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Preface

Eurocrypt 2021, the 40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, was held in Zagreb, Croatia, during October 17-21, 2021."
The conference was sponsored by the International Association for Cryptologic Research
(IACR). Lejla Batina (Radboud University, The Netherlands) and Stjepan Picek (Delft
University of Technology, The Netherlands) were responsible for the local organization.

We received a total of 400 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 59 Program Committee
(PC) members. PC members were allowed to submit at most two papers. The reviewing
process included a rebuttal round for all submissions. After extensive deliberations the
PC accepted 78 papers. The revised versions of these papers are included in this
three-volume proceedings.

The PC decided to give Best Paper Awards to the papers “Non-Interactive Zero
Knowledge from Sub-exponential DDH” by Abhishek Jain and Zhengzhong Jin, “On
the (in)security of ROS” by Fabrice Benhamouda, Tancréde Lepoint, Julian Loss,
Michele Orru, and Mariana Raykova and “New Representations of the AES Key
Schedule” by Gaétan Leurent and Clara Pernot. The authors of these three papers
received an invitation to submit an extended version of their work to the Journal of
Cryptology. The program also included invited talks by Craig Gentry (Algorand
Foundation) and Sarah Meiklejohn (University College London).

We would like to thank all the authors who submitted papers. We know that the
PC’s decisions can be very disappointing, especially rejections of good papers which
did not find a slot in the sparse number of accepted papers. We sincerely hope that
these works will eventually get the attention they deserve.

We are indebted to the PC and the external reviewers for their voluntary work.
Selecting papers from 400 submissions covering the many areas of cryptologic research
is a huge workload. It has been an honor to work with everyone. We owe a big thank
you to Kevin McCurley for his continuous support in solving all the minor issues we
had with the HotCRP review system, to Gaétan Leurent for sharing his MILP programs
which made the papers assignments much easier, and to Simona Samardjiska who
acted as Eurocrypt 2021 webmaster.

Finally, we thank all the other people (speakers, sessions chairs, rump session
chairs...) for their contribution to the program of Eurocrypt 2021. We would also like
to thank the many sponsors for their generous support, including the Cryptography
Research Fund that supported student speakers.

April 2021 Anne Canteaut
Frangois-Xavier Standaert

! This preface was written before the conference took place, under the assumption that it will take
place as planned in spite of travel restrictions due to COVID-19.
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Abstract. We provide the first constructions of non-interactive zero-
knowledge and Zap arguments for NP based on the sub-exponential
hardness of Decisional Diffie-Hellman against polynomial time adver-
saries (without use of groups with pairings).

Central to our results, and of independent interest, is a new notion of
interactive trapdoor hashing protocols.

1 Introduction

Zero-knowledge (ZK) proofs [31] are a central object in the theory and practice
of cryptography. A ZK proof allows a prover to convince a verifier about the
validity of a statement without revealing any other information. ZK proofs have
found wide applications in cryptography in all of their (interactive) avatars, but
especially so in the non-interactive form where a proof consists of a single message
from the prover to the verifier. This notion is referred to as non-interactive zero
knowledge (NIZK) [22]. Applications of NIZKs abound and include advanced
encryption schemes [23,46], signature schemes [4,7], blockchains [6], and more.

Since NIZKs for non-trivial languages are impossible in the plain model, the
traditional (and de facto) model for NIZKs allows for a trusted setup that samples
a common reference string (CRS) and provides it to the prover and the verifier
algorithms. Starting from the work of [22], a major line of research has been dedi-
cated towards understanding the assumptions that are sufficient for constructing
NIZKs in the CRS model [5,9,14,16,18,19,21,28, 30,34, 35,50, 53]. By now, NIZKs
for NP are known from most of the standard assumptions known to imply public-
key encryption — this includes factoring related assumptions [9, 28], bilinear maps
[18,34,35], and more recently, learning with errors (LWE) [14,50].

Notable exceptions to this list are standard assumptions related to the discrete-
logarithm problem such as the Decisional Diffie-Hellman (DDH) assumption. In
particular, the following question has remained open for three decades:

Do there exist NIZKs for NP based on DDH?

From a conceptual viewpoint, an answer to the above question would shed
further light on the cryptographic complexity of NIZKs relative to public-key
encryption. It would also improve our understanding of the power of groups with
bilinear maps relative to non-pairing groups in cryptography. There are (at least)

© International Association for Cryptologic Research 2021
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two prominent examples where bilinear maps have traditionally had an edge —
advanced encryption schemes such as identity-based [10] and attribute-based
encryption [33,54] (and more broadly, functional encryption [11,48,54]), and
NIZKs. For the former, the gap has recently started to narrow in some important
cases; see, e.g., [24]. We seek to understand whether such gap is inherent for
NIZKs based on standard assumptions.!

A recent beautiful work of Brakerski et al. [13] demonstrates that this gap dis-
appears if we additionally rely on the hardness of the learning parity with noise
(LPN) problem. Namely, they construct NIZKs assuming that DDH and LPN are
both hard. NIZKs based on the sole hardness of DDH, however, still remain elusive.

Zaps. Dwork and Naor [26] introduced the notion of Zaps, aka two-round
public-coin proof systems in the plain model (i.e., without a trusted setup) that
achieve a weaker form of privacy known as witness-indistinguishability (WT) [29].
Roughly speaking, WI guarantees that a proof for a statement with multiple wit-
nesses does not reveal which of the witnesses was used in the computation of the
proof.

Despite this seeming weakness, [26] proved that (assuming one-way func-
tions) Zaps are equivalent to statistically-sound NIZKs in the common ran-
dom string model. This allows for porting some of the known results for NIZKs
to Zaps; specifically, those based on factoring assumptions and bilinear maps.
Subsequently, alternative constructions of Zaps were proposed based on indis-
tinguishability obfuscation [8]. Very recently, computationally-sound Zaps, aka
Zap arguments were constructed based on quasi-polynomial LWE [2,32,42].

As in the case of NIZKs, constructing Zaps (or Zap arguments) for NP based
on standard assumptions related to discrete-logarithm remains an open problem.
Moreover, if we require statistical privacy, i.e., statistical Zap arguments [2,32],
curiously, even bilinear maps have so far been insufficient.? In contrast, statistical
NIZKs based on bilinear maps are known [34,35].

1.1 Our Results

In this work, we construct (statistical) NIZK and Zap arguments for NP based
on the sub-exponential hardness of DDH against polynomial-time adversaries in
standard groups.

Theorem 1 (Main Result — Informal). Assuming sub-exponential hardness
of DDH against polynomial-time attackers, there exist:

— (Statistical) NIZK arguments for NP in the common random string model.
- Statistical Zap arguments for NP.

L If we allow for non-standard assumptions (albeit those not known to imply public-key
encryption), then this gap is not inherent, as demonstrated by [16,21].

2 A variant of statistical Zap arguments where the verifier is private-coin but the
proofs are publicly verifiable is known from standard assumptions on bilinear maps
[43].
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Our NIZK achieves adaptive, multi-theorem statistical zero knowledge and non-
adaptive soundness. By relaxing the zero-knowledge guarantee to be computa-
tional, we can achieve adaptive soundness. Our Zap argument achieves adaptive
statistical witness indistinguishability and non-adaptive soundness.?

Our results rely on the assumption that polynomial-time adversaries can-
not distinguish Diffie-Hellman tuples from random tuples with better than sub-
exponentially small advantage. To the best of our knowledge, this assumption is
unaffected by known attacks on the discrete logarithm problem.*

While our primary focus is on constructing NIZKs and Zap arguments from
DDH, we note that our constructions enjoy certain properties that have previ-
ously not been achieved even using bilinear maps:

— Our NIZK constructions rely on a common random string setup unlike prior
schemes based on bilinear maps that require a common reference string for
achieving statistical ZK [34,35].

— Our statistical Zap argument is the first group-based construction (irrespec-
tive of whether one uses bilinear maps or not). Known constructions of Zaps
from bilinear maps only achieve computational WI [34,35].

In particular, statistical NIZKs in the common random string model were previ-
ously only known from LWE (or circular-secure FHE) [14, 50], and statistical Zap
arguments were previously only known from (quasi-polynomial) LWE [2,32].

Interactive Trapdoor Hashing Protocols. Towards obtaining our results,
we introduce the notion of interactive trapdoor hashing protocols (ITDH). An
ITDH for a function family F' is an interactive protocol between two parties — a
sender and a receiver — where the sender holds an input x and the receiver holds
a function f € F. At the end of the protocol, the parties obtain an additive
secret-sharing of f(x). An ITDH must satisfy the following key properties:

— The sender must be laconic in that the length of each of its messages (con-
sisting of a hash value) is independent of the input length.
— The receiver’s messages must hide the function f.

ITDH generalizes and extends the recent notion of trapdoor hash functions
(TDH) [25] to multi-round interactive protocols. Indeed, (ignoring some syntactic
differences) a TDH can be viewed as an ITDH where both the receiver and the
sender send a single message to each other.

3 Following [43], by standard complexity leveraging, our statistical NIZK and Zap
arguments can be upgraded (without changing our assumption) to achieve adap-
tive soundness for all instances of a priori (polynomially) bounded size. For the
“unbounded-size” case, [49] proved the impossibility of statistical NIZKs where adap-
tive soundness is proven via a black-box reduction to falsifiable assumptions [44].
There are well-known attacks for discrete logarithm over Zj that require sub-
exponential time and achieve constant success probability [1,20]. However, as
observed in [16], a 2¢ time algorithm with constant successful probability does not
necessarily imply a polynomial time attack with 2% successful probability.
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Our primary motivation for the study of ITDH is to explore the feasibility
of a richer class of computations than what can be supported by known con-
structions of TDH. Presently, TDH constructions are known for a small class of
computations such as linear functions and constant-degree polynomials (based
on various assumptions such as DDH, Quadratic Residuosity, and LWE) [13,25].
We demonstrate that ITDH can support a much broader class of computations.

Assuming DDH, we construct a constant-round ITDH protocol for TC? cir-
cuits. While ITDH for TC? suffices for our main application, our approach can
be generalized to obtain a polynomial-round ITDH for P/poly.

Theorem 2 (Informal). Assuming DDH, there exists a constant-round ITDH
for TCO.

We view ITDH as a natural generalization of TDH that might allow for a
broader pool of applications. While our present focus is on the class of com-
putations, it is conceivable that the use of interaction might enable additional
properties in the future that are not possible (or harder to achieve) in the non-
interactive setting.

Our Approach: Round Collapsing, Twice. We follow the correlation
intractability framework for NIZKs implemented in a recent remarkable sequence
of works [13,14,16,21,36,50]. The central idea of this framework is to instanti-
ate the random oracle in the Fiat-Shamir paradigm [29] by so-called correlation
intractable hash functions (CIH) [17]. In particular, given a CIH for all efficiently
searchable relations, this approach can be used to collapse the rounds of so-called
trapdoor sigma protocols [14] to obtain NIZKs in the CRS model.

The works of [14,50] used (leveled) fully homomorphic encryption to con-
struct CIH for all efficiently searchable relations and therefore required LWE-
related assumptions. Recently, Brakerski et al. [13] demonstrated a new app-
roach for constructing CIH via (rate-1) TDH by crucially exploiting the laconic
sender property of the latter. This raises hope for potential instantiations of CTH
— ideally for all efficiently searchable relations — from other standard assump-
tions. So far, however, this approach has yielded CIH only for relations that can
be approximated by constant-degree polynomials over Zs due to limitations of
known results for TDH. This severely restricts the class of compatible trapdoor
sigma protocols that can be used for constructing NIZKs via the CIH framework.
Indeed, Brakerski et al. rely crucially on LPN to construct such sigma protocols.

Somewhat counter-intuitively, we use interaction to address the challenge of
constructing NIZKs solely from DDH. Specifically, we show that by using inter-
action — via the abstraction of ITDH — we can expand the class of functions
that can be computed with a laconic sender. Furthermore, if an ITDH is suffi-
ciently function-private (where the amount of security required depends on the
round complexity), then we can collapse its rounds to construct CIH. Using this
approach, we construct a CIH for TC? based on sub-exponential DDH.

Theorem 3 (Informal). Assuming sub-exponential hardness of DDH against
polynomial-time attackers, there exists a CIH for TCC.
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Expanding the class of relations for CIH in turn expands the class of com-
patible trapdoor sigma protocols. In particular, we show that trapdoor sigma
protocols for NP compatible with CIH from the above theorem can be built
from DDH. This allows us to construct NIZK and Zap arguments in Theorem 1.

Overall, our approach for constructing NIZKs involves two stages of round
collapsing — we first collapse rounds of ITDH to construct CIH, and then use
CIH to collapse rounds of trapdoor sigma protocols to obtain NIZKs. Our con-
struction of Zaps follows a similar blueprint, where the first step is the same
as in the case of NIZKs and the second round-collapsing step is similar to the
recent works of Badrinarayanan et al. [2] and Goyal et al. [32].

1.2 Guide to the Paper

We present the technical overview in Sect.2 and the necessary preliminaries in
Sect. 3. We define and construct ITDH in Sects. 4 and Sect. 5 respectively, and
construct CIH for TCY in Sect. 6.

Due to page limits, we defer our constructions of NIZKs and Zap arguments
to the full version.

2 Technical Overview

Our constructions rely on the correlation-intractability framework for instanti-
ating the Fiat-Shamir paradigm. We start by recalling this framework.

Fiat-Shamir via Correlation Intractability. A family of hash functions
defined by a tuple of algorithms (Gen, Hash) is said to be correlation intractable
(CI) for a relation class R if for any R € R, given a hash key k sampled by
Gen, an adversary cannot find an input x such that (x,Hash(k,z)) € R. In the
sequel, we focus on searchable relations where R is associated with a circuit C
and (z,y) € R if and only if y = C(x).

The CI framework instantiates the random oracle in the Fiat-Shamir
paradigm for NIZKs via a family of CIH (Gen, Hash). Let X' be a sigma pro-
tocol for a language £ where the messages are denoted as «, # and . To obtain
a NIZK in the CRS model, we collapse the rounds of X by computing § as the
output of Hash(k, ) for a key k sampled by Gen and fixed as part of CRS.

We now recall the argument for soundness of the resulting scheme. From the
special soundness of X, for any x ¢ £ and any «, there exists a bad challenge
function BadC such that the only possible accepting transcript («, 3,~) must
satisfy 0 = BadC(«). In other words, any cheating prover must find an « such
that 8 = Hash(k,a) = BadC(«). However, if (Gen,Hash) is CI for the relation
searchable by BadC, then such an adversary must not exist.

Note that in general, BadC may not be efficiently computable. However, for
trapdoor sigma protocols, BadC is efficiently computable given a “trapdoor” asso-
ciated with the protocol. In this case, we only require CI for efficiently searchable
relations.
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Prior Work. A sequence of works [15,16,21,36,38] have constructed CIH for
various classes of (not necessarily efficiently searchable) relations from well-
defined, albeit strong assumptions that are not well understood. Recently,
Canetti et al. [14] constructed CIH for all efficiently searchable relations
from circular-secure fully homomorphic encryption. Subsequently, Peikert and
Shiehian [50] obtained a similar result based on standard LWE.

Very recently, Brakerski et al. [13] leveraged the compactness properties
of (rate-1) trapdoor hash functions to build CIH from standard assumptions.
Specifically, assuming DDH (or other standard assumptions such as Quadratic
Residuosity or LWE), they construct CIH for functions that can be approximated
by a distribution on constant-degree polynomials. While this is a small class, [13]
show that it nevertheless suffices for constructing NIZKs for NP. Specifically,
they show that by relying on the LPN assumption, it is possible to construct
trapdoor sigma protocols where the bad challenge function has probabilistic
constant-degree representation. By collapsing the rounds of this protocol, they
obtain NIZKs for NP.

Main Challenges. We now briefly discuss the main conceptual challenges in
buildings NIZKs based only on DDH (in light of the work of [13]).

On the one hand, (non-pairing) group-based assumptions seem to have less
structure than lattice assumptions; for example, we can only exploit linear homo-
morphisms. Hence it is not immediately clear how to construct rate-1 trapdoor
hash functions from DDH beyond (probabilistic) linear functions or constant-
degree polynomials (a constant-degree polynomial is also a linear function of its
monomials).? On the other hand, it seems that we need CIH for more complicated
functions in order to build NIZKs from (only) DDH via the CIH framework.

Indeed, the bad challenge function in trapdoor sigma protocols involves (at
least) extraction from the commitment scheme used in the protocol, and it is
unclear whether such extraction can be represented by probablistic constant-
degree polynomials when the commitment scheme is constructed from standard
group-based assumptions. For example, the decryption circuit for the ElGamal
encryption scheme [27] (based on DDH) is in a higher complexity class, and is
not known to have representation by probabilistic constant-degree polynomials.
Indeed, there are known lower-bounds for functions that can be approximated by
probabilistic polynomials. Specifically, [41,47,55,56] proved that approximating
a n fan-in majority gate by probabilistic polynomials over binary field with a
small constant error requires degree at least 2(y/n).

Roadmap. We overcome the above dilemma by exploiting the power of inter-
action.

— In Sect. 2.1, we introduce the notion of interactive trapdoor hashing proto-
cols (ITDH) — a generalization of TDH to multi-round interactive protocols.

5 The breakthrough work of [12] shows that in the case of homomorphic secret-sharing,
it is in fact possible to go beyond linear homomorphisms in traditional groups. The
communication complexity of the sender in their scenario, however, grows with the
input length and is not compact as in the case of TDH.
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We show that despite increased interaction, ITDH can be used to build CIH.
Namely, we devise a round-collapsing approach to construct CIH from ITDH.

— We next show that ITDH can capture a larger class of computations than
what can be supported by known constructions of TDH. Namely, we con-
struct a constant-round ITDH protocol for TC? where the sender is laconic
(Sect. 2.2).

— Finally, we demonstrate that using DDH, it is possible to construct trapdoor
sigma protocols where the bad challenge function can be computed in low
depth. Using such sigma protocols, we build multi-theorem (statistical) NIZK
and statistical Zap arguments for NP (Sects. 2.3 and 2.4, respectively).

2.1 Interactive Trapdoor Hashing Protocols

We start by providing an informal definition of ITDH and then describe our
strategy for constructing CIH from ITDH.

Defining ITDH. An L-level ITDH is an interactive protocol between a “sender”
and a “receiver”, where the receiver’s input is a circuit f and the sender’s input
is a string x. The two parties jointly compute f(x) by multiple rounds of com-
munication that are divided into L levels. Each level ¢ € [L] consists of two
consecutive protocol messages — a receiver’s message, followed by the sender’s
response:

— First, the receiver uses f (and prior protocol information) to compute a key
k¢ and trapdoor td,. It sends the key k, to the sender.

— Upon receiving this message, the sender computes a hash value hy together
with an encoding ey. The sender sends h, to the receiver but keeps e; to
herself. (The encoding e, can be viewed as sender’s “private state” used for
computing the next level message.)

Upon receiving the level L (i.e., final) message hy, from the sender, the receiver
computes a decoding value d using the trapdoor. The function output f(z) can
be recovered by computing e @ d, where e is the final level encoding computed
by the sender. We require the following properties from ITDH:

— Compactness: The sender’s message in every level must be compact. Specif-
ically, for every level ¢ € [L], the size of the hash value hy is bounded by the
security parameter, and is independent of the length of the sender’s input x
and the size of the circuit f.

— Approximate Correctness: For an overwhelming fraction of the random
tapes for the receiver, for any input x, the Hamming distance between e & d
and f(x) must be small. Note that this is an adaptive definition in that the
input x is chosen after the randomness for the receiver is fixed.

— Leveled Function Privacy: The receiver’s messages computationally hide
the circuit f. Specifically, we require that the receiver’s message in every level
can be simulated without knowledge of the circuit f. Moreover, we allow the
privacy guarantee to be different for each level by use of different security
parameters for different levels.
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As we discuss in Sect. 4.1, barring some differences in syntax, trapdoor hash
functions can be viewed as 1-level ITDH. We refer the reader to the technical
sections for a formal definition of ITDH.

CIH from ITDH. We now describe our round-collapsing strategy for construct-
ing CIH from ITDH. Given an L-level ITDH for a circuit family C, we construct
a family of CIH for relations searchable by C as follows:

— Key Generation: The key generation algorithm uses the function-privacy
simulator for ITDH to compute a simulated receiver message for every level.
It outputs a key k consisting of L simulated receiver messages (one for each
level) as well as a random mask mask.

— Hash Function: Given a key k and an input z, the hash function uses the
ITDH sender algorithm on input = to perform an ITDH protocol execution
“in its head.” Specifically, for every level £ € [L], it reads the corresponding
receiver message in the key k and uses it to computes the hash value and the
encoding for that level. By proceeding in a level-by-level fashion, it obtains
the final level encoding e. It outputs e & mask.

We now sketch the proof for correlation intractability. For simplicity, we first
consider the case when L = 1. We then extend the proof strategy to the multi-
level case.

For L = 1, the proof of correlation intractability resembles the proof in [13].
We first switch the simulated receiver message in the CIH key to a “real” message
honestly computed using a circuit C' € C. Now, suppose that the adversary finds
an x such that Hash(k,z) = C(z). Then by approximate correctness of ITDH,
C(z) ~ e ® d, where the “~” notation denotes closeness in Hamming distance.
This implies that e ® d ~ e ® mask, and thus d ~ mask. However, once we fix
the randomness used by the receiver, d only depends on h. Since h is compact,
the value d is exponentially “sparse” in its range. Therefore, the probability
that d =~ mask is exponentially small, and thus such an input = exists with only
negligible probability.

Let us now consider the multi-level case. Our starting idea is to switch the
simulated receiver messages in the CIH key to “real” messages in a level-by-level
manner. However, note that the honest receiver message at each level depends
on the hash value sent by the sender in the previous level, and at the time of the
key generation of the CIH, the sender’s input has not been determined. Hence,
it is not immediately clear how to compute the honest receiver message at each
level without knowing the sender’s input.

To get around this issue, at each level ¢, we first simply guess the sender’s
hash value hy_; in the previous level (¢ — 1), and then switch the simulated
receiver message in level ¢ to one computed honestly using the ITDH receiver
algorithm on input hy_;. To ensure this guessing succeeds with high probability,
we rely on the compactness of the hash values. Specifically, let A\, denote the
security parameter for the ¢! level in ITDH (as mentioned earlier, we allow the
security parameters for each level to be different). Then the guessing of the level
(¢ —1) hash value succeeds with probability 27*¢-1. We set A\, to be sublinear
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in A\, where X\ is the security parameter for CIH. Then, when we reach the final
level, all our guesses are successful with probability 2~ (At+X2++AL) “which is
sub-exponential in A. Since the probability of d &~ mask can be exponentially
small in A\, we can still get a contradiction.

However, the above argument assumes the function privacy is perfect, which
is not the case. Indeed, at every level, we must also account for the adversary’s
distinguishing advantage when we switch a simulated message to a real message.
In order to make the above argument go through, we need the distinguishing
advantage to be a magnitude smaller than 27*¢-1 (for every £). That is, we
require ITDH to satisfy sub-exponential leveled functional privacy. Now, the
distinguishing advantage can be bounded by 2727, where 0 < ¢ < 1 is a constant.
Once we choose A; large enough, then 27*¢ can be much smaller than 2721,
and thus the above argument goes through as long as L is not too large.

In particular, there is room for trade-off between the number of levels in ITDH
that we can collapse and the amount of leveled function privacy required. If we
wish to rely on polynomial time and sub-exponential advantage assumptions,
then the above transformation requires the number of levels to be constant. If
we allow for sub-exponential time (and sub-exponential advantage) assumptions,
then the above transformation can work for up to O(loglog A) levels. We refer
the reader to Sect. 6.2 for more details.

2.2 Constructing ITDH

We now provide an overview of our construction of constant-round ITDH for
TCC. Let not-threshold gate be a gate that computes a threshold gate and then
outputs its negation. Since not-threshold gates are universal for threshold cir-
cuits, it suffices for our purposes to consider circuits that consist of only not-
threshold gates.

At a high-level, we implement the following two-step blueprint for construct-
ing ITDH:

— Step 1 (Depth-1 Circuits): First, we build an ITDH for a simple circuit
family 7 where each circuit is simply a single layer of layer of not-threshold
gates.

— Step 2 (Sequential Composition): Next, to compute circuits with larger
depth, we sequentially compose multiple instances of ITDH from the first step,
where the output of the i*" ITDH is used as an input in the (i + 1)*" ITDH.

Overall, our construction uses only one cryptographic tool, namely, TDH for
linear functions. As we will see later, we will use additional ideas to introduce
non-linearity in the computation.

In the following, we elaborate on each of these steps. We first focus on step 2,
namely, the sequential composition step, and discuss the main challenges therein.
We will later describe how we implement step 1.

Controlling the Error. Recall that ITDH guarantees only approximate cor-
rectness, i.e., the xor of the final-level encoding e and decoding d is “close”
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(in terms of Hamming distance) to the true function output. Then, in a sequen-
tial composition of an ITDH protocol, each execution only guarantees approxi-
mate correctness. This means that the errors could spread across the executions,
ultimately causing every output bit of the final execution to be incorrect. For
example, suppose a coordinate of the output for an intermediate execution is
flipped and later, the computation of every output bit depends on this flipped
output bit. In this case, every output bit could be incorrect.

To overcome this issue, we observe that any circuit can be converted to a
new circuit that satisfies a “parallel structure” demonstrated in Fig. 1.

(I
I
I
I

{
{
C
'S

Fig. 1. Parallel structure. The top (resp., bottom) layer corresponds to input (resp.,
output) wires.

In such circuits, each output bit only depends on the input to one parallel
repetition. Hence, the spreading of one Hamming error is controlled in one par-
allel execution. We leverage this observation to prove approximate correctness
of the sequential composition.

Input Passing. Recall that the protocol output in any ITDH execution is
“secret shared” between the sender and the receiver, where the sender holds
the final level encoding e, and the receiver holds the decoding d. Then, a plausi-
ble way to implement Step 2 is for the receiver to simply send the decoding in the
i*® ITDH to the sender so that the latter can compute the output, and then use
it as input in the (i41)*" ITDH. However, this leaks intermediate wire values (of
the TC? circuit that we wish to compute) to the sender, thereby compromising
function privacy. Note that the reverse strategy of requiring the sender to send
the encoding to the receiver (to allow output computation) also does not work
since it violates the compactness requirement on the sender’s messages to the
receiver.

To resolve this issue, we keep the secret-sharing structure of the output in
every ITDH intact. Instead, we extend the functionality of the ITDH in Step 1
so that the output of the i*" ITDH can be computed within the (i + 1)*" ITTDH.
Specifically, in Step 1, we construct an ITDH for a circuit family 7® where
every circuit consists of a single layer of Xor-then-Not-Threshold gates, namely,
gates that first XOR the input with a pre-hardwired string and then compute
the not-threshold operation on the resulting value. This allows for resolving the
above problem as follows: the final-level encoding from the i*" ITDH constitutes
the sender’s input in the (i + 1)*" ITDH. On the other hand, the decoding in



Non-interactive Zero Knowledge from Sub-exponential DDH 13

the ¢*" ITDH is used as the pre-hardwired string in the circuit computed by the
(i +1)*® ITDH.

Putting together these ideas in a careful manner, we are able to implement
Step 2. We refer the reader to the technical section for more details on this step.

ITDH for 7%. We now discuss how we implement revised step 1, namely con-
structing an ITDH for 7%, where every circuit consists of a single layer of Xor-
then-Not-Threshold gates. At a high-level, we proceed in the following three
steps:

— We first “decompose” a circuit in 7% as the composition of two linear func-
tions.

— Next, we use a 1-level ITDH, which is implied by TDH, to compute each of
these linear functions.

— Finally, we “compose” the two ITDH executions sequentially to obtain a 2-
level ITDH for 7.

An observant reader may wonder how we decompose the computation of
threshold gates into linear functions. Indeed, composition of linear functions is
still a linear function, while a threshold gate involves non-linear computation. As
we will soon see, our decomposition strategy crucially relies on some “offline”
processing by the parties on the intermediate encoding and decoding values
between different TDH executions. This introduces the desired non-linearity in
the computation.

For simplicity, let us focus on the simpler goal of computing a single Xor-
then-Not-Threshold gate. Our ideas easily extend to the more general setting.
To compute such a gate, we proceed in three simple steps.

— First, bitwise xor the input string  with another string y, where y is hard-
wired in the circuit description.

— Next, sum the elements in the string = @ y.

— Finally, compare the summation with the threshold ¢ (defined by the gate).

For the first step, let @ and b be two bits at (say) the i*" coordinate of z and
y, respectively. Then a®b =1 if and only if a = 0Ab =1 or a = 1Ab = 0. Hence,
a®b=(1—a)-b+a-(1—D>). Since b is part of the circuit description, the right
hand side is a linear function of a over Z. For the second step, we simply sum over
the result of step 1 on all coordinates. Combining the first step and the second
step, this summation is still a linear function of x over Z, and thus we can use a
TDH for linear functions to compute such a summation. We note, however, that
the known construction of TDH in [13,25] is only for linear functions over Zs.
We therefore extend the TDH construction in [13,25] to arbitrary polynomial
modulus. In our case, since the summation cannot be more than n, it suffices to
choose the modulo (n + 1).

We now proceed to express the comparison in the third step as a linear
function. We start with a simpler case. Suppose that the summation obtained
from the second step is sum € {0,1,2,...,n} and we want to compare it
with a threshold ¢. Let 1g,, denote the indicator vector of x, i.e., lsym =
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(0,0,...,0,1,0,...,0), where the (sum+1)*® coordinate is 1, and all other coor-
dinates are 0. Then, we have that

sum < t <= (loym, 1<) =1,

where 1., = (1,1,...,1,0,...,0) is a vector with 1’s on the first ¢ coordinates,
and 0’s on the remaining coordinates. We can therefore express the comparison
as the inner product between 1g,m and 1., which is a linear function over lgym.
Hence, such a comparison can be computed by a TDH for linear functions over
Zs.

The above discussion is oversimplified, however, since the sender and the
receiver do not have the value sum. Instead, at the end of the “previous” TDH
execution, the sender and the receiver only obtained encoding e and a decoding
d, respectively, such that (e +d) mod R = sum. Fortunately, we can still express
the comparison (e +d) mod R < t as

(e+d)mod R<t <= (le,1j«4) =1,

where 1. is the indicator vector for e and 1; <+ = Z;;E 1(j—d) mod r- This expres-
sion works because comparing (e+d) mod R < t is equivalent to checking if there
exists a 0 < j < t such that (e+d) mod R = j, which is equivalent to checking
whether e = (j — d) mod R. Note that the right hand side of this formula is a
linear function of 1, and can thus be computed using a TDH for linear functions
over Zs.

In the above two executions of TDH, the sender processes e from the first
TDH execution to obtain 1., and uses it as the input to the second TDH. The
receiver processes d from the first TDH execution to obtain 1;.;, and uses
it as the function for the second TDH execution. Note that this intermediate
processing is non-linear, since computing the indicator vector can be done by
several equality checks, and equality check is not a linear function. Hence, it
introduces the necessary non-linearity in the computation, but is done “outside”
of the TDH executions.

2.3 Constructing NIZKs

Armed with our construction of CIH, we now sketch the main ideas underlying
our construction of (statistical) multi-theorem NIZK for NP. We proceed in the
following two steps:

1. First, using CIH for TC®, we construct a non-interactive witness indistin-
guishable (NIWI) argument for NP in the common random string model.
Our construction satisfies either statistical WI and non-adaptive soundness,
or computational WI and adaptive soundness.

2. We then transform the above NIWI into an adaptive, multi-theorem NIZK for
NP in the common random string model via a variant of the Feige-Lapidot-
Shamir (FLS) “OR-trick” [28].° Our NIZK satisfies either statistical ZK and

5 By using “programmable” CIH, one could directly obtain NIZKs in the first step.
However, the resulting NIZK only achieves single-theorem ZK; hence an additional
step is still required to obtain multi-theorem NIZKs.
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non-adaptive soundness, or computational ZK and adaptive soundness. Cru-
cially, our transformation does not require “CRS switching” in the security
proof and hence works for both cases seamlessly while preserving the distri-
bution of the CRS in the underlying NITWI.

Statistical NIZKs. In the remainder of this section, we focus on the construc-
tion of statistical NIZKs. We briefly discuss the steps necessary for obtaining the
computational variant (with adaptive soundness) at the end of the section.

Towards implementing the first of the above two steps, we first build the
following two ingredients:

— A lossy public key encryption scheme with an additional property that we
refer to as low-depth decryption, from DDH. Roughly speaking, this property
requires that there exists a TCY circuit Dec that takes as input any ciphertext
ct and a secret key sk, and outputs the correct plaintext.

— A trapdoor sigma protocol for NP with bad challenge function in TC from the
above lossy public key encrytion scheme. We also require the trapdoor sigma
protocol to satisfy an additional “knowledge extraction” property, which can
be viewed as an analogue of special soundness for trapdoor sigma protocols.
Looking ahead, we use this property to construct NIWIs with argument of
knowledge property, which in turn is required for our FLS variant.

Lossy Public Key Encryption. The lossy public key encryption we use is
essentially the same as in [3,40,51]. We start by briefly describing the scheme.

(lgC

1 b
A public key pk = B g } is a matrix of elements in a group G. When the

matrix L‘ ﬂ is singular (i.e., ¢ = ab), then the public key is in the “injective

mode” and the secret key is sk = a; when the matrix is non-singular (i.e., ¢ # ab),
then the public key is in the “lossy mode.” The encryption algorithm is described
as follows:

c(pome e ) - [ ] b 2] o]

Let us now argue the low-depth decryption property. Let [c1,c2]T denote
the ciphertext obtained by encrypting a message m using an injective mode
public key pk with secret key sk = a. To decrypt the ciphertext, we can compute
;- ca = g™ and then comparing with 1g to recover m. However, it is not
known whether ¢;® can be computed in TC (recall that a depends on the
security parameter).

Towards achieving the low-depth decryption property, we use the following

observation. Let ag, a1, ...ay) be the binary representation of a. Then, we have

that o) 40 iy 2 o2 RN
(cf) ~<cf) -(cf) ~...-(cf ) ccp =g
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0 1 A
Note that given [c1,co]T, one can “precompute” 0;2 ,cf2 ,...,cf2 with-
out using the secret key sk. In our application to NIZKs and Zaps, such pre-
computation can be performed by the prover and the verifier.

We leverage this observation to slightly modify the definition of low-
depth decryption to allow for a deterministic polynomial-time “pre-
computation” algorithm PreComp. Specifically, we require that the output of
Dec(PreComp(1*,ct),sk) is the correct plaintext m. We set PreComp(1*,

0 1 A 0 1
c) = (cf2 ,cfz ,...,cfz ,¢2), and allow the circuit Dec to receive cfz 70;2 ,
A
e cf2 ,co and ag,aq,...,ay as input. The decryption circuit Dec proceeds in
the following steps:
— For each ¢ = 0,1,..., A, it chooses g; to be either 1g or cfQi, such that

gi = (c] 2i)‘“. This computation can be done in constant depth, and is hence

in TCY.

— Multiply the values gg, g2, - . ., gx and co. From [52], this iterative multiplica-
tion can be computed in TC® when we instantiate G as a subgroup of Zy.

— Compare the resulting value with 1g. If they are equal, then output 0. Oth-
erwise output 1.

Since each of the above steps can be computed in TC?, we have that Dec is
also in TCC.

Trapdoor Sigma Protocol for NP. Recently, Brakerski et al. [13] constructed a
“commit-and-open” style trapdoor sigma protocol where the only cryptographic
primitive used is a commitment scheme. Crucially, the bad challenge function for
their protocol involves the following two computations: extraction from the com-
mitment, and a post-extraction verification using 3-CNF. By exploiting the spe-
cific form of their bad challenge function, we construct a trapdoor sigma protocol
for NP with our desired properties by simply instantiating the commitment scheme
in their protocol with the above lossy encryption scheme.

Let us analyze the bad challenge function of the resulting trapdoor sigma
protocol. Since our lossy public key encryption satisfies the low-depth decryption
property, the first step of the bad challenge computation can be done in TCO.
Next, note that the second step of the bad challenge computation is also in TC"
since it involves evaluation of 3-CNF which can be computed in AC®. Thus, the
bad challenge function is in TC°.

We observe that our protocol also satisfies a knowledge extraction property
which requires that one can efficiently extract a witness from a single accepting
transcript (o, §,7) by using a trapdoor (namely, the secret key of the lossy public
key encryption), if 8 does not equal to the output of the bad challenge function
evaluated on «. We use this property to construct NIWIs with argument of
knowledge property.

NIWI from Fiat-Shamir via CIH. We construct NIWI arguments in the
CRS model by using CIH to collapse the rounds of our trapdoor sigma protocol
repeated A times in parallel. The CRS of the resulting construction contains
a public-key of lossy public key encryption scheme from above and a CIH key.
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When the public key is in lossy mode, the NIWT achieves statistical WI property
and non-adaptive argument of knowledge property.

To prove the argument of knowledge property, we observe that for any
accepting transcript ({ci}icin, {Bi}icn), {Vitiepy), it follows from correlation
intractability of the CIH that {3;};c[y is not equal to the outputs of the bad
challenge function evaluated on {a;};c[x. Hence, there exists at least one index
1" such that 3;« is not equal to the output of the bad challenge function on ;.
We can now extract a witness by relying on the knowledge extraction property
of the i*-th parallel execution of the trapdoor sigma protocol.

From NIWI to Multi-theorem NIZK. The FLS “OR-trick” [28] is a stan-
dard methodology to transform NIWIs (or single-theorem NIZKs) into multi-
theorem NIZKs. Roughly speaking, the trick involves supplementing the CRS
with an instance (say) y of a hard-on-average decision problem and requiring
the prover to prove that either the “original” instance (say) = or y is true. This
methodology involves switching the CRS either in the proof of soundness or
zero-knowledge, which can potentially result in a degradation of security. E.g.,
in the former case, one may end up with non-adaptive (computational) sound-
ness while in the latter case, one may end up with computational ZK even if the
underlying scheme achieves statistical privacy. The instance y also needs to be
chosen carefully depending on the desired security and whether one wants the
resulting CRS to be a reference string or a random string.

We consider a variant of the “OR-trick” that does not require CRS switching
and preserves the distribution of the CRS of the underlying scheme. We sup-
plement the CRS with an instance of average-hard search problem, where the
instance is subjected to the uniform distribution. For our purposes, the discrete
logarithm problem suffices. The ZK simulator simply uses the secret exponent
of the discrete-log instance in the CRS to simulate the proof. On the other
hand, soundness can be argued by relying on the computational hardness of
the discrete-log problem. One caveat of this transformation is that the proof
of soundness requires the underlying NIWI to satisfy argument of knowledge
property. We, note, however, that this property is usually easy to achieve (in the
CRS model).

Using this approach, we obtain statistical multi-theorem NIZK arguments
in the common random string model from sub-exponential DDH. Previously,
group-based statistical NIZKs were known only in the common reference string
model [34].

We remark that the above idea can be easily generalized to other settings. For
example, starting from LWE-based single-theorem statistical NIZKs [50], one can
embed the Shortest Integer Solution (SIS) problem in the CRS to build multi-
theorem statistical NIZKs in the common random string model. This settles an
open question stated in the work of [50].

Computational NIZKs with Adaptive Soundness. Using essentially the
same approach as described above, we can also construct computational NIZKs
for NP with adaptive soundness. The main difference is that instead of using lossy
public-key encryption scheme in the construction of trapdoor sigma protocols,



18 A. Jain and Z. Jin

we use ElGamal encryption scheme [27]. Using the same ideas as for our lossy
public-key encryption scheme, we observe that the ElGamal encryption scheme
also satisfies low-depth decryption property. This allows us to follow the same
sequence of steps as described above to obtain a computational NIZK for NP
with adaptive soundness in the common random string model.”

2.4 Constructing Zaps

At a high-level, we follow a similar recipe as in the recent works of [2,32] who
construct statistical Zap arguments from quasi-polynomial LWE.

The main idea in these works is to replace the (non-interactive) commitment
scheme in a trapdoor sigma protocol with a two-round statistical-hiding com-
mitment scheme in the plain model and then collapse the rounds of the resulting
protocol using CIH, as in the case of NIZKs. Crucially, unlike the non-interactive
commitment scheme that only allows for extraction in the CRS model, the two-
round commitment scheme must support extraction in the plain model. The key
idea for achieving such an extraction property (in conjunction with statistical-
hiding property) is to allow for successful extraction with only negligible but
still much larger than sub-exponential probability (for example, 9 log’ A [37).
By carefully using complexity leveraging, one can prove soundness of the result-
ing argument system.

Statistical-Hiding Commitment with Low-depth Extraction. We imple-
ment this approach by replacing the lossy public-key encryption scheme in our
NIWTI construction (from earlier) with a two-round statistical hiding commit-
ment scheme. Since we need the bad challenge function of the sigma protocol to
be in TCY, we require the commitment scheme to satisfy an additional low-depth
extraction property.

To construct such a scheme, we first observe that the construction of (public-
coin) statistical-hiding extractable commitments in [2,32,37,39] only makes
black-box use of a two-round oblivious transfer (OT) scheme. We instantiate
this generic construction via the Naor-Pinkas OT scheme based on DDH [45].
By exploiting the specific structure of the generic construction as well as the fact
that Naor-Pinkas OT decryption can be computed in TCY, we are able to show
that the extraction process can also be performed in TC®. We refer the reader
to the full version for more details.

3 Preliminaries

For any positive integer N € Z, N > 0, denote [N] = {1,2,...,N}. For any
integer R > 0, and x € Zg, 0 < x < R, the indicator vector 1, of x is a vector

" We note that one could obtain computational NIZKs with adaptive soundness by
simply “switching the CRS” in our construction of statistical NIZKs. However, the
resulting scheme in this case is in the common reference string model.
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in {0, 1}%, where the (z + 1) position is 1, and all other coordinates are zero.
A binary relation R is a subset of {0,1}* x {0,1}*.

Statistical Distance. For any two discrete distributions P,(Q, the statisti-
cal distance between P and Q is defined as SD(P,Q) = >, |Pr[P =] —
Pr[Q =i |/2 where 7 takes all the values in the support of P and Q.

Hamming Distance. Let n be an integer, and S be a set, and =z =
(x1,22,...,2,) and (y1,y2,--.,Yn) be two tuples in S™, the Hamming distance
Ham(z,y) is defined as Ham(z,y) = [{i | z; # yi }|-

Threshold Gate. Let x1, 22, ..., %, be n binary variables. A threshold gate is
defined as the following function:

Thy(xy, 2o, ...
(1,22 0 Otherwise

() = {1 Lien) i 2 ¢

Not-threshold Gate. A not-threshold gate Th, is the negation of a threshold
gate.

Threshold Circuits and TC’. A threshold circuit is a directed acyclic graph,
where each node either computes a threshold gate of unbounded fan-in or a
negation gate.

In this work, for any constant L, we use TC% to denote the class of L-depth
polynomial-size threshold circuits. When the depth L is not important or is clear
from the context, we omit it and simply denote the circuit class TCOL as TCO.
The not-threshold gate is universal for TC?, since we can convert any threshold
circuit of constant depth to a constant depth circuit that only contains not-
threshold gates. The conversion works as follows: for each negation gate, we
convert it to a not-threshold gate with a single input and threshold ¢ = 1. For
each threshold gate, we convert it to a not-threshold gate with the same input
and threshold and then compose it with a negation gate, where the negation
gate can be implemented as a not-threshold gate.

We defer more preliminaries to the full version.

4 Interactive Trapdoor Hashing Protocols

In this section, we define interactive trapdoor hashing protocols (ITDH). At a
high-level, ITDH is a generalization of trapdoor hash functions — which can be
viewed as two-round two-party protocols with specific structural and communi-
cation efficiency properties — to multi-round protocols.

More specifically, an interactive trapdoor hashing protocol involves two par-
ties — a sender and a receiver. The sender has an input x, while the receiver has
a circuit f. The two parties jointly compute f(x) over several rounds of interac-
tion. We structure the protocols in multiple levels, where a level consists of the
following two successive rounds:
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— The receiver generates a key k and a trapdoor td using a key generation
algorithm KGen, which takes as input the circuit f, the level number, and
some additional internal state of the receiver. Then it sends k to the sender.

— Upon receiving a key k, the sender computes a hash value h and an encoding
e using the algorithm Hash&Enc, which takes as input z, the key k, the level
number, and the previous level encoding. Then it sends the hash h to the
receiver, and keeps e as an internal state.

Finally, there is a decoding algorithm Dec that takes the internal state of the
receiver after the last level as input, and outputs a decoding value d. Ideally, we
want the output f(x) to be e ®d.

In the following, we proceed to formally define this notion and its properties.

Per-level Security Parameter. In our formal definition of ITDH, we allow the
security parameter to be different for every level. This formulation is guided by
our main application, namely, constructing correlation-intractable hash functions
(see Sect. 6). Nevertheless, we note that ITDH could also be meaningfully defined
w.r.t. a single security parameter for the entire protocol.

4.1 Definition

Let C = {Ch,u}n,u be a family of circuits, where each circuit f € C,,, is a
circuit of input length n and output length w. An L-level interactive trap-
door hashing protocol for the circuit family C is a tuple of algorithms ITDH =
(KGen, Hash&Enc, Dec) that are described below.

We use A1,...,Ar to denote the security parameters for different levels.
Throughout this work, these parameters are set so that they are polynomially
related. That is, there exists a A such that Aq,..., A\p are polynomials in .

~ KGen(1*¢, ¢, f,hy_1,tdg_1): The key generation algorithm takes as input a
security parameter A\, (that varies with the level number), a level number ¢,
a circuit f € C, 4, a level (¢ — 1) hash value h,_; and trapdoor td,_; (for
¢ =1,hy_y =tdy_; = L). It outputs an ¢! level key k, and a trapdoor td,.

— Hash&Enc(ks, z,e¢—1): The hash-and-encode algorithm takes as input a level
¢ hash key kg, an input z, and a level (¢ — 1) encoding e;_;. It outputs an
¢*" level hash value h, and an encoding e, € {0,1}*. When ¢ = 1, we let
€1 = 1.

— Dec(tdy, hy,): The decoding algorithm takes as input a level L trapdoor tdy,
and hash value hy, and outputs a value d € {0, 1}*.

We require ITDH to satisfy the following properties:

— Compactness: For each level £ € [L], the bit length of hy is at most A,.
— (4, ¢)-Approximate Correctness: For any n,u € N, any circuit f € Cy, ,
and any sequence of security parameters (Ay,...,Ar), we have
Pr [V €{0,1}",Ham(e® d, f(z)) < A(u)] > 1 — e(u, A1,...,AL),
T1,72,..-,TL
where e, d are obtained by the following procedure: Let hg = tdg = ¢y = L.
For¢=1,2,...,L,
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e Compute (k¢,tds) < KGen(1*¢, ¢, f,hy_1,tds_1;7¢) using random coins 7.
e Hash and encode the input x: (hy,e;) < Hash&Enc(ke, z,e,-1).
Finally, let e = e;, be the encoding at the final level, and d = Dec(tdy, hz,).
— Leveled Function Privacy: There exist a simulator Sim and a negligible
function v(-) such that for any level £ € [L], any polynomials n(-) and u(-) in
the security parameter, any circuit f € Cy, ,, any trapdoor td’ € {0, l}hd@*l‘,
any hash value h’ € {0,1}/"~1! and any n.u. PPT distinguisher D,

Pr [(ke, tdg) < KGen(17, ¢, f, 1, td") : D(1M, ko) = 1]
— Pr [Eg — Sim(1, 1", 1%, ¢) : D(1™ k,) = 1} ‘ <v(N).

We say that the ITDH satisfies sub-exponential leveled function privacy, if
there exists a constant 0 < ¢ < 1 such that for any n.u. PPT distinguisher,
v(A¢) is bounded by 2*¢ for any sufficiently large .

Note that since the security parameters for different levels are polynomially
related, n(-) and u(-) are polynomials in A, iff they are polynomials in .

Relationship with Trapdoor Hash Functions. A 1-level ITDH is essentially
the same as TDH, except that in TDH, there are two kinds of keys: a hash key
and an encoding key. In particular, a hash value is computed using the hash key
and can be reused with different encoding keys for different functions. In 1-level
ITDH, however, the receiver’s message only consists of one key that is used by
the sender for computing both the hash value and the encoding. Therefore, the
hash value is not reusable for different functions.

We choose the above formulation of ITDH for the sake of a simpler and
cleaner definition. Moreover, if we consider multi-bit output functions, then the
above difference disappears, since we can combine multiple functions into one
multi-bit output function and encode it using one key.

5 Construction of ITDH

In this section, we construct an interactive trapdoor hashing protocol (ITDH)
for TCY circuits. We refer the reader to Sect. 2 for a high-level overview of our
approach. The remainder of this section is organized as follows:

— Depth-1 Circuits: In Sect. 5.1, we first construct a 2-level ITDH protocol for
T — roughly speaking, a family of depth-1 Xor-then-Not-Threshold circuits
(see below for the precise definition of 7).

— Sequential Composition: Next, in Sect. 5.2, we present a sequential com-
position theorem for ITDH where we show how to compose L instances of a
2-level ITDH for some circuit family to obtain a 2L-level ITDH for a related
circuit family.

— Construction for TC": Finally, in Sect. 5.3, we put these two constructions
together to obtain an ITDH for TCY.
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5.1 ITDH for T©

We start by introducing some notation and definitions.

XOR-then-Compute Circuits. Let C = {Cy, 4, }n,. be a circuit family, where
for any n and u, C, , contains circuits with n-bit inputs and wu-bit outputs. For
any C, we define an Xor-then-Compute circuit family C® = {C?,, },,,., consisting
of circuits that first compute a bit-wise xor operation on the input with a fixed
string and then compute a circuit in C on the resulting value.

Specifically, C;?, contains all the circuit C®¥ : {0,1}" — {0,1}*, where

y € {0,1}" and there exists a C € C,,, such that for every x € {0,1}",

C%(z) =Clzdy).

Circuit Families 7 and 7®. We define a circuit family 7 = {7}, 4, }n . consist-
ing of depth-1 not-threshold circuits, i.e., a single layer of not-threshold gates
(see Sect. 3). Specifically, 7y, ,, contains all circuits T77: {0,1}" — {0, 1}* where

t = {t1,...,t,} is a set of positive integers, and I= {L,...,I,} is a collection
of sets I; C [n] s.t. for any € {0,1}",

Ty p(z) = (Thy, (z[L1]), ..., The, (z[L]))

where for any index set I; = {i1,42,...,%w} C [n], we denote x[[;] = (4, 24, - ..,
x;, ) as the projection of string z to the set I;.
The function family 79 = {7,7,}, . is defined as the Xor-then-Compute

family corresponding to 7. We denote the circuits in 7,3, as T?;‘i, where £, T
and y are as defined above.
For a high-level overview of our construction, see Sect. 2.2. We now proceed

to give a formal description of our construction.

Construction of ITDH for 7®. We construct a 2-level interactive trap-
door hashing protocol ITDH = (KGen, Hash&Enc,Dec) for the circuit family
T9 as defined above. Our construction relies on the following ingredient: a
trapdoor hash function TDH = (TDH.HKGen, TDH.EKGen, TDH.Hash, TDH.Enc,
TDH.Dec) for the linear function family F = {F,, r}n, r that achieves 7-enhanced
correctness and function privacy.

For ease of exposition, we describe the algorithms of ITDH separately for each
level. The first level algorithms of ITDH internally use TDH to evaluate a circuit
(defined below) with input length ny = n and modulus Ry = n + 1. The second
level algorithms of ITDH internally use TDH to evaluate another circuit (defined
below) with input length ny = R; - u and modulus Ry = 2. We use A; and Ag
to denote the security parameters input to the first and second level algorithms,
respectively.
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— Level 1 KGen(1*:, 1,T?Ig, hg = L,tdg = L):
e Sample a hash key of TDH w.r.t. security parameter \;, input length
ny =n and modulus By =n +1

hky « TDH.HKGen(1*, 1= 1f1=nt)
e Parse [ = {I,...,I,}. For every i € [u], sample an encoding key:
(ekq,i, td1 ;) < TDH.EKGen(hky, XorSumy, )

where for any set I C [n], XorSumy , is the linear function described in
Fig. 2.
° Output (kl,tdl) where k1 = (1, hkl, {eku}ie[u]) and td1 = {tdl,i}ie[u]'
— Level 1 Hash&Enc(ky,z,e0 = L):
e Parse ky = (1, hky, {eki i }iepu)-
e Compute “first level” hash over z: h; « TDH.Hash(hky, x)
e For every i € [u], compute a “first level” encoding: e;; <« TDH.Enc
(eku, ,CE)
e Output (hy,e;), where e = {e1i }ic[u]-
— Level 2 KGen(1*2,2,T§P;i,h1,td1):
e Parse td; = {tdlyi}ié[u]. For every i € [u], decode hy: di; « TDH.Dec
(td1,4,h1)
e Sample a new hash key of TDH w.r.t. security parameter Ao, input length
no = Ry - u and modulus Ry = 2,

hky < TDH.HKGen(12, 1m2=Fuu 1R2=2)
e Parse t = {t1,...,t,}. For each i € [u], sample a new encoding key
(ekgyi, tdgyi) — TDHEKGen(th, AddThi,ti,dly,;);

where for any index ¢ € [u], positive integer ¢ and value d € Zg,,
AddTh; ¢ 4 is the linear function defined in the Fig. 3.
e Output (kg,td2), where ko = (2, hko, {eka; }ic[u)) and tda = {td2; }ic[u)-
— Level 2 Hash&Enc(ks, z,e;):
e Parse kQ = (2, th, {ek27i}ie[u}), and € = {el,i}ie[u].
e Compute “second level” hash over {1, ,}ic[u], Where 1. is the indicator
vector for any e.

hy < TDH.Hash(hka, {Le, , }icfu)

e For any i € [u], compute “second level” encoding: e;; < TDH.Enc(eky ;,
{]181,7' }]E[u])
e Output (h,ez), where es = {2 }ic(y))-
— Decoding Dec(tds, hs):
e Parse tdy = {tda;}ic[y)- For every i € [u], decode hy: da; <~ TDH.Dec
(tdg’“ hg)
L] Output d= {dQ,i}ie[u]-

This completes the description of ITDH. We defer the proof of approximate
correctness and leveled function privacy to the full version.
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Linear Function XorSumy ,(z1,...,x,) over Zg,

— Let Yy = (y17927-~ . >yn)
— Compute and output » ;@i - (1 — ;) + (1 —x4) - ys.

Fig. 2. Description of the linear function XorSumy ,. This function computes the sum
over Zg, of I values obtained by bit-wise XOR of y[I] and z[I], where z = (z1,...,Zn).

Linear Function AddTh; ; 4(&) over Z

— Let & = (e1,...,®,), where e; € {0, 1} for every j € [u].

— Compute and output the inner product: (e;,f) mod 2, where f =
Z§;é 1(j—d) mod B, i the sum of indicator vectors for (j —d) mod R, for
0<j<t.

Fig. 3. Description of the linear function AddTh; ;4. For any e1,es,...,e, € Zg,, this
function computes whether (e; + d) mod R; is less than the threshold ¢. The actual
input & to the function is such that e; is the indicator vector for e;.

5.2 ITDH Composition

In this section, we establish a sequential composition theorem for ITDH. Roughly
speaking, we show how a 2-level ITDH for an “Xor-then-Compute” circuit family
can be executed sequentially L times to obtain an ITDH for a related circuit
family (the exact transformation is more nuanced; see below). The main benefit
of sequential composition is that it can be used to increase the depth of circuits
that can be computed by ITDH.

We start by introducing some notation and terminology for circuit composi-
tion that we shall use in the sequel.

Parallel Composition. Let w be a positive integer. Informally, an w-parallel
composition of a circuit f’ is a new circuit f that computes w copies of f’
in parallel. More formally, for any circuit family C, we define a corresponding
parallel-composition circuit family as follows:

Definition 1 (Parallel Composition). For any circuit family C and any
polynomial w = w(n), we say that C[W] = {C[W]n u}tnu is a family of w-parallel
composition circuits if for every f € C[’L_U>]n7u, there exists a sequence of circuits
f1o 85, oo fry € Cor oy such that n = n' - w(n) and u = v’ - w(n), and for any
input © = (21, T, ..., L) € {0,13" (where every z; € {0,1}" ), we have

f(xhx?’ s ,.%‘w) = (f{(xl),fé(l?), .- 7f1/u(xw))

Parallel-and-Sequential-Composition. For any circuit family C, we now
define another circuit family obtained via parallel and sequential composition
of circuits in C.
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Informally speaking, for any polynomials w(n) and L(n) and an integer s,
a w-parallel-and- L-sequential-composition of a circuit family C is a new circuit
family C[FL)] = {C[Fﬂn,s}n,s, where each circuit f € C[E]n,s is computed by a
sequence of circuits fi, fa,..., fr. For any input z, to compute f(z), we firstly
evaluate f; on input z, then use the output fi(z) as the input to the circuit
f2, and so on, such that the output of f; is the output of f. Furthermore, we
require that for every ¢ € [L], f; is an m-parallel composition of some sequence
of circuits f; 1, f72,---, f1,, € C. For the ease of presentation, we fix the output
length of the circuit f, for every ¢ < L as s, and the output length of f as w.

Definition 2 (Parallel-and-Sequential-Composition). Let C = {Cp u}n.u
be a circuit family, where each circuit in C, ., has input length n and output le_@gth
u. For any polynomials w = w(n), L = L(n), and integer s, we say that C[[}] =
{C [E]ns}ns is a family of w-parallel-and-L-sequential-composition circuits if
every circuit f € C[E]ms is of the form

f=frofr—io...0f1

where for every £ € [L], fo: {0,1}™ — {0,1}™+1 satisfies n1 = n,ny = n3g =
... =mngp_1 = s,ng, = w. Furthermore, there exists a sequence of integers {n}}
and circuits {fé,j}ZG[L],je[w]; where flf)j € C"Zv”ZH’ and ng =nj - w,

fg(ﬂ?l, s 71'w) = (fé,l(zl)a fé,Q(xQ)a e '7fé,w(xw))

for every & = (21,...,2y) € {0,1}" where x; € {0,1}™ for every i € [w].

Construction of ITDH for C[E] Let C = {Chu}n,u be any circuit fam-
ily, and let C[w] be the corresponding w-parallel composition circuit family.
Let C[w]® = {C[W]¥ ,}nu be the “Xor-then-Compute” circuit family defined
w.r.t. C[w]. Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be a 2-level
interactive trapdoor hashing protocol for C[w]® = {C[wW]¥ , }nu with (4, €)-
approximate correctness and leveled function privacy.

Given ITDH, we construct a 2L-level interactive trapdoor hashing protocol
ITDH" = (KGen, Hash&Enc, Dec) for the circuit family C[FL] as defined above. For
ease of exposition, we describe the algorithms of ITDH’ for “odd” and “even”
levels separately.

— Level ¢/ =20 — 1, KGen(1*¢ . ¢/, f hyr_1,tdp_1):
e If /=1, set dy to be an all zero string of length n.
e If ¢ > 2 decode hyr—1: dy—q < ITDH.Dec(tdp—1,hpr—1)
e Let f1,...,fr, be such that f = fr o fr_10...0 f1 (as defined above),
where f; has input length n, and output length ny1.
e Compute a key w.r.t. security parameter Ay and the “Xor-then-Compute”
circuit f29" e C[w)®

Mg, Me+1

(ke,tdr1) — ITDH.KGen(1*e 17 1, f 291 1 1),
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o Output (kg ,tdy) where ky = (¢, kg1) and tdy = td ;.
— Level ¢/ =2¢ — 1, Hash&Enc(ke:, z,ep_1):
e If / =1, let xy = x, otherwise, let xy = e;_1. Execute

(h¢,1,e01) < ITDH.Hash&Enc(kg,1, x, L)
e Output (hy = hg 1,60 = (74,€01)).

— Level ¢/ = 2¢, KGen(1*¢', ¢/, f hy_1,tdp_1):
e Parse hyy_; =hy 1, and tdy—; =tdg ;.

(kpo,tdg o) — ITDH.KGen(1 17,2, f24 " hyy,tdys)

e Output (ke ,tds), where kpr = (¢, ke 2), and tdy = tdg 2.
— Level ¢/ = 2¢, Hash&Enc(kg, x,ep_1):

e Parse ep—1 = (x4,e01), ke = ke 2.

o Output (hy,ep) « Hash&Enc(ke 2, 24, €01).
— Decoding Dec(tdzy,, hay):

. Output d«— |TDH.DeC(td2L, hQL).

This completes the description of ITDH’. We defer the proof of approximate
correctness and leveled function privacy to the full version.

5.3 ITDH for TC®

We now describe how we can put the above constructions together to obtain
an ITDH for TC’. Recall that, we use the notation TC} to denote the class of
L-depth TC? circuits.

Let T[Fﬂ be the circuit family obtained by w-parallel-and-L-sequential com-
position of the circuit family 7, as per Definition 2. We first show that any
circuit in TCY can be converted to a circuit in 7 [f_’i]

Lemma 1. TCY can be computed in ’T[E:] Specifically, for any circuit f € TCY
with n bit input and w output bits, we convert it in polynomial time to a circuit
"€ T[] such that, for any x € {0,1}", f(z) = f'(z,2,...,2).

We defer the proof to the full version.

Next, we combine the construction of ITDH for the circuit family 79 from
Sect. 5.1 together with the sequential composition theorem in Sect. 5.2 to obtain
an ITDH for the circuit family T[Fi], and therefore an ITDH for TCY.

Theorem 4. If for any inverse polynomial T in the security parameter, there
exists a trapdoor hash function TDH for linear function family F with T-enhanced
correctness and sub-exponential function privacy, then for any constants L =
O(1), a = O(1), and any polynomial w in the security parameter, there exists
a 2L-level interactive trapdoor hashing protocol for TCY that achieves (A, e)-
approzimate correctness and sub-exponential function privacy, where A(w) =
a-w and for any Ay < Xy < ... < dop < w/2L, e(w, \1,...,\p) = 272wHO0)

We defer the proof to the full version.

ITDH for P/poly. Since any circuit in P/poly can be converted to a layered
circuit as in Lemma 1, the above construction of ITDH for TC® can be naturally
extended to obtain a polynomial-level ITDH for P /poly.
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6 Correlation Intractable Hash Functions for TC°

In this section, we build correlation intractable hash functions for the circuit
family TCO.

6.1 Definition

Correlation intractable hash (CIH) function is a tuple of algorithms CIH =
(Gen, Hash) described as follows:

— Gen(1*): Tt takes as input a security parameter A and outputs a key k.
— Hash(k, x): Tt takes as input a hash key k and a string z, and outputs a binary
string y of length w = w(A).

We require CIH to satisfy the following property:

— Correlation Intractability: Recall that, a binary relation R is a subset
of {0,1}* x {0,1}*. We say that CIH is correlation intractable for a class of
binary relations {R}, if there exists a negligible function v(X) such that, for
any A € N, any n.u. PPT adversary A, and any R € R,

Pr [k — Gen(1*),z < A(1*,k) : (z,Hash(k,2)) € R] < v(})

We say that the CIH is sub-exponential correlation intractable, if there exists
a constants ¢ such that for any n.u. PPT adversary, its successful probability is
bounded by 27" for any sufficiently large .

Definition 3 (CIH for TC"). Let n(\),w()\) be polynomials. Let L = O(1)
be a constant. Recall that, we use TCOL to denote the class of L-depth threshold
circuits. We say that CIH is a CIH for TCY, if CIH is correlation intractable for
the class of relations {Rx}x, where Ry = {Ryx | f € TCY}, and

Ryx={(z,y) € {0,1}"™ x {0,1}*V | y = f(2)}

6.2 Our Construction

For any L = O(1), we show a generic transformation from an L-level ITDH for
TCY to a CIH for the same circuit family.

CIH for TC". Let ITDH = (ITDH.KGen, ITDH.Hash&Enc, ITDH.Dec) be an L-
level interactive trapdoor hashing protocol for the circuit class TC% that satisfies
the following properties:

~ (0.01w, 272w +O())_approximate correctness.

— Sub-exponential leveled function privacy. Let Sim be the leveled function pri-
vacy simulator. Let ¢ be the constant in the sub-exponential security defini-
tion.
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Correlation Intractable Hash CIH

— Gen(1?*):
e For cach ¢ € [L], set \p = Az(
e Compute simulated receiver’s messages for ITDH:

- \L—¢
5)

Ve € [L], ke « ITDH.Sim(1*¢, 1", 1%, ¢)

e Sample a mask mask < {0, 1}* uniformly at random.
e Output k = ({kg}gem,mask).
— Hash(k, z):
e Parse k = ({k¢} e[z, mask).
e Let ¢g = L. Compute hash values and encodings for ITDH:

Ve € [L], (he,ep) < ITDH.Hash&Enc(ke, z,e/—1).

e Output e @& mask, where e = ey,.

Fig. 4. Description of CIH.

We construct a correlation intractable hash function CIH = (CIH.Gen, CIH.Hash)

for TC% in Fig. 4.

Theorem 5 (Correlation Intractability). If w = 2()\), the construction in
Fig. 4 is sub-exponential correlation intractable for the circuit class TCOL.
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Abstract. We present an algorithm solving the ROS (Random inhomo-
geneities in a Overdetermined Solvable system of linear equations) prob-
lem mod p in polynomial time for £ > logp dimensions. Our algorithm
can be combined with Wagner’s attack, and leads to a sub-exponential
solution for any dimension ¢ with best complexity known so far.

When concurrent executions are allowed, our algorithm leads to prac-
tical attacks against unforgeability of blind signature schemes such as
Schnorr and Okamoto—Schnorr blind signatures, threshold signatures
such as GJKR and the original version of FROST, multisignatures such
as CoSI and the two-round version of MuSig, partially blind signatures
such as Abe-Okamoto, and conditional blind signatures such as ZGP17.
Schemes for e-cash and anonymous credentials (such as Anonymous Cre-
dentials Light) inspired from the above are also affected.

1 Introduction

One of the most fundamental concepts in cryptanalysis is the birthday paradoz.
Roughly, it states that among O(,/p) random elements from the range [0, p — 1]
(where p is a prime), there exist two elements a and b such that a = b, with high
probability. In a seminal work, Wagner gave a generalization of the birthday
paradox to ¢ dimensions which asks to find z; € L;,i € [0, — 1] such that
Zo+ -+ x—1 =0 (mod p), where L; are lists of random elements.

His work also showed a simple and elegant algorithm to solve the problem in
subexponential time O((£ + 1) - 2M1egPl/(+Loe(t+1) 1)) and explained how it could
be applied to perform cryptanalysis on various schemes. Among the most impor-
tant applications of Wagner’s technique is a subexponential solution to the ROS
(Random inhomogeneities in a Overdetermined Solvable system of linear equa-
tions) problem [Sch01, FPS20], which is defined as follows. Given a prime number
p and access to arandom oracle H, s with range in Z,,, the ROS problem (in dimen-
sion ¢) asks to find (¢ + 1) affine functions p; for i = 0,...,¢, (¢ + 1) bit strings
aux; € {0,1}" (with i € [0,£]), and a vector ¢ = (cg, .. ., ce—1) such that:

H,os(p;, aux;) = p;(c) for all ¢ € [0, 4].
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This problem was originally studied by Schnorr [Sch01] in the context of blind
signature schemes. Using a solver for the ROS problem, Wagner showed that the
unforgeability of the Schnorr and Okamoto-Schnorr blind signature schemes can
be attacked in subexponential time whenever more than O(log p) signatures are
issued concurrently. In this work, we revisit the ROS problem and its applica-
tions. We make the following contributions.

— We give the first polynomial time solution to the ROS problem for ¢ > logp
dimensions.

— We show how the above solution can be combined with Wagner’s techniques to
yield an improved subexponential algorithm for dimensions lower than log p.
The resulting construction offers a smooth trade-off between the work and
the dimension needed to solve the ROS problem. It outperforms the runtime
of Wagner’s algorithm for a broad range of dimensions.

— Finally, we describe how to apply our new attack to an extensive list
of schemes. These include: blind signatures [PS00,Sch01], threshold sig-
natures [GJKRO07,KG20a], multisignatures [STV+16,MPSW18a], partially
blind signatures [AO00], conditionally blind signatures [ZGP17, GPZZ19], and
anonymous credentials [BL13,Bra94] in a concurrent setting with ¢ > logp
parallel executions. While our attacks do not contradict the security argu-
ments of those schemes (which are restricted only to sequential or bounded
number of executions), it proves that these schemes are unpractical for some
real-world applications (cf. Sect. 7).

1.1 Technical Overview

Let Pgen(1%) be a parameter generation algorithm that given as input the secu-
rity parameter A in unary form, outputs a prime p of length A = [log p]. In this
work, we prove the following main theorem:

Theorem 1 (ROS attack). If{ > A, then there exists a (probabilistic) adver-
sary that runs in expected polynomial time and solves the ROS problem relative
to Pgen with dimension ¢ with probability 1.

Let B(x) := Z?:_Ol 2p,(x;) for functions p; where i € [0, X — 1]. If we can set
pi(z;) to be the multivariate polynomials that evaluate to 0 at the point ¢ and
to 1 at the point ¢} (fori € [0,¢ — 1]), then we can write any value y € [0,p—1] as
y=20B (080, ce, clg‘i‘ll), where the b; values are such that y = Zf‘;ol 2b;. Using this
idea, we first define all the functions py, ..., p,_; along with the corresponding
pairs of points c?,c} that are obtained as ci? := Hyos(p;,b). In a second step,
we choose p,(x) := B(x), and query y := Hys(py, auxs). Now, we can write
Yy = Ziz_ol 2¢h; which determines a point ci.” from every pair. We can output
the chosen points in ¢ along with the vector of affine functions (py,. .., p,) as a
solution to the ROS problem. (Note that p, = B(x) is also affine.) This attack
runs in expected polynomial time (since with small probability, H,.s produces
collisions, in which case steps need to be repeated) and works whenever £ > log p.
This requirement ensures that it is always possible to write any value with ¢
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terms in binary representation. To circumvent the restriction ¢ > log p, we prove
a second theorem:

Theorem 2 (Generalized ROS attack). Let L > 0 be an integer and w > 0
be a real number. If £ > max{2¥ — 1,[2% — 14+ X — (w+ 1) - L]}, then there
exists a (probabilistic) adversary that runs in expected time O(2+L) and solves
the ROS problem relative to Pgen and dimension ¢ with probability 1.

The idea of this attack is to combine the technique from the first attack with the
basic subexponential attack of Wagner. Instead of writing y entirely in binary
as above, which requires ¢ dimensions, we first find a sum s of 2% values which
include y, but satisfies |s| € [0, 5Pz — 1] (mod p). Note that s can be repre-
sented with A — (w 4+ 1) - L many bits in binary representation. This approach
requires, in total, [2¥ + A — (w+1)- L —1] dimensions and 2¥*% overall work. As
illustrated in Fig. 4, this leads to improvements over Wagner’s attack relatively
quickly as the dimension ¢ of the ROS problem increases. We remark that, while
in our first attack we give a concrete probability of failure, our second attack is
based on the conjecture that Wagner’s algorithm for Z, succeeds with constant
probability. While we are not aware of any formal analysis of Wagner’s algorithm
over Z,, we remark that it is considered a standard cryptanalytic tool [DEF+19].
Our attack can be seen as strictly improving over its (conjectured) performance
when applied to solve the ROS problem.

1.2 TImpact of the Attacks

Any cryptographic construction that bases its security guarantees on the hard-
ness of the ROS problem is affected by our attacks.

Blind Signatures. An immediate consequence of our findings is the first
polynomial-time attack against Schnorr blind signatures [Sch01] and Okamoto—
Schnorr blind signatures [PS00] in the concurrent setting with ¢ > logp parallel
executions.! Structurally, our attack builds on the one shown by Schnorr [Sch01],
who showed that a solver to the ROS problem can be turned into an attacker against
one-more unforgeability of blind Schnorr and Okamoto-Schnorr signatures. As a
concrete example, the attack in Sect.5 breaks one-more unforgeability of blind
Schnorr signatures over 256-bit elliptic curves in a few seconds (when implemented
in Sage [S+20]), provided that the attacker can open 256 concurrent sessions.

Other Affected Constructions. Our attack can be adapted to an extensive list
of schemes which include threshold signatures [GJKR07,KG20a], multisigna-
tures [STV+16, MPSW18a], partially blind signatures [AO00], conditionally blind
signatures [ZGP17, GPZZ19], blind anonymous group signatures [CFLW04], blind
identity-based signcryption [YWO05], and blind signature schemes from bilinear

! Okamoto-Schnorr signatures are proven secure only for £ parallel executions s.t.
Ql/p < 1, where @ is the number of queries to H;os. Our attack does not contradict
their analysis as our attack requires £ > log, p > logg p.
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Game ROSpgen a ¢(N) Oracle H,os(p, aux)
p + Pgen(1%) if Tros[p,aux] =L then
Tros = H Tros [p, aux] < Zp
((piyauxi) ;0. (1) jepo,e-1y) A (p) return T.os[p, aux]

return (Vi # j € (0,4, (pi,aux;) # (p;,aux;)
A Vi€ [0, 4], Zf;é ¢jpij + pit = Hros(pi, aux;))

Fig. 1. The ROSpge,, 4,0(A) game. Above, p;,; is the j-th coefficient of the polynomial
Py, ie, pi(®) = 350 piwi + pi-

pairings [CHYC05]. We note that some of the previous works claim security only
for non-concurrent executions or with a bounded number of executions; therefore,
our attacks do not contradict their security claims but render these schemes unsuit-
able for a broad range of real-world use cases.

Scope of Our Attacks and Countermeasures. Our attacks do not extend to the
modified-ROS [FPS20] and the generalized-ROS [HKLN20] problems. The con-
crete hardness of both problems remains an intriguing open question.

2 Preliminaries

In this work, we assume that logarithm is always base 2. Let again Pgen(1*)
be a parameter generation algorithm that given as input the security parameter
A in unary outputs a prime p of length A = [logp]. The ROS problem for
¢ dimensions, displayed in Fig.1, is hard if no adversary can solve the ROS
problem in time polynomial in the security parameter . i.e.:

AdVEgen a,0(A) = Pr[ROSpgen 4 ¢(A) = 1] = negl(}).

Alternative Formulations of ROS. Fuchsbauer et al. [FPS20, Fig. 7] present a
variant of ROSpge, 4.¢()) the gamewith linear instead of affine functions p; (i.e.,
where p; , = 0). Hauck et al. [HKL19, Fig. 3] allow only for linear functions, and
do not allow for auxiliary information aux within H,.s (i.e., where aux; = J_).2
These formulations are all equivalent.

First, any adversary A for ROS with affine functions as per Fig.1 can be
reduced to an adversary B for ROS with linear functions as per [FPS20]: B runs A
and for every query of the form ((p; 0, .., pi¢),aux;) to the oracle H,og (made by
A), it returns Hyos (04,05 - - -5 Pie—1), (piel|]aux;)) — pse. Finally, B modifies accord-
ingly the solution output by A by concatenating p; ¢ to the corresponding aux;.

Second, any adversary A for ROS with linear functions can be reduced
to an adversary B for ROS with linear functions and without auxiliary infor-
mation as per [HKL19]. We assume without loss of generality that .4 never

2 Qur attacks only apply to the case where the scalar set S is a finite field.
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makes twice the same query. Then B runs A and for every query of the form
((pi,0s---»Pie—1,0),aux;) to the oracle (made by A), it picks a random scalar
r € Z, and returns Hios((7- pios -y 7 pie—1), L) -7~ mod p. When A outputs
a solution (p;,aux;);c(o 4> (Cj)je[0,€—1]7 B outputs (7 - p;)ic0,0, (¢5)je[0,6—1]- The
simulation of the oracle H,.s is perfect unless there is a collision in the scalar r,
which happens with negligible probability in A.

3 Attack

In this section, we prove Theorem 1. We abuse notation and p; denotes both
the vector p; = (pio,...,pie) € Zf,“ and the corresponding affine function

—
pi(x) = Zj:é Pij * Tj + pie (Where @ = (2o, ..., 2¢-1)).

Proof (of Theorem 1). We construct an adversary for ROSpge, 44()), where
£ > log p. Recall that to simplify the description of the attack, we use a polyno-

mial formulation of ROS, i.e., we represent vectors p; = (p;0,...,pi¢) as linear
multivariate polynomials in Zy[zo, ..., z¢_1]:
Pi(To, .. Te—1) = pioTo+ -+ Pip—1Te—1 + pie - (1)

The goal for the adversary A is to output (p;,aux;)icp, and c =
(coy---,co—1) such that:

p;(c) = Hyos(p;, aux;) for all i € [0, 4].

Define:
p; = fori=0,...,4—1,

and find two strings aux? and aux} such that c¢? := H,.s(p;,aux;) are different
for b =0 and b = 1.3 Then, let:

Xr; — C?
1_ .0
G — ¢

[
Z; ‘=

for all i = 0,...,¢ — 1. We remark that, if z; = c?, then 2/ = b (for b = 0,1).
Define p, == Zf;é 2z’ and query y := H,os(py, L).Finally, write y in binary as:

-1
Y= Z 2'b;  (mod p).
i=0
(As 2° > p, it is possible to write y this way, and this implicitly defines the b;’s.)
The adversary A outputs the solution (py,aux?’), ..., (Ps_1, auxze_‘f), (pp, L) and

3 This step is the reason why the algorithm is expected polynomial time instead of
polynomial time. Note that, since aux € {0,1}", there will always be two values
aux?, aux; € {0,1}" so that ? # c;.
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c = (cSﬂ...,cZﬂ‘f). We have indeed that, for i € [0,£—1], p;(c) = & =
H,os(p;, aux?’) and:

-1 -1
pilc) =Y 21i(ec) =Y 2 =y = Hos(py, L) -
=0 =0

O

Remark 1. In [FPS20, Sec. 5], Fuchsbauer, Plouviez, and Seurin proposed a vari-
ant of ROS, called modified ROS. The attack above does not apply to modified
ROS.

4 Generalized Attack

We present a combination of Wagner’s subexponential k-list attack and the poly-
nomial time attack from Sect. 3. This combined attack yields a subexponentially
efficient algorithm against ROS which requires fewer dimensions than the attack
in the previous section (i.e., less than A = [log p]). However, for some practical
cases, the attack significantly outperforms Wagner’s attack in terms of work,
for the same number of dimensions. At a very high level, our attack works as
follows. We set ky = 2% — 1, ko = max(0, [A — (w + 1) - L]), and the dimension
{ = ki + ko, for some integer w and some real number L > 0.

First, we use a generalization of Wagner’s algorithm to find a “small” sum
s = yy, +---+y; of ky values y := —H,os(p;, aux;), where the polynomials p; ()
are chosen to make the second step of the attack work.* As we describe below,
we can obtain that |s| < 2¥271 using O(2**¥) hash queries and space O(w2F).
Then, we use the technique from the previous section in order to represent the
sum s as a binary sum of at most ko terms. Finally, we subtract the k1 — 1 terms
Yo s Yho k-1 = Yy to extract the term y7. This solves the ROS problem. The
attack runs in overall time O(2¥*L), space O(w2F), and requires £ = max (2% —
1, 2% =14+ XA — (w+1)-L]) dimensions.

We remark that the attack is a generalization of both Wagner’s attack and
our polynomial-time attack from Sect. 3. Wagner’s attack corresponds to the case
where L = A/(w + 1) and ¢ = 2% — 1. Our polynomial-time attack corresponds
to the case w =0, L =0, £ = \.

Examples. For a prime p of A = 256 bits, a concrete example yields w =5, L =
15, ie., £ = 32 + 256 — 6 - 15 — 1 = 197 dimensions and time roughly 22° and
space roughly 5 - 2!° (elements of Z,). On the other hand, Wagner’s algorithm
for 197 dimensions requires time roughly 2108197) . oTegtorrit — 97 . 232 — 939
and space roughly |log197] - 9 Toa 197171 = 7. 232,

For a 512 bit modulus, a concrete example yields w = 6, L = 46, i.e., { =
64 + 512 — 7-46 — 1 = 253 dimensions and time roughly 2° and space roughly

4 In the actual attack, part of the second step is executed before to allow to choose
these polynomials properly.
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6 - 246 Wagner’s algorithm for 254 dimensions requires time roughly llog 254
9Tes 355771 = 27 . 264 = 971 and space roughly |log 254 - 2 Tlog 255+1 Mog 255191 = 7. 2645

4.1 Generalized k-List Algorithm

In this section, we write elements Z, as signed integers in [—25%, 251]. Let w

and L be two positive integers. We define the following integer intervals:

I p—1 p—1
T T | 9tw—) Lt | | 9(w—i)-L+1

Remark that Z, = I,,.

We now describe the k-list algorithm, which is the core of the Wagner’s
algorithm. We generalize it to match our needs and to output elements that
sum to something in I_; rather than to exactly 0. (This essentially corresponds
to executing Wagner’s attack as usual, but stopping earlier.) The algorithm is
defined relative to random oracle H,os. It takes as input (w, L, pq, ..., p;) and
outputs (auxj,...,aux}) with k = 2% such that:

s=yi+-+yp€l1  wherey = Hyos(p;aux]) .

The high-level idea of the algorithm is to use 2%+! —1 lists of about 2~ values
organized as a tree, as depicted in Fig. 2, and to ensure that lists £} at level ¢
contains elements from the set I;.

— Setup/Leaves: k-List fills the lists £ in the leaves with 2° points of the
form H,os(p;,aux) € Z, = I, for aux € [1,2L].

— Collisions/Join: The algorithm now proceeds to find collisions in levels from
w to 1. At level i, process the 201 pairs of lists (£¢, £2),..., (£2:_1, £9:) into
201 lists Ezfl £Zw 1 as follows:

gl={a+b : a€ly ,,bell, atbel} .

(Remember that a,b € Z, and a + b is computed modulo p.) Moreover, we
implicitly assume that the algorithm stores back pointers to a and b s.t. they
can efficiently be recovered at a later point.

— Output: Let £° = £9 denote the (only) list created at level 1. The algorithm
finds an element s € £° such that s € I_;. If no such element exists, it
returns L. Otherwise, it recovers k = 2% strings auxj,...,aux; such that
Yy = Hyos(p;,auxt) € £ and s = yj + - -+ + y;. It returns (aux],...,aux}).

We formally write the algorithm k-List in Fig. 3.

5 Indeed, when considering the exact values of the constants in the asymptotics, the
p
actual complexity of Wagner’s attack is 21108¢+D] . o TrFITFT
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£9 C o
1
£1 £3 Ch
T
> >
2;”71 250*1 - 2;)1:}1 g Iw—l
Lo !
2N 7N 2N
2%} 2211; 2131) Q}f te 212’2_1 Séuw Cl,= Zp

Fig. 2. Tree of lists for the k-list algorithm (<t represents the join operation in the
algorithm; the sets in the right handside are the sets to which the elements of the lists
of a given level belong).

Correctness. We do not prove correctness of k-List in this work, since our algo-
rithm’s correctness is implied by the correctness of Wagner’s original algorithm.
More precisely, our algorithm performs identical steps as Wagner’s, but stops
upon finding a sum of values with a suitably small absolute value, i.e., one that
falls into Iy. On the other hand, Wagner’s algorithm keeps continuing with more
levels until it finds values who sum to 0. However, we remark that we are not
aware of a formal analysis of Wagner’s algorithm for values in Z,. The work
of Minder and Sinclair [MS09] analyses the case of finding a weighted sum of
vectors of Z, values that sum to zero in each component, but uses a different
technique from the one presented in Wagner’s paper (and used here). Our attack
can be seen as working under the assumption that Wagner’s algorithm works
correctly, i.e., has constant failure probability (see below). We can repeat the
attack until it succeeds, which makes the resulting algorithm expected polyno-
mial time. Formally analyzing the failure probability of Wagner’s algorithm over
7, remains an important open problem.

Complexity. Overall, the algorithm runs in time O(2%¥*+%) and is conjectured
to succeed with constant probability. (As described [Wag02], this running time
is made possible using an optimized join operation such as Hash Join or Merge
Join). The algorithm uses space O(2¥*1), but by evaluating the collisions/joins
in postfix order (in the tree), this can be reduced to O(w2%).
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Algorithm k-List™es (w, L, p1,. .., paw)

// Setup

V= {Heos(piy aux) }, ey ory for i € [1,2]

// Collisions
for i = w downto 1:
for j € [1,27"]:
2;_1 ={a+b:ac Eéj,l, be Egj, a+bel}
/| Output
look for an element s =y +--- +yj € £°N 14

if such an element does not exists then return _L

return (auxj,...,auxy) such that y; = Hyos(pi,aux;)

Fig. 3. The k-list algorithm.

4.2 Combined Attack
We now prove Theorem 2.
Proof. Recall that k; = 2% —1 and ke = max(0, [A—(w+1)-L]). Set £ = k1 + k.
For all i € [0, ¢ — 1], define:

pi =X,
and find two strings aux? and aux} with different hash values ¢? = H,os(p;, aux?)
and ¢} = H,os(p;,aux}). Then, let:

(
T — G

I_ 0
¢ — G

[
X; =

for all i € [0,ky — 1]. We remark that, if z; = ¢, then 2/ = b (for b = 0,1).

Define:
ka—1 1 ky4ko—1
7 I
ZQ _{ w+1)L+1J_ Z Li -

1=ko
Run (auxy,, . . .,auxy) = k-List" (w, L, Prys -+ Pyp) (Where k = ki +1 = 2v)
and define for i € [ko, £]:
Y; = Hios(p;, aux})
and ¢; ==y for i € [ka, ¢ — 1]. Set:

— * _ p— 1 D — 1
S = Z Y; el = [_ {2(w+1)'L+1J ’ LQ(w+1)~L+1J] ’ (2)

Write s + | (p — 1)/2(wH+D-L+1 | in binary as:

ko—1
1 p— 1
S {2(w+1 L+1J Z 20 € [07 {Q(wﬂ).LH J (3)
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Fig. 4. Concrete cost of our combined attack compared to Wagner’s [Wag02] for A =
256 and ¢ < 256. The color key indicates the different values of w used to estimate the

cost. For ¢ > 256, the attack of Sect. 3 applies.

which is possible since p < 2*, ky = A — (w+1)- L, hence (p—1)/2(w+D-L < 2kz,
Define:

{auxg" fori € [0,k —1] ,
aux; = "
aux;

for i € [k, k1 + ko] from k-List.
A outputs: (pgy,auxp), ..., (P, aux,) and:
b
c = (cgo7 .. ,Ck22,6k2+1, e Chgtky—1) -
We have indeed that:
b; b; .
i — Hyoe(ps,aux?®) fori € [0,ks —1] |
pi(e) = ci = { Ho(py a0t} for i € 01k - 1

yr = Hyos(py,auxt)  fori € [ko, k1 + ko — 1] .
and:
kg*l p _ 1 k1+k271
pi(c) = Z 2'zi(e) - \\2(w+1)'L+1J - Z ;i(c)
=0 i=ka
ko—1 p— 1 ki+ka—1
= Z qu,* \‘Q(UJ-‘rl)'L'&‘lJ - Z y'L
i=0 i=ka
ki1+ko—1
=S5 Z y: = y22+k1 = HroS(pév aux}) )

i=k2
where the third equality comes from Eq.2 while the fourth equality comes from

Eq. 3. The attack requires k; + kg = max{2¥ — 1,[2¥ =1+ A — (w+ 1) - L]}
dimensions, runs in time O(2¥*%) and in space O(w2%). O
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5 Affected Blind Signatures

For simplicity and clarity of exposition, we implement only the attack presented
in Sect. 3. Our attack can be easily adapted for the one presented in Sect. 4.

Throughout the remaining of this manuscript, we will assume the existence of
a group generator algorithm GrGen(1*) that, given as input the security param-
eter in unary form outputs the description I' = (G, p, G) of a group G of prime
order p generated by G. Similarly to Sect.2, we assume that the prime p is of
length A. We use additive notation for the group law.

5.1 Schnorr Blind Signatures

A Schnorr blind signature [Sch01, FPS20] for a message m € {0,1}* consists of a
pair (R, s) € G x Z, such that sG — cX = R, where ¢ := H(R,m) and X € G is
the verification key. A formal description of the protocol can be found in [FPS20,
Fig. 6], using the same notation employed here.

We construct a probabilistic (expected) polynomial-time adversary A that is
able to produce ¢ + 1 signatures after opening ¢ > [logp] = A parallel sessions.
A selects a message my € {0,1}* for which a signature will be forged. It opens ¢
parallel sessions, querying SIGNg() and receiving R = (Ry, ..., Re_1) € G*. Let
m? be a random message and ¢! == H(R;,m?) for i € [0,£ — 1] and b € {0,1}.
If @ = ¢!, two different messages m? and m} are chosen until ¢? # ¢}. Define
p, =Y, 2'z} as per Sect. 3, that is:

T
L

0
r; —C;
6 = ) PeiTi+ pes - (4)
¢ — ¢

=
po(o, .. 1) = 2'
i=0

Il
=)

i

Let Ry == py(R) — pes - X, where p,(R) denotes the evaluation of the affine
function p, over (Ry,...R¢_1). Define ¢; == H(R¢, my) = Zf;é 2ib; and let

c = (cg", e 7cl;_’ll). Complete the £ opened sessions querying SIGNl(@c?"), for
i € [0, —1]. The adversary thus obtains responses s = (sg,...,8¢—1) € Zf;
satisfying:

5iG — "X = R, for i € [0,¢ —1].

Let sy := p,(s). Then (my, (Re, s¢)) is a valid forgery. In fact, by perfect correct-
ness of Schnorr blind signatures, we have:

-1
Ro=py(R) = poeX = pei-Ri+pee- (G—X)
i=0
-1
= sz,i (8:G = X) + - (G = X)
i—0
=pe(s) G —pyle)- X
= S[G - CgX,
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where ¢, = H(Rg,m¢) = p,(c) by Eq.4. Let m; == m! for i € [0,£— 1]. The
adversary outputs (m;, (R;,s;)) for i € [0, £].

Remark 2. The attack does not apply to the clause blind Schnorr signature
scheme [FPS20, Sec. 5], which relies on the modified ROS problem.

5.2 Okamoto—Schnorr Blind Signatures

An Okamoto—Schnorr blind signature [PS00] for a message m consists of a tuple
(R,s,t) € Gx Z?, such that sG+tH — cX = R, where ¢ := H(R,m), and (G, H)
are two nothing-up-my-sleeve generators of G. The attack of the previous section
directly extends to Okamoto—Schnorr signatures: A operates exactly as before
until Eq. 4. Then, the forgery is constructed as:

(Re = py(R) + peeH — peeX, si:=py(s), to:=py(t)).

We stress again that this does not contradict the security analysis of Stern
and Pointcheval [PS00], whose security was reduced to DLOGg,gen, 4(A) for a
polylog(A) number of queries.

6 Other Constructions Affected

In this section, we overview how the attacks presented in Sects.3 and 4 apply
to a number of other cryptographic primitives. To simplify exposition, we focus
on adapting the attack of Sect.3. We note that, in some cases (e.g., multi-
signatures), we break the security claims of the papers, while for other primitives
(e.g., threshold signatures), our attack illustrates the tightness of the security
theorems, which assume either non-concurrent setting, or up to a logarithmic
number of concurrent executions.

6.1 Multi-signatures

A multi-signature scheme allows a group of signers S, ..., S,, each having their
own key pair (pkj, sk;), to collaboratively sign a message m. The resulting sig-
nature can be verified given the message and the set of public keys of all signers.

CoSi. CoSi is a multi-signature scheme introduced by Syta et al. [STV+16],
that features a two-round signing protocol. The signers are organized in a tree
structure, where S is the root of the tree. A signature for a message m € {0,1}*
consists of a pair (¢,s) € Z2 such that ¢ = H(sG — c - pk,m), where pk =
Z?Zl pk; € G is the aggregated verification key. A formal description of the
protocol can be found in [DEF+19, Sec. 2.5]; we use the same notation, except
that we employ additive notation xG instead of multiplicative notation g*.
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Attack. We present an attack for a two-node tree where the attacker controls
the root S;. The attack can easily be extended to other settings, similarly
to [DEF+19, Sec. 4.2]. Our attack allows the signer S; to forge one signature, for
an arbitrary message m, € {0, 1}*, after performing ¢ > [log p] = ) interactions
with the honest signer Ss. Recall that pk = pk; + pky, where pk, = sk;G. The
signing protocol proceeds as follows. First, S; obtains a commitment t; = roG
from S5, and computes t = t; = r{G+t, for a random r;. Then, S; computes the
challenge ¢ = H(¥,m), and sends (¢, ¢) to So. Next, Sy returns sy := ro + ¢ - ska.
Finally, S1 computes s := sg + r1 + ¢ - sk; and outputs the signature (¢, s) for
the message m.

The attack proceeds as follows. S7 opens ¢ parallel sessions with ¢ arbitrary
distinct messages mg,...,m¢—1 € {0,1}*. For each session, S; gets the com-
mitments ¢; = r;G from S; at the end of the first round of signing. Now, it
samples two random values r; o,7; 1 for each i € [0, ¢ — 1], defines t? =1 0G+t;
and f} = r;1G + t;, and computes ¢! = H(#2,m;). (As usual, if ¢ = ¢!, 9
samples again r; o and 7;; until c? #* czl) S1 then defines the polynomial
p = Zf;é 2z, /(c} — ), computes t, == p(to,...,te—1) and c; == H(ts, my).
S1 computes d¢ = ¢, — p(cd,...,c) ;) and writes this value in binary as
dy = Zf;é 2ib;. It then closes the ¢ sessions by using #; = f;” and ¢; = cg”'.
At the last step of the signing sessions, S7 obtains values s; = r; 4+ ¢; - skg from
S, and closes the sessions honestly using r; 5,. Finally, S; concludes its forgery
by defining s, := p(s) + ¢ - skq: the pair (cg, s¢) is a valid signature for my. In

fact:

$0G — o - pk = (p(8) + c¢ - sk1)G — ¢ - pk
-1

2181‘
=3 T— 00 —cepky

oG
£—1 b,
2% (r; + ¢ - sko
=y P e ok
=0 i "
£—1 iy, £—1 9i b;
= Z i 5 G+ 1 5 — Ct pk2
c; — ¢ c
74:0 1 (3 74:0 1 (3
-1 -1 -1
2'LtZ ) 9t 0
:ch_co"_(ZTbi""ch 0—Cz>-pk2
i=0 i i=0 i=0 ¢ i
/-1 2,Lt -1
= I z0 + Zlei+P(C(0)w~aC?71)_CZ -pky
im0 G TG i=0
=dy—d=0

= p(t()a"wtffl) =ty,

and ¢; = H(tg, my) by definition.
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Two-Round MuSig. As in [DEF+19], the above technique (with some minor
modifications) can be applied to the two-round MuSig as initially proposed by
Maxwell et al. [MPSW18al, as the main difference between CoSi and two-round
MuSig is in how the public key is aggregated in order to avoid rogue-key attacks.
Our attack does not apply to the updated MuSig that uses a 3-round signing
algorithm [MPSW18b].

6.2 Threshold Signatures

A (t,n)-threshold signature scheme assumes that the secret signing key is split
among n parties Py,...,P, in a way that allows any subset of at least ¢ out of
the n parties to produce a valid signature. As long as the adversary corrupts
less than the threshold number of parties, it is not possible to forge signatures
or learn any information about the signing key.

GJKRO7. Gennaro, Jarecki, Krawczyk, Rabin proposed a threshold signa-
ture scheme based on Pedersen’s distributed key generation (DKG) protocol
in [GJKRO7, Section 5.2]. At a very high level, Pedersen’s DKG protocol allows
to generate a random group element X = yG so that its discrete logarithm x is
shared both additively and according to Feldman secret sharing [Fel87] scheme,
between a set of “qualified” parties. For the attack we present below, all parties
Py,...,P, (included the ones that are controlled by the adversary) will remain
qualified.® We denote by x; the additive share of party P;. We have x = Y°7_; x;-
Importantly for the attack, the adversary controlling for example Py, can see all
the group elements x2G, ..., x,G and then can choose its value y;. This is due
to the way the Feldman secret sharing is performed.

In the threshold signature scheme of Gennaro et al. [GJKRO07], the parties
execute a distributed key generation procedure to produce a verification key
pk := sk-G € G, where the secret key sk is additively shared between the parties:
each party P; has an additive share sk;, so that sk = 2?21 sk;. A signature (R, s)
for a message m € {0,1}* is generated as follows. The participants run once again
the distributed key generation protocol to produce a commitment ¢t = rG € G,
where 7 is additively shared between the parties: each party P; has a share r;,
so that r = """, r;. Then, each party computes a share of the response:

j=1
sj =r;+c-skj, where c:=H(t,m). (5)
Let s := Z?:l s;j. Then (c, s) is a valid signature on m. In fact:
n n
sG =Y riG+c- Y skj-G=t+c-pk (6)
j=1 j=1

where ¢ = H(t,m).

5 We do not use the fact that only a threshold t+1 of the parties are required to sign in
our attack. We assume that all the parties come to sign, to simplify the description
of the attack.
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Concurrent Setting Insecurity. Gennaro et al. [GJKRO7] proved the security of
the scheme in a standalone sequential setting, where no two instances of the
protocol can be run in parallel. We remark that if an adversary is allowed to
start £ > [logp] sessions in parallel, the attack against CoSi in Sect. 6.1 can be
directly adapted to attack this threshold signature scheme for n = 2. The attack
of both schemes use the fact that the adversary Py (or signer S; in CoSi) can see
the commitment to = 79G of the honest party Py (or honest signed S3) and only
then choose r; that defines the commitment ¢t = r1G + t5. The generalization to
any n > 2 is straightforward.

Scope of the Attack. Our attack is an attack against the proposed threshold
signature scheme when instantiated with Pedersen’s DKG, but not an attack
against Perdersen’s DKG itself (i.e., JF-DKG from [GJKRO07, Fig. 1]). Further-
more, the attack does not work when Perdersen’s DKG is replaced by the new
DKG protocol from [GJKRO7, Fig. 2].

Original Version of FROST. Komlo and Goldberg FROST [KG20a] proposed
an extension of the above threshold signature scheme that was similarly affected
by the above concurrent attack. On 19 July 2020, they updated the signing
algorithm [KG20b] in a way that is no more susceptible to the above issue: each
party now shares (Dj, E;) and the commitment is computed as R = 3, D; +
h;E;, where hj = H((Dj, Ej, j);ep). We direct the reader to [KG20b, Fig. 3]
for a more detailed illustration of the problem and the fix.

6.3 Partially Blind Signatures

Partially blind signatures [AO00] are an extension of blind signature schemes
that allow the signer to include some public metadata (e.g., expiration date,
collateral conditions, server name, etc.) in the resulting signature. The original
construction [AO00], as well as schemes inspired from it, such as Anonymous
Credentials Light [BL13] and restrictive partially-blind signatures from bilinear
pairings [CZMS06], might not provide the desired security properties.

Abe—Okamoto. Abe and Okamoto [AO00, Fig.1] propose a partially blind
signature scheme inspired from Schnorr blind signatures. Given a verification
key X = zG and some public information info that is hashed into the group
Z = H(info), a partially blind signature for the message m € {0,1}* is a tuple
(rye,s,d) € Z, where c+d =H(rG + cX, sG+dZ, Z, m).

Attack. The security of the above partially blind signature is proved up to a poly-
logarithmic number of parallel open sessions in the security parameter [AOO00].
We show that the security claim is tight by showing that there exists a poly-time
attacker against one-more unforgeability in the setting where the adversary can
have ¢ = O(\) open sessions using the same metadata info. The attack follows
essentially the same strategy of Sect.5.1. First, the attacker opens ¢ parallel
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sessions and obtains the commitments (A;, B;) € G? for i € [0,¢ —1]. It then
constructs the polynomial p, as per Eq. 4. The forged signature for an arbitrary
message m”* is computed using the challenge:

er = H(p(A) + pe.eX, po(B) + peeZ, Z, m*) — pee

and closing the ¢ sessions as in Sect.b.1, i.e., by using the challenges e?i
where b; is the i-th bit of the canonical representation of e;,. Given the sig-
natures (r;, ci”,si, d;) for i € [0,¢ — 1], the attacker can finally create its forgery
(p(r), p(c), p(s), p(d)). The forgery is indeed correct because:

p(c) +p(d) = Z pi(c + di) + pee + pe

P(6807 R 62[__11) + Pee
H(po(r)G + po(c) X, p(8)G + po(d)Z, Z, m”™).

Anonymous Credentials Light. Inspired from Abe’s blind signature [Abe01],
Baldimitsi and Lysyanskaya [BL13] developed anonymous credentials light
(ACL). The security proof of their scheme is under standard assumptions in the
sequential settings. The public parameters are a so-called real public key Y = =G
and a tag public key Z = wG (using the paper’s notation). During the signing
protocol, the signer produces two shares 77, Zy of Z such that Zy + Zy = Z,
and proves either knowledge of Y (referred to as y-side), or of Z1, Zy (so-called
z-side). The discrete log of Z1, Zs is never known by the signer, and the z-branch
is inherited by Abe’s blind signature and is necessary for the proof of security.

The essential difference between ACL and Abe’s blind signature is the compu-
tation of Z;: while in Abe’s scheme it is computed invoking the random oracle
over a random string (so that neither the user nor the signer know its dis-
crete logarithm), in ACL it is computed starting from the user’s commitment
C =30l H;+rH (wherely,...,l,) is the list of attributes) and the user could
know a discrete-log relation across multiple sessions. This difference is fatal in
the concurrent settings.

Attack. The attacker A opens ¢ parallel sessions, all with the same commitment
C, and will provide a one-more forgery for an arbitrary message m* on the same
commitment C.

After opening the ¢ concurrent sessions, the attacker proves in zero-knowledge
(as per protocol issuance) that the attributes required are valid, following the
reigistration phase as prescribed in the protocol. Let dg,...,dy_; denote the
randomization key used by the server to re-randomize the commitment C' (dis-
played in [BL13, Fig. 1] as rnd) and sent to the user at the end of the registration
phase. Upon receiving A; € G (the commitment of the y-side) and A1 ;, A5 ; (the
commitment of the z-side), for i € [0,¢], the attacker computes the polynomial
p, defined in Sect. 3 (using the commitments and the message of the previous
sessions), and computes the commitment forgeries:
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Ap = py(Ags - A1) + peY
Avg = pg(Al g, AL 1) + peeC
Ag = p(Asg, .., Ay q) + pee(Z = C)

For simplicity, we assume that the re-randomization of Z is not performed by
the attacker, i.e. 7 = 1, and that no blinding is performed: the attacker simply
hashes the values, as they are received from the adversary. A sends the challenges
according to the bits of H(Z, C, Ay, A1 ¢, Aa ), similarly to Sect. 5, and receives
the responses (c;, i, ¢}, 7 4,75,;) € 73, for i € [0,4]. The adversary A computes
the forged responses for the y-side:

-1
co = p(c) = Z PieCi + P
i=0

-1
¢y =p(c) = Z PieC; + pee
=0

1
re = p(r) = Z PieTi + pee
i=0
-1
o= e+ od) = pi(rh ;i +cidi) + pe
i=0

—1
o= plrh—c od) =" piu(rh,; — cidi) + pee
=0

In fact, it holds that:

£
reG+cY = Z Pie(1iG +cY) + pee(Y + G) = Ay
=0
-1
G+ C =" piu(ry G+ ¢(C+diG)) + peu(C+ G) = Ay
=0
—1
G+ (2= C) = pis(rs,G+(Z —C—diG)) + pru(Z — C) = Ay
=0

And the verification of the re-randomization 7 is trivially satisfied.

6.4 Conditional Blind Signatures

Conditional blind signatures (CBS), introduced by Grontas et al. [ZGP17], allow
a user to request a blind signature on messages of their choice, and the server has
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a secret boolean input which determines if it will issue a valid signature or not.
CBS only allow a designated verifier to check the validity of the signature; the
user will not able to distinguish between valid and invalid signatures. Conditional
blind signature have application in e-voting schemes [GPZZ19].

ZGP17. Zacharakis et al. [ZGP17] propose an instantiation of CBS as an exten-
sion of Okamoto—Schnorr blind signatures, where the (designated) verifier holds
a secret verification key k € Z, and publishes K = kG as public information.
During the execution of Okamoto—Schnorr, one of the two responses (s,t) will
be computed in G rather than Z,, using K as a generator. Only the designated
verifier, who knows the discrete log of K can now check the verification equation.

The attack from Sect. 5.2 directly applies also to their scheme, and leads to
a poly-time adversary that with A\ queries to the signing oracle for the same bit
b =1 can produce one-more forgery with overwhelming probability. This attack
does not invalidate the security claims of [ZGP17], which are argued only for a
poly-logarithmic number of parallel open sessions.

6.5 Other Schemes

The following papers prove rely on the hardness of the ROS problem for their
security proofs, and henceforth may not provide the expected security guaran-
tees: blind anonymous group signatures [CFLWO04]; blind identity-based sign-
cryption [YWO05]; blind signature schemes from bilinear pairings [CHYCO05].

7 Conclusions

Our work provides a polynomial attack against ROS,(\) when ¢ > logp, and a
sub-exponential attack for ¢ < logp. This impacts the one-more unforgeability
property of Schnorr and Okamoto—Schnorr blind signatures, plus a number of
cryptographic schemes derived from them. Our attacks run in polynomial time
only in the concurrent setting, and only for ¢ > log p parallel signing sessions.

Concretely, the cost of the attack and the number of sessions required
are rather small: for today’s security parameters, the attack could be already
mounted with £ = 9 parallel open sessions. As already pointed out by [FPS20],
even just £ = 16 open sessions could lead to a forgery in time O(2°%). For £ = 128,
our attack of Sect.4 leads to a forgery in time O(232). For £ = 256, our attack
of Sect.3 produces a forgery in a matter of seconds on commodity hardware.
Although 256 parallel signing sessions might seem at first unrealistic, modern
large-scale web servers must handle more than 10 million concurrent sessions’.
Given our attack, the main takeaway of our work is that blind Schnorr signatures
are unsuitable for wide-scale deployments.

The easiest countermeasure to our attack could be to allow only for sequential
signing sessions, as Schnorr blind signatures are unforgeable in the algebraic

" For further information, read the C10K problem (’99) and the C10M problem (’11).
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group model for polynomially many sessions [KLRX]. Another countermeasure
to our attack could be to employ (much) larger security parameters, require
the signer to enforce strong ratio limits, and perform frequent key rotations,
accepting the tradeoffs given by our attacks. Finally, Fuchsbauer et al. [FPS20]
recently introduced a variant of blind Schnorr signatures (the clause version)
which is unaffected by our attack. Unfortunately, it relies on the conjectured
hardness of the so-called modified ROS problem, which is still relatively new and
has not been subject to any significant cryptanalysis.

To conclude, other blind signature schemes are to this day considered secure
and should be considered as alternatives: blind RSA [Cha82], blind BLS [Bol03],
and Abe’s blind signature scheme [Abe01, KLRX].
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Abstract. In this paper we present a new representation of the AES key
schedule, with some implications to the security of AES-based schemes.
In particular, we show that the AES-128 key schedule can be split into
four independent parallel computations operating on 32 bits chunks,
up to linear transformation. Surprisingly, this property has not been
described in the literature after more than 20 years of analysis of AES.
We show two consequences of our new representation, improving previ-
ous cryptanalysis results of AES-based schemes.

First, we observe that iterating an odd number of key schedule
rounds results in a function with short cycles. This explains an obser-
vation of Khairallah on mixFeed, a second-round candidate in the NIST
lightweight competition. Our analysis actually shows that his forgery
attack on mixFeed succeeds with probability 0.44 (with data complex-
ity 220 GB), breaking the scheme in practice. The same observation also
leads to a novel attack on ALE, another AES-based AEAD scheme.

Our new representation also gives efficient ways to combine informa-
tion from the first subkeys and information from the last subkeys, in
order to reconstruct the corresponding master keys. In particular we
improve previous impossible differential attacks against AES-128.

Keywords: AES - Key schedule + mixFeed + ALE + Impossible
differential attack

1 Introduction

The AES [1,17] is the most widely used block cipher today, designed by Daemen
and Rijmen in 1999 and selected for standardization by NIST. Like all symmetric
cryptography primitives, the security of the AES can only be evaluated with
cryptanalysis, and there is a constant effort to study its resistance again old
and new attacks, and to evaluate its security margin. There are three versions
of AES, with different key sizes, and different number of rounds: AES-128 with
10 rounds, AES-192 with 12 rounds, and AES-256 with 14 rounds. After twenty
years of cryptanalysis, many different attacks have been applied to AES, and
we have a strong confidence in its security: the best attacks against AES-128
in the single-key setting reach only 7 rounds out of 10. The best attacks known
so far are either impossible differential attacks (following a line of work starting
with [2]) or meet-in-the-middle attacks (with a line of work starting from [18]),
as listed in Table 2.
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A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 54-84, 2021.
https://doi.org/10.1007/978-3-030-77870-5_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77870-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-77870-5_3

New Representations of the AES Key Schedule 55

Table 1. Comparison of attacks against ALE.

Attack Enc. Verif. Time Ref.
Existential Forgery Known Plaintext 21104 2102 ol104 [34]
Existential Forgery Known Plaintext 2193 2103 2104 [3(]
Existential Forgery Known Plaintext 1 2120 9120 [30]
State Recovery, Almost Univ. Forgery Known Plaintext 1 2121 ol21 3]
State Recovery, Almost Univ. Forgery Chosen Plaintext 2°7% 0 21044 New

Table 2. Best single-key attacks against 7-round AES-128.

Attack Data Time Mem. Ref. Note
Meet-in-the-middle ~ 2°7 299 29 [19]

9105 9105 990 19]

9105 9105 981 9]

o113 gl13 g7t 13]  Using 4 out. diff. and state-test
13]* Using 4 out. diff
21061 gli2.1 o731 Variant of [13] using 1 out. diff.
21049 91109 9719 New Using 1 out. diff.
*The time complexity is incorrectly given as 2'°¢-%% in [13].

[
[

2113 gl13 971 g
Impossible differential [
[

210541 2113 27441

1.1 Owur Results

The key schedule is arguably the weakest part of the AES, and it is well known
to cause issues in the related-key setting [5—7]. In this paper, we focus on the
key schedule of AES, and we show a surprising alternative representation, where
the key schedule is split into several independent chunks, and the actual subkeys
are just linear combinations of the chunks.

Application to mixFeed and ALE. This representation is motivated by an obser-
vation made by Khairallah [29] on the AEAD scheme mixFeed: when the 11-
round AES-128 key schedule is iterated there are apparently many short cycles
of length roughly 234. Our representation explains this observation, and proves
that the forgery attack of Khairallah against mixFeed actually succeeds with
a very high probability. It only requires the encryption of one known message
of length at least 2337 blocks, and generates a forgery with probability 0.44,
making it a practical break of the scheme.

We also apply the same observation to ALE, another AES-based scheme that
iterates the AES key schedule. We obtain a novel attack against ALE, with a
much lower data complexity than previous attacks, but we need chosen plaintexts
rather than known plaintexts (see Table 1).

Key recovery attack against AES-128. We also improve key recovery attacks
against AES-128 based on impossible differential cryptanalysis. This type of
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attacks targets bytes of the first subkey and of the last subkey, and excludes
some values that are shown impossible. Then, the attacker must iterate over
the remaining candidates, and reconstruct the corresponding master keys. Using
our new representation of the key schedule, we make the reconstruction of the
master key more efficient. Therefore we can start from a smaller data set: we
identify fewer impossible keys, but we process the larger number of key candi-
dates without making this step the bottleneck.

While the improvement is quite modest (see Table 2), it is notable that we
improve this attack in a non-negligible way, because cryptanalysis of AES has
achieved a high level of technicality, and attacks are already thoroughly opti-
mized. In particular, we obtain the best attack so far when the amount of mem-
ory is limited (e.g. below 27°).

1.2 Organisation of the Paper

We start with a description of the AES-128 key schedule and describe our alterna-
tive representation in Sect. 2, before presenting applications to mixFeed (Sect. 3),
ALE (Sect.4) and impossible differential attacks against AES-128 (Sect.5). We
then describe an alternative representation of the AES-192 and AES-256 key
schedules in Sect. 6, and some properties of the AES key schedules that might
be useful in future works in Sect. 7.

2 A New Representation of the AES-128 Key Schedule

In AES-128, the key schedule is an iterative process to derive 11 subkeys from
one master key. To start with, the 128 bits of the master key are divided into 4
words of 32 bits each: w; for 0 < < 3. The following notations are used within
the algorithm:

RotWord performs a cyclic permutation of one byte to the left.
SubWord applies the AES Sbox to each of the 4 bytes of a word.
RCon(i) is a round constant defined as [x'~1,0,0,0] in the field Fos described

in [1]. For simplicity, we denote x'~1 as ¢;.

In order to construct w; for ¢ > 4, one applies the following steps:

— if 4 = 0 mod 4, w; = SubWord(RotWord(w;_1)) ® RCon(i/4) & w;_4.
— else, w; = w;_1 D w;_4.

The subkey at round r is the concatenation of the words wy, to wy,4+3. We can
also express the key schedule at the byte level, using k] with 0 <7 < 16 to denote
byte i of the round-r subkey (we use k< Ly asa shorthand for k7, k%,...). The

10 Vg

subkey is typically represented as a 4 X 4 matrix with the AES byte ordering,
_4i/4 i/4 i/4 i/4
with wi = k4(7. mod 4) ||k (i mod 4)+1 ng4(1 mod 4)+2||k4(1 mod 4)+3

' T s T
ko ki kg k1o
k’f' kT k/,?" 7"[
1 K5 Ky Kig| _
L k‘; ropr | = | War Warel War42 Warts
2 g 14
k’l" k’l” kr k’l"
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The key schedule can be written as follows, with k the key schedule state, k. the
state after one round of key schedule, and S the AES Sbox (see Fig. 1 and 3):

k6 =ko® S(klg
k"1 =k ® S(k1a

D ky =ks @ ka ® ko ® S(k13) ® ¢;
kyy = ko @ ks © k1 @ S(k14)

ky = ko ® S(k15 Kio = k1o @ ke @® ko & S(k15)

ki = ks ® S(ki2 ki1 = ki1 @ k7 @ ks ® S(k12)

kfl =ky D ko® S(kiz) B kl12 =kio @ ks Dky ®ko®S(k13) D¢y
ki = ks ® k1 @ S(k14) kis = ki3 ® ko ® ks ® k1 & S(k14)
(k1s5)
(k12)

—_— — — —

ki = ke @ ko @ S(kys kiy = k14 ® k1o ® ke ® ko & S(k15)
7 =ke ® ks ®S(ki2 kis = kis ® k11 ® kr @ k3 & S(k12)

Invariant subspaces. Recently, several lightweight block ciphers have been
analyzed using invariant subspace attacks. This type of attack was first proposed
on PRINTcipher by Leander et al. [31]; the basic idea is to identify a linear
subspace V and an offset u such that the round function F of a cipher satisfies
Fu+V) = F(u) + V. At Eurocrypt 2015, Leander, Minaud and Rgnjom [32]
introduced an algorithm in order to detect such invariant subspaces. By applying
this algorithm to four rounds of the AES-128 key schedule, we find invariant
subspaces of dimension four over Fgs, and this implies a decomposition of the
key schedule.
First, let’s recall the generic algorithm for a permutation F': F§ — F5:

—_

Guess an offset u € Fy and a one-dimensional subspace Vj.

Compute Vi1 = span{(F(u+V;) — F(u)) UV;}.

3. If the dimension of V11 equals the dimension of V;, we found an invariant
subspace: F(u+ V) = F(u) + V.

4. Else, we go on step 2.

o

In the case of the AES-128 key schedule, we use subspaces of F%g over the
field Fys rather than over Fs. If we apply this algorithm with the permutation
F' corresponding to 4 rounds of key schedule, with any key state u, and with Vj
the vector space generated by one of the first four bytes, we obtain 4 invariant
affine subspaces whose linear parts are:

Ey ={(a,b,c,d, 0,b,0,d, a,0,0,d, 0,0,0,d) fora,b,c,de€Fys}

E, ={(a,b,¢,d, a,0,¢,0, 0,0,¢,d, 0,0,¢,0) fora,b,c,deFys}

E; ={(a,b,c,d, 0,b,0,d, 0,b,¢,0, 0,b,0,0) fora,b,ec,decFys}

E; ={(a,b,¢,d, a,0,¢,0, a,b,0,0, a,0,0,0) fora,b,ec,d€Fos}
When we consider a single round R of the key schedule, the subspaces are not
invariant, but are images of each other. We have the following relations, with g
an element in (Fys)!6 and u; = R¥(ug), for (1 <i < 5):

R(EQ—F’U,()) :El —|—U1, R(E1+U1) :E2+U2,
R(Ez + u2) = F3 + ug, R(Eg + U3) =Fy+uy
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Fig. 1. AES key schedule. Fig. 2. Evolution of a difference located on the first
(figure adapted from [28]) byte after several rounds of key schedule.

In other words, if the difference pattern between two states is in E;, then after
r rounds of key schedule, the difference pattern will be in E(;4,)%4-

This can be verified by tracking the differences in the key schedule, start-
ing from a difference (a,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0), as shown in Fig. 2.
After four rounds we reach a difference (a,b,¢,d, 0,b,0,d, 0,b,¢,0, 0,b,0,0), with
differential transitions a — d, d — ¢, and ¢ — b through the Sbox. Next, we
obtain a difference (a’,b,¢,d, o’,0,¢,0, a’,b,0,0, a’,0,0,0), after an Sbox tran-
sition b — a @ a’. Surprisingly, the dimension of the difference state does not
increase, because there is a single active Sbox in each round, and it affects a
difference that is already independent of the rest of the state. Therefore we have
the four transitions given above, and the spaces are indeed invariant.

New representation from invariant subspaces. We actually have a much
stronger property than just invariant spaces: the full space is the direct sum of
those four vector spaces, with parallel invariant subspaces for any offset u:

(Fs)' =Ey @ By © B2, @ Fs
Yu, Vi, F(u® E;) = F(u) ® E;.
This implies that we can split the internal state according to those vector spaces.
Indeed, there exists unique linear projections 7; : (Fas)16 — E; for 0 < i < 4
such that Vz € E;, m;(z) = x, and m;(E;) = 0 for ¢ # j. In particular, we have
Vo, x = mo(z) & m1(z) ® m2(x) @ m3(x). This implies:
F(z) = F( 0(z) ® m(2) @ m2(2) @ m3(2))
(71'0(1‘)@71’1 @71’2( ))@Eg,
(7‘1‘0(3;‘)@71’1 )@Eg@Eg
F(mo(z)) ® F3 ® E2 ® By
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7 (F(mi(z))), and

.,e15} be our new basis of (Fys)'® defined as
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mo(F(mo(x))). Similarly, m;(F(x))

P Ly e

oo oo
===}
Sooo
- o oo
oo
cooo
SO D~
 E=E=N=}
===}
oSS —H S
oo
e
S-S D
oSS —HS
SIS~
===

—_ D

Base of E
Base of E;

F(z) =mg (F(?TQ(IIJ))) @ T (F(7r1 (x))) D o (F(ﬂg(x))) @ 3 (F(Tl'g(l‘)))
Base of Ey

finally we can split the permutation in four independent 32-bit computations:
To obtain a representation that makes the 4 subspaces appear clearly, we perform

a change of basis. Let {eq,eq,..

Therefore mo(F(x))
follows:

Base of E3

-1
Cy

where the columns of the transition matrix Cy are the coordinates of the vectors

., 815 be the coordinates in the new basis. They can be obtained
., k15) with the matrix A
., e15 expressed in the old basis (canonical basis):

by multiplying the original coordinates (kq, . .

Let sq,s1,..
€0, €1, - -

~000000HOOHOOHOO
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COoOHOOHOOOOOOOOOQ
CO0O0O0O0OHOOHOOOOOO
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oOHOOCOCOCOOOCOOOCOOO
CoO0oCOoOHOOOOOOOOOQ
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Therefore, we use:

so=kis s1=kia®kio®keDka s2=kizDks s3=kio®Dks
sg=kia 55="Fkiz3Dko®ks Dk s¢ = k12 @ ks 57 =ki5 D k11
sg=kiz S9g=kio@ks®ksDko s10=kisDkr s11=Fkia® ko
s12=ki2 s13=ki5Dk11©kr Dk s14a=kiaDks 515="ki3Dkg

(1)

After defining s’ with the same transformation from k', we can verify that:

so = kis = kis ® k11 @ k7 ® ks & S(k12) = 513 B S(s12)
S’liki4@kio@ké@ké:k14@k6 = S14
8’2:]€113@kg:k15®k9 = S15

Sé = k/12 ® klg = k1o = S19

sy =kiy = k1a ® k1o ® kg ® ko ® S(k15) =51 P S(s0)
st=Fkis Dkl DKL DK = ki3 ® ks = 59
Sg:kSQ@kaiklg@kg = S3

8{7 = klls ©® klll = k15 = S0 (2)
sy =Kz = k13 © ko © ks © k1 @ S(k14) = 55 ® S(s4)

sog =kl @k Dk, DKl = k1o ® ky =S¢

19 = k5 © k7 = k15 @ k11 =gy

811 = k14 © kyg = ks =54

Slo =klog = k1o D ks B ks ® ko ® S(ki3) ®c; = 59D S(ss) e
13 = K15 ® k1 © k7 © ky = kis @ kr = 810

14 = k14 © kg = k14 © k1o =511

15 = k13 © kg = ki3 = 53

This is represented by Fig. 4. In the rest of this paper we use the notation &/
to denote byte ¢ of the round-r subkey, and s} to denote bytes of the alternative
representation at round r, where the relations between k] and s} follow (1).

To further simplify the description, we write the output as

! / ! A / ! / / ! / / A ! / ! /
(54,55,56, 57, 585505510, 511> 5125513, 5145 5155 505 S15 595 53)-

This corresponds to “untwisting” the rotation of the 4-byte blocks, so that each
block of 4 output bytes depends on the same 4 input bytes. This results in our
alternate representation of the AES-128 key schedule:

1. We first apply the linear transformation A to the state, corresponding to the
change of variable above.

2. Then the rounds of the key schedule are seen as the concatenation of 4 func-
tions each acting on 32-bit words (4 bytes), as seen in Fig. 5.

3. In order to extract the subkey of round r, another linear transformation
C'r mod 4 18 applied to the state, depending of the round number modulo 4. C;
is defined as C; = A~! x SR?, with SR the matrix corresponding to rotation
of 4 bytes to the right (see below). In particular Cop = A~L.
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Fig. 3. One round of the AES-128 key schedule.
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Fig. 4. One round of the AES-128 key schedule (alternative representation).
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N

I
OC0O0O0OO0OrHOOOOOO0OOO
CO0O0O0OO0O0O0CO0O0O+ROOOOO
[eR-NoNoR-N-N-N-NoN-N-NoN-R-N-i]
OCOHOOOO0OOO0O0OO0O0O0O0OO
CO0O0O0O0OOrROOROOOOOO
OC0O0000O0O00O~ROOROO

In this new representation, there are clearly 4 independent chunks each acting
on 4 bytes, and the subkeys are reconstructed with linear combinations of the
alternative key schedule state. This representation also preserves the symmetry
of the key schedule: the original key schedule is invariant by rotation of the
columns (up to constants), and this corresponds to a rotation of four bytes in

OHOOOOOO0OO0OO0OORO

the new representation.

OCOHOOHOOOOOOOOOO
C0O0O0O0OOrROOOOOROOO
HOOOOOOOOOHROOOOO

OCOOOHOOOOOOOOORO
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OCOHOOHOOHOOOOOOHR
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HOOOOOOOOOOOOOOO
C0O0000O0O00O0O00O0O0O0R

Detail of B:

Master key
EEEEEEEEEE
A
[[11 [[11 [[IT TI1
B B By B
[ I i
B By B B
IR Riii
Bs B B B
[ it I
B B B By
Il
I
C’rm0d4
FTTTTT T T T T
Subkey

Fig. 5. r rounds of the key schedule in the new representation. B; is similar to

B but the round constant ¢; is XORed to the output of the Sbox.
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M1 M2 Mm
Z P(Z) P™Y(2)
Ch Co Cm

Fig. 6. Simplified scheme of mixFeed encryption.

M
Y —Feed}—{M] || [M @ Y]

MeY

Fig. 7. Function Feed with a full message block.

3 Application to mixFeed

The AEAD scheme mixFeed [14] is a second-round candidate in the NIST
Lightweight Standardization Process, submitted by Chakraborty and Nandi, and
based on the AES block cipher. It is a rate-1 feedback-based mode inspired by
COFB. For each message block, a Feed function is used to compute the cipher-
text and the block cipher input from the previous internal state, and the internal
state is replaced by the block cipher output. In COFB, there is a need for an
extra state variable, to make each Feed function different. In order to reduce
the state size, mixFeed instead makes each block cipher call different, applying a
permutation P to the key between each block. For optimal efficiency, the permu-
tation P just corresponds to eleven round of the AES key schedule, so that the
subkeys for all the AES calls just correspond to running the AES key schedule
indefinitely.

In [29], Khairallah observed that some keys generate short cycles when iter-
ating the P permutation, and he built a forgery attack for keys in short cycles. In
this work, we show that the new representation of the key schedule explains the
existence of these short cycles, and we characterize the keys belonging to such
cycles. This shows that the permutation P cannot be considered as a random
permutation.

3.1 Description of mixFeed

For simplicity, we only describe a simplified mixFeed without associated data;
the full description of mixFeed can be found in [14].

Notations: We use M and C' to denote the plaintext and ciphertext. For the
sake of simplicity, we assume that M is made of m 128-bit blocks.
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The following functions are used in mixFeed:

— FE: a modified version of AES-128 including MixColumns in the last round,
P: the permutation corresponding to eleven rounds of AES-128 key schedule;
— Feed: the feedback function defined as (see Fig. 7):

Feed(Y, M) = (X,C)
=(M]|[[MeY|,MoY),

where [D] represent the 64 most significant bits of D, and | D] the 64 least
significant bits.

The computations are as follow (see Fig. 6):

Initialization of the state. An initial value IV = Y{ and a internal key Z are
computed from the nonce N and the key K.

Encryption and authentication. For i from 1 to m, the Feed function is applied
to the current state Y;_; and message block M;. Feed returns the ciphertext
block C;, and a new state X; which is then encrypted under the key P'~'(Z)
using E to obtain Y;. At the end of this step, a finalization function computes
the tag from the final state and the internal key P™~1(Z), we denote as F' the
composition of the cipher call of last round and the finalization function.

3.2 Short Cycles of P

In [29], Khairallah found 20 keys belonging to small cycles of P, and observed
that all of them have the same cycle length': 14018661024. He deduced a forgery
attack, assuming that the subkey falls in one of those cycles, but did not further
analyse the probability of having such a subkey. Later the designers of mixFeed
published a security proof for the scheme [15], under the assumption that the
number of keys in a short cycle is sufficiently small. More precisely, they wrote:

Assumption 1 ([15]). For any K € {0,1}" chosen uniformly at random, prob-
ability that K has a period at most £ is at most £/2"/2.

The 20 keys identified by Khairallah do not contradict this assumption, but
if there are many such keys the assumption does not hold, and mixFeed can
be broken by a forgery attack. We now provide a theoretical explanation of the
observation of Khairallah, and a full characterization of the cycles of P. We
find that a random key is in a cycle of length smaller than 23* with probability
0.44; this contradicts the assumption made in [15], and allows a practical forgery
attack.

! Khairallah actually reported the length as 1133759136, probably because of a 32-bit
overflow.
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Analysis of the structure of P. Using our new representation, the 11-round key
schedule P consists of:

— The linear transformation A

— 4 parallel 32-bit functions that we denote f1]| fa| f3|| f4, with
fi=Bj1oBoBoBoB;oBoBoBoBs3oBoB
fo=BoBjgoBoBoBoBsgoBoBoBoByoB
fs=BoBoBygoBoBoBoBsoBoBoBoB;
fi=BoBoBoBgoBoBoBoBjoBoBoRB

(the functions differ only by the round constants)
— The linear transformation C5 = A~! x SR™!

To simplify the analysis, we consider the cycle structure of P=AoPo A7
which is the same as the cycle structure of P:

P: (a,b,c,d) — (f2(b), f3(c), fa(d), f1(a))

To further simplify the analysis, we consider the cycle structure of P*, which is
closely related to the cycle structure of P.A cycle of P4 of length £ corresponds
to a cycle of P of length ¢, 2¢ or 4¢. Conversely a cycle of P of length ¢ cor-
responds to one or several cycles of P4, of length ¢, £/2 or £/4 (depending on
the divisibility of ¢). Analyzing P* is easier because it can be decomposed into
4 parallel functions, cancelling the left rotation induced by SR™*:

Pt (a,b,¢,d) — (¢1(a), p2(b), Pp3(c), p4(d))

¢1(a) = fao fzo fao fi(a)
B2(b) = fz0 fao f1o fa(b)
#3(c) = fao fio fao f3(c)
p4(d) = f1o fao fzo fs(d)

If (a,b,c,d) is in a cycle of length ¢ of P, we have Isu(a,b, e, d) = (a,b,¢,d),
that is to say:

¢1(a) = a $(b) = b s(c) =c #4(d) =

In particular, a, b, ¢ and d must be in cycles of ¢1, P2, @3, ¢4 (respectively) of
length dividing £. Conversely, if a, b, ¢, d are in small cycles of the corresponding
¢, then (a,b,c,d) is in a cycle of P* of length the lowest common multiple of
the small cycle lengths.

Moreover, due to the structure of the ¢; functions, all of them have the same
cycle structure. This implies that P has a large number of small cycles. Indeed, if
we consider a cycle of ¢; of length ¢, and elements a, b, ¢, d in the corresponding
cycles, (a,b,c,d) is in a cycle of P* of length £. There are ¢ choices of a, b, c, d,
which correspond to ¢3 different cycles of P. If we assume that ¢; behaves like
a random 32-bit permutation, we expect that the largest cycle has length about
23! which gives around 2% cycles of P* of length ~ 23!, and around 2% cycles
of P of length ~ 233,
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Cycle analysis of 11-round AES-128 key schedule. In order to identify the small
cycles of the permutation P, we start by analyzing the cycle structure of the
32-bit function ¢1 = fo o f3o fy 0 f1: it can be decomposed into cycles of lengths
3504665256, 255703222, 219107352, 174977807, 99678312, 13792740, 8820469,
7619847, 5442633, 4214934, 459548, 444656, 14977, 14559, 5165, 4347, 1091,
317, 27, 6, 5 (3 cycles), 4 (2 cycles), 2 (3 cycles), and 1 (2 fixed points). In
particular, the largest cycle has length ¢ = 3504665256. Consequently, with
probability (3504665256 x 2732)* ~ 0.44, we have a, b, c and d in a cycle of
length £, resulting in a cycle of length ¢ for ]34, and a cycle of length at most
4¢ = 14018661024 for P and P. This explains the observation of Khairallah [29],
and clearly contradicts the assumption of [15].

More generally, when a, b, ¢, d belong to a cycle of length £;, the corresponding
cycle for P*is of length ¢ = lem(¢y, 42, £3,£4), and we can compute the associated
probability. In most cases, a cycle of length £ of pt corresponds to a cycle of P of
length 4¢. However, the cycle of P is of length ¢ when P’(a,b, ¢, d) = (a, b, ¢, d),
and of length 2¢ when P%(a, b,c,d) = (a,b,c,d) (this can only be the case with
odd ¢, by definition of £). This is unlikely for short cycles, but as an example we
can construct a fixed-point for P and P from a fixed-point of ¢1:

— a=Te be dl 92

~ b=de d4 b7 cc = fzo fy 0 fi(a)
~ ¢=9f 958826 = f,0 fi(a)

~ d=d4b979 91 =fi(a)

Since f2 o f3 o f4 gfl(a/) = a, we have ﬁ(a7 b7 ¢, d) = (f2(b)7 f3(c)> f4<d)7 fl(a/)) =
(a,b,c,d). Since P = Ao Po A~!, the corresponding key in the original repre-
sentation is:

A7l x — (64 Ob 3f 83 63 4e a7 £6 46 Oe £8 b2 d4 9f de Te )

QU O

This results in a fixed point of P.

We can generalize this construction for all odd cycle lengths £. We choose
w an element of a cycle of length ¢, and then we can build an element which
belongs to a cycle of length ¢ for the permutation P:

— if £ = 1 mod 4:
a=w
b= fso fyo fio..o fi(w), with 3¢ terms f;
c= fio fiofro..ofi(w), with 2¢ terms f;

d= fiofaofzo..ofi(w), with £ terms f;
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M
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Yo X3

C

Fig. 8. Forgery attack when Z belongs to a cycle of length 2.

— if £ =3 mod 4:
a=w
b= fzofiofio..o0 fi(w), with ¢ terms f;
c= fyo fio fao..ofi(w), with 2¢ terms f;
d=fiofyofzo..0fi(w), with 3¢ terms f;

3.3 Forgery Attack Against mixFeed

Khairallah [29] proposed a forgery attack assuming that Z belongs to a cycle of
length ¢, considering a message M made of m blocks, with m > ¢ (Fig. 8):

1. Encrypt the message M to obtain the ciphertext C and tag T

2. Compute Yy using M; and C; and X1 using My4q and Cyyg.

3. Compute M and C such that (X;11, C') = Feed(Yy, M).

4. The T tag will also authenticate the new ciphertext €’ = C||Cya]| - - - ||Cin.

The computations required for the forge are negligible with only a few XORs
to invert the Feed function. Therefore the complexity of the attack is just the
encryption of a message with at least (¢41) blocks, with £ the length of the cycle.
As explained above, the probability of success is approximately 0.44, using ¢ =
14018661024. When the forgery fails, we can repeat the attack with a different
nonce, because the internal key Z depends on the nonce; for each master key K,
the attack works on 44% of the nonces.

We have verified this attack using the reference implementation provided by
the designers. We take a message of £ + 1 = 14018661025 blocks of 16 bytes
(220 Gbytes?), choose a random key and nonce, and encrypt the message with
mixFeed. We modify the ciphertext according to the previous explanation, and
we check if the new ciphertext is accepted. We obtained 41% of success over 100
attempts. This result is close to the expected 44% success rate, and confirms our
analysis.

2 Note that there is no need to store the plaintext or ciphertext in memory if we have
access to an online implementation of mixFeed.
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4 Application to ALE

ALE [8] is an earlier authenticated encryption scheme based on the AES round
function, strongly inspired by LEX [4] (for the encryption part) and Pelican-
MAC [16] (for the authentication part). Attacks have already been presented
against ALE [30,34] but the new representation of the key schedule gives new
types of attacks, based on previous attacks against LEX [11,20].

K

N AES|—— 7

K Z = Pi(2) P=Y(2) K
LEX [ LEX [
D— M D— M,
Ch Ct

Fig. 9. Authenticated encryption with ALE (simplified).

4.1 Description of ALE

For the sake of simplicity, we will consider ALE without associated data, and we
only consider blocks of 16 bytes for the plaintext (to ignore the padding). ALE
maintains a state composed of an internal state and an internal key, and operates
with 3 steps (cf Fig. 9). As for mixFeed, the internal key is updated with iterative
applications of a permutation P corresponding to AES key schedule rounds. In
the case of ALE, P corresponds to 5 rounds of key schedule rather than 11, but
we have again many short cycles because 5 is also an odd number.

Initialization. The state is initialized from the key K and a nonce N, using a
session key Z = Eg(N). The internal state is initialized to IV = E3(Ek(0)),
and the internal key is initialized to P1o(Z), where Pjg correspond to 11 rounds
of AES key schedule.

Message processing phase. For each block of message, the internal state is
encrypted with 4-round AES, and the internal key is updated by five rounds
of AES key schedule. During the encryption, four bytes are leaked in each AES
round according to the LEX specification (bytes 0, 2, 8, 10 for odd rounds, and
bytes 4, 6, 12 and 14 for even rounds), and used as keystream to encrypt the
message. Then the message block is xored to the current internal state, following
the Pelican-MAC construction.
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Finalization. Finally, the internal state is encrypted with the full AES using the
master key K to generate the tag 7'

Rekeying. The designers of ALE require that the master key is changed after
processing 28 bits (i.e. 24! blocks).

Previous results. ALE was designed to thwart attacks against LEX [11,20] that
use a pair of partially-colliding internal states to recover the key. Indeed, each
AES call uses a different key, which prevents those attacks. Other attacks have
been proposed against LEX, based on differential trails between two message
injections [30,34]. We compare the previous attacks in Tablel. To make the
results comparable, we assume that attacks with a low success rate are repeated
until they succeed. For attacks using more than 24! blocks of data, the master
key will be rotated.

4.2 Internal Key Recovery

We describe a new attack against ALE, based on previous analysis of LEX.
The key update of ALE was supposed to avoid these attacks, but since the
update function has small cycles, there is a large probability that the key state
is repeated, which makes the attack possible.

We analyze cycles of P in the same way as for mixFeed: four iterations of the
5-round key schedule are equivalent to the application in parallel of four 32-bit
functions. The study of one of these functions gives us information about the
cycle structure of the permutation P. The 32-bit function has a cycle of length

= 4010800805 == 2319: therefore the permutation P admits many cycles of
length 4 x £ =~ 2339 which are reached with probability (¢ x 2732)* ~ (.76.

Previous attacks against LEX [11,12,20] are based on the search for a pair of
internal states that partially collides, with two identical columns. This pattern
can occur in odd or even round: we use columns 0 and 2 for odd rounds, and
columns 1 and 3 for even rounds. The partial collision occurs with probability
2764 and 32 bits of the colliding state can be directly observed, due to the leak
extractions. A candidate pair can be tested with complexity 264 [12, Section 7.1],
using the leak extraction of rounds before and after the collision; if it actually
corresponds to a partial collision this reveals the internal state and key.

In the case of ALE, we perform a chosen plaintext attack: we choose a message
M of 21 blocks (the maximum length allowed by the ALE specification) which
admits cycles of length 4 x £. With probability 0.76, the key cycles after 4 x ¢ =
2339 jterations of the permutation P. When this happens, we can split the
message into 233 sets of 27! blocks encrypted under the same key. In each set
we can construct 2132 pairs. In total, from one message M of 241 blocks, we get
on average 0.76 x 2132 x 2339 ~ 2467 pairs encrypted with the same key.

Unfortunately, the attack against LEX uses five consecutive AES rounds, but
in ALE, the subkeys used in five consecutive rounds do not follow the exact AES
key schedule. It is not possible to apply exactly the same attack on ALE, but
we can use the tool developed by Bouillaguet, Derbez, and Fouque [10,12] in
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order to find an attack in this setting. This tool found an attack that can test a
candidate pair with time complexity 272, and a memory requirement of 272, for
two different positions of the partial collision:

— when the collision occurs in round 4, the attack uses the leak of rounds 1, 2,
3, 4 and of round 1 of the next 4-round AES.

— when the collision occurs in round 1, the attack uses the leak of rounds 1 and
2, and of rounds 2, 3, 4 of the previous 4-round AES.

Starting with 2163 messages of length 24® (encrypted under different master

keys) we obtain 2163 x 213:2 x 2339 ~ 2634 pairg such that each pair uses
the same key with probability 0.76. Each pair can be used twice, assuming a
collision at round 1 or at round 4, so we have in total 2644 pairs to consider, and
we expect one of them to actually collide (0.76 x 2644 ~ 264). After filtering on
32 bits, we have 2324 candidate pairs to analyse, so that the time complexity is
2324 5 972 — 91044 " and the data complexity is 2163 x 241 = 2573,

This attack recovers the internal state, and we can compute backwards the
initial state Fx (0) and the session key Z = Ex (N). We can also generate almost
universal forgeries: when E(0) and Z are known we can compute the internal
state and ciphertext corresponding to an arbitrary message, and we can match
the value of the final internal state (and hence the tag) by choosing one block
of message or associated data appropriately.

5 Application to Impossible Differential Attacks

In 1999, Biham, Biryukov and Shamir introduced Impossible Differential attacks:
a new cryptanalysis technique that they applied to Skipjack [3]. This attack is
based on the existence of an impossible differential, i.e. a differential occurring
with probability 0. If a key guess leads to this differential, then it can be deduced
that this guess was wrong. This allows to eliminate key candidates and thus to
obtain an attack faster than exhaustive search. Impossible differentials have been
applied to various cryptosystems, including reduced versions of AES [2,13,33].
The framework described in [13] is composed of two parts: firstly, combina-
tions of bytes from the first and last subkeys are shown impossible, and secondly,
the master keys associated to the remaining candidates are reconstructed and
tested. When reconstructing the master key, previous attacks only exploit the
subkeys bytes in the first rounds, guess the missing bytes, and evaluate the key
schedule to check the bytes in the last subkeys. Our results significantly improve
this part, by combining information from the first and the last subkeys. Indeed,
the new representation shows that some bytes of a given subkey depend on fewer
than 128 bits of information of another subkey, even if the subkeys are separated
by many rounds. The complexity of the attack is a trade-off between the first and
second parts. After improving the second part we obtain slightly better trade-
offs. The improvement is limited because a small increase of the data complexity
(corresponding to the cost of the part) leads to a large reduction in the number
of remaining candidates (corresponding to the complexity of the second part).
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Structure of 2% chosen plaintexts
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Fig. 10. 7-round impossible differential attack of [33] (figure adapted from [28]).
Key bytes marked G and D are respectively guessed, and deduced from guessed
bytes.

5.1 The AES Round Function

The AES state is represented as a 4 x 4-byte array, and the round function
iterates the following operations:

— SubBytes applies an Sbox on each byte of the state;

— ShiftRows shifts by the left the second row of the state by 1 cell, the third
row by 2 cells, and the last row by 3 cells;

— MixColumns multiplies each column of the state by an MDS matrix;

— AddRoundKey xors the state with the round key.

Sbox property. During this attack, we will use a well-known property for a n-
bit to m-bit Sbox: given an input and an output difference, there is on average
2"~™ possible values. For the AES Sbox, n = m = 8, so in average one value is
expected. We pre-compute those values, and refer to that table as the DDT.

5.2 Previous Results

The best impossible differential attacks against AES-128 are variants of an attack
from Mala, Dakhilalian, Rijmen and Modarres-Hashemi [33]. Several trade-off
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are proposed in [13] with four output differentials and using a technique to
reduce the memory by iterating over the possible key bytes values, rather that
iterating over the data pairs. In this work, we start from a variant with a single
output differential explained in detail below; it is easier to describe than variants
considered in [13] and provides an interesting trade-off.

Impossible differential. This attack uses a collection of impossible differentials
over 4 rounds, and extends them with two rounds at the beginning and one
round at the end (omitting the final MixColumns), as shown in Fig. 10. We use
a set of impossible differentials over 4-rounds (without the last MixColumns):

Dx # Dy
(, ,7,7,0,0,0,0,7 0,?,0,0,0,0)
oo _ J(2.0,2,7,0,0,0,0,7,7,7,0,0,0,0,0)
X =9 (7,7,0,7,0,0,0,0,0,7,7,7,0,0,0,0)
(?a a? 0,0,0,0,0,?,0,?,?,0,0,0,0)
(050707070?0?070707070707‘1:?05070)
- (070707070?070507070707070?’1:7070)
Dy = (0,0,0,0,0,0,O,O,O,O,O,O,O,O,x,o)|I7é0
(0,0707070,0,0,0,0,070,0,0,0,0,@

We assume to be given a pair of plaintexts and the corresponding ciphertexts
such that the plaintext difference is in a set D;, corresponding to two active
diagonals, and the ciphertext difference is in a set Dy corresponding to one
active anti-diagonal:

D = {(7,0,7,0,0,7,0,7,7,0,7,0,0,7,0,7)}
Dout = {(07 07 07 ?7 07 07 ?7 07 07 ?7 07 07 ?7 07 07 O)}
After guessing the values of the key bytes l<:<0 9,5,7,8,10,13,15) k<18 10 ,k;<73,679’12>, we
can deduce that some values result in differences in D. v and Dy . Since this tran-
sition holds with probability 0, we can discard those key candidates. Eventually
with a large number N of pairs of plaintexts, we eliminate most of the key can-
didates, and we can verify the remaining candidates exhaustively. We now detail
how to perform this attack efficiently, following Algorithm 1.

Pre-computation. After the MixColumns of the first round, in column 1 and
3, we want non-zero differences only in the first and the third bytes. There
are 216 possible differences; by inverting the linear operations MixColumns and
ShiftRows, we obtain 216 possible differences for the diagonal (bytes (0, 5, 10, 15)
and (2,7,8,13) respectively) after the SubBytes of the first round. We store
these 216 differences in the table Ty. Similarly, we build a table T, with the 210
possible differences before the SubBytes of the last round by propagating the 210
differences in Dy-.
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Construction of pairs. We start with 237+¢ structures of 264 plaintexts such that
all the plaintexts in a structure are identical in bytes 1, 3, 5, 7, 9, 11, 13, and
15. For each set, we construct (2;4) ~ 227 pairs. We identify the pairs with
a ciphertext difference in D,,; and store them in a list Lq; we expect to have
N = 2127 5 2796 5 937T+e — 968+¢€ pairs.

Step 1. First, we identify plaintext/ciphertext pairs and values of k(()o, 5,10,15) that
result in a zero difference in bytes 1 and 3 after the first MixColumns. To this
end, we sort the list L1 according to the plaintext difference and value in bytes
0, 5, 10 and 15. We obtain 254 sublists of approximatively 24+¢ pairs. From now
on, all the steps are repeated for all guesses of the key bytes k?o, 5,10,15)" For each
possible difference § in bytes 0, 5, 10 and 15 before SubBytes, we confront the
difference with each of the possible differences after SubBytes in T;. Then, using
the DDT of the AES Sbox, we extract the input values of the SubBytes operation
of the first round, corresponding to this input and output difference. Since the
key k?075)10,15> has been guessed, we can deduce the value of the plaintext in

bytes 0, 5, 10 and 15, and locate the right sublist of L; with 24*¢ pairs that
follow this part of the trail for this key guess. We store those pairs in a list Lo;
after iterating over § and T we have on average 232+16+4+e — 952+¢ pairg in L.

Step 2. During this step, we filter data pairs and values of k0277,8713) leading to
a zero difference in bytes 13 and 15 after the first MixColumns. To do this, we
consider each pair of Lo, and iterate over the possible differences after SubBytes
in bytes 2, 7, 8, 13, stored in T3. Since we have the input and output differences
of those Sboxes, we retrieve the corresponding values from the DDT. By xoring
these values with the plaintext, we obtain the associated key bytes k?2,778,13> and

we add this pair to a list indexed by the key bytes, L3 [k<2 7.8 13>]
The following steps are repeated for each value of k? (2,7,8,13)5 We have a list

Ly [k<2 7813)) Of 202+e+16-32 _ 936+¢ plaintext pairs that satisfy the required
difference after the first round.

Step 3. During this step, we associate each pair of L3 [k<2 78 13>} to the key bytes
ki and ki, such that difference after the MixColumns of round 2 is in Dx. We
recall that at this point, the bytes k?0,2,5,7,8,10,13,15) have already been guessed.
Following the AES-128 key schedule, we can easily deduce bytes k¢ and ki. For
each pair of L3[k? (2,7.8,13))> we compute the values of the first and the third column

of both plaintexts after the MixColumns of the first round. Using k<0 2 We can
also compute the values of both states on bytes 0 and 2 after AddRoundKey and
SubBytes in the second round, corresponding to bytes 0 and 10 after ShiftRows.
Looking at the MixColumns operations in columns 1 and 3 in the second round,
we know the difference in 3 input bytes (2 zeros given by the differential trail,
and value just recovered) and one output byte (a zero given by the differences
in Dx). Therefore we can recover the full input and output difference in those
columns by solving a linear system (the solution is unique because of the MDS
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property). By inverting the ShiftRows operation, we recover the difference after
the SubBytes operation of the second round in bytes 8 and 10. The difference
before this operation is also known, therefore we recover the values of bytes 8 and
10 before SubBytes, and deduce the value of k%&w) by xoring the value at the end
of the first round. We have to repeat this deduction four time, because we have
four different positions of the zero differences in Dx. Each pair of Lg [k?2)7,8’13>]

suggests on average four candidates for k<18710>, and we store the pairs in a list
indexed by the key bytes, Ly [k(ls,m)]'

The next steps are repeated for each value of k<18710>, using the list Ly [k<18710>]
with on average 236+¢+2-16 — 9224¢ pairs leading to a difference in Dy.

Step 4. This step determines the key candidates k<73’6’9712> that are ruled out

with the available data, for each k?07275,778710713715>, k(l&l()). For this purpose, we
(73,6,9,12
pair of Ly [k<18710)], we consider all the differences at the end of the sixth round
that correspond to a difference in Dy, stored in T5. From the differences before
and after the last SubBytes, we compute the value of the output of SBox in bytes
3, 6,9 and 12 using the DDT. Then, using the ciphertext values, we recover the

bytes k‘<73)679712> and mark this value in the list Ls.

use a list Ls of 232 bits to mark impossible key candidates k ) For each

On average we mark 222+¢+10 — 2324¢ Leyg asggrnpossible, so that each key
remains possible with probability P = (1 —2732)27"" ~ =2,

Step 5. Finally, we reconstruct the master keys corresponding to the can-
didates k?0727577,8710713715> ) k:<18710> ; k:<737679,12> not marked as impossible. Follow-
ing [13,33], knowing k?012757778710’13)15> and k<18710> is equivalent to knowing
k?0,2,4,576,7,8,10,13,15
last round. Therefore, for each of the 2!12 x P candidates, we just consider the 10
known bytes of £, do an exhaustive search for the 6 missing bytes and recompute
k7 to see if it matches the candidate. This requires 2112 x P x 248 = 2160 x P eval-
uations of the key schedule. We verify the 2160 x P x 2732 = 2128 x P remaining
candidates with a know plaintext/ciphertext pair, for a cost of 212% x P encryp-
tions.

) but it is hard to combine this with information about the

Complezity. There are three dominant terms in the complexity of the attack.
First we need to make 2'97F¢ calls to the encryption oracle. Then, the generation
of key candidates (steps 1 to 4) is dominated by step 4. This step is done 2%°
times (for each guess of k?0,275,778710713715> and k<18710>) and during this step we go
through the whole list Ly [k%&w)], containing 2221¢ pairs. For each pair and for
each of the 210 differences in Ts, we use 4 times the DDT. In order to express
this complexity using one encryption as the unit, we follow the common practice
of counting the number of table look-up. A 7 round AES encryption, requires
20 x 7 table lookups (including the Sboxes in the key schedule), therefore the
cost of 4 DDT lookups is similar to 4/140 = 1/35 encryptions. In total, the
complexity of Step 4 is 289 x 2227¢ x 210/35_ Finally step 5 requires the equivalent
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Algorithm 1. Construction of possible key candidates (Steps 1 to 4)

Require: Tables T, T» and a list L1 of 968+¢ pairs satisfying D, and Doy:.
Sort L1 according to the plaintext difference and value in bytes 0, 5, 10 and 15.
Let L1[d][z] be the sub-list with difference ¢ and value x in those bytes.
for all k(<)0‘5’10’15> do
L2 —
for all 32-bits difference § do
for all difference 6 in 77 do > bytes (0, 5,10, 15)
Compute value(s) (o,5,10,15) before first SubBytes from DDT.
Add all pairs of L1[8][z(0,5,10,15) © ko 5,10,15)] tO L2.
Ls — [, for all k[()z,7,s,13>}
for all pairs ((p,p), (c,c)) in L2 do
for all difference 6 in 77 do > bytes (2,7,8,13)
Compute value(s) (27,513 before first SubBytes from DDT.
Add pair to Lz[x(2,7.8,13) ® P(2,7,8,13)]-
for all k‘(<)2’778’13> do
Ly — [@, for all kjg ]
Compute k%og) using the AES key schedule.
for i in {0,1,2,3} do
for all pairs in L3 [k?2y7’8713>] do
Deduce k%s,m)a assuming that diagonal ¢ is inactive at end of round 2.
Add pair to Lq4 [k<18710>].
for all k<18’10> do
Ls — [True, for all k(73,6,9,12>]
for all pairs ((p,p'), (¢,c')) in La[k(g 10)] do
for all difference 6 in T> do > bytes (12,13, 14, 15)
Compute value(s) x(15,14,13,12) after last SubBytes from DDT.
Ls[x(15,14,13,12) © €(3,6,9,12)] — False.
for all k{3 ¢ 15 do
if Ls[k{s .92 then
Check key candidate k?0‘2’577’8’10713715>, k<18’10>, k<73,6,9,12>-

of e=2" . 2160 /5 + e~2" . 2128 encryptions, because the cost of the key schedule
compared to an encryption® is 4/20 = 1/5. In total, the time complexity is:

T — 2101+€ + 2112+€/35 + 6—2e . (2160/5 + 2128)

The best time complexity is obtained by taking ¢ = 5.1, leading to a time
complexity of 21121 a data complexity of 2'°6-! chosen plaintexts, and a memory
complexity of N = 271 words.

3 This ratio is given as 27%¢ & 1/12 in [13], but we don’t see how to achieve this
result. In any case the impact on the total complexity is negligible because it is
compensated by a very small change of €.
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Variant with multiple differentials. Boura, Lallemand, Naya-Plasencia and
Suder describe [13] in a variant of this attack using multiple output differentials.
More precisely, instead of using a fixed column for Dy and a fixed anti-diagonal
for Dyyy, they consider the four possible columns for Dy and the four corre-
sponding anti-diagonal for D,,;. The attacks is essentially the same, but there
are two important differences.

To construct the pairs, they start from only 23°7¢ structures of 264 plain-
texts, but they obtain 28t¢ pairs matching D;,, and D,,; when considering
the four anti-diagonal in D,,;. Steps 1 to 3 of the attack are the same a given
above, but in step 4 each pair can give information about different bytes of k7,
depending on which anti-diagonal is active in the ciphertext. For each choice of

/4;?0 2,5.7,8,10,13,15) /4;<18 10)+ they build a list of possible values for each anti-diagonal
2

of k7, and each key value remains possible with probability e~ “ because one
fourth of the data correspond to each diagonal. Finally, in step 5, they merge
the 4 lists, for a cost of 280 x (e=2" " . 232)1 = ¢=2° . 2208,

The total time complexity of this variant is:

T — 299+€ + 2112+E/35 4 6726 . (2208/5 4 2128)

The best time complexity is obtained by taking ¢ = 6.1, leading to a time
complexity of 2113, a data complexity of 219! chosen plaintexts, and a memory
complexity of N = 274! words.

This attack is listed with a time complexity of 21968 with ¢ = 6 in [13], but
this seems to be a mistake. There are not enough details of this attack in [13] to
verify where their attack would differ from our understanding, but we don’t see
how to avoid having 2'12%¢ iterations at step 4, when we are eliminating 112-bit
keys. Applying the generic formula (7) from the same paper also gives a term
2112+¢ /35 in the complexity (written as 2ka+ks N . 7. in [13]).

2¢intCout

Variant with state-test technique. In [13], the authors describe in details a
variant using four output differentials and the state-test technique. This allows
them to reduce by one byte the number of key bytes to be guessed, but they
must use smaller structures, and this increases the data complexity.

The attack requires N = 258+¢ chosen plaintexts, with a time complexity of:

T — 2107+6 4 2104+6/35 4 672€ . (2200/5 4 2128)

The optimal time complexity?® is 2''3 with € = 6.

5.3 Owur Improvement

We now explain how to improve the first attack using properties of the key sched-
ule. We keep steps 1 to 4 as given in Algorithm 1, but we improve the reconstruc-
tion of the master key from bytes of the first and last round keys (Step 5). With

* In [13] they report the complexity as 2''*! with € = 6.1.
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this improvement, generating the key candidates is actually cheaper than verify-
ing them with a known plaintext/ciphertext pair. We use the following property
of the key schedule, in order to guess the missing key bytes of k¥ iteratively, and
to efficiently verify whether they match the known bytes of k7.

Proposition 1. Let k] a byte of an AES-128 subkey. If the byte is in the last
column (12 < i < 16), then it depends on only 32 bits of information of the
master key. If the byte is in the second or third column (4 < i < 12), then it
depends on only 64 bits of information of the master key.

Proof. Bytes in the last column correspond to basis vectors in the new represen-
tation, following Eq. (1) (for instance kjy = si5). Therefore they depend only
on one 32-bit chunk at any given round (k], can be computed from 3(2071,2@).

Bytes in the second column correspond to the sum of two basis vector in the
new representation (for instance kf = s, @ s}). Since the two elements do not
belong to the same chunk, the byte depends on two 32-bit chunks at any given
round (k¢ can be computed from 530,1’2’3’8’9,10,1”).

Similarly, bytes in the third column correspond to the sum of two basis
vector in the new representation (for instance kf = si; @ s;). Therefore they
depend only on two 32-bit chunks at any given round (kJ can be computed from
3?0,1,2,3,12,13,14,15 )-

Bytes in the first column correspond to the sum of four basis vector from four
different chunks, therefore they depend on the full state in general (for instance
ki = sts @ shy @ sk & sp). O

Initially we are given the values of k?072)475)67778)10)13)15> and k<73)679’12>. Accord-
ing to the property above, kI, can be computed from kY5, k9, ® k%, @ kQ @ k9,
K @ k2, kY @ kY, kY, and k can be computed from k{5, k9, @ k0, @ kJ @ kS,
ks kO, Ky @ k2, kY5, Ky @k @ kS @ K, kD5 @ K9, kY, @ kY. Therefore we can
verify their value after guessing k?lZ,l ne

At this point two chunks are completely known: 5?0717273)) and 3?879,1071” or

equivalently Sz12’13’14’15> and 5?4,5,6,7)' In particular, we can deduce the value of

ki, = st = sl @ kI, which can also be computed from 5?12 13,14,15)> b€ from

Ky, KOs @ kY @ k9 @ kY, kY, @ kY, kY3 ® k. Therefore, we only need to guess
k9, @ kY and kY to verify k5.
Finally, we focus of the remaining 32-bit chunk, corresponding to 3?4)576’”

7
(0,1,2,3)"

can compute sf = s, @ s73 @ st @ kI. Using a pre-computed table, we recover
the 28 values of the chunk corresponding to those constraints.

Algorithm 2 describes the full process. The cost of this step is e 2" x 2128 /5,
where 1/5 is the cost of computing the key schedule compared to a full encryp-
tion. Finally the total time complexity of our attack is:

and s We already have the value of s§ = k¥, and s§ = k{, @ k{, and we

T — 2101+6 + 2112+6/35 + 672‘ . (2128/5 + 2128)
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Algorithm 2. Improved version of the key candidate checking (Step 5)

Require: A key candidate k?072’5y778’10713’15>, k%8’10>,k<73’6‘9’12>.
for all k:(Dm’M) do
Compute 5?12,13,14,15) from 5?0,1,2,3)
if ki, = s75 then
Compute 5?4,5,6,7) from 5?879110’11>
if ki = s7 ® s?, then
T « [@, for all ki;]
for all k9;, k% @ k§ do
Compute 52071,27& from 3(2475’6,”
Add (K1, k7 @ k§) to T[]
for all k3, kS @ k%, do
Compute Sz8,9,10,11) from 5?12,13,14,15)
if ki = s @ sl5 then
for all (k&Y @ k) in T[s]5 @ sl @ 57 @ ki) do
Check the master key k° with a pair (p, c).

The best time complexity is obtained by taking ¢ = 3.9 leading to a time com-
plexity of 21109 a data complexity of 2'9%9 chosen plaintext, and a memory
complexity of 2719 words.

We remark that the improvement is only applicable when the last MixColumns
is omitted. In general, it does not affect the complexity of attacks, because
removing the last MixColumns defines an equivalent cipher up to a modification
of the key schedule. However, when attacks exploit relations between the subkeys,
the relations are simpler if the last MixColumns is omitted [22].

6 New Representations of the AES-192 and AES-256
Key Schedules

The same techniques can also be applied to other variants of AES: we apply the
algorithm of Leander, Minaud and Rgnjom [32] to extract invariant subspaces of
the key schedule, and we use a change of variables corresponding to the subspaces
to obtain a simplified representation.

AES-192. We find two invariant subpaces of dimension 12, and obtain a simpli-
fied representation with 2 independent chunks each acting on 12 bytes, as shown
in Fig. 11.

AES-256. We find four invariant subpaces of dimension 8, and obtain a simpli-
fied representation with 4 independent chunks each acting on 8 bytes, as shown
in Fig. 12.
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Fig. 11. One round of the AES-192 key schedule (alternative representation).
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7 Properties on the AES Key Schedule

In addition to explaining the presence of short length cycles, our new represen-
tations of the key schedule also permits us to demonstrate some properties. For

T T
conciseness, we use the notation k; ; ;. to denote ki, kj @ kj ...

Proposition 2. Let P. and P/ defined in one of the following ways:

o AES-128 (1): Pr = ki5 7 1315, and Pl =kj, ¢ 15 14y

AES-128 (2): Pr = k(0@4 2006,8612,10614) ’ and P] = k?m;s 307,9013,11015)

[ ]
o AES-192 (1) Pr = (5,7713715721,23)7 and P - k(4 6,12,14,20,22)
[ ]

AES-192 (2) P = k26@4,2@6,8@12,10@14,16@20,18@22)
/ T
and P = k(1@5,3@7,9@13,11@15,17@21,19@23)
. _ r / T
AES-256 (1): P, = k<5 7,13,15,21,23,29,31) 7 and P = k<4 6,12,14,20,22,28,30)

o AES-256 (2): P, = Kloma,206,8912,10914,16620, 18922, 24028 26830)
and P, = k7

(1$5,307,9913,11015,176421,19423,256329,27631)

If there exists an ro such as P., and P) L, are known, then for all i € Z, the
bytes Pryi2i and P} o, are known (and they are easily computable).

Proof. The AES-128 (1) case is considered here the other cases are demonstrated
in the same way. Knowing k<5 713, 15) and k<4 6,12,14) is equivalent to knowing two
chunks of the state: s/ (0,1,2,3 and s (8,0,10,11)" This can be verified using Eq. (2).
The knowledge of these 2 cflunks allows us to extract the value of the bytes in
pOblthn k (5,7,13,15) or k’ (4,6,12,14) at any round. O

This byte position of this proposition is represented in Fig. 13. This propo-
sition is a generalization of the observations made for AES-128 by Dunkelman
and Keller:

Observation 3 ([21]). For each 0 < i < 3, the subkeys of AES satisfy the
relations:

Fera(3,0) @ krya (i, 2) = ky (4, 2).
kr+2(iv 1) S5 kr+2(i7 3) = kr(iv 3)

Observation 4 ([21]). For each 0 < i < 3, the subkeys of AES satisfy the
relation:

kro(iy 1) @ SB(kyt1((i + 1) mod 4,3)) ® RCON, (i) = k.(i, 1).

Another property can also be demonstrated on the AES-128 key schedule,
using the value of one byte of the last column per round over 4 consecutive
rounds:

Proposition 3. If there exists r € N and i € {0,1,2,3} such that the bytes

k{5ﬂ,k;’;l(l+1)%4,kr+2(l+2)%4,kig'3(l+3)o/4 are known, then for all j € Z, the

value of the byte klsf(i+j%4) is known.
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round 7

round 7 + 1

AES-128 (1) | AES-128 (2) | AES-192 (1) AES-192 (2) AES-256 (1) AES-256 (2)

Fig. 13. Representation of the position of the bytes of the proposition. In vari-
ants (2), only the XOR of the two bytes of the same color must be known.

r+2 r+3 s .
15— (i+1)%4 k15—(¢+2)%47 k15—(i+3)%4 18 equiva-
lent to knowing one chunk of the state in our representation: 3241.,41.“74”274”3).
Given that Vr € N, s}, = k7;_,, we can calculate a byte of the last column at any

round because we have the knowledge of a chunk in our new representation. 0O

Proof. Knowing the bytes k]_,, krit

The property can also be generalized when bytes at the correct position are
known in non-consecutive rounds.

8 Conclusion

Alternative representations of the AES data operations have been used in several
previous works; in particular, the super-box property [26] of Gilbert and Peyrin
is an alternative representation of two AES rounds that led to several improved
cryptanalysis results on AES-based schemes. Gilbert has later shown a more
general untwisted representation of the AES data path, resulting in the first
known-key attack against the full AES-128 [25].

In this work we use techniques from invariant subspace attacks to discover an
equivalent representation of the AES key schedule, and we derive new cryptanal-
ysis results, based on two main observations. First, iterating an odd number of
key schedule rounds defines a permutation with short cycles. This undermine the
security of AES-based schemes using iterations of the key schedule as a type of
tweak to make each encryption call different. More generally, the AES key sched-
ule cannot and should not be considered as a random permutation, even after a
large number of rounds. Second, the alternative representation makes it easier to
combine information from the first subkeys and from the last subkeys, improv-
ing previous key recovery attacks. This topic has been studied before and many
attacks use key schedule relations to reduce the complexity (in particular, we
can mention the key bridging notion of Dunkelman, Keller and Shamir [23,24]).
However our alternative representation shows non-linear relations that have not
been exploited before. In particular, we show that bytes in the last column of an
AES-128 subkey depend on only 32 bits of information from the master key.

We expect that this alternative representation can open the way to further
results exploiting properties of the AES key schedule. For instance, the new
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representation can be used to characterize keys that stay symmetric for two
rounds, as used in [27], but this is easily be done with the standard representation
due to the small number of rounds.
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Abstract. The Hybrid Public Key Encryption (HPKE) scheme is an
emerging standard currently under consideration by the Crypto Forum
Research Group (CFRG) of the IETF as a candidate for formal approval.
Of the four modes of HPKE, we analyse the authenticated mode
HPKEauh in its single-shot encryption form as it contains what is,
arguably, the most novel part of HPKE.

HPKEauth’s intended application domain is captured by a new primitive
which we call Authenticated Public Key Encryption (APKE). We provide
syntax and security definitions for APKE schemes, as well as for the related
Authenticated Key Encapsulation Mechanisms (AKEMSs). We prove secu-
rity of the AKEM scheme DH-AKEM underlying HPKEa.h based on the
Gap Diffie-Hellman assumption and provide general AKEM/DEM com-
position theorems with which to argue about HPKEah’s security. To this
end, we also formally analyse HPKEauh's key schedule and key derivation
functions. To increase confidence in our results we use the automatic the-
orem proving tool CryptoVerif. All our bounds are quantitative and we
discuss their practical implications for HPKEauth-

As an independent contribution we propose the new framework of
nominal groups that allows us to capture abstract syntactical and secu-
rity properties of practical elliptic curves, including the Curve25519 and
Curved48 based groups (which do not constitute cyclic groups).

Keywords: Public-key encryption + Authentication - Signcryption -
Key encapsulation mechanisms

1 Introduction

An effort is currently underway by the Crypto Forum Research Group (CFRG) to
agree upon a new open standard for public key encryption [5]. The standard will
be called Hybrid Public Key Encryption (HPKE) and it is, in particular, expected
to be used as a building block by the Internet Engineering Task Force (IETF) in
at least two further upcoming standardized security protocols [4,30]. The primary
source for HPKE is an RFC [5] (currently on draft 8) which lays out the details of
the construction and provides some rough intuition for its security properties.
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At first glance the HPKE standard might be thought of as a “public key
encryption” scheme in the spirit of the KEM/DEM paradigm [15]. That is, it
combines a Key Encapsulation Mechanism (KEM) and an Authenticated Encryp-
tion with Associated Data (AEAD) acting as a Data Encapsulation Mechanism
(DEM) according to the KEM/DEM paradigm. However, upon closer inspection
HPKE turns out to be more complex than this perfunctory description implies.

First, HPKE actually consists of 2 different KEM/DEM constructions. More-
over, each construction can be instantiated with a pre-shared key (PSK) known
to both sender and receiver, which is used in the key schedule to derive the
DEM key. In total this gives rise to 4 different modes for HPKE. The basic mode
HPKEgase makes use of a standard (say IND-CCA-secure) KEM to obtain a “mes-
sage privacy and integrity” only mode. This mode can be extended to HPKEpsk
to support authentication of the sender via a PSK.

The remaining 2 HPKE modes make use of a different KEM/DEM construc-
tion built from a rather non-standard KEM variant which we call an Authenti-
cated KEM (AKEM). Roughly speaking, an AKEM can be thought of the KEM
analogue of signeryption [31]. In particular, sender and receiver both have their
own public/private keys. Each party requires their own private and the other
party’s public key to perform en/decryption. The HPKE RFC constructs an
AKEM based on a generic Diffie-Hellman group. It goes on to fix concrete instan-
tiations of such groups using either the P-256, P-384, or P-521 NIST curves [2§]
or the Curve25519 or Curve448 curves [25]. The AKEM-based HPKE modes also
intend to authenticate the sender to the receiver. Just as in the KEM-based
case, the AKEM/DEM construction can be instantiated in modes either with
or without a PSK. We refer to the AKEM/DEM-based mode without a PSK as
the authenticated mode and, for reasons described below, it is the main focus of
this work. The corresponding HPKE scheme is called HPKEath-

Orthogonal to the choice of mode in use, HPKE also provides a so called
single-shot and a multi-shot API. The single-shot API can be thought of as
pairing a single instance of the DEM with a KEM ciphertext while the multi-
shot API establishes a key schedule allowing a single KEM to be used to derive
keys for an entire sequence of DEMs. Finally, HPKE also supports exporting
keys from the key schedule for use by arbitrary higher-level applications.

APPLICATIONS. As an open standard of the IETF, we believe HPKE to be an
interesting topic of study in its own right. Indeed, HPKE is already slated for
use in at least two upcoming protocols; the Messaging Layer Security (MLS) [4]
secure group messaging protocol and the Encrypted Server Name Indication
(ESNI) extension for TLS 1.3 [30]. Both look to be well-served by the single-
shot APT as they require a single DEM to be produced (at the same time as the
KEM) and the combined KEM/DEM ciphertext to be sent as one packet.
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More interestingly, at least for MLS, authenticating the sender of an HPKE
ciphertext (based on their public keys) is clearly also a useful property. (For the
ESNTI application things are less clear.!)

In a bit more detail, MLS is already equipped with a notion of a PKI involving
public keys bound to long-term identities of parties (as described in [29]). To
invite a new member to an existing MLS protocol session the inviter must send an
HPKE ciphertext to the new member. In line with MLS’s strong authentication
goals, the new member is expected to be able to cryptographically validate the
(supposed) identity of the sender of such ciphertexts.

Currently, MLS calls for the HPKE ciphertext to be produced using HPKE’s
basic mode HPKEg,s. and the resulting ciphertext to be signed by the inviter
using a digital signature scheme (either ECDSA or EADSA). However, an alter-
native approach to achieve the same ends could be to directly use HPKE in its
authenticated mode HPKEa,i,. This would save on at least 2 modular exponen-
tiations as well as result in packets containing 2 fewer group elements. Reducing
computational and communication complexity has been a central focus of the
MLS design process as such costs are considered the main hurdles to achiev-
ing the MLS’s stated goal of supporting extremely large groups. Unfortunately,
in our analysis, we discovered that HPKEau, does not authenticate the sender
when the receiver’s secret key leaked, a key compromise impersonation (KCI)
attack (Sect.4.4). MLS aims to provide strong security in the face of state leak-
age (which includes KCI attacks), so switching from HPKEg,s and signatures to
HPKEauth would result in a significant security downgrade.

HPKEauth could also be a replacement for the public-key authenticated
encryption originally implemented by the NaCl cryptographic library. HPKEauh
is safer than the NaCl implementation because, in HPKEatn, the shared secret
is bound to the intended sender and recipient public keys.

1.1 Owur Contributions

So far, there has been no formal analysis of the HPKE standard. Unfortunately,
due to its many modes, options and features a complete analysis of HPKE from
scratch seems rather too ambitious for a single work such as this one. Thus, we are
forced to choose our scope more carefully. The basic mode HPKEg,¢ (especially
using the single-shot API) seems to be a quite standard construction. Therefore,
and in light of the above discussion around MLS, we have opted to focus on the
more novel authenticated mode in its single-shot API form HPKEaun. To this
end we make the following contributions.

AUTHENTICATED KEM AND PKE. We begin, in Sect. 4, by introducing Authen-
ticated Key Encapsulation Mechanisms (AKEM) and Authenticated Public Key

! The ESNI RFC calls for a client initiating a TLS connection to send an HPKE
ciphertext to the server. Although not as common, TLS can also be used in settings
with bi-directional authentication. In particular, clients can use certificates binding
their identities to their public key to authenticate themselves to the server. Unfor-
tunately, it is unclear how the server would know, a priori, which public key to use
for the client when attempting to decrypt the HPKE ciphertext.
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Table 1. Security properties needed to prove Outsider-Auth, Outsider-CCA, and
Insider-CCA security of APKE obtained by the AKEM/DEM construction.

AKEM AEAD
Outsider-Auth Outsider-CCA Insider-CCA INT-CTXT IND-CPA
OQutsider-Authapke X X X
Outsider-CCAapkE X X X
Insider-CCAApKE X X X

Encryption (APKE) schemes, where the syntax of APKE matches that of the
single-shot authenticated mode of HPKEau. In terms of security, we define
(multi-user) security notions capturing both authenticity and (2 types of) pri-
vacy for an AKEM and an APKE. In a bit more detail, both for authenticity and
for privacy we consider so called weaker outsider and stronger insider variants.
Intuitively, outsider notions model settings where the adversary is an outside
observer. Conversely, insider notions model settings where the adversary is some-
how directly involved; in particular, even selecting some of the secrets used to
produce target ciphertexts. A bit more formally, we call an honestly generated
key pair secure if the secret key was not (explicitly) leaked to the adversary
and leaked if it was. A key pair is called bad if it was sampled arbitrarily by
the adversary. A scheme is outsider-secure if target ciphertexts are secure when
produced using secure key pairs. Meanwhile, insider security holds even if one
secure and one bad key pair are used. For example, insider privacy (Insider-CCA)
for AKEM requires that an encapsulated key remains indistinguishable from ran-
dom despite the encapsulating ciphertext being produced using bad sender keys
(but secure receiver keys). Similarly, insider authenticity (Insider-Auth) requires
that an adversary cannot produce a valid ciphertext for bad receiver keys as long
as the sender keys are secure. In particular, insider authenticity implies (but is
strictly stronger than) Key Compromise Impersonation (KCI) security as KCI
security only requires authenticity for leaked (but not bad) receiver keys.
Moreover, as an independent contribution we show that for each security
notion of an AKEM a (significantly simpler) single-user and single-challenge-
query version already implies security for its (more complex but practically rel-
evant) multi-user version. In particular, this provides an easier target for future
work on AKEMs, e.g. when building a post-quantum variant of HPKEa -

AKEM/DEM: rroMm AKEM TO APKE. Next we turn to the AKEM/DEM con-
struction used in the HPKE standard. We prove a set of composition results each
showing a different type of security for the single-shot AKEM /DEM construction
depending on which properties the underlying AKEM guarantees. Each of these
results also assumes standard security properties for the AEAD (namely IND-CPA
and INT-CTXT) and for the key schedule KS (namely pseudo-randomness). In
particular, these results are proven in the standard model. Somewhat to our
surprise, it turns out that the APKE obtained by the AKEM/DEM construction
does not provide insider authenticity (and so, nor does HPKEa itself). Indeed,
we give an attack in Sect. 4.4.



Analysing the HPKE Standard 91

Table 1 summarises the AKEM and AEAD properties we use to prove each of
the remaining 3 types of security for the AKEM/DEM APKE construction.

THE HPKEau:n SCHEME. In Sect. 5 we analyse the generic HPKEat, scheme pro-
posed in the RFC. HPKEauh is an instantiation of the AKEM/DEM paradigm
discussed above.

Thus, we first analyse DH-AKEM, the particular AKEM underlying HPKEayth-
The RFC builds DH-AKEM from a key-derivation function KDF and an underlying
generic Diffie-Hellman group. As one of our main results we show that DH-AKEM
provides authenticity and privacy based on the Gap Diffie-Hellman assumption
over the underlying group. To show this we model KDF as a random oracle.

Next we consider HPKEa i ’s key schedule and prove it to be pseudo-random
based on pseudo-randomness of its building blocks, the functions Extract and
Expand. Similarly, we argue why DH-AKEM’s key derivation function KDF can
be modelled as a random oracle. Finally, by applying our results about the
AKEM/DEM paradigm from the previous sections, we obtain security proofs
capturing the privacy and authenticity of HPKEau, as an APKE. Our presenta-
tion ends with concrete bounds of HPKEa,h’s security and their interpretation.

PRACTICE-ORIENTED CRYPTOGRAPHY. Due to the very applied nature of HPKE
we have taken care to maximise the practical relevance of our results. All security
properties we analyse for HPKEaus, are defined directly for a multi-user setting.
Further, to help practitioners set sound parameters for their HPKE applications,
our results are stated in terms of very fine-grained exact (as opposed to asymptotic)
terms. That is, the security loss for each result is bounded as an explicit function
of various parameters such as the numbers of key pairs, queries, etc.

Finally, instead of relying on a generic prime-order group to state our underly-
ing security assumptions, we ultimately reduce security to assumptions on each
of the concrete elliptic-curve-based instantiations. For the P-256, P-384, and
P-521 curves, this is relatively straightforward. However, for Curve25519 and
Curved48, this is a less than trivial step as those groups (and their associated
Diffie-Hellman functions X25519 and X448) depart significantly from the stan-
dard generic group abstraction. To this end we introduce the new abstraction of
nominal groups which allows us to argue about correctness and security of our
schemes over all above-mentioned elliptic curve groups, including Curve25519
and Curve448. (We believe this abstraction has applications well beyond its use
in this work.) Ultimately, this approach results in both an additional security loss
and the explicit consideration of (potential) new attacks not present for generic
groups. In particular, both Curve25519 and Curve448 exhibit similar (but dif-
ferent) idiosyncrasies such as having non-equal but functionally equivalent curve
points as well as self-reducibility with non-zero error probability, all of which we
take into account in our reductions to the respective underlying assumption.

1.2 Proof Techniques

The results in this work have been demonstrated using a combination of tra-
ditional “pen-and-paper” techniques and the automated theorem proving tool
CryptoVerif [13], which was already used to verify important practical protocols
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such as TLS 1.3 [12], Signal [22], and WireGuard [27]. CryptoVerif produces
game-based proofs: it starts from an initial game provided by the user, which
represents the protocol or scheme to prove; it transforms this game step by step
using a predefined set of game transformations, until it reaches a game on which
the desired security properties can easily be proved from the form of the game.
The game transformations are guaranteed to produced computationally indis-
tinguishable games, and either rely on a proof by reduction to a computational
assumption or are syntactic transformations (e.g. replace a variable with its
value). Using CryptoVerif to prove statements can result in greater confidence
in their correctness, especially when the proofs require deriving (otherwise quite
tedious) exact bounds on the security loss and/or reasoning about relatively
complicated, e.g. multi-instance, security games.

However, CryptoVerif also has its limitations. Fortunately, these can be read-
ily overcome using traditional techniques. The language used to define security
statements in CryptoVerif is rather unconventional in the context of cryptog-
raphy, not to mention (necessarily) very formal and detailed. Together this can
make it quite challenging to build an intuitive understanding for a given notion
(e.g. to verify that it captures the desired setting). To circumvent this, we present
each of our security definitions using the more well-known language of game-
based security. Next we map these to corresponding CryptoVerif definitions.
Thus, the intuition can be built upon a game-based notion and it remains only
to verify the functional equivalence of the CryptoVerif instantiation.

CryptoVerif was designed with multi-instance security in mind and so relies
on more unconventional multi-instance number theoretic assumptions. However,
the simpler a definition (say, for a KEM) the easier it is to demonstrate for a
given construction. Similarly, in cryptography we tend to prefer simpler, static,
not to mention well-known, number theoretic assumptions so as to build more
confidence in them. Consequently, we have augmented the automated proofs
with further pen-and-paper proofs reducing multi-instance security notions and
assumptions to simpler (and more conventional) single-instance versions.

1.3 Related Work

Hybrid cryptography (of which the AKEM/DEM construction in this work is an
example) is a widely used technique for constructing practically efficient asym-
metric primitives. In particular, there exist several hybrid PKE-based concrete
standards predating HPKE, mostly based on the DHIES scheme of [1] defined
over a generic (discrete log) group. When the group is instantiated using elliptic
curves the result is often referred to as ECIES (much like the Diffie-Hellman
scheme over an elliptic curve group is referred to as ECDH). A description and
comparison of the most important such standards can be found in [20]. However,
per the HPKE RFC, “All these existing schemes have problems, e.g., because they
rely on outdated primitives, lack proofs of IND-CCAZ2 security, or fail to provide
test vectors.” Moreover, to the best of our knowledge, none of these standards
provide a means for authenticating senders.

The APKE primitive we analyse in this paper can be viewed as a flavour
of signeryption [31]; a family of primitives intended to efficiently combine
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signatures and public key encryption. Signcryption literature is substantial and
we refer to the textbook [18] for an extensive exposition thereof. We high-
light some chapters of particular relevance. Chapters 2 and 3 cover 2-party and
multi-party security notions, respectively; both for insider and outsider variants.
Chapter 4 of [18] contains several (Gap)-Diffie-Hellman-based signeryption con-
structions. Finally, Chapter 7 covers some AKEM security notions and construc-
tions (aka. “signcryption KEM”) as well as hybrid signcryption constructions
such as the outsider-secure one of [17] and insider-secure one of [16]. In con-
trast to our work, almost all security notions in [18] forbid honest parties from
reusing the same key pair for both sending and receiving (even if sender and
receiver keys have identical distribution).? Nor is it clear that a scheme satisfy-
ing a “key-separated” security notion could be converted into an equally efficient
scheme supporting key reuse. The naive transformation (embedding a sender
and receiver key pair into a single reusable key pair) would double key sizes.
However, an HPKE public key consists of a single group element which can be
used simultaneously as a sender and receiver public key.

Recently, Bellare and Stepanovs analysed the signcryption scheme underlying
the iMessage secure messaging protocol [9]. Although their security notions allow
for key reuse as in our work, they fall outside the outsider/insider taxonomy
common in signcryption literature. Instead, they capture an intermediary variant
more akin to KCI security.

A detailed model of Curve25519 [25] in CryptoVerif was already presented
in [27]; such a model was needed for the proof of the WireGuard protocol. In
this paper, we present a more generic model that allows us to deal not only
with Curve25519 but also with prime order groups such as NIST curves 28] in
a single model. Moreover, we handle rerandomisation of curve elements, which
was not taken into account in [27].

A very preliminary version of this work analyses HPKE as a single protocol,
not in a modular KEM/DEM setting [26]. The proven theorems are less strong
than the ones in this work, e.g. the adversary cannot choose secret keys but only
compromise them. However, the analysis covers the single-shot encryption form
of all four modes including the secret export API.

2 Preliminaries

SETS AND ALGORITHMS. We write h <~ S to denote that the variable h is
uniformly sampled from the finite set S. For integers N, M € N, we define
[N,M]:={N,N+1,...,M} (which is the empty set for M < N), [N] :=[1, N]
and [N]p := [0, N]. The statistical distance between two random variables U
and V' having a common domain U/ is defined as A[U,V] = > ., |Pr[lU =
u] — Pr[V = u]|. The notation [B], where B is a boolean statement, evaluates
to 1 if the statement is true and 0 otherwise.

2 The only exception we are aware of are the security notions used to analyse 2 bilinear-
pairing-based schemes in Sections 5.5 and 5.6 of [18].
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We use uppercase letters A, B to denote algorithms. Unless otherwise stated,
algorithms are probabilistic, and we write (y1,...) < A(z1,...) to denote that
A returns (y1,...) when run on input (zy,...). We write A® to denote that A
has oracle access to B during its execution. For a randomised algorithm A, we
use the notation y € A(z) to denote that y is a possible output of A on input
. We denote the running time of an algorithm A by ¢ 4.

SECURITY GAMES. We use standard code-based security games [8]. A game G
is a probability experiment in which an adversary A interacts with an implicit
challenger that answers oracle queries issued by A. The game G has one main
procedure and an arbitrary amount of additional oracle procedures which describe
how these oracle queries are answered. We denote the (binary) output b of game
G between a challenger and an adversary A as GA = b. A is said to win G
if GA = 1. Unless otherwise stated, the randomness in the probability term
Pr[G# = 1] is over all the random coins in game G.

3 Elliptic Curves

In this section we introduce the elliptic curves relevant for the HPKE standard,
P-256, P-384, P-521 [28], Curve25519 and Curve448 [25], together with relevant
security assumptions.

3.1 Nominal Groups

We first define nominal groups, a general abstract model of elliptic curves, and
then show how we instantiate it for each of the above-mentioned curves.

Definition 1. A nominal group N' = (G, g,p,Ex, exp) consists of an efficiently
recognizable finite set of elements G (also called “group elements”), a base element
g € G, aprime p, a finite set of honest exponents Eg C Z, and an efficiently com-
putable exponentiation functionexp : G X Z — G, where we write XY forexp(X,y).
The exponentiation function is required to have the following properties:

(1) (XY)* =XY% forall X €G, y,z€Z
(2) g=TPY = g% for all z,y € Z.

We remark that even though G is called the set of (group) elements, it is not
required to form a group.

For a nominal group N' = (G, g,p, Ex,exp) we let Gy be the distribution of
honestly generated elements, that is, the distribution of ¢* with z < £g. Let
Gy be the distribution of g* with z <% [1, p — 1]. Depending on the choice of £,
these distributions may differ. We define the two statistical parameters

An = AlGy,Gyl], and Py =max Pr [V =g"].
Yeg ﬂf‘igH

We summarise the expected security level and the concrete upper bounds for
Apn and Py in Table 2 of Sect. 5.3 and compute them below.
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PRIME-ORDER GROUPS. The simplest example of a nominal group is when
G = G is a prime-order group with generator g, exp is defined via the usual
scalar multiplication on G, and g = [1,p — 1]. The two distributions Gy and
Gy are identical, so Axr = 0. Since all elements have the same probability, we
have Py = 1/(p—1). The NIST curves P-256, P-384, and P-521 [28] are examples
of prime-order groups.

CURVE25519 AND CURVE448. We now show that Curve25519 and Curve448 [25]
can also be seen as nominal groups. They are elliptic curves defined by equations
of the form Y2 = X3 + AX? + X in the field F, for a large prime ¢g. The curve
points are represented only by their X coordinate. When X3 + AX? + X is a
square Y2, X represents the curve point (X,Y) or (X, —Y). When X3+ AX?+X
is not a square, X does not represent a point on the curve, but on its quadratic
twist. The curve is a group of cardinal kp and the twist is a group of cardinal k'p’,
where p and p’ are large primes and k and k' are small integers. For Curve25519,
q=2%5 19, k=8, Kk =4, p=222 45, p =228 _ 92§ with 0 < § < 2125
For Curved48, g =248 — 2224 _ | Lk =k' =4,p=2%6 2223 _5 ,/ =246 1§
with 0 < § < 2220, The base point Qg is an element of the curve, of order p,
which generates a subgroup G, of the curve. The set of elements G is the set of
bitstrings of 32 bytes for Curve25519, of 56 bytes for Curve448.

The exponentiation function is specified as follows, using [11, Theorem 2.1]:
We consider the elliptic curve E(F,2) defined by the equation Y? = X?+AX2+X
in a quadratic extension F,2 of F,. We define X : E(F2) — F2 by X(c0) =0
and Xo(X,Y) = X. For X € F, and y an integer, we define y- X € Fyjasy- X =
Xo(yQx ), where Qx € E(F,2) is any of the two elements satisfying Xo(Qx) =
X. (It is not hard to verify that this mapping is well-defined.) Elements in G are
mapped to elements of F; by the function decode_pk : G — F, and conversely,
elements of [F, are mapped to the group elements by the function encode_pk :
F, — G, such that decode_ pk o encode_ pk is the identity. (For Curve25519 we
have decode pk(X) = (Xmod22°®)modg, for Curve448 decode pk(X) = Xmod
q, and encode pk(X) is the representation of X as an element of {0,...,¢q—1}.)
Finally, X¥ = encode pk(y - decode pk(X)).

As required by Definition 1, we have (X¥)* = X¥%. Indeed,

(XY)? = encode_pk(z - decode pk(encode pk(y - decode pk(X))))
= encode_ pk(z -y - decode_ pk(X))
= encode_ pk(yz - decode pk(X)) = XV=.

The base element is g = encode _pk(Xo(Qo)). It is easy to check that g*+P¥ =
g*, since g is an element of order p. The honest exponents are chosen uniformly
in the set &g = {kn | n € [M, N]}. For Curve25519, M = 2?5} N = 22°2 1.
For Curved48, M = 2445 N =246 _ 1,

Our exponentiation function is closely related to the function X25519 (resp.
X448 for Curved48) as defined in [25], namely X25519(y, X) = X2mP®) where
clamp(y) sets and resets some bits in the bitstring y to make sure that clamp(y) €
Ex . Instead of clamping secret keys together with exponentiation, we clamp them
when we generate them, hence we generate honest secret keys in €.
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The proof of the following Lemma 1 is in the long version [3].

Lemma 1. For Curve25519, Ay < 27122 and Py = 27259, and for Curve44s,
Apn < 27220 gnd Py = 27444,

3.2 Diffie-Hellman Assumptions

Let us first recall the Gap Diffie-Hellman and Square Gap Diffie-Hellman
assumptions. We adapt them to the setting of a nominal group N =
(G,9,p,Em,exp) of the previous section, by allowing elements in G as arguments
of the Diffie-Hellman decision oracle. Moreover, we still choose secret keys in
[1,p — 1], not in Ex, as it guarantees that the secret key p, or equivalently 0, is
never chosen, which helps in the following theorems.

Definition 2 (Gap Diffie-Hellman (GDH) Problem). We define the advan-
tage function of an adversary A against the Gap Diffie-Hellman problem over
nominal group N as

AN == Pr o [Z=g"|Z & APH (g7, gY)]

ey [1,p-1]

where DH is a decision oracle that on input (¢%,Y, Z), with Y, Z € G, returns 1
iff Y2 = Z and 0 otherwise.

Definition 3 (Square Gap Diffie-Hellman (sqGDH) Problem). We define
the advantage function of an adversary A against the Square Gap Diffie-Hellman
problem over nominal group N as

AV = Pr [Z=¢" | Z & APT(gY)
’ 2= [1p-1]

where DH is a decision oracle that on input (¢%,Y, Z), with Y, Z € G, returns 1
if Y¥ = Z and O otherwise.

CryptoVerif cannot use cryptographic assumptions directly in this form:
it requires assumptions to be formulated as computational indistinguishability
axioms between a left game G4 and a right game G.,.. In order to use such assump-
tions, it automatically recognizes when a game corresponds to an adversary inter-
acting with Gy, and it replaces G, with G, in that game. Moreover, CryptoVerif
requires the games Gy and G, to be formulated in a multi-key setting. That
allows CryptoVerif to apply the assumption directly in case the scheme is used
with several keys, without having to do a hybrid argument itself. (CryptoVerif
infers the multi-key assumption automatically from a single-key assumption only
in very simple cases.) Therefore, we reformulate the Gap Diffie-Hellman assump-
tion to satisfy these requirements, and prove that our formulation is implied by
the standard assumption.

We also take into account at this point that secret keys are actually chosen
in &g rather than in [1,p — 1].
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Definition 4 (Left-or-Right (n,m)-Gap Diffie-Hellman Problem). We
define the advantage function of an adversary A against the left-or-right (n, m)-
Gap Diffie-Hellman problem over nominal group N as

Advifs\_/(n’m)_GDH = Pr [.ADH"DHO ("t ..., g"" g%, ..., g"™) = 1]

Vie[n]: x; <i£H
. $
vVi€lm]: y;<—Ex

I

DH,,DH T Ty m
— Pr s [A 0(9 17"'79 7gy17'~~7gy ):>1:|
Vi€[n]: ;< €y
Vj€[m]: yj‘igH

where DHy is a decision oracle that on input (¢%,Y, Z) returns 1 iff Y = Z and
0 otherwise; DHy is a decision oracle that on input (i,7,7Z) for i € [n],j € [m]
returns 1 iff Z = ¢g*¥% and 0 otherwise; and DH, is an oracle that on input
(1,7, Z) fori € [n],j € [m] always returns 0.

Definition 5 (Left-or-Right n-Square Gap Diffie-Hellman Problem).
We define the advantage function of an adversary A against the left-or-right
n-Square Gap Diffie-Hellman problem over nominal group N as

Advl;a.lj\}n—sqGDH . Pr . I:ADH(,DHO (gm’l o ,gmn) = 1]
Vie[n]: z;<En

— Pr [.ADHT’DHO (g™, ..., ¢"") = 1} ,
Vie[n]: at,;&SH

where DHyg is a decision oracle that on input (¢%,Y, Z) returns 1 iff Y = Z and
0 otherwise; DHy is a decision oracle that on input (i,j,Z) fori,j € [n] returns
14ff Z = g*%i and 0 otherwise; and DH,. is an oracle that on input (i,5,7Z) for
i,j € [n] always returns 0.

The proofs of Theorems 1 and 2 are in the long version [3].

Theorem 1 (GDH = LoR-(n,m)-GDH). For any adversary A against LoR-
(n,m)-GDH, there exists an adversary B against GDH such that

AdvR PR < AdVER + (n 4+ m) Ay

B queries the DH oracle as many times as A queries DHg, DHy, or DH,., and
tB ~ t_A.

Theorem 2 (sqGDH = LoR-n-sqGDH). For any adversary A against LoR-n-
sqGDH, there ezists an adversary B against sqGDH such that

AdvER 9P < AdvEISOT + Ay

B queries the DH oracle as many times as A queries DHy, DHp, or DH,., and
tg ~ty.
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In these theorems, the terms in Ay = A[Gpy, Gy| come from the reran-
domisation of keys, which yields keys distributed according to Gy, while the
adversary expects keys distributed according to Gg. (Choosing secret keys in
En in Definitions 2 and 3 would not avoid this term.)

IMPLEMENTATION IN CRYPTOVERIF. Definitions in this style for many crypto-
graphic primitives are included in a standard library of cryptographic assump-
tions in CryptoVerif. As a matter of fact, this library includes a more general
variant of the Gap Diffie-Hellman assumption, with corruption oracles and with
a decision oracle DH(g, X, Y, Z), which allows the adversary to choose g. In this
paper, we use the definition above as it is sufficient for our proofs.

4 Authenticated Key Encapsulation and Public Key
Encryption

In Sect.4.1, we introduce notation and security notions for an authenticated
key encapsulation mechanism (AKEM), namely Outsider-CCA, Insider-CCA and
Outsider-Auth. In Sect.4.2, we introduce notation and security notions for
authenticated public key encryption (APKE) which follow the ideas of the
notions defined for AKEM. Additionally, we define Insider-Auth security.

In Sect.4.3, we show how to construct an APKE scheme which achieves
Outsider-CCA, Insider-CCA and Outsider-Auth, from an AKEM, a pseudo-random
function (PRF), and a nonce-based authenticated encryption with associated
data (AEAD) scheme. For Insider-Auth, we give a concrete attack in Sect. 4.4.

4.1 Authenticated Key Encapsulation Mechanism

Definition 6 (AKEM). An authenticated key encapsulation mechanism AKEM
consists of three algorithms:

- Gen outputs a key pair (sk, pk), where pk defines a key space K.

— AuthEncap takes as input a (sender) secret key sk and a (receiver) public key
pk, and outputs an encapsulation ¢ and a shared secret K € K.

— Deterministic AuthDecap takes as input a (receiver) secret key sk, a (sender)
public key pk, and an encapsulation c, and outputs a shared key K € K.

We require that for all (skq1, pk,) € Gen, (sko, pksy) € Gen,

Pr [AuthDecap(sks, pki,c) = K] =1 .
(c,K)&AuthEncap(skl,ka)

The two sets of secret and public keys, SKC and P/, are defined via the support
of the Gen algorithm as SK := {sk | (sk, pk) € Gen} and PK := {pk | (sk, pk) €
Gen}. We assume that there exists a projection function p : SK — PK, such
that for all (sk, pk) € Gen it holds that u(sk) = pk. Note that such a function
exists without loss of generality by defining sk to be the randomness rnd used
in the key generation.
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Finally, the key collision probability Pakem of AKEM is defined as

Pakgem := max Pr [pk = pk'] .
PEEPK (k' pk') <% Gen

Privacy. We define the games (n, g., gq)-Outsider-CCA, and (n, ¢., ¢4)-Outsider-
CCA, in Listing 1 and the games (n,qe, g4, ¢c)-Insider-CCA; and (n, gc, g4, gc)-
Insider-CCA,. in Listing 2. The games follow the left-or-right style, as CryptoVerif
requires this for assumptions, and we use these notions as assumptions in the
composition theorems. In the long version [3, Appendix B, we compare the
code-based game syntax with the CryptoVerif syntax for Outsider-CCA.

In all games, we generate key pairs for n users and run the adversary on
the public keys. In the Outsider-CCA games, the adversary has access to oracles
AENCAP and ADECAP. AENCAP takes as input an index specifying a sender,
as well as an arbitrary public key specifying a receiver, and returns a ciphertext
and a KEM key. In the left game Outsider-CCA;, AENCAP always returns the
real KEM key. In the right game Outsider-CCA,., it outputs a uniformly random
key if the receiver public key was generated by the experiment. This models
the adversary as an outsider and ensures that target ciphertexts from an honest
sender to an honest receiver are secure, i.e. do not leak any information about
the shared key. Queries to ADECAP, where the adversary specifies an index for
a receiver public key, an arbitrary sender public key and a ciphertext, output
a KEM key. In the Outsider-CCA,. game, the output is kept consistent with the
output of AENCAP.

In the Insider-CCA games, there is an additional challenge oracle CHALL.
The adversary gives an index specifying the receiver and the secret key of the
sender, thus taking the role of an insider. CHALL will then output the real KEM
key in the Insider-CCA; game, and a uniformly random key in the Insider-CCA,.
game. Thus, even if the target ciphertext was produced with a bad sender secret
key (and honest receiver public key), the KEM key should be indistinguishable
from a random key. AENCAP will always output the real key and the output of
ADECAP is kept consistent with challenges.

In all games, the adversary makes at most g. queries to oracle AENCAP and
at most gg queries to oracle ADECAP. In the Insider-CCA experiment, it can
additionally make at most q. queries to oracle CHALL. We define the advantage
of an adversary A as

Adv%f;’g,‘\iﬂ)_omsmer{cp‘ := | Pr[(n, ¢c, qa)-Outsider-CCA,(A) = 1]
— Pr[(n, ge, qa)-Outsider-CCA, (A) = 1]| ,

Adv%’ﬁ;’gﬁﬂ’q”)_IHSider_CCA := | Pr[(n, ¢c, qa, qc)-Insider-CCA,(A) = 1]
1]| .

[(
[(
[( (

— Pr[(n, ge, qa, gc)-Insider-CCA, (A) =

AUTHENTICITY. Furthermore, we define the games (n, ge, ¢q)-Outsider-Auth, and
(1, ge, qa)-Outsider-Auth,. in Listing 3.
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Listing 1: Games (n, e, qq4)-Outsider-CCA; and (n, ge, qq)-Outsider-CCA,. for
AKEM. Adversary A makes at most ¢, queries to AENCAP and at most ¢g
queries to ADECAP.

(7, ge, qa)-Outsider-CCA, and Oracle AENCAP(i € [n], pk)
] (n, ge, qd)—Outsider—CCATT\ 06 (¢, K) <+ AuthEncap(sks, pk)

07 if pk € {pk,,...,pk,}

[ 4 U
|

|
01 for i € [n] w
8 K&K I

02 (sks,pk;) < Gen |
03 € 09 & EU{kyphe KD} |

04 b S AAENCAP,ADECAP(pk:U o 7Pkn)

05 return b

"1t 3K : (pk,pky e, K) €E |
{12 return K |

13 K « AuthDecap(sk;, pk,c)
14 return K

Listing 2: Games (n, ge, q4, ¢c)-Insider-CCA,; and (n, g, 4, g.)-Insider-CCA,. for
AKEM. Adversary A makes at most g, queries to AENCAP, at most ¢4 queries
to ADECAP and at most ¢, queries to CHALL.

(1, e qd, gc )-Insider-CCA, and Oracle AENCAP(: € [n], pk)
‘r (n’ e, qd, qc)—lnsider—CCArj\ 10 (67 K) & AuthEncap(ski, pk)
RS . 11 return (¢, K)
01 for i € [n]
s
02 (ski,pk;) < Gen Oracle ADECAP(j € [n], pk,c)

03 E—10 e E e e ]
04 b& AAENCAP,ADECAP,CHALL(pkl7” ) 7]7]@”) : 12 if 9K : (pk,pkj,c,K) cé& I

05 return b (18 return K 3
14 K <« AuthDecap(sk;, pk,c)

Oracle CHALL(j € [n], sk) 15 return K

06 (¢, K) <& AuthEncap(sk, pk;)

o7 KK |

108 € — EU{(ulsk), pk,, e, K)} |

e -

09 return (c, K)

Listing 3: Games (n, g, ¢q)-Outsider-Authy and (n, ¢e, g4)-Outsider-Auth,. for
AKEM. Adversary A makes at most ¢, queries to AENCAP and at most ¢g
queries to ADECAP.

(n, ge, ga)-Outsider-Auth, and Oracle ADECAP(j € [n], pk, c)

! (n, e, qq)-Outsider-Auth, | 109 if 3K : (pk,pk.,c,K) € € |
Lo _ _ g ! J |
01 for i € [n] 110 return K ______ g

02 (ski,pk;) < Gen

03 £ 0 (12 3f pk € {phy,....phk,} and K # L
04 b& AAENCAP,ADECAP(pk17 . pkn) : 13 K&K :
05 return b 114 & — EU{(pk,pk;,c, K)} |

L o o e e e e - o -

15 return K
Oracle AENCAP(i € [n], pk)
06 (¢, K) <& AuthEncap(sk;, pk)
07 & — EU{(pk;,pk,c,K)}
08 return (c, K)
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The adversary has access to oracles AENCAP and ADEcAP. AENCAP will
always output the real KEM key. ADECAP will output the real key in game
Outsider-Authy. In the Outsider-Auth, game, the adversary (acting as an outsider)
will receive a uniformly random key if the receiver public key was generated by
the experiment. Thus, the adversary should not be able to distinguish the real
KEM key from a random key for two honest users, even if it can come up with
the target ciphertext.

The adversary makes at most g, queries to oracle AENCAP and at most gq4
queries to oracle ADECAP. We define the advantage of an adversary A as

Adv%f&’g&)-oumder—mth = | Pr[(n, ge, qq)-Outsider-Authy(A) = 1]
— Pr[(n, ge, qa)-Outsider-Auth, (A) = 1]| .

In the long version [3, Appendix A], we provide simpler single-user or 2-user
versions of these properties, and show that they non-tightly imply the definitions
above. These results could be useful to simplify the proof for new AKEMs that
could be added to HPKE, such as post-quantum AKEMs. However, because the
reduction is not tight, a direct proof of multi-user security may yield better
probability bounds. This is the case for our proof of DH-AKEM in Sect. 5.1.

4.2 Awuthenticated Public Key Encryption

Definition 7 (APKE). An authenticated public key encryption scheme APKE
consists of the following three algorithms:

— Gen outputs a key pair (sk, pk).

— AuthEnc takes as input a (sender) secret key sk, a (receiver) public key pk, a
message m, associated data aad, a bitstring info, and outputs a ciphertext c.

— Deterministic AuthDec takes as input a (receiver) secret key sk, a (sender)
public key pk, a ciphertext c, associated data aad and a bitstring info, and
outputs a message m.

We require that for all messages m € {0,1}*, aad € {0, 1}*, info € {0,1}*,

¢ <« AuthEnc(skg, pk g, m, aad, info),

AuthDec(skg, pkg, ¢, aad, info) = m =1

Pr

$
(skg,pkg)$Gen

3
sk g,pk R) € Gen
(skr.PkR)

PrIvACY. We define the games (n,qe, g4, ¢c)-Outsider-CCA and (n, ge, g4, gc)-
Insider-CCA in Listing 4, which follow ideas similar to the games for outsider
and insider-secure AKEM. The security notions for APKE use the common style
where challenge queries are with respect to a random bit b. In particular, the
additional challenge oracle CHALL will encrypt either message mg or my pro-
vided by the adversary, depending on b. Oracles AENC and ADEC will always
encrypt and decrypt honestly (except for challenge ciphertexts).
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Listing 4: Games (n, g., ¢4, q.)-Outsider-CCA and (n, ¢, 94, g.)-Insider-CCA for
APKE, where (n, ge, g4, g.)-Outsider-CCA uses oracle CHALL in the dashed box
and (n, e, g4, gc)-Insider-CCA uses oracle CHALL in the solid box. Adversary A
makes at most ¢. queries to AENC, at most gq queries to ADEC and at most ¢,
queries to CHALL.

1 (1, ge, qd, qc)—Outsider—CCA1\ and Oracle AENc(i € [n], pk, m, aad, info)
Lo 4 -

11 ¢ < AuthEnc(sk;, pk, m, aad, info)
12 return c

\ (1, e, qa, ge)-Insider-CCA

01 for i € [n] o .. 5
02 (ski,pk;) < Gen 1 Oracle CHALL(% € [n], j € [n], mo, m1, aad, info)
03 &0 13 if |mo| # |ma] return L

05 b & AAENC,ADEC,CHALL(pk17 . »Pkn) 15 E—EU {(pki,pk], c, aad, infa)}

|
|
04 b {0,1} 114 ¢ & AuthEnc(sks, pk;,ms, aad, info)
|
|
16 return c

06 return [b=1V']

Oracle ADEC(j € [n], pk, ¢, aad, info)
07 if (pk, pk;, c, aad, info) € €

08 return L

09 m « AuthDec(sk;, pk, ¢, aad, info)
10 return m

Oracle CHALL(j € [n], sk, mo, m1, aad, info)
17 if |mo| # |m1| return L

18 ¢ < AuthEnc(sk, pk;, ms, aad, info)

19 & «— EU{(u(sk), pk;, c, aad, info)}

20 return c

Listing 5: Games (n, g., ¢q)-Outsider-Auth and (n, g., g4)-Insider-Auth for APKE.
Adversary A makes at most ¢, queries to AENC and at most g4 queries to ADEC.

(1, ge, ga)-Outsider-Auth Oracle AENc(i € [n], pk, m, aad, info)

01 for i € [n] 11 ¢ <& AuthEnc(sk;, pk, m, aad, info)

02 (ski,pk;) < Gen 12 £ «— EU{(pk;, pk, c, aad, info)}

03 &0 13 return c

04 (i*,5%,c*, aad”, info™) &

AAENGADEC (k) Oracle ADEC(j € [n], pk, ¢, aad, info)

05 return [(pk;, pk;-,c", aad™, info™) ¢ € 14 m « AuthDec(sk;, pk, c, aad, info)
and AuthDec(skj=, pk;.,c*, aad”, info™) # L] 15 return m

(n, ge, qa)-Insider-Auth
06 for i € [n]
07 (ski, pk;) < Gen
08 £« 0
09 (3%, sk, c*, aad”, info*) & ANENGADEC (4 pk )
10 return [(pk;., u(sk),c”, aad™, info*) ¢ €
and AuthDec(sk, pk;«, ¢, aad™, info™) # L]

Listing 6: Authenticated PKE scheme APKE[AKEM, KS, AEAD] construction
from AKEM, KS and AEAD, where APKE.Gen = AKEM.Gen.

AuthEnc(sk, pk, m, aad, info) AuthDec(sk, pk, (c1,c2), aad, info)

01 (e1, K) & AuthEncap(sk, pk) 05 K <« AuthDecap(sk, pk,c1)

02 (k,nonce) — KS(K, info) 06 (k,nonce) — KS(K, info)

03 co « AEAD.Enc(k, m, aad, nonce) 07 m « AEAD.Dec(k, cz2, aad, nonce)
04 return (ci1,c2) 08 return m
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In these games, the adversary A makes at most g, queries to oracle AENC,
at most gg queries to oracle ADEC, and at most ¢. queries to oracle CHALL. The
advantage of A is

(n,9e,9d,qc)-Outsider-CCA |
Adv 4 Apke :

Pr[(n, ge, 94, g )-Outsider-CCA(A) = 1] — 3
Pr{(n, Ge, as gc)-Insider-CCA(A) = 1] — ;‘ .

1”

(n,ge,qa:qc)-Insider-CCA
Adv 4 APKE :

AUTHENTICITY. Furthermore, we define the games (n, ¢e, g4 )-Outsider-Auth and
(1, ge, qa)-Insider-Auth in Listing 5. The adversary has access to an encryption
and decryption oracle and has to come up with a new tuple of ciphertext, asso-
ciated data and info for any honest receiver secret key (Outsider-Auth) or any
(possibly leaked or bad) receiver secret key (Insider-Auth), provided that the
sender public key is honest.

In these games, adversary A makes at most ¢, queries to oracle AENC and
at most qgq queries to oracle ADEC. The advantage of A is defined as

Adv%fgfé)-ou“ider%mh :=Pr[(n, ge, qq)-Outsider-Auth(A) = 1] ,

Adv%fﬁﬁé)_IMider—AUth :=Pr[(n, qe, qa)-Insider-Auth(A) = 1] .

4.3 From AKEM to APKE

In this section we define and analyse a general transformation that models
HPKE’s way of constructing APKE from an AKEM (c.f. Definition 6) and an
AEAD (c.f. [3, Section 3]). It also uses a so-called key schedule KS which we model
as a keyed function KS : K x {0,1}* — {0,1}*, where K matches the AKEM’s
key space. KS outputs an AEAD key k and an initialisation vector nonce (called
base nonce in the RFC) from which the AEAD’s nonces are computed. (The key
schedule defined in the HPKE standard also outputs an additional key called
exporter secret that can be used to derive keys for use by arbitrary higher-level
applications. This export API is not part of the single-shot encryption API that
we are analysing, and thus we omit it in our definitions.) Listing 6 gives the
formal specification of APKE built from AKEM, KS and AEAD.

We observe that in the single-shot encryption API, every AEAD key k is
used to produce exactly one ciphertext, and thus is only used with one nonce.
In HPKE, messages are counted with a sequence number s starting at 0 and the
nonce for a message is computed by nonce @ s. For the single-shot encryption
API this means that the nonce is equal to the initialisation vector nonce. At the
same time, this means that nonce is by definition unique.

We now give theorems stating the (n,ge, g4, ¢c)-Outsider-CCA, (n, ge, qa)-
Outsider-Auth and (n, ge, g4, g.)-Insider-CCA security of APKE[AKEM, KS, AEAD]
defined in Listing 6. Theorems 3 to 5 are proven using CryptoVerif ver-
sion 2.04. This version includes an improvement in the computation of prob-
ability bounds that allows us to express these bounds as functions of the
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total numbers of queries to the AENC, ADEC, and CHALL oracles instead of
the number of users and the numbers of queries per user. The CryptoVerif
input files are given in hpke.auth.outsider-cca.ocv, hpke.auth.insider-cca.ocv,
and hpke.auth.outsider-auth.ocv [2]. These proofs are fairly straightforward. As
an example, we prefer explaining the proof of Theorem 7 later, which is more
interesting. In Sect. 4.4, we show that APKE[AKEM, KS, AEAD] cannot achieve
Insider-Auth security.

As detailed in the long version [3, Section 3], we define a multi-key PRF
security experiment (ng, gerr)-PRF with ng keys, in which the adversary makes
at most gprr queries for each key. We also define multi-key IND-CPA and INT-
CTXT security experiments for the AEAD: ng-IND-CPA and (ny, gq)-INT-CTXT,
with ny keys, in which the adversary makes at most one encryption query for each
key and, for the INT-CTXT experiment, at most gq decryption queries in total.
In these experiments, the nonces of the AEAD are chosen randomly.

Theorem 3 (AKEM Outsider-CCA + KS PRF + AEAD IND-CPA + AEAD INT-
CTXT = APKE Outsider-CCA). For any (n,qe, 94, q.)-Outsider-CCA adversary
A against APKE[AKEM, KS, AEAD], there exist an (n,qe + qc, ga)-Outsider-CCA
adversary B against AKEM, an (qe,qc + qa)-PRF adversary C against KS, an
q.-IND-CPA adversary Dy against AEAD and an (g, qq)-INT-CTXT adversary
Dy against AEAD such that tg = ta, tc =ta, tp, =ta, tp, =ta, and
AL < 2 A O L

qc-IND-CPA (4e,qa)-INT-CTXT
+2-Advy aeap 12 AdVpAEAD

+ 6n? - Parkem -

Theorem 4 (AKEM Insider-CCA + KS PRF + AEAD IND-CPA + AEAD INT-
CTXT = APKE Insider-CCA). For any (n,qe,qd,qc.)-Insider-CCA adversary
A against APKEJAKEM, KS, AEAD], there exist an (n,qe, qd,qc)-Insider-CCA
adversary B against AKEM, an (qc, g + qa)-PRF adversary C against KS, an
q.-IND-CPA adversary Dy against AEAD and an (g, qq)-INT-CTXT adversary
Dy against AEAD such that tg =~ ta, tc =ta, tp, =ta, tp, =ta, and
AV ot aem e aap) < 2 AdVE Al TR 4 2 Advfieg T
+2- Advls NS + 2 - Advige ) HTCeTXT

+ 6n% - Pakem -

Theorem 5 (AKEM Outsider-CCA + AKEM Outsider-Auth + KS PRF +
AEAD INT-CTXT = APKE Outsider-Auth). For any (n,q.,qq)-Outsider-
Auth adversary A against APKE[AKEM, KS, AEAD], there exist an (n,qe,qq +
1)-Outsider-CCA adversary By against AKEM, an (n,ge,qq + 1)-Outsider-Auth
adversary By against AKEM, an (qe + qa + 1,qe + 2qq4 + 1)-PRF adversary C
against KS, and an (ge +3qa+3,4q4+ 1)-INT-CTXT adversary D against AEAD
such that tp, ~ta, tg, ta, tc =ta, tp =ta, and


https://github.com/blipp/hpke-analysis-suppl-material/blob/master/hpke.auth.outsider-cca.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/hpke.auth.insider-cca.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/hpke.auth.outsider-auth.ocv
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Adv(n,qe,qd)-Outsider-Auth < AdV(Bn,qe,q,ﬁ—l)-Outsider-CCA + Advgb,qe,Qd-‘rl)'OUtSide"'AUth

A, APKE[AKEM,KS, AEAD)] 1,AKEM > AKEM
(qe+qa+1,qe+2qa+1)-PRF
+ Ade,KS
(ge+3qa+3,4ga+1)-INT-CTXT
+ Advp aEaD + n(ge + 13n) - Pakem -

4.4 Infeasibility of Insider-Auth Security

For any AKEM, KS, and AEAD, the construction APKE[AKEM, KS, AEAD] given
in Listing 6 is not (n, e, ga)-Insider-Auth secure. The inherent reason for this
construction to be vulnerable against this attack is that the KEM ciphertext
does not depend on the message. Thus, the KEM ciphertext can be reused and
the DEM ciphertext can be exchanged by the encryption of any other message.

Theorem 6. There exists an efficient adversary A against (n,qe,qd)-
Insider-Auth security of APKE[AKEM, KS, AEAD] such that

(n,qe,q4)-Insider-Auth -
AdV.A,APKE[AKEM,KS,AEAD] =1.

Proof. We construct adversary A in Listing 7. It takes as input n public keys and
has oracle access to AENC and ADEC. It first generates a key pair (sk*, pk™) and
queries the AENC oracle on any index ¢*, receiver public key pk™, an arbitrary
message m1, as well as arbitrary associated data aad and string info.

Listing 7: Adversary A against (n, ¢, ¢q)-Insider-Auth as defined in Listing 5,
of APKE[AKEM, KS, AEAD].

Adversary AMENGADEC(pE o pk )

01 (sk*,pk™) «— AKEM.Gen

02 7" :=1; my := aad := info =1

03 (c1,c2) «— AENC(:™, pk*, m1, aad, info)
04 K « AuthDecap(sk™, pk;«,c1)

05 (k,nonce) «— KS(K, info)

06 mg :=2

07 ¢4 « AEAD.Enc(k, m2, aad, nonce)

08 return (i*, sk*, (c1, ¢y), aad, info)

The challenger computes (c1, K) <= AuthEncap(sk;, pk™), (k,nonce) «
KS(K, info) and co « AEAD.Enc(k, m1, aad, nonce), and returns (cy, c3) to A.

Since A knows the secret key sk*, it is able to compute the underlying KEM
key K using AuthDecap. Next, it computes (k, nonce) and thus retrieves the
key k used in the AEAD scheme. Finally, A encrypts any other message mo
to ciphertext ¢; and replaces the AEAD ciphertext ¢z with the new ciphertext.
Since (c1,c2) # (c1,¢h), the latter constitutes a valid forgery in the (n, g, ga)-
Insider-Auth security experiment. a
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Listing 8: DH-AKEM|[N,KDF| = (Gen, AuthEncap, AuthDecap) as defined in
the RFC [5], constructed from a nominal group N and key derivation function
KDF : {0,1}* — K, with K = {0,1}%.

Gen AuthEncap(sk € Ex, pk € G)
01 sk <& &y 07 (esk, epk) < Gen
02 pk — g% 08 context — (epk, pk, g°*)
03 return (sk, pk) 09 dh «— (pk®*, pk*)
10 K « ExtractAndExpand(dh, context)
ExtractAndExpand(dh, context) 11 return (epk, K)
04 IKM « "HPKE-v1" || suite;q ||
"eae_prk" || dh AuthDecap(sk € Eu, pk € G, epk € G)

05 info «— Encode(N) || "HPKE-v1" || 12 context — (epk, g**, pk)

suite;q || "shared_secret" || 13 dh «— (epk®*, pk**)

context 14 return ExtractAndExpand(dh, context)
06 return KDF("", IKM, info)

5 The HPKE Standard

In Sect. 5.1, we show how to construct HPKE’s abstract AKEM construction
DH-AKEM from a nominal group N and a key derivation function KDF. In
Sect. 5.2, we define and analyse HPKE’s specific key schedule KSaun, and key
derivation function HKDF y. Finally, in Sect. 5.3 we put everything together and
obtain the HPKE standard in Auth mode from all previous sections.

5.1 HPKE’s AKEM Construction DH-AKEM

In this section we present the RFC’s instantiation of the AKEM definition, and
prove that it satisfies the security notions defined earlier. Listing 8 shows the
formal definition of DH-AKEMI[N/, KDF] relative to a nominal group N (c.f.
Definition 1) and a key derivation function KDF : {0,1}* — K, where K is
the key space. (The RFC uses a key space K, consisting of bitstrings of length
N, which corresponds to Nsecret in the RFC.) The construction also depends
on the fixed-size protocol constants "HPKE-v1" and suite;q, where suite;q iden-
tifies the KEM in use: it is a string "KEM" plus a two-byte identifier of the KEM
algorithm. The bitstring Encode(NV) is the two-byte encoding of the length N
expressed in bytes. Correctness follows by property (1) of Definition 1. We make
the implicit convention that AuthEncap and AuthDecap return reject (L) if their
inputs are not of the right data type as specified in Listing 8.

We continue with statements about the (n, g, ¢q)-Outsider-CCA, (n, ge, q4,
qc)-Insider-CCA, and (n, e, qq)-Outsider-Auth security of DH-AKEMI[A, KDF],
modelling KDF as a random oracle. The proofs are written with Cryp-
toVerif version 2.04; the input files are dhkem.auth.outsider-cca-Ir.ocv,
dhkem.auth.insider-cca-Ir.ocv, and dhkem.auth.outsider-auth-lr.ocv [2]. We
sketch the proof of one of the three theorems as an example, to help under-
stand CryptoVerif’s approach.


https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.outsider-cca-lr.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.insider-cca-lr.ocv
https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.outsider-auth-lr.ocv
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Our results hold for any nominal group, which covers the three NIST curves
allowed by the RFC, as well as for the other two allowed curves, Curve25519 and
Curved48. The bounds given in Theorems 7 to 9 depend on the probabilities Aps
and Pps, which can be instantiated for these five different curves using the values
indicated in Table 2 on Page 27.

At the end of this section, we sketch the attack against the Insider-Auth
security.

Theorem 7 (Outsider-CCA security of DH-AKEM). Under the GDH assump-
tion in N and modelling KDF as a random oracle, DH-AKEM|N,KDF] is
Outsider-CCA secure. In particular, for any adversary A against (n,qe,qad)-
Outsider-CCA security of DH-AKEM|N, KDF] that issues at most gy, queries to
the random oracle KDF, there exists an adversary B against GDH such that

(n,qe,qa)-Outsider-CCA GDH
AdVA,DH-AKEM[N,KDF] < Ade,N +(n+q.)  Anx

+ (geqd + 2nqe + 7q; +13n*) - Py
B issues nge + nqq + 2qqqn + 3nqn queries to the DH oracle, and tg ~t 4.

Proof. This proof is mechanized using the tool CryptoVerif. We give to the tool
the assumptions that N is a nominal group that satisfies the GDH assumption,
formalized by Definition 4, and that KDF is a random oracle. We also give the
definition of DH-AKEM, and ask it to show that the games (n, g, gq4)-Outsider-
CCA/ and (n, ¢e, qq4)-Outsider-CCA,. are computationally indistinguishable. In the
particular case of DH-AKEM, these two games include an additional oracle: the
random oracle KDF. The theorem, the initial game definitions, and the proof
indications are available in the file dhkem.auth.outsider-cca-lr.ocv [2].

The proof proceeds by transforming the game (n, g., qq)-Outsider-CCA, by
several steps into a game Gfgna and the game (n, ¢, qq)-Outsider-CCA,. into
the same game Gppa. Since all transformation steps performed by Cryp-
toVerif are designed to preserve computational indistinguishability, we obtain
that (n, ge, gq4)-Outsider-CCA; and (n, ge, gq4)-Outsider-CCA,. are computationally
indistinguishable. We guide the transformations with the following main steps.

Starting from (n, ge, gq)-Outsider-CCAy, in the oracle AENCAP, we first distin-
guish whether the provided public key pk is honest, by testing whether pk = pk;,
for some i (a test that appears in (n, ¢e, gq)-Outsider-CCA,.). We rename some
variables to give them different names when pk € {pki,...,pk,} and when
pk ¢ {pky,...,pk,}, to facilitate future game transformations. In the oracle
ADECAP, we test whether JK : (pk:,pkj,c, K) € &, which corresponds to a
test done in (n, ¢e, g4)-Outsider-CCA,.. Furthermore, when this test succeeds, we
replace the result normally returned by ADECAP, AuthDecap(sk;, pk, ¢) with the
key K found in £. CryptoVerif shows that this replacement does not modify the
result, which corresponds to the correctness of DH-AKEM. In the random oracle,
we distinguish whether the argument received from the adversary has a format
that matches the one used by DH-AKEM or not. Only when the format matches,
this argument may coincide with a call to the hash oracle made from DH-AKEM.


https://github.com/blipp/hpke-analysis-suppl-material/blob/master/dhkem.auth.outsider-cca-lr.ocv
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Next, we apply the random oracle assumption. Each call to the random oracle
is replaced with the following test: if the argument is equal to the argument of a
previous call, we return the previous result; otherwise, we return a fresh random
value. Finally, we apply the GDH assumption, which allows us to show that some
comparisons between Diffie-Hellman values are false. In particular, CryptoVerif
shows that the arguments of calls to the random oracle coming from AENCAP
with pk € {pk,,...,pk,} cannot coincide with arguments of other calls. Hence,
they return a fresh random key, as in (n, ¢e, g4 )-Outsider-CCA,..

Starting from (n, g, ¢4)-Outsider-CCA,., in the random oracle, we distinguish
whether the argument received from the adversary has a format that matches the
one used by DH-AKEM or not. Next, we apply the random oracle assumption,
as we did on the left-hand side.

The transformed games obtained respectively from (n, g., ¢q)-Outsider-CCA,
and from (n, g., ¢q)-Outsider-CCA,. are then equal, which concludes the proof.

CryptoVerif computes the bound on the probability of distinguishing the
games (N, ¢, ¢q)-Outsider-CCA; and (n, e, ¢4)-Outsider-CCA,. by adding bounds
computed at each transformation step. During this proof, CryptoVerif automat-
ically eliminates unlikely collisions, in particular between public Diffie-Hellman
keys. By default, CryptoVerif eliminates these collisions aggressively, even when
that is not required for the proof to succeed, which results in a large probability
bound. To avoid that, we guide the tool by giving estimates for n, ¢?¢" “5¢",
""", qn, Py, where ¢P¢" “5¢" and ¢4 "*“" are the number of AENCAP and
ADECAP queries respectively, per user. We also give a maximum probability
for which we allow eliminating collisions. Our estimates are such that we allow
eliminating collisions of probability Py times a cubic factor in n, ¢?¢" “*¢" and

¢h" ", but do not allow eliminating collisions with more than a cubic factor in

n, g¢" " and ¢5" **", nor collisions that involve g. These estimates are used
only to decide whether to eliminate collisions. The obtained probability formula
is then valid even if the actual numbers do not match the given estimates.

The probability formula computed by CryptoVerif involves both the total
numbers of queries g., ¢4 and the number of queries per user gP¢" “s¢” ¢h" “*"
For simplicity, we upper bound ¢?¢" “**" by ¢, and ¢/ “**" by qq, yielding the

formula given in the theorem. a

Theorem 8 (Insider-CCA security of DH-AKEM). Under the GDH assumption
in N and modelling KDF as a random oracle, DH-AKEM[N, KDF] is Insider-
CCA secure. In particular, for any (n, ¢e, q4, gc)-Insider-CCA adversary A against
DH-AKEM s that issues at most qn queries to the random oracle, there exists an
adversary B against GDH such that

(n,9e,qd,qc) ~Insider-CCA GDH
AdVA,DH—AquEM[N,KDF] < AdV&N +(n+q.)  Anx

+ (2qeqa + Geqd + Gege + 2nge + Tq2 + 2¢2 + 17n?) - Py
B makes nge + 2q.qe + 2qqqn + 3nqn queries to the DH oracle, and tg ~ t 4.

Theorem 9 (Outsider-Auth security of DH-AKEM). Under the sqGDH
assumption in N and modelling KDF as a random oracle, DH-AKEM|AN, KDF] is
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Outsider-Auth secure. In particular, for any (n,qe,qq)-Outsider-Auth adversary
A against DH-AKEM s that issues at most q;, queries to the random oracle, there
exists an adversary B against sqGDH such that

AdV e e Ko < 2AdVESeT +2(n + g.) - Ay

+ (geqq + 4ngq + 12q§ + 4dng. + 20n2) - Ppn

B issues nq. + nqq + 4qq4qn + 3ngn queries to the DH oracle, and tg ~ t 4.

INFEASIBILITY OF Insider-Auth SECURITY. As for APKE, we could define an
Insider-Auth security notion for AKEM, which precludes forgeries even when the
receiver key pair is dishonest, provided the sender key pair is honest. However,
the DH-AKEM construction does not even achieve KCI security, a relaxation
of Insider-Auth security only precluding forgeries for leaked, but still honestly
generated, receiver key pairs. Indeed, in DH-AKEM, knowledge of an arbitrary
receiver secret key is already sufficient to compute the Diffie-Hellman shared key
for any sender public key. Thus, in a KCI attack, an adversary that learns a
target receiver’s keys can trivially produce a KEM ciphertext and corresponding
encapsulated key for any target sender public key.

5.2 HPKE’s Key Schedule and Key Derivation Function

HPKE'’s key schedule KSaun and key derivation function HKDFpy are both
instantiated via the functions Extract and Expand which are defined below. We
proceed to prove a theorem that KSau is a PRF, as needed for the composition
results presented in Theorems 3 to 5. Then, we argue why HKDF ; can be mod-
elled as a random oracle, as assumed by Theorems 7 to 9 on DH-AKEM. Finally,
we indicate how the entire HPKEa,:, scheme is assembled from the individual
building blocks presented in the previous sections.

Extract AND Expand. The RFC defines two functions Extract and Expand as fol-
lows.

— Extract(salt, IKM) is a function keyed by a bitstring salt, with input keying
material IKM as parameter, and returns a bitstring of fixed length N}, bits.

— Expand(PRK, info, L) is a function keyed by PRK , with an arbitrary bitstring
info and a length L as parameters, and returns a bitstring of length L.

In Theorem 10, we assume that Extract and Expand are PRFs with the first
parameter being the PRF key. HPKE instantiates Extract and Expand with
HMAC-SHA-2, for which the PRF assumption is justified by [6,7]. (Generally,
HPKE’s instantiation of Expand uses HMAC iteratively to achieve the variable
output length L. However, all values L used in HPKE are less or equal than the
output length of one HMAC call.) We also assume that Extract is collision resis-
tant, provided its keys are not larger than blocks of SHA-2, which is needed to
avoid that the keys be hashed before computing HMAC, and true in HPKE. This
property is immediate from the collision resistance of SHA-2, studied in [21].
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Listing 9: The key schedule KSa,n used in HPKEauh [5]-

KSauth (kpre, info)
01 return KeySchedule(kprr, 0x02, info, "", "")

KeySchedule(kprr, mode, info, psk, psk_id)

02 context < mode ||
LabeledExtract("", "psk_id_hash", psk_id) ||
LabeledExtract("", "info_hash" ,info)
03 secret < LabeledExtract(kprr, "secret", psk)
04 k « LabeledExpand(secret, "key", context, Ni,)
05 monce < LabeledExpand(secret, "base_nonce", context, Ny,)
06 return (k, nonce)

LabeledExtract(salt, label, IKM")
07 return Extract(salt, "HPKE-v1" || suite;q || label || IKM')

LabeledExpand(PRK, label, context, L)
08 return Expand(PRK,Encode(L) || "HPKE-v1" || suite;q || label || context, L)

KEY SCHEDULE. The key schedule KSauh serves as a bridging step between
the AKEM and the AEAD of APKE. The computations done by KSa are as
indicated in Listing 9. The function KeySchedule used internally is the com-
mon key schedule function that the RFC defines for all modes. In HPKEayth,
the mode parameter is set to the constant one-byte value 0x02 identifying the
mode Auth. Similarly, mode Auth does not use a pre-shared key, so the psk
parameter is always set to the empty string "", and the value psk_id that is
identifying which pre-shared key is used, is equally set to "". The RFC defines
LabeledExtract and LabeledExpand as wrappers around Extract and Expand, for
domain separation and context binding. The value suite;q is a 10-byte string
identifying the ciphersuite, composed as a concatenation of the string "HPKE",
and two-byte identifiers of the KEM, the KDF, and the AEAD algorithm in use.
The bitstring Encode(L) is the two-byte encoding of the length L expressed in
bytes. The values Ny and N,, indicate the length of the AEAD key and nonce.

The composition results established by Theorems 3 to 5 assume that KSauz is
a PRF. The following theorem proves this property for HPKEan’s instantiation
of KSAuth-

Theorem 10 (Extract CR + Extract PRF + Expand PRF = KSaun PRF).
Assuming that Extract is a collision-resistant hash function for calls with the
labels "psk_id_hash" and "info_hash", that Extract is a PRF for calls with the
label "secret", and that Expand is a PRF, it follows that KSaun is a PRF.

In particular, for any (ng, gprr)-PRF adversary A against KSauh, there exist
an adversary B against the collision resistance of Extract, a (ng,ny)-PRF adver-
sary Cy against Extract, and a (ng, 2gpre)-PRF adversary Co against Expand such
that tg =~ ta, to, = ta, tc, =ta, and
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(nk,qprr) -PRF CR (nk,ni)-PRF (nk,2qpre ) -PRF
AdV.A,KSAuth < AdVB,EXtraCt + AdVC1,Extract + ACIVCQ,Expand :

This theorem is proven by CryptoVerif in keyschedule.auth.prf.ocv [2].

THE KEY DERIVATION FUNCTION KDF IN DH-AKEM. The AKEM instantiation
DH-AKEM as we defined it in Listing 8 uses a function KDF to derive the KEM
shared secret. In HPKEauth, this function is instantiated by HKDF y, as defined
in Listing 10, using the above-defined Extract and Expand internally. The output
length N corresponds to Nsecret in the RFC.

In the analysis of the key schedule presented above, we assume that Extract
and Expand are pseudo-random functions. However, this assumption would not
be sufficient to prove the security of DH-AKEM: the random oracle model is
required. The simplest choice is to assume that the whole key derivation func-
tion KDF = HKDF  is a random oracle, as we do in Theorems 7 to 9. (Alterna-
tively, we could probably rely on some variant of the PRF-ODH assumption [14].
While in principle the PRF-ODH assumption is weaker than the random oracle
model, Brendel et al. [14] show that it is implausible to instantiate the PRF-
ODH assumption without a random oracle, so that would not make a major
difference.) The invocations of Extract and Expand in DH-AKEM and KSauw use
different labels for domain separation, so choosing different assumptions is sound.
Next, we further justify the random oracle assumption for HKDF .

As mentioned at the beginning of Sect.5, HPKE instantiates Extract and
Expand with HMAC [23], which makes HKDF 5 exactly the widely-used HKDF
key derivation function [24]. HPKE specifies SHA-2 as the hash function under-
lying HMAC. Lemma 6 in [27] shows that HKDF is indifferentiable from a ran-
dom oracle under the following assumptions®: (1) HMAC is indifferentiable from
a random oracle. For HMAC-SHA-2, this is justified by Theorem 4.4 in [19]
assuming the compression function underlying SHA-2 is a random oracle. The
theorem’s restriction on HMAC’s key size is fulfilled, because DH-AKEM uses
either the empty string, or a bitstring of hash output length as key. (2) Values of
IKM do not collide with values of info || 0x01. This is guaranteed by the prefix
"HPKE-v1" of IKM , which is used as a prefix for info as well, but shifted by two
characters, because the two-byte encoding of the length N comes before it. The
shared secret lengths Nsecret specified in the RFC correspond exactly to the
output length of the hash function; this means there is only one internal call to
Expand, and thus we do not need to consider collisions of IKM with the input
to later HMAC calls.

5.3 HPKE’s APKE Scheme HPKEa,,

Let HPKEauh = APKE[DH-AKEM[N, HKDF y], KSauin, AEAD] be the APKE
construction obtained by applying the black-box AKEM/DEM composition of
Listing 6 to the DH-AKEM[N, HKDF y] authenticated KEM (Listing 8), where
N is a nominal group. For the key schedule of HPKE i, we use KSayen of List-
ing 9 and for the key derivation function we use HKDF y of Listing 10. For both

3 The exact probability bound is indicated in Lemma 8 of that paper’s full version.


https://github.com/blipp/hpke-analysis-suppl-material/blob/master/keyschedule.auth.prf.ocv

112 J. Alwen et al.

Listing 10: Function HKDF y[Extract, Expand] as used in HPKEayh.

HKDFy (salt, IKM , info)

01 PRK « Extract(salt, IKM)
02 return Expand(PRK,info, N)

KSauth and HKDF 5 we implement the Extract and Expand functions using HMAC
(as described in the HPKE specification). Finally, we instantiate HMAC using
one of the SHA2 family of hash functions. (Which one depends on the target bit
security of HPKEauh, as we discuss below.)

The AKEM/DEM composition Theorems 3 to 5, together with Theorem 10
on the key schedule KSaun, and Theorems 7 to 9 on DH-AKEM'’s security, and
Ppu-akem = Pn provide the following concrete security bounds for HPKEath-
For simplicity, we ignore all constants and set ¢ := ge + qq + qc-

Adv [ leda e m0usierCA - AqySPH 4 (4 q)? - Py + (n+q) - Ax

(¢,9)-PRF q-IND-CPA (q,q)-INT-CTXT
+AdVe ks, T ANVD apap T AdVD aEAD

Advy g OutsiderAuth  AqySOH 1 AdviSN + (n+¢)% - Py + (n+q) - Ax

(q,9)-PRF (q,9)-INT-CTXT
+ Adveis, . T AL AEAD .

The bound for Insider-CCA is the same as the one for Outsider-CCA. In all bounds,
we have Advé";?s),;if F< AdVER erace + Adv(cqg"ZE);tfii + Adv(CZ’fIE);;iZ. Moreover, the
adversaries Bi, Ba,C, D1, Dy have (roughly) the same running time as A.

PARAMETER CHOICES OF HPKEauth. To obtain a concrete instance of HPKEauth,
the HPKE standard allows different choices of nominal groups N that lead to
different bounds on the statistical parameters Py and Axs. The standard also
fixes the length N of the KEM keyspace, c.f. Table2. Even though lengths are
expressed in bytes in the RFC and the implementation, we express them in bits
in this section as this is more convenient to discuss the number of bits of security.

All concrete instances of HPKEau:, proposed by the HPKE standard build
Extract and Expand from HMAC which, in turn, uses a hash function. HPKE
proposes several concrete hash functions (all in the SHA2 family). For our secu-
rity bounds, the relevant consequence of choosing a particular hash function is
the resulting key length IV, of Expand when used as a PRF, c.f. Table 3.

Finally, to instantiate HPKEauh, we must also specify the AEAD scheme.
HPKE allows for several choices which affect the AEAD key length N, nonces
length N,,, and tag length N, c.f. Table4.

DiscussioN. We say that an instance of HPKEau, achieves k bits of security if
the success ratio Adv 4 ypke,,,,/t4 is upper bounded by 27* for any adversary A
with runtime ¢4 < 2”. In particular, we say that a term € has k bits of security
if e/t 4 < 27". We discuss the implications of our results for the bit security of
the various instances of HPKEa, proposed by the standard.
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Table 2. Parameters of DH-AKEM[N,HKDF y| depending on the choice of the
nominal group N.

P-256 P-384 P-521 Curve25519 Curve448

Security level kar (bits) 128 192 256 128 224
PN < 27255 27383 27520 27250 27444
An < 0 0 0 9—125 9—220
KEM keyspace N (bits) 256 384 512 256 512

Table 3. Choices of HMAC and the PRF key lengths of Expand, instantiated
with HMAC.

HMAC-SHA256 HMAC-SHA384 HMAC-SHA512
PRF key length N, of Expand (bits) 256 384 512

Table 4. Choices of the AEAD scheme and their parameters.

AES-128-GCM AES-256-GCM ChaCha20-Poly1305

AEAD key length N (bits) 128 256 256
AEAD nonces length N, (bits) 96 96 96
AEAD tag length N; (Dbits) 128 128 128

The runtime ¢4 of any adversary A in an APKE security game is lower-
bounded by n + ¢, since the adversary needs n steps to parse the n public keys
and additional ¢ steps to make the oracle queries. We assume that t4 < 27,
where k is the target security level.

We now estimate the security level supported by each term in Adv 4 ypkg,,,-

— Term /-\dvg?jj\/. Nominal groups N proposed for use by the HPKE standard
were designed to provide ks bits of security (c.f. Table 2). That is, we assume

that Advg?"j\//tgl < 27"V Since t4 & tp,, we conclude that this term has

Kk bits of security. The same arguments hold for Adv?fifH.

— Term (n + q)? - Py. Let us show that this term also has k bits of security.
We have n + g < t4. Thus, it suffices to show that (n + q) - Py < 27"V,
Since t4 < 2"V we get that (n + ¢) < 2. The statement now follows as,
according to Table 2, Py < 2726,

— Term (n + q) - Apr. Let us show that this term also has ks bits of security.
For all NIST curves, we have Ay = 0 trivially implying the statement. In
contrast, for Curve25519 and Curvedd8, Ay < 27"V so (n+q) - Ay =
(n+q)27"¥. As n+ q < t 4, the statement also holds for these curves.

— Term AdngExtract. The output length N}, of the concrete hash functions are
listed in Table 3. Since the generic bound on collision resistance is ta /2N,
this term has Ny /2 bits of security.
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— Term Adv (q’qE)x;aEz The PRF key lengths N, of Expand are specified in

Table 3. Modelling the PRF as a random oracle, we have Advéi’y?;;iz <
q?/2Nr. So this term also has Ny, /2 bits of security.
— Term Adv@ 2V FRF The PRF key length N of Extract is specified in Table 2.

Co,Extract”
By the same argument as for the previous term, this term has N/2 bits of

security. Since N/2 > kK by Table 2, this term has ks bits of security.

— Terms AdquINEE/SgA + Adv! Vo, AE'X; crxT . The terms refer to the multi-key

security of the AEAD schemes (c.f. [3, Sectlon 3]), studied for instance in [10].
However, the current results are not sufficient to guarantee the expected secu-
rity level, such as 128 bits for AES-128-GCM. We recommend further research
to study the exact bounds of the terms instantiated with the AEAD schemes
from Table4. In any case a simple key/nonce-collision attack has success
probability Advgll'?'fglggA = ¢%/2NetNn wwhere N, is the AEAD key length
and N,, is the nonce length. A simple computation shows that this term has
at most Ny bits of security (assuming ¢ < 2%=). Moreover, a simple attack
against INT-CTXT by guessing the authentication tag has success probability
Adv g;q/léxg CTXT — ¢/2Ne ) where N, is the length of the authentication tag.
Hence, this term has at most N; bits of security. Assuming these attacks also
serve as an upper bound, these terms would have min(Ny, INV;) bits of security
if ¢ < 2N». Since for all AEAD schemes of Table4, we have N, = 128 bits,
that limits the security level of HPKE to 128 bits.

To sum up, the analysis above suggests that HPKE has about x =
min(kpr, Ni/2, Ni, N¢) bits of security, under the assu