
Anne Canteaut
François-Xavier Standaert (Eds.)

LN
CS

 1
26

96

40th Annual International Conference on the Theory 
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I

Advances in Cryptology – 
EUROCRYPT 2021



Lecture Notes in Computer Science 12696

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Anne Canteaut • François-Xavier Standaert (Eds.)

Advances in Cryptology –

EUROCRYPT 2021
40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Zagreb, Croatia, October 17–21, 2021
Proceedings, Part I

123



Editors
Anne Canteaut
Inria
Paris, France

François-Xavier Standaert
UCLouvain
Louvain-la-Neuve, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-77869-9 ISBN 978-3-030-77870-5 (eBook)
https://doi.org/10.1007/978-3-030-77870-5

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6292-8336
https://orcid.org/0000-0001-7444-0285
https://doi.org/10.1007/978-3-030-77870-5


Preface

Eurocrypt 2021, the 40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, was held in Zagreb, Croatia, during October 17–21, 2021.1

The conference was sponsored by the International Association for Cryptologic Research
(IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan Picek (Delft
University of Technology, The Netherlands) were responsible for the local organization.

We received a total of 400 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 59 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 78 papers. The revised versions of these papers are included in this
three-volume proceedings.

The PC decided to give Best Paper Awards to the papers “Non-Interactive Zero
Knowledge from Sub-exponential DDH” by Abhishek Jain and Zhengzhong Jin, “On
the (in)security of ROS” by Fabrice Benhamouda, Tancrède Lepoint, Julian Loss,
Michele Orrù, and Mariana Raykova and “New Representations of the AES Key
Schedule” by Gaëtan Leurent and Clara Pernot. The authors of these three papers
received an invitation to submit an extended version of their work to the Journal of
Cryptology. The program also included invited talks by Craig Gentry (Algorand
Foundation) and Sarah Meiklejohn (University College London).

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of good papers which
did not find a slot in the sparse number of accepted papers. We sincerely hope that
these works will eventually get the attention they deserve.

We are indebted to the PC and the external reviewers for their voluntary work.
Selecting papers from 400 submissions covering the many areas of cryptologic research
is a huge workload. It has been an honor to work with everyone. We owe a big thank
you to Kevin McCurley for his continuous support in solving all the minor issues we
had with the HotCRP review system, to Gaëtan Leurent for sharing his MILP programs
which made the papers assignments much easier, and to Simona Samardjiska who
acted as Eurocrypt 2021 webmaster.

Finally, we thank all the other people (speakers, sessions chairs, rump session
chairs…) for their contribution to the program of Eurocrypt 2021. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

April 2021 Anne Canteaut
François-Xavier Standaert

1 This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions due to COVID-19.
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Abstract. We provide the first constructions of non-interactive zero-
knowledge and Zap arguments for NP based on the sub-exponential
hardness of Decisional Diffie-Hellman against polynomial time adver-
saries (without use of groups with pairings).

Central to our results, and of independent interest, is a new notion of
interactive trapdoor hashing protocols.

1 Introduction

Zero-knowledge (ZK) proofs [31] are a central object in the theory and practice
of cryptography. A ZK proof allows a prover to convince a verifier about the
validity of a statement without revealing any other information. ZK proofs have
found wide applications in cryptography in all of their (interactive) avatars, but
especially so in the non-interactive form where a proof consists of a single message
from the prover to the verifier. This notion is referred to as non-interactive zero
knowledge (NIZK) [22]. Applications of NIZKs abound and include advanced
encryption schemes [23,46], signature schemes [4,7], blockchains [6], and more.

Since NIZKs for non-trivial languages are impossible in the plain model, the
traditional (and de facto) model for NIZKs allows for a trusted setup that samples
a common reference string (CRS) and provides it to the prover and the verifier
algorithms. Starting from the work of [22], a major line of research has been dedi-
cated towards understanding the assumptions that are sufficient for constructing
NIZKs in the CRS model [5,9,14,16,18,19,21,28,30,34,35,50,53]. By now, NIZKs
for NP are known from most of the standard assumptions known to imply public-
key encryption – this includes factoring related assumptions [9,28], bilinear maps
[18,34,35], and more recently, learning with errors (LWE) [14,50].

Notable exceptions to this list are standard assumptions related to the discrete-
logarithm problem such as the Decisional Diffie-Hellman (DDH) assumption. In
particular, the following question has remained open for three decades:

Do there exist NIZKs for NP based on DDH?

From a conceptual viewpoint, an answer to the above question would shed
further light on the cryptographic complexity of NIZKs relative to public-key
encryption. It would also improve our understanding of the power of groups with
bilinear maps relative to non-pairing groups in cryptography. There are (at least)
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 3–32, 2021.
https://doi.org/10.1007/978-3-030-77870-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77870-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-77870-5_1


4 A. Jain and Z. Jin

two prominent examples where bilinear maps have traditionally had an edge –
advanced encryption schemes such as identity-based [10] and attribute-based
encryption [33,54] (and more broadly, functional encryption [11,48,54]), and
NIZKs. For the former, the gap has recently started to narrow in some important
cases; see, e.g., [24]. We seek to understand whether such gap is inherent for
NIZKs based on standard assumptions.1

A recent beautiful work of Brakerski et al. [13] demonstrates that this gap dis-
appears if we additionally rely on the hardness of the learning parity with noise
(LPN) problem. Namely, they construct NIZKs assuming that DDH and LPN are
both hard. NIZKs based on the sole hardness of DDH, however, still remain elusive.

Zaps. Dwork and Naor [26] introduced the notion of Zaps, aka two-round
public-coin proof systems in the plain model (i.e., without a trusted setup) that
achieve a weaker form of privacy known as witness-indistinguishability (WI) [29].
Roughly speaking, WI guarantees that a proof for a statement with multiple wit-
nesses does not reveal which of the witnesses was used in the computation of the
proof.

Despite this seeming weakness, [26] proved that (assuming one-way func-
tions) Zaps are equivalent to statistically-sound NIZKs in the common ran-
dom string model. This allows for porting some of the known results for NIZKs
to Zaps; specifically, those based on factoring assumptions and bilinear maps.
Subsequently, alternative constructions of Zaps were proposed based on indis-
tinguishability obfuscation [8]. Very recently, computationally-sound Zaps, aka
Zap arguments were constructed based on quasi-polynomial LWE [2,32,42].

As in the case of NIZKs, constructing Zaps (or Zap arguments) for NP based
on standard assumptions related to discrete-logarithm remains an open problem.
Moreover, if we require statistical privacy, i.e., statistical Zap arguments [2,32],
curiously, even bilinear maps have so far been insufficient.2 In contrast, statistical
NIZKs based on bilinear maps are known [34,35].

1.1 Our Results

In this work, we construct (statistical) NIZK and Zap arguments for NP based
on the sub-exponential hardness of DDH against polynomial-time adversaries in
standard groups.

Theorem 1 (Main Result – Informal). Assuming sub-exponential hardness
of DDH against polynomial-time attackers, there exist:

– (Statistical) NIZK arguments for NP in the common random string model.
– Statistical Zap arguments for NP.

1 If we allow for non-standard assumptions (albeit those not known to imply public-key
encryption), then this gap is not inherent, as demonstrated by [16,21].

2 A variant of statistical Zap arguments where the verifier is private-coin but the
proofs are publicly verifiable is known from standard assumptions on bilinear maps
[43].
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Our NIZK achieves adaptive, multi-theorem statistical zero knowledge and non-
adaptive soundness. By relaxing the zero-knowledge guarantee to be computa-
tional, we can achieve adaptive soundness. Our Zap argument achieves adaptive
statistical witness indistinguishability and non-adaptive soundness.3

Our results rely on the assumption that polynomial-time adversaries can-
not distinguish Diffie-Hellman tuples from random tuples with better than sub-
exponentially small advantage. To the best of our knowledge, this assumption is
unaffected by known attacks on the discrete logarithm problem.4

While our primary focus is on constructing NIZKs and Zap arguments from
DDH, we note that our constructions enjoy certain properties that have previ-
ously not been achieved even using bilinear maps:

– Our NIZK constructions rely on a common random string setup unlike prior
schemes based on bilinear maps that require a common reference string for
achieving statistical ZK [34,35].

– Our statistical Zap argument is the first group-based construction (irrespec-
tive of whether one uses bilinear maps or not). Known constructions of Zaps
from bilinear maps only achieve computational WI [34,35].

In particular, statistical NIZKs in the common random string model were previ-
ously only known from LWE (or circular-secure FHE) [14,50], and statistical Zap
arguments were previously only known from (quasi-polynomial) LWE [2,32].

Interactive Trapdoor Hashing Protocols. Towards obtaining our results,
we introduce the notion of interactive trapdoor hashing protocols (ITDH). An
ITDH for a function family F is an interactive protocol between two parties – a
sender and a receiver – where the sender holds an input x and the receiver holds
a function f ∈ F . At the end of the protocol, the parties obtain an additive
secret-sharing of f(x). An ITDH must satisfy the following key properties:

– The sender must be laconic in that the length of each of its messages (con-
sisting of a hash value) is independent of the input length.

– The receiver’s messages must hide the function f .

ITDH generalizes and extends the recent notion of trapdoor hash functions
(TDH) [25] to multi-round interactive protocols. Indeed, (ignoring some syntactic
differences) a TDH can be viewed as an ITDH where both the receiver and the
sender send a single message to each other.

3 Following [43], by standard complexity leveraging, our statistical NIZK and Zap
arguments can be upgraded (without changing our assumption) to achieve adap-
tive soundness for all instances of a priori (polynomially) bounded size. For the
“unbounded-size” case, [49] proved the impossibility of statistical NIZKs where adap-
tive soundness is proven via a black-box reduction to falsifiable assumptions [44].

4 There are well-known attacks for discrete logarithm over Z
∗
q that require sub-

exponential time and achieve constant success probability [1,20]. However, as
observed in [16], a 2t time algorithm with constant successful probability does not
necessarily imply a polynomial time attack with 2−t successful probability.
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Our primary motivation for the study of ITDH is to explore the feasibility
of a richer class of computations than what can be supported by known con-
structions of TDH. Presently, TDH constructions are known for a small class of
computations such as linear functions and constant-degree polynomials (based
on various assumptions such as DDH, Quadratic Residuosity, and LWE) [13,25].
We demonstrate that ITDH can support a much broader class of computations.

Assuming DDH, we construct a constant-round ITDH protocol for TC0 cir-
cuits. While ITDH for TC0 suffices for our main application, our approach can
be generalized to obtain a polynomial-round ITDH for P/poly.

Theorem 2 (Informal). Assuming DDH, there exists a constant-round ITDH
for TC0.

We view ITDH as a natural generalization of TDH that might allow for a
broader pool of applications. While our present focus is on the class of com-
putations, it is conceivable that the use of interaction might enable additional
properties in the future that are not possible (or harder to achieve) in the non-
interactive setting.

Our Approach: Round Collapsing, Twice. We follow the correlation
intractability framework for NIZKs implemented in a recent remarkable sequence
of works [13,14,16,21,36,50]. The central idea of this framework is to instanti-
ate the random oracle in the Fiat-Shamir paradigm [29] by so-called correlation
intractable hash functions (CIH) [17]. In particular, given a CIH for all efficiently
searchable relations, this approach can be used to collapse the rounds of so-called
trapdoor sigma protocols [14] to obtain NIZKs in the CRS model.

The works of [14,50] used (leveled) fully homomorphic encryption to con-
struct CIH for all efficiently searchable relations and therefore required LWE-
related assumptions. Recently, Brakerski et al. [13] demonstrated a new app-
roach for constructing CIH via (rate-1) TDH by crucially exploiting the laconic
sender property of the latter. This raises hope for potential instantiations of CIH
– ideally for all efficiently searchable relations – from other standard assump-
tions. So far, however, this approach has yielded CIH only for relations that can
be approximated by constant-degree polynomials over Z2 due to limitations of
known results for TDH. This severely restricts the class of compatible trapdoor
sigma protocols that can be used for constructing NIZKs via the CIH framework.
Indeed, Brakerski et al. rely crucially on LPN to construct such sigma protocols.

Somewhat counter-intuitively, we use interaction to address the challenge of
constructing NIZKs solely from DDH. Specifically, we show that by using inter-
action – via the abstraction of ITDH – we can expand the class of functions
that can be computed with a laconic sender. Furthermore, if an ITDH is suffi-
ciently function-private (where the amount of security required depends on the
round complexity), then we can collapse its rounds to construct CIH. Using this
approach, we construct a CIH for TC0 based on sub-exponential DDH.

Theorem 3 (Informal). Assuming sub-exponential hardness of DDH against
polynomial-time attackers, there exists a CIH for TC0.
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Expanding the class of relations for CIH in turn expands the class of com-
patible trapdoor sigma protocols. In particular, we show that trapdoor sigma
protocols for NP compatible with CIH from the above theorem can be built
from DDH. This allows us to construct NIZK and Zap arguments in Theorem 1.

Overall, our approach for constructing NIZKs involves two stages of round
collapsing – we first collapse rounds of ITDH to construct CIH, and then use
CIH to collapse rounds of trapdoor sigma protocols to obtain NIZKs. Our con-
struction of Zaps follows a similar blueprint, where the first step is the same
as in the case of NIZKs and the second round-collapsing step is similar to the
recent works of Badrinarayanan et al. [2] and Goyal et al. [32].

1.2 Guide to the Paper

We present the technical overview in Sect. 2 and the necessary preliminaries in
Sect. 3. We define and construct ITDH in Sects. 4 and Sect. 5 respectively, and
construct CIH for TC0 in Sect. 6.

Due to page limits, we defer our constructions of NIZKs and Zap arguments
to the full version.

2 Technical Overview

Our constructions rely on the correlation-intractability framework for instanti-
ating the Fiat-Shamir paradigm. We start by recalling this framework.

Fiat-Shamir via Correlation Intractability. A family of hash functions
defined by a tuple of algorithms (Gen,Hash) is said to be correlation intractable
(CI) for a relation class R if for any R ∈ R, given a hash key k sampled by
Gen, an adversary cannot find an input x such that (x,Hash(k, x)) ∈ R. In the
sequel, we focus on searchable relations where R is associated with a circuit C
and (x, y) ∈ R if and only if y = C(x).

The CI framework instantiates the random oracle in the Fiat-Shamir
paradigm for NIZKs via a family of CIH (Gen,Hash). Let Σ be a sigma pro-
tocol for a language L where the messages are denoted as α, β and γ. To obtain
a NIZK in the CRS model, we collapse the rounds of Σ by computing β as the
output of Hash(k, α) for a key k sampled by Gen and fixed as part of CRS.

We now recall the argument for soundness of the resulting scheme. From the
special soundness of Σ, for any x /∈ L and any α, there exists a bad challenge
function BadC such that the only possible accepting transcript (α, β, γ) must
satisfy β = BadC(α). In other words, any cheating prover must find an α such
that β = Hash(k, α) = BadC(α). However, if (Gen,Hash) is CI for the relation
searchable by BadC, then such an adversary must not exist.

Note that in general, BadC may not be efficiently computable. However, for
trapdoor sigma protocols, BadC is efficiently computable given a “trapdoor” asso-
ciated with the protocol. In this case, we only require CI for efficiently searchable
relations.
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Prior Work. A sequence of works [15,16,21,36,38] have constructed CIH for
various classes of (not necessarily efficiently searchable) relations from well-
defined, albeit strong assumptions that are not well understood. Recently,
Canetti et al. [14] constructed CIH for all efficiently searchable relations
from circular-secure fully homomorphic encryption. Subsequently, Peikert and
Shiehian [50] obtained a similar result based on standard LWE.

Very recently, Brakerski et al. [13] leveraged the compactness properties
of (rate-1) trapdoor hash functions to build CIH from standard assumptions.
Specifically, assuming DDH (or other standard assumptions such as Quadratic
Residuosity or LWE), they construct CIH for functions that can be approximated
by a distribution on constant-degree polynomials. While this is a small class, [13]
show that it nevertheless suffices for constructing NIZKs for NP. Specifically,
they show that by relying on the LPN assumption, it is possible to construct
trapdoor sigma protocols where the bad challenge function has probabilistic
constant-degree representation. By collapsing the rounds of this protocol, they
obtain NIZKs for NP.

Main Challenges. We now briefly discuss the main conceptual challenges in
buildings NIZKs based only on DDH (in light of the work of [13]).

On the one hand, (non-pairing) group-based assumptions seem to have less
structure than lattice assumptions; for example, we can only exploit linear homo-
morphisms. Hence it is not immediately clear how to construct rate-1 trapdoor
hash functions from DDH beyond (probabilistic) linear functions or constant-
degree polynomials (a constant-degree polynomial is also a linear function of its
monomials).5 On the other hand, it seems that we need CIH for more complicated
functions in order to build NIZKs from (only) DDH via the CIH framework.

Indeed, the bad challenge function in trapdoor sigma protocols involves (at
least) extraction from the commitment scheme used in the protocol, and it is
unclear whether such extraction can be represented by probablistic constant-
degree polynomials when the commitment scheme is constructed from standard
group-based assumptions. For example, the decryption circuit for the ElGamal
encryption scheme [27] (based on DDH) is in a higher complexity class, and is
not known to have representation by probabilistic constant-degree polynomials.
Indeed, there are known lower-bounds for functions that can be approximated by
probabilistic polynomials. Specifically, [41,47,55,56] proved that approximating
a n fan-in majority gate by probabilistic polynomials over binary field with a
small constant error requires degree at least Ω(

√
n).

Roadmap. We overcome the above dilemma by exploiting the power of inter-
action.

– In Sect. 2.1, we introduce the notion of interactive trapdoor hashing proto-
cols (ITDH) – a generalization of TDH to multi-round interactive protocols.

5 The breakthrough work of [12] shows that in the case of homomorphic secret-sharing,
it is in fact possible to go beyond linear homomorphisms in traditional groups. The
communication complexity of the sender in their scenario, however, grows with the
input length and is not compact as in the case of TDH.
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We show that despite increased interaction, ITDH can be used to build CIH.
Namely, we devise a round-collapsing approach to construct CIH from ITDH.

– We next show that ITDH can capture a larger class of computations than
what can be supported by known constructions of TDH. Namely, we con-
struct a constant-round ITDH protocol for TC0 where the sender is laconic
(Sect. 2.2).

– Finally, we demonstrate that using DDH, it is possible to construct trapdoor
sigma protocols where the bad challenge function can be computed in low
depth. Using such sigma protocols, we build multi-theorem (statistical) NIZK
and statistical Zap arguments for NP (Sects. 2.3 and 2.4, respectively).

2.1 Interactive Trapdoor Hashing Protocols

We start by providing an informal definition of ITDH and then describe our
strategy for constructing CIH from ITDH.

Defining ITDH. An L-level ITDH is an interactive protocol between a “sender”
and a “receiver”, where the receiver’s input is a circuit f and the sender’s input
is a string x. The two parties jointly compute f(x) by multiple rounds of com-
munication that are divided into L levels. Each level � ∈ [L] consists of two
consecutive protocol messages – a receiver’s message, followed by the sender’s
response:

– First, the receiver uses f (and prior protocol information) to compute a key
k� and trapdoor td�. It sends the key k� to the sender.

– Upon receiving this message, the sender computes a hash value h� together
with an encoding e�. The sender sends h� to the receiver but keeps e� to
herself. (The encoding e� can be viewed as sender’s “private state” used for
computing the next level message.)

Upon receiving the level L (i.e., final) message hL from the sender, the receiver
computes a decoding value d using the trapdoor. The function output f(x) can
be recovered by computing e ⊕ d, where e is the final level encoding computed
by the sender. We require the following properties from ITDH:

– Compactness: The sender’s message in every level must be compact. Specif-
ically, for every level � ∈ [L], the size of the hash value h� is bounded by the
security parameter, and is independent of the length of the sender’s input x
and the size of the circuit f .

– Approximate Correctness: For an overwhelming fraction of the random
tapes for the receiver, for any input x, the Hamming distance between e ⊕ d
and f(x) must be small. Note that this is an adaptive definition in that the
input x is chosen after the randomness for the receiver is fixed.

– Leveled Function Privacy: The receiver’s messages computationally hide
the circuit f . Specifically, we require that the receiver’s message in every level
can be simulated without knowledge of the circuit f . Moreover, we allow the
privacy guarantee to be different for each level by use of different security
parameters for different levels.
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As we discuss in Sect. 4.1, barring some differences in syntax, trapdoor hash
functions can be viewed as 1-level ITDH. We refer the reader to the technical
sections for a formal definition of ITDH.

CIH from ITDH. We now describe our round-collapsing strategy for construct-
ing CIH from ITDH. Given an L-level ITDH for a circuit family C, we construct
a family of CIH for relations searchable by C as follows:

– Key Generation: The key generation algorithm uses the function-privacy
simulator for ITDH to compute a simulated receiver message for every level.
It outputs a key k consisting of L simulated receiver messages (one for each
level) as well as a random mask mask.

– Hash Function: Given a key k and an input x, the hash function uses the
ITDH sender algorithm on input x to perform an ITDH protocol execution
“in its head.” Specifically, for every level � ∈ [L], it reads the corresponding
receiver message in the key k and uses it to computes the hash value and the
encoding for that level. By proceeding in a level-by-level fashion, it obtains
the final level encoding e. It outputs e ⊕ mask.

We now sketch the proof for correlation intractability. For simplicity, we first
consider the case when L = 1. We then extend the proof strategy to the multi-
level case.

For L = 1, the proof of correlation intractability resembles the proof in [13].
We first switch the simulated receiver message in the CIH key to a “real” message
honestly computed using a circuit C ∈ C. Now, suppose that the adversary finds
an x such that Hash(k, x) = C(x). Then by approximate correctness of ITDH,
C(x) ≈ e ⊕ d, where the “≈” notation denotes closeness in Hamming distance.
This implies that e ⊕ d ≈ e ⊕ mask, and thus d ≈ mask. However, once we fix
the randomness used by the receiver, d only depends on h. Since h is compact,
the value d is exponentially “sparse” in its range. Therefore, the probability
that d ≈ mask is exponentially small, and thus such an input x exists with only
negligible probability.

Let us now consider the multi-level case. Our starting idea is to switch the
simulated receiver messages in the CIH key to “real” messages in a level-by-level
manner. However, note that the honest receiver message at each level depends
on the hash value sent by the sender in the previous level, and at the time of the
key generation of the CIH, the sender’s input has not been determined. Hence,
it is not immediately clear how to compute the honest receiver message at each
level without knowing the sender’s input.

To get around this issue, at each level �, we first simply guess the sender’s
hash value h�−1 in the previous level (� − 1), and then switch the simulated
receiver message in level � to one computed honestly using the ITDH receiver
algorithm on input h�−1. To ensure this guessing succeeds with high probability,
we rely on the compactness of the hash values. Specifically, let λ� denote the
security parameter for the �th level in ITDH (as mentioned earlier, we allow the
security parameters for each level to be different). Then the guessing of the level
(�− 1) hash value succeeds with probability 2−λ�−1 . We set λ�−1 to be sublinear
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in λ, where λ is the security parameter for CIH. Then, when we reach the final
level, all our guesses are successful with probability 2−(λ1+λ2+...+λL), which is
sub-exponential in λ. Since the probability of d ≈ mask can be exponentially
small in λ, we can still get a contradiction.

However, the above argument assumes the function privacy is perfect, which
is not the case. Indeed, at every level, we must also account for the adversary’s
distinguishing advantage when we switch a simulated message to a real message.
In order to make the above argument go through, we need the distinguishing
advantage to be a magnitude smaller than 2−λ�−1 (for every �). That is, we
require ITDH to satisfy sub-exponential leveled functional privacy. Now, the
distinguishing advantage can be bounded by 2−λc

� , where 0 < c < 1 is a constant.
Once we choose λ� large enough, then 2−λc

� can be much smaller than 2−λ�−1 ,
and thus the above argument goes through as long as L is not too large.

In particular, there is room for trade-off between the number of levels in ITDH
that we can collapse and the amount of leveled function privacy required. If we
wish to rely on polynomial time and sub-exponential advantage assumptions,
then the above transformation requires the number of levels to be constant. If
we allow for sub-exponential time (and sub-exponential advantage) assumptions,
then the above transformation can work for up to O(log log λ) levels. We refer
the reader to Sect. 6.2 for more details.

2.2 Constructing ITDH

We now provide an overview of our construction of constant-round ITDH for
TC0. Let not-threshold gate be a gate that computes a threshold gate and then
outputs its negation. Since not-threshold gates are universal for threshold cir-
cuits, it suffices for our purposes to consider circuits that consist of only not-
threshold gates.

At a high-level, we implement the following two-step blueprint for construct-
ing ITDH:

– Step 1 (Depth-1 Circuits): First, we build an ITDH for a simple circuit
family T where each circuit is simply a single layer of layer of not-threshold
gates.

– Step 2 (Sequential Composition): Next, to compute circuits with larger
depth, we sequentially compose multiple instances of ITDH from the first step,
where the output of the ith ITDH is used as an input in the (i + 1)th ITDH.

Overall, our construction uses only one cryptographic tool, namely, TDH for
linear functions. As we will see later, we will use additional ideas to introduce
non-linearity in the computation.

In the following, we elaborate on each of these steps. We first focus on step 2,
namely, the sequential composition step, and discuss the main challenges therein.
We will later describe how we implement step 1.

Controlling the Error. Recall that ITDH guarantees only approximate cor-
rectness, i.e., the xor of the final-level encoding e and decoding d is “close”
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(in terms of Hamming distance) to the true function output. Then, in a sequen-
tial composition of an ITDH protocol, each execution only guarantees approxi-
mate correctness. This means that the errors could spread across the executions,
ultimately causing every output bit of the final execution to be incorrect. For
example, suppose a coordinate of the output for an intermediate execution is
flipped and later, the computation of every output bit depends on this flipped
output bit. In this case, every output bit could be incorrect.

To overcome this issue, we observe that any circuit can be converted to a
new circuit that satisfies a “parallel structure” demonstrated in Fig. 1.

Fig. 1. Parallel structure. The top (resp., bottom) layer corresponds to input (resp.,
output) wires.

In such circuits, each output bit only depends on the input to one parallel
repetition. Hence, the spreading of one Hamming error is controlled in one par-
allel execution. We leverage this observation to prove approximate correctness
of the sequential composition.

Input Passing. Recall that the protocol output in any ITDH execution is
“secret shared” between the sender and the receiver, where the sender holds
the final level encoding e, and the receiver holds the decoding d. Then, a plausi-
ble way to implement Step 2 is for the receiver to simply send the decoding in the
ith ITDH to the sender so that the latter can compute the output, and then use
it as input in the (i+1)th ITDH. However, this leaks intermediate wire values (of
the TC0 circuit that we wish to compute) to the sender, thereby compromising
function privacy. Note that the reverse strategy of requiring the sender to send
the encoding to the receiver (to allow output computation) also does not work
since it violates the compactness requirement on the sender’s messages to the
receiver.

To resolve this issue, we keep the secret-sharing structure of the output in
every ITDH intact. Instead, we extend the functionality of the ITDH in Step 1
so that the output of the ith ITDH can be computed within the (i + 1)th ITDH.
Specifically, in Step 1, we construct an ITDH for a circuit family T ⊕ where
every circuit consists of a single layer of Xor-then-Not-Threshold gates, namely,
gates that first XOR the input with a pre-hardwired string and then compute
the not-threshold operation on the resulting value. This allows for resolving the
above problem as follows: the final-level encoding from the ith ITDH constitutes
the sender’s input in the (i + 1)th ITDH. On the other hand, the decoding in
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the ith ITDH is used as the pre-hardwired string in the circuit computed by the
(i + 1)th ITDH.

Putting together these ideas in a careful manner, we are able to implement
Step 2. We refer the reader to the technical section for more details on this step.

ITDH for T ⊕. We now discuss how we implement revised step 1, namely con-
structing an ITDH for T ⊕, where every circuit consists of a single layer of Xor-
then-Not-Threshold gates. At a high-level, we proceed in the following three
steps:

– We first “decompose” a circuit in T ⊕ as the composition of two linear func-
tions.

– Next, we use a 1-level ITDH, which is implied by TDH, to compute each of
these linear functions.

– Finally, we “compose” the two ITDH executions sequentially to obtain a 2-
level ITDH for T ⊕.

An observant reader may wonder how we decompose the computation of
threshold gates into linear functions. Indeed, composition of linear functions is
still a linear function, while a threshold gate involves non-linear computation. As
we will soon see, our decomposition strategy crucially relies on some “offline”
processing by the parties on the intermediate encoding and decoding values
between different TDH executions. This introduces the desired non-linearity in
the computation.

For simplicity, let us focus on the simpler goal of computing a single Xor-
then-Not-Threshold gate. Our ideas easily extend to the more general setting.
To compute such a gate, we proceed in three simple steps.

– First, bitwise xor the input string x with another string y, where y is hard-
wired in the circuit description.

– Next, sum the elements in the string x ⊕ y.
– Finally, compare the summation with the threshold t (defined by the gate).

For the first step, let a and b be two bits at (say) the ith coordinate of x and
y, respectively. Then a⊕b = 1 if and only if a = 0∧b = 1 or a = 1∧b = 0. Hence,
a ⊕ b = (1 − a) · b + a · (1 − b). Since b is part of the circuit description, the right
hand side is a linear function of a over Z. For the second step, we simply sum over
the result of step 1 on all coordinates. Combining the first step and the second
step, this summation is still a linear function of x over Z, and thus we can use a
TDH for linear functions to compute such a summation. We note, however, that
the known construction of TDH in [13,25] is only for linear functions over Z2.
We therefore extend the TDH construction in [13,25] to arbitrary polynomial
modulus. In our case, since the summation cannot be more than n, it suffices to
choose the modulo (n + 1).

We now proceed to express the comparison in the third step as a linear
function. We start with a simpler case. Suppose that the summation obtained
from the second step is sum ∈ {0, 1, 2, . . . , n} and we want to compare it
with a threshold t. Let 1sum denote the indicator vector of x, i.e., 1sum =
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(0, 0, . . . , 0, 1, 0, . . . , 0), where the (sum+1)th coordinate is 1, and all other coor-
dinates are 0. Then, we have that

sum < t ⇐⇒ 〈1sum,1<t〉 = 1,

where 1<t = (1, 1, . . . , 1, 0, . . . , 0) is a vector with 1’s on the first t coordinates,
and 0’s on the remaining coordinates. We can therefore express the comparison
as the inner product between 1sum and 1<t, which is a linear function over 1sum.
Hence, such a comparison can be computed by a TDH for linear functions over
Z2.

The above discussion is oversimplified, however, since the sender and the
receiver do not have the value sum. Instead, at the end of the “previous” TDH
execution, the sender and the receiver only obtained encoding e and a decoding
d, respectively, such that (e+ d) mod R = sum. Fortunately, we can still express
the comparison (e + d) mod R < t as

(e + d) mod R < t ⇐⇒ 〈1e,1j,<t〉 = 1,

where 1e is the indicator vector for e and 1j,<t =
∑t−1

j=0 1(j−d) mod R. This expres-
sion works because comparing (e+d) mod R < t is equivalent to checking if there
exists a 0 ≤ j < t such that (e+ d) mod R = j, which is equivalent to checking
whether e = (j − d) mod R. Note that the right hand side of this formula is a
linear function of 1e, and can thus be computed using a TDH for linear functions
over Z2.

In the above two executions of TDH, the sender processes e from the first
TDH execution to obtain 1e, and uses it as the input to the second TDH. The
receiver processes d from the first TDH execution to obtain 1j,<t, and uses
it as the function for the second TDH execution. Note that this intermediate
processing is non-linear, since computing the indicator vector can be done by
several equality checks, and equality check is not a linear function. Hence, it
introduces the necessary non-linearity in the computation, but is done “outside”
of the TDH executions.

2.3 Constructing NIZKs

Armed with our construction of CIH, we now sketch the main ideas underlying
our construction of (statistical) multi-theorem NIZK for NP. We proceed in the
following two steps:

1. First, using CIH for TC0, we construct a non-interactive witness indistin-
guishable (NIWI) argument for NP in the common random string model.
Our construction satisfies either statistical WI and non-adaptive soundness,
or computational WI and adaptive soundness.

2. We then transform the above NIWI into an adaptive, multi-theorem NIZK for
NP in the common random string model via a variant of the Feige-Lapidot-
Shamir (FLS) “OR-trick” [28].6 Our NIZK satisfies either statistical ZK and

6 By using “programmable” CIH, one could directly obtain NIZKs in the first step.
However, the resulting NIZK only achieves single-theorem ZK; hence an additional
step is still required to obtain multi-theorem NIZKs.
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non-adaptive soundness, or computational ZK and adaptive soundness. Cru-
cially, our transformation does not require “CRS switching” in the security
proof and hence works for both cases seamlessly while preserving the distri-
bution of the CRS in the underlying NIWI.

Statistical NIZKs. In the remainder of this section, we focus on the construc-
tion of statistical NIZKs. We briefly discuss the steps necessary for obtaining the
computational variant (with adaptive soundness) at the end of the section.

Towards implementing the first of the above two steps, we first build the
following two ingredients:

– A lossy public key encryption scheme with an additional property that we
refer to as low-depth decryption, from DDH. Roughly speaking, this property
requires that there exists a TC0 circuit Dec that takes as input any ciphertext
ct and a secret key sk, and outputs the correct plaintext.

– A trapdoor sigma protocol for NP with bad challenge function in TC0 from the
above lossy public key encrytion scheme. We also require the trapdoor sigma
protocol to satisfy an additional “knowledge extraction” property, which can
be viewed as an analogue of special soundness for trapdoor sigma protocols.
Looking ahead, we use this property to construct NIWIs with argument of
knowledge property, which in turn is required for our FLS variant.

Lossy Public Key Encryption. The lossy public key encryption we use is
essentially the same as in [3,40,51]. We start by briefly describing the scheme.

A public key pk =
[
g1 gb

ga gc

]

is a matrix of elements in a group G. When the

matrix
[
1 b
a c

]

is singular (i.e., c = ab), then the public key is in the “injective

mode” and the secret key is sk = a; when the matrix is non-singular (i.e., c �= ab),
then the public key is in the “lossy mode.” The encryption algorithm is described
as follows:

Enc

(

pk,m ∈ {0, 1}; r =
[
r1
r2

])

=
[

(g1)r1 · (gb)r2

(ga)r1 · (gc)r2 · gm

]

= g

⎡
⎣1 b
a c

⎤
⎦

⎡
⎣r1
r2

⎤
⎦+

⎡
⎣ 0
m

⎤
⎦
.

Let us now argue the low-depth decryption property. Let [c1, c2]T denote
the ciphertext obtained by encrypting a message m using an injective mode
public key pk with secret key sk = a. To decrypt the ciphertext, we can compute
c−a
1 · c2 = gm and then comparing with 1G to recover m. However, it is not

known whether c−a
1 can be computed in TC0 (recall that a depends on the

security parameter).
Towards achieving the low-depth decryption property, we use the following

observation. Let a0, a1, . . . aλ be the binary representation of a. Then, we have
that (

c−20

1

)a0

·
(
c−21

1

)a1

·
(
c−22

1

)a2

· . . . ·
(
c−2λ

1

)aλ

· c2 = gm.
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Note that given [c1, c2]T , one can “precompute” c−20

1 , c−21

1 , . . . , c−2λ

1 with-
out using the secret key sk. In our application to NIZKs and Zaps, such pre-
computation can be performed by the prover and the verifier.

We leverage this observation to slightly modify the definition of low-
depth decryption to allow for a deterministic polynomial-time “pre-
computation” algorithm PreComp. Specifically, we require that the output of
Dec(PreComp(1λ, ct), sk) is the correct plaintext m. We set PreComp(1λ,

c) = (c−20

1 , c−21

1 , . . . , c−2λ

1 , c2), and allow the circuit Dec to receive c−20

1 , c−21

1 ,

. . . , c−2λ

1 , c2 and a0, a1, . . . , aλ as input. The decryption circuit Dec proceeds in
the following steps:

– For each i = 0, 1, . . . , λ, it chooses gi to be either 1G or c−2i

1 , such that
gi = (c−2i

1 )ai . This computation can be done in constant depth, and is hence
in TC0.

– Multiply the values g0, g2, . . . , gλ and c2. From [52], this iterative multiplica-
tion can be computed in TC0 when we instantiate G as a subgroup of Z∗

q .
– Compare the resulting value with 1G. If they are equal, then output 0. Oth-

erwise output 1.

Since each of the above steps can be computed in TC0, we have that Dec is
also in TC0.

Trapdoor SigmaProtocol forNP.Recently, Brakerski et al. [13] constructed a
“commit-and-open” style trapdoor sigma protocol where the only cryptographic
primitive used is a commitment scheme. Crucially, the bad challenge function for
their protocol involves the following two computations: extraction from the com-
mitment, and a post-extraction verification using 3-CNF. By exploiting the spe-
cific form of their bad challenge function, we construct a trapdoor sigma protocol
for NP with our desired properties by simply instantiating the commitment scheme
in their protocol with the above lossy encryption scheme.

Let us analyze the bad challenge function of the resulting trapdoor sigma
protocol. Since our lossy public key encryption satisfies the low-depth decryption
property, the first step of the bad challenge computation can be done in TC0.
Next, note that the second step of the bad challenge computation is also in TC0

since it involves evaluation of 3-CNF which can be computed in AC0. Thus, the
bad challenge function is in TC0.

We observe that our protocol also satisfies a knowledge extraction property
which requires that one can efficiently extract a witness from a single accepting
transcript (α, β, γ) by using a trapdoor (namely, the secret key of the lossy public
key encryption), if β does not equal to the output of the bad challenge function
evaluated on α. We use this property to construct NIWIs with argument of
knowledge property.

NIWI from Fiat-Shamir via CIH. We construct NIWI arguments in the
CRS model by using CIH to collapse the rounds of our trapdoor sigma protocol
repeated λ times in parallel. The CRS of the resulting construction contains
a public-key of lossy public key encryption scheme from above and a CIH key.
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When the public key is in lossy mode, the NIWI achieves statistical WI property
and non-adaptive argument of knowledge property.

To prove the argument of knowledge property, we observe that for any
accepting transcript ({αi}i∈[λ], {βi}i∈[λ], {γi}i∈[λ]), it follows from correlation
intractability of the CIH that {βi}i∈[λ] is not equal to the outputs of the bad
challenge function evaluated on {αi}i∈[λ]. Hence, there exists at least one index
i∗ such that βi∗ is not equal to the output of the bad challenge function on αi∗ .
We can now extract a witness by relying on the knowledge extraction property
of the i∗-th parallel execution of the trapdoor sigma protocol.

From NIWI to Multi-theorem NIZK. The FLS “OR-trick” [28] is a stan-
dard methodology to transform NIWIs (or single-theorem NIZKs) into multi-
theorem NIZKs. Roughly speaking, the trick involves supplementing the CRS
with an instance (say) y of a hard-on-average decision problem and requiring
the prover to prove that either the “original” instance (say) x or y is true. This
methodology involves switching the CRS either in the proof of soundness or
zero-knowledge, which can potentially result in a degradation of security. E.g.,
in the former case, one may end up with non-adaptive (computational) sound-
ness while in the latter case, one may end up with computational ZK even if the
underlying scheme achieves statistical privacy. The instance y also needs to be
chosen carefully depending on the desired security and whether one wants the
resulting CRS to be a reference string or a random string.

We consider a variant of the “OR-trick” that does not require CRS switching
and preserves the distribution of the CRS of the underlying scheme. We sup-
plement the CRS with an instance of average-hard search problem, where the
instance is subjected to the uniform distribution. For our purposes, the discrete
logarithm problem suffices. The ZK simulator simply uses the secret exponent
of the discrete-log instance in the CRS to simulate the proof. On the other
hand, soundness can be argued by relying on the computational hardness of
the discrete-log problem. One caveat of this transformation is that the proof
of soundness requires the underlying NIWI to satisfy argument of knowledge
property. We, note, however, that this property is usually easy to achieve (in the
CRS model).

Using this approach, we obtain statistical multi-theorem NIZK arguments
in the common random string model from sub-exponential DDH. Previously,
group-based statistical NIZKs were known only in the common reference string
model [34].

We remark that the above idea can be easily generalized to other settings. For
example, starting from LWE-based single-theorem statistical NIZKs [50], one can
embed the Shortest Integer Solution (SIS) problem in the CRS to build multi-
theorem statistical NIZKs in the common random string model. This settles an
open question stated in the work of [50].

Computational NIZKs with Adaptive Soundness. Using essentially the
same approach as described above, we can also construct computational NIZKs
for NP with adaptive soundness. The main difference is that instead of using lossy
public-key encryption scheme in the construction of trapdoor sigma protocols,
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we use ElGamal encryption scheme [27]. Using the same ideas as for our lossy
public-key encryption scheme, we observe that the ElGamal encryption scheme
also satisfies low-depth decryption property. This allows us to follow the same
sequence of steps as described above to obtain a computational NIZK for NP
with adaptive soundness in the common random string model.7

2.4 Constructing Zaps

At a high-level, we follow a similar recipe as in the recent works of [2,32] who
construct statistical Zap arguments from quasi-polynomial LWE.

The main idea in these works is to replace the (non-interactive) commitment
scheme in a trapdoor sigma protocol with a two-round statistical-hiding com-
mitment scheme in the plain model and then collapse the rounds of the resulting
protocol using CIH, as in the case of NIZKs. Crucially, unlike the non-interactive
commitment scheme that only allows for extraction in the CRS model, the two-
round commitment scheme must support extraction in the plain model. The key
idea for achieving such an extraction property (in conjunction with statistical-
hiding property) is to allow for successful extraction with only negligible but
still much larger than sub-exponential probability (for example, 2− log2 λ) [37].
By carefully using complexity leveraging, one can prove soundness of the result-
ing argument system.

Statistical-Hiding Commitment with Low-depth Extraction. We imple-
ment this approach by replacing the lossy public-key encryption scheme in our
NIWI construction (from earlier) with a two-round statistical hiding commit-
ment scheme. Since we need the bad challenge function of the sigma protocol to
be in TC0, we require the commitment scheme to satisfy an additional low-depth
extraction property.

To construct such a scheme, we first observe that the construction of (public-
coin) statistical-hiding extractable commitments in [2,32,37,39] only makes
black-box use of a two-round oblivious transfer (OT) scheme. We instantiate
this generic construction via the Naor-Pinkas OT scheme based on DDH [45].
By exploiting the specific structure of the generic construction as well as the fact
that Naor-Pinkas OT decryption can be computed in TC0, we are able to show
that the extraction process can also be performed in TC0. We refer the reader
to the full version for more details.

3 Preliminaries

For any positive integer N ∈ Z, N > 0, denote [N ] = {1, 2, . . . , N}. For any
integer R > 0, and x ∈ ZR, 0 ≤ x < R, the indicator vector 1x of x is a vector

7 We note that one could obtain computational NIZKs with adaptive soundness by
simply “switching the CRS” in our construction of statistical NIZKs. However, the
resulting scheme in this case is in the common reference string model.
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in {0, 1}R, where the (x + 1)th position is 1, and all other coordinates are zero.
A binary relation R is a subset of {0, 1}∗ × {0, 1}∗.

Statistical Distance. For any two discrete distributions P,Q, the statisti-
cal distance between P and Q is defined as SD(P,Q) =

∑
i

∣
∣ Pr [P = i] −

Pr [Q = i]
∣
∣/2 where i takes all the values in the support of P and Q.

Hamming Distance. Let n be an integer, and S be a set, and x =
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two tuples in Sn, the Hamming distance
Ham(x, y) is defined as Ham(x, y) = |{i | xi �= yi}|.
Threshold Gate. Let x1, x2, . . . , xn be n binary variables. A threshold gate is
defined as the following function:

Tht(x1, x2, . . . , xn) =

{
1

∑
i∈[n] xi ≥ t

0 Otherwise

Not-threshold Gate. A not-threshold gate Tht is the negation of a threshold
gate.

Threshold Circuits and TC0. A threshold circuit is a directed acyclic graph,
where each node either computes a threshold gate of unbounded fan-in or a
negation gate.

In this work, for any constant L, we use TC0
L to denote the class of L-depth

polynomial-size threshold circuits. When the depth L is not important or is clear
from the context, we omit it and simply denote the circuit class TC0

L as TC0.
The not-threshold gate is universal for TC0, since we can convert any threshold
circuit of constant depth to a constant depth circuit that only contains not-
threshold gates. The conversion works as follows: for each negation gate, we
convert it to a not-threshold gate with a single input and threshold t = 1. For
each threshold gate, we convert it to a not-threshold gate with the same input
and threshold and then compose it with a negation gate, where the negation
gate can be implemented as a not-threshold gate.

We defer more preliminaries to the full version.

4 Interactive Trapdoor Hashing Protocols

In this section, we define interactive trapdoor hashing protocols (ITDH). At a
high-level, ITDH is a generalization of trapdoor hash functions – which can be
viewed as two-round two-party protocols with specific structural and communi-
cation efficiency properties – to multi-round protocols.

More specifically, an interactive trapdoor hashing protocol involves two par-
ties – a sender and a receiver. The sender has an input x, while the receiver has
a circuit f . The two parties jointly compute f(x) over several rounds of interac-
tion. We structure the protocols in multiple levels, where a level consists of the
following two successive rounds:
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– The receiver generates a key k and a trapdoor td using a key generation
algorithm KGen, which takes as input the circuit f , the level number, and
some additional internal state of the receiver. Then it sends k to the sender.

– Upon receiving a key k, the sender computes a hash value h and an encoding
e using the algorithm Hash&Enc, which takes as input x, the key k, the level
number, and the previous level encoding. Then it sends the hash h to the
receiver, and keeps e as an internal state.

Finally, there is a decoding algorithm Dec that takes the internal state of the
receiver after the last level as input, and outputs a decoding value d. Ideally, we
want the output f(x) to be e ⊕ d.

In the following, we proceed to formally define this notion and its properties.

Per-level Security Parameter. In our formal definition of ITDH, we allow the
security parameter to be different for every level. This formulation is guided by
our main application, namely, constructing correlation-intractable hash functions
(see Sect. 6). Nevertheless, we note that ITDH could also be meaningfully defined
w.r.t. a single security parameter for the entire protocol.

4.1 Definition

Let C = {Cn,u}n,u be a family of circuits, where each circuit f ∈ Cn,u is a
circuit of input length n and output length u. An L-level interactive trap-
door hashing protocol for the circuit family C is a tuple of algorithms ITDH =
(KGen,Hash&Enc,Dec) that are described below.

We use λ1, . . . , λL to denote the security parameters for different levels.
Throughout this work, these parameters are set so that they are polynomially
related. That is, there exists a λ such that λ1, . . . , λL are polynomials in λ.

– KGen(1λ� , �, f, h�−1, td�−1): The key generation algorithm takes as input a
security parameter λ� (that varies with the level number), a level number �,
a circuit f ∈ Cn,u, a level (� − 1) hash value h�−1 and trapdoor td�−1 (for
� = 1, h�−1 = td�−1 = ⊥). It outputs an �th level key k� and a trapdoor td�.

– Hash&Enc(k�, x, e�−1): The hash-and-encode algorithm takes as input a level
� hash key k�, an input x, and a level (� − 1) encoding e�−1. It outputs an
�th level hash value h� and an encoding e� ∈ {0, 1}u. When � = 1, we let
e�−1 = ⊥.

– Dec(tdL, hL): The decoding algorithm takes as input a level L trapdoor tdL

and hash value hL, and outputs a value d ∈ {0, 1}u.

We require ITDH to satisfy the following properties:

– Compactness: For each level � ∈ [L], the bit length of h� is at most λ�.
– (Δ, ε)-Approximate Correctness: For any n, u ∈ N, any circuit f ∈ Cn,u

and any sequence of security parameters (λ1, . . . , λL), we have

Pr
r1,r2,...,rL

[∀x ∈ {0, 1}n,Ham(e ⊕ d, f(x)) < Δ(u)] > 1 − ε(u, λ1, . . . , λL),

where e, d are obtained by the following procedure: Let h0 = td0 = e0 = ⊥.
For � = 1, 2, . . . , L,
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• Compute (k�, td�) ← KGen(1λ� , �, f, h�−1, td�−1; r�) using random coins r�.
• Hash and encode the input x: (h�, e�) ← Hash&Enc(k�, x, e�−1).

Finally, let e = eL be the encoding at the final level, and d = Dec(tdL, hL).
– Leveled Function Privacy: There exist a simulator Sim and a negligible

function ν(·) such that for any level � ∈ [L], any polynomials n(·) and u(·) in
the security parameter, any circuit f ∈ Cn,u, any trapdoor td′ ∈ {0, 1}|td�−1|,
any hash value h′ ∈ {0, 1}|h�−1|, and any n.u. PPT distinguisher D,

∣
∣
∣
∣ Pr

[
(k�, td�) ← KGen(1λ� , �, f, h′, td′) : D(1λ� , k�) = 1

]

− Pr
[
k̃� ← Sim(1λ� , 1n, 1u, �) : D(1λ� , k̃�) = 1

] ∣
∣
∣
∣ ≤ ν(λ�).

We say that the ITDH satisfies sub-exponential leveled function privacy, if
there exists a constant 0 < c < 1 such that for any n.u. PPT distinguisher,
ν(λ�) is bounded by 2−λc

� for any sufficiently large λ�.
Note that since the security parameters for different levels are polynomially
related, n(·) and u(·) are polynomials in λ� iff they are polynomials in λ.

Relationship with Trapdoor Hash Functions. A 1-level ITDH is essentially
the same as TDH, except that in TDH, there are two kinds of keys: a hash key
and an encoding key. In particular, a hash value is computed using the hash key
and can be reused with different encoding keys for different functions. In 1-level
ITDH, however, the receiver’s message only consists of one key that is used by
the sender for computing both the hash value and the encoding. Therefore, the
hash value is not reusable for different functions.

We choose the above formulation of ITDH for the sake of a simpler and
cleaner definition. Moreover, if we consider multi-bit output functions, then the
above difference disappears, since we can combine multiple functions into one
multi-bit output function and encode it using one key.

5 Construction of ITDH

In this section, we construct an interactive trapdoor hashing protocol (ITDH)
for TC0 circuits. We refer the reader to Sect. 2 for a high-level overview of our
approach. The remainder of this section is organized as follows:

– Depth-1 Circuits: In Sect. 5.1, we first construct a 2-level ITDH protocol for
T ⊕ – roughly speaking, a family of depth-1 Xor-then-Not-Threshold circuits
(see below for the precise definition of T ⊕).

– Sequential Composition: Next, in Sect. 5.2, we present a sequential com-
position theorem for ITDH where we show how to compose L instances of a
2-level ITDH for some circuit family to obtain a 2L-level ITDH for a related
circuit family.

– Construction for TC0: Finally, in Sect. 5.3, we put these two constructions
together to obtain an ITDH for TC0.
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5.1 ITDH for T ⊕

We start by introducing some notation and definitions.

XOR-then-Compute Circuits. Let C = {Cn,u}n,u be a circuit family, where
for any n and u, Cn,u contains circuits with n-bit inputs and u-bit outputs. For
any C, we define an Xor-then-Compute circuit family C⊕ = {C⊕

n,u}n,u consisting
of circuits that first compute a bit-wise xor operation on the input with a fixed
string and then compute a circuit in C on the resulting value.

Specifically, C⊕
n,u contains all the circuit C⊕y : {0, 1}n → {0, 1}u, where

y ∈ {0, 1}n and there exists a C ∈ Cn,u such that for every x ∈ {0, 1}n,

C⊕y(x) = C(x ⊕ y).

Circuit Families T and T ⊕. We define a circuit family T = {Tn,u}n,u consist-
ing of depth-1 not-threshold circuits, i.e., a single layer of not-threshold gates
(see Sect. 3). Specifically, Tn,u contains all circuits T�t,�I : {0, 1}n → {0, 1}u where
�t = {t1, . . . , tu} is a set of positive integers, and �I = {I1, . . . , Iu} is a collection
of sets Ij ⊆ [n] s.t. for any x ∈ {0, 1}n,

T�t,�I(x) =
(
Tht1(x[I1]), . . . ,Thtu

(x[Iu])
)
,

where for any index set Ij = {i1, i2, . . . , iw} ⊆ [n], we denote x[Ij ] = (xi1 , xi2 , . . . ,
xiw

) as the projection of string x to the set Ij .
The function family T ⊕ = {T ⊕

n,u}n,u is defined as the Xor-then-Compute
family corresponding to T . We denote the circuits in T ⊕

n,u as T⊕y
�t,�I

, where �t, �I

and y are as defined above.
For a high-level overview of our construction, see Sect. 2.2. We now proceed

to give a formal description of our construction.

Construction of ITDH for T ⊕. We construct a 2-level interactive trap-
door hashing protocol ITDH = (KGen,Hash&Enc,Dec) for the circuit family
T ⊕ as defined above. Our construction relies on the following ingredient: a
trapdoor hash function TDH = (TDH.HKGen,TDH.EKGen,TDH.Hash,TDH.Enc,
TDH.Dec) for the linear function family F = {Fn,R}n,R that achieves τ -enhanced
correctness and function privacy.

For ease of exposition, we describe the algorithms of ITDH separately for each
level. The first level algorithms of ITDH internally use TDH to evaluate a circuit
(defined below) with input length n1 = n and modulus R1 = n + 1. The second
level algorithms of ITDH internally use TDH to evaluate another circuit (defined
below) with input length n2 = R1 · u and modulus R2 = 2. We use λ1 and λ2

to denote the security parameters input to the first and second level algorithms,
respectively.
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– Level 1 KGen(1λ1 , 1,T⊕y
�t,�I

, h0 = ⊥, td0 = ⊥):
• Sample a hash key of TDH w.r.t. security parameter λ1, input length

n1 = n and modulus R1 = n + 1

hk1 ← TDH.HKGen(1λ1 , 1n1=n, 1R1=n+1)

• Parse �I = {I1, . . . , Iu}. For every i ∈ [u], sample an encoding key:

(ek1,i, td1,i) ← TDH.EKGen(hk1,XorSumIi,y)

where for any set I ⊆ [n], XorSumI,y is the linear function described in
Fig. 2.

• Output (k1, td1) where k1 = (1, hk1, {ek1,i}i∈[u]) and td1 = {td1,i}i∈[u].
– Level 1 Hash&Enc(k1, x, e0 = ⊥):

• Parse k1 = (1, hk1, {ek1,i}i∈[u]).
• Compute “first level” hash over x: h1 ← TDH.Hash(hk1, x)
• For every i ∈ [u], compute a “first level” encoding: e1,i ← TDH.Enc

(ek1,i, x)
• Output (h1, e1), where e1 = {e1,i}i∈[u].

– Level 2 KGen(1λ2 , 2,T⊕y
�t,�I

, h1, td1):
• Parse td1 = {td1,i}i∈[u]. For every i ∈ [u], decode h1: d1,i ← TDH.Dec

(td1,i, h1)
• Sample a new hash key of TDH w.r.t. security parameter λ2, input length

n2 = R1 · u and modulus R2 = 2,

hk2 ← TDH.HKGen(1λ2 , 1n2=R1·u, 1R2=2).

• Parse �t = {t1, . . . , tu}. For each i ∈ [u], sample a new encoding key

(ek2,i, td2,i) ← TDH.EKGen(hk2,AddThi,ti,d1,i
),

where for any index i ∈ [u], positive integer t and value d ∈ ZR1 ,
AddThi,t,d is the linear function defined in the Fig. 3.

• Output (k2, td2), where k2 = (2, hk2, {ek2,i}i∈[u]) and td2 = {td2,i}i∈[u].
– Level 2 Hash&Enc(k2, x, e1):

• Parse k2 = (2, hk2, {ek2,i}i∈[u]), and e1 = {e1,i}i∈[u].
• Compute “second level” hash over {1e1,i

}i∈[u], where 1e is the indicator
vector for any e.

h2 ← TDH.Hash(hk2, {1e1,i
}i∈[u])

• For any i ∈ [u], compute “second level” encoding: e2,i ← TDH.Enc(ek2,i,
{1e1,j

}j∈[u]).
• Output (h2, e2), where e2 = {e2,i}i∈[u]).

– Decoding Dec(td2, h2):
• Parse td2 = {td2,i}i∈[u]. For every i ∈ [u], decode h2: d2,i ← TDH.Dec

(td2,i, h2).
• Output d = {d2,i}i∈[u].

This completes the description of ITDH. We defer the proof of approximate
correctness and leveled function privacy to the full version.
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Fig. 2. Description of the linear function XorSumI,y. This function computes the sum
over ZR1 of I values obtained by bit-wise XOR of y[I] and x[I], where x = (x1, . . . , xn).

Fig. 3. Description of the linear function AddThi,t,d. For any e1, e2, . . . , eu ∈ ZR1 , this
function computes whether (ei + d) mod R1 is less than the threshold t. The actual
input �e to the function is such that ei is the indicator vector for ei.

5.2 ITDH Composition

In this section, we establish a sequential composition theorem for ITDH. Roughly
speaking, we show how a 2-level ITDH for an “Xor-then-Compute” circuit family
can be executed sequentially L times to obtain an ITDH for a related circuit
family (the exact transformation is more nuanced; see below). The main benefit
of sequential composition is that it can be used to increase the depth of circuits
that can be computed by ITDH.

We start by introducing some notation and terminology for circuit composi-
tion that we shall use in the sequel.

Parallel Composition. Let w be a positive integer. Informally, an w-parallel
composition of a circuit f ′ is a new circuit f that computes w copies of f ′

in parallel. More formally, for any circuit family C, we define a corresponding
parallel-composition circuit family as follows:

Definition 1 (Parallel Composition). For any circuit family C and any
polynomial w = w(n), we say that C[−→w ] = {C[−→w ]n,u}n,u is a family of w-parallel
composition circuits if for every f ∈ C[−→w ]n,u, there exists a sequence of circuits
f ′
1, f

′
2, . . . , f

′
w ∈ Cn′,u′ such that n = n′ · w(n) and u = u′ · w(n), and for any

input x = (x1, x2, . . . , xw) ∈ {0, 1}n′·w (where every xi ∈ {0, 1}n′
), we have

f(x1, x2, . . . , xw) = (f ′
1(x1), f ′

2(x2), . . . , f ′
w(xw)).

Parallel-and-Sequential-Composition. For any circuit family C, we now
define another circuit family obtained via parallel and sequential composition
of circuits in C.
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Informally speaking, for any polynomials w(n) and L(n) and an integer s,
a w-parallel-and-L-sequential-composition of a circuit family C is a new circuit
family C[

−→w↓L] = {C[
−→w↓L]n,s}n,s, where each circuit f ∈ C[

−→w↓L]n,s is computed by a
sequence of circuits f1, f2, . . . , fL. For any input x, to compute f(x), we firstly
evaluate f1 on input x, then use the output f1(x) as the input to the circuit
f2, and so on, such that the output of fL is the output of f . Furthermore, we
require that for every � ∈ [L], f� is an m-parallel composition of some sequence
of circuits f ′

�,1, f
′
�,2, . . . , f

′
�,w ∈ C. For the ease of presentation, we fix the output

length of the circuit f� for every � < L as s, and the output length of f as w.

Definition 2 (Parallel-and-Sequential-Composition). Let C = {Cn,u}n,u

be a circuit family, where each circuit in Cn,u has input length n and output length
u. For any polynomials w = w(n), L = L(n), and integer s, we say that C[

−→w↓L] =
{C[

−→w↓L]n,s}n,s is a family of w-parallel-and-L-sequential-composition circuits if
every circuit f ∈ C[

−→w↓L]n,s is of the form

f = fL ◦ fL−1 ◦ . . . ◦ f1

where for every � ∈ [L], f� : {0, 1}n� → {0, 1}n�+1 satisfies n1 = n, n2 = n3 =
. . . = nL−1 = s, nL = w. Furthermore, there exists a sequence of integers {n′

�}�

and circuits {f ′
�,j}�∈[L],j∈[w], where f ′

�,j ∈ Cn′
�,n′

�+1
, and n� = n′

� · w,

f�(x1, . . . , xw) =
(
f ′

�,1(x1), f ′
�,2(x2), . . . , f ′

�,w(xw)
)

for every x = (x1, . . . , xw) ∈ {0, 1}n′
�·w, where xi ∈ {0, 1}n′

� for every i ∈ [w].

Construction of ITDH for C[
−→w↓L]. Let C = {Cn,u}n,u be any circuit fam-

ily, and let C[−→w ] be the corresponding w-parallel composition circuit family.
Let C[−→w ]⊕ = {C[−→w ]⊕n,u}n,u be the “Xor-then-Compute” circuit family defined
w.r.t. C[−→w ]. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be a 2-level
interactive trapdoor hashing protocol for C[−→w ]⊕ = {C[−→w ]⊕n,u}n,u with (Δ, ε)-
approximate correctness and leveled function privacy.

Given ITDH, we construct a 2L-level interactive trapdoor hashing protocol
ITDH′ = (KGen,Hash&Enc,Dec) for the circuit family C[

−→w↓L] as defined above. For
ease of exposition, we describe the algorithms of ITDH′ for “odd” and “even”
levels separately.

– Level �′ = 2� − 1, KGen(1λ�′ , �′, f, h�′−1, td�′−1):
• If � = 1, set d0 to be an all zero string of length n.
• If � ≥ 2, decode h�′−1: d�−1 ← ITDH.Dec(td�′−1, h�′−1)
• Let f1, . . . , fL be such that f = fL ◦ fL−1 ◦ . . . ◦ f1 (as defined above),

where f� has input length n� and output length n�+1.
• Compute a key w.r.t. security parameter λ�′ and the “Xor-then-Compute”

circuit f
⊕d�−1
� ∈ C[−→w ]⊕n�,n�+1

(k�,1, td�,1) ← ITDH.KGen(1λ�′ , 1n� , 1, f
⊕d�−1
� ,⊥,⊥).
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• Output (k�′ , td�′) where k�′ = (�′, k�,1) and td�′ = td�,1.
– Level �′ = 2� − 1, Hash&Enc(k�′ , x, e�′−1):

• If � = 1, let x� = x, otherwise, let x� = e�′−1. Execute

(h�,1, e�,1) ← ITDH.Hash&Enc(k�,1, x,⊥)

• Output (h� = h�,1, e� = (x�, e�,1)).
– Level �′ = 2�, KGen(1λ�′ , �′, f, h�′−1, td�′−1):

• Parse h�′−1 = h�,1, and td�′−1 = td�,1.

(k�,2, td�,2) ← ITDH.KGen(1λ�′ , 1n� , 2, f
⊕d�−1
� , h�,1, td�,1)

• Output (k�′ , td�′), where k�′ = (�′, k�,2), and td�′ = td�,2.
– Level �′ = 2�, Hash&Enc(k�′ , x, e�′−1):

• Parse e�′−1 = (x�, e�,1), k�′ = k�,2.
• Output (h�′ , e�′) ← Hash&Enc(k�,2, x�, e�,1).

– Decoding Dec(td2L, h2L):
• Output d ← ITDH.Dec(td2L, h2L).

This completes the description of ITDH′. We defer the proof of approximate
correctness and leveled function privacy to the full version.

5.3 ITDH for TC0

We now describe how we can put the above constructions together to obtain
an ITDH for TC0. Recall that, we use the notation TC0

L to denote the class of
L-depth TC0 circuits.

Let T [
−→w↓L] be the circuit family obtained by w-parallel-and-L-sequential com-

position of the circuit family T , as per Definition 2. We first show that any
circuit in TC0

L can be converted to a circuit in T [
−→w↓L].

Lemma 1. TC0
L can be computed in T [

−→w↓L]. Specifically, for any circuit f ∈ TC0
L

with n bit input and w output bits, we convert it in polynomial time to a circuit
f ′ ∈ T [

−→w↓L] such that, for any x ∈ {0, 1}n, f(x) = f ′(x, x, . . . , x).

We defer the proof to the full version.
Next, we combine the construction of ITDH for the circuit family T ⊕ from

Sect. 5.1 together with the sequential composition theorem in Sect. 5.2 to obtain
an ITDH for the circuit family T [

−→w↓L], and therefore an ITDH for TC0
L.

Theorem 4. If for any inverse polynomial τ in the security parameter, there
exists a trapdoor hash function TDH for linear function family F with τ -enhanced
correctness and sub-exponential function privacy, then for any constants L =
O(1), α = O(1), and any polynomial w in the security parameter, there exists
a 2L-level interactive trapdoor hashing protocol for TC0

L that achieves (Δ, ε)-
approximate correctness and sub-exponential function privacy, where Δ(w) =
α · w and for any λ1 < λ2 < . . . < λ2L < w/2L, ε(w, λ1, . . . , λL) = 2−2w+O(1).

We defer the proof to the full version.

ITDH for P/poly. Since any circuit in P/poly can be converted to a layered
circuit as in Lemma 1, the above construction of ITDH for TC0 can be naturally
extended to obtain a polynomial-level ITDH for P/poly.
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6 Correlation Intractable Hash Functions for TC0

In this section, we build correlation intractable hash functions for the circuit
family TC0.

6.1 Definition

Correlation intractable hash (CIH) function is a tuple of algorithms CIH =
(Gen,Hash) described as follows:

– Gen(1λ): It takes as input a security parameter λ and outputs a key k.
– Hash(k, x): It takes as input a hash key k and a string x, and outputs a binary

string y of length w = w(λ).

We require CIH to satisfy the following property:

– Correlation Intractability: Recall that, a binary relation R is a subset
of {0, 1}∗ × {0, 1}∗. We say that CIH is correlation intractable for a class of
binary relations {Rλ}λ if there exists a negligible function ν(λ) such that, for
any λ ∈ N, any n.u. PPT adversary A, and any R ∈ Rλ,

Pr
[
k ← Gen(1λ), x ← A(1λ, k) : (x,Hash(k, x)) ∈ R

]
≤ ν(λ)

We say that the CIH is sub-exponential correlation intractable, if there exists
a constants c such that for any n.u. PPT adversary, its successful probability is
bounded by 2−λc

for any sufficiently large λ.

Definition 3 (CIH for TC0). Let n(λ), w(λ) be polynomials. Let L = O(1)
be a constant. Recall that, we use TC0

L to denote the class of L-depth threshold
circuits. We say that CIH is a CIH for TC0

L, if CIH is correlation intractable for
the class of relations {Rλ}λ, where Rλ = {Rf,λ | f ∈ TC0

L}, and

Rf,λ = {(x, y) ∈ {0, 1}n(λ) × {0, 1}w(λ) | y = f(x)}

6.2 Our Construction

For any L = O(1), we show a generic transformation from an L-level ITDH for
TC0

L to a CIH for the same circuit family.

CIH for TC0. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be an L-
level interactive trapdoor hashing protocol for the circuit class TC0

L that satisfies
the following properties:

– (0.01w, 2−2w+O(1))-approximate correctness.
– Sub-exponential leveled function privacy. Let Sim be the leveled function pri-

vacy simulator. Let c be the constant in the sub-exponential security defini-
tion.
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Fig. 4. Description of CIH.

We construct a correlation intractable hash function CIH = (CIH.Gen,CIH.Hash)
for TC0

L in Fig. 4.

Theorem 5 (Correlation Intractability). If w = Ω(λ), the construction in
Fig. 4 is sub-exponential correlation intractable for the circuit class TC0

L.
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Abstract. We present an algorithm solving the ROS (Random inhomo-
geneities in a Overdetermined Solvable system of linear equations) prob-
lem mod p in polynomial time for � > log p dimensions. Our algorithm
can be combined with Wagner’s attack, and leads to a sub-exponential
solution for any dimension � with best complexity known so far.

When concurrent executions are allowed, our algorithm leads to prac-
tical attacks against unforgeability of blind signature schemes such as
Schnorr and Okamoto–Schnorr blind signatures, threshold signatures
such as GJKR and the original version of FROST, multisignatures such
as CoSI and the two-round version of MuSig, partially blind signatures
such as Abe–Okamoto, and conditional blind signatures such as ZGP17.
Schemes for e-cash and anonymous credentials (such as Anonymous Cre-
dentials Light) inspired from the above are also affected.

1 Introduction

One of the most fundamental concepts in cryptanalysis is the birthday paradox.
Roughly, it states that among O(

√
p) random elements from the range [0, p − 1]

(where p is a prime), there exist two elements a and b such that a = b, with high
probability. In a seminal work, Wagner gave a generalization of the birthday
paradox to � dimensions which asks to find xi ∈ Li, i ∈ [0, � − 1] such that
x0 + · · · + x�−1 = 0 (mod p), where Li are lists of random elements.

His work also showed a simple and elegant algorithm to solve the problem in
subexponential time O((� + 1) · 2�log p�/(1+�log(�+1)�)) and explained how it could
be applied to perform cryptanalysis on various schemes. Among the most impor-
tant applications of Wagner’s technique is a subexponential solution to the ROS
(Random inhomogeneities in a Overdetermined Solvable system of linear equa-
tions) problem [Sch01,FPS20], which is defined as follows. Given a prime number
p and access to a random oracleHros with range inZp, the ROS problem (in dimen-
sion �) asks to find (� + 1) affine functions ρi for i = 0, . . . , �, (� + 1) bit strings
auxi ∈ {0, 1}∗ (with i ∈ [0, �]), and a vector c = (c0, . . . , c�−1) such that:

Hros(ρi, auxi) = ρi(c) for all i ∈ [0, �].
c© International Association for Cryptologic Research 2021
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This problem was originally studied by Schnorr [Sch01] in the context of blind
signature schemes. Using a solver for the ROS problem, Wagner showed that the
unforgeability of the Schnorr and Okamoto-Schnorr blind signature schemes can
be attacked in subexponential time whenever more than O(log p) signatures are
issued concurrently. In this work, we revisit the ROS problem and its applica-
tions. We make the following contributions.

– We give the first polynomial time solution to the ROS problem for � > log p
dimensions.

– We show how the above solution can be combined with Wagner’s techniques to
yield an improved subexponential algorithm for dimensions lower than log p.
The resulting construction offers a smooth trade-off between the work and
the dimension needed to solve the ROS problem. It outperforms the runtime
of Wagner’s algorithm for a broad range of dimensions.

– Finally, we describe how to apply our new attack to an extensive list
of schemes. These include: blind signatures [PS00,Sch01], threshold sig-
natures [GJKR07,KG20a], multisignatures [STV+16,MPSW18a], partially
blind signatures [AO00], conditionally blind signatures [ZGP17,GPZZ19], and
anonymous credentials [BL13,Bra94] in a concurrent setting with � > log p
parallel executions. While our attacks do not contradict the security argu-
ments of those schemes (which are restricted only to sequential or bounded
number of executions), it proves that these schemes are unpractical for some
real-world applications (cf. Sect. 7).

1.1 Technical Overview

Let Pgen(1λ) be a parameter generation algorithm that given as input the secu-
rity parameter λ in unary form, outputs a prime p of length λ = �log p�. In this
work, we prove the following main theorem:

Theorem 1 (ROS attack). If � > λ, then there exists a (probabilistic) adver-
sary that runs in expected polynomial time and solves the ROS problem relative
to Pgen with dimension � with probability 1.

Let B(x) :=
∑λ−1

i=0 2iρi(xi) for functions ρi where i ∈ [0, λ− 1]. If we can set
ρi(xi) to be the multivariate polynomials that evaluate to 0 at the point c0i and
to 1 at the point c1i (for i ∈ [0, � − 1]), then we can write any value y ∈ [0, p−1] as
y = B(cb0

0 , . . . , c
b�−1
�−1 ), where the bi values are such that y =

∑λ−1
i=0 2ibi. Using this

idea, we first define all the functions ρ0, . . . ,ρ�−1 along with the corresponding
pairs of points c0i , c

1
i that are obtained as cb

i := Hros(ρi, b). In a second step,
we choose ρ�(x) := B(x), and query y := Hros(ρ�, aux�). Now, we can write
y =

∑λ−1
i=0 2ibi which determines a point cbi

i from every pair. We can output
the chosen points in c along with the vector of affine functions (ρ0, . . . ,ρ�) as a
solution to the ROS problem. (Note that ρ� = B(x) is also affine.) This attack
runs in expected polynomial time (since with small probability, Hros produces
collisions, in which case steps need to be repeated) and works whenever � > log p.
This requirement ensures that it is always possible to write any value with �
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terms in binary representation. To circumvent the restriction � > log p, we prove
a second theorem:

Theorem 2 (Generalized ROS attack). Let L ≥ 0 be an integer and w ≥ 0
be a real number. If � ≥ max{2w − 1, �2w − 1 + λ − (w + 1) · L�}, then there
exists a (probabilistic) adversary that runs in expected time O(2w+L) and solves
the ROS problem relative to Pgen and dimension � with probability 1.

The idea of this attack is to combine the technique from the first attack with the
basic subexponential attack of Wagner. Instead of writing y entirely in binary
as above, which requires � dimensions, we first find a sum s of 2w values which
include y, but satisfies |s| ∈ [0, p

2(w+1)·L − 1] (mod p). Note that s can be repre-
sented with λ − (w + 1) · L many bits in binary representation. This approach
requires, in total, �2w +λ−(w+1) ·L−1� dimensions and 2w+L overall work. As
illustrated in Fig. 4, this leads to improvements over Wagner’s attack relatively
quickly as the dimension � of the ROS problem increases. We remark that, while
in our first attack we give a concrete probability of failure, our second attack is
based on the conjecture that Wagner’s algorithm for Zp succeeds with constant
probability. While we are not aware of any formal analysis of Wagner’s algorithm
over Zp, we remark that it is considered a standard cryptanalytic tool [DEF+19].
Our attack can be seen as strictly improving over its (conjectured) performance
when applied to solve the ROS problem.

1.2 Impact of the Attacks

Any cryptographic construction that bases its security guarantees on the hard-
ness of the ROS problem is affected by our attacks.

Blind Signatures. An immediate consequence of our findings is the first
polynomial-time attack against Schnorr blind signatures [Sch01] and Okamoto–
Schnorr blind signatures [PS00] in the concurrent setting with � > log p parallel
executions.1 Structurally, our attack builds on the one shown by Schnorr [Sch01],
who showed that a solver to theROSproblemcanbe turned into anattacker against
one-more unforgeability of blind Schnorr and Okamoto-Schnorr signatures. As a
concrete example, the attack in Sect. 5 breaks one-more unforgeability of blind
Schnorr signatures over 256-bit elliptic curves in a few seconds (when implemented
in Sage [S+20]), provided that the attacker can open 256 concurrent sessions.

Other Affected Constructions. Our attack can be adapted to an extensive list
of schemes which include threshold signatures [GJKR07,KG20a], multisigna-
tures [STV+16,MPSW18a], partially blind signatures [AO00], conditionally blind
signatures [ZGP17,GPZZ19], blind anonymous group signatures [CFLW04], blind
identity-based signcryption [YW05], and blind signature schemes from bilinear
1 Okamoto–Schnorr signatures are proven secure only for � parallel executions s.t.

Q�/p � 1, where Q is the number of queries to Hros. Our attack does not contradict
their analysis as our attack requires � > log2 p > logQ p.
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Fig. 1. The ROSPgen,A,�(λ) game. Above, ρi,j is the j-th coefficient of the polynomial

ρi, i.e., ρi(x) =
∑�−1

j=0 ρi,jxi + ρi,�.

pairings [CHYC05]. We note that some of the previous works claim security only
for non-concurrent executions or with a bounded number of executions; therefore,
our attacks do not contradict their security claims but render these schemes unsuit-
able for a broad range of real-world use cases.

Scope of Our Attacks and Countermeasures. Our attacks do not extend to the
modified-ROS [FPS20] and the generalized-ROS [HKLN20] problems. The con-
crete hardness of both problems remains an intriguing open question.

2 Preliminaries

In this work, we assume that logarithm is always base 2. Let again Pgen(1λ)
be a parameter generation algorithm that given as input the security parameter
λ in unary outputs a prime p of length λ = �log p�. The ROS problem for
� dimensions, displayed in Fig. 1, is hard if no adversary can solve the ROS
problem in time polynomial in the security parameter λ. i.e.:

AdvrosPgen,A,�(λ) := Pr
[
ROSPgen,A,�(λ) = 1

]
= negl(λ) .

Alternative Formulations of ROS. Fuchsbauer et al. [FPS20, Fig. 7] present a
variant of ROSPgen,A,�(λ) the gamewith linear instead of affine functions ρi (i.e.,
where ρi,� = 0). Hauck et al. [HKL19, Fig. 3] allow only for linear functions, and
do not allow for auxiliary information aux within Hros (i.e., where auxi = ⊥).2

These formulations are all equivalent.
First, any adversary A for ROS with affine functions as per Fig. 1 can be

reduced to an adversary B for ROS with linear functions as per [FPS20]: B runs A
and for every query of the form ((ρi,0, . . . , ρi,�), auxi) to the oracle Hros (made by
A), it returns Hros((ρi,0, . . . , ρi,�−1), (ρi,�‖auxi))−ρi,�. Finally, B modifies accord-
ingly the solution output by A by concatenating ρi,� to the corresponding auxi.

Second, any adversary A for ROS with linear functions can be reduced
to an adversary B for ROS with linear functions and without auxiliary infor-
mation as per [HKL19]. We assume without loss of generality that A never
2 Our attacks only apply to the case where the scalar set S is a finite field.
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makes twice the same query. Then B runs A and for every query of the form
((ρi,0, . . . , ρi,�−1, 0), auxi) to the oracle (made by A), it picks a random scalar
r ∈ Z

∗
p and returns Hros((r · ρi,0, . . . , r · ρi,�−1),⊥) · r−1 mod p. When A outputs

a solution (ρi, auxi)i∈[0,�], (cj)j∈[0,�−1], B outputs (r · ρi)i∈[0,�], (cj)j∈[0,�−1]. The
simulation of the oracle Hros is perfect unless there is a collision in the scalar r,
which happens with negligible probability in λ.

3 Attack

In this section, we prove Theorem 1. We abuse notation and ρi denotes both
the vector ρi = (ρi,0, . . . , ρi,�) ∈ Z

�+1
p and the corresponding affine function

ρi(x) =
∑�−1

j=0 ρi,j · xj + ρi,� (where x = (x0, . . . , x�−1)).

Proof (of Theorem 1). We construct an adversary for ROSPgen,A,�(λ), where
� > log p. Recall that to simplify the description of the attack, we use a polyno-
mial formulation of ROS, i.e., we represent vectors ρi = (ρi,0, . . . , ρi,�) as linear
multivariate polynomials in Zp[x0, . . . , x�−1]:

ρi(x0, . . . , x�−1) = ρi,0x0 + · · · + ρi,�−1x�−1 + ρi,� . (1)

The goal for the adversary A is to output (ρi, auxi)i∈[0,�] and c =
(c0, . . . , c�−1) such that:

ρi(c) = Hros(ρi, auxi) for all i ∈ [0, �].

Define:
ρi := xi for i = 0, . . . , � − 1,

and find two strings aux0i and aux1i such that cb
i := Hros(ρi, auxb) are different

for b = 0 and b = 1.3 Then, let:

x′
i :=

xi − c0i
c1i − c0i

for all i = 0, . . . , � − 1. We remark that, if xi = cb
i , then x′

i = b (for b = 0, 1).
Define ρ� :=

∑�−1
i=0 2ix′

i, and query y := Hros(ρ�,⊥).Finally, write y in binary as:

y =
�−1∑

i=0

2ibi (mod p).

(As 2� > p, it is possible to write y this way, and this implicitly defines the bi’s.)
The adversary A outputs the solution (ρ0, aux

b0
0 ), . . . , (ρ�−1, aux

b�−1
�−1 ), (ρ�,⊥) and

3 This step is the reason why the algorithm is expected polynomial time instead of
polynomial time. Note that, since aux ∈ {0, 1}∗, there will always be two values
aux0i , aux

1
i ∈ {0, 1}∗ so that c0i �= c1i .
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c := (cb0
0 , . . . , c

b�−1
�−1 ). We have indeed that, for i ∈ [0, � − 1], ρi(c) = cbi

i =
Hros(ρi, aux

bi
i ) and:

ρ�(c) =
�−1∑

i=0

2ix′
i(c) =

�−1∑

i=0

2ibi = y = Hros(ρ�,⊥) .

	

Remark 1. In [FPS20, Sec. 5], Fuchsbauer, Plouviez, and Seurin proposed a vari-
ant of ROS, called modified ROS. The attack above does not apply to modified
ROS.

4 Generalized Attack

We present a combination of Wagner’s subexponential k-list attack and the poly-
nomial time attack from Sect. 3. This combined attack yields a subexponentially
efficient algorithm against ROS which requires fewer dimensions than the attack
in the previous section (i.e., less than λ = �log p�). However, for some practical
cases, the attack significantly outperforms Wagner’s attack in terms of work,
for the same number of dimensions. At a very high level, our attack works as
follows. We set k1 = 2w − 1, k2 = max(0, �λ − (w + 1) · L�), and the dimension
� = k1 + k2, for some integer w and some real number L > 0.

First, we use a generalization of Wagner’s algorithm to find a “small” sum
s = y∗

k2
+· · ·+y∗

� of k1 values y∗
i := −Hros(ρi, auxi), where the polynomials ρi(x)

are chosen to make the second step of the attack work.4 As we describe below,
we can obtain that |s| < 2k2−1 using O(2w+L) hash queries and space O(w2L).
Then, we use the technique from the previous section in order to represent the
sum s as a binary sum of at most k2 terms. Finally, we subtract the k1 −1 terms
y∗

k2
, ..., y∗

k2+k1−1 = y∗
�−1 to extract the term y∗

� . This solves the ROS problem. The
attack runs in overall time O(2w+L), space O(w2L), and requires � = max(2w −
1, �2w − 1 + λ − (w + 1) · L�) dimensions.

We remark that the attack is a generalization of both Wagner’s attack and
our polynomial-time attack from Sect. 3. Wagner’s attack corresponds to the case
where L = λ/(w + 1) and � = 2w − 1. Our polynomial-time attack corresponds
to the case w = 0, L = 0, � = λ.

Examples. For a prime p of λ = 256 bits, a concrete example yields w = 5, L =
15, i.e., � = 32 + 256 − 6 · 15 − 1 = 197 dimensions and time roughly 220 and
space roughly 5 · 215 (elements of Zp). On the other hand, Wagner’s algorithm
for 197 dimensions requires time roughly 2�log 197� · 2

256
�log 197�+1 = 27 · 232 = 239

and space roughly �log 197� · 2
256

�log 197�+1 = 7 · 232.
For a 512 bit modulus, a concrete example yields w = 6, L = 46, i.e., � =

64 + 512 − 7 · 46 − 1 = 253 dimensions and time roughly 253 and space roughly
4 In the actual attack, part of the second step is executed before to allow to choose

these polynomials properly.
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6 · 246. Wagner’s algorithm for 254 dimensions requires time roughly 2�log 254� ·
2

512
�log 255�+1 = 27 · 264 = 271 and space roughly �log 254� · 2

512
�log 255�+1 = 7 · 264.5

4.1 Generalized k-List Algorithm

In this section, we write elements Zp as signed integers in [−p−1
2 , p−1

2 ]. Let w
and L be two positive integers. We define the following integer intervals:

Ii :=
[

−
⌊

p − 1
2(w−i)·L+1

⌋

,

⌊
p − 1

2(w−i)·L+1

⌋]

.

Remark that Zp = Iw.
We now describe the k-list algorithm, which is the core of the Wagner’s

algorithm. We generalize it to match our needs and to output elements that
sum to something in I−1 rather than to exactly 0. (This essentially corresponds
to executing Wagner’s attack as usual, but stopping earlier.) The algorithm is
defined relative to random oracle Hros. It takes as input (w,L,ρ1, . . . ,ρk) and
outputs (aux∗

1, . . . , aux
∗
k) with k = 2w such that:

s := y∗
1 + · · · + y∗

k ∈ I−1 where y∗
i := Hros(ρi, aux

∗
i ) .

The high-level idea of the algorithm is to use 2w+1−1 lists of about 2L values
organized as a tree, as depicted in Fig. 2, and to ensure that lists Lw

i at level i
contains elements from the set Ii.

– Setup/Leaves: k-List fills the lists Lw
i in the leaves with 2L points of the

form Hros(ρi, aux) ∈ Zp = Iw, for aux ∈ [1, 2L].
– Collisions/Join: The algorithm now proceeds to find collisions in levels from

w to 1. At level i, process the 2i−1 pairs of lists (Li
1,L

i
2), . . . , (L2i−1,L2i) into

2i−1 lists Li−1
1 , . . . ,Li−1

2w−1 as follows:

Li−1
j := {a + b : a ∈ Li

2j−1, b ∈ Li
2j , a + b ∈ Ii} .

(Remember that a, b ∈ Zp and a + b is computed modulo p.) Moreover, we
implicitly assume that the algorithm stores back pointers to a and b s.t. they
can efficiently be recovered at a later point.

– Output: Let L0 = L0
1 denote the (only) list created at level 1. The algorithm

finds an element s ∈ L0 such that s ∈ I−1. If no such element exists, it
returns ⊥. Otherwise, it recovers k = 2w strings aux∗

1, . . . , aux
∗
k such that

y∗
i = Hros(ρi, aux

∗
i ) ∈ Lw

i and s = y∗
1 + · · · + y∗

k. It returns (aux∗
1, . . . , aux

∗
k).

We formally write the algorithm k-List in Fig. 3.

5 Indeed, when considering the exact values of the constants in the asymptotics, the

actual complexity of Wagner’s attack is 2�log(�+1)� · 2
p

��+1�+1 .
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Fig. 2. Tree of lists for the k-list algorithm (�� represents the join operation in the
algorithm; the sets in the right handside are the sets to which the elements of the lists
of a given level belong).

Correctness. We do not prove correctness of k-List in this work, since our algo-
rithm’s correctness is implied by the correctness of Wagner’s original algorithm.
More precisely, our algorithm performs identical steps as Wagner’s, but stops
upon finding a sum of values with a suitably small absolute value, i.e., one that
falls into I0. On the other hand, Wagner’s algorithm keeps continuing with more
levels until it finds values who sum to 0. However, we remark that we are not
aware of a formal analysis of Wagner’s algorithm for values in Zp. The work
of Minder and Sinclair [MS09] analyses the case of finding a weighted sum of
vectors of Zp values that sum to zero in each component, but uses a different
technique from the one presented in Wagner’s paper (and used here). Our attack
can be seen as working under the assumption that Wagner’s algorithm works
correctly, i.e., has constant failure probability (see below). We can repeat the
attack until it succeeds, which makes the resulting algorithm expected polyno-
mial time. Formally analyzing the failure probability of Wagner’s algorithm over
Zp remains an important open problem.

Complexity. Overall, the algorithm runs in time O(2w+L) and is conjectured
to succeed with constant probability. (As described [Wag02], this running time
is made possible using an optimized join operation such as Hash Join or Merge
Join). The algorithm uses space O(2w+L), but by evaluating the collisions/joins
in postfix order (in the tree), this can be reduced to O(w2L).
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Fig. 3. The k-list algorithm.

4.2 Combined Attack

We now prove Theorem 2.

Proof. Recall that k1 = 2w −1 and k2 = max(0, �λ−(w+1)·L�). Set � = k1+k2.
For all i ∈ [0, � − 1], define:

ρi := xi ,

and find two strings aux0i and aux1i with different hash values c0i = Hros(ρi, aux
0
i )

and c1i = Hros(ρi, aux
1
i ). Then, let:

x′
i :=

xi − c0i
c1i − c0i

for all i ∈ [0, k2 − 1]. We remark that, if xi = cb
i , then x′

i = b (for b = 0, 1).
Define:

ρ� :=
k2−1∑

i=0

2ix′
i −

⌊
p − 1

2(w+1)·L+1

⌋

−
k1+k2−1∑

i=k2

xi .

Run (auxk2 , . . . , aux�) := k-ListHros(w,L,ρk2
, . . . ,ρ�) (where k = k1+1 = 2w)

and define for i ∈ [k2, �]:
y∗

i := Hros(ρi, aux
∗
i ) ,

and ci := y∗
i for i ∈ [k2, � − 1]. Set:

s :=
�∑

i=k2

y∗
i ∈ I−1 =

[

−
⌊

p − 1
2(w+1)·L+1

⌋

,

⌊
p − 1

2(w+1)·L+1

⌋]

. (2)

Write s + �(p − 1)/2(w+1)·L+1� in binary as:

s +
⌊

p − 1
2(w+1)·L+1

⌋

=
k2−1∑

i=0

2ibi ∈
[

0,

⌊
p − 1

2(w+1)·L

⌋]

, (3)
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Fig. 4. Concrete cost of our combined attack compared to Wagner’s [Wag02] for λ =
256 and � < 256. The color key indicates the different values of w used to estimate the
cost. For � ≥ 256, the attack of Sect. 3 applies.

which is possible since p < 2λ, k2 = λ− (w+1) ·L, hence (p−1)/2(w+1)·L < 2k2 .
Define:

auxi =

{
auxbi

i for i ∈ [0, k2 − 1] ,

aux∗
i for i ∈ [k2, k1 + k2] from k-List.

A outputs: (ρ0, aux0), . . . , (ρ�, aux�) and:

c := (cb0
0 , . . . , c

bk2
k2

, ck2+1, . . . ck2+k1−1) .

We have indeed that:

ρi(c) = ci =

{
cbi
i = Hros(ρi, aux

bi
i ) for i ∈ [0, k2 − 1] ,

y∗
i = Hros(ρi, aux

∗
i ) for i ∈ [k2, k1 + k2 − 1] .

and:

ρ�(c) =
k2−1∑

i=0

2ix′
i(c) −

⌊
p − 1

2(w+1)·L+1

⌋

−
k1+k2−1∑

i=k2

xi(c)

=
k2−1∑

i=0

2ibi −
⌊

p − 1
2(w+1)·L+1

⌋

−
k1+k2−1∑

i=k2

y∗
i

= s −
k1+k2−1∑

i=k2

y∗
i = y∗

k2+k1
= Hros(ρ�, aux

∗
� ) ,

where the third equality comes from Eq. 2 while the fourth equality comes from
Eq. 3. The attack requires k1 + k2 = max{2w − 1, �2w − 1 + λ − (w + 1) · L�}
dimensions, runs in time O(2w+L), and in space O(w2L). 	
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5 Affected Blind Signatures

For simplicity and clarity of exposition, we implement only the attack presented
in Sect. 3. Our attack can be easily adapted for the one presented in Sect. 4.

Throughout the remaining of this manuscript, we will assume the existence of
a group generator algorithm GrGen(1λ) that, given as input the security param-
eter in unary form outputs the description Γ = (G, p,G) of a group G of prime
order p generated by G. Similarly to Sect. 2, we assume that the prime p is of
length λ. We use additive notation for the group law.

5.1 Schnorr Blind Signatures

A Schnorr blind signature [Sch01,FPS20] for a message m ∈ {0, 1}∗ consists of a
pair (R, s) ∈ G × Zp such that sG − cX = R, where c := H(R,m) and X ∈ G is
the verification key. A formal description of the protocol can be found in [FPS20,
Fig. 6], using the same notation employed here.

We construct a probabilistic (expected) polynomial-time adversary A that is
able to produce � + 1 signatures after opening � ≥ �log p� = λ parallel sessions.
A selects a message m� ∈ {0, 1}∗ for which a signature will be forged. It opens �
parallel sessions, querying Sign0() and receiving R = (R0, . . . , R�−1) ∈ G

�. Let
mb

i be a random message and cb
i := H(Ri,m

b
i ) for i ∈ [0, � − 1] and b ∈ {0, 1}.

If c0i = c1i , two different messages m0
i and m1

i are chosen until c0i = c1i . Define
ρ� :=

∑
i 2ix′

i as per Sect. 3, that is:

ρ�(x0, . . . , x�−1) :=
�−1∑

i=0

2i · xi − c0i
c1i − c0i

=
�−1∑

i=0

ρ�,ixi + ρ�,� . (4)

Let R� := ρ�(R) − ρ�,� · X, where ρ�(R) denotes the evaluation of the affine
function ρ� over (R0, . . . R�−1). Define c� := H(R�,m�) =

∑�−1
i=0 2ibi and let

c = (cb0
0 , . . . , c

b�−1
�−1 ). Complete the � opened sessions querying Sign1(i, cbi

i ), for
i ∈ [0, � − 1]. The adversary thus obtains responses s := (s0, . . . , s�−1) ∈ Z

�
p

satisfying:
siG − cbi

i X = Ri, for i ∈ [0, � − 1].

Let s� := ρ�(s). Then (m�, (R�, s�)) is a valid forgery. In fact, by perfect correct-
ness of Schnorr blind signatures, we have:

R� = ρ�(R) − ρ�,�X =
�−1∑

i=0

ρ�,i · Ri + ρ�,� · (G − X)

=
�−1∑

i=0

ρ�,i · (siG − cbi
i X) + ρ�,� · (G − X)

= ρ�(s) · G − ρ�(c) · X

= s�G − c�X,
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where c� = H(R�,m�) = ρ�(c) by Eq. 4. Let mi := mbi
i for i ∈ [0, � − 1]. The

adversary outputs (mi, (Ri, si)) for i ∈ [0, �].

Remark 2. The attack does not apply to the clause blind Schnorr signature
scheme [FPS20, Sec. 5], which relies on the modified ROS problem.

5.2 Okamoto–Schnorr Blind Signatures

An Okamoto–Schnorr blind signature [PS00] for a message m consists of a tuple
(R, s, t) ∈ G×Z

2
p such that sG+ tH − cX = R, where c := H(R,m), and (G,H)

are two nothing-up-my-sleeve generators of G. The attack of the previous section
directly extends to Okamoto–Schnorr signatures: A operates exactly as before
until Eq. 4. Then, the forgery is constructed as:

(
R� := ρ�(R) + ρ�,�H − ρ�,�X, s� := ρ�(s), t� := ρ�(t)

)
.

We stress again that this does not contradict the security analysis of Stern
and Pointcheval [PS00], whose security was reduced to DLOGGrGen,A(λ) for a
polylog(λ) number of queries.

6 Other Constructions Affected

In this section, we overview how the attacks presented in Sects. 3 and 4 apply
to a number of other cryptographic primitives. To simplify exposition, we focus
on adapting the attack of Sect. 3. We note that, in some cases (e.g., multi-
signatures), we break the security claims of the papers, while for other primitives
(e.g., threshold signatures), our attack illustrates the tightness of the security
theorems, which assume either non-concurrent setting, or up to a logarithmic
number of concurrent executions.

6.1 Multi-signatures

A multi-signature scheme allows a group of signers S1, . . . , Sn, each having their
own key pair (pkj , skj), to collaboratively sign a message m. The resulting sig-
nature can be verified given the message and the set of public keys of all signers.

CoSi. CoSi is a multi-signature scheme introduced by Syta et al. [STV+16],
that features a two-round signing protocol. The signers are organized in a tree
structure, where S1 is the root of the tree. A signature for a message m ∈ {0, 1}∗

consists of a pair (c, s) ∈ Z
2
p such that c = H(sG − c · pk,m), where pk =∑n

j=1 pkj ∈ G is the aggregated verification key. A formal description of the
protocol can be found in [DEF+19, Sec. 2.5]; we use the same notation, except
that we employ additive notation xG instead of multiplicative notation gx.
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Attack. We present an attack for a two-node tree where the attacker controls
the root S1. The attack can easily be extended to other settings, similarly
to [DEF+19, Sec. 4.2]. Our attack allows the signer S1 to forge one signature, for
an arbitrary message m� ∈ {0, 1}∗, after performing � ≥ �log p� = λ interactions
with the honest signer S2. Recall that pk = pk1 + pk2 where pki = skiG. The
signing protocol proceeds as follows. First, S1 obtains a commitment t2 = r2G
from S2, and computes t̄ = t1 = r1G+t2 for a random r1. Then, S1 computes the
challenge c = H(t̄,m), and sends (t̄, c) to S2. Next, S2 returns s2 := r2 + c · sk2.
Finally, S1 computes s := s2 + r1 + c · sk1 and outputs the signature (c, s) for
the message m.

The attack proceeds as follows. S1 opens � parallel sessions with � arbitrary
distinct messages m0, . . . ,m�−1 ∈ {0, 1}∗. For each session, S1 gets the com-
mitments ti = riG from S2 at the end of the first round of signing. Now, it
samples two random values ri,0, ri,1 for each i ∈ [0, � − 1], defines t̄0i = ri,0G + ti
and t̄1i = ri,1G + ti, and computes cb

i = H(t̄bi ,mi). (As usual, if c0i = c1i , S1

samples again ri,0 and ri,1 until c0i = c1i .) S1 then defines the polynomial
ρ :=

∑�−1
i=0 2ixi/(c1i − c0i ), computes t� := ρ(t0, . . . , t�−1) and c� := H(t�,m�).

S1 computes d� = c� − ρ(c00, . . . , c
0
�−1) and writes this value in binary as

d� =
∑�−1

i=0 2ibi. It then closes the � sessions by using t̄i = t̄bi
i and ci = cbi

i .
At the last step of the signing sessions, S1 obtains values si = ri + ci · sk2 from
S2, and closes the sessions honestly using ri,bi

. Finally, S1 concludes its forgery
by defining s� := ρ(s) + c� · sk1: the pair (c�, s�) is a valid signature for m�. In
fact:

s�G − c� · pk = (ρ(s) + c� · sk1)G − c� · pk

=
�−1∑

i=0

2isi

c1i − c0i
G − c� · pk2

=
�−1∑

i=0

2i(ri + cbi
i · sk2)

c1i − c0i
G − c� · pk2

=
�−1∑

i=0

2iri

c1i − c0i
G +

(
�−1∑

i=0

2icbi
i

c1i − c0i
− c�

)

· pk2

=
�−1∑

i=0

2iti
c1i − c0i

+

(
�−1∑

i=0

2ibi +
�−1∑

i=0

2ic0i
c1i − c0i

− c�

)

· pk2

=
�−1∑

i=0

2iti
c1i − c0i

+

(
�−1∑

i=0

2ibi + ρ(c00, . . . , c
0
�−1) − c�

)

︸ ︷︷ ︸
=d�−d�=0

·pk2

= ρ(t0, . . . , t�−1) = t� ,

and c� = H(t�,m�) by definition.
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Two-Round MuSig. As in [DEF+19], the above technique (with some minor
modifications) can be applied to the two-round MuSig as initially proposed by
Maxwell et al. [MPSW18a], as the main difference between CoSi and two-round
MuSig is in how the public key is aggregated in order to avoid rogue-key attacks.
Our attack does not apply to the updated MuSig that uses a 3-round signing
algorithm [MPSW18b].

6.2 Threshold Signatures

A (t, n)-threshold signature scheme assumes that the secret signing key is split
among n parties P1, . . . ,Pn in a way that allows any subset of at least t out of
the n parties to produce a valid signature. As long as the adversary corrupts
less than the threshold number of parties, it is not possible to forge signatures
or learn any information about the signing key.

GJKR07. Gennaro, Jarecki, Krawczyk, Rabin proposed a threshold signa-
ture scheme based on Pedersen’s distributed key generation (DKG) protocol
in [GJKR07, Section 5.2]. At a very high level, Pedersen’s DKG protocol allows
to generate a random group element X = χG so that its discrete logarithm χ is
shared both additively and according to Feldman secret sharing [Fel87] scheme,
between a set of “qualified” parties. For the attack we present below, all parties
P1, . . . ,Pn (included the ones that are controlled by the adversary) will remain
qualified.6 We denote by χj the additive share of party Pj . We have χ =

∑n
j=1 χj .

Importantly for the attack, the adversary controlling for example P1, can see all
the group elements χ2G, . . . , χnG and then can choose its value χ1. This is due
to the way the Feldman secret sharing is performed.

In the threshold signature scheme of Gennaro et al. [GJKR07], the parties
execute a distributed key generation procedure to produce a verification key
pk := sk ·G ∈ G, where the secret key sk is additively shared between the parties:
each party Pj has an additive share skj , so that sk =

∑n
j=1 skj . A signature (R, s)

for a message m ∈ {0, 1}∗ is generated as follows. The participants run once again
the distributed key generation protocol to produce a commitment t = rG ∈ G,
where r is additively shared between the parties: each party Pj has a share rj ,
so that r =

∑n
j=1 rj . Then, each party computes a share of the response:

sj = rj + c · skj , where c := H(t,m). (5)

Let s :=
∑n

j=1 sj . Then (c, s) is a valid signature on m. In fact:

sG =
n∑

j=1

rjG + c ·
n∑

j=1

skj · G = t + c · pk, (6)

where c = H(t,m).
6 We do not use the fact that only a threshold t+1 of the parties are required to sign in

our attack. We assume that all the parties come to sign, to simplify the description
of the attack.



On the (in)security of ROS 47

Concurrent Setting Insecurity. Gennaro et al. [GJKR07] proved the security of
the scheme in a standalone sequential setting, where no two instances of the
protocol can be run in parallel. We remark that if an adversary is allowed to
start � ≥ �log p� sessions in parallel, the attack against CoSi in Sect. 6.1 can be
directly adapted to attack this threshold signature scheme for n = 2. The attack
of both schemes use the fact that the adversary P1 (or signer S1 in CoSi) can see
the commitment t2 = r2G of the honest party P2 (or honest signed S2) and only
then choose r1 that defines the commitment t = r1G + t2. The generalization to
any n ≥ 2 is straightforward.

Scope of the Attack. Our attack is an attack against the proposed threshold
signature scheme when instantiated with Pedersen’s DKG, but not an attack
against Perdersen’s DKG itself (i.e., JF-DKG from [GJKR07, Fig. 1]). Further-
more, the attack does not work when Perdersen’s DKG is replaced by the new
DKG protocol from [GJKR07, Fig. 2].

Original Version of FROST. Komlo and Goldberg FROST [KG20a] proposed
an extension of the above threshold signature scheme that was similarly affected
by the above concurrent attack. On 19 July 2020, they updated the signing
algorithm [KG20b] in a way that is no more susceptible to the above issue: each
party now shares (Dj , Ej) and the commitment is computed as R =

∑
j Dj +

hjEj , where hj := H((Dj , Ej , j)j∈[t]). We direct the reader to [KG20b, Fig. 3]
for a more detailed illustration of the problem and the fix.

6.3 Partially Blind Signatures

Partially blind signatures [AO00] are an extension of blind signature schemes
that allow the signer to include some public metadata (e.g., expiration date,
collateral conditions, server name, etc.) in the resulting signature. The original
construction [AO00], as well as schemes inspired from it, such as Anonymous
Credentials Light [BL13] and restrictive partially-blind signatures from bilinear
pairings [CZMS06], might not provide the desired security properties.

Abe–Okamoto. Abe and Okamoto [AO00, Fig. 1] propose a partially blind
signature scheme inspired from Schnorr blind signatures. Given a verification
key X := xG and some public information info that is hashed into the group
Z := H(info), a partially blind signature for the message m ∈ {0, 1}∗ is a tuple
(r, c, s, d) ∈ Zp where c + d = H(rG + cX, sG + dZ, Z, m).

Attack. The security of the above partially blind signature is proved up to a poly-
logarithmic number of parallel open sessions in the security parameter [AO00].
We show that the security claim is tight by showing that there exists a poly-time
attacker against one-more unforgeability in the setting where the adversary can
have � = O(λ) open sessions using the same metadata info. The attack follows
essentially the same strategy of Sect. 5.1. First, the attacker opens � parallel
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sessions and obtains the commitments (Ai, Bi) ∈ G
2 for i ∈ [0, � − 1]. It then

constructs the polynomial ρ� as per Eq. 4. The forged signature for an arbitrary
message m∗ is computed using the challenge:

e� := H(ρ�(A) + ρ�,�X, ρ�(B) + ρ�,�Z, Z, m∗) − ρ�,�

and closing the � sessions as in Sect. 5.1, i.e., by using the challenges ebi
i

where bi is the i-th bit of the canonical representation of e�. Given the sig-
natures (ri, c

bi
i , si, di) for i ∈ [0, � − 1], the attacker can finally create its forgery

(ρ(r),ρ(c),ρ(s),ρ(d)). The forgery is indeed correct because:

ρ(c) + ρ(d) =
∑

i

ρi(cbi
i + di) + ρ�,� + ρ�,�

= ρ(eb0
0 , . . . , eb�−1

�−1 ) + ρ�,�

= H(ρ�(r)G + ρ�(c)X, ρ�(s)G + ρ�(d)Z, Z, m∗) .

Anonymous Credentials Light. Inspired from Abe’s blind signature [Abe01],
Baldimitsi and Lysyanskaya [BL13] developed anonymous credentials light
(ACL). The security proof of their scheme is under standard assumptions in the
sequential settings. The public parameters are a so-called real public key Y = xG
and a tag public key Z = wG (using the paper’s notation). During the signing
protocol, the signer produces two shares Z1, Z2 of Z such that Z1 + Z2 = Z,
and proves either knowledge of Y (referred to as y-side), or of Z1, Z2 (so-called
z-side). The discrete log of Z1, Z2 is never known by the signer, and the z-branch
is inherited by Abe’s blind signature and is necessary for the proof of security.

The essential difference between ACL and Abe’s blind signature is the compu-
tation of Z1: while in Abe’s scheme it is computed invoking the random oracle
over a random string (so that neither the user nor the signer know its dis-
crete logarithm), in ACL it is computed starting from the user’s commitment
C =

∑n
i=0 liHi+rH (where l0, . . . , ln) is the list of attributes) and the user could

know a discrete-log relation across multiple sessions. This difference is fatal in
the concurrent settings.

Attack. The attacker A opens � parallel sessions, all with the same commitment
C, and will provide a one-more forgery for an arbitrary message m∗ on the same
commitment C.

After opening the � concurrent sessions, the attacker proves in zero-knowledge
(as per protocol issuance) that the attributes required are valid, following the
reigistration phase as prescribed in the protocol. Let d0, . . . , d�−1 denote the
randomization key used by the server to re-randomize the commitment C (dis-
played in [BL13, Fig. 1] as rnd) and sent to the user at the end of the registration
phase. Upon receiving Ai ∈ G (the commitment of the y-side) and A′

1,i, A
′
2,i (the

commitment of the z-side), for i ∈ [0, �], the attacker computes the polynomial
ρ� defined in Sect. 3 (using the commitments and the message of the previous
sessions), and computes the commitment forgeries:
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A� := ρ�(A0, . . . , A�−1) + ρ�,�Y

A1,� := ρ�(A
′
1,0, . . . , A

′
1,�−1) + ρ�,�C

A2,� := ρ�(A
′
2,0, . . . , A

′
2,�−1) + ρ�,�(Z − C)

For simplicity, we assume that the re-randomization of Z is not performed by
the attacker, i.e. τ = 1, and that no blinding is performed: the attacker simply
hashes the values, as they are received from the adversary. A sends the challenges
according to the bits of H(Z,C,A�, A1,�, A2,�), similarly to Sect. 5, and receives
the responses (ci, ri, c

′
i, r

′
1,i, r

′
2,i) ∈ Z

5
p, for i ∈ [0, �]. The adversary A computes

the forged responses for the y-side:

c� := ρ(c) =
�−1∑

i=0

ρi,�ci + ρ�,�

c′
� := ρ(c′) =

�−1∑

i=0

ρi,�c
′
i + ρ�,�

r� := ρ(r) =
�−1∑

i=0

ρi,�ri + ρ�,�

r′
1,� := ρ(r′

1 + c′ ◦ d) =
�−1∑

i=0

ρi,�(r′
1,i + c′

idi) + ρ�,�

r′
2,� := ρ(r′

2 − c′ ◦ d) =
�−1∑

i=0

ρi,�(r′
2,i − c′

idi) + ρ�,�

In fact, it holds that:

r�G + c�Y =
�∑

i=0

ρi,�

(
riG + ciY

)
+ ρ�,�(Y + G) = A�

r′
1,�G + c′

�C =
�−1∑

i=0

ρi,�

(
r′
1,iG + c′

i(C + diG)
)

+ ρ�,�(C + G) = A1,�

r′
2,�G + c′

�(Z − C) =
�−1∑

i=0

ρi,�

(
r′
2,iG + c′

i(Z − C − diG)) + ρ�,�(Z − C) = A2,�

And the verification of the re-randomization τ is trivially satisfied.

6.4 Conditional Blind Signatures

Conditional blind signatures (CBS), introduced by Grontas et al. [ZGP17], allow
a user to request a blind signature on messages of their choice, and the server has
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a secret boolean input which determines if it will issue a valid signature or not.
CBS only allow a designated verifier to check the validity of the signature; the
user will not able to distinguish between valid and invalid signatures. Conditional
blind signature have application in e-voting schemes [GPZZ19].

ZGP17. Zacharakis et al. [ZGP17] propose an instantiation of CBS as an exten-
sion of Okamoto–Schnorr blind signatures, where the (designated) verifier holds
a secret verification key k ∈ Zp and publishes K = kG as public information.
During the execution of Okamoto–Schnorr, one of the two responses (s, t) will
be computed in G rather than Zp, using K as a generator. Only the designated
verifier, who knows the discrete log of K can now check the verification equation.

The attack from Sect. 5.2 directly applies also to their scheme, and leads to
a poly-time adversary that with λ queries to the signing oracle for the same bit
b = 1 can produce one-more forgery with overwhelming probability. This attack
does not invalidate the security claims of [ZGP17], which are argued only for a
poly-logarithmic number of parallel open sessions.

6.5 Other Schemes

The following papers prove rely on the hardness of the ROS problem for their
security proofs, and henceforth may not provide the expected security guaran-
tees: blind anonymous group signatures [CFLW04]; blind identity-based sign-
cryption [YW05]; blind signature schemes from bilinear pairings [CHYC05].

7 Conclusions

Our work provides a polynomial attack against ROS�(λ) when � > log p, and a
sub-exponential attack for � < log p. This impacts the one-more unforgeability
property of Schnorr and Okamoto–Schnorr blind signatures, plus a number of
cryptographic schemes derived from them. Our attacks run in polynomial time
only in the concurrent setting, and only for � > log p parallel signing sessions.

Concretely, the cost of the attack and the number of sessions required
are rather small: for today’s security parameters, the attack could be already
mounted with � = 9 parallel open sessions. As already pointed out by [FPS20],
even just � = 16 open sessions could lead to a forgery in time O(255). For � = 128,
our attack of Sect. 4 leads to a forgery in time O(232). For � = 256, our attack
of Sect. 3 produces a forgery in a matter of seconds on commodity hardware.
Although 256 parallel signing sessions might seem at first unrealistic, modern
large-scale web servers must handle more than 10 million concurrent sessions7.
Given our attack, the main takeaway of our work is that blind Schnorr signatures
are unsuitable for wide-scale deployments.

The easiest countermeasure to our attack could be to allow only for sequential
signing sessions, as Schnorr blind signatures are unforgeable in the algebraic

7 For further information, read the C10K problem (’99) and the C10M problem (’11).
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group model for polynomially many sessions [KLRX]. Another countermeasure
to our attack could be to employ (much) larger security parameters, require
the signer to enforce strong ratio limits, and perform frequent key rotations,
accepting the tradeoffs given by our attacks. Finally, Fuchsbauer et al. [FPS20]
recently introduced a variant of blind Schnorr signatures (the clause version)
which is unaffected by our attack. Unfortunately, it relies on the conjectured
hardness of the so-called modified ROS problem, which is still relatively new and
has not been subject to any significant cryptanalysis.

To conclude, other blind signature schemes are to this day considered secure
and should be considered as alternatives: blind RSA [Cha82], blind BLS [Bol03],
and Abe’s blind signature scheme [Abe01,KLRX].
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Gaëtan Leurent(B) and Clara Pernot

Inria, Paris, France
{gaetan.leurent,clara.pernot}@inria.fr

Abstract. In this paper we present a new representation of the AES key
schedule, with some implications to the security of AES-based schemes.
In particular, we show that the AES-128 key schedule can be split into
four independent parallel computations operating on 32 bits chunks,
up to linear transformation. Surprisingly, this property has not been
described in the literature after more than 20 years of analysis of AES.
We show two consequences of our new representation, improving previ-
ous cryptanalysis results of AES-based schemes.

First, we observe that iterating an odd number of key schedule
rounds results in a function with short cycles. This explains an obser-
vation of Khairallah on mixFeed, a second-round candidate in the NIST
lightweight competition. Our analysis actually shows that his forgery
attack on mixFeed succeeds with probability 0.44 (with data complex-
ity 220GB), breaking the scheme in practice. The same observation also
leads to a novel attack on ALE, another AES-based AEAD scheme.

Our new representation also gives efficient ways to combine informa-
tion from the first subkeys and information from the last subkeys, in
order to reconstruct the corresponding master keys. In particular we
improve previous impossible differential attacks against AES-128.

Keywords: AES · Key schedule · mixFeed · ALE · Impossible
differential attack

1 Introduction

The AES [1,17] is the most widely used block cipher today, designed by Daemen
and Rijmen in 1999 and selected for standardization by NIST. Like all symmetric
cryptography primitives, the security of the AES can only be evaluated with
cryptanalysis, and there is a constant effort to study its resistance again old
and new attacks, and to evaluate its security margin. There are three versions
of AES, with different key sizes, and different number of rounds: AES-128 with
10 rounds, AES-192 with 12 rounds, and AES-256 with 14 rounds. After twenty
years of cryptanalysis, many different attacks have been applied to AES, and
we have a strong confidence in its security: the best attacks against AES-128
in the single-key setting reach only 7 rounds out of 10. The best attacks known
so far are either impossible differential attacks (following a line of work starting
with [2]) or meet-in-the-middle attacks (with a line of work starting from [18]),
as listed in Table 2.
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Table 1. Comparison of attacks against ALE.

Attack Enc. Verif. Time Ref.

Existential Forgery Known Plaintext 2110.4 2102 2110.4 [34]

Existential Forgery Known Plaintext 2103 2103 2104 [30]

Existential Forgery Known Plaintext 1 2120 2120 [30]

State Recovery, Almost Univ. Forgery Known Plaintext 1 2121 2121 [30]

State Recovery, Almost Univ. Forgery Chosen Plaintext 257.3 0 2104.4 New

Table 2. Best single-key attacks against 7-round AES-128.

Attack Data Time Mem. Ref. Note

Meet-in-the-middle 297 299 298 [19]

2105 2105 290 [19]

2105 2105 281 [9]

2113 2113 274 [9]

Impossible differential 2113 2113 274 [13] Using 4 out. diff. and state-test

2105.1 2113 274.1 [13]a Using 4 out. diff

2106.1 2112.1 273.1 Variant of [13] using 1 out. diff.

2104.9 2110.9 271.9 New Using 1 out. diff.
aThe time complexity is incorrectly given as 2106.88 in [13].

1.1 Our Results

The key schedule is arguably the weakest part of the AES, and it is well known
to cause issues in the related-key setting [5–7]. In this paper, we focus on the
key schedule of AES, and we show a surprising alternative representation, where
the key schedule is split into several independent chunks, and the actual subkeys
are just linear combinations of the chunks.

Application to mixFeed and ALE. This representation is motivated by an obser-
vation made by Khairallah [29] on the AEAD scheme mixFeed: when the 11-
round AES-128 key schedule is iterated there are apparently many short cycles
of length roughly 234. Our representation explains this observation, and proves
that the forgery attack of Khairallah against mixFeed actually succeeds with
a very high probability. It only requires the encryption of one known message
of length at least 233.7 blocks, and generates a forgery with probability 0.44,
making it a practical break of the scheme.

We also apply the same observation to ALE, another AES-based scheme that
iterates the AES key schedule. We obtain a novel attack against ALE, with a
much lower data complexity than previous attacks, but we need chosen plaintexts
rather than known plaintexts (see Table 1).

Key recovery attack against AES-128. We also improve key recovery attacks
against AES-128 based on impossible differential cryptanalysis. This type of
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attacks targets bytes of the first subkey and of the last subkey, and excludes
some values that are shown impossible. Then, the attacker must iterate over
the remaining candidates, and reconstruct the corresponding master keys. Using
our new representation of the key schedule, we make the reconstruction of the
master key more efficient. Therefore we can start from a smaller data set: we
identify fewer impossible keys, but we process the larger number of key candi-
dates without making this step the bottleneck.

While the improvement is quite modest (see Table 2), it is notable that we
improve this attack in a non-negligible way, because cryptanalysis of AES has
achieved a high level of technicality, and attacks are already thoroughly opti-
mized. In particular, we obtain the best attack so far when the amount of mem-
ory is limited (e.g. below 275).

1.2 Organisation of the Paper

We start with a description of the AES-128 key schedule and describe our alterna-
tive representation in Sect. 2, before presenting applications to mixFeed (Sect. 3),
ALE (Sect. 4) and impossible differential attacks against AES-128 (Sect. 5). We
then describe an alternative representation of the AES-192 and AES-256 key
schedules in Sect. 6, and some properties of the AES key schedules that might
be useful in future works in Sect. 7.

2 A New Representation of the AES-128 Key Schedule

In AES-128, the key schedule is an iterative process to derive 11 subkeys from
one master key. To start with, the 128 bits of the master key are divided into 4
words of 32 bits each: wi for 0 ≤ i ≤ 3. The following notations are used within
the algorithm:

RotWord performs a cyclic permutation of one byte to the left.
SubWord applies the AES Sbox to each of the 4 bytes of a word.
RCon(i) is a round constant defined as [xi−1, 0, 0, 0] in the field F28 described

in [1]. For simplicity, we denote xi−1 as ci.

In order to construct wi for i ≥ 4, one applies the following steps:

– if i ≡ 0 mod 4, wi = SubWord(RotWord(wi−1)) ⊕ RCon(i/4) ⊕ wi−4.
– else, wi = wi−1 ⊕ wi−4.

The subkey at round r is the concatenation of the words w4r to w4r+3. We can
also express the key schedule at the byte level, using kr

i with 0 ≤ i < 16 to denote
byte i of the round-r subkey (we use kr

〈i,j,...〉 as a shorthand for kr
i , k

r
j , . . .). The

subkey is typically represented as a 4 × 4 matrix with the AES byte ordering,
with wi = k

i/4
4(i mod 4)‖k

i/4
4(i mod 4)+1‖k

i/4
4(i mod 4)+2‖k

i/4
4(i mod 4)+3:

⎡
⎢⎢⎣

kr
0 kr

4 kr
8 kr

12

kr
1 kr

5 kr
9 kr

13

kr
2 kr

6 kr
10 kr

14

kr
3 kr

7 kr
11 kr

15

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣w4r w4r+1 w4r+2 w4r+3

⎤
⎥⎥⎦
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The key schedule can be written as follows, with k the key schedule state, k′
i the

state after one round of key schedule, and S the AES Sbox (see Fig. 1 and 3):

k′
0 = k0 ⊕ S(k13) ⊕ ci k′

8 = k8 ⊕ k4 ⊕ k0 ⊕ S(k13) ⊕ ci

k′
1 = k1 ⊕ S(k14) k′

9 = k9 ⊕ k5 ⊕ k1 ⊕ S(k14)
k′
2 = k2 ⊕ S(k15) k′

10 = k10 ⊕ k6 ⊕ k2 ⊕ S(k15)
k′
3 = k3 ⊕ S(k12) k′

11 = k11 ⊕ k7 ⊕ k3 ⊕ S(k12)
k′
4 = k4 ⊕ k0 ⊕ S(k13) ⊕ ci k′

12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k13) ⊕ ci

k′
5 = k5 ⊕ k1 ⊕ S(k14) k′

13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k14)
k′
6 = k6 ⊕ k2 ⊕ S(k15) k′

14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k15)
k′
7 = k7 ⊕ k3 ⊕ S(k12) k′

15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k12)

Invariant subspaces. Recently, several lightweight block ciphers have been
analyzed using invariant subspace attacks. This type of attack was first proposed
on PRINTcipher by Leander et al. [31]; the basic idea is to identify a linear
subspace V and an offset u such that the round function F of a cipher satisfies
F (u + V ) = F (u) + V . At Eurocrypt 2015, Leander, Minaud and Rønjom [32]
introduced an algorithm in order to detect such invariant subspaces. By applying
this algorithm to four rounds of the AES-128 key schedule, we find invariant
subspaces of dimension four over F28 , and this implies a decomposition of the
key schedule.

First, let’s recall the generic algorithm for a permutation F : F
n
2 → F

n
2 :

1. Guess an offset u ∈ F
n
2 and a one-dimensional subspace V0.

2. Compute Vi+1 = span{(F (u + Vi) − F (u)) ∪ Vi}.
3. If the dimension of Vi+1 equals the dimension of Vi, we found an invariant

subspace: F (u + V ) = F (u) + V .
4. Else, we go on step 2.

In the case of the AES-128 key schedule, we use subspaces of F
16
28 over the

field F28 rather than over F2. If we apply this algorithm with the permutation
F corresponding to 4 rounds of key schedule, with any key state u, and with V0

the vector space generated by one of the first four bytes, we obtain 4 invariant
affine subspaces whose linear parts are:

E0 = {(a, b, c, d, 0, b, 0, d, a, 0, 0, d, 0, 0, 0, d) for a, b, c, d ∈ F28}
E1 = {(a, b, c, d, a, 0, c, 0, 0, 0, c, d, 0, 0, c, 0) for a, b, c, d ∈ F28}
E2 = {(a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0) for a, b, c, d ∈ F28}
E3 = {(a, b, c, d, a, 0, c, 0, a, b, 0, 0, a, 0, 0, 0) for a, b, c, d ∈ F28}

When we consider a single round R of the key schedule, the subspaces are not
invariant, but are images of each other. We have the following relations, with u0

an element in (F28)16 and ui = Ri(u0), for (1 ≤ i < 5):

R(E0 + u0) = E1 + u1, R(E1 + u1) = E2 + u2,

R(E2 + u2) = E3 + u3, R(E3 + u3) = E0 + u4
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Fig. 1. AES key schedule.
(figure adapted from [28])

Fig. 2. Evolution of a difference located on the first
byte after several rounds of key schedule.

In other words, if the difference pattern between two states is in Ei, then after
r rounds of key schedule, the difference pattern will be in E(i+r)%4.

This can be verified by tracking the differences in the key schedule, start-
ing from a difference (a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), as shown in Fig. 2.
After four rounds we reach a difference (a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0), with
differential transitions a → d, d → c, and c → b through the Sbox. Next, we
obtain a difference (a′, b, c, d, a′, 0, c, 0, a′, b, 0, 0, a′, 0, 0, 0), after an Sbox tran-
sition b → a ⊕ a′. Surprisingly, the dimension of the difference state does not
increase, because there is a single active Sbox in each round, and it affects a
difference that is already independent of the rest of the state. Therefore we have
the four transitions given above, and the spaces are indeed invariant.

New representation from invariant subspaces. We actually have a much
stronger property than just invariant spaces: the full space is the direct sum of
those four vector spaces, with parallel invariant subspaces for any offset u:

(F28)16 = E0 ⊕ E1 ⊕ E2 ⊕ E3

∀u, ∀i, F (u ⊕ Ei) = F (u) ⊕ Ei.

This implies that we can split the internal state according to those vector spaces.
Indeed, there exists unique linear projections πi : (F28)16 → Ei for 0 ≤ i < 4
such that ∀x ∈ Ei, πi(x) = x, and πi(Ej) = 0 for i �= j. In particular, we have
∀x, x = π0(x) ⊕ π1(x) ⊕ π2(x) ⊕ π3(x). This implies:

F (x) = F
(
π0(x) ⊕ π1(x) ⊕ π2(x) ⊕ π3(x)

)

∈ F
(
π0(x) ⊕ π1(x) ⊕ π2(x)

) ⊕ E3

∈ F
(
π0(x) ⊕ π1(x)

) ⊕ E3 ⊕ E2

∈ F
(
π0(x)

) ⊕ E3 ⊕ E2 ⊕ E1
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Therefore π0(F (x)) = π0

(
F (π0(x))

)
. Similarly, πi(F (x)) = πi

(
F (πi(x))

)
, and

finally we can split the permutation in four independent 32-bit computations:

F (x) = π0

(
F (π0(x))

) ⊕ π1

(
F (π1(x))

) ⊕ π2

(
F (π2(x))

) ⊕ π3

(
F (π3(x))

)
.

To obtain a representation that makes the 4 subspaces appear clearly, we perform
a change of basis. Let {e0, e1, . . . , e15} be our new basis of (F28)16 defined as
follows:

Base of E0

⎧
⎪⎪⎨
⎪⎪⎩

e0 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)
e1 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e3 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Base of E1

⎧
⎪⎪⎨
⎪⎪⎩

e4 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0)
e5 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e6 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e7 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Base of E2

⎧
⎪⎪⎨
⎪⎪⎩

e8 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)
e9 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e10 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
e11 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

Base of E3

⎧
⎪⎪⎨
⎪⎪⎩

e12 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
e13 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e14 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e15 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

Let s0, s1, . . . , s15 be the coordinates in the new basis. They can be obtained
by multiplying the original coordinates (k0, . . . , k15) with the matrix A = C−1

0 ,
where the columns of the transition matrix C0 are the coordinates of the vectors
e0, e1, . . . , e15 expressed in the old basis (canonical basis):

C0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Therefore, we use:

s0 = k15 s1 = k14 ⊕ k10 ⊕ k6 ⊕ k2 s2 = k13 ⊕ k5 s3 = k12 ⊕ k8

s4 = k14 s5 = k13 ⊕ k9 ⊕ k5 ⊕ k1 s6 = k12 ⊕ k4 s7 = k15 ⊕ k11

s8 = k13 s9 = k12 ⊕ k8 ⊕ k4 ⊕ k0 s10 = k15 ⊕ k7 s11 = k14 ⊕ k10

s12 = k12 s13 = k15 ⊕ k11 ⊕ k7 ⊕ k3 s14 = k14 ⊕ k6 s15 = k13 ⊕ k9

(1)

After defining s′ with the same transformation from k′, we can verify that:

s′
0 = k′

15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k12) = s13 ⊕ S(s12)
s′
1 = k′

14 ⊕ k′
10 ⊕ k′

6 ⊕ k′
2 = k14 ⊕ k6 = s14

s′
2 = k′

13 ⊕ k′
5 = k13 ⊕ k9 = s15

s′
3 = k′

12 ⊕ k′
8 = k12 = s12

s′
4 = k′

14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k15) = s1 ⊕ S(s0)
s′
5 = k′

13 ⊕ k′
9 ⊕ k′

5 ⊕ k′
1 = k13 ⊕ k5 = s2

s′
6 = k′

12 ⊕ k′
4 = k12 ⊕ k8 = s3

s′
7 = k′

15 ⊕ k′
11 = k15 = s0

s′
8 = k′

13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k14) = s5 ⊕ S(s4)
s′
9 = k′

12 ⊕ k′
8 ⊕ k′

4 ⊕ k′
0 = k12 ⊕ k4 = s6

s′
10 = k′

15 ⊕ k′
7 = k15 ⊕ k11 = s7

s′
11 = k′

14 ⊕ k′
10 = k14 = s4

s′
12 = k′

12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k13) ⊕ ci = s9 ⊕ S(s8) ⊕ ci

s′
13 = k′

15 ⊕ k′
11 ⊕ k′

7 ⊕ k′
3 = k15 ⊕ k7 = s10

s′
14 = k′

14 ⊕ k′
6 = k14 ⊕ k10 = s11

s′
15 = k′

13 ⊕ k′
9 = k13 = s8

(2)

This is represented by Fig. 4. In the rest of this paper we use the notation kr
i

to denote byte i of the round-r subkey, and sr
i to denote bytes of the alternative

representation at round r, where the relations between kr
i and sr

i follow (1).
To further simplify the description, we write the output as

(s′
4, s

′
5, s

′
6, s

′
7, s′

8, s
′
9, s

′
10, s

′
11, s′

12, s
′
13, s

′
14, s

′
15, s′

0, s
′
1, s

′
2, s

′
3).

This corresponds to “untwisting” the rotation of the 4-byte blocks, so that each
block of 4 output bytes depends on the same 4 input bytes. This results in our
alternate representation of the AES-128 key schedule:

1. We first apply the linear transformation A to the state, corresponding to the
change of variable above.

2. Then the rounds of the key schedule are seen as the concatenation of 4 func-
tions each acting on 32-bit words (4 bytes), as seen in Fig. 5.

3. In order to extract the subkey of round r, another linear transformation
Cr mod 4 is applied to the state, depending of the round number modulo 4. Ci

is defined as Ci = A−1 × SRi, with SR the matrix corresponding to rotation
of 4 bytes to the right (see below). In particular C0 = A−1.
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Fig. 3. One round of the AES-128 key schedule.

Fig. 4. One round of the AES-128 key schedule (alternative representation).
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this new representation, there are clearly 4 independent chunks each acting
on 4 bytes, and the subkeys are reconstructed with linear combinations of the
alternative key schedule state. This representation also preserves the symmetry
of the key schedule: the original key schedule is invariant by rotation of the
columns (up to constants), and this corresponds to a rotation of four bytes in
the new representation.

Fig. 5. r rounds of the key schedule in the new representation. Bi is similar to
B but the round constant ci is XORed to the output of the Sbox.
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Fig. 6. Simplified scheme of mixFeed encryption.

Fig. 7. Function Feed with a full message block.

3 Application to mixFeed

The AEAD scheme mixFeed [14] is a second-round candidate in the NIST
Lightweight Standardization Process, submitted by Chakraborty and Nandi, and
based on the AES block cipher. It is a rate-1 feedback-based mode inspired by
COFB. For each message block, a Feed function is used to compute the cipher-
text and the block cipher input from the previous internal state, and the internal
state is replaced by the block cipher output. In COFB, there is a need for an
extra state variable, to make each Feed function different. In order to reduce
the state size, mixFeed instead makes each block cipher call different, applying a
permutation P to the key between each block. For optimal efficiency, the permu-
tation P just corresponds to eleven round of the AES key schedule, so that the
subkeys for all the AES calls just correspond to running the AES key schedule
indefinitely.

In [29], Khairallah observed that some keys generate short cycles when iter-
ating the P permutation, and he built a forgery attack for keys in short cycles. In
this work, we show that the new representation of the key schedule explains the
existence of these short cycles, and we characterize the keys belonging to such
cycles. This shows that the permutation P cannot be considered as a random
permutation.

3.1 Description of mixFeed

For simplicity, we only describe a simplified mixFeed without associated data;
the full description of mixFeed can be found in [14].

Notations: We use M and C to denote the plaintext and ciphertext. For the
sake of simplicity, we assume that M is made of m 128-bit blocks.
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The following functions are used in mixFeed:

– E: a modified version of AES-128 including MixColumns in the last round;
– P : the permutation corresponding to eleven rounds of AES-128 key schedule;
– Feed: the feedback function defined as (see Fig. 7):

Feed(Y,M) = (X,C)
= (�M‖�M ⊕ Y �,M ⊕ Y ),

where �D represent the 64 most significant bits of D, and �D� the 64 least
significant bits.

The computations are as follow (see Fig. 6):

Initialization of the state. An initial value IV = Y0 and a internal key Z are
computed from the nonce N and the key K.

Encryption and authentication. For i from 1 to m, the Feed function is applied
to the current state Yi−1 and message block Mi. Feed returns the ciphertext
block Ci, and a new state Xi which is then encrypted under the key P i−1(Z)
using E to obtain Yi. At the end of this step, a finalization function computes
the tag from the final state and the internal key Pm−1(Z), we denote as F the
composition of the cipher call of last round and the finalization function.

3.2 Short Cycles of P

In [29], Khairallah found 20 keys belonging to small cycles of P , and observed
that all of them have the same cycle length1: 14018661024. He deduced a forgery
attack, assuming that the subkey falls in one of those cycles, but did not further
analyse the probability of having such a subkey. Later the designers of mixFeed
published a security proof for the scheme [15], under the assumption that the
number of keys in a short cycle is sufficiently small. More precisely, they wrote:

Assumption 1 ([15]). For any K ∈ {0, 1}n chosen uniformly at random, prob-
ability that K has a period at most � is at most �/2n/2.

The 20 keys identified by Khairallah do not contradict this assumption, but
if there are many such keys the assumption does not hold, and mixFeed can
be broken by a forgery attack. We now provide a theoretical explanation of the
observation of Khairallah, and a full characterization of the cycles of P . We
find that a random key is in a cycle of length smaller than 234 with probability
0.44; this contradicts the assumption made in [15], and allows a practical forgery
attack.

1 Khairallah actually reported the length as 1133759136, probably because of a 32-bit
overflow.
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Analysis of the structure of P. Using our new representation, the 11-round key
schedule P consists of:

– The linear transformation A
– 4 parallel 32-bit functions that we denote f1‖f2‖f3‖f4, with

f1 = B11 ◦ B ◦ B ◦ B ◦ B7 ◦ B ◦ B ◦ B ◦ B3 ◦ B ◦ B

f2 = B ◦ B10 ◦ B ◦ B ◦ B ◦ B6 ◦ B ◦ B ◦ B ◦ B2 ◦ B

f3 = B ◦ B ◦ B9 ◦ B ◦ B ◦ B ◦ B5 ◦ B ◦ B ◦ B ◦ B1

f4 = B ◦ B ◦ B ◦ B8 ◦ B ◦ B ◦ B ◦ B4 ◦ B ◦ B ◦ B

(the functions differ only by the round constants)
– The linear transformation C3 = A−1 × SR−1

To simplify the analysis, we consider the cycle structure of P̃ = A ◦ P ◦ A−1,
which is the same as the cycle structure of P :

P̃ : (a, b, c, d) �→ (f2(b), f3(c), f4(d), f1(a))

To further simplify the analysis, we consider the cycle structure of P̃ 4, which is
closely related to the cycle structure of P̃ . A cycle of P̃ 4 of length � corresponds
to a cycle of P̃ , of length �, 2� or 4�. Conversely a cycle of P̃ of length � cor-
responds to one or several cycles of P̃ 4, of length �, �/2 or �/4 (depending on
the divisibility of �). Analyzing P̃ 4 is easier because it can be decomposed into
4 parallel functions, cancelling the left rotation induced by SR−1:

P̃ 4 : (a, b, c, d) �→ (φ1(a), φ2(b), φ3(c), φ4(d))
φ1(a) = f2 ◦ f3 ◦ f4 ◦ f1(a)
φ2(b) = f3 ◦ f4 ◦ f1 ◦ f2(b)
φ3(c) = f4 ◦ f1 ◦ f2 ◦ f3(c)
φ4(d) = f1 ◦ f2 ◦ f3 ◦ f4(d)

If (a, b, c, d) is in a cycle of length � of P̃ 4, we have P̃ 4�(a, b, c, d) = (a, b, c, d),
that is to say:

φ�
1(a) = a φ�

2(b) = b φ�
3(c) = c φ�

4(d) = d

In particular, a, b, c and d must be in cycles of φ1, φ2, φ3, φ4 (respectively) of
length dividing �. Conversely, if a, b, c, d are in small cycles of the corresponding
φi, then (a, b, c, d) is in a cycle of P̃ 4 of length the lowest common multiple of
the small cycle lengths.

Moreover, due to the structure of the φi functions, all of them have the same
cycle structure. This implies that P̃ has a large number of small cycles. Indeed, if
we consider a cycle of φi of length �, and elements a, b, c, d in the corresponding
cycles, (a, b, c, d) is in a cycle of P 4 of length �. There are �4 choices of a, b, c, d,
which correspond to �3 different cycles of P . If we assume that φi behaves like
a random 32-bit permutation, we expect that the largest cycle has length about
231, which gives around 293 cycles of P̃ 4 of length ≈ 231, and around 293 cycles
of P̃ of length ≈ 233.
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Cycle analysis of 11-round AES-128 key schedule. In order to identify the small
cycles of the permutation P , we start by analyzing the cycle structure of the
32-bit function φ1 = f2 ◦ f3 ◦ f4 ◦ f1: it can be decomposed into cycles of lengths
3504665256, 255703222, 219107352, 174977807, 99678312, 13792740, 8820469,
7619847, 5442633, 4214934, 459548, 444656, 14977, 14559, 5165, 4347, 1091,
317, 27, 6, 5 (3 cycles), 4 (2 cycles), 2 (3 cycles), and 1 (2 fixed points). In
particular, the largest cycle has length � = 3504665256. Consequently, with
probability (3504665256 × 2−32)4 ≈ 0.44, we have a, b, c and d in a cycle of
length �, resulting in a cycle of length � for P̃ 4, and a cycle of length at most
4� = 14018661024 for P̃ and P . This explains the observation of Khairallah [29],
and clearly contradicts the assumption of [15].

More generally, when a, b, c, d belong to a cycle of length �i, the corresponding
cycle for P̃ 4 is of length � = lcm(�1, �2, �3, �4), and we can compute the associated
probability. In most cases, a cycle of length � of P̃ 4 corresponds to a cycle of P̃ of
length 4�. However, the cycle of P̃ is of length � when P̃ �(a, b, c, d) = (a, b, c, d),
and of length 2� when P̃ 2�(a, b, c, d) = (a, b, c, d) (this can only be the case with
odd �, by definition of �). This is unlikely for short cycles, but as an example we
can construct a fixed-point for P̃ and P from a fixed-point of φ1:

– a = 7e be d1 92
– b = de d4 b7 cc = f3 ◦ f4 ◦ f1(a)
– c = 9f 95 88 26 = f4 ◦ f1(a)
– d = d4 b9 79 91 = f1(a)

Since f2 ◦ f3 ◦ f4 ◦ f1(a) = a, we have P̃ (a, b, c, d) = (f2(b), f3(c), f4(d), f1(a)) =
(a, b, c, d). Since P̃ = A ◦ P ◦ A−1, the corresponding key in the original repre-
sentation is:

A−1 ×

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ =

(
64 0b 3f 83 63 4e a7 f6 46 0e f8 b2 d4 9f de 7e

)�

This results in a fixed point of P .
We can generalize this construction for all odd cycle lengths �. We choose

w an element of a cycle of length �, and then we can build an element which
belongs to a cycle of length � for the permutation P :

– if � = 1 mod 4:

a = w

b = f3 ◦ f4 ◦ f1 ◦ ... ◦ f1(w), with 3� terms fi

c = f4 ◦ f1 ◦ f2 ◦ ... ◦ f1(w), with 2� terms fi

d = f1 ◦ f2 ◦ f3 ◦ ... ◦ f1(w), with � terms fi
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Fig. 8. Forgery attack when Z belongs to a cycle of length 2.

– if � = 3 mod 4:

a = w

b = f3 ◦ f4 ◦ f1 ◦ ... ◦ f1(w), with � terms fi

c = f4 ◦ f1 ◦ f2 ◦ ... ◦ f1(w), with 2� terms fi

d = f1 ◦ f2 ◦ f3 ◦ ... ◦ f1(w), with 3� terms fi

3.3 Forgery Attack Against mixFeed

Khairallah [29] proposed a forgery attack assuming that Z belongs to a cycle of
length �, considering a message M made of m blocks, with m > � (Fig. 8):

1. Encrypt the message M to obtain the ciphertext C and tag T .
2. Compute Y0 using M1 and C1 and X�+1 using M�+1 and C�+1.
3. Compute M̄ and C̄ such that (X�+1, C̄) = Feed(Y0, M̄).
4. The T tag will also authenticate the new ciphertext C ′ = C̄‖C�+2‖ · · · ‖Cm.

The computations required for the forge are negligible with only a few XORs
to invert the Feed function. Therefore the complexity of the attack is just the
encryption of a message with at least (�+1) blocks, with � the length of the cycle.
As explained above, the probability of success is approximately 0.44, using � =
14018661024. When the forgery fails, we can repeat the attack with a different
nonce, because the internal key Z depends on the nonce; for each master key K,
the attack works on 44% of the nonces.

We have verified this attack using the reference implementation provided by
the designers. We take a message of � + 1 = 14018661025 blocks of 16 bytes
(220 Gbytes2), choose a random key and nonce, and encrypt the message with
mixFeed. We modify the ciphertext according to the previous explanation, and
we check if the new ciphertext is accepted. We obtained 41% of success over 100
attempts. This result is close to the expected 44% success rate, and confirms our
analysis.

2 Note that there is no need to store the plaintext or ciphertext in memory if we have
access to an online implementation of mixFeed.
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4 Application to ALE

ALE [8] is an earlier authenticated encryption scheme based on the AES round
function, strongly inspired by LEX [4] (for the encryption part) and Pelican-
MAC [16] (for the authentication part). Attacks have already been presented
against ALE [30,34] but the new representation of the key schedule gives new
types of attacks, based on previous attacks against LEX [11,20].

Fig. 9. Authenticated encryption with ALE (simplified).

4.1 Description of ALE

For the sake of simplicity, we will consider ALE without associated data, and we
only consider blocks of 16 bytes for the plaintext (to ignore the padding). ALE
maintains a state composed of an internal state and an internal key, and operates
with 3 steps (cf Fig. 9). As for mixFeed, the internal key is updated with iterative
applications of a permutation P corresponding to AES key schedule rounds. In
the case of ALE, P corresponds to 5 rounds of key schedule rather than 11, but
we have again many short cycles because 5 is also an odd number.

Initialization. The state is initialized from the key K and a nonce N , using a
session key Z̃ = EK(N). The internal state is initialized to IV = E

˜Z(EK(0)),
and the internal key is initialized to P10(Z), where P10 correspond to 11 rounds
of AES key schedule.

Message processing phase. For each block of message, the internal state is
encrypted with 4-round AES, and the internal key is updated by five rounds
of AES key schedule. During the encryption, four bytes are leaked in each AES
round according to the LEX specification (bytes 0, 2, 8, 10 for odd rounds, and
bytes 4, 6, 12 and 14 for even rounds), and used as keystream to encrypt the
message. Then the message block is xored to the current internal state, following
the Pelican-MAC construction.
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Finalization. Finally, the internal state is encrypted with the full AES using the
master key K to generate the tag T .

Rekeying. The designers of ALE require that the master key is changed after
processing 248 bits (i.e. 241 blocks).

Previous results. ALE was designed to thwart attacks against LEX [11,20] that
use a pair of partially-colliding internal states to recover the key. Indeed, each
AES call uses a different key, which prevents those attacks. Other attacks have
been proposed against LEX, based on differential trails between two message
injections [30,34]. We compare the previous attacks in Table 1. To make the
results comparable, we assume that attacks with a low success rate are repeated
until they succeed. For attacks using more than 241 blocks of data, the master
key will be rotated.

4.2 Internal Key Recovery

We describe a new attack against ALE, based on previous analysis of LEX.
The key update of ALE was supposed to avoid these attacks, but since the
update function has small cycles, there is a large probability that the key state
is repeated, which makes the attack possible.

We analyze cycles of P in the same way as for mixFeed: four iterations of the
5-round key schedule are equivalent to the application in parallel of four 32-bit
functions. The study of one of these functions gives us information about the
cycle structure of the permutation P . The 32-bit function has a cycle of length
� = 4010800805 ≈ 231.9; therefore the permutation P admits many cycles of
length 4 × � ≈ 233.9 which are reached with probability (� × 2−32)4 ≈ 0.76.

Previous attacks against LEX [11,12,20] are based on the search for a pair of
internal states that partially collides, with two identical columns. This pattern
can occur in odd or even round: we use columns 0 and 2 for odd rounds, and
columns 1 and 3 for even rounds. The partial collision occurs with probability
2−64, and 32 bits of the colliding state can be directly observed, due to the leak
extractions. A candidate pair can be tested with complexity 264 [12, Section 7.1],
using the leak extraction of rounds before and after the collision; if it actually
corresponds to a partial collision this reveals the internal state and key.

In the case of ALE, we perform a chosen plaintext attack: we choose a message
M of 241 blocks (the maximum length allowed by the ALE specification) which
admits cycles of length 4 × �. With probability 0.76, the key cycles after 4 × � ≈
233.9 iterations of the permutation P . When this happens, we can split the
message into 233.9 sets of 27.1 blocks encrypted under the same key. In each set
we can construct 213.2 pairs. In total, from one message M of 241 blocks, we get
on average 0.76 × 213.2 × 233.9 ≈ 246.7 pairs encrypted with the same key.

Unfortunately, the attack against LEX uses five consecutive AES rounds, but
in ALE, the subkeys used in five consecutive rounds do not follow the exact AES
key schedule. It is not possible to apply exactly the same attack on ALE, but
we can use the tool developed by Bouillaguet, Derbez, and Fouque [10,12] in
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order to find an attack in this setting. This tool found an attack that can test a
candidate pair with time complexity 272, and a memory requirement of 272, for
two different positions of the partial collision:

– when the collision occurs in round 4, the attack uses the leak of rounds 1, 2,
3, 4 and of round 1 of the next 4-round AES.

– when the collision occurs in round 1, the attack uses the leak of rounds 1 and
2, and of rounds 2, 3, 4 of the previous 4-round AES.

Starting with 216.3 messages of length 248 (encrypted under different master
keys) we obtain 216.3 × 213.2 × 233.9 ≈ 263.4 pairs, such that each pair uses
the same key with probability 0.76. Each pair can be used twice, assuming a
collision at round 1 or at round 4, so we have in total 264.4 pairs to consider, and
we expect one of them to actually collide (0.76 × 264.4 ≈ 264). After filtering on
32 bits, we have 232.4 candidate pairs to analyse, so that the time complexity is
232.4 × 272 = 2104.4, and the data complexity is 216.3 × 241 = 257.3.

This attack recovers the internal state, and we can compute backwards the
initial state EK(0) and the session key Z̃ = EK(N). We can also generate almost
universal forgeries: when EK(0) and Z̃ are known we can compute the internal
state and ciphertext corresponding to an arbitrary message, and we can match
the value of the final internal state (and hence the tag) by choosing one block
of message or associated data appropriately.

5 Application to Impossible Differential Attacks

In 1999, Biham, Biryukov and Shamir introduced Impossible Differential attacks:
a new cryptanalysis technique that they applied to Skipjack [3]. This attack is
based on the existence of an impossible differential, i.e. a differential occurring
with probability 0. If a key guess leads to this differential, then it can be deduced
that this guess was wrong. This allows to eliminate key candidates and thus to
obtain an attack faster than exhaustive search. Impossible differentials have been
applied to various cryptosystems, including reduced versions of AES [2,13,33].

The framework described in [13] is composed of two parts: firstly, combina-
tions of bytes from the first and last subkeys are shown impossible, and secondly,
the master keys associated to the remaining candidates are reconstructed and
tested. When reconstructing the master key, previous attacks only exploit the
subkeys bytes in the first rounds, guess the missing bytes, and evaluate the key
schedule to check the bytes in the last subkeys. Our results significantly improve
this part, by combining information from the first and the last subkeys. Indeed,
the new representation shows that some bytes of a given subkey depend on fewer
than 128 bits of information of another subkey, even if the subkeys are separated
by many rounds. The complexity of the attack is a trade-off between the first and
second parts. After improving the second part we obtain slightly better trade-
offs. The improvement is limited because a small increase of the data complexity
(corresponding to the cost of the part) leads to a large reduction in the number
of remaining candidates (corresponding to the complexity of the second part).
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Fig. 10. 7-round impossible differential attack of [33] (figure adapted from [28]).
Key bytes marked G and D are respectively guessed, and deduced from guessed
bytes.

5.1 The AES Round Function

The AES state is represented as a 4 × 4-byte array, and the round function
iterates the following operations:

– SubBytes applies an Sbox on each byte of the state;
– ShiftRows shifts by the left the second row of the state by 1 cell, the third

row by 2 cells, and the last row by 3 cells;
– MixColumns multiplies each column of the state by an MDS matrix;
– AddRoundKey xors the state with the round key.

Sbox property. During this attack, we will use a well-known property for a n-
bit to m-bit Sbox: given an input and an output difference, there is on average
2n−m possible values. For the AES Sbox, n = m = 8, so in average one value is
expected. We pre-compute those values, and refer to that table as the DDT.

5.2 Previous Results

The best impossible differential attacks against AES-128 are variants of an attack
from Mala, Dakhilalian, Rijmen and Modarres-Hashemi [33]. Several trade-off
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are proposed in [13] with four output differentials and using a technique to
reduce the memory by iterating over the possible key bytes values, rather that
iterating over the data pairs. In this work, we start from a variant with a single
output differential explained in detail below; it is easier to describe than variants
considered in [13] and provides an interesting trade-off.

Impossible differential. This attack uses a collection of impossible differentials
over 4 rounds, and extends them with two rounds at the beginning and one
round at the end (omitting the final MixColumns), as shown in Fig. 10. We use
a set of impossible differentials over 4-rounds (without the last MixColumns):

DX �→ DY

DX =

⎧
⎪⎪⎨
⎪⎪⎩

(0, ?, ?, ?, 0, 0, 0, 0, ?, ?, 0, ?, 0, 0, 0, 0)
(?, 0, ?, ?, 0, 0, 0, 0, ?, ?, ?, 0, 0, 0, 0, 0)
(?, ?, 0, ?, 0, 0, 0, 0, 0, ?, ?, ?, 0, 0, 0, 0)
(?, ?, ?, 0, 0, 0, 0, 0, ?, 0, ?, ?, 0, 0, 0, 0)

⎫
⎪⎪⎬
⎪⎪⎭

DY =

⎧
⎪⎪⎨
⎪⎪⎩

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x)

| x �= 0

⎫
⎪⎪⎬
⎪⎪⎭

We assume to be given a pair of plaintexts and the corresponding ciphertexts
such that the plaintext difference is in a set Din corresponding to two active
diagonals, and the ciphertext difference is in a set Dout corresponding to one
active anti-diagonal:

Din = {(?, 0, ?, 0, 0, ?, 0, ?, ?, 0, ?, 0, 0, ?, 0, ?)}
Dout = {(0, 0, 0, ?, 0, 0, ?, 0, 0, ?, 0, 0, ?, 0, 0, 0)}

After guessing the values of the key bytes k0
〈0,2,5,7,8,10,13,15〉, k

1
〈8,10〉, k

7
〈3,6,9,12〉, we

can deduce that some values result in differences in DX and DY . Since this tran-
sition holds with probability 0, we can discard those key candidates. Eventually
with a large number N of pairs of plaintexts, we eliminate most of the key can-
didates, and we can verify the remaining candidates exhaustively. We now detail
how to perform this attack efficiently, following Algorithm 1.

Pre-computation. After the MixColumns of the first round, in column 1 and
3, we want non-zero differences only in the first and the third bytes. There
are 216 possible differences; by inverting the linear operations MixColumns and
ShiftRows, we obtain 216 possible differences for the diagonal (bytes 〈0, 5, 10, 15〉
and 〈2, 7, 8, 13〉 respectively) after the SubBytes of the first round. We store
these 216 differences in the table T1. Similarly, we build a table T2 with the 210

possible differences before the SubBytes of the last round by propagating the 210

differences in DY .
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Construction of pairs. We start with 237+ε structures of 264 plaintexts such that
all the plaintexts in a structure are identical in bytes 1, 3, 5, 7, 9, 11, 13, and
15. For each set, we construct

(
264

2

) ≈ 2127 pairs. We identify the pairs with
a ciphertext difference in Dout and store them in a list L1; we expect to have
N = 2127 × 2−96 × 237+ε = 268+ε pairs.

Step 1. First, we identify plaintext/ciphertext pairs and values of k0
〈0,5,10,15〉 that

result in a zero difference in bytes 1 and 3 after the first MixColumns. To this
end, we sort the list L1 according to the plaintext difference and value in bytes
0, 5, 10 and 15. We obtain 264 sublists of approximatively 24+ε pairs. From now
on, all the steps are repeated for all guesses of the key bytes k0

〈0,5,10,15〉. For each
possible difference δ in bytes 0, 5, 10 and 15 before SubBytes, we confront the
difference with each of the possible differences after SubBytes in T1. Then, using
the DDT of the AES Sbox, we extract the input values of the SubBytes operation
of the first round, corresponding to this input and output difference. Since the
key k0

〈0,5,10,15〉 has been guessed, we can deduce the value of the plaintext in
bytes 0, 5, 10 and 15, and locate the right sublist of L1 with 24+ε pairs that
follow this part of the trail for this key guess. We store those pairs in a list L2;
after iterating over δ and T1 we have on average 232+16+4+ε = 252+ε pairs in L2.

Step 2. During this step, we filter data pairs and values of k0
〈2,7,8,13〉 leading to

a zero difference in bytes 13 and 15 after the first MixColumns. To do this, we
consider each pair of L2, and iterate over the possible differences after SubBytes
in bytes 2, 7, 8, 13, stored in T1. Since we have the input and output differences
of those Sboxes, we retrieve the corresponding values from the DDT. By xoring
these values with the plaintext, we obtain the associated key bytes k0

〈2,7,8,13〉 and
we add this pair to a list indexed by the key bytes, L3[k0

〈2,7,8,13〉].
The following steps are repeated for each value of k0

〈2,7,8,13〉; we have a list
L3[k0

〈2,7,8,13〉] of 252+ε+16−32 = 236+ε plaintext pairs that satisfy the required
difference after the first round.

Step 3. During this step, we associate each pair of L3[k0
〈2,7,8,13〉] to the key bytes

k1
8 and k1

10 such that difference after the MixColumns of round 2 is in DX . We
recall that at this point, the bytes k0

〈0,2,5,7,8,10,13,15〉 have already been guessed.
Following the AES-128 key schedule, we can easily deduce bytes k1

0 and k1
2. For

each pair of L3[k0
〈2,7,8,13〉], we compute the values of the first and the third column

of both plaintexts after the MixColumns of the first round. Using k1
〈0,2〉 We can

also compute the values of both states on bytes 0 and 2 after AddRoundKey and
SubBytes in the second round, corresponding to bytes 0 and 10 after ShiftRows.
Looking at the MixColumns operations in columns 1 and 3 in the second round,
we know the difference in 3 input bytes (2 zeros given by the differential trail,
and value just recovered) and one output byte (a zero given by the differences
in DX). Therefore we can recover the full input and output difference in those
columns by solving a linear system (the solution is unique because of the MDS
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property). By inverting the ShiftRows operation, we recover the difference after
the SubBytes operation of the second round in bytes 8 and 10. The difference
before this operation is also known, therefore we recover the values of bytes 8 and
10 before SubBytes, and deduce the value of k1

〈8,10〉 by xoring the value at the end
of the first round. We have to repeat this deduction four time, because we have
four different positions of the zero differences in DX . Each pair of L3[k0

〈2,7,8,13〉]
suggests on average four candidates for k1

〈8,10〉, and we store the pairs in a list
indexed by the key bytes, L4[k1

〈8,10〉].
The next steps are repeated for each value of k1

〈8,10〉, using the list L4[k1
〈8,10〉]

with on average 236+ε+2−16 = 222+ε pairs leading to a difference in DX .

Step 4. This step determines the key candidates k7
〈3,6,9,12〉 that are ruled out

with the available data, for each k0
〈0,2,5,7,8,10,13,15〉, k

1
〈8,10〉. For this purpose, we

use a list L5 of 232 bits to mark impossible key candidates k7
〈3,6,9,12〉. For each

pair of L4[k1
〈8,10〉], we consider all the differences at the end of the sixth round

that correspond to a difference in DY , stored in T2. From the differences before
and after the last SubBytes, we compute the value of the output of SBox in bytes
3, 6, 9 and 12 using the DDT. Then, using the ciphertext values, we recover the
bytes k7

〈3,6,9,12〉 and mark this value in the list L5.
On average we mark 222+ε+10 = 232+ε keys as impossible, so that each key

remains possible with probability P = (1 − 2−32)2
32+ε ≈ e−2ε

.

Step 5. Finally, we reconstruct the master keys corresponding to the can-
didates k0

〈0,2,5,7,8,10,13,15〉, k
1
〈8,10〉, k

7
〈3,6,9,12〉 not marked as impossible. Follow-

ing [13,33], knowing k0
〈0,2,5,7,8,10,13,15〉 and k1

〈8,10〉 is equivalent to knowing
k0

〈0,2,4,5,6,7,8,10,13,15〉, but it is hard to combine this with information about the
last round. Therefore, for each of the 2112×P candidates, we just consider the 10
known bytes of k0, do an exhaustive search for the 6 missing bytes and recompute
k7 to see if it matches the candidate. This requires 2112×P ×248 = 2160×P eval-
uations of the key schedule. We verify the 2160 ×P × 2−32 = 2128 ×P remaining
candidates with a know plaintext/ciphertext pair, for a cost of 2128 × P encryp-
tions.

Complexity. There are three dominant terms in the complexity of the attack.
First we need to make 2101+ε calls to the encryption oracle. Then, the generation
of key candidates (steps 1 to 4) is dominated by step 4. This step is done 280

times (for each guess of k0
〈0,2,5,7,8,10,13,15〉 and k1

〈8,10〉) and during this step we go
through the whole list L4[k1

〈8,10〉], containing 222+ε pairs. For each pair and for
each of the 210 differences in T2, we use 4 times the DDT. In order to express
this complexity using one encryption as the unit, we follow the common practice
of counting the number of table look-up. A 7 round AES encryption, requires
20 × 7 table lookups (including the Sboxes in the key schedule), therefore the
cost of 4 DDT lookups is similar to 4/140 = 1/35 encryptions. In total, the
complexity of Step 4 is 280×222+ε×210/35. Finally step 5 requires the equivalent
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Algorithm 1. Construction of possible key candidates (Steps 1 to 4)

Require: Tables T1, T2 and a list L1 of 268+ε pairs satisfying Din and Dout.
Sort L1 according to the plaintext difference and value in bytes 0, 5, 10 and 15.
Let L1[δ][x] be the sub-list with difference δ and value x in those bytes.
for all k0

〈0,5,10,15〉 do
L2 ← ∅

for all 32-bits difference δ do
for all difference θ in T1 do � bytes 〈0, 5, 10, 15〉

Compute value(s) x〈0,5,10,15〉 before first SubBytes from DDT.
Add all pairs of L1[δ][x〈0,5,10,15〉 ⊕ k0

〈0,5,10,15〉] to L2.

L3 ← [
∅, for all k0

〈2,7,8,13〉
]

for all pairs ((p, p′), (c, c′)) in L2 do
for all difference θ in T1 do � bytes 〈2, 7, 8, 13〉

Compute value(s) x〈2,7,8,13〉 before first SubBytes from DDT.
Add pair to L3[x〈2,7,8,13〉 ⊕ p〈2,7,8,13〉].

for all k0
〈2,7,8,13〉 do

L4 ← [
∅, for all k1

〈8,10〉
]

Compute k1
〈0,2〉 using the AES key schedule.

for i in {0, 1, 2, 3} do
for all pairs in L3[k

0
〈2,7,8,13〉] do

Deduce k1
〈8,10〉, assuming that diagonal i is inactive at end of round 2.

Add pair to L4[k
1
〈8,10〉].

for all k1
〈8,10〉 do

L5 ← [
True, for all k7

〈3,6,9,12〉
]

for all pairs ((p, p′), (c, c′)) in L4[k
1
〈8,10〉] do

for all difference θ in T2 do � bytes 〈12, 13, 14, 15〉
Compute value(s) x〈15,14,13,12〉 after last SubBytes from DDT.
L5[x〈15,14,13,12〉 ⊕ c〈3,6,9,12〉] ← False.

for all k7
〈3,6,9,12〉 do

if L5[k
7
〈3,6,9,12〉] then

Check key candidate k0
〈0,2,5,7,8,10,13,15〉, k

1
〈8,10〉, k

7
〈3,6,9,12〉.

of e−2ε · 2160/5 + e−2ε · 2128 encryptions, because the cost of the key schedule
compared to an encryption3 is 4/20 = 1/5. In total, the time complexity is:

T = 2101+ε + 2112+ε/35 + e−2ε · (2160/5 + 2128)

The best time complexity is obtained by taking ε = 5.1, leading to a time
complexity of 2112.1, a data complexity of 2106.1 chosen plaintexts, and a memory
complexity of N = 273.1 words.

3 This ratio is given as 2−3.6 ≈ 1/12 in [13], but we don’t see how to achieve this
result. In any case the impact on the total complexity is negligible because it is
compensated by a very small change of ε.
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Variant with multiple differentials. Boura, Lallemand, Naya-Plasencia and
Suder describe [13] in a variant of this attack using multiple output differentials.
More precisely, instead of using a fixed column for DY and a fixed anti-diagonal
for Dout, they consider the four possible columns for DY and the four corre-
sponding anti-diagonal for Dout. The attacks is essentially the same, but there
are two important differences.

To construct the pairs, they start from only 235+ε structures of 264 plain-
texts, but they obtain 268+ε pairs matching Din and Dout when considering
the four anti-diagonal in Dout. Steps 1 to 3 of the attack are the same a given
above, but in step 4 each pair can give information about different bytes of k7,
depending on which anti-diagonal is active in the ciphertext. For each choice of
k0

〈0,2,5,7,8,10,13,15〉, k
1
〈8,10〉, they build a list of possible values for each anti-diagonal

of k7, and each key value remains possible with probability e−2ε−2
because one

fourth of the data correspond to each diagonal. Finally, in step 5, they merge
the 4 lists, for a cost of 280 × (e−2ε−2 · 232)4 = e−2ε · 2208.

The total time complexity of this variant is:

T = 299+ε + 2112+ε/35 + e−2ε · (2208/5 + 2128)

The best time complexity is obtained by taking ε = 6.1, leading to a time
complexity of 2113, a data complexity of 2105.1 chosen plaintexts, and a memory
complexity of N = 274.1 words.

This attack is listed with a time complexity of 2106.88 with ε = 6 in [13], but
this seems to be a mistake. There are not enough details of this attack in [13] to
verify where their attack would differ from our understanding, but we don’t see
how to avoid having 2112+ε iterations at step 4, when we are eliminating 112-bit
keys. Applying the generic formula (7) from the same paper also gives a term
2112+ε/35 in the complexity (written as 2kA+kB N

2cin+cout · C ′
E in [13]).

Variant with state-test technique. In [13], the authors describe in details a
variant using four output differentials and the state-test technique. This allows
them to reduce by one byte the number of key bytes to be guessed, but they
must use smaller structures, and this increases the data complexity.

The attack requires N = 268+ε chosen plaintexts, with a time complexity of:

T = 2107+ε + 2104+ε/35 + e−2ε · (2200/5 + 2128)

The optimal time complexity4 is 2113 with ε = 6.

5.3 Our Improvement

We now explain how to improve the first attack using properties of the key sched-
ule. We keep steps 1 to 4 as given in Algorithm 1, but we improve the reconstruc-
tion of the master key from bytes of the first and last round keys (Step 5). With

4 In [13] they report the complexity as 2113.1 with ε = 6.1.
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this improvement, generating the key candidates is actually cheaper than verify-
ing them with a known plaintext/ciphertext pair. We use the following property
of the key schedule, in order to guess the missing key bytes of k0 iteratively, and
to efficiently verify whether they match the known bytes of k7.

Proposition 1. Let kr
i a byte of an AES-128 subkey. If the byte is in the last

column (12 ≤ i < 16), then it depends on only 32 bits of information of the
master key. If the byte is in the second or third column (4 ≤ i < 12), then it
depends on only 64 bits of information of the master key.

Proof. Bytes in the last column correspond to basis vectors in the new represen-
tation, following Eq. (1) (for instance kr

12 = sr
12). Therefore they depend only

on one 32-bit chunk at any given round (k7
12 can be computed from s0〈0,1,2,3〉).

Bytes in the second column correspond to the sum of two basis vector in the
new representation (for instance kr

6 = sr
14 ⊕ sr

4). Since the two elements do not
belong to the same chunk, the byte depends on two 32-bit chunks at any given
round (k7

6 can be computed from s0〈0,1,2,3,8,9,10,11〉).
Similarly, bytes in the third column correspond to the sum of two basis

vector in the new representation (for instance kr
9 = sr

15 ⊕ sr
8). Therefore they

depend only on two 32-bit chunks at any given round (k7
9 can be computed from

s0〈0,1,2,3,12,13,14,15〉).
Bytes in the first column correspond to the sum of four basis vector from four

different chunks, therefore they depend on the full state in general (for instance
kr
3 = sr

13 ⊕ sr
10 ⊕ sr

7 ⊕ sr
0). ��

Initially we are given the values of k0
〈0,2,4,5,6,7,8,10,13,15〉 and k7

〈3,6,9,12〉. Accord-
ing to the property above, k7

12 can be computed from k0
15, k0

14 ⊕ k0
10 ⊕ k0

6 ⊕ k0
2,

k0
13 ⊕ k0

5, k0
12 ⊕ k0

8, k0
14, and k7

6 can be computed from k0
15, k0

14 ⊕ k0
10 ⊕ k0

6 ⊕ k0
2,

k0
13 ⊕ k0

5, k0
12 ⊕ k0

8, k0
13, k0

12 ⊕ k0
8 ⊕ k0

4 ⊕ k0
0, k0

15 ⊕ k0
7, k0

14 ⊕ k0
10. Therefore we can

verify their value after guessing k0
〈12,14〉.

At this point two chunks are completely known: s0〈0,1,2,3〉 and s0〈8,9,10,11〉 or
equivalently s7〈12,13,14,15〉 and s7〈4,5,6,7〉. In particular, we can deduce the value of
k7
13 = s78 = s715 ⊕ k7

9, which can also be computed from s0〈12,13,14,15〉, i.e. from
k0
12, k0

15 ⊕ k0
11 ⊕ k0

7 ⊕ k0
3, k0

14 ⊕ k0
6, k0

13 ⊕ k0
9. Therefore, we only need to guess

k0
11 ⊕ k0

3 and k0
9 to verify k7

13.
Finally, we focus of the remaining 32-bit chunk, corresponding to s0〈4,5,6,7〉

and s7〈0,1,2,3〉. We already have the value of s04 = k0
14 and s06 = k0

12 ⊕ k0
4, and we

can compute s70 = s710 ⊕ s713 ⊕ s77 ⊕ k7
3. Using a pre-computed table, we recover

the 28 values of the chunk corresponding to those constraints.
Algorithm 2 describes the full process. The cost of this step is e−2ε × 2128/5,

where 1/5 is the cost of computing the key schedule compared to a full encryp-
tion. Finally the total time complexity of our attack is:

T = 2101+ε + 2112+ε/35 + e−2ε · (2128/5 + 2128)
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Algorithm 2. Improved version of the key candidate checking (Step 5)

Require: A key candidate k0
〈0,2,5,7,8,10,13,15〉, k

1
〈8,10〉, k

7
〈3,6,9,12〉.

for all k0
〈12,14〉 do

Compute s7〈12,13,14,15〉 from s0〈0,1,2,3〉
if k7

12 = s712 then
Compute s7〈4,5,6,7〉 from s0〈8,9,10,11〉
if k7

6 = s74 ⊕ s714 then
T ← [

∅, for all k7
15

]

for all k0
11, k

0
1 ⊕ k0

9 do
Compute s7〈0,1,2,3〉 from s0〈4,5,6,7〉
Add (k0

11, k
0
1 ⊕ k0

9) to T [s70]

for all k0
9, k

0
3 ⊕ k0

11 do
Compute s7〈8,9,10,11〉 from s0〈12,13,14,15〉
if k7

9 = s78 ⊕ s715 then
for all (k0

11, k
0
1 ⊕ k0

9) in T [s713 ⊕ s710 ⊕ s77 ⊕ k7
3] do

Check the master key k0 with a pair (p, c).

The best time complexity is obtained by taking ε = 3.9 leading to a time com-
plexity of 2110.9, a data complexity of 2104.9 chosen plaintext, and a memory
complexity of 271.9 words.

We remark that the improvement is only applicable when the last MixColumns
is omitted. In general, it does not affect the complexity of attacks, because
removing the last MixColumns defines an equivalent cipher up to a modification
of the key schedule. However, when attacks exploit relations between the subkeys,
the relations are simpler if the last MixColumns is omitted [22].

6 New Representations of the AES-192 and AES-256
Key Schedules

The same techniques can also be applied to other variants of AES: we apply the
algorithm of Leander, Minaud and Rønjom [32] to extract invariant subspaces of
the key schedule, and we use a change of variables corresponding to the subspaces
to obtain a simplified representation.

AES-192. We find two invariant subpaces of dimension 12, and obtain a simpli-
fied representation with 2 independent chunks each acting on 12 bytes, as shown
in Fig. 11.

AES-256. We find four invariant subpaces of dimension 8, and obtain a simpli-
fied representation with 4 independent chunks each acting on 8 bytes, as shown
in Fig. 12.
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Fig. 11. One round of the AES-192 key schedule (alternative representation).

Fig. 12. One round of the AES-256 key schedule (alternative representation).
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7 Properties on the AES Key Schedule

In addition to explaining the presence of short length cycles, our new represen-
tations of the key schedule also permits us to demonstrate some properties. For
conciseness, we use the notation kr

i,j1⊕j2,... to denote kr
i , kr

j1
⊕ kr

j2
, . . .

Proposition 2. Let Pr and P ′
r defined in one of the following ways:

• AES-128 (1): Pr = kr
〈5,7,13,15〉, and P ′

r = kr
〈4,6,12,14〉

• AES-128 (2): Pr = kr
〈0⊕4,2⊕6,8⊕12,10⊕14〉, and P ′

r = kr
〈1⊕5,3⊕7,9⊕13,11⊕15〉

• AES-192 (1): Pr = kr
〈5,7,13,15,21,23〉, and P ′

r = kr
〈4,6,12,14,20,22〉

• AES-192 (2): Pr = kr
〈0⊕4,2⊕6,8⊕12,10⊕14,16⊕20,18⊕22〉,

and P ′
r = kr

〈1⊕5,3⊕7,9⊕13,11⊕15,17⊕21,19⊕23〉
• AES-256 (1): Pr = kr

〈5,7,13,15,21,23,29,31〉, and P ′
r = kr

〈4,6,12,14,20,22,28,30〉
• AES-256 (2): Pr = kr

〈0⊕4,2⊕6,8⊕12,10⊕14,16⊕20,18⊕22,24⊕28,26⊕30〉,
and P ′

r = kr
〈1⊕5,3⊕7,9⊕13,11⊕15,17⊕21,19⊕23,25⊕29,27⊕31〉

If there exists an r0 such as Pr0 and P ′
r0±1 are known, then for all i ∈ Z, the

bytes Pr0+2i and P ′
r0+2i+1 are known (and they are easily computable).

Proof. The AES-128 (1) case is considered here, the other cases are demonstrated
in the same way. Knowing kr

〈5,7,13,15〉 and kr+1
〈4,6,12,14〉 is equivalent to knowing two

chunks of the state: sr
〈0,1,2,3〉 and sr

〈8,9,10,11〉. This can be verified using Eq. (2).
The knowledge of these 2 chunks allows us to extract the value of the bytes in
position k〈5,7,13,15〉 or k〈4,6,12,14〉 at any round. ��

This byte position of this proposition is represented in Fig. 13. This propo-
sition is a generalization of the observations made for AES-128 by Dunkelman
and Keller:

Observation 3 ([21]). For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the
relations:

kr+2(i, 0) ⊕ kr+2(i, 2) = kr(i, 2).

kr+2(i, 1) ⊕ kr+2(i, 3) = kr(i, 3).

Observation 4 ([21]). For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the
relation:

kr+2(i, 1) ⊕ SB(kr+1((i + 1) mod 4, 3)) ⊕ RCONr+2(i) = kr(i, 1).

Another property can also be demonstrated on the AES-128 key schedule,
using the value of one byte of the last column per round over 4 consecutive
rounds:

Proposition 3. If there exists r ∈ N and i ∈ {0, 1, 2, 3} such that the bytes
kr
15−i, k

r+1
15−(i+1)%4, k

r+2
15−(i+2)%4, k

r+3
15−(i+3)%4 are known, then for all j ∈ Z, the

value of the byte kr+j
15−(i+j%4) is known.
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Fig. 13. Representation of the position of the bytes of the proposition. In vari-
ants (2), only the XOR of the two bytes of the same color must be known.

Proof. Knowing the bytes kr
15−i, k

r+1
15−(i+1)%4, k

r+2
15−(i+2)%4, k

r+3
15−(i+3)%4 is equiva-

lent to knowing one chunk of the state in our representation: sr
〈4i,4i+1,4i+2,4i+3〉.

Given that ∀r ∈ N, sr
4i = kr

15−i, we can calculate a byte of the last column at any
round because we have the knowledge of a chunk in our new representation. ��
The property can also be generalized when bytes at the correct position are
known in non-consecutive rounds.

8 Conclusion

Alternative representations of the AES data operations have been used in several
previous works; in particular, the super-box property [26] of Gilbert and Peyrin
is an alternative representation of two AES rounds that led to several improved
cryptanalysis results on AES-based schemes. Gilbert has later shown a more
general untwisted representation of the AES data path, resulting in the first
known-key attack against the full AES-128 [25].

In this work we use techniques from invariant subspace attacks to discover an
equivalent representation of the AES key schedule, and we derive new cryptanal-
ysis results, based on two main observations. First, iterating an odd number of
key schedule rounds defines a permutation with short cycles. This undermine the
security of AES-based schemes using iterations of the key schedule as a type of
tweak to make each encryption call different. More generally, the AES key sched-
ule cannot and should not be considered as a random permutation, even after a
large number of rounds. Second, the alternative representation makes it easier to
combine information from the first subkeys and from the last subkeys, improv-
ing previous key recovery attacks. This topic has been studied before and many
attacks use key schedule relations to reduce the complexity (in particular, we
can mention the key bridging notion of Dunkelman, Keller and Shamir [23,24]).
However our alternative representation shows non-linear relations that have not
been exploited before. In particular, we show that bytes in the last column of an
AES-128 subkey depend on only 32 bits of information from the master key.

We expect that this alternative representation can open the way to further
results exploiting properties of the AES key schedule. For instance, the new
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representation can be used to characterize keys that stay symmetric for two
rounds, as used in [27], but this is easily be done with the standard representation
due to the small number of rounds.
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Abstract. The Hybrid Public Key Encryption (HPKE) scheme is an
emerging standard currently under consideration by the Crypto Forum
Research Group (CFRG) of the IETF as a candidate for formal approval.
Of the four modes of HPKE, we analyse the authenticated mode
HPKEAuth in its single-shot encryption form as it contains what is,
arguably, the most novel part of HPKE.

HPKEAuth’s intended application domain is captured by a new primitive
which we call Authenticated Public Key Encryption (APKE). We provide
syntax and security definitions for APKE schemes, as well as for the related
Authenticated Key Encapsulation Mechanisms (AKEMs). We prove secu-
rity of the AKEM scheme DH-AKEM underlying HPKEAuth based on the
Gap Diffie-Hellman assumption and provide general AKEM/DEM com-
position theorems with which to argue about HPKEAuth’s security. To this
end, we also formally analyse HPKEAuth’s key schedule and key derivation
functions. To increase confidence in our results we use the automatic the-
orem proving tool CryptoVerif. All our bounds are quantitative and we
discuss their practical implications for HPKEAuth.

As an independent contribution we propose the new framework of
nominal groups that allows us to capture abstract syntactical and secu-
rity properties of practical elliptic curves, including the Curve25519 and
Curve448 based groups (which do not constitute cyclic groups).

Keywords: Public-key encryption · Authentication · Signcryption ·
Key encapsulation mechanisms

1 Introduction

An effort is currently underway by the Crypto Forum Research Group (CFRG) to
agree upon a new open standard for public key encryption [5]. The standard will
be called Hybrid Public Key Encryption (HPKE) and it is, in particular, expected
to be used as a building block by the Internet Engineering Task Force (IETF) in
at least two further upcoming standardized security protocols [4,30]. The primary
source for HPKE is an RFC [5] (currently on draft 8) which lays out the details of
the construction and provides some rough intuition for its security properties.
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At first glance the HPKE standard might be thought of as a “public key
encryption” scheme in the spirit of the KEM/DEM paradigm [15]. That is, it
combines a Key Encapsulation Mechanism (KEM) and an Authenticated Encryp-
tion with Associated Data (AEAD) acting as a Data Encapsulation Mechanism
(DEM) according to the KEM/DEM paradigm. However, upon closer inspection
HPKE turns out to be more complex than this perfunctory description implies.

First, HPKE actually consists of 2 different KEM/DEM constructions. More-
over, each construction can be instantiated with a pre-shared key (PSK) known
to both sender and receiver, which is used in the key schedule to derive the
DEM key. In total this gives rise to 4 different modes for HPKE. The basic mode
HPKEBase makes use of a standard (say IND-CCA-secure) KEM to obtain a “mes-
sage privacy and integrity” only mode. This mode can be extended to HPKEPSK

to support authentication of the sender via a PSK.
The remaining 2 HPKE modes make use of a different KEM/DEM construc-

tion built from a rather non-standard KEM variant which we call an Authenti-
cated KEM (AKEM). Roughly speaking, an AKEM can be thought of the KEM
analogue of signcryption [31]. In particular, sender and receiver both have their
own public/private keys. Each party requires their own private and the other
party’s public key to perform en/decryption. The HPKE RFC constructs an
AKEM based on a generic Diffie-Hellman group. It goes on to fix concrete instan-
tiations of such groups using either the P-256, P-384, or P-521 NIST curves [28]
or the Curve25519 or Curve448 curves [25]. The AKEM-based HPKE modes also
intend to authenticate the sender to the receiver. Just as in the KEM-based
case, the AKEM/DEM construction can be instantiated in modes either with
or without a PSK. We refer to the AKEM/DEM-based mode without a PSK as
the authenticated mode and, for reasons described below, it is the main focus of
this work. The corresponding HPKE scheme is called HPKEAuth.

Orthogonal to the choice of mode in use, HPKE also provides a so called
single-shot and a multi-shot API. The single-shot API can be thought of as
pairing a single instance of the DEM with a KEM ciphertext while the multi-
shot API establishes a key schedule allowing a single KEM to be used to derive
keys for an entire sequence of DEMs. Finally, HPKE also supports exporting
keys from the key schedule for use by arbitrary higher-level applications.

Applications. As an open standard of the IETF, we believe HPKE to be an
interesting topic of study in its own right. Indeed, HPKE is already slated for
use in at least two upcoming protocols; the Messaging Layer Security (MLS) [4]
secure group messaging protocol and the Encrypted Server Name Indication
(ESNI) extension for TLS 1.3 [30]. Both look to be well-served by the single-
shot API as they require a single DEM to be produced (at the same time as the
KEM) and the combined KEM/DEM ciphertext to be sent as one packet.
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More interestingly, at least for MLS, authenticating the sender of an HPKE
ciphertext (based on their public keys) is clearly also a useful property. (For the
ESNI application things are less clear.1)

In a bit more detail, MLS is already equipped with a notion of a PKI involving
public keys bound to long-term identities of parties (as described in [29]). To
invite a new member to an existing MLS protocol session the inviter must send an
HPKE ciphertext to the new member. In line with MLS’s strong authentication
goals, the new member is expected to be able to cryptographically validate the
(supposed) identity of the sender of such ciphertexts.

Currently, MLS calls for the HPKE ciphertext to be produced using HPKE’s
basic mode HPKEBase and the resulting ciphertext to be signed by the inviter
using a digital signature scheme (either ECDSA or EdDSA). However, an alter-
native approach to achieve the same ends could be to directly use HPKE in its
authenticated mode HPKEAuth. This would save on at least 2 modular exponen-
tiations as well as result in packets containing 2 fewer group elements. Reducing
computational and communication complexity has been a central focus of the
MLS design process as such costs are considered the main hurdles to achiev-
ing the MLS’s stated goal of supporting extremely large groups. Unfortunately,
in our analysis, we discovered that HPKEAuth does not authenticate the sender
when the receiver’s secret key leaked, a key compromise impersonation (KCI)
attack (Sect. 4.4). MLS aims to provide strong security in the face of state leak-
age (which includes KCI attacks), so switching from HPKEBase and signatures to
HPKEAuth would result in a significant security downgrade.

HPKEAuth could also be a replacement for the public-key authenticated
encryption originally implemented by the NaCl cryptographic library. HPKEAuth

is safer than the NaCl implementation because, in HPKEAuth, the shared secret
is bound to the intended sender and recipient public keys.

1.1 Our Contributions

So far, there has been no formal analysis of the HPKE standard. Unfortunately,
due to its many modes, options and features a complete analysis of HPKE from
scratch seems rather too ambitious for a single work such as this one. Thus, we are
forced to choose our scope more carefully. The basic mode HPKEBase (especially
using the single-shot API) seems to be a quite standard construction. Therefore,
and in light of the above discussion around MLS, we have opted to focus on the
more novel authenticated mode in its single-shot API form HPKEAuth. To this
end we make the following contributions.

Authenticated KEM and PKE. We begin, in Sect. 4, by introducing Authen-
ticated Key Encapsulation Mechanisms (AKEM) and Authenticated Public Key
1 The ESNI RFC calls for a client initiating a TLS connection to send an HPKE

ciphertext to the server. Although not as common, TLS can also be used in settings
with bi-directional authentication. In particular, clients can use certificates binding
their identities to their public key to authenticate themselves to the server. Unfor-
tunately, it is unclear how the server would know, a priori, which public key to use
for the client when attempting to decrypt the HPKE ciphertext.
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Table 1. Security properties needed to prove Outsider-Auth, Outsider-CCA, and
Insider-CCA security of APKE obtained by the AKEM/DEM construction.

AKEM AEAD

Outsider-Auth Outsider-CCA Insider-CCA INT-CTXT IND-CPA

Outsider-AuthAPKE X X X
Outsider-CCAAPKE X X X
Insider-CCAAPKE X X X

Encryption (APKE) schemes, where the syntax of APKE matches that of the
single-shot authenticated mode of HPKEAuth. In terms of security, we define
(multi-user) security notions capturing both authenticity and (2 types of) pri-
vacy for an AKEM and an APKE. In a bit more detail, both for authenticity and
for privacy we consider so called weaker outsider and stronger insider variants.
Intuitively, outsider notions model settings where the adversary is an outside
observer. Conversely, insider notions model settings where the adversary is some-
how directly involved; in particular, even selecting some of the secrets used to
produce target ciphertexts. A bit more formally, we call an honestly generated
key pair secure if the secret key was not (explicitly) leaked to the adversary
and leaked if it was. A key pair is called bad if it was sampled arbitrarily by
the adversary. A scheme is outsider-secure if target ciphertexts are secure when
produced using secure key pairs. Meanwhile, insider security holds even if one
secure and one bad key pair are used. For example, insider privacy (Insider-CCA)
for AKEM requires that an encapsulated key remains indistinguishable from ran-
dom despite the encapsulating ciphertext being produced using bad sender keys
(but secure receiver keys). Similarly, insider authenticity (Insider-Auth) requires
that an adversary cannot produce a valid ciphertext for bad receiver keys as long
as the sender keys are secure. In particular, insider authenticity implies (but is
strictly stronger than) Key Compromise Impersonation (KCI) security as KCI
security only requires authenticity for leaked (but not bad) receiver keys.

Moreover, as an independent contribution we show that for each security
notion of an AKEM a (significantly simpler) single-user and single-challenge-
query version already implies security for its (more complex but practically rel-
evant) multi-user version. In particular, this provides an easier target for future
work on AKEMs, e.g. when building a post-quantum variant of HPKEAuth.

AKEM/DEM: from AKEM to APKE. Next we turn to the AKEM/DEM con-
struction used in the HPKE standard. We prove a set of composition results each
showing a different type of security for the single-shot AKEM/DEM construction
depending on which properties the underlying AKEM guarantees. Each of these
results also assumes standard security properties for the AEAD (namely IND-CPA
and INT-CTXT) and for the key schedule KS (namely pseudo-randomness). In
particular, these results are proven in the standard model. Somewhat to our
surprise, it turns out that the APKE obtained by the AKEM/DEM construction
does not provide insider authenticity (and so, nor does HPKEAuth itself). Indeed,
we give an attack in Sect. 4.4.
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Table 1 summarises the AKEM and AEAD properties we use to prove each of
the remaining 3 types of security for the AKEM/DEM APKE construction.

The HPKEAuth Scheme. In Sect. 5 we analyse the generic HPKEAuth scheme pro-
posed in the RFC. HPKEAuth is an instantiation of the AKEM/DEM paradigm
discussed above.

Thus, we first analyse DH-AKEM, the particular AKEM underlying HPKEAuth.
The RFC buildsDH-AKEM from a key-derivation functionKDF and an underlying
generic Diffie-Hellman group. As one of our main results we show that DH-AKEM
provides authenticity and privacy based on the Gap Diffie-Hellman assumption
over the underlying group. To show this we model KDF as a random oracle.

Next we consider HPKEAuth’s key schedule and prove it to be pseudo-random
based on pseudo-randomness of its building blocks, the functions Extract and
Expand. Similarly, we argue why DH-AKEM’s key derivation function KDF can
be modelled as a random oracle. Finally, by applying our results about the
AKEM/DEM paradigm from the previous sections, we obtain security proofs
capturing the privacy and authenticity of HPKEAuth as an APKE. Our presenta-
tion ends with concrete bounds of HPKEAuth’s security and their interpretation.

Practice-OrientedCryptography.Due to the very applied nature of HPKE
we have taken care to maximise the practical relevance of our results. All security
properties we analyse for HPKEAuth are defined directly for a multi-user setting.
Further, to help practitioners set sound parameters for their HPKE applications,
our results are stated in terms of very fine-grained exact (as opposed to asymptotic)
terms. That is, the security loss for each result is bounded as an explicit function
of various parameters such as the numbers of key pairs, queries, etc.

Finally, instead of relying on a generic prime-order group to state our underly-
ing security assumptions, we ultimately reduce security to assumptions on each
of the concrete elliptic-curve-based instantiations. For the P-256, P-384, and
P-521 curves, this is relatively straightforward. However, for Curve25519 and
Curve448, this is a less than trivial step as those groups (and their associated
Diffie-Hellman functions X25519 and X448) depart significantly from the stan-
dard generic group abstraction. To this end we introduce the new abstraction of
nominal groups which allows us to argue about correctness and security of our
schemes over all above-mentioned elliptic curve groups, including Curve25519
and Curve448. (We believe this abstraction has applications well beyond its use
in this work.) Ultimately, this approach results in both an additional security loss
and the explicit consideration of (potential) new attacks not present for generic
groups. In particular, both Curve25519 and Curve448 exhibit similar (but dif-
ferent) idiosyncrasies such as having non-equal but functionally equivalent curve
points as well as self-reducibility with non-zero error probability, all of which we
take into account in our reductions to the respective underlying assumption.

1.2 Proof Techniques

The results in this work have been demonstrated using a combination of tra-
ditional “pen-and-paper” techniques and the automated theorem proving tool
CryptoVerif [13], which was already used to verify important practical protocols
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such as TLS 1.3 [12], Signal [22], and WireGuard [27]. CryptoVerif produces
game-based proofs: it starts from an initial game provided by the user, which
represents the protocol or scheme to prove; it transforms this game step by step
using a predefined set of game transformations, until it reaches a game on which
the desired security properties can easily be proved from the form of the game.
The game transformations are guaranteed to produced computationally indis-
tinguishable games, and either rely on a proof by reduction to a computational
assumption or are syntactic transformations (e.g. replace a variable with its
value). Using CryptoVerif to prove statements can result in greater confidence
in their correctness, especially when the proofs require deriving (otherwise quite
tedious) exact bounds on the security loss and/or reasoning about relatively
complicated, e.g. multi-instance, security games.

However, CryptoVerif also has its limitations. Fortunately, these can be read-
ily overcome using traditional techniques. The language used to define security
statements in CryptoVerif is rather unconventional in the context of cryptog-
raphy, not to mention (necessarily) very formal and detailed. Together this can
make it quite challenging to build an intuitive understanding for a given notion
(e.g. to verify that it captures the desired setting). To circumvent this, we present
each of our security definitions using the more well-known language of game-
based security. Next we map these to corresponding CryptoVerif definitions.
Thus, the intuition can be built upon a game-based notion and it remains only
to verify the functional equivalence of the CryptoVerif instantiation.

CryptoVerif was designed with multi-instance security in mind and so relies
on more unconventional multi-instance number theoretic assumptions. However,
the simpler a definition (say, for a KEM) the easier it is to demonstrate for a
given construction. Similarly, in cryptography we tend to prefer simpler, static,
not to mention well-known, number theoretic assumptions so as to build more
confidence in them. Consequently, we have augmented the automated proofs
with further pen-and-paper proofs reducing multi-instance security notions and
assumptions to simpler (and more conventional) single-instance versions.

1.3 Related Work

Hybrid cryptography (of which the AKEM/DEM construction in this work is an
example) is a widely used technique for constructing practically efficient asym-
metric primitives. In particular, there exist several hybrid PKE-based concrete
standards predating HPKE, mostly based on the DHIES scheme of [1] defined
over a generic (discrete log) group. When the group is instantiated using elliptic
curves the result is often referred to as ECIES (much like the Diffie-Hellman
scheme over an elliptic curve group is referred to as ECDH). A description and
comparison of the most important such standards can be found in [20]. However,
per the HPKE RFC, “All these existing schemes have problems, e.g., because they
rely on outdated primitives, lack proofs of IND-CCA2 security, or fail to provide
test vectors.” Moreover, to the best of our knowledge, none of these standards
provide a means for authenticating senders.

The APKE primitive we analyse in this paper can be viewed as a flavour
of signcryption [31]; a family of primitives intended to efficiently combine
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signatures and public key encryption. Signcryption literature is substantial and
we refer to the textbook [18] for an extensive exposition thereof. We high-
light some chapters of particular relevance. Chapters 2 and 3 cover 2-party and
multi-party security notions, respectively; both for insider and outsider variants.
Chapter 4 of [18] contains several (Gap)-Diffie-Hellman-based signcryption con-
structions. Finally, Chapter 7 covers some AKEM security notions and construc-
tions (aka. “signcryption KEM”) as well as hybrid signcryption constructions
such as the outsider-secure one of [17] and insider-secure one of [16]. In con-
trast to our work, almost all security notions in [18] forbid honest parties from
reusing the same key pair for both sending and receiving (even if sender and
receiver keys have identical distribution).2 Nor is it clear that a scheme satisfy-
ing a “key-separated” security notion could be converted into an equally efficient
scheme supporting key reuse. The naïve transformation (embedding a sender
and receiver key pair into a single reusable key pair) would double key sizes.
However, an HPKE public key consists of a single group element which can be
used simultaneously as a sender and receiver public key.

Recently, Bellare and Stepanovs analysed the signcryption scheme underlying
the iMessage secure messaging protocol [9]. Although their security notions allow
for key reuse as in our work, they fall outside the outsider/insider taxonomy
common in signcryption literature. Instead, they capture an intermediary variant
more akin to KCI security.

A detailed model of Curve25519 [25] in CryptoVerif was already presented
in [27]; such a model was needed for the proof of the WireGuard protocol. In
this paper, we present a more generic model that allows us to deal not only
with Curve25519 but also with prime order groups such as NIST curves [28] in
a single model. Moreover, we handle rerandomisation of curve elements, which
was not taken into account in [27].

A very preliminary version of this work analyses HPKE as a single protocol,
not in a modular KEM/DEM setting [26]. The proven theorems are less strong
than the ones in this work, e.g. the adversary cannot choose secret keys but only
compromise them. However, the analysis covers the single-shot encryption form
of all four modes including the secret export API.

2 Preliminaries

Sets and Algorithms. We write h $← S to denote that the variable h is
uniformly sampled from the finite set S. For integers N,M ∈ N, we define
[N,M ] := {N,N +1, . . . ,M} (which is the empty set for M < N), [N ] := [1, N ]
and [N ]0 := [0, N ]. The statistical distance between two random variables U
and V having a common domain U is defined as Δ[U, V ] =

∑
u∈U |Pr[U =

u] − Pr[V = u]|. The notation �B�, where B is a boolean statement, evaluates
to 1 if the statement is true and 0 otherwise.

2 The only exception we are aware of are the security notions used to analyse 2 bilinear-
pairing-based schemes in Sections 5.5 and 5.6 of [18].
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We use uppercase letters A,B to denote algorithms. Unless otherwise stated,
algorithms are probabilistic, and we write (y1, . . .) $← A(x1, . . .) to denote that
A returns (y1, . . .) when run on input (x1, . . .). We write AB to denote that A
has oracle access to B during its execution. For a randomised algorithm A, we
use the notation y ∈ A(x) to denote that y is a possible output of A on input
x. We denote the running time of an algorithm A by tA.

Security Games. We use standard code-based security games [8]. A game G
is a probability experiment in which an adversary A interacts with an implicit
challenger that answers oracle queries issued by A. The game G has one main
procedure and an arbitrary amount of additional oracle procedures which describe
how these oracle queries are answered. We denote the (binary) output b of game
G between a challenger and an adversary A as GA ⇒ b. A is said to win G
if GA ⇒ 1. Unless otherwise stated, the randomness in the probability term
Pr[GA ⇒ 1] is over all the random coins in game G.

3 Elliptic Curves

In this section we introduce the elliptic curves relevant for the HPKE standard,
P-256, P-384, P-521 [28], Curve25519 and Curve448 [25], together with relevant
security assumptions.

3.1 Nominal Groups

We first define nominal groups, a general abstract model of elliptic curves, and
then show how we instantiate it for each of the above-mentioned curves.

Definition 1. A nominal group N = (G, g, p, EH , exp) consists of an efficiently
recognizable finite set of elements G (also called “group elements”), a base element
g ∈ G, a prime p, a finite set of honest exponents EH ⊂ Z, and an efficiently com-
putable exponentiation function exp : G×Z → G, where we write Xy for exp(X, y).
The exponentiation function is required to have the following properties:

(1) (Xy)z = Xyz for all X ∈ G, y, z ∈ Z

(2) gx+py = gx for all x, y ∈ Z .

We remark that even though G is called the set of (group) elements, it is not
required to form a group.

For a nominal group N = (G, g, p, EH , exp) we let GH be the distribution of
honestly generated elements, that is, the distribution of gx with x $← EH . Let
GU be the distribution of gx with x $← [1, p−1]. Depending on the choice of EH ,
these distributions may differ. We define the two statistical parameters

ΔN := Δ[GH ,GU ], and PN = max
Y ∈G

Pr
x

$←EH

[Y = gx] .

We summarise the expected security level and the concrete upper bounds for
ΔN and PN in Table 2 of Sect. 5.3 and compute them below.
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Prime-Order Groups. The simplest example of a nominal group is when
G = G is a prime-order group with generator g, exp is defined via the usual
scalar multiplication on G, and EH = [1, p − 1]. The two distributions GH and
GU are identical, so ΔN = 0. Since all elements have the same probability, we
have PN = 1/(p−1). The NIST curves P-256, P-384, and P-521 [28] are examples
of prime-order groups.

Curve25519 and Curve448. We now show that Curve25519 and Curve448 [25]
can also be seen as nominal groups. They are elliptic curves defined by equations
of the form Y 2 = X3 + AX2 + X in the field Fq for a large prime q. The curve
points are represented only by their X coordinate. When X3 + AX2 + X is a
square Y 2, X represents the curve point (X,Y ) or (X,−Y ). When X3+AX2+X
is not a square, X does not represent a point on the curve, but on its quadratic
twist. The curve is a group of cardinal kp and the twist is a group of cardinal k′p′,
where p and p′ are large primes and k and k′ are small integers. For Curve25519,
q = 2255 − 19, k = 8, k′ = 4, p = 2252 + δ, p′ = 2253 − 9 − 2δ with 0 < δ < 2125.
For Curve448, q = 2448 − 2224 − 1, k = k′ = 4, p = 2446 − 2223 − δ, p′ = 2446 + δ
with 0 < δ < 2220. The base point Q0 is an element of the curve, of order p,
which generates a subgroup Gs of the curve. The set of elements G is the set of
bitstrings of 32 bytes for Curve25519, of 56 bytes for Curve448.

The exponentiation function is specified as follows, using [11, Theorem 2.1]:
We consider the elliptic curve E(Fq2) defined by the equation Y 2 = X3+AX2+X
in a quadratic extension Fq2 of Fq. We define X0 : E(Fq2) → Fq2 by X0(∞) = 0
and X0(X,Y ) = X. For X ∈ Fq and y an integer, we define y ·X ∈ Fq as y ·X =
X0(yQX), where QX ∈ E(Fq2) is any of the two elements satisfying X0(QX) =
X. (It is not hard to verify that this mapping is well-defined.) Elements in G are
mapped to elements of Fq by the function decode_pk : G → Fq and conversely,
elements of Fq are mapped to the group elements by the function encode_pk :
Fq → G, such that decode_pk ◦ encode_pk is the identity. (For Curve25519 we
have decode_pk(X) = (Xmod2255)modq, for Curve448 decode_pk(X) = Xmod
q, and encode_pk(X) is the representation of X as an element of {0, . . . , q −1}.)
Finally, Xy = encode_pk(y · decode_pk(X)).

As required by Definition 1, we have (Xy)z = Xyz. Indeed,

(Xy)z = encode_pk(z · decode_pk(encode_pk(y · decode_pk(X))))
= encode_pk(z · y · decode_pk(X))
= encode_pk(yz · decode_pk(X)) = Xyz .

The base element is g = encode_pk(X0(Q0)). It is easy to check that gx+py =
gx, since Q0 is an element of order p. The honest exponents are chosen uniformly
in the set EH = {kn | n ∈ [M,N ]}. For Curve25519, M = 2251, N = 2252 − 1.
For Curve448, M = 2445, N = 2446 − 1.

Our exponentiation function is closely related to the function X25519 (resp.
X448 for Curve448) as defined in [25], namely X25519(y,X) = Xclamp(y), where
clamp(y) sets and resets some bits in the bitstring y to make sure that clamp(y) ∈
EH . Instead of clamping secret keys together with exponentiation, we clamp them
when we generate them, hence we generate honest secret keys in EH .
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The proof of the following Lemma 1 is in the long version [3].

Lemma 1. For Curve25519, ΔN < 2−125 and PN = 2−250, and for Curve448,
ΔN < 2−220 and PN = 2−444.

3.2 Diffie-Hellman Assumptions

Let us first recall the Gap Diffie-Hellman and Square Gap Diffie-Hellman
assumptions. We adapt them to the setting of a nominal group N =
(G, g, p, EH , exp) of the previous section, by allowing elements in G as arguments
of the Diffie-Hellman decision oracle. Moreover, we still choose secret keys in
[1, p − 1], not in EH , as it guarantees that the secret key p, or equivalently 0, is
never chosen, which helps in the following theorems.

Definition 2 (Gap Diffie-Hellman (GDH) Problem). We define the advan-
tage function of an adversary A against the Gap Diffie-Hellman problem over
nominal group N as

AdvGDH
A,N := Pr

x,y
$←[1,p−1]

[Z = gxy | Z $← ADH(gx, gy)]

where DH is a decision oracle that on input (gx̂, Y, Z), with Y,Z ∈ G, returns 1
iff Y x̂ = Z and 0 otherwise.

Definition 3 (Square Gap Diffie-Hellman (sqGDH) Problem). We define
the advantage function of an adversary A against the Square Gap Diffie-Hellman
problem over nominal group N as

AdvsqGDH
A,N := Pr

x
$←[1,p−1]

[
Z = gx2 | Z $← ADH(gx)

]

where DH is a decision oracle that on input (gx̂, Y, Z), with Y,Z ∈ G, returns 1
iff Y x̂ = Z and 0 otherwise.

CryptoVerif cannot use cryptographic assumptions directly in this form:
it requires assumptions to be formulated as computational indistinguishability
axioms between a left game G� and a right game Gr. In order to use such assump-
tions, it automatically recognizes when a game corresponds to an adversary inter-
acting with G�, and it replaces G� with Gr in that game. Moreover, CryptoVerif
requires the games G� and Gr to be formulated in a multi-key setting. That
allows CryptoVerif to apply the assumption directly in case the scheme is used
with several keys, without having to do a hybrid argument itself. (CryptoVerif
infers the multi-key assumption automatically from a single-key assumption only
in very simple cases.) Therefore, we reformulate the Gap Diffie-Hellman assump-
tion to satisfy these requirements, and prove that our formulation is implied by
the standard assumption.

We also take into account at this point that secret keys are actually chosen
in EH rather than in [1, p − 1].
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Definition 4 (Left-or-Right (n,m)-Gap Diffie-Hellman Problem). We
define the advantage function of an adversary A against the left-or-right (n,m)-
Gap Diffie-Hellman problem over nominal group N as

Adv
LoR-(n,m)-GDH
A,N :=

∣
∣
∣
∣
∣

Pr
∀i∈[n] : xi

$←EH

∀j∈[m] : yj
$←EH

[

ADH�,DH0(gx1 , . . . , gxn , gy1 , . . . , gym) ⇒ 1
]

− Pr
∀i∈[n] : xi

$←EH

∀j∈[m] : yj
$←EH

[

ADHr,DH0(gx1 , . . . , gxn , gy1 , . . . , gym) ⇒ 1
]
∣
∣
∣
∣
∣
,

where DH0 is a decision oracle that on input (gx̂, Y, Z) returns 1 iff Y x̂ = Z and
0 otherwise; DH� is a decision oracle that on input (i, j, Z) for i ∈ [n], j ∈ [m]
returns 1 iff Z = gxiyj and 0 otherwise; and DHr is an oracle that on input
(i, j, Z) for i ∈ [n], j ∈ [m] always returns 0.

Definition 5 (Left-or-Right n-Square Gap Diffie-Hellman Problem).
We define the advantage function of an adversary A against the left-or-right
n-Square Gap Diffie-Hellman problem over nominal group N as

AdvLoR-n-sqGDH
A,N :=

∣
∣
∣
∣
∣

Pr
∀i∈[n] : xi

$←EH

[ADH�,DH0(gx1 . . . , gxn) ⇒ 1
]

− Pr
∀i∈[n] : xi

$←EH

[ADHr,DH0(gx1 , . . . , gxn) ⇒ 1
]
∣
∣
∣
∣
∣

,

where DH0 is a decision oracle that on input (gx̂, Y, Z) returns 1 iff Y x̂ = Z and
0 otherwise; DH� is a decision oracle that on input (i, j, Z) for i, j ∈ [n] returns
1 iff Z = gxixj and 0 otherwise; and DHr is an oracle that on input (i, j, Z) for
i, j ∈ [n] always returns 0.

The proofs of Theorems 1 and 2 are in the long version [3].

Theorem 1 (GDH ⇒ LoR-(n,m)-GDH). For any adversary A against LoR-
(n,m)-GDH, there exists an adversary B against GDH such that

Adv
LoR-(n,m)-GDH
A,N ≤ AdvGDH

B,N + (n + m)ΔN ,

B queries the DH oracle as many times as A queries DH0, DH�, or DHr, and
tB ≈ tA.

Theorem 2 (sqGDH ⇒ LoR-n-sqGDH). For any adversary A against LoR-n-
sqGDH, there exists an adversary B against sqGDH such that

AdvLoR-n-sqGDH
A,N ≤ AdvsqGDH

B,N + nΔN ,

B queries the DH oracle as many times as A queries DH0, DH�, or DHr, and
tB ≈ tA.
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In these theorems, the terms in ΔN = Δ[GH ,GU ] come from the reran-
domisation of keys, which yields keys distributed according to GU , while the
adversary expects keys distributed according to GH . (Choosing secret keys in
EH in Definitions 2 and 3 would not avoid this term.)

Implementation in CryptoVerif. Definitions in this style for many crypto-
graphic primitives are included in a standard library of cryptographic assump-
tions in CryptoVerif. As a matter of fact, this library includes a more general
variant of the Gap Diffie-Hellman assumption, with corruption oracles and with
a decision oracle DH(g,X, Y, Z), which allows the adversary to choose g. In this
paper, we use the definition above as it is sufficient for our proofs.

4 Authenticated Key Encapsulation and Public Key
Encryption

In Sect. 4.1, we introduce notation and security notions for an authenticated
key encapsulation mechanism (AKEM), namely Outsider-CCA, Insider-CCA and
Outsider-Auth. In Sect. 4.2, we introduce notation and security notions for
authenticated public key encryption (APKE) which follow the ideas of the
notions defined for AKEM. Additionally, we define Insider-Auth security.

In Sect. 4.3, we show how to construct an APKE scheme which achieves
Outsider-CCA, Insider-CCA and Outsider-Auth, from an AKEM, a pseudo-random
function (PRF), and a nonce-based authenticated encryption with associated
data (AEAD) scheme. For Insider-Auth, we give a concrete attack in Sect. 4.4.

4.1 Authenticated Key Encapsulation Mechanism

Definition 6 (AKEM). An authenticated key encapsulation mechanism AKEM
consists of three algorithms:

– Gen outputs a key pair (sk , pk), where pk defines a key space K.
– AuthEncap takes as input a (sender) secret key sk and a (receiver) public key

pk , and outputs an encapsulation c and a shared secret K ∈ K.
– Deterministic AuthDecap takes as input a (receiver) secret key sk , a (sender)

public key pk , and an encapsulation c, and outputs a shared key K ∈ K.

We require that for all (sk1, pk1) ∈ Gen, (sk2, pk2) ∈ Gen,

Pr
(c,K)

$←AuthEncap(sk1,pk2)

[AuthDecap(sk2, pk1, c) = K] = 1 .

The two sets of secret and public keys, SK and PK, are defined via the support
of the Gen algorithm as SK := {sk | (sk , pk) ∈ Gen} and PK := {pk | (sk , pk) ∈
Gen}. We assume that there exists a projection function μ : SK → PK, such
that for all (sk , pk) ∈ Gen it holds that μ(sk) = pk . Note that such a function
exists without loss of generality by defining sk to be the randomness rnd used
in the key generation.
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Finally, the key collision probability PAKEM of AKEM is defined as

PAKEM := max
pk∈PK

Pr
(sk ′,pk ′) $←Gen

[pk = pk ′] .

Privacy. We define the games (n, qe, qd)-Outsider-CCA� and (n, qe, qd)-Outsider-
CCAr in Listing 1 and the games (n, qe, qd, qc)-Insider-CCA� and (n, qe, qd, qc)-
Insider-CCAr in Listing 2. The games follow the left-or-right style, as CryptoVerif
requires this for assumptions, and we use these notions as assumptions in the
composition theorems. In the long version [3, Appendix B], we compare the
code-based game syntax with the CryptoVerif syntax for Outsider-CCA.

In all games, we generate key pairs for n users and run the adversary on
the public keys. In the Outsider-CCA games, the adversary has access to oracles
AEncap and ADecap. AEncap takes as input an index specifying a sender,
as well as an arbitrary public key specifying a receiver, and returns a ciphertext
and a KEM key. In the left game Outsider-CCA�, AEncap always returns the
real KEM key. In the right game Outsider-CCAr, it outputs a uniformly random
key if the receiver public key was generated by the experiment. This models
the adversary as an outsider and ensures that target ciphertexts from an honest
sender to an honest receiver are secure, i. e. do not leak any information about
the shared key. Queries to ADecap, where the adversary specifies an index for
a receiver public key, an arbitrary sender public key and a ciphertext, output
a KEM key. In the Outsider-CCAr game, the output is kept consistent with the
output of AEncap.

In the Insider-CCA games, there is an additional challenge oracle Chall.
The adversary gives an index specifying the receiver and the secret key of the
sender, thus taking the role of an insider. Chall will then output the real KEM
key in the Insider-CCA� game, and a uniformly random key in the Insider-CCAr

game. Thus, even if the target ciphertext was produced with a bad sender secret
key (and honest receiver public key), the KEM key should be indistinguishable
from a random key. AEncap will always output the real key and the output of
ADecap is kept consistent with challenges.

In all games, the adversary makes at most qe queries to oracle AEncap and
at most qd queries to oracle ADecap. In the Insider-CCA experiment, it can
additionally make at most qc queries to oracle Chall. We define the advantage
of an adversary A as

Adv
(n,qe,qd)-Outsider-CCA
A,AKEM :=

∣
∣Pr[(n, qe, qd)-Outsider-CCA�(A) ⇒ 1]

−Pr[(n, qe, qd)-Outsider-CCAr(A) ⇒ 1]
∣
∣ ,

Adv
(n,qe,qd,qc)-Insider-CCA
A,AKEM :=

∣
∣Pr[(n, qe, qd, qc)-Insider-CCA�(A) ⇒ 1]

−Pr[(n, qe, qd, qc)-Insider-CCAr(A) ⇒ 1]
∣
∣ .

Authenticity. Furthermore, we define the games (n, qe, qd)-Outsider-Auth� and
(n, qe, qd)-Outsider-Authr in Listing 3.
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Listing 1: Games (n, qe, qd)-Outsider-CCA� and (n, qe, qd)-Outsider-CCAr for
AKEM. Adversary A makes at most qe queries to AEncap and at most qd

queries to ADecap.
(n, qe, qd)-Outsider-CCA� and

(n, qe, qd)-Outsider-CCAr

01 for i ∈ [n]
02 (sk i, pk i)

$← Gen
03 E ← ∅
04 b $← AAEncap,ADecap(pk1, . . . , pkn)
05 return b

Oracle AEncap(i ∈ [n], pk)

06 (c, K) $← AuthEncap(sk i, pk)

07 if pk ∈ {pk1, . . . , pkn}
08 K $← K
09 E ← E ∪ {(pk i, pk , c, K)}
10 return (c, K)

Oracle ADecap(j ∈ [n], pk , c)

11 if ∃K : (pk , pk j , c, K) ∈ E
12 return K
13 K ← AuthDecap(sk j , pk , c)
14 return K

Listing 2: Games (n, qe, qd, qc)-Insider-CCA� and (n, qe, qd, qc)-Insider-CCAr for
AKEM. Adversary A makes at most qe queries to AEncap, at most qd queries
to ADecap and at most qc queries to Chall.
(n, qe, qd, qc)-Insider-CCA� and

(n, qe, qd, qc)-Insider-CCAr

01 for i ∈ [n]
02 (sk i, pk i)

$← Gen
03 E ← ∅
04 b $← AAEncap,ADecap,Chall(pk1, . . . , pkn)
05 return b

Oracle Chall(j ∈ [n], sk)

06 (c, K) $← AuthEncap(sk , pk j)

07 K $← K
08 E ← E ∪ {(μ(sk), pk j , c, K)}
09 return (c, K)

Oracle AEncap(i ∈ [n], pk)

10 (c, K) $← AuthEncap(sk i, pk)
11 return (c, K)

Oracle ADecap(j ∈ [n], pk , c)

12 if ∃K : (pk , pk j , c, K) ∈ E
13 return K
14 K ← AuthDecap(sk j , pk , c)
15 return K

Listing 3: Games (n, qe, qd)-Outsider-Auth� and (n, qe, qd)-Outsider-Authr for
AKEM. Adversary A makes at most qe queries to AEncap and at most qd

queries to ADecap.
(n, qe, qd)-Outsider-Auth� and

(n, qe, qd)-Outsider-Authr

01 for i ∈ [n]
02 (sk i, pk i)

$← Gen
03 E ← ∅
04 b $← AAEncap,ADecap(pk1, . . . , pkn)
05 return b

Oracle AEncap(i ∈ [n], pk)

06 (c, K) $← AuthEncap(sk i, pk)
07 E ← E ∪ {(pk i, pk , c, K)}
08 return (c, K)

Oracle ADecap(j ∈ [n], pk , c)

09 if ∃K : (pk , pk j , c, K) ∈ E
10 return K
11 K ← AuthDecap(sk j , pk , c)

12 if pk ∈ {pk1, . . . , pkn} and K �= ⊥
13 K $← K
14 E ← E ∪ {(pk , pk j , c, K)}
15 return K
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The adversary has access to oracles AEncap and ADecap. AEncap will
always output the real KEM key. ADecap will output the real key in game
Outsider-Auth�. In the Outsider-Authr game, the adversary (acting as an outsider)
will receive a uniformly random key if the receiver public key was generated by
the experiment. Thus, the adversary should not be able to distinguish the real
KEM key from a random key for two honest users, even if it can come up with
the target ciphertext.

The adversary makes at most qe queries to oracle AEncap and at most qd

queries to oracle ADecap. We define the advantage of an adversary A as

Adv
(n,qe,qd)-Outsider-Auth
A,AKEM :=

∣
∣Pr[(n, qe, qd)-Outsider-Auth�(A) ⇒ 1]

−Pr[(n, qe, qd)-Outsider-Authr(A) ⇒ 1]
∣
∣ .

In the long version [3, Appendix A], we provide simpler single-user or 2-user
versions of these properties, and show that they non-tightly imply the definitions
above. These results could be useful to simplify the proof for new AKEMs that
could be added to HPKE, such as post-quantum AKEMs. However, because the
reduction is not tight, a direct proof of multi-user security may yield better
probability bounds. This is the case for our proof of DH-AKEM in Sect. 5.1.

4.2 Authenticated Public Key Encryption

Definition 7 (APKE). An authenticated public key encryption scheme APKE
consists of the following three algorithms:

– Gen outputs a key pair (sk , pk).
– AuthEnc takes as input a (sender) secret key sk , a (receiver) public key pk , a

message m, associated data aad , a bitstring info, and outputs a ciphertext c.
– Deterministic AuthDec takes as input a (receiver) secret key sk , a (sender)

public key pk , a ciphertext c, associated data aad and a bitstring info, and
outputs a message m.

We require that for all messages m ∈ {0, 1}∗, aad ∈ {0, 1}∗, info ∈ {0, 1}∗,

Pr
(skS,pkS)

$←Gen

(skR,pkR)
$←Gen

[
c ← AuthEnc(skS , pkR,m, aad , info),
AuthDec(skR, pkS , c, aad , info) = m

]

= 1 .

Privacy. We define the games (n, qe, qd, qc)-Outsider-CCA and (n, qe, qd, qc)-
Insider-CCA in Listing 4, which follow ideas similar to the games for outsider
and insider-secure AKEM. The security notions for APKE use the common style
where challenge queries are with respect to a random bit b. In particular, the
additional challenge oracle Chall will encrypt either message m0 or m1 pro-
vided by the adversary, depending on b. Oracles AEnc and ADec will always
encrypt and decrypt honestly (except for challenge ciphertexts).
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Listing 4: Games (n, qe, qd, qc)-Outsider-CCA and (n, qe, qd, qc)-Insider-CCA for
APKE, where (n, qe, qd, qc)-Outsider-CCA uses oracle Chall in the dashed box
and (n, qe, qd, qc)-Insider-CCA uses oracle Chall in the solid box. Adversary A
makes at most qe queries to AEnc, at most qd queries to ADec and at most qc

queries to Chall.

(n, qe, qd, qc)-Outsider-CCA and

(n, qe, qd, qc)-Insider-CCA

01 for i ∈ [n]
02 (sk i, pk i)

$← Gen
03 E ← ∅
04 b $← {0, 1}
05 b′ $← AAEnc,ADec,Chall(pk1, . . . , pkn)
06 return �b = b′�

Oracle ADec(j ∈ [n], pk , c, aad , info)
07 if (pk , pk j , c, aad , info) ∈ E
08 return ⊥
09 m ← AuthDec(sk j , pk , c, aad , info)
10 return m

Oracle AEnc(i ∈ [n], pk , m, aad , info)

11 c $← AuthEnc(sk i, pk , m, aad , info)
12 return c

Oracle Chall(i ∈ [n], j ∈ [n], m0, m1, aad , info)
13 if |m0| �= |m1| return ⊥
14 c $← AuthEnc(sk i, pk j , mb, aad , info)
15 E ← E ∪ {(pk i, pk j , c, aad , info)}
16 return c

Oracle Chall(j ∈ [n], sk , m0, m1, aad , info)
17 if |m0| �= |m1| return ⊥
18 c $← AuthEnc(sk , pk j , mb, aad , info)
19 E ← E ∪ {(μ(sk), pk j , c, aad , info)}
20 return c

Listing 5: Games (n, qe, qd)-Outsider-Auth and (n, qe, qd)-Insider-Auth for APKE.
Adversary A makes at most qe queries to AEnc and at most qd queries to ADec.

(n, qe, qd)-Outsider-Auth
01 for i ∈ [n]
02 (sk i, pk i)

$← Gen
03 E ← ∅
04 (i∗, j∗, c∗, aad∗, info∗) $←
AAEnc,ADec(pk1, . . . , pkn)
05 return �(pk i∗ , pk j∗ , c∗, aad∗, info∗) �∈ E

and AuthDec(sk j∗ , pk i∗ , c∗, aad∗, info∗) �= ⊥�

(n, qe, qd)-Insider-Auth
06 for i ∈ [n]
07 (sk i, pk i)

$← Gen
08 E ← ∅
09 (i∗, sk , c∗, aad∗, info∗) $← AAEnc,ADec(pk1, ..., pkn)
10 return �(pk i∗ , μ(sk), c∗, aad∗, info∗) �∈ E

and AuthDec(sk , pk i∗ , c∗, aad∗, info∗) �= ⊥�

Oracle AEnc(i ∈ [n], pk , m, aad , info)

11 c $← AuthEnc(sk i, pk , m, aad , info)
12 E ← E ∪ {(pk i, pk , c, aad , info)}
13 return c

Oracle ADec(j ∈ [n], pk , c, aad , info)
14 m ← AuthDec(sk j , pk , c, aad , info)
15 return m

Listing 6: Authenticated PKE scheme APKE[AKEM,KS,AEAD] construction
from AKEM, KS and AEAD, where APKE.Gen = AKEM.Gen.

AuthEnc(sk , pk , m, aad , info)

01 (c1, K) $← AuthEncap(sk , pk)
02 (k,nonce) ← KS(K, info)
03 c2 ← AEAD.Enc(k, m, aad ,nonce)
04 return (c1, c2)

AuthDec(sk , pk , (c1, c2), aad , info)
05 K ← AuthDecap(sk , pk , c1)
06 (k,nonce) ← KS(K, info)
07 m ← AEAD.Dec(k, c2, aad ,nonce)
08 return m
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In these games, the adversary A makes at most qe queries to oracle AEnc,
at most qd queries to oracle ADec, and at most qc queries to oracle Chall. The
advantage of A is

Adv
(n,qe,qd,qc)-Outsider-CCA
A,APKE :=

∣
∣
∣
∣Pr[(n, qe, qd, qc)-Outsider-CCA(A) ⇒ 1] − 1

2

∣
∣
∣
∣ ,

Adv
(n,qe,qd,qc)-Insider-CCA
A,APKE :=

∣
∣
∣
∣Pr[(n, qe, qd, qc)-Insider-CCA(A) ⇒ 1] − 1

2

∣
∣
∣
∣ .

Authenticity. Furthermore, we define the games (n, qe, qd)-Outsider-Auth and
(n, qe, qd)-Insider-Auth in Listing 5. The adversary has access to an encryption
and decryption oracle and has to come up with a new tuple of ciphertext, asso-
ciated data and info for any honest receiver secret key (Outsider-Auth) or any
(possibly leaked or bad) receiver secret key (Insider-Auth), provided that the
sender public key is honest.

In these games, adversary A makes at most qe queries to oracle AEnc and
at most qd queries to oracle ADec. The advantage of A is defined as

Adv
(n,qe,qd)-Outsider-Auth
A,APKE :=Pr[(n, qe, qd)-Outsider-Auth(A) ⇒ 1] ,

Adv
(n,qe,qd)-Insider-Auth
A,APKE :=Pr[(n, qe, qd)-Insider-Auth(A) ⇒ 1] .

4.3 From AKEM to APKE

In this section we define and analyse a general transformation that models
HPKE’s way of constructing APKE from an AKEM (c.f. Definition 6) and an
AEAD (c.f. [3, Section 3]). It also uses a so-called key schedule KS which we model
as a keyed function KS : K × {0, 1}∗ → {0, 1}∗, where K matches the AKEM’s
key space. KS outputs an AEAD key k and an initialisation vector nonce (called
base nonce in the RFC) from which the AEAD’s nonces are computed. (The key
schedule defined in the HPKE standard also outputs an additional key called
exporter secret that can be used to derive keys for use by arbitrary higher-level
applications. This export API is not part of the single-shot encryption API that
we are analysing, and thus we omit it in our definitions.) Listing 6 gives the
formal specification of APKE built from AKEM, KS and AEAD.

We observe that in the single-shot encryption API, every AEAD key k is
used to produce exactly one ciphertext, and thus is only used with one nonce.
In HPKE, messages are counted with a sequence number s starting at 0 and the
nonce for a message is computed by nonce ⊕ s. For the single-shot encryption
API this means that the nonce is equal to the initialisation vector nonce. At the
same time, this means that nonce is by definition unique.

We now give theorems stating the (n, qe, qd, qc)-Outsider-CCA, (n, qe, qd)-
Outsider-Auth and (n, qe, qd, qc)-Insider-CCA security of APKE[AKEM,KS,AEAD]
defined in Listing 6. Theorems 3 to 5 are proven using CryptoVerif ver-
sion 2.04. This version includes an improvement in the computation of prob-
ability bounds that allows us to express these bounds as functions of the
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total numbers of queries to the AEnc, ADec, and Chall oracles instead of
the number of users and the numbers of queries per user. The CryptoVerif
input files are given in hpke.auth.outsider-cca.ocv, hpke.auth.insider-cca.ocv,
and hpke.auth.outsider-auth.ocv [2]. These proofs are fairly straightforward. As
an example, we prefer explaining the proof of Theorem 7 later, which is more
interesting. In Sect. 4.4, we show that APKE[AKEM,KS,AEAD] cannot achieve
Insider-Auth security.

As detailed in the long version [3, Section 3], we define a multi-key PRF
security experiment (nk, qPRF)-PRF with nk keys, in which the adversary makes
at most qPRF queries for each key. We also define multi-key IND-CPA and INT-
CTXT security experiments for the AEAD: nk-IND-CPA and (nk, qd)-INT-CTXT,
with nk keys, in which the adversary makes at most one encryption query for each
key and, for the INT-CTXT experiment, at most qd decryption queries in total.
In these experiments, the nonces of the AEAD are chosen randomly.

Theorem 3 (AKEM Outsider-CCA + KS PRF + AEAD IND-CPA + AEAD INT-
CTXT ⇒ APKE Outsider-CCA). For any (n, qe, qd, qc)-Outsider-CCA adversary
A against APKE[AKEM,KS,AEAD], there exist an (n, qe + qc, qd)-Outsider-CCA
adversary B against AKEM, an (qc, qc + qd)-PRF adversary C against KS, an
qc-IND-CPA adversary D1 against AEAD and an (qc, qd)-INT-CTXT adversary
D2 against AEAD such that tB ≈ tA, tC ≈ tA, tD1 ≈ tA, tD2 ≈ tA, and

Adv
(n,qe,qd,qc)-Outsider-CCA
A,APKE[AKEM,KS,AEAD] ≤ 2 · Adv(n,qe+qc,qd)-Outsider-CCA

B,AKEM + 2 · Adv(qc,qc+qd)-PRF
C,KS

+ 2 · Advqc-IND-CPA
D1,AEAD + 2 · Adv(qc,qd)-INT-CTXT

D2,AEAD

+ 6n2 · PAKEM .

Theorem 4 (AKEM Insider-CCA + KS PRF + AEAD IND-CPA + AEAD INT-
CTXT ⇒ APKE Insider-CCA). For any (n, qe, qd, qc)-Insider-CCA adversary
A against APKE[AKEM,KS,AEAD], there exist an (n, qe, qd, qc)-Insider-CCA
adversary B against AKEM, an (qc, qc + qd)-PRF adversary C against KS, an
qc-IND-CPA adversary D1 against AEAD and an (qc, qd)-INT-CTXT adversary
D2 against AEAD such that tB ≈ tA, tC ≈ tA, tD1 ≈ tA, tD2 ≈ tA, and

Adv
(n,qe,qd,qc)-Insider-CCA
A,APKE[AKEM,KS,AEAD] ≤ 2 · Adv(n,qe,qd,qc)-Insider-CCA

B,AKEM + 2 · Adv(qc,qc+qd)-PRF
C,KS

+ 2 · Advqc-IND-CPA
D1,AEAD + 2 · Adv(qc,qd)-INT-CTXT

D2,AEAD

+ 6n2 · PAKEM .

Theorem 5 (AKEM Outsider-CCA + AKEM Outsider-Auth + KS PRF +
AEAD INT-CTXT ⇒ APKE Outsider-Auth). For any (n, qe, qd)-Outsider-
Auth adversary A against APKE[AKEM,KS,AEAD], there exist an (n, qe, qd +
1)-Outsider-CCA adversary B1 against AKEM, an (n, qe, qd + 1)-Outsider-Auth
adversary B2 against AKEM, an (qe + qd + 1, qe + 2qd + 1)-PRF adversary C
against KS, and an (qe +3qd +3, 4qd +1)-INT-CTXT adversary D against AEAD
such that tB1 ≈ tA, tB2 ≈ tA, tC ≈ tA, tD ≈ tA, and

https://github.com/blipp/hpke-analysis-suppl-material/blob/master/hpke.auth.outsider-cca.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/hpke.auth.insider-cca.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/hpke.auth.outsider-auth.ocv
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Adv
(n,qe,qd)-Outsider-Auth
A,APKE[AKEM,KS,AEAD] ≤ Adv

(n,qe,qd+1)-Outsider-CCA
B1,AKEM + Adv

(n,qe,qd+1)-Outsider-Auth
B2,AKEM

+ Adv
(qe+qd+1,qe+2qd+1)-PRF
C,KS

+ Adv
(qe+3qd+3,4qd+1)-INT-CTXT
D,AEAD + n(qe + 13n) · PAKEM .

4.4 Infeasibility of Insider-Auth Security

For any AKEM, KS, and AEAD, the construction APKE[AKEM,KS,AEAD] given
in Listing 6 is not (n, qe, qd)-Insider-Auth secure. The inherent reason for this
construction to be vulnerable against this attack is that the KEM ciphertext
does not depend on the message. Thus, the KEM ciphertext can be reused and
the DEM ciphertext can be exchanged by the encryption of any other message.

Theorem 6. There exists an efficient adversary A against (n, qe, qd)-
Insider-Auth security of APKE[AKEM,KS,AEAD] such that

Adv
(n,qe,qd)-Insider-Auth
A,APKE[AKEM,KS,AEAD] = 1 .

Proof. We construct adversary A in Listing 7. It takes as input n public keys and
has oracle access to AEnc and ADec. It first generates a key pair (sk∗, pk∗) and
queries the AEnc oracle on any index i∗, receiver public key pk∗, an arbitrary
message m1, as well as arbitrary associated data aad and string info.

Listing 7: Adversary A against (n, qe, qd)-Insider-Auth as defined in Listing 5,
of APKE[AKEM,KS,AEAD].

Adversary AAEnc,ADec(pk1, . . . , pkn)
01 (sk∗, pk∗) ← AKEM.Gen
02 i∗ := 1; m1 := aad := info := 1
03 (c1, c2) ← AEnc(i∗, pk∗, m1, aad , info)
04 K ← AuthDecap(sk∗, pk i∗ , c1)
05 (k,nonce) ← KS(K, info)
06 m2 := 2
07 c′

2 ← AEAD.Enc(k, m2, aad ,nonce)
08 return (i∗, sk∗, (c1, c

′
2), aad , info)

The challenger computes (c1,K) $← AuthEncap(sk i∗ , pk∗), (k,nonce) ←
KS(K, info) and c2 ← AEAD.Enc(k,m1, aad ,nonce), and returns (c1, c2) to A.

Since A knows the secret key sk∗, it is able to compute the underlying KEM
key K using AuthDecap. Next, it computes (k,nonce) and thus retrieves the
key k used in the AEAD scheme. Finally, A encrypts any other message m2

to ciphertext c′
2 and replaces the AEAD ciphertext c2 with the new ciphertext.

Since (c1, c2) �= (c1, c′
2), the latter constitutes a valid forgery in the (n, qe, qd)-

Insider-Auth security experiment. �
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Listing 8: DH-AKEM[N ,KDF] = (Gen,AuthEncap,AuthDecap) as defined in
the RFC [5], constructed from a nominal group N and key derivation function
KDF : {0, 1}∗ → K, with K = {0, 1}N .

Gen
01 sk $← EH

02 pk ← gsk

03 return (sk , pk)

ExtractAndExpand(dh, context)

04 IKM ← "HPKE-v1" || suiteid ||
"eae_prk" || dh

05 info ← Encode(N) || "HPKE-v1" ||
suiteid || "shared_secret" ||
context

06 return KDF("", IKM , info)

AuthEncap(sk ∈ EH , pk ∈ G)
07 (esk , epk) $← Gen
08 context ← (epk , pk , gsk )
09 dh ← (pkesk , pk sk )
10 K ← ExtractAndExpand(dh, context)
11 return (epk , K)

AuthDecap(sk ∈ EH , pk ∈ G, epk ∈ G)
12 context ← (epk , gsk , pk)
13 dh ← (epk sk , pk sk )
14 return ExtractAndExpand(dh, context)

5 The HPKE Standard

In Sect. 5.1, we show how to construct HPKE’s abstract AKEM construction
DH-AKEM from a nominal group N and a key derivation function KDF. In
Sect. 5.2, we define and analyse HPKE’s specific key schedule KSAuth and key
derivation function HKDFN . Finally, in Sect. 5.3 we put everything together and
obtain the HPKE standard in Auth mode from all previous sections.

5.1 HPKE’s AKEM Construction DH-AKEM

In this section we present the RFC’s instantiation of the AKEM definition, and
prove that it satisfies the security notions defined earlier. Listing 8 shows the
formal definition of DH-AKEM[N ,KDF] relative to a nominal group N (c.f.
Definition 1) and a key derivation function KDF : {0, 1}∗ → K, where K is
the key space. (The RFC uses a key space K, consisting of bitstrings of length
N , which corresponds to Nsecret in the RFC.) The construction also depends
on the fixed-size protocol constants "HPKE-v1" and suiteid, where suiteid iden-
tifies the KEM in use: it is a string "KEM" plus a two-byte identifier of the KEM
algorithm. The bitstring Encode(N) is the two-byte encoding of the length N
expressed in bytes. Correctness follows by property (1) of Definition 1. We make
the implicit convention that AuthEncap and AuthDecap return reject (⊥) if their
inputs are not of the right data type as specified in Listing 8.

We continue with statements about the (n, qe, qd)-Outsider-CCA, (n, qe, qd,
qc)-Insider-CCA, and (n, qe, qd)-Outsider-Auth security of DH-AKEM[N ,KDF],
modelling KDF as a random oracle. The proofs are written with Cryp-
toVerif version 2.04; the input files are dhkem.auth.outsider-cca-lr.ocv,
dhkem.auth.insider-cca-lr.ocv, and dhkem.auth.outsider-auth-lr.ocv [2]. We
sketch the proof of one of the three theorems as an example, to help under-
stand CryptoVerif’s approach.

https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.outsider-cca-lr.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.insider-cca-lr.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.outsider-auth-lr.ocv


Analysing the HPKE Standard 107

Our results hold for any nominal group, which covers the three NIST curves
allowed by the RFC, as well as for the other two allowed curves, Curve25519 and
Curve448. The bounds given in Theorems 7 to 9 depend on the probabilities ΔN
and PN , which can be instantiated for these five different curves using the values
indicated in Table 2 on Page 27.

At the end of this section, we sketch the attack against the Insider-Auth
security.

Theorem 7 (Outsider-CCA security of DH-AKEM). Under the GDH assump-
tion in N and modelling KDF as a random oracle, DH-AKEM[N ,KDF] is
Outsider-CCA secure. In particular, for any adversary A against (n, qe, qd)-
Outsider-CCA security of DH-AKEM[N ,KDF] that issues at most qh queries to
the random oracle KDF, there exists an adversary B against GDH such that

Adv
(n,qe,qd)-Outsider-CCA
A,DH-AKEM[N ,KDF] ≤ AdvGDH

B,N + (n + qe) · ΔN

+ (qeqd + 2nqe + 7q2e + 13n2) · PN

B issues nqe + nqd + 2qdqh + 3nqh queries to the DH oracle, and tB ≈ tA.

Proof. This proof is mechanized using the tool CryptoVerif. We give to the tool
the assumptions that N is a nominal group that satisfies the GDH assumption,
formalized by Definition 4, and that KDF is a random oracle. We also give the
definition of DH-AKEM, and ask it to show that the games (n, qe, qd)-Outsider-
CCA� and (n, qe, qd)-Outsider-CCAr are computationally indistinguishable. In the
particular case of DH-AKEM, these two games include an additional oracle: the
random oracle KDF. The theorem, the initial game definitions, and the proof
indications are available in the file dhkem.auth.outsider-cca-lr.ocv [2].

The proof proceeds by transforming the game (n, qe, qd)-Outsider-CCA� by
several steps into a game Gfinal and the game (n, qe, qd)-Outsider-CCAr into
the same game Gfinal. Since all transformation steps performed by Cryp-
toVerif are designed to preserve computational indistinguishability, we obtain
that (n, qe, qd)-Outsider-CCA� and (n, qe, qd)-Outsider-CCAr are computationally
indistinguishable. We guide the transformations with the following main steps.

Starting from (n, qe, qd)-Outsider-CCA�, in the oracle AEncap, we first distin-
guish whether the provided public key pk is honest, by testing whether pk = pk i

for some i (a test that appears in (n, qe, qd)-Outsider-CCAr). We rename some
variables to give them different names when pk ∈ {pk1, . . . , pkn} and when
pk /∈ {pk1, . . . , pkn}, to facilitate future game transformations. In the oracle
ADecap, we test whether ∃K : (pk , pk j , c,K) ∈ E , which corresponds to a
test done in (n, qe, qd)-Outsider-CCAr. Furthermore, when this test succeeds, we
replace the result normally returned by ADecap, AuthDecap(sk j , pk , c) with the
key K found in E . CryptoVerif shows that this replacement does not modify the
result, which corresponds to the correctness of DH-AKEM. In the random oracle,
we distinguish whether the argument received from the adversary has a format
that matches the one used by DH-AKEM or not. Only when the format matches,
this argument may coincide with a call to the hash oracle made from DH-AKEM.

https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.outsider-cca-lr.ocv
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Next, we apply the random oracle assumption. Each call to the random oracle
is replaced with the following test: if the argument is equal to the argument of a
previous call, we return the previous result; otherwise, we return a fresh random
value. Finally, we apply the GDH assumption, which allows us to show that some
comparisons between Diffie-Hellman values are false. In particular, CryptoVerif
shows that the arguments of calls to the random oracle coming from AEncap

with pk ∈ {pk1, . . . , pkn} cannot coincide with arguments of other calls. Hence,
they return a fresh random key, as in (n, qe, qd)-Outsider-CCAr.

Starting from (n, qe, qd)-Outsider-CCAr, in the random oracle, we distinguish
whether the argument received from the adversary has a format that matches the
one used by DH-AKEM or not. Next, we apply the random oracle assumption,
as we did on the left-hand side.

The transformed games obtained respectively from (n, qe, qd)-Outsider-CCA�

and from (n, qe, qd)-Outsider-CCAr are then equal, which concludes the proof.
CryptoVerif computes the bound on the probability of distinguishing the

games (n, qe, qd)-Outsider-CCA� and (n, qe, qd)-Outsider-CCAr by adding bounds
computed at each transformation step. During this proof, CryptoVerif automat-
ically eliminates unlikely collisions, in particular between public Diffie-Hellman
keys. By default, CryptoVerif eliminates these collisions aggressively, even when
that is not required for the proof to succeed, which results in a large probability
bound. To avoid that, we guide the tool by giving estimates for n, qper user

e ,
qper user
d , qh, PN , where qper user

e and qper user
d are the number of AEncap and

ADecap queries respectively, per user. We also give a maximum probability
for which we allow eliminating collisions. Our estimates are such that we allow
eliminating collisions of probability PN times a cubic factor in n, qper user

e , and
qper user
d , but do not allow eliminating collisions with more than a cubic factor in

n, qper user
e , and qper user

d , nor collisions that involve qh. These estimates are used
only to decide whether to eliminate collisions. The obtained probability formula
is then valid even if the actual numbers do not match the given estimates.

The probability formula computed by CryptoVerif involves both the total
numbers of queries qe, qd and the number of queries per user qper user

e , qper user
d .

For simplicity, we upper bound qper user
e by qe and qper user

d by qd, yielding the
formula given in the theorem. �
Theorem 8 (Insider-CCA security of DH-AKEM). Under the GDH assumption
in N and modelling KDF as a random oracle, DH-AKEM[N ,KDF] is Insider-
CCA secure. In particular, for any (n, qe, qd, qc)-Insider-CCA adversary A against
DH-AKEMN that issues at most qh queries to the random oracle, there exists an
adversary B against GDH such that

Adv
(n,qe,qd,qc)-Insider-CCA
A,DH-AKEM[N ,KDF] ≤ AdvGDH

B,N + (n + qc) · ΔN

+ (2qeqd + qcqd + qcqe + 2nqe + 7q2e + 2q2c + 17n2) · PN

B makes nqe + 2qcqe + 2qdqh + 3nqh queries to the DH oracle, and tB ≈ tA.

Theorem 9 (Outsider-Auth security of DH-AKEM). Under the sqGDH
assumption in N and modelling KDF as a random oracle, DH-AKEM[N ,KDF] is
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Outsider-Auth secure. In particular, for any (n, qe, qd)-Outsider-Auth adversary
A against DH-AKEMN that issues at most qh queries to the random oracle, there
exists an adversary B against sqGDH such that

Adv
(n,qe,qd)-Outsider-Auth
A,DH-AKEM[N ,KDF] ≤ 2AdvsqGDH

B,N + 2(n + qe) · ΔN

+ (qeqd + 4nqd + 12q2e + 4nqe + 20n2) · PN

B issues nqe + nqd + 4qdqh + 3nqh queries to the DH oracle, and tB ≈ tA.

Infeasibility of Insider-Auth security. As for APKE, we could define an
Insider-Auth security notion for AKEM, which precludes forgeries even when the
receiver key pair is dishonest, provided the sender key pair is honest. However,
the DH-AKEM construction does not even achieve KCI security, a relaxation
of Insider-Auth security only precluding forgeries for leaked, but still honestly
generated, receiver key pairs. Indeed, in DH-AKEM, knowledge of an arbitrary
receiver secret key is already sufficient to compute the Diffie-Hellman shared key
for any sender public key. Thus, in a KCI attack, an adversary that learns a
target receiver’s keys can trivially produce a KEM ciphertext and corresponding
encapsulated key for any target sender public key.

5.2 HPKE’s Key Schedule and Key Derivation Function

HPKE’s key schedule KSAuth and key derivation function HKDFN are both
instantiated via the functions Extract and Expand which are defined below. We
proceed to prove a theorem that KSAuth is a PRF, as needed for the composition
results presented in Theorems 3 to 5. Then, we argue why HKDFN can be mod-
elled as a random oracle, as assumed by Theorems 7 to 9 on DH-AKEM. Finally,
we indicate how the entire HPKEAuth scheme is assembled from the individual
building blocks presented in the previous sections.

Extract and Expand. The RFC defines two functions Extract and Expand as fol-
lows.

– Extract(salt , IKM ) is a function keyed by a bitstring salt , with input keying
material IKM as parameter, and returns a bitstring of fixed length Nh bits.

– Expand(PRK , info, L) is a function keyed by PRK , with an arbitrary bitstring
info and a length L as parameters, and returns a bitstring of length L.

In Theorem 10, we assume that Extract and Expand are PRFs with the first
parameter being the PRF key. HPKE instantiates Extract and Expand with
HMAC-SHA-2, for which the PRF assumption is justified by [6,7]. (Generally,
HPKE’s instantiation of Expand uses HMAC iteratively to achieve the variable
output length L. However, all values L used in HPKE are less or equal than the
output length of one HMAC call.) We also assume that Extract is collision resis-
tant, provided its keys are not larger than blocks of SHA-2, which is needed to
avoid that the keys be hashed before computing HMAC, and true in HPKE. This
property is immediate from the collision resistance of SHA-2, studied in [21].
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Listing 9: The key schedule KSAuth used in HPKEAuth [5].

KSAuth(kPRF, info)

01 return KeySchedule(kPRF, 0x02, info, "", "")

KeySchedule(kPRF,mode, info, psk , psk_id)

02 context ← mode ||
LabeledExtract("", "psk_id_hash", psk_id) ||
LabeledExtract("", "info_hash" , info)

03 secret ← LabeledExtract(kPRF, "secret", psk)
04 k ← LabeledExpand(secret , "key", context , Nk)
05 nonce ← LabeledExpand(secret , "base_nonce", context , Nn)
06 return (k,nonce)

LabeledExtract(salt , label, IKM ′)

07 return Extract(salt , "HPKE-v1" || suiteid || label || IKM ′)

LabeledExpand(PRK , label, context , L)

08 return Expand(PRK ,Encode(L) || "HPKE-v1" || suiteid || label || context , L)

Key Schedule. The key schedule KSAuth serves as a bridging step between
the AKEM and the AEAD of APKE. The computations done by KSAuth are as
indicated in Listing 9. The function KeySchedule used internally is the com-
mon key schedule function that the RFC defines for all modes. In HPKEAuth,
the mode parameter is set to the constant one-byte value 0x02 identifying the
mode Auth. Similarly, mode Auth does not use a pre-shared key, so the psk
parameter is always set to the empty string "", and the value psk_id that is
identifying which pre-shared key is used, is equally set to "". The RFC defines
LabeledExtract and LabeledExpand as wrappers around Extract and Expand, for
domain separation and context binding. The value suiteid is a 10-byte string
identifying the ciphersuite, composed as a concatenation of the string "HPKE",
and two-byte identifiers of the KEM, the KDF, and the AEAD algorithm in use.
The bitstring Encode(L) is the two-byte encoding of the length L expressed in
bytes. The values Nk and Nn indicate the length of the AEAD key and nonce.

The composition results established by Theorems 3 to 5 assume that KSAuth is
a PRF. The following theorem proves this property for HPKEAuth’s instantiation
of KSAuth.

Theorem 10 (Extract CR + Extract PRF + Expand PRF ⇒ KSAuth PRF).
Assuming that Extract is a collision-resistant hash function for calls with the
labels "psk_id_hash" and "info_hash", that Extract is a PRF for calls with the
label "secret", and that Expand is a PRF, it follows that KSAuth is a PRF.

In particular, for any (nk, qPRF)-PRF adversary A against KSAuth, there exist
an adversary B against the collision resistance of Extract, a (nk, nk)-PRF adver-
sary C1 against Extract, and a (nk, 2qPRF)-PRF adversary C2 against Expand such
that tB ≈ tA, tC1 ≈ tA, tC2 ≈ tA, and
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Adv
(nk,qPRF)-PRF
A,KSAuth

≤ AdvCRB,Extract + Adv
(nk,nk)-PRF
C1,Extract + Adv

(nk,2qPRF)-PRF
C2,Expand .

This theorem is proven by CryptoVerif in keyschedule.auth.prf.ocv [2].

The Key Derivation Function KDF in DH-AKEM. The AKEM instantiation
DH-AKEM as we defined it in Listing 8 uses a function KDF to derive the KEM
shared secret. In HPKEAuth, this function is instantiated by HKDFN , as defined
in Listing 10, using the above-defined Extract and Expand internally. The output
length N corresponds to Nsecret in the RFC.

In the analysis of the key schedule presented above, we assume that Extract
and Expand are pseudo-random functions. However, this assumption would not
be sufficient to prove the security of DH-AKEM: the random oracle model is
required. The simplest choice is to assume that the whole key derivation func-
tion KDF = HKDFN is a random oracle, as we do in Theorems 7 to 9. (Alterna-
tively, we could probably rely on some variant of the PRF-ODH assumption [14].
While in principle the PRF-ODH assumption is weaker than the random oracle
model, Brendel et al. [14] show that it is implausible to instantiate the PRF-
ODH assumption without a random oracle, so that would not make a major
difference.) The invocations of Extract and Expand in DH-AKEM and KSAuth use
different labels for domain separation, so choosing different assumptions is sound.
Next, we further justify the random oracle assumption for HKDFN .

As mentioned at the beginning of Sect. 5, HPKE instantiates Extract and
Expand with HMAC [23], which makes HKDFN exactly the widely-used HKDF
key derivation function [24]. HPKE specifies SHA-2 as the hash function under-
lying HMAC. Lemma 6 in [27] shows that HKDF is indifferentiable from a ran-
dom oracle under the following assumptions3: (1) HMAC is indifferentiable from
a random oracle. For HMAC-SHA-2, this is justified by Theorem 4.4 in [19]
assuming the compression function underlying SHA-2 is a random oracle. The
theorem’s restriction on HMAC’s key size is fulfilled, because DH-AKEM uses
either the empty string, or a bitstring of hash output length as key. (2) Values of
IKM do not collide with values of info || 0x01. This is guaranteed by the prefix
"HPKE-v1" of IKM , which is used as a prefix for info as well, but shifted by two
characters, because the two-byte encoding of the length N comes before it. The
shared secret lengths Nsecret specified in the RFC correspond exactly to the
output length of the hash function; this means there is only one internal call to
Expand, and thus we do not need to consider collisions of IKM with the input
to later HMAC calls.

5.3 HPKE’s APKE Scheme HPKEAuth

Let HPKEAuth := APKE[DH-AKEM[N ,HKDFN ],KSAuth,AEAD] be the APKE
construction obtained by applying the black-box AKEM/DEM composition of
Listing 6 to the DH-AKEM[N ,HKDFN ] authenticated KEM (Listing 8), where
N is a nominal group. For the key schedule of HPKEAuth we use KSAuth of List-
ing 9 and for the key derivation function we use HKDFN of Listing 10. For both
3 The exact probability bound is indicated in Lemma 8 of that paper’s full version.

https://github.com/blipp/hpke-analysis-suppl-material/blob/master/keyschedule.auth.prf.ocv
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Listing 10: Function HKDFN [Extract,Expand] as used in HPKEAuth.

HKDFN (salt , IKM , info)

01 PRK ← Extract(salt , IKM )
02 return Expand(PRK , info, N)

KSAuth and HKDFN we implement the Extract and Expand functions using HMAC
(as described in the HPKE specification). Finally, we instantiate HMAC using
one of the SHA2 family of hash functions. (Which one depends on the target bit
security of HPKEAuth, as we discuss below.)

The AKEM/DEM composition Theorems 3 to 5, together with Theorem 10
on the key schedule KSAuth, and Theorems 7 to 9 on DH-AKEM’s security, and
PDH-AKEM = PN provide the following concrete security bounds for HPKEAuth.
For simplicity, we ignore all constants and set q := qe + qd + qc.

Adv
(n,qe,qd,qc)-Outsider-CCA
A,HPKEAuth

≤ AdvGDH
B1,N + (n + q)2 · PN + (n + q) · ΔN

+ Adv
(q,q)-PRF
C,KSAuth

+ Advq-IND-CPA
D1,AEAD + Adv

(q,q)-INT-CTXT
D2,AEAD

Adv
(n,qe,qd)-Outsider-Auth
A,HPKEAuth

≤ AdvGDH
B1,N + AdvsqGDH

B2,N + (n + q)2 · PN + (n + q) · ΔN

+ Adv
(q,q)-PRF
C,KSAuth

+ Adv
(q,q)-INT-CTXT
D1,AEAD .

The bound for Insider-CCA is the same as the one for Outsider-CCA. In all bounds,
we have Adv

(q,q)-PRF
C,KSAuth

≤ AdvCRC1,Extract + Adv
(q,q)-PRF
C2,Extract + Adv

(q,q)-PRF
C3,Expand. Moreover, the

adversaries B1,B2, C,D1,D2 have (roughly) the same running time as A.

Parameter Choices of HPKEAuth. To obtain a concrete instance of HPKEAuth,
the HPKE standard allows different choices of nominal groups N that lead to
different bounds on the statistical parameters PN and ΔN . The standard also
fixes the length N of the KEM keyspace, c.f. Table 2. Even though lengths are
expressed in bytes in the RFC and the implementation, we express them in bits
in this section as this is more convenient to discuss the number of bits of security.

All concrete instances of HPKEAuth proposed by the HPKE standard build
Extract and Expand from HMAC which, in turn, uses a hash function. HPKE
proposes several concrete hash functions (all in the SHA2 family). For our secu-
rity bounds, the relevant consequence of choosing a particular hash function is
the resulting key length Nh of Expand when used as a PRF, c.f. Table 3.

Finally, to instantiate HPKEAuth, we must also specify the AEAD scheme.
HPKE allows for several choices which affect the AEAD key length Nk, nonces
length Nn, and tag length Nt, c.f. Table 4.

Discussion. We say that an instance of HPKEAuth achieves κ bits of security if
the success ratio AdvA,HPKEAuth

/tA is upper bounded by 2−κ for any adversary A
with runtime tA ≤ 2κ. In particular, we say that a term ε has κ bits of security
if ε/tA ≤ 2−κ. We discuss the implications of our results for the bit security of
the various instances of HPKEAuth proposed by the standard.
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Table 2. Parameters of DH-AKEM[N ,HKDFN ] depending on the choice of the
nominal group N .

P-256 P-384 P-521 Curve25519 Curve448

Security level κN (bits) 128 192 256 128 224
PN ≤ 2−255 2−383 2−520 2−250 2−444

ΔN ≤ 0 0 0 2−125 2−220

KEM keyspace N (bits) 256 384 512 256 512

Table 3. Choices of HMAC and the PRF key lengths of Expand, instantiated
with HMAC.

HMAC-SHA256 HMAC-SHA384 HMAC-SHA512

PRF key length Nh of Expand (bits) 256 384 512

Table 4. Choices of the AEAD scheme and their parameters.

AES-128-GCM AES-256-GCM ChaCha20-Poly1305

AEAD key length Nk (bits) 128 256 256
AEAD nonces length Nn (bits) 96 96 96
AEAD tag length Nt (bits) 128 128 128

The runtime tA of any adversary A in an APKE security game is lower-
bounded by n + q, since the adversary needs n steps to parse the n public keys
and additional q steps to make the oracle queries. We assume that tA ≤ 2κ,
where κ is the target security level.

We now estimate the security level supported by each term in AdvA,HPKEAuth
.

– Term AdvGDH
B1,N . Nominal groups N proposed for use by the HPKE standard

were designed to provide κN bits of security (c.f. Table 2). That is, we assume
that AdvGDH

B1,N /tB1 ≤ 2−κN . Since tA ≈ tB1 , we conclude that this term has
κN bits of security. The same arguments hold for AdvsqGDH

B2,N .
– Term (n + q)2 · PN . Let us show that this term also has κN bits of security.

We have n + q ≤ tA. Thus, it suffices to show that (n + q) · PN ≤ 2−κN .
Since tA ≤ 2κN , we get that (n + q) ≤ 2κN . The statement now follows as,
according to Table 2, PN � 2−2κN .

– Term (n + q) · ΔN . Let us show that this term also has κN bits of security.
For all NIST curves, we have ΔN = 0 trivially implying the statement. In
contrast, for Curve25519 and Curve448, ΔN � 2−κN , so (n + q) · ΔN ≈
(n + q)2−κN . As n + q ≤ tA, the statement also holds for these curves.

– Term AdvCRC1,Extract. The output length Nh of the concrete hash functions are
listed in Table 3. Since the generic bound on collision resistance is t2C1

/2Nh ,
this term has Nh/2 bits of security.
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– Term Adv
(q,q)-PRF
C3,Expand. The PRF key lengths Nh of Expand are specified in

Table 3. Modelling the PRF as a random oracle, we have Adv
(q,q)-PRF
C3,Expand ≤

q2/2Nh . So this term also has Nh/2 bits of security.
– Term Adv

(q,q)-PRF
C2,Extract. The PRF key length N of Extract is specified in Table 2.

By the same argument as for the previous term, this term has N/2 bits of
security. Since N/2 ≥ κN by Table 2, this term has κN bits of security.

– Terms Advq-IND-CPA
D1,AEAD + Adv

(q,q)-INT-CTXT
D2,AEAD . The terms refer to the multi-key

security of the AEAD schemes (c.f. [3, Section 3]), studied for instance in [10].
However, the current results are not sufficient to guarantee the expected secu-
rity level, such as 128 bits for AES-128-GCM. We recommend further research
to study the exact bounds of the terms instantiated with the AEAD schemes
from Table 4. In any case a simple key/nonce-collision attack has success
probability Advq-IND-CPA

D1,AEAD = q2/2Nk+Nn , where Nk is the AEAD key length
and Nn is the nonce length. A simple computation shows that this term has
at most Nk bits of security (assuming q ≤ 2Nn). Moreover, a simple attack
against INT-CTXT by guessing the authentication tag has success probability
Adv

(q,q)-INT-CTXT
D2,AEAD = q/2Nt , where Nt is the length of the authentication tag.

Hence, this term has at most Nt bits of security. Assuming these attacks also
serve as an upper bound, these terms would have min(Nk, Nt) bits of security
if q ≤ 2Nn . Since for all AEAD schemes of Table 4, we have Nt = 128 bits,
that limits the security level of HPKE to 128 bits.

To sum up, the analysis above suggests that HPKE has about κ =
min(κN , Nh/2, Nk, Nt) bits of security, under the assumption that tA ≤ 2κ and
q ≤ 2Nn . Since the tag length of the AEAD is Nt = 128 bits, we obtain κ = 128
bits; a greater security level could be obtained by using AEADs with longer
tags. More research on the multi-key security of AEAD schemes is still needed
to confirm this analysis.
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Abstract. We introduce new tightly-secure authenticated key exchange
(AKE) protocols that are extremely efficient, yet have only a constant
security loss and can be instantiated in the random oracle model both
from the standard DDH assumption and a subgroup assumption over
RSA groups. These protocols can be deployed with optimal parame-
ters, independent of the number of users or sessions, without the need to
compensate a security loss with increased parameters and thus decreased
computational efficiency.

We use the standard “Single-Bit-Guess” AKE security (with forward
secrecy and state corruption) requiring all challenge keys to be simultane-
ously pseudo-random. In contrast, most previous papers on tightly secure
AKE protocols (Bader et al., TCC 2015; Gjøsteen and Jager, CRYPTO
2018; Liu et al., ASIACRYPT 2020) concentrated on a non-standard
“Multi-Bit-Guess” AKE security which is known not to compose tightly
with symmetric primitives to build a secure communication channel.

Our key technical contribution is a new generic approach to construct
tightly-secure AKE protocols based on non-committing key encapsula-
tion mechanisms. The resulting DDH-based protocols are considerably
more efficient than all previous constructions.

Keywords: Authenticated key exchange · Tightness ·
Non-committing encryption · Forward security

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive
with immense practical importance. The goal is to securely establish a session
key between two parties in a network where an adversary can read, send, modify
or delete messages and may also corrupt selected parties and sessions.

Tightness of AKE. When proving a cryptographic scheme secure, one com-
monly describes a security reduction which transforms an adversary A that
breaks the cryptographic scheme into an adversary B that solves some underly-
ing complexity assumption. For instance, if A has advantage ε in breaking the
c© International Association for Cryptologic Research 2021
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scheme and B solves the problem with advantage ε′ = ε/L, then L is called the
reduction’s security loss. If L is constant (and in particular independent of the
number of A’s oracle queries) and additionally the running times of A and B are
roughly identical, then we say the reduction is tight. Especially when choosing
protocol-specific system parameters, the tightness of a security proof plays an
important role. In the security model for AKE the attacker can actively con-
trol all messages sent between the involved parties and is additionally allowed
to reveal secret information such as a long-term secret key (by corrupting a
party), or a session key. The adversary breaks security if it is able to distinguish
non-revealed session keys from random.

Multi-Challenge Security definitions. The standard and well established
security notion in the context of multiple challenges [3,10,18,20] is “Single-Bit
Guess” (SBG) security. The blueprint of a SBG security experiment is as follows.
First, the experiment picks a secret random bit b ∈ {0, 1}. Next, the adversary
is allowed to make multiple (up to, say, T ) challenge queries. On each challenge
query, the experiment returns a “real key” if b = 0, and an independent “random
key” if b = 1. The adversary wins if it can guess the challenge bit b with a
probability better than 1/2.

In AKE protocols, challenge queries are usually called test queries and non-
revealed session keys can be accessed by making multiple calls to a Test oracle.
If b = 0, a query to Test returns the real challenge key; if b = 1, a query to Test

returns an independent random challenge key. This notation of multi-challenge
SBG security for AKE was first formalized in 2019 by Cohn-Gordon et al. [10].
By conditioning on bit b, SBG security is known to be tightly equivalent to
(single-bit) “Real-Or-Random” (ROR) security, where the adversary has to dis-
tinguish a real game (where all challenge keys output by Test are real) from a
random game (where all challenge keys are random). Using the above equiva-
lence, SBG security precisely captures the intuition that all challenge keys are
simultaneously pseudo-random.

Surprisingly, in the first publication on tightly secure AKE protocols in 2015,
Bader et al. [1] defined a different and non-standard “Multi-Bit-Guess” (MBG)
AKE security notion. In MBG security, the experiment picks multiple indepen-
dent challenge bits b1, . . . , bT and, on the i-th Test query, it returns a real
challenge key if bi = 0 and a random challenge key if bi = 1. That is, each of the
T challenge keys depends on an independent challenge bit bi. The adversary wins
if it can guess correctly one of the T challenge bits bi∗ with a probability better
than 1/2. We are not aware of any meaningful multi-bit ROR security game that
is tightly equivalent to MBG security.1 This makes it difficult to provide a good
intuition of what MBG security tries to model.

1 If one tries to apply a similar conditioning argument as in the single-bit case, MBG
can be shown equivalent to a ROR-type security experiment where in the real game
(bi∗ = 0) the i∗-th challenge key output by Test is real and in the random game
(bi∗ = 1) it is random. However, the remaining T − 1 keys still depends on the
random bits bi (i �= i∗): the i-th challenge key is real if bi = 0 and it is random if
bi = 1. Hence, about one half of the challenge keys is expected to be real (the ones
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Choosing a Meaningful Security Model for AKE. SBG and MBG secu-
rity are asymptotically equivalent but only imply each other with a security loss
of T , the total number of Test queries. Hence, when considering tightness, one
has to carefully choose a meaningful security model.

First off, as already pointed out, SBG security is the standard and well
established security notion in the context of multiple challenges [3,10,18,20].
Cohn-Gordon et al. [10, Section 3] already pointed out that, in the AKE setting,
SBG security tightly composes with symmetric primitives, whereas MBG secu-
rity doesn’t. Let us elaborate. AKE is not intended to be used as a stand-alone
primitive. Rather, it is naturally composed with symmetric primitives to estab-
lish a secure channel [7,24], for example to encrypt (e.g., using AES) a message
with the session key. Since SBG security is tightly equivalent to ROR security,
it offers precisely the right security interface to switch all challenge keys at once
from real to random. This step allows to infer the privacy of the encrypted mes-
sages from the security properties of the symmetric primitive. MBG security, on
the other hand, does not have a meaningful ROR-style security, which makes it
difficult to argue about the privacy of the encrypted messages without relying on
a hybrid argument. In summary, in the context of tightness of AKE protocols,
SBG security is a meaningful notion whereas MBG isn’t.

Previous Results. Previous work on tight AKE protocols by Gjøsteen and
Jager [21] and Liu et al. [32] exclusively concentrated on the MBG model by
Bader et al. [1]. We now give a brief overview of existing AKE protocols in the
context of tight SBG security.

– At CRYPTO 2019, Cohn-Gordon et al. [10] presented highly efficient two mes-
sage AKE protocols with implicit authentication, in the style of HMQV [26]
and similar protocols. Their schemes achieve a loss of O(N) in the SBG secu-
rity model with weak forward secrecy, where N is the number of users. They
also extend the impossibility results from [2] to show that a loss of O(N) is
unavoidable for many natural protocols (including HMQV [26], NAXOS [28],
Kudla-Paterson [27], KEA+ [29], and more) with respect to typical crypto-
graphic security proofs (so-called simple reductions). Furthermore, since their
protocol does not feature explicit authentication, a well-known impossibility
result applies [6,26,34] and their protocol cannot achieve full forward security.

– Diemert and Jager [16] and independently Davis and Günther [15] considered
the three message TLS 1.3 handshake AKE protocol with explicit authenti-
cation. Its design follows the standard “1×KEM+2×SIG” (aka. signed Diffie-
Hellman) AKE approach [9,14–16,21,32]. TLS 1.3, when instantiated with
standardized signatures (e.g., RSA-PSS, RSA-PKCS #1 v1.5, ECDSA, or
EdDSA), has rather non-tight SBG security with full forward security. But
when instantiated with tightly secure signatures in the multi-user setting with
adaptive corruptions [1], then SBG security of TLS 1.3 actually becomes tight.
Since the TLS 1.3 protocol contains two signatures, the inefficiency of cur-

with bi = 0) whereas the other half is random, and the adversary does not have any
information on them.
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rently known tightly secure signature schemes [1,21] makes the resulting TLS
instantiation very impractical.

1.1 The Difficulty of Constructing Tightly Secure AKE

Security models for authenticated key exchange are extremely complex, as they
consider very strong adversaries that may modify, drop, or inject messages. Fur-
thermore, usually an adversary may adaptively corrupt users’ long-term secrets
via Corrupt-queries, session keys via Reveal-queries, and sometimes even
ephemeral states of sessions via Rev-State-queries. Security is formalized with
multiple Test queries, where the adversary specifies a session, receives back a
real key or a random key, and has to distinguish these. This complexity makes
achieving tight security challenging, particularly because all the following diffi-
culties must be tackled simultaneously.

The “commitment” problem. As explained in more detail in [21], this prob-
lem is the reason why nearly all security proofs of classical key exchange protocols
have a quadratic security loss. Essentially, the problem is that most AKE pro-
tocols have security proofs where a reduction can only extract a solution to a
computationally hard problem if an instance of the problem is embedded into
the protocol messages of the Tested sessions, but at the same time the reduc-
tion is not able to answer Reveal queries for such sessions. The standard way
to resolve this is to let the reduction guess the Tested session, and to embed
an instance of a computationally hard problem only there. However, this incurs
a significant security loss. A tight reduction has to be able to respond to both
Test and Reveal queries for every session.

The problem of long-term key reveals. A Corrupt query in typical
AKE security models enables the adversary to obtain the long-term key of cer-
tain users. If we want to avoid a security loss that results from guessing corrupted
and non-corrupted parties, then we must be able to construct a reduction that
“knows” valid-looking long-term keys for all users throughout the security exper-
iment. However, this is a major difficulty, for instance, in protocols where the
long-term keys are key pairs for a digital signature scheme. The difficulty is
that in the security proof we would have to describe a reduction that is able to
extract a solution to a computationally hard problem from a forged signature,
even though it “knows” the signing key and thus is able to compute a valid
signature itself. Hence, in order to obtain a tightly-secure AKE protocol, one
needs to devise a way such that a reduction always knows all secret keys, yet is
able to argue that an adversary is, e.g., not able to forge signatures.

In order to resolve this issue, previous works [1,21] constructed signature
schemes based on non-interactive OR-proof systems, which enable a reduction
to “know” one out of two signing keys. It is argued that the adversary will forge
a signature with respect to the other, unknown key with sufficiently high prob-
ability. However, these signature schemes are much less efficient than classical
ones, and thus impose a performance penalty on the protocols.
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The problem of ephemeral state reveals. Yet another difficulty arises
when the security model allows ephemeral state reveals. Previous works on
tightly-secure AKE did not consider this very strong security notion at all,
therefore we face (and solve) this problem for the first time. From a high-level
perspective, the issue is similar to the long-term key reveal problem, except
that ephemeral states are considered. In order to achieve tightness, the reduc-
tion must be able to output valid-looking states for all sessions. Note that this
includes even Tested sessions, where ephemeral states may be revealed when
parties are not corrupted.

1.2 Main Contributions

Summarizing the previous paragraphs, we can formulate the following natural
questions related to tightly secure AKE:

Q1: Do there exist implicitly authenticated two-message AKEs with tight SBG
security, state reveals, and weak forward security?

Q2: Do there exist explicitly authenticated two-message AKEs with tight SBG
security, state reveals, and full forward security, with one single signature?

In this work, we answer the two questions to the positive. Following [4,10], we
consider SBG security, allowing adaptive corruptions of long-term secrets, adap-
tive reveals of session keys, and multiple adaptive Test queries. Our model also
captures (weak and full) forward security (FS), and prevents key-compromise
impersonation and reflection attacks. In comparison to prior work on tightly-
secure key exchange [1,10,15,16,21], we consider a model which additionally
allows to reveal some internal state information.

Our DDH-Based AKE Protocols. Our two protocols instantiated from
DDH are given in Fig. 1. AKEwFS,DDH is an implicitly-authenticated two-message
protocol AKEwFS,DDH in the sense of [26]. It requires the exchange of only five
group elements in total, and thus is the first efficient implicitly-authenticated
protocol with weak FS that achieves full tightness.

Our second protocol AKEFS,DDH achieves full FS. Instead of using the
standard “1×KEM+2×SIG” approach, it replaces one of the signatures with
a more efficient MAC and an additional KEM ciphertext, which yields a
“2×KEM+1×SIG+1×MAC” construction. When instantiated at “128-bit secu-
rity” with the most efficient tightly-secure signatures of [21],2 the communication
complexity is 448 bytes, again with ephemeral state reveals. In comparison, the
previously most efficient tightly and fully forward-secure protocol with SBG
security TLS∗ (which is TLS 1.3 instantiated with the tightly-secure signature of
[21]) requires three messages, the transmission of 704 bytes and does not allow
state reveals. See Fig. 2 for a comparison of our protocols with previous works.
Note that the communication bottleneck in all full FS protocols is the number
of signatures. For completeness the figure also list previous protocols with tight
MBG security [21,32].
2 The signatures of [21] consist of 2 group elements, 4 elements in Zp and 2 hashes in

{0, 1}κ. At “128-bit security” this corresponds to 256 bytes per signature.
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Fig. 1. The two message protocols AKEwFS,DDH (without the gray boxes) and AKEFS,DDH

(including the gray boxes), where K is the resulting session key. We define context :=

(A, B, X, vk , gs
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2, σ, π ). H,HA,HB ,HX and F are hash functions.

Generic constructions of AKE from NCKE. Our main technical tool is a
new approach to achieve a tight reduction for authenticated key exchange proto-
cols. Our starting point is an extension of (receiver) non-committing encryption
(NCE) [8,33] to non-committing key encapsulation (NCKE) in the multi-user
setting with corruptions. We construct an NCKE scheme in the random oracle
model from any smooth projective hash proof system (HPS) [11]. If the HPS’
subset membership problem (SMP) is hard in the multi-instance setting, then
the NCKE scheme is also tightly secure in our multi-user setting. We provide
two such HPS, one from the DDH assumption, and another one from a subgroup
assumption over groups of unknown order. The construction allows us to address
the commitment problem described above.

We give a generic construction of an implicitly authenticated two-message
AKE protocol AKEwFS with weak forward security from any NCKE scheme,
whose security is tightly based on the multi-user security of the underlying
NCKE scheme. Furthermore, we give a generic construction of an explicitly
authenticated two-message AKE protocol AKEFS with perfect forward security
by adding a tightly-secure signature scheme and a message authentication code
(MAC) to our first construction, see Fig. 3. Thus, we require only a single signa-
ture which is particularly useful for tightly-secure key exchange, because known
constructions of suitable tightly-secure signature schemes [1,21] have relatively
large signatures and replacing one signature with a MAC significantly improves
the computational efficiency and communication complexity of the protocol.3

All these generic constructions leverage NCKE in order to resolve the tech-
nical difficulties in constructing tightly-secure AKE protocols described before.

3 [31] showed how to generically avoid signatures in forward-secure AKE protocols,
but at the cost of additional messages.
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Fig. 2. Comparison of AKE protocols over a group G, where N refers to the number
of parties, � to the number of sessions per party and T is the number of test queries.
TLS∗ refers to the TLS 1.3 handshake, instantiated with the tightly-secure signatures
of [21]. The column Comm. counts the communication complexity of the protocols in
terms of the number of group elements, hashes, and signatures. The column Model
lists the AKE security model and distinguishes between multi-bit guessing (MBG) and
the single-bit-guessing (SBG) security.

Fig. 3. Overview of our transformations, where N is the maximum number of users in
the NCKE security game and in the SUF-CMA security game. The subset membership
problem of HPS is m-fold for m = N · q, where q is the maximum number of challenge
queries in the NCKE security game.

Handling Ephemeral State Reveals. Our protocols are secure against
ephemeral state reveals. We construct the first tightly-secure protocols to achieve
this. Note that this requires us to deal with the situation that the reduction must
“know” valid ephemeral states for all sessions, even tested sessions. To this end,
we encrypt the state information with a symmetric long-term key. An adversary
now needs to query both long-term secret key and ephemeral state to reveal the
secret state information, similarly to the approach used in the NAXOS protocol
[28]. While the idea of achieving security against ephemeral state reveals by rely-
ing on the security of long-term keys was used before [5,19,28,36], the approach
to simply encrypt the state is new. It avoids the expensive re-computation of
protocol messages required in prior generic approaches, which makes it particu-
larly efficient. Also, previous work did not focus on tightness and it is unclear if
a tight proof can be achieved in an even stronger security model which requires
to reveal the randomness.
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Our approach does not work generically, e.g., it cannot be applied to the
protocols in [10,21], so we have to design our protocols such that they are com-
patible. This is due to the fact that in both works, the state is a secret DH
exponent which is implicitly determined by rerandomizing the CDH (or DDH)
challenge and then is embedded in multiple sessions. Thus, the reduction is able
to extract the solution independently of which session is the test session, but it
also does not know any of the secret exponents, which the adversary could reveal
for non-test sessions.

1.3 Related Work and Open Problems

Concurrent and independent work of Liu et al. [32] also proposed a tightly secure
2-message AKE with full forward security. Compared to our protocols, they do
not consider state reveal attacks and their proofs only hold in the MBG security
model. Their AKE construction LLGW follows the well known 1×KEM+2×SIG
approach, meaning that even neglecting the issues with the MBG security model,
it is still considerably less efficient than ours (c.f. Fig. 2). The main novelty of
[32] is the new KEM security notion of (multi-bit) “IND-mCPA with adaptive
reveals” that gives them the handle to prove tight MBG security. It is a natu-
ral question whether this KEM security notion can be adapted to a single-bit
notion such that the resulting AKE protocol achieves tight SBG (rather than
MBG) security. This is in particular interesting since IND-mCPA KEMs with
adaptive reveals can be instantiated in the standard model, whereas our NCKE
notion seem to inherently rely on random oracles. More concretely this raises
the question whether (variants of) [32] can also be proved in the SBG model,
without relying on random oracles.

2 Preliminaries

For an integer n, [n] denotes the set {1, ..., n}. For a set S, s $← S denotes that
s is sampled uniformly and independently at random from S. y ← A(x1, x2, ...)
denotes that on input x1, x2, ... the probabilistic algorithm A returns y. AO

denotes that algorithm A has access to oracle O. We will use code-based games
as introduced in [35]. An adversary is a probabilistic algorithm. Pr[GA ⇒ 1]
denotes the probability that the final output GA of game G running adversary
A is 1.

3 Multi-receiver Non-committing Key Encapsulation

In this section, we introduce Multi-Receiver Non-Committing Key Encapsula-
tion (NCKE). We will use this concept to resolve the “commitment problem”
described in the introduction, which often makes proofs for multi-party protocols
with adaptive corruptions non-tight, as for example AKE protocols.

Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists
of three algorithms. The key generation algorithm Gen outputs a key pair (pk, sk),
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where pk is the public key and sk the secret key. The encapsulation algorithm
inputs a public key pk and outputs a ciphertext c and a key K from the key
space K, where c is called an encapsulation of K. The deterministic decapsulation
algorithm inputs the secret key sk and a ciphertext c and outputs K.

By μ we denote the collision probability of the key generation algorithm. In
particular,

Pr[(pk, sk) ← Gen, (pk′, sk′) ← Gen : pk = pk′] ≤ 2−μ .

We denote the min-entropy of the encapsulation algorithm Encaps by γ(pk) :=
− log maxc∈C Pr[c = Encaps(pk)]. We say KEM is γ-spread if for all (pk, sk) ←
Gen : γ(pk) ≥ γ. This implies that for all c ∈ C:

Pr[c = Encaps(pk)] ≤ 2−γ .

Security. Following [33], we introduce a security definition of Multi-Receiver
Non-Committing Key Encapsulation (NCKE) for a key encapsulation mechanism
KEM in the random oracle model, i. e., the KEM algorithms have access to a ran-
domoracleH : {0, 1}∗ → {0, 1}κ, indicatedbyEncapsH .Ourdefinition is relative to
a simulator Sim = (SimGen,SimEncaps,SimHash). The simulated key generation
algorithm SimGen generates a key pair (pk, sk). The simulated encapsulation algo-
rithm SimEncaps takes both the public and private key and outputs a ciphertext
c. The simulated hash algorithm SimHash inputs the key pair as well as three sets
(used for bookkeeping) and deterministically computes a simulated hash value.

We define the two games NCKEreal and NCKEsim in Fig. 4 where we consider
N receivers each holding a key pair (pkn, skn). In the NCKEreal game, the original
Encaps algorithm is used. We give each user an individual hash function Hn such
that keys are computed independently. (In general, this can be implemented by
using the user’s public key and identity as input to the hash function as well,
where collisions have to be considered.) In the NCKEsim game, the SimEncaps
algorithm is used to compute the ciphertexts. Keys are chosen uniformly at
random. The adversary may also adaptively corrupt some receivers. We require
that ciphertexts of corrupted receivers always decapsulate to the key output by
Encaps, which is modeled by the SimHash algorithm. Therefore, if the receiver
is corrupted, the algorithm takes sets CK, D and H, where the first one stores all
challenge ciphertexts and keys output to the adversary, the second one stores all
decapsulation queries and the third one stores all hash queries which have been
issued so far. Thus, the SimHash algorithm can answer future queries based on
everything that is known to the adversary. If the receiver is not corrupted, set C
is used instead of CK. This set stores only challenge ciphertexts and thus a hash
value is computed independently of previous challenge keys.

The goal of an adversary A is to distinguish between the real KEM algorithms
used in game NCKEreal and the simulated algorithms used in game NCKEsim. This
is captured in Definition 1. Note that the non-committing property is due to the
SimHash algorithm. In particular, the SimHash algorithm ensures that a (uni-
formly random) challenge key can be explained by the corresponding ciphertext
generated by SimEncaps as soon as the receiver is corrupted.
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Fig. 4. Real and simulated game for N -receiver non-committing key encapsulation in
the random oracle model.

Definition 1 (N-Receiver Non-Committing Key Encapsulation). We
define games NCKEreal and NCKEsim as in Fig. 4, where N is the number of
users. The simulator Sim = (SimGen,SimEncaps,SimHash) is defined relative to
KEM and is used in NCKEsim. The advantage of an adversary A against KEM
and Sim is defined as

AdvN-NCKE
KEM,Sim(A) :=

∣
∣
∣Pr[NCKEA

real ⇒ 1] − Pr[NCKEA
sim ⇒ 1]

∣
∣
∣ .

When we write NCKE, we mean NCKE-CCA, where the adversary is allowed to
access a decapsulation oracle. Sometimes we will explicitly write NCKE-CCA to
differentiate from NCKE-CPA, where the adversary cannot issue decapsulation
queries.

We stress that compared to the standard definition of non-committing
encryption in the random oracle model (e.g., [33]), Definition 1 is for KEMs
(rather than encryption), only considers receiver corruptions (rather than sender
and receiver corruptions), and considers multiple receivers (rather than one sin-
gle receiver).

Instantiations from Hash Proof Systems. We recall the definition of hash
proof systems by Cramer and Shoup [11] and properties defined in [25].

Smooth Projective Hashing. Let Y and Z be sets and X ⊂ Y a language.
Let Λsk : Y → Z be a hash function indexed with sk ∈ SK, where SK is a
set. A hash function Λsk is projective if there exists a projection μ : SK → PK
such that μ(sk) ∈ PK defines the action of Λsk over X . In particular, for every
c ∈ X , Z = Λsk(c) is uniquely determined by μ(sk) and c. However, there is no
guarantee for c ∈ Y \X and it may not be possible to compute Λsk(c) from μ(sk)
and C. A projective hash function is k-entropic if for all c ∈ Y \ X it holds that
H∞(Λsk(c) | pk) ≥ k, where pk = μ(sk) for sk $← SK.
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Fig. 5. Key encapsulation mechanism KEM = (Gen,Encaps,Decaps).

Fig. 6. Simulator Sim = (SimGen, SimEncaps, SimHash) for KEM, where SimGen = Gen.
List E is either CK or C.

Hash Proof System. A hash proof system HPS = (Par,Priv,Pub) consists
of three algorithms. The randomized algorithm Par generates parametrized
instances of par = (group,Z,Y,X ,PK,SK, Λ(·) : Y → Z, μ : SK → PK),
where group may contain additional structural parameters. The deterministic
public evaluation algorithm Pub inputs the projection key pk = μ(sk), c ∈ X
and a witness r of the fact that c ∈ X and returns Z = Λsk(c). The determinis-
tic private evaluation algorithm Priv takes sk ∈ SK and returns Λsk(c) without
knowing a witness. Furthermore, we assume that μ is efficiently computable and
that there are efficient algorithms for sampling c ∈ X uniformly together with a
witness r, sampling c ∈ Y uniformly and checking membership in Y.

(m-fold) Subset Membership Problem. We define the m-fold subset mem-
bership problem for HPS which requires to distinguish m ciphertexts uniformly
drawn from X from m ciphertexts uniformly drawn from Y \ X . The advantage
of an adversary A is defined as

Advm−SM
HPS (A) := |Pr[A(Y,X , c1, ..., cm) ⇒ 1] − Pr[A(Y,X , c′

1, ..., c
′
m) ⇒ 1]| ,

where c1, ..., cm
$← X and c′

1, ..., c
′
m

$← Y \ X .

N-Receiver NCKE from HPS. We use a k-entropic hash proof system HPS =
(Par,Pub,Priv) with m-fold subset membership problem and a random oracle H :
{0, 1}∗ → {0, 1}κ in order to construct a key encapsulation algorithm KEM and
a simulator Sim as shown in Figs. 5 and 6. The encapsulation algorithm Encaps
samples an element c from X and a witness r. It runs the public evaluation algo-
rithm and computes the key K asH(c,Pub(pk, c, r)). The decapsulation algorithm
Decaps uses the result of the private evaluation algorithmPriv as input toH to com-
pute K. Instead of sampling an element from X , the SimEncaps algorithm samples
an element c uniformly at random fromY \ X and only returns c. The SimHash
algorithm takes as input three sets E ,D,H, where E ∈ {C, CK}, and the value
M = (c, Z) chosen by the adversary. If there exists a key K such that (c,K) ∈ E
(note that for E = C this will never be true) and the adversary’s input toH satisfies
Priv(sk, c) = Z, then the output value h is set to K.
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Theorem 1 (k-entropic HPS with (N · qE)-fold SMP ⇒ N -NCKE). For
any N -NCKE adversary A against KEM and Sim that issues at most qE queries to
Encaps, qD queries to Decaps and at most qH queries to each random oracle
Hn for n ∈ [N ], there exists an adversary B against the (N · qE)-fold subset
membership problem of HPS such that

AdvN-NCKE
KEM,Sim(A) ≤ Adv(N ·qE)-SM

HPS (B) +
N · qE · qH

2k
+

N · qE · qD

|Y \ X | ,

where HPS is k-entropic, Y is the set of all ciphertexts and X is the set of valid
ciphertexts.

We will give an instantiation based on the DDH assumption in Sect. 7.1. For
the proof of Theorem 1 and an instantiation based on the higher residuosity
assumption, we refer to the full version [23].

4 Security Model for Two-Message Authenticated Key
Exchange

A two-message key exchange protocol AKE = (GenAKE, InitI,DerR,DerI) consists
of four algorithms which are executed interactively by two parties as shown in
Fig. 7. We denote the party which initiates the session by Pi and the party which
responds to the session by Pr. The key generation algorithm GenAKE outputs
a key pair (pk, sk) for one party. The initialization algorithm InitI inputs the
initiator’s long-term secret key ski and the responder’s long-term public key pkr

and outputs a message I and a state st. The responder’s derivation algorithm
DerR takes as input the responder’s long-term secret key skr, the initiator’s long-
term public key pki and a message I. It computes a message R and a session
key K. The initiator’s derivation algorithm DerI inputs the initiator’s long-term
secret key ski, the responder’s long-term public key pkr, a message R and a state
st. It outputs a session key K. Note that in contrast to the initiating party Pi, the
responding party Pr will not be required to save any (secret) state information
besides the session key K. The session key can be derived immediately after
receiving the initiator’s message.

Fig. 7. Running a key exchange protocol between two parties.

Following [22], we define a game-based security model for authenticated key
exchange using pseudocode. Our models for two different levels of security
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Fig. 8. Games IND-wFS-Stb and IND-FS-Stb for AKE, where b ∈ {0, 1}. A has access
to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test}.
Helper procedures Fresh and Valid are defined in Fig. 9. If there exists any test
session which is neither fresh nor valid, the game will return 0.

are given in Fig. 8. We consider N parties P1, ...,PN with long-term key pairs
(pkn, skn), n ∈ [N ]. Each session between two parties has a unique identification
number sID and variables which are defined relative to sID:

– init[sID] ∈ [N ] denotes the initiator of the session.
– resp[sID] ∈ [N ] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator

or the responder computes the session key.
– I[sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the state information that is stored by the initiator.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to
oracles SessionI and SessionR, where the first one starts a session of type “In”
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Fig. 9. Helper procedures Fresh and Valid for games IND-wFS-St and IND-FS-St
defined in Fig. 8. Procedure Fresh checks if the adversary performed some trivial
attack. In procedure Valid, each attack is evaluated by the set of variables shown
in Table 1 (IND-wFS-St) or Table 2 (IND-FS-St) and checks if an allowed attack was
performed. If the values of the variables are set as in the corresponding row, the attack
was performed, i. e. attack = true, and thus the session is valid.

and the second one of type “Re”. Following [26,28], these oracles also take the
intended peer’s identity as input. In order to complete the initiator’s session,
the oracle DerI has to be queried. Furthermore, the adversary has access to
oracles Corrupt,Reveal and Rev-State to obtain secret information. As
the responder can directly compute the key in a two-message protocol, we only
require the initiator to store a state. The state contains information that is
needed to compute the session key when the response is received, so it will
consist of public and private information. We do not require to reveal the full
randomness as in the eCK model [28]. A Rev-State query may be issued at
any time. We use the following boolean values to keep track of which queries the
adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given
to the adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– revState[sID] denotes whether the state information of that session was given

to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted at

the time the session key is computed, which is important for forward security.

The adversary can forward messages between sessions or modify them. By
that, we can define the relationship between two sessions:

– Matching Session: Two sessions sID, sID′ match if the same parties are
involved (init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent
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and received are the same (I[sID] = I[sID′] and R[sID] = R[sID′]) and they
are of different types (type[sID] 	= type[sID′]).

– Partially Matching Session: A session sID′ of type “In” is partially
matching to session sID of type “Re” if the initial messages are the same
(I[sID] = I[sID′]).

Finally, the adversary is given access to oracle Test which will return either
the session key of the specified session or a uniformly random key. In our secu-
rity models, we allow multiple test queries. We store test sessions in a set S. In
general, the adversary can disclose the complete interaction between two parties
by querying the long-term secret keys, the state information and the session
key. However, for each test session, we require that the adversary does not issue
queries such that the session key can be trivially computed. We define the prop-
erties of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed.
Furthermore, if there exists a matching session, we require that this session’s
key is not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary per-
formed any attack which is defined in the security model. We capture this
with attack tables (cf. Tables 1 and 2). A description of how to read the tables
is given below.

Attack Tables. All attacks are defined using variables to indicate which queries
the adversary may (not) make. We consider three dimensions covering all possible
combinations of reveal queries the adversary can make:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the respon-
der’s side (type[sID∗] =“Re”),

– all combinations of long-term secret key and state reveals (corrupted and
revState variables), also taking into account when a corruption happened
(peerCorrupted),

– whether the adversary acted passively (matching session), partially active
(partially matching session) or actively (no matching session).

This yields a full table of 24 attacks, in particular capturing key compromise
impersonation (KCI) and maximal exposure (MEX) attacks. An attack was per-
formed if the variables are set to the corresponding values in the table. However,
when considering two-message protocols, where the responder’s side does not
have a state, and we only consider weak forward security, some of the attacks
are redundant. Thus, we obtain distilled tables. We exclude trivial attacks, e.g.,
the generic attack on two-message AKE protocols with state-reveals described
in [30]. Therefore, the adversary is not allowed to obtain the state of a partially
matching session. Also note that by definition, a partially matching session for a
two-message protocol can only be of type “Re”. Table 1 is the distilled table used
for the IND-wFS-St security game and Table 2 is used for the IND-FS-St security
game. Note that the numbering of attacks in the distilled tables is inherited from
the full table given in the full version [23].
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Table 1. Distilled table of attacks for wFS adversaries against two-message protocols.
This table is obtained from the full table of attacks by using that responders do not
have a state and that we are considering weak forward security. The numbering of
attacks is inherited from the full table. An attack is regarded as an AND conjunction
of variables with specified values as shown in the each line, where “–” means that this
variable can take arbitrary value. F means “false” and “n/a” indicates that there is no
state which can be revealed as no (partially) matching session exists.
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(0) multiple partially matching sessions – – – – – – – > 1

(1∨2) (long-term, long-term) – – – F F 1 – –

(7∨8) (state, long-term) F – – – – 1 – –

(10) (long-term, long-term) – – “Re” F n/a 0 F 1

(16) (state, long-term) F – “Re” F n/a 0 – 1

(19) (state, state) F F “In” – n/a 0 n/a 0

(21) (long-term, state) – F “In” F n/a 0 n/a 0

(24) (state, long-term) F – “Re” F n/a 0 n/a 0

Table 2. Distilled table of attacks for full FS adversaries against two-message protocols.
This table is obtained from the full table of attacks by removing redundant rows and
using that responders do not have a state. The numbering of attacks is inherited from
the full table. An attack is regarded as an AND conjunction of variables with specified
values as shown in the each line, where “–” means that this variable can take arbitrary
value. F means “false” and “n/a” indicates that there is no state which can be revealed
as no (partially) matching session exists.
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(1∨2) (long-term, long-term) – – – – F F 1 – –

(7∨8) (state, long-term) F – – – – – 1 – –

(10) (long-term, long-term) – – F “Re” F n/a 0 F 1

(16) (state, long-term) F – – “Re” F n/a 0 – 1

(17) (long-term, long-term) – – F “In” F n/a 0 n/a 0

(18) (long-term, long-term) – – F “Re” F n/a 0 n/a 0

(23) (state, long-term) F – F “In” – n/a 0 n/a 0



Tightly-Secure Authenticated Key Exchange, Revisited 133

However, if the protocol does not use appropriate randomness, it should not
be considered secure in our model. Thus, if the adversary is able to create more
than one (partially) matching session to a test session, it may also run a trivial
attack. We model this in row (0) of Tables 1 and 2.

Example. If the test session is an initiating session (type[sID∗] =“In”), the
state was not revealed (revState[sID∗] = false) and there is a matching ses-
sion (|M(sID∗)| = 1), then row (1∨2) will evaluate to true. In this scenario, the
adversary is allowed to query both long-term secret keys.

For all test sessions, at least one attack has to evaluate to true. Then, the
adversary wins if it distinguishes the session keys from uniformly random keys
which it obtains through queries to the Test oracle.

Definition 2 (Key Indistinguishability of AKE). We define games IND-
wFS-Stb and IND-FS-Stb for b ∈ {0, 1} as in Figs. 8 and 9. The advantage of an
adversary A against AKE in these games is defined as

AdvIND-wFS-St
AKE (A) :=

∣
∣
∣Pr[IND-wFS-StA1 ⇒ 1] − Pr[IND-wFS-StA0 ⇒ 1]

∣
∣
∣ and

AdvIND-FS-St
AKE (A) :=

∣
∣
∣Pr[IND-FS-StA1 ⇒ 1] − Pr[IND-FS-StA0 ⇒ 1]

∣
∣
∣ .

When proving the security of a protocol, the success probability for each attack
strategy listed in the corresponding table will have to be analyzed, thus showing
that independently of which queries the adversary makes, it cannot distinguish
the session key from a uniformly random key.

4.1 Relation to Other Definitions

In this section, we will refer to the most widely used security definitions for
authenticated key exchange protocols. In the first place, these include the CK
model [9] and the stronger definition used for the HMQV protocol (CK+) in [26],
the eCK model [28] and the strengthened version of [14], the definitions given in
[24] and [1] which are both extensions of the BR model [4], and the definition of
IND-Å security in [22]. In [12,13], Cremers showed that the CK, CK+ und eCK
model are incomparable. Thus, we will not do a formal comparison of security
models, but only point out similarities and differences between our definition
and the definitions listed above.

Party Corruption. We allow the adversary to corrupt a party which means
that it will obtain that party’s long-term secret key as in the eCK model and
the models given in [1,22,24]. In contrast, a corrupt query in the CK and CK+
model will reveal all information in the memory of that party, i. e. long-term
secrets and session-specific information.

State-Reveals.Our model only allows state-reveal queries on initiating sessions
because the initiator has to wait for the response to compute the session key. Thus,
the state contains all that information that is needed to derive the session key
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as soon as the responder’s message is received. The responder can directly com-
pute the session key and does not have to store other information. The eCK model
explicitly defines the state as the randomness that is used in the protocol. In the
CK model, it is not clear which information is included in the state, but it is left
to be specified by the AKE protocol itself. Other models such as [24], its extension
given in [1] and the one used in [10] do not allow state-reveals at all. Here, we want
to emphasize that in particular all previous work on tight AKE does not consider
state reveals and we are the first ones to address this problem.

(Weak) Forward Security. Following Krawczyk [26], we specify two levels of
forward security. IND-wFS-St models weak forward security, whereas IND-FS-St
models full forward security. The first one is intended for 2-message protocols
with implicit authentication, as those cannot achieve full forward security [26].
The second one is intended for protocols with explicit authentication. With those
definitions, we capture the same properties as the most common security mod-
els given in [1,9,24,26,28], where some of them only define either weak or full
forward security depending on whether they consider implicitly or explicitly
authenticated protocols.

Matching Sessions and Partnering. As most security models, ours use the
concept of matching sessions to define a relation between two sessions. Following
Cremer and Feltz [14], we additionally use the term of origin (or partially match-
ing) sessions, which refers to a relaxation of the definition of matching sessions.
The concept of origin sessions is used for full forward security, in particular we
need this to handle the no-match attack described by Li and Schäge [30], where
two sessions compute the same session key but do not have matching conversa-
tions. Recent works such as [10,21] take up the approach of origin sessions and
oracle partnering based on session keys as additional requirement.

Onregistering corrupt keys. Some security models for AKE allow the adver-
sary also to register adversarially-generated keys, this holds in particular for pre-
vious works considering tightly-secure key exchange [1,10,21]. Technically this
makes the security model strictly stronger, as one can easily construct contrived
protocols that are insecure with adversarially-registered keys, but secure without.

However, in the actual security proofs in [1,10,21], adversarially-registered
keys are treated no differently than corrupted keys. We chose to keep model, secu-
rity proofs and notation as simple as possible (it is already complex enough, any-
way), and thus omitted this query. However, it is straightforward to extend our
model with it, and the proofs need not to be changed. Whenever the adversary
registers a new key, it would immediately be marked as “corrupted” (just like
in [1,10,21]). Apart from that, no additional changes to the proofs are required,
since the proofs deal with all corrupted keys in the same way, regardless of their
distribution or whether they are generated by the experiment or an external entity.
We also do not require a proof of knowledge of the corresponding secret key for the
registration, or a proof that the registered public key is valid in any sense.
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5 AKE with Weak Forward Security

In this section, we show how to build an implicitly authenticated AKE protocol
using the concept of non-committing key encapsulation.

In particular, from two key encapsulation mechanisms KEMCPA = (GenCPA,
EncapsCPA, DecapsCPA) and KEMCCA = (GenCCA,EncapsCCA,DecapsCCA), we con-
struct a two-message authenticated key exchange protocol AKEwFS = (GenAKE,
InitI,DerR,DerI) as shown in Figs. 10 and 11. W.l.o.g. KEMCPA, KEMCCA, AKEwFS

have identical key space K. Each party holds a long-term key pair (pk, sk) for
KEMCCA and a symmetric key k to encrypt the secret state information which
has to be stored by the initiating party. State encryption protects against state
attacks and is implemented using a symmetric encryption scheme defined as
Ek(st′) := (IV,G(k, IV )⊕st′) for a random nonce IV . Here G : {0, 1}∗ → {0, 1}d

is a random oracle and d is an integer denoting the maximum bit length of the
unencrypted state st′. The protocol uses an additional cryptographic hash func-
tion H : {0, 1}∗ → K to output the session key.

Fig. 10. Visualization: Running protocol AKEwFS between two parties.

The initiating party generates an ephemeral key pair for KEMCPA, then runs the
EncapsCCA algorithm on the peer’s public key to output a ciphertext cr and a
key Kr and sends the ephemeral public key and cr to the intended receiver. All
values are stored temporarily and encrypted as described above, as they will
later be needed to compute the session key. The responding party uses its secret
key skr to compute key Kr from cr. Next, it runs the EncapsCPA algorithm on
the received ephemeral public key to compute a ciphertext c̃ and a key K̃ and
then the EncapsCCA algorithm on the initiator’s public key to output ci and Ki.
It sends both ciphertexts to the initiating party and computes the session key
evaluating the hash function H on all public context and the three shared keys
Kr, Ki and K̃. The initiator retrieves the secret state information and computes
Ki and K̃ from ci and c̃. Now, it can also establish the session key.
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Fig. 11. Authenticated key exchange protocol AKEwFS from KEMCPA and KEMCCA.
Lines written in purple color are only used to encrypt the state.

Theorem 2 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA ROM⇒ AKEwFS IND-
wFS-St). For any IND-wFS-St adversary A against AKEwFS with N parties that
establishes at most S sessions and issues at most T queries to the test oracle
Test, qG queries to random oracle G and at most qH queries to random oracle
H, there exists an N -NCKE-CCA adversary B against KEMCCA and SimCCA and
an S-NCKE-CPA adversary C against KEMCPA and SimCPA such that

AdvIND-wFS-St
AKEwFS

(A) ≤ 2 ·
(
AdvN-NCKE-CCA

KEMCCA,SimCCA
(B) + AdvS-NCKE-CPA

KEMCPA,SimCPA
(C)

)
+ T ·

(
qG

2κ
+

qH

|K|
)

+ N2 ·
(

1

2μCCA
+

1

2κ

)
+ S2 ·

(
1

2μCPA
+

1

2γCCA
+

1

2γCPA
+

1

2κ

)
+ 2S · qG

22κ
,

where SimCCA and SimCPA are the simulators from the NCKE experiments, μCCA

and μCPA are the collision probability of the key generation algorithms GenCCA
and GenCPA, γCCA and γCPA are the spreadness parameters of the encapsulation
algorithms EncapsCCA and EncapsCPA and κ is a security parameter. The run-
ning times of B and C consist essentially of the time required to execute the
security experiment with the adversary once, plus a minor number of additional
operations (including bookkeeping, lookups etc.).

Proof (Sketch). Let A be an adversary against IND-wFS-St security of AKEwFS.
For b ∈ {0, 1}, game G0,b is the IND-wFS-Stb game, where we additionally exclude
that collisions between long-term key pairs, ephemeral key pairs, ciphertexts and
nonces occur.

In game G1,b , we replace the computations for KEMCCA by the simulator
SimCCA, which allows to draw keys Ki and Kr uniformly at random. This change
affects all sessions which makes the proof tight. If the adversary reveals a long-
term key pair of any user, the property of receiver non-committing key encapsula-
tion ensures that the correct keys Ki and Kr can be computed by the adversary.
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Next, we want to replace the computations for KEMCPA by the simula-
tor SimCPA, which allows to draw keys K̃ uniformly at random. However, the
ephemeral secret key s̃k is part of the state and will not be available to the
NCKE-CPA reduction in the first place. Thus, we introduce an intermediate game
G2,b and do not compute the state when the session is initiated but only when
the adversary queries the Rev-State oracle. In game G3,b , we can then use
the simulator for KEMCPA and draw keys K̃ uniformly at random, whenever the
ephemeral public key p̃k comes from the experiment (i.e. the adversary creates
a partially matching session). Again, the non-committing property of KEMCPA

ensures consistency in case the adversary reveals both the state of a session and
the long-term key of the initiator, which reveals the ephemeral secret key s̃k.

Depending on whether there exists a (partially) matching session and which
queries to Rev-State and Corrupt the adversary makes, we can argue that at
least one key Ki, Kr or K̃ in each test session is chosen uniformly at random and
unknown to A and thus it cannot distinguish the session key from a uniformly
random key in the last game G4,b. �
The full proof of Theorem 2 can be found in the full version [23]. Note that
the non-committing property is essential to embed random KEM keys in each
session and thus to achieve tightness. This way, we only need to make a case
distinction at the end and can argue that for all test sessions at least one KEM
key is independent of the adversary’s view no matter which queries it has made
(provided it did not make a trivial attack). Relying on a weaker assumption
requires to make a case distinction earlier in the proof and may involve guess-
ing as in some cases it is not clear which KEM key will be revealed (through
corruption and/or reveal or state reveal) at a later point in time.

6 AKE with Full Forward Security

We show how to build an explicitly authenticated AKE protocol using the con-
cept of non-committing key encapsulation. As we also need a signature scheme,
we will first give the relevant definitions.

6.1 Digital Signatures

A digital signature scheme SIG = (GenSIG,Sign,Vrfy) consists of three algorithms.
The key generation algorithm GenSIG outputs a key pair (vk, sigk), where vk is
the verification key and sigk the signing key. The signing algorithm Sign inputs a
signing key sigk and a message m and outputs a signature σ. The deterministic
verification algorithm Vrfy inputs the verification key vk, a message m and a
signature σ and outputs 1 if σ is a valid signature for m, otherwise it outputs 0.

In Fig. 12, we define the security game N user Strong UnForgeability under
Chosen Message Attacks with corruptions (N -SUF-CMA). The definition is sim-
ilar to the one given in [1], except that we require strong unforgeability, i. e. the
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adversary may also find a new signature for a message it queried to the Sign

oracle before. The advantage of an adversary A is defined as

AdvN-SUF-CMA
SIG (A) := Pr[N -SUF-CMAA ⇒ 1] .

Fig. 12. Game N -SUF-CMA for SIG.

6.2 Transformation Using NCKE and a Signature Scheme

From two key encapsulation mechanisms KEMCPA = (GenCPA,EncapsCPA,
DecapsCPA) andKEMCCA = (GenCCA,EncapsCCA,DecapsCCA) with key space K and
a digital signature scheme SIG = (GenSIG,Sign,Vrfy), we construct a two-message
authenticated key exchange protocol AKEFS = (GenAKE, InitI,DerR,DerI) with key
space K as shown in Figs. 13 and 14. Each party has a key pair (vk, sigk) for SIG,
a key pair (pk, sk) for KEMCCA and a symmetric key k to encrypt the secret state
information which has to be stored by the initiating party (cf. Sect. 5). The proto-
col uses additional cryptographic hash functions F : {0, 1}∗ → {0, 1}κ to compute
value π and H : {0, 1}∗ → K to output the session key.

The initiating party computes an ephemeral key pair for KEMCPA, runs the
EncapsCCA algorithm on the intended receiver’s public key pkr to obtain a cipher-
text cr and a key Kr and signs both the ephemeral public key and cr, which are
sent to the receiver along with the signature. The receiver verifies the signature
and then runs the EncapsCPA algorithm on the ephemeral public key to output
a ciphertext c̃ and a key K̃. It computes Kr using its secret key skr. It then
tags the received message together with c̃ and Kr by evaluating hash function F
and sends the output together with c̃ to the initiator. The initiator retrieves Kr

from the secret state and also evaluates F. If the output is the same, it computes
K̃ using the ephemeral secret key. The session key is computed evaluating hash
function H on all public context and key K̃. We establish the following theorem
and give a proof sketch. The full proof can be found in the full version [23].

Theorem 3 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA +
SIG N -SUF-CMA

ROM⇒ AKEFS IND-FS-St). For any IND-FS-St adversary A
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Fig. 13. Visualization: Running AKEFS between two parties, where K is the resulting
session key and context := (vki, pki, vkr, pkr, ˜pk, cr, c̃, σ, π)

Fig. 14. Authenticated key exchange protocol AKEFS from KEMCPA, KEMCCA and SIG.
Lines written in purple color are only used to encrypt the state.

against AKEFS with N parties that establishes at most S sessions and issues
at most T queries to test oracle Test, at most qH, qG and qF queries to random
oracles H, G and F, there exists an N -SUF-CMA adversary B against SIG, an
S-NCKE-CPA adversary C against KEMCPA and SimCPA and an N -NCKE-CCA
adversary D against KEMCCA and SimCCA such that

Adv
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AKEFS

(A) ≤ 2 ·
(
Adv

N-SUF-CMA
SIG (B) + Adv

S-NCKE-CPA
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+ T ·
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,
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where SimCPA and SimCCA are the simulators from the NCKE-CPA and NCKE-CCA
experiment, μSIG, μCPA, μCCA are collision probabilities of the key generation algo-
rithms GenSIG, GenCPA and GenCCA and γCPA, γCCA are the spreadness parame-
ters of the encapsulation algorithms. The running times of B, C and D consist
essentially of the time required to execute the security experiment with the adver-
sary once, plus a minor number of additional operations (including bookkeeping,
lookups etc.).

Proof (Sketch). Let A be an adversary against IND-FS-St security of AKEFS. For
b ∈ {0, 1}, G0,b is the IND-FS-Stb game, where we exclude that collisions between
long-term key pairs, ephemeral key pairs, ciphertexts and nonces occur.

In game G1,b , we abort when A computes a valid signature for an uncorrupted
user that was not output by the experiment, reducing to N -SUF-CMA security
of the signature scheme.

In game G2,b , we replace the computations for KEMCCA by the simulator
SimCCA in all sessions using the non-committing property of KEMCCA, which
allows to draw key Kr which serves as key for the MAC uniformly at random.
Thus, the adversary cannot compute a valid MAC for an uncorrupted user.

In game G3,b (as in the proof of Theorem 2), we do not compute the state
when the session is initiated but only when the adversary queries the Rev-State

oracle. After that, we can switch KEMCPA to the corresponding simulator SimCPA

in game G4,b and draw keys K̃ uniformly at random, whenever the ephemeral
public key p̃k comes from the experiment (i.e. the adversary creates a partially
matching session). As the adversary can only complete a (partially) matching
sessions (otherwise it would have forged a signature or MAC), we can argue that
K̃ in each test session is chosen uniformly at random and unknown to A and
thus he cannot distinguish the session key from a uniformly random key in the
last game G5,b . �

7 Concrete Instantiation of AKE Protocols

7.1 NCKE from the DDH Assumption

Let us first describe the hash proof system we will use. Therefore, let GGen be a
group generation algorithm which takes the security parameter 1κ as input and
returns (G, p, g1), where g1 is a generator of the cyclic group G with prime order
p. Define group = (G, p, g1, g2), where g2 = gw

1 for w $← Zp. Define Y = Z
2
p and

X = {(gr
1, g

r
2) : r ∈ Zp}. A value r is a witness that (c1, c2) ∈ X . Define SK = Z

2
p,

PK = Zp and Z = Zp. For sk = (x1, x2) ∈ Z
2
p, define μ(sk) = X = gx1

1 gx2
2 . This

defines the output of the parameter generation algorithm Par.
For (c1, c2) ∈ Y define Λsk(c1, c2) := Z = (cx1

1 cx2
2 ). This defines the private

evaluation algorithm Priv(sk, (c1, c2)). Given pk = μ(sk) = X, (c1, c2) ∈ X and
a witness r ∈ Zp such that (c1, c2) = (gr

1, g
r
2), the public evaluation algorithm

Pub(pk, (c1, c2), r) computes Z = Λsk(c1, c2) as Z = Xr.
We define KEMDDH = (GenDDH,EncapsDDH,DecapsDDH) with global parame-

ters par := (G, p, g1, g2) as shown in Fig. 15.
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Fig. 15. Key encapsulation mechanism KEMDDH = (GenDDH,EncapsDDH,DecapsDDH).

Definition 3 (m-fold DDH Problem). Let GGen be a PPT algorithm that
on input 1κ outputs a cyclic group G of prime order 2k−1 ≤ p ≤ 2k with
generator g1. Furthermore let g2 = gω

1 for ω $← Zp. The m-DDH problem requires
to distinguish m DDH tuples from m uniformly random tuples:

Advm-DDH
GGen (A) :=

∣
∣Pr[A(G, p, g1, g2, (gri

1 , gri
2 )i∈[m]) ⇒ 1]

−Pr[A(G, p, g1, g2, (gri
1 , g

r′
i

2 )i∈[m]) ⇒ 1]
∣
∣
∣ ,

where probability is taken over (G, p, g) ← GGen, ri, r
′
i

$← Zp for i ∈ [m], as well
as the coin tosses of A.

Lemma 1 (Random self-reducibility of DDH [17]). For any adversary C
against the m-fold DDH problem, there exists an adversary B against the DDH
problem with roughly the same running time such that

Advm-DDH
GGen (C) ≤ AdvDDH

GGen(B) +
1

p − 1
.

The following theorem establishes that the construction given in Fig. 15 is an
N -receiver non-committing encapsulation mechanism under the DDH assump-
tion.

Theorem 4. Under the DDH assumption and in the random oracle model,
KEMDDH is an N -receiver non-committing key encapsulation mechanism. In par-
ticular, for any N -NCKE-CCA adversary A against KEMDDH and SimDDH that
issues at most qE queries per user to Encaps, qD queries to Decaps and at
most qH queries to each random oracle Hn, n ∈ [N ], there exists an adversary B
against DDH with roughly the same running time such that

AdvN-NCKE-CCA
KEMDDH,SimDDH

(A) ≤ AdvDDH
GGen(B) +

N · qE · (qH + qD + 1)
p

+
1

p − 1
,

where SimDDH is the simulator defined relative to KEMDDH.

Proof. We apply Theorem 1 and analyze the entropy of the underlying HPS.
The key space Z is Zp. For sk = (x1, x2) $← Z

2
p, pk = μ(sk) = gx1

1 gx2
2 and

Z = Priv(sk, (c1, c2)) = cx1
1 cx2

2 , where (c1, c2) = (gr
1, g

r′
2 ) and (r, r′) $← Z

2
p, we

have
(

logg1
pk

logg1
Z

)

= M

(
x1

x2

)

, where M =
(

1 w
r wr′

)

.
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If r 	= r′, then detM = w(r′ − r) 	= 0, which implies that pk and Z are random
and independent group elements as long as x1, x2 are unknown. Thus, for all
Z ′ ∈ Z, holds that Pr[Z = Z ′] = 1/p . In Definition 3, all values ri and r′

i

are drawn uniformly at random from Zp. The probability that ri = r′
i for any

i ∈ [N · qE ] is upper bounded by N · qE/p. Furthermore, the probability that a
specific challenge ciphertext is issued to Decaps before it is output by Encaps

is at most qD/p. It follows that

AdvN-NCKE-CCA
KEM,Sim (A) ≤ Advm-DDH

GGen (B) +
N · qE

p
+

N · qE · qH
p

+
N · qE · qD

p
.

Now Theorem 4 follows directly from Lemma 1. �

7.2 Concrete Instantiation of AKE Protocols

We instantiate protocols AKEwFS (Sect. 5) and AKEFS (Sect. 6.2) with KEMDDH

(Sect. 7.1) for both KEMCPA and KEMCCA. We will not give a concrete instantia-
tion of the signature scheme used in AKEFS at this point. The resulting protocols
AKEwFS,DDH and AKEFS,DDH are shown in Fig. 1 in the introduction.

Note that for AKEwFS,DDH we can improve efficiency by sending only one
ciphertext for both p̃k and pki in the second message, as KEMDDH is a multi-
recipient KEM. We establish Theorem 5 and give a proof sketch.

Theorem 5 (IND-wFS-St security of AKEwFS,DDH). Under the DDH assump-
tion, AKEwFS,DDH is IND-wFS-St secure in the random oracle model. In partic-
ular, for any IND-wFS-St adversary A against AKEwFS,DDH with N parties that
establishes at most S sessions and issues at most T queries to the test oracle
Test, qG queries to random oracle G, qH̃, qHn

queries to each random oracle H̃sID

and Hn and at most qH queries to random oracle H, there exists an adversary B
against DDH with roughly the same running time such that

AdvIND-wFS-St
AKEwFS,DDH

(A) ≤ 2 · AdvDDH
GGen(B) + T · qG + qH

2κ
+ (N + S)2 · 1

p
+ N2 · 1

2κ

+ S2 ·
(

2
p

+
1
2κ

)

+ 2S ·
(

qG
22κ

+
qH̃ + qHn

+ 1
p

)

+
2

p − 1
,

where κ is a security parameter.

Due to the improved construction, we cannot apply Theorem 2 directly, but we
give a proof sketch from the DDH assumption and show that the same technique
as in the proofs of Theorems 2 and 4 can be used.

Proof. We proceed similar and consider collisions first. We assume that all key
pairs generated by GenDDH are different. Note that we also have to consider
collisions between long-term and ephemeral public keys. It holds that

Pr[x1, x2, x
′
1, x

′
2

$← Zp : gx1
1 gx2

2 = g
x′
1

1 g
x′
2

2 ] = 1/p .



Tightly-Secure Authenticated Key Exchange, Revisited 143

Union bound yields (N +S)2/p, as we have N long-term public keys and at most
S ephemeral public keys. For ciphertexts (c1, c2) ∈ C output by the encapsulation
algorithm EncapsDDH, it holds that Pr[r $← Zp : (c1, c2) = (gr

1, g
r
2)] = 1/p, which

yields an upper bound for collisions of S2/p, as there are at most S sessions with
one ciphertext. We also assume that values IV are different in all sessions and
keys kn are different for all parties.

We use the secret keys to compute keys Ki, Kr and K̃. Next, we replace all
ciphertexts by uniformly random group elements at the same time, reducing to
the S-fold DDH assumption and use the random self-reducibility property. In
addition to that, we ensure that all ciphertexts are indeed invalid by adding S/p
which is the probability that exponents are the same for any ciphertext.

Instead of the corresponding random oracles, we use internal hash functions
H̃′

sID and H′
n for sID ∈ [S] and n ∈ [N ] to compute keys Ki, Kr and K̃, but

patch the random oracles if the secret key is known to the adversary. As there
are at most S challenge keys computed with a long-term key pair and at most
S challenge keys computed with an ephemeral key pair, the difference can be
upper bounded by S · qHn

/p + S · qH̃/p using a hybrid argument. Now we can
replace Ki, Kr and K̃ by uniformly random keys.

The rest of the proof is equal to the proof of Theorem 2. The size of the key
space of KEMDDH is 2κ and the bound follows by collecting all probabilities. �

For protocol AKEFS,DDH, we apply Theorem 3 to show IND-FS-St security.
The collision probabilities for KEMDDH are already shown in the previous proof.
Additionally, we need a strongly unforgeable signature scheme.

Theorem 6 (IND-FS-St security of AKEFS,DDH). For an N -SUF-CMA secure
signature scheme SIG and under the DDH assumption, AKEFS,DDH is IND-FS-St
secure in the random oracle model. In particular, for any IND-FS-St adversary A
against AKEFS,DDH with N parties that establishes at most S sessions and issues
at most T queries to the test oracle Test, qG queries to random oracle G, qF
queries to random oracle F, qH̃, qHn

queries to each random oracle H̃sID and Hn

and at most qH queries to random oracle H, there exists an adversary B against
DDH and an adversary C against N -SUF-CMA such that

AdvIND-FS-St
AKEFS,DDH

(A) ≤ 4 · AdvDDH
GGen(B) + 2 · AdvN-SUF-CMA

SIG (C) + T · qF + qG + qH
2κ

+ N2 ·
(

1
2μSIG

+
1
p

+
1
2κ

)

+ S2 ·
(

2qH̃ + 6
p

+
1
2κ

)

+ 2NS · qHn
+ 2

p
+ 2S · qG

22κ
+

4
p − 1

,

where μSIG is the collision probability of the key generation algorithm GenSIG and
κ is a security parameter.

The signature scheme can be instantiated with the tight scheme based on the
DDH and CDH assumption proposed by Gjøsteen and Jager in [21], which is also
used in their authenticated key exchange protocol.
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Abstract. In this paper, we introduce a distributed key generation
(DKG) protocol with aggregatable and publicly-verifiable transcripts.
Compared with prior publicly-verifiable approaches, our DKG reduces
the size of the final transcript and the time to verify it from O(n2)
to O(n log n), where n denotes the number of parties. As compared
with prior non-publicly-verifiable approaches, our DKG leverages gossip
rather than all-to-all communication to reduce verification and commu-
nication complexity. We also revisit existing DKG security definitions,
which are quite strong, and propose new and natural relaxations. As a
result, we can prove the security of our aggregatable DKG as well as
that of several existing DKGs, including the popular Pedersen variant.
We show that, under these new definitions, these existing DKGs can be
used to yield secure threshold variants of popular cryptosystems such as
El-Gamal encryption and BLS signatures. We also prove that our DKG
can be securely combined with a new efficient verifiable unpredictable
function (VUF), whose security we prove in the random oracle model.
Finally, we experimentally evaluate our DKG and show that the per-
party overheads scale linearly and are practical. For 64 parties, it takes
71 ms to share and 359ms to verify the overall transcript, while for 8192
parties, it takes 8 s and 42.2 s respectively.

1 Introduction

System designers who strive to remove single points of failure often rely on tools
provided by threshold cryptography [21,58] and secure multi-party computa-
tion [20,34]. In this paper, we study distributed key generation (DKG) [31,53],
a method from threshold cryptography that often plays an essential role during
the setup of distributed systems, including Byzantine consensus [6,64], time-
stamping services [14,61], public randomness beacons [29,59], and data archive
systems [45,63]. A DKG enables a set of parties to generate a keypair such that
c© International Association for Cryptologic Research 2021
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any sufficiently large subset can perform an action that requires the secret key
while any smaller subset cannot. To achieve this, a DKG essentially turns each
party into a dealer for a verifiable secret sharing (VSS) scheme [19,25,54]. This
process yields a single collective public key, generated in a distributed manner,
with each party keeping a share of the secret key for themselves.

Current DKGs [27,31,32,53] commonly require that all n parties broadcast
O(n)-sized messages that are then used by each party to verify the shares they
received from their peers. This results in each party communicating O(n2) sized
messages via broadcast. While some DKGs have O(n) communication and veri-
fication per party, they rely on constant-sized polynomial commitment schemes
that require trusted setup [42,43]. In this work, we show how to reduce the size
of the final DKG transcript to O(n) by making the parties’ contributions aggre-
gatable. This enables us to relay (partial) transcripts in an efficient and resilient
manner, e.g., over gossip networks, ensuring that transcripts do not grow in
size since aggregation can be done in a continuous manner. Aggregatability also
enables us to refresh the transcript if and when shares get compromised.

Our DKG transcripts contain the information needed for parties to decrypt
their secret shares. During aggregation it is therefore essential to ensure that only
valid (partial) transcripts are aggregated. We achieve this by making our tran-
scripts publicly-verifiable so that anybody receiving and aggregating transcripts
can verify their correctness. Making the transcripts publicly-verifiable has sev-
eral other advantages: It ensures that all parties can obtain their secret shares,
even if they go offline momentarily, and also enables us to remove the “complaint
rounds” that are used in previous DKGs to expose misbehaving parties. This
improves overall latency, since fewer communication rounds are required, and
reduces the protocol’s complexity from an implementation perspective.

A consequence of our approach is that the DKG secret key and its shares are
group elements rather than field elements. While this prevents us from using it for
many well-known cryptosystems, we demonstrate its applicability by introducing
a verifiable unpredictable function (VUF) [23,48] whose secret key is a group
element, and prove its security in the random oracle model. Threshold VUFs
are useful in the construction of verifiable random beacons, which themselves are
invaluable in building proof-of-stake-based cryptocurrencies [33,44]. To the best
of our knowledge, our VUF is the first that takes a group element as the secret
key, and its performance is also reasonable: our VUF output consists of 6 source
group elements and can be verified using 10 pairings. We also provide further
optimizations enabling us to reduce the VUF contributions in the threshold
protocol to just 2 source group elements that can be verified with 3 pairings.

We also revisit the definitions for DKGs in the hope of reducing complexities
and inefficiencies. In particular, previous definitions [31] required secrecy, in the
sense that the output of the DKG must be indistinguishable from random. While
this notion has the benefit of making the DKG modular (one can replace key
generation with a DKG in any context), it also is difficult to realise. Indeed,
Gennaro et al. [31] demonstrated that the popular Pedersen DKG does not have
secrecy, and introduced an alternative and considerably less efficient protocol to
achieve secrecy. Additionally, no one-round DKG can achieve secrecy because a
rushing adversary (an adversary that plays last) can always influence the final
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distribution. Instead, we look to prove that a DKG is robust (see Definition 6)
and security-preserving (see Definition 8) in the sense that any adversary that
breaks the security of a threshold version of the scheme (i.e., one using a DKG)
also breaks the original security property.

Gennaro et al. [32] previously observed that the Pedersen DKG suffices to
construct threshold Schnorr signatures [57]. Recently, Benhamouda et al. [10]
found an attack on this approach when the adversary is concurrent. (Gennaro et
al. had not considered concurrent adversaries.) Komlo and Goldberg [47] show
that it is possible to avoid the attack but, in doing so, they lose robustness
(e.g., if a single party goes offline a signature will not be produced). This raises
questions as to whether it is still okay to use the Pedersen DKG with respect
to other signature schemes such as BLS. In this paper, we provide a positive
answer in the form of a security proof that holds concurrently and does not
rely on rewinding the adversary. Specifically, we show that the Pedersen DKG is
security-preserving with respect to any rekeyable encryption scheme, signature
scheme, or VUF scheme where the sharing algorithm is the same as encryption
or signing (see Definition 5).

Our contributions. In Sect. 5, we construct an aggregatable and publicly-verifiable
DKG. The aggregation can be completed by any party (there are no additional
secrets) and can also be done incrementally. The cost of verifying our transcripts
is O(n log n) whereas prior approaches were O(n2) [27]. If any user temporarily
goes offline, they can still recover their secret shares. Dealing DKG shares takes
O(n log n) time and aggregation costs are O(n).

We prove security of our DKG using a natural definition (see Sect. 3.6), which
roughly states that, if it is possible to break a cryptosystem’s security game with
a DKG swapped in, then it is possible to break that cryptosystem’s original secu-
rity game that did not use the DKG for key generation. We further demonstrate
that, counter-intuitively, it is possible to prove that a DKG realises this defini-
tion without needing a separate proof for each cryptosystem. Indeed, we show
that any encryption scheme, signature scheme, or VUF that are rekeyable, and
where the sharing algorithm is the same as encryption or signing, can be securely
instantiated using a key-expressable DKG (see Definition 7). This includes El-
Gamal encryption, BLS signatures, a new VUF we introduce in Sect. 7, and, we
suspect, many others.

We further demonstrate the applicability of our techniques by showing that
all three of the Pedersen DKG [53], the Fouque-Stern DKG [27], and our aggre-
gatable DKG are key-expressable and thus can be used securely with rekeyable
encryption schemes, signature schemes, and VUFs whose decryption/ signing
algorithms are the same as the algorithms to generate decryption/ signature
shares. Our proof allows for rushing adversaries and holds concurrently (i.e.,
with respect to an adversary that can open many sessions at the same time).
We cannot cover Schnorr signatures, however, because their threshold variants
do not appear to be rekeyable.

Our final contribution, in Sect. 8, is a Rust implementation of our aggre-
gatable DKG to demonstrate its practicality by showing that its overheads are
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indeed linear. For example, the evaluation of our implementation shows that
for 64/128/8192 nodes it takes 71 ms/137 ms/8,000 ms to share one secret and
359 ms/747 ms/42,600 ms to verify the corresponding transcript.

2 Related Work

Table 1. Complexities of prior DKG protocols with n parties, per party. In the “Broad-
cast” column, we count the number of broadcasts by size (either O(n) or O(1)-sized).
“P2P” means the total size of the messages sent over public and private communica-
tion channels (excludes broadcast messages). “PV” means publicly-verifiable. “Verifier
local” indicates the per-party time spent verifying their shares from other parties, while
“global” indicates the time to verify the final DKG transcript.

DKG Broadcasts P2P PV Complaints Rounds Prover Verifier

O(n) O(1) Broadcast Gossip Local Global

Pedersen n − n no yes 3 − n lg n n2 −
Kate − n n no yes 3 − n2 n −
AMT − n n lg n no yes 3 − n lg n n lg n −
Fouque-Stern n − n2 yes no 1 − n lg n n2 n2

Our work lg n n n lg2 n yes no 2 lg n n lg n n lg2 n n lg n

We provide an asymptotic overview of the state-of-the-art for DKGs in Table 2.
Here we assume that the threshold t is linear in n. Our comparisons consider the
optimistic case where there is no more than a constant number of complaints for
protocols where these are relavant (recall in our protocol there are no complaints)
(Table 1).

Pedersen introduced the first efficient DKG protocol for discrete log-based
cryptosystems [54], building on top of Feldman’s VSS [25]. Gennaro et al. [32]
showed Pedersen’s DKG does not generate uniformly distributed secrets, and
proposed a protocol that does but at the cost of lower efficiency. They also fix
problems with the complaint phase in Pedersen’s DKG. Neji et al. [50] gave a
more efficient protocol that ensures uniformity in Pedersen’s DKG. Kate [42]
reduced the broadcast overhead per DKG party from O(n) to O(1) using
their constant-sized polynomial commitment scheme [43]. However, there scheme
depends on a trusted setup algorithm, the costs of which are not considered in
Table 2. Trusted setup algorithms have a round complexity of t, and each of these
rounds require users to broadcast O(n) sized messages [15,37]. Unlike our pro-
tocol, all of these protocols rely on complaints rounds, are not publicly verifiable
and have O(n2) communication complexity.

Fouque and Stern present a one-round, publicly-verifiable DKG that uses
only public channels. However, their final transcript size is O(n2) whereas ours
is O(n) because we can aggregate. Furthermore, their security proof does not
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allow for rushing adversaries. While they do not measure performance, their
use of Paillier encryption [52] is likely to make their DKG slow and have high
communication costs. Nonetheless, unlike our DKG, theirs has the advantage of
outputting secrets that are field, rather than group, elements.

Other works tackle the DKG problem from different angles. Canetti et al.’s
DKG [16] has adaptive security, while ours is secure only against static adver-
saries that fix the set of corrupted parties before the protocol starts. Canny
and Sorkin [17] study DKG protocols with poly-logarithmic communication and
computation cost per-party, but their protocol relies on a trusted dealer that
permutes the parties before the protocol starts. Kate et al. [41,42] and Kokoris-
Kogias et al. [46] study DKG protocols in the asynchronous setting, unlike our
work and most previous work. Schindler et al. [56] use the Ethereum blockchain
to instantiate the synchronous broadcast channel all DKG protocols mentioned
so far assume, including ours. Tomescu et al. [60] lower the computational cost
of dealing in Kate et al.’s DKG [43], at a logarithmic increase in communication.
Lastly, several works implement and benchmark synchronous, statically-secure
DKG protocols for discrete log-based cryptosystems [22,39,40,51,56].

Abe et al. [1] observed that any fully structure preserving signature scheme
that depends solely on algebraic operations cannot be used as a VUF or VRF.
Unlike our VUF (which is not algebraic), this rules out a number of structure
preserving signatures from being candidates for building VUFs [2–4,62].

3 Definitions

3.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then

|S| denotes its size and x
$←− S denotes sampling a member uniformly from S

and assigning it to x. We use λ ∈ N to denote the security parameter and 1λ

to denote its unary representation. Algorithms are randomized unless explic-
itly noted otherwise. “PPT” stands for “probabilistic polynomial time.” We use
y ← A(x; r) to denote running algorithm A on inputs x and randomness r and

assigning its output to y. We use y
$←− A(x) to denote y ← A(x; r) for uniformly

random r. We use [A(x)] to denote the set of values that have non-zero proba-
bility of being output by A on input x. For two functions f, g : N → [0, 1], we
use f(λ) ≈ g(λ) to denote |f(λ) − g(λ)| = λ−ω(1). We use code-based games
in security definitions and proofs [9]. A game SecA(λ), played with respect to a
security notion Sec and adversary A, has a main procedure whose output is the
output of the game. The notation Pr[SecA(λ)] denotes the probability that this
output is 1.

We formalize bilinear groups via a bilinear group sampler, which is an effi-
cient deterministic algorithm GroupGen that given a security parameter 1λ (rep-
resented in unary), outputs a tuple bp = (p,G1,G2,GT , e, g1, ĥ1) where G1,
G2, GT are groups with order divisible by the prime p ∈ N, g1 generates G1,
ĥ1 generates G2, and e : G1 × G2 → GT is a (non-degenerate) bilinear map.
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Galbraith et al. distinguish between three types of bilinear group samplers [28].
Type I groups have G1 = G2 and are known as symmetric bilinear groups. Types
II and III are asymmetric bilinear groups, where G1 �= G2. Type II groups have
an efficiently computable homomorphism ψ : G2 → G1, while Type III groups do
not have an efficiently computable homomorphism in either direction. Certain
assumptions are provably false with respect to certain group types (e.g., SXDH
only holds for Type III groups), and we work only with Type III groups.

3.2 Communication and Threat Models

In this section we discuss our communication and threat models.

Synchrony: We assume perfect synchrony. There is a strict time bound between
rounds. All messages (honest and adversarial) within a round will be seen by all
parties by the end of the round.

Communication channel: We assume the existence of a broadcast channel for
sending messages. If a non-faulty party broadcasts a message then it will be seen
by everyone by the end of the round. It is not possible to forge messages from
non-faulty parties.

Adversarial threshold: We denote by t the adversarial threshold; i.e., the
number of parties that the adversary can corrupt. The total number of parties is
denoted by n. We set no specific bounds on the adversarial threshold because a
rational adversary might prefer to attack the secrecy of the DKG over blocking
the communication channels [5,30].

Assumptions on the adversary: Our security proofs are given with respect to
static adversaries, meaning the adversary must state at the start of the security
game all of the parties that it has corrupted. We allow the adversary to control
the ordering of messages within a round, and in particular the adversary can
wait to receive all messages within a round before it broadcasts its message (this
is called a rushing adversary). The adversary can also choose not to participate
at all.

Byzantine adversary: A byzantine adversary is a malicious entity that may
differ arbitrarily from the protocol.

Crashed party: A crashed party is a party that has gone offline e.g. due to
a faulty internet connection. After a party has crashed they will not send any
more messages.

3.3 Assumptions

Our security proofs are provided in the random oracle model; i.e., there exists
a simulator that can program the output of a hash function provided that their
chosen outputs are indistinguishable from random.
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We rely on the SXDH assumption [7,8], which is an extension of the DDH
assumption to Type III bilinear groups. Informally, it states that given gα

1 and
gβ
1 it is hard to distinguish gαβ

1 from random.
The BDH assumption is an extension of the CDH assumption to Type III

bilinear groups [12]. Informally, it states that given gα
1 , gβ

1 , ĥγ
1 , ĥαγ

1 it is hard to
compute e(g1, ĥ1)αβ .

3.4 Verifiable Unpredictable Functions (VUFs)

A VUF allows a party with a secret key to compute a deterministic (keyed)
function and prove to an external verifier that the result is correct. The notion
is related to signatures, with the extra requirement that the output of the signer
must be unique, even to a party that can choose the secret key. We have made
the following changes to prior definitions [23] in order to better suit our setting:
(1) we include a global setup algorithm to generate a common reference string;
(2) we include a derive algorithm to map the prover’s output onto the unique
function output.

Definition 1 (Verifiable Unpredictable Function). Let Π = (VUF.Setup,
VUF.Gen,VUF.Eval,VUF.Sign,VUF.Derive,VUF.Ver) be the following set of effi-
cient algorithms:

crsvuf ← VUF.Setup(1λ) : a DPT algorithm that takes as input the security
parameter and outputs a common reference string.
(pk, sk) $←− VUF.Gen(crsvuf): a PPT algorithm that takes as input a common
reference string and returns a public key and a secret key.
out ← VUF.Eval(crsvuf , sk,m): a DPT algorithm that takes as input a common
reference string, secret key, and message m ∈ {0, 1}λ and returns out ∈
{0, 1}λ.

σ
$←− VUF.Sign(crsvuf , sk,m): a PPT algorithm that takes as input a common

reference string, secret key, and message, and returns a signature σ.
out ← VUF.Derive(crsvuf , pk,m, σ): a DPT algorithm that takes as input a
common reference string, public key, message and signature and returns out ∈
{0, 1}λ.
0/1 ← VUF.Ver(crsvuf , pk,m, σ): a DPT algorithm that takes as input a com-
mon reference string, public key, message and signature and returns 1 to
indicate acceptance and 0 to indicate rejection.

We say that Π is a verifiable unpredictable function (VUF) if it satisfies cor-
rectness, uniqueness, and unpredictability (defined below).

A VUF is correct if an honest signer always convinces an honest verifier and
always outputs a seed such that the derive function outputs the correct value.
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Definition 2 (Correctness). A VUF is correct if for all λ ∈ N and m ∈
{0, 1}λ we have that

Pr

⎡
⎢⎣
crsvuf ← Setup(1λ), VUF.Derive(crsvuf , pk,m, σ) =

(pk, sk) $←− VUF.Gen(crsvuf), VUF.Eval(crsvuf , sk,m)

σ
$←− VUF.Sign(crsvuf , sk,m) ∧ VUF.Ver(crsvuf , pk,m, σ) = 1

⎤
⎥⎦ = 1.

A VUF is unique if an adversary (even one that chooses the secret key)
cannot output a verifying signature such that the derive function outputs the
wrong value.

Definition 3 (Uniqueness). For a VUF Π and an adversary A, let
AdvuniqueA (λ) = Pr[GameuniqueA (λ)], where GameuniqueA (λ) is defined as follows:

main GameuniqueA (λ)
crsvuf ← VUF.Setup(1λ)

(pk,m, σ1, σ2)
$←− A(crsvuf)

y1 ← VUF.Derive(crsvuf , pk,m, σ1)
y2 ← VUF.Derive(crsvuf , pk,m, σ2)
return (y1 �= y2) ∧ VUF.Ver(crsvuf , pk,m, σ1) ∧ VUF.Ver(crsvuf , pk,m, σ2)

We say that Π is unique if for all PPT adversaries A we have that AdvuniqueA (λ) ≤
negl(λ).

Finally, a VUF is unpredictable if an adversary cannot predict the output of
the function VUF.Eval on a message for which it has not seen any valid signatures.

Definition 4 (Unpredictability). For a VUF Π and an adversary A, let
AdvpredictA (λ) = Pr[GamepredictA (λ)] where GamepredictA (λ) is defined as follows:

main GamepredictA (λ)
H ← ∅
crsvuf ← VUF.Setup(1λ)
(pk, sk) ← VUF.Gen(crsvuf)

(m, y) $←− AVUF.Sign(crsvuf ,sk,·)(crsvuf , pk)
return (VUF.Eval(crsvuf , sk,m) = y) ∧ (m /∈ H)

Oracle OVUF.Sign(crsvuf ,sk,m)

add m to query set H
return VUF.Sign(crsvuf , sk,m)

We say that Π is unpredictable if for all PPT adversaries A we have that
AdvpredictA (λ) ≤ negl(λ).

3.5 Rekeyability

To show that existing cryptographic primitives can be instantiated with our
DKG, and other DKGs in the literature, we rely on a property called rekeyability.
Intuitively, rekeyability says that it is possible to transform an object (e.g., a
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ciphertext or signature) that was formed using one cryptographic key into an
object formed with a related key. As one concrete example, in the BLS signature
scheme, in which a signature on a message m is of the form σ = H(m)sk1 , it is
possible to transform this into a signature under the key αsk1+sk2 by computing
σα · H(m)sk2 . This means that BLS can be efficiently rekeyed with respect to
the secret key. While this notion is related to the idea of re-randomizability [26,
35,55], we are not aware of any formalizations in the literature and it may be of
independent interest.

Definition 5 (Rekeyability). For a public-key primitive Π = (KeyGen,Π1,
. . . ,Πn) and functions fk(α, k1, k2) that outputs αk1 ⊕ k2 for some binary oper-
ator ⊕ (typically + or ×), we define rekeyability as follows for all α ∈ N and
(pk1, sk1), (pk2, sk2) ∈ [KeyGen(1λ)]:

– We say that an algorithm Πi is rekeyable with respect to the secret key if
there exists an efficient function rekeyi such that

rekeyi(α, pk1, sk2, x,Πi(sk1, x; r)) = Πi(fsk(α, sk1, sk2), x; r)

for all x ∈ Domain(Πi) and randomness r. Likewise, we say that an algo-
rithm Πj is rekeyable with respect to the public key if there exists an efficient
function rekeyj such that

rekeyj(α, pk1, sk2,Πj(pk1, x; r)) = Πj(fpk(α, pk1, pk2), x; r)

for all x ∈ Domain(Πi) and randomness r.
– We say that (Πi,Πj) is rekeyable with respect to the secret key if (1) Πi is

rekeyable with respect to the secret key and (2)

Πj(pk1, y) = Πj(fpk(α, pk1, pk2), rekeyi(α, pk1, sk2, y)).

Likewise we say that (Πi,Πj) is rekeyable with respect to the public key if
(1) Πi is rekeyable with respect to the public key and (2)

Πj(sk1, y) = Πj(fsk(α, sk1, sk2), rekeyi(α, pk1, sk2, y)).

For encryption, we would want that (Encrypt,Decrypt) is rekeyable with
respect to the public key, meaning new key material can be folded into cipher-
texts without affecting the ability to decrypt. For signing, we would want that
(Sign,Verify) is rekeyable with respect to the secret key, meaning that if signa-
tures verify then so do their rekeyed counterparts.

3.6 Distributed Key Generation (DKG)

We define a distributed key generation (DKG) as an interactive protocol that is

used to generate a keypair (pk, sk). We define this as (transcript, pk) $←− DKG(I, n),
where n is the number of participants in the DKG, I is the indices of the adver-
sarial participants (so |I| ≤ t), pk is the resulting public key, and transcript is
some representation of the messages that have been exchanged.
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We additionally consider an algorithm Reconstruct that, given transcript and
the shares submitted by t + 1 honest parties, outputs the secret key sk cor-
responding to pk. With this in place, we can define an omniscient interactive
protocol (transcript, (pk, sk), stateA) $←− OmniDKG(I, n) that is aware of the inter-
nal state of each participant and thus can output sk (by running the Reconstruct
algorithm) and stateA; i.e., the internal state of the adversary.

The Reconstruct algorithm is useful not only in defining this extra interactive
protocol, but also in defining a notion of robustness for DKGs (initially called
correctness by Gennaro et al. [31]). We define this as follows:

Definition 6 (Robustness). A DKG protocol is robust if the following prop-
erties hold:

– A DKG transcript dkg determines a public key pk that all honest parties agree
on.

– There is an efficient algorithm Reconstruct

sk ← Reconstruct(dkg, sk1, . . . , sk�) for t + 1 ≤ � ≤ n

that takes as input a set of secret key shares where at least t + 1 are from
honest parties and verifies them against the public transcript produced by the
DKG protocol. It outputs the unique value sk such that pk ← KeyGen(1λ; sk).

Beyond robustness, we also want a DKG to preserve security of the under-
lying primitive for which it is run. Previous related definitions of secrecy for
DKGs required there to exist a simulator that could fix the output of the DKG;
i.e., given an input y, could output (transcript, y) that the adversary could not
distinguish from a real (transcript, pk) output by the DKG run with t adversar-
ial participants. While general, this definition is strong and required previous
constructions to have more rounds or constraints than would otherwise be nec-
essary; e.g., there seem to be significant barriers to satisfying this definition in
any DKG where the adversary is allowed to go last, as they the know the entire
transcript and can bias the final result.

In defining what it means for a DKG to preserve security, we first weaken
this previous definition. Rather than require a simulator given pk1 to have the
DKG output exactly pk1, we consider that it can instead fix the output public
key to have a known relation with its input public key. In particular, a simulator
given pk1 can fix the output of the DKG to be pk, where the simulator knows
(α, pk2, sk2) such that pk = f(α, pk1, pk2) for α �= 0 and f as defined in the
rekeyability definition (see Definition 5). We call this property key expressability.

Definition 7 (Key expressability). For a simulator Sim, define as (transcript,

pk, α, pk2, sk2)
$←− SimDKG(Sim, I, n) a run of the DKG protocol in which all honest

participants are controlled by Sim, which takes as input a public key pk1 and
has private outputs α, pk2, and sk2. We say that a DKG is key-expressable
if there exists such a simulator Sim such that (1) (transcript, pk) is distributed
identically to the output of DKG(I, n), (2) (pk2, sk2) is a valid keypair, and (3)
pk = f(α, pk1, pk2) = αpk1 ⊕ pk2.
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To now define a security-preserving DKG, we intuitively consider a DKG
being run in the context of a security game. To keep our definition as general
as possible, our only requirements are that (1) the security game contains a line

of the form (pk, sk) $←− KeyGen(1λ) (it also works if KeyGen takes a common
reference string as additional input), and (2) pk is then later given as input to
the adversary. We then say that the DKG preserves security if it is not possible
for an adversary participating in the DKG to do better than it would have done
in the original security game, in which it was given pk directly. Formally, we
have the following definition.

Definition 8 (Security-preserving). Define Game as any security game con-

taining the line (pk, sk) $←− KeyGen(1λ), denoted linepk, and where pk is later input
to an adversary A (in addition to other possible inputs). Define Game′(line, x),
parameterized by a starting line line and some value x, as Game but with
linepk replaced by line and A given x as input rather than pk. It is clear that
Game = Game′(linepk, pk).

Define linedkg as the line (transcript, (pk, sk), stateA) $←− OmniDKG(I, n), and
define DKG-Game ← Game′(linedkg, stateA). We say the DKG preserves security
for Game if

AdvDKG-Game
A (λ) ≤ AdvGame

A (λ) + negl(λ)

for all PPT adversaries A.

We do not view our requirements for the original security game as restrictive,
given the number of security games that satisfy them. For signature unforgeabil-
ity, for example, our definition says that an adversary that participates in the
DKG, and can carry its state from that into the rest of the game (including all
of the messages it saw), cannot achieve better advantage than when it is just
given the public key (as in the standard EUF-CMA game).

While the relationship between key expressability and security-preserving
DKGs is not obvious, we show in the full version of our paper [38] that it is typi-
cally the case that when key-expressable DKGs are used for rekeyable primitives,
they preserve the security of that primitive’s underlying security game.

4 Our Enhanced Scrape PVSS

A secret sharing scheme allows a dealer to deal out n secret shares so that any
subset of t + 1 shares suffices to reconstruct the secret, but subsets of size ≤ t
shares do not. A publicly verifiable secret sharing (PVSS) scheme is a secret
sharing scheme in which any third party can verify that the dealer has behaved
honestly. Importantly, PVSS obviates the need for a complaint round in VSS
protocols, which simplifies designing PVSS-based DKG protocols [27]. Cascudo
and David designed an elegant PVSS scheme called Scrape [18] with O(n) ver-
ification costs. In this section, we describe a slightly-modified variant of Scrape
that supports aggregation and uses Type III pairings and an additional element
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û2 ∈ G2 that will help our DKG security proofs later on. We rely on Type III
pairings, not only for efficiency, but also because the SXDH assumption does
not hold in symmetric groups. We give a formal description in Fig. 1. In Sect. 5,
we use this slightly-modified variant of Scrape to construct our DKG.

Common reference string (CRS). All parties use the same CRS consisting
of (1) a bilinear group description bp (which fixes g1 ∈ G1 and ĥ1 ∈ G2), (2) a
group element û1 ∈ G2 and (3) encryption keys eki ∈ G2 for every party Pi with
corresponding decryption keys dki ∈ F known only to Pi such that eki = ĥdki

1 .

Dealing. Scrape resembles other Shamir-based [58] secret sharing schemes. The
Scrape dealer will share a secret ĥa0

1 ∈ G2, whose corresponding a0 ∈ F the
dealer knows. (This is different than other VSS schemes, which typically share a
secret in F rather than in G2.) The dealer picks a random, degree-t polynomial
f(X) = (a0, a1, . . . , at), where f(0) = a0, and commits to it via Feldman [25] as
Fi = gai

1 ,∀i ∈ [0, t]. Party Pi’s share will be ĥ
f(ωi)
1 . The dealer then computes

Feldman commitments Ai = g
f(ωi)
1 and encryptions ek

f(ωi)
i of each share. (The

term “encryption” here is slightly abused since these are not IND-CPA-secure
ciphertexts.) The PVSS transcript will consist of the Feldman commitments to
f(X) and to the shares, plus the encryptions of the shares. Additionally, we
augment the transcript with û2 = ûa0

1 , which helps our DKG security proofs.

Verifying. Each party Pi can verify that the PVSS transcript is a correct sharing
of ĥa0

1 . For this, Pi checks the Feldman commitments Ai to the shares f(ωi) are
consistent with the Feldman commitment to f(X) via Lagrange interpolation
in the exponent (see Fig. 1). Then, each Pi checks their encryption of f(ωi)
against Ai. Altogether, this guarantees that the encrypted shares are indeed the
evaluations of the committed polynomial f .

Aggregating transcripts. One of our key contributions is an algorithm for
aggregating two Scrape PVSS transcripts pvss1 and pvss2 for polynomials f1
and f2 into a single transcript for their sum f1 + f2. This is a key ingredient of
our DKG from Sect. 5. Our aggregation leverages the homomorphism of Feldman
commitments and of the encryption scheme. Indeed, suppose we have Feldman
commitments to fb consisting of Fb,i = g

ab,i

1 ,∀i ∈ [0, t], where ab,i’s are the
coefficients of fb, for b ∈ {1, 2}. Then, Fi = F1,iF2,i = ga1,i+a2,i ,∀i ∈ [0, t] will
be a Feldman commitment to f1 + f2. Similarly, we can aggregate the share
commitments Ab,i = gfb(ωi) as Ai = A1,iA2,i = g(f1+f2)(ωi),∀i ∈ [n]. Lastly,
the encryptions ekfb(ωi)

i can be aggregated as ek(f1+f2)(ωi)
i = ek

f1(ωi)
i ek

f2(ωi)
i . We

summarize this aggregation algorithm in Fig. 1.

Reconstructing the secret. At the end of the PVSS protocol, each party Pi

can decrypt their share as Âi = Ŷ
dk−1

i
i = (ekf(ωi)

i )dk
−1
i = ĥ

f(ωi)
1 . Recall that

the degree t polynomial f(X) encodes the secret f(0) = a0. Thus, any set S of
≥ t + 1 honest parties can reconstruct sk = ĥ

f(0)
1 as follows:
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Fig. 1. Dealing, verification and aggregation algorithms for the Scrape PVSS. Here,
ek,F ,A, Ŷ denote vectors of eki’s, Fi’s, Ai’s and Ŷi’s. The polynomial �j(X) denotes
the Lagrange polynomial equal to 1 at ωj and 0 at ωi �= ωj . The ωi’s are public
predetermined values which, for efficiency purposes, should be chosen as roots of unity
of degree n. For more details, see the full version of our paper [38].

1. For each share Âi provided, check that e(Ai, ĥ1) = e(g1, Âi), where Ai =
g

f(ωi)
1 is part of the PVSS transcript. If this check fails, or if Pi does not

provide a share, then remove Pi from S.
2. Return, sk =

∏
i∈S Â

�S,i(0)
i where �S,i(X) is a Lagrange polynomial equal to

0 at ωj ∈ S for i �= j, and 1 at ωi.

5 Distributed Key Generation

In this section, we describe our distributed key generation (DKG) protocol for
generating a key-pair (pk, sk) of the form

pk = (ga
1 , ûa

1) ∈ G1 × G2 and sk = ĥa
1 ∈ G2, where a ∈ F

We often refer to a ∈ F as the DKG secret. All parties Pi use the same Scrape
CRS (see Sect. 4) but augmented with verification keys vki (defined later).

At a high level, our DKG protocol resembles previous protocols based on
verifiable secret sharing: each party Pi deals a secret ĥci

1 to all other parties using
the Scrape PVSS from Sect. 4. Additionally, each party Pi includes a proof-of-
knowledge of their secret ci. At this point, each party Pj would have to verify
the PVSS transcript of every other party Pi, resulting in O(n2) work. Then, the
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final secret would be sk = ĥa
1 with a =

∑
i∈Q ci, where Q is the set of all parties

who dealt honestly (i.e., whose PVSS transcript verified). Note that since PVSS
transcripts are publicly-verifiable, all parties Pi agree on Q and there is no need
for a complaint round. We often refer to an honest party Pi as having contributed
to the final secret key and to ci as its contribution.

Gossip and aggregate. To avoid the O(n2) verification work per party, we
leverage aggregation of Scrape PVSS transcripts. We observe that a party who
verified several transcripts can aggregate them into a single one and forward
it to another party, who can now verify this aggregated transcript faster. By
carefully aggregating and gossiping transcripts in this manner, we decrease veri-
fication time per party from O(n2) to O(n log2 n). One caveat is that, due to the
randomized nature of gossiping, a party’s contribution ci might be incorporated
multiple times, say wi times, into the final secret sk = ĥa

1 . As a result, the final
a =

∑
i∈Q wici, where wi is called the weight of each ci.

Signatures-of-knowledge of contributions. Similar to previous DKGs [32],
our DKG requires each party Pi to prove knowledge of its contribution ci to
the final DKG secret. However, since our DKG transcripts must be publicly-
verifiable, we also require each party to sign their contributions. We achieve
both of these goals using a signature-of-knowledge (SoK). Specifically, Pi signs
Ci = gci

1 using its secret key ski, with corresponding verification key vki = gski
1 :

σi = (σi,1, σi,2) = (HashG2(Ci)ci ,HashG2(vki, Ci)ski)

where HashG2 is a hash function that maps to G2. Any verifier with vki can
verify the signature-of-knowledge σi of ci as:

e(Ci,HashG2(Ci)) = e(g1, σi,1) ∧ e(vki,HashG2(vki, Ci)) = e(g1, σi,2)

Our signatures of knowledge are simulation-sound and thus cannot be com-
pressed or combined. However, since they are constant-sized, this is not prob-
lematic. We refer to the signing algorithm as SoK.Sign(Ci, ski, ci) → σi and the
verification algorithm as SoK.Verify(vki, Ci, σi) → 0/1.

DKG transcripts. To maintain their public-verifiability, aggregated PVSS
transcripts must keep track of the weights wi of each party’s contribution ci

and of the σi’s. This gives rise to a new notion of a DKG transcript defined as:

transcript = ((C1, . . . , Cn), (w1, . . . , wn), (σ1, . . . , σn), pvss), (1)

where Ci = gci
1 is a commitment to the contribution ci of party Pi, wi is its

weight, σi is the SoK of ci and pvss is an (aggregated) PVSS transcript for
secret a =

∑
i∈[n] wici.

Recall from Fig. 1 that pvss stores a Feldman commitment F to a poly-
nomial f(X) with f(0) = a and that F0 = ga

1 . In our protocol, each party
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Pi initializes their DKG transcript by picking ci
$←− F and setting pvss ←

Scrape.Deal(bp, ek, û1, ci), Ci ← gci
1 , wi ← 1 and σi ← SoK.Sign(Ci, ski, ci).

For j �= i, Pi sets Cj ← ⊥, wj ← 0 and σj ← ⊥. Importantly, in our protocol,
each party will broadcast the Ci commitment to their contribution and gossip
the rest of their DKG transcript to a subset of the other parties (we discuss this
in more detail later on).

Verifying DKG transcripts. To verify the DKG transcript from Eq. (1), one
first checks that its inner pvss transcript verifies. Second, for all non-trivial con-
tributions with wi �= 0, one first checks if their signature of knowledge σi verifies.
Finally, one checks that the contributions correctly combine to the commitment
F0 to the zero coefficient of f(X) shared in pvss; i.e., that Cw1

1 · · · Cwn
n = F0. If

transcript passes these checks, then one can be sure that the players Pi which
have wi �= 0 in transcript have contributed to its corresponding DKG secret. See
Fig. 2 for a full description.

Aggregating DKG transcripts. Given two input DKG transcripts

(Cb,1, . . . , Cb,n), (wb,1, . . . , wb,n), (σb,1, . . . , σb,n), pvssb, for b ∈ {1, 2}
we can easily aggregate them into a single DKG transcript

(C1, . . . , Cn), (w1, . . . , wn), (σ1, . . . , σn), pvss

We first aggregate the pvssb transcripts into pvss via Scrape.Aggregate (see
Fig. 1). Second, we aggregate the weights, which are field elements, as wi =
w1,i +w2,i,∀i ∈ [n]. Third, if Pi contributed in one of the input transcripts, then
Pi’s contribution should also be reflected in the aggregated transcript. In other
words, for any Cb,i �= ⊥ and valid σb,i, we simply set Ci = Cb,i and σi = σb,i.
The choice of Cb,i does not matter when they are both �= ⊥ since they were
both obtained from the broadcast channel, so they must be equal. As a result,
their corresponding σb,i’s will also be equal since our signatures of knowledge
are unique.

Reconstructing the secret. As explained in the beginning of this section, the
final key-pair will be pk = (gf(0)

1 , û2) = (gf(0)
1 , û

f(0)
1 ) and sk = ĥ

f(0)
1 . Since the

final DKG transcript is just an augmented Scrape PVSS transcript, reconstruc-
tion of sk works as explained in Sect. 4.

5.1 A Gossip Protocol

In Step 4 of our DKG, we rely on a gossip protocol to communicate the O(n)-
sized DKG transcripts. By using gossip, we avoid both the need to broadcast
these larger messages, which is expensive, and the need for a central aggregator.
We detail our protocol in the full version of our paper [38], but provide some
insight here into how it works.

We take an optimistic approach and provide robustness for up to tr < n/2−
log n crashed parties but only up to log n Byzantine adversaries. We believe this
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Fig. 2. Aggregation algorithm for the distributed key generation protocol.

approach is often reasonable in practice because if a Byzantine adversary attacks
the robustness of a DKG, the only outcome is that the computation required
to output the DKG is higher. Furthermore, Byzantine attacks on robustness are
detectable, so any faulty party can be manually removed from the system. This
is in contrast to an attack on the security preservation of the DKG, which could
have far more serious consequences. If we want a security threshold of ts, then we
have to assume that ts parties respond. A direct implication is that n − tr must
be at least ts, showing an inherent tradeoff between the security and robustness
thresholds. In our scheme we can set ts to be exactly equal to n − tr.

The gossip protocol has each party send its currently aggregated DKG tran-
script to O(c log n) parties in expectation in each round, and terminate when
it has agreed on a “full” transcript ; i.e., a valid transcript with at least ts + 1
contributions. Here c is a small success parameter such that c ≥ 4. However,
deciding when to terminate is non-trivial, because the aggregated “full” tran-
scripts may all be different. We thus still rely on broadcast to agree on which
transcript to use, but our goal is to minimize the number of total broadcasts. We
do this by having each party with a full transcript broadcast it with probability
2/n in a given round. We argue that this makes the protocol likely to terminate
within O(c log n) rounds. Parties agree to use the transcript whose public key
has a binary representation with the smallest bit-count (but any other publicly-
verifiable convention works too). In terms of complexity, our gossip protocol
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Fig. 3. Our DKG with reconstruction threshold t + 1 run by parties P1, . . . , Pn.

requires O(cn2 log n) total words to be communicated in private messages and
O(c log2 n) broadcasts.

5.2 Security Analysis

Robustness. Our DKG is robust in the sense that all honest parties agree on
the final public key, and in the sense that any set S containing at least t + 1
honest parties can reconstruct the secret key.

Theorem 1 (DKG is robust). The scheme in Fig. 3 is robust for any prim-
itive with keys of the form pk = (ga

1 , ûa
1) ∈ G1 × G2.

Proof. First we show that all honest parties have the same value pk. By perfect
synchrony we have that in each round all honest parties agree on a completing
set of broadcasts. From the broadcast messages that complete and verify, one
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must have the most sparse binary decomposition. This message defines a public
key pk that all parties agree on.

We show that reconstruction always succeeds on input of n shares where
at least t + 1 are input by non-faulty parties. First observe that if the DKG
transcript verifies, then for some random value α we have that

A
�1(α)
1 · · · A�n(α)

n = F0F
α
1 · · · Fαt

t

By the Schwartz-Zippel Lemma this implies that with overwhelming probability

f(X) = f0 + f1X + · · · + ftX
t = a1�1(X) + · · · + an�n(X)

and ai = f(ωi). Second observe that e(Ai, ĥ1) = e(g1, Âi) if and only if
Âi = ĥ

f(ωi)
1 . Where at least t + 1 parties are honest the reconstruction algo-

rithm receives at least t + 1 verifying shares. With t + 1 verifying shares the
reconstruction algorithm always succeeds because f has degree t.

Security preserving. We now prove that our DKG satisfies key expressability;
i.e., we construct a simulator that is able to fix the output to be a value αpk1+pk2,
where pk1 is given as input and α �= 0. This does not directly prove that the DKG
preserves security, but in the full version of our paper we detail how combining a
key-expressable DKG with rekeyable encryption schemes, signature schemes, and
VUFs implies that the DKG also preserves security of these primitives. We cover
these three due to their popularity (and our VUF construction in Sect. 7), but
envisage that there are many other primitives that are rekeyable and thus simi-
larly preserve their security when combined with key-expressable DKGs.

Theorem 2 (DKG). The scheme in Fig. 3 is key-expressable as per
Definition 7 in the random oracle model for any primitive with keys of the form
pk = (ga

1 , ûa
1) ∈ G1 × G2 and sk = ĥa

1 ∈ G2.

Proof. We design an adversary B that takes as input pk1 such that whenever
the DKG outputs pk, B outputs α, pk2, sk2 such that pk = αpk1 + pk2. Suppose
B receives input pk1 = (g2, v̂2).

First B runs the DKG with A. Let IB ⊂ [1, n] be the set of corrupted (i.e.
“bad”) parties and IG ⊂ [1, n] be the set of uncorrupted (“good”) parties. For
good parties Pk, B simulates the adversarial view of this party’s output, so that
public view Ck, ûk,2 sent by Pk is equal to (gak

2 , v̂ak
2 ).

In the course of this simulation, B answers A’s queries to the oracle HashG2

by selecting r
$←− F at random, and returning ĥr

1.
In the registration round, when A queries B on the k-th honest value,

B chooses μk, κk
$←− F randomly from the field and returns the public key

(ekk, vkk) = (ûμk

1 , gκk
2 ).

In the broadcast round, B chooses ak
$←− F randomly for each honest party

and computes Ck = gak
2 . It then samples χk, ψk

$←− F and programs HashG2 to
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return ûχk

1 and ûψk

1 on input Ck and (vkk, Ck) respectively. Finally it broadcasts
Ck. With overwhelming probability, A is yet to query the randomised value Ck.

In the share creation round, when queried on Pk, B is required to output

(Fk, ûk,2, σ̂k,Ak, Ŷk)

that are indistinguishable from a valid output. Assume without loss of generality
that |IB | = t. It then behaves as follows

1. Choose random x̄k,j
$←− F for each j ∈ IB and interpolate in the exponent to

find (Fk,0, . . . , Fk,t) such that Fk,i = gci
1 , where

∑t
i=0 ciX

i evaluates to x̄k,j

at ωj for j ∈ IB and ak logg1
(g2) at 0. These ci values are unknown to B.

2. Set ûk,2 = v̂ak
2 .

3. Set σk = (v̂akχk

2 , v̂κkψk

2 ).

4. To compute Ak,1, . . . , Ak,n, set Ak,j =
∏t

i=0 F
ωi

j

k,i .
5. To compute Ŷk,j for j ∈ IB , return ek

x̄k,j

j . To compute Ŷk,j for j ∈ IG,
interpolate in the exponent to find ûc0

1 , . . . , uct
1 for c0, . . . , ct−1 as in Step 1

(recall that B knows û
logg1

(g2)

1 ). Return Ŷk,j =
∏t

i=0 û
ciμjωi

j

1 .

This simulation is perfect. Indeed c0 = logg1
(Ck) and c1, . . . , ct are ran-

domly distributed. We have that ûk,2 = v̂
ak(ν+1)
2 = û

logg1
(Ck)

1 . Also,
σk,1 = HashG2(Ck)logg1

(Ck) and σk,2 = HashG2(vkk, Ck)logg1
(vkk). The values

Ak,1, . . . , Ak,n are computed honestly and are the unique encryptions that satisfy
the verifier.

Suppose that the DKG terminates with transcript ((C ′
1, . . . , C

′
n),

(w1, . . . , wn), (σ′
1, . . . , σ

′
n), pvss) . The public key is given by C = C ′

1 · · · C ′
n, û2 =

û1,2 · · · ûn,2. For each adversarial contribution C ′
i, B looks up r such that

HashG2(C
′
j) = ĥr

1. Here, i can be any index, as A might have forged one of
B’s contributions. If the adversary has not queried HashG2 on C ′ then the prob-
ability of them returning a verifying signature σ is negligible. To get the secret
key share, B extracts Ĉi = σ̂

1
r such that Ĉi = ĥ

logg1
(Ci)

1 .
If A has included at least one of B’s contributions, then B computes z =∑

k∈S wk for S the set of honest participants whose contribution is included in
the transcript. Additionally, B computes pk2 = (

∏
i�∈S C ′

i,
∏

i�∈S ûi,2) and sk2 =∏
i�∈S Ĉi. Then, we have that pk = αpk1 + pk2 for α �= 0 and sk2 is a key for pk2.

Thus B returns (α, sk2).
If A has not included any contributions from B, then that A has forged

a signature σ′
k with respect to some vkk = gκk

2 and contribution C ′
k. Using

the oracle queries, B looks up r such that HashG2(vkk, C ′
k) = ĥr

1. Since σ′
k =

(σ′
k,1, σ

′
k,2) verifies, we have that σ′

k,2 = ĥ
rκk logg1

(g2)

1 . Thus, B computes sk1 =

(σ′
k,2)

1
rκk . Additionally, B computes pk2 = (g−1

2

∏
i C ′

i, v̂
−1
2

∏
i ûi,2) and sk2 =

sk−1
1

∏
i Ĉi. Then, we have that pk = pk1 + pk2 and sk2 is a key for pk2 and B

returns (1, sk2).
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6 Alternative DKGs Have Provable Security

In this section we demonstrate that two popular DKGs, the Pedersen DKG and
the Fouque-Stern DKG, are also key-expressable. As a direct consequence, they
can be used to securely instantiate a DKG for both El-Gamal encryption and
BLS signatures, as we prove in the full version of our paper [38]. Our results
generalise to other rekeyable constructions that have public keys in G and secret
keys in F. In addition to justifying the applicability of our security definitions
and proof techniques, we hope this also fills a gap in the literature as we are
unaware of other works that provide correct proofs for these DKGs.

6.1 Pedersen DKG from Feldman’s VSS

We prove that key expressability holds for Pedersen’s DKG provided the thresh-
old of adversarial participants is less than n/2. It is our belief that this bound
on the number of adversarial participants can be removed provided that one
gives signatures of knowledge of the individual contributions. Pedersen’s DKG
can be seen as n parallel instantiations of the Feldman VSS [25]. We remind the
reader that key expressability does not imply secrecy (invalidating the attack
of Gennaro et al. [31]) but does allow us to prove the security preservation of
certain rekeyable schemes. A proof of the following theorem is provided in the
full version of our paper.

Theorem 3. The Pedersen DKG is a key-expressable DKG against static adver-
saries with adversarial threshold t < n/2 for any scheme whose key generation
outputs values pk = ga

1 ∈ G1, sk = a ∈ F.

6.2 The Fouque-Stern Publicly Verifiable DKG

We now show the key expressability of the publicly verifiable Fouque Stern
DKG [27]. This DKG has the benefit of outputting field elements as secret keys,
but the total communication and verification costs are of order O(n2). Unlike
Fouque and Stern’s original argument, we allow for the existence of rushing
adversaries. Indeed Fouque and Stern rely in their reduction on an honest party
playing last. Instantiating such an assumption would require the use of a trusted
third party and therefore negate the benefits of distributing the key generation.

A proof of the following theorem is provided in the full version of our paper.

Theorem 4. The Fouque-Stern DKG is a key-expressable DKG in the random
oracle model against static adversaries under the decisional composite residuosity
assumption for any scheme whose key generation outputs values pk = ga

1 ∈ G1,
sk = a ∈ F.
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6.3 El-Gamal and BLS

In the full version of our paper, we observe that El-Gamal encryption and BLS
signatures are both rekeyable (and both have field elements as secret keys). We
thus obtain the following two corollaries:

Corollary 1. The El-Gamal encryption scheme is IND-CPA-secure when
instantiated with the Pedersen DKG or the Fouque-Stern DKG.

Corollary 2. The BLS signature scheme is EUF-CMA-secure when instanti-
ated with the Pedersen DKG or the Fouque-Stern DKG.

7 A Structure-Preserving VUF

In this section, we introduce a verifiable unpredictable function (VUF), secure
in the random oracle model, that has group elements as the secret key. We can
thus securely instantiate our VUF using our DKG.

As one application, VUFs can be used to create randomness beacons, where
unlike in, e.g., BLS multi-signatures [11], if a threshold of signers is reached,
then the same signature is always produced. By hashing the outcome of this
VUF with a random oracle we can obtain a verifiable random function (VRF).
Abe et al. [1] proved that it is impossible to construct an algebraic VUF with a
secret key as a group element. Since we are using a hash function, however, we
are not fully algebraic and therefore sidestep this impossibility result.

7.1 Our Construction

Our VUF scheme is given in Fig. 4. The techniques were inspired by a com-
bination of BLS signatures [13] and Escala-Groth NIZKs [24] (which are an
improvement of Groth-Sahai proofs [36]). Unlike BLS signatures our secret keys
are group elements and unlike Escala-Groth NIZKs our VUFs are non-malleable.

Given an input m ∈ F under public key ga
1 , ûa

1 and secret key ĥa
1 , the

unique output given by VUF.Eval(sk,m) is e(HashG1(m), ĥa
1). Given ga

1 ∈ G1 and
HashG1(m) ∈ G1, it is hard for an adversary to compute e(HashG1(m), ĥ1)a ∈ GT .
We formally prove in Theorem 5 and 6 that our VUF satisfies uniqueness (see
Definition 3) and unpredictability (see Definition 4) under the SXDH and BDH
assumptions.



168 K. Gurkan et al.

Fig. 4. Verifiable unpredictable function with group elements as the secret key.

Setup: The setup algorithm is a transparent algorithm that takes as input the
bilinear group bp = (p,G1,G2,GT , e, g1, ĥ1) and returns four group elements in
the second source group: û1, ĥ2, ĥ3, ĥ4 ∈ G

4
2.

KeyGen: The VUF.Gen algorithm takes as input the common reference string.
It samples a random field element a

$←− F. The public key pk ∈ G1 ×G2 and the
secret key sk ∈ G2 are given as pk = (ga

1 , ûa
1) and sk = ĥa

1 .

Sign: The VUF.Sign algorithm first hashes the message m to obtain Z ∈ G1 as
Z = HashG1(m). The signer generates a commitment to sk by sampling random
elements α, β ∈ F and computing

(π̂1, π̂2) = (ĥ−α
1 ĥ−β

2 , sk · ĥ−α
3 ĥ−β

4 ).

If ĥ1, ĥ2, ĥ3, ĥ4 are randomly distributed, this commitment is perfectly hiding.
However, if ĥ1, ĥ2, ĥ3, ĥ4 form an SXDH challenge, then there exists some ξ such
that ĥ3 = ĥξ

1 and ĥ4 = ĥξ
2, meaning that the commitment forms an El-Gamal

encryption of sk. In this case, we say that the commitment is perfectly binding.
Having generated (π̂1, π̂2), the signer now generates (π1, π2, π3, π4) ∈ G

4
1 such

that
(π1, π2, π3, π4) = (gα

1 , Zα, gβ
1 , Zβ)

These signature elements have been designed such that the random blinders α, β
are canceled out in the verifier’s equations.
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The signer returns the output σ = (π1, π2, π3, π4, π̂1, π̂2).

Derive: The VUF.Derive computes Z = HashG1(m) and then returns

T = e(Z, π̂2)e(π2, ĥ3)e(π4, ĥ4)

as the unique and unpredictable component. If the signer is honest then T =
e(Z, sk) = VUF.Eval(crsvuf , sk,m).

Verify: The VUF.Ver algorithm parses the signature to check that (π1, π2, π3, π4)
is in G

4
1, and (π̂1, π̂2) is in G

2
2. The verifier computes Z identically to the signer,

i.e., Z = HashG1(m). The verifier then checks that three pairing equations are
satisfied in order to be convinced that there exist α, β such that

(π2, π4, π̂2) = (Zα, Zβ , ĥ−α
3 ĥ−β

4 · sk)

Specifically, they check that:

1 = e(g1, π̂1)e(π1, ĥ1)e(π3, ĥ2) (2)

1 = e(Z, π̂1)e(π2, ĥ1)e(π4, ĥ2) (3)

e(pk, ĥ1) = e(g1, π̂2)e(π1, ĥ3)e(π3, ĥ4) (4)

They return 1 if all these checks pass and 0 otherwise.
Given a signature that satisfies these equations, an extractor that knows a

trapdoor SXDH relation between the CRS elements can output a valid witness
sk. However, there also exists a simulated CRS indistinguishable from random
such that we can simulate signatures without knowing sk.

Threshold VUF Scheme We discuss how to transform our VUF into a thresh-
old VUF. The individual VUF shares can be made shorter using an optimisation
in the full version of our paper [38]. Suppose that there are n parties P1, . . . , Pn

and we want that any t+1 of them can jointly sign a message, but that t of them
cannot. We use Shamir’s secret sharing scheme and choose a degree t polynomial
f(X). Let ω1, . . . , ωn denote unique evaluation points and �S,1(X), . . . , �S,t+1(X)
denote the Lagrange polynomials such that for all ωj ∈ S we have that �S,i(ωj)
is equal to 1 if i = j and 0 otherwise.

The threshold setup algorithm runs identically to the non-threshold version
to return crsvuf . The key generation outputs a public key and n secret key shares
of the form

pk = (gf(0)
1 , û

f(0)
1 ), sk1 = ĥ

f(ω1)
1 , . . . , skn = ĥ

f(ωn)
1 .

To compute their share of the threshold signature on m party Pi outputs

σi = (πi,1, πi,2, πi,3, πi,4, π̂i,1, π̂i,2)
$←− VUF.Sign(crsvuf , ski,m)
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To aggregate t signature shares on m from parties {Pi}i∈S compute

σ =

(∏
i∈S

π
�S,i(0)
i,1 ,

∏
i∈S

π
�S,i(0)
i,2 ,

∏
i∈S

π
�S,i(0)
i,3 ,

∏
i∈S

π
�S,i(0)
i,4 ,

∏
i∈S

π̂
�S,i(0)
i,1 ,

∏
i∈S

π̂
�S,i(0)
i,2

)

The verification and derive algorithms run identically to their non-threshold
counterparts on the input (crsvuf , pk,m, σ)

We briefly show that σ is correct. Set Z = HashG1(m) and see that σ =
(π1, π2, π3, π4, π̂1, π̂2) is given by

π1 =
∏

i∈S π
�S,i(0)
i,1 = g

∑
i∈S αi�S,i(0)

1

π2 =
∏

i∈S π
�S,i(0)
i,2 = Z

∑
i∈S αi�S,i(0)

π3 =
∏

i∈S π
�S,i(0)
i,3 = g

∑
i∈S βi�S,i(0)

1

π4 =
∏

i∈S π
�S,i(0)
i,4 = Z

∑
i∈S βi�S,i(0)

π̂1 =
∏

i∈S π̂
�S,i(0)
i,1 = ĥ

− ∑
i∈S αi�S,i(0)

1 ĥ
− ∑

i∈S βi�S,i(0)

2

π̂2 =
∏

i∈S π̂
�S,i(0)
i,2 = ĥ

− ∑
i∈S αi�S,i(0)

3 ĥ
− ∑

i∈S βi�S,i(0)

4

∏
i∈S sk

�S,i(0)
i

= ĥ
− ∑

i∈S αi�S,i(0)

3 ĥ
− ∑

i∈S βi�S,i(0)

4 ĥ
f(ωi)�S,i(0)
1

Since f has degree t we have that f(ωi)�S,i(0) = f(0). Denote α =
∑

i∈S αi�S,i(0)
and β =

∑
i∈S βi�S,i(0) in the above equation to get that

(π1, π2, π3, π4, π̂1, π̂2) = (gα
1 , Zα, gβ

1 , Zβ , h−α
1 h−β

2 , h−α
3 h−β

4 ĥ
f(0)
1 ) .

Thus the threshold signature is distributed identically to the non-threshold coun-
terpart and the verifier and deriver output 1 and e(Z, ĥ1)f(0), respectively.

Aggregatable signature scheme. It is also possible to use our VUF to instan-
tiate an aggregatable signature scheme with secret keys as group elements. For
aggregating, one simply takes the product of the public key elements output by
VUF.Gen and the signature elements output by VUF.Sign. Similar to the BLS
scheme, this aggregatable signature scheme would be susceptible to rogue key
attacks [49]. It is thus important to provide simulation-extractable proofs of
knowledge of secret keys as part of a public key infrastructure.

7.2 Security Analysis

To prove that our VUF is secure, we need to prove that it satisfies uniqueness
and unpredictability.

Theorem 5. The VUF in Fig. 4 satisfies uniqueness (Definition 3) under the
SXDH assumption in the random oracle model.

Theorem 6. The VUF in Fig. 4 satisfies unpredictability (Definition 4) under
the SXDH and the BDH assumption in the random oracle model.
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We provide formal proofs of these theorems in the full version of our paper.
Intuitively, uniqueness relies on the fact that it would be statistically impossible
to satisfy the verifiers equations for a wrong evaluation if the CRS was made
up of an SXDH instance. Since VUF.Eval is deterministic there can only be one
correct evaluation. Thus if an adversary could break uniqueness in the general
case, then we could use them as a subroutine to determine SXDH instances from
random.

Our unpredictability proof uses an adversary who predicts the VUF to com-
pute a BDH output. To do this we embed one component of the BDH challenge
into the public key being targeted, and the other into the adversaries random
oracle queries. However, we also need to simulate responses to the adversaries
signature requests, and to do this (after jumping to a hybrid game with a struc-
tured CRS) we need to program the oracle such that we know a discrete log.
This could present a collision as the adversary may have already queried that
point. To counteract, we take a random guess as to which oracle query the adver-
sary will output their prediction for, and if we guess wrong we abort. Thus our
reduction is not tight, but does provide us with a polynomial chance of success
whenever the adversary succeeds.

After observing that our VUF is rekeyable, we prove the following corollary
in the full version of our paper.

Corollary 3. The VUF in Fig. 4 is unique and unpredictable when instantiated
with the DKG in Fig. 3.

8 Implementation

We implement our DKG and VUF and summarise the performance of our
schemes in Tables 2 and 3. Our implementation is written in Rust on top of the
libzexe library, which performs efficient finite field arithmetic, elliptic curve
arithmetic, and finite field FFTs. We evaluate our DKG and VUF on a desktop
machine with an i7-8700k CPU at 3.7 GHz and 32 GB of DDR4 RAM. We use
the BLS12-381 curve. For hashing to groups, we use the try-and-reject method
by instantiating a ChaCha20 RNG with a Blake2s hash of the input message,
sampling field elements and checking if they are valid x-coordinates, deriving
the corresponding point if so. Our implementation is not constant-time. Upon
publication, we plan to release our implementation as open-source software.

We utilise a few optimization techniques throughout the implementation.
First, when verifying multiple pairing equations, we instead compute a ran-
domised check of a single pairing equation so as to amortise the cost of the
final exponentiations. We then compute the pairing product efficiently using the
underlying libzexe implementation. In the same vein, when verifying pairing
equations where two pairings are computed with respect to the same source
group element, we combine the two into a randomised check. For large multi-
exponentiations we use the libzexe implementation of Pippenger’s algorithm.
For large polynomial evaluations we use FFTs. We additionally utilise batch
normalization of projective points.
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Table 2. The performance of our DKG, averaged across 10 samples of each operation.
For n parties, we use a threshold of t = 2n/3.

Parties DKG.Deal
(ms)

Scrape.Verify
(ms)

DKG.Verify
(ms)

Transcript
size (kB)

64 72 96 376 25

128 124 178 704 50

256 271 346 1305 99

8192 8000 9900 42600 3146

Table 3. The performance of our VUF (Sect. 7), our optimised VUF, and the BLS
signature scheme. These numbers were averaged across four distinct runs, with 100
samples of each operation per run.

Our VUF Our optimised VUF BLS [13]

Key prove (ms) – 2.89 –

Public key (bytes) 48 336 96

Key verify (ms) – 4.00 –

Sign (ms) 3.47 0.58 0.44

Signature size (bytes) 384 96 48

Verify (ms) 4.73 2.39 2.15

Derive (ms) 2.37 2.37 –

We evaluate our DKG with respect to 64, 128, 256, and 8192 parties. We see
that the time taken to compute, verify, and aggregate a transcript all increase
linearly in the number of parties. Verifying a transcript with 256 parties takes a
little more than a second.

In addition to our VUF presented in Sect. 7, we also evaluate an optimised
VUF that we present in the full version of our paper [38]. We compare the
performance of our VUF and our optimised VUF with BLS [13], which is the
state of the art in the random oracle model. We do not give the derivation time
for BLS because this is the identity function. It can be seen that signing and
verifying our optimised VUF is only fractionally more expensive than BLS, but
that verifying our full VUF is approximately twice as expensive.
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Abstract. We construct the first decentralized multi-authority
attribute-based encryption (MA-ABE) scheme for a non-trivial class of
access policies whose security is based (in the random oracle model)
solely on the Learning With Errors (LWE) assumption. The supported
access policies are ones described by DNF formulas. All previous con-
structions of MA-ABE schemes supporting any non-trivial class of access
policies were proven secure (in the random oracle model) assuming var-
ious assumptions on bilinear maps.

In our system, any party can become an authority and there is no
requirement for any global coordination other than the creation of an
initial set of common reference parameters. A party can simply act as a
standard ABE authority by creating a public key and issuing private keys
to different users that reflect their attributes. A user can encrypt data in
terms of any DNF formulas over attributes issued from any chosen set of
authorities. Finally, our system does not require any central authority.
In terms of efficiency, when instantiating the scheme with a global bound
s on the size of access policies, the sizes of public keys, secret keys, and
ciphertexts, all grow with s.

Technically, we develop new tools for building ciphertext-policy ABE
(CP-ABE) schemes using LWE. Along the way, we construct the first
provably secure CP-ABE scheme supporting access policies in NC1 under
the LWE assumption that avoids the generic universal-circuit-based key-
policy to ciphertext-policy transformation. In particular, our construc-
tion relies on linear secret sharing schemes with new properties and in
some sense is more similar to CP-ABE schemes that rely on bilinear maps.
While our CP-ABE construction is not more efficient than existing ones,
it is conceptually intriguing and further we show how to extend it to get
the MA-ABE scheme described above.

1 Introduction

Attribute-based encryption (ABE) is a generalization of traditional public-key
encryption [26] that offers fine-grained access control over encrypted data based
on the credentials (or attributes) of the recipients. ABE comes in two avatars:
c© International Association for Cryptologic Research 2021
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ciphertext-policy and key-policy. In a ciphertext-policy ABE (CP-ABE), as the
name suggests, ciphertexts are associated with access policies and keys are asso-
ciated with attributes. In a key-policy ABE (KP-ABE), the roles of the attribute
sets and the access policies are swapped, i.e., ciphertexts are associated with
attributes and keys are associated with access policies. In both cases, decryption
is possible only when the attributes satisfy the access policy.

Since its inception by Sahai and Waters, and Goyal et al. [37,54], ABE has
become a fundamental cryptographic primitive with a long list of potential appli-
cations. Therefore, designing ABE schemes has received tremendous attention
by the cryptographic community resulting in a long sequence of works achiev-
ing various trade-offs between expressiveness, efficiency, security, and underlying
assumptions [5,8,11,13,15,18,19,23,24,27,31–33,36,40,41,43,50,56,58].

Most of the aforementioned works base their security on cryptographic
assumptions related to bilinear maps. It is very natural to seek for constructions
based on other assumptions. First, this is important from a conceptual perspec-
tive as not only more constructions increase our confidence in the existence of
a scheme, but constructions using different assumptions often require new tech-
niques which in turn improves our understanding of the primitive. Second, this is
important in light of the known attacks on group-based constructions by quan-
tum computers [55]. Within this general goal, we currently have a handful of ABE
schemes (that go beyond Identity-Based Encryption) [4,5,15,16,18,19,33,34,56]
which avoid bilinear maps as their underlying building blocks.

All of these works derive their security from the hardness of the learning with
errors (LWE) problem, which is currently also believed to be hard against quan-
tum computers [29,46,47,51,52]. However, one striking fact is that all existing
LWE-based ABE schemes (mentioned above) are designed in the key-policy set-
ting. To date, the natural dual problem of constructing CP-ABE schemes based
on the LWE assumption is essentially completely open.

The only known way to realize an LWE-based CP-ABE scheme is to convert
either of the circuit-based KP-ABE schemes of [15,19,33] into a CP-ABE scheme
by using a universal circuit to represent an access policy as an attribute and an
attribute set as a circuit. However, this transformation will inherently result with
a CP-ABE for a restricted class of access policies and with parameters that are
far from ideal. Concretely, for any polynomials s, d in the security parameter, it
allows to construct a CP-ABE for access policies with circuits of size s and depth
d. Moreover, the size of a ciphertext generated with respect to some access policy
f will be |f | · poly(λ, s, d) (no matter what KP-ABE we start off with). That is,
even if an f being encrypted has a very small circuit, the CP-ABE ciphertext
would scale with the worst-case bounds s, d.

Open Problem 1: Improve (even modestly) upon the universal-circuit based
CP-ABE construction described above while assuming only LWE.

There have been few recent exciting attempts towards this problem [6–8,18].
The works of [6,8,18] attempt go all the way and construct a succinct CP-ABE,
where there is no global size bound s and ciphertexts and keys are of size inde-
pendent of s. The works [6,8], rely on LWE as well as on bilinear groups (either
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generic [8] or a particular knowledge assumption [6]). The work [18] lacks a secu-
rity proof. Most recently, [7] constructed a CP-ABE scheme based on LWE that
still requires a universal circuit size bound but the sizes of ciphertexts and keys
are independent of it.

Multi-authority Attribute-Based Encryption: In an ABE scheme, keys can
only be generated and issued by a central authority. A natural extension of this
notion, introduced by Chase [21] and termed multi-authority ABE (MA-ABE),
allows multiple parties to play the role of an authority. In an MA-ABE, there
are multiple authorities which control different attributes and each of them can
issue secret keys to users possessing attributes under their control without any
interaction with the other authorities in the system. Specifically, given a cipher-
text generated with respect to some access policy, a user possessing a set of
attributes satisfying the access policy can decrypt the ciphertext by pulling the
individual secret keys it obtained from the various authorities controlling those
attributes. The security requires collusion resistance against unauthorized users
with the important difference that now some of the attribute authorities may be
corrupted and therefore may collude with the adversarial users.

To date, there are only a few works which have dealt with the problem of con-
structing MA-ABE schemes. After few initial attempts [21,22,44,48,49] that had
various limitations, Lewko and Waters [42] were able to design a truly decentral-
ized MA-ABE scheme in which any party can become an authority and there is
no requirement for any global coordination other than the creation of an initial
trusted setup. In their scheme, a party can simply act as an authority by publish-
ing a public key of its own and issuing private keys to different users that reflect
their attributes.Different authorities need not even be aware of each other and they
can join the system at any point of time. There is also no bound on the number of
attribute authorities that can ever come into play during the lifetime of the sys-
tem. Their scheme supports access policies computable by NC1 circuits and their
security is proven in the random oracle model and further relies on assumptions on
bilinear groups (similarly to all previous MA-ABE constructions). Rouselakis and
Waters [53] provided further efficiency improvements over [42], albeit they rely, in
addition to a random oracle, on a non-standard q-type assumption.

Open Problem 2: Is there a truly decentralized MA-ABE for some non-trivial
class of access policies assuming hardness of LWE (and in the random oracle
model)?

There has been few recent attempts at this problem as well [39,57]. Both con-
structions [39,57] assume a central authority which generates the public and
secret keys for all the attribute authorities in the system. Thus all authorities
that will ever exist in the system are forever fixed once setup is complete which
runs counter to the truly decentralized spirit of [42]. Additionally, both schemes
guarantee security only against a bounded collusion of parties. In fact, the scheme
of Kim [39] is built in a new model, called the “OT model”, which is incapable of
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handling even bounded collusion.1 In this sense, both constructions suffer from
related limitations to the early MA-ABE constructions [21,22,44,48,49] describe
above. The differences between the two constructions are that the scheme of
Wang et al. [57] supports NC1 access policies, while the scheme due to Kim [39]
support arbitrary bounded depth circuits.

1.1 Our Contributions

In this paper, we make progress with respect to Open Problem 2, stated above.
We construct a new MA-ABE scheme supporting an unbounded number of
attribute authorities for access policies captured by DNF formulas. Our scheme
is proven secure in the random oracle model and relies on the hardness of the
LWE problem.

Theorem 1.1 (Informal): There exist a decentralized MA-ABE scheme for
access policies captured by DNF formulas under the LWE assumption. Our
scheme is (statically) secure against an arbitrary collusion of parties in the
random oracle model and assuming the LWE assumption with subexponential
modulus-to-noise ratio.

Similarly to [42,53], in our MA-ABE scheme, any party can become an authority
at any point of time and there is no bound on the number of attribute authorities
that can join the system or need for any global coordination other than the
creation of an initial set of common reference parameters created during a trusted
setup. We prove the security of our MA-ABE scheme in the static security model
introduced by Rouselakis and Waters [53] where all of the ciphertexts, secret
keys, and corruption queries must be issued by the adversary before the public
key of any attribute authority is published.

Towards obtaining Theorem 1.1, we make conceptual contribution towards
Open Problem 1. We present the first provably secure direct CP-ABE construc-
tion which avoids the generic universal-circuit-based key-policy to ciphertext-
policy transformation. In particular, our approach deviates from all previous
LWE-based expressive ABE constructions [5,15,18,19,33,34,56] that are in turn
based on techniques inspired by fully homomorphic encryption [28,30]. In con-
trast, our CP-ABE is based on useful properties of linear secret sharing schemes
1 All previous multi-authority ABE schemes were designed in the so called global identi-

fier (GID) model where each user in the system is identified by a unique global identity
string GID ∈ {0, 1}∗. The global identity of a user remains fixed for the entire lifetime
of the system and users have no freedom to choose their global identities. Kim [39]
introduced a drastically relaxed model, the so called “OT model”, where each user can
self-generate some key-request string and produce it to the attribute authorities while
requesting secret keys. To briefly see why this model fails to guarantee collusion resis-
tance, imagine that there are two users A who has attribute u and B who has attribute
v. Suppose there is a ciphertext encrypting to the policy “u AND v”. User A and B
can collude to decrypt it. Morally, the issue is that user A can go with the authority
for attribute u and produce a key with identity George. User B can then present the
same identity to the authority for attribute v. Then they can combine their keys.
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and can be viewed as the LWE analog of the CP-ABE scheme of Waters [58]
which relies on the decisional bilinear Diffie-Hellman assumption.

Theorem 1.2 (Informal): There exist a CP-ABE scheme supporting all access
policies in NC1. The scheme is selectively secure assuming the LWE assumption
with subexponential modulus-to-noise ratio.

Our CP-ABE scheme achieves the standard selective security where the adver-
sary must disclose its ciphertext query before the master public key is published
but is allowed to make secret key queries adaptively throughout the security
experiment. Again, Theorem 1.2 does not improve upon previously known con-
structions in any parameter. It is in fact worse in several senses: it only supports
NC1 access policies, its efficiency is worse, and it requires the LWE assumption
to hold with subexponential modulus-to-noise ratio. However, the new construc-
tion is interesting not only because we show how to generalize it to get the new
MA-ABE scheme from Theorem 1.1, but also because we introduce a conceptually
new approach and develop several interesting tools and proof techniques.

One highlight is that we distill a set of properties of linear secret sharing
schemes (LSSS) which makes them compatible with LWE-based constructions.
Specifically, we instantiate both of our CP-ABE and MA-ABE schemes with such
LSSS schemes. In the security model of CP-ABE we are able to construct such
a compatible LSSS for all NC1 while in the (much harder) security model of
MA-ABE we are only able to get such a scheme for DNFs. The properties are:

– Small reconstruction coefficients: The reconstruction coefficients of the
LSSS must be small, say {0, 1}. This property of LSSS secret sharing schemes
was recently formally defined by [14]. They observed that a well-known con-
struction by Lewko and Waters [42] actually results with an LSSS with this
property for all access structures in NC1.

– Linear independence for unauthorized rows: This property says that
rows of the share generating matrix that correspond to an unauthorized set
of parties are linearly independent. Agrawal et al. [1] recently observed that
the aforementioned construction by Lewko and Waters [42], when applied on
DNF access structures, results with a share generating matrix that has this
property as well.

Both of our constructions, the CP-ABE as well as the MA-ABE, are actually
designed to work with any access structure that has an LSSS with the above two
properties.

Theorem 1.3 (Informal): Consider a class of access policies P that has an
associated LSSS with the above two properties. Then, there exists a CP-ABE and
an MA-ABE supporting access policies from the class P. Both schemes are secure
assuming the LWE assumption with subexponential modulus-to-noise ratio and
the MA-ABE scheme also requires a random oracle.

To obtain Theorem 1.2 we design a new (non-monotone) LSSS for all NC1 that
has the above two properties. This is summarized in the following theorem.
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Theorem 1.4 (Informal): There exists a non-monotone LSSS scheme for all
NC1 circuits satisfying the small reconstruction coefficients and linear indepen-
dence for unauthorized rows properties.

By non-monotone, we mean that an attribute and its negation are treated
separately (both having corresponding shares) and it is implicitly assumed that
the attacker will never see shares corresponding to both the positive and the neg-
ative instances of the same attribute. This can be enforced in case of CP-ABE
due to its centralized nature and this when combined with Theorem 1.3 implies
Theorem 1.2. However, in MA-ABE attackers can get hold of the master secret
key of any attribute authority and generate secret keys corresponding to both
the attribute under control and its negation, and so non-monotone LSSS does
not seem to suffice. We therefore settle for the (monotone) LSSS scheme for
DNFs to obtain Theorem 1.1 (see further discussion in Sect. 2.3 below and
[25, Remark 6.1] in the full version).

Boyen’s [16] scheme: In TCC 2013 Boyen [16] suggested a lattice-based
KP-ABE scheme for NC1. While being conceptually similar to analogous con-
structions from the bilinear-maps LSSS-based schemes, soon after the publica-
tion a flaw was found and a recent work of Agrawal et al. [1] shows an explicit
attack. The attack of [1] is based on identifying a subset of attributes which cor-
respond to rows of the policy matrix that non-trivially span the 0 vector (i.e.,
linearly dependent rows). To rescue Boyen’s construction, Agrawal et al. [1] sug-
gest to use an LSSS which has the linear independence of unauthorized rows
property (they call it an admissible LSSS), however, they fail to obtain such
a scheme for any class larger than DNFs. Our non-monotone LSSS scheme for
NC1 (Theorem 1.4) can be used to resurrect the KP-ABE scheme of Boyen [16].
Although this does not imply any new result (as other constructions of KP-ABE
for all polynomial-size circuits have since been discovered [15,19,33]), we believe
that this is an important conceptual contribution.

Paper Organization: In Sect. 2 we provide a high-level overview of our tech-
niques. Prerequisites on lattices and LWE are provided in Sect. 3. In Sect. 4 we
give our construction of the new non-monotone LSSS for all NC1 with the linear
independence property. In Sect. 5 we give the construction of our CP-ABE scheme
and prove its correctness. The proof of security is provided in the full version
[25]. In Sect. 6 we give the construction of our MA-ABE scheme. The proofs of
correctness and security are again deferred to the full version [25]. We further
omit the formal syntax and security definitions of CP-ABE and MA-ABE in this
version. Those can be found in the full version [25].

2 Technical Overview

In this section we provide a high level overview of our main ideas and tech-
niques. In a very high level, our CP-ABE construction is composed of two main
conceptual ideas:
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1. A linear non-monotone secret sharing scheme with small reconstruction coef-
ficients and a linear independence guarantee: We design a new linear non-
monotone secret sharing scheme for all access structures that can be described
by a Boolean formula, namely NC1 access structures. The new secret sharing
scheme possesses two properties which turns out to be key for our correctness
and security proof. The first property states that it is possible to reconstruct
a shared secret using only coefficients that come from {0, 1}. An LSSS with
this property is called {0, 1}-LSSS [14]. The second property, called the linear
independence property, says that the shares held by any unauthorized set, not
only are independent of the secret, but are also linearly independent among
each other. We give an overview of the new construction in Sect. 2.1.

2. An LWE-based direct construction of CP-ABE: We show how to leverage any
{0, 1}-LSSS with the above extra property to get a CP-ABE scheme. Concep-
tually, to some extent the construction can be viewed as a “translation” of
Waters’ [58, Section 6] construction of a CP-ABE scheme under the Decisional
Bilinear Diffie-Hellman (DBDH) Assumption into the LWE regime. However,
since we are basing the construction of the LWE assumption, the details and
implementation are completely different and much more involved. We will
give an overview of this part in Sect. 2.2.

Combining the two parts, we obtain a CP-ABE scheme for all NC1 assuming
the LWE assumption. The CP-ABE scheme we design is already amenable for
extension to the multi-authority setting. We briefly discuss the main idea in the
extension to MA-ABE in Sect. 2.3.

2.1 The New Linear Secret Sharing Scheme

Our goal is to construct a linear secret sharing scheme with {0, 1} reconstruction
coefficients where the shares of unauthorized parties are linearly independent.
Recall first that an access structure f is a partition of the universe of possible
subsets of n parties into two sets, one is called authorized and its complement is
called unauthorized. The partition is monotone in the sense that if some subset of
parties is unauthorized, one can make it authorized only by adding more parties
to it. A secret sharing scheme is a method by which it is possible to “split” a
given secret into “shares” and distributes them among parties so that authorized
subsets would be able to jointly recover the secret while others would not. Linear
secret sharing schemes (LSSS) [38] are a subset of all possible schemes where
there is an additional structural guarantee about the reconstruction procedure:
For an authorized subset of parties to reconstruct the secret, all that is needed
is to compute a linear function over its shares.

Every linear secret sharing scheme can be described by a share generating
matrix. This is a matrix M ∈ Z

�×d
q where each row is associated to some party.

A set of parties is qualified if and only if when we restrict M to rows of this
set, we get a subspace that spans the vector (1, 0, . . . , 0). For a secret z ∈ Zq,
computing M · v�, where v ∈ Z

d
q is a vector whose first entry is z and the

rest are uniformly random, gives a vector of � shares of the secret z. Here, we
need a more specialized share generating matrix with an additional property.
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Specifically, we need that for any unauthorized set of parties, restricting M to
those rows, results with a set of linearly independent vectors. We construct such
a share generating matrix for access structure given as a Boolean formula.

To see the challenge, it is useful to recall the standard construction of a
share generating matrix for Boolean formulas, as adapted from the secret sharing
scheme of [12] by Lewko and Waters [42, Appendix G]. Given a Boolean formula,
the share generating matrix is constructed by labeling the wires of the formula
from the root to the leaves. The labels of the leaves will form the rows of the
share generating matrix. We first label the root node of the tree with the vector
(1) (a vector of length 1). Then, we go down the levels of the tree one by one,
labeling each node with a vector determined by the vector assigned to its parent
node. Throughout the process, we maintain a global counter variable c which is
initialized to 1. Consider a gate g with output wire w whose label is w and two
input wires u, v. If g is an OR gate, we associate with u the label u = w and
with v the label v = w (and do not change c). If g is an AND gate, we associate
with u the label u = w‖1 and associate with v the label v = 0‖ − 1, where 0
denoted a length c vector of 0s. We now increment the value of c by 1. Finally
all vectors are padded with 0s in the end to the length of the longest one.

Let us mention that this scheme already has several appealing properties.
First, the entries of the share generating matrix are from {−1, 0, 1}. Moreover,
it is already a {0, 1}-LSSS, namely, when reconstructing a secret using the shares
corresponding to an authorized set, the coefficients used are only from {0, 1}.
Nevertheless, a property that we need yet the above construction does not satisfy
is linear independence. Consider, for instance, the formula (A ∨ B) ∧ C. Here,
an adversary controlling A and B cannot recover the secret, yet the rows corre-
sponding to A and B in the share generating matrix are identical and thereby
linearly dependent. The more intuitive way to see the problem is that during the
reconstruction process, since we are dealing with an OR gate, we can choose to
continue “either from the left or from the right” and in both cases we will see the
same computation. Nevertheless, it is not hard to verify that when considering
only DNF formulas, this construction already results with linearly independent
rows for unqualified sets.

We next describe our new secret sharing scheme and argue that the rows
corresponding to any unauthorized set are linearly independent. We make our
task a little bit easier by allowing every wire in the formula have two associated
labels. (This is why our scheme is a non-monotone LSSS.) The first is for “sat-
isfying” the wire, i.e., the 1-label, and the other is for not satisfying it, i.e., the
0-label. (Whereas above we only had a label for satisfying the wire and hence it
is a monotone LSSS.) Our procedure is similar to the one above in the sense that
it also labels wires from the root to the leaves and the leaf labels form the rows
of the share generating matrix. Since we have two labels per wire, we first label
the root node of the tree with the vector (1,0) and (0,1). Our global counter c
is initialized to 2.

Consider a gate g with output wire w whose labels are w1,w0, and two input
wires u, v. We associate with u the labels u1,u0 and with v the label v1,v0. If
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g is an AND gate, we set

u1 = 0‖1, u0 = w0, v1 = w1‖ − 1, v0 = w0‖ − 1

If g is an OR gate, we set

u1 = w1, u0 = 0‖1, v1 = w1‖ − 1, v0 = w0‖ − 1

We increment the value of c by 1 and pad all vectors with 0s in the end to be of
size c.

Correctness and security of the construction (which can be proven by induc-
tion) say that for every wire in the formula, if it can be successfully satisfied,
then there is a linear combination to recover the 1-label of that wire but not the
0-label. Analogously, if it cannot be satisfied, then there is also a linear com-
bination to recover the 0-label of that wire but not the 1-label. Also, it is not
hard to verify that, as with the previous construction, the matrix contains only
values from {−1, 0, 1} and the reconstruction coefficients needed to recover the
secret for an authorized set are from {0, 1}.

For the new linear independent property, let us focus for now on a single gate
g and assume that it is an OR gate. Observe that w1 can only be reconstructed
using either u1 or using u0+v1. As opposed to the “attack” we suggested before,
now to continue the computation in the reconstruction phase, there is only one
valid way, depending on the available shares. To see this more precisely, one
needs to consider the 4 possible cases: (1) u, v are satisfied, (2) u is satisfied
but v is not, (3) u is not satisfied but v is, and (4) both u, v are unsatisfied.
Checking each case separately one can get convinced that there is exactly one
way to compute the corresponding label of the output wire. An analogous case
analysis can be done also for the case where g is an AND gate. This idea can
be generalized and formalized to show that the vectors held by an attacker who
controls an unauthorized must be linearly independent.

2.2 The CP-ABE Scheme

Here we describe our CP-ABE scheme. This serves as a warm up for our full
MA-ABE scheme and includes most of the technical ideas. We discuss briefly
the additional technicalities that arise in the multi-authority setting in Sect. 2.3
below. Note that the problem of constructing CP-ABE schemes directly has tra-
ditionally been much more challenging compared to its KP-ABE counterpart. Let
us highlight two challenges:

– The first challenge is of course to prevent collusion attacks by users, that is,
to somehow “bind” the key components of a particular user corresponding to
the various attributes it possesses so that those key components cannot be
combined with the key components possessed by other users.

– The second and more serious challenge is (in the selective model) how to
embed a complex access policy in a short number of parameters.



186 P. Datta et al.

In order to prove selective security, the standard strategy is to follow a “par-
titioning” technique where the reduction algorithm sets up the master public key
such that it knows all the secret keys that it needs to give out, yet it cannot give
out secret keys that can trivially decrypt the challenge ciphertext. In the context of
KP-ABE, the challenge ciphertext is associated with an attribute set and therefore
the public parameters for each attribute can be simply treated differently depend-
ing whether it is in the challenge attribute set or not. In CP-ABE, the situation is
much more complicated as ciphertexts are associated with access policies which
essentially encode a huge (maybe exponential size) set of authorized subsets of
attributes. Consequently, there is no simple “on or off” method of programming
this information into the master public key. While techniques have eventually been
developed to overcome this challenge in the bilinear map world, devising the LWE
analogs has remained elusive. One of the main technical contributions of our paper
is a method for directly embedding an LSSS access policy into the master public
key within the LWE-based framework in our reduction.

For concreteness, in what follows we assume that the LSSS access policy
used in our CP-ABE scheme was generated using our transformation described
above. Moreover, we assume that there is a public bound smax on the num-
ber of columns in the matrix (which translates to a bound on the size of the
Boolean formula while using our Boolean formula LSSS transformations above).
We further assume that the row labeling function is injective, i.e., each attribute
corresponds to exactly one row. In the precise description of the scheme we use
several different noise distributions with varying parameters. Some of them are
used to realize the standard noise smudging technique at various steps of the
security proof. In order to keep the exposition simple, we will ignore such noise
smudging and just use a single noise distribution, denoted noise. By default,
vectors are thought of as row vectors.

Setup: For each attribute u in the system, sample Au ∈ Z
n×m
q together a

trapdoor TAu
, and another uniformly random matrix Hu ← Z

n×m
q . Additionally

sample y ← Z
n
q . Output

PK = (y,{Au} ,{Hu}), SK = {TAu
}

Key Generation for attribute set U : Let t̂ ← noisem−1 and t = (1, t̂) ∈ Z
m.

This vector t will intuitively serve as the linchpin that will tie together all the
secret key components of a specific user. For each attribute u ∈ U , using TAu

,
sample a short vector k̃u such that Auk̃�

u = Hut� and output

SK = ({k̃u}, t)

Encryption of msg∈{0,1} given matrix M : Assume that ρ is a func-
tion that maps between row indices of M and attributes, that is, ρ(i) is the
attribute associated with the ith row in M . The procedure samples s ← Z

n
q and
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v2, . . . ,vsmax ← Z
m
q and computes

ci = sAρ(i) + noise

ĉi = Mi,1(sy�,

m−1
︷ ︸︸ ︷

0, . . . , 0) +

⎡

⎣

∑

j∈{2,...,smax}
Mi,jvj

⎤

⎦− sHρ(i) + noise

and outputs the ciphertext

CT =
(

{ci}i∈[�] ,{ĉi}i∈[�] , C = MSB(sy�) ⊕ msg
)

.

Decryption: Assume that the available attributes are qualified to decrypt. Let
I be the set of row indices corresponding to the available attributes and let
{wi}i∈I ∈ {0, 1} ⊂ Zq be the reconstruction coefficients. For each i ∈ I, let ρ(i)
be the attribute associated with the ith row. The procedure computes

K ′ =
∑

i∈I

wi

(

cik̃
�
ρ(i) + ĉit

�
)

and outputs

msg′ = C ⊕ MSB(K ′).

Correctness
Consider a ciphertext CT w.r.t some matrix M and a key for a set of attributes
U that satisfies M . By construction it is enough to show that MSB(K ′) =
MSB(sy�) with all but negligible probability. Here, for simplicity, we shall ignore
small noise-like terms. Expanding {ci}i∈I and {ĉi}i∈I , we get

K ′ ≈
∑

i∈I

wisAρ(i)k̃
�
ρ(i) +

∑

i∈I

wiMi,1(sy�, 0, . . . , 0)t�

+
∑

i∈I,j∈{2,...,smax}
wiMi,jvjt

� −
∑

i∈I

wisHρ(i)t
�

First, observe that each wi ∈ {0, 1} since the reconstruction coefficients in our
secret sharing scheme are guaranteed to be Boolean.

Now, recall that for each u ∈ U , we have Auk̃�
u = Hut�. Therefore, for each

i ∈ I, it holds that

Aρ(i)k̃
�
ρ(i) = Hρ(i)t

�.
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Hence,

K ′ ≈
�������∑

i∈I

wisHρ(i)t
� +

∑

i∈I

wiMi,1(sy�, 0, . . . , 0)t�

+
∑

i∈I,j∈{2,...,smax}
wiMi,jvjt

� −
�������∑

i∈I

wisHρ(i)t
�

=
∑

i∈I

wiMi,1(sy�, 0, . . . , 0)t� +
∑

i∈I,j∈{2,...,smax}
wiMi,jvjt

�

=

(

∑

i∈I

wiMi,1

)

(sy�, 0, . . . , 0)t� +
∑

j∈{2,...,smax}

(

∑

i∈I

wiMi,j

)

vjt
�.

Recall that we have
∑

i∈I wiMi,1 = 1 while for 1 < j ≤ smax, it holds that
∑

i∈I wiMi,j = 0. Also, recall that t = (1, t̂), and hence, (sy�, 0, . . . , 0)t� =
sy�. Thus,

K ′ ≈ sy�.

By choosing the noise magnitude carefully, we can make sure that MSB(K ′) =
MSB(sy�), except with negligible probability.

Security
As mentioned, we prove that our scheme is selectively secure, namely, we require
the challenge LSSS policy (M , ρ) to be submitted by the adversary ahead of time
before seeing the public parameters. The proof is obtained by a hybrid argument
where we start off with the security game played with the real scheme as the
first hybrid and end up with a hybrid where the game is played with a scheme
where the challenge ciphertext is independent of the underlying message.

In more detail, in the last hybrid we want to get rid of the secret s. Recall
that s appears in two places: (1) ci and (2) ĉi. Intuitively, the term ci looks
like an LWE sample and indeed our goal is to use LWE to argue that s is hidden
there. The challenge is that to use LWE we need to get rid of the trapdoor TAu

of Au which is used in the key generation procedure to sample k̃u. For ĉi, our
high level approach is to program Hu in such a way that it will cancel the terms
that depend on s in ĉi. However, at the same time Hu is used in the sampling
procedure of k̃u as well, and so (1) and (2) are actually related and need to be
handled together.

We program Hu as follows

Hu = Mρ−1(u),1

[

y�|
m−1

︷ ︸︸ ︷

0�| · · · |0�

]

+
∑

j∈{2,...,smax}
Mρ−1(u),jBj + AuRu,

where Ru,B2, . . . ,Bsmax are matrices of the appropriate sizes and sampled from
some distributions which we shall skip for now. Here we crucially use the fact
that the row labeling function ρ is injective to ensure that the above definition
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of Hu is unambiguous. One of the purposes of the Ru matrices is to make sure
that the programmed Hu is indistinguishable from the original Hu. We make
use of an extended version of the leftover hash lemma, we call the “leftover hash
lemma with trapdoors” (see Lemma 3.4 in the full version [25]), to guarantee this
indistinguishability. This programming allows us to embed the challenge access
policy into the master public key. Also notice that indeed the first term of Hu

cancels out the dependence on s in ĉi.
Let us go back to how the keys look like with this Hu. Recall that we chose

k̃u such that Auk̃�
u = Hut�. Our goal is to sample k̃u directly and not through

the trapdoor TAu
of Au so that we can eventually do away with TAu

. To this
end, we program t so that Hut� is completely random. Note that once Hut�

becomes random, we would be able to directly sample k̃u via the properties of
lattice trapdoors. At a high level for this purpose, we use the Bj matrices, which
we actually generate along with trapdoors. Observe that with our programming
of the Hu matrices above, we have

Hut� = Mρ−1(u),1

[

y�|
m−1

︷ ︸︸ ︷

0�| · · · |0�

]

t� +
∑

j∈{2,...,smax}
Mρ−1(u),jBjt

�

+ AuRut�.

Roughly, Hut� would become uniformly random if we can make the boxed
part above uniformly random. We plan to do this by first sampling some uni-
formly random vector zu and then solving for

{

Bjt
�}

j∈{2,...,smax} such that
∑

j∈{2,...,smax} Mρ−1(u),j

(

Bjt
�) = zu. Note that once we have a solution for the

above system of equations, we can use the trapdoor of the Bj matrices to sample
an appropriate t and our goal will be accomplished. It is for solving the above
system of linear equations that we use the fact that the corresponding rows of M
are linearly independent and so the above system of linear equations is solvable.

2.3 The MA-ABE Scheme

The MA-ABE scheme is a generalization of the above scheme and we avoid repeat-
ing the scheme here. Instead, let us go over our main ideas to overcome the techni-
cal challenges that prevented getting a collusion resistant decentralized MA-ABE
scheme from LWE before this work. First, it is important to understand that a
main challenge in CP-ABE constructions is collusion resistance. The standard
technique to achieve collusion resistance in the literature is to tie together the
different key components representing the different attributes of a user with the
help of fresh randomness specific to that user. Such randomization would make
the different key components of a user compatible with each other, but not with
the parts of a key issued to another user. This is relatively easy to implement
in the single-authority setting since there is only one central authority who is
responsible to generate secret keys for users.

In a multi-authority, we want to satisfy the simultaneous goals of autonomous
key generation and collusion resistance. The requirement of autonomous key
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generation means that established techniques for key randomization cannot be
applied since there is no one party to compile all the pieces together. Further-
more, in a decentralized MA-ABE system each component may come from a
different authority, where such authorities have no coordination and are possi-
bly not even aware of each other. In order to overcome the above challenge, we
aim to adapt the high level design rationally of the previous bilinear-map-based
decentralized MA-ABE schemes [42,53] to not rely on one key generation call to
tie all key components together and instead use the output of a public hash func-
tion applied on the user’s global identity, GID, as the randomness tying together
multiple key components issued by different authorities. However, this means
that the randomness responsible for tying together the different key components
must be publicly computable, that is, even known to the attacker. Unfortunately,
all the CP-ABE schemes realizable under LWE so far fail to satisfy this property.

Importantly, and deviating from previous approaches, we design our CP-ABE
scheme carefully so as to have this property. Observe that in our CP-ABE scheme
above, the vector t is the one that is used to bind together different key com-
ponents. A main feature of our CP-ABE scheme is that this vector t is actually
part of the output of the key generation procedure. In particular, as we show,
the system remains secure even when t is public and known to the attacker.

The second challenge in making a CP-ABE scheme compatible for extension
to the decentralized multi-authority setting is modularity. Very roughly speak-
ing, the setup and key generation procedures should have the structure such that
it should be possible to view their operations as well as their outputs, that is, the
master public/secret key and the secret keys of the users as aggregates of indi-
vidual modules each of which relates to exactly one of the attributes involved.
This is important since in a decentralized MA-ABE system, authorities/attributes
should be able to join the system at any point of time without requiring any
prior coordination with a central authority or a system reset and there is no
bound on the number of authorities/attributes that can ever come into exis-
tence. Any CP-ABE scheme obtained from an underlying KP-ABE scheme via
the universal-circuit-based transformation inherently fails to achieve the above
modularity property roughly because in such a system, the master key and the
user keys all become associated with the descriptions of circuits rather than the
attributes directly. Hence it is not surprising that no prior CP-ABE scheme real-
izable under LWE achieves the above modularity feature. In contrast, we design
our CP-ABE scheme above in such a way that everything is modular and fits
into the decentralized multi-authority setting.

As is the design, the proof strategy for our MA-ABE scheme is also some-
what similar to the proof of the CP-ABE scheme. Although, since we are in
the multi-authority setting, notation and various technical details become much
more involved. For instance, the application of the linear independence property
becomes much more delicate. Ignoring notational differences, one additional step
we need to make for our proof to go through, is to somehow make the ciphertext
components corresponding to corrupted authorities independent of the secret.
This is because in our security model, we allow the adversary to generate the
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master keys for the corrupted authorities. Hence the simulator cannot hope to
program any of the Hu matrices corresponding to the corrupted authorities
and thereby cancel the secret present inside those ciphertext components as was
possible in the single-authority scheme above.

To solve this, we are inspired by a previous technique of Rouselakis and
Waters [53] in the bilinear map world for handling the same problem and we
adapt it for our setting. After applying the idea under their transformation
we reach a hybrid world which is more similar to the CP-ABE one where we
only need to deal with the ciphertext components corresponding to uncorrupted
authorities. As an additional contribution, en route to adapting their lemma to
our setting, we observe a non-trivial gap in their proof which we resolve (please
refer to [25, Section 4.3] for more details).

Lastly, let us explain why the new secret sharing scheme from Sect. 2.1 (see
also Theorem 1.4) does not apply here. Since our LSSS from Sect. 2.1 is non-
monotone, the share generating matrix has rows for both the positive and neg-
ative instances of an attribute. Now, in case of an MA-ABE for non-monotone
LSSS, an attacker which corrupts an authority can generate keys for both the
positive and negative instances of the attribute controlled by the authority and
thus can get hold of both the rows of the LSSS matrix associated with both
instances of that attribute. Unfortunately, in our LSSS, the linear independence
property only holds when the set of unauthorized rows of an LSSS matrix does
not include both the positive and negative instances of a particular attribute
simultaneously. (Note that this is not an issue for our CP-ABE scheme since
there is only one central authority which remains uncorrupted throughout the
system.) We currently do not know of any non-monotone LSSS which achieves
the linear independence property even when a set of unauthorized rows include
both instances of the same attribute. We therefore settle for an LSSS which only
considers attributes in their positive form, that is, monotone LSSS, and still sat-
isfies the linear independence property for unauthorized rows. We use the direct
construction of Lewko and Waters [42] which was recently observed by Agrawal
et al. [1] to satisfy the linear independence property for unauthorized rows when
implemented for the class of DNF formulas.

3 Preliminaries

3.1 Notations

Throughout this paper we will denote the underlying security parameter by λ.
A function negl : N → R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant c > 0 there exists an
integer Nc such that negl(λ) ≤ λ−c for all λ > Nc. We let [n] = {1, . . . , n}.

Let PPT stand for probabilistic polynomial-time. For a distribution X , we
write x ← X to denote that x is sampled at random according to distribution
X . For a set X, we write x ← X to denote that x is sampled according to the
uniform distribution over the elements of X. We use bold lower case letters, such
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as v, to denote vectors and upper-case, such as M , for matrices. We assume all
vectors, by default, are row vectors. The jth row of a matrix is denoted Mj and
analogously for a set of row indices J , we denote MJ for the submatrix of M
that consists of the rows Mj for all j ∈ J . For a vector v, we let ‖v‖ denote its
�2 norm and ‖v‖∞ denote its �∞ norm.

For an integer q ≥ 2, we let Zq denote the ring of integers modulo q. We
represent Zq as integers in the range (−q/2, q/2].

Indistinguishability: Two sequences of random variables X = {Xλ}λ∈N
and

Y = {Yλ}λ∈N
are computationally indistinguishable if for any non-uniform PPT

algorithm A there exists a negligible function negl(·) such that |Pr[A(1λ,Xλ) =
1] − Pr[A(1λ,Yλ) = 1]| ≤ negl(λ) for all λ ∈ N.

For two distributions D and D′ over a discrete domain Ω, the statistical
distance between D and D′ is defined as SD(D,D′) = (1/2)·∑ω∈Ω |D(ω)−D′(ω)|.
A family of distributions D = {Dλ}λ∈N

and D′ = {D′
λ}λ∈N

, parameterized by
security parameter λ, are said to be statistically indistinguishable if there is a
negligible function negl(·) such that SD(Dλ,D′

λ) ≤ negl(λ) for all λ ∈ N.

Smudging: The following lemma says that adding large noise “smudges out”
any small values. This lemma was originally proven in [10, Lemma 2.1] and we
use a paraphrased version from [35, Lemma 2.1]. Let us first define the notion
of a B-bounded distribution.

Definition 3.1 (B-Bounded): For a family of distributions D = {Dλ}λ∈N

over the integers and a bound B = B(λ) > 0, we say that D is B-bounded if for
every λ ∈ N it holds that Prx←Dλ

[|x| ≤ B(λ)] = 1.

Lemma 3.1 (Smudging Lemma): Let B1 = B1(λ) and B2 = B2(λ) be posi-
tive and let D = {Dλ}λ be a B1-bounded distribution family. Let U = {Uλ}λ be
the uniform distribution over [−B2(λ), B2(λ)]. The family of distributions D+U
and U are statistically indistinguishable if there exists a negligible function negl(·)
such that for all λ ∈ N it holds that B1(λ)/B2(λ) ≤ negl(λ).

Leftover Hash Lemma: We recall the well known leftover hash lemma, stated
in a convenient form for our needs (e.g., [2,52]).

Lemma 3.2 (Leftover Hash Lemma): Let n : N → N, q : N → N, m >
(n + 1) log q + ω(log n), and k = k(n) be some polynomial. Then, the following
two distributions are statistically indistinguishable:

D1 ≡
{

(A,AR) | A ← Z
n×m
q ,R ← {−1, 1}m×k

}

,

D2 ≡ {(A,S) | A ← Z
n×m
q ,S ← Z

n×k
q

}

.

3.2 Lattice and LWE Preliminaries

Here, we provide necessary background on lattices, the LWE assumption, and
various useful tools that we use.



Decentralized Multi-authority ABE for DNFs from LWE 193

Lattices: An m-dimensional lattice L is a discrete additive subgroup of R
m.

Given positive integers n,m, q and a matrix A ∈ Z
n×m
q , we let λ⊥

q (A) denote
the lattice {x ∈ Z

m | Ax� = 0� mod q}. For u ∈ Z
n
q , we let λu

q (A) denote the
coset {x ∈ Z

m | Ax� = u� mod q}.

Discrete Gaussians: Let σ be any positive real number. The Gaussian dis-
tribution Dσ with parameter σ is defined by the probability distribution func-
tion ρσ(x) = exp(−π‖x‖2/σ2). For any discrete set L ⊆ R

m, define ρσ(L) =
∑

x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ
is defined by the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L).

The following lemma (e.g., [47, Lemma 4.4]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 3.3: Let m,n, q be positive integers with m > n, q > 2. Let A ∈ Z
n×m
q

be a matrix of dimensions n × m, σ = Ω̃(n), and L = λ⊥
q (A). Then, there is a

negligible function negl(·) such that

Pr
x←DL,σ

[‖x‖ >
√

mσ
] ≤ negl(n),

where ‖x‖ denotes the �2 norm of x.

Truncated Discrete Gaussians: The truncated discrete Gaussian distribution
over Zm with parameter σ, denoted by ˜DZm,σ, is the same as the discrete Gaus-
sian distribution DZm,σ except that it outputs 0 whenever the �∞ norm exceeds√

mσ. Note that, by definition, ˜DZm,σ is
√

mσ-bounded. Also, by Lemma 3.3 we
get that ˜DZm,σ and DZm,σ are statistically indistinguishable.

3.2.1 Lattice Trapdoors

Lattices with trapdoors are lattices that are indistinguishable from randomly
chosen lattices, but have certain “trapdoors” that allow efficient solutions to
hard lattice problems. A trapdoor lattice sampler [9,29,45], denoted LT =
(TrapGen,SamplePre), consists of two algorithms with the following syntax and
properties:

– TrapGen(1n, 1m, q) �→ (A, TA ): The lattice generation algorithm is a random-
ized algorithm that takes as input the matrix dimensions n, m, modulus q,
and outputs a matrix A ∈ Z

n×m
q together with a trapdoor TA .

– SamplePre(A, TA , σ,u) �→ s: The presampling algorithm takes as input a
matrix A, trapdoor TA , a vector u ∈ Z

n
q , and a parameter σ ∈ R (which

determines the length of the output vectors). It outputs a vector s ∈ Z
m
q such

that A · s� = u� and ‖s‖ ≤ √
m · σ.

Well-sampledness: Following Goyal et al. [35], we further require that the
aforementioned sampling procedures output well-sampled elements. That is, the
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Fig. 1. Expmatrix,q
LT,A

matrix outputted by TrapGen looks like a uniformly random matrix, and the
preimage outputted by SamplePre with a uniformly random vector/matrix is
indistinguishable from a vector/matrix with entries drawn from an appropriate
Gaussian distribution. These two properties are summarized next.

Definition 3.2 (Well-Sampledness of Matrix): Fix any function q : N →
N. The procedure TrapGen is said to satisfy the q-well-sampledness of matrix
property if for any PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Advmatrix,q
LT,A (λ) �

∣

∣

∣Pr
[

Expmatrix,q
LT,A (λ) = 1

]

− 1/2
∣

∣

∣ ≤ negl(λ),

where Expmatrix,q
LT,A (λ) is defined in Fig. 1.

Definition 3.3 (Well-Sampledness of Preimage): Fix any function q : N →
N and σ : N → N. The procedure SamplePre is said to satisfy the (q, σ)-well-
sampledness property if for any stateful PPT adversary A, there exists a negli-
gible function negl(·) such that for all λ ∈ N,

Advpreimage,q,σ
LT,A (λ) �

∣

∣

∣Pr
[

Exppreimage,q,σ
LT,A (λ) = 1

]

− 1/2
∣

∣

∣ ≤ negl(λ),

where Exppreimage,q,σ
LT,A is defined in Fig. 2.

Both the above properties are satisfied by the gadget-based trapdoor lattice
sampler presented in [45].

Enhanced trapdoor sampling: Let q : N → N, σ : N → R
+ be functions

and LT = (TrapGen,SamplePre) be a trapdoor lattice sampler satisfying the
q-well-sampledness of matrix and (q, σ)-well-sampledness of preimage prop-
erties. We describe enhanced trapdoor lattice sampling algorithms EnLT =
(EnTrapGen,EnSamplePre) due to Goyal et al. [35] (which are, in turn, remi-
niscent of the trapdoor extension algorithms of [3,20]).
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Fig. 2. Exppreimage,q,σ
LT,A

– EnTrapGen(1n, 1m, q) �→ (A, TA ) : The trapdoor generation algorithm gen-
erates two matrices A1 ∈ Z

n×	m/2

q and A2 ∈ Z

n×�m/2�
q as (A1, TA1) ←

TrapGen(1n, 1	m/2
, q), (A2, TA2) ← TrapGen(1n, 1�m/2�, q). It appends both
matrices column-wise to obtain a larger matrix A as A =

(

A1|A2

)

and
sets the associated trapdoor TA to be the combined trapdoor information
TA = (TA1 , TA2).

– EnSamplePre(A, TA , σ,Z) �→ S: The pre-image sampling algorithm takes as
input a matrix A =

(

A1|A2

)

with trapdoor TA = (TA1 , TA2), a param-
eter σ = σ(λ), and a matrix Z ∈ Z

n×k
q . It chooses a uniformly random

matrix W ← Z
n×k
q and sets Y = Z − W . Next, it computes matri-

ces S1,S2 ∈ Z
	m/2
×k as S1 ← SamplePre(A1, TA1 , σ,W ) and S2 ←

SamplePre(A2, TA2 , σ,Y ). It computes the final output matrix S ∈ Z
m×k

by column-wise appending matrices S1 and S2 as S =
(

S1|S2

)

.

The well-sampledness properties (Definition 3.2 and Definition 3.3) of EnLT
are inherited from the same properties of the underlying LT [35, Section 7.3].

We show that the enhanced trapdoor sampling procedures EnLT satisfy
another property (which as far as we know has not been used or formalized
before). We refer this property as “leftover hash lemma with trapdoors”. This
property is crucial in the security proofs of our constructions. Recall that in the
original leftover hash lemma (Lemma 3.2 above) the matrix A ∈ Z

n×m
q appear-

ing in the two indistinguishable distributions D1 and D2 is sampled uniformly at
random. The “leftover hash lemma with trapdoors” property of EnLT basically
states that the leftover hash lemma holds even when the matrix A ∈ Z

n×m
q is

generated by the EnTrapGen algorithm and is not uniformly random. (See the
full version [25] for the formal description and proof of the lemma.)
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3.2.2 Learning with Errors

Assumption 1 (Learning With Errors (LWE) [52]): For a security param-
eter λ ∈ N, let n : N → N, q : N → N, and σ : N → R

+ be functions of
λ. The Learning with Errors (LWE) assumption LWEn,q,σ, parametrized by
n = n(λ), q = q(λ), σ = σ(λ), states that for any PPT adversary A, there
exists a negligible function negl(·) such that for any λ ∈ N,

Adv
LWEn,q,σ

A (λ) �
∣

∣

∣Pr
[

1 ← AOs
1(·)(1λ) | s ← Z

n
q

]

− Pr
[

1 ← AO2(·)(1λ)
]∣

∣

∣

≤ negl(λ),

where the oracles Os
1(·) and O2(·) are defined as follows: Os

1(·) has s ∈ Z
n
q hard-

wired, and on each query it chooses a ← Z
n
q , e ← DZ,σ and outputs (a, sa� + e

mod q), and O2(·) on each query chooses a ← Z
n
q , u ← Zq and outputs (a, u).

Regev [52] showed that if there exists a PPT adversary that can break the
LWE assumption, then there exists a PPT quantum algorithm that can solve
some hard lattice problems in the worst case. Given the current state of the art
of lattice problems [17,29,46,47,51,52], the LWE assumption is believed to be
true for any polynomial n(·) and any functions q(·), σ(·) such that for all λ ∈ N,
n = n(λ), q = q(λ), σ = σ(λ) satisfy the following constraints:

2
√

n < σ < q < 2n, n · q/σ < 2nε

, and 0 < ε < 1/2

4 Linear Secret Sharing Schemes with Linear
Independence

In this section, we first provide the necessary definitions and properties of linear
secret sharing schemes. Then, we present a new linear secret sharing scheme for
all non-monotone access structures realizable by NC1 circuits. This new secret
sharing scheme has some interesting properties which we crucially utilize while
designing our CP-ABE scheme for all NC1 circuits under the LWE assumption.

4.1 Background on Linear Secret Sharing Schemes

A secret sharing scheme consists of a dealer who holds a secret and a set of n
parties. Informally, the dealer “splits” the secret into “shares” and distributes
them among the parties. Subsets of parties which are “authorized” should be
able to jointly recover the secret while others should not. The description of the
set of authorized sets is called the access structure.

Definition 4.1 (Access Structures): An access structure on n parties asso-
ciated with numbers in [n] is a set A ⊆ 2[n] \ ∅ of non-empty subsets of parties.
The sets in A are called the authorized sets and the sets not in A are called
the unauthorized sets. An access structure is called monotone if ∀B,C ∈ 2[n] if
B ∈ A and B ⊆ C, then C ∈ A.
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A secret sharing scheme for a monotone access structure A is a randomized
algorithm that on input a secret z outputs n shares sh1, . . . , shn such that for
any A ∈ A the shares {shi}i∈A determine z and other sets are independent of z
(as random variables).

Non-monotone secret sharing: A natural generalization of the above notion
that captures all access structures (rather than only monotone ones) is called
non-monotone secret sharing. Concretely, a non-monotone secret sharing scheme
for an access structure A is a randomized algorithm that on input a secret z
outputs 2n shares viewed as n pairs (sh1,0, sh1,1), . . . , (shn,0, shn,1) such that for
any A ∈ A the shares {shi,1}i∈A ∪ {shi,0}i/∈A determine z and other sets are
independent of z.

We will be interested in a subset of all (non-monotone) secret sharing schemes
where the reconstruction procedure is a linear function of the shares [38]. These
are known as linear (non-monotone) secret sharing schemes.

Definition 4.2 (Linear (non-monotone) secret sharing schemes): Let
q ∈ N be a prime power and [n] be a set of parties. A non-monotone secret-
sharing scheme Π with domain of secrets Zq realizing access structure A on
parties [n] is linear over Zq if

1. Each share shi,b for i ∈ [n] and b ∈ {0, 1} of a secret z ∈ Zq forms a vector
with entries in Zq.

2. There exists a matrix M ∈ Z
�×d
q , called the share-generating matrix, and a

function ρ : [�] → [2n], that labels the rows of M with a party index from
[n] or its corresponding negation, represented as another party index from
{n + 1, . . . , 2n}, which satisfy the following: During the generation of the
shares, we consider the vector v = (z, r2, ..., rd) ∈ Z

d
q . Then the vector of �

shares of the secret z according to Π is equal to sh = M · v� ∈ Z
�×1
q . For

i ∈ [n] and b ∈ {0, 1}, the share shi,b consists of all shj values for which
ρ(j) = n · (1 − b) + i (so the first n shares correspond to the “1 shares” and
the last n shares correspond to the “0 shares”).
We will be referring to the pair (M , ρ) as the LSSS policy of the access
structure A.

It is well known that the above method of sharing a secret satisfies the desired
correctness and security of a non-monotone secret sharing scheme as defined
above (e.g., [38]). For an LSSS policy (M , ρ), where M ∈ Z

�×d
q and ρ : [�] → [2n],

and a set of parties S ⊆ [n], let ̂S = S ∪{i ∈ {n + 1, . . . , 2n} | i − n /∈ S} ⊂ [2n].
We denote M

̂S the submatrix of M that consists of all the rows of M that
“belong” to ̂S according to ρ (i.e., rows j for which ρ(j) ∈ ̂S). Correctness

means that if S ⊆ [n] is authorized, the vector (1,
d−1

︷ ︸︸ ︷

0, . . . , 0) ∈ Z
d
q is in the span

of the rows of M
̂S . Security means that if S ⊆ [n] is unauthorized, the vector

(1, 0, . . . , 0) is not in the span of the rows of M
̂S . Also, in the unauthorized

case, there exists a vector d ∈ Z
d
q , such that its first component d1 = 1 and

M
̂Sd� = 0, where 0 is the all 0 vector.
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{0,1}-LSSS: A special subset of all linear secret sharing schemes are ones where
the reconstruction coefficients are always binary [14, Definition 4.13]. We call
such LSSS a {0, 1}-LSSS. This property of LSSS secret sharing schemes was
recently formally defined by [14]. They observed that a well-known construction
by Lewko and Waters [42] actually results with an LSSS with this property for
all access structures in NC1.

On sharing vectors: The above sharing and reconstruction methods directly
extend to sharing a vector z ∈ Z

m
q of dimension m ∈ N rather than just scalars.

4.2 Our Non-monotone LSSS for NC1

We introduce a new non-monotone linear secret sharing scheme for all access
structures that can be described by NC1 circuits. The new scheme has some
useful properties for us which we summarize next:

– The entries in the corresponding policy matrix are small, i.e., coming from
{−1, 0, 1}.

– Reconstruction of the secret can be done by small coefficients, i.e., coming
from {0, 1}.

– The rows of the corresponding policy matrix that correspond to an unautho-
rized set are linearly independent.

Remark 4.1: The well-known construction of Lewko and Waters [42] actually
results with an LSSS with these properties for all access structures described by
DNF formulas. This was recently observed by [1]. As opposed to our construction,
this construction is a monotone LSSS, not a non-monotone one.

The construction: We are given an access structure A described by an NC1

circuit. This circuit can be described by a Boolean formula of logarithmic depth
that consists of (fan-in 2) AND, OR, and (fan-in 1) NOT gates. We further push
the NOT gates to the leaves using De Morgan laws, and from now on we assume
that internal nodes only constitute of OR and AND gates and leaves are labeled
either by variables or their negations. In other words, we assume that we are given
a monotone Boolean formula consisting only of AND and OR gates. We would like
to highlight that even if we are starting off with a monotone Boolean formula, the
LSSS secret sharing scheme we are going to construct would be a non-monotone
one. More precisely, the algorithm associates with each input variable xi of the
monotone Boolean formula two vector shares shi,0 and shi,1. This is done in a
recursive fashion starting from the root by associating with each internal wire
w two labels w1 and w0 (and the labels of the leaves correspond to the shares).
The labels of the root w are w1 = (1, 0, . . . , 0) and w0 = (0, 1, 0, . . . , 0), both
of which are of dimension k̃ � k + 2, where k is the number of gates in the
formula. We maintain a global counter variable c which is initialized to 2 and
is increased by one after labeling each gate. We shall traverse the tree from top
(root) to bottom (leaves) and within a layer from left to right. Consider a gate
whose output wire w labels are w1, w0 and denote its children wires, u and v,
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with corresponding labels (to be assigned) u1,u0 and v1,v0, respectively. The
assignment is done as follows, depending on the type of the gate connecting u
and v to w:

AND gate: u1 = 0c‖1‖0k̃−c−1, u0 = w0, v1 = w1 − u1, v0 = w0 − u1.
OR gate: u1 = w1, u0 = 0c‖1‖0k̃−c−1, v1 = w1 − u0, v0 = w0 − u0.

An example: Consider the monotone Boolean formula (A ∧ B) ∨ (C ∧ D). The
1-label of the root is (1, 0, 0, 0, 0) and the 0-label is (0, 1, 0, 0, 0). The 1-label
of the left child of the OR gate is (1, 0, 0, 0, 0) and the 0-label is (0, 0, 1, 0, 0).
The 1-label of the right child of the OR gate is (1, 0,−1, 0, 0) and the 0-label is
(0, 1,−1, 0, 0). Therefore, the resulting policy is

M =

A1

A0

B1

B0

C1

C0

D1

D0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0
0 0 1 0 0
1 0 0 −1 0
0 0 1 −1 0
0 0 0 0 1
0 1 −1 0 0
1 0 −1 0 −1
0 1 −1 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The following lemma follows by induction on the number of gates in the for-
mula. Recall that for S ⊆ [n], we let ̂S = S ∪{i ∈ {n + 1, . . . , 2n} | i − n /∈ S} ⊂
[2n] and let M

̂S be the submatrix that consists of all the rows of M that “belong”
to ̂S according to ρ.

Lemma 4.1: For any access structure A which is described by a Boolean for-
mula, the above process for generating the matrix M results with

1. A non-monotone {0, 1}-LSSS for A, namely
(a) For any authorized set of parties S ⊆ [n], there is a linear combination

of the rows of M
̂S that results with (1, 0, . . . , 0) ∈ Z

d
q . Moreover, the

coefficients in this linear combination are from {0, 1}.
(b) For any unauthorized set of parties S ⊆ [n], no linear combination of

the rows of M
̂S results in (1, 0, . . . , 0) ∈ Z

d
q . Also, there exists a vector

d ∈ Z
d
q , such that its first component d1 = 1 and M

̂Sd� = 0, where 0 is
the all 0 vector.

2. For any unauthorized set of parties S ⊆ [n], all of the rows of M
̂S are linearly

independent.

The proof of Lemma 4.1 can be found in the full version [25, Section 4.2].

5 Our Ciphertext-Policy ABE Scheme

In this section, we present our ciphertext-policy ABE (CP-ABE) scheme sup-
porting access structures represented by NC1 circuits. The scheme is associated



200 P. Datta et al.

with a fixed attribute universe U and we will use the transformation described
in Sect. 4.2 to represent the access structures as non-monotone LSSS. More pre-
cisely, we only design a CP-ABE scheme for LSSS access policies (M , ρ) with
properties stipulated in Lemma 4.1, that is, we construct a CP-ABE scheme for
LSSS access policies (M , ρ) such that the entries of M come from {−1, 0, 1} as
well as reconstruction only involves coefficients coming from {0, 1}, and prove
the scheme to be selectively secure under linear independence restriction (see
[25, Definition 3.5] in the full version for the formal description of the security
model). It then follows directly from Lemma 4.1, that our CP-ABE scheme actu-
ally achieves the standard notion of selective security (see [25, Definition 3.4]
in the full version for the formal description of the security model) when imple-
mented for the class of all access structures represented by NC1 circuits. Further,
we will assume that all LSSS access policies (M , ρ) used in our scheme corre-
spond to matrices M with at most smax columns and an injective row-labeling
function ρ, i.e., an attribute is associated with at most one row of M .2 Since our
Boolean formula to LSSS transformation from Sect. 4.2 generates a new column
in the resulting LSSS matrix for each gate in the underlying Boolean formula,
the bound smax on the number of columns in our CP-ABE construction naturally
translates to a bound on the circuit size of the supported NC1 access policies at
implementation. Also, in our scheme description below, we assume for simplicity
of presentation that both the encryption and the decryption algorithms receive
an access policy directly in its LSSS representation. However, we note that in the
actual implementation, the encryption and decryption algorithms should instead
take in the circuit representation of the access policy and deterministically com-
pute its LSSS representation using our transformation algorithm from Sect. 4.2.
This is because, without the circuit description of an access policy, the decryp-
tion algorithm may not be able to efficiently determine the {0, 1} reconstruction
coefficients needed for a successful decryption.

First, we provide the parameter constraints required by our correctness and
security proof. Fix any 0 < ε < 1/2. For any B ∈ N, let UB denote the uniform
distribution on Z ∩ [−B,B], i.e., integers between ±B. The Setup algorithm
chooses parameters n,m, σ, q and noise distributions χlwe, χ1, χ2, χbig, satisfying
the following constraints:

– n = poly(λ), σ < q, n · q/σ < 2nε

, χlwe = ˜DZ,σ (for LWE security)
– m > 2smaxn log q + ω log n + 2λ (for enhanced trapdoor sampling and LHL)
– σ >

√
smaxn log q log m + λ (for enhanced trapdoor sampling)

– χ1 = ˜DZm−1,σ, χ2 = ˜DZm,σ (for enhanced trapdoor sampling)
– χbig = UB̂, where B̂ > (m3/2σ + 1)2λ (for smudging/security)
– |U| · 3m3/2σB̂ < q/4 (for correctness)

Now, we describe our CP-ABE construction.

2 Note that following the simple encoding technique devised in [42,58], we can alleviate
the injective restriction on the row labeling functions to allow an attribute to appear
an a priori bounded number of times within the LSSS access policies.
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Setup(1λ , smax,U): The setup algorithm takes in the security parameter λ
encoded in unary, the maximum width smax = smax(λ) of an LSSS matrix sup-
ported by the scheme, and the attribute universe U associated with the sys-
tem. It first chooses an LWE modulus q, dimensions n,m, and also distributions
χlwe, χ1, χ2, χbig as described above. Next, it chooses a vector y ← Z

n
q and a

sequence of matrices {Hu}u∈U
← Z

n×m
q . Then, it samples pairs of matrices

with trapdoors {(Au, TAu
)}u∈U

← EnTrapGen(1n, 1m, q). Finally, it outputs

PK =
(

n,m, q, χlwe, χ1, χ2, χbig,y,{Au}u∈U
,{Hu}u∈U

)

, MSK = {TAu
}u∈U

.

KeyGen(MSK,U ): The key generation algorithm takes as input the master
secret key MSK, and a set of attributes U ⊆ U. It samples a vector t̂ ← χ1 and
sets the vector t = (1, t̂) ∈ Z

m. For each u ∈ U , it samples vectors k̂u ← χm
big and

k̃u ← EnSamplePre(Au, TAu
, σ, tH�

u − k̂uA�
u ), and sets ku = k̂u + k̃u. Finally,

it outputs

SK =
({ku}u∈U , t

)

.

Enc(PK,msg, (M ,ρ)): The encryption algorithm takes as input the public
parameters PK, a message msg ∈ {0, 1} to encrypt, and an LSSS access
policy (M , ρ) generated by the transformation from Sect. 4.2, where M =
(Mi,j)�×smax ∈ {−1, 0, 1}�×smax ⊂ Z

�×smax
q (Lemma 4.1) and ρ : [�] → U. The

function ρ associates rows of M to attributes in U. We assume that ρ is an injec-
tive function. The procedure samples vectors s ← Z

n
q and {vj }j∈{2,...,smax} ←

Z
m
q . It additionally samples vectors {ei}i∈[�] ← χm

lwe and {êi}i∈[�] ← χm
big. For

each i ∈ [�], it computes vectors ci, ĉi ∈ Z
m
q as follows:

ci = sAρ(i) + ei

ĉi = Mi,1(sy�,

m−1
︷ ︸︸ ︷

0, . . . , 0) +

⎡

⎣

∑

j∈{2,...,smax}
Mi,jvj

⎤

⎦− sHρ(i) + êi

and outputs

CT =
(

(M , ρ),{ci}i∈[�] ,{ĉi}i∈[�] , C = MSB(sy�) ⊕ msg
)

.

Dec(PK,CT,MSK): Decryption takes as input the public parameters PK, a
ciphertext CT encrypting some message under some LSSS access policy (M , ρ)
with the properties stipulated in Lemma 4.1, and the secret key SK corresponding
to some subset of attributes U ⊆ U. If (1, 0, . . . , 0) is not in the span of the rows
of M associated with U , then decryption fails. Otherwise, let I be a set of row
indices of the matrix M such that ∀i ∈ I : ρ(i) ∈ U and let {wi}i∈I ∈ {0, 1} ⊂ Zq

be scalars such that
∑

i∈I wiMi = (1, 0, . . . , 0), where Mi is the ith row of M .
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Note that the existence of such scalars {wi}i∈I and their efficient determina-
tion for the LSSS generated by the algorithm from Sect. 4.2 are guaranteed by
Lemma 4.1. The procedure computes

K ′ =
∑

i∈I

wi

(

cik
�
ρ(i) + ĉit

�
)

and outputs

msg′ = C ⊕ MSB(K ′).

Correctness: We show that the scheme is correct. Consider a set of attributes
U ⊆ U and any LSSS access policy (M , ρ) for which U constitute an authorized
set. By construction,

K ′ =
∑

i∈I

wi

(

cik
�
ρ(i) + ĉit

�
)

.

Expanding {ci}i∈I and {ĉi}i∈I , we get

K ′ =
∑

i∈I

wisAρ(i)k
�
ρ(i) +

∑

i∈I

wiMi,1(sy�, 0, . . . , 0)t�+

∑

i∈I,j∈{2,...,smax}
wiMi,jvjt

� −
∑

i∈I

wisHρ(i)t
� +

∑

i∈I

wieik
�
ρ(i) +

∑

i∈I

wiêit
�.

Recall that for each u ∈ U , we have ku = k̂u + k̃u and Auk̃�
u = Hut� − Auk̂�

u .
Therefore, for each i ∈ I, it holds that

Aρ(i)k
�
ρ(i) = Aρ(i)k̂

�
ρ(i) + Aρ(i)k̃

�
ρ(i) = Hρ(i)t

�.

Hence,

K ′ =
�������∑

i∈I

wisHρ(i)t
� +

∑

i∈I

wiMi,1(sy�, 0, . . . , 0)t�+

∑

i∈I,j∈{2,...,smax}
wiMi,jvjt

� −
�������∑

i∈I

wisHρ(i)t
� +

∑

i∈I

wieik
�
ρ(i) +

∑

i∈I

wiêit
�

=
∑

i∈I

wiMi,1(sy�, 0, . . . , 0)t� +
∑

i∈I,j∈{2,...,smax}
wiMi,jvjt

� +
∑

i∈I

wieik
�
ρ(i)

+
∑

i∈I

wiêit
�

=

(

∑

i∈I

wiMi,1

)

(sy�, 0, . . . , 0)t� +
∑

j∈{2,...,smax}

(

∑

i∈I

wiMi,j

)

vjt
�

+
∑

i∈I

wieik
�
ρ(i) +

∑

i∈I

wiêit
�.
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Recall that
∑

i∈I wiMi,1 = 1. Also, for 1 < j ≤ smax,
∑

i∈I wiMi,j = 0.
Additionally, t = (1, t̂), and hence, (sy�, 0, . . . , 0)t� = sy�. Thus,

K ′ = sy� +
∑

i∈I

wieik
�
ρ(i) +

∑

i∈I

wiêit
�.

Correctness now follows since the last two terms are small and should not affect
the MSB of sy�. To see this, we observe that the following inequalities hold
except with negligible probability:

– ‖ei‖ ≤ √
mσ: This follows directly from Lemma 3.3 since each of the m

coordinates of ei comes from the truncated discrete Gaussian distribution
˜DZ,σ.

– ‖êi‖ ≤ √
mB̂: This holds since each of the m coordinates of êi comes from

the uniform distribution over Z ∩ [−B̂, B̂].
– ‖kρ(i)‖ ≤ mσ +

√
mB̂: This holds since kρ(i) = k̂ρ(i) + k̃ρ(i), where (1)

‖k̂ρ(i)‖ ≤ √
mB̂ since each of its m coordinates comes from the uniform

distribution over Z ∩ [−B̂, B̂] and (2) ‖k̃ρ(i)‖ ≤ mσ since it comes from a
distribution that is statistically close to the truncated discrete Gaussian dis-
tribution ˜DZm,σ.

– ‖t‖ < mσ: This holds since t = (1, t̂), where t̂ comes from a truncated discrete
Gaussian distribution ˜DZm−1,σ.

Using the fact that the wi’s are in {0, 1} (Lemma 4.1), we have that

‖
∑

i∈I

wieik
�
ρ(i) +

∑

i∈I

wiêit
�‖ < |U| (m3/2σ2 + mσB̂ + m3/2σB̂)

< |U| · 3m3/2σB̂ < q/4,

where the last inequality is by the parameter setting as shown above. Thus, with
all but negligible probability in λ, the MSB of sy� is not affected by the above
noise which is bounded by q/4 and therefore does not affect the most significant
bit. Namely, MSB(K ′) = MSB(sy�). This completes the proof of correctness.

6 Our Multi-authority ABE Scheme

In this section, we present our MA-ABE scheme for access structures represented
by DNF formulas. The scheme is associated with a universe of global identi-
fiers GID ⊂ {0, 1}∗, a universe of authority identifiers AU , and we will use
the Lewko-Waters [42] transformation to represent the DNF access policies as
monotone LSSS. More precisely, we only design an MA-ABE scheme for LSSS
access policies (M , ρ) with properties stipulated in Lemma 4.1, that is, we con-
struct an MA-ABE scheme for LSSS access policies (M , ρ) such that the entries
of M come from {−1, 0, 1} as well as reconstruction only involves coefficients
coming from {0, 1}, and prove the scheme to be statically secure under linear
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independence restriction (see [25, Definition 3.7] in the full version for the for-
mal description of the security model). Thanks to the observation made by [1] as
mentioned in Remark 4.1, our MA-ABE scheme actually achieves the standard
notion of static security (see [25, Definition 3.6] in the full version for the formal
description of the security model) when implemented for the class of all access
structures represented by DNF formulas. We will assume each authority controls
only one attribute in our scheme. However, it can be readily generalized to a
scheme where each authority controls an a priori bounded number of attributes
using standard techniques [42]. Further, we will assume that all access policies
(M , ρ) used in our scheme correspond to a matrix M with at most smax columns
and an injective row-labeling function ρ, i.e., an authority/attribute is associ-
ated with at most one row of M . Since the Lewko-Waters transformation [42]
introduces a new column for the resulting LSSS matrix for each AND gate in the
underlying formula, the bound in the number of columns of the LSSS matrices
naturally translates to the number of AND gates of the supported DNF formulas
at implementation. Similar to our CP-ABE scheme, in our scheme description
below, we assume for simplicity of presentation that both the encryption and
the decryption algorithms receive an access policy directly in its LSSS repre-
sentation. However, we note that in the actual implementation, the encryption
and decryption algorithms should instead take in the DNF representation of the
access policy and deterministically compute its LSSS representation using the
Lewko-Waters transformation algorithm [42].

First, we provide the parameter constraints required by our correctness and
security proof. Fix any 0 < ε < 1/2. For any B ∈ N, let UB denote the uniform
distribution on Z ∩ [−B,B], i.e., integers between ±B. The Setup algorithm
chooses parameters n,m, σ, q and noise distributions χlwe, χ1, χ2, χbig, satisfying
the following constraints:

– n = poly(λ), σ < q, n · q/σ < 2nε

, χlwe = ˜DZ,σ (for LWE security)
– m > 2smaxn log q + ω log n + 2λ (for enhanced trapdoor sampling and LHL)
– σ >

√
smaxn log q log m + λ (for enhanced trapdoor sampling)

– χ1 = ˜DZm−1,σ, χ2 = ˜DZm,σ (for enhanced trapdoor sampling)
– χbig = UB̂, where B̂ > m3/2σ2λ (for smudging/security)
– |AU| (m3/2σ2 + 2mB̂2) < q/4 (for correctness)

We will now describe our MA-ABE construction.

GlobalSetup(1λ , smax): The global setup algorithm takes in the security param-
eter λ encoded in unary and the maximum width smax = smax(λ) of an LSSS
matrix supported by the scheme. It first chooses an LWE modulus q, dimensions
n,m, and also distributions χlwe, χ1, χ2, χbig as described above. Next, it samples

a vector y ← Z
n
q and sets the matrix B1 ∈ Z

n×m
q as B1 =

[

y�‖
m−1

︷ ︸︸ ︷

0�‖ · · · ‖0�

]

,

where each 0 ∈ Z
n
q . Furthermore, we assume a hash function H : GID →

(Z ∩ [−B̂, B̂])
m−1

mapping strings GID ∈ GID to random (m − 1)-dimensional
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vectors of integers in the interval [−B̂, B̂]. H will be modeled as a random ora-
cle in the security proof. Finally, it outputs the hash function H and the global
parameters

GP = (n,m, q, smax, χlwe, χ1, χ2, χbig,B1) .

AuthSetup(GP,H,u): Given the global parameters GP, the hash function H,
and an authority identifier u ∈ AU , the algorithm generates a matrix-trapdoor
pair (Au, TAu

) ← EnTrapGen(1n, 1m, q) such that Au ∈ Z
n×m
q , samples another

matrix Hu ← Z
n×m
q , and outputs the pair of public key and secret key for the

authority u

PKu = (Au,Hu) , MSKu = TAu
.

KeyGen(GP,H,GID,MSKu): The key generation algorithm takes as input the
global parameters GP, the hash function H, the user’s global identifier GID,
and the authority’s secret key MSKu. It first computes the vector tGID =
(1,H(GID)) ∈ Z

m. Next, it chooses a vector k̂GID,u ← χm
big, samples a vector

k̃GID,u ← EnSamplePre(Au, TAu
, σ, tGIDH�

u − k̂GID,uA�
u ), and outputs the secret

key for the user GID as

SKGID,u = k̂GID,u + k̃GID,u.

Enc(GP,H,msg, (M , ρ),{PKu}): The encryption algorithm takes as input the
global parameters GP, the hash function H, a message bit msg ∈ {0, 1} to
encrypt, an LSSS access policy (M , ρ) generated by the Lewko-Waters transfor-
mation [42], where M = (Mi,j)�×smax ∈ {−1, 0, 1}�×smax ⊂ Z

�×smax
q (Lemma 4.1)

and ρ : [�] → AU , and public keys of the relevant authorities {PKu}. The function
ρ associates rows of M to authorities (recall that we assume that each author-
ity controls a single attribute). We assume that ρ is an injective function. The
procedure samples vectors s ← Z

n
q , {vj }j∈{2,...,smax} ← Z

m
q , and {xi}i∈[�] ← Z

n
q .

It additionally samples vectors {ei}i∈[�] ← χm
lwe and {êi}i∈[�] ← χm

big. For each
i ∈ [�], it computes vectors ci, ĉi ∈ Z

m
q as follows:

ci = xiAρ(i) + ei

ĉi = Mi,1sB1 +

⎡

⎣

∑

j∈{2,...,smax}
Mi,jvj

⎤

⎦− xiHρ(i) + êi

and outputs

CT =
(

(M , ρ),{ci}i∈[�] ,{ĉi}i∈[�] , C = MSB(sy�) ⊕ msg
)

.

Dec(GP,H,CT,GID,{SKGID, u}): Decryption takes as input the global parame-
ters GP, the hash function H, a ciphertext CT generated with respect to an LSSS
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access policy (M , ρ) generated by the Lewko-Waters transformation [42], a user
identity GID, and the secret keys

{

SKGID,ρ(i)

}

i∈I
corresponding to a subset I of

row indices of the access matrix M possessed by that user. If (1, 0, . . . , 0) is not in
the span of the rows of M having indices in the set I, then decryption fails. Oth-
erwise, let {wi}i∈I ∈ {0, 1} ⊂ Zq be scalars such that

∑

i∈I wiMi = (1, 0, . . . , 0),
where Mi is the ith row of M . The existence of such scalars {wi}i∈I and their
efficient determination are guaranteed by [1,14,42]. The algorithm computes the
vector tGID = (1,H(GID)) ∈ Z

m followed by

K ′ =
∑

i∈I

wi ·
(

ciSK
�
GID,ρ(i) + ĉit

�
GID

)

,

and outputs

msg′ = C ⊕ MSB(K ′).
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Abstract. Oblivious transfer (OT) is an essential cryptographic tool
that can serve as a building block for almost all secure multiparty func-
tionalities. The strongest security notion against malicious adversaries
is universal composability (UC-secure). An important goal is to have
post-quantum OT protocols. One area of interest for post-quantum cryp-
tography is isogeny-based crypto. Isogeny-based cryptography has some
similarities to Diffie-Hellman, but lacks some algebraic properties that
are needed for discrete-log-based OT protocols. Hence it is not always
possible to directly adapt existing protocols to the isogeny setting.

We propose the first practical isogeny-based UC-secure oblivious
transfer protocol in the presence of malicious adversaries. Our scheme
uses the CSIDH framework and does not have an analogue in the Diffie-
Hellman setting. The scheme consists of a constant number of isogeny
computations. The underlying computational assumption is a problem
that we call the computational reciprocal CSIDH problem, and that we
prove polynomial-time equivalent to the computational CSIDH problem.

1 Introduction

Oblivious transfer (OT) was first introduced by Rabin [35] in 1981 to establish
an exchange of secrets protocol based on the factoring problem. Say the sender
has two messages, oblivious transfer allows the receiver to know one of them and
keeps the sender oblivious to which message has been received. The unchosen
message remains unknown to the receiver.

It has been shown that oblivious transfer is an important building block as
a cryptographic tool. Oblivious transfer can be used to construct other cryp-
tographic primitives [15,22,32]. Several oblivious transfer protocols based on
Diffie-Hellman-related problems were proposed [3,4,13,30,34].

Oblivious transfer protocols exist for various hardness assumptions. However,
cryptographic protocols based on problems subordinate to either the discrete
logarithm problem or the factoring problem will suffer a polynomial-time quan-
tum attack from Shor’s algorithm [37]. Several post-quantum oblivious transfer
schemes have been proposed, including Peikert et al.’s lattice-based OT [34],

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 213–241, 2021.
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and code-based OTs [3,16,19]. Recently, some isogeny-based OTs have been
proposed [2,17,38].

Concerning security of oblivious transfer, traditional security definitions aim
at guaranteeing privacy for both parties, including one-sided simulation and the
view-based definition for a two-message protocol [19,24,30]. These notions ensure
privacy for both parties in a standalone setting. However, in real world deploy-
ment, protocols are always composed into an enormous and complex construc-
tion. To ensure security of the full system the leading oblivious transfer proposals
[3,16,28,34] follow the real/ideal paradigm and universally-composable security
(UC security) as defined by Canetti [9]. Impossibility results for some protocols
have been given in [11].

The first isogeny-based cryptosystem was proposed by Couveignes [14], which
included a key exchange scheme based on a hard homogeneous space. However,
the paper was not published at that time. The approach was independently redis-
covered by Rostovtsev and Stolbunov [36]. Then, Jao and De Feo proposed the
Supersingular Isogeny Diffie Hellman (SIDH) [26]. Later, SIDH was transformed
into the Supersingular Isogeny Key Encapsulation (SIKE) [25] which includes a
public key encryption scheme and a key encapsulation mechanism and is now
one of the third-round alternate candidates in the post-quantum cryptography
standardization competition led by NIST [31]. Castryck et al. [12] devised an
efficient implementation of the Couveignes/Rostovtsev-Stolbunov approach that
they called commutative SIDH (CSIDH). CSIDH is conjectured to provide post-
quantum security with smaller public keys than the candidates in the NIST
competition [31]. In this work, we exploit the structure of CSIDH to construct
our schemes.

In comparison with Diffie-Hellman-based protocols, due to the reduced num-
ber of algebraic operations available, it is arguably more challenging to develop
isogeny-based cryptosystems achieving the desired notion. For example, nei-
ther the randomizing procedure (gsyt, xszt) ← RAND(g, x, y, z; s, t ←$Fp) used
in [28,30,34], nor the fundamental one-trapdoor setup pk0pk1 = c where c is a
public constant used in [3,30] can be realized in the isogeny-based setting with
current techniques in an efficient way.

We review the aforementioned isogeny-based oblivious transfer proposals
[2,17,38]. Their schemes can be viewed as “tweaks of two Diffie-Hellman key
exchange agreements” or variants of the Diffie-Hellman problem as stated in
[13]. As stated in [13], these schemes, including their scheme, cannot achieve
full-simulatablility, even in the sense of the sequential composition (SC) theo-
rem [8]. This is because a simulator cannot extract the input of the malicious
adversary who delays the decryption.

To get a secure OT against malicious adversaries, an inefficient solution is
embedding a zero-knowledge proof to force the adversary to follow the proto-
col specification, which is the idea of the GMW compiler [22]. But then using
isogenies the ZK proof may require a polynomial number of isogeny computa-
tions [6,21]. Another solution is using the transformation provided by Döttling
et al. [18]. The mechanism can transform a two-round semi-simulatable OT
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into one secure against malicious adversaries and keep the construction round-
optimal (2-round). The cost is a polynomial number of executions of the original
OT scheme. Chou and Orlandi [13] pointed out another potential solution that
the receiver should show a proof of timely decryption while not leaking the secret
input, which was realized by Barreto et al. in their framework in the updated
version of [3].

On the aspect of security, the schemes [2,17,38] are all only proved secure
under either semi-honest models or a non-simulation-based definition. In other
words, the schemes all ensure nothing when executed within a larger environment
against malicious adversaries. Regarding the underlying computational assump-
tion, a reduction to a well-known one is a preferred choice over a reduction to a
weaker variant. For instance, the scheme in [38], as stated in their work, relies on
a non-standard computational assumption that does not hold in the CSIDH set-
ting. In conclusion, before our work, a practical isogeny-based oblivious transfer
protocol proved to be secure under an assumption equivalent to a well-known
problem and with respect to a powerful security notion was missing from the
literature.

1.1 Contributions

We present the first practical construction of a UC-secure isogeny-based oblivi-
ous transfer protocol in the presence of malicious adversaries, hence resolving all
the issues discussed above. To achieve this we introduce a variety of novel tech-
niques. The construction is not only compact with a constant number of isogeny
computations (see Table 1) but also a robust scheme without compromising the
hardness. Our schemes use a feature that is available for isogenies (the quadratic
twist) that does not have an analogue in the DLP setting, but some of our other
techniques are not limited to isogeny-based cryptography, see Sect. 6.

Firstly, we design a novel 1-out-of-2 oblivious transfer protocol by a small
change to the Diffie-Hellman protocol to achieve a compact OT prototype with
a trusted setup curve (or a public curve). Next, the 3-round protocol is trans-
formed into a 2-round scheme through a new use of quadratic twists. The 2-round
scheme is the most efficient isogeny-based OT scheme in the semi-honest model
so far, see Sect. 5. Based on this modification, a secure mechanism can be estab-
lished in which the receiver will demonstrate the “ability to decrypt” to the
sender for one-sided simulation, which is based on a similar idea of [3,13] but
with a different mechanism for group actions. Furthermore, we establish a trap-
door algorithm with a novel use of quadratic twists in the setup to accomplish
the fully-simulatable construction. Finally, we introduce a new assumption, the
reciprocal CSIDH problem, (Problem 5) that looks non-standard, but we prove
equivalence to the computational CSIDH problem with a quantum reduction
using a tool we call “self-reconciling” (Proposition 1).

As pointed out by Canetti et al. [11], it is impossible to achieve a UC-secure
OT scheme without any trusted setup. Our construction is proposed in a hybrid
model with two functionalities, see Table 2 for comparison with the related works
concerning the hybrid models.
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This paper is organized as follows. Section 2 briefly describes CSIDH, the
related functionalities, our new assumptions, and recalls the simulation-based
definition for two-party protocols. Section 3 constructs our oblivious transfer pro-
tocol. Section 4 gives security proofs against the semi-honest adversary and the
malicious adversary. A comparison of our OT with the previous three isogeny-
based OT protocols is given in Sect. 5. We conclude in Sect. 6. For compre-
hensibility, the content related to isogenies will frequently be accompanied or
introduced by the counterparts in the Diffie-Hellman setting.

1.2 Related Work

There are three aforementioned isogeny-based OT protocols. All the adversary
models are either semi-honest or non-simulation, which are both quite weak
notions. While the semi-honest model cannot reflect vicious attackers in the real
world, the non-simulation-based model cannot enjoy the composition theorems
[8,9], see Sect. 5.

The first protocol was proposed by Barreto et al. [2] and used the common
reference string (CRS) model along with the random oracle model. They revisited
Chou and Orlandi’s work [13] and proposed an SIDH-based OT. They exploited
the properties of SIDH to mask one party’s public points by randomly (up to
the receiver’s choice) adding shared selective points derived from the common
reference string. However, the claim of security is false. It may not ensure privacy
even in the semi-honest model.

The second protocol was proposed by de Saint Guilhem et al. [17]. They
derived their two constructions from the Shamir-3-Pass key transport scheme and
[13], respectively. Their framework is UC-secure against semi-honest adversaries
based on a masking structure hard homogeneous space or on Fp2 supersingular
isogenies.

The third protocol was proposed by Vitse [38]. It is derived from Wu, Zhang,
and Wang’s OT [39], based on a Diffie-Hellman-related problem. Their proposal
naturally fits well in the general setting (including DH, SIDH, and CSIDH).
They claimed UC-security in a semi-honest model and gave another game-based
security definition (semantic security) for their OT protocol. They also proved
the hardness of their special assumption in generic groups.

An independent and concurrent work of Alamati et al. [1] is concerned with
giving a general framework for developing cryptographic primitives based on
group actions such as CSIDH. As an application, they briefly present some OT
schemes. Their paper is concerned with theoretical aspects, not practical ones.
Hence, the efficiency is worse than using the GMW compiler [22] or using the
transformation of [18].

2 Preliminaries

Notation

Let {X(a, n)} =c {Y (a, n)} denote computationally indistinguishable probabilis-
tic ensembles X,Y , which means for any PPT non-uniform algorithm D there
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exists a negligible function f such that for all a, n ∈ N we have |Pr[D(X(a, n))]−
Pr[D(Y (a, n))]| ≤ f(n). Let {X(a, n)} =s {Y (a, n)} denote statistically indis-
tinguishable probabilistic ensembles X,Y on the same set, which means the
statistical distance between X and Y is negligible. The notation a ←$ S means a
is uniformly generated from the set S. For simplicity, we often omit the security
level parameter n but it is implicit in the indistinguishabiliy and the negligible
function.

2.1 CSIDH

For a given prime p and an elliptic curve E defined over Fp, Endp(E) is the
subring of the endomorphism ring End(E) consisting the endomorphisms defined
over Fp.

Let O be an order in an imaginary quadratic field and π ∈ O an element of
norm p. Define the set of isomorphism classes of elliptic curves E��p(O, π) where
E defined over Fp, Endp(E) = O, and π is the Fp-Frobenius map of E. For any
ideal a ∈ O and E ∈ E��p(O, π), an action can be defined by a∗E = E′ such that
there exists an isogeny φ : E → E′ with ker(φ) = ∩α∈a{P ∈ E(F̄p) | α(P ) = 0}.
The image curve of a ∗ E is well-defined up to Fp-isomorphism. Moreover, the
ideal class group Cl(O) acts freely and transitively on E��p(O, π).

Castryck et al. specified the prime to be p = 4 × �1 × ... × �n − 1 where �i

are small odd primes. In the case of p = 3 mod 8, for any supersingular elliptic
curve E defined over Fp, the restricted endomorphism ring Endp(E) = Z{π} ∼=
Z{√−p} if and only if E is Fp-isomorphic to EA : y2 = x3 + Ax2 + x for some
unique A ∈ Fp. The quadratic twist of a given elliptic curve E : y2 = f(x) is
Et : dy2 = f(x) where d ∈ Fp has Legendre symbol −1. When p = 3 mod 4
let E0 be such that j(E0) = 1728, then E0 and Et

0 are Fp-isomorphic. The
quadratic twist can be efficiently computed in the CSIDH setting [12]. Since
the prime p = 3 mod 4, E′ : −y2 = x3 + Ax2 + x is the quadratic twist of
EA : y2 = x3 + Ax2 + x and E′ is Fp-isomorphic to E−A by (x, y) 
→ (−x, y).
Further, (a ∗ E0)t=a−1 ∗ E0. Therefore, for any curve E ∈ E��p(O, π), we have,
by the transitivity of the action,

(a ∗ E)t = a−1 ∗ Et.

Throughout this paper, we concentrate on supersingular curves defined over
Fp. Denote the ideal class group Cl(Endp(E)) by Cl and the set of elliptic curves
E��p(O, π) by E .

Uniform Sampling of Curves. In CSIDH, the method provided to sample
elements of the class group Cl is heuristically assumed to be statistically close
to uniform [12]. Here we make the same assumption and derive the following
lemma when p = 3 mod 4.

Lemma 1. Given a curve E ∈ E and a distribution D on Cl, let D ∗ E be the
distribution on E of a ∗ E for a ← D, and let (D ∗ E)t be the distribution on E



218 Y.-F. Lai et al.

of (a ∗ E)t for a ← D. If D is statistically indistinguishable from the uniform
distribution on Cl, then D ∗ E and (D ∗ E)t are statistically indistinguishable
from the uniform distribution on E.

Proof. Let U be the uniform distribution on E . Since Cl acts freely and transi-
tively on E , D∗E is statistically indistinguishable from U . Since taking quadratic
twists is a transposition on E , by taking a twist on both distributions, we have
D ∗ E =s U = U t =s (D ∗ E)t.

CSIDH works by sampling ideal classes as
∏n

i=1(�i, π − 1)ei where ei are
sampled from [−B,B ] ∩ Z for a suitably chosen value B. Heuristically, increas-
ing B means that sampling becomes closer to the uniform distribution on Cl.
Beullens et al. [6] proposed an efficient instantiation of these sampling methods
in CSI-FiSh which requires pre-processing to compute a lattice of relations in
the class group. Implementations of the CSIDH scheme can be found in [5,12].
We refer to [29,33] for constant-time variants.

Computational Assumptions. The computational assumptions relevant to
this work are defined as follows.

Problem 1. (Computational CSIDH Problem) Given curves E, r ∗ E and
s ∗ E in E where r, s ∈ Cl, find E′ ∈ E such that E′ = rs ∗ E.

Problem 2. Given curves (E, s ∗ E,r ∗ E) in E where r, s ∈ Cl, find E′ ∈ E such
that E′ = s−1r ∗ E.

The computational CSIDH problem is the main hardness assumption for
[12]. Problem 2 is an equivalent problem. To see this, given an oracle O for
Problem 1, one can obtain E′ by taking E′ ← O(s ∗ E,E, r ∗ E) such that
E′ = rs−1 ∗ E. Conversely, given an oracle O for Problem 2, one can obtain E′

by taking E′ ← O(s ∗ E,E, r ∗ E) such that E′ = rs ∗ E.
The following two problems are the main underlying problems against semi-

honest adversaries.

Problem 3. (Computational Square CSIDH Problem) Given curves E
and s ∗ E in E where s ∈ Cl, find E′ ∈ E such that E′ = s2 ∗ E.

Problem 4. (Computational Inverse CSIDH Problem) Given curves E
and s ∗ E in E where s ∈ Cl, find E′ ∈ E such that E′ = s−1 ∗ E.

The equivalence between these two assumptions and a conditional reduction
to the computational CSIDH problem were given in [20]. The condition for the
second reduction is that the group order is given and odd. Therefore, we can say
that there is quantum reduction [23,37] to the computational CSIDH problem
when p = 3 mod 4. In fact, there is also an efficient quantum reduction for the
case of p = 1 mod 4, see Appendix 1 of [27]. Note that the quantum computation
is only to compute the group structure of Cl, and so can be considered as a
precomputation; the remainder of the reduction is classical.
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As Castryck et al. pointed out [12] both problems contain exceptional cases
when E0 takes part in the problems due to the symmetric structure. That is,
(a ∗ E0)t = a−1 ∗ E0, and so Problem 4 is easy in the special case E = E0. The
issue can be circumvented if the public curve is generated by a trusted third
party.

Next, we will introduce the main underlying assumption for our UC-secure
construction.

Problem 5. (Reciprocal CSIDH Problem) Given E in E . Firstly, the adver-
sary chooses and commits to X ∈ E , then receives the challenge s ∗ E where
s ∈ Cl. Then the adversary must compute a pair (s ∗ X, s−1 ∗ X) with respect
to the committed X.

Intuitively, the computational reciprocal CSIDH problem is a relaxed version
of the square CSIDH problem or the inverse CSIDH problem. In particular, if one
can solve the inverse CSIDH problem, then one can solve the reciprocal CSIDH
problem by taking X = E with (s ∗X, s−1 ∗X) = (s ∗E, s−1 ∗E). Conversely, if
an attacker knows the isogeny between X and E, or Et, then this can be used to
solve the inverse CSIDH problem. That is, if X = r ∗ E, one can obtain s−1 ∗ E
by computing r−1 ∗ (s−1 ∗X) with the given r. On the other hand, if X = r ∗Et,
one can obtain s−1 ∗ E by computing r ∗ (s ∗ X)t with the given r. However,
note that the attacker is not required to know the isogeny between X and E or
Et in the problem.

The reciprocal CSIDH problem appears to be non-standard at first sight but,
in fact, it is equivalent to the inverse CSIDH problem. Even though the problem
provides additional freedom X for the attacker, yet notice that X is chosen prior
to the challenge s ∗ E. We show in the following reduction that the freedom to
choose X can be handled. We call the reduction strategy self-reconciling.

Proposition 1. The computational reciprocal CSIDH problem is equivalent to
the computational inverse CSIDH problem.

Proof. Given a challenge (E, s ∗ E) for the inverse CSIDH problem. Invoke
the adversary for the reciprocal CSIDH with E. After receiving X from the
adversary, send the challenge t1s ∗ E to the adversary where t1 ←$ Cl. Receive
(t1s ∗ X, (t1s)−1 ∗ X) from the adversary, then rewind the adversary to the time
when it output X, and then send t2s ∗ X as the challenge with respect to com-
mitted X where t2 ←$ Cl. Receive (X0,X1) from the adversary. Output X1.

Claim (t2) ∗ X1 = s−1 ∗ E. Write X = b ∗ E by the transitivity of the action,
so t2s ∗ X = (t2sb) ∗ E. Then, since the second challenge is t2s ∗ X = (t2sb) ∗ E,
we have t2 ∗ X1 = (sb)−1 ∗ X = s−1 ∗ E. Precisely, if the adversary can solve the
problem based on E with committed X with probability ε, then the adversary
can be used to solve the inverse CSIDH problem based on E with probability ε2.

In the proof Proposition 1, the reduction extracts the first entry of the first
solution and the second entry of the second solution to obtain the solution for
the inverse CSIDH problem. We can, therefore, conclude the following corollary.
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Corollary 1. In the experiment of Problem 5, after committing to the curve X,
if the adversary can solve (s∗X, s′−1∗X) with respect to different given challenges
s ∗ E and s′ ∗ E then the adversary can be used to solve the computation inverse
CSIDH problem.

We end the subsection with the following relation.

Computational CSIDH =quantum Computational Inverse CSIDH

=classical Computational Square CSIDH

=classical Computational Reciprocal CSIDH

Remark. The above results can all be extended to general (free and transitive)
group actions and hard homogeneous spaces [14]. We leave the details to the
reader.

2.2 Functionalities

In this subsection, we define the functionalities we need as well as the related
security definitions.

A symmetric encryption scheme is a pair of algorithms (E,D) defined over
message space M and ciphertext space C with key space K.

Definition 1. (non-committing encryption (NCE)) A symmetric encryption
scheme (E,D) is said to be non-committing if there exists PPT algorithm B1, B2

such that for any PPT distinguisher D, message m ∈ M.

|Pr[D(c, k) = 1] − Pr[D(c′, k′) = 1]| = negl(n),

where k ←$ K, c = Ek(m) and c′ ←$ B1(1n), k′ ←$ B2(c′,m)

Informally speaking, non-committing encryption allows a user to generate a
dummy ciphertext indistinguishable from the real one by B1 and later explain
it with the assistance of B2. The idea was introduced by Canetti et al. [10] with
the one-time pad (OTP) as an instantiation. It was also used in some oblivious
transfer constructions [3,13]. The non-committing proposition here is used to
extract the input without rewinding in the simulation process.

FTSC-Functionality of a trusted setup curve

The functionality is o output an element of E . It generates an
ideal class t ←$ Cl and outputs the curve t ∗ E0.

The functionality of trusted setup curves FTSC serves as a setup for gener-
ating a curve for the protocol. This setup hides the relation t between the public
curve and the curve E0. In practice, this can be replaced with a key exchange
protocol [7]. That is, two parties do a key exchange first and obtain a curve such
that the isogeny relation to E0 remains unknown if the two parties do not share
their ideal classes or collude.
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FRO-Functionality of Random Oracle

The functionality is a function with the domain E and the
codomain K. It keeps a list L of pairs in E × K where the initial
state is empty. It works as follows:

1. Upon receiving a query C ∈ E , check whether (C, k′) for some
k′ ∈ K. If so, set k = k′; if not, generate k ←$ K and store the
pair (C, k) in the list L.

2. Output k.

The functionality of a random oracle FRO internally contains an initially
empty list. Upon receiving the query from the domain, it will check whether it is a
repetition. If so, return the value assigned before; otherwise, it randomly assigns
a value from the codomain, stores the pair, and returns the value. Formally
speaking, an input of a random oracle can be any binary string. For simplicity,
we restrict the domain to E . This can be easily and compatibly extend to {0, 1}∗,
since supersingularity can be efficiently verified [12].

We briefly define the security terms. Let outputπ(x, y) denote the outputs of
two parties with the inputs x, y respectively after the execution of π, and viewπ

i

consist of the input, the internal random tape and all received messages of the
ith participant after the execution of π. Let IDEALF,S,Z and HY BRIDG

π,A,Z
denote the ideal execution ensemble and the hybrid ensemble, respectively. A
detailed explanation can be found in [27]. We refer [9,24] for more thorough
descriptions for the security notions against semi-honest adversaries and the
malicious adversaries, respectively.

Definition 2. (security OT against semi-honest adversary). We say a protocol
π securely (privately) computes FOT in the presence of static semi-honest adver-
saries if there exists probabilistic polynomial-time algorithms S1, S2 such that

outputπ(x, y) = FOT (x, y)

{S1(x, (FOT (x, y))1)}x,y=c{viewπ
1 (x, y)}x,y

and
{S2(y, (FOT (x, y))2)}x,y=c{viewπ

2 (x, y)}x,y.

Definition 3. (UC-realize). A protocol π is said to UC-realize an ideal func-
tionality F in the presence of malicious adversaries and static corruption in the
hybrid model with functionality G if for any adversary A there exists a simulator
S such that for every interactive distinguisher environment Z we have

IDEALF,S,Z=cHY BRIDG
π,A,Z .

3 Our Proposal

This section first presents the idea behind our tweaked key exchange by intro-
ducing the core of Chou and Orlandi’s OT scheme [13]; we then derive a novel
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compact protocol as a prototype. Following this, we compress the three-round
scheme to an optimal two rounds by using the quadratic twist technique. Finally,
building on the round-optimal structure, we add a “proof of decryption” mech-
anism, which requires an extra round, in order to achieve security against mali-
cious adversaries.

3.1 Passively Secure Schemes

Tweaked Key Exchange. Figure 1 presents the Chou–Orlandi OT scheme [13]
which is based on Diffie–Hellman key exchange. In Diffie–Hellman, the sender
and the receiver first share their public “keys”, gs and gr, with each other, after
which both of them can secretly obtain a shared secret grs. To adapt this for
the purpose of OT, the receiver can use the second round to obfuscate his secret
bit i. In the third round, the sender can communicate an encryption of the two
OT messages by deriving two keys, one which cancels out the obfuscation, and
one which does not. Because of this key derivation, the receiver can then only
decrypt the message corresponding to his input bit.

Fig. 1. Chou and Orlandi’s OT scheme in a nutshell [13]

We can view the isogeny-based oblivious transfer constructions of previous
works in the same way. In Barreto et al.’s work [2], the shared secret between
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the sender and the receiver is the j-invariant of the isomorphic elliptic curves
φB′φA(E) and φA′φB(E) [2]. Here, the receiver hides his input bit by masking his
pe3
3 -torsion subgroup public basis by a pair of special pe3

3 -torsion points U, V ∈
φB(E); the sender then requires the same pair of points U , V to remove the
noise. A coin-flipping mechanism is then used to guarantee that both parties
obtain the same points U, V .

Proposals by de Saint Guilhem et al. and Vitse rely on a similar idea to use
a fixed key from the key exchange to decrypt the chosen ciphertext [17,38]. In
the first OT construction of [17], two public curves are required as a trusted
setup, which serve the same role as two fixed keys from the perspective of key
exchange. In [38], one more pe2

2 -torsion subgroup generated by the sender is
required to obtain two fixed keys.

Our Three-Round Protocol. We present our three-round protocol in Fig. 2
using the notation of the CSIDH setting. In this work we approach the change
from key exchange to OT with a different strategy. The essence is that the sender
and the receiver can exponentiate by both s and by s−1, and by both r and r−1

respectively.
Upon receiving gs from the sender, the receiver computes both gr and gsr,

and sends one of them to the sender depending on its choice bit. The sender then
exponentiates it by both s and by s−1 as the encryption keys, which is like doing
the key exchange as Problem 1 and 2. One can verify that the shared secret in
each case is grs and gr, resp.

The other encryption keys are grs−1
and grs2

, resp. They are intractable to
the honest-but-curious receiver due to the hardness of the inverse and square
CSIDH problems, respectively. Furthermore, the receiver’s input bit remains
unknown since the sender only knows either gr or gsr.

Note that in this isogeny-based setting, it is necessary that the relation
between the shared public curve E ∈ E and a fixed base curve E0 remains
unknown. Should the receiver know that E = t ∗ E0, then he can always input
i = 0 and compute the other key as t2r2 ∗ (rs ∗ E)t = t2r2 ∗ (trs ∗ E0)t =
trs−1 ∗ E0 = rs−1 ∗ E.

Our Two-Round Protocol. To address the drawbacks of our three-round
protocol, we observe that the quadratic twist provides additional flexibility for
the curve computations.

To first break the dependency of C on A, we let the receiver compute C =
(r ∗ E)t in the case i = 1, instead of r ∗ A. Lemma 1 guarantees that this still
statistically hides i. Now that C is independent of A, the receiver can send
his message first, reducing the protocol to only two rounds. Furthermore, this
removes the hypothetical attack of a malicious receiver choosing C in response
to A and enables a direct reduction to the computational CSIDH problem.

We then note that the sender’s second encryption curve can be computed as
(s∗Ct)t, instead of s−1∗C, in the three-round version. Here again we can simplify
by letting the sender compute the second curve as s∗Ct, without the additional
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Fig. 2. Our three-round OT protocol.

twisting operation. This then results in a simplification for key computation
too: for i = 0, the encryption curve is s ∗ (r ∗ E) = r ∗ A, and for i = 1 it is
s∗ ((r ∗E)t)t = r ∗A; thus we return to the idea of using a single Diffie–Hellman
key by way of using the twist operation. The modified two-round protocol is
described in Fig. 3. We give a formal security proof in Sect. 4.1.

In this simplified variant the number of isogeny computations remains the
same as in the three-round variant. We note that taking quadratic twists is an
efficient operation via field negation.

3.2 The Full Construction Against Malicious Adversaries

The full protocol is shown in Fig. 4 below. To be secure against malicious adver-
saries who may deviate from the specification, both parties will do a simple ver-
ification of the received elements. In the CSIDH setting, both parties will check
whether the curve is supersingular, which can be done efficiently, as shown in
[12].

Protocol. (CSIDH-based OT). Let (E,D) be a symmetric encryption scheme
with message space M and ciphertext space C. Let H : E → K be modeled as a
random oracle FRO that serves as the key derivation function from the group E
to the key space K for the symmetric encryption scheme.
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Fig. 3. The core of our two-round OT scheme. No analogue exists in the Diffie–Hellman
setting due to the use of the quadratic twist.

– Trusted Setup: Let E = t ∗ E0 where t ←$ Cl is unknown.
– Input: As input, the sender S takes two messages M0,M1 of the same length;

the receiver R takes a bit i ∈ {0, 1}.
– Procedure:

1. S samples independent ideals s0, s1 ←$ Cl, a random string str ←$ {0, 1}n

and computes A0 = s0 ∗ E, A1 = s1 ∗ E.
2. R generates an ideal r ←$ Cl and computes C = r∗E; if i = 1, overwrites

C = Ct; and sends C to S.
3. S checks whether C ∈ E. If not, S aborts and outputs abort2. Otherwise,

S computes four keys kj,0 = H(sj∗C) and kj,1 = H(sj∗Ct) for j ∈ {0, 1}.
Then, S computes four ciphertexts c0,j ← Ek0,j (Mj) and c1,j ← Ek1,j (s1 ‖
str) for j ∈ {0, 1}. S sends (A0, A1, c0,0, c0,1, c1,0, c1,1) to R.

4. R runs the proof of ability to decrypt first. R checks whether A1 ∈ E. If
not, R aborts and outputs abort1. Otherwise, R computes k′

1,i = H(r∗A1)
and (s′

1 ‖ str′) ← Dk′
1,i

(c1,i). Verify whether s′
1 ∗ (r ∗ E) = r ∗ A1. If not,

output abort1. Otherwise, continue.
5. R computes k′

1,1−i = H(s′
1 ∗ (r ∗ E)t). Verify whether Dk′

1,1−i
(c1,i−i) =

(s′
1 ‖ str′). If not, output abort1. Otherwise, continue.

6. R verifies A0 ∈ E. If not, R aborts and outputs abort1. Otherwise, com-
pute the decryption key k′

0,1 = H(r ∗ A0) and output Mi ← Dk′
0,i

(c0,i).
And send str′ to S.
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7. S checks whether str = str′. If not, S aborts and outputs abort2. Other-
wise, S accepts and outputs ⊥.

Intuitively, to simulate a sender controlled by an adversary, we have to show
that the receiver’s message’s distribution with input i = 0 and that with input
i = 1 are indistinguishable. Asides from that, the simulator needs to extract
the real input of the message pair since the adversary can replace the original
input. Lemma 1 assures the first requirement. The second condition is attained
by controlling the functionality FTSC . As a result, the simulator can decrypt
two ciphertexts by using the trapdoor of FTSC and extract the real input of the
sender.

To simulate a receiver corrupted by an adversary, the simulator should extract
the adversary’s input by observing the hash queries. In order to extract the
input, the receiver should demonstrate the ability to decrypt. The reason to do
this is that the corrupted receiver who skips all hash queries makes the input
intractable to the simulator. The additional proof of ability to decrypt mecha-
nism forces the adversary either to abort or to prove its ability to decrypt by
querying the hash function. Here the sender will send another curve s′∗E distinct
from s∗E for transferring messages. The sender encrypts the ideal s′ and a con-
catenated random string with key pair derived from s′ ∗E. The receiver decrypts
one ciphertext with X, and the other ciphertext serves as a verification of the
equality of encrypted messages. By requiring this together with Corollary 1, the
mechanism enables the simulator to extract the input by observing the ran-
dom oracle queries. Furthermore, since the simulator can only obtain one real
message from the trusted third party (corresponding to the extracted input i),
the simulator must forge the other ciphertext via the non-committing encryption
scheme. The difference between the unchosen ciphertexts is not noticeable unless
the environment machine knows the corresponding decryption key. In this case,
the environment machine contains a pair of curves which is exactly the solution
for the reciprocal CSIDH problem. See Sect. 4 for more details.

4 Security Analysis

In this section, we prove the security of our two schemes from Sects. 3.1 and 3.2
against semi-honest and malicious adversaries respectively.

4.1 Semi-honest Security

Eavesdropper. An eavesdropper receives all the communications of parties and
does not intervene in the execution. We assume that such an adversary knows the
parties’ inputs while the simulator tasked with simulating an indistinguishable
transcript is given nothing. The reason for this assumption is to match the
definition of UC-security [9] where the environment machine decides the inputs.
In fact, security against such eavesdroppers corresponds exactly to the honest-
honest case discussed in the proof below.
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Fig. 4. Our CSIDH-based oblivious transfer protocol. For the sake of readability, we
label the steps related to the process of “proof of ability to decrypt” with �.

Semi-Honest Adversary. A static semi-honest adversary can choose to corrupt
either, both or neither of the parties and will follow the protocol specification.
We will prove that such adversary cannot obtain any information from the tran-
script of our two-round protocol (Fig. 3) assuming that the computational inverse
CSIDH problem is hard.

We remark that it is not meaningless to design two different protocols for
different security levels. As security against semi-honest adversaries is easier to
achieve, it is better to use a simpler and more efficient protocol when only such
guarantees are required. This then implies that it is not necessary to prove the
semi-honest security of our second protocol since the first provides a simpler
secure variant. We highlight the fact that some maliciously secure protocols fail
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to also be semi-honest secure [24] and stress that we do not claim the semi-honest
security of our second protocol of Sect. 3.2.

Theorem 1. The protocol π of Fig. 3 securely computes FOT in the presence
of static semi-honest adversaries if the computational inverse CSIDH problem
(Problem 4) is infeasible, assuming that H(·) is a random oracle and the encryp-
tion scheme (E,D) is IND-CPA.

Proof. (Correctness). Let i ∈ {0, 1} be the input of the receiver R. Say the
sender S generates ideal s ∈ Cl and R generates r ∈ Cl. If i = 0, then C = r∗E.
S computes the encryption key k0 as H(s∗C), and sends A = s∗E. R computes
k′
0 = H(r ∗ A) as the decryption key; as we have r ∗ A = r ∗ (s ∗ E) = s ∗

(r ∗ E) = s ∗ C, we indeed have k′
0 = k0. On the other hand, if i = 1, then

C = (r ∗ E)t. S computes k1 = H(s ∗ Ct) while R computes k′
1 = H(r ∗ A). We

have s ∗ Ct = s ∗ ((r ∗ E)t)t = s · r ∗ E = r ∗ A which implies k′
1 = k1 and shows

the correctness of the protocol.

(Corrupt sender S∗) The simulator S1 takes as input (M0,M1,⊥) and is
required to simulate the view viewπ

1 (M0,M1, i) = (M0,M1, rp, C) where rp is a
random tape. To generate this, S1 performs these steps:

1. Uniformly generate a random tape rp for S∗.
2. Generate r′ ←$ Cl acting as an honest R and using a private random tape.
3. Output (M0,M1, rp, C ′ = r′ ∗ E).

In a real execution, the curve C sent by the honest receiver is either r∗E if i = 0,
or (r ∗ E)t if i = 1. In the first case, the transcript output by S1 is identically
distributed to that produced by a real execution. In the second case, Lemma 1
gives us that the distribution of C ′ produced by S1 is statistically close to that
of C produced by the real receiver. Thus, any polynomial-time distinguisher that
is given a tuple (M0,M1, i) is not able to distinguish {S1((M0,M1),⊥)}(M0,M1),i

from {viewπ
1 (M0,M1, i)}M0,M1,i.

(Corrupt receiver R∗) The simulator S2 takes as input (i,Mi) and is
required to simulate the view viewπ

2 (M0,M1, i) = (i, rp,A, c0, c1) where rp is
a random tape. To generate this, S2 performs these steps:

1. Choose a uniform generated random tape rp for R∗.
2. Generate s′ ←$ Cl acting as an honest S and using a private random tape,

and generate r′ ←$ Cl using rp. Compute the curve C as r′ ∗ E or (r′ ∗ E)t

depending on i.
3. Compute the decryption keys k′

i, k
′
1−i honestly using s′ and C. Replace k′

1−i

with k̃′ ←$ K
4. Compute ciphertexts ci = Ek′

i
(Mi) and c1−i = E

˜k′(M̃) where M̃ is a string
of the same length as Mi sampled at random from the message space M.

5. Output (i, rp, s′ ∗ E, c0, c1).
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We claim that if there exists a successful PPT distinguisher between the sim-
ulated view and the real view, then reductions can be made to solve the com-
putational problems (Problem 3 or the equivalent Problem 4) or to break the
IND-CPA security of the encryption scheme.

To show this, we build a series of hybrid views. Let H0 be the view of the real
adversary, and H2 be the view generated by S2 (i.e., {viewπ

2 (M0,M1, i)}(M0,M1),i

and {S2((M0,M1),⊥)}(M0,M1),i, resp). Let the intermediate H1 be the view pro-
duced by running a real execution and replacing the encryption key k1−i with a
random k̃ ←$ K. The difference between H1 and H2 is then that the real message
M1−i is replaced with a random one M̃ ←$ M.

Hybrid 1. We first claim H0 =c H1 if the computational inverse CSIDH
problem (Problem 4) is hard. To offer an intuition: let E1−i denote the curve
from which the replaced key k1−i is derived. When i = 0, we have E1−i =
s ∗ Ct = s ∗ (r ∗ E)t = r−1 ∗ (s−1 ∗ E)t; and when i = 1, we have E1−i = s ∗ C =
s ∗ (r ∗ E)t = r−1 ∗ (s−1 ∗ E)t as well. In both cases we see that the hard-to-
compute curve contains s−1∗E which we use to reduce a successful distinguisher
to the computational inverse CSIDH problem (Problem 4).

Let Z be an environment that can successfully distinguish between H0 and
H1, then a solver B for Problem 4 with the assistance of Z runs as follows:

1. Receive challenge (E′, s′ ∗ E′) from Problem 4, where s′ ∈ Cl is unknown.
2. Set E′ to be the public curve used by the protocol π and set s′ ∗ E′ as the

curve A sent to the receiver.
3. Randomly generate random tape rp for the receiver, use it to sample r, and

compute C according to i.
4. While running, simulate the random oracle by assigning a random value from

K whenever a new query is made and recording a list of past queries during
the execution.

5. When deriving the real encryption key ki, compute it as r ∗ (s′ ∗ E′) (since s′

from the challenge is unknown).
6. Replace the other encryption key k1−i with k̃ ←$ K to simulate the output of

H1; abort if k̃ already appears on the list of answers to random oracle queries.
7. Invoke the distinguisher Z with the produced output of H1.
8. When Z terminates, randomly select a curve Ẽ in the list of past queries of

the simulated random oracle and return (r ∗ Ẽ)t as the computational inverse
CSIDH solution.

Note that, if B does not abort, the only difference between H0 and H1 is the
key for Mi−1, thus a distinguisher Z which does not query this key must have a
zero advantage.

Let A denote the event that B aborts when sampling the replacement key.
Denoting by qH the maximum number of queries made to H during the reduc-
tion, we have that Pr[A] ≤ qH

|K| . Also let E denote the event that the targeted
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curve E′
1−i = r−1 ∗(s−1 ∗E′)t is present on the query list. We see that the reduc-

tion B wins with probability 1/qH when E happens, and we can then write:

AdvProblem 4
B = Pr[B wins] = Pr[B wins | ¬A] · Pr[¬A] + Pr[B wins | A] · Pr[A]

≥ Pr[B wins | ¬A] · (1 − Pr[A])

≥ Pr[B wins | ¬A] ·
(

1 − qH
|K|

)

⇔ 1

1 − qH
|K|

· Pr[B wins] ≥ Pr[B wins | ¬A] =
1

qH
· Pr[E] (1)

Looking an arbitrary distinguisher Z, we then have

|Pr[Z(H0) = 1] − Pr[Z(H1) = 1]| = |Pr[Z(H0) = 1|E] · Pr[E]
− Pr[Z(H1) = 1|E] · Pr[E]
+ Pr[Z(H0) = 1|¬E] · Pr[¬E]
− Pr[Z(H1) = 1|¬E] · Pr[¬E]|

≤ Pr[E] (2)

since |Pr[Z(H0) = 1|¬E] − Pr[Z(H1) = 1|¬E]| = 0 and |Pr[Z(H0) = 1|E] −
Pr[Z(H1) = 1|E]| ≤ 1 by definition. By combining (1) and (2) we see that if Z
distinguishes the two views with non-negligible advantage ε, then B successfully
solves Problem 4 with probability at least ε·(1− qH

|K| )/qH which is non-negligible if
qH = poly(n) and 1/|K| = negl(n). This contradicts the assumption that Prob-
lem 4 is intractable and therefore implies that H0 and H1 are computationally
indistinguishable to any PPT environment Z.

Hybrid 2. We now claim H1 =c H2 for any PPT distinguisher if the encryp-
tion scheme (E,D) is IND-CPA secure. The only difference is the encryption
E

˜k(M1−i) in H1 and the encryption E
˜k(M̃) in H2, where k̃ is uniformly sam-

pled from K. A successful distinguisher Z between the two distributions can be
reduced to an adversary against the IND-CPA security of (E,D) in a straight-
forward manner. As this reduction is common in the literature, we only include
a sketch here.

The IND-CPA adversary B has access to a left-right encryption oracle which
uses a secret key randomly sampled from K to encrypt either the left or the right
input; this hidden key plays the role of k̃ in the generation of the view given to Z.
After setting up and executing the protocol honestly, B uses the left-right oracle
to encrypt either M1−i or a random M̃ as the ciphertext c1−i; depending on the
hidden bit (left or right) of the oracle, the view viewB generated by B for Z is
distributed identically to either H1 or H2. After the distinguisher terminates,
the reduction returns its output as the guess of the oracle’s hidden bit. Labelling
the oracle’s hidden bit as b, we then have

AdvIND-CPA
B,(E,D) = |Pr[B = 1 | b = 0] − Pr[B = 1 | b = 1]|

= |Pr[Z(viewB) = 1 | b = 0] − Pr[Z(viewB) = 1 | b = 1]|
= |Pr[Z(H1) = 1] − Pr[Z(H2) = 1]|
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which immediately shows that if Z is successful with non-negligible advantage,
then so is B which contradicts the assumption that (E,D) is IND-CPA secure.

(Honest sender and honest receiver) We now claim that there exists a
PPT simulator that can generate a transcript tuple, without knowledge of the
parties’ inputs, which is indistinguishable from the view of an eavesdropper Z
that knows the parties’ inputs (but not their random tapes). This simulator is
constructed from the following sequence:

1. S0 knows the real inputs (M0,M1) and i of the parties; by sampling random
tapes and acting honestly, it produces a perfect simulation.

2. S1 always uses i = 0; by Lemma 1 and the argument made in the case of a
corrupt sender, the output of S1 is either identically distributed or statistically
indistinguishable from the output of S0.

3. S2 replaces k1 with a randomly sampled key; as above, this is computa-
tionally indistinguishable from the output of S1 assuming that Problem 4 is
intractable.

4. S3 replaces M1 with a randomly sampled message; as above, this is computa-
tionally indistinguishable from the output of S2 assuming that the encryption
scheme is IND-CPA secure.

5. S4 always uses i = 1; as above, the output of S4 is statistically indistinguish-
able from the output of S3.

6. S5 and S6 respectively first replace k0 and then M0 with random values;
as above, these changes are computationally indistinguishable assuming the
hardness of Problem 4 and the IND-CPA security of the encryption scheme.

Finally, we observe that the last simulator S6 does not use any of the real inputs
to produce a random transcript. By the sequence above, this simulation is indis-
tinguishable from the transcript of a real execution.

(Corrupt sender and corrupt receiver) In this case, the simulator knows
the inputs of both corrupt parties; as for S0 in the previous case, it can generate
a perfect simulation of the views of the parties.

The four cases considered above cover all possible corruption strategies; this
thus completes the proof that the protocol π securely computes FOT .

4.2 Malicious Adversary

Malicious Adversary. A malicious adversary with static corruptions can cor-
rupt either, both or neither of the parties prior to the execution. The environ-
ment machine decides the initial inputs of all parties. The adversary will be in
charge of the corrupted party or parties, and decide all messages to be sent.
In particular, the adversary can replace the inputs of the participants from the
environment machine and deviate from the protocol specification. We will prove
that the construction in Fig. 4 UC-realizes the functionality FOT in the presence
of malicious adversaries with static corruptions.
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Theorem 2. The protocol π of Fig. 4, where the encryption scheme (E,D) is
non-committing, securely UC-realizes the functionality FOT in the hybrid model
with the functionality FRO and a trusted setup FTSC in the presence of malicious
adversaries and static corruption if the computational reciprocal CSIDH problem
is infeasible.

Proof. (Honest Sender and Honest Receiver) We start with the honest
sender and the honest receiver. The goal is to show that the execution of π is
indistinguishable from the ideal functionality when the parties follow the speci-
fication.

By following the same process as the honest-sender-and-honest-receiver case
in Theorem 1, we can construct the simulator that simulates the first-half mes-
sages. By continuing the process of S1 or S4, the simulator can simulate the
second-half messages A1, c1,0 and c1,1 by generating s1 and str. Since the second-
half part requires no inputs from either the sender or the receiver, it produces a
perfect simulation. Therefore, the simulator outputs a transcript indistinguish-
able from the one of a real execution.

(Corrupted Sender and Corrupted Receiver) When two parties are
corrupted, the simulator can invoke the adversary with the input (x =
(M0,M1), y = i, z) given by the environment Z to run the whole execution.
The simulator outputs whatever the adversary outputs for both parties to pro-
duce a perfect simulation.

(Honest Sender and Corrupted Receiver) Let A be the malicious adversary
controlling the receiver. In order to emulate the adversary, the simulator needs
to extract the input of the adversary, and send it to the trusted party in the
ideal execution. Say the environment Z generates input (x = (M0,M1), y = i, z)
and gives (y, z) to the simulator. The simulator S2 passes any query from Z
to A and returns the output of A. The simulator S2 with auxiliary input (y, z)
proceeds the protocol execution with the adversary as follows:

1. The simulator S2 emulates a random oracle FRO by keeping a list L in E ×K
that records each past query. It initializes the random oracle with an empty
list L. If the simulator receives a query on E′ ∈ E , the simulator checks
whether (E′, k′) ∈ L for some k′ ∈ K. If not, generate k′ ←$ K and add the
entry (E′, k′) to the list L. Finally, S2 returns k′ to emulate the random
oracle.

2. Generate the public curve E = t ∗ E0 by sampling t ←$ Cl to simulate FTSC .
Invoke the adversary A with the input (y, z) and E.

3. Receive a curve X, the first message, from the adversary. Check whether
X ∈ E , if not, end the session by outputting abort2 to the trusted party in
the ideal execution. Otherwise, continue.

4. Activate the algorithm B1 of the non-committing encryption scheme. Gen-
erate c0,0, c0,1 with B1, s0, s1 ←$ Cl and str ←$ {0, 1}n. Compute A0, A1 and
c1,0, c1,1 as the honest sender. Send (A0, A1, c0,0, c0,1, c1,0, c1,1) to the receiver.
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5. After Step 4, the simulator starts to do an additional process for any hash
query of a curve E′ ∈ E . Firstly, check whether E′ = sj ∗ X or sj ∗ Xt for
any j ∈ {0, 1} (any one out of four). If not, then skip this step and process
the query in a standard way as Step 1. Else, check whether both s0 ∗ X and
s0 ∗ Xt (i.e., the other decryption key) have been queried. If so, then abort
the session by outputting abort2. Else, check whether E′ is listed in the past
queries (E′, k′) ∈ L. If so, then skip this step and return k′. Else, send the ideal
message i to FOT in the ideal execution where i = 0 for the case E′ = sj ∗ X
or i = 1 for the case E′ = sj ∗ Xt, which is the extraction procedure. After
obtaining Mi from FOT , generate the decryption key k′ ← B2(c0,i,Mi) and
store (s0 ∗ X, k′) for the case i = 0 or (s0 ∗ Xt, k′) for the case i = 1 in the
list, which is the response for the case j = 0. For the case j = 1, process the
hash query in a standard way as Step 1.

6. After receiving str′, the third message, from the adversary, verify str = str′.
If not, end the session by outputting abort2. Otherwise, continue.

7. After the outputs of the adversary, if none of s0∗X, s0∗Xt, s1∗X, and s1∗Xt

are in the list L, then end the session by outputting abort2. Otherwise, the
simulator outputs whatever the adversary outputs.

We claim {HY BRIDFRO,FTSC

π,A(z),2 (x, y)}x,y,z =c {IDEALFOT ,S2(z),2(x, y)}x,y,z.
In comparison with the real execution, the abort in Step 5 implies the solution to
the reciprocal CSIDH problem (E, s ∗ E) lies in the list L, which contradicts the
assumption. The other abort in Step 7, together with the result of Step 6, implies
the adversary decrypts the ciphertext c1,j without the knowledge of the key. If
this occurs with non-negligible probability, then it contradicts the non-committing
assumption since the real ciphertext can be decrypted without the key, while the
dummy ciphertext cannot be (because it can be generated before the plaintext
by B1).

Other differences caused by the simulator are the ciphertexts for the receiver.
The ciphertext c0,i in the pair (c0,0, c0,1) is indistinguishable from the one in the
real execution due to the non-committing encryption scheme. The only suspicious
part is c0,i−1, which is a dummy ciphertext generated by the algorithm B1 of
the encryption scheme. The counterpart in the real execution is the encrypted
message Ek1−i

(M1−i) where k1−i is either H(s ∗ X) or H(s−1 ∗ X).
Similar to the previous proof, the distinguisher (the environment machine)

can only succeed with negligible advantage only without the knowledge of k1−i.
Precisely, let E denote the event that the targeted curves s ∗ X, s ∗ Xt are both
queried where (s∗Xt)t = s−1∗X. We have that |Pr[Z(H0) = 1] − Pr[Z(H1) = 1]|
is not greater than Pr[E] + |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| .

Claim that |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| is negligible if the
encryption scheme is non-committing. Given the non-committing challenge
(c, k), a solver runs as follows:

1. Randomly generate j ∈ {0, 1}.
2. Run as the simulator S2 with the environment machine except in Step 4 that

assign value c to the variable c0,j
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3. Say the simulation in Step 2 extracts i from the input of the receiver. If i = j,
then abort and restart the session.

4. If the environment machine judges the machine as the ideal machine, then
output 1. Otherwise, output 0.

If Z succeeds with non-negligible advantage p(n) without the knowledge of
the key, then the reduction can win the non-committing challenge with non-
negligible advantage p(n)/2 where the loss is caused by the guess in Step 2.

Since |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| is negligible, we have

|Pr[Z(H0) = 1] − Pr[Z(H1) = 1]| ≤ Pr[E] + negl(n).

Therefore, if the distinguisher can succeed with non-negligible advantage,
then the solution for the reciprocal CSIDH problem (Problem 5) is in the list
of the hash queries with non-negligible probability. Let the challenge of the
reciprocal CSIDH problem start with E. A solver B for the problem runs as
follows:

1. Run as the simulator S2 with the environment machine except for the changes
in Step 4 and 5, and an extraction in Step 3. The solver B commits to the
curve X obtained in Step 3 in the reciprocal CSIDH experiment.

2. Say B receives s ∗ E from the challenge. Then, in Step 4, assign s ∗ E to the
variable A0.

3. In Step 5, guess i ∈ {0, 1} and obtain the decryption key ki via B2(c0,i,Mi).
Randomly pick a curve X1 of FRO queries, and assign ki to it. (Due to the
unknown element s, the solver needs to guess here.)

4. After the simulation, if the environment machine judges the machine as the
ideal machine, then randomly pick a curve X2 in the hash query list, and
output (X1,X2). Otherwise, restart the challenge.

If the environment machine can win with non-negligible advantage p(n) with
q hash queries, then the solver B can win the reciprocal CSIDH challenge with
non-negligible advantage p(n)/(2q2) where the loss is caused by the guesses in
Step 3 and 4. To sum up, if the encryption scheme is non-committing, and
the reciprocal CSIDH problem is hard, then the simulator S2 indistinguishably
simulates the adversary.

We remark that the simulator S2 correctly extracts the input of the adversary
in Step 5. According to Corollary 1, if the simulator extracts the wrong input,
then the adversary can also be used to solve the inverse CSIDH problem.

(Corrupted Sender and Honest Receiver) Let A be a malicious adversary
controlling the sender. In order to emulate the adversary, the simulator needs
to extract the input of the adversary, and send it to the trusted party in the
ideal execution. The input here is the message pair which the honest receiver will
read. Say the environment machine Z generates input (x = (M0,M1), y = i, z)
and gives (x, z) to the simulator. The simulator S1 with input (x, z) proceeds as
follows:
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1. Firstly, the simulator S1 emulates a random oracle FRO by keeping a list L in
E × K that records every past query. It initializes the random oracle with an
empty list L. Whenever it receives a query on E′ ∈ E , the simulator checks
whether (E′, k′) ∈ L for some k′ ∈ K. If not, it generates k′ ←$ K and adds
the entry (E′, k′) to the list L. Finally, S1 returns k′ to emulate the random
oracle.

2. Generate the public curve E = t ∗ E0 by sampling t ←$ Cl to simulate FTSC .
Invoke the adversary A with the input (x, z) and E. Keep t as the trapdoor
secret.

3. Generate r ←$ Cl,, and compute C = r ∗ E. Send C to the adversary, and
act as the procedure of an honest receiver with the input i = 0 throughout
the remaining execution. (Note that the simulator does not know the input
of the receiver here.)

4. If the adversary aborts, then send abort1 to FOT and finish the session. Oth-
erwise, assume the execution is not aborted. Say it receives (A0, A1, c0,0, c0,1,
c1,0, c1,1) from the adversary. Compute k0 = H(r ∗ A0), k1 = H((tr ∗ (t−1 ∗
A0)t)t), and mj = Dkj

(c0,j) for j ∈ {0, 1}.
5. Send (m0,m1) to the trusted third party in the ideal execution, output what-

ever the adversary outputs to complete the simulation. (Note that (M0,M1)
and (m0,m1) are not necessary the same since the adversary can change the
original input.)

Claim {HY BRIDFRO,FTSC

π,A(z),1 (x, y)}x,y,z =c {IDEALFOT ,S(z),1(x, y)}x,y,z. In
contrast to the real execution, there are two differences here. Firstly, the simula-
tor possesses the trapdoor t of the public curve. The process is identical to FTSC ,
and the simulator acts as an honest receiver throughout the process. Hence, this
difference is unnoticeable to the adversary.

The other difference is the receiver the simulator plays always uses input
i = 0. By Lemma 1, the distribution of the first message (C) in the protocol as
i = 0 is indistinguishable to that generated as i = 1. Hence, it suffices to show
the correctness of the extraction in Step 4.

If an honest receiver sends C to the sender with the input i = 0, then
the decryption key is k0 = H(r ∗ A0). The message the receiver will obtain is
Dk0(c0,0) = m0. Besides, if an honest receiver sends C to the sender with the
input i = 1, then the private ideal is equivalent to r−1t−2 since (r−1t−2 ∗ E)t =
(r−1t−1 ∗ E0)t = (r−1 ∗ Et)t = (r ∗ E) = C. Hence, the receiver will decrypt c0,1

with H(r−1t−2 ∗ A0). Due to k1 = H((tr ∗ (t−1 ∗ A0)t)t) = H((tr)−1t−1 ∗ A0) =
H(r−1t−2 ∗A0), the receiver will therefore get the message m1 = Dk1(c0,1). That
is, the simulator correctly extracts the input of the adversary. Hence, the real
execution is indistinguishable from the ideal execution.

Remark. In the formal description of [9], the environment machine and the
adversary (simulator) starts with z, and the inputs of the parties are given
through further instruction messages. Regarding readability and simplicity, we
combine them into a single statement here without undermining the effectiveness
of the proof.
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5 Comparison

5.1 Efficiency

Table 1 illustrates a comparison between our oblivious transfer protocols with
[1,2,17,38] in terms of efficiency, including the number of curves in the domain
parameters or generated by a trusted party, the number of curves in the public
keys for the sender and the receiver, the total number of isogeny computations for
the sender and the receiver, and the number of rounds, respectively. Among the
isogeny-based OTs, our 2-round OT proposal is the most efficient with respect to
every criteria against semi-honest adversaries. It only takes an additional round
and two isogeny computations for each participant to achieve UC-secure against
static malicious adversaries.

Table 1. Comparison between isogeny-based OTs on efficiency where n is the security
parameter. We give the costs for both our 2-round protocol from Fig. 3 and the full
construction from Fig. 4.

Proposal DP PKS PKR # IsoS # IsoR # rounds Others

[2] 1 1 1 3 2 3 SIDH-based

[17] I 2 1 1 3 2 2

[17] II 1 3 1 5 2 3

[38] 1 2 1 4 2 3 Insecure in CSIDH

[1] I 4 2n 2 4n n+ 2 2 Group-action-based

[1] II 1 2n 5 4n n+ 5 2 Single Bit Transfer

This paper (Fig. 3) 1 1 1 3 2 2 CSIDH-based

This paper (Fig. 4) 1 1 1 5 4 3 CSIDH-based

In [2], they used some properties of SIDH. The receiver randomly subtracts
two selected points U, V ∈ EB to the points (φB(PA), φB(QA)) to produce public
points (ĜA, ĤA) with respect to the secret bit i. The sender adds the same points
jU, jV to the received points for j ∈ {0, 1} to produce two decryption keys. The
additional mechanism allows the receiver and the sender to generate the same
points U, V . As stated in their work, randomly generated U, V ∈ EB may reveal
the secret bit to an honest-but-curious sender by checking the equality of Weil
pairings e(PA, QA)l

eA
A , e(ĜA, ĤA), and (ĜA + λU, ĤA + λV ) for λ ∈ Z. On

the other hand, it is also possible that the honest-but-curious receiver gets the
isomorphic curves. In order to prevent these, the U, V are generated through a
delicate process.

The two frameworks of [17] includes DH, SIDH, and CSIDH settings. The
first construction is a two-message oblivious transfer and requires one more curve
in the trusted setup phase.

The paper [38] showed a construction based on exponentiation-only Diffie-
Hellman. The construction can fit in the DH, SIDH, and CISDH settings. But,
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as stated in their work, it will be totally insecure in the CSIDH setting against a
malicious receiver. Specifically, their two-inverse problem is given curves (E, a ∗
E, b ∗ E) to find some curve tuple (X, a−1 ∗ X, b−1 ∗ X) where X is isogenous
to E. This can be done in the CSIDH setting by taking quadratic twists of
(E, a ∗ E, b ∗ E).

In [1], both constructions are based on the decisional group action problem
(the decisional CSIDH problem for instance). If the number of isogeny compu-
tations in the encryption (and decryption) algorithm is � = ω(log(n)), then the
statistical distance between a pair of ciphertexts is Δ = n−ω(1). In particular,
the parameter � here is taken to be n so that the distance is less than 2−n.

5.2 Security

Table 2. Comparison between previous isogeny OTs and our constructions. The models
include the random oracle model (ROM), the common reference string model (CRS)
and trusted setup curves (TSC).

Adversary Model Security Definition Model

[2] ≤Semi-honest* Simulatable* ROM+CRS

[17] I Semi-honest UC-realize ROM+TSC

[17] II Semi-honest UC-realize ROM+TSC

[38] Malicious Semantic Plain

[1] I Malicious UC-realize CRS

[1] II Malicious SSP Plain

This paper (Fig. 3) Semi-honest UC-realize ROM+TSC

This paper (Fig. 4) Malicious UC-realize ROM+TSC

On the issue of security, a comparison is shown in Table 2. In [2], the claim is
incorrect. Firstly, the adapted definition is Definition 2.6.1 of [24] that guarantees
the privacy in the presence of malicious adversaries for a two-round oblivious
transfer protocol while the scheme in [2] is three-round. Except for the misuse of
the definition, the view-based simulation proof is incomplete even against semi-
honest adversaries. The evidence is the further algebraic analysis appended after
the proof. The context manifests that the protocol might still leak information
even both the sender and the receiver follow the protocol specification. In other
words, the proof is incomplete even against semi-honest adversaries.

In [17], the schemes are universally composable secure in the semi-honest
model. In [38], they proposed a security definition called the semantic security
of oblivious transfer, which guarantees indistinguishability for the sender within
the distinct executions. The scheme is under a weak decisional problem which,
in the SIDH setting, is easier than the decisional SIDH problem.
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Section 4.2 and 4.3 of [1] present two OT constructions. Through using group
actions and developing new tools, the first one is derived from a dual-mode public
key encryption based on the Diffie-Hellman setting of [34]. The second construc-
tion is a plain model OT, which is statistically sender-private. The notion ensures
computational indistinguishability privacy for the receiver and statistical indis-
tinguishability privacy for the sender. The schemes’ main drawback is efficiency
since both of them are bit-transferring and require a poly(n) number of isogeny
computations.

Remark. One can also show that the construction of Fig. 3 is a private obliv-
ious transfer (Definition 2.6.1 in [24]) ensuring privacy for both parties in the
malicious model. Since the proof would sidetrack the goal of this work, we leave
this to the reader.

6 Conclusion

In this paper, we present the first practical UC-secure isogeny-based oblivious
transfer protocol in the presence of static corruptions and malicious adversaries.
The construction is simple and compact, and the number of isogeny computa-
tions is constant. Moreover, the scheme shares the same hardness as the CSIDH
key agreement scheme.

To achieve this outcome, we developed six techniques in this work. In the
beginning, the communication bandwidth is reduced through mixing the key-
exchange-type problem and an equivalent variant. Next, by utilizing a new use
of quadratic twists, we not only compress the number of rounds of the protocol
but also fortify the hardness of the underlying assumption (achieving the self-
reconciling property). By combining the self-reconciling proposition and proof
of ability to decrypt at the cost of one extra round, the simulator is able to
extract the input of the receiver to achieve one-sided simulation. Furthermore,
for the purpose of extracting the input of the sender, we set up trapdoors for the
protocol via a new use of quadratic twists to get a fully-simulatable construction.
Finally, we develop a new computational assumption as well as the inverse and
square variants and prove equivalence to the standard CSIDH assumption with
quantum reductions.

We remark that these techniques are not exclusive to isogeny-based cryptog-
raphy except for the use of quadratic twists. We envisage that these techniques
can serve as potential cryptographic tools in future work.

Acknowledgments. We sincerely thank the anonymous reviewers of EUROCRYPT
2021 for their patience and valuable comments that helped to substantially improve
the presentation of this work. We are also grateful to Wouter Castryck for sharing
his knowledge of isogenies and Yehuda Lindell for sharing his knowledge of MPC. This
research is partially funded by the Ministry for Business, Innvovation and Employment
in New Zealand.

This work was supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT and by CyberSecurity Research Flanders with reference number VR20192203.



Compact, Efficient and UC-Secure Isogeny-Based Oblivious Transfer 239

Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the ERC or of
Cyber Security Research Flanders.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

2. Barreto, P., Oliveira, G., Benits, W., Nascimento, A.: Supersingular isogeny obliv-
ious transfer. Cryptology ePrint Archive, report 2018/459 (2018). https://eprint.
iacr.org/2018/459

3. Barreto, P.S., David, B., Dowsley, R., Morozov, K., Nascimento, A.C.: A framework
for efficient adaptively secure composable oblivious transfer in the ROM, arXiv
preprint arXiv:1710.08256 (2017)

4. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

5. Bernstein, D., de Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree, arXiv preprint arXiv:2003.10118 (2020)

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

7. Burdges, J., Feo, L.D. Delay encryption. Cryptology ePrint Archive, report
2020/638 (2020). https://eprint.iacr.org/2020/638

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13, 143–202 (2000)

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols, in Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145. IEEE (2001)

10. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, pp. 639–648 (1996)

11. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 5

12. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

13. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
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Abstract. Supersingular isogeny Diffie-Hellman key exchange (SIDH)
is a post-quantum protocol based on the presumed hardness of com-
puting an isogeny between two supersingular elliptic curves given some
additional torsion point information. Unlike other isogeny-based proto-
cols, SIDH has been widely believed to be immune to subexponential
quantum attacks because of the non-commutative structure of the endo-
morphism rings of supersingular curves.

We contradict this commonly believed misconception in this paper.
More precisely, we highlight the existence of an abelian group action on
the SIDH key space, and we show that for sufficiently unbalanced and
overstretched SIDH parameters, this action can be efficiently computed
(heuristically) using the torsion point information revealed in the proto-
col. This reduces the underlying hardness assumption to a hidden shift
problem instance which can be solved in quantum subexponential time.

We formulate our attack in a new framework allowing the inversion
of one-way functions in quantum subexponential time provided a mal-
leability oracle with respect to some commutative group action. This
framework unifies our new attack with earlier subexponential quantum
attacks on isogeny-based protocols, and it may be of further interest for
cryptanalysis.

1 Introduction

The hardness of solving mathematical problems such as integer factorization or
the computation of discrete logarithms in finite fields and elliptic curve groups
guarantees the security of most currently deployed cryptographic protocols. How-
ever, these classical problems can be solved efficiently using quantum algorithms.
Quantum computers with sufficient processing power to threaten cryptographic
primitives currently in use do presumably not yet exist, but progress towards
their realization is being made. The possibility of large scale quantum computers
and the need for long-term security in some applications necessitate the devel-
opment of quantum-secure cryptographic algorithms.
c© International Association for Cryptologic Research 2021
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Different approaches to attain quantum resistance are based on problems
in lattices, codes, multivariate polynomials over finite fields, and elliptic curve
isogenies. Within the field of post-quantum cryptography, isogeny-based cryp-
tography is a relatively new area which is particularly interesting due to the small
key sizes required. The main problem underlying this branch of post-quantum
cryptography is to find an isogeny ϕ : E1 → E2 between two given isogenous
elliptic curves E1 and E2 over some finite field Fq.

An early isogeny-based cryptographic system utilizing ordinary elliptic curves
was proposed by Couveignes but at first only circulated privately [7]. Meanwhile,
the first construction using supersingular curves was a hash function developed
by Charles, Lauter and Goren [4]. Later, Rostovtsev and Stolbunov indepen-
dently rediscovered and further developed Couveignes’ construction [27]. In 2010,
Childs, Jao and Soukharev [5] showed how to break this scheme in quantum
subexponential time using a reduction to an instance of abelian hidden shift
problem. While this attack is tolerable for sufficiently large parameters, the
main drawback of the Couveignes-Rostovtsev-Stolbunov (CRS) construction is
its unacceptable lack of speed. Adapting the CRS scheme to supersingular ellip-
tic curves, Castryck et al. managed to eliminate most of the performance issues
allowing for larger practical parameters when introducing CSIDH [3]. While it
is known that CSIDH can be attacked in quantum subexponential time, there
have been several works on establishing its concrete security levels [2,22].

The attack due to Childs, Jao and Soukharev crucially relies on the commu-
tativity of the ideal class groups acting on the endomorphism rings of the rele-
vant elliptic curves over Fq. This motivated Jao and De Feo [14] to consider the
full isogeny graph of supersingular elliptic curves, whose endomorphism rings
are maximal orders in a quaternion algebra (in particular, the endomorphism
rings are non-commutative). The result of their work, the Supersingular Isogeny
Diffie-Hellman (SIDH) key agreement scheme, underlies the SIKE submission
to NIST’s post-quantum standardization process [1,13].

The hard problem SIDH is based on is to find an isogeny between two isoge-
nous curves, further given the images of certain torsion points under this isogeny.
The best known way to break SIDH with balanced parameters on both classical
and a quantum computers is a claw-finding approach on the isogeny graph [15]
which does not use any torsion point information. Yet, the supply of this addi-
tional public information has fueled cryptanalytic research. It has been shown
that the torsion point information can be used in active attacks [10] or when
parameters are sufficiently overstretched [19,23]. However, a widespread miscon-
ception amongst cryptographers assumes that due to SIDH’s non-commutative
nature there is no quantum attack reducing the SIDH problem to an abelian
hidden shift problem. In particular, many believe that no reasonable variant
of Childs-Jao-Soukharev’s attack applies in the supersingular case [14, p. 18,
Sect. 5].

Our Contributions. We provide a new quantum attack on overstretched SIDH
which uses a reduction of the underlying computational problem to an injective
abelian hidden shift problem. This can be solved in quantum subexponential
time and thus disproves the common misbelief mentioned above.
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Let ϕ : E0 → E0/K be a secret isogeny that an attacker wishes to recover. As
in SIDH, let E0, E0/K, deg(ϕ), and some torsion point images under the secret
isogeny be known publicly. The idea underlying our cryptanalysis is to construct
an abelian group G of E0-endomorphisms acting freely and transitively on certain
cyclic subgroups of E0. These subgroups are kernels of deg(ϕ)-isogenies, and
therefore they can be mapped to supersingular elliptic curves deg(ϕ)-isogenous
to E0. The group action of G can then be understood as an action on the curves.
Forcing the endomorphisms in G to be of a certain degree, the public torsion
point information allows an adversary to compute the action on E0/K efficiently
under some heuristics. Finally, solving an abelian hidden shift problem of two
functions mapping G to a set of curves deg(ϕ)-isogenous to E0 containing E0/K
enables an attacker to recover K and therefore ϕ. We stress that this is a novel
way of exploiting torsion point information.

While this attack does not threaten SIDH with balanced parameter sets as
originally proposed by Jao and De Feo [14] and used in SIKE [13], it shows
that an attack using a hidden shift algorithm is possible despite SIDH’s non-
commutative nature.

We describe our new attack as a special instance in a more general setting.
This allows us to unify our new cryptanalysis with other quantum attacks on
isogeny-based schemes such as the one due to Childs, Jao and Soukharev [5] con-
structing isogenies between ordinary curves, or a similar application of quantum
hidden shift algorithms to CSIDH [2,3,22].

This framework might be of interest beyond isogeny-based cryptography. To
define one of the key properties required, we introduce the notion of a mal-
leability oracle for a function with respect to some group action. Under some
additional assumptions, access to this oracle is sufficient to compute preimages
of the function via solving a hidden shift problem.

Outline. In Sect. 2, we provide an overview of the notations we use, we recall
mathematical background for isogeny-based cryptography, and we review quan-
tum algorithms used in our attack. In Sect. 3, we present our general framework,
namely sufficient conditions for computing preimages of one-way functions via
reduction to a hidden shift problem, and then present our new attack on over-
stretched SIDH in Sect. 4. In Sect. 5, we additionally instantiate our general
framework with the attack of Childs, Jao and Soukharev and its generaliza-
tion to CSIDH. We conclude the paper in Sect. 6 with a discussion of potential
improvements and future work.

2 Preliminaries

In this section, we introduce terminology and notation, and we recall relevant
background on isogeny-based protocols and quantum algorithms.

2.1 Terminology

We call a function μ : N → R negligible if for every positive integer c there exists
an integer Nc such that |μ(x)| < 1

xc for every x > Nc. We call an algorithm
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efficient if the execution time is bounded by a polynomial in the security parame-
ter of the underlying cryptographic scheme. Given any function, by having oracle
access to this function we mean that it is feasible to evaluate the function at any
possible element in an efficient way. In particular, we assume that the oracle acts
like a black box such that one query with an element from the domain outputs
the corresponding value of the function.

Further, we call a function f : {0, 1}∗ → {0, 1}∗ one-way, if f can be com-
puted by a polynomial-time algorithm, but for all polynomial-time randomized
algorithms F , all positive integers c and all sufficiently large n = length(x),
Pr[f(F (f(x))) = f(x)] < n−c, where the probability is taken over the choice of
x from the discrete uniform distribution on {0, 1}n, and the randomness of F .

2.2 Mathematical Background on Isogenies

For more complete introductions to elliptic curves and to isogeny-based cryp-
tography we refer to Silverman [29] and De Feo [8], respectively.

Let Fq be a finite field of characteristic p. In the following we assume p ≥ 3
and therefore an elliptic curve E over Fq can be defined by its short Weierstrass
form

E(Fq) = {(x, y) ∈ F
2
q | y2 = x3 + Ax + B} ∪ {OE}

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the associated
projective curve Y 2Z = X3 + AXZ2 + BZ3. The set of points on an elliptic
curve is an abelian group under the “chord and tangent rule” with OE being the
identity element. The j-invariant of an elliptic curve is j(E) = 1728 4A3

4A3+27B2

and there is an isomorphism of curves f : E0 → E1 if and only if j(E0) = j(E1).
Given two elliptic curves E0 and E1 over a finite field Fq, an isogeny is a

non-constant rational map φ : E0 → E1 defined over Fq which is also a group
homomorphism from E0(Fq) to E1(Fq). Two curves are called isogenous if there
exists an isogeny between them. The degree of an isogeny φ is its degree as a
rational map. For separable isogenies, the degree is also equal to the number of
elements in the kernel of φ. Note that we will always consider the separable case
in the following.

Since an isogeny defines a group homomorphism E0 → E1, its kernel is a
subgroup of E0. Conversely, any subgroup S ⊂ E0 determines a (separable)
isogeny φ : E0 → E1 with ker φ = S and E1 = E0/S.

An endomorphism of an elliptic curve E defined over Fq is an isogeny defined
over an extension of Fq mapping E onto itself. The set of endomorphisms of E
together with the zero map forms a ring under pointwise addition and function
composition. This ring is the endomorphism ring of E, denoted End(E), and it
is isomorphic either to an order in a quaternion algebra and E is called super-
singular, or to an order in an imaginary quadratic field and E is referred to as
an ordinary curve [29].

Let d be a positive integer. Throughout the paper, we say a supersingular
elliptic curve E is at distance d from E0 if there exists a separable isogeny φ
with cyclic kernel of degree d from E0 to E.
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For any isogeny φ : E0 → E1, there exists another isogeny φ̂, called the dual
isogeny, satisfying φ◦φ̂ = φ̂◦φ = [deg(φ)], where [·] denotes scalar multiplication.
Therefore, the property of being isogenous is an equivalence relation on the set
of isomorphism classes of elliptic curves defined over Fq.

2.3 Hard Homogeneous Spaces and CSIDH

Recall the notion of Couveignes’ hard homogeneous spaces (HHS) [7], a finite
commutative group action for which some operations are easy to compute and
others are hard.

Instances of Couveignes’ hard homogeneous spaces can be constructed using
elliptic curve isogenies and have been the basis of one branch of isogeny-based
cryptography which uses the group action we will describe in the following.

Denote the set of all isomorphism classes over Fq of isogenous curves with n
points and endomorphism ring O by Ellq,n(O), and represent the isomorphism
class of a curve E in Ellq,n(O) by the j-invariant j(E). Any isogeny ϕ : E → Eb

between curves having the same endomorphism ring in Ellq,n(O) is determined
by E and ker ϕ up to isomorphism. This kernel corresponds to an ideal [b] in O.
Recall that the ideal class group of O, Cl(O), is the quotient group of the abelian
group of fractional O-ideals under ideal multiplication and all principal fractional
O-ideals. Since principal ideals in O correspond to isomorphisms, ideals that are
equivalent in Cl(O) induce the same isogeny up to isomorphism. Hence, we have
a well-defined group action

· : Cl(O) × Ellq,n(O) → Ellq,n(O),
([b], j(E)) �→ j(Eb),

which is free and transitive ([32], Thm. 4.5, and erratum Thm. 4.5 of [28]).
Given two elliptic curves E0, E1 in Ellq,n(O) up to isomorphism, it is in

general assumed to be hard to find an isogeny ϕ : E0 → E1.
A similar construction can be performed with endomorphism rings of super-

singular curves. This occurrence of hard homogenous spaces is used for the Com-
mutative SIDH (CSIDH) protocol [3] proposed for post-quantum non-interactive
key exchange. Since the endomorphism rings of such curves are orders in a
quaternion algebra, they are non-commutative and hence yield a group action
with less desirable properties than in the construction for ordinary curves. There-
fore, Castryck et al. suggest restricting the endomorphism ring to the subring
of Fp-rational endomorphisms which is an order in an imaginary quadratic field,
and as such commutative. Again, the ideal class group of this order O acts on
Ellp(O), the set of all isomorphism classes of supersingular isogenous curves over
Fp with Fp-rational endomorphism ring (isomorphic to) O.

Given that the set Ellp(O) is non-empty, the group action is free and tran-
sitive (see [3], Thm. 7, summarizing results from [28,32]), and can be used to
perform a Diffie-Hellman-type key exchange. Note that CSIDH is strictly speak-
ing not an instance of a HHS as it is not possible to compute the group action
efficiently for all group elements.
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There have been multiple proposals to attack concrete parameter suggestions
for CSIDH with quantum algorithms. Peikert [22] uses Kuperberg’s collimation
sieve algorithm to solve the hidden shift instance with quantum accessible clas-
sical memory and subexponential quantum time, a strategy independently also
explored by Bonnetain-Schrottenloher [2].

2.4 SIDH

We recall the Supersingular Isogeny Diffie-Hellman (SIDH) protocol which was
introduced by Jao and De Feo in [14] and forms the basis of Supersingular
Isogeny Key Encapsulation (SIKE) [13] which has been submitted to NIST’s
post-quantum competition.

Fix some supersingular elliptic curve E0 over a field Fp2 , where p is a prime,
and let N1 and N2 be two smooth integers coprime to p with (N1, N2) = 1.
Further choose some points PA, QA, PB , QB ∈ E0 such that PA and QA gener-
ate the N1-torsion of E0, E0[N1], and similarly, 〈PB , QB〉 = E0[N2]. Then the
protocol is as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] generated by a point of
the form A = PA + [xA]QA and Bob chooses some random cyclic subgroup
of E0[N2] generated by B = PB + [xB ]QB .

2. Alice then computes her secret isogeny ϕA : E0 → E0/〈A〉 and Bob computes
his secret isogeny ϕB : E0 → E0/〈B〉.

3. Alice sends the curve EA := E0/〈A〉 and the two points ϕA(PB), ϕA(QB) to
Bob while Bob sends

(
EB := E0/〈B〉, ϕB(PA), ϕB(QA)

)
to Alice.

4. Alice and Bob both compute the shared secret curve EAB := E0/〈A,B〉 using
the given torsion information, EAB = EB/〈ϕB(A)〉 = EA/〈ϕA(B)〉.
For SIDH, one chooses the prime p of the form p = N1N2f − 1 with N1 and

N2 being powers of 2 and 3, respectively. As the above protocol is vulnerable to
adaptive attacks (see e.g., [10]), SIKE applies a variant of the Fujisaki-Okamoto
transformation due to Hofheinz, Hövelmanns and Kiltz [12] to standard SIDH. To
ensure that both Alice and Bob enjoy the same level of security, the recommended
parameter sets for SIDH and SIKE suggest balanced parameters, i.e., N1 ≈ N2.

The active attack on standard SIDH presented by Galbraith et al. [10] uti-
lizes the additional information on torsion points to recover a secret key through
multiple executions of the protocol with malformed messages. Further, the given
torsion point information is exploited in Petit’s passive attack [23] on a non-
standard variant of SIDH with unbalanced and comparatively large torsion
parameters. The requirements on unbalancedness and size of parameters have
recently been improved upon by Kutas et al. [19] who additionally show that,
even with balanced parameters, there exist certain primes which facilitate an
effective-torsion point attack on SIDH.

For our quantum attack to work, we will need to relax the balancedness con-
dition of standard SIDH and require one of N1 and N2 to be larger than the other
by a certain factor. In particular, we need N1N2 � p which prohibits choosing p
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as suggested by Jao-De Feo. We call this variant of SIDH overstretched. Note that
this variant of SIDH is still polynomial time as long as N1 and N2 are smooth
numbers, albeit much slower in practice than with the suggested parameters.

SIDH is believed to be immune to subexponential quantum attacks [1,13,14].
In particular, it has been claimed and widely accepted that no reasonable variant
of Childs et al.’s attack [5] exists for SIDH [14, p.18, Sect. 5]. Yet, we will show
in this paper how to reduce SIDH with overstretched parameters to an abelian
hidden shift problem.

2.5 Quantum Algorithms to Solve Hidden Shift Problems

First, we recall what is meant when two functions are said to be shifts of each
other, or equivalently that these two functions hide a shift.

Definition 2.1. Let F0, F1 : G → X be two functions defined on some group G,
such that there exists some s ∈ G satisfying F0(g) = F1(g · s) for all g ∈ G. The
hidden shift problem is to find s given oracle access to the functions F0 and F1.

Multiple approaches utilizing quantum computation have been proposed to solve
the hidden shift problem. Some of these works have considered different group
structures as well as variations on the promise. We summarize some quantum
algorithms solving the injective abelian hidden shift problem, i.e., where the
functions Fi are injective functions and G is abelian.

The first quantum subexponential algorithm is due to Kuperberg [17] and
reduces the hidden shift problem to the hidden subgroup problem in the dihe-
dral group DG  C2 � G, i.e., to finding a subgroup of DG such that a function
obtained from combining the input functions of the hidden shift problem is con-
stant exactly on its cosets. It requires quantum subexponential time, namely
2O(

√
log |G|) quantum queries, for a finite abelian group G. A modification of

this method proposed by Regev [26] reduces the memory required by Kuper-
berg’s approach (from super-polynomial to polynomial) while keeping the run-
ning time quantum subexponential. Another, slightly faster algorithm, the col-
limation sieve, using polynomial quantum space was proposed later by Kuper-
berg [18]. In this variant, parameter trade-offs between classical and quantum
running time and quantumly accessible memory are possible.

These algorithms to solve the hidden shift problem when G is abelian gener-
ally begin by producing some random quantum states, each with an associated
classical “label”, by evaluating the group action on a uniform superposition over
the group G. For this generation of states, oracle access to the two functions F0

and F1 is needed. Then, the hidden shift s is extracted bitwise through perform-
ing measurements on specific quantum states (i.e., ones with desirable labels)
which are generated from the random states via some sieve algorithm.

3 Malleability Oracles and Hidden Shift Attacks

In this section, we introduce the notion of a malleability oracle for a one-way func-
tion. Under some conditions, such an oracle allows the computation of preimages
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of given elements in quantum subexponential time by reduction to the hidden
shift problem.

3.1 Malleability Oracles

Recall the definition of a free and transitive group action.

Definition 3.1. Let G be a group with neutral element e, and let I be a set. A
(left) group action � of G on I is a function

� : G × I → I, (g, x) �→ g � x,

that satisfies e � x = x, and gh � x = g � (h � x) for all x ∈ I and g, h ∈ G.
The group action is called transitive if and only if I is non-empty and for

every pair of elements x, y ∈ I there exists g ∈ G such that g � x = y. The group
action is called free if and only if g � x = x implies g = e.

Next, we define an oracle capturing the main premise required for our strategy
to compute preimages of one-way functions.

Definition 3.2. Let f : I → O be an injective (one-way) function and let � be
the action of a group G on I. A malleability oracle for G at o := f(i) provides
the value of f(g � i) for any input g ∈ G, i.e., the malleability oracle evaluates
the map

g �→ f(g � i).

We call the function f malleable, if a malleability oracle is available at every
o ∈ f(I).

In Sect. 4 we show how a polynomial-time malleability oracle can be constructed
in the context of SIDH with overstretched parameters, and in Sect. 5 we describe
other contexts where such an oracle arises naturally.

For the remainder of the paper, we will denote the action of a group element
g ∈ G on a set element i ∈ I by g · i.

3.2 Reduction to Hidden Shift Problem

Given a malleability oracle at o = f(i), computing a preimage of o reduces to a
hidden shift problem in the following case.

Theorem 3.3. Let f : I → O be an injective (one-way) function and let G be
a group acting transitively on I. Given a malleability oracle for G at o := f(i),
the preimage of o can be computed by solving a hidden shift problem.

Proof. Let k be an arbitrary but fixed element in I and define

Fk : G → O , θ �→ f(θ · k).
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Since f is an injective function, i = f−1(o) is unique and thus Fi is well-defined.
Moreover, the malleability oracle allows us to evaluate the function Fi on any
θ ∈ G, as Fi(θ) = f(θ · i).

Fix some arbitrary j ∈ I. Since we know j, we can evaluate Fj on any group
element θ by evaluating f(θ · j) via simply computing the group action. Due to
the transitivity of the group action of G, there exists σ ∈ G such that i = σ · j.
Since for all θ ∈ G

Fi(θ) = f(θ · i) = f(θσ · j) = Fj(θσ),

the functions Fj and Fi are shifts of each other. Hence, solving the hidden shift
problem for Fi and Fj allows us to recover σ, and thus to compute i = σ · j. ��

The following corollary will be used in our attack on overstretched SIDH.

Corollary 3.4. Let f : I → O be an injective (one-way) function and let G
be a finitely generated abelian group acting freely and transitively on I. Given
a malleability oracle for G at o := f(i), the preimage of o can be computed in
quantum subexponential time.

Proof. To obtain a hidden shift instance solvable by subexponential quantum
algorithm such as Kuperberg’s, we only have to show that for every k ∈ I the
function Fk(θ) = f(θ · k) is injective. Then the claim follows from Theorem 3.3
and the discussion in Sect. 2.5.

Suppose that Fk(g) = f(g · k) = f(h · k) = Fk(h) for some g, h ∈ G. Since f
is injective and the group action is free, this implies g = h. ��

4 Attack on Overstretched SIDH Instances in Quantum
Subexponential Time

Despite the non-commutative nature of SIDH, we show in this section that one
can find an abelian group action on its private key space. Moreover for suffi-
ciently overstretched SIDH parameters, the torsion point information revealed
in the protocol allows us to build a malleability oracle for this group action. This
gives rise to an attack using quantum subexponential hidden shift algorithms as
outlined in Sect. 3.2.

This section is organized as follows: We first sketch our approach to exploit
the torsion point information in Sect. 4.1. We then solve some technical issues in
Sects. 4.2, 4.2 and 4.4. These issues require small tweaks to our general approach,
and we summarize the resulting algorithm in Sect. 4.5. Finally in Sect. 4.6, we
present a hybrid approach to combine guessing part of the secret and computing
the remaining part using our new attack; this allows us to slightly extend the
attack to further parameter sets.

Throughout this section, we use the following notation. Let p ≡ 3 (mod 4)
be prime, let E0 be the supersingular elliptic curve with j-invariant 1728 defined
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over Fp, given by the equation y2 = x3 + x, and let O0 = End(E0) be its endo-
morphism ring. Note that O0 is well-known. More precisely, it is the Z-module
generated by 1, ι, 1+π

2 and ι+ιπ
2 , where ι denotes the non-trivial automorphism of

E0, (x, y) �→ (−x, iy), and π is the Frobenius endomorphism, (x, y) �→ (xp, yp).

Remark 4.1. The attack we describe can be expanded to other curves that are
close to E0, such as the curve used in the updated parameters of SIKE for the
second round of NIST’s post-quantum standardization effort [1], by computing
the isogeny to E0 and translating the problem to there.

4.1 Overview of the Attack

Let I be the set of cyclic N1-order subgroups of E0, and let O be the set of
j-invariants of all supersingular curves that are N1-isogenous to E0. Let f be
the function sending any element of I to the j-invariant of the codomain of its
corresponding isogeny, i.e.,

f : I → O, K �→ j(E0/K). (1)

The function f can be efficiently computed on any input using Vélu’s formu-
lae [30], provided N1 is sufficiently smooth and that the N1-torsion is defined
over a sufficiently small extension field of Fp. In SIDH, the latter is achieved by
choosing N1|p − 1, but this is true more generally for sufficiently powersmooth
N1.

On the other hand, inverting f amounts to finding an isogeny of degree N1

from E0 to a curve in a given isomorphism class, or equivalently to finding the
subgroup of E0 defining this isogeny. The conjectured hardness of this problem
is at the heart of isogeny-based cryptography.

In the SIDH protocol, additional torsion point information is transmitted
publicly as part of the exchange, and thus also given to adversaries. For the
security proof it is assumed that a variant of the following problem with N1 ≈ N2

is hard [14].

Problem 4.2. Let p be a large prime, let N1 and N2 be two smooth coprime
integers such that E0[N1] and E0[N2] can be represented efficiently, let K ∈ I
be a cyclic subgroup of order N1 of E0 chosen uniformly at random, and let
ϕ : E0 → E0/K. Given the supersingular elliptic curves E0 and E0/K together
with the restriction of ϕ to E0[N2], compute K.

Our attack exploits the information provided by the restriction of the secret
isogeny to E0[N2] to construct a malleability oracle for f at the (unknown)
secret. Following the framework outlined in Sect. 3, this gives rise to an attack
on overstretched SIDH.

Let G be a subgroup of (O0/N1O0)∗. Then G induces a group action on I
given by

G × I → I , (θ,K) �→ θ(K).
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Indeed, the degree of any non-trivial representative θ is coprime to N1 and thus
preserves the order of any generator of K.

Note that the full group (O0/N1O0)∗ is not abelian. Our attack will require
an abelian subgroup G acting on I such that G acts freely and transitively on
the orbit of an isogeny kernel of an isogeny E0 → E0/K under this group action,
as well as one element in this orbit. This leads to the following task.

Task 4.3. Let K ∈ I be any cyclic subgroup of E0 of order N1 chosen uniformly
at random and let ϕ : E0 → EA := E0/K. Compute an element L ∈ I and an
abelian subgroup G of (O0/N1O0)∗ such that G acts freely and transitively on
the orbit G · L, f is injective on G · L and j(EA) is contained in f(G · L) ⊂ O.

We solve this task in Sect. 4.2. More precisely, we find three subsets of I restricted
to which f is injective, and we give abelian groups that induce the required action
on these subsets. Furthermore, the image of f restricted to one of these three
subsets of I will always contain j(E0/K).

In order to apply our general framework from Sect. 3, it remains to construct
a malleability oracle for f at j(E0/K) for any secret K ∈ I. To construct this
oracle, we use both the torsion point information provided in the SIDH protocol
and a solution to the following task.

Task 4.4. Given an endomorphism θ ∈ G of degree coprime to N1 and an
integer N2 coprime to N1, compute an endomorphism θ′ of degree N2 such that
θ and θ′ induce the same action on the set I of cyclic subgroups of E0[N1] of
order N1.

In Appendix C of the full version of this paper [20], we give a direct solution
to a variation of this task when using sufficiently overstretched and unbalanced
parameters, i.e. N2 > p2N4

1 . However, in Sect. 4.3 we show that it suffices to lift
elements of πG, where π is the Frobenius map. A solution to Task 4.4 for these
elements requiring only N2 > pN4

1 is described in Sect. 4.4.

The following lemma results from the coprimality of deg(θ) and N1 and is
depicted in Fig. 1.

Fig. 1. The isogenies ϕ and the endomorphism θ are of coprime degrees.

Lemma 4.5. Let ϕ : E0 → EA be an isogeny of degree N1 and let θ ∈ End(E0)
be of degree coprime to N1. Then EA/ϕ(ker θ) is isomorphic to E0/θ(ker ϕ).
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Let N3 be the degree of θ. We cannot compute the curve E0/θ(ker ϕ) in
general without the knowledge of the isogeny ϕ or its action on the N3-torsion.
However, we can compute the curve if we find an endomorphism θ′ of degree
N ′

3 such that θ and θ′ have the same action on the N1-torsion and ϕ|E0[N ′
3]

is
known. This is the motivation behind Task 4.4, as we know the action of ϕ on the
N2-torsion in Problem 4.2. A solution to this task yields a malleability oracle for
f with respect to the previously described group action of G on I in the SIDH
setting.

We outline the construction of the malleability oracle in Algorithm 1. Cor-
rectness will follow from the proof of Proposition 4.26 given a suitable choice of
the acting group G which we will discuss in Subsect. 4.2.

Algorithm 1: Computation of f(θ(K)), given f(K) and θ ∈ G

Let ϕ : E0 → EA := E0/K be an isogeny of degree N1, let N2 be coprime to N1

and G ⊂ (O0/N1O0)
∗ one of the abelian groups as in Task 4.3 that acts freely

and transitively on K.
Input: E0, f(K) = j(EA), ϕ|E0[N2] and θ ∈ G.
Output: f(θ(K)) = j(E0/θ(K)).

1 Compute endomorphism θ′ of degree N2 having the same action as θ on cyclic
N1-order subgroups of E0[N1] as provided by a solution to Task 4.4;

2 Determine ϕ(ker θ′), using the knowledge of ϕ on E0[N2];
3 Compute j(EA/ϕ(ker θ′)) = j(E0/θ(K));
4 return f(θ(K)) = j(E0/θ(K))

For parameters that allow us to construct a malleability oracle, we can then
solve Problem 4.2 underlying SIDH-like protocols via a reduction to an injective
abelian hidden shift problem using the framework introduced in Sect. 3.2.

Informal result 4.6. Suppose the parameters allow the efficient solution of
Task 4.4, then Problem 4.2 can be solved in quantum subexponential time.

We use the remainder of this section to prove this result formally under
certain assumptions. To this end, we first give solutions to Task 4.3 and, for some
parameters, to a variant of Task 4.4. More precisely, we show in Sect. 4.3 that it is
sufficient to lift elements from πG instead of G. For this case, we then give a more
efficient lifting procedure requiring unbalanced and overstretched parameters.
We construct a malleability oracle using the torsion point information provided
in SIDH and a subroutine solving our variant of Task 4.4. Apart from some
technical details that we will address in the following, the informal result follows
from Corollary 3.4. An overview of the attack is depicted in Algorithm 2.

4.2 A Free and Transitive Group Action

Recall that E0 is the supersingular curve with j-invariant 1728, given by the
equation y2 = x3 + x. In this section we provide a solution to Task 4.3. For
simplicity, we treat N1 as a power of 2, but the results generalize to any power



254 P. Kutas et al.

Algorithm 2: Solving SIDH’s underlying hardness assumption via an
abelian hidden shift problem

Let ϕ : E0 → E0/K be an N1-isogeny and N2 ∈ Z such that gcd(N1, N2) = 1.
Input: E0, E0/K, ϕ(E0[N2]).
Output: Isogeny E0 → E, where j(E) = j(E0/K).

1 Compute an abelian group G ⊂ (O0/N1O0)
∗ acting freely and transitively on

the orbit G(K) and some J ∈ G(K) ⊂ I;
2 Define FK : G → O, g �→ f(g(K)) and FJ : G → O, g �→ f(g(J));
3 Compute injective abelian hidden shift θ ∈ G of FK and FJ , i.e., θ ∈ G such

that FK(g) = FJ(θg) for all g ∈ G, using a quantum algorithm such as
Kuperberg’s. To this end, one evaluates FK using Algorithm 1 and FJ using
the knowledge of J ;

4 return Isogeny E0 → E0/θ(J)

of a small prime. A generalization to powers of 3 is sketched in Appendix B of
the full version of this paper [20].

We provide the solution by identifying three subsets of I that are orbits under
a free and transitive action of abelian subgroups of (O0/N1O0)∗. More precisely,
let P ∈ E0 such that 〈P, ι(P )〉 = E0[N1], where ι denotes the automorphism
(x, y) �→ (−x, iy) of E0. Let Q := P + ι(P ) and define the following three
subsets of I.

I1 := {〈P + [α]ι(P )〉 | α even }

I2 :=
{

〈Q + αι(Q)〉 | α even and α ∈
[
0,

N1

2
− 1

]}

I3 :=
{

〈Q + αι(Q)〉 | α even and α ∈
[
N1

2
, N1 − 1

]}

Recall the function f defined in (1), mapping cyclic subgroups of E0[N1] of order
N1 to j-invariants of curves at distance N1 from E0,

f : I → O, K �→ j(E0/K).

We will show that restricting the function f to any of the subsets I1, I2, or I3

yields an injective function and we will prove that f(∪iIi) = f(I). Furthermore,
we will see that

G0 := {a + bι | a odd, b even } /N1O∗
0

acts transitively on I1. In order to ensure that the action is free, we identify two
endomorphisms a + bι and a′ + b′ι in G0 if there exists an odd λ ∈ Z/N1Z such
that a ≡ λa′ (mod N1) and b ≡ λb′ (mod N1). We denote the resulting group
by G.

In order to define free and transitive group actions on I2, and I3 we define
similarly to G0

H0 := {a + bι | a odd, b even } /(N1/2)O∗
0 .
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Again, we identify two endomorphisms a+ bι and a′ + b′ι in H0 if there exists an
odd λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2),
we obtain a group H. The group H will act freely and transitively on I2 and I3.

Hence, one of these three options will always be a solution to Task 4.3.

The map f is based on the well-known correspondence between I and curves
at distance N1 from E0. However, this correspondence is not necessarily one-to-
one. In particular, if E0 has a non-scalar endomorphism of degree N2

1 , then that
endomorphism can be decomposed as τ̂1◦τ2, where τ1 and τ2 are non-isomorphic
isogenies of degree N1 from E0 to the same curve E. For small enough N1, the
following lemma shows that two kernels correspond to the same curve if and
only if they are linked by the automorphism ι.

Lemma 4.7. Suppose that N2
1 < p+1

4 . Then the only endomorphisms of degree
N2

1 of E0 are [N1] and [N1] · ι, where ι : E0 → E0, (x, y) �→ (−x, iy) is the
non-trivial automorphism.

Proof. Due to the condition N2
1 < p+1

4 , an endomorphism θ of degree N2
1 lies in

Z[ι]. Let θ = a + bι for some a, b ∈ Z. Then the degree of θ is a2 + b2. Now we
have to prove that the only ways to decompose N2

1 as a sum of two squares are
trivial, i.e., N2

1 = N2
1 + 02 = 02 + N2

1 .
Let N1 = 2k, and we prove the statement by induction on k. For k = 1 the

statement is trivial. Suppose that k > 1 and that N2
1 = a2 + b2. Then a and

b cannot both be odd as N2
1 is divisible by four. If they were both even, then

dividing by four yields a decomposition of (N1/2)2 = (a/2)2 + (b/2)2. By the
induction hypothesis, this decomposition is trivial implying that N2

1 can also
only be decomposed in a trivial way. ��
Corollary 4.8. Suppose that N2

1 < p+1
4 . Let φ and φ′ be two isogenies of degree

N1 from E0 to a curve E. Then either ker φ = ker φ′ or ker φ = ι(ker φ′).

Proof. Consider the endomorphism τ = φ̂′ ◦ φ of E0. The degree of τ is N2
1 ,

so τ = [N1] or τ = [N1] · ι by Lemma 4.7. In the former case, the isogenies φ
and φ′ are identical by the uniqueness of the dual. In the latter case, we have
ker φ = ι(ker φ′). ��
Thus, an element in the image of f has precisely one preimage if the kernel of
the corresponding isogeny is fixed by the automorphism ι.

Identifying an Abelian Group with I1: Now, we will give the free and
transitive group action on I1 and show that f restricted to I1 is injective.

Let P be a point such that {P, ι(P )} is a basis of E0[N1] and recall

I1 := {〈P + [α]ι(P )〉 | α even } .

We show that the restriction of f to I1 is injective.

Proposition 4.9. Let j(E0) = 1728 and suppose that N2
1 < p+1

4 . The restric-
tion of f to I1 is injective.
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Proof. We apply Corollary 4.8 to show that the codomains of isogenies with
kernel in I1 are pairwise non-isomorphic curves. It is clear that P + αι(P ) and
P + α′ι(P ) are not scalar multiples of each other if α �= α′ as P, ι(P ) generate
E0[N1]. It remains to show that for any even α, α′, the points P + αι(P ) and
−α′P + ι(P ) are not scalar multiples of each other. Suppose there exists an odd
λ such that

P + αι(P ) = λ(−α′P + ι(P )).

Note that we can restrict to odd λs as the order of both points is N1. Since
{P, ι(P )} is a basis of the N1-torsion, this implies that 1 ≡ −λα′ (mod N1).
Since α′ is even this is a contradiction concluding the proof. ��

Clearly, f(I1) does not include all elliptic curves at distance N1 from E0, i.e.,
all curves in f(I). Every curve at distance N1 from E0 is of the form E0/〈P +
αι(P )〉 for some α ∈ Z/N1Z, which follows from the observation that the curves
E0/〈β1P+β2ι(P )〉 and E0/〈−β2P+β1ι(P )〉 are isomorphic since their kernels are
linked by ι. We first restrict ourselves to define a free and transitive group action
on I1 and define the free and transitive group action on the kernels corresponding
to the remaining curves later.

Recall that E0 is a curve with well-known endomorphism ring, and we are
interested in the endomorphisms that are of degree coprime to N1. While there
are infinitely many such endomorphisms, we are only concerned with their action
on E0[N1], i.e., we are looking at the group (O0/N1O0)∗ which is isomorphic to
GL2(Z/N1Z) [31, p. 676]. Furthermore, we are only concerned with the action
of the endomorphisms on I, i.e., on cyclic subgroups of E0[N1] of order N1,
and we can therefore identify even more endomorphisms with each other by the
following lemma.

Lemma 4.10. Let (a, b, c, d) and (a′, b′, c′, d′) be the coefficients of θ and θ′ with
respect to some Z-basis of the endomorphism ring O0 of E0, and let I be the set
of cyclic N1-order subgroups of E0[N1]. Then θ(K) = θ′(K) for every K ∈ I if
and only if there exists some λ ∈ (Z/N1Z)∗ such that

(a, b, c, d) ≡ λ(a′, b′, c′, d′) (mod N1).

Proof. Considering the respective restrictions to E0[N1], two endomorphisms are
equal if they lie in the same class in (O0/N1O0)∗. Moreover, let θ1, θ2 be two
endomorphisms such that θ1 = [λ]θ2 for some integer λ, and let P be an element
of order N1. Since scalar multiplication commutes with any endomorphism, it is
easy to see that θ1(P ) and θ2(P ) generate the same subgroup in E0[N1] if and
only if λ is coprime to N1. ��

Now, we are ready to give a solution to Task 4.3 if K ∈ I1.

Proposition 4.11. Let G be the group of equivalence classes of elements

{a + bι | a odd, b even } ⊂ Z[ι]/N1O∗
0 ⊂ (O0/N1O0)∗,
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where we identify two elements if and only if they differ by multiplication by
an odd scalar modulo N1. Then G is an abelian group, and it acts freely and
transitively on I1.

Proof. It is easy to see that the endomorphisms in Z[ι] of degree coprime to
N1 form an abelian subgroup of O0. Using any basis for E0[N1] of the form
{P, ι(P )}, we can write the elements of this subgroup as matrices of the form(

a b
−b a

)
, where a is odd and b is even. By identifying two endomorphisms a1+b1ι

and a2 + b2ι if there exists an integer λ coprime to N1 and an endomorphism
δ such that a1 − λa2 + (b1 − λb2) = N1δ, which is possible by Lemma 4.10, we
obtain G. As G is closed under multiplication and reduction modulo N1, it is a
subgroup of an abelian group and therefore abelian itself. Note that G contains
all equivalence classes under Lemma 4.10 of endomorphisms of the form a + bι
for even b, independently of the chosen basis.

To examine the orbit of an element in I, which is a cyclic N1-order subgroup
of E0[N1], under the action of G, it is sufficient to look at the orbit of a generator
of this cyclic group in I. We consider the orbit of P which has coordinates (1, 0)
with respect to our basis under the group action of G. The image of (1, 0) under

an element
(

1 b
−b 1

)
is (1, b). Inspecting the cyclic subgroups of E0 these points

generate, we get G · 〈P 〉 = I1. ��
Free and Transitive Group Action on I2 and I3: So far we have defined a
free and transitive group action on I1 and thus for the curves in f(I1). However,
when the secret kernel is generated by P +αι(P ) with α odd, the curve E0/〈P +
αι(P )〉 is not contained in f(I1). This is the case we handle next.

One can show that the action of the previously defined group G acting on
curves at distance N1 from E0 considered via f has three orbits (see Appendix A
of the full version [20] for details). We have already seen that f(I1) is one orbit,
but the odd-α cases will split into two orbits. Clearly, G cannot be free and tran-
sitive on both orbits, since the size of the orbits is smaller than the cardinality
of the group. We avoid this issue by choosing a different (but related) group of
cardinality N1/4 acting on the curves corresponding to an odd α.

Lemma 4.12. Let Q := P + ι(P ) and define

I2 :=
{

〈Q + αι(Q)〉 | α even and α ∈
[
0,

N1

2
− 1

]}

I3 :=
{

〈Q + αι(Q)〉 | α even and α ∈
[
N1

2
, N1 − 1

]}
.

The restrictions f|I2 and f|I3 of f to I2 and I3 are injective.

Proof. We show that two distinct isogenies with kernel both in I2 (or both in
I3) map to two non-isomorphic curves. Let α, α′ be such that 〈Q + αι(Q)〉 and
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〈Q + α′ι(Q)〉 are both in I2, or I3, respectively. Suppose there exists an odd λ
such that

Q + αι(Q) = λ(Q + α′ι(Q)).

This means 1 − λ ≡ 0 (mod N1/2) and α − λα′ ≡ 0 (mod N1/2) which implies
α ≡ α′ (mod N1/2). We are left to show that Q+αι(Q) is never an odd multiple
of −αQ + ι(Q). Suppose there exists an odd λ such that

Q + αι(Q) = λ(−α′Q + ι(Q)).

This implies 1 + α′λ ≡ α − λ ≡ 0 (mod N1/2), which is a contradiction, since
α − λ ≡ 0 (mod N1/2) implies that λ is even while 1 + α′λ ≡ 0 (mod N1/2)
implies that λ is odd. Therefore, the curves E0/〈Q+αι(Q)〉 and E0/〈Q+α′ι(Q)〉
are pairwise non-isomorphic. ��

Finally, we give a free and transitive group action on I2 and I3. We start by
defining the acting group.

We identify two endomorphisms a + bι and a′ + b′ι if there exists an odd
λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2) and we
call the resulting group H0. Let H be the subgroup of H0 containing elements
with even b.

Proposition 4.13. H acts freely and transitively on I2 and I3.

Proof. It is enough to show that H acts transitively on I2 and I3 because H, I2

and I3 have the same cardinality. We show that the orbit H · 〈Q〉 contains every
element in I2. This follows immediately from (1 + αι)Q = Q + αι(Q). Similarly,
H acts transitively on I3 as

(1+αι)(Q+N1ι(Q)/2) = (1−αN1/2)Q+(α+N1/2)ι(Q) = Q+(α+N1/2)ι(Q),

where (αN1/2)Q = 0 as α is even. ��
What remains to be shown is that every curve E0/〈P + αι(P )〉 with odd α has
a j-invariant contained in f(I2) or f(I3).

Proposition 4.14. Let α be an odd integer. Then f(〈P + αι(P )〉) is contained
in f(I2) or f(I3).

Proof. Observe that

P + αι(P ) =
1 + α

2
(P + ι(P )) +

α − 1
2

(−P + ι(P )) =
1 + α

2
Q +

α − 1
2

ι(Q).

The sum of 1+α
2 and α−1

2 is odd and therefore one of the fractions is even while
the other one is odd. If α−1

2 is even, then it is clear that the curve is contained
in f(I2) or f(I3). In the case where 1+α

2 is even, E0/〈 1+α
2 Q + α−1

2 ι(Q)〉 is
isomorphic to E0/〈 1−α

2 Q+ α+1
2 ι(Q)〉 (because their kernels are related by ι) and

thus the curve is contained in f(I2) or f(I3). ��
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In this subsection, we have identified three subsets of I, restricted to which
f is injective. Moreover, we have seen that the union ∪3

i=1f(Ii) contains the
j-invariants of all curves at distance N1 from E0. Finally, we gave an abelian
subgroup of (O0/N1O0)∗ for each of these subsets of I that acts freely and
transitively on it. Thus, we solve Task 4.3 as long as one determines or guesses
which of the three f(Ii) contains j(E0/K).

4.3 Using the Frobenius Map

In the previous subsection, we described how to choose suitable abelian sub-
groups of (O0/N1O0)∗ in order to solve Task 4.3 after guessing whether j(E0/K)
is a j-invariant in f(I1), f(I2), or f(I3).

The elements of the acting groups chosen as described in the previous section
can be trivially lifted to Z[ι] := Q[ι] ∩ O0. In Appendix C of the full version [20]
we show how these representatives can be lifted directly to elements of norm N2

or eN2, where e is a small positive integer, whenever the SIDH parameters N1

and N2 are sufficiently overstretched and unbalanced with N2 > p2N4
1 . For these

parameters, this solves a variation of Task 4.4.
In this section we reduce the required unbalancedness partially by proving

that we can lift elements from πZ[ι] instead. Assuming that N2 > pN4
1 , we will

show in Subsect. 4.4 how an endomorphisms from πZ[ι] can be lifted efficiently
to another endomorphism of norm N2 or eN2, for some small integer e, inducing
the same action on I. Note that it is not possible to choose a group generated
by an element in πZ[ι] to solve Task 4.3 directly, acting freely and transitively
on a large number of N1-isogeny kernels, as such an element has multiplicative
order at most 4.

As before, let ϕ : E0 → E0/K denote the secret N1-isogeny we want to
compute. Recall that to run our attack we need to be able to compute E0/θ(K)
for every θ in the groups G acting on I1, and H acting on I2 and I2. We have
seen that we can represent θ as an element in Z[ι].

Let π denote the Frobenius map. Assuming that we can lift πθ to an endomor-
phism of degree N2 inducing the same action on I, we can compute E0/πθ(K)
using knowledge of ϕ(E0[N2]) as described in Sect. 4.1. Now let B := θ(K).
Given E0/π(B), we can compute E0/B using the Frobenius map as follows.

Lemma 4.15. Let E be an elliptic curve defined over Fp, π the Frobenius map
and let B ⊂ E be a cyclic subgroup. E/π(B) is isomorphic to the image of the
Frobenius map of E/B.

Proof. Let φ1 be the isogeny with kernel B and φ2 the isogeny with kernel π(B).
The isogeny φ1 is separable and its kernel is contained in the kernel of φ2 ◦ π.
Then, there exists a unique isogeny ψ : E/B → E/π(B) satisfying φ2◦π = ψ◦φ1

(see [29, Corollary III. 4.11.]), i.e., the following diagram commutes.
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E E/B

E E/π(B)

φ1

π

φ2

ψ

The degree of a composition of isogenies is the product of its factors which
implies deg(ψ) = p. Furthermore, ψ is not separable as the Frobenius map is
not. As ψ can be decomposed as a composition of the Frobenius map and a
separable isogeny (see [29, Corollary II.2.12.]), deg(ψ) = p implies that ψ must
be a composition of Frobenius and an automorphism. Hence, E0/B and E0/π(B)
are linked by the Frobenius map. ��

By Lemma 4.15 we can compute E0/θ(K) by first computing E0/πθ(K) and
then applying the Frobenius map. This gives rise to the following strategy when
constructing the malleability oracle.

Assume we want to compute E0/θ(K) for some θ ∈ Z[ι] and unknown K,
given the image of the N2-torsion of the isogeny ϕ : E0 → E0/K. Using the lifting
algorithm of Subsect. 4.4, we compute an endomorphism θ′ of degree N2 or eN2

for a small e that induces the same action on I as πθ. As described previously,
the torsion point information allows us to compute E0/θ′(K) = E0/πθ(K). By
Lemma 4.15, applying the Frobenius map yields E0/πθ′(K) = E0/θ(K).

4.4 Lifting θ ∈ πZ[ι] to an Element of Norm eN2

In this subsection we give an efficient algorithm to lift endomorphisms from
πZ[ι] = π(Q[ι] ∩ End(E0)) to another endomorphism of E0/Fp of degree N2 or
eN2 that induces the same action on I, whenever N2 > pN4

1 . Here, e is the
smallest positive integer such that eN2/p(c20 + d20) is a quadratic residue modulo
2N1, where π(c0 + d0ι) ∈ πZ[ι] is the endomorphism we want to lift.

This will solve the following task, which is a variant of Task 4.4, efficiently.

Task 4.16. Let N1, N2 be coprime integers such that N2 > pN4
1 , let θ :=

π(c0 + d0ι) ∈ πZ[ι] be an E0-endomorphism of degree coprime to N1 and let
e denote the smallest positive integer such that eN2/p(c20 + d20) (mod 2N1) is a
quadratic residue. Compute an endomorphism θ′ of degree N2 or eN2 such that
θ(K) = θ′(K) for all K ∈ I.

We have discussed in Sect. 4.3 that we can lift π(c0 + d0ι) instead of c0 + d0ι.
Therefore, this task solves Task 4.4 up to the following two relaxations. First,
we require N2 to be sufficiently large and unbalanced compared to N1. Second,
we allow θ′ to be either of degree N2 or eN2 for some small positive integer e.

We have implemented the lifting algorithm of this section in magma and
made it publicly available1.
1 https://github.com/SimonMerz/lifting-for-malleability-oracles..

https://github.com/SimonMerz/lifting-for-malleability-oracles
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Remark 4.17. If N1 were a prime, e could be chosen as the smallest quadratic
non-residue modulo N1. However, in our case N1 is a composite number. Thus,
the product of two quadratic non-residues might not be a quadratic residue if
there are multiple cosets of the subgroup of quadratic residues in the group of
units modulo 2N1.

We are primarily interested in the case where N1 is a prime power �n. By
Hensel’s lemma, being a quadratic residue modulo �n is equivalent to being a
quadratic residue modulo �, if � is odd, and equivalent to being a quadratic
residue modulo 8, if � = 2.

Consequently, there is one coset of the quadratic residues in the group of
units of 2N1 if � is an odd prime. Therefore, e can be chosen to be the smallest
quadratic non-residue modulo �. For example, if N1 is a power of 3 one can
choose e = 2.

If � = 2, then there are three cosets of the quadratic residues in the group
of units, i.e., the ones that contain 3, 5, and 7 respectively. Consequently, e can
always be chosen to be one of 3, 5, or 7 in this case.

In case N1 has distinct prime factors, for eN2/p(c20 + d20) to be a quadratic
residue it has to be a quadratic residue modulo the largest prime power dividing
2N1 for each distinct prime factor. If the number of cosets grows, so do the
possibilities for e und thus the size of the smallest e that is guaranteed to work.

We now describe an algorithm to solve Task 4.16. By Lemma 4.10, it suffices to
solve the following task, which is similar to the problem solved at the core of the
KLPT algorithm [16].

Task 4.18. Given θ = a0 + b0ι + (c0 + d0ι)π, find θ′ = a1 + b1ι + (c1 + d1ι)π
of degree N2 or eN2 with coefficients (a1, b1, c1, d1) ≡ λ(a0, b0, c0, d0) (mod N1)
for some scalar λ ∈ (Z/N1Z)∗.

In the following, we provide a solution to this task. Let

θ′ = λa0 + N1a1 + ι(λb0 + N1b1) + (λc0 + N1c1 + ι(λd0 + N1d1))π.

As Norm(x + yι) = x2 + y2, its norm equals

Norm(θ′) = (λa0+N1a1)2+(λb0+N1b1)2+p
(
(λc0+N1c1)2+(λd0+N1d1)2

)
. (2)

Since θ ∈ πZ[ι] implies a0 = b0 = 0, Eq. (2) simplifies to

Norm(θ′) = N2
1 (a2

1 + b21) + p
(
(λc0 + N1c1)2 + (λd0 + N1d1)2

)
. (3)

Set e to be the smallest positive integer such that eN2/(p(c20+d20)) is a quadratic
residue modulo 2N1.

The goal is to compute θ′ such that Norm(θ′) = eN2. Considering Eq. (3)
modulo N1, we obtain

eN2 ≡ λ2p(c20 + d20) (mod N1). (4)

Since eN2/p(c20 +d20) is a quadratic residue modulo 2N1 by the choice of e, there
exists a solution for λ in Eq. (4) modulo 2N1. Compute any such solution, and
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lift it to the integers in [1, 2N1 − 1]. Note that we do not lose generality by the
lift as any other lift of λ corresponds to a change in c1, d1 instead.

For fixed c0, d0 and λ, this gives an affine relation between c1 and d1 modulo
N1, i.e.,

c0c1 + d0d1 ≡ Norm(θ′) − λ2p(c20 + d20)
2λpN1

(mod N1). (5)

Finally, one is left with the problem of representing an integer r as the sum of
two squares, namely to find a solution (a1, b1) for

a2
1 + b21 = r :=

Norm(θ′) − p
(
(λc0 + N1c1)2 + (λd0 + N1d1)2

)

N2
1

(6)

where λ, c0 and d0 are fixed, and c1, d1 satisfy an affine equation modulo N1.
As Petit and Smith pointed out at Mathcrypt 2018, the solution space to

Eq. (5) is a translated lattice modulo N1 [24]. More precisely, we know that
c0 or d0 is coprime to N1. Without loss of generality, let d0 be coprime to N1.
Furthermore, let C denote the right hand side of Eq. (5). Then, (c1, d1) lies in
the lattice

〈(c0/d0,−1), (N1, 0)〉 + (C/d0, 0). (7)

Clearly, r from Eq. (6) can only be represented as a sum of two squares,
if it is positive. This happens when the parameters N1 and N2 are sufficiently
overstretched and unbalanced. To find a solution, one computes close vectors
(c1, d1) to the target vector (−λc0/N1,−λd0/N1) in the translated lattice.

Given the factorisation of r as defined in Eq. (6), Cornacchia’s algorithm [6]
can then efficiently solve for a1, b1 or determine that no such solution exists. If
no solution exists, a different vector (c1, d1) is chosen.

Remark 4.19. Cornacchia’s algorithm requires the factorization of r. This can
be done in classical subexponential time or in quantum polynomial time. To
avoid such computations, we apply Cornacchia’s algorithm only when r is a
prime and otherwise sample another close vector from the lattice.

Assuming the values of r behave like random values around pN3
1 for the close

vectors, one expects to choose log(pN3
1 ) different vectors (c1, d1) before finding a

solution for a1, b1 with Cornacchia’s algorithm. If we do not apply Cornacchia’s
algorithm unless r is prime, we expect furthermore to sample roughly log(pN3

1 )
values for (c1, d1) until r is prime.

The volume of the translated lattice is N1. Thus, for a generic lattice for
which the Gaussian heuristic holds we expect to find a lattice point at distance
N1 from (λc0/N1, λd0/N1). Furthermore, we can use the Hermite constant for 2-
dimensional lattices to trivially bound the distance between this lattice point and
the next 2 log(pN3

1 ) closest lattice points by 8
3 log(pN3

1 )
√

N1. Thus, heuristically
r is positive for the expected number of vectors (c1, d1) that we need to sample,
whenever eN2 > pN3

1 + 8/3 log(pN3
1 )

√
N3

1 .
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Remark 4.20. Note that for specific lattices, the Gaussian heuristic might be
violated. In the worst case, we can only expect to find a lattice point at distance
N2

1 from (λc0/N1, λd0/N1) and overall solutions require roughly eN2 > pN4
1 .

It is easy to see that a solution for (a1, b1, c1, d1) as computed with the
routine described above satisfies Eq. (3). The full algorithm is summarized in
Algorithm 3 and an implementation in magma is available4.

Algorithm 3: Lift element from πZ[ι] to quaternion of norm N2 or eN2

Input: θ = π(c0 + d0ι) ∈ End(E0), and parameters p, ε, N1, N2

Output: θ′ = N1a1 + N1b1ι + (λc0 + N1c1)π + (λd0 + N1d1)ιπ satisfying
Norm(θ′) = N2 or eN2 with probability 1 − ε and ⊥ otherwise

1 e ← least positive integer s.t. eN2/p(c20 + d2
0) (mod 2N1) is a quadratic residue;

2 Compute λ in eN2 ≡ λ2p(c20 + d2
0) (mod 2N1);

3 Compute affine relation c0c1 + d0d1 ≡ C (mod N1);
4 Define translated lattice L containing all (c1, d1) satisfying the affine relation;
5 B ← log(ε) log(pN3

1 )/ log(1 − log−1(pN3
1 ));

6 for m = 1, . . . , B do
7 Compute next closest vector (c1, d1) to (−λc0/N1, −λd0/N1) in L;

8 r ← Norm(θ′)−p((λc0+N1c1)
2+(λd0+N1d1)

2)

N2
1

;

9 if r prime then
10 Use Cornacchia’s algorithm to find a1, b1 such that a2

1 + b21 = r or
determine that no solution exists;

11 if solution found then
12 return θ′ = N1a1 + N1b1ι + (λc0 + N1c1)π + (λd0 + N1d1)ιπ;

13 return ⊥

An examination of Algorithm 3 shows that it aborts after a fixed number of
trials for pairs (c1, d1), which leads to the following result.

Lemma 4.21. Algorithm 3 always terminates and is correct if it returns a solu-
tion.

We conclude this section by investigating the heuristic probability of the
lifting algorithm returning a solution or aborting unsuccessfully, as well as its
complexity.

Lemma 4.22. Let 0 < ε < 1. Assume r in Line 8 of Algorithm 3 behaves like
a random value around pN3

1 . Then we expect Algorithm 3 heuristically to return
a correct lift with probability 1 − ε and an error ⊥ otherwise.

Proof. If r in Line 8 of Algorithm 3 behaves like a random value around pN3
1 ,

we expect it to be prime with probability roughly 1/ log(pN3
1 ) and Cornacchia’s

algorithm to provide a solution with probability approximately 1/(log(pN3
1 )) due
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to Landau [21] and Ramanujan [25]. Iterating over B short vectors (c1, d1) of the
lattice as defined in Step 6 of Algorithm 3, we therefore expect our algorithm to
return ⊥ with probability

(
1 − 1

log(pN3
1 )

)B/ log(pN3
1 )

.

Hence, iterating over B ≥ log(ε) log(pN3
1 )/ log(1−log−1(pN3

1 )) as in Algorithm 3,
we fail to find a solution with probability less than ε heuristically. ��
Remark 4.23. In Algorithm 2 the lifting of endomorphisms is used for every
element of the acting group G or H with cardinality N1/2 and N1/4, respectively.
Since we expect the lifting algorithm to fail heuristically with probability ε for
every single group element and the functions in Algorithm 2 are only exact shifts
of each other when it does not fail a single time, we need to choose ε sufficiently
small. Assuming independence between the different executions of the lifting
algorithm, we expect to find two functions satisfying the promise of a hidden
shift with probability (1−ε)N1/2 ≈ 1−εN1/2 by first order Taylor approximation.
Thus, choosing ε < 1

N1
we expect our lifting to work with probability roughly

1
2 on all endomorphisms of G and similarly ε < 2

N1
for the elements in H. By

the previous lemma, the lifting remains polynomial in log(N1) and log(p) for
any such ε. Choosing ε smaller allows us to heuristically achieve a larger success
probability of the algorithm. The worst-case complexity of the lifting increases
linearly in | log(ε)|.
Lemma 4.24. Let 0 < ε < 1. Algorithm 3 runs in time polynomial in log p,
log N1, and | log(ε)|.
Proof. The worst-case runtime of the algorithm stems from sampling B (as
defined in Algorithm 3, Line 5) potential values of (c1, d1) from a lattice of
dimension 2. In each iteration one needs to run a primality test, and apply
Cornacchia’s algorithm to a prime of size polynomial in p and N1. ��

The main drawback of our lifting algorithm is the requirement of approx-
imately N2 > pN3

1 in case the Gaussian heuristic is satisfied for the lattice
defined in Eq. (7), and roughly N2 > pN4

1 otherwise (see Remark 4.20). This
bound might be partially caused by inefficiencies in the lifting algorithm. How-
ever, the following remark discusses why we can a priori not expect to find a
lifting algorithm for balanced parameters.

Remark 4.25. A randomly chosen non-homogeneous quadratic equation in two
variables has in general no solution. Similarly, for arbitrary endomorphisms and
any N1, N2, we would not expect to find an endomorphism a1 + b1ι ∈ Z[ι] (in
the variables a1, b1) inducing the same action on I of degree N2. Yet, as soon as
we lift an endomorphism θ to an endomorphism θ′ = N1(a1 + b1ι + c1π) + λθ,
the degree of the lift will be of degree larger than pN2

1 .
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4.5 Algorithm Summary

We begin the summary of our attack by proving that a solution to Task 4.4
allows us to construct a malleability oracle for f .

Proposition 4.26. Let f|I′ : I ′ → O be the function defined in (1) restricted
to a domain I ′ so it is injective, let G be an abelian subgroup of (O0/N1O0)∗

acting freely and transitively on I ′ and let ϕ : E0 → E0/K, where K ∈ I ′ is
chosen uniformly at random and unknown. Suppose the public parameters allow
us to solve Task 4.4 for endomorphisms in G efficiently. Given ϕ|E0[N2], we then
have a polynomial-time malleability oracle for G at f|I′(K).

Proof. We need to show that there exists an efficient algorithm that, on input
f(K) = f|I′(K) = j(E0/K) and θ ∈ G, computes f(θ(K)). Let ϕ be the isogeny
corresponding to the cyclic subgroup K ⊂ E0 of order N1.

The endomorphism θ has degree N2 coprime to N1 and using the efficient
solution to Task 4.4, we can compute some θ′ of degree N2 such that it has the
same action on the N1-torsion as θ. Therefore, f(θ(K)) = E0/θ(K) = E0/θ′(K)
up to isomorphism. By Lemma 4.5, this equals (E0/K)/ϕ(ker θ′). Since ker θ′

lies in E0[N2], we can compute its image under ϕ and therefore we can calculate
f(θ(K)) = (E0/K)/ϕ(ker θ′) efficiently. ��

Proposition 4.26 calls for solutions to the Tasks 4.3 and 4.4. In Sects. 4.2
and 4.4 we presented solutions to variants of these tasks. We use the remainder
of this section to summarize the impact of these variations on the success of our
approach.

Restricting the function f : I → O to a subset I ′ such that f|I′ is injective
and its image contains j(E0/K) for the K one aspires to recover requires infor-
mation on the secret we do not posses. However, we gave three subsets I1, I2,
I3 of I in Sect. 4.2 such that f restricted to any of these subsets is injective.
The images of these sets under f partition all curves at distance N1 from E0

up to isomorphism, i.e., one of the three subsets will yield the desired result.
Moreover, we provided abelian subgroups of Q[ι] ∩ (O0/N1O0)∗ acting freely
and transitively on I1, I2, and I3.

We then supply an algorithm to solve Task 4.16, a variant of Task 4.4 when
N1 and N2 are sufficiently unbalanced, lifting endomorphisms from πZ[ι] to ones
with the same action on I of degree N2 or eN2. Here, e is a small integer depend-
ing on the parameters p,N1, N2 and the endomorphism. As a consequence, to
use the torsion point information of E0[eN2] under the secret isogeny given the
image of E0[N2], we need to guess the action on E0[e]. Furthermore, we lift all
endomorphisms in the acting group and thus we need to guess the action on
E0[E], where E is the least common multiple of all e appearing for the different
lifts. In Remark 4.17 we discuss which e might appear depending on the factori-
sation of N1. For example, E is 2 if N1 is a power of 3, or lcm(3, 5, 7) if N1 is
a power of 2. Guessing the action of the secret isogeny on E0[E] takes O(E3)
trials. Finally, for efficiency reasons we lift endomorphisms from πZ[ι], whereas
the elements in the abelian groups acting on I1, I2, and I3 have representatives
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in Z[ι]. In Sect. 4.3 we showed that this is no restriction via the computation of
an action of the Frobenius map.

For each combination of guesses of E0[E] under the secret isogeny and
whether f maps the secret K into f(I1), f(I2) or f(I3), we can use a subex-
ponential quantum algorithm such as Kuperberg’s [18] to compute the hidden
shift for the functions FK and FJ as defined in Algorithm 2 and verify the out-
put of the algorithm. Both functions are injective and therefore the verification
can be achieved by computing both functions on a single element and its shift
respectively. Once the premise of a hidden shift is satisfied, Kuperberg’s algo-
rithm [18] recovers the (correct) solution to the injective abelian hidden shift
problem. Thus, we recover the secret isogeny as described in Sect. 4. We can
summarize our result as follows.

Theorem 4.27. Let N2 > pN4
1 . Under the heuristics used for the lifting of

endomorphisms in Sect. 4.4, the SIDH problem can be solved in quantum subex-
ponential time via a reduction to the injective abelian hidden shift problem.

During this section, we have made some restrictions to simplify the presenta-
tion of our cryptanalysis. We assumed the starting curve E0 to be a supersingular
curve with j-invariant 1728. However, the attack also applies to other curves with
known endomorphism rings that are close to E0. In Sect. 4.2, we described the
required group action on I under the further assumption that N1 is a power
of 2, which can be generalized to powers of small primes. A sketch for powers
of 3 can be found in [20, Appendix B]. Finally, we assumed that N2

1 < p+1
4

in Lemma 4.7. However, to run our attack we can slightly ease this restriction.
Namely, if N2

1 > p+1
4 , then we choose a divisor N ′

1 of N1 such that N ′2
1 < p+1

4
and run the attack with N ′

1 instead. This will reveal the N ′
1-part of the isogeny

and then we can guess the remaining part. For sufficiently small N1
N ′

1
, this is only

a minor inefficiency.

4.6 Hybrid Attacks on Overstretched SIDH

In this section, we examine to what extent partial knowledge of the secret, i.e.,
knowledge of the most or least significant bits, renders the attack more efficient.
Moreover, we describe how the attack can be adapted to some further parameters
that are not quite sufficiently unbalanced. The idea is to apply exhaustive search
to recover parts of the secret isogeny until the remaining part of the isogeny is of
such small degree that the attack outlined in this paper can be used to recover
the remaining part.

We start with the case where the most significant bits of the secret are leaked
or correctly guessed. These bits correspond to the last steps of the secret isogeny
in the isogeny graph. Assume N1 is a power of a prime �. If the most significant
k digits of the secret with respect to their representation in base � are leaked or
guessed correctly, the partial isogeny which remains to be recovered is of degree
N1/�k and we can run our attack as soon as N1/�k fulfills the unbalancedness
criterion N2 > p(N1/�k)4.
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The case where the least significant digits are known or guessed requires a
little more work. For simplicity of our exposition we assume again that N1 is a
power of 2 as in Sect. 4.2, but the results generalize to powers of small primes.

Lemma 4.28. Let G be the group of Proposition 4.11, and let G′ ⊂ G be the
subset of the form {a+ bι | a odd, b divisible by 2k} where we identify two endo-
morphisms with each other if they differ by multiplication by an odd scalar modulo
N1. Then G′ is an abelian subgroup of G.

Proof. Since G is abelian, it suffices to show that G′ is a subgroup. Consider
(a+ bι)(a′ + b′ι) = (aa′ − bb′) + (ab′ + a′b)ι. It is easy to see that aa′ − bb′ is odd
and ab′ + a′b is divisible by 2k if a + bι and a′ + b′ι are in G′. ��

Assume the least significant k bits of the secret, or equivalently the first k
steps of the secret isogeny, are known. Kernels of isogenies of degree N1 > 2k

that share the same first k steps lie in the same 2k-torsion subgroup and are
therefore congruent modulo 2k.

Recall the subsets of I introduced in Sect. 4.2.

Proposition 4.29. Let I ′ be any subsets of I1 := {〈P + [α]Q〉 with 2|α} con-
taining all those cyclic subgroups where the αs are congruent modulo 2k. The
group G′ of Lemma 4.28 acts freely and transitively on any I ′.

Proof. First, we need to show that G′ × I ′ → I ′ is well-defined. Let (1 + bι) be
a representative of some element in G′ and let P + kι(P ), for some k ∈ Z, be
the kernel of an isogeny leading to a curve in I ′. We have

(1 + bι)(P + kι(P )) = P + kι(P ) + b(ι(P ) − kP ) ≡ P + kι(P ) (mod b)

and as b is divisible by 2k, P +kι(P ) ∈ I ′ implies (1+ bι)(P +kι(P )) ∈ I ′. That
the action is free and transitive follows from Proposition 4.11 and a counting
argument as |G|/|G′| = 2k−1 = |I1|/|I ′|. ��
Similarly, we can take subsets of I2 and I3 and restrict the acting group.

This gives rise to an attack strategy when N2 is not large enough. Guessing
k bits of the secret before applying the attack on the remaining part allows an
attacker to reduce the requirements on the parameters to N2 > p(N1/2k)4. This
is the same as when guessing the last bits of the secret.

Given such a partial isogeny, one computes the correct equivalence class I ′

from the kernel of the known part of the isogeny. Moreover, one needs to compute
the lifts of elements of G′ to endomorphisms of norm N2 or eN2. Computing the
action of G′ on the set I ′ allows one to test for the hidden shift property. Once
it is satisfied, the secret can be recovered by solving an injective abelian hidden
shift problem. Otherwise, one can make another guess on the k bits of the secret.

Apart from reducing the requirements on the unbalancedness, guessing part
of the isogeny reduces the number of elements one needs to lift and the size of
the hidden shift instance. Depending on the concrete parameter sets provided,
one may combine exhaustive search and the attack presented in this paper to
recover secrets more efficiently.
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5 Childs-Jao-Soukharev’s Attack on HHS

We begin by providing more detail on how the algorithm proposed by Childs,
Jao and Soukharev [5] succeeds to construct an isogeny between two given ordi-
nary elliptic curves in quantum subexponential time. The provided strategy can
further be applied to CSIDH [3].

Recall the free and transitive group action from Sect. 2.3 of the class group
on the set of isogenous ordinary curves with the same endomorphism ring. The
hard problem is to find an isogeny between two isogenous ordinary elliptic curves
with the same endomorphism ring, i.e., reversing this group action. Childs-Jao-
Soukharev provide an algorithm that constructs such an isogeny in quantum
subexponential time [5] using a reduction to the hidden shift problem.

We summarize the core idea as another instance of our framework using
malleability oracles. Let I := Cl(O) and O := Ellq,n(O). We can look at the
group action defined in Sect. 2.3 as a one-way function

f : I → O , [x] �→ [x] · j(E0).

Note that the class group Cl(O) acts on itself and therefore f has a malleability
oracle with respect to the class group readily available everywhere on the image,
i.e., f is malleable with respect to this group action.

Finding an isogeny ϕ is now equivalent to finding the ideal class [b] in Cl(O)
containing the ideal corresponding to the kernel of ϕ, i.e., we would like to
compute the preimage of f at j(E1) = [b] · j(E0).

Childs-Jao-Soukharev observed that the functions Fi : Cl(O) → Ellq,n(O),
[x] �→ [x] · j(Ei) for i = 0, 1 are shifts of each other. Moreover, they are injec-
tive functions since the action of the class group on Ellq,n(O) is free and tran-
sitive. The injective abelian hidden shift problem can be solved in quantum
subexponential time, which allows one to recover [b] and therefore an isogeny
ϕ : E0 → E1.

Analogously to the case for ordinary curves, the group action in CSIDH
utilizing supersingular curves can be attacked this way. Recall that CSIDH uses
the Fp-rational endomorphism ring of the fixed starting curve E0, O. In the
Diffie-Hellman-type key exchange, recovering a party’s secret key constitutes of
computing their secret ideal class [b] ∈ Cl(O) which satisfies [b] ·E0 = EB for the
party’s public curve EB . Through defining functions F0, F1 : Cl(O) → Ellp(O)
by F0([x]) = [x] · E0 and F1([x]) = [x] · EB , it is possible to reduce finding
Bob’s secret key [b] to an instance of the injective hidden shift problem: We
have F1([x]) = F0([x] · [b]) for any ideal class [x] ∈ Cl(O), where the functions
are both injective due to the group action being free and transitive.

6 Conclusion and Further Work

In this paper, we constructed an abelian group action on the key space of the
inherently non-commutative SIDH. Having this group action in place allows us
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to construct a heuristic malleability oracle using the torsion point information
provided in SIDH when overstretched and sufficiently unbalanced parameters
are being used. This contradicts the commonly believed misconception that no
such group action exists in the branch of isogeny-based cryptography where one
considers the full isogeny graph of supersingular elliptic curves. We embedded
our attack in a more general framework that also captures other quantum attacks
on schemes in isogeny-based cryptography.

The attack does not apply to balanced parameters as specified in the origi-
nal SIDH proposal [14] or the NIST post-quantum candidate SIKE [13]. Further-
more, the unbalancedness condition between N1 and N2 is stronger than required
by the attack from [19]. Interestingly, the obstruction to attack SIDH with bal-
anced parameters in our case does not seem to be directly related to the hin-
drances in other attacks on unbalanced SIDH exploiting torsion point informa-
tion [19,23] but to limitations of the KLPT algorithm [16] and the ones described
in Remark 4.25 instead. Improvements to the lifting subroutine included in the
KLPT algorithm would not only partially decrease the required unbalancedness
of SIDH parameters in this work, but also improve various isogeny-based schemes
such as Galbraith-Petit-Silva’s signatures [11] and SQISign [9].

Future work will extend the given quantum algorithm to more general group
actions of quadratic orders that embed optimally into the (known) endomor-
phism ring of the starting curve. Hereby, the starting curve does not necessarily
need to be of j-invariant 1728. Furthermore, we will generalize the approach
to higher genus generalizations of SIDH. Finally, providing applications of this
work to areas beyond isogeny-based cryptography is left for future investigation.

It remains an open problem to improve the framework further and to give
conditions on the malleability oracle that are sufficient to invert one-way func-
tions in quantum polynomial time.
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Abstract. We give a sieving algorithm for finding pairs of consecu-
tive smooth numbers that utilizes solutions to the Prouhet-Tarry-Escott
(PTE) problem. Any such solution induces two degree-n polynomials,
a(x) and b(x), that differ by a constant integer C and completely split
into linear factors in Z[x]. It follows that for any � ∈ Z such that
a(�) ≡ b(�) ≡ 0 mod C, the two integers a(�)/C and b(�)/C differ by
1 and necessarily contain n factors of roughly the same size. For a fixed
smoothness bound B, restricting the search to pairs of integers that are
parameterized in this way increases the probability that they are B-
smooth. Our algorithm combines a simple sieve with parametrizations
given by a collection of solutions to the PTE problem.

The motivation for finding large twin smooth integers lies in their
application to compact isogeny-based post-quantum protocols. The
recent key exchange scheme B-SIDH and the recent digital signature
scheme SQISign both require large primes that lie between two smooth
integers; finding such a prime can be seen as a special case of finding
twin smooth integers under the additional stipulation that their sum is
a prime p.

When searching for cryptographic parameters with 2240 ≤ p < 2256,
an implementation of our sieve found primes p where p+1 and p− 1 are
215-smooth; the smoothest prior parameters had a similar sized prime for
which p−1 and p+1 were 219-smooth. In targeting higher security levels,
our sieve found a 376-bit prime lying between two 221-smooth integers,
a 384-bit prime lying between two 222-smooth integers, and a 512-bit
prime lying between two 228-smooth integers. Our analysis shows that
using previously known methods to find high-security instances subject
to these smoothness bounds is computationally infeasible.
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1 Introduction

We study the problem of finding twin smooth integers, i.e. finding two consecu-
tive large integers, m and m+1, whose product is as smooth as possible. Though
the literature on the role of smooth numbers in computational number theory
and cryptography is vast (see for example the surveys by Pomerance [20] and
Granville [12]), the problem of finding consecutive smooth integers of crypto-
graphic size has only been motivated very recently: optimal instantiations of the
key exchange scheme B-SIDH [8] and the digital signature scheme SQISign [10]
require a large prime that lies between two smooth integers, and this is a special
case of the twin smooth problem in which 2m + 1 is prime.

This paper presents a sieving algorithm for finding twin smooth integers that
improves on the methods used in [8] and [10]. The high-level idea is to use two
monic polynomials of degree n that split in Z[x] and that differ by a constant,
i.e.

a(x) =
n∏

i=1

(x − ai) and b(x) =
n∏

i=1

(x − bi), where a(x) − b(x) = C (1)

for C ∈ Z. Whenever � ∈ Z such that a(�) ≡ b(�) ≡ 0 mod C, it follows that the
integers a(�)/C and b(�)/C differ by 1.

Assume that |�| � |ai| and |�| � |bi| for 1 ≤ i ≤ n, and fix a smoothness
bound B. Rather than directly searching for two consecutive B-smooth integers
m and m + 1, roughly of size N , the search instead becomes one of finding a
value of � such that the 2n (not necessarily distinct) integers

� − a1, . . . , � − an, � − b1, . . . , � − bn, (2)

each of size roughly N1/n, are B-smooth. For n > 1, and under rather mild
heuristics, the probability of finding twin smooth integers in this fashion is sig-
nificantly greater than the searches used in [8] and [10]. Put another way, the
same computational resources are likely to succeed in finding twin smooth inte-
gers subject to an appreciably smaller smoothness bound.

To search for � ≈ N1/n such that the 2n integers in (2) are B-smooth, we
adopt the simple sieve of Eratosthenes as described by Crandall and Pomer-
ance [9, §3.2.5]; this identifies all of the B-smooth numbers in an arbitrary inter-
val. If w is the largest difference among the 2n integers in {ai} ∪ {bi}, then a
sliding window of size |w| can be used to scan the given interval for simultaneous
smoothness among the integers in (2). This approach has a number of benefits.
Firstly, smooth numbers in a given interval can be recognized once-and-for-all,
meaning we can combine arbitrarily many solutions to (1) into one scan of the
interval. Secondly, different processors can scan disjoint intervals in parallel, and
each of the interval sizes can be tailored to the available memory of the pro-
cessor. Finally, the simple sieve we use to identify the smooth numbers in an
interval (which is the bottleneck of the overall procedure) is open to a range of
modifications and improvements – see Sect. 7.

The approach in this paper hinges on being able to find solutions to (1). Such
solutions are related to a classic problem in Diophantine Analysis.
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1.1 The Prouhet-Tarry-Escott Problem

The Prouhet-Tarry-Escott (PTE) problem of size n and degree k asks to find
two distinct multisets of integers {a1, . . . , an} and {b1, . . . , bn} for which

a1 + · · · + an = b1 + · · · + bn,

a2
1 + · · · + a2

n = b21 + · · · + b2n,

...
...

...

ak
1 + · · · + ak

n = bk
1 + · · · + bk

n.

The most interesting case is k = n − 1, which is maximal (see Sect. 3), and
such ideal solutions immediately satisfy (1). For example, when n = 4, the sets
{0, 4, 7, 11} and {1, 2, 9, 10} are such that

0 + 4 + 7 + 11 = 1 + 2 + 9 + 10 = 22,

02 + 42 + 72 + 112 = 12 + 22 + 92 + 102 = 186,

03 + 43 + 73 + 113 = 13 + 23 + 93 + 103 = 1738,

from which it follows (see Proposition 1) that

a(x) = x(x − 4)(x − 7)(x − 11) and b(x) = (x − 1)(x − 2)(x − 9)(x − 10)

differ by a constant C ∈ Z. Indeed, a(x) − b(x) = −180.
Origins of the PTE problem are found in the 18th century works of Euler

and Goldbach, and it remains an active area of investigation [5–7]. In 1935,
Wright [28] conjectured that ideal solutions to the PTE problem should exist
for all n, but at present this conjecture is open: for n = 11 and for n ≥ 13,
no ideal solutions to the PTE problem have been found, see [5, p. 94] and [7,
p. 73]. However, Borwein states that “heuristic arguments suggest that Wright’s
conjecture should be false. [...] It is intriguing, however, that ideal solutions exist
for as many n as they do” [5, p. 87].

The PTE solutions that are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12} are a
nice fit for our purposes. If we were to fix a smoothness bound, B, and then search
for the largest pair of consecutive B-smooth integers we could find, having PTE
solutions for n as large as possible would be helpful. But for our cryptographic
applications (see Sect. 1.3), we will instead fix a target range for our twin smooth
integers to match a given security level, and then aim to find the smoothest twins
within that range. In this case, the degree n of a(x) and b(x) cannot be too large,
since a larger n means fewer � ∈ Z to search over. Ideally, n needs to be large
enough such that the splitting of a(x) and b(x) into n linear factors helps with
the smoothness probability, but small enough so that we still have ample � ∈ Z

to find a(�) and b(�) such that

(i) a(�) ≡ b(�) ≡ 0 mod C,
(ii) (m,m + 1) = (b(�)/C, a(�)/C) are B-smooth, and (if desired)
(iii) 2m + 1 is prime.

It turns out that those n ≤ 12 for which PTE solutions are known are the sweet
spot for our target applications, where 2240 ≤ m ≤ 2512.
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1.2 Prior Methods of Finding Twin Smooth Integers

After defining twin smooth integers for concreteness, we recall previous methods
used to find large twin smooth integers.

Definition 1 (Twin smooth integers). For a given B > 1, we call (m,m+1)
with m ∈ Z a pair of twin B-smooth integers or B-smooth twins if m · (m + 1)
contains no prime factor larger than B.

As Lehmer notes in [18], consecutive pairs of smooth integers have occurred
in 18th century works and have been mentioned by Gauss in the context of
computing logarithms of integers.

Hildebrand [13, Corollary 2] has shown that there are infinitely many pairs of
consecutive smooth integers (m,m + 1), however this result notably holds for a
smoothness bound that depends on m. More precisely, there are infinitely many
such pairs of mε-smooth integers for any fixed ε > 0. An analogous result holds
for tuples of k consecutive smooth integers (for any k), as shown by Balog and
Wooley [1].

For a fixed, constant smoothness bound B, the picture is different. A theorem
by Størmer [25] states that there are only a finite number of such pairs. We begin
with some historical results which show that deterministically computing the
largest pair of consecutive B-smooth integers requires a number of operations
that is exponential in the number of primes up to B.

Solving Pell Equations. Fix B, let {2, 3, . . . q} be the set of primes up to B
with cardinality π(B), and suppose that m and m + 1 are both B-smooth. Let
x = 2m+1, so that x−1 and x+1 are also B-smooth, and let D be the squarefree
part of the product (x − 1)(x + 1), so that x2 − 1 = Dy2 for some y ∈ Z. Since
the product (x − 1)(x + 1) is B-smooth, it follows that Dy2 is B-smooth, which
(since D is squarefree) means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities
for D, an effective theorem of Størmer [25] (and further work by Lehmer [18])
reverses the above argument and proposes to solve the 2π(B) Pell equations

x2 − Dy2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the
complete set of B-smooth consecutive integers m and m + 1.

Ideally, this process could be used to deterministically find optimally smooth
consecutive integers at any size, by increasing B until the largest pair of twin
smooths is large enough. For example, the largest pair of twin smooth inte-
gers with B = 3 is (8, 9), the largest pair of twin smooth integers with
B = 5 is (80, 81), and the largest pair of twin smooth integers with B =
7 is (4374, 4375). Unfortunately, solving 2π(B) Pell equations becomes infea-
sible before the size of m grows large enough to meet our requirements.
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For B = 113, [8] reports that the largest twins (m,m + 1) found upon solv-
ing all 230 Pell equations have m = 19316158377073923834000 ≈ 274, and the
largest twins found among the set when adding the requirement that 2m + 1 is
prime have m = 75954150056060186624 ≈ 266.

The Extended Euclidean Algorithm. One näıve way of searching for twin
smooth integers is to compute B-smooth numbers m until either m − 1 or m +
1 also turns out to be B-smooth. A much better method, which was used in
[4,8,10], is to instead choose two coprime B-smooth numbers α and β that are
both of size roughly the square root of the targets m and m + 1. Since α and
β are coprime, Euclid’s extended GCD algorithm outputs two integers (s, t)
such that αs + βt = 1 with |s| < |β/2| and |t| < |α/2|. We can then take
{m,m + 1} = {|αs|, |βt|}, and the probability of m and m + 1 being B-smooth
is now the probability that s · t is B-smooth. The key observation here is that
the product s · t with s ≈ t is much more likely to be B-smooth than a random
integer of similar size. In Sect. 2 we will develop methods and heuristics that
allow us to closely approximate these probabilities.

Searching with m = xn − 1. The method from [8] that proved most effective
in finding twin smooth integers with 2240 ≤ m ≤ 2256 is by searching with
(m,m + 1) = (xn − 1, xn) for various n, where the best instances were found
with n = 4 and n = 6. Our approach can be seen as an extension of this method,
where the crucial difference is that for n > 2 the polynomial xn − 1 does not
split in Z[x], and the presence of higher degree terms significantly hampers the
probability that values of �n − 1 ∈ Z are smooth. For example, with n = 6
we have m = (x2 − x + 1)(x2 + x + 1)(x − 1)(x + 1) and, assuming B 	 �,
the probability that integer values of this product are B-smooth is far less than
if it was instead a product of six monic, linear terms. On the other hand, the
probability that m+1 is B-smooth for a given � is the probability that � itself is
B-smooth, which works in favor of the non-split method. However, as we shall
see in the sections that follow, this is not enough to counteract the presence of
the higher degree terms. Furthermore, several of the PTE solutions we will be
using also benefit from repeated factors.

1.3 Cryptographic Applications of Twin Smooth Integers

The field of supersingular isogeny-based cryptography continues to gain
increased popularity in large part due to the conjectured quantum-hardness of
variants of the supersingular isogeny problem. In its most general form, this prob-
lem asks to find a secret isogeny φ : E → E′ between two given supersingular
elliptic curves E/Fp2 and E′/Fp2 .

The most famous isogeny-based cryptosystems are Jao and De Feo’s SIDH
key exchange protocol [15] and its actively secure incarnation SIKE [14], which
recently advanced to the third round of the NIST post-quantum standardization
effort [26]. On the one hand, SIKE offers the advantage of having the smallest
public key and ciphertext sizes of all of the key encapsulation schemes under



Sieving for Twin Smooth Integers 277

consideration, but on the other, its performance is currently around an order of
magnitude slower than its code- and lattice-based counterparts.

Two supersingular isogeny-based schemes have recently emerged that require
a new type of instantiation. Rather than defining primes p for which either p−1
or p + 1 is smooth (as in SIDH/SIKE), the key exchange scheme B-SIDH [8]
and the digital signature scheme SQISign [10] instead require primes for which
(large factors of) both p − 1 and p + 1 are smooth. As both of those papers
discuss, finding primes that lie between two smooth integers is not an easy task,
but the practical incentive to do this is again related to the compactness of these
schemes: B-SIDH’s public keys are even smaller than the analogous SIDH/SIKE
compressed public keys, and the sum of the SQISign public key and signature
sizes is significantly smaller than those of all of the remaining NIST signature
candidates.

In both B-SIDH and SQISign, the overall efficiency of the protocol is closely
tied to the smoothness of p−1 and p+1. Roughly speaking, any prime � appearing
in the factorizations of these two integers implies that an �-isogeny needs to be
computed somewhere in the protocol. Such �-isogenies have traditionally been
computed in O(�) field operations using Vélu’s formulas [27], but recent work by
Bernstein, De Feo, Leroux, and Smith [4] improved the asymptotic complexity
to Õ(

√
�) by clever use of a baby-step giant-step algorithm. Nevertheless, the

large �-isogenies that are required in these protocols dominate the runtime, and
the best instantiations of both schemes will use large primes p lying between two
integers that are as smooth as possible.

In this paper we will view the search for such primes as one that imposes
an additional stipulation on the more general problem of finding twin smooth
integers: cryptographically useful instances of the twin smooth integers (m,m+1)
are those where the sum 2m + 1 is a prime, p.

Security analyses of B-SIDH and SQISign suggest that it is possible to relax
the requirements and to tolerate cofactors that divide either or both of p−1 and
p+1 and have prime factors somewhat larger than the target smoothness bound,
such that (the size of) any primes dividing these cofactors have no impact on
the efficiency. For simplicity and concreteness, we will focus our analysis on the
pure problem of finding twin smooth integers that disallows any primes larger
than our smoothness bound, but we will oftentimes point out the modifications
and relaxations that account for cofactors; this is discussed in Sect. 7.

The heuristic analysis summarized in Table 3 predicts that sieving with PTE
solutions finds twin smooth integers (m,m + 1) that are smoother than one
expects to find using the same computational resources and the prior methods
described in Sect. 1.2. Indeed, in Sect. 6 we present a number of examples we
found with our sieve whose largest prime divisors are several bits smaller than
the largest prime divisors in instantiations found in the literature. In reference
to Table 3, we briefly sketch some intuition on how these smoother examples
translate into practical speedups. For example, the best prior instantiation of a
prime p with 2240 ≤ p < 2256 found that (p − 1) and (p + 1) are simultaneously
219-smooth, whereas our sieve found a similarly sized p subject to a smoothness
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bound of 215. Given the current (square root) complexity of state-of-the-art �-
isogeny computations, this suggests that the most expensive isogeny computed
in our example will be roughly 4 times faster than that of the prior example.

The source code for our sieving algorithm is publicly available at

https://github.com/microsoft/twin-smooth-integers.

This code can be used by implementers to find their own instantiations; in
particular, the code is intended to be general and users should be able to tailor
it to their own requirements, e.g., to allow for different requirements, cofactors,
or to target other security levels.

Roadmap. First time readers may benefit from jumping straight to Sect. 5,
where all the theory developed in Sects. 2–4 is put into action by way of a
full worked example. Section 2 gathers some results that allow us to approxi-
mate the smoothness probabilities of both integers and integer-valued polyno-
mials. Section 3 starts by making the connection between our method of finding
twin smooth integers and the PTE problem, before going into the theory of the
PTE problem and showing how to generate infinitely many solutions for certain
degrees. Section 4 describes our sieving algorithm. Section 6 presents some of the
best examples found with our sieve and compares them with the previous exam-
ples in the literature. Section 7 discusses a number of possible modifications and
improvements to the sieve.

2 Smoothness Probabilities

In this section we recall some well-known results concerning smoothness prob-
abilities that will be used to analyse various approaches throughout the
paper: Sect. 2.1 shows how to approximate the probability that m � B is B-
smooth using the Dickman–de Bruijn function; Sect. 2.2 shows how to approx-
imate the probability that integer values of a polynomial f(x) ∈ Z[x] are B-
smooth.

2.1 Smoothness Probabilities for Large N

Recall that an integer is said to be B-smooth if it does not have any prime factor
exceeding B. Let

Ψ(N,B) = #{1 ≤ m ≤ N : m is B-smooth}

be the number of positive B-smooth integers. For each real number u > 0,
Dickman’s theorem [9, Theorem 1.4.9] states that there is a real number ρ(u) > 0
such that

Ψ(N,N1/u)
N

∼ ρ(u) as N → ∞. (3)

https://github.com/microsoft/twin-smooth-integers
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Dickman described ρ(u) as the unique continuous function on [0,∞) that satisfies
ρ(u) = 1 for 0 ≤ u ≤ 1, and ρ′(u) = −ρ(u−1)

u for u > 1. For 1 ≤ u ≤ 2, ρ(u) =
1 − ln(u), but for u > 2 there is no known closed form for ρ(u). Nevertheless, it
is easy to evaluate ρ(u) (up to any specified precision) for a given value of u, and
popular computer algebra packages (like Magma and Sage) have this function
built in.

In this paper we will be using (3) to approximate the probability that certain
large numbers are smooth. For example, with N = 2128 and u = 8, the value
ρ(8) ≈ 2−25 approximates the probability that a 128-bit number is 216-smooth.
With u fixed, this approximation becomes better as N tends towards infinity.
Using ρ(u) as the smoothness probability assumes the heuristic that N1/u-smooth
numbers are uniformly distributed in [1, N ].

While there are methods to more precisely estimate Ψ(N,B), see e.g. [24]
and [2], we are content with the simple approximation given by ρ. Using a basic
sieve to identify smooth integers, we have counted all B-smooth integers up to
N = 243 for B up to 216 and compared their numbers with those predicted by
the Dickman–de Bruijn function. Except for the lower end of the studied interval
and for very small smoothness bounds, we have found the approximation by ρ
to be sufficiently close to the actual values.

2.2 Smoothness Heuristics for Polynomials

For a polynomial f(x) ∈ Z[x], define

Ψf (N,B) = #{1 ≤ m ≤ N : f(m) is B-smooth}.

Throughout the paper we will use the following conjecture (see [19, Eq. 1.4]
and [12, Eq. 1.20]) as a heuristic to estimate the probability that f(N) is N1/u-
smooth.

Heuristic 1. Suppose that the polynomial f(x) ∈ Z[x] has distinct irreducible
factors over Z[x] of degrees d1, d2, . . . dk ≥ 1, respectively, and fix u > 0. Then

Ψf (N,N1/u)
N

∼ ρ(d1u) . . . ρ(dku) (4)

as N → ∞.

With B = N1/u, Heuristic 1 says that for m ≤ N , the probability of f(m)
being B-smooth is the product of the probabilities of each of its factors being
B-smooth (these are computed via (3)). Martin proved this conjecture for a
certain range of u [19, Theorem 1.1] that does not apply in our case. Heuristic 1
inherently assumes that the smoothness probabilities of each of the factors are
independent of one another; here, the roots of our split polynomials all lie in
relatively short intervals, and thus are not uniformly distributed in, say, [1, N ].
For example, with f(m) =

∏
1≤i≤d(m−fi) ∈ Z, any prime q that divides m−f1

only divides m − fi for some 1 < i ≤ d if q | fi − f1, which in particular means
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that any prime which is larger than the interval size can divide at most one of
the (unique) m − fi. Nevertheless, our experiments have shown Heuristic 1 to
be a very accurate approximation for our purposes; we simply use it as a means
to approximate how many values of m ∈ Z need to be searched before we can
expect to start finding twin smooth integers, and to draw comparisons between
approaches for various target sizes.

3 Split Polynomials that Differ by a Constant

Henceforth we will use a(x) and b(x) to denote two polynomials of degree n > 1
in Z[x] that differ by an integer constant C ∈ Z, i.e. a(x) − b(x) = C. Moreover,
unless otherwise stated, both a and b are assumed to split into linear factors
over Z, i.e.

a(x) =
∏

1≤i≤n

(x − ai) and b(x) =
∏

1≤i≤n

(x − bi),

where the ai and bi (which are not necessarily distinct) are all in Z.
The core idea of this paper is to search for twin smooth integers by searching

over � ∈ Z such that
a(�) ≡ b(�) ≡ 0 mod C.

Then, the two polynomials aC(x) := a(x)/C and bC(x) := b(x)/C ∈ Q[x] evalu-
ate to integer values aC(�) and bC(�) at �, and moreover

aC(�) = bC(�) + 1.

Since a and b split into n linear factors over Z, aC(�) and bC(�) necessarily contain
n integer factors of approximately the same size. In Sect. 4.4 we approximate the
probability that aC(�) and bC(�) are B-smooth, and show that these probabilities
are favorable (in the ranges of practical interest) compared to the previously
known methods of searching for large twin smooths.

3.1 The Prouhet-Tarry-Escott Problem

For degrees n ≤ 3, infinite families of split polynomials a(x) and b(x) with
a(x) − b(x) = C ∈ Z can be constructed by solving the system that arises from
equating all but the constant coefficients. Although there are n equations in 2n
unknowns, for n > 3 this process becomes unwieldy; the equations are nonlinear
and we are seeking solutions that assume values in Z. Moreover, relaxing the
monic requirement (which permits 4n unknowns) and allowing for solutions in
Q does not seem to help beyond n > 3. Fortunately, finding these pairs of
polynomials is closely connected to the computational hardness of solving the
PTE problem of size n.
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Definition 2 (The Prouhet-Tarry-Escott problem). The Prouhet-Tarry-
Escott (PTE) problem of size n and degree k asks to find distinct multisets of
integers A = {a1, . . . , an} and B = {b1, . . . , bn}, such that

n∑

i=1

aj
i =

n∑

i=1

bj
i

for j = 1 . . . k. We abbreviate solutions to this problem by writing [a1, . . . , an] =k

[b1, . . . , bn] or A =k B.
A classic result that links PTE solutions to polynomials is the following

[6, Proposition 1].

Proposition 1. The following are equivalent:

n∑

i=1

aj
i =

n∑

i=1

bj
i for j = 1, . . . , k. (5)

deg

(
n∏

i=1

(x − ai) −
n∏

i=1

(x − bi)

)
≤ n − (k + 1). (6)

Proposition 1 implies that for any PTE solution of size n and degree k = n−1,
the polynomials a(x) =

∏n
i=1(x−ai) and b(x) =

∏n
i=1(x−bi) differ by a constant.

For a given n, this choice for k is the maximal possible choice [6, Proposition
2], hence the respective solutions are called ideal solutions. Ideal solutions are
known for n ≤ 10 and n = 12, but it remains unclear if there are ideal solutions
for other sizes [7]. Unless stated otherwise, henceforth we will only speak of PTE
solutions that are ideal solutions.

As we will see later, the most useful PTE solutions for our purposes are
those for which the constant C is as small as possible. We now recall some useful
results from the literature concerning the constants that can arise from PTE
solutions.

Definition 3 (Fundamental constant Cn). Let n be a positive integer, and
write Cn,A,B for the associated constant of an ideal PTE solution A =n−1 B of
size n. Then we define

Cn = gcd{Cn,A,B | A =n−1 B}
as the fundamental constant associated to ideal PTE solutions of size n.

A result by Kleiman [17] gives a lower bound on the fundamental constant.

Proposition 2. Let n be a positive integer. Then (n − 1)! | Cn.

For concrete choices of n, more divisibility results are presented by Rees and
Smyth [21], and Caley [7]. These results form sharper bounds for Cn, and thus
for constants arising from any given PTE solution. Upper bounds for Cn can be
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Table 1. Divisibility results for the PTE problem

n Lower bound for Cn Upper bound for Cn

2 1 1

3 22 22

4 22 · 32 22 · 32

5 24 · 32 · 5 · 7 24 · 32 · 5 · 7

6 25 · 32 · 52 25 · 32 · 52

7 26 · 33 · 52 · 7 · 11 26 · 33 · 52 · 7 · 11

8 24 · 33 · 52 · 72 · 11 · 13 28 · 33 · 52 · 72 · 11 · 13

9 27 · 33 · 52 · 72 · 11 · 13 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29

10 27 · 34 · 52 · 72 · 13 · 17 211 · 36 · 52 · 72 · 11 · 13 · 17 · 23 · 37

11 28 · 34 · 53 · 72 · 11 · 13 · 17 · 19 none known

12 28 · 34 · 53 · 72 · 112 · 17 · 19 212 · 38 · 53 · 72 · 112 · 132 · 17 · 19 · 23 · 29 · 31

directly computed by taking the GCD of all known solutions of size n. This is
detailed in [7], where for example it is known that for n = 9 we have

27 · 33 · 52 · 72 · 11 · 13 | C9 and C9 | 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29.

Table 1 is an updated version of [7, Table 3.2], and gives an overview of the
bounds for the fundamental constants Cn. These results give estimates for the
optimal choices of solutions for our searches. In particular, choosing solutions
with associated constants close to the upper bound for Cn yields the best pre-
conditions for finding twin smooth integers.

For our application of finding twin smooth integers, it may seem unnecessarily
restrictive to only make use of PTE solutions, yielding monic polynomials a and
b with integer roots. However, it can be proven that all polynomials that are
split over Q and that differ by a constant arise from PTE solutions. In order to
prove this, we make use of the following result ([6, Lemma 1], [7, Proposition
2.1.2]).

Proposition 3. Let [a1, . . . , an] =k [b1, . . . , bn] with associated constant C and
M,K arbitrary integers with M �= 0. Define a linear transform h(x) = Mx +
K and let a′

i = h(ai) and b′
i = h(bi) for i = 1, . . . , n. Then [a′

1, . . . , a
′
n] =k

[b′
1, . . . , b

′
n], and the associated constant is C ′ = C · Mn.

Two such solutions that are connected through a linear transform are called
equivalent. Note that Proposition 3 also holds for the PTE problem over rational
numbers instead of integers, i.e. for ai, bi ∈ Q for 1 ≤ i ≤ n.

Corollary 1. Let a(x) and b(x) be polynomials of degree n with rational roots
A = {a1, . . . , an} and B = {b1, . . . , bn}, such that a(x) − b(x) = C ∈ Q. Then
A =n−1 B for the PTE problem over Q, and there is an equivalent solution
A′ =n−1 B′ to the PTE problem over Z.
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Proof. Since deg(a(x) − b(x)) = 0, Proposition 1 implies that A =n−1 B. Let
M ∈ Z be a common denominator of a1, . . . , an, b1, . . . , bn and define the linear
transform h(x) = Mx. Let a′

i = h(ai) and b′
i = h(bi) for i = 1, . . . , n. Then

A′ = {a′
1, . . . , a

′
n} and B′ = {b′

1, . . . , b
′
n} consist of integers, and by Proposition 3,

A′ =n−1 B′ is a solution for the PTE problem over Z. ��
Corollary 1 allows us to focus entirely on integer PTE solutions without

imposing any further restrictions. For our search for smooth values of the poly-
nomials, Proposition 3 further implies that we only have to search with one
polynomial per equivalence class.

Corollary 2. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and A′ = {a′
1, . . . , a

′
n},

B′ = {b′
1, . . . , b

′
n} be equivalent ideal PTE solutions. Let a(x), b(x), and a′(x),

b′(x) be the respective polynomials such that a(x) − b(x) = C ∈ Z resp. a′(x) −
b′(x) = C ′ ∈ Z, and h(x) be the associated linear transform. Then for given
xmin and xmax, aC(x) and bC(x) take on the same integer values for x ∈ I =
[xmin, xmax] as a′

C′(x) and b′
C′(x) for x ∈ h(I).

In order to efficiently identify equivalent solutions, we make use of Proposi-
tion 3 to define a representation of equivalence classes, which we call the nor-
malized form of a class of solutions.

Definition 4 (Normalized form of PTE solutions). A normalized form
of a given PTE solution is a solution such that a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤
· · · ≤ bn, 0 = a1 < b1, and gcd(a1, . . . , an, b1, . . . , bn) = 1.

Another classification of solutions, which is of importance for our searches,
is the distinction between symmetric and non-symmetric solutions [5].

Definition 5 (Symmetric PTE solutions). For n even, an even ideal sym-
metric solution to the PTE problem is of the form

[±a1,±a2, . . . ,±an/2] =n−1 [±b1,±b2, . . . ,±bn/2].

For n odd, an odd ideal symmetric solution to the PTE problem is of the form

[a1, a2, . . . , an] =n−1 [−a1,−a2, . . . ,−an].

It can immediately be seen that the normalized form of a symmetric solu-
tion is unique, but no longer has the form satisfying Definition 5. However, we
will still be calling these solutions symmetric, since they are symmetric with
respect to the integer K (instead of symmetric with respect to 0, as in the clas-
sic formulation of Definition 5), where h(x) = Mx + K is the linear transform
connecting these solutions. Thus, we define solutions as non-symmetric if and
only if their equivalence class does not contain a symmetric solution according
to Definition 5.

Note that in the special case of non-symmetric solutions, the normalized form
is not unique. In particular, if [a1, . . . , an] =n−1 [b1, . . . , bn] is a non-symmetric
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normalized solution, then so is the solution arising from the linear transform
h(x) = Mx + K, where M = −1 and K = max{an, bn}. In this case, we take
the solution with minimal b1 to represent the normalized solution, and refer to
the second normalized solution as the flipped solution.

Finally, in Sect. 4.4 we will see that PTE solutions with repeated factors have
higher probabilities (than those without repeated factors) of finding twin smooth
integers. The following result [7, Theorem 2.1.3] shows that repeated factors can
only occur with multiplicity at most 2.

Proposition 4 (Interlacing). Let A = {a1, . . . , an} and B = {b1, . . . , bn} be
an ideal PTE solution, where a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn, and
w.l.o.g., we assume that a1 < b1. Then, a1 �= bj for all j. If n is odd, we have

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−1 ≤ an < bn,

and if n is even, then

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−2 ≤ an−1 < bn−1 ≤ bn < an.

3.2 PTE Solutions

An important prerequisite for searching for twin smooth integers is a large num-
ber of normalized ideal PTE solutions with relatively small associated constants.
To this end, we briefly review solutions from the literature as well as methods
to construct ideal solutions. Henceforth, we will refer to normalized ideal PTE
solutions only as PTE solutions.

A database of Shuwen collects several PTE solutions, both symmetric and
non-symmetric [22]. In particular, special solutions, such as the smallest solutions
with respect to the associated constants, and the first solutions found for each
size, are presented there.

Apart from this, several methods for generating PTE solutions have been
found. Parametric solutions are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 12}, and these
can be used to generate infinitely many symmetric solutions [7]. However, the
number of solutions with small associated constants is limited. For n = 9, only
two non-equivalent solutions are known.

For n ∈ {5, 6, 7, 8}, we implemented the methods from [5] to generate as many
symmetric solutions with small associated constants as possible. For n = 10
and n = 12, there are parametric symmetric solutions due to Smyth [23] and
Choudhry and Wróblewski [29], resp., both following an earlier method from
Letac [11]. In both methods, the two parameters that form solutions come from
a quadratic equation in two variables. This equation can be transformed into
an elliptic curve equation, and thus finding suitable parameters is equivalent to
finding rational points on this elliptic curve. In [7, Section 6], Caley implements
these methods by adding multiples of a non-torsion point, P , to the eight known
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Table 2. Number of PTE solutions up to an upper bound for the constants. Cmin,n

denotes the smallest constant known for each degree.

n �log2(Cmin,n)� Bitlength of upper bound # of solutions

5 13 50 49

6 14 50 2438

7 33 60 8

8 31 60 51

9 52 60 2

10 73 100 1

12 76 100 1

torsion points.1 However, it is evident from the underlying transforms that PTE
solutions with small constants can only arise from rational elliptic curve points
with small denominators in their coordinates. Caley’s approach thus proves to be
non-optimal for our aims, as the denominators in the coordinates of [i]P become
too large already for very small i, resulting in PTE solutions with huge constants.
We implemented these methods with the curves and transforms from [7], but
deviated from Caley’s approach by first searching for non-torsion points with
integer coordinates, resp. coordinates with very small denominators. We then
followed Caley’s algorithm and computed small multiples of these points and
their sums with torsion points. Despite finding many PTE solutions, none of
them proved to have an associated constant close to the upper bound for C10

resp. C12. Further, taking the GCD of all found solutions, we did not succeed in
reducing the known upper bounds for C10 resp. C12.

For each size n, we identified an upper bound for constants that permit
acceptable success probabilities for our searches, and collected as many solutions
as possible up to this value. Table 2 reports on the numbers of solutions we found,
including solutions from [22].

4 Sieving with PTE Solutions

Our sieving algorithm consists of two phases. The first phase identifies the B-
smooth numbers in a given interval (Sect. 4.1). The second phase then scans
the interval using either a single PTE solution (Sect. 4.2) or the combination of
many PTE solutions (Sect. 4.3).

4.1 Identifying Smooth Numbers in an Interval

We follow the exposition of Crandall and Pomerance [9, §3.2.5] and adopt the
simple sieve of Eratosthenes to identify the B-smooth integers in an interval
1 The elliptic curves that arise for n = 10 and n = 12 have Mordell-Weil-groups
Z/4Z × Z/2Z × Z resp. Z/4Z × Z/2Z × Z × Z. Thus there are eight torsion points
in each case, and the non-torsion groups are generated by one resp. two non-torsion
points.
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[L,R). We set up an array of R − L integers corresponding to the integers
L,L + 1, . . . , R − 1, and initialize each entry with 1. For all primes with p < B,
we identify the smallest non-negative i ∈ Z, for which L + i ≡ 0 mod p, and
multiply the array elements at positions i + jp by p for all j ∈ Z such that
L ≤ i + jp < R. Additionally, for all primes with p <

√
R, we have to identify

the maximal exponent e such that pe < R, and analogously perform sieving steps
with the relevant prime powers, where further multiplications by p take place.
After this process is finished, the B-smooth integers in the interval are precisely
those for which the number at position i is L + i. Subsequently, we transform
this array of integers into a bitstring, where a ‘1’ indicates a B-smooth number,
while a ‘0’ represents a non-smooth number.

This simple approach allows for several optimizations and modifications,
some of which are discussed further in Sect. 7.

4.2 Searching with a Single PTE Solution

Assume that we are searching with a normalized ideal PTE solution of size n,
writing a(x) =

∏n
i=1(x − ai) and b(x) =

∏n
i=1(x − bi), together with C ∈ Z

such that a(x) − b(x) = C. We will assume C > 0, since a(x) and b(x) can
otherwise swap roles accordingly, and as usual we write aC(x) = a(x)/C and
bC(x) = b(x)/C as the two polynomials in Q[x].

We are searching for � such that m + 1 = aC(�) and m = bC(�) are both
B-smooth and of a given size, and thus the size of the constant C affects the size
of the � we should search over. Moreover, we only wish to search over the values
of � for which aC(�) and bC(�) are integers, and we determine this set of residues
(modulo C) as follows. If C =

∏
pei

i is the prime factorization of the constant,
then for each prime-power factor we determine all residues ri mod pei

i for which
a(ri) ≡ b(ri) ≡ 0 mod pei

i (note that it is sufficient to check that one of a(ri) or
b(ri) is a multiple of pei

i ). We then use the Chinese Remainder Theorem (CRT) to
reconstruct the full set of residues {r mod C} for which a(r) ≡ b(r) ≡ 0 mod C.
Depending on the size of the constant, the full list of suitable residues may be
rather large; if not, they can be stored in a lookup table, but if so, only the
smaller sets (i.e. the {ri} corresponding to pei

i ) need to be stored. We can then
either loop over the suitable residues by constructing them on the fly using the
CRT, or we can check whether a candidate � is a suitable residue by reducing it
modulo each of the pei

i .
It is worth pointing out that when searching for cryptographic parameters

with a single PTE solution, the condition that 2m + 1 is prime can be used
to discard the residues {r̃ mod C} for which 2bC(r) + 1 can never be prime if
r ≡ r̃ mod C. In a very rare number of cases, the polynomial 2bC(x) + 1 =
2/C · (b(x)+C/2) in Q[x] is such that (b(x)+C/2) is reducible in Z[x], in which
case the PTE solution can be completely discarded. For example, this happens
for both of the PTE solutions with n = 9.

Recall from Sect. 3 that the constants of the PTE solutions are (for our
purposes) always B-smooth. When processing an interval [L,R), the problem
therefore reduces to finding � ∈ [L,R) such that all of the factors of a(�) and
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b(�) are marked as B-smooth. For the PTE solution in use, these factors are
given by �i = � − i, where i ∈ {a1, . . . , an, b1, . . . , bn}. Note that since a1 = 0
for our normalized representation, we have � = �0. Starting with � at the left
end of the interval requires some care since for a given �, we need to be able
to check for the smoothness of all �i. Hence, to be able to cover the full space
when processing consecutive intervals, we have to run the first phase of the sieve
for a slightly larger interval, namely [L − w,R) (overlapping to the left with the
previous interval), where w = max{an, bn}. This allows us to process � ∈ [L,R)
such that �w will cover [L − w,R − w).

In the second phase of the sieve we advance � through all of the elements
in the bitstring marked ‘1’, each time checking the bits corresponding to the
remaining �i, i.e. i ∈ {a2, . . . , an, b1, . . . , bn}. If, at any time, we see that any of
the �i corresponds to a ‘0’, we advance � such that it is aligned with the next
‘1’ and repeat the process until all of the �i correspond to a ‘1’. At this point,
we can then check whether � is a suitable residue modulo C as above; if not,
� is again advanced to the next set bit, but if so, we have found twin smooth
integers, and it is here that we can optionally check whether their sum is prime.

We note that when using a single PTE solution, the algorithm could be
modified to sieve in arithmetic progressions given by the suitable residues modulo
C. We leave the exploration of whether this can be more efficient than the above
approach for future work.

In the case of a large interval [L,R), the memory requirements can be sig-
nificantly reduced by dividing [L,R) into several subintervals, which can be
processed separately. The only downside is that a näıve implementation of the
first phase processes certain intervals twice due to the overlap of length w. This
can be easily mitigated by copying the last w entries of the previous interval at
each step. However, due to both the large (sub)intervals used in our implemen-
tation and the relatively small w’s that arise in PTE solutions, the impact of
this overlap is negligible in practice, so the näıve approach can be taken without
a noticeable performance penalty.

Parallelization. Our implementation parallelizes the sieve in a straightforward
way by assigning processors distinct subintervals of [L,R), e.g. according to their
own memory/performance capabilities. However, if many processors have rapid
access to the same memory, then it may be faster for some resources being
devoted to identifing smooth numbers in the next interval while the remaining
resources sieve the current interval.

Negative Input Values. Until now we have only considered positive input
values � ∈ [L,R), but our approach also permits negative inputs to the polyno-
mials a(x) and b(x). For example, for even n, this gives another pair of inte-
gers that could potentially be smooth. At first glance, this seems to imply
that each time � is advanced, we must also check the values �′

i = � + i with
i ∈ {a1, . . . , an, b1, . . . , bn} for smoothness. Moreover, it seems that the overlap
of size w for each search interval must also be added to both sides. We note,
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however, that if the PTE solution in use is symmetric (see Definition 5), then
the values �′

i are the same as the values (� + w)i, and thus are naturally checked
by our previous algorithm at position � + w. This is not the case for general
non-symmetric solutions, but for those non-symmetric solutions that are nor-
malized (see Definition 4), we can instead search with positive inputs to the
flipped solution arising from the linear transform h(x) = −x + w, which is espe-
cially beneficial when searching with many solutions simultaneously.

4.3 Searching with Many PTE Solutions

One of the main benefits of our sieve is that it can combine many PTE solutions
into the same search and rapidly process them together. Many PTE solutions
tend to share at least one non-zero element in common, and if checking this
element returns a ‘0’, all such solutions can be discarded at once. In what follows
we describe a method to arrange the set of PTE solutions in a tree, such that (on
average) a minimal number of checks is used to check the full set of solutions.
Note that computing this tree is a one-time precomputation that is performed
at initialization.

Suppose we have t solutions, written as [ai,1, . . . , ai,n] =n−1 [bi,1, . . . , bi,n] for
1 ≤ i ≤ t. Noting that ai,1 = 0 for all i, write Si = {ai,2, . . . , ai,n, bi,1, . . . , bi,n},
i.e. Si is the set of distinct non-zero integers in the i-th PTE solution. Now, as in
the single solution sieve above, suppose we have advanced � to a set bit at some
stage of our sieving algorithm. Rather than checking each of the PTE solutions
individually, we would like to share any checks that are common to multiple
PTE solutions. The key observation is that we are highly unlikely2 to have a
PTE solution whose elements all correspond to ‘1’, so in combining many PTE
solutions we would ultimately like to minimize the number of checks required
before we can rule all of them out and move � to the next set bit.

In looking for the minimum number of checks whose failures rule out all
PTE solutions, we are looking for a set H of minimal cardinality such that
H ∩ Si �= {∅} for 1 ≤ i ≤ t, i.e. the smallest-sized set that shares at least
one element with each of the PTE solutions. Finding this set is an instance
of the hitting set problem; this problem is NP-complete in general, but for the
sizes of the problem in this paper, a good approximation is given by the greedy
algorithm [16]. We start by looking for the element that occurs most among all
of the Si, call this g1; we then look for the element that occurs most among the
Si that do not contain g1, call this g2; we then look for the element that occurs
most among those Si that do not contain g1 or g2, and continue in this way until
we have H = {g1, g2, . . . , gh} such that every Si contains at least one of the gj ,
for 1 ≤ i ≤ t and 1 ≤ j ≤ h. This process naturally partitions the PTE solutions
to fall under h different branches. For each PTE solution in a given branch, the
corresponding element of the hitting set is removed and the process is repeated
recursively until there is no common element between the remaining solutions,

2 We assume that the smoothness bound is aggressive enough to make the smooth
integers sparse.
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at which point they become leaves. In Sect. 5.2 we give a toy example with 20
PTE solutions that produces the tree in Fig. 2. In this example the first hitting
set is {1, 2}; if a search was to use these 20 solutions, then most of the time only
two checks will be required before � can be advanced to the next set bit.

At a high level, our multi-solution sieve then runs the same way as the single
solution sieve in Sect. 4.2, except that we must traverse our tree each time �
is advanced. We do this by checking all of the elements of a the hitting set,
and we only enter the branch corresponding to a given element if the associated
check finds a ‘1’ (an example sequence of checks is included in Sect. 5.2). This is
repeated recursively until we either encounter a leaf, where we simply check the
remaining elements sequentially, or until all of the elements in the hitting set at
the current level of the tree return a ‘0’, at which point we can move up to the
branch above and continue. As mentioned above, in practice the most common
scenario is that all of the elements in the highest hitting set correspond to a ‘0’,
and the number of checks performed in order to rule out the full set of PTE
solutions is minimal. Note that checking the divisibility of a(�) and b(�) by the
constant C is, in practice, best left until the point where a match is found. Since
solutions have different constants and different sets of suitable relations, it is not
useful to incorporate modular relations into the sieving step of the multi-solution
algorithm.

The efficiency of checking all PTE solutions simultaneously is therefore heav-
ily dependent on the size of the first hitting set. In cases where we have many
PTE solutions (see Sect. 3.2), the first hitting set can be used to decide which
PTE solutions to search with. If a pre-existing set of PTE solutions has a hitting
set H, then including any additional solutions that share at least one element
with H incurs nearly no performance cost.

4.4 Success Probabilities

In Table 3 we use Heuristic 1 to draw comparisons between our method of finding
twin smooth integers and the prior methods discussed in Sect. 1.2. The entries
in the table are the approximate smoothness bounds that should be used to give
success probabilities of 2−20, 2−30, 2−40 and 2−50. The term success probability
is used to estimate how large a search space needs to be covered before we can
expect to find twin smooth integers; these probabilities are computed directly
via (1.2). For example (refer to the bold element in the last row of the table),
using one PTE solution with n = 8 and a smoothness bound of B ≈ 226.9,
we can expect to find a pair of twin smooth numbers in [1, N ] = [1, 2384] after
searching roughly 220 inputs � ∈ [1, N1/n] = [1, 248], for which aC(�) and bC(�)
are integers.3 To find similarly sized twin smooth integers using the XGCD
approach, we would have to search roughly 220 elements with a smoothness
bound of B ≈ 241.5, or 230 elements with a smoothness bound of B ≈ 232.8; on

3 The total number of inputs required for this (including the ones which lead to non-
integer polynomial values) depends on the PTE solution and associated constant in
use, and can easily be computed via the CRT approach described before.
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Table 3. Table of smoothness bounds and success probabilities for known methods
and our method. All numbers are given as base-2 logarithms. Further explanation in
text.

N

256 384 512

method
n

probability
n

probability
n

probability

−50 −40 −30 −20 −50 −40 −30 −20 −50 −40 −30 −20

näıve – 20.2 23.4 28.4 36.7 – 30.2 35.2 42.6 55.1 – 40.3 46.9 56.7 73.4

XGCD – 15.9 18.4 21.9 27.7 – 23.9 27.5 32.8 41.5 – 31.9 36.7 43.7 55.3

2xn − 1

4 15.6 17.8 20.8 25.8 6 19.9 22.6 26.4 32.3 6 26.6 30.1 35.2 43.1

6 13.3 15.1 17.6 21.6 8 20.4 23.2 27.2 33.8 12 22.0 24.9 28.9 35.2

8 13.6 15.5 18.2 22.5 10 20.3 23.1 27.2 33.8 16 25.8 29.3 34.6 43.5

9 15.4 17.7 21.0 26.4 12 16.5 18.7 21.7 26.4 18 23.3 26.3 30.9 38.4

10 13.5 15.4 18.2 22.5 16 19.3 22.0 25.9 32.7 20 23.2 26.3 31.0 38.5

12 11.0 12.4 14.5 17.6 18 17.4 19.8 23.1 28.8 24 20.2 22.9 26.7 32.8

PTE

3 20.4 23.0 26.6 32.2 3 30.6 34.5 39.9 48.4 4* 30.6 34.5 39.9 48.4

3* 16.2 18.4 21.6 26.6 3* 24.3 27.7 32.4 39.9 5 31.9 25.6 40.6 48.2

4 17.8 20.0 22.9 27.5 4 26.7 29.9 34.4 41.2 6 29.1 32.2 36.6 43.0

4* 15.3 17.2 20.0 24.2 4* 22.9 25.8 29.9 36.3 6* 25.2 28.2 32.2 38.5

5 16.0 17.8 20.3 24.1 5 24.0 26.7 30.4 36.1 7 26.8 29.6 33.5 39.0

6 14.5 16.1 18.3 21.5 6 21.8 24.2 27.5 32.3 8 24.9 27.5 30.9 35.8

6* 12.6 14.1 16.1 19.3 6* 18.9 21.1 24.2 28.9 9 23.3 25.7 28.7 33.2

7 13.4 14.8 16.7 19.5 7 20.1 22.2 25.1 29.3 10 22.0 24.1 26.8 31.1

8 12.5 13.7 15.4 17.9 8 18.7 20.6 23.2 26.9 12 19.8 21.5 23.9 27.5

the other hand, if we were using XGCD with the same B ≈ 226.9 as the PTE
solution, we should expect to have to search a space larger han 240 before finding
twin smooths.

We stress that Table 3 is merely intended as a rough guide to the size of the
smoothness bounds we should use in a given search, and similarly to provide an
approximate comparison between the methods. As mentioned in Sect. 2, Heuris-
tic 1 makes the rather strong assumption that the elements in our PTE solutions
are uniform in [1, N1/n], and using the Dickman–de Bruijn function is a rather
crude blanket treatment of the concrete combinations of B, N and n of inter-
est to us. Moreover, the best version of our sieve (like the one used in Sect. 6)
combines hundreds of PTE solutions into one search, and extending a theoret-
ical analysis to cover such a collection of solutions is unnecessary. We point
out that the application of Heuristic 1 to our scenario further assumes that the
denominator C gets absorbed by the different factors uniformly. In other words,
we assume that after canceling the denominator, all factors of aC(�) and bC(�)
roughly have the same size. Although this is not true in general, our experiments
and the smoothness of C (see Sect. 3.1) suggest this to be a good approximation
for the average case.



Sieving for Twin Smooth Integers 291

The elements of the table that are faded out correspond to instances where
the size of the possible search space is not large enough to expect to find solu-
tions with the given probability. Moreover, Table 3 does not incoporate the addi-
tional probabilities associated with the twin smooth integers having a prime sum.
Searches for cryptographic parameters typically need to find several twin smooth
integers before finding a pair with a prime sum, so our search spaces tend to
be a little larger than Table 3 suggests.4 We chose 2−20 as the largest success
probability in the table under the assumption that any search for twin smooth
integers will cover a space of size at least 220.

A number of rows in the lower section of the table are marked (*) to indicate
that these are PTE solutions with repeated factors. Viewing Heuristic 1, we see
that these solutions find twin smooth integers with a higher probability than
those PTE solutions without repeated factors, which is why they show a lower
smoothness bound (for a fixed probability). PTE solutions with repeated factors
are only known for n ∈ {3, 4, 6}.

5 A Worked Example

We now give concrete examples found with the sieve described in Sect. 4, referring
back to the theory developed in Sect. 3 where applicable. We first illustrate a
simple search that uses a single PTE solution, and then move to combining many
PTE solutions into the same sieve.

5.1 Searching with a Single PTE Solution

Suppose we are searching for twin smooth integers (m,m + 1) with 2240 ≤ m <
2256. Table 3 suggests that the best chances of success are with n ∈ {6, 7, 8},
and in particular with the n = 6 solutions that have repeated factors. Since the
search spaces using polynomials of degree n = 7 and n = 8 are rather confined
when targeting m < 2256 (see Table 3), for this example we use a PTE solution
of size n = 6 containing repeated factors, namely

[1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16], (7)

which corresponds to the polynomials

a(x) = (x−1)2(x−8)2(x−15)2, b(x) = x(x−3)(x−5)(x−11)(x−13)(x−16).

Proposition 1 induces that a(x) and b(x) differ by an integer constant, which in
this case is

C = a(x) − b(x) = 14400 = 263252.

Observe that Proposition 2 guaranteed that C was a multiple of (n − 1)! = 5!.

4 It is beyond the scope of this work to make any statements about the probability of
a prime sum, except to say that in practice we observe that twin smooth sums have
a much higher probability of being prime than a random number of the same size.
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Given that 213 < C < 214, searching for m with 2240 ≤ m < 2256 means
searching for values � such that a(�) and b(�) lie between 2254 and 2269, so that
aC(�) and bC(�) are then of the right size. Since a(x) and b(x) have degree 6,
this means searching with 242 ≤ � < 245.

Recall from Sect. 4 that our sieving algorithm alternates between two main
phases. The first is independent of the PTE solution(s) we are searching
with, and simply involves identifying all smooth numbers in a given interval
(see Sect. 4.1). In this example, we chose interval sizes of 220 = 1048576, so at
the conclusion of this first phase, we have a bitstring of length 1048576 to search
over: a ‘1’ in this string means the number associated with its index is B-smooth,
while a ‘0’ indicates that it is not.

With B ≈ 216.1, Table 3 suggests that searching with the PTE solution in (7)
will find twin smooth integers for roughly 1 in every 230 values of � that are
tried. Thus, we set B = 216 and started the search at � = 242. With this � and
B, the Dickman–de Bruijn function tells us that we can expect the proportion
of B-smooth numbers to be close to ρ(42/16) ≈ 0.103.

At the top of Fig. 1, we give 30 bits of an interval (found after sieving for
some time) that correspond to � = 5170314186700 + t, for t ∈ {30, 31, . . . 59}.
Here 11 of the 30 bits are 1, so the proportion of B-smooth numbers in this small
interval is exceptionally high; indeed, these are the kinds of substrings we are
sieving for, in hope that our PTE solution aligns favorably to find 1’s in all of the
required places. Viewing (7), we write �i = �−i for i ∈ {0, 1, 3, 5, 8, 11, 13, 15, 16}.
As depicted in Fig. 1, each step in the second phase starts by finding the next
smooth number (i.e. the next ‘1’ in the string), advancing � = �0 to align there
before sequentially checking from �1 through to �16. If, at any stage, one of the
�i is aligned with a ‘0’, we advance � to the next ‘1’ in the string and repeat
the procedure. Once we have finished processing a full interval (of size 220 in
this case), we advance to the next interval by first computing the string that
identifies all B-smooth numbers, then processing the interval by aligning �0 with
the next set bit, and checking the remaining �i.

In Fig. 1 we see that when �0 = 5170314186747, the next bit checked reveals
that �1 corresponds to a ‘0’, so this position is immediately discarded and we
advance to the next set bit taking �0 = 5170314186750. Again, �1 discovers a
‘0’, so �0 advances to 5170314186752, and then to 5170314186754 (both of these
also have �1 aligned with ‘0’). Advancing to �0 = 5170314186755, we see that
the remaining �i correspond to set bits and are thus all smooth, namely

�0 = 5 · 29 · 31 · 211 · 557 · 9787, �1 = 2 · 71 · 919 · 1237 · 32029,

�3 = 212 · 112 · 13 · 277 · 2897, �5 = 2 · 3 · 53 · 181 · 4783 · 7963,

�8 = 32 · 23 · 41 · 83 · 1117 · 6571, �11 = 23 · 3 · 72 · 17 · 43 · 191 · 31489,

�13 = 2 · 103 · 1093 · 2663 · 8623, �15 = 22 · 5 · 1163 · 11927 · 18637,

�16 = 13 · 53 · 113 · 3347 · 19841.
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Fig. 1. Sieving with the PTE solution [1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16] across the
subinterval � = 5170314186700 + t for t ∈ {30, 31, . . . 59}. Further explanation in text.

The PTE solution (7) translates into the twin-smooth numbers

(m,m + 1) =
(

�0�3�5�11�13�16
C

,
(�1�8�15)2

C

)
.

In this case their sum is a prime p, which lies between the B-smooth numbers
2m and 2(m + 1), namely

p = 2m + 1 = 2653194648913198538763028808847267222102564753030025033104122760223436801.

Remark 1. When searching with a single solution, in practice we only want to
search over the � ∈ Z for which a(�) ≡ b(�) = 0 mod C. As described in Sect. 3,
we use the CRT to find these � by first working modulo each of the prime power
factors of C. In this case we find

– 40 residues r1 ∈ [0, 26) such that a(�) ≡ b(�) ≡ 0 mod 26 iff � ≡ r1 mod 26;
– 9 residues r2 ∈ [0, 32) such that a(�) ≡ b(�) ≡ 0 mod 32 iff � ≡ r2 mod 32;
– 15 residues r3 ∈ [0, 52) such that a(�) ≡ b(�) ≡ 0 mod 52 iff � ≡ r3 mod 52.

Here we see that a(�) ≡ b(�) ≡ 0 mod 32 for all � ∈ Z (this can be seen immedi-
ately by looking at the expression for a(x) above), so we can ignore the factor
of 32 and work with the effective denominator C ′ = 2652 = 1600. Of the 1600
possible residues in [0, 2635), we only search over the 40 · 15 = 600 values of
� that will produce a(�) ≡ b(�) ≡ 0 mod C ′. In this case the list of residues is
small enough that we can simply store them once and for all and avoid recom-
puting them on the fly with the CRT at runtime. However, many of the PTE
solutions we use have much larger denominators and a much smaller proportion
of residues to be searched over, and in these cases storing residues modulo each
prime power and then using the CRT on the fly is much faster than looking up
the full set of residues (modulo C) in one huge table.
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For ease of exposition, we ignored this in the above example. Returning to
Fig. 1, we point out that none of the four values that were checked prior to finding
the solution (i.e. � = 5170314186700 + t with t ∈ {47, 50, 52, 54}) are such that
a(�) ≡ b(�) ≡ 0 mod C. In fact, none of the other smooth �’s depicted in Fig. 1
have this property; the previous smooth � that does is � = 5170314186728, so in
practice we would have advanced straight from this � to the successful one.

Remark 2. Since the degree of a and b is even, negative values for � will lead
to valid positive twin smooth integers and possibly a corresponding prime sum.
Negative values can be taken into account by considering the flipped solution
(as defined at the end of Sect. 3.1). Because the solution considered here is sym-
metric, any pattern corresponding to a negative value also occurs for a positive
value.

5.2 Sieving with Many PTE Solutions

We now turn to illustrating the full sieving algorithm that combines many PTE
solutions into one search. The degree 6 sieves we used in practice combined
hundreds of PTE solutions into one search (see Table 2), but for ease of exposition
we will illustrate using the first 20 solutions (ordered by the size of the constant).
These range from the solution S1, which has C = 14400 = 26 · 32 · 52, to S20,
which has C = 13305600 = 28 · 33 · 52 · 7 · 11. These solutions are listed below.

S1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15]; S2 : [0, 5, 6, 16, 17, 22] =5 [1, 2, 10, 12, 20, 21],

S3 : [0, 4, 9, 17, 22, 26] =5 [1, 2, 12, 14, 24, 25], S4 : [0, 7, 7, 21, 21, 28] =5 [1, 3, 12, 16, 25, 27],

S5 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28], S6 : [0, 5, 13, 23, 31, 36] =5 [1, 3, 16, 20, 33, 35],

S7 : [0, 8, 9, 25, 26, 34] =5 [1, 4, 14, 20, 30, 33], S8 : [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35],

S9 : [0, 9, 11, 29, 31, 40] =5 [1, 5, 16, 24, 35, 39], S10 : [0, 8, 11, 27, 30, 38] =5 [2, 3, 18, 20, 35, 36],

S11 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40], S12 : [0, 6, 17, 29, 40, 46] =5 [1, 4, 20, 26, 42, 45],

S13 : [0, 7, 14, 28, 35, 42] =5 [2, 3, 20, 22, 39, 40], S14 : [0, 10, 13, 33, 36, 46] =5 [1, 6, 18, 28, 40, 45],

S15 : [0, 9, 17, 34, 36, 46] =5 [1, 6, 24, 25, 42, 44], S16 : [0, 9, 14, 32, 37, 46] =5 [2, 4, 21, 25, 42, 44],

S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49], S18 : [0, 11, 15, 37, 41, 52] =5 [1, 7, 20, 32, 45, 51],

S19 : [0, 7, 21, 35, 49, 56] =5 [1, 5, 24, 32, 51, 55], S20 : [0, 12, 13, 37, 38, 50] =5 [2, 5, 22, 28, 45, 48].

In regards to Remark 1, recall from Sect. 4 that each PTE solution has a
different constant C and thus a different set of residues. In general these residues
are incompatible with one another, so we choose to ignore them until the sieve
identifies candidate pairs (�, Si), at which point we only mark the pair as a
solution if the corresponding polynomials have a(�) ≡ b(�) ≡ 0 mod C.

Now, recall from Sect. 4 that our sieving tree is built by recursively identifying
hitting sets among the set of solutions, and then removing the corresponding
element in the hitting set from each solution. The first hitting set is (always)
{0}, which is the root of our tree. After removing 0 from all of the solutions, we
see that the next hitting set is {1, 2}; some PTE solutions contain both 1 and 2,
but 1 appears in more solutions than 2 does, so the solutions S2 and S3 occur in
the branches that fall beneath 1 in the tree. Repeating this process produces the
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tree in Fig. 2. Note that this is a precomputation that is done once-and-for-all
before the sieve begins.

Fig. 2. A sieving tree for 20 example PTE solutions. Further explanation in text.

Again we target 2240 ≤ m < 2256 by searching with 242 ≤ � < 245, set our
smoothness bound as B = 216, and alternate between identifying the B-smooth
numbers in intervals of size 220 = 1048576, processing each interval by advancing
through all of the set bits (smooth numbers) within it. Write �i = �− i as before.
Here the hitting set has only two elements, so given that the probability of
smoothness is roughly ρ(42/16) ≈ 0.103, most of the time we will only need to
check two neighboring bits (�1 and �2) before discarding each candidate �.

Viewing Fig. 2, we traverse the tree by moving down the levels and processing
each subsequent hitting set from left to right. If, at any stage, we find a smooth
number, we immediately move down a level and process the numbers branching
beneath it. We are only permitted to move up a level and continue to the right
once the entire hitting set at a given level has been checked. Finally, if at any
stage we arrive at a leaf and find that all of the remaining numbers are smooth,
we then identify this solution as a candidate. At this stage we check whether
a(�) ≡ b(�) ≡ 0 mod C, in which case we have found twin smooth integers, and
then optionally check whether their sum is a prime, in which case we have found
cryptographically suitable parameters.

After some time, our sieve advances to the B-smooth number

�0 = 5435932476400 = 24 · 52 · 199 · 4817 · 14177.

In this case the subsequent set of ordered checks made in traversing the
tree in Fig. 2 are given below (we use ✓ to indicate that �i is B-smooth, ✗
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otherwise). Checking the entire leaf marked S17 is combined into Check 5 for
brevity; the remaining values here are �i with i ∈ {9, 20, 30, 34, 41, 44, 49, 50}.

Check 1. �1 ✓ Check 2. �16 ✓ Check 3. �5 ✗ Check 4. �3 ✗
Check 5. S17 ✓ Check 6. �4 ✗ Check 7. �6 ✓ Check 8. �36 ✗
Check 9. �7 ✗ Check 10. �2 ✗

At the conclusion of Check 5, we now know that all of the elements in
S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49] are smooth, and thus we have
found a candidate solution. Checks 6–10 are included to show how the sieve
continues. It remains to check whether � = 5435932476400 gives a(�) ≡ b(�) ≡
0 mod C, when

a(x) = x(x − 9)(x − 16)(x − 34)(x − 41)(x − 50)

and
b(x) = (x − 1)(x − 6)(x − 20)(x − 30)(x − 44)(x − 49).

are such that C = 7761600. In this case we do find that a(�) ≡ 0 mod C (which
is sufficient), so we know that

m = �0�9�16�34�41�50/C and m + 1 = �1�6�20�30�44�49/C

are both B-smooth integers. Indeed, factoring reveals that

m = 25 · 34 · 52 · 109 · 173 · 199 · 233 · 571 · 677 · 743 · 1303 · 2351 · 2729
· 3191 · 4817 · 12071 · 12119 · 14177 · 16979 · 30389 · 37159 · 39979, and

m + 1 = 13 · 17 · 23 · 31 · 61 · 103 · 263 · 643 · 1153 · 1429 · 1889 · 2213 · 3359
· 5869 · 7951 · 9281 · 18307 · 28163 · 34807 · 41077 · 41851 · 64231.

In this case 2m+1 is the product of two large primes, so a sieve for cryptographic
parameters would continue by advancing to the next smooth �0 in the interval.

6 Cryptographic Examples of Twin Smooth Integers

We implemented the sieve including the tree structure for searching with multiple
PTE solutions in Python 3 and used it to run our experiments. The first phase
of the algorithm, i.e. the sieve that identifies smooth numbers was written in C
and called from the python code, which resulted in a significant speedup. The
code takes as input the left and right bounds of a desired interval to be searched,
a size for the sub-intervals that are processed by the sieve at a time, as well as
a smoothness bound and a list of PTE solutions. It then computes the PTE
solution search tree and starts the sieve as described in Sects. 4 and 5. Another
input is a desired number of threads, between which the interval is divided and
then run on the available processors in a multi-processing fashion.

After examining the PTE solution counts in Table 2 and the smoothness
probabilities in Table 3, we chose to launch a sieve with 520 PTE solutions of
size n = 6 that searched � ∈ [240, 245] with a smoothness bound of B = 216 and
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intervals of size 220. The 520 solutions are all the ones we found that have a
constant of at most 38 bits. The first hitting set of the PTE solutions had cardi-
nality 13, and the Dickman–de Bruijn function estimates that the proportion of
B-smooth numbers in our interval is ρ(45/16) ≈ 0.0715. The search ran on 128
logical processors (Intel Xeon CPU E5-2450L @1.8 GHz) for just over a week
before the entire interval was scanned.

Table 4 reports one of the cryptographic primes that was found with our sieve
for each bitlength between 240 and 257 (excluding 253, 254 and 256, for which
no primes were found), and compares it to the primes found with prior methods
in the literature. For the primes found using PTE solutions, we give the search
parameter � together with the corresponding PTE solution, which is one of

S6
1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15],

S6
2 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28],

S6
3 : [0, 7, 33, 47, 73, 80] =5 [3, 3, 40, 40, 77, 77],

S6
4 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40].

For each prime we report the smoothness bound B, which is the largest prime
divisor of (p − 1)(p + 1), together with its bitlength. In the case of the 241- and
250-bit primes, we see that B < 215. The smallest prior B corresponding to
primes of around this size was the 19-bit B = 486839 from [8]. Referring back
to Table 3, we see that a search through an interval of this size should find a
few twin smooth integers with B < 215, but finding enough twin smooths with
B < 214 to hope for a prime sum among them may have been out of the question.

To check whether n = 6 produces the smoothest twins of this size (as Table 3
predicts), we ran similar sieves using the 8 PTE solutions with n = 7 and the
51 PTE solutions with n = 8 with B = 218, and in both cases we covered the
full range of possible inputs that would produce a p < 2256. Despite finding a
handful of twin smooth integers with B < 217, the search spaces were not large
enough to find any primes among them.

Table 4 also reports three cryptographic primes that target higher security
levels. When searching for p ≈ 2384, the PTE solutions with n = 6 again proved
to produce the smoothest twins; the 376- and 384-bit primes reported correspond
to twin smooths with B = 221 and B = 222, respectively. When searching for
p ≈ 2512, the PTE solution

S12
1 : [0, 11, 24, 65, 90, 129, 173, 212, 237, 278, 291, 302]

=11 [3, 5, 30, 57, 104, 116, 186, 198, 245, 272, 297, 299]

with n = 12 found the reported 512-bit prime, which lies between two integers
that are both 229-smooth.
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Table 4. A comparison between some of the best instances found with our sieve and
the best instances from the literature. Further explanation in text.

Method where p (bits) B �log2 B�
XGCD [4, App. A] 256 6548911 23

p = 2xn − 1 [8, Ex. 5] 247 652357 20

[8, Ex. 6] 237 709153 20

[8, Ex. 7] 247 745309897 30

[8, Ex. 8] 250 486839 19

PTE sieve 19798693013832 S6
3 240 54503 16

5170314186755 S6
1 241 32039 15

11434786499430 S6
2 242 62653 16

6387061913711 S6
1 243 56711 16

32519458118257 S6
3 244 64591 16

16232865719280 S6
2 245 49711 16

8812545447095 S6
1 246 40151 16

20173246926702 S6
2 247 40289 16

22687888853658 S6
2 248 59497 16

13061439823095 S6
2 249 38119 16

36144284257450 S6
4 250 32191 15

16189037375263 S6
2 251 65029 16

17545941442175 S6
1 252 35291 16

27071078665441 S6
1 255 52069 16

32554839816383 S6
1 257 42979 16

74939989736653381520 S6
4 376 1604719 21

74939982689644756283 S6
1 384 3726773 22

510796126391672 S12
1 512 238733063 28

7 Relaxations and Modifications

There are numerous ways to modify our sieving approach for performance rea-
sons, or to relax the search conditions in order to precisely match the security
requirements imposed by B-SIDH or SQISign.

Approximate Sieves. There are several sieving optimizations discussed in
[9, §3.2.5–3.3] that can be applied to the sieving phase of our algorithm. For
large scale searches, it could be preferred to sacrifice the exactness of the sieve we
implemented for more performant approximate sieves. For example, the smallest
primes are the most expensive to sieve with due to the large number of multi-
plications. Thus, an approximate sieve can choose to skip these small primes
(but still include the larger prime powers) and choose to tag numbers as being
B-smooth as soon as the result is close enough to the expected number. This
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requires to choose an error bound, which also determines if and how many false
positive and false negative results are going to occur.

A standard approach for sieving algorithms is discussed by Crandall and
Pomerance [9, §3.2.5]. This approach replaces multiplications by additions in
Eratosthenes-like sieves, by choosing to represent numbers as their (base-2) log-
arithms. Moreover, sieves can use approximate logarithms, i.e. round these log-
arithms to nearby integers and tolerate errors in the logarithms; for example,
if we choose to tolerate errors up to log B, then we are guaranteed that factors
that are unaccounted for in the approximation are also less than the smoothness
bound [9, p. 124]. Rather than accumulating products, we are then accumulating
sums of relatively small integers. This approach is used in our C implementation
and for the ranges targeted here, allows the accumulated approximate logarithms
to be stored in a single byte.

Recall from Sect. 4.2 that when a single PTE solution is used we are only
interested to sieve the subset of integers for which a(�) ≡ b(�) ≡ 0 mod C. In this
case it may be preferable to employ Bernstein’s batch smoothness algorithm [3];
this can be used to gain a better overall complexity (per element) when sieving
through an arbitrary set.

Lastly, we point out that the set of primes used in the factor base can be
tailored to our needs. For example, if future research reveals that certain types
of prime isogeny degrees are favored over others (i.e. when invoking the Õ(

√
�)

algorithm from [4]), then it may be preferable to increase the bound B and only
include those primes in our sieve.

Non-smooth Cofactors Vs. Fully Smooth Numbers. The security analy-
ses of B-SIDH or SQISign suggest that both systems can tolerate a non-smooth
cofactor in either or both of p − 1 and p + 1. In these cases, relaxing conditions
in the second part of our sieve to allow non-smooth cofactors is straightforward.
When searching with PTE solutions of size n, we could e.g. only require n − 1
of the factors on each side to be B-smooth. The näıve way to do this when
traversing the tree would be to incorporate a counter that only allows branches
to be discarded when two non-smooth numbers have been discovered, but this
approach makes things unnecessarily complicated and significantly slower, e.g. it
no longer suffices to start the sieving procedure at each ‘1’ in the interval, since
�0 is now allowed to be non-smooth.

A much better approach can be taken by simply creating many relaxed PTE
solutions from the original solution A =n−1 B, and including them in the solution
tree. For example, if the security analysis corresponding to a search with n = 6
suggests we only need 5 smooth factors from each side of the PTE solution, then
the solution [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35] can be modified into 36
relaxed solutions, each of which corresponds from wiping out one number from
A and one number from B; these new solutions only include 10 distinct elements.
By building a tree from these solutions and running the same algorithm as in
Sect. 4, we are effectively allowing for one of the factors of the original solution to
be non-smooth. The only minor modification required appears when 0 is wiped



300 C. Costello et al.

out from a solution, in which case we have to shift all elements such that the
new solution contains 0, by the means of Proposition 3. We reiterate that all of
these modifications are a one-time precomputation before the sieve begins. In
the case of the PTE solutions with repeated factors, e.g. [0, 3, 5, 11, 13, 16] =5

[1, 1, 8, 8, 15, 15], we may not be able to tolerate a non-smooth cofactor that would
arise from removing any of 1, 8 or 15 from the PTE solution. On the other hand,
if the security analysis does permit such a cofactor (which appears to be the
case for SQISign), then our relaxed solutions would either remove one of the
repeated numbers from B, or two of the numbers from A; the latter would have
a better success probability, but (assuming the hitting set remains unchanged)
our tree approach would not pay any noticeable overhead by including all such
relaxations.

Acknowledgments. We thank Patrick Longa for his help with implementing the
smoothness sieve in C, and Fabio Campos for running and overseeing some of our
experiments.
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eurocrypt21@defeo.lu

Abstract. We introduce a new primitive named Delay Encryption, and
give an efficient instantiation based on isogenies of supersingular curves
and pairings. Delay Encryption is related to Time-lock Puzzles and Verifi-
able Delay Functions, and can be roughly described as “time-lock identity
based encryption”. It has several applications in distributed protocols,
such as sealed bid Vickrey auctions and electronic voting.

We give an instantiation of Delay Encryption by modifying Boneh
and Frankiln’s IBE scheme, where we replace the master secret key by a
long chain of isogenies, as in the isogeny VDF of De Feo, Masson, Petit
and Sanso. Similarly to the isogeny-based VDF, our Delay Encryption
requires a trusted setup before parameters can be safely used; our trusted
setup is identical to that of the VDF, thus the same parameters can be
generated once and shared for many executions of both protocols, with
possibly different delay parameters.

We also discuss several topics around delay protocols based on isoge-
nies that were left untreated by De Feo et al., namely: distributed trusted
setup, watermarking, and implementation issues.

Keywords: Delay functions · Isogenies · Pairings · Supersingular
elliptic curves

1 Introduction

The first appearance of delay cryptography was in Rivest, Shamir and Wag-
ner’s [29] Time-lock Puzzle, an encryption primitive where the holder of a trap-
door can encrypt (or decrypt) “fast”, but where anyone not knowing the trapdoor
can only decrypt (or encrypt) “slowly”.

Recently, a revival of delay cryptography has been promoted by research on
blockchains, in particular thanks to the introduction of Verifiable Delay Func-
tions (VDF) [4]: deterministic functions f that can only be evaluated “sequen-
tially” and “slowly”, but such that verifying that y = f(x) is “fast”.

After their definition, VDFs quickly gained attention, prompting two inde-
pendent solutions in the space of a few weeks [27,34]. Both proposals are based
on repeated squaring in groups of unknown order, and are similar in spirit to
Rivest et al.’s Time-lock Puzzle, however they use no trapdoor.

One year later, another VDF, based on a different algebraic structure, was
proposed by De Feo, Masson, Petit and Sanso [17]. This VDF uses chains of
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supersingular isogenies as “sequential slow” functions, and pairings for efficient
verification. Interestingly, it is not known how to build a Time-lock Puzzle from
isogenies; in this work we introduce a new primitive, in some respects more
powerful than Time-lock Puzzles, that we are able to instantiate from isogenies.

Limitations of Time-lock Puzzles. Time-lock Puzzles allow one to “encrypt
to the future”, i.e., to create a puzzle π that encapsulates a message m for a set
amount of time T . They have the following two properties:

– Puzzle generation is efficient: there exists an algorithm which, on input the
message m and the delay T , generates π in time much less than T .

– Puzzle solving is predictably slow and sequential: on input π, the message
m can be recovered by a circuit of depth approximately T , and no circuit of
depth less than T can recover m reliably.

Time-lock Puzzles can be used to remove trusted parties from protocols,
replacing them with a time-consuming puzzle solving. Prototypical applications
are auctions and electronic voting, we will use auctions as a motivating example.

In a highest bidder auction, the easy solution in presence of a trusted author-
ity is to encrypt bids to the authority, who then decrypts all the bids and selects
the winner. Lacking a trusted authority, the standard solution is to divide the
auction in two phases: in the bidding phase all bidders commit to their bids using
a commitment; in the tallying phase bidders open their commitments, and the
highest bidder wins. However, this design has one flaw in contexts where it is
required that all bidders reveal their bids at the end of the auction. For example,
in Vickrey auctions, the highest bidder wins the auction, but only pays the price
of the second highest bid. If at the end of the auction some bidders refuse to
open their commitment, the result of the auction may be invalid.

Time-lock Puzzles solve this problem: by having bidders encapsulate their
bid in a Time-lock Puzzle, it is guaranteed that all bids can be decrypted in the
tallying phase. However this solution becomes very expensive in large auctions,
because one puzzle per bidder must be solved: if several thousands of bidders
participate, the tallyers must strike a balance between running thousands of
puzzle solving computations in parallel, and having a tallying phase that is
thousands of times longer than the bidding phase. Since Time-lock Puzzles use
trapdoors for puzzle generation, a potential mitigation is to have the bidders
reveal their trapdoors in the tallying phase, thus speeding up decryption; however
this does not help in presence of a large number of uncollaborative bidders.

An elegant solution introduced in [25] is to use Homomorphic Time-lock
Puzzles (HTLP), i.e., Time-lock Puzzles where the puzzles can be efficiently
combined homomorphically. Using these, the tallyers can efficiently evaluate the
desired tallying circuit on the unopen puzzles, and then run only a single slow
puzzle-solving algorithm. Unfortunately, the only efficient HTLPs introduced
in [25] are simply homomorphic (either additively or multiplicatively), and they
are thus only useful for voting; fully homomorphic TLPs, which are necessary
for auctions, are only known from Fully Homomorphic Encryption [9] or from
Indistinguishability Obfuscation [25], and are thus unpractical.
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On top of that, it can be argued that Time-lock Puzzles are not the appro-
priate primitive to solve the problem: why do the tallyers need to run one of two
different algorithms to open the puzzles? Are trapdoors really necessary? In this
work, we introduce a new primitive, Delay Encryption, that arguably solves the
problem more straightforwardly and elegantly.

Delay Encryption. Delay Encryption is related to both Time-lock Puzzles
and VDFs, however it does not seem to be subsumed by either. It can be viewed
as a time-lock analogue of Identity Based Encryption, where the derivation of
individual private keys is sequential and slow.

Instead of senders and receivers, Delay Encryption has a concept of sessions.
A session is defined by a session identifier, which must be a hard to predict
string. When a session identifier id is issued, anyone knowing id can encrypt to
the session for id; decryption is however unfeasible without a session key, which
is to be derived from id. The defining feature of Delay Encryption is extraction:
the process of deriving a session key from a session identifier. Extraction must
be a sequential and slow operation, designed to run in time T and no less for
almost any id.

Since there are no secrets in Delay Encryption, anyone can run extraction.
It is thus important that session identifiers are hard to predict, and thrown
away after the first use, otherwise an attacker may precompute session keys and
immediately decrypt any ciphertext to the sessions.

Delay Encryption is different from known Time-lock Puzzles in that it has no
trapdoor, and from VDFs in that it provides a fast encryption, rather than just a
fast verification. It has similar applications to Homomorphic Time-lock Puzzles,
it is however more efficient and solves many problems more straightforwardly.

Applications of Delay Encryption. We already mentioned the two main
applications of Time-lock Puzzles. We review here how Delay Encryption offers
better solutions.

Vickrey auctions. Sealed bid auctions are easily implemented with standard
commitments: in the bidding phase each bidder commits to its bid; later, in the
tallying phase each bidder opens their commitment. However this solution is
problematic when some bidders may refuse to open their commitments.

Delay Encryption provides a very natural solution: at the beginning of the
auction an auction identifier is selected using some unpredictable and unbiased
randomness, e.g., coming from a randomness beacon. After the auction identifier
is published, all bidders encrypt to the auction as senders of a Delay Encryption
scheme. In the meantime, anyone can start computing the auction key using
the extraction functionality. When the auction key associated with the auction
identifier is known, anyone in possession of it can decrypt all bids and determine
the winner.
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Electronic voting. In electronic voting it is often required that the partial tally
of an election stays unknown until the end, to avoid influencing the outcome.

Delay Encryption again solves the problem elegantly: once the election iden-
tifier is published, all voters can cast their ballot by encrypting to it. Only after
the election key is published, anyone can verify the outcome by decrypting the
ballots.

Of course this idea can be combined with classical techniques for anonymity,
integrity, etc.

In both applications it is evident that the session/auction/election identifier
must be unpredictable and unbiased: if it is not, someone may start computing
the session key before anyone else can, and thus break the delay property. Fortu-
nately, this requirement is easily satisfied by using randomness beacons, which,
conveniently, can be implemented using VDFs.

Contributions. Our main contribution is the introduction of Delay Encryption:
we formally define the primitive and its security, then argue about its naturalness
by relating it to other well known primitives such as IBE and VDFs.

Building on Boneh and Franklin’s IBE scheme [6], and on a framework intro-
duced in [17] for VDFs, we give an instantiation of Delay Encryption from isogeny
walks in graphs of pairing friendly supersingular elliptic curves. We prove the
security of our instantiation using a new assumption, related to both the Bilinear
Diffie-Hellman assumption typical of pairing based protocols, and the Isogeny
Shortcut assumption used for isogeny based VDFs.

Additionally, we cover some topics related to isogeny-based delay functions
which apply to both our Delay Encryption and to VDFs, which were left
untreated by [17]:

1. We show how to realize the trusted setup needed in all isogeny-based delay
protocols in a distributed manner, and propose an efficient implementation
based on a new zero-knowledge proof of isogeny knowledge—whose security
we are only able to prove heuristically using a non-falsifiable assumption.

2. We show how to claim “ownership” of a delay function evaluation (aka extrac-
tion, in the Delay Encryption jargon), by attaching a “watermark” to the
result of the evaluation. Watermarking can be used in distributed consensus
protocols to reward the party who bears the load of evaluating the delay
function.

3. We provide new elliptic curve representations and isogeny formulas optimized
for the operations occurring in isogeny based delay functions. Based on these,
we estimate the length of the isogeny walk needed to achieve a certain delay,
and the size of the associated public parameters.

Plan. Delay Encryption is defined in Sect. 2, and our instantiation is given in
Sect. 3. Each of the following sections discusses one topic related to both Delay
Encryption and VDFs based on isogenies: Sect. 4 discusses the trusted setup,
Sect. 5 covers watermarking, Sect. 6 introduces the new isogeny formulas and
makes some practical considerations.
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2 Definitions

Our definition of Delay Encryption uses an API similar to a Key Encapsulation
Mechanism: it consists of four algorithms—Setup, Extract, Encaps and Decaps—
with the following interface.

Setup(λ, T ) → (ek, pk). Takes a security parameter λ, a delay parameter T ,
and produces public parameters consisting of an extraction key ek and an
encryption key pk. Setup must run in time poly(λ, T ); the encryption key
pk must have size poly(λ), but the evaluation key ek is allowed to have size
poly(λ, T ).

Extract(ek, id) → idk. Takes the extraction key ek and a session identifier id ∈
{0, 1}∗, and outputs a session key idk. Extract is expected to run in time
exactly T , see below.

Encaps(pk, id) → (c, k). Takes the encryption key pk and a session identifier
id ∈ {0, 1}∗, and outputs a ciphertext c ∈ C and a key k ∈ K. Encaps must
run in time poly(λ).

Decaps(pk, id, idk, c) → k. Takes the encryption key pk, a session identifier id, a
session key idk, a ciphertext c ∈ C, and outputs a key k ∈ K. Decaps must
run in time poly(λ).

When Encaps and Decaps are combined with a symmetric encryption scheme
keyed by k, they become the encryption and decryption routines of a hybrid
encryption scheme, which can then be used as in the applications described
previously. Alternatively we could have used a PKE-like API directly, however
we prefer the KEM one as it is closer to known instantiations.

A Delay Encryption scheme is correct if for any (ek, pk) = Setup(λ, T ) and
any id

idk = Extract(ek, id) ∧ (c, k) = Encaps(pk, id) ⇒ Decaps(pk, id, idk, c) = k.

The security of Delay Encryption is defined similarly to that of public key encryp-
tion schemes, and in particular of identity-based ones; however one additional
property is required of Extract: that for a randomly selected identifier id, the
probability that any algorithm outputs idk in time less than T is negligible. We
now give the formal definition.

The security game. It is apparent from the definitions that Delay Encryption has
no secrets: after public parameters (ek, pk) are generated, anyone can run any of
the algorithms. Thus, the usual notion of indistinguishability will only be defined
with respect to the delay parameter T : no adversary is able to distinguish a key
k from a random string in time T − o(T ), but anyone can in time T . Properly
defining what is meant by “time” requires fixing a computation model. Here
we follow the usual convention from VDFs, and assume a model of parallel
computation: in this context, “time T” may mean T steps of a parallel Turing
machine, or an arithmetic circuit of depth T . Crucially, we do not bound the
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amount of parallelism of the Turing machine, or the breadth of the circuit, i.e.,
we focus on sequential delay functions.

We consider the following Δ-IND-CPA game. Note that the game involves
no oracles, owing to the fact that the scheme has no secrets.

Precomputation. The adversary receives (ek, pk) as input, and outputs an
algorithm D.

Challenge. The challenger selects a random id and computes a key encapsula-
tion (c, k0) ← Encaps(pk, id). It then picks a uniformly random k1 ∈ K, and
a random bit b ∈ {0, 1}. Finally, it outputs (c, kb, id).

Guess. Algorithm D is run on input (c, kb, id). The adversary wins if D termi-
nates in time less than Δ, and the output is such that D(c, kb, id) = b.

We stress that the game is intrinsically non-adaptive, in the sense that no
computation is “free” after the adversary has seen the challenge.

We say a Delay Encryption scheme is Δ-Delay Indistinguishable under Cho-
sen Plaintext Attacks if any adversary running the precomputation in time
poly(λ, T ) has negligible advantage in winning the game. Obviously, the inter-
esting schemes are those where Δ = T − o(T ).

Remark 1. Although it would be possible to define an analogue of chosen cipher-
text security for Delay Encryption, by giving algorithm D access to a decryption
oracle for id, it is not clear what kind of real world attacks this security notion
could model. Indeed, an instantaneous decryption oracle for id would go against
the idea that the session key idk needed for decryption is not known to anyone
before time T .

Similarly, one could imagine giving D access to an extraction oracle, to allow
it instantaneous adaptive extraction queries after the challenge (note that in
the precomputation phase the adversary is free to run polynomially many non-
adaptive extractions). However it is not clear what component of a real world
system could provide such instantaneous extraction in practice, since extraction
is a public (and slow) operation.

2.1 Relationship with Other Primitives

Delay Encryption and Identity Based Encryption. Although there is no formal
relationship between Identity Based Encryption (IBE) and Delay Encryption,
the similarity is evident.

Recall that an IBE scheme is a public key encryption with three parties: a
dealer who possesses a master private/public key pair, a receiver who has an
identity that acts as its public key (e.g., its email address), and a sender who
wants to send a message to the receiver. In IBE, the dealer runs an extraction on
the identity to generate the receiver’s secret key. The sender encrypts messages
to the receiver using both the identity and the master public key. The receiver
decrypts using the master public key and the private key provided by the dealer.

Delay Encryption follows the same blueprint, but has no secrets: there is no
master key anymore, but only a set of public parameters (ek, pk). Receiver identi-
ties become session identifiers id: public but unpredictable. The dealer is replaced
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by the public functionality Extract(ek, id): sequential and slow. Senders encrypt
messages to the sessions by using pk and id. After extraction has produced idk,
anyone can decrypt messages “sent” to id by using idk.

The similarity with IBE is not fortuitous. Indeed, the instantiation we present
next is obtained from Boneh and Franklin’s IBE scheme [6], by replacing the mas-
ter secret with a public, slow to evaluate, isogeny. This is analogous to the way
De Feo et al.’s VDF [17] is obtained from the Boneh–Lynn–Shacham signature
scheme [7].

The similarity with IBE will be mirrored both in the reductions we discuss
next, and in the security proof of our instantiation.

Delay Encryption and Verifiable Delay Functions. Boneh and Franklin attribute
to Naor the observation that IBE implies signatures. The construction is straight-
forward: messages are encoded to identities; to sign a message id, simply output
the derived private key idk associated to it. To verify a signature (id, idk): run
encapsulation to id obtaining a random (c, k), decapsulate (id, idk, c) to obtain k′,
and accept the signature if k = k′. The signature scheme is existentially unforge-
able if the IBE scheme is indistinguishable under chosen ciphertext attacks.

Precisely the same construction shows that Delay Encryption implies
(sequential) Proof of Work. Furthermore, if we define extraction soundness as
the property that adversaries have negligible chance of finding idk �= idk′ such
that

Decaps(pk, id, idk, c) = Decaps(pk, id, idk′, c),

then we see that extraction sound Delay Encryption implies Verifiable Delay
Functions. It is easily verified that the derived VDF is Δ-sequential if the Delay
Encryption scheme is Δ-IND-CPA.

The signature scheme derived from Boneh and Franklin’s IBE is equivalent
to the Boneh–Lynn–Shacham scheme. Unsurprisingly, the instantiation of Delay
Encryption that we give in the next section is extraction sound, and the derived
VDF is equivalent to De Feo et al.’s VDF.

Delay Encryption and Time-lock Puzzles. Both Delay Encryption and Time-lock
Puzzles permit a form of encryption to the future: encrypt a message now, so that
it can only be decrypted at a set time in the future. There is no formal definition
of Time-lock Puzzles commonly agreed upon in the literature, it is thus difficult
to say what they exactly are and how they compare to Delay Encryption.

Bitansky et al. [3] define Time-lock Puzzles as two algorithms

– Gen(λ, T, s) → Z that takes as input a delay parameter T and a solution
s ∈ {0, 1}λ, and outputs a puzzle Z;

– Solve(Z) → s that takes as input a puzzle Z and outputs the solution s;

under the constraints that Gen runs in time poly(λ, log T ) and that no algorithm
computes s from Z in parallel time significantly less than T .

One might be tempted to construct a Time-lock Puzzle from Delay Encryp-
tion by defining Gen as follows:
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1. Compute (ek, pk) ← Setup(λ, T );
2. Sample a random id ∈ {0, 1}λ;
3. Compute (c, k) ← Encaps(pk, id);
4. Compute m = Ek(s);
5. Return (ek, pk, id, c,m);

where Ek is a symmetric encryption scheme. Then Solve is naturally defined as

1. Compute idk ← Extract(ek, id);
2. Compute k ← Decaps(pk, id, idk, c);
3. Return s = Dk(m);

where Dk is the decryption routine associated to Ek.
However this fails to define a Time-lock Puzzle in the sense above, because

Setup can take time poly(λ, T ) instead of poly(λ, log T ). If we take Setup out
of Gen, though, we obtain something very similar to what Bitansky et al. call
Time-lock Puzzles with pre-processing, albeit slightly weaker.1

We see no technical obstruction to having Setup run in time poly(λ, log T ),
and thus being a strictly stronger primitive than Time-lock Puzzles. However
our instantiation does not satisfy this stronger notion of Delay Encryption, and,
lacking any other candidate, we prefer to keep our definitions steeping in reality.

To summarize, Delay Encryption is a natural analogue of Identity Based
Encryption in the world of time delay cryptography. It requires Proofs of Work
to exist, and a mild strengthening of it (which we are able to instantiate) implies
Verifiable Delay Functions. It also implies a weak form of Time-lock Puzzles,
and a strengthening of it (of which we know no instantiation) implies standard
Time-lock Puzzles. At the same time, no dependency is known between Time-
lock Puzzles and Verifiable Delay Functions, indicating that Delay Encryption
is possibly a stronger primitive than both.

3 Delay Encryption from Isogenies and Pairings

We instantiate Delay Encryption from the same framework De Feo, Masson,
Petit and Sanso used to instantiate Verifiable Delay Functions [17]. We briefly
recall it here for completeness.

An elliptic curve E over a finite field Fpn is said to be supersingular if the trace
of its Frobenius endomorphism is divisible by p, i.e., if #E(Fpn) = 1 mod p.
Over the algebraic closure of Fp, there is only a finite number of isomorphism
classes of supersingular curves, and every class contains a curve defined over Fp2 .

We will only work with supersingular curves E/Fp2 whose group of Fp2 -
rational points is isomorphic to (Z/(p + 1)Z)2. For these curves, if N is a divisor
of p+1, we will denote by E[N ] the subgroup of Fp2 -rational points of N -torsion,
which is isomorphic to (Z/NZ)2. We will write E[N ]◦ for the subset of points

1 Bitansky et al. require pre-processing to run in sequential time T · poly(λ), but
parallel time only poly(λ, log T ).
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in E[N ] of order exactly N ; when N is prime, this is simply a shorthand for
E[N ] \ {O}.

However, among these curves some will be curves E/Fp defined over Fp, seen
as curves over Fp2 (in algebraic jargon, with scalars extended from Fp to Fp2). For
this special case, if N is an odd divisor of p+1, the Fp2 -rational torsion subgroup
E[N ] contains two distinguished subgroups: the subgroup E[N ]∩E(Fp) of points
of order N defined over Fp, which we also denote by E[(N,π − 1)]; and the
subgroup of points of order N not in E(Fp), but with x-coordinate in Fp, which
we denote by E[(N,π + 1)]. Again, we write E[(N,π − 1)]◦ and E[(N,π + 1)]◦

for the subsets of points of order exactly N .
An isogeny is a group morphism of elliptic curves with finite kernel. In partic-

ular, isogenies preserve supersingularity. Isogenies can be represented by ratios
of polynomials, and, like polynomials, have a degree. Isogenies of degree � are
also called �-isogenies; the degree is multiplicative with respect to composition,
thus deg φ ◦ ψ = deg φ · deg ψ. The degree is an important invariant of isogenies,
roughly measuring the amount of information needed to represent them.

An isogeny graph is a graph whose vertices are isomorphism classes of elliptic
curves, and whose edges are isogenies, under some restrictions. Isogeny-based
cryptography mainly uses two types of isogeny graphs:

– The full supersingular graph of (the algebraic closure of) Fp, whose vertices
are all isomorphism classes of supersingular curves over Fp2 , and whose edges
are all isogenies of a prime degree �; typically � = 2, 3.

– The Fp-restricted supersingular graph, or supersingular CM graph of Fp, whose
vertices are all Fp-isomorphism classes of supersingular curves over Fp, and
whose edges are �-isogenies for all primes � up to some bound; typically � �
λ log λ, where λ is the security parameter.

Any �-isogeny φ : E → E′ has a unique dual �-isogeny φ̂ : E′ → E such that

e′
N (φ(P ), Q) = eN (P, φ̂(Q)), (1)

for any integer N and any points P ∈ E[N ], Q ∈ E′[N ], where eN is the Weil
pairing on E, and e′

N the one on E′. The same equation, with the same φ̂, also
holds for any other known pairing, such as the Tate and Ate pairings.

The framework of De Feo et al. uses chains of small degree isogenies as delay
functions, and the pairing Eq. (1) as an efficient means to verify the computation.
Formally, they propose two related instantiations of VDF, following the same
pattern: they both use the same base field Fp, where p is a prime of the form
p + 1 = N · f with N prime, chosen so that discrete logarithms in the group of
N -th roots of unity in Fp2 (the target group GT of the pairing) are hard (i.e.,
N ≈ 22λ and p ∼ 2λ3

). They have a common trusted setup, independent of the
delay parameter, and the usual functionalities of a VDF:

Trusted setup selects a random supersingular elliptic curve E over Fp.
Setup takes as input p,N,E, a delay parameter T , and performs a walk in an

�-isogeny graph to produce a degree �T isogeny φ : E → E′.
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It also computes a point P ∈ E(Fp) of order N . It outputs φ,E′, P, φ(P ).
Evaluation takes as input a random point Q ∈ E′[N ] and outputs φ̂(Q).
Verification uses Eq. (1) to check that the value output by evaluation is φ̂(Q)

as claimed.

The two variants only differ in the way the isogeny walk is set up, and in
minor details of the verification; these differences will be irrelevant to us.

The delay property of this VDF rests, roughly speaking, on the assumption
that a chain of T isogenies of small prime degree � cannot be computed more
efficiently than by going through each of the isogenies one at a time, sequentially.
The case � = 2 is very similar to repeated squaring in groups of unknown order
as used by other VDFs [27,34] and Time-lock Puzzles [29]: in groups, one iterates
T times the function x �→ x2, a polynomial of degree 2; in isogeny graphs, one
iterates rational fractions of degree 2. See Sect. 6 for more details.

It is important to remark that both setup and evaluation in these VDFs
are “slow” algorithms, indeed both need to evaluate an isogeny chain (either
φ, or φ̂) at one input point of order N ; this is in stark contrast with VDFs
based on groups of unknown order, where the setup, and thus its complexity, is
independent of the delay parameter T .

3.1 Instantiation

The isogeny-based VDF of De Feo et al. can be understood as a modification on
the Boneh–Lynn–Shacham [7] signature scheme, where the secret key is replaced
by a long chain of isogenies: signing becomes a “slow” operation and thus realizes
the evaluation function, whereas verification stays efficient.

Similarly, we obtain a Delay Encryption scheme by modifying the IBE scheme
of Boneh and Franklin [6]: the master secret is replaced by a long chain of
isogenies, while session identifiers play the role of identities, so that producing
the decryption key for a given identity becomes a slow operation.

Concretely, setup is identical to that of the VDF. A prime of the form p =
4 · N · f − 1 is fixed according to the security parameter, then setup is actually
split into two algorithms: a TrustedSetup independent of the delay parameter T
and reusable for arbitrarily many untrusted setups, and a Setup which depends
on T .

TrustedSetup(λ). Generate a nearly uniformly random supersingular curve E/Fp

by starting from the curve y2 = x3 + x and performing a random walk in the
Fp-restricted supersingular graph. Output E.

Setup(E, T ).
1. Perform an �-isogeny walk φ : E → E′ of length T ;
2. Select a random point P ∈ E(Fp) of order N , and compute φ(P );
3. Output ek := (E′, φ) and pk := (E′, P, φ(P )).

We stress that known homomorphic Time-lock Puzzles [25] also require a
one-shot trusted setup. Furthermore, unlike constructions based on RSA groups,
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there is no evidence that trusted setup is unavoidable for isogeny-based delay
functions, and indeed removing this trusted setup is an active area of research
[12,24].

The isogeny chain φ in Setup can be generated by any of the two methods
proposed by De Feo et al., the difference will be immaterial for Delay Encryption;
as discussed in [17], a (deterministic) walk limited to curves and isogenies defined
over Fp will be more efficient, however a generic (pseudorandom) walk over Fp2

will offer some partial protection against quantum attacks.
Before defining the other routines, we need two hash functions. The first,

H1 : {0, 1}λ → E′[N ]◦, will be used to hash session identifiers to points of
order N in E′/Fp2 (although the curve E′ may be defined over Fp). The second,
H2 : Fp2 → {0, 1}λ, will be a key derivation function.

Extract(E,E′, φ, id).
1. Let Q = H1(id);
2. Output φ̂(Q).

Encaps(E,E′, P, φ(P ), id).
1. Select a uniformly random r ∈ Z/NZ;
2. Let Q = H1(id);
3. Let k = e′

N (φ(P ), Q)r;
4. Output (rP,H2(k)).

Decaps(E,E′, φ̂(Q), rP ).
1. Let k = eN (rP, φ̂(Q)).
2. Output H2(k).

Correctness of the scheme follows immediately from Eq. (1) and the bilinear-
ity of the pairing.

Remark 2. Notice that two hashed identities Q,Q′ such that Q − Q′ ∈ 〈P 〉 are
equivalent for encapsulation and decapsulation purposes, and thus an adversary
only needs to compute the image of one of them under φ̂. However, if we model H1

as a random oracle, the probability of two identities colliding remains negligible
(about 1/N).

Alternatively, if E′ is defined over Fp, one can restrict the image of H1 to
E′[(N,π + 1)], like in [17].

3.2 Security

To prove security of their VDF schemes, De Feo et al. defined the following
isogeny shortcut game:

Precomputation. The adversary receives N, p,E,E′, φ, and outputs an algo-
rithm S (in time poly(λ, T )).

Challenge. The challenger outputs a uniformly random Q ∈ E′[N ].
Guess. The algorithm S is run on input Q. The adversary wins if S terminates

in time less than Δ, and S(Q) = φ̂(Q).
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However, it is clear that the Δ-hardness of this game is insufficient to prove
Δ-IND-CPA security of our Delay Encryption scheme. Indeed, while the hard-
ness of the isogeny shortcut obviously guarantees that the output of Extract
cannot be computed in time less than Δ, there is at least one other way to
decapsulate a ciphertext rP , which consists in evaluating φ(rP ) and comput-
ing k = e′

N (φ(rP ), Q). Computing φ(rP ) is expected to be at least as “slow”
as computing φ̂(Q), however this fact is not captured by the isogeny shortcut
game.

Instead, we define a new security assumption, analogous to the Bilinear
Diffie-Hellman assumption used in standard pairing-based protocols. The bilin-
ear isogeny shortcut game is defined as follows:

Precomputation. The adversary receives p,N,E,E′, φ, and outputs an algo-
rithm S.

Challenge. The challenger outputs uniformly random R ∈ E[(N,π − 1)] and
Q ∈ E′[N ].

Guess. Algorithm S is run on (R,Q). The adversary wins if S outputs S(R,Q) =
e′
N (φ(R), Q) = eN (R, φ̂(Q)).

We say that the bilinear isogeny shortcut game is Δ-hard if no adversary
running the precomputation in time poly(λ, T ) produces an algorithm S that
wins in time less than Δ with non-negligible probability. The reduction to Δ-
IND-CPA of our Delay Encryption scheme closely follows the proof of security
of Boneh and Franklin’s IBE scheme.

Theorem 1. The Delay Encryption scheme presented above is Δ-IND-CPA
secure, assuming the Δ′-hardness of the bilinear isogeny shortcut game, with
Δ ∈ Δ′ − o(Δ′), when H1 and H2 are modeled as random oracles.

Concretely, suppose there is a Δ-IND-CPA adversary A with advantage ε and
complexity poly(λ, T ), making q queries to H2 (including the queries made by the
sub-algorithm D). Then there is a poly(λ, T ) algorithm B that wins the bilinear
isogeny shortcut game with probability at least 2ε/q and delay Δ′ = Δ+q·poly(λ).

Proof. In the precomputation phase, when B receives the parameters p, N , E,
E′, φ, it draws a random P ∈ E(Fp) of order N , and evaluates φ(P ). It then
passes p,N,E,E′, φ, P, φ(P ) to A for its own precomputation phase. Whenever
A makes calls to H1 or H2, algorithm B checks whether the input has already
been requested, in which case it responds with the same answer previously given,
otherwise it responds with a uniformly sampled output and records the query.

When A requests its challenge, B does the same, receiving R ∈ E[(N,π − 1)]
and Q ∈ E′[N ]. If R or Q is the point at infinity, it outputs 1 and terminates.
Otherwise it draws a random string s ∈ {0, 1}λ, a random id ∈ {0, 1}λ that was
not already queried to H1, it programs the random oracle so that H1(id) = Q,
and challenges A with the tuple (R, s, id).

During the guessing phase, whenever A (actually, D) makes a call to H1 or
H2, algorithm B (actually, S) responds as before. Finally, when D outputs its
guess, S simply returns a random entry among those that were queried to H2.
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Let H be the event that A (or D) queries H2 on input eN (R, φ̂(Q)). We prove
that Pr(H) ≥ 2ε, which immediately gives the claim of the theorem. To this end,
we first prove that Pr(H) in the simulation is equal to Pr(H) in the real attack;
then we prove that Pr(H) ≥ 2ε in the real attack.

To prove the first claim, it suffices to show that the simulation is indistin-
guishable from the real world for A. Indeed, public parameters are distributed
identically to a Delay Encryption scheme, and the point R that is part of the
challenge is necessarily a multiple of P , since E[(N,π − 1)] is cyclic. The proof
that the two probabilities are equal, then proceeds as in [6, Lemma 4.3, Claim 1].

The proof that Pr(H) ≥ 2ε is identical to [6, Lemma 4.3, Claim 2]. This
proves the part of the statement on the winning probability of B.

If Algorithm D runs in time less than Δ, algorithm S runs in the same
time, plus the time necessary for drawing the random string s and for answering
queries to H2. Depending on the computational model, a lookup in the table
for H2 can take anywhere from O(1) (e.g., RAM model) to O(q) (e.g., Turing
machine). We err on the safe side, and estimate that S runs in time less than
Δ + q · poly(λ).

3.3 Known Attacks

We now shift our attention to attacks. As discussed in [17], there are three types
of known attacks: shortcut attacks, discrete logarithm attacks, and attacks on
the computation.

Parameters for a Delay Encryption scheme must be chosen so that all known
attacks have exponential difficulty in the security parameter λ. Given that (total)
attacks successfully compute decapsulation in exponential time in λ, it is evident
that the delay parameter T must grow at most subexponentially in λ.

Shortcut attacks aim at computing a shorter path ψ : E → E′ in the isogeny
graph from the knowledge of φ : E → E′. The name should not be confused with
the isogeny shortcut game described above, as shortcut attacks are only one of
the possible ways to beat the game.

De Feo et al. show that shortcut attacks are possible when the endomorphism
ring of at least one of E or E′ is known. Indeed, in this case, the isogeny φ can be
translated to an ideal class in the endomorphism ring, then smoothing techniques
similar to [22] let us convert the ideal to one of smaller norm, and finally to an
isogeny ψ : E → E′ of smaller degree.

The only way out of these attacks is to select the starting curve E as a
uniformly random supersingular curve over Fp, then no efficient algorithm is
known to compute End(E), nor End(E′). Unfortunately, the only way we cur-
rently know to sample nearly uniformly in the supersingular class over Fp, is,
paraphrasing [20], to choose the endomorphism ring first and then compute E
given End(E).

Thus, the solution put forth in [17] is to generate the starting curve E via
a trusted setup that first selects End(E), and then outputs E and throws away
the information about its endomorphism ring. We stress that, given a random
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supersingular curve E, computing End(E) is a well known hard problem, upon
which almost most of isogeny-based cryptography is founded. We explain in the
next section how to mitigate the inconvenience of having a trusted setup, using
a distributed protocol.

As stressed in [17], there is no evidence that “hashing” in the supersingular
class, i.e., sampling nearly uniformly without gaining knowledge of the endomor-
phism ring, should be a hard problem. But there is no evidence it should be easy
either, and several attempts have failed already [12,24].

Another possibility hinted at in [17] would be to generate ordinary pairing
friendly curves with large isogeny class, as the shortcut attack is then thwarted
by the difficulty of computing the order of the class group of the endomorphism
ring. However finding such curves possibly seems an even harder problem than
hashing to the supersingular class.

Discrete logarithm attacks compute φ̂(Q) by directly solving the pairing Eq. (1).
In our case, we can even directly attack the key encapsulation. Indeed, know-
ing rP , we obtain r through a discrete logarithm, and then compute k =
e′
N (φ(P ), Q)r.

Thanks to the efficiently computable pairing, the discrete logarithm can actu-
ally be solved in Fp2 , which justifies taking p,N large enough to resist finite field
discrete logarithm computations. Obviously, this also shows that our scheme is
easily broken by quantum computers. See [17], however, for a discussion of how
a setup with pseudo-random walks over Fp2 resists quantum attacks in a world
where quantum computers are available, but much slower than classical ones.

Attacks on the computation do not seek to deviate from the description of the
protocol, but simply try to speed up Extract beyond the way officially prescribed
by the scheme. In this sort of attacks, the adversary may be given more resources
than the legitimate user: for example, it may be allowed a very large precompu-
tation, or it may dispose of an unbounded amount of parallelism, or it may have
access to an architecture not available to the user (e.g., a quantum computer).

These attacks are the most challenging to analyze, because standard
complexity-theoretical techniques are of little help here. On some level, this
goal is unachievable: given a sufficiently abstract computational model, and a
sufficiently powerful adversary, any scheme is broken. For example, an adver-
sary may precompute all possible pairs (Q, φ̂(Q)) and store them in a O(1)-
accessible RAM, then extraction amounts to a table lookup. However, such an
adversary with exponential precomputation, exponential storage, and constant
time RAM is easily dismissed as unreasonable. More subtle trade-offs between
precomputation, storage and efficiency can be obtained, like for example RNS-
based techniques to attack group-based VDFs [1]. However the real impact of
these theoretical algorithms has yet to be determined.

In practice, a pragmatic approach to address attacks on the computation is
to massively invest in highly specialized hardware development to evaluate the
“sequential and slow” function quickly, and then produce the best designs at
scale, so that they are available to anyone who wants to run the extraction. This
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is the philosophy of the competitions organized by Ethereum [33] and Chia [21],
targeting, respectively, the RSA based VDF and the class group based VDF.

We explore this topic more in detail in Sect. 6.

4 Distributed Trusted Setup

Trusted setup is an obvious annoyance to distributed protocols. A way to miti-
gate this negative impact is to distribute trust over several participants, ensuring
through a multi-party computation that, if at least one participant is honest,
then the setup can be trusted.

Ethereum is notoriously investing in the RSA-based VDF with Wesolowski’s
proof [33,34], which is known to require a trusted setup. To generate parameters,
the Ethereum network will need to run a distributed RSA modulus generation,
for which all available techniques essentially trace back to the work of Boneh
and Franklin [5].

Distributed RSA modulus generation is notoriously a difficult task: the cost
is relatively high, scales badly with the number of participants, and the attempts
at optimizing it have repeatedly led to subtle and powerful attacks [31,32]. Worse
still, specialized hardware for the delay function must be designed specifically
for the generated modulus, which means that little design can be done prior to
the distributed generation, and that if the distributed generation is then found
to be rigged, a new round of distributed-generation-then-design is needed.

On the contrary, distributed parameter generation for our Delay Encryption
candidate, or for the isogeny based VDF, is extremely easy. The participants
start from a well known supersingular curve with known endomorphism ring,
e.g., E0 : y2 = x3 − x, and repeat, each at its own turn, the following steps:

1. Participant i checks all zero-knowledge proofs published by participants that
preceded them;

2. They perform a pseudorandom isogeny walk ψi : Ei−1 → Ei of length c log(p)
in the Fp-restricted supersingular graph;

3. They publish Ei, and a zero-knowledge proof that they know an isogeny
ψ : Ei−1 → Ei.

The constant c is to be determined as a function of the expansion properties
of the isogeny graph, and is meant to be large enough to ensure nearly uniform
mixing of the walk. In practice, this constant is usually small, say c < 10,
implying that each participant needs to evaluate a few thousands isogenies, a
computation that is expected to take in the order of seconds [11].

The setup is clearly secure as long as at least one participant is honest.
Indeed it is well known that computing a path from Ei to E0 is equivalent to
computing the endomorphism ring of Ei [18,22], and, since Ei is nearly uni-
formly distributed in the supersingular graph, the dishonest participants have
no advantage in solving this problem compared to a generic attacker.

This distributed computation scales linearly with the number of participants,
each participant needing to check the proofs of the previous ones. It can be left
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running for a long period of time, allowing many participants to contribute
trust without any need for prior registration. More importantly, it is updatable,
meaning that after the distributed generation is complete, the final curve E can
be used as the starting point for a new distributed trusted setup. This way the
trusted setup can be updated regularly, building upon the trust accumulated in
previous distributed generations.

Compared with the trusted setup for RSA, the outcome of the setup is much
less critical for the design of hardware. Indeed, the primes p,N can be publicly
chosen in advance, and hardware can be designed for them before the trusted
setup is performed. The trusted curve E only impacts the first few steps of the
“slow” isogeny walk φ : E → E′ generated by the untrusted setup, and can
easily be integrated in the hardware design at a later stage.

4.1 Proofs of Isogeny Knowledge

We take a closer look at the last step each participant takes in the trusted setup:
the proof of isogeny knowledge. Ignoring zero-knowledge temporarily, Eq. (1)
already provides a proof of knowledge of a non-trivial relation between Ei−1 and
Ei. Let F be a deterministic function which takes as input a pair of curves Ei, Ej

and outputs a pair of points in Ei[(N,π − 1)]◦ × Ej [(N,π + 1)]◦. Also let ei
N

denote the Weil pairing on Ei. The proof proceeds as follows

1. Map (Ei−1, Ei) to a pair of points (P,Q) ← F (Ei−1, Ei);
2. Choose a random r ∈ (Z/NZ)×,
3. Publish (R,S) ← (rψi(P ), rψ̂i(Q)).

Then verification simply consists of:

1. Compute (P,Q) ← F (Ei−1, Ei),
2. Check that R ∈ Ei[(N,π − 1)]◦ and S ∈ Ei−1[(N,π + 1)]◦;
3. Check that ei

N (R,Q) = ei−1
N (P, S).

This proof is compact, requiring only four elements of Fp, and efficient
because computing ψi(P ), ψ̂i(Q) only adds a small overhead to the computa-
tion of ψi, and verification takes essentially two pairing computations. Note that
the restriction in step 2 of the verification implies that for any R there exists a
unique S satisfying the equation in step 3, and vice versa.

Remark 3. While we believe that an adversary not knowing an isogeny from Ei−1

to Ei has a negligible probability of convincing a verifier in the protocol above,
it is not clear what kind of knowledge is exactly proved by it. Ideally, we would
like to prove that, given an algorithm that passes verification with non negligible
probability, one can extract a description of some isogeny ψ′ : Ei−1 → Ei.

However, no such algorithm is currently known. Related problems have been
studied in the context of cryptanalyses of SIDH, under the name of “torsion point
attacks” [23,26,30], however these algorithms crucially rely on the knowledge of
the endomorphism ring of Ei−1, something we cannot exploit here.
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The only way out is apparently to define a non-falsifiable “knowledge of
isogeny” assumption, which would tautologically state that the protocol above
is indeed a proof of knowledge of an isogeny. We defer investigation of this type
of assumptions to future work.

As stated, the proof above is clearly not zero-knowledge, because the values
rψi(P ) and rψ̂i(Q) reveal a considerable amount of additional information on
ψi. To turn the proof into a zero-knowledge one, we use Pedersen commitments
to mask rψi(P ) and rψ̂i(Q), then prove their knowledge using standard Schnorr-
like proofs of knowledge.

Let F ′ be a function with same domain and range as F (possibly F ′ = F ),
and let H be a cryptographic hash function with values in Z/NZ.

We compute P ′, Q′ ← F ′(Ei, Ei−1) and choose x, y ∈ (Z/NZ)× secret, then
we publish a NIZK proof for (X,Y ) satisfying

ei
N (X,Q)ei−1

N (P,Q′)y = ei−1
N (P, Y )ei

N (P ′, Q)x.

More precisely, we publish:

– two Pedersen commitments X = xP ′ + rψi(P ) ∈ Ei[(N,π − 1)] and Y =
yQ′ + rψ̂i(Q) ∈ Ei−1[(N,π + 1)],

– two “public keys” Y ′ = ei−1
N (P,Q′)y and X ′ = ei

N (P ′, Q)x, and
– a Schnorr-like proof of knowledge (c, sx, sy) for x of X ′ and y of Y ′, where:

• sx = k − xc and sy = k − yc for a randomly chosen k ∈ (Z/NZ)×, and
• c = H(ei−1

N (P,Q′)‖ei
N (P ′, Q)‖X ′‖Y ′‖ei

N (P ′, Q)k‖ei−1
N (P,Q′)k).

At this point, our verifier now checks

– that X ∈ Ei[(N,π − 1)] and Y ∈ Ei−1[(N,π + 1)],
– that ei

N (X,Q)Y ′ = ei−1
N (P, Y )X ′,

– non-triviality X ′ �= ei
N (X,Q) and Y ′ �= ei−1

N (P, Y ) of the commitments, and
– the proofs of knowledge sx, sy using

c = H(ei−1
N (P,Q′)‖ei

N (P ′, Q)‖X ′‖Y ′‖(X ′)cei
N (P ′, Q)sx‖(Y ′)cei−1

N (P,Q′)sy ).

In this, we ask verifiers to compute four pairings, which only doubles the verifier
time.

The following lemma shows that this is a NIZK proof for the same statement
that was proven in the simple protocol revealing rψi(P ) and rψ̂i(Q), and thus it
is a NIZK proof of isogeny knowledge, if we accept the non-falsifiable assumption
mentioned in Remark 3.

Lemma 1. Let Ei−1, Ei be a pair of isogenous elliptic curves, let (P,Q) =
F (Ei−1, Ei). The protocol above is a NIZK proof of knowledge of a pair (R,S) of
points such that ei

N (R,Q) = ei−1
N (P, S) �= 1, assuming CDH in the target group

GT ⊂ Fp2 , and modeling H as a random oracle.
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Proof. To simulate the proof, it is enough to choose X, Y , and X ′ at random,
set Y ′ = X ′ei−1

N (P, Y )/ei
N (X,Q), then use the simulator of the Schnorr proof to

simulate knowledge of the discrete logarithms of X ′ and Y ′.
To extract (R,S) from a prover, we start by using the Schnorr extractor to

get x and y. Then, by hypothesis

ei
N (X − xP ′, Q) =

ei
N (X,Q)

X ′ =
ei−1
N (P, Y )

Y ′ = ei−1
N (P, Y − yQ′) �= 1,

thus R = X − xP ′ and S = Y − yQ is the solution we were looking for.
Since the Schnorr proof is proven secure under CDH in the ROM, the same

hypotheses carry over.

For completeness, we also mention some other tools with which one might
prove knowledge of this isogeny in zero knowledge, although none seem to be
competitive with the technique above.

First, there exists a rapidly expanding SNARK toolbox from which one could
perform Fp arithmetic inside the SNARK to check the verification of the sec-
ond and third conditions directly. As instantiating the delay function imposes
restrictions on p, one cannot necessarily select p using the Cocks-Pinch method
to provide a pairing friendly elliptic curve with group order p, like in [8]. There
are optimisations for arithmetic in arbitrary Fp however, especially using poly-
nomial commitments, like in [19].

Second, there are well known post-quantum isogeny-based proofs:

SIDH-style proofs [15] are very inconvenient, because they require primes of
a specific form, and severely limit the length of pseudo-random walks. On top
of that, they are very inefficient, and do not have perfect zero-knowledge.

SeaSign-style proofs [14] have sizes in the hundreds of kilobytes, and their
generation and verification are extremely slow (dozens of hours). Note that
several of the optimizations used for signatures, including the class group
order precomputation of CSI-FiSh [2], are not available in this context. More
research on the optimization of SeaSign-style proofs for this specific context
would be welcome.

SQISign-style proofs [16] are not compatible with our setting, because they
require knowledge of the endomorphism rings.

5 Watermarking

When delay functions are used in distributed consensus protocols, it is common
to want to reward participants who spend resources to evaluate the function. For
example, in the auction application the participants who compute the session
key may receive a percentage on the sale to compensate for the cost of running
the extraction routine.

This raises the question of how to prove that some participant did run the
computation, rather than simply steal the public output from someone else.
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In the context of VDFs based on groups of unknown order, Wesolowski [34]
introduced the concept of proof watermarking. The output of these VDFs consists
of two parts: a delay function output and a proof. Wesolowski’s idea is to attach
to the proof a watermark based on the identity of the evaluator, so that anyone
verifying the output immediately associates it to the legitimate participant. Since
producing the proof costs at least as much as evaluating the delay function, a
usurper who would like to claim an output for themself would need to do an
amount of work comparable to legitimately evaluating the delay function, which
strongly reduces the incentive for usurpation.

In the context of isogeny based VDFs, or of extraction in Delay Encryption,
proof watermarking is a meaningless concept, because there is simply no proof
to watermark. Nevertheless, it is possible to produce a watermark next to the
output of the delay function, giving evidence that the owner of the watermark
spent an amount of effort comparable to legitimately computing the output.
The idea is to publish a mid-point update on the progress of the evaluation, and
attach this mid-point to the identity of the evaluator.

Concretely, given parameters φ : E → E′ and (P, φ(P )), the isogeny walk is
split into two halves of equal size φ1 : E → Emid and φ2 : Emid → E′ so that
φ = φ2 ◦ φ1, and φ1(P ) is added to the public parameters. Each evaluator then
generates a secret key s ∈ Z/NZ and a public key S = sφ(P ). When evaluating
φ̂ = φ̂1 ◦ φ̂2 at a point Q ∈ E′[N ], the evaluator:

1. Computes Qmid = φ̂2(Q),
2. Computes and publishes sQmid,
3. Finishes off the computation by computing φ̂(Q) = φ̂1(Qmid).

A watermark can then be verified by checking that

emid
N (φ1(P ), sQmid) = e′

N (S,Q).

Interestingly, this proof is blind, meaning that it can be verified even before the
work is finished.

Given φ̂(Q), a usurper wanting to claim the computation for themselves
would need to either start from Q and compute φ̂2(Q), or start from φ̂(Q) and
compute φ1(φ̂(Q))

deg φ1
. Either way, they would perform at least half as much work as

if they had legitimately evaluated the function.
This scheme is easily generalized to several equally spaced mid-points along

the isogeny evaluation chain: if the isogeny is split into n pieces of equal size, a
usurper would need to do at least (n − 1)/n times as much work as a legitimate
evaluator, thus linearly decreasing the incentive for usurpation.

It is possible, nevertheless, for a usurper to target a specific evaluator, by
generating a random u ∈ Z/NZ, and choosing usφ1(P ) as public key. Then, any
proof sQmid for the legitimate evaluator is easily transformed to a proof usQmid

for the usurper. This attack is easily countered by having all evaluators publish
a zero-knowledge proof of knowledge of their secret exponent s, along with their
public key sφ1(P ).
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6 Challenges in Implementing Isogeny-Based Delay
Functions

For a delay function to be useful, there need to be convincing arguments as
to why the evaluation cannot be performed considerably better than with the
legitimate algorithm.

In this sense, repeated squaring modulo an RSA modulus is especially appeal-
ing: modular arithmetic has been studied for a long time, and we are reasonably
confident that we know all useful algorithms and hardware in this respect; and
the repeated application of the function x �→ x2 is so simple that one may hope
no better algorithm exists (see [1], though).

Repeated squaring in class groups, already, raises more skepticism, as the
arithmetic of class groups is a much less studied area. This clearly had an impact
on Ethereum’s choice to go with RSA-based VDFs, despite class group based
ones not needing a trusted setup.

For isogeny based delay functions, we argue that the degree of assurance
seems to be nearly as good as for RSA based ones, although more research is
certainly needed. To support this claim, we give here more details on the way
the evaluation of φ̂ is performed, that were omitted by [17].

For a start, we must choose a prime degree �. Intuitively, the smaller, the
better, thus we shall fix � = 2, although � = 3 also deserves to be studied. A
2-isogeny is represented by rational maps of degree 2, thus we expect one isogeny
evaluation to require at least one multiplication modulo p. Our goal is to get as
close as possible to this lower bound, by choosing the best representation for the
elliptic curves, their points, and their isogenies.

It is customary in isogeny based cryptography to use curves in Montgomery
form, and projective points in (X : Z) coordinates, as these give the best formulas
for arithmetic operations and isogenies [13,28]. Montgomery curves satisfy the
equation

E : y2 = x3 + Ax2 + x,

in particular they have a point of order two in (0, 0), and two other points of
order two with x-coordinates α and 1/α, where α is a root of the polynomial
x2+Ax+1, and possibly lives in Fp2 . These three points define the three possible
isogenies of degree 2 starting from E. The Montgomery form is almost unique,
there being only six possible choices for the A coefficient for a given isomorphism
class, corresponding to the three possible choices for the point to send in (0, 0)
(each taken twice).

In our case, all three points (in projective coordinates) (0 : 1), (α : 1) and
(1 : α), are defined over Fp, we thus choose to distinguish one additional point
by writing the curves as

Eα : y2 = x(x − α)(x − 1/α),

with α �= 0,±1. We call this a semi-Montgomery form; although it is technically
equivalent to the Montgomery form, 2-isogeny formulas are expressed in it more
easily. Recovering the Montgomery form is easy via A = −α − 1/α.
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Using the formula of Renes [28], we readily get the isogeny with kernel gen-
erated by (α : 1) as

φα(x, y) =
(

x
xα − 1
x − α

, . . .

)
, (2)

and its image curve is the Montgomery curve defined by A = 2 − 4α2. By
comparing with the multiplication-by-2 map on Eα, we obtain the dual map to
φα as

φ̂α(x, y) =
(

(x + 1)2

4αx
, . . .

)
. (3)

It is clear from this formula that the kernel of φ̂α is generated by (0, 0).
This formula is especially interesting, as we verify that its projective version

in (X : Z) coordinates only requires 2 multiplications and 1 squaring:

φ̂α(X : Z) =
(
(X + Z)2 : 4αXZ

)
, (4)

and the squaring can be performed in parallel with one multiplication. The
analogous formulas for φ1/α are readily obtained by replacing α → 1/α in the
previous ones, and moving around projective coefficients to minimize work.

But, if we want to chain 2-isogenies, we need a way to compute the semi-
Montgomery form of the image curve. For the given A = 4α2 − 2, direct calcu-
lation shows that the two possible choices are

α′ = 2α
(
α ±

√
α2 − 1

)
− 1 =

(
α ±

√
α2 − 1)

)2

. (5)

As we know that (0, 0) generates the dual isogeny to φα, neither choice of α′

will define a backtracking walk. Interestingly, Castryck and Decru [10] show that
when p = 7 mod 8, if α ∈ Fp, if φα is a horizontal isogeny (see definition in [10]),
and if α′ is defined as

α′ =
(
α +

√
α2 − 1)

)2

where
√

α2 − 1 denotes the principal square root, then α′ ∈ Fp and φα′ is hor-
izontal too. This gives a very simple algorithm to perform a non-backtracking
2-isogeny walk staying in the Fp-restricted isogeny graph, i.e., a walk on the
2-crater. Alternatively, if a pseudo-random walk in the full supersingular graph
is wanted, one simply takes a random square root of α2 − 1.

Using these formulas, the isogeny walk φ : E → E′ is simply represented by
the list of coefficients α encountered, and the evaluation of φ̂ using Formula (4)
costs 2 multiplications and 1 parallel squaring per isogeny.

Implementation challenges. Following the recommendations of [17], for a
128-bits security level we need to choose a prime p of around 1500 bits, which
is comparable to the 2048-bits RSA arithmetic targeted by Ethereum, although
possibly open to optimizations for special primes.

In software, the latency of multiplication modulo such a prime is today
around 1µs. The winner of the Ethereum FPGA competition [33] achieved a
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latency of 25 ns for 2048-bits RSA arithmetic. Assuming a pessimistic baseline
of 50 ns for one 2-isogeny evaluation, for a target delay of 1 h we need an isogeny
walk of length ≈7 · 1010. That represents as many coefficients α to store, each
occupying ≈1500 bits, i.e., ≈12 TiB of storage!

We stress that only the evaluation key ek requires such large storage, and thus
only evaluators (running extraction in Delay Encryption, or evaluating a VDF)
need to store it. However any FPGA or hardware design for the evaluation of
isogeny-based delay functions must take this constraint into account, and provide
fast storage with throughputs of the order of several GiB/s.

At present, we do not know any configuration that pushes these 2-isogeny
computations into being memory bandwidth bound. In fact, computational
adversaries only begin encountering current DRAM and CPU bus limits when
going an order of magnitude faster than the hypothetical high speeds above.

An isogeny-based VDF could dramatically reduce storage requirements by
doing repeated shorter evaluations, and simply hashing each output to be the
input for the next evaluation. We sacrifice verifier time by doing so, but verifiers
remain fast since they still only compute two pairings per evaluation. We caution
however that this trick does not apply to Delay Encryption.

In [17], De Feo et al. describe an alternative implementation that divides
the required storage by a factor of 1244, at the cost of slowing down evaluation
by a factor of at least log2(1244). While this trade-off could be acceptable in
some non-fully distributed applications, it seems incompatible with applications
where evaluators want to get to the result as quickly as possible, e.g., when
several evaluators are competing to compute the output.

It would be very interesting to find compact representations of very long
isogeny chains which do not come at the expense of efficiently evaluating them.

Optimality. Formula (4) is, intuitively, almost optimal, as we expect that a
2-isogeny in projective (X : Z) coordinates should require at least 2 multipli-
cations. And indeed we know of at least one case where a 2-isogeny can be
evaluated with 2 parallel multiplications: the isogeny of kernel (0 : 1) is given by

φ0(x, y) =
(

(x − 1)2

x
, . . .

)
, (6)

or, in projective coordinates,

φ0(X : Z) =
(
(X − Z)2 : XZ

)
, (7)

which only requires one parallel multiplication and squaring.
We tried to construct elliptic curve models and isogeny formulas that could

evaluate 2-isogeny chains using only 2 parallel multiplications per step, however
any formula we could find had a coefficient similar to α intervene in it, and thus
bring the cost up by at least one multiplication.

Intuitively, this is expected: there are exponentially many isogeny walks,
and the coefficients α must necessarily intervene in the formulas to distinguish
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between them. However this is far from being a proof. Even proving a lower
bound of 2 parallel multiplications seems hard.

It would be interesting to prove that any 2-isogeny chain needs at least 2
sequential multiplications for evaluation, or alternatively find a better way to
represent and evaluate isogeny chains.

7 Conclusion

We introduced a new time delay primitive, named Delay Encryption, related to
Time-lock Puzzles and Verifiable Delay Functions. Delay Encryption has some
interesting applications such as sealed-bid auctions and electronic voting. We
gave an instantiation of Delay Encryption using isogenies of supersingular curves
and pairings, and discussed several related topics that also apply to the VDF of
De Feo, Masson, Petit and Sanso.

Several interesting questions are raised by our work, such as, for example,
clarifying the relationship between Delay Encryption, Verifiable Delay Functions
and Time-lock Puzzles.

Like the isogeny-based VDF, our Delay Encryption requires a trusted setup.
We described an efficient way to perform a distributed trusted setup, however
the associated zero-knowledge property relies on a non-falsifiable assumption
which requires more scrutiny.

The implementation of delay functions from isogenies presents several prac-
tical challenges, such as needing very large storage for the public parameters.
On top of that, it is not evident how to prove the optimality of isogeny formulas
used for evaluating the delay function. While we gave here extremely efficient
formulas, these seem to be at least one multiplication more expensive than the
theoretical optimum. More research on the arithmetic of elliptic curves best
adapted to work with extremely long chains of isogenies is needed.

Finally, we invite the community to look for more constructions of Delay
Encryption, in particular quantum-resistant ones.

References

1. Bernstein, D.J., Sorenson, J.: Modular exponentiation via the explicit Chinese
remainder theorem. Math. Comput. 76, 443–454 (2007). https://doi.org/10.1090/
S0025-5718-06-01849-7

2. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

3. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, ITCS 2016,
New York, NY, USA, pp. 345–356. Association for Computing Machinery (2016).
https://doi.org/10.1145/2840728.2840745

https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1145/2840728.2840745


Delay Encryption 325

4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

5. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski, B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052253

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003). https://doi.org/10.1137/S0097539701398521

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

8. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 947–964 (2020). https://doi.org/10.1109/SP40000.2020.00050
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Abstract. In 2017, Ward Beullens et al. submitted Lifted Unbalanced
Oil and Vinegar [3], which is a modification to the Unbalanced Oil and
Vinegar Scheme by Patarin. Previously, Ding et al. proposed the Sub-
field Differential Attack [22] which prompted a change of parameters by
the authors of LUOV for the second round of the NIST post quantum
standardization competition [4].

In this paper we propose a modification to the Subfield Differential
Attack called the Nested Subset Differential Attack which fully breaks
half of the parameter sets put forward. We also show by experimentation
that this attack is practically possible to do in under 210min for the level
I security parameters and not just a theoretical attack. The Nested Sub-
set Differential attack is a large improvement of the Subfield differential
attack which can be used in real world circumstances. Moreover, we will
only use what is called the “lifted” structure of LUOV, and our attack
can be thought as a development of solving “lifted” quadratic systems.

1 Introduction

1.1 Signature Schemes, Post-quantum Cryptography and the NIST
Post Quantum Standardization

Signature schemes allow one to digitally sign a document. These were first the-
oretically proposed by Whitfield Diffie and Martin Hellman using public key
cryptography in [12]. The first and still most commonly used scheme is that of
RSA made by Rivest, Shamir, and Adleman [35]. As technology and long distance
communication become increasingly more a part of everyone’s life, it becomes
vital that one can verify who sent them a message and sign off on any message
they intend to send. However, quantum computers utilizing Shor’s algorithm
threaten the security of the RSA scheme and many others now in use [37]. With
the recent progress of building quantum computers, post-quantum cryptography
able to resist quantum attacks has become a central research topic [1,7,8,30].
In 2016, NIST put out a call for proposals for post-quantum cryptosystems for
c© International Association for Cryptologic Research 2021
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standardization. These cryptosystems, though using classical computing in their
operations, would resist quantum attacks [31]. We are currently in the third
round of the “competition,” with many different types of schemes being pro-
posed. Multivariate cryptography is one family of post-quantum cryptosystems
which is promising to resist quantum attacks [13,16].

1.2 Multivariate Cryptography

Public key encryption and signature schemes rely on a trapdoor function, one
which is very difficult to invert except if one has special knowledge about the
specific function. Multivariate cryptography bases its trapdoors on the difficulty
of solving a random system of m polynomials in n variables over a finite field.
For efficiency these polynomials are generally of degree 2. This has been proven
to be NP hard [25], and thus is a good candidate for a public key cryptosys-
tem. Moreover, working over these finite fields is often more efficient than older
number-theory based methods like RSA. The difficulty lies in the fact that, as
these systems must be invertible for the user and thus require a trapdoor, they
are not truly random and must have a specific form which undermines the sup-
posed NP hardness of solving them. Generally their special form is hidden by
composition by invertible affine maps. Though there are interesting and practi-
cal multivariate encryption schemes [17,38,39], multivariate schemes are better
known for simple and efficient signature scheme.

The first real breakthrough for multivariate cryptography was the MI or C∗

cryptosystem proposed by Matsumoto and Imai in 1988 [29]. Their insight was to
use the correspondence ψ between a n dimensional vector space kn over a finite
field k and a n degree extension K over k. They constructed their univariate
trapdoor function F : K → K over the large field which they were able to
solve due to its special shape, and then composed it with two invertible affine
maps S ,T : kn → kn hiding its structure. Their public key is then P =
S ◦ψ◦F ◦ψ−1◦T . Though broken today, the MI cryptosystem is the inspiration
for all “big field” schemes which have their trapdoor over a larger field. But the
attack against MI is the inspiration for what are called oil and vinegar schemes,
which LUOV is a extension of. The Linearization Equation Attack was developed
by Patarin [32]. To be brief, Patarin discovered that plain-text/cipher-text pairs
(x,y) will satisfy equations (called the linearization equations) of the form

∑
αijxiyj +

∑
βixi +

∑
γiyi + δ = 0

Collecting enough such pairs and plugging them into the above equation
produces linear equations in the αij ’s, βi’s, γi’s, and δ which then can be solved
for. Then for any cipher-text y, its corresponding plain-text x will satisfy the
linear equations found by plugging in y into the linearization equations. This
will either solve for the x directly if enough linear equations were found or at
least massively increase the efficiency of other direct attacks of solving for x. So
a quadratic problem becomes linear and thus easy to solve.
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1.3 Oil and Vinegar Schemes

Inspired by the Linearization Equation Attack, Patarin introduced the Oil and
Vinegar scheme [33]. The key idea is to reduce the problem of solving a quadratic
system of equations into solving a linear system by separating the variables into
two types, the vinegar variables which can be guessed for and the oil variables
which will be solved for. Let F be a (generally small) finite field, m and v be
two integers, and n = m + v. The central map F : Fn → F

m is a quadratic map
whose components f1, . . . , fm are in the form

fk(X) =
v∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk

where each coefficient is in F. Here the set of variables V = {x1, . . . , xv} are called
the vinegar variables, and the set O = {xv+1, . . . , xn} are the oil variables. While
the vinegar variables are allowed to be multiplied to any other variables, there
are no oil times oil terms. Hence, if we guess for the vinegar variables we are left
with a system of m linear equations in m variables. This has a high probability
of being invertible (and one can always guess again for the vinegar variables if it
is not). By composing with an affine transformation T : Fn → F

n one gets the
trapdoor function P = F ◦T . This is indeed a trapdoor as by composing with
T , the oil and vinegar shape of the polynomials is lost and they appear just
to be random. Thus for a oil and vinegar system the public key is P and the
private key is (F ,T ). To sign a document Y , one first computes F−1(Y ) = Z
by guessing the vinegar variables until F is an invertible linear system. Then
one computes T −1(Z) = W . One verifies that W is a signature for Y by noting
that P(W ) = Y .

Patarin originally proposed that the number of oil variables would equal the
number of vinegar variables. Hence the original scheme is now called Balanced
Oil and Vinegar. However, Balanced Oil Vinegar was broken by Kipnis and
Shamir using the method of invariant subspaces [27]. This attack, however, is
thwarted by making the number of vinegar variables sufficiently greater than
the number of oil variables. Generally this is between 2 and 4 times as many
vinegar variables to oil variables. Thus modern oil and vinegar schemes are called
Unbalanced Oil and Vinegar (UOV) The other major attack using the structure
of UOV is the Oil and Vinegar Reconciliation attack proposed by Ding et al.
However, with appropriate parameters this attack can be avoided as well [20].
UOV remains unbroken to this day, and offers competitive signing and verifying
times compared to other signatures schemes. Its main flaw is its rather large
key size. Thus there have been many modifications to UOV designed to reduce
the key size. One, due to Petzoldt, is to use a pseudo-random number generator
to generate large portions of the key from a smaller seed which is easier to
store [34]. Other schemes use the basic mathematical structure of UOV, but
modify it in a way to increase efficiency. However, any changes can generate
weakness for the system as can be seen from the first round contender of the
NIST competition HIMQ-3 [36] which was broken by the Singularity Attack from
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Ding et al. [21]. Two of the nine signature schemes left in the second round of the
competition are also based on UOV. Rainbow, originally proposed in 2005, gains
efficiency by forming multiple UOV layers where the oil variables in the previous
layers are the vinegar variables in the latter layers [20]. The other scheme first
proposed in [3] is Lifted Unbalanced Oil and Vinegar (LUOV) whose core idea
is to reduce its key size by selecting all the coefficients of its polynomials from
F2 = {0, 1}. However, LUOV signs its messages in some extension field F2r .
LUOV was attacked by Ding et al. using the Subfield Differential Attack (SDA)
in [22]. SDA uses the lifted form of the polynomials to always work in a smaller
field and thus increase efficiency of direct attacks (those which try to solve the
quadratic system outright) against LUOV. The authors of LUOV have amended
their parameters in order to prevent SDA. However, in this paper we will show
that LUOV is still vulnerable to a modified form of SDA which we will call the
Nested Subset Differential Attack (NSDA).

1.4 Lifted Unbalanced Oil and Vinegar (LUOV)

The LUOV, proposed in [3], is a UOV scheme with three main modifications.
Let F2r be an extension of F2, m and v be positive integers, and n = m + v.
The central maps F : F

n
2r → F

m
2r is a system of quadratic maps F (X) =

(F (1)(X), . . . , F (m)(X)) whose components are in oil and vinegar form

F (k)(X) =
v∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk.

The first modification is that each F (k) is “lifted,” meaning that the coef-
ficients are taken from the prime field F2. Messages are still taken over the
extension field, hence the name Lifted Unbalanced Oil Vinegar. The second mod-
ification is that the affine map T has the easier to store and computationally
faster to sign form [

1v T
0 1o

]
.

This was first proposed by Czypek [11]. This does not affect security as for
any given UOV private key (F ′,T ′) there is highly likely an equivalent private
key (F ,T ) where T is of the form above [41]. The third modification is that
LUOV uses Petzdolt’s method of generating the keys from a PRNG instead of
storing them directly [34].

1.5 Our Contributions

In this paper we will first present the original SDA and then NSDA which is
a modified version of the SDA attack which will defeat fully half of the new
parameter sets used by LUOV. These parameters will fall well short of their
targeted NIST security levels. We will also document an attack against one of
these parameters sets which we were able to perform in under 210 min. Our
attack does not rely on the oil and vinegar structure of LUOV, and can be seen
as a way to solve “lifted” polynomial equations in general.
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2 A Lemma on Random Maps

For both the Subfield Differential Attack and the Nested Subset Differential
Attack we will require a short lemma on random maps which, under the assump-
tion that quadratic systems of polynomials act like random maps, will allow us
to say when it is possible to forge signatures.

Lemma 1. Let A and B be two finite sets and Q : A → B be a random map.
For each b ∈ B, the probability that Q−1(b) is non-empty is approximately 1 −
e−|A|/|B|.

Proof. As the output of each element of A is independent, it is elementary that
the probability for there to be at least one a ∈ A such that Q(a) = b is

1 − Pr(Q(α) �= b,∀α ∈ A) = 1 −
∏

α∈A

Pr(Q(α) �= b)

= 1 −
(

1 − 1
|B|

)|A|
= 1 −

(
1 − 1

|B|
)|B| |A|

|B|
.

Using lim
n→∞

(
1 − 1

n

)n

= e−1, we achieve the desired result.

3 The Subfield Differential Attack

3.1 Transforming the Public Key into Better Form

In this section we recall the Subfield Differential Attack proposed in [22]. Let
P : F

n
2r → F

m
2r be a LUOV public key. Let X = (x1, . . . , xn) ∈ F

n
2r be an

indeterminate point. Then

P(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (1)(X) =
n∑

i=1

n∑

j=i

αi,j,1xixj +
n∑

i=1

βi,1xi + γ1

P (2)(X) =
n∑

i=1

n∑

j=i

αi,j,2xixj +
n∑

i=1

βi,2xi + γ2

...

P (m)(X) =
n∑

i=1

n∑

j=i

αi,j,mxixj +
n∑

i=1

βi,mxi + γm

where for each i, j, k we have αi,j,k, βi,k, γk ∈ F2. Due to this special structure
we are able to transform P to be over a subfield of F2r which, depending on the
parameters, will allow us to forge signatures.

First we recall for every positive integer d which divides r we may represent
F2r as a quotient ring

F2r
∼= F2d [t]/〈g(t)〉
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where g(t) is a irreducible degree s = r/d polynomial. For details see [28]. Let
X = (x1, . . . , xn) ∈ F

n
2d be an indeterminate point and X ′ = (x′

1, . . . , x
′
n) ∈ F

n
2r

be a random fixed point. So P̃(X) := P(X + X ′) : Fn
2d → F

m
2r . Further this

map is of a special form. Examining the kth component of P̃(X)

P̃ (k)(X) =
n∑

i=1

n∑

j=i

αi,j,k(xi + x′
i)(xj + x′

j) +
n∑

i=1

βi,k(xi + x′
i) + γk.

Expanding the above and separating the quadratic terms leads to

P̃ (k)(X) =
n∑

i=1

n∑

j=i

αi,j,k(x′
ixi + x′

jxj + x′
ix

′
j)

+
n∑

i=1

βi,k(xi + x′
i) + γk +

n∑

i=1

n∑

j=i

αi,j,kxixj .

We see that, due to αi,j,k ∈ F2, the coefficients of the quadratic terms xixj

are all in the prime field. However, as the x′
i are random elements from F2r , the

coefficients of the linear xi terms will contain all the powers of t up to s − 1.
This means that, by grouping by the various powers of t, we may rewrite P̃(X)
as

P̃(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃ (1)(X) =Q1(X) +
s−1∑

i=1

Li,1(X)ti

P̃ (2)(X) =Q2(X) +
s−1∑

i=1

Li,2(X)ti

...

P̃ (m)(X) =Qm(X) +
s−1∑

i=1

Li,m(X)ti

3.2 Forging a Signature

Now suppose we wanted to forge a signature for a message Y . First decompose
Y into the sum of vectors

Y = Y0 + Y1t + · · · + Ys−1t
s−1

where for each i, Yi = (yi,1, . . . , yi,m) ∈ F
m
2d .
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First one finds the solution space S for the system of linear equations

A =
{
Li,j(X) = yi,j : 1 ≤ i ≤ s − 1, 1 ≤ j ≤ m

}
.

As A is essentially a random system of linear equations, it will have a high
probability to be full rank (s − 1)m (or n if (s − 1)m ≥ n). So the dimension of
S will be

dim(S) = max{n − (s − 1)m, 0}.

Next, one tries to solve the system of m quadratic equations

B =
{
Qi(X) = y0,i : 1 ≤ i ≤ m,X ∈ S

}
.

If S is of large enough dimension, which depends on the choice of d, n, and m,
The solution X to B yields P̃ (X) = Y which implies that P(X + X ′) = Y .
Hence X + X ′ is the signature we seek. As the most costly step is solving the m
quadratic equations of B over F2d , we always choose d to be as small as possible
for the S to likely have a solution according to Lemma 1 where in this case the
domain is S and then range is F2d . Generally, the domain will be much larger
than the range for the attack and in this case we can assume that the probability
for success on the first try is 1, or the domain is smaller and then the attack will
fail as we almost never expect a solution to exist.

4 Nested Subset Differential Attack

4.1 The Change of Parameters for LUOV

In response to the Subfield Differential Attack, the authors of LUOV proposed
the size of the extension r should be made prime so that the only subfield will be
the prime field F2 [4]. They claim that given their new parameters, Fn

2 will be far
too small for a signature to exist for any given differential with any probability.
The new parameters are in Table 1. We note that they are for different NIST
security levels than before.

Table 1. The new parameter sets for LUOV

Name Security level (r,m, v, n)

LUOV-7-57-197 I (7, 57, 197, 254)

LUOV-7-83-283 III (7, 83, 283, 366)

LUOV-7-110-374 V (7, 110, 374, 484)

LUOV-47-42-182 I (47, 42, 182, 224)

LUOV-61-60-261 III (61, 60, 261, 321)

LUOV-79-76-341 V (79, 76, 341, 417)

Indeed, by Lemma 1 the Subfield Differential Attack will not work without
modification, but it is the claim of this paper that such a modification, which we
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will call the Nested Subset Differential Attack (NSDA), is indeed possible for the
three cases for which r = 7. In fact for the level I security level the complexity
will be brought into the range where the attack is not theoretical but possible
in practice in under 210 min as we will later show. This is due to the special
construction of lifted polynomials given by the following lemma.

4.2 A Lemma on Lifted Polynomials

Lemma 2. Let

f̃ (X) =
n∑

i=1

n∑

j=i

αi,jxixj +
n∑

i=1

βixi + γ

be a lifted polynomial and A0, A1, · · · , A�−1 ∈ F
n
2 with

Ai = (ai,1, · · · , ai,n) .

Set A = A0 + A1t + A2t
2 + · · · + A�−1t

�−1. We have that for f̃
(
A + Xt�

)
all

the quadratic terms are coefficients of t2�, the linear terms are coefficients of
t�, t�+1, · · · , t2�−1, and the coefficients of th depends only on αi,j , βi, and Ak for
k ≤ h and X for h ≥ �.

Proof. This follows from the following calculation and the fact that for each
i, j ∈ {1, . . . , n}, αi,j , βi ∈ F2.

f(A + Xt�) =
n∑

i=1

n∑

j=i

αi,j

(
�−1∑

k=0

ak,it
k + xit

�

) (
�−1∑

k=0

ak,jt
k + xjt

�

)

+
n∑

i=1

βi

(
�−1∑

k=0

ak,it
k + xit

�

)
+ γ

=
n∑

i=1

n∑

j=i

αi,j

(
xixjt

2� + xi

�−1∑

k=0

ak,jt
k+� + xj

�−1∑

k=0

ak,it
k+�

)

+
n∑

i=1

βixit
� +

n∑

i=1

n∑

j=i

αi,j

2�−2∑

h=0

⎛

⎜⎜⎝
∑

0≤k,k′≤�
k+k′=h

ak,iak′,jt
h

⎞

⎟⎟⎠

+
n∑

i=1

βi

(
�∑

k=0

ak,it
k

)
+ γ.

4.3 s-Truncation

It will also be convenient later to define the concept of s-truncation for an element
of the extension field. For 0 ≤ s ≤ r − 1, we define the s-truncation of a element

a =
r−1∑

i=0

ait
i to be as =

s∑

i=0

ait
i.
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Similarly for a polynomial

f(X) =
n∑

i=1

n∑

j=i

ai,jxixj +
n∑

i=1

bixi + c

we define the s-truncation to be term by term

f
s
(X) =

n∑

i=1

n∑

j=i

ai,j
sxixj +

n∑

i=1

bi
s
xi + cs.

Finally, for a system of polynomials

G (X) =
(
g1(X), g2(X), . . . , gm(X)

)

we define the s-truncation to by truncating each polynomial individually

G
s
(X) =

(
g1

s(X), g2s(X), . . . , gm
s(X)

)
.

4.4 The Attack

Let P : Fn
2r → F

m
2r be a LUOV public key with r = 7 and suppose we want to

forge a signature for a message Y ∈ F
m
2r . We will denote by X = (x1, . . . , xn) an

indeterminate in F
n
2 and decompose the message Y into the sum of vectors

Y = Y0 + Y1t + · · · + Yr−1t
r−1

where for each i, Yi = (yi,1, . . . , yi,m) ∈ F
m
2 .

Consider the set of polynomials in F2[t]/〈g(t)〉 which are truncated to the
third power

E :=
{
a3 : a ∈ F2r

}
.

Table 2 calculates the probability that there will exist a signature for Y in En

for the relevant parameters using Lemma 1. In this case the domain is En which
has a size of 24n and the range is F

m
27 which has a size of 27m. So in each case

the probability of success is 1 − exp(−24n/27m).

Table 2. Probability that a signature exists in En

Name Probability

LUOV-7-57-197 1 − exp(−2617)

LUOV-7-83-283 1 − exp(−2883)

LUOV-7-110-374 1 − exp(−22366)

We thus see that it is very likely that we need to only consider signatures
from En when we attempt to forge. Similar to SDA’s usage of the differential
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X ′ to transform the direct attack into solving equations over a subfield, we do
not need to look over all of En at once but can instead construct a signature
piece by piece using differentials. However, instead of choosing the differentials
randomly, we will instead solve for them in such a manner that will eventually
construct a signature. For our attack to be efficient, we will want to always solve
no more than m quadratic equations over F2 with at least as many variables as
equations. This can be done in four steps using Lemma 2.

First we see that

P
0
(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q0,1(X)

Q0,2(X)
...

Q0,m(X)

where each Q0,i(X) is a quadratic polynomial over F2. So we may solve the
system of m equations in n variables P

0
(X) = Y0 using a direct attack method

like exhaustive search [6], a variant of XL (eXtended Linerization) [10], or a
Gröbner Basis method like F4 [24]. We will forestall discussion of which algorithm
to use until Sect. 4.6. Let us call the solution we found A0.

For the second step, let us examine P
1
(A0 + Xt). By the definition of s-

truncation, this will be a system of polynomials of degree at most 1 in t. Following
from Lemma 2, the coefficients of the t1 terms will be linear in the variables
X. Furthermore, the coefficients of the t0 terms will depend only on A0. As
P

0
(A0) = Y0, we see that

P
1
(A0 + Xt) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y0,1 + L1,1(X)t

y0,2 + L1,2(X)t
...

y0,m + L1,m(X)t

where each L1,i(X) is a linear polynomial over F2 in the variables X. Now find
a solution A1 to the system of linear equations

{
L1.i(X) = y1,i : 1 ≤ i ≤ m

}
.

Then we have P
1
(A0 + A1t) = Y0 + Y1t.

For the third step, examine P
2
(A0 +A1t+Xt2). Again the s-truncation will

make this a system of polynomials of degree 2 in t. Lemma 2 states that the
coefficients of the t2 terms will be linear in the variables X. The coefficients of
the t0 terms will depend only on A0, and the coefficients of the t1 will depend
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only on A0 and A1. But by construction of A0 and A1 we see that

P
2
(A0 + A1t + Xt2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y0,1 + y1,1t + L2,1(X)t2

y0,2 + y1,2t + L2,2(X)t2

...

y0,m + y1,mt + L2,m(X)t2

where each L2,i(X) is a linear polynomial over F2 in the variables X. Again find
a solution A2 to the system of linear equations

{
L2.i(X) = y2,i : 1 ≤ i ≤ m

}
.

Then we have P
2
(A0 + A1t + A2t

2) = Y0 + Y1t + Y2t
2.

As a final step, we drop the need for s-truncation and look at P(A0 +A1t+
A2t

2 + Xt3). We note that this will be a system of polynomials of degree 6 in t,
the highest degree for polynomials in F2[t]/〈g(t)〉 as r = 7. Further, by Lemma
2, only the coefficients of the t6 terms will be quadratic in X. The coefficients
of the t3, t4 and t5 terms will be linear in X. Finally, the coefficients of the t0,
t1, t2 terms depend only on A0, A0 and A1, and A0 A1 and A2 respectively. Let
A = A0 + A1t + A2t

2. By construction of A0, A1, and A2 we see that

P(A + Xt3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0,1 + y1,1t + y2,1t
2 + L3,1(X)t3 + L4,1(X)t4

+ L5,1(X)t5 + Q6,1(X)t6

y0,2 + y1,2t + y2,2t
2 + L3,2(X)t3 + L4,2(X)t4

+ L5,2(X)t5 + Q6,2(X)t6

...

y0,m + y1,mt + y2,mt2 + L3,m(X)t3 + L4,m(X)t4

+ L5,m(X)t5 + Q6,m(X)t6

Now we proceed largely in the same manner as the last step in the SDA
attack. Find the solution space S for the system of linear equations

A =
{
Li,j(X) = yi,j : 3 ≤ i ≤ 5, 1 ≤ j ≤ m

}
.

As A will most likely be full rank 3m, the dimension of S will have high proba-
bility of being n − 3m. Thus, the system of m quadratic equations

B =
{
Q6,j(X) = y6,j : 1 ≤ j ≤ m,X ∈ S

}

has a high probability of having a solution given the parameter sets of LUOV
which we record in Table 3. Again, we used Lemma 1 with the domain being
S which has size 2n−3m, and the range being F

m
2 which has size 2m. So the

probability of success is 1 − exp(−2n−4m).
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Table 3. Probability of success for NSDA

Name Probability

LUOV-7-57-197 1 − exp(−226)

LUOV-7-83-283 1 − exp(−234)

LUOV-7-110-374 1 − exp(−2344)

Find a solution A3 to B. Then we see that

P(A0 + A1t + A2t
2 + A3t

3) = Y

and thus σ = A0 + A1t + A2t
2 + A3t

3 is a forged signature for Y .
Note that in each case we assumed that it was possible to find the solutions Ai

for the various systems. The last quadratic system is when this is most unlikely,
and still we see that the odds are overwhelmingly in our favor for the parameter
sets we attacked for the solutions to exist assuming that polynomial systems act
as random maps. Thus, we may ignore the potential that a solution does not
exist in our attack for any step, and even if that were the case one can always
go back a previous step for a different solution and try again.

For the different parameter sets this is no longer so. They use a larger value
for r, which means that the number of linear equations to solve along side the
final quadratic system also increases to the point where we no longer expect a
final solution to exist. This bring into question when LUOV is safe from SDA
and NSDA, which depends on the relationship between n,m, r, and any factors d
of r, but is still competitive. This is beyond the scope of this paper, and further
work will need to be done to see the exact value of the lifting modification.

4.5 Hiding the Signature

It might be argued that signatures that come from En are in a very special
shape and thus can be rejected as obviously forged. However, it is possible to
hide the shape of the signatures generated from the NSDA attack. Due to the
special shape of the lifted polynomials, it is possible to know about preimages
of a more generic form which are connected to the preimages we can find. Let
P be a LUOV public key so that

P(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (1)(X) =
n∑

i=1

n∑

j=i

αi,j,1xixj +
n∑

i=1

βi,1xi + γ1

P (2)(X) =
n∑

i=1

n∑

j=i

αi,j,2xixj +
n∑

i=1

βi,2xi + γ2

P (m)(X) =
n∑

i=1

n∑

j=i

αi,j,mxixj +
n∑

i=1

βi,mxi + γm
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Suppose we wanted to forge a signature for a message Y = (y1, . . . , ym) ∈ F
m
2r .

As we are in a finite field of characteristic 2, we may take square roots of any
element. For some natural number N , define a vector Z = (z1, . . . , zm) = Y 1/2N

by which we mean that, for each i, zi = y
1/2N

i the 2N th root of yi. Now let
X = (x1, . . . , xn) ∈ En be a signature for Z so that P(X) = Z. Define X2N =
(x2N

i , . . . , x2N

n ). Let us recall the freshman’s dream.

Theorem 1 (Freshman’s Dream). If F is a field of characteristic p then for
any natural number N and elements x, y ∈ F we have (x + y)pN

= xpN

+ xpN

.

Then examining the kth component of P(X2N ) we see that due to the fresh-
man’s dream and the fact that the coefficients of P are in F2

P (k)(X2N ) =
n∑

i=1

n∑

j=i

αi,j,kx2N

i x2N

j +
n∑

i=1

βi,kx2N

i + γk

=

⎛

⎝
n∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γ1

⎞

⎠
2N

= z2
N

k = yk.

As the elements of X are degree three polynomials in F2[t]/〈g(t)〉, X2N ’s
elements will appear to be generic degree six polynomials. Now, the signature
can still be seen by checking the 2N th roots for each N less than r, but this
procedure still masks the forged signature from against lazy implementations of
the verification process.

4.6 Complexity

The complexity of our attack is determined by solving the two quadratic systems
of m equations over F2. The overhead from solving the linear systems we may
ignore as the size of the linear systems is always not much larger than the
quadratic systems, and linear systems are much more efficient to solve.

Let us take a system P =
(
P (1)(X), . . . , P (m)(X)

)
of m quadratic equations

in n variables over F2 and attempt to find a solution. The best method in our
case given the small field size and the limited number of variables we will have
is exhaustive search. In our practical experiment on LUOV-7-57-197, we used a
variant of the “forcepq fpga” algorithm [5,6], so this algorithm is how we will
estimate the complexity of solving the system. We will give a brief sketch of the
main idea here.

We will denote the solution set of the first k equations as

Z� = {A ∈ F2 | P (i)(A) = 0, 1 ≤ i ≤ �}.
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For some well chosen �, the algorithm first utilizes Grey-code and partial deriva-
tives to find Z� by solving the first � equations individually. We begin by ordering
the elements of F2 according to a Grey-code order A1, A2, . . . , A2n . This means
that for an element As ∈ F

n
2 , As+1 will only have one component different than

As. The authors of [5] noticed that, as we are working under F2 and if As+1

differs from As only at the ith component

P (k)(As+1) = P (k)(As) +
∂P (k)

∂xi
(As+1).

As the partial derivative is one degree smaller, it is more efficient to evaluate.
It was also found that this trick can be used recursively for evaluating the first
partial derivatives utilizing the second partial derivatives.

Notice, though, that Z� is no longer in Gray-code order as it is essentially
a random subset of F

n
2 . Thus, it is not possible to fully utilize the Gray-code

method to compute Z�+1 from Z�. One would have to add multiple evaluations
of different partial derivatives, one for each change in component, when selecting
the next element of Z�. This was only found to be twice as efficient as simply
evaluating the original equations in view of finding Zm at the very end.

It was estimated in [5] that the number of bit operations for finding all the
solutions would be log2(n)2n+2 for a determined system (n = m) with an optimal
value of � = 1 + log2(n). We will use this estimate on determined systems as
for the cases we consider we will have more variables than equations. As we
only need one solution we can randomly assign values until the system is either
determined or only slightly underdetermined (n > m) if we want a solution on
the first attempt. In our experiment we guessed for all but m+2 of the variables
to assure a solution first try, so we will do likewise in our estimate.

We will note though that if n is multiple times the size of m, we can first
use the method of Thomae and Wolf [40], which is an improvement of the work
of the Kipnis, Patarin, and Goubin [26], to reduce the number of variables and
equations. While we will not go into the details of the method in this paper,
the core idea is to make the random system act as if that is was at least partly
an oil and vinegar system. By this we mean we attempt to find some linear
transformation of the variables S such that P ◦S has a set of vinegar variables
V and a set of oil variables O. The result is part of the resulting system is linear
in the oil variables after fixing the vinegar variables. As we are in characteristic
2, square terms act linearly. Thus, we search for S to set each O ×O coefficient
αi,j,k = 0 for i �= j. Thomae and Wolf showed that this process can be done
solving a relatively small system of linear equations. The statement of their result
is as follows.

Theorem 2 (Thomae and Wolf). By a linear change of variables, the com-
plexity of solving an under-determined quadratic system of m equations and
n = ωm variables can be reduced to solving a determined quadratic system of
m − �ω + 1 equations. Furthermore, provided �ω|m the complexity can be fur-
ther reduced to the complexity of solving a determined quadratic system of m−�ω
equations [40].
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In Table 4 we compute the complexity for solving the final quadratic system.
This will be the most complex part of the attack as we had to first solve a
linear system. We will have approximately n − 3m variables and m equations.
We note that as (n − 3m)/m < 2 in each case, Thomae and Wolf’s method will
not apply. We will guess all but m + 2 variables and estimate the complexity as
log2(m + 2)2m+4.

Table 4. Complexity in terms of number of bit operations

Name log2 NSDA’s complexity (NIST Requirement)

LUOV-7-57-197 61 (143)

LUOV-7-83-283 89 (207)

LUOV-7-110-374 116 (272)

As the classical log2 classical gate operations for NIST security level I is 143,
III is 207, and V is 272 [31], we see that LUOV falls short in every category
for these parameters. Moreover, the actual complexity for NSDA is possible in
practice as we show with experimental results in Sect. 4.7.

Before we continue, we will mention that if the subfield over which we solved
had been larger, or if the number of variables to guess for had been too great,
then exhaustive search would not be the optimal choice for the solver for the
quadratic systems. Generally, after applying the method of Thomae and Wolf,
either XL [10] with the Block Wiedemann Algorithm [9] or the F4 algorithm by
Faugère [24] is the preferred choice for such systems using a hybrid method [2]
(meaning guessing a certain number of variables before applying the mentioned
algorithms). The complexity of both algorithms relies on solving/reducing very
large, sparse Macaulay matrices. Roughly, the highest degree found in XL is
denoted by D0 (called the operating degree), and the highest degree in F4 is
Dreg (called the degree of regularity [14,15,19,23]). Yeh et al. [42] have shown
that for the resulting overdetermined systems after using the hybrid method,
0 ≤ D0 − Dreg ≤ 1 and often D0 = Dreg. So the matrices are roughly the same
size, but XL is sparser and is thus the preferred method to use. Please see [42]
for full details.

4.7 Experimental Results

We have performed practical experiments on the LUOV parameter set LUOV-
7-57-197.

For the hardware, we used a field-programmable gates array cluster from Sci-
engines, a “Rivyera S6-LX150” with 64 Xilinx Spartan 6 LX150 FPGAs chips.
The LX150 were so named because each contains nearly “150,000 gate equiv-
alent units”. They were driven on 8 PCI express cards in a chassis containing
a Supermicro motherboard, an Intel Xeon(R) CPU (E3-1230 V2). When new
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in 2012, the machine cost 55,000 EUR. Although not directly comparable, a
machine with current FPGAs costing the same 55,000 EUR today will probably
have at least 2× as much computing power and cost less in electricity.

We use a variant of the “forcepq fpga” algorithm from the paper [6], using
the input format of the Fukuoka MQ Challenge. We processed the early parts
of our LUOV attack using the computer algebra system Magma and output the
resulting system in this format, which is basically binary quadratic systems with
zero-one coefficients lined up in graded reverse lexicographic order.

The “forcemp fpga” implementation allows us to test 210 input vectors per
cycle (at 200 MHz) per FPGA chip. In general this lets us solve a 48 × 48 MQ
system in a maximum of slightly less than 23 min using one single chip, or find
a solution to n × m quadratic equations, where n ≥ m, in 2m−48 × 23 min. We
could accelerate this somewhat if we can implement a variation of the Joux-Vitse
algorithm.

For a 55-equation system, using all 64 FPGAs, the maximum is 46 min. In
general it is a little shorter. The expectation is half of that or 23 min. For a 57-
equation system, it is 4 times that, hence about 3 h, expectation is about half of
that or 92 min. When we solved the 59-variable, 57-equation system in practice,
the run ended after 105 min. This, like all our runs in this experiment, happened
to be slightly unlucky.

As there are two quadratic systems to solve, we can forge a signature in under
210 min.

5 Inapplicability to Non-lifted Schemes

Before we conclude, lets discuss why NSDA or any similar attack does not work
on UOV [33], Rainbow [18], or any other multivariate scheme which does not use
the lifting modification. In these schemes, though some coefficients in the central
map are forced to be 0 (like the oil × oil coefficients in UOV and Rainbow) to
allow efficient pre-image finding, most of the coefficients in the central maps are
taken randomly from a finite field Fq. Thus, in the public key P : Fn

q → F
m
q all of

the coefficients are seemingly random elements of Fq. This makes any differential
we add seemingly mixed randomly.

To be explicit, Let us assume that Fq contains a subfield Fq′ so that Fq
∼=

Fq′ [t]/〈g(t)〉 where deg(g) = s. We will assume that Fq′ is to small to find pre-
images in. Let X = (x1, . . . , xn) be an indeterminate point in F

n
q′ , f(t) ∈ Fq′ [t]

(say f(t) = t like in NSDA), and A = (a1, . . . , an) be a fixed point (whether in
a special form like in NSDA or not). Let P̃(X) := P(A + Xf(t)). Similar to
the SDA section we find that in the kth component of P̃



The Nested Subset Differential Attack 345

P̃ (k)(X) =
n∑

i=1

n∑

j=i

αi,j,k(ajxif(t) + aixjf(t) + aiaj)

+
n∑

i=1

βi,k(xif(t) + ai) + γk +
n∑

i=1

n∑

j=i

αi,j,kxixjf(t)2.

Note that there are no restrictions on the coefficients, αi,j,k, βi,k and γk as
they are random elements from Fqr . The quadratic terms’ coefficients will contain
powers of t from t0 to ts−1. Hence, we are trading one random quadratic system
P which F

n
q′ is too small to find pre-images in for another equally random

quadratic system P̃ which F
n
q′ is still too small. So, NSDA is inapplicable to

non-lifted systems.

6 Conclusion

We have proposed a modified version of the Subfield Differential Attack called
Nested Subset Differential Attack which fully breaks half the parameters set for-
ward by the round 2 version of Lifted Unbalanced Oil and Vinegar. We reduced
attacking these parameters sets to the problem of solving quadratic equations
over the prime field F2. This makes our attack effective enough to be performed
practically. As our attack did not use the Unbalanced Oil and Vinegar Structure
of LUOV, it can be seen as a method of solving lifted quadratic systems in gen-
eral. We feel that more research into solving these types of quadratic systems
using the NSDA attack is needed. We also performed experimental attacks on
actual LUOV parameters and were able to forge a signature in under 210 min.
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Abstract. The contributions of this paper are twofold. First, we simplify
the description of the Unbalanced Oil and Vinegar scheme (UOV) and its
Rainbow variant, which makes it easier to understand the scheme and the
existing attacks. We hope that this will make UOV and Rainbow more
approachable for cryptanalysts. Second, we give two new attacks against
the UOV and Rainbow signature schemes; the intersection attack that
applies to both UOV and Rainbow and the rectangular MinRank attack
that applies only to Rainbow. Our attacks are more powerful than exist-
ing attacks. In particular, we estimate that compared to previously known
attacks, our new attacks reduce the cost of a key recovery by a factor of
217, 253, and 273 for the parameter sets submitted to the second round of
the NIST PQC standardization project targeting the security levels I, III,
and V respectively. For the third round parameters, the cost is reduced by
a factor of 220, 240, and 255 respectively. This means all these parameter
sets fall short of the security requirements set out by NIST.

1 Introduction

The Oil and Vinegar scheme and its Rainbow variant are two of the oldest
and most studied signature schemes in multivariate cryptography. The Oil and
Vinegar scheme was proposed by Patarin in 1997 [17]. Soon thereafter, Kipnis
and Shamir discovered that the original choice of parameters was weak and could
be broken in polynomial time [15]. However, it is possible to pick parameters
differently, such that the scheme resists the Kipnis-Shamir attack. This variant
is called the Unbalanced Oil and Vinegar scheme (UOV), and has withstood all
cryptanalysis since 1999 [14].

The rainbow signature scheme can be seen as multiple layers of UOV stacked
on top of each other. This was proposed by Ding and Schmidt in 2005 [9]. The
design philosophy is that by iterating the UOV construction, the Kipnis-Shamir
attack becomes less powerful, which enables the use of more efficient parameters.
However, the additional complexity opened up more attack strategies, such as the

This work was supported by CyberSecurity Research Flanders with reference number
VR20192203, and by the Research Council KU Leuven grant C14/18/067 on Cryptanal-
ysis of post-quantum cryptography. Ward Beullens is funded by FWO SB fellowship
1S95620N.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 348–373, 2021.
https://doi.org/10.1007/978-3-030-77870-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77870-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-77870-5_13


Improved Cryptanalysis of UOV and Rainbow 349

MinRank attack, the Billet-Gilbert attack [4], and the Rainbow Band Separation
attack [10]. Even though our understanding of the complexity of these attacks
has been improving over the last decade, there have been no new attacks since
2008.

Multivariate cryptography is believed to resist attacks from adversaries with
access to large scale quantum computers, which is why there has been renewed
interest in this field of research during recent years. Seven out of the nineteen
signature schemes that were submitted to the NIST post-quantum cryptography
standardization project were multivariate signature schemes. From those seven
schemes, four were allowed to proceed to the second round [3,5,8,18], and only
the Rainbow submission was selected as a finalist. The UOV scheme was not
submitted to the NIST PQC project.

Contributions. As a first contribution, we simplify the description of the UOV
and Rainbow schemes. Traditionally, the public key is a multivariate quadratic
map P, and the secret key is a factorization P = S ◦ F ◦ T where S and T are
invertible linear maps, and F is a so-called central map. Our description avoids
the use of a central map and only talks about properties of P instead. This new
perspective makes it easier to understand the scheme and the existing attacks.

Secondly, we introduce two new key-recovery attacks: the intersection attack
and the rectangular MinRank attack. The intersection attack relies on the idea
behind the Kipnis-Shamir attack and applies to both the UOV scheme and the
Rainbow scheme. The rectangular MinRank attack reduces key recovery to an
instance of the MinRank problem. In this problem the task is, given a number
of matrices, to find a linear combination of these matrices with exceptionally
low rank. When Ding and Schmidt designed the Rainbow scheme in 2005 they
were already aware that Rainbow was susceptible to MinRank attacks. However,
our new attack shows that there was another instance of the MinRank problem
lurking in the Rainbow public keys that went undiscovered until now. We call
our attack the rectangular MinRank attack because unlike previous attacks, the
matrices in the new MinRank instance are rectangular instead of square.

Roadmap. After giving some necessary background in Sect. 2, we introduce our
simplified description of the Oil and Vinegar scheme and the existing attacks in
Sect. 3. In Sect. 4 we introduce our intersection attack on UOV. In Sect. 5 we
give a simplified description of the Rainbow scheme, and we review the existing
attacks. The following Sects. 6 and 7 introduce the intersection attack for Rain-
bow and the rectangular MinRank attack respectively. We conclude in Sect. 8
with an overview of our attack complexities and new parameter sets for UOV
and Rainbow.
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2 Preliminaries

2.1 Notation

For a vector space V ⊂ Kn over a field K, we define its orthogonal complement
V ⊥ as the space of vectors that are orthogonal to all the vectors in V , i.e.
V ⊥ = {w|〈w,v〉 = 0 ,∀v ∈ V }. For a linear subspace W ⊂ V , we denote by
V/W the quotient space of V by W . This is the vector space whose elements are
the cosets of W in V :

V/W = {x := x + W |x ∈ V } .

Let x = x1, · · · , xnx
and y = y1, · · · , yny

be two groups of variables in Fq.
We denote by M(a, b) the number of monomial functions of degree a in the x
variables and degree b in the y variables. We denote by M(a, b) the number of
monomial functions of degree at most a in x and at most b in y. If a and b are
lower than q we have

M(a, b) =
(

a + nx − 1
a

)(
b + ny − 1

b

)
and M(a, b) =

(
a + nx

a

)(
b + ny

b

)

2.2 Multivariate Quadratic Maps

The central object in Multivariate Quadratic cryptography is the multivariate
quadratic map. A multivariate quadratic map P with m components and n
variables is a sequence p1(x), · · · , pm(x) of m multivariate quadratic polynomials
in n variables x = (x1, · · · , xn), with coefficients in a finite field Fq.

To evaluate the map P at a value a ∈ F
n
q , we simply evaluate each of its

component polynomials in a to get a vector b = (b1 = p1(a), · · · , bm = pm(a))
of m output elements. We denote this by P(a) = b.

MQ problem. The main source of computational hardness for multivariate
cryptosystems is the Multivariate Quadratic (MQ) problem. Given a multivariate
quadratic map P : Fn

q → F
m
q , and given a target t ∈ F

m
q , the MQ problem asks to

find a solution s such that P(s) = t. This problem is NP-hard, and it is believed
to be exponentially hard on average, even for quantum adversaries. Currently, the
best algorithms to solve instances of this problem (for cryptographically relevant
parameters) are algorithms such as F4/F5 or XL that use a Gröbner-basis-like
approach [6,11].

Polar forms. For a multivariate quadratic polynomial p(x), we can define its
polar form

p′(x,y) := p(x + y) − p(x) − p(y) + p(0) .

Similarly, for a multivariate quadratic map P(x) = p1(x), · · · , pm(x), we define
its polar form as P ′(x,y) = p′

1(x,y), · · · , p′
m(x,y). This polar form will allow
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us to simplify the description of the UOV and Rainbow schemes, and will play
a major role in the attacks on UOV and Rainbow. The multivariate quadratic
maps of interest in this paper are homogenous, so we will often omit the P(0)
term.

Theorem 1. Given a multivariate quadratic map P(x) : Fn
q → F

m
q , its polar

form P ′(x,y) : Fn
q × F

n
q → F

m
q is a symmetric and bilinear map.

Proof. We can write p(x) = x�Qx + v · x + c, where Q is an upper triangular
matrix that contains the coefficients of the quadratic terms of p, where v contains
the coefficients of the linear terms of p(x), and where c is the constant term of
p(x). Then we have

p′(x,y) := p(x + y) − p(x) − p(y) + p(0)

= (x + y)�Q(x + y) − y�Qy − x�Qx + v · (x + y) − v · x − v · y
= x�Qy + y�Qx

= x�(Q + Q�)y .

	


2.3 Solving MinRank with Support Minors Modeling

The MinRank problem asks, given k matrices L1, · · · , Lk with n rows and m
columns and a target rank r, to find coefficients yi ∈ Fq for i from 1 to k, not
all zero, such that the linear combination

∑k
i=1 yiLi has rank at most r.

Recently, Bardet et al. introduced the Support Minors Modeling algorithm
for solving this problem [1]. Let y ∈ F

k
q be a solution, and let C be a matrix

whose rows form a basis for the rowspan of Ly =
∑k

i=1 yiLi. For each subset
S ⊂ {1, · · · ,m} of size |S| = r, let cS be the determinant of the r-by-r submatrix
of C whose columns are the columns of C with index in S.

The Support Minors Modeling approach considers for each j ∈ {1, · · · , n}
the matrix

Cj =
(

rj
C

)
,

where rj is the j-th row of Ly. Then the rank of Cj is at most r, which implies
that all its (r+1)-by-(r+1) minors vanish. Using cofactor expansion on the first
row, each minor gives a bilinear equation in the yi variables and the cS variables.
The Support Minors Modeling algorithm then uses the XL algorithm to find a
solution to this system of n

(
m
r+1

)
bilinear equations.

Analysis. The attack constructs the Macaulay matrix Mb at bi-degree (b, 1),
a large sparse matrix, whose columns correspond to the monomials of degree b
in the yi variables, and of degree 1 in the cS variables. So at degree (b, 1), the
matrix has M(b, 1) columns. The rows of the matrix contain the degree (b, 1)
polynomials of the form μ(y) · f(y, c), where μ(y) is a monomial of degree b−1,
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and f(y, c) is one of the bilinear equations of the Support Minors Modeling
system. The goal of the attack is then to use the Wiedemann algorithm to find
a non-trivial solution to the linear system Mbx = 0, so that x reveals a solution
to the MinRank problem. This approach works if the rank of Mb is M(b, 1) − 1,
so that there is only a one-dimensional solution space that corresponds to the
unique (up to a scalar) solution of the MinRank problem.

Bardet et al. calculate that whenever b < r + 2, the rank of the Macaulay
matrix is

Rk,n,m,r(b) =
b∑

i=1

(−1)i+1

(
m

r + i

)(
n + i − 1

i

)(
k + b − i − 1

b − i

)
, (1)

unless Rk,n,m,r(b′) > M(b′, 1)−1 for some b′ ≤ b, in which case the rank is equal
to M(b, 1) − 1. This allows to calculate for which b the attack will succeed.

If bmin is the smallest integer for which the attack will succeed, then solving
the XL system with the Wiedemann algorithm requires

3M(bmin, 1)2(r + 1)k

field multiplications. Bardet et al. found that it is often advantageous to ignore
a number of columns of the Li matrices and only consider the first m′ columns
of the matrices, for some optimal value of m′ in the range [r + 1,m]. For more
details on the Support Minors Modeling algorithm, we refer to [1].

3 The UOV Signature Scheme

The Oil and Vinegar signature scheme, introduced in 1997 by Patarin [17], is
based on an elegant MQ-based trapdoor function. The trapdoor function is a
multivariate quadratic map P : Fn

q → F
m
q for which it is assumed that finding

preimages (i.e. solving the MQ problem) is hard. However, if one knows some
extra information (called the trapdoor), then it is easy to find preimages for any
arbitrary output. Originally, Patarin proposed to use the system with n = 2m.
This parameter choice was cryptanalysed by Kipnis and Shamir [15], which is
why current proposals use n > 2m. This is known as the Unbalanced Oil and
Vinegar (UOV) signature scheme. The conservative recommendation is to use
n = 3m or even n = 4m, but more aggressive and (more efficient) parameter
sets have been proposed that use n ≈ 2.35m [7].

The UOV signature scheme is created from the UOV trapdoor function with
the Full Domain Hash approach: The public key is the trapdoor function P :
F
n
q → F

m
q , the secret key contains the trapdoor information, and a signature on

a message M is simply an input s such that P(s) = H(M ||salt), where H is a
cryptographic hash function that outputs elements in the range of P and where
salt is a fixed-length bit string chosen uniformly at random for every signature.
Therefore, to understand the UOV signature scheme, we only need to understand
how the UOV trapdoor function works.
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3.1 UOV Trapdoor Function

The UOV trapdoor function is a multivariate quadratic map P : Fn
q → F

m
q that

vanishes on a secret linear subspace O ⊂ F
n
q of dimension dim(O) = m, i.e.

P(o) = 0 for all o ∈ O .

The trapdoor information is nothing more than a description of O. To generate
the trapdoor function one first picks the subspace O uniformly at random and
then one picks P uniformly at random from the set of multivariate quadratic
maps with m components in n variables that vanish on O. Note that on top of
the qm “artificial” zeros in the subspace O, we expect roughly qn−m “natural”
zeros that do not lie in O.

Given a target t ∈ F
m
q , how do we use this trapdoor to find x ∈ F

n
q such

that P(x) = t? To do this, one picks a vector v ∈ F
n
q and solves the system

P(v + o) = t for a vector o ∈ O. This can simply be done by solving a linear
system for o, because

P(v + o) = P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o)︸ ︷︷ ︸
=0

+ P ′(v,o)︸ ︷︷ ︸
linear function of o

= t .

With probability roughly 1 − 1/q over the choice of v the linear map P ′(v, ·)
will be non-singular, in which case the linear system P(v + o) = t has a unique
solution. If this is not the case, one can simply pick a new value for v and try
again.

3.2 Traditional Description of UOV

Traditionally, the UOV signature is described as follows: The secret key is a pair
(F , T ), where T ∈ GL(n, q) is a random invertible linear map, and F : Fn

q → F
m
q

is the so-called central map, whose components f1, · · · , fm are chosen uniformly
at random of the form

fi(x) =
n∑

i=1

n−m∑
j=i

αi,jxixj .

Note that the second sum only runs from i to n − m. So all the terms have at
least one variable in x1, · · · , xn−m.

The public key that corresponds to (F , T ) is the multivariate quadratic map
P = F ◦ T . To sign a message M , the strategy is to first solve for s′ ∈ F

n
q such

that F(s′) = H(M ||salt), and then the final signature is s = T −1(s′), such that
P(s) = F(s′) = H(M ||salt).

The description in Sect. 3.1 is just a slightly different way of thinking about
the same scheme. In particular, the distribution of public keys for this signature
scheme is the same: The central map F is chosen uniformly from the set of maps



354 W. Beullens

that vanish on the m-dimensional space of vectors O′ that consists of all the
vectors whose first n−m entries are zero, i.e. O′ = {v | vi = 0 for all i ≤ n−m}.
After composing with T , we get a public key P = F ◦ T that vanishes on some
secret linear subspace O = T −1(O′).

3.3 Attacks on UOV

A straightforward approach to attack the UOV signature scheme is to completely
ignore the existence of the oil subspace and directly try to solve the system
P(x) = H(M ||salt) to produce a signature for the message M . This can be done
with a Gröbner basis-like approach such as XL or F4/F5 [6,11]. This is called a
direct attack.

More interestingly, the attacker can first try to find the oil space O. After O
is found, the attacker can sign any message as if he was a legitimate signer. Two
attacks in the literature take this approach.

Reconciliation attack. The reconciliation attack was developed by Ding et
al. as a stepping stone towards the Rainbow Band Separation (RBS) attack
on Rainbow [10]. As an attack on UOV, the reconciliation attack is not very
useful, since it never outperforms a direct attack on UOV for properly chosen
parameters. Nevertheless, we describe the attack here, since it can also be seen
as a precursor to our intersection attack of Sect. 4.

The attack tries to find a vector o ∈ O by solving the system P(o) = 0. We
know that dim(O) = m, so if we impose m affine constraints on the entries of o,
we still expect a unique solution o ∈ O.

If n−m ≤ m, then we expect P(o) = 0 to have a unique solution after fixing
m entries of o. This is a system of m equations in fewer than m variables, so
solving this system is more efficient than a direct attack.

If n − m > m then P(o) = 0 will have a lot of solutions, only one of which
corresponds to an o ∈ O. Enumerating all the solutions is too costly, and the
attack will not outperform a direct attack. We can try to solve the following
system to find multiple vectors o1, · · · ,ok in O simultaneously:

{
P(oi) = 0 ∀i ∈ {1, · · · , k}
P ′(oi,oj) = 0 ∀i < j ∈ {1, · · · , k}

.

However, this increases the number of variables that appear in the system, and
therefore the attack will usually not outperform a direct attack.
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Once a first vector in O is found, finding subsequent vectors is much easier.
If o is the first vector that we found, then a second vector o′ ∈ O will satisfy

{
P(o′) = 0
P ′(o,o′) = 0

,

which means we get m linear equations on o′ for free. Therefore, the complexity
of the attack is dominated by the complexity of finding the first vector in O.

Kipnis-Shamir attack. Historically, the first attack on the OV signature
scheme was given by Kipnis and Shamir [15]. The basic version of this attack
works when n = 2m, which was the case for the parameter sets initially proposed
by Patarin.

Attack if n = 2m. The attack looks at the m components of P ′(x,y). Each
component p′

i(x,y) = pi(x + y) − pi(x) − pi(y), defines a matrix Mi such that
p′
i(x,y) = x�Miy. Kipnis and Shamir observed the following useful property of

Mi.

Lemma 2. For each i ∈ {1, · · · ,m}, we have that MiO ⊂ O⊥. That is, each
Mi sends O into its own orthogonal complement O⊥.

Proof. For any o1,o2 ∈ O we need to prove that 〈o2,Mio1〉 = 0. This follows
from the assumption that pi vanishes on O:

〈o2,Mio1〉 = o�
2 Mio1 = p′

i(o1,o2) = pi(o1 + o2) − pi(o1) − pi(o2) = 0 . 	


If n = 2m, then dim(O⊥) = n − m = m, so if Mi is nonsingular (which happens
with high probability1), then Lemma 2 turns into an equality MiO = O⊥. This
means that for any pair of invertible Mi,Mj , we have that M−1

j MiO = O, i.e.
that O is an invariant subspace of M−1

j Mi. It turns out that finding a common
invariant subspace of a large number of linear maps can be done in polynomial
time, so this gives an efficient algorithm for finding O. For more details we refer
to [15].

Remark 3. Note that, as a map from F
n
q to itself, Mi implicitly depends on a

choice of basis for F
n
q . A more natural approach would be to define Mi as a

map from F
n
q to its dual Fn

q
∨ given by x → p′

i(x, ·). Lemma 2 would then say

1 In fields of characteristic 2 and in case n is odd, the Mi are never invertible, because
Mi is skew-symmetric and with zeros on the diagonal and therefore has even rank.
(Recall that Mi = Qi + Q⊥

i as in the proof of Theorem 1.) To avoid this case we
can always set one of the variables to zero. This has the effect of reducing n by one
(which gets us back to the case where n is even), and it also reduces the dimension
of O by one, which makes the attack slightly less powerful. Since this trick is always
possible, we will assume that n is even in the remainder of the paper.
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MiO ⊂ O0, where O0 ⊂ F
n
q

∨ is the annihilator of O. We chose not to take this
approach to avoid the dual vector space and annihilators, which some readers
might not be familiar with.

Fig. 1. Behavior of O under M1 and M2, in case n = 2m (on the left) and 2m < n < 3m
(on the right).

Attack if n > 2m. If n > 2m, then it is still the case that Mi sends O into
O⊥, but because dim(O⊥) = n − m > m = dim(O) the equality MiO = MjO
may no longer hold. Therefore, M−1

i Mj is no longer guaranteed to have O as an
invariant subspace and the basic attack fails. However, even though in general
MiO �= MjO, they still have an unusually large intersection (see Fig. 1): MiO
and MjO are both subspaces of O⊥, so their intersection has dimension at least
dim(MiO) + dim(MjO) − dim(O⊥) = 3m − n. Kipnis et al. [14] realized that
this means that vectors in O are more likely to be eigenvectors of M−1

j Mi.
Heuristically, for x ∈ O, the probability that it gets mapped by Mi to some

point in the intersection MiO ∩ MjO is approximately

|MiO ∩ MjO|
|MiO| = q2m−n .

If this happens, then the probability that M−1
j maps Mix back to a multiple

of x is expected to be (q − 1)/|O| ≈ q1−m. Therefore, we can estimate that
the probability that a vector in O is an eigenvector of M−1

j Mi is approximately
q1+m−n, and the expected number of eigenvectors in O is therefore q1+2m−n.

The same analysis holds when you replace Mi and Mj by arbitrary invertible
linear combinations of the Mi. The attacker can repeatedly compute the eigen-
vectors of F−1G, where F and G are random invertible linear combinations of
the Mi. After qn−2m attempts he can expect to find a vector in O (he can verify
whether a given eigenvector x is in O by checking that P(x) = 0). The complex-
ity of the attack is Õ(qn−2m), so the attack runs in polynomial time if n = 2m,
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but quickly becomes infeasible for unbalanced instances of the OV construction2.
For more details on the attack, we refer to [14].

4 Intersection Attack on UOV

In this section, we introduce a new attack that uses the ideas behind the Kipnis-
Shamir attack, in combination with a system-solving approach such as in the
reconciliation attack. We first describe a basic version of the attack that works
as long as n < 3m. Then we also give a more efficient version of the attack that
works if n < 2.5m.

4.1 Attack if n < 3m

Like in the Kipnis-Shamir attack, we consider for each i ∈ {1, · · · ,m} the matrix
Mi such that p′

i(x,y) = x�Miy, and we choose two indices i, j ∈ {1, · · · ,m} such
that Mi and Mj are invertible matrices. The goal of our attack is to find a vector
x in the intersection MiO∩MjO. Recall from Sect. 3.3 that this intersection has
dimension at least 3m − n, so non-trivial solutions exist if n < 3m.

If x is in the intersection MiO ∩ MjO, then both M−1
i x and M−1

j x are in
O. Therefore, x is a solution to the following system of quadratic equations

⎧⎪⎨
⎪⎩

P(M−1
i x) = 0

P(M−1
j x) = 0

P ′(M−1
i x,M−1

j x) = 0
. (2)

Since there is a 3m−n dimensional subspace of solutions, we can impose 3m−n
affine constraints on x, so that we expect a unique solution. The attack is then
to simply use the XL algorithm to find a solution to this system of 3m quadratic
equations in n − (3m − n) = 2n − 3m variables.

Once x is found, we know 2 vectors M−1
i x and M−1

j x in O, and the remaining
vectors in O can be found more easily with the approach described in Sect. 3.3.

4.2 Attack When n < 2.5m

If n is small enough compared to m we can make the attack more efficient
by solving for an x in the intersection of more than 2 subspaces MiO at the
same time. Suppose n < 2k−1

k−1 m for an integer k ≥ 1, and let L1, · · · , Lk be k
randomly chosen invertible linear combinations of the Mi, then the intersection
L1O ∩ · · · ∩ LkO will have dimension at least km − (k − 1)(n − m) > 0, which

2 The Õ-notation ignores polynomial factors.
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means there is a nonzero x such that L−1
i x ∈ O for all i from 1 to k. We can

then solve the following system of equations:
{

P(L−1
i x) = 0 , ∀i ∈ {1, · · · , k}

P ′(L−1
i x, L−1

j x) = 0 , ∀i < j ∈ {1, · · · , k}
(3)

We expect to find a unique solution after imposing km − (k − 1)(n − m) linear
conditions on x to random values, so the complexity of the attack is dominated
by the complexity of solving a system of

(
k+1
2

)
m quadratic equations in nk −

(2k − 1)m variables.

Remark 4. Note that in the case n = 2m the requirement n < 2k−1
k−1 m is sat-

isfied for every k > 1. If we pick k ≈ √
m, then we have more than

(
m+1
2

)
equations in m variables, which means we can linearize the system and solve it
with Gaussian elimination in polynomial time. This is not surprising, because
Kipnis and Shamir have already shown that UOV can be broken in polynomial
time if n = 2m.

4.3 Complexity Analysis of the Attack

We noticed that the equations of system (3) are not linearly independent: even
though there are

(
k+1
2

)
m equations they only span a subspace of dimension(

k+1
2

)
m − 2

(
k
2

)
. This is because if we have Li =

∑m
l=1 αilMi, for all i from 1 to

k, then for all 1 ≤ i < j ≤ k we have

m∑
l=1

αilP ′
l(L

−1
i x, L−1

j x) =
m∑
l=1

αil(L−1
i x)⊥MlL

−1
j x)

= (L−1
i x)⊥LiL

−1
j x)

= x⊥L−1
j x =

m∑
l=1

αjlPl(L−1
j x)

Similarly, we have

m∑
l=1

αjlP ′
l(L

−1
i x, L−1

j x) = x⊥L−1
i x =

m∑
l=1

αilPl(L−1
i x) ,

so for each choice of 0 ≤ i < j ≤ k there are two linear dependencies between
the equations of system (3). This explains why they only span a subspace of
dimension

(
k+1
2

)
m − 2

(
k
2

)
.

Our experiments show that, after removing the 2
(
k
2

)
redundant equations,

the systems (2) and (3) behave like random systems of M =
(
k+1
2

)
m − 2

(
k
2

)
quadratic equations in N = nk − (2k − 1)m variables. For some small UOV
systems, we computed the ranks of the Macaulay matrices at various degrees,
and we found that they exactly match the ranks of generic systems (see Table 1).
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That is, at degree d, the rank is equal to the coefficient of td in the power series
expansion of

1 − (1 − t2)M

(1 − t)N+1
,

assuming that this coefficient does not exceed the number of columns of the
Macaulay matrix.

We can use the standard methodology for estimating the complexity of sys-
tem solving with an XL Wiedemann approach as

3
(

N + dreg
dreg

)2(
N + 2

2

)

field multiplications, where the degree of regularity dreg is the first d such that
the coefficient of td in

(1 − t2)M

(1 − t)N+1

is non-positive [2,8].

Table 1. The rank and the number of columns of the Macaulay matrices for the
system of equations of the intersection attack. The rank at degree d always matches
the coefficients of td the corresponding generating function, except if the coefficient is
larger or equal to the number of columns. In this case (marked by boldface in the table)
the rank equals the number of columns minus 1, and the XL system can be solved at
that degree d.

Parameters Macaulay matrix at degree d Generating function

n m k d = 2 d = 3 d = 4 d = 5

8 4 2 Rank 10 34 1−(1−t2)10

(1−t)5

#Columns 15 35

10 4 2 Rank 10 90 405 1245 1−(1−t2)10

(1−t)9

#Columns 45 165 495 1287

12 5 2 Rank 13 130 673 2001 1−(1−t2)13

(1−t)10

#Columns 55 220 715 2002

12 5 3 Rank 24 288 1364 1−(1−t2)24

(1−t)12

#Columns 78 364 1365

14 6 2 Rank 16 176 936 3002 1−(1−t2)16

(1−t)11

#Columns 66 286 1001 3003

14 6 3 Rank 30 390 1819 1−(1−t2)30

(1−t)13

#Columns 91 455 1820
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Concrete costs. To demonstrate that the new attack is more efficient than
existing attacks, we apply it to the UOV parameters proposed by Czypek et
al. [7]. They proposed to use q = 256, n = 103,m = 44, targeting 128 bits of
security. More precisely, they estimate that the direct attack requires 2130 field
multiplications and that the Kipnis-Shamir attack requires 2136 multiplications.

Their parameter choice satisfies n < 2.5m, so we can use the more efficient
version of the attack with k = 3 (i.e. where we solve for x in the intersection of 3
subspaces of the form MiO). This results in a system of M =

(
3+1
2

)
m−2

(
3
2

)
= 258

equations in N = nk − (2k − 1)m = 89 variables. The complexity of finding a
solution is 295 multiplications (dreg = 9), which is lower than the claimed security
level of 2128 multiplications.

In general, it seems that the new attack only outperforms a direct forgery
attack, if n < 2.5. The usual recommendation in the literature is to use n = 3m
or even n = 4m, so these parameters are not affected by the new attack. In
contrast, the example above shows that more aggressive parameters (which are
tempting because they are much more efficient and previously no attacks were
known) are no longer secure.

5 The Rainbow Signature Scheme

The Rainbow signature scheme is a variant of the UOV signature scheme pro-
posed in 2004 by Ding and Schmidt [9]. The Rainbow trapdoor function is a
multivariate quadratic map P : Fn

q → F
m
q . The trapdoor consists of a sequence

of nested subspaces F
n
q ⊃ O1 ⊃ · · · ⊃ Ol of the input space, and a sequence

of nested subspaces F
m
q ⊃ W1 ⊃ · · · ⊃ Wl = {0} of the output space, with

dim O1 = m, and dimOi = dim Wi−1 for i > 1 and such that the following hold:

1. P(x) ∈ Wi for all x ∈ Oi, and
2. P ′(x,y) ∈ Wi−1 for all x ∈ F

n
q , all y ∈ Oi.

Rainbow with one layer (i.e. l = 1) is nothing more than UOV. In the rest
of the paper, we focus on Rainbow with two layers (i.e. l = 2), because this
results in the most efficient schemes and because this covers all the parameter
sets submitted to the NIST PQC standardization project. In this case, there are
3 secret subspaces: O1, O2 and W (see Fig. 2). An instantiation of Rainbow is
then described by 4 parameters:

– q: the size of the finite field
– n: the number of variables
– m: the number of equations in the public key, also the dimension of O1.
– o2: the dimension of O2, also the dimension of W .

Given the trapdoor information (i.e. O1, O2 and W ), a solution s to P(s) = t
can be found with an efficient 2-step algorithm.
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Fig. 2. The structure of a Rainbow public key with 2 layers. The polar form P ′(x, ·)
maps O2 to W for every x ∈ F

n
q .

1. In the first step, pick v ∈ F
n
q uniformly at random, and solve for o1 ∈ O1/O2,

such that P(v + o1) + W = t + W . This can be rewritten as

P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o1)︸ ︷︷ ︸
∈W

+ P ′(v,o1)︸ ︷︷ ︸
linear in o1

+W = t + W.

This is a system of linear equations in the quotient space F
m
q /W , so we can

efficiently sample a solution with Gaussian elimination. Note that the system
has m − dim W constraints and m − dim W degrees of freedom, so we expect
there to be a unique solution (mod O2) with probability approximately 1−1/q.
If there is no unique solution we pick a new value of v and start over.

2. In the second step, we solve for o2 ∈ O2, such that P(v + o1 + o2) = t.
Writing it as

P(v + o1) − t︸ ︷︷ ︸
fixed,∈W

+P(o2)︸ ︷︷ ︸
=0

+P ′(v + o1,o2)︸ ︷︷ ︸
linear in o2,∈W

= 0 ,

we see that this is a system of dim W linear equations (because all the values
are in W ) in dimW variables, so we expect to find a unique solution with
Gaussian elimination with probability 1−1/q. If no unique solution exists we
return to step 1 with a new guess of v.

Remark 5. If we put W = F
m
q and O1 = O2, or if we put O2 = {0} and W = {0}

then we get back the original UOV construction.

5.1 Traditional Description of Rainbow

Traditionally, a Rainbow public key is generated as P = S ◦ F ◦ T , where
S ∈ GL(m, q) and T ∈ GL(n, q) are uniformly random invertible linear maps,
and where F(x) = f1(x), · · · , fm(x) is the so-called central map, whose first o1
components f1(x), . . . , fo1(x) are of the form

fi(x) =
n−o1∑
j=1

n−m∑
k=1

αijkxjxk ,
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and whose remaining components fo1+1(x), · · · , fm(x) are of the form

fi(x) =
n∑

j=1

n−o1∑
k=1

αijkxjxk .

Let O′
1 be the subspace of F

n
q consisting of all the vectors whose first n − m

entries are zeros, and let O′
2 be the subspace consisting of the vectors whose first

n − o2 entries are zero. Then all the polynomials in the central map vanish on
O′

2, and the first o1 polynomials also vanish on O′
1. In other words, F(O′

2) = 0
and F(O′

1) ⊂ W ′, where W ′ is the subspace of F
m
q consisting of the vectors

whose first o1 entries are zero. Moreover, F ′(x,y) ∈ W ′ for any x ∈ F
n
q and

any y ∈ O2. Therefore, the central map F satisfies the diagram in Fig. 2 with
the publicly known subspaces O′

1, O′
2 and W ′ taking the roles of O1, O2 and W .

This means that after composing F with secret random linear maps S and T we
obtain a public key P = S◦F ◦T that satisfies the diagram in Fig. 2 for uniformy
random secret subspaces O1 = T −1O′

1, O2 = T −1O′
2 and W = S−1W ′.

5.2 Rainbow NIST PQC Parameter Sets

In this paper, we focus on the Rainbow parameter sets that were proposed to the
second round and the finals of the NIST PQC standardization project [8]. These
parameter sets and the corresponding key and signature sizes are displayed in
Table 2.

Table 2. The Rainbow parameter sets that were submitted to the second round and
the finals of the NIST PQC standardization project.

Parameter set Parameters |pk| |sk| |sig|
q n m o2 (kB) (kB) (Bytes)

Second round Ia 16 96 64 32 149 93 64

IIIc 256 140 72 36 710 511 156

Vc 256 188 96 48 1705 1227 204

Finals Ia 16 100 64 32 157 101 66

IIIc 256 148 80 48 861 611 164

Vc 256 196 100 64 1885 1376 212

5.3 Attacks on Rainbow

A straightforward method to forge a signature is to simply try to find a solution s
to the system P(s) = H(M ||salt). This is called a direct attack. More interesting
attacks try to exploit the hidden structure of the Rainbow trapdoor.
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OV attack. The OV attack of Kipnis and Shamir to find the subspace O in
the OV construction can be used against Rainbow to find O2. The complexity
of the attack is Õ(qn−2o2).

When O2 is found, it is easy to find W , because

{P ′(x,y) | x ∈ F
n
q ,y ∈ O2} ⊂ W ,

and with overwhelming probability this will be an equality. Once W is found, we
have reduced the problem to a small UOV instance with parameters n′ = n− o2
and m′ = m − o2, so the Kipnis and Shamir attack can be used again to find
O1, with complexity Õ(qn

′−2m′
) = Õ(qn+o2−2m), which is negligible compared

to the complexity of the first step.

MinRank/HighRank attack. For all i ∈ {1, · · · ,m}, we define Mi ∈ F
n×n
q

like we did in the description of the OV attack. For v ∈ F
m
q we define the linear

combination Mv :=
∑m

i=0 viMi. Then it follows that 〈v,P ′(x,y)〉 = x�Mvy.
The second property of the Rainbow public key says that if v ∈ W⊥, then
〈v,P ′(x,y)〉 = x�Mvy = 0 for all values of x and all y ∈ O2. This implies that
O2 is in the kernel of Mv, so Mv has an exceptionally small rank of at most
n − dim O2.

The MinRank attack attempts to exploit this property to find a vector in W⊥.
The problem is, given the Mi for i ∈ {1, · · · ,m}, to find a linear combination of
these maps that has rank n − dim O2. This can be done with 2 strategies:

Guessing strategy [13]. Repeatedly pick v ∈ F
m
q . With probability q−o2 , we

have v ∈ W⊥. To check if a guess is correct, we simply check if the rank of
Mv is at most n − dim O2. The complexity of the attack is Õ(qo2). There is
a more efficient version of this attack by Billet and Gilbert, that runs in time
Õ(q2n−3m+o2+1) [4].

Algebraic strategy. One expresses rank(Mv) ≤ n−dim O2 as a system of mul-
tivariate polynomial equations in the entries of v and uses an algorithm such as
XL to find a solution. There exist several methods to translate the rank condi-
tion into a system of polynomial equations, such as the Kipnis-Shamir modeling,
and Minors modeling [12,16]. Recently, a more efficient approach by Bardet et
al. called “Support Minors Modeling” drastically improved the efficiency of this
attack (see Sect. 2.3 and [1]). The algebraic approach is asymptotically more
efficient than the guessing strategy.

As soon as a single vector v ∈ W⊥ is found, the attacker knows O2, because
it is the kernel of Mv. Then, once O2 is known he can finish the key recovery
attack as described in the previous section on the UOV attack.

Rainbow band separation attack. This attack, proposed by Ding et al. [10],
tries to simultaneously find a vector o ∈ O2, and a vector v ∈ W⊥. This gives
rise to the following system of equations{

P(o) = 0
〈v,P ′(o,x)〉 = 0 , ∀x ∈ F

n
q

. (4)
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To get a unique solution, we can impose o2 linear relations on the entries of o
and m − o2 linear relations on the entries of v. This results in a system with
n − o2 variables for o and o2 variables for v, which makes a total of n variables.

It looks like we get qn bilinear equations (one for each choice of x ∈ F
n
q ),

but these equations are obviously not independent. Extend o to a basis x1 =
o,x2, · · · ,xn for F

n
q (since we fixed some entries of o, we can pick the xi with

i > 1 without having to know the precise value of o). We can rewrite system (4)
as {

P(o) = 0
〈v,P ′(o,xi)〉 = 0 , ∀i ∈ {1, · · · , n}

. (5)

Note that the first bilinear equation is 〈v,P ′(o,o)〉 = 0, which is equivalent to
〈v,P(2o) − 2P(o)〉 = 〈v, 2P(o)〉 = 0, (recall that P is homogenous), so this
equation is already implied by the P(o) = 0 equations. This leaves us with a
system of m quadratic equations in o, and n−1 bi-linear equations in the entries
of o and v. The complexity of this attack is studied in detail in [19], where
they introduce a variant of the XL algorithm that exploits the bi-homogenous
structure of the system.

6 Intersection Attack on Rainbow

In this section we introduce a new key-recovery attack against the Rainbow
signature scheme that is similar to our intersection attack on UOV from Sect. 4.
Let k be such that n < 2k−1

k−1 o2, and pick invertible matrices L1, · · · , Lk from the
span of the Mi. Our goal is to find a vector x in the intersection

x ∈
k⋂

i=1

LiO2 .

This intersection has dimension at least ko2 − (k − 1)(n − o2) > 0, so non-zero
vectors in the intersection exist. We could try to find x by solving the system (3).
However, similar to the RBS attack, we can improve the efficiency of the attack
by simultaneously looking for a vector v ∈ W⊥. Let e1, · · · , en be a basis for Fn

q ,
where all the entries of ei are zero, except the i-th entry which equals 1. Then
we get the following system of quadratic equations:

⎧⎪⎨
⎪⎩

P(L−1
i x) = 0 , ∀i ∈ {1, · · · , k}

P ′(L−1
i x, L−1

j x) = 0 , ∀i < j ∈ {1, · · · , k}
〈v,P ′(L−1

i x, ej)〉 = 0 , ∀i ∈ {1, · · · , k} and ∀j ∈ {1, · · · , n}
. (6)

If we impose ko2 − (k − 1)(n − o2) affine constraints on the entries of x, and
m−o2 affine constraints on the entries of v we expect to have a unique solution.

It looks like we get
(
k+1
2

)
m quadratic equations in the x variables and kn

equations that are linear in the x variables and the v variables. However, the
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quadratic equations are the same set of equations as in the Intersection attack on
UOV, so we know that they give only

(
k+1
2

)
m − 2

(
k
2

)
linearly independent equa-

tions. We can then use the Bilinear XL variant of Smith-Tone and Perlner [19]
to find the unique solution to the system of equations.

Remark 6. If we put k = 1 then we recover the Rainbow Band Separation attack
(see Sect. 5.3), so our attack can be seen as a generalization of the RBS attack.
However, note that previous works have assumed that only n − 1 out of the n
bilinear equations are useful. We find that this is not quite correct. Even though
there is a syzygy at degree (2, 1) (which we will discuss later) it is still useful to
consider all n bilinear equations.

6.1 Extending to n ≥ 3o2

If n ≥ 3o2, then we expect there to be no non-trivial intersection, so the attack
is not guaranteed to succeed with k = 2. However, if we model L1O2 and L2O2

as uniformly random subspaces of O⊥
2 , then the probability that they intersect

non-trivially is approximately q−n+3o2−1. Therefore, we can expect the attack
to succeed after qn−3o2+1 guesses for (L1, L2).

6.2 Complexity Analysis of the Attack

The system of equations (6) is clearly not generic, since the first
(
k+1
2

)
m equa-

tions only contain the entries of x as variables, and the remaining k(n − k)
equations are bi-linear in the entries of x and v. This is the same structure as
the systems that appear in the RBS attack (Sect. 5.3). Smith-Tone and Perl-
ner investigated the complexity of solving such systems, and they proposed a
variant of the XL algorithm that exploits the bi-homogeneous structure of the
system [19]. Their algorithm works for systems of polynomial equations in nx+ny

variables, where mx equations are quadratic in the first nx variables, and mxy

equations are bi-linear in the first nx and last ny variables respectively. Under
a maximal rank assumption, their XL variant terminates at bi-degree (A,B) if
the coefficient corresponding to tasb in

(1 − t2)mx(1 − ts)mxy

(1 − t)nx+1(1 − s)ny+1
(7)

is non-positive for some a, b with a ≤ A and b ≤ B. If this is the case, an upper
bound for the number of multiplications in the attack is given by

3M(A,B)2
(

nx + 2
2

)
, (8)

where M(A,B) is the number of monomials with bi-degree bounded by (A,B).
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The maximal rank assumption is not valid for small instances of Rainbow,
because there are k2 non-trivial syzygies: For each (i, j) ∈ {1, · · · , k}2 we have

〈v,P ′(L−1
i x, L−1

j x)〉 =
m∑
l=1

vl · P ′
l(L

−1
i x, L−1

j x)

=
m∑
t=1

〈v,P ′(L−1
i x, et)〉 · (L−1

j x)t ,

which gives a non-trivial syzygy for the system (6) at bi-degree (2, 1).

Since adding an equation with bi-degree (a, b) to the polynomial system cor-
responds to an extra factor (1 − tasb) in the generating function (7), it seems
natural that a syzygy at degree (a, b) results in a factor (1−tasb)−1. We therefore
conjecture that the generating function for the system (6) is

(1 − t2)mx(1 − ts)mxy (1 − t2s)−k2

(1 − t)nx+1(1 − s)ny+1
(9)

where

nx = min(nk − (2k − 1)o2, n − 1), ny = o2,

mx =
(

k + 1
2

)
m − 2

(
k

2

)
, and mxy = kn .

We experimentally verified that this generating function exactly predicts the
ranks of the Macaulay matrices for small instances of Rainbow (see Table 4).
That is, we found that the rank of the Macaulay matrix at bi-degree (A,B) equals
M(A,B) minus the coefficient of tAsB in (9), unless one of the coefficient of tasb

with a ≤ A and b ≤ B is non-positive, in which case the rank is M(A,B) − 1,
and the bilinear XL algorithm will succeed at bi-degree (A,B).

Under our assumption, we can estimate the cost of our attack by iterating
over all minimal bi-degrees (A,B) for which the attack will succeed (i.e. for which
the coefficient of tAsB in the generating function is non-positive), and picking
the bi-degree (A,B) that minimizes the cost (8).

6.3 Application to Rainbow NIST Submissions

We now estimate the complexity of our attack on the Rainbow parameter sets
that were submitted to the NIST PQC project. For all the proposed parameter
sets we have n ≥ 3o2, which means the basic attack will need to be repeated
multiple times before we expect to recover the secret key. For the Ia parameter
set on the second-round submission, we have n = 3m, and for all the parameter
sets of the final round submission we have n = 3m + 4. In these cases, we need
to repeat the attack q and q5 times respectively. For the IIIc and Vc parameter
set of the second-round submission, n is much larger than 3m, so the attack is
very inefficient in these cases.
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Table 3 reports the estimated gate count of our attack. To convert from the
number of multiplications to the gate count, we use the model that is standard in
the MQ literature; each multiplication costs 2(log2(q)2 + log2(q)) gates. We see
that our attack outperforms the best known attacks for 4 out of the 6 proposed
parameter sets. The improvement is the largest for the Ia parameter set of the
first round and the Vc parameter set of the finals, where we improve on existing
attacks by almost 20 bits.

Table 3. The estimated gate count of our Intersection attack on Rainbow compared
to the best known attacks (taken from [19] for the second round parameters and the
Rainbow NIST submission for the finals parameters).

Parameter set Attack parameters New attack Known attacks

nx ny mx mxy Guesses (A,B)

Second round Ia 95 32 190 192 q1 (10, 1) 123 140

IIIc 139 36 214 280 q33 (6, 9) 412 204

Vc 187 48 286 376 q45 (6, 15) 548 264

Finals Ia 99 32 190 200 q5 (7, 4) 140 147

IIIc 147 48 238 296 q5 (10, 6) 213 217

Vc 195 64 298 392 q5 (10, 12) 262 281

7 The Rectangular MinRank Attack

In this section we introduce a new MinRank attack that exploits the property
that for y ∈ O2, we have that P ′(x,y) ∈ W for all x ∈ F

n
q . Let e1, · · · , en be

the basis for F
n
q where ei is a vector whose entries are zero, except for the i-th

entry which equals one. For a vector x ∈ F
n
q , we define the matrix

Lx =

⎛
⎝P ′(e1,x)

· · ·
P ′(en,x)

⎞
⎠ .

If y ∈ O2, then all the rows of Ly are in W , which implies that the matrix has
rank at most dim W = o2. Moreover, it follows from the bilinearity of P ′ that

Ly =
n∑

i=1

yiLe1 .

Since the Lei
matrices are public information, it follows that finding y ∈ O

reduces to an instance of a rectangular MinRank problem; if an attacker can
find a linear combination

∑n
i=1 Lei

yi with rank at most o2, then we can assume
that y is in O2. If we set o2 − 1 entries of y to zero, we still expect a non-trivial
solution, so it suffices to look for a linear combinations of only the matrices Le1

up to Len−o2+1 . Note that this MinRank instance is fundamentally different from
the one that was already known in the literature (see Table 5).
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Table 4. The rank and the number of columns of the Macaulay matrices for the system
of equations of the intersection attack. The rank at degree (A,B) always matches the

coefficient of tAsB in 1−(1−t2)mx (1−ts)mxy (1−t2s)−k2

(1−t)nx (1−s)ny , except if the coefficient is larger

or equal to the number of columns. In this case (marked by boldface in the table)
the rank equals the number of columns minus 1, and the XL system can be solved at
bi-degree (A,B).

Parameters Macaulay matrix at bi-degree (A,B)

n m o2 k (2, 0) (1, 1) (3, 0) (2, 1) (1, 2) (3, 1) (2, 2) (1, 3)

8 6 3 2 Rank 16 12 119 143 64 159

Cols 36 32 120 144 80 160

10 6 3 1 Rank 6 10 48 103 40 479 331 100

Cols 36 32 120 144 80 480 360 160

12 8 4 1 Rank 8 12 72 147 60 795 589 180

Cols 45 45 165 225 135 825 675 315

12 8 4 2 Rank 22 24 264 389 120 360

Cols 78 60 364 390 180 420

14 10 5 1 Rank 10 14 100 199 84 1220 953 294

Cols 55 60 220 330 210 1320 1155 650

14 10 5 2 Rank 28 28 392 556 168 3359 2204 588

Cols 105 84 560 630 294 3360 2205 784

Table 5. Comparison of the new MinRank instance with the known instance of the
MinRank problem.

Known instance of
MinRank problem

New instance of MinRank
problem

Size of matrices n-by-n n-by-m

Number of matrices o2 + 1 n− o2 + 1

Rank of linear combination m o2

Solution Vector in W⊥ vector in O2

We can use generic algorithms to solve this instance of the MinRank problem,
such as the guessing strategy, or the algebraic methods of Sect. 5.3. However, in
our case we can do slightly better because we have more information about y;
on top of knowing that Ly has low rank, we also know that P(y) = 0. Note
that the variables yi already appear in the system of equations that model the
rank condition rank(Ly) ≤ o2. Therefore, we can add the equations P(y) = 0 to
the system without having to introduce additional variables. This will make the
attack slightly more efficient.
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7.1 Complexity Analysis

We first estimate the complexity of solving the pure MinRank problem with
the support minors modeling approach of Sect. 2.3, without using the additional
equations P(y) = 0. From experiments it seems that in case we are working
in a field of odd characteristic, the MinRank instance behaves like a generic
instance of the MinRank problem, so we can use the methodology of Bardet et
al. to estimate the complexity of a random MinRank instance with n − o2 + 1
matrices of size n-by-m with target rank o2 (see Sect. 2.3). However, in case of a
field with characteristic 2 (which includes all the Rainbow parameters submitted
to NIST), there are some syzygies that do not appear in the case of random
MinRank instances. This stems from the fact that, in characteristic 2, we have

P ′(y,y) = P(2y) − P(y) − P(y) = 2P(y) = 0 ,

so the (r + 1)-by-r + 1 minors of

(
P ′(y,y)

C

)
=

n∑
i=0

yi

(
P ′(ei,y)

C

)

all vanish, which gives
(

m
r+1

)
non-trivial linear relation between the equations

at degree (2, 1). It is possible to carefully count how many linearly independent
equations we have at each degree (b, i), with an analysis similar to the analysis
of Bardet et al. [1].

However, to simplify the analysis, we can side-step the syzygies by ignoring
one of the rows of the L1, · · · , Ln−o2+1 matrices; since all the syzygies use all
the rows of the Li, the syzygies do not occur anymore if we omit a row from
all the Li matrices. Experimentally, we find that after removing a row, the
instance behaves exactly like a random instance of the MinRank problem with
n − o1 + 1 matrices of size (n − 1)-by-m and with rank o2. We can therefore use
the methodology of Bardet et al. to estimate the complexity of the attack (see
Sect. 2.3). The first half of Table 6 reports on the estimated complexities for the
Rainbow parameter sets that were submitted to the second round and the finals
of the NIST PQC standardization project.

The attack using P(y) = 0. We use the notation of Sect. 2.3, where Mb is the
Macaulay matrix for the Support Minors Modelling system at bi-degree (b, 1)
(omitting one row of the Li matrices, as discussed earlier), and where M(b, 1)
is the number of monomials of degree b in the yi variables and of degree 1 in
the cS variables. Let M+

b be the Macaulay matrix of the SMM system after
appending the P(y) = 0 equations. We want to figure out the minimal value of
b, for which the rank of M+

b is equal to M(b, 1) − 1, because in that case the
system M+

b x = 0 will have a one-dimensional solution space that corresponds
to the solutions of the MinRank problem.
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Table 6. The optimal attack parameters of the new MinRank attack, and the cor-
responding gate complexity for the Rainbow parameter sets submitted to the second
round and the finals of the NIST PQC standardization project.

Parameter set Plain MinRank MinRank and P(y) = 0

m′ b log2 gates m′ b log2 gates

Second round Ia 51 2 131 40 6 124

IIIc 59 2 153 52 4 151

Vc 80 2 197 74 3 191

Finals Ia 51 2 131 44 4 127

IIIc 72 3 184 68 4 177

Vc 95 4 235 87 6 226

Bardet et al. already computed the rank of Mb, so we only need to figure out
how much the rank increases by including the P(y) = 0 equations. Let G(t) be
a generating function for the dimension of the kernel of Mb, and G+(t) a gen-
erating function for the dimension of the kernel of M+

b . Note that, even though
we do not have a nice expression for G(t), we can compute its coefficients from
the expression of Bardet et al. for the rank of Mb, because the coefficient corre-
sponding to tb in G(t) is M(b, 1)−rank(Mb). Under some genericity assumptions
we have that G+(t) = (1 − t2)mG(t), from which we can get the rank of M+

b .
Experimentally, we found for all the instances of Rainbow we could check,

that this predicts the rank of M+
b exactly (see Table 7).

To estimate the complexity of the attack, we compute the first few terms of
G(t) until we encounter the first non-positive coefficient. If the first non-positive
coefficient corresponds to tb, then we assume the bilinear XL algorithm will work
at bi-degree (b, 1) and we can upper bound its cost as

3M(bmin, 1)2 W

multiplications, where W = max((o2 +1)(n−o2 +1),
(
(n−o2+3)

2

)
) is the maximal

weight of the equations in the system. We found that, as already observed by
Bardet et al. , it is helpful to consider only the first m′ columns of the matrices
Lei

. For each value of m′ ∈ [o2 + 1,m] we estimate the attack cost, and we pick
the value of m′ that results in the smallest cost. The optimal attack parameters
(m′, b) and the corresponding costs (in terms of gate count) are reported in
Table 6. We see that adding the P(y) = 0 equations to the Support minors
modeling system reduces the attack complexity by a modest factor between 22

and 29 for the NIST parameter sets.
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Table 7. The rank and the number of columns of the Macaulay matrices for the system
of equations of the rectangular MinRank attack. The rank at bi-degree (b, 1) always
matches the predicted values, except if the prediction is larger or equal to the number
of columns. In this case (marked by boldface in the table) the rank equals the number
of columns minus 1, and the XL system can be solved at bi-degree (b, 1).

Parameters Macaulay matrix at bi-degree (b, 1)

n m o2 m′ b = 1 b = 2 b = 3 b = 4

9 6 3 5 Rank 40 244 839

Rank with P(y) = 0 40 279

Number of columns 70 280 840

12 8 4 6 Rank 66 528 2376 7424

Rank with P(y) = 0 66 648 2474

Number of columns 135 675 2475 7425

15 10 5 6 Rank 14 154 924 4004

Rank with P(y) = 0 14 214 1444 6005

Number of columns 66 396 1716 6006

18 12 6 8 Rank 136 1615 10387

Rank with P(y) = 0 136 1951 12739

Number of columns 364 2548 12740

8 Conclusion

This paper offers a new perspective on the UOV and Rainbow signature schemes
that avoids the use of a central map. This makes it easier to understand the
existing attacks on these schemes, and allowed us to discover some new, more
powerful, attacks. We hope that our simpler perspective will encourage more
researchers to scrutinize the UOV and Rainbow signature schemes.

We introduce two new attacks: the intersection attack, which applies to both
the UOV and the Rainbow signature schemes, and the rectangular MinRank
Attack that applies only to the Rainbow scheme. Although methods for solving
systems of multivariate quadratic equations (and our understanding of their
complexity) have been improving over the last decades, the intersection attack is
the first improvement in the cryptanalysis of UOV that is specific to the structure
of the UOV public keys since 1999. Similarly, even though our understanding of
the complexity of attacks on Rainbow has been improving (recent examples are
[19] and [1]), there had not been any fundamentally new attacks on Rainbow
since 2008.
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Table 8. An overview of the estimated gate counts of our attacks versus known attacks
and the target security level for the six Rainbow parameter sets submitted to the second
round and the finals of the NIST PQC standardization project. The complexities of the
known attacks are taken from [19] for the second round parameters and the Rainbow
NIST submission for the finals parameters. The security target is taken from the NIST
PQC call for proposals.

Parameter set Intersection
attack

New MinRank
attack

Known
attacks

Security
target

Second round Ia 123 124 140 143

IIIc 412 151 204 207

Vc 548 191 264 272

Finals Ia 140 127 147 143

IIIc 213 177 217 207

Vc 262 226 281 272

New parameters for UOV and Rainbow. Both of our attacks reduce the
security level of the Rainbow NIST submission below the requirements set out
by NIST (see Table 8). However, our attacks are still exponential, and Rainbow
can be saved by increasing the parameter sizes by a relatively small amount.
For example, using q = 16, n = 109,m = 68, o2 = 36 would presumably reach
NIST security level I and would result in a signature size of 71 Bytes (a 10 %
increase) an key size of roughly 203 KB (an increase of 25 %). Alternatively, one
could use the UOV scheme with q = 64, n = 118,m = 47, which results in 89
Byte signatures and a key size of 242 Kilobytes. It seems questionable whether
the small performance advantage of Rainbow over UOV is worth the additional
complexity. We leave a more carefully optimized parameter choice for UOV and
Rainbow for future work.

Acknowledgments. I would like to thank Bo-Yin Yang and Jintai Ding for providing
helpful feedback on an earlier version of this paper.
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Abstract. At SODA 2017 Lokshtanov et al. presented the first worst-case
algorithms with exponential speedup over exhaustive search for solving
polynomial equation systems of degree d in n variables over finite fields.
These algorithmswere based on the polynomial method in circuit complex-
ity which is a technique for proving circuit lower bounds that has recently
been applied in algorithm design. Subsequent works further improved the
asymptotic complexity of polynomial method-based algorithms for solving
equations over the field F2. However, the asymptotic complexity formulas
of these algorithms hide significant low-order terms, and hence they out-
perform exhaustive search only for very large values of n.

In this paper, we devise a concretely efficient polynomial method-
based algorithm for solving multivariate equation systems over F2. We
analyze our algorithm’s performance for solving random equation sys-
tems, and bound its complexity by about n2 · 20.815n bit operations for
d = 2 and n2 · 2(1−1/2.7d)n for any d ≥ 2.

We apply our algorithm in cryptanalysis of recently proposed
instances of the Picnic signature scheme (an alternate third-round can-
didate in NIST’s post-quantum standardization project) that are based
on the security of the LowMC block cipher. Consequently, we show that
2 out of 3 new instances do not achieve their claimed security level. As a
secondary application, we also improve the best-known preimage attacks
on several round-reduced variants of the Keccak hash function.

Our algorithm combines various techniques used in previous polyno-
mial method-based algorithms with new optimizations, some of which
exploit randomness assumptions about the system of equations. In its
cryptanalytic application to Picnic, we demonstrate how to further opti-
mize the algorithm for solving structured equation systems that are con-
structed from specific cryptosystems.

1 Introduction

The security of many cryptographic schemes is based on the conjectured hardness
of solving systems of polynomial equations over a finite field. This problem is
known to be NP-hard even for systems of quadratic equations over F2.
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The input to the problem consists of m polynomials in n variables over a finite
field F, denoted by E = {Pj(x1, . . . , xn)}m

j=1, where each polynomial is given
as a sum of monomials. The algebraic degree of each polynomial is bounded
by a small constant d. The goal is to find a solution of the system, namely
x̂ = (x̂1, . . . , x̂n) ∈ F

n such that Pj(x̂) = 0 for every j ∈ {1, . . . , m}, or to
determine that a solution does not exist.1

In this paper, we will be interested in the concrete (rather than asymptotic)
complexity of algorithms for solving polynomial systems over the field F2 and in
their applications to cryptanalysis.

1.1 Previous Algorithms for Solving Polynomial Equation Systems

The problem of solving polynomial equation systems over finite fields is widely
studied. We give a brief overview of the main algorithms that were applied in
cryptanalysis.

Classical techniques developed to solve polynomial systems attempt to find
a reduced representation of the ideal generated by the polynomials in the form
of a Gröbner basis (e.g., the F4 [17] and F5 [18] algorithms). These methods
have had success in solving some very structured polynomial systems that arise
from certain cryptosystems (e.g., see [19]), but it is difficult to estimate their
complexity in solving arbitrary systems. Related methods such as XL [11] and
its variants typically work well only for largely over-defined systems in which
m � n.

In [3] Bardet et al. analyzed the problem of solving quadratic equations over
F2 and devised an algorithm that combines exhaustive search and sparse linear
algebra. The authors estimated the asymptotic complexity of their randomized
algorithm for m = n by O(20.792n), under some algebraic assumptions that
were empirically found to hold for random systems. However, due to a large
overhead hidden in the asymptotic formula, the authors expect their algorithm
to beat exhaustive search only when the number of variables is at least 200.
Another algorithm based on a different hybrid approach was published by Joux
and Vitse, who gave experimental evidence that it outperforms in practice pre-
vious algorithms for a wide range of parameters [22]. Analyzing the complexity
of the algorithm is non-trivial, but according to the recent work of Duarte [16],
the algorithm for solving quadratic systems over F2 with m = n + 1 does not
beat existing algorithms (such as the one of [3]) asymptotically.

Finally, we mention the work of Bouillaguet et al. [8], which devised an
optimized exhaustive search algorithm for solving polynomial systems of degree
d over F2 whose complexity is 2d log n · 2n bit operations.

1.2 The Polynomial Method

In [27] Lokshtanov et al. presented the first worst-case algorithms for solv-
ing polynomial equations over finite fields that have exponential speedup over
1 We denote an assignment to the formal variable vector x in the polynomial Pj(x)

by x̂ and the value of Pj(x) on this assignment by Pj(x̂).
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exhaustive search. These algorithms were based on a technique known as the
polynomial method. It was borrowed from circuit complexity [4] and recently
applied in algorithm design (see [35] for a survey). The randomized algorithm
of Lokshtanov et al. for solving equations over F2 has runtime of O(20.8765n)
for quadratic systems and O(2(1−1/(5d))n) in general. Following [27], Björklund,
Kaski and Williams [7] reduced the complexity of these algorithms to O(20.804n)
for d = 2 and O(2(1−1/2.7d)n) in general. More recently, these complexities were
further improved in [12] by Dinur to O(20.6943n) for d = 2 and O(2(1−1/2d)n) for
d > 2.

Although these recent algorithms have better asymptotic complexity than
exhaustive search, a close examination reveals that their concrete (non-
asymptotic) complexity is above 2n for parameter ranges that are relevant to
cryptography.

1.3 Our Results

We introduce the polynomial method for solving multivariate equation systems
over F2 as a tool in cryptanalysis. For this purpose, we devise a concretely
efficient algorithm for solving such systems.

Our algorithm is relatively simple and its analysis assumes the degree d
polynomials are selected uniformly at random. Up to small constants, we bound
the complexity of our algorithm by n2 · 20.815n bit operations for d = 2, and
n2 · 2(1−1/2.7d)n for d ≥ 2. The analysis we present here is heuristic, but is it
formally established in the full version of this paper.

In a straightforward implementation of our algorithm, its memory complexity
is significant and only about n times lower than its time complexity. In fact, this
is the case for all previous polynomial method-based algorithms. We address
this issue by presenting a memory-optimized variant of the algorithm which
maintains roughly the same time complexity, but whose memory complexity is
reduced to about n2 · 20.63n bits for d = 2 and n2 · 2(1−1/1.35d)n in general.2

Potential fast implementation. Even after the substantial reduction in mem-
ory complexity, it remains high and would present a challenge for obtaining a
fast practical implementation of the algorithm. To address this challenge, future
works may present an additional reduction in memory complexity or utilize time-
memory tradeoffs. Taking this optimistic viewpoint, our work may be viewed as
a step towards a practically efficient implementation of a polynomial method-
based algorithm for solving multivariate equation systems over F2.

We stress, however, that the main goal of the paper is to give a good ana-
lytical concrete estimate of the complexity of polynomial method algorithms for
problem sizes that are too large to be solved in practice. Consequently, it can be
used in the security analysis of cryptosystems and serve as a starting point for
additional optimizations.
2 Asymptotically, the polynomial factor in the memory complexity formula is between
n2 and n3, but it is close to n2 for relevant parameters.
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Asymptotic complexity. Our algorithm can actually be viewed as a concretely
efficient variant of the algorithm of [12]. The only reason that [12] seems to
have better asymptotic complexity is that it uses a self-reduction to a smaller
multivariate system. Essentially, each recursive call reduces the exponent in the
complexity formula, where the gain diminishes with the number of recursive
calls. On the other hand, each such call increases the lower order terms.

An estimated calculation suggests that a self-reduction is profitable for d = 2
starting from about n = 100. Beyond n = 200 for d = 2 the advantage in concrete
complexity is made substantial using several recursive calls. On the other hand,
for d = 4 the reduction seems profitable only beyond n = 200. We chose not
to augment our algorithm with any self-reduction and simply replace it with
exhaustive search for two reasons. First, as described below, the applications we
present in this paper require solving multivariate systems with d > 2, for which
the benefit of the self-reduction seems marginal for relevant parameters. Second,
this self-reduction significantly complicates the concrete analysis, whereas we
aim for simplicity. Yet, this estimation suggests that the full potential of the
algorithm is still to be discovered.

Cryptanalytic applications. We estimate the concrete complexities of our
algorithm for solving quadratic systems in 80, 128 and 256 variables by 277, 2117

and 2223 bit operations, respectively. In terms of cryptanalysis, the main targets
of our algorithm for d = 2 are multivariate public-key cryptosystems (e.g., HFE
by Patarin [30] and UOV by Kipnis, Patarin and Goubin [24]), whose security
is directly based on the hardness of solving quadratic systems. However, recent
multivariate cryptosystems such as GeMSS [9] (an alternate third-round can-
didate signature scheme in NIST’s post-quantum standardization project [29])
were designed with a sufficiently large security margin and resist our attack.
Nevertheless, the security margin for some of these cryptosystems seems to be
reduced by our algorithm.

Interestingly, the main application of our algorithm is for solving multivariate
systems of degree d > 2 which have generally received less attention in the liter-
ature compared to quadratic systems. In particular, we apply it to cryptanalyze
recently proposed instances [23] of the Picnic signature scheme [10] (an alternate
third-round candidate in NIST’s post-quantum standardization project) that is
based on the security of the LowMC block cipher [1].

We focus on the three Picnic instances where the LowMC block cipher has
a full Sbox layer and 4 internal rounds. These instances have claimed security
levels of S ∈ {128, 192, 255} bits. The best-known attacks on these instances were
recently published by Banik et al. [2], but they are only applicable to weakened
variants where the number of LowMC rounds is reduced from 4 to 2. On the
other hand, our attacks on the full 4-round instances with S ∈ {128, 192, 255}
have complexities of 2130, 2188 and 2245 bit operations, respectively. Thus, 2 out
of the 3 instances do not achieve their claimed security level, while the security
of the instance with S = 128 is somewhat marginal. When optimized for time
complexity, the attacks for S ∈ {128, 192, 255} require about 2112, 2164 and 2219

bits of memory, respectively. However, there is no consensus among researchers
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on a model that takes memory complexity into account and the formal security
claims of the Picnic (and LowMC) designers only involve time complexity.3

The authors of [23] also proposed conservative instantiations where the num-
ber of LowMC rounds is increased by 1. The attack complexities for these
instances with S ∈ {128, 192, 255} bits become 2133, 2192 and 2251, respectively.
Hence the instance with S = 255 still does not achieve the desired security level,
while security remains very marginal for the strengthened instance with S = 192.

We also analyze round-reduced variants of the Keccak hash function [5],
which was selected by NIST in 2015 as the SHA-3 standard. In particular,
we describe the best-known preimage attacks on 4 rounds of Keccak-k for all
k ∈ {224, 256, 384, 512}. These have complexities of 2217, 2246, 2374 and 2502

bit operations, respectively. We further describe the first collision attack on 4-
round Keccak-512 that is (slightly) faster than the birthday bound. We consider
the cryptanalysis of round-reduced Keccak as a secondary application since our
attacks are very far from threatening Keccak’s security.

Complexity evaluation. It is important to emphasize that the complexities
of our attacks are measured in bit operations. On the other hand, the complexity
of exhaustive search for the cryptanalytic problems we consider on a space of
size 2n is larger than 2n bit operations. Hence the improvement we obtain over
exhaustive search is more significant than it may first appear.

In particular, the encryption algorithms of the LowMC instances we crypt-
analyze (that are used in Picnic) have complexities of at least 217 bit opera-
tions. However, evaluating an attack in terms of the complexity of the LowMC
encryption algorithm is misleading, as naive exhaustive search is not the most
efficient generic attack on the 4-round LowMC instances. Indeed, breaking these
instances is easily reduced to solving a multivariate system in (about) n vari-
ables with d = 4, for which the best-known generic attack is the optimized
exhaustive search algorithm of Bouillaguet et al. [8], whose complexity is about
2d log n · 2n = 8 log n · 2n bit operations (also see [15] for an alternative algo-
rithm). Overall, in terms of bit operations, our algorithm is more efficient than
the one of [8] by a factor which is between 32 and 216 = 65536 (depending on
the LowMC instance considered).

1.4 Comparison to Previous Works

The analysis of our algorithm for random equation systems over F2 is simple. In
contrast, the analysis of previous cryptanalytic algorithms that beat brute force
for random equation systems over F2 (particularly, the one by Bardet et al. [3])
is based on heuristic algebraic assumptions that are difficult to analyze.

The algorithm of [3] (applied to systems with m = n) may seem to have a
slightly better asymptotic complexity than ours, but this is a misleading com-
parison, since (as noted above) our algorithm can be extended to have better
3 The Picnic designers have confirmed our findings and plan to update the parameter

sets accordingly.
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asymptotic complexity. In terms of concrete complexity for relevant parame-
ters, [3] only beats exhaustive search for d = 2 beyond n = 200, whereas the
complexity of our algorithm for d = 2, n = 200 is about 2177.

The algorithm of Joux and Vitse [22] performs well in practice. However, its
concrete complexity has not been established analytically and it is not clear how
to use it in the security analysis of cryptosystems.

Finally, previous polynomial method-based algorithms were only analyzed
asymptotically. While it is difficult to calculate their exact concrete complexity,
our optimizations reduce complexity by many orders of magnitude for relevant
parameters.

1.5 Technical Contribution

Let E = {Pj(x1, . . . , xn)}m
j=1 be a polynomial system of degree d over F2. Algo-

rithms based on the polynomial method consider the polynomial

F (x) = (1 + P1(x))(1 + P2(x)) . . . (1 + Pm(x))

(operations are over F2). Note that F (x̂) = 1 if and only if x̂ is a solution
of E. However, the degree of F (x) can be as high as d · m and it generally
contains too many monomials to manipulate efficiently. It is thus replaced by a
probabilistic polynomial F̃ (x) with a lower degree that agrees with F (x) on most
assignments. Taking advantage of the low degree of F̃ (x) by using fast polynomial
interpolation and evaluation algorithms allows to solve E faster than brute force.

Our main algorithm includes various concrete optimizations and simplifica-
tions to previous polynomial method-based algorithms. These are described in
detail in Sect. 3. For example, we reduce the number of polynomials which need
to be interpolated and evaluated and show how to jointly interpolate several
polynomials with improved amortized complexity.

Then, we show how to reduce the memory complexity of the algorithm by an
exponential factor with essentially no penalty in time complexity. The optimiza-
tion is based on a memory-reduced variant of the Möbius transform over F2 which
is a fast polynomial interpolation and evaluation algorithm. This variant allows
to evaluate a low-degree polynomial on its entire domain with memory com-
plexity proportional to the memory required to store the input polynomial itself
(and time complexity proportional to the domain size). Although the Möbius
transform is widely used and the variant we describe is simple, it seems not to
be well-known. The way this variant is used in our algorithm is, however, slightly
more involved.

As an additional technical contribution, we show how to optimize our algo-
rithm for solving structured equation systems that are constructed from spe-
cific cryptosystems. In particular, we observe that in cryptographic settings, a
probabilistic polynomial can be replaced with a deterministic construction of a
polynomial that preserves the structure of the polynomials of E. We show that
in some cases (e.g., in the analysis of Picnic in Sect. 5.2) this alternative poly-
nomial has reduced degree, optimizing the attack. We view this optimization as
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one of the main contributions of this paper, as it may serve as a starting point
for future works in cryptanalysis.

Paper structure. Next, we describe some preliminaries. We overview our algo-
rithm in Sect. 3 and give its details in Sect. 4. Applications are described in
Sect. 5.

2 Preliminaries

2.1 Boolean Algebra

Given a finite ordered set S, denote by |S| its size and by S[i] its i’th element.
For a positive integer n, let [n] = {1, 2, . . . , n}.

It is well-known that any Boolean function F : Fn
2 → F2 can be uniquely

described as a multilinear polynomial, whose algebraic normal form (ANF) is
given by F (x1, . . . , xn) =

∑
u∈{0,1}n αu(F )Mu(x), where αu(F ) ∈ {0, 1} is the

coefficient of the monomial Mu(x) =
∏n

i=1 xui
i (operations are over F2).

We denote by HW(x) the Hamming weight of a vector x ∈ {0, 1}n. The
algebraic degree of a function F is defined as max{HW(u) | αu(F ) �= 0}. Let
Wn

w be the set {x ∈ {0, 1}n | HW(x) ≤ w}. Thus, a function F of degree d ≤ n

can be described using |Wn
d | =

∑d
i=0

(
n
i

)
coefficients. We simplify notation by

denoting
(

n
↓w

)
=

∑w
i=0

(
n
i

)
.

For i ∈ {1, . . . , n} and b ∈ {0, 1}, define the function Fxi←b : Fn−1
2 → F2 by

Fxi←b(x1, . . . , xi−1, xi+1, . . . , xn) = F (x1, . . . , xi−1, b, xi+1, . . . , xn).

Interpolation. Any ANF coefficient αu(F ) can be interpolated by summing
(over F2) over 2HW(u) evaluations of F : for u ∈ {0, 1}n, define Iu = {i ∈
{1, . . . , n} | ui = 1} and let Su = {x ∈ {0, 1}n | Ix ⊆ Iu}. Then,

αu(F ) =
∑

x̂∈Su

F (x̂). (1)

Indeed, among all monomials only Mu(x̂) attains a value of 1 an odd number of
times in the expression

∑
x̂∈Su

F (x̂) =
∑

x̂∈Su

∑
v∈{0,1}n αv(F )Mv(x̂).

Proposition 2.1. Let F : Fn
2 → F2 be a Boolean function. For some 1 ≤ n1 ≤

n, partition its n variables into two sets y1, . . . , yn−n1 , z1, . . . , zn1 . Given the
ANF of F , write it as F (y, z) = (z1 . . . zn1)F1(y)+F2(y, z) by factoring out all the
monomials that are multiplied with z1 . . . zn1 . Then, F1(y) =

∑
ẑ∈{0,1}n1 F (y, ẑ).

The proposition follows from (1) by considering the polynomial F1(y) as the
symbolic coefficient of the monomial z1 . . . zn1 . Observe that if F (y, z) is of degree
d then F1(y) is of degree at most max(d − n1, 0).

Remark 2.1. Proposition 2.1 is also at the basis of cube attacks [14]. However,
in cube attacks, the z variables are public bits controlled by the attacker (e.g.,
plaintext bits) while the y variables are secret key bits. In our case, we will apply
Proposition 2.1 in a setting where all variables are secret key bits.
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2.2 Model of Computation

We estimate the complexity of a straight-line implementation of our algorithm
by counting the number of bit operations (e.g., AND, OR, XOR) on pairs of bits.
This ignores bookkeeping operations such as moving a bit from one position to
another (which merely requires renaming of variables in straight-line programs).

2.3 Basic Algorithms

We describe the basic algorithms that our main algorithm uses as sub-
procedures.

Möbius transform. Given the truth table of an arbitrary function F (as a
bit vector of 2n entries), the ANF of F can be represented as a bit vector of
2n entries, corresponding to its 2n coefficients. This ANF representation can be
computed from the truth table of F via the Möbius transform over F

n
2 .

A fast algorithm for computing this transform is based on the decomposition

F (x1, . . . , xn) = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn). (2)

Thus, one recursively computes the ANF of F1(x2, . . . , xn) and F2(x2, . . . , xn).
Given the evaluations of F , for every (x̂2, . . . , x̂n) ∈ {0, 1}n−1,

F2(x̂2, . . . , x̂n) = F (0, x̂2, . . . , x̂n)

and
F1(x̂2, . . . , x̂n) = F (0, x̂2, . . . , x̂n) + F (1, x̂2, . . . , x̂n).

Therefore, computing the evaluations of F1 requires 2n−1 bit operations. Denot-
ing the time complexity by T (n), we have T (n) = 2T (n − 1) + 2n−1, and hence
T (n) ≤ n · 2n−1 < n · 2n.

By (1), a function F of degree bounded by d ≤ n can be interpolated from its
evaluations on the set Wn

d . Adapting the Möbius transform for such a function
F using the decomposition above gives an algorithm with complexity T (n, d) ≤
T (n − 1, d) + T (n − 1, d − 1) +

(
n−1
↓d

)
and T (n, n) ≤ n · 2n. It can be shown by

induction that T (n, d) ≤ n · ( n
↓d

)
bit operations.

The Möbius transform over F
n
2 coincides with its inverse which corresponds

to evaluating the ANF representation of F (i.e., computing its truth table). More
details about the Möbius transform over Fn

2 and its applications in crypography
can be found in [21, p.285].

Memory complexity. A standard in-place implementation of the Möbius trans-
form performs n iterations on its input vector, where in each iteration, half of
the array entries are XORed to the other half. This requires 2n bits of memory.
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Fast exhaustive search for polynomial systems over F2 [8]. At CHES
2010 Bouillaguet et al. presented an optimized exhaustive search algorithm for
enumerating over all solutions of a polynomial system over F2. For a polynomial
system of degree d with n variables, the complexity of their algorithm is 2d·log n·
2n. The algorithm also requires a preprocessing phase that has complexity of n2d,
which is negligible when d is much smaller than n. We note that the analysis
of the algorithm makes some randomness assumptions about the polynomial
system, and requires that the expected number of solutions to a system with m
equations over n variables is about 2n−m.

In this paper we will use this algorithm to find solutions inside sets of the
special form Wn−n1

w × {0, 1}n1 for some values of w and n1 in time

2d · log n · |Wn−n1
w × {0, 1}n1 | = 2d · log n · 2n1 · (

n−n1
↓w

)
.

For an arbitrary value of n1, obtaining this complexity may not be trivial because
the algorithm of [8] iterates over the search space using a Gray code, and hence
it cannot be implemented on the set of low Hamming weight vectors Wn−n1

w (for
w < n − n1) in a straightforward manner.

On the other hand, the least significant bits of the vectors in the set
Wn−n1

w ×{0, 1}n1 can be traversed using a standard Gray code, paying a penalty
only every 2n1 iterations. Since we can naively enumerate any set of n-bit vec-
tors by flipping at most n bits at a time, we can conservatively estimate the
multiplicative penalty by about n. Thus, the amortized penalty over [8] is about
2−n1 · n. In our setting, 2n1 � n, and the overhead is negligible.

Remark 2.2. Asymptotically, we will set n1 = Θ(n), hence 2n1 = ω(n). Con-
cretely, the advantage of the algorithm over exhaustive search will be roughly
2n1

n2 . Thus, we may assume that 2n1 � n holds without loss of generality, as oth-
erwise, the algorithm would not obtain any advantage over exhaustive search.

2.4 Probabilistic Polynomials

Previous algorithms for solving multivariate equation systems based on the
polynomial method (starting with [27]) make use of probabilistic polynomi-
als. In particular, these works use the following construction (credited to
Razborov [31] and Smolensky [32]). Given m polynomial equations of degree
d in the n Boolean variables x1, . . . , xn, E = {Pj(x)}m

j=1, consider the polyno-
mial F (x) = (1 + P1(x))(1 + P2(x)) . . . (1 + Pm(x)). Note that x̂ is a solution
of E if and only if F (x̂) = 1. Thus, we call the polynomial F the identifying
polynomial of E.

The degree of F (x) is generally too high and we work with a probabilistic
polynomial with a lower degree, defined as follows. Let � < m be a parameter.
Pick a uniformly random matrix of full rank �, A ∈ F

�×m
2 and define � degree d

polynomials as

Ri(x) =
m∑

j=1

Ai,j · Pj(x). (3)
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We note that previous works [7,12,27] did not restrict the rank of A. In our case,
this restriction will slightly simplify the analysis. Let

F̃ (x) = (1 + R1(x))(1 + R2(x)) . . . (1 + R�(x)) (4)

be the identifying polynomial of the system Ẽ = {Ri(x)}�
i=1. Note that the

degree of F̃ (x) (denoted by dF̃ ) is at most d · �.

Proposition 2.2. For any x̂ ∈ {0, 1}n, if F (x̂) = 1, then F̃ (x̂) = 1. Otherwise,
F (x̂) = 0 and then Pr[F̃ (x̂) = 0] ≥ 1 − 2−�.

Proof. If F (x̂) = 1, then Pj(x̂) = 0 for all j ∈ [m] and therefore Ri(x̂) = 0 for
all i ∈ [�]. Hence, F̃ (x̂) = 1.

Otherwise, F (x̂) = 0. Let v ∈ F
m
2 be a vector such that vj = Pj(x̂) and

u ∈ F
�
2, a vector such that ui = Ri(x̂). Note that u = A · v. Since F (x̂) = 0,

there exists j ∈ [m] such that Pj(x̂) = 1 and thus v �= 0. On the other hand,
if F̃ (x̂) = 1, then Ri(x̂) = 0 for all i ∈ [�], implying that u = 0. Therefore, v
is a non-zero vector in the kernel of A. Since A is a uniform matrix of full rank
�, any fixed non-zero vector (including v) belongs to its kernel with probability
2−� − 2−m < 2−�. �

2.5 Previous Polynomial Method Algorithms for Solving Equation
Systems over F2

In this section we give a short description of the previous polynomial method-
based algorithms of [7,12]. We focus on the parts which are most relevant to this
work.

The Björklund et al. algorithm [7]. In the algorithm of [7], the search prob-
lem of finding a solution to the system E is reduced to the parity-counting
problem, where the goal is to compute the parity of the number of solutions.

The first step reduces the search problem to the problem of deciding whether
a solution exists. The reduction iteratively fixes one variable of the solution at
a time using Θ(n) calls to the decision algorithm. Then, the decision problem is
reduced to the parity-counting problem. This reduction uses the Valiant-Vazirani
affine hashing [34], adding random linear equations to the system with the goal
of isolating some solution of E (assuming a solution exists), such that it is the
only solution to the new system. In this case, the output of the parity-counting
algorithm is 1. The number of linear equations to add that ensures isolation
with high probability depends on the logarithm of the number of solutions to E,
which is unknown. Hence, the algorithm exhausts all its possible n values.

We now overview the Björklund et al. parity-counting algorithm. Alge-
braically, the parity of solutions of E = {Pj(x)}m

j=1 is computed by∑
x̂∈{0,1}n F (x̂), where F (x) = (1 + P1(x)) . . . (1 + Pm(x)). This sum (parity) is

computed in parts by partitioning the n variables into 2 sets y = y1, . . . , yn−n1

and z = z1, . . . zn1 , where n1 < n is a parameter. Thus,
∑

x̂∈{0,1}n F (x̂) =
∑

ŷ∈{0,1}n−n1

∑
ẑ∈{0,1}n1 F (ŷ, ẑ).
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Replace the polynomial F (y, z) with the probabilistic polynomial F̃ (y, z) =
(1 + R1(y, z)) . . . (1 + R�(y, z)) for � = n1 + 2, similarly to (4). By Proposition
2.2 and a union bound over all ẑ ∈ {0, 1}n1 , for each ŷ ∈ {0, 1}n−n1 ,
Pr

[∑
ẑ∈{0,1}n1 F̃ (ŷ, ẑ) =

∑
ẑ∈{0,1}n1 F (ŷ, ẑ)

]
≥ 1 − 2n1−� = 3

4 . In order to com-

pute the sum for each ŷ ∈ {0, 1}n−n1 efficiently, let G(y) =
∑

ẑ∈{0,1}n1 F̃ (y, ẑ).
It follows from Proposition 2.1 that the degree of G(y) is at most dG = d · �−n1.
Proceed by interpolating G(y) by first computing its values on the set Wn−n1

dG
.

For this purpose, find all solutions of the equation system {Ri(y, z)}�
i=1 in

Wn−n1
dG

× {0, 1}n1 via brute force, giving F̃ (ŷ, ẑ) for (ŷ, ẑ) ∈ Wn−n1
dG

× {0, 1}n1 .
Then, compute G(ŷ) =

∑
ẑ∈{0,1}n1 F̃ (ŷ, ẑ) for ŷ ∈ Wn−n1

dG
. Given these values of

G(y), interpolate it using the Möbius transform.
Next, evaluate G(y) on all ŷ ∈ {0, 1}n−n1 (using the Möbius transform) to

obtain the partial parity of each part
∑

ẑ∈{0,1}n1 F̃ (ŷ, ẑ). However, each partial
parity is correct only with probability 3

4 . Thus, repeat the above steps with
t = 48n + 1 independent probabilistic polynomials. Obtain t suggestions for
each part and take their majority to obtain the true partial parity, except with
exponentially small probability. Assuming that all partial parities are computed
correctly, return

∑
x̂∈{0,1}n F (x̂) =

∑
ŷ∈{0,1}n−n1

∑
ẑ∈{0,1}n1 F (ŷ, ẑ).

Optimizing complexity by self-reduction. Ignoring low-order (but concretely sub-
stantial) terms, the complexity of the above algorithm is dominated by brute
force on sets Wn−n1

dG
×{0, 1}n1 and polynomial evaluations on the sets {0, 1}n−n1 .

The complexity is thus

O∗(
(
n−n1
↓dG

) · 2n1 + 2n−n1) (5)

(O∗ hides polynomial factors in n). The parameter n1 can be set to balance these
terms and optimize complexity.

In [7], the asymptotic complexity is optimized. Instead of brute force, for each
ŷ ∈ Wn−n1

dG
, compute G(ŷ) by a self-reduction to a parity-counting problem with

input {Ri(ŷ, z)}�
i=1, which is a system with n1 variables z1, . . . , zn1 .

Dinur’s algorithm for enumerating solutions [12]. The main result of the
followup paper [12] is an asymptotically more efficient algorithm. Essentially, it
defines a multiple parity-counting problem (which computes many parities at
once), and shows that all the

(
n−n1
↓dG

)
parities returned by recursive calls in [7]

can be computed more efficiently by a single recursive call to a multiple parity-
counting problem. As noted in Sect. 1.3, we do not use this reduction.

Instead, we focus on the secondary result of [12], which is an algorithm for
enumerating all solutions of a polynomial system. In our context, we will use
a related technique to eliminate the initial reduction of [7] from solving E to
parity-counting (which has a high concrete overhead) and replace it with a more
direct way of recovering solutions from parity computations.
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Isolating solutions. The first observation is that we can isolate many solutions
of E at once using a variable partition x = (y, z) = (y1, . . . , yn−n1 , z1, . . . , zn1).

Definition 2.1 (Isolated solutions). A solution x̂ = (ŷ, ẑ) to E =
{Pj(y, z)}m

j=1 is called isolated (with respect to the variable partition (y, z)), if
for any ẑ′ �= ẑ, (ŷ, ẑ′) is not a solution to E.

The goal is to “evenly spread” solutions across the different ŷ values. Thus,
for many solutions (ŷ, ẑ), there is no additional solution that shares the same
ŷ value (namely, (ŷ, ẑ) is isolated). This is made possible by a random linear
change of variables applied to the polynomials of E and a careful choice of n1.

Enumerating isolated solutions. The second observation is that all solutions
isolated by the variable partition (y, z) can be recovered bit-by-bit by computing
n1 + 1 sums (parities) for each y ∈ {0, 1}n−n1 . Let

V0(y) =
∑

ẑ∈{0,1}n1

F (y, ẑ), and let Vi(y) =
∑

ẑ∈{0,1}n1−1

Fzi←0(y, ẑ)

for i ∈ {1, . . . , n1}, where F (y, z) = (1 + P1(y, z)) . . . (1 + Pm(y, z)).

Proposition 2.3. Assume that (ŷ, ẑ) is an isolated solution of E with respect
to (y, z). Then, V0(ŷ) = 1 and Vi(ŷ) = ẑi + 1 for all i ∈ {1, . . . , n1}.

As a result, in order to recover (ŷ, ẑ) (assuming V0(ŷ) = 1), it is sufficient to
compute Vi(ŷ) for each i ∈ {1, . . . , n1}. The formal polynomials Vi(y) cannot be
directly interpolated (they are derived from F and hence of high-degree). In [12],
these sums are computed using its first algorithm.

Proof. First, since F is the identifying polynomial of E, then V0(ŷ) counts the
parity of solutions of the system {Pj(ŷ, z)}m

i=1 (in which y is fixed to ŷ). There-
fore, if (ŷ, ẑ) is an isolated solution of E with respect to (y, z), then V0(ŷ) = 1.

Next, if ẑi = 0, then the assignment (ŷ, ẑ) continues to be an isolated solution
of E with respect to (y, z) after setting zi = 0 and hence Vi(ŷ) = 1. Otherwise,
ẑi = 1, and E has no solutions after setting y = ŷ and zi = 0, implying that
Vi(ŷ) = 0. In both cases, Vi(ŷ) = ẑi + 1 for all i ∈ {1, . . . , n1} as required. �

Testing solutions. For each ŷ ∈ {0, 1}n−n1 , the algorithm computes n1 +1 sums.
Those with V0(ŷ) = 1 suggest some solution (ŷ, ẑ). The suggestion is correct if
(ŷ, ẑ) is an isolated solution. Otherwise, the suggestion may be a “false alarm”.
Consequently, all suggested solutions are tested on E.

3 Overview of the New Algorithm

The starting point of our algorithm is the solution enumeration algorithm of [12].
We first notice that in order to find a solution to E, it is, in fact, sufficient to
enumerate isolated solutions of Ẽ, (as they form a superset of the solution set of
E) and test each one on E. This has a significant advantage in terms of concrete
complexity, as detailed below.
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We now describe how we isolate solutions of Ẽ with respect to a variable
partition x = (y, z) according to a parameter n1 and then overview our algorithm
that outputs all isolated solutions of Ẽ and tests them.

Isolating solutions. We use the following proposition.

Proposition 3.1. Let E and Ẽ be polynomials systems with identifying poly-
nomials F (x) and F̃ (x), respectively. For n1 = � − 1, define a variable partition
x = (y, z) = (y1, . . . , yn−n1 , z1, . . . , zn1). Assume that (ŷ, ẑ) is an isolated solu-
tion of E. Then, Pr[(ŷ, ẑ) is an isolated solution of Ẽ] ≥ 1 − 2n1−� = 1

2 .

Proof. The proposition follows by Proposition 2.2 by a union bound over the set
{(ŷ, ẑ′) | ẑ′ �= ẑ}, whose size is 2n1 − 1. �

Hence, assuming that E has an isolated solution, setting � = n1 + 1 ensures
that this solution is also isolated in Ẽ with probability at least 1

2 . Consequently,
the algorithm has to be repeated a few times (with independent probabilistic
polynomials) until it is output.

We also need to argue that E has an isolated solution with high probability.
The (y, z) variable partition groups a solution to E together with 2n1 − 1 dif-
ferent assignments. In a cryptographic setting, we may assume that each such
assignment satisfies E (containing m equations) with probability 2−m. Thus, a
solution to E is isolated with probability at least 1 − 2n1−m, which is typically
very close to 1, as in our case we set n1 < n/5 (to optimize complexity) and we
usually have m � n/5.

Enumerating isolated solutions. Similarly to [12], isolated solutions are
recovered bit-by-bit by computing n1 sums, but we enumerate isolated solutions
of Ẽ rather than E. Define the polynomials

U0(y) =
∑

ẑ∈{0,1}n1

F̃ (y, ẑ), and Ui(y) =
∑

ẑ∈{0,1}n1−1

F̃zi←0(y, ẑ)

for i ∈ {1, . . . , n1}.

Proposition 3.2. Assume that (ŷ, ẑ) is an isolated solution of Ẽ with respect
to (y, z). Then, U0(ŷ) = 1 and Ui(ŷ) = ẑi + 1 for all i ∈ {1, . . . , n1}.
Proof. The proposition follows from Proposition 2.3, applied with Ẽ and F̃ ,
instead of E and F . �

Exploiting the low degree of F̃ , our algorithm interpolates all n1 + 1 polyno-
mials Ui(y) for i ∈ {0, . . . , n1} and then evaluates each one on all ŷ ∈ {0, 1}n−n1

to recover isolated solutions. 4 We optimize the interpolation of the polynomials
Ui(y), exploiting the following proposition.

4 We never explicitly interpolate the probabilistic polynomial F̃ itself, but only the
polynomials Ui(y) derived from it.
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Proposition 3.3. Let Ẽ = {Ri(y, z)}�
i=1 and let F̃ by its identifying polyno-

mial. Denote by dF̃ the degree of F̃ and let w = dF̃ − n1. The polynomial U0(y)
can be interpolated from the solutions of Ẽ on the set Wn−n1

w × {0, 1}n1 , while
Ui(y) for i ∈ {1, . . . , n1} can be interpolated from the solutions of Ẽ on the set
Wn−n1

w+1 × {0, 1}i−1 × {0} × {0, 1}n1−i. Hence, all the n1 + 1 polynomials can be
interpolated from the solutions of Ẽ on the set Wn−n1

w+1 × {0, 1}n1 .

Proposition 3.3 shows that the domains of the system Ẽ solved for interpo-
lating Ui(y) for i ∈ {1, . . . , n1} overlap. Instead of naively solving Ẽ on n1 + 1
overlapping domains, we solve Ẽ on one (slightly bigger) domain. Specifically,
we use the exhaustive search algorithm of [8] for this purpose. We note that the
analysis of [8] requires randomness assumptions about the input system, yet the
other optimizations described here for enumerating isolation solutions do not.

Proof. By Proposition 2.1, the algebraic degree of U0(y) =
∑

ẑ∈{0,1}n1 F̃ (y, ẑ) is
at most dF̃ −n1 = w, while the algebraic degree of each Ui(y) for i ∈ {1, . . . , n1}
is at most dF̃ − n1 + 1 = w + 1.

Therefore, U0(y) can be interpolated from its values on the set Wn−n1
w , where

the computation of each such value requires 2n1 evaluations of F̃ (y, z). Thus,
U0(y) can be interpolated from the values of F̃ (y, z) on the set Wn−n1

w ×{0, 1}n1 .
Similarly, Ui(y) for i ∈ {1, . . . , n1} can be interpolated given the values of F̃ (y, z)
on the set Wn−n1

w+1 × {0, 1}i−1 × {0} × {0, 1}n1−i. The proposition follows since
F̃ is the identifying polynomial of Ẽ, and hence F̃ (ŷ, ẑ) = 1 if and only if (ŷ, ẑ)
is a solution to Ẽ. �

Testing solutions. Similarly to [12], for each ŷ ∈ {0, 1}n−n1 , the algorithm
computes n1 + 1 sums. In our case, those with U0(ŷ) = 1 suggest some solution
(ŷ, ẑ) to Ẽ (and hence to E), and we need to test them. However, these tests
make expensive evaluations of polynomials, which generally require about

(
n
d

)

bit operations. This may lead to a large overhead, particularly for d > 2. In order
to reduce this overhead, we repeat the algorithm a small number of times (using
independent probabilistic polynomials) and test only candidate solutions that
are output more than once. This is an additional concrete optimization over the
second algorithm of [12], and makes use of assumptions about the input system
to argue that it is unlikely for an incorrect candidate solution to be suggested
more than once.

Comparison to the previous works [7,12]. Our algorithm differs from pre-
vious works in each of the three elements mentioned above.

First, unlike the worst-case setting of [7,12], isolating solutions in a crypto-
graphic setting is essentially trivial. In particular, there is no need for a random
change of variables, and the parameter n1 will simply be chosen to optimize the
complexity. In addition, the procedure of testing solutions is more efficient than
the one of [12] as explained above.
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Technically, a more interesting modification is that we enumerate isolated
solutions of Ẽ instead of E as in [12]. As a result, we only need to compute
sums of the form

∑
ẑ∈{0,1}n1 F̃ (ŷ, ẑ). This is a significant concrete optimization,

as accurate sums of the form
∑

ẑ∈{0,1}n1 F (ŷ, ẑ) are too expensive to compute
directly due to the high degree of F . In previous algorithms of [7,12], such
sums are computed by majority voting across 48 · n + 1 evaluations of differ-
ent polynomials derived from E, which have to be interpolated and evaluated.
Consequently, the complexity of our algorithm is reduced by a factor of Ω(n)
while additional savings are obtained via Proposition 3.3. Thus, our algorithm
eliminates majority voting altogether and uses probabilistic polynomials in a
different and a more direct way to solve E.

The asymptotical complexity of the algorithm is determined by two terms,
similarly to (5). It could be improved using the techniques of [12], essentially
by recursively solving the multiple parity-counting problem on Ẽ for sets of the
form Wn−n1

w × {0, 1}n1 (rather than applying brute force). Yet, these recursive
calls have a significant concrete overhead (they require working with many more
probabilistic polynomials) and we do not use them, as noted in Sect. 1.3.

4 Details and Analysis of the New Algorithm

The pseudo-code of our main algorithm in given in Algorithm 1. It uses proce-
dures 1 and 2. We now describe it in detail and then analyze its complexity.

Details of Algorithm 1. The main loop of Algorithm 1 runs until we find a
solution of E. In each iteration, we define a new probabilistic set of equations Ẽ
from E and call Procedure 1 to output all candidate solutions of Ẽ. The output
of Procedure 1 is a 2-dimensional 2n−n1 × (n1 + 1) array that contains for each
ŷ ∈ {0, 1}n−n1 , the evaluations U0(ŷ) and Ui(ŷ)+1 for i ∈ {1, . . . , n1}. Hence, by
Proposition 3.2, assuming that (ŷ, ẑ) is an isolated solution of Ẽ, then U0(ŷ) = 1
and Ui(ŷ) + 1 = ẑi for i ∈ {1, . . . , n1}.

We store candidate solutions of Ẽ in an array and check whether a potential
solution has been output before (for a previous probabilistic set of equations).
Such a potential solution is tested against the full system E.

Details of Procedures 1 and 2. Procedures 1 and 2 output the potential
solutions of a given system Ẽ by interpolating the polynomials Ui(y) for i ∈
{0, . . . , n1} and evaluating them on all ŷ ∈ {0, 1}n−n1 .

Recall from Proposition 3.3 that Ui(y) for i ∈ {0, . . . , n1} can be interpolated
by solving Ẽ on the set Wn−n1

w+1 × {0, 1}n1 , where w = dF̃ − n1 and dF̃ is the
degree of F̃ . In procedure 2, these solutions are output by the fast exhaustive
search algorithm of [8].

We denote by L the number of solutions and store them in memory. Next, we
need to compute the values of each Ui(y) on the sets described in Proposition 3.3
(with the aim of interpolating it).5 These values are computed by summing the
5 In practice, we do not need to store all the L solutions in memory at once, but we

can interleave the exhaustive search with the computation of the Ui(y) values.
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evaluations of F̃ (y, z) on the corresponding subset of ẑ ∈ {0, 1}n1 . The values of
all the polynomials Ui(y) for i ∈ {0, . . . , n1} are computed in parallel by iterating
over the solutions of the system. For each solution, we calculate its contribution
to each of the relevant polynomials. Having calculated the required values of
each of the polynomials, we return them.

Then, in Procedure 1, we interpolate Ui(y) for i ∈ {0, . . . , n1} using the
Möbius transform. Finally, we evaluate all the n1+1 polynomials on the full range
ŷ ∈ {0, 1}n−n1 using the Möbius transform and output the potential solutions.

Parameters: n1, dF̃
Initialization: � ← n1 + 1, w ← dF̃ − n1

1: PotentialSolutionsList[0 . . .] ← NewList()

2: for all k = 0, 1, . . . do

3: Pick a uniformly random matrix of full rank �, A(k) ∈ F
�×m
2 . Compute Ẽ(k) =

{R
(k)
i (x)}�

i=1 = {∑m
j=1 A

(k)
i,j · Pj(x)}�

i=1

4: CurrPotentialSolutions ← OutputPotentialSolutions({R
(k)
i (x)}�

i=1, n1, w)

5: PotentialSolutionsList[k] ← CurrPotentialSolutions

6: for all ŷ ∈ {0, 1}n−n1 do
7: if CurrPotentialSolutions[ŷ][0] = 1

�test whether U0(ŷ) = 1, i.e., entry is valid

then

8: for all k1 ∈ {0, . . . , k − 1} do
9: if CurrPotentialSolutions[ŷ] = PotentialSolutionsList[k1][ŷ]

�check whether solution appears twice

then
10: sol ← ŷ‖CurrPotentialSolutions[ŷ][1 . . . n1]

�concatenate n1 least significant bits

11: if TestSolution({Pj(x)}m
j=1, sol) = TRUE then

12: return sol

13: break �continue with next ŷ

Algorithm 1: Solve({Pj(x)}m
j=1)

4.1 Time Complexity Analysis

We now analyze the expected time complexity of the algorithm, denoted by
T = Tn1,dF̃

(n,m, d), in terms of bit operations. For this purpose we define the
following notation:

– E is the event that E has an isolated solution.
– Nk is the number main loop iterations of Algorithm 1.
– T1 is the average complexity of an iteration of Algorithm 1, not including the

complexity of testing solutions.
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1: (V, ZV [1 . . . n1]) ← ComputeUValues({Ri(y, z)}�
i=1, n1, w)

�obtain values for interpolating each Ui(y)

2: Interpolate U0(y): apply Möbius transform to V [1 . . . |W n−n1
w |]

3: for all i ∈ {1, . . . , n1} do

4: Interpolate Ui(y): apply Möbius transform to ZV [i][1 . . . |W n−n1
w+1 |]

5: Evals[0 . . . n1][0 . . . 2n−n1 − 1] ← �0 �init evaluation array
6: for all i ∈ {0, 1, . . . , n1} do
7: Evaluate Ui(y) on {0, 1}n−n1 by Möbius transform. Store result in Evals[i][0 . . . 2n−n1−

1]

8: Out[0 . . . 2n−n1 − 1][0 . . . n1] ← �0 �init output
9: for all ŷ ∈ {0, 1}n−n1 do
10: if Evals[0][ŷ] = 1 then

11: Out[ŷ][0] ← 1 �indicate U0(ŷ) = 1, i.e., entry is valid
12: for all i ∈ {1, . . . , n1} do

13: Out[ŷ][i] ← Evals[i][ŷ] + 1

�copy potential solution by flipping evaluation bit

14: return Out

Procedure 1: OutputPotentialSolutions({Ri(x)}�
i=1, n1, w)

– Ns is the total number of solutions tested by Algorithm 1.
– Ts is the average complexity of testing a solution.

We have

T ≤ Nk · T1 + Ns · Ts. (6)

Probabilistic setting. We assume that the polynomials of E are chosen inde-
pendently and uniformly at random from all degree d polynomials, conditioned
on having a pre-fixed solution chosen initially (e.g., a cryptographic key). A
formal analysis of Algorithm 1 is given in the full version of the paper.

Below, we give a simple heuristical analysis, assuming each assignment x̂
that is not the pre-fixed solution satisfies any polynomial equation in E with
probability 1/2 independently of the other assignments and equations.

Theorem 4.1 (heuristic). For a random equation system, the success proba-
bility of Algorithm 1 is at least 1 − 2n1−m. Given that m ≥ 2 · (n1 + 1) + 2 and
Ts 	 n1 ·n · 2n1 , ignoring negligible factors, its expected running time is at most

4
(
2d · log n · 2n1 · (

n−n1
↓dF̃ −n1+1

)
+ n1 · n · 2n−n1

)
≤ (7)

4
(
2d · log n · 2n1 · (

n−n1
↓n1·(d−1)+d+1

)
+ n1 · n · 2n−n1

)
. (8)
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1: Sols[1 . . . L] ← BruteForceSystem({Ri(y, z)}�
i=1, n − n1, w + 1)

�brute force on space Wn−n1
w+1 × {0, 1}n1

2: V [1 . . . |W n−n1
w |] ← �0, ZV [1 . . . n1][1 . . . |W n−n1

w+1 |] ← �0 �init values for each Ui(y)
3: for all (ŷ, ẑ) ∈ Sols[1 . . . L] do
4: if HW(ŷ) ≤ w

�values of HW more than w do not contribute to U0(y)

then
5: index ← IndexOf(ŷ, n − n1, w) �get index of ŷ in Wn−n1

w

6: V [index] = V [index] + 1 �sum is over F2

7: for all i ∈ {1, . . . , n1} do

8: if ẑi = 0

�only values with zi = 0 contribute to Ui(y) for i > 1

then

9: index ← IndexOf(ŷ, n − n1, w + 1)

10: ZV [i][index] = ZV [i][index] + 1
11: return V, ZV [1 . . . n1]

Procedure 2: ComputeUValues({Ri(y, z)}�
i=1, n1, w)

The “negligible factors” ignored are negligible both asymptotically and for rel-
evant concrete parameter choices. Several terms will be neglected based on
assumptions that n1 is sufficiently large (such as 2n1 � n). We have already
used and justified such assumptions (see Remark 2.2).

The total complexity of Algorithm 1. The complexity formula (8) establishes a
tradeoff between two terms. First, the term

2d · log n · 2n1 · (
n−n1
↓w+1

)
(9)

accounts for the brute force on the space Wn−n1
w+1 ×{0, 1}n1 in Procedure 2 (based

on the analysis of Sect. 2.3 for random systems). The second term accounts for
the evaluation of the polynomials Ui(y) on {0, 1}n−n1 in Procedure 1 and is

(n1 + 1) · (n − n1) · 2n−n1 ≤ n1 · n · 2n−n1 (10)

(given that n2
1 + n1 ≥ n). The free parameter n1 is set to balance these terms

and optimize the complexity. Assuming the terms are equal, based on the second
term, the gain in complexity over 2n bit operations is roughly 2n1

8·n1·n . In the full
version of the paper we estimate the total complexity of Algorithm 1 by about
n2 · 20.815n bit operations for d = 2 and n2 · 2(1−1/2.7d)n in general. This is
obtained by setting n1 ≈ n

2.7d . Table 1 (at the end of this section) shows that
n2 · 2(1−1/2.7d)n slightly overestimates the complexity for relevant parameters.
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Next, we establish Theorem 4.1 and argue that the condition Ts 	 n1 ·n ·2n1

holds both asymptotically and for relevant concrete parameter choices.

Success probability analysis. To analyze E (the event that E has an isolated
solution), examine a specific solution to E. It is placed in a group with 2n1 − 1
additional potential solutions. We thus estimate the probability that another
solution exists in this group by 2n1−m, and E holds with probability 1 − 2n1−m.

Time complexity analysis. The algorithm succeeds once a solution to E is
isolated twice. Given that E holds, by Proposition 3.1, every iteration isolates
a particular solution with probability at least 1

2 . Hence the expected number of
iterations is at most Nk ≤ 2 · 2 = 4.

We analyze the most expensive operations of procedures 2 and 1, showing
that the terms (9) and (10) indeed dominate. We then analyze the cost of testing
solutions.

Procedure 2. As noted above, using the analysis of Sect. 2.3, the brute force
complexity is given by (9). In addition, we estimate

L = 2−� · |Wn−n1
w+1 × {0, 1}n1 | = 1

2 · (
n−n1
↓w+1

)
, (11)

as the equation systems we solve by brute force have � = n1 + 1 equations.
The complexity of computing the values of the arrays V and ZV is slightly

more6 than (n1 +1) ·L, which is negligible compared to (9), given that 2d · log n ·
2n1 � 1

2 (n + 1).

Procedure 1. The complexity of interpolating (U0(y), U1(y), . . . , Un1(y)) from
their evaluations is n · (

n−n1
↓w

)
+ n1 · n · (

n−n1
↓w+1

)
< (n1 + 1) · n · (

n−n1
↓w+1

)
, which

is negligible compared to (9) given that 2d · log n · 2n1 � (n1 + 1) · n.
The complexity of evaluating these polynomials on {0, 1}n−n1 is given in (10).

Estimating Ns. Fix an iteration pair 0 ≤ i < j < Nk. Given that we have at least
m ≥ 2 · (n1 +1)+2 = 2 · �+2 equations, the 2� rows of A(i) and A(j) are linearly
independent vectors over {0, 1}m with high probability7 in which case Ẽ(i) and
Ẽ(j) are independent equation systems with � equations. Hence, restricting these
systems to ŷ ∈ {0, 1}n−n1 , the pair suggests the same n1-bit solution suffix ẑ
with probability 2−n1 . Considering all ŷ ∈ {0, 1}n−n1 , the expected number of
suggested solutions is about 2n−2n1 . As the number of iteration pairs is small
and many systems restricted to ŷ do no suggest any solution since U0(ŷ) = 0,
we estimate

Ns = 2n−2n1 . (12)

6 We note that the operations of the IndexOf functions can be implemented with small
overhead because solutions are output by the brute force algorithm in fixed order.

7 Even if the rows of A(i) and A(j) have a few linear dependencies, it does not sub-
stantially affect the analysis.
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Since (9) and (10) dominate T1, up to now we estimate

T ≤ Nk · T1 + Ns · Ts � 4 · (2d · logn · 2n1 · (
n−n1
↓w+1

)
+ n1 · n · 2n−n1) + 2n−2n1 · Ts.

In order to establish Theorem 4.1, we need to show that

Ts 	 n1 · n · 2n1 , (13)

so the final term that corresponds to the total complexity of testing candidate
solutions may be neglected compared to the term 4 · n1 · n · 2n−n1 .

Testing solutions. Naively testing a candidate solution requires evaluating two
polynomials in E on average, which has complexity of about 2 · (

n
↓d

)
bit opera-

tions. Asymptotically, for constant d, this complexity is negligible compared to
2n1 = 2Ω(n), hence (13) holds.

Concretely, for d = 2, since n 	 2n1 , then n2 	 n1 · n · 2n1 and (13) holds.
However, when d > 2 is relatively large compared to n, then (13) may no longer
hold for relevant parameter choices (e.g., for d = 4 and n = 128).

On the other hand, we can reduce this complexity such that it becomes
negligible for relevant parameter choices by tweaking Algorithm 1. The main idea
is to test the potential solutions in batches, reducing the amortized complexity
as described in the full version of this paper.

In practice, E is constructed from a cryptosystem, and for relatively large d
one may simply test candidate solutions by directly evaluating the cryptosystem.

Experimental validation. The most important probabilistic quantities ana-
lyzed are L (11) and Ns (12) (the bound on the expected value of Nk is
rigourous). As detailed in the full version of this paper, we experimentally calcu-
lated their values (for random equation systems with m = n), and conclude that
our estimate of L is accurate, while the estimate of Ns is somewhat conservative.

4.2 Optimizing Memory Complexity

The expected memory complexity of the algorithm is about 4·(n1+1)·2n−n1 bits,
dominated by storing the potential solutions output by the different executions
of Procedure 1. A simple way to obtain a time-memory tradeoff is to guess several
bits of x and repeat the algorithm for each guess. However, we can improve the
memory complexity with essentially no penalty by making use of a memory-
efficient implementation of the Möbius transform.

Memory-efficient Möbius transform. We deal with the problem of evaluat-
ing a polynomial F (x1, . . . , xn) of degree d on the space {0, 1}n using the Möbius
transform. Assume that d is not too large and the polynomial is represented by
a bit array of size

(
n
↓d

) 	 2n. Moreover, assume that the application does not
need to store the evaluation of the polynomial on the full space, but can work
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even if the space is partitioned into smaller spaces on which the polynomial is
evaluated on the fly. Then, the memory complexity can be reduced as follows.
Instead of allocating an array of size 2n, we work directly with the recursive
formula (2), F (x1, . . . , xn) = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn), by first evalu-
ating F2(x2, . . . , xn) (i.e., F (x) for x1 = 0), and then calculating and evaluating
F1(x2, . . . , xn) + F2(x2, . . . , xn) (i.e., F (x) for x1 = 1).

This algorithm does not work in-place, but only keeps in memory the recur-
sion stack. The memory complexity is bounded by the formulas M(n, d) =
M(n − 1, d) +

(
n
↓d

)
and M(n, n) = 2n. Thus, the total memory complexity

is less than n · (
n
↓d

)
. The time complexity in bit operations is bounded by

(
n
↓d

)
+ 2 · (

n−1
↓d

)
+ . . . + 2n−d−1 · (

d+1
↓d

)
+ 2n−d · d · 2d.

Remark 4.1. A more precise evaluation reveals that the total number of bit
operations is about d ·2n. The exhaustive search algorithm of [8] for enumerating
all zeroes of a polynomial of degree d also requires d · 2n bit operations. It
would be interesting to investigate whether the recursive Möbius transform can
compete with [8] in practice. We note that it was already observed in [15] that
the Möbius transform on degree d polynomials requires d ·2n bit operations, but
the algorithm used a standard implementation with memory complexity of 2n.

In our context, we will exploit the lower complexity of the top level recursive
calls to further reduce the memory complexity, while keeping the time complex-
ity below n · 2n. Specifically, for a parameter k ≈ n − log

(
n
↓d

)
, we perform the

top k levels of the recursion independently without saving the recursion stack
(i.e., we recursively evaluate the input polynomial on all 2k values of x1, . . . , xk

independently). At the bottom levels, we switch to the in-place implementation
of the Möbius transform to evaluate the polynomial on all values of xk+1, . . . , xn.
In order to perform the independent evaluations, we only need to allocate two
additional arrays, one for the input to the recursive call and one for its output.
The roles of these arrays are interchanged on every recursive call. The mem-
ory required for each such additional array is bounded by

(
n
↓d

)
. The memory

required for the in-place Möbius transform is 2n−k ≈ (
n
↓d

)
. Therefore, the in-

place transform does not require additional memory and the total memory com-
plexity is bounded by 3 · ( n

↓d

)
. The time complexity of the procedure is bounded

by 2k ·
((

n
↓d

)
+ . . . +

(
n−k
↓d

))
+ (n − k) · 2n < n · 2n.

We note that the algorithm of [8] could also be used for the same purpose.
However, it requires a preprocessing phase of complexity n2d. On the other hand,
we will use the Möbius transform variant with relatively large d (e.g., d = n/3),
for which such preprocessing is too expensive.

Improving the memory complexity of algorithm 1. In order to reduce
the memory complexity we first interpolate the polynomials (U0(y), . . . , Un1(y))
for several executions (e.g., 4 or a bit more) of Procedure 1 in advance. Using
the recursive version of the Möbius transform (as described in Sect. 2.3), the
additional memory required is negligible.
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The main idea that allows to save memory is to interleave the tasks of eval-
uating all the polynomials (in parallel) with testing solutions that are suggested
at least twice. The parallel evaluation is performed using the memory-optimized
implementation of the Möbius transform. This reduces the memory complexity
to about 3 times the memory required to store all the polynomials. In fact, for
the purpose of testing solutions, we only need to keep the evaluations of each
such polynomial on a space proportional to its size, used by the in-place trans-
form. Thus, when sequentially calculating several transforms, we reuse one of the
two additional allocated arrays. In total, we require 2 times the memory used
for storing all the polynomials, namely

8 · (n1 + 1) · (
n−n1

↓dF̃ −n1+1

)
. (14)

Choosing n1 that minimizes time complexity (balancing the two terms of (7)),
gives

(
n−n1

↓dF̃ −n1+1

) ≈ n1·n
2d·log n · 2n−2n1 and total memory complexity of about

4·n1·(n1+1)·n
d·log n · 2n−2n1 bits. Compared to Algorithm 1, this saves a multiplica-

tive factor of about d·log n
n1·n · 2n1 . Since n1 < n

5 , 8·n1·(n1+1)·n
2d·log n ≈ n2 for relevant

concrete parameters.
Asymptotically, the memory complexity is O(n3 · 2n−2n1) bits. A choice

of n1 that minimizes time complexity gives O
(
n3 · 20.63n

)
bits for d = 2 and

O
(
n3 · 2(1−1/1.35d)n

)
in general.

Concrete parameters. In Table 1 we give concrete complexity estimates for
interesting parameter sets after optimizing the free parameter n1 of (8).

Table 1. Concrete complexity of (the memory-optimized variant of) Algorithm 1

Variables
n

Degree
d

Internal parameter
n1

Complexity
(bit operations)

Memory
(bits)

Exhaustive search [8]
(2d logn · 2n)

80 2 16 277 260 284

128 2 25 2117 291 2133

128 4 12 2129 2112 2134

192 2 37 2170 2132 2197

192 4 18 2188 2164 2198

256 2 49 2223 2173 2261

256 4 25 2246 2219 2262

5 Cryptanalytic Applications

In this section we describe cryptanalytic applications of Algorithm 1. Our main
application is in cryptanalysis of Picnic (and LowMC) variants and our secondary
application is in cryptanalysis of round-reduced Keccak. We begin by describing
the general optimization method we use in cryptanalysis of Picnic.
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5.1 Deterministic Replacement of Probabilistic Polynomials

In cryptanalytic applications, E may have some properties that depend on the
underlying cryptosystem and could be ruined in Ẽ that mixes the equations of
E. We observe that in cryptographic settings, we may replace the randomized
construction of Ẽ (and F̃ ) by a deterministic construction which simply takes
subsets of equations from E, thus preserving the properties of E.

Essentially, the randomness of the probabilistic constructions is already
“embedded” in E itself. For example, we still (heuristically) expect a variant
of Proposition 3.1 to hold: if x̂ is a solution to E, it is also a solution to Ẽ. On
the other hand, since Ẽ is a system with � = n1 + 1 equations in n1 variables,
we expect it not to have an additional solution with high probability.

In order for the number of tested candidate solutions to remain small, we
require the different equations systems Ẽ analyzed to be roughly independent.
Specifically, the intersections of the equations subsets taken for different “prob-
abilistic” equations systems Ẽ should be empty (or small).

5.2 Picnic and LowMC

The Picnic signature scheme [10] is an alternate third-round candidate in NIST’s
post-quantum standardization project [29]. It uses a zero-knowledge protocol in
order to non-interactively prove knowledge of a preimage x to a public value y
under a one-way function f , where y is part of the public key and x is the secret
signing key. The one-way function is implemented using a block cipher, where
the secret signing key is the block cipher’s key, while the public key consists of a
randomly chosen plaintext and the corresponding ciphertext (the encryption of
the plaintext with the secret key). Thus a key-recovery attack on Picnic reduces
to finding the block cipher’s secret key from one plaintext-ciphertext pair.

Picnic uses the LowMC block cipher family, proposed at EUROCRYPT
2015 by Albrecht et al. [1]. It is optimized for practical instantiations of multi-
party computation, fully homomorphic encryption, and zero-knowledge proofs,
in which non-linear operations are typically much more expensive than linear
ones. Consequently, LowMC uses a relatively small number of multiplications.

LowMC is an SP-network built using several rounds, where in each round, a
round-key is added to the state, followed by an application of a linear layer and
a non-linear layer (operations are over F2). Finally, an additional round-key is
added to the state. Importantly, the key schedule of LowMC is linear.

Each non-linear layer of LowMC consists of identical Sboxes S : {0, 1}3 →
{0, 1}3 of algebraic degree 2. The algebraic normal form of an Sbox is

S(a1, a2, a3) = (a1 + a2a3, a1 + a2 + a1a3, a1 + a2 + a3 + a1a2). (15)

We note that the inverse Sbox also has algebraic degree of 2.
In this paper, we focus on LowMC instances that were recently integrated

into Picnic variants [33]. These instances have internal state and key sizes of
129, 192 and 255, claiming security levels of 128, 192 and 255 bits, respectively
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and have a full non-linear layer (as opposed to other instances of LowMC that
have a partial non-linear layer). All of these instances have 4 rounds, although
in a recent publication by some of the designers [23] additional instances with 5
rounds were proposed in order to provide a larger security margin.

Attacks on LowMC instances. As noted above, we analyze LowMC instances
with a full Sbox layer given only a single plaintext-ciphertext pair. The best-
known attacks on such instances were recently published by Banik et al. [2]
where the authors analyzed instances reduced to 2 rounds. Their techniques are
based on linearization and it is not clear how to extend them beyond 2 rounds
without exceeding the complexity of (optimized) exhaustive search [8].

We focus on the full 4 and 5-round instances. We fix an arbitrary plaintext-
ciphertext pair to a LowMC instance with key and internal state size of n bits.
We denote the unknown key by x = (x1, . . . , xn).

Even round number. We begin by considering LowMC instances with an
even number of rounds r. We focus on an arbitrary state bit bi (for some
i ∈ {1, . . . , n}) after r/2 rounds. Starting from the plaintext, we symbolically
evaluate the encryption process and express bi as a polynomial pi(x). Similarly,
we symbolically evaluate the decryption process starting from the ciphertext
and express bi as a polynomial qi(x). This standard meet-in-the-middle app-
roach gives rise to the equation pi(x) + qi(x) = 0. As the algebraic degree of the
LowMC round and its inverse is 2 and the key schedule is linear, the algebraic
degree of both pi(x) and qi(x) is at most 2r/2. Repeating this process n times for
all intermediate state bits, we obtain an equation systems with m = n equations.
For the small values of r we consider, the complexity of calculating the equation
system is negligible. We can now apply Algorithm 1 and solve for the secret key.

Odd round number. For an odd number of rounds r, the approach above gives
rise to equations of degree at least 2(r+1)/2, as in general, any intermediate
state bit has algebraic degree of at least 2(r+1)/2 from either the encryption or
the decryption side. If we apply Algorithm 1 in a straightforward manner, its
complexity compared to an attack on an even number of r − 1 rounds would
increase substantially. We now show that by a better choice of the equation
system and careful analysis we can reduce the algorithm’s complexity.

Consider the first 3 intermediate state bits b1, b2, b3 that are outputs of the
first Sbox in round (r + 1)/2. From the decryption side, we can express them as
polynomials of degree 2(r−1)/2, denoted by q1(x), q2(x), q3(x), respectively. From
the encryption side, based on (15), we can express these bits as functions of the
bits a1, a2, a3 that are inputs the first Sbox in round (r + 1)/2,

(b1, b2, b3) = S(a1, a2, a3) = (a1 + a2a3, a1 + a2 + a1a3, a1 + a2 + a3 + a1a2).

From the encryption side, we can express each of a1, a2, a3 as a polynomial of
degree 2(r−1)/2 in the key. Equating each bit to its evaluation from the decryption
side, we obtain the 3 equations
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q1(x) + a1(x) + a2(x)a3(x) = 0,
q2(x) + a1(x) + a2(x) + a1(x)a3(x) = 0,

q3(x) + a1(x) + a2(x) + a3(x) + a1(x)a2(x) = 0.

Each polynomial appearing in these equations is of algebraic degree 2(r−1)/2.
Recall that the main complexity formula (7) heavily depends on the value of

dF̃ . This value is upper bounded by d · �, but it could be lower if we choose F̃
more carefully. Indeed, we will construct the “probabilistic polynomials” deter-
ministically using (non-overlapping) subsets of the original equation system E.
The probabilistic analysis is essentially unchanged, as suggested in Sect. 5.1.

Specifically, in this case, each equation is of degree 2(r−1)/2 + 2(r−1)/2 =
2(r+1)/2 due to the multiplication of the ai’s. However, if we multiply the 3
polynomials for the purpose of calculating F̃ (as in (4), but with Ri’s replaced
by the equations above), the term a1(x)a2(x)a3(x) can only be multiplied with
at most one of the qi(x)’s and therefore the degree of multiplication of all the
equations is at most 4 · 2(r−1)/2 = 2(r+3)/2, rather than the trivial upper bound
of 6 · 2(r−1)/2, reducing the degree by a factor of 1

3 . For example, for r = 3, we
get a bound of 8 instead of the general upper bound of 12, whereas for r = 5,
we get a bound of 16 instead of the general upper bound of 24.

We proceed to collect n equations as before. However, in Algorithm 1, for
some integer �′ we analyze equations that are computed as above using �′ triplets
that are outputs of the Sbox layer of round (r + 1)/2. We now have � = 3�′

equations. The total degree of F̃ in (4) is upper bounded by dF̃ ≤ �′ · 2(r+3)/2 =
�/3 ·2(r+3)/2. We choose n1 = �−1 as before. Revisiting the complexity analysis
formula of (7), we obtain

4
(

2 · 2(r+1)/2 · log n · 2n1 · ( n−n1

↓ �
3 ·2(r+3)/2−n1+1

)
+ n1 · n · 2n−n1

)

. (16)

If we take � which is not a multiple of 3, then dF̃ increases more sharply due to the
last Sbox. Specifically, if � mod 3 = 1, then dF̃ ≤ �−1

3 ·2(r+3)/2+2(r+1)/2, whereas
if � mod 3 = 2, then dF̃ ≤ �−2

3 · 2(r+3)/2 + 3 · 2(r−1)/2. Standard approaches to
deal with the middle Sbox layer (e.g., linearization) result in higher complexity.

Results. Table 2 summarizes our attacks on instances of LowMC used in recent
Picnic variants (and additional 5-round instances). Solutions can be tested sim-
ply by evaluating the LowMC encryption process, whose most expensive proce-
dures are the evaluations of the linear layers, each consisting of a multiplication
of an n-bit state with an n × n matrix. Naively, this has complexity of 2n2 bit
operations. It can be checked that (13) holds for the parameters of Table 2.

5.3 Keccak

Keccak is a family of cryptographic functions, designed by Bertoni et al. in
2008 [5]. We focus on the Keccak hash function family, selected by NIST in 2015
as the SHA-3 standard. It is built using the sponge construction (cf. [6]) using a
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Table 2. Attacks on LowMC instances with 4 rounds (used in Picnic) and 5 rounds

Security level
S

Key length
n

Rounds
r

Internal parameters
(n1, d, dF̃ )

Attack complexity
(bit operations)

128 129 4 (12, 4, 52) 2130

192 192 4 (18, 4, 76) 2188

192 192 5 (14, 8, 80) 2192

255 255 4 (25, 4, 104) 2245

255 255 5 (18, 8, 104) 2251

permutation that operates on a 1600-bit state. The permutation consists of 24
rounds, where each round consists of an application of a non-linear layer, followed
by linear operations over F2. Importantly, the non-linear layer is of algebraic
degree 2. We analyze the 4 basic Keccak variants which are parameterized by
the output size of k bits and denoted by Keccak-k for k ∈ {224, 256, 384, 512}.

Preimage attacks of round-reduced Keccak. We consider messages of
length that is smaller than the rate of the hash function (so that the output
is produced after a single invocation of the permutation). We start by repre-
senting the message (preimage) bits as symbolic variables. We then linearize the
first round of Keccak by setting some linear constraints on the variables, such
that each state bit in the second round of the permutation is a linear polyno-
mial in these variables. Using the linearization technique of [13,20] for Keccak-k
(that selects variables that keep the column parities constant), this leaves more
than 224 and 256 free variables for Keccak-224 and Keccak-256, respectively,
and 256 and 128 free variables for Keccak-384 and Keccak-512, respectively (for
the SHA-3 versions, the number is slightly smaller).

For Keccak-384 and Keccak-512, we can further partially invert the final non-
linear layer (applied to the first 5 × 64 Sboxes) on the target image to obtain
its input values. For Keccak-224 and Keccak-256, not all these 5 × 64 output
bits are fixed by the image. However, we can obtain 192 and 256 linear relations
among the input bits of the final Sbox layer, for Keccak-224 and Keccak-256
respectively (e.g., see [20]). Having peeled off 2 out of the 4 non-linear layers, we
obtain equations of degree 22 = 4 and solve for the preimage using Algorithm 1.

Results. We begin by considering preimage attacks on 4 rounds of Keccak-224
and Keccak-256. These instances were recently analyzed in by Li and Sun [25],
who devised attacks with claimed complexities of 2207 and 2239, on Keccak-224
and Keccak-256, respectively. However, the analysis of these attacks ignores the
complexity of solving (numerous) linear equation systems over F2 with hundreds
of variables, each requiring many thousands of bit operations.

For Keccak-224 and Keccak-256 we have sufficiently many free variables to
obtain systems with 224 and 256 variables (respectively), which we assume to
have a solution. Consequently, our preimage attacks have complexities of 2217
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and 2246 bit operations by choosing n1 = 22 and n1 = 25, respectively. These
are lower complexities than those obtained in [25] in terms of bit operations.

For Keccak-384, the number of free variables is only 256, so we need to
solve systems of degree 4 with 256 variables an expected number of 2384−256 =
2128 times (with different initial linear constraints on the variables) to obtain a
solution. This requires time 2246+128 = 2374 (by choosing n1 = 25). In terms of
bit operations, this improves upon the recent result of [26], which estimated the
attack complexity by 2375 evaluations of the 4-round Keccak-384 function.

For Keccak-512, we do not linearize the first round, but directly solve a
system of degree 8 in 512 variables. This requires 2502 bit operations (by choosing
n1 = 26) and improves the previous attack [28] that requires 2506 Keccak calls.

Collision attacks on round-reduced Keccak. The problem of finding a
collision can be formulated as a non-linear equation system (where the variables
are the bits of two colliding messages). However, the complexity of solving such
a system is unlikely to be more efficient than a generic birthday attack on the
k-bit hash function which takes time 2k/2. A better idea is to directly speed up
the generic birthday attack. In order to do so, for a parameter �, we fix � bits
of the output to an arbitrary value v and try to find 2(k−�)/2 messages whose
output value on the � bits is equal to v. With high probability, these messages
contain a pair whose outputs also agree of the remaining k − � bits that we have
not fixed, and therefore constitute a colliding pair. In order to find 2(k−�)/2 such
messages, we apply Procedure 1.

Suppose we run Procedure 1 with n variables after fixing � = n1 + 1 output
bits. We expect the output to contain about 1

2 · 2n−n1 isolated solutions (mes-
sages) that satisfy the n1 constraints. We evaluate the hash function on each out-
put message, and test whether it is indeed a solution. We store all the true solu-
tions and sort them, trying to find a collision among them. If 1

2 ·2n−n1 < 2(k−�)/2

(e.g., we lack degrees of freedom and are forced to choose a small value of n), we
repeat the procedure several times (with a different set of message variables),
while storing all the produced messages until a collision is found.

Since we test all outputs of Procedure 1, the complexity of this attack also
directly depends on the number of bit operations required to evaluate the hash
function on some message. We denote this number by τ .

We apply the framework to 4-round Keccak-512, as there are no published
attacks better than the birthday bound on this variant. Assuming τ = 213 (hence
the complexity of the birthday attack is 2256+13 = 2269 bit operations), we set
d = 4 and n = 128 (unlike the preimage attack, we linearize the first round) and
choose n1 = � − 1 = 12. Calculation reveals that the complexity is about 2263

bit operations, which is roughly 64 times faster than the birthday attack.8 If we
assume a larger value of τ , the complexity of the attack will increase, but also
its relative advantage compared to the birthday attack.

8 The complexity of sorting the 2(512−13)/2 = 2249.5 images is estimated to be smaller
than 2262 bit operations.
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Abstract. Blind signatures, introduced by Chaum (Crypto’82), allows
a user to obtain a signature on a message without revealing the message
itself to the signer. Thus far, all existing constructions of round-optimal
blind signatures are known to require one of the following: a trusted
setup, an interactive assumption, or complexity leveraging. This state-
of-the-affair is somewhat justified by the few known impossibility results
on constructions of round-optimal blind signatures in the plain model
(i.e., without trusted setup) from standard assumptions. However, since
all of these impossibility results only hold under some conditions, fully
(dis)proving the existence of such round-optimal blind signatures has
remained open.

In this work, we provide an affirmative answer to this problem and
construct the first round-optimal blind signature scheme in the plain
model from standard polynomial-time assumptions. Our construction
is based on various standard cryptographic primitives and also on new
primitives that we introduce in this work, all of which are instantiable
from classical and post-quantum standard polynomial-time assumptions.
The main building block of our scheme is a new primitive called a blind-
signature-conforming zero-knowledge (ZK) argument system. The dis-
tinguishing feature is that the ZK property holds by using a quantum
polynomial-time simulator against non-uniform classical polynomial-
time adversaries. Syntactically one can view this as a delayed-input three-
move ZK argument with a reusable first message, and we believe it would
be of independent interest.

1 Introduction

1.1 Background

Blind signatures enable users to obtain a signature without revealing a message
to be signed to a signer. More precisely, a blind signature scheme is a two-party
computation between a signer and a user. The signer has a pair of keys called
verification-key and signing-key, and the user takes as input a message and the
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 404–434, 2021.
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verification-key. They interact with each other, and the user obtains a signature
for the message after the interaction. There are two security requirements on
blind signatures: (1) users cannot forge a signature for a new message (unforge-
ability), and (2) the signer cannot obtain information about the signed messages
(blindness).

Chaum introduced the notion of blind signatures and provided a concrete
instantiation, while also showing an application to e-cash systems [Cha82]. After
its invention, blind signatures have been used as a crucial building block for var-
ious other privacy-preserving crypto-systems such as e-voting [FOO93,Cha88],
anonymous credential [CL01], and direct anonymous attestation [BCC04].

Round-complexity. One of the main performance measures for blind signatures is
round-complexity. A round-optimal blind signature is a blind signature with only
2-moves1, where the user and signer sends one message to each other. We focus
on round-optimal blind signatures in this study since a high round-complexity
is one of the main bottlenecks in cryptographic systems. Another advantage is
that round-optimal blind signatures are automatically secure in the concurrent
setting [Lin08,HKKL07].

Round-optimal scheme in the plain model from standard assumptions. From a
theoretical point of view, using less and weaker assumptions is much better.
However, all existing round-optimal blind signature schemes require either (1)
a trusted setup [Fis06,AO12,AFG+16,BFPV11,BPV12,MSF10,SC12,Bol03,
BNPS02], (2) an interactive assumption [FHS15,FHKS16,Gha17,BNPS02,
Bol03], or (3) complexity leveraging [GRS+11,GG14]. We briefly discuss each
item. In the trusted setup model, if an authority set a backdoor, we can no longer
guarantee any security. Interactive assumptions are non-standard compared to
standard non-interactive ones since an adversary can interact with the chal-
lenger.2 Complexity leveraging uses a gap between the computational power of an
adversary and the reduction algorithm in security proofs. To create this gap, we
require super-polynomial-time assumptions3 and large parameters, which hurt
the overall efficiency. In fact, there are a few impossibility results on construct-
ing round-optimal blind signatures in the plain model (i.e., without any trusted
setup) from standard assumptions under some conditions [Lin08,FS10,Pas11].
So far, constructing a round-optimal blind signature scheme in the plain model
from standard polynomial-time assumptions has proven to be elusive.

Thus, a natural and long-standing open question is the following:

Can we achieve a round-optimal blind signature scheme in the plain model
from standard polynomial-time assumptions?

1 We count one move when an entity sends information to the other entity.
2 An adversary may have the flexibility to choose a problem instance or obtain auxil-

iary information related to a problem instance.
3 A super-polynomial-time assumption means that a hard problem cannot be bro-

ken even by super-polynomial-time adversaries. This is stronger than a standard
polynomial-time assumption, where adversaries are restricted to run in polynomial-
time.
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We affirmatively answer this open question in this study. Hereafter, we call blind
signatures that satisfy all the above conditions as a blind signature with desired
properties.

1.2 Our Result

We present a round-optimal blind signature scheme with desired properties.
Our construction relies on various standard cryptographic primitives such as
oblivious transfer and also new primitives that we introduce in this study, all
of which are instantiable from classical and quantum standard polynomial-time
assumptions.4

Our construction is based on the idea by Kalai and Khurana [KK19] that
we can replace complexity leveraging with classical and quantum assumptions.
However, our technique is not a simple application of their idea. There are several
technical hurdles to avoid complexity leveraging in blind signatures, even if we
use classical and quantum assumptions. We provide further details in Sect. 1.3.

The main building block of our scheme is a blind-signature-conforming zero-
knowledge (ZK) argument system, which we introduce in this study. It is a 2-
move ZK argument system in the reusable public key model where the ZK prop-
erty holds by using a quantum polynomial-time simulator against non-uniform
classical polynomial-time adversaries, and parties have access to a reusable public
key (possibly maliciously) generated by a prover. We construct a blind-signature-
conforming ZK argument for any NP language from standard classical and quan-
tum assumptions. We give an overview of our technique in Sect. 1.3.

Although our scheme satisfies desirable features in the theoretical sense, it is
not quite practical since we rely on general cryptographic tools such as garbled
circuits. We believe our scheme opens the possibility of practical round-optimal
blind signatures with the desired properties. We leave this question as an open
problem.

1.3 Technical Overview

Here, we provide an overview of our construction.

Blind signature scheme by Garg et al. Our starting point is the blind signature
scheme by Garg, Rao, Sahai, Schröder, and Unruh [GRS+11]. Their scheme is
round-optimal and in the plain model, but the security proof requires complexity
leveraging. Our goal is to remove the complexity leveraging and base the security
on classical and quantum polynomial assumptions.

Here, we recall their construction. In their protocol, a signer publishes a
verification key of a digital signature scheme as its public key and keeps the
4 The learning with errors (LWE) assumption against quantum polynomial time adver-

saries and one of the following assumptions against (non-uniform) classical polyno-
mial time adversaries: quadratic residuosity (QR), decisional composite residuosity
(DCR), symmetric external Diffie-Hellman (SXDH) over pairing group, or decisional
linear (DLIN) over pairing groups.
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corresponding signing key secret. To blindly sign on a message, the signer and the
user run secure function evaluation (SFE) protocol where the signer plays the role
of the sender and the user plays the role of the receiver. In more detail, the user’s
input is the message to be signed, and the signer holds a circuit corresponding
to the signing algorithm of the digital signature scheme where the signing key is
hardwired. At the end of the protocol, only the user receives the output signature.
To prevent malicious behaviors of the signer, such as using arbitrarily chosen
randomness for the signing algorithm to break the blindness, they make the
signing algorithm deterministic by using a PRF and include the perfectly binding
commitment of the signing key into the public key. Furthermore, they have the
signer prove that it honestly follows the SFE protocol using a zero-knowledge
argument system.

The blindness of the protocol follows from the receiver’s security of the SFE
and from the fact that the signer cannot deviate from the honest execution
of the protocol due to the soundness of the zero-knowledge argument system
and the binding property of the commitment scheme. On the other hand, the
unforgeability follows from the combination of the zero-knowledge property of
the zero-knowledge argument system, the sender’s security of the SFE protocol,
and the unforgeability of the digital signature scheme. The former two proper-
ties intuitively imply that the user cannot obtain anything beyond the signatures
corresponding to the messages it chooses. The final property implies that it can-
not forge a new signature. While intuitively correct, there are two problems with
this approach. The first problem is with the reduction algorithm that reduces
the unforgeability of the blind signature scheme to that of the underlying dig-
ital signature scheme. The reduction algorithm has to simulate the signer and
extract the message to be signed from the first message of the user. However,
this should not be possible because of the receiver’s security of the SFE. The
second problem is that we need a 2-move zero-knowledge argument system to
obtain round-optimal blind signatures. However, it is known that a 2-move zero-
knowledge argument system is impossible [GO94].

To resolve these problems, they assume super-polynomial security for the
underlying (plain) signature scheme and allow the corresponding reduction algo-
rithm to run in super-polynomial time. Then, the first issue can be resolved by
letting the reduction algorithm break the receiver’s security of the SFE scheme
and extract the message to be signed using its super polynomial power. Fur-
thermore, allowing the reduction algorithm to run in super-polynomial time also
enables them to sidestep the impossibility result mentioned above. They use a 2-
move zero-knowledge argument system with a super-polynomial time simulator
by Pass [Pas03] and run the super-polynomial time simulator in the reduction
algorithm for unforgeability.5 This also resolves the second issue above.

Our first step towards the goal is to replace the super-polynomial time reduc-
tion algorithm in their security proof with a quantum-polynomial time (QPT)

5 Though Garg et al. [GRS+11] does not explicitly state that they use the zero-
knowledge argument of [Pas03], we observe that their construction can be viewed in
this way.
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algorithm, which is inspired by Kalai and Khurana [KK19]. To make this work,
we replace primitives with super-polynomial security with quantumly secure ones
and the primitives broken by the super-polynomial time algorithm with quan-
tumly insecure and classically secure ones. However, simple replacement of the
underlying primitives does not work, because their security proof uses complex-
ity leveraging twice, which requires three levels of security for the underlying
primitives, while the combination of classical and quantum polynomial hardness
can offer only two levels of security.6 In particular, the above idea necessitates 2-
move zero-knowledge arguments with QPT simulation, which cannot be obtained
by a simple modification of the construction by Pass [Pas03]. As we elaborate in
the following, we relax the notion of zero-knowledge argument system so that it
still implies blind signatures and provides a construction that satisfies the notion
by adding many modifications to the original zero-knowledge argument system
by Pass [Pas03].

Zero-knowledge argument system by pass. To see the problem more closely, we
review the zero-knowledge argument system by Pass [Pas03], which is used in
the construction of round-optimal blind signatures by Garg et al. [GRS+11].
Their starting point is ZAP for NP languages [DN00,DN07]. Recall that ZAP
is a 2-move public coin witness indistinguishable proof system without setup,
where the first message can be reused. To make it zero-knowledge, they use the
“OR-proof trick” by Feige, Lapidot, and Shamir [FLS90,FLS99]. This technique
converts a witness indistinguishable proof into a zero-knowledge proof in the
context of non-interactive proof systems by adding a trapdoor branch for the
relation to be proven so that the zero-knowledge simulator can use the branch.
In more detail, the protocol proceeds as follows.

1. In the first round of the protocol, the verifier sends the first round message
rzap of the ZAP system along with a random image z = f(y) of a one-way
permutation (OWP) f : {0, 1}� → {0, 1}�.7

2. Given the message, the prover who proves x ∈ L, where L is some NP lan-
guage specified by a relation R, proceeds as follows. It first commits the
string 0� by a non-interactive commitment with perfect biding to obtain
com = Com(0�; rcom) using randomness rcom. It then proves that there is
witness (w′, y′, r′

com) such that
(
(x,w′) ∈ R

)
∨

(
com = Com(y′; r′

com) ∧ f(y′) = z
)

6 A reader might consider starting from the blind signature scheme by Garg and
Gupta [GG14] instead since their security proof uses complexity leveraging only once.
However, their construction may not be compatible with our idea of using quantum
simulation since it is heavily dependent on a specific structure of the Groth-Sahai
proofs [GS08], which is quantumly insecure.

7 Though one-way functions with efficiently decidable images suffice, we use OWP in
this overview for simplicity. In our construction, we rely on a slightly generalized
notion of hard problem generators which we introduce in Sect. 3.1.
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by the proving algorithm of the ZAP system to obtain a proof πzap and sends
π = (com, πzap) to the verifier. Note that in the honest execution, the prover
sets (w′, y′, r′

com) = (w,⊥,⊥).
3. Given the proof from the prover, the verifier parses π → (com, πzap) and

verifies the proof πzap for the above statement by the verification algorithm
of the ZAP system.

We then discuss the security of the system. Let us start with the zero-knowledge
property. As mentioned, the simulator will run in super-polynomial time, say
T . Given (rzap, z), the simulator uses its super-polynomial power to invert the
permutation to compute y = f−1(z). It then computes a commitment com =
Com(y; rcom) and uses the witness (w′, y′, r′

com) = (⊥, y, rcom) to generate a proof.
Due to the witness indistinguishability of the underlying ZAP and the hiding
property of the commitment, the simulated proof is indistinguishable from the
real one. The proof for soundness is a bit more complicated. Let us assume an
adversary that can generate an accepting proof for a false statement x �∈ L.
By the statistical soundness of ZAP and by the fact that x �∈ L, the output
(com∗, π∗) of the successful adversary should satisfy the trapdoor branch of the
relation. Namely, com∗ should be a commitment of y = f−1(z). Intuitively, this
contradicts the one-wayness of f , and thus the system is sound since generating
such a commitment seems to require the knowledge of y. However, to turn this
intuition into a formal argument, we have to construct a reduction algorithm
(i.e., inverter for the OWP) that outputs y = f−1(z) in the clear, instead of the
commitment of y. To do so, they turn to complexity leveraging. Namely, they
consider an inversion algorithm that runs in super-polynomial time, say T ′, and
have the algorithm extract y from com∗ using its super-polynomial power. If we
assume f is hard to invert in time T ′ and the commitment is broken in time T ′,
we can derive the contradiction as desired.

We observe that the two super-polynomial functions T and T ′ should satisfy
T � T ′, since f should be invertible in time T for the zero-knowledge simulator
to work, while f should be hard to invert in time T ′ for the above reduction
to make sense. This seems to be incompatible with our approach of replacing
T -time simulator with QPT simulator, since this requires hardness that lies
between QPT hardness and classical polynomial hardness to replace T ′-time
secure primitives with something. However, we do not know how to do this
without turning to complexity leveraging.

Replacing the commitment with encryption. As we observed above, the main tech-
nical hurdle to our goal is that there is no efficient way to extract the message
from the commitment for the reduction algorithm that inverts the OWP. However,
extraction should not be possible efficiently, since otherwise the commitment can-
not be hiding and thus harms the zero-knowledge property. To satisfy these con-
tradicting requirements, we switch to the non-uniform setting and use the stan-
dard trick of leveraging the gap between the information available for algorithms
in the real-world and non-uniform reduction algorithms. As observed by Garg et
al. [GRS+11], non-uniform algorithms can be regarded as two-stage algorithms.
The pre-computation phase of the algorithm takes the security parameter as input
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and computes an advice string of polynomial length using unbounded computa-
tional power. Then, the online phase of the algorithm takes the problem instance
along with the advice string as input and tries to solve the problem in polyno-
mial time. In our context, the non-uniform reduction algorithm will use this advice
string to efficiently extract the message from the commitment. On the other hand,
this advice string is not available for the real world algorithms and hence does not
harm the hiding property of the commitment.

To implement this idea, we replace the commitment with public key encryp-
tion (PKE) and change the protocol so that the prover encrypts 0� using a public
key pkP chosen by itself, instead of computing a commitment of 0�. The advice
string in our context is the secret key corresponding to pkP . Using the secret
key, one can efficiently decrypt the ciphertext and extract the message as desired.
Subtle yet, the important point is that the prover should choose the public key
pkP before the protocol is run and use the same public key for every invocation
of the protocol. Then, the non-uniform reduction algorithm can find the secret
key corresponding to pkP in the pre-computation phase using its unbounded
computational power, since pkP is chosen before the problem instance z = f(y)
of the OWP is chosen. This is not possible if the prover chooses a fresh public
key for every encryption because the problem instance z and the public key are
chosen at the same time in this case. It is not possible to off-load the task of
finding the secret key to the pre-computation phase.

In fact, with the above modification, the argument system is no longer in the
plain model, since we allow the prover to choose a long-term public key. However,
since the syntax of round optimal blind signatures allows the signer to have a
long-term public parameter, this modification does not affect the application to
blind signatures.

Dealing with maliciously generated public keys. While the above idea may seem
to work at first sight, there is still an issue. The problem is that a malicious
prover may choose an ill-formed public key for the PKE, for which there are no
corresponding secret keys. In this case, we may not be able to extract the message
from the ciphertext even with unbounded computational power. We should con-
sider this kind of attack since a malicious signer against blind signatures may
maliciously choose a public key. A simple countermeasure against this attack
would be to use a PKE scheme such that one can efficiently decide whether the
public key is honestly generated or not and have the verifier reject provers with
ill-formed public keys. However, we cannot adopt this simple solution because
we do not know how to instantiate such a PKE. In particular, we require the
PKE to have security against QPT adversaries in addition to the above property
due to a technical reason,8 but there are no known PKE schemes satisfying these
properties simultaneously.
8 We need security against QPT adversaries for the PKE scheme because its security

is used to prove zero-knowledge property, where the simulator is a QPT algorithm.
Recall that the simulator needs quantum power to invert the OWP. One may try to
show that non-uniform security instead of quantum security is enough for the PKE by
using the pre-computation trick we mentioned. However, this does not seem possible
because the inversion should be done after the public key is chosen.



Round-Optimal Blind Signatures in the Plain Model 411

To resolve the issue, we further change the protocol. Our first attempt is to
let the verifier choose a public key pkV of PKE and have the prover encrypt 0�

under pkV in addition to the long-term public key pkP . Furthermore, we have
the prover prove that it has valid witness w for x or it encrypts y under pkP and
pkV . With this change, the reduction algorithm can extract the message from
the ciphertext corresponding to pkV even if pkP is maliciously generated since
pkV is under the control of the reduction algorithm and honestly generated.
However, this modification harms the zero-knowledge property. In particular,
since the verifier has secret key corresponding to pkV , it can know whether the
proof is generated from the honest execution of the protocol or not by simply
decrypting the ciphertext.

The reason why the above idea fails is that we allow too much flexibility for
the verifier in the sense that it can choose a public key that enables the extrac-
tion even if the prover behaves honestly. What we really need is a mechanism
where the verifier can extract the message only when the prover cheats. For this
purpose, we use lossy encryption. Recall that lossy encryption [PVW08,BHY09]
is an extension of PKE where we have an additional lossy key generation algo-
rithm. While the normal key generation algorithm outputs a public key and
secret key, the lossy key generation algorithm only outputs a public key. For
lossy encryption, we require the lossiness property, which stipulates that the
ciphertext generated under the lossy key does not carry any information of the
message. As for security, we require that the lossy key and the normal key are
indistinguishable. We then would like to change the protocol so that the verifier
is restricted to choose the lossy public key in the honest execution of the proto-
col and can choose normal public key that allows the extraction only when the
prover chooses an ill-formed public key. To restrict the behavior of the verifier,
we have the verifier prove the following statement:

(pkV is chosen from the lossy key generation)∨(pkP is an ill-formed public key) . (1)

The former branch of the statement is used in the honest execution and the
latter is for simulation. The proof is generated by running another instance of
the ZAP system, where the roles of the prover and the verifier are swapped.
To avoid increasing the round of the overall protocol, we put the first round
message of the ZAP system into the public parameter of the prover and have
the verifier generate the proof with respect to it and send the proof along with
pkV to the prover in the first round. Note that it is not clear how to prove
the above statement by the ZAP system, since it is not necessarily in NP. In
particular, we do not know of a general way of providing an NP witness for
proving the ill-formedness of a public key. We skip this issue and simply assume
that it is possible for the time being. We will get back to the issue at the end of
the overview. The protocol now proceeds as follows.

1. The prover runs the key generation algorithm of the PKE to obtain a public
key pkP and chooses the first message r′

zap of the ZAP system. It then sets
the long-term public parameter as pp = (pkP , r′

zap).
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2. In the first round of the protocol, the verifier chooses the first round message
rzap of the ZAP system and a random image z = f(y) of the OWP f :
{0, 1}� → {0, 1}�. It then runs lossy key generation of the lossy encryption to
obtain a public key pkV . It then proves statement (1) with respect to r′

zap by
using the randomness for the lossy key generation as a witness to obtain a
proof π′

zap. Finally, it sends (rzap, pkV , π′
zap) to the prover.

3. Given the message, the prover verifies π′
zap for statement (1) and aborts the

protocol if it is not valid. Otherwise, it encrypts the string 0� under pkP

and pkV to obtain ctP = PKE.EncpkP
(0�; rP ) and ctV = LE.EncpkV

(0�; rV ),
where LE stands for “lossy encryption”. It then proves that there is a witness
(w′, y′, r′

P , r′
V ) such that

(
(x,w′) ∈ R

)
∨

(
ctP = PKE.EncpkP

(y′; r′
P ) ∧ ctV = LE.EncpkV

(y′; r′
V ) ∧ f(y′) = z

)

(2)
with respect to rzap to obtain a proof πzap. Note that in the honest exe-
cution, the prover sets (w′, y′, r′

P , r′
V ) = (w,⊥,⊥,⊥). It then sends π =

(ctP , ctV , πzap) to the verifier.
4. Given the proof from the prover, the verifier parses π → (ctP , ctV , πzap) and

verifies the proof πzap with respect to statement (2).

First attempt of the security proof. We now try to prove the security of the
scheme. We first prove the zero-knowledge property with a QPT simulator. To do
so, we start from the real game where a malicious verifier interacts with an honest
prover and gradually change the prover into a zero-knowledge simulator through
game hops. In the first step, we change the prover to be a quantum algorithm,
which inverts the OWP to recover y = f−1(z) from the first round message by
the verifier. We then change the game so that the prover encrypts y instead of 0�

when it generates the ciphertext ctP . Due to the security of PKE against QPT
adversaries, this game is indistinguishable from the real game. In the next step,
we replace the ciphertext ctV with the encryption of y instead of 0�. We show
that this game is indistinguishable from the previous game by combining the
soundness of the ZAP system and the lossiness of the lossy encryption. Without
loss of generality, we can assume that the prover does not abort the interaction,
since otherwise the malicious verifier cannot obtain any information. However,
if the prover does not reject the malicious verifier, this means that statement (1)
holds by the soundness of the ZAP. Since pkP is honestly chosen, pkV should
be a lossy key. Then, by the lossiness of the lossy encryption, we conclude that
ctV does not carry any information about the message, and the change does not
alter the distribution of ctV . Finally, we change the game so that the prover
uses the latter branch of statement (2) to generate πzap. Due to the witness
indistinguishability of the ZAP, this game is indistinguishable from the previous
game. Notice that the prover in the final game does not use the witness w for
the statement x to generate the proof and thus constitutes a zero-knowledge
simulator.

We then proceed to the proof of the soundness. The proof will be by case anal-
ysis. In both cases, we construct a non-uniform reduction algorithm that inverts
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the OWP. First, we consider the case where the malicious prover chooses honestly
generated pkP . In this case, the reduction algorithm receives pkP from the mali-
cious prover and finds the corresponding secret key skP in the pre-computation
phase using its unbounded computational power. Then, in the online phase, it
receives the problem instance z = f(y) of the OWP and embeds it into the
first-round message from the verifier to the prover. If the malicious prover man-
ages to generate an accepting proof for x �∈ L, this should satisfy the trapdoor
branch of statement (2) by the soundness of the ZAP. In particular, ctP should
be an encryption of y = f−1(z) under the public key pkP and thus the reduction
algorithm can successfully extract y from ctP by using skP .

We next consider the other case where pkP is ill-formed. In this case, we need
a game hop. In the first step, we change the verifier to be a non-uniform algorithm
and have it compute the NP witness for the ill-formedness of pkP . Then, the
verifier generates the proof using the latter branch of statement (1). This game
is indistinguishable from the previous game by the witness indistinguishability
of the ZAP. In the next step, we change the game so that the verifier generates
pkV by the normal key generation algorithm rather than the lossy key generation
algorithm. This game is indistinguishable from the previous game by the security
of the lossy encryption. Note that this game hop is possible because the verifier
no longer needs the witness that proves pkV is generated from the lossy key
generation due to the change introduced in the previous game. We are now ready
to construct the inverter for OWP. Similarly to the case where pkP is honestly
generated, the soundness of the ZAP implies that an accepting proof for x �∈ L
satisfies the latter branch of statement (1). This time, the inverter extracts y
from ctV , which is possible because pkV is now changed to be a normal public
key rather than a lossy one.

While the above proof sketch is almost correct, there is still a subtle issue.
In particular, the proof of the soundness for the case of ill-formed pkP is not
correct. The problem is that we cannot prove that the winning probability of the
malicious prover is changed only negligibly through the game changes because
we cannot construct a corresponding reduction algorithm that establishes this.
For example, we try to construct a reduction algorithm that breaks the witness
indistinguishability of the ZAP by assuming a malicious prover whose success
probability in the second game is non-negligibly different from that in the first
game. A natural way to do so is to let the reduction algorithm output 1 only when
the malicious prover successfully breaks the soundness of our argument system.
However, this is not possible since the reduction algorithm cannot efficiently
decide whether the output (x∗, π∗) of the malicious prover violates the soundness
or not. In particular, even if the malicious prover outputs an accepting pair of a
statement x∗ and a proof π∗, x∗ may be in L and the reduction algorithm cannot
detect it, since L may be hard to decide language. To address this problem, we
further change the protocol.

Making the winning condition efficiently checkable. As we observed above, the
only reason why the winning condition is not efficiently checkable is that the
language L is not efficiently decidable in general. To resolve the problem, we
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change the protocol so that the prover explicitly includes an encrypted version
of witness w in the proof. In more details, we change the protocol so that we
add a public key p̂kP of another instance of PKE to the public parameter of the
prover and change the prover so that it outputs ĉtP = PKE.Enc

̂pkP
(w; r̂P ) along

with ctP and ctV and proves that there is a witness (w′, r̂′
KeyGen, r̂

′
P , y′, r′

P , r′
V )

such that
(
(x, w′) ∈R ∧ (

p̂kP is generated byPKE.KeyGen(1κ; r̂′
KeyGen)

) ∧ ĉtP = PKE.Enc
̂pkP

(w′; r̂′
P )

)

∨(
ctP = PKE.EncpkP

(y′; r′
P ) ∧ ctV = LE.EncpkV

(y′; r′
V ) ∧ f(y′) = z

)
, (3)

where the former branch is used in the honest execution of the protocol and the
latter is for the simulation and is not changed from the previous construction.
Note that to prove the former branch, the prover needs randomness r̂KeyGen used
in the key generation of p̂kP and thus it has to keep the randomness as a secret
parameter. This needs to change the syntax of the zero-knowledge argument
system again. However, it does not affect the application to blind signatures,
since the syntax of the latter allows the prover to have a secret key.

We then explain how the above change helps. In our proof for the soundness,
we relax the winning condition so that the adversary is said to semi-win the game
if it outputs an accepting proof π∗ = (ct∗P , ct∗V , ĉt

∗
P , π∗

zap) for x∗ and p̂kP is not in
the range of the key generation algorithm or ĉt

∗
P is not an encryption of a witness

w∗ such that R(x∗, w∗) = 1. We observe that to check this modified winning
condition, it is unnecessary to perform the membership test of the language
L. The modified winning condition is efficiently checkable for the non-uniform
reduction algorithm as follows. It first checks whether p̂kP is honestly generated
or not in the pre-computation phase and find the corresponding secret key by
brute-force search if it is so. Then, in the online phase, it decrypts the ciphertext
ĉt

∗
P using the secret key to see if the decryption result w∗ satisfies R(x∗, w∗) = 1

or not. We note that since we relaxed the winning condition, the adversary is
regarded as (semi-)winning the game even when it outputs an accepting proof for
x∗ ∈ L if it chooses ill-formed p̂kP or ĉt

∗
P that does not encrypt the witness for

x∗. However, these events happen only with negligible probability and thus can
be ignored, since these events imply that the soundness of the ZAP is violated.

Certifying invalid public keys. Now, the only remaining problem is how to prove
the statement that pkP is an ill-formed public key. We show that it is possible to
provide an NP witness for this statement if we use Regev’s PKE scheme [Reg05,
Reg09]. In Regev’s PKE scheme, a public key consists of description of a basis of
a lattice L and a vector v. The secret key is the vector in L closest to v. For an
honestly generated public key, the distance dist(L,v) between L and v is close,
while for a maliciously generated key, the distance may be far. Therefore, our
goal is to provide a proof that v is far from L. For this purpose, we use the result
by Aharonov and Regev [AR04,AR05], who showed that a language consisting of
a pair of a lattice and a vector whose distance is far constitutes an NP language.
The subtle point is that their proof is for “gap language” in the sense that they
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cannot give an NP witness for the pair of a lattice and a vector whose distance is
neither far enough nor close enough. Translated to our setting, this means that
a malicious prover in our zero-knowledge argument system may choose a public
key that is not in the support of the honest key generation algorithm without
being caught, if the lattice and the vector are not very much far. We show that
we can still define a secret key for such a public key that enables the extraction
of the message from the ciphertext, which is sufficient for our purpose.

2 Preliminaries

Notation. For a positive integer n, [n] denotes a set {1, ..., n}. For a bit string x,
|x| denotes its bit-length. For a set S, we write s

$← S to denote the operation of
sampling a random s from the uniform distribution over S. For a (probabilistic
classical or quantum) algorithm A, we write y

$← A(x) to mean that we run A on
input x and the output is y. For a probabilistic classical algorithm A, we write
A(x; r) to mean the output of A on input x and randomness r. Moreover, by a
slight abuse of notation, we write y

$← A(x; r) to mean that we uniformly pick
r from the randomness space of A and then set y := A(x; r). For a probabilistic
classical algorithm A that takes as input x and randomness r, “y ∈ A(x)”
means Prr[y′ = y : y′ ← A(x; r)] > 0. We use PPT and QPT to mean (classical)
probabilistic polynomial time and quantum polynomial time.

A convention on non-uniform adversaries. When we consider the security of
cryptographic primitives against non-uniform classical adversaries, we say that
an adversary A = (A0,A1) is non-uniform PPT if A0 is a (possibly randomized)
unbounded-time algorithm that takes as input the security parameter 1κ and
outputs a string of length poly(κ) and A1 is PPT. Typically, A0 and A1 can
be understood respectively as a “pre-computation phase” that outputs a non-
uniform advice and an “online phase” that takes as input the advice and a
problem instance and outputs a solution. We note that the randomness of A
does not increase the computational power of A since A0 can find the best
randomness by using its unbounded computational power. We allow A to be
randomized just for convenience for describing the reductions.

Definitions of standard cryptographic primitives, including non-interactive
commitment, public key encryption, lossy encryption, ZAP, and digital signa-
tures, can be found in the full version.

2.1 Secure Function Evaluation

A secure function evaluation (SFE) is a 2-move protocol between a sender who
holds a (classical) circuit C and a receiver who holds x, where the goal is for the
receiver to compute C(x) without revealing the inputs to each other. Specifi-
cally, SFE consists of PPT algorithms ΠSFE = (Receiver,Sender,Derive) with the
following syntax:
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Receiver(1κ, x) → (sfe1, sfest): This is an algorithm supposed to be run by a
receiver that takes the security parameter 1κ and x as input and outputs a
first message sfe1 and a receiver’s state sfest.

Sender(1κ, sfe1, C) → sfe2: This is an algorithm supposed to be run by a sender
that takes the security parameter 1κ, a first message sfe1 sent from a receiver
and a description of a classical circuit C as input and outputs a second
message sfe2.

Derive(sfest, sfe2) → y: This is an algorithm supposed to be run by a receiver
that takes a receiver’s state sfest and a second message sfe2 as input and
outputs a string y.

Correctness. For any κ ∈ N, C, and x, we have

Pr[Derive(sfest, sfe2) = C(x) : (sfe1, sfest)
$← Receiver(1κ, x), sfe2

$← Sender(1κ, sfe1, C)] = 1.

Security requirements are essentially the same as those in [GRS+11] except
that we require the extraction algorithm to run in QPT instead of classical super-
polynomial time. Specifically, we require the following two security notions.

Receiver’s security against non-uniform PPT adversary. For any pair of inputs
(x0, x1) and non-uniform PPT adversary A = (A0,A1), we have

∣∣∣∣∣Pr

[
A1(st, sfe1) = 1 :

st
$← A0(1κ)

(sfe1, sfest)
$← Receiver(1κ, x0)

]

−Pr

[
A1(st, sfe1) = 1 :

st
$← A0(1κ)

(sfe1, sfest)
$← Receiver(1κ, x1)

]∣∣∣∣∣ ≤ negl(κ).

Quantum-extraction sender’s security against QPT adversary. There exists a
QPT algorithm SFEExt and a PPT algorithm SFESim that satisfy the following:
For any QPT adversary A = (A0,A1), we have

∣∣∣∣Pr
[
A1(stA, sfe2) = 1 : (sfe1, C, stA) $← A0(1κ),

sfe2
$← Sender(1κ, sfe1, C)

]

− Pr

⎡
⎢⎣A1(stA, sfe2) = 1 :

(sfe1, C, stA) $← A0(1κ),
x

$← SFEExt(sfe1),
sfe2

$← SFESim(1κ, sfe1, C(x))

⎤
⎥⎦

∣∣∣∣∣∣∣
≤ negl(κ).

An SFE protocol that satisfies these security notions can be constructed
based on either of the DDH, QR, or decisional composite residuosity (DCR)
assumptions against non-uniform PPT adversaries and LWE assumption against
QPT adversaries. Namely, we can construct it based on Yao’s 2PC protocol
instantiated with secure garbled circuit against quantum adversaries (which can
be instantiated based on OWF against quantum adversaries) and non-uniform
classical-receiver-secure but quantumly receiver-insecure and statistically sender-
private OT (which can be instantiated based on the non-uniform PPT hardness
of DDH [NP01], QR, or DCR [HK12]). See the full version for details.
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2.2 Blind Signatures

Here, we give a definition of blind signatures. For simplicity, we give a def-
inition focusing on round-optimal blind signatures. A round-optimal blind
signature scheme with a message space M consists of PPT algorithms
(BSGen,U1,S2,Uder,BSVerify).

BSGen(1κ) → (pk, sk): The key generation algorithm takes as input the security
parameter 1κ and outputs a public key pk and a signing key sk.

U1(pk,m) → (μ, stU ): This is the user’s first message generation algorithm that
takes as input a public key pk and a message m ∈ M and outputs a first
message μ and a state stU .

S2(sk, μ) → ρ: This is the signer’s second message generation algorithm that
takes as input a signing key sk and a first message μ as input and outputs a
second message ρ.

Uder(stU , ρ) → σ: This is the user’s signature derivation algorithm that takes as
input a state stU and a second message ρ as input and outputs a signature
σ.

BSVerify(pk,m, σ) → � or ⊥: This is a deterministic verification algorithm that
takes as input a public key pk, a message m ∈ M, and a signature σ, and
outputs � to indicate acceptance or ⊥ to indicate rejection.

Correctness. For any κ ∈ N, m ∈ M,

Pr

⎡
⎢⎢⎢⎣BSVerify(pk,m, σ) = ⊥ :

(pk, sk) $← BSGen(1κ)
(μ, stU ) $← U1(pk,m)
ρ

$← S2(sk, μ)
σ

$← Uder(stU , ρ)

⎤
⎥⎥⎥⎦ = negl(κ).

Unforgeability against PPT adversary. For any q = poly(κ) and PPT adversary
A that makes at most q queries, we have

Pr

[
BSVerify(pk, mi, σi) = � for all i ∈ [q + 1]
∧ {mi}i∈[q+1] is pairwise distinct

:
(pk, sk)

$← BSGen(1κ)

{(mi, σi)}i∈[q+1]
$← AS2(sk,·)(pk)

]
= negl(κ)

where we say that {mi}i∈[q+1] is pairwise distinct if we have mi �= mj for all
i �= j.

Blindness against PPT adversary. For defining blindness, we consider the fol-
lowing game between an adversary A and a challenger.

Setup. A is given as input the security parameter 1κ, and sends a public key
pk and a pair of messages (m0,m1) to the challenger.

First Message. The challenger generates (μb, stU,b)
$← U1(pk,mb) for each b ∈

{0, 1}, picks coin
$← {0, 1}, and gives (μcoin, μ1−coin) to A.

Second Message. The adversary sends (ρcoin, ρ1−coin) to the challenger.



418 S. Katsumata et al.

Signature Derivation. The challenger generates σb
$← Uder(stU,b, ρb) for each

b ∈ {0, 1}. If σ0 = ⊥ or σ1 = ⊥, then the challenger gives (⊥,⊥) to A.
Otherwise, it gives (σ0, σ1) to A.

Guess. A outputs its guess coin′

We say that A wins if coin = coin′. We say that a blind signature scheme satisfies
blindness if for any PPT adversary A, we have

∣∣∣∣Pr[A wins] − 1
2

∣∣∣∣ = negl(κ).

Remark 2.1. In a definition of blindness for general (not necessarily round-
optimal) blind signatures, A can schedule interactions with two sessions of a
user in an arbitrary order. However, as observed in [GRS+11], the order can
be fixed as above without loss of generality when we consider round-optimal
schemes.

Remark 2.2. The above definition only requires security against uniform PPT
adversaries. We can achieve security against non-uniform PPT adversaries if
we assume all assumptions used in this paper hold against non-uniform adver-
saries. We primarily consider security against uniform adversaries to clarify
which assumptions should hold against non-uniform adversaries even if our goal
is to prove security against uniform PPT adversaries.

3 Preparations

In this section, we introduce two new primitives used in our construction of
blind-signature-conforming zero-knowledge argument in Sect. 4.

3.1 Classical-Hard Quantum-Solvable Hard Problem Generator

A hard problem generator consists of algorithms ΠHPG = (ProbGen,VerProb,
Solve,VerSol).

ProbGen(1κ) → prob : The problem generation algorithm is a PPT algorithm
that is given the security parameter 1κ as input and outputs a problem
prob ∈ {0, 1}∗.

VerProb(1κ, prob) → � or ⊥ : The problem verification algorithm is a determin-
istic classical polynomial-time algorithm that is given the security parameter
1κ and a problem prob and returns � if it accepts and ⊥ if it rejects.

Solve(prob) → sol : The solving algorithm is a QPT algorithm that is given a
problem prob and returns a solution sol.

VerSol(prob, sol) → � or ⊥ : The solution verification algorithm is a determinis-
tic classical polynomial-time algorithm that is given an problem prob and a
solution sol, and returns � if it accepts and ⊥ if it rejects.
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We say that ΠHPG is non-uniform-classical-hard quantum-solvable if it satis-
fies the following properties.
Quantum Solvability. For any prob ∈ {0, 1}∗ such that VerProb(1κ, prob) = �,
we have

Pr[VerSol(prob, sol) = ⊥ : sol $← Solve(prob)] = negl(κ).

Validity of Honestly Generated Problem. For all κ ∈ N, we have

Pr[VerProb(1κ, prob) = � : prob $← ProbGen(1κ)] = 1.

Non-Uniform Classical Hardness. For any non-uniform PPT adversary A =
(A0,A1), we have

Pr[VerSol(prob, sol) = � : st
$← A0(1

κ), prob
$← ProbGen(1κ), sol

$← A1(st, prob)] = negl(κ).

Remark 3.1. HPG can be trivially constructed based on any OWF with an effi-
ciently recognizable range that is uninvertible by non-uniform PPT adversaries
and invertible in QPT by considering an image of the function as prob and its
preimage as sol. The efficient recognizability of the range is needed since oth-
erwise we cannot implement VerProb that verifies the existence of a solution.
Such an OWF with an efficiently recognizable range can be constructed from
the RSA assumption or the discrete logarithm assumption over Zp for a prime
p of a special form as shown by Goldreich, Levin, and Nisan [GLN11]. (Indeed,
their construction is length-preserving and injective and thus any bit-string is
in the range of the function.) On the other hand, to the best of our knowledge,
there is no known construction of such an OWF from the hardness of factor-
ing or DL over more general groups. This is why we introduce the notion of
classical-hard quantum-solvable HPG, which can be seen as a relaxed notion of
a OWF with an efficiently recognizable range that is secure against non-uniform
classical adversaries and invertible in QPT.

Lemma 3.1. Assuming the non-uniform classical hardness of factoring or dis-
crete logarithm over an efficiently recognizable cyclic group, there exists classical-
hard quantum-solvable hard problem generator.

This is an easy consequence of Shor’s algorithm [Sho94] that solves factoring
and discrete logarithm in QPT. A full proof can be found in the full version.

3.2 Public Key Encryption with Invalid Key Certifiability

We introduce a new notion for PKE which we call invalid key certifiability.
Roughly speaking, it requires that for any (malformed) encryption key ekikc,
there exists a witness for the invalidness of ekikc or otherwise there must exist a
corresponding decryption key that can decrypt ciphertexts under ekikc.

More precisely, a PKE scheme ΠIKC = (IKC.KeyGen, IKC.Enc, IKC.Dec) has
invalid key certifiability if it additionally has a deterministic classical polynomial-
time algorithm IKC.InvalidVerf with the following syntax and properties:
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IKC.InvalidVerf(1κ, ekikc,witinvalid) → � or ⊥: This algorithm takes the security
parameter 1κ, an encryption key ekikc and a witness witinvalid ∈ {0, 1}� as
input where �(κ) = poly(κ) is a parameter fixed by the scheme, and outputs
� or ⊥.

We require the following two properties:

1. For any κ ∈ N and (ekikc, dkikc)
$← IKC.KeyGen(1κ), there does not exist

witinvalid ∈ {0, 1}� such that IKC.InvalidVerf(1κ, ekikc,witinvalid) = �.
2. For any κ ∈ N and (possibly malformed) ekikc, if there does not exist witinvalid ∈

{0, 1}� such that IKC.InvalidVerf(1κ, ekikc,witinvalid) = �, then there exists dkikc
such that for any m, we have

Pr[IKC.Dec(dkikc, IKC.Enc(ekikc,m)) = m] = 1.

We call such dkikc a corresponding decryption key to ekikc. We say that ekikc is
undecryptable if there does not exist a corresponding decryption key to ekikc.

Remark 3.2. Remark that we do not require the converse of Item 2, i.e.,
we do not require that “if there exists witinvalid ∈ {0, 1}� such that
IKC.InvalidVerf(1κ, ekikc,witinvalid) = �, then ekikc is undecryptable”. That is,
even if ekikc has a corresponding decryption key, it may also have a witness for
the invalidness.

Remark 3.3. All dense PKE schemes, in which any string can be a valid encryp-
tion key, satisfy invalid key certifiability since all bit strings can be a valid
encryption key that has a corresponding decryption key. However, a PKE scheme
with invalid key certifiability may not be dense. We note that there is no known
candidate of a dense PKE scheme against quantum adversaries.

Lemma 3.2. There exists a PKE scheme that satisfies the CPA security against
QPT adversaries and invalid key certifiability under the quantum hardness of
LWE problem.

The construction is almost identical to the Regev’s PKE scheme [Reg09]
(modulo some tweak in the parameter). To show the invalid key certifiabil-
ity property, we rely on the result that the (approximated) gap closest vector
(GapCVP) problem lies in NP∩CoNP [AR05]. In particular, witinvalid will be a
witness to a NO instance of the GapCVP problem. Then, Item 1 follows since a
valid public key of Regev’s PKE scheme can be seen as an YES instance to the
GapCVP problem and there will exist no witness to prove otherwise (i.e., witinvalid
does not exist). On the other hand, to show Item 2, we rely on the fact that
if the public key is not a NO instance to the GapCVP problem, then it is still
a public key that admits a “good enough” decryption key (i.e., a short vector
slightly larger than an honestly generated one). We refer the full details to the
full version.
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4 Blind-Signature-Conforming Zero-Knowledge
Argument

In this section, we define blind-signature-conforming zero-knowledge arguments
that are sufficient to construct round-optimal blind signatures and construct it
based on standard assumptions. Roughly speaking, a blind-signature-conforming
zero-knowledge argument is an interactive argument protocol that satisfies the
following properties:

1. publicly verifiable9 and 2-move with reusable setup by the prover,10
2. adaptive soundness with untrusted setup against classical prover, and
3. reusable quantum-simulation zero-knowledge against classical verifier.

4.1 Definition

Let L be an NP language and R be the corresponding relation. A blind-signature-
conforming zero-knowledge argument for L has the following syntax:

Setup(1κ) → (pp, sp): This is a setup algorithm (supposed to be run by a prover)
that takes as input the security parameter 1κ and outputs a public parameter
pp and a secret parameter sp.

V1(pp) → ch: This is the verifier’s first message generation algorithm that takes
as input a public parameter pp and outputs a first message ch referred to as
a challenge.

P2(sp, ch, x, w) → resp: This is the prover’s second message generation algorithm
that takes as input a secret parameter sp, a challenge ch, a statement x, and
a witness w, and outputs a second message resp referred to as a response.

Vout(pp, ch, x, resp) → � or ⊥: This is the verification algorithm that takes a
public parameter pp, a challenge ch, a statement x, and a response resp, and
outputs � to indicate acceptance or ⊥ to indicate rejection.

It should satisfy the following properties:

Completeness. For any (x,w) ∈ R, we have

Pr[Vout(pp, ch, x, resp) = � : (pp, sp)
$← Setup(1κ), ch

$← V1(pp), resp
$← P2(sp, ch, x, w)] = 1.

Adaptive soundness with untrusted setup against non-uniform PPT adversary.
For any non-uniform PPT cheating prover P∗ = (P∗

Setup,P∗
2 ), we have

Pr

⎡
⎢⎣Vout(pp, ch, x∗, resp) = �

∧ x∗ /∈ L :
(pp, stP∗) $← P∗

Setup(1
κ),

ch
$← V1(pp),

(x∗, resp) $← P∗
2 (stP∗ , ch)

⎤
⎥⎦ ≤ negl(κ).

9 Actually, the public verifiability is not needed in the construction of our blind sig-
natures. We only require this because our construction satisfies this.

10 We can also view it as a three-move protocol by considering the setup as the prover’s
first message. However, since the first message is reusable, we view the protocol as
a two-move protocol with reusable setup.
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Reusable quantum-simulation zero-knowledge against PPT adversary. Roughly
speaking, we require that there exists a QPT simulator that simulates a view of
a PPT cheating verifier that interacts with an honest prover even if the setup is
reused many times.

More precisely, there exists a QPT simulator S such that for any PPT adver-
sary A, we have
∣

∣

∣

∣

Pr

[

AOreal (pp) = 1 : (pp, sp)
$← Setup(1κ

)

]

− Pr

[

AOsim (pp) = 1 : (pp, sp)
$← Setup(1κ

)

]∣

∣

∣

∣

≤ negl(κ)

where oracles Oreal and Osim are defined as follows:
Oreal(ch, x, w)
If (x,w) ∈ R

Return resp
$← P2(sp, ch, x, w)

Else
Return ⊥

Osim(ch, x, w)
If (x,w) ∈ R

Return resp
$← S(pp, ch, x, 1|w|)

Else
Return ⊥

4.2 Construction

Let L be an NP language and R be its corresponding relation (i.e., x ∈ L
if and only if there exists w such that (x,w) ∈ R). We construct a blind-
signature-conforming zero-knowledge argument for L based on the following
building blocks.

– A PKE scheme ΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) that is CPA secure
against QPT adversaries.

– A PKE scheme with invalid key certifiability ΠIKC = (IKC.KeyGen, IKC.Enc,
IKC.Dec, IKC.InvalidVerf) that is CPA secure against QPT adversaries.

– A lossy PKE scheme ΠLE = (LE.InjGen, LE.LossyGen, LE.Enc, LE.Dec) that
satisfies key indistinguishability against non-uniform PPT adversaries.

– A classical-hard quantum-solvable hard problem generator ΠHPG = (ProbGen,
VerProb,Solve,VerSol).

– A ZAP system Πzap = (ZAP.Prove,ZAP.Verify) for the NP language L̃ =
L̃1 ∪ L̃2 that satisfies completeness, adaptive statistical soundness, and adap-
tive computational witness indistinguishability against non-uniform PPT
adversaries where languages L̃1 and L̃2 are defined as follows.
1. (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃1 if there exists (w, dkpke,

rpke-gen, rpke-enc) such that
(x,w) ∈ L,

(ekpke, dkpke) = PKE.KeyGen(1κ; rpke-gen),

ctpke = PKE.Enc(ekpke, w; rpke-enc).
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2. (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2 if there exists (sol, rikc-enc,
rle-enc) such that

VerSol(prob, sol) = �,

ctikc = IKC.Enc(ekikc, sol; rikc-enc),

ctle = LE.Enc(ekle, sol; rle-enc).

– A ZAP system Π ′
zap = (ZAP.Prove′,ZAP.Verify′) for the NP language L̃′ =

L̃′
1 ∪ L̃′

2 that satisfies completeness, adaptive statistical soundness, and adap-
tive computational witness indistinguishability against non-uniform PPT
adversaries where languages L̃′

1 and L̃′
2 are defined as follows.

1. (ekikc, ekle) ∈ L̃′
1 if there exists rle-gen such that ekle = LE.LossyGen(1κ;

rle-gen).
2. (ekikc, ekle) ∈ L̃′

2 if there exists witinvalid such that IKC.InvalidVerf(ekikc,
witinvalid) = �.

We assume that the first message spaces of Πzap and Π ′
zap are {0, 1}�, which

can be assumed without loss of generality by taking � as an arbitrarily large
polynomial in κ. Then our blind-signature-conforming zero-knowledge argument
(Setup,V1,P2,Vout) is described as follows:

Setup(1κ): The setup algorithm is given the security parameter 1κ, and works
as follows.
1. Generate (ekpke, dkpke) := PKE.KeyGen(1κ; rpke-gen).
2. Generate (ekikc, dkikc)

$← IKC.KeyGen(1κ).
3. Generate r′

zap
$← {0, 1}�

4. Output pp := (ekpke, ekikc, r′
zap) and sp := (ekpke, ekikc, r′

zap, dkpke, rpke-gen).
V1(pp): The verifier is given a public parameter pp = (ekpke, ekikc, r′

zap), and works
as follows.
1. Generate rzap

$← {0, 1}�.
2. Generate prob

$← ProbGen(1κ).
3. Generate ekle

$← LE.LossyGen(1κ; rle-gen).
4. Generate π′

zap
$← ZAP.Prove′(r′

zap, (ekikc, ekle), rle-gen).
5. Output ch := (rzap, prob, ekle, π′

zap).
P2(sp, ch, x, w): The prover is given a secret parameter sp := (ekpke, ekikc, r′

zap,
dkpke, rpke-gen), a challenge ch = (rzap, prob, ekle, π′

zap), a statement x, and a
witness w, and works as follows.
1. Immediately abort and output ⊥ if VerProb(1κ, prob) = ⊥ or

ZAP.Verify′(r′
zap, (ekikc, ekle), π

′
zap) = ⊥.

2. Generate ctikc
$← IKC.Enc(ekikc, 0|sol|) and ctle

$← LE.Enc(ekle, 0|sol|).
3. Generate ctpke

$← PKE.Enc(ekpke, w; rpke-enc).
4. Generate πzap

$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle),
(w, dkpke, rpke-gen, rpke-enc)).

5. Output resp := (ctpke, ctikc, ctle, πzap).
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Vout(pp, ch, x, resp): The verifier is given a public parameter pp = (ekpke,
ekikc, r

′
zap), a challenge ch = (rzap, prob, ekle, π′

zap), a statement x, and a
response resp = (ctpke, ctikc, ctle, πzap), and works as follows.
1. Output ZAP.Verify(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle), πzap).

The correctness of the scheme immediately follows from the correctness of
Πzap and Π ′

zap and the validity of an honestly generated instance of ΠHPG.

4.3 Security

Here, we only give a proof sketch. A full proof can be found in the full version.

Adaptive soundness with untrusted setup. Consider an interaction between an
honest verifier and a cheating prover P∗ (that may maliciously generate pp).
When P∗ succeeds in breaking soundness, we have x /∈ L, which implies (x, ekpke,

ekikc, ekle, prob, ctpke, ctikc, ctle) /∈ L̃1. On the other hand, by soundness of Πzap, if
the verifier accepts, then we have (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃ =
L̃1∪L̃2 with overwhelming probability. Therefore, if P∗ wins with non-negligible
probability, we have (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle) ∈ L̃2. We assume
that this happens and construct a reduction algorithm that breaks non-uniform
PPT hardness of ΠHPG. We consider the following two cases:

1. When ekikc is decryptable (i.e., there is a corresponding decryption key dkikc
to ekikc): In this case, we can construct a reduction algorithm that finds dkikc
by brute-force and then extracts sol by decrypting ctikc to break ΠHPG. We
note that the brute-force search can be done before getting a problem instance
prob, and thus non-uniform PPT hardness suffices.

2. When ekikc is undecryptable: In this case, we consider several hybrids. In the
first hybrid, π′

zap is generated by using a witness witinvalid instead of rle-gen.
We note that such a witness witinvalid of invalidness of ekikc must exist when
ekikc is undecryptable by the second property of invalid key certifiability. By
witness indistinguishability of π′

zap, this only negligibly changes the cheating
prover’s winning probability.11 In the next hybrid, ekle is generated in the
injective mode instead of lossy mode. By key indistinguishability of ΠLE, this
only negligibly changes the cheating prover’s winning probability. At this
point, a reduction algorithm can generate ekle in the injective mode with its
corresponding decryption key, and thus it can extract sol by decrypting ctle to
break ΠHPG. Similarly to the previous case, the non-uniform PPT hardness
suffices even though the reduction algorithm runs a brute-force algorithm to
find witinvalid since this can be done before getting a problem instance prob.

This contradicts non-uniform PPT hardness of ΠΠHPG
. Therefore, the cheating

prover’s winning probability is negligible, and thus soundness holds.

11 Strictly speaking, since the event that the cheating prover wins is not efficiently
checkable, a more careful analysis is needed.
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Reusable quantum-simulation zero-knowledge. A QPT simulator S is described
as follows:

S(pp, ch, x, 1|w|): S is given pp = (ekpke, ekikc, r′
zap), ch = (rzap, prob, ekle, π′

zap), a
statement x, and a witness length 1|w| as input, and works as follows.
1. Return ⊥ if VerProb(1κ, prob) = ⊥ or ZAP.Verify′(r′

zap, (ekikc, ekle), π
′
zap) =

⊥.
2. Generate sol

$← Solve(prob) (by using a QPT computation). If
VerSol(prob, sol) = ⊥, immediately return ⊥ and halt. Otherwise, gen-
erate ctikc

$← Enc(sol; rikc-enc) and ctle
$← LE.Enc(ekle, sol; rle-enc).

3. Generate ctpke
$← PKE.Enc(ekpke, 0|w|).

4. Generate πzap
$← ZAP.Prove(rzap, (x, ekpke, ekikc, ekle, prob, ctpke, ctikc, ctle),

(sol, rikc-enc, rle-enc)).
5. Return resp = (ctpke, ctikc, ctle, πzap).

A response simulated by S is different from the real one in the following ways:

1. ctikc is an encryption of sol instead of 0|sol|, and
2. ctle is an encryption of sol instead of 0|sol|, and
3. πzap is generated by using a witness of L̃2 instead of L̃1, and
4. ctpke is an encryption of 0|w| instead of w.

Roughly, the first difference is indistinguishable by the CPA security of ΠIKC

against QPT adversaries. The second difference is indistinguishable due to
the following reasons. (1) If ekle is a lossy key, encryptions of sol and 0|sol|

are statistically indistinguishable. (2) If ekle is not a lossy key, we have
ZAP.Verify′(r′

zap, (ekikc, ekle), π
′
zap) = ⊥ with overwhelming probability by the

soundness of Π ′
ZAP noting that ekikc is honestly generated. In this case, ctle is not

given to the adversary. The third difference is indistinguishable by the witness
indistinguishability of ΠZAP. The fourth difference is indistinguishable by the
CPA security of ΠPKE against QPT adversaries after finishing the modification
3. We would be able to turn this intuition into a formal proof in a straightforward
manner if we assumed witness indistinguishability against quantum adversaries.
However, since we only assume witness indistinguishability against non-uniform
classical adversaries, we have to be careful about the order of game hops.12

Namely, if we first make the modifications 1 and 2 for all queries, then we can-
not make the modification 3 since the game involves quantum computations in
every query. To circumvent this issue, we make the modifications 1, 2, and 3 for
each query one-by-one similarly to [GRS+11]. In this way, we can ensure that
all quantum computations can be done in pre-computation stage when making
the modification 3 for each query, and the proof goes through even with witness
indistinguishability against non-uniform PPT adversaries.

12 Note that there is no known ZAP with witness indistinguishability against QPT
adversaries based on (quantum) polynomial hardness of standard assumptions.
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5 Round-Optimal Blind Signatures

In this section, we construct round-optimal blind signatures.

5.1 Construction

Building blocks. We construct a round-optimal blind signature scheme based on
the following building blocks.

– ΠSig = (SigGen,Sign,SigVerify) is a digital signature scheme that is EUF-
CMA against QPT adversaries. We assume that Sign is deterministic. This
can be assumed without loss of generality by derandomizing the signing algo-
rithm by using a quantumly secure PRF (which is only required to be secure
against QPT adversaries that just make classical queries).

– ΠSFE = (Receiver,Sender,Derive) is an SFE protocol that satisfies receiver’s
security against non-uniform PPT adversaries and quantum-extraction
sender’s security against QPT adversaries.

– Com is a perfectly-binding non-interactive commitment with computational
hiding against QPT adversaries.

– ΠZK = (Setup,V1,P2,Vout) is blind-signature-conforming zero-knowledge
arguments for a language L, which is defined as follows: We have
(com, sfe1, sfe2) ∈ L if there exists (ssk, rcom, rsfe) such that

com = Com(ssk; rcom)

sfe2 = Sender(1κ, sfe1,Sign(ssk, ·); rsfe)

Construction. Our construction of a round-optimal blind signature scheme
ΠBS = (BSGen,U1,S2,Uder,BSVerify) is described as follows.

BSGen(1κ): The key generation algorithm takes the security parameter 1κ as
input, and works as follows:
1. Generate (svk, ssk) $← SigGen(1κ).
2. Generate com

$← Com(ssk; rcom).
3. Generate (pp, sp) $← Setup(1κ).
4. Output a public key pk := (svk, com, pp) and a signing key sk :=

(ssk, rcom, sp).
U1(pk,m): The user’s first message generation algorithm takes as input a public

key pk = (svk, com, pp) and a message m, and works as follows:
1. Generate (sfe1, sfest)

$← Receiver(1κ,m).
2. Generate ch

$← V1(pp).
3. Output a first message μ := (sfe1, ch) and a state stU := sfest.

S2(sk, μ): The signer’s second message generation algorithm takes as input a
signing key sk = (ssk, rcom, sp). and a first message μ = (sfe1, ch) and works
as follows:
1. Generate sfe2

$← Sender(1κ, sfe1,Sign(ssk, ·); rsfe).
2. Generate resp

$← P2(sp, ch, (com, sfe1, sfe2), (ssk, rcom, rsfe)).
3. Output a second message ρ := (sfe2, resp).
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Uder(stU , ρ): The user’s signature derivation algorithm takes as input a state
stU = sfest and a second message ρ = (sfe2, resp) as input, and works as
follows:
1. Output ⊥ if Vout(pp, ch, (com, sfe1, sfe2), resp) = ⊥
2. Otherwise generate σ

$← Derive(sfest, sfe2) and output a signature σ.
BSVerify(pk,m, σ): The verification algorithm takes as input a public key

pk = (svk, com, pp), a message m, and a signature σ as input, and outputs
SigVerify(svk,m, σ).

The correctness of the scheme immediately follows from the correctness of
ΠSig, ΠZK, and ΠSFE.

5.2 Security

In this section, we give security proofs for the above scheme.

Unforgeability.

Theorem 5.1. If ΠSig satisfies unforgeability against QPT adversaries, Com
satisfies computational hiding against QPT adversaries, ΠSFE satisfies quantum-
extraction sender’s security against QPT adversaries, and ΠZK satisfies reusable
quantum-simulation zero-knowledge against classical adversaries, then ΠBS sat-
isfies unforgeability against classical adversaries.

Proof. We consider the following sequence of games between a PPT adversary
A and a challenger. We denote by Ei the event that Game i returns 1.

Game 1: This is the original unforgeability game. That is, this game proceeds as
follows.
1. The challenger generates (ssk, svk) $← SigGen(1κ), com $← Com(ssk; rcom),

and (pp, sp) $← Setup(1κ), and defines a public key pk := (svk, com, pp)
and a signing key sk := (ssk, rcom, sp), and sends pk to A.

2. A can make arbitrarily many signing queries. When it makes a sign-
ing query μ = (sfe1, ch), the challenger generates sfe2

$← Sender(1κ, sfe1,

Sign(ssk, ·); rsfe) and resp
$← P2(sp, ch, (com, sfe1, sfe2), (ssk, rcom, rsfe)),

and returns ρ := (sfe2, resp).
3. Finally, A returns {(mi, σi)}i∈[q+1] where q is the number of signing

queries made by A.
The game returns 1 if and only if A wins, i.e., {mi}i∈[q+1] is pairwise distinct
and SigVerify(svk,mi, σi) = � for all i ∈ [q+1]. Our goal is to prove Pr[E1] =
negl(κ).

Game 2: This game is identical to the previous one except that resp is generated
as resp

$← S(pp, ch, (com, sfe1, sfe2), 1|w|) when responding to each signing
query where S is the simulator of ΠZK and |w| denotes the bit-length of
(ssk, rcom, rsfe).
By a straightforward reduction to reusable quantum-simulation zero-
knowledge property of ΠZK, we have |Pr[E2] − Pr[E1]| = negl(κ).
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Game 3: This game is identical to the previous one except that sfe2 is gener-
ated as m

$← SFEExt(sfe1) and sfe2
$← SFESim(1κ, sfe1,Sign(ssk,m)) when

responding to each signing query.
Noting that rsfe is no longer used for generating resp due to the modifica-
tion made in Game 2, a straightforward reduction to quantum-extraction
sender’s security of ΠSFE gives |Pr[E3] − Pr[E2]| = negl(κ). We note that the
reduction works even though these games involve QPT computations (for S
and SFEExt) since we assume quantum-extraction sender’s security against
quantum adversaries.

Game 4: In this game, the challenger generates com as com
$← Com(0|ssk|).

Noting that rcom is no longer used for generating resp due to the modification
made in Game 2, a straightforward reduction to computational hiding of ΠSFE

gives |Pr[E4] − Pr[E3]| = negl(κ). We note that the reduction works even
though these games involve QPT computations (for S and SFEExt) since we
assume computational hiding against quantum adversaries.

What is left is to prove Pr[E4] = negl(κ). We show this by considering the
following QPT adversary B against unforgeability of ΠSig.

BSign(ssk,·)(svk): It generates com
$← Com(0|ssk|) and (pp, sp) $← Setup(1κ) and

gives a public key pk := (svk, com, pp) to A. When A makes a sign-
ing query μ = (sfe1, ch), B computes m

$← SFEExt(sfe1) and queries m
to its own signing oracle to obtain σ = Sign(ssk,m). Then B generates
sfe2

$← SFESim(1κ, sfe1, σ) and resp
$← S(pp, ch, (com, sfe1, sfe2), 1|w|), and

returns ρ := (sfe2, resp) to A as a response from the signing oracle. Let
{(mi, σi)}i∈[q+1] be A’s final output. B finds i∗ ∈ [q + 1] such that it has not
queried mi∗ to its own signing oracle and SigVerify(svk,mi∗ , σi∗) = �, and
outputs (mi∗ , σi∗). If there does not exist such i∗, B aborts.

It is easy to see that B perfectly simulates the environment of Game 4 to A,
and when A wins, B also wins (i.e., it succeeds in outputting (mi∗ , σi∗) such
that SigVerify(svk,mi∗ , σi∗) = � and B has not queried mi∗). Therefore, by
unforgeability of ΠSig, we have Pr[E4] = negl(κ). This completes the proof of
Theorem 5.1. ��

Blindness

Theorem 5.2. If Com satisfies perfect binding, ΠSFE satisfies receiver’s secu-
rity against non-uniform PPT adversaries, and ΠZK satisfies adaptive soundness
with untrusted setup against non-uniform PPT adversaries, then ΠBS satisfies
blindness against PPT adversaries.

Proof. We consider the following sequence of games between a PPT adversary
A against the blindness and a challenger. We denote by Ei the event that Game i
returns 1.

Game 1: This is the original blindness game. That is, this game proceeds as
follows:
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1. A is given as input the security parameter 1κ, and sends a public key
pk = (svk, com, pp) and a pair (m0,m1) of messages to the challenger.

2. The challenger generates (sfe1,b, sfestb)
$← Receiver(1κ,mb) and chb

$←
V1(pp) and defines μb := (sfe1,b, chb) and stU,b := sfestb for each b ∈ {0, 1},
picks coin

$← {0, 1}, and sends (μcoin, μ1−coin) to A.
3. A sends (ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)) to the

challenger.
4. The challenger gives (⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) =

⊥ for either of b ∈ {0, 1}. Otherwise it generates σb
$← Derive(sfestb, sfe2,b)

for each b ∈ {0, 1} and gives (σ0, σ1) to A.
5. A outputs its guess coin′.
This game returns 1 if and only if coin = coin′. Our goal is to prove∣∣Pr[E1] − 1

2

∣∣ = negl(κ).
Game 2: This game is identical to the previous game except that we insert Step

1.5 between Step 1 and 2 and Step 4 is replaced with Step 4′ described below:
(Differences of Step 4’ from Step 4 are marked by red underlines.)
1.5.: The challenger finds (ssk, rcom) such that com = Com(ssk; rcom) by a

brute-force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) :=
(⊥,⊥).

4′.: The challenger gives (⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) =
⊥ for either of b ∈ {0, 1} or (ssk, rcom) = (⊥,⊥). Otherwise it generates
σb := Sign(ssk,mb) for each b ∈ {0, 1} and gives (σ0, σ1) to A.

In Lemma 5.1, we prove |Pr[E2] − Pr[E1]| = negl(κ).
Game 3: This game is identical to the previous game except that sfe1,b is gener-

ated as (sfe1,b, sfestb)
$← Receiver(1κ,m0) for both b ∈ {0, 1}.

In Lemma 5.2, we prove |Pr[E3] − Pr[E2]| = negl(κ).
Game 4: This game is identical to the previous game except that the challenger

gives (μ0, μ1) to A instead of (μcoin, μ1−coin) in Step 2.
Since the distributions of μ0 and μ1 are identical, we have Pr[E4] = Pr[E3].
Moreover, since no information on coin is given to A in this game, we have
Pr[E4] = 1

2 .

What is left is to prove the following lemmata.

Lemma 5.1. If Com satisfies perfect binding and ΠZK satisfies adaptive sound-
ness with untrusted setup against non-uniform PPT adversaries, then we have
|Pr[E2] − Pr[E1]| = negl(κ).

Proof. For each b ∈ {0, 1}, we define Badb as an event that we have Vout(pp, chb,
(com, sfe1,b, sfe2,b), respb) = � and

1. there does not exist (ssk, rcom) such that com = Com(ssk; rcom), or
2. there exists (ssk, rcom) such that com = Com(ssk; rcom) and Derive(sfestb,

sfe2,b) �= Sign(ssk,mb).

Game 2 and Game 1 may be different only if Bad0 or Bad1 occurs. There-
fore, it suffices to prove Pr[Badb] = negl(κ) for each b ∈ {0, 1}. First, we
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prove Pr[Bad0] = negl(κ) by considering a non-uniform PPT cheating prover
P∗ = (P∗

Setup,P∗
2 ) against adaptive soundness with adaptive setup of ΠZK as

described below:

P∗
Setup(1

κ): It runs the first stage of A(1κ) to obtain pk = (svk, com, pp) and
(m0,m1). It finds (ssk, rcom) such that com = Com(ssk; rcom) by a brute-
force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) := (⊥,⊥).
It outputs pp and stP∗ := (pk,m0,m1, ssk, rcom, stA) where stA denotes the
snapshot of A at this point.

P∗
2 (stP∗ , ch): It parses (pk,m0,m1, ssk, rcom, stA) ← stP∗ , generates (sfe1,b,

sfestb)
$← Receiver(1κ,mb) for each b ∈ {0, 1} and ch1

$← V1(pp), sets
ch0 := ch, and defines μb := (sfe1,b, chb) for each b ∈ {0, 1}, picks coin

$←
{0, 1}, and sends (μcoin, μ1−coin) to A to run the second stage of A to obtain
(ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)). If Bad0 occurs,
then P∗

2 outputs (com, sfe1,0, sfe2,0) and resp0.

We can see that P∗ perfectly simulates Game 1 for A until the second stage of
A. Moreover, if Bad0 occurs, we have Vout(pp, ch0, (com, sfe1,0, sfe2,0), resp0) = �
and (com, sfe1,0, sfe2,0) /∈ L noting that Com is perfectly binding. Therefore,
by the adaptive soundness with untrusted setup of ΠZK, we have Pr[Bad0] =
negl(κ). We can prove Pr[Bad1] = negl(κ) analogously. This completes a proof of
Lemma 5.1. ��
Lemma 5.2. If ΠSFE satisfies receiver’s security against non-uniform PPT
adversaries, then we have |Pr[E3] − Pr[E2]| = negl(κ).

Proof. We prove this by considering a non-uniform PPT cheating adversary
B = (B0,B1) against receiver’s security of ΠSFE as described below:

B0(1κ): It runs the first stage of A(1κ) to obtain pk = (svk, com, pp) and
(m0,m1). It finds (ssk, rcom) such that com = Com(ssk; rcom) by a brute-
force search. If such (ssk, rcom) does not exist, it sets (ssk, rcom) := (⊥,⊥). It
outputs (m0,m1) and stP∗ := (pk,m0,m1, ssk, rcom, stA) where stA denotes
the snapshot of A at this point.

B1(stB, sfe1): It sets sfe1,1 := sfe1, generates (sfe1,0, sfest0)
$← Receiver(1κ,m0)

and chb
$← V1(pp) for b ∈ {0, 1}, defines μb := (sfe1,b, chb) for each b ∈ {0, 1},

picks coin $← {0, 1}, and sends (μcoin, μ1−coin) to A to run the second stage of
A to obtain (ρcoin = (sfe2,coin, respcoin), ρ1−coin = (sfe2,1−coin, resp1−coin)). Then
B1 gives (⊥,⊥) to A if Vout(pp, chb, (com, sfe1,b, sfe2,b), resp) = ⊥ for either of
b ∈ {0, 1} or (ssk, rcom) = (⊥,⊥). Otherwise it generates σb := Sign(ssk,mb)
for each b ∈ {0, 1} and gives (σ0, σ1) to A. Let coin′ be A’s final output. B1

outputs 1 if coin = coin′.

Clearly, B perfectly simulates Game 3 (resp. Game 2) if sfe1 is generated as
(sfe1, sfest)

$← Receiver(1κ,m0) (resp. (sfe1, sfest)
$← Receiver(1κ,m1)). There-

fore, by receiver’s security of ΠSFE, we have |Pr[E3] − Pr[E2]| = negl(κ). ��
Combining the above, Theorem 5.2 is proven. ��
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Abstract. We initiate the study of multi-party computation for clas-
sical functionalities in the plain model, with security against mali-
cious quantum adversaries. We observe that existing techniques read-
ily give a polynomial-round protocol, but our main result is a con-
struction of constant-round post-quantum multi-party computation. We
assume mildly super-polynomial quantum hardness of learning with
errors (LWE), and quantum polynomial hardness of an LWE-based cir-
cular security assumption. Along the way, we develop the following cryp-
tographic primitives that may be of independent interest:

– A spooky encryption scheme for relations computable by quantum
circuits, from the quantum hardness of (a circular variant of) the
LWE problem. This immediately yields the first quantum multi-key
fully-homomorphic encryption scheme with classical keys.

– A constant-round post-quantum non-malleable commitment scheme,
from the mildly super-polynomial quantum hardness of LWE.

To prove the security of our protocol, we develop a new straight-line
non-black-box simulation technique against parallel sessions that does
not clone the adversary’s state. This technique may also be relevant to
the classical setting.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a joint
function of their inputs, revealing only the output of the function while keeping
their inputs private. General secure MPC, initiated in works such as [6,14,33,68],
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has played a central role in modern theoretical cryptography. The last few years
have seen tremendous research optimizing MPC in various ways, enabling a
plethora of practical applications that include joint computations on distributed
medical data, privacy-preserving machine learning, e-voting, distributed key
management, among others. The looming threat of quantum computers nat-
urally motivates the problem of constructing protocols with provable security
against quantum adversaries.

After Watrous’ breakthrough work on zero-knowledge against quantum
adversaries [64], the works of [20,41,51] considered variants of quantum-secure
computation protocols, in the two-party setting. Very recently, Bitansky and
Shmueli [10] obtained the first constant-round classical zero-knowledge argu-
ments with security against quantum adversaries. Their techniques (and those
of [1] in a concurrent work) are based on the recent non-black-box simula-
tion technique of [8], who constructed two-message classically-secure weak zero-
knowledge in the plain model. Unfortunately, it is unclear whether these proto-
cols compose under parallel repetition. As a result, they become largely inappli-
cable to the constant-round multi-party setting.

There has also been substantial effort in constructing protocols for securely
computing quantum circuits [23,25,26] (see Sect. 2.6 for further discussion). How-
ever, to the best of our knowledge, generic multi-party computation protocols
with classical communication and security against quantum adversaries have only
been studied in models with trusted pre-processing or setup. To make things even
worse, [23] construct a maliciously-secure multi-party protocol for computing
quantum ciruits, assuming the existence of a maliciously-secure post-quantum
classical MPC protocol. This means that the only available implementations of
such a building block require trusted pre-processing or a common reference string.

Post-Quantum MPC. In this work we initiate the study of MPC protocols
that allow classical parties to securely compute general classical functionalities,
and where security is guaranteed against malicious quantum adversaries. Our
focus is on MPC in the plain model : Fully classical participants interact with
each other with no access to trusted/pre-processed parameters or a common
reference string. Multi-party protocols achieving security in these settings do
not seem to have been previously analyzed in any number of rounds.

We stress that the challenges of proving post-quantum security of MPC proto-
cols stretch far beyond the appropriate instantiations of the cryptographic build-
ing blocks (e.g. avoiding factoring- or discrete logarithm-based cryptosystems):
Because quantum information behaves very differently from classical informa-
tion, designing post-quantum protocols often requires new techniques to achieve
provable security. As an example, a common strategy to prove classical security
of MPC protocols is to define a simulator that can extract the inputs of the
corrupted parties by “rewinding” them, i.e. taking a snapshot of the state of the
adversary and split the protocol execution in multiple branches. However, when
the adversary is a quantum machine, this technique becomes largely inapplica-
ble since the no-cloning theorem (one of the fundamental principles of quantum
mechanics) prevents us from creating two copies of an arbitrary quantum state.
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One of our key contributions is a new parallel no-cloning non-black-box simula-
tion technique that extends the work of [10], to achieve security against multiple
parallel quantum verifiers.

1.1 Our Results

We begin by summarizing our main result: Classical multi-party computation
with security against quantum circuits in the plain model. Here, parties commu-
nicate classically via authenticated point-to-point channels as well as broadcast
channels, where everyone can send messages in the same round. In each round,
all parties simultaneously exchange messages. The network is assumed to be
synchronous with rushing adversaries, i.e. adversaries may generate their mes-
sages for any round after observing the messages of all honest parties in that
round, but before observing the messages of honest parties in the next round.
The (quantum) adversary may corrupt upto all but one of the participants. In
this model, we obtain the following main result.

Theorem 1 (Informal). Assuming mildly super-polynomial quantum hardness
of LWE and AFS-spooky encryption for relations computable by polynomial-size
quantum circuits, there exists a constant-round classical MPC protocol (in the
plain model) maliciously secure against quantum polynomial-time adversaries.

In more detail, our protocol is secure against any adversary A = {Aλ, ρλ}λ,
where each Aλ is the (classical) description of a polynomial-size quantum circuit
and ρλ is some (possibly inefficiently computable) non-uniform quantum advice.
Beyond being interesting in its own right, our plain-model protocol may serve as
a useful stepping stone to obtaining interesting protocols for securely computing
quantum circuits in the plain model, as evidenced by the work of [23]. This
protocol is constructed in Sects. 8 and 9 in the full version.

By “mildly” super-polynomial quantum hardness of LWE, we mean to assume
that there exists a constant c ∈ N, such that for large enough security parameter
λ ∈ N, no quantum polynomial time algorithm can distinguish LWE samples from
uniform with advantage better than negl(λilog(c,λ)), where ilog(c, λ) denotes the
c-times iterated logarithm log log · · ·c times(λ). We note that this is weaker than
assuming the quasi-polynomial quantum hardness of LWE, i.e. the assumption
that quantum polynomial-time adversaries cannot distinguish LWE samples from
uniform with advantage better than 2−(log λ)c

for some constant c > 1.
A central technical ingredient of our work is an additive function sharing (AFS)

spooky encryption scheme [21] for relations computable by quantum circuits. An
AFS-spooky encryption scheme has a publicly-computable algorithm that, on
input a set of ciphertexts Enc(pk1,m1), . . . ,Enc(pkn,mn) encrypted under inde-
pendently sampled public keys and a (possibly quantum) circuit C, computes a
new set of ciphertexts

Enc(pk1, y1), . . . ,Enc(pkn, yn) s.t.
n⊕

i=1

yi = C(m1, . . . ,mn).
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In Sect. 4 in the full version we show how to construct AFS-spooky encryption for
relations computable by quantum circuits, under an LWE-based circular security
assumption. We refer the reader to Sect. 4.4 in the full version for the exact circular
security assumption we need, which is similar to the one used in [52]. As a corollary,
this immediately yields the first multi-key fully-homomorphic encryption [50] for
quantum circuits with classical key generation and classical encryption of classical
messages.

Theorem 2 (Informal). Under an appropriate LWE-based circular security
assumption, there exists an AFS-spooky encryption scheme for relations com-
putable by polynomial-size quantum circuits with classical key generation and clas-
sical encryption of classical messages.

Along the way to proving our main theorem, we construct and rely on constant-
round zero-knowledge arguments against parallel quantum verifiers, and constant-
round extractable commitments against parallel quantum committers. Parallel
extractable commitments and zero-knowledge are formally constructed and ana-
lyzed in Sects. 5 and 6 in the full version, respectively. We only show the construc-
tion of parallel extractable commitments in Sect. 3 in this paper. We point out
that we do not obtain protocols that compose under unbounded parallel repeti-
tion. Instead we build a bounded variant (that we also refer to as multi-verifier
zero-knowledge and multi-committer extractable commitments) that suffices for
our applications.

Theorem 3 (Informal). Assuming the quantum polynomial hardness of LWE
and the existence of AFS-spooky encryption for relations computable by
polynomial-size quantum circuits, there exists:

– A constant-round classical argument for NP that is computational-zero-
knowledge against parallel quantum polynomial-size verifiers.

– A constant-round classical commitment that is extractable against parallel quan-
tum polynomial-size committers.

In addition, we initiate the study of post-quantum non-malleable commit-
ments. Specifically, we construct and rely on constant-round post-quantum non-
malleable commitments based on the super-polynomial hardness assumption
described above. The formal construction and analysis can be found in Sect. 7 in
the full version.

Theorem 4 (Informal). Assuming the mildly super-polynomial quantum hard-
ness of LWE and the existence of fully-homomorphic encryption for quantum
circuits, there exists a constant-round non-malleable commitment scheme secure
against quantum polynomial-size adversaries.

We also obtain quantum-secure non-malleable commitments in O(ilog(c, λ))
rounds for any constant c ∈ N based on any quantum-secure extractable com-
mitment. In particular, plugging in these commitments instead of our constant
round non-malleable commitments gives an O(ilog(c, λ)) round quantum-secure
MPC from any quantum AFS-spooky encryption scheme.
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2 Technical Overview

2.1 Background

Our starting point is any constant-round post-quantum MPC protocol maliciously
secure in the programmable common reference string (CRS) model. Such a pro-
tocol can be obtained, for example, based on the semi-maliciously secure MPC
protocols of [2,53] in the CRS model. Specifically, assuming the existence of post-
quantum zero-knowledge in the CRS model (that can be obtained based on the
quantum hardness of LWE [60]) and the quantum hardness of LWE, these works
obtain multi-party computation for classical circuits in the CRS model with the
following property: There exists an ideal-world simulator that programs the CRS,
interacts in a straight-line, black-box manner with any quantum adversary cor-
rupting an arbitrary subset of the players, and outputs a view that is indistin-
guishable from the real view of the adversary, including the output of honest par-
ties.

Thus, a natural approach to achieving post-quantum MPC in the plain model
is to then securely implement a multi-party functionality that generates the afore-
mentioned CRS. Specifically, we would like a set of n parties to jointly execute a
coin-flipping protocol. Such a protocol outputs a uniformly random string that
may then be used to implement post-quantum secure MPC according to [2,53].
The programmability requirement on the CRS roughly translates to ensuring that
for any quantum adversary, there exists a simulator that on input a random string
s, can force the output of the coin-flipping protocol to be equal to s. A protocol
satisfying this property is often referred to as a fully-simulatable multi-party coin-
flipping protocol.

Post-Quantum Multi-Party Coin-Flipping. Existing constant-round proto-
cols [36,65] for multi-party coin-flipping against classical adversaries make use
of the following template. Each participant first commits to a uniformly random
string using an appropriate perfectly binding commitment.1 In a later phase, all
participants reveal the values they committed to, without actually revealing the
randomness used for commitment. Additionally, each participant proves (in zero-
knowledge) to every other participant that they opened to the same value that
they originally committed to. If all zero-knowledge arguments verify, the proto-
col output is computed as the sum of the openings of all participants. To high-
light challenges to construct constant-round protocols, we elaborate on this tem-
plate and outline a simple polynomial-round coin tossing protocol. Readers famil-
iar with this template for multi-party coin-tossing may skip to the next page.

ASimple Protocol in PolynomiallyManyRounds. In order to motivate the
challenges involved in constructing a post-quantum constant-round multiparty
coin tossing protocol, we first outline a simple protocol that requires polynomially
many rounds, and follows from ideas in existing work. Our starting point is the
polynomial-round post-quantum zero-knowledge protocol due to Watrous [64].
1 We actually require this commitment to also satisfy a property called non-
malleability, which we discuss later in this section.
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Ideas developed in [10] can be used almost immediately to convert this to a post-
quantum extractable commitment scheme, assuming polynomial hardness of LWE
(or, more generally, any post-quantum oblivious transfer). For completeness, we
outline how this is done in Appendix A in the full version. Next, it is possi-
ble to use the resulting post-quantum secure extractable commitment to obtain
post-quantum multiparty fully-simulatable coin flipping, that admits a straight-
line simulator in the dishonest majority setting. The protocol requires rounds
that grow linearly with the number of parties and polynomially with the security
parameter, as described in Fig. 1.

Fig. 1. Multiparty coin tossing

Recall that the simulator Sim of any coin-flipping protocol will obtain a uni-
formly random string r∗ from the ideal functionality, and must force this value
as the output. The Sim for the protocol in Fig. 1 samples ri uniformly at ran-
dom on behalf of each honest party Pi, and commits to ri in Step 2 following
honest sender strategy. At the same time, Sim runs Ext to (sequentially) extract
the value committed by every corrupted party in Step 2. This allows the sim-
ulator to compute

⊕
i∈M

ri, where M denotes the set of corrupted parties. In
Step 3, the simulator broadcasts values r′

i on behalf of honest parties such that⊕
i∈[n]\M r′

i =
⊕

i∈M
ri ⊕ r∗. Finally, it invokes the simulator of the ZK proto-

col to produce proofs on behalf of honest parties. It is easy to see that the output
would indeed end up being the intended output r∗.

Notice that replacing Watrous’ polynomial-round ZK protocol with the
constant-round ZK of [1,10] only decreases the rounds to linear in the number of
parties. To decrease the number of rounds to constant, it is clear that one would
need to find a way to execute the commitment sessions (Step 2) and ZK sessions
(Step 4) in parallel. While the recent work of Bitansky and Shmueli [10] builds
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constant-round post-quantum zero-knowledge, their protocol and its guarantees
turn out to be insufficient for the parallel setting. In this setting, a single prover
would typically need to interact in parallel with (n−1) different verifiers, a subset
or all of which may be adversarial. It should be possible for a simulator to simulta-
neously simulate the view of multiple parallel verifiers. In addition, the argument
should continue to satisfy soundness, even if a subset of verifiers colludes with a
(cheating) prover.

Post-QuantumParallel Zero-Knowledge.We overcome this barrier by build-
ing the first constant-round zero-knowledge argument secure against parallel
quantum verifiers from quantum polynomial hardness of an LWE-based circu-
lar security assumption. This improves upon the work of [1,10] who provided
arguments with provable security only against a single quantum verifier. Very
roughly, the approach in [1,10] relies on a modification of the [8] homomorphic
trapdoors paradigm. We do not assume familiarity with the details of this proto-
col or paradigm, and will in fact discuss a (variant of) this in the next subsection.
For now, we simply point out that in this paradigm, the verifier generates an initial
FHE ciphertext and public key, as well as some additional information to enable
simulation. The simulator homomorphically evaluates the verifier’s (quantum) cir-
cuit over the initial FHE ciphertext and then uses the result of this evaluation to
recover secrets that will enable simulation.

However, when a prover interacts with several verifiers at once, each verifier
will generate its own FHE ciphertexts. In a nutshell, in the parallel setting the sim-
ulator can no longer perform individual homomorphic evaluations corresponding
to each verifier, due to no-cloning. To address this issue, we develop a novel paral-
lel no-cloning simulation strategy. This strategy relies on a novel technique that
enables the simulator to peel away secret keys of this FHE scheme layer-by-layer.
An overview of this technique can be found in Sect. 2.2.

Our technique also crucially relies on a strong variant of quantum fully-
homomorphic encryption that allows for homomorphic operations under multiple
keys at once. The encryption scheme that we use is a quantum generalization of
the notion of additive function sharing (AFS) spooky encryption [21]. As a con-
tribution of independent interest, we build the first AFS-spooky encryption (that
also implies multi-key FHE) for quantum circuits from a circular variant of the
LWE assumption. We give an overview of our construction in Sect. 2.3.

Post-Quantum Non-malleable Commitments. Our construction of zero-
knowledge against parallel quantum verifiers gives rise to a coin-flipping proto-
col that is secure as long as at least one participant is honest, and all commit-
ted strings are independent of each other. However, ensuring such independence
is not straightforward, even in the classical setting. In fact, upon seeing an hon-
est party’s commitment string c, a malicious, rushing adversary may be able to
produce a string c′ that commits to a related message. This is known as a mal-
leability attack, and can be prevented by relying on non-malleable commitments.
In this work, we devise the first post-quantum non-malleable commitments based
on slightly superpolynomial hardness of LWE. An overview of our construction
can be found in Sect. 2.4.
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Finally, we discuss how to combine all these primitives to build our desired
coin-tossing protocol, and a few additional subtleties that come up in the process,
in Sect. 2.5.

2.2 A New Parallel No-Cloning Non-Black-Box Simulation
Technique

In the following we give a high-level overview of our constant-round zero-
knowledge protocol secure against parallel quantum verifiers. In favor of a sim-
pler exposition, we first describe a parallel extractable commitment protocol. A
parallel extractable commitment is a commitment where a single receiver inter-
acts in parallel with multiple committers, each committing to its own independent
message. The main challenge in this setting is to simulate the view of an adver-
sary corrupting several of these committers, while simultaneously recovering all
committed messages. Once we build a parallel extractable commitment, obtain-
ing a parallel zero-knowledge protocol becomes a simple exercise (that we discuss
towards the end of this overview).

Throughout the following overview we only consider adversaries that are (i)
non-aborting, i.e. they never interrupt the execution of the protocol, and (ii)
explainable, i.e. their messages always lie in the support of honestly generated
messages, though they can select their random coins and inputs arbitrarily. We
further simplify our overview by only considering (iii) classical adversaries, while
being mindful to avoid any kind of state cloning during extraction. In the end of
this overview we discuss how to remove these simplifications.

Cryptographic Building Blocks. Before delving into the description of our
protocol, we introduce the technical tools needed for our construction. A fully-
homomorphic encryption (FHE) scheme [29] allows one to compute any function
(in its circuit representation) over some encrypted message Enc(pk,m), without
the need to decrypt it first. We say that an FHE is multi-key [50] if it supports the
homomorphic evaluation of circuits even over messages encrypted under indepen-
dently sampled public keys:

{Enc(pki,mi)}i∈[n]
Eval((pk1,...,pkn),C,·)−−−−−−−−−−−−−→ Enc((pk1, . . . , pkn), C(m1, . . . ,mn)).

Clearly, decrypting the resulting ciphertext should require the knowledge of all
of the corresponding secret keys (sk1, . . . , skn). Other than semantic security, we
require that the scheme is compact, in the sense that the size of the evaluated
ciphertext is proportional to |C(m1, . . . ,mn)| (and possibly the number of parties
n) but does not otherwise depend on the size of C.

The second tool that we use is compute and compare obfuscation [35,66]. A
compute and compare program CC[f, u, z] program is defined by a function f ,
a lock value u, and an output z. On input a string x, the program returns z if
and only if f(x) = u. The obfuscator Obf is guaranteed to return an obfuscated
program C̃C that is indistinguishable from a program that rejects any input, as
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long as u has sufficient entropy conditioned on f and z. Finally, we use a condi-
tional disclosure of secret (CDS)2 scheme. Recall that this is an interactive pro-
tocol parametrized by an NP relation R where both the sender and the receiver
share a statement x and in addition, the sender has a secret message m. At the end
of the interaction, the receiver obtains m if and only if it knows a valid witness w
such that R(x,w) = 1.

A Strawman Solution. We now describe a naive extension of the [1,10] app-
roach to the parallel setting (where a receiver interacts with multiple committers),
and highlight its pitfalls. We do not assume familiarity with [1,10]. To commit to
messages (m1, . . . ,mn), the committers and the receiver engage in the following
protocol.

– Each committer samples a key pair of a multi-key FHE scheme (pki, ski), a
uniform trapdoor tdi, and a uniform lock value lki, and sends to the receiver:
1. A commitment ci = Com(tdi).
2. An FHE encryption Enc(pki, tdi).
3. An obfuscation C̃Ci of the program CC[Dec(ski, ·), lki, (ski,mi)].

– The receiver engages each committer in a (parallel) execution of a CDS protocol
where the i’th committer sends lki if the receiver correctly guesses a valid pre-
image of ci.

At a high level, the fact that the protocol hides the message mi is ensured by the
following argument. Since the receiver cannot invert ci, it cannot guess tdi and
therefore the CDS protocol will return 0. This in turn means that the lock lki is
hidden from the receiver, and consequently that the obfuscated program is indis-
tinguishable from a null program. This is, of course, an informal explanation, and
we refer the reader to [1,8,10] for a formal security analysis.

We now turn to the description of the extractor. The high-level strategy is
the following: Upon receiving the first message from all committers, the extractor
uses the FHE encryption Enc(pki, tdi) and the code of the adversary to run the
CDS protocol homomorphically (on input tdi) to recover an FHE encryption of
lki. Then the extractor feeds it as an input to the obfuscated program C̃Ci, which
returns (ski,mi).

Unfortunately this approach has a major limitation: It implicitly assumes that
each corrupted party is a local algorithm. In other words, we are assuming that
the adversary consists of individual subroutines (one per corrupted party), which
may not necessarily be the case. As an example, if the adversary were to somehow
implement a strategy where corrupted machines do not respond until all receiver
messages have been delivered, then the above homomorphic evaluation would get
stuck and return no output. It is also worth mentioning that what makes the prob-
lem challenging is our inability to clone the state of the adversary. If we were
allowed to clone its state, then we could extract messages one by one, by running
a separate thread under each FHE key.

2 In the body of the paper we actually resort to a slightly stronger tool, namely a secure
function evaluation protocol with statistical circuit privacy.
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Multi-Key Evaluation. A natural solution to circumvent the above issue is to
rely on multi-key FHE evaluation. Using this additional property, the extractor
can turn the ciphertexts Enc(pk1, td1), . . . ,Enc(pkn, tdn) into a single encryption

Enc((pk1, . . . , pkn), (td1, . . . , tdn))

under the hood of all public keys (pk1, . . . , pkn). Given this information, the
extractor can homomorphically evaluate all instances of the CDS protocol at once,
using the code of the adversary, no matter how intricate. This procedure allows
the extractor to obtain the encryption of each lock value Enc((pk1, . . . , pkn), lki).
In the single committer setting, we could then feed this into the corresponding
obfuscated program and call it a day.

However, in the parallel setting, even given multi-key FHE, it is unclear how
to proceed. If the compute and compare program C̃Ci tried to decrypt such a
ciphertext, it would obtain (at best) an encryption under the remaining public
keys. Glossing over the fact that the structure of single-key and multi-key cipher-
texts might be incompatible, it is unlikely that

Dec(ski,Enc((pk1, . . . , pkn), lki)) = lki

which is what we would need to trigger the compute and compare program. The
general problem here is that each compute and compare program cannot encode
information about other secret keys, thus making it infeasible to decrypt multi-
key ciphertexts. One approach to resolve this issue would be to ask all committers
to jointly obfuscate a compute and compare program that encodes all secret keys
at once. However, this seems to require a general-purpose MPC protocol, which
is what we are trying to build in the first place. Therefore, we outline a different
approach by imagining a special kind of multi-key fully homomorphic encryption
scheme.

A spooky encryption3 scheme [21] is an FHE scheme that supports a special
spooky evaluation algorithm, that generates no-signaling correlations among inde-
pendently encrypted messages. We will restrict attention to a sub-class of no-
signaling relations called additive function sharing (AFS) relations, and we will
call the scheme AFS-spooky. More concretely, on input a circuit C and n inde-
pendently generated ciphertexts (under independently generated public keys), the
algorithm Spooky.Eval produces

{Enc(pki, mi)}i∈[n]
Spooky.Eval((pk1,...,pkn),C,·)−−−−−−−−−−−−−−−−−→ {Enc(pki, yi)}i∈[n] s.t.

n⊕

i=1

yi = C(m1, . . . , mn).

It is not hard to see that AFS-spooky encryption is a special case of multi-key FHE
where multi-key ciphertexts have the following structure

Enc((pk1, . . . , pkn),m) = {Enc(pki, yi)}i∈[n] s.t.
n⊕

i=1

yi = m.

3 As a historical remark, while the name is inspired by Einstein’s quote “spooky action
at a distance” referring to entangled quantum states, the concept of spooky encryp-
tion (as defined in [21]) is entirely classical.
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This additional structure is going to be our main leverage for constructing an effi-
cient extractor.

The Extractor. Going back to our extractor, our next technical insight is to
look for a mechanism to peel away encryption layers one by one from an AFS-
spooky (multi-key) ciphertext. Our extractor will achieve this via careful homo-
morphic evaluation of the independently generated programs (C̃C1, . . . , C̃Cn),
as described below.

– First, homomorphically execute the code of the adversary using the AFS-
spooky scheme to obtain

ct1 = Enc((pk1, . . . , pkn), lk1), . . . , ctn = Enc((pk1, . . . , pkn), lkn),

as described above.
– Parse ctn as a collection of individual ciphertexts

Enc((pk1, . . . , pkn), lkn) = {Enc(pki, yi)}i∈[n] = {Enc(pki, yi)}i∈[n−1] ∪ {Enc(pkn, yn)}︸ ︷︷ ︸
c̃tn

.

Note that we can interpret the first n−1 elements as an AFS-spooky ciphertext
encrypted under (pk1, . . . , pkn−1) :

c̃t = {Enc(pki, yi)}i∈[n−1] = Enc

(
(
pk1, . . . , pkn−1

)
,

n−1⊕

i=1

yi

)
= Enc

((
pk1, . . . , pkn−1

)
, ỹ

)

where ỹ =
n−1⊕
i=1

yi.

– Let Γ be the following function

Γ (ζ) : Spooky.Eval(pkn, ζ ⊕ ·, c̃tn)

which homomorphically computes the XOR of ζ with the plaintext of c̃tn. Com-
pute the following nested AFS-spooky correlation

ĉt = Spooky.Eval((pk1, . . . , pkn−1), Γ, c̃t)

= Enc
((
pk1, . . . , pkn−1

)
,Spooky.Eval(pkn, ỹ ⊕ ·, c̃tn)

)
(1)

= Enc

(
(
pk1, . . . , pkn−1

)
,Enc

(
pkn,

n⊕

i=1

yi

))
(2)

= Enc
((
pk1, . . . , pkn−1

)
,Enc (pkn, lkn)

)
(3)

by interpreting c̃tn as a single key ciphertext. Here (1) follows by substituting
Γ , and (2) follows by correctness of the AFS-spooky evaluation.

– Run the obfuscated compute and compare program homomorphically to obtain
an encryption of skn and mn under (pk1, . . . , pkn−1)

Spooky.Eval
(
(pk1, . . . , pkn−1), C̃Cn, ĉt

)
= Enc

((
pk1, . . . , pkn−1

)
, C̃Cn (Enc (pkn, lkn))

)

= Enc
((

pk1, . . . , pkn−1

)
, (skn, mn)

)
.
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– Using the encryption of skn under (pk1, . . . , pkn−1), update the initial cipher-
texts (ct1, . . . , ctn−1) by homomorphically decrypting their last component
and adding the resulting string. This allows the extractor to obtain

Enc((pk1, . . . , pkn−1), lk1), . . . ,Enc((pk1, . . . , pkn−1), lkn−1).

– Recursively apply the procedure described above until Enc(pk1, lk1) is recov-
ered, then feed this ciphertext as an input to C̃C1 to obtain (sk1,m1) in the
clear. Iteratively recover (sk2, . . . , skn) by decrypting the corresponding cipher-
texts. At this point the extractor knows all secret keys and can decrypt the
transcript of the interaction together with the committed messages.

To summarize, this extractor will isolate single-key ciphertexts (albeit in a nested
form) by relying on AFS-spooky encryption. These ciphertexts by design will be
compatible with compute and compare programs. In turn, evaluating the program
under the encryption allows us to escape from the newly introduced layer. Repeat-
ing this procedure recursively eventually leads to a complete recovery of the plain-
texts.

We stress that, although the extraction algorithm repeats the nesting opera-
tion n times, the additional encryption layer introduced in each iteration is imme-
diately peeled off by executing the obfuscated compute and compare program.
Thus the above procedure runs in (strict) polynomial time for any polynomial
number of parties n.

Parallel Zero Knowledge. The above outline is deliberately simplified and
ignores some subtle issues that arise during the analysis of the protocol. As an
example, we need to ensure that the adversary is not able to maul the commit-
ment of the trapdoor into a CDS encryption to be used in the CDS protocol.
This issue also arose in [10], and we follow their approach of using non-uniformity
in a reduction to the semantic security of the quantum FHE scheme. [10] also
present the technical tools needed to lift the protocol to the setting of malicious
and possibly aborting adversaries (as opposed to explainable), and we roughly fol-
low their approach. However, it is worth pointing out that [10] directly construct a
zero-knowledge argument, without first constructing and analyzing a stand-alone
extractable commitment. Since we use a parallel extractable commitment as a
building block in the our coin-flipping protocol, we analyze the above as a stand-
alone commitment, which requires a few modifications to the protocol and proof
techniques. More discussion about this can be found in Sect. 3.

Now, we describe how to obtain parallel zero-knowledge (i.e. zero-knowledge
against multiple verifiers) from parallel extractable commitment. This is accom-
plished in a routine manner by enhancing a standard Σ protocol with a stage
where each verifier commits to its Σ protocol challenge using a parallel extractable
commitment. Using the extractor, the simulator can obtain the challenges ahead
of time and can therefore simulate the rest of the transcript, without the need to
perform state cloning.

It remains to argue that our extraction strategy does not break down in the
presence of quantum adversaries. Observe that the only step that involves the
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execution of a quantum circuit is the AFS-spooky evaluation of the CDS pro-
tocol, under the hood of (pk1, . . . , pkn). Assuming that we can construct AFS-
spooky encryption for relations computable by quantum circuits (which we show
in Sect. 2.3), the remainder of the extraction algorithm only depends on the
encryptions of (lk1, . . . , lkn), which are classical strings. Once the extractor recov-
ers all the secret keys, it can decrypt the (possibly quantum) state of the adversary
resulting from the homomorphic evaluation of the CDS, and resume the protocol
execution, without the need to clone the adversary’s state.

2.3 Quantum AFS-Spooky Encryption

We now turn to the construction of AFS-spooky encryption for relations com-
putable by quantum circuits. The main technical contribution of this section is
a construction of multi-key fully-homomorphic encryption for quantum circuits
with classical key generation and classical encryption of classical messages. Such
schemes were already known in the single-key setting, due to [11,52].

Background. At a very high level, these single-key schemes follow a paradigm
introduced by Broadbent and Jeffery [13], which makes use of the quantum one-
time pad (QOTP). The QOTP is a method of perfectly encrypting arbitrary quan-
tum states with a key that consists of only classical bits. [13] suggest to encrypt a
quantum state with a quantum one-time pad (QOTP), and then encrypt the clas-
sical bits that comprise the QOTP using a classical fully-homomorphic encryption
scheme. One can then apply quantum gates to the encrypted quantum state, and
update the classical encryption of the one-time pad appropriately. A key feature
of this encryption procedure is that while an encryption of a quantum state nec-
essarily must be a quantum state, an encryption of classical information does not
necessarily have to include a quantum state. Indeed, one can simply give a classi-
cal one-time pad encryption of the data, along with a classical fully-homomorphic
encryption of the pad.

However, the original schemes presented by Broadbent and Jeffery [13] and
subsequent work [24] based on their paradigm left much to be desired. In particu-
lar, they required even a classical encryptor to supply quantum “gadgets” encod-
ing their secret key. These gadgets were then used to evaluate a particular non-
Clifford gate over encrypted data.4 The main innovation in the work of [52] was to
remove the need for quantum gadgets, instead showing how to evaluate an appro-
priate non-Clifford gate using just classical information supplied by the encryptor.

Encrypted CNOT Operation. In more detail, evaluating a non-Clifford gate
on a ciphertext (ct, |φ〉), where ct is an FHE encryption of a QOTP key and |φ〉 is
a quantum state encrypted under the QOTP key, involves an operation (referred
to as encrypted CNOT) that somehow must “teleport” the bits encrypted in ct

4 We also remark here that [34] presented a multi-key scheme based on this paradigm,
but with the same drawbacks. Note that compactness and classical encryption are
crucial in our setting, as per the discussion in the previous section.
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into the state |φ〉. [52] gave a method for doing this, as long as the ciphertext ct is
encrypted under a scheme with some particular properties. Roughly, the scheme
must support a “natural” XOR homomorphic operation, it must be circuit private
with respect to this homomorphism, and perhaps most stringently, there must
exist some trapdoor that can be used to recover the message and the randomness
used to produce any ciphertext.

[52] observed that the dual-Regev encryption scheme [30] (with large enough
modulus-to-noise ratio) does in fact satisfy these properties, as long as one gen-
erates the public key matrix A along with a trapdoor. However, recall that ct
was supposed to be encrypted under a fully-homomorphic encryption scheme. [52]
resolves this by observing that ciphertexts encrypted under the dual variant of
the [31] fully-homomorphic encryption scheme actually already contain a dual-
Regev ciphertext. In particular, a dual-GSW ciphertext encrypting a bit μ is a
matrix M = AS+E+μG, where G is the gadget matrix. The final column of M
is As+e+μ[0, . . . , 0, q/2]�, which is exactly a dual-Regev ciphertext encrypting
μ under public key A. Note that, crucially, if the dual-GSW public key A is drawn
with a trapdoor, then this trapdoor also functions as a trapdoor for the dual-Regev
ciphertext. Thus, an evaulator can indeed perform the encrypted CNOT operation
on any ciphertext (ct, |φ〉), by first extracting a dual-Regev ciphertext ct′ from ct
and then proceeding.

Challenges in the Multi-Key Setting. Now, it is natural to ask whether this
approach readily extends to the multi-key setting. Namely, does there exist a
multi-key FHE scheme where any (multi-key) ciphertext contains within it a dual-
Regev ciphertext with a corresponding trapdoor? Unfortunately, this appears to
be much less straightforward than in the single-key setting, for the following rea-
son. Observe that (dual) GSW homomorphic operations over ciphertexts Mi =
ASi +Ei + μiG always maintain the same A matrix, while updating Si, Ei, and
μi. Thus, a trapdoor for A naturally functions as a trapdoor for the dual-Regev
ciphertext that consitutes the last column of Mi. However, LWE-based multi-key
FHE schemes from the literature [12,18,53,59] include a ciphertext expansion pro-
cedure, which allows an evaluator, given public keys pk1, . . . , pkn, and a ciphertext
ct encrypted under some pki, to convert ct into a ciphertext ĉt encrypted under all
keys pk1, . . . , pkn. Now, even if these public keys are indeed matrices A1, . . . ,An

drawn with trapdoors τ1, . . . , τn, it is unclear how to combine τ1, . . . , τn to pro-
duce a trapdoor τ̂ for the “expanded” ciphertext. Indeed, the expanded ciphertext
generally can no longer be written as some AS+E+μG, since the expansion pro-
cedure constructs a highly structured matrix that includes components from the
ciphertexts ct1, . . . , ctn, as well as auxiliary encryptions of the randomness used
to produce the ciphertexts (see e.g. [53]).

A Solution Based on Key-Switching. Thus, we take a different approach.
Rather than attempting to tweak known ciphertext expansion procedures to also
support “trapdoor expansion”, we rely on the notion of key-switching, which is a
method of taking a ciphertext encrypted under one scheme and converting it into
a ciphertext encrypted under another scheme. The observation, roughly, is that
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we do not need to explicitly maintain a trapdoor for the multi-key FHE scheme,
as long as it is possible to convert a multi-key FHE ciphertext into a dual-Regev
ciphertext that does explicitly have a trapdoor. In fact, we will consider a nat-
ural multi-key generalization of dual-Regev, as described below. Key switching
is possible as long as the second scheme has sufficient homomorphic properties,
namely, it can support homomorphic evaluation of the decryption circuit of the
first scheme.

Fortunately, the dual-Regev scheme is already linearly homomorphic, and
many known classical multi-key FHE schemes [12,18,53,59] support nearly linear
decryption, which means that decrypting a ciphertext simply consists of applying
a linear function (derived from the secret key) and then rounding. Thus, as long as
the evaluator has the secret key of the multi-key FHE ciphertext encrypted under
a dual-Regev public key with a trapdoor, they can first key-switch the multi-key
FHE ciphertext ct into a dual-Regev ciphertext ct′, and then proceed with the
encrypted CNOT operation.

It remains to show how an evaluator may have access to such a dual-Regev
encryption. Since we are still in the multi-key setting, we will need a ciphertext and
corresponding trapdoor expansion procedure for dual-Regev. However, we show
that such a procedure is much easier to come by when the scheme only needs to
support linear homomorphism (as is the case for the dual-Regev scheme) rather
than full homomorphism. Each party can draw its own dual-Regev public key Ai

along with a trapdoor τi, and encrypt its multi-key FHE secret key under Ai to
produce a ciphertext cti. The evaluator can then treat the block-diagonal matrix
Â = diag(A1, . . . ,An) as an “expanded” public key.5 Now, the message and ran-
domness used to generate a ciphertext encrypted under Â may be recovered by
applying τ1 to the first set of entries of the ciphertext, applying τ2 to the second
set of entries and so on. This observation, combined with an appropriate expan-
sion procedure for the ciphertexts cti, allows an evaluator to convert any multi-
key FHE ciphertext into a multi-key dual-Regev ciphertext with trapdoor. Given
a classical multi-key FHE scheme with nearly linear decryption, this suffices to
build multi-key quantum FHE with classical key generation and encryption.

Distributed Setup. We showed above how to convert any classical multi-key
FHE scheme into a quantum multi-key FHE scheme, as long as the classical
scheme has nearly linear decryption. However, most LWE-based classical multi-
key FHE schemes operate in the common random string (CRS) model, which
assumes that all parties have access to a common source of randomness, gener-
ated by a trusted party. Thinking back to our application to parallel extractable
commitments, it is clear that this will not suffice, since we have no CRS a priori,
and a receiver that generates a CRS maliciously may be able to break hiding of
the scheme. Thus, we rely on the multi-key FHE scheme of [12], where instead
of assuming a CRS, the parties participate in a distributed setup procedure. In
particular, each party (and in our application, each committer) generates some

5 Actually this expansion should be done slightly more carefully, see Sect. 4.4 in the full
version for details.
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public parameters ppi, which are then combined publicly to produce a single set
of public parameters pp, which can be used by anyone to generate their own public
key/secret key pair.

This form of distributed setup indeed suffices to prove the hiding of our par-
allel commitment, so it remains to show that our approach, combined with [12],
yields a quantum multi-key FHE scheme with distributed setup. First, the [12]
scheme does indeed enjoy nearly linear decryption, so plugging it into our com-
piler described above gives a functional quantum multi-key FHE scheme. Next, we
need to confirm that our compiler does not destroy the distributed setup property.
This follows since each party draws its own dual-Regev public key with trapdoor
without relying on any CRS, or even any public parameters.

Quantum AFS-Spooky Encryption. Finally, we show, via another applica-
tion of key-switching, how to construct a quantum AFS-spooky encryption scheme
(with distributed setup). Recall that we only require “spooky” interactions to hold
over classical ciphertexts. That is, for any quantum circuit C with classical out-
puts, given ciphertexts ct1, . . . , ctn encrypting |φ1〉, . . . , |φn〉 respectively under
public keys pk1, . . . , pkn, an evaluator can produce ciphertexts ct′1, . . . , ct

′
n where

ct′i encrypts yi under pki, and such that
n⊕

i=1

yi = C(|φ1〉, . . . , |φn〉).
Now, using our quantum multi-key FHE scheme, it is possible to compute

a single (multi-key) ciphertext ĉt that encrypts C(|φ1〉, . . . , |φn〉) under all pub-
lic keys pk1, . . . , pkn. Then, if each party additionally drew a key pair (pk′

i, sk
′
i)

for a classical AFS-spooky encryption scheme, and released c̃t1, . . . , c̃tn, where
c̃ti = Enc(pk′

i, ski) encrypts the i-th party’s quantum multi-key FHE secret key
under their AFS-spooky encryption public key, then the evaluator can homomor-
phically evaluate the quantum multi-key FHE decryption circuit (which is classi-
cal for classical ciphertexts) with ĉt hardcoded, where ĉt is the multi-key cipher-
text defined at the beginning of this paragraph. This circuit on input c̃t1, . . . , c̃tn
produces the desired output ct′1, . . . , ct

′
n. Finally, note that the classical AFS-

spooky encryption scheme must also have distributed setup, and we show (see
Sect. 4.5 in the full version) that one can derive a distributed-setup AFS-spooky
encryption scheme from [12] using standard techniques [21].

2.4 Post-Quantum Non-malleable Commitments

In this section, we describe how to obtain constant-round post-quantum non-
malleable commitments under the assumption that there exists a natural number
c > 0 such that quantum polynomial-time adversaries cannot distinguish LWE
samples from uniform with advantage better than λ−ilog(c,λ), where ilog(c, λ) =
log log · · ·c times log(λ) and λ denotes the security parameter.

We will focus on perfectly binding and computationally hiding constant-round
interactive commitments. Loosely speaking, a commitment scheme is said to be
non-malleable if no adversary (also called a man-in-the-middle), when participat-
ing as a receiver in an execution of an honest commitment Com(m), can at the
same time generate a commitment Com(m′), such that the message m′ is related
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to the original message m. This is equivalent (assuming the existence of one-way
functions with security against quantum adversaries) to a tag-based notion where
the commit algorithm obtains as an additional input a tag in {0, 1}λ, and the
adversary is restricted to using a tag, or identity, that is different from the tag used
to generate its input commitment. We will rely on tag-based definitions through-
out this paper. We will also only focus on the synchronous setting, where the com-
mitments proceed in rounds, and the man-in-the-middle sends its own message for
a specific round before obtaining an honest party’s message for the next round.

Before describing our ideas, we briefly discuss existing work on classically-
secure non-malleable commitments. Unfortunately, existing constructions of
constant-round non-malleable commitments against classical adversaries from
standard polynomial hardness assumptions [4,16,17,36–40,44,46–48,54,56–58,
65] either rely on rewinding, or use Barak’s non-black-box simulation technique,
both of which require the reduction to perform state cloning. As such, known tech-
niques fail to prove quantum security of these constructions.

We now discuss our techniques for constructing post-quantum non-malleable
commitments. Just like several classical approaches, we will proceed in two steps.

– We will obtain simple “base” commitment schemes for very small tag/identity
spaces from slightly superpolynomial hardness assumptions.

– Then assuming polynomial hardness of LWE against quantum adversaries, and
making use of constant-round post-quantum zero-knowledge arguments, we
will convert non-malleable commitments for a small tag space into commit-
ments for a larger tag space, while only incurring a constant round overhead.

For the base schemes, there are known classical constructions [58] that assume
hardness of LWE against 2λδ

-size adversaries, where λ denotes the security param-
eter and 0 < δ < 1 is a constant. We observe that these constructions can be
proven secure in the quantum setting, resulting in schemes that are suitable for
tag spaces of O(log log λ) tags.

Tag Amplification. Since an MPC protocol could be executed among up to
poly(λ) parties where poly(·) is an arbitrary polynomial, we end up requiring non-
malleable commitments suitable for tag spaces of poly(λ). This is obtained by
combining classical tools for amplifying tag spaces [22] with constant round post-
quantum zero-knowledge protocols. Our tag amplification protocol, on input a
scheme with tag space 2t, outputs a scheme with tag space 2t, for any t ≤ poly(λ).
This follows mostly along the lines of existing classical protocols, and as such we
do not discuss the protocol in detail here. Our protocol can be found in Sect. 7.3
in the full version.

Base Schemes from λ−ilog(c,λ) Hardness. Returning to the question of con-
structing appropriate base schemes, we also improve the assumption from 2λδ

-
quantum hardness of LWE (that follows based on [58]) to the mildly super-
polynomial hardness assumption discussed at the beginning of this subsection.
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Recall that we will only need to assume that there exists an (explicit) natural
number c > 0 such that quantum polynomial time adversaries cannot distin-
guish LWE samples from uniform with advantage better than negl(λilog(c,λ)) where
ilog(c, λ) = log log · · ·c times log(λ). Our base scheme will only be suitable for iden-
tities in ilog(c + 1, λ), where c > 0 is a natural number, independent of λ. We will
then repeatedly apply the tag amplification process referred to above to boost the
tag space to 2λ, by adding only a constant number of rounds.

To build our base scheme, we take inspiration from the classically secure non-
malleable commitments of Khurana and Sahai [45]. However, beyond considering
quantum as opposed to classical adversaries, our protocol and analysis will have
the following notable differences from [45]:

– The work of [45] relies on sub-exponential hardness (i.e. 2λδ

security), which is
stronger than the type of superpolynomial hardness we assume. This is primar-
ily because [45] were restricted to two rounds, but we can improve parameters
while allowing for a larger constant number of rounds.

– [45] build a reduction that rewinds an adversary to the beginning of the proto-
col, and executes the adversary several times, repeatedly sampling the adver-
sary’s initial state. This may be undesirable in the quantum setting.6 On the
other hand, we have a simpler fully straight-line reduction that only needs to
run the adversary once.

Specifically, following [45], we will establish an erasure channel between the
committer and receiver that transmits the committed message to the receiver with
probability ε. To ensure that the commitment satisfies hiding, ε is chosen to be a
value that is negligible in λ. At the same time, the exact value of ε is determined
by the identity (tag) of the committer. Recall that tag ∈ [1, ilog(c+1, λ)]. We will
set ε = η−tag where η = λilog(c+1,λ) is a superpolynomial function of λ.

Next, for simplicity, we restrict ourselves to a case where the adversary’s tag
(which we denote by tag′) is smaller than that of the honest party (which we denote
by tag). In this case, the adversary’s committed message is transmitted with prob-
ability ε′ = η−tag′

, whereas the honest committer’s message is transmitted with
probability only ε = η−tag, which is smaller than ε′.

We set this up so that the transcript of an execution transmits the adversary’s
message with probability ε′ (over the randomness of the honest receiver), and on
the other hand, an honestly committed message will remain hidden except with
probability ε < ε′ (over the randomness of the honest committer). This gap in the
probability of extraction will help us argue non-malleability, using a proof strat-
egy that bears resemblance to the proof technique in [9] (who relied on stronger
assumptions to achieve such a gap in the non-interactive setting).

We point out one subtlety in our proof that does not appear in [9]. We must rule
out a man-in-the-middle adversary that on the one hand, does not commit to a
related message if its message was successfully transmitted, but on the other hand,

6 In particular this state may not always be efficiently sampleable, in which case it
would be difficult to build an efficient reduction.
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can successfully perform a mauling attack if its message was not transmitted. To
rule out such an adversary, just like [45], we will design our erasure channel so
that the adversary cannot distinguish transcripts where his committed message
was transmitted from those where it wasn’t.

Finally, our erasure channel can be cryptographically established in a manner
similar to prior work [3,42,45] via an indistinguishability-based variant of two-
party secure function evaluation, that can be based on quantum hardness of LWE.
Specifically, we would like to ensure that the SFE error is (significantly) smaller
than the transmission probabilities of our erasure channels: therefore, we will set
parameters so that SFE error is λ−ilog(c,λ). We refer the reader to Sect. 7 in the full
version for additional details about our construction.

On Super-Constant Rounds from Polynomial Hardness. We also observe
that for any t(λ) ≤ poly(λ), non-malleable commitments for tag space of
size t(λ) can be obtained in O(t(λ)) rounds based on any extractable commit-
ment using ideas from [15,22], where only one party speaks in every round.
These admit a straight-line reduction, and can be observed to be quantum-
secure. As such, based on quantum polynomial hardness of LWE and quantum
FHE, we can obtain a base protocol for O(log log . . .c times log λ) tags requir-
ing O(log log . . .c times log λ) rounds, for any constant c ∈ N. Applying our tag-
amplification compiler to this base protocol makes it possible to increase the tag
space to 2λ while only adding a constant number of rounds. Therefore, this tech-
nique gives O(log log . . .c times log λ) round non-malleable commitments for expo-
nentially large tags from quantum polynomial hardness. It also yields constant
round non-malleable commitments for a constant number of tags from polyno-
mial hardness.

2.5 Putting Things Together

Finally, we show how to combine the primitives described above to obtain a
constant-round coin-flipping protocol that supports straight-line simulation. As
we saw above, in the setting of multi-verifier zero-knowledge, simultaneously sim-
ulating the view of multiple parties without rewinding can be quite challenging,
so a careful protocol and proof is needed.

Recall the outline presented at the beginning of this section, where each party
first commits to a uniformly random string, then broadcasts the committed mes-
sage, and finally proves in ZK that the message broadcasted is equal to the pre-
viously committed message. If all proofs verify, then the common output is the
XOR of all broadcasted strings. Recall also that the coin-tossing protocol should
be fully-simulatable. This means that a simulator should be able to force the com-
mon output to be a particular uniformly drawn string given to it as input.

It turns out that in order to somehow force a particular output, the simu-
lator should be able to simultaneously extract in advance all the messages that
adversarial parties committed to. In particular, we require commitments where
a simulator can extract from multiple committers committing in parallel. Here,
we will rely on our parallel extractable commitment described above. Note that
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we will also need to simulate the subsequent zero-knowledge arguments given by
the malicious parties in parallel, and thus we instantiate these with our parallel
zero-knowledge argument described above. However, an issue remains. What if an
adversary could somehow maul an honest party’s commitment to a related mes-
sage and then broadcast that commitment as their own? This could bias the final
outcome away from uniformly random.

Thus, we need to introduce some form of non-malleability into the protocol.
Indeed, we will add another step at the beginning where each party commits
to its message ci and some randomness ri using our post-quantum many-to-one
non-malleable commitment.7 Each party will then commit to ci again with our
extractable commitment, using randomness ri. Finally, each party proves in zero-
knowledge that the previous commitments were consistent.

This protocol can be proven to be fully simulatable. Intuitively, even though
the simulator changes the behavior of honest players in order to extract from the
adversary’s commitments and then later force the appropriate output, the initial
non-malleable commitments given by the adversary must not change in a mean-
ingful way, due the the guarantee of non-malleability. However, additional sub-
tleties arise in the proof of security. In particular, during the hybrids the simula-
tor will first have to simulate the honest party zero-knowledge arguments, before
changing the honest party commitments in earlier stages. However, when chang-
ing an honest party’s commitment, we need to rely on non-malleability to ensure
that the malicious party commitments will not also change in a non-trivial way.
Here, we use a proof technique that essentially invokes soundness of the adver-
sary’s zero-knowledge arguments at an earlier hybrid but allows us to nevertheless
rely on non-malleable commitments to enforce that the adversary behaves consis-
tently in all future hybrids. More discussion and a formal analysis can be found in
Sect. 8 in the full version.

2.6 Related Work

Classical secure multi-party computation was introduced and shown to be achiev-
able in the two-party setting by [67] and in the multi-party setting by [33]. Since
these seminal works, there has been considerable interest in reducing the round
complexity of classical protocols. In the setting of malicious security against a dis-
honest majority, [49] gave the first constant-round protocol for two-party compu-
tation, and [43] gave the first constant-round protocol for multi-party computa-
tion. Since then, there has been a long line of work improving on the exact round
complexity and assumptions necessary for classical multi-party computation (see
e.g. [27,55]).

Post-quantum Classical Protocols. The above works generally focus on secu-
rity against classical polynomial-time adversaries. Another line of work, most rel-
evant to the present work, has considered the more general goal of proving the

7 Above we described a construction of one-to-one non-malleable commitment, though
a hybrid argument [48] shows that one-to-one implies many-to-one.
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security of classical protocols against arbitrary quantum polynomial-time adver-
saries.

This study was initiated by van de Graaf [63], who observed that the useful
rewinding technique often used to prove zero-knowledge in the classical setting
may be problematic in the quantum setting. In a breakthrough work, Watrous [64]
showed that several well-known classical zero-knowledge protocols are in fact zero-
knowledge against quantum verifiers, via a careful rewinding argument. However,
these protocols require a polynomial number of rounds to achieve negligible secu-
rity against quantum attackers. Later, Unruh [62] developed a more powerful
rewinding technique that suffices to construct classical zero-knowledge proofs of
knowledge secure against quantum adversaries, though still in a polynomial num-
ber of rounds. In a recent work, [10] managed to construct a constant-round post-
quantum zero-knowledge protocol, under assumptions similar to those required
to obtain classical fully-homomorphic encryption. In another recent work, [1] con-
structed a constant-round protocol that is zero-knowledge against quantum veri-
fiers under the quantum LWE assumption, though soundness holds against only
classical provers.

There has also been some work on the more general question of post-quantum
secure computation. In particular, [20] used the techniques developed in [64] to
build a two-party coin-flipping protocol, and [41,51] constructed general two-
party computation secure against quantum adversaries, in a polynomial number
of rounds. More recently, [10] gave a constant-round two-party coin-flipping pro-
tocol, with full simulation of one party. However, prior to this work, nothing was
known in the most general setting of post-quantum multi-party computation (in
the plain model).

Finally, we remark that post-quantum classical protocols do exist in the litera-
ture, as long as some form of trusted setup is available. For example, the two-round
protocol of [53] from LWE is in the programmable common random string model,
and was shown to be semi-maliciously secure via straight-line simulation. Thus,
applying the semi-malicious to malicious compiler of [2] instantiated with a NIZK
from LWE [60] gives a post-quantum maliciously secure protocol in the common
random string model from the quantum hardness of LWE. Another example is
the maliciously secure OT-based two-round protocol of [7,28] instantiated with
maliciously-secure oblivious transfer from LWE [61].

Quantum Protocols. Yet another line of work focuses on protocols for securely
computing quantum circuits. General multi-party quantum computation was
shown to be achievable in the information-theoretic setting (with honest majority)
in the works of [5,19]. In the computational setting, [25] gave a two-party protocol
secure against a quantum analogue of semi-honest adversaries, and [26] extended
security of two-party quantum computation to the malicious setting. In a recent
work [23] constructed a maliciously secure multi-party protocol for computing
quantum circuits, assuming the existence of a maliciously secure post-quantum
classical MPC protocol. We remark that all of the above protocols operate in a
polynomial number of rounds.



456 A. Agarwal et al.

3 Quantum-Secure Multi-Committer Extractable
Commitment

In this section, we follow the outline presented in Sect. 2.2 to construct a commit-
ment scheme that allows for simultaneous extraction from multiple parallel com-
mitters. The protocol is somewhat more involved than the high-level description
given earlier, so we briefly highlight the differences.

First, the committer is instructed to (non-interactively) commit to its mes-
sage and trapdoor at the very beginning of the protocol. We use these commit-
ments to take advantage of non-uniformity in the reductions between hybrids in
the extractability proof. In particular, hybrids that come before the step where
the simulator goes “under the hood” of the FHE may still need access to the trap-
door and commitment, and this can be given to any reduction via non-uniform
advice consisting of each committer’s first message and corresponding openings.

Next, the CDS described earlier is replaced with a function-hiding secure func-
tion evaluation (SFE) protocol. In order to rule out the malleability attack men-
tioned in Sect. 2.2, where a malicious receiver mauls the AFS-spooky encryption
of the committer’s trapdoor into an SFE encryption of the trapdoor, we do the
following. The first message sent by the receiver to each committer Ci will actu-
ally be a commitment to some key ki of a generic secret-key encryption scheme.
After Ci sends its AFS-spooky encryption ciphertext and compute and compare
obfuscation, the receiver prepares and sends a secret-key encryption of an arbi-
trary message. Then, the receiver’s input to the SFE consists of the opening to
its earlier commitment ki, and the SFE checks if the secret-key encryption sent
by the receiver is actually an encryption of the committer’s trapdoor under secret
key ki. If so, it returns the lock and otherwise it returns ⊥. This setup ensures
that a malicious receiver cannot maul the AFS-spooky encryption of the com-
mitter’s trapdoor, for the following reason. If it could, then a non-uniform reduc-
tion to the semantic security of AFS-spooky encryption may obtain the receiver’s
committed ki as advice and decrypt the receiver’s secret-key encryption to obtain
the trapdoor. Of course, this assumes the receiver actually acted explainably in
sending a valid commitment at the beginning of the protocol, and this is ensured
by the opening check performed under the SFE. We note that this mechanism is
somewhat different than what was presented in [10], as they directly build a zero-
knowledge argument (i.e. without first constructing a stand-alone extractable
commitment) and are able to take advantage of witness indistinguishability to
enforce explainable behavior.

Compliant Distinguishers. Finally, we discuss the issue of committer explain-
ability. Recall from the high-level overview that a simulator is able to extract from
a committer by homomorphically evaluating its code on an AFS-spooky encryp-
tion ciphertext generated by the committer. Thus, if the committer acts arbitrar-
ily maliciously and does not return a well-formed ciphertext, the extraction may
completely fail. Again, [10] address this issue by only analyzing their commitment
within the context of a larger zero-knowledge argument protocol, and having the
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verifier prove to the prover using a witness indistinguishable proof that it per-
formed the commitment explainably.

Thus, without adding zero-knowledge and performing [32]-style analysis to
handle non-explainable and aborting committers, we will only obtain extractabil-
ity against explainable committers. However, since we will be using this protocol
inside larger protocols where participants are not assumed to be acting explain-
ably, restricting the class of committers we consider in our definition is problem-
atic. We instead consider arbitrary committers but restrict the class of distin-
guishers (who are supposed to decide whether they received the view of a com-
mitter interacting in the real protocol or the view of a committer interacting
with the extractor) to those that always output 0 on input a non-explainable
transcript. In other words, any advantage these distinguishers may have must be
coming from their behavior on input explainable views. Even though checking
whether a particular view is explainable or not is not efficient, it turns out that
this definition lends itself quite nicely to composition, since one can use witness
indistinguishability/zero-knowledge to construct provably compliant distinguish-
ers between hybrids for the larger protocols.

For completeness, and because post-quantum multi-committer extractable
commitments may be of independent interest, we also show in Appendix D in the
full version how to add zero-knowledge within the extractable commitment pro-
tocol itself to obtain security against arbitrary committers.

3.1 Definition

Definition 1 (Quantum-Secure Multi-Committer Extractable Com-
mitment). A quantum-secure multi-committer extractable commitment sch-
eme is a pair (C,R) of classical PPT interactive Turing machines. In the com-
mit phase, R interacts with n copies {Ci}i∈[n] of C (who do not interact with each
other) on common input 1λ and 1n, with each Ci additionally taking a private input
mi ∈ {0, 1}∗. This produces a transcript τ , which may be parsed as a set of n tran-
scripts {τi}i∈[n], one for each set of messages exchanged between R and Ci. In the
decommitment phase, each Ci outputs mi along with its random coins ri, and R on
input (1λ, τi,mi, ri) either accepts or rejects. The scheme should satisfy the follow-
ing properties.

– Perfect Correctness: For any λ, n ∈ N, i ∈ [n],

Pr[R(1λ, τi, mi, ri) = 1 | {τi}i∈[n] ← 〈R,C1(m1; r1), . . . ,Cn(mn; rn)〉(1λ, 1n)] = 1.

– Perfect Binding: For any λ ∈ N and string τ ∈ {0, 1}∗, there does not exist
(m, r) and (m′, r′) with m �= m′ such that R(1λ, τ,m, r) = R(1λ, τ,m′, r′) = 1.

– Quantum Computational Hiding: For any non-uniform quantum poly-
nomial-size receiver R∗ = {R∗

λ, ρλ}λ∈N, any polynomial �(·), and any sequence
of sets of strings {m

(0)
λ,1, . . . ,m

(0)
λ,n}λ,n∈N, {m

(1)
λ,1, . . . ,m

(1)
λ,n}λ,n∈N where each

|m(b)
λ,i| = �(λ),
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{VIEWR∗
λ
(〈R∗

λ(ρλ),C1(m
(0)
λ,1), . . . ,Cn(m(0)

λ,n)〉(1λ, 1n))}λ,n∈N

≈c{VIEWR∗
λ
(〈R∗

λ(ρλ),C1(m
(1)
λ,1), . . . ,Cn(m(1)

λ,n)〉(1λ, 1n))}λ,n∈N.

The extractability property will require the following two definitions. First, for any
adversary C∗ = {C∗

λ, ρλ}λ∈N representing a subset I ⊆ [n] of n committers,
any honest party messages {mi}i/∈I , and any security parameter λ ∈ N, define
VIEWmsg

C∗
λ

(〈R,C∗
λ(ρλ), {Ci(mi)}i/∈I〉(1λ, 1n)) to consist of the following.

1. The view of C∗
λ on interaction with the honest receiver R and set {Ci(mi)}i/∈I of

honest parties; this view includes a set of transcripts {τi}i∈I and a state st.
2. A set of strings {mi}i∈I , where each mi is defined relative to τi as follows. If

there exists m′
i, ri such that R(1λ, τi,m

′
i, ri) = 1, then mi = m′

i, otherwise,
mi = ⊥.

Next, we consider distinguishers D = {Dλ, σλ}λ∈N that take as input a sample
({τi}i∈I , st, {mi}i∈I) from the distribution just described. We say that D is com-
pliant if whenever {τi}i∈I is not an explainable transcript with respect to the set I,
D outputs 0 with overwhelming probability (over the randomness of D).

– Multi-Committer Extractability: There exists a quantum expected-
polynomial-time extractor Ext such that for any compliant non-uniform
polynomial-size quantum distinguisher D = {Dλ, σλ}λ∈N, there exists a negli-
gible function μ(·), such that for all adversaries C∗ = {C∗

λ, ρλ}λ∈N representing
a subset of n committers, namely, {Ci}i∈I for some set I ⊆ [n], the following
holds for all polynomial-size sequences of inputs {{mi,λ}i/∈I}λ∈N and λ ∈ N.

∣∣ Pr[Dλ(VIEWmsg
C∗

λ
(〈R,C∗

λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)), σλ) = 1]

− Pr[Dλ(Ext(1λ, 1n, I,C∗
λ, ρλ), σλ) = 1]

∣∣ ≤ μ(λ).

Remark 1. Observe that the above definition of quantum computational hiding
does not consider potentially malicious committers that interact in the protocol
to try to gain information about commitments made by other committers. This
is without loss of generality, since all communication occurs between R and some
Ci. In particular, no messages are sent between any Ci and Cj .

3.2 Construction

Ingredients:All of the following are assumed to be quantum-secure, and the con-
struction is presented in Protocol Fig. 2.

– A non-interactive perfectly-binding commitment Com.
– A secret-key encryption scheme (Enc,Dec).8

8 We use the syntax that for key k, a ciphertext of message m is computed as ct ←
Enc(k,m) and decrypted as m := Dec(k, ct).
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– A compute-and-compare obfuscator Obf.
– A quantum AFS-spooky encryption scheme with distributed setup

(Spooky.Setup,Spooky.KeyGen, Spooky.Enc, Spooky.QEnc, Spooky.Eval,
Spooky.Dec, Spooky.QDec).

– A two-message function-hiding secure function evaluation scheme
(SFE.Gen,SFE.Enc,SFE.Eval,SFE.Dec).

Fig. 2. Constant round post-quantum multi-committer extractable commitment.

Analysis. We state the security of our scheme in the following and we refer the
reader to the full version of this work for the proofs.

Lemma 1. Protocol Fig. 2 is quantum computational hiding.

Lemma 2. Protocol Fig. 2 is multi-committer extractable.
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Abstract. We show a 2n/2+o(n)-time algorithm that, given as input a
basis of a lattice L ⊂ R

n, finds a (non-zero) vector in whose length is

at most ˜O(
√

n) · min{λ1(L), det(L)1/n}, where λ1(L) is the length of a
shortest non-zero lattice vector and det(L) is the lattice determinant.
Minkowski showed that λ1(L) ≤ √

n det(L)1/n and that there exist lat-
tices with λ1(L) ≥ Ω(

√
n) ·det(L)1/n, so that our algorithm finds vectors

that are as short as possible relative to the determinant (up to a poly-
logarithmic factor).

The main technical contribution behind this result is new analysis of
(a simpler variant of) a 2n/2+o(n)-time algorithm from [ADRS15], which
was only previously known to solve less useful problems. To achieve this,
we rely crucially on the “reverse Minkowski theorem” (conjectured by
Dadush [DR16] and proven by [RS17]), which can be thought of as a
partial converse to the fact that λ1(L) ≤ √

n det(L)1/n.
Previously, the fastest known algorithm for finding such a vector was

the 2.802n+o(n)-time algorithm due to [LWXZ11], which actually found
a non-zero lattice vector with length O(1) · λ1(L). Though we do not
show how to find lattice vectors with this length in time 2n/2+o(n), we
do show that our algorithm suffices for the most important application
of such algorithms: basis reduction. In particular, we show a modified
version of Gama and Nguyen’s slide-reduction algorithm [GN08], which
can be combined with the algorithm above to improve the time-length
tradeoff for shortest-vector algorithms in nearly all regimes—including
the regimes relevant to cryptography.

1 Introduction

A lattice L ⊂ R
n is the set of integer linear combinations

L := L(B) = {z1b1 + · · · + znbn : zi ∈ Z}
of linearly independent basis vectors B = (b1, . . . ,bn) ∈ R

n×n. We define the
length of a shortest non-zero vector in the lattice as λ1(L) := minx∈L�=0

‖x‖.
(Throughout this paper, ‖ · ‖ is the Euclidean norm.)
c© International Association for Cryptologic Research 2021
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The Shortest Vector Problem (SVP) is the computational search problem
whose input is a (basis for a) lattice L ⊆ R

n, and the goal is to output a shortest
non-zero vector y ∈ L with ‖y‖ = λ1(L). For δ ≥ 1, the δ-approximate variant
of SVP (δ-SVP) is the problem of finding a non-zero vector y ∈ L of length at
most δ · λ1(L) given a basis of L.

δ-SVP and its many relatives have found innumerable applications over the
past forty years. More recently, many cryptographic constructions have been dis-
covered whose security is based on the (worst-case) hardness of δ-SVP or closely
related lattice problems. See [Pei16] for a survey. Such lattice-based crypto-
graphic constructions are likely to be used in practice on massive scales (e.g.,
as part of the TLS protocol) in the not-too-distant future [NIS18], and it is
therefore crucial that we understand this problem as well as we can.

For most applications, it suffices to solve δ-SVP for superconstant approx-
imation factors. E.g., cryptanalysis typically requires δ = poly(n). However,
our best algorithms for δ-SVP work via (non-trivial) reductions to δ′-SVP for
much smaller δ′ over lattices with smaller rank, typically δ′ = 1 or δ′ = O(1).
E.g., one can reduce nc-SVP with rank n to O(1)-SVP with rank n/(c + 1)
for constant c ≥ 1 [GN08,ALNS20]. Such reductions are called basis reduction
algorithms [LLL82,Sch87,SE94].

Therefore, even if one is only interested in δ-approximate SVP for large
approximation factors, algorithms for O(1)-SVP are still relevant. (We make
little distinction between exact SVP and O(1)-SVP in the introduction. Indeed,
many of the algorithm that we call O(1)-SVP algorithms actually solve exact
SVP.)

1.1 Sieving for Constant-Factor-Approximate SVP

There is a very long line of work (e.g., [Kan83,AKS01,NV08,PS09,MV13,
LWXZ11,WLW15,ADRS15,AS18,AUV19]) on this problem.

The fastest known algorithms for O(1)-SVP run in time 2O(n). With one
exception [MV13], all known algorithms with this running time are variants of
sieving algorithms. These algorithms work by sampling 2O(n) not-too-long lattice
vectors y1, . . . ,yM ∈ L from some nice distribution over the input lattice L,
and performing some kind of sieving procedure to obtain 2O(n) shorter vectors
x1, . . . ,xm ∈ L. They then perform the sieving procedure again on the xk, and
repeat this process many times.

The most natural sieving procedure was originally studied by Ajtai, Kumar,
and Sivakumar [AKS01]. This procedure simply takes xk := yi − yj ∈ L, where
i, j are chosen so that ‖yi − yj‖ ≤ (1 − ε)min� ‖y�‖. In particular, the resulting
sieving algorithm clearly finds progressively shorter lattice vectors at each step.
So, it is trivial to show that this algorithm will eventually find a short lattice
vector. Unfortunately (and maddeningly), it seems very difficult to say nearly
anything else about the distribution of the vectors when this very simple sieving
technique is used, and in particular, while we know that the vectors must be
short, we do not know how to show that they are non-zero. [AKS01] used clever
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tricks to modify the above procedure into one for which they could prove cor-
rectness, and the current state-of-the-art is a 20.802n-time algorithm for γ-SVP
for a sufficiently large constant γ > 1 [LWXZ11,WLW15,AUV19].

Another line of research [NV08,Laa15,MW16,BDGL16,Duc18] focuses on
improving the time complexity of practical SVP algorithms by introducing vari-
ous experimentally verified heuristics. These heuristic algorithms are thus more
directly relevant for cryptanalysis. The fastest known heuristic algorithm for solv-
ing SVP has time complexity (3/2)(n/2)+o(n), illustrating a large gap between
provably correct and heuristic algorithms. (In this regard, this work contributes
to the ultimate goal of closing this gap.)

In this work, we are more interested in the “sieving by averages” technique,
introduced in [ADRS15] to obtain a 2n+o(n)-time algorithm for exact SVP. This
sieving procedure takes xk := (yi+yj)/2 to be the average of two lattice vectors.
Of course, L is not closed under taking averages, so one must choose i, j so that
(yi + yj)/2 ∈ L. This happens if and only if yi,yj lie in the same coset of 2L,
yi = yj mod 2L. Equivalently, the coordinates of yi and yj in the input basis
should have the same parities. So, these algorithms pair vectors according to
their cosets (and ignore all other information about the vectors) and take their
averages xk = (yi + yj)/2.

The analysis of these algorithms centers around the discrete Gaussian distri-
bution DL,s over a lattice, given by

Pr
X∼DL,s

[X = y] ∝ e−π‖y‖2/s2

for a parameter s > 0 and any y ∈ L. When the starting vectors come from
this distribution, we are able to say quite a bit about the distribution of the
vectors at each step. (Intuitively, this is because this algorithm only uses algebraic
properties of the vectors—their cosets—and entirely ignores the geometry.) In
particular, [ADRS15] used a careful rejection sampling procedure to guarantee
that the vectors at each step are distributed exactly as DL,s for some parameter
s > 0. Specifically, in each step the parameter lowers by a factor of

√
2, which is

exactly what one would expect, taking intuition from the continuous Gaussian.
More closely related to this work is [AS18], which showed that this rejection
sampling procedure is actually unnecessary.

In addition to the above, [ADRS15,Ste17] also present a 2n/2+o(n)-time algo-
rithm that samples from DL,s as long as the parameter s > 0 is not too small. In
particular, we need s to be“large enough that DL,s looks like a continuous Gaus-
sian.” This algorithm is similar to the 2n+o(n)-time algorithms in that it starts
with independent discrete Gaussian vectors with some high parameter, and it
gradually lowers the parameter using a rejection sampling procedure together
with a procedure that takes the averages of pairs of vectors that lie in the same
coset modulo some sublattice (with index 2n/2+o(n)). But, it fails for smaller
parameters because the rejection sampling procedure that it uses must throw
out too many vectors in this case. (In [Ste17], a different rejection sampling pro-
cedure is used that never throws away too many vectors, but it is not clear how
to implement it in 2n/2+o(n) time for small parameters s <

√
2η1/2(L).) It was
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left as an open question whether there is a suitable variant of this algorithm that
works for small parameters, which would lead to an algorithm to solve SVP in
2n/2+o(n) time. For example, perhaps we could show that the simple algorithm
that solves SVP without doing any rejection sampling at all (similar to what
was shown for the 2n+o(n)-time algorithm in [AS18]).

1.2 Hermite SVP

We will also be interested in a variant of SVP called Hermite SVP (HSVP).
HSVP is defined in terms of the determinant det(L) := |det(B)| of a lattice L
with basis B. (Though a lattice can have many bases, one can check that |det(B)|
is the same for all such bases, so that this quantity is well-defined.) Minkowski’s
celebrated theorem says that λ1(L) ≤ O(

√
n)·det(L)1/n, and Hermite’s constant

γn = Θ(n) is the maximal value of λ1(L)2/det(L)2/n. (Hermite SVP is of course
named in honor of Hermite and his study of γn. It is often alternatively called
Minkowski SVP.)

For δ ≥ 1, it is then natural to define δ-HSVP as the variant of SVP that asks
for any non-zero lattice vector x ∈ L such that ‖x‖ ≤ δ det(L)1/n. One typically
takes δ ≥ √

γn ≥ Ω(
√

n), in which case the problem is total. In particular, there
is a trivial reduction from δ

√
γn-HSVP to δ-SVP. (There is also a non-trivial

reduction from δ2-SVP to δ-HSVP for δ ≥ √
γn [Lov86].)

δ-HSVP is an important problem in its own right. In particular, the ran-
dom lattices most often used in cryptography typically satisfy λ1(L) ≥ Ω(

√
n) ·

det(L)1/n, so that for these lattices δ-HSVP is equivalent to O(δ/
√

n)-SVP. This
fact is quite useful as the best known basis reduction algorithms [GN08,MW16,
ALNS20] yield solutions to both δS-SVP and δH -HSVP with, e.g.,

δH := γ
n−1

2(k−1)

k ≈ kn/(2k) δS := γ
n−k
k−1
k ≈ kn/k−1 , (1)

when given access to an oracle for (exact) SVP in dimension k ≤ n/2. Notice
that δH is significantly better than the approximation factor

√
γnδS ≈ √

nkn/k−1

that one obtains from the trivial reduction to δS-SVP. (Furthermore, the approx-
imation factor δH in Eq. (1) is achieved even for n/2 < k ≤ n.)

In fact, it is easy to check that we will achieve the same value of δH if the
reduction is instantiated with a

√
γk-HSVP oracle in dimension k, rather than an

SVP oracle. More surprisingly, a careful reading of the proofs in [GN08,ALNS20]
shows that a

√
γk-HSVP oracle is “almost sufficient” to even solve δS-SVP. (We

make this statement a bit more precise below.)

1.3 Our Results

Our main contribution is a simplified version of the 2n/2+o(n)-time algorithm
from [ADRS15] and a novel analysis of the algorithm that gives an approximation
algorithm for both SVP and HSVP.

Theorem 1.1 (Informal, approximation algorithm for (H)SVP). There is a
2n/2+o(n)-time algorithm that solves δ-SVP and δ-HSVP for δ ≤ ˜O(

√
n).
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Notice that this algorithm almost achieves the best possible approximation
factor δ for HSVP since there exists a family of lattices for which λ1(L) ≥
Ω(

√
n det(L)1/n) (i.e., γn ≥ Ω(n)). So, δ is optimal for HSVP up to a polyloga-

rithmic factor.
As far as we know, this algorithm might actually solve exact or near-exact

SVP, but we do not know how to prove this. However, by adapting the basis
reduction algorithms of [GN08,ALNS20], we show that Theorem 1.1 is nearly
as good (when combined with known results) as a 2k/2-time algorithm for exact
SVP in k dimensions, in the sense that we can already nearly match Eq. (1) in
time 2k/2+o(k) with this.

In slightly more detail, basis reduction procedures break the input basis vec-
tors b1, . . . ,bn into blocks bi+1, . . . ,bi+k of length k. They repeatedly call their
oracle on (projections of) the lattices generated by these blocks and use the result
to update the basis vectors. We observe that the procedures in [GN08,ALNS20]
only need to use an SVP oracle on the last block bn−k+1, . . . ,bn. For all other
blocks, an HSVP oracle suffices. Since we now have a faster algorithm for HSVP
than we do for SVP, we make this last block a bit smaller than the others, so
that we can solve (near-exact) SVP on the last block in time 2k/2+o(k).

When we apply the 20.802n-time algorithm for O(1)-SVP from [LWXZ11,
WLW15,AUV19] to instantiate this idea, it yields the following result, which
gives the fastest known algorithm for δ-SVP for all δ � nc.

Theorem 1.2 (Informal). There is a (2k/2+o(k) · poly(n))-time algorithm that
solves δ∗

H-HSVP with
δ∗
H ≈ kn/(2k) ,

for k ≤ .99n and
δ∗
S ≈ k(n/k)−0.62 ,

for k ≤ n/1.63.

Notice that Theorem 1.2 matches Eq. (1) with block size k exactly for δH ,
and up to a factor of k0.37 for δS . This small loss in approximation factor comes
from the fact that our last block is slightly smaller than the other blocks.

Together, Theorems 1.1 and 1.2 give the fastest proven running times for
nc-HSVP for all c > 1/2 and for nc-SVP for all c > 1, as well as c ∈ (1/2, 0.802).
Table 1 summarizes the current state of the art.

1.4 Our Techniques

Summing vectors over a tower of lattices. Like the 2n/2+o(n)-time algorithm
in [ADRS15], our algorithm for ˜O(

√
n)-(H)SVP constructs a tower of lattices L0 ⊃

L1 ⊃ · · · ⊃ L� = L such that for every i ≥ 1, 2Li−1 ⊂ Li. The idea of using a
tower of lattices was independently developed in [BGJ14] (see also [GINX16]) for
heuristic algorithms. The index of Li over Li−1 is 2α for an integer α = n/2+o(n),
and 
 = o(n). For the purpose of illustrating our ideas, we make a simplifying
assumption here that 
α is an integer multiple of n, and hence L0 = L/2α�/n is a
scalar multiple of L.
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Table 1. Proven running times for solving (H)SVP. We mark results that do not use
basis reduction with [*]. We omit 2o(n) factors in the running time, and except in the
first two rows, polylogarithmic factors in the approximation factor.

Problem Approximation factor Previous Best This work

SVP Exact 2n [*] [ADRS15] —

O(1) 20.802n [*] [WLW15] —

nc for c ∈ (0.5, 0.802] 2
0.401n

c [ALNS20] 2
n
2 [*]

nc for c ∈ (0.802, 1] 2
0.401n

c [ALNS20] —

nc for c > 1 2
0.802n

c+1 [ALNS20] 2
n

2c+1.24

HSVP
√

n 20.802n [*] [WLW15] 2
n
2 [*]

nc for c ≥ 1 2
0.401n

c [ALNS20] 2
n
4c

And, as in [ADRS15], we start by sampling X1, . . . ,XN ∈ L0 for N = 2α+o(n)

from DL0,s. This can be done efficiently using known techniques, as long as s
is large relative to, e.g., the length of the shortest basis of L0 [GPV08,BLP13].
Since L0 = L/2α�/n, the parameter s can still be significantly smaller than, e.g.,
λ1(L). In particular, we can essentially take s ≤ poly(n)λ1(L)/2α�/n.

The algorithm then takes disjoint pairs of vectors that are in the same coset
of L0/L1, and adds the pairs together. Since 2L0 ⊂ L1, for any such pair Xi,Xi,
Yk = Xi + Xj is in L1. (This adding is analogous to the averaging procedure
from [ADRS15,AS18] described above. In that case, L1 = 2L0, so that it is
natural to divide vectors in L by two, while here adding seems more natural.)
We thus obtain approximately N/2 vectors in L1 (up to the loss due to the
vectors that could not be paired), and repeat this procedure many times, until
finally we obtain vectors in L� = L, each the sum of 2� of the original Xi.

To prove correctness, we need to prove that with high probability some of
these vectors will be both short and non-zero. It is actually relatively easy to
show that the vectors are short—at least in expectation. To prove this, we first
use the fact that the expected squared norm of the Xi is bounded by ns2 (which
is what one would expect from the continuous Gaussian distribution). And, the
original Xi are distributed symmetrically, i.e., Xi is as likely to equal −x as it
is to equal x).

Furthermore, our pairing procedure is symmetric, i.e., if we were to replace Xi

with −Xi, the pairing procedure would behave identically. (This is true precisely
because 2L0 ⊂ L1—we are using the fact that x = −x mod L1 for any x ∈ L0.)
This implies that

E[〈Xi,Xj〉 | Ei,j ] = E[〈Xi,−Xj〉 | Ei,j ] = 0 ,

where Ei,j is the event that Xi is paired with Xj . Therefore, E[‖Xi+Xj‖2 | Ei,j ]
is equal to

E[‖Xi‖2 | Ei,j ] + E[‖Xj‖2 | Ei,j ] + 2E[〈Xi,Xj〉 | Ei,j ] ≈ 2E[‖Xi‖2] .
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The same argument works at every step of the algorithm. So, (if we ignore the
subtle distinction between E[‖Xi‖2 | Ei,j ] and E[‖Xi‖2]), we see that our final
vectors have expected squared norm

2�
E[‖Xi‖2] ≤ 2�ns2 ≤ poly(n)2�(1−2αn) · λ1(L)2 . (2)

By taking, e.g., α = n/2 + n/ log n < n + o(n) and 
 = log2 n, we see that we
can make this expectation small relative to λ1(L).

The difficulty, then, is “only” to show that the distribution of the final vectors
is not heavily concentrated on zero. Of course, we can’t hope for this to be true
if, e.g., the expectation in Eq. (2) is much smaller than λ1(L)2. And, as we will
discuss below, if we choose α and 
 so that this expectation is sufficiently large,
then techniques from prior work can show that the probability of zero is low.
Our challenge is therefore to bound the probability of zero for the largest choices
of α and 
 (and therefore the lowest expectation in Eq. (2)) that we can manage.

Gaussians over unknown sublattices. Peikert and Micciancio (building on
prior work) showed what they called a “convolution theorem” for discrete Gaus-
sians. Their theorem said that the sum of discrete Gaussian vectors is statistically
close to a discrete Gaussian (with parameter increased by a factor of

√
2), pro-

vided that the parameter s is a bit larger than the smoothing parameter η(L)
of the lattice L [MP13]. This (extremely important) parameter η(L), was intro-
duced by Micciancio and Regev [MR07], and has a rather technical (and elegant)
definition. (See Sect. 2.4.) Intuitively, η(L) is such that for any s > η(L), DL,s

“looks like a continuous Gaussian distribution.” E.g., for s > η(L), the moments
of the discrete Gaussian distribution are quite close to the moments of the con-
tinuous Gaussian distribution (with the same parameter).

In fact, [MP13] showed a convolution theorem for lattice cosets, not just lat-
tices, i.e., the sum of a vector sampled from coset DL+t1,s and a vector sampled
from DL+t2,s yields a vector with a distribution that is statistically close to
DL+t1+t2,

√
2s. Since our algorithm sums vectors sampled from a discrete Gaus-

sian over L0, conditioned on their cosets modulo L1, it is effectively summing
discrete Gaussians over cosets of L1. So, as long as we stay above the smoothing
parameter of L1 ⊃ L, our vectors will be statistically close to discrete Gaussians,
allowing us to easily bound the probability of zero.

However, [ADRS15] already showed how to use a variant of this algorithm
to obtain samples from exactly the discrete Gaussian above smoothing. And,
more generally, there is a long line of work that uses samples from the discrete
Gaussian above smoothing to find “short vectors” from a lattice, but the length
of these short vectors is always proportional to η(L). The problem is that in
general η(L) can be arbitrarily larger than λ1(L) and det(L)1/n. (To see this,
consider the two-dimensional lattice generated by (T, 0), (0, 1/T ) for large T ,
which has η(L) ≈ T , λ1(L) = 1/T and det(L) = 1.) So, this seems useless for
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solving (H)SVP, instead yielding a solution to another variant of SVP called
SIVP.1

Our solution is essentially to apply these ideas from [MP13] to an unknown
sublattice L′ ⊆ L. (Here, one should imagine a sublattice generated by fewer
than n vectors. Jumping ahead a bit, the reader might consider the example
L′ = Zv = {0,±v,±2v, . . . , } the rank-one sublattice generated by v, shortest
non-zero vector in the lattice.) Indeed, the discrete Gaussian over L, DL,s, can
be viewed as a mixture of discrete Gaussians over L′, DL,s = DL′+C,s, where
C ∈ L/L′ is some random variable over cosets of L′. (Put another way, one
could obtain a sample from DL,s by first sampling a coset C ∈ L/L′ from some
appropriately chosen distribution and then sampling from DL′+C,s.)

The basic observation behind our analysis is that we can now apply (a suitable
variant of) [MP13]’s convolution theorem in order to see that the sum of two
mixtures of Gaussians over L′, X1,X2 ∼ DL′+C,s, yields a new mixture of
Gaussians DL′+C′,

√
2s for some C′, provided that s is sufficiently large relative

to η(L′).
Ignoring many technical details, this shows that our algorithm can be used

to output a distribution of the form DL′+C,s for some random variable C ∈
L/L′ provided that s � η(L′). Crucially, we only need to consider L′ in the
analysis; the algorithm does not need to know what L′ is for this to work.
Furthermore, we do not care at all about the distribution of C! We already
know that our algorithm samples from a distribution that is short in expectation
(by the argument above), so that the only thing we need from the distribution
DL′+C,s is that it is not zero too often. Indeed, when C is not the zero coset
(i.e., C /∈ L′), then DL′+C,s is never zero, and when C is zero, then we get a
sample from DL′,s for s � η(L), in which case well-known techniques imply that
we are unlikely to get zero.

Smooth sublattices. So, in order to prove that our algorithm finds short
vectors, it remains to show that there exists some sublattice L′ ⊆ L with low
smoothing parameter—a “smooth sublattice.” In more detail, our algorithm will
find a non-zero vector with length less than

√
n · η(L′) for any sublattice L′.

Indeed, as one might guess, taking L′ = Zv = {0,±v,±2v, . . . , } to be the lattice
generated by a shortest non-zero vector v, we have η(L′) = polylog(n)‖v‖ =
polylog(n)λ1(L) (where the polylogarithmic factor arises because of“how smooth
we need L′ to be”). This immediately yields our ˜O(

√
n)-SVP algorithm.

To solve ˜O(
√

n)-HSVP, we must argue that every lattice has a sublattice
L′ ⊆ L with η(L′) ≤ polylog(n) · det(L)1/n. In fact, for very different reasons,
Dadush conjectured exactly this statement (phrased slightly differently), calling

1 It is not known how to use an SIVP oracle for basis reduction, which makes it
significantly less useful than SVP. [MR07,MP13] and other works used these ideas
to reduce SIVP to the problem of breaking a certain cryptosystem, in order to argue
that the cryptosystem is secure. They were therefore primarily interested in SIVP
as an example of a hard lattice problem, rather than as a problem that one might
actually wish to solve.
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it a “reverse Minkowski conjecture” [DR16]. (The reason for this name might
not be clear in this context, but one can show that this is a partial converse
to Minkowski’s theorem.) Later, Regev and Stephens-Davidowitz proved the
conjecture [RS17]. Our HSVP result then follows from this rather heavy hammer.

1.5 Open Questions and Directions for Future Work

We leave one obvious open question: Does our algorithm (or some variant) solve
γ-SVP for a better approximation factor? It is clear that our current analysis
cannot hope to do better than δ ≈ √

n, but we see no fundamental reason why
the algorithm cannot achieve, say, δ = polylog(n) or even δ = 1! (Indeed, we
have been trying to prove something like this for roughly five years.)

We think that even a negative answer to this question would also be interest-
ing. In particular, it is not currently clear whether our algorithm is “fundamen-
tally an HSVP algorithm.” For example, if one could show that our algorithm
fails to output vectors of length polylog(n) · λ1(L) for some family of input lat-
tices L, then this would be rather surprising. Perhaps such a result could suggest
a true algorithmic separation between the two problems.

2 Preliminaries

We write log for the base-two logarithm. We use the notation a = 1 ± δ and
a = e±δ to denote the statements 1 − δ ≤ a ≤ 1 + δ and e−δ ≤ a ≤ eδ,
respectively.

Definition 2.1. We say that a distribution ̂D is δ-similar to another distribu-
tion D if for all x in the support of D, we have

Pr
X∼ ̂D

[X = x] = e±δ · Pr
X∼D

[X = x] .

2.1 Probability

The following inequality gives a concentration result for the values of (sub-
)martingales that have bounded differences.

Lemma 2.2 ([AS04] Azuma’s inequality, Chapter 7). Let X0,X1, . . . be a set
of random variables that form a discrete-time sub-martingale, i.e., for all n ≥ 0,

E[Xn+1 | X1, . . . , Xn] ≥ Xn .

If for all n ≥ 0, |Xn − Xn−1| ≤ c, then for all integers N and positive real t,

Pr[XN − X0 ≤ −t] ≤ exp
( −t2

2Nc2

)

.

We will need the following corollary of the above inequality.
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Corollary 2.3. Let α ∈ (0, 1), and let Y1, Y2, Y3, . . . be random variables in [0, 1]
such that for all n ≥ 0

E[Yn+1|Y1, . . . , Yn] ≥ α .

Then, for all positive integers N and positive real t,

Pr[
N

∑

i=1

Yi ≤ Nα − t] ≤ exp
(−t2

2N

)

.

Proof. Let X0 = 0, and for all i ≥ 1,

Xi := Xi−1 + Yi − α =
i

∑

j=1

Yi − i · α .

The statement then follows immediately from Lemma 2.2. ��

2.2 Lattices

A lattice L ⊂ R
n is the set of integer linear combinations

L := L(B) = {z1b1 + · · · + zkbk : zi ∈ Z}

of linearly independent basis vectors B = (b1, . . . ,bk) ∈ R
n×k. We call k the

rank of the lattice. Given a lattice L, the basis is not unique. For any lattice
L, we use rank(L) to denote its rank. We use λ1(L) to denote the length of the
shortest non-zero vector in L, and more generally, for 1 ≤ i ≤ k,

λi(L) := min{r : dim span({y ∈ L : ‖y‖ ≤ r}) ≥ i} .

For any lattice L ⊂ R
n, its dual lattice L∗ is defined to be the set of vectors

in the span of L that have integer inner products with all vectors in L. More
formally:

L∗ = {x ∈ span(L) : ∀y ∈ L, 〈x,y〉 ∈ Z} .

We often assume without loss of generality that the lattice is full rank, i.e.,
that n = k, by identifying span(L) with R

k. However, we do often work with
sublattices L′ ⊆ L with rank(L′) < rank(L).

For any sublattice L′ ⊆ L, L/L′ denotes the set of cosets which are transla-
tions of L′ by vectors in L. In particular, any coset can be denoted as L′ + c for
c ∈ L. When there is no ambiguity, we drop the L′ and use c to denote a coset.

2.3 The Discrete Gaussian Distribution

For any parameter s > 0, we define Gaussian mass function ρs : Rn → R to be:

ρs(x) = exp
(

− π‖x‖2
s2

)

,
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and for any discrete set A ⊂ R
n, its Gaussian mass is defined as ρs(A) =

∑

x∈A ρs(x).
For a lattice L ⊂ R

n, shift t ∈ R
n, and parameter s > 0, we have the

following convenient formula for the Gaussian mass of the lattice coset L + t,
which follows from the Poisson Summation Formula

ρs(L + t) =
sn

det(L)
·

∑

w∈L∗
ρ1/s(w) cos(2π〈w, t〉) . (3)

In particular, for the special case t = 0, we have ρs(L) = snρ1/s(L∗)/det(L).

Definition 2.4. For a lattice L ⊂ R
n, u ∈ R

n, the discrete Gaussian distri-
bution DL+u,s over L + u with parameter s > 0 is defined as follows. For any
x ∈ L + u,

Pr
X∼DL+u,s

[X = x] =
ρs(x)

ρs(L + u)
.

We will need the following result about the discrete Gaussian distribution.

Lemma 2.5 ([DRS14] Lemma 2.13). For any lattice L ⊂ R
n, s > 0, u ⊂ R

n,
and t > 1√

2π
,

Pr
X∼DL+u,s

(‖X‖ > ts
√

n) <
ρs(L)

ρs(L + u)

(√
2πet2 exp(−πt2)

)n

.

2.4 The Smoothing Parameter

Definition 2.6. For a lattice L ⊂ R
n and ε > 0, the smoothing parameter ηε(L)

is defined as the unique value that satisfies ρ1/ηε(L)(L∗\{0}) = ε.

We will often use the basic fact that ηε(αL) = αηε(L) for any α > 0 and
ηε(L′) ≥ ηε(L) for any full-rank sublattice L′ ⊆ L.

Claim 2.7 ([MR07] Lemma 3.3). For any ε ∈ (0, 1/2), we have

ηε(Z) ≤
√

log(1/ε) .

We will need the following simple results, which follows immediately from
Eq. (3).

Lemma 2.8 ([Reg09] Claim 3.8). For any lattice L, s ≥ ηε(L), and any vectors
c1, c2, we have that

1 − ε

1 + ε
≤ ρs(L + c1)

ρs(L + c2)
≤ 1 + ε

1 − ε
.

Thus, for ε < 1/3,

e−3ε ≤ ρs(L + c1)
ρs(L + c2)

≤ e3ε .

We prove the following statement.
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Theorem 2.9. For any lattice L ⊂ R
n with rank k ≥ 20,

η1/2(L) ≥ λk(L)/
√

k .

Proof. If L is not a full-rank lattice, then we can project to a subspace given
by the span of L. So, without loss of generality, we assume that L is a full-rank
lattice, i.e., k = n.

Suppose λn(L) >
√

nη1/2(L). Then there exists a vector u ∈ R
n such that

dist(u,L) > 1
2

√
nη1/2(L). Then, using Lemma 2.5 with t = 1/2, s = η1/2(L), we

have

1 = Pr
X∼DL+u,η1/2(L)

[‖X‖ > st
√

n
]

<
ρs(L)

ρs(L + u)

(√
2πet2 exp(−πt2)

)n

≤ 1 + 1/2
1 − 1/2

(
√

πe/2 · e−π/4)n using Lemma 2.8

≤ 3 · (0.943)n

< 1 since k = n ≥ 20 ,

which is a contradiction. ��
Claim 2.10. For any lattice L ⊂ R

n and any parameters s ≥ s′ ≥ η1/2(L),

ρs(L)
ρs′(L)

≥ 2s

3s′ .

Proof. By the Poisson Summation Formula (Eq. (3)), we have

ρs(L) = sn · ρ1/s(L∗)
det(L)

≥ sn/det(L) ,

and similarly,

ρs′(L) = (s′)n · ρ1/s′(L∗)
det(L)

≤ 3(s′)n/(2 det(L)) ,

since ρ1/s′(L∗) ≤ 3/2 for s′ ≥ η1/2(L). Combining the two inequalities gives
ρs(L) ≥ 2(s/s′)n/3 ≥ 2(s/s′)/3, as needed. ��
Claim 2.11. For any lattice L ⊂ R

n and any s > 0,

E
X∼DL,s

[‖X‖2] ≤ ns2

2π
.

Lemma 2.12. For s ≥ ηε(L), and any real factor k ≥ 1, ks ≥ ηεk2 (L).



A 2n/2-Time Algorithm for
√

n-SVP and
√

n-Hermite SVP 479

Proof.
∑

w∈L∗\{0}
ρ1/(ks)(w) =

∑

w∈L∗\{0}
e−π‖w‖k2s2

=
∑

w∈L∗\{0}
ρ1/s(w)k2

≤
(

∑

w∈L∗\{0}
ρ1/s(w)

)k2

≤ εk2
.

��
Corollary 2.13. For any lattice L ⊂ R

n and ε ∈ (0, 1/2), ηε(L) ≤ √

log(1/ε) ·
η1/2(L).

Proof. Let k =
√

log(1/ε) and thus (12 )k2
= ε. By Lemma 2.12, kη1/2(L) ≥

ηε(L). ��
We will need the following useful lemma concerning the convolution of two

discrete Gaussian distributions. See [GMPW20] for a very general result of this
form (and a list of similar results). Our lemma differs from those in [GMPW20]
and elsewhere in that we are interested in a stronger notion of statistical close-
ness: point-wise multiplicative distance, rather than statistical distance. One can
check that this stronger variant follows from the proofs in [GMPW20], but we
give a separate proof for completeness.

Lemma 2.14. For any lattice L ⊂ R
n, ε ∈ (0, 1/3), parameter s ≥ √

2ηε(L),
and shifts t1, t2 ∈ R

n, let Xi ∼ DL+ti,s be independent random variables. Then
the distribution of X1 + X2 is 6ε-similar to DL+t1+t2,

√
2s.

Proof. Let y ∈ L + t1 + t2. We have

Pr[X1 +X2 = y] =
1

ρs(L + t1)ρs(L + t2)

∑

x∈L+t1

exp(−π(‖x‖2 + ‖y − x‖2)/s2)

=
1

ρs(L + t1)ρs(L + t2)

∑

x∈L+t1

exp(−π(‖y‖2/2 + ‖2x − y‖2/2)/s2)

=
ρ√

2s(y)

ρs(L + t1)ρs(L + t2)
ρs/

√
2(L + t1 − y/2)

= e±3ερ√
2s(y) ·

ρs/
√

2(L)

ρs(L + t1)ρs(L + t2)
,

where the last step follows from Lemma 2.8. By applying this for all y′ ∈ L +
t1 + t2, we see that

Pr[X1 + X2 = y] = e±3ε · ρ√
2s(y)

∑

y′∈L+t1+t2
χy′ρ√

2s(y′)
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for some χy′ = e±3ε. Therefore,

Pr[X1 + X2 = y] = e±6ε · ρ√
2s(y)

ρ√
2s(L + t1 + t2)

,

as needed. ��

2.5 Lattice Problems

In this paper, we study the algorithms for the following lattice problems.

Definition 2.15 (r-HSVP). For an approximation factor r := r(n) ≥ 1, the r-
Hermite Approximate Shortest Vector Problem (r-HSVP) is defined as follows:
Given a basis B for a lattice L ⊂ R

n, the goal is to output a vector x ∈ L\{0}
with ‖x‖ ≤ r · det(L)1/n.

Definition 2.16 (r-SVP). For an approximation factor r := r(n) ≥ 1, the r-
Shortest Vector Problem (r-SVP) is defined as follows: Given a basis B for a
lattice L ⊂ R

n, the goal is to output a vector x ∈ L\{0} with ‖x‖ ≤ r · λ1(L).

It will be convenient to define a generalized version of SVP, of which HSVP
and SVP are special cases.

Definition 2.17 (η-GSVP). For a function η mapping lattices to positive real
numbers, the η-Generalized Shortest Vector Problem η-GSVP is defined as fol-
lows: Given a basis B for a lattice L ⊂ R

n and a length bound d ≥ η(L), the
goal is to output a vector x ∈ L\{0} with ‖x‖ ≤ d.

To recover r-SVP or r′-HSVP, we can take η(L) = rλ1(L) or η(L) =
r′ det(L)1/n respectively. Below, we will set η to be a new parameter, which
in particular will satisfy η(L) ≤ ˜O(

√
n) · min{λ1(L),det(L)1/n}.

2.6 Gram-Schmidt Orthogonalization

For any given basis B = (b1, . . . ,bn) ∈ R
m×n, we define the sequence of pro-

jections πi := π{b1,...,bi−1}⊥ where πW ⊥ refers to the orthogonal projection onto
the subspace orthogonal to W . As in [GN08,ALNS20], we use B[i,j] to denote
the projected block (πi(bi), πi(bi+1), . . . , πi(bj)).

The Gram-Schmidt orthogonalization (GSO) B∗ := (b∗
1, . . . ,b

∗
n) of a basis

B is as follows: for all i ∈ [1, n],b∗
i := πi(bi) = bi − ∑

j<i μi,jb∗
j , where μi,j =

〈bi,b∗
j 〉/‖b∗

j‖2.
Theorem 2.18 ([GPV08] Lemma 3.1). For any lattice L ⊂ R

n with basis
B := (b1, . . . ,bn) and any ε ∈ (0, 1/2),

ηε(L) ≤
√

log(n/ε) · max
i

‖b∗
i ‖ .
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For γ ≥ 1, a basis is γ-HKZ-reduced if for all i ∈ {1, . . . , n}, ‖b∗
i ‖ ≤ γ ·

λ1(πi(L)).
We say that a basis B is size-reduced if it satisfies the following condition:

for all i �= j, |μi,j | ≤ 1
2 . A size-reduced basis B satisfies that ‖B‖ ≤ √

n‖B∗‖,
where ‖B‖ is the length of the longest basis vector in B. It is known that we
can efficiently transform any basis into a size-reduced basis while maintaining
the lattice generated by the basis L(B) as well as the GSO B∗. We call such
operation size reduction.

2.7 Some Lattice Algorithms

Theorem 2.19 ([LLL82]). Given a basis B ∈ Q
n×n, there is an algorithm that

computes a vector x ∈ L(B) of length at most 2n/2 · λ1(L(B)) in polynomial
time.

We will prove a strictly stronger result than the theorem below in the sequel,
but this weaker result will still prove useful.

Theorem 2.20 ([ADRS15,GN08]). There is a 2r+o(r) ·poly(n)-time algorithm
that takes as input a (basis for a) lattice L ⊂ R

n and 2 ≤ r ≤ n and outputs a
γ-HKZ-reduced basis for L, where γ := rn/r.

Theorem 2.21 ([BLP13]). There is a probabilistic polynomial-time algorithm
that takes as input a basis B for an n-dimensional lattice L ⊂ R

n, a parameter
s ≥ ‖B∗‖√

10 log n and outputs a vector that is distributed as DL,s, where ‖B∗‖
is the length of the longest vector in the Gram-Schmidt orthogonalization of B.

2.8 Lattice Basis Reduction

LLL reduction. A basis B = (b1, . . . ,bn) is ε-LLL-reduced [LLL82] for ε ∈ [0, 1]
if it is a size-reduced basis and for 1 ≤ i < n, the projected block B[i,i+1] satisfies
Lovász’s condition: ‖b∗

i ‖2 ≤ (1 + ε)‖μi,i−1b∗
i−1 + b∗

i ‖2. For ε ≥ 1/poly(n), an
ε-LLL-reduced basis for any given lattice can be computed efficiently.

SVP reduction and its extensions. Let B = (b1, . . . ,bn) be a basis of a lattice
L and δ ≥ 1 be approximation factors.

We say that B is δ-SVP-reduced if ‖b1‖ ≤ δ ·λ1(L). Similarly, we say that B
is δ-HSVP-reduced if ‖b1‖ ≤ δ · vol(L)1/n.

B is δ-DHSVP-reduced [GN08,ALNS20] (where D stands for dual) if the
reversed dual basis B−s is δ-HSVP-reduced and it implies that

vol(L)1/n ≤ δ · ‖b∗
n‖ .

Given a δ-(H)SVP oracle on lattices with rank at most n, we can efficiently
compute a δ-(H)SVP-reduced basis or a δ-D(H)SVP-reduced basis for any rank
n lattice L ⊆ Z

m. Furthermore, this also applies for a projected block of basis.
More specifically, with access to a δ-(H)SVP oracle for lattices with rank at most
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k, given any basis B = (b1, . . . ,bn) ∈ Z
m×n of L and an index i ∈ [1, n− k +1],

we can efficiently compute a size-reduced basis

C = (b1, . . . ,bi−1, ci, . . . , ci+k−1,bi+k, . . . ,bn)

such that C is a basis for L and the projected block C[i,i+k−1] is δ-(H)SVP-
reduced or δ-D(H)SVP reduced. Moreover, we note the following:

– If C[i,i+k−1] is δ-(H)SVP-reduced, the procedures in [GN08,MW16] equipped
with δ-(H)SVP-oracle ensure that ‖C∗‖ ≤ ‖B∗‖;

– If C[i,i+k−1] is δ-D(H)SVP-reduced, the inherent LLL reduction implies
‖C∗‖ ≤ 2k‖B∗‖. Indeed, the GSO of C[i,i+k−1] satisfies

‖(C[i,i+k−1])∗‖ ≤ 2k/2λk(L(C[i,i+k−1]))

(by [LLL82, p. 518, Line 27]) and λk(L(C[i,i+k−1])) ≤ √
k‖B∗‖. Here, λk(·)

denotes the k-th minimum.

Therefore, with size reduction, performing poly(n, log ‖B‖) many such oper-
ations will increase ‖B∗‖ and hence ‖B‖ by at most a factor of 2poly(n,log ‖B‖). If
the number of operations is bounded by poly(n, log ‖B‖), all intermediate steps
and the total running time (excluding oracle queries) will be polynomial in the
initial input size; Details can be found in e.g., [GN08,LN14]. Hence, we will focus
on bounding the number of calls to such block reduction subprocedures when
we analyze the running time of basis reduction algorithms.

Twin reduction. The following notion of twin reduction and the subsequent fact
comes from [GN08,ALNS20].

A basis B = (b1, . . . ,bd+1) is δ-twin-reduced if B[1,d] is δ-HSVP-reduced and
B[2,d+1] is δ-DHSVP-reduced.

Fact 2.22. If B := (b1, . . . ,bd+1) ∈ R
m×(d+1) is δ-twin-reduced, then

‖b1‖ ≤ δ2d/(d−1)‖b∗
d+1‖ . (4)

2.9 The DBKZ Algorithm

We augment Micciancio and Walter’s elegant DBKZ algorithm [MW16] with
a δH -HSVP-oracle instead of an SVP-oracle since the SVP-oracle is used as a√

γk-HSVP oracle everywhere in their algorithm. See [ALNS20] for a high-level
sketch of the proof.

Theorem 2.23. For integers n > k ≥ 2, an approximation factor 1 ≤ δH ≤ 2k,
an input basis B0 ∈ Z

m×n for a lattice L ⊆ Z
m, and N := �(2n2/(k − 1)2) ·

log(n log(5‖B0‖)/ε)� for some ε ∈ [2−poly(n), 1], Algorithm 1 outputs a basis B
of L in polynomial time (excluding oracle queries) such that

‖b1‖ ≤ (1 + ε) · (δH)
n−1
(k−1) vol(L)1/n ,

by making N · (2n − 2k + 1) + 1 calls to the δH-HSVP oracle for lattices with
rank k.
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Algorithm 1. The Micciancio-Walter DBKZ algorithm [MW16, Algorithm 1]
Input: A block size k ≥ 2, number of tours N , a basis B = (b1, · · · ,bn) ∈ Z

m×n, and
access to a δH -HSVP oracle for lattices with rank k.

Output: A new basis of L(B).
1: for � = 1 to N do
2: for i = 1 to n − k do
3: δH -HSVP-reduce B[i,i+k−1].
4: end for
5: for j = n − k + 1 to 1 do
6: δH -DHSVP-reduce B[j,j+k−1]

7: end for
8: end for
9: δH -HSVP-reduce B[1,k].

10: return B.

3 Smooth Sublattices and ηε(L)

The analysis of our algorithm relies on the existence of a smooth sublattice L′ ⊆ L
of our input lattice L ⊂ R

n, i.e., a sublattice L′ such that ηε(L′) is small (relative
to, say, λ1(L) or det(L)1/n). To that end, for ε > 0 and a lattice L ⊂ R

n, we
define

ηε(L) := min
L′⊆L

ηε(L′) ,

where the minimum is taken over all sublattices L′ ⊆ L. (It is not hard to see
that the minimum is in fact achieved. Notice that any minimizer L′ must be a
primitive sublattice, i.e., L′ = L ∩ span(L′).)

We will now prove that ηε(L) is bounded both in terms of λ1(L) and det(L).

Lemma 3.1. For any lattice L ⊂ R
n and any ε ∈ (0, 1/2),

λ1(L)/
√

n ≤ ηε(L) ≤
√

log(1/ε) · min{λ1(L), 10(log n + 2) det(L)1/n} .

The bounds in terms of λ1(L) are more-or-less trivial. The bound ηε(L) �
√

log(1/ε) log n det(L)1/n follows from the main result in [RS17] (originally con-
jectured by Dadush [DR16]), which is called a “reverse Minkowski theorem” and
which we present below. (In fact, Lemma 3.1 is essentially equivalent to the main
result in [RS17].)

Definition 3.2. A lattice L ⊂ R
n is a stable lattice if det(L) = 1 and det(L′) ≥

1 for all lattices L′ ⊆ L.
Theorem 3.3 ([RS17]). For any stable lattice L ⊂ R

n, η1/2(L) ≤ 10(log n+2).

Proof of Lemma 3.1. The lower bound on ηε(L) follows immediately from
Theorem 2.9 together with the fact that λ1(L) ≤ λ1(L′) ≤ λn(L′) for any
sublattice L′ ⊆ L. The bound ηε(L) ≤ √

log(1/ε) · λ1(L) is immediate from
Claim 2.7 applied to the one-dimensional lattice Zv generated by v ∈ L with
‖v‖ = λ1(L).
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So, we only need to prove that η1/2(L) ≤ 10(log n + 2) det(L)1/n. The result
for all ε ∈ (0, 1/2) then follows from Corollary 2.13.

We prove this by induction on n. The result is trivial for n = 1. (Indeed,
for n = 1 we have det(L)1/n = λ1(L).) For n > 1, we first assume without
loss of generality that det(L) = 1. If L ⊂ R

n is stable, then the result follows
immediately from Theorem 3.3. Otherwise, there exists a sublattice L′ ⊂ L such
that det(L′) < 1. Notice that k := rank(L′) < n. Therefore, by the induction
hypothesis, η1/2(L′) ≤ 10(log k + 2) det(L′)1/k < 10(log n + 2). The result then
follows from the fact that ηε(L) ≤ ηε(L′) for any sublattice L′ ⊆ L. ��

3.1 Sampling with Parameter poly(n) · ηε(L)

Lemma 3.4. For any lattice L ⊂ R
n, γ ≥ 1, ε ∈ (0, 1/2), γ-HKZ-reduced basis

B = (b1, . . . ,bn) of L, ε ∈ (0, 1/2), and index i ∈ {2, . . . , n} such that

‖b∗
i ‖ > γ

√
n · ηε(L) ,

we have ηε(L(b1, . . . ,bi−1)) = ηε(L) .

Proof. Suppose that L′ ⊆ L satisfies ηε(L′) = ηε(L) < ‖b∗
i ‖/(γ

√
n) with k :=

rank(L′). We wish to show that L′ ⊆ L(b1, . . . ,bi−1), or equivalently, that
πi(L′) = {0}. Indeed, by Theorem 2.9, λk(L′) ≤ √

k · ηε(L′) ≤ √
n · ηε(L). In

particular, there exist v1, . . . ,vk ∈ L′ with span(v1, . . . ,vk) = span(L′) and

‖πi(vj)‖ ≤ ‖vj‖ ≤ λk(L′) ≤ √
n · ηε(L) < ‖b∗

i ‖/γ

for all j ∈ {1, . . . , k}. Therefore, if πi(vj) �= 0. Then, πi(vj) ∈ πi(L) is a non-
zero vector with norm strictly less than ‖b∗

i ‖/γ, which implies that λ1(πi(L)) <
‖b∗

i ‖/γ, contradicting the assumption that B is a γ-HKZ basis. Therefore,
πi(vj) = 0 for all j, which implies that πi(L′) = {0}, i.e., L′ ⊆ L(b1, . . . ,bi−1),
as needed. ��
Proposition 3.5. There is a (2r+o(r) +M) ·poly(n, log M)-time algorithm that
takes as input a (basis for a) lattice L ⊂ R

n, 2 ≤ r ≤ n, an integer M ≥ 1, and
a parameter

s ≥ rn/r
√

n log n · ηε(L)

for some ε ∈ (0, 1/2) and outputs a (basis for a) sublattice ̂L ⊆ L with ηε( ̂L) =
ηε(L) and X1, . . . ,XM ∈ ̂L that are sampled independently from D

̂L,s.

Proof. The algorithm takes as input a (basis for a) lattice L ⊂ R
n, 2 ≤ r ≤

n, M ≥ 1, and a parameter s > 0 and behaves as follows. It first uses the
procedure from Theorem 2.20 to compute a γ-HKZ reduced basis b1, . . . ,bn,
where γ := rn/r. Let i ∈ {1, . . . , n} be maximal such that ‖b∗

j‖ ≤ s/
√

log n for
all j ≤ i, and let ̂L := L(b1, . . . ,bi). (If no such i exists, the algorithm simply
fails.) The algorithm then runs the procedure from Theorem 2.21 repeatedly to
sample X1, . . . ,XM ∼ D

̂L,s and outputs ̂L and X1, . . . ,XM .
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The running time of the algorithm is clearly (2r + M) · poly(n, log M). By
Theorem 2.21, the Xi have the correct distribution. Notice that, if the algorithm
fails, then

‖b1‖ > s/
√

log n ≥ γ
√

n · ηε(L) .

Recalling that ‖b1‖ ≤ γλ1(L), it follows that
√

nηε(L) < λ1(L), which contra-
dicts Lemma 3.1. So, the algorithm never fails (provided that the promise on s
holds).

It remains to show that ηε(L) = ηε(L(b1, . . . ,bi)). If i = n, then this is
trivial. Otherwise, i ∈ {1, . . . , n − 1}, and we have

‖b∗
i+1‖ > s/

√

log n ≥ γ
√

n · ηε(L) .

The result follows immediately from Lemma 3.4. ��

4 An Approximation Algorithm for HSVP and SVP

In this section, we present our algorithm that solves ˜O(
√

n)-HSVP and ˜O(
√

n)-
SVP in 2n/2+o(n) time. More precisely, we provide a detailed analysis of a
simple “pair-and-sum” algorithm, which will solve O(

√
n) · ηε(L)-GSVP for

ε = 1/poly(n). This in particular yields an algorithm that simultaneously solves
˜O(

√
n)-SVP and ˜O(

√
n)-HSVP.

4.1 Mixtures of Gaussians

We will be working with random variables X that are “mixtures” of discrete
Gaussians, i.e., random variables that can be written as DL+C,s for some lattice
L ⊂ R

n, parameter s > 0, and random variable C ∈ R
n. In other words, X

can be sampled by first sampling C ∈ R
n from some arbitrary distribution and

then sampling X from DL+C,s. E.g., the discrete Gaussian DL,s itself is such a
distribution, as is the discrete Gaussian D

̂L,s for any superlattice ̂L ⊇ L. Indeed,

in our applications, we will always have C ∈ ̂L for some superlattice ̂L ⊇ L, and
we will initialize our algorithm with samples from D

̂L,s.
Our formal definition below is a bit technical, since we must consider the

joint distribution of many such random variables that are only δ-similar to these
distributions and satisfy a certain independence property. In particular, we will
work with X1, . . . ,XM such that each Xi is δ-similar to Yi ∼ DL+Ci,s, where
Ci is an arbitrary random variable (that might depend on the Xj) but once Ci

is fixed, Yi is sampled from DL+Ci,s independently of everything else. Here and
below, we adopt the convention that Pr[A | B] = 0 whenever Pr[B] = 0, i.e., all
probabilities are zero when conditioned on events with probability zero.

Definition 4.1. For (discrete) random variables X1, . . . ,Xm ∈ R
n and i ∈

{1, . . . , m}, let us define the tuple of random variables

X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xm) ∈ R
(m−1)n .
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We say that X1, . . . ,Xm are δ-similar to a mixture of independent Gaussians
over L with parameter s > 0 if for any i ∈ {1, . . . , m}, y ∈ R

n, and w ∈ R
(m−1)n,

Pr[Xi = y | X−i = w] = e±δ · ρs(y)
ρs(L + y)

· Pr[Xi ∈ L + y | X−i = w] .

Additionally we will need the distribution we obtain at every step to be
symmetric about the origin as defined below.

Definition 4.2. We say that a list of (discrete) random variables X1, . . . ,Xm ∈
R

n is symmetric if for any i ∈ {1, . . . , m}, any y ∈ R
n, and any w ∈ R

(m−1)n,

Pr[Xi = y | X−i = w] = Pr[Xi = −y | X−i = w] .

We need the following simple lemma that bounds the probability of X being
0, where X is distributed as a mixture of discrete Gaussians over L.

Lemma 4.3. For any lattice L ⊂ R
n, let X1, . . . ,Xm ∈ L be δ-similar to a

mixture of independent Gaussians over L with parameter s ≥ βη1/2(L) for some
β > 1. Then, for any i, and any w ∈ R

(m−1)n

Pr[Xi = 0 | X−i = w] ≤ 3eδ

2β
.

Proof. Let s′ := η1/2(L). We have that

Pr[Xi = 0 | X−i = w] ≤ Pr[Xi = 0 | Xi ∈ L, X−i = w] ≤ eδ

ρs(L)
≤ eδ · ρs′(L)

ρs(L)
.

The result then follows from Claim 2.10. ��
The following corollary shows that a mixture of discrete Gaussians must

contain a short non-zero vector in certain cases.

Corollary 4.4. For any lattices L′ ⊆ L ⊂ R
n, parameter s ≥ 10eδη1/2(L′),

m ≥ 100, and random variables X1, . . . ,Xm that are δ-similar to mixtures of
independent Gaussians over L′ with parameter s,

Pr[∃i ∈ [1,m] such that 0 < ‖Xi‖2 < 4T ] ≥ 1/10 ,

where T := 1
m

∑m
i=1 E[‖Xi‖2].

Proof. By Markov’s inequality, we have

Pr
[

m
∑

i=1

‖Xi‖2 ≥ 2mT
]

≤ 1
2

.

Hence, with probability at least 1
2 , we have

∑m
i=1 ‖Xi‖2 < 2mT .
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We next note that many of the Xi must be non-zero with high probability.
Let Y1, . . . , Ym ∈ {0, 1} such that Yi = 0 if and only if Xi = 0. By Lemma 4.3,

E[Yi | Y1 = y1, . . . , Yi−1 = yi−1] ≥ 4/5

for any y1, . . . , yi−1 ∈ {0, 1}. By Corollary 2.3, we have that

Pr[Y1 + · · · + Ym ≤ 3m/5] ≤ e−m/100 ≤ 1/e .

Finally, by union bound, we see that with probability at least 1−1/e−1/2 >
1/10 the average squared norm will be at most 2T and more than half of the Xi

will be non-zero. It follows from another application of Markov’s inequality that
at least one of the non-zero Xi must have squared norm less than 4T . ��

4.2 Summing Vectors

Our algorithm will start with vectors X1, . . . ,Xm ∈ L0, where L0 ⊂ L is some
very dense superlattice of the input lattice L. It then takes sums Yk = Xi +Xj

of pairs of these in such a way that the resulting Yk lie in some appropriate
sublattice L1 ⊂ L0, i.e., Yk ∈ L1. It does this repeatedly, finding vectors in
L2,L3, . . . ,L� until finally it obtains vectors in L� := L.

Here, we study a single step of this algorithm, as shown below.

Algorithm 2. One step of the algorithm.
Input: Lattices L0, L1 ⊂ R

n with 2L0 ⊆ L1 ⊆ L0, and lattice vectors X1, . . . ,Xm ∈
L0 with m ≥ 2|L0/L1|.

Output: Lattice vectors Y1, . . . ,YM ∈ L1, with M := �(m − |L0/L1|)/2	.
1: Set USEDi := false for i = 1, . . . , m, k = 1, and i = 1.
2: while k ≤ M do
3: if not USEDi and (∃j ∈ {1, . . . , m} \ {i} such that Xj ≡ Xi mod L1 and

USEDj = false) then
4: Let j �= i be minimal such that Xj ≡ Xi mod L1 and USEDj = false.
5: Set Yk = Xi + Xj .
6: Set USEDi = USEDj = true and increment k.
7: end if
8: Increment i.
9: end while

10: return Y1, . . . ,YM

Notice that Algorithm 2 can be implemented in time m ·poly(n, log m). This
can be done, e.g., by creating a table of the Xi sorted according to Xi mod L1.
Then, for each i, such a j can be found (if it exists) by performing binary
search on the table. Furthermore, the algorithm is guaranteed to find M =
�(m − |L0/L1|)/2� output vectors because at most |L0/L1| of the input vectors
can be unpaired.
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The key property that we will need from Algorithm 2 is that for any (possibly
unknown) sublattice L′ ⊆ L1 ⊆ L0, the algorithm maps mixtures of Gaussians
over L′ to mixtures of Gaussians over L′, provided that the parameter s is
larger than ηε(L′) by a factor of

√
2. In other words, as long as there exists some

sublattice L′ ⊆ L1 such that ηε(L′) � s, then the output of the algorithm will be
a mixture of Gaussians. Indeed, this is more-or-less immediate from Lemma 2.14.

Lemma 4.5. For any lattices L0,L1,L′ ⊂ R
n with 2L0 ⊆ L1 ⊆ L0 and

L′ ⊆ L1, ε ∈ (0, 1/3), δ > 0, and parameter s ≥ √
2ηε(L′), if the input vectors

X1, . . . ,Xm ∈ L0 are sampled from the distribution that is δ-similar to a mix-
ture of independent Gaussians over L′ with parameter s, then the output vectors
Y1, . . . ,YM ∈ L1 are (2δ + 3ε)-similar to a mixture of independent Gaussians
over L′ with parameter

√
2s.

Proof. For a list of cosets d := (c1, . . . , cm) ∈ (L0/L′)m such that Pr[X1 =
c1 mod L′, . . . ,Xm = cm mod L′] is non-zero, let Yd,1, . . . ,Yd,M be the ran-
dom variables obtained by taking Y1, . . . ,YM conditioned on Xi ≡ ci mod L′

for all i. We similarly define Xd,i. Notice that Y1, . . . ,YM is a convex combina-
tion of random variables of the form Yd,1, . . . ,Yd,M , and that the property of
being close to a mixture of independent Gaussians is preserved by taking convex
combinations. Therefore, it suffices to prove the statement for Yd,1, . . . ,Yd,M

for all fixed d.
To that end, fix k ∈ {1, . . . , M} and such a d ∈ (L0/L′)m. Notice that Xd,i ∈

L′ + ci ⊆ L1 + ci. Therefore, there exist fixed i, j such that Yd,k = Xd,i +Xd,j .
Furthermore, by assumption, for any w ∈ Lm−1

0 and x ∈ L0,

Pr[Xd,i = x | Xd,−i = w] = e±δ ρs(x)
ρs(L′ + ci)

,

and likewise for j. It follows from Lemma 2.14 that for any y ∈ L1 and z ∈ LM−1
1 ,

Pr[Xd,i + Xdj
= y | Yd,−k = z] = e±(2δ+3ε)

ρ√
2s(y)

ρ√
2s(L′ + ci + cj)

,

as needed. ��
Lemma 4.6. For any lattices L0,L1 ⊂ R

n with 2L0 ⊆ L1 ⊆ L0, if the input
vectors X1, . . . ,Xm ∈ L0 are sampled from a symmetric distribution, then the
distribution of the output vectors Y1, . . . ,YM will also be symmetric. Further-
more,

∑

E[‖Yk‖2] ≤
∑

E[‖Xi‖2] .

Proof. Let d = (c1, . . . , cm) ∈ (L0/L1)m be a list of cosets such that with non-
zero probability we have X1 ∈ L1 + c1, . . . ,Xm ∈ L1 + cm. Let Xd,1, . . . ,Xd,m

be the distribution obtained by sampling the Xi conditioned on this event, and
let Yd,1, . . . ,Yd,M be the corresponding output.
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Notice that the distribution of Xd,1, . . . ,Xd,m is also symmetric, since L1 +
c = −(L1 +c) for any c ∈ L0/L1. (Here, we have used the fact that 2L0 ⊆ L1 ⊆
L0.)

And, for fixed d and k ∈ {1, . . . , M} there exist fixed (distinct) i, j ∈
{1, . . . , m} such that

Yd,k = Xd,i + Xd,j .

But, since the Xd,1, . . . ,Xd,m are distributed symmetrically, we see immediately
that for any y ∈ L1 and w ∈ LM−1

1 ,

Pr[Yd,k = y | Yd,−k = w] = Pr[Yd,k = −y | Yd,−k = w] .

In other words, the distribution of Yd,1, . . . ,Yd,M is symmetric.
Furthermore, E[‖Xd,i + Xd,j‖2] is equal to

E[‖Xd,i‖2] + E[‖Xd,j‖2] + 2E[〈Xi,Xj〉] = E[‖Xd,i‖2] + E[‖Xd,j‖2] ,

where in the last step we have used the symmetry of Xd,1, . . . ,Xd,m. Since the
Yd,k are sums of disjoint pairs of the Xd,i, it follows immediately that

M
∑

k=1

E[‖Yd,k‖2] ≤
m

∑

i=1

E[‖Xd,i‖2] .

The results for X1, . . . ,Xm,Y1, . . . ,YM then follow immediately from the
fact that this distribution can be written as a convex combination of the vec-
tors Xd,1, . . . ,Xd,m,Yd,1, . . . ,Yd,M for different coset lists d ∈ (L0/L1)m, since
both symmetry and the inequality on expectations are preserved by convex com-
binations. ��

4.3 A Tower of Lattices

We will repeatedly apply Algorithm 2 on a “tower” of lattices similar to
[ADRS15]. We use (a slight modification of) the definition and construction
of the tower of lattices from [ADRS15].

Definition 4.7 ([ADRS15]). For an integer α satisfying n/2 ≤ α ≤ n, we say
that (L0, . . . ,L�) is a tower of lattices in R

n of index 2α if for all i we have
2Li−1 ⊆ Li ⊂ Li−1,Li/2 ⊆ Li−2, |Li−1/Li| = 2α, and 2
iα/n�L0 ⊆ Li ⊆
2�iα/nL0 for all i.

Theorem 4.8 ([ADRS15]). There is a polynomial-time algorithm that takes as
input integers 
 ≥ 1 and n/2 ≤ α ≤ n as well as a lattice L ⊆ R

n and outputs a
tower of lattice (L0, . . . ,L�) with L� = L.
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Proof. We give the construction below. The desired properties are immediate
from the construction. Let b1, . . . ,bn be a basis of L. The tower is then defined
by “cyclically halving α coordinates”, namely,

L� = L(b1, . . . ,bn),
L�−1 = L(b1/2, . . . ,bα/2,bα+1, . . .bn),
L�−2 = L(b1/4, . . . ,b2α−n/4,b2α−n+1/2, . . .bn/2),

etc. The required properties can be easily verified. ��
The following proposition shows that starting with discrete Gaussian samples

from L0 and then repeatedly applying Algorithm 2 gives us a list of vectors in L�

that is close to a mixture of Gaussians, provided that there exists an appropriate
“smooth sublattice” L′ ⊆ L0.

Proposition 4.9. There is an algorithm that runs in m · poly(n, 
, log m) time;
takes as input a tower of lattices (L0, . . . ,L�) in R

n of index 2α, and vectors
X1, . . . ,Xm ∈ L0 with m := 2�+α+1; and outputs Y1, . . . ,YM ∈ L� with M :=
2α with the following properties. If the input vectors X1, . . . ,Xm are symmetric
and 0-similar to a mixture of Gaussians over L′ ⊆ L0 with parameter s >
10 · 2(α/n−1/2)�ηε(L′) for some (possibly unknown) sublattice L′ ⊆ L0 and ε ∈
(0, 1/3); then the output distribution is (10�ε)-similar to a mixture of independent
Gaussians over 2
�α/n�L′ ⊆ L� with parameter 2�/2s, and

M
∑

k=1

E[‖Yk‖2] ≤
m

∑

i=1

E[‖Xi‖2] .

Proof. The algorithm simply applies Algorithm 2 repeatedly, first using the input
vectors in L0 to obtain vectors in L1, then using these to obtain vectors in L2,
etc., until eventually it obtains vectors Y1, . . . ,YM ∈ L�. The running time is
clearly m · poly(n, 
, log m), as claimed.

By Lemma 4.6 and a simple induction argument, we see that every call to
Algorithm 2 results in a symmetric distribution, and the sum of the expected
squared norms is non-increasing after each step. In particular,

M
∑

k=1

E[‖Yk‖2] ≤
m

∑

i=1

E[‖Xi‖2] ,

as needed.
We suppose for induction that the distribution of the output of the ith

call to Algorithm 2 is 10iε-similar to a mixture of independent Gaussians over
2
iα/n�L′ ⊆ 2
iα/n�L0 ⊆ Li with parameter 2i/2s (which is true by assumption
for i = 0). Then, this distribution is also 10iε-similar to a mixture of inde-
pendent Gaussians over 2
(i+1)α/n�L′ ⊆ 2
iα/n�L′ (since a mixture of Gaus-
sians over a lattice is also a mixture of Gaussians over any sublattice). Fur-
thermore, ηε(2
(i+1)α/n�L′) = 2
(i+1)α/n�ηε(L′) < 2i/2s/

√
2. Therefore, we may



A 2n/2-Time Algorithm for
√

n-SVP and
√

n-Hermite SVP 491

apply Lemma 4.5 to conclude that the distribution of the output of the (i+1)st
call to Algorithm 2 is 10i+1ε-similar to a mixture of independent Gaussians over
2
(i+1)α/n�L′ ⊆ Li+1 with parameter 2(i+1)/2s. In particular, the final output
vectors are 10�ε-similar to a mixture of independent Gaussians over 2
�α/n�L′,
as needed. ��

4.4 The Algorithm

Theorem 4.10. For any ε = ε(n) ∈ (0, n−200), there is a
2n/2+O(n log(n)/ log(1/ε))+o(n)-time algorithm that solves (100

√
nηε)-GSVP. In

particular, if ε = n−ω(1), then the running time is 2n/2+o(n).

Proof. The algorithm takes as input a (basis for a) lattice L ⊂ R
n with n ≥ 50

and behaves as follows. Without loss of generality, we may assume that ε > 2−n

and that the algorithm has access to a parameter s > 0 with 50ηε(L) ≤ s ≤
100ηε(L). Let 
 := �log(1/ε)/ log(10)�−1 and α := �n/2+100n log n/ log(1/ε)�.

The algorithm first runs the procedure from Theorem 4.8 on input 
, α,
and L, receiving as output a tower of lattices (L0, . . . ,L�) with L� = L. The
algorithm then runs the procedure from Proposition 3.5 on input L0, r := n/5,
m := 2�+α+1, and parameter s′ := 2−�/2s, receiving as output a sublattice
̂L ⊆ L0, and vectors X1, . . . ,Xm ∈ ̂L ⊆ L0. Finally, the algorithm runs the
procedure from Proposition 4.9 on input (L0, . . . ,L�) and X1, . . . ,Xm, receiving
as output Y1, . . . ,YM ∈ L� = L. It then simply outputs the shortest non-zero
vector amongst the Yi ∈ L. (If all of the Yi are zero, the algorithm fails.)

The running time of the algorithm is clearly (m+2r+o(r)) ·poly(n, 
, log m) =
2n/2+O(n log n/ log(1/ε))+o(n). We first show that the promise s′ ≥ rn/r

√
n log n ·

ηε(L0) needed to apply Proposition 3.5 is satisfied. Indeed, by the definition of
a tower of lattices, we have L ⊆ 2��α/nL0, so that

s′ ≥ 50 · 2−�/2 · ηε(L) ≥ 50 · 2��α/n−�/2 · ηε(L0) ≥ rn/r
√

n log n · ηε(L0) ,

as needed. Therefore, the procedure from Proposition 3.5 succeeds, i.e. we have
ηε( ̂L) = ηε(L0) and that the Xi are distributed as independent samples from
D

̂L,s′ .

In particular, let L′ ⊆ ̂L ⊆ L0 such that ηε(L′) = ηε( ̂L) = ηε(L0). Then, the
distribution of X1, . . . ,Xm is symmetric and 0-similar to a mixture of Gaussians
over L′ with parameter s′ > 10 · 2(α/n−1/2)�ηε(L′). We may therefore apply
Proposition 4.9 and see that the Y1, . . . ,YM ∈ L are δ-similar to a mixture of
independent Gaussians over 2
�α/n�L′ with parameter s and δ := 10�ε ≤ 1/10.
Furthermore,

M
∑

k=1

E[‖Yk‖2] ≤
m

∑

i=1

E[‖Xi‖2] ≤ nm(s′)2

2π
= 2−� · nms2

2π
,

where the last inequality is Claim 2.11.
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Finally, we notice that

s ≥ 50ηε(L) ≥ 50 · 2��α/nηε(L0) = 50ηε(2��α/nL′) ≥ 25ηε(2
�α/n�L′)

≥ 10eδη1/2((2
�α/n�L′) .

Therefore, we may apply Corollary 4.4 to Y1, . . . ,YM to conclude that with
probability at least 1/10, there exists k ∈ {1, . . . , M} such that

0 < ‖Yk‖2 <
4
M

·
M
∑

i=1

E[‖Yi‖2] ≤ 2−� · nms2

2πM
≤ ns2 ≤ 1002nηε(L)2 .

In other words, Yk ∈ L is a valid solution to (100
√

nηε)-GSVP, as needed. ��
Corollary 4.11. There is a 2n/2+o(n)-time algorithm that solves γ-SVP for any
γ = γ(n) > ω(

√
n log n).

Proof. Theorem 4.10 gives an algorithm with the desired running time that finds
a non-zero lattice vector with norm bounded by 100

√
nηε(L) for

ε := 2−γ2/(1002n) < n−ω(1) .

The result follows from Lemma 3.1, which in particular tells us that

ηε(L) ≤
√

log(1/ε)λ1(L) ≤ γ/(100
√

n) · λ1(L) ,

as needed. ��
Corollary 4.12. There is a 2n/2+o(n)-time algorithm that solves γ-HSVP for
any γ = γ(n) > ω(

√

n log3 n).

Proof. Theorem 4.10 gives an algorithm with the desired running time that finds
a non-zero lattice vector with norm bounded by 100

√
nηε(L) for

ε := 2−γ2/(1010n log2 n) < n−ω(1) .

The result follows from Lemma 3.1, which in particular tells us that

ηε(L) ≤ 10
√

log(1/ε)(log n + 2) det(L)1/n ≤ γ/(100
√

n) · det(L)1/n ,

as needed (where we have assumed that n is sufficiently large). ��

5 Approximate SVP via Basis Reduction

Basis reduction algorithms solve δ-(H)SVP in dimension n by making poly-
nomially many calls to a δ′-SVP algorithm on lattices in dimension k < n.
We will show in this section how to modify the basis reduction algorithm
from [GN08,ALNS20] to prove Theorem 1.2.
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5.1 Slide-Reduced Bases

Here, we introduce our notion of a reduced basis. This differs from prior work
in that we allow the length 
 of the last block to be not equal to k, and we
use HSVP reduction where other works use SVP reduction. E.g., taking 
 = k
and replacing (D)HSVP reduction with (D)SVP reduction in Item 2 recovers the
definition from [ALNS20]. (Taking 
 = k and q = 0 and replacing all (D)HSVP
reduction with (D)SVP reduction recovers the original definition in [GN08].)

Definition 5.1 (Slide reduction). Let n, k, p, q, 
 be integers such that n = pk +
q + 
 with p ≥ 1, k, 
 ≥ 2 and 0 ≤ q ≤ k − 1. Let δH ≥ 1 and δS ≥ 1. A
basis B ∈ R

m×n is (δH , k, δS , 
)-slide-reduced if it is size-reduced and satisfies
the following four sets of constraints.

1. The block B[1,k+q+1] is η-twin-reduced for η := δ
k+q−1

k−1
H .

2. For all i ∈ [1, p − 1], the block B[ik+q+1,(i+1)k+q+1] is δH-twin-reduced.
3. The block B[pk+q+1,n] is δS-SVP-reduced.

Theorem 5.2. For any δH , δS ≥ 1, k ≥ 2, 
 ≥ 2, if B ∈ R
n×n is a (δH , k, δS , 
)-

slide-reduced basis of a lattice L with λ1(L(B[1,n−�])) > λ1(L) then

‖b1‖ ≤ δS(δ2H)
n−�
k−1 λ1(L) .

Proof. By Fact 2.22, ‖b1‖ ≤ η
2(k+q)
k+q−1 ‖b∗

k+q+1‖ = δ
2(k+q)

k−1
H ‖b∗

k+q+1‖. Also, for all

i ∈ [1, p − 1], ‖b∗
ik+q+1‖ ≤ δ

2k
k−1
H ‖b∗

(i+1)k+q+1‖. All together we have:

‖b1‖ ≤ (δ2H)
k+q+(p−1)k

k−1 ‖b∗
pk+q+1‖ = (δ2H)

n−�
k−1 ‖b∗

pk+q+1‖

Lastly, since λ1(L(B[1,n−�])) > λ1(L), ‖b∗
pk+q+1‖ ≤ δSλ1(L(B[pk+q+1,n])) ≤

δSλ1(L). The result does follow. ��

5.2 The Slide Reduction Algorithm

We show our algorithm for generating a slide-reduced basis. We stress that this
is essentially the same algorithm as in [ALNS20] (which itself is a generalization
of the algorithm in [GN08]) with a slight modification that allows the last block
to have arbitrary length 
. Our proof for bounding the running time of the
algorithm is therefore essentially identical to the proof in [GN08,ALNS20].

Theorem 5.3. For ε ∈ [1/poly(n), 1], Algorithm 3 runs in polynomial time
(excluding oracle calls), makes polynomially many calls to its δH-HSVP oracle
and δS-SVP oracle, and outputs a ((1 + ε)δH , k, δS , 
)-slide-reduced basis of the
input lattice L.
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Algorithm 3. Our slide-reduction algorithm
Input: Block size k ≥ 2, slack ε > 0, approximation factor δH , δS ≥ 1, basis B =

(b1, . . . ,bn) ∈ Z
m×n of a lattice L of rank n = pk + q + � for 0 ≤ q ≤ k − 1, and

access to a rank k δH -HSVP oracle and a rank � δS-SVP oracle.
Output: A ((1 + ε)δH , k, δS , �)-slide-reduced basis of L(B).

1: while vol(B[1,ik+q])
2 is modified by the loop for some i ∈ [1, p] do

2: (1 + ε)η-HSVP-reduce B[1,k+q] using Alg. 1 for η := (δH)
k+q−1

k−1 .
3: for i = 1 to p − 1 do

4: δH -HSVP-reduce B[ik+q+1,(i+1)k+q].

5: end for
6: δS-SVP-reduce B[pk+q+1,n].

7: if B[2,k+q+1] is not (1 + ε)η-DHSVP-reduced then

8: (1 + ε)1/2η-DHSVP-reduce B[2,k+q+1] using Alg. 1.
9: end if
10: for i = 1 to p − 1 do

11: Find a new basisC := (b1, . . . ,bik+q+1, cik+q+2, . . . , c(i+1)k+q+1,bik+q+2, . . . ,bn)
of L by δH -DHSVP-reducing B[ik+q+2,(i+1)k+q+1].

12: if (1 + ε)‖b∗
(i+1)k+q+1

‖ < ‖c∗
(i+1)k+q+1

‖ then

13: B ← C.

14: end if
15: end for

16: end while
17: return B.

Proof. First, notice that if Algorithm 3 ever terminates, the output must be
((1 + ε)δH , k, δS , 
)-slide-reduced basis. It remains to show that the algorithm
terminates in polynomially many steps (excluding oracle calls).

Let B0 ∈ Z
m×n be the input basis and let B ∈ Z

m×n denote the current basis
during the execution of Algorithm 3. Following the analysis of basis reduction
algorithms in [LLL82,GN08,LN14,ALNS20], we consider an integral potential

P (B) :=
p

∏

i=1

vol(B[1,ik+q])2 ∈ Z
+.

At the beginning of the algorithm, the potential satisfies log P (B0) ≤ 2n2 ·
log ‖B0‖. For each of the primal steps (i.e., Steps 2, 4 and 6), the lattice
L(B[1,ik+q]) for any i ≥ 1 is unchanged. Hence P (B) does not change. On
the other hand, the dual steps (i.e., Steps 8 and 13) either leave vol(B[1,ik+q])
unchanged for all i or decrease P (B) by a multiplicative factor of at least (1+ε).

Therefore, there are at most log P (B0)/ log(1 + ε) updates on P (B)
by Algorithm 3. This directly implies that the algorithm makes at most
4pn2 log ‖B0‖/ log(1 + ε) calls to the HSVP oracle, the SVP oracle, and
Algorithm 1.

We then conclude that Algorithm 3’s running time is bounded by some poly-
nomial in the size of input (excluding the running time of oracle calls). ��
Corollary 5.4. For any constant c ≥ 1, there is a randomized algorithm that
solves (polylog(n)nc)-SVP that runs in 2k/2+o(k) time for k := n−c

c+5/(8.02) .
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Proof. Let 
 = 0.5k
0.802 and run Algorithm 3, using the O(polylog(n)

√
n)-HSVP

algorithm from Corollary 4.12 and the O(1)-SVP algorithm from [LWXZ11] as
oracles. We receive a ((1 + ε)polylog(k)

√
k, k,O(1), 
)-slide-reduced basis B for

any input lattice L. Now consider two cases:

CASE 1: λ1(L(B[1,n−�])) > λ1(L): By Theorem 5.2, we conclude that

‖b1‖ ≤ δS(δ2H)
n−�
k−1 λ1(L) ≤ O(polylog(k)cnc)λ1(L) ,

as desired.
CASE 2: λ1(L(B[1,n−�])) = λ1(L): Then we repeat the algorithm on the lat-

tice L(B[1,n−�]) with lower dimension. This can happen at most n/
 times,
introducing at most a polynomial factor in the running time.

For the running time, the algorithm from Corollary 4.12 runs in time 20.5k+o(k).
The algorithm from [LWXZ11] runs in time 20.802�+o(�), which is the same as
20.5k+o(k), by our choice of 
. This completes the proof. ��
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Abstract. This work proposes a new lattice two-stage sampling tech-
nique, generalizing the prior two-stage sampling method of Gentry, Peik-
ert, and Vaikuntanathan (STOC ’08). By using our new technique as a key
building block, we can significantly improve security and efficiency of the
current state of the arts of simulation-based functional encryption. Partic-
ularly, our functional encryption achieves (Q, poly) simulation-based semi-
adaptive security that allows arbitrary pre- and post-challenge key queries,
and has succinct ciphertexts with only an additive O(Q) overhead.

Additionally, our two-stage sampling technique can derive new feasibil-
ities of indistinguishability-based adaptively-secure IB-FE for inner prod-
ucts and semi-adaptively-secure AB-FE for inner products, breaking sev-
eral technical limitations of the recent work by Abdalla, Catalano, Gay,
and Ursu (Asiacrypt ’20).

1 Introduction

Functional Encryption (FE) [13,35] is a powerful generalization of public-key
encryption (PKE), allowing more fine-grained information disclosure to a secret
key holder. FE with regular syntax can be described as follows – every secret
key is associated with a function f (in some class F), and the decryptor given
such key (i.e., skf ) and a ciphertext Enc(u) can only learn f(u). During the past
decade, there has been tremendous progress of FE for various function classes,
e.g., [2,4–6,21,26,27] and more.

To facilitate presentation and comparisons with prior work, we consider the
notion of FE with a more fine-grained syntax, which has been studied in the
literature to capture various settings of FE [1,2,13,27]. Particularly, each message
u consists of two parts, namely u := (x, μ), where x is some index (or attribute)1,
1 We note that both the names “index” and “attribute” have been used interchange-

ably in the literature.

c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 498–527, 2021.
https://doi.org/10.1007/978-3-030-77870-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77870-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-77870-5_18


New Lattice Two-Stage Sampling Technique and Its Applications 499

and μ is some message. Additionally, each function f consists of two parts,
namely, f := (P, g) ∈ P × G, where P is a predicate over the index, and g is a
function over the message. The overall function acts as:

f(u) :=
{

g(μ) if P(x) = 1
⊥ otherwise.

When decrypting the ciphertext ctu = Enc(x, μ) by skf := sk(P,g), the decryptor
can learn g(μ) if P(x) = 1, and ⊥ otherwise. Under this syntax, we call a key
skf :=(P,g) a 1-key with respect to an index x if P(x) = 1, or otherwise a 0-key.
Intuitively, a 1-key is allowed to open the ciphertext, but a 0-key is not.

Even though FE with the fine-grained syntax is essentially equivalent to the
regular syntax for sufficiently expressive function/predicate classes, it is more
convenient to present our new results in this way. Moreover as noticed since [13],
many advanced encryption schemes such as identity-based encryption, attribute-
based encryption, predicate encryption can be captured naturally from this
notion, by different predicate and function classes P × G.

There are two important settings studied in the literature – FE with private
or public index, according to whether the index x is revealed to the decryption
algorithm. In what follows, we first discuss in more details about challenges of
the state of the arts in both settings. Then we present our contributions and
new techniques to break these barriers and advance the research frontiers.

FE with Private Index. In this setting, FE provides very strong privacy guar-
antee where only g(μ) can be learned given a 1-key skP,g and a Enc(x, μ) with
P(x) = 1. It is worthwhile to point out that in this setting, realizing the class
P × {I} for the identity function I is already general enough, as it suffices to
capture FE (of regular syntax) for the boolean circuit class P. In particular,
we can use skP,I and Enc(x, μ) to simulate the exact effect of skP and Enc(x)
of the regular syntax FE. Therefore, following some prior work [2], this work
just focuses on the function class P × {I} for FE in the private index setting by
default. We discuss this in more details in the full version of this paper.

To capture security, there have been notions of indistinguishable-based (IND)
and simulation-based (SIM) definitions proposed and studied in the literature
since [13]. As raised by [13], the IND-based security is inadequate (i.e., too weak)
in the private index setting for certain functionalities and applications. Thus, it
would be much desirable to achieve the stronger notion of SIM-based notion.

However, there are various settings that the SIM-based notion is too strong
to be attained. For example, the work [13] showed that for very simple func-
tionalities (identity-based encryption), the SIM-based security is impossible for
multiple challenge ciphertexts, even given just one post-challenge key query.
Additionally, the work [4] showed that for FE scheme with respect to the class
of general functions, the ciphertext size must grow linearly with the number
of pre-challenge key queries. Therefore it is impossible to achieve the notion
(poly, poly)-SIM security (allowing an unbounded number of both 1 and 0-keys)
for general functions.
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Despite these lower bounds, the work [27] identified important feasible set-
tings for SIM-based security, by proposing new constructions in the setting of sin-
gle challenge ciphertext and bounded collusion. More specifically, [27] achieved
(Q,Q)-adaptive-SIM FE for the family of polynomial-sized circuits under the
minimal assumption of PKE. Their attained SIM notion is very strong – the
challenge index can be adaptively chosen and the adversary is allowed to query
both pre- and post-challenge key queries, up to some bounded Q times for both
1 and 0-keys. The ciphertexts however, are not succinct (i.e., dependent on the
circuit description of the function), and their size grows with a multiplicative
factor of O(Q4). Even though a recent work [10] improved the multiplicative fac-
tor to O(Q), their ciphertexts are still not succinct, prohibiting other important
applications, such as reusable garbled circuits [26]. Thus, improvements in this
dimension would be very significant.

A subsequent work [26] constructed the first single-key succinct FE for
bounded depth circuits, and showed that this suffices for reusable garbled cir-
cuits, solving a long-term open question in the field. However, their scheme [26]
has drawbacks in the following two aspects. First, the single-key FE of [26]
achieves a weaker notion of selective security and only allows one pre-challenge
key query (either a 1 or 0-key). Second, even though the single-key FE of [26]
can be bootstrapped to Q key FE using the compiler of [27], yet the resulting
ciphertexts grows with O(Q4) multiplicatively.

Tackling these drawbacks, two almost concurrent work [2,6] advanced this
direction of work significantly. Particularly, the work [6] constructed a single key
succinct FE for NC1, and then showed another bootstrapping method (from NC1
to general circuits) that only induces an O(Q2) additive overhead, yet the result-
ing (offline-part) ciphertexts become no longer succinct. The other concurrent
work [2] designed a new succinct single key FE that supports (1, poly) queries
for general circuits, and a new bootstrapping method that achieves (Q, poly)-
SIM security with succinct ciphertexts and O(Q2) additive overhead. As a sub-
stantial milestone, [2] for the first time identified an important and useful2 sub-
class of key queries (i.e., 0-keys), where SIM-based security is feasible beyond
bounded collusion. Recently, the work [10] designed a simple yet very novel
compiler that turns any bounded-collusion FE into one with ciphertext growth
O(Q) multiplicatively. This compiler improves the ciphertext size significantly,
but does not improve the security over the original scheme.

Challenges. The attainable SIM-based security of [2] is however weaker than
that of the work [27] in three aspects – (1) the challenge index needs to be
semi-adaptive (the adversary commits to the challenge right after the master
public-key); (2) the 1-key queries need to be made at one-shot right before the
challenge ciphertext; (3) no more 1-key is allowed for post-challenge phase. How
to bridge the gap between the two methods [2,27] is an important open question.

To measure how large the gap is, we first notice that the semi-adaptive
attribute (i.e., aspect (1)) can be mitigated (though not completely satisfac-
2 For example in IBE and ABE, 0-keys are useful for decrypting other ciphertexts with

satisfying indices. They just cannot decrypt the specific (challenge) index.
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tory) by the generic complexity leveraging argument as also pointed out by [26].
Particularly, by scaling up the � in bit-security of the selective scheme, we can
achieve adaptive security over �-bit index. Even though theoretically this would
require to assume sub-exponential security of the underlying hard problem, yet
nevertheless in practice this assumption is usually in use, given the estimations
of the best-known concrete attacks, e.g., the concrete LWE estimation [7].

On the other hand, how to tackle adaptiveness for pre-challenge and post-
challenge key queries seems beyond the current techniques, as the length to
describe all possible key queries requires Q · poly(λ) bits for some unbounded
polynomial, which is too large for the complexity leveraging argument. Thus,
how to improve aspects (2) and (3) would require substantial new techniques.
This work aims to solve these challenges with the following particular goal.

(Main Goal 1:) Design a succinct FE for general bounded depth cir-
cuits with (Q, poly)-SIM-based security3, allowing arbitrary pre- and post-
challenge queries for both 1 and 0-keys.

FE with Public Index. The public index setting does not require the scheme
to hide the index, and for many scenarios in this setting the IND security notion
would already be adequate, as pointed out by [13]. Even though FE with public
index can be generically derived from FE with private index, much more efficient
solutions are desired. For example, current instantiations of FE with private index
either use heavy tools such as garbled circuits or fully homomorphic encryption,
while the identity-based encryption [3] (as a special case of FE with public index)
only requires simple lattice operations and thus can be much more efficient.

A recent work [1] studied the class IB×IP, where the IB is the class of identity
comparison predicates and IP is the class of inner products. Particularly, the
work [1] showed that by connecting ABB [3] encoding for IB and ALS [5] encoding
for IP, one can derive a simple FE for IB × IP from lattices. Albeit simple and
efficient, the work [1] can only prove the selective security (over IB) for their
lattice design in the standard model, even though the ABB and ALS encodings
both achieve the adaptive security in their encryption settings. Moreover, note
that their construction idea [1] naturally extends to the setting of AB × IP by
connecting the AB encoding of [11] with ALS, where AB is the general attribute-
based policy functions. However, their proof of security [1] even for the selective
security would hit a subtle yet challenging technical barrier. Our second goal is
to tackle these challenges.

(Main Goal 2:) Determine new proof strategy for the class of IB× IP and
AB × IP in the public index setting.

1.1 Our Contributions

This work aims at the two main goals and makes three major contributions.
3 We notice that (poly, poly) SIM-based security is not possible by the lower bound

of [4]. Thus, (Q, poly) SIM-based security is the best we can hope for in this model.
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Contribution 1. First we propose a new two-stage lattice two-stage sampling
technique, generalizing the prior GPV type two-stage sampling [24]. Using this
new sampling technique, we design a unified framework that handles major chal-
lenges in our two (seemingly different) main goals as we elaborate next. The crux
of our design relies on adding smudging noise over secret keys, which is critical
in the analysis and conceptually new, as all prior work (to our knowledge) only
considered adding smudging noise over ciphertexts, e.g., [2].

Contribution 2. By using our new sampling technique, we improve the prior
designs of [2] substantially as we elaborate below.

– Our first step is to achieve a (1, poly) selectively secure (over the challenge
index) partially hiding predicate encryption (PHPE), allowing general pre-
challenge but no post-challenge key queries. Technically, our construction
simply replaces the key generation algorithm in the very-selective PHPE of [2]4

by our new sampler. Our result at this step is already stronger than the
work [2] in the following ways.

1. We notice that our PHPE can achieve the adaptive security by the com-
plexity leveraging argument directly, yet the very-selective PHPE of [2]
cannot, as the description of the function for key queries is too large.

2. The two schemes can be upgraded to semi-adaptive security over the chal-
lenging index without the complexity leveraging, yet the transformation
for ours is much more efficient. Particularly, our upgrade only applies the
very light-weight method of [17,30], whereas the very-selective PHPE of [2]
requires to compose PHPE with another FE (ALS [5]). Moreover, our result-
ing scheme allows arbitrary pre-challenge key queries, whereas the result-
ing scheme of [2] still requires the adversary to commit to the 1-key query
before making further 0-key queries.

– Our (1, poly) PHPE can be turned into FE by using the transformation of [2,
29], resulting in a succinct single key (1, poly) FE that allows arbitrary pre-
challenge key queries as long as there is at most one 1-key. This suffices to
construct the reusable garbled circuits [26]. We present a comparison of our
single key succinct FE with prior work in Table 1.

– Our next step is to achieve a succinct (Q, poly) FE that allows arbitrary pre-
and post-challenge queries. To achieve this, we slightly modify the transforma-
tion (from (1, poly) PHPE to (Q, poly) PHPE) of [2] by using the technique of
secret sharing and a new way of generating cover-free sets inspired by [10]. By
applying our new transformation to our (1, poly) PHPE, we derive a (Q, poly)
PHPE that allows arbitrary pre- and post-key queries. Then the desired FE
again follows from the transformation of [2,29].
Importantly, our transformation inherits many nice properties in [2], e.g.,
the succinctness of the ciphertexts is preserved. Thus, our resulting FE has

4 A very-selective scheme requires the adversary to commit to both the challenge index
and function in the very beginning of the security experiment.
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succinct ciphertexts, whose size grows additively with O(Q), and are indepen-
dent of the function/circuit size. Our result is better than the transformation
of [10], which incurs a multiplicative O(Q) blowup in the ciphertexts.

Table 1. Comparison of prior work of single key SIM-secure public-key FE.

Ref. (1-key, 0-key) (Pre, Post)-Challenge Index Succinct ct

[27] (a, b) : a + b = 1 (✓, ✓) AD ✗

[26] (a, b) : a + b = 1 (✓, ✗) Sel† ✓

[6] (a, b) : a + b = 1 (✓, ✗) AD ✓ for NC1

[2] (1, poly) (✓✗, ✗)∗ SA† ✓

Ours (1, poly) (✓, ✗) SA† ✓

(∗) The scheme requires the adversary to commit to the 1-key query
right after seeing the master public key. Then the adversary is
allowed to make further arbitrary 0-key queries in the pre- and post-
challenge phases, but not any more 1-key query.
(†) The selective (Sel)/semi-adaptive (SA) security can be raised to
adaptive security (AD) by the complexity leveraging argument, at
the cost of scaling up the security parameters.

In summary, we achieve our Main Goal 1 for semi-adaptive security over the
challenge index, and the full-fledged of the goal if we further apply the complexity
leveraging argument. Additionally, our scheme for the first time achieves succinct
ciphertexts with only O(Q) additive overhead. We present a comparison of our
(Q, poly) FE with prior work in Table 2.

Table 2. Comparison of other private index SIM-secure public-key FE.

Ref. (1-key, 0-key) (Pre, Post)-Challenge Index Succinct ct Ciphertext size

[27] (Q,Q) (✓, ✓) AD ✗ × O(Q4)

[26]+ [27] (Q,Q) (✓, ✗) Sel† ✓ × O(Q4)

[6] (Q,Q) (✓, ✗) AD ✓ for NC1 + O(Q2)

[2] (Q, poly) (✓✗, ✗)∗ SA† ✓ + O(Q2)

[2]+ [10]‡ (Q, poly) (✓✗, ✗)∗ SA† ✓ × O(Q)

Ours (Q, poly) (✓, ✓) SA† ✓ + O(Q)

(∗) The scheme requires the adversary to commit to all the Q 1-key queries (in one shot)

right after seeing the master public key. Then the adversary is allowed to make further

arbitrary 0-key queries in the pre- and post-challenge phases, but not any more 1-key

query.

(†) Similar to Table 1.

(‡) The generic method in [10] can transform any bounded collusion FE scheme into one

whose ciphertext size grows with O(Q) multiplicatively.
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Contribution 3. Finally, we identify that our new sampling technique is the key
to break the technical barriers of the lattice-based analysis of [1]. Particularly,
for the setting of public index, we construct new FE schemes for IB × IP and
AB × IP. The crux is to replace the key generation algorithm of [1] by our new
pre-sampler. The novelty of this contribution majorly comes from the proof
techniques. In Table 3 we compare our schemes with [1].

Table 3. Comparison of public index IND-based construction.

Reference IB-FEIP AB-FEIP

[1] (1, poly)-Sel ✗

Ours (1, poly)-AD (Q, poly)-SA

1.2 Technical Overview

We present an overview of our new techniques. We first describe our central
technique – a new two-stage sampling method, and then show how it can be
used to achieve our main goals, together with further new insights. Our two-
stage sampling method can be understood without the context of FE, and might
be useful in other applications. Thus we believe that this technique can be of
general interests.

Two-stage Sampling Method. At a high level, we would like to sample the
following two-stage distribution:

– In the first stage, a random matrix A and a random vector u are sampled;
– In the second stage, an arbitrary small-norm matrix R is first specified, and

then a short vector y is sampled conditioned on [A|AR]y = u.
– The overall distribution consists of (A,AR,u,y).

In a series of lattice-based work [1–3,11,14,24,28,29], the proof framework
requires to sample this distribution (or its slight variations) in two ways – with
A’s trapdoor and without A’s trapdoor. On the one hand, given the trapdoor of
A, one can efficiently sample this distribution. On the other hand, without the
trapdoor of A, one can also sample the distribution by using the G-trapdoor
technique [33]. Particularly, if we have the G matrix [33] in the right, i.e., the
matrix is of the form [A|AR+γ ·G] with γ �= 0, then this sampling task can be
solved easily by the sample-right technique [3,33]. However, our task (and the
security proofs in this work) does not have G in the second matrix, and thus
the prior technique cannot be applied to sample the required distribution.

Is this task even doable? To answer this question, we first consider a simpler
case where there is no R. Then we notice that this task is achievable via the clas-
sic GPV two-stage sampling technique: we first pre-sample y, and set u = Ay.
By setting parameters appropriately, the work [24] showed that the distributions
(A,u,y) generated in the two ways (with trapdoor and without trapdoor) are
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statistically indistinguishable. Moreover, this idea can be generalized to achieve
a weaker version of our task where R is given in the first stage – we simply pre-
sample y, set u = [A|AR]y, and output (A,AR,u,y). In fact, this approach
has been explored by prior work [2] in the context of functional encryption (more
precisely PHPE). Due to the technical barrier that R must be given in the first
stage, schemes using this approach achieve a weak notion of very selective PHPE,
where the adversary needs to commit to the challenge index and 1-key query at
the beginning. We will elaborate more on the connection of FE and PHPE later.

As we discuss above, the challenge comes from the fact that if R is only
given in the second stage, the prior two-stage sampling method cannot generate
u in a way that depends on R. To tackle this, we aim to “eliminate” the effect
of this matrix R in the two-stage sampling process. In particular, we observe
that if the matrix R has a small norm, we can “smudged” its effect by using a
distribution with some larger parameter. With this intention in mind, we propose
the following new two-stage sampling method:

– In the first stage, generate a random A, and pre-sample x from a discrete
Gaussian for some larger parameter ρ. Set u = Ax.

– In the second stage when R is given, sample z from a discrete Gaussian with

a smaller parameter s, and then output y =
(

x − Rz
z

)
.

– The sampler outputs (A,AR,u,y) at the end.

Clearly the output y satisfies [A|AR]y = u. If ρ � s‖R‖, then we can

intuitively think that x smudges Rz, so y =
(

x − Rz
z

)
behaves like y′ =

(
x′

z

)

such that [A|AR]y′ = u. By formalizing this idea, this task is achieved.
Improving FE with Private Index. Our two-stage sampling method can sig-
nificantly improve FE with private index of [2]. Before presenting our insights,
we first briefly review the framework of [2].

At a high level, [2] constructed FE in the following steps:

(1a) Construct a (1, poly) very-selective partially hiding predicate encryption
(PHPE) where the adversary needs to commit to the challenge index and
1-key query at the beginning of the security experiment.

(1b) Upgrade the basic scheme to (1, poly) semi-adaptive PHPE by composing
the basic scheme with ALS-FE for inner products [5].

(2) Upgrade the (1, poly) semi-adaptive PHPE to (Q, poly) semi-adaptive
PHPE. Here the transformation preserves succinctness of ciphertexts and
only incurs an additive blow up of O(Q2).

(3) Transform the (Q, poly) semi-adaptive PHPE to (Q, poly) semi-adaptive FE.
This step follows from [29] and an additional technique of adding smudging
noise over the ciphertexts.
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We notice that Step (3) is generic, so it suffices to focus on improving PHPE in
Steps (1a)–(2). To facilitate presentation of our new ideas, we next identify the
following four limitations in the current framework.

– First, Steps (1a) and (1b) require the adversary to commit to his 1-key chal-
lenge query before asking further 0-key queries.

– Second, the step (1b) uses a composition of FE over another FE, which could
be overly complicated and inefficient.

– Third, Step (3) does not support post-challenge 1-key queries.
– Fourth, Step (3) incurs an additive overhead of O(Q2), which is incomparable

with the multiplicative O(Q) overhead the recent work by [10].

Next, we present our new insights to break all these limitations! To describe
how our techniques work, we start with a highly simplified description of the very
selective PHPE of [2]: the master public key contains matrices A, B1, . . . ,B� for
� being the length of the index (private and public combined), and a matrix
P. Given a key query f , the key generation algorithm defines another related
function Cf and computes BCf

from B1, . . . ,B� by the technique of key homo-
morphic evaluation [11]. Then the key generation algorithm samples skf := Y
such that [A|BCf

] · Y = P. Clearly, this sampling task can be easily performed
if the trapdoor of A is given.

In the proof of security, the trapdoor of A is not given. Yet we can set
Bi := A·Ri+x∗

iG for challenge index x∗ = (x∗
1, . . . , x

∗
� ). (Note that here we do not

need to distinguish public/private index to demonstrate our idea.) Then by the
key homomorphic evaluation method, we have [A|BCf

] = [A|ARCf
+Cf (x∗)G].

From the design of Cf , we have Cf (x∗) = 0 if the key query f corresponds to a
1-key with respect to x∗, or otherwise Cf (x∗) �= 0 if the key query corresponds
to a 0-key. Therefore in the security analysis, one can clearly answer any 0-key
queries as the G-trapdoor appears in the second matrix.

At this moment, the reader can already see that answering the 1-key query
corresponds to the two-stage sampling as we describe above. In fact, the reason
why [2] starts with the very selective notion comes from the fact that the prior
technique requires RCf

to be given in the first stage. This requires the adversary
to commit to the challenge 1-key function f and the challenge index at the
beginning of the security experiment.

Note that by using our new two-stage sampling method for the key generation
algorithm, we are able to answer the 1-key query at any moment just before the
challenge ciphertext. Therefore, we can achieve (1, poly) selective FE, allowing
arbitrary pre-challenge key queries. Moreover by the very light-weight method
of [17,30], the FE can be upgraded to semi-adaptive security5. This solves the
first two limitations, giving an improved way to achieve (1a) + (1b) of [2].

To further break the third and fourth limitations, we first briefly overview
the transformation in Step (2) of [2]. At a high level, besides A,B1, . . . ,B�,
5 The reason why [2] cannot apply the light-weight method is because its basic con-

struction only achieves very selective security, whereas the technique of [17,30] can
be applied to the selective security only over index.
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the method generate additional matrices P1, . . . ,PN . The key generation would
choose a small subset Δ ⊆ [N ] of some fixed cardinality and generate skf := Y
such that [A|BCf

] · Y = PΔ, where PΔ =
∑

i∈Δ Pi. To encrypt a message μ,
the encryption algorithm just additionally generates β1,i = s�Pi + e + q

2|Δ|μ
for all i ∈ [N ]. The decryption algorithm can figure out β1,Δ =

∑
i∈Δ β1,i =

s�Pi + e′ + q
2μ, and the rest of the procedure is similar to the (1, poly)-PHPE.

The work [2] requires that for Q randomly sampled sets Δ1, . . . , ΔQ in [N ], it is
overwhelming that the sets are cover-free. By using the result of [27], this would
require N = O(Q2). This explains why the transformation incurs an additive
O(Q2) overhead.

To further reduce the parameter N , it suffices to generate cover-free sets more
efficiently. We then construct a simple set sampler that only requires requires
N = O(Q), inspired by an implicit construction in the work [10]. We identify
that this more efficient cover-freeness suffices for the rest of the proof.

Finally, we show how to handle post-challenge key queries if the message
space is small, e.g., bit encryption. (Here we do not need to place a constraint
on the index length.) Our idea is to share the plaintext μ ∈ {0, 1}, more precisely,
q
2μ, into μ1, . . . , μN , such that any subset Δ with some fixed cardinality would
recover the message, i.e., q

2μ =
∑

i∈Δ μi. Then we generate ciphertexts β1,i =
s�Pi + e + μi for all i ∈ [N ]. As a critical proof insight, we show that given all
secret keys of the form (Δ,Y), one can only learn

∑
i∈Δ μi = q

2μ but nothing
more. By using this fact, we can design a simulator, who generates simulated
shares μ1, . . . , μN and 2Q sets Δ1, . . . , ΔQ, Δ′

1, . . . , Δ
′
Q such that

∑
Δi

μi = q/2,
and

∑
Δ′

i
μi = 0. Thus in the post-challenge stage, the simulator can answer a

1-key query by using either {Δi} or {Δ′
i} according to whether μ = 1 or μ = 0.

Notice that the core and useful properties of the above process are that: (1)
the simulation of the ciphertext does not depend on the plaintext μ; (2) the
post-challenge key simulation can consistently generate a key that opens the
simulated ciphertext to either μ = 1 or μ = 0. By further taking fine care of
the details, we are able to achieve (Q, poly)-PHPE that supports arbitrary key
queries and has succinct ciphertext that grows additively with O(Q). This solves
the third and fourth challenges as above and improves Step (2) of [2]. Clearly,
this PHPE can also be transformed into an FE, following Step (3) as [2].

Improving FE with Public Index. Interestingly, the lattice-based construc-
tion of FE with public index [1] faces exactly the same technical challenge as
the very selective PHPE of [2]. Our new two-stage sampling method is the key
missing link of [1] to achieve adaptive IB × IP and semi-adaptive AB × IP. We
further elaborate on this setting in Sect. 6. The reader would immediately see
the point even just with a glance at the construction.

1.3 Other Related Work

We notice that FE can be obtained from indistinguishable obfuscation (iO) [21],
achieving the notion of (poly, poly)-IND adaptive security via [9]. Even though
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recently there has been substantial progress for instantiating iO [15,22,31], the
derived FE (as is) cannot achieve the simulation-based security. This is because
the iO-based FE has ciphertext length independent of the number of collusion Q,
and thus according to the lower bound of [4], the scheme cannot be SIM secure.
Moreover as mentioned in [13,27], IND-based FE does not imply SIM-based FE.
Therefore for the direction of SIM-based FE, our work would shed light on new
methods and feasibilities beyond what can be implied from the recent progress
on the direction of iO [15,22,31].

In [18], Canetti and Chen show that a single key SIM-secure private-key
FE suffices to construct reusable garbled circuits. Compared with the reusable
garbled circuits derived from our (Q, poly)-SA-SIM FE with Q = 1,6, the con-
struction in [18] achieves the stronger adaptive security with respect to index
without the complexity leveraging argument, yet can only support either a pre-
or post-challenge key query for a NC1 circuit, rather than a general circuit.

2 Preliminaries

2.1 Notations

In this paper, N, Z and R denote the sets of natural numbers, integers and real
numbers, respectively. We use λ to denote the security parameter, which is the
implicit input for all algorithms in this paper. A function f(λ) > 0 is negligible
and denoted by negl(λ) if for any c > 0 and sufficiently large λ, f(λ) < 1/λc. A
probability is called overwhelming if it is 1−negl(λ). A column vector is denoted
by a bold lower case letter (e.g., x). A matrix is denoted by a bold upper case
letter (e.g., A), and its transposition is denoted by A�.

For a set D, we denote by u
$←− D the operation of sampling a uniformly

random element u from D, and denote |u| as the bit length of u. For an integer � ∈
N, we use U� to denote the uniform distribution over {0, 1}�. Given a randomized
algorithm or function f(·), we use y ← f(x) to denote y as the output of f and
x as input. For a distribution X, we denote by x ← X the operation of sampling
a random x according to the distribution X. Given two different distributions
X and Y over a countable domain D, we denote their statistical distance as
SD(X,Y ) = 1

2

∑
d∈D |X(d) − Y (d)|, and say that X and Y are SD(X,Y ) close.

Moreover, if SD(X,Y ) is negligible in λ, we say that the two distributions are
statistically close, which is always denoted by X

s≈ Y . If for any ppt algorithm
A that

∣∣Pr[A(1λ,X) = 1] − Pr[A(1λ, Y ) = 1]
∣∣ is negligible in λ, then we say that

the two distributions are computationally indistinguishable, denoted by X
c≈ Y .

Matrix Norms. For a vector x, its Euclidean norm (also known as the �2 norm)
is defined as ‖x‖ = (

∑
i x2

i )
1/2. For a matrix R, we denote its ith column vector

as ri, and use R̃ to denote its Gram-Schmidt orthogonalization. In addition,
6 Notice that the reusable garbled circuits following from our SIM-secure FE can

achieve SA-SIM security, and support general circuits and any arbitrary pre- and
post-challenge key query, for one query.
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– ‖R‖ denotes the Euclidean norm of R, i.e., ‖R‖ = maxi ‖ri‖.
– s1(R) denotes the spectral norm of R, i.e., s1(R) = sup‖x‖=1‖Rx‖, with

x ∈ Z
m.

We know the facts on the above norms: ‖R̃‖ ≤ ‖R‖ ≤ s1(R) ≤ √
k‖R‖

and s1(R|S) ≤ √
s1(R)2 + s1(S)2, where k denote the number of columns of R.

Besides, we have the following lemma for the bounding spectral norm.

Lemma 2.1 ([20]). Let X ∈ R
n×m be a subgaussian random matrix with param-

eter s. There exists a universal constant c ≈ 1/
√

2π such that for any t > 0, we
have s1(X) ≤ c · s · (

√
m +

√
n + t) except with probability at most 2

eπt2 .

At the same time, we rely on the following useful lemma on cover-free for our
security proof.

Lemma 2.2 (Cover-Freeness [27]). Let Δ1, · · · ,ΔQ ⊆ [N ] be randomly cho-
sen subsets of size v. Let v(κ) = Θ(κ) and N(κ) = Θ(vQ2). Then for all i ∈ [Q],
we have Pr

[
Δi\

( ⋃
j �=i Δj

)
�= φ

]
= 1 − 2−Ω(κ), where the probability is over the

random choice of subsets Δ1, · · · ,ΔQ.

2.2 Gaussians on Lattices

Due to space limit, we defer well-known background on lattices to the full version
of this paper. Here we just give some useful preliminaries of gaussians on lattices.

Let σ be any positive real number. The Gaussian distribution Dσ,c with
parameter σ and c is defined by probability distribution function ρσ,c(x) =
exp(−π‖x − c‖2/σ2). For any set S ⊆ R

m, define ρσ,c(S) =
∑

x∈S ρσ,c(x). The
discrete Gaussian distribution DS,σ,c over S with parameter σ and c is defined
by the probability distribution function ρσ,c(x) = ρσ,c(x)/ρσ,c(S) for all x ∈ S.

In [34], Micciancio and Regev introduced a useful quantity called smoothing
parameter.

Definition 2.3. For any m-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ∗\{0}) ≤ ε.

Then, we have the following upper bound for the smoothing parameter.

Lemma 2.4 ([24]). For any m-dimensional lattice Λ and real ε > 0, we have

ηε(Λ) ≤
√

log(2m/(1+1/ε))/π

λ∞
1 (Λ∗) . Then for any ω(

√
log m) function, there is a negli-

gible ε(m) for which ηε(Λ) ≤ ω(
√

log m)/λ∞
1 (Λ∗).

Furthermore, we have the following useful facts from the literature.

Lemma 2.5 ([24] and Full Version of [32]). Let n,m, q are integers such
that m > 2n log q. Then for all but an at most q−n fraction of A ∈ Z

n×m
q , we

have λ∞
1 (Λq(A)) > q/4.

Furthermore, for such A and any function ω(
√

log m), there is a negligible
function ε(m) such that ηε(Λ⊥

q (A)) ≤ ω(
√

log m).
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Lemma 2.6 Let n,m, q are integers such that m > 2n log q, and R ∈ Z
m×m
q

be arbitrary. Then for all but an at most q−n fraction of A ∈ Z
n×m
q , we have

λ∞
1 (Λq(A|AR)) > q/4.

Furthermore, for such A and any function ω(
√

log m), there is a negligible
function ε(m) such that ηε(Λ⊥

q (A|AR)) ≤ ω(
√

log m).

Due to space limit, we defer the proof of Lemma 2.6 to full version.

Lemma 2.7 ([24], Lemma 5.2). Assume the columns of A generate Z
n
q , let

ε ∈ (0, 1/2) and r ≥ ηε(Λ⊥(A)). Then for e ← DZm,r, the distribution of u =
AT e mod q is within statistical distance 2ε of uniform over Z

n
q .

Furthermore, for any fixed u ∈ Z
n
q , let t ∈ Z

m be an arbitrary solution to
At = u mod q. Then the conditional distribution of e ∼ DZm,s given Ae =
u mod q is exactly t + DΛ⊥,s,−t .

Lemma 2.8 ([34], Lemma 4.4). For any m-dimensional lattice Λ, c ∈ Rm,
real ε ∈ (0, 1) and s ≥ ηε(Λ), we have Prx←DΛ,s,c

[‖x − c‖ > s
√

m] � 1+ε
1−ε · 2−m.

Lemma 2.9 (Smudging Lemma). Let n ∈ N. For any real σ ≥ ω(
√

log n),
and any c ∈ Z

n, it holds SD(DZn,σ,DZn,σ,c) ≤ ‖c‖/σ.

Learning With Errors. The Learning with Errors problem, or LWE, is the
problem of determining a secret vector over Zq given a polynomial number of
“noisy” inner products. The decision variant is to distinguish such samples from
random. More formally, we define the problem as follows:

Definition 2.10 ([37]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a proba-
bility distribution on Zq. For s ∈ Z

n
q , let As,χ be the probability distribution on

Z
n
q × Zq obtained by choosing a vector a ∈ Z

n
q uniformly at random, choosing

e ∈ Zq according to χ and outputting (a, 〈a, s〉 + e).
The decision LWEq,n,χ problem is: for uniformly random s ∈ Z

N
q , given a

poly(n) number of samples that are either (all) from As,χ or (all) uniformly
random in Z

n
q × Zq, output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time
algorithms A, the probability that A solves the decision-LWEq,n,χ problem (over
s and A’s random coins) is negligibly close to 1/2 as a function of n. The works
of [16,36,37] show that the LWE assumption is as hard as (quantum or classical)
solving GapSVP and SIVP under various parameter regimes.

2.3 Lattice Trapdoor and Gaussian Sampling

Gadget Matrix. We recall the “gadget matrix” G defined in [33]. The “gadget
matrix” G = In ⊗ g� ∈ Z

n×n�log q
q where g� = (1, 2, 4, ..., 2�log q−1). We can

also extend the column dimension to any m ≥ n�log q� by padding 0n×m′ to the
right for m′ = (m − n�log q�), i.e., G = [In ⊗ g�|0n×m′ ] ∈ Z

n×m
q .
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Lemma 2.11 (Theorem 4.1, [33]). Let q ≥ 2 be any integer, and n,m ≥ 2 be
integers with m ≥ n�log q�. There is a full-rank (of columns) matrix G ∈ Z

n×m
q

such that the lattice Λ⊥
q (G) has a publicly known trapdoor matrix TG ∈ Z

n×m

with ‖T̃G‖ ≤ √
5, where T̃G is the Gram-Schmidt orthogonalization of TG.

Theorem 2.12 (Trapdoor Generation [8,33]). There is a probabilistic poly-
nomial-time algorithm TrapGen(1n, q,m) that for all m ≥ m0 = m0(n, q) =
O(n log q), outputs (A,TA) such that A ∈ Z

n×m
q is within statistical distance

2−n from uniform, and TA is a basis for Λ⊥
q (A) satisfying ‖TA‖ ≤ O(n log q)

and ‖T̃A‖ ≤ O(
√

n log q), where T̃A denotes the Gram-Schmidt orthogonaliza-
tion of TA.

Lemma 2.13 (SampleLeft [3,19]). Let q > 2, A,B ∈ Z
n×m
q be two full rank

matrices with m > n, TA be a trapdoor matrix for A, a matrix U ∈ Z
n×�
q and s ≥

‖T̃A‖·ω(
√

log m). Then there exists a ppt algorithm SampleLeft(A,TA,B,U, s)
that outputs a matrix X ∈ Z

2m×�
q , which is distributed statistically close to

DΛU
q (A|B),s.

Lemma 2.14 (SampleRight [33]). Let q > 2, A ∈ Z
n×m
q be a full rank

matrix with m > n, R ∈ Z
m×m, U ∈ Z

n×�
q , y ∈ Zq with y �= 0, and s ≥ √

5 ·
s1(R) ·ω(

√
log m). Then there exists a ppt algorithm SampleRight(A,R, y,U, s)

that outputs a matrix X ∈ Z
2m×�
q , which is distributed statistically close to

DΛU
q (A|A·R+yG),s, where G is the gadget matrix.

2.4 Partially Hiding Predicate Encryption

We recall the notation of partially hiding predicate encryption (PHPE) proposed
by [29], which interpolates attribute-based encryption and predicate encryption.
A Partially-Hiding Predicate Encryption scheme PHPE for a pair of private-
public index spaces X ,Y, a function class F mapping X × Y to {0, 1}, and a
message space M, consists of four algorithms
(PHPE.Setup,PHPE.Enc,PHPE.KeyGen,PHPE.Dec):

PHPE.Setup(1λ,X ,Y,F ,M) → (PHPE.mpk,PHPE.msk). The setup algorithm
gets as input the security parameter λ and a description of (X ,Y,F ,M) and
outputs the public parameter PHPE.mpk, and the master key PHPE.msk.

PHPE.Enc(PHPE.mpk, (x,y), μ) → cty . The encryption algorithm gets as input
PHPE.mpk, a pair of private-public indexes (x,y) ∈ X × Y and a message
μ ∈ M. It outputs a ciphertext cty .

PHPE.KeyGen(PHPE.msk, f) → skf . The key generation algorithm gets as input
PHPE.msk and a function f ∈ F . It outputs a secret key skf .

PHPE.Dec((skf , f), (cty ,y)) → μ ∨ ⊥. The decryption algorithm gets as input
the secret key skf , a function f , and a ciphertext cty and the public part y
of the attribute vector. It outputs a message μ ∈ M or ⊥.
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Correctness. We require that for all (PHPE.mpk,PHPE.msk) ← PHPE.Setup
(1λ,X ,Y,F ,M), for all (x,y, f) ∈ X × Y × F and for all μ ∈ M,

– For 1-queries, i.e., f(x,y) = 1, Pr [PHPE.Dec((skf , f), (cty ,y)) �= μ] ≤ negl(λ).
– For 0-queries, i.e., f(x,y) = 0, Pr [PHPE.Dec((skf , f), (cty ,y)) �= ⊥] ≤ negl(λ).

Due to space limit, we defer the full security definition of PHPE to full version.

3 Definitions of Functional Encryption

We first present the syntax of functional encryption.

Definition 3.1 (Functional Encryption). Let F be a family of functions,
where each f ∈ F is defined as f : U → Y. A functional encryption (FE) scheme
for F consists of four algorithms as follows.

– Setup(1λ,F) : Given as input the security parameter λ and a description of
the function family F , the algorithm outputs a pair of master public key and
master secret key (mpk,msk). In the following algorithms, mpk is implicitly
assumed to be part of their inputs.

– KeyGen(msk, f ∈ F): Given as input the master secret key msk and a function
f ∈ F , the algorithm outputs a description key skf .

– Enc(mpk, u ∈ U) : Given as input the master public key and a message u ∈ U ,
the algorithm outputs a ciphertext ct.

– Dec(skf , ct) : Given as input the secret key skf and a ciphertext ct, the algo-
rithm outputs a value y ∈ Y or ⊥ if it fails.

A functional encryption scheme is correct, if for all security parameter λ, any
message u ∈ U and any function f ∈ F , the decryption algorithm outputs the
right outcome, i.e., Pr[Dec(skf , ctu) = f(u)] ≥ 1−negl(λ), where the probability
is taken over (mpk,msk) ← Setup(1λ,F), skf ← KeyGen(msk, f), ctu ← Enc(u).

More Fine-Grained Syntax of FE. For FE with fine-grained syntax, each
message u consists of two parts, namely u := (x, μ), where x ∈ X for some index
(or attribute) space X , and μ ∈ M for message space M. Additionally, each
function f consists of two parts, namely, f := (P, g) ∈ P × G, where P is a
predicate over the index space X , and g is a function of the message space M.
The overall function acts as the following:

f(u) :=
{

g(μ) if P(x) = 1
⊥ otherwise. (1)

Therefore, when decrypting the ciphertext ctu = Enc(mpk, (x, μ)) by skf =
KeyGen(msk, (P, g)), the algorithm outputs g(μ) if P(x) = 1, and ⊥ otherwise.
Under this fine-grained syntax, we call a key skf :=(P,g) a 1-key with respect to
an index x if P(x) = 1, or otherwise a 0-key. Intuitively, a 1-key is allowed to
open the ciphertext, but a 0-key is not.
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To differentiate the regular FE in Definition 3.1 and FE with the fine-grained
syntax, we use different types of function classes, i.e., FE for F refers to the
former and FE for P × G refers to the latter.

There are two important types of index studied in the literature – FE with
private or public index, according to whether the index x is revealed to the
decryption algorithm or not.

Our security notions simply follow from those in prior work [2,13,27]. It is
important that for the simulation-based security, we can achieve a notion where
any pre- and post-challenge key queries are allowed, while the prior work [2]
requires the adversary to commit in one-shot to all the 1-key queries right after
seeing the master public key. Due to space limit, we defer the detailed security
notions of interests on these two cases and comparisons between the notions in
related work to the full version of this paper.

4 Our New Two-Stage Sampling Method

In this section, we present our key technical contribution – a new two-stage
sampling method. At a high level, we would like to sample the following two-
stage distribution: (1) in the first stage, a random matrix A and a random vector
u are sampled, and (2) in the second stage, an arbitrary small-norm matrix R
is given, and then some short vector y is sampled conditioned on [A|AR]y = u.
The distribution then outputs (A,AR,u,y).

For a simpler case where there is no R, this task is achievable via the following
GPV two-stage sampling technique:

Lemma 4.1 ([24]). For any prime q, integers integer n ≥ 1, m ≥ 2n log q,
s ≥ ω(

√
log m), the following two distributions are statistically indistinguishable:

– (A,u,y): A $←− Z
n×m
q , u

$←− Z
n
q , y ← DΛu

q (A),s.

– (A,u,y): A $←− Z
n×m
q , y ← DZm,s, u = Ay mod q.

Intuitively, we can pre-sample a short vector y from an appropriate Gaussian
distribution and then set u = Ay. By the indistinguishability as Lemma 4.1,
we can sample the desired distribution with or without the trapdoor of A as
desired.7 Moreover, this idea can be generalized to achieve a weaker version
of our task where R is given in the first stage. The generalized idea has been
explored in the context of functional encryption (more precisely PHPE) by prior
work [2], yet the technique however, would inherently require to know R in the
first stage, resulting in a weak notion of very selective PHPE, where the adversary
needs to commit to the challenge index and 1-key query at the beginning.

7 To sample DΛu
q (A),s, the current sampling algorithm requires that s > ‖˜TA‖ω

(
√

log m). According to the best known (to our knowledge) trapdoor generation,
the smallest s we can sample would be ω(

√
n log q · √

log m), which is much larger
than the required bound for Lemma 4.1.
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To break this limitation, we design a new two-stage sampling method that
uses smudging noise over keys. Below we first present the two-stage sampling
method and then explain the idea behind it.

For any integers m > n ≥ 1, q ≥ 2, we consider the following two procedures:

Sampler-1(R, ρ, s): Given a matrix R ∈ Z
m×m and two values ρ, s ∈ R as input,

this sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)
– Sample a random matrix A $←− Z

n×m
q ;

– Sample a random vector u
$←− Z

n
q ;

2. Stage 2:
– Sample a random x ← DZm,ρ;
– Compute z = u − Ax (mod q);

– Sample a vector z′ =
(

z1

z2

)
← DΛz

q (A|AR),s, satisfying (A|AR)
(

z1

z2

)
=

z (mod q);

– Set y =
(

x + z1

z2

)
∈ Z

2m, satisfying (A|AR)y = u (modq);

– Output the tuple (A,AR,y,u).

The Sampler-1(R, ρ, s) can be implemented efficiently given the trapdoor TA

of A, using the SampleLeft algorithm as Lemma 2.13 (with larger parameters of s
than the required bound in Lemma 4.1). Next we present another way to sample
the distribution without the need of the trapdoor.

Sampler-2(R, ρ, s): Given a matrix R ∈ Z
m×m and two values ρ, s ∈ R as input,

this sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)

– Sample a random matrix A $←− Z
n×m
q ;

– Sample a random vector x ← D
Zm,

√
ρ2+s2 , and set u = Ax (modq);

2. Stage 2:
– Sample a random vector z2 ← DZm,s;

– Compute a vector y =
(

x − Rz2

z2

)
, satisfying (A|AR)y = u (modq);

– Output the tuple (A,AR,y,u).

In a nutshell, this algorithm first pre-samples a (larger) x and sets u = Ax,
without knowing R. In the second stage when R is given, it samples a smaller
z2 and adjusts y accordingly. Intuitively, the larger x servers as the smudging
noise that “overwrites” the effect of Rz2 as long as the norm of x is super-
polynomially larger. This would hide the information of R, which needs to be
kept secret as required by the proof framework in prior work [2,3]. We formalize
this intuition by the following theorem.
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Theorem 4.2. For integers q ≥ 2, n ≥ 1, sufficiently large m = O(n log q), any
R ∈ Z

m×m, s > ω(
√

log m), and ρ ≥ s
√

m‖R‖ · λω(1), the output distributions
(A,AR,y,u) of the above two procedures are statistically close.

Proof. Our high-level proof idea is to introduce an additional two-stage sampling
algorithm Sampler-3, and then prove it statistically indistinguishable from both
Sampler-1 and Sampler-2. Below, we describe the algorithm Sampler-3(R, ρ, s).

Sampler-3(R, ρ, s): Given a matrix R ∈ Z
m×m
q and two values ρ, s ∈ R as input,

this sampler conducts the following steps in two stages.

1. Stage 1: Sample a random matrix A $←− Z
n×m
q ;

2. Stage 2:
– Sample two random vectors x′ ← D

Zm,
√

ρ2+s2 , z2 ← DZm,s;

– Compute u = (A|AR)
(

x′

z2

)
(modq), and denote y =

(
x′

z2

)
∈ Z

2m;

– Output a tuple (A,AR,y,u).

Claim 4.3. For the parameters in the statement of Theorem 4.2, the output
distributions of Sampler-1 and Sampler-3 are statistically close.

Proof. We first observe that in Sampler-3, the x′ component can be decomposed
into x + z1 (within a negligible statistical distance), where x ← DZm,ρ and
z1 ← DZm,s. The decomposition holds as we have ρ > s > ηε(Zm) for some
ε = negl(λ).

Next, we prove a generalization of Lemma 4.1 that the following two distri-
butions are statistically close:

– D1:
(
A,AR,

(
z1

z2

)
,u′

)
: A $←− Z

n×m
q , u′ $←− Z

n
q ,

(
z1

z2

)
← DΛu ′

q (A|AR),s.

– D2:
(
A,AR,

(
z1

z2

)
,u′

)
: A $←− Z

n×m
q ,

(
z1

z2

)
← DZ2m,s,

u′ = (A|AR)
(

z1

z2

)
mod q.

This simply follows from Lemmas 2.6 and 2.7 – for all but q−n fraction of A,
we have ηε(Λ⊥(A|AR)) ≤ ω(

√
log m) < s; for such an A, the distribution of

(A|AR)
(

z1

z2

)
is uniformly random over Z

n
q , and the conditional distribution

of
(

z1

z2

)
given the constraint is DΛu

q (A|AR),s. Thus, we conclude that D1 and

D2 are statistically close.
The above indistinguishability implies directly that the following two distri-

butions are as well statistically indistinguishable:

– D′
1:

(
A,AR,

(
z1 + x′

z2

)
,u′ + Ax′

)
: x′ ← DZm,ρ; the other random vari-

ables are sampled the same way as D1.
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– D′
2:

(
A,AR,

(
z1 + x′

z2

)
,u′ + Ax′

)
: x′ ← DZm,ρ; the other random vari-

ables are sampled the same way as D2.

As one can apply the same randomized procedure F such that D′
1 = F (D1) and

D′
2 = F (D2), we conclude that SD(D′

1,D
′
2) ≤ SD(D1,D2) < negl(λ).

Finally, by change of variable with u = u′ + Ax′, we can easily see that the
marginal distribution of u is still uniformly random in D′

1, i.e., (u′ serves as
a one-time pad). Then it is not hard to see that D′

1 is distributed identical as
Sampler-1 and D′

2 is distributed statistically close to Sampler-3. This concludes
the proof of the claim. ��
Claim 4.4. For the parameters in the statement of Theorem 4.2, the output
distributions of Sampler-2 and Sampler-3 are statistically close.

Proof. We first observe that for both Sampler-2 and Sampler-3, the compo-
nent u can be determined (deterministically) from the first three components
(A,AR,y). Therefore, it suffices for us just to prove statistical closeness for the
first three components.

We next note that A is uniformly random and independent with the compo-
nent y in both Sampler-2 and Sampler-3. Therefore, it remains to show that the
distributions of y in these two algorithms are statistically close.

In Sampler-2, we have y =
(

x − Rz2

z2

)
, and in Sampler-3 we have y =

(
x
z2

)
.

As ρ ≥ s
√

m‖R‖ · λω(1), by the smudging lemma (i.e., Lemma 2.9) and the
Gaussian tail bound (i.e., Lemma 2.8), these two distributions are statistically
close. This concludes the proof of the claim. ��
The proof of this theorem follows directly from the above two claims. ��

5 Constructions of PHPE and FE with Private Index

In this section, we present three constructions of partially hiding predicate
encryption scheme PHPE. Particularly, we first construct a basic (1, poly)-Sel-SIM
secure PHPE in Sect. 5.1. Then, we upgrade our basic scheme to a (Q, poly)-Sel-
SIM secure PHPE for any polynomially bounded Q and general key queries in
Sect. 5.2. In Sect. 5.3, we show how to obtain a (Q, poly)-SA-SIM secure PHPE
via a simple transformation. Finally, we present the construction of (Q, poly)-
SIM-secure Functional Encryption with private input in Sect. 5.4.

Throughout the whole section, we will work on the function class F as
described below. Before presenting the class, we first define three basic func-
tions.

Definition 5.1. Let t ∈ N, q ∈ N and t = t′ log q. Define the function
PT : {0, 1}t → Z

t′
q as: on input x ∈ {0, 1}t, first parse the vector x into a

bit matrix {x′
i,j}i∈[t′],j∈[log q]. The function then computes z = (z1, . . . , zt′)� as

zi =
∑

j∈[log q] x
′
i,j · 2j−1 for i ∈ [t′] and outputs z ∈ Z

t′
q .
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Definition 5.2. Let t′ ∈ N be the dimension of vectors, q be some modulus,
and γ ∈ Zq be some parameter. Define IP : Zt′

q × Z
t′
q → Zq be the inner product

modulo q, and IPγ : Zt′
q ×Z

t′
q → {0, 1} be function such that IPγ(x,y) = 1 if and

only if γ = IP(x,y) for inputs x,y ∈ Z
t′
q .

Intuitively, PT acts as the “power-of-two” function that maps {0, 1}t to Z
t′
q ,

and IPγ acts as the comparison function between the parameter γ and the inner
product of the inputs.

Function Class F . We consider functions of the following form. Any function
in the class F , namely C : {0, 1}t ×{0, 1}� → {0, 1} can be described as Ĉ ◦ IPγ ,
where Ĉ : {0, 1}� → {0, 1}t′

is a boolean circuit of depth d, t′ log q = t, and
γ ∈ Zq. More formally, for x ∈ {0, 1}t and y ∈ {0, 1}t, the function is defined as

(IPγ ◦ Ĉ)(x,y) = IPγ

(
PT(x), Ĉ(y)

)
.

Similarly, we define a relevant function (IP ◦ Ĉ) : {0, 1}t × {0, 1}� → Zq as

(IP ◦ Ĉ)(x,y) = IP
(
PT(x), Ĉ(y)

)
= 〈PT(x), Ĉ(y)〉(modq).

Notice that our formulation is slightly different from that of the prior
work [2,29], which directly defined the input x in the domain Z

t′
q . In full ver-

sion, we show that this formulation can also achieve the same effect as the prior
work [2,29] with a simple tweak. Thus, it is without loss of generality to define
functions in this way. In fact, our modified formulation is for the need of the
transformation (from selective-security to semi-adaptive security) in Sect. 5.3,
which requires to work on a small input base, e.g., {0, 1}. We notice that both
our selective PHPE and the scheme of [2] require a super-polynomial q, so without
the modification of the input space, the selective scheme would not be compatible
with the transformation.

5.1 (1, poly)-Partially Hiding Predicate Encryption

Our basic construction of PHPE is essentially the same as that of Agrawal [2]
(her basic construction), except that we adopt our new sampling algorithm in
Sect. 4 for the key generation. Our scheme achieves (1, poly)-Sel-Sim security,
whose formal definition is deferred to the full version of this paper due to the
space limit, where one 1-key pre-challenge query is allowed. This is stronger than
the (1, poly)-very-selective scheme of Agrawal [2], which requires the adversary
to commit to both his challenge index and function of the 1-key query at the
beginning of the experiment. Below we present the construction.

PH.Setup(1λ, 1t, 1�, 1d): Given as input the security parameter λ, the length of
the private and public indices, t and � respectively, and the depth of the
circuit family d, the algorithm does the following steps:



518 Q. Lai et al.

1. Choose public parameters (q, ρ, s) as described in the following parameter
setting paragraph.

2. Choose random matrices Ai ∈ Z
n×m
q for i ∈ [�],Bj ∈ Z

n×m
q for j ∈ [t],

and P ∈ Z
n×m
q .

3. Sample (A,TA) ← TrapGen(1m, 1n, q).
4. Output the public and master secret keys.

PH.mpk = ({Ai}i∈[�], {Bj}j∈[t],A,P),PH.msk = (TA).

PH.KeyGen(PH.msk, Ĉ ◦ IPγ): Given as input a circuit description Ĉ ◦ IPγ and
the master secret key, the algorithm does the following steps:
1. Let A

̂C◦IP = Evalpk({Ai}i∈[�], {Bj}j∈[t], Ĉ ◦ IP).
2. Sample matrix J ← DZm×m,ρ, and let U = P − AJ(modq).

3. Sample
[
K1

K2

]
← SampleLeft(A,A

̂C◦IP + γG,TA,U, s) for parameter s,

i.e., the equation holds for [A|AĈ◦IP + γG] ·
[
K1

K2

]
= U(modq).

4. Let K =
[
J + K1

K2

]
, and output sk

̂C◦IPγ
= K.

PH.Enc(PH.mpk, (x,y), μ): Given as input the master public key, the private
attributes x ∈ {0, 1}t, public attributes y ∈ {0, 1}� and message μ ∈ {0, 1},
the algorithm does the following steps:

1. Sample s ← DZn,sB
and error terms e ← DZm,sB

and e′ ← DZm,sD
.

2. Let b = [0, · · · , 0, �q/2�μ]� ∈ Z
m
q . Set β0 = A�s+e, β1 = P�s+e′ +b.

3. For i ∈ [�], sample Ri
$←− {−1, 1}m×m and set ui = (Ai+yi ·G)�s+R�

i e.

4. For j ∈ [t], sample R′
j

$←− {−1, 1}m×m and set vj = (Bj + xj · G)�s +
(R′

j)
�e.

5. Output the ciphertext cty =
(
y,β0,β1, {ui}i∈[�], {vj}j∈[t]

)
.

PH.Dec(sk
̂C◦IPγ

, cty ): Given as input a secret key and a ciphertext, the algorithm
does the following steps:
1. Compute u

̂C◦IP = Evalct
({Ai,ui}i∈[�], {Bj ,vj}j∈[t], Ĉ ◦ IP,y

)
.

2. Compute η = β1 − K�
(

β0

u
̂C◦IP

)
.

3. Round each coordinate of η. If [Round(η[1]), · · · ,Round(η[m − 1])] = 0
then set μ = Round(η[m]) and output μ. Otherwise, output ⊥.

Theorem 5.3. Assuming the hardness of LWE, then the scheme described in
Sect. 5.1 is a PHPE for the class F , achieving (1, poly)-Sel-Sim security that
allows at most one 1-key pre-challenge query (and an unbounded polynomial
number of 0-keys for both pre and post-challenge queries).

Due to space limit, we defer the correctness, parameter setting and the detailed
proof of Theorem 5.3 to the full version of this paper.
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5.2 (Q, poly)-Partially Hiding Predicate Encryption

In this section, we upgrade our basic scheme to handle arbitrary pre- and post-
challenge 1-key queries up to Q times (and any unbounded polynomially many 0-
keys). Our upgrading technique is similar to that of Agrawal [2] (the Q-bounded
PHPE) except that (1) we adopt our new sampling procedure in Sect. 4 for the
key generation, (2) we use a simple secret sharing encoding over the message
in a novel way, and (3) we take a more efficient way to generate cover-free sets
by using a technique of [10]. Our resulting scheme achieves (Q, poly) simulation-
based selective security with ciphertext growth additively with O(Q), allowing
general 1-key queries up to Q times, whereas the prior scheme of Agrawal [2]
requires the adversary to be committed to all the functions of the 1-key queries
right after seeing the public parameters, and the ciphertext size grows additively
with O(Q2).

Before presenting the theorem, we first define the following set sampling
algorithm.

Lemma 5.4. Let N = Qvκ2 and v = Θ(κ). There exists an efficient sampler
SamplerSet(N,Q, v) with the following properties: (1) The sampler always outputs
a set Δ ⊂ [N ] with cardinality v; (2) For independent samples Δ1, . . . , ΔQ from
SamplerSet(N,Q, v), the sets are cover-free with probability (1−2−Ω(κ)), i.e., for
all i ∈ [Q], Pr

[
Δi\

( ⋃
j �=i Δj

)
�= φ

]
≥ 1 − 2Q · 2−Ω(κ).

Proof. We construct SamplerSet(N,Q, v) as follows.

– The sampler first defines an (arbitrary) bijection h : [N ] → [Q] × [vκ2].
– The sampler selects i ∈ [Q] uniformly random, and a random Δ′ ⊂ [vκ2] of

cardinality v.
– The sampler sets Δ = {h−1(i, j) : j ∈ Δ′}, and outputs Δ.

The analysis of SamplerSet is similar to that in [10], so we just sketch the
proof idea. We first observe that the bijection splits [N ] into Q buckets, each
with vκ2 elements. If we randomly throw Q balls to the buckets, then from
the Chernoff bound, we have with at least probability (1 − Q · 2−Ω(κ)) that all
buckets will contain at most κ balls. These buckets correspond to the first index
i. Suppose each bucket contains at most κ balls, where each ball corresponds to
a random subset in the second index. Then by Lemma 2.2, for certain bucket,
the probability that κ random subsets of size v are cover-free is at least (1 −
2−Ω(κ)). Furthermore, by union bound, we know that the independent samples
Δ1, . . . , ΔQ from SamplerSet(N,Q, v) are cover free with at least probability (1−
Q · 2−Ω(κ)).

The proof of this lemma simply follows from these two facts. ��
In general we can choose κ to be ω(log λ) to achieve negl(λ) security in the

asymptotic setting, or say λ1/3 to achieve 2−Ω(λ) security in the concrete setting.
Below we present the construction.
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QPH.Setup(1λ, 1t, 1�, 1d, 1Q): Given as input the security parameter λ, the length
of the private and public attributes, t and � respectively, the depth of the
circuit family d, and Q as the upper bound of 1-key queries, do the following:
1. Choose public parameters (q, ρ, s,N, v) as described in the following

parameter setting paragraph.
2. Choose random matrices Ai ∈ Z

n×m
q for i ∈ [�],Bj ∈ Z

n×m
q for j ∈ [t],

and Pk ∈ Z
n×m
q for k ∈ [N ].

3. Sample (A,TA) ← TrapGen(1n, q,m).
4. Output the public and master secret keys.

PH.mpk = ({Ai}i∈[�], {Bj}j∈[t],A, {Pk}k∈[N ]),PH.msk = (TA)

QPH.KeyGen(PH.msk, Ĉ ◦ IPγ): Given as input a circuit description Ĉ ◦ IPγ and
the master secret key, do the following:
1. Let A

̂C◦IP = Evalpk({Ai}i∈[�], {Bj}j∈[t], Ĉ ◦ IP).
2. Sample a random subset Δ ⊂ [N ] according sampler SamplerSet(N,Q, v)

with |Δ| = v, and compute the subset sum PΔ =
∑

k∈Δ Pk.
3. Sample matrix J ← DZm×m,ρ, and let U = PΔ − AJ.

4. Sample
[
K1

K2

]
← SampleLeft(A,A

̂C◦IP + γG,TA,U, s) for Gaussian

parameter s, i.e., the equation holds for [A|AĈ◦IP + γG] ·
[
K1

K2

]
= U

mod q.

5. Let K =
[
J + K1

K2

]
, and output sk

̂C◦IPγ
= (Δ,K).

QPH.Enc(PH.mpk, (x,y), μ): Given as input the master public key, the private
attributes x, public attributes y and message μ, do the following:
1. Sample s ← DZn,sB

and error terms e ← DZm,sB
and e′

k ← DZm,sD
for

k ∈ [N ].
2. Set β0 = A�s+e, bk = [0, · · · , 0, �q/2

v μ] ∈ Z
m
q for k ∈ [N ], and compute

the following vectors as: {β1,k = P�
k s + e′

k + bk}k∈[N ].

3. For i ∈ [�], sample Ri
$←− {−1, 1}m×m and set ui = (Ai+yi ·G)�s+R�

i e.
4. For j ∈ [t], sample R′

j
$←− {−1, 1}m×m and set vj = (Bj + xj · G)�s +

(R′
j)

�e.

5. Output the ciphertext cty =
(
y,β0, {β1,k}k∈[N ], {ui}i∈[�], {vj}j∈[t]

)
.

QPH.Dec(sk
̂C◦IPγ

, cty ): Given as input a secret key sk
̂C◦IPγ

:= (Δ,K) and a
ciphertext, do the following:
1. Compute u

̂C◦IP = Evalct
({Ai,ui}i∈[�], {Bj ,vj}j∈[t], Ĉ ◦ IP,y

)
.

2. Compute η =
∑

k∈Δ β1,k − K�
(

β0

u
̂C◦IP

)
.

3. Round each coordinate of η. If [Round(η[1]), · · · ,Round(η[m − 1])] = 0
then set μ = Round(η[m]) and output μ. Otherwise, output ⊥.

Theorem 5.5. Assuming the hardness of LWE, then the QPHPE scheme des-
cribed in Sect. 5.2 is (Q, poly)-Sel-Sim secure that allows both pre- and post-
challenge 1-key queries up to Q times and 0-key queries for an unbounded poly-
nomial times.
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Due to space limit, we defer the correctness and parameter setting to the full ver-
sion of this paper. Additionally, we just describe the simulator Sim for Theorem
5.5 here, and defer the detailed proof to the full version.
SimulatorSim(1λ,y, 1|x|, b, st):

1. Sim1(1λ,y, 1|x|): It generates all public parameters as in the real PH.Setup,

except that it runs (A′,TA′) ← TrapGen(1n+1, q,m), then parses A′ =
[
A
z�

]
,

where A ∈ Z
n×m
q , and sets A be the public matrix in PH.mpk.

2. Sim2(1λ,y, 1|x|): It generates all keys using the real PH.KeyGen.
3. Sim3(1λ,y, 1|x|, b, List): It takes as input the public attributes y, the size of the

private attributes x, the message b, and a list List. It constructs the challenge
ciphertext as follows.

– It samples ui,vj independently and uniformly from Z
m
q , and sets β0 = z,

where z is the vector prepared in Sim1.
– If (b, List) = ⊥, it computes {β1,k}k∈[N ] as follows:

• Sample random vectors β̃k from Z
m
q for k ∈ [N ].

• Choose 2Q random subsets Δ1, · · · ,ΔQ,Δ′
1, · · · ,Δ′

Q of [N ] according
sampler SamplerSet(N,Q, v), each of which has cardinality v. Note
that with an overwhelming probability, the 2Q subsets would be cover-
free under our parameter selection.

• Generate random shares {bk}k∈[N ] over Zq under the following con-
straints: for î ∈ [Q], (1)

∑
k∈Δî

bk = 0, and (2)
∑

k∈Δ′
î

bk = �q/2�.
This can be done efficiently by the cover-freeness of the subsets, using
the following standard procedure.
First, let δî be a unique index that only appears in Δî but not
the other subsets, and δ′

î
be a unique index of Δ′

î
. To generate

the random shares {bk}k∈[N ], we first sample bk randomly for all
k ∈ [N ] \ ({δî}î∈[Q] ∪ {δ′

î
}î∈[Q]), and then fix bδî

= −∑
k∈Δî\{δî} bk

for î ∈ [Q], and similarly bδ′
î
= �q/2� − ∑

k∈Δ′
î
\{δ′

î
} bk for î ∈ [Q].

• Set bk = [0, · · · , 0, bk] ∈ Z
m
q for k ∈ [N ], and sample errors {e′

k}k∈[N ]

from the distribution DZm
q ,sD

.

• Set β1,k = β̃k + bk + e′
k for k ∈ [N ].

– If b = μ and List = {Ĉ∗
î

◦ IPγî
}î∈[Q′] for some Q′ ≤ Q, it computes the

simulated ciphertext as follows.
• For î ∈ [Q′], compute u

̂C∗
î

◦IP = Evalct
({Ai,ui}i∈[�], {Bj ,vj}j∈[t], Ĉ

∗
î
◦

IP,y
)
, and let

(
Δî,K

∗
î

=

[
J∗

î
+ K∗

î,1

K∗
î,2

] )
be the keys for Ĉ∗

î
◦ IPγî

,

generated by Sim2 for the pre-challenge 1-key queries.
• Sample Q − Q′ random subsets of cardinality v according sampler
SamplerSet(N,Q, v), i.e., {Δî}î∈[Q′+1,Q], starting with the index Q′+1
and ending with Q. We know that by our setting of parameters, the
subsets {Δî}î∈[Q] are cover-free with an overwhelming probability.
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• Compute vectors {β1,k}k∈[N ] as follows:
∗ Sample random shares {μk}k∈[N ] conditioned that

∑
k∈Δî

μk =

�q/2�μ for î ∈ [Q]. Then set bk = [0, · · · , 0, μk] for k ∈ [N ].
∗ Sample random vectors {β̃k}k∈[N ] condition on the following

equations:

∑
k∈Δî

β̃k =

[
J∗

î
+ K∗

î,1

K∗
î,2

]�
·
(

β0

u
̂C∗

î
◦IP

)
for î ∈ [Q′].

The above two steps can be done efficiently due to the cover-
freeness of the subsets {Δî}î∈[Q]. The procedure is the same as
we have presented in the previous case.

∗ Sample errors {ek}k∈[N ] according DZm
q ,sD

.

∗ Set β1,k = β̃k + bk + e′
k for k ∈ [N ].

– It outputs the challenge ciphertext

ct∗ =
({ui}i∈[�], {vj}j∈[t],y,β0, {β1,k}k∈[N ]

)
.

4. Sim4(1λ,y, 1|x|): If the query is a 0-key, then it generates the key using the
real QPH.KeyGen. Otherwise, we denote function Ĉ∗

î
◦ IPγî

be the adversary’s

1-key query and (μ, Ĉ∗
î

◦ IPγî
) be the message received from the oracle O.

Here we use index î ∈ [Q] to denote the number of overall 1-key queries up to
this point. Then the simulator computes as follows.

– The simulator first considers the following two cases to determine the
parameter Δ:

• Case 1: Q′ = 0, i.e., the adversary did not make any 1-key pre-
challenge query.

∗ If μ = 0, set Δ := Δî.
∗ Else Δ := Δ′

î
, where {Δî}î∈[Q] and {Δ′

î
}î∈[Q] are the subsets

prepared by Sim3 in the previous procedure.
• Case 2: 1 ≤ Q′ < Q, i.e., the adversary had made Q′ 1-key pre-

challenge queries.
∗ Set Δ := Δî where Δî is the subset prepared by Sim3 (where μ

had been received by Sim3) in the previous procedure.
– Compute P∗

Δ =
∑

k∈Δ Pk, and compute β̃Δ =
∑

k∈Δ β̃k, where
{β̃k}k∈[N ] are the vectors prepared by Sim3 in the previous procedure.

– Compute A
̂C∗

î
◦IP = Evalpk({Ai}i∈[�], {Bj}j∈[t], Ĉ

∗
î

◦ IP), and compute

u
̂C∗

î
◦IP = Evalct

({Ai,ui}i∈[�], {Bj ,vj}j∈[t], Ĉ
∗
î

◦ IP,y
)
.

– Sample J∗
î

← DZm×m,ρ, and use TA′ to sample

[
K∗

î,1

K∗
î,2

]
← DZ2m×m,s such

that ⎡
⎣ A A

̂C∗
î

◦IP
β�

0 u�
̂C∗

î
◦IP

⎤
⎦ ·

[
K∗

î,1

K∗
î,2

]
= −

[
A
β�

0

]
· J∗

î
+

[
P∗

Δ

β̃
�
Δ

]
.
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– Output sk
̂C∗

î
◦IPγ

î

=
(
Δ,

[
J∗

î
+ K∗

î,1

K∗
î,2

] )
.

5.3 Semi-Adaptively Secure Partially Hiding Predicate Encryption

In this section, we show how to upgrade our PHPE in Sect. 5.2 from (Q, poly)-Sel-
SIM security to (Q, poly)-SA-SIM security. Technically, we follow the idea of [17],
yet in the case of bounded-length attributes (as used in this work). Below, we
present the detailed construction.

Let PHSel = {Setup,KeyGen,Enc,Dec} be a PHPE with private-public
attribute space {0, 1}t × {0, 1}�, message space M, and function class F that
is closed under bit-shift on {0, 1}t × {0, 1}� (i.e., for any f ∈ F , (r, r′) ∈
{0, 1}t×{0, 1}�, we have fr ,r ′(x,y) = f(x⊕r,y⊕r′) ∈ F). Moreover, the encryp-
tion algorithm Enc((x,y), μ) can be decomposed into three parts: Enc1(μ;R),
{Enc2(xi;R)}i∈[t], {Enc3(yi;R)}i∈[�], where R is the common random string
among the three algorithms, xi is the i-th bit of the attribute x whose bit-
length is �, and similarly yi is the i-th bit of y. Intuitively, the encryption pro-
cedure is done by three different components: with a common random string R,
Enc1 encodes the message, and both Enc2 and Enc3 encode the private/public
attributes in the bit-by-bit manner.

Additionally, let PKE = {Gen,Enc,Dec} be any semantically secure public-
key encryption. Then our transformation is defined as below.

PHSA.Setup(1λ, 1t, 1�): the algorithm takes the following steps:
– Run the underlying setup (mpkSel,mskSel) ← PHSel.Setup(1λ, 1�).
– Generate

{PKE.pki,b,PKE.ski,b}i∈[t],b∈{0,1}, {PKE.pk′
i,b,PKE.sk′

i,b}i∈[�],b∈{0,1} from
the scheme PKE.

– Sample a random string (r, r′) ∈ {0, 1}t × {0, 1}�.
– Finally output mpkSA = (mpkSel, {PKE.pki,b}i∈[t],b∈{0,1},

{PKE.pk′
i,b}i∈[�],b∈{0,1}) as the master public key, and keep private

mskSA = (mskSel, {PKE.ski,b}i∈[t],b∈{0,1}, {PKE.sk′
i,b}i∈[�],b∈{0,1}, r, r′) as

the master secret key.
Note: Here Setup might implicitly take input 1d, 1Q for circuit depth and an
upper bound of the 1-key queries. For simplicity, we omit the description.

PHSA.KeyGen(mskSA, f ∈ F) : the algorithm defines a related function
fr ,r ′(x,y) := f(x ⊕ r,y ⊕ r′), and runs skSel,f ← PHSel(mskSel, fr ,r ′). Then
it returns (r, r′, {PKE.ski,ri

}i∈[t], {PKE.sk′
i,r′

i
}i∈[�], skSel,f ) as the secret key.

PHSA.Enc(mpkSA, (x,y), μ) : the algorithms runs the following steps:
– Sample a random string R.
– Run ct1 ← PHSel.Enc1(μ;R), {Li,b ← PHSel.Enc2(xi ⊕ b;R)}i∈[t],b∈{0,1},

and {L′
i,b ← PHSel.Enc3(yi ⊕ b;R)}i∈[�],b∈{0,1}.

– Generate {cti,b ← PKE.Enc(PKE.pki,b, Li,b)}i∈[t],b∈{0,1} and {ct′i,b ←
PKE.Enc(PKE.pk′

i,b, L
′
i,b)}i∈[�],b∈{0,1}.

– Finally, output the ciphertext as ct = (ct1, {cti,b}i∈[t],b∈{0,1},
{ct′i,b}i∈[�],b∈{0,1}).

PHSA.Dec(skSA,f ,y, ct) :the algorithm runs the following steps:
– Parse ct = (ct1, {cti,b}i∈[t],b∈{0,1}, {ct′i,b}i∈[�],b∈{0,1}).
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– Run the PKE decryption on {cti,ri
}i∈[t] and {ct′i,r′

i
}i∈[�]. Then obtain

{Li,ri
}i∈[t] and {L′

i,r′
i
}i∈[�].

– View (ct1, {Li,ri
}i∈[t], {L′

i,r′
i
}i∈[�]) as the ciphertext of PHSel, and decrypt

it with skSel,f . Output the decrypted outcome.

Theorem 5.6. Assume that PKE is semantically secure, and PHSel is (q1, q2)-
Sel-SIM secure for private-public attribute space {0, 1}t × {0, 1}�, message space
M, and function class F that is closed under bit-shift on {0, 1}t × {0, 1}�. Then
the scheme PHSA is (q1, q2)-SA-SIM secure for the same attribute and message
spaces and the function class F .

Due to space limit, we defer the correctness and the proof of Theorem 5.6 to the
full version of this paper.

5.4 (Q, poly)-SIM-secure Functional Encryption

In this section, we present the technique from [2], showing that a (Q, poly)-SIM-
secure QPHPE with a fully homomorphic encryption scheme implies a (Q, poly)-
SIM-secure FE, which is what we desire. Due to space limit, we just describe the
theorem from [2], and defer the detailed procedure to the full version.

Theorem 5.7. Let C be the family of bounded depth circuits, QPHPE be a
(Q, poly)-SA-SIM secure partially-hiding predicate encryption scheme for F as
defined in Sect. 5, and FHE be a secure fully-homomorphic encryption scheme.
Then there exists a functional encryption that is (Q, poly)-SA-SIM secure for the
class C × {I}.

We notice that the required QPHPE can be instantiated by Theorems 5.5
and 5.6. Thus, we obtain the following corollary to summarize the final result.

Corollary 5.8. Assuming the hardness of LWE for a sub-exponential modulus-
to-noise ratio. Then for any bounded polynomial Q = poly(λ), there exists a
(Q, poly)-SA-SIM secure FE for the class C × {I}.

6 Constructions of FE with Public Index

We notice that our two-stage sampling technique in Sect. 4 can be further used
to derived several new feasibilities of FE with public index for the following two
function classes.

– The first scheme is IB-FEIP that achieves (1, poly)-AD-IND security, i.e., a
public-index FE for the class IB × IP. Detailed definitions are deferred to the
full version. This particularly improves the prior analysis of Abdalla et al. [1],
who can only achieve the selectively security. As we discussed in full version
of this paper, (1, poly)-AD-IND is the best we can achieve for the IB predicates
as there is only one 1-key corresponding to the challenge index.
Our construction follows the same design paradigm as [1], except we use the
adaptively secure encoding of matrices by [3] and adopt our new sampling
algorithm in Sect. 4 for the key generation.
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– The second scheme is a generalization of the first scheme that achieves
(Q, poly)-SA-IND secure AB-FEIP for any polynomially bounded Q, for general
predicate classes (i.e., bounded depth boolean circuits). This new feasibility
result is beyond what the prior technique of [1] can achieve.

Due to space limit, we defer the detailed constructions and security proofs
of our new IB-FEIP and AB-FEIP to the full version.
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Abstract. Lattice-based algorithms in cryptanalysis often search for a
target vector satisfying integer linear constraints as a shortest or closest
vector in some lattice. In this work, we observe that these formulations
may discard non-linear information from the underlying application that
can be used to distinguish the target vector even when it is far from being
uniquely close or short.

We formalize lattice problems augmented with a predicate distinguish-
ing a target vector and give algorithms for solving instances of these
problems. We apply our techniques to lattice-based approaches for solv-
ing the Hidden Number Problem, a popular technique for recovering
secret DSA or ECDSA keys in side-channel attacks, and demonstrate
that our algorithms succeed in recovering the signing key for instances
that were previously believed to be unsolvable using lattice approaches.
We carried out extensive experiments using our estimation and solving
framework, which we also make available with this work.

1 Introduction

Lattice reduction algorithms [34,51,59,70,71] have found numerous applications
in cryptanalysis. These include several general families of cryptanalytic appli-
cations including factoring RSA keys with partial information about the secret
key via Coppersmith’s method [26,62], the (side-channel) analysis of lattice-
based schemes [4,8,27,42,55], and breaking (EC)DSA and Diffie-Hellman via
side-channel attacks using the Hidden Number Problem.

In the usual statement of the Hidden Number Problem (HNP) [21], the adver-
sary learns some most significant bits of random multiples of a secret integer
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modulo some known integer. This information can be written as integer-linear
constraints on the secret. The problem can then be formulated as a variant of the
Closest Vector Problem (CVP) known as Bounded Distance Decoding (BDD),
which asks one to find a uniquely closest vector in a lattice to some target point
t. A sufficiently strong lattice reduction will find this uniquely close vector, which
can then be used to recover the secret.

The requirement of uniqueness constrains the instances that can be success-
fully solved with this approach. In short, a fixed instance of the problem is not
expected to be solvable when few samples are known, since there are expected
to be many spurious lattice points closer to the target than the desired solution.
As the number of samples is increased, the expected distance between the tar-
get and the lattice shrinks relative to the normalized volume of the lattice, and
at some point the problem is expected to become solvable. For some choices of
input parameters, however, the problem may be infeasible to solve using these
methods if the attacker cannot compute a sufficiently reduced lattice basis to
find this solution; if the number of spurious non-solution vectors in the lattice
does not decrease fast enough to yield a unique solution; or if simply too few
samples can be obtained. In the context of the Hidden Number Problem, the
expected infeasibility of lattice-based algorithms for certain parameters has been
referred to as the “lattice barrier” in numerous works [12,30,64,73,77].

Nevertheless, the initial cryptanalytic problem may remain well defined even
when the gap between the lattice and the target is not small enough to expect a
unique closest vector. This is because formulating a problem as a HNP instance
omits information: the cryptanalytic applications typically imply non-linear con-
straints that restrict the solution, often to a unique value. For example, in the
most common application of the HNP to side-channel attacks, breaking ECDSA
from known nonce bits [18,43], the desired solution corresponds to the discrete
logarithm of a public value that the attacker knows. We may consider such addi-
tional non-linear constraints as a predicate h(·) that evaluates to true on the
unique secret and false elsewhere. Thus, we may reformulate the search problem
as a BDD with predicate problem: find a vector v in the lattice within some
radius R to the target t such that f(v − t) := h(g(v − t)) returns true, where
g(·) is a function extracting a candidate secret s from the vector v − t.

Contributions
In this work, we define the BDD with predicate problem and give algorithms to
solve it. To illustrate the performance of our algorithms, we apply them to the
Hidden Number Problem lattices arising from side-channel attacks recovering
ECDSA keys from known nonce bits.

In more detail, in Sect. 3, we give a simple refinement of the analysis of the
“lattice barrier” and show how this extends the range of parameters that can be
solved in practice.

In Sect. 4 we define the Bounded Distance Decoding with predicate
(BDDα,f(·)) and the unique Shortest Vector with predicate (uSVPf(·)) prob-
lems and mention how Kannan’s embedding enables us to solve the former via
the latter.
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We then give two algorithms for solving the unique Shortest Vector with
predicate problem in Sect. 5. One is based on lattice-point enumeration and in
principle supports any norm R of the target vector. This algorithm exploits
the fact that enumeration is exhaustive search inside a given radius. Our other
algorithm is based on lattice sieving and is expected to succeed when R ≤ √

4/3·
gh(Λ) where gh(Λ) is the expected norm of a shortest vector in a lattice Λ under
the Gaussian heuristic (see below).1 This algorithm makes use of the fact that a
sieve produces a database of short vectors in the lattice, not just a single shortest
vector. Thus, the key observation exploited by all our algorithms is that efficient
SVP solvers are expected to consider every vector of the lattice within some
radius R. Augmenting these algorithms with an additional predicate check then
follows naturally. In both algorithms the predicate is checked (R/gh(Λ))d+o(d)

times, where d is the dimension of the lattice, which is asymptotically smaller
than the cost of the original algorithms.

In Sect. 6, we experimentally demonstrate the performance of our algorithms
in the context of ECDSA signatures with partial information about nonce bits.
Here, although the lattice-based HNP algorithm has been a well-appreciated tool
in the side-channel cryptanalysis community for two decades [17,24,44,53,61,63,
68,69,78], we show how our techniques allow us to achieve previous records with
fewer samples, bring problem instances previously believed to be intractable into
feasible range, maximize the algorithm’s success probability when only a fixed
number of samples are available, increase the algorithm’s success probability in
the presence of noisy data, and give new tradeoffs between computation time
and sample collection. We also present experimental evidence of our techniques’
ability to solve instances given fewer samples than required by the information
theoretic limit for lattice approaches. This is enabled by our predicate uniquely
determining the secret.

Our experimental results are obtained using a Sage [72]/Python framework
for cost-estimating and solving uSVP instances (with predicate). This framework
is available at [7] and attached to the electronic version of this work. We expect
it to have applications beyond this work.

Related work
There are two main algorithmic approaches to solving the Hidden Number
Problem in the cryptanalytic literature. In this work, we focus on lattice-based
approaches to solving this problem. An alternative approach, a Fourier analysis-
based algorithm due to Bleichenbacher [18], has generally been considered to be
more robust to errors, and able to solve HNP instances with fewer bits known,
but at the cost of requiring orders of magnitude more samples and a much higher
computational cost [12,13,30,73]. Our work can be viewed as extending the
applicability of lattice-based HNP algorithms well into parameters believed to be
only tractable to Bleichenbacher’s algorithm, thus showing how these instances

1 We note that this technique conflicts with “dimensions for free” [5,32] and thus the
expected performance improvement when arbitrarily many samples are available is
smaller compared to state-of-the-art sieving (see Sect. 5.3 for details).
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can be solved using far fewer samples and less computational time in practice
(see Table 3), while gracefully handling input errors (see Fig. 6).

In particular, our work can be considered a systematization, formalization,
and generalization of folklore (and often ad hoc) techniques in the literature on
lattice-reduction aided side-channel attacks such as examining the entire reduced
basis to find the target vector [22,44] or the technique briefly mentioned in [17]
of examining candidates after each “tour” of BKZ (BKZ is described below).2

More generally, our work can be seen as a continuation of a line of recent
works that “open up” SVP oracles, i.e. that forgo treating (approximate) SVP
solvers as black boxes inside algorithms. In particular, a series of recent works
have taken advantage of the exponentially many vectors produced by a sieve:
in [10] the authors use the exponentially many vectors to cost the so-called
“dual attack” on LWE [67]; in [5,32,50] the authors exploit the same property
to improve sieving algorithms and block-wise lattice reduction; and in [31] the
authors use this fact to compute approximate Voronoi cells.

Our work may also be viewed in line with [27], which augments a BDD solver
for LWE with “hints” by transforming the input lattice. While these hints must
be linear(izable) (with noise), the authors demonstrate the utility of integrating
such hints to reduce the cost of finding a solution. On the one hand, our approach
allows us to incorporate arbitrary, non-linear hints, as long as these can be
expressed as an efficiently computable predicate; this makes our approach more
powerful. On the other hand, the scenarios in which our techniques can be applied
are much more restricted than [27]. In particular, [27] works for any lattice
reduction algorithm and, specifically, for block-wise lattice reduction. Our work,
in contrast, does not naturally extend to this setting; this makes our approach
less powerful in comparison. We discuss this in Sect. 5.4.

2 Preliminaries

We denote the logarithm with base two by log(·). We start indexing at zero.

2.1 Lattices

A lattice Λ is a discrete subgroup of R
d. When the rows b0, . . . , bd−1 of B

are linearly independent we refer to it as the basis of the lattice Λ(B) =
{∑

vi · bi | vi ∈ Z}, i.e. we consider row-representations for matrices in this work.
The algorithms considered in this work make use of orthogonal projec-

tions πi : R
d �→ span (b0, . . . , bi−1)

⊥ for i = 0, . . . , d − 1. In particular π0(·)
is the identity. The Gram–Schmidt orthogonalization (GSO) of B is B∗ =
(b∗

0, . . . , b
∗
d−1), where the Gram–Schmidt vector b∗

i is πi(bi). Then b∗
0 = b0 and

b∗
i = bi − ∑i−1

j=0 μi,j · b∗
j for i = 1, . . . , d − 1 and μi,j = 〈bi,b

∗
j 〉

〈b∗
j ,b∗

j 〉 . Norms in this

2 For the purposes of this work, the CVP technique used in [17] is not entirely clear
from the account given there. We confirmed with the authors that is the analogous
strategy to their SVP approach: CVP enumeration interleaved with tours of BKZ.
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work are Euclidean and denoted ‖ · ‖. We write λi(Λ) for the radius of the small-
est ball centred at the origin containing at least i linearly independent lattice
vectors, e.g. λ1(Λ) is the norm of a shortest vector in Λ.

The Gaussian heuristic predicts that the number |Λ ∩ B| of lattice points
inside a measurable body B ⊂ R

n is approximately equal to Vol(B)/Vol(Λ).
Applied to Euclidean d-balls, it leads to the following prediction of the length of
a shortest non-zero vector in a lattice.

Definition 1 (Gaussian heuristic). We denote by gh(Λ) the expected first
minimum of a lattice Λ according to the Gaussian heuristic. For a full rank
lattice Λ ⊂ R

d, it is given by:

gh(Λ) =
(

Vol(Λ)
Vol(Bd(1))

)1/d

=
Γ

(
1 + d

2

)1/d

√
π

· Vol(Λ)1/d ≈
√

d

2πe
· Vol(Λ)1/d

where Bd(R) denotes the d-dimensional Euclidean ball with radius R.

2.2 Hard Problems

A central hard problem on lattices is to find a shortest vector in a lattice.

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice basis B,
find a shortest non-zero vector in Λ(B).

In many applications, we are interested in finding closest vectors, and we have
the additional guarantee that our target vector is not too far from the lattice.
This is known as Bounded Distance Decoding.

Definition 3 (α-Bounded Distance Decoding (BDDα)). Given a lattice
basis B, a vector t, and a parameter 0 < α such that the Euclidean distance
between t and the lattice dist(t,B) < α · λ1(Λ(B)), find the lattice vector v ∈
Λ(B) which is closest to t.

To guarantee a unique solution, it is required that α < 1/2. However, the
problem can be generalized to 1/2 ≤ α < 1, where we expect a unique solution
with high probability. Asymptotically, for any polynomially-bounded γ ≥ 1 there
is a reduction from BDD1/(

√
2 γ) to uSVPγ [14]. The unique shortest vector

problem (uSVP) is defined as follows:

Definition 4 (γ-unique Shortest Vector Problem (uSVPγ)). Given a lat-
tice Λ such that λ2(Λ) > γ · λ1(Λ) find a nonzero vector v ∈ Λ of length λ1(Λ).

The reduction is a variant of the embedding technique, due to Kannan [46],
that constructs

L =
(
B 0
t τ

)

where τ is some embedding factor (the reader may think of τ = E

[
‖t − v‖/

√
d
]
).

If v is the closest vector to t then the lattice Λ(L) contains (t − v, τ) which is
small.
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2.3 Lattice Algorithms

Enumeration

[2,33,45,58,66,71] solves the following problem: Given some matrix B and some
bound R, find v =

∑d−1
i=0 ui · bi with ui ∈ Z where at least one ui �= 0 such that

‖v‖2 ≤ R2. By picking the shortest vector encountered, we can use lattice-point
enumeration to solve the shortest vector problem. Enumeration algorithms make
use of the fact that the vector v can be rewritten with respect to the Gram–
Schmidt basis:

v =
d−1∑

i=0

ui · bi =
d−1∑

i=0

ui ·
⎛

⎝b∗
i +

i−1∑

j=0

μi,j · b∗
j

⎞

⎠ =
d−1∑

j=0

⎛

⎝uj +
d−1∑

i=j+1

ui · μij

⎞

⎠ · b∗
j .

Since all the b∗
i are pairwise orthogonal, we can express the norms of projec-

tions of v simply as

‖πk (v) ‖2 =

∥∥∥∥∥
∥

d−1∑

j=k

⎛

⎝uj +
d−1∑

i=j+1

ui μi,j

⎞

⎠ b∗
j

∥∥∥∥∥
∥

2

=
d−1∑

j=k

⎛

⎝uj +
d−1∑

i=j+1

ui μi,j

⎞

⎠

2

· ‖b∗
j‖2.

In particular, vectors do not become longer by projecting. Enumeration algo-
rithms exploit this fact by projecting the problem down to a one dimen-
sional problem of finding candidate πd(v) such that ‖πd (v) ‖2 ≤ R2. Each
such candidate is then lifted to a candidate πd−1(v) subject to the constraint
‖πd−1 (v) ‖2 ≤ R2.

That is, lattice-point enumeration is a depth-first tree search through a tree
defined by the ui. It starts by picking a candidate for ud−1 and then explores
the subtree “beneath” this choice. Whenever it encounters an empty interval of
choices for some ui it abandons this branch and backtracks. When it reaches the
leaves of the tree, i.e. u0 then it compares the candidate for a full solution to
the previously best found and backtracks.

Lattice-point enumeration is expected [40] to consider

Hk =
1
2

· Vol(Bd−k(R))
∏d−1

i=k ‖b∗
i ‖

nodes at level k and
∑d−1

k=0 Hk nodes in total. In particular, enumeration finds
the shortest non-zero vector in a lattice in dd/(2e)+o(d) time and polynomial
memory [40]. It was recently shown that when enumeration is used as the SVP
oracle inside block-wise lattice reduction the time is reduced to dd/8+o(d) [2].
However, the conditions for this improvement are mostly not met in our setting.
Significant gains can be made in lower-order terms by considering a different Ri

on each level 0 ≤ i < d instead of a fixed R. Since this prunes branches of the
search tree that are unlikely to lead to a solution, this is known as “pruning”
in the literature. When the Ri are chosen such that the success probability is
exponentially small in d we speak of “extreme pruning” [35].
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A state-of-the-art implementation of lattice-point enumeration can be found
in FPLLL [74]. This is the implementation we adapt in this work. It visits about
2

d log d
2e −0.995 d+16.25 nodes to solve SVP in dimension d [2].

Sieving
[1,15,16,41,49,57] takes as input a list of lattice points, L ⊂ Λ, and searches for
integer combinations of these points that are short. If the initial list is sufficiently
large, SVP can be solved by performing this process recursively. Each point in
the initial list can be sampled at a cost polynomial in d [48]. Hence the initial
list can be sampled at a cost of |L|1+o(1).

Sieves that combine k points at a time are called k-sieves; 2-sieves take
integer combinations of the form u ± v with u,v ∈ L and u �= ±v. Heuris-
tic sieving algorithms are analyzed under the heuristic that the points in L
are independently and identically distributed uniformly in a thin spherical
shell. This heuristic was introduced by Nguyen and Vidick in [65]. As a fur-
ther simplification, it is assumed that the shell is very thin and normalized
such that L is a subset of the unit sphere in R

d. As such, a pair (u,v) is
reducible if and only if the angle between u and v satisfies θ(u,v) < π/3, where
θ(u,v) = arccos (〈u,v〉/(‖u‖ · ‖v‖)), arccos(x) ∈ [0, π]. Under these assump-

tions, we require |L| ≈ √
4/3

d
in order to see “collisions”, i.e. reductions. Lattice

sieves are expected to output a list of (4/3)d/2+o(d) short lattice vectors [5,32].
The asymptotically fastest sieve has a heuristic running time of 20.292 d+o(d) [15].

We use the performant implementations of lattice sieving that can be found
in G6K [5,76] in this work, which includes a variant of [16] (“BGJ1”) and [41]
(3-Sieve). BGJ1 heuristically runs in time 20.349 d+o(d) and memory 20.205 d+o(d).
The 3-Sieve heuristically runs in time 20.372 d+o(d) and memory 20.189 d+o(d).3

BKZ
[70,71] can be used to solve the unique shortest vector problem and thus BDD.
BKZ makes use of an oracle that solves the shortest vector problem in dimension
β. This oracle can be instantiated using enumeration or sieving. The algorithm
then asks the oracle to solve SVP on the first block of dimension β of the input
lattice, i.e. of the lattice spanned by b0, . . . , bβ−1. This vector is then inserted into
the basis and the algorithm asks the SVP oracle to return a shortest vector for the
block π1 (b1) , . . . , π1 (bβ). The algorithm proceeds in this fashion until it reaches
πd−2 (bd−2) , πd−2 (bd−1). It then starts again by considering b0, . . . , bβ−1. One
such loop is called a “tour” and the algorithm will continue with these tours until
no more (or only small changes) are made to the basis. For many applications a
small, constant number of tours is sufficient for the basis to stabilize.

The key parameter for BKZ is the block size β, i.e. the maximal dimension
of the underlying SVP oracle, and we write “BKZ-β”. The expected norm of the
shortest vector found by BKZ-β and inserted into the basis as b0 for a random

3 In G6K the 3-Sieve is configured to use a database of size 20.205 d+o(d) by default,
which lowers its time complexity.
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lattice is ‖b0‖ ≈ δd−1
β · Vol(Λ)1/d for some constant δβ ∈ O (

β1/(2 β)
)

depending
on β.4

In [10] the authors formulate a success condition for BKZ-β solving uSVP on a
lattice Λ in the language of solving LWE. Let e be the unusually short vector in the
lattice and let c∗

i be the Gram–Schmidt vectors of a typical BKZ-β reduced basis of
a lattice with the same volume and dimension as Λ. Then in [10] it is observed that
when BKZ considers the last full block πd−β (bd−β) , . . . πd−β (bd−1) it will insert
πd−β (e) at index d − β if that projection is the shortest vector in the sublattice
spanned by the last block. Thus, when

‖πd−β (e) ‖ < ‖c∗
d−β‖ (1)

≈
√

β/d · E[‖e‖] < δ2β−d−1
β · Vol(Λ)1/d (2)

we expect the behavior of BKZ-β on our lattice Λ to deviate from that of a
random lattice. This situation is illustrated in Fig. 1. Indeed, in [6] it was shown
that once this event happens, the internal LLL calls of BKZ will “lift” and recover
e. Thus, these works establish a method for estimating the required block size
for BKZ to solve uSVP instances. We use this estimate to choose parameters in
Sect. 6: given a dimension d, volume Vol(Λ) and E[‖e‖], we pick the smallest β
such that Inequality (2) is satisfied. Note, however, that in small dimensions this
reasoning is somewhat complicated by “double intersections” [6] and low “lifting”
probability [27]; as a result estimates derived this way are pessimistic for small
block sizes. In that case, the model in [27] provides accurate predictions. Instead
of only running BKZ, a performance gain can be achieved by following BKZ
with one SVP/CVP call in a larger dimension than the BKZ block size [5,53].

2.4 The Hidden Number Problem

In the Hidden Number Problem (HNP) [21], there is a secret integer α and a
public modulus n. Information about α is revealed in the form of what we call
samples: an oracle chooses a uniformly random integer 0 < ti < n, computes
si = ti · α mod n where the modular reduction is taken as a unary operator so
that 0 ≤ si < n, and reveals some most significant bits of si along with ti. We
will write this as ai + ki = ti · α mod n, where ki < 2� for some � ∈ Z that is a
parameter to the problem. For each sample, the adversary learns the pair (ti, ai).
We may think of the Hidden Number Problem as 1-dimensional LWE [67].

2.5 Breaking ECDSA from Nonce Bits

Many works in the literature have exploited side-channel information about
(EC)DSA nonces by solving the Hidden Number Problem (HNP), e.g. [12,19,

4 The constant is typically defined as ‖b0‖ ≈ δd
β ·Vol(Λ)1/d in the literature. From the

perspective of the (worst-case) analysis of underlying algorithms, though, normaliz-
ing by d − 1 rather than d is appropriate.
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Fig. 1. BKZ−β uSVP Success Condition. Expected norms for lattices of dimension
d = 183 and volume qm−n after BKZ-β reduction for LWE parameters n = 65, m =
182, q = 521, standard deviation σ = 8/

√
2π and β = 56. BKZ is expected to succeed

in solving a uSVP instance when the two curves intersect at index d − β as shown,
i.e. when Inequality (1) holds. Reproduced from [6].

44,53,61,63,68,69,73,78], since the seminal works of Bleichenbacher [18] and
Howgrave-Graham and Smart [43]. The latter solves HNP using lattice reduc-
tion; the former deploys a combinatorial algorithm that can be cast as a variant of
the BKW algorithm [3,20,39,47]. The latest in this line of research is [13] which
recovers a key from less than one bit of the nonce using Bleichenbacher’s algo-
rithm. More recently, in [54] the authors found the first practical attack scenario
that was able to make use of Boneh and Venkatesan’s [21] original application
of the HNP to prime-field Diffie-Hellman key exchange.

Side-channel attacks
Practical side-channel attacks against ECDSA typically run in two stages. First,
the attacker collects many signatures while performing side-channel measure-
ments. Next, they run a key recovery algorithm on a suitably chosen subset of
the traces. Depending on the robustness of the measurements, the data collection
phase can be quite expensive. As examples, in [60] the authors describe having
to repeat their attack 10,000 to 20,000 times to obtain one byte of information;
in [37] the authors measured 5,000 signing operations, each taking 0.1 s, to obtain
114 usable traces; in [61] the authors describe generating 40,000 signatures in
80 min in order to obtain 35 suitable traces to carry out an attack.

Thus in the side-channel literature, minimizing the amount of data required
to mount a successful attack is often an important metric [44,68]. Using our
methods as described below will permit more efficient overall attacks.

ECDSA
The global parameters for an ECDSA signature are an elliptic curve E(Fp) and
a generator point G on E of order n. A signing key is an integer 0 ≤ d < n,
and the public verifying key is a point dG. To generate an ECDSA signature
on a message hash h, the signer generates a random integer nonce k < n, and
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computes the values r = (kG)x where x subscript is the x coordinate of the
point, and s = k−1 · (h + d · r) mod n. The signature is the pair (r, s).

ECDSA as a HNP
In a side-channel attack against ECDSA, the adversary may learn some of the
most significant bits of the signature nonce k. Without loss of generality, we will
assume that these bits are all 0. Then rearranging the formula for the ECDSA
signature s, we have −s−1 · h + k ≡ s−1 · r · d mod n, and thus a HNP instance
with ai = −s−1 · h, ti = s−1 · r, and α = d.

Solving the HNP with lattices
Boneh and Venkatesan give this lattice for solving the Hidden Number Problem
with a BDD oracle: ⎡

⎢⎢
⎢⎢⎢
⎣

n 0 0 · · · 0 0
0 n 0 · · · 0 0

... · · ·
0 0 0 · · · n 0
t0 t1 t2 · · · tm−1 1/n

⎤

⎥⎥
⎥⎥⎥
⎦

The target is a vector (a0, . . . , am−1, 0) and the lattice vector

(t0 · α mod n, . . . , tm−1 · α mod n, α/n)

is within
√

m + 1 · 2� of this target when |ki| < 2�.
Most works solve this BDD problem via Kannan’s embedding i.e. by con-

structing the lattice generated by the rows of
⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

n 0 0 · · · 0 0 0
0 n 0 · · · 0 0 0

...
...

0 0 0 · · · n 0 0
t0 t1 t2 · · · tm−1 2�/n 0
a0 a1 a2 · · · am−1 0 2�

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

This lattice contains a vector

(k0, k1, . . . , km−1, 2� · α/n, 2�)

that has norm at most
√

m + 2·2�. This lattice also contains (0, 0, . . . , 0, 2�, 0), so
the target vector is not generally the shortest vector. There are various improve-
ments we can make to this lattice.
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Reducing the size of k by one bit. In an ECDSA input, k is generally positive,
so we have 0 ≤ ki < 2�. The lattice works for any sign of k, so we can reduce
the bit length of k by one bit by writing k′

i = ki − 2�−1. This modification
provides a significant improvement in practice and is described in [63], but is
not consistently taken advantage of in practical applications.

Eliminating α. Given a set of input equations a0+k0 ≡ t0 ·α mod n, . . . , am−1+
km−1 = tm−1 · α mod n, we can eliminate the variable α and end up with a new
set of equations a′

1 + k1 ≡ t′1 · k0 mod n, . . . , a′
m−1 + km−1 ≡ t′m−1 · k0 mod n.

For each relation, t−1
i · (ai + ki) ≡ t−1

0 · (a0 + k0) mod n; rearranging yields

ai − ti · t−1
0 · a0 + ki ≡ ti · t−1

0 · k0 mod n.

Thus our new problem instance has m − 1 relations with a′
i = ai − ti · t−1

0 · a0

and t′i = ti · t−1
0 .

This has the effect of reducing the dimension of the above lattice by 1, and
also making the bounds on all the variables equal-sized, so that normalization is
not necessary anymore, and the vector (0, 0, . . . , 0, 2�, 0) is no longer in the lat-
tice. Thus, the new target (k1, k2, . . . , km−1, k0, 2�) is expected to be the unique
shortest vector (up to signs) in the lattice for carefully chosen parameters. We
note that this transformation is analogous to the normal form transformation for
LWE [11]. From a naive examination of the determinant bounds, this transfor-
mation would not be expected to make a significant difference in the feasibility
of the algorithm, but in the setting of this paper, where we wish to push the
boundaries of the unique shortest vector scenario, it is crucial to the success of
our techniques.

Let w = 2�−1. With the above two optimizations, our new lattice Λ is gener-
ated by: ⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

n 0 0 · · · 0 0 0
0 n 0 · · · 0 0 0

...
...

0 0 0 · · · n 0 0
t′1 t′2 t′3 · · · t′m−1 1 0
a′
1 a′

2 a′
3 · · · a′

m−1 0 w

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

and the target vector is vt = (k1 − w, k2 − w, . . . , km−1 − w, k0 − w,w).
The expected solution comes from multiplying the second to last basis vector

with the secret (in this case, k0), adding the last vector, and reducing modulo
n as necessary. The entries 1 and w are normalization values chosen to ensure
that all the coefficients of the short vector will have the same length.

Different-sized kis. We can adapt the construction to different-sized ki satisfying
|ki| < 2�i by normalizing each column in the lattice by a factor of 2�max/2�i [17].
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3 The “Lattice Barrier”

It is believed that lattice algorithms for the Hidden Number Problem “become
essentially inapplicable when only a very short fraction of the nonce is known
for each input sample. In particular, for a single-bit nonce leakage, it is believed
that they should fail with high probability, since the lattice vector corresponding
to the secret is no longer expected to be significantly shorter than other vectors
in the lattice” [13]. Aranha et al. [12] elaborate on this further: “there is a hard
limit to what can be achieved using lattice reduction: due to the underlying
structure of the HNP lattice, it is impossible to attack (EC)DSA using a single-
bit nonce leak with lattice reduction. In that case, the ‘hidden lattice point’
corresponding to the HNP solution will not be the closest vector even under the
Gaussian heuristic (see [64]), so that lattice techniques cannot work.” Similar
points are made in [30,73,77]; in particular, in [77] it is estimated that a 3-bit
bias for a 256-bit curve is not easy and two bits is infeasible, and a 5- or 4-bit
bias for a 384-bit curve is not easy and three bits is infeasible.

To see how prior work derived this “lattice barrier”, note that the volume of
the lattice is

Vol (Λ) = nm−1 · w

and the dimension is m + 1. According to the Gaussian heuristic, we expect the
shortest vector in the lattice to have norm

gh (Λ) ≈ Γ (1 + (m + 1)/2)1/(m+1)

√
π

· Vol(Λ)1/(m+1)

≈
√

m + 1
2π e

· (
nm−1 · w

)1/(m+1)
.

Also, observe that the norm of the target vector v satisfies

‖v‖ ≤ √
m + 1 · w. (3)

A BDD solver is expected to be successful in recovering v when ‖v‖ < gh(Λ).
We give a representative plot in Fig. 2 comparing the Gaussian heuristic gh(Λ)
against the upper bound of the target vectors in Eq. (3) for 1, 2, and 3-bit biases
for a 256-bit ECDSA key recovery problem. The resulting lattice dimensions
explain the difficulty estimates of [77].

In this work, we make two observations. First, the upper bound for the target
vector is a conservative estimate for its length. Since heuristically our problem
instances are randomly sampled, we will use the expected norm of a uniformly
distributed vector instead. This is only a constant factor different from the upper
bound above, but this constant makes a significant difference in the crossover
points.

The target vector v we construct after the optimizations above has expected
squared norm

E
[‖v‖2 ]

= E

[(
m∑

i=1

(ki − w)2
)

+ w2

]

= m · E
[
(ki − w)2

]
+ w2
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Fig. 2. Illustrating the “lattice barrier”. BDD is expected to become feasible when the
length of the target vector ‖v‖ is less than the Gaussian heuristic gh(Λ); we plot the
upper bound in Eq. (3) for log(n) = 256 against varying number of samples m.

Fig. 3. Updated estimates for feasibility of lattice algorithms. We plot the expected
length of the target vector ‖v‖ against the Gaussian heuristic for varying number
of samples m for log(n) = 256. Compared to Fig. 2, the crossover points result in
much more tractable instances. We can further decrease the lattice dimension using
enumeration and sieving with predicates (see Sect. 4).

with

E

[
(ki − w)2

]
= 1/(2w) ·

2w−1∑

i=0

(i − w)2

= 1/(2w) ·
2w−1∑

i=0

i2 − 1/(2w)
2w−1∑

i=0

2 i · w + 1/(2w)
2w−1∑

i=0

w2

= w2/3 + 1/6

and we arrive at

E
[‖v‖2 ]

= E

[(
m∑

i=1

(ki − w)2
)

+ w2

]

= m · w2/3 + m/6 + w2. (4)
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Using this condition, we observe that ECDSA key recovery problems previ-
ously believed to be quite difficult to solve with lattices turn out to be within
reach, and problems believed to be impossible become merely expensive (see
Tables 3 and 4). We illustrate these updated conditions for the example of
log(n) = 256 in Fig. 3. The crossover points accurately predict the experimental
performance of our algorithms in practice; compare to the experimental results
plotted in Fig. 4.

The second observation we make in this work is that we show that lattice
algorithms can still be applied when ‖v‖ ≥ gh(Λ), i.e. when the “lattice vector
corresponding to the secret is no longer expected to be significantly shorter than
other vectors in the lattice” [13]. That is, we observe that the “lattice barrier”
is soft, and that violating it simply requires spending more computational time.
This allows us to increase the probability of success at the crossover points in
Fig. 3 and successfully solve instances with fewer samples than suggested by the
crossover points.

An even stronger barrier to the applicability of any algorithm for solving the
Hidden Number Problem comes from the amount of information about the secret
encoded in the problem itself: each sample reveals log(n) − � bits of information
about the secret d. Thus, we expect to require m ≥ log(n)/(log(n)−�) in order to
recover d; heuristically, for random instances, below this point we do not expect
the solution to be uniquely determined by the lattice, no matter the algorithm
used to solve it. We will see below that our techniques allow us to solve instances
past both the “lattice barrier” and the information-theoretic limit.

4 Bounded Distance Decoding with Predicate

We now define the key computational problem in this work:

Definition 5 (α-Bounded Distance Decoding with predicate
(BDDα,f(·))). Given a lattice basis B, a vector t, a predicate f(·), and a param-
eter 0 < α such that the Euclidean distance dist(t,B) < α · λ1(B), find the
lattice vector v ∈ Λ(B) satisfying f(v − t) = 1 which is closest to t.

We will solve the BDDα,f(·) using Kannan’s embedding technique. However,
the lattice we will construct does not necessarily have a unique shortest vector.
Rather, uniqueness is expected due to the addition of a predicate f(·).
Definition 6 (unique Shortest Vector Problem with predicate
(uSVPf(·))). Given a lattice Λ and a predicate f(·) find the shortest nonzero
vector v ∈ Λ satisfying f(v) = 1.

Remark 1. Our nomenclature—“BDD” and “uSVP”—might be considered con-
fusing given that the target is neither unusually close nor short. However, the
distance to the lattice is still bounded in the first case and the presence of the
predicate ensures uniqueness in the second case. Thus, we opted for those names
over “CVP” and “SVP”.
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Explicitly, to solve BDDα,f(·) using an oracle solving uSVPf(·), we consider
the lattice

L =
(
B 0
t τ

)

where τ ≈ E

[
‖v − t‖/

√
d
]

is some embedding factor. If v is the closest vector
to t then the lattice Λ(L) contains (t − v, τ). Furthermore, we construct the
predicate f ′(·) given f(·) as in Algorithm 1.

Input: v a vector of dimension d.
Input: f(·) predicate accepting inputs in R

d−1.
Output: 0 or 1

1 if |vd−1| �= τ then
2 return 0 ;
3 end
4 return f((v0, v1, . . . , vd−2));

Algorithm 1: uSVP predicate f ′(·) from BDD predicate f().

Remark 2. Definitions 5 and 6 are more general than the scenarios used to moti-
vate them in the introduction. That is, both definitions permit the predicate to
evaluate to true on more than one vector in the lattice and will return the closest
or shortest of those vectors, respectively. In many—but not all—applications, we
will additionally have the guarantee that the predicate will only evaluate to true
on one vector. Definitions 5 and 6 naturally extend to the case where we ask for
a list of all vectors in the lattice up to a given norm satisfying the predicate.

5 Algorithms

We propose two algorithms for solving uSVPf(·), one based on enumeration—
easily parameterized to support arbitrary target norms—and one based on siev-
ing, solving uSVPf(·) when the norm of the target vector is ≤ √

4/3 · gh(Λ). We
will start with recounting the standard uSVP strategy as a baseline to compare
against later.

5.1 Baseline

When our target vector v is expected to be shorter than any other vector in the
lattice, we may simply use a uSVP solver to recover it. In particular, we may
use the BKZ algorithm with a block size β that satisfies the success condition in
Eq. (2). Depending on β we may choose enumeration β < 70 or sieving β ≥ 70 to
instantiate the SVP oracle [5]. When β = d this computes an HKZ reduced basis
and, in particular, a shortest vector in the basis. It is folklore in the literature
to search through the reduced basis for the presence of the target vector, that
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is, to not only consider the shortest non-zero vector in the basis. Thus, when
comparing our algorithms against prior work, we will also do this, and consider
these algorithms to have succeeded if the target is contained in the reduced basis.
We will refer to these algorithms as “BKZ-Enum” and “BKZ-Sieve” depending
on the oracle used. We may simply write BKZ-β or BKZ when the SVP oracle
or the block size do not need to specified. When β = d we will also refer to
this approach as the “SVP approach”, even though a full HKZ reduced basis is
computed and examined. When we need to spell out the SVP oracle used, we
will write “Sieve” and “Enum” respectively.

5.2 Enumeration

Our first algorithm is to augment lattice-point enumeration, which is exhaustive
search over all points in a ball of a given radius, with a predicate to immedi-
ately give an algorithm that exhaustively searches over all points in a ball of
a given radius that satisfy a given predicate. In other words, our modification
to lattice-point enumeration is simply to add a predicate check whenever the
algorithm reaches a leaf node in the tree, i.e. has recovered a candidate solution.
If the predicate is satisfied the solution is accepted and the algorithm continues
its search trying to improve upon this candidate. If the predicate is not satisfied,
the algorithm proceeds as if the search failed. This augmented enumeration algo-
rithm is then used to enumerate all points in a radius R corresponding to the
(expected) norm of the target vector. We give pseudocode (adapted from [28])
for this algorithm in in the full version of this work. Our implementation of this
algorithm is in the class USVPPredEnum in the file usvp.py available at [7].

Theorem 1. Let Λ ⊂ R
d be a lattice containing vectors v such that ‖v‖ ≤ R =

ξ ·gh(Λ) and f(v) = 1. Assuming the Gaussian heuristic, then enumeration with
predicate finds the shortest vector v satisfying f(v) = 1 in ξd · dd/(2e)+o(d) steps.
Enumeration with predicate will make ξd+o(d) calls to f(·).
Proof (sketch). Let Ri = R. Enumeration runs in

d−1∑

k=0

1
2

· Vol(Bd−k(R))
∏d−1

i=k ‖b∗
i ‖

steps [40] which scales by ξd+o(d) when R scales by ξ. Solving SVP with enumer-
ation takes dd/(2e)+o(d) steps [40]. By the Gaussian heuristic we expect ξd points
in Bd(R) ∩ Λ on which the algorithm may call the predicate f(·).

Implementation
Modifying FPLLL [74,75] to implement this functionality is relatively straight-
forward since it already features an Evaluator class to validate full solutions—
i.e. leaves—with high precision, which we subclassed. We then call this modi-
fied enumeration code with a search radius R that corresponds to the expected
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length of our target. We make use of (extreme) pruned enumeration by com-
puting pruning parameters using FPLLL’s Pruner module. Here, we make the
implicit assumption that rerandomizing the basis means the probability of find-
ing the target satisfying our predicate is independent from previous attempts.
We give some example performance figures in Table 1.

Table 1. Enumeration with predicate performance data

time #calls to f(·)
ξ s/r observed expected observed (1.01 ξ)d

1.0287 62% 3.1h 2.4 h 1104 30

1.0613 61% 5.1h 5.1 h 2813 483

1.1034 62% 11.8h 15.1 h 15274 15411

1.1384 64% 25.3h 40.1 h 169950 248226

ECDSA instances (see Sect. 6) with d = 89 and
USVPPredEnum. Expected running time is computed
using FPLLL’s Pruner module, assuming 64 CPU
cycles are required to visit one enumeration node. Our
implementation of enumeration with predicate enumer-
ates a radius of 1.01·ξ·gh(Λ). We give the median of 200
experiments. The column “s/r” gives the success rate
of recovering the target vector in those experiments.

5.3 Sieving

Our second algorithm is simply a sieving algorithm “as is”, followed by a predi-
cate check over the database. That is, taking a page from [5,32], we do not treat a
lattice sieve as a black box SVP solver, but exploit that it outputs exponentially
many short vectors. In particular, under the heuristic assumptions mentioned
in the introduction—all vectors in the database L are on the surface of a d-
dimensional ball—a 2-sieve, in its standard configuration, will output all vectors
of norm R ≤ √

4/3 · gh(Λ) [32].5 Explicitly:

Assumption 1. When a 2-sieve algorithm terminates, it outputs a database L
containing all vectors with norm ≤ √

4/3 · gh(Λ).

Thus, our algorithm simply runs the predicate on each vector of the database.
We give pseudocode in the full version of this work. Our implementation of this
algorithm is in the class USVPPredSieve in the file usvp.py available at [7].

Theorem 2. Let Λ ⊂ R
d be a lattice containing a vector v such that ‖v‖ ≤

R =
√

4/3 ·gh(Λ). Under Assumption 1 sieving with predicate is expected to find
the minimal v satisfying f(v) = 1 in 20.292 d+o(d) steps and (4/3)d/2+o(d) calls
to f(·).
5 The radius

√
4/3 ·gh(Λ) can be parameterized in sieving algorithms by adapting the

required angle for a reduction and thus increasing the database size. This was used
in e.g. [31] to find approximate Voronoi cells.
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Table 2. Sieving parameters

Parameter G6K This work

BKZ preprocessing None d − 20

saturation ratio 0.50 0.70

db size factor 3.20 3.50

Implementation
Implementing this algorithm is trivial using G6K [76]. However, some parameters
need to be tuned to make Assumption 1 hold (approximately) in practice. First,
since deciding if a vector is a shortest vector is a hard problem, sieve algorithms
and implementations cannot use this test to decide when to terminate. As a con-
sequence, implementations of these algorithms such as G6K use a saturation test
to decide when to stop: this measures the number of vectors with norm bounded
by C ·gh(Λ) in the database. In G6K, C =

√
4/3 by default. The required fraction

in [76] is controlled by the variable saturation_ratio, which defaults to 0.5.
Since we are interested in all vectors with norms below this bound, we increase
this value. However, increasing this value also requires increasing the variable
db_size_factor, which controls the size of L. If db_size_factor is too small,
then the sieve cannot reach the saturation requested by saturation_ratio. We
compare our final settings with the G6K defaults in Table 2. We justify our
choices with the experimental data presented in the full version of this work.

Second, we preprocess our bases with BKZ-(d−20) before sieving. This devi-
ates from the strategy in [5] where such preprocessing is not necessary. Instead,
progressive sieving gradually improves the basis there. However, in our experi-
ments we found that this preprocessing step randomized the basis, preventing
saturation errors and increasing the success rate. We speculate that this behavior
is an artifact of the sampling and replacement strategy used inside G6K.

Conflict with D4F
The performance of sieving in practice benefits greatly from the “dimensions for
free” technique introduced in [32]. This technique, which inspired our algorithm,
starts from the observation that a sieve will output all vectors of norm

√
4/3 ·

gh(Λ). This observation is then used to solve SVP in dimension d using a sieve
in dimension d′ = d − Θ(d/ log d). In particular, if the projection πd−d′ (v) of
the shortest vector v has norm ‖πd−d′ (v) ‖ ≤ √

4/3 · gh(Λd−d′), where Λd−d′

is the lattice obtained by projecting Λ orthogonally to the first d − d′ vectors
of B then it is expected that Babai lifting will find v. Clearly, in our setting
where the target itself is expected to have norm > gh(Λ) this optimization may
not be available. Thus, when there is a choice to construct a uSVP lattice or a
uSVPf(·) lattice in smaller dimension, we should compare the sieving dimension
d′ of the former against the full dimension of the latter. In [32] an “optimistic”
prediction for d′ is given as
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d′ = d − d log(4/3)
log(d/(2πe))

(5)

which matches the experimental data presented in [32] well. However, we note
that G6K achieves a few extra dimensions for free via “on the fly” lifting [5].
We leave investigating an intermediate regime—fewer dimensions for free—for
future work.

5.4 (No) Blockwise Lattice Reduction with Predicate

Our definitions and algorithms imply two regimes: the traditional BDD/uSVP
regime where the target vector is unusually close to/short in the lattice (Sect. 5.1)
and our BDD/uSVP with predicate regime where this is not the case and we
rely on the predicate to identify it (Sects. 5.2 and 5.3). A natural question then
is whether we can use the predicate to improve algorithms in the uSVP regime,
that is, when the target vector is unusually short and we have a predicate. In
other words, can we meaningfully augment the SVP oracle inside block-wise
lattice reduction with a predicate?

We first note that the predicate will need to operate on “fully lifted” can-
didate solutions. That is, when block-wise lattice reduction considers a block
πi(bi), . . . , πi(bi+β−1), we must lift any candidate solution to π0(·) to check the
predicate. This is because projected sublattices during block-wise lattice reduc-
tion are modeled as behaving like random lattices and we have no reason in
general to expect our predicate to hold on the projection.

With that in mind, we need to (Babai) lift all candidate solutions before
applying the predicate. Now, by assumption, we expect the lifted target to
be unusually short with respect to the full lattice. In contrast, we may expect
all other candidate solutions to be randomly distributed in the parallelepiped
spanned by b∗

0, . . . , b
∗
i−1 and thus not to be short. In other words, when we lift

this way we do not need our predicate to identify the correct candidate. Indeed,
the strategy just described is equivalent to picking pruning parameters for enu-
meration that restrict to the Babai branch on the first i coefficients or to use
“dimensions for free” when sieving. Thus, it is not clear that the SVP oracles
inside block-wise lattice reduction can be meaningfully be augmented with a
predicate.

5.5 Higher-Level Strategies

Our algorithms may fail to find a solution for two distinct reasons. First, our
algorithms are randomized: sieving randomly samples vectors and enumeration
uses pruning. Second, the gap between the target’s norm and the norm of the
shortest vector in the lattice might be larger than expected. These two reasons
for failure suggest three higher-level strategies:

plain Our “plain” strategy is simply to run enumeration and sieving with pred-
icate as is.
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repeat This strategy simply repeats running our algorithms a few times. This
addresses failures to solve due to the randomized nature of our algorithms.
This strategy is most useful when applied to sieving with predicate as our
implementation of enumeration with predicate, which uses extreme prun-
ing [35], already has repeated trials “built-in”.

scale This strategy increases the expected radius by some small parameter, say
1.1, and reruns. When the expected target norm >

√
4/3 ·gh(Λ) this strategy

also switches from sieving with predicate to enumeration with predicate.

6 Application to ECDSA Key Recovery

The source code for the experiments in this section is in the file ecdsa hnp.py
available at [7].

Varying the number of samples m
We carried out experiments for common elliptic curve lengths and most signifi-
cant bits known from the signature nonce to evaluate the success rate of different
algorithms as we varied the number of samples, thus varying the expected ratio
of the target vector to the shortest vector in the lattice.

As predicted theoretically, the shortest vector technique typically fails when
the expected length of the target vector is longer than the Gaussian heuristic, and
its success probability rises as the relative length of the target vector decreases.
We recall that we considered the shortest vector approach a success if the target
vector was contained in the reduced basis. Both the enumeration and sieving
algorithms have success rates well above zero when the expected length of the
target vector is longer than the expected length of the shortest vector, thus
demonstrating the effectiveness of our techniques past the “lattice barrier”.

Figure 4 shows the success rate of each algorithm for common parameters
of interest as we vary the number of samples. Each data point represents 32
experiments for smaller instances, or 8 experiments for larger instances. The
corresponding running times for these algorithms and parameters are plotted in
in the full version of this work. We parameterized enumeration with predicate to
succeed at a rate of 50%. For some of the larger lattice dimensions, enumeration
algorithms were simply infeasible, and we do not report enumeration results
for these parameters. These experiments represent more than 60 CPU-years of
computation time spread over around two calendar months on a heterogeneous
collection of computers with Intel Xeon 2.2 and 2.3GHz E5-2699, 2.4GHz E5-
2699A, and 2.5GHz E5-2680 processors.

Table 3 gives representative running times and success rates for sieving with
predicate, sieving with predicate, for popular curve sizes and numbers of bits
known, and lists similar computations from the literature where we could deter-
mine the parameters used. It illustrates how our techniques allow us to solve
instances with fewer samples than previous work. We recall that most applica-
tions of lattice algorithms for solving ECDSA-HNP instances seem to arbitrarily
choose a small block size for BKZ, and experimentally determine the number of
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Fig. 4. Comparison of algorithm success rates for ECDSA. We generated HNP
instances for common ECDSA parameters and compared the success rates of each
algorithm on identical instances. The x-axis labels show the number of samples m
and γ = E [‖v‖] /E[‖b0‖], the corresponding ratio between the expected length of the
target vector v and the expected length of the shortest vector b0 in a random lattice.
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Table 3. Performance for medium instances

log(n) bias m time alg. s/r previous work

160 3 bits 53 3452 s E 44%

160 2 bits 87 4311 s S 62% enum, m ≈ 100, s/r = 23% in [53]

160 1 bit – – – – Bleichenbacher, m ≈ 227, in [13]

192 3 bits 63 851s E 56%

192 2 bits 98 7500 s S 56%

192 1 bit – – – – Bleichenbacher, m ≈ 229, in [13]

256 4 bits 63 2122 s E 41%

256 4 bits 65 76 s S 66% BKZ-25, m ≈ 82, s/r = 90% in [68]

256 3.6 bits 73 69 s S 66 % BKZ-30, m = 80, s/r = 94.5% in [36]

256 3 bits 87 5400 s S 63% enum, m = 100, s/r = 21% in [52]

256 2 bits – – – – Bleichenbacher, m ≈ 226, in [73]

384 5 bits 76 0026 s E 60%

384 5 bits 78 412 s S 91% BKZ-25, m ≈ 94, s/r = 90% in [68]

384 4 bits 97 9200 s S 88% BKZ-20, m = 170, s/r = 90% in [9]

521 7 bits 74 6318 s E 57%

521 7 bits 75 438s S 59%

521 6 bits 88 6643 s S 77%

We compare the number of required samples m to previously reported results
from the literature, where available. Instances solved using enumeration with
predicate are labeled with “E” and are solved using fewer samples than the
information-theoretic barrier. Instances solved with using sieving with predicate
are labeled “S”. Time is in CPU-seconds. The success rate for our experiments
is taken over 32 experiments; see Fig. 4 for how the success rate varies with the
number of samples.

samples required. For 3 bits known on a 256-bit curve, there are multiple algo-
rithmic results reported in the literature. In [73] the authors report a running
time of 238 CPU-hours to run the first phase of Bleichenbacher’s algorithm on
223 samples. In [52] the authors report applying BKZ-20 followed by enumeration
with linear pruning to achieve a 21% success probability in five hours. Sieving
with predicate took 1.5 CPU-hours to solve the same parameters with a 63%
success probability using 87 samples.

Table 3 also gives running times and success rates for enumeration with pred-
icate, enumeration with predicate, in solving instances beyond the information-
theoretic barrier, that is, when the number of samples available was not large
enough to expect the Hidden Number Problem to contain sufficient information
to recover the signing key; breaking the “information-theoretic limit”. We recall
that our techniques can solve these instances because the predicate uniquely
determines the target.

We give concrete estimates for the number of required samples and thus the
size of the resulting lattice problem in Table 4 for common ECDSA key sizes as
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Table 4. Resources required to solve ECDSA with known nonce bits.

log(n) = 160

Bits known 8 7 6 5 4 3 2 1

Sieve m/d 21/ − 2 25/9 29/15 35/23 45/33 61/49 99/84 258/232

Sieve-Pred m/d 21/22 24/25 28/29 33/34 42/43 57/58 87/88 193/194

Sieve-Pred cost 40.2 38.3 36.4 34.9 33.6 34.4 41.5 80.9

Limit m 20 23 27 32 40 54 80 160

Limit −1 cost 23.5 23.6 24.7 27.9 31.1 36.5 50.6 104.0

log(n) = 192

Bits known 8 7 6 5 4 3 2 1

Sieve m/d 25/9 29/15 34/21 41/29 51/39 70/57 110/94 255/229

Sieve-Pred m/d 25/26 28/29 33/34 39/40 49/50 65/66 98/99 200/201

Sieve-Pred cost 37.8 36.4 34.9 33.9 33.7 35.7 45.2 83.5

Limit m 24 28 32 39 48 64 96 192

Limit −1 cost 23.7 23.7 26.0 27.2 31.5 38.3 54.2 118.6

log(n) = 256

Bits known 8 7 6 5 4 3 2 1

Sieve m/d 33/20 38/26 45/33 54/42 69/56 93/79 146/128 341/310

Sieve-Pred m/d 33/34 37/38 43/44 52/53 65/66 87/88 131/132 267/268

Sieve-Pred cost 34.9 34.1 33.6 33.9 35.7 41.5 57.6 108.6

Limit m 32 37 43 52 64 86 128 256

Limit −1 cost 27.2 27.4 29.8 32.3 38.7 48.2 73.7 169.7

log(n) = 384

Bits known 8 7 6 5 4 3 2 1

Sieve m/d 50/38 57/45 67/54 81/67 103/88 140/122 219/196 512/470

Sieve-Pred m/d 49/50 56/57 65/66 78/79 97/98 130/131 196/197 401/402

Sieve-Pred cost 33.7 34.3 35.7 38.8 44.9 57.2 82.0 158.8

Limit m 48 55 64 77 96 128 192 384

Limit −1 cost 33.7 36.2 39.7 45.2 55.0 74.1 119.0 283.8

log(n) = 521

Bits known 8 7 6 5 4 3 2 1

Sieve m/d 68/55 78/65 91/77 110/94 139/121 190/169 298/269 696/643

Sieve-Pred m/d 66/67 75/76 88/89 105/106 132/133 176/177 266/267 544/545

Sieve-Pred cost 35.9 38.0 41.8 47.9 58.0 74.5 108.2 212.5

Limit m 66 75 87 105 131 174 261 521

Limit −1 cost 38.0 43.7 50.9 59.4 75.6 105.5 174.1 419.1

Sieve Number of samples m required for solving uSVP as in Sect. 5.1 and sieving dimension

according to Eq. (5) (called d′ there).

Sieve-Pred Number of samples m required for sieving with predicate and sieving dimension

d = m + 1.

Sieve-Pred cost Log of expected cost in CPU cycles; cost is estimated as 0.658 · d −
21.11 log(d) + 119.91 which does not match the asymptotics but approximates experiments

up to dimension 100.

limit Information theoretic limit for m of pure lattice approach: 	log(n)/bits known
.
limit −1 cost Log of expected cost for enumeration with predicate in CPU cycles with

m = 	log(n)/bits known
 − 1 samples.
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the number of known nonce bits varies. These estimates include both instances
we are able to solve, as well as problem sizes beyond our current computational
ability. When few bits are known, corresponding to large lattices, our approach
promises a smaller sieving dimension, but for small (that is, practical) dimen-
sions, “dimensions for free” is more efficient. Thus, when enough samples are
available it is still preferable to mount the uSVP attack. We note that Table 4
suggests that there are feasible computations within range for future work with
a suitably cluster-parallelized implementation of sieving with predicate, in par-
ticular two bits known for a 256-bit modulus, and three bits known for a 384-bit
modulus. Furthermore, Table 4 indicates that sieving with predicate allows us to
decode at almost the information-theoretic limit for many instances. For compar-
ison, we also give the expected cost of enumeration with predicate when solving
with one fewer sample than this limit.

Fixed number of samples m
An implication of Table 4 is that our approach allows us to solve the Hidden
Number Problem with fewer samples than the unique SVP bounds would imply.
In some attack settings, the attacker may have a hard limit on the number
of samples available. Using enumeration and sieving with predicate allows us to
increase the probability of a successful attack in this case, and increase the range
of parameters for which a feasible attack is possible.

This scenario arose in [22], where the authors searched for flawed ECDSA
implementations by applying lattice attacks to ECDSA signatures gathered
from public data sources including cryptocurrency blockchains and internet-wide
scans of protocols like TLS and SSH. In these cases, the attacker has access to a
fixed number of signature samples generated from a given public key, and wishes
to maximize the probability of a successful attack against this fixed number of
signatures, for as few bits known as possible.

The paper of [22] reported using BKZ in very small dimensions to find 287
distinct keys that used nonce lengths of 160, 128, 110, 64, and less than 32 bits
for ECDSA signatures with the 256-bit secp256k1 curve used for Bitcoin. They
reported finding two distinct keys using 128-bit nonces in two signatures each.

Experimentally, the BKZ algorithm only has a 70% success rate at recovering
the private key for 128-bit nonces with two signature samples, and the success
rate drops precipitously as the number of unknown nonce bits increases. In
contrast, sieving with predicate has a 100% success rate up to around 132-
bit nonces. See Fig. 5 for a comparison of these algorithms as the number of
signatures is fixed to two and the number of unknown nonce bits varies.

We hypothesized that this failure rate may have caused the results of [22] to
omit some vulnerable keys. Thus, we ran our sieving with predicate approach
against the same Bitcoin blockchain snapshot data from September 2018 as used
in [22], targeting only 128-bit nonces using pairs of signatures. This snapshot
contained 569,396,463 signatures that had been generated by a private key that
generated two or more signatures. For the set of m signatures generated by each
distinct key, we applied the sieving with predicate algorithm to 2m pairs of
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Fig. 5. Algorithm success rates in a small fixed-sample regime. We plot the experi-
mental success rate of each algorithm in recovering a varying number of nonce bits
using two samples. Each data point represents the success rate of the algorithm over
100 experiments. Using sieving and enumeration with a predicate allows the attacker
to increase the probability of a successful attack even when more samples cannot be
collected. We parameterized enumeration with predicate to succeed with probability
1/2.

signatures to check for nonces of length less than 128 bits. Using this approach,
we were able to compute the private keys for 9 more distinct secret keys.

Handling errors
In practical side-channel attacks, it is common to have some fraction of mea-
surement errors in the data. In a common setting for ECDSA key recovery from
known nonce bits, the side channel leaks the number of leading zeroes of the
nonce, but the signal is noisy and thus data may be mislabeled. If the estimate
is below the true number, this is not a problem, since the target vector will be
even shorter than estimated and thus easier to find. However, if the true number
of zero bits is smaller than the estimate, then the desired vector will be larger
than estimated which can cause the key recovery algorithm to fail.

It is believed that lattice approaches to the Hidden Number Problem do not
deal well with noisy data [68] and “assume that inputs are perfectly correct” [13].
There are a few techniques in the literature to work around these limitations and
to deal with noise [44]. The most common approach is simply to repeatedly try
running the lattice algorithm on subsamples of the data until one succeeds [23].
Alternatively, one can use more samples in the lattice, in order to increase the
expected gap between the target vector and the lattice. For example, it was
already observed in [29] that using a lattice construction with more samples
increases the success rate in the presence of errors, even using the same block
size.

However, the most natural approach does not appear to have been considered
in the literature before: Use an estimate of the error rate to compute a new target
norm as in Eq. (4) and pick the block size or enumeration radius parameters
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Fig. 6. Search time in the presence of errors. We plot the experimental computation
time of the “scale” strategy to find the target vector as we varied the number of errors
in the sample. For these experiments, each “error” is a nonce that is one bit longer
than the length supplied to the algorithm. Increasing the number of samples decreases
the search time.

accordingly. That is, when the error rate can be estimated, this is simply a
special case of estimating the norm of the target vector. As before, even if the
number m of samples is limited, enumeration with predicate in principle can
search out to arbitrarily large target norms.

The most difficult case to handle is when more samples are not available
and the error rate is unknown or difficult to estimate properly. In this case,
a strategy is to repeatedly increase the expected target norm of the vector,
pick an algorithm that solves for this target norm R and attempt to solve the
instance: BKZ for R < gh(Λ), sieving with predicate for R ≤ √

4/3 · gh(Λ) and
enumeration with predicate for R >

√
4/3 · gh(Λ). We refer to this strategy as

“scale” in Sect. 5.5.
Figure 6 illustrates how the running time of the “scale” strategy varies with

the fraction of errors and the number of samples used in the lattice.
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24. Cabrera Aldaya, A., Pereida Garćıa, C., Brumley, B.B.: From A to Z: projective
coordinates leakage in the wild. IACR TCHES 2020(3), 428–453 (2020). https://
tches.iacr.org/index.php/TCHES/article/view/8596

25. Capkun, S., Roesner, F. (eds.): USENIX Security 2020. USENIX Association,
August 2020

26. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9 16

27. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio and Ristenpart [56], pp.
329–358
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Abstract. Any non-zero ideal in a number field can be factored into a
product of prime ideals. In this paper we report a surprising connection
between the complexity of the shortest vector problem (SVP) of prime
ideals in number fields and their decomposition groups. When applying
the result to number fields popular in lattice based cryptosystems, such
as power-of-two cyclotomic fields, we show that a majority of rational
primes lie under prime ideals admitting a polynomial time algorithm for
SVP. Although the shortest vector problem of ideal lattices underpins
the security of the Ring-LWE cryptosystem, this work does not break
Ring-LWE, since the security reduction is from the worst case ideal SVP
to the average case Ring-LWE, and it is one-way.

Keywords: Ring-LWE · Ideal lattice · Average case computational
complexity

1 Introduction

Due to their conjectured ability to resist quantum computer attacks, lattice-
based cryptosystems have drawn considerable attention. In 1996, Ajtai [1] pio-
neered the research on worst-case to average-case reduction for the Short Integer
Solution problem (SIS). In 2005, Regev [33] presented a worst-case to average-
case (quantum) reduction for the Learning With Errors problem (LWE). SIS
and LWE became two important cryptographic assumptions, and a large num-
ber of cryptographic schemes based on these two problems have been designed.
However, the common drawback of such schemes is their limited efficiency.

To improve the efficiency of lattice-based schemes, some special algebraic struc-
tures are employed. The first lattice-based scheme with some algebraic structure
was the NTRU public key cryptosystem [15], which was introduced by Hoffstein,
Pipher and Silverman in 1996. It works in the convolution ringZ[x]/(xp−1) where
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p is a prime. The cyclic nature of the ring Z[x]/(xp − 1) contributes to NTRU’s
efficiency, and makes NTRU one of the most popular schemes. Later the ring was
employed in many other cryptographic primitives, such as [5,21,25,26,31,36].

In 2009, Stehlé et al. [37] introduced a structured and more efficient variant of
LWE involving the ring Fp[x]/(xN +1) where N is a power of 2 and p is a prime
satisfying p ≡ 3 (mod 8). In 2010, Lyubashevsky, Peikert and Regev [22] pre-
sented a ring-based variant of LWE, called Ring-LWE. The hardness of problems
in [22,37] is based on worst-case assumptions on ideal lattices. Recently, Peik-
ert, Regev and Stephens-Davidowitz [30] presented a polynomial time quantum
reduction from (worst-case) ideal lattice problems to Ring-LWE for any modulus
and any number field. Lots of schemes employ the ring Z[x]/(xN +1) where N is
a power of 2, for example, NewHope [3], Crystals-Kyber [8], and LAC [20] sub-
mitted to NIST’s post-quantum cryptography standardization. Although solving
the ideal SVP does not necessarily break Ring-LWE, understanding the hardness
of ideal SVP is no doubt a very important first step to understand the hardness
of Ring-LWE.

1.1 Previous Works

Principal ideal lattices are a class of important ideal lattices which can be gen-
erated by a single ring element. There is a line of work focusing on the principal
ideal SVP. Based on [4,9], solving approx-SVP problems on principal ideal lat-
tices can be divided into the following two steps: Step 1 is finding an ideal gen-
erator by using class group computations. In this step, a quantum polynomial
time algorithm is presented by Biasse and Song [7], which is based on the work
[14]; a classical subexponential time algorithm was given by Biasse, Espitau,
Fouque, Gélin and Kirchner [6]. Step 2 is shortening the ideal generator in Step
1 with the log-unit lattice. This step was analyzed by Cramer, Ducas, Peikert
and Regev [11]. Then a quantum polynomial time algorithm for approx-SVP,
with a 2Õ(

√
N) approximation factor, on principal ideal lattices in cyclotomic

number fields was presented in [11].
In 2017, Cramer, Ducas and Wesolowski [12] extended the case of principal

ideal lattices in [11] to the case of a general ideal lattice in a cyclotomic ring
of prime-power conductor. For approx-SVP on ideal lattices, the result in [12]
is better than the BKZ algorithm [34] when the approximation factor is larger
than 2Õ(

√
N). Ducas, Plancon and Wesolowski [13] analyzed the approximation

factor 2Õ(
√

N) in [11,12] to determine the specific dimension N so that the corre-
sponding algorithms outperform BKZ for an ideal lattice in cyclotomic number
fields. Recently, Pellet-Mary, Hanrot and Stehlé [32], inspired by the algorithms
in [11,12], proposed an algorithm to solve approx-SVP with the approximation
factor 2Õ(

√
N) in ideal lattices for all number fields, aiming to provide trade-offs

between the approximation factor and the running time. However, there is an
exponential pre-processing phase.

Inspired by Bernstein’s logarithm-subfield attack [4], Albrecht, Bai and Ducas
[2] and Cheon, Jeong and Lee [10] independently proposed two similar subfield
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attacks in 2016 against overstretched NTRU that has much larger modulus than
in the NTRUEncrypt standard. Later, Kirchner and Fouque [16] proposed a
variant of the subfield attacks to improve these two attacks in practice. A typical
subfield attack consists of three steps: mapping the lattice to some subfield,
solving the lattice problem in the subfield and finally lifting the solution to the
full field.

1.2 Our Results

In this paper, we investigate the SVP for lattices corresponding to prime ideals
in number fields normal over Q. Every nonzero ideal in a Dedekind Domain can
be factored uniquely into a product of prime ideals, so short vectors in prime
ideals may help us to find short vectors in general ideals. If, in a general prime
ideal p, we are able to efficiently find a vector with length within the Minkowski
bound for p, then for an ideal a with few prime ideal factors, we will be able
to approximate the shortest vector in a to within a factor much better than
what is achieved by the LLL [17] or BKZ [35] algorithms. The most difficult
step in factoring an ideal is actually factorization of an integer (the norm of
the ideal), which can be done in polynomial time by quantum computers, or in
subexponential time by classical computers.

Consider a finite Galois extension L ∼= Q[x]/(f(x)) of Q, and let P be a prime
ideal in the ring of integers OL of L. The subgroup of Gal(L/Q) that stabilizes
P set-wise is known as the decomposition group of P. Let K ⊂ L be the subfield
fixed by the decomposition group of P. K is called the decomposition field of P.
To find a short vector in P, we can search for a short vector in the lattice P∩K,
which may have smaller rank. More precisely, for a rational prime p, if pOL is
factored into a product of g prime ideals in OL, we can reduce the problem
of finding a short vector in any of these prime ideals to a problem of finding
a short vector in a rank-g lattice, provided that a basis of OK can be found
efficiently. Equivalently, the fewer the number of irreducible factors of f(x) over
Fp, the more efficiently we may solve SVP for prime ideals lying above p. One
argues from general facts of algebraic number theory that the determinant of
the sublattice is not too large compared to the original lattice in order to relate
Minkowski type λ1 bounds for the two lattices.

We go on to apply the foregoing idea to the rings Z[x]/(x2n + 1), which are
quite popular in cryptography. We show that there is a hierarchy for the hard-
ness of SVP for these prime ideal lattices. This arises from the observation that
the decomposition groups (or their index-two subgroups) form a chain in the
subgroup lattice (See Appendices A and B). Roughly speaking, we can classify
such prime ideal lattices into n distinct classes, and for a prime ideal lattice in
the r-th class, we can find its shortest vector by solving SVP in a dimension-2r

lattice. This suggests that the difficulty of prime ideal SVP can change dramati-
cally from ideal to ideal, an interesting phenomenon that has, to our knowledge,
not been pointed out in the literature. By considering some of these classes, we
prove that a nontrivial fraction of prime ideals admit an efficient SVP algorithm.
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Theorem 1. Let N = 2n, where n is a positive integer. Let p be a prime ideal in
the ring Z[x]/(xN +1), and suppose p contains a prime number p ≡ ±3 (mod 8).
Then under the coefficient embedding, the shortest vector in p can be found in
time poly(N, log p), and the length of the shortest vector is exactly

√
p.

Can we conclude from the above result that the average case prime ideal SVP is
easy? It depends how we define an average prime ideal lattice. As prime ideals
are rigid structures, changing distributions gives us totally different complexity
results. If prime ideals are selected uniformly at random from the set of those
prime ideals whose norms are bounded, then easy cases are rare. Nevertheless
our result does show that an average case of the prime ideal SVP in power-of-
two cyclotomic fields is not hard, if the prime ideals are selected uniformly at
random from the set of all prime ideals whose rational primes are less than some
fixed bound. See Subsect. 4.2 for details.

For general (non prime) ideals in Z[x]/(x2n + 1), we present an algorithm
to confirm that the hierarchy for the hardness of SVP also exists; that is, we
can solve SVP for a general ideal lattice by solving SVP in a 2r-dimensional
sublattice, for some positive integer r related to the factorization of the ideal
(see Theorem 6). Following Theorem 1, we show how to solve the SVP for ideals
all of whose prime factors lie in a certain class. This is a special case of Theorem 6.

Proposition 1. Let N = 2n, where n is a positive integer. Let I be an ideal in
the ring Z[x]/(xN + 1) with prime factorization

I = p1p2 · · · pk.

If each pi contains a prime integer ≡ ±3 (mod 8), the shortest vector in I can
be found in time poly(N, log(N (I))).

We would like to stress that the algorithm works by exploiting the multi-
plicative structure of ideals in the ring of integers of a number field, without
factoring the ideal. We regard this as the second contribution of this work, in
addition to the algorithm for prime ideals.

Note that a decomposition field is a subfield of the number field. Our algo-
rithm can also be seen as a kind of subfield attack to solve the ideal Hermite-SVP
problem. Compared with the previous subfield attacks [2,4,10,16], the main dif-
ferences are: the previous subfield attacks use relative norm (or trace) to map a
lattice into some subfield, while we use the intersection with the decomposition
field; The approximation factor in the previous attacks, such as [2], will suf-
fer during the lifting process, while our lifting costs not so much; The previous
attacks [2,10,16] work for NTRU with much big modulus, while the instances
amenable to our attack must satisfy the condition that the decomposition field
is a proper subfield of the number field.

We have to point out that it is still unknown how our result impacts the
security of cryptographic schemes. It does not break Ring-LWE, since the secu-
rity reduction is from the worst case ideal SVP to the average case Ring-LWE,



On the Ideal Shortest Vector Problem over Random Rational Primes 563

and it is one-way. As pointed out by [4], Smart and Vercauteren [29] proposed
an ideal lattice-based fully homomorphic encryption scheme, which generated a
prime ideal lattice as the public key. It is enough to break the scheme by finding
a short vector in the lattice. To improve the efficiency, they chose ideals of prime
determinants, which are not weak instances revealed by our algorithm. Our paper
provides a security justification for using such ideal lattices. We should no doubt
avoid the weak instances when we construct cryptographic schemes. In addition,
our result is a beneficial attempt to solve ideal SVP by exploiting the algebraic
structure, and it helps us understand better the hardness of ideal SVP.

1.3 Paper Organization

The remainder of the paper is organized as follows. In Sect. 2, we give some
mathematical preliminaries. In Sect. 3 we prove a reduction of approx-SVP in
the finite Galois extension of Q. Then in Sect. 4 we present a reduction of SVP
for prime ideal lattices and then general ideal lattices in Z[ζ2n+1 ]. Finally, a
conclusion and some open problems are given in Sect. 5.

2 Mathematical Preliminaries

2.1 Lattices and Some Computational Problems

Lattices are discrete additive subgroups of RN . Any finite set of linearly inde-
pendent vectors b1, b2, · · · , bm ∈ R

N generates a lattice:

L =

{
m∑

i=1

zibi| zi ∈ Z

}
.

Denote by B the matrix whose column vectors are the bi’s. We say B is a basis
(in matrix form) for L; m and N are the rank and dimension of L, respectively.
Denote by det(L) the determinant of lattice L, which is defined as the (co)volume
of L in the real subspace spanned by L. Note that if m = N , the determinant
of L is exactly |det(B)|.

The shortest vector problem (SVP), which refers to the problem of finding
a shortest nonzero lattice vector in a given lattice, is one of the most famous
hard problems in lattice theory. There are some variants of SVP that are very
important for applications.

– Approx-SVP: Given a lattice L and an approximation factor γ ≥ 1, find a
non-zero lattice vector of norm ≤ γ · λ1(L), where λ1(L) is the length of a
shortest non-zero vector in L.

– Hermite-SVP: Given a rank-N lattice L and an approximation factor γ ≥ 1,
find a non-zero lattice vector of norm ≤ γ · det(L)

1
N . Note that Minkowski’s

theorem [27] tells us that

λ1(L) ≤ 2

V1/N
N

· det(L)
1
N ≤

√
N · det(L)

1
N ,
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where VN is the volume of the N -dimensional ball with radius 1. Thus for
any γ ≥ √

N , Hermite-SVP is well-defined for all rank-N lattices.
Since λ1(L) is usually hard to determine given a basis of L, it might be
very hard to verify a solution returned by an algorithm for Approx-SVP with
some approximation factor. However, the solution to Hermite-SVP can be ver-
ified efficiently. Hence, many algorithms, such as LLL [17] and BKZ [35], are
designed as polynomial-time Hermite-SVP algorithms for some exponential
approximation factor.

It is obvious that any algorithm that solves Approx-SVP with factor γ can
also solve Hermite-SVP with factor γ

√
N by Minkowski’s theorem. Furthermore,

based on an idea of Lenstra and Schnorr, Lovász showed that any algorithm
solving Hermite-SVP with factor γ can be used to solve Approx-SVP with factor
γ2 in polynomial time [19].

Moreover, a solution to Hermite-SVP with factor
√

N , that is, satisfying the
Minkowski bound, is usually taken as a good enough approximation of some
shortest vector in a “random” lattice. In addition, when choosing parameters
for lattice-based cryptosystems in practice, such as in NewHope[3], Crystals-
Kyber [8], and LAC [20], the time complexity of solving Hermite-SVP with some
particular factor usually determines the concrete security of these cryptosystems.
Therefore, the algorithm for Hermite-SVP is key to both solving Approx-SVP
and analyzing the security of lattice-based cryptosystems.

The closest vector problem (CVP) is another famous hard problem in lattice
theory. This refers to the problem of finding a lattice vector that is closest to a
given vector.

2.2 Some Basic Algebraic Number Theory

We will review some basic algebraic number theory in this section. More details
can be found in [23] or [28].

Number fields. An algebraic number ζ ∈ C is any root of a nonzero polynomial
f(x) ∈ Q[x] and its minimal polynomial is the unique monic irreducible f(x) ∈
Q[x] of minimal degree that has ζ as a root. An algebraic number is called an
algebraic integer if its minimal polynomial lies in Z[x].

An algebraic number field is a finite field extension K of Q. Such a field can
be obtained by adjoining a single algebraic integer ζ to Q. That is, K = Q(ζ)
for some algebraic integer ζ. The degree N of the minimal polynomial f(x) of ζ
is also the degree of K over Q.

Denote by OK the ring of algebraic integers in K. It is an integral domain
and also a free Z-module with rank N .

For example, let ζ2n+1 be a complex primitive 2n+1-th root of unity, whose
minimal polynomial is f = x2n + 1. Then, K = Q(ζ2n+1) is the cyclotomic
number field of order 2n+1 with degree 2n. Its ring of integers is well known to
be Z[ζ2n+1 ].
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Embeddings. A number field K of degree N over Q has exactly N embeddings
into C. Let σ1, σ2, · · · , σs1 be the real embeddings from K to R, and let

σs1+1, σs1+2, · · · , σs1+s2 ,

σs1+s2+1 = σs1+1, σs1+s2+2 = σs1+2, · · · , σs1+2s2 = σs1+s2

be the non-real embeddings from K to C, where · denotes complex conjugation.
From these σi’s we can define the canonical embedding ΣK from K to C

N :

ΣK : K → C
N , a �→ (σ1(a), σ2(a), · · · , σN (a)).

It is known that the image of ΣK falls into a subspace in C
N , which is isomorphic

to R
N as an inner product space (see [22]).

Another important embedding from K to R
N is the coefficient embedding,

which is most commonly used in cryptographic constructions. This embedding
depends on a choice of generator α for K: write K = Q(α) and map β = a0 +
a1α + ... + aN−1α

N−1 to its coefficient vector, C(β) := (a0, a1, ..., aN−1).
If α may be chosen so that

OK = Z + αZ + α2
Z + ... + αN−1

Z

we say OK is monogenic. In this case the coefficient embedding maps OK to Z
N .

Alternatively, via OK
∼= Z[x]/(f(x)), where f(x) is the minimal polynomial of α,

we may think of C mapping a polynomial in Z[x]/(f(x)) to its coefficient vector:

C(a0 + a1x + · · · + aN−1x
N−1) = (a0, a1, · · · , aN−1).

Discriminants. If K ⊂ L are number fields, the (relative) discriminant of a
K-basis b1, b2, . . . , bN for L is defined by

dL/K(b1, b2, . . . , bN ) = |det(σibj)|2,

where σi varies over the [L : K] embeddings L → C which fix all elements of K.
The discriminant disc(OL/OK), also denoted by disc(L/K), is then the ideal of
OK which is generated by the discriminants dL/K(b1, b2, . . . , bN ) of all the K-bases
b1, b2, . . . , bN of L which are contained in OL.

For any number field K, the (absolute) discriminant disc(K/Q) becomes the
principal ideal generated by d(b1, b2, . . . , bN ) for any basis b1, b2, . . . , bN of the
free Z-module OK. In this case we just write disc(K) to refer to this ideal or
the unique positive integer that generates it. In a sense made precise by the
embeddings defined above, the discriminant gives a notion of the co-volume of
a ring of integers in its fraction field. Specifically, the discriminant is just the
square of this co-volume.
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2.3 Ideal Lattices

The ring of integers OK of K is a free Z-module, and any ideal I in OK is a free
Z-submodule since Z is a principal ideal domain. Under the canonical embedding
or the coefficient embedding, any such I is sent to a lattice in R

N . We call this
image the ideal lattice associated with I, and we denote it also by I.

Under the canonical embedding ΣK from K to C
N , the co-volume (i.e. the vol-

ume of a fundamental domain) of an ideal lattice I is given by NK(I)
√|disc(K)|,

where NK(I) is the norm of I, defined as the cardinality of OK/I. Note that
when we say the norm of a vector, it refers to the Euclidean norm rather than
the algebra norm of an ideal.

Usually it is easier to use the canonical embedding in mathematical analysis,
and to use the coefficient embedding in cryptography. For example, under the
coefficient embedding of Z[ζ2n+1 ], the lattice associated with the prime ideal pi =
(p, fi(ζ2n+1)) is generated by the coefficient vectors of the following polynomials
(modulo xN + 1)

fi, xfi, · · · , xN−1fi and p, px, · · · , pxN−1,

where p is some rational prime, and fi is some irreducible factor of x2n + 1
modulo p. The minimum generating set should have only N vectors, which can
be found by computing the Hermite Normal Form.

Ideals in Z[ζ2n +1 ]. The cyclotomic field of order 2N = 2n+1 is widely used in
cryptography. Its ring of integers is Z[ζ2n+1 ], which is isomorphic to Z[x]/(xN+1).
Its discriminant is 2n2n .

Let p be a rational prime, and let

xN + 1 = (f1f2 · · · fg)e

be the prime factorization of xN +1 in the polynomial ring Fp[x]. Then we have

(p) = (p1p2 · · · pg)e,

where pi = (p, fi(ζ2n+1)) (here fi is any integer polynomial which projects to the
fi in the above factorization). We say the prime ideal pi lies over the prime p. If
e is greater than 1, we say the prime p is ramified (in Z[ζ2n+1 ]); otherwise we say
p is unramified. One can verify that 2 is the only ramified rational prime in the
cyclotomic field of order 2N , and that the prime ideal (2, ζ2n+1 +1) = (ζ2n+1 +1)
lies above the ideal (2).

We are therefore interested in the explicit factorization of the 2n+1-th cyclo-
tomic polynomials, x2n + 1, over Fp[x]. This is computed in [18, Thm. 2.47 and
Thm. 3.75] when p ≡ 1 (mod 4) and in [24] when p ≡ 3 (mod 4).

Theorem 2. Let p ≡ 1 (mod 4), i.e. p = 2A · m + 1, A ≥ 2, m odd. Denote by
Uk the set of all primitive 2k-th roots of unity modulo p. We have
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– If n < A, then x2n + 1 is the product of 2n irreducible linear factors over Fp:

x2n + 1 =
∏

u∈Un+1

(x + u).

– If n ≥ A, then x2n + 1 is the product of 2A−1 irreducible binomials over Fp

of degree 2n−A+1:
x2n + 1 =

∏
u∈UA

(x2n−A+1
+ u).

Theorem 3. Let p ≡ 3 (mod 4), i.e. p = 2A · m − 1, A ≥ 2, m odd. Denote by
Ds(x, a) the Dickson polynomials

� s
2 �∑

i=0

s

s − i

(
s − i

i

)
(−a)ixs−2i

over Fp. For n ≥ 2, we have

– If n < A, then x2n + 1 is the product of 2n−1 irreducible trinomials over Fp:

x2n + 1 =
∏
γ∈Γ

(x2 + γx + 1),

where Γ is the set of all roots of D2n−1(x, 1).
– If n ≥ A, then x2n + 1 is the product of 2A−1 irreducible trinomials over Fp

of degree 2n−A+1:

x2n + 1 =
∏
δ∈Δ

(x2n−A+1
+ δx2n−A − 1),

where Δ is the set of all roots of D2A−1(x,−1).

3 Solving Hermite-SVP for Prime Ideal Lattices
in a Galois Extension

In the following, we will consider solving Hermite-SVP for prime ideals of OL

when L is a finite Galois extension of Q.
A prime ideal p in OL contains a rational prime p, and therefore occurs as

one of the prime ideals in the factorization

pOL = (p1p2 · · · pg)e.

Without loss of generality, we assume p1 = p.
To find a short vector of p1, we try to find a short vector in the sublattice

given by the intersection of p1 with some intermediate field between Q and L.
Since this sublattice has smaller rank, this may lead to a more efficient algorithm
than working in L directly.



568 Y. Pan et al.

More precisely, let G be the Galois group of L over Q. Recall the decompo-
sition group, D, and decomposition field, K, for p1:

D := {σ ∈ G : σ(p1) = p1},

K := {x ∈ L : ∀σ ∈ D,σ(x) = x}.

Let OK be the algebraic integer ring of K. It is well known that the degree of
K over Q is g (see [23, Thm. 28]). This is our desired intermediate field, and we
have the following theorem.

Theorem 4. Suppose L/Q is a finite Galois extension with degree N , and sup-
pose p is a prime ideal of OL lying over an unramified rational prime p such that
pOL has g distinct prime ideal factors in OL. If K is the decomposition field of p,
then a solution to Hermite-SVP with factor γ in the sublattice c = p∩ OK under
the canonical embedding of K will also be a solution to Hermite-SVP in p with

factor
√

N/g

NK(disc(L/K))1/(2N) · γ (≤
√

N
g · γ) under the canonical embedding of L.

In particular, when γ =
√

g, a vector in the sublattice c satisfying the
Minkowski bound will produce a vector in the lattice p satisfying the Minkowski
bound.

Proof. Consider the following diagram

p OL L C
N

c OK K C
g

(p) Z Q C

⊂ ⊂ ΣL

⊂ ⊂ ΣK

β

⊂ ⊂ ⊂

Here β is chosen to be the linear map making the diagram commute.
Note that every embedding of K in C can be extended to exactly N

g embed-
dings of L in C [23, Thm. 50]; thus β is (up to permutation) just the linear
embedding given by repeating each coordinate N/g times. Thus for any v ∈ C

g

we have

‖β(v)‖ =

√
N

g
· ‖v‖. (1)

Note that the norm of c is exactly p [23, Thm. 29], so that the determinant
of c is p

√|disc(K)|. Thus, under the canonical embedding of OK into C
g, any

solution v0 ∈ c to Hermite-SVP with factor γ satisfies

‖v0‖ ≤ γ · p
1
g |disc(K)| 1

2 g .
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By Eq. (1) above and the fact that disc(L) = disc(K)N/gNK(disc(L/K))
[28, Corallary (2.10), pp. 202], we therefore have

‖β(v0)‖ ≤ γ ·
√

N

g
p

1
g |disc(K)| 1

2 g

= γ ·
√

N/g

NK(disc(L/K))1/(2N)
p

1
g |disc(L)| 1

2N

= γ ·
√

N/g

NK(disc(L/K))1/(2N)
(p

N
g

√
|disc(L)|) 1

N

Note that the norm of p is p
N
g , and thus p

N
g

√|disc(L)| is exactly the deter-
minant of the ideal lattice p under the canonical embedding of L. Hence v0 is

also a solution to Hermite-SVP with factor
√

N/g

NK(disc(L/K))1/(2N) · γ.
Note that NK(disc(L/K)) is a positive integer. Thus

√
N/g

NK(disc(L/K))1/(2N)
≤

√
N

g
.

In particular, when γ =
√

g,
√

N/g

NK(disc(L/K))1/(2N) ·γ ≤ √
N still holds. The theorem

follows. ��
Remark 1. To design an algorithm from the theorem, we need to calculate the
decomposition field from a prime ideal. In general this is not an easy problem.
Fortunately, for power-of-two or prime order cyclotomic fields, the subfield struc-
tures have been worked out in the literature. Another technical problem is to
compute a basis for c = p ∩ OK. This can be solved if we know a Q-basis of K.

Remark 2. How many prime ideals are vulnerable to this attack? In other words,
given an irreducible polynomial over Z, how does its factoring pattern change
over Fp as p varies? This is a central topic of class field theory when the Galois
group is solvable. In the general case, it has been studied in the famous Langlands
program, where many challenging problems remain. The answer is well known
for number fields popular in lattice based cryptography. There exists a set of
rational primes, of positive density with non-trivial decomposition group, such
that for any p in this set, the decomposition fields of the prime ideals lying above
p are never the whole field L. In this case, p ∩ OK has rank no more than half
that of p, resulting in a much easier SVP problem.

4 Solving SVP for Ideal Lattices in Z[ζ2n+1]

In the following, we use the above idea to solve SVP for ideal lattices in Z[ζ2n+1 ],
the ring of integers in the cyclotomic field Q(ζ2n+1), a field which is widely used in
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lattice-based cryptography. The decomposition field of any prime ideal is either
equal to, or a degree-2 subfield of, one of the following

Q[i] ⊂ Q[ζ8] ⊂ · · · ⊂ Q[ζ2n ] ⊂ Q[ζ2n+1 ].

The subfields in this chain are convenient because they are monogenic and their
integer rings have Z-bases (powers of ζ2n+1) that are mutually compatible and
orthogonal under the canonical embedding. This results in a hierarchy of com-
plexity of prime ideal SVP problems. Furthermore, for a non-prime ideal I, we
can approximate the shortest vectors of I by finding short vectors in I ∩ OK,
where K is the smallest field in the above chain containing all the decomposition
fields of the prime factors of I. This allows us to find short vectors for many
non-prime ideals. In contrast to the approximation result we achieved in the
general setting of Theorem 4, an exact SVP solution is possible in power-of-two
cyclotomic fields. We will first prove a reduction for SVP for prime ideal lattices
in Z[ζ2n+1 ], and then we will prove a reduction for general ideals. We would like
to point out that in the case of a general ideal lattice I, we do not need to know
the prime factorization of I to run our algorithm.

4.1 Solving SVP for Prime Ideal Lattices in Z[ζ2n +1 ]

For simplicity we let ζ = ζ2n+1 . In the sequel we say goodbye to the canonical
embedding and adopt the coefficient embedding C:

Q(ζ) → R
2n ,

2n−1∑
i=0

aiζ
i �→ (a0, a1, ..., a2n−1).

The coefficient embedding is widely used in cryptographic constructions. For
power-of-two cyclotomic fields, the two embeddings are related by scaled-
rotations, since for any v ∈ Z[ζ2n+1 ] it is easy to see that

‖ΣL(v)‖ =
√

2n‖C(v)‖.

Hence, the shortest vector under the coefficient embedding of Q(ζ) must be the
shortest under the canonical embedding.

The prime 2 is the unique ramified prime in Q(ζ), and the prime ideal lying
over (2) is (2, ζ + 1) = (ζ + 1). Hence it is easy to find the shortest vector in the
ideal lattice (ζ + 1), and its length is

√
2.

Below we consider a prime ideal lying over an odd prime and show that
there is a hierarchy for the hardness of solving SVP for prime ideal lattices in
Z[ζ]. Roughly speaking, we can classify all the prime ideal lattices into n classes
labeled with 1, 2, · · · , n, depending on the congruence class of p (mod 2n+1),
and for a prime ideal lattice in the r-th class, we can always find its shortest
vector by solving SVP in a 2r-dimensional lattice. More precisely, we have:
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Theorem 5. For any prime ideal p = (p, f(ζ)) in Z[ζ], where p is an odd prime
and f(x) is some irreducible factor of x2n + 1 in Fp[x]. Write

p =
{

2A · m + 1, ifp ≡ 1 (mod 4);
2A · m − 1, ifp ≡ 3 (mod 4),

for some odd m and A ≥ 2, and let

r =
{

min{A − 1, n}, ifp ≡ 1 (mod 4);
min{A,n}, ifp ≡ 3 (mod 4).

Then given an oracle that can solve SVP for 2r-dimensional lattices, a shortest
nonzero vector in p can be found in poly(2n, log2 p) time with the coefficient
embedding.

Proof. It is well known that the Galois group G of Q(ζ) over Q is isomorphic to
the multiplicative group (Z/2n+1

Z)∗. Let G = {σ1, σ3, · · · , σ2n+1−1} where

σi : Q(ζ) → Q(ζ);

ζ �→ ζi.

We proceed by considering two separate cases.

Case 1: First we deal with the case when p ≡ 1 (mod 4). The theorem is
vacuously true for n < A.

If n ≥ A, we have r = A − 1. By Theorem 2, we know that

f(x) = x2n−A+1
+ u = x2n−r

+ u

for some u ∈ UA. Then the prime ideal lattice p can be generated by p and
f(ζ) = ζ2

n−r

+ u. Consider the subgroup H = 〈σ2r+1+1〉 of G generated by
σ2r+1+1. H is a subgroup of the decomposition group of the ideal p since

σ2r+1+1(p) = p, σ2r+1+1(f(ζ)) = f(ζ).

Note that K = Q(ζ2
n−r

) is the fixed field of H and its integer ring OK has a
Z-basis (1, ζ2

n−r

, ζ2·2n−r

, · · · , ζ(2
r−1)·2n−r

).
Let c = p

⋂
OK. We claim that p is a direct sum:

p =
2n−r−1⊕

k=0

ζkc. (2)

Indeed for any a ∈ p, there exist integers zi’s and wi’s such that

a =
2n−1∑
i=0

ziζ
if(ζ) +

2n−1∑
i=0

wipζi

=
2n−r−1∑

k=0

ζk
2r−1∑
j=0

(zk+j·2n−rζj·2n−r

f(ζ) + wk+j·2n−rpζj·2n−r

)

=
2n−r−1∑

k=0

ζk

(
(
2r−1∑
j=0

zk+j·2n−rζj·2n−r

)f(ζ) + (
2r−1∑
j=0

wk+j·2n−rζj·2n−r

)p
)

.
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Let a(k) = (
∑2r−1

j=0 zk+j·2n−rζj·2n−r

)f(ζ) + (
∑2r−1

j=0 wk+j·2n−rζj·2n−r

)p for any k.
Since p ∈ c and f(ζ) ∈ c, a(k) ∈ c. We have established (2).

Since multiplication by ζ is an isometry and for x ∈ c, the coefficients of ζix
and ζjx are disjoint for i �= j mod 2n−r, Eq. (2) implies

λ1(p) = λ1(c),

and that to find the shortest vector in the ideal lattice p, it is enough to find the
shortest vector v in the ideal lattice c, a lattice with dimension 2r. Indeed ζkv
for any 0 ≤ k ≤ 2n−r − 1 will be a shortest vector in the ideal lattice p.

Case 2: For the case when p ≡ 3 (mod 4), everything is similar except that
r = A.

Algorithm: We can summarize the algorithm to solve SVP in a prime ideal
lattice as Algorithm 1.

Algorithm 1. Solve SVP in prime ideal lattice
Input: a prime ideal p = (p, f(ζ)) in Z[ζ], where p is odd.
Output: a shortest vector in the corresponding prime ideal lattice.

1: Compute the ideal c generated by p and f(ζ) in OK where K = Q(ζ2n−r

).
2: Find a shortest vector v in the 2r-dimensional lattice c.
3: Output v.

The most time-consuming step in Algorithm 1 is Step 2 and the other steps
can be done in poly(2n, log2 p) time. �

Remark 3. By the decomposition (2) above, a similar result will hold for a prime
ideal p in OL other than Q(ζ), whenever OL is a free OK-module where K is the
decomposition field of p, and some Z-basis of OK can be extended to the Z-basis of
OL that determines the coefficient embedding. If we disregard the last condition
that a basis of OK extends to a basis of OL, there may be a distortion of length,
depending on the basis of OK, when we lift the solution from c to p. That is, an
approximation factor, which may be much larger than 1, will be involved.

Remark 4. By the remark above, solving the closest vector problem (CVP) for
a prime ideal lattice can be also reduced to solving CVP in some 2r-dimensional
sublattice.

SVP of some special prime ideals in Z[ζ2n +1 ]. Using Theorem 5, we can
prove Theorem 1, which shows that the SVP for prime ideals lying above some
special rational primes is very easy.

Proof of Theorem 1
If p ≡ −3 (mod 8), we may write p = 4m + 1 with odd m. By Theorem 2,

x2n +1 is the product of 2 irreducible binomials over Fp of degree 2n−1: x2n +1 =
(x2n−1

+ u1) · (x2n−1
+ u2), where ui satisfies u2

i ≡ −1 (mod p).
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For any prime ideal (p, ζ2
n−1

+ ui) over (p), by the proof of Theorem 5, the
shortest vector can be found by solving the 2-dimensional lattice Li generated

by

⎛
⎜⎜⎝

ui 1
−1 ui

p 0
0 p

⎞
⎟⎟⎠ . Note that (−1, ui) ≡ ui · (ui, 1) (mod p) and (0, p) = p · (ui, 1) −

ui · (p, 0). The generator matrix can be reduced to the basis of Li as
(

ui 1
p 0

)
,

which is exactly the Hermite Normal Form of the lattice basis.
For any vector v ∈ Li, there exists an integer vector (z1, z2) such that v =

(z1, z2)
(

ui 1
p 0

)
= (z1ui + z2p, z1). Note that

‖v‖2 = (z1ui + z2p)2 + z21 = z21(u
2
i + 1) + z22p

2 + 2pz1z2ui ≡ 0 (mod p).

Then for the nonzero shortest vector v, we have 0 < ‖v‖2 < 4
π · p < 2p (by

Minkowski’s Theorem [27]) and ‖v‖2 ≡ 0 (mod p), which implies that ‖v‖2 = p.
In case p ≡ 3 (mod 8), we may write p = 4m−1 with odd m. By Theorem 3,

then x2n + 1 is the product of 2 irreducible binomials over Fp of degree 2n−1:
x2n +1 = (x2n−1

+ δ1x
2n−2 −1) · (x2n−1

+ δ2x
2n−2 −1), where δi satisfies δ2i ≡ −2

(mod p) since the Dickson polynomial is D2(x,−1) = X2 + 2.
For any prime ideal (p, ζ2

n−1
+ δiζ

2n−2 − 1) over (p), we similarly consider
the shortest vector in Li generated by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 δi 1 0
0 −1 δi 1

−1 0 −1 δi

−δi −1 0 −1
p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, we can easily get the basis for Li in the Hermite Normal Form⎛
⎜⎜⎝

0 −1 δi 1
−1 δi 1 0
0 p 0 0
p 0 0 0

⎞
⎟⎟⎠ ,

and prove that for any vector v ∈ L,

‖v‖2 ≡ 0 (mod p).

For the shortest vector v, by Minkowski’s Theorem, we know 0 < ‖v‖2 ≤ 4
√
2

π <
2p, which implies that ‖v‖2 = p. By Theorem 5, the proposition follows. �
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4.2 SVP Average-Case Hardness for Prime Ideals in Z[ζ]

Precisely defining the average-case hardness of SVP for a prime ideal lattice inZ[ζ]
requires specifying a distribution. We consider the following three distributions.

The first distribution. To select a random prime ideal, one fixes a large M ,
uniformly randomly selects a prime number in the set

{p is a prime : p < M},

and then uniformly randomly selects a prime ideal lying over p. This process
provides a reasonable distribution among prime ideals, since every prime ideal
in the ring of integers of Q[x]/(f(x)) is of the form (p, g(x)), where p is a prime
number and g(x) is an irreducible factor of f(x) over Fp[x]. Since roughly half
of all primes p ≤ M satisfy p ≡ ±3 (mod 8), according to Dirichlet’s theorem
on arithmetic progressions, at least half of all such p have the property that the
ideals lying over p admit an efficient algorithm for SVP.

The second distribution. Again fixing a large M , we might alternatively
select a prime ideal uniformly at random from the set

{p prime ideal : p ∈ p, p is a prime, p < M}.

In this case, a non-negligible fraction of prime ideals admit efficient SVP algo-
rithm. More precisely, we have

Proposition 2. Under the distribution above, a random prime ideal of Z[ζ]
admits an efficient SVP algorithm with probability at least 1

1+2n−1 .

Proof. For simplicity, we disregard the single prime ideal lying over 2. Note that
for p = 8k±3, there are exactly two prime ideals over p, and, by Theorem 1, the
SVP for the corresponding ideal lattices is easy. For p = 8k±1, there are at most
2n prime ideals lying over p, by Theorems 2 and 3. Then by Dirichlet’s prime
number theorem, even if we only count the prime ideals lying over p = 8k ± 3,
the fraction of easy instances is at least 1

1+2n−1 . �

The third distribution. The third distribution is more common in mathe-
matics. Namely, after fixing a large M , we select uniformly at random a prime
ideal from the set

{p prime ideal : N (p) < M},

where N (p) is the norm of the ideal p.
By Theorem 5, SVP for a prime ideal lattice p reduces to SVP for a 2r-

dimensional sub-lattice c, where r is as defined in the statement of Theorem 5.
Note that our algorithm will not improve matters if r = n, that is, if p splits
completely in Q(ζ), or equivalently if N (p) = p. By Chebotarev’s density
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theorem [38], there are about M
2n log M rational primes which split in Q(ζ) and

hence M
log M prime ideals lying above those primes, for which our algorithm can-

not provide a reduction for SVP.
If our algorithm is to provide a reduction, the prime ideal under study must

lie over a rational prime p with p ≤ √
M , since N (p) = pf < M where f is some

integer greater than 1. Hence there are at most
√

M such primes and hence at
most 2n−1

√
M prime ideals for which our algorithm provides a reduction.

Under such a distribution, therefore, the density of the easy instances for our
algorithm is at most 2n−1 log M√

M
, which goes to zero when M tends to infinity.

Remark 5. From a cryptographic perspective, there seems to be no construction
relying on the average hardness of ideal SVP in ideals following one of the two
first distributions above. However, our algorithm reveals the concrete reason why
we should avoid such distributions in the cryptographic constructions although
it seems very easy to sample according to the two distributions.

4.3 Solving SVP for a General Ideal Lattice in Z[ζ2n +1 ]

For simplicity, we let ζ = ζ2n+1 . We will show that even for a general ideal lattice
I ⊂ Z[ζ], there is a similar hierarchy for the hardness of SVP. We would like to
stress that although the following theorem refers to the prime factorization of I,
the resulting algorithm does not require it.

Theorem 6. Let I be a nonzero ideal of Z[ζ] with prime factorization

I = p1 · p2 · · · pt,

where pi = (fi(ζ), pi) for rational primes pi, and where the pi are not necessarily
distinct. Write pi = 2Ai ·mi +1 when pi ≡ 1 (mod 4) and pi = 2Ai ·mi −1 when
pi ≡ 3 (mod 4) with odd mi, and let r = max{ri}, where

ri =

⎧⎨
⎩

min{Ai − 1, n}, ifpi ≡ 1 (mod 4);
min{Ai, n}, ifpi ≡ 3 (mod 4);
n, ifpi = 2.

Then the shortest vector in the ideal lattice L corresponding to I can be solved
via solving SVP in a 2r-dimensional lattice.

Proof. If r = n, then the theorem follows simply.
If r < n, W.L.O.G., we assume r = r1. Following the proof of Theorem 5,

denote the Galois group G = {σ1, σ3, · · · , σ2n+1−1} of Q(ζ) over Q, where σi(ζ) =
ζi. Consider the subgroup H = 〈σ2r+1+1〉 of G generated by σ2r+1+1. For any τ ∈
H and every prime ideal pi = (pi, fi(ζ)), we have τ(pi) = pi since σ2r+1+1(pi) =
pi, σ2r+1+1(fi(ζ)) = fi(ζ). Note that K = Q(ζ2

n−r

) is the fixed field of H and
its integer ring OK has a Z-basis (1, ζ2

n−r

, ζ2·2n−r

, · · · , ζ(2
r−1)·2n−r

).
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Let c = I ⋂
OK. We claim that for any a ∈ I, there exist a(k) ∈ c for

0 ≤ k < 2n−r, such that

a =
2n−r−1∑

k=0

ζka(k).

We proceed by induction. When t = 1 the above claim holds by Theorem 5.
Suppose the claim holds for t − 1. Then setting I = p1 · p2 · · · pt, and I =
p1 · p2 · · · pt−1, we have I = I · pt. For any a ∈ I, we can write a =

∑
xiyi where

xi ∈ I and yi ∈ pt. It suffices to show that for any xy, where x ∈ I and y ∈ pt,
there exist b(k) ∈ I ⋂

OK for 0 ≤ k < 2n−r, such that xy =
∑2n−r−1

k=0 ζkb(k).
By the induction assumption, there exist x(i) ∈ I ⋂

OK for 0 ≤ i < 2n−r

such that x =
∑2n−r−1

i=0 ζix(i), and there exist y(j) ∈ pt

⋂
OK for 0 ≤ j < 2n−r

such that y =
∑2n−r−1

j=0 ζjy(j). Hence, we have

xy =

2n−r−1∑

i=0

2n−r−1∑

j=0

ζi+jx(i)y(j)

=

2n−r−1∑

k=0

ζk
∑

i+j=k

x(i)y(j) +

2·2n−r−2∑

k=2n−r

ζk
∑

i+j=k

x(i)y(j)

=

2n−r−1∑

k=0

ζk
∑

i+j=k

x(i)y(j) +

2n−r−2∑

k=0

ζk
∑

i+j=k+2n−r

ζ2
n−r

x(i)y(j)

=

2n−r−2∑

k=0

ζk(
∑

i+j=k

x(i)y(j) +
∑

i+j=k+2n−r

ζ2
n−r

x(i)y(j)) + ζ2
n−r−1

∑

i+j=2n−r−1

x(i)y(j).

Let b(k) =
∑

i+j=k x(i)y(j) +
∑

i+j=k+2n−r ζ2
n−r

x(i)y(j) for any 0 ≤ k ≤ 2n−r −2

and b(2
n−r−1) =

∑
i+j=2n−r−1 x(i)y(j). We have that b(k) ∈ I ⋂

OK for 0 ≤ k <

2n−r. Hence, for any a ∈ I, there exist a(k) ∈ c for 0 ≤ k < 2n−r, such that
a =

∑2n−r−1
k=0 ζka(k).

As in the proof of Theorem 5, we can show that λ1(I) = λ1(c) and any
nonzero shortest vector in c will yield 2n−r nonzero shortest vectors in I. ��

We would like to point out that in some cases, the r in Theorem 6 can be
improved. Consider the case when n ≥ 3 and I = (2, ζ − 1)2 = (2, ζ2 + 1). We
need to solve SVP in a 2n-dimensional lattice by Theorem 6. However, using the
intermediate field Q(ζ2) as in the proof of Theorem 6, we can find a shortest
vector by solving SVP in a 2n−1-dimensional lattice.

Furthermore, since for any a ∈ I, there exist a(k) ∈ c for 0 ≤ k < 2n−r, such
that a =

∑2n−r−1
k=0 ζka(k), we conclude that if (b(i))0≤i<2r is a basis of the ideal

lattice c, then (ζjb(i))0≤i<2r,0≤j<2n−r is a basis of the ideal lattice I. Denote by
Lj the lattice generated by (ζjb(i))0≤i<2r . Then we have that the ideal lattice I
has an orthogonal decomposition: L0 ⊕ L1 ⊕ · · · ⊕ L2n−r−1.
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In fact, for any r̄, let c = I ⋂
OK where K = Q(ζ2

n−r̄

). For any basis
(b(i))0≤i<2r̄ of the ideal lattice c, if (ζjb(i))0≤i<2r̄,0≤j<2n−r̄ is a basis of the ideal
lattice I (meaning that the ideal lattice I has an orthogonal decomposition),
then the shortest vector in c is also a shortest vector in I. Hence we have the
following algorithm to solve SVP for a general ideal in Z[ζ] without knowing the
prime factorization of the ideal.

Algorithm 2. Solve SVP in general ideal lattice
Input: an ideal I;
Output: a shortest vector in the corresponding ideal lattice L.
1: for r̄ = 1 to n do
2: Compute a basis (b(i))0≤i<2r̄ of the ideal lattice c = I ⋂

OK, where K =

Q(ζ2n−r̄

).
3: if (ζjb(i))0≤i<2r̄,0≤j<2n−r̄ is exactly a basis of ideal lattice I then
4: Find a shortest vector v in the 2r̄-dimensional lattice c;
5: Output v.
6: end if
7: end for

Note that Step 2 can be done efficiently by computing the intersection of the
lattices I and OK under the coefficient embedding.

Remark 6. By the proof of Theorem 6, solving the closest vector problem (CVP)
for a general ideal lattice can also be reduced to solving CVP in some 2r-
dimensional lattice.

5 Conclusion and Open Problems

We have investigated the SVP of prime ideal lattices in the finite Galois extension
of Q, and designed an algorithm exploiting the subfield structure of such fields
to solve Hermite-SVP for prime ideal lattices. For the power-of-two cyclotomic
fields, we obtained an efficient algorithm for solving SVP in many ideal lattices,
either prime or non-prime ideals. We also determined the length of the shortest
vector of those prime ideals lying over rational primes congruent to ±3 (mod 8).
It is an interesting problem to study the length of the shortest vectors in other
prime ideals. The worst case hardness of prime ideal lattice SVP for power-of-two
cyclotomic fields is also left open.
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A The Subfields of Q(ζ2n )

Now we sketch the subfield lattice of Q(ζ2n+1). Consider the three subfields

Q(ζ2n+1 + ζ−1
2n+1), Q(ζ2n), Q(ζ2n+1 − ζ−1

2n+1).

First we claim Q(ζ2n+1) is degree two over each. On the one hand, all are proper
subfields since Q(ζ2n+1+ζ−1

2n+1) is contained in the fixed field of the automorphism
ζ2n+1 �→ ζ−1

2n+1 , and Q(ζ2n+1 − ζ−1
2n+1) is in the fixed field of the automorphism

ζ2n+1 �→ −ζ−1
2n+1 . On the other hand, ζ2n+1 is a root of the quadratic polynomials

x2 − (ζ2n+1 + ζ−1
2n+1)x + 1 ∈ Q(ζ2n + ζ−1

2n+1)[x] and x2 − (ζ2n+1 − ζ−1
2n+1)x − 1 ∈

Q(ζ2n+1 − ζ−1
2n+1)[x].

Moreover, since the involutions

ζ2n+1 �→ ζ−1
2n+1 , ζ2n+1 �→ ζ2

n−1+1
2n+1 , ζ2n+1 �→ −ζ−1

2n+1

are distinct, these three subfields are distinct. Finally it is routine to sketch the
subgroup lattice of Z2 ⊕ Z2n−1 ∼= (Z/2n+1

Z)∗ ∼= Gal(Q(ζ2n+1)/Q):

〈(0, 0)〉

〈(1, 0)〉 〈(0, 2n−2)〉 〈(1, 2n−2)〉

〈(1, 0), (0, 2n−2)〉 〈(0, 2n−3)〉 〈(1, 2n−3)〉

〈(1, 0), (0, 2n−3)〉 〈(0, 2n−4)〉 〈(1, 2n−4)〉

...
...

...

〈(1, 0), (0, 2)〉 〈(0, 1)〉 〈(1, 1)〉

Z2 ⊕ Z2n−1

Here all lines indicate extensions of index two. Combining these facts we have
the subfield lattice for Q(ζ2n):
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Q(ζ2n+1)

Q(ζ2n+1 + ζ−1
2n+1) Q(ζ2n) Q(ζ2n+1 − ζ−1

2n+1)

Q(ζ2n + ζ−1
2n ) Q(ζ2n−1) Q(ζ2n − ζ−1

2n )

Q(ζ2n−1 + ζ−1
2n−1) Q(ζ2n−2) Q(ζ2n−1 − ζ−1

2n−1)

...
...

...

Q(ζ8 + ζ−1
8 ) Q(i) Q(ζ8 − ζ−1

8 )

Q

where all lines indicate extensions of order two.

B Decomposition Groups and Fixed Fields

Let ζ = ζ2n+1 , p a rational prime with p ≡ 3 (mod 4), A the natural number
with 2A||p + 1, and let p be a prime ideal in Z[ζ] containing p. Then

p = (p, ζ2
n−A+1

+ δζ2
n−A − 1)

for some δ ∈ Z. Let σ ∈ Aut(Q(ζ)/Q) be the automorphism of Q(ζ) with
ζ �→ ζ−2A−1. Then we have

σp = (p, σ(ζ)2
n−A+1

+ δσ(ζ)2
n−A − 1)

= (p, ζ2
n−A+1(−2A−1) + δζ2

n−A(−2A−1) − 1)

= (p, ζ−2n+1
ζ−2n−A+1

+ δζ−2nζ−2n−A − 1)

= (p, ζ−2n−A+1 − δζ−2n−A − 1)

= (p, − ζ−2n−A+1 · (ζ2
n−A+1

+ δζ2
n−A − 1))

= p.

We have used the fact that ζ is a unit in Z[ζ].
Since ζ �→ ζ−1 is an involution, the order of σ is the order of ζ �→ ζ2

A+1

(denoted by σ′ ) which is the multiplicative order of 2A + 1 in (Z/2n+1
Z)∗. We

claim that, for A ≥ 2, this order is 2n+1−A: First note that for k ≡ 1 (mod 4),

ord(Z/2n+1Z)∗(k) = 2m
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if and only if 2n+1||k2m − 1. This fact follows easily from the identity

k2g+1 − 1 = (k2g − 1)(k2g + 1)

and the fact that for k = 2A+1, we have 2||(k2g +1). Now, that the multiplicative
order of 2A + 1 is 2n+1−A follows from an induction argument using the above
identity.

The preceding two paragraphs prove that σ lies in the decomposition group
of p and that σ has order 2n+1−A. It follows from a standard result in the theory
of number fields that the decomposition group of p has order 2n+1−A. Thus 〈σ〉 is
precisely the decomposition group of p. Now recall the subfield/subgroup lattice
for Q(ζ)/Q and its Galois group Z

∗
2n+1 . A simple computation shows that σ fixes

ζ2
n−A − ζ−2n−A

. But from the subfield lattice we can see that

[Q(ζ) : Q(ζ2
n−A − ζ−2n−A

)] = 2n+1−A = |〈σ〉|.

Thus Q(ζ2
n−A − ζ−2n−A

) is precisely this fixed field.
A similar, in fact easier, analysis can be carried out for p ≡ 1 (mod 4). In

this case
p = (p, ζ2

n−A+1 − u)

for some u ∈ Z and 2A||p − 1. Then it is seen that σ′ fixes p. As in the 3
(mod 4) case, we know from a general result of algebraic number theory that
the decomposition group of p has order 2n+1−A, which matches the order of
σ′ (computed above). We see that Q(ζ2

n+1−A

) is contained in the fixed field of
σ′, and again, by looking at the subfield lattice to find [Q(ζ) : Q(ζ2

n+1−A

)] =
2n+1−A, we see that Q(ζ2

n+1−A

) is precisely the fixed field of the decomposition
group of p.
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13. Ducas, L., Plançon, M., Wesolowski, B.: On the shortness of vectors to be found
by the ideal-SVP quantum algorithm. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 322–351. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 12

14. Eisenträger, K., Hallgren, S., Kitaev, A.Y., Song, F.: A quantum algorithm for
computing the unit group of an arbitrary degree number field. In: Proceedings of
Symposium on Theory of Computing, STOC 2014, pp. 293–302 (2014). https://
doi.org/10.1145/2591796.2591860

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

16. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

17. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261(4), 515–534 (1982). https://doi.org/10.1007/BF01457454

18. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and Its
Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997).
https://doi.org/10.1016/s0898-1221(97)84597-x

19. Lovasz, L.: An Algorithmic Theory of Numbers, Graphs, and Convexity. CBMS-
NSF Regional Conference Series in Applied Mathematics, vol. 50. Society for Indus-
trial and Applied Mathematics (1986). https://doi.org/10.1137/1.9781611970203

https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1112/S1461157016000371
https://doi.org/10.1112/S1461157016000371
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/978-3-030-26948-7_12
https://doi.org/10.1007/978-3-030-26948-7_12
https://doi.org/10.1145/2591796.2591860
https://doi.org/10.1145/2591796.2591860
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/BF01457454
https://doi.org/10.1016/s0898-1221(97)84597-x
https://doi.org/10.1137/1.9781611970203


582 Y. Pan et al.

20. Lu, X., et al.: LAC: practical Ring-LWE based public-key encryption with byte-
level modulus. IACR Cryptology ePrint Archive 2018/1009 (2018). https://eprint.
iacr.org/2018/1009

21. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

23. Marcus, D.A.: Number Fields. Universitext, 2nd edn. Springer, New York (2018).
https://doi.org/10.1007/978-1-4684-9356-6

24. Meyn, H.: Factorization of the cyclotomic polynomials x2n + 1 over
finite fields. Finite Fields Appl. 2, 439–442 (1996). https://doi.org/10.1017/
CBO9780511525926

25. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: Proceedings of 43rd
Symposium on Foundations of Computer Science (FOCS 2002), pp. 356–365
(2002). https://doi.org/10.1109/SFCS.2002.1181960

26. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007). https://doi.org/10.1007/
s00037-007-0234-9

27. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective. The Kluwer International Series in Engineering and Computer Sci-
ence, vol. 671. Kluwer Academic Publishers (2002). https://doi.org/10.1007/978-
1-4615-0897-7

28. Neukirch, J.: Algebraic Number Theory. Grundlehren der mathematischen Wis-
senschaften, vol. 322, 1st edn. Springer, Heidelberg (1999). https://doi.org/10.
1007/978-3-662-03983-0

29. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 25

30. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pp. 461–473 (2017). https://
doi.org/10.1145/3055399.3055489

31. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8
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228 (1926). https://doi.org/10.1007/BF01206606

https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/BF01206606


Homomorphic Encryption



Efficient Bootstrapping for Approximate
Homomorphic Encryption with

Non-sparse Keys

Jean-Philippe Bossuat(B), Christian Mouchet, Juan Troncoso-Pastoriza,
and Jean-Pierre Hubaux
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Abstract. We present a bootstrapping procedure for the full-RNS vari-
ant of the approximate homomorphic-encryption scheme of Cheon et al.,
CKKS (Asiacrypt 17, SAC 18). Compared to the previously proposed
procedures (Eurocrypt 18 & 19, CT-RSA 20), our bootstrapping proce-
dure is more precise, more efficient (in terms of CPU cost and number
of consumed levels), and is more reliable and 128-bit-secure. Unlike the
previous approaches, it does not require the use of sparse secret-keys.
Therefore, to the best of our knowledge, this is the first procedure that
enables a highly efficient and precise bootstrapping with a low proba-
bility of failure for parameters that are 128-bit-secure under the most
recent attacks on sparse R-LWE secrets.

We achieve this efficiency and precision by introducing three novel
contributions: (i) We propose a generic algorithm for homomorphic
polynomial-evaluation that takes into account the approximate rescal-
ing and is optimal in level consumption. (ii) We optimize the key-switch
procedure and propose a new technique for linear transformations (dou-
ble hoisting). (iii) We propose a systematic approach to parameterize the
bootstrapping, including a precise way to assess its failure probability.

We implemented our improvements and bootstrapping procedure in
the open-source Lattigo library. For example, bootstrapping a plaintext
in C

32768 takes 18 s, has an output coefficient modulus of 505 bits, a
mean precision of 19.1 bits, and a failure probability of 2−15.58. Hence,
we achieve 14.1× improvement in bootstrapped throughput (plaintext-
bit per second), with respect to the previous best results, and we have a
failure probability 468× smaller and ensure 128-bit security.

Keywords: Fully homomorphic encryption · Bootstrapping ·
Implementation

1 Introduction

Homomorphic encryption (HE) enables computing over encrypted data without
decrypting them first; thus, it is becoming increasingly popular as a solution
c© International Association for Cryptologic Research 2021
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for processing confidential data in untrustworthy environments. Since Gentry’s
introduction of the first fully homomorphic-encryption (FHE) scheme over ideal
lattices [14], continuous efficiency improvements have brought these techniques
closer to practical application domains. As a result, lattice-based FHE schemes
are increasingly used in experimental systems [23,26,27], and some of them are
now proposed as an industry standard [2].

Cheon et al. [11] introduced a leveled encryption scheme for approximate
arithmetic (CKKS); the scheme is capable of homomorphically evaluating arbi-
trary polynomial functions over encrypted complex-number vectors. Although
the family of leveled cryptosystems enables only a finite multiplicative depth,
with each multiplication consuming one level, the CKKS scheme enables the
homomorphic re-encryption of an exhausted ciphertext into an almost fresh one.
This capability, commonly called bootstrapping, theoretically enables the evalu-
ation of arbitrary-depth circuits. In practice, however, the bootstrapping proce-
dure for CKKS is approximate, and its precision and performance determine the
actual maximum depth of a circuit.

Since the initial CKKS bootstrapping procedure by Cheon et al. [10] and until
the most recent work by Han and Ki [20] that operates on the full-RNS (residue
number systems) version of CKKS, the bootstrapping efficiency has improved
by several orders of magnitude. However, this operation remains a bottleneck
for its potential applications, and its performance is crucial for the adoption
of the scheme. Bootstrapping performance can be improved by following two
approaches: (i) adapting the bootstrapping circuit representation by using HE-
friendly numerical methods. (ii) optimizing the scheme operations themselves,
which also improves the overall scheme performance.

All current CKKS bootstrapping approaches [6,10,20] rely, so far, on sparse
secret-keys to reduce the depth of their circuit representation, and none of them
has proposed parameters with an equivalent security of at least 128 bits under the
recent attacks on sparse R-LWE secrets [9,29]. The lack of stability in the secu-
rity of sparse R-LWE secrets has lead the standardization initiatives to exclude
sparse keys, hence also the bootstrapping operation, from the currently proposed
standards [2]. This raises the question about the practicality of a bootstrapping
procedure that would not require the use of sparse secret-keys.

1.1 Our Results

We propose an efficient bootstrapping procedure for the full-RNS CKKS scheme;
it does not necessarily require the use of sparse secret-keys and provides a greater
throughput than the current state of the art (Definition 1 in Sect. 7.1). To achieve
this, we make the following contributions:

Homomorphic Polynomial Evaluation (Sect. 3). The full-RNS variant of
the CKKS scheme restricts the re-scale operation only to the division by the fac-
tors qi of the ciphertext modulus Q. As the choice of these factors is constrained
to those enabling a number theoretic transform (NTT), the rescale cannot be
done by a power of two (as in the original CKKS scheme) and it introduces a
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small scale deviation in the process. For complex circuits, such as polynomial
evaluations, additions between ciphertexts of slightly different scales will even-
tually occur and will introduce errors.

We observe that this problem is trivially solved for linear circuits, by scaling
the plaintext constants by the modulus qi by which the ciphertext will be divided
during the next rescale. By doing so, the rescale is exact and the ciphertext scale
is unchanged after the operation. As a polynomial can be computed by recursive
evaluations of a linear function, the linear case can be generalized. In this work,
we propose a generic algorithm that consumes an optimal number of �log(d+1)�
levels to homomorphically evaluate degree-d polynomial functions. Starting from
a user-defined output scale, the intermediate scales can be back-propagated in
the recursion, thus ensuring that each and every homomorphic addition occurs
between ciphertexts of the same scale (hence is errorless). Our algorithm is,
to the best of our knowledge, the first general solution for the problem of the
approximate rescale arising from the full-RNS variant of the CKKS scheme.

Faster Matrix × Ciphertext Products (Sect. 4). The most expensive
CKKS homomorphic operation is the key-switch. This operation is an integral
building block of the homomorphic multiplication, slot rotations, and conjuga-
tion. The CKKS bootstrapping requires two linear transformations that involve
a large number of rotations (key-switch operations), so minimizing the number
of key-switch and/or their complexity has a significant effect on its performance.

Given an n × n plaintext matrix M and an encrypted vector v, all previous
works on the CKKS bootstrapping [6,10,20] use a baby-step giant-step (BSGS)
algorithm, proposed by Halevi and Shoup [18], to compute the encrypted product
Mv in O(

√
n) rotations. These works treat the key-switch procedure as a black-

box and try to reduce the number of times it is executed. Therefore, they do not
exploit the hoisting proposed by Halevi and Shoup [19].

We improve this BSGS algorithm by proposing a new format for rotation
keys and a modified key-switch procedure that extends the hoisting technique to
a second layer. This strategy is generic and it reduces the theoretical minimum
complexity (in terms of modular products) of any linear transformation over
ciphertexts. In our bootstrapping it reduces the cost of the linear transformations
by roughly a factor of two compared to the previous hoisting approach.

Improved Bootstrapping Procedure (Sect. 5). We integrate our proposed
improvements in the bootstrapping circuit proposed by Cheon et al. [10], Chen
et al. [6], Cheon et al. [7] and Han and Ki [20]. We propose a new high-precision
and faster bootstrapping circuit with updated parameters that are 128-bit secure,
even if considering the most recent attacks on sparse keys [9,29].

Parameterization and Evaluation (Sect. 6). We discuss the parametrization
of the CKKS scheme and its bootstrapping circuit, and we propose a procedure
to choose and fine-tune the parameters for a given use-case.

We implemented our contributions, as well as our bootstrapping, in the
open source library Lattigo: https://github.com/ldsec/lattigo. To the best of
our knowledge, this is the first public and open-source implementation of the
bootstrapping for the full-RNS variant of the CKKS scheme.

https://github.com/ldsec/lattigo
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2 Background and Related Work

We now recall the full-RNS variant of the CKKS encryption scheme and review
its previously proposed bootstrapping procedures.

2.1 The Full-RNS CKKS Scheme

We consider the CKKS encryption scheme [11] in its full-RNS variant [8]: the
polynomial coefficients are always represented in the RNS and NTT domains.

Notation. For a fixed power-of-two N and L + 1 distinct primes q0, . . . , qL, we
define QL =

∏L
i=0 qi and RQL

= ZQL
[X]/(XN + 1), the cyclotomic polynomial

ring over the integers modulo QL. Unless otherwise stated, we consider elements
of RQL

as their unique representative in the RNS domain: Rq0 ×Rq1 × ...×RqL
∼=

RQL
: a polynomial in RQL

is represented by a (L+1)×N matrix of coefficients.
We denote single elements (polynomials or numbers) in italics, e.g., a, and vectors
of such elements in bold, e.g., a, with a||b the concatenation of two vectors. We
denote a(i) the element at position i of the vector a or the degree-i coefficient
of the polynomial a. We denote ||a|| the infinity norm of the polynomial (or
vector) a in the power basis and hw(a) the Hamming weight of the polynomial
(or vector) a. We denote 〈a,b〉 the inner product between the vectors a and b.
Given two vectors a and b, each of n values, we denote log(ε−1) the negative log
of the L1 norm of their difference: ε = 1

n

∑n−1
i=0 |a(i)−b(i)|. [x]Q denotes reduction

of x modulo Q and �x	, �x�, �x� the rounding of x to the previous, the next, and
the closest integer, respectively (if x is a polynomial, the operation is applied
coefficient-wise). Unless otherwise stated, logarithms are in base 2.

Plaintext and Ciphertext Space. A plaintext is a polynomial pt = m(Y ) ∈
R[Y ]/(Y 2n + 1) with Y = XN/2n and n a power-of-two smaller than N . We
define the following plaintext encodings: (i) The coefficient encoding for which
the message m ∈ R

2n is directly encoded as the coefficients of a polynomial
in Y . (ii) The slots encoding for which the message m ∈ C

n is subjected to
the canonical embedding C

n → Y 2n for which the negacyclic convolution in
R[Y ]/(Y 2n + 1) results in a Hadamard product in C

n.
We represent plaintexts and ciphertexts, respectively, by the tuples

{pt, Q�,Δ} and {ct, Q�,Δ}, where, for a secret s ∈ RQL
, pt is a degree-zero

polynomial in s, i.e. of RQ�
, and ct is a degree-one polynomial in s, i.e. of R2

Q�
.

We define Q� =
∏�

i=0 qi as the modulus at level � and Δ as a scaling factor. We
denote L as the maximum level and use 0 ≤ � ≤ L to represent a level between
the smallest level 0 and the highest level L. We refer to the depth of a circuit as
the number of levels required for the evaluation of the circuit.
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Scheme RNS-CKKS – Basic Operations

• Setup(N,h, b, σ): For a power-of-two ring degree N , a secret-distribution Ham-
ming weight h, a standard deviation σ, and a modulus bit-size b: Select the
moduli chains {q0, . . . , qL} and {p0, . . . , pα−1} composed of pairwise different
NTT-friendly primes (i.e. qi ≡ 1 mod 2N) close to powers of two such that
log(

∏L
i=0 qi × ∏α−1

j=0 pj) ≤ b. Set QL =
∏L

i=0 qi, P =
∏α−1

j=0 pj .
Define the following distributions over R: χkey with coefficients uniformly dis-
tributed over {−1, 0, 1} and exactly h non-zero coefficients. χpkenc with coeffi-
cients distributed over {−1, 0, 1} with respective probabilities {1/4, 1/2, 1/4}.
χerr with coefficients distributed according to a discrete Gaussian distribution
with standard deviation σ and truncated to [−�6σ	, �6σ	].

• Encode (m, Δ, n, �) (coefficients→slots): For a message m ∈ C
n with 1 ≤ n <

N , where n divides N , apply the canonical map C
n → R[Y ]/(Y 2n+1) → RQ�

with Y = XN/2n. Compute m′ = FFT−1
n (m) and set m′

0||m′
1 ∈ R

2n, with
m′

0 = 1
2 (m′ + m′) and m′

1 = −i
2 (m′ − m′), as a polynomial in Y . Finally,

scale the coefficients by Δ and round them to the nearest integer, apply the
change of variable Y → X and return {pt, Q�,Δ}.

• Decode({pt, Q�,Δ}, n) (slots→coefficients): For 1 ≤ n < N , where n divides
N , apply the inverse of the canonical map RQ�

→ R[Y ]/(Y 2n + 1) → C
n,

with Y = XN/2n. Map pt to the vector m′
0||m′

1 ∈ R
2n and return m =

FFTn(Δ−1 · (m′
0 + i · m′

1)).
• SecKeyGen(·): Sample s ← χkey and return the secret key s.
• SwitchKeyGen(s, s′,w): For w an integer decomposition basis of β elements,

sample ai ∈ RPQL
and ei ← χerr and return the key-switch key: swk(s→s′) =

(swk
(0)
(s→s′), . . . , swk

(β−1)
(s→s′)), where swk

(i)
(s→s′) = (−ais

′ + sw(i)P + ei, ai).
• PubKeyGen(s): Set the public encryption key pk ← SwitchKeyGen(0, s, (1)),

the relinearization key rlk ← SwitchKeyGen(s2, s,w), the rotation keys rotk ←
SwitchKeyGen(s5

k

, s,w) (a different key has to be generated for each differ-
ent k), and the conjugation key conj ← SwitchKeyGen(s−1, s,w) and return:
(pk, rlk, {rotk}k, conj).

• Enc({pt, Q�,Δ}, s): Sample a ∈u RQ�
and e ← χerr, set ct = (−as + e, a) +

(pt, 0) and return {ct, Q�,Δ}.
• PubEnc({pt, Q�,Δ}, pk): Sample u ← χpkenc and e0, e1 ← χerr, set:

ct = SwitchKey(u, pk) + (pt + e0, e1) and return {ct, Q�,Δ}.
• SwitchKey(d, swks→s′): For d ∈ RQ�

a polynomial1, decompose d base w
such that d = 〈d,w〉 and return (d0, d1) = �P−1 · 〈d, swks→s′〉� mod Q� for
P−1 ∈ R.

• Dec({ct, Q�,Δ}, s): For ct = (c0, c1), return {pt = c0 + c1s,Q�,Δ}.

The homomorphic operations of CKKS are detailed in the extended version
of the paper [4].

1 SwitchKey does not act directly in a ciphertext; instead, we define it as a generalized
intermediate function used as a building block that takes a polynomial as input.
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2.2 CKKS Bootstrapping

Let ct = (c0, c1) be a ciphertext at level � = 0, and s a secret key of Ham-
ming weight h, such that Decrypt(ct, s) = [c0 + c1s]Q0 = pt. The goal of the
bootstrapping operation is to compute a ciphertext ct′ at level L − k > 0
(where k is the depth of the bootstrapping circuit) such that QL−k � Q0 and
[c′

0 + c′
1s]QL−k

≈ pt. Since [c0 + c1s]QL
= pt + Q0 · I, where I is an integer

polynomial [10], bootstrapping is equivalent to an extension of the CRT basis,
followed by a homomorphic reduction modulo Q0.

Cheon et al. proposed the first procedure [10] to compute this modular reduc-
tion, by (i) homomorphically applying the encoding algorithm, to enable the par-
allel (slot-wise) evaluation, (ii) computing a modular reduction approximated by
a scaled sine function on each slot, and (iii) applying the decoding algorithm to
retrieve a close approximation of pt without the polynomial I:

Encode(pt + Q0 · I) = pt′
︸ ︷︷ ︸

(i) SlotsToCoeffs(pt+Q0·I)

⇒ Q0

2π
sin

(
2πpt′

Q0

)

= pt′′

︸ ︷︷ ︸
(ii) EvalSine(pt′)

⇒ Decode(pt′′) ≈ pt
︸ ︷︷ ︸
(iii) CoeffsToSlots(pt′′)

.

The complexity of the resulting bootstrapping circuit is influenced by two
parameters: The first one is the secret-key Hamming weight h, which directly
impacts the depth of the bootstrapping circuit. Indeed, Cheon et al. show that
||I|| ≤ O(

√
h) with very high probability. A denser key will therefore require

evaluating a larger-degree polynomial, with a larger depth. The second parame-
ter is the number of plaintext slots n that has a direct impact on the complexity
of the circuit (but not on its depth). By scaling down the values to compress
them closer to the origin, Cheon et al. are able to evaluate the sine function
by using a low-degree Taylor series of the complex exponential and then use
repeated squaring (the double angle formula) to obtain the correct result. In
their approach, the sine evaluation dominates the circuit’s depth, whereas the
homomorphic evaluation of the encoding and decoding algorithms, which they
express as an n × n matrix-vector product, dominates its width.

In a subsequent work, Chen et al. [6] propose to compute the encoding by
homomorphically evaluating the Cooley-Tukey algorithm. This approach needs
log(n) depth (the number of iterations of the algorithm); to reduce this depth,
Chen et al. merge several iterations together, at the cost of an increased com-
plexity. In a concurrent work, Cheon et al. [7] explored techniques to efficiently
evaluate DFTs on ciphertexts. They show how to factorize the encoding matri-
ces into a series of logr(n) sparse matrices, where r is a power-of-two radix. The
contributions in [6,7] enabled the acceleration of the homomorphic evaluation of
the encoding functions by two orders of magnitude. Chen et al. [6] also improved
the approximation of the scaled sine function by using a Chebyshev interpolant.

More recently, Han and Ki port the bootstrapping procedure to the full-
RNS variant of CKKS, with several improvements to the bootstrapping circuit
and to the CKKS scheme [20]. They propose a generalization of its key-switch
procedure by using an intermediate RNS decomposition that enables a trade-off
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between the complexity of the key-switch and the homomorphic capacity of a
fresh ciphertext. They also give an alternative way to approximate the scaled
sine function, which accounts for the magnitude of the underlying plaintext and
uses the cosine function and the double angle formula. Combined, these changes
yield an acceleration factor of 2.5 to 3, compared to the work of Chen et al. [6].

Both works [6,7] were implemented with HEAAN [21], yet the implementa-
tion of only the former was published. The work of [20] was implemented using
SEAL [28], but the implementation has still not been published.

2.3 Security of Sparse Keys

One commonality between all the aforementioned works is the use of sparse
secret-keys with a Hamming weight h = 64. A key with a small Hamming weight
enables a low-depth bootstrapping circuit, essential for its practicality. However,
recent advances in the cryptanalysis of the R-LWE problem prove that hybrid
attacks specifically targeting such sparse keys can severely affect its security
[9,29]. In light of the most recent attacks, Curtis and Player [12] estimate that,
for a sparse key with h = 64 and a ring degree N = 216, the modulus needs to be
at most 990 bits to achieve a security of 128 bits. In their initial bootstrapping
proposal, Cheon et al. [10] use the parameters {N = 216, log(Q) = 2480, h = 64,
σ = 3.2} and estimate the security of these parameters to 80 bits. In their work,
Han and Ki [20] propose new parameter sets, one of which they claim has 128-bit
of security: {N = 216, log(Q) = 1450, h = 64, σ = 3.2}. However, these estimates
are based on results obtained using Albrecht’s estimator [1] that, at the time,
did not take into account the most recent attacks on sparse keys. The security
of the parameter set {N = 216, log(Q) = 1250, h = 64, σ = 3.2} is estimated
at 113 bits in the more recent work by Son and Cheon [29]. This sets a loose
upper bound to security of the parameters (which have a 1450-bit modulus)
proposed by Han and Ki [20]. Therefore, the bootstrapping parameters must be
updated to comply with the most recent security recommendations, as none of
the parameters proposed in the current works achieve a security of 128 bits.

3 Homomorphic Polynomial Evaluation

The main disadvantage of the full-RNS variant of CKKS stems from its rescale
operation that does not divide the scale by a power-of-two, as in the original
scheme, but by one of the moduli. Those moduli are chosen, for efficiency pur-
poses, as distinct NTT-friendly primes [8]; under this constraint, the power-of-
two rescale of the original CKKS scheme can only be approximated. As a result,
ciphertexts at the same level can have slightly different scales (depending on the
previous homomorphic operations) and additions between such ciphertexts will
introduce an error proportional to the difference between their scale. Addressing
this issue in a generic and practical way is crucial for the adoption of CKKS.

For a significant step toward this goal, we introduce a homomorphic
polynomial-evaluation algorithm that is depth-optimal and ensures that addi-
tions are always made between ciphertexts with the exact same scale.
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Algorithm 1: BSGS alg. for polynomials in Chebyshev basis

Input: p(t) =
∑d

i=0 ciTi(t).
Output: The evaluation of p(t).

1 m ← �log(d + 1)�
2 l ← �m/2�
3 T0(t) = 1, T1(t) = t
4 Evaluate T2(t), T3(t), . . . , T2l−1(t) and T2l(t), T2l+1(t), . . . , T2m−1(t) using

Ti=a+b(t) ← 2Ta(t)Tb(t) − T|a−b|(t).
5 Find q(t) and r(t) such that p(t) = q(t) · T2m−1(t) + r(t).
6 Recurse on step 5 by replacing p(t) by q(t) and r(t) and m by m − 1, until the

degree of q(t) and r(t) is smaller than 2l.
7 Evaluate q(t) and r(t) using Tj(t) for 0 ≤ j ≤ 2l − 1.
8 Evaluate p(t) using q(t), r(t) and T2m−1(t).
9 return p(t)

3.1 The Baby-Step Giant-Step (BSGS) Algorithm

In order to minimize the number of ciphertext-ciphertext multiplications in their
bootstrapping circuit, Han and Ki [20] adapt a generic baby-step giant-step
(BSGS) polynomial-evaluation algorithm for polynomials expressed in a Cheby-
shev basis. Algorithm 1 gives a high-level description of the procedure.

For a polynomial p(t) of degree d, with m = �log(d + 1)� and l = �m/2	,
the algorithm first decomposes p(t) into

∑�d/l�
i=0 ui,2l(t) · T2i·l(t), with ui,2l(t) =

∑2l−1
j=0 ci,j · Tj(t), ci,j ∈ C and T0≤j<2l a pre-computed power basis. We denote

u�d/l�,2l(t) as umax. The BSGS algorithm then recursively combines the monomi-
als ui,2j+1(t) = ui+1,2j (t) ·T2j (t)+ui,2j (t) in a tree-like manner by using a second
pre-computed power basis T2l<i<m(t) to minimize the number of non-scalar mul-
tiplications. The algorithm requires 2m−l +2l +m− l−3+�(d+1)/2l� non-scalar
products and has, in the best case, depth m.

3.2 Errorless Polynomial Evaluation

We address the errors introduced by the approximate rescale for the evaluation
of a polynomial p(t). We scale each of the leaf monomials ui,2l(t) by some scale
Δ such that all evaluations of the subsequent monomials ui,2j+1(t) = ui+1,2j (t) ·
T2j (t) + ui,2j (t) are done with additions between ciphertexts of the same scale.
More formally, let Δui,2j+1 (t) be the scale of ui,2j+1(t) (the result of the monomial
evaluation), ΔT2j (t) the scale of the power-basis element T2j (t), and qT2j (t) the
modulus by which the product ui+1,2j (t) ·T2j (t) is rescaled. We set Δui+1,2j (t) =
Δui,2j+1 (t) · qT2j (t)/ΔT2j (t) and Δui,2j (t) = Δui,2j+1 (t). Starting from a target
scale Δp(t) and p(t) = u0,2m(t) = u1,2m−1(t) · T2m−1(t) + u0,2m−1(t), we recursively
compute and propagate down the tree the scale each ui,2j (t) should have. The
recursion ends when reaching ui,2l , knowing the scale that they must have. Since

ui,2l(t) =
∑2l−1

j=0 ci,jTj(t), we can use the same technique to derive by what value
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Algorithm 2: EvalRecurse

Input: A target scale Δ, an upper-bound m, a stop factor l, a degree-d
polynomial p(t) =

∑d
i=0 ciTi(t), and the power basis {T0, T1, . . . , T2l−1}

and {T2l , T2l+1 , . . . , T2m−1}, pre-computed for a ciphertext ct.
Output: A ciphertext encrypting the evaluation of p(ct).

1 if d < 2l then

2 if p(t) = umax(t) and l > 2m - 2l−1 and l > 1 then
3 return EvalRecurse(Δ, m = �log(d + 1)�, l = ��log(d + 1)�/2�, p(t), T )
4 else
5 ct ← �c0 · Δ · qTd�
6 for i = d; i > 0; i = i − 1 do
7 ct ← Add(ct, MultConst(Ti, �(ci · Δ · qTd)/ΔTi�))
8 end
9 return Rescale(ct)

10 end

11 end
12 Express p(t) as q(t) · T2m−1 + r(t)
13 ct0 ← EvalRecurse((Δ · qT2m−2 )/ΔT2m−1 , m − 1, l, q(t), T )

14 ct1 ← EvalRecurse(Δ, m − 1, l, r(t), T )
15 ct0 ← Mul(ct0, T2m−1)
16 if level(ct0) > level(ct1) then
17 ct0 ← Add(Rescale(ct0), ct1)
18 else
19 ct0 ← Rescale(Add(ct0, ct1))
20 end
21 return ct0

each of the coefficients ci,j must be scaled, so that the evaluation of ui,2l(t) is
also done with exact additions and ends up with the desired scale.

Algorithm 2 is our proposed solution: it integrates our scale-propagation
technique to the recursive decomposition of p(t) into q(t) and r(t). We compare
Algorithms 1 and 2 in Table 1 by evaluating a Chebyshev interpolant of the
homomorphic modular reduction done during the bootstrapping circuit. This
function plays a central role in the bootstrapping hence is an ideal candidate for

Table 1. Comparison of the homomorphic evaluation of a Chebyshev interpolant of
degree d of cos(2π(x−0.25)/2r) in the interval (−K/2r, K/2r) followed by r evaluations
of cos(2x) = 2 cos2(x) − 1. The scheme parameters are N = 216, n = 215, h = 196 and
qi ≈ 255. Δε = |Δin − Δout| · Δ−1

in .

log(1/ε) for (K, d, r)
Δε (12, 34, 2) (15, 40, 2) (17, 44, 2) (21, 52, 2) (257, 250, 3)

Algorithm 1 ([20]) 2−31.44 30.36 30.05 29.73 29.19 25.00

Algorithm 2 (ours) 0 37.37 37.16 37.15 37.04 29.46
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evaluating the effect of the proposed approaches (see Sect. 5.4). To verify that
our algorithm correctly avoids additions between ciphertexts of different scales,
we forced both algorithms to always rescale a ciphertext before an addition (in
practice, it is better to check the levels of the ciphertexts before an addition,
and dynamically assess if a level difference can be used to scale one ciphertext to
the scale of the other). We observe that our algorithm yields two advantages: It
enables (i) a scale-preserving polynomial evaluation (the output-scale is identical
to the input scale), and (ii) a much better precision by successfully avoiding
errors due to additions between ciphertexts of different scales.

3.3 Depth-Optimal Polynomial Evaluation

In practice, Algorithm 1 will consume more than the optimal m levels for a
specific class of d due to the way the rescale and level management work in the
full-RNS variant of the CKKS scheme. This discrepancy arises from the following
interactions (recall that Algorithm 1 evaluates each ui(t) as a linear combination
of a pre-computed power-basis {T0(t), T1(t), . . . , T2l−1(t)}):

1. If l > 1, then the depth to evaluate T2l−1(t) is l and evaluating the ui(t) will
necessarily cost l + 1 levels due to the constant multiplications.

2. If l = 1, then the depth to evaluate T1(t) is zero, hence the depth to evaluate
the ui(t) is and remains l.

3. If d > 8, then Algorithm 1 sets l > 1.
4. If 2m − 2l−1 ≤ d < 2m, then all the elements of the power basis

{T2l , T2l+1 , . . . , T2m−1} need to be used during the recombination step of
Algorithm 1.

Hence, if l > 1 and d > 2m − 2l−1, the total depth to execute Algorithm 1 is
necessarily m + 1. This could be avoided by always setting l = 1 regardless of
d, but it would lead to a very costly evaluation, as the number of non-scalar
multiplications would grow proportionally to d. To mitigate this additional cost,
we only enforce l = 1 on the coefficient of p(t) whose degree is ≥ 2m − 2l−1.
Hence, Algorithm 2 first splits p(t) into p(t) = a(t) + b(t) · T2m−2l−1(t). It then
evaluates a(t) with the optimal l and recurses on b(t) until l = 1. The number of
additional recursions is bounded by log(m), because each recursion sets the new
degree to half of the square root of the previous one. In practice, these additional
recursions add only �log(d+1−(2m−2l−1))� non-scalar multiplications but enable
the systematic evaluation of any polynomial by using exactly m levels.

3.4 Conclusions

For an extra cost of �log(d + 1 − (2m − 2l−1))� ciphertext-ciphertext products,
our proposed algorithm guarantees an optimal depth hence an optimal-level con-
sumption. This extra cost is negligible, compared to the base cost of Algorithm 1,
i.e., 2m−l+2l+m−l−3+�(d+1)/2l�. It also guarantees exact additions throughout
the entire polynomial evaluation, hence preventing the precision loss related to
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additions between ciphertexts of different scales and making the procedure easier
to use. It also enables the possibility to choose the output scale that can be set to
the same as the input scale, making the polynomial evaluation scale-preserving.
As linear transformations and constant multiplications can already be made to
be scale-preserving, our polynomial evaluation is the remaining building block
for enabling scale-preserving circuits of arbitrary depth.

4 Key-Switch and Improved Matrix-Vector Product

The key-switch procedure is the generic public-key operation of the CKKS
scheme. By generating specific public key-switch keys derived from secret keys
s′ and s, it is possible to enable the public re-encryption of ciphertexts from key
s′ to s. Beyond the public encryption procedure (switching from s′ = 0 to s), a
key-switch is required by most homomorphic operations to cancel the effect of
encrypted arithmetic on the decryption circuit, thus ensuring the compactness of
the scheme. In particular, homomorphic multiplications require the re-encryption
from key s2 back to s, whereas slot-rotations require the re-encryption from the
equivalent rotation of s back to s. The cost of the key-switch dominates the
cost of these operations by one to two orders of magnitude because it requires
many NTTs and CRT reconstructions. Hence, optimizations of the key-switch
algorithm have a strong effect on the overall efficiency of the scheme.

We propose an optimized key-switch key format and key-switch algorithm
(Sect. 4.1). We then apply them to rotation-keys and further improve the hoisted-
rotation technique (Sect. 4.2) introduced by Halevi and Shoup [19]. Finally,
we propose a modified procedure for matrix-vector multiplications over packed
ciphertexts (Sect. 4.3) which features a novel double-hoisting optimization.

4.1 Improved Key-Switch Keys

Given a ciphertext modulus QL =
∏L

j=0 qj , we use a basis w composed of
products among the qj , as described by Han and Ki [20]. We also include the
entire basis w in the keys, as done by Bajard et al. and Halevi et al. [3,16]; this
saves one constant multiplication during the key-switch and enables a simpler
key-switch keys generation. A more detailed overview of these works can be
found in the extended version of the paper [4].

We propose a simpler and more efficient hybrid approach. Specifically, we use
the basis w(i) = QL

qαi
[(QL

qαi
)−1]qαi

with qαi
=

∏min(α(β+1)−1,L)
j=αi

qj for 0 ≤ i < β,
β = �(L + 1)/α� and α a positive integer. In other words, Q is factorized into β
equally-sized composite-numbers qαi

, each composed of up to α different primes.
Thus, our key-switch keys have the following format:

(
swk0qαi

, swk1qαi

)
=

(
[−ais + s′ · P · QL

qαi
· [(QL

qαi
)−1]qαi

+ ei]PQL
, [ai]PQL

)
.

We set P =
∏α−1

j=0 pj , and the bit-size of P such that qαi
≤ P, ∀αi. As

shown by Gentry et al. [15], this leads to a negligible error introduced by the
key-switch operation. Algorithm 3 describes the associated key-switch procedure
that corresponds to the standard one adapted to our keys.
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Algorithm 3: Key-switch

Input: c ∈ RQ�
, the key-switch key swks→s′ .

Output: (a, b) ∈ R2
Q�

.
1 d ← [

[c]qα0≤i<β

]
PQ�

2 (a, b) ← (〈d, swk0〉, 〈d, swk1〉)
3 (a, b) ← (�P−1 · a�, �P−1 · b�)
4 return (a, b)

4.2 Improved Hoisted-Rotations

The slot-rotation operation in CKKS is defined by the automorphism φk : X →
X5k

(mod XN + 1). It rotates the message slots by k positions to the left. After
a rotation, the secret under which the ciphertext is encrypted is changed from s
to φk(s), and a key-switch φk(s) → s is applied to return to the original key.

Halevi and Shoup [19] show that as φk is an automorphism, it distributes over
addition and multiplication, and commutes with the power-of-two base decom-
position. As φk acts individually on the coefficients by permuting them without
changing their norm (the modular reduction by XN + 1 at most induces a sign
change), it also commutes with the special RNS decomposition (see Supplemen-
tary material in the extended version of the paper [4]): [φk(a)]qαi

= φk([a]qαi
).

Hence, when several rotations have to be applied on the same cipher-
text, [a]qαi

can be pre-computed and re-used for each subsequent rotation:∑
φk([a]qαi

) · rotk,qαi
. This technique proposed by Halevi et al., called hoist-

ing, significantly reduces the number of NTTs and CRT reconstructions, at the
negligible cost of having to compute the automorphism for each of the [a]qαi

.
We further exploit the properties of the automorphism to reduce its execution

cost, by observing that φ−1
k can be directly pre-applied on the rotation keys:

(
r̃ot

0

k,qαi
, r̃ot

1

k,qαi

)
=

(
[−aiφ

−1
k (s) + s · P · QL

qαi
· [(QL

qαi
)−1]qαi

+ ei]PQL
, [ai]PQL

)

Compared to a rotk,qαi
, a traditional rotation-key as defined in Sect. 2.1, this

reduces the number of automorphisms per-rotation to only one:

〈φk(a), rotk〉 = φk

(〈a, r̃otk〉) .

Our improved algorithm for hoisted rotations is detailed in Algorithm 4.

4.3 Faster Matrix-Vector Operations

We now discuss the application of homomorphic slot-rotations to the computa-
tion of matrix-vector products on packed ciphertexts. The ability to efficiently
apply generic linear transformations to encrypted vectors is pivotal for a wide
variety of applications of homomorphic encryption. In particular, the homomor-
phic evaluation of the CKKS encoding and decoding procedures, which are linear
transformations, dominates the cost in the original bootstrapping procedure.
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Algorithm 4: Optimized Hoisting-Rotations

Input: ct = (c0, c1) ∈ R2
Q�

and a set of r rotation keys r̃otrk .
Output: v a list containing each rk rotation of ct.

1 d ← [
[c1]qα0≤i<β

]
PQ�

// (Decompose )

2 foreach rk do

3 (a, b) ← (〈d, r̃ot
0
rk

〉, 〈d, r̃ot
1
rk

〉) // (MultSum )

4 (a, b) ← (�P −1 · a�, �P −1 · b�) // (ModDown )

5 vrk ← (φrk (c0 + a), φrk (b)) // (Permute )

6 end
7 return v

Halevi and Shoup propose to express an n × n matrix M in diagonal form
and to use a baby-step giant-step (BSGS) algorithm (Algorithm 5) to evaluate
the matrix product in O(

√
n) rotations [17,18]. At the time of this writing, all

the existing bootstrapping procedures for the CKKS scheme are based on this
approach and are not reported to use hoisting, unlike done for BGV [18,19]. We
now break down the cost of this BSGS algorithm, analyze its components and,
using our observations, we present our improvements to this approach.

Algorithm 5: BSGS Algorithm of [19] For Matrix × Vector Multiplication

Input: ct a ciphertext encrypting m ∈ C
n, Mdiag the diagonal rows of M

a n × n matrix with n = n1n2.
Output: The evaluation ct′ = M × ct.

1 for i = 0; i < n1; i = i + 1 do
2 cti ← Rotatei(ct)
3 end
4 ct′ ← (0, 0)
5 for j = 0; j < n2; j = j + 1 do
6 r ← (0, 0)
7 for i = 0; i < n1; i = i + 1 do
8 r ← Add(r,Mul(cti,Rotate−n1·j(M

(n1·j+i)
diag )))

9 end
10 ct′ ← Add(ct′,Rotaten1·j(r))
11 end
12 ct′ ← Rescale(ct′)
13 return ct′

Dominant Complexity of Rotations. The dominant cost factor of
Algorithm 5 is the number of rotations, as each rotation requires key-switch
operations. These rotations comprise four steps (see Algorithm 4):

1. Decompose: Decompose a polynomial of RQ�
in base w and return the result

in RPQ�
. This operation requires NTTs and CRT basis extensions.

2. MultSum: Compute a sum of products of polynomials in RPQ�
. This operation

only requires coefficient-wise additions and multiplications.
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Fig. 1. Normalized complexity of each step (op.) of a rotation. The complexity for
each operation was computed with N = 216, 0 ≤ � ≤ 23 and α = 4. The complexity
derivation can be found in the extended version of the paper [4].

3. ModDown: Divide a polynomial of RPQ�
by P and return the result in RQ�

.
This operation requires NTTs and CRT basis extensions.

4. Permute: Apply the automorphism φk on a polynomial of RQ�
. It represents

a permutation of the coefficients and has in theory no impact on complexity.

Let n be the number of non-zero diagonals of M , and n1, n2 be two integers
such that n = n1n2; the complexity of the original BSGS algorithm (Algorithm 5)
is n1 + n2 rotations and it is minimized when n1 ≈ n2:

(n2 + n1) · (Decompose + MultSum + ModDown + Permute),

to which 2n2n1 multiplications in RQ�
should also be added (line 8 of

Algorithm 5). We denote inner-loop and outer-loop the lines that depend, respec-
tively, on n1 and n2. Figure 1 shows the weight of each of the four steps in the
total complexity. The complexity of the steps MultSum and Permute is negligi-
ble compared to the complexity of Decompose and ModDown, as products and
additions are very inexpensive compared to NTTs and CRT basis extensions.
We base our optimization on this observation.

Improved BSGS Algorithm. We propose a new optimization that we refer to
as double-hoisting. This optimization improves the hoisting technique proposed
by Halevi and Shoup [19] and further reduces the complexity related to the
inner-loop rotations by adding a second layer of hoisting.

The first level, proposed by Halevi and Shoup [19], applies to the inner-
loop rotations (line 8 of Algorithm 5). This renders the computation devoted to
Decompose independent of the value n1, so the complexity is reduced to

n2 · (Decompose + MultSum + ModDown + Permute)
+ n1 · (MultSum + ModDown + Permute) + Decompose.

The second level, which we propose, introduces an additional hoisting for
the inner-loop rotations, as the ModDown step is a coefficient-wise operation.
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Algorithm 6: Double-hoisting BSGS matrix×vector algorithm

Input: ct = (c0, c1) ∈ R2
Q�

, Mdiag ∈ RPQ� the pre-rotated diagonals of Mn×n,
n1n2 = n, roti ∈ R2

PQ�
the set of necessary rotations keys.

Output: The evaluation of M × ct.
1 d ← [

[c1]qα0≤i<β

]
PQ�

// Q� → PQ�

2 for i = 0; i < n1; i = i + 1 do

3 (ai, bi) ← (P · c0 + 〈d, r̃ot
0
i 〉, 〈d, r̃ot

1
i 〉) // ∈ PQ�

4 end
5 (r0, r1), r2 ← (0, 0), (0)
6 for j = 0; j < n2; j = j + 1 do
7 (u0, u1) ← (0, 0)
8 for i = 0; i < n1; i = i + 1 do

9 (u0, u1) ← (u0, u1) + (ai, bi) · M(n1·j+i)
diag // ∈ PQ�

10 end
11 (u0, u1) ← (�P −1 · u0�, �P −1 · u1)� // (PQ� → Q�)

12 d ← [
[u1]qα0≤i<β

]
PQ�

// Q� → PQ�

13 (r0, r1) ← (r0, r1) +
(
φn1·j

(
〈d, r̃ot

0
n1·j〉

)
, φn1·j

(
〈d, r̃ot

1
n1·j〉

))
// ∈ PQ�

14 r2 ← r2 + φn1·j(u0) // ∈ Q�

15 end
16 (r0, r1) ← (�P −1 · r0�, �P −1 · r1�) // (PQ� → Q�)

17 return (r0 + r2, r1)

Similarly to the Decompose step, this operation commutes with the Permute step
and the ciphertext-plaintext multiplications (line 8 of Algorithm 5). Therefore,
we need to apply it only once after the entire inner-loop of n1 rotations. Applying
the same reasoning for the ModDown step of the outer-loop rotations we can
reduce the number of key-switch operations from n1 + n2 to n2 + 1:

n2 · (Decompose + MultSum + ModDown + Permute)
+ n1 · (MultSum + Permute) + Decompose + ModDown.

Algorithm 6 describes our double-hoisting BSGS for matrix-vector products.

Discussion. In addition to benefiting from our improved key-switch (Sect. 4.1)
and rotation (Sect. 4.2) procedures, Algorithm 6 introduces a trade-off: The Mod-
Down step in the inner-loop now depends on the value n2, and the ModDown
step of the outer-loop is performed only once. However, the 2n1n2 multiplica-
tions and additions are performed in RPQ�

instead of RQ�
. Hence, the complexity

dependency on n1 is significantly reduced at the cost of slightly increasing the
dependency on n1n2. Applying the ModDown step at the end of each loop has
the additional benefit of introducing the rounding error only once.

Table 2 compares the complexity of a non-hoisted, single-hoisted
(Algorithm 5) and double-hoisted (Algorithm 6) BSGS, each with its optimal
ratio n1/n2. Our approach minimizes the complexity when 23 ≤ n1/n2 ≤ 24.
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Table 2. Complexity of Algorithm 5 [17], 1-hoisted Algorithm 5 [19] and our 2-hoisted
Algorithm 6. M is a 215 × 215 matrix with n = n1n2 non zero diagonals. The used
parameters are N = 216, n = 215, � = 18, α = 4. The speed-up factor is the ratio
between the #MulZp , taking as baseline the 1-hoisted approach.

No hoisting [17] 1-hoisted [19] 2-hoisted (proposed)
n n1/n2 log(#MulZp ) Speed-up n1/n2 log(#MulZp ) n1/n2 log(#MulZp ) Speed-up

32768 2 37.276 0.777× 2 36.913 8 36.813 1.071×
16384 1 36.500 0.765× 4 36.114 16 35.903 1.157×
8192 2 35.865 0.706× 2 35.364 8 35.055 1.238×
4096 1 35.152 0.705× 4 34.648 16 34.205 1.359×
2048 2 34.597 0.652× 2 33.981 8 33.446 1.448×
1024 1 33.927 0.664× 4 33.337 16 32.672 1.585×
512 2 33.422 0.619× 2 32.732 8 32.014 1.644×
256 1 32.769 0.645× 4 32.137 16 31.318 1.764×
128 2 32.282 0.609× 2 31.568 8 30.753 1.759×
64 1 31.614 0.649× 4 30.992 16 30.127 1.821×
32 2 31.112 0.623× 2 30.430 8 29.637 1.732×
16 1 30.375 0.682× 4 29.842 16 29.311 1.445×
8 2 29.792 0.685× 2 29.248 2 29.116 1.094×

This shows that the strategy of the previously proposed bootstrapping proce-
dures [6,10,20], which minimize the number of rotations by setting n1 ≈ n2,
is not optimal anymore. The maximum gain occurs when n (the number of
non zero diagonals) is around 128. This can be exploited by factorizing the lin-
ear transforms, used during the bootstrapping, into several sparse matrices (see
Sect. 5.3).

Increasing the ratio from n2/n1 ≈ 1 to n2/n1 ≈ 16 in our bootstrapping
parameters (Sect. 6) increases the number of keys by a factor around 1.6 and
reduces the computation time by 20%. Hence, Algorithm 6 reduces the overall
complexity of matrix-vector products, by introducing a time-memory trade-off.

We also observe that these improvements are not restricted to plaintext
matrices or to the CKKS scheme and can be applied to other R-LWE scheme,
such as BGV [5] or BFV [13], as long as the scheme (or its implementation)
allows for the factorization of an expensive operation. For example, in the BFV
scheme, the quantization (division by Q/t) (as well as the re-linearization if the
matrix is in ciphertext) can be delayed to the outer-loop.

5 Bootstrapping for the Full-RNS CKKS Scheme

We present our improved bootstrapping procedure for the full-RNS variant of
the CKKS scheme. We follow the high-level procedure of Cheon et al. [10] and
adapt each step by relying on the techniques proposed in Sects. 3 and 4.

The purpose of the CKKS bootstrapping [10] is, in contrast with BFV’s [13],
not to reduce the error. Instead, and similarly to BGV [5] bootstrapping, it
is meant to reset the ciphertext modulus to a higher level in order to enable
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further homomorphic multiplications. The approximate nature of CKKS, due
to the plaintext and ciphertext error being mixed together, implies that each
homomorphic operation decreases the output precision. As a result, all the cur-
rently proposed bootstrapping circuits only approximate the ideal bootstrapping
operation, and their output precision also determines their practical utility.

5.1 Circuit Overview

Let {ct = (c0, c1), Q0,Δ} be a ciphertext that encrypts an n-slot message under
a secret-key s with Hamming weight h, such that Decrypt(ct, s) = c0 + sc1 =
�Δ·m(Y )�+e ∈ Z[Y ]/(Y 2n+1), where Y = XN/2n. The bootstrapping operation
outputs a ciphertext {ct′ = (c′

0, c
′
1), QL−k,Δ} such that c′

0 + sc′
1 = �Δ ·m(Y )�+

e′ ∈ Z[Y ]/(Y 2n + 1), where k < L is the number of levels consumed by the
bootstrapping and ||e′|| ≥ ||e|| is the error that results from the combination of
the initial error e and the error induced by the bootstrapping circuit.

The bootstrapping circuit is divided into the five steps detailed below. For the
sake of conciseness, we describe the plaintext circuit and omit the error terms.

1. ModRaise: ct is raised to the modulus QL by applying the CRT map Rq0 →
Rq0 × Rq1 × · · · × RqL

. This yields a ciphertext {ct, QL,Δ} for which

[c0 + sc1]QL
= Q0 · I(X) + �Δ · m(Y )� = m′,

where Q0 · I(X) =
[ − [sc1]Q0 + sc1

]
QL

is an integer polynomial for which

||I(X)|| is O(
√

h) [10]. The next four steps remove this unwanted Q0 · I(X)
polynomial by homomorphically evaluating an approximate modular reduc-
tion by Q0.

2. SubSum: If 2n �= N , then Y �= X and I(X) is not a polynomial in Y . SubSum
maps Q0 ·I(X)+�Δ ·m(Y )� to (N/2n) ·(Q0 · Ĩ(Y )+�Δ ·m(Y )�), a polynomial
in Y [10].

3. CoeffsToSlots: The message m′ = Q0 · Ĩ(Y ) + �Δ · m(Y )� is in the coefficient
domain, which prevents slot-wise evaluation of the modular reduction. This
step homomorphically evaluates the inverse discrete-Fourier-transform (DFT)
and produces a ciphertext encrypting Encode(m′) that enables the slot-wise
evaluation of the approximated modular reduction.
Remark : This step returns two ciphertexts, each encrypting 2n real values. If
4n ≤ N , these ciphertexts can be repacked into one. Otherwise, the next step
is applied separately on both ciphertexts.

4. EvalSine: The modular reduction f(x) = x mod 1 is homomorphically eval-
uated on the ciphertext(s) encrypting Encode(m′). This function is approxi-

mated by
Q0

2πΔ
· sin

(
2πΔx

Q0

)

, which is tight when Q0/Δ � ||m(Y )||. As the

range of x is determined by ||Ĩ(Y )||, the approximation needs to account for
the secret-key density.

5. SlotsToCoeffs: This step homomorphically evaluates the DFT on the cipher-
text encrypting f(Encode(m′)). It returns a ciphertext at level L − k that
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encrypts Decode(f(Encode(m′))) ≈ f(m′) ≈ �Δ · m(Y )�, which is a close
approximation of the original message.

We now detail our approach for each step.

5.2 ModRaise and SubSum

We base the ModRaise and SubSum operations directly on the initial bootstrap-
ping of Cheon et al. [10]. The SubSum step multiplies the encrypted message by
a factor N/2n that needs to be subsequently cancelled. We take advantage of the
following CoeffsToSlot step, a linear transformation, to scale the corresponding
matrices by 2n/N . As we also use this trick for grouping other constants, we
elaborate more on the matrices scaling in Sect. 5.5.

5.3 CoeffsToSlots and SlotsToCoeffs

Let n be a power-of-two integer such that 1 ≤ n < N ; the following holds for any
two vectors m,m′ ∈ C

n due to the convolution property of the complex DFT

Decoden(Encoden(m) ⊗ Encoden(m′)) ≈ m � m′,

where ⊗ and � respectively denote the nega-cyclic convolution and Hadamard
multiplication. I.e., the encoding and decoding algorithms define an isomorphism
between R[Y ]/(Y 2n +1) and C

n [11]. The goal of the CoeffsToSlots and SlotsTo-
Coeffs steps is to homomorphically evaluate this isomorphism on a ciphertext.

Let ψ = eiπ/n be a 2n-th primitive root of unity. As 5 and −1 mod 2n

span Z2n, {ψ5k

, ψ5k , 0 ≤ k < n} is the set of all 2n-th primitive roots of unity.
Given a polynomial m(Y ) ∈ R[Y ]/(Y 2n + 1) with Y = XN/2n, the decoding
algorithm is defined as the evaluation of this polynomial at each root of unity
Decoden(m(Y )) = (m(ψ),m(ψ5), . . . ,m(ψ52n−1

)). The decoding isomorphism is
fully defined by the n×n special Fourier transform matrix SFn,(j,k) = ψj5k

, with

inverse (the encoding matrix) SF−1
n = 1

nSF
T

n [7]. Its homomorphic evaluation can
be expressed in terms of plaintext matrix-vector products:

1. CoeffsToSlots(m) : t0 = 1
2

(
SF−1

n × m + SF−1
n × m

)
, t1 = − 1

2 i(SF−1
n × m −

SF−1
n × m

)

2. SlotsToCoeffs(t0, t1) : m = SFn × (t0 + i · t1).

DFT Evaluation. In their initial bootstrapping proposal, Cheon et al. [10]
homomorphically compute the DFT as a single matrix-vector product in O(

√
n)

rotations and depth 1, by using the baby-step giant-step (BSGS) approach of
Halevi and Shoup [18] (Algorithm 5 in Sect. 4.3). To further reduce the com-
plexity, two recent works from Cheon et al. [7] and Chen et al. [6] exploit the
structure of the equivalent FFT algorithm by recursively merging its iterations,
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Fig. 2. Theoretical complexity of CoeffToSlots for different ρ
SF−1

n
using Algorithm 5

with no hoisting, single hoisting, and double hoisting (Algorithm 6).

reducing the complexity to O(
√

r logr(n)) rotations at the cost of increasing the
depth to O(logr(n)), for r a power-of-two radix between 2 and n.

We base our approach on the work of [7] and [6], and we use our dou-
ble hoisting BSGS to evaluate the matrix-vector products (see Sect. 4.3 and
Algorithm 6). This step is parameterized by ρ = �logr(n)�, the depth of the
linear transformation (i.e., the number of matrices that we need to evaluate).

Figure 2 shows the effect of our algorithm on the CoeffsToSlots step, com-
pared with the original BSGS algorithm for ρSF−1

n
= {2, 3, 4}. The complexity is

computed as the number of products in Zp, with parameters N = 216, a target
� = 17 (the level after CoeffsToSlots) and n = 215 slots.

Each level of hoisting reduces the total complexity by a noticeable amount.
Regular hoisting, as proposed by Halevi and Shoup [19], achieves its minimum
complexity when n1 ≈ 22n2 instead of n1 ≈ n2. Using our double hoisting, the
minimum complexity is further shifted to n1 ≈ 24n2. On average, our method
reduces the complexity of the linear transformations in the bootstrapping by a
factor of 2× compared to the single hoisting technique of Halevi and Shoup.

Efficient Repacking of Sparse Plaintexts. The first part of CoeffsToSlots
is a DFT that outputs a vector of Cn values; the second part of CoeffsToSlots
applies the map C

n → R
2n to this vector. During the decoding, the inverse

mapping R
2n → C

n is used. This map can be computed with simple operations,
e.g., conjugation, multiplication by −i, and additions. If the original ciphertext
is not fully packed (0 < n < N/2 slots), the two resulting ciphertexts can be
merged into one, requiring one evaluation of EvalSine instead of two.

We observe that decoding a plaintext m ∈ C
n by using the decoding algo-

rithm for a plaintext of C2kn slots (assuming that 2kn < N) outputs a vector
comprising 2k concatenated replicas of m. Therefore, a ciphertext that encrypts
m ∈ C

n can also be seen as a ciphertext encrypting m′ ∈ C
2n for m′ = m||m.

This property can be used to save two levels when repacking and unpacking
ciphertexts before and after the EvalSine:
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• Repacking before the EvalSine (Cn → R
2n): Repacking into one ciphertext

is done by extending the domain of the plaintext vectors of the last matrix of
the CoeffsToSlots step from C

n to C
n||0n. Thus, the last n slots are set to zero

and can be used to store the imaginary part of the first n slots. This repacking
involves one additional rotation and it does not consume any additional levels.

• Unpacking after the EvalSine (R2n → C
n): For this operation, we evaluate

the following 2n × 2n matrix on the ciphertext before the DFT
[
In i · In

In i · In

]

,

where In is the n×n identity matrix. Its effect is to homomorphically apply the
map R

2n → C
n||Cn, which is a valid encoding of Cn, due to the properties of

the encoding algorithm. This additional matrix (transformation) is combined
with the first group of the SlotsToCoeffs matrices, thus slightly increasing its
density.

5.4 EvalSine

EvalSine implements the homomorphic modular reduction of the message m′ =
Q0 · Ĩ(Y ) + Δ · m(Y ) modulo Q0. The modular reduction is approximated by

f(x) =
Q0

Δ

1
2π

sin
(

2πx
Δ

Q0

)

≈ Q0

Δ
·
(

Δ

Q0
x mod 1

)

,

which scales the message m′ down to Ĩ(Y ) + (Δ/Q0) · m(Y ), removes the Ĩ(Y )
polynomial by reducing the message modulo 1, and scales the message back to
Δ · m(Y ). As Ĩ(Y ) determines the range and degree of the approximation, the
EvalSine step has to account for the secret-key density h. In particular, the range
of the approximation (−K,K) is chosen such that Pr[||Ĩ(Y )|| > K] ≤ κ for a
user-defined κ. We elaborate more on how we parameterize K, in Sect. 6.2.

Previous Work. Chen et al. [6] directly approximate the function 1
2π ·sin(2πx)

by using a standard Chebyshev interpolant of degree d = 119 in an interval
of (−K,K) for K = 12 (using a sparse key with h = 64). Han and Ki [20]
approximate cos(2π 1

2r (x − 0.25)) followed by r iterations of the double angle
formula cos(2x) = 2 cos(x)2 − 1 to obtain sin(2πx). The factor 1/2r reduces the
range of the approximation to (−K/2r,K/2r), enabling the use of a smaller-
degree interpolant. They combine it with a specialized Chebyshev interpolation
that places the node around the expected intervals of the input. This reduces
the degree of the approximation and the cost of its evaluation. In their work,
they use an interpolant of degree 30 with a scaling factor r = 2 (they also use a
sparse key with h = 64).
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In a recent work, Lee et al. [25] propose to compose the sine/cosine function
with a low degree arcsine. This additional step corrects the error introduced by
the sine, especially if Q0/Δ is small (when the values are not close to the origin).
This improves the overall precision of the bootstrapping and enables bootstrap-
ping messages with larger values. However, this comes at the cost of increasing
the depth of the EvalSine step, as a second polynomial must be evaluated.

Our Work. Both the methods of Chen et al. and Han and Ki have d = O(K),
therefore doubling K requires at most doubling d, and the evaluation will require
at most one additional level, as the Chebyshev interpolant can be evaluated in
O(log(K)) levels. Hence, precision put aside, the level consumption should not be
a fundamental problem when evaluating the large degree interpolant (as required
by dense keys). However, the effects of the approximate rescale procedure, if not
properly managed, can significantly reduce the output precision. Our EvalSine
makes use of our novel polynomial evaluation technique (Sect. 3).

We propose a more compact expression of the modular reduction function
f(x) = 1

2π sin(2πx), which is approximated by gr(x), a modified scaled cosine
followed by r iterations of the double-angle formula:

g0(x) =
1

2r√
2π

cos
(
2π 1

2r (x − 0.25)
)

and gi+1 = 2g2i −
(

1
2r√

2π

)2i

.

We include the 1/2π factor directly in the function we approximate, even
when using the double angle formula, without consuming an additional level,
impacting the precision, or fundamentally changing its evaluation. We observed
that even though the approximation technique of Han and Ki is well suited for
small K, the standard Chebyshev interpolation technique, as used by Chen et
al., remains more efficient when K is large. The reason is that Han and Ki’s
interpolant has a minimum degree of 2K − 1, so it grows in degree with respect
to K much faster than the standard Chebyshev interpolation. Hence, we use the
approximation method of Han and Ki when K is small (for sparse keys) and the
standard Chebyshev approximation, as done by Chen et al., for dense keys.

As suggested by Lee et al. [25], we can further improve this step by com-
posing it with arcsin(x), i.e., 1

2π arcsin(sin(2πx)), which corrects the error
egr(x) = |gr(x) − x mod 1|. Unlike Lee et al., we do not interpolate the arc-
sine, rather we choose to use a low degree Taylor polynomial and show in our
results (see Sect. 7.2) that it is sufficient to achieve similar results.

Algorithm 7 details our implementation of the EvalSine procedure. The
ciphertext must be multiplied by several constants, before and after the polyno-
mial evaluation. For efficiency, we merge these constants with the linear trans-
formations. See Sect. 5.5 for further details.
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Algorithm 7: EvalSine

Input: {ct, Q�, Δ} a ciphertext, p(t) a Chebyshev interpolant of degree d of
f(x) = x mod 1, K the range of interpolation, r a scaling factor.

Output: The evaluation ct′ = �Q0/Δ� · p(�Q0/Δ�−1 · ct).
1 Δ ← Δ · �Q0/Δ� // Division by �Q0/Δ�
2 T0 ← 1
3 T1 ← AddConst(ct, −0.5/(2r+1K))
4 m ← �log(d + 1)�
5 l ← �m/2�
6 T ← {T0, T1, . . . , T2l ; T2l+1 , . . . , T2m−1} // Compute the power basis

7 for i = 0; i < r; i = i + 1 do

8 Δ ← √
Δ · qL−CtS depth−EvalSine depth−r+i // Pre-compute target Δ

9 end
10 ct′ ← EvalRecurse(Δ, m, l, p(t), T ) (Algorithm 2) // Outputs ct’ with target

Δ scale

11 for i = 0; i < r; i = i + 1 do

12 ct′ ← AddConst(2 · Mul(ct′, ct′), −(1/2π)1/2r−i

)
13 ct′ ← Rescale(ct′) // Δ ← Δ2/qL−CtS depth−EvalSine depth−i

14 end
15 Δ ← Δ · �Q0/Δ�−1 // Multiplication by �Q0/Δ�
16 return ct′

5.5 Matrix Scaling

Several steps of the bootstrapping circuit require the ciphertexts to be multiplied
by constant plaintext values. This is most efficiently done by merging them and
pre-multiplying the resulting constants to the SF−1

n and SFn matrices.
Before EvalSine, the ciphertext has to be multiplied (i) by 1/N to cancel the

N/2n and 2n factors introduced by the SubSum and CoeffsToSlots steps, (ii)
by 1/(2rK) for the scaling by 1/2r and change of variable for the polynomial
evaluation in Chebyshev basis, and (iii) by Q0/2�log(Q0)	 to compensate for the
error introduced by the approximate division by �Q0/Δ�. Therefore, the matrices
resulting from the factorization of SF−1

n are scaled by

μCtS =

(
1

2rKN
· Q0

2�log(Q0)	

) 1
ρSF−1

n ,

where ρSF−1
n

is the degree of factorization of SF−1
n . Evenly spreading the scaling

factors across all matrices ensures that they are scaled by a value as close as
possible to 1.

After EvalSine, the ciphertext has to be multiplied (i) by 2�log(q0)	/Q0 to com-
pensate for the error introduced by the approximate multiplication by �Q0/Δ�,
and (ii) by Δ/δ, where Δ is the scale of the ciphertext after the EvalSine step
and δ is the desired ciphertext output scale. Therefore, the matrices resulting
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Table 3. Modulus size log(QP ) for different secret-key densities h (λ ≥ 128).

h
log(QP )

log(QP, N), λ ≥ 128 N = 215 N = 216

64 0.015121N − 8.248756 496 982
96 0.018896N − 3.671642 619 1234
128 0.021370N − 3.601990 699 1396
192 0.023448N − 3.611940 767 1533
N/2 [12] 881 1782

from the factorization of SFn are scaled by

μStC =

(
Δ

δ
· 2�log(Q0)	

Q0

) 1
ρSFn

,

where ρSFn is the degree of factorization of SFn.

6 Parameter Selection

A proper parameterization is paramount to the security and correctness of the
bootstrapping procedure. Whereas security is based on traditional hardness
assumptions, setting the correctness-related parameters is accomplished mostly
through experimental processes for finding appropriate trade-offs between the
performance and the probability of decryption errors. In this Section, we discuss
various constraints and inter-dependencies in the parameter selection. Then, we
propose a generic procedure for finding appropriate parameter sets.

6.1 Security

For each parameter set, we select a modulus size with an estimated security of
128 bits. These values are shown in Table 3 for several choices of the secret-key
Hamming weight h, and are based on the work of Curtis and Player [12]. According
to the authors, these parameters result from conservative estimations, and account
for hypothetical future improvements to the most recent attacks of Cheon et al. [9]
and Son et al. [29]. Therefore, their actual security is underestimated.

6.2 Choosing K for EvalSine

Each coefficient of the polynomial Ĩ(Y ) ∈ R[Y ]/(Y 2n+1) is the result of the sum
of h + 1 uniformly distributed variables in ZQ0 [10], hence it follows an Irwin–
Hall distribution [25]. By centering and normalizing the coefficients of Ĩ(Y ),
we get instead the sum of h + 1 uniformly distributed variables in (−0.5, 0.5).
The probability Pr[||Ĩ(Y )|| > K] can be computed by adapting the cumulative
probability function of the Irwin-Hall distribution:
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Table 4. Pr[||Ĩ(Y )|| > K] ≈ 2−16 for n = 215 and variable h.

log2(h) 6 7 8 9 10 11 12 13 14 15

K 14 20 29 41 58 82 116 163 232 328

log2(Pr[||Ĩ(Y )|| > K]) -14.6 -14.6 -15.7 -15.6 -15.5 -15.4 -15.4 -15.4 -15.4 -15.4

K/
√

h 1.75 1.76 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81

1 −
⎛

⎝

⎛

⎝ 2
(h + 1)!

�K+0.5(h+1)�∑

i=0

(−1)i

(
h + 1

i

)

(K + 0.5(h + 1) − i)h+1

⎞

⎠ − 1

⎞

⎠

2n

.

(1)
The previous works [6,7,10,20] use a sparse key with h = 64 and K = 12,

which regardless of the security, gives a failure probability of 2−14.7 and 2−6.7 for
n = 27 and n = 215 respectively, according to Eq. (1). Clearly, these parameters
were not chosen for large n and are most likely an artifact of the first proposal
for a bootstrapping for CKKS [10], for which only a small number of slots was
practical. In our work, we increase h to ensure an appropriate security and use a
much larger number of slots (e.g., n = 215), hence we need to adapt K. Table 4
shows that if we target a failure probability ≤ 2−15.0 for n = 215 slots and take
h as a parameter, then K ≈ 1.81

√
h.

6.3 Finding Parameters

We describe a general heuristic procedure for selecting and fine-tuning boot-
strapping parameters. Each operation of the bootstrapping requires a different
scaling and a different precision, therefore different moduli. Choosing each mod-
ulus optimally for each operation not only leads to a better performance and a
better final precision but also optimizes the bit consumption of each operation
and increases the remaining homomorphic capacity after the bootstrapping.

We describe our procedure to find suitable parameters for the bootstrapping
in Algorithm 8 and propose five reference parameter sets that result from this
algorithm. The parameter sets were selected for their performance and similarity
with those in previous works, thus enabling a comparison. For each set, Table 5
shows the parameters related to CKKS and to the bootstrapping circuit.

7 Evaluation

We implemented the improved algorithm of Sects. 3 and 4, along with the boot-
strapping procedure of Sect. 5 in the Lattigo library [24]. We evaluated it by using
the parameters of Sect. 6.3. Lattigo is an open-source library that implements
the RNS variants of the BFV [3,13,16] and CKKS [8] schemes in Golang [30].
All experiments were conducted single-threaded on an i5-6600k at 3.5 GHz with
32 GB of RAM running Windows 10 (Go version 1.15.6, GOARCH = amd64,
GOOS = windows).
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Table 5. The sets of parameters of the full-RNS CKKS used to evaluate the perfor-
mance of our bootstrapping code. + means concatenation in the chain and a ·b denotes
the consecutive concatenation of a different moduli of size b. Moduli with fractional a
are only partially used by the step they are allocated to.

Parameters

Set h N Δ log(QP ) L
log(qi) log(pj)q0≤i≤(L−k) StC Sine CtS

I 192

216

240 1546 25 60 + 9 · 40 3 · 39 8 · 60 4 · 56 5 · 61
II 192 245 1547 24 60 + 5 · 45 3 · 42 11 · 60 4 · 58 4 · 61
III 192 230 1553 21 55 + 7.5 · 60 1.5 · 60 8 · 55 4 · 53 5 · 61
IV 32768 245 1792 28 50 + 9 · 40 56 + 28 12 · 60 4 · 53 6 · 61

V 192 215 225 768 14 33 + 50 + 25 60 8 · 50 2 · 49 2 · 50

7.1 The Bootstrapping Metrics

Although CPU costs are an important aspect when evaluating a bootstrapping
procedure, these factors have to be considered together with other performance-
related metrics such as the size of the output plaintext space, the failure prob-
ability, the precision, and the remaining multiplicative depth. To compare our
bootstrapping procedure with the existing ones, we use the same concept of a
bootstrapping utility metric, as introduced by Han and Ki [6].

Definition 1 (Bootstrapping Throughput). For n a number of plaintext
slots, log(ε−1) the output precision, log(QL−k) the output coefficient-modulus
size after the bootstrapping (remaining homomorphic capacity) and complexity
a measure of the computational cost (in CPU time), the bootstrapping throughput
is defined as:

throughput =
n × log(ε−1) × log(QL−k)

complexity
.

Note that we express the remaining homomorphic capacity in terms of the mod-
ulus size, instead of the number of levels, because QL−k can be re-allocated
differently at each bootstrapping call, e.g., a small number of moduli with a
large plaintext scale or a large number of moduli with a small plaintext scale.

As κ, the bootstrapping failure probability, is a probability and not a metric,
we chose to not include it directly in Definition 1. However, we still believe it
should be taken into account as an opportunity-cost variable. Indeed, the event of
a bootstrapping failure will likely result in the need to re-run the entire circuit.
Hence, the probability of failure should be weighed vs. the cost of having to
re-run a circuit to determine if κ is in an acceptable range.

7.2 Results

We run our benchmarks and report the bootstrapping performance for each
parameter set of Table 5, and we compare them with the previous works of Chen
et al. [6], Han and Ki [20], and the recent and concurrent work of Lee et al.
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Algorithm 8: Heuristic Parameter Selection

Input: λ a security parameter.
Output: The parameters (N, n, h, QL, P, κ, α, dsin, r, darcsin, ρ

SF−1
n

, ρSFn).

1 Select n, N and h and derive log(PQL) according to λ.
2 Given Δ (the scale of the message), compute the ratio Q0/Δ and select the

bootstrapping output precision δ.
3 Given a target failure probability κ, estimate K using Equation (1).
4 Given the bootstrapping output precision δ, find dsin (the degree of the sine

polynomial), r (the number of double angle) and darcsin (the degree of the
arcsine polynomial) such that the polynomial approximation of x mod 1 of the
EvalSine step in the interval (−K/2r, K/2r) gives a precision greater than
log(Q0/Δ) + δ bits.

5 Select ρ
SF−1

n
and ρSFn (the depth of the CoeffsToSlots and SlotsToCoeffs steps).

6 Allocate the qj of the CoeffsToSlots, EvalSine and SlotsToCoeffs steps, with the
maximum possible bit-size for all qj .

7 Select α and allocate P =
∏α−1

j=0 pj , ensuring that P ≈ β||qαi ||.
8 Run the bootstrapping and find the minimum values for dsin, r and darcsin such

that the output has δ bits of precision.
9 Run the bootstrapping and find the minimum bit-size for the qj of the EvalSine

such that the output reaches the desired precision or until it plateaus.
10 Run the bootstrapping and find the minimum bit-size for the qj of the

CoeffsToSlots such that the output precision is not affected.
11 Run the bootstrapping and find the minimum bit-size for the qj of the

SlotsToCoeffs such that the output precision is not affected.
12 Allocate the rest of the moduli of QL such that log(PQL) ensures a security of

at least λ and check again step 7.
13 If additional residual homomorphic capacity is needed or the security λ cannot

be achieved
1. Reduce α, ρ

SF−1
n

and/or ρSFn and check again line 6.

2. Increase h to increase log(PQL) and restart at line 1.
3. Increase N to increase log(PQL) and restart at line 1.

return (N, n, h, QL, P, κ, α, dsin, r, darcsin, ρ
SF−1

n
, ρSFn)

[25]. Unfortunately, the implementations of these works have not been publicly
released and we were not able to reproduce their results on our own hardware for
a fair comparison. The parameters and results are summarized in Table 6 and 7,
respectively. Reports on experiments that demonstrate the numerical stability
of our bootstrapping can be found in the extended version of the paper [4].

Focusing only on the overall performance, our most performing set (Set III)
achieves throughput 14.1× and 28.4× larger than the best result reported by
Han and Ki [20] and Lee et al. [25] respectively. Our Set IV uses dense keys and
achieves a throughput 4.6× and 9× larger than the work of Han and Ki and
Lee et al. respectively. Both these works use SEAL [28] and are evaluated on
similar hardware. Our sets III and IV achieve a throughput 54.2× and 17.4×
larger than the best result reported by Chen et al. [6], implemented using the
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Fig. 3. Bootstrapping throughput comparison. We plot the results for our best per-
forming parameter set against the state of the art. Nodes are labeled with n, the number
of plaintext slots.

Table 6. Parameter comparison of [6,20,25] and our work. “–” means that value was
not reported. Lee et al.’s [25] parameters are based on our Set III.

Bootstrapping Parameters

Set N log(QP ) h λ ρ
SF−1

n
ρSFn Q0/Δ K dsin(x) r darcsin(x)

[25]

216

1553 192 ≈ 128 2 2
256

25
66

2
0

8 68 5
[6] 2480 64 < 80 4 4 1024 12 119 0 0
[20] 1452 64 < 100 - - 1024 12 31 2 0
I 1546 192 ≈ 128 4 3 256 25 63 2 0
II 1547 192 ≈ 128 4 3 256 25 63 2 0
III 1553 192 ≈ 128 4 3 4 25 63 2 7
IV 1792 32768 ≈ 128 4 3 256 325 255 4 0

[6]
215

1240 64 < 80 2 2 1024 12 119 0 0
[20] 910 64 < 90 - - 1024 12 31 2 0
V 768 192 ≈ 128 2 2 256 25 63 2 0

HEAAN library [21]. HEAAN does not implement the full-RNS variant of CKKS,
hence the latter comparison shows the significant performance gains that can be
achieved by combining optimized algorithms with a full-RNS implementation.

The implementation of Lee et al. makes use of the recent work of Kim et al.
[22] which proposes new techniques to minimize the error during computation,
notably a delayed rescaling that consists in rescaling the ciphertext before a
multiplication and not after, so that the error is as small as possible when doing



614 J.-P. Bossuat et al.

Table 7. Comparison of the bootstrapping performances of [6,20,25] and our proposed
bootstrapping for the full-RNS variant of CKKS with parameter sets I, II, III, IV and V.
MU, SS, CtS, StC designate ModUp, SubSum, SlotstoCoeffs, CoeffstoSlots.“–” indicates
that the prior work did not report the value. All timings are single threaded. The
plaintext real and imaginary part are uniformly distributed in the interval −1 and 1.

Bootstrapping Performances

Set n
Timing(s)

log (QL−k ) log (ε−1) log (bits/s) log (κ)
MU SS CtS StC Sine Total

[25] 214 - - - - - 461.5 653 27.2 19.26 -16.58
[25] 214 - - - - - 451.5 533 32.6 19.26 -16.58

[6] 214 119.8 38.5 158.3 172 18.6 18.33 -7.70
[6] 212 127.5 40.4 167.9 301 20.9 17.22 -9.70

[20] 214 - - - - - 52.8 370 10.8 20.24 -7.70
[20] 210 - - - - - 37.6 370 15.3 17.23 -11.70

I 215 0.06 0 6.5 3.7 12.8 23.0 420 25.7 23.87 -15.58
I 214 0.06 0.3 6.3 3.8 6.3 16.9 420 26.0 23.33 -16.58

II 215 0.06 0 6.8 2.2 14.2 23.4 240 31.5 23.33 -15.58
II 214 0.06 0.3 6.0 2.4 7.1 16.0 240 31.6 22.88 -16.58

III 215 0.06 0 5.4 2.4 10.1 18.1 505 19.1 24.06 -15.58
III 214 0.06 0.3 5.0 2.6 5.0 13.1 505 18.9 23.50 -16.58

IV 215 0.07 0 7.9 28.2 3.0 39.2 410 16.8 22.45 -14.90
IV 214 0.07 0.4 7.1 14.1 3.2 24.9 410 17.3 22.15 -15.90

[6] 210 28.8 9.5 38.3 150 6.9 14.75 -11.70
[6] 28 16.9 9.2 26.0 75 10.03 12.85 -13.70

[20] 22 - - - - - 7.5 185 15.0 10.53 -19.70
[20] 21 - - - - - 7.0 185 16.8 9.79 -20.70

V 214 0.02 0 3.7 0.7 2.9 7.5 110 15.5 21.82 -16.58
V 213 0.02 0.4 1.6 0.4 1.5 3.9 110 15.4 21.76 -17.58

the multiplication. This enables Lee et al. to achieve a slightly higher precision
than ours (our implementation does not use the work of Kim et al.). Lee et al.
results are also the ones with the most residual homomorphic capacity. The
primary reason is the implementation of the CKKS scheme in SEAL, which can
only use one special prime (α = 1, see Sect. 4) during the key-switching. This
increases the ciphertext homomorphic capacity, but at the cost of an increased
key-switch complexity. The second reason is that they allocate less levels to the
linear transformations (in total, three less than our parameters). This enables
them to reduce the depth of the bootstrapping, at the cost of increasing its
complexity, which shows in their timings.

We observe that there is a correlation between the value Q0/Δ and the pre-
cision. A better precision is achieved when using a smaller ratio, even when
the arcsin is not composed with the scaled sine. Previous works usually assume
that ||m|| ≈ ||FFT−1(m)|| to set Q0/Δ and derive the expected precision of
the scaled sine. In practice, since each coefficient of FFT−1(m) is a dot product
between the vector m and a complex vector of roots of unity (zero-mean and
small variance), if the mean of m is close to zero, then ||FFT−1(m)|| � ||m|| with
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overwhelming probability. For example, given m uniform in (−1, 1) and n = 215

slots, then ||m||/||FFT−1(m)|| ≈ 100. Hence the message is much closer to the
origin than expected, which reduces the inherent error of the scaled sine and
amplifies the effectiveness of the arcsine. We note that even if the distribution
of m is not known, it is possible to enforce this behavior with a single plain-
text multiplication by homomorphically negating half of its coefficients before
the bootstrapping. One could even homomorphically split m in half and create
two symmetric vectors to enforce a zero mean. A more detailed analysis of this
behavior and how to efficiently exploit it or integrate it into the linear transforms
of the bootstrapping could be a interesting future research line.

All our sets have a failure probability that is two to three orders magnitude
smaller than previous works, except for the results of Lee et al. which use our
suggested parameters. For example, following Eq. (1), if successive bootstrap-
pings are carried out with n = 215 slots, then [6] and [20] would reach a 1/2
failure probability after 52 bootstrappings, whereas ours would reach the same
probability after 24,656 bootstrappings.

Figure 3 plots the best performing instances of Table 7.

8 Conclusion

In this work, we have introduced a secure, reliable, precise and efficient boot-
strapping procedure for the full-RNS CKKS scheme that does not require the
use of sparse secret-keys. To the best of our knowledge, this is the first reported
instance of a practical bootstrapping parameterized for at least 128-bit security.

To achieve this, we have proposed a generic algorithm for the homomorphic
evaluation of polynomials with reduced error and optimal in level consumption.
In addition to the increase in precision and efficiency, our algorithm also improves
the usability of the full-RNS variant of CKKS (for which managing a changing
scale in large circuits is known to be a difficult task).

We have also proposed an improved key-switch format that we apply to the
homomorphic matrix-vector multiplication. Our novel double hoisting algorithm
reduces the complexity of the CoeffsToSlots and SlotsToCoeffs by roughly a fac-
tor of 2 compared to previous works. The performance gain for these procedures
enables their use outside of the bootstrapping, for applications where the con-
version between coefficient- and slot-domains would enable much more efficient
homomorphic circuits (e.g., in the training of convolutional neural networks or
R-LWE to LWE ciphertext conversion).

We have also proposed a systematic approach to parameterize the bootstrap-
ping, including a way to precisely assess its failure probability. We have evaluated
our bootstrapping procedure and have shown that its throughput with “dense”
secret-keys (h = N/2) is up to 4.6× larger than the best state-of-the-art results
with sparse keys (h = 64). When the sparse-keys-adjusted parameters of Curtis
and Player [12] for h = 192 and 128-bits of security are considered, our proce-
dure has a 14.1× larger throughput than the previous work that uses a sparse
key with h = 64 with insecure parameters. Additionally, all our parameters lead
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to a more reliable instance than the previous works, with a failure probability
orders of magnitude lower.

We have implemented our contributions in the Lattigo library [24]. This is,
to the best of our knowledge, the first open-source implementation of a boot-
strapping procedure for the full-RNS variant of the CKKS scheme.
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Abstract. Approximate homomorphic encryption with the residue num-
ber system (RNS), called RNS-variant Cheon-Kim-Kim-Song (RNS-
CKKS) scheme [12,13], is a fully homomorphic encryption scheme
that supports arithmetic operations for real or complex number data
encrypted. Although the RNS-CKKS scheme is a fully homomorphic
encryption scheme, most of the applications with the RNS-CKKS scheme
use it as the only leveled homomorphic encryption scheme because of the
lack of the practicality of the bootstrapping operation of the RNS-CKKS
scheme. One of the crucial problems of the bootstrapping operation is its
poor precision. While other basic homomorphic operations ensure suffi-
ciently high precision for practical use, the bootstrapping operation only
supports about 20-bit fixed-point precision at best, which is not high pre-
cision enough to be used for the reliable large-depth homomorphic com-
putations until now.

In this paper, we improve the message precision in the bootstrapping
operation of the RNS-CKKS scheme. Since the homomorphic modular
reduction process is one of the most important steps in determining the
precision of the bootstrapping, we focus on the homomorphic modular
reduction process. Firstly, we propose a fast algorithm of obtaining the
optimal minimax approximate polynomial of modular reduction function
and the scaled sine/cosine function over the union of the approximation
regions, called an improved multi-interval Remez algorithm. In fact, this
algorithm derives the optimal minimax approximate polynomial of any
continuous functions over any union of the finite number of intervals.
Next, we propose the composite function method using the inverse sine
function to reduce the difference between the scaling factor used in the
bootstrapping and the default scaling factor. With these methods, we
reduce the approximation error in the bootstrapping of the RNS-CKKS
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scheme by 1/1176–1/42 (5.4–10.2-bit precision improvement) for each
parameter setting. While the bootstrapping without the composite func-
tion method has 27.2–30.3-bit precision at maximum, the bootstrapping
with the composite function method has 32.6–40.5-bit precision.

Keywords: Approximate homomorphic encryption · Bootstrapping ·
Composite function approximation · Fully homomorphic encryption
(FHE) · Improved multi-interval Remez algorithm · Inverse sine
function · Minimax approximate polynomial · RNS-variant
Cheon-Kim-Kim-Song (RNS-CKKS) scheme

1 Introduction

Fully homomorphic encryption (FHE) is the encryption scheme enabling any log-
ical operations [6,14,16,19,30] or arithmetic operations [12,13] with encrypted
data. The FHE scheme makes it possible to preserve security in data process-
ing. However, in the traditional encryption schemes, they are not encrypted to
enable the processing of encrypted data, which causes clients to be dissuaded
from receiving services and prevents companies from developing various related
systems because of the lack of clients’ privacy. FHE solves this problem clearly
so that clients can receive many services by ensuring their privacy.

First, Gentry constructed the FHE scheme by coming up with the idea of boot-
strapping [18]. After this idea was introduced, cryptographers constructed many
FHE schemes using bootstrapping. Approximate homomorphic encryption, which
is also called a Cheon-Kim-Kim-Song (CKKS) scheme [13], is one of the promising
FHE schemes, which deals with any real and complex numbers. The CKKS scheme
is particularly in the spotlight for much potential power in many applications such
as machine learning [2,3,5,7,15,23], in that data is usually represented by real
numbers. Lots of research for the optimization of the CKKS scheme have been done
actively for practical use. Cheon et al. proposed the residue number system (RNS)
variant CKKS scheme (RNS-CKKS) [12] so that the necessity of arbitrary preci-
sion library can be removed and only use the word-size operations. The running
time of the homomorphic operations in the RNS-CKKS scheme is 10 times faster
than that of the original CKKS scheme with the single thread, and further, the
RNS-CKKS schemehas an advantage in parallel computation,which leads tomuch
better running time performance with the multi-core environment. Because of the
fast homomorphic operations, most homomorphic encryption libraries, including
SEAL [29] and PALISADE [1], are implemented using the RNS-CKKS scheme. Thus,
we focus on the RNS-CKKS scheme in this paper.

Since the CKKS scheme includes noises used to ensure security as the approx-
imate error in the message, the use of the RNS-CKKS scheme requires more
sensitivity to the precision of the message than other homomorphic encryption
schemes that support accurate decryption and homomorphic evaluation. This
can be more sensitive for large-depth homomorphic operations because errors
are likely to be amplified by the operations and distort the data significantly.
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Fortunately, the basic homomorphic operations in the RNS-CKKS scheme can
ensure sufficiently high precision for practical use, but this is not the case for the
bootstrapping operation. Ironically, while the bootstrapping operation in other
homomorphic encryption schemes reduces the effect of the errors on messages
so that they do not distort messages, the bootstrapping operation in the CKKS
scheme amplifies the errors, which makes it the most major cause of data dis-
tortion among any other homomorphic operations in the RNS-CKKS scheme.
Since advanced operations with large depth may require bootstrapping operation
many times, the message precision problem in the bootstrapping operation is a
crucial obstacle to applying the RNS-CKKS scheme to advanced applications.

Although the RNS-CKKS scheme is currently one of the most potential solu-
tions to implement privacy-preserving machine learning (PPML) system [2,3,15],
the methods for the PPML studied so far have mainly been applied to simple
models such as MNIST, which has such a low depth that bootstrapping is not
required. Thus, the message precision problem in the bootstrapping operation
in the RNS-CKKS scheme did not need to be considered in the PPML model
until now. However, the advanced machine learning model currently presented
requires a large depth, and thus we should introduce the bootstrapping operation
and cannot avoid the message precision problem in the bootstrapping operation.
Of course, the fact that bootstrapping requires longer running time and larger
depth than other homomorphic operations is also pointed out as a major limita-
tion of bootstrapping. While these points may be improved by simple parameter
adjustments and using hardware optimization, the message precision problem in
bootstrapping is difficult to solve with these simple methods.

Most of the works about PPML with FHE focused on the inference process
rather than the training process because of the large running time. However, train-
ing neural networks with encrypted data is actually more important from a long-
term perspective for solving the real security problem in machine learning, in that
the companies cannot gather sufficiently many important but sensitive data, such
as genetic or financial information so that they cannot construct the deep learning
model for them because of the privacy of the data owners. While the inference pro-
cess does not need a high precision number system, the training process is affected
sensitively by the precision of the number system. Chen et al. [9] showed that con-
volutional neural networks (CNN) learning MNIST could not converge when the
model is trained using a 16-bit fixed-point number system. When the 32-bit fixed-
point number system is used to train the CNN with MNIST, the training perfor-
mance was slightly lower than the case of using the single-precision floating-point
number system, although all bits except one bit representing the sign are used
to represent the data in 32-bit fixed-point number system, which is much better
precision than the single-precision floating-point number system, which is 23-bit
precision. Although many works proposed to use low-precision fixed-point num-
bers in the training procedure, they used additional special techniques, such as
stochastic rounding [20] or the dynamic fixed-point number system [21], which
cannot be supported by the RNS-CKKS scheme until now.



High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 621

While most of the deep learning systems use single-precision floating-point
numbers, the maximum precision achieved with the bootstrapping of the CKKS
scheme in the previous papers was about only 20 bits. Considering that the
CKKS scheme only supports fixed-point arithmetic, the 20-bit precision is not
large enough to be applied wholly to the deep learning system. Thus, to apply
the RNS-CKKS scheme to deep learning systems, it is necessary to achieve a
precision sufficiently better than the 32-bit fixed-point precision, which requires
a breakthrough for the bootstrapping in the RNS-CKKS scheme concerning its
precision.

1.1 Our Contribution

In this paper, we propose two methods to improve the bootstrapping oper-
ation of the RNS-CKKS scheme. Firstly, we devise a fast algorithm, called
an improved multi-interval Remez algorithm, obtaining the optimal minimax
approximate polynomial of any continuous functions over any union of the finite
number of intervals, which include the modular reduction function and the scaled
sine/cosine function over the union of the approximation regions. Although the
previous works have suggested methods to obtain polynomials that approxi-
mate the scaled sine/cosine function well from the minimax perspective, which
are used to approximate the modular reduction function, these methods cannot
obtain the optimal minimax approximate polynomial.

The original multi-interval Remez algorithm is not theoretically proven to
obtain the minimax approximate polynomial, and it is only practically used for
two or three approximation regions in the finite impulse response filter design,
while we need to approximate functions over the union of tens of intervals. Fur-
thermore, it takes impractically much time if this algorithm is used without
further improvement to obtain a polynomial that can be used for the boot-
strapping. To make the multi-interval Remez algorithm practical, we modify
the multi-interval Remez algorithm as the improved multi-interval Remez algo-
rithm. Then we prove the correctness of the improved multi-interval Remez algo-
rithm, including the original multi-interval Remez algorithm, for the union of
any finite number of intervals. Since it can obtain the optimal minimax approx-
imate polynomial in seconds, we can even adaptively obtain the polynomial
when we abruptly change some parameters on processing the ciphertexts so that
we have to update the approximate polynomial. All polynomial approximation
methods proposed in previous works for bootstrapping in the CKKS scheme can
be replaced with the improved multi-interval Remez algorithm, which ensures
the best quality of the approximation. It ensures to use the least degree of the
approximate polynomial for a given amount of error.

Next, we propose the composite function method to enlarge the approxima-
tion region in the homomorphic modular reduction process using the inverse sine
function. The crucial point in the bootstrapping precision is that the difference
between the modular reduction function and the sine/cosine function gives a
significant precision loss. All previous works have used methods that approxi-
mate the modular reduction function as a part of the sine/cosine functions. This
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approximation has an inherent approximation error so that the limitation of the
precision occurs. Besides, to ensure that these two functions are significantly
close to each other, the approximation region has to be reduced significantly.
They set the half-width of one interval in the approximation region as 2−10,
which is equal to the ratio of default scaling factor to the scaling factor used in
the bootstrapping. The message has to be scaled by multiplying 2−10 to make
the message into the approximation region, and it is scaled by multiplying 210 at
the end of the bootstrapping. Thus, the precision error in the computation for
bootstrapping is amplified by 210, and the 10-bit precision loss occurs. If we try
to reduce this precision loss by enlarging the approximation region, the approx-
imation error by the sine/cosine function becomes large, and thus the overall
precision becomes lower than before.

Therefore, we propose to compose the optimal approximate polynomial of
the inverse sine function to the sine/cosine function, since composing the inverse
sine function to the sine/cosine function extends the approximation region of the
modular reduction function, which makes it possible to improve the precision of
the bootstrapping. Note that the inverse sine function we use has only one inter-
val in the approximation region, and thus we can reach the small approximate
error with relatively low degree polynomials. We obtain the minimax approxi-
mate polynomials for the scaled cosine function and the inverse sine function with
sufficiently small minimax error by the improved multi-interval Remez algorithm.
We apply these polynomials in the homomorphic modular reduction process by
homomorphically evaluating the approximate polynomial for the scaled cosine
function, several double-angle formulas, and the approximate polynomial for the
inverse sine function. This enables us to minimize the inevitable precision loss
by approximating the modular reduction function to the sine/cosine function.

Since the previous works do not focus on the maximum precision of the
bootstrapping of the RNS-CKKS scheme, we check the maximum precision of
the bootstrapping with the previous techniques. The detailed relation with the
precision of the bootstrapping and various parameters is analyzed with SEAL
library. With the proposed methods, we reduce the approximation error in the
bootstrapping of the RNS-CKKS scheme by 1/1176–1/42 (5.4–10.2-bit preci-
sion improvement) for each parameter setting. While the bootstrapping without
the composite function method has 27.2–30.3-bit precision at maximum, the
bootstrapping with the proposed composite function method has 32.6–40.5-bit
precision, which are better precision than 32-bit fixed-point precision.

1.2 Related Works

The CKKS scheme [13] was firstly proposed without bootstrapping as a somewhat
homomorphic encryption scheme supporting only the finite number of multiplica-
tions. Cheon et al. [11] firstly suggested bootstrapping operation with the homo-
morphic linear transformation enabling transformation between slots and coef-
ficients, and approximation of homomorphic modulus reduction function as the
sine function with Taylor approximation and the double-angle formula. Chen et al.
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[8] applied a modified fast Fourier transform (FFT) algorithm to evaluate homo-
morphic linear transformation and used Chebyshev interpolation and Paterson-
Stockmeyer algorithm to approximate the sine function efficiently in terms of the
running time and the depth consumption. Han et al. [22] improved the homomor-
phic modular reduction in the bootstrapping operation. While Chen et al. approx-
imated the sine function in one interval, Han et al. approximated the cosine func-
tion only in the separated approximation regions, reducing the degree of polyno-
mials and using simpler double-angle formula than that of the sine function. Still,
their approximate polynomial is also not optimal in the minimax aspect.

On the other hand, the RNS-CKKS scheme was proposed. Since big inte-
gers used to represent the ciphertexts in the CKKS scheme cannot be stored
with the basic data type, the original CKKS scheme had to resort to the arbi-
trary precision data type libraries, such as the number theory library (NTL).
To remove the reliance on the external libraries for performance improvement,
Cheon et al. applied the RNS system in the CKKS scheme. Most practical homo-
morphic encryption libraries, such as SEAL and PALISADE, implement the RNS-
CKKS scheme. The approximate rescaling procedure, which enables using the
RNS system in the RNS-CKKS scheme, causes more approximation error in the
homomorphic multiplication of the RNS-CKKS scheme than in that of the orig-
inal CKKS scheme. Kim et al. [24] recently suggested the management method
for the scaling factor in the RNS-CKKS scheme. Thus the approximation error in
the homomorphic multiplication of the RNS-CKKS scheme was made the same
as that of the original CKKS scheme.

Bossuat et al. [4] optimized various performances of the bootstrapping of
the RNS-CKKS scheme. Their two main techniques are the scale-invariant poly-
nomial evaluation and the double hoisting. In the scale-invariant polynomial
evaluation, the coefficients of an approximate polynomial are slightly adjusted
by multiplication with some adjustment factor so that the messages in the out-
put ciphertext are not affected by the approximate rescaling. Also, it always
ensures optimal depth consumption by introducing additional recursive loops.
The double hoisting technique optimized the homomorphic evaluation of a linear
combination of several rotated ciphertexts from the same ciphertext with differ-
ent rotation steps. Bossuat et al.’s techniques are compatible with our techniques;
that is, their techniques and our techniques can be applied simultaneously in the
RNS-CKKS scheme.

1.3 Outline

The outline of the paper is given as follows. Section 2 deals with some pre-
liminaries for the RNS-CKKS scheme, approximation theory, and the Remez
algorithm. In Sect. 3, we propose an improved multi-interval Remez algorithm
for obtaining the optimal minimax approximate polynomial. The numerical rela-
tion between the message precision and several parameters in the RNS-CKKS
scheme is dealt with in Sect. 4, and the upper bound of the message precision
in the bootstrapping of the RNS-CKKS scheme is also included. In Sect. 5, we
propose the composite function method, which makes it possible to reduce the
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difference of the two scaling factors in default operations and in bootstrapping
operations, and numerically shows the improvement of the message precision
in the proposed bootstrapping operation in the RNS-CKKS scheme. Section 6
concludes the paper.

2 Preliminary

2.1 Notation

Let round(x) be the function that outputs the integer nearest to x, and we do
not have to consider the case of tie in this paper. The Chebyshev polynomials
Tn(x) are defined by cosnθ = Tn(cos θ). The remainder of a divided by q is
denoted as [a]q. If C = {q0, q1, · · · , q�−1} is the set of positive integers coprime
each other and a ∈ ZQ where Q =

∏�−1
i=0 qi, the RNS representation of a with

regard to C is denoted by [a]C = ([a]q0 , [a]q1 , · · · , [a]q�−1) ∈ Zq0 ×· · ·×Zq�−1 . The
base of logarithm in this paper is two.

2.2 CKKS Scheme and RNS-CKKS Scheme

It is known that the CKKS scheme supports several operations for encrypted
data of real numbers or complex numbers. Since it usually deals with real num-
bers, the noise that ensures the security of the CKKS scheme can be embraced
outside of the significant figures of the data, which is the crucial concept of the
CKKS scheme.

The RNS-CKKS scheme [12] uses the RNS form to represent the ciphertexts
and to perform the homomorphic operations efficiently. While the power-of-two
modulus is used in the CKKS scheme, the product of large primes is used for
ciphertext modulus in the RNS-CKKS scheme so that the RNS system can be
applied. These large primes are chosen to be similar to the scaling factor, which
is some power-of-two integer. There is a crucial difference in the rescaling oper-
ation between the CKKS scheme and the RNS-CKKS scheme. While the CKKS
scheme can rescale the ciphertext by the exact scaling factor, the RNS-CKKS
scheme has to rescale the ciphertext by one of the RNS moduli, which is not
equal to the scaling factor. Thus, the RNS-CKKS scheme allows approximation
in the rescaling procedure. The specific procedure is not needed in this paper,
and thus we omit the detailed procedures. Detailed procedures in the CKKS
scheme and the RNS-CKKS scheme are found in [13] and [12], respectively.

2.3 Kim-Papadimitriou-Polyakov (KPP) Scaling Factor
Management

Kim et al. [24] suggested a method of eliminating the large rescaling error in the
RNS-CKKS scheme. Instead of using the same power-of-two scaling factor for
each level, they used different scaling factors in different levels. If the maximum
level is L, and the ciphertext modulus for level i is denoted as qi, the scaling
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factor for each level is given as follows: ΔL = qL and Δi = Δ2
i+1/qi+1 for

i = 0, · · · , L − 1.
If the two ciphertexts are at the same level, it does not introduce the approx-

imate rescaling error when they are multiplied homomorphically. If the two
ciphertexts are in the different level, that is, in the levels i and j such that i > j,
the moduli qi, · · · , qj+1 in the first ciphertext are dropped, the first ciphertext is
multiplied by a constant �Δjqj+1

Δi
�, and it is rescaled by qj+1. Then we perform

the conventional homomorphic multiplication with the two ciphertexts, which
are now at the same level, together with rescaling in the RNS-CKKS scheme.
The approximate rescaling error is also not introduced in this case.

2.4 Bootstrapping for CKKS Scheme

The framework of the bootstrapping of the CKKS scheme was introduced in
[13], which is the same as the case of the RNS-CKKS scheme. The purpose
of bootstrapping is to refresh the ciphertext of level 0, whose multiplication
cannot be performed anymore, to the fresh ciphertext of level L having the same
messages. Bootstrapping is composed of the following four steps:

i) Modulus raising
ii) Homomorphic linear transformation; CoeffToSlot

iii) Homomorphic modular reduction
iv) Homomorphic linear transformation; SlotToCoeff

Modulus Raising: The starting point of bootstrapping is modulus raising,
where we simply consider the ciphertext of level 0 as an element of R2

Q, instead
of R2

q0 . Since the ciphertext of level 0 is supposed to be 〈ct, sk〉 ≈ m mod q0, we
have 〈ct, sk〉 ≈ m+q0I mod Q for some I ∈ R when we try to decrypt it. We are
assured that the absolute values of coefficients of I are rather small, for example,
usually smaller than 12, because coefficients of sk consist of small numbers [11].
The crucial part of the bootstrapping of the CKKS scheme is to make ct′ such
that 〈ct′, sk〉 ≈ m mod qL. This is divided into two parts: homomorphic linear
transform and homomorphic evaluation of modular reduction function.

Homomorphic Linear Transformation: The ciphertext ct after modulus
raising can be considered as the ciphertext encrypting m + q0I, and thus we
now have to perform modular reduction to coefficients of message polynomial
homomorphically. However, the operations we have are all for slots, not coeffi-
cients of the message polynomial. Thus, to perform some meaningful operations
on coefficients, we have to convert ct into a ciphertext that encrypts coefficients
of m + q0I as its slots. After evaluation of homomorphic modular reduction
function, we have to reversely convert this ciphertext into the other ciphertext
ct′ that encrypts the slots of the previous ciphertext as the coefficients of its
message. These two operations are called CoeffToSlot and SlotToCoeff
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operations. These operations are regarded as homomorphic evaluation of encod-
ing and decoding of messages, which are a linear transformation by some variants
of Vandermonde matrix for roots of ΦM (x). This can be performed by general
homomorphic matrix multiplication [11], or FFT-like operation [8].

Homomorphic Modular Reduction Function: After CoeffToSlot is per-
formed, we now have to perform modular reduction homomorphically on each
slot in modulus q0. This procedure is called EvalMod. This modular reduc-
tion function is not an arithmetic function and even not a continuous function.
Fortunately, by restricting the range of the messages such that m/q0 is small
enough, the approximation region can be given only near multiples of q0. This
allows us to approximate the modular reduction function more effectively. Since
the operations that the CKKS supports are arithmetic operations, most of the
works [8,11,22] dealing with CKKS bootstrapping approximate the modular
reduction function with some polynomials, which are sub-optimal approximate
polynomials.

The scaling factor is increased when the bootstrapping is performed because
m/q0 needs to be very small in the homomorphic modular reduction function.
In this paper, the default scaling factor means the scaling factor used in the
intended applications, and the bootstrapping scaling factor means the scaling
factor used in the bootstrapping. The bit-length difference between these two
scaling factors is usually 10.

2.5 Approximation Theory

There are many theorems for the minimax approximate polynomials of a func-
tion defined on a compact set in approximation theory. Before introducing these
theorems, we refer to a definition of the Haar condition of a set of functions that
deals with the generalized version of power bases used in polynomial approxima-
tion and its equivalent statement. It is a well-known fact that the power basis
{1, x, x2, · · · , xd} satisfies the Haar condition. Thus, if an argument deals with
the polynomials concerning a set of basis functions satisfying the Haar condition,
it naturally includes the case of polynomials.

Definition 2.1 ([10] Haar’s Condition). A set of functions {g1, g2, · · · , gn}
satisfies the Haar condition if each gi is continuous and if each determinant

D[x1, · · · , xn] =

∣
∣
∣
∣
∣
∣
∣

g1(x1) · · · gn(x1)
...

. . .
...

g1(xn) · · · gn(xn)

∣
∣
∣
∣
∣
∣
∣

for any n distinct points x1, · · · , xn is not zero.

Lemma 2.2 ([10]). A set of functions {g1, · · · , gn} satisfies the Haar condition
if and only if the zero function is the only function of the form

∑
i cigi that has

more than n − 1 roots.
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We now introduce the core property of the minimax approximate polynomial
for a function on D.

Theorem 2.3 ([10] Chebyshev Alternation Theorem). Let {g1, · · · , gn} be
a set of continuous functions defined on [a, b] satisfying the Haar condition, and
let D be a closed subset of [a, b]. A polynomial p =

∑
i cigi is the minimax

approximate polynomial on D to any given continuous function f defined on D
if and only if there are n + 1 distinct elements x0 < · · · < xn in D such that for
the error function r = f − p restricted on D,

r(xi) = −r(xi−1) = ± sup
x∈D

|r(x)|.

This condition is also called the equioscillation condition. This means that if
we find a polynomial satisfying the equioscillation condition, this is the unique
minimax approximate polynomial. It is needless to compare with the maximum
approximation error of any polynomials.

2.6 Algorithms for Minimax Approximation

Remez Algorithm. Remez algorithm [10,27,28] is an iterative algorithm that
always returns the minimax approximate polynomial for any continuous function
on an interval of [a, b]. This algorithm strongly uses the Chebyshev alternation
theorem [10] in that its purpose is finding the polynomial satisfying equioscil-
lation condition. In fact, the Remez algorithm can be applied to obtain the
minimax approximate polynomial, whose basis function {g1, · · · , gn} satisfies
the Haar condition. The specific algorithm is shown in Algorithm 1.

Multi-interval Remez Algorithm. Since the Remez algorithm works only
when the approximation region is one interval, we need another multi-interval
Remez algorithm that works when the approximation region is the union of
several intervals. The above Remez algorithm can be extended to the multiple
sub-intervals of an interval [17,26,28]. The multi-interval Remez algorithm is the
same as Algorithm 1, except Steps 3 and 4. For each iteration, firstly, we find
all of the local extreme points of the error function p − f whose absolute error
values are larger than the absolute error values at the current reference points.
Then, we choose n + 1 new extreme points among these points satisfying the
following two criteria:

i) The error values alternate in sign.
ii) A new set of extreme points includes the global extreme point.

These two criteria are known to ensure the convergence to the minimax polyno-
mial, even though there is no exact proof of its convergence to the best of our
knowledge. However, it is noted that there are many choices of sets of extreme
points satisfying these criteria. In the next section, we modify the multi-interval
Remez algorithm, where one of the two criteria is changed.
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Algorithm 1: Remez Algorithm [10,27,28]

Input : An input domain [a, b], a continuous function f on [a, b], an
approximation parameter δ, and a basis {g1, · · · , gn}.

Output: The minimax approximate polynomial p for f

1 Select x1, x2, · · · , xd+2 ∈ [a, b] in strictly increasing order.

2 Find the polynomial p(x) =
∑n

i=1 cigi(x) with p(xi) − f(xi) = (−1)iE for
i = 1, · · · , d + 2 and some E by solving the system of linear equations with
variables ci’s and E.

3 Divide the interval into n + 1 sections [zi−1, zi], i = 1, · · · , n + 1, from zeros
z1, · · · , zn of p(x) − f(x), where xi < zi < xi+1, and boundary points
z0 = a, zn+1 = b.

4 Find the maximum (resp. minimum) points for each section when p(xi) − f(xi)
has positive (resp. negative) value. Denote these extreme points y1, · · · , yn+1.

5 εmax ← maxi |p(yi) − f(yi)|
6 εmin ← mini |p(yi) − f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

3 Efficient Algorithm for Optimal Minimax Approximate
Polynomial

In this section, we propose an improved multi-interval Remez algorithm for
obtaining the optimal minimax approximate polynomial. With this proposed
algorithm, we can obtain the optimal minimax approximate polynomial for con-
tinuous function on the union of finitely many closed intervals to apply the
Remez algorithm to the bootstrapping of the CKKS scheme. The function we
are going to approximate is the normalized modular reduction function defined
in only near finitely many integers given as

normod(x) = x − round(x), x ∈
K−1⋃

i=−(K−1)

[i − ε, i + ε],

where K determines the number of intervals in the domain. normod function
corresponds to the modular reduction function scaled for both its domain and
range.

In addition, Han et al. [22] uses the cosine function to approximate normod(x)
to use double-angle formula for efficient homomorphic evaluation. If we use double-
angle formula � times, we have to approximate the following cosine function

cos
(

2π

2�

(

x − 1
4

))

, x ∈
K−1⋃

i=−(K−1)

[i − ε, i + ε].

To design an approximation algorithm that deals with the above two functions,
we assume the general continuous function defined on an union of finitely many
closed intervals, which is given as
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D =
t⋃

i=1

[ai, bi] ⊂ [a, b] ⊂ R,

where ai < bi < ai+1 < bi+1 for all i = 1, · · · , t − 1.
When we propose the improved multi-interval Remez algorithm to approxi-

mate a given continuous function on D with a polynomial having a degree less
than or equal to d, we have to consider two crucial points. One is to establish an
efficient criterion for choosing new d+2 reference points among several extreme
points. The other is to make efficient some steps in the improved multi-interval
Remez algorithm. We deal with these two issues for the improved multi-interval
Remez algorithm in Sects. 3.1 and 3.3, respectively.

3.1 Improved Multi-interval Remez Algorithm with Criteria
for Choosing Extreme Points

Assume that we apply the multi-interval Remez algorithm on D and use
{g1, · · · , gn} satisfying Haar condition on [a, b] as the basis of polynomials. After
obtaining the minimax approximate polynomial regarding the set of reference
points for each iteration, we have to choose a new set of reference points for the
next iteration. However, there are many boundary points in D, and all these
boundary points have to be considered as extreme points of the error function.
For this reason, there are many cases of selecting n + 1 points among these
extreme points. For bootstrapping in the CKKS scheme, there are many inter-
vals to be considered, and thus there are lots of candidate extreme points. Since
the criterion of the original multi-interval Remez algorithm cannot determine
the unique new set of reference points for each iteration, it is necessary to make
how to choose n + 1 points for each iteration to reduce the number of itera-
tions as small as possible. Otherwise, it requires a large number of iteration for
convergence to the minimax approximate polynomial. On the other hand, if the
criterion is not designed properly, the improved multi-interval Remez algorithm
may not converge into a single polynomial in some cases.

In order to set the criterion for selecting n + 1 reference points, we need to
define a simple function for extreme points, μp,f : D → {−1, 0, 1} as follows,

μp,f (z) =

⎧
⎪⎨

⎪⎩

1 p(x) − f(x) is concave at z on D
−1 p(x) − f(x) is convex at z on D
0 otherwise,

where p(x) is a polynomial obtained in that iteration and f(x) is a continuous
function on D to be approximated. We abuse the notation μp,f as μ.

Assume that the number of extreme points of p(x)− f(x) on D is finite, and
the set of extreme points is denoted by B = {w1, w2, · · · , wm}. Assume that B
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is ordered in increasing order, w1 < w2 < · · · < wm, and then the values of μ at
these points are always 1 or −1. Let S be a set of functions defined as

S = {σ : [n + 1] → [m] | σ(i) < σ(i + 1) for all i = 1, · · · , n},

which means all the ways of choosing n + 1 points of the m points. Clearly, S
has only the identity function if n + 1 = m.

Then, we set three criteria for selecting n + 1 extreme points as follows:

i) Local extreme value condition. If E is the absolute value of error at points
in the set of reference points, then we have

min
i

μ(xσ(i))(p(xσ(i)) − f(xσ(i))) ≥ E.

ii) Alternating condition. μ(xσ(i)) · μ(xσ(i+1)) = −1 for i = 1, · · · , n.
iii) Maximum absolute sum condition. Among σ’s satisfying the above two con-

ditions, choose σ maximizing the following value

n+1∑

i=1

|p(xσ(i)) − f(xσ(i))|.

It is noted that the local extreme value condition in i) means in particular that
the extreme points are discarded if the local maximum value of p(x) − f(x) is
negative or the local minimum of p(x) − f(x) is positive.

Note that the first two conditions are also included in the original multi-
interval Remez algorithm. The third condition, the maximum absolute sum con-
dition, is the replacement of the condition that the new set of reference points
includes the global extreme point. The numerical analysis will show that the
third condition makes the proposed improved multi-interval Remez algorithm
converge to the optimal minimax approximate polynomial fast. Although there
are some cases in which the global maximum point is not included in the new set
of reference points chosen by the maximum absolute sum condition, we prove
that the maximum absolute sum condition is enough for the improved multi-
interval Remez algorithm to converge to the minimax approximate polynomial
in the next subsection.

We propose the improved multi-interval Remez algorithm for the continuous
function on the union of finitely many closed intervals as in Algorithm 2. The
local extreme value condition is reflected in Step 3, and the alternating condition
and the maximum absolute sum condition are reflected in Step 4.

3.2 Correctness of Improved Multi-interval Remez Algorithm

We now have to prove that the improved multi-interval Remez algorithm always
converges to the minimax approximate polynomial for a given continuous func-
tion on the union of finite intervals D. This proof is similar to the convergence
proof of the original Remez algorithm on one closed interval [10,27], but there
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Algorithm 2: Improved Multi-interval Remez Algorithm

Input : An input domain D =
⋃t

i=1[ai, bi] ⊂ R, a continuous function f on D,
an approximation parameter δ, and a basis {g1, · · · , gn}

Output: The minimax approximate polynomial p for f

1 Select x1, x2, · · · , xn+1 ∈ D in strictly increasing order.

2 Find the polynomial p(x) with p(xi) − f(xi) = (−1)iE for some E.
3 Gather all extreme and boundary points such that μp,f (x)(p(x) − f(x)) ≥ |E|

into a set B.
4 Find n + 1 extreme points y1 < y2 < · · · < yn+1 with alternating condition and

maximum absolute sum condition in B.
5 εmax ← maxi |p(yi) − f(yi)|
6 εmin ← mini |p(yi) − f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

are a few more general arguments than the original proof. This convergence proof
includes the proof for both the variant of the Remez algorithm and the modified
Remez algorithm. Theorem 3.1 is the exact statement of the correctness of the
improved multi-interval Remez algorithm. We include the sketch of the proof of
Theorem 3.1. The full proof is shown in the full version of the paper [25].

Theorem 3.1. Let {g1, · · · , gn} be a set of functions satisfying the Haar con-
dition on [a, b], D be the multiple sub-intervals of [a, b], and f be a continuous
function on D. Let pk be an approximate polynomial generated in the k-th iter-
ation of the modified Remez algorithm, and p∗ be the optimal minimax approxi-
mate polynomial of f . Then, as k increases, pk converges uniformly to p∗ as in
the following inequality

‖pk − p∗‖∞ ≤ Aθk,

where A is a non-negative constant and 0 < θ < 1.

Proof. (Sketch) Let {x
(0)
1 , · · · , x

(0)
n+1} be the initial set of reference points and

{x
(k)
1 , · · · , x

(k)
n+1} be the new set of reference points chosen at the end of iteration

k. Let rk = pk−f be the error function of pk and r∗ = p∗−f be the error function
of p∗. Since pk is generated such that the absolute values of the error function
rk at the reference points x

(k−1)
i , i = 1, 2, · · · , n + 1 are the same. For k ≥ 1, we

define
αk = min

i
|rk(x(k−1)

i )| = max
i

|rk(x(k−1)
i )|,

βk = ‖rk‖∞,

γk = min
i

|rk(x(k)
i )|.
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Let β∗ = ‖r∗‖∞. Then, we can prove the following facts, which are proven
in the full version of the paper.

i) αk ≤ γk ≤ αk+1 ≤ β∗ ≤ βk for k ≥ 1.
ii) αk+1 is a weighted average of |rk(x(k)

i )| for i = 1, · · · , n + 1. In other words,
for all k ≥ 1 there are weights θ

(k)
i ≥ 0 such that αk+1 =

∑n+1
i=1 θ

(k)
i |rk(x(k)

i )|
where

∑n+1
i=1 θ

(k)
i = 1.

iii) All weights for the weighted average is larger than some positive constant
throughout all iterations. In other words, there is a global constant θ′ > 0
such that θ

(k)
i ≥ θ′.

iv)
∑n+1

i=1 |rk(x(k)
i )| ≥ βk for k ≥ 1.

For convenience, we set θ = 1 − θ′. It is enough to show that βk − β∗ ≤ Cθk for
some positive constant C to prove the theorem, and it is also proven in the full
paper that this is a sufficient condition for the theorem.

From the facts i)–iv), we have

γk+1 − γk ≥ αk+1 − γk

=
n+1∑

i=1

θ
(k)
i (|rk(x(k)

i )| − γk)

≥ (1 − θ)(βk − γk) (1)
≥ (1 − θ)(β∗ − γk). (2)

From (2), we have

β∗ − γk+1 = (β∗ − γk) − (γk+1 − γk)
≤ (β∗ − γk) − (1 − θ)(β∗ − γk)
= θ(β∗ − γk).

Then, we obtain the following inequality for some nonnegative B as

β∗ − γk ≤ Bθk. (3)

From (1) and (3), we have

βk − β∗ ≤ βk − γk

≤ 1
1 − θ

(γk+1 − γk)

≤ 1
1 − θ

(β∗ − γk)

≤ 1
1 − θ

Bθk

≤ Cθk.

�



High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 633

Remark. Note that i)–iv) in the above proof can be satisfied if we include the
global extreme point to the new set of reference points as in the original multi-
interval Remez algorithm, instead of the maximum absolute sum condition in
the improved multi-interval Remez algorithm. Thus, this proof naturally includes
the convergence proof of the original variant of the Remez algorithm.

From the sketch of the proof, we know that the convergence rate of αk deter-
mines the convergence rate of the algorithm. Since αk is always lower than β∗

and non-decreasing sequence, it is desirable to obtain αk as large as possible for
each iteration. The maximum sum condition is more effective than the global
extreme point inclusion condition; The global extreme point inclusion condition
cannot care about the reference points other than the global extreme point, but
the maximum sum condition cares for all the reference points to be large. This
can give some intuition for the effectiveness of the maximum sum condition.

3.3 Efficient Implementation of Improved Multi-interval Remez
Algorithm

In this section, we have to consider the issues in each step of Algorithm 2 and
suggest how to implement Steps 1, 2, 3, and 4 of Algorithm 2 as follows.

Initialization: Depending on the initialization method, there can be a large
difference in the number of iterations required. Therefore, the closer the polyno-
mial produced by initializing the initial reference points to the optimal minimax
approximation polynomial, the fewer iterations are required. We use the node
setting method of Han et al. [22] to effectively set the initial reference points
in the improved multi-interval Remez algorithm. Since Han et al.’s node setting
method was for polynomial interpolation, it chooses the d + 1 number of nodes
when we need the approximate polynomial of degree d. Instead, if we need to
obtain the optimal minimax approximate polynomial of degree d, we choose the
d + 2 number of nodes with Han et al.’s method as if we need the approximate
polynomial of degree d + 1, and uses them for the initial reference points.

Finding Approximate Polynomial: A naive approach is finding coefficients
of the approximate polynomial with power basis at the current reference points
for the continuous function f(x), i.e., we can obtain cj ’s in the following equation

d∑

j=0

cjx
j
i − f(xi) = (−1)iE,

where E is also an unknown variable in this system of linear equations. However,
this method suffers from the precision problem for the coefficients. It is known
that as the degree of the basis of approximate polynomial increases, the coeffi-
cients usually decrease, and we have to set higher precision for the coefficients
of the higher degree basis. Han et al. [22] use the Chebyshev basis for this coeffi-
cient precision problem since the coefficients of a polynomial with the Chebyshev
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basis usually have the almost same order. Thus, we also use the Chebyshev basis
instead of the power basis.

Obtaining Extreme Points: Since we are dealing with a tiny minimax approx-
imation error, we have to obtain the extreme points as precisely as possible.
Otherwise, we cannot reach the extreme point for the minimax approximate
polynomial precisely, and then the minimax approximation error obtained with
this algorithm becomes large. Basically, to obtain the extreme points, we can
scan p(x)−f(x) with a small scan step and obtain the extreme points where the
increase and decrease are exchanged. A small scan step increases the accuracy of
the extreme point but causes a long scan time accordingly. To be more specific,
it takes approximately 2� proportional time to find the extreme points with the
accuracy of �-bit. Therefore, it is necessary to devise a method to obtain high
accuracy extreme points more quickly.

In order to obtain the exact point of the extreme value, we use a method
of finding the points where the increase and decrease are exchanged and then
finding the exact extreme point using a kind of binary search. Let r(x) = p(x)−
f(x) and sc be the scan step. If we can find xi,0 where μ(xi,0)r(xi,0) ≥ |E|, and
(r(xi,0) − r(xi,0 − sc))(r(xi,0 + sc) − r(xi,0)) ≤ 0, we obtain the i-th extreme
points using the following process successively � times,

xi,k = arg max
x∈{xi,k−1−sc/2k,xi,k−1,xi,k−1+sc/2k}

|r(x)|, k = 1, 2, · · · , �,

where the i-th extreme point xi is set to be xi,�. Then, we obtain the extreme
point with O(log(sc) + �)-bit precision. Since sc needs not to be a too small
value, we can find the extreme point with arbitrary precision with linear time
to precision �. In summary, we propose that the �-bit precision of the extreme
points can be obtained by the linear time of � instead of 2�.

This procedure for each interval in the approximation region can be per-
formed independently with each other, and thus it can be performed effectively
with several threads. Since this step is the slowest step among any other steps
in the improved multi-interval Remez algorithm, the parallel processing for this
procedure is desirable to make the whole algorithm much fast.

One can say that the Newton method is more efficient than the binary search
method in finding the extreme points because we may just find the roots of
the derivative of p(x) − f(x). However, the extreme points are very densely
distributed in our situation, and thus the Newton method may not be stably
performed. Even if we miss only one extreme point, the algorithm can act in an
undefined manner. The binary search method is fast enough and finds all of the
extreme points very robustly, and thus we use the binary search instead of the
Newton method.

Obtaining New Reference Points: When we find the new reference points sat-
isfying the local extreme value condition, the alternating condition, and maximum
absolute sum condition, there is a naive approach: among local extreme points
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which satisfy the local extreme value condition, find all d+2 points satisfying the
alternating condition and choose the n+1 points which have the maximum abso-
lute sum value. If we have m local extreme points, we have to investigate

(
m

d+2

)

points, and this value is too large, making this algorithm impractical. Thus, we
have to find a more efficient method than this naive approach.

We propose a very efficient and provable algorithm for finding the new ref-
erence points. The proposed algorithm always gives the d + 2 points satisfying
the three criteria. It can be considered as an elimination method in that we
eliminate some elements for each iteration in the proposed algorithm until we
obtain n+1 points. It is clear that as long as m > d+2, we can find at least one
element which may not be included in the new reference points. This proposed
algorithm is given in Algorithm 3. Algorithm 3 takes O(m log m) running time,
which is a quasi-linear time algorithm.

We note that there are always some points in all situations such that we can
ensure that if we choose a set of d + 2 points including these points satisfying
the alternating condition, there exists the other set of d+2 points without these
points which satisfies the alternating condition and whose absolute sum is larger.
Algorithm 3 finds these points until the number of the remaining points is d+2.
The correctness proof follows the above basic principle, and the full proof can
be found in the full paper [25].

To understand the last part of Algorithm 3, the example can be given that if
the extreme point x2 is removed, T = {|r(x1)|+ |r(x2)|, |r(x2)|+ |r(x3)|, |r(x3)|+
|r(x4)|, · · · } is changed to T = {|r(x1)| + |r(x3)|, |r(x3)| + |r(x4)|, · · · }. It
is assumed that whenever we remove an element in the ordered set B in
Algorithm 3, the remaining points remain sorted and indices are relabeled in
increasing order. When we compare the values to remove some extreme points,
there are the cases that the compared values are equal or the smallest element
is more than one. In such cases, we randomly remove one of these elements.

3.4 Numerical Analysis with Improved Multi-interval Remez
Algorithm

This subsection shows the numerical analysis of the improved multi-interval
Remez algorithm for its efficiency and the optimal minimax approximation error.

Maximum Sum Condition: Table 1 shows the number of iterations required
to converge to the optimal minimax approximate polynomial in the multi-interval
Remez algorithm and the improved multi-interval Remez algorithm. The ini-
tial set of reference points is selected uniformly in each interval since we want
to observe their performances in the worst case. While selecting new reference
points is not unique for each iteration in the multi-interval Remez algorithm,
the improved multi-interval Remez algorithm selects the new reference points
uniquely for each iteration. Thus, when we analyze the multi-interval Remez
algorithm, we randomly select the new reference points for each iteration among
the possible sets of reference points that satisfy the local extreme value condi-
tion and the alternating condition and have the global extreme point. We set the
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Algorithm 3: New Reference

Input : An increasing ordered set of extreme points B = {t1, t2, · · · , tm} with
m ≥ d + 2, and the degree of the approximate polynomial d.

Output: d + 2 points in B satisfying alternating condition and maximum
absolute sum condition.

1 i ← 1
2 while ti is not the last element of B do
3 if μ(ti)μ(ti+1) = 1 then
4 Remove from B one of two points ti, ti+1 having the smaller value

among {|r(ti)|, |r(ti+1)|}.
5 else
6 i ← i + 1
7 end

8 end
9 if |B| > d + 3 then

10 Calculate all |r(ti)| + |r(ti+1)| for i = 1, · · · , |B| − 1 and sort and store these
values into the array T .

11 while |B| > d + 2 do
12 if |B| = d + 3 then
13 Remove from B one of two points t1, t|B| having less value among

{|r(t1)|, |r(t|B|)|}.

14 else if |B| = d + 4 then
15 Insert |r(t1)| + |r(t|B|)| into T and sort T . Remove from B the two

elements having the smallest value in T .
16 else
17 if t1 or t|B| is included in the smallest element in T then
18 Remove from B only t1 or t|B|.
19 else
20 Remove from B the two elements having the smallest element in T .
21 end
22 Remove from T all elements related to the removed extreme points, and

insert into T the sum of absolute error values of the two newly adjacent
extreme points.

23 end

24 end

approximation parameter δ in Algorithm 2 as 2−40 and repeat this simulation
100 times. It shows that the improved multi-interval Remez algorithm is much
better to reduce the iteration number of the Remez algorithm.

Note that the number of iterations depends on the initial set of reference
points. In fact, the uniformly distributed reference points are not desirable as
an initial set of reference points because these reference points are far from the
converged reference points. In fact, the improved multi-interval Remez algorithm
with the initialization method explained in the previous subsection only needs
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4–14 iterations. The overall running time of the improved multi-interval Remez
algorithm with the method in the previous subsection is 1–3 s by PC with AMD
Ryzen Threadripper 1950X 16-core CPU @ 3.40 GHz.

Table 1. Comparison of iteration numbers between the improved multi-interval Remez
algorithm and the multi-interval Remez algorithm for δ = 2−40

Degree of Modified Remez Multi-interval Remez algorithm

approx. poly. algorithm Average Standard deviation Max Min

79 28 60.0 9.38 82 41

99 8 17.1 3.34 28 11

119 26 53.4 8.10 79 37

139 39 60.3 4.71 79 48

159 39 72.1 9.71 98 42

179 48 72.3 9.72 105 53

199 56 80.4 7.28 94 60

Minimax Error: We obtain the optimal minimax approximate polynomials for
the modular reduction function and the scaled cosine function with the scaling
number two. Figure 1(a) shows the minimax approximation error of the approx-
imate polynomial of the modular reduction function derived by the improved
multi-interval Remez algorithm and the minimax approximation error of the
previous homomorphic modular reduction method with scaling number zero in
[22], compared to the modular reduction function. That is, let p1(x) be the
optimal minimax approximate polynomial of the normod function and let q1(x)
be the approximate polynomial obtained by Han et al.’s method with scal-
ing number zero when the half-width of approximation region is 2−10. Then,
maxx∈D |p1(x) − normod(x)| and maxx∈D |q1(x) − normod(x)| are compared in
Fig. 1(a). Note that while the minimax approximation error of the approximate
polynomial of the modular reduction function decreases steadily as the degree of
the approximate polynomial increases, the minimax approximation error of the
previous method does not decrease when the degree is larger than 76 because
of the approximation error between the modular reduction function and the
sine/cosine function.

Figure 1(b) shows the minimax approximation error of the composition of the
approximate polynomial of the scaled cosine function with scaling number two
derived by the improved multi-interval Remez algorithm and two double angle
formulas and the minimax approximation error of method in [22], compared
to the cosine function. That is, let p2(x) be the optimal minimax approximate
polynomial of cos

(
π
2 (x − 1/4)

)
and let q2(x) be the approximate polynomial

obtained by Han et al.’s method with scaling number two when the half-width
of approximation region is 2−3. If r(x) = 2x2 − 1, then maxx∈D |r ◦ r ◦ p2(x) −
sin(2πx)| and maxx∈D |r ◦ r ◦ q2(x) − sin(2πx)| are compared in Fig. 1(b). The
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Fig. 1. Comparison of minimax approximatio error between the previous approxima-
tion method and the improved multi-interval Remez algorithm.

proposed method improves the minimax approximation error by 2.3 bits on
average, and by 5 bits at maximum for the same degree of the approximate
polynomial. This improvement leads to a reduction of 1–2 degrees for the given
minimax approximation error.

In fact, the approximate polynomial for the modular reduction function can-
not yet be used in the bootstrapping of the RNS-CKKS scheme because of the
huge coefficients. It is a very unstable polynomial to evaluate in the RNS-CKKS
scheme in that these large coefficients amplify the approximation error in the
message. It is an interesting open problem to stably use the minimax approxi-
mate polynomial of the modular reduction function in the RNS-CKKS scheme.
Instead of using the unstable minimax approximate polynomial of the modu-
lar reduction function, we approximate the modular reduction function with a
composition of several stable polynomials in Sect. 5.

4 Numerical Analysis of Message Precision
in Bootstrapping with Improved Multi-Interval Remez
Algorithm in SEAL Library

Since the previous researches for the bootstrapping of the RNS-CKKS scheme
did not deal deeply with its message precision, we numerically analyze the mes-
sage precision for the bootstrapping with improved multi-interval Remez algo-
rithm of the RNS-CKKS scheme by changing several parameters: the degree d
of the approximate polynomial of the scaled cosine function, the bit-length dif-
ference δdiff = log Δboot − log Δ between the default scaling factor and the boot-
strapping scaling factor, the bootstrapping scaling factor Δboot, and the number
of the slots. We assume that the range of the real part and the imaginary part
of the messages to be bootstrapped is [−1, 1]. The bootstrapping precision is
measured as − log2(er + ei)/2, where er and ei are the average error of the real
part and the imaginary part of all slots, respectively.

Numerical analysis in this section is conducted in PC with Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20 GHz single-threaded, and the SEAL library version 3.5.9
[29] is used. The double angle formula for the cosine function is assumed to be
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used twice. The improved multi-interval Remez algorithm is used to obtain the
optimal minimax approximate polynomial in all simulations, rather than polyno-
mial approximation methods in the previous papers, [8,11,22]. The polynomial
modulus degree is set to be 216, the secret key Hamming weight is set to be 192,
the value of K is set to be 25, and the maximum modulus for the ciphertext is
set to be 21553, which satisfies the 128-bit security as in [4]. The CoeffToSlot

and SlotToCoeff procedures in [8] with two level consumption are used in all
simulations. The scaling factor management method and the delayed rescaling
method in [24] is applied, and the depth consumption of the polynomial evalua-
tion is optimized by Bossuat et al.’s evaluation method [4]. The input messages
are sampled by the uniform distribution over the bootstrapping range.

Degree of Approximate Polynomial: Table 2 shows the message precision of
the bootstrapping with the improved multi-interval Remez algorithm when the
degree of the approximate polynomial for the scaled cosine function is changed.
The value of log δdiff is 12, log Δboot is 60, and the number of the slots is 28 in this
simulation. The approximation error means the minimax error of the approx-
imate polynomial for the scaled cosine function, and the bootstrapping error
means the average error for each slot when the bootstrapping is performed with
the library. When the scaling factor is changed from the bootstrapping scaling
factor to the default scaling factor, the message and its error are multiplied by
δdiff . We show both the bootstrapping error before changing the scaling factor
and that after changing the scaling factor. Although the approximation error
continues to decrease as the degree of the approximate polynomial increases,
the bootstrapping error does not decrease below a certain value. This bound
is caused by either the difference between the modular reduction function and
the cosine function or the rescaling error, depending on the situation. Thus, we
cannot raise the message precision infinitely by using a high degree approximate
polynomial. The actual lower bound of the bootstrapping error before changing
the scaling factor is denoted by emin in this section, and then the lower bound
of the bootstrapping error after changing the scaling factor is eminδdiff .

Table 2. Message precision of the bootstrapping with the improved multi-interval
Remez algorithm for various degrees of the approximate polynomials

Degree

of approx.

poly.

Approximation error

by the optimal minimax

polynomial

Bootstrapping error Message

precision

(bits)

Before changing

Scaling factor

emin

After changing

Scaling factor

eminδdiff

60 1.77 × 10−11 2.83 × 10−10 1.16 × 10−6 19.7

62 5.26 × 10−13 8.50 × 10−12 3.48 × 10−8 24.8

64 3.07 × 10−14 6.17 × 10−13 2.53 × 10−9 28.6

66 1.56 × 10−15 3.76 × 10−13 1.54 × 10−9 29.2

68 6.59 × 10−17 3.76 × 10−13 1.54 × 10−9 29.2
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Value of δdiff : The bit length difference between the default scaling factor Δ
and the bootstrapping scaling factor Δboot, which will be denoted as δdiff =
log Δboot − log Δ, is closely related to the message precision. The value of δdiff is
usually chosen as 10 bits to lower the difference between the modular reduction
function and the sine/cosine function since the half-width of each interval in the
approximation region is 2−δdiff .

It causes loss to the message precision of the bootstrapping. In the bootstrap-
ping procedure, we need to divide the message by 2δdiff so that it can be included
in the approximation region and multiply 2δdiff at the end of the bootstrapping.
If the precision error until multiplying 2δdiff is e, the final error becomes 2δdiff e. e
cannot be reduced below a certain error value because of the rescaling error dealt
with in the previous subsection. If we denote this lower bound as eb = 2−δb , the
message precision will be δb − δdiff .

Because δdiff has a significant effect on both the message precision of the boot-
strapping and the message precision of the intended operation in the application, it
is desirable to reduce the δdiff to prevent this precision loss. However, the difference
between the sine/cosine function and the modular reduction function is somewhat
dominant, and this difference becomes more dominant as δdiff increases.

Table 3 shows the maximum message precision of the bootstrapping with
improved multi-interval Remez algorithm for various δdiff . The degree of the
approximate polynomials for each case is set to be large enough to reach the
minimum approximate error emin, and the scaling factor and the number of slots
are fixed to be 60 and 28, respectively.

The bootstrapping error after changing the scaling factor is eminδdiff . As δdiff

decreases, emin increases rapidly so that the eminδdiff grows. This is because the dif-
ference between the modular reduction function and the cosine function becomes
larger when the approximation region is enlarged. We can naively expect that the
bootstrapping error can be decreased infinitely when log δdiff is increased, because
|ε− sin ε| = O(ε3). However, if the δdiff is larger than 16, the value of emin does not
decrease, and thus eminδdiff increases. This lower bound of emin is caused by the
rescaling error and the homomorphic linear transform in the bootstrapping. This
bound of emin is related to the bootstrapping scaling factor Δboot and the number
of slots, which will be dealt with in the following paragraphs.

Note that we do not need to use the scaling factor Δboot/δdiff after boot-
strapping. If we use a scaling factor 2−�Δboot/δdiff , the bootstrapping error is
amplified by �-bit and the range of the message becomes [−2�, 2�]. Indeed, there
are many cases that large range of the message is more important than low boot-
strapping error, and thus users can control the scaling factor after bootstrapping
concerning the range and the bootstrapping error they want to use.

Bootstrapping Scaling Factor: Table 4 shows the maximum message preci-
sion for various bootstrapping scaling factors when the number of slots is 28.
The degree of the approximate polynomial and the value of δdiff are set to reach
the lower bound of emin for each bootstrapping scaling factor and to minimize
the value of eminδdiff , which determines the actual message precision of the boot-
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Table 3. Message precision of the bootstrapping with the improved multi-interval
Remez algorithm for various values of log δdiff

log δdiff
Bootstrapping error Message

precision

(bits)

Before changing

scaling factor

emin

After changing

scaling factor

eminδdiff

3 2.55 × 10−5 2.04 × 10−4 12.3

7 7.45 × 10−9 9.53 × 10−7 20.0

10 1.32 × 10−11 1.35 × 10−8 26.1

11 1.64 × 10−12 3.36 × 10−9 28.1

12 3.76 × 10−13 1.54 × 10−9 29.2

13 2.88 × 10−13 2.36 × 10−9 28.7

14 2.77 × 10−13 4.54 × 10−9 27.7

strapping. The second column in Table 4 shows the lower bound of emin, the third
column shows the value of δdiff which minimizes eminδdiff , and the last column
shows the maximum message precision with the corresponding bootstrapping
scaling factor.

The maximum message precision of the bootstrapping in the RNS-CKKS
scheme decreases as the bootstrapping scaling factor decreases. This means that
we have to use as large a bootstrapping scaling factor as possible when we need
precise bootstrapping. Since the bootstrapping scaling factor is related to the
multiplicative depth, this gives the trade-off between the depth and the precision.

Note that the bit-length of scaling factors can be different for each level, and
thus we do not need to use the same scaling factor throughout the bootstrapping.
This fact is used in Bossuat et al.’s work [4].

Table 4. Maximum message precision of the bootstrapping with the improved multi-
interval Remez algorithm for various bootstrapping scaling factors

log Δboot log δdiff
Bootstrapping error Message

precision

(bits)

Before changing

scaling factor

emin

After changing

scaling factor

eminδdiff

50 9 3.30 × 10−10 1.69 × 10−7 22.5

54 10 2.21 × 10−11 2.27 × 10−8 25.4

57 11 2.88 × 10−12 5.90 × 10−9 27.3

60 12 3.71 × 10−13 1.52 × 10−9 29.3

Number of Slots: Table 5 shows the maximum message precision for various
numbers of slots when the bootstrapping scaling factor is 60, the maximum
scaling factor. The degree of the approximate polynomials and δdiff are set to



642 J.-W. Lee et al.

the same as Table 4. The error analysis in [11] shows that the approximation
error in SlotToCoeff step is amplified more as we use more slots. The result
of Table 5 corresponds to this error analysis. This gives the trade-off between the
number of slots and the message precision. Note that all precision is less than
32-bit precision. We will improve these precision results in the next section by
using the composite function method with the inverse sine function.

Note that log δdiff is not high when the number of slots is large, although
this log δdiff value does not ensure the high precision as the difference between
the modular reduction function and the sine/cosine function is rather high. This
phenomenon is because the coefficients of the message polynomial is very small
when the number of slots is large as discussed in [4]. Thus, the approximation
region for the cosine function can be generally much less than 1/δdiff .

Table 5. Maximum message precision of the bootstrapping with improved multi-
interval Remez algorithm for various numbers of slots

log n
Degree

of approx.

poly.

log δdiff
Bootstrapping error Message

precision

(bits)

Remaining

modulus

Running

time (s)Before

changing

scaling

factor

emin

After

changing

scaling

factor

eminδdiff

5 67 14 4.52 × 10−14 7.42 × 10−10 30.3 653 91.9

8 66 12 3.71 × 10−13 1.52 × 10−9 29.3 653 133.6

10 66 11 1.34 × 10−12 2.75 × 10−9 28.4 653 189.3

12 66 9 8.46 × 10−12 4.33 × 10−9 27.8 653 287.0

14 66 8 2.46 × 10−11 6.31 × 10−9 27.2 653 461.0

5 Improvement of Message Precision by Composite
Function Approximation of Modular Reduction
Function

At first glance, it seems to be the best method to use the optimal minimax approx-
imate polynomials for the modular reduction function. However, we can see that
some of the coefficients of the optimal minimax approximate polynomials with
regard to the Chebyshev basis are so large that the amplified approximate errors
by these coefficients totally distort the messages in the ciphertext. On the other
hand, the optimal minimax approximate polynomial coefficients of the scaled
sine/cosine functions with more than one scale number are small enough not to dis-
tort the messages. Thus, the approximation of the modular reduction function by
the sine/cosine function is essential for the correctness of the RNS-CKKS scheme.

When we adhere to the approximation by the scaled sine/cosine function, the
difference of the modular reduction function and the sine/cosine function is a cru-
cial obstacle,which ismentionedas an important openproblem inHanet al.’s paper
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[22].This difference is sharply increasedas the approximation regionof themodular
reduction function becomes longer, and this prevents us from reducing δdiff .

5.1 Composite Function Approximation of Modular Reduction
Function by Inverse Sine Function

We propose a simple and novel method for solving this problem, which is called
the composite function approximation method. In short, we compose the optimal
minimax approximate polynomial of the sine/cosine function and the approxi-
mate polynomial of the inverse sine function. It is easy to check that if we have
two functions f and g for 0 < ε < 1

4 as

f :
∞⋃

k=−∞
[2π(k − ε), 2π(k + ε)] → [− sin 2πε, sin 2πε], f(x) = sinx

g : [− sin 2πε, sin 2πε] → [−2πε, 2πε], g(x) = arcsin x,

then the following equation holds as

x − 2π · round
( x

2π

)
= (g ◦ f)(x), x ∈

∞⋃

k=−∞
[2π(k − ε), 2π(k + ε)].

If we substitute t = x
2π , then we have

normod(t) =
1
2π

(g ◦ f)(2πt), t ∈
∞⋃

k=−∞
[k − ε, k + ε]. (4)

If we approximate both f and g with the optimal minimax approximate poly-
nomials derived by the improved multi-interval Remez algorithm, we can approx-
imate the modular reduction function with any small approximate error by the
composition of f and g. Note that g(x) can be approximated very well with some
approximate polynomials of a small degree since the domain of g(x) is only one
interval. Indeed, the cosine approximation with double-angle formula in [22] can
be regarded as the special case of the proposed composite function approximation,
in that they approximate g(x) with x, that is, the identity function. Note that the
cosine function in [22] is merely a parallel shift of the sine function. Thus, it is said
that they approximate the sine function instead of the cosine function.

The sine function f was evaluated by composing the scaled cosine function
and several double-angle formulas in [22]. If the number of the used double-angle
formula is �, then the functions h1, h2, and h3 are defined as

h1(x) = cos
(

2π

2�

(

x − 1
4

))

, h2(x) = 2x2 − 1, h3(x) =
1
2π

arcsin(x).

Then, the normod function, which is equivalent to the modular reduction func-
tion, can be represented as

normod(x) = h3 ◦ h�
2 ◦ h1(x).
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Thus, if h̃1 is the optimal minimax approximate polynomial of h1 and h̃3 is
that of h3, we can approximate normod function by the composition of several
polynoimals as

normod(x) ≈ h̃3 ◦ h�
2 ◦ h̃1(x).

With this method, we can approximate the modular reduction function by
the composition of several polynomials at arbitrary precision. This enables us to
reduce δdiff to 3 and reach the message precision of δb − δdiff , which is the best
precision mentioned in the previous section. The next section shows that we can
indeed reach this high precision in the SEAL library.

5.2 Simulation Result with SEAL Library

This subsection demonstrates that the composite function method can improve
the message precision in the RNS-CKKS scheme. The simulation environment
is the same as the simulation in Sect. 4.

Table 6 shows that the value of emin with the composite function method
does not change. The degrees of approximate polynomials of the scaled cosine
function and inverse sine function are set to minimize emin, and these degrees are
shown in Table 6. In contrast to the result in Table 3, all of the values of emin in
Table 6 are almost the same as the minimum value of emin in Table 3 regardless
of δdiff . Since emin is fixed with the minimum value, the bootstrapping precision,
which is determined by eminδdiff , is increased as δdiff decreases.

Table 6. Maximum message precision of the bootstrapping with improved multi-
interval Remez algorithm and composite function method for various δdiff

log δdiff
Bootstrapping error Message

precision

(bits)

Before changing

scaling factor

emin

After changing

scaling factor

eminδdiff

3 2.93 × 10−13 2.34 × 10−12 38.6

7 2.90 × 10−13 3.71 × 10−11 34.6

10 2.85 × 10−13 2.92 × 10−10 31.7

11 3.21 × 10−13 6.58 × 10−10 30.5

12 2.88 × 10−13 1.18 × 10−9 29.7

Table 7 shows the maximum precision of the bootstrapping with the improved
multi-interval Remez algorithm and composite function method for various slots.
The δdiff value and log Δdiff value are set to be 3 and 60, respectively. The max-
imum message precision is increased by 5.4–10.2 bits and becomes 32.6–40.5 bit
precision. All of the message precision is larger than the 32-bit precision. Thus,
we make the bootstrapping of the RNS-CKKS scheme more reliable enough to
be used in practical applications.
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The half-width of the approximation region has to be 2−δdiff when the range of
real and imaginary part of the messages is assumed to be the same as that of the
coefficients of the message polynomial. However, when we sample the messages
from the uniform distribution over the range, the coefficients are significantly
reduced so that we may reduce the approximation region as discussed in [4].
ε denotes the half-width of each approximation region we set for each number of
slots, and this value is numerically set to have no effect on the bootstrapping. If
one wants to be conservative on the distribution of the message and the range
of the coefficients, they may set ε to be 2−δdiff .

Table 7. Maximum message precision of the bootstrapping with composite function
method for various number of slots

log n log 1/ε
Deg. of

app. poly.

of cos.

Deg. of

app. poly.

of inv.

sine

Bootstrapping error Message

preci-

sion

(bits)

Rema-

ining

modu-

lus

Run-

ning

time

(s)

Before

changing

scaling

factor

emin

After

changing

scaling

factor

eminδdiff

5 4 71 15 7.93 × 10−14 6.34 × 10−13 40.5 473 94.7

8 6 70 9 2.93 × 10−13 2.34 × 10−12 38.6 473 133.2

10 9 69 7 1.14 × 10−12 9.13 × 10−12 36.7 533 188.9

12 10 69 5 4.84 × 10−12 3.87 × 10−11 34.5 533 273.9

14 10 68 5 1.97 × 10−11 1.53 × 10−10 32.6 533 451.5

Although we add the inverse sine approximation procedure, the overall running
time of the bootstrapping is similar or reduced. Note that the more depth level left
in a ciphertext, the more time homomorphic evaluation takes. Since we consume
more depth level in the inverse sine approximation procedure, the ciphertexts in
the SlotToCoeff procedure have less remaining depth level. Thus, the running
time of the SlotToCoeff procedure in the new bootstrapping is less than that
in the original one. The remaining modulus bit length is reduced because of the
additional depth consumption of the inverse sine approximation procedure. This
additional depth consumption can be seen as a trade-off for the high precision.

6 Conclusion

We proposed the algorithm for obtaining the optimal minimax approximate poly-
nomial for any continuous function on the union of the finite set, including the
scaled cosine function on separate approximation regions. Then we analyzed the
message precision of the bootstrapping with the improved multi-interval Remez
algorithm in RNS-CKKS, and its maximum message precision is measured in the
SEAL library. We proposed the composite function method with inverse sine func-
tion to improve the message precision of the bootstrapping significantly, and thus
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the improved message precision bootstrapping has the precision higher than the
precision of the 32-bit fixed-point number system, even when lots of slots are used.
Thus, the large-depth operations in advanced applications, such as training a con-
volutional neural network for encrypted data, are needed to be implemented by the
RNS-CKKS scheme with the improved message precision bootstrapping.

Acknowledgement. We thank Jean-Philippe Bossuat for his help with optimizing
the approximation for the inverse sine function by observing the distribution of the
message polynomial coefficients.
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Abstract. We present passive attacks against CKKS, the homomorphic
encryption scheme for arithmetic on approximate numbers presented at
Asiacrypt 2017. The attack is both theoretically efficient (running in
expected polynomial time) and very practical, leading to complete key
recovery with high probability and very modest running times. We imple-
mented and tested the attack against major open source homomorphic
encryption libraries, including HEAAN, SEAL, HElib and PALISADE, and
when computing several functions that often arise in applications of the
CKKS scheme to machine learning on encrypted data, like mean and
variance computations, and approximation of logistic and exponential
functions using their Maclaurin series.

The attack shows that the traditional formulation of IND-CPA secu-
rity (or indistinguishability against chosen plaintext attacks) achieved by
CKKS does not adequately capture security against passive adversaries
when applied to approximate encryption schemes, and that a different,
stronger definition is required to evaluate the security of such schemes.

We provide a solid theoretical basis for the security evaluation
of homomorphic encryption on approximate numbers (against passive
attacks) by proposing new definitions, that naturally extend the tradi-
tional notion of IND-CPA security to the approximate computation set-
ting. We propose both indistinguishability-based and simulation-based
variants, as well as restricted versions of the definitions that limit the
order and number of adversarial queries (as may be enforced by some
applications). We prove implications and separations among different
definitional variants, and discuss possible modifications to CKKS that
may serve as a countermeasure to our attacks.

1 Introduction

Fully homomorphic encryption (FHE) schemes allow to perform arbitrary com-
putations on encrypted data (without knowing the decryption key), and, at least
in theory, can be a very powerful tool to address a wide range of security prob-
lems, especially in the area of distributed or outsourced computation. Since the
discovery of Gentry’s bootstrapping technique [23] and the construction of the
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first FHE schemes based on standard lattice assumptions [9–12], improving the
efficiency of these constructions has been one of the main challenges in the area,
both in theory and in practice.

The main source of inefficiency in FHE constructions is the fact that these
cryptosystems (or, more generally, encryption schemes based on lattice prob-
lems [38,45]) are inherently noisy: encrypting (say) an integer message m, and
then applying the raw decryption function produces a perturbed message m+e,
where e is a small error term added for security purposes during the encryption
process. This is not much of a problem when using only encryption and decryp-
tion operations: the error can be easily removed by scaling the message m by
an appropriate factor B > 2|e| (e.g., as already done in [45]), or applying some
other form of error correction to m before encryption. Then, if the raw decryp-
tion function outputs a perturbed value v = m·B+e, the original message m can
be easily recovered by rounding v to the closest multiple of B. However, when
computing on encrypted messages using a homomorphic encryption scheme, the
errors can grow very quickly, making the resulting ciphertext undecryptable, or
requiring such a large value of B (typically exponential or worse in the depth of
the computation) that the cost of encryption becomes prohibitive. The size of the
encryption noise e can be reduced using the bootstrapping technique introduced
by Gentry in [23], thereby allowing to perform arbitrary computations with a
fixed value of B. However, all known bootstrapping methods are very costly,
making them the main efficiency bottleneck for general purpose computation on
encrypted data. So, reducing the growth rate of the noise e during encrypted
computations is of primary importance to either use bootstrapping less often,
or avoid the use of bootstrapping altogether by employing a sufficiently large
(but not too big) scaling factor B. In fact, controlling the error growth during
homomorphic computations has been the main objective of much research work,
starting with [9–12].

Homomorphic encryption for arithmetic on approximate numbers. One of the
most recent and interesting contributions along these lines is the approach sug-
gested in [14,16–18,33] based on the idea that in many practical scenarios, com-
putations are performed on real-world data which is already approximate, and
the result of the computation inherently contains small errors even when carried
out in the clear (without any encryption), due to statistical noise or measure-
ment errors. If the goal of encryption is to secure these approximate real-world
computations, requiring the decryption function to produce exact results may
seem an overkill, and rightly so: if the decryption algorithm simply outputs
m+ e, the application can treat e just like the noise already present in the input
and output of the (unencrypted) computation. Interestingly, [18] shows that
the resulting “approximate encryption” scheme produces results that are almost
as accurate as floating point computations on plaintext data. But the practi-
cal impact on the concrete efficiency of the scheme is substantial: by avoiding
the large scaling factor B, the scheme achieves much slower error growth than
“exact” homomorphic encryption schemes. This allows to perform much deeper
computations before the need to invoke a costly bootstrapping procedure, and,
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in many settings, completely avoid the use of bootstrapping while still delivering
results that are sufficiently accurate for the application.

Not surprisingly, the scheme of [18] and its improved variants [14,16,17,33]
(generically called CKKS after the authors of [18]) have attracted much atten-
tion as a potentially more practical method to apply homomorphic computa-
tion on the encryption of real data. The CKKS paper [18] already provided an
open source implementation in the “Homomorphic Encryption for Arithmetic
on Approximate Numbers” (HEAAN) library [30]. Subsequently, other imple-
mentations of the scheme have been included in pretty much all mainstream
libraries for secure computation on encrypted data, like Microsoft’s “Simple
Encrypted Arithmetic Library” SEAL [15], IBM’s “Homomorphic Encryption”
library HElib [26–28], and NJIT’s lattice cryptography library PALISADE [41].
Some of these libraries are used as a backend for other tools, like Intel’s nGraph-
HE compiler [6,7] for secure machine learning applications, and a wide range
of other applications, including the encrypted computation of logistic regression
[29], security-preserving support vector machines [42], homomorphic training of
logistic regression models [5], homomorphic evaluation of neural networks and
tensor programs [20,21], compiling ngraph programs for deep learning [7], pri-
vate text classification [2], and clustering over encrypted data [19] just to name
a few.

Our contribution. While, as argued in much previous work, approximate compu-
tations have little impact on the correctness of many applications, we bring into
question their impact on security. In particular, we show that the traditional for-
mulation of indistinguishability under chosen plaintext attack (IND-CPA, [4,25],
see Definition 1) is inadequate to capture security against passive adversaries
when applied to approximate encryption schemes. In fact, as our work shows, an
approximate homomorphic encryption scheme can satisfy IND-CPA security and
still be completely insecure from both a theoretical and practical standpoint. In
order to put the study of approximate homomorphic encryption schemes on a
sound theoretical basis, we propose a new, more refined formulation of passive
security which properly captures the capabilities of a passive adversary when
applied to approximate (homomorphic) encryption schemes. We call this notion
IND-CPAD security, or “indistinguishability under chosen plaintext attacks with
decryption oracles”, for reasons that will soon be clear. Our new IND-CPAD

security definition is a conservative extension of IND-CPA, in the sense that (1)
it implies IND-CPA security, and (2) when applied to standard (exact, possibly
homomorphic) encryption schemes, it is perfectly equivalent to IND-CPA. How-
ever, when applied to approximate encryption, it is strictly stronger: there are
approximate encryption schemes that are IND-CPA secure, but not IND-CPAD.

This is not just a theoretical problem: we show (both by means of theoret-
ical analysis and practical experimentation) that the definitional shortcomings
highlighted by our investigation directly affect concrete homomorphic encryp-
tion schemes proposed and implemented in the literature. In particular, we show
that the CKKS FHE scheme for arithmetics on approximate numbers (both as
described in the original paper [18], and as implemented in all major FHE soft-
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ware libraries [30,31,41,47]) is subject to a devastating key recovery attack that
can be carried out by a passive adversary, accessing the encryption function only
through the public interfaces provided by the libraries. We remark that there
is no contradiction between our results and the formal security claims made in
[18]: the CKKS scheme satisfies IND-CPA security under standard assumptions
on the hardness of the (Ring) LWE problem. The problem is with the technical
definition of IND-CPA used in [18], which does not offer any reasonable level of
security against passive adversaries when applied to approximate schemes.

The ideas behind the new IND-CPAD definition and the attacks to CKKS are
easily explained. The traditional formulation of IND-CPA security lets the adver-
sary choose the messages being encrypted, in order to model a-priori knowledge
about the message distribution, or even the possibility of the adversary influenc-
ing the choice of the messages encrypted by honest parties. This is good, but not
enough. When using a homomorphic encryption scheme, a passive adversary may
also choose/know the homomorphic computation being performed1. Finally, a
passive adversary may observe the decrypted result of some homomorphic com-
putations. (See Fig. 1 for an illustration.) So, our IND-CPAD definition provides
the adversary with encryption, evaluation, and a severely restricted decryption
oracle2 that model the input/output interfaces of encryption and evaluation
algorithms and the output interface of the decryption algorithm. We chose the
name IND-CPAD to indicate its close relationship to IND-CPA, but with some
emphasis on the adversarial ability to observe the decryption results3. It is easy
to check (see Lemma 1) that as long as the definition is applied to a standard
(exact) encryption scheme, observing the decryption of the final result of the
homomorphic computation provides no additional power to the adversary: since
the adversary already knows the initial message m and the function f , it can
also compute the final result f(m) on its own. So, there is no need to explicitly
give to the adversary access to a decryption (or homomorphic evaluation) oracle.

However, for approximate encryption schemes, seeing the result of decryption
may provide additional information, which the adversary cannot easily compute
(or simulate) on its own. In particular, this additional data may provide useful
information about other ciphertexts, or even the secret key material. This pos-
sibility is quite real, as we demonstrate it can be used to attack all the major
libraries implementing the CKKS scheme. The attack is very simple. It involves
encrypting a collection of messages, optionally performing some homomorphic
computations on them, and finally observing the decryption of the result. Then,
using only the information available to a passive adversary (i.e., the input values,

1 This computation may or may not be secret, depending on whether the scheme is
“circuit-hiding”.

2 We remark that this use of decryption oracle is only a technical detail of our formu-
lation, and it is quite different from the decryption oracle used for defining active
(chosen ciphertext) attacks: Our decryption oracle only provides access to the plain-
text output interface of a decryption algorithm, and does not allow to apply the
decryption algorithm on adversarially chosen ciphertexts.

3 The name IND-CPA+ was used in earlier versions of this paper. An alternative nota-
tion could be IND-CPA-D.
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Fig. 1. A passive attacker against a homomorphic encryption scheme may choose/know
the plaintext m and the homomorphic computation f (thick blue interfaces), and it can
read from black interfaces to learn the ciphertexts ct, ct′ and the decryption results m′.
The adversary has only passive access to the communication and final output channels,
i.e., it can eavesdrop, but is not allowed to tamper with (or inject) ciphertexts or alter
the final result of the computation. (Color figure online)

encrypted ciphertexts, and final decrypted result of the computation), the attack
attempts to recover the secret key using standard linear algebra or lattice reduc-
tion techniques. We demonstrate the attack on a number of simple, but repre-
sentative computations: the computation of the mean or variance of a large data
set, and the approximate computation of the logistic and exponential functions
using their Maclaurin series. These are all common computations that arise in
the application of CKKS to secure machine learning, the primary target area for
approximate homomorphic encryption. We implemented and tested the attack
against all main open source libraries implementing approximate homomorphic
encryption (HEAAN, RNS-HEAAN, PALISADE, SEAL and HElib), showing that
they are all vulnerable. We stress that this is due not to an implementation
bug in the libraries (which faithfully implement CKKS encryption), but to the
shortcomings of the theoretical security definition originally used to evaluate
the CKKS scheme. Still, our key recovery attack works very well both in theory
and in practice, provably running in expected polynomial time and with success
probability 1, and recovering the key in practice, even for large values of the
security parameter, in just a few seconds. So, the attack may pose a real threat
to applications using the libraries. It immediately follows from the attack that
the CKKS scheme is not IND-CPAD secure. In practice, such an attack can be
carried out in systems where the decryption results are made publicly available,
or, more generally, they may be disclosed to selected parties. As an example,
consider privacy-preserving data sharing and aggregation services for medical
data [44]. In this setting, individual hospitals encrypt their own sensitive medi-
cal records using a public key approximate homomorphic encryption scheme and
upload the ciphertexts to a cloud computing service; the cloud service accepts
queries from an investigator, perhaps from one of the hospitals, and homomor-
phically computes the requested statistics. Finally, it decrypts or re-encrypts the
final computation result (possibly with the help of a third party that holds the
secret decryption key) and sends it to the investigator. We may assume that
the service checks that the query issued by the investigator is legitimate, and
does not reveal sensitive information about individual patient records. Still, our
attack shows that the result of the query may be enough to recover in full the
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secret decryption key, exposing the entire medical record database of all partic-
ipating hospitals. Similar attacks are also feasible in homomorphic encryption
based vehicular ad-hoc networks [48] where homomorphically evaluated data
analytics (both ciphertexts and decrypted results) can be accessed by a passive
attacker.

On the theoretical side, we consider several restricted versions of IND-CPAD,
showing implications and separations among them. For example, one may con-
sider adversaries that perform only a bounded number k of decryption queries,
as may be enforced by an application that chooses a new key every k homomor-
phic computations. (IND-CPA may be considered a special case where k = 0.)
Interestingly, we show that for every k there are approximate encryption schemes
that are secure up to k decryption queries, but completely insecure for k + 1.

Relations to other attacks to homomorphic encryption schemes. It is well known
that homomorphic encryption schemes cannot be secure under adaptive chosen
ciphertext attacks (CCA2). In [35], Li, Galbraith, and Ma presented adaptive
key recovery attacks against the GSW homomorphic encryption scheme as well
as modifications to GSW to prevent such attacks. We remark that both attacks
considered in [35] are active attacks that require calling a decryption oracle
on ciphertexts formed by the adversary. So these attacks are outside of the
IND-CPAD security model that we consider in this paper.

Organization. The rest of the paper is organized as follows. In Sect. 2 we pro-
vide some mathematical background about the LWE problem and lattice-based
(homomorphic) encryption. In Sect. 3 we present our IND-CPAD security def-
inition, and initiate its theoretical study, proving implication and separation
results between different variants of the definition. In Sect. 4 we give a detailed
description and rigorous analysis of our attack. Practical experiments using our
implementation of the attack are described in Sect. 5. Section 6 concludes with
some general remarks and a discussion of possible countermeasures to our attack.

2 Preliminaries

Notation. We use the notation a = (a0, . . . , an−1) for column vectors, and at =
[a0, . . . , an−1] for rows. Vector entries are indexed starting from 0, and denoted
by ai or a[i]. The dot product between two vectors (with entries in a ring) is
written 〈a,b〉 or at · b. Scalar functions f(a) = (f(a0), . . . , f(an−1)) are applied
to vectors componentwise.

For any finite set A, we write x ← A for the operation of selecting x uniformly
at random from A. More generally, if χ is a probability distribution, x ← χ selects
x according to χ.

Standard cryptographic definitions. In all our definitions, we denote the security
parameter by κ. A function f in κ is negligible if f(κ) = κ−ω(1). We use negl(κ)
to denote an arbitrary negligible function in κ.
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We recall the standard notions of public-key encryption scheme and homo-
morphic encryption scheme. A public-key encryption scheme with a message
space M is a tuple (KeyGen,Enc,Dec) consisting of three algorithms:

– a randomized key generation algorithm KeyGen that takes the security param-
eter 1κ and outputs a secret key sk and a public key pk,

– a randomized encryption algorithm Enc that takes pk and a message m ∈ M
and outputs a ciphertext ct, and

– a deterministic decryption algorithm Dec that takes sk and a ciphertext ct
and outputs a message m′ or a special symbol ⊥ indicating decryption failure.

We usually parameterize Enc with pk and write Encpk(·) to denote the function
Enc(pk, ·), and similarly we write Decsk(·) for the function Dec(sk, ·). A public-
key encryption scheme is correct if for all m ∈ M and keys (sk, pk) in the support
of KeyGen(1κ), Pr{Decsk(Encpk(m)) = m} = 1 − negl(κ), where the probability
is over the randomness of Enc.

A public-key homomorphic encryption scheme is a public-key encryption
scheme with an additional, possibly randomized, (homomorphic) evaluation
algorithm Eval, and such that KeyGen outputs an additional evaluation key ek
besides sk and pk. The algorithm Eval takes ek, a circuit g : Ml → M for
some l ≥ 1, and a sequence of l ciphertexts cti, and it outputs a ciphertext ct′.
The correctness of a homomorphic encryption scheme requires that, for all keys
(sk, pk, ek) in the support of KeyGen(1κ), for all circuits g : Ml → M and for all
mi ∈ M, 1 ≤ i ≤ l, it holds that

Pr
{
cti ← Encpk(mi) for 1 ≤ i ≤ l,
Decsk(Evalek(g, (cti)l

i=1)) = g((mi)l
i=1)

}
= 1 − negl(κ),

where the probability is over the randomness of Enc and Eval. We also require
that the complexity of Dec is independent (or a slow growing function) of the
size of the circuit g.

In terms of security, we recall the standard security notion of indistinguisha-
bility under chosen plaintext attack, or IND-CPA, for public-key (homomorphic)
encryption schemes.

Definition 1 (IND-CPA Security). Let (KeyGen,Enc,Dec,Eval) be a homo-
morphic encryption scheme. We define an experiment Exprcpab [A] parameterized
by a bit b ∈ {0, 1} and an efficient adversary A:

Exprcpab [A](1κ) : (sk, pk, ek) ← KeyGen(1κ)
(x0, x1) ← A(1κ, pk, ek)
ct ← Encpk(xb)
b′ ← A(ct)
return(b′)

We say that the scheme is IND-CPA secure if for any efficient adversary A,
it holds that

Advcpa[A](κ) = |Pr{Exprcpa0 [A](1κ) = 1} − Pr{Exprcpa1 [A](1κ) = 1}| = negl(κ).
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Lattices and rings. A lattice is a (typically full rank) discrete subgroup of Rn.
Lattices L ⊂ R

n can be represented by a basis, i.e., a matrix B ∈ R
n×k with

linearly independent columns such that L = BZ
k. The length of the shortest

nonzero vector in a lattice L is denoted by λ(L). The Shortest Vector Problem,
given a lattice L, asks to find a lattice vector of length λ(L). The Approximate
SVP relaxes this condition to finding a nonzero lattice vector of length at most
γ·λ(L), where the approximation factor γ ≥ 1 may be a function of the dimension
n or other lattice parameters.

We write Z,Q,R,C for the sets of integer, rational, real and complex num-
bers. For any positive q > 0, we write Rq = R/(qZ) for the set of reals modulo
q (as a quotient of additive groups), uniquely represented as values in the cen-
tered interval [−q/2, q/2). Similarly, for any positive integer q > 0, we write
Zq = Z/(qZ) for the ring of integers modulo q, uniquely represented as values in
[−q/2, q/2) ∩ Z =

{− ⌈
q−1
2

⌉
, . . . ,

⌊
q−1
2

⌋}
.

Let N = 2k be a power of 2, ζ2N = eπı/N the principal (2N)th complex root
of unity. We write K(2N) = Q[X]/(XN +1) for the cyclotomic field of order 2N ,
and O(2N) = Z[X]/(XN +1) for its ring of integers. The primitive roots of unity
ζ2j+1
2N , for j = 0, . . . , N − 1, are precisely the roots of the cyclotomic polynomial

XN + 1. We omit the index 2N and simply write K,O and ζ when the value
of N is clear from the context. Elements of K (and O) are uniquely represented
as polynomials a(X) = a0 + a1 · X + . . . + aN−1 · XN−1 of degree less than N ,
and identified with their vectors of coefficients a = (a0, . . . , aN−1) ∈ Q

N (and
Z

N ). For any positive integer q > 0, we write Kq = K/(qK) ≡ Q
N
q for the set

of vectors/polynomials with entries/coefficients reduced modulo q. Similarly for
O ≡ Z

N and Oq ≡ Z
N
q .

LWE and homomorphic encryption. The (Ring) Learning With Errors (LWE)
distribution RLWEs(N, q, χ) with secret s ∈ O(2N) and error distribution χ (over
O(2N)), produces pairs (a, b) ∈ O(2N)

q where a ← O(2N)
q is chosen uniformly at

random, and b = s ·a+e for e ← χ. The (decisional) Ring LWE assumption over
O(2N) with error distribution χ and secret distribution χ′ and m samples, states
that when s ← χ′, the product distribution RLWEs(N, q, χ)m is pseudorandom,
i.e., it is computationally indistinguishable from the uniform distribution over
(Oq × Oq)m.

For appropriate choices of χ, χ′ and q, the Ring LWE problem is known to be
computationally hard, based on (by now) standard assumptions on the worst-
case complexity of computing approximately shortest vectors in ideal lattices.
Theoretical work supports setting the error distribution χ to a discrete Gaussian
of standard deviation O(

√
N), and setting the secret distribution χ′ to either

the uniform distribution over Oq, or the same distribution as the errors χ. For
the sake of efficiency, the Ring LWE problem is often employed by homomorphic
encryption schemes also for narrower secret and error distributions, that lack the
same theoretical justifications, but for which no efficient attack is known, e.g.,
distributions over vectors with binary {0, 1} or ternary {−1, 0, 1} coefficients.
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The raw (Ring) LWE encryption scheme works as follows:

– The key generation algorithm picks s ← χ′, e ← χ, a ← Oq, and outputs
secret key sk = (−s, 1) ∈ O2

q and public key pk = (a, b) ∈ O2
q where b = s·a+e

follows the LWE distribution.
– The encryption algorithm, Encpk(m) picks random u ← {0, 1}N and e =

(e0, e1) ← χ2, and outputs ct = u · pk + e + (0,m) ∈ O2
q

– The raw decryption algorithm Decsk(ct) outputs 〈sk, ct〉 mod q.

The secret and public keys satisfy the property that 〈sk, pk〉 = e equals the short
error vector chosen during key generation. We qualified this scheme and the
decryption algorithm as “raw” because applying the encryption algorithm, and
subsequently decrypting the result (with a matching pair of public and secret
keys) does not recover the original message, but only a value close to it. In fact,
for any (sk, pk) produced by the key generation algorithm, we have

Decsk(Encpk(m)) = u · 〈sk, pk〉 + 〈sk, e〉 + m = m + (ue − se0 + e1) (mod q)

where the perturbation ẽ = (ue − se0 + e1) is small because it is a combination
of short vectors u, e, s, e0, e1. (The size of these vectors is best quantified with
respect to the message encoding used by the application, and it is discussed
below.) In order to obtain a proper encryption scheme that meets the correct-
ness requirement, the message m must be preprocessed, by encoding it with
an appropriate error correcting code, which allows to recover from the error ẽ.
For example, if m has binary entries, one can multiply m by a scaling factor
�q/2�, and then round (each coefficient of) the output of the raw decryption
algorithm to the closest multiple of �q/2�. For the sake of improving the effi-
ciency of homomorphic computations, the CKKS encryption scheme [18] gets
away without applying error correction, and directly using the raw decryption
algorithm to produce “approximate” decryptions of the ciphertexts. So, in the
following we focus on the “raw” LWE scheme, and postpone the discussion of
error correction to later.

By linearity of Enc, LWE encryption directly supports (bounded) addition
of ciphertexts: if ct0 = (a0, b0) and ct1 = (a1, b1) are encryptions of m0 and m1

with noise e0 and e1 respectively, then the vector sum

ct0 + ct1 = (a0 + a1, b0 + b1) mod q

is an encryption of m0 + m1 with noise e0 + e1.
There are several ways to perform homomorphic multiplication on LWE

ciphertexts. As in [18], here we focus on the “tensoring” technique of [10] imple-
mented using the “raising the modulus” multiplication method of [24]. This
multiplication method uses an appropriate multiple pq of the ciphertext modu-
lus q, and requires an “evaluation key”, produced during key generation, which
is computed and used as follows:

– ek = (a, b) ∈ O2
pq where a ← Opq, e ← χe and b = as + e + ps2 (mod pq).

– Using ek, the product of two ciphertexts ct0 = (a0, b0), ct1 = (a1, b1) is com-
puted as

ct0 × ct1 = (a0b1 + a1b0, b0b1) + �(a0a1 mod q) · ek/p� .
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In order to approximately evaluate deep arithmetic circuits, the CKKS
scheme combines these addition and multiplication procedures with a rescaling
operation RS, implemented using the key switching technique of [10]. Rescaling
requires the use of a sequence of moduli ql, which for simplicity we assume to
be of the form ql = q0 · pl for some base p, e.g., p = 2. Ciphertexts may live at
different levels, with level l ciphertexts encrypted using modulus ql. The key gen-
eration algorithm takes as auxiliary input the highest number of desired levels L,
and produces public and evaluation keys with respect to the largest modulus qL.
CKKS directly supports addition and multiplication only between ciphertexts
at the same level. Rescaling is used to map ciphertexts ct ∈ O2

ql+l′ to a lower
level l with the operation

RSl′(ct) =
⌊
ct/pl′

⌉
∈ O2

ql

where the division and rounding are performed componentwise.

The CKKS message encoding. The CKKS scheme considers a vector of complex
numbers (or Gaussian integers) ã as the set of evaluation points ãj = a(xj) of a
real (in fact, integer) polynomial a(X) ∈ Z[X]. This allows to perform pointwise
addition and multiplication of vectors (SIMD style) by means of addition and
multiplication of polynomials as (a(X) ◦ b(X))(xj) = a(xj) ◦ b(xj) for any xj ,
where ◦ ∈ {+,×}. The evaluation points are chosen among the primitive (2N)th
roots of unity ζ2j+1, so that the cyclotomic polynomial XN +1 evaluates to zero
at all those points, and reduction modulo XN + 1 does not affect the value
of a(xj). This allows to operate on the polynomials modulo XN + 1, i.e., as
elements of the cyclotomic ring O. Since a(X) has real coefficients and primitive
roots come in complex conjugate pairs ζ2j+1, ζ2(N−j)−1, the value of a(X) can be
freely chosen only for half of the roots, with the value of a(ζ2(N−j)−1)) uniquely
determined as the complex conjugate of a(ζ2j+1). So, a(X) is used to represent a
vector ã of N/2 complex values. Setting the evaluation points to xj = ζ4j+1 (for
j = 0, . . . , N/2 − 1), and using the fact that these points are primitive roots of
unity, interpolation and evaluation can be efficiently computed (in O(N log N)
time) using the Fast Fourier Transform.

Let ϕ : O → C
N/2 be the transformation mapping a(X) ∈ O ≡ Z

N to
ϕ(a) = ã = (a(ζ4j+1))N/2−1

j=0 ∈ C
N/2, and its extension ϕ : S → C

N/2 to arbi-
trary real polynomials, where S = R[X]/(XN + 1) ≡ R

N . We can identify
any polynomial a ∈ S by its coefficient vector (a0, a1, . . . , aN−1), and we set
‖a‖2 = ‖(a0, a1, . . . , aN−1)‖2. Similarly we can define ‖a‖1 and ‖a‖∞ as the cor-
responding norms on the coefficient vector. So the transformation ϕ : S → C

N/2

is a scaled isometry, satisfying ‖ϕ(a)‖2 =
√

N‖a‖2 and ‖ϕ(a)‖∞ ≤ ‖a‖1.
In what follows, we assume, as a message space, the set of complex vectors
ã ∈ ϕ(O) ⊂ C

N/2 which are the evaluation of polynomials a(X) ∈ O with inte-
ger coefficients much smaller than the ciphertext modulus q. Arbitrary vectors
z ∈ C

N/2 can be encrypted (approximately) by taking the inverse transform ϕ−1

on a scaled vector Δ·z, for some scaling factor Δ ∈ R, such that ‖ϕ−1(Δ·z)‖ � q
and rounding ϕ−1(Δ · z) to a nearby point of the form ϕ(a) for some a(X) ∈ O.
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The complete message encoding and decoding functions in CKKS are defined
as

– Encode(z ∈ C
N/2;Δ) =

⌊
Δ · ϕ−1(z)

⌉ ∈ O.
– Decode(a ∈ O;Δ) = ϕ(Δ−1 · a) ∈ C

N/2.

Once encoded, the scaling factor Δ is usually implicitly tied to a plaintext poly-
nomial, so we sometimes omit it when its value is clear from the context.

Since these encoding and decoding operations can be performed without any
knowledge of the secret or public keys, sometimes we assume they are performed
at the outset, at the application level, before invoking the encryption or decryp-
tion algorithms. More specifically, we may assume messages ϕ(Δ−1 · m) ∈ C

N/2

are provided to the encryption algorithm by specifying the integer polynomial
m ∈ O, and the decryption algorithm returns a message m̃′ = Decode(m′;Δ)
represented as the underlying polynomial m′ ∈ O that is an approximation of
m. All this is only for the sake of theoretical analysis, and all concrete imple-
mentations (of the scheme and our attacks to it) include encoding and decoding
procedures as part of the encryption and decryption algorithms. Message encod-
ing can be quite relevant to quantify the amount of noise in a ciphertext. We
say that a ciphertext ct approximately encrypts message m̃ with scaling factor
Δ and noise ẽ if Decode(Decsk(ct);Δ) = m̃ + ẽ.

3 Security Notions for Approximate Encryption

In this section we present general definitions in the public-key setting that accu-
rately capture passive attacks against a (possibly approximate, homomorphic)
encryption scheme. We recall that in a passive attack the adversary may control
which messages get encrypted, what homomorphic computations are performed
on them, and may observe all ciphertexts produced in the process, as well as the
decrypted result of the computations (as illustrated in Fig. 1).

We present an indistinguishability-based definition (similar in spirit to the
standard IND-CPA notion described in Definition 1). A simulation-based notion
is presented in the full version of this paper. Then, we explore restricted and
extended variants of these basic definitions.

3.1 Indistinguishability-Based Definition

Our first definition is indistinguishability-based: the adversary chooses a number
of pairs of plaintext messages, and its goal is to determine whether the cipher-
texts it receives are encryptions of the first or the second plaintext in the pairs.
In contrast to Definition 1, our new definition allows an adversary to make mul-
tiple challenge queries (m0,m1), rather than a single one. Our adversary can also
issue homomorphic evaluation and decryption queries. We now give the formal
definition. For simplicity, and as common in homomorphic encryption schemes,
we assume all messages belong to a fixed message space M. In particular, all
messages have (or can be padded to) the same length. We refer to our definition
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as IND-CPAD, as it includes IND-CPA (see Definition 1) as a special case, where
the adversary makes only one encryption query, and no homomorphic evaluation
or decryption queries, whereas our definition explicitly provides the adversary
with a restricted decryption oracle which allows to observe decryption results of
honestly generated ciphertexts.

Definition 2 (IND-CPAD Security). Let E = (KeyGen,Enc,Dec,Eval) be a
public-key homomorphic (possibly approximate) encryption scheme with plain-
text space M and ciphertext space C. We define an experiment Exprindcpa

D

b [A],
parameterized by a bit b ∈ {0, 1} and involving an efficient adversary A that is
given access to the following oracles, sharing a common state S ∈ (M×M×C)∗

consisting of a sequence of message-message-ciphertext triplets:

– An encryption oracle Epk(m0,m1) that, given a pair of plaintext messages
m0,m1, computes c ← Encpk(mb), extends the state

S := [S; (m0,m1, c)]

with one more triplet, and returns the ciphertext c to the adversary.
– An evaluation oracle Hek(g, J) that, given a function g : Mk → M and a

sequence of indices J = (j1, . . . , jk) ∈ {1, . . . , |S|}k, computes the ciphertext
c ← Evalpk(g, S[j1].c, . . . , S[jk].c), extends the state

S := [S; (g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c)]

with one more triplet, and returns the ciphertext c to the adversary. Here
and below |S| denotes the number of triplets in the sequence S, and S[j].m0,
S[j].m1 and S[j].c denote the three components of the jth element of S.

– A decryption oracle Dsk(j) that, given an index j ≤ |S|, checks whether
S[j].m0 = S[j].m1, and, if so, returns Decsk(S[j].c) to the adversary. (If the
check fails, a special error symbol ⊥ is returned.)

The experiment is defined as

Exprindcpa
D

b [A](1κ) : (sk, pk, ek) ← KeyGen(1κ)
S := [ ]

b′ ← AEpk,Hek,Dsk(1κ, pk, ek)
return(b′)

The advantage of adversary A against the IND-CPAD security of the scheme is

AdvindcpaD [A](κ) = |Pr{ExprindcpaD0 [A](1κ) = 1} − Pr{ExprindcpaD1 [A](1κ) = 1}|,

where the probability is over the randomness of A and the experiment. The
scheme E is IND-CPAD-secure if for any efficient (probabilistic polynomial time)
A, the advantage AdvindcpaD [A] is negligible in κ.
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As a standard convention, if at any point in an experiment the adversary
makes an invalid query (e.g., a circuit g not supported by the scheme, or indices
out of range), the oracle simply returns an error symbol ⊥.

We remark that, while the adversary in Definition 2 is given access to a
decryption oracle, this should not be confused with indistinguishability under
a chosen ciphertext attack (IND-CCA), which models active adversaries with
the capability of tampering with (or injecting) arbitrary ciphertexts. Defini-
tion 2 only allows for decryption queries on valid ciphertexts that have been
honestly computed using the correct encryption and homomorphic evaluation
algorithms (modeled by the oracles E and H). Furthermore, the requirement
that S[j].m0 = S[j].m1 is to eliminate trivial attacks where the adversary can
distinguish between two computations that lead to different results when com-
puted on exact values.

Exact encryption schemes can be seen as a special case of approximate
encryption, with the added correctness requirement. So, Definition 2 can be
applied to exact as well as approximate encryption schemes. As a sanity check,
we compare our new definition with the traditional formulation of IND-CPA secu-
rity (Definition 1) modeling passive attacks against exact encryption schemes.
Perhaps not surprisingly, for the case of exact encryption schemes, our new secu-
rity definition coincides with the standard notion of IND-CPA security.

Lemma 1. Any exact homomorphic encryption scheme E is IND-CPA secure if
and only if it is IND-CPAD secure.

Proof. It is easy to see that IND-CPAD security implies IND-CPA security, as
an adversary making only one E query but no other queries in the IND-CPAD

experiment is also an IND-CPA adversary. So we consider the reverse direction.
Assume E is IND-CPA secure. Let A be any adversary breaking the IND-CPAD

security of E , and assume A makes at most l queries in total to E and H. We
build adversaries B(i), for 0 ≤ i < l, to break the IND-CPA security of E .

B(i) takes input 1κ, pk, ek, and it then runs A(1κ, pk, ek). It maintains a state
S ∈ (M × M × C)∗ just like Exprindcpa

D
, and it answers oracle queries made by

A as follows:

– For each query (m0,m1) to E, if |S| < i, then let c ← Encpk(m1); if |S| > i,
then let c ← Encpk(m0); and if |S| = i, B(i) sends (m0,m1) to Exprcpab and
receives c. The state S is extended by one more triplet (m0,m1, c), and c is
returned to A.

– For each query (g, J) to H, where g : Mk → M and J = (j1, . . . , jk), let
c ← Evalek(g, S[j1].c, . . . , S[jk].c), extend S by one more triplet

(g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c),

and return c to A.
– For each query j to D, if j ≤ |S| and S[j].m0 = S[j].m1, then return S[j].m0

to A; otherwise return an error symbol ⊥.
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Finally, when A halts with a bit b′, B(i) outputs this bit.
Since B(i) does not depend on the secret key sk to answer the D queries, it is

a valid adversary in the IND-CPA experiment. Now, let H(i) = Exprcpa0 [B(i)] for
0 ≤ i < l, and let H(l) = Exprcpa1 [B(l−1)]. For 1 ≤ i < l, note that H(i) is exactly
the same distribution as Exprcpa1 [B(i−1)]. Furthermore, by the correctness of exact
homomorphic encryption schemes, the D responses from B(i) to A are indistin-
guishable from those in the IND-CPAD experiment; so H(0) and Exprindcpa

D

0 [A]
are indistinguishable, and the same holds true for H(l) and Exprindcpa

D

1 [A]. So
Advindcpa

D
[A] ≤ ∑

0≤i<l Adv
cpa[B(i)] + negl(κ), which is negligible since E is

IND-CPA secure. ��
Notice that the above lemma makes essential use of the correctness of exact

encryption schemes, and the proof does not extend to approximate encryption
schemes. In fact, for approximate encryption schemes, the result of decryption
is not a simple function of the encrypted messages (and the computations per-
formed on them), and may potentially depend (in an indirect, unspecified way)
on the scheme’s secret key and encryption randomness. So the information pro-
vided by decryption queries is not easily computed by the adversary on its own,
and, at least in principle, IND-CPAD may be a stronger security notion than
IND-CPA when applied to approximate encryption schemes. We will make this
intuition clear in the following sections, proving formal separation results, and
providing concrete attacks to actual approximate encryption schemes.

Also note that the above definition does not guarantee circuit privacy in the
homomorphically evaluated ciphertexts, as the circuit to be evaluated in a query
to oracle H does not depend on the bit b of the IND-CPAD experiment. In the full
version we extend our definitions with circuit privacy. Here we focus on the basic
definition (without circuit privacy) which is the most common in cryptography.

3.2 Restricted Security Notions and Separations Between Them

We have observed that, for exact encryption schemes, IND-CPAD security is
equivalent to the traditional IND-CPA security. (See Lemma 1.) We now show
that IND-CPAD is strictly stronger than IND-CPA, i.e., there are approximate
encryption schemes that are provably IND-CPA secure (under standard com-
plexity assumptions) but are not IND-CPAD secure. In order to get a more
refined understanding of the gap between these notions, we introduce a natu-
ral parameterization of IND-CPAD security, that smoothly interpolates between
IND-CPA and IND-CPAD. Then, we define a number of restricted notions of secu-
rity, and show separations between them, showing that there is an infinite chain
of (strictly) increasingly stronger definitions, ranging from IND-CPA all the way
to IND-CPAD.

Restricting the numbers of queries. We parameterize the definition by imposing
a bound on the number of queries that may be asked by the adversary.
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Definition 3 ((q, 	)-IND-CPAD Security). For any two functions q(κ) and
	(κ) of the security parameter κ, we say that a homomorphic encryption scheme
is (q, 	)-IND-CPAD secure if it satisfies Definition 2 for all adversaries A that
make at most 	(κ) queries to oracles E,H, and at most q(κ) queries to oracle D.

We combined the encryption (E) and evaluation (H) queries into a single
bound 	(κ) for simplicity, and because both types of queries produce ciphertexts.
The bound 	 could be significant for approximate encryption schemes as security
with respect 	 queries to E and H does not appear to imply security with respect
to 	+1 such queries. This is in contrast to proper (exact) encryption schemes in
the public-key setting where one-message security implies multi-message security.
It remains an interesting open question to find out the relationship between
(q, 	)-IND-CPAD and (q, 	 + 1)-IND-CPAD securities.

The definition is easily extended to more general formulations, but we will
be primarily interested in the bound q on the number of decryption queries,
which are the distinguishing feature of approximate encryption schemes. When
	 is an arbitrary polynomial, and only the number of decryption queries q(κ) is
restricted, we say that a scheme is q-IND-CPAD secure.

Now, we can think of IND-CPA security as a special case of (q, 	)-IND-CPAD,
for q = 0 and 	 = 1, as the only query to E/H must be an encryption query.
(Oracle E must be called at least once before one can use H to homomorphi-
cally evaluate a function on a ciphertext.) So, bounding the number of queries
allows to smoothly transition from the traditional IND-CPA definition (i.e., (0, 1)-
IND-CPAD security), to our IND-CPAD (i.e., (poly, poly)-IND-CPAD security).

Naturally, for proper (exact) encryption schemes, all these definitions are
equivalent, and it is only in the approximate encryption setting that the defini-
tions can be separated.

In the following proposition we show that there exists some scheme that is
secure for up to some fixed number q of decryption queries but insecure for just
q+1 decryption queries. We remark that the encryption scheme described in the
proof is presented for the sole purpose of separating the two definitions. More
natural examples that separate IND-CPA and IND-CPAD will be described in
Sect. 4, where we present attacks to approximate encryption schemes from the
literature.

Proposition 1. Assume there exist a pseudorandom function and an IND-CPA-
secure exact homomorphic encryption scheme. Then, for any fixed q ≥ 2, there
exists a homomorphic approximate encryption scheme that is (q, 	)-IND-CPAD-
secure but not (q + 1, 	)-IND-CPAD-secure.

Proof (sketch). Let E = (KeyGen,Enc,Dec,Eval) be an exact, IND-CPA-secure,
HE scheme. The main idea is to construct a new scheme E ′ that consists of
the same encryption and evaluation algorithms, but with new key generation
KeyGen′ and decryption algorithms Dec′. KeyGen′(1κ) samples keys (sk, pk, ek) ←
KeyGen(1κ) as in E , and then it samples a PRF key K to form the new secret key
sk′ = (sk,K), while keeping the public key pk and the evaluation key ek the same.
Given a ciphertext c, Dec′

sk′ first runs Decsk(c) to obtain the exact plaintext m,
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and then it adds to m a secret share (encoded as a small number) of sk produced
by the PRF on m. Specifically, if m (mod q +1) ≡ 0, then the share is sk⊕ r for
r = ⊕q

i=1PRFK(i); otherwise, the share is PRFK(m mod (q + 1)). Here a PRF is
used to keep Dec′ deterministic. Since E is IND-CPA secure, and since any q or
less shares of sk are pseudorandom, our new approximate encryption scheme is
(q, 	)-IND-CPAD-secure. However, an adversary can fully recover sk using q + 1
decryption queries, breaking (q + 1, 	)-IND-CPAD security of the new scheme. ��
Restricting the query ordering. In the definition of IND-CPAD security, we did not
state any restriction on the relative order of queries made by the adversary. In
particular, queries can be made in many rounds, and a later query can depend on
the responses from earlier queries. Such notion is called security with adaptively
chosen queries, or simply adaptive security.

There are several other natural query orderings that can be imposed on the
adversary, and enforced by an application. For example, it is often the case
that inputs are encrypted and collected in advance, before any homomorphic
evaluation or decryption operation takes place. As an extreme situation, one
can consider a fully non-adaptive setting, where the adversary specifies all its
queries in advance after seeing the public/evaluation key. We call this the (fully)
non-adaptive model. Non-adaptive security is much easier to formulate, and we
fully spell out its definition now.

Definition 4 (Non-Adaptive (q, 	)-IND-CPAD Security). Let E be a homo-
morphic (possibly approximate) encryption scheme E = (KeyGen,Enc,Dec,Eval).
Let q and 	 be two polynomial bounds in κ. We say that E is non-adaptively (q, 	)-
IND-CPAD-secure if for all efficient adversary A = (A0,A1) consisting of two
steps such that

({m
(i)
0 }k

i=1, {m
(i)
1 }k

i=1, {(gi, Ji)}�
i=k+1, {ji}q

i=1, st) ← A0(1κ, pk, ek),

where (sk, pk, ek) ← KeyGen(1κ), m
(i)
0 = gi(m

(Ji)
0 ), m

(i)
1 = gi(m

(Ji)
1 ) for i =

k+1, . . . , 	, and all gi are valid circuits with indices Ji ∈ {1, . . . , 	}∗, the following
two distributions are indistinguishable to A1(1κ, st):

{ {ci ← Encpk(m
(i)
0 )}k

i=1, {ci ← Evalek(gi, c(Ji))}�
i=k+1, {Decsk(ci) | mji

0 = mji
1 }q

i=1 },

and

{ {ci ← Encpk(m
(i)
1 )}k

i=1, {ci ← Evalek(gi, c(Ji))}�
i=k+1, {Decsk(ci) | mji

0 = mji
1 }q

i=1 },

where the probability is over the randomness of A and in Enc and Eval.

Typically the same security notion is weaker in the non-adaptive model than
in the adaptive model, as some attacks are only feasible in the latter model.
We show that this is also the case for homomorphic approximate encryption
schemes. As before, the encryption scheme described in the following proof is
not intended to be used. It is just a theoretical construction, provided simply
for the purpose of showing that a scheme may satisfy one definition but not the
other.
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Proposition 2. Assume there exist an IND-CPA-secure exact homomorphic
encryption scheme and a secure pseudorandom permutation. Then there exists a
homomorphic approximate encryption scheme that is non-adaptively IND-CPAD-
secure, but it is not adaptively (2, 2)-IND-CPAD-secure.

Proof (sketch). Let E be an IND-CPA-secure exact HE scheme, and let H :
{0, 1}κ × {0, 1}κ → {0, 1}κ be a pseudorandom permutation. We can define
another pseudorandom permutation F :

∀x ∈ {0, 1}κ. FK(x) = H−1
K (HK(x) ⊕ 1).

Notice that FK(FK(x)) = x for all x ∈ {0, 1}κ.
We now modify E to obtain a homomorphic approximate encryption scheme

E ′ with the same encryption and evaluation algorithms but modified key gener-
ation and decryption algorithms:

– KeyGen′(1κ): Sample (sk, pk, ek) ← E .KeyGen(1κ) and K ← {0, 1}κ (for the
pseudorandom permutation F ). Return (sk′, pk, ek), where sk′ = (sk,K).

– Dec′
sk′(c) = m + π(r), where m = E .Decsk(c), r = FK(sk) if m = 0, and

r = FK(m) otherwise, and (π, π−1) is an encoding scheme from {0, 1}κ to
small numbers.

One can check that FK is a pseudorandom permutation in the non-adaptive
model. So Dec′

sk′ can be simulated without knowing the secret key (sk,K) in the
non-adaptive model, and hence our new scheme is non-adaptively IND-CPAD-
secure. However, an adaptive adversary A can first ask to encrypt 0 and then
ask to decrypt the corresponding ciphertext to get e = π(FK(sk)). Next, A asks
to encrypt π−1(e) = FK(sk) and then asks to decrypt its ciphertext. At this
point A can fully recover sk using the decryption result π−1(e) + π(sk). So E ′ is
not adaptively (2, 2)-IND-CPAD-secure. ��

4 Attacks to Homomorphic Encryption for Arithmetics
on Approximate Numbers

In this section we describe a key recovery attack against the CKKS scheme,
including both theoretical and practical analysis. Based on such attack, we can
conclude that the CKKS scheme is not IND-CPAD secure. Note that our attack
is much stronger than a simple indistinguishability attack: we show how to
efficiently recover the secret (decryption) key of the scheme! Clearly, once the
secret key has been recovered, it is easy to break the formal IND-CPAD secu-
rity definition. While recovering the secret key makes our attacks stronger, any
security analysis of improved variants of CKKS or other approximate encryption
schemes should still target IND-CPAD as a security goal, and not simply protect
the scheme against full key recovery.
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4.1 Theoretical Outline

The technical idea behind the attack is easily explained by exemplifying it on a
symmetric key version of LWE encryption. (Breaking the CKKS scheme involves
additional complications due to the details of the encoding/decoding functions
discussed below.) We recall that in a passive attack (against a symmetric key
encryption scheme Es(m)), the adversary can observe the encryption Es(m) of
any message m of its choice. In LWE encryption, the key is a random vector
s ∈ Z

n
q , and a (possibly encoded) message m ∈ Zq is encrypted as Es(m) =

(a, b) where a ∈ Z
n
q is chosen at random, and b = 〈s,a〉 + m + e (mod q) for

a small random integer perturbation e ∈ Z. If the encryption scheme works on
“approximate numbers”, (m + e) is treated as an approximation of m, and the
decryption algorithm outputs Ds(a, b) = b − 〈s,a〉 = m + e.

Our most basic attack involves an adversary that asks for an encryption of
m = 0, so to obtain a ciphertext ct = (a, b) where b = 〈s,a〉 + e (mod q). The
adversary then asks to compute the identity function id(x) = x on it. (This is the
same as performing no computation at all.) Finally, it asks for an approximate
decryption of the result, and computes

c = b − Decs(ct) = (〈s,a〉 + e) − (m + e) = 〈s,a〉 (mod q). (1)

This provides a linear equation 〈s,a〉 = c (mod q) in the secret key. Collect-
ing n such linear equations and solving the resulting system (e.g., by Gaussian
elimination) recovers the secret key s with high probability.

It is easy to see that there is nothing special about the message 0, or the fact
that no computation is performed: as long as the adversary knows the cipher-
text ct (possibly the result of a homomorphic computation) and gets to see
the approximate decryption of ct, the same attack goes through. However, the
actual scheme described in [18] and subsequent papers, and their open source
implementations include several modifications of the above scheme, introduced
to make the scheme more useful in practice, but which also make the attack
less straightforward. We briefly describe each of these modifications, and how
the attack is adapted. In the most general case, our attack requires not just the
solution of a linear system of equations, but the use of lattice reduction for the
(polynomial time) solution of a lattice approximation problem.

Public key. First, CKKS is a public key encryption scheme, where, as standard in
lattice based encryption, the public key can be seen as a collection of encryptions
of 0 values. This makes no difference in the attack, as the ciphertexts still have the
same structure with respect to the secret key, and the (approximate) decryption
algorithm is unmodified. Switching to a public key system has the only effect of
producing larger noise vectors e in ciphertexts.

Ring lattices. In order to achieve practical performance, all instantiations of
the CKKS scheme make use of cyclic/ideal lattices [40] and the Ring LWE
problem [38,39]. Specifically, the vectors a, s are interpreted as (coefficients of)
polynomials a, s in the power-of-two cyclotomic rings O(2N) popularized by the
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SWIFFT hash function [36,37,43] and widely used in the implementation of
lattice cryptography since then. In a sense, switching to ideal lattices makes
the attack only more efficient: the linear equation 〈s,a〉 = c (mod q) becomes
an equation a · s = c ∈ O(2N)

q in the cyclotomic ring modulo q, which can be
solved (even using a single ciphertext) by computing the (ring) inverse of a, and
recovering s as

s′ = a−1 · c ∈ Oq. (2)

A little difficulty arises due to the choice of q. The first implementation of
CKKS, the HEAAN library [30] sets q to a power of 2 to simplify the treatment
of floating point numbers. Subsequent instantiations of CKKS use a prime (or
square-free) q of the form h·2n+1 together with the Number Theoretic Transform
for very fast ring operations[37]. For a (sufficiently large) prime q, the probability
of a random element a being invertible is very close to 1, but this is not the case
when q is a power of two. If a is not invertible, we can still recover partial
information about the secret key s, and completely recover s by using multiple
ciphertexts.

Euclidean embedding. In order to conveniently apply the CKKS scheme on prac-
tical problems, the input message space is set to C

N/2 for some N that is a power
of 2, the set of vectors with complex entries, or, more precisely, their floating
point approximations. A message z ∈ C

k, for some integer 1 ≤ k ≤ N/2, can
be considered as a vector in C

N/2 (by padding it with 0 entries), and it is then
encoded to

m = Encode(z;Δ) =
⌊
Δ · ϕ−1(z)

⌉ ∈ Z
N ≡ O,

where Δ is some precision factor. The “decode” operation Decode : O → C
k

sends an integer polynomial m to

Decode(m;Δ) = ϕ(Δ−1 · m) ∈ C
k,

where the entries corresponding to the 0-paddings are dropped. Decode is an
approximate inverse of Encode as z′ = Decode(Encode(z;Δ);Δ) is close (but not
exactly equal) to z.

This is slightly more problematic for our attack, because a passive adversary
only gets to see the result of final decryption z′ ∈ C

k, rather than the ring element
m′ = a·s+b ∈ O that is required by our attack, in addition to the ciphertext ct =
(a, b). Moreover, given the approximate nature of the encoding/decoding process,
Decode(m′) is not even the exact (mathematical) transformation ϕ(Δ−1·m′), but
only the result of an approximate floating point computation. We address this
by setting k = N/2 (so, at least the vector Decode(m′) has the right dimension
over C), and re-encoding the message output by the decryption algorithm to
obtain Encode(Decode(m′)).

At this point, depending on the concrete choice of parameters of the scheme,
we may have Encode(Decode(m′)) = m′, in which case we can carry out the
above attack by setting up a system of linear equations or computing inverses
in the cyclotomic ring. We summarize this case in the following theorem.
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Theorem 1 (Linear Key-Recovery Attack against CKKS). Fix a par-
ticular instantiation of the CKKS scheme under the Ring-LWE assumption of
dimension N and modulus q, and fix a key tuple (sk, pk, ek) ← KeyGen(1κ).
Given k = O(N) ciphertext cti for 1 ≤ i ≤ k, that are either encryp-
tions under pk or homomorphic evaluations under ek, and given their approx-
imate decryption results z′

i = Decode(Decsk(cti);Δ) with a scaling factor Δ, if
Encode(z′

i;Δ) = Decsk(cti) for all 1 ≤ i ≤ k, then we can efficiently recover the
secret key sk with high probability.

Moreover, if the ciphertext modulus q is a prime or a product of distinct
primes, then the above holds for all k ≥ 1.

4.2 Analysis of Encoding/Decoding Errors

To see for what concrete parameters the linear attack can be applied, we take a
closer look at the error introduced by the encoding and decoding computation.
In practice, since N is a power of 2, the classical Cooley-Tukey FFT algorithm
is used to implement the transformation ϕ and its inverse ϕ−1, and the compu-
tation is done using floating-point arithmetic that could cause round-off errors.

Fix a ciphertext ct, and let m′ = Decsk(ct) ∈ O be its approximate decryp-
tion (before decoding) with a scaling factor Δ. Let ẑ′ = Decode(m′;Δ) be the
computed value of z′ = ϕ(Δ−1 · m′). To carry out the attack, we compute the
encoding of ẑ′ with the scaling factor Δ: first we apply inverse FFT to compute
u = Δ ·ϕ−1(ẑ′), and then we round its computed value û to m′′ = �û� ∈ O. Let
ε = û − m′ be the encoding error, where m′ is the coefficient vector of m′. We
see that Encode(Decode(m′;Δ);Δ) = m′ if and only if ‖ε‖∞ = ‖û − m′‖∞ < 1

2 .
Assume the relative error in computing the Cooley-Tukey FFT in dimension

N is at most μ in l2 norm. Then ‖ẑ′ − z′‖2 ≤ μ ·
√

N
Δ ‖m′‖2, ‖û − u‖2 ≤ μ(1 +

μ) · ‖m′‖2, and ‖u − m′‖2 ≤ μ · ‖m′‖2. It follows that

‖ε‖∞ = ‖û − m′‖∞ ≤ ‖û − m′‖2 ≤ (2μ + μ2)‖m′‖2.
In [13], Brisebarre et al. presented tight bounds on the relative error μ in

applying the Cooley-Tukey FFT algorithm on IEEE-754 floating-point numbers.
According to their estimate, μ ≈ 53 · 2−53 for N = 216 and double-precision
floating-point numbers. So, we expect to see Encode(Decode(m′;Δ);Δ) �= m′ in
such setting, i.e., ‖ε‖∞ > 1

2 , when ‖m′‖2 > 245. (As we will see in the next
section, our experimental results using existing CKKS implementations suggest
this is a very conservative estimation.) The rescaling operation can be used
to reduce the size of the approximate plaintext m′, which is already used to
maximize the capacity of homomorphic computation in CKKS.

Lattice attack. In case Encode(Decode(m′)) ≈ m′ is only an approximation of
what we want for the linear key recovery attack, it is still possible to recover sk
by solving a (polynomial time) lattice approximation problem.

Theorem 2 (Lattice Attack against CKKS). Fix a particular instantiation
of the CKKS scheme under the Ring-LWE assumption of dimension N and
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modulus q, and fix a key tuple (sk, pk, ek) ← KeyGen(1κ). Given a ciphertext
ct ∈ O2

q with a scaling factor Δ, and given an approximate decryption z′ =
Decode(Decsk(ct);Δ) of ct, if the encoding error ε = Δ · ϕ−1(z′) − Decsk(ct)
satisfies ‖ε‖2 ≤ 2−N

2 ·(q√N −h), where h = HW(s) ≤ N is the Hamming weight
of s, then the secret key sk can be efficiently recovered.

Proof (sketch). Let ct = (a, b) for some a, b ∈ Oq. We consider the following
approximate CVP instance. Let A = φ(a) ∈ Z

N×N be the negacyclic matrix
representation of a. Consider the following matrix

B =
(

A qIN

1t 0t

)
∈ Z

(N+1)×(2N),

where 1t = [1, . . . , 1] is a N -dimensional row vector of all 1 entries. Let L =
L(B) be the integer lattice generated by B, let u = Δ · ϕ−1(z′) ∈ R

N , and let
t = (u−b, 0)t ∈ R

N+1, where b is the coefficient vector of b. Our CVP instance
asks to find v ∈ L such that ‖v − t‖2 ≤ δ for some δ > 0.

To set the parameter δ, notice that v0 = (m′ −b, 〈1, s〉) is a lattice point, and
‖v0−t‖22 = ‖ε‖22+〈1, s〉2. On the other hand, if m′′−b = Ar+qw for some r,w ∈
Z

N , then v1 = (m′′ − b, 〈1, r〉) ∈ L is also a lattice point. We have ‖v1 − t‖22 =
‖ε−�ε� ‖22+〈1, r〉2. Note that r = A−1(m′ −b)+A−1 �ε� (mod q) = s+A−1 �ε�
(mod q). In CKKS, s is chosen from a uniform distribution on ternary coefficients
{±1, 0} with Hamming weight h ≤ N , so | 〈1, r〉 | ≥ | 〈1, A−1ε

〉 − h|. We can
assume that �ε� is independent of m′−b, so A−1 �ε� (mod q) is close to uniform,
and so it holds with high probability that | 〈1, A−1ε

〉 | ≤ 2
√

3 · q
√

N . When
‖ε‖2 ≤ 2−N

2 · (q
√

N − h), we can set δ = 2
√

3 · q
√

N and obtain m′ − b with
high probability by solving such CVP instance in polynomial time. Then, we can
mount the linear attack as in Theorem 1. ��

5 Experiments

The basic idea of our linear attack is so simple that it requires no validation.
However, as described in the previous section, a concrete instantiation of the
CKKS scheme may include a number of details that make the attack more
difficult in practice. Given the simplicity of our attack, we also considered the
possibility that the implementations of CKKS may not correspond too closely
to the theoretical scheme described in the papers, and included some additional
countermeasures to defend against the attack.

To put our linear attack to a definitive test, we implemented it against pub-
licly available libraries HEAAN [30], PALISADE [41], SEAL [47], and HElib [31]
that implement the CKKS scheme, and we ran our attack over some homo-
morphic computations that are commonly used in real world privacy-preserving
machine-learning applications. Our experimental results against the libraries are
summarized in Tables 1 and 2. For most of the parameter settings, our attack
can successfully and quite efficiently recover the secret key, showing it is widely
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Algorithm 1: The pseudocode outlining our key recovery attack experi-
ments.
Input: Lattice parameters (N, log q), initial scaling factor Δ0, plaintext bound

B, and circuit g.
1 Sample (sk, pk, ek) ← KeyGen(N, log q, Δ0), where (1, s) = sk

2 Sample z ← C
N/2 such that |zi| ≤ B for all 1 ≤ i ≤ N/2

3 Encrypt ctin ← Encpk(Encode(z; Δ0))
4 Evaluate ctout ← Evalek(g, ctin)
5 Decrypt z′ ← Decode(Decsk(ctout); Δ), where Δ is the scaling factor in ctout
6 Encode m′′ ← Encode(z′; Δ)
7 Compute s′ ← a−1 · (m′′ − b) ∈ Oq, where (b, a) = ctout
8 return s′ = s

applicable to these CKKS implementations. In the following, we discuss our
experiment and the relevant implementation details of these libraries, and we
briefly analyze the results. We also consider RNS-HEAAN [46], an alternative
implementation similar to HEAAN that includes RNS (residue number system)
optimizations, obtaining similar results.

We did not implement the lattice based attack. The main difficulty in run-
ning the lattice attack in our experiment is that it requires lattice reduction in
very large dimension, beyond what is currently supported by state of the art
lattice reduction libraries. However, the theoretical running time of the attack is
polynomial, and the corresponding parameter settings should still be considered
insecure. In the following, we refer to our linear attack as the attack.

5.1 Implementation of Our Attack and Experiments

A pseudocode outline of our experiment programs is presented in Algorithm 1.
Such programs model the situations where an attacker can influence an honest
user to perform certain homomorphic computations and can obtain both the final
ciphertexts and the decrypted approximate numbers. A successful run indicates
that the target CKKS implementation is not IND-CPAD-secure.

For concrete homomorphic computations, we choose to compute the variance
of a wide range of input data to exemplify how our attack may be affected by
large underlying plaintexts in extreme cases. Specifically, our program encrypts
the input data to a single ciphertext ctin in the full packing mode, and then
it performs one homomorphic squaring, followed by several homomorphic rota-
tions and summations to homomorphically compute the sum of squares, and
finally it does a homomorphic multiplication by a constant 2/N to obtain ctout
that encrypts the variance. We also compute the logistic function (1 + e−x)−1

and exponential functions ex using their Maclaurin series up to a degree d, to
check whether our attack may be affected by the bigger noises and the possibly
adjusted scaling factors due to multi-level homomorphic computations. Once the
homomorphic computation is done, our program decrypts ctout to approximate
numbers z′, and mounts our linear attack as in Steps 6 and 7 of Algorithm 1.
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Table 1. The results of applying our attack on homomorphically computed variance
of N/2 = 215 random complex numbers of magnitude 1 ≤ B ≤ 29. We carried out
the attack against all main open source implementations of CKKS, obtaining similar
results. Numbers are packed into all slots, and are encoded using various initial scaling
factors Δ0. For each parameter combination (Δ0, B), we ran our programs 100 times
against each library. A “�” indicates that, for all these libraries with the particular
parameters, the attack always succeeded to recover sk. A few cells where a number
is shown, correspond to extreme parameters where some runs failed to recover sk,
and the number is the maximum (over all libraries) of the average l∞ norms of the
encoding error ε. These settings are still subject to attacks based on lattice reduction,
see Sects. 4.2 and 5.3 for details.

Attack applied to HEAAN, PALISADE, SEAL, HElib

B 1 2 22 23 24 25 26 27 28 29

Variance log Δ0 = 30 � � � � � � � � � �
log Δ0 = 40 � � � � � � � � � �
log Δ0 = 50 � � � � � � 1.21 5.41 20.65 80.19

We remark that all these homomorphic computations are very common in appli-
cations of the CKKS scheme.

In our programs, we use the data structures and public APIs provided by
each library to carry out the key recovery computation4. Note that an attacker
is free to use any method, not necessarily these public interfaces, to carry out
the attack.

5.2 Details on Different Implementations of CKKS

We considered the latest versions of all these libraries: HEAAN version 2.1 [30],
PALISADE version 1.10.4 [41], SEAL version 3.5 [47], and HElib version 1.1.0 [31]
and RNS-HEAAN [46]. All these libraries implement the transformation ϕ and
its inverse using the classical Cooley-Tukey FFT algorithm on double-precision
floating-point numbers. Still, they contain several distinct implementation details
relevant to our attack.

Multi-precision integers vs. double-CRT representation. All versions of HEAAN
(version 1.0 as in [18], version 1.1 as in [16], and the most recent version 2.1)
use multi-precision integers to represent key materials and ciphertexts. Conse-
quently, HEAAN achieves very good accuracy in approximate decryption, but
at the same time it rarely introduces any encoding error, resulting in a great
success rate in our key recovery experiment.

To improve efficiency, the residual number system, as known as double-CRT
representation, is adopted to the CKKS scheme in [17], and it is implemented

4 The source code of our attack implementations are available at https://github.com/
ucsd-crypto/CKKSKeyRecovery.

https://github.com/ucsd-crypto/CKKSKeyRecovery
https://github.com/ucsd-crypto/CKKSKeyRecovery
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Table 2. The results of applying our attack to homomorphically computed logistic and
exponential functions on random real numbers of magnitude B ∈ {1, 2, 8} packed into
full N/2 = 215 slots, evaluated using their Maclaurin series of degree d ∈ {5, 10}. For
each parameter setting, we ran our experimental program 100 times for each library,
and here “�” indicates sk was recovered in all these runs against a particular library.
A few cells where a number is shown, correspond to extreme parameters when some
runs failed to recover sk, and the number is the average l∞ norm of the encoding error
ε in these runs. For HElib, “n/a” indicates the parameters are not supported by the
library.

Attack applied to HEAAN, PALISADE, SEAL, HElib

HEAAN PALISADE SEAL HElib

Δ0 B d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10

Logistic 230 1 � � � � � � � �
240 1 � � � � � � 3.1 6.7

250 1 � � � � � � 8.2 8.2

Exponential 230 1 � � � � � � � �
2 � � � � � � n/a n/a

8 � � � � � � n/a n/a

240 1 � � � � � � 1.9 8.2

2 � � � � � � n/a n/a

8 � � � � � � n/a n/a

250 1 � � � � � � 8.1 8.2

2 � � � � � � n/a n/a

8 7.6 15.2 8.1 18.2 2.2 4.3 n/a n/a

in RNS-HEAAN. Other libraries also implement the RNS variant of CKKS, with
some different details:

– During decryption, RNS-HEAAN uses only the first RNS tower of ciphertexts;
so it expects the scaled plaintext to be much smaller than the 60-bit prime
modulus in the first tower. Other libraries convert the double-CRT format
to multi-precision integers before applying the canonical embedding; so they
support a larger plaintext space and are more accurate.

– During rescaling, RNS-HEAAN uses a power-of-2 rescaling factor, while the
other libraries’ rescaling factors are the primes or close to primes in the moduli
chain. In particular, PALISADE optimizes the rescaling factors to reduce the
errors and precision loss in many homomorphic operations [32].

As observed in our experiment, among the RNS implementations of CKKS, our
attack was more successful against the libraries using more accurate element
representations and scaling factors.

PALISADE . In addition, PALISADE uses extended precision floating-point arith-
metic in Decode, which has 64-bit precision on X86 CPUs. This further improves
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the accuracy of approximate decryption, but perhaps unintentionally making our
attack more successful by a tiny margin (comparing to other libraries).

HElib. Unlike other libraries, HElib adjusts the scaling factor used in Encode and
many homomorphic operations according to the estimated noise size and the
magnitude of the plaintext. It expects the input numbers to have magnitude
at most 1 for optimal precisions. So our experiment with HElib chooses random
input only within the unit circle.

RNS-HEAAN. Looking back to RNS-HEAAN, its implementation of Decode intro-
duces a small round-off error in a conversion from uint64_t to double. As a
result, such (seemingly unexpected) implementation choice may lead to reduced
precision (by only a few bits), but it also results in more failed runs in our exper-
iment. Still, when our attack fails, the encoding errors are quite small, and so
RNS-HEAAN is still subject to the lattice reduction attack. We tried to “fix” this
by more carefully converting between number systems, and we immediately see
a much better success rate for our attack.

5.3 Experiment Results

We set up all libraries with the highest supported lattice dimension N = 216,
which also corresponds to the highest security level. By the analysis in Sect. 4.2
(and also observed in our experiment), the larger the dimension is, the higher
the chance an encoding error may show up (leading to failed attack runs). On
the other hand, since the claimed security decreases with larger values of the
modulus q, we set it to around 350 bit, which is a secure, yet realistic value for
FHE schemes. According to common evaluation methodologies [1], the associated
LWE problem provides a level of security well above 256 bits. (Specifically, in
dimension N = 216, it is estimated that 256-bits of security are achieved even
for moduli q with over 700 bits.)

In all our experiments, we use the full packing mode with N/2 slots. For
the variance computation, we generate random input numbers with magnitude
B ≤ 29. For the experiment on the logistic and the exponential functions, we
set the maximal degree of their Maclaurin series to d ≤ 10, which provides good
approximation for inputs smaller than 1.

Our experiments are executed in a 64-bit Linux environment running on an
Intel i7-4790 CPU. The attack is very efficient, especially for the RNS-CKKS
implementations, as the key recovery computation can benefit from using NTT
and parallelization. Each individual run in our experiment finishes within sev-
eral seconds to just one minute, with most of the running time taken by the
key generation and encryption/homomorphic evaluation operations, rather than
the attack itself. For each homomorphic computation task, for each parameter
setting, and for each library, we run our attack 100 times to record the suc-
cess rate and the encoding error ε. The results of the experiments with HEAAN,
PALISADE, SEAL, and HElib are presented in Tables 1 and 2. As shown in these
tables, our attack always succeeded to recover the secret key in most parameter
settings against all the libraries, especially for typical input sizes and scaling
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factors. The failed cases in both tables correspond to the extreme parameters
where the l2 norm of the underlying plaintext exceeds 252, showing better practi-
cal performance than the worst case analysis in Sect. 4.2. (There are more failed
cases with HElib because its adjusted scaling factors are typically larger and so
are the plaintexts.) Comparing the results on the logistic and the exponential
functions, we conclude that a deeper level of homomorphic computation has no
significant effect on our attack, and the runs in the last row of Table 2 failed due
to larger plaintext sizes. In particular, the encoding error ε with SEAL is smaller
than other libraries because its implementation of Decode incurs less round-off
errors in scaling by Δ−1.

We did a limited number of experiments with RNS-HEAAN because it has a
small plaintext space. Nonetheless, we see a consistent but small encoding error
of size ‖ε‖∞ ≤ 27 in our RNS-HEAAN experiments when B2Δ0 ≈ 250.

6 Conclusion

We proposed new security definitions, extending the traditional IND-CPA secu-
rity notion, that properly capture the passive security requirement for (homo-
morphic) approximate encryption schemes. The necessity of adequate security
notions for approximate encryption reminds us that correctness and security are
two essential issues for cryptographic systems that must be considered at the
same time. From a theoretical perspective, we initiated the study of IND-CPAD

security for approximate computation, by presenting implication and separation
results between variants of the definition. There are still many very interesting
research directions and open questions regarding IND-CPAD security as well as
simulation-based security. We leave further study of these new security notions
to future work.

For our attack against the CKKS scheme, as it essentially recovers the encryp-
tion noise ẽ of the ciphertext, a natural countermeasure to harden the CKKS
scheme is to modify the decryption algorithm, so that it does not output m + ẽ,
but only an approximation that does not depend on the secret key and encryp-
tion randomness. Below we discuss some specific ways to do that. We remark
that our suggestions are just simple countermeasures to mitigate the effect of the
attacks described in our work. Finding a more solid solution, provably achiev-
ing the notion of IND-CPAD security proposed in this paper, is left as an open
problem.

Gaussian noise. Perhaps the most natural way to do that (from an LWE perspec-
tive) is to add Gaussian noise to the result of the decryption function, similar to
the noise introduced by the encryption algorithm. While this makes the schemes
perhaps more robust, it does not seem an adequate countermeasure. The reason
is that an attacker may repeatedly request decryptions of the same ciphertext. If
the noise is unbiased, it can be easily reduced by taking several decryptions, and
computing their average. The result will not be exact, but the noise can be made
arbitrarily small by using a sufficiently large (still polynomial) number of calls,
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so that it can be eliminated either using rounding and Gaussian elimination, or
applying the theoretical lattice-based attacks described in Sect. 4.2.

Deterministic noise or rounding. To avoid the above weakness, one can effec-
tively limit the number of decryption calls to 1 per ciphertext by adding a
deterministic noise in the decryption algorithm, e.g., as a pseudorandom func-
tion applied to the ciphertext (and key derived from the decryption key.) This is
similar to the noise flooding techniques used in many lattice cryptographic con-
texts such as bootstrapping and circuit privacy of homomorphic encryption. It is
perhaps not practical to apply noise flooding generically to achieve unbounded
IND-CPAD security, as it requires a superpolynomial modulus, but it might be
feasible to achieve a bounded q-IND-CPAD security for any a-priori fixed q, using
techniques similar to [3,8,22]. A rigorous analysis is required not only for security
but also for practical efficiency and tradeoffs in the accuracy of the approximate
computation, and we leave this to future work.

Exact decryption. One can set up parameters in such a way that �(m + ẽ)/Δ� =
�m/Δ�, at least with high probability, where the rounding operation is taken to
certain precision. This effectively replaces the idea of approximate decryption
with an exact decryption algorithm, but for a modified message. This could be a
more promising direction to enhance the CKKS scheme, and it requires a careful
analysis of encryption noises together with rounding errors. Intuitively, instead
of interpreting a ciphertext as encoding an approximate number m+ẽ, we regard
them as encryptions of an approximate value �(m + ẽ)/Δ�. We can then define
the operations supported by the homomorphic encryption scheme in such a way
to ensure exact, deterministic behavior, both for homomorphic computations
and final decryption.

Since the resulting scheme satisfies the standard notion of correctness for
encryption (even if, perhaps, for a less standard set of operations than simple
addition and multiplication), it can be easily analyzed using the traditional def-
inition of security, and it is immediate to show that the scheme is secure under
passive attacks based on a standard (Ring) LWE assumption.

Responsible Disclosure

We disclosed details of our attack to the developers of HEAAN, SEAL, HElib,
and PALISADE at the beginning of October 2020 (and also to Lattigo [34] at a
later time, after porting our attack to the GO programming language used by
that library), before making our paper public. All teams were very responsive,
and they quickly acknowledged that our attack works and it represents a serious
threat that needs to be addressed. They have taken various actions, addressing
the vulnerability to different degrees, ranging from warning the users that any
use of the decryption function (except in very controlled environments where the
result of decryption is kept private,) to implementing some mitigation strategy
along the lines discussed in the previous section. In particular, we have tested
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the latest development versions of HElib and PALISADE, and we can confirm
our attack is no longer effective against them. Developing and implementing a
variant of CKKS which provably achieves IND-CPAD with only a modest decrease
in performance is left to future work.

Acknowledgment. We would like to thank Mark Schultz, Jessica Sorrell, and the
SAIT research team for useful discussions. We would like to thank Victor Shoup and
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rather than the statistical distance. J. Cryptol. 31(2), 610–640 (2018)

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, pp. 394–403. IEEE Computer Society (1997)

5. Bergamaschi, F., Halevi, S., Halevi, T.T., Hunt, H.: Homomorphic training of
30,000 logistic regression models. In: Deng, R.H., Gauthier-Umaña, V., Ochoa,
M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 592–611. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21568-2 29

6. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: nGraph-HE2: a high-
throughput framework for neural network inference on encrypted data. CoRR,
abs/1908.04172 (2019)

7. Boemer, F., Lao, Y., Cammarota, R., Wierzynski, C.: nGraph-HE: a graph com-
piler for deep learning on homomorphically encrypted data. In: CF 2019, pp. 3–13.
ACM (2019)

8. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016, Part I. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9 9

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014)

11. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

https://homomorphicencryption.org/standard/
https://homomorphicencryption.org/standard/
https://doi.org/10.1007/978-3-030-21568-2_29
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29


676 B. Li and D. Micciancio

12. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

13. Brisebarre, N., Joldes, M., Muller, J., Nanes, A., Picot, J.: Error analysis of some
operations involved in the Cooley-Tukey fast fourier transform. ACM Trans. Math.
Softw. 46(2), 11:1–11:27 (2020)

14. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II.
LNCS, vol. 11477, pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-17656-3 2

15. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 3–18. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 1

16. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78381-9 14

17. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approxi-
mate homomorphic encryption. In: Cid, C., Jacobson, M. (eds.) SAC 2018. LNCS,
vol. 11349, pp. 347–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-10970-7 16

18. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part
I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 15

19. Cheon, J.H., Kim, D., Park, J.H.: Towards a practical clustering analysis over
encrypted data. IACR Cryptology ePrint Archive 2019/465 (2019)

20. Dathathri, R., et al.: CHET: compiler and runtime for homomorphic evaluation of
tensor programs. CoRR, abs/1810.00845 (2018)

21. Dathathri, R., et al.: CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: PLDI 2019, pp. 142–156. ACM (2019)
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Abstract. We describe a simple method for solving the distributed dis-
crete logarithm problem in Paillier groups, allowing two parties to locally
convert multiplicative shares of a secret (in the exponent) into additive
shares. Our algorithm is perfectly correct, unlike previous methods with
an inverse polynomial error probability. We obtain the following appli-
cations and further results.

– Homomorphic secret sharing. We construct homomorphic secret
sharing for branching programs with negligible correctness error and
supporting exponentially large plaintexts, with security based on the
decisional composite residuosity (DCR) assumption.

– Correlated pseudorandomness. Pseudorandom correlation func-
tions (PCFs), recently introduced by Boyle et al. (FOCS 2020), allow
two parties to obtain a practically unbounded quantity of correlated
randomness, given a pair of short, correlated keys. We construct
PCFs for the oblivious transfer (OT) and vector oblivious linear
evaluation (VOLE) correlations, based on the quadratic residuosity
(QR) or DCR assumptions, respectively. We also construct a pseu-
dorandom correlation generator (for producing a bounded number
of samples, all at once) for general degree-2 correlations including
OLE, based on a combination of (DCR or QR) and the learning
parity with noise assumptions.

– Public-key silent OT/VOLE. We upgrade our PCF constructions
to have a public-key setup, where after independently posting a pub-
lic key, each party can locally derive its PCF key. This allows com-
pletely silent generation of an arbitrary amount of OTs or VOLEs,
without any interaction beyond a PKI, based on QR, DCR, a CRS
and a random oracle. The public-key setup is based on a novel non-
interactive vector OLE protocol, which can be seen as a variant of
the Bellare-Micali oblivious transfer protocol.

1 Introduction

Homomorphic secret sharing, or HSS, allows two parties to non-interactively
perform computations on secret-shared private inputs. In contrast to homomor-
phic encryption, where a single party carries out the computation on encrypted
data, HSS can be viewed as a distributed variant where several servers are
each given a share of the inputs, and then (without further interaction) can
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homomorphically evaluate these to obtain a share of the desired output. Use-
ful applications of HSS include succinct forms of secure multi-party compu-
tation [BGI16a,BGI17,BGMM20], private querying to public databases [GI14,
BGI15,WYG+17] and generating correlated randomness in secure computation
protocols [BCGI18,BCG+19]. In this work, we will focus on a strong flavour of
HSS with additive reconstruction, meaning that the server’s shares of the output
can be simply added together (in an abelian group) to give the result of the
computation.1

At Crypto 2016, Boyle, Gilboa and Ishai [BGI16a] constructed two-server
HSS for the class of polynomial-size branching programs based on the decisional
Diffie-Hellman (DDH) assumption. Branching programs are a class of compu-
tations that cover restricted classes of circuits such as NC1 and logspace com-
putations. One application of their construction is succinct secure computation
protocols for these types of computation, where the communication complexity
is proportional only to the input and output lengths [BGI17]. However, Boyle et
al. also managed to achieve secure computation for general, leveled circuits with
a communication cost that is sublinear in the circuit size by a logarithmic factor.
Previously, breaking this circuit-size barrier was only known to be possible using
fully homomorphic encryption, so this result positioned HSS as an alternative
path towards secure computation with low communication.

At the heart of the DDH-based construction [BGI16a] is a distributed discrete
log procedure, where two parties are given multiplicative shares of a secret gx (for
some fixed base g), and wish to locally convert these into additive shares of x.
Their method of solving this unfortunately has an inverse polynomial probability
ε of correctness error, which is expensive to keep small, since the workload in
homomorphic evaluation scales with O(1/ε).

Their original HSS construction has been extended in several works, including
a simpler “public-key” style sharing phase [BGI17], a variant based on Pail-
lier encryption [FGJS17], improved efficiency of the distributed discrete log
step [BCG+17,DKK18] and techniques for mitigating leakage that can arise
from the non-negligible correctness error [BCG+17].

Despite this progress, all these constructions still have the limitation of a non-
negligible chance of an incorrect computation, which requires a large amount of
extra work to keep small. In fact, Dinur et al. [DKK18] showed a conditional lower
bound that solving the distributed discrete log protocol with correctness probabil-
ity ε requires Ω(1/

√
ε) computation, unless the discrete logarithm problem in an

interval can be solved more efficiently. They also gave a matching upper bound.
On the other hand, if we rely on the learning with errors (LWE) assumption,

instead of discrete log- or factoring-based assumptions, it is possible to obtain
HSS for arbitrary circuits [DHRW16,BGI+18], and with a negligible probability
of correctness error, when using LWE with a superpolynomial modulus. This
construction builds on fully homomorphic encryption [Gen09,BV11], and despite
much recent progress, this still involves a significant computational overhead.

1 This leads to a form of optimally succinct reconstruction that even fully homomor-
phic cannot achieve on its own.
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When restricting computations to branching programs instead of circuits, and
limiting the number of servers to two, there is a much specialized construction
that reduces these costs [BKS19].

Pseudorandom Correlation Generators. A recent, promising application
of techniques based on HSS is to build pseudorandom correlation generators
(PCGs) [BCGI18,BCG+19], which are a way of expanding short, correlated
seeds into a large amount of correlated randomness. This correlated randomness
might be, for instance, a batch of oblivious transfers (OTs) on random inputs,
which can be used to obtain cheap, information-theoretic protocols for secure
computation of Boolean circuits. Other correlations can be used to securely
compute arithmetic circuits over a ring R, for example, in oblivious linear evalu-
ation (OLE), each sample has the form (a, b), (x, ax + b) for random a, b, x ∈ R.
Another example is vector oblivious linear evaluation (VOLE), which has the
restriction that x is fixed for each sample of the correlation.

More concretely, a PCG is a pair of algorithms (Gen,Expand), where Gen
outputs a pair of short, correlated seeds, while Expand takes one of these seeds
and expands it into a longer output string. The security requirements are that
the joint distribution of both outputs is indistinguishable from the desired cor-
relation, and also that each seed preserves privacy of the other party’s output.

While PCGs can be constructed from suitably expressive HSS [BCG+19],
this requires homomorphic evaluation of a pseudorandom generator inside HSS
and typically leads to poor concrete efficiency. Instead, the most promising con-
structions so far are based on variants of the learning parity with noise (LPN)
assumption, and build upon practical constructions of HSS for point functions
(or, function secret sharing) [GI14,BGI15,BGI16b]. Using LPN, we can obtain
PCGs for the VOLE [BCGI18], OT [BCG+19] and OLE [BCG+19,BCG+20b]
correlations, and these can even be concretely efficient when relying on struc-
tured variants of LPN such as ring-LPN, or using quasi-cyclic codes.

Pseudorandom Correlation Functions. Very recently, Boyle et al.
[BCG+20a] extended the notion of PCG to a pseudorandom correlation function
(PCF), which allows generating an unbounded number of correlated outputs in
an on-the-fly manner, given a pair of correlated keys. This is similar to how a
pseudorandom function extends the concept of a pseudorandom generator. While
PCFs can be constructed in a generic but inefficient manner based on LWE,
Boyle et al. also gave constructions based on new flavours of variable-density
LPN assumptions. The practical security and efficiency of these constructions
has yet to be determined, although their initial results suggest that the PCFs
for the OT and VOLE correlations could be concretely efficient.

1.1 Our Contributions

In this work, we present new constructions of homomorphic secret sharing
and pseudorandom correlation functions based on standard, number-theoretic
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assumptions related to factoring. At the heart of most of our constructions is a
single, key technique, namely, an efficient algorithm for solving the distributed
discrete logarithm problem when using the Paillier cryptosystem over Z

∗
N2

(where N is an RSA modulus). Unlike previous algorithms [BGI16a,FGJS17,
DKK18], which always incurred an inverse polynomial probability of error, our
method is very simple and has perfect correctness.

Building on this technique, we obtain the following results.

Homomorphic Secret Sharing. We construct homomorphic secret sharing
for branching programs with negligible correctness error and supporting compu-
tations on an exponentially large plaintext space. We present several variants.
The first two are based on circular security assumptions (of Paillier encryption
and of a Paillier-ElGamal hybrid, respectively); however, the second has the
advantage of allowing for a public-key style setup. The third variant also allows
for a public-key setup, and additionally relies solely on the decisional composite
residuosity (DCR) assumption. However, it is less efficient.

This gives the first construction of negligible-error HSS for branching pro-
grams without relying on LWE with a superpolynomial modulus. Compared with
previous constructions based on discrete log-type assumptions [BGI16a,BGI17],
as well as the Paillier-based construction of Fazio et al. [FGJS17], we avoid their
limitations of a 1/poly correctness error and polynomial-sized plaintext space.
We also obtain smaller share sizes and much better computational efficiency.

Pseudorandom Correlation Functions and Pseudorandom Correlation
Generators. We construct PCFs for producing an arbitrary number of random
instances of vector oblivious linear evaluation, based on the DCR assumption,
and oblivious transfer, based on the quadratic residuosity (QR) assumption.
These constructions are very simple and have relatively small key sizes, consisting
of O(1) and O(λ) group elements, respectively (for security parameter λ). We
also construct a weaker pseudorandom correlation generator (for producing a
bounded number of samples, or, all at once) for general degree-2 correlations,
when assuming {DCR ∨ QR} ∧ LPN. Compared with a previous construction
based on only LPN [BCG+19], we reduce the key size by a factor O(λ) and
reduce the computational cost from quadratic to linear in the output length.
This can also be upgraded to a PCF, when assuming a recent, variable-density
version of LPN [BCG+20a].

Public-Key Silent OT and VOLE. We show how to upgrade our PCF con-
structions to have a public-key setup. After independently posting a public key,
which uses a CRS, each party can use the other party’s key, together with the
private randomness for its own key, to derive a key for the PCF. Using their PCF
keys, the parties can then silently compute an arbitrary quantity of OT or VOLE
correlations, all without any interaction beyond the PKI. To our knowledge, these
are the first such constructions that allow producing non-trivial correlations from
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a reusable public-key setup, without relying on lattice-based assumptions and
homomorphic evaluation of PRGs inside multi-key FHE [DHRW16,BCG+19].
Note that we assume both a CRS and the random oracle model.

The public-key PCF for OT can be plugged into an existing construction
of two-round multi-party computation with an OT correlations setup [GIS18],
and reduces the complexity of its setup phase. This leads to a passively secure,
two-round MPC protocol based on the DCR and QR assumptions, which makes
a black-box use of a PRG, and has a PKI setup that scales independently of the
circuit size. This is in contrast to the strong PKI setup from [GIS18], where the
size of each public key scales linearly with the circuit size.

1.2 Comparison with Previous Results

We now give a more detailed comparison of our results with those from previous
work, and discuss some efficiency metrics.

Homomorphic Secret Sharing. As already mentioned, we avoid the 1/poly cor-
rectness error and small message space associated with previous constructions
based on DDH [BGI16a,BCG+17,BGI17] or Paillier [FGJS17]. This brings us
the additional benefit that the share size of our HSS is smaller, since in all these
constructions, each share of an input x contains encryptions of x · di, where di

are the bits of the secret key. Since we support a large message space, we can
instead choose di to be a much larger chunk of the secret key, so that each share
only contains a constant number of group elements, instead of O(λ). The smaller
share size and improved share conversion step in our construction also give us
much lower computational costs, since previous works require a workload that
scales with Ω(1/

√
ε), where ε is the correctness error probability [DKK18].

We can also compare our HSS with constructions based on LWE. Using LWE
with a superpolynomial modulus, these can also support negligible error and a
superpolynomial plaintext space [BKS19], and can even go beyond branching
programs to evaluate general circuits [DHRW16,BGI+18]. When restricted to
branching programs or low-depth circuits, and using ring-LWE, homomorphic
evaluation would likely be more efficient than our HSS, due to fast algorithms
for polynomial arithmetic in ring-LWE, compared with exponentiations in Pail-
lier. On the other hand, our scheme has much smaller shares, since ring-LWE
ciphertexts with a superpolynomial modulus are orders of magnitude larger than
Paillier ciphertexts (ranging from 100 kB–3 MB in [BKS19] vs under 1 kB for
Paillier).

Finally, we remark that LWE is a very different assumption to DCR. On the
one hand, it can plausibly resist attacks by quantum computers; however, in a
purely classical setting, factoring-based assumptions are arguably better studied
than ring-LWE with a superpolynomial modulus.

PCFs and PCGs. Compared with PCGs for OT and VOLE based on LPN
[BCGI18,BCG+19], our PCFs have the advantages of a public-key setup and the
ability to incrementally produce an unbounded number of outputs (which comes
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with being a PCF and not just a PCG). In VOLE, our PCF has the additional
benefit of much smaller keys, since each party’s key only contains two Paillier
group elements, compared with Õ(λ2) bits using LPN. The key size in our PCF
for OT is around λ elements of ZN , which is comparable to the LPN-based PCG
keys at typical security levels. The main drawback of our constructions is their
computational efficiency, since our PCF for VOLE requires one exponentiation
in Z

∗
N2 to produce a single output in ZN , while the PCF for OT requires ≈ 128

exponentiations in Z
∗
N to obtain one string-OT (at the 128-bit security level).

Similarly, our PCG for OLE (based on both LPN and DCR) reduces the key
size of previous LPN-based PCGs for OLE by a factor of O(λ), at the cost of
requiring exponentiations and limited to OLEs over ZN or Z2, rather than more
general rings or fields.

The recent PCFs for OT and VOLE from variable-density LPN [BCG+20a]
overcome the PCG limitation of standard LPN-based constructions, although
still do not have a public-key setup. They also come with much larger keys
than their PCG counterparts, as well as our VOLE and OT constructions. Their
computational efficiency has not yet been demonstrated, although they may be
faster than our number-theoretic constructions due to being based on lightweight
primitives like distributed point functions.

1.3 Overview of Techniques

We start by recalling the share conversion procedure used by Boyle et al.
[BGI16a]. The basic idea of their scheme allows two parties to locally multi-
ply secrets x, y ∈ Z, where x is encrypted and y is secret shared, obtaining a
secret sharing of the result z = xy. However, z is now multiplicatively (or, rather,
divisively) shared; that is, the parties have group elements g0, g1 ∈ G, such that
g1 = g0 · gz. To continue evaluating a program, they would like to convert these
into linear (subtractive) shares, so they can be used in another multiplication
(with a ciphertext).

Boyle et al. described an ingenious protocol for converting such divisive shares
to subtractive shares. To obtain subtractive shares of z, it is enough that the
parties agree upon some distinguished element h that is not too far away from
g0, g1 in terms of multiplications by g. If they find such an h, then party σ
can compute the distance of gσ from h by brute force: by multiplying h by g
repeatedly, and seeing how many such multiplications it takes to get to gσ. If
we’re guaranteed that h isn’t too far away, this should not be too inefficient. Let
dσ be the distance of gσ from h—that is, hgdσ = gσ. Then,

g1 = g0 · gz ⇔ hgd1 = hgd0gz

⇔ gd1 = gd0gz

We can conclude that d1 ≡ d0 + z modulo the order of the subgroup generated
by g, and if d0, d1 are small then these shares can be recovered efficiently.

The major challenge is agreeing upon a common point h. Boyle et al. did so
by having the parties first fix a set of random, distinguished points in the group;



684 C. Orlandi et al.

party σ then finds the closest point in this set to gσ. As long as both parties find
the same point, this will lead to a correct share conversion. To make this process
efficient, the distance t between successive points can’t be too large, since the
running time will be O(t). However, there is then an inherent ≈ 1/t probability
of failure, in case a point lies between the original two shares and they fail to
agree.

This leads to a tradeoff between running time and correctness of the share
conversion procedure. Dinur, Keller and Klein [DKK18] described an improved
conversion algorithm, which achieves 1/t error probability in only O(

√
t) steps.

On the negative side, they showed that any algorithm which beats this could
be used to improve the cost of finding discrete logarithms in an interval, a well-
studied problem that is believed to be hard.

Despite the correctness difficulty, this weaker form of HSS still suffices for
many applications including sublinear secure two-party computation, with some
additional work to correct for errors [BGI16a,BGI17].

Share Conversion in Paillier. By moving to a Paillier group (Z∗
N2), we can

overcome the challenges of (a) agreeing on a distinguished point and (b) effi-
ciently finding the distance of a multiplicative share from that point, without
requiring a correctness/efficiency tradeoff.

The parties’ multiplicative shares will still have the form g0, g1 such that g1 =
g0 ·gz; however, now we take g = (1+N), which has order N in Z

∗
N2 . To find the

distinguished point h, the parties simply reduce their shares mod N . Remarkably,
this leads to the parties always agreeing upon the same value h, which is also
guaranteed to be the smallest value in the coset X = (g0, g0 · g, . . . , g0 · gN−1).
To see that parties agree on h, notice that since (1+N)x ≡ 1 (mod N), we have
g0 ≡ g1 (mod N). To see that h lies in X, write g0 = (h + h′N) and suppose
that h = g0(1 + N)s for some s. Then, since (1 + N)s ≡ (1 + sN) (mod N2),
we have h ≡ (h + h′N)(1 + sN) (mod N2), which we can easily solve to get
s ≡ −h′h−1 (mod N).

Given this, party σ can compute the distance from their multiplicative shares
to h without the use of brute force. They simply take h/gσ = (1+N)zσ , and then
take the discrete logarithm of this (exploiting the fact that discrete logs are easy
with base 1 + N) to find their additive share zσ satisfying z0 − z1 = z mod N .

As well as removing the correctness error, moving to Paillier groups has
removed the limitation that messages must be small, since we can efficiently
apply share conversion to shares of any message in ZN . We are still missing
one step, however; to be able to continue the HSS computation, we need shares
of z over the integers, rather than modulo N . Using a trick previously used in
an LWE-based scheme [BKS19], if z is sufficiently smaller than N , with high
probability subtractive shares of z modulo N are already valid shares over the
integers. Assuming z to be much smaller than N is not very limiting, since we
can still have, say, z around

√
N and achieve both negligible failure probability

and exponentially large plaintexts.
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HSS Variants. We use the trick described above to get homomorphic secret
sharing for branching programs. We subtractively share (digits of) the Paillier
decryption key d (where d ≡ 1 (mod N) and d ≡ 0 (mod φ(N))) between the
two parties. Similarly to [FGJS17], we can use such a sharing of the secret key to
go from a Paillier ciphertext to a divisive sharing of the underlying message x of
the form g1 = g0·(1+N)x. Once we have that, we can obtain a subtractive sharing
of x, as described above. Given subtractive shares of d times some y ∈ [N ], we
can similarly get a divisive sharing—and then a subtractive sharing—of xy.
Using encryptions of digits of the key d, we can maintain the invariant that we
always have subtractive shares of d times our intermediate values available, so
we can continue the computation and multiply more encrypted values by our
intermediate values.

There are two downsides to our Paillier-based HSS scheme: (1) it requires
trusted setup (to distribute shares of the key d), and (2) since we use encryptions of
digits of d, we need to assume the circular security of Paillier. We can avoid trusted
setup by instead using Paillier-ElGamal encryption [CS02,DGS03,BCP03]. When
using Paillier-ElGamal, once a modulus N is generated and published, the parties
need only do a public-key style setup, where each party independently generates a
secret/public key pair, and publishes its public key, following a previous ElGamal-
based method [BGI17]. We can additionally avoid assuming circular security by
using the Brakerski-Goldwasser scheme [BG10], which is provably circular-secure.
The downside of using this scheme is much larger ciphertexts.

Pseudorandom Correlation Functions. Our pseudorandom correlation
functions use techniques similar to our Paillier-based homomorphic secret shar-
ing construction, with the difference that the Paillier decryption key d is known
to one of the parties (whereas before, it was secret shared). Our PCF construc-
tions also crucially rely on the fact that Paillier ciphertexts can be obliviously
sampled; any element in Z

∗
N2 is in fact a valid ciphertext! In our PCF for the

VOLE correlation, one party knows d, the other party knows a value x, and dx
is subtractively secret shared between the two. Given a random ciphertext, the
party who knows d can decrypt it to learn a, and both parties can recover shares
of xa using the trick from our HSS construction.

We get a PCF for OT from similar techniques, but using the Goldwasser-
Micali bit-encryption scheme [GM82], which admits a simple distributed discrete
log procedure (as also observed in [DGI+19]). We also construct the weaker
notion of a PCG for OLE, by essentially generating many instances of the
VOLE PCF setup, but compressing them in clever ways using the LPN assump-
tion together with function secret sharing, inspired by previous PCG construc-
tions [BCGI18]. This construction also generalizes in several ways, to give secret-
shared degree-2 correlations over ZN or Z2, and to give PCFs when relying on
the variable-density LPN assumption [BCG+20a] instead of standard LPN.
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Public-Key Setup for PCFs. Our PCF for VOLE requires a setup where
one party knows d, the other knows x, and both hold subtractive shares of
dx. (Our PCF for OT uses a similar setup.) We show that such setup can be
instantiated non-interactively ; each party locally generates a secret/public key
pair, and extracts the setup information it needs from its own key pair and the
other party’s public key.

The PCF setup itself can be seen as an OLE instance for values x and d. So,
our public-key setup is based on a novel non-interactive vector-OLE protocol
that can be seen as a variant of Bellare-Micali oblivious transfer [BM90] with a
CRS. Their original non-interactive oblivious transfer protocol allows two parties
to use a (non-reusable) PKI setup to non-interactively obtain an OT. In our
Paillier-based variant, instead of only producing OT – and crucially thanks to
our distributed discrete log procedure – we show how the parties can obtain a
vector OLE, where the sender’s input is x, the receiver’s input are some values
a1, . . . , an, and the parties end up with additive sharings of the product x · ai

for all i’s. This suffices to generate the keys for our PCF constructions non-
interactively.

2 Preliminaries

We work with Blum integers of the form N = pq, where p and q are safe primes.2

We let (N, p, q) ← GenPQ(1λ) be a randomized algorithm which, on input the
security parameter λ, samples two such random primes p, q of length � = �(λ),
and outputs (N, p, q). In some of our constructions, N = pq will be a public
modulus generated by a trusted setup algorithm (such that no-one knows the
factorization p and q), while in other cases the factorization will be known to
one party.

2.1 Assumptions

Assumption 1 (Decisional Composite Residuosity (DCR) Assumption). For
(N, p, q) ← GenPQ(1λ), let g0 ← Z

∗
N2 , and g1 = gN

0 mod N2. For b ← {0, 1},
for all PPT algorithms A,

Pr[A(N, gb) = b] ≤ 1
2

+ negl(λ).

Assumption 2 (Quadratic Residuosity (QR) Assumption). For (N, p, q) ←
GenPQ(1λ), let g0 ← Z

∗
N , and g1 = g20 mod N . For b ← {0, 1}, for all PPT

algorithms A,

Pr[A(N, gb) = b] ≤ 1
2

+ negl(λ).

2 A safe prime p is equal to 2p′ + 1 where p′ is also prime. This is not actually
required by all our constructions, but for simplicity we use the same group generation
algorithm through the paper.
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We also leverage a lemma from Brakerski and Goldwasser [BG10] that refers
to the interactive vector game. We rephrase the lemma here in terms of Paillier
groups only. Consider the decomposition Z

∗
N2 = GR×GM , where GR is the group

of Nth residues modulo N2 and GM is the group of elements of orders that divide
N . The DCR assumption (Assumption 1) states that a random element from
GR is indistinguishable from a random element in Z

∗
N2 . In the interactive vector

game, the challenger samples a bit b ← {0, 1}, and (g1, . . . , gl) ← G
l
R (for a

parameter l). It sends (g1, . . . , gl) to the adversary. The adversary then makes
adaptive queries of the form (a1, . . . , al) ∈ G

l
M , to which the challenger responds

by sampling r from [N2] and returns (ab
1g

r
1, . . . , a

b
l g

r
l ). Finally, the adversary

returns a guess b′ at the value of b.

Lemma 2.1 (Rephrased Lemma B.1 From [BG10]). Assuming the DCR
assumption, for all efficient adversaries A, the probability that A guesses b cor-
rectly in the interactive vector game is at most negligibly greater than half.

2.2 Encryption

KDM Security. In some of our constructions, we assume that (variants of)
the Paillier encryption scheme are key-dependent message (KDM) secure. The
definition we use is similar to the one given by Brakerski and Goldwasser [BG10],
with the differences that we only consider one key pair, and do not consider
adaptive adversary queries. (This makes for a weaker definition, and thus a
milder assumption.)

Definition 2.2 (KDM Security). An encryption scheme (ES.Gen,ES.Enc,
ES.Dec) is KDM secure over the set of programs F if for all security parameters
λ ∈ N, for all polynomial sets of fixed output length programs f1, . . . , fρ ∈ F and
for all PPT adversaries A,

∣
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x0,i ← fi(sk) for i ∈ [ρ],

x1,i ← 0|x0,i| for i ∈ [ρ],
ctb,i ← ES.Enc(pk, xb) for b ∈ {0, 1}, i ∈ [ρ],
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≤ negl(λ).

Paillier Encryption. While there are many known variants of the Paillier
cryptosystem [Pai99], we use the variant where the decryption key is an integer
d such that raising any ciphertext to the power d gives (1 + N)m (mod N2),
where m is the message and N the public modulus. Since it is easy to compute
discrete logarithms with base 1 + N in Z

∗
N2 , this gives an efficient decryption

procedure. We describe the Paillier cryptosystem below; its security is based on
the DCR assumption (Assumption 1).

Paillier.Gen(1λ) :
1. Sample (N, p, q) ← GenPQ(1λ).
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2. Compute d ∈ Z such that d ≡ 0 (mod φ(N)) and d ≡ 1 (mod N).
3. Output pk = N , sk = d.

Paillier.Enc(pk, x) :
1. Sample a random r ← [N2].
2. Output ct = rN (1 + N)x mod N2.

Observe that, since (1 + N)x ≡ 1 + xN (mod N2), (1 + N) has order N
in Z

∗
N2 . Additionally, observe that since the order of r in Z

∗
N2 must divide

Nφ(N),

ctd (mod N2) ≡ rNd(1 + N)dx (mod N2)

≡ rNd (mod Nφ(N))(1 + N)dx (mod N) (mod N2)

≡ (1 + N)x (mod N2)
≡ 1 + xN.

Paillier.Dec(sk, ct) :
1. Output x = (ctd mod N2)−1

N .

We will also use the following fact, namely, that the encryption function is
a bijection. In particular, this implies that a randomly chosen element of ZN2

defines a valid ciphertext with overwhelming probability.

Proposition 2.3 ([Pai99]). The following map is a bijection:

ZN × Z
∗
N → Z

∗
N2

(x, r) �→ rN (1 + N)x

In our homomorphic secret sharing constructions (Sect. 4), we use two other
flavors of Paillier encryption: a Paillier-ElGamal hybrid, and the KDM-secure
scheme due to Brakerski and Goldwasser [BG10]. In Sect. 5, we also use the
Goldwasser–Micali cryptosystem [GM82].

2.3 Secret Sharing

We work with subtractive secret sharing. We let 〈x〉(m)
0 , 〈x〉(m)

1 denote a sub-
tractive sharing of x modulo m, such that 〈x〉(m)

1 − 〈x〉(m)
0 ≡ x (mod m). If one

share is chosen uniformly at random from [m] (and the other is chosen to satisfy
the equation above), each share alone perfectly hides x, while the two together
allow the reconstruction of x.

Similarly, we let 〈x〉(Z)0 , 〈x〉(Z)1 denote a subtractive sharing of x over the
integers, such that 〈x〉(Z)1 − 〈x〉(Z)0 = x. For x ∈ {0, . . . , m − 1}, in order for each
share alone to statistically hide x, 〈x〉(Z)1 can be chosen uniformly at random
from the range {0, . . . , m2κ − 1}, where κ is the statistical security parameter.
If 〈x〉(Z)0 is then defined as 〈x〉(Z)1 − x, then it is within statistical distance 2−κ

of the uniform distribution.
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3 Share Conversion for Paillier Encryption

Suppose two parties hold respective values g0 and g1 in Z
∗
N2 , such that g1 ≡

g0(1 + N)x (mod N2) for some x ∈ ZN . The parties wish to locally convert
these multiplicative (or, rather, divisive) shares into subtractive shares of x.

We can view g0 and g1 as elements of the coset

Xg0 :=
{
g0, g0(1 + N), g0(1 + N)2, · · · , g0(1 + N)N−1

}
.

If both parties can agree upon a distinct element of this set, say h, without
communicating, then they can each calculate the distance (in terms of powers of
1+N) between gi and h to obtain a subtractive share of x. In particular, if they
obtain h = g0(1 + N)z for some z, then P1 can compute the discrete logarithm
of g1/h = (1 + N)x−z and output z1 := x − z, while P0 uses g0/h = (1 + N)−z

to get z0 := −z, giving z1 − z0 ≡ x (mod N).
To agree upon such a representative h, we have the parties compute the

smallest element from Xg0 , defined by viewing elements of Z
∗
N2 as integers in

{0, . . . , N2 − 1}. Surprisingly, this can be done by simply computing h = gi

mod N . Since (1 + N)x ≡ 1 (mod N), it is clear that this gives the same h for
both g0 and g1. It remains to show that h lies in the same coset.

Proposition 3.1. Let g ∈ Z
∗
N2 , h = g mod N and h′ = �g/N�. Then h can be

written as g(1 + N)−z, where z = h′h−1 mod N .

Proof. Suppose that we can write h = g(1 + N)−z mod N2, for some z ∈ Z.
Since g = h + h′N , this is equivalent to

h = (h + h′N) · (1 − zN) mod N2

= h + (h′ − zh)N mod N2

The above is satisfied if and only if h′N ≡ zhN (mod N2), or equivalently,
z ≡ h′h−1 (mod N). ��

This gives us a direct way to solve the distributed discrete log problem,
which we present in Algorithm 3.2. Instead of computing gi/h and then finding
the discrete logarithm with respect to 1 + N , we can simply compute z as in
Proposition 3.1.

Algorithm 3.2: DDLogN (g)

1. Write g = h + h′N , where h, h′ < N , using the division algorithm.
2. Output z = h′h−1 mod N .

Lemma 3.3. Let g0, g1 ∈ Z
∗
N2 such that g1 = g0(1 + N)x mod N2. If zb =

DDLogN (gb), then z1 − z0 ≡ x (mod N).
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Proof. First, observe that since each gi is in Z
∗
N2 , it must have an inverse modulo

N , so DDLog will not fail.
From Proposition 3.1, each zi satisfies h ≡ gi(1 + N)−zi (mod N2), where

h = g0 mod N = g1 mod N . This gives

g1(1 + N)−z1 ≡ g0(1 + N)−z0 (mod N2)

⇔ (1 + N)x−z1 ≡ (1 + N)−z0 (mod N2)
⇔ x ≡ z1 − z0 (mod N).

��
Remark 3.4. We can alternatively interpret the share conversion procedure by
viewing each input gi as a Paillier ciphertext gi = (1 + N)xirN for some
(unknown) message xi, and the same randomness r. Under this condition, share
conversion allows each party to locally obtain a subtractive share of x = x1 −x0.
Note that this does not violate the security of Paillier, because we were given
two ciphertexts with the same randomness.

3.1 Using a Secret Shared Decryption Key

Getting g0, g1 such that g1 = g0(1 + N)x given a Paillier encryption g = (1 +
N)xrN of x can be done using subtractive shares (over the integers) 〈d〉(Z)0 , 〈d〉(Z)1

of the Paillier decryption key d (where 〈d〉(Z)1 − 〈d〉(Z)0 = d, d ≡ 1 (mod N), and
d ≡ 0 (mod φ(N))).

Using our ciphertext g = (1 + N)xrN , we compute

g0 = g〈d〉(Z)0 = (1 + N)x〈d〉(Z)0 (r〈d〉(Z)0 )N mod N2,

and
g1 = g〈d〉(Z)1 = (1 + N)x〈d〉(Z)1 (r〈d〉(Z)1 )N mod N2.

Since d ≡ 0 (mod φ(N)), it follows that d = 〈d〉(Z)1 −〈d〉(Z)0 ⇒ 〈d〉(Z)0 ≡ 〈d〉(Z)1

(mod φ(N)) and therefore

r〈d〉(Z)1 N ≡ r〈d〉(Z)0 N (mod N2).

Then, as desired,

g1
g0

≡ (1 + N)x(〈d〉(Z)1 −〈d〉(Z)0 ) (mod N2)

≡ (1 + N)x (mod N2).

Remark 3.5. If, instead of subtractive shares of d, we have shares of yd (that is,
〈yd〉(Z)0 , 〈yd〉(Z)1 such that 〈yd〉(Z)1 − 〈yd〉(Z)0 = yd), we can use these as described
above to get g0, g1 such that g1 ≡ g0(1 + N)xy (mod N2).
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Fig. 1. Security of HSS.

3.2 Getting Shares over Integers

The previous sections describe how to use g1 = g0(1 + N)x mod N2 to get
subtractive shares of x over ZN . However, we often want subtractive shares of x
over the integers. This can be done as long as x is sufficiently smaller than N .

Observe that, if z1 −z0 ≡ x (mod N), then z1 −z0 = x as long as z1 −x ≥ 0.
There are only x values of z1 such that this isn’t true; so, for x < N/2κ and
uniform choice of z1 ∈ ZN , z1 − z0 = x over Z, except with probability ≤ 2−κ.

4 Homomorphic Secret Sharing

4.1 Definitions

We base our definitions of homomorphic secret sharing (HSS) on those given by
Boyle et al. [BKS19].

Definition 4.1 (Homomorphic Secret Sharing). A (2-party, public-
key) Homomorphic Secret Sharing (HSS) scheme for a class of programs
P over a ring R with input space I ⊆ R consists of PPT algorithms
(HSS.Setup,HSS.Input,HSS.Eval) with the following syntax:

– HSS.Setup(1λ) → (pk, (ek0, ek1)): Given a security parameter 1λ, the setup
algorithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).

– HSS.Input(pk, x) → (I0, I1): Given public key pk and private input value x ∈ I,
the input algorithm outputs input information (I0, I1).

– HSS.Eval(σ, ekσ, (I(1)σ , . . . , I
(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1},

evaluation key ekσ, vector of ρ input values and a program P ∈ P with ρ
input values, the homomorphic evaluation algorithm outputs yσ ∈ R, which
is party σ’s share of an output y ∈ R.

Note that, in the constructions we consider, we have I0 = I1. We say that
(HSS.Setup,HSS.Input,HSS.Eval) is a homomorphic secret sharing scheme for
the class of programs P if the following conditions hold:

– Correctness. For all security parameters λ ∈ N, for all programs P ∈ P, for
all x(1), . . . , x(ρ) ∈ I (where I is the input space of P ), for (pk, ek0, ek1) ←
HSS.Setup(1λ) and for (I(i)0 , I

(i)
1 ) ← HSS.Input(pk, x(i)), we have
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Pr
[
y0 + y1 = P (x(1), . . . , x(ρ))

]
≥ 1 − negl(λ),

where
yσ ← HSS.Eval(σ, ekσ, (I(1)σ , . . . , I(ρ)σ ), P )

for σ ∈ {0, 1} where the probability is taken over the random coins of
HSS.Setup, HSS.Input and HSS.Eval.

– Security. For each σ ∈ {0, 1} and non-uniform adversary A (of size polyno-
mial in the security parameter λ), it holds that

∣
∣
∣Pr[ExpHSS,sec

A,σ,0 (λ) = 1] − Pr[ExpHSS,sec
A,σ,1 (λ) = 1]

∣
∣
∣ ≤ ε(λ)

for all sufficiently large λ, where ExpHSS,sec
A,σ,b (λ) for b ∈ {0, 1} is as defined in

Fig. 1.

Restricted Multiplication Straight-Line Programs. Our HSS schemes
support homomorphic evaluation for a class of programs called Restricted Mul-
tiplication Straight-line (RMS) programs [Cle91,BGI16a]. An RMS program is
an arithmetic circuit, with the restriction that every multiplication must be
between an input value and an intermediate value of the computation, called a
memory value. This class of programs captures polynomial-size branching pro-
grams, which includes arbitrary logspace computations and NC1 circuits.

Definition 4.2 (RMS programs). An RMS program consists of a magnitude
bound Bmsg and a sequence of instructions of the four types described below. The
inputs to the program are initially provided as a set of input values Ix, for each
input x ∈ Z. We consider the class of programs where the absolute value of all
memory values during the computation is bounded above by Bmsg.

– ConvertInput(Ix) → Mx: Load an input x into memory.
– Add(Mx,My) → Mz: Add two memory values, obtaining z = x + y.
– Add(Ix, Iy) → Iz: Add two input values, obtaining z = x + y.
– Mul(Ix,My) → Mz: Multiply a memory value by an input, obtaining z = x · y.
– Output(Mx, nout) → x mod nout: Output a memory value, reduced modulo nout

(for some nout ≤ Bmsg).

We additionally assume that each instruction is implicitly assigned a unique
identifier id ∈ {0, 1}∗.

If at any step of execution the size of a memory value exceeds the bound Bmsg

or becomes negative (i.e. z > Bmsg or z < 0), the output of the program on the
corresponding input is undefined. Otherwise, the output is the sequence of Output
values. Note that we consider addition of input values merely for the purpose of
efficiency.
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4.2 HSS from Paillier

We follow the blueprint from Fazio et al. [FGJS17], based on Boyle et al. [BGI16a]
to build an HSS scheme for RMS programs. Our scheme requires that an encryp-
tion of the secret decryption key be available. However, for correctness, our
scheme also requires that all ciphertexts encrypt values much smaller than N ;
so, we are forced to decompose our secret key into digits before encrypting it.
We use Bsk to refer to the base used for this decomposition, or, in other words,
as an upper bound on the size of each digit. Bsk affects the efficiency of our
scheme, since it will take � = logBsk

(N2) ciphertexts to contain our secret key.
Bsk is also related to the bound Bmsg on our message space, since we require
that all our input and memory values times a digit of the secret key be at least
2κ times smaller than N : we get Bmsg = N

Bsk2κ .
If we want Bmsg = 2κ, then we get Bsk = N

22κ . As long as N is at least 3κ
bits long, Bsk will be at least κ bits long; so, we will need around 6 ciphertexts
to contain our secret key.

As in RMS programs, we consider input values and memory values. Input
values, denoted I, are the inputs to the computation, consisting of Paillier encryp-
tions. Memory values, denoted M, are subtractively secret-shared intermediate
values. More concretely, let d(0), . . . , d(�−1) denote the digits of d (modulo some
base Bsk), where d is the Paillier decryption key.

– An input value Ix consists of X, which is a Paillier encryption of x, and
X(0), . . . , X(�−1), which are Paillier encryptions of d(0)x, . . . , d(�−1)x.

– A memory value Mx = (Mx,0,Mx,1) consists of subtractive sharings of x and
d(0)x, . . . , d(�−1)x over the integers. That is, party σ’s memory value for x is
Mx,σ = (〈x〉(Z)σ , 〈xd(0)〉(Z)σ , . . . , 〈xd(�−1)〉(Z)σ ).

We describe our HSS scheme for RMS programs in Construction 4.4. We
defer the proof of Theorem 4.3 to the full version of this paper.

Theorem 4.3. Construction 4.4 is a secure HSS scheme assuming the KDM
security of the Paillier encryption scheme, and assuming that F (N) is a secure
PRF.

Construction 4.4: Construction HSSPaillier

Setup(1λ): Set up the scheme.
1. Sample (pkPaillier = N, sk = d) ← Paillier.Gen(1λ). Let d(0), . . . , d(�−1)

denote the digits of d base Bsk.
2. Subtractively secret share the digits of d as 〈d(i)〉(Z)0 , 〈d(i)〉(Z)1 such that

〈d(i)〉(Z)1 −〈d(i)〉(Z)0 = d(i). Each 〈·〉(Z)1 is drawn uniformly at random from

[2κBsk]; 〈·〉(Z)0 is selected to complete the subtractive sharing.
3. Sample a key kprf for the prf F (2κ) which outputs values in [2κ].

4. For σ ∈ {0, 1}, let ekσ = (kprf , 〈d(0)〉(Z)σ , . . . , 〈d(�−1)〉(Z)σ ).
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5. Encrypt the digits of d as D(0) ← Paillier.Enc(pkPaillier, d
(0)), . . . , D(�−1) ←

Paillier.Enc(pkPaillier, d
(�−1)).

6. Let pk = (pkPaillier, D
(0), . . . , D(�−1)).

7. Output (pk, (ek0, ek1)).
Input(pk, x): Generate an input value for x.

1. Generate a Paillier ciphertext X ← Paillier.Enc(pkPaillier, x).
2. For i ∈ [0, . . . , � − 1], generate an encryption X(i) of d(i)x by homo-

morphically multiplying D(i) by x, and then re-randomizing. Concretely
using Paillier, X(i) = rN

i (D(i))x for a randomly sampled ri ← Z
∗
N2 .

3. Let I = (X, X(0), . . . , X(�−1)).
4. Output (I0 = I, I1 = I).

ConvertInput(σ, ekσ, I = (X, X(0), . . . , X(�−1))): Convert an input to a memory

value. First, we take a canonical secret sharing of 1 as 〈1〉(Z)1 = F
(2κ)
kprf

(1) +

1 mod N , and 〈1〉(Z)0 = F
(2κ)
kprf

(1). Then we create a memory value for 1

as M1,σ = (〈1〉(Z)σ , 〈d(0)〉(Z)σ , . . . , 〈d(�−1)〉(Z)σ ) for σ ∈ {0, 1}, and evaluate
Mul(σ, ekσ, Ix,M1,σ).a

Add(σ, ekσ,Mx,σ,My,σ): Add two memory values.

1. Parse Mx,σ = (〈x〉(Z)σ , 〈xd(0)〉(Z)σ , . . . , 〈xd(�−1)〉(Z)σ ), and

My,σ = (〈y〉(Z)σ , 〈yd(0)〉(Z)σ , . . . , 〈yd(�−1)〉(Z)σ ).

2. Let 〈z〉(Z)σ = 〈x〉(Z)σ + 〈y〉(Z)σ , and 〈zd(i)〉(Z)σ = 〈xd(i)〉(Z)σ + 〈yd(i)〉(Z)σ for
i ∈ [0, . . . , � − 1].

3. Output Mz,σ = (〈z〉(Z)σ , 〈zd(0)〉(Z)σ , . . . , 〈zd(�−1)〉(Z)σ ).
Add(pk, Ix = (X, X(0), . . . , X(�−1)), Iy = (Y, Y (0), . . . , Y (�−1))): Add two input

values by homomorphically evaluating addition on the ciphertexts to get
Iz = (Z, Z(0), . . . , Z(�−1)). Concretely using Paillier, Z = XY mod N2, and
Z(i) = X(i)Y (i) mod N2. Output Iz.

Mul(σ, ekσ, Ix,My,σ)): Multiply an input value and a memory value. We let id be
the index of this multiplication; all such indices are assumed to be unique.
1. Parse Ix = (X, X(0), . . . , X(�−1)).

2. Parse My,σ = (〈y〉(Z)σ , 〈yd(0)〉(Z)σ , . . . , 〈yd(�−1)〉(Z)σ ).

3. Let 〈yd〉(Z)σ =
∑�−1

i=0 Bsk
i〈yd(i)〉(Z)σ be a subtractive share of yd over the

integers.
4. Let

〈z〉(N)
σ = DDLogN ((X)〈yd〉(Z)σ ) + F

(N)
kprf

(id) (mod N).

This yields a subtractive sharing of z = xy (mod N). Since z � N , we
can take this to be a share of z over the integers; that is,

〈z〉(Z)σ = 〈z〉(N)
σ .

5. Similarly, let

〈zd(i)〉(N)
σ = DDLogN ((X(i))〈yd〉(Z)σ ) + F

(N)
kprf

(id, i),

and
〈zd(i)〉(Z)σ = 〈zd(i)〉(N)

σ .

6. Output Mz,σ = (〈z〉(Z)σ , 〈zd(0)〉(Z)σ , . . . , 〈zd(�−1)〉(Z)σ ).
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Output(σ, ekσ,Mx,σ = (〈x〉(Z)σ , 〈xd(0)〉(Z)σ , . . . , 〈xd(�−1)〉(Z)σ ), nout): Output

〈x〉(Z)σ mod nout.

a Note that in our HSS construction based on Paillier, we do not actually use
〈1〉(Z)σ in the multiplication; it is only necessary for Output. However, in HSS
constructions based on PaillierEG and BG described in the full version of this
paper, this will be needed.)

4.3 HSS Variants

The HSS construction in the previous section has two drawbacks: (1) it requires
a local trusted setup for each pair of parties, and (2) its security relies on the
assumption that Paillier is KDM secure. We address both these issues by giving
two alternative HSS constructions. In the first one we replace Paillier encryption
with the Paillier-ElGamal encryption scheme [CS02,DGS03,BCP03], which is
essentially ElGamal over the group Z

∗
N2 . In this variant multiple users can share

the same modulus N , and the decryption key is a random exponent d (as in ElGa-
mal). This has the advantage of only requiring a public-key style setup, where
each party publishes a public key, and each can then non-interactively derive
their shared public key and their own evaluation key. Note that the trusted
setup now only contains the modulus N , and can be used by any number of
parties. In the last construction we replace Paillier encryption with the prov-
ably KDM secure encryption scheme of Brakerski and Goldwasser [BG10]. This
has the unexpected advantage that generating encryptions of the digits of the
secret key can trivially be done having access to the public key only. While both
alternative constructions follow the same blueprint as the one from “regular”
Paillier, several details need to be taken care of. The details of the constructions
are deferred to the full version of this paper.

5 Pseudorandom Correlation Functions

In this section, we present our constructions of pseudorandom correlation func-
tions (PCFs). We first recap the syntax and definitions of a PCF in Sect. 5.1.
Then, in Sect. 5.2, we give our PCF for the vector oblivious linear evaluation
(VOLE) correlation, based on the DCR assumption, and in Sect. 5.3, our PCF
for the oblivious transfer (OT) correlation based on quadratic residuosity. Our
public-key variants of these PCFs are deferred until Sect. 6. Finally, in Sect. 5.4,
we also construct the weaker notion of a pseudorandom correlation generator
(PCG) for the oblivious linear evaluation (OLE) correlation, based on a combi-
nation of the DCR and learning parity with noise assumptions.



696 C. Orlandi et al.

5.1 Definitions

To formalize our constructions for VOLE and OT, we use the concept of a pseu-
dorandom correlation function (PCF) by Boyle et al. [BCG+20a]. Informally, a
pseudorandom correlation function enables two parties to sample an arbitrary
amount of correlated randomness, given a one-time setup that outputs a pair
of short, correlated keys. This extends the previous notion of a pseudorandom
correlation generator [BCG+19], analogously to how a PRF extends a PRG,
where in the latter, the outputs are typically of bounded length and/or must be
computed all at once.

One example of desirable correlated randomness is an instance of random
oblivious transfer (OT), where one party obtains (s0, s1) uniform over {0, 1}2,
and the other obtains (b, sb) for b uniform over {0, 1}. Another example is
vector oblivious linear evaluation (VOLE) over a ring R, where the parties
obtain respective outputs (u, v) ∈ R2 and (x,w) ∈ R2, where u, v are random,
w = ux + v, and x is sampled at random, but fixed for all samples from the
correlation.

We model a target correlation as a probabilistic algorithm Y, which produces
a pair of outputs (y0, y1) for the two parties. To define security, we additionally
require the correlation to be reverse-sampleable, meaning that given an output
yσ, there is an efficient algorithm which produces a y1−σ from the distribution
of Y conditioned on yσ. Note that in the case of VOLE, due to the fixed x, we
also use a master secret key msk which parametrizes the algorithm Y. Such a
correlation with a master secret key is called a correlation with setup, which we
focus on below.

Definition 5.1 (Reverse-sampleable correlation with setup). Let 1 ≤
�0(λ), �1(λ) ≤ poly(λ) be output-length functions. Let (Setup,Y) be a tuple of
probabilistic algorithms, such that

– Setup, on input 1λ, returns a master key msk, and
– Y, on input 1λ and msk, returns a pair of outputs (y0, y1) ∈ {0, 1}�0(λ) ×

{0, 1}�1(λ).

We say that the tuple (Setup,Y) defines a reverse sampleable correlation with
setup if there exists a probabilistic polynomial time algorithm RSample such that

– RSample, on input 1λ, msk, σ ∈ {0, 1} and yσ ∈ {0, 1}�σ(λ), returns y1−σ ∈
{0, 1}�1−σ(λ) such that for all msk,msk′ in the image of Setup and all σ ∈
{0, 1}, the following distributions are statistically close:

{(y0, y1) | (y0, y1) ← Y(1λ,msk)}
{(y0, y1) | (y′

0, y
′
1) ← Y(1λ,msk′), yσ ← y′

σ, y1−σ ← RSample(1λ,msk, σ, yσ)}

A PCF for a correlation Y consists of a key generation algorithm, Gen, which
outputs a pair of correlated keys, together with an evaluation algorithm, Eval,
which is given one of the keys and a public input, and produces a correlated
output. In a weak PCF, we only consider running Eval with randomly chosen
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Fig. 2. Pseudorandom Y-correlated outputs of a PCF.

Fig. 3. Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as
in Definition 5.1.

inputs, whereas in a strong PCF, the inputs can be chosen arbitrarily. Boyle et al.
[BCG+20a] show that any weak PCF can be used together with a programmable
random oracle to obtain a strong PCF, so from here on, our default notion of
PCF will be a weak PCF.

There are two security requirements for a PCF: firstly, a pseudorandomness
requirement, meaning that the joint distribution of both parties’ outputs of Eval
are indistinguishable from outputs of Y. Secondly, there is a security property,
which intuitively requires that pseudorandomness still holds even when given
one of the parties’ keys.

Definition 5.2 (Pseudorandom correlation function (PCF)). Let
(Setup,Y) fix a reverse-sampleable correlation with setup which has output length
functions �0(λ), �1(λ), and let λ ≤ n(λ) ≤ poly(λ) be an input length function.
Let (PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

– PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ,
outputs a pair of keys (k0, k1);

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈
{0, 1}�σ(λ).

We say (PCF.Gen,PCF.Eval) is a (weak) pseudorandom correlation function
(PCF) for Y, if the following conditions hold:
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– Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-
uniform adversary A of size poly(λ), and every Q = poly(λ), it holds that

∣
∣
∣Pr[ExpprA,Q,0(λ) = 1] − Pr[ExpprA,Q,1(λ) = 1]

∣
∣
∣ ≤ negl(λ)

for all sufficiently large λ, where ExpprA,Q,b(λ) for b ∈ {0, 1} is as defined in
Fig. 2. (In particular, where the adversary is given access to Q(λ) samples.)

– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ),
and every Q = poly(λ), it holds that

∣
∣Pr[ExpsecA,Q,σ,0(λ) = 1] − Pr[ExpsecA,Q,σ,1(λ) = 1]

∣
∣ ≤ negl(λ)

for all sufficiently large λ, where ExpsecA,Q,σ,b(λ) for b ∈ {0, 1} is as defined in
Fig. 3 (again, with Q(λ) samples).

5.2 PCF for Vector-OLE from Paillier

Vector oblivious linear evaluation, or VOLE, over a ring R = R(λ), is a cor-
relation defined by an algorithm Setup, which outputs msk = x for a random
x ∈ R, and an algorithm YVOLE, which on input msk, samples random elements
u, v ∈ R, computes w = ux + v and outputs the pair ((u, v), (w, x)). Note that
w, v can be viewed as a subtractive secret sharing of the product ux. Since x is
fixed, this means that a batch of VOLE samples can be used to perform scalar-
vector multiplications on secret-shared inputs, as part of, for instance, a secure
two-party computation protocol.

The main idea behind our PCF for VOLE is the following. In the standard
Paillier cryptosystem, every element of Z

∗
N2 defines a valid ciphertext, which

makes it possible to obliviously sample an encryption of a random message,
without knowing the underlying message. We exploit this by having both par-
ties locally generate the same random ciphertexts3, which are then viewed as
encryptions of random inputs a in the HSS construction. Then, given a subtrac-
tive secret sharing of xd, where d is the secret key and x ∈ ZN is some fixed
value, the parties can use the distributed multiplication protocol from the HSS
scheme to obtain shares z0, z1 such that z1 = z0 + ax. If one party is addition-
ally given the secret key d (and hence learns the a’s) and the other party is
given x, then this process can be repeated to produce an arbitrarily long VOLE
correlation.

In the PCF construction, shown in Construction 5.4, the values x, d and
shares of xd are distributed by the PCF Gen algorithm, while the random cipher-
texts are given as public inputs to the Eval algorithm, since we are only building
a weak PCF and not a strong one. Additionally, the parties use a PRF to ran-
domize their output shares and ensure that these are uniformly distributed. We
defer the proof of Theorem 5.3 to the full version of this paper.

3 E.g. with a random oracle, or some other public source of randomness.
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Theorem 5.3. Suppose the DCR assumption holds, and that F is a secure PRF.
Then Construction 5.4 is a secure PCF for the VOLE correlation, YVOLE, over
the ring ZN .

Construction 5.4: PCF for Vector Oblivious Linear Evaluation

Let F : {0, 1}λ × {0, 1}λ → ZN be a pseudorandom function.

Gen: On input 1λ:

1. Sample (N, p, q) ← GenPQ(1λ).
2. Compute d ∈ Z such that d ≡ 0 (mod ϕ(N)) and d ≡ 1 (mod N).
3. Sample x ← [N ], y0 ← [N32κ], and let y1 = y0 + x · d over the integers.
4. Sample kprf ← {0, 1}λ.
5. Output the keys k0 = (N, kprf , y0, d) and k1 = (N, kprf , y1, x).

Eval: On input (σ, kσ, c), for a random input c ∈ Z
∗
N2 :

– If σ = 0, parse k0 = (N, kprf , y0, d):
1. Compute a = Paillier.Dec(d, c).
2. Compute z0 = DDLogN (cy0) + Fkprf (c) mod N .
3. Output (z0, a)

– If σ = 1, parse k1 = (N, kprf , y1, x):
1. Compute z1 = DDLogN (cy1) + Fkprf (c) mod N .
2. Output (z1, x)

5.3 PCF for Oblivious Transfer from Quadratic Residuosity

To build a PCF for OT, we will first build a PCF for XOR-correlated OT, where
the sender’s messages are all of the form z1, z1 ⊕s for some fixed string s. This is
formally defined by a correlation Y⊕-OT, where the setup algorithm Setup picks
a random msk = s ← {0, 1}λ, and then each call to Y⊕-OT(msk) first samples
b ← {0, 1}, z0 ← {0, 1}λ, lets z1 = z0 ⊕ b · s, and outputs the pair (z0, b), (z1, s).

Our PCF construction proceeds analogously to the VOLE case, except we
rely on the Goldwasser-Micali cryptosystem instead of Paillier.

GM Encryption. We use the Goldwasser–Micali (GM) cryptosystem [GM82],
with the simplified decryption procedure by Katz and Yung [KY02], which allows
threshold decryption when p, q are both 3 (mod 4).4

GM.Gen(1λ) :
1. Sample (N, p, q) ← GenPQ(1λ).

4 One can also obtain a similar threshold-compatible decryption under more general
requirements for the modulus; see Desmedt and Kurosawa [DK07].
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2. Let d = φ(N)/4 = (N − p − q + 1)/4.
3. Output pk = N , sk = d.

GM.Enc(pk, x ∈ {0, 1}) :
1. Sample a random r ← ZN .
2. Output ct = r2(−1)x mod N .

Observe that, if x = 0, ct will be a random quadratic residue modulo N ; if
x = 1, ct will be a random non-residue.

GM.Dec(sk, ct) :
1. Compute y = ctd mod N , which is in {1,−1}, and output x = 0 if y = 1,

or x = 1 if y = −1.

Notice that in the GM cryptosystem, JN (the elements of ZN with Jacobi
symbol 1) defines the set of valid ciphertexts. This allows us to sample a random
ciphertext without knowing the corresponding message, by generating a random
element of ZN and testing that it has Jacobi symbol 1, which can be done
efficiently.

We also use the distributed discrete log procedure DDLogGM, shown in Algo-
rithm 5.5. By inspection, it can be seen that for any two inputs a0, a1 ∈ Z

∗
N

satisfying a1/a0 = (−1)b for a bit b, we have DDLogGM(a0) ⊕DDLogGM(a1) = b.
Note that this procedure was previously used to construct trapdoor hash func-
tions [DGI+19].

Algorithm 5.5: DDLogGM(a ∈ ZN )

1. Map a to an integer in {0, . . . , N − 1}.
2. If a < N/2 then output z = 1, otherwise, output z = 0.

PCF for Oblivious Transfer. The construction proceeds similarly to the
VOLE case, except instead of one sharing, the Gen algorithm samples λ sub-
tractive sharings of sj · d, where d is the GM secret key and sj is one bit of
the sender’s fixed correlated OT offset. Then, given a random encryption of a
bit b in Eval, the parties run DDLogGM λ times to obtain XOR shares of the
string b · s ∈ {0, 1}λ, giving a correlated OT as required. We defer the proof of
Theorem 5.7 to the full version of this paper.

Construction 5.6: PCF for Oblivious Transfer

Let F : {0, 1}λ × ZN → {0, 1}λ be a pseudorandom function.

Gen: On input 1λ:

1. Sample (N, p, q) ← GenPQ(1λ), and let d = ϕ(N)/4.
2. Sample kprf ← {0, 1}λ.
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3. For j = 1, . . . , λ, sample sj ← {0, 1}, y0,j ← [N2κ], and let y1,j = y0,j + sj ·d
over the integers. Write s = (s1, . . . , sλ).

4. Output the keys k0 = (N, kprf , {y0,j}j∈[λ], d) and k1 = (N, kprf , {y1,j}j∈[λ], s).

Eval: On input (σ, kσ, c), for a random input c ∈ JN :

– If σ = 0, parse k0 = (N, kprf , {y0,j}j∈[λ], d):
1. Compute b = GM.Dec(d, c) in {0, 1}.
2. For j = 1, . . . , λ, compute z0,j = DDLogGM(cy0,j ).
3. Let z0 = (z0,0, . . . , z0,λ) ⊕ Fkprf (c).
4. Output (z0, b).

– If σ = 1, parse k1 = (N, kprf , {y1,j}j∈[λ], s):
1. For j = 1, . . . , λ, compute z1,j = DDLogGM(cy1,j ).
2. Let z1 = (z1,1, . . . , z1,λ) ⊕ Fkprf (c).
3. Output (z1, s).

Theorem 5.7. Suppose the QR assumption holds, and that F is a secure PRF.
Then Construction 5.6 is a secure PCF for the correlated OT correlation, Y⊕-OT.

Extension to Random Oblivious Transfer. A correlated OT can be
locally coverted into a random OT, where both of the sender’s messages are
independently random, using a hash function and the technique of Ishai et
al. [IKNP03]. The sender simply applies the hash function to compute its out-
puts H(z1),H(z1 ⊕ s), while the receiver outputs H(z0) = H(z1 ⊕ b · s). Assuming
a suitable correlation robustness property of H, the resulting OT messages are
pseudorandom. It was shown by Boyle et al. [BCG+19,BCG+20a] that this
transformation can be used to convert any PCF or PCG for correlated OT into
one for the random OT correlation. Hence, we obtain the following.

Corollary 5.8. Suppose the QR assumption holds, and there is a secure
correlation-robust hash function. Then, there exists a secure PCF for the random
oblivious transfer correlation.

5.4 PCG for OLE and Degree-2 Correlations from LPN and Paillier

In Sect. 5.2, we showed how to build a PCF for VOLE, where the parties obtain
(u, v) ∈ R2 and (x,w) ∈ R2, respectively, such that u, v are random, w = ux+v,
and x is fixed for all samples from the correlation. In this section we show how
to upgrade this to more general degree-2 correlations, including OLE, where x
is sampled freshly at random for each instance. Of course, if we could get many
VOLE PCF setups, each one of those could yield one OLE instance (if we only
use it once!). Here, we show how to get m setups for the VOLE construction all
at once from a smaller amount of correlated randomness, in what amounts to a
PCG for OLE. (We emphasize that this is a pseudorandom correlation generator,
not function, since it produces a fixed number of correlations.)
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In the main construction we fix N , as well as the associated Paillier decryp-
tion key d, which we give to party 0, across all m instances. Our goal is run m
copies of Construction 5.4 so we would like to give party 1 m random values
x1, . . . , xm, and secret share each dxi over the integers between the two par-
ties. However, this doesn’t give us a PCG, because the size of our setup would
be the same as the number of correlations we are able to produce. In order to
keep our setup size much smaller than m, we instead produce the setup with a
variant of a PCG based on the LPN assumption [BCGI18]. We give party 1 a
sparse n-element vector e of elements in [N ], for m < n, which only contains
t = poly(λ) non-zero elements. (Since it is sparse, it can actually be represented
in t log(n) log(N) � n bits.) By the dual form of the LPN assumption, H · e
for such a sparse e and some public H ∈ Z

m×n looks pseudorandom (if e is
unknown), so we can expand e to give m psuedorandom elements. In order to
similarly compress a sharing of d · e, we use a function secret sharing of the
multi-point function defined by d · e. (Note that we need to use a large enough
modulus in the function secret sharing so that the output shares the parties
obtain are shares over the integers with overwhelming probability.) This allows
both parties to obtain shares of d · e, and then to compute shares of H · (d · e).
This completes the setup of m instances of our VOLE PCF; the parties then use
each of those instances once, to get m instances of the OLE correlation.

We present the complete PCG in Construction 5.10. Preliminaries on FSS
and the proof of Theorem 5.9 are deferred to the full version of this paper.

Theorem 5.9. Let H be a random oracle, F a secure PRF, and suppose that
both the LPN and DCR assumptions hold. Then Construction 5.10 is a secure
PCG for the OLE correlation.

Construction 5.10: PCGOLE

Let H : {0, 1}∗ → ZN2 be a hash function, modelled as a random oracle, and
F : {0, 1}λ × {0, 1}λ → ZN be a PRF.

Let m, n be length parameters with m < n, and H ∈ Z
m×n be a matrix for

which the dual-LPN problem is hard over ZN .

Gen: On input 1λ:

1. Sample (N, p, q) ← GenPQ(1λ).
2. Compute d ∈ Z such that d = 0 mod ϕ(N) and d = 1 mod N .
3. Sample kprf ← {0, 1}λ.
4. Sample a vector e ∈ Z

n
N with t random, non-zero entries, and zero elsewhere.

5. Generate FSS keys kfss0 , kfss1 for the multi-point function defined by d · e, with
domain size n and range ZN′ , for N ′ = N32κ.a

6. Output the seeds k0 = (N, kprf , k
fss
0 , d) and k1 = (N, kprf , k

fss
1 , e).

Expand: On input (σ, kσ):

– If σ = 0, parse k0 = (N, kprf , k
fss
0 , d):
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1. Let y′
0 = FSS.FullEval(0, kfss0 ) in Z

n.
2. Compute y0 = H · y′

0 in Z
m.

3. For j = 1, . . . , m:
(a) Let cj = H(sid, j) in ZN2

(b) Compute aj = (cd − 1)/N in ZN .
(c) Compute z0,j = DDLogN (c

y0,j

j ) + Fkprf (j).
4. Output a = (a1, . . . , am) and z0 = (z0,1, . . . , z0,m).

– If σ = 1, parse k1 = (N, kprf , k
fss
1 , e):

1. Let y′
1 = FSS.FullEval(1, kfss1 ) in Z

n.
2. Compute y1 = H · y′

1 in Z
m and b = H · e in Z

m
N .

3. For j = 1, . . . , m:
(a) Let cj = H(sid, j) in ZN2

(b) Compute z1,j = DDLogN (c
y1,j

j ) + Fkprf (j).
4. Output b = H · e and z1 = (z1,1, . . . , z1,m), both in Z

m
N .

a This ensures that d ·e is always much less than N ′, so we get shares over the
integers.

6 Public-Key Setup for PCFs

6.1 Non-interactive VOLE

In this section, we present our protocol for non-interactive VOLE with semi-
honest security, based on Paillier. Party PA has input values a1, . . . , an, while
party PB has a single input value x, and the goal is to obtain additive shares
of ai · x modulo N , by exchanging just one simultaneous message. We assume
that the modulus N has been generated as a trusted setup, and no-one knows
its factorization.

Our protocol starts off in the spirit of Bellare-Micali OT [BM90], where PB

sends gs for a random s, and PA sends gri · Cai , for random ri, where g and C
are some fixed random group elements. Note that in Bellare-Micali, ai is a bit,
whereas here it is in ZN . At this point (where we depart slightly from [BM90]),
PA can compute the keys gris, while PB can compute, gris·Cais (without knowing
ai). We then have that the ratio of each of the two parties’ keys is Cais. Next,
we additionally have PB send a correction value D = Cs · (1+N)x, which allows
PA to adjust its key so that the ratios become (1 + N)aix. Finally, each party
locally applies the distributed discrete log procedure to convert each key into an
additive share of ai ·x modulo N . To allow for simulation, both parties randomize
their output shares. Since we are dealing with passive security, it is enough for
one of the parties (PA) to sample those values. The full protocol is specified
in Construction 6.3. We defer the proof of Theorem 6.1 to the full version of this
paper.
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Theorem 6.1. The protocol in Construction 6.3 securely implements Function-
ality 6.2 in the presence of passive, static corruptions under the DCR and QR
assumptions.

Functionality 6.2: FZN -VOLE

The functionality interacts with parties PB, PA and an adversary A.

On input a1, . . . , an ∈ ZN from PA and x ∈ ZN from PB, the functionality does
the following:

– Sample y0,i ← ZN , for i = 1, . . . , n, and set y1,i = y0,i + ai · x.
– Output (y0,1, . . . , y0,n) to PB and (y1,1, . . . , y1,n) to PA.

Construction 6.3: Non-interactive VOLE protocol

CRS: The algorithms below implicitly have access to crs = (N, g, C), where
(N, p, q) ← GenPQ(1λ), and g, C ← Z

∗
N2 .

Message from PA: On input (a1, . . . , an) ∈ Z
n
N , sample ri ← [N2], ti ← ZN ,

compute Ai = gri · Cai and send (Ai, ti) for i = 1, . . . , n.

Message from PB: On input x ∈ ZN , sample s ← [N2] and send (B, D) where
B = gs, D = Cs · (1 + N)x.

Output of PA: On receiving (B, D), compute K′
i = Bri · Dai and output

(y1,1, . . . , y1,n), where y1,i = DDLogN (K′
i) + ti.

Output of PB: On receiving (A1, . . . , An, t1, . . . , tn), compute Ki = As
i and

output (y0,1, . . . , y0,n), where y0,i = DDLogN (Ki) + ti.

6.2 Public-Key Silent PCFs

We can plug our non-interactive VOLE protocol into the PCFs of Sect. 5 to
obtain a public-key variant of those protocols where, after independently posting
a public key, each party can locally derive its PCF key. Using their PCF keys,
together with a random oracle to generate the public random inputs, the parties
can then silently compute an arbitrary quantity of OT or VOLE correlations,
without any interaction beyond the PKI.

Formally speaking, we can model this by defining a public-key PCF the same
way as a standard PCF, except we replace the Gen algorithm with two separate



The Rise of Paillier: Homomorphic Secret Sharing and Public-Key Silent OT 705

algorithms GenA and GenB, which output key pairs (skA, pkA) and (skB, pkB).
After running these algorithms, we define the two parties’ PCF keys to be
(skA, pkA, pkB) and (skB, pkA, pkB), respectively, and the rest of the definition
follows the same way as before.

We sketch the constructions below. To distinguish between the different mod-
uli involved, we refer to the modulus in the CRS (needed for the NIVOLE pro-
tocol) as Ñ , and we refer to the modulus in the PCF as N .

Public-Key Silent VOLE. We replace the Gen algorithm of Construction 5.4
with the following: Both parties generate the first message of a non-interactive
key exchange (NIKE) protocol (this will be used to derive the PRF key kprf).
Party 0 runs (N, p, q) ← GenPQ(1λ) and computes d as in Gen, while party 1
picks a random x, and they run the protocol in Construction 6.3 with n = 1
(that is, they implement a single OLE). They both include the message from
the NIOLE and NIKE protocol in their public key, while party 0 includes the
modulus N too. Upon receiving the public key of the other party, they can
compute their PCF key kσ by completing the NIKE and NIOLE protocols. Note
that we require y0, y1 to be a share of x · d over the integers, so this requires the
modulus Ñ in the CRS for the NIOLE to be sufficiently large i.e., Ñ > N32κ.

Public-Key Silent OT. We replace the Gen algorithm of Construction 5.6 with
the following: As above both parties generates the first message of a NIKE. Party
0 runs (N, p, q) ← GenPQ(1λ) and computes d as in Gen, while party 1 picks
random bits sj ∈ {0, 1} for j ∈ [λ], and they run the protocol in Construction 6.3
with n = λ (that is, this is a “proper” instance of VOLE). They both include
the message from the NIVOLE and NIKE protocol in their public key, while
party 0 includes the modulus N too. Upon receiving the public key of the other
party, they can compute their PCF key kσ by completing the NIKE and NIOLE
protocol. Note that we require y0, y1 to be a share of sj · d over the integers, so
this requires the modulus Ñ in the CRS for the NIVOLE to be sufficiently large
i.e., Ñ > N2κ.
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Abstract. In this paper, we present a new technique which can be used
to find better linear approximations in ARX ciphers. Using this tech-
nique, we present the first explicitly derived linear approximations for 3
and 4 rounds of ChaCha and, as a consequence, it enables us to improve
the recent attacks against ChaCha. Additionally, we present new differ-
entials for 3 and 3.5 rounds of ChaCha that, when combined with the
proposed technique, lead to further improvement in the complexity of
the Differential-Linear attacks against ChaCha.

Keywords: Differential-linear cryptanalysis · ARX-Ciphers · ChaCha

1 Introduction

Symmetric cryptographic primitives are heavily used in a variety of contexts. In
particular, ARX-based design is a major building block of modern ciphers due
to its efficiency in software. ARX stands for addition, word-wise rotation and
XOR. Indeed, ciphers following this framework are composed of those opera-
tions and avoid the computation of smaller S-boxes through look-up tables. The
ARX-based design approach is used to design stream ciphers (e.g., Salsa20 [7]
and ChaCha [6]), efficient block ciphers (e.g., Sparx [15]), cryptographic permu-
tations (e.g., Sparkle [3]) and hash functions (e.g., Blake [2]).

ARX-based designs are not only efficient but provide good security proper-
ties. The algebraic degree of ARX ciphers is usually high after only a very few
rounds as the carry bit within one modular addition already reaches almost max-
imal degree. For differential and linear attacks, ARX-based designs show weak-
nesses for a small number of rounds. However, after some rounds the differential
and linear probabilities decrease rapidly. Thus, the probabilities of differentials
and the absolute correlations of linear approximations decrease very quickly as
we increase the number of rounds. In fact, this property led to the long-trail
strategy for designing ARX-based ciphers [15].

Ciphers and primitives based on Salsa20 and ChaCha families are heavily
used in practice. In 2005, Bernstein proposed the stream cipher Salsa20 [7] as
a contender to the eSTREAM [26], the ECRYPT Stream Cipher Project. As

c© International Association for Cryptologic Research 2021
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outlined by the author, Salsa20 is an ARX type family of algorithms which can
be ran with several number of rounds, including the well known Salsa20/12 and
Salsa20/8 versions. Latter, in 2008, Bernstein proposed some modifications to
Salsa20 in order to provide better diffusion per round and higher resistance to
cryptanalysis. These changes originated a new stream cipher, a variant which he
called ChaCha [6]. Although Salsa20 was one of the winners of the eSTREAM
competition, ChaCha has received much more attention through the years.
Nowadays, we see the usage of this cipher in several projects and applications.

ChaCha, along with Poly1305 [5], is in one of the cipher suits of the new TLS
1.3 [21], which has been used by Google on both Chrome and Android. Not only
has ChaCha been used in TLS but also in many other protocols such as SSH,
Noise and S/MIME 4.0. In addition, the RFC 7634 proposes the use of ChaCha
in IKE and IPsec. ChaCha has been used not only for encryption, but also as a
pseudo-random number generator in any operating system running Linux kernel
4.8 or newer [25,28]. Additionally, ChaCha has been used in several applications
such as WireGuard (VPN) (see [18] for a huge list of applications, protocols and
libraries using ChaCha).

Related Work. Since ChaCha is so heavily used, it is very important to under-
stand its security. Indeed, the cryptanalysis of ChaCha is well understood and
several authors studied its security [1,9,11–14,16,17,19,22–24,27,29] which show
weaknesses in the reduced round versions of the cipher.

The cryptanalysis of Salsa20 was introduced by Crowley [11] in 2005. Crow-
ley developed a differential attack against Salsa20/5, namely the 5-round version
of Salsa20, and received the $1000 prize offered by Bernstein for the most inter-
esting Salsa20 cryptanalysis in that year. In 2006, Fischer et al. [16] improved
the attack against Salsa20/5 and presented their attack against Salsa20/6.

Probably the most important cryptanalysis in this regard was proposed by
Aumasson et al. at FSE 2008 [1] with the introduction of Probabilistic Neutral
Bits (PNBs), showing attacks against Salsa20/7, Salsa20/8, ChaCha20/6 and
ChaCha20/7. After that, several authors proposed small enhancements on the
attack of Aumasson et al. The work by Shi et al. [27] introduced the concept
of Column Chaining Distinguisher (CCD) to achieve some incremental advance-
ments over [1] for both Salsa and ChaCha.

Maitra, Paul and Meier [22] studied an interesting observation regarding
round reversal of Salsa, but no significant cryptanalytic improvement could be
obtained using this method. Maitra [23] used a technique of Chosen IVs to obtain
certain improvements over existing results. Dey and Sarkar [13] showed how to
choose values for the PNB to further improve the attack.

In a paper presented in FSE 2017, Choudhuri and Maitra [9] significantly
improved the attacks by considering the mathematical structure of both Salsa
and ChaCha in order to find differential characteristics with much higher cor-
relations. Recently, Coutinho and Souza [10] proposed new multi-bit differen-
tials using the mathematical framework of Choudhuri and Maitra. In Crypto
2020, Beierle et al. [4] proposed improvements to the framework of differential-
linear cryptanalysis against ARX-based designs and further improved the attacks
against ChaCha.
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Our Contribution. In this work, we provide a new framework to find lin-
ear approximations for ARX ciphers. Using this framework we provide the first
explicitly derived linear approximations for 3 and 4 rounds of ChaCha. Explor-
ing these linear approximations, we can improve the attacks for 6 and 7 rounds
of ChaCha. Additionally, we present new differentials for 3 and 3.5 rounds of
ChaCha which also improve the attacks. We summarize our findings along with
other significant attacks for comparison in Table 1. Also, we verified all theoret-
ical results with random experiments. We provide the source code to reproduce
this paper in Github https://github.com/MurCoutinho/cryptanalysisChaCha.
git, which is, for the best of our knowledge, the first implementation of crypt-
analysis against ChaCha available to the public. We should note that it is pos-
sible to find attacks with less complexity for related key attacks, but we do not
consider them in this work.

Table 1. The best attacks against ChaCha with 256-bit key.

Rounds Time Complexity Data Complexity Reference

4 26 26 [9]

4.5 212 212 [9]

5 216 216 [9]

6 2139 230 [1]

2136 228 [27]

2130 235 [9]

2127.5 237.5 [9]

2116 2116 [9]

2102.2 256 [10]

277.4 258 [4]

275 275 [10]

251 251 This work

7 2248 227 [1]

2246.5 227 [27]

2238.9 296 [23]

2237.7 296 [9]

2231.9 250 [10]

2230.86 248.8 [4]

2228.51 280.51 This work

2224 2224 This work

2218 2218 This work

Organization of the Paper. In Sect. 2, we provide an overview of previous
results, including a description of ChaCha, a summary of differential-linear crypt-
analysis and a review of the techniques developed by Choudhuri and Maitra in

https://github.com/MurCoutinho/cryptanalysisChaCha.git
https://github.com/MurCoutinho/cryptanalysisChaCha.git
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[9]. In Sect. 3, we present a new technique which can be used to find better linear
approximations in ARX ciphers and theoretically develop new linear relations
between bits of different rounds for ChaCha. Then, in Sect. 4, we show that
these new linear approximations lead to a better distinguisher and key recov-
ery attacks of ChaCha reduced to 6 and 7 rounds. Finally, Sect. 5 presents the
conclusion and future work.

2 Specifications and Preliminaries

The main notation we will use throughout the paper is defined in Table 2. Next
we define the algorithm ChaCha.

Table 2. Notation

Notation Description

X a 4 × 4 state matrix of ChaCha

X(0) initial state matrix of ChaCha

X(R) state matrix after application of R round functions

Z output of ChaCha, Z = X(0) + X(R)

x
(R)
i ith word of the state matrix X(R) (words arranged in row major)

x
(R)
i,j jth bit of ith word of the state matrix X(R)

x
(R)
i [j0, j1, ..., jt] the sum x

(R)
i,j0

⊕ x
(R)
i,j1

⊕ · · · ⊕ x
(R)
i,jt

x + y addition of x and y modulo 232

x − y subtraction of x and y modulo 232

x ⊕ y bitwise XOR of x and y

x ≪ n rotation of x by n bits to the left

x ≫ n rotation of x by n bits to the right

Δx XOR difference of x and x′. Δx = x ⊕ x′

ΔX(R) XOR difference of X(R) and X′(R). ΔX(R) = X(R) ⊕ X′(R)

Δx
(R)
i differential Δx

(R)
i = x

(R)
i ⊕ x′(R)

i

Δx
(R)
i,j differential Δx

(R)
i,j = x

(R)
i,j ⊕ x′(R)

i,j

Pr(E) probability of occurrence of an event E

ID input difference

OD output difference

2.1 ChaCha

The stream cipher Salsa20 was proposed by Bernstein [7] to the eSTREAM
competition and later Bernstein proposed ChaCha [6] as an improvement of
Salsa20. ChaCha consists of a series of ARX (addition, rotation, and XOR)
operations on 32-bit words, being highly efficient in software and hardware.
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Each round of ChaCha has a total of 16 bitwise XOR, 16 addition modulo 232

and 16 constant-distance rotations.
ChaCha operates on a state of 64 bytes, organized as a 4 × 4 matrix with

32-bit integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1
and a 64-bit counter t0, t1 (we may also refer to the nonce and counter words as
IV words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574. For ChaCha, we have the following initial state matrix:

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

⎞
⎟⎟⎠ . (1)

The state matrix is modified in each round by a Quarter Round Func-
tion (QRF), denoted by QR

(
x
(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d

)
, which receives and

updates 4 integers in the following way:

x
(r−1)
a′ = x

(r−1)
a + x

(r−1)
b ; x

(r−1)
d′ = (x(r−1)

d ⊕ x
(r−1)
a′ ) ≪ 16;

x
(r−1)
c′ = x

(r−1)
c + x

(r−1)
d′ ; x

(r−1)
b′ = (x(r−1)

b ⊕ x
(r−1)
c′ ) ≪ 12;

x
(r)
a = x

(r−1)
a′ + x

(r−1)
b′ ; x

(r)
d = (x(r−1)

d′ ⊕ x
(r)
a ) ≪ 8;

x
(r)
c = x

(r−1)
c′ + x

(r)
d ; x

(r)
b = (x(r−1)

b′ ⊕ x
(r)
c ) ≪ 7;

(2)

One round of ChaCha is defined as 4 applications of the QRF. There is,
however, a difference between odd and even rounds. For odd rounds, i.e. r ∈
{1, 3, 5, 7, ...}, X(r) is obtained from X(r−1) by applying

(
x
(r)
0 , x

(r)
4 , x

(r)
8 , x

(r)
12

)
= QR

(
x
(r−1)
0 , x

(r−1)
4 , x

(r−1)
8 , x

(r−1)
12

)
(
x
(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13

)
= QR

(
x
(r−1)
1 , x

(r−1)
5 , x

(r−1)
9 , x

(r−1)
13

)
(
x
(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14

)
= QR

(
x
(r−1)
2 , x

(r−1)
6 , x

(r−1)
10 , x

(r−1)
14

)
(
x
(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15

)
= QR

(
x
(r−1)
3 , x

(r−1)
7 , x

(r−1)
11 , x

(r−1)
15

)
.

On the other hand, for even rounds, i.e. r ∈ {2, 4, 6, 8, , ...}, X(r) is calculated
from X(r−1) by applying

(
x
(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15

)
= QR

(
x
(r−1)
0 , x

(r−1)
5 , x

(r−1)
10 , x

(r−1)
15

)
(
x
(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12

)
= QR

(
x
(r−1)
1 , x

(r−1)
6 , x

(r−1)
11 , x

(r−1)
12

)
(
x
(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13

)
= QR

(
x
(r−1)
2 , x

(r−1)
7 , x

(r−1)
8 , x

(r−1)
13

)
(
x
(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14

)
= QR

(
x
(r−1)
3 , x

(r−1)
4 , x

(r−1)
9 , x

(r−1)
14

)
.

The output of ChaCha20/R is then defined as the sum of the initial state
with the state after R rounds Z = X(0) + X(R). One should note that it is
possible to parallelize each application of the QRF on each round and also that
each round is reversible. Hence, we can compute X(r−1) from X(r). For more
information on ChaCha, we refer to [6].
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2.2 Differential-Linear Cryptanalysis

In this section, we describe the technique of Differential-Linear cryptanalysis as
used to attack ChaCha. Let E be a cipher and suppose we can write E = E2◦E1,
where E1 and E2 are sub ciphers, covering m and l rounds of the main cipher,
respectively. We can apply an input difference ID ΔX(0) in the sub cipher
E1 obtaining an output difference OD ΔX(m) (see the left side of Fig. 1). The
next step is to apply Linear Cryptanalysis to the second sub cipher E2. Using
masks Γm and Γout, we attempt to find good linear approximations covering the
remaining l rounds of the cipher E. Applying this technique we can construct a
differential-linear distinguisher covering all m + l rounds of the cipher E. This
is the main idea in Langford and Hellman’s classical approach [20].

Sometimes, however, it can be useful to divide the cipher E into three other
ciphers, i.e. E = E3 ◦ E2 ◦ E1. In this scenario, we can explore properties of
the cipher in the first part E1, and then apply a differential linear attack where
we divide the differential part of the attack in two (see the right side of Fig. 1).
Here, the OD from the sub cipher E1 after r rounds, namely ΔX(r), is the ID
for the sub cipher E2 which produces an output difference ΔX(m). For more
information in this regard, see [4].

It is important to understand how to compute the complexity of a differential-
linear attack. We denote the differential of the state matrix as ΔX(r) = X(r) ⊕
X ′(r) and the differential of individual words as Δx

(r)
i = x

(r)
i ⊕ x

′(r)
i . Let x

(r)
i,j

denote the j-th bit of the i-th word of the state matrix after r rounds and let J
be a set of bits. Also, let σ and σ′ be linear combinations of bits in the set J

σ =

⎛
⎝ ⊕

(i,j)∈J
x
(r)
i,j

⎞
⎠ , σ′ =

⎛
⎝ ⊕

(i,j)∈J
x

′(r)
i,j

⎞
⎠ .

Then

Δσ =

⎛
⎝ ⊕

(i,j)∈J
Δx

(r)
i,j

⎞
⎠

is the linear combination of the differentials. We can write

Pr
[
Δσ = 0|ΔX(0)

]
=

1
2
(1 + εd), (3)

where εd is the differential correlation.
Using linear cryptanalysis, it is possible to go further and find new relations

between the initial state matrix and the state matrix after R > r rounds. To do
so, let L denote another set of bits and define

ρ =

⎛
⎝ ⊕

(i,j)∈L
x
(R)
i,j

⎞
⎠ , ρ′ =

⎛
⎝ ⊕

(i,j)∈L
x

′(R)
i,j

⎞
⎠ .
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Then, as before,

Δρ =

⎛
⎝ ⊕

(i,j)∈L
Δx

(R)
i,j

⎞
⎠ .

We can define Pr[σ = ρ] = 1
2 (1 + εL), where εL is the linear correlation. We

want to find γ such that Pr
[
Δρ = 0|ΔX(0)

]
= 1

2 (1 + γ).
To compute γ, we write (to simplify the notation we make the conditional to

ΔX(0) implicit):

Pr[Δσ = Δρ] = Pr[σ = ρ] · Pr [σ′ = ρ′] + Pr[σ = ρ̄] · Pr
[
σ′ = ρ′]

=
1
2

(
1 + ε2L

)
.

Then,

Pr[Δρ = 0] = Pr[Δσ = 0] · Pr[Δσ = Δρ] + Pr[Δσ = 1] · Pr[Δσ = Δρ]

=
1
2

(
1 + εd · ε2L

)
.

Therefore, the differential-linear correlation is given by γ = εd·ε2L, which defines a

distinguisher with complexity O
(

1
ε2dε

4
L

)
. For further information on differential-

linear cryptanalysis we refer to [8].

Fig. 1. A classical differential-linear distinguisher (on the left) and a differential-linear
distinguisher with experimental evaluation of the correlation p2 (on the right).

2.3 Multi-bit Differential for Reduced Round ChaCha

In this section, we review the work presented in [9] and in [10]. In these works,
the authors developed the theory for selecting specific combination of bits to give
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high correlations for Chacha. To do that, in both papers the authors analyzed
the QRF directly, representing each equation in its bit level. In the following, we
change the original notation of the referred papers in order to create a notation
that will be better for the purposes of this work.

Thus, let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function of the sum x + y.
Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we have Θ0(x, y) = 0.
We can write the QRF equations of ChaCha (Eq. 2) as

x
′(m−1)
a,i = x

(m−1)
a,i ⊕ x

(m−1)
b,i ⊕ Θi(x

(m−1)
a , x

(m−1)
b )

x
′(m−1)
d,i+16 = x

(m−1)
d,i ⊕ x

′(m−1)
a,i

x
′(m−1)
c,i = x

(m−1)
c,i ⊕ x

′(m−1)
d,i ⊕ Θi(x

(m−1)
c , x

′(m−1)
d )

x
′(m−1)
b,i+12 = x

(m−1)
b,i ⊕ x

′(m−1)
c,i

x
(m)
a,i = x

′(m−1)
a,i ⊕ x

′(m−1)
b,i ⊕ Θi(x

′(m−1)
a , x

′(m−1)
b )

x
(m)
d,i+8 = x

′(m−1)
d,i ⊕ x

(m)
a,i

x
(m)
c,i = x

′(m−1)
c,i ⊕ x

(m)
d,i ⊕ Θi(x

′(m−1)
c , x

(m)
d )

x
(m)
b,i+7 = x

′(m−1)
b,i ⊕ x

(m)
c,i

(4)

Inverting these equations, we get:

x
′(m−1)
b,i = x

(m)
b,i+7 ⊕ x

(m)
c,i (5)

x
′(m−1)
c,i = x

(m)
c,i ⊕ x

(m)
d,i ⊕ Θi(x′(m−1)

c , x
(m)
d ) (6)

x
′(m−1)
d,i = x

(m)
a,i ⊕ x

(m)
d,i+8 (7)

x
′(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ Θi(x′(m−1)

a , x
′(m−1)
b ) (8)

x
(m−1)
b,i = L(m)

b,i ⊕ Θi(x′(m−1)
c , x

(m)
d ) (9)

x
(m−1)
c,i = L(m)

c,i ⊕ Θi(x′(m−1)
c , x

(m)
d ) ⊕ Θi(x(m−1)

c , x
′(m−1)
d ) (10)

x
(m−1)
d,i = L(m)

d,i ⊕ Θi(x′(m−1)
a , x

′(m−1)
b ) (11)

x
(m−1)
a,i = L(m)

a,i ⊕ Θi(x′(m−1)
a , x

′(m−1)
b )⊕

Θi(x′(m−1)
c , x

(m)
d ) ⊕ Θi(x(m−1)

a , x
(m−1)
b )

(12)

where

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i (13)

L(m)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i (14)

L(m)
c,i = x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i ⊕ x

(m)
d,i+8 (15)

L(m)
d,i = x

(m)
a,i ⊕ x

(m)
a,i+16 ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ x

(m)
d,i+24 (16)

Lemma 1. It holds that x
(m−1)
l,0 = L(m)

l,0 , for l ∈ {a, b, c, d}.
Proof. This result follows directly from Eqs. (9)–(12) by using the fact that
Θ0(x, y) = 0. �
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From this equations, we can derive the following lemma:

Lemma 2. (Lemma 3 of [9]) Let

ΔA(m) = Δx
(m)
α,0 ⊕ Δx

(m)
β,7 ⊕ Δx

(m)
β,19 ⊕ Δx

(m)
γ,12 ⊕ Δx

(m)
δ,0

ΔB(m) = Δx
(m)
β,19 ⊕ Δx

(m)
γ,0 ⊕ Δx

(m)
γ,12 ⊕ Δx

(m)
δ,0

ΔC(m) = Δx
(m)
δ,0 ⊕ Δx

(m)
γ,0 ⊕ Δx

(m)
δ,8 ⊕ Δx

(m)
α,0

ΔD(m) = Δx
(m)
δ,24 ⊕ Δx

(m)
α,16 ⊕ Δx

(m)
α,0 ⊕ Δx

(m)
γ,0 ⊕ Δx

(m)
β,7

After m rounds of ChaCha, the following holds:

∣∣ε(A(m))

∣∣ =
∣∣∣∣ε(

x
(m−1)
α,0

)
∣∣∣∣ ,

∣∣∣ε(B(m))

∣∣∣ =
∣∣∣∣ε(

x
(m−1)
β,0

)
∣∣∣∣

∣∣∣ε(C(m))

∣∣∣ =
∣∣∣∣ε(

x
(m−1)
γ,0

)
∣∣∣∣ ,

∣∣∣ε(D(m))

∣∣∣ =
∣∣∣∣ε(

x
(m−1)
δ,0

)
∣∣∣∣

The tuples (α, β, γ, δ) vary depending on whether m is odd or even.

– Case I. m is odd:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}.

– Case II. m is even:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

Proof. See [9]. �

Lemma 3. (Lemma 9 of [9]) For one active input bit in round m − 1 and
multiple active output bits in round m, the following holds for i > 0.

x
(m−1)
b,i = L(m)

b,i ⊕ x
(m)
d,i−1, w.p. 1

2

(
1 + 1

2

)

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+6, w.p.

1
2

(
1 + 1

24

)

x
(m−1)
c,i = L(m)

c,i ⊕ x
(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

22

)

x
(m−1)
d,i = L(m)

d,i ⊕ x
(m)
c,i−1 ⊕ x

(m)
b,i+6, w.p. 1

2

(
1 + 1

2

)

Proof. See [9]. �

Finally, using Lemma 2 and Lemma 3, it is possible to find linear approxi-
mations for two rounds of ChaCha.

Lemma 4. (Lemma 10 of [9]) The following holds with probability 1
2

(
1 + 1

2

)

x
(3)
11,0 = x

(5)
0 [0, 8, 16, 24] ⊕ x

(5)
1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
4,7 ⊕ x

(5)
4 [14, 15] ⊕ x

(5)
5 [7, 19]⊕

x
(5)
8 [0, 7, 8] ⊕ x

(5)
9,12 ⊕ x

(5)
11,0 ⊕ x

(5)
12 [0, 24] ⊕ x

(5)
13,0 ⊕ x

(5)
15 [0, 8].



720 M. Coutinho and T. C. Souza Neto

Proof. See [9]. �

Recently, Coutinho and Souza [10] found linear approximations with fewer
terms using the same techniques.

Lemma 5. (Lemma 5 of [10]) When m is odd, each of the following also holds
with probability 1

2 (1 + 1
2 )

x
(m−2)
0,0 ⊕ x

(m−2)
5,0 = x

(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
4,7 ⊕ x

(m)
4,19 ⊕ x

(m)
5,26 ⊕ x

(m)
8,12 ⊕ x

(m)
9,7 ⊕

x
(m)
9,19 ⊕ x

(m)
10,0 ⊕ x

(m)
12,0 ⊕ x

(m)
13,6 ⊕ x

(m)
13,7 ⊕ x

(m)
14,0 ⊕ x

(m)
14,8

x
(m−2)
1,0 ⊕ x

(m−2)
6,0 = x

(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
5,7 ⊕ x

(m)
5,19 ⊕ x

(m)
6,26 ⊕ x

(m)
9,12 ⊕ x

(m)
10,7⊕

x
(m)
10,19 ⊕ x

(m)
11,0 ⊕ x

(m)
13,0 ⊕ x

(m)
14,6 ⊕ x

(m)
14,7 ⊕ x

(m)
15,0 ⊕ x

(m)
15,8

x
(m−2)
2,0 ⊕ x

(m−2)
7,0 = x

(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
6,7 ⊕ x

(m)
6,19 ⊕ x

(m)
7,26 ⊕ x

(m)
8,0 ⊕ x

(m)
10,12⊕

x
(m)
11,7 ⊕ x

(m)
11,19 ⊕ x

(m)
12,0 ⊕ x

(m)
12,8 ⊕ x

(m)
14,0 ⊕ x

(m)
15,6 ⊕ x

(m)
15,7

x
(m−2)
3,0 ⊕ x

(m−2)
4,0 = x

(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
4,26 ⊕ x

(m)
7,7 ⊕ x

(m)
7,19 ⊕ x

(m)
8,7 ⊕ x

(m)
8,19⊕

x
(m)
9,0 ⊕ x

(m)
11,12 ⊕ x

(m)
12,6 ⊕ x

(m)
12,7 ⊕ x

(m)
13,0 ⊕ x

(m)
13,8 ⊕ x

(m)
15,0

Proof. See [10]. �

In [9], the authors showed that using as ID a single bit at x
(0)
13,13 and OD at

x
(3)
11,0, it is possible to obtain εd = −0.0272 ≈ − 1

25.2 , experimentally. And from
Lemma 2 it is possible to extend to a 4-round differential-linear correlation with
εL = 1 when the OD is x

(4)
1,0⊕x

(4)
11,0⊕x

(4)
12,8⊕x

(4)
12,0. Further, it is possible to extend

to a 5-round differential-linear correlation using the last equation from Lemma
4 with probability 1

2

(
1 + 1

2

)
. This gives a total differential-linear 5th round cor-

relation of εd · ε2L ≈ −0.0068 = − 1
27.2 . This leads to a 5 round distinguisher with

complexity approximately 216.
Extending the linear approximation for 3 rounds comes at a cost. As discussed

prior to the above lemma, for ChaCha, setting i = 0 in Lemma 2 allows linear
approximation of probability 1 for LSB variables. The cost is thus determined
by the non LSB variables. A simple count of the non LSB variables in the form
(Variable Type, # non LSB occurrence) gives (xa, 3) , (xb, 5) , (xc, 3) , and (xd, 2) .
Now, using the probabilities of Lemma 3 and Lemma 4, the linear correlation
is εL = 1/21+3·4+5·1+3·2+2·1 = 2−26. This leads to a 6 round correlation of
ε2Lεd ≈ 1

257.2 . The distinguisher for this correlation has a complexity of 2116.
In [10], the authors used Lemma 5 to derive a distinguisher for 6 rounds.

To do that, they found a differential with correlation εd = 0.00048 for (a, b) =
(3, 4) when the input difference is given by Δx

(0)
14,6 = 1, and 0 for all remaining

bits. Therefore, expanding for 6 rounds from Lemma 5 with weights 4, 1, 2, 1 for
xa, xb, xc and xd, respectively, they got εL = 1/21+0·4+3·1+3·2+3·1 = 2−13. Then
we have εdε

2
L ≈ 2−37.02, which leads to an attack against 6 rounds of ChaCha

with complexity 275. This is the currently best known 6 round attack on ChaCha.
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3 Improved Linear Approximations for ARX-Based
Ciphers

The challenge of finding good linear approximations in ARX-based designs comes
from the addition operation which is responsible for the non-linearity of the
design. In 2003, Wallén [30] published a very important paper where a math-
ematical framework for finding linear approximations of addition modulo 2n

was developed. Since then, several authors used these technique to find linear
approximations in ARX-based designs [9].

Therefore, as before, let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function
of the sum x + y. Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we
have Θ0(x, y) = 0. Using Theorem 3 of [30], we can generate all possible linear
approximations with a given correlation. In particular, we will use the following
linear approximations:

Pr(Θi(x, y) = yi−1) =
1
2

(
1 +

1
2

)
, i > 0. (17)

Pr(Θi(x, y) ⊕ Θi−1(x, y) = 0) =
1
2

(
1 +

1
2

)
, i > 0. (18)

In previous works of cryptanalysis of ARX ciphers, authors concentrated in
finding approximations for particular bits in one round and then repeating the
same equations to expand the linear approximation to further rounds (see [9] and
[10] for some examples). However, by combining Eqs. 17 and 18 when attacking
ARX ciphers we can create a strategy to improve linear approximations when
considering more rounds. The main idea is that when using Eq. 17 in one round
we will create consecutive terms that can be expanded together using Eq. 18.

For example, consider the sum z = x + y. If we want a linear approximation
for the bit z7, we can use Eq. 17 to obtain z7 = x7 ⊕ y7 ⊕ Θ7(x, y) = x7 ⊕
y7 ⊕ y6 with probability 0.75. Since the XOR operation will not change the
indexes and the rotation will probably keep y6 and y7 adjacent, we can use
Eq. 18 in the subsequent round to cancel out the non-linear terms rather than
expanding them, leading to a linear equation with higher correlation and fewer
terms to be expanded further. Next, we will use this technique to find new linear
approximations for ChaCha.

3.1 Linear Approximations for the Quarter Round Function

The first step is to find linear approximations for the QRF of ChaCha. Of course,
we already know some of them from previous works (Sect. 2.3). However, here we
will consider adjacent bits and several other combinations that cancel out non-
linear terms or use Eq. (18). At first glance, these results may seem innocuous,
but latter they will prove themselves useful when deriving linear approximations
for multiple rounds of ChaCha.

We start with a better linear approximation for x
(m−1)
a,i .
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Lemma 6. The following holds for i > 0

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1, w.p.

1
2

(
1 + 1

23

)
.

Proof. From Eq. (12) we have

x
(m−1)
a,i = L(m)

a,i ⊕ Θi(x′(m−1)
a , x

′(m−1)
b ) ⊕ Θi(x′(m−1)

c , x
(m)
d ) ⊕ Θi(x(m−1)

a , x
(m−1)
b ).

Using Eq. (17) and the Piling-up Lemma we can write

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕ Θi(x′(m−1)

c , x
(m)
d ) ⊕ x

(m−1)
b,i−1 ,

with probability 1
2

(
1 + 1

22

)
. Using Eq. (9) we get

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕ Θi(x′(m−1)

c , x
(m)
d ) ⊕ L(m)

b,i−1 ⊕ Θi−1(x′(m−1)
c , x

(m)
d ).

Using the approximation of Eq. (18) and the Piling-up Lemma we can write

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕ L(m)

b,i−1,

with probability 1
2

(
1 + 1

23

)
. Finally, using Eqs. (5) and (14) we get

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1,

which completes the proof. �

Lemma 7. For two active input bits in round m − 1 and multiple active output
bits in round m, the following holds for i > 0

x
(m−1)
λ,i ⊕ x

(m−1)
λ,i−1 = L(m)

λ,i ⊕ L(m)
λ,i−1, w.p.

1
2

(
1 +

1
2σ

)
,

where (λ, σ) ∈ {(a, 3), (b, 1), (c, 2), (d, 1)}.
Proof. This proof follows directly from Eqs. (9)–(12) using the approximation
of Eq. (18) and the Piling-up Lemma. �

Lemma 8. Suppose that (λ, σ) ∈ {(i, i − 2), (i − 1, i − 1)}, i > 1. Then for three
active input bits in round m − 1 and multiple active output bits in round m, the
following holds

x
(m−1)
b,λ ⊕ x

(m−1)
c,i ⊕ x

(m−1)
c,i−1 = L(m)

b,i−1 ⊕ L(m)
c,i ⊕ L(m)

c,i−1 ⊕ x
(m)
d,σ , w.p.

1
2

(
1 +

1
22

)
.

Proof. Using Eq. (9) and Eq. (10) we get

x
(m−1)
b,λ ⊕ x

(m−1)
c,i ⊕ x

(m−1)
c,i−1 = L(m)

b,λ ⊕ L(m)
c,i ⊕ L(m)

c,i−1 ⊕ Θλ(x′(m−1)
c , x

(m)
d )⊕

Θi(x
′(m−1)
c , x

(m)
d ) ⊕ Θi(x

(m−1)
c , x

′(m−1)
d )⊕

Θi−1(x
′(m−1)
c , x

(m)
d ) ⊕ Θi−1(x

(m−1)
c , x

′(m−1)
d ).
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Canceling out common factors and using the approximation of Eq. (18) we can
write

x
(m−1)
b,λ ⊕ x

(m−1)
c,i ⊕ x

(m−1)
c,i−1 = L(m)

b,i ⊕ L(m)
c,i ⊕ L(m)

c,i−1 ⊕ Θσ+1(x
′(m−1)
c , x

(m)
d ).

with probability 1
2

(
1 + 1

2

)
. Using Eq. (17) we get

x
(m−1)
b,λ ⊕ x

(m−1)
c,i ⊕ x

(m−1)
c,i−1 = L(m)

b,i ⊕ L(m)
c,i ⊕ L(m)

c,i−1 ⊕ x
(m)
d,σ ,

with probability 1
2

(
1 + 1

22

)
. �

Lemma 9. For multiple active input bits in round m − 1 and multiple active
output bits in round m, the following linear approximations hold for ChaCha
with probability 1

2

(
1 + 1

2k

)
:

x
(m−1)
b,i ⊕ x

(m−1)
c,i = L(m)

b,i ⊕ L(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 k = 1, i > 0 (19)

x
(m−1)
a,i ⊕ x

(m−1)
b,i =

L(m)
a,i ⊕ L(m)

b,i−1 ⊕ L(m)
b,i ⊕

x
(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ x

(m)
d,i−2

k = 3, i > 1 (20)

x
(m−1)
a,1 ⊕ x

(m−1)
b,1 = L(m)

a,1 ⊕ L(m)
b,0 ⊕ L(m)

b,1 ⊕ x
(m)
b,7 ⊕ x

(m)
c,0 k = 2 (21)

x
(m−1)
a,i ⊕ x

(m−1)
c,i =

L(m)
a,i ⊕ L(m)

b,i−1 ⊕ L(m)
c,i ⊕ x

(m)
a,i−1⊕

x
(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+7

k = 4, i > 1 (22)

x
(m−1)
a,1 ⊕ x

(m−1)
c,1 =

L(m)
a,1 ⊕ L(m)

b,0 ⊕ L(m)
c,1 ⊕ x

(m)
a,0 ⊕

x
(m)
b,7 ⊕ x

(m)
c,0 ⊕ x

(m)
d,8

k = 3 (23)

x
(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ L(m)

b,i−1
k = 2, i > 1 (24)

x
(m−1)
a,i−1 ⊕

x
(m−1)
a,i ⊕ x

(m−1)
c,i

=
L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i ⊕
x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

k = 4, i > 1 (25)

x
(m−1)
a,i ⊕

x
(m−1)
a,i−1 ⊕ x

(m−1)
b,i

= L(m)
a,i ⊕ L(m)

a,i−1 ⊕ L(m)
b,i ⊕ x

(m)
d,i−2, k = 3, i > 1 (26)

x
(m−1)
b,i−1 ⊕

x
(m−1)
a,i ⊕ x

(m−1)
d,i

= L(m)
a,i ⊕ L(m)

d,i ⊕ x
(m)
d,i−1, k = 2, i > 1 (27)

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕

x
(m−1)
c,i−1 ⊕ x

(m−1)
c,i

=
L(m)

b,i−1 ⊕ L(m)
b,i ⊕

L(m)
c,i−1 ⊕ L(m)

c,i ,
k = 1, i > 1 (28)

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕

x
(m−1)
b,i ⊕ x

(m−1)
c,i−1

=
L(m)

a,i ⊕ L(m)
a,i−1 ⊕ L(m)

b,i ⊕
L(m)

c,i−1 ⊕ x
(m)
a,i−2 ⊕ x

(m)
d,i+6,

k = 3, i > 1 (29)

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕

x
(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕

x
(m−1)
d,i−1

=

L(m)
a,i−1 ⊕ L(m)

a,i ⊕ L(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L(m)

d,i ⊕ x
(m)
d,i−1⊕

x
(m)
a,i−2 ⊕ x

(m)
d,i+6,

k = 3, i > 2 (30)

Proof. The proof for each equation follows the same basic steps: (1) cancel com-
mon factors; (2) cancel adjacent non-linear terms using Eq. (18), updating the
probability using the Piling-Up Lemma; (3) substitute the remaining non-linear
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terms using Eq. (17), updating the probability using the Piling-Up Lemma. For
completeness, we list all proofs in Appendix A. �

3.2 Linear Approximations for Multiple Rounds of ChaCha

In this section, we use the proposed technique to construct several new lin-
ear approximations for the stream cipher ChaCha which will prove useful to
construct better distinguishers. We developed a program (available in https://
github.com/MurCoutinho/cryptanalysisChaCha.git) that makes the process of
finding linear approximations partly automatic. Our program is capable of
expanding the equations and, after statistically verifying the correlation, it out-
puts the resulting linear approximation in LATEXcode.

We start using the result of Coutinho and Souza [10]. We will only consider
the equation for x

(3)
3,0 ⊕x

(3)
4,0 of Lemma 5 but the same reasoning could be applied

to any other equation in that lemma. Then, we have

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(5)
1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
4,26 ⊕ x

(5)
7,7 ⊕ x

(5)
7,19 ⊕ x

(5)
8,7 ⊕ x

(5)
8,19⊕

x
(5)
9,0 ⊕ x

(5)
11,12 ⊕ x

(5)
12,6 ⊕ x

(5)
12,7 ⊕ x

(5)
13,0 ⊕ x

(5)
13,8 ⊕ x

(5)
15,0

(31)

with probability 1
2

(
1 + 1

2

)
.

As presented in Sect. 2.3, to expand the equation to the 6-th round, we could
use only Lemma 3 as proposed in [9]. In this case, we have weights 4, 1, 2, 1 for
xa, xb, xc and xd, respectively, and a count of (xa, 0), (xb, 3), (xc, 3) e (xd, 3).
Thus, the linear correlation is εL = 1/21+0·4+3·1+3·2+3·1 = 2−13. However, we
can do better with the new technique proposed in Sect. 3. This will lead us to
the following lemma

Lemma 10. The following linear approximation holds with probability
1
2

(
1 + 1

28

)

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(6)
0 [0, 16] ⊕ x

(6)
1 [0, 6, 7, 11, 12, 22, 23] ⊕ x

(6)
2 [0, 6, 7, 8, 16, 18,

19, 24] ⊕ x
(6)
4 [7, 13, 19] ⊕ x

(6)
5 [7] ⊕ x

(6)
6 [7, 13, 14, 19]⊕

x
(6)
7 [6, 7, 14, 15, 26] ⊕ x

(6)
8 [0, 7, 8, 19, 31] ⊕ x

(6)
9 [0, 6, 12, 26]⊕

x
(6)
10 [0] ⊕ x

(6)
11 [6, 7] ⊕ x

(6)
12 [0, 11, 12, 19, 20, 30, 31]⊕

x
(6)
13 [0, 14, 15, 24, 26, 27] ⊕ x

(6)
14 [8, 25, 26] ⊕ x

(6)
15 [24].

Proof. First, from Eq. (31) we can use Lemma 1 to replace x
(5)
1,0, x

(5)
3,0, x

(5)
9,0, x

(5)
13,0,

x
(5)
15,0 by L(6)

1,0, L(6)
3,0, L(6)

9,0, L(6)
13,0, L(6)

15,0 with probability 1. Next, note that, since
we are transitioning from round 5 to 6, we have

(a, b, c, d) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

We have already considered the case (a, b, c, d) = (0, 5, 10, 15). Then we still have
3 cases left to consider.

https://github.com/MurCoutinho/cryptanalysisChaCha.git
https://github.com/MurCoutinho/cryptanalysisChaCha.git
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– Case 1: When (a, b, c, d) = (1, 6, 11, 12), we have the factors x
(5)
11,12, x

(5)
12,6,

x
(5)
12,7. Then we can use Lemma 3 and Lemma 7 in order to get

Pr
(
x
(5)
11,12 = L(6)

11,12 ⊕ x
(6)
1,11 ⊕ x

(6)
12,19 ⊕ x

(6)
12,11

)
=

1
2

(
1 +

1
22

)

and

Pr
(
x
(5)
12,7 ⊕ x

(5)
12,6 = L(6)

12,7 ⊕ L(6)
12,6

)
=

1
2

(
1 +

1
2

)
.

– Case 2: If (a, b, c, d) = (2, 7, 8, 13), we have the factors x
(5)
7,7, x

(5)
7,19, x

(5)
8,7, x

(5)
8,19,

x
(5)
13,8 and we can use Lemma 3 and Eq. (19) of Lemma 9 to get

Pr
(
x
(5)
13,8 = L(6)

13,8 ⊕ x
(6)
8,7 ⊕ x

(6)
7,i+6

)
=

1
2

(
1 +

1
2

)
,

Pr
(
x
(5)
7,7 ⊕ x

(5)
8,7 = L(6)

7,7 ⊕ L(6)
8,7 ⊕ x

(6)
2,6 ⊕ x

(6)
13,14

)
=

1
2

(
1 +

1
2

)
,

Pr
(
x
(5)
7,19 ⊕ x

(5)
8,19 = L(6)

7,19 ⊕ L(6)
8,19 ⊕ x

(6)
2,18 ⊕ x

(6)
13,26

)
=

1
2

(
1 +

1
2

)
.

– Case 3: When considering (a, b, c, d) = (3, 4, 9, 14), we have x
(5)
4,26 and we

can use Lemma 3 to obtain

Pr
(
x
(5)
4,26 = L(6)

4,26 ⊕ x
(6)
14,26

)
=

1
2

(
1 +

1
2

)
.

By the Piling-up Lemma, we have that all these changes result in a probability
of 1

2

(
1 + 1

28

)
. Expanding the linear terms using Eqs. (13)–(16) and canceling

out common factors completes the proof. �

Computational Result 1 The linear approximation of Lemma 10 holds com-
putationally with εL0 = 0.006942 ≈ 2−7.17. This correlation was verified using
238 random samples.

In [9], the authors remarked that an expansion of this method to 7 rounds
would be unlikely to be useful. Indeed, if we only apply Lemma 3 (which are
the linear approximations proposed by Choudhuri and Maitra) we would have
(xa, 14), (xb, 13), (xc, 9), (xd, 15). Therefore, the aggregated correlation would
be εL = 1/27+14·4+13·1+9·2+15·1 = 2−109. Thus, using this linear expansion in a
differential-linear attack would lead to a distinguisher with complexity no less
then 2436. However, using our new linear approximations we can get a much
better result.
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Lemma 11. The following linear approximation holds with probability
1
2

(
1 + 1

255

)

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(7)
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28] ⊕ x

(7)
1 [0, 5, 7, 8, 10,

11, 14, 15, 16, 22, 23, 24, 25, 27, 30, 31] ⊕ x
(7)
2 [6, 7, 9, 10, 16, 18, 19,

25, 26] ⊕ x
(7)
3 [6, 7, 8, 24] ⊕ x

(7)
4 [0, 2, 3, 5, 18, 22, 23, 27] ⊕ x

(7)
5 [1, 2,

9, 10, 13, 14, 18, 21, 22, 25, 29, 30] ⊕ x
(7)
6 [2, 3, 5, 7, 10, 11, 13, 14, 19,

22, 23, 27, 30, 31] ⊕ x
(7)
7 [1, 2, 13, 25, 26, 30, 31] ⊕ x

(7)
8 [8, 11, 13, 20,

25, 27, 28, 30, 31] ⊕ x
(7)
9 [2, 3, 6, 7, 14, 15, 18, 27] ⊕ x

(7)
10 [0, 3, 4, 8, 12,

13, 14, 18, 20, 27, 28, 30] ⊕ x
(7)
11 [6, 14, 15, 18, 19, 23, 24, 27]⊕

x
(7)
12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31] ⊕ x

(7)
13 [1, 2, 6, 7, 8, 10,

11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26] ⊕ x
(7)
14 [0, 6, 13, 14, 15, 16,

23, 24] ⊕ x
(7)
15 [16, 25, 26].

Proof. If we start from Lemma 10 then we want to expand the equation one more
round. To do so, first note that since we are transitioning from round 6 to 7, we
have (a, b, c, d) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. Therefore,
we can divide the factors of the equation in 4 distinct groups:

– Group I - x
(6)
0 [0, 16], x(6)

4 [7, 13, 19], x(6)
8 [0, 7, 8, 19, 31], x

(6)
12 [0, 11, 12, 19, 20,

30, 31].
– Group II - x

(6)
1 [0, 6, 7, 11, 12, 22, 23], x

(6)
5 [7], x

(6)
9 [0, 6, 12, 26], x

(6)
13 [0, 14, 15,

24, 26, 27].
– Group III - x

(6)
2 [0, 6, 7, 8, 16, 18, 19, 24], x(6)

6 [7, 13, 14, 19], x
(6)
10 [0], x

(6)
14 [8, 25, 26].

– Group IV - x
(6)
7 [6, 7, 14, 15, 26], x

(6)
11 [6, 7], x(6)

15 [24].

The procedure to expand and compute the correlation is similar to that in the
proof of Lemma 10. To simplify the notation we will compute the probability
given by the Piling-up Lemma by summing values k where the probability of a
particular linear equation will be given by 1

2

(
1 + 1

2k

)
.

In Group I, the factors x
(6)
0,0, x

(6)
8,0, x

(6)
12,0 can be expanded using Lemma 1 with

probability 1. Next, we can combine the following factors: x
(6)
4,7, x

(6)
8,7, x

(6)
8,8 using

Lemma 8 (k = 2); x
(6)
4,19, x

(6)
8,19 using Eq. (19) of Lemma 9 (k = 1); x

(6)
12,11, x

(6)
12,12

using Lemma 7 with (k = 1); x
(6)
12,19, x

(6)
12,20 using Lemma 7 with (k = 1);

x
(6)
12,30, x

(6)
12,31 using Lemma 7 with (k = 1). Finally, it remains some single terms

to be expanded: x
(6)
0,16 using Lemma 6 (k = 3); x

(6)
4,13 using Lemma 3 (k = 1);

x
(6)
8,31 using Lemma 3 (k = 2). By the Piling-up Lemma, we can combine these

linear relations to obtain

x
(6)
0 [0, 16] ⊕ x

(6)
4 [7, 13, 19] ⊕ x

(6)
8 [0, 7, 8, 19, 31] ⊕ x

(6)
12 [0, 11, 12, 19, 20, 30, 31] =

x
(7)
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28] ⊕ x

(7)
4 [0, 2, 3, 5, 18, 22, 23, 27]⊕

x
(7)
8 [8, 11, 13, 20, 25, 27, 28, 30, 31] ⊕ x

(7)
12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31]

(32)

with probability 1
2

(
1 + 1

212

)
.
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In Group II, the factors x
(6)
1,0, x

(6)
9,0, x

(6)
13,0 can be expanded using Lemma 1 with

probability 1. Next, we can combine the following factors: x
(6)
1,6, x

(6)
1,7, x

(6)
5,7, x

(6)
9,6

using Eq. (29) of Lemma 9 (k = 3); x
(6)
1,11, x

(6)
1,12, x

(6)
9,12 using Eq. (25) of Lemma 9

(k = 4); x
(6)
1,22, x

(6)
1,23 using Lemma 7 (k = 3); x

(6)
13,14, x

(6)
13,15 using Lemma 7 (k = 1);

x
(6)
13,26, x

(6)
13,27 using Lemma 7 (k = 1). Finally, it remains some single terms to be

expanded: x
(6)
9,26 using Lemma 3 (k = 2); x

(6)
13,24 using Lemma 3 (k = 1). By the

Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
1 [0, 6, 7, 11, 12, 22, 23] ⊕ x

(6)
5 [7] ⊕ x

(6)
9 [0, 6, 12, 26] ⊕ x

(6)
13 [0, 14, 15, 24, 26,

27] = x
(7)
1 [0, 5, 7, 8, 10, 11, 14, 15, 16, 22, 23, 24, 25, 27, 30, 31] ⊕ x

(7)
5 [1, 2, 9, 10,

13, 14, 18, 21, 22, 25, 29, 30] ⊕ x
(7)
9 [2, 3, 6, 7, 14, 15, 18, 27] ⊕ x

(7)
13 [1, 2, 6, 7, 8, 10,

11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26]
(33)

with probability 1
2

(
1 + 1

215

)
.

In Group III, the factors x
(6)
2,0 and x

(6)
10,0 can be expanded using Lemma 1

with probability 1. Next, we can combine the following factors: x
(6)
2,6, x

(6)
2,7 using

Lemma 7 (k = 3); x
(6)
6,13, x

(6)
6,14 using Lemma 7 (k = 1); x

(6)
14,25, x

(6)
14,26 using Lemma

7 (k = 1); x
(6)
2,18, x

(6)
2,19, x

(6)
6,19 using Eq. (26) of Lemma 9 (k = 3); x

(6)
2,8, x

(6)
6,7, x

(6)
14,8

using Eq. (27) of Lemma 9 (k = 2). Finally, it remains some single terms to be
expanded: x

(6)
2,16 using Lemma 6 (k = 3); x

(6)
2,24 using Lemma 6 (k = 3). By the

Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
2 [0, 6, 7, 8, 16, 18, 19, 24] ⊕ x

(6)
6 [7, 13, 14, 19] ⊕ x

(6)
10 [0] ⊕ x

(6)
14 [8, 25, 26] =

x
(7)
2 [6, 7, 9, 10, 16, 18, 19, 25, 26] ⊕ x

(7)
6 [2, 3, 5, 7, 10, 11, 13, 14, 19, 22, 23, 27, 30,

31] ⊕ x
(7)
10 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27, 28, 30] ⊕ x

(7)
14 [0, 6, 13, 14, 15, 16, 23, 24]

(34)
with probability 1

2

(
1 + 1

216

)
.

In Group IV, we can combine the following factors: x
(6)
7,14, x

(6)
7,15 using Lemma 7

(k = 1); x
(6)
7,6, x

(6)
7,7, x

(6)
11,6, x

(6)
11,7 using Eq. (28) of Lemma 9 (k = 1). It remains some

single terms to be expanded: x
(6)
7,26 using Lemma 3 (k = 1); x

(6)
15,24 using Lemma

3 (k = 1). By the Piling-up Lemma, we can combine these linear relations to
obtain

x
(6)
7 [6, 7, 14, 15, 26] ⊕ x

(6)
11 [6, 7] ⊕ x

(6)
15 [24] = x

(7)
3 [6, 7, 8, 24] ⊕ x

(7)
7 [1, 2,

13, 25, 26, 30, 31] ⊕ x
(7)
11 [6, 14, 15, 18, 19, 23, 24, 27] ⊕ x

(7)
15 [16, 25, 26]

(35)

with probability 1
2

(
1 + 1

24

)
.

Finally, using the Piling-up Lemma we can combine the results from
Lemma 10 and Eqs. (32)–(35), which leads to a correlation of εL =
1/28+12+15+16+4 = 2−55. �
Computational Result 2 The linear approximation of Eq. (32) holds compu-
tationally with εL1 = 0.000301 ≈ 2−11.70. This correlation was verified using 242

random samples.



728 M. Coutinho and T. C. Souza Neto

Computational Result 3 The linear approximation of Eq. (33) holds compu-
tationally with εL2 = 0.000100 ≈ 2−13.29. This correlation was verified using 242

random samples.

Computational Result 4 The linear approximation of Eq. (34) holds compu-
tationally with εL3 = 0.000051 ≈ 2−14.26. This correlation was verified using 242

random samples.

Computational Result 5 The linear approximation of Eq. (35) holds com-
putationally with εL4 = 0.0625 ≈ 2−4. This correlation was verified using 238

random samples.

Next, we will only work with a linear approximation for the bit x
(3.5)
5,0 . As

we will see in the next session, we are able to find a differential correlation to
this bit (as introduced in [9], half a round of ChaCha consists in applying half
the operations of the QRF. Thus, from Eq. (2) we can write x

(r−1/2)
a = x

(r−1)
a′ ,

. . . x
(r−1/2)
d = x

(r−1)
d′ ). Using Eq. (5) it is easy to see that we have x

(3.5)
5,0 =

x
(4)
5,7 ⊕ x

(4)
10,0. Additionally, using Lemma 3 we can expand one more round and

we get

x
(3.5)
5,0 = x

(5)
2,0 ⊕ x

(5)
5,26 ⊕ x

(5)
9,7 ⊕ x

(5)
9,19 ⊕ x

(5)
10,0 ⊕ x

(5)
13,6 ⊕ x

(5)
13,7 ⊕ x

(5)
14,0 ⊕ x

(5)
14,8, (36)

with probability 1
2

(
1 + 1

2

)
.

Lemma 12. The following linear approximation holds with probability 1
2

(
1 + 1

28

)

x
(3.5)
5,0 = x

(6)
0 [0] ⊕ x

(6)
2 [0, 6, 7, 22, 23] ⊕ x

(6)
3 [0, 6, 7, 8, 16, 18, 19, 24]⊕

x
(6)
4 [7, 14, 15] ⊕ x

(6)
5 [13] ⊕ x

(6)
7 [7, 13, 14, 19] ⊕ x

(6)
8 [6, 7, 12]⊕

x
(6)
9 [0, 8, 19] ⊕ x

(6)
10 [0, 6, 26] ⊕ x

(6)
13 [0, 30, 31]⊕

x
(6)
14 [0, 6, 7, 14, 15, 18, 19, 24, 26, 27] ⊕ x

(6)
15 [0, 8, 25, 26].

Proof. We start from Eq. (36) and we can use Lemma 1 x
(5)
2,0, x

(5)
10,0, x

(5)
14,0 by

L(6)
2,0,L(6)

10,0,L(6)
14,0 with probability 1. Next, note that, since we are transitioning

from round 5 to 6, we have (a, b, c, d) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13),
(3, 4, 9, 14)}. Considering (a, b, c, d) = (0, 5, 10, 15), we have the factor x

(5)
5,26 and

we can apply Lemma 3 to get

Pr
(
x
(5)
5,26 = L(6)

5,26 ⊕ x
(6)
15,25

)
=

1
2

(
1 +

1
2

)
.

Considering (a, b, c, d) = (2, 7, 8, 13), we have the factors x
(5)
13,6 and x

(5)
13,7. Then

we can use Lemma 7 to get

Pr
(
x
(5)
13,6 ⊕ x

(5)
13,7 = L(6)

13,6 ⊕ L(6)
13,7

)
=

1
2

(
1 +

1
2

)
.
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Considering (a, b, c, d) = (3, 4, 9, 14) we have x
(5)
9,7, x

(5)
9,19 and x

(5)
14,8, and then we

can apply Lemma 3 to obtain

Pr
(
x
(5)
9,7 = L(6)

9,7 ⊕ x
(6)
3,6 ⊕ x

(6)
14,14 ⊕ x

(6)
14,6

)
=

1
2

(
1 +

1
22

)
,

Pr
(
x
(5)
9,19 = L(6)

9,19 ⊕ x
(6)
3,18 ⊕ x

(6)
14,26 ⊕ x

(6)
14,18

)
=

1
2

(
1 +

1
22

)
,

Pr
(
x
(5)
14,8 = L(6)

14,8 ⊕ x
(6)
9,7 ⊕ x

(6)
4,14

)
=

1
2

(
1 +

1
2

)
.

By the Piling-up Lemma, we have that all these changes result in a probability
of 1

2

(
1 + 1

28

)
. Expanding the linear terms using Eqs. (13)–(16) and canceling

out common factors completes the proof. �

Computational Result 6 The linear approximation of Lemma 12 holds com-
putationally with εL0 = 0.00867 ≈ 2−6.85.

Lemma 13. The following linear approximation holds with probability
1
2

(
1 + 1

247

)

x
(3.5)
5,0 = x

(7)
0 [0, 6, 7, 11, 12] ⊕ x

(7)
1 [7, 8, 14, 15, 16, 18, 19, 30, 31]⊕

x
(7)
2 [0, 2, 3, 5, 6, 8, 10, 11, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31]⊕

x
(7)
3 [6, 7, 9, 10, 18, 19, 25, 26] ⊕ x

(7)
4 [1, 2, 7, 19, 26] ⊕ x

(7)
5 [0, 5, 6, 7]⊕

x
(7)
6 [1, 2, 9, 10, 19, 21, 22, 29, 31] ⊕ x

(7)
7 [2, 3, 5, 10, 11, 13, 14, 19, 22, 23,

27, 30, 31] ⊕ x
(7)
8 [6, 14, 15, 19, 26, 27] ⊕ x

(7)
9 [8, 13, 19, 25, 30, 31]⊕

x
(7)
10 [2, 3, 7, 12, 14, 15, 23, 24, 27] ⊕ x

(7)
11 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27,

28, 30] ⊕ x
(7)
12 [0, 5, 6, 11, 12, 19, 20] ⊕ x

(7)
13 [0, 7, 12, 13, 15, 16, 18, 19, 22,

23, 24, 26, 27] ⊕ x
(7)
14 [1, 2, 8, 10, 11, 13, 14, 16, 18, 19, 22, 23, 24, 25, 26,

30, 31] ⊕ x
(7)
15 [5, 6, 7, 8, 13, 14, 15, 16, 23].

Proof. If we start from Lemma 12 we want to expand the equation one more
round. To do so, first note that since we are transitioning from round 6 to 7, we
have (a, b, c, d) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. Therefore,
we can divide the factors of the equation in 4 distinct groups:

– Group I - x
(6)
0 [0], x(6)

4 [7, 14, 15], x(6)
8 [6, 7, 12].

– Group II - x
(6)
5 [13], x(6)

9 [0, 8, 19], x(6)
13 [0, 30, 31].

– Group III - x
(6)
2 [0, 6, 7, 22, 23], x

(6)
10 [0, 6, 26], x

(6)
14 [0, 6, 7, 14, 15, 18, 19, 24,

26, 27].
– Group IV - x

(6)
3 [0, 6, 7, 8, 16, 18, 19, 24], x(6)

7 [7, 13, 14, 19], x(6)
15 [0, 8, 25, 26].

Here, we follow the same strategy as in the proof of Lemma 11. In Group I, the
factor x

(6)
0,0 can be expanded using Lemma 1 with probability 1. Next, we can

combine the following factors: x
(6)
4,7, x

(6)
8,6, x

(6)
8,7 using Lemma 8 (k = 2); x

(6)
4,14, x

(6)
4,15
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using Lemma 7 with (k = 1). Finally, we expand x
(6)
8,12 using Lemma 3 (k = 2).

By the Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
0 [0] ⊕ x

(6)
4 [7, 14, 15] ⊕ x

(6)
8 [6, 7, 12] = x

(7)
0 [0, 6, 7, 11, 12]⊕

x
(7)
4 [1, 2, 7, 19, 26] ⊕ x

(7)
8 [6, 14, 15, 19, 26, 27] ⊕ x

(7)
12 [0, 5, 6, 11, 12, 19, 20]

(37)

with probability 1
2

(
1 + 1

25

)
.

In Group II, the factors x
(6)
9,0, x

(6)
13,0 can be expanded using Lemma 1 with

probability 1. Next, we can combine x
(6)
13,30, x

(6)
13,31 using Lemma 7 (k = 1). The

remaining terms can be expanded with Lemma 3: x
(6)
9,8 (k = 2); x

(6)
9,19 (k = 2);

x
(6)
5,13 (k = 1). By the Piling-up Lemma, we can combine these linear relations

to obtain

x
(6)
5 [13] ⊕ x

(6)
9 [0, 8, 19] ⊕ x

(6)
13 [0, 30, 31] = x

(7)
1 [7, 8, 14, 15, 16, 18, 19, 30, 31]⊕

x
(7)
5 [0, 5, 6, 7] ⊕ x

(7)
9 [8, 13, 19, 25, 30, 31] ⊕ x

(7)
13 [0, 7, 12, 13, 15, 16, 18, 19, 22,

23, 24, 26, 27]
(38)

with probability 1
2

(
1 + 1

26

)
.

In Group III, the factors x
(6)
2,0, x

(6)
10,0 and x

(6)
14,0 can be expanded using Lemma

1 with probability 1. Next, we can combine the following factors: x
(6)
2,6, x

(6)
2,7, x

(6)
10,6,

x
(6)
14,6, x

(6)
14,7 using Eq. (30) of Lemma 9 (k = 3); x

(6)
2,22, x

(6)
2,23 using Lemma 7

(k = 3); x
(6)
14,14, x

(6)
14,15 using Lemma 7 (k = 1); x

(6)
14,18, x

(6)
14,19 using Lemma 7

(k = 1); x
(6)
14,26, x

(6)
14,27 using Lemma 7 (k = 1). Finally, it remains some single

terms to be expanded: x
(6)
10,26 using Lemma 3 (k = 2); x

(6)
14,24 using Lemma 6

(k = 1). By the Piling-up Lemma, we can combine these linear relations to
obtain

x
(6)
2 [0, 6, 7, 22, 23], x(6)

10 [0, 6, 26], x(6)
14 [0, 6, 7, 14, 15, 18, 19, 24, 26, 27] =

x
(7)
2 [0, 2, 3, 5, 6, 8, 10, 11, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31]⊕

x
(7)
6 [1, 2, 9, 10, 19, 21, 22, 29, 31] ⊕ x

(7)
10 [2, 3, 7, 12, 14, 15, 23, 24, 27]⊕

x
(7)
14 [1, 2, 8, 10, 11, 13, 14, 16, 18, 19, 22, 23, 24, 25, 26, 30, 31]

(39)

with probability 1
2

(
1 + 1

212

)
.

In Group IV, the factors x
(6)
3,0 and x

(6)
15,0 can be expanded using Lemma 1 with

probability 1. Then we can combine the following factors: x
(6)
3,6, x

(6)
3,7, x

(6)
7,7 using Eq.

(26) of Lemma 9 (k = 3); x
(6)
3,18, x

(6)
3,19, x

(6)
7,19 using Eq. (26) of Lemma 9 (k = 3);

x
(6)
3,8, x

(6)
15,8 using Eq. (24) of Lemma 9 (k = 2); x

(6)
15,25, x

(6)
15,26 using Lemma 7

(k = 1); x
(6)
7,13, x

(6)
7,14 using Lemma 7 (k = 1). It remains some single terms to be

expanded: x
(6)
3,16 using Lemma 6 (k = 3); x

(6)
3,24 using Lemma 6 (k = 3). By the

Piling-up Lemma, we can combine these linear relations to obtain
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x
(6)
3 [0, 6, 7, 8, 16, 18, 19, 24], x(6)

7 [7, 13, 14, 19], x(6)
15 [0, 8, 25, 26] =

x
(7)
3 [6, 7, 9, 10, 18, 19, 25, 26] ⊕ x

(7)
7 [2, 3, 5, 10, 11, 13, 14, 19, 22, 23, 27, 30, 31]⊕

x
(7)
11 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27, 28, 30] ⊕ x

(7)
15 [5, 6, 7, 8, 13, 14, 15, 16, 23]

(40)
with probability 1

2

(
1 + 1

216

)
.

Finally, using the Piling-up Lemma we can combine the results from
Lemma 12 and Eqs. (37)-(40), which leads to a correlation of εL =
1/28+5+6+12+16 = 2−47. �

Computational Result 7 The linear approximation of Eq. (37) holds compu-
tationally with εL1 = 0.0416 ≈ 2−4.59. This correlation was verified using 238

random samples.

Computational Result 8 The linear approximation of Eq. (38) holds compu-
tationally with εL2 = 0.0278 ≈ 2−5.19. This correlation was verified using 238

random samples.

Computational Result 9 The linear approximation of Eq. (39) holds compu-
tationally with εL3 = 0.000398 ≈ 2−11.29. This correlation was verified using 242

random samples.

Computational Result 10 The linear approximation of Eq. (40) holds com-
putationally with εL4 = 0.000047 ≈ 2−14.38. This correlation was verified using
242 random samples.

It is interesting to note that the experimental correlation is higher than
expected in several cases. Of course, since the hypothesis of independence for the
Piling-Up Lemma does not hold, it is expected to see deviations between what is
predicted theoretically and what we see in practice. The fact that the correlation
is usually higher indicates a positive correlation between some equations. In
future works, it may be interesting to try to understand why ChaCha has this
behavior.

4 Improved Differential-Linear Attacks Against ChaCha

4.1 New Differentials

In this section, we present new differentials for 3.5 rounds of ChaCha. As in
previous works, these differential correlations were found experimentally. To find
these correlations we used the technique proposed by Beierle et al. at Crypto
2020 [4], and described in Sect. 2.2. Here, the cipher is divided into the sub
ciphers E1 covering 1 round and E2 covering 2.5 rounds to find a differential
path for 3.5 rounds. Thus we want a particular differential characteristic of the
form

ΔX(0) 1 round−−−−−−→ ΔX(1) 2.5 rounds−−−−−−−−→ ΔX(3.5).
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The idea is to generate consistent ΔX(1) whose Hamming weight is minimized.
In [4], the authors showed that the following differential characteristic occurs
with probability 2−5 on average for the QRF of ChaCha

ΔX(0) = (([]), ([]), ([]), ([i])) → ΔX(1) = (([i + 28]), ([i + 31, i + 23, i + 11,
i + 3]), ([i + 24, i + 16, i + 4]),
([i + 24, i + 4])).

(41)
From there we computed ΔX(3.5) by generating random states X(1) and

X ′(1) and statistically testing for correlations in particular bits of ΔX(3.5). We
note that this procedure is computationally intensive as some of the correlations
are very small. For some bits, we executed this procedure up to 250 pairs of
random states in the first round. To achieve this amount of computation we
used 8 NVIDIA GPUs (RTX 2080ti). As in the referred paper, we used i = 6.
Also, we fixed the differential of Eq. (41) in the third column of the state matrix.
Table 3 shows the results.

Table 3. New differentials after 3.5 rounds, starting from ΔX(1) in the third column
of the state matrix with i = 6 in Eq. (41).

OD |εd|
Δx

(3.5)
0,0 0.000307

Δx
(3.5)
1,0 0.000124

Δx
(3.5)
12,0 0.000017

Δx
(3.5)
13,0 0.000016

Δx
(3.5)
5,0 0.0000002489

4.2 Distinguishers

Using the linear approximations of Lemma 10 and Lemma 11, the differential
correlation εd = 0.00048 for (a, b) = (3, 4) described in [10], and the estimated
correlations from the Computational Results 1–5, we get εdε

2
L0

≈ 2−25.37 which
gives us a distinguisher for 6 rounds of ChaCha with complexity less than 251.
Also, we get εd(εL0εL1εL2εL3εL4)

2 ≈ 2−111.86 which gives us a distinguisher for
7 rounds of ChaCha with complexity less than 2224.

Using the linear approximations of Lemma 12 and Lemma 13, the differen-
tial correlation for Δ

(3.5)
5,0 presented in Table 3, and the estimated correlations

from the Computational Results 6–10, we get εdε
2
L0

≈ 2−35.64 which gives us
a distinguisher for 6 rounds of ChaCha with complexity less than 272+5 = 277

(here we have to repeat the procedure 25 times on average as in [4]). Also, we
get εd(εL0εL1εL2εL3εL4)

2 ≈ 2−106.5 which gives us a distinguisher for 7 rounds
of ChaCha with complexity less than 2213+5 = 2218.



Improved Linear Approximations to ARX Ciphers and Attacks 733

4.3 New Attack Using Probabilistic Neutral Bits (PNBs)

One of the most important attacks against ChaCha is the proposal of Aumasson
[1]. The attack first identifies good choices of truncated differentials, then it
uses probabilistic backwards computation with the notion of PNBs, estimating
the complexity of the attack. This attack is described in several previous works
[1,22,23], thus, in our description, we skip several details.

The PNB-based key recovery is a fully experimental approach. We summarize
the technique as follows:

– Let the correlation in the forward direction (a.k.a, differential-linear distin-
guisher) after r rounds be εd.

– Let n be the number of PNBs given by a correlation γ. Namely, even if we
flip one bit in PNBs, we still observe correlation γ.

– Let the correlation in the backward direction, where all PNB bits are fixed
to 0 and non-PNB bits are fixed to the correct ones, is εa

Then, the time complexity of the attack is estimated as 2256−nN +2256−α, where
the data complexity N is given as

N =

(√
α log(4) + 3

√
1 − ε2aε2d

εaεd

)2

,

where α is a parameter that the attacker can choose.
We can improve previous attacks for 7 rounds of ChaCha using this technique

by considering the new differential correlation for Δ
(3.5)
5,0 presented in Table 3.

Using Eq. (5) it is easy to see that we have x
(3.5)
5,0 = x

(4)
5,7 ⊕ x

(4)
10,0. Therefore, we

consider ID given by Eq. (41) with i = 6 and OD x
(4)
5,7 ⊕ x

(4)
10,0. Using γ = 0.35

we found 108 PNBs, and we obtained εa = 0.000169. From that, we get an
attack with data complexity of 275.51 and time complexity 2223.51. As in [4], we
have to repeat this attack 25 times on average. Thus, the final attack has data
complexity of 280.51 and time complexity 2228.51. Bellow we list all PNBs:

PNB = (2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30,
31, 32, 33, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 102, 103, 111, 112, 115, 128, 129, 130, 135,
136, 143, 144, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 160, 161, 162, 163,
168, 169, 170, 173, 174, 175, 176, 179, 180, 181, 182, 185, 186, 191, 199, 200, 201,
219, 220, 221, 222, 223, 232, 255).

5 Conclusion

In this paper, we presented a new technique to find linear approximations for
ARX ciphers. Applying this technique we presented new linear approximations
to the stream cipher ChaCha which gave us new and improved distinguishers. In
addition, we presented new differential characteristics for 3.5 rounds of ChaCha
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and use them to improve the attacks based on Probabilistic Neutral Bits. For
future works, we expect that the proposed technique can be used to improve
attacks against similar ARX-based designs, as the stream cipher Salsa and the
hash function Blake.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions which helped us to improve our work.

A Proofs

In this appendix, we expand the proof of Lemma 9 for each individual linear
approximation.

A.1 Eq. (19)

Proof. Using Eqs. (9) and (10) we can write

x
(m−1)
b,i ⊕ x

(m−1)
c,i = L(m)

b,i ⊕ Θi(x
′(m−1)
c , x

(m)
d )⊕

L(m)
c,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ) ⊕ Θi(x

(m−1)
c , x

′(m−1)
d ).

Using the approximation of Eq. (17) we can write Θi(x
(m−1)
c , x

′(m−1)
d ) = x

′(m−1)
d,i−1

with probability 1
2

(
1 + 1

2

)
. Thus, using Eq. (7) and canceling out common factors

we get
x
(m−1)
b,i ⊕ x

(m−1)
c,i = L(m)

b,i ⊕ L(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7,

with probability 1
2

(
1 + 1

2

)
, which concludes the proof. �

A.2 Eqs. (20) and (21)

Proof. Using Eqs. (9) and (12) we can write

x
(m−1)
a,i ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L(m)
b,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ) ⊕ Θi(x

′(m−1)
c , x

(m)
d )⊕

Θi(x
′(m−1)
a , x

′(m−1)
b ) ⊕ Θi(x

(m−1)
a , x

(m−1)
b ).

Cancelling out common factors, using the approximation of Eq. (17) and the
Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L(m)
b,i ⊕ x

′(m−1)
b,i−1 ⊕ x

(m−1)
b,i−1

with probability 1
2

(
1 + 1

22

)
. Now we can replace x

′(m−1)
b,i−1 using Eq. (5) and x

(m−1)
b,i−1

using Lemma 3, which leads to

x
(m−1)
a,i ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L(m)
b,i ⊕ x

(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ L(m)

b,i−1 ⊕ x
(m)
d,i−2,

with probability 1
2

(
1 + 1

23

)
by the Piling-up Lemma. We can also use Lemma 1

in order to obtain

x
(m−1)
a,1 ⊕ x

(m−1)
b,1 = L(m)

a,1 ⊕ L(m)
b,1 ⊕ x

(m)
b,7 ⊕ x

(m)
c,0 ⊕ L(m)

b,0 ,

with probability 1
2

(
1 + 1

22

)
. �
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A.3 Eqs. (22) and (23)

Proof. Combining Eq. (10) and Eq. (12) we have

x
(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i ⊕ L(m)
c,i ⊕ Θi(x

(m−1)
c , x

′(m−1)
d )⊕

Θi(x
′(m−1)
a , x

′(m−1)
b ) ⊕ Θi(x

(m−1)
a , x

(m−1)
b ).

Using the approximation of Eq. (17) and the Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i ⊕ L(m)
c,i ⊕ x

′(m−1)
d,i−1 ⊕ x

′(m−1)
b,i−1 ⊕ x

(m−1)
b,i−1

with probability 1
2

(
1 + 1

23

)
. Now we can replace x

′(m−1)
d,i−1 using Eq. (7), x

′(m−1)
b,i−1

using Eq. (5) and x
(m−1)
b,i−1 using Lemma 3 if i > 1 or 1 if i = 1, which leads to

x
(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i ⊕ L(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
b,i+6

⊕x
(m)
c,i−1 ⊕ L(m)

b,i−1 ⊕ x
(m)
d,i−2,

with probability 1
2

(
1 + 1

24

)
by the Piling-up Lemma or

x
(m−1)
a,1 ⊕ x

(m−1)
c,1 = L(m)

a,1 ⊕ L(m)
c,1 ⊕ x

(m)
a,0 ⊕ x

(m)
d,8 ⊕ x

(m)
b,7

⊕x
(m)
c,0 ⊕ L(m)

b,0 ,

with probability 1
2

(
1 + 1

23

)
. �

A.4 Eq. (24)

Proof. Using Eq. (11) and Eq. (12) we can write

x
(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ) ⊕ Θi(x

(m−1)
a , x

(m−1)
b ).

Using Eq. (17) we get

x
(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ) ⊕ x

(m−1)
b,i−1 ,

and from Eq. (9)

x
(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ Θi(x

′(m−1)
c , x

(m)
d )⊕

L(m)
b,i−1 ⊕ Θi−1(x

′(m−1)
c , x

(m)
d ),

with probability 1
2

(
1 + 1

2

)
. Thus, using the approximation of Eq. (18) and the

Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ L(m)

b,i−1,

with probability 1
2

(
1 + 1

22

)
. �
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A.5 Eq. (25)

Proof. Using Eq. (12) and Eq. (10) and canceling out common factors we get

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i ⊕
Θi−1(x

′(m−1)
a , x

′(m−1)
b ) ⊕ Θi−1(x

′(m−1)
c , x

(m)
d )⊕

Θi−1(x
(m−1)
a , x

(m−1)
b ) ⊕ Θi(x

′(m−1)
a , x

′(m−1)
b )⊕

Θi(x
(m−1)
a , x

(m−1)
b ) ⊕ Θi(x

(m−1)
c , x

′(m−1)
d )

Using the approximation of Eq. (18) and the Piling-up Lemma we obtain

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i ⊕
Θi−1(x

′(m−1)
c , x

(m)
d ) ⊕ Θi(x

(m−1)
c , x

′(m−1)
d )

with probability 1
2

(
1 + 1

22

)
. Using Eq. (17) and Eq. (7) we get

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i ⊕
x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

with probability 1
2

(
1 + 1

24

)
. �

A.6 Eq. (26)

Proof. Using Eq. (9) and Eq. (12) and canceling out common factors we can
write

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L(m)
a,i−1 ⊕ L(m)

b,i ⊕
Θi−1(x

′(m−1)
a , x

′(m−1)
b ) ⊕ Θi−1(x

′(m−1)
c , x

(m)
d ) ⊕ Θi−1(x

(m−1)
a , x

(m−1)
b )⊕

Θi(x
′(m−1)
a , x

′(m−1)
b ) ⊕ Θi(x

(m−1)
a , x

(m−1)
b ).

Using the approximation of Eq. (18) and the Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L(m)
a,i−1

⊕L(m)
b,i ⊕ Θi−1(x

′(m−1)
c , x

(m)
d ).

with probability 1
2

(
1 + 1

22

)
. Using the approximation of Eq. (17) we get

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
b,i = L(m)

a,i ⊕ L(m)
a,i−1 ⊕ L(m)

b,i ⊕ x
(m)
d,i−2.

with probability 1
2

(
1 + 1

23

)
. �
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A.7 Eq. (27)

Proof. Using Eq. (11) and Eq. (12), and canceling out common factors we have

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
d,i = x

(m−1)
b,i−1 ⊕ L(m)

a,i ⊕ Θi(x
′(m−1)
c , x

(m)
d )⊕

Θi(x
(m−1)
a , x

(m−1)
b ) ⊕ L(m)

d,i .

Using the approximation of Eq. (17) we have Θi(x
(m−1)
a , x

(m−1)
b ) = x

(m−1)
b,i−1 occur-

ring with probability 1
2

(
1 + 1

22

)
. Then

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ).

with probability 1
2

(
1 + 1

2

)
. Finally, using the approximation of Eq. (17) and the

Piling-up Lemma we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
d,i = L(m)

a,i ⊕ L(m)
d,i ⊕ x

(m)
d,i−1.

with probability 1
2

(
1 + 1

22

)
. �

A.8 Eq. (28)

Proof. Using Eq. (9) and Eq. (10), we can write

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
c,i = L(m)

b,i−1 ⊕ Θi−1(x
′(m−1)
c , x

(m)
d ) ⊕ L(m)

b,i ⊕
Θi(x

′(m−1)
c , x

(m)
d ) ⊕ L(m)

c,i−1 ⊕ Θi−1(x
′(m−1)
c , x

(m)
d ) ⊕ Θi−1(x

(m−1)
c , x

′(m−1)
d )⊕

L(m)
c,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ) ⊕ Θi(x

(m−1)
c , x

′(m−1)
d ).

Canceling out common factors we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
c,i = L(m)

b,i−1 ⊕ L(m)
b,i ⊕ L(m)

c,i−1 ⊕ L(m)
c,i ⊕

Θi−1(x
(m−1)
c , x

′(m−1)
d )⊕

Θi(x
(m−1)
c , x

′(m−1)
d ).

Thus, using the approximation of Eq. (18) we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
c,i = L(m)

b,i−1 ⊕ L(m)
b,i ⊕ L(m)

c,i−1 ⊕ L(m)
c,i .

with probability 1
2

(
1 + 1

2

)
. �

A.9 Eq. (29)

Proof. Using Eqs. (9), (10) and (12)

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
b,i ⊕ x

(m−1)
c,i−1 = L(m)

a,i ⊕ L(m)
a,i−1 ⊕ L(m)

b,i ⊕ L(m)
c,i−1⊕

Θi(x
′(m−1)
a , x

′(m−1)
b ) ⊕ Θi(x

(m−1)
a , x

(m−1)
b ) ⊕ Θi−1(x

′(m−1)
a , x

′(m−1)
b )⊕

Θi−1(x
(m−1)
a , x

(m−1)
b ) ⊕ Θi−1(x

(m−1)
c , x

′(m−1)
d ).
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Using the approximation of Eq. (18) and the Piling-up Lemma we can write

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
b,i ⊕ x

(m−1)
c,i−1 = L(m)

a,i ⊕ L(m)
a,i−1 ⊕ L(m)

b,i ⊕ L(m)
c,i−1⊕

Θi−1(x
(m−1)
c , x

′(m−1)
d ).

with probability 1
2

(
1 + 1

22

)
. Therefore, Eqs. (17) and (7) give us

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
b,i ⊕ x

(m−1)
c,i−1 = L(m)

a,i ⊕ L(m)
a,i−1 ⊕ L(m)

b,i ⊕ L(m)
c,i−1⊕

x
(m)
a,i−2 ⊕ x

(m)
d,i+6.

with probability 1
2

(
1 + 1

23

)
. �

A.10 Eq. (30)

Proof. Using Eqs. (10), (11) and (12), we can write

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x

(m−1)
d,i−1 = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i−1⊕
L(m)

d,i−1 ⊕ L(m)
d,i ⊕ Θi−1(x

(m−1)
a , x

(m−1)
b ) ⊕ Θi(x

′(m−1)
c , x

(m)
d )⊕

Θi(x
(m−1)
a , x

(m−1)
b ) ⊕ Θi−1(x

(m−1)
c , x

′(m−1)
d ).

Using the approximation of Eq. (18) we have

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x

(m−1)
d,i−1 = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i−1⊕
L(m)

d,i−1 ⊕ L(m)
d,i ⊕ Θi(x

′(m−1)
c , x

(m)
d ) ⊕ Θi−1(x

(m−1)
c , x

′(m−1)
d )

with probability 1
2

(
1 + 1

2

)
. Finally, by the Piling-up Lemma and using the

approximation of Eq. (17) and Eq. (7), we get

x
(m−1)
a,i ⊕ x

(m−1)
a,i−1 ⊕ x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x

(m−1)
d,i−1 = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i−1⊕
L(m)

d,i−1 ⊕ L(m)
d,i ⊕ x

(m)
d,i−1 ⊕ x

(m)
a,i−2 ⊕ x

(m)
d,i+6

with probability 1
2

(
1 + 1

23

)
. �
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Abstract. The differential-linear attack, combining the power of the
two most effective techniques for symmetric-key cryptanalysis, was pro-
posed by Langford and Hellman at CRYPTO 1994. From the exact for-
mula for evaluating the bias of a differential-linear distinguisher (JoC
2017), to the differential-linear connectivity table (DLCT) technique
for dealing with the dependencies in the switch between the differen-
tial and linear parts (EUROCRYPT 2019), and to the improvements
in the context of cryptanalysis of ARX primitives (CRYPTO 2020), we
have seen significant development of the differential-linear attack dur-
ing the last four years. In this work, we further extend this framework
by replacing the differential part of the attack by rotational-xor differ-
entials. Along the way, we establish the theoretical link between the
rotational-xor differential and linear approximations, revealing that it
is nontrivial to directly apply the closed formula for the bias of ordi-
nary differential-linear attack to rotational differential-linear cryptanal-
ysis. We then revisit the rotational cryptanalysis from the perspective of
differential-linear cryptanalysis and generalize Morawiecki et al.’s tech-
nique for analyzing Keccak, which leads to a practical method for esti-
mating the bias of a (rotational) differential-linear distinguisher in the
special case where the output linear mask is a unit vector. Finally, we
apply the rotational differential-linear technique to the permutations
involved in FRIET, Xoodoo, Alzette, and SipHash. This gives significant
improvements over existing cryptanalytic results, or offers explanations
for previous experimental distinguishers without a theoretical founda-
tion. To confirm the validity of our analysis, all distinguishers with prac-
tical complexities are verified experimentally.
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1 Introduction

The practical security of a symmetric-key primitive is determined by evaluating
its resistance against an almost exhaustive list of known cryptanalytic tech-
niques. Therefore, it is of essential importance to generalize existing cryptan-
alytic methods or develop new techniques. Sometimes the boundary between
the two can be quite blurred. For example, the development of the invariant
attacks [23,24,35], ploytopic cryptanalysis [33], division properties [34,36], rota-
tional cryptanalysis [1,17], etc. in recent years belongs to these two approaches.

Another approach is to employ known techniques in combination to enhance
the effectiveness of the individual attacks. The boomerang [37] and differential-
linear cryptanalysis are the best examples. In particular, during the past
four years, we have seen significant advancements in the development of
the differential-linear cryptanalysis introduced by Langford and Hellman at
CRYPTO 1994 [22], which combines the power of the two most important
techniques (differential and linear attacks) for symmetric-key cryptanalysis. Our
work starts with an attempt to further extend the differential-linear framework
by replacing the differential part of this cryptanalytic technique with rotational-
xor differentials.

Rotational and Rotational-xor Cryptanalysis. Rotational cryptanalysis was first
formally introduced in [17] by Khovratovich and Nikolic, where the evolution of
the so-called rotational pair (x, x ≪ t) through a target cipher was analyzed.
The rotational properties of the building blocks of ARX primitives were then
applied to the rotational rebound attack on the hash function Skein [19], and
later were refined to consider a chain of modular additions [18]. Recently, crypt-
analytic results of ARX-based permutations Chaskey and Chacha with respect
to rotational cryptanalysis were reported [5,21]. Apart from the ARX construc-
tions, permutations built with logical operations without modular additions,
also known as AND-RX or LRX [3] primitives, are particularly interesting with
respect to rotational attacks. In 2010, Morawiecki et al. applied this technique to
distinguish the round-reduced Keccak-f [1600] permutation by feeding in rota-
tional pairs and observing the bias of the XOR of the (i + t)-th and i-th bits
of the corresponding outputs, where t is the rotation offset and the addition
should be taken modulo the size of the rotated word [31]. We will come back to
Morawiecki et al.’s technique and show that it has an intimate relationship with
the so-called rotational differential-linear cryptanalysis we proposed in Sect. 3.
To thwart rotational attacks, constants which are not rotation-invariant can be
injected into the data path. Still, in certain cases, it is possible to overcome this
countermeasure with some ad-hoc techniques.

Later, Ashur and Liu [1] generalized the concept of rotational pair by con-
sidering the propagation of a data pair (x, x′) that is related by the so-called
rotational-xor (RX) difference (x ≪ t) ⊕ x′ = δ. The cryptanalytic technique
based on RX-difference was named as rotational-xor cryptanalysis. Note that
when the RX-difference of the pair (x, x′) is zero, it degenerates to a rotational
pair. RX cryptanalysis integrates the effect of constants into the analysis and it
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has been successfully applied to many ARX or AND-RX designs [26,28]. Here-
after, we refer both rotational and rotational-xor cryptanalysis as rotational
cryptanalysis, or in a general sense, rotational cryptanalysis contains all the sta-
tistical attacks requiring chosen data (e.g., plaintexts) with certain rotational
relationships.

Differential-linear Cryptanalysis. Given an encryption function E, we divide
it into two consecutive subparts E0 and E1. Let δ → Δ be a differential for
E0 with probability p, and Γ → γ be a linear approximation for E1 with bias
εΓ,γ = Pr[Γ ·y ⊕γ ·E1(y) = 0]− 1

2 . Then, the overall bias Eδ,γ of the differential-
linear distinguisher can be estimated with the piling-up lemma [30] as

Eδ,γ = Pr[γ · (E(x) ⊕ E(x ⊕ δ)) = 0] − 1
2

= (−1)Γ ·Δ · 2pε2Γ,γ , (1)

since γ ·(E(x)⊕E(x⊕δ)) can be decomposed into the XOR sum of the following
three terms ⎧

⎪⎨

⎪⎩

Γ · (E0(x) ⊕ E0(x ⊕ δ)),
Γ · E0(x ⊕ δ) ⊕ γ · E(x ⊕ δ),
Γ · E0(x) ⊕ γ · E(x).

The derivation of Eq. (1) not only relies on the independence of E0 and E1, but
also the assumption

Pr[Γ · (E0(x) ⊕ E0(x ⊕ δ)) = 0 | E0(x) ⊕ E0(x ⊕ δ) �= Δ] =
1
2
, (2)

under which we have Pr[Γ · (E0(x) ⊕ E0(x ⊕ δ)) = 0] = 1
2 + (−1)Γ ·Δ

2 p.
However, it has long been observed that Eq. (2) may fail in many cases and

multiple linear approximations have to be taken into account to make the esti-
mates more accurate [22,27,29]. In [9], Blondeau, Leander, and Nyberg presented
a closed formula for the overall bias Eδ,γ based on the link between differential
and linear attacks [12] under the sole assumption that E0 and E1 are inde-
pendent. However, this closed formula is generally not applicable in practice
even if E0 and E1 are independent, since it requires the computation of the
exact bias εδ,v = Pr[v · (E0(x) ⊕ E0(x ⊕ δ)) = 0] − 1

2 for all v. 1 Moreover, in
some cases the dependency between E0 and E1 can be significant. Inspired by
the boomerang-connectivity table (BCT) and its successful applications in the
context of boomerang attacks [13], Bar-On, Dunkelman, Keller, and Weizman
introduced the differential-linear connectivity table (DLCT) [4], where the tar-
get cipher is decomposed as E = E1 ◦ Em ◦ E0 and the actual differential-linear
probability of the middle part Em is determined by experiments, fully addressing
the issue of dependency in the switch between E0 and E1 (The effect of multiple
1 Unlike the estimation of the probability of a differential with a large number of

characteristics, a partial evaluation of the differential-linear distinguisher without
the full enumeration of intermediate masks can be inaccurate, since both positive
and negative biases occur.
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characteristics and approximations still has to be handled by the framework of
Blondeau et al. [9]). Most recently, Beierle, Leander, and Todo presented several
improvements to the framework of differential-linear attacks with a special focus
on ARX ciphers at CRYPTO 2020 [7].

Our Contribution. We start from the natural idea to extend the framework
of differential-linear attacks by replacing the differential part with rotational-xor
differentials. Specifically, given a pair of data with RX-difference δ = (x ≪ t)⊕x′

and a linear mask γ, a rotational differential-linear distinguisher of a cipher E
exploits the bias of γ ·(rot(E(x))⊕E(rot(x)⊕δ)), where rot(·) is some rotation-
like operation.

We then present an informal formula similar to Eq. (1) to estimate the bias of
a rotational differential-linear distinguisher by the probability of the rotational-
xor differential covering E0 and the biases of the linear approximation and its
rotated version covering E1, where E = E1 ◦ E0. This formula, as in the case of
ordinary differential-linear cryptanalysis, requires certain assumptions that may
not hold in practice.

Consequently, we try to derive a closed formula for computing the bias of a
rotational differential-linear distinguisher, which we expect to be analogous to
Blondeau et al.’s result [9]. Although we failed to achieve this goal, we manage
to establish a general link between the rotational-xor cryptanalysis and linear
cryptanalysis as a by-product of this failed endeavour. From a practical point of
view, we do not lose much due to the absence of a closed formula, since this kind
of formula will inevitably involve the correlations of exponentially many trails
which are hard to evaluate in most situations.

Then, we focus our attention on the special case of rotational differential-
linear cryptanalysis where the output linear mask γ is a unit vector. In this
case, the bias Pr[ei · (rot(f(x)) ⊕ f(rot(x) ⊕ δ)) = 0] − 1

2 is

Pr[(E(x))j ⊕ (E(x′))i = 0] − 1
2

=
1
2

− Pr[(E(x))j �= (E(x′))i], (3)

for some i and j, where x′ = rot(x) ⊕ δ. With this formulation, we immediately
realize that Morawiecki et al.’s approach [31] gives rise to an efficient method
for evaluating the biases of rotational differential-linear distinguishers, as well
as ordinary differential-linear distinguishers whose output linear masks are unit
vectors. We generalize some results from Morawiecki et al.’s work and arrive at
formulas which are able to predict Pr[(f(x))j �= f(x′)i] based on the informa-
tion Pr[xj �= xi] for many common operations f appearing in ARX designs. In
particular, we give the explicit formula for computing the differential-linear and
rotational differential-linear probability for an n-bit modular addition with O(n)
operations, while a direct application of Bar-On et al.’s approach [4] based on
the Fast Fourier Transformation (FFT) by treating the modular addition as an
2n × n S-box would require a complexity of O(22n). The probability evaluation
can be iteratively applied for an ARX or AND-RX construction. Nevertheless,
we note that the accuracy of the probability evaluation is affected by the depen-
dency among the neighbour bits.
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Finally, we apply the technique of rotational differential-linear cryptanaly-
sis to the cryptographic permutations involved in FRIET, Xoodoo and Alzette.
For FRIET, we find a 6-round rotational differential-linear distinguisher with
a correlation 2−5.81, and it can be extended to a practical 8-round rotational
differential-linear distinguisher with a correlation of 2−17.81. As a comparison,
the correlation of the best known 8-round linear trail of FRIET is 2−40. More-
over, our 6-round distinguisher for FRIET can be further extended to a 13-round
one. For Xoodoo, we identify a 4-round rotational differential-linear distinguisher
with a correlation 1, while previous best result for Xoodoo is a 3-round differ-
ential with a probability 2−36. For Alzette, the 64-bit ARX-box, we find a
4-round differential-linear distinguisher with a correlation 2−0.27 and a 4-round
rotational differential-linear distinguisher with a correlation 2−11.37. A summary
of the results is shown in Table 1, where all distinguishers with practical com-
plexities are experimentally verified.

Table 1. A summary of the results. R-DL = rotational differential-linear, DL =
differential-linear, LC = linear characteristic, DC = differential characteristic. We show
differentials with probabilities and LC/DL/R-DL with correlations.

Permutation Type # Round Probability/Correlation Ref.

Theoretical Experimental

FRIET R-DL 6 2−5.81 2−5.12 Sect. 5

R-DL 7 2−9.81 2−9.12 Sect. 5

LC 7 2−29 – [32]

R-DL 8 2−17.81 2−17.2 Sect. 5

LC 8 2−40 – [32]

R-DL 13 2−117.81 – Sect. 5

Xoodoo DC 3 2−36 – [14]

R-DL 4 1 1 Sect. 5

Alzette DC 4 2−6 – [6]

R-DL 4 2−11.37 2−7.35 Sect. 6

DL 4 2−0.27 2−0.1 Sect. 6

Outline. Section 2 introduces the notations and preliminaries for rotational-xor
and linear cryptanalysis. We propose the rotational differential-linear cryptanal-
ysis and establish the theoretical link between the rotational-xor cryptanalysis
and linear cryptanalysis in Sect. 3. This is followed by Sect. 4 where we explore
the methods for evaluating the biases of rotational differential-linear distinguish-
ers. In Sect. 5 and Sect. 6, we apply the techniques developed in previous sections
to AND-RX and ARX primitives. Section 7 concludes the paper with some open
problems.
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2 Notations and Preliminaries

Let F2 = {0, 1} be the field with two elements. We denote by xi the i-th bit
of a bit string x ∈ F

n
2 . For a vectorial Boolean function F : F

n
2 → F

m
2 with

y = F (x) ∈ F
m
2 , its i-th output bit yi is denoted by (F (x))i. For an n-bit string

x, we use the indexing scheme x = (xn−1, · · · , x1, x0). In addition, concrete
values in F

n
2 are specified in hexadecimal notations. For example, we use 1111

to denote the binary string (0001 0001 0001 0001)2.
The XOR-difference and rotational-xor difference with offset t of two bit

strings x and x′ in F
n
2 are defined as x ⊕ x′ and (x ≪ t) ⊕ x′, respectively. For

the rotational-xor difference δ = (x ≪ t) ⊕ x′, we may omit the rotation offset
and write δ = ←−x ⊕ x′ or δ = rot(x) ⊕ x′ to make the notation more compact
when it is clear from the context. Moreover, by abusing the notation, ←−x and
rot(x) may rotate the entire string x or rotate the substrings of x to the left
separately with a common offset, depending on the context. For instance, in the
analysis of Keccak-f , we rotate each lane of the state by certain amount [31].
Correspondingly, −→x and rot−1(x) rotate x or its substrings to the right. Similar
to differential cryptanalysis with XOR-difference, we can define the probability
of an RX-differential as follows.

Definition 1 (RX-differential probability). Let f : F
n
2 → F

n
2 be a vec-

torial boolean function. Let α and β be n-bit words. Then, the RX-differential
probability of the RX-differential α → β for f is defined as

Pr[α → β] = 2−n#{x ∈ F
n
2 : rot(f(x)) ⊕ f(rot(x) ⊕ α) = β}

Finally, the definitions of correlation, bias, and some lemmas concerning
Boolean functions together with the piling-up lemma are needed.

Definition 2 ([10,11]). The correlation of a Boolean function f : F
n
2 → F2 is

defined as cor(f) = 2−n(#{x ∈ F
n
2 : f(x) = 0} − #{x ∈ F

n
2 : f(x) = 1}).

Definition 3 ([10,11]).] The bias ε(f) of a Boolean function f : F
n
2 → F2 is

defined as 2−n#{x ∈ F
n
2 : f(x) = 0} − 1

2 .

From Definition 2 and Definition 3 we can see that cor(f) = 2ε(f).

Definition 4. Let f : F
n
2 → F2 be a Boolean function. The Walsh-Hadamard

transformation takes in f and produces a real-valued function f̂ : F
n
2 → R such

that
∀w ∈ F

n
2 , f̂(w) =

∑

x∈Fn
2

f(x)(−1)x·w.

Definition 5. Let f : F
n
2 → F2 and g : F

n
2 → F2 be two Boolean functions. The

convolutional product of f and g is a Boolean function defined as

∀y ∈ F
n
2 , (f 	 g)(y) =

∑

x∈Fn
2

g(x)f(x ⊕ y).
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Lemma 1 ([11], Corollary 2 ). Let f̂ be the Walsh-Hadamard transformation
of f . Then the Walsh-Hadamard transformation of f̂ is 2nf .

Lemma 2 [11], Proposition 6 ). (̂f 	 g)(z) = f̂(z)ĝ(z) and thus (̂f 	 f) = (f̂)2.

Lemma 3 (Piling-up Lemma [30]). Let Z0, · · · , Zm−1 be m independent
binary random variables with Pr[Zi = 0] = pi. Then we have that

Pr[Z0 ⊕ · · · ⊕ Zm−1 = 0] =
1
2

+ 2m−1
m−1∏

i=0

(pi − 1
2
),

or alternatively, 2Pr[Z0 ⊕ · · · ⊕ Zm−1 = 0] − 1 =
∏m−1

i=0 (2pi − 1).

3 Rotational Differential-Linear Cryptanalysis

A natural extension of the differential-linear cryptanalysis is to replace the differ-
ential part of the attack by rotational-xor (RX) differentials. Let E = E1 ◦E0 be
an encryption function. Assume that we have an RX-differential δ → Δ covering
E0 with Pr[rot(E0(x)) ⊕ E0(rot(x) ⊕ δ) = Δ] = p and a linear approximation
Γ → γ of E1 such that

{
εΓ,γ = Pr[Γ · y ⊕ γ · E1(y) = 0] − 1

2 ,

εrot−1(Γ ),rot−1(γ) = Pr[rot−1(Γ ) · y ⊕ rot−1(γ) · E1(y) = 0] − 1
2 .

Let x′ = rot(x) ⊕ δ. If the assumption

Pr[Γ · (rot(E0(x)) ⊕ E0(x′)) = 0 | rot(E0(x)) ⊕ E0(x′) �= Δ] =
1
2

(4)

holds. We have

Pr[Γ · (rot(E0(x)) ⊕ E0(x′)) = 0] =
1
2

+
(−1)Γ ·Δ

2
p.

Since

γ · (rot(E(x)) ⊕ E(x′)) = γ · rot(E(x)) ⊕ Γ · rot(E0(x))
⊕ Γ · (rot(E0(x)) ⊕ E0(x′))
⊕ Γ · E0(x′) ⊕ γ · E(x′)

= rot(rot−1(γ) · E(x) ⊕ rot−1(Γ ) · E0(x))
⊕ Γ · (rot(E0(x)) ⊕ E0(x′))
⊕ Γ · E0(x′) ⊕ γ · E(x′),

the bias of the rotational differential-linear distinguisher can be estimated by
piling-up lemma as

ER-DL
δ,γ = Pr[γ · (←−E (x)⊕E(x′)) = 0]− 1

2
= (−1)Γ ·Δ ·2pεΓ,γεrot−1(Γ ),rot−1(γ), (5)
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and the corresponding correlation of the distinguisher is

CR-DL
δ,γ = 2ER-DL

δ,γ = (−1)Γ ·Δ · 4pεΓ,γεrot−1(Γ ),rot−1(γ). (6)

We can distinguish E from random permutations if the absolute value of ER−DL
δ,γ

or CR-DL
δ,γ is sufficiently high. Note that if we set the rotation offset to zero,

the rotational differential-linear attack is exactly the ordinary differential-linear
cryptanalysis. Therefore, the rotational differential-linear attack is a strict gen-
eralization of the ordinary differential-linear cryptanalysis.

A rotational differential-linear distinguisher can be extended by appending
linear approximations at the end. Given a rotational differential-linear distin-
guisher of a function f with a bias

εδ,γ = Pr[γ · (rot(f(x)) ⊕ f(rot(x) ⊕ δ)) = 0] − 1
2
,

and a linear approximation (γ, μ) over a function g with
{

εγ,μ = Pr[γ · x ⊕ μ · g(x) = 0] − 1
2 ,

εrot−1(γ),rot−1(μ) = Pr[rot−1(γ) · x ⊕ rot−1(μ) · g(x) = 0] − 1
2 ,

we can compute the bias of the rotational differential-linear distinguisher of
h = g ◦ f with input RX-difference δ and output linear mask μ by the piling-up
lemma. Since

μ · (rot(h(x)) ⊕ h(rot(x) ⊕ δ)) = γ · (rot(f(x)) ⊕ f(rot(x) ⊕ δ))
⊕ γ · rot(f(x)) ⊕ μ · rot(h(x))
⊕ γ · f(rot(x) ⊕ δ) ⊕ μ · h(rot(x) ⊕ δ)

,

the bias of the rotational differential-linear distinguisher can be estimated as

Pr[μ · (rot(h(x)) ⊕ h(rot(x) ⊕ δ)) = 0] − 1
2

= 4εδ,γεγ,μεrot−1(γ),rot−1(μ). (7)

However, as in ordinary differential-linear attacks, the assumption described
by Eq. (4) may not hold in practice, and we prefer a closed formula for the bias
ER-DL

δ,γ without this assumption for much the same reasons leading to Blondeau
et al.’s work [9]. Also, we would like to emphasize that if Eq. (5) and (7) are
used to estimate the bias, we should verify the results experimentally whenever
possible.

3.1 Towards a Closed Formula for the Bias of the Rotational
Differential-Linear Distinguisher

In [9], Blondeau et al. proved the following theorem based on the general link
between differential and linear cryptanalysis [12].
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Theorem 1 ([9]). If E0 and E1 are independent, the bias of a differential-linear
distinguisher with input difference δ and output linear mask γ can be computed
as

Eδ,γ =
∑

v∈Fn
2

εδ,vc2v,γ , (8)

for all δ �= 0 and γ �= 0, where
{

εδ,v = Pr[v · (E0(x) ⊕ E0(x ⊕ δ)) = 0] − 1
2

cv,γ = cor(v · y ⊕ γ · E1(y))
.

To replay Blondeau et al.’s technique in an attempt to derive the rotational
differential-linear counterpart of Eq. (8), we have to first establish the relation-
ship between rotational differential-linear cryptanalysis and linear cryptanalysis.

Link Between RX-cryptanalysis and Linear Cryptanalysis. Let F :
F

n
2 → F

n
2 be a vectorial Boolean function. The cardinality of the set

{x ∈ F
n
2 :

←−
F (x) ⊕ F (←−x ⊕ a) = b}

is denoted by ξF (a, b), and the correlation of u ·x⊕v ·F (x) is cor(u ·x⊕v ·F (x)).
Let

←−
F−→ : F

n
2 → F

n
2 be the vectorial Boolean function mapping x to

←−
F (−→x ). It is

easy to show that

cor(u · x ⊕ v · ←−F−→(x)) = cor(−→u · x ⊕ −→v · F (x)).

In what follows, we are going to establish the relationship between

ξF (a, b), cor(u · x ⊕ v · F (x)), and cor(−→u · x ⊕ −→v · F (x)).

Definition 6. Given a vectorial Boolean function F : F
n
2 → F

n
2 , the Boolean

function θF : F
2n
2 → F2 is defined as

θF (x, y) =

{
1 if y = F (x),
0 otherwise.

(9)

Lemma 4. Let F : F
n
2 → F

n
2 be a vectorial Boolean function. Then for any

(a, b) ∈ F
2n
2 , we have ξF (a, b) = (θ←−

F−→
	 θF )(a, b).
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Proof. According to Definition 5, we have

(θ←−
F−→

	 θF )(a, b) =
∑

x||y∈F2n
2

θ←−
F−→

(x, y)θF (a ⊕ x, b ⊕ y)

=
∑

x∈Fn
2

∑

y∈Fn
2

θ←−
F−→

(x, y)θF (a ⊕ x, b ⊕ y)

=
∑

x∈Fn
2

θ←−
F−→

(x,
←−
F−→(x))θF (a ⊕ x, b ⊕ ←−

F−→(x))

=
∑

x∈Fn
2

θF (a ⊕ x, b ⊕ ←−
F−→(x))

= #{x ∈ F
n
2 : b ⊕ ←−

F−→(x) = F (a ⊕ x)}
= ξF (a, b).

	

Lemma 5. Let F : F

n
2 → F

n
2 be a vectorial Boolean function. Then for any

(a, b) ∈ F
2n
2 , we have cor(a · x ⊕ b · F (x)) = 2−nθ̂F (a, b).

Proof. According to Definition 4, we have

θ̂F (a, b) =
∑

x||y∈F2n
2

θF (x, y)(−1)(x||y)·(a||b)

=
∑

x∈Fn
2

∑

y∈Fn
2

θF (x, y)(−1)a·x⊕b·y

=
∑

x∈Fn
2

(−1)a·x⊕b·F (x)

= 2ncor(a · x ⊕ b · F (x)).

	

In addition, applying Lemma 5 to

←−
F−→ gives cor(a · x ⊕ b · ←−

F−→(x)) = 1
2n θ̂←−

F−→
(a, b).

Theorem 2. The link between RX-differentials and linear approximations can
be summarized as

ξF (a, b) =
∑

u∈Fn
2

∑

v∈Fn
2

(−1)u·a⊕v·bcor(−→u · x ⊕ −→v · F (x))cor(u · x ⊕ v · F (x)). (10)

Proof. According to Lemma 4 and Lemma 2, we have

22nξF (a, b) =
̂
̂(θ←−
F−→

	 θF )(a, b) = ̂̂θ←−
F−→

θ̂F (a, b).

Since θ̂←−
F−→

θ̂F = 22ncor(u · x ⊕ v · ←−
F−→(x))cor(u · x ⊕ v · F (x)) due to Lemma 5,
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̂̂θ←−
F−→

θ̂F (a, b) = 22n
∑

u||v∈F2n
2

(−1)(u||v)·(a||b)cor(u · x ⊕ v · ←−F−→(x))cor(u · x ⊕ v · F (x))

= 22n
∑

u,v∈Fn
2

(−1)u·a⊕v·bcor(u · x ⊕ v · ←−F−→(x))cor(u · x ⊕ v · F (x))

= 22n
∑

u,v∈Fn
2

(−1)u·a⊕v·bcor(−→u · x ⊕ −→v · F (x))cor(u · x ⊕ v · F (x))

	

If the function F is rotation invariant, i.e.,

←−−−
F (x) = F (←−x ), then we have

cor(−→u ·x⊕−→v ·F (x)) = cor(u·x⊕v·F (x)). As a result, the theoretical link between
rotational-xor and linear cryptanalysis degenerates to the link between ordinary
differential cryptanalysis and linear cryptanalysis. Moreover, based on the link
between differential and linear cryptanalysis, Blondeau et al. derive a closed
formula for the bias of an ordinary differential-linear distinguisher as shown in
Eq. (8). We try to mimic Blondeau et al.’s approach to obtain a closed formula
for the biases of rotational differential-linear distinguishers. However, we failed in
this attempt due to a fundamental difference between rotational-xor differentials
and ordinary differentials: the output RX-difference is not necessarily zero when
the input RX-difference rot(x) ⊕ x′ is zero. We leave it as an open problem to
derive a closed formula for the bias of a rotational differential-linear distinguisher.
From a practical point of view, we do not lose much due to the absence of a
closed formula since this kind of formula will inevitably involve the correlations
of exponentially many trails which are hard to evaluate in most situations.

3.2 Morawiecki et al.’s Technique Revisited

In [31], Morawiecki et al. performed a rotational cryptanalysis on the Keccak-f
permutation E. In this attack, the probability of

Pr[(E(x))i−t �= (E(x ≪ t))i]

was exploited to distinguish the target. In what follows, we show that Morawiecki
et al.’s technique can be regarded as a special case of the rotational differential-
linear framework.

Eventually, what we exploit in a rotational differential-linear attack associ-
ated with an input RX-difference δ ∈ F

n
2 and an output linear mask γ ∈ F

n
2 is

the abnormally high absolute bias or correlation of the Boolean function

γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)).

Following the notation of [9], let sp(γ) ⊆ F
n
2 be the linear space spanned by γ,

and sp(γ)⊥ = {u ∈ F
n
2 : ∀v ∈ sp(γ), u · v = 0} be the orthogonal space of sp(γ).
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We then define two sets D0 and D1 which form a partition of F
n
2 :

{
D0 = {x ∈ F

n
2 : rot(E(x)) ⊕ E(rot(x) ⊕ δ) ∈ sp(γ)⊥}

D1 = {x ∈ F
n
2 : rot(E(x)) ⊕ E(rot(x) ⊕ δ) ∈ F

n
2 − sp(γ)⊥} .

Under the above notations, for any x ∈ D0, γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)) = 0
and for any x ∈ D1, γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)) = 1.

Thus, the higher the absolute value of

#D0 − #D1 = 2ncor(γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ))),

the more effective the attack is.
If γ = ei is the i-th unit vector, we have sp(γ) = {0, ei} and sp(γ)⊥ contains

all vectors whose i-th bit is 0. In this case,

#D0 − #D1 = 2n − 2#D1

= 2n − 2n+1 (Pr[ei · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)) = 1])

= 2n − 2n+1 (Pr[(E(x))j �= (E(rot(x) ⊕ δ))i])

= 2n − 2n+1 (Pr[(E(x))j �= (E(x′)i]) .

Therefore, the effectiveness of the rotational differential-linear attack can be
completely characterized by Pr[(E(x))i−t �= (E(x′))i]. In the next section, we
show how to compute this type of probabilities for the target cipher.

4 Evaluate the Bias of Rotational Differential-Linear
Distinguishers

According to the previous section, for a rotational differential-linear distinguisher
with an input RX-difference δ and output linear mask ei, the bias of the distin-
guisher can be completely determined by

Pr[(E(x))i−t �= (E(x′))i], where x′ = x ≪ t ⊕ δ,

and we call it the rotational differential-linear probability or R-DL probability.
Note that for a random pair (x, x′ = x ≪ t ⊕ δ) with rotational-xor difference
δ ∈ F

n
2 , we have

Pr[xi−t �= x′
i] =

1 + (−1)1−δi

2
,

for 0 ≤ i < n. Therefore, what we need is a method to evaluate the probability

Pr[(F (x))i−t �= (F (x′))i]

for 0 ≤ i < m − 1, where F : F
n
2 → F

m
2 is a vectorial Boolean function that

represents a component of E. Then, with certain independence assumptions, we
can iteratively determine the probability Pr[(E(x))i−t �= (E(x′))i].
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Observation 1 Let F : F
n
2 → F

m
2 be a vectorial Boolean function. Assume that

the input pair (x, x′) satisfies Pr[xi−t �= x′
i] = pi for 0 ≤ i < n, where x, x′ ∈ F

n
2 .

For u ∈ F
n
2 , we define the set Su = {(x, x′) ∈ F

n
2 × F

n
2 : (x ≪ t) ⊕ x′ = u}

with #Su = 2n. Let yi and y′
i be the i-th bit of F (x) and F (x′) respectively for

0 ≤ i < m. Then we have

Pr[yi−t �= yi] =
∑

u∈Fn
2

Pr[yi−t �= yi|(x, x′) ∈ Su] Pr[(x, x′) ∈ Su]

=
∑

u∈Fn
2

Pr[yi−t �= yi|(x, x′) ∈ Su]
n−1∏

i=0

((1 − ui) − (−1)uipi)

=
1
2n

∑

u∈Fn
2

#{(x, x′) ∈ Su : yi−t �= yi}
n−1∏

i=0

((1 − ui) − (−1)uipi).

The observation is inspired by Morawiecki et al.’s work on rotational crypt-
analysis [31] where, given a rotational pair, the bias of the output pair being
unequal at certain bit is calculated for one-bit AND, NOT and XOR. In the
following, we reformulate and generalize their propagation rules in terms of rota-
tional differential-linear probability. Note that all these rules can be derived from
Observation 1.

Proposition 1 (AND-rule). Let a, b, a′, and b′ be n-bit strings with
Pr[ai−t �= a′

i] = pi and Pr[bi−t �= b′
i] = qi. Then

Pr[(a ∧ b)i−t �= (a′ ∧ b′)i] =
1
2
(pi + qi − piqi).

Proposition 2 (XOR-rule). Let a, b, a′, and b′ be n-bit strings with Pr[ai−t �=
a′

i] = pi and Pr[bi−t �= b′
i] = qi. Then

Pr[(a ⊕ b)i−t �= (a′ ⊕ b′)i] = pi + qi − 2piqi.

Proposition 3 (NOT-rule). Let a and b be n-bit strings with Pr[ai−t �= bi] =
pi. Then Pr[āi−t �= b̄i] = pi.

Next, we consider constant additions. Let (x, x′) ∈ F
2n
2 be a data pair with

Pr[xi−t �= x′
i] = pi for some integer t and c ∈ F

n
2 be a constant. Then Pr[(x ⊕

c)i−t �= (x′ ⊕ c)i] = Pr[xi−t ⊕ x′
i �= ci−t ⊕ ci]. In [31], only the cases where

ci−t ⊕ ci = 1 or ci−t = ci = 0 are considered. We generalize the rule for constant
addition from [31] to the following proposition with all possibilities taken into
account.

Proposition 4 (Adjusted C-rule). Let a and a′ be n-bit strings with
Pr[ai−t �= a′

i] = pi and c ∈ F
n
2 be a constant. Then we have

Pr[(a ⊕ c)i−t �= (a′ ⊕ c)i] =

{
1 − pi, ci−t ⊕ ci = 1
pi, ci−t ⊕ ci = 0
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4.1 Propagation of R-DL Probabilities in Arithmetic Operations

For functions with AND-RX or LRX construction, such as the permutation
Keccak-f , the propagation of the R-DL probability can be evaluated by the
propositions previously shown, under the independency assumptions on the
neighbouring bits. However, when dependency takes over, even if a function
can be expressed as a boolean circuit, a direct applications of the AND, XOR,
NOT and adjusted C-rule may lead to errors that accumulated during the iter-
ated evaluation. One such example is the modular addition. In the following, we
will derive the propagation rules of the differential-linear (DL) probability and
R-DL probability for an n-bit modular addition.

Lemma 6 (carry-rule). Let ς : F
3
2 → F2 be the carry function

ς(x0, x1, x2) = x0x1 ⊕ x1x2 ⊕ x0x2.

Let a, b, c, a′, b′, and c′ be binary random variables with

p0 = Pr[a �= a′], p1 = Pr[b �= b′], p2 = Pr[c �= c′].

Then, we have that

Pr[ς(a, b, c) �= ς(a′, b′, c′)] = p0p1p2 − p0p1 + p0p2 + p1p2
2

+
p0 + p1 + p2

2
.

Proof. We prove the carry-rule with Observation 1 by enumerating u ∈ F
3
2. For

u = (0, 0, 0), Pr[ς(a, b, c) �= ς(a′, b′, c′)|a = a′, b = b′, c = c′] = 0. For u = (0, 0, 1),
Pr[ς(a, b, c) �= ς(a′, b′, c′)|a = a′, b = b′, c �= c′] = Pr[a ⊕ b = 1] = 1/2 and
∏2

i=0((1 − ui) + (−1)1−uipi) = (1 − pa)(1 − pb)pc.
Similarly, one can derive the expression for all u ∈ F23 , and we omit the

details.The overall probability of the event ab ⊕ ac ⊕ bc �= a′b′ ⊕ a′c′ ⊕ b′c′ is
papbpc − (papb + papc + pbpc)/2 + (pa + pb + pc)/2. 	


Based on the carry-rule, we can immediately prove the following two theorems
on the DL and R-DL probabilities for n-bit modulo additions.

Theorem 3 (�-rule for DL). Let x, y and x′, y′ be n-bit string, such that
Pr[xi �= x′

i] = pi and Pr[yi �= y′
i] = qi. Then, the differential-linear probability

for modular addition can be computed as

Pr[(x � y)i �= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi

where s0 = 0 and

si+1 = piqisi − piqi + pisi + qisi

2
+

pi + qi + si

2
, i ≤ n − 1

Proof. For inputs x and y, denote the carry by

c = (x � y) ⊕ x ⊕ y = (cn−1, · · · , c1, c0),
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where c0 = 0, ci+1 = xiyi ⊕ xici ⊕ yici. Similarly, for x′ and y′, denote the carry
by c′ = (c′

n−1, · · · , c′
1, c

′
0). Let si denote the probability Pr[ci �= c′

i]. Then, s0 = 0
and for i ≥ 1, the event ci �= c′

i is equivalent to

xi−1yi−1 ⊕ xi−1ci−1 ⊕ yi−1ci−1 �= x′
i−1y

′
i−1 ⊕ x′

i−1c
′
i−1 ⊕ y′

i−1c
′
i−1.

Therefore, si can be computed as

pi−1qi−1si−1 − (pi−1qi−1 + pi−1qi−1 + qi−1si−1)/2 + (pi−1 + qi−1 + si−1)/2

according to Lemma 6. Since x � y = x ⊕ y ⊕ c, and x′ � y′ = x′ ⊕ y′ ⊕ c′, with
the XOR-rule, we have

Pr[(x � y)i �= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi.

	

Example 1. Consider an 8-bit modular addition with input difference being a =
7 and b = 7. Then, we have for 0 ≤ i ≤ 7,

pi =
1 + (−1)1−ai

2
, qi =

1 + (−1)1−bi

2
,

so

p0 = p1 = p2 = 1, p3 = p4 = p5 = p6 = p7 = 0,

q0 = q1 = q2 = 1, q3 = q4 = q5 = q6 = q7 = 0.

The �-rule gives the output DL-probabilities in Table 2. The probabilities pre-
dicted in the table are verified by running through the 16-bit input space. In
addition, we verified the �-rule in DL with all input differences on an 8-bit
modular addition. Under the precision level given in Table 2, the experiments
match the theoretical prediction perfectly.

Table 2. The DL-probabilities of an 8-bit modular addition with input differences
a = b = 7 by theoretical evaluation, which are confirmed by experiments.

i 0 1 2 3 4 5 6 7

pi 0 2−1 2−0.415037 2−0.192645 2−1.19265 2−2.19265 2−3.19265 2−4.19265

As for the rotational differential-linear cryptanalysis of an n-bit modular
addition, a left rotation by t bits is applied to the operands. Firstly, we present
the �-rule for RX-difference with a rotation offset t = 1.
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Theorem 4 (�-rule for RL, t = 1 ). Given random n-bit strings x, y and
x′, y′ such that x′ = (x ≪ 1) ⊕ a, y′ = (y ≪ 1) ⊕ b, where Pr[xi−1 �= x′

i] =
pi,Pr[yi−1 �= y′

i] = qi. Then, the rotational differential-linear probability of the
modular addition can be computed as

Pr[(x � y)i−1 �= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi,

where s0 ≈ 1/2, s1 = 1/4,

si+1 = piqisi − piqi + pisi + qisi

2
+

pi + qi + si

2
, 2 ≤ i ≤ n − 1.

Proof. Denote x = (xn−1, · · · , x1, x0), y = (yn−1, · · · , y1, y0). Then

x′ = ((x′
n−1, · · · , x′

1, x
′
0) = (xn−2 ⊕ an−1, · · · , x0 ⊕ a1, xn−1 ⊕ a0)

y′ = ((y′
n−1, · · · , y′

1, y
′
0) = (yn−2 ⊕ bn−1, · · · , y0 ⊕ b1, yn−1 ⊕ b0)

Let c = (cn−1, · · · , c0) = (x�y)⊕x⊕y and c′ = (c′
n−1, · · · , c′

0) = (x′�y′)⊕x′⊕y′

be the two carries.
Let si denote the probability Pr[ci−1 �= c′

i]. When i = 0, s0 = Pr[cn−1 �=
c′
0] = Pr[xn−2yn−2 ⊕ xn−2cn−2 ⊕ yn−2cn−2 = 0] ≈ 1/2, because the LHS term

is balanced for independent random variables x and y. For i = 1, s1 = Pr[c0 �=
c′
1] = Pr[x′

0y
′
0 �= 0] = 1/4. For i > 1, si is equal to

Pr[ci−1 �= c′
i] = Pr[xi−2yi−2 ⊕ xi−2ci−2 ⊕ yi−2ci−2 �= x′

i−1y
′
i−1 ⊕ x′

i−1c
′
i−1 ⊕ y′

i−1c
′
i−1]

= pi−1qi−1si−1 − pi−1qi−1 + pi−1si−1 + qi−1si−1

2
+

pi−1 + qi−1 + si−1

2

For x � y and x′ � y′, applying the XOR-rule on the inputs and the carry
vector gives

Pr[(x � y)i−1 �= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi

	

Example 2. Consider an 8-bit modular addition with input RX-difference (left
rotate by 1-bit) being a = 7 and b = 7, which implies that

p0 = p1 = p2 = 1, p3 = p4 = p5 = p6 = p7 = 0,

q0 = q1 = q2 = 1, q3 = q4 = q5 = q6 = q7 = 0.

The R-DL probability of the i-th output bit, 0 ≤ i < 8 is given in Table 3. The
probabilities predicted for i ≥ 2 are verified by running through the 16-bit input
space, and the probability for i = 0 is 2−1.01132 by experiment.

The experiments on an 8-bit modular addition show that the theoretical
estimation of the DL and R-DL probabilities match the experiments well, except
that the approximation in R-DL probability for the least significant bit has a
marginal error in precision.

With a similar deduction, we give the following theorem for computing the
R-DL probability through a modular addition under the condition that rot(x) =
x ≪ t, for an integer 2 ≤ t ≤ n − 1.
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Table 3. The RL-probabilities of an 8-bit modular addition with input differences
a, b = 7. rot(x) = x ≪ 1. The index i represents the position of the output bit.

i 0 1 2 3 4 5 6 7

p 2−1 2−2 2−0.678072 2−0.29956 2−1.29956 2−2.29956 2−3.29956 2−4.29956

Theorem 5 (�-rule for RL for arbitrary t > 1 ). Given random n-bit
strings x, y and x′, y′ such that x′ = x ≪ t⊕a, y′ = y ≪ t⊕b, where Pr[xi−1 �=
x′

i] = pi,Pr[yi−1 �= y′
i] = qi. Then, the rotational differential-linear probability of

the modular addition for i ≥ 0 can be computed as

Pr[(x � y)i−1 �= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi,

where s0 ≈ 1/2, st = 1/2,

si+1 = piqisi − piqi + pisi + qisi

2
+

pi + qi + si

2
, 1 ≤ i ≤ n − 1, i �= t

Proof. Denote x = (xn−1, · · · , x1, x0), y = (yn−1, · · · , y1, y0), then

x′ = ((x′
n−1, · · · , x′

1, x
′
0) = (xn−1−t ⊕ an−1, · · · , xn−t+1 ⊕ a1, xn−t ⊕ a0)

y′ = ((y′
n−1, · · · , y′

1, y
′
0) = (yn−1−t ⊕ bn−1, · · · , y0 ⊕ b1, yn−1 ⊕ b0).

Let c = (cn−1, · · · , c1, c0) and c′ = (c′
n−1, · · · , c′

1, c
′
0) be the carries. Let si denote

the probability Pr[ci−t �= c′
i]. When i = 0,

s0 = Pr[cn−t �= c′
0] = Pr[xn−t−1yn−t−1 ⊕ xn−t−1cn−t−1 ⊕ yn−t−1cn−t−1 �= 0] ≈ 1/2

When i = t, st = Pr[c0 �= c′
t] = Pr[x′

t−1y
′
t−1 ⊕ x′

t−1c
′
t−1 ⊕ y′

t−1c
′
t−1 �= 0] ≈ 1/2

For all i, i �= 0, t,

si = Pr[ci−t �= c′
i]

= Pr[x′
i−1y

′
i−1 ⊕ x′

i−1c
′
i−1 ⊕ y′

i−1c
′
i−1

�= xn−t+i−1yn−t+i−1 ⊕ xn−t+i−1cn−t+i−1 ⊕ cn−t+i−1yn−t+i−1]

= pi−1qi−1si−1 − pi−1qi−1 + pi−1si−1 + qi−1si−1

2
+

pi−1 + qi−1 + si−1

2
.

Then, we have

Pr[(x � y)i−t �= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi.

	

The �-rules for DL and R-DL allows us to compute the partial DLCT of an

n-bit modular addition accurately and efficiently. A naive application of Bar-
On et al.’s approach [4] based on the Fast Fourier Transformation (FFT) by
treating the modular addition as an 2n × n S-box would require a complexity of



758 Y. Liu et al.

O(22n), where it requires a complexity of O(n22n) to obtain the n rows of the
DLCT whose output masks are the unit vectors. In contrast, with the �-rule for
DL, given the input difference, the DL-probability for all output masks that are
unit vectors can be evaluated in O(n) operations, which achieves an exponential
speed-up.

4.2 Finding Input Differences for Local Optimization

According to Proposition 1 and Proposition 2, for x and y in F2, if Pr[x �= x′] =
p1,Pr[y �= y′] = p2, we have

Pr[xy �= x′y′] =
1
2
(p1 + p2 − p1p2), Pr[x ⊕ y �= x′ ⊕ y′] = p1 + p2 − 2p1p2.

Obviously, Pr[xy �= x′y′] is in the interval [0, 0.5] and Pr[x⊕y �= x′ ⊕y′] is in the
interval [0, 1]. Moreover, a behaviour of Pr[x ⊕ y �= x′ ⊕ y′] is that it collapses
to 1

2 (e.g., correlation zero) whenever one of p1 and p2 is 1
2 . This observation

suggests that the input probabilities should be biased from 1
2 as much as possible.

Otherwise, the probabilities will rapidly collapse to 1
2 for all one-bit output masks

after a few iterative evaluations of the round function.
In order to find distinguishers that cover as many rounds of a function F as

possible, our strategy is to look for an input RX-difference δ, such that the DL
or R-DL probability after one or a few propagations still has a relatively large
imbalance for all the output masks whose Hamming weights are one. Therefore,
we can define the objective function to maximize the summation of the absolute
biases: ∑

i

(|Pr[ei · (rot(f(x)) ⊕ f(rot(x) ⊕ δ)) = 0] − 1/2|). (11)

For 8-bit modular additions, we observed that the absolute DL and R-DL
bias are relatively large when the input RX-differences are either with a large
Hamming weight or a small weight. For instance, with RX-difference (x ≪
1)⊕x′, when the input differences are a = 0 and b = 1, the RL-probabilities are
given as follows for ei, i = 0, 1, . . . , 7.

2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8.

Whereas for a = ff and b = ff, the RL-probabilities are given as follows for
ei, i = 0, 1, . . . , 7.

2−1, 2−2, 2−0.678072, 2−0.29956, 2−0.142019, 2−0.0692627, 2−0.0342157, 2−0.0170064.

When the size of the operands are large (e.g., n = 32), it is difficult to find
the optimal input difference manually. Next, we show the optimal input RX-
difference with respect to the objective function given by Eq. (11) in a 32-bit
modular addition. See the full version of this paper [25] for the search of such
differences.



Rotational Cryptanalysis from a Differential-Linear Perspective 759

Example 3. Consider the R-DL probability for a 32-bit modular addition with
rot(x) = x ≪ 1. With input RX-differences

a = 7ffffffc, b = 7ffffffe,

the objective function in Eq. 11 is maximized, and the R-DL probabilities Pr[ei ·
(rot(x � y) ⊕ ((rot(x) ⊕ a) � (rot(y) ⊕ b))) = 1] for 0 ≤ i ≤ 31 are shown as
follows.

i 0 1 2 3 4 5 6 7

pi 0.5 0.75 0.5 0.75 0.875 0.9375 0.96875 0.984375

i 8 9 10 11 12 13 14 15

pi 0.992188 0.996094 0.998047 0.999023 0.999512 0.999756 0.999878 0.999939

i 16 17 18 19 20 – 31

pi 0.999969 0.999985 0.999992 0.999996 1

5 Applications to AND-RX Primitives

In this section, we apply the rotational differential-linear technique to the AND-
RX permutations involved in FRIET and Xoodoo, and significant improvements
are obtained. To confirm the validity of the results, all distinguishers with prac-
tical complexities are experimentally verified, and the source code is available1.

5.1 Distinguishers for Round-Reduced FRIET

FRIET is an authenticated encryption scheme with built-in fault detection mech-
anisms proposed by Simon et al. at EUROCRYPT 2020 [32]. Its fault detection
ability comes from its underlying permutation, which is designed based on the
so-called code embedding approach.

The core permutation FRIET-P employed in FRIET operates on a 4 × 128 =
512-bit state arranged into a rectangular with 4 rows (called limbs) and 128
columns (called slices) as shown in Fig. 1. The permutation FRIET-P is an iter-
ative design with its round function grci

visualized in Fig. 2, where a, b, and
c ∈ F

128
2 are the four limbs (see Fig. 1) of the input state and rci is the round

constant for the i-th round.
By design, the round function grci

is slice-wise code-abiding for the parity
code [4, 3, 2]F2 , meaning that every slice of the output state is a code word if
every slice of the input state is a code word. Mathematically, it means that
a + b + c = d implies a′ + b′ + c′ = d′. This slice-wise code-abiding property is

1 https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-
perspective.

https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
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Fig. 2. The round functions of Friet-PC and Friet-P

inherited by the permutation FRIET-P = grct−1 ◦ · · · ◦ grc1 ◦ grc0 . Consequently,
faults will be detected if some output slice is not a code word when all of the slices
of the input state are code words. Note that the behavior of the permutation
FRIET-PC is identical to FRIET-P by design if we ignore the limb d.

Practical Distinguishers for FRIET-PC. Since a distinguisher for the permu-
tation FRIET-PC directly translates to a distinguisher for FRIET-P, we focus on
the permutation FRIET-PC. Let (a, b, c) and (a′, b′, c′) in F

128×3
2 be the input

pair of the permutation with RX-differences

Δa = (a ≪ t) ⊕ a′, Δb = (b ≪ t) ⊕ b′, Δc = (c ≪ t) ⊕ c′.

In our analysis, we only consider input RX-differences such that wt(Δa) +
wt(Δb) + wt(Δc) ≤ 1.

According to the adjusted C-rule (see Proposition 4), the constant addi-
tion injects an RX-difference c ⊕ (c ≪ t) to the state, and alters the R-DL-
probabilities when the corresponding bits in c ⊕ (c ≪ t) is nonzero. A rule-
of-thumb for choosing the rotational amount is to minimize the weight of the
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RX-difference introduced by the round constants, so that the effect of the con-
stants on destroying the rotational propagation is presumably decreased. The
first 6 round constants of FRIET-PC are (in Hexadecimal)

1111, 11100000, 1101, 10100000, 101, 10110000.

To minimize the Hamming weight of the RX-differences from the round con-
stants, one of the best rotational operations is to left rotate by 4 bits, such that
the consecutive nonzero nibbles cancel themselves as many as possible. Then,
the injected RX-differences due to the round constants are

10001, 100100000, 10111, 111100000, 1111, 111010000.

With the AND-rule, XOR-rule and adjusted C-rule, the R-DL probability can
be evaluated given the input RX-differences with wh(Δa)+wh(Δb)+wh(Δc) ≤ 1
and the output linear mask ei. Table 4 shows the rotational differential-linear
distinguishers with the largest absolute correlation we found in reduced-round
FRIET-PC, where Δa,Δb,Δc are the input RX-differences, and γa, γb, γc are the
output masks for the limbs a, b, c, respectively.

Table 4. Distinguishers for reduced-round FRIET-PC with rotation offset t = 4.

Round Δa Δb Δc γa γb γc Correlation

Theoretical Experimental

1 0 0 0 1 0 0 1 1

2 0 0 0 1 0 0 1 1

3 0 0 0 1 0 0 1 1

4 0 0 0 0 1 0 1 1

5 0 0 1 0 0 400000000000000000000 2−0.96 2−0.83

6 0 0 10000 0 0 40000 2−5.81 2−5.12

For FRIET-PC reduced to 4-round, an R-DL distinguisher with correlation 1
is detected, with input RX-differences (0, 0, 0) and output masks (0, 1, 0). For 5,
6-round FRIET-PC, we found practical rotational differential-linear distinguishers
with correlation 2−0.96 and 2−5.81, respectively. All the distinguishers shown in
Table 4 are verified experimentally with 224 random plaintexts.

Extending the Practical Distinguishers. According to the discussion of
Sect. 3, we can extend a rotational differential-linear distinguisher by appending
a linear approximation γ → μ, and the bias of the extended distinguisher can be
computed with Eq. (7). Consequently, this extension is optimal when εγ,μ and
εrot−1(γ),rot−1(μ) reach their largest possible absolute values simultaneously. For
FRIET-PC, we always have εγ,μ = εrot−1(γ),rot−1(μ), and thus we can focus on
finding an optimal linear approximation γ → μ.



762 Y. Liu et al.

Here we take the 6-round R-DL distinguisher presented in Table 4 and append
optimal linear approximations to extend it. The output linear mask of the 6-
round distinguisher is (0, 0, 40000). In Table 5, we list the correlations of the
optimal linear approximations for round-reduced FRIET-PC whose input masks
are (0, 0, 40000), which are found with the SMT-based approach [20].

Table 5. The correlation of optimal linear trails found in round-reduced FRIET-PC
with the input masks (0, 0, 40000)

# Round 1 2 3 4 5 6 7

Correlation 2−2 2−6 2−12 2−20 2−30 2−42 2−56

The optimal 1-round linear trail we found has output masks

μa = 00000000000000020000000000040000

μb = 00004000000000020000000000040000

μc = 00000000000080020000000000060000.

Thus a 7-round distinguisher can be built by concatenating the 6-round dis-
tinguisher with a 1-round linear approximation, and the estimated correlation
is 2−5.81 × 2−2×2 = 2−9.81. With 224 pairs of inputs satisfying the input RX-
difference, the output difference under the specified mask are biased with a
correlation approximately 2−9.12. Similarly, by appending a 2-round linear trail
with output masks

μa = 00000000000000030000000000060000

μb = 00006000000000010000000030020000

μc = 600000000000c0010000000000030000.

at the end of the 6-round rotational differential-linear distinguisher, we get a 8-
round RL-distinguisher with a correlation 2−17.81. And with 240 pairs of inputs
satisfying the input RX-difference, we find the experimental correlation of the
8-round distinguisher is 2−17.2. As a comparison, the 7-,8-round linear trails pre-
sented in the specification of FRIET-PC have correlation 2−29 and 2−40, respec-
tively. With the linear trails shown in Table 5, the concatenated distinguisher
can reach up to 13 rounds, with an estimated correlation 2−117.81.

5.2 Distinguishers for Round-Reduced Xoodoo

Xoodoo [14] is a 384-bit lightweight cryptographic permutation whose primary
target application is in the Farfalle construction [8]. The state of Xoodoo is
arranged into a 4 × 3 × 32 cuboid and the bit at a specific position is accessed
as a[x][y][z]. One round of Xoodoo consists of the following operations.



Rotational Cryptanalysis from a Differential-Linear Perspective 763

a[x][y][z] = a[x][y][z] ⊕
∑

y

a[x − 1][y][z − 5] ⊕
∑

y

a[x − 1][y][z − 14]

a[x][1][z] = a[x − 1][1][z], a[x][2][z] = a[x][2][z − 11]
a[0][0] = a[0][0] ⊕ RCi

a[x][y][z] = a[x][y][z] ⊕ ((a[x][y + 1][z] + 1) ∗ (a[x][y + 2][z]))
a[x][1][z] = a[x][1][z − 1], a[x][2][z] = a[x − 1][2][z − 8]

The total number of rounds in Xoodoo is 12, and in some modes (Farfalle [8]
for instance), the core permutation calls a 6-round Xoodoo permutation. The
round constants of Xoodoo are shown in the following, and for Xoodoo reduced
to r rounds, the round constants are c−(r−1), · · · , c0.

c−11 = 00000058, c−8 = 000000D0, c−5 = 00000060, c−2 = 000000F0

c−10 = 00000038, c−7 = 00000120, c−4 = 0000002C, c−1 = 000001A0

c−9 = 000003C0, c−6 = 00000014, c−3 = 00000380, c0 = 00000012

Given input difference being all-zero, i.e., the input pair is exactly a rotational
pair, let the rotation amount be left-rotate by 1-bit. We find that after 3 rounds
of Xoodoo, there are still many output bits that are highly biased, with the largest
correlation being 1 and the one-bit mask at position (1, 0, 16). This suggests a
nonzero mask 10000 at the lane (1, 0). However, extending one extra round, we
no longer see any significant correlation.

Noticing that the round constant is XORed into the state right after the first
two linear operations, one can control the input RX-difference such that the
difference is cancelled by the injection of the first-round constant. As a result, it
gains one round free at the beginning, and we are able to construct a 4-round
distinguishers for Xoodoo. When the left-rotational amount is set to 1-bit, the
RX-difference of the first constant c−3 is 00000480. This suggests that if we take
input RX-differences

a[0][0] = 484ccc80; a[0][1] = 484cc800; a[0][2] = 484cc800;
a[1][0] = 3ab9821a; a[1][1] = 3ab9821a; a[1][2] = 3ab9821a;
a[2][0] = 37b6cde9; a[2][1] = 37b6cde9; a[2][2] = 37b6cde9;
a[3][0] = 45a3f0cb; a[3][1] = 45a3f0cb; a[3][2] = 45a3f0cb.

The RX-difference after the first round of Xoodoo will be all zero. Hence, we
are able to find a 4-round distinguishers with significant correlations. We find
a rotational differential-linear distinguishers with correlation 1 with the output
mask being 10000 at lane (1, 0) and zero for the rest lanes. Another two distin-
guishers with the same correlation are found with output mask 20000 at lane
(1, 1) and 1000000 at lane (3, 2).
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≫ 31

≫ 24

c

≫ 17

≫ 17

c

≫ 0

≫ 31

c

≫ 24

≫ 16

c

x ← x � (y ≫ 31), y ← y � (x ≫ 24), x ← x ⊕ c

x ← x � (y ≫ 17), y ← y � (x ≫ 17), x ← x ⊕ c

x ← x � (y ≫ 0), y ← y � (x ≫ 31), x ← x ⊕ c

x ← x � (y ≫ 24), y ← y � (x ≫ 16), x ← x ⊕ c

Fig. 3. The Alzette instance.

6 Applications to ARX Primitives

In this section, we apply the rotational differential-linear technique to the ARX
permutations involved in Alzette and SipHash, and the source code for exper-
imental verifications is available2.

6.1 Application in the 64-Bit ARX-box Alzette

At CRYPTO 2020, Beierle et al. presented a 64-bit ARX-box Alzette [6] that
is efficient for software implementation. The design is along the same research
line with a previous design called SPARX [15] with a 32-bit ARX-box where a
long trail argument was proposed for deriving a security bound in ARX ciphers.
Figure 3 shows an instance of Alzette with an input (x, y) ∈ F

32
2 × F

32
2 .

The differential and linear properties of Alzette is comparable to the 8-bit
S-box of AES. The optimal differential characteristic in Alzette has a proba-
bility of 2−6. In addition, because of the modular additions in Alzette and the
diffusion, the designers showed by division property that the Alzette may have
full degree in all its coordinates.

In the following, we present the rotational differential-linear and differential-
linear distinguishers of Alzette found with the techniques in Sect. 4. The con-
stant c = B7E15162 (the first constant in SPARX-based design Sparkle-128) is
considered for illustration.

Rotational Differential-LinearDistinguisher. In Sect. 4.2, (7ffffffc, 7fffffffe)
is found to be optimal in 32-bit modular addition under the objective function

2 https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-
perspective.

https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
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Fig. 4. A comparison between the differential-linear probability in Alzette by theo-
retical computation and by experiment. The index shows the index of the nonzero bit
in the unit-vector output mask. For instance, when the index is 0, the output mask is
(0,1), and when the index is 63, it is (80000000,0).

considered in Example 3. Here, the difference can be used as the input differ-
ence of the first modular addition in Alzette. Because of the right rotation
by 31 bits before the modular addition, the input RX-difference to Alzette is
(7ffffffc, 3ffffffff). With an iterative evaluation on the steps in Alzette, we
found that the second least significant bit is biased. Specifically, with an output
mask (2, 0), the RL-probability is 0.500189, that is a correlation 2−11.37. By taking
228 pairs of random plaintexts, the experimental correlation of the distinguisher
is 2−7.35. In addition, we checked all input RX-differences (a, b) with Hamming
weight wt(a) + wt(b) = 1, but no rotational differential-linear distinguisher is
found.

Differential-linear distinguisher. For all input differences with Hamming weight
1, we compute the differential-linear probability of Alzette with the technique
in Sect. 4. The best found distinguisher has an input difference (80000000, 0) and
output mask (80000000, 0), with a probability of 0.086, equivalently, a correla-
tion of 2−0.27. By experiment verification with 228 pairs of random plaintexts,
the correlation is 2−0.1.

The following Fig. 4 shows a comparison of the probability for an input differ-
ence (80000000, 0) and output masks (1 ≪ t, 0) (for all integer t ∈ [0, 31]), by
our evaluation technique and the experiment with 224 pairs of random plaintexts.
The theoretical evaluation matches the experiment within a tolerable fluctuation.

Comparing with RL-distinguishers and DL-distinguisher found in Alzette,
the latter is significantly stronger. Also, it is interesting to notice that input
differences with low Hamming weight often lead to good differential-linear dis-
tinguishers in Alzette, whereas we didn’t find any rotational differential-linear
distinguisher with low-weight RX-differences when the rotational offset is greater
than zero. The influence of the constants in RL-distinguishers may be the main
cause.
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6.2 Experimental Distinguishers for SipHash Explained

SipHash [2], designed by Aumasson and Bernstein, is a family of ARX-based
pseudorandom functions optimized for short inputs. Instances of SipHash are
widely deployed in practice. For example, SipHash-2-4 is used in the dnscache
instances of all OpenDNS resolvers and employed as hash() in Python for all
major platforms (https://131002.net/siphash/#us).

In [16], from a perspective of differential cryptanalysis, a bias of the differ-
ence distribution of one particular output bit for 3-round SipHash is observed
when the Hamming weight of the input difference is one. For instance, with
input difference a = 1, He and Yu showed that the output difference is biased
at the 27-th bit with a correlation 2−6 by experiments. This observation was
obtained through extensive experiments and the theoretical reason behind these
distinguishers is unclear as stated by He and Yu:

“... we are not concerned about why it shows a rotation property or why
it reaches such a bias level. However, a great number of experiments can
support those observations. (see [16, Section 4.2, Page 11])”

According to the discussion of Sect. 3.2, the bias of E(x)⊕E(x⊕ δ) observed
in [16] is equivalent to the bias of

ei · (E(x) ⊕ E(x ⊕ δ)).

It can be interpreted in the differential-linear framework and analyzed with
the theoretical approach presented in Sect. 4. Here, we apply the rules for mod-
ular addition and XOR, and compute the DL-probability of the 3-round dis-
tinguisher found in SipHash. With our technique, we confirm that the 3-round
differential-linear distinguisher with the aforementioned difference and mask, the
predicted correlation is 2−6.6 which is close to He and Yu’s experiments.

In addition, we can explain the observation on the rotation property with
the �-rule in differential-linear. We will adopt the notations that are used in
Theorem 3.

Because the input difference in their experiment has only one nonzero bit,
we consider the DL-probability of an n-bit modular addition where the input
difference is (ek, 0), for an integer k.

Then, for a pair of inputs (x, y) and (x′, y′), the probability pk = Pr[xk �=
x′

k] = 1. And for the remaining bits, pi = Pr[xi �= x′
i], i �= k and qi = Pr[yi, y

′
i]

are equal to zero.
Let si = Pr[ς(x, y)i �= ς(x′, y′)]. We have s0, · · · , sk = 0, sk+t = 2−t, 1 ≤ t ≤

n− 1− k. As a result, the DL-probabilities through the modular addition at the
i-th bit is given by Pi = Pr[(x � y)i �= (x′ � y′)i], 0 ≤ i ≤ n − 1, where

Pr[(x � y)i �= (x′ � y′)i] =

{
0, i ≤ k

2−i+k, otherwise
(12)

By rotating the input difference (1 ≪ k, 0) to the left by one bit, the
differential-linear probability for the i-th bit of the output

←−
Pi is equal to 2−i+k+1

for k + 1 < i ≤ n − 1, and to zero for i ≤ k + 1.

https://131002.net/siphash/#us
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It is obvious that the by rotating the differential-linear probability in Eq. (12),
we obtain the probabilities

←−
Pi for all but the least significant bit, where

←−
P0 = 0

and Pn−1 = 2−n−1+k. Nevertheless, the error is negligible if n − k is large, and
it holds for large modular additions such as the 64-bit one adopted in SipHash.

For input differences with Hamming weight more than 1, a similar rotational
property can be observed for the �-rule in differential-linear. And it gives a
straightforward intuition on the rotational property observed in the differential-
linear distinguishers of SipHash.

7 Conclusion and Open Problems

We extend the differential-linear framework by using rotational-xor differentials
in the differential part of the framework and we name the resulting cryptana-
lytic technique as rotational differential-linear cryptanalysis. We give an informal
formula to estimate the bias of rotational differential-linear distinguisher under
certain assumptions. In particular, we show Morawiecki et al.’s technique can be
generalized to estimate the bias of a rotational differential-linear distinguisher
whose output linear mask is a unit vector. We apply our method to the per-
mutations involved in FRIET, Xoodoo, Alzette, and SipHash, which leads to
significant improvements over existing cryptanalytic results or explanations for
previous experimental distinguishers without a theoretical foundation. Finally,
we would like to mention that we failed to derive a closed formula for the bias
of a rotational differential-linear distinguisher under the sole assumption of the
independence between the rotational-xor differential part and linear part. This
is left open and the link between rotational-xor differential and linear cryptanal-
ysis we presented in this work can be seen as a first step towards solving this
problem.

A natural extension of rotational differential-linear cryptanalysis is to the
SPN-type primitives, where one aims at finding a rotational relation that is pre-
served with a significant probability through the nonlinear Sbox layer. Especially,
it is feasible to check all the rotational differences for their transition probabili-
ties in a small-scale Sbox. Comparing to binary and arithmetic operations, our
observation is that rotational relations are less likely to preserve in Sboxes, so it
is challenging to find good distinguishers in Sbox-based designs. We leave it as
an interesting future work.
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Abstract. The Meet-in-the-Middle (MITM) preimage attack is highly
effective in breaking the preimage resistance of many hash functions,
including but not limited to the full MD5, HAVAL, and Tiger, and reduced
SHA-0/1/2. It was also shown to be a threat to hash functions built
on block ciphers like AES by Sasaki in 2011. Recently, such attacks on
AES hashing modes evolved from merely using the freedom of choosing
the internal state to also exploiting the freedom of choosing the message
state. However, detecting such attacks especially those evolved variants is
difficult. In previous works, the search space of the configurations of such
attacks is limited, such that manual analysis is practical, which results
in sub-optimal solutions. In this paper, we remove artificial limitations
in previous works, formulate the essential ideas of the construction of the
attack in well-defined ways, and translate the problem of searching for
the best attacks into optimization problems under constraints in Mixed-
Integer-Linear-Programming (MILP) models. The MILP models capture
a large solution space of valid attacks; and the objectives of the MILP
models are attack configurations with the minimized computational com-
plexity. With such MILP models and using the off-the-shelf solver, it is
efficient to search for the best attacks exhaustively. As a result, we obtain
the first attacks against the full (5-round) and an extended (5.5-round)
version of Haraka-512 v2, and 8-round AES-128 hashing modes, as well
as improved attacks covering more rounds of Haraka-256 v2 and other
members of AES and Rijndael hashing modes.
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1 Introduction

Hash function is one of the most important cryptographic primitives, due to
its wide and crucial applications such as digital signatures, verification of mes-
sage integrity and passwords etc. To support these applications, collision resis-
tance, preimage resistance, and second-preimage resistance form the three basic
security requirements for cryptographic hash functions. Unlike many public-key
cryptographic systems, whose security can be usually reduced to some hard
mathematical problems, most of the hash function standards in use could not
enjoy such a security reduction. The confidence of the security strength of many
symmetric-key primitives mainly relies on intensive and persistent cryptanaly-
sis from the research community. Hence, such effort is of utmost importance,
especially against the basic security properties of the standards and the ones
used in practice. In this paper, we mainly focus on preimage resistance of hash
functions built on the block cipher Advanced Encryption Standard (AES) [16]
and the like (we call them AES-like hashing for short). Typical examples are
the three PGV-modes [48] – Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO),
and Miyaguchi-Preneel (MP), instantiated with AES. Both PGV-modes and AES
have long-standing security supported by rigorous and massive cryptanalysis,
including the recent quantum collision attacks [18,30]. The MMO-mode instan-
tiated with AES is standardized by Zigbee [1] and also suggested by ISO [32] as
a standard way of building hash function based on block ciphers. Furthermore,
many feature-rich cryptographic protocols, e.g., multi-party computation pro-
tocols [22,34], use hash functions as building blocks and their instances adopt
AES-MMO due to its high efficiency when implemented with AES-NI. Besides,
since the standardization of AES, many new ciphers follow a similar design strat-
egy or using AES round function directly as building blocks to share the security
proof and implementation benefits, e.g., hash functions Grindahl [38], ECHO [13],
Grøstl [21], and Haraka v2 [39], and authenticated encryption [15].

The MITM Preimage Attacks. Informally, preimage resistance refers to the
property that, for a hash function H and a target T given at random, it is
computationally difficult to find a message x, such that H(x) = T . Theoretically,
for a secure hash function with a digest of n bits in size, the expected number of
H evaluations required to find such an x is 2n. Any such algorithm with a time
complexity lower than 2n is considered as a preimage attack.

In [7], Aumasson et al. devised preimage attacks on step-reduced MD5 and
full 3-pass HAVAL [64], in which the key technique can be viewed as the applica-
tion of local-collision combined with the Meet-in-the-Middle (MITM) approach.
Sasaki and Aoki in [51] formally proposed to combine the MITM and local-
collision approaches and successfully devised preimage attacks on full versions
of 3, 4, and 5-pass HAVAL. Further, they in [6] proposed the splice-and-cut tech-
nique and in [53] invented the concept of the initial structure, which add more
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strength to the MITM attack, and successfully broke the preimage resistance
of the full MD5. These techniques were then formalized as bicliques [14,35,36],
and further evolved to differential views [19,37]. Since these pioneering works,
the MITM preimage attack turned out to be very powerful and found many
applications in the last decade. It broke the theoretical preimage security claims
of MD4 [26], MD5 [53], Tiger [26,59], HAVAL [27,51] and round-reduced vari-
ants of many other hash functions such as SHA-0 and SHA-1 [5,19,37], SHA-
2 [4], BLAKE [19], HAS-160 [29], RIPEMD and RIPEMD-160 [60], Stribog [2],
Whilwind [3], and AES hashing modes [10,49,62]. Interestingly, the idea of MITM
preimage attack also leads to the progress of collision attacks against reduced
SHA-2 [42] and key-recovery attack against full KTANTAN [61], which are tech-
nically different from the DS-MITM attacks [23–25].

The core of a MITM preimage attack on the hash function is generally a
MITM pseudo-preimage attack on its compression function (denoted by CF).
The basic idea of the attack on the CF is as follows (take the DM-mode as an
example). First, the iterative round-based computation of the CF is divided at
an intermediate round (starting point) into two chunks. One chunk is computed
forward (named as forward chunk), the other is computed backward (named as
backward chunk), and one of them is computed across the first and last rounds
via the feed-forward mechanism of the hashing mode, and they end at a common
intermediate round (matching point). In each of the chunks, the computation
involves at least one distinct message word (or a few bits of it), such that they
can be computed over all possible values of the involved message word(s) inde-
pendently from the message word(s) involved in the other chunk (the distinct
words are called neutral words). When an initial structure is used, it covers few
consecutive rounds at the starting point, within which the two chunks over-
lapped and the neutral words for both chunks appear simultaneously, but still,
the computations of the two chunks on the neutral words are independent.

In [49], Sasaki applied such MITM preimage attack to AES-hashing modes.
Together with the partial matching technique, the attack successfully penetrated
7 out of the 10, 12, 14 rounds respectively for AES-128, AES-192, and AES-256.
Later, Wu et al. in [62] improved the complexities in multi-target setting. Differ-
ent from early MITM attacks on the MD-SHA family, their attacks select the neu-
tral bytes from the internal state and fix the material fed into the key/message-
schedule to an arbitrary constant. Recently, such attacks on AES hashing modes
evolved to not only using the freedom of selecting the internal state but also
exploiting the freedom of selecting the message state (key materials of the block
ciphers), and improved results are achieved in [10]. Due to the fact that there are
too many possible configurations (selection of neutral words, position of initial
structure and matching rounds, extra conditions imposed to limit propagation
of neutral words, etc.) to test out by bruteforce, all existing attacks cover only
a small portion of configurations, which were believed to potentially give better
cryptanalysis results according to the attackers’ intuition and experiences.

Automatic Tools. In the last decade, cryptanalysis has also made significant
progress from manual methods to those aided by dedicated computer programs
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searching for best differential/linear paths etc. [46] and best attacks [17], then
to automatic tools for solving Constraint Satisfaction Problems (CSP), such as
Mixed Integer Linear Programming (MILP), Constrained Programming (CP),
Satisfiability Solvers (SAT), and Satisfiability Modulo Theories (SMT). These
automatic tools convert the problem of finding better cryptanalytic attacks to
optimization problems solvable by the tools, under certain constraints, which
ensure the validity of the attacks. They not only enlarge the possible solution
space covered by previous manual methods and dedicated search programs, but
also helped generalize and even re-define the attack models which in turn further
enlarge solution spaces. As a result, these tools have made significant advances in
cryptanalysis, such as differential/linear path search [20,40,45,47,57,58], cube
(-like) attacks [28,43,44,55,56], integral attacks based on division properties [63],
three-subset and Demirci-Selçuk meet-in-the-middle attacks [50,54]. These usu-
ally lead to attacks for more rounds and/or lower time/memory complexities.
With these available capacities, a more accurate security assessment is possi-
ble, and many recent primitive designs [9,12,39] benefited from these tools in
determining the round number and the security margin with better confidence.

It is important to note that, literally every problem in cryptanalysis, complex
or simple, can be converted into one under automatic tools. However, when the
problem is complex, tools may not be able to output solutions in real time. Hence,
different from the traditional manual cryptanalysis, the difficulty of tool-aided
cryptanalysis is to find a proper model, which balances the problem solving time
and size of solution space the model covers (number of attack configurations
in case of AES-like hashing). Obviously, a model covering larger solution space
comes with lesser constraints, which is harder to solve by the tools, but has
bigger chances to offer better cryptanalysis results. All our effort in this paper is
to convert the preimage finding problem into one under the MILP language, by a
model covering largest possible solution space, while keeping the model solvable
in practical time within our computation capacity in hands.

Our Contributions. In this paper, we manage to automatize the search for
the best MITM preimage attacks with MILP models. We focus ourselves on hash
functions built on AES and AES-like ciphers.

We extend the construction of attacks by removing the limitations taken by
previous works [10,49,62]. That includes releasing the boundaries of the initial
structure by applying the essential idea to every possible round; considering the
possibility of imposing degree of freedom both from the internal state and from
the message, which is done by allowing selecting neutral bytes from both of the
encryption state and key state, and for both directions of computation; consid-
ering a desynchronized selection of neutral bytes in the encryption computation
flow and the key-schedule flow (meaning that we allow the key state, from which
the neutral bytes be selected, be at any possible round, instead of adhering to the
round at where neutral bytes are selected in the encryption state) as appeared
already e.g., in [10,26].

We formalize the essential idea behind the advanced techniques used in the
MITM preimage attack, including the above mentioned extended form of initial



Automatic Search of Meet-in-the-Middle Preimage Attacks 775

Table 1. Results of applications of our tool compared with previous best results

Target #Round Time-1 Time-2 (DoF+, DoF−, DoM) in bits Ref.

AES-128
7/10 2120 2125 ( 8, 8, 32 ) [49]

7/10 2120−min(t,24) 2123 ( 8, 32, 32 ) [62]

7/10 2104 2117 ( 24, 32, 24 ) [10]

8/10 2120 2125 ( 16, 8, 8 ) Fig. 7

AES-192
7/12 2120 2125 ( 8, 8, 32 ) [49]

7/12 296 2113 ( 32, 32, 32 ) [10]

8/12 2112−min(t,16) 2116 ( 16, 32, 32 ) [10]

9/12 2120 2125 ( 8, 8, 8 ) ∗Fig. 9

AES-256
7/14 2120 2125 ( 8, 8, 32 ) [49]

8/14 296 2113 ( 32, 32, 32 ) [10]

9/14 2120−min(t,24) 2123 ( 8, 32, 32 ) ∗Fig. 10
Rijndael-256 9/14 2248 2253 ( 16, 16, 8 ) ∗Fig. 12

7/10 2248 2248 ( 8, 8, 96 ) [39]
Haraka-256 v2

9/10 2224 2224 ( 32, 32, 64 ) ∗Fig. 13
8/10 2248 2248 ( 8, 8, 64 ) [39]

10/10 2224−min (t,32) 2224 ( 128, 32, 64 ) ∗Fig. 14Haraka-512 v2

11/10 2240 2240 ( 128, 128, 16) Fig. 8

–* Please refer to the full version of this paper [11].
– Following [10], we use Time-1 to represent the time complexity of pseudo-preimage. Here,
2t is the number of available targets for multi-target pseudo-preimage attacks; use Time-
2 to represent the complexity of using the (multi-target) pseudo-preimage attacks to do
(second-)preimage attacks when requiring an upper layer of meet-in-the-middle procedure
of conversion for some PGV-modes, and here a single target is given. For Haraka-512 v2,
the conversion is not needed and Time-2 should be the same with Time-1.
– The unit of complexity is one computation of the compression function.
– #Round is the number of AES-like round (one Haraka v2 round consists of two AES-like
rounds).
– (DoF+, DoF−, DoM) is (the degree of freedom for forward computation, the degree of
freedom for backward computation, the degree of matching), please refer to Sect. 3.

structure and the partial matching, using explicit-defined rules. In our formula-
tion of the MITM preimage attacks, we do not pre-set any hard boundaries for
the initial structures (i.e., the number of rounds and which rounds are covered),
but allow it to evolve automatically according to certain rules from well-defined
and potentially desynchronized starting states towards a clear objective. Thanks
to this formulation, the MITM preimage attack is ready to be transformed into
MILP models covering a larger solution space than previous works.

We refine the MILP model for the operations involved in AES-like round
functions to accurately capture all possible effects of them on the forward and
backward computation paths. For example, instead of separately treating the
AddRoundKey and MixColumns, we treat them as a whole (a composition trans-
formation) and formalize constraints that can result in all possible impacts from
the input states to the output state. In doing that, the models can capture
the solutions where the difference in the active cells in the key state and that
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in encryption state be mutually (partially) canceled, which is impossible when
treat the two operations separately. Such treatment further enlarges the search
space to capture more potentially better attacks.

With such MILP models and using off-the-shelf solver, we apply the auto-
matic search to AES-like hashing. Improved attacks than the previous ones were
obtained. That includes the first preimage attacks on 8-round AES-128, 9-round
AES-192, 9-round AES-256, 9-round Rijndael hashing modes, 4.5-round (9 AES-
rounds) Haraka-256 v2 and the full 5-round (10 AES-rounds) version and extended
5.5-round (11AES-rounds) version of Haraka-512 v2. The detailed results, together
with a comparison to the previous related works, are summarized in Table 1.

Note that the modified versions of Haraka v2 are used in instantiations of
SPHINCS+ (which replaces the DM-mode with Sponge-based construction) [31]
and Gravity-SPHINCS (which extends one round on top of the 5-round ver-
sion) [8]. Gravity-SPHINCS is one of the first round, and SPHINCS+ is one of
the third round alternate candidates of digital signatures in the NIST Post-
Quantum Cryptography Standardization Process. Our attacks on Haraka v2
do not directly break the security of SPHINCS+-Haraka and Gravity-SPHINCS-
Haraka. For SPHINCS+-Haraka, the security relies on a preimage resistance of
128-bit rather than 256-bit. For Gravity-SPHINCS-Haraka, the security relies on
a collision resistance of 128-bit rather than preimage resistance, besides, the
underlying Haraka v2 variants have increased the AES-like rounds from 10 to 12,
while our attacks cover at most 11 rounds.

2 AES-like Hashing and MITM Preimage Attacks

Most current hash functions are based on compression functions (CF) with fixed
length input and output; and the support for variable-length messages can be
achieved through domain extenders. Here, we focus on the challenge of inverting
the CF, i.e., given one or multiple targets T , find input chaining value h and
message block M , such that CF(h,M) = T . Such attacks are called pseudo-
preimage attacks, in which the chaining value is free of choice. Pseudo-preimages
can be converted to (second-)preimages of hash functions using generic methods
(details can be found in Appendix C of the full version [11]).

2.1 AES-like Hashing

Typically, the compression function of hash functions can be constructed from
block ciphers applying the secure PGV-modes [48]. When the underlying block
ciphers are AES-like, we call the hash functions as AES-like hashing. Concretely,
in AES-like hashing, the underlying compression function is based on AES-like
round functions as depicted in Fig. 2, where the state being manipulated is orga-
nized into an Nrow×Ncol two-dimensional array of c-bit cells. One AES-like round
function typically consists of the following operations:

• SubBytes. Substitute each cell according to an S-boxes S : F2c → F2c .
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• ShiftRowsπt
. Permute the cell positions according to the permutation πt.

• MixColumns. Update each column by left-multiplying an Nrow × Nrow MDS
matrix (maximal distance separable matrix, with branch number Bn = Nrow+
1, i.e., as long as the input/output of the MDS matrix is non-zero, the sum
of non-zero elements in the input and output is at least Nrow + 1).

• AddRoundKey. XOR a round key or a round-dependent constant into the
state depending on whether the intended construction is keyed or not.

2.2 Advanced Techniques in Meet-in-the-Middle Preimage Attacks

Since the pioneering works on preimage attacks on MD4, MD5, and HAVAL [7,41,
51,52], the MITM approach has been applied and further developed for preimage
attacks on many other hash functions. This method develops into splice-and-
cut [6] MITM preimage attacks with support from initial structure [53] and
(indirect) partial matching techniques.

Initial Structures [53]. From the idea of local-collision, Sasaki and Aoki proposed
a novel concept – initial structure. The purpose of the initial structure is to skip
several steps/rounds at the beginning of chunks in a MITM attack so that the
attack covers more steps/rounds. It is a few consecutive starting steps, where
the two chunks overlapped. Although the two sets of neutral words, denoted by
N+ and N−, appear simultaneously at these steps, they are only involved in the
computation of one chunk each. Besides, one can add constraints to the values of
neutral words of one chunk, such that different values lead to constant impact on
the computation of the opposite chunk. Thus, a proper initial structure should
satisfy that, steps after the initial structure (forward chunk) can be computed
independently of N− and steps before the initial structure (backward chunk)
can be computed independently of N+.

Remark 1 (Related work – the formalism of Biclique). Notably, the initial struc-
ture was viewed as the most promising and underutilized technique for MITM
preimage attack in the subsequent years since its invention. In [36], authors
replaced the idea of initial structure with a more formal and general concept,
which is named biclique. With this formalism, one can view the structure in
a differential view, and built it by applying various tools available for collision
search and differential attacks. This concept of biclique has been applied to both
preimage attacks on hash functions (e.g., SHA-1, SHA-2 and Skein-512 [36,37])
and key-recovery attacks on block ciphers (e.g., AES and IDEA [14,35]).

In this paper, independent of the formalism using concept of biclique, and
instead of adhering to a formal definition, we apply the essential idea behind the
original concept of initial structure. We formalize the basic idea using explicit
rules and extend the initial structure to be less structured.

(Indirect-) Partial matching [6,53]. In the two ending states for matching, as
long as there remain one common word of which the value can be computed
independently between the forward and backward chunks, the matching can be
performed. Further, apart from directly matching values of common words, any
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determined relations between words in the states at the matching point can be
exploited to filter out miss-matched computations. For example, Sasaki in [49]
exploited the following property of the AES MixColumns to do indirect matching:
knowing any b bytes (b > 4) among the input and output of MixColumns on
one column, one can built a filter of b − 4 bytes. For example, in Fig. 1d, it
is possible to do partial matching between states #MC1 and #AK1, and each
column provides 2 + 3 − 4 = 1 byte filter, as exemplified in Fig. 1b.

Fig. 1. The MITM pseudo-preimage attack [49,62] (Color figure online)

Multi-targets [26,62]. When multiple targets are available, it adds the degree of
freedom to the chunk where the targets are added to.

The Attack Framework. The procedure (Fig. 1) and complexities of the
MITM pseudo-preimage attack depend on the following configurations:

1. Chunk separation – the position of initial structure and matching points.
2. The neutral bytes – the selection and the constraints on the neutral bytes,

which determine the degrees of freedom for each chunk.
3. The bytes for matching – the deterministic relation used for matching, which

determines the filtering ability (degree of matching).

After setting up the configuration, the basic attack procedure goes as follows.
Denote the neutral bytes for the forward and backward chunk by N+ and N−:

1. Assign arbitrary compatible values to all bytes except those that depend on
the neutral bytes (e.g., the Gray cells in Fig. 1d).



Automatic Search of Meet-in-the-Middle Preimage Attacks 779

2. Obtain possible values of neutral bytes N+ and N− under the constraints on
them (e.g., in Fig. 1c). Suppose there are 2d1 values for N+, and 2d2 for N−.

3. For all 2d1 values of N+, compute forward from the initial structure to the
matching point to get a table L+, whose indices are the values for matching,
and the elements are the values of N+.

4. For all 2d2 values of N−, compute backward from the initial structure to the
matching point to get a table L−, whose indices are the values for matching,
and the elements are the values of N−.

5. Check whether there is a match on indices between L+ and L−.
6. In case of partial-matching exist in the above step, for the surviving pairs,

check for a full-state match. In case none of them are fully matched, repeat
the procedure by changing values of fixed bytes till find a full match.

The Attack Complexity. Denote the size of the internal state by n, the degree
of freedom in the forward and backward chunks by d1 and d2, and the number
of bits for the match by m, the time complexity of the attack is [10]:

2n−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) � 2n−min(d1,d2,m). (1)

2.3 Basic Rules Applied to MITM Attacks on AES-like Hashing

Sources of Degrees of Freedom. Shown by the complexity analysis, the
MITM attack benefits from larger degrees of freedom in both chunks and match-
ing. In early MITM preimage attacks on the MD-SHA family, the degree of free-
dom comes from the message words. Whereas, in early MITM preimage attacks
on AES-like hashing [49,62], the degree of freedom comes from the bytes in
encryption states1, and the attacks set the material fed into the key-schedule
as arbitrary constant. In [10], the authors proposed to introduce neutral bytes
not only from the encryption state but also from the key state. The principle is
that, for one chunk, one adds as much degree of freedom as possible to improve
the computational complexity, and at the same time, keeps their impacts on the
opposite chunk as little as possible to cover as many rounds as possible. To keep
the analysis manually doable, the authors in [10] proposed that the neutral bytes
in key states are all introduced for merely one chunk.

Ways to Control Impacts on the Opposite Chunk. For the ways to cancel
impacts from neutral words for one chunk on the opposite chunk, recall that early
preimage attacks on MD-SHA used the (cross) absorption properties of Boolean
functions by setting an input variable to a special value to absorb the difference
in another input variable. In the attack on AES-like hashing, the ways to control
the impacts of the neutral bytes is to add constraints on those neutral bytes
1 In a hash function, there is no encryption and key-schedule. Here, focusing on hash

functions built on block ciphers, we use them to represent the two algorithms updat-
ing the chaining values and updating the message words. For different mode-of-
operations, the correspondence might be different.
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when they are inputs to the following operations. Note that adding constraints
means consuming the degree of freedom.

– AddRoundKey and XOR: one can restrict that the XOR of two neutral bytes be
constant. The rationale is to use the difference in one neutral byte (e.g., in
the key state) to absorb the difference in another neutral byte (e.g., in the
encryption state). That will consume one-byte degree of freedom.

– MixColumns (MC): Even if the input contains neutral bytes (active) for one
chunk, one can add restriction on their values, such that their impacts on
some output bytes of the MC be constant. Therefore, the opposite chunk can
be computed independently as long as the constant impacts are known. Take
the attack in Fig. 1d for example. In the computation from #MC4 to #AK4,
the values of Red cells in state #MC4 are restricted such that changing them
does not change impact on the Blue cells marked by C in #AK4 (exemplified
in Fig. 1c). This restriction consumes the degree of freedom that lies in neutral
bytes for backward chunk, but enables the independent forward computation.
Explicitly, if there are i neutral bytes for one chunk involved in the input of
MC , then we can control their impacts on j bytes of the output be constant
by consuming j bytes degree of freedom. For AES-like hashing, because the
matrix MC in MixColumns is MDS, there is a limitation for applying this
control, that is i + Nrow − j ≥ Nrow + 1, i.e., i ≥ j + 1.

– MixColumns ◦ AddRoundKey (XOR-MC): in backward chunk, when there are
forward neutral bytes in both the key and the encryption state, to control
their impacts, one may first apply the above-mentioned way of restriction
on AddRoundKey and then on MixColumns. Besides that, we apply restriction
on the composition transformation of AddRoundKey and MixColumns. The
rationale is that, the XOR operation in AddRoundKey is byte-wise. Only when
two bytes being at the same position in two states, the difference in one byte
can absorb the difference in the other byte. As for MixColumns, only when
two bytes being in the same state, the difference in one byte can absorb
the difference in the other byte. However, when considering the composition
MixColumns◦AddRoundKey, even when the neutral bytes for the forward chunk
lie in different states (some in the key state and some in the encryption state)
and in different byte positions, we can still use the difference of some neutral
bytes to absorb the difference of others. Section 4.1 and the listed attacks will
provide formal descriptions and concrete examples.
Explicitly, suppose that there are i forward neutral bytes in the key state, and
j forward neutral bytes in the encryption state, and they lie in columns with
a common index. Let k be the number of different byte positions considering
these neutral bytes together (i.e., k equals the Hamming weight of the ‘OR’
between the indicator vector of whether a position has a neutral byte in
the key state and that in the encryption state). Then, considering the MDS
property of MC in MixColumns, we can control the impacts of neutral bytes
on t bytes of the output by consuming t bytes degree of freedom as long as
k + Nrow − t ≥ Nrow + 1, i.e., k ≥ t + 1.
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Remark 2. (Relation with previous MITM attacks on AES hashing modes). Note
that the ways to control the impacts have already been used in previous MITM
preimage attacks on AES-like hashing [10,49,62], which is an essential element
for constructing the initial structure. In this paper, we consider the possibility
to impose such constraints to any round, and in this sense, the boundaries of
the initial structure disappear. Besides, as has been mentioned above, the ways
to select the neutral bytes were limited in previous works to make the analysis
doable manually. In this paper, we remove these restrictions by allowing the
selection of neutral bytes in both encryption state and key state, and for both
forward and backward chunks.

In the subsequent sections, we will use these ideas to get explicit rules for
selecting neutral bytes, consuming degree of freedom on neutral bytes to control
their impacts. Incorporating with other optimization techniques (e.g., partial
matching and multi-targets), we convert the problem of searching for the best
configurations into optimization problems under constraints in MILP-models.
With the obtained MILP-models and the off-the-shelf solver, we can search for
the best MITM attacks on AES-like hashing exhaustively.

Remark 3 (Relation with another work on using MILP to searching MITM
attack). In [50], Sasaki already applied the MILP formalization to search the
three-subset MITM attack on GIFT-64. In the tool, which rounds covered by an
initial structure are predefined. Neutral bits are all from the key state because
the goal is a key-recovery attack. Besides, because it is dedicated to GIFT-64
(with a bit-permutation linear layer), the previously mentioned rules for opti-
mizing MITM attacks on AES-like hashing are not included, which is essentially
the most challenging parts in our formalization.

3 Formulate the MITM Attack on AES-like Hashing

To search for MITM attacks on AES-like hashing, we now formulate the attack
with the general construction shown in Fig. 2.

Denote the starting states in the encryption data path and key-schedule data
path by SENC and SKSA, respectively (corresponding to the location of an initial
structure previously); and denote the ending states for the forward computation
and backward computation by E+ and E−, respectively (corresponding to the
previous matching). In the formalized attack, partial knowledge of E+ and E−

that is used for matching is supposed to be obtained by computing from SENC

and SKSA forward and backward, respectively2.
Without loss of generality, we assume that the states in the encryption data

paths and the key-schedule both have n c-bit cells (with n = Nrow · Ncol). To
reference the cells of certain n-cell states, denote by BENC, BKSA, RENC, RKSA, C, and
D the ordered subsets of N = {0, 1, · · · , n − 1} whose elements are increasingly

2 Note that after finding out a formalized attack, adaptation will be made manually
to launch a concrete attack; the forward and backward computations may start from
the most decisive states instead of SENC and SKSA while keeping the complexity.
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ordered. Here, the BENC and BKSA refer to the neutral cells from the internal state
and message (or key state of the underlying block cipher) for the forward chunk,
and RENC and RKSA for the backward chunk. The C and D refer to the known
and active cells in the ending states E+ and E− of the forward and backward
chunks, respectively. For example, we may have C = {0, 2, 7}, and for a 16-cell
state S, S[C] is defined to be (S[0], S[2], S[7]) or S[0, 2, 7].

Fig. 2. A high-level overview of the MITM preimage attack

Before one can mount a MITM preimage attack, these four states: SENC,
SKSA, E+, E−, and six subsets BENC, BKSA, RENC, RKSA, C, D (BENC ∩RENC = ∅ and
BKSA ∩ RKSA = ∅ for independence between chunks) must be specified.

Note that to visualize these subsets and the attack, we will introduce a col-
oring system in Sect. 4, where cells referenced by BENC and BKSA are Blue, and
cells referenced by RENC and RKSA are Red. The remaining cells in the starting
states referenced by GENC and GKSA are Gray, where GENC = N − BENC ∪ RENC and
GKSA = N −BKSA∪RKSA. Moreover, C references the Blue cells in the ending state
E+, and D the Red cells in E−.

In what follows, the degree of freedom (DoF) refers to number of cells, rather
than bits. We call λ+ = |BENC|+ |BKSA| the initial DoF for the forward chunk, and
λ− = |RENC| + |RKSA| the initial DoF for the backward chunk. For forward and
backward chunks being computed independently, these initial DoFs might be
consumed by adding constraints on neutral cells in SENC and SKSA. Thus, neutral
cells in the starting states may not take all 2c·λ+

and 2c·λ−
values.

If the forward neutral cells (SENC[BENC], SKSA[BKSA]) (in Blue) in the start-
ing states can only take values in X ⊆ F

|BENC|+|BKSA|
2c with |X| = (2c)d1 ≤

(2c)|B
ENC|+|BKSA|, and the backward neutral cells (SENC[RENC], SKSA[RKSA]) (in Red)

in the starting states can only take values in Y ⊆ F
|RENC|+|RKSA|
2c with |Y| =

(2c)d2 ≤ (2c)|R
ENC|+|RKSA|, then after fixing the Gray cells (SENC[GENC], SKSA[GKSA])

in the starting states to some constant in F
(n−|BENC|−|RENC|)+(n−|BKSA|−|RKSA|)
2c , the

attacker can compute (2c)d1 different values of E+[C] in the forward direction
which only depend on (SENC[BENC], SKSA[BKSA]). The attacker stores these (2c)d1
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values in a list L+. Similarly, the attacker can compute (2c)d2 different values of
E−[D] in the backward direction which only depend on (SENC[RENC], SKSA[RKSA]).
The attacker stores these (2c)d2 values in a list L−. For the two lists L+ and
L−, the attacker can perform an m-cell matching. Then, |L+ × L−|/(2c)m pairs
from L+ × L− are expected to pass the test.

We call m the degrees of matching (denoted by DoM). Note that BENC and
BKSA indicate the sources of the degrees of freedom for the forward computa-
tion, and RENC and RKSA indicate the sources of the degrees of freedom for the
backward computation. Since in the forward computation and backward com-
putation, (SENC[BENC], SKSA[BKSA]) and (SENC[RENC], SKSA[RKSA]) are restricted to X

and Y respectively, with |X| = (2c)d1 and |Y| = (2c)d2 , we call d1 the degrees of
freedom for the forward computation (denoted by DoF+) and d2 the degrees of
freedom for the backward computation (denoted by DoF−).

With this configuration, it is shown that the time complexity to find a full
n-cell match between the two ending states is (2c)n−min{d1,d2,m}. Therefore, for
a valid MITM preimage attack, we must have DoF+ ≥ 1, DoF− ≥ 1, and
DoM ≥ 1. In the following section, we will show how to automatically deter-
mine BENC, BKSA, RENC, RKSA, C, and D with MILP such that the complexity
(2c)n−min{DoF+,DoF−,DoM} of the corresponding attack is minimized when the
starting states and ending states are given. Note that the choices of the starting
states and ending states are quite limited and thus can be enumerated automat-
ically.

Remark 4. Our program enumerates all combinations of the locations of starting
and ending points in encryption, and all combinations of the locations of starting
points in the encryption and key-schedule algorithm. That is, for an N -round
targeted cipher, our program generates MILP-models for each of the possible
combinations {(initEr , initKr , matchr) | 0 ≤ initEr < N, − 1 ≤ initKr <
N, 0 ≤ initEr < N, initEr �= matchr}, where initEr is the location of starting
point in encryption, initKr is that in key-schedule, and matchr is the location of
the matching point. To find the optimal attacks, the MILP solver solves them
all. Note that for each individual model, the locations of the matching and the
initial states are set, but the states are not set.

Note 1 (Tricks for matching the ending states as indirect matching and matching
through MixColumns used in [4,10,26]). Note that in the MITM preimage attack
on AES-like hash functions, the last sub-key addition leading to E− is close to
the boundary of the forward and backward computation as illustrated in Fig. 15a
in the full version [11].

Therefore, to perform matching, one can decompose state as K = K+ +
K−, and translate the computation in Fig. 15a in the full version [11] into its
equivalent form shown in Fig. 15b in the full version [11], since MC(E+) ⊕ K =
MC(E+ ⊕ MC−1(K+)) ⊕ K−. Full explanation can be found in Appendix C of
the full version [11].

In the following description of our modeling method, for simplicity, we let
the number of rows of the state Nrow be 4, and thus, the branch number of the
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MixColumns Bn = Nrow + 1 be 5. However, the modeling method can be directly
applied to other AES-like hashing that formalized in Sect. 2.1.

4 Programming the MITM Preimage Attacks with MILP

To facilitate the visualization of our analysis, each cell can take one of the four
colors (Gray, Red, Blue, and White) according to certain rules, and a valid
coloring scheme in our model corresponds to a MITM pseudo-preimage attack.
The semantics of the colors of cells are listed as follows.

• Gray (G): known constant in both forward and backward chunk.
• Red (R): known and active in the backward chunk but unknown in the forward.
• Blue (B): known and active in the forward chunk but unknown in the back-

ward.
• White (W): unknown in both the forward and backward chunk.

For the ith cell of a state S, we introduce two 0–1 variables xS
i and yS

i to
encode its color, where (xS

i , yS
i ) = (0, 0) represents W, (xS

i , yS
i ) = (0, 1) represents

R, (xS
i , yS

i ) = (1, 0) represents B, and (xS , yS) = (1, 1) represents G. The encoding
scheme is chosen such that xS

i = 1 if and only if S[i] is a known cell for the
forward computation, and yS

i = 1 if and only if S[i] is a known cell for the
backward computation. Under this encoding scheme, the number of Blue cells
and Gray cells (known cells for the forward computation) in S can be computed
as

∑
i xS

i . Similarly, the number of Red cells and Gray cells (known cells in the
backward computation) in S can be computed as

∑
i yS

i . We also introduce an
indicator 0-1 variable βS

i for each cell such that βS
i = 1 if and only if the cell

S[i] is Gray, which can be described by the constraints in Eq. (2).
Under these constraints, the number of Blue cells in S can be computed

as
∑

i xS
i − ∑

i βS
i , and the number of Red cells in S can be computed as∑

i yS
i − ∑

i βS
i . Moreover, the Blue cells in the starting states are used to cap-

ture (SENC[BENC], SKSA[BKSA]), and the Red cells in the starting states are used to
capture (SENC[RENC], SKSA[RKSA]).

Constraints for the Starting States. For the starting states, we introduce
two additional variables λ+ and λ− that compute the so-called initial degrees
of freedom, where λ+ (the initial DoF for the forward computation) is defined
as the number of Blue cells in SENC and SKSA, and λ− (the initial DoF for the
backward computation) is defined as the number of Red cells in SENC and SKSA.
Putting the definitions into equations, we have Eq. (3).

⎧
⎪⎨

⎪⎩

xS
i − βS

i ≥ 0;
yS

i − βS
i ≥ 0;

xS
i + yS

i − 2βS
i ≤ 1.

⎧
⎪⎨

⎪⎩

λ+ =
∑

i

xSENC

i −
∑

i

βSENC

i +
∑

i

xSKSA

i −
∑

i

βSKSA

i ;

λ− =
∑

i

ySENC

i −
∑

i

βSENC

i +
∑

i

ySKSA

i −
∑

i

βSKSA

i .

(2) (3)
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Constraints for the Ending States. To be concrete, we describe the con-
straints for matching through the MixColumns operation of AES.

Property 1. Let (E−[4j], E−[4j + 1], E−[4j + 2], E−[4j + 3])T and (E+[4j],
E+[4j + 1], E+[4j + 2], E+[4j + 3])T be the jth columns of the ending states
E− and E+ that are linked by the MixColumns operation. When t (t ≥ 5) out
of the 8 bytes of the two columns are known, there is a filter of t − 4 bytes.

Since the time complexity of the attack is (2c)n−min{DoF+,DoF−,DoM}, we must
impose the constraint DoM ≥ 1 to ensure a valid attack. The known bytes of the
jth column of the ending state E+ for the forward computation path from the
starting states to E+ can be computed in our model as

∑3
i=0(x

E+

4j+i + yE+

4j+i −
βE+

4j+i). Similarly, the known bytes of the jth column of the ending state E− for
the backward computation path from the starting states to E− can be computed
as

∑3
i=0(x

E−
4j+i + yE−

4j+i −βE−
4j+i). Therefore, according to Property 1, we have the

constraints for DoM in Eq. (4) (suppose each state has four columns).

⎧
⎪⎪⎨

⎪⎪⎩

DoM =

3∑

j=0

max{0,
(

3∑

i=0

(xE+

4j+i + yE+

4j+i − βE+

4j+i) +

3∑

i=0

(xE−
4j+i + yE−

4j+i − βE−
4j+i) − 4

)

};

DoM ≥ 1.

(4)

Constraints for the States in the Computation Paths. This is an essen-
tial part of this work. In this part, we extend the construction of attacks on the
basis of previous works. We refine and apply the critical idea behind the initial
structure to a greater extent, and explicitly describe more possible ways to prop-
agate the attributes (expressed in the four colors) of the cells that are involved
in computation paths in both the encryption and the key-schedule. Therefore,
we would like to devote one separate whole section (Sect. 4.1) for the details of
this part. Here we only give some high-level descriptions.

Let f be an operation that transforms a state SIN into a state SOUT. Then the
coloring scheme of (SIN, SOUT) must obey certain rules associated with f and the
direction of the computation in which f is involved, such that the semantics of
the colors are respected.

If we restrict the Red cells (SENC[RENC], SKSA[RKSA]) in the starting states to
some carefully constructed set Y defined in Sect. 3, it may be valid to transform
certain Red cells in SIN to Gray cells (or even Blue cells) in SOUT by some oper-
ations along the forward computation path (starting from the starting states to
the ending state E+). By doing so, impacts from the Red cells on the forward
computation are limited, meanwhile, the degrees of freedom of the Red cells in
the starting states should be reduced from λ−; similar situations happen along
the backward computation path (starting from the starting states to the ending
state E−). In our MILP model, we must keep track of how much degrees of free-
dom are consumed to ensure the remaining degrees of freedom for the forward
computation (DoF+) and for the backward computation (DoF−) always greater
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or equal to one. The variables and constraints introduced for the above purpose
are detailed in Sect. 4.1.

The Objective Function. To minimize the time complexity of the attack,
min{DoF+,DoF−,DoM} should be maximized. To this end, we can introduce
an auxiliary variable vObj, impose the constraints in Eq. (5) and set the objective
function to maximize vObj.

In the multi-target setting, we suppose that the degree of freedom for
the chunk to which the targets are added can be directly increased. Thus,
for models where the starting point (resp. matching point) is at the upper
round than the matching point (resp. starting point), DoF− (resp. DoF+) can
be directly increased, the objective is to maximize min{DoF+,DoM} (resp.
min{DoF−,DoM}).

⎧
⎪⎨

⎪⎩

vObj ≤ DoF+;
vObj ≤ DoF−;
vObj ≤ DoM.

(5)

{
DoF+ = λ+ − σ+;
DoF− = λ− − σ−.

(6)

4.1 MILP Constraints for the States in the Computation Paths
and the Consumption of Degrees of Freedom

Recalling the formalized framework of MITM attack in Sect. 3, before we perform
the attack on a given target with predefined positions of starting states and
ending states, we have to determine BENC, BKSA, RENC, and RKSA for the starting
states SENC and SKSA. In our visualizations of the attacks, the Blue cells in the
starting states SENC and SKSA are meant to capture BENC and BKSA respectively.
Similarly, the Red cells in the starting states are used to capture RENC and RKSA,
and the Gray cells in the starting states are used to capture GENC, and GKSA.

Therefore, according to Eq. (3), the number of Blue cells and the number of
Red cells in the starting states correspond to the initial degrees of freedom λ+

and λ−, respectively. To control the impacts from neutral cells in one direction
on the opposite direction, along the computation paths leading to the ending
states, the initial degrees of freedom are consumed according to the coloring
schemes.

Basically, forward computation consumes λ−, and backward computation
consumes λ+. The consumption of degrees of freedom is counted in cells. Let
σ+ and σ− be the accumulated degrees of freedom that have been consumed in
the backward and forward computation paths, respectively. We have Eq. (6) for
calculating the remaining degrees of freedom. That is, the remaining DoF for the
forward computation is computed as the initial DoF of the forward computa-
tion minus the DoF consumed by the backward computation (from the starting
state to the ending state E−), and the remaining DoF of the backward compu-
tation is computed as the initial DoF of the backward computation minus the
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DoF consumed by the forward computation (from the starting state to the end-
ing state E+). Since the complexity of the attack is (2c)n−min{DoF+,DoF−,DoM},
we always require DoF+ ≥ 1 and DoF− ≥ 1. Moreover, σ+ is computed as∑

σ+(SIN → Sout) along the computation path that consumes DoF for the
forward computation, where σ+(SIN → SOUT) is the DoF for the forward compu-
tation consumed by the transition from state SIN to SOUT, and σ− is computed as∑

σ−(SIN → SOUT) along the computation path that consumes the DoF for the
backward computation. To show how to compute σ+ in our model, we will take
the most complicated XOR-MC operation as an example. For other operations,
one can obtain the constraints similarly.

According to the semantics of the colors, the rules for coloring the input and
output states of an operation, and how they consume the degree of freedom to
limit the impacts should be different for the forward and the backward compu-
tation paths. Therefore, for each type of operations, we will give two sets of rules
for different directions of the computation.

First of all, an invertible S-box preserves the color of the input cell, and
the ShiftRows permutes the coloring scheme of the input state according to
the permutations associated with the ShiftRows in both forward and backward
computations. Both S-box and ShiftRows operations can not be used to reduce
the impacts via consuming the degree of freedom. In the sequel, we will focus on
more nontrivial operations.

XOR. The XOR operations exist in the AddRoundKey and the key/message-
schedule (if any). Here we need to distinguish two different directions. If the XOR
to be modeled is involved in the forward computation path from the starting
states to the ending state E+, the coloring scheme of the input and output cells
of the XOR operation obeys the set of rules (denoted by XOR+-RULE, where a
“+” sign signifies the forward computation) shown in Fig. 3a. Similarly, if the
XOR to be modeled is involved in the backward computation path from the
starting states to the ending state E−, the coloring scheme of the input and
output cells of the XOR operation obeys the set of rules named as XOR−-RULE,
which is visualized in Fig. 3b. Note that XOR−-RULE (Fig. 3b) can be obtained
from XOR+-RULE (Fig. 3a) by exchanging the Red cells and Blue cells, since the
meanings of Red and Blue are dual for the forward and backward computations.

Fig. 3. Rules for XOR operations, where a “*” means that the cell can be any color
(Color figure online)
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Let A[0], B[0] be the input cells and C[0] be the output cell. The set of rules
XOR+-RULE restricts (xA

0 , yA
0 , xB

0 , yB
0 , xC

0 , yC
0 ) to a subset of F

6
2, which can be

described by a system of linear inequalities by using the convex hull computation
method [58], and the set of rules XOR−-RULE can be described similarly.

Within each of the two sets of rules for XOR operations, only one coloring
scheme consumes the degree of freedom, e.g., the ⊕ → in Fig. 3a, which
describes the possibility that the difference in one cell cancels that in another.

MixColumns. For the MixColumns operation in the forward computation, we
have the following set of rules (denoted by MC+-RULE) for the coloring schemes
of the input and output columns. Examples of valid coloring schemes are shown
in Fig. 4.

� MC+-RULE-1. If there is at least one White cell in the input column, all the
output cells are White (one unknown cell in the input causes all cells in the
output be unknown);

� MC+-RULE-2. If there are Blue cells but no White cells and no Red cell in
the input column, then all the output cells are Blue (can perform full forward
computations);

� MC+-RULE-3. If all the input cells are Gray, then all the output cells are
Gray (can perform bi-direction computations on fixed constants);

� MC+-RULE-4. If there are Red and Blue cells but no White cells in the input
column, each output cell must be Blue or White. Moreover, a condition should
be fulfilled, that is, the sum of the numbers of Blue and Gray cells in the
input and output columns must be no more than 3 (i.e., 8− 5) (can partially
cancel the impacts from on within an input column by consuming λ−,
and perform partial forward computations. Because of the MDS property of
MixColumns, this is possible only when the condition is fulfilled);

� MC+-RULE-5. If there are Red cells but no White cells and no Blue cells in
the input column, then each output cell must be Red or Gray. Moreover, a
condition should be fulfilled, that is, the number of Gray cells in the input
and output columns must be no more than 3 (i.e., 8−5) (can partially cancel
the difference within an input column by consuming λ−. Because of the MDS
property of MixColumns, this is possible only when the condition is fulfilled).

Fig. 4. Some valid coloring schemes for the MixColumns in the forward computation
(Color figure online)

All the above rules can be described by linear inequalities.
First, we introduce three 0-1 indicator variables μ, υ, ω for the input column

and necessary constraints into the model to satisfy the following cases.
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� μ = 1, υ = 0, ω = 0 if and only if MC+-RULE-1 is fulfilled;
� μ = 0, υ = 1, ω = 0 if and only if MC+-RULE-2 is fulfilled;
� μ = 0, υ = 1, ω = 1 if and only if MC+-RULE-3 is fulfilled;
� μ = 0, υ = 0, ω = 0 if and only if MC+-RULE-4 is fulfilled;
� μ = 0, υ = 0, ω = 1 if and only if MC+-RULE-5 is fulfilled.

This can be done as follows.
Let (A[0], A[1], A[2], A[3])T and (B[0], B[1], B[2], B[3])T be the input and out-

put columns. Without any restriction, there are 28 possible coloring schemes for
the input column since (xA

0 , yA
0 , · · · , xA

3 , yA
3 ) ∈ F

8
2. We define the set of vectors

{(xA
0 , yA

0 , · · · , xA
3 , yA

3 , μ) : (xA
0 , yA

0 , · · · , xA
3 , yA

3 ) ∈ F
8
2}, (7)

where μ = 1 if and only if there exists i ∈ {0, 1, 2, 3} such that (xA
i , yA

i ) =
(0, 0). This subset can be described by linear inequalities with the convex hull
computation method [58].

The indicator variable υ = 1 if and only if xA
i = 1 for each i ∈ {0, 1, 2, 3}.

This can be done by linear inequalities listed in Eq. (8). The indicator variable
ω = 1 if and only if yA

i = 1 for each i ∈ {0, 1, 2, 3}. This can be done by similar
inequalities as Eq. (8).

Now, with the help of these variables μ, υ, ω, we can convert MC+-RULE into
a system of inequalities shown in Eq. (9).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3∑

i=0

xA
i − 4υ ≥ 0;

3∑

i=0

xA
i − υ ≤ 3.

(8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑

i=0

xB
i + 4μ ≤ 4;

3∑

i=0

yB
i + 4μ ≤ 4;

3∑

i=0

yB
i − 4ω = 0;

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3∑

i=0

(xA
i + xB

i ) − 5υ ≤ 3;

3∑

i=0

(xA
i + xB

i ) − 8υ ≥ 0.

(9)

Since the semantics of the Red cells and Blue cells are dual in the forward
and backward computation, the set of rules for backward computation (denoted
by MC−-RULE) can be obtained from MC+-RULE by exchanging the words Blue
and Red. We omit the details to save spaces.

XOR Then MixColumns (XOR-MC). For the operation which maps
the two input columns (A[0], A[1], A[2], A[3])T and (B[0], B[1], B[2], B[3])T to
C[0, 1, 2, 3] = MC−1(A[0, 1, 2, 3] + B[0, 1, 2, 3]), we have the following rules for
the coloring schemes of the input and output columns. Note that this opera-
tion only appears in the backward computation for all the targets in this paper.
Therefore, we only specify the set of rules for XOR-MC for the backward com-
putation.

� XOR-MC-RULE-1. If there is at least one White cell in the input columns, all
the output cells are White (one unknown cell in the input causes all cells in
the output be unknown);
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� XOR-MC-RULE-2. If there are Red cells but no White cells and no Blue cells
in the input columns, all output cells are Red (can perform full backward
computations);

� XOR-MC-RULE-3. If all input cells are Gray, then all output cells are Gray
(can perform bi-direction computations on fixed constants);

� XOR-MC-RULE-4. If there are Blue cells and Red cells but no White cells in
the input columns, each output cell must be Red or White. Moreover, when
combining the two input columns as a 4× 2 matrix, the number of rows with
one or two Blue cells plus the number of White cells in the output column
must be greater or equal to 5 (can partially cancel the impacts from on
within two input columns by consuming λ+, and perform partial backward
computations. Because of the MDS property of inverse MixColumns, this is
possible only when the condition is fulfilled);

� XOR-MC-RULE-5. If there are Blue cells but no Red cells and no White cells in
the input columns, each output cell must be Blue or Gray. Moreover, when
combining the two input columns as a 4× 2 matrix, the number of rows with
one or two Blue cells plus the number of Blue cells in the output column must
be greater or equal to 5 (can partially cancel the difference within two input
columns by consuming λ+. Because of the MDS property of MixColumns, this
is possible only when the condition is fulfilled).

Fig. 5. Some valid coloring schemes for the XOR-MC in the backward computation
(Color figure online)

All the above rules can be described by similar linear inequalities for
MC−-RULE. Three 0-1 indicator variables μ, υ, ω also be introduced for the
input columns. μ = 1 if and only if there exists i ∈ {0, 1, 2, 3} such that
(xA

i , yA
i ) = (0, 0) or (xB

i , yB
i ) = (0, 0). υ = 1 if and only if xA

i = 1 and xB
i = 1

for each i ∈ {0, 1, 2, 3}. ω = 1 if and only if yA
i = 1 and yB

i = 1 for each
i ∈ {0, 1, 2, 3}. These constraints can be generated from that of MC-RULE. For
example, introduce μA (resp μB) for input column (A[0], A[1], A[2], A[3])T (resp
(B[0], B[1], B[2], B[3])T ) and necessary constraints as Eq. (7). Then μ = 1 if and
only if μA = 1 or μB = 1. Then

� μ = 1, υ = 0, ω = 0 if and only if XOR-MC-RULE-1 is fulfilled;
� μ = 0, υ = 0, ω = 1 if and only if XOR-MC-RULE-2 is fulfilled;
� μ = 0, υ = 1, ω = 1 if and only if XOR-MC-RULE-3 is fulfilled;
� μ = 0, υ = 0, ω = 0 if and only if XOR-MC-RULE-4 is fulfilled;
� μ = 0, υ = 1, ω = 0 if and only if XOR-MC-RULE-5 is fulfilled.
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Another four 0-1 variables τ0, τ1, τ2, τ3 are introduced for each row, τi = 1 if and
only if A[i] or B[i] is Blue cell.

Now, with the help of these variables μ, ε, ω, τi for i ∈ {0, 1, 2, 3}, we can
convert XOR-MC-RULE into a system of inequalities as listed in Eq. (10).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑

i=0

xC
i + 4μ ≤ 4;

3∑

i=0

yC
i + 4μ ≤ 4;

3∑

i=0

xC
i − 4υ = 0;

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3∑

i=0

(yC
i − τi) − 5ω − μ ≤ −1;

3∑

i=0

(yC
i − τi) − 8ω ≥ −4.

(10)

Remark 5. One may attempt to model the XOR-MC operation by applying
XOR−-RULE and MC−-RULE separately. This approach is valid but misses impor-
tant coloring schemes that may lead to better attacks. For example, considering
the input columns shown in Fig. 6, applying XOR−-RULE results in White cells
after the XOR operation. Subsequently, applying MC−-RULE, we will end up
with a full column of White cells. However, if we model the XOR-MC operation
as a whole, we can still preserve some Red cells from impact according to the
sixth sub-figure in Fig. 5. This coloring scheme can be explained by the equation
shown in Fig. 6, where the second term of the right-hand side of the equation is
known for the backward computation. Therefore, we can restrict the values of
(B[0], A[0], A[1], A[2], A[3]) such that

e · (A[0] ⊕ B[0]) ⊕ b · A[1] ⊕ d · A[2] ⊕ 9 · A[3] = C0
d · (A[0] ⊕ B[0]) ⊕ 9 · A[1] ⊕ e · A[2] ⊕ b · A[3] = C2
b · (A[0] ⊕ B[0]) ⊕ d · A[1] ⊕ 9 · A[2] ⊕ e · A[3] = C3

(11)

where C0, C2, and C3 are constants, which implies that only C[1] is unknown for
the backward computation (see the sixth sub-figure in Fig. 5). The principle is
to let the differences of multiple cells in two input columns mutually canceled at
particular output cells.

Fig. 6. The inaccuracy of modeling XOR-MC in the backward computation by applying
XOR−-RULE and MC−-RULE separately. (Color figure online)
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Compute consumed DoF in XOR-MC-RULE s. In all of our applications, the
XOR-MC operation only appears in the backward computation and thus only
consumes the DoF for the forward computation. Let (A[0], · · · , A[3]) and
(B[0], · · · , B[3]) be the two input columns and (C[0], · · · , C[3]) be the output
column. Given a valid coloring scheme of A, B, and C, the consumed DoF (mea-
sured in cells) σ+((A[0, · · · , 3], B[0, · · · , 3]) → C[0, · · · , 3]) equals the number of
Red and Gray cells (known cells of the output column in the backward compu-
tation) when there is at least one Blue cell in the input columns. Otherwise, the
consumed DoF is zero.

Let δ be a 0-1 indicator variable such that δ = 1 if and only if there are no
Blue cells and no White cells in the input columns, which can be achieved by
imposing the following constraints on δ:

⎧
⎪⎨

⎪⎩

−δ +
3∑

i=0

yA
i +

3∑

i=0

yB
i ≤ 7;

yA
i ≥ δ, yB

i ≥ δ, for i ∈ {0, 1, 2, 3}.

(12)

Then we have σ+((A[0, · · · , 3], B[0, · · · , 3]) → C[0, · · · , 3]) = −4δ +
∑3

i=0 yC
i .

In Fig. 5 we give some example coloring schemes of the XOR-MC operation
together with their consumed DoF. Similarly, the constraints describing how the
XOR and MC operations consume DoF can be deduced.

5 Applications

Equipped with the presented tool, we evaluated the security of hash functions
built on AES and AES-like ciphers, including all members of AES and the mem-
bers of Rijndael with 256-bit block-size [16] in PGV-modes (note the equivalence
among PGV-modes for the attacks as shown in [10]) and Haraka v2 [39].

For all targets, improved attacks are identified. In particular, our tool found
the first preimage attacks on 8-round AES-128 hashing modes, and on the full 5-
round and the extended 5.5-round (10 and 11 AES-rounds) Haraka-512 v2. Due
to the page limit, we only describe two attacks in detail. The list of optimal
attacks we found is presented in Table 1. With the help of the visualizations of
these attacks, one can reconstruct concrete attacks and confirm the complexities.

The time for finding each of the optimal attacks is within hours, including
enumerating all possible combinations of the locations of starting and ending
points in encryption, and all possible combinations of the locations of starting
points in the encryption and key-schedule. For example, to get the presented
attack on 8-round AES-128 hashing modes, our program generated all possible
MILP-models and the MILP solver Gurobi solved them all, which took about
two hours on a PC with an Intel Core i7-7500U CPU and 8 GB memory.
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5.1 Improved Attacks on AES and Rijndael Hashing Modes

Searching the attacks. We apply our method to AES hashing modes. With
our tool, many new attacks are found automatically. We list some examples for
each member of AES and also the members of Rijndael with 256-bit block-size [16]
(denoted by Rijndael-256) in Fig. 7, 9, 10, 11, and 12 in the full version [11].

Notably, apart from new attacks with better complexities, an 8-round attack
on AES-128 and 9-round attacks on AES-192 and AES-256 hashing mode were
found, which extend one more round compared with previous attacks [10,49,62].

To be clear, in the figures, some information are presented, such as which
states are the starting states (in the searching for the attacks, not necessar-
ily in the concrete attacks), how independent computation flows propagated in
the states, and where the two chunks meet. Besides, which rules are applied to
the states and how the degrees of freedom are consumed by the specific col-
oring scheme in our MILP models are also exhibited. Furthermore, the initial
degrees of freedom (λ+, λ−), and the final configuration (DoF+,DoF−,DoM)
which determines the attack complexity are summarized at the bottom.

For example, from Fig. 7, it can be seen that, in the searching of our model,
the starting states are #SB4 and k4, and the ending states are #MC1 and #SB2.
Also, we have BENC = [0, 5, 10, 15], BKSA = [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14],
RENC = [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], RKSA = ∅, C = [0, 2, 5, 7, 8, 10, 13, 15],
and D = [1, 2, 3]. Accordingly, the initial degrees of freedom for the forward com-
putation and backward computation are 17 and 12 respectively, and the degree
of matching is 2+ 3− 4 = 1. The states #SB4, k3, and #MC3 are enclosed by a
dashed light-green frame , which means that XOR-MC-RULE is applied to them,
and the specific coloring scheme consumes 12 cells of degrees of freedom for the
forward computation. Similarly, the XOR-MC-RULE is applied to states #SB3, k2,
and #MC2, and that consumes 3 cells of degrees of freedom for the forward com-
putation. The states #MC4 and #AK4 are enclosed by a dashed light-purple
frame , which means MC+-RULE is applied to them, and that consumes 9 cells
of degrees of freedom for the backward computation. Similarly, the MC+-RULE is
applied to states #MC5 and #AK5, and that consumes 2 cells of degrees of free-
dom for the backward computation. Accordingly, in the solution of our model,
DoF+ = 17 − 12 − 3 = 2 and DoF− = 12 − 9 − 2 = 1, which indicates that the
values of (#SB4[BENC], k4[BKSA]) are restricted to a subset X of F

17
28 with (28)2

elements, and the values of (#SB4[RENC], k4[RKSA]) are restricted to a subset Y

of F12
28 with 28 elements. To be more concrete, X and Y should be chosen such

that the forward computation is irrelevant of (#SB4[RENC], k4[RKSA]), and the
backward computation is irrelevant of (#SB4[BENC], k4[BKSA]). Since the degrees
of freedom for the forward and backward computations (DoF+ and DoF−) are
derived rather formally without giving the actual contents of X and Y, some
readers may doubt whether such X and Y really exist.

In the following (in the precomputation phase and more details in Appendix
B.1 in the full version [11]), we explicitly show in this example, how to obtain X

and Y such that the required properties are fulfilled, and under the configuration
obtained by the MILP model, how to launch the concrete attack.
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The attack on 8-round AES -128 hashing (refer to Fig. 7)

The Precomputation Phase (precompute possible initial values of neutral bytes)

1. To be able to compute backward chunk independently of forward neutral
bytes, the forward neutral bytes should have constant impacts on the 12 C-
marked Red bytes in #MC3 and on the 3 C-marked Red bytes in #MC2.
Therefore, denote the 12 constant impacts on 12 bytes in #MC3 by C1,0, C1,1,
· · · , C1,11, we derive constraints on forward neutral bytes, which is a system
linear equation Eq. (13) in [11]. Similarly, denote the 3 constant impacts on
3 bytes in #MC2 by C2,0, C2,1, C2,2, we derive constraints on forward neutral
bytes, which is a system of linear equation Eq. (14) in [11]. In total, requiring
impacts to be constant will impose 15 bytes constraints on forward neutral
bytes (20 bytes) as shown in the system of linear equation Eq. (17) in [11].
Solving Eq. (17) in [11], one gets 240 solutions.
In the following main procedure, the values of C1,0, C1,1,. . ., C1,11, and C2,0,
C2,1, C2,2 are fixed such that we only need to solve Eq. (17) in [11] once. How-
ever, the main procedure will need to trail on many values of Gray bytes in k4
(i.e., k4[5, 10, 15]) to find full match. So here, we precompute values of forward
neutral bytes that correspond to each value of k4[5, 10, 15]. That can be done
as follows. For each of the 240 solution, k3 and #SB4[0, 5, 10, 15] are deter-
mined. Compute k4 using k3, and store k4 and the values of #SB4[0, 5, 10, 15]
in table T1 indexed by the values of 3 Gray bytes k4[5, 10, 15].
• Note that there are 224 entries in T1, and the total size of T1 is about 240.
Under each index, there are about 216 elements. We can either use 216 or 28

of them. The total complexity of the full attack will be the same (because
DoF+ and DoM are all one byte). Thus, we use 28. Therefore, the complexity
of this procedure is 232, and the memory requirement is 232.

2. To be able to compute forward chunk independently of backward neutral
bytes, the backward neutral bytes should have constant impacts on the 2 C-
marked Blue bytes in #AK5. Therefore, denote the 2 constant impacts on 2
bytes in #AK5 by C4,0 and C4,1, we derive constraints on backward neutral
bytes, which is a linear equation system Eq. (18) in [11]. For each possible
C4,0 and C4,1, when solve Eq. (18) in [11], one gets 28 solutions.
In the following main procedure, we need to trail on many values of (C4,0,
C4,1) to find a full match. So here, we precompute values of backward neutral
bytes that correspond to each value of (C4,0, C4,1), store values of #MC5[1, 2, 3]
fulfilling Eq. (18) in [11] in table T2 indexed by the values of (C4,0, C4,1).
• There are 216 entries in T2, and the total size of T2 is 224. Under each index,
there are 28 elements.
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Fig. 7. An MITM pseudo-preimage attack on 8-round AES-128 hashing. Note that,
because the use of XOR-MC-RULE, we do not introduce any variable in our MILP model
for states #AK2 and #AK3, and thus we bypass them. (Color figure online)
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The Main Procedure. During the following procedure, the values of C1,0, C1,1,
. . ., C1,11, and C2,0, C2,1, C2,2 are fixed.

1. For each of the 2x values of 9 Gray bytes in #AK4, for each index i of the
224 indexes of T1 (each i corresponds to each candidate value of the 3 Gray
bytes in k4), for each index j of the 216 indexes of T2 (each j corresponds to
each candidate value of the 2-byte impact on C-marked cells by in #AK5),
do: Initialize an empty table L1.
(a) For each of the 28 elements in T1[i], start from state #SB4 and k4, com-

pute forward (cells in Blue) with the knowledge of the fixed impact j on
#AK5 to the matching point #MC1. Compute the one-byte value m1 for
matching (defined in left-hand side of the equation in Fig. 1b), and use
m1 as the index to store the values of ( #SB4[0, 5, 10, 15], k4) into L1[m1]
(there is about 28−8 = 1 element in each L1[m1]).

(b) For each of the 28 elements in T2[j], start from state #MC5, compute
backward (cells in Red) with the knowledge of fixed value i (i.e., 3 Gray
bytes) in state k4 and the fixed impacts on #MC3 and #MC2 (i.e., C1,0,
C1,1, · · · , C1,11, C2,0, C2,1, C2,2) to the matching point #AK1. Compute
the one-byte value m2 for matching (defined in right-hand side of the
equation in Fig. 1b), and use it to lookup the list L1:
i. For each element in L1[m2] (expected to exist one): restart the forward

and backward computations combining the knowledge of values in
both directions (the values of #SB4[0, 5, 10, 15], k4, #MC5) to the
matching point (#MC1, #AK1), test for full match on 128-bit state.

Complexity. The computational and memory complexity of the precomputation
phase is about 232. For the main procedure, in the inner loop, there will be
2(8+8−8) = 28 solutions left after the one-byte (8-bit) matching (m1 and m2)
in Step 1 (b) i. In order to find a 128-bit full match, one has to match the
other 120 bits. Hence, for the outer loop, it requires x + 24 + 16 = 120 − 8,
i.e., x = 72. Therefore, the time complexity for the main procedure is about
2(x+24+16)+8 = 2x+40 = 2120.

We implemented the full attack on this 8-round AES-128-hashing (with par-
tial matchings), which verified the complexity. The codes and results are available
via https://github.com/MITM-AES-like-Hashing/AES128_8R.

Apart from the biclique attacks in [14], the best previous pseudo-preimage
attacks against AES-128 hashing modes remain as 7 rounds since 2011, with
a time complexity of 2120 by Sasaki [49] and improved to 2112 by Bao et al.
in 2019 [10]. Our attack presented here penetrates one more round. There is a
unique features observed from Fig. 7, which made the extra round possible. The
backward chunk covers one more round compared with that in [10,49]. This is
only possible after the consumption of 12 and 3 Blue bytes of freedom degrees
(forward neutral bytes) in consecutive two rounds. Without the introduction of
DoF from key bytes in [10], this would not be possible. Note that the backward
chunk only outputs 3 bytes, which are just sufficient to form a filter of one byte
together with the 2 Blue bytes before the MixColumns at the matching point.

https://github.com/MITM-AES-like-Hashing/AES128_8R
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As depicted in Fig. 9, 10, 11, 12 in the full version of this paper [11] and
summarized in Table 1, when our search models are applied to hashing modes
based on other AES variants, they are also able to improve by one round against
AES-192 and AES-256 hashing as in [10]. Some configurations (e.g., Fig. 9, 11
in [11]) are more involved, in which the key states have neutral bytes for both
forward and backward chunks. That might be hard to be found by manual.

5.2 Improved Attacks on Haraka V2

Haraka v2 [39] is a family of hash functions designed to be efficient for short-input
and for post-quantum applications. It includes two versions, denoted by Haraka-
256 v2 and Haraka-512 v2, both output 256-bit hash digests and claim 256-bit
security against (second)-preimage attacks. They only process short-input (s-bit
string, denoted by x) and thus employ s-bit permutation (denoted by πs) in the
DM-mode as follows:

Haraka-256 v2(x) = πs(x) ⊕ x and Haraka-512 v2(x) = trunc(πs(x) ⊕ x)

where trunc truncates 512-bit state to 256-bit output. To achieve high perfor-
mance on platforms supporting AES-NI and share security analysis of AES, the
round function of the permutation πs first applies two layers of b AES-round-
functions in parallel on a state that can be evenly divided into b sub-states (each
of which is identical to the state of AES), then it applies a shuffle (denoted by
mixs) among the columns of the state. For Haraka-256 v2, s = 256, b = 2, and
for Haraka-512 v2, s = 512, b = 4. For both of them, the number of rounds is 5
that involves 10 AES-rounds in sequential.

The former version of Haraka (named as Haraka v1) was broken by Jean [33]
due to its weak round constants. Then an updated version Haraka v2 [39] was
published. The designers provide MITM preimage attacks on 3.5-round Haraka-
256 v2 and on 4-round Haraka-512 v2.

Searching the Attacks. For both versions of Haraka v2, our tool produced
improved MITM preimage attacks. In particular, for Haraka-256 v2, our tool
found attacks that cover up to 4.5-round (9 AES-rounds). An example that has
the optimal complexity is visualized in Fig. 13 in the full version [11], of which the
complexity is 2256−8×min{DoF+, DoF−, DoM} = 2256−8×min{4, 4, 8} = 2224. Note
that this attack directly implies an attack covering 4-round (8 AES-rounds) with
the same complexity. For Haraka-512 v2, our tool finds attacks that penetrate
the full 5-round (10 AES-rounds) and the extended 5.5-round (11 AES-rounds)
version. The detailed configuration of one of the attacks on the full 5-round (10
AES-rounds) is visualized in Fig. 14 in [11]. In the following, we present one of the
searching results on the extended 5.5-round (11 AES-rounds) and the concrete
attack corresponding to the configuration visualized in Fig. 8.
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Fig. 8. An MITM preimage attack on the extended 5.5-round (11 AES-rounds) Haraka-
512 v2. Note that in our MILP-models, the position of the used hash bits are treated
and used as constant in gray cell of the target T , and the bits discarded are treated as
‘uncertain’ although we distinct them using hatched pattern. However, in the attack
procedure, the discarded bits are free of choice such that the state cells in hatched
pattern are free of matching. (Color figure online)
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From Fig. 8, it can be seen that in the searching of our model, the start-
ing state is #SB3, and the ending states are #MC10 and #AC10. Also, we
have BENC = [16 · i + j | i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 5, 6, 10, 11, 12, 15}],
RENC = [16 · i + j | i ∈ {0, 1, 2, 3}, j ∈ {2, 3, 4, 7, 8, 9, 13, 14}], C = [16 · i + j |
i ∈ {0, 3}, j ∈ {0, 7, 10, 13}] ∪ [16 · i + j | i ∈ {1, 2}, j ∈ {1, 4, 11, 14}], and
D = [16 · i + j | i ∈ {2}, j ∈ {0, 1, . . . , 7}]. Therefore, both of the initial degrees
of freedom for the forward computation and backward computation are 32, i.e.,
λ+ = λ− = 32, and the degree of matching is DoM = (1 + 4 − 4) × 2 = 2.
The MC−-RULE applied to states #MC2 and #AC2 consumes 16 cells of degrees
of freedom for the forward computation. And the MC+-RULE applied to states
#MC6 and #AC6 consumes 16 cells of degrees of freedom for the backward
computation. Accordingly, in the solution of our model, DoF+ = 32 − 16 = 16
and DoF− = 32 − 16 = 16. This indicates that the values of #SB3[BENC]
are restricted to a subset X of F

32
28 with 28×16 elements, and the values of

#SB3[RENC] are restricted to a subset Y of F
32
28 with 28×16 elements. To be

more concrete, X and Y should be chosen such that the forward computa-
tion is irrelevant of #SB3[RENC] and the backward computation is irrelevant
of #SB3[BENC]. In summary, the decisive parameters for the obtained attack
is (DoF+,DoF−,DoM) = (16, 16, 2). From these parameters, one can directly
obtain that the time complexity of the corresponding pseudo-preimage attack is
(28)32−min{DoF+,DoF−,DoM} = 2240.

The concrete attack on 11-AES -round Haraka-512 v2 (refer to Fig. 8)

1. For each of the 2x values of impacts (16-byte impacts on the C-marked Red
cells in #MC2 and 16-byte impacts on the C-marked Blue cells in #AC6),
do: Initialize two empty tables L1 and L2

(a) With the knowledge of the value of 16-byte impacts on the C-marked Red
cells in #MC2, we can collect 216×8 = 2128 possible values of Blue bytes
(neutral bytes for the forward) in #AC2 by solving sets of linear equations
column-by-column. For example, in the first column of #MC2 and #AC2,
the two Blue bytes and 1-byte impact (denoted by C0) on the C-marked
cell have to meet: 9 · #AC2[0] ⊕ e · #AC2[1] = C0. There are 16 sets of
such linear equations, one set per column. For each column, we obtain 28

solutions. Hence, it is expected to get 2128 solutions by solving 16 sets of
linear equations with 32 variables in total. The number 2128 is also the
degrees of freedom for forward chunk.

(b) For each of the 2128 solutions for Blue bytes in #AC2, compute forward
with the knowledge of the 16-byte impacts on the C-marked cells in #AC6

to the matching point #MC10, extract the two-byte value m1 for match-
ing, store the values of Blue bytes in #AC2 in L1[m1].

(c) Similarly, collect 2128 possible values for Red bytes in state #MC6 and
compute backward to the matching point #AC10, extract the two-byte
value m2 for matching, store the values of Red bytes in #MC6 in L2[m2].

(d) For entries with common index between L1 and L2, form pairs of values
of Blue bytes in #AC2 and Red bytes in #MC6; for each pair, restart the
forward and backward computations combining the knowledge of values
in both direction, test for full match on 256 bits.



800 Z. Bao et al.

Complexity. In Step 1 (d), it is expected to find 2128+128−16 = 2240 matches on
16 bits. Among them, it is expected to left 1 solution that also match on the
other 240 bits, that implies a full match on 256 bits. Hence, to find a full match,
it is expected to need 2x outer loops where x = 0. The memory requirement
is 2 · 2128 to store L1 and L2. The time complexity of Step 1 (a) is no more
than 2128. The same complexity also applies to Step 1 (b) and Step 1 (c). The
time complexity of Step 1 (d) is approximately 216 × 22×112 = 2240 (L1 and L2

contains 216 entries each; each entry is expected to contain 2112 values. Under a
common 16-bit index, there are 22×112 pairs to check for full match.) Therefore,
the total time complexity is 2240.

6 Conclusions

We modeled the MITM preimage attack into the language of MILP, gener-
alized the attack model, and obtained better results in terms of number of
attacked rounds against AES-like hashing including the 8-round AES-128, 9-
round AES-192, 9-round AES-256, and 9-round Rijndael-256 hashing modes, 4.5-
round Haraka-256 v2, the full version (5-round) and extended version (5.5-round)
of Haraka-512 v2.
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Abstract. At CRYPTO’19, Gohr proposed a new cryptanalysis strat-
egy based on the utilisation of machine learning algorithms. Using deep
neural networks, he managed to build a neural based distinguisher that
surprisingly surpassed state-of-the-art cryptanalysis efforts on one of the
versions of the well studied NSA block cipher SPECK (this distinguisher
could in turn be placed in a larger key recovery attack). While this
work opens new possibilities for machine learning-aided cryptanalysis, it
remains unclear how this distinguisher actually works and what infor-
mation is the machine learning algorithm deducing. The attacker is left
with a black-box that does not tell much about the nature of the possible
weaknesses of the algorithm tested, while hope is thin as interpretability
of deep neural networks is a well-known difficult task.

In this article, we propose a detailed analysis and thorough explana-
tions of the inherent workings of this new neural distinguisher. First, we
studied the classified sets and tried to find some patterns that could guide
us to better understand Gohr’s results. We show with experiments that
the neural distinguisher generally relies on the differential distribution
on the ciphertext pairs, but also on the differential distribution in penul-
timate and antepenultimate rounds. In order to validate our findings, we
construct a distinguisher for SPECK cipher based on pure cryptanaly-
sis, without using any neural network, that achieves basically the same
accuracy as Gohr’s neural distinguisher and with the same efficiency
(therefore improving over previous non-neural based distinguishers).

Moreover, as another approach, we provide a machine learning-based
distinguisher that strips down Gohr’s deep neural network to a bare
minimum. We are able to remain very close to Gohr’s distinguishers’
accuracy using simple standard machine learning tools. In particular, we
show that Gohr’s neural distinguisher is in fact inherently building a
very good approximation of the Differential Distribution Table (DDT)
of the cipher during the learning phase, and using that information to
directly classify ciphertext pairs. This result allows a full interpretability
of the distinguisher and represents on its own an interesting contribution
towards interpretability of deep neural networks.

Finally, we propose some method to improve over Gohr’s work and
possible new neural distinguishers settings. All our results are confirmed
with experiments we have been conducted on SPECK block cipher (source
code available online).
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1 Introduction

While modern symmetric-key cryptography designs are heavily relying on secu-
rity by construction with strong security arguments (resistance against sim-
ple differential/linear attacks, study of algebraic properties, etc.), cryptanalysis
remains a crucial part of a cipher’s validation process. Only a primitive that
went through active and thorough scrutiny of third-party cryptanalysts should
gain enough trust by the community to be considered as secure. However, there
has been more and more cipher proposals in the past decade (especially with
the recent rise of lightweight cryptography) and cryptanalysis effort could not
really keep up the pace: conducting cryptanalysis remains a very tough and
low-rewarding task.

In order to partially overcome this shortage in cryptanalysts manpower, a
recent trend arose of automating as much as possible the various tasks of an
attacker. Typically, searching for differential and linear characteristics can now
be modeled as Satisfiability/Satisfiability Modulo Theories [17] (SAT/SMT),
Mixed Linear Integer Programming [18] (MILP) or Constraint Programming [25]
(CP) problems, which can in turn simply be handled by an appropriate solver.
The task of the cryptanalyst is therefore reduced to only providing an efficient
modeling of the problem to be studied. Due to the impressive results considering
the simplicity of the process, a lot of advances have been made in the past decade
in this very active research field and this even improved the ciphers designs
themselves (how to choose better cryptographic bricks and how to assemble
them has been made much easier thanks to these new automated tools). One
is then naturally tempted to push this idea further by even getting rid of the
modeling part. More generally, can a tool recognize possible weaknesses/patterns
in a cipher by just interacting with it, with as little input as possible from the
cryptanalysts? One does not expect such a tool to replace a cryptanalyst’s job,
but it might come in handy for easily pre-checking a cipher (or reduced versions
of it) for possible weaknesses.

Machine learning and particularly deep learning have recently attracted a
lot of attention, due to impressive advances in important research areas such
as computer vision, speech recognition, etc. Some possible connections between
cryptography and machine learning were already identified in [21] and we have
seen many applications of machine learning for side-channels analysis [16]. How-
ever, machine learning for black-box cryptanalysis remained mostly unexplored
until Gohr’s article presented at CRYPTO’19 [11].

In his work, Gohr trained a deep neural network on labeled data composed
of ciphertext pairs: half the data coming from ciphering plaintexts pairs with a
fixed input difference with the cipher studied, half from random values. He then
checks if the trained neural network is able to classify accurately random from
real ciphertext pairs. Quite surprisingly, when applying his framework to the
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block cipher SPECK-32/64 (the 32-bit block 64-bit key version of SPECK [2]),
he managed to obtain a good accuracy for a non-negligible number of rounds.
He even managed to mount a key recovery process on top of his neural distin-
guisher, eventually leading to the current best known key recovery attack for
this number of rounds (improving over works on SPECK-32/64 such as [6,24]).
Even if his distinguisher/key recovery attack had not been improving over the
state-of-the-art, the prospect of a generic tool that could pre-scan for vulnera-
bilities in a cryptographic primitive (while reaching an accuracy close to exiting
cryptanalysis) would have been very attractive anyway.

Yet, Gohr’s paper actually opened many questions. The most important,
listed by the author as an open problem, is the interpretability of the distin-
guisher. An obvious issue with a neural distinguisher is that its black-box nature
is not really telling us much about the actual weakness of the cipher analyzed.
More generally, interpretability for deep neural networks has been known to be
a very complex problem and represents a key challenge for the machine learning
community. At first sight, it seems therefore very difficult to make any advances
in this direction.

Another interesting aspect to explore is to try to match Gohr’s neural dis-
tinguisher/key recovery attack with classical cryptanalysis tools. It remains very
surprising that a trained deep neural network can perform better than the
scrutiny of experienced cryptanalysts. As remarked by Gohr, his neural dis-
tinguisher is mostly differential in nature (on the ciphertext pairs), but some
unknown extra property is exploited. Indeed, as demonstrated by one of his
experiments, the neural distinguisher can still distinguish between a real and a
random set that have the exact same differential distribution on the ciphertext
pairs. Since we know there is some property that researchers have not seen or
exploited, what is it?

Finally, a last natural question is: can we do better? Are there some better
settings that could improve the accuracy of Gohr’s distinguishers?

Our Contributions. In this article, we analyze the behavior of Gohr’s neural
distinguishers when working on SPECK-32/64 cipher. We first study in detail
the classified sets of real/random ciphertext pairs in order to get some hints on
what criterion the neural network is actually basing its decisions on. Looking for
patterns, we observe that the neural distinguisher is very probably deducing some
differential conditions not on the ciphertext pairs directly, but on the penultimate
or antepenultimate rounds. We then conduct some experiments to validate our
hypothesis.

In order to further confirm our findings, we construct for 5, 6 and 7-round
reduced SPECK-32/64 a new distinguisher purely based on cryptanalysis, with-
out any neural network or machine learning algorithm, that matches Gohr’s
neural distinguisher’s accuracy while actually being faster and using the same
amount of precomputation/training data. In short, our distinguisher relies on
selective partial decryption: in order to attack nr rounds, some hypothesis is
made on some bits of the last round subkey and partial decryption is performed,
eventually filtered by a precomputed approximated DDT on nr − 1 rounds.



808 A. Benamira et al.

We then take a different approach by tackling the problem not from the crypt-
analysis side, but the machine learning side. More precisely, as a deep learning
model learns high-level features by itself, in order to reach full interpretability
we need to discover what these features are. By analyzing the components of
Gohr’s neural network, we managed to identify a procedure to model these fea-
tures, while retaining almost the same accuracy as Gohr’s neural distinguishers.
Moreover, we also show that our method performs similarly on other primitives
by applying it on the SIMON block cipher. This result is interesting from a cryp-
tography perspective, but also from a machine learning perspective, showing an
example of interpretability by transformation of a deep neural network.

Finally, we explore possible improvements over Gohr’s neural distinguishers.
By using batches of ciphertexts instead of pairs, we are able to significantly
improve the accuracy of the distinguisher, while maintaining identical experi-
mental conditions.

Outline. In Sect. 2, we introduce notations as well as basic cryptanalysis and
machine learning concepts that will be used in the rest of the paper. In Sect. 3,
we describe in more detail the various experiments conducted by Gohr and the
corresponding results. We provide in Sect. 4 an explanation of his neural distin-
guishers as well as the description of an actual cryptanalysis-only distinguisher
that matches Gohr’s accuracy. We propose in Sect. 5 a machine learning app-
roach to enable interpretability of the neural distinguishers. Finally, we studied
possible improvements in Sect. 6.

2 Preliminaries

Basic notations. In the rest of this article, ⊕, ∧ and � will denote the
eXclusive-OR operation, the bitwise AND operation and the modular addition1

respectively. A right/left bit rotation will be denoted as ≫ and ≪ respectively,
while a||b will represent the concatenation of two bit strings a and b.

2.1 A Brief Description of SPECK

The lightweight family of ARX block ciphers SPECK was proposed by the US
National Security Agency (NSA) [2] in 2013, targeting mainly good performances
on micro-controllers. Several versions of the cipher have been proposed within
its family, but in this article (and in Gohr’s work [11]) we will focus mainly on
SPECK-32/64, the 32-bit block 64-bit key version of SPECK, which is composed
of 22 rounds (for simplicity, SPECK-32/64 will be referred to as SPECK in the
rest of the article).

The 32-bit internal state is divided into a 16-bit left and a 16-bit right part,
that we will generally denote li and ri at round i respectively, and is initialised
with the plaintext (l0||r0) ← P . The round function of the cipher is then a very
simple Feistel structure combining bitwise XOR operation and 16-bit modular

1 The modulo will be stated explicitly if it is not clear from the context.
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addition. See Fig. 1 where ki represents the 16-bit subkey at round i and where
α = 7, β = 2. The final ciphertext C is then obtained as C ← (l22||r22). The
subkeys are generated with a key schedule that is very similar to the round
function (we refer to [2] for a complete description, as we do not make use of the
details of the key schedule in this article).

li+1 = ((li ≫ α) � ri) ⊕ ki

ri+1 = (ri ≪ β) ⊕ li+1

li ri

≫ α

≪ β

li+1 ri+1

ki

Fig. 1. The SPECK-32/64 round function.

2.2 Differential Cryptanalysis

Differential cryptanalysis studies the propagation of a difference through a
cipher. Let a function f : F

b
2 → F

b
2 and x, x′ be two different inputs for f

with a difference Δx = x ⊕ x′. Let y = f(x) and y′ = f(x′) and a difference
Δy = y ⊕ y′. Then, we are interested in the transition probability from Δx to
Δy (Δx

f−→ Δy):

P(Δx
f−→ Δy) :=

#{x|f(x) ⊕ f(x ⊕ Δx) = Δy}
2b

One classical tool for differential cryptanalysis is the Difference Distribution
Table (DDT), which simply lists the differential transition probabilities for each
possible input/output difference pairs (Δx,Δy). The studied function f is usu-
ally some Sbox, or some small cipher sub-component, as the DDT of an entire
64-bit or 128-bit cipher would obviously be too large to store.

Since SPECK is internally composed of a left and right part, for a ciphertext
C we will denote by Cl and Cr its 16-bit left and right parts respectively. Then,
for two ciphertexts C and C ′, we will denote ΔL the XOR difference Cl ⊕ C ′

l

between the left parts of the two ciphertexts (respectively ΔR = Cr ⊕C ′
r for the

right parts). Moreover, for a round i, we will denote by Vi the difference between
the two parts of the internal state Vi = li ⊕ ri.

2.3 Deep Neural Networks

Deep Neural Networks (DNN) are a family of non-linear machine learning clas-
sifiers that have gained popularity since their success in addressing a variety of
data-driven tasks, such as computer vision, speech recognition, etc.
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The main problem tackled by DNN is, given a dataset D = {(x0, y0)...
(xn, yn)}, with xi ∈ X being samples and yi ∈ [0, . . . , l] being labels, to find
the optimal parameters θ∗ for the DNNθ model, with the parameters θ such
that:

θ∗ = argmin
θ

n∑

i=0

L(yi,DNNθ(xi)) (1)

with L being the loss function. As there is no literal expression of θ∗, the approx-
imate solution will depend on the chosen optimization algorithm such as the
stochastic gradient descent. Moreover, hyper-parameters of the problem (param-
eters whose value is used to control the learning process) need to be adjusted as
they play an important role in the final quality of the solution.

DNN are powerful enough to derive accurate non-linear features from the
training data, but these features are not robust. Indeed, adding a small amount
of noise at the input can cause these features to deviate and confuse the model.
In other words, the DNN is a very unbiased classifier, but has a high variance.

Different blocks can be used to implement these complex models. However,
in this paper, we will be using four types of blocks: the linear neural network, the
one-dimensional convolutional neural network, the activation functions (ReLU
and sigmoid) and the batch normalization.

Linear neural network. Linear neural networks applies a linear transforma-
tion to the incoming data: out = in.AT + b. Here we have θ = (A, b). The linear
neural network is also commonly named perceptron layer or dense layer.

One-dimensional convolutional neural network. The 1D-CNN applies a
convolution over a fixed (multi-)temporal input signal. The 1D-CNN operation
can be seen as multiple linear neural networks (one per filter) where each one is
applied to a sub-part of the input. This sub-part is sliding, its size is kernel size,
its pitch is the stride and its start and end points depend on the padding.

Activation functions. The three activation functions that we discuss here are
the Rectified Linear Unit (ReLU), defined as ReLU(x) = max(0, x), the sigmoid,
defined as Sigmoid(x) = σ(x) = 1

1+exp(−x) and the Heaviside step function,

defined as H(x) = 1
2 + sgn(x)

2 . This block, added between each layer of the DNN,
introduces the non-linear part of the model.

Batch normalization. Training samples are typically randomly collected in
batches to speed up the training process. It is thus usual to normalize the overall
tensor according to the batch dimension.

3 A First Look at Gohr’s CRYPTO 2019 Results

Since its release, the lightweight block cipher SPECK attracted a lot of external
cryptanalysis, together with its sibling SIMON (this was amplified by the fact
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that no cryptanalysis was reported in the original specifications document [2]).
Many different aspects of SPECK have been covered by these efforts, but the
works from Dinur [6] and Song et al. [24] are the most successful advances
on its differential cryptanalysis aspect so far. Dinur [6] studied all versions of
SPECK, improving the best known differential characteristics (from [1,3]) as well
as describing a new key recovery strategy for this cipher. In particular, he devised
a 4-round attack for 11 rounds of SPECK-32/64 using a 7 round differential char-
acteristic, that has a time complexity of 246 and data complexity of 222 (chosen
plaintexts).

Later, at CRYPTO’19, Gohr published a cryptanalysis work on SPECK-32/64
that is based on deep learning [11]. Gohr proposed a key-recovery attack on 11-
round SPECK-32/64 with estimated time complexity 238, improving the previous
best attack [6] in 246, albeit with a slightly higher data complexity: 214.5 cipher-
text pairs required. In this section, we will briefly review Gohr’s results [11].

Overview. In his article, Gohr proposes multiple differential cryptanalysis of
SPECK, focusing on the input difference Δin = 0x0040/0000. In this setting,
the aim is to distinguish real pairs, i.e., encryptions of plaintext pairs P, P ′ such
that P ⊕ P ′ = Δin, from random pairs, which are the encryptions of random
pairs of plaintext with no fixed input difference. Gohr compares a traditional
(pure) differential distinguisher with a distinguisher based on a DNN for 5 to 8
rounds of SPECK-32/64 and showed that the DNN performs better.

Pure differential distinguishers. Gohr computed the full DDT for the input
difference Δin, using the Markov assumption. Then, to classify a ciphertext pair
(C,C ′), the probability p of the output difference C ⊕ C ′ is read from the DDT
and compared to the uniform probability. Let Δout = C ⊕ C ′, then

Classification =

{
Real if DDT (Δin → Δout) > 1

232−1

Random otherwise

These distinguishers for reduced-round SPECK-32/64 are denoted Dnr, where
nr ∈ {5, 6, 7, 8} represents the number of rounds. The neural distinguishers are
denoted as Nnr.

Gohr’s neural distinguisher. We provide in Fig. 2 a representation of Gohr’s
neural distinguisher. It is a deep neural network, whose main components are:

1. Block 1: a 1D-CNN with kernel size of 1, a batch normalization and a ReLU
activation function

2. Blocks 2-i: one to ten layers with each layer consisting of two 1D-CNN with
kernel size of 3, each followed by batch normalization and a ReLU activation
function.

3. Block 3: a non-linear final classification block, composed of three perceptron
layers separated by two batch normalization and ReLU functions, and finished
with a sigmoid function.

The input to the initial convolution block (Block 1) is a 4 × 16 matrix,
where each row corresponds to each 16-bit value in this order: Cl, Cr, C ′

l , C ′
r,
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Fig. 2. The whole pipeline of Gohr’s deep neural network. Block 1 refers to the initial
convolution block, Block 2-1 to 2-10 refer to the residual block and Block 3 refers to
the classification block.

a convolution layer with 32 filters is then applied. The kernel size of this 1D-
CNN is 1, thus, it maps (Cl, Cr, C

′
l , C

′
r) to (filter1, filter2, ..., filter32). Each

filter is a non-linear combination of the features (Cl, Cr, C
′
l , C

′
r) after the ReLU

activation function depending on the value of the inputs and weights learned by
the 1D-CNN. The output of the first block is connected to the input and added
to the output of the subsequent layer in the residual block (see Fig. 3).

In the residual blocks (Blocks 2-i), both 1D-CNNs have a kernel of size 3,
a padding of size 1 and a stride of size 1 which make the temporal dimension
invariant across layers. At the end of each layer, the output is connected to the
input and added to the output of the subsequent layer to prevent the relevant
input signal from being wiped out across layers. The output of a residual block
is a (32 × 16) feature tensor (see Fig. 4).
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Fig. 4. The residual block (Blocks 2-i).

The final classification block takes as input the flattened output tensor of
the residual block. This 512 × 1 vector is passed into three perceptron layers
(Multi-Layer Perceptron or MLP) with batch normalization and ReLU activation
functions for the first two layers and a final sigmoid activation function performs
the binary classification (see Fig. 5).
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Fig. 5. The classification block (Block 3).

Accuracy and efficiency of the neural distinguishers. For each pair, the
neural distinguishers outputs a real-valued score between 0 and 1. If this score
is greater than or equal to 0.5, the sample is classified as a real pair, and as a
random pair otherwise. The results given by Gohr are presented in Table 1. Note
that N7 and N8 are trained using some sophisticated methods (we refer to [11]
for more details on the training). We remark that Gohr’s neural distinguisher
has about 100,000 floating parameters, which is size efficient considering the
accuracies obtained.

Table 1. Accuracies of neural distinguishers for 5, 6, 7 and 8 rounds (taken from Table 2
of [11]). TPR and TNR denote true positive and true negative rates respectively.

Rds Distinguisher Accuracy TPR TNR

5 D5 0.911 0.877 0.947

N5 0.929 ± 5.13 × 10−4 0.904 ± 8.33 × 10−4 0.954 ± 5.91 × 10−4

6 D6 0.758 0.680 0.837

N6 0.788 ± 8.17 × 10−4 0.724 ± 1.26 × 10−3 0.853 ± 1.00 × 10−3

7 D7 0.591 0.543 0.640

N7 0.616 ± 9.7 × 10−4 0.533 ± 1.41 × 10−3 0.699 ± 1.30 × 10−3

8 D8 0.512 0.496 0.527

N8 0.514 ± 1.00 × 10−3 0.519 ± 1.41 × 10−3 0.508 ± 1.42 × 10−3

Real differences experiment. The neural distinguishers performed better
than the distinguishers using the full DDT, indicating that the neural distin-
guishers may learn something more than pure differential cryptanalysis. Gohr
explores this effect with the real differences experiment. In this experiment,
instead of distinguishing a real pair from a random pair, the challenge is to
distinguish real pairs from masked real pairs, computed as (C ⊕ M,C ′ ⊕ M),
where M is a random 32-bit value. These experiments use the Nnr distin-
guishers directly, without retraining them for this new task. Table 2 shows the
accuracies of these distinguishers. Notice that this operation does not affect
Δout = C ⊕ C ′ = (C ⊕ M) ⊕ (C ′ ⊕ M) and thus the output difference distri-
bution. However, the neural distinguishers are still able to distinguish real pairs
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from masked pairs even without re-training for this particular purpose, which
shows that they do not just rely on the difference distribution.

Table 2. Accuracies of various neural distinguishers in the real differences experiment.

Rds Distinguisher Accuracy

5 N5 0.707 ± 9.10 × 10−4

6 N6 0.606 ± 9.77 × 10−4

7 N7 0.551 ± 9.95 × 10−4

8 N8 0.507 ± 1.00 × 10−3

4 Interpretation of Gohr’s Neural Network:
A Cryptanalysis Perspective

Interpretability of neural networks remains a highly researched area in machine
learning, but the focus has always been on improving the model and computa-
tional efficiency. We will discuss more about the interpretability in a machine
learning sense in Sect. 5. In this section, we want to find out why and how the
neural distinguishers work in a cryptanalysis sense. In essence, we want to answer
the following question:

What type of cryptanalysis is Gohr’s neural distinguisher learning?

If the neural distinguisher is learning some currently-unknown form of cryptanal-
ysis, then we would like to extrapolate the additional statistics that it exploits.
If not, then we want to find out what causes Gohr’s neural distinguishers to
perform better than pure differential attacks, and even improve state-of-the-art
attacks. With this question in mind, we perform a series of experiments and
analyses in order to come up with a reasonable guess, later validated by the
creation of a pure cryptanalysis-based distinguisher that matches the accuracy
of Gohr’s one.

Gohr’s neural distinguishers are able to correctly identify approximately
90.4%, 68.0% and 54.3% of the real ciphertext pairs (given by the true posi-
tive rates) for 5, 6 and 7 rounds of SPECK-32/64 respectively (see Table 1). We
will try to find out what these ciphertext pairs are if there are any common
patterns and see whether we are able to identify and isolate them.

Choice of input difference. As a start, we looked into Gohr’s choice of input
difference: 0x0040/0000. This difference is part of a 9-round differential charac-
teristics from Table 7 of [1]. The reason given by Gohr is that this difference deter-
ministically transits to a difference with low Hamming weight after one round.
Using constraint programming and techniques similar to [10], we found that the
best differential characteristics with a fixed input difference of 0x0040/0000 for
5 rounds is 0x0040/0000 → 0x802a/d4a8, with probability of 2−13. In contrast,
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when we do not restrict the input difference, the best differential characteristics
for 5 rounds is 0x2800/0010 → 0x850a/9520, with probability of 2−9. However,
when we trained the neural distinguishers to recognize ciphertext pairs with the
input difference of 0x2800/0010, the neural distinguishers performed worse (an
accuracy of 75.85% for 5 rounds). This is surprising as it is generally natural for
a cryptanalyst to maximize the differential probability when choosing a differ-
ential characteristic. We believe this is explained by the fact that 0x0040/0000
is the input difference maximizing the differential probability for 3 or 4 rounds
of SPECK-32/64 (verified with constraint programming), which has the most
chances to provide a biased distribution one or two rounds later. Generally, we
believe that when using such neural distinguisher, a good method to choose
an input difference is to simply use the input difference leading to the highest
differential probability for nr − 1 or nr − 2 rounds.

Changing the inputs to the neural network. Gohr’s neural distinguishers
are trained using the actual ciphertext pairs (C,C ′) whereas the pure differential
distinguishers are only using the difference between the two ciphertexts C ⊕ C ′.
Thus, it is unfair to compare both as they are not exploiting the same amount of
information. To have a fair comparison of the capability of neural distinguishers
and pure differential distinguishers, we trained new neural distinguishers using
C ⊕ C ′, instead of (C,C ′). The results are an accuracy of 90.6% for 5 rounds,
75.4% for 6 rounds and 58.3% for 7 rounds. This shows us that when the neural
distinguishers are restricted to only have access to the difference distribution,
they do not perform as well as their respective Nnr, and similarly to Dnr

2 as
can be seen in Table 1. Therefore, this is another confirmation (on top of the
real differences experiment conducted in [11]), that Gohr’s neural distinguishers
are learning more than just the distribution of the differences on the ciphertext.
With that information, we therefore naturally looked beyond just the difference
distribution at round nr.

4.1 Analyzing Ciphertext Pairs

In this section, we limit and focus the discussions and results mostly to 5 rounds
of SPECK-32/64. We recall that the last layer of the neural distinguisher is a
sigmoid activation function. Thus, its output is a value between 0 and 1. When
the score is 0.5 or more, the neural distinguisher predicts it as a real pair or
otherwise, random pair.

The closer a score is to 0.5, the least certain the neural distinguisher is on the
classification. In order to know what are the traits that the neural distinguisher is
looking for, we segregate the ciphertext pairs that yield extreme scores, i.e. scores
that are either less than 0.1 (bad score) or more than 0.9 (good score). For the
rest of this section, we label the ciphertext pairs as “bad” and “good” ciphertext
pairs and refer to the sets as B and G respectively. As we were experimenting
with them, we kept the keys (unique to each pair) that are used to generate the
2 Note that the new neural distinguishers are trained with 107 pairs, the same number

as in [11].



816 A. Benamira et al.

ciphertext pairs. The goal now is to find similarities and differences in these two
groups separately.

As we believe that most of the features the neural distinguishers learned is
differential in nature, we focus on the differentials of these ciphertext pairs. To
start, we did the following experiment (Experiment A):

1. Using 105 real 5-round SPECK-32/64 ciphertext pairs, extract the set G.
2. Obtain the differences of the ciphertext pairs and sort them by frequency
3. For each of the differences δ:

(a) Generate 104 random 32-bit numbers and apply the difference, δ to get
104 different ciphertext pairs.

(b) Feed the pairs to the neural distinguisher N5 to obtain the scores.
(c) Note down the number of pairs that yield a score ≥ 0.5

In Table 3, we show the top 25 differences for 5 rounds of SPECK-32/64
with their respective score from the above experiment. Out of the first 1000
differences, each records about 75% of the pairs scoring more than 0.5. Also,
there exist multiple pairs of differences such that one is more probable than the
other, and yet, it has a lower number of pairs classifying as real (e.g. No. 21
in Table 3). Thus, there is little evidence showing that if a difference is more
probable, then the neural distinguisher is necessarily more likely to recognize it.

Table 3. The top 25 differences (5 rounds of SPECK-32/64) in G with their respective
results for Experiment A as a percentage of how many pairs having a score of ≥ 0.5
out of 104 pairs. Cnt refers to the number of differences obtained in G.

No. Difference Cnt Percent. No. Difference Cnt Percent.

1 0x802a/d4a8 116 75 14 0x883a/dcb8 45 75

2 0x802e/d4ac 81 76 15 0x801e/d49c 45 75

3 0x803a/d4b8 73 74 16 0xa026/f4a4 42 75

4 0x8e2a/daa8 73 75 17 0xbe1a/ea98 41 75

5 0x822a/d6a8 72 75 18 0x821a/d698 41 76

6 0xb82a/eca8 67 75 19 0xbe26/eaa4 41 75

7 0x882a/dca8 65 75 20 0x83ea/d768 40 75

8 0x801a/d498 62 75 21 0x8626/caa4 40 38

9 0xa02a/f4a8 62 75 22 0x886a/dce8 40 75

10 0xbe2a/eaa8 62 75 23 0xa06a/f4e8 40 75

11 0x806a/d4e8 59 74 24 0x8e1a/da98 39 75

12 0x8e26/daa4 47 75 25 0x8226/cea4 38 37

13 0x8026/d4a4 46 74

Since the neural distinguishers outperform the ones with just the XOR input,
we started to look beyond just the differences at 5 rounds. We decided to partially
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decrypt the ciphertext pairs from G for a few rounds and re-run Experiment A on
these partially decrypted pairs: for each pair, we compute the difference and for
each difference, we created 104 random plaintext pairs with these differences and
encrypted them to round nr using random keys. The results are very intriguing,
as compared to that of Table 3: almost all of the (top 1000) unique differences
obtained in this experiment achieved 99% or 100% of ciphertext pairs having a
score of ≥0.5.

We can see that the differences at rounds 3 and 4 (after decrypting 2 and 1
round respectively) start to show some strong biases. In fact, for all of the top
1000 differences at rounds 3 and 4, all 104 pairs × 1000 differences returned a
score of ≥0.53. With that, we conduct yet another experiment (Experiment B):

1. For all the ciphertext pairs in G, decrypt i rounds with their respective keys
and compute the corresponding difference. Denote the set of differences as
Diff5-i.

2. Generate 105 plaintext pairs with a difference of 0x0040/0000 with random
keys, encrypt to 4 rounds

3. If the pair’s difference is in Diff5-i, keep the pair. Otherwise, discard.
4. Encrypt the remaining pairs to 5 rounds and evaluate them using N5.

When i = 2, we obtain 1669 unique differences with a dataset size of 89,969.
97.86% of these ciphertext pairs yielded a score ≥0.5 (i.e. by this method, we
can isolate 88.04% of the true positive ciphertexts pair). Using i = 1, we have
128,039 unique differences and the size of the dataset is 74,077. While we could
get a cleaner set with 99.98% of these ciphertext pairs obtaining a score of ≥0.5,
we only managed to isolate 74.06% of the true positive pairs. Comparing with
the true positive rate of N5 from Table 1, which is 0.904 ± 8.33 × 10−4, the case
when i = 2 seems to be closer.

We also looked into the bias of the difference bits (the jth difference bit
refers to the jth bit index of C5−2 ⊕ C ′

5−2 where Cnr−i refers to the nr round
ciphertext decrypted by i rounds. Table 4 shows the difference bit biases of the
first 1000 (most common) unique differences of ciphertext pairs in G and B
after decrypting two rounds. We assume that the neural distinguisher is able to
identify some bits at these rounds because they are significantly more biased,
though both the set B and G are from the real distribution.

Now, we state the assumption required for our conjecture, which we will
verify experimentally in Sect. 4.3.

Assumption 1 Given a 5-round SPECK-32/64 ciphertext pair, N5 is able to
determine the difference of certain bits at rounds 3 and 4 with high accuracy.

Conjecture 1. Given a 5-round SPECK-32/64 ciphertext pair, N5 finds the dif-
ference of certain bits at round 3 and decides if the ciphertext pair is real or
random.

3 The differences were obtained experimentally.
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Table 4. Difference bit bias of ciphertext pairs in G and B after decrypting 2 rounds.
A negative (resp. positive) value indicates a bias towards ‘0’ (resp. ‘1’).

bit position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G 0.476 −0.454 −0.355 −0.135 0.045 0.084 −0.009 0.487 −0.473 −0.426 −0.300 −0.050 0.006 0.019 0.500 −0.500

B −0.002 0.018 0.008 −0.011 0.044 0.002 0.023 −0.022 0.010 −0.002 0.013 −0.004 0.006 −0.005 0.103 0.072

bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G 0.476 −0.454 −0.142 −0.006 0.025 0.084 −0.009 0.487 −0.473 −0.426 0.165 0.094 −0.006 0.019 −0.500 −0.500

B 0.031 −0.009 −0.015 −0.007 −0.014 −0.024 0.025 0.026 0.034 −0.005 −0.018 −0.021 0.006 0.009 0.079 −0.065

Interestingly, the difference bit biases after decrypting 1 and 2 rounds are
very similar (in their positions). We will provide an explanation in Sect. 4.2. The
exact truncated differentials are (∗ denotes no specific constraint, while 0 or 1
denotes the expected bit difference):

3 rounds: 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 00 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 10
4 rounds: 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 10 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 00

We refer to these particular truncated differential masks as TD3 and TD4 for
the following discussion. Using constraint programming, we evaluate that the
probabilities for these truncated differentials are 87.86% and 49.87% respectively.
In order to verify how much the neural distinguisher is relying on these bits, we
perform the following experiment (Experiment C):

1. Generate 106 plaintext pairs with initial difference 0x0040/0000 and 106 ran-
dom keys.

2. Encrypt all 106 plaintext pairs to 5− i rounds. If a plaintext pair satisfies the
TD5−i, then we keep it. Otherwise, it will be discarded.

3. Encrypt the remaining pairs to 5 rounds and evaluate them using N5.

Table 5. Results of Experiment C with TD3 and TD4. Proport. refers to the number
of true positive ciphertext pairs captured by the experiment.

5-i Trunc. Diff. Dataset size Acc. Proport.

3 TD3 87741 99.277% 87.11%

4 TD4 50063 99.996% 50.06%

Table 5 shows the statistics of the above experiment with 5 rounds of SPECK-
32/64. The true positive rates for ciphertext pairs that follow these are closer
to that of Gohr’s neural distinguisher. Now, there remains about 3% of the
ciphertext pairs yet to be explained (comparing the results of TD5−2 with N5).
The important point to note here is that the pairs we have identified are exactly
the ones verified by the neural distinguisher as well, by the nature of these
experiments. In other words, we managed to find what the neural distinguisher
is looking for and not just another distinguisher that would achieve a good
accuracy by identifying a different set of ciphertext pairs.
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4.2 Deriving TD3 and TD4

With an input difference of 0x0040/0000, which has a deterministic transition
to 0x8000/8000 in round 1, the difference will only start to spread after round 1
due to the modular addition in the SPECK-32/64 round function. The inputs to
the modular addition at round 2 are 0x0100 and 0x8000 (cf. Fig. 6). While there
are two active bits, only one of them will propagate the carry (as the other is
the MSB), resulting in multiple differences. Assuming a uniform distribution, the
carry has a probability 1

2 of propagating to the left. This causes the probability
of the various differentials to reduce by 1

2 as the carry bit propagates until b31
(bit position 31) is reached and any further carry will be removed by the modular
addition.

0x0100

0x8000

0x8100,0x8300,0x8700,0x8f00

0x9f00,0xbf00,0xff00,0x7f00

+

Out. Diff. Prob.

0x8100 2−1

0x8300 2−2

0x8700 2−3

0x8f00 2−4

0x9f00 2−5

0xbf00 2−6

0xff00 2−7

0x7f00 2−7

Fig. 6. The distribution of the possible output differences after passing through the
modular addition operation.

In Fig. 7 and Fig. 8, we show how the bits evolve along the most probable
differential path from round 1 (0x8000/8000) to round 4 (0x850a/9520). As
it passes through the modular addition operation, we highlight the bits that
have a relatively higher probability of being different from the most probable
differential. The darker the color, the higher the probability of the difference
being toggled.

Figure 7 and Fig. 8 show us why TD3 is important at round 3, and how
the active bits shift in SPECK-32/64 when we start with the input difference of
0x0040/0000. In every round, b31, (the leftmost bit) has a high probability of
staying active. This bit is then rotated to b24 before it goes into the modular
addition operation. In each round, b26 has a 1

2 chance of switching from 1 → 0 or
the other way round. b27 and b28 have a 1

4 and 1
8 chance respectively of switching.

This makes them highly volatile and therefore, unreliable. On the other hand,
the right part of SPECK-32/64 rotates by 2 to the left at the end of each round.
Because of the high rotation value in the left part of SPECK-32/64, low rotation
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Fig. 7. The left (resp. right) part shows how the active bit from difference 0x8000/8000

(resp. 0x8100/8102) propagates to difference 0x8100/8102 (0x8000/820a). The darker
the color, the higher the probability (≥ 1

4
) that it has a carry propagated to.
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Fig. 8. Showing how the active bit from difference 0x8000/820a propagates to differ-
ence 0x850a/9520. The darker the color, the higher the probability (≥ 1

4
) that it has

a carry propagated to.

value of the right part of SPECK-32/64, and the fact that the left part is added
into the right part after the rotation, it takes about 3 to 4 rounds for the volatile
and unreliable bits to spread.
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4.3 Verifying Assumption 1

To verify if Gohr’s neural distinguisher is able to recognize the truncated differ-
ential, we retrain the neural distinguisher with a slight difference (Experiment
D):

1. Generate 107 plaintext pairs such that about 1
2 of the pairs satisfy TD3 (these

are the positive pairs)
2. Encrypt the plaintext pairs for two rounds
3. Train the neural network to distinguish the two distributions, and validate

with the same hyper-parameters as in [11], with a depth of 1 in the residual
block.

After retraining, the neural distinguisher has an accuracy of 96.57% (TPR:
99.95%, TNR: 93.19%) This shows that the neural distinguisher has the capabili-
ties to actually recognize the truncated differential with an outstanding accuracy.

4.4 SPECK-32/64 Reduced to 6 Rounds

We perform Experiments C for 6 rounds of SPECK-32/64 as well. Table 6 shows
the comparison of the true positive results of rounds 5 and 6. While the results
are not as obvious as for the case of 5 rounds, we can still observe a similar trend
for 6 rounds.

Table 6. Results of SPECK-32/64 reduced to six rounds for Experiment C. Proportion
refers to the number of true positive ciphertext pairs captured by the experiment.

6-i rds Truncated Differential Size of dataset Accuracy Proport.

4 10*****10*****10 10*****10*****00 49902 99.41% 49.6%

5 10*****00*****10 11*****01*****00 6884 99.927% 6.88%

4.5 Average Key Rank Differential Distinguisher

Taking into consideration the observations we presented in this section, we intro-
duce a new average key rank distinguisher that is not based on machine learning
and almost matches the accuracy as Gohr’s neural network for 5, 6 and 7 rounds
of SPECK-32/64. Here are the key considerations used in our distinguisher:

– The training set of Gohr’s neural network consists of 107 ciphertext pairs.
Thus, we restrict our distinguisher to only use 107 ciphertext pairs as well.

– If we do an exhaustive key search for two rounds, the time complexity will be
extremely high. Instead, we may need to limit ourselves to only one round to
match the complexity of the neural distinguishers.
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– If we know the difference at round i, the i − 1 round difference for the right
part is known as well, since ri−1 = (li ⊕ ri) ≫ 2

With those pointers in mind, we created a distinguisher that uses an approx-
imated DDT (aDDT); that is, a truncated DDT that is experimentally con-
structed based on n ciphertext pairs. In this distinguisher, we use n = 107 to
ensure that both our distinguisher and the neural distinguishers have the same
amount of information. The idea of the distinguisher is to decrypt the last round,
nr, using all possible subkey bits that are relevant to the bits we are interested
in. Then, we compute the average of the probabilities of all partial decryptions
for a given pair, read from aDDT (nr − 1), to get a score. If the score is greater
than that of the random distribution, the distinguisher will return 1 (Real) and
0 (Random) otherwise. The bits we are interested in can be represented as an
AND mask, that is, a mask that has ‘1’ in the bit positions that we want to
consider the bit and ‘0’ for those we want to ignore. The mask value we have
chosen is 0xff8f/ff8f rather than the expected 0xc183/c183 as we believe the
truncated differential they are detecting is at nr − 2 rounds. Thus, other than
the bits that are identified earlier in this section, we decided to include more bits
to improve the accuracy. With the look-up table to the aDDT, we do not just
only match the data complexity (of the offline training) of the Gohr’s neural
distinguishers, but at the same time, include the correlations between bits as
well.

The pseudocodes for creating the aDDT and the average key rank distin-
guisher can be found in the long version of the paper that can be found on
eprint. We applied the distinguisher for 5, 6 and 7 rounds of SPECK-32/64 and
the results are given in Table 7. It shows that our distinguisher closely matches
the accuracies of Gohr’s neural distinguishers.

Degree of closeness. We now study the similarity between our distinguishers
and Gohr’s neural distinguishers. In particular, we are interested in whether the
classifications of the ciphertext pairs are the same for both distinguishers. To
verify this, we gave a set of 105 5-round ciphertext pairs (approx. 50,000 from
real and random distribution each) to both our average key rank distinguisher
and N5, and measured how many times did they have the same output. The
results for nr = 5 are shown in Table 8. We can see that about 97.6% of the
ciphertext pairs tested have the same classification in both distinguishers. For
nr = 6, we achieved 94.98% of the pairs with the same classification.

Complexity comparison. In our average key rank distinguisher, for each pair,
we perform the partial decryption of two ciphertexts, and a table lookup in
aDDT. In the partial decryption, we enumerate the 212 keys affecting the right-
most 13 bits of δlnr−1 covered by our mask. Therefore, the complexity of our
distinguisher is 213 one-round SPECK-32/64 decryptions, and 213 table lookups.
Comparing its complexity with Gohr’s distinguishers is not trivial, as the oper-
ations involved are different. Gohr evaluates the complexity of his neural key
recovery by their runtime and an estimation of the number of speck encryptions
that could be performed at the same time on a GPU implementation. We pro-
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pose to use the number of floating point multiplications performed by the neural
network instead. Let I and O respectively denote the number of inputs and out-
puts to one layer. The computational cost of going through a dense layer is I ·O
multiplications. For 1D-CNN with kernel size ks = 1, a null padding, a stride
equal to 1 and F filters, with input size (I, T ) the cost is computed as I · F · T
multiplications. With the same input but with kernel size ks = 3, a padding
equal to 1, the cost is I · ks · F · T Applying these formulas to Gohr’s neural
network, we obtain a total of 137280 ≈ 217.07 multiplications. Note that we do
not account for batch normalizations and additions, which are dominated by the
cost of the multiplications. Using this estimation, it seems that our distinguisher
is slightly better in terms of complexity.

Table 7. Accuracy of the average key
rank distinguisher with a mask value of
0xff8f/ff8f.

N5 Accuracy TPR TNR

5 92.98% 90.76% 95.22%

6 78.79% 72.53% 85.07%

7 60.28% 55.31% 65.24%

Table 8. Closeness of the outputs of N5

and average key rank distinguisher.

Nr output

≥0.5 <0.5

AKR Dist 1 46.6% 1.48%

0 0.953% 51.0%

4.6 Discussion

Even though Gohr trained a neural distinguisher with a fixed input difference, it
is unfair to compare the accuracy of neural distinguisher to that of a pure differ-
ential cryptanalysis (with the use of DDT), since there are alternative cryptanal-
ysis methods that the neural distinguisher may have learned. The experiments
performed indicate that while Gohr’s neural distinguishers did not rely much on
difference at the nr round, they rely strongly on the differences at round nr − 1
and even more strongly at round nr − 2. These results support the hypothesis
that the neural distinguisher may learn differential-linear cryptanalysis [13] in
the case of SPECK. While we did not present any attacks here, using the MILP
model shown in [9], we verified that there are indeed many linear relations with
large biases for 2 to 3 rounds.

Unlike traditional linear cryptanalysis, which usually use independent char-
acteristics or linear hull involving the same plaintext and ciphertext bits, a well-
trained neural network is able to learn and exploit several linear characteristics
while taking into account their dependencies and correlations.

We believe that neural networks find the easiest way to achieve the best
accuracy. In the case of SPECK, it seems that differential-linear cryptanalysis
would be a good fit since it requires less data and the truncated differential
has a very high probability. Thus, we think that neural networks have the abil-
ity to efficiently learn short but strong differential, linear or differential-linear
characteristics for small block ciphers for a small number of rounds.
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4.7 Application to AES-2-2-4 [7]

We are also interested in the capabilities of the neural distinguishers on a
Substitution-Permutation Network (SPN) cipher. We chose a small scale variant
of AES from [7] with the parameters: r = 2, c = 2, e = 4. We chose this cipher
as it has a small state size, which could be exhaustively searched through. AES-
2-2-8 would be a good choice as it also has a state size of 32-bit, however, our
distinguishers are not able to learn anything significant. We trained AES-2-2-4
with 215 pairs, starting with an input difference of (1, 0, 0, 1). This input dif-
ference was chosen such that only after two rounds, all S-boxes will be active.
We trained them for 3 rounds and obtained an accuracy of 61.0%. In contrast,
we use the same number of pairs, we trained an aDDT distinguisher and we
obtained an accuracy of 62.3%.

To show the possibilities of relying purely on differences, we perform an
experiment similar to Experiment A. With the trained neural distinguisher, we
exhaust all possible 16-bit differences and we generate 100 random pairs for
each difference. Next, we feed the pairs to the neural distinguisher and count
the number of pairs in each basket of score: [0.0 − 0.1), [0.1 − 0.2), ..., [0.9 − 1.0].
Our result shows that for each differential, the 100 random pairs form a cluster
about a center similar to a Gaussian distribution. These results seem to suggest
the nature of the neural distinguisher for AES-2-2-4 is one that relies fully on
differential: giving a confidence interval based on just the difference.

5 Interpretation of Gohr’s Neural Network: A Machine
Learning Perspective

In this section, we are exploring the following practical question:

Can Gohr’s neural network be replaced by a strategy inspired by both
differential cryptanalysis and machine learning?

We will demonstrate here that this is possible. First of all, it should be
emphasized that DNNs often outperform mathematical modeling or standard
machine learning approaches in supervised data-driven settings, especially on
high-dimensional data. It seems to be the case because correlations found
between input and output pairs during DNN training lead to more relevant
characteristics than those found by experts. In other words, Gohr’s neural dis-
tinguisher seems to be capable of finding a property P currently unknown by
cryptanalysts. One may ask if we could experimentally approach this unknown
property P that encodes the neural distinguisher behavior, using both machine
learning and cryptanalysis expertise. With this question in mind, we propose
our best estimate with a focus on 5 and 6 SPECK-32/64 rounds where the DNN
achieves accuracies of 92.9% and 78.8% in a real/random distinction setting and
where the full DDT approach can achieve accuracies of 91.1% and 75.8%. In our
best setting, we reach accuracy values of 92.3% and 77.9%.
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Section 3 discusses in detail how Gohr’s neural distinguisher is modeled in
three blocks. Our objective here is to replace each of these individual blocks by a
more interpretable one, coming either from machine learning or from the crypt-
analysts’ point of view. This work is thus the result of the collaboration between
two worlds addressing the open question of deep learning interpretability. In the
course of the study, we set forth and challenged four conjectures to estimate the
property P learned by the DNN as detailed below.

5.1 Four Conjectures

Conjectures 2 & 3 aim to uncover Block 3 behavior. Conjecture 4 tackles Block
1 while Conjecture 5 concerns Block 2-i.

The DNN can not be entirely replaced by another machine learning
model. Ensemble-based machine learning models such as random forests [4]
and gradient boosting decision trees [8] are accurate and easier to interpret than
DNNs [14]. Nevertheless, DNNs outperform ensemble-based machine learning
models for most tasks on high-dimensional data such as images. However, with
only 64 bits of input, we could legitimately wonder whether the DNN could be
replaced by another ensemble-based machine learning model. Despite our small
size problem, our experiments reveal that other models significantly decrease the
accuracy.

Conjecture 2. Gohr’s neural network outperforms other non-neuronal network
machine learning models.

Experiment. To challenge this conjecture, we tested multiple machine learn-
ing models, such as Random Forest (RF), Light Gradient Boosting Machine
(LGBM), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) and
Linear Regression (LR). They all performed equally. For the rest of this paper,
we will only consider LGBM [12] as an alternative ensemble classifier for DNN
and MLP. LGBM is an extension of Gradient Boosting Decision Tree (GBDT)
[8] and we fixed our choice on it because it is accurate, interpretable and faster
to train than RF or GBDT. In support of our conjecture, we established that
the accuracy for the LGBM model is significantly lower than the one of the DNN
when the inputs are (Cl, Cr, C

′
l , C

′
r), see third column of Table 9.

Table 9. A comparison of the neural distinguisher and LGBM model for 5 round, for
106 samples generated of type (Cl, Cr, C

′
l , C

′
r).

N5 D5 LGBM as classifier for
theoriginal input

LGBM as classifier for the
512-feature

LGBM as classifier for the
64-feature

92.9% 91.1% 76.34% ± 2.62 91.49% ± 0.09 92.36% ± 0.07
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The final MLP block is not essential. As described above, we can not
replace the entire DNN with another non-neuronal machine learning model that
is easier to interpret. However, we may be able to replace the last block (Block
3) of the neural distinguisher performing the final classification, by an ensemble
model.

Conjecture 3. The MLP block of Gohr’s neural network can be replaced by
another ensemble classifier.

Experiment. We successfully exchanged the final MLP block for a LGBM model.
The reasons for choosing LGBM as a non-linear classifier were detailed in the
previous experiment paragraph. The first attempt is a complete substitution
of Block 3, taking the 512-dimension output of Block 2–10 as input. In the
fourth column of Table 9, we observe that this experiment leads to much better
results than the one from Conjecture 2, and even better results than the classical
DDT method D5 (+0.39%). To further improve the accuracy, we implemented
a partial substitution, taking only the 64-dimension output of the first layer of
the MLP as input. As can be seen in the fifth column from Table 9, the accuracy
with those inputs is now much closer to the DNN accuracy. In both cases, the
accuracy is close to the neural distinguisher, supporting our conjecture. At this
point, in order to grasp the unknown property P, one needs to understand the
feature vector at the residuals’ output.

The linear transformation on the inputs. We saw in Sect. 3 that Block 1
performs a linear transformation on the input. By looking at the weights of the
DNN first convolution, we observe that it contains many opposite values. This
indicates that the DNN is looking for differences between the input features.
Consequently, we propose the following conjecture.

Conjecture 4. The first convolution layer of Gohr’s neural network transforms
the input (Cl, Cr, C

′
l , C

′
r) into (ΔL,ΔV, V0, V1) and a linear combination of those

terms.

Experiments. As the inputs of the first convolution are binary, we could formally
verify our conjecture. By forcing to one all non-zero values of the output of this
layer, we calculated the truth-table of the first convolution. We thus obtained
the boolean expression of the first layer for the 32 filters. We observed that eight
filters were empty and the remaining twenty-four filters were simple. The filter
expressions are provided in the long version of the paper that can be found on
eprint.

However, one may argue that setting all non-zero values to one is an over-
simplified approach. Therefore, we replaced the first ReLU activation function
by the Heaviside activation function, and then we retrained the DNN. Since the
Heaviside function binarizes the intermediate value (as in [28]), we can estab-
lish the formal expression of the first layer of the retrained DNN. This second
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DNN had the same accuracy as the first one and almost the same filter boolean
expression.

Finally, we trained the same DNN with the following entries (ΔL,ΔV, V0, V1).
Using the same method as before, we established the filters’ boolean expressions.
This time, we obtained twenty five null filters and seven non-null filters, with the
following expressions: ΔL, V0 ∧V1, ΔL, ΔL, V0 ∧V1, ΔL∧ΔV , ΔL∧ΔV . These
observations support conjecture 4. Therefore, we kept only (ΔL,ΔV, V0, V1) as
inputs for our pipeline.

The masked output distribution table. With regards to the remaining
residual block replacement, our first assumption is that the DNN calculates a
shape close to the DDT in that residual block. However, two major properties of
the neural distinguisher prevent us from assuming that it is a DDT in the classical
sense of the term. The first property, as explained in Sect. 3, is that the neural
distinguisher does not only rely on the difference distribution to distinguish real
pairs as presented in Table 2. The second specificity is that the DNN has only
approximately 100,000 floating parameters to perform classification, which can
be considered as size efficient. Our second assumption is therefore that the DNN
is able to compress the distribution table. We introduce the following definitions.

Output Distribution Table (ODT). We propose to compute a distribution table
on the values (ΔL,ΔV, V0, V1) directly, instead of doing so on the difference
of the ciphertext pair (Cl ⊕ C ′

l , Cr ⊕ C ′
r). We call this new table an Output

Distribution Table (ODT) and it can be seen as a generalization of the DDT.
The entries of the ODT are 64 bits, which is not tractable for 107 samples. Also,
the DNN has only 100,000 parameters. The DNN is therefore able to compress
the ODT.

Masked Output Distribution Table (M-ODT). A compressed ODT means that
the input is not 64 bits, but instead hw bits, where hw represents the Hamming
weight of the mask. Let us consider a mask M ∈ Mhw with Mhw the ensemble
of 64-bits masks with Hamming weight hw and M = (M1,M2,M3,M4), with
Mi a 16-bit mask. Compressing the ODT therefore means applying the M mask
to all inputs. In our case, with I = (ΔL,ΔV, V0, V1), we get IM = (ΔL ∧
M1,ΔV ∧ M2, V0 ∧ M3, V1 ∧ M4) = I ∧ M , before computing the ODT. By
calculating that way, the number of ODT entries per mask decreases. It becomes
a function that depends only on hw and on the bit positions in the masks. It
is therefore a more compact representation of the complete ODT. However, it
turns out that if we consider only one mask, we get only one value per sample to
perform the classification: P (Real|IM ), while the DNN has a final vector size of
512. We considered several masks. Thus, by defining the ensemble RM ∈ Mhw,
the set of relevant masks of Mhw, we can calculate for a specific input I =
(ΔL,ΔV, V0, V1) the probability P (Real|IM ),∀M ∈ RM . Then, we concatenate
all the probabilities into a feature vector of size m = |RM |. We get the feature
F for the input I: F =

(
P (Real|IM1) P (Real|IM2) ··· P (Real|IMm)

)T . We are now able
to propose the final conjecture.
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Conjecture 5. The neural distinguisher internal data processing of Block 2-i can
be approached by:

1. Computing a distribution table for input (ΔL,ΔV, V0, V1).
2. Finding several relevant masks and applying them to the input in order to

compress the output distribution table.

We abbreviate M-ODT this Masked-Output Distribution Table. Thus, the fea-
ture vector of the DNN can be replaced by a vector where each value represents
the probability stored in the M-ODT for each mask.

This approach enables us to replace Block 2-i of the DNN. Though, we still
need to clarify how to get the RM ensemble.

Extracting masks. Based on local interpretation methods, we can extract these
masks from the DNN. Indeed, these methods consist of highlighting the most
important bits of the entries for classification. Thus, by sorting the entries accord-
ing to their score and by applying these local interpretation methods, we can
obtain the relevant masks.

5.2 Approximating the Expression of the Property P

From our conjectures, we hypothesized that we can approximate the unknown
property P that encodes the neural distinguisher behavior by the following:

– Changing (C,C ′) into I = (ΔL,ΔV, V0, V1).
– Changing the 512-feature vector of the DNN by the feature vector of proba-

bilities F =
(

P (Real|IM1) P (Real|IM2) ··· P (Real|IMm)
)T .

– Changing the final MLP block by the ensemble machine learning model
LGBM.

These points stand respectively for Block 1, Block 2-i and Block 3.

5.3 Implementation

In this section and based on the verified conjectures, we are describing the step-
wise implementation of our method. We consider that we have a DNN formed
with 107 data of type (ΔL,ΔV, V0, V1) for 5 and 6 rounds of SPECK-32/64. We
developed a three-step approach:

1. Extraction of the masks from the DNN with a first dataset.
2. Construction of the M-ODT with a second dataset.
3. Training of the final classifier from the probabilities stored in the M-ODT

with a third dataset.
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Mask extraction from the DNN. We first ranked 104 real samples according
to DNN score, as described in Sect. 4.1, in order to estimate the masks from these
entries. We used multiple local interpretation methods: Integrated Gradients
[26], DeepLift [22], Gradient Shap [15], Saliency maps [23], Shapley Value [5],
and Occlusion [27]. These methods score each bit according to their importance
for the classification. Following averaging by batch and by method, there were
two possible ways to move forward. We could either assign a Hamming weight
or else set a threshold above which all bits would be set to one. After a wide
range of experiments, we chose the first option and set the Hamming weight to
sixteen and eighteen (which turned out to be the best values in our testing).
This approach allowed us to build the ensemble RM of the relevant masks.

Implementation details. We used the captum library4 which brings together
multiple methods on local interpretation. The dataset is divided into batches
of size about 2,500 and grouped by scores. The categories we used were: scores
from 1 to 0.9 (about 2,000 samples), scores from 0.9 to 0.5 (about 500 samples),
scores from 1 to 0.8 (about 2,100 samples) and scores from 1 to 0.5 (about 2,500
samples). This way, one score per method could be derived for each bit of each
sample. We then proposed several methods to average these importance scores
by bit of category: the sum of absolute values, the median of absolute values
and the average of absolute values. Then, we took the sixteen and eighteen best
values and we obtained a mask. There is one mask per score, one per local inter-
pretation method and one per averaging method. On average, for 5,000 samples
we generate about 100 relevant masks. Finally, with the methods available in
scikit-learn [20], we ranked the features and so the masks according to their per-
formance. After multiple repetitions of mask generation and selection at every
time, we obtained 50 masks that are effective: they are provided in the long
version of the paper. The final ensemble of masks is the addition of those 50
effective masks and the generated relevant masks.

Constructing the M-ODT. Once the ensemble RM of relevant masks is deter-
mined, we compute the M-ODT. (Algorithm can be found in long version of the
paper) describes our construction method which is similar to that of the DDT.
The inputs of the algorithm include a second dataset composed of n = 107 real
samples of type I = (ΔL,ΔV, V0, V1), and the set of relevant masks RM . The
output is the M-ODT dictionary with the mask as first key, the masked input
as second key, and P (Real|I ∧ M) = P (Real|IM ) as value.

The M-ODT dictionary is constructed as follow: first, for each mask M in
RM , we compute the corresponding masked-dataset DM which is simply the
operation IM = I ∧ M for all I in D. Secondly we compute a dictionary U with
key the element of DM and with value the occurrences number of that element
in DM . Then, we compute for all element IM in DM the probability:

4 https://github.com/pytorch/captum.

https://github.com/pytorch/captum
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P (Real|IM ) =
P (IM |Real)P (Real)

P (IM |Real)P (Real) + P (IM |Random)P (Random)

with P (Real) = P (Random) = 0.5, P (IM |Random) = 2−HW (M), HW (M) being
the Hamming weight of M and P (IM |Real) = 1

n × U [IM ]. Finally we update
M-ODT as follow: M-ODT[M ][IM ] = P (Real|IM ).

Training the classifier on probabilities. Upon building the M-ODT, we
can start training the classifier. Given a third dataset D = {(input0, y0)...
(inputn, yn)}, with inputj a sample of type (C,C ′), transformed into (ΔL,ΔV,
V0, V1) and the label yj ∈ [0, 1], with n = 106, we first compute the feature
vector Fj =

(
P (Real|Ij∧M1) P (Real|Ij∧M2) ··· P (Real|Ij∧Mm)

)T for all inputs and for
m = |RM |. Next, we determined the optimal θ parameters for the gθ model
according to Eq. 1, with L being the square loss. Here, the gθ classifier is Light
Gradient Boosting Machine (LGBM) [12].

Implementation details. Feature vectors are standardized. Model hyper-
parameters fine-tuning has been achieved by grid search. Results were obtained
by cross-validation on 20% of the train set and the test set had 105 samples.
Finally, results are obtained on the complete pipeline for three different seeds,
five times for every seed.

5.4 Results

The M-ODT pipeline was implemented with numpy, scikit-learn [20] and pytorch
[19]. The project code can be found at this URL address5. Our work station is
constituted of a GPU Nvidia GeForce GTX 970 with 4043 MiB memory and
four Intel core i5-4460 processors clocked at 3.20 GHz.

General results. Table 10 shows accuracies of the DDT, the DNN and our M-
ODT pipeline on 5 and 6-round reduced SPECK-32/64 for 1.1 × 107 generated
samples. When compared to DNN and DDT, our M-ODT pipeline reached an
intermediate performance right below DNN. The main difference is the true
positive rate which is higher in our pipeline (this can be explained by the fact
that our M-ODT preprocessing only considers real samples). All in all, our M-
ODT pipeline successfully models the property P.

Matching. Table 11 summarizes the results of the quantitative correspondence
studies for the prediction between the two models. We compared the DNN
trained on samples type (ΔL,ΔV, V0, V1) to our M-ODT pipeline. On 5 rounds,
we obtained a rate of 97.5% identical predictions. In addition, 91.3% were both

5 https://github.com/AnonymousSubmissionEuroCrypt2021/A-Deeper-Look-at-Mac
hine-Learning-Based-Cryptanalysis.

https://github.com/AnonymousSubmissionEuroCrypt2021/A-Deeper-Look-at-Machine-Learning-Based-Cryptanalysis
https://github.com/AnonymousSubmissionEuroCrypt2021/A-Deeper-Look-at-Machine-Learning-Based-Cryptanalysis
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Table 10. A comparison of Gohr’s neural network, the DDT and our M-ODT pipeline
accuracies for around 150 masks generated each time, with input (ΔL, ΔV, V0, V1),
LGBM as classifier and 1.1 × 107 samples generated in total. TPR and TNR refers to
true positive and true negative rate respectively.

Rd Distinguisher Accuracy TPR TNR

5 D5 91.1% 87.7% 94.7%

N5 92.9% ± 0.05 90.4% ± 0.08 95.4% ± 0.06

M-ODT (Ours) 92.3% ± 0.08 95.5% ± 0.09 89.1% ± 0.2

6 D6 75.8% 68.0% 83.7%

N6 78.8% ± 0.08 72.4% ± 0.01 85.3% ± 0.1

M-ODT (Ours) 77.9% ± 0.1 85.2% ± 0.1 70.6% ± 0.2

identical and equal to the label. On 6 rounds, matching prediction reduces down
to 93.1%.

We thus demonstrated that our method advantageously approximates the
performance of the neural distinguisher. With an initial linear transforma-
tion on the inputs, computing a M-ODT for a set of masks extracted from
the DNN and then classifying the resulting feature vector with LGBM, we
achieved an efficient yet more easily interpretable approach than Gohr distin-
guishers. Indeed, DNN obscure features are simply approached in our pipeline
by F =

(
P (Real|IM1) P (Real|IM2) ··· P (Real|IMm)

)T . Finally, we interpret the per-
formance of the classifier globally (i.e. retrieving the decision tree) and locally
(i.e. deducing which feature played the greatest role in the classification for each
sample) as in [14]. Those results are not displayed as they are beyond the scope
of the present work, but they can be found in the project code.

Table 11. A comparison of Gohr’s neural network predictions and our M-ODT pipeline
predictions for around 150 masks generated each time, with input (ΔL, ΔV, V0, V1),
LGBM as classifier and 1.1 × 107 samples generated in total.

Nr Model Accuracy Matching Matching & equal to label

5 N5 92.9% 97.5% ± 0.06 91.3% ± 0.08

M-ODT (Ours) 92.3%

6 N6 78.8% 93.1% ± 0.07 75.3% ± 0.11

M-ODT (Ours) 77.9%

5.5 Application to SIMON Cipher

In order to check whether our approach could be generalized to other crypto-
graphic primitives, we evaluated our M-ODT method on 8 rounds of SIMON-

https://github.com/AnonymousSubmissionEuroCrypt2021/A-Deeper-Look-at-Machine-Learning-Based-Cryptanalysis
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32/64 block cipher. Implementing the same pipeline, we enjoyed a 82.2% accu-
racy for the classification, whereas the neural distinguisher achieves 83.4% accu-
racy. In addition, the matching rate between the two models was up to 92.4%.
The slight deterioration in the results of our pipeline for SIMON can be explained
by the lack of efficient masks as introduced in Sect. 5.3 for SPECK.

5.6 Discussions

From the cryptanalysts’ standpoint, one important aspect of using the neural
distinguisher is to uncover the property P learned by the DNN. Unfortunately,
while being powerful and easy to use, Gohr’s neural network remains opaque.

Our main conjecture is that the 10-layer residual blocks, considered as the
core of the model, are acting as a compressed DDT applied on the whole input
space. We model our idea with a Masked Output Distribution Table (M-ODT).
The M-ODT can be seen as a distribution table applied on masked outputs,
in our case (ΔL,ΔV, V0, V1), instead of only the difference (Cl ⊕ C ′

l , Cr ⊕ C ′
r).

By doing so, features are no longer abstract as in the neural distinguisher. In
our pipeline, each one of the features is a probability for the sample to be real
knowing the mask and the input. In the end, with our M-ODT pipeline, we
successfully obtained a model which has only −0.6% difference accuracy with the
DNN and a matching of 97.3% on 5 rounds of SPECK-32/64. Additional analysis
of our pipeline (e.g. masks independence, inputs influence, classifiers influence)
are available into the project code. To the best of our knowledge, this work is
the first successful attempt to exhibit the underlying mechanism of the neural
distinguisher. However, we note that a minor limitation of our method is that it
still requires the DNN to extract the relevant masks during the preparation of the
distinguisher. Since it is only during preparation, this does not remove anything
with regards to the interpretability of the distinguisher. Future work will aim
at computing these masks without DNN. All in all, our findings represent an
opportunity to guide the development of a novel, easy-to-use and interpretable
cryptanalysis method.

6 Improved Training Models

While in the two previous sections we focused on understanding how the neural
distinguisher works, here we will explain how one can outperform Gohr’s results.
The main idea is to create batches of ciphertext inputs instead of pairs.

We refer to batch input of size B, a group of B ciphertexts that are con-
structed from the same key. Here, we can distinguish two ways to train and
evaluate the neural distinguisher pipeline with batch input. The straightfor-
ward one is to evaluate the neural distinguisher score for each element of the
batch and then to take the median of the results. The second is to consider
the whole batch as a single input for a neural distinguisher. In order to do so,
we used 2-dimensional CNN (2D-CNN) where the channel dimension is the fea-
tures (ΔL,ΔV, V0, V1). We should point out that, for sake of comparability with

https://github.com/AnonymousSubmissionEuroCrypt2021/A-Deeper-Look-at-Machine-Learning-Based-Cryptanalysis


A Deeper Look at Machine Learning-Based Cryptanalysis 833

Gohr’s work, we maintained the product of the training set size by the batch size
to be equal to 107. Both batch size-based challenging methods yielded similar
accuracy values (see Table 12). Notably, in both cases, we enjoyed 100% accuracy
on 5 and 6 rounds with batch sizes 10 and 50 respectively.

Table 12. Study of the batch size methods on the accuracies with (ΔL, ΔV , V0, V1)
as input for 5 and 6 rounds.

Rounds 5 6

Batch input size 1 5 10 1 5 10 50

Averaging Method 92.9% 99.8% 100% 78.6% 95.41% 99.0% 100%

2D-CNN Method – 99.4% 100% – 93.27% 97.7% 100%

Considering these encouraging outcomes, we extended the method to 7
rounds. As the 7-round training is more sophisticated and the two previous
methods are equivalent, we decided to only apply the first method (the averag-
ing one), because it requires to train only one neural distinguisher. Results given
in Table 13 confirm our previous findings: with a batch size of 100, we obtain
99.7% accuracy on 7 rounds. This remarkable outcome demonstrates the major
improvement of our batch strategy over those from earlier Gohr’s work.

Table 13. Study of the averaging batch size method on the 7-round accuracies with
(ΔL, ΔV , V0, V1) as input.

Batch input size 1 5 10 50 100

Averaging Method 61.2% 73.5% 80.8% 96.7% 99.7%

Conclusion

In this article, we proposed a thorough analysis of Gohr’s deep neural network
distinguishers of SPECK-32/64 from CRYPTO’19. By carefully studying the clas-
sified sets, we managed to uncover that these distinguishers are not only basing
their decisions on the ciphertext pair difference, but also the internal state differ-
ence in penultimate and antepenultimate rounds. We confirmed our findings by
proposing pure cryptanalysis-based distinguishers on SPECK-32/64 that match
Gohr’s accuracy. Moreover, we also proposed a new simplified pipeline for Gohr’s
distinguishers, that could reach the same accuracy while allowing a complete
interpretability of the decision process. We finally gave possible directions to
even improve over Gohr’s accuracy.
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Our results indicate that Gohr’s neural distinguishers are not really produc-
ing novel cryptanalysis attacks, but more like optimizing the information extrac-
tion with the low-data constraints. Many more distinguisher settings, machine
learning pipelines, types of ciphers should be studied to have a better understand-
ing of what machine learning-based cryptanalysis might be capable of. Yet, we
foresee that such tools could become of interest for cryptanalysts and designers
to easily and generically pre-test a primitive for simple weaknesses.

Our work also opens interesting directions with regards to interpretability of
deep neural networks and we believe our simplified pipeline might lead to better
interpretability in other areas than cryptography.
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