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Abstract. Formal Concept Analysis (FCA) provides a method called
attribute exploration which helps a domain expert discover structural
dependencies in knowledge domains that can be represented by a for-
mal context (a cross table of objects and attributes). Triadic Concept
Analysis is an extension of FCA that incorporates the notion of condi-
tions. Many extensions and variants of attribute exploration have been
studied but only few attempts at incorporating multiple experts have
been made. In this paper we present triadic exploration based on Tri-
adic Concept Analysis to explore conditional attribute implications in
a triadic domain. We then adapt this approach to formulate attribute
exploration with multiple experts that have different views on a domain.

Keywords: Formal concept analysis · Triadic concept analysis ·
Attribute exploration

1 Introduction

Attribute exploration [3] is a well established knowledge acquisition method from
the field of Formal Concept Analysis (FCA) [8]. Attribute exploration works on
domains that can be represented as binary tabular data of objects and attributes
(also called features or properties). It helps a domain expert to uncover the
dependency structure of attributes of the domain. For non-binary tabular data
the method of conceptual scaling, cf. [7], can be used to transform non-binary
attributes into binary ones.

Attribute exploration is based on the idea that we extend domain informa-
tion through a domain expert. To this end, attribute exploration uses a question-
answer scheme to extract dependency information about attributes. The ques-
tions are in the form of implications, for example, do attributes A and B imply
attribute C? (also written as AB → C?). The expert’s task is to confirm or
refute the validity of such implications in the domain. If the expert refutes the
validity of an implication she has to offer a counterexample, for example, in case
of the question AB → C? an object of the domain that has the attributes A and
B but lacks attribute C.
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The attribute exploration algorithm asks these questions in an optimized
manner such that the expert has to answer as few questions as possible until the
validity of every conceivable implication can be inferred from the answers given
by the expert. This is the case when every implication either follows from the
set of implications accepted as valid or is contradicted by one of the examples
given by the expert.

The basic version of attribute exploration requires an all-knowing expert
of the domain, i.e. an expert who can answer any question about the domain
correctly. It was introduced by Ganter in [3]. Since then, many variants and
extensions of attribute exploration have been studied. A good overview can be
found in the book Conceptual Exploration by Ganter and Obiedkov [6]. These
extensions and variants notably include: Attribute exploration with background
knowledge and exceptions [4,18], where the idea is to support the exploration
with prior knowledge about some of the relations between attributes, for exam-
ple if one attribute is the negation of another; attribute exploration with partial
information [11–13], where the expert is not required to be all-knowing and is
also allowed to answer I do not know in addition to confirming or refuting a
question. Further, the expert is not required to fully specify a counterexam-
ple as long as the specified parts contradict the implication in question; and a
sketch of how to explore triadic formal contexts [5,6], where the idea of attribute
exploration is transferred to triadic concept analysis (an extension of FCA with
conditions [17]). We elaborate further on this in Sect. 3.

However, most of the extensions and variants of attribute exploration that
have been studied are based on the idea of a single expert answering the questions.
As far as we know, there exist only a few papers that mention exploration with
multiple experts, notably: Paper [16] deals with how to perform exploration in par-
allel and potentially offers a way to speed up the exploration with multiple experts;
[10] addresses collaborative conceptual exploration based on the notions of local
experts for subdomains of a given knowledge domain; and [2] studies attribute
exploration in a collaborative exploration setting with multiple experts who share
the same view on the domain but only have partial knowledge thereof.

When we explore a domain with multiple experts, one of the fundamental prob-
lems we face is that different views on a domain, for example different opinions
whether an object has an attribute or not, or whether an implication is valid or
not in a domain, are impossible to resolve by combining different pieces of infor-
mation into one. Either, because there is no clear right or wrong, e.g. in case of
opinions, or simply because we can not know which information to trust most.
And, even if we used methods such as majority-voting on information, there is a
reasonable chance that the result is not always correct. Combined with the inher-
ent non-robustness of implication theories, i.e., small changes in the underlying
data can lead to a very different theory, this suggests that merging different views
on a domain is a bad idea for attribute exploration. If we take a closer look at the
publications mentioned before, we see that all three avoid this issue in their own
way. In [16] the experts all have the same complete knowledge about the domain;
in [10] the local experts have partial knowledge about the same consistent domain
knowledge; and, in [2] the problem was also avoided by defining expert knowledge
as partial knowledge of some consistent domain knowledge.
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Attribute exploration where multiple experts can have truly different and
even opposing views on the domain has to the best of our knowledge not yet
been studied. To this end we develop triadic exploration based on ideas presented
by Ganter and Obiedkov in [5]. We then adapt triadic exploration to the setting
of multiple experts with different views on a domain and thus provide a step in
the direction of attribute exploration with multiple experts.

The paper is structured as follows: We begin by giving a brief introduc-
tion to the problem in Sect. 1. We recollect some fundamentals of Formal and
Triadic Concept Analysis in Sect. 2, in particular formal and triadic contexts,
attribute implications, the relative canonical base and attribute exploration. In
Sect. 3, we discuss implications in the triadic setting, in particular, we focus
on conditional attribute implications. Subsequently, we formulate triadic explo-
ration. In Sect. 4, we discuss how to adapt triadic exploration to model attribute
exploration with multiple experts with different views. Finally, Sect. 5 contains
conclusion and outlook. Note that for this paper we do not provide a separate
section for related work, instead we address related work throughout the paper
whenever appropriate.

2 Dyadic and Triadic Formal Contexts

In this section we recollect the fundamentals of (dyadic) Formal Concept Anal-
ysis and Triadic Formal Concept Analysis (TCA). We mostly rely on [8,19] for
FCA and on [17,20] for TCA. We begin with the definition of formal contexts
and associated notions. We then introduce triadic contexts and give an example
which will serve as our running example for the remainder of this paper. After-
wards, we briefly cover attribute implications, the relative canonical base and
attribute exploration. This serves as a foundation for Sect. 3, where we look at
implications in the triadic setting and subsequently develop triadic exploration.

2.1 Formal Concept Analysis

Formal Concept Analysis was introduced by Wille in [19]. As the theory matured,
Ganter and Wille compiled the mathematical foundations of the theory in [8]. A
formal context K = (G,M, I) consists of a set G of objects, a set M of attributes
and an incidence relation I ⊆ G × M with (g,m) ∈ I meaning object g has
attribute m. We define two derivation operators (·)′ : P(M) → P(G) and (·)′ :
P(G) → P(M) in the following way: For a set of objects A ⊆ G, the set of
attributes common to the objects in A is provided by A′ := {m ∈ M | ∀g ∈ A :
(g,m) ∈ I}. Analogously, for a set of attributes B ⊆ M , the set of objects that
have all the attributes from B is provided by B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈
I}. A formal concept of a formal context K = (G,M, I) is a pair (A,B) with
A ⊆ G and B ⊆ M such that A′ = B and A = B′. We call A the extent and
B the intent of the formal concept (A,B). The set of all formal concepts of a
context K is denoted by B(K). Note that for any set A ⊆ G the set A′ is the
intent of a concept and for any set B ⊆ M the set B′ is the extent of a concept.
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The subconcept-superconcept relation on B(K) is formalized by: (A1, B1) ≤
(A2, B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2). The set of concepts together with this order
relation (B(K),≤) forms a complete lattice, the concept lattice. The vertical
combination of two formal contexts Ki = (Gi,M, Ii), i ∈ {1, 2} with the same
set of attributes M is called the subposition of K1 and K2. Formally, it is defined
as (Ġ1 ∪ Ġ2,M, İ1 ∪ İ2), where Ġi := {i} × G and İi := {((i, g),m)|(g,m) ∈ Ii}
for i ∈ {1, 2}. The subposition of a set of contexts on the same set of attributes
is defined analogously and we denote this by subpos(·).

2.2 Triadic Concept Analysis

Triadic Concept Analysis (TCA) was introduced by Lehmann and Wille in [17]
as an extension to Formal Concept Analysis with conditions. In particular they
introduced the notion of triadic concepts for which Wille proceeded to show
the basic theorem of triadic concept analysis in [20] – clarifying the connection
between triadic concepts and complete tri-lattices, analogous to the dyadic case.

The basic structure in TCA is a triadic context which is similar to the formal
context in FCA. A triadic context is defined as a quadruple T = (G,M,B, Y ),
where G,M and B are sets and Y ⊆ G × M × B is a ternary relation on these
sets. The elements of G,M and B are called objects, attributes and conditions
respectively. For g ∈ G, m ∈ M and b ∈ B with (g,m, b) ∈ Y we say that object
g has attribute m under condition b. The conditions are understood in a broad
sense, cf. [20]: They comprise, amongst others, relations, interpretations, mean-
ings, purposes and reasons concerning the connections of objects and attributes.

Example 1. The following example1 will serve as our running example through-
out the paper. It shows the situation of public transport at the train station Bf.
Wilhelmshöhe with direction to the city center in Kassel. From Bf. Wilhelmshöhe
you can travel by one of four bus lines (52, 55, 100 and 500), four tram lines (1,
3, 4 and 7), one night tram (N3) and one regional tram (RT5) to the city center.
These are the objects Gex. of our context. The buses and trams leave the station
at different times throughout the day. The attributes Mex. of our context are the
aggregated leave-times, more specifically, we have split each day in five distinct
time-slots: early morning (4:00 to 7:00), working hours (7:00 to 19:00), evening
(19:00 to 21:00), late evening (21:00 to 24:00) and night (0:00 to 4:00). The condi-
tions Bex. of our context are the days of the week. A bus or tram line is related to a
time-slot on a day if a bus or tram of this line leaves the station at least once during
the time-slot on the day. This describes the ternary relation Y ⊆ Gex.×Mex.×Bex..
We have aggregated Monday to Friday into a single condition, because the schedule
is the same for these days. Thus, we obtain the contextTex. = (Gex.,Mex., Bex., Y ).
The resulting triadic context can be found in Fig. 1.

Naturally, we can view the triadic context as a family of formal contexts,
where each context represents one condition, basically slicing the triadic context

1 The example is similar to the one given in [6], which inspired it.
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Fig. 1. Triadic context Tex. of
Example 1

Fig. 2. The triadic context Tex. from Example 1 rep-
resented as context family of the condition contexts
KMo-Fr, KSat and KSun

vertically along the conditions. In Fig. 2 we provide the resulting context family
of our running example.

Formally such a family of contexts representing a triadic context
T = (G,M,B, Y ) is a set of contexts Kb, b ∈ B where Kb := (G,M, Ib) with
(g,m) ∈ Ib :⇔ (g,m, b) ∈ Y . We will refer to the contexts Kb as condition
contexts of the triadic context T; for our example these are KMo-Fr, KSat and
KSun.

2.3 Attribute Implications

Attribute implications are used to describe dependencies between attributes in
a formal context. In the following we give a brief introduction. Let M be a set of
attributes. (For a start, we do not require it to be related to a specific context.)
An attribute implication over M is a pair of subsets A,B ⊆ M of M . We denote
this by A → B. We call A the premise and B the conclusion of the implication
A → B.

We denote the set of all implications over a set M by ImpM = {A →
B|A,B ⊆ M}.

A subset T ⊆ M respects an attribute implication A → B over M if A 
⊆ T
or B ⊆ T . We then also call T a model of the implication. T respects a set L of
implications if T respects all implications in L. An implication A → B holds in
a set of subsets of M if each of these subsets respects the implication.

For a formal context K = (G,M, I) we say that an implication A → B over
M holds in the context if for every object g ∈ G the object intent g′ respects the
implication. We then also call A → B a valid implication of K. An implication
A → B holds in K if and only if every object g ∈ G that has all attributes in A
also has all attributes in B. Further, an implication A → B holds in K if and only
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if B ⊆ A′′, or equivalently A′ ⊆ B′. An implication A → B follows from a set L
of implications over M if each subset of M respecting L also respects A → B.
A family of implications is called closed if every implication following from L
is already contained in L. Closed sets of implications are also called implication
theories.

Relative Canonical Base. The set of all implications that hold in a given con-
text K have a canonical irredundant representation which is called the canonical
base, cf. [8,9]. Stumme has generalized this representation to the case where
some (background) implications are known [18], i.e. attribute implications that
are known to hold based on prior knowledge.

Given a formal context K = (G,M, I) and a set of (background) implica-
tions L0 on M that hold in the context K, a pseudo-intent of K relative to
L0 is a set P ⊆ M where P respects L0, P 
= P ′′ and if Q ⊆ P, Q 
= P ,
is a relative pseudo-intent of K then Q′′ ⊆ P . The set LK,L0 := {P →
P ′′|P relative pseudo-intent of K} is called the canonical base of K relative to
L0, or simply the relative canonical base. All implications in LK,L0 hold in K.

Theorem 1. (see [5,18]). If all implications of L0 hold in K, then

1. each implication that holds in K follows from LK,L0 ∪ L0, and
2. LK,L0 is irredundant w.r.t. 1.

The notion of a relative canonical base combined with Theorem 1 allows
us to reduce the amount of questions that need to be posed during a triadic
exploration.

2.4 Attribute Exploration

Attribute exploration ([3], cf. also [6,8]) is a knowledge acquisition method based
on a question-answer scheme to obtain the implication theory of a domain.

Let us consider a domain (a formal context) (G,M, I) that we do not know
completely and that we want to explore and a domain expert for this domain. We
start with a (possibly empty) set of known (background) implications L and a
(possibly empty) set GE ⊆ G of known objects, represented as (possibly empty)
formal context E = (GE ,M, IE). In every step of the attribute exploration we
have a set of already accepted implications L and a context of already provided
counterexamples E. The attribute exploration algorithm picks the next implica-
tion A → B that does not follow from L and that holds in E. It then asks the
expert whether the implication truly holds in the domain. The expert can either
confirm that the implication holds or they can refute its validity by providing a
counterexample, i.e., an object g ∈ G whose intent does not respect the implica-
tion. If the expert confirms the implication’s validity in the domain, it is added
to the set L, otherwise the provided counterexample is added to the context of
counterexamples E. This process is repeated until there is no implication left to
be asked.
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After performing the attribute exploration we have the (relative) canonical
base of implications from which (combined with the background implications)
every valid implication in the domain follows. Furthermore, for every implication
that is not valid, the set of examples contains a counterexample.

3 Triadic Exploration

In this section we look at implications in the triadic setting, in particular, we for-
mally introduce conditional attribute implications, and develop a triadic explo-
ration for Triadic Concept Analysis as proposed by Ganter and Obiedkov in
[5,6].

3.1 Conditional Attribute Implications

In formal contexts (of type (G,M, I)) the matter of implications is fairly straight-
forward: There are attribute implications to describe dependencies between
attributes (and dually there are object implications). In triadic contexts, the
notion of implication is not as simple. This manifests in a multitude of types of
implications that have been proposed: The earliest suggestion for a triadic impli-
cation came from Biedermann [1], where he suggested the study of implications
of the form (R → S)C which is interpreted as: If an object has all attributes from
R under all conditions from C, then it also has all attributes from S under all
conditions from C.

In [5], Ganter and Obiedkov studied some other types of implications for
the triadic setting. They introduced a stronger version of the triadic impli-
cation called conditional attribute implications to describe dependencies that
hold for some conditions. The symmetry arising from the arbitrary choice of
objects, attributes and conditions in a triadic context results in five more types
of implications. Further, they introduced another generalization of Biedermann’s
triadic implication called attribute×condition implication to express dependen-
cies between combinations of attributes and conditions. For the remainder of
this paper we will focus on conditional attribute implications, because they best
serve our goal of developing attribute exploration with multiple experts.

Given a triadic context T = (G,M,B, Y ), a conditional attribute implication
is an expression of the form R

C−→ S where R,S ⊆ M , C ⊆ B, which reads as:
R implies S under all conditions from C. A conditional attribute implication
R

C−→ S holds in a triadic context T iff for each condition c ∈ C it holds that if
an object g ∈ G has all the attributes in R it also has all the attributes in S.
This is the case if the implication R → S holds in every conditional context Kc

for c ∈ C.

Proposition 1. Let T = (G,M,B, Y ) and Kc, c ∈ B, be its respective condition
contexts. For a conditional implication R

C−→ S with R,S ⊆ M and C ⊆ B, the
following statements are equivalent:
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Fig. 3. The lattice of conditional implications of the running example Tex. with simpli-
fied labels, which consist of the relative canonical base with respect to the implications
in all nodes below. We omit the top label of implications as the extent of this concept
is always ImpM .

1. R
C−→ S holds in T

2. R → S holds in Kc for every c ∈ C
3. R → S holds in subpos({Kc|c ∈ C})
Proof. 1. ⇔ 2. follows directly from the definitions of holds in the triadic and
dyadic setting. 2. ⇔ 3. follows from the definition of subposition and that an
implication R → S holds in a context if and only if for every object g the object
intent respects the implication. ��
Example 2. In the context family of Example 1 in Fig. 2 we observe that the
implication early − morning → working − hours holds in all three condi-
tion contexts KMo-Fr, KSat and KSun, hence, early − morning

Mo-Fr,Sat,Sun−−−−−−−−−→
working − hours holds in Tex.. In contrast, the implication working − hours →
evening only holds in the condition context KSun because tram line
7 is a counterexample in KSat and bus line 55 is a counterexample
in KMo-Fr and thus working − hours

Sun−−→ evening holds in Tex., but
working − hours

Mo-Fr,Sat,Sun−−−−−−−−−→ evening does not.

Clearly, if a conditional implication R
C−→ S holds in a triadic context T

then all conditional implications R
D−→ S with D ⊆ C hold as well. Further, for

every subset C ⊆ B there is a set of conditional implications R
C−→ S that hold

in T. This set of conditional implications for a fixed set of conditions C is the
implication theory of the subposition of condition contexts subpos({Kc|c ∈ C}).

Context of Conditional Implications. A nice way to structure the con-
ditional implications that hold in a triadic context T is to use the approach
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suggested by Ganter and Obiedkov, cf. [5], and to introduce a context of con-
ditional implications: Given a triadic context T, we construct a formal context
Cimp(T) := (ImpM , B, I), where the set of all possible implications on M is the
object set , the set of conditions B of the triadic context T is the set of attributes
and the incidence relation I is determined by

(R → S)Ic :⇔ R
c−→ S holds in T.

The formal concepts of Cimp(T) are pairs (L, C), where L is a set of impli-
cations and C is a set of conditions, such that L is the set of all implications
R → S for which R

C−→ S holds, and C is the largest set of conditions for which
this is the case. These concepts structure the set of conditional implications in
a lattice ordered by the conditions for which they hold. Their extents form a
system of implication theories.

Example 3. For our running example we present the concept lattice of Cimp(Tex.)
with simplified labels in Fig. 3: The extent of the top node always contains the
implications that hold under the empty set of conditions, i.e., the whole set
ImpM . We omit this label. For the other nodes we give the relative canoni-
cal base with respect to set of implications from all nodes below. Looking at
the implications from Example 2, we find the implication early − morning →
working − hours at the bottom node, because it holds for all three conditions,
whereas we find the implication working − hours → evening at the node for
Sunday, because that is the only condition for which it holds.

3.2 Triadic Exploration

Now, we develop Triadic Exploration to explore the conditional implications of
a triadic domain.

Previously, we have structured the conditional implications of a triadic
domain T as a system of implication theories by utilizing the context of con-
ditional implications Cimp(T). This was possible because we had complete infor-
mation about the domains implications in the context T. However, it is easy to
imagine a situation where we can access the information about a domain only
indirectly through a domain expert and where an attribute exploration might be
useful. For our running example, imagine someone with a bus and train schedule
where the information can be looked up but is not fully available at once. Now
the question is: How to explore the complete system of conditional implications?

A naive approach is to explore the implication theory for each fixed subset
of the conditions, essentially exploring each node of the system of implication
theories independently. But, this is clearly not a good idea; it means answering
many questions multiple times for each condition.

A better approach might be to only explore the implication theory for every
condition, each providing one column in the context of conditional implications
Cimp. Then we can compute the concept lattice without any further interactions
with the expert.
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However, there are some points to consider that suggest a different approach,
cf. [6]: First, to stay in the triadic setting, a complete counterexample to a
question should describe the new object by the attributes it has for each of the
conditions, and not only for the one, that is currently under consideration. And
second, some implications may hold for several conditions and the domain expert
might want to confirm each of them for multiple conditions at once.

Thus, we come back to the context of conditional implications. Ganter and
Obiedkov suggested to explore the triadic domain by exploring the nodes in
the lattice of conditional implications from the bottom up; using the already
known valid implications as background knowledge. Hence, as we explore the
system of conditional implications, we successively fill the context of conditional
implications.

In the following we describe the nested process of exploring the nodes of
the concept lattice of conditional implications with the help of two algorithms:
Algorithm 1 for the exploration of the conditional implications for a fixed set of
conditions and Algorithm 2 that uses this algorithm as a subroutine to explore
all conditional implications of the triadic domain.

Explore Conditional Implications for a Fixed Set of Conditions. For
a fixed set of conditions D ⊆ B in a triadic domain T = (G,M,B, Y ), the
exploration algorithm is an adapted version of the algorithm for attribute explo-
ration with background implications and exceptions, see [6,18]. In Algorithm 1
we present an implementation for the exploration in pseudo-code.

The algorithm starts with some background knowledge, in particular: A tri-
adic context E = (GE ,M,B, YE), that contains some examples from the domain
T, and a set of implications L0 that are known to hold for all conditions in
D; both of these can be empty. The rest of the domain can only be accessed
by the algorithm through interaction with the domain expert. In each step,
the algorithm determines the next implication A → A′′ to ask the expert. To
determine the next question A → A′′ the algorithm uses both the information
from the examples in E and the known valid implications in L. It automatically
skips questions that follow from the implications in L or for which E already
contains a counterexample. More precisely, A is the next relative pseudo-intent
in subpos({Kd|d ∈ D}), i.e., the lectically smallest set A closed under the set
of known valid implications and background implications L that is not already
closed in the subposition context of examples for the conditions in D.

Essentially, this algorithm is an attribute exploration with background impli-
cations on the subposition of the condition contexts. Additionally, it tracks which
implications hold for which conditions in D. This enables us to reduce the amount
of interaction required from the expert in subsequent explorations by preventing
to ask the same question multiple times for different subposition contexts. The
proof of correctness for Algorithm 1 is a straightforward adaption of the proof
of [18, Theorem 6] and we therefore omit the details.

Note that we chose to collect all implications that are asked about and the
subset of conditions of D for which they hold in Line 13 instead of only adding
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Algorithm 1. explore-conditions
Input: a set of conditions D ⊆ B, a triadic context E = (GE , M, B, YE) of examples

(possibly empty) and a set L0 of background implications known to hold for
all conditions in D (also possibly empty)

Interactive Input: (�) The expert confirms or rejects an implication to hold for
the set of conditions D. Upon rejection the expert provides a
counterexample g from the domain together with its relation to
all conditions and all attributes, i.e., the context Kg := (M, B, I)
where (m, b) ∈ I ⇔ g has m under the condition b in the domain.

Output: the relative canonical base L\L0 of implications that hold for all conditions
in D with respect to L0, a possibly enlarged triadic context of counterex-
amples E and the formal context C of asked implications and the conditions
for which they hold.

1 L := L0

2 A := ∅
3 C := (∅, B, ∅)
4 while A �= M do
5 while A �= A′′ in S where
6 S := (GS , M, J) = subposition of Kd for d ∈ D with
7 Kd := (GE , M, Id) where (g, m) ∈ Id ⇔ (g, m, d) ∈ YE

8 do
9 Ask the expert if A → A′′ holds for all conditions d ∈ D (�)

10 if A → A′′ holds then L := L ∪ {A → A′′}
11 else extend E with the counterexample provided by the expert (�)

12

13 extend C with the object A → A′′ and its relation to all conditions d ∈ D (�)

14 end
15 A := NextClosure(A, M, L) /* computes the next closure of A in M with

respect to the implications in L; see for example [6,8] */
16 end
17 return L \ L0, E and C

the implications that hold for all conditions in the context C. Hence, if there is
a counterexample, i.e., the implication does not hold for D, we track for which
subset of D (if any) the implication does hold. This further reduces the number
of questions posed in later explorations. The trade-off is that the background
knowledge we have is not just of nodes below the currently explored one in
the lattice but may also contain implications that first hold for the conditions
of the current node. This has no effect on the implication theory of the node
but somewhat complicates the labeling of the node – we cannot simply use the
relative canonical base with respect to the knowledge we have. In contrast, if we
only added the implications that hold for all conditions in the current exploration
then the labels are exactly the implications of the relative canonical base, but,
we might have to ask some questions multiple times for some of the conditions.
For our running example this approach further reduces the number of questions
posed to the expert from fifteen to twelve, cf. Example 5 in Sect. 3.3.
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The Order of Explorations. To determine the sequence in which the nodes
of the lattice of conditional implications are explored, Ganter and Obiedkov
further suggested to follow a linear extension of the lattice of conditional impli-
cations, see [5], and later specified this to follow the NextExtent-Algorithm, i.e.,
NextClosure on the extents, on the context of conditional attribute implications,
see [6].

However, in our setting the NextExtent-Algorithm does not fit. The problem
is that we may not have the necessary information to correctly determine the
next node to explore.2 This is because the questions that are asked during the
exploration of a node are not guaranteed to discriminate between the conditions
that are being explored. Questions that would discriminate between conditions
are not asked if there already exists a counterexample for any one of the condi-
tions. This might result in not exploring all nodes of the lattice.

Example 4. Let us illustrate the problem with a small example: Take a look at
the domain given by the triadic context T1 in Fig. 4. If we explore this context
and begin with the bottom node, i.e., the implications that hold for all conditions
without any background knowledge, then the first question posed to the expert
is ∅ → ab?, which the expert refutes with a counterexample – object 1 with all its
attributes under all conditions. It substantiates that implication holds for neither
of the conditions. The second question that is posed to the expert is b → a?
which the expert confirms. This concludes the exploration of the bottom node
in this example. If we now compute the next extent in the resulting context of
conditional implications C in order to determine which node to explore next, we
obtain NextExtent(∅) = {b → a} with intent {d1, d2} which we just explored and
then NextExtent({b → a}) = GC with intent ∅ which concludes the exploration.
However, clearly the implication ∅ → a holds in d1 but not in d2 and is missing
in C. The question ∅ → a? was not posed to the expert because there already
existed a counterexample for condition d2 after the first question. Similarly, the
implication a → b holds in d2 but not in d1 and is also missing. In Fig. 4, we
present both the lattice of C and the lattice of Cimp(T1). Hence, an exploration
that uses the NextExtent-Algorithm to determine which nodes of the conditional
implications lattice to explore next does not necessarily explore all nodes of the
lattice.

To circumvent this problem, we use the suggested strategy of exploring the
lattice node by node from the bottom up with the already known valid condi-
tional implications in Cimp as background knowledge. But, instead of using the
NextExtent-Algorithm to incrementally determine the next combination of con-
ditions to explore, we simply follow a linear extension of (P(B) \ ∅,⊇). Which
means, we walk through all subsets of B sorted by their cardinality from biggest
to smallest and stop when we have explored all subsets of cardinality one. At
first glance this might look as if we explore more nodes than necessary, because

2 For the same reason, the nested application of NextClosure for computing all con-
cepts of a triadic context, as described in [14,15], cannot serve as a base for the
triadic exploration.
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Fig. 4. A triadic context T1, the lattice of conditional implications of T1, the context
C after exploring the conditional implications of T1 using the NextExtent-Algorithm to
determine the next conditions to explore, and the lattice of C

Algorithm 2. triadic-exploration
Input: a triadic context E = (GE ,M,B, YE) of examples (possibly empty) and

a context C = (GC, B, IC) of implications known to hold for some
conditions

Output: a triadic context of counterexamples E and the context of conditional
implications C, from which all valid conditional implications can be
inferred

1 for D in linear extension of (P(B) \ ∅,⊇) do
2 L := D′ (in C)
3 LD,ED,CD := explore-conditions(D,E,L)
4 E := ED

5 C := C ∪ CD = (GC ∪ GCD , B, IC ∪ ICD )

6 end
7 return E and C

the implication theory of a condition might be included in another one and thus
is explored at least twice – once in combination and once alone. But, because
we only ask questions about implications that are unknown with respect to the
knowledge we already have when the condition is explored alone, these questions
won’t be asked again.

In Algorithm 2 we present the algorithm for triadic exploration in pseudo-
code: We walk through (P(B)\∅,⊇), i.e. the subsets of conditions, in Line 1. For
each set of conditions D ⊆ B we determine the implications L that are known to
hold for all conditions in D in Line 2. We compute the canonical base relative to
L in the subposition of condition context of D Line 3. Then, update the known
examples E and the known implications in Lines 4 and 5.
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3.3 An Example for Triadic Exploration

Example 5. We now give a brief example for a triadic exploration of the domain
of our running example (Example 1): Let us assume we only have a triadic expert
for this domain and not the whole domain information – imagine someone with
access to a search interface for the bus and train schedule of Fig. 2. In Fig. 5
we have listed all interactions with the expert. Each row shows one interaction
and the order of interactions is from top to bottom. The resulting lattice of
conditional implications is exactly the lattice shown in Fig. 3. The extent of each
concept of this lattice is a generating set for the implication theory of implications
that hold for all conditions of the intent which follows from Theorem 1, and,
because we iteratively computed relative canonical bases. Thus, we know that,
for each concept, the implications in its extent are complete, but – as a union of
“stacked” relative canonical bases – not necessarily irredundant.

4 Application for Exploration with Multiple Experts

In this section we discuss how to adapt triadic exploration to a setting where we
have multiple experts with different views on a domain (i.e., a set of attributes).
In Sect. 1, we have briefly discussed the problem of exploration with multiple
experts with different views and concluded that combining answers from dif-
ferent experts is not a good strategy for attribute exploration in general. We
have further established that all previous methods for multi-expert exploration
avoided this problem by assuming that the experts’ knowledge is derived from
some consistent domain knowledge.

Fig. 5. Triadic Exploration of the running example. Each row represents one interaction
with the expert. It comprises the set of conditions that is explored, the question posed
in form of an implication, the conditions for which the implication holds, and, the
answer given by the expert.

Here, we suggest a different approach that allows for a group of experts with
different, opposing views on a domain. The basic idea is to accept all answers
equally and look for the subset of knowledge that all experts agree on. To explore
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the domain we then explore the agreed-upon knowledge of different subsets of
the expert group.

If all experts know about the same objects of the domain we can regard the
group of experts as a triadic domain where each experts view is expressed as
one condition. In our running example, imagine that there are three experts for
the bus and train schedule: One for Monday-Friday, one for Saturday and one
for Sunday. The three experts will have different opinions about the implication
theory of the time slots.

To explore the dependencies of attributes in this triadic multi-expert domain,
we utilize triadic exploration. To ask about a conditional implication then means
to ask all experts if the implication holds in their view. However, a simple trans-
lation back to the triadic case means that each time an expert gives a coun-
terexample to a question, all experts must be consulted about their view on the
counterexample to stay within the triadic setting (because we need the full slice
of the triadic context). This is not ideal, but we can adapt the triadic explo-
ration to avoid this issue: Since we do not rely on any specific properties of the
triadic context other than being able to form the subposition of the condition
contexts Kd, we can simply leave the triadic setting behind and transfer the idea
of conditional attribute implications to a setting where we replace the triadic
context with a context family on the same set of attributes (but not necessarily
the same set of objects), i.e., a context family {Ke = (Ge,M, Ie)|e ∈ E} for a
group of experts E.

Note that we could also explore the implication theory for each context in
such a context family independently and combine the results afterwards, as ini-
tially suggested in Sect. 3. It is not obvious how this approach compares to the
triadic one. However, the triadic approach also allows to only explore a subset
of the system of implication theories.

A real world example for such a context family can be found in the BSI-IT-
Grundschutzkatalog3, a publication by the German Federal Office for Informa-
tion Security, which contains security recommendations on a wide variety of IT
topics. There, a general set of elementary threats is defined and for topics where
these threats are present (for example organizational, infrastructure and person-
nel) a set of measures is defined where each measure combats one or multiple of
the threats. Hence, if we regard the elementary threats as attributes, the topics
as conditions/experts and the measures as objects, we have a context family on
the same set of attributes but with different object sets.

To explore the domain of such a context family, where the set G varies for
the different conditions, we have to slightly alter Algorithms 1 and 2. In par-
ticular, we need to replace the triadic contexts with context families and the
conditions with the experts. The triadic context of counterexamples becomes a
context family of counterexamples where each expert has their own context of
counterexamples and the objects between them can differ. Hence, in Algorithm
1, A′′ is computed on the subposition of the respective contexts of counterexam-
ples and asking about the implication A → A′′ means asking each of the experts.

3 https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html.

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
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Now, counterexamples from one expert can be accepted without having to ask
all other experts about their view on the example.

If we explore a triadic domain in this more abstract setting of context families
on the same set of attributes, the trade-off is that we obtain less complete infor-
mation about the counterexamples. However, we still obtain the same knowledge
in terms of conditional attribute implications that hold in the domain.

In addition, we gain the ability to explore context families that do not fit the
triadic setting or only do so after some modifications, as for example, the context
family of the BSI-IT-Grundschutzkatalog. Another example can be derived from
the running example: If we look at KMo-Fr in Fig. 2, imagine that instead of one
context (and thus one expert) of bus and tram lines we had one for bus lines
and one for tram lines. Clearly, this family of two contexts could be transformed
into a triadic context, however, to do so we would have to add bus lines to the
tram lines context and vice versa – mixing domains that might be perceived as
different.

5 Conclusion and Outlook

In this paper, we addressed the problem of multi-expert attribute exploration
in Formal Concept Analysis. To this end, we developed triadic exploration – an
analogue to attribute exploration – for Triadic Concept Analyis, which extends
Formal Concept Analysis with the notion of conditions. Triadic exploration helps
a triadic domain expert to explore the structure of the conditional attribute
implications of the domain.

We adapted triadic exploration to a multi-expert setting by considering the
experts’ views of a domain as conditions in a triadic setting. We discussed
the ramifications of this approach and subsequently suggested to adapt triadic
exploration to the more general setting of context families on the same set of
attributes.

This paper is a step towards multi-expert exploration where experts can have
different views on a domain. In contrast to the few prior works on this subject,
here the experts can have opposing views. A next step is the combination of this
approach with the notion of partial expert knowledge and a more in depth study
of context families as a foundation for multi-expert explorations.
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