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Abstract. Measurement is a fundamental building block of numerous
scientific models and their creation in data driven science. Due to the
high complexity and size of modern data sets, it is necessary to develop
understandable and efficient scaling methods. A profound theory for scal-
ing data is scale-measures from formal concept analysis. Recent devel-
opments indicate that the set of all scale-measures for a given data set
constitutes a lattice. In this work we study the properties of said lattice
and propose a novel and efficient scale-measure exploration algorithm,
motivating multiple applications for (semi-)automatic scaling.
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1 Introduction

An inevitable step of any data-based knowledge discovery process is measure-
ment [14] and the associated (explicit or implicit) scaling of the data [17]. The
latter is particularly constrained by the underlying mathematical formulation of
the data representation, e.g., real-valued vector spaces or weighted graphs, the
requirements of the data procedures, e.g., the presence of a distance function,
and, more recently, the need for human understanding of the results. Consider-
ing the scaling of data as part of the analysis itself, in particular formalizing it
and thus making it controllable, is a salient feature of formal concept analysis
(FCA) [5]. This field of research has spawned a variety of specialized scaling
methods, such as logical scaling [15], and in the form of scale-measures links the
scaling process with the study of continuous mappings between closure systems.

Recent results by the authors [11] revealed that the set of all scale-measures
for a given data set constitutes a lattice. Furthermore, it was shown that any
scale-measure can be expressed in simple propositional terms using disjunction,
conjunction and negation. Among other things, the previous results allow a com-
putational transition between different scale-measures, which we may call scale-
measure navigation, as well as their interpretability by humans. Despite these
advances, the question of how to identify appropriate and meaningful scale-
measures for a given data set with respect to a human data analyst remains
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unanswered. In this paper, we propose an answer by adapting the well-known
attribute exploration algorithm from FCA to present a method for exploring scale
measures. Very similar to the original algorithm does scale-measure exploration
inquire a (human) scaling expert for how to aggregate, separate, omit, or intro-
duce data set features. Our efforts do finally result in a (semi-)automatic scaling
framework. Please note, some proofs are outsourced to the journal version [10].

2 Scales and Measurement

Formalizing and understanding the process of measurement is, in particular in
data science, an ongoing discussion, for which we refer the reader to Represen-
tational Theory of Measurement [13,18] as well as Numerical Relational Struc-
ture [14], and algebraic (measurement) structures [16, p. 253]. Formal concept
analysis (FCA) is well equipped to handle and comprehend data scaling tasks.
Within this work we use the standard notation, as introduced by B. Ganter and
R. Wille [5]. A fundamental approach to comprehensible scaling, in particular
for nominal and ordinal data as studied in this work, is the following.
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fish
leech × × ×
corn × × × ×
bream × × × ×
water
weeds × × × ×
bean × × × ×
frog × × × × ×
reed × × × × ×
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Fig. 1. This figure shows the Living Beings and Water context in the top. Its concept
lattice is displayed at the bottom and contains nineteen concepts.

Definition 1 (Scale-Measure (cf. Definition 91, [5])). Let K = (G,M, I)
and S = (GS,MS, IS) be formal contexts. The map σ : G → GS is called an
S-measure of K into the scale S iff the preimage σ−1(A) := {g ∈ G | σ(g) ∈ A}
of every extent A ∈ Ext(S) is an extent of K.

This definition resembles the idea of continuity between closure spaces
(G1, c1) and (G2, c2). We say that the map f : G1 → G2 is continuous if and
only if for all A ∈ P(G2) we have c1(f−1(A)) ⊆ f−1(c2(A)). In the light of the
definition above we understand σ as an interpretation of the objects from K

in S. Therefore we view the set σ−1(Ext(S)) :=
⋃

A∈Ext(S) σ−1(A) as the set of
extents that is reflected by the scale context S.



Exploring Scale-Measures of Data Sets 263

We present in Fig. 2 the scale-context for some scale-measure and its concept
lattice, derived from our running example context Living Beings and Water
KW, cf. Fig. 1. This scaling is based on the original object set G, however, the
attribute set is comprised of nine, partially new, elements, which may reflect
species taxons. We observe in this example that the concept lattice of the scale-
measure context reflects twelve out of the nineteen concepts from B(KW).

W LW plants animals land plants water plants land animal water animal mammal
dog × × × ×
fish
leech × × × ×
corn × × ×
bream × × × ×
water
weeds × × × ×
bean × × ×
frog × × × × ×
reed × × × × ×

plants := Ch
animals := M
land plants := LL ∧ plant
water plants := LW ∧ plant
land animal := LL ∧ animal
water animal := LW ∧ animal
mammal := animal ∧ BF
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dog
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∼=

{}

frog reed

{R}dog

{D}
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bream
water weeds
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{Co, Be, R}

{D, FL,
Br, F}

{FL, Br,
WW, F, R}

{Co, WW,
Be, R}

{D}

{D, F}

Fig. 2. A scale context (top), its concept lattice (bottom middle) for which idG is a
scale-measure of the context in Fig. 1. The reflected extents by the scale σ−1(Ext(S))
of the scale-measure are indicated in gray in the contexts concept lattice (bottom
left). The concept lattice on the bottom right is the output scale of the scale-measure
exploration algorithm and is discussed in Sect. 4. The employed object order is: Be >
Co > D > WW > FL > Br > F > R

In our work [11] we derived a scale-hierarchy on the set of scale-measures, i.e.,
S(K) := {(σ,S) | σ is a S−measure of K}, from a natural order of scales intro-
duced by Ganter and Wille [5, Definition 92]). We say for two scale-measures
(σ,S), (ψ,T) that (ψ,T) is coarser then (σ,S), iff ψ−1(Ext(T)) ⊆ σ−1(Ext(S)),
denoted (ψ,T) ≤ (σ,S). This also yields a natural equivalence relation ∼, which
in turn, allowed for the definition [11] of a scale-hierarchy S(K) = (S(K)/∼,≤).
For any given context K, the scale-hierarchy is lattice ordered [11] and isomor-
phic to the set of all sub-closure systems of Ext(K) ordered by ⊆. To show
this, we defined a canonical representation of scale-measures, using the so-called
canonical scale KA := (G,A,∈) for A ⊆ Ext(K) with Ext(KA) = A. In fact, for
context K and (S, σ) ∈ S(K) a scale-measure, then (σ,S) ∼ (id,Kσ−1(Ext(S))).
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We argued in [11] that the canonical representation eludes human explanation
to some degree. To remedy this issue by means of logical scaling [15] we used
scales with logical attributes MS ⊆ L(M, {∧,∨,¬}) ([11, Problem 1]). Let m ∈
M , then we define Im = I ∩ G × {m}, gIφ1∧φ2(φ1 ∧ φ2) iff gIφ1φ1 ∧ gIφ2φ2),
gIφ1∨φ2(φ1 ∨ φ2) iff gIφ1φ1 ∨ gIφ2φ2, and gI¬φ(¬φ) iff not gIφφ.

Proposition 1 (Conjunctive Normalform (cf. Proposition 23, [11])).
Let K be a context, (σ,S) ∈ S(K). Then the scale-measure (ψ,T) ∈ S(K) given
by ψ = idG and T = |A∈σ−1(Ext(S))(G, {φ = ∧ AI}, Iφ) is equivalent to (σ,S)
and is called conjunctive normalform of (σ,S).

3 Ideals in the Lattice of Closure Systems

The goal for the main part is to identify outstanding and particularly inter-
esting data scalings. This quest leads to the natural question for a structural
understanding of the scale-hierarchy. In order to do this we rely on the isomor-
phism [11, Proposition 11] between a context’s scale-hierarchy S(K) and the
lattice of all sub-closure systems of Ext(K). The latter forms an order ideal,
denoted by ↓FG

Ext(K), in the lattice FG of all closure systems on G. This ideal
is well-studied [1]. We may omit G in ↓FG

Ext(K) to improve the readability.
Equipped with this structure we have to recall a few notions and defini-

tions for a complete lattice (L,≤). In the following, we denote by ≺ the cover
relation of ≤. Furthermore, we say L is 1) lower semi-modular if and only if
∀x, y ∈ L : x ≺ x ∨ y =⇒ x ∧ y ≺ y, 2) join-semidistributive iff ∀x, y, z ∈ L :
x ∨ y = x ∨ z =⇒ x ∨ y = x ∨ (y ∧ z), 3) meet-distributive (lower locally
distributive, cf [1]) iff L is join-semidistributive and lower semi-modular, 4) join-
pseudocomplemented iff for any x ∈ L the set {y ∈ L | y ∨ x = �} has a least, 6)
ranked iff there is a function ρ : L �→ N with x ≺ y =⇒ ρ(x) + 1 = ρ(y),
7) atomistic iff every x ∈ L can be written as the join of atoms in L. In
addition to the just introduced lattice properties, there are properties for ele-
ments in L that we consider. An element x ∈ L is 1) neutral iff every triple
{x, y, z} ⊆ L generates a distributive sublattice of L, 2) distributive iff the equal-
ities x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for every
y, z ∈ L hold, 3) meet irreducible iff x �= � and

∧
y∈Y y for Y ⊆ L implies x ∈ Y ,

4) join irreducible iff x �= ⊥ and
∨

y∈Y y for Y ⊆ L implies x ∈ Y . For the rest
of this work, we denote by M(L) the set of all meet-irreducible elements of L.

We can derive from literature [1, Proposition 19] the following statement.

Corollary 1. For K = (G,M, I), ↓ Ext(K) ⊆ FG and R,R′ ∈ ↓ Ext(K) that:
R′ ≺ R ⇐⇒ R′ ∪ {A} = R with A is meet-irreducible in R.

Of special interest in lattices are the (meet-) join-irreducibles, since every
element of a lattice can be represented as a (meet) join of these elements.

Proposition 2. For K, ↓ Ext(K) ⊆ FG and R ∈↓ Ext(K): R is join-irreducible
in ↓ Ext(K) ⇐⇒ ∃A ∈ Ext(K) \ {G} : R = {G,A}
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Next, we investigate the meet-irreducibles of ↓ Ext(K) using a similar app-
roach as done for FG [1] based on propositional logic. We recall, that an (object)
implication for some context K is a pair (A,B) ∈ P(G) × P(G), shortly
denoted by A → B. We say A → B is valid in K iff A′ ⊆ B′. The set
FA,B := {D ⊆ G : A �⊆ D ∨ B ⊆ D} is the set of all models of A → B.
Additionally, FA,B |Ext(K) := FA,B ∩Ext(K) is the set of all extents D ∈ Ext(K)
that are models of A → B. The set FA,B is a closure system [1] and therefor
FA,B |Ext(K), too. Furthermore, we can deduce that FA,B |Ext(K) ∈↓ Ext(K).

Lemma 1. For context K, ↓ Ext(K) ⊆ FG, R ∈ ↓ Ext(K) with closure operator
φR we find R =

⋂{FA,B |Ext(K) | A,B ⊆ G ∧ B ⊆ φR(A)}.

For R ∈ ↓ Ext(K) the set {FA,B |Ext(K) | A,B⊆G ∧ B⊆φR(A)} contains only
closure systems in ↓ Ext(K) and thus possibly meet-irred. elements of ↓ Ext(K).

Proposition 3. For context K, ↓ Ext(K) ⊆ FG and R ∈ ↓ Ext(K): 1. R is
meet-irreducible in ↓ Ext(K) 2. ∃A ∈ Ext(K), i ∈ G with A ≺Ext(K) (A ∪ {i})′′

such that R = FA,{i}|Ext(K)

Propositions 2 and 3 provide a characterization of irreducible elements in
↓Ext(K) and thereby in the scale-hierarchy of K. Those may be of particular
interest, since any element of ↓Ext(K) is representable by irreducible elements.
Equipped with this characterization we look into counting the irreducibles.

Proposition 4. For context K, the number of meet-irreducible elements in the
lattice ↓ Ext(K) ⊆ FG is equal to |≺↓Ext(K)|.

Next, we turn ourselves to other lattice properties of ↓ Ext(K).

Lemma 2 (Join Complement). For K, ↓ Ext(K) ⊆ FG and R ∈ ↓ Ext(K),
the set R̂ =

∨
A∈M(Ext(K))\M(R){A,G} is the inclusion minimum closure-system

for which R ∨ R̂ = Ext(K).

All the above results in the following statement about ↓ Ext(K):

Proposition 5. For any context K, the lattice ↓ Ext(K) ⊆ FG is: i) join-
semidistributive ii) lower semi-modular iii) meet-distributive iv) join-pseudo-
complemented v) ranked vi) atomistic

4 Recommending Conceptual Scale-Measures

For the task of efficiently determining a scale-measure, based on human pref-
erences, we propose the following approach. Motivated by the representation of
meet-irreducible elements in the scale-hierarchy through object implications of
the context ((Proposition 3), we employ the dual of the attribute exploration algo-
rithm [6] by Ganter. We modified said algorithm toward exploring scale-measures
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Algorithm 1: Scale-measure Exploration: A modified Exploration with
Background Knowledge
Input : Context K = (G, M, I)
Output: (idG, S) ∈ S(K) and optionally LS

Init Scale S = (G, ∅, ∈)
Init A = ∅,LS = CanonicalBase(K) (or LS = {} for larger contexts)
while A �= G do

while A �= AISIS do
if Further differentiate objects having AISISIK

by attributes in AIK \ AISISIK? then
LS = LS ∪ {A → AISIS}
Exit While

else
Enter B ⊆ AIK \ (A)ISISIK that should be considered
Add attribute BIK to S

A =Next Closure(A, G, LS)

return : (idG, S) and optionally L

and present its pseudo-code in Algorithm 1. In this depiction we highlighted our
modifications with respect to the original exploration algorithm (Algorithm 19,
[7]) with darker print. This algorithm semi-automatically computes a scale con-
text S and its canonical base. In each iteration of the inner loop of our algorithm
the query that is stated to the scaling expert is if an object implication A → B
is true in the closure system of user preferences. If the implication holds, it is
added to the implicational base of S and the algorithm continues with the next
query. Otherwise a counter example in the form of a closed set C ∈ Ext(K)
with A ⊆ C but B �⊆ C has to be constructed. This closed set is then added as
attribute to the scale context S with the incidence given by ∈. If C �∈ Ext(K)
the scale S would contradict the scale-measure property (Proposition 20, [11]).

The object implicational theory LS is initialized to the object canonical base
of K, which is an instance of according to attribute exploration with background
knowledge [6]. This initialization can be neglected for larger contexts, however it
may reduce the number of queries. The algorithm terminates when the implica-
tion premise of the query is equal to G. The returned scale-measure is in canoni-
cal form, i.e., the canonical representation (idG, (G,Ext(S),∈)). The motivation
behind exploration queries is to determine if an implication holds in the unknown
representational context of the learning domain. In contrast, the exploration of
scale-measures determines if a given Ext(K) can be coarsened by implications
A =⇒ B, resulting in a smaller and thus more human-comprehensible concept
lattice B(S), adjusted to the preferences of the scaling expert.

Querying object implications may be less intuitive compared to attribute
implications, hence, we suggest to rather not test for A =⇒ AISIS for A ⊆ G
but for the difference of the intents AIK and (AISIS)′ in K. Finally, as a post-
processing, one may apply the conjunctive normalform [11, Proposition 23] of
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scale-measures to improve human-comprehension. Yet, deriving other human-
comprehensible representations of scale-measures is deemed to be future work.

(Semi-)Automatic Large Data Set Scaling. To demonstrate the applicability of
the presented algorithm, we have implemented it in the conexp-clj ([9]) soft-
ware suite. For this, we apply the scale-measure exploration Algorithm 1 on
our running example KW , see Fig. 1. The evaluation steps of this algorithm are
displayed in more detail in the long version of this work. One such intermedi-
ate step is for example row two where the implication {} =⇒ {D,FL,Br,F}
is true in the so far generated scale S and it is queried if it should hold. All
objects of the implication do have at least the attributes can move and needs
water to live. The answer of the scaling expert envisioned by us is the attribute
lives on land. Thus, the object counter example is the attribute-derivation the
union {M,W,LL}IW = {D,F}. In our example of the scale-measure exploration
the algorithm terminates after the scaling expert provided in total nine counter
examples and four accepts. The output is a scale context in canonical represen-
tation with twelve concepts as depicted in Fig. 2 (bottom right).

5 Related Work

Measurement is an important field of study in many (scientific) disciplines that
involve the collection and analysis of data. A framework to describe and ana-
lyze the measurement for Boolean data sets has been introduced in [8] and [4],
called scale-measures. It characterizes the measurement based on object clusters
that are formed according to common feature (attribute) value combinations. An
accompanied notion of dependency has been studied [19], which led to attribute
selection based measurements of boolean data. The formalism includes a notion
of consistency enabling the determination of different views and abstractions,
called scales, to the data set. Despite the expressiveness of scale-measure frame-
work, as demonstrated in this work, it is so far insufficiently studied in the
literature. In particular algorithmical and practical calculation approaches are
missing. Comparable and popular machine learning approaches, such as feature
compression techniques, e.g., Latent Semantic Analysis [2,3], have the disadvan-
tage that the newly compressed features are not interpretable by means of the
original data and are not guaranteed to be consistent with said original data.
The methods presented in this paper do not have these disadvantages, as they
are based on meaningful and interpretable features with respect to the original
features. In particular preserving consistency, as we did, is not a given, which
was explicitly investigated in the realm scaling many-valued formal contexts [15]
and implicitly studied for generalized attributes [12].

6 Conclusion

With this work we have shed light on the hierarchy of scale-measures. By apply-
ing multiple results from lattice theory, especially concerning ideals, to said hier-
archy, we were able to give a more thorough structural description of ↓FG

Ext(K).
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Our main theoretical result is Proposition 5, which in turn leads to our practi-
cal applications. In particular, based on this deeper understanding we were able
to present an algorithm for exploring the scale-hierarchy of a binary data set
K. Equipped with this algorithm a data scaling expert may explore the lattice
of scale-measures for a given data set with respect to her preferences and the
requirements of the data analysis task. The practical evaluation and optimiza-
tion of this algorithm is a promising goal for future investigations. Even more
important, however, is the implementation and further development of the auto-
matic scaling framework, as outlined in Sect. 4. This opens the door to empirical
scale recommendation studies and a novel approach for data preprocessing.
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