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Abstract. Efficient algorithms exist for constructing the attribute-
object concept (AOC) partially-ordered set (poset) from a formal con-
text. The atoms and co-atoms of the corresponding concept lattice can be
determined from this AOC poset and horizontally ordered so as to reduce
arc crossings in a layered drawing of the AOC poset initially, and ulti-
mately of the concept lattice digraph. The remaining, abstract concepts
must then be computed and progressively inserted into the AOC poset
to construct the lattice digraph. This paper describes the preparation of
a formal context for efficient computation of these abstract concepts, and
the consequent localisation in the AOC poset digraph of any resultant
insertions. In particular, it provides simple screening tests for identify-
ing bigraph edges, and hence also any attributes and objects, which do
not contribute to abstract concepts. Elimination of these bigraph ele-
ments reduces the size of the context and paves the way for dividing and
conquering the enumeration of the abstract concepts. These screening
tests are also used to determine ab initio which arcs in the AOC poset
digraph will not be subject to subsequent transitive reduction. These arcs
are visually distinguished in the line diagram to focus attention on the
remaining digraph arcs where the insertion of additional concepts may
yet occur, and where the graphical interpretation of meets and joins is
unsafe.

Keywords: Formal concept analysis · Abstract concepts · Lattice
drawing · Divide and conquer

1 Introduction

1.1 Formal Concept Analysis and Scalability

A formal context is a bipartite graph – henceforth bigraph – whose vertices
are partitioned into objects and attributes, and whose edges are specified by a
binary relation I ⊆ G × M between the sets G of objects and M of attributes.
Formal Concept Analysis transforms this bigraph into a partially-ordered set –
henceforth poset – of formal concepts. Each formal concept consists of a maximal
set of objects, called its extent, and a maximal set of attributes, called its intent,
such that each object in the extent is adjacent in the bigraph to each attribute
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in the intent, and vice versa. The set g′ ⊆ M of attributes adjacent to g ∈ G
is the intent of the corresponding object concept, and the set m′ ⊆ G of objects
adjacent to m ∈ M is the extent of the corresponding attribute concept. We refer
to object and attribute concepts collectively as concrete concepts, and to the
remainder as abstract concepts.

The set of formal concepts, partially ordered by extent set inclusion, forms a
complete lattice. This concept lattice can be represented as an acyclic directed
graph – henceforth digraph – whose vertices are formal concepts and whose
directed edges correspond to the cover relation – the transitive reduction of the
ordering relation – between concepts. A line diagram is an upward drawing of
this digraph in which each object and attribute concept is labelled with the
corresponding object(s) and attribute(s) respectively. Abstract concepts can be
readily recognised from this diagram as those which are not labelled.

A formal context may give rise to as many as 2min(|G|,|M |) formal concepts, of
which at most |G| + |M | are concrete. Abstract concepts therefore differ quanti-
tatively from concrete ones in that they are potentially far more numerous, and
actually so in pathological cases such as the contranominal scale [1]. The poten-
tial combinatorial explosion of concepts with increasing size of the formal context
poses challenges for the computation, layout and visualisation of, as well as inter-
action with, the lattice digraph. Contexts of even moderate size can produce a
large number of resultant vertices and arcs, which compete for limited screen
real estate and challenge user comprehension. On-demand construction and lay-
out of the entire lattice digraph cannot be achieved in interactive timescales for
large lattices, so either prior or user-guided construction and layout is required
to support responsive interaction.

1.2 AOC Poset

Some analytic objectives, such as identifying the upper neighbours of the infi-
mum and lower neighbours of the supremum, can be achieved without enumer-
ation of the full concept lattice. The Attribute-Object Concept (AOC) poset [2]
of a formal context consists of only the concrete concepts, once again ordered by
extent set inclusion. The AOC poset therefore has at most |G| + |M | elements,
allowing its elements and cover relation to be computed in less time [2], and its
line diagram presented using less screen real estate, than the concept lattice.
For convenience, we include the supremum and infimum of the concept lattice
in the AOC poset and corresponding line diagram, regardless of whether they
are concrete concepts.

Applying FCA to the domain of object-oriented software engineering, Godin
and Mili [5] used the term “abstract” to describe concepts lacking an object
label. The analogy between abstract concepts in FCA and abstract classes in
object-oriented software engineering is straighforward – an abstract class is one
from which an object cannot be directly instantiated, and in this sense (only)
abstracts from the properties of the classes which inherit it. Godin and Mili [5]
noted the existence of concepts which have neither object nor attribute labels
– for which we have reserved the term “abstract” – and described the benefits
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of including them in their analysis, both for domain understanding and object-
oriented design. The greatest lower and least upper bounds – meet and join
respectively – exist for any subset of concepts in the concept lattice, and can be
“read” from the line diagram as the concepts at which downward and upward
paths, respectively, from those concepts converge. Due to the absence of abstract
concepts, however, these bounds are not guaranteed to exist in the AOC poset,
and hence the corresponding interpretation of the line diagram is unsafe. The
AOC poset is consequently insufficient for analytical tasks which rely on the
existence of these bounds, such as deriving a basis for attribute implications.

1.3 Morphing AOC Poset into Concept Lattice

Pattison and Ceglar [9] therefore proposed a hybrid approach, which exploits the
computational and graph drawing benefits of the AOC poset to rapidly present
its line diagram to the user for familiarisation while they await computation of
the abstract concepts. Progressive insertion of the abstract concepts then morphs
this line diagram into that for the concept lattice, which contains all abstract
concepts and delivers the attendant benefits noted by Godin and Mili [5].

The lower neighbours of the supremum and upper neighbours of the infi-
mum in the concept lattice are referred to as atoms and co-atoms respectively.
Already present in the AOC poset, these can be horizontally ordered so as to
reduce arc crossings in – and hence improve the readability of – a layered drawing
of the AOC poset initially, and ultimately of the concept lattice digraph [10]. The
horizontal positions of the remaining concepts are derived from those of their
atomic descendants and co-atomic ancestors [9]. The AOC poset with atoms
and co-atoms so ordered therefore provides a suitable substrate for the subse-
quent progressive insertion of the remaining abstract concepts. This progressive
approach to construction of the lattice digraph allows users to familiarise them-
selves with the line diagram of the AOC poset while the abstract concepts are
being computed, and ideally to preserve their resultant mental model throughout
subsequent concept insertions.

1.4 Generating only Abstract Concepts

Pattison and Ceglar [9] did not specify how, having already identified the con-
crete concepts and constructed the line diagram for the AOC poset, an FCA
algorithm should thereafter efficiently and promptly produce only the remain-
ing, abstract concepts. Once the AOC poset has been constructed, a conventional
FCA algorithm could obviously be modified to simply discard any concepts it
generates which are not abstract. However re-generating, identifying and dis-
carding each concrete concept is not only inefficient, but also delays production
of the abstract concepts awaited by the user. A second alternative is that an
existing FCA algorithm might be modified to first produce the AOC poset, fol-
lowed by (only) the remaining, abstract, concepts. A third alternative is that
the AOC poset and its line diagram are generated by an existing algorithm such
as Hermes [2], and a novel algorithm generates only the abstract concepts for
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subsequent insertion into the line diagram. This third option, and in particular
exposition of the novel algorithm, is the focus of this paper.

The generation of abstract concepts proceeds in three stages: pre-processing
of the clarified formal context to remove edges and vertices which do not satisfy
necessary conditions for their participation in abstract concepts; conventional
FCA of the pre-processed context; and efficient elimination of any resultant con-
cepts which are either not valid or not abstract in the original context. The
pre-processing step removes bigraph elements, and thereby ablates the formal
context, while preserving all abstract concepts. Established precedents for con-
text ablation include clarification and reduction [3], which remove selected ver-
tices and adjacent edges from a formal context while preserving the structure of
the lattice digraph. In addition to simplifying and expediting the subsequent pro-
cess of Formal Concept Analysis, context ablation has the beneficial side-effect
of reducing the cardinalities |G| and |M | of the context bigraph vertex sets, and
thereby lowering the a priori exponential bound on the number of concepts.

In [9], the user could either await the insertion of additional abstract concepts
potentially anywhere in the evolving poset digraph, or prioritise their generation
by selecting existing concepts and requesting their meet or join. Thus the user
may waste time waiting for, or trying to prioritise, the enumeration of abstract
concepts which do not exist. If immutable arcs in the AOC poset digraph – i.e.
those which will not be subject to subsequent transitive reduction – could be
identified ab initio, the remainder could be visually distinguished to focus user
attention on areas where the insertion of abstract concepts may yet occur, and
hence where the interpretation of meets and joins is unsafe. We argue that these
immutable digraph arcs include those corresponding to bigraph edges removed
during our context ablation step, and demonstrate empirically that many such
arcs can be identified as a by-product of context ablation.

1.5 Organisation

This paper is organised as follows. Section 2 describes the ablation of a formal
context to reduce the number of bigraph elements while preserving all abstract
concepts. It outlines the strategy, and details supporting theory, for the elimina-
tion of bigraph elements, illustrating their application using a worked example.
Those familiar with FCA theory can start from Definition 11. Section 3 describes
analysis of the ablated context to generate only abstract concepts for progressive
insertion into the line diagram of the AOC poset. As the line diagram is thereby
morphed into that for the concept lattice, the user’s attention is directed to
where such insertions may still occur. Section 4 summarises the contribution.

2 Context Ablation

2.1 Preliminaries

Definition 1. A formal context K = (G,M, I) is a labelled bipartite graph, or
bigraph, with object vertex set G, attribute vertex set M , and undirected edge
set I ⊆ G × M .
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Each vertex has a unique label which derives from the domain of application.
For bibliographic analysis, for example, the objects may represent publications
labelled by their title and the attributes may represent authors labelled by their
full name.

Definition 2. A sub-context K = (G,M, I) of a formal context K = (G,M, I)
is a formal context for which G ⊆ G, M ⊆ M and I ⊆ I ∩ (G × M).

Definition 3. K ≤ K iff K is a sub-context of K.

Definition 4. A biclique of the formal context K is a sub-context K = (G,M, I)
satisfying I = G × M ⊆ I.

Definition 5. A biclique (G,M,G × M) is proper if G �= ∅ and M �= ∅.
Definition 6. A biclique (E , I, E × I) of the formal context K is maximal if
no proper superset E : E ⊂ E ⊆ G satisfies E × I ⊆ I and no proper superset
I : I ⊂ I ⊆ M satisfies E × I ⊆ I.

Definition 7. A formal concept of the formal context K is an ordered pair (E , I)
consisting of the object set E ⊆ G and attribute set I ⊆ M of a maximal biclique.

The set E is called the extent of the formal concept, and the set I is called the
intent. A formal concept may have empty intent or extent, and hence need not
correspond to a proper biclique [4].

Definition 8. The intent operator maps any set A ⊆ G of object vertices to the
maximal set A′ ⊆ M of attribute neighbours satisfying A × A′ ⊆ I. The extent
operator maps any set B ⊆ M of attribute vertices to the maximal set B′ ⊆ G
of object neighbours satisfying B′ × B ⊆ I.

Since it is obvious from the context which of these two operators is intended,
the same symbol ′ usually suffices for both.

Observation 1 ([3]). The pair (E , I) with E ⊆ G and I ⊆ M is a formal
concept of K iff I = E ′ and E = I ′.

The intent I = E ′ and extent E = I ′ of a concept are closed under the compo-
sition ′′ of these two operators, since I = E ′ = I ′′ and E = I ′ = E ′′.

Definition 9. Formal concepts are partially ordered such that

(E1, I1) < (E2, I2) ⇐⇒ E1 ⊂ E2 and I1 ⊃ I2

The set B of formal concepts of the formal context K = (G,M, I), partially
ordered as per Definition 9, constitutes a complete lattice. The least upper
bound, or supremum, and the greatest lower bound, or infimum, of B are referred
to collectively as the extrema.

Definition 10. The object concept for object i is (i′′, i′), and the attribute
concept for attribute j is (j′, j′′).
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Observation 2. A formal concept (E , I) satisfies

(j′, j′′) ≥ (E , I) ≥ (i′′, i′) ∀(i, j) ∈ E × I (1)

Definition 11. A formal concept (E , I) is abstract if E × I �= ∅ and

(j′, j′′) > (E , I) > (i′′, i′) ∀(i, j) ∈ E × I (2)

Definition 11 excludes attribute and object concepts, to which we refer collec-
tively as concrete concepts. It also excludes the supremum, since: the inequal-
ity is impossible – and the supremum an attribute concept – for any universal
attribute j ∈ I; and if instead I = ∅, then E × I = ∅. Definition 11 similarly
excludes the infimum. B can therefore be partitioned into the extrema, (other)
concrete concepts and the set of abstract concepts.
Corollary 1. A formal concept (E , I) : E × I �= ∅ is abstract iff

|E| > kE ≥ 1 (3a)
|I| > kI ≥ 1 (3b)

where

kE = maxi∈E |i′′| (4a)
kI = maxj∈I |j′′| (4b)

Proof. This result follows from Observation 2 and Definitions 11 and 9. The
constraint E × I �= ∅ is required to avoid maximisation over an empty set in
Eq. 4.

We denote by B∗ the set of abstract concepts of K, and refer to the corresponding
proper maximal bicliques as abstract bicliques. We denote by K

∗ = (G∗,M∗, I∗)
the sub-context of K consisting of the union of all abstract bicliques.
Observation 3. (E , I) ∈ B∗ is a formal concept of any K

′ : K
∗ ≤ K

′ ≤ K.

Proof. By our premise, (E , I) is a proper maximal biclique in K. It remains a
proper biclique in K

′ ≥ K
∗ because all of its constituent edges and vertices are

present in K
∗, and it remains maximal because all edges in K

′ ≤ K are also
in K.

2.2 Strategy

In order to enumerate only abstract concepts, we seek a procedure which iden-
tifies and removes edges and vertices in K \ K

∗ = (G \ G∗,M \ M∗, I \ I∗).
Such a procedure would ideally terminate when, and only when, K has been
transformed into K

∗. The remaining subgraph K
′ : K

∗ ≤ K
′ ≤ K would then be

divided into its connected components, the components subjected to indepen-
dent FCA, and those resultant concepts which are both valid in K and abstract
as per Corollary 1, progressively inserted into the AOC poset. Given that the
elements of the AOC poset have already been enumerated, the desired procedure
can use as input the properties of concrete concepts, such as intent or extent set
cardinality.
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Iteration over the edges of K = (G,M, I) to eliminate those not involved in
abstract concepts is viable provided the context is sparse. By “sparse” we mean
that the cardinalities |I|, |G|, |M | of the context relation I, object set G and
attribute set M satisfy |I| � |G||M |. We use as a running empirical example a
sub-context of the InfoVis 2004 bibliographic data set [12] having 151 proper
maximal bicliques. This clarified sub-context has 108 objects, 113 attributes and
273 � 108 × 113 edges. Hereafter, we refer to this context as InfoVis 151. A
drawing of the lattice digraph for this context, omitting the extrema, is shown
in Fig. 1. Abstract concepts are shown with coloured fill.

2.3 Elimination of Bigraph Elements

Observation 4. Let bigraph edge (i, j) participate in an abstract concept (E , I)
of K. Then

|j′| > |E| > |i′′| (5a)
|i′| > |I| > |j′′| (5b)

Observation 4 follows from Eq. 2 of Definition 11, and necessarily precludes (E , I)
from being the object concept for any g ∈ i′′ or the attribute concept for any
m ∈ j′′. However, it might still be the object concept for some g ∈ j′ \ i′′ or the
attribute concept for some m ∈ i′ \j′′. The following corollary therefore provides
a necessary but not sufficient condition for any concepts intervening between
(i′′, i′) and (j′, j′′) to be abstract.

Corollary 2. Let edge (i, j) participate in an abstract concept of K. Then

|i′| ≥ |j′′| + 2 (6a)
|j′| ≥ |i′′| + 2 (6b)

If (i, j) ∈ I does not satisfy Eq. 6, then (i, j) ∈ I \ I∗ and can be safely elim-
inated without compromising any abstract maximal bicliques of K. Eliminated
bigraph edges for which (j′, j′′) > (i′′, i′) correspond to arcs in the concept lattice
digraph. Such arcs are already present in the line diagram of the AOC poset, and
are immutable in the sense that they will not be interrupted by the subsequent
insertion of the remaining (abstract) concepts.

Example 1. Of the 11 edges in the simple context bigraph depicted in Fig. 3a,
Corollary 2 eliminates the 7 shown black. Of these, the 2 solid edges satisfy
(j′, j′′) > (i′′, i′), and hence correspond to lattice arcs already present in the line
diagram of the AOC poset shown in Fig. 3b; the remaining 5 dashed edges do
not. Solid bigraph edges correspond to mutable (red) and immutable (black) arcs
in the AOC poset line diagram; dashed edges have no corresponding poset arc.
The mutable (red) arcs in Fig. 3b are interrupted by the subsequent insertion of
the abstract concept ({1, 2}, {a, b}) shown grey in Fig. 3c.

Corollary 3. Let bigraph vertex α participate in an abstract concept of K. Then
in K

′ : K
∗ ≤ K

′ ≤ K, |α′| ≥ 2.
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Fig. 3. Simple context bigraph (a) and line diagrams for the corresponding AOC poset
(b) and concept lattice (c). Corollary 2 eliminates the black bigraph edges. Solid edges
in (a) correspond to mutable (red) and immutable (black) arcs in (b). The surviving
red edges and adjacent vertices in (a) correspond to the abstract (grey) concept in (c),
whose insertion interrupts the mutable arcs. (Color figure online)

Proof. Any vertex in a biclique has at least as many neighbours as the biclique
contains vertices of the opposite type. Equation 3 requires that |E| ≥ 2 and
|I| ≥ 2 for an abstract biclique, so that |α′| ≥ 2 in K. Observation 3 and
Corollary 2 ensure that no edge within an abstract biclique is deleted, so that
|α′| ≥ 2 also holds in K

′.

Vertices of degree less than two in K
′ can be safely deleted along with their

adjacent edges, since neither can participate in an abstract concept of K. By
removing the unrealistic requirement for apriori knowledge of the elements of
E and I, Corollary 3 clears the way for practical application of Corollary 1 to
context ablation in preparation for FCA.

Example 2. Following application of Corollary 2 to the example context in
Fig. 3a, Corollary 3 eliminates objects {3, 4, 5} and attributes {c, d, e}, leaving
only the red edges and adjacent vertices. These constitute the abstract biclique
({1, 2}, {a, b}) corresponding to the grey vertex in Fig. 3c.

Since Corollaries 2 and 3 impose conditions on bigraph elements which are neces-
sary but not sufficient for participation in abstract bicliques, the ablated formal
context may more generally still contain superfluous elements.

The deletion of vertices and their adjacent edges from K
′ according to Corol-

lary 3 produces a new context K
′′ : K

∗ ≤ K
′′ ≤ K

′ ≤ K to which Corollary 3
also applies. Corollary 3 should be applied iteratively, since the deletion of a
vertex having a single neighbour can cause the (formerly) adjacent vertex to
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subsequently fail the neighbour cardinality test. In the worst case, one more
iteration may be required than the longest chain of vertices of degree 2.

Example 3. Following application of Corollary 2 to InfoVis 151, 2 iterations of
Corollary 3 eliminate 9 of the remaining 29 objects, 12 of 41 attributes and 20
incident edges, leaving three connected components of sizes 12 × 20, 4 × 5 and
4× 4. Additional iterations do not eliminate any further bigraph elements. FCA
can be applied independently to these three components.

Whilst Corollaries 2 and 3 can be applied in either order, the cardinalities
|i′|, |j′|, |i′′| and |j′′| required by the former must be calculated on the original
context K. Edge deletion may have decreased the vertex degrees |i′| and |j′|,
and, by removing the structural distinction between some vertices, increased the
closure cardinalities |j′′| and |i′′|. The vertex degrees |i′| and |j′| cannot have
increased, since no edges were added to K. Furthermore |j′′| and |i′′| cannot have
decreased, since vertices which were structurally equivalent in K remain so in K

′.

Fig. 4. Example illustrating that closure cardinality may be higher in K
′ than K.

The example context in Fig. 4 contains the maximal biclique ({1, 2}, {a, b}).
Each vertex of this biclique has an additional distinct neighbour so that the
biclique edges satisfy Corollary 2. The edges (1, c), (2, d), (3, a) and (4, b) do not
satisfy Corollary 2, and hence are not present in K

′. The degrees of objects 1 and
2 and attributes a and b have each decreased by 1. Object 1 is thereby rendered
indistinguishable from object 2, and attribute a from b. Thus for example |1′′|
is 1 in K but 2 in K

′.

2.4 Iterative Edge Elimination

We have seen that significant numbers of edges not involved in abstract concepts
of K can be removed by Corollary 2 to produce K

′ : K
∗ ≤ K

′ ≤ K. Since
Corollary 2 compares the cardinalities |i′|, |j′|, |i′′| and |j′′| calculated on K, it
no longer applies to K

′, and is therefore of no further use in approaching K
∗. In

Example 3, additional vertices and adjacent edges in K
′\K

∗ were then eliminated
through the iterative application of Corollary 3 to produce K

′′ ≥ K
∗. We now
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develop iterative variants of Corollary 2 which can be applied either to K
′ or to

K
′′ ≥ K

∗, and demonstrate empirically that in the former case they can delete
more edges than Corollary 3.

Observation 5. Let edge (i, j) participate in an abstract concept (E , I) of the
formal context K. Then in K

′ : K
∗ ≤ K

′ ≤ K, (j′, j′′) ≥ (E , I) ≥ (i′′, i′).

Proof. Denote by B′ the set of formal concepts of K
′. Observation 3 ensures that

(E , I) ∈ B′, and the result follows from Observation 2. Equalities are possible –
and hence (E , I) may not be abstract in K

′ – because, as a consequence of edge
deletions, it may now be the object [attribute] concept for i [j].

Corollary 4. Let bigraph edge (i, j) participate in an abstract concept of the
formal context K. Then in K

′ : K
∗ ≤ K

′ ≤ K

|i′| ≥ |j′′| (7a)
|j′| ≥ |i′′| (7b)

Observation 6. Let bigraph edge (i, j) participate in an abstract concept of the
formal context K. Then

|i′| ≥ |j′′| + 1 (8a)
|j′| ≥ |i′′| + 1 (8b)

where the derivation operators on the left- and right-hand sides are with respect
to K

′ : K
∗ ≤ K

′ ≤ K and K respectively.

Proof. Let the abstract concept be (E , I). From Observation 5, |i′| ≥ |I| and
|j′| ≥ |E| in K

′ and from Observation 4, |I| ≥ |j′′| + 1 and |E| ≥ |i′′| + 1 in
K. Pairing these inequalities and noting that E and I – and hence also their
cardinalities – are the same in both contexts yields the result.

Corollary 4 and Observation 6 both provide lower bounds on |i′| and |j′| in
K

′. The greater of these two lower bounds should be applied when determining
whether any additional bigraph edges can be eliminated.

In contrast with Corollary 2, which can be applied only once to K, Corol-
laries 3 and 4 and Observation 6 can be applied iteratively. The removal of a
non-compliant bigraph edge (i, j) in one iteration reduces |i′| and |j′|, and can
thereby cause other edges adjacent to object i or attribute j to fail Eq. 8 in the
next. Since only edges in K \ K

∗ are deleted, the iteration must halt when no
further edges can be deleted, leaving at least the abstract concepts intact.

Example 4. Following application of Corollary 2 to InfoVis 151, 4 iterations of
Observation 6 eliminated 29 additional bigraph edges, isolating an additional 11
objects and 16 attributes. No further edges were eliminated by the fifth iteration.
Three connected components remained, as for Example 3, but now with sizes
10×17, 4×5 and 4×3. The labels of the objects and attributes belonging to these
connected components, and the abstract concepts to which these components
give rise, are coloured in Figs. 2 and 1 respectively.
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The overall context ablation procedure is listed in Algorithm 1. Corollary 2,
Observation 6 and Corollary 3 are implemented in turn by the loops commencing
at lines 8 and 13 and the assignments commencing at line 26 respectively. Since
Corollary 2 and Observation 6 both eliminate edges adjacent to vertices of degree
one, the subsequent application of Corollary 3 amounts to deleting vertices of
degree zero. Their more timely deletion would confer no computational benefit,
since Corollary 2 and Observation 6 both cycle through edges vice vertices.
The cardinalities |i′|, |i′′| ∀i ∈ G and |j′|, |j′′| ∀j ∈ M can either be passed
to Ablate() following preparation of the AOC poset, or re-calculated from the
context at line 3. The values for |i′′| and |j′′| are re-used throughout Algorithm 1.
Vertex k currently has Neighbours(k) neighbours, and Dirty(k) is true if one or
more of its adjacent edges has been deleted during the most recent pass through
the set of edges. Unless no adjacent edges remain, this flag is cleared after one
complete pass through the set of edges (adjacent to “dirty” vertices) fails to
delete any further adjacent edges.

3 Formal Concept Analysis of Ablated Context

Section 2 described the elimination of elements of the context bigraph K which
cannot participate in abstract formal concepts. Examples 3 and 4 demon-
strated that the resultant formal context can have considerably fewer graph
elements, thereby significantly constraining the potential combinatorial explo-
sion of abstract concepts. In this section, the remaining context K

′ is subjected
to conventional FCA, and the resultant concepts screened to eliminate any which
are either not valid in K or are not abstract. For reviews of FCA algorithms
applicable to the analysis of K

′, the interested reader is referred to [7,8,13].

3.1 Finding Valid Abstract Concepts

For the Infovis 151 context processed as per Example 4, K
′ contains a total

of 35 concepts, compared with the 151 concepts for K. Definition 11 and Corol-
lary 1 justify the immediate elimination of any resultant formal concepts which
have extent or intent cardinality less than 2, which for Infovis 151 leaves only
14 concepts as candidate abstract concepts of K. The more stringent form of
Corollary 1 involving Eq. 4 eliminates any concepts which are valid and concrete
in K; in this instance it eliminates a further 2 concepts.

Observation 3 applies only to the abstract concepts of K, since at least some
concrete concepts must be affected by the removal of edges or vertices to form
K

′. Indeed, as we have seen in the case of Infovis 151, many of the objects
and attributes whose corresponding attribute and object concepts are members
of the AOC poset are no longer present in K

′. For those which remain, their
corresponding object and attribute concepts in K

′ may not be valid concepts in
K. Screening the concepts generated by conventional FCA of K

′ for validity in
K according to Observation 1 can therefore eliminate some concepts which are
not viable candidates for abstract concepts of K, while preserving all abstract
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Algorithm 1. Implement Corollaries 2 and 3 and Observation 6
Require: Formal context (G, M, I), preferrably clarified
Ensure: B′(G′, M ′, I ′) contains all abstract concepts of (G, M, I)
1: procedure Ablate(G,M,I)
2: for all i ∈ G, j ∈ M do
3: Calculate |i′|, |i′′|, |j′|, |j′′|
4: Neighbours(i) ← |i′|, Dirty(i) ← False, NowDirty(i) ← False

5: Neighbours(j) ← |j′|, Dirty(j) ← False, NowDirty(j) ← False

6: end for
7: I ′ ← I
8: for all (i, j) ∈ I : |i′| < |j′′| + 2 or |j′| < |i′′| + 2 do � Corollary 2
9: I ′ ← I ′ \ (i, j)

10: Neighbours(i)−−, Dirty(i) ← True

11: Neighbours(j)−−, Dirty(i) ← True

12: end for
13: repeat � Observation 6
14: for all (i, j) ∈ I ′ : Dirty(i) or Dirty(j) do
15: if Neighbours(i) < |j′′| + 1 or Neighbours(j) < |i′′| + 1 then
16: I ′ ← I ′ \ (i, j)
17: Neighbours(i)−−, NowDirty(i) ← True

18: Neighbours(j)−−, NowDirty(j) ← True

19: end if
20: end for
21: for all (i, j) ∈ I ′ do
22: Dirty(i) ←NowDirty(i), NowDirty(i) ← False

23: Dirty(j) ←NowDirty(j), NowDirty(j) ← False

24: end for
25: until �(i, j) ∈ I ′ : Dirty(i) or Dirty(j)
26: G′ ← G \ {i : Neighbours(i) = 0} � Corollary 3
27: M ′ ← M \ {j : Neighbours(j) = 0}
28: return (G′, M ′, I ′)
29: end procedure

concepts according to Observation 3. Of the 12 remaining candidate concepts for
Infovis 151, only 6 are valid in K. In contrast, näıve application of FCA to the
original Infovis 151 generates and tests the novelty of at least 151 concepts.

3.2 Dividing and Conquering

A beneficial side-effect of the context ablation described in Sect. 2 is that it
allows us to divide and conquer the process of concept generation. The InfoVis
151 bigraph K is connected by virtue of pre-processing by the Carve algorithm
[11]. However, as Examples 3 and 4 have demonstrated, deletion of some bigraph
elements from K to form K

′ can cause the latter to be disconnected. In this case,
enumeration of its formal concepts can be divided and conquered through inde-
pendent FCA of each of its connected components. Pattison et al. [11] described
how the lattice digraph can be constructed from the digraphs for each of these



Towards Interactive Transition from AOC Poset to Concept Lattice 205

connected components. As per Example 4 for the InfoVis 151 context, which
contains 108 objects and 113 attributes, three connected components with a
total of 18 objects and 25 attributes can be identified following application of
Corollary 2 and Observation 6. The divide and conquer approach also extends
to checking of Corollary 1; for this purpose, each attribute and object should be
accompanied by the cardinality of its closure from the original AOC poset.

3.3 Anticipating and Localising Change in the AOC Poset

Pattison and Ceglar [9] described an incremental approach to drawing a concept
lattice whereby the elements of the attribute-object concept (AOC) poset were
first identified and positioned horizontally, and then the remaining concepts
progressively inserted into a two-dimensional drawing of the poset. This paper
has described an efficient, divide and conquer approach for producing those
remaining abstract concepts. As the line diagram for the AOC poset is morphed
into that for the concept lattice, user attention can be directed to or from regions
of the line diagram where the insertion of abstract concepts is still possible, and
hence where the graphical interpretation of meets and joins is unsafe.

Figure 2 shows the line diagram for the AOC poset of the Infovis 151 con-
text. The arcs shown red correspond to edges in the context bigraph which satisfy
the necessary conditions in Corollary 2 and Observation 6 for participation in
an abstract concept. For comparison, the line diagram for the concept lattice
digraph is shown in Fig. 1, with abstract concepts shown coloured. Many of the
arcs highlighted in Fig. 2 have subsequently been removed as a result of transitive
reduction. However, some of these remain in Fig. 1, indicating that there may
be opportunity to further refine the necessary conditions in Sect. 2 to reduce the
number of such false alarms. The highlighting in Fig. 1 is for illustrative purposes
only: once a connected component has been processed, and its abstract concepts
inserted into the line diagram, highlighting can be removed from any of its arcs
which remain highlighted.

4 Discussion and Summary

The context ablation procedure described in Sects. 2.3 and 2.4 does not require
the context to have been clarified. In an unclarified context, however, some
bigraph edges corresponding to immutable lattice arcs may pass the test in
Eq. 6, and thereby escape elimination. This would result in the generation of
additional concepts which must then be explicitly eliminated as per Sect. 3.1.

The technique described in [10] for horizontally ordering the lattice atoms and
co-atoms in the AOC poset requires that these concept sets are disjoint. FCA of
a formal context which does not meet this requirement can be recursively divided
using the Carve algorithm [11] into sub-contexts which do. Only the resultant
connected bigraphs would then be subjected to the techniques described in this
paper. These may be disconnected by the context ablation in Sects. 2.3 and 2.4,
and thereby further divided and conquered.
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A subgraph of the context bigraph is biconnected if it remains connected
upon removal of any one of its vertices, or 2-connected if a single vertex is not
considered “connected”. A bridge is a biconnected component of the context
bigraph containing exactly two vertices. An abstract maximal biclique of K is a
2-connected, bridgeless subgraph of K

′ : K
∗ ≤ K

′ ≤ K and hence is contained
within a single biconnected component of K

′. Efficient algorithms exist for finding
the biconnected components of a simple graph [6], and should be investigated for
simultaneous ablation and partitioning of K. Excluding any bridges from further
analysis effectively ablates the constituent edges from, and thereby disconnects,
the context bigraph.

Enumeration and visualisation of the AOC poset, vice concept lattice, scales
to larger formal contexts, since the former has at most |G| + |M | elements and
the latter |B| ≤ 2min(|G|,|M |). It therefore constitutes a more reliable first step
for interactive, on-demand FCA. For sparse contexts, mutable poset arcs can be
efficiently identified using context ablation, and the quantity

min(|j′| − |i′′|, |i′| − |j′′|) − 1

calculated for each as an upper bound on the number of abstract concepts
between the object concept for i and the attribute concept for j. Aggregat-
ing these bounds constrains the number of abstract concepts, from which the
feasibility of interactive visualisation of the concept lattice can be assessed. The
ablation and bounding steps are of course unneccessary if the results of prior, as
opposed to on-demand, computation and layout of the concept lattice digraph
are available. Visualisation of the AOC poset may still be appropriate in this
case if the digraph size challenges user comprehension. Selection of mutable arcs
might then drive on-demand insertion of any intervening abstract concepts.

Instead of morphing the line diagram for the AOC poset into that for the
concept lattice, the latter could be presented to the user as a separate view.
This would clearly distinguish between the line diagrams in which meets and
joins are and are not guaranteed to exist. This approach would transform the
challenge of maintaining the user’s mental model throughout the morph into one
of acquiring the association between the two views. A comparative evaluation of
the user experience will be required to decide between these two approaches.

This paper has described the ablation of a formal context to eliminate
many of the concrete concepts, dividing and conquering FCA of the remain-
ing sub-context, and screening the remaining formal concepts to produce only
the required abstract concepts. These are progressively inserted into the line
digram for the AOC poset, morphing it into that for the concept lattice. The
user’s attention is directed to where such insertions of missing meets or joins
may still occur. The potential utility of this approach has been demonstrated
using a single real-world context. Empirical studies will be required to confirm
and qualify its wider applicability to sparse contexts.



Towards Interactive Transition from AOC Poset to Concept Lattice 207

References

1. Albano, A.: Upper bound for the number of concepts of contra nominal-scale
free contexts. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) Formal Con-
cept Analysis, pp. 44–53. Springer (2014). DOI: https://doi.org/10.1007/978-3-
319-07248-7 4

2. Anne, B., Alain, G., Marianne, H., Amedeo, N., Alain, S.:Hermes: a simple and
efficient algorithm for building the AOC-post of a binary relation. Ann. Math.
Artif. Intell. 45–71 (2014). https://doi.org/10.1007/s10472-014-9418-6

3. Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/
978-3-642-59830-2

4. Gaume, B., Navarro, E., Prade, H.: A parallel between extended formal concept
analysis and bipartite graphs analysis. In: Hüllermeier, E., Kruse, R., Hoffmann,
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