.6 0.4 1.5 3.9 110 15.4 21.76 -17.58

the multiplication. This enables Lee et al. to achieve a slightly higher precision
than ours (our implementation does not use the work of Kim et al.). Lee et al.
results are also the ones with the most residual homomorphic capacity. The
primary reason is the implementation of the CKKS scheme in SEAL, which can
only use one special prime (α = 1, see Sect. 4) during the key-switching. This
increases the ciphertext homomorphic capacity, but at the cost of an increased
key-switch complexity. The second reason is that they allocate less levels to the
linear transformations (in total, three less than our parameters). This enables
them to reduce the depth of the bootstrapping, at the cost of increasing its
complexity, which shows in their timings.

We observe that there is a correlation between the value Q0/Δ and the pre-
cision. A better precision is achieved when using a smaller ratio, even when
the arcsin is not composed with the scaled sine. Previous works usually assume
that ||m|| ≈ ||FFT−1(m)|| to set Q0/Δ and derive the expected precision of
the scaled sine. In practice, since each coefficient of FFT−1(m) is a dot product
between the vector m and a complex vector of roots of unity (zero-mean and
small variance), if the mean of m is close to zero, then ||FFT−1(m)|| � ||m|| with
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overwhelming probability. For example, given m uniform in (−1, 1) and n = 215

slots, then ||m||/||FFT−1(m)|| ≈ 100. Hence the message is much closer to the
origin than expected, which reduces the inherent error of the scaled sine and
amplifies the effectiveness of the arcsine. We note that even if the distribution
of m is not known, it is possible to enforce this behavior with a single plain-
text multiplication by homomorphically negating half of its coefficients before
the bootstrapping. One could even homomorphically split m in half and create
two symmetric vectors to enforce a zero mean. A more detailed analysis of this
behavior and how to efficiently exploit it or integrate it into the linear transforms
of the bootstrapping could be a interesting future research line.

All our sets have a failure probability that is two to three orders magnitude
smaller than previous works, except for the results of Lee et al. which use our
suggested parameters. For example, following Eq. (1), if successive bootstrap-
pings are carried out with n = 215 slots, then [6] and [20] would reach a 1/2
failure probability after 52 bootstrappings, whereas ours would reach the same
probability after 24,656 bootstrappings.

Figure 3 plots the best performing instances of Table 7.

8 Conclusion

In this work, we have introduced a secure, reliable, precise and efficient boot-
strapping procedure for the full-RNS CKKS scheme that does not require the
use of sparse secret-keys. To the best of our knowledge, this is the first reported
instance of a practical bootstrapping parameterized for at least 128-bit security.

To achieve this, we have proposed a generic algorithm for the homomorphic
evaluation of polynomials with reduced error and optimal in level consumption.
In addition to the increase in precision and efficiency, our algorithm also improves
the usability of the full-RNS variant of CKKS (for which managing a changing
scale in large circuits is known to be a difficult task).

We have also proposed an improved key-switch format that we apply to the
homomorphic matrix-vector multiplication. Our novel double hoisting algorithm
reduces the complexity of the CoeffsToSlots and SlotsToCoeffs by roughly a fac-
tor of 2 compared to previous works. The performance gain for these procedures
enables their use outside of the bootstrapping, for applications where the con-
version between coefficient- and slot-domains would enable much more efficient
homomorphic circuits (e.g., in the training of convolutional neural networks or
R-LWE to LWE ciphertext conversion).

We have also proposed a systematic approach to parameterize the bootstrap-
ping, including a way to precisely assess its failure probability. We have evaluated
our bootstrapping procedure and have shown that its throughput with “dense”
secret-keys (h = N/2) is up to 4.6× larger than the best state-of-the-art results
with sparse keys (h = 64). When the sparse-keys-adjusted parameters of Curtis
and Player [12] for h = 192 and 128-bits of security are considered, our proce-
dure has a 14.1× larger throughput than the previous work that uses a sparse
key with h = 64 with insecure parameters. Additionally, all our parameters lead
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to a more reliable instance than the previous works, with a failure probability
orders of magnitude lower.

We have implemented our contributions in the Lattigo library [24]. This is,
to the best of our knowledge, the first open-source implementation of a boot-
strapping procedure for the full-RNS variant of the CKKS scheme.
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