
Agnès Braud · Aleksey Buzmakov ·
Tom Hanika · Florence Le Ber (Eds.)

 123

LN
AI

 1
27

33

16th International Conference, ICFCA 2021
Strasbourg, France, June 29 – July 2, 2021
Proceedings

Formal
Concept Analysis

Lecture Notes in Artificial Intelligence 12733

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Agnès Braud • Aleksey Buzmakov •

Tom Hanika • Florence Le Ber (Eds.)

Formal
Concept Analysis
16th International Conference, ICFCA 2021
Strasbourg, France, June 29 – July 2, 2021
Proceedings

123

Editors
Agnès Braud
ICube
University of Strasbourg
Illkirch, France

Aleksey Buzmakov
NRU Higher School of Economics
Perm, Russia

Tom Hanika
University of Kassel
Kassel, Germany

Florence Le Ber
ICube
University of Strasbourg
Illkirch, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-77866-8 ISBN 978-3-030-77867-5 (eBook)
https://doi.org/10.1007/978-3-030-77867-5

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3614-9141
https://orcid.org/0000-0002-9317-8785
https://orcid.org/0000-0002-4918-6374
https://orcid.org/0000-0002-2415-7606
https://doi.org/10.1007/978-3-030-77867-5

Preface

This volume features the contributions accepted for the 16th International Conference
on Formal Concept Analysis (ICFCA 2021), held during June 29 – July 2, 2021, at
Université de Strasbourg, France. Formal concept analysis (FCA) is a mathematical
field that emerged about 40 years ago and is rooted in lattice and order theory.
Although being of a theoretical nature, FCA proved to be of interest to various applied
fields such as knowledge discovery, machine learning, database theory, information
visualization, and many others.

The goal of the International Conference on Formal Concept Analysis is to offer
researchers from FCA and related backgrounds the possibility to present and discuss
their research. Since its first edition in 2003 in Darmstadt, Germany, ICFCA has been
held annually in several countries in Europe, Africa, America, and Australia. In 2015,
ICFCA became biennial to alternate with the Conference on Concept Lattices and Their
Applications (CLA).

The field of FCA originated in the 1980s in Darmstadt as a subfield of mathematical
order theory, with prior developments in other research groups. Its original motivation
was to consider complete lattices as lattices of concepts, drawing motivation from
philosophy and mathematics alike. FCA has since then developed into a wide research
area with applications far beyond its original motivation, for example, in logic,
knowledge representation, unsupervised learning, data mining, human learning, and
psychology.

There were 32 papers submitted to this year’s ICFCA by authors in fifteen countries.
Each submission was reviewed by at least two different members of the Program
Committee and at least one member of the Editorial Board. The review process was
single blind. Fourteen high-quality papers were chosen for publication in this volume,
amounting to an acceptance rate of 43%. In addition, five papers were deemed mature
enough to be discussed at the conference and were therefore included as short papers in
this volume.

The research part of this volume is divided in five different sections. First, in
“Theory” we compiled works that discuss advances on theoretical aspects of FCA.
Second, the section “Rules” consists of contributions devoted to implications and
association rules. The third section “Methods and Applications” is composed of results
that are concerned with new algorithms and their applications. “Exploration and
Visualisation” introduces different approaches to data exploration and in the final
section we collected the five accepted short works.

In addition to the regular contributions, this volume also contains the abstracts of the
four invited talks by outstanding researchers we were delighted to have at ICFCA 2021.
In detail, we were pleased to host the following talks:

– “What do the Sources Say? Exploring Heterogeneous Journalistic Data as a Graph”
by Ioana Manolescu (France)

– “Ontologies for On-Demand Design of Data-Centric Systems” by Magdalena Ortiz
(Austria)

– “Towards human-guided rule learning” by Matthijs van Leeuwen (Netherlands)
– “Sustainable AI – What does it take for continued success in deployed applica-

tions?” by Stefan Wrobel (Germany)

We are deeply thankful to all authors who submitted their contributions to ICFCA
2021 as a platform for discussing their work. Our strong gratitude goes to the members
of the Editorial Board and Program Committee, as well as to all the additional
reviewers whose timely and thorough reviews made the fruitful discussions of the
high-quality papers during the conference possible. Furthermore, we would like to
express our sincere thanks to the local organizers who were always quick to solve any
questions or problems that arose, and their hard work made for a great event.

We are very grateful to Springer for supporting the International Conference on
Formal Concept Analysis as well as to the Université de Strasbourg and the Centre
National de la Recherche Scientifique (CNRS) for hosting the event. Finally, we would
like to highlight the great help of easychair.org for organizing the review process for
ICFCA 2021 and of sciencesconf.org for hosting the website and their technical
support, especially collecting the camera-ready papers.

June 2021 Agnès Braud
Aleksey Buzmakov

Tom Hanika
Florence Le Ber

vi Preface

Organization

Executive Committee

Conference Chair

Florence Le Ber Université de Strasbourg, France
Agnès Braud Université de Strasbourg, France

Local Organization

Xavier Dolques Université de Strasbourg, France
Nicolas Lachiche Université de Strasbourg, France
Aurélie Leborgne Université de Strasbourg, France
Stella Marc-Zwecker Université de Strasbourg, France
Peggy Rupp CNRS, Strasbourg, France

Program and Conference Proceedings

Program Chairs

Aleksey Buzmakov Higher School of Economics, Russia
Tom Hanika Universität Kassel, Germany

Editorial Board

Jaume Baixeries Polytechnic University of Catalonia, Spain
Karell Bertet Université de La Rochelle, France
Peggy Cellier IRISA, Rennes, France
Sebastien Ferré Université de Rennes 1, France
Bernhard Ganter Technische Universität Dresden, Germany
Dmitry Ignatov Higher School of Economics, Russia
Mehdi Kaytoue INSA Lyon, France
Sergei Kuznetsov Higher School of Economics, Russia
Leonard Kwuida Bern University of Applied Sciences, Switzerland
Rokia Missaoui Université du Québec en Outaouais, Canada
Amedeo Napoli LORIA, Nancy, France
Sergei Obiedkov Higher School of Economics, Russia
Manuel Ojeda-Aciego University of Malaga, Spain
Uta Priss Ostfalia University of Applied Sciences, Germany
Sebastian Rudolph Technische Universität Dresden, Germany
Christian Sacarea Babes-Bolyai University of Cluj-Napoca, Romania
Stefan E. Schmidt Technische Universität Dresden, Germany
Barış Sertkaya Frankfurt University of Applied Sciences, Germany
Gerd Stumme Universität Kassel, Germany

Petko Valtchev Université du Québec à Montréal, Canada
Karl Erich Wolff Darmstadt University of Applied Sciences, Germany

Program Committee

Pablo Cordero University of Málaga, Spain
Diana Cristea Babes-Bolyai University Cluj-Napoca, Romania
Christophe Demko Université de La Rochelle, France
Jean Diatta Université de la Réunion, France
Stephan Doerfel MICROMATA GmbH, Germany
Xavier Dolques Université de Strasbourg, France
Marianne Huchard Université Montpellier, France
Robert Jäschke Humboldt-Universität zu Berlin, Germany
Jan Konecny Palacky University Olomouc, Czech Republic
Michal Krupka Palacky University Olomouc, Czech Republic
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Tatiana Makhalova LORIA-Inria, France
Jesús Medina Universidad de Cádiz, Spain
Engelbert Mephu Nguifo Université Blaise Pascal Clermont-Ferrand, France
Lhouari Nourine Université Blaise Pascal Clermont-Ferrand, France
Jan Outrata Palacky University Olomouc, Czech Republic
Jean-Marc Petit INSA Lyon, France
Pascal Poncelet Université Montpellier, France
Sandor Radeleczki University of Miskolc, Hungary
Henry Soldano Laboratoire d’Informatique de Paris Nord, France
Andreja Tepavčević University of Novi Sad, Serbia
Martin Trnecka Palacky University Olomouc, Czech Republic

Additional Reviewers

Simon Vilmin
David Lobo
Lauraine Tiogning
Issam Falih
Philippe Fournier-Viger
Fernando Chacón
Blaise Bleriot Koguep Njionou

viii Organization

Abstracts of Invited Talks

What do the Sources Say? Exploring
Heterogeneous Journalistic Data as a Graph

Ioana Manolescu

Inria Saclay, Île-de-France, France

Abstract. Professional journalism is of utmost importance nowadays. It is a
main feature distinguishing dictatorships from democracies, and a mirror sorely
needed by society to look upon itself and understand its functioning. In turn,
understanding is necessary for making informed decisions, such as political
choices.
With the world turning increasingly digital, journalists need to analyze very

large amounts of data, while having no control over the structure, organization,
and format of the data. Since 2013, my team has been working to understand
data journalism and computational fact-checking use cases, to identify and
develop tools adapted for this challenging setting. I will describe our SourcesSay
project (2020–2024), in which extremely heterogeneous data sources are inte-
grated as graphs, on top of which journalistic applications can be supported
through flexible graph queries. I will explain the data source integration module,
the role played by Information Extraction and Entity Disambiguation, as well as
novel techniques to explore and simplify these graphs.

Ontologies for On-Demand Design
of Data-Centric Systems

Magdalena Ortiz

Faculty of Informatics, TU Wien
ortiz@kr.tuwien.ac.at

Over the last decade, ontologies have found impactful applications in data manage-
ment, where they help improve access to data that is incomplete, heterogenous, or
poorly structured [3, 4]. An ontology can act as a mediator between users and data
sources to facilitate query formulation, and allow us to obtain more complete query
answers by leveraging domain knowledge to infer implicit facts. Huge research efforts
have been put into understanding the problems associated to query evaluation lever-
aging diverse ontology languages, many algorithms have been developed, and
off-the-shelf engines for knowledge-enriched query answering exist, see e.g, [1] and its
references.

We present our work advocating a novel use of ontologies [2], not only to access
the data stored in systems, but also to facilitate the correct organization of data at design
time. We propose a process called focusing to harness existing ontologies for the
on-demand design of the schema of knowledge-enriched databases. Focusing solutions
specify which terms of an ontology are relevant to a specific application, and explicate
desired assumptions about their completeness and dynamicity. We present automated
inferences services for obtaining and validating focusing solutions, and for answering
queries the resulting knowledge-enriched databases. The definitions admit different
ontology and query languages for specifying the scope of the system, and are
accompanied by concrete decidability and complexity results for selected representa-
tive combinations.

Acknowledgements. Based on joint work with M, Šimkus, F. Murlak, Y. Ibáñez-Garca V.
Gutiérrez-Basulto, and T. Gogacz. Supported by the Austrian Science Fund (FWF) projects
P30360 and P30873.

References

1. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable description
logics. In: ReasoningWeb. LNCS, vol. 9203, pp. 218–307. Springer (2015)

2. Gogacz, T., Gutiérrez-Basulto, V., Ibáñez-García, Y., Murlak, F., Ortiz, M., Simkus, M.:
Ontology focusing: knowledge-enriched databases on demand. In: ECAI. Frontiers in AI and
Applications, vol. 325, pp. 745–752. IOS Press (2020)

3. Schneider, T., Simkus, M.: Ontologies and data management: A Brief Survey Künstliche
Intell. 34(3), 329–353 (2020)

4. Xiao, G., et al.: Ontology-based data access: A survey. In: IJCAI, pp. 5511–5519 (2018).
ijcai.org

https://orcid.org/0000-0002-2344-9658
https://www.ijcai.org

Towards Human-Guided Rule Learning

Matthijs van Leeuwen

Leiden University, the Netherlands

Abstract. Interpretable machine learning approaches such as predictive rule
learning have recently witnessed a strong increase in attention, both within and
outside the scientific community. Within the field of data mining, the discovery
of descriptive rules has long been studied under the name of subgroup dis-
covery. Although predictive and descriptive rule learning have subtle yet
important differences, they both suffer from two drawbacks that make them
unsuitable for use in many real-world scenarios. First, hyperparameter optimi-
sation is typically cumbersome and/or requires large amounts of data, and
second, results obtained by purely data-driven approaches are often unsatis-
factory to domain experts.
In this talk I will argue that domain experts often have relevant knowledge not

present in the data, which suggests a need for human-guided rule learning that
integrates knowledge-driven and data-driven modelling. A first step in this
direction is to eliminate the need for extensive hyperparameter tuning. To this
end we propose a model selection framework for rule learning that 1) allows for
virtually parameter-free learning, naturally trading off model complexity with
goodness of fit; and 2) unifies predictive and descriptive rule learning, more
specifically (multi-class) classification, regression, and subgroup discovery. The
framework we propose is based on the minimum description length
(MDL) principle, we consider both (non-overlapping) rule lists and (overlap-
ping) rule sets as models, and we introduce heuristic algorithms for finding good
models.
In the last part of the talk, I will give a glimpse of the next steps towards

human-guided rule learning, which concern exploiting expert knowledge to
further improve rule learning. Specifically, I will describe initial results obtained
within the iMODEL project, in which we develop theory and algorithms for
interactive model selection, involving the human in the loop to obtain results
that are more relevant to domain experts.

Sustainable AI – What Does It Take
for Continued Success in Deployed

Applications?

Stefan Wrobel1,2

1 University of Bonn, Germany
2 Fraunhofer IAIS, Germany

Abstract. Advances in machine learning research have been so impressive that
one would be tempted to believe that today most practical problems could easily
be solved purely with data and machine learning. However, in the real world, the
requirements demanded from a deployed application go far beyond achieving an
acceptably low error for a trained model. Deployed applications must guarantee
sustained success with respect to their functionality, their business viability, and
their ethical acceptability. In this talk, we will analyze the challenges faced in
practice with respect to these three dimensions of sustainability, pointing out
risks and common misunderstandings and highlighting the role of hybrid
modeling. We will then discuss our lessons learned from a number of real world
projects for companies with respect to approaches for engineering and operating
ML systems. The talk will conclude with a perspective on the demands placed
on AI systems by customers and society, presenting our methodology for testing
and ultimately certifying such systems.

Contents

Theory

Representing Partition Lattices Through FCA . 3
Mike Behrisch, Alain Chavarri Villarello, and Edith Vargas-García

Fixed-Point Semantics for Barebone Relational Concept Analysis 20
Jérôme Euzenat

Boolean Substructures in Formal Concept Analysis 38
Maren Koyda and Gerd Stumme

Rules

Enumerating Maximal Consistent Closed Sets in Closure Systems. 57
Lhouari Nourine and Simon Vilmin

A New Kind of Implication to Reason with Unknown Information 74
Francisco Pérez-Gámez, Pablo Cordero, Manuel Enciso,
and Angel Mora

Pruning Techniques in LinCbO for Computation
of the Duquenne-Guigues Basis . 91

Radek Janostik, Jan Konecny, and Petr Krajča

Approximate Computation of Exact Association Rules. 107
Saurabh Bansal, Sriram Kailasam, and Sergei Obiedkov

Methods and Applications

An Incremental Recomputation of From-Below Boolean
Matrix Factorization . 125

Martin Trnecka and Marketa Trneckova

Clustering and Identification of Core Implications . 138
Domingo López-Rodríguez, Pablo Cordero, Manuel Enciso,
and Ángel Mora

Extracting Relations in Texts with Concepts of Neighbours 155
Hugo Ayats, Peggy Cellier, and Sébastien Ferré

Exploration and Visualisation

Triadic Exploration and Exploration with Multiple Experts. 175
Maximilian Felde and Gerd Stumme

Towards Interactive Transition from AOC Poset to Concept Lattice. 192
Tim Pattison and Aaron Ceglar

Visualization of Statistical Information in Concept Lattice Diagrams 208
Jana Klimpke and Sebastian Rudolph

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 224
Dominik Dürrschnabel and Gerd Stumme

Short Papers

Sandwich: An Algorithm for Discovering Relevant Link Keys in an LKPS
Concept Lattice. 243

Nacira Abbas, Alexandre Bazin, Jérôme David, and Amedeo Napoli

Decision Concept Lattice vs. Decision Trees and Random Forests. 252
Egor Dudyrev and Sergei O. Kuznetsov

Exploring Scale-Measures of Data Sets . 261
Tom Hanika and Johannes Hirth

Filters, Ideals and Congruences on Double Boolean Algebras 270
Tenkeu Jeufack Yannick Léa, Etienne Romuald Alomo Temgoua,
and Léonard Kwuida

Diagrammatic Representation of Conceptual Structures 281
Uta Priss

Author Index . 291

xvi Contents

Theory

Representing Partition Lattices
Through FCA

Mike Behrisch1 , Alain Chavarri Villarello2, and Edith Vargas-Garćıa2(B)

1 Institute of Discrete Mathematics and Geometry,
Technische Universität Wien, Vienna, Austria

behrisch@logic.at
2 Department of Mathematics, ITAM Ŕıo Hondo, Mexico City, Mexico

{achavar3,edith.vargas}@itam.mx

Abstract. We investigate the standard context, denoted by K (Ln), of
the lattice Ln of partitions of a positive integer n under the dominance
order. Motivated by the discrete dynamical model to study integer par-
titions by Latapy and Duong Phan and by the characterization of the
supremum and (infimum) irreducible partitions of n by Brylawski, we
show how to construct the join-irreducible elements of Ln+1 from Ln.
We employ this construction to count the number of join-irreducible ele-
ments of Ln, and confirm that the number of objects (and attributes)
of K (Ln) has order Θ(n2). We also discuss the embeddability of K (Ln)
into K (Ln+1) with special emphasis on n = 9.

Keywords: Join-irreducibility · Standard context · Integer partition

1 Introduction

The study of partitions of an integer started to gain attention in 1674 when
Leibniz investigated [8, p. 37] the number of ways one can write a positive
integer n as a sum of positive integers in decreasing order, which he called
‘divulsiones’, today known as (unrestricted) partitions, see [11]. He observed
that there are 5 partitions of the number 4, namely the partitions 4, 3 + 1, 2 + 2,
2 + 1 + 1 and 1 + 1 + 1 + 1; for the number 5 there are 7 partitions, for 6 there
are 11 partitions etc., and so he asked about the number p(n) of partitions of
a positive integer n. In 1918 G. H. Hardy and S. Ramanujan in [6] published
an asymptotic formula to count p(n). To our knowledge, until now, there is no
‘closed-form expression’ known to express p(n) for any integer n.

From [1], it is known that the set of all partitions of a positive integer n with
the dominance ordering (defined in the next section) is a lattice, denoted by Ln.
Moreover, Brylawski proposed a dynamical approach to study this lattice, which
is explained in a more intuitive form by Latapy and Duong Phan in [7]. Moti-
vated by their method to construct Ln+1 from Ln, we restrict their approach to

The third author gratefully acknowledges financial support by the Asociación Mexicana
de Cultura A.C.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-77867-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_1&domain=pdf
http://orcid.org/0000-0003-0050-8085
http://orcid.org/0000-0001-9677-9087
https://doi.org/10.1007/978-3-030-77867-5_1

4 M. Behrisch et al.

the join-irreducible elements of Ln and show how to construct the join-irreducible
elements of Ln+1 from those of Ln. Our second main result is to give a recursive for-
mula for the number of join-irreducibles of Ln, and, since partition conjugation is
a lattice antiautomorphism making Ln autodual (see [1]), we also derive the num-
ber of meet-irreducibles. Then we count the number of objects (and attributes)
of the standard context K(Ln) and prove that this number has order Θ(n2). Ret-
rospectively, we learned that an alternative formula for it had been found inde-
pendently by Bernhard Ganter [3, Proposition 3] (not using our recursion based
on [7]). Further, we show how to incrementally obtain K(Ln+1) from K(Ln), giv-
ing a polynomial-time algorithm forK(Ln) of time complexityO(n5). Finally, pick-
ing up a question from [3], we argue that K(L9) cannot be embedded into K(L10).
This is known for symmetric embeddings from [3, Proposition 5], but it is even true
without the symmetry requirement.

The sections of this paper should be read in consecutive order. The following
one introduces some notation and prepares basic definitions and facts concern-
ing lattice theory and formal concept analysis. In Sect. 3 we explore the relation
between the join-irreducible elements of the lattice Ln+1 and those of the lat-
tice Ln, and the final section concludes the task by counting the supremum
irreducible elements of Ln and discussing the embeddability question for K(Ln).

2 Preliminaries

2.1 Lattices and Partitions

Throughout the text N := {0, 1, 2, . . .} denotes the set of natural numbers and
N+ := {1, 2, . . .} denotes the set of positive integers. Moreover, if P is a set and
≤ is a binary relation on P , which is reflexive, antisymmetric and transitive, then
P := (P,≤) is a partially ordered set. We often identify P and P ; for example, we
write x ∈ P instead of x ∈ P when this is convenient. For such a partially ordered
set P and elements a, b ∈ P, we say that a is covered by b (or b covers a), and
write a ≺ b, if a < b and a ≤ z < b implies z = a. Partially ordered sets P and Q

are (order-)isomorphic if there is a bijective map ϕ : P → Q such that a ≤ b in P

if and only if ϕ(a) ≤ ϕ(b) in Q. Every such ϕ is called an order-isomorphism.
A lattice is a partially ordered set P such that any two elements a and b

have a least upper bound, called supremum of a and b, denoted by a ∨ b, and a
greatest lower bound, called infimum of a and b, denoted by a ∧ b. Moreover, if
supremum

∨
S and infimum

∧
S exist for all S ⊆ P, then P is called a complete

lattice. Let L be a lattice and M ⊆ L. Then M is a (carrier set of a) sublattice M

of L if whenever a, b ∈ M , then a ∨ b ∈ M and a ∧ b ∈ M .
For a lattice L, we say that a ∈ L is join-irreducible, denoted by ∨-irreducible,

if it is not the minimum element 0L (provided such an element exists) and for
every b, c ∈ L such that a = b ∨ c we can conclude that a = b or a = c.
In particular for a finite lattice, the join-irreducible elements are those which
cover precisely one element. Meet-irreducible (∧-irreducible) elements are defined
dually, and in finite lattices they can be described by being covered by precisely
one element. For a lattice L, we denote by J (L) and by M(L) the set of all

Representing Partition Lattices Through FCA 5

join-irreducible elements, and of all meet-irreducible elements of L, respectively.
As an example, the meet-irreducible elements of the lattices N5 and M3 appear
shaded in Fig. 1.

N5 1L

u

w
v

0L

M3 1L

p q r

0L

Fig. 1. Lattices M3 and N5 with meet-irreducible elements appearing shaded

Our aim is to study the join-irreducible elements in the lattice of positive
integer partitions. We thus define a partition formally.

Definition 1. An (ordered) partition of a positive integer n ∈ N+ is an n-tuple
α := (a1, . . . , an) of natural numbers such that

a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and n = a1 + a2 + . . . + an.

If there is k ∈ {1, . . . , n} such that ak > 0 and ai = 0 for all i > k, the partition
α can be written in the form (a1, . . . , ak), whereby we delete the zeros at the end.

For example, (3, 2, 2, 1, 0, 0, 0, 0) is a partition of 8 because 3 ≥ 2 ≥ 2 ≥ 1 ≥ 0
and 3+2+2+1 = 8. By deleting the zeros, we write more succinctly (3, 2, 2, 1) for
this partition. Graphically, we can illustrate a partition using a diagram that has
a ladder shape, which is known as a Ferrers diagram (cf. Fig. 2). We have rotated
all our Ferrers diagrams by 90◦ counterclockwise as compared to the convention
prevailing in the literature. The reason for this is given after Definition 4. From
a partition α of n, it is possible to obtain the conjugated partition α∗ in the
sense of [1] by reading its Ferrers diagram by rows, from bottom to top. This
operation can also be seen as reflecting the Ferrers diagram along a diagonal
axis. For instance, the partition (3, 2, 2, 1) of 8 = 3 + 2 + 2 + 1 has the Ferrers
diagram presented in Fig. 2, and its conjugate consists of 4 grains from the first
row, 3 grains from the second, and 1 grain from the third. So we get the partition
(4, 3, 1); its Ferrers diagram is also shown in Fig. 2 below.

Fig. 2. Ferrers diagrams

The set of all partitions of n ∈ N+, denoted by Part(n), can be ordered in
different ways. One of them is the dominance ordering, defined as follows.

6 M. Behrisch et al.

Definition 2 ([1]). Let α = (a1, . . . , ak) and β = (b1, . . . , bm) in Part(n) be
partitions of n ∈ N+. We define the dominance ordering between α and β by

α ≥ β if and only if
j∑

i=1

ai ≥
j∑

i=1

bi for all j ≥ 1.

In [1, Proposition 2.2] it is shown that the set Part(n) with the dominance
ordering is a lattice. We denote by Ln = (Part(n),≤) the lattice of all partitions
of n ∈ N+ with the dominance ordering. Characterizing the covering relation is
central for the construction of a finite lattice, and the following theorem provides
this characterization in the case of Ln.

Theorem 3 (Brylawski [1]). In the lattice Ln, the partition α = (a1, . . . , an)
covers β = (b1, . . . , bn), denoted β ≺ α, if and only if either of the following two
cases (not necessarily disjoint) is satisfied:

1. There exists j ∈ {1, . . . , n} such that aj = bj +1, aj+1 = bj+1 − 1 and ai = bi

for all i ∈ {1, . . . , n} \ {j, j + 1}.
2. There exist j, h ∈ {1, . . . , n} such that aj = bj + 1, ah = bh − 1, bj = bh and

ai = bi for all i ∈ {1, . . . , n} \ {j, h}.
In [7] Matthieu Latapy and Ha Duong Phan give a dynamic approach to

study the lattice Ln so that the dominance ordering and the covering relation
can be visualized more intuitively. To this end they use the following definitions.

Definition 4 ([7]). For a partition α = (a1, . . . , an), the height difference of α
at j ∈ {1, . . . , n}, denoted by dj(α), is the integer aj − aj+1, where an+1 := 0.
For j ∈ {1, . . . , n} we say (cf. Fig. 3) that the partition α = (a1, . . . , an) has:

1. a cliff at j if dj(α) ≥ 2.
2. a slippery plateau at j if there exists some k > j such that dk(α) = 1 and

di(α) = 0 for all i ∈ {j, j + 1, . . . , k − 1}. The integer k−j is called the length
of the slippery plateau at j.

3. a non-slippery plateau at j if there is some k > j such that α has a cliff at k
and di(α) = 0 for all i ∈ {j, j + 1, . . . , k − 1}. The integer k − j is the length
of the non-slippery plateau at j.

4. a slippery step at j if α′ = (a1, . . . , aj−1, aj − 1, aj+1, . . . , an) is a partition
with a slippery plateau at j.

5. a non-slippery step at j if α′ = (a1, . . . , aj−1, aj − 1, aj+1, . . . , an) is a par-
tition with a non-slippery plateau at j.

The covering relation of Theorem 3 is also described in [7] using a correspon-
dence between the two cases of Theorem 3 and two transition rules:

1. If α has a cliff at j, one grain can fall from column j to column j + 1.

j j

Representing Partition Lattices Through FCA 7

Fig. 3. The slippery plateau and the slippery step have length 3, the non-slippery
plateau and the non-slippery step have length 2.

2. If α has a slippery step of length l at j, one grain can slip from column j to
column h = j + l + 1.

j h j h

Given a partition α ∈ Ln, if one applies to α the first or second transition
rule, every time that α has a cliff or slippery step, then we obtain all parti-
tions β such that β ≺ α. If β is obtained from α by applying one of the two
transition rules, then β is called directly reachable from α. This is denoted by
α

j−→ β, where j is the column from which the grain falls or slips. The set
D(α) = {β ∈ Ln | ∃j : α

j−→ β} = {β ∈ Ln | β ≺ α} denotes the set of all parti-
tions directly reachable from α.

Example 5. Consider the partition α = (5, 3, 2, 1, 1) in L12. It has a cliff at j = 1,
and also has a slippery step at j = 2 and at j = 3. We obtain β1, β2 and β3

after applying the corresponding transition rules α
1−→ β1, α

2−→ β2, α
3−→ β3,

the Ferrers diagrams of which are:

α β1 β2 β3

Therefore, D(α) = {(4, 4, 2, 1, 1), (5, 2, 2, 2, 1), (5, 3, 1, 1, 1, 1)}.

To study the standard context of the lattice Ln, we quickly recall the notion
of context and standard context as known from formal concept analysis [5].

2.2 Notions of Formal Concept Analysis

Formal concept analysis (FCA) is a method for data analysis based on the notion
of a formal concept. FCA was born around 1980, when a research group in
Darmstadt, Germany, headed by Rudolf Wille, began to develop a framework
for lattice theory applications, [4]: For sets G and M and any binary relation
I ⊆ G×M between G and M the triple K = (G,M, I) is called a formal context,

8 M. Behrisch et al.

and I its incidence relation. The elements of G are called objects and those of M
are attributes. The incidence relation induces a Galois connection between G and
M in the natural way. Corresponding pairs (A,B) of Galois closed sets are called
formal concepts, and they can be ordered by inclusion in the first component.

The ordered set of all formal concepts of K is denoted by B(K) and forms
a complete lattice, called the concept lattice of K. One of the fundamental the-
orems of formal concept analysis is the statement, shown in the monograph [5]
by Bernhard Ganter and Rudolf Wille, that the concept lattices are, up to iso-
morphism, exactly the complete lattices. Every concept lattice is complete, and
every complete lattice is isomorphic to some concept lattice. This applies in par-
ticular to finite lattices L, such as Ln for n ∈ N+, which are always complete
and are usually described by their standard context (J (L),M(L),≤): One easily
verifies that every concept lattice of a finite context and every finite lattice is
doubly founded, see [5] for the definition. Moreover, in [5] it is proved that if L is
a doubly founded complete lattice, then L is isomorphic to B(J (L),M(L),≤).

Studying the lattice Ln of positive integer partitions through its standard
context immediately leads to the problem of describing the join-irreducible ele-
ments of Ln. Again due to finiteness, this poses the question which α ∈ Ln have
the property that the conditions in Theorem 3 are fulfilled by exactly one other
partition β, in other words, where D(α) is a singleton. We find it non-obvious
how to describe and count the set of such partitions α directly. Instead we shall
try to understand how to derive J (Ln+1) from J (Ln) for n ∈ N+.

3 Relation Between the Lattices Ln and Ln+1

From a partition α = (a1, . . . , an) of n ∈ N+ we obtain a new partition of n+1,
if we add one grain to its first column, i.e., α↓1 := (a1 + 1, a2, . . . an, 0). For
i ∈ {1, . . . , n} we denote by α↓i the tuple (a1, a2, . . . , ai + 1, . . . , an, 0), which
is not always a partition of n + 1, and by α↓n+1 the tuple (a1, a2, . . . , an, 1). If
A ⊆ Ln, then A↓i =

{
α↓i | α ∈ A

}
. In Fig. 4 the lattice diagrams of L6 and L7

are shown, the elements of L↓1
6 appear shaded in L7.

Subsequently we prove that there is an isomorphic copy of Ln in Ln+1.

Lemma 6. Ln is isomorphic to L↓1
n for all n ≥ 1.

Proof. Let ϕ : Ln −→ L↓1
n be given by ϕ(α) = α↓1 . Clearly ϕ is injective. Since

ϕ(Ln) = L↓1
n , we get that ϕ is bijective. To show that ϕ is an order-isomorphism,

let α = (a1, . . . , an) and β = (b1, . . . , bn) be in Ln. Then α↓1 = (a′
1, . . . , a

′
n+1),

β↓1 = (b′
1, . . . , b

′
n+1), where a′

1 = a1 + 1, b′
1 = b1 + 1, a′

n+1 = b′
n+1 = 0 and

a′
i = ai, b′

i = bi for all i ∈ {2 . . . , n}, and it follows that

α ≤ β ⇐⇒
j∑

i=1

ai ≤
j∑

i=1

bi for all j ∈ {1, . . . , n}

⇐⇒ 1 +
j∑

i=1

ai ≤ 1 +
j∑

i=1

bi for all j ∈ {1, . . . , n}

Representing Partition Lattices Through FCA 9

⇐⇒
j∑

i=1

a′
i ≤

j∑

i=1

b′
i for all j ∈ {1, . . . , n + 1} ⇐⇒ α↓1 ≤ β↓1 .

�

Fig. 4. Lattices L6 and L7

Proposition 7 ([7]). The set L↓1
n forms a sublattice of Ln+1 for all n ≥ 1.

We write K � L to indicate that the lattice L has a sublattice isomorphic to
the lattice K. This embedding relation is transitive, that is, if K � L � M, then
K � M. Moreover, from Lemma 6 and Proposition 7 we obtain Ln � Ln+1 for
all n ∈ N+.

Lemma 8. If n ≥ 7, then Ln is non-modular and non-distributive.

Proof. In Fig. 4 the set {(4, 2, 1), (4, 1, 1, 1), (3, 3, 1), (3, 2, 2), (3, 2, 1, 1)} ⊆ L7 is
a sublattice isomorphic to N5. Consequently, for n ≥ 7 we have by Lemma 6
and Proposition 7 that N5 � L7 � L8 � . . . � Ln−1 � Ln. By transitivity it
follows that N5 � Ln. Hence, applying the M3-N5-Theorem in [2, p. 89] to Ln,
we obtain that it is non-modular and non-distributive. �

If 1 ≤ n ≤ 5, the lattices Ln form a chain under the dominance ordering.
From this and Fig. 4 we see that for n ∈ {1, . . . , 6}, the lattice Ln does not have
sublattices isomorphic to N5 or M3, hence it is distributive and thus modular.

In what follows, the process to obtain the lattice Ln+1 from Ln described
in [7] is shown. For their construction the authors of [7] analyzed the directly
reachable partitions from a partition α ∈ Ln, considering the following sets.

10 M. Behrisch et al.

Let n ∈ N+. The set of all partitions of n with a cliff at 1 is denoted by C(n),
with a slippery step at 1 by S(n), with a non-slippery step at 1 by NS(n), with
a slippery plateau of length l ≥ 1 at 1 by Pl(n), and with a non-slippery plateau
at 1 by NP(n).

In order to generate the elements of Ln+1 from Ln, we follow the two steps
given in [7]. For each α ∈ Ln we perform:

Step 1 Add one grain to the first column, that is, construct α↓1.
Step 2 If α ∈ S(n) or α ∈ NS(n), then construct α↓2.

If α ∈ Pl(n) for some l ≥ 1, then construct α↓l+2.

Via these two steps every partition α ∈ Ln generates at most two elements
of Ln+1, called the sons of α. The element α↓1, described in the first step, is
called the left son and the one in the second step is the right son (if it exists).
If β is a son of α, we call α the father of β.

By the following theorem from [7], every element in Ln+1 has a father in Ln.

Theorem 9 (Latapy and Phan [7]). For all n ≥ 1, we have:

Ln+1 = L↓1
n � S(n)↓2 � NS(n)↓2 �

⊔

1≤l<n

Pl(n)↓l+2 .

Because these unions are disjoint and because the map α �→ α↓i is injective,
we have that every β ∈ Ln+1 possesses a unique father in Ln. Using this close
connection between Ln and Ln+1, in the next section we shall generate the
elements of J (Ln+1) from elements of J (Ln) via the two steps described above.
This will allow us to determine the number of objects and attributes of the
standard context of Ln.

4 Standard Context of Ln

In this section we study the standard context of Ln, which is a restricted version
of the context (Part(n),Part(n),≤). This restriction provides us with a smaller
number of objects and attributes, and, most importantly, from these proper
subsets of Ln one can recover the full information about the structure of Ln.
This is so since for a finite lattice L one can prove that L is isomorphic to the
concept lattice B(J (L),M(L),≤ ∩ (J (L) × M(L))), and hence our motivation
to investigate the standard context of Ln in more detail.

Example 10. We calculate the standard context of L6, the diagram of which is
shown in Fig. 4. We have that

J (L6) = {(2, 1, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2), (3, 1, 1, 1), (3, 3), (4, 1, 1), (5, 1), (6)}
M(L6) = {(1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 2, 2), (3, 1, 1, 1), (3, 3), (4, 1, 1),

(4, 2), (5, 1)}.

Thus, the standard context, denoted by K(L6), is:

Representing Partition Lattices Through FCA 11

K 111111 21111 222 3111 33 411 42 51

21111 × × × × × × ×
2211 × × × × × ×
222 × × × × ×
3111 × × × × ×
33 × × ×
411 × × ×
51 ×
6

Observe that while the context (L6,L6,≤) has 11 objects and 11 attributes
the standard context has only 8 of each. This advantage in size becomes much
more pronounced for larger values of n than just n = 6, as we shall see below.

Determining the number of elements in Ln is a problem that has capti-
vated mathematicians over the years. Whether our approach via formal concept
analysis and the standard context K(Ln) is to offer any advantage over working
with Ln directly, remains, however, unclear until we show that K(Ln) stays much
more manageable in size than Ln when n increases. Therefore, it is natural to
ask about the number of elements which are ∨-irreducible or ∧-irreducible. To
study the growth of the standard context, it is, in fact, sufficient to know how the
number |J (Ln)| is growing, since partition conjugation ∗ is a lattice antiautomor-
phism [1], and hence we have J (Ln)∗ = M(Ln) and thus |J (Ln)| = |M(Ln)|.
In the following table we present |J (Ln)| for 1 ≤ n ≤ 8. The apparent pattern
in the last column suggests a relation between |J (Ln)| and |J (Ln+1)|.

n |Ln| |M(Ln)| |J (Ln)| |J (Ln+1)| − |J (Ln)|
1 1 0 0 1

2 2 1 1 1

3 3 2 2 2

4 5 4 4 2

5 7 6 6 2

6 11 8 8 3

7 15 11 11 3

8 22 14 14 3

For a finite lattice the join-irreducible elements can be characterized as those
that cover precisely one element. In Ln these are those that have exactly one cliff
(and no slippery step) or exactly one slippery step (and no cliff). In [1] Brylawski
characterized the ∨-irreducible elements as follows.

Lemma 11 ([1, Corollary 2.5]). For n ≥ 1 the join-irreducible partitions
from J (Ln) can be categorized into four types where always m, l, s ≥ 1:

Type A: (k, k, . . . ,
m

k) for k ≥ 2.

Type B: (k, k, . . . ,
m

k, k − 1, k − 1, . . . ,
m+l

k − 1) for k ≥ 2.

Type C: (k, k, . . . ,
m

k, 1, 1, . . . ,
m+l
1) for k ≥ 3.

Type D: (k, . . . ,
m

k, k − 1, . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1) for k ≥ 4.

12 M. Behrisch et al.

Type A

2 ≤ k

{

Type B

2 ≤ k
{

Type C

3 ≤ k
{

Type D

4 ≤ k

{

When we apply to the elements of J (Ln) the two steps described in Sect. 3
to generate elements of Ln+1 from Ln, we obtain the following proposition.

Proposition 12. Let n ≥ 3. For every partition α ∈ J (Ln) \ {(2, 1, . . . , 1)}
among its (at most two) sons there is exactly one that belongs to J (Ln+1);
moreover, the type B partition (2, 1, . . . , 1) ∈ J (Ln) has two sons in J (Ln+1).

Proof. Every α ∈ J (Ln) belongs to one of the four types from Lemma 11. So
we apply to α the two steps from Sect. 3 and analyze the resulting partitions.

Type A: If α is a partition of type A, then we consider two subcases:
– If m = 1, then α = (k) has a cliff at 1. Hence, it has the left son α↓1 =

(k + 1) = (n + 1), which is a partition of type A, but it has no right son.
So we have α↓1 ∈ J (Ln+1).

– If m ≥ 2, then α = (k, k, . . . ,
m

k) has a non-slippery plateau at 1, hence

it has only the left son α↓1 = (k + 1, k, . . . ,
m

k), which is a partition of
type B. Thus, α↓1 ∈ J (Ln+1).

Type B: If α is a partition of type B, then we consider three subcases:

– If m = 1, l ≥ 1, k ≥ 3, then α = (k, k − 1, . . . ,
1+l

k − 1) has a non-slippery
step at 1. Hence, this partition has two distinct sons. The left one is

α↓1 = (k + 1, k − 1, . . . ,
1+l

k − 1), which is not ∨-irreducible, and the right

one is α↓2 = (k, k, k − 1, . . . ,
1+l

k − 1), which belongs to J (Ln+1) because
it is of type B (if l ≥ 2) or of type A (if l = 1).

– If m = 1, l ≥ 1, k = 2, the special α = (2, 1, . . . ,
1+l
1) has a slippery step

at 1. Hence, the left son α↓1 = (3, 1, . . . ,
1+l
1) belongs to J (Ln+1) since

it is of type C, and the right son α↓2 = (2, 2, 1, . . . ,
1+l
1) also belongs to

J (Ln+1) for it is of type B (if l ≥ 2) or of type A (if l = 1).

– If m ≥ 2, l ≥ 1, k ≥ 2, then α = (k, k, . . . ,
m

k, k − 1, k − 1, . . . ,
m+l

k − 1) has a
slippery plateau at 1 of length m − 1, thus it has two sons. The left son

α↓1 = (k + 1, k, . . . ,
m

k, k − 1, . . . ,
m+1

k − 1) is not ∨-irreducible because for
k ≥ 3 it does not belong to any type described by Brylawski, and if k = 2,

then α↓1 = (3, 2, . . . ,
m
2 , 1, . . . ,

m+1
1) is not ∨-irreducible either. The right

son α↓m+1 = (k, . . . ,
m

k,
m+1

k , k−1, . . . ,
m+l

k − 1) belongs to J (Ln+1) because
it is of type B (if l ≥ 1) or of type A (if l = 1).

Type C: If α is a partition of type C, then we consider two subcases:
– If m = 1, l ≥ 1, k ≥ 3, then α has a cliff at 1, and it has only the left son

α↓1 = (k + 1, 1, . . . ,
1+l
1), belonging to J (Ln+1) because it is of type C.

Representing Partition Lattices Through FCA 13

– If m ≥ 2, l ≥ 1, k ≥ 3, then α has a non-slippery plateau at 1. Hence,

it only has the left son α↓1 = (k + 1, k, . . . ,
m

k, 1, . . . ,
m+l
1), which is of

type D. Thus, α↓1 ∈ J (Ln+1).
Type D: If α is a partition of type D, then we consider two subcases:

– If m ≥ 2, l, s ≥ 1, k ≥ 4, then α has a slippery plateau at 1 of length
m − 1, hence it has two sons.

The left son α↓1 = (k + 1, k, . . . ,
m

k, k − 1, . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1) is not
∨-irreducible. The right son

α↓m+1 = (k, . . . ,
m

k,
m+1

k , k − 1 . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1)

belongs to J (Ln+1), because it is of type D (if l ≥ 2) or of type C (if
l = 1).

– If m = 1, l, s ≥ 1, k ≥ 4, then α has a non-slippery step at 1. Hence, the

left son α↓1 = (k + 1, k − 1, . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1) is not ∨-irreducible,

and the right son α↓2 = (k, k, k − 1, . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1) belongs to
J (Ln+1) because it is of type D (if l ≥ 2) or of type C (if l = 1).

This shows that every element α ∈ J (Ln) \ {(2, 1, . . . , 1)} has precisely one
son which belongs to J (Ln+1) and the only partition that has two sons belonging
to J (Ln+1) is (2, 1, . . . , 1). �

Exploiting Proposition 12, we can now define a map η : J (Ln) → J (Ln+1)
as follows: if α ∈ J (Ln) \ {(2, 1, . . . , 1)}, denote by η(α) the unique son of α
that belongs to J (Ln+1); moreover, let η(2, 1, . . . , 1) := (2, 2, 1, . . . , 1). Although
the partition (2, 1, . . . , 1) has two sons that belong to J (Ln+1), it is convenient
to ignore the left son in the definition of η. From the proof of Proposition 12, we
can work out an explicit expression for η. For any α ∈ J (Ln) we have

η(α) =

⎧
⎪⎨

⎪⎩

α↓1 if α ∈ C(n) ∪ NP(n),
α↓2 if α ∈ S(n) ∪ NS(n),
α↓l+2 if α ∈ Pl(n) for some 1 ≤ l < n.

(1)

Since η is injective we have |η(J (Ln))| = |J (Ln)|. Moreover it is clear that
|J (Ln+1)| = |η(J (Ln))| + |J (Ln+1) \ η(J (Ln))|. Thus, to calculate |J (Ln+1)|,
we have to identify those elements of J (Ln+1) that are not in the image of η.

Lemma 13. For n ≥ 3 we have J (Ln+1) \ η(J (Ln)) = E1 ∪ E2, where E1

and E2 are the following exceptional sets of partitions of n + 1:

E1 := {(2, 1, . . . ,
n
1)}, E2 := {(3, . . . ,

m
3 , 1, . . . ,

m+l
1) | m ≥ 1, l ≥ 1}.

Proof. Let β ∈ J (Ln+1). Then, similarly to Proposition 12, we consider sev-
eral cases, according to the four types of ∨-irreducible partitions described by
Brylawski, cf. Lemma 11.

14 M. Behrisch et al.

Type A: If β is of the form (k, k, . . . ,
m

k), with k ≥ 2 and m ≥ 1, then we
consider two subcases:
– If m ≥ 2, then β is a son of (k . . . , k,

m

k − 1) ∈ J (Ln).
– If m = 1, then β = (n + 1) is a son of (n) ∈ J (Ln).

Type B: If β is of the form (k, . . . ,
m

k, k−1, . . . ,
m+l

k − 1), with k ≥ 2 and m, l ≥ 1,
then we consider three subcases:
– If m = 1, l ≥ 1, and k ≥ 3, then β is a son of (k − 1, . . . , k − 1) ∈ J (Ln).
– If m = 1, l ≥ 1, and k = 2, then β = (2, 1, . . . , 1) is a son of (1, 1, . . . , 1),

which does not belong to J (Ln), but β does not arise from any of the
four cases in the proof of Proposition 12.

– If m ≥ 2, l ≥ 1, and k ≥ 2, then β is a son of (k, . . . ,
m−1

k, k − 1, . . . , k − 1)
from J (Ln).

Type C: If β is of the form (k, . . . ,
m

k, 1, . . . ,
m+l
1), with k ≥ 2 and m, l ≥ 1, then

we consider three subcases:

– If m = 1, l ≥ 1, and k ≥ 3, then β is the left son of (k − 1, 1, . . . ,
1+l
1). For

k ≥ 4 it belongs to J (Ln), so β ∈ η(J (Ln)). However, β /∈ η(J (Ln)) in
the case where k = 3 as η chooses the right son of (2, 1 . . . , 1).

– If m ≥ 2, l ≥ 1, and k ≥ 4, then β is the right son of the type D partition

(k, . . . ,
m−1

k ,
m

k − 1, 1, . . . ,
m+l
1) ∈ J (Ln).

– If m ≥ 2, l ≥ 1, and k = 3, then β = (3, . . . ,
m
3 , 1, . . . ,

m+l
1) is the right son

of (3, . . . ,
m−1
3 ,

m
2 , 1, . . . ,

m+l
1) /∈ J (Ln), but β is not obtained from any of

the four cases (in the proof) of Proposition 12.

Type D: If β is of the form (k, . . . ,
m

k, k − 1, . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1) with k ≥ 4
and m, l, s ≥ 1, then we consider two subcases:

– If m = 1 and l, s ≥ 1, then β is the left son of (k − 1, . . . ,
1+l

k − 1, 1, . . . ,
1+l+s

1),
which belongs to J (Ln).

– If m ≥ 2 and l, s ≥ 1, then β is the right son of the type D partition

(k, . . . ,
m−1

k ,
m

k − 1, . . . ,
m+l

k − 1, 1, . . . ,
m+l+s

1) ∈ J (Ln).

Thus, almost all elements of J(Ln+1) are sons of some element in J(Ln)

except for those of the form (3, 3, . . . ,
m
3 , 1, . . . ,

m+l
1), with m ≥ 2 and l ≥ 1,

or the partition (2, 1, . . . , 1). Additionally, the partition (3, 1, . . . , 1), which we
could get from a father in J (Ln), was excluded from the image of η by definition.
Therefore, we conclude that the elements of J (Ln+1) that are not in the image

of η are all of the form (3, . . . ,
m
3 , 1, . . . ,

m+l
1) for m, l ≥ 1 or they are the partition

(2, 1, . . . , 1). �
We can now describe how to construct the set J (Ln+1) from J (Ln).

Representing Partition Lattices Through FCA 15

Theorem 14. Let n ≥ 3. Then

J (Ln+1) = (J (Ln) ∩ C(n))↓1 � (J (Ln) ∩ NP(n))↓1 � (J (Ln) ∩ S(n))↓2

� (J (Ln) ∩ NS(n))↓2 �
⊔

1≤l<n

(J (Ln) ∩ Pl(n))↓l+2 � E1(n + 1) � E2(n + 1),

where E1(k) = {(2, 1, . . . , 1)}, E2(k) = {(3, . . . ,
m
3 , 1, . . . ,

m+l
1) | m ≥ 1, l ≥ 1} ⊆ Lk.

Proof. Obviously, J (Ln+1) = η(J (Ln)) � (J (Ln+1) \ η(J (Ln))), and, from the
definition of η given in (1), we have

η(J (Ln)) = (J (Ln) ∩ C(n))↓1 � (J (Ln) ∩ NP(n))↓1 � (J (Ln) ∩ S(n))↓2

� (J (Ln) ∩ NS(n))↓2 �
⊔

1≤l<n

(J (Ln) ∩ Pl(n))↓l+2 .

By Lemma 13, it follows that J (Ln+1) \ η(J (Ln)) = E1(n + 1) � E2(n + 1). �
Counting the elements of J (Ln+1) was the main motivation to study the

relationship between J (Ln) and J (Ln+1). For this we need one more result.

Lemma 15. For n ≥ 3 we have |E2(n + 1)| = �n/3�, i.e., the number of parti-

tions of n + 1 of the form (3, . . . ,
x
3, 1, . . . ,

x+y

1) with x ≥ 1 and y ≥ 1 is �n/3�.
Proof. We have a one-to-one correspondence between each partition of the form

(3, . . . ,
x
3, 1, . . . ,

x+y
1) and each integer solution of 3x + y = n + 1 subject to the

inequalities x ≥ 1, y ≥ 1. If we subtract 1 from both sides in the last equation
and change the variable, then we obtain

3x + y = n subject to x ≥ 1, y ≥ 0. (2)

Thus, the number of solutions of (2) will be the same as the number of partitions
in E2(n + 1). Moreover, we have 3 · �n/3� + r = n, where 0 ≤ r < 3. Now if
x ∈ {1, . . . , �n/3�}, then n − 3x ≥ n − 3�n/3� = r ≥ 0. Letting y = n − 3x, we
have that (x, y) is a solution of (2). But if x > �n/3�, then x ≥ �n/3� + 1,
implying y = n − 3x ≤ n − 3(�n/3� + 1) = r − 3 < 0, whence (x, y) is no
solution. So all solutions of (2) are {(x, y) | 1 ≤ x ≤ �n/3�, y = n − 3x}; thus,
there are �n/3� of them, and therefore �n/3� partitions in E2(n + 1). �

The following theorem reveals the pattern that appeared in the last column
of the table shown after Example 10.

Theorem 16. Starting from |J (L1)| = 0, for every n ≥ 1 we have the recursion

|J (Ln+1)| = |J (Ln)| +
⌊

n
3

⌋
+ 1.

16 M. Behrisch et al.

Proof. For n = 1 we have |J (L2)| = |J (L1)| + �1/3� + 1 since |J (L1)| = 0; for
n = 2 we get |J (L3)| = |J (L2)| + �2/3� + 1. For n ≥ 3, since η is injective, we
have |η(J (Ln))| = |J (Ln)|, and Lemma 13 states that

|J (Ln+1) \ η(J (Ln))| = |E1(n + 1) � E2(n + 1)| = |E1(n + 1)| + |E2(n + 1)|.
Moreover, |E1(n + 1)| = 1, and Lemma 15 yields |E2(n + 1)| = �n/3�. Thus,

|J (Ln+1)| = |η(J (Ln))| + |J (Ln+1) \ η(J (Ln))| = |J (Ln)| +
⌊

n
3

⌋
+ 1.

�
From the last theorem, we can get a closed formula for |J (Ln+1)|, which

gives us a clearer picture of the cardinality of |J (Ln+1)| in terms of n.

Corollary 17 (cf [3, Proposition 3]). For all n ∈ N \ {0} we have

|J (Ln+1)| = n
(⌊

n
3

⌋
+ 1

) − 3
2

⌊
n
3

⌋2 − 1
2

⌊
n
3

⌋
. (3)

Proof. By Theorem 16 we have |J (Li+1)| − |J (Li)| = �i/3� + 1 for i ≥ 1. Thus,

|J (Ln+1)| = |J (Ln+1)| − |J (L1)| =
n∑

i=1

(|J (Li+1)| − |J (Li)|) = n +
n∑

i=1

⌊
i
3

⌋

since |J (L1)| = 0. To calculate
∑n

i=1�i/3�, put q = �n/3� and r = n−3q. Hence,
n = 3q + r with 0 ≤ r < 3, and we have

∑n
i=1�i/3� =

∑n
i=0�i/3� = u + v, where

u =
3q∑

i=0

⌊
i

3

⌋

= 3 · 0 + 3 · 1 + . . . + 3 · (q − 1) + q = 3
q(q − 1)

2
+ q =

3
2
q2 − 1

2
q,

v =
r∑

i=1

⌊
3q + i

3

⌋

= q + . . . + q
︸ ︷︷ ︸

r times

= rq = (n − 3q)q = nq − 3q2.

Thus, |J (Ln+1)| = n + 3
2q2 − 1

2q + nq − 3q2 = n(q + 1) − 3
2q2 − 1

2q. �
To obtain the standard context K(Ln+1) from K(Ln) we do the following.

First, we construct the objects, i.e., we construct J (Ln+1) from J (Ln) as The-
orem 14 shows. Second, we calculate J (Ln+1)∗ in order to obtain the attributes
of K(Ln+1). Finally, we fill the cross table using the dominance ordering as the
incidence relation between objects and attributes. This can be done efficiently:

Corollary 18. The set J (Ln) can be obtained in time Θ(n3), and the standard
context K(Ln) can be produced in time O(n5).

Proof. With constant effort we create J (Lk0) for an initial value k0 ∈ N+ and
sort its partitions according to the classes occurring in Theorem 14. We then
iterate over the Θ(k2) partitions in J (Lk) (see Corollary 17) plus the Θ(k)
exceptional partitions (see Lemma 15) to obtain J (Lk+1) from J (Lk) using

Representing Partition Lattices Through FCA 17

the recursion in Theorem 14. As part of this process we divide the resulting
partitions of k + 1 into the classes of Theorem 14 to prepare for the next step.
We do this for k0 ≤ k < n, taking

∑n−1
k=k0

Θ(k2), i.e., Θ(n3) time units.
We further iterate once over the Θ(n2) objects in J (Ln) to get the attributes

J (Ln)∗. Then for each object we iterate over these Θ(n2) attributes, decide
whether there is a cross in O(n), and so create K(Ln) in O(n5) time units. �

Note that any algorithm for K(Ln) has a lower bound of o(n4) time units as
already writing a non-trivial context of size Θ(n2)×Θ(n2) needs o(n4) individual
steps. A non-recursive algorithm can be obtained from [3, Proposition 2].

The results leading to Theorems 14, 16 and Corollary 17 are based on the
second author’s bachelor’s thesis, which was completed in February 2020 and
defended in June. We were surprised to learn that meanwhile the sizes of J (Ln)
had been discovered independently on the other side of the globe [3]. Seeing [3],
the question of embeddability of K(Ln) into K(Ln+1) caught our attention, as
it was answered negatively for symmetric context embeddings (n = 9 being the
smallest impossible case) but left open in general. We were intrigued to construct
a non-symmetric embedding based on η : J (Ln) → J (Ln+1), cp. (1); however
our attempts were bound to fail:

Proposition 19. There is no context embedding of K(L9) into K(L10).

Proof. A context embedding is a pair of injective maps α : J (Ln) → J (Ln+1),
β : M(Ln) → M(Ln+1) that send crosses to crosses and empty cells of K(Ln)
to empty cells. As K(Ln) is finite, this fact can be written as a long conjunction
over G × M := J (Ln) × M(Ln); also the injectivity requirement can be added
by saying that values of distinct objects (attributes resp.) have to be distinct:

∧

(g,m)∈G×M
g≤m

α(g) ≤ β(m) ∧
∧

(g,m)∈G×M
g �≤m

¬(α(g) ≤ β(m)) ∧
∧

g,h∈G
g�Gh

α(g) �= α(h) ∧
∧

l,m∈M
l�Mm

β(l) �= β(m),

where �G and �M are arbitrary strict linear orders on G and M , resp. Now
the search for a context embedding obviously is an instance of a constraint
satisfaction problem where the variables are the elements of G and M , and the
solutions (value assignments in J (Ln+1) and M(Ln+1), resp.) are the maps of
the embedding. The instance is given by the following conjunctive formula

ϕ =
∧

(g,m)∈G×M
g≤m

g ≤ m ∧
∧

(g,m)∈G×M
g 	≤m

¬(g ≤ m) ∧
∧

g,h∈G
g�Gh

g �= h ∧
∧

l,m∈M
l�Mm

l �= m,

and for n = 9 we coded it in the SMT-LIB2.0 language and fed it to the Z3 sat
solver [9,10]. Instead of an embedding the answer was that ϕ was unsatisfiable
over the structure (J (L10) × M(L10),≤). We also had the solver generate a for-
mal proof of unsatisfiability; alas, it is 21 694 lines long and remains inaccessible
to humans in its present form. �

18 M. Behrisch et al.

Studying the standard context K(Ln) is of interest because its concept lattice
B(K(Ln)) is isomorphic to Ln. From equation (3) we have that the number
of objects (and attributes) of K(Ln) has order Θ(n2). This means that, as n
increases, the number of objects (and attributes) in the context K(Ln) grows
much more slowly than the number p(n) of unrestricted partitions of n, which
satisfies the asymptotic formula p(n) ∼ 1

4n
√
3
eπ

√
2n/3 [6].

It is quite remarkable (though from a formal concept analysis perspective
not too surprising) that from a fraction of the partitions of n, we can construct
a context K(Ln) the size of which is ‘only’ of order O(n4) but whose number of
formal concepts is precisely the total number of partitions of n.

Asymptotic expansions [12,13] (and even exact numbers for many integers n,
see [11]) for the sizes p(n) of the lattices B(K(Ln)) ∼= Ln are known. Moreover,
by Corollary 17, the standard contexts K(Ln) satisfy precise size estimates O(n4)
and can be computed efficiently, that is, in polynomial time O(n5), see Corol-
lary 18. Therefore, in addition to being a novel, perhaps slightly esoteric, means
for the computation of p(n), the sequence (K(Ln))n∈N+

of contexts might also
prove itself to be a promising playground for testing conjectures or the efficiency
of new formal concept analytic algorithms (regarding e.g. the computation of
concept lattices or stem bases etc.).

Acknowledgements. The authors are grateful to Prof. Bernhard Ganter for point-
ing out the topic, for helpful advice and encouraging remarks. They also would like
to thank Dr. Christian Meschke for his constant support. Moreover, they appreciate
the constructive comments and suggestions given by the anonymous referees, which
improved the presentation of the material.

References

1. Brylawski, T.: The lattice of integer partitions. Discrete Math. 6(3), 201–219
(1973). https://doi.org/10.1016/0012-365X(73)90094-0

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd
edn. Cambridge University Press, New York (2002). https://doi.org/10.1017/
CBO9780511809088

3. Ganter, B.: Notes on integer partitions. In: 15th International Conference on Con-
cept Lattices and Their Applications, Tallinn, pp. 19–31. CEUR-WS.org (2020)

4. Ganter, B., Wille, R.: Applied lattice theory: formal concept analysis. In: Grätzer,
G. (ed.) General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)

5. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-59830-2

6. Hardy, G.H., Ramanujan, S.: Asymptotic formulæ in combinatory analysis. Proc.
London Math. Soc. (2) 17(1), 75–115 (1918). https://doi.org/10.1112/plms/s2-17.
1.75

7. Latapy, M., Phan, T.H.D.: The lattice of integer partitions and its infinite exten-
sion. Discrete Math. 309(6), 1357–1367 (2009). https://doi.org/10.1016/j.disc.
2008.02.002

8. Mahnke, D.: Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung. Bibl.
Math. (3) XIII, 29–61 (1912–1913). https://www.ophen.org/pub-102519

https://doi.org/10.1016/0012-365X(73)90094-0
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1112/plms/s2-17.1.75
https://doi.org/10.1112/plms/s2-17.1.75
https://doi.org/10.1016/j.disc.2008.02.002
https://doi.org/10.1016/j.disc.2008.02.002
https://www.ophen.org/pub-102519

Representing Partition Lattices Through FCA 19

9. Microsoft Research: Z3 Theorem Prover (2021). https://github.com/z3prover/z3
or https://rise4fun.com/Z3/

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. OEIS: Sequence A000041. In: Sloane, N.J.A. (ed.) The On-line Encyclopedia of
Integer Sequences. OEIS Foundation (2020). https://oeis.org/A000041. Accessed
13 Dec 2020

12. Rademacher, H.: On the partition function p(n). Proc. London Math. Soc. (2)
43(4), 241–254 (1937). https://doi.org/10.1112/plms/s2-43.4.241

13. Rademacher, H.: On the expansion of the partition function in a series. Ann. Math.
(2) 44(3), 416–422 (1943). https://doi.org/10.2307/1968973

https://github.com/z3prover/z3
https://rise4fun.com/Z3/
https://doi.org/10.1007/978-3-540-78800-3_24
https://oeis.org/A000041
https://doi.org/10.1112/plms/s2-43.4.241
https://doi.org/10.2307/1968973

Fixed-Point Semantics for Barebone
Relational Concept Analysis

Jérôme Euzenat(B)

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
Jerome.Euzenat@inria.fr

Abstract. Relational concept analysis (RCA) extends formal concept
analysis (FCA) by taking into account binary relations between formal
contexts. It has been designed for inducing description logic TBoxes from
ABoxes, but can be used more generally. It is especially useful when there
exist circular dependencies between objects. In this case, it extracts a
unique stable concept lattice family grounded on the initial formal con-
texts. However, other stable families may exist whose structure depends
on the same relational context. These may be useful in applications that
need to extract a richer structure than the minimal grounded one. This
issue is first illustrated in a reduced version of RCA, which only retains
the relational structure. We then redefine the semantics of RCA on this
reduced version in terms of concept lattice families closed by a fixed-
point operation induced by this relational structure. We show that these
families admit a least and greatest fixed point and that the well-grounded
RCA semantics is characterised by the least fixed point. We then study
the structure of other fixed points and characterise the interesting lattices
as the self-supported fixed points.

1 Motivation

Formal concept analysis (FCA [7]) is a useful tool for inducing a classification
structure from data. Relational concept analysis (RCA [13]) is one of its exten-
sions allowing to take advantage of relationships between objects to extract
dependent concept lattices. One of its strong point is its ability to deal with
circular dependencies between objects.

Although the result returned by RCA is solid and useful, it may not be the only
possible result. The relational structure, when containing circuits, has the capabil-
ity to induce richer lattice structures. Indeed, in the absence of information or of
reason to separate objects, RCA classifies them within the same concept. On the
contrary, in the absence of information or of reason to aggregate objects, it is pos-
sible to keep them in different concepts. A good compromise may sometimes reside
in between these two extremes. As a data mining procedure, RCA can be useful in
returning all possible structures and not necessarily the safest ones.

This is not really a problem in the target RCA application: extracting the
core classes of a description logic ontology. However, this may be a problem

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 20–37, 2021.
https://doi.org/10.1007/978-3-030-77867-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_2

Fixed-Point Semantics for Barebone Relational Concept Analysis 21

for other applications. This work was initially motivated by one such applica-
tion of RCA: We developed a link key candidate extraction algorithm on top of
relational concept analysis [2]. Link keys are rules for identifying the same indi-
viduals from different data sources. In this context, the concepts of extracted
lattices are link key candidates which will be selected on the basis of two inde-
pendent measures [1]. As a data mining task, RCA is more useful if it generates
all the possible link key candidates.

Hereafter, we illustrate the considered problem on RCA0, a minimal version
of RCA. Although RCA0 is simply a convenient way to illustrate the problem it
requires solutions that will apply to RCA as a whole.

Understanding the nature of the problem and its relation with RCA lead
to consider its semantics. The current semantics of RCA [14] focusses on the
grounding of the process. We redefine this semantics on properties directly char-
acterising the solutions.

We first consider the core function involved in the classical RCA algorithm
and identify acceptable results as the fixed points of this function. We show, in
the case of RCA0, that the classical RCA semantics corresponds to extracting
its least fixed point.

We also provide a direct way to generate the greatest fixed point. However,
although RCA extracts the minimal fixed point in its simplest form, this is not
the case of the greatest fixed point: it would make reference to non-existent
concepts. Hence we discuss the notion of self-supported concept lattice, so that
the acceptable RCA results would be self-supported fixed points.

FCA is a domain of fixed points, hence it is easy to get lost among the
various fixed points involved: (a) In description logics, on which RCA relies,
the semantics of concepts is given by fixed points when circularities occur [11];
(b) FCA’s goal is to compute fixed points: concepts are the result of a closure
operator which is also a fixed point [4]; (c) finally, when confronted to cycles,
the RCA concept lattice is the fixed point of the function that grows a lattice
family from the previous one. The present work is concerned with the latter kind
of fixed points.

In the remainder, we present the context as well as related work (Sect. 2).
We illustrate the considered problem on a minimal example (Sect. 3). We then
provide a fixed-point semantics for RCA based on a context-expansion function
(Sect. 4) which allows to characterise the classical RCA semantics. However, this
semantics being not fully satisfactory, we introduce the complementary notion of
self-supported concept lattices (Sect. 5). We finally discuss concrete processing
issues (Sect. 6).

2 Preliminaries and Related Work

We mix preliminaries with related works for reasons of space, but also because
the paper directly builds on this related work.

22 J. Euzenat

2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [7] starts with a binary context 〈G,M, I〉 where
G denotes a set of objects, M a set of attributes, and I ⊆ G × M a binary
relation between G and M , called the incidence relation. The statement gIm
is interpreted as “object g has attribute m”. Two operators ·↑ and ·↓ define a
Galois connection between the powersets 〈2G,⊆〉 and 〈2M ,⊆〉, with A ⊆ G and
B ⊆ M :

A↑ = {m ∈ M | gIm for all g ∈ A}
B↓ = {g ∈ G | gIm for all m ∈ B}

The operators ·↑ and ·↓ are decreasing, i.e. if A1 ⊆ A2 then A↑
2 ⊆ A↑

1 and
if B1 ⊆ B2 then B↓

2 ⊆ B↓
1 . Intuitively, the less objects there are, the more

attributes they share, and dually, the less attributes there are, the more objects
have these attributes. It can be checked that A ⊆ A↑↓ and that B ⊆ B↓↑, that
A↑ = A↑↓↑ and that B↓ = B↓↑↓.

For A ⊆ G, B ⊆ M , a pair 〈A,B〉, such that A↑ = B and B↓ = A, is called
a formal concept, where A is the extent and B the intent of 〈A,B〉. Moreover,
for a formal concept 〈A,B〉, A and B are closed sets for the closure operators
·↑↓ and ·↓↑, respectively, i.e. A↑↓ = A and B↓↑ = B.

Concepts are partially ordered by 〈A1, B1〉 ≤ 〈A2, B2〉 ⇔ A1 ⊆ A2 or equiva-
lently B2 ⊆ B1. With respect to this partial order, the set of all formal concepts
forms a complete lattice called the concept lattice of 〈G,M, I〉.

Formal concept analysis can be considered as a function that associates to
a formal context 〈G,M, I〉 its concept lattice 〈C,≤〉 = FCA(〈G,M, I〉) (or
B(G,M, I) [7]). By abuse of language, when a variable L denotes a concept
lattice 〈C,≤〉, L will also be used to denote C.

2.2 Extending FCA

Formal concept analysis is defined on relatively simple structures hence many
extensions have been designed. They allow FCA to (a) deal with more complex
input structure, and/or (b) generate more expressive and interpretable knowl-
edge structures.

Scaling. Scaling is one type of extension of type (a). A scaling operation
ς : X �→ 2D generates boolean attributes named after a language D from a
structure Σ ∈ X . In FCA, D = M and I is provided by its matrix. In scaled
contexts, this language can be interpreted so that the incidence relation I is
immediately derived from the attribute m following:

gIm iff Σ |= m(g)

Hence, adding attributes to a context under such a structure may be performed as:

KΣ
M ′(〈G,M, I〉) = 〈G,M ∪ M ′, I ∪ {〈g,m〉 ∈ G × M ′ | Σ |= m(g)}〉

Fixed-Point Semantics for Barebone Relational Concept Analysis 23

Applying a scaling operation ς to a formal context K following a structure Σ
can be thus decomposed into (i) determining the set of attributes ς(Σ) to add,
and (ii) extending the context with such attributes:

σς(K,Σ) = KΣ
ς(Σ)(K)

Many conceptual scaling operations have been discussed in [7] for dealing
with non boolean variables in formal contexts. In general, Σ is void, D is
expressed as predicates, e.g. · = v for nominal scaling or · ≤ n for ordinal
scaling, and |= is the evaluation of the predicate for the value.

Logical scaling [12] has been introduced for more versatile languages such as
description logics and SQL. It introduces query results within formal contexts.
In this case, Σ is a logical theory or database tables, D the set of formulas of
the logic or instantiated queries and |= is entailment or query evaluation.

Relational scaling operations considered in [13] are based on a struture
Σ = 〈R,C〉 made of a family of relations R = {ry}y∈Y , i.e. relations ry ⊆ Gx×Gz

between two sets of objects, and a family C = {Cx}x∈X of sets of concepts whose
extent is a subset of Gx. Its language Dς,R,C is the set of attribute descrip-
tions involving ς, R and C. For example, qualified existential scaling (∃) adds
attributes ∃r.c for r ∈ R, r ⊆ Gx × Gz, c ∈ Cz and |= checks that

〈R,L〉 |= gI∃r.c iff ∃g′; 〈g, g′〉 ∈ r ∧ g′ ∈ extent(c)

Various relational scaling operations are used in RCA such as existential,
strict and wide universal, min and max cardinality, which all follow the classical
role restriction semantics of description logics [3].

Other Extensions. Pattern structures [6,9] provide a more structured
attribute language without scaling. However, its use is not directly related to
the problem of context dependencies considered here as the attributes do not
refer to concepts.

On the contrary, other approaches [5,10] aim at extracting conceptual struc-
tures from n-ary relations without resorting to scaling. Their concepts have
intents that can be thought of as conjunctive queries and extents as tuples of
objects, i.e. answers to these queries. Hence, instead of being classes, i.e. monadic
predicates, concepts correspond to general polyadic predicates. For that purpose,
they rely on more expressive input, e.g. in Graph-FCA [5] the incidence relation
is a hypergraph between objects, and produce a more expressive representation.
A comparison of RCA and Graph-FCA is provided in [8]. Graph-FCA adopts
a different approach than RCA but should, in principle, suffer from the same
problem as the one illustrated here. However, intents would need to refer to
concepts so created, i.e. named subqueries. This remains to be studied.

2.3 Relational Concept Analysis

Relational Concept Analysis (RCA) [13] extends FCA to the processing of rela-
tional datasets and allows inter-object relations to be materialised and incorpo-
rated into formal concept intents. RCA is a way to induce a description logic TBox

24 J. Euzenat

from a simple ABox [3], using specific scaling operations. It may also be though of
as a general way to deal with circular references using different scaling operations.

RCA applies to a relational context 〈K0, R〉, composed of a set of formal
contexts K0 = {〈Gx,M0

x , I0x〉}x∈X and a set of binary relations R = {ry}y∈Y . A
relation ry ⊆ Gx × Gz connects two object sets, a domain Gx (dom(ry) = Gx,
x ∈ X) and a range Gz (ran(ry) = Gz, z ∈ X).

RCA applies relational scaling operations from a set Ω to each Ki
x ∈ Ki and all

relations ry ⊆ Gx ×Gz from the set of concepts in corresponding Lz = FCA(Ki
z).

For performing its operations, RCA thus relies on FCA and σς . More pre-
cisely it uses FCA∗ and σ∗

Ω defined as:

FCA∗({〈Gx, Mx, Ix〉}x∈X) = {FCA(〈Gx, Mx, Ix〉)}x∈X

σ∗
Ω({〈Gx, Mx, Ix〉}x∈X , R, {Lx}x∈X) =

⎧
⎨

⎩

ς∈Ω⊕

ry∈R | r⊆Gx×Gz

σς(〈Gx, Mx, Ix〉, ry , Lz)

⎫
⎬

⎭
x∈X

such that ⊕ς∈Ω
ry∈R | r⊆Gx×Gz

scales, with all operations in Ω, the given context
with all the relations starting from x (to any z).

RCA starts from the initial formal context family K0 and thus iterates the
application of the two operations:

Ki+1 = σ∗
Ω(Ki, R, FCA∗(Ki))

until reaching closure, i.e. reaching n such that Kn+1 = Kn. Then,
RCAΩ(K0, R) = FCA∗(Kn).

By abuse of notation, we note 〈G,M, I〉 ⊆ 〈G,M ′, I ′〉 whenever M ⊆ M ′

and I = I ′ ∩ (G × M). In this case, because I is the incidence relation between
the same G and M ⊆ M ′, the relation only depends on M and M ′. This is
generalised to formal context families {〈Gx,Mx, Ix〉}x∈X ⊆ {〈Gx,M ′

x, I ′
x〉}x∈X

whenever ∀x ∈ X, Mx ⊆ M ′
x.

The RCA process always reaches a closed formal context family for reason
of finiteness [13] and the sequence (Ki)n

i=0 is non-contracting, i.e. ∀i ≥ 0,Ki ⊆
Ki+1 [14]. The well-grounded semantics of RCA [14] further establishes that
RCA indeed finds the Kn satisfying these constraints through correctness (the
concepts of FCA∗(Kn) are grounded in K0 through R) and completess (all such
concepts are in Kn).

2.4 RCA0

To keep the paper short and simple, we restrict it to RCA0, a special case of
RCA. It is restricted in two ways:

– It contains only one formal context (|X| = 1),
– which has no attributes (M0

x = ∅).

Additionally, we will consider below only qualified existential scaling (Ω = {∃}).

Fixed-Point Semantics for Barebone Relational Concept Analysis 25

Because RCA0 is a restriction of RCA, we will use the same notation as
defined above, thought it operates on simpler structures.

Although RCA0 seems very simple, FCA can be encoded into RCA0. Intro-
ducing RCA0 is sufficient to hint at the problem that we want to illustrate1.

3 RCA May Accept Different Concept Lattice Families:
Illustration

As an RCA0 example, consider the following ABox:
A = {�(a),�(b),�(c),�(d), p(a, b), p(b, a), p(c, d), p(d, c), p(a, a), p(b, b)}
This can be encoded as an empty formal context and the relation of Fig. 1

(left). The empty context will generate the single lattice of Fig. 1 (right) (names
are assigned to concepts according to their extent).

p a b c d
a × ×
b × ×
c ×
d ×

a,b,c,d
ABCDL0:

Fig. 1. Relation (left) and initial concept lattice (right).

Scaling with ∃ and p provides the attribute ∃p.ABCD which generates the
new context of Fig. 2 (left), leading to the lattice of Fig. 2 (right) which is the
one returned by RCA.

Fig. 2. Scaled context (left) and final concept lattice L1 (right).

However, the concept lattices of Fig. 3 are other valid lattices worth consid-
ering.

1 An anonymous reviewer complements the remarks of Sect. 2.2 noting that RCA0

is also very related to Graph-FCA as they both have only one context and using
existential scaling.

26 J. Euzenat

∃p.ABCD

∃p.AB
a,b

∃p.CD
c,d

ABCD

AB CD

⊥
L2:

∃p.ABCD

∃p.ABD ∃p.ABC ∃p.CD

∃p.AB
a,b

∃p.D
c

∃p.C
d

ABCD

ABC ABD

AB

CD

C D

⊥L3:

Fig. 3. Alternative concept lattices (L2 and L3).

They correspond to different knowledge bases:

T1 = {ABCD � ∃p.ABCD}
A1 = {ABCD(a), ABCD(b), ABCD(c), ABCD(d), p(a, b), p(b, a), p(c, d), p(d, c), p(a, a), p(b, b)}

and

T2 = {AB � � � ∃p.AB, CD � � � ∃p.CD, ABCD � ∃p.ABCD}
A2 = {AB(a), AB(b), CD(c), CD(d), p(a, b), p(b, a), p(c, d), p(d, c), p(a, a), p(b, b)}

and

T3 = {AB � ABC � ABD � ∃p.AB, C � ABC � CD � ∃p.D, D � ABD � CD � ∃p.C,

ABC � ABCD � ∃p.ABD, ABD � ABCD � ∃p.ABC, CD � ABCD � ∃p.CD,

ABCD � ∃p.ABCD}
A3 = {AB(a), AB(b), C(c), D(d), p(a, b), p(b, a), p(c, d), p(d, c), p(a, a), p(b, b)}

In addition to extracting the TBox, these extend the ABox. However, in RCA
and FCA, objects are also assigned to the created concepts. In this case, this
assignment has consequences on the scaled attributes taken into account and
hence the resulting lattice.

As in classical RCA, each concept of these lattices is closed with respect to
the specific formal context scaled by ∃ and p from the concepts of the lattice.
Moreover, the lattices are self-supported in the sense that their attributes refer
only to their concepts.

The problem applies to RCA as a whole as RCA0 is included in RCA. Hence
the question: Why does RCA returns only one lattice, and which one? Answering
it requires to reconsider the RCA semantics.

4 Semantics and Properties: A Context Approach

The alternative lattices presented in Sect. 3 are legitimate because, indepen-
dently of the attributes, they rely exclusively on the structure of the relations

Fixed-Point Semantics for Barebone Relational Concept Analysis 27

between formal contexts. This structure is already used in the well-grounded
RCA semantics, but they have not been fully exploited.

The answer will require to further define ‘legitimate’, in terms of fixed points
of a specific function, and characterise the semantics of RCA as indeed grounded,
in terms of these fixed points.

4.1 The Lattice K of RCA0 Contexts

We first define the space of formal context families considered by RCA. They are
determined by three elements given once and for all: K0 = {〈G,M0, I0〉}x∈X ,
R = {ry}y∈Y , and Ω. This is even more specific for RCA0 with K0 = 〈G, ∅, ∅〉
and Ω = {ς∃}, but for most of this section we will ignore it.

The contexts considered by RCA are formal context families obtained by the
scaled initial context using the scaling operations. Given a finite set of objects G,
the set of concepts that can be created from such contexts is finite and moreover
each concept can be identified by its extent. Hence, we will consider that this
induces a set of concept names N(G) = 2G valid for any such concept lattice;
the extent of a so named concept will be the set of objects in its name. Given a
finite set of relations R and scaling operations Ω, this determines the finite set
DΩ,R,N(G) =

⋃ς∈Ω
r∈R Dς,r,N(G) of possible scaled attributes in RCA0.

Hence, the formal contexts considered by RCA are those obtained by adding
subsets of DΩ,R,N(G):

K〈G,M0,I0〉,R,Ω = {K
〈R,N(G)〉
M (〈G,M0, I0〉) | M ⊆ DΩ,R,N(G)}

with K
〈R,N(G)〉
M (.) the operation defined in Sect. 2.2.

Given K,K ′ ∈ K〈G,M0,I0〉,R,Ω such that K = 〈G,M0 ∪ M, I0 ∪ I〉 and K ′ =
〈G,M0 ∪ M ′, I0 ∪ I ′〉, K ∨ K ′ and K ∧ K ′ are defined as:

K ∨ K ′ = 〈G,M0 ∪ (M ∪ M ′), I0 ∪ (I ∪ I ′) (join)

K ∧ K ′ = 〈G,M0 ∪ (M ∩ M ′), I0 ∪ (I ∩ I ′) (meet)

It is clear that KK0,R,Ω is closed by meet and join.

Property 1. 〈KK0,R,Ω,∨,∧〉 is a complete lattice

Proof. ∨ and ∧ satisfy commutativity, associativity and the absorption laws
directly from the union and intersection on sets, so this is a lattice. It is complete
because finite. ��
Property 2. ∀K,K ′ ∈ KK0,R,Ω,K ⊆ K ′ iff K = K ∧ K ′

Proof. This property also comes directly from its set theoretic counterpart appli-
cation to M and M ′: K ⊆ K ′ ⇔ M ⊆ M ′ ⇔ M = M ∩ M ′ ⇔ K = K ∧ K ′ ��

28 J. Euzenat

4.2 The Context Expansion Function F

We reformulate RCA as based on a main single function, FK0,R,Ω , the context
expansion function attached to a relational context 〈K0, R〉 and a set Ω of scaling
operations.

Definition 1 (Context expansion function). Given a relational context
〈K0, R〉 and a set of relational scaling operations Ω, the function FK0,R,Ω :
KK0,R,Ω �→ KK0,R,Ω is defined by:

FK0,R,Ω(K) = σ∗
Ω(K,R,FCA∗(K)))

The function expression is independent from K0, K0 is used to restrict the
domain of the function so that its elements cover K0. From now on, we will
abbreviate KK0,R,Ω as K and FK0,R,Ω as F . This is legitimate because, for a
given relational context, K0, R and Ω do not change. F is an extensive and
monotone internal operation for K :

Property 3. ∀K ∈ K , F (K) ∈ K

Proof. Scaling only adds attributes from DΩ,R,N(G). ��
Property 4 (F is extensive and monotone). The function F attached to a rela-
tional context and a set of scaling operator satisfies:

K ⊆ F (K) (extensivity)
K ⊆ K ′ ⇒ F (K) ⊆ F (K ′) (monotony)

Proof. extensivity holds because F eventually adds to each formal context in
K new attributes scaled from FCA(K). The set of attributes can thus not be
smaller. monotony holds because K ⊆ K ′ means that M ⊆ M ′. This entails that
the set of concepts of FCA(K) is included in that of FCA(K ′), hence the set of
attributes A scaled from K is included in the set A′ scaled from K ′. Since, they
are added to M and M ′, then M ∪ A ⊆ M ′ ∪ A′, hence F (K) ⊆ F (K ′). ��

Extensivity corresponds to the non-contracting property of the well-grounded
semantics [14] and monotony is also called order-preservation.

4.3 Fixed Points of F

Given F , it is possible to define its sets of fixed points, i.e. the sets of formal
contexts closed for F , as:

Definition 2 (fixed point). A formal context K ∈ K is a fixed point for a
context expansion function F , if F (K) = K. We call fp(F) the set of fixed points
for F .

Since K is a complete lattice and F is order-preserving (or monotone) on
K , then the Knaster-Tarski theorem applies:

Fixed-Point Semantics for Barebone Relational Concept Analysis 29

Theorem 1 (Knaster-Tarski theorem [15]). Let K be a complete lattice and
let F : K �→ K be an order-preserving function. Then the set of fixed points of
F in L is also a complete lattice.

In particular, this warrants that there exists least and greatest fixed points
of F in K (called lfp(F) and gfp(F)).

In FCA, and subsequently in RCA without circular dependencies, the images
by FCA∗ of all fixed points of F are isomorphic. Even with RCA and circular
dependencies (between the objects or between the contexts), this is often the
case. But the example of Sect. 3 shows that, even in RCA0, there may be several
fixed points for F whose lattice is non isomorphic. Hence the question: which
fixed point is returned by RCA’s well-grounded semantics [14]?

4.4 The Well-Grounded Semantics of RCA is the Least Fixed-Point
Semantics

RCA may be redefined as

RCAΩ(K0, R) = FCA∗(F∞(K0))

RCA iterates F from K0 until closure, and ultimately applies FCA∗. Since K0

belongs to K , then it computes a fixed point of F . This is the least fixed point.

Proposition 1 (The RCA algorithm computes the least fixed point).
Given F the context expansion function associated to K0, R and Ω,

RCAΩ(K0, R) = FCA∗(lfp(FK0,R,Ω))

Proof. RCAΩ(K0, R) = FCA∗(Fn(K0)) for some n at which F (Fn(K0)) =
Fn(K0) [13]. Let K∞ = Fn(K0), K∞ ∈ fp(F) (Definition 2). ∀K ∈ fp(F),
K ∈ K , thus K0 ⊆ K because all the contexts in K contain M0. By monotony
(Property 4), K∞ = Fn(K0) ⊆ Fn(K) = K, because K is a fixed point. Thus,
K∞ is a fixed point more specific than all fixed points: it is the least fixed point.

��

4.5 Computing the Greatest Fixed Point

A natural question is how to obtain the greatest fixed point. In fact, under this
approach this is (theoretically) surprisingly easy.

Proposition 2. gfp(F〈G,M0,I0〉,R,Ω) = K
〈R,N(G)〉
DΩ,R,N(G)

(〈G,M0, I0〉)

Proof. This context is the greatest element of K as it contains all attributes of
DΩ,R,N(G). It is also a fixed point because F is extensive and internal. ��

The lattice corresponding to the greatest fixed point will be L =
FCA∗(gfp(FK0,R,Ω)).

30 J. Euzenat

This result is easy but very uncomfortable. The obtained lattice may contain
many useless attributes. Indeed, ∃r.c is well defined by the incidence relation,
but it is of no use to RCA if c does not belong to L.

In the example of Sect. 3, the attribute ∃p.A belongs to DΩ,R,N(G) though A
does not belong to the maximal lattice L3, because it is not closed. The fact that
both a and b satisfy this attribute makes that it will find its place in the intent
of AB. If one considers the lattice in isolation, this is perfectly valid because the
scaled context is well-defined: ∃p.A is just an attribute among others satisfied
by a and b. However, if the lattice is transformed in a description logic TBox,
this is not correct to refer to an undefined class. This is not the result that we
expected: we need the results to be self-supported.

This problem is even more embarrassing if one wants to enumerate all fixed
points, which are as many solutions to the RCA problem: many of these will
feature such non-supported attributes.

5 Self-supported Fixed Points

We first quickly approach this problem from the concept lattice standpoint, it
is better understood with both contexts and lattices together2. We then define
self-supported concept lattices and consider their interaction with fixed points.

5.1 The Lattice L of RCA0 Lattices and the Lattice Expansion
Function E

From KK0,R,Ω, one can define LK0,R,Ω as the finite set of images of KK0,R,Ω

by FCA. These are concept lattices obtained by applying FCA on K0 extended
with a subset of DΩ,R,N(G):

L〈G,M0,I0〉,R,Ω = {FCA(〈G,M0 ∪ M, I0 ∪ I〉) | M ⊆ DΩ,R,N(G)}

We define a specific type of homomorphisms between two concept lattices when
concepts are simply mapped into concepts with the same extent and possibly
increased intent.

Definition 3 (Lattice homomorphism). A concept lattice homomorphism
h : 〈C,≤〉 �→ 〈C ′,≤′〉 is a function which maps each concept c ∈ C into a
corresponding concept h(c) ∈ C ′ such that:

– ∀c ∈ C, intent(c) ⊆ intent(h(c)), and
– ∀c ∈ C, extent(c) = extent(h(c)), and
– ∀c, d ∈ C, c ≤ d ⇒ h(c) ≤′ h(d).

2 Instead of developing both K and L independently and maintaining an equiva-
lence between them, it would have been possible to use a more FCA-like structure
associating the corresponding contexts and lattices.

Fixed-Point Semantics for Barebone Relational Concept Analysis 31

Fig. 4. Relations between F and E through the alternation of FCA∗ and σ∗
Ω .

We note L � L′ if there exists a homomorphism from L to L′. In principle,
L � L′ if L � L′ and L′ � L, but here, � is =. The order between concept
lattices is straigthforwardly extended to families of concept lattices such that:
{Lx}x∈X � {L′

x}x∈X iff ∀x ∈ X, Lx � L′
x.

There exists an implicit function κ : LK0,R,Ω �→ KK0,R,Ω such that
∀L ∈ LK0,R,Ω , L = FCA(κ(L)). Since � is the same as = which identifies
lattices containing concept having exactly the same intent and extent. κ(L) can
be induced by collecting the attributes present in L intents to build the unique
M , from which the corresponding I is obtained [7].

We define EK0,R,Ω, the lattice expansion function attached to a relational
context 〈K0, R〉 and a set Ω of scaling operators.

Definition 4 (Lattice expansion function). Given a relational context
〈K0, R〉 and a set of relational scaling operations Ω the function EK0,R,Ω :
LK0,R,Ω �→ LK0,R,Ω is defined by:

EK0,R,Ω(L) = FCA∗(σ∗
Ω(κ(L), R, L))

Here again, K0 is only used to constrain the domain of the function, not its
expression. From now on, we will abbreviate LK0,R,Ω as L and EK0,R,Ω as E.

Instead of considering that RCA(K0) = FCA∗(F∞(K0)), it is possible to
consider that RCA(K0) = E∞(FCA∗(K0)). Hence, RCA may be redefined as

RCAΩ(K0, R) = E∞(FCA∗(K0))

RCA iterates E from FCA∗(K0) until closure. The definition of E amounts to
first scaling and then applying FCA, though F does the opposite (see Fig. 4).

In consequence, E is the function corresponding to F in the sense that E =
FCA ◦ F ◦ κ and FCA∗ ◦ E = F ◦ FCA∗ (see Fig. 4). Actually, the results
obtained for K and F , hold exactly for L and E:

– 〈L ,�〉 is a complete lattice;
– E is an internal, monotone and extensive operation of L ;
– RCAΩ(K0, R) = lfp(EK0,R,Ω).

E inherits exactly all properties of F : the desirable ones and the problematic
ones. So, apparently no progress has been made.

32 J. Euzenat

5.2 Self-supported Lattices

The problem is that both F and E are extensive functions. Hence, it is possible,
starting from anywhere in K or L , to consider attributes that do not refer to
concepts and these attributes will be preserved. As a consequence, there are fixed
points with these unwanted attributes and they are also found in the greatest
fixed point.

One may consider identifying such attributes from the greatest fixed point
and forbidding them. However, these meaningless attributes are contextual: one
supported attribute in the greatest fixed point, may be non supported in a
smaller lattice. This is a base difficulty for enumerating these fixed points.

Instead, we consider only self-supported lattices, i.e. lattices whose intents
only refer to their own concepts.

Definition 5 (Self-supported lattices). Let L a set of concept lattices, its
set of self-supported lattices is

S(L) = {L ∈ LK0,R,Ω | ∀c ∈ L, intent(c) ⊆ DΩ,R,L}
The set of interesting lattices that may be returned by RCA0 can be circum-

bscribed as fp(E) ∩ S(L) as these are stable and self-supported. Moreover, by
construction of K and L , they cover K0.

E has the advantage of preserving self-supportivity.

Proposition 3 (E is internal to S(L)). ∀L ∈ S(L), E(L) ∈ S(L).

Proof. If L ∈ S(L), all attributes in intents of L are supported by concepts in
L. E = FCA∗ ◦ σ∗

Ω. σ∗
Ω first adds to κ(L) attributes which are supported by L.

L � E(L), so these concepts are still in E(L). Hence, the attributes in κ(L) and
those scaled by σ∗

Ω are still supported by E(L). ��
But the definition of S does not provide a direct way to transform a non self-

supported lattice into a self-supported one: the suppression of non self-supported
attributes from intents could result in non-concepts (with non closed-extent).
One possible way to solve this problem consists of extracting only the attributes
currently in the lattice and to apply FCA∗ to the resulting context.

For that purpose, we introduce a filtering function π : L �→ K which sup-
presses from the induced context (κ(L)) those attributes non supported by the
lattice:

π(L) = 〈G,M \ DΩ,R,N(G)\L, I \ {〈g,m〉 | m ∈ DΩ,R,N(G)\L}〉
such that κ(L) = 〈G,M, I〉.

One can define Q : L �→ L , such that

Q(L) = FCA∗(π(L))

or P : K �→ K , such that P (K) = π(FCA∗(K)), see Fig. 5.
Contrary to E, Q is anti-extensive and monotone:

Fixed-Point Semantics for Barebone Relational Concept Analysis 33

Fig. 5. Relations between P and Q through the alternation of FCA∗ and π.

Proposition 4 (Q is anti-extensive and monotone). The function Q sat-
isfies:

Q(L) � L (anti-extensivity)
L � L′ ⇒ Q(L) � Q(L′) (monotony)

Proof. anti-extensivity π(L) ⊆ κ(L) because π simply suppresses attributes
from κ(L). Hence, FCA∗(π(L)) � FCA∗(κ(L)) because the latter con-
tain all concepts of the former (identified by extent) eventually featuring
the removed attributes. Moreover, FCA∗(κ(L)) = L by definition, thus
Q(L) = FCA∗(π(L)) � FCA∗(κ(L)) = L.

monotony If L � L′, then κ(L) ⊆ κ(L′), otherwise FCA∗ would not generate
a smaller lattice. In addition, L � L′ entails N(G) \ L ⊇ N(G) \ L′ which
entails DΩ,R,N(G)\L ⊇ DΩ,R,N(G)\L′ , which finally together leads to M \
DΩ,R,N(G)\L ⊆ M ′ \ DΩ,R,N(G)\L′ . Then, π(L) ⊆ π(L′) because a smaller
context supported by a smaller lattice cannot result in a larger context. Hence,
Q(L) = FCA∗(π(L)) � FCA∗(π(L′)) = Q(L′). ��
It would be possible to redefine S(L) as fp(Q). Like with E, it is possible to

apply the Knaster-Tarski theorem to show that 〈fp(Q),�〉 is a complete lattice.
But like E, Q is not a closure operator as it is not idempotent. However, with

the same arguments as [13], it can be argued that the repeated application of Q
converges to a self-supported concept lattice.

Proposition 5. ∀L ∈ L , ∃n; Qn(L) = Qn+1(L) and Qn(L) ∈ S(L).

Proof. First, L is a finite concept lattice. Moreover, Q(L) � L, hence it not
possible to build an infinite chain of non converging application of Q since at each
iteration, either π suppresses no attribute (and then closure has been reached),
or it suppresses at least one attribute and then a strictly smaller context is
reached. Ultimately, the least fixed point lfp(Q) = FCA∗(K0) is reached. It is a
fixed point because κ(FCA∗(K0)) = K0 contains no scaled attribute and thus
is self-supported. When closure is reached, this is because π does not find any
non-supported attribute in the lattice intents. This means that all of them are
supported by the lattice. ��

By convention, we note Q∞ the closure function associated with Q.

34 J. Euzenat

Fig. 6. The L (resp. K) lattice and effects of E and Q (resp. F and P) for charac-
terising fp(E) and S(L) (resp. fp(F) and S(K)).

We end up with two operations, E and Q, the former extensive and the latter
anti-extensive, that may be transformed into closure operators. These functions
are instrumental to provide the infimum and supremum of our desired lattices
(see also Fig. 6):

Proposition 6. lfp(E) and Q∞(gfp(E)) are respectively the infimum and sup-
premum of fp(E) ∩ S(L) for �.

Proof. lfp(E) is the lower bound for fp(E)∩S(L) because it is the lower bound
for fp(E). It is the infimum of fp(E) ∩ S(L) for � because FCA∗(K0) ∈ S(L)
and by Proposition 3 this property is preserved by E and since lfp(E) =
E∞(FCA∗(K0)), it belongs to S(L).

Q∞(gfp(E)) is the upper bound for fp(E) ∩ S(L) because gfp(E) contains
all possible closed concepts that can be built from DΩ,R,N(G). Hence, those
attributes not belonging to π(gfp(E)) cannot belong to any self-supported lat-
tice. By Proposition 5, Q∞(gfp(E)) ∈ S(L). If Q∞(gfp(E)) �∈ fp(E), this entails
Q∞(gfp(E)) ≺ E(Q∞(gfp(E))) and moreover that ∃n; En(Q∞(gfp(E))) ∈ fp(E)
(because E is extensive and the space is finite). But, by Proposition 3, E
preserves self-supportiveness. Thus, En(Q∞(gfp(E))) ∈ fp(E) ∩ S(L) and
Q∞(gfp(E)) ≺ En(Q∞(gfp(E))), which is contradictory with the fact that
Q∞(gfp(E)) is an upper-bound for all fixed points. Thus, Q∞(gfp(E)) is the
supremum of fp(E) ∩ S(L) for �. ��

6 Discussion

Our initial goal was to define which concept lattices could be considered as
the result of RCA on a relational context. RCA provides a practical algorithm
(based on F or E and FCA∗) to find out the smallest of these: lfp(E). We have
characterised the greatest one: gfp(Q) or Q∞(gfp(E)).

Fixed-Point Semantics for Barebone Relational Concept Analysis 35

We end up with two functions, complementary in their structure, one expand-
ing the context, the other contracting it. In the perspective of enumerating all
self-supported fixed points, it is tempting to either start from lfp(E) and use E
or start from gfp(Q) and use Q. Unfortunately, these starting points being fixed
points for these very functions, this leads nowhere. It is necessary to escape the
fixed points. For instance, starting from lfp(E), one could add non-supported
attributes until they become supported. Performing this attribute by attribute
is not very smart. The example of Sect. 3 shows possible fixed points: L1, L2

and L3. They require to add 2 or 6 attributes to L1. A smarter strategy would
consist of analysing the sets of attributes that support each others, through the
induction of concepts, and adding these one by one to lfp(E) or suppressing them
from gfp(Q). There is a known bound to this set since none of the attributes
not in the intents of gfp(Q) can be added, and none of those in lfp(E) can
be suppressed. Finally, these sets may entertain dependencies (adding one set
of attributes would immediately support another). This may be dealt with by
computing such dependencies or by applying the required closure operator (E∞

or Q∞) after each addition.
Such a procedure seems to be achievable with RCA0, it will be more difficult

to set up with RCA due to dependencies across lattices.

7 Conclusions

Motivated by the requirement to extract more concepts with relational concept
analysis, we gave a new, fixed-point based, semantics for RCA0. The main con-
tribution of this work is the formulation of the RCA semantics in terms of fixed
points of the function (F or E) at the core of RCA0. Then it is shown that the
well-grounded semantics of RCA corresponds to the least fixed-point semantics.

We also identified as self-supported fixed points those other fixed points of
interest. The least fixed point being the smaller of these. This led to develop
another function (P or Q) which, together with FCA∗, allows extracting the
greatest of them as an alternative to RCA.

This result does not mean that RCA is wrong. In FCA, conceptual scaling
has been considered as a human-driven analysis tool: a knowledgeable person
could provide attribute in this language for describing better the data to be
analysed. In RCA, scaling is used as an extraction tool, with the drawback to
potentially generate many attributes. By only extracting the least fixed point,
RCA avoids generating too many of them.

In the context of extracting a TBox for a particular ABox, extracting the
least fixed point is adequate since it may be relatively complex and it is a good
starting point. But for other applications, such as link key candidate extraction,
it is very important to have all possible fixed points because external measures
are used for selecting the best one (which has no reason to be either the least or
the greatest one).

The definitions and results of Sects. 4 and 5 have been restricted to RCA0

for the sake of clarity. Although this remains to be proved, they should hold

36 J. Euzenat

for RCA as a whole. Indeed, all definitions can be applied to families of con-
texts and lattices, the order between them being the product order induced by
the piece-wise conjunction. All operations remain monotone and extensive (or
anti-extensive) as soon as the selected scaling operations are. This is enough to
preserve the results.

Acknowledgements. This work has been partially funded by the ANR Elker project
(ANR-17-CE23-0007-01). The author thanks Philippe Besnard for pointing to the
Knaster-Tarski theorem.

References

1. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey
extraction. In: Proceedings of 21st European Conference on Artificial Intelligence
(ECAI), Praha (CZ), pp. 15–20 (2014)

2. Atencia, M., David, J., Euzenat, J., Napoli, A., Vizzini, J.: Link key candidate
extraction with relational concept analysis. Discret. Appl. Math. 273, 2–20 (2020)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementations and Applications.
Cambridge University Press, Cambridge (2003)

4. Belohlávek, R.: Introduction to formal concept analysis. Technical report, Uni-
verzita Palackého, Olomouc (CZ) (2008)

5. Ferré, S., Cellier, P.: Graph-FCA: an extension of formal concept analysis to knowl-
edge graphs. Discret. Appl. Math. 273, 81–102 (2020)

6. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120,
pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-
8 10

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

8. Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., Martin, P.: Practical
comparison of FCA extensions to model indeterminate value of ternary data. In:
Proceedings of 15th International Conference on Concept Lattices and Their Appli-
cations (CLA), Tallinn (EE). CEUR Workshop Proceedings, vol. 2668, pp. 197–208
(2020)

9. Kuznetsov, S.O.: Pattern structures for analyzing complex data. In: Sakai, H.,
Chakraborty, M.K., Hassanien, A.E., Śl ↪ezak, D., Zhu, W. (eds.) RSFDGrC 2009.
LNCS (LNAI), vol. 5908, pp. 33–44. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10646-0 4

10. Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov,
D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-ConceptStruct 2013. LNCS (LNAI),
vol. 7735, pp. 301–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35786-2 23

11. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Lecture
Notes in Artificial Intelligence, vol. 422. Springer, Berlin (1990). https://doi.org/
10.1007/BFb0016445

12. Prediger, S.: Logical scaling in formal concept analysis. In: Lukose, D., Delu-
gach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997. LNCS,
vol. 1257, pp. 332–341. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0027881

https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-10646-0_4
https://doi.org/10.1007/978-3-642-10646-0_4
https://doi.org/10.1007/978-3-642-35786-2_23
https://doi.org/10.1007/978-3-642-35786-2_23
https://doi.org/10.1007/BFb0016445
https://doi.org/10.1007/BFb0016445
https://doi.org/10.1007/BFb0027881
https://doi.org/10.1007/BFb0027881

Fixed-Point Semantics for Barebone Relational Concept Analysis 37

13. Rouane Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept
analysis: mining concept lattices from multi-relational data. Ann. Math. Artif.
Intell. 67(1), 81–108 (2013)

14. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Soundness and com-
pleteness of relational concept analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.)
ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 228–243. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38317-5 15

15. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

https://doi.org/10.1007/978-3-642-38317-5_15

Boolean Substructures in Formal Concept
Analysis

Maren Koyda1,2(B) and Gerd Stumme1,2

1 Knowledge and Data Engineering Group, University of Kassel, Kassel, Germany
{koyda,stumme}@cs.uni-kassel.de

2 Interdisciplinary Research Center for Information System Design,
University of Kassel, Kassel, Germany

Abstract. It is known that a (concept) lattice contains an n-
dimensional Boolean suborder if and only if the context contains an
n-dimensional contra-nominal scale as subcontext. In this work, we inves-
tigate more closely the interplay between the Boolean subcontexts of a
given finite context and the Boolean suborders of its concept lattice. To
this end, we define mappings from the set of subcontexts of a context to
the set of suborders of its concept lattice and vice versa and study their
structural properties. In addition, we introduce closed-subcontexts as an
extension of closed relations to investigate the set of all sublattices of a
given lattice.

Keywords: Formal Concept Analysis · Contranominal scales ·
Boolean contexts · Boolean lattices · Sublattices · Subcontexts · Closed
relations

1 Introduction

In the field of Formal Concept Analysis (FCA) the basic data structure is a so-
called formal context. It consists of a set of objects, a set of attributes, and an
incidence relation on those sets representing which object has which attribute.
Each such context gives rise to concepts which consist of a maximal set of objects
that all share the same maximal set of attributes. The concepts, ordered by
subset relation, form a complete lattice.

One frequently occurring type of substructure (more precisely: suborder or
sub(semi)lattice) of a concept lattice are Boolean algebras. In the formal context,
they correspond to subcontexts that are isomorphic to a contranominal scale,
i. e., a context of type ({1, . . . , k}, {1, . . . , k}, �=). This means in particular the
existence of k objects that just differ slightly on k attributes. However, despite
of the only slight difference, these Boolean subcontexts are responsible for an
exponential growth of the concept lattice [3]. Such Boolean subcontexts occur
in real-world data as well as in randomly generated formal contexts [5].

Authors are given in alphabetical order. No priority in authorship is implied.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 38–53, 2021.
https://doi.org/10.1007/978-3-030-77867-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_3&domain=pdf
http://orcid.org/0000-0002-8903-6960
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-030-77867-5_3

Boolean Substructures in Formal Concept Analysis 39

In this paper we investigate the connection between the Boolean substruc-
tures in the formal context and in its corresponding concept lattice. Based on
closed subrelations of a formal context [14], that provide a method to character-
ize the complete sublattices of the corresponding concept lattice, we introduce
closed-subcontexts and present a one-to-one correspondence to all sublattices.
Through this, we merge the obvious two-step-approach of limiting the lattice
to an interval and determining its complete sublattices in one structure. Since
this construction is an – almost arbitrary and difficult to handle – mixture of
subcontext and subrelation and in addition is not directly specific to the field of
Boolean substructures, we investigate the connection between Boolean subcon-
texts and Boolean sublattices and suborders, respectively, in Sect. 6 in a direct
way without having to manipulate the incidence relation. To this end, we lift two
well-known order embeddings [7] to the level of subcontexts and suborders to
find the Boolean suborders corresponding to a Boolean subcontext. In addition,
we introduce a construction to generate the Boolean subcontext associated to
a given Boolean suborder. We combine these methods to investigate to which
degree the join and meet operators of the lattice are respected by those maps.

As our work is triggered by complexity issues in data analysis where only
finite sets are considered, all statements in this paper are about finite
sets and structures only, unless explicitely stated otherwise.

As for the structure of this paper, in Sect. 2 we recall some basic notions
and give a brief introduction to the approaches our investigations are based
on. Afterwards, in Sect. 3 we give a short overview of previous works applied
to the investigation of substructures of formal contexts and concept lattices. In
Sect. 4 we introduce some notions required for our investigation on Boolean sub-
structures. We introduce closed-subcontexts in Sect. 5 to determine the set of all
Boolean sublattices. Our second approach is presented in Sect. 6 where we use
embeddings of Boolean structures in concept lattices and construct the subcon-
texts associated to Boolean suborders. In Sect. 7 we compare both approaches,
and discuss the differences and their overlap. We conclude our work and give an
outlook in Sect. 8.

To advanced readers, we recommend proceeding directly to Sect. 4 and Fig. 1
as it illustrates the connections investigated in this work.

2 Recap on FCA and Notations

2.1 Foundations

Following, we recall some basic notions from FCA. For a detailed introduction we
refer to [7]. A formal context is triple K := (G,M, I), where G is the finite object
set, M the finite attribute set, and I ⊆ G×M a binary incidence relation. Instead
of writing (g,m) ∈ I for an object g ∈ G and an attribute m ∈ M , we also write
gIm and say object g has attribute m. One kind of formal context is the family
of contranominal scales, denoted by N

c(k) := ({1, 2, ..., k}, {1, 2, ..., k}, �=).
On the power set of the objects and the power set of the attributes there are

two operations given:·′ : P(G) → P(M), A �→ A′ := {m ∈ M | ∀g ∈ A : (g,m) ∈

40 M. Koyda and G. Stumme

I} and ·′ : P(M) → P(G), B �→ B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I} Instead of
A′ we also write AI to specify which incidence relation is used for the operation.
A formal concept C = (A,B) of the context (G,M, I) is a pair consisting of
an object subset A ⊆ G, called extent, and an attribute subset B ⊆ M , called
intent, that satisfies A′ = B and B′ = A. An object set O ⊆ G is called minimal
object generator of a concept (A,B) if O′′ = A and P ′′ �= A for every proper
subsets P � O. Analogous, the minimal attribute generator of a concept (A,B) is
defined. The set of all minimal object generators (or rather all minimal attribute
generators) of (A,B) is denoted by minGobj(A,B) (minGatt(A,B)). The set
of all formal concepts (B(K)) together with the order defined by (A1, B1) ≤
(A2, B2) iff A1 ⊆ A2 for two concepts (A1, B1) and (A2, B2) determines the
concept lattice B(K) := (B(K),≤). The concept lattice of N

c(k) is called Boolean
lattice of dimension k and is denoted by B(k) := B(Nc(k)).

There are two tools for basic structural investigations of a formal context
K = (G,M, I) in FCA. An object g ∈ G is called clarifiable if another object
g �= h ∈ G with g′ = h′ exists. Furthermore, an object g ∈ G is called reducible
if a set of objects X ⊆ G with g �⊆ X and g′ = X ′ exists. Otherwise g is called
irreducible. The same applies to the set of attributes. The concept lattice of a
context K that has no clarifiable/ reducible objects and attributes is isomorphic
to the lattice of any context that can be constructed by adding reducible or
clarifiable objects or attributes to K. The stepwise elimination of all clarifiable/
reducible attributes and objects of a formal context results in a clarified/reduced
context, the standard context of B(K).

To study particular parts of a formal context the selection of a subcontext is
useful. A subcontext S := (H,N, J) of a formal context K = (G,M, I) is a formal
context with H ⊆ G, N ⊆ M and J = I ∩ (H × N). We write S ≤ K to describe
S as a subcontext of K and use the notion [H,N] instead of (H,N, I ∩ (H ×N)).
The set of all subcontexts of a formal context K is denoted by S(K).

1L and 0L denote the top and the bottom element of a lattice L. The elements
covering 0L are called atoms and the elements covered by 1L coatoms. We denote
by At(L) and CoAt(L), respectively, the set of all atoms and coatoms of L.
S = (S,≤), a subset S ⊆ L together with the same order relation as L, is called
suborder of L. The set of all suborders of L is denoted by SO(L). If (a, b ∈ S ⇒
(a ∨ b) ∈ S) holds we call S sub-∨-semilattice of L. If (a, b ∈ S ⇒ (a ∧ b) ∈ S)
holds we call S sub-∧-semilattice of L. A S that is both, a sub-∨-semilattice
and a sub-∧-semilattice, is called sublattice of L. The set of all sublattices of L
is denoted by SL(L). If (T ⊆ S ⇒ (

∨
T), (

∧
T) ∈ S) holds ∀ T ⊆ S we call

S complete sublattice of L. The requirement for completeness can be translated
into 1L and 0L being included in S if L is a finite lattice.

2.2 Relating Substructures in FCA

Wille [14] presents closed relations to characterize complete sublattices of a
concept lattice. A relation J ⊆ I is called closed relation of a formal context
K = (G,M, I) if every concept of the context (G,M, J) is a concept of K as
well. Closed relations are linked to the complete sublattices of B(K) [7, chap.

Boolean Substructures in Formal Concept Analysis 41

3.3]: The set of all closed subrelations of K and all complete sublattices of B(K)
have a one-to-one correspondence. The bijection C(S) :=

⋃{A × B|(A,B) ∈ S}
maps the set of all complete sublattices to the set of all closed relations. By
limiting the lattice to an interval, the described one-to-one correspondence can
be found between the complete lattices of the interval and the closed relations
of the formal context associated to the interval.

A connection of the concept lattices of a formal context K = (G,M, I) and
its subcontext S = [H,N] is given by Ganter and Wille [7, Proposition 32] by the
two maps ϕ1 : B[H,N] → B(G,M, I), (A,B) �→ (A′′, A′) and ϕ2 : B[H,N] →
B(G,M, I), (A,B) �→ (B′, B′′). Both maps are order embeddings. This means
for all (A1, B1), (A2, B2) ∈ B[H,N] that (A1, B1) ≤ (A2, B2) in B[H,N] if and
only if ϕi(A1, B1) ≤ ϕi(A2, B2) in B(G,M, I) for both i ∈ {1, 2}. Hence, every
structure contained in B(S) also appears in B(K).

3 Related Work

In the field of Formal Concept Analysis, there are several approaches to analyze
smaller parts of a formal context or a concept lattice, as well as to investigate the
connection between the two data structures. In [2] local changes to a formal con-
text and their effects on the corresponding concept lattice, namely the number
of concepts, are explored. Albano [1] studies the impact of contranominal scales
in a formal context to the size of the corresponding concept lattice by giving an
upper bound for B(k)-free lattices. The approach of Wille [14] on the one-to-one
correspondence between closed subrelations of a formal context complete sub-
lattices of the associated concept lattice is the basis for the work of Kauer and
Krupke [9]. They investigate the problem of constructing the closed subrelation
referring to a complete sublattice generated by a given subset of elements while
not computing the whole concept lattice. Based on granulation as introduced
in [15] the authors of [12] analyze substructures of formal contexts and concept
lattices by considering them as granules that provide different levels of accuracy.

Also, many common methods deal with the detection of substructures in the
first place. They are based on the selection of structurally meaningful attributes
and objects of a formal context. For this purpose, Hanika et al. [8] search for
a relevant attribute set that reflects the original lattice structure and the dis-
tribution of the objects as good as possible. Considering many-valued contexts,
Ganter and Kuznetzov [6] select features based on their scaling. Another app-
roach is to generate a meaningful subset by selecting entire concepts directly
of the formal context by measuring their individual value for the context and
the associated concept lattice. A natural idea is the consideration of extent and
intent size of the concepts. Based on this, Kuznetsov [10] proposed a stability
measure for formal concepts, measuring the ratio of extent subsets generating
the same intent. Another measure, the support, was used by Stumme et al. [13]
to generate so-called iceberg lattices, which also have a use in the field of mining
of frequent association rules.

Besides meaningful reduction, altering the dataset is a standard method in
FCA, which is motivated by an attempt to reduce the complexity of the dataset

42 M. Koyda and G. Stumme

Fig. 1. Connections between the subcontexts of a formal context K and the suborders
of the corresponding concept lattice L := B(K). The set of all subsemilattices of L is

denoted by S̃OB(L).

or deal with noise. In this realm, Dias and Vierira investigate the replacement
of similar objects by a single representative [4]. Approximate frequent itemsets
have been investigated to handle noisy data [11], where the authors state an
additional threshold for both rows and columns of the dataset.

Since we aim to investigate existing substructures of formal contexts and
concept lattices, we turn away from those notions in general.

4 Boolean Subcontexts and Sublattices

In this work, we investigate Boolean substructures in formal contexts as well as
in the corresponding concept lattices. Therefore, as illustrated in Fig. 1, we link
the different substructures of a formal context with the substructures of the cor-
responding concept lattice. In this section we introduce the concrete definitions
that serve as a foundation to analyze those connections.

Definition 1. Let K be a formal context, S ≤ K. S is called Boolean subcontext
of dimension k of K, if B(S) ∼= B(k). S is called reduced if S is a reduced context.
The set of all Boolean subcontexts of dimension k of K and the set of all reduced
Boolean subcontexts of dimension k of K are denoted by SBk(K) and SRBk(K).

Note that a reduced Boolean subcontext of dimension k is isomorphic to the
contranominal scale N

c(k).

Boolean Substructures in Formal Concept Analysis 43

Fig. 2. Example of a formal context K = (G, M, I) with G = {1, 2, ..., 8} and M =
{a, b, ...e} containing three reduced Boolean subcontexts and its corresponding concept
lattice B(K). (Color figure online)

Definition 2. Let L be a lattice and S a suborder of L. S is called Boolean
suborder of dimension k if S ∼= B(k). If S is a sublattice of L, S is called Boolean
sublattice of dimension k. The set of all Boolean suborders of dimension k of a
lattice L is denoted by SOBk(L). The set of all Boolean sublattices of dimension
k of a lattice L is denoted by SLBk(L).

If all dimensions are considered, the number k is left out in the following.
Note that SLBk(L) is a subset of SOBk(L) and the standard context of a

Boolean lattice L of dimension k consists of a formal context K ∼= N
c(k) [7,

Proposition 12]. Conversely, a formal context K consisting of a reduced Boolean
subcontext of dimension k and an arbitrary number of additional reducible
attributes and objects has a corresponding concept lattice B(K) ∼= B(k).

For a better understanding of these structures, we introduce the example
given in Fig. 2. We will refer back to this illustration throughout the paper.

Example 1. S = ({4, 5, 6}, {b, c, d, e}, J) with J = I ∩ ({4, 5, 6} × {b, c, d, e}) is a
Boolean subcontext of dimension 3 of the formal context K given in Fig. 2. S is
not reduced, since dJ = eJ holds. However, S includes the reduced Boolean sub-
contexts S1 = [{4, 5, 6}, {b, c, d}] and S2 = [{4, 5, 6}, {b, c, e}]. The third reduced
Boolean subcontext in K is S3 = [{1, 2, 3}, {a, b, c}]. The concept lattice of K

in Fig. 2 contains 15 Boolean suborders of dimension 3, two of which are also
Boolean sublattices.

5 Closed-Subcontexts

At first, we leave the field of (Boolean) suborders and narrow our focus
on (Boolean) sublattices. On the context side, we introduce so-called closed-
subcontexts and show their one-to-one relationship to the sublattices of the con-
cept lattice.

44 M. Koyda and G. Stumme

In [14], Wille introduced closed relations of a context to characterize the
complete sublattices of its concept lattice. In finite lattices, complete sublattices
differ from (non-complete) sublattices in that they always include the top ele-
ment and the bottom element of the lattice. We adopt Wille’s construction to
match with (non necessarily complete) sublattices.

Definition 3. Let K = (G,M, I) and S = (H,N, J) be two formal contexts. We
call S closed-subcontext of K iff H ⊆ G, N ⊆ M , J ⊆ I ∩ (H × N) and every
concept of S is a concept of K as well. The set of all closed-subcontexts of K is
denoted by SC(K).

The sublattices of B(K) have a one-to-one correspondence to closed-
subcontexts of K as follows.

Theorem 1. Let K be a formal context and S be a sublattice of B(K). Then

KS := (
⋃

(A,B)∈S

A,
⋃

(A,B)∈S

B,
⋃

(A,B)∈S

A × B)

is a closed-subcontext of K. Conversely, for every closed-subcontext S of K, B(S)
is a sublattice of B(K).
Furthermore, the map f(S) := KS maps the set of sublattices of B(K) bijectively
onto the set of closed-subcontexts of K.

Proof. For each formal concept (A,B) ∈ S the formal concept (A,B) ∈ B(KS)
is due to construction a concept in K. On the other side let S = (H,N, J) be a
closed-subcontext of K. The concept set of S is a subset of the concept set of K

and therefore B(S) is a suborder of B(K). Let (A1, B1), (A2, B2) ∈ B(S). Let
(AS , BS) be the infimum of both in S and (AK , BK) the infimum of both in K.
So AS = A1 ∩ A2 = AK , which implies (AS , BS) = (AK , BK) since (AS , BS) is
by definition a concept in K. The dual argument shows that S is closed under
suprema. So B(S) is a sublattice of B(K). ��

Note that the closed-subsets of a formal context do not form a closure sys-
tem since the intersection of two closed-subcontexts, in general, is not a closed-
subcontext, even though the sublattices of formal concept do so.

In the construction of KS ,
⋃

(A,B)∈S A is the concept extent of the top element
of the sublattice and

⋃
(A,B)∈S B is the concept intent of its bottom element.

Lemma 1. Let K = (G,M, I) be a formal context and S = (H,N, J) a closed-
subcontext of K. Then H = G or m ∈ N with m′ = H exists. And N = M or
g ∈ H with g′ = N exists.

Proof. Due to Definition 3, every concept of S is a concept of K as well. In
particular, this has to hold for the concepts (∅′′, ∅′) and (H ′′,H ′) of S. ��

We provide next some basic statements about closed-subcontexts. Since the
following lemmas are based on the work of Wille [14] and lifted to our approach,
the proofs are similar to the ones in [7, Section 3.3].

Boolean Substructures in Formal Concept Analysis 45

Lemma 2. For every set T ⊆ B(G,M, I) there is a smallest closed-subcontext
S of K, that contains all (A×B) for (A,B) ∈ T . B(S) is the sublattice of B(K)
generated by T .

Proof. The proof follows the structure of the proof of Proposition 45 in [7]. ��
Lemma 3. S = (H,N, J) is a closed-subcontext of the formal context K =
(G,M, I) iff XJJ ⊇ XJI holds for each X ⊆ H and for each X ⊆ N .

Proof. The proof follows the structure of the proof of Proposition 46 in [7]. ��
Lemma 4. The closed-subcontexts (H,N, J) of (G,M, I) are exactly the sub-
contexts that satisfy the condition: (C) If (g,m) ∈ (H × N) and (g,m) ∈ I \ J
then (h,m) �∈ I for h ∈ H with gJ ⊆ hJ and (g, n) �∈ I for n ∈ N with mJ ⊆ nJ .

Proof. The proof follows the structure of the proof of Proposition 47 in [7]. ��
Lemma 5. Let K = (G,M, I) be a formal context. A clarified formal context
S = (H,N, J) is a closed-subcontext of K if and only if H ⊆ G, N ⊆ M and
J ⊆ I ∩ (H × N) ⊆ H × N \ (↗J ∪ ↙J).

Proof. The proof follows the structure of the proof of Proposition 49 in [7]. ��
Lemma 6. Let K = (G,M, I) be a formal context and (A,B) and (C,D) con-
cepts of K. Then (A,B,A × B), (A,M, I ∩ (A × M)) and (G,B, I ∩ (G × B))
are closed-subcontexts. If (A,B) ≤ (C,D) also (C,B, (A × B ∪ C × D)) and
(C,B, I ∩ (C × B)) are closed-subcontexts. The corresponding concept lattices
are given through B(A,B,A×B) = {(A,B)}, B(A,M, I ∩ (A×M)) = ((A,B)],
B(G,B, I ∩ (G × B)) = [(A,B)), B(C,B, (A × B ∪ C × D)) = {(A,B), (C,D)},
and B(C,B, I ∩ (C × B)) = [(A,B), (C,D)].

Proof. The proof follows the structure of the proof of Proposition 50 in [7]. ��
Also, the set of the arrow relations of a closed-subcontext S is a subset of the

set of the arrow relations of the original context K.

Lemma 7. Let K = (G,M, I) be a formal context and S = (H,N, J) a closed-
subcontext. Then ↗J⊆↗I and ↙J⊆↙I holds.

Proof. Let g ∈ H,m ∈ N and g ↙J m. Assumed g �↙I m. Then there exists
h ∈ G with gI ⊆ hI and (h,m) �∈ I. It follows gJ ⊆ gI∩(G×H) ⊆ hI∩(G×H) ⇒
h ∈ hI∩(G×H) ⊆ gJI = gJJ ⊆ H ⇒ gJ ⊆ hJ . This is a conflict to g ↙J m. ��

Now we transfer our approach to the field of Boolean substructures. To find
all Boolean sublattices (of dimension k) in a lattice B(K) the closed-subcontexts
of K that are Boolean subcontexts as well have to be found. Hence, Theorem 1
can be restricted in the following way:

Lemma 8. Let K be a formal context. S ∈ SLBk(B(K)) iff B(KS) ∼= B(k) for
KS = (

⋃
(A,B)∈S A,

⋃
(A,B)∈S B,

⋃
(A,B)∈S A × B).

46 M. Koyda and G. Stumme

To directly identify the Boolean closed-subcontexts in a formal context K,
the properties of closed-subcontexts can be utilized. Since every concept in
K is either retained or erased but not altered in a closed-subcontext S, the
Boolean structure of S has to be preserved from K. Every Boolean subcontext
T = (H,N, J) ∈ SRB(K) provides the Boolean structure. Lifting each concept
(AT, BT) ∈ B(T) to a concept (AK, BK) ∈ B(K) with AT ⊆ AK and BT ⊆ BK,
generates an extention of the sets H,N and J that provides a Boolean closed-
subcontext S = (H̃, Ñ , J̃) ∈ SC(K) as follows: H̃ := H ∪ ⋃

(AT,BT)∈B(T) AK,

Ñ := H ∪ ⋃
(AT,BT)∈B(T) BK and J̃ :=

⋃
(AT,BT)∈B(T)(AK × BK). This approach

is represented through the dotted lines in Fig. 1.

6 Connecting Boolean Suborders and Boolean
Subcontexts

In this section we investigate the relationship between Boolean subcontexts and
Boolean suborders. For this purpose, we use the embeddings ϕ1 and ϕ2 and
expand them to the set of Boolean subcontexts. Further, we present a construc-
tion to get from a Boolean suborder to a corresponding Boolean subcontext.
Both approaches are analyzed with focus on the structural information they
transfer and their interplay.

6.1 Embeddings of Boolean Substructures

To investigate the connection between Boolean subcontexts S of a formal context
K and Boolean suborders of B(K) we consider embeddings of B(S) in B(K).
Therefore we lift the embeddings ϕ1 and ϕ2 introduced in Sect. 2 to the level of
subcontexts and suborders:

ϕ1 : S(K) → SO(B(K)), S �→ ({ϕ1(C) | C ∈ B(S)},≤) and
ϕ2 : S(K) → SO(B(K)), S �→ ({ϕ2(C) | C ∈ B(S)},≤).

From the input (concept or context), it is clear whether the original or the
lifted versions of the embeddings ϕ1 and ϕ2 are used in the following. We will,
in particular, study these mappings for Boolean subcontexts. In this case, an
additional structural benefit arises: The images of reduced Boolean subcontexts
are sub-∨-semilattice and sub-∧-semilattices of the original concept lattice:

Lemma 9. Let K be a formal context, S = [H,N] ∈ SRBk(K). Then ϕ1(B(S))
is a sub-∨-semilattice of B(K) and ϕ2(B(S)) is a sub-∧-semilattice of B(K).

Proof. Consider ϕ1: Let J := I∩(H ×N) and (A,B) and (C,D) be two concepts
of B(S). Then ϕ1(A,B) ∨ ϕ1(C,D) = (A′′, A′) ∨ (C ′′, C ′) = ((A′′ ∪ C ′′)′′, (A′ ∩
C ′)) = ((A′ ∩ C ′)′, (A ∪ C)′) = ((A ∪ C)′′, (A ∪ C)′) and in addition ((A ∪
C)′′, (A∪C)′) = ϕ1((A∪C), (B∩D)) = ϕ1((A,B)∨(C,D)). Since S is a reduced
Boolean context, it includes all possible object combinations as extents so that
E = EJJ holds for every E ⊆ H. Therefore, in B(S) holds (A,B) ∨ (c;D) =
((A ∪ C)JJ , B ∩ D) = (A ∪ C,B ∩ D). The procedure for ϕ2 is analogous. ��

Boolean Substructures in Formal Concept Analysis 47

Note that this conclusion does not hold for Boolean reducible subcontexts,
e.g., the formal context given in Fig. 2 and its subcontext S = [{1237}, {abce}].

The images of the two maps of a reduced Boolean context are in general just a
sub-∨-semilattice and a sub-∧-semilattice, respectively. Hence, the images of ϕ1

and ϕ2 have to be identical for S ∈ SRBk(K) to generate a lattice. This means
ϕ1(A,B) = (A′′, A) = (B′, B′′) = ϕ2(A,B) has to hold for all (A,B) ∈ B(S).

For every subcontext S = (H,N, J) ≤ K we can differ between the four
cases: Case 1 with A′ = AJ = B, B′ = BJ = A, case 2 with A′ = AJ = B,
A = BJ ⊂ B′, case 3 with B = AJ ⊂ A′, B′ = BJ = A and case 4 with
B = AJ ⊂ A′, A = BJ ⊂ B′. The condition under which ϕ1(A,B) = ϕ2(A,B)
holds is the following:

Lemma 10. Let K = (G,M, I) be a formal context and S ≤ K. ϕ1(S) = ϕ2(S)
holds if and only if for all (A,B) ∈ B(S) (A′ \ B) × (B′ \ A) ⊆ I holds. If case
1, 2 or 3 holds for all (A,B) ∈ B(S), then ϕ1(S) = ϕ2(S) holds directly.

Proof. For a concept (A,B) ∈ B(S) the identity of both embeddings leads to
ϕ1(A,B) = ϕ2(A,B) ⇔ (A′′, A′) = (B′, B′′) = (B′, A′) ⇔ (B′ × A′) ⊆ I. This
set can be written as B′ ×A′ = A×B ∪ (B′ \A)×B ∪ A×(A′ \B) ∪ (B′ \A)×
(A′\B). We know A×B ⊆ I since (A,B) ∈ B(S) and A×A′ ⊆ I and B′×B ⊆ I
by definition of the ·′ operator. The remaining part equals (A′ \ B) × (B′ \ A).
In cases 1 to 3 (A′′, A′) = (B′, B′′) holds by construction. ��
Proposition 1. Let K = (G,M, I) be a formal context and S = [H,N] ∈
SBk(K). If H = G or N = M , then ϕ1(S) = ϕ2(S) holds.

However, the relationship between the images of both mappings ϕ1 and ϕ2

of a specific concept is always (not only in the Boolean case) the same, namely:

Proposition 2. Let K be a formal context and S ≤ K. Then ϕ1(A,B) ≤
ϕ2(A,B) for all (A,B) ∈ B(S).

In particular, an interval containing exactly the concepts (C,D) ∈ B(K)
with A ⊆ C and B ⊆ D exists between ϕ1(A,B) and ϕ2(A,B) with ϕ1(A,B)
as its bottom element and ϕ2(A,B) as its top element. In the extreme case, this
interval can comprise all of B(K), as the following example shows.

Example 2. Let K be the formal context in Fig. 3 and S = [{1, 2}, {a, b}] ≤ K.
For the concept (A,B) = ({1, 2}, {a, b}) of S, ϕ1(A,B) = ({1, 2}, {a, b, c, d}) and
ϕ2(A,B) = ({1, 2, 3, 4}, {a, b}) hold. These are the bottom and the top element
of the whole concept lattice of K.

This raises the question whether there is a concept lattice where a Boolean
suborder exists that can not be obtained by embedding. This is indeed the case
also in Fig. 2; see, e.g., the Boolean order marked with filled red circles.

An approach to make any Boolean suborder of a (concept) lattice reachable
is to expand K by additional objects and attributes so that every formal concept
C ∈ B(K) can be generated by one object and by one attribute. For a (concept)

48 M. Koyda and G. Stumme

Fig. 3. An example of a formal
context K and its subcontext
S = [{1, 2}, {a, b}] = [A, B] with
[ϕ1(A, B), ϕ2(A, B)] = B(K).

Fig. 4. Example of a formal context K

with |SRB3(K)| = |SOB3(B(K))| = 4.

lattice L this is the case with the context K = (L,L,≤). Here S ∈ SOBk(L) is
the image of both ϕ1(S) and ϕ2(S) for the Boolean subcontext S = (S, S,≤).

Since we are interested in the connections between the existence of Boolean
subcontexts on the one hand and the existence of Boolean suborders on the other
hand, we observe a first relationship between these sets.

Lemma 11. Let K be a formal context, SBk(K) �= ∅. Then SOBk(B(K)) �= ∅.
Proof. Let S ∈ SBk(K). By definition B(S) ∼= B(k). Since ϕ1 : B(S) �→ B(K) is
an order embedding ϕ1(B(S)) is a Boolean suborder of dimension k in B(K).��

In general the images of ϕ1(S) and ϕ2(S) are neither lattices nor semilattices.
However, we know from Lemma 9 that if S is a reduced Boolean subcontext and
ϕ1(B(S)) = ϕ2(B(S)) holds, there exists a Boolean sublattice S of the same
dimension in B(K). We can generalize the previous statement as follows:

Lemma 12. Let K be a clarified formal context and S1, S2 ∈ SRBk(K) with
S1 = [H1, N1], S2 = [H2, N2] and S1 �= S2. If H1 �= H2, then ϕ1(S1) �= ϕ1(S2)
holds. If N1 �= N2, then ϕ2(S1) �= ϕ2(S2) holds.

Proof. Since S1, S2 ∈ SRBk(K), |H1| = |H2| holds. If H1 �= H2 holds, g1 ∈ H1

with g1 �∈ H2 and g2 ∈ H2 with g2 �∈ H1 exist. Since S1 and S2 are reduced and
Boolean there is a concept C1 = (g1, g′′

1) ∈ B(S1) and a concept C2 = (g2, g′′
2) ∈

B(S2). Hence K is clarified, ϕ1(C1) = (g′′
1 , g′

1) �= (g′′
2 , g′

2) = ϕ1(C2). If N1 �= N2

holds, the analogous procedure can be executed using ϕ2. ��
Based on this statement, we can assume that the total number of reduced

Boolean subcontexts of a formal context K is a lower bound of the total number
of Boolean suborders of B(K):

Boolean Substructures in Formal Concept Analysis 49

Conjecture 1. Let K be a clarified formal context with |SRBk(K)| = n. Then
|SOBk(B(K))| ≥ n holds.

This conjecture can not be proved as straight forward as Lemma 12 since ϕ1

and ϕ2 can be identical for some S ∈ SRBk(K). In addition not every Boolean
suborder is the image of ϕ1(S) or ϕ2(S) for a S ∈ SRBk(K). Both phenomena
occur in the example given in Fig. 4, where the marked Boolean suborder is
not the image of the embedding by ϕ1 or ϕ2 of any Boolean subcontext con-
tained in the given formal context, although in this case the number of Boolean
subcontexts of dimension 3 and Boolean suborders of dimension 3 is identical.

6.2 Subconcepts Associated to Suborders

After investigating mappings of Boolean subcontexts to Boolean suborders, we
now analyze the connection between those substructures the other way around.
As presented by Albano and Chornomaz [3, Prop. 1] every formal context K

contains a Boolean subcontext S ∈ SBk(K) if B(K) contains a Boolean suborder
S ∈ SOBk(B(K)). Based on this statement, we introduce a construction to
generate a (not necessarily reduced) Boolean subcontext of a formal context
based on a Boolean suborder of the corresponding concept lattice.

Definition 4. Let K be a formal context and S ∈ SOBk(B(K)). We
call ψ(S) := [H,N] with H :=

⋃
C∈At(S) minGobj(C) and N :=

⋃
C∈CoAt(S) minGatt(C) the subcontext of K associated to S.

Indeed the structure arising from the construction given in Definition 4 is a
Boolean subcontext of the same dimension as S:

Lemma 13. Let K be a formal context, S ∈ SOBk(B(K)) and S = [H,N] :=
ψ(S) the subcontext of K associated to S. Then S ∈ SBk(K).

Proof. Let At(S) = {A1, A2, ..., Ak} and CoAt(S) = {C1, C2, ..., Ck}. Due to the
Boolean structure of S the atoms can be ordered holding the following condition:
Ai is a lower bound for the set CoAt(S) \ Ci for all 1 ≤ i ≤ k and analogous Ci

is an upper bound for the set At(S) \ Ai for all 1 ≤ i ≤ k. It follows gIm for all
g ∈ minobjG(Ai), m ∈ N \ minGatt(Ci) and g � Im else. So S ∼= N

c(k). ��
In the following, we study the interplay of the mapping ψ from suborders to

subcontexts with the mappings ϕ1 and ϕ2 from subcontexts to suborders.

Lemma 14. Let K be a formal context and S = [H,N] ∈ SRBk(K). Then
S = ψ(ϕ1(S)) iff for all n ∈ N (n′, n′′) ∈ CoAt(ϕ1(S)) holds and S = ψ(ϕ2(S))
holds iff for all h ∈ H (h′′, h′) ∈ At(ϕ2(S)) holds.

Proof. Consider ϕ1: Let ψ(ϕ1(S)) = [H̃, Ñ], H = {h1, h2, ..., hk} and N =
{n1, n2, ..., nk}. Due to the construction of ϕ1 At(ϕ1(S)) = {A1, A2, ..., Ak} with
Ai = (h′′

i , h′
i). Since every hi is a minimal object generator of an atom of ϕ1(S)

H̃ = H holds. Let CoAt(ϕ1(S)) = {C1, C2, ..., Ck}. Ñ consists of the minimal

50 M. Koyda and G. Stumme

attribute generators of the coatoms of ϕ1(S). Following, Ñ = N if and only if a
renumbering of the coatoms exists so that Ci = (n′

i, n
′′
i) for all i ∈ {1, 2, ..., k}.

The procedure for ϕ2 is analogous. ��
Example 3. Let K be the formal context in Fig. 4 and S1 = [{1, 2, 3}, {a, b, c}],
S2 = [{2, 3, 4}, {a, b, c}], S3 = [{1, 2, 3}, {b, c, d}] and S4 = [{2, 3, 4}, {b, c, d}]) its
reduced Boolean subcontexts of dimension 3. Then S1 = ψ(ϕ1(S1)) = ψ(ϕ2(S1)),
S2 = ψ(ϕ2(S2)) and S3 = ψ(ϕ1(S3)) hold.

Lemma 15. Let K be a formal context, S ∈ SOBk(B(K)), S := ψ(S). Let
C ∈ S \ {0S , 1S} with either C not being the supremum (in B(K)) of a subset of
At(S) or C not being the infimum (in B(K)) of a subset of CoAt(S). Then (A,B)
with A =

⋃{minGobj(X) | X ∈ At(S),X ≤ C} and B =
⋃{minGatt(X) | X ∈

CoAt(S),X ≥ C} is a concept of S with ϕ1(A,B) �= ϕ2(A,B).

Proof. According to the construction of S there is a concept (A,B) ∈ B(S) as
stated. If C is not the supremum of a subset of At(S), especially A does not
generate C. Therefore ϕ1(A,B) = (A′′, A′) < C, due to the construction of A.
Also ϕ2(A,B) = (B′, B′′) ≥ C and consequently ϕ1(A,B) < ϕ2(A,B). Similarly,
if C is not the infimum of a subset of CoAt(S), ϕ1(A,B) = (A′′, A′) ≤ C,
ϕ2(A,B) = (B′, B′′) > C and ϕ1(A,B) < ϕ2(A,B). ��
Lemma 16. Let K be a formal context, S ∈ SOB(B(K)). Then ϕ1(ψ(S)) is a
sub-∨-semilattice and ϕ2(ψ(S)) is a sub-∧-semilattice of B(K).

Proof. Let S = [H,N] := ψ(S). H is the set of all minimal generators of the
atoms of S. Due to the Boolean structure, all concepts in K that are generated
by a subset of H are exactly the supremum of a subset of At(S). Since this
generation corresponds to mapping the concepts C ∈ B(S) with ϕ1, ϕ1(S) is a
sub-∨-semilattice. The second part of the statement is proved similarly. ��
Definition 5. Let K be a formal context, S ∈ SOBk(B(K)). We call ϕ1(ψ(S))
the sub-∨-sublattice of B(K) associated to S and ϕ2(ψ(S)) the sub-∧-sublattice
of B(K) associated to S.

The statement in Lemma 16 holds especially for a S being a Boolean sub-
semilattice or a Boolean sublattice of B(K) and provides ϕ1(ψ(S)) = S and
ϕ2(ψ(S)) = S, respectively, as follows.

Lemma 17. Let K be a formal context and S ∈ SOBk(B(K)). If S is a sub-∨-
semilattice, ϕ1(ψ(S)) = S. If S is a sub-∧-semilattice, ϕ2(ψ(S)) = S.

Proof. Let S be a sub-∨-semilattice and S = [H,N] := ψ(S). H is the set of
minimal generators of the atoms of S. Due to the Boolean structure all concepts
in B(K) that are generated by a subset of H are exactly the supremums of
a subset of the atoms of S. Since this generation corresponds to mapping the
concepts C ∈ B(S) with ϕ1, every image of ϕ1(C) is contained in S. The second
statement is proved similarly. ��

Boolean Substructures in Formal Concept Analysis 51

Fig. 5. Example of a formal context that shows that neither ϕ1 and ψ nor ϕ2 and ψ
are (dually) adjoint mappings.

Proposition 3. Let K be a formal context and S ∈ SLBk(B(K)) a sublattice.
Then ϕ1(ψ(S)) = ϕ2(ψ(S)) = S.

Our research can be concluded in the following theorems. They give an insight
into the interplay of ϕ1, ϕ2 and ψ and the structural properties they transfer.

Theorem 2. Let K be a formal context and S ∈ SB(K). Then:

i) ψ(ϕ1(S)) = S iff a sub-∨-semilattice S ∈ SOB(B(K)) exists with ψ(S) = S.
ii) ψ(ϕ2(S)) = S iff a sub-∧-semilattice S ∈ SOB(B(K)) exists with ψ(S) = S.
iii) ψ(ϕ1(S)) = ψ(ϕ2(S)) = S iff a S ∈ SLB(B(K)) exists with ψ(S) = S.

Furthermore, if S is reduced, ϕ1(S) = ϕ1(ψ(ϕ1(S))) and ϕ2(S) = ϕ2(ψ(ϕ2(S))).

Proof. Consider i): (⇒) follows directly from Lemma 16 since S is the subcontext
corresponding to the suborder ϕ1(S). (⇐) is presented in Lemma 17. ii) is proved
similarly and iii) follows from the combination of i) and ii). The last statement
follows from the combination of Lemma 9 and Lemma 15. ��
Theorem 3. Let K be a formal context and S ∈ SOB(B(K)).

i) Then ϕ1(ψ(S)) = S iff S is a sub-∨-semilattice.
ii) Then ϕ2(ψ(S)) = S iff S is a sub-∧-semilattice.
iii) Then ϕ1(ψ(S)) = ϕ2(ψ(S)) = S iff S is a sublattice.

Proof. Consider i): (⇒) follows directly from Lemma 16. (⇐) is presented in
Lemma 17, ii) is proved similarly, iii) follows from combining i) and ii). ��

Altough ϕ1 and ψ (or ϕ2 and ψ) seem to be (dually) adjoint mappings,
they are not. E.g., in Fig. 5 consider the subcontexts S1 = [{1, 2, 3, 4}, {a, b, c}],
S = [{1, 2, 3, 4, 5}, {a, b, c}], and S2 = [{1, 2, 3, 4, 5, 6}, {a, b, c}]. It holds ϕ1(S1) =
ϕ1(S2) = ϕ1(S) = ϕ2(S2) = ϕ2(S1) – the image is highlighted in the line diagram,
and its associated context is S. This shows that ψ ◦ ϕ1 is neither monotonic nor
anti-monotonic, and the same holds for ψ ◦ ϕ2.

52 M. Koyda and G. Stumme

7 Interplay of Both Approaches

In the previous sections, two approaches to relate Boolean substructures of a
formal context K with those of the corresponding concept lattice B(K) were
introduced. In this section, we set both of them in relation.

In Sect. 5 a one-to-one correspondence between the closed-subcontexts of a
formal context K and the sublattices of B(K) is presented. However, subsemi-
lattices and suborders are not addressed. In addition, the closed-subcontexts
restrict not only the object set and the attribute set of a formal context but also
its incidence relation, whereby they could be understood as a more substantial
altering of K compared to the approach presented in Sect. 6. It provides differ-
ent maps to associate specific Boolean suborders on the one side with Boolean
subcontexts on the other side while transferring some structural information.

The intersection of both approaches is localised in the Boolean subcontexts
that are closed-subcontexts as well and in general the subcontexts S ≤ K with
C ∈ B(K) for all C ∈ B(S).

Lemma 18. Let K be a formal context. S ≤ K is a closed-subcontext of K iff
ϕ1(C) = ϕ2(C) = C for all C ∈ B(S).

This statement can be restricted to Boolean subcontexts. E.g., the Boolean
subcontext S = [G, {a, b, c}] in Fig. 2 fulfils the requirement. In general, the set
of the Boolean subcontexts of K that are closed-subcontexts is smaller than the
set of all Boolean sublattices of B(K). So not every Boolean sublattice of B(K)
can be reached by an embedding of a subcontext of such a structure. Refering
to those structures we expand the statement of Lemma 11 as follows:

Lemma 19. Let K be a formal context and S ∈ SBk(K) with S a closed-
subcontext of K. Then S := ϕ1(S) = ϕ2(S) ∈ SLBk(B(K)).

However, in general the subcontext S̃ associated to S is not equal to S. E.g.
in Fig. 2 the subcontext S = [G, {a, b, c}] is embedded to a Boolean sublattice S
but the sublattice, that is associated to S is S̃ = [{1, 2, 3, 4}, {a, b, c}].

8 Conclusion

This work relates Boolean substructures in a formal context K with those in
its concept lattice B(K). The notion of closed-subcontexts of K is presented
to generalize closed relations and provide a one-to-one correspondence to the
set of all sublattices of B(K) using a direct construction. In particular, this
relationship can be restricted to the set of all Boolean closed-subcontexts of K,
that can be generated based on the set of all reduced Boolean subcontexts of K,
and all Boolean sublattices of B(K). Moreover, we investigated two embeddings
of Boolean subcontexts of K into B(K). The images of those embeddings are,
in general, not sub(semi)lattices but only Boolean suborders and do not cover
SOB(K) completely. Through the introduction of the subcontext S associated
to a Boolean suborder S of B(K), the investigated connection is investigated

Boolean Substructures in Formal Concept Analysis 53

the other way around. The combination of both approaches give an insight of
their interplay and the structural information they transfer. Through this every
subsemilattice S can be associated with a concrete subcontext, that can be
mapped to S by one of the two embeddings.

We conclude this work with two open questions. First, we are curious to which
amount the presented findings can be transferred to general substructures of
(not necessarily finite) formal contexts and their corresponding concept lattices.
Secondly, we are interested in consideration of other special substructures, e.g.,
the subcontexts of a concept lattice isomorphic to a nominal scale, as those scales
also contain nearly identical objects that differ only in one attribute.

References

1. Albano, A.: Polynomial growth of concept lattices, canonical bases and generators:
extremal set theory in formal concept analysis. Ph.D. thesis, SLUB Dresden (2017)

2. Albano, A.: Rich subcontexts. arXiv preprint arXiv:1701.03478 (2017)
3. Albano, A., Chornomaz, B.: Why concept lattices are large - extremal theory for the

number of minimal generators and formal concepts. In: International Conference
on Concept Lattices and Their Applications. CEUR Workshop Proceedings, vol.
1466, pp. 73–86. CEUR-WS.org (2015)

4. Dias, S.M., Vieira, N.: Reducing the size of concept lattices: the JBOS approach.
In: International Conference on Concept Lattices and Their Applications. CEUR
Workshop Proceedings, vol. 672, pp. 80–91. CEUR-WS.org (2010)

5. Felde, M., Hanika, T.: Formal context generation using Dirichlet distributions. In:
Endres, D., Alam, M., Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530,
pp. 57–71. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23182-8 5

6. Ganter, B., Kuznetsov, S.O.: Scale coarsening as feature selection. In: Medina, R.,
Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 217–228. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0 16

7. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

8. Hanika, T., Koyda, M., Stumme, G.: Relevant attributes in formal contexts. In:
Endres, D., Alam, M., Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp.
102–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23182-8 8

9. Kauer, M., Krupka, M.: Generating complete sublattices by methods of formal
concept analysis. Int. J. Gen Syst 46(5), 475–489 (2017)

10. Kuznetsov, S.: Stability as an estimate of the degree of substantiation of hypotheses
derived on the basis of operational similarity. Autom. Doc. Math. Linguist. 24
(1990)

11. Liu, J., Paulsen, S., Sun, X., Wang, W., Nobel, A.B., Prins, J.F.: Mining approxi-
mate frequent itemsets in the presence of noise: algorithm and analysis. In: Inter-
national Conference on Data Mining, pp. 407–418 (2006)

12. Qi, J., Wei, L., Wan, Q.: Multi-level granularity in formal concept analysis. Gran-
ular Comput. 4(3), 351–362 (2018). https://doi.org/10.1007/s41066-018-0112-7

13. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

14. Wille, R.: Bedeutungen von Begriffsverbänden. In: Beiträge zur Begriffsanalyse,
pp. 161–211. B.I.-Wissenschaftsverlag, Mannheim (1987)

15. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

http://arxiv.org/abs/1701.03478
https://doi.org/10.1007/978-3-030-23182-8_5
https://doi.org/10.1007/978-3-540-78137-0_16
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-030-23182-8_8
https://doi.org/10.1007/s41066-018-0112-7

Rules

Enumerating Maximal Consistent Closed
Sets in Closure Systems

Lhouari Nourine and Simon Vilmin(B)

LIMOS, Université Clermont Auvergne, Aubière, France
lhouari.nourine@uca.fr, simon.vilmin@ext.uca.fr

Abstract. Given an implicational base and an inconsistency binary
relation over a finite set, we are interested in the problem of enumer-
ating all maximal consistent closed sets (denoted by MCCEnum for
short). We show that MCCEnum cannot be solved in output-polynomial
time unless P = NP, even for lower bounded lattices. We give an
incremental-polynomial time algorithm to solve MCCEnum for closure
systems with constant Carathéodory number. Finally we prove that in
biatomic atomistic closure systems MCCEnum can be solved in output-
quasipolynomial time if minimal generators obey an independence con-
dition, which holds in atomistic modular lattices. For closure systems
closed under union (i.e. distributive), MCCEnum is solved by a polyno-
mial delay algorithm [23,26].

Keywords: Closure systems · Implicational base · Inconsistency
relation · Enumeration algorithm

1 Introduction

In this paper, we consider binary inconsistency relations (i.e. graphs) and impli-
cational bases [8,33] over a same groundset. More precisely, we are interested
in the enumeration of maximal closed sets of a closure system given by an
implicational base that are consistent with respect to an inconsistency relation.
We call this problem Maximal Consistent Closed Sets Enumeration, or
MCCEnum for short.

This problem finds applications for instance in minimization of sub-modular
functions [23] or argumentation frameworks [13]. More generally, inconsistency
relations combined with posets appear also in event structures [29], represen-
tations of median-semilattices [4] or cubical complexes [2] in which the term
“inconsistency” is used. Recently in [22,23], the authors derive a representation
for modular semi-lattices based on inconsistency and projective ordered spaces
[21]. Furthermore, they characterize the cases where given an implicational base
and an inconsistency relation, maximal consistent closed sets coincide with max-
imal independent sets of the inconsistency relation, seen as a graph.

S. Vilmin—The second author is funded by the CNRS, France, ProFan project. This
research is also supported by the French government IDEXISITE initiative 16-IDEX-
0001 (CAP 20-25).
c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 57–73, 2021.
https://doi.org/10.1007/978-3-030-77867-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_4

58 L. Nourine and S. Vilmin

The problem MCCEnum is also a particular case of dualization in clo-
sure systems given by an implicational bases, ubiquitous in computer science
[8,12,16]. This latter problem however cannot be solved in output-polynomial
time unless P = NP [3] even when the input implicational base has premises of
size at most two [11]. When restricted to graphs and implicational bases with
premises of size one, or posets, the problem can be solved in polynomial delay
[23,26].

In this paper, we show first that enumerating maximal consistent closed
sets cannot be solved in output-polynomial time unless P = NP, even for the
well-known class of lower bounded lattices [1,10,17]. This surprising result fur-
ther emphasizes the hardness of dualization in lattices given by implicational
bases [3,11]. On the positive side, we show that when the maximal size of
minimal generators is bounded by a constant, the problem can be solved in
incremental-polynomial time. As a direct corollary, we obtain that MCCEnum
can be solved efficiently in several classes of convex geometries where this param-
eter, also known as the Carathéodory number, is constant [27]. Finally, we focus
on biatomic atomistic closure systems [6,9]. We show that under an indepen-
dence condition, the size of a minimal generator is logarithmic in the size of the
groundset. As a consequence, we get a quasi-polynomial time algorithm for enu-
merating maximal consistent closed sets which can be applied to the well-known
class of atomistic modular lattices [19,21,30,32].

The rest of the paper is organized as follows. Section 2 gives necessary defi-
nitions about closure systems and implicational bases. In Sect. 3 we show that
MCCEnum cannot be solved in output-polynomial time, in particular for lower
bounded closure systems. In Sect. 4, we show that if the size of a minimal gen-
erator is bounded by a constant, MCCEnum can be solved efficiently. Section 5
is devoted to the class of biatomic atomistic closure systems. We conclude with
open questions and problems in Sect. 6.

2 Preliminaries

All the objects considered in this paper are finite. Let X be a set. We denote
by 2X its powerset. For any n ∈ N, we write [n] for the set {1, . . . , n}. We will
sometimes use the notation x1 . . . xn as a shortcut for {x1, . . . , xn}. The size of
a subset A of X is denoted by |A|. If H = (X, E) is a hypergraph, we denote
by IS(H) its independent sets (or stable sets). We write MIS(H) for its maximal
independent sets. Similarly, if G = (X,E) is a graph, its independent sets (resp.
maximal independent sets) are written IS(G) (resp. MIS(G)).

We recall principal notions on lattices and closure systems [19]. A mapping
φ : 2X → 2X is a closure operator if for any Y,Z ⊆ X, Y ⊆ φ(Y) (extensive),
Y ⊆ Z implies φ(Y) ⊆ φ(Z) (isotone), and φ(φ(Y)) = φ(Y) (idempotent). We
call φ(Y) the closure of Y . The family F = {φ(Y) | Y ⊆ X} ordered by set-
inclusion forms a closure system or lattice. A closure system F ⊆ 2X is a set
system such that X ∈ F and for any F1, F2 ∈ F , F1 ∩ F2 also belongs to F .
Elements of F are closed sets and we say that F is closed if F ∈ F . Each closure

Enumerating Maximal Consistent Closed Sets 59

system F induces a unique closure operator φ such that φ(Y) =
⋂{F ∈ F | Y ⊆

F}, for any Y ⊆ X. Thus, there is a one-to-one correspondence between closure
systems and operators. In this paper, We assume that φ and F are standard :
φ(∅) = ∅ and for any x ∈ X, φ(x)\{x} is closed. Note that ∅ is thus the minimum
element of F , called the bottom. Similarly, X is the top of F .

Let φ be a closure operator with corresponding closure system F . Let F1, F2 ∈
F . We say that F1 and F2 are comparable if F1 ⊆ F2 or F2 ⊆ F1. They are
incomparable otherwise. A subset S of F is an antichain if its elements are
pairwise incomparable. If for any F ∈ F , F1 ⊂ F ⊆ F2 implies F = F2, we say
that F2 covers F1, and denote it F1 ≺ F2. An atom is a closed set covering the
bottom ∅ of F . Dually, a co-atom is a closed set covered by the top X of F . We
denote by C(F) the set of co-atoms of F . Let M ∈ F . We say that M is meet-
irreducible in F if for any F1, F2 ∈ F , M = F1 ∩ F2 entails either F1 = M or
F2 = M . In this case, M has a unique cover M∗ in F . The set of meet-irreducible
elements of F is denoted by M(F). Dually, J ∈ F is a join-irreducible element of
F if for any F1, F2 ∈ F , J = φ(F1∪F2) implies J = F1 or J = F2. Then, J covers
a unique element J∗ in F . We denote by J (F) the join-irreducible elements of
F . When F and φ are standard, there is a one-to-one correspondence between X
and J (F) given by J (F) = {φ(x) | x ∈ X}. Furthermore, x∗ = φ(x)∗ = φ(x)\x.
Consequently, we will identify X with J (F).

Let x ∈ X. A minimal generator of x is an inclusion-wise minimal subset Ax

of X such that x ∈ φ(Ax). We consider {x} as a trivial minimal generator of x.
Following [27], the Carathéodory number c(F) of F is the least integer k such
that for any A ⊆ X and any x ∈ X, x ∈ φ(A) implies the existence of some
A′ ⊆ A with |A′| ≤ k such that x ∈ φ(A′). At first, this notion was used for
convex geometries, but its definition applies to any closure system. Moreover, the
Carathéodory number of F is the maximal possible size of a minimal generator
(see Proposition 4.1 in [27], which can be applied to any closure system). A key
of F is a minimal subset K ⊆ X such that φ(K) = X. We denote by K the
set of keys of F . The number of keys in K is denoted by | K |. It is well-known
(see for instance [12]) that maximal independent sets MIS(K) of K, viewed as a
hypergraph over X, are exactly co-atoms of F . We define arrow relations from
[18]. Let x ∈ X and M ∈ M(F). We write x ↑ M if x /∈ M but x ∈ M∗. Dually,
we write M ↓ x if x /∈ M but x∗ ⊆ M .

We move to implicational bases [8,33]. An implication is an expression of the
form A→ B with A,B ⊆ X. We call A the premise and B the conclusion. A set
Σ of implications over X is an implicational base over X. We denote by |Σ| the
number of implications in Σ. A subset F ⊆ X satisfies or models Σ if for any
A→ B ∈ Σ, A ⊆ F implies B ⊆ F . The family F = {F ⊆ X | F satisfies Σ}
is a closure system whose induced closure operator φ can be computed by the
forward chaining algorithm. This procedure starts from any subset Y of X and
constructs a sequence Y = Y0 ⊆ · · · ⊆ Yk = φ(Y) of subsets of X such that for
any i ∈ [k], Yi = Yi−1 ∪ ⋃{B | ∃A→ B ∈ Σ s.t.A ⊆ Yi−1}. The algorithm stops
when Yi−1 = Yi. Given an implicational base Σ and an implication A→ B, we

60 L. Nourine and S. Vilmin

say that A→ B holds in Σ if for any F ⊆ X, F satisfies A→ B if it satisfies Σ.
We say that Σ is standard if the associated closure system F is standard.

Fig. 1. On the left, a consistency-graph Gc over X = {1, 2, 3, 4, 5} with incon-
sistent pairs 34, 24 and 25. On the right, the closure system associated to Σ =
{13→ 2, 12→ 3, 23→ 1, 4→ 1}. Black and white dots stand for inconsistent and con-
sistent closed sets respectively. We have maxCC(Σ, Gc) = {145, 123, 35}.

We now introduce the main problem. Following [2,22,23] we call an incon-
sistency relation any symmetric and irreflexive relation over X. Such a relation
is sometimes called a site [4] or a conflict relation [29]. Usually, inconsistency
relations need to satisfy more conditions in order to capture median or modular-
semilattices [4,22]. As we do not need further restrictions here, we can choose
to model inconsistency as a graph Gc = (X,Ec), and call it a consistency-graph.
An edge uv of Ec represents an inconsistent pair of elements in X. A subset Y
which does not contain any inconsistent pair (i.e. an independent set of Gc) is
called consistent. Let Σ be an implicational base over X and a Gc = (X,Ec)
consistency-graph. We denote by maxCC(Σ,Gc) the set of maximal consistent
closed sets of F , that is maxCC(Σ,Gc) = max⊆(F ∩ IS(Gc)). If Gc is empty, X
is the unique element of maxCC(Σ,Gc). Hence, we will assume without loss of
generality that Gc is not empty. An example of implicational base along with a
consistency-graph is given in Fig. 1. Our problem is the following.

Maximal Consistent closed-sets Enumeration (MCCEnum)
Input: A standard implicational base Σ over X, a non-empty consistency-
graph Gc = (X,Ec).
Output: The set maxCC(Σ,Gc) of maximal consistent closed sets of F with
respect to Gc.

The standard property for Σ is crucial. If Σ is non-standard, MCCEnum
becomes equivalent to the more general problem of dualization in lattices given
by implicational bases, where a hypergraph H = (X, E) is given instead of a
graph Gc. This problem cannot be solved in output-polynomial time unless P =
NP [3,11]. Let Σ be an implicational base over some X and H = (X, E) a
hypergraph. To each Ei ∈ E , we create a new pair of vertices xi, yi such that

Enumerating Maximal Consistent Closed Sets 61

φ(yi) = φ(xi) = φ(Ei). This amounts to add the implications Ei → xi, xi → yi

and yi → Ei to Σ. The edges of Gc are the pairs xiyi for any Ei ∈ E . Then, a
closed set in the resulting closure system will be consistent with respect to Gc

if and only if it is an independent set of H.
If Σ is empty, then MCCEnum is equivalent to the enumeration of maximal

independent sets of a graph which can be efficiently solved [24]. If premises of Σ
have size 1, the problem also reduces to maximal independent sets enumeration
[23,26]. In [22] the authors identify, for a fixed Σ, the consistency-graphs Gc

such that MIS(Gc) = maxCC(Σ,Gc).
We conclude with a recall on enumeration algorithms [24]. Let A be an

algorithm with input x and output a set of solutions R(x). We denote by |R(x)|
the number of solutions in R(x). We assume that each solution in R(x) has size
poly(|x|). The algorithm A is running in output-polynomial time if its execution
time is bounded by poly(|x| + |R(x)|). It is incremental-polynomial if for any
1 ≤ i ≤ |R(x)|, the time spent between the i-th and i + 1-th output is bounded
by poly(|x|+ i), and the algorithm stops in time poly(|x|) after the last output. If
the delay between two solutions output and after the last one is poly(|x|), A has
polynomial-delay. Note that if A is running in incremental-polynomial time, it is
also output-polynomial. Finally, we say that A runs in output-quasipolynomial
time if is execution time is bounded by Npolylog(N) where N = |x| + |R(x)|.

3 Closure Systems Given by Implicational Bases

Let Σ be an implicational base over X and Gc a non-empty consistency-graph.
Observe that IS(Gc) ∪ {X} is a closure system where a set F ⊆ X is closed
if and only if F = X or it is an independent set of Gc. From this point of
view, elements of maxCC(Σ,Gc) are those maximal proper subsets of X that
are both closed in F and IS(Gc) ∪ {X}. In other words, the maximal consistent
closed sets maxCC(Σ,Gc) of F with respect to Gc are exactly the co-atoms of
F∩(IS(Gc)∪{X}). An implicational base for this closure system is Σ∪{uv → X |
uv ∈ Ec}. Consequently, MCCEnum is a restricted version of the following
problem

Co-atoms Enumeration (CE)
Input: An implicational base Σ over a set X.
Output: The co-atoms C(F) of the closure system F associated to Σ.

where there exists at least one implication of the form uv → X in Σ (or holding
in Σ). In [26], the authors prove that CE cannot be solved in output-polynomial
time unless P = NP. To show that even MCCEnum is intractable, in particular
in lower bounded closure systems, we use a generalization of CE:

Dualization of a set (DualS)
Input: An implicational base Σ over X, and B ⊆ X.
Output: The family of maximal closed sets F of F such that B � F .

62 L. Nourine and S. Vilmin

Note that CE is the particular case of DualS where B = X. For a given Σ
and B, let us denote by max(Σ,B) the family max⊆{F ∈ F | B � F}. We first
need the following preparatory lemma.

Lemma 1. Let ΣY be an implicational base over Y , and B ⊆ Y . Let X =
Y ∪ {u, v}, Σ = ΣY ∪ {B → uv} and let Gc = (X,Ec = {uv}) be a consistency-
graph. The following equality holds:

maxCC(Σ,Gc) =
⋃

C∈max(ΣY ,B)

{C ∪ {u}, C ∪ {v}} (1)

Proof. Let C be an element in max(ΣY , B). We show that C ∪ {u} and C ∪ {v}
are in maxCC(Σ,Gc). As no implication of Σ has u or v in its premise, we
have that C ∪ {u} and C ∪ {v} are consistent and closed with respect to Σ.
Let y ∈ Y \ C. As C ∈ max(ΣY , B), it must be that B ⊆ φY (C ∪ {y}). Since
B → uv is an implication of Σ, it follows that uv ⊆ φ(C ∪ {u, y}). Thus, for any
x ∈ X \ (C ∪ {u}), φ(C ∪ {u, x}) is inconsistent. We conclude that C ∪ {u} ∈
maxCC(Σ,Gc). Similarly we obtain C ∪ {v} ∈ maxCC(Σ,Gc).

Let S ∈ maxCC(Σ,Gc). We show that S can be written as C ∪{u} or C ∪{v}
for some C in max(ΣY , B). First, let F be a consistent closed set in F such that
u /∈ F and v /∈ F . As Σ has no implication with u or v in its premise, it follows
that both F ∪ {u} and F ∪ {v} are closed and consistent. Hence, either u ∈ S
or v ∈ S. Without loss of generality, let us assume u ∈ S. Let C = S \ {u}.
As S ∈ maxCC(Σ,Gc), it is closed with respect to ΣY and does not contain B.
Thus, C ∈ FY and B � C. Let y ∈ Y \ C. As S ∈ maxCC(Σ,Gc), it must be
that φ(S ∪ {y}) contains the inconsistent pair uv of Gc. Hence, B ⊆ φ(S ∪ {y})
by construction of Σ. Consequently, we have that B ⊆ φY (C ∪ {y}) for any
y ∈ Y \ C. Hence, we conclude that C ∈ max(ΣY , B) as expected. ��

Therefore, if there is an algorithm solving MCCEnum in output-polynomial
time, it can be used to solve DualS within the same running time using the
reduction of Lemma 1. Consequently, we have the following theorem.

Theorem 1. The problem MCCEnum cannot be solved in output-polynomial
time unless P = NP.

In fact, we can strengthen the preceding theorem by a careful analysis of
the closure system used in the reduction in [11,26]. More precisely, we show
that the problem remains untractable for lower bounded closure systems. These
have been introduced with the doubling construction in [10] and then studied
in [1,7,17]. More precisely, a lattice is lower bounded if it is obtained from a
boolean lattice by repeated duplications of lower pseudo-intervals.

A characterization of lower bounded lattices is given in [17] in terms of the D-
relation. This relation relies on J (F) and we say that x depends on y, denoted by
xDy if there exists a meet-irreducible element M ∈ M(F) such that x ↑ M ↓ y,
see for instance Lemma 11.10 in [17]. A D-cycle is a sequence x1, . . . , xk of
elements of X such that x1Dx2D . . . DxkDx1.

Enumerating Maximal Consistent Closed Sets 63

Theorem 2. (Reformulated from Corollary 2.39, [17]) A closure system F is
lower bounded if and only if it contains no D-cycle.

Corollary 1. The problem MCCEnum cannot be solved in output-polynomial
time unless P = NP, even in lower bounded closure systems.

Proof. We start from the implicational base of [11], where the authors show that
DualS cannot be solved in output-polynomial time unless P = NP even if Σ has
premises of size at most two. Then, we use Lemma 1 and show that the resulting
closure system is lower bounded.

Following [11], consider a positive 3-CNF over n variables and m clauses

ψ(x1, . . . , xn) =
m∧

i=1

Ci =
m∧

i=1

(xi,1 ∨ xi,2 ∨ xi,3)

Let Y = {x1, . . . xn, y1, . . . , ym, z} and consider the following sets of implications:

– Σ1 = {xi,kxi,� → z | i ∈ [m] and k, � ∈ [3], k �= �},
– Σ2 = {yi → z | i ∈ [m]},
– Σ3 = {xi,kz → yi | i ∈ [m], k ∈ [3]}.

And let ΣY = Σ1 ∪ Σ2 ∪ Σ3. In [11] the authors show that DualS is already
intractable for these instances with B = {y1 . . . ym, z}. Observe that in gen-
eral, no implication of the form uv → Y holds in ΣY , so that a straightforward
identification with MCCEnum is not possible.

Therefore, applying Lemma 1, we obtain that MCCEnum cannot be solved
in output-polynomial time in the following case: X = Y ∪ {u, v}, Σ = ΣY ∪
{B → uv}, Gc = (X,Ec = {uv}).

Let us show that F , the closure system associated to Σ, is indeed lower
bounded. We proceed by analysing the D-relation. Observe first that F is stan-
dard. We begin with u, v. Let t ∈ X \ {u} and M ∈ M(F) such that t ↑ M .
As no premise of Σ contains u, it must be that for any F ∈ F , F ∪ {u} ∈ F .
In particular, we deduce that u ∈ M . Hence for any t ∈ X \ {u}, t does not
depend on u. Applying the same reasoning on v, we obtain that no D-cycle can
contain u or v. Let xi ∈ X, i ∈ [n]. As xi is the conclusion of no implication
in Σ, we have that the unique meet-irreducible element Mi satisfying xi ↑ Mi is
X \ xi. Therefore, there is no element in X \ {xi} on which xi depends, so that
no D-cycle can contain xi, for any i ∈ [n]. Let us move to z. As yj → z ∈ Σ for
any j ∈ [m], we have yj∗ = φ(yj)∗ = {z}. Hence, zDyj cannot hold since M ↓ yj

implies z ∈ M , for any M ∈ M(F). Thus, z only depends on some of the xi’s,
i ∈ [n], and no D-cycle can contain z either.

Henceforth, the only possible D-cycles must be contained in {y1, . . . , ym}.
We show that for any i, k ∈ [m], yiDyk does not hold. For any yi, i ∈ [m], we
have yi∗ = {z} as yi → z ∈ Σ. Hence, a meet-irreducible element Mi satisfying
yi ↑Mi ↓ yk must contain z. Let F ∈ F be any closed set satisfying yi /∈ F but z ∈
F . Assume there exists some yk such that yk /∈ F . Then F ∪{yk} ∈ F , as yk → z
is the only implication having yk in its premise, and z ∈ F . Therefore, it must be

64 L. Nourine and S. Vilmin

that for any Mi ∈ M(F) such that z ∈ Mi and yi /∈ Mi, {y1, . . . , ym}\{yi} ⊆ Mi

is verified, so that yi ↑ Mi ↓ yk is not possible. As a consequence yiDyk cannot
hold, for any i, k ∈ [m]. We conclude that F has no D-cycles and that it is lower
bounded by Theorem 2. ��

Therefore, there is no algorithm solving MCCEnum in output-polynomial
time unless P = NP even when restricted to lower bounded closure systems. In
the next section, we consider classes of closure systems where MCCEnum can
be solved in incremental-polynomial time.

4 Minimal Generators with Bounded Size

In this section, we identify classes of closure systems for which MCCEnum can
be solved in output-polynomial time. Let Σ be an implicational base over X and
Gc a non-empty consistency-graph. Recall that elements of maxCC(Σ,Gc) are
exactly the co-atoms of F ∩ (IS(Gc) ∪ {X}). Therefore, maxCC(Σ,Gc) can be
obtained as MIS(K), where K is the set of keys of F ∩ (IS(Gc) ∪ {X}).
Remark 1. In general, F ∩ (IS(Gc) ∪ {X}) does not belong to the same class as
F (distributive, modular, lower bounded, ...). Hence, for a given class of closure
system, MCCEnum differ from CE. For instance if F = 2X , CE is trivial while
MCCEnum requires to enumerate maximal independent sets of Gc.

Now, if we can guarantee that any element of K has constant size, then
K has polynomial size with respect to Gc, Σ and X. Hence, we can derive an
incremental-polynomial time algorithm computing maxCC(Σ,Gc) in two steps:

1. Compute the set of keys K,
2. Compute MIS(K) = maxCC(Σ,Gc).

To identify such cases, we have to characterize elements of K. To do so, we
have to guarantee that a set Y ⊂ X contains a key of K whenever Y or φ(Y) is
inconsistent with respect to Gc. Looking at Gc is sufficient to distinguish between
consistent and inconsistent closed sets of F . However, there may be consistent
(non-closed) sets Y such that φ(Y) contains an edge of Gc. These will not be
seen by just considering Gc. Thus, if uv is the edge of Gc contained in φ(Y), we
deduce that there must be a minimal generator Au of u contained in Y , possibly
Au = {u}. Similarly, Y contains a minimal generator Av of v. The fact that Gc

is a graph plays an important role here, as it guarantees that Y can be identified
by combining only two minimal generators, one for each vertices of some edge
in Gc. In particular, keys in K will share the following property.

Proposition 1. Let K ∈ K. Then there exists uv ∈ Ec, a minimal generator
Au of u, and a minimal generator Av of v such that K = Au ∪ Av.

Proof. Let K ∈ K. As φ(K) = X in F ∩ (IS(Gc) ∪ {X}) and Ec is non-empty
by assumption, there exists an edge uv of Gc such that uv is in the closure of
K with respect to Σ. Thus, there exist minimal generators Au of u and Av of v

Enumerating Maximal Consistent Closed Sets 65

such that Au ∪ Av ⊆ K. Assume that Au ∪ Av ⊂ K and let x ∈ K \ (Au ∪ Av).
As u ∈ φ(Au) and v ∈ φ(Av), we get uv ∈ φ(K \ {x}), a contradiction with the
minimality of K. ��
Example 1. We consider Σ, X and Gc of Fig. 1. We have that φ(135) = 1235
is inconsistent as it contains 25. However 135 is consistent with respect to Gc.
For this example, we will have K = {135, 34, 24, 25}. Note that 135 can be
decomposed following Proposition 1 as the minimal generator 13 of 2, and 5 as
a trivial minimal generator for itself.

Remark that Ec � K in the general case, as there may be an implication u → v
in Σ for some inconsistent pair uv ∈ Ec. Thus u is a key which satisfies Propo-
sition 1 with Au = Av = {u}. It also follows from Proposition 1 that c(F), the
maximum size of a minimal generator or Carathéodory number of F , plays an
important role for MCCEnum. When no restriction on c(F) holds, K can have
exponential size with respect to Σ and Gc. The next example drawn from [26]
illustrates this exponential growth.

Example 2. Let X = {x1, . . . , xn, y1, . . . , yn, u, v} and Σ = {xi → yi | i ∈ [n]} ∪
{y1 . . . yn → uv}. The consistency-graph is Gc = (X, {uv}). The set of non-trivial
minimal generators of u and v is {z1 . . . zn | zi ∈ {xi, yi}, i ∈ [n]}. Moreover,
minimal generators of u and v are also the keys of F ∩ (IS(Gc) ∪ {X}). Thus,
| K | = 2n, which is exponential with respect to Σ and G. Observe that Σ is
acyclic [20,33]: for any x, y ∈ X if y belongs to some minimal generator of x,
then x is never contained in a minimal generator of y.

Hence, computing maxCC(Σ,Gc) through the intermediary of K is in general
impossible in output-polynomial time. In fact, this exponential blow up occurs
even for small classes of closure systems where the Carathéodory number c(F)
is unbounded. In Example 2 for instance, the closure system induced by Σ is
acyclic [20,33], a particular case of lower boundedness [1].

On the other hand, let us assume now that c(F) is bounded by some constant
k ∈ N. Then, by Proposition 1, every key in K has at most 2 × k elements. As
a consequence we show in the next theorem that the two-steps algorithm we
described can be conducted in incremental-polynomial time.

Theorem 3. Let Σ be an implicational base over X with induced F , and Gc =
(X,Ec) a consistency-graph. If c(F) ≤ k for some constant k ∈ N, the problem
MCCEnum can be solved in incremental-polynomial time.

Proof. The set of keys K can be computed in incremental-polynomial time with
respect to K, Σ, X and Gc using the algorithm of Lucchesi and Osborn [28]
with input Σ′ = Σ ∪ {uv → X | uv ∈ Ec}. Observe that the closure system
associated to Σ′ is exactly F ∩ {IS(Gc) ∪ {X}}. Indeed, a consistent closed set
of F models Σ′ and a subset F ⊆ X which satisfies Σ′ must also satisfy Σ and
being an independent set of Gc if F ⊂ X. Note that K is then computed in
time poly(|Σ|+ |X|+ |Gc|+ | K |). As the total size of K is bounded by |X|2k by
Proposition 1, we get that K is computed in time poly(|Σ| + |X| + |Gc|).

66 L. Nourine and S. Vilmin

Then, we apply the algorithm of Eiter and Gottlob [14] to compute MIS(K) =
maxCC(Σ,Gc) which runs in incremental polynomial time. Since K has polyno-
mial size with respect to |X|, the delay between the i-th and (i+1)-th solution of
maxCC(Σ,Gc) output is bounded by poly(|X|2k+i), that is poly(|X|+i). Further-
more, the delay after the last output is also bounded by poly(|X|2k) = poly(|X|).
As the time spent before the first solution output is poly(|Σ| + |X| + |Gc|), the
whole algorithm has incremental delay as expected. ��

To conclude this section, we show that Theorem 3 applies to various classes
of closure systems known in the theory of convex geometries [27].

A closure system F is distributive if for any F1, F2 ∈ F , F1 ∪ F2 ∈ F .
Implicational bases of distributive closure systems have premises of size one [19].

Let P = (X,≤) be a partially ordered set, or poset. A subset Y ⊆ X is
convex in P if for any triple x ≤ y ≤ z, x, z ∈ Y implies y ∈ Y . The family
{Y ⊆ X | Y is convex in P} is known to be closure system over X [9,25].

Let G = (X,E) be a graph. We say that G is chordal if it has no induced
cycle of size ≥ 4. A chord in a path from x to y is an edge connecting to non-
adjacent vertices of the path. A subset Y of X is monophonically convex in G if
for every pair x, y of elements in Y , every z ∈ X which lies on a chordless path
from x to y is in Y . The family {Y ⊆ X | Y is monophonically convex in G} is
a closure system [15,27].

Finally, let X ⊆ Rn, n ∈ N, be a finite set of points, and denote by ch(Y)
the convex hull of Y . The set system {ch(Y) | Y ⊆ X} forms a closure system
[27] usually known as an affine convex geometry.

Corollary 2. Let Σ be an implicational base over X and Gc = (X,Ec).
MCCEnum can be solved in incremental-polynomial time in the following cases:

– F is distributive,
– F is the family of convex subsets of a poset,
– F is The family of monophonically convex subsets of a chordal graph has

Carathéodory number at most 2,
– F is an affine convex geometry in Rk for a fixed constant k.

Proof. Distributive lattices have Carathéodory number 1 as they can be rep-
resented by implicational bases with singleton premises. The family of convex
subsets of a poset has Carathéodory number 2 [25] (Corollary 13). The family of
monophonically convex subsets of a chordal graphs have Carathéodory number
at most 2 [15] (Corollary 3.4). The Carathéodory number of an affine convex
geometry in Rk is k − 1 (see for instance [27], p. 32). ��

In the distributive case, the algorithm can perform in polynomial delay using
the algorithm of [24] since K will be a graph by Proposition 1. This connects
with previous results on distributive closure systems by Kavvadias et al. [26].

Enumerating Maximal Consistent Closed Sets 67

5 Biatomic Atomistic Closure Systems

In this section, we are interested in biatomic atomistic closure systems. Namely,
we show that when minimal generators obey an independence condition, the size
of X is exponential with respect to c(F). To do so, we show that in biatomic
atomistic closure systems, each subset of a minimal generator is itself a minimal
generator. This result applies to atomistic modular closure systems, which can be
represented by implications with premises of size at most two [32]. This suggests
that MCCEnum becomes more difficult when implications have binary premises.

First, we need to define atomistic biatomic closure systems. Let F be a closure
system over X with associated closure operator φ. We say that F is atomistic
if for any x ∈ X, φ(x) = {x}. Equivalently, F is atomistic if its join-irreducible
elements equal its atoms. Note that in a standard closure system, an atom is a
singleton element. Biatomic closure systems have been studied by Birkhoff and
Bennett in [6,9]. We reformulate their definition in terms of closure systems. A
closure system F is biatomic if for every closed sets F1, F2 ∈ F and any atom
{x} ∈ F , x ∈ φ(F1 ∪ F2) implies the existence of atoms {x1} ⊆ F1, {x2} ⊆ F2

such that x ∈ φ(x1x2). In atomistic closure systems in particular, the biatomic
condition applies to every element of X. Hence the next property of biatomic
atomistic closure systems.

Proposition 2. Let F be a biatomic atomistic closure system. Let F ∈ F and
x, y ∈ X with x, y /∈ F . If y ∈ φ(F ∪ {x}), then there exists an element z ∈ F
such that y ∈ φ(xz).

Proof. In atomistic closure systems, every element of X is closed, therefore we
apply the definition to the closed sets F and {x}. ��

We will also make use of the following folklore result about minimal genera-
tors. We give a proof for self-containment.

Proposition 3. If Ax is a minimal generator of x ∈ X, then φ(A) ∩ Ax = A
for any A ⊆ Ax.

Proof. First, we have that A ⊆ φ(A) ∩ Ax as A ⊆ φ(A) and A ⊆ Ax. Now
suppose that there exists a ∈ φ(A)∩ Ax such that a /∈ A. Then, a ∈ φ(Ax \ {a})
as A ⊆ Ax\{a}. Hence, φ(Ax) = φ(Ax\{a}) and x ∈ φ(Ax\{a}), a contradiction
with Ax being a minimal generator of x. ��

Our first step is to show that in a biatomic atomistic closure system, if Ax

is a minimal generator for some x ∈ X, then every non-empty subset A of Ax is
itself a minimal generator for some y ∈ X. We prove this statement in Lemmas
2 and 3. Recall that an element x ∈ X is a (trivial) minimal generator of itself.

Lemma 2. Let x ∈ X and let Ax be a minimal generator of x with size k ≥ 2.
Then for any ai ∈ Ax, i ∈ [k], there exists yi ∈ X such that Ax \ {ai} is a
minimal generator of yi.

68 L. Nourine and S. Vilmin

Proof. Let Ax = {a1, . . . , ak} be a minimal generator of x such that k ≥ 2. Then,
for any ai ∈ Ax, i ∈ [k], we have ai /∈ φ(Ax \ {ai}) by Proposition 3. However,
we have x ∈ φ({ai}∪φ(Ax \{ai})) = φ(Ax). Thus, by Proposition 2, there must
exists yi ∈ φ(Ax \ {ai}) such that x ∈ φ(aiyi).

Let us show that Ax \ {ai} is a minimal generator of yi. Assume for contra-
diction this is not the case. As yi ∈ φ(Ax \ {ai}), there must be a proper subset
A of Ax \ {ai} which is a minimal generator for yi. Note that since Ax has at
least 2 elements, at least one proper subset of Ax \{ai} exists. As A ⊂ Ax \{ai},
there exists aj ∈ Ax, aj �= ai, such that aj /∈ A. Therefore, A ⊆ Ax \ {aj} and
φ(A) ⊆ φ(Ax \ {aj}). More precisely, yi ∈ φ(A) and hence yi ∈ φ(Ax \ {aj}).
However, we also have that ai ∈ φ(Ax \ {aj}) as ai ∈ Ax, ai �= aj , and since
x ∈ φ(aiyi), we must have x ∈ φ(Ax \ {aj}), a contradiction with Ax being a
minimal generator of x. Thus, we deduce that Ax \ {ai} is a minimal generator
for yi, concluding the proof. ��

In the particular case where Ax has only two elements, say a1 and a2, then
Ax \ {a1} = {a2} and the element a2 is a trivial minimal generator of itself. By
using inductively Lemma 2 on the size of Ax, one can derive the next straight-
forward lemma.

Lemma 3. Let F be a biatomic atomistic closure system. Let Ax be a minimal
generator of some x ∈ X. Then, for any A ⊆ Ax with A �= ∅, there exists y ∈ X
such that A is a minimal generator of y.

Thus, for a given minimal generator Ax of x, any non-empty subset A of
Ax is associated to some y ∈ X. We show next than when Ax also satisfies
an independence condition, A will be the unique subset of Ax associated to y.
Following [19], we reformulate the definition of independence in an atomistic
closure system F , but restricted to its atoms. A subset Y of X is independent
in F if for any Y1, Y2 ⊆ Y , φ(Y1 ∩ Y2) = φ(Y1) ∩ φ(Y2).

Lemma 4. Let F be a biatomic atomistic closure system. Let Ax be an indepen-
dent minimal generator of x ∈ X, and let A be a non-empty subset of Ax. Then,
there exists y ∈ X such that A is the unique minimum subset of Ax satisfying
y ∈ φ(A).

Proof. Let Ax be an independent minimal generator of x ∈ X, and let A be
a non-empty subset of Ax. By Lemma 3, there exists y ∈ X such that A is a
minimal generator for y, which implies y ∈ φ(A).

To prove that A is the unique minimum subset of Ax such that y ∈ φ(A), we
show that for any B ⊆ Ax such that A � B, y ∈ φ(B) cannot hold. Consider
B ⊆ Ax with A � B and suppose that y ∈ φ(B). Note that B must exist as the
empty set is always a possible choice. Since y ∈ φ(A), we have y ∈ φ(A)∩ φ(B).
Furthermore, φ(A ∩ B) ⊂ φ(A) as A ∩ B ⊂ A and φ(A ∩ B) ∩ Ax = A ∩ B by
Proposition 3. Moreover, Ax is independent, so that φ(A) ∩ φ(B) = φ(A ∩ B).
Hence, y ∈ φ(A ∩ B) ⊂ φ(A), a contradiction with A being a minimal generator
of y. ��

Enumerating Maximal Consistent Closed Sets 69

Hence, when Ax is independent, each non-empty subset A of Ax is the unique
minimal generator of some y being included in Ax. As a consequence, we obtain
the following theorem.

Theorem 4. Let F be a biatomic atomistic closure system. If for any x ∈ X and
any minimal generator Ax of x, Ax is independent, then c(F) ≤ �log2(|X|+1)�.
Proof. Let Ax be a minimal generator of x, x ∈ X such that c(F) = |Ax|. As
Ax is a minimal generator, φ(A) �= φ(A′) for any distinct A,A′ ⊆ Ax, due to
Proposition 3. Furthermore Ax is independent by assumption. Thus, by Lemma
4, for each non-empty subset of A, there exists y ∈ X such that A is the unique
minimum subset of Ax with y ∈ φ(A). Consequently, X must contain at least
2|Ax| − 1 elements in order to cover each non-empty subset of Ax, that is 2|Ax| −
1 ≤ |X|, which can be rewritten as |Ax| = c(F) ≤ �log2(|X|+1)� as required. ��

Now let F be a biatomic atomistic closure system on X given by some impli-
cational base Σ and let Gc = (X,Ec) be a consistency-graph. Assume that every
minimal generator is independent. By Theorem 4, we have that |X| has expo-
nential size with respect to c(F), and by Proposition 1, it must be that the size
of a key in K cannot exceed 2×�log2(|X|+1)�. Thus, with respect to Σ, Gc and
X, K will have size quasi-polynomial in the worst case. Using the same algorithm
as in Sect. 4, we obtain the next theorem.

Theorem 5. Let Σ be an implicational base of a biatomic atomistic closure
system F over X and Gc a consistency-graph. If for any x ∈ X and any minimal
generator Ax of x, Ax is independent, then MCCEnum can be solved in output-
quasipolynomial time.

Proof. For clarity, we put n = |X| and k as the total size of the output MIS(K).
K can be computed in incremental-polynomial time with the algorithm in [28].
Furthermore, by Theorem 4, the total size of K is bounded by nlog(n). Thus,
this first step runs in time poly(|Σ| + |Gc| + n + nlog(n)), which is bounded by
poly(|Σ| + |Gc| + n)log(n) being quasipolynomial in the size of Σ, Gc, K and
X. To compute MIS(K) = maxCC(Σ,Gc) we use the algorithm of Fredman and
Khachiyan [16] whose running time is bounded by (nlog(n) + k)o(log(n

log(n)+k)).
In our case, we can derive the following upper bounds:

(nlog(n) + k)o(log(n
log(n)+k)) ≤ (k + n)log(n)×o(log(k+n)log(n))

≤ (k + n)O(log3(k+n))

Thus, the time needed to compute MIS(K) from K is output-quasipolynomial in
the size of X and maxCC(Σ,Gc). Consequently, the running time of the whole
algorithm is bounded by

poly(|Σ| + |Gc| + n)log(n) + (k + n)O(log3(k+n))

which is indeed quasipolynomial in the size of the input Σ, X, Gc and the output
MIS(K) = maxCC(Σ,Gc). ��

70 L. Nourine and S. Vilmin

To conclude this section, we show that atomistic modular closure systems
[19,30] satisfy conditions of Theorem 5. Recall that a closure system F is modular
if for any F1, F2, F3 ∈ F , F1 ⊆ F2 implies φ(F1 ∪ (F2 ∩ F3)) = φ(F1 ∪ F3) ∩ F2.
It was proved for instance in [6] (Theorem 7) that atomistic modular closure
systems are biatomic. To show that any minimal generator is independent, we
make use of the following result.

Theorem 6. (Reformulated from [19], Theorem 360) Let F be a modular clo-
sure system. A subset A = {a1, . . . , ak} ⊆ X is independent if and only if
φ(a1) ∩ φ(a2) = φ(a1a2) ∩ φ(a3) = · · · = φ(a1 . . . ak−1) ∩ φ(ak) = ∅.
Proposition 4. Let F be an atomistic modular closure system. Let Ax be a
minimal generator of some x ∈ X. Then Ax is independent.

Proof. Let Ax = {a1, . . . , ak} be a minimal generator for some x ∈ X. Then, by
Proposition 3, φ(a1 . . . ai) ∩ Ax = a1 . . . ai for any i ∈ [k]. Furthermore, φ(a) =
{a} for any a ∈ X since F is atomistic. Thus we conclude that φ(a1 . . . ai) ∩
φ(ai+1) = ∅ for any i ∈ [k − 1] as ai+1 /∈ a1 . . . ai. It follows by Theorem 6 that
Ax is indeed independent. ��
Corollary 3. Let Σ be an implicational base over X and Gc = (X,Ec). Then
MCCEnum can be solved in output-quasipolynomial time if:

– F is biatomic atomistic and has Carathéodory number 2 (including convex
subsets of a poset and monophonically convex sets of a chordal graph),

– F is atomistic modular.

Proof. For the first statement, note that in an atomistic closure system with
Carathéodory number 2, any minimal generator Ax contains exactly two ele-
ments a1, a2. Since F is atomistic, a1 and a2 are closed and the independence of
Ax follows. If F is atomistic modular, biatomicity follows from [6] (Theorem 7),
and independence from Proposition 4. ��
Remark 2. For atomistic modular closure systems, the connection between the
size of X and the Carathéodory number may also be derived from counting
arguments on subspaces of vector spaces [31].

6 Conclusions

In this paper we proved that given a consistency-graph over and an implica-
tional base over a finite set, the enumeration of maximal consistent closed sets
is impossible in output-polynomial time unless P = NP. Moreover, we showed
that this problem, called MCCEnum, is already intractable for the well-known
class of lower bounded closure systems. On the positive side, we proved that
when the size of a minimal generator is bounded by a constant, the enumeration
of maximal consistent closed sets can be conducted in incremental polynomial
time. This result covers various classes of convex geometries. Finally, we proved

Enumerating Maximal Consistent Closed Sets 71

Fig. 2. The complexity of MCCEnum in the hierarchy of closure systems

that in biatomic atomistic closure systems, MCCEnum can be solved in output-
quasipolynomial time provided minimal generators obey an independence con-
dition. This applies in particular to atomistic modular closure systems. In Fig. 2,
we summarize our results in the hierarchy of closure systems.

For future research, we would like to understand which properties or parame-
ters of closure systems affect the tractability of the problem. We have seen that a
bounded Carathéodory number gives an incremental-polynomial time algorithm,
while lower boundedness makes the problem intractable. Another question is the
following: is the problem still hard if the closure system is given by a context
(equivalently, its meet-irreducible elements)? The question is particularly inter-
esting for classes such as semidistributive lattices where we can compute the
context in polynomial time in the size of an implicational base [5].

Acknowledgment. Authors would like to thank reviewers for their useful corrections
and suggestions, in particular on standard closure systems.

References

1. Adaricheva, K.: Optimum basis of finite convex geometry. Discrete Appl. Math.
230, 11–20 (2017)

2. Ardila, F., Owen, M., Sullivant, S.: Geodesics in CAT(0) cubical complexes. Adv.
Appl. Math. 48(1), 142–163 (2012)

3. Babin, M.A., Kuznetsov, S.O.: Dualization in lattices given by ordered sets of
irreducibles. Theoret. Comput. Sci. 658, 316–326 (2017)

4. Barthélemy, J.-P., Constantin, J.: Median graphs, parallelism and posets. Discrete
Math. 111(1–3), 49–63 (1993)

5. Beaudou, L., Mary, A., Nourine, L.: Algorithms for k-meet-semidistributive lat-
tices. Theoret. Comput. Sci. 658, 391–398 (2017)

6. Bennett, M.K.: Biatomic lattices. Algebra Univers. 24(1–2), 60–73 (1987)
7. Bertet, K., Caspard, N.: Doubling convex sets in lattices: characterizations and

recognition algorithms. Order 19(2), 181–207 (2002). https://doi.org/10.1023/A:
1016524118566

https://doi.org/10.1023/A:1016524118566
https://doi.org/10.1023/A:1016524118566

72 L. Nourine and S. Vilmin

8. Bertet, K., Demko, C., Viaud, J.-F., Guérin, C.: Lattices, closures systems and
implication bases: a survey of structural aspects and algorithms. Theoret. Comput.
Sci. 743, 93–109 (2018)

9. Birkhoff, G., Bennett, M.K.: The convexity lattice of a poset. Order 2(3), 223–242
(1985). https://doi.org/10.1007/BF00333128

10. Day, A.: A simple solution to the word problem for lattices. Can. Math. Bull. 13(2),
253–254 (1970)

11. Defrain, O., Nourine, L.: Dualization in lattices given by implicational bases. The-
oret. Comput. Sci. 814, 169–176 (2020)

12. Demetrovics, J., Libkin, L., Muchnik, I.B.: Functional dependencies in relational
databases: a lattice point of view. Discrete Appl. Math. 40(2), 155–185 (1992)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

14. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

15. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alge-
braic Discrete Methods 7(3), 433–444 (1986)

16. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

17. Freese, R., Ježek, J., Nation, J.B.: Free Lattices, vol. 42. American Mathematical
Society, Providence (1995)

18. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012)

19. Grätzer, G.: Lattice Theory: Foundation. Springer, Heidelberg (2011)
20. Hammer, P.L., Kogan, A.: Quasi-acyclic propositional horn knowledge bases: opti-

mal compression. IEEE Trans. Knowl. Data Eng. 7(5), 751–762 (1995)
21. Herrmann, C., Pickering, D., Roddy, M.: A geometric description of modular lat-

tices. Algebra Univers. 31(3), 365–396 (1994)
22. Hirai, H., Nakashima, S.: A compact representation for modular semilattices and

its applications. Order 37(3), 479–507 (2020). https://doi.org/10.1007/s11083-019-
09516-0

23. Hirai, H., Oki, T.: A compact representation for minimizers of k-submodular func-
tions. J. Comb. Optim. 36(3), 709–741 (2018). https://doi.org/10.1007/s10878-
017-0142-0

24. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

25. Kashiwabara, K., Nakamura, M.: Characterizations of the convex geometries aris-
ing from the double shellings of posets. Discrete Math. 310(15–16), 2100–2112
(2010)

26. Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models of
a Boolean expression. Inf. Process. Lett. 74(3–4), 157–162 (2000)

27. Korte, B., Lovász, L., Schrader, R.: Greedoids, vol. 4. Springer, Heidelberg (2012)
28. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci.

17(2), 270–279 (1978)
29. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,

part I. Theoret. Comput. Sci. 13(1), 85–108 (1981)
30. Stern, M.: Semimodular Lattices: Theory and Applications, vol. 73. Cambridge

University Press, Cambridge (1999)
31. Wild, M.: The minimal number of join irreducibles of a finite modular lattice.

Algebra Univers. 35(1), 113–123 (1996)

https://doi.org/10.1007/BF00333128
https://doi.org/10.1007/s11083-019-09516-0
https://doi.org/10.1007/s11083-019-09516-0
https://doi.org/10.1007/s10878-017-0142-0
https://doi.org/10.1007/s10878-017-0142-0

Enumerating Maximal Consistent Closed Sets 73

32. Wild, M.: Optimal implicational bases for finite modular lattices. Quaest. Math.
23(2), 153–161 (2000)

33. Wild, M.: The joy of implications, aka pure horn formulas: mainly a survey. The-
oret. Comput. Sci. 658, 264–292 (2017)

A New Kind of Implication to Reason
with Unknown Information

Francisco Pérez-Gámez(B) , Pablo Cordero , Manuel Enciso ,
and Angel Mora

University of Malaga, Malaga, Spain
{franciscoperezgamez,pcordero,enciso,amora}@uma.es

Abstract. Formal Concept Analysis (FCA) extracts knowledge from
an object-attribute relation. In the classical case, it focuses on positive
information, i.e. attributes that are satisfied by objects. Several papers
have recently been published extending FCA to manage negative infor-
mation, i.e. attributes that are not satisfied by objects. However, the
study of unknown information –being unknown, whether it is positive or
negative value– is an issue to be explored. In this paper, we approach
this problem by using a 4-valued logic. Specifically, given a context with
partial information that corresponds to a 3-valued relation, we define a
4-valued Galois connection from where we extend the notions of concept
and implication. Also, we present Amstrong’s axioms in this new frame-
work, and we prove that this inference system is sound and complete.

Keywords: Implications · Unknown information · Galois connection ·
Logic

1 Introduction

Since Wille’s introduction of Formal Concept Analysis (FCA) in the early 80s
[22], it has established itself as a very successful mathematical approach to knowl-
edge management, with a rich theory as well as numerous practical applications.
Essentially, FCA provides methods for data analysis, knowledge representation,
information management and reasoning [9]. From a data-set (called formal con-
text) describing a set of objects and their attributes, FCA extracts knowledge
that can mainly be represented in two different ways: by formal concepts ordered
in a hierarchy or by attribute implications [10]. Formal concepts represent sets
of objects with common attributes, whereas implications can be seen as Horn
formulas describing relations between sets of attributes. Implications should nat-
urally lead to the use of logic to automate reasoning. The success of FCA is based
on its solid mathematical foundations, which lie in the notions of Galois connec-
tion and closure operator in the Boolean algebras of attribute/object sets.

Supported by Grants TIN2017-89023-P and PRE2018-085199 of the Science and Inno-
vation Ministry of Spain and UMA2018-FEDERJA-001 of the Junta de Andalucia, and
European Social Fund.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 74–90, 2021.
https://doi.org/10.1007/978-3-030-77867-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_5&domain=pdf
http://orcid.org/0000-0001-7518-1828
http://orcid.org/0000-0002-5506-6467
http://orcid.org/0000-0002-0531-4055
http://orcid.org/0000-0003-4548-8030
https://doi.org/10.1007/978-3-030-77867-5_5

A New Kind of Implication to Reason with Unknown Information 75

Classical FCA focuses on positive information, i.e. on the attributes that
objects have. On the other side, the information provided by the attributes that
the objects do not fulfil (negative information) is also relevant in a wide vari-
ety of applications. See, for instance, the [14] first approach to this issue, which
can already be found in the early works of Ganter and Wille [10], consists of
duplicating the context by the apposition of the context and its negation. This
representation tends to be inefficient and redundant, as observed by Missaoui
et al. [17]. The reason is that this approach does not take advantage of the
relationship between positive and negative information. Thus, for instance,
the attributes “switched on” and “switched off” can be conceived as oppo-
site attributes and related with the implication “switched on implies not
switched off”. Considering this kind of implications as baseline knowledge would
allow FCA methods to improve their performance.

In this research line, the foundations of FCA have been extended to deal with
mixed (positive and negative) information by studying mixed concept lattices
in-depth [20]. Methods to compute the mixed concept lattice are explored in
[21] and a logic for reasoning about mixed implications is introduced in [3]. In
[11], Ganter and Kwuida define a negation, not at the level of attributes, but
at the level of concepts by using pseudocomplemented lattices, also known as
p-algebras.

Information (positive or negative) is usually assumed to be known. Neverthe-
less, there are many cases where it is necessary to work and reason with partial
information, i.e. lack of information or unknowledge. The reasons why there may
be unknown information are varied. For example:

– In some cases, speaking about some attributes has no sense. For instance, in
a dataset about patients, the attribute “regular period” has no sense for the
males.

– Sometimes, we cannot determine whether an attribute is positive or negative
because we have not got this information yet. We can not affirm if a student
has passed a subject if the final exam has not already held.

– In other situations, the positive or negative nature of the information may
be uncertain. For example, if we collect information on opinions from users
about touristic resources, we may not be able to conclude, from a particular
opinion, that it is positive or negative.

Fuzzy set theory can provide tools to address this problem. Extensions of FCA
to the fuzzy framework that considers positive and negative information can be
found in [13]. Nevertheless, other, not necessarily fuzzy, approaches are possible.
Thus, [2] provides a survey of several approaches to the treatment of incomplete
knowledge in FCA.

We tackle this problem with a different strategy. We consider three-valued
sets of attributes, i.e. sets of attributes that can be positive, negative or unknown.
In the same way, partial formal context will be three-valued relations between
objects and attributes. Several authors have explored this line. As far as we
know, the pioneer work is due to S. Kuznetsov [15] where he introduced the
notion of positive, negative and undefined examples (objects). These three kinds

76 F. Pérez-Gámez et al.

of examples are used, by the so-called JSM-Method [5], to automatically generate
hypothesis, providing a forecast for the undefined information. The work estab-
lished a proper introduction of the undefined information and a solid extension
of FCA to deal with it. However, it is focused on the Concept Lattice, but no
further study is introduced for implications. In a later paper, B. Ganter and S.
Kuznetsov [8] used this framework to built a machine learning method, showing
the benefits of the use of FCA to approach problems in other areas. In the work,
the authors also introduced the patter structures notion to take advantage of the
notion of example, already introduced in the previous article. [16] also illustrates
how other popular methods and techniques are closer to FCA than they are
shown in the literature. In that work, S. Kuznetsov detailed how classification
methods can be approached by using FCA, making a proper translation of the
notions of Taxonomy, Meronomy, Tolerance and Similarity Relations, which are
strongly connected to set of objects, set of attributes, a particular representa-
tion of formal contexts and a meet operation in semilattices, respectively. In
that work, the author introduces a four value logic, namely “empirically false,”
“empirically true,” “empirical contradiction”, and “empirically undeterminate”.
However, the author introduced this set of truth values to be used in a second-
order logic, which is different from the proper framework in FCA. Finally, in [19],
S. Obiedkov used a set of three values to build an extension of the original FCA.
It can be considered a very solid approach to introduce the management of
incomplete information and can be considered a paper close to our work. How-
ever, we are interested in the further development of efficient methods to manage
implications and formal context. In this line, we balanced the expressive power
of the logic and the efficiency of the methods, remaining on a propositional logic
with no disjunction operator, neither in the syntax nor in the implicit semantics.
At this point, our approach differs from Obiedkov’s paper, which introduces a
modal logic in his extension.

Then, we introduce an algebraic structure to be the truthfulness values in
which the formal framework is generalized. The key point is to establish this
algebraic structure in such way that the classical framework could be naturally
adaptable. We propose a new structure being an algebra of four-valued sets in
which the fourth value captures the inconsistency of some attribute sets. The
origin of this structure is the FCA conjunctive interpretation of attribute sets.

The paper is structured as follows: Sect. 2 presents some preliminary notions
and results, Sect. 3 introduces the algebra that we use as underlying structure
of truthfulness values, Sect. 4 studies the generalization of the concept lattice,
Sect. 5 presents the notion of weak implications and its also provides a version of
Armstrong’s axioms proving its soundness and completeness. Finally, conclusions
and further works are presented in Sect. 6.

2 Preliminaries

In this chapter, we are going to introduce the main notions that we are going
to use in the paper. For more details, we refer to [1,4]. The basic structure that

A New Kind of Implication to Reason with Unknown Information 77

we are going to use is the complete lattice L = (L,≤), i.e. an ordered set in
which any subset X ⊆ L has supremum and infimum (denoted by

∨
X and∧

X, respectively). As a consequence, L has a maximum (�) and a minimum
(⊥). A subset H ⊆ L is said to be ∨-dense (respectively ∧-dense) if, for all � ∈ L,
there exists a subset T ⊆ H such that � =

∨
T (respectively � =

∧
T).

A closure operator ϕ on L is a mapping being monotone (x ≤ y implies
ϕ(x) ≤ ϕ(y), for all x, y ∈ L), extensive (x ≤ ϕ(x) for all x ∈ L) and idempotent
(ϕ(ϕ(x)) = ϕ(x) for all x ∈ L). An element x ∈ L is said to be closed (w.r.t ϕ)
if ϕ(x) = x. The notion of closure operator is closely related to the concept of
closure system [10, Chapter 0]. A subset S ⊆ L is said to be a closure system
–also known as Moore family– if � ∈ S and X ⊆ S implies

∧
X ∈ S.

We have seen that closure systems and closure operators are two faces of
the same phenomenon; there is also a third face in terms of Galois connections.
Given two complete lattices L1 = (L1,≤) and L2 = (L2,≤), a Galois connection
between L1 and L2 is pair of mappings φ : L1 → L2 and ψ : L2 → L1 such that
both of them are antitone1 and both compositions, φ◦ψ and ψ◦φ, are extensive.
It is well-known that the pair (φ, ψ) is a Galois connection if and only if, for all
�1 ∈ L1 and �2 ∈ L2,

�1 ≤ ψ(�2) if and only if �2 ≤ φ(�1) (1)

Galois connections and closure operators are strongly related. This relation-
ship is partially described in the following theorem.

Theorem 1. Given a Galois connection (φ, ψ) between L1 and L2, the map ψ◦φ
is a closure operator on L1 and the map φ ◦ ψ is a closure operator on L2. The
maps φ and ψ, respectively, define dual isomorphisms between the corresponding
closure systems. Specifically, the set B = {(x, y) | φ(x) = y, ψ(y) = x} with the
order ≤ defined as

(x1, y1) ≤ (x2, y2) iff x1 ≤ x2 or, equivalently, iff y2 ≤ y1

form a complete lattice such that, for any family {(xj , yj) ∈ B : j ∈ J}, the
supremum and the infimum are given by:

sup
j∈J

(xj , yj) =
(
ψφ

(∨

j∈J

xj

)
,
∧

j∈J

yj

)
inf
j∈J

(xj , yj) =
(∧

j∈J

xj , φψ
(∨

j∈J

yj

))

For more details, see [4, Chapters 3 & 7].

2.1 FCA Preliminaries

Now, we introduce the basic notions of FCA. For more information, we refer to
[9,10].

First, FCA considers, as the starting point, a formal context K = (G,M, I),
which consists in two not empty sets G (whose elements are called objects) and
1 A mapping ϕ in (L, ≤) is antitone if x ≤ y implies ϕ(x) ≥ ϕ(y), for all x, y ∈ L.

78 F. Pérez-Gámez et al.

M (whose elements are called attributes) and a relation I between G and M .
The meaning of (g,m) ∈I is that the object g has the attribute m. From this
context, a Galois connection is defined by the pair ↑: 2G → 2M and ↓: 2M → 2G

such that, for a set A ⊆ G of objects, we have that A↑ = {m ∈ M | (g,m) ∈
I ∀g ∈ A} and, for a set B ∈ M of attributes, we have that B↓ = {g ∈ G |
(g,m) ∈ I ∀m ∈ B}. Namely, A↑ is the set of properties that are shared by all
the objects in A, and B↓ is the set of objects having all the attributes in B.

This Galois connection, as established in Theorem 1, allows to consider the
formal concepts, which are the fixed points (closed sets), namely the pairs (A,B)
with A ⊆ G and B ⊆ M such that A↑ = B and B↓ = A. These “are formal
abstractions of concepts of human thought allowing meaningful and comprehen-
sible interpretation”. The prefix formal emphasizes that “they are mathematical
entities and must not be identified with concepts of the mind” [12].

From Theorem 1, the formal concepts with the order ≤ defined as

(A1, B1) ≤ (A2, B2) iff A1 ≤ A2 or, equivalently, iff B2 ≤ B1

form a complete lattice, which is called the concept lattice and denoted by
B(G,M, I), whose supremum and infimum are described in the following theo-
rem.

Theorem 2. The concept lattice B(G,M, I) is a complete lattice in which infi-
mum and sumpremum are given by:

∧

t∈T

(At, Bt) =

(
⋂

t∈T

At(
⋃

t∈T

Bt)↓↑
)

∨

t∈T

(At, Bt) =

(

(
⋃

t∈T

At)↑↓),
⋂

t∈T

Bt

)

A complete lattice L is isomorphic to B(G,M, I) if there are mappings γ : G → L
and μ : M → L such that γ(G) is a ∨-dense in L, μ(M) is ∧-dense in L and
(g,m) ∈ I is equivalent to γ(g) ≤ μ(m) for all g ∈ G and all m ∈ M . In
particular, L ∼= B(L,L,≤).

This theorem is known as the Basic Theorem of Concept Lattices [10, Theorem 3,
Chapter 1].

2.2 Attribute Implications

Given a formal context (G,M, I), an implication between attributes in M is a
pair of subsets of M , denoted by A → B. We say that a subset T ⊆ M is a
model of A → B if A �⊆ T or B ⊆ T . In that case, we denote it by T |= A → B.
T is model of a set Σ of implications (T |= Σ) if T is model of every single
implication in Σ. We say that A → B holds in a context (G,M, I) if {g}↑ is
model of A → B for all g ∈ G, that is, if each object that has all the attributes

A New Kind of Implication to Reason with Unknown Information 79

from A has all the attributes from B as well. In that case, we say that A → B
is a (valid) implication of (G,M, I). The following proposition characterizes the
validity of implications.

Proposition 1. An implication A → B holds in (G,M, I) if and only if B ⊆
A↓↑, which is equivalent to A↓ ⊆ B↓.

We are going to establish when an implication A → B follows semantically
from Σ, notated Σ |= A → B: it holds if each subset of M that is model of Σ
is also model of A → B. A set of implications Σ is complete with respect to
(G,M, I) if every implication that holds in (G,M, I) follows from Σ.

The above semantic definition of inference has a syntactic counterpart. There
are different axiomatic systems, being the most popular one the so-called Arm-
strong’s Axioms that consider a scheme of an axiom and two inference rules: Let
A,B,C ⊆ M ,

[Inc] Inclusion: �A A ∪ B → A
[Aum] Augmentation: A → B �A A ∪ C → B ∪ C

[Trans] Transitivity A → B,B → C �A A → C.

An implication A → B is said to be derived from a set Σ, denoted by Σ � A → B,
if there exists a sequence of implications Ai → Bi with 1 ≤ i ≤ n such that
An = A, Bn = B, and each Ai → Bi is either an axiom or Ai → Bi ∈ Σ or it is
obtained from the formulas in {Aj → Bj | j < i} by using one of the inference
rules.

It is well-known that this axiomatic system is sound and complete working
with finite sets, i.e. Σ |= A → B iff Σ � A → B.

3 An Algebraic Framework for Unknown Information

In this section, we present the algebra that is defined to be the underlying
structure of our formal framework. We begin by extending the algebra of two
elements 2 = {0, 1} to consider unknown information.

We use the set of three elements {+,−, ◦}, denoted by 3. The element + rep-
resents the information that we know to be true (we call it positive information),
the element − represents the information that we know to be untrue (we call it
negative information) and the element ◦ represents the information that we do
not know whether it is true or false (we call it unknown information). Finally,
we endow this set with a ∧-semilattice structure by considering the reflexive
clousure of {(◦,+), (◦,−)} (see Fig. 1a). This ∧-semilattice will be denoted by
3 = (3,≤).

In the following section, we study sets valued in 3, to which, as we will
see, we will give a conjunctive interpretation. This interpretation leads us to
introduce a fourth element, denoted ι. This element is called oxymoron and
represents inconsistent or contradictory information when a conjunction plays
this role. This element will be the maximum of the completion of 3 to be a lattice.

80 F. Pérez-Gámez et al.

Fig. 1. Truthfulness’s values

This lattice, denoted by 4 = (4,≤), is shown in Fig. 1b and is isomorphic to the
Boolean algebra 2 × 2 (see Fig. 1c).

The lattice 4 can be considered as an example of the bilattices [6,7], which are
doubly-ordered sets (A,≤k,≤t) where (A,≤k) and (A,≤t) are complete lattices.
In ≤k the key to order is the amount of information that we have, and in ≤t

the key is the veracity of the information. In 4, the knowledge order is given
when we read it from the bottom to up, and the truthfulness order is obtained
by reading it from right to left. We specially focus on the first view.

3.1 The ∧-semilattice of 3-sets

Given a universal set, U , we denote by 3U the ∧-semilattice of the 3-sets, that is,
the set of the functions X : U → 3 with the structure of ∧-semilattice considering
the point-wise extension of the order ≤:

X � Y iff X(u) ≤ Y (u) for all u ∈ U.

A 3-set X provides information about the knowledge that we have from each
element in U . These elements usually correspond to attributes or properties that
can hold. We call support of a 3-set X to the set Spp(X) = {u ∈ U | X(u) �= ◦}.
The support collects those elements that we have the absolute knowledge about
them.

To simplify the notation, when Spp(X) = {u1, . . . , un} is finite, we write
{u1/X(u1), . . . , un/X(un)}. In particular, the unique set having empty support
is denoted by ∅. In addition, when no confusion arises, the support is expressed
as a sequence of elements, where u means that its image is + and u denotes that
u has the value −. The elements that are not in the support of X, that is, with
the value ◦, do not appear in the sequence.

Example 1. Given the universe U = {a, b}, the 3-sets X = {a/+, b/−} and
Y = {a/+} are denoted by X = ab and Y = a respectively.

We also consider the functions Pos,Neg,Unk: 3U → 2U defined as follows:

Pos(X) = X−1(+) = {u ∈ U | X(u) = +}
Neg(X) = X−1(−) = {u ∈ U | X(u) = −}
Unk(X) = X−1(◦) = {u ∈ U | X(u) = ◦}

for each X ∈ 3U .

A New Kind of Implication to Reason with Unknown Information 81

We can see that Pos and Neg are isotone functions between 3U and 2U =
(2U ,⊆), while that Unk is antitone. We have that Spp(X) = Pos(X)∪Neg(X) =
U � Unk(X), for all X ∈ 3U .

Finally, we define () : 3U → 3U where, for all X ∈ 3U and u ∈ U ,

X(u) =

⎧
⎨

⎩

− if X(u) = +
◦ if X(u) = ◦
+ if X(u) = −

Given X ∈ 3U , X is named the opposite of X. Obviously, Pos(X) = Neg(X),
Neg(X) = Pos(X), and Unk(X) = Unk(X).

3.2 The Lattices of 4-sets and 3̇-sets

As we have mentioned, we conceive the 3-sets as properties and their knowledge
about them, considering a conjunctive interpretation. When we join two different
3-sets, we can find inconsistencies: a property can be positive in one of the sets
and negative in the other set. So in the final set, we have an inconsistent element.
This makes us introduce a new kind of set that is valued in 4.

Given a universe U , we denote by 4U the set of the 4-sets, that is, of the
functions X : U → 4. We can assume that 3U ⊆ 4U . We can point-wise extend
the order of 4 to the set of the 4-sets as usual:

X � Y iff X(u) ≤ Y (u) for all u ∈ U

obtaining a complete lattice where
(∨

i∈I

Xi

)
(u) =

∨

i∈I

Xi(u)
(∧

i∈I

Xi

)
(u) =

∧

i∈I

Xi(u) for all u ∈ U

The infimum of this complete (bi)lattice is ∅ and the supremum, denoted by ι̇,
is the 4-set such that ι̇(u) = ι for all u ∈ U .

Example 2. In 4{a,b}, we have that:

{a/+} � {a/+, b/−} � {a/ι, b/−} � ι̇

{a/+}∨{b/−} = {a/+, b/−}, {a/+}∧{a/−, b/−} = ∅ and {a/+}∨{a/−, b/−} =
{a/ι, b/−}.

Following with the conjunctive interpretation of the sets, we consider all the
4-sets having some X(u) = ι as equivalent sets. These sets are called inconsistent
sets or oxymorons. To formalize it, we define the function:

O : 4U → 4U where O(X) =
{

X if X ∈ 3U ,
ι̇ otherwise.

This function is a closure operator in 4U , so it is an ∧-homomorphism. The set of
their images, 3U ∪{ι̇}, denoted by 3̇U , is a closure system and, as a consequence,
it is also a complete lattice.

82 F. Pérez-Gámez et al.

Specifically, if we consider the relation � of 4U restricted to 3̇U we have that
(3̇U ,�) is a ∧-subsemilattice of (4U ,�), but not a sublattice. Moreover, (3̇U ,�)
is a complete lattice. In order to differentiate the join of (3̇U ,�) from the join
of 4U we use the symbol � for the first one, that is, given {Xj : j ∈ J} ⊆ 3̇U ,

⊔

j∈J

Xj = O(
∨

j∈J

Xj)

We can check that (3̇U ,�) is the completion to lattice from ∧-semilattice
3U , that is, (3̇U ,�) is obtained by adding the element ι̇ as supremum to the ∧-
semilattice 3U (see Fig. 2). The complete lattice (3̇U ,�,∧, ∅, ι̇) will be denoted
by 3̇

U
, being our target algebraic structure.

Fig. 2. The caption would be semi-lattice and lattice with three values of U = a, b

The set ι̇ is named the inconsistent set, and the sets of 3U are named con-
sistent sets. Moreover, the maximal sets of 3U , i.e. those that have support U ,
are the super-atoms of 3̇

U
. These sets are named full sets, and the set of all of

them will be denoted by Full(U).

Example 3. In (3̇{a,b},�), we have that a � ab � ι̇, a � b = ab, a ∧ ab = ∅ and
a � ab = ι̇.

Now, we extend the functions Pos, Neg and Unk considering

Pos(ι̇) = Neg(ι̇) = U, Unk(ι̇) = ∅

Proposition 2. Let U be a non-empty set and X,Y ∈ 3̇U . Then,

1. X � Y iff Pos(X) ⊆ Pos(Y) and Neg(X) ⊆ Neg(Y).
2. X ∈ Full(U) iff Unk(X) = ∅ iff Pos(X) ∪ Neg(X) = U .
3. The restriction of the functions Pos and Neg to Full(U) are bijections in 2U .

The proof of this proposition is straightforward from the definitions.

A New Kind of Implication to Reason with Unknown Information 83

4 Extending the Concept of Lattice

In this section, we extend FCA’s basic results to consider unknown information
using the algebraic framework introduced in the previous section. Due to space
limitations, some proofs of the theoretical results cannot be introduced.

We begin by defining a partial formal context as a triple P = (G,M, I) where
G and M are non-empty sets, whose elements are called objects and attributes
respectively, and I : G × M → 3 is called the incidence relation.

I(g,m) = + means that the attribute m is present in the object g; I(g,m) =
− means that the attribute m is not present in the object g; and I(g,m) = ◦
means that we do not know whether the attribute m is present in the object g
or not. We represent these contexts as tables (see Fig. 3 for instance).

Given a partial formal context P = (G,M, I), for each g ∈ G and for each
m ∈ M we consider the 3-sets I(g,) ∈ 3M and I(,m) ∈ 3G defined as:

I(g,)(x) = I(g, x) for all x ∈ M ; I(,m)(x) = I(x,m) for all x ∈ G

If a partial formal context P = (G,M, I) satisfies that I(g,) is a full set for all
g ∈ G we say that it is a total formal context. Moreover, any (classic) formal
context K = (G,M, I) can be seen as a partial formal context P = (G,M, I ′)
where I ′(g,m) = + iff g I m, and I ′(g,m) = ◦ otherwise. In addition, a partial
formal context P = (G,M, I) can induce the following formal contexts:

– K
+
P

= (G,M, I+) where I+ = I−1(+), that is gI+m iff I(g,m) = +.
Their derivation operators are denoted by the symbol +, that is, for all X ⊆ G
and Y ⊆ M

X+ =
⋂

g∈X

gI+() = {m ∈ M | gI+m,∀g ∈ X}

Y + =
⋂

m∈Y

()I+m = {g ∈ G | gI+m,∀m ∈ Y }

– K
−
P

= (G,M, I−) where I− = I−1(−) and their derivation operators are
denoted by the symbol − and defined in a similar way.

We use these formal contexts to define the derivation operators in the partial
formal context as follows.

Theorem 3. Given a partial formal context P = (G,M, I), the derivation oper-
ators ()↑ : 2G → 3̇M and ()↓ : 3̇M → 2G defined as

X↑ =
∧

g∈X

I(g,), and Y ↓ = Pos(Y)+ ∩ Neg(Y)−

form a Galois connection between the lattices 2G and 3̇
M

.

Proof. We prove Condition (1), i.e. for all the subsets X ⊆ G and Y ∈ 3̇M we
have that

84 F. Pérez-Gámez et al.

X ⊆ Y ↓ iff Y � X↑

Let’s suppose that X ⊆ Y ↓ = Pos(Y)+ ∩ Neg(Y)−, i.e. X ⊆ Pos(Y)+ and
X ⊆ Neg(Y)−. Since K

+
P

and K
−
P

are (classical) formal contexts, X ⊆ Y ↓ holds
if and only if Pos(Y) ⊆ X+ and Neg(Y) ⊆ X−. By Proposition 2, we can ensure
that it is equivalent to Y � X↑ because it is straightforwardly proved that
X+ ⊆ Pos(X↑) and X− ⊆ Neg(X↑). ��

Following Theorem 1, we center on the fixed-points of this Galois connection.

Definition 1. Given a partial formal context P = (G,M, I), a concept is a pair
(A,B) ∈ 2G × 3̇M such that A↑ = B and B↓ = A. The set of concepts will be
denoted by B�(P).

The next corollary is a consequence of the previous theorem and Theorem 1.

Corollary 1. Given a partial formal context P = (G,M, I), the set B�(P) with
the order defined as

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 iff B2 � B1

is a complete lattice, denoted by B�(P), such that, for all the families of concepts
{(Aj , Bj) ∈ B�(P) : j ∈ J}, the join and the meet are given by:

sup
j∈J

(Aj , Bj) =
((⋃

j∈J

Aj

)↑↓
,
∧

j∈J

Bj

)
inf
j∈J

(Aj , Bj) =
(⋂

j∈J

Aj ,
(⊔

j∈J

Bj

)↓↑)

In the following theorem, we can see a connection between the concepts of a
formal context and the concepts of a partial formal context:

Theorem 4. Given a partial formal context P = (G,M, I), we have that B�(P)
is isomorphic to B(K−

P
| K

+
P

).
Conversely, for any formal context K = (G,M, I) and X ⊆ M , one has that

B(K) is isomorphic to B�(PX) where PX = (G,M, IX) with

IX(g,m) =

⎧
⎨

⎩

+ if g I m and m ∈ X,
− if g I m and m �∈ X,
◦ otherwise.

P a b c

1 + ◦ −
2 ◦ + +
3 − − ◦

K
−
P

| K+
P

a0 b0 c0 a1 b1 c1

1 × ×
2 × ×
3 × ×

Fig. 3. Partial formal context P and formal context (K−
P

| K
+
P
)

A New Kind of Implication to Reason with Unknown Information 85

Fig. 4. The lattice B�(P) ∼= B(K−
P

| K
+
P
)

Example 4. Figure 3 shows a partial formal context P, and the classical formal
context (K−

P
| K

+
P
) built from it. The lattice B�(P) is shown in Fig. 4. As Theo-

rem 4 ensures, it is isomorphic to the lattice B(K−
P

| K
+
P
).

Corollary 2. Let L = (L,≤) be a complete lattice and G and M be not empty
sets. If there exist mappings γ : G → L and μ : M → L such that γ(G) is ∨-
dense and μ(G) is ∧-dense in L, then L ∼= B�(P) where P = (G,M, I) with
I(g,m) = + iff g ≤ m, and I(g,m) = ◦ otherwise.

Moreover, as consequence of the last theorem, we have immediately that P

is no just one partial formal context that satisfies the conditions given before.
As particular case of this corollary, one has that L ∼= B(L,L,≤) ∼= B�(P),
considering G = M = L and γ = μ = id.

5 Reasoning with Weak Implications

In this section, we are going to introduce the notion of weak implication and a
logic to reason about this kind of implications. The name is intended to reflect
that these are implications that, with the information currently available, are
true; but which, when we obtain new knowledge, may no longer be true.

Given a not empty set of attributes M , we call weak implication (of
attributes) to the expression A � B where A,B ∈ 3̇M . The set of weak impli-
cations will be denoted by

Lw
M = {A � B : A,B ∈ 3̇M}

In this set, which we consider to be the language of the logic, we introduce the
semantics as follows:

Definition 2. Let C be a 3̇-set on M . We say that C is model of a weak impli-
cation A � B ∈ Lw

M if satisfies that A � C implies B � C. The set of the
models of A � B is denoted by Mod(A � B).

We say that C is model of a theory Σ ⊆ Lw
M if it is model of all weak

implication A � B ∈ Σ, that is,

Mod(Σ) =
⋂

A�B∈Σ

Mod(A � B)

86 F. Pérez-Gámez et al.

As usual, we can consider that a partial formal context is a model of a weak
implication when the set {I(g,) | g ∈ G} is a model.

Definition 3. Let P = (G,M, I) be a partial formal context and A � B ∈ Lw
M .

We say that P is model of A � B, or that A � B is satisfied in P, and it will
be denoted by P |= A � B, if {g}↑ ∈ Mod(A � B) for all g ∈ G.

We say that a partial formal context P is model of a set Σ ⊆ Lw
M , denoted

by P |= Σ, if P |= X � Y for all X � Y ∈ Σ.

As in the classical case, we can easily characterize the implications that are
satisfied by a context by using the derivation operators.

Proposition 3. Let P = (G,M, I) be a partial formal context and A � B ∈
Lw

M .

P |= A � B iff A↓ ⊆ B↓ iff B � A↓↑.

Now, we introduce the notion of semantic derivation.

Definition 4. Let A � B ∈ Lw
M and Σ ⊆ Lw

M . We say that A � B is seman-
tically derived from Σ, denoted by Σ |= A � B, when, for all partial formal
context P, we have that P |= Σ implies P |= A � B.

About notation, when there is not any possible confusion, we denote the sets
of implications without curly brackets. In the same way, we write |= A � B
when we have that ∅ |= A � B.

Proposition 4. Let P = (G,M, I) be a partial formal context and A,B ⊆ M .

1. If K
+
P

|= A → B then P |= A � B.
2. If K

−
P

|= A → B then P |= A � B.

The third pillar of the logic is the axiomatic system. In this case, we consider
Armstrong’s axioms that we will prove to be correct and complete.

Definition 5. The axiomatic system A considers one axiom and two inference
rules. They are the following: for all A,B,C ∈ 3̇

M
,

[Inc] Inclusion: �A A � B � A
[Augm] Augmentation: A � B �A A � C � B � C

[Trans] Transitivity: A � B,B � C �A A � C

The notion of syntactic derivation is introduced in the standard way.

Definition 6. A weak implication φ is said to be syntactically derived, or it
is inferred, from a set of weak implications Σ, denoted by Σ �A φ, if there is
a sequence of weak implications φ1, ..., φn such that φn = φ and, for all 1 ≤
i ≤ n, one of the following conditions is satisfied: φi ∈ Σ, φi is an axiom, or
φi is obtained from implications belonging to {φj | 1 ≤ j < i} by applying the
inferences rules of A. In this case, we say that the sequence {φi | 1 ≤ i ≤ n} is
a proof for Σ �A φ.

A New Kind of Implication to Reason with Unknown Information 87

As usual, we consider some derived rules from the Armstrong’s axioms which
are easily proved.

Proposition 5. Let M be a finite set of attributes. The following inference rules
are derived from the Amstrong’s axioms: for all A,B,C ∈ 3̇M ,

[Frag] Fragmentation: A � B � C �A A � B
[Un] Union: A � B, A � C �A A � B � C

[gTr] Generalized Transitivity A � B � C, B � D �A A � D.

From Proposition 3 and the fact that ()↓↑ is a closure operator in 3̇
M

, we
have that Amstrong’s axioms are correct.

Theorem 5 (Soundness). For all weak implication A � B ∈ Lw
M and all set

Σ ⊆ Lw
M , we have that Σ �A A � B implies Σ |= A � B.

To prove the completeness of the axiomatic system, we first introduce some
necessary results.

Theorem 6. Let M be a finite set and Σ ∈ Lw
M . The mapping ()�

Σ : 3̇M → 3̇M

defined as

A�
Σ =

⊔
{X ∈ 3̇M | Σ �A A � X}

is a closure operator in 3̇
M

that we name the syntactic closure with respect to
Σ. In addition, Σ �A A � A�

Σ for all A ∈ 3̇M .

Corollary 3. Let M be a finite set of attributes. For all Σ ⊆ Lw
M and A,B ∈

3̇M , we have that

Σ �A A � B if and only if B � A�
Σ .

Proof. The direct implication is a consequence of Theorem 6, and the converse
result is obtained by using [Inc] and [Trans]. ��
Lemma 1. Let M be a finite set of attributes. For all Σ ⊆ Lw

M and A ∈ 3̇M ,
we have that

A�
Σ = min{X ∈ Mod(Σ) | A � X}.

Proof. Let X ∈ Mod(Σ) such that A � X. From Theorem 5, X ∈ Mod(Σ)
implies that X ∈ Mod(B � C) for all B � C ∈ Lw

M with Σ �A B � C and,
particularly, by Theorem 6, X ∈ Mod(A � A�

Σ). Thus, A � X implies A�
Σ � X.

Moreover, we prove that A�
Σ ∈ Mod(Σ). For all B � C ∈ Σ, if B � A�

Σ , by
Corollary 3, we have that Σ �A A � B. Then, by [Trans], Σ �A A � C and,
again, by Corollary 3, we have that C � A�

Σ . ��
Let’s see now the completeness of the axiomatic system presented:

88 F. Pérez-Gámez et al.

Theorem 7 (Completeness). Let M be a finite set of attributes. For all A �
B ∈ Lw

M and Σ ⊆ Lw
M , we have that Σ |= A � B implies Σ �A A � B.

Proof. Let’s prove that Σ ��A A � B implies Σ �|= A � B. Using the Corollary
3, we have that Σ ��A A � B implies that B �� A�

Σ , and, therefore, A�
Σ �= ι̇.

Let us consider the partial formal context P = (G,M, I) being G = Mod(Σ)�
{ι̇} and I : G × M → 3 where I(g,) = g for each g ∈ G.

It is straightforward that P |= Σ because {g}↑ = I(g,) = g ∈ Mod(Σ).
However, P �|= A � B because, by Lemma 1, A�

Σ ∈ G, A � A�
Σ and B �� A�

Σ . ��

6 Conclusion and Further Work

In this paper, we have extended FCA to consider not only positive but also
negative and unknown information in a natural way. The key to this has been
the selection of the algebraic structure on which to define the semantics and
the derivation operators by ensuring that they still form a Galois connection.
The starting point is a three-valued relationship between objects and attributes,
which we call partial formal context. Since the interpretation of attribute sets
is conjunctive, when we join different sets together, contradictions may arise.
Therefore, we need to enrich the structure of truthfulness values to take this
into account. The essence of this approach is to replace the attribute powerset
with a new structure, (3̇M ,�), which is very close to bilattices. Considering this
structure, we present the Galois connection formed by the derivation operators
and establish the existent relationship between the concept lattices obtained
with the classical ones.

Furthermore, we have presented a new kind of attribute implication, which
we name weak implications because they can change when new information is
added. For these implications, we consider Armstrong’s axioms, which have the
same appearance as the classical axioms but, being defined on the new structure,
incorporate in the union the semantics that allows dealing with positive/negative
information, as well as with unknown information and even contradiction or
inconsistency. Finally, we prove the soundness and completeness of this axiomatic
system.

As further work, we are working on a new axiomatic system in the framework
of Simplification Logic [18], that is closer to applications in the sense that, like
the previous ones, it can be considered as an executable logic. Moreover, we
are also working on another definition of attribute implication that we name
strong implications. The idea is that they would remain unchanged when new
information is provided. The ultimate goal is to establish a logic that allows
reasoning simultaneously with both types of implications.

A New Kind of Implication to Reason with Unknown Information 89

References

1. Birkhoff, G.: Lattice Theory, 1st edn. American Mathematical Society Colloquium
Publications, Providence (1940)

2. Burmeister, P., Holzer, R.: Treating incomplete knowledge in formal concept anal-
ysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS
(LNAI), vol. 3626, pp. 114–126. Springer, Heidelberg (2005). https://doi.org/10.
1007/11528784 6

3. Cordero, P., Enciso, M., Mora, A., Rodŕıguez-Jiménez, J.M.: Inference of mixed
information in formal concept analysis. Stud. Comput. Intell. 796, 81–87 (2019)

4. Davey, B., Priestley, H.: Introduction to Lattices and Order, vol. 2. Cambridge
University Press, Cambridge (2002)

5. Finn, V.: About machine-oriented formalization of plausible reasonings. F. Beckon-
J.S. Mill Style, Semiotika I Informatika 20, 35–101 (1983)

6. Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Programm.
11(2), 91–116 (1991)

7. Fitting, M.: Bilattices are nice things. In: Hendricks, V.F., Pedersen, S.A., Bolan-
der, T. (eds.) Self-reference, pp. 53–77. Cambridge University Press, CSLI Publi-
cations, Cambridge (2006)

8. Ganter, B., Kuznetsov, S.: Hypotheses and version spaces. ICCS, pp. 83–95 (2003)
9. Ganter, B., Obiedkov, S.: More expressive variants of exploration. In: Conceptual

Exploration, pp. 237–292. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49291-8 6

10. Makhalova, T., Trnecka, M.: A study of boolean matrix factorization under super-
vised settings. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS
(LNAI), vol. 11511, pp. 341–348. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21462-3 24

11. Ganter, B., Kwuida, L.: Which concept lattices are pseudocomplemented? Lect.
Notes Comput. Sci. 3403, 408–416 (2005)

12. Ganter, B., Wille, R.: Applied lattice theory: formal concept analysis. In: Grätzer,
G. (ed.) General Lattice Theory. Birkhäuser. Preprints (1997)

13. Konecny, J.: Attribute implications in L-concept analysis with positive and neg-
ative attributes: validity and properties of models. Int. J. Approximate Reason.
120, 203–215 (2020)

14. Kuznetsov, S.O., Revenko, A.: Interactive error correction in implicative theories.
Int. J. Approximate Reason. 63, 89–100 (2015)

15. Kuztnesov, S.O.: Mathematical aspects of concept analysis. J. Math. Sci. 80, 1654–
1698 (1996)

16. Kuznetsov, S.O.: Galois connections in data analysis: contributions from the soviet
era and modern russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) For-
mal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg
(2005). https://doi.org/10.1007/11528784 11

17. Missaoui, R., Nourine, L., Renaud, Y.: Computing implications with negation from
a formal context. Fundam. Informaticae 115(4), 357–375 (2012)

18. Mora, A., Cordero, P., Enciso, M., Fortes, I., Aguilera, G.: Closure via functional
dependence simplification. Int. J. Comput. Math. 89(4), 510–526 (2012)

19. Obiedkov, S.: Modal logic for evaluating formulas in incomplete contexts. In: Priss,
U., Corbett, D., Angelova, G. (eds.) ICCS-ConceptStruct 2002. LNCS (LNAI),
vol. 2393, pp. 314–325. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45483-7 24

https://doi.org/10.1007/11528784_6
https://doi.org/10.1007/11528784_6
https://doi.org/10.1007/978-3-662-49291-8_6
https://doi.org/10.1007/978-3-662-49291-8_6
https://doi.org/10.1007/978-3-030-21462-3_24
https://doi.org/10.1007/978-3-030-21462-3_24
https://doi.org/10.1007/11528784_11
https://doi.org/10.1007/3-540-45483-7_24
https://doi.org/10.1007/3-540-45483-7_24

90 F. Pérez-Gámez et al.

20. Rodŕıguez-Jiménez, J., Cordero, P., Enciso, M., Rudolph, S.: Concept lattices with
negative information: a characterization theorem. Inform. Sci. 369, 51–62 (2016)

21. Rodŕıguez-Jiménez, J.M., Cordero, P., Enciso, M., Mora, A.: Data mining algo-
rithms to compute mixed concepts with negative attributes: an application to
breast cancer data analysis. Math. Methods Appl. Sci. 39(16), 4829–4845 (2016)

22. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. Ordered Sets 83, 445–470 (1982)

Pruning Techniques in LinCbO for
Computation of the Duquenne-Guigues

Basis

Radek Janostik, Jan Konecny(B), and Petr Krajča

Department of Computer Science, Palacký University Olomouc,
17. listopadu 12, 77146 Olomouc, Czech Republic

{radek.janostik,jan.konecny,petr.krajca}@upol.cz

Abstract. We equip our algorithm LinCbO with a pruning technique
similar to that of LCM. Our experimental evaluation shows that it sig-
nificantly improves the performance of the algorithm.

Keywords: Duquenne-Guigues basis · Close-By-One · Linclosure ·
Algorithm

1 Introduction

In our recent work [10], we introduced LinCbO – a fast algorithm for computation
of the Duquenne-Guigues basis [8] of a formal context. We also showed that
LinCbO performs better than other approaches, such as Ganter`[4] and the
attribute incremental approach by Obiedkov and Duquenne [18].

The core of LinCbO is Close-by-One (CbO) [15], which computes pseudoin-
tents (and intents) using an enhanced LinClosure algorithm. CbO has received
a few improvements in the last two decades, like parallel and distributed compu-
tation [12,13], partial closures [1], or execution using the map-reduce framework
[11,14]. Arguably, the most efficient improvement of CbO is the use of monotony
property of closure operators to avoid some unnecessary computation of closures.
This is utilized in FCbO [19], InClose-4 [2], InClose-5 [3], and LCM [9,20–23].
We call these methods pruning techniques.

In the case of pseudointents, the computation of closure is much more expen-
sive. Therefore, it seems a good idea to incorporate a pruning technique into
LinCbO. In the present paper, we utilize two pruning techniques inspired by the
algorithm LCM1. This is the first study of application of pruning techniques for
computation of the Duquenne-Guigues basis.

The paper is structured as follows: first, we recall basic notions of formal
concept analysis used in the rest of the paper (Sects. 2.1 and 2.2) and introduce
the LinCbO algorithm (Sect. 2.3). Then, we describe the idea of pruning tech-
niques for the computation of the Duquenne-Guigues basis generally (Sect. 3).
1 The pruning is utilized in the implementation LCM2 (available at http://research.

nii.ac.jp/∼uno/codes.htm). However it is not described in the related paper. An
interested reader can find the description of the LCM’s pruning in [9].

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 91–106, 2021.
https://doi.org/10.1007/978-3-030-77867-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_6&domain=pdf
http://research.nii.ac.jp/~uno/codes.htm
http://research.nii.ac.jp/~uno/codes.htm
https://doi.org/10.1007/978-3-030-77867-5_6

92 R. Janostik et al.

Consequently, we turn our attention to two specific techniques we incorporated
to LinCbO (Sect. 4). Then we provide results of our experimental evaluation
(Sect. 5). Finally, we summarize our conclusions and present our ideas for future
research.

2 Preliminaries

Here, we recall only the notions which are necessary for the rest of the paper. For
more detailed introduction to FCA is needed, see [7], for a thorough description
of LinCbO see [10].

2.1 Formal Concept Analysis, Theories, Models, and Bases

An input to FCA [7] is a triplet xX,Y, Iy, called a formal context, where X,Y are
non-empty sets of objects and attributes respectively, and I is a binary relation
between X and Y . The presence of an object-attribute pair xx, yy in the relation
I means that the object x has the attribute y.

The formal context xX,Y, Iy induces so-called concept-forming operators:

Ò : 2X → 2Y assigns to a set A of objects the set AÒ of all attributes shared
by all the objects in A.
Ó : 2Y → 2X assigns to a set B of attributes the set BÓ of all objects which
share all the attributes in B.

Formally, for all A Ď X,B Ď Y we have

AÒ “ {y P Y | @x P A : xx, yy P I},
BÓ “ {x P X | @y P B : xx, yy P I}.

A pair xA,By P 2X ˆ 2Y satisfying AÒ “ B and BÓ “ A is called formal concept.
The set A is then called the extent of the formal concept and B is called the
intent of the formal concept. We denote the set of all intents in xX,Y, Iy by
Int(X,Y, I). We can also characterize the intents as

Int(X,Y, I) “ {B Ď Y | BÓÒ “ B}.

An attribute implication is an expression of the form LñR, where L,R Ď Y .
We say, that LñR is valid in a set M Ď Y of attributes if

L Ď M implies R Ď M.

The fact that LñR is valid in M is written as ‖LñR‖M “ 1.
A set of attributes M is called a model of theory T if every attribute impli-

cation in T is valid in M . The set of all models of T is denoted Mod(T), i.e.

Mod(T) “ {M | @LñR P T : ‖LñR‖M “ 1}.

Pruning Techniques in LinCbO for Computation 93

A theory T is called

– complete in xX,Y, Iy if Mod(T) “ Int(X,Y, I);
– a basis of xX,Y, Iy if no proper subset of T is complete in xX,Y, Iy.

For convenience, we assume Y “ {1, 2, . . . , n}. Whenever we write about
lower attributes or higher attributes, we refer to the natural ordering of the
numbers in Y .

2.2 Duquenne-Guigues Basis

A set P Ď 2Y is called the system of pseudointents of xX,Y, Iy if for each P Ď Y ,
we have

P P P iff P �“ P ÓÒ and Q Ă P implies QÓÒ Ă P for each Q P P.

If P is the system of pseudointents of xX,Y, Iy, the theory

T “ {P ñP ÓÒ | P P P} (1)

forms a basis, called the Duquenne-Guigues basis.
Having the Duquenne-Guigues basis T , we define an operator cT : 2Y → 2Y

as follows:

cT (Z) “
8⋃

n“0

ZTn for all Z Ď Y (2)

where

1. ZT “ Z Y ⋃
{R | LñR P T,L Ă Z},

2. ZT0 “ Z,
3. ZTn “ (ZTn´1)T .

The operator cT is a closure operator inducing P Y Int(X,Y, I). That means,

P Y Int(X,Y, I) “ {Z Ď Y | cT (Z) “ Z}. (3)

At first glance, the above represents a cycle: by (3) we need cT to find P, by
(2) we need T to find cT , and by (1) we need P to find T . However, this cycle can
be easily broken as we only need a part of T to compute cT (Z) – specifically, we
need only the attribute implications LñR in T satisfying L Ď cT (Z). We need
to compute pseudointents in any order which extends subsethood, i.e., P1 Ă P2

implies that P1 is computed before P2. Whenever we compute a pseudointent P ,
we update the theory T by adding P ñP ÓÒ. This way, we keep T ready for the
computation of the next pseudointent. An example of an order which extends
subsethood is the lectic order [7].

The interested reader can find results on complexity of the enumeration of
pseudointents in [16].

94 R. Janostik et al.

2.3 LinCbO

In [10], we delivered a fast algorithm, called LinCbO, for computing the
Duquenne-Guigues basis. The core of the algorithm is an adapted CbO [15]
(Algorithm 2) with the closure operator cT (2), implemented as LinClosure
[5,17].

LinClosure. LinClosure computes the smallest model of a theory T containing
a given input set B, i.e. T -closure of B. It works as follows (refer to Algo-
rithm 12):

For each attribute implication L ñ R P T , it sets an attribute counter
count[L ñ R] to the size |L| of the left side (lines 4, 5). For each attribute
a P Y , it forms a list list[a] of attribute implications LñR P T with a P L (lines
4, 6, 7). It initializes a set Z of attributes which need to be explored (line 8)
and a result set D (line 1). At the beginning, both the sets contain all attributes
from the input set B.

While there is any attribute (m) in Z, this attribute is removed from Z and
the attribute counters of all the attribute implications in m’s list are decreased
(lines 9–13). Whenever an attribute counter count[L ñ R] reaches zero, the
attributes on the right side R which are not yet in the result set D are added
to D and Z (lines 14–18). If there is an attribute implication with an empty left
side, it must be handled separately (lines 2, 3), as it is not present in any list.
When Z is empty, the algorithm terminates and returns the set D.

Time complexity of the LinClosure is linear w.r.t. size of T .

CbO (and LinCbO). Close-by-one is an algorithm for the enumeration of
closed sets of a given closure operator. It traverses a prefix tree of all subsets
in the depth-first manner. It makes jumps in it using the closure operator, but
only ones which preserve the prefix. In other words, it makes only jumps which
land in the subtree of the current node.

The test for whether the prefix is kept is called canonicity test. See Fig. 1.
LinCbO, is an adaptation of CbO for LinClosure. It is represented by the

recursive procedure, LinCbOStep (refer to Algorithm 2). The procedure accepts
two arguments: B – an attribute set to be closed, y – the last attribute added to
B by the previous invocations. It also uses a global variable T , which is initially
empty and represents the computed basis.

First, LinCbOStep finds a closure of B using LinClosure and stores the result
as D. If D passes the canonicity test (lines 2, 3; ignore the bracketed text for
now), then the procedure ends. Next, it computes BÓÒ and stores the result as
C (line 4). If it is different from D, i.e. D is not an intent, we add DñC to T .
Then, we invoke LinCbOStep with D Y {i} and i, for all attributes i /P D which
are higher than y. We do so in descending order to ensure the lectic order.

The procedure is initially called with B “ H and y “ 0 (representing an
invalid attribute, which is lower than any valid attribute).
2 For now, ignore the argument y and line 16 as it will be explained later.

Pruning Techniques in LinCbO for Computation 95

Algorithm 1: LinClosure
def LinClosure(B, y):

input : B – set of attributes
y – last attribute added to B

1 D ← B
2 if DHñR P T for some R then
3 D ← D Y R

4 for all LñR P T do
5 count[LñR] ← |L|
6 for all a P L do
7 add LñR to list[a]

8 Z ← D

9 while Z �“ H do
10 m ← min(Z)
11 Z ← Zz{m}
12 for all LñR P list[m] do
13 count[LñR] ← count[LñR] ´ 1
14 if count[LñR] “ 0 then
15 add ← RzD
16 if min(add) ă y then return fail
17 D ← D Y add
18 Z ← Z Y add

19 return D

The LinCbO algorithm additionally has the following features:

Early stop of LinClosure – The CbO’s canonicity test is incorporated into
LinClosure: before D is updated (line 16 in Algorithm 1), we check whether
it still would keep the prefix, i.e. no attribute lower than CbO’s argument y
is added. If it fails the canonicity, we stop the computation and return an
indication of the fail. LinClosure then uses this indication (bracketed text in
line 2 in Algorithm 2).

Reuse of attribute counters in LinClosure – instead of filling attribute coun-
ters from scratch (lines 4–7) we reuse the counters which we got from the
computation of the predecessor in the CbO’s tree. As this improvement is
not important for the present paper, we skip the details and do not include
it in the pseudocodes.

96 R. Janostik et al.

Fig. 1. Closure jumps within the prefix tree and canonicity tests

Exploiting relationships between intents and pseudointents – Bazhanov and
Obiedkov [4] introduced improvements of the NextClosure algorithm (called
Ganter in [4]) for computation of the Duquenne-Guigues basis. We directly
applied these improvements in LinClosure. Again, these improvements are
not important for the present paper, therefore we skip the details and do not
include them in the pseudocodes.

CbO, as well as LinCbO, has time delay (the time to generate the first output,
the time between two consequent outputs, and the time between the last output
and termination) in O(|Y | · C), where C is the time complexity of the utilized
closure operator.

Pruning Techniques in LinCbO for Computation 97

Algorithm 2: LinCbO, simplified
def LinCbOStep(B, y):

input : B – a set
y – last added attribute

1 D ← LinClosure(B,y)
2 if prefixes of B and D before y do not match

[LinClosure(B,y) returned fail] then
3 return

4 C ← BÓÒ

5 if C �“ D then
6 T ← T Y (DñC);

7 for i P {y ` 1, . . . , n} zD in decreasing order do
8 LinCbOStep(D Y {i}, i)

LinCbOStep(H, 0)

3 Pruning in Pseudointent Computation

The operator cT (2) is a closure operator; therefore, it satisfies the monotony
property, i.e. for any B,D Ď Y we have

B Ď D implies cT (B) Ď cT (D). (4)

Furthermore, for any two theories T and S with T Ď S, we have Mod(S) Ď
Mod(T) and, consequently, for all B Ď Y

T Ď S implies cT (B) Ď cS(B). (5)

Putting (4) and (5) together, we get that for any sets B,D Ď Y of attributes
and theories T and S, we have that

B Ď D and T Ď S imply cT (B) Ď cS(D). (6)

From (6), we have that for any i P Y :

B Ď D, T Ď S imply [if i P cT (B Y {y}) then i P cS(D Y {y})]. (7)

Now, consider B Y {y} being a set to which y is added as the last attribute. Let
i be an attribute with i ă y and i /P B and the theories S and T be the partially
computed Duquenne-Guigues basis at different times. Obviously, i P cT (BY{y})
means that the closure of cT (BY{y}) fails the canonicity test. In words, (7) says
that if the canonicity fails for cT (B Y {y}) then it will also fail for cS(D Y {y}).

98 R. Janostik et al.

We can store the information about the failed canonicity test for cT (BY{y})
and use it later to avoid the computation of cS(D Y {y}). This is what we call
a pruning, as it effectively prunes branches of the search tree.

Specifically, in our case, we store a rule of form “y adds i”. This means that
when we add the attribute y to the set B, the attribute i occurs in the closure
cT (B Y {y}) and causes the canonicity test to fail. We use the rule only in
subtrees of B, as they contain only supersets of B.

Example 1. In Fig. 2 we illustrate a case for B “ H, y “ d and i “ a. In the
right-most branch, we observe that the canonicity test fails for H Y{d}, because
a ă d occurs in the closure cT (H Y {d}). We store the rule “d adds a” and
use it in subtrees of H whenever we add d to a set. This enables us to avoid
computation of cT (c, d), cT (b, d), and cT (b, c, d).

Fig. 2. Idea of pruning

4 How LinCbO Utilizes the Pruning

We use a global array, rules, to store the rules for pruning. A rule “y adds i” is
stored as rules[y] “ i. The absence of such a rule is represented by rules[y] “ 0.
Note that it means that a new rule can overwrite an old rule if it has the same
attribute on the left side.

We need to modify LinClosure (recall that the canonicity test is incorporated
in LinClosure) to provide us information for pruning. The modified LinClosure
returns a pair xD, faily where:

– D is the closed set if it passes the canonicity test.
– fail is the lowest attribute which violates the prefix if the canonicity test

failed; otherwise it is 0.

Pruning Techniques in LinCbO for Computation 99

In Algorithm 1, we only need to accordingly modify lines 16 and 19.

We furthermore modify LinCbO as follows (refer to Algorithm 3):

(p0) Whenever the canonicity test fails, LinCboStep returns the attribute fail ,
which LinClosure detects to violate the prefix (line 4). If an invocation of
LinCboStep returns a non-zero value fail , it stores the rule “y adds fail”
in the array rules (lines 10–12).

(p1) At the beginning of LinCboStep, i.e. when descending to a subtree, all rules
having the last added attribute (argument y) on the right side are removed
from the stored rules. In the pseudocode, this is performed by a subroutine
called RemoveRulesByRightSide (line 1).

(p2) At the end of LinCboStep, i.e. when backtracking from the current subtree,
all rules from this call are removed. In the pseudocode, this is performed
by a subroutine called RemoveAllRulesAddedThisCall (line 13).

(p3) Before computing a closure cT (D Y {i}) in a subtree of B, we check the
stored rules to find whether adding i does not add an attribute which causes
the canonicity test to fail (line 9).

We use two versions of the pruning:

lcm: does exactly what is described above. Notice that in (p3) it needs only
to check existence of a rule with i on the left side; it does not need to check
whether the attribute on its right side is in B (the part “rules[i] P D” of the
condition in line 9 of Algorithm 3 can be skipped).

lcmx: does what is described above but skips the step (p1) (line 1 of Algo-
rithm 3 is skipped).

Remark 1. Due to the early stop utilized in LinClosure, the information for
pruning is not as complete as in the case for intents. We do not actually obtain
cT (D Y {y}) used in (7) when the canonicity is violated. Instead, we obtain an
intermediate set. Still, it is usable to form the pruning rules, as at least one
attribute causing the canonicity test to fail is present in the set.

We only need to store the array rules and a stack of maximal size n for
tracking which rules were added in the present call. Therefore, the memory
complexity of the pruning is in O(n).

100 R. Janostik et al.

Algorithm 3: LinCbO with pruning, simplified
def LinCbOStep(B, y):

input : B – a set
y – last added attribute

1 RemoveRulesByRightSide(y)
2 xD, faily ← LinClosure(B,y)
3 if fail ą 0 then
4 return fail

5 C ← BÓÒ

6 if C �“ D then
7 T ← T Y (DñC);

8 for i P {y ` 1, . . . , n} zD in decreasing order do
9 if rules[i] “ 0 or rules[i] P D then

10 fail ←LinCbOStep(D Y {i}, i)
11 if fail ą 0 then
12 rules[i] ← fail

13 RemoveAllRulesStoredThisCall()

14 return 0

LinCbOStep(H, 0)

5 Experimental Evaluation

We experimentally compare three versions of LinCbO: without pruning and with
the two pruning techniques described above. Additionally, we compare them
with algorithms available in the framework made by Bazhanov & Obiedkov [4]3,
namely Ganter, Ganter` [4] – each with näıve closure, LinClosure [17], and
Wild’s closure [24]—and the attribute incremental approach. To achieve maximal
fairness, we implemented all the three versions of LinCbO into their framework.

All experiments have been performed on a computer with 64 GB RAM, two
Intel Xeon CPU E5-2680 v2 (at 2.80 GHz), Debian Linux 10, and GNU GCC
8.3.0. All measurements have been taken ten times and the mean value is pre-
sented.

We used the following datasets from UC Irvine Machine Learning Repository
[6]:

– crx – Credit Approval (37 rows containing a missing value were removed),
– shuttle – Shuttle Landing Control,
– magic – MAGIC Gamma Telescope,
– bikesharing (day|hour) – Bike Sharing Dataset,
– kegg – KEGG Metabolic Reaction Network – Undirected.

3 Available at https://github.com/yazevnul/fcai.

https://github.com/yazevnul/fcai

Pruning Techniques in LinCbO for Computation 101

Table 1. Properties of the datasets

Dataset |X| |Y | |I| # intents # ps.intents

inter10crx 653 139 40,170 10,199,818 20,108

inter10shuttle 43,500 178 3,567,907 38,199,148 936

inter3magic 19,020 52 399,432 1,006,553 4181

inter4magic 19,020 72 589,638 24,826,749 21,058

inter5bike day 731 93 24,650 3,023,326 20,425

inter5crx 653 79 20,543 348,428 3427

inter5shuttle 43,500 88 1,609,510 333,783 346

inter6shuttle 43,500 106 2,002,790 381,636 566

nom10bike day 731 100 9293 52,697 29,773

nom10crx 653 85 8774 51,078 6240

nom10magic 19,020 102 209,220 583,386 154,090

nom10shuttle 43,500 97 435,000 2931 810

nom15magic 19,020 152 209,220 1,149,717 397,224

nom20magic 19,020 202 209,220 1,376,212 654,028

nom5bike day 731 65 9293 61,853 16,296

nom5bike hour 17,379 90 238,292 1,868,205 320,679

nom5crx 653 55 8774 29,697 2162

nom5keg 65,554 144 1,834,566 13,262,627 42,992

nom5shuttle 43,500 52 435,000 1461 319

ord10bike day 731 93 28,333 664,713 11,795

ord10crx 653 79 37,005 1,547,971 2906

ord10shuttle 43,500 88 1,849,216 97,357 279

ord5bike day 731 58 14,929 81,277 5202

ord5bike hour 17,379 83 457,578 2,174,964 99,691

ord5crx 653 49 19,440 139,752 973

ord5magic 19,020 42 535,090 821,796 1267

ord5shuttle 43,500 43 868,894 4068 119

ord6magic 19,020 52 662,177 2,745,877 2735

We binarized the datasets using nominal (nom), ordinal (ord), and interor-
dinal (inter) scaling, where each numerical feature was scaled to k attributes
with k´1 equidistant cutpoints. Categorical features were scaled nominally to a
number of attributes corresponding to the number of categories. After the bina-
rization, we removed full columns. Properties of the resulting datasets are shown
in Table 1. The naming convention used in Table 1 (and Table 2) is the follow-
ing: (scaling)k(dataset). For example, inter10shuttle is the dataset ‘Shuttle
Landing Control’ interordinally scaled to 10, using 9 equidistant cutpoints.

102 R. Janostik et al.

All datasets and source codes used in this experimental evaluation are avail-
able at http://phoenix.inf.upol.cz/∼konecnja/fcalad/.

6 Our Observations

We made the following observations from the results of our experimental evalu-
ation (Table 2).

Table 2. Runtimes in seconds of algorithms generating Duquenne-Guigues basis

Dataset LinCbO LinCbO ` lcm LinCbO ` lcmx Best of the rest

inter10crx 508.551 223.38 199.115 400.292 AttInc

inter10shuttle 15852.9 14967.7 14825.4 17664.5 Ganter`

inter3magic 26.156 24.289 24.192 106.341 Ganter

inter4magic 965.353 771.084 835.315 4027.48 Ganter

inter5bike day 85.591 44.012 40.349 72.952 AttInc

inter5crx 3.176 1.855 1.802 5.863 AttInc

inter5shuttle 120.003 112.034 112.638 137.211 Ganter

inter6shuttle 133.288 126.91 126.946 164.355 Ganter

nom10bike day 7.099 1.682 1.545 4.515 AttInc

nom10crx 0.944 0.332 0.328 1.227 AttInc

nom10magic 206.797 96.377 96.662 486.926 AttInc

nom10shuttle 0.425 0.382 0.396 1.102 Ganter`

nom15magic 1509.86 557.051 544.459 3358.44 AttInc

nom20magic 4437.05 1211.66 1210.46 7882.15 AttInc

nom5bike day 2.219 0.833 0.804 2.580 AttInc

nom5bike hour 1410.11 476.592 481.241 1893.33 AttInc

nom5crx 0.193 0.114 0.106 0.406 AttInc

nom5keg 1936.7 1116.51 1139.87 7564.710 Ganter`

nom5shuttle 0.309 0.297 0.292 0.481 Ganter`

ord10bike day 24.997 15.947 15.108 21.884 AttInc

ord10crx 11.653 10.5153 10.147 28.367 AttInc

ord10shuttle 34.293 36.2858 36.2079 40.338 Ganter

ord5bike day 0.936 0.713 0.669 2.080 AttInc

ord5bike hour 321.147 273.862 258.072 1107.570 AttInc

ord5crx 0.610 0.559 0.551 1.468 AttInc

ord5magic 46.982 48.429 48.4259 93.845 Ganter

ord5shuttle 1.319 1.345 1.349 1.380 Ganter`

ord6magic 158.227 158.466 162.65 335.947 Ganter

http://phoenix.inf.upol.cz/~konecnja/fcalad/

Pruning Techniques in LinCbO for Computation 103

Comparison of LinCbO with and without Pruning
The pruning techniques seem to have different effect for various types of formal
contexts:

– For interordinally scaled data, LinCbO with pruning performed better than
without pruning. However, the improvement is significant only for the crx
datasets (inter10crx and inter5crx) and for inter5bike day. For other
datasets, the improvement seems insignificant.

– For nominally scaled data, LinCbO with pruning performed significantly bet-
ter with the exception of shuttle dataset (nom5shuttle and nom10shuttle).

– For ordinally scaled data, LinCbO without pruning performed slightly better
than with pruning – namely, for the magic and shuttle datasets (ord5magic,
ord6magic, ord10shuttle, and ord5shuttle). LinCbO with pruning per-
formed better in the rest. With the exception of ord5crx and ord10crx, the
improvement was significant.

The speed-up factor runtime of LinCbO without pruning
runtime of LinCbO with pruning · 100% of the two pruning

methods is shown in Table 3.

Comparison of the Two Variants of Pruning in LinCbO
The lcmx does not remove pruning rules in (p1) and enables them to be used
until overwritten by another rule or removed in (p2). That way, it can avoid more
closure computation than lcm at the cost of an inexpensive check of attribute
presence (Algorithm 3, line 9).

Indeed, our experimental comparison shows that LinCbO with lcmx performs
slightly better than lcm in most cases (Table 2) and avoids more closure compu-
tation (Table 3). However, the difference in the performance is not significant.

Comparison with Other Algorithms
The column ‘best of the rest’ in Table 2 represents the best algorithm from
Bazhanov & Obiedkov’s framework. We tested all seven algorithms listed above,
however only Ganter, Ganter` (both with the näıve closure implementation) and
the attribute incremental approach appear in the column, as these performed
best in our evaluation. Among these algorithms, the attribute incremental app-
roach was often the fastest one. In some cases, it was even faster than LinCbO
without pruning. However, we encountered limits with this algorithm as it runs
out of available memory in three cases: inter10shuttle, inter4magic, and
nom5keg.

104 R. Janostik et al.

Table 3. Numbers of skipped recursive calls and speed-up factors of the two pruning
techniques.

Dataset lcm Speed-up factor (%) lcmx Speed-up factor (%)

inter10crx 120,851,019 227.66 126,403,951 255.41

inter10shuttle 1,321,766,518 105.91 1,326,688,040 106.93

inter3magic 1,538,199 107.69 1,637,367 108.12

inter4magic 48,536,834 125.19 52,180,055 115.57

inter5bike day 18,193,052 194.47 19,432,953 212.13

inter5crx 2,345,689 171.21 2,429,752 176.25

inter5shuttle 7,536,887 107.11 7,603,108 106.54

inter6shuttle 9,922,755 105.03 10,029,964 105

nom10bike day 1,195,268 422.08 1,229,644 459.46

nom10crx 635,844 284.38 641,138 287.87

nom10magic 2,974,506 214.57 2,995,995 213.94

nom10shuttle 39,864 111.05 40,288 107.34

nom15magic 10,129,231 271.05 10,185,502 277.31

nom20magic 19,659,598 366.2 19,756,910 366.56

nom5bike day 502,879 266.27 533,577 276.04

nom5bike hour 16,430,989 295.87 17,011,991 293.02

nom5crx 169,499 169.24 171,668 181.19

nom5keg 226,578,200 173.46 227,020,735 169.91

nom5shuttle 12,983 103.91 13,338 105.71

ord10bike day 2,468,278 156.75 2,848,811 165.45

ord10crx 1,621,895 110.82 2,169,367 114.85

ord10shuttle 1,144,851 94.51 1,181,005 94.71

ord5bike day 121,968 131.32 156,400 139.91

ord5bike hour 1,122,408 117.27 1,677,745 124.44

ord5crx 137,169 109.12 161,173 110.74

ord5magic 491,174 97.01 493,737 97.02

ord5shuttle 38,877 98.02 40,987 97.75

ord6magic 1,856,194 99.85 1,867,038 97.28

7 Conclusion

We enhanced LinCbO with two pruning techniques inspired by LCM and experi-
mentally evaluated the resulting algorithms in comparison with LinCbO without
pruning and seven known algorithms. In all tested cases, some version of LinCbO
computed the DG-basis faster than other algorithms.

Future Research:

– In the paper, we describe our results on application of the LCM-like pruning
technique. Besides this, we also experiment with pruning techniques from
FCbO and InClose5. We will bring related results in our upcoming papers.

Pruning Techniques in LinCbO for Computation 105

– Furthermore, the presented pruning techniques were not yet tried for enumer-
ation of intents with CbO-based algorithms (except LCM). This represents
another direction of our research.

– We observed that the algorithms behave differently for formal contexts
obtained by various scaling techniques. We want to study trends of this behav-
ior and provide more general information about it.

Acknowledgment. The authors acknowledge support by the grants
– IGA UP 2020 of Palacký University Olomouc, No. IGA PrF 2020 019,
– JG 2019 of Palacký University Olomouc, No. JG 2019 008.

References

1. Andrews, S.: In-Close, a fast algorithm for computing formal concepts. In: Inter-
national Conference on Conceptual Structures (ICCS), Moscow (2009)

2. Andrews, S.: Making use of empty intersections to improve the performance
of CbO-type algorithms. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S.
(eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 56–71. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59271-8 4

3. Andrews, S.: A new method for inheriting canonicity test failures in close-by-one
type algorithms (2018)

4. Bazhanov, K., Obiedkov, S.A.: Optimizations in computing the Duquenne-Guigues
basis of implications. Ann. Math. Artif. Intell. 70(1–2), 5–24 (2014)

5. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. (TODS) 4(1), 30–59 (1979)

6. Dua, D., Graff, C.: UCI machine learning repository (2017)
7. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.

Springer, Heidelberg (1999)
8. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives

resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)
9. Janostik, R., Konecny, J., Krajča, P.: LCM is well implemented CbO: study of

LCM from FCA point of view. CoRR, abs/2010.06980 (2020)
10. Janostik, R., Konecny, J., Krajča, P.: LinCbO: fast algorithm for computation of

the Duquenne-Guigues basis. CoRR, abs/2011.04928 (2020)
11. Konecny, J., Krajča, P.: Pruning in map-reduce style CbO algorithms. In: Alam,

M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 103–116.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8 8

12. Krajča, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. CLA
672, 325–337 (2010)

13. Krajča, P., Outrata, J., Vychodil, V.: Parallel algorithm for computing fixpoints
of Galois connections. Ann. Math. Artif. Intell. 59(2), 257–272 (2010)

14. Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts
using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Bouli-
caut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03915-7 29

15. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects
from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-
Informatsionnye Protsessy i Sistemy, (1), 17–20 (1993)

https://doi.org/10.1007/978-3-319-59271-8_4
https://doi.org/10.1007/978-3-030-57855-8_8
https://doi.org/10.1007/978-3-642-03915-7_29

106 R. Janostik et al.

16. Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base.
J. Univ. Comput. Sci. 10(8), 927–933 (2004)

17. Maier, D.: The Theory of Relational Databases, vol. 11. Computer Science Press,
Rockville (1983)

18. Obiedkov, S.A., Duquenne, V.: Attribute-incremental construction of the canonical
implication basis. .Ann. Math. Artif. Intell. 49(1–4), 77–99 (2007)

19. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connec-
tions induced by object-attribute relational data. Inf. Sci. 185(1), 114–127 (2012)

20. Uno, T., Asai, T., Uchida, Y., Hiroki A.: LCM: an efficient algorithm for enumer-
ating frequent closed item sets. In: FIMI, vol. 90. Citeseer (2003)

21. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS
2004. LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30214-8 2

22. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for
frequent/closed/maximal itemsets. In: FIMI, vol. 126 (2004)

23. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 3: collaboration of array, bitmap and
prefix tree for frequent itemset mining. In: Proceedings of the 1st International
Workshop on Open Source Data Mining: Frequent Pattern Mining Implementa-
tions, pp. 77–86. ACM (2005)

24. Wild, M.: Computations with finite closure systems and implications. In: Du, D.-Z.,
Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 111–120. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0030825

https://doi.org/10.1007/978-3-540-30214-8_2
https://doi.org/10.1007/978-3-540-30214-8_2
https://doi.org/10.1007/BFb0030825

Approximate Computation of Exact
Association Rules

Saurabh Bansal1 , Sriram Kailasam1 , and Sergei Obiedkov2(B)

1 IIT Mandi, Mandi, India
s.obiedkov@hse.ru, sriramk@iitmandi.ac.in

2 HSE University, Moscow, Russia

Abstract. We adapt a polynomial-time approximation algorithm for
computing the canonical basis of implications to approximately compute
frequent implications, also known as exact association rules. To this end,
we define a suitable notion of approximation that takes into account the
frequency of attribute subsets and show that our algorithm achieves a
desired approximation with high probability. We experimentally evaluate
the proposed algorithm on several artificial and real-world data sets.

Keywords: Association rule · Implication · PAC learning

1 Introduction

Formal concept analysis offers several approaches to computing implication bases
of a formal context. Most popular ones are based on Next Closure, a general
algorithm for computing closed sets of a closure operator [11]. This algorithm is
suitable for building the canonical basis of a formal context, since its premises,
taken together with closed attribute sets of the context, form a closure system.
The attribute-incremental algorithm from [19] is often faster than approaches
based on Next Closure, but its memory requirements limit its applicability
to contexts with a moderate number of closed sets.

Recently, probably approximately correct (PAC) algorithms for computing
the implication basis have been considered [8,9]. In this paper, we continue this
line of research by proposing a new notion of approximation that focuses on cap-
turing the frequent (in the sense of frequent itemset mining) part of the implica-
tion theory behind the context. We adapt a previously proposed PAC-algorithm
to compute this frequency-aware approximation and show that it usually pro-
duces more accurate approximations than the original PAC-algorithm and thus
can be useful even if one is not interested specifically in frequent implications.
We also show that the algorithm runs much faster than exact Next Closure-
based algorithms on dense formal contexts, at least if the size of their canonical

Supported by SPARC, a Government of India Initiative under grant no. SPARC/2018-
2019/P682/SL.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 107–122, 2021.
https://doi.org/10.1007/978-3-030-77867-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_7&domain=pdf
http://orcid.org/0000-0003-1297-2184
http://orcid.org/0000-0002-2218-8660
http://orcid.org/0000-0003-1497-4001
https://doi.org/10.1007/978-3-030-77867-5_7

108 S. Bansal et al.

basis is significantly smaller than the number of closed sets (which is often the
case, as suggested by our experiments in Sect. 5).

The paper is organized as follows. In Sect. 2, we present the necessary def-
initions from formal concept analysis. Section 3 recalls two notions of Horn
approximations and a PAC-algorithm for finding them. In Sect. 4, we intro-
duce frequency-aware approximations and adapt the algorithm from the previous
section to compute them. Section 5 describes the results of empirical evaluation
of the proposed algorithm.

2 Main Definitions

Recall that a formal context K is a triple (G,M, I), where G is a set of objects,
M is a set of attributes, and I ⊆ G × M is an incidence relation specifying
which objects have which attributes [13]. For X ⊆ G and Y ⊆ M , the following
derivation operators are defined:

X ′ = {m ∈ M | ∀g ∈ X : (g,m) ∈ I} Y ′ = {g ∈ G | ∀m ∈ Y : (g,m) ∈ I}
Two closure operators are defined by subsequent application of the two derivation
operators; X ′′ and Y ′′ are said to be closed in K. Closed subsets of M are called
(concept) intents of K. The set of all intents of K is denoted by Int K.

An implication is an expression of the form A → B, where A ⊆ M is called
the premise and B ⊆ M the conclusion of the implication. A subset C ⊆ M is
a model of A → B if A �⊆ C or B ⊆ C. The implication A → B holds or is valid
in K if, for every g ∈ G, the set {g}′ is its model. If {g}′ is not a model of an
implication, then g is a counterexample to it.

The support of an attribute set A ⊆ M is |A′|, the number of objects that
have all attributes from A. The relative support of A is |A′|/|G|. The (relative)
support or frequency of an implication A → B is the (relative) support of A∪B.
An attribute set or an implication is called frequent if its support is above a
certain specified threshold. The support parameter is important in association
rule mining, where the goal is to find implications with high support that may
still have a small number of counterexamples in the context [1]. There, valid
implications are known as exact association rules.

A set C ⊆ M is a model of a set L of implications over M if it is a model of
every implication from L. The set of all models of L is denoted by ModL.

An implication set L over M defines a closure operator that maps C ⊆ M
to the smallest subset L(C) ∈ ModL such that C ⊆ L(C). If C is a model of L,
then C = L(C) and we say that C is closed under L.

An implication A → B follows from an implication set L if every model of
L is a model of A → B or, equivalently, B ⊆ L(A). An implication set L is
non-redundant if no implication A → B ∈ L follows from L \ {A → B}.

A non-redundant set L of implications valid in K is called a basis of K if
every implication valid in K follows from L. A formal context can have several
bases of different sizes. The canonical or Duquenne–Guigues basis of K is known
to contain the smallest number of implications among all bases of K [14]. It

Approximate Computation of Exact Association Rules 109

is defined as {P → P ′′ | P is a pseudo-intent of K}, where P ⊆ M is called a
pseudo-intent if P �= P ′′ and, for every Q � P , we have Q′′ ⊆ P whenever Q is
a pseudo-intent.

3 Probably Approximately Correct Computation
of Implications

Being able to compute the canonical basis L of a formal context K in total
polynomial time, i.e., time polynomial in the sizes of K and L, is a major open
problem. Known algorithms that compute L directly also compute Int K as a
side product [5,11,15,19]. However, |Int K| can be exponentially larger than |L|,
see Example 1 from Sect. 5.3.

This motivates approximation algorithm design for finding the canonical
basis. Probably approximately correct computation of the canonical basis of
a formal context has been considered in various settings in [8,9,20,21]. The set-
tings differ in whether the context is available directly or via a particular set of
queries, as in the query learning framework [2] or in attribute exploration [12].

The notions of approximation that we will use here are more general than
in these works. Assuming a probability distribution D over attribute subsets of
M , we define the Horn D-distance between an implication set L over M and a
context K = (G,M, I) as the probability of obtaining a subset closed under L
but not in K or vice versa when choosing it according to D:

distD(L, K) := Pr
D

(A ∈ Mod L � Int K).

Here, A � B is the symmetric difference between the sets A and B. An ε-Horn
D-approximation of K, where 0 < ε < 1, is an implication set L over M such that
distD(L, K) ≤ ε. If D is the uniform distribution, then ε-Horn D-approximation
of K is the ε-Horn approximation of K as defined in the papers referenced above.

These papers also use the notion of an ε-strong Horn approximation, which
we generalize in a similar way. The strong Horn D-distance between L and K is
the probability of choosing a subset with different closures under L and in K:

distD
strong(L, K) := Pr

D
(L(A) �= A′′).

L is an ε-strong Horn D-approximation of K if distD
strong(L, K) ≤ ε. An ε-strong

Horn D-approximation is always an ε-Horn D-approximation.
An approximation L is an upper approximation of K if all implications of L

are valid in K, or, equivalently, L(A) ⊆ A′′ for all A ⊆ M , i.e., if Int K ⊆ ModL.
We are interested in algorithms that, given a formal context K = (G,M, I),

a distribution D over subsets of M , and parameters 0 < ε ≤ 1 and 0 < δ ≤ 1,
compute, with probability at least 1−δ, an ε- or ε-strong Horn D-approximation
of K. As discussed in [20], such algorithms exist for the uniform distribution and
they work in time polynomial in |G|, |M |, the size of the canonical basis of
K, 1/ε, and 1/δ. Such an algorithm for an upper ε-Horn approximation has

110 S. Bansal et al.

been presented (in a different setting) already in [16] based on the results for
learning Horn formulas with membership and equivalence queries [3]. We present
its generalization to an arbitrary distribution as Algorithm 1.

Algorithm 1. HornApproximation(K, EXD, ε, δ)
Input: A formal context K = (G, M, I), a sampling oracle EXD that returns a subset

of M according to distribution D, 0 < ε ≤ 1, and 0 < δ ≤ 1.
Output: A set of implications L that, with probability at least 1 − δ, is an ε-Horn

D-approximation of K.
1: L := []
2: i := 1
3: while IsApproximatelyEquivalent(L, K, EXD, qi(ε, δ)) returns X do
4: found := false
5: for all A → B ∈ L do
6: C := A ∩ X
7: if A �= C �= C′′ then
8: found := true
9: replace A → B by C → C′′ in L

10: exit for
11: if not found then
12: add X → X ′′ to the end of L
13: i := i + 1
14: return L

Algorithm 1 receives a sampling oracle EXD that takes no arguments and,
when called, returns a subset of M according to distribution D. Starting with
an empty list L of implications, the algorithm repeatedly calls procedure IsAp-
proximatelyEquivalent to check if L is an ε-Horn D-approximation of K. If
not, this procedure is expected to return a model X of L such that X �= X ′′,
which means that there is an implication valid in K that does not follow from L.
This X is called a negative counterexample to L, as opposed to a positive coun-
terexample Y , which is such that L(Y) �= Y = Y ′′. The algorithm then either
refines one of the implications of L or simply adds implication X → X ′′ so as
to ensure that X � L(X) ⊆ X ′′. This guarantees that L always contains only
valid implications of K and thus no positive counterexamples to L are possible.

If the IsApproximatelyEquivalent procedure always returns a negative
counterexample X when it exists, then Algorithm 1 computes the canonical basis
of K. This easily follows from the results presented in [4] regarding the original
query-based algorithm from [3]. In this case, the IsApproximatelyEquiva-
lent procedure implements an equivalence oracle in the sense of [2,3]. However,
finding such an X given K and L is the problem referred to as CMI in [17], where
it is shown that it is at least as hard as (the decision version of) the Hypergraph
Transversal Problem; no polynomial-time algorithm is known to exist for it.

To achieve an ε-Horn approximation with probability at least 1 − δ, we use
Algorithm 2, which makes a certain number of attempts to generate such an X
using EXD and returns true if all attempts fail.

Approximate Computation of Exact Association Rules 111

Algorithm 2. IsApproximatelyEquivalent(L, K, EXD, k)
Input: A set L of implications valid in context K = (G, M, I), a sampling oracle EXD

that returns a subset of M according to distribution D, and k ∈ N.
Output: A set X ⊆ M such that L(X) = X �= X ′′ if found; true, otherwise.
1: for j := 1 to k do
2: X := EXD()
3: if L(X) = X �= X ′′ then
4: return X
5: return true

How many attempts are needed depends on how far we are in computing
a Horn approximation or, more precisely, how many counterexamples we have
already produced. In Algorithm 1, we use the function qi(ε, δ) to determine the
number of calls to EXD needed to generate the ith X. It has been known that
an algorithm using equivalence queries can be transformed into a PAC algorithm
for the same learning problem by replacing the ith equivalence query by⌈

1
ε
(ln

1
δ

+ i ln 2)
⌉

(1)

calls to the EXD oracle and terminating if none of them returns a counterex-
ample [2]. Here, ε is the desired approximation quality and δ is the upper bound
on the probability of failing to achieve an ε-approximation.

The quantity (1) grows linearly with i; however, a logarithmic dependence
on i is sufficient, as shown in [21]. Defining the function qi as

qi(ε, δ) =
⌈
log1−ε

δ

i(i + 1)

⌉
, (2)

we guarantee that Algorithm 1 computes an ε-Horn D-approximation of K with
probability at least 1 − δ in time polynomial in |G|, |M |, |L|, 1/ε, and 1/δ,
where L is the set of implications upon the termination of the algorithm, whose
size never exceeds the size of the canonical basis of K. The total number of
calls to EXD is O(|L||M |(log |L||M |+log 1/δ)/ε) when using (2) compared with
O(|L||M |(|L||M | + log 1/δ)/ε) when using (1) [21].

To obtain an ε-strong Horn D-approximation, we replace the call to IsAp-
proximatelyEquivalent in Algorithm 1 to the call to the IsStronglyAp-
proximatelyEquivalent procedure presented as Algorithm 3 [9].

4 Computing Frequency-Aware Approximations

For practical applications, it may be reasonable to assume that attribute subsets
are distributed according to their frequency. For a context K = (G,M, I) with
finite G and A ⊆ M , this means

Pr(A) =
|A′|∑

B⊆M |B′| . (3)

112 S. Bansal et al.

Algorithm 3. IsStronglyApproximatelyEquivalent(L, K, EXD, k)
Input: A set L of implications valid in context K = (G, M, I), a sampling oracle EXD

that returns a subset of M according to distribution D, and k ∈ N.
Output: A set L(X) ⊆ M such that L(X) �= X ′′ if found; true, otherwise.
1: for j := 1 to k do
2: Y := L(EXD())
3: if Y �= Y ′′ then
4: return Y
5: return true

Plugging this probability into the definition of (strong) Horn distance, we obtain
the notion of frequency-aware Horn approximation: an ε- (ε-strong) Horn D-
approximation L of K is a frequency-aware ε- (ε-strong) Horn approximation of
K if D is the probability distribution defined by (3).

The reason for using a frequency-aware approximation is two-fold. On the one
hand, such approximation L ensures that most implications with high support
follow from L and, in the case of the strong approximation, the closures of most
frequent subsets under L coincide with their closures in the context. In the
framework of association rule mining [1], such implications and such subsets are
usually considered the most important. On the other hand, a frequency-aware
approximation ignores attribute subsets that never occur in data. For real-world
data sets, these may be the bulk of all the subsets, resulting in a misleadingly low
value of distD(L, K) when D is the uniform distribution. Using frequency-aware
approximation allows one to capture the implications that describe dependencies
inside attribute combinations that actually occur in data instead of focusing on
implications that describe incompatibilities between attributes (which may also
be important, but, in many cases, are a part of background knowledge).

To compute such frequency-aware approximations, we need to simulate a
sampling oracle that samples attribute subsets according to (3). This oracle can
be simulated by polynomial-time Algorithm 1 “Frequency-based Sampling” from
[7], resulting in a total–polynomial time PAC algorithm for computing frequent
implications. The algorithm uses the following probability distribution on objects
g ∈ G of context K = (G,M, I):

Pr(g) =
2|{g}′|∑

h∈G 2|{h}′| . (4)

In other words, the probability of an object g ∈ G is proportional to the number
of subsets of its intent {g′}.

The algorithm consists of two steps. First, it selects an object g from G
according to probability distribution (4), and then it selects a subset of {g}′

uniformly at random. It is shown in [7] that this algorithm generates an attribute
subset according to probability distribution (3).

Therefore, a frequency-aware ε- or ε-strong Horn approximation can be com-
puted by Algorithm 1 by passing the algorithm just described in place of EXD.

Approximate Computation of Exact Association Rules 113

5 Experimental Evaluation

In this section, we study the performance of the randomized algorithm on real-
life, as well as artificial data sets. We are primarily interested in two character-
istics: the runtime and the quality of approximation.

5.1 Quality Factor

The randomized algorithms presented here are guaranteed to produce an upper
ε- or ε-strong Horn approximation with the desired probability. In particular,
if L is the implication set obtained from K when running the algorithm for ε-
approximation with parameters ε and δ and a sampling oracle for probability
distribution D, then, with probability at least 1 − δ, we have distD(L, K) ≤ ε.
Since L contains only implications valid in K and, consequently, Int K ⊆ ModL,
this means that |Mod L| − |Int K|

2|M | ≤ ε

when D is the uniform distribution. In other words, the difference between
|Mod L| and |Int K| is small when considered on the scale of 2|M |: ModL contains
at most ε2|M | extra subsets in addition to those in Int K.

However, if Int K is small compared to 2|M |, this may still allow ModL to
be several times larger than Int K. To see if this really happens in practice, we
introduce the quality factor (QF) defined as follows:

QF (L, K, A) =
|Int K ∩ P(A)|
|Mod L ∩ P(A)| ,

where A ⊆ M and P(A) is the power set of A. This measures the proportion
of subsets of A closed in the context among those closed under the computed
implications. When we report the quality factor in the experiments, we set A to
be the set of roughly α|M | most frequent attributes of M , where α is 1/4 for
real-world data sets and 1/2 for artificial data sets.

5.2 Testbed

The testbed consists of a server Intel Xeon E5-2650 v3 @ 2.30 GHz with 20 cores
and 40 threads.

5.3 Data Sets

The formal contexts used in the experiments are described in Table 1, where the
last five columns correspond to the number of attributes, the number of objects,
the size of the canonical basis, the number of intents, and the density, |I|/|G||M |,
of the context (G,M, I) named in the first column.

The first six data sets are real-world data sets, while the rest are syntheti-
cally generated. The real-world data sets have been derived from Census, Shut-
tle, Mushroom, Connect, and Chess data sets from the UCI machine learning

114 S. Bansal et al.

Table 1. Contexts.

Context Attributes Objects Canonical basis Intents Density

Census 122 48842 71787 248846 0.08

nom10shuttle 97 43500 810 2931 0.10

Mushroom 119 8124 2323 238710 0.19

Connect 114 7222 86583 50468988 0.38

inter10shuttle 178 43500 936 38199148 0.46

Chess 75 3196 73162 930851337 0.49

Example 1 (n = 5) 25 3125 5 28629152 0.80

Example 1 (n = 6) 36 46656 6 62523502210 0.83

Example 2 (n = 10) 21 30 1024 2038103 0.92

Example 2 (n = 15) 31 45 32768 2133134741 0.95

repository [10]. They have been converted into formal contexts by using nomi-
nal scaling for categorical features (one attribute per category) and by scaling
numerical features into multiple attributes using equidistant cut points. In the
inter10shuttle data set, inter-ordinal rather than nominal scaling is used [15].

Example 1 is a context with nn objects and n2 attributes M = M1∪· · ·∪Mn

with |Mi| = n,Mi ∩ Mj = ∅ for all 1 ≤ i < j ≤ n, where the object intents {g}′

are all possible subsets of M such that |{g}′ ∩ Mi| = n − 1 for all 1 ≤ i ≤ n
[12]. The canonical basis consists of only n implications of the type Mi → M
for 1 ≤ i ≤ n. The number of concept intents is (2n − 1)n + 1. This context
is interesting, because the number of its closed attribute sets is exponential in
|M |, while the size of the canonical basis is only linear in |M |. This is precisely
the type of a context that should be hard for Next Closure–based algorithms,
since they have to compute all closed sets as a side product, and much easier for
our randomized algorithm. We ran experiments for n = 5 and n = 6.

Example 2 is a context with 3n objects g1, g2, . . . , g3n and 2n + 1 attributes
m0,m1, . . . ,m2n, where object gi has attribute mj if i ≤ n and j �∈ {0, i, i + n},
or if i > n and j �= i − n [18]. There are exactly 2n pseudo-intents of the form
{mi1 ,mi2 , . . . ,min} where ij ∈ {j, j + n}; thus, the size of the canonical basis is
exponential in the context size. We ran experiments for n = 10 and n = 15.

5.4 Experiments

In all the experiments, a parallelized implementation of the randomized algo-
rithm was used. We parallelized the search for a counterexample in Algorithms 2
and 3, as well as the search for an implication A → B to be refined in the
main loop of Algorithm 1. Our implementation and the data sets used for
the experiments are available at https://github.com/saurabh18213/Implication-
Basis. Unless mentioned otherwise, forty threads were allocated to run the algo-
rithm. The actual number of threads used at different points of the execution of
the algorithm was determined using certain heuristics.

https://github.com/saurabh18213/Implication-Basis
https://github.com/saurabh18213/Implication-Basis

Approximate Computation of Exact Association Rules 115

In Experiments 1, 3 and 4, we set ε = 0.1 for real-world data sets, ε = 0.01
for Example 1, ε = 0.01 for Example 2 (n = 10), and ε = 0.001 for Example
2 (n = 15). In Experiment 2, we vary the value of ε. All the reported results
are for δ = 0.1. No significant change in total time, the computed number of
implications, and Quality Factor was observed when δ was varied. For real-world
and artificial data sets, all the results are average of three and five measurements,
respectively.

Experiment 1: Comparing Approximations. In this experiment, we com-
pute ε- and ε-strong Horn D-approximations for different D, varying the sampling
oracle used in Algorithms 2 and 3. We use the Uniform oracle that generates
subsets of M uniformly at random and the Frequent oracle that generates sub-
sets according to the probability distribution specified by (3), as described in
Sect. 4. In addition, we test the following combination of the two oracles. We
first use the Uniform oracle. If, at some call to Algorithm 3, all k attempts to
generate a counterexample with the Uniform oracle fail, instead of terminating
the algorithm, we “redo” the k attempts, now with the Frequent oracle. If one
of the attempts succeeds, we keep using the Frequent oracle for the remaining
part of the computation; otherwise, the algorithm terminates. This approach is
denoted by Both in the results below.

Table 2. Runtime in seconds for different types of approximation.

ε-strong Horn approximation ε-Horn approximation

Data set Uniform Frequent Both Uniform Frequent Both

Census 0.18 1451.64 1184.10 0.16 5.02 0.21

nom10shuttle 0.15 0.73 0.71 0.14 0.43 0.44

Mushroom 0.11 1.89 1.95 0.06 0.16 0.14

Connect 0.14 307.51 307.10 0.07 0.08 0.07

inter10shuttle 0.59 6.77 6.47 0.58 0.60 0.60

Chess 0.07 167.96 169.77 0.04 0.04 0.03

Example 1 (n = 5) 0.03 0.03 0.04 0.03 0.03 0.04

Example 1 (n = 6) 0.31 0.27 0.36 0.31 0.29 0.37

Example 2 (n = 10) 0.27 0.17 0.27 0.21 0.19 0.26

Example 2 (n = 15) 96.72 74.64 108.77 83.31 75.12 115.81

The time taken, the number of implications computed, and the value of the
Quality Factor for each data set are shown in Tables 2, 3, and 4, respectively.

When computing an ε-strong Horn approximation, the runtime on the real-
world data sets is significantly higher with the Frequent oracle than with the
Uniform oracle, but so is the number of implications computed and, usually,
the Quality Factor. An exception is Connect, for which QF almost does not

116 S. Bansal et al.

Table 3. The number of implications computed for different types of approximation.
The last column shows the number of implications in the entire canonical basis.

ε-strong Horn approximation ε-Horn approximation Total

Data set Uniform Frequent Both Uniform Frequent Both

Census 48 20882 19111 41 1210 71 71787

nom10shuttle 76 201 201 76 137 146 810

Mushroom 95 577 593 7 72 59 2323

Connect 120 10774 10730 7 9 9 86583

inter10shuttle 172 446 430 171 171 171 936

Chess 64 6514 6542 48 48 48 73162

Example 1 (n = 5) 5 0 5 5 0 5 5

Example 1 (n = 6) 6 0 6 6 0 6 6

Example 2 (n = 10) 357 269 340 321 262 347 1024

Example 2 (n = 15) 7993 6813 8375 7612 6970 8424 32768

Table 4. Quality Factor (QF) for different types of approximation.

ε-strong Horn approximation ε-Horn approximation

Data set Uniform Frequent Both Uniform Frequent Both

Census 0.0003 0.0184 0.0180 0.0003 0.0014 0.0004

nom10shuttle 0.0004 0.0695 0.0613 0.0004 0.0157 0.0208

Mushroom 0.0004 0.1454 0.1482 0.0001 0.0032 0.0014

Connect 0.9979 0.9979 0.9979 0.0001 0.0016 0.0016

inter10shuttle 0.4900 0.5533 0.5429 0.4900 0.4900 0.4900

Chess 0.6927 1.0000 0.9830 0.6927 0.6927 0.6927

Example 1 (n = 5) 1.0000 0.9692 1.0000 1.0000 0.9692 1.0000

Example 1 (n = 6) 1.0000 0.9844 1.0000 1.0000 0.9844 1.0000

Example 2 (n = 10) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Example 2 (n = 15) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

change despite a sharp increase in the number of implications. With ε-Horn
approximation, the situation is generally similar.

The runtime, the number of implications, and QF are lower for Example 1
when using the Frequent oracle than when using the Uniform oracle. This is
because all non-trivial valid implications (i.e., implications A → B with B �⊆ A)
have zero support and are ignored by frequency-aware approximations. The ran-
domized algorithm computes no implications when using the Frequency oracle.

In Example 2, all non-trivial valid implications have non-zero support. In
particular, all 2n implications from the canonical basis have a rather high support
n (while the total number of objects in the context is 3n), and their premises are
also rather large (n out of 2n + 1 attributes). Because of this, all three metrics
are almost the same for the Uniform and Frequent oracles in Example 2: chances

Approximate Computation of Exact Association Rules 117

Table 5. Time in seconds for different values of ε.

Data set 0.3 0.2 0.1 0.05 0.01

Census 0.19 37.63 1184.10 2345.26 2336.88

nom10shuttle 0.44 0.47 0.71 0.82 1.43

Mushroom 0.82 1.27 1.95 2.75 5.03

Connect 308.69 307.54 307.10 306.97 307.44

inter10shuttle 4.41 5.34 6.47 7.91 12.72

Chess 169.23 169.50 169.77 168.04 168.99

Example 1 (n = 5) 0.02 0.02 0.03 0.03 0.04

Example 1 (n = 6) 0.23 0.23 0.29 0.30 0.36

Example 2 (n = 10) 0.002 0.002 0.002 0.01 0.27

Example 2 (n = 15) 0.002 0.002 0.002 0.002 0.63

to generate a negative counterexample to a current implication set L are similar
for the two oracles.

As expected, for real-world data sets, most of the metrics are higher in the
case of ε-strong approximation than in the case of ε-approximation. For the arti-
ficial data sets, there is not much difference due to the fact that the closure of
all non-closed sets there is M and, therefore, Algorithm 1 adds to L only impli-
cations of the form X → M whether it computes ε- or ε-strong approximation.

When using both oracles, as described above, we usually obtain results sim-
ilar to what we get with the Frequent oracle alone. An important exception
is Example 1, where all implications have zero support. In general, using both
oracles lets us capture such zero-support implications in addition to frequent
implications.

Experiment 2: The Quality of Approximation. In this experiment, we
vary the value of the ε parameter. The results in Tables 5–7 are for ε-strong Horn
approximation with counterexamples generated following the approach labeled
as “Both” in the description of Experiment 1. As expected, for most data sets,
the run time, the number of implications computed, and the value of the quality
factor increase as the value of ε is decreased. The exceptions are Chess and
Connect, where a very good approximation (QF ≈ 1) is computed even at ε = 0.3.
The decrease in ε has no substantial effect on any of the metrics, even though
the number of implications computed is several times smaller than the size of the
canonical basis. It seems that the implication set L computed by the randomized
algorithm forms the essential part of the implication theory behind the context,
while valid implications that do not follow from L must have limited applicability
due to large premises with low support.

It should also be said that the Quality Factor as we compute it is not very
relevant to Examples 1 and 2. Recall that, for artificial data sets, we select the
|M |/2 most frequent attributes of M and then check how many subsets of these

118 S. Bansal et al.

Table 6. The number of implications computed for different values of ε. The last
column shows the number of implications in the entire canonical basis.

Data set 0.3 0.2 0.1 0.05 0.01 Total

Census 49 2865 19111 26257 26253 71787

nom10shuttle 136 149 201 231 303 810

Mushroom 349 440 593 749 1036 2323

Connect 10790 10746 10730 10735 10759 86583

inter10shuttle 356 383 430 479 582 936

Chess 6563 6572 6542 6537 6578 73162

Example 1 (n = 5) 3 4 5 5 5 5

Example 1 (n = 6) 1 2 6 6 6 6

Example 2 (n = 10) 1 2 4 28 340 1024

Example 2 (n = 15) 0 0 0 1 422 32768

Table 7. Quality Factor (QF) for different values of ε.

Data set 0.3 0.2 0.1 0.05 0.01

Census 0.0004 0.0034 0.0180 0.0208 0.0208

nom10shuttle 0.0090 0.0140 0.0613 0.1017 0.1753

Mushroom 0.0382 0.0692 0.1482 0.2726 0.4504

Connect 0.9979 0.9979 0.9979 0.9979 0.9979

inter10shuttle 0.4956 0.5202 0.5429 0.6451 0.8910

Chess 0.9981 1.0000 0.9830 0.9963 1.0000

Example 1 (n = 5) 0.9692 0.9815 1.0000 1.0000 1.0000

Example 1 (n = 6) 0.9844 0.9875 0.9969 1.0000 1.0000

Example 2 (n = 10) 1.0000 1.0000 1.0000 1.0000 1.0000

Example 2 (n = 15) 1.0000 1.0000 1.0000 1.0000 1.0000

attributes are closed under the computed implications but not in the context.
However, for Example 2, any selection of |M |/2 attributes contains at most one
subset that is not closed in the context; so the value of the Quality Factor is
bound to be high no matter what implications we compute. This explains why
we have QF = 1 even for cases when no implications have been computed. The
situation is similar for Example 1, though less dramatic. There, the number of
implications computed is a better indicator of the approximation quality than
QF. Tables 5 and 6 show that, for Example 1, we compute the basis exactly at
ε ≤ 0.05 in a fraction of a second.

Experiment 3: The Frequency of Implications. In this experiment, we
compute the support of implications in an ε-strong Horn approximation obtained

Approximate Computation of Exact Association Rules 119

with counterexamples generated using the Frequent oracle. The results are shown
in Table 8. We show relative supports as percentages of |G|. In the second column,
the average support of the implications is shown. For columns 3–6, if the value of
Px is y, then at least x% of the implications in the approximation have support
greater than or equal to y. Example 1 is not shown because it has no implications
with non-zero support.

Table 8. The relative support of the implications in the approximation.

Data set Average P10 P50 P90 P99 |G|
Census 0.0335 0.0409 0.0082 0.0020 0.0020 48842

nom10shuttle 5.4038 12.1456 1.2345 0.0023 0.0000 43500

Mushroom 11.7045 25.6360 7.9764 1.1489 0.5252 8124

Connect 0.9276 1.3385 0.2446 0.0415 0.0277 7222

inter10shuttle 35.7838 99.9831 11.7080 0.0092 0.0069 43500

Chess 6.7690 15.7697 4.0989 0.9387 0.5423 3196

Example 2 (n = 10) 32.2586 33.3333 33.3333 30.0000 26.6667 30

Example 2 (n = 15) 32.6944 33.3333 33.3333 31.1111 28.8889 45

Experiment 4: Runtime. In this experiment, we compare the performance of
the randomized algorithm for computing an ε-strong approximation with that
of two algorithms computing the canonical basis exactly: the optimized version
of Next Closure from [5] (referred to as “6 + 1” there) and LinCbO from
[15], which combines this optimized version with the LinClosure algorithm for
computing the closures under implications [6] and introduces further optimiza-
tions. The randomized algorithm is run with the values of ε and δ specified in the
beginning of Sect. 5.4. Counterexamples were generated following the approach
labeled as “Both” in the description of Experiment 1.

We show the results in Table 9. To make comparison fair, we give the runtime
of both the parallel version of the randomized algorithm with forty threads and
the version with one thread only. The number of threads does not affect the value
of the quality factor, which is therefore shown only once. The exact algorithms
have taken excessive time on Example 1 (n = 6); so we had to terminate them
before the basis was computed.

Between the two exact algorithms, LinCbO is consistently faster. The ran-
domized algorithm, both with forty threads and one thread, runs faster than
the exact algorithms on all contexts except the two sparse contexts (Census and
nom10shuttle) and the medium-density context (Mushroom). For Mushroom
context, the randomized algorithm runs faster than the exact algorithms, when
forty threads are used. On Mushroom context, the value of the quality factor of
the implication set obtained by the randomized algorithm is rather low, although

120 S. Bansal et al.

Table 9. Runtime in seconds (Experiment 4)

Data set 1 thread 40 threads QF Next Closure LinCbO

Census 29608 1184.10 0.0180 522 177

nom10shuttle 3.34 0.71 0.0613 1.25 0.44

Mushroom 25.92 1.95 0.1482 49 10.8

Connect 6239.75 307.10 0.9979 23310 19420

inter10shuttle 42.52 6.47 0.5429 19223 16698

Chess 1955.12 169.77 0.9830 325076 234309

Example 1 (n = 5) 0.05 0.04 1.0000 384 65

Example 1 (n = 6) 0.55 0.36 1.0000 – –

Example 2 (n = 10) 0.22 0.27 1.0000 5.94 2.8

Example 2 (n = 15) 84.97 108.77 1.0000 203477 29710

higher than for the two sparse contexts. For the dense contexts, the value of the
quality factor is close to 1 except for inter10shuttle, where it is around 0.54.

This behavior is consistent with our expectations. In dense contexts, we usu-
ally have a large number of concept intents, which have to be enumerated as a
side product by the exact algorithms. This slows them down considerably. The
randomized algorithm does not have this weakness. In general, the randomized
algorithm is preferable when the size of the basis is small with respect to the
number of concept intents. If however the size of the canonical basis is compara-
ble with the number of intents (as in the case of Census and nom10shuttle), the
randomized algorithm tends to perform much worse, both in terms of runtime
and quality. Context density can be a good (even if not always reliable) indicator
for the applicability of the randomized algorithm.

Note also that the forty-thread version of the algorithm is up to twenty
times faster than the single-thread version on hard instances (such as Census
and Connect).

6 Conclusion

Finding the canonical basis of a formal context is a computationally hard prob-
lem, which makes it reasonable to search for relatively efficient approximate
solutions. To this end, an approach within the framework of probably approxi-
mately correct learning has been recently proposed [8,20] based on older works
in machine learning and knowledge compilation [3,16]. The main contribution of
this paper is two-fold. On the one hand, we extend the previously proposed app-
roach by introducing frequency (or support) into approximation so as to shift the
focus to approximating frequent implications. On the other hand, we present the
first experimental evaluation of this approach in terms of its efficiency compared
to the exact computation of the canonical basis.

Approximate Computation of Exact Association Rules 121

Loosely speaking, a frequency-aware Horn approximation of a formal context
K, as considered in this paper, is a subset L of implications valid in K from which
most valid frequent implications of K follow. Somewhat more precisely, such L
is biased towards ensuring, for A ⊆ M with large support |A′|, that A = L(A) if
and only if A = A′′, or, in the case of strong approximation, that L(A) = A′′. In
many application settings, frequent implications, also known as exact association
rules, are regarded as the most important. We present a total–polynomial time
algorithm to compute such an approximation with high probability. For certain
practical purposes, it may be even more valuable than a full basis of frequent
implications (whichever way it is defined), whose size can be exponential in the
size of the input context.

A frequency-aware approximation can be relevant even if we are not inter-
ested specifically in frequent implications. If most attribute subsets are of zero
support, which often happens in real-world data sets, then L would be regarded
as a good Horn approximation provided that L(A) = M for all (or most) sub-
sets A that never occur in data—no matter where L maps those relatively few
subsets that do occur. Taking frequency into account solves this problem by
making it hard to ignore such subsets. This results in a much more meaningful
approximation.

Our experiments show that, if the size of the canonical basis is small com-
pared to the number of concept intents, a high-quality approximation can be
computed in significantly less time than it takes Next Closure–based algorithms
to compute the basis exactly. The randomized algorithm that we propose for this
purpose is very easy to parallelize, which can further decrease the total runtime.
It remains to be seen how well, in terms of efficiency, the algorithm performs
against algorithms that are not related to Next Closure.

Acknowledgments. We thank Aimene Belfodil for letting us know of the paper [7].

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
DC, pp. 207–216. ACM Press (1993). https://doi.org/10.1145/170035.170072

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
3. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Mach.

Learn. 9, 147–164 (1992)
4. Arias, M., Balcázar, J.L.: Construction and learnability of canonical Horn formulas.

Mach. Learn. 85(3), 273–297 (2011). https://doi.org/10.1007/s10994-011-5248-5
5. Bazhanov, K., Obiedkov, S.: Optimizations in computing the Duquenne-Guigues

basis of implications. Annal. Mathe. Artif. Intell. 70(1), 5–24 (2014)
6. Beeri, C., Bernstein, P.: Computational problems related to the design of normal

form relational schemas. ACM TODS 4(1), 30–59 (1979)

https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/s10994-011-5248-5

122 S. Bansal et al.

7. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sam-
pling by efficient two-step random procedures. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
p. 582–590. KDD’11, Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/2020408.2020500, https://doi.org/10.1145/
2020408.2020500

8. Borchmann, D., Hanika, T., Obiedkov, S.: On the usability of probably approxi-
mately correct implication bases. In: Bertet, K., Borchmann, D., Cellier, P., Ferré,
S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 72–88. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59271-8 5

9. Borchmann, D., Hanika, T., Obiedkov, S.: Probably approximately correct learning
of Horn envelopes from queries. Discrete Appl. Math. 273, 30–42 (2020). https://
doi.org/10.1016/j.dam.2019.02.036

10. Dua, D., Graff, C.: UCI Machine Learning Repository (2017)
11. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B.

(eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 312–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11928-6 22

12. Ganter, B., Obiedkov, S.: More expressive variants of exploration. In: Obiedkov, S.
(ed.) Conceptual Exploration, pp. 107–315. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49291-8

13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

14. Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives
résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines
24(95), 5–18 (1986)

15. Janostik, R., Konecny, J., Krajča, P.: LinCbO: fast algorithm for computation of
the Duquenne-Guigues basis (2021). https://arxiv.org/abs/2011.04928

16. Kautz, H.A., Kearns, M.J., Selman, B.: Horn approximations of empirical data.
Artif. Intell. 74(1), 129–145 (1995)

17. Khardon, R.: Translating between Horn representations and their characteristic
models. J. Artif. Intell. Res. (JAIR) 3, 349–372 (1995)

18. Kuznetsov, S.: On the intractability of computing the Duquenne-Guigues base. J.
Univ. Comput. Sci. 10(8), 927–933 (2004)

19. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical
implication basis. Ann. Math. Artif. Intell. 49(1), 77–99 (2007)

20. Obiedkov, S.: Learning implications from data and from queries. In: Cristea, D.,
Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 32–44.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3 3

21. Yarullin, R., Obiedkov, S.: From equivalence queries to PAC learning: the case of
implication theories. Int. J. Approx. Reason. 127, 1–16 (2020)

https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1007/978-3-319-59271-8_5
https://doi.org/10.1016/j.dam.2019.02.036
https://doi.org/10.1016/j.dam.2019.02.036
https://doi.org/10.1007/978-3-642-11928-6_22
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-642-59830-2
https://arxiv.org/abs/2011.04928
https://doi.org/10.1007/978-3-030-21462-3_3

Methods and Applications

An Incremental Recomputation of
From-Below Boolean Matrix Factorization

Martin Trnecka(B) and Marketa Trneckova

Department of Computer Science, Palacký University Olomouc,

Olomouc, Czech Republic

Abstract. The Boolean matrix factorization (BMF) is a well-established
and widely used tool for preprocessing and analyzing Boolean (binary, yes-
no) data. In many situations, the set of factors is already computed, but
some changes in the data occur after the computation, e.g., new entries to
the input data are added. Recompute the factors from scratch after each
small change in the data is inefficient. In the paper, we propose an incre-
mental algorithm for (from-below) BMF which adjusts the already com-
puted factorization according to the changes in the data. Moreover, we
provide a comparison of the incremental and non-incremental algorithm
on real-world data.

Keywords: Boolean matrix factorization · Incremental algorithm

1 Introduction

Boolean matrix factorization (BMF) is generally considered as a fundamental
method, which, on the one hand, is closely connected to several basic problems
such as factor enumeration, data dimensionality, theoretical understanding of
relational data, and the like, and which, on the other hand, has many direct
real-world applications, e.g., computational biology [17], recommendation sys-
tems [12], logic circuit synthesis [11], classification [1], formal concept analy-
sis [9], tiling databases [10], role-based access control [7], and computer network
analysis [13].

The aim of the BMF methods is to find factors (new variables) hidden in the
data that can be used to provide a new fundamental view on the input data in a
concise and presumably comprehensible way. In general, BMF is a set covering
problem, i.e., the BMF methods cover the input data, more precisely the entries
of the input data matrix, by factors which are represented by rectangular areas
(or rectangles for short) in the data. Especially interesting is a class of BMF
methods, which is also a subject of study of this paper, called from-below BMF,
where the factors are represented via rectangles full of ones (factors cover only
nonzero entries of the input data matrix) instead of general rectangles (factors
cover nonzero and zeros entries of the input data matrix). A strong connection
between from-below BMF and Formal concept analysis [9] was established in [4]
and later extended in [2]. The main advantage of from-below methods is that
c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 125–137, 2021.
https://doi.org/10.1007/978-3-030-77867-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_8&domain=pdf
http://orcid.org/0000-0001-7770-2033
http://orcid.org/0000-0002-1311-7211
https://doi.org/10.1007/978-3-030-77867-5_8

126 M. Trnecka and M. Trneckova

these are able to achieve an exact factorization of the input data matrix, i.e.,
the factors covers exactly all input entries.

Very common situation is that the set of factors is already established and
the data are changing over time. In such case a recomputation of all factors from
scratch is very inefficient, especially when only a small change occurs.

There are many (general) BMF methods, e.g., [2–5,7,10,14,16,19,20]. Sur-
prisingly, none of them is incremental.

In the paper, we formalize an incremental version of the BMF problem and
we introduce an incremental algorithm for it. The algorithm adjusts the already
computed factors according to the changes in the data. Moreover, we show later,
in many cases the incremental algorithm can provide even better results than
its non-incremental counterpart and significant speed up.

The rest of the paper is organized as follows. In the next section, we provide
a brief overview of the notation used through the paper and a formalization of
the incremental BMF problem. In Sect. 3 we describe our incremental algorithm.
In Sect. 4 we experimentally evaluate the proposed algorithm and we provide its
comparison with the state-of-the-art BMF algorithm GreConD [4]. Section 5
summarizes the paper and outlines potential research directions.

2 Problem Description

Through the paper, we use a matrix terminology. Matrices are denoted by upper-
case bold letters (A). Aij denotes the entry corresponding to the row i and the
column j of A. The ith row and jth column vector of A is denoted by Ai and
A j , respectively. The set of all m × n Boolean (binary) matrices is denoted by
{0, 1}m×n.

If A ∈ {0, 1}m×n and B ∈ {0, 1}m×n, we have the following element-wise
matrix operations. The Boolean sum A ∨ B which is the matrix sum where
1 + 1 = 1. The Boolean element-wise product A ∧ B which is the element-wise
matrix product. The Boolean subtraction A�B which is the matrix subtraction,
where 0 − 1 = 0.

If 〈i, j〉 is a pair of nonnegative integers, A ∈ {0, 1}m×n and i ≤ m and j ≤ n,
we write 〈i, j〉 ∈ A if Aij = 1 and 〈i, j〉 /∈ A otherwise. Operation A+ 〈i, j〉 sets
the entry Aij to 1. Similarly, the operation A − 〈i, j〉 sets the entry Aij to 0.

We use the same notation for Boolean vectors that are denoted by lower-case
bold letters (b). If i is a nonnegative integer, i ≤ m, b ∈ {0, 1}1×m is a Boolean
vector, we write i ∈ b if the entry bi = 1 and i /∈ b otherwise. Operation b + i
sets the entry bi to 1, and operation b − i sets the entry bi to 0.

Two Boolean vectors b ∈ {0, 1}1×m and c ∈ {0, 1}1×m are equal if ∀i ∈
{1, . . . ,m},bi = ci. Similarly, we define ≤ relation.

For a set O of m objects and a set A of n attributes, we identify the input
data matrix as a matrix A ∈ {0, 1}m×n, i.e. rows and columns of A represent
the objects and attributes respectively. The entry Aij = 1 if the object i has
the attribute j, otherwise Aij = 0, i.e. A captures a Boolean relation between
O and A.

An Incremental Recomputation of From-Below Boolean Matrix Factorization 127

For the input data matrix A one may construct function ↑: 2O → 2A and
↓: 2A → 2O assigning to sets O ⊆ O and A ⊆ A the sets: O↑ = {j ∈ A | ∀i ∈
O,Aij = 1}, and A↓ = {i ∈ O | ∀j ∈ A,Aij = 1}. We represent these sets via
their characteristic vectors, i.e., O↑ ∈ {0, 1}1×n, where O↑

j = 1 if all objects in O

share attribute j, and A↓ ∈ {0, 1}m×1, where A↓
i = 1 if object i has all attributes

in A.

2.1 Non-incremental From-Below BMF

The basic from-below BMF problem [4] is defined as follows.

Problem 1. For a given matrix A ∈ {0, 1}m×n find matrices C ∈ {0, 1}m×k

(object-factor matrix) and B ∈ {0, 1}k×n (factor-attribute matrix), with the
number of factors k as small as possible, for which A = C ⊗ B.

⊗ denotes Boolean matrix multiplication, i.e. (C⊗B)ij = maxk
l=1 min(Cil,Blj).

An example of from-below BMF follows.

A =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 0 0 1 1
0 0 1 1 1
1 1 1 0 0
1 1 0 0 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 1 1
0 1 0 0
0 1 0 1
1 0 1 1
0 0 1 0

⎞
⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎝

1 1 1 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 0

⎞
⎟⎟⎠ = C ⊗ B.

Note, the A can be expressed as the Boolean sum of particular factors, i.e.
A =

∨k
i=1(C i ⊗ Bi), where k is the number of factors.

A =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 0 0 1 1
0 0 1 1 1
1 1 1 0 0
1 1 0 0 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 0 0 0

⎞
⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

We say that the entry Aij is assigned to the factor l if i ∈ C l and j ∈ Bl .

2.2 Incremental From-Below BMF

We defined the incremental variant of the basic from-below BMF problem in the
following way.

Problem 2. For given A and matrices C and B, for which C ⊗ B = A, and
〈i, j〉, where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} find matrices C′ and B′ for which
C′ ⊗ B′ = A′, with the number of factors as small as possible, where A′ is
constructed from A as follows:

A′
pq =

⎧⎪⎨
⎪⎩

Apq, if 〈p, q〉 �= 〈i, j〉
0, if 〈p, q〉 = 〈i, j〉 and 〈p, q〉 ∈ A
1, if 〈p, q〉 = 〈i, j〉 and 〈p, q〉 /∈ A

128 M. Trnecka and M. Trneckova

The indexes i and j are restricted to the dimension of A only for the sake of
simplicity. Problem 2 can be extended to the case, where i, j or both are beyond
the dimension of A. For more details see the end of Sect. 3.2.

The BMF problem is computationally hard problem (NP-hard) [18] and the
incremental version is no easier. Therefore, unless P=NP, an algorithm with
polynomial time complexity that solves the BMF problem, or its incremental
variant does not exist.

3 Incremental Algorithm

In what follows, we present an incremental heuristic algorithm that for a given
input data matrix A, object-factor and factor-attribute matrices C and B and
〈i, j〉, computes matrices A′, C′ and B′. A′ is A where the entry Aij is changed
(zero is set to one and vice versa), C′ and B′ are modification of C and B for
which C′ ⊗ B′ = A′. The algorithm follows the search strategy of the state-of-
the-art algorithm GreConD [4] and it is divided into two parts.

3.1 Adding of New Entries

The first part (Algorithm 1) handles the case where the entry Aij = 0 is set
to 1.

The algorithm iterates over the factors in matrices C′ and B′ (loop on lines
4–25). There are several cases that the algorithm analyses.

The first case (lines 5–12), handles the situation where the new entry 〈i, j〉
can be assigned to an already existing factor l. Namely, if all objects in factor
l have attribute j (line 5), attribute j is assigned to factor l, i.e. l-th row of
matrix B′ is modified (B′

lj = 1). In such situation, we must check all remaining
factors, if there is no other factor p, with the same set of attributes (lines 7–11).
If such factor exists (line 8), there is only one and can be removed (all entries of
the factor p are now assigned to the factor l). To demonstrate how the first case
works let us consider matrices A, C and B depicted bellow:

⎛
⎝

1 1 1
1 1 0
1 0 0

⎞
⎠ =

⎛
⎝

1 1 1
1 1 0
1 0 0

⎞
⎠ ⊗

⎛
⎝

1 0 0
1 1 0
1 1 1

⎞
⎠ .

Changing the entry 〈2, 3〉 of A, i.e. A′ ← A + 〈2, 3〉, the second factor in
matrices C′ and B′ meet the condition on line 5 so the entry B′

23 is set to 1.
The third factor is removed (loop on lines 7–11), since it has the same set of
attributes. According to the first case, the new matrices A′, C′ and B′ look as
follows:

⎛
⎝

1 1 1
1 1 1
1 0 0

⎞
⎠ =

⎛
⎝

1 1
1 1
1 0

⎞
⎠ ⊗

(
1 0 0
1 1 1

)
.

An Incremental Recomputation of From-Below Boolean Matrix Factorization 129

Algorithm 1. New entry adding
Input: Matrices A ∈ {0, 1}m×n, C ∈ {0, 1}m×k, B ∈ {0, 1}k×n, for which C⊗B = A,

and 〈i, j〉 /∈ A, i ≤ m, j ≤ n.
Output: Matrices A′,C′ and B′ for which C′ ⊗ B′ = A′.

1: A′ ← A + 〈i, j〉,B′ ← B,C′ ← C
2: c ← {0}m×1 + i
3: d ← {0}1×n + j
4: for l = 1 to k do
5: if C′

l = d↓ then # case 1
6: B′

l ← B′
l ∨ d

7: for p = 1, p 	= l to k do
8: if B′

p = c↑ then
9: remove factor p from C′ and B′

10: end if
11: end for
12: end if
13: if B′

i = c↑ then # case 2
14: C′

l ← C′
l ∨ c

15: for p = 1, p 	= l to k do
16: if C′

p = d↓ then
17: remove factor p from C′ and B′

18: end if
19: end for
20: end if
21: if C′

l ≤ d↓ and B′
l ≤ c↑ then # case 3

22: C′
l ← C′

l ∨ c
23: B′

l ← B′
l ∨ d

24: end if
25: end for
26: if no case occurs then
27: add c as new column to C′

28: add d as new row to B′

29: else
30: remove redundant factors from C′ and B′

31: end if

The second case (lines 13–20), handles a symmetric situation to the first case.
Namely, if object i has all attributes assigned to factor l (line 13), then object
i is assigned to factor l. In this case, we must check all remaining factors, if
there is no other factor p, to which all objects that share attribute j are assigned
(lines 15–19). Again, if such factor exists (line 16), there is only one and can be
removed.

The third case (lines 21–24), handles the situation where both object i and
attribute j extend factor l (line 21). Namely, all objects in factor l share attribute
j and all attributes in factor l are attributes of object i.

We demonstrate how the third case works on the following matrices A, C
and B:

130 M. Trnecka and M. Trneckova

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠ =

⎛
⎝

1 0
0 1
1 0

⎞
⎠ ⊗

(
0 1 0
1 0 1

)
.

Let A′ ← A+ 〈2, 2〉. Both the first and the second factor in matrices C′ and
B′ meet the condition on line 21, i.e., entries C′

21,C
′
22,B

′
12 and B′

22 are set to
1. New matrices follows:

⎛
⎝

0 1 0
1 1 1
0 1 0

⎞
⎠ =

⎛
⎝

1 0
1 1
1 0

⎞
⎠ ⊗

(
0 1 0
1 1 1

)
.

Unless one of the above cases occurs, a new factor including A′
ij is added

(lines 26–29).
During an execution of case 1, 2 and 3 a factor that is no longer necessary may

occur. More precisely, all entries assigned to the factor are also assigned to some
other existing factors. If one of the cases occurs the remove redundant factors
procedure (Algorithm 3) is executed. The procedure iterates over all factors and
tries to remove factors whose all entries are assigned to some other factor. For
each factor l an internal copy (stored in D) of A is initialized (line 2). Loop over
all remaining factors (lines 3–11) removes all entries that are assigned to these
factors from D. If all entries assigned to factor l are not in D, then factor l can
be removed (lines 7–10).

For example, in the following matrices, the second factor can be removed
because all entries assigned to the factor are also assigned to some other factors,
namely to the first and the third factor.

⎛
⎝

1 1 0
1 1 1
0 1 1

⎞
⎠ =

⎛
⎝

1 0 0
1 1 1
0 0 1

⎞
⎠ ⊗

⎛
⎝

1 1 0
1 1 1
0 1 1

⎞
⎠ .

3.2 Removing of Existing Entries

The second part of the algorithm (Algorithm 2) handles the case where the entry
Aij = 1 is set to 0. This part of the algorithm is a little easier than the first part
and follows the below-described logic.

The algorithm iterates over the factors in matrices C′ and B′ (loop on lines
4–21). There are several cases that the algorithm analyses.

The first case (lines 5–7), removes a factor including only object i and
attribute j.

The second case (lines 8–10), removes an object from the factor l if a par-
ticular factor contains attribute j only. Similarly, the third case (lines 11–13)
removes the attribute j from factor l if only object i is assigned to factor l.

The fourth case (lines 14–20), handles the situation, where the factor to which
the removed entry is assigned splits into two parts. Namely, if the entry 〈i, j〉
is assigned to factor l (line 14), then the algorithm creates vector b including

An Incremental Recomputation of From-Below Boolean Matrix Factorization 131

Algorithm 2. Existing entry removing
Input: Matrices A ∈ {0, 1}m×n, C ∈ {0, 1}m×k, B ∈ {0, 1}k×n, for which C⊗B = A,

and 〈i, j〉 ∈ A.
Output: Matrices C′ and B′ for which C′ ⊗ B′ = A′.

1: A′ ← A − 〈i, j〉,B′ ← B,C′ ← C
2: c ← {0}m×1 + i
3: d ← {0}1×n + j
4: for l = 1 to k do
5: if C′

l = c and B′
l = d then # case 1

6: remove factor l from C′ and B′

7: end if
8: if B′

l = d then # case 2
9: C′ ← C′ − 〈i, l〉

10: end if
11: if C′

l = c then # case 3
12: B′ ← B′ − 〈l, j〉
13: end if
14: if 〈i, l〉 ∈ C′ and 〈l, j〉 ∈ B′ then # case 4
15: b ← B′

l − j

16: a ← c↑↓

17: C′ ← C′ − 〈i, l〉
18: add a as new column to C′

19: add b as new row to B′

20: end if
21: end for
22: remove redundant factors from C′ and B′

the same attributes assigned to factor l with an exception of attribute j (line
15). Then the algorithm computes all objects that share the same attributes as
object i (vector a). Vector a and b form a new factor which is added to matrices
C′ and B′ (lines 18–19). From the original factor l object i is removed (line 17).
Let us consider matrices A, C and B depicted bellow:

⎛
⎝

1 1 1
1 1 1
1 0 0

⎞
⎠ =

⎛
⎝

1 1
1 1
1 0

⎞
⎠ ⊗

(
1 0 0
1 1 1

)
.

Let A′ ← A−〈2, 3〉. The second factor in matrices C′ and B′ meet the condition
on line 14. The vector b is set to (1 1 0) and added as a new row to B′, and the
vector a is set to transposed vector (1 1 0) and added as a new column to C′.
The entry C′

22 is set to 0. According to the fourth case of Algorithm 2, the new
matrices A′, C′ and B′ look as follows.

⎛
⎝

1 1 1
1 1 0
1 0 0

⎞
⎠ =

⎛
⎝

1 1 1
1 0 1
1 0 0

⎞
⎠ ⊗

⎛
⎝

1 0 0
1 1 1
1 1 0

⎞
⎠ .

132 M. Trnecka and M. Trneckova

In each call of Algorithm 2 the remove redundant factors procedure is exe-
cuted (line 22).

Algorithm 3. Remove redundant factors
Input: Matrices A ∈ {0, 1}m×n, C ∈ {0, 1}m×k, B ∈ {0, 1}k×n, for which C⊗B = A.
Output: Matrices C′ and B′ for which C′ ⊗ B′ = A.

1: for l = k to 1 do
2: D ← A,C′ ← C,B′ ← B
3: for p = k, p 	= l to 1 do
4: for all 〈i, j〉, i ∈ C′

p, j ∈ B′
p do

5: D ← D − 〈i, j〉
6: end for
7: if ∀〈i, j〉, with i ∈ C′

l and j ∈ B′
l , 〈i, j〉 /∈ D then

8: remove factor l from C′ and B′

9: break
10: end if
11: end for
12: end for

As we referred in Sect. 2.2 Problem 2 can be easily extended to the case where
i > m, j > n or both. In this case the dimensions of A′, C′ and B′ must be
enlarged. All newly added entries of the matrices are set to 0. After this step,
the algorithm can be applied as it is.

3.3 Time Complexity

We now discuss an upper bound of the worst case time complexity of the above-
described incremental algorithm. Time complexity of both Algorithm 1 and Algo-
rithm 2 is mostly affected by removing redundant factors which is O(k2mn).
Each of the cases described in Sect. 3 can be done in O(mn).

Note, k is usually much smaller than both m and n, m is smaller than n.
Therefore, the observed time complexity is significantly better. Moreover, the
time complexity of our algorithm is much better than the time complexity of an
usual BMF algorithm. More details will be given in Sect. 4.4.

4 Experimental Evaluation

In the following section, we provide an experimental comparison of the incremen-
tal and the non-incremental algorithm. To make the comparison fair, we choose
as the baseline algorithm the GreConD whose search strategy is implemented
in our incremental algorithm.

An Incremental Recomputation of From-Below Boolean Matrix Factorization 133

4.1 Datasets

We used various real-world datasets, namely, breast [6], dblp [15], iris [6],
paleo [8], page-blocks [6], post [6], zoo [6]. The basic characteristics of the
datasets are displayed in Table 1. Namely, the number of objects, the number of
attributes, the number of factors computed via the non-incremental algorithm
and the number of non-zero entries.

Table 1. Characteristic of real-world datasets.

Dataset No. of objects No. of attributes No. of factors No. of entries

breast 699 20 19 6974

dblp 6980 19 21 17173

iris 150 19 20 750

paleo 501 139 151 3537

page-blocks 5473 46 48 60203

post 90 20 29 720

zoo 101 28 30 862

4.2 Adding of New Entries

To simulate an addition of new entries, we randomly selected a prescribed num-
ber of non-zero entries, namely, 1%, 2%, 3%, 4%, and 5% and set them to 0.
After this, we computed the initial set of factors via the non-incremental algo-
rithm. Then we gradually set (in random order) the selected entries back to
the original value and computed the new set of factors (after each change) via
the incremental algorithm. This is repeated until the original data are achieved.
The described procedure enables a direct comparison with the non-incremental
algorithm.

Table 2 summarizes the average number of factors over 10 iterations as well
as the standard deviation (the numbers after ± symbol). We observe that the
incremental algorithm produces comparable results to these produced by the
non-incremental algorithm (see the column “factors” in Table 1) especially if the
number of changed entries is small. Moreover, in some cases (dblp, iris, paleo,
post) the incremental algorithm slightly outperforms the non-incremental one.

4.3 Removing of Existing Entries

Table 3 shows the results from an experiment, where a prescribed number of non-
zero entries, namely, 1%, 2%, 3%, 4%, and 5% is gradually (in random order)
set to 0. In this case, a direct comparison of incremental and non-incremental
algorithm is not possible. For this reason, we report in Table 3 also the results

134 M. Trnecka and M. Trneckova

Table 2. Adding of new entries. The average number of factors over 10 iterations and
standard deviation are presented. Bold marks the cases where the number of factor is
smaller than the number of factor obtained via the non-incremental algorithm column
“factors”.

Dataset No. of
factors

Number of added entries

1% 2% 3% 4% 5%

breast 19 23.70 ±
1.05

24.60 ±
1.26

25.40 ±
1.42

27.10 ±
0.99

27.30 ±
1.41

dblp 21 19.40 ±
0.51

19.20 ±
0.42

19.10 ±
0.31

19.20 ±
0.42

19.30 ±
0.48

iris 20 18.20 ±
0.63

18.70 ±
1.70

18.20 ±
1.31

19.10 ±
1.44

19.40 ±
1.64

paleo 151 139.20
± 0.42

139.10 ±
0.31

139.10 ±
0.31

139.00
± 0.00

139.10
± 0.31

page-blocks 48 50.70 ±
1.56

52.30 ±
2.16

55.20 ±
1.93

57.80 ±
2.74

56.30±
1.63

post 29 26.70 ±
0.94

28.00 ±
1.24

27.10 ±
2.46

27.40 ±
1.83

28.00 ±
1.97

zoo 30 29.50 ±
1.26

30.90 ±
0.99

30.60 ±
2.06

31.80 ±
1.39

31.10 ±
1.85

obtained via the non-incremental algorithm. The initial set of factors for the
incremental algorithm was computed from the original data.

Table 3 shows a difference in the number of computed factors. One may
clearly see that the incremental algorithm outperforms the non-incremental algo-
rithm in almost all cases.

Overall, the incremental algorithm is very competitive with the non-
incremental one, especially in the cases where small changes in the data are
made. The main benefit of any incremental algorithm is the running time. We
discuss this in the following section.

4.4 Running Times

Run-time of our incremental algorithm is very low, despite the slow implemen-
tation in MATLAB. In the evaluation, we used an implementation of the non-
incremental algorithm in C language with a high level of optimization. We com-
pared the running times of the non-incremental and the incremental algorithm
on an ordinary PC with Intel Core i7-3520M 2.9 GHz and 8 GB RAM.

Table 4 shows the time required for the computation of factors in the case
where 1% of randomly chosen entries in the input data are flipped, i.e., ones
to zeros and vice versa. We measured the sum of times required for achieving
the final factorization. Namely, we flip one entry in the data and compute the

An Incremental Recomputation of From-Below Boolean Matrix Factorization 135

Table 3. Removing of existing entries. The average number of factors over 10 iterations
and standard deviation are presented. Bold marks the better result. The incremental
algorithm produces (sometimes significantly) smaller number of factors than the non-
incremental algorithm.

Dataset Algorithm Number of removed entries

1% 2% 3% 4% 5%

breast Inc. 17.30±
0.67

17.30 ±
0.99

17.40 ±
0.84

17.50 ±
0.84

18.00 ±
0.81

Non-inc. 19.30 ±
1.33

18.80 ±
1.22

18.10 ±
1.37

18.60 ±
1.83

19.40 ±
0.96

dblp Inc. 18.00 ±
0.00

18.00 ±
0.00

18.00 ±
0.00

18.00 ±
0.00

18.00 ±
0.00

Non-inc. 20.00 ±
0.00

20.00 ±
0.00

20.00 ±
0.00

20.00 ±
0.00

20.00 ±
0.00

iris Inc. 18.00 ±
0.81

18.30 ±
0.67

18.50 ±
1.08

18.50 ±
0.84

18.20 ±
0.78

Non-inc. 18.80 ±
0.63

19.00 ±
0.47

19.20 ±
0.63

19.20 ±
0.42

18.80 ±
0.63

paleo Inc. 140.00
± 0.00

138.90 ±
0.31

136.60 ±
0.84

135.80
± 0.46

134.90
± 0.31

Non-inc. 148.70 ±
0.67

147.40 ±
0.96

144.30 ±
1.33

142.60 ±
1.57

142.60 ±
1.34

page-blocks Inc. 46.00 ±
0.47

46.50 ±
0.52

45.50 ±
0.70

45.00 ±
0.94

45.50 ±
0.71

Non-inc. 49.30 ±
0.94

49.70 ±
1.33

47.70 ±
1.56

47.60 ±
1.34

48.70 ±
0.95

post Inc. 24.60 ±
1.26

24.40 ±
1.17

25.00 ±
1.41

24.10 ±
0.31

22.90 ±
0.56

Non-inc. 26.20 ±
0.91

26.50 ±
1.35

26.40 ±
1.07

25.60 ±
1.34

25.70 ±
2.49

zoo Inc. 29.10 ±
0.56

29.10 ±
0.73

29.20 ±
0.42

28.40 ±
0.699

28.40 ±
0.84

Non-inc. 29.40 ±
0.96

29.20 ±
1.39

29.20 ±
0.78

28.10 ±
1.59

27.70 ±
0.82

factorization (from scratch) via the non-incremental algorithm and via our incre-
mental algorithm (from the factorization established in the previous step).

The incremental algorithm is significantly faster than the non-incremental
one, although the implementations are considerably unbalanced to the detriment
of the incremental algorithm.

136 M. Trnecka and M. Trneckova

Table 4. Comparison of running times of the incremental and non-incremental algo-
rithm in seconds for 1 % of randomly flipped entries. The average running times over
10 iterations and standard deviation are presented. The incremental algorithm is sig-
nificantly faster than the non-incremental one.

Dataset Non-inc. Inc.

breast 6.7268 ± 1.244 0.0063 ± 0.0008

dblp 17.926 ± 3.862 0.1918 ± 0.0095

iris 0.6759 ± 0.1254 0.0017 ± 0.0002

paleo 3.9879 ± 0.2483 0.0190 ± 0.0063

page-block 118.3173 ± 13.5330 0.4768 ± 0.1254

post 0.6513 ± 0.0124 0.0012 ± 0.0001

zoo 0.7424 ± 0.0372 0.0006 ± 0.0000

5 Conclusions

In the paper, we formulated the incremental from-below BMF problem reflect-
ing a realistic scenario of BMF using and we presented an algorithm for them.
Our experimental evaluation shows that the incremental algorithm is not only
significantly faster, but in some cases delivers even better results, i.e., a smaller
number of factors, than its non-incremental counterpart.

Future research shall include the following issues. Efficient implementation (in
C language) of the incremental algorithm, its parallelization and application on
the big data. Additionally, in many cases, the incremental algorithm is affected
by the quality of the initial set of factors. It seems to be promising to create a
special method for calculating the set, which will take into account the future
incremental computation.

Acknowledgment. The paper was supported by the grant JG 2020 of Palacký Uni-
versity Olomouc, No. JG 2020 003. Support by Grant No. IGA PrF 2020 019 and No.
IGA PrF 2021 022 of IGA of Palacký University are also acknowledged. The authors
would like to thank Jan Outrata for providing an efficient implementation of the non-
incremental algorithm.

References

1. Belohlavek, R., Grissa, D., Guillaume, S., Mephu Nguifo, E., Outrata, J.: Boolean
factors as a means of clustering of interestingness measures of association rules.
Ann. Math. Artif. Intell. 70(1), 151–184 (2013). https://doi.org/10.1007/s10472-
013-9370-x

2. Belohlavek, R., Trnecka, M.: From-below approximations in Boolean matrix fac-
torization: geometry and new algorithm. J. Comput. Syst. Sci. 81(8), 1678–1697
(2015). https://doi.org/10.1016/j.jcss.2015.06.002

3. Belohlavek, R., Trnecka, M.: A new algorithm for Boolean matrix factorization
which admits overcovering. Discrete Appl. Math. 249, 36–52 (2018). https://doi.
org/10.1016/j.dam.2017.12.044

https://doi.org/10.1007/s10472-013-9370-x
https://doi.org/10.1007/s10472-013-9370-x
https://doi.org/10.1016/j.jcss.2015.06.002
https://doi.org/10.1016/j.dam.2017.12.044
https://doi.org/10.1016/j.dam.2017.12.044

An Incremental Recomputation of From-Below Boolean Matrix Factorization 137

4. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010).
https://doi.org/10.1016/j.jcss.2009.05.002

5. Claudio, L., Salvatore, O., Raffaele, P.: A unifying framework for mining approx-
imate top-k binary patterns. IEEE Trans. Knowl. Data Eng. 26(12), 2900–2913
(2014). https://doi.org/10.1109/TKDE.2013.181

6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

7. Ene, A., Horne, W.G., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: Ray, I., Li, N.
(eds.) Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies, SACMAT 2008, Estes Park, CO, USA, 11–13 June 2008, pp. 1–10.
ACM (2008). https://doi.org/10.1145/1377836.1377838

8. Fortelius, M., et al.: Neogene of the old world database of fossil mammals (now)
(2003). http://www.helsinki.fi/science/now

9. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-59830-2

10. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa,
S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30214-8 22

11. Hashemi, S., Tann, H., Reda, S.: Approximate logic synthesis using Boolean matrix
factorization. In: Reda, S., Shafique, M. (eds.) Approximate Circuits, pp. 141–154.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99322-5 7

12. Ignatov, D.I., Nenova, E., Konstantinova, N., Konstantinov, A.V.: Boolean matrix
factorisation for collaborative filtering: an FCA-based approach. In: Agre, G., Hit-
zler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) AIMSA 2014. LNCS (LNAI),
vol. 8722, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10554-3 5

13. Kocayusufoglu, F., Hoang, M.X., Singh, A.K.: Summarizing network processes with
network-constrained Boolean matrix factorization. In: IEEE International Confer-
ence on Data Mining, ICDM 2018, Singapore, 17–20 November 2018, pp. 237–246.
IEEE Computer Society (2018). https://doi.org/10.1109/ICDM.2018.00039

14. Lucchese, C., Orlando, S., Perego, R.: Mining top-k patterns from binary datasets
in presence of noise. In: Proceedings of the SIAM International Conference on
Data Mining, SDM 2010, Columbus, Ohio, USA, 29 April–1 May 2010, pp. 165–
176. SIAM (2010). https://doi.org/10.1137/1.9781611972801.15

15. Miettinen, P.: Matrix decomposition methods for data mining: computational com-
plexity and algorithms (2009)

16. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008). https://doi.
org/10.1109/TKDE.2008.53

17. Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A mathematical analysis
of human leukocyte antigen serology. Math. Biosci. 40(3–4), 243–270 (1978)

18. Stockmeyer, L.J.: The Set Basis Problem is NP-complete. IBM Thomas J. Watson
Research Division, Research reports (1975)

19. Trnecka, M., Trneckova, M.: Data reduction for Boolean matrix factorization algo-
rithms based on formal concept analysis. Knowl. Based Syst. 158, 75–80 (2018).
https://doi.org/10.1016/j.knosys.2018.05.035

20. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Summarizing transactional databases
with overlapped hyperrectangles. Data Min. Knowl. Discov. 23(2), 215–251 (2011).
https://doi.org/10.1007/s10618-010-0203-9

https://doi.org/10.1016/j.jcss.2009.05.002
https://doi.org/10.1109/TKDE.2013.181
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/1377836.1377838
http://www.helsinki.fi/science/now
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-540-30214-8_22
https://doi.org/10.1007/978-3-319-99322-5_7
https://doi.org/10.1007/978-3-319-10554-3_5
https://doi.org/10.1007/978-3-319-10554-3_5
https://doi.org/10.1109/ICDM.2018.00039
https://doi.org/10.1137/1.9781611972801.15
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1109/TKDE.2008.53
https://doi.org/10.1016/j.knosys.2018.05.035
https://doi.org/10.1007/s10618-010-0203-9

Clustering and Identification of Core
Implications

Domingo López-Rodŕıguez(B) , Pablo Cordero , Manuel Enciso ,
and Ángel Mora

Universidad de Málaga, Málaga, Spain
{dominlopez,pcordero,enciso,amora}@uma.es

Abstract. FCA exhaustively uses the notion of cluster by grouping
attributes and objects and providing a solid algebraic structure to them
through the concept lattice. Our proposal explores how we can cluster
implications. This work opens a research line to study the knowledge
inside the clusters computed from the Duquenne-Guigues basis. Some
alternative measures to induce the clusters are analysed, taking into
account the information that directly appears in the appearance and the
semantics of the implications. This work also allows us to show the fcaR

package, which has the main methods of FCA and the Simplification
Logic. The paper ends with a motivation of the potential applications of
performing clustering on the implications.

1 Introduction

Formal Concept Analysis (FCA) has established itself at the theoretical level
and is increasingly used in real-life problems [6,7,33]. Our community explores
how to solve real problems in data science, machine learning, social network
analysis, etc. Solving problems from these areas and developing new tools could
be a way to open a window to researchers outside FCA.

Since the early eighties, when R. Wille and B. Ganter [16] developed For-
mal Concept Analysis, the community has been growing. The interest in the
use of this well-founded tool has increased considerably. The continuous devel-
opment of the theoretical foundations and generalisations of the classical frame-
work [3,4,13,24,28,30] and the enthusiasm of how to put in practice this
progress [6–8,18,33] have formed a solid community formally linked. However, as
U. Priss mentioned in [32], “FCA is widely unknown among information scien-
tists in the USA even though this technology has a significant potential for appli-
cations”. The community recognises that it is necessary an additional effort and
perhaps new tools to make FCA more appealing. Books about machine learn-
ing, big data, and data science, in general, have not included anything about
FCA, notwithstanding its powerful knowledge and its considerable potential in
applications.

Supported by Grants TIN2017-89023-P, UMA2018-FEDERJA-001 and PGC2018-
095869-B-I00 of the Junta de Andalucia, and European Social Fund.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 138–154, 2021.
https://doi.org/10.1007/978-3-030-77867-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_9&domain=pdf
http://orcid.org/0000-0002-0172-1585
http://orcid.org/0000-0002-5506-6467
http://orcid.org/0000-0002-0531-4055
http://orcid.org/0000-0003-4548-8030
https://doi.org/10.1007/978-3-030-77867-5_9

Clustering and Identification of Core Implications 139

Developing new tools and libraries could be a valuable resource to open our
community. In this work, we present a library in the R language, named fcaR,
which implements of the most popular methods and algorithms in FCA. Here
we show how to extract interesting knowledge by computing implication clusters
from the Duquenne-Guigues basis to illustrate the benefits of such a tool. fcaR
vertebrates this proposal by introducing some code throughout the paper.

FCA is firmly based on the (bi)clustering of attributes and objects. The
Concept Lattice provides a formal structure of these clusters. Nevertheless, the
application of clustering to the set of implications has not been explored as far
as we know. In the following section, we briefly survey the relationship between
Clustering and FCA.

The first step in this paper is to propose several dissimilarity measures
between implications to cluster them in different ways. In some of these measures,
to compute the distance matrix between implications, we will use Simplification
Logic and its attribute closure operator, included in the package fcaR. From this
distance matrix, clusters of implications arise representing new knowledge. A K-
medoid algorithm, specifically the PAM algorithm [23], is used to compute each
cluster’s central implications and further generate the clusters of implications.

Since our starting point is the Duquenne-Guigues basis, we analyse the differ-
ent dissimilarity measures taking into account the pseudointents, the right-hand
side of the implications, and the closed sets computed from the pseudointents.
We end the paper with an experiment result and drawing up some potential
applications from the implication clustering.

The rest of the paper is organised as follows: in Sect. 2, we analyse how clus-
tering is used in FCA in the literature. The central notions of FCA and the fcaR
package are briefly outlined in Sect. 3. Section 4 shows the new research line pro-
posed in this work, along with its formulations and possible developments, also
defining the idea of implication dissimilarity in terms of distance functions and
how implication clustering is related to cluster pseudointents and their closures.
This proposal’s promising result is shown in Sect. 5, developing an experiment
centred on a dataset well-known in the machine learning community. Finally,
Sect. 6 presents some conclusions and future works.

2 Previous Works on FCA and Clustering

FCA carries out clustering of objects by itself. However, it is well-known that
the size of the concept lattice is possibly exponential with respect to the size of
the formal context, even for a small context. Diatta in [14] ensured that pattern
concepts [17] coincide with clusters associated with dissimilarity measures.

Beyond that, techniques based on clustering have been explored to group the
closest concepts. For instance, in [29], Melo et al. presented a tool to apply visual
analytics to cluster concepts using a K-means algorithm [27] to identify clusters.
Bocharov et al. [5] group the objects by the K-means algorithm and propose
modifying the Close-by-One algorithm for consensus clustering to reduce the
concept lattice. In [38], the authors compute attribute clusters using similarity
and dissimilarity functions to reduce the concept lattice.

140 D. López-Rodŕıguez et al.

Stumme et al. [37] proposed Iceberg lattices as a clustering method of the
original lattice to reduce computing bases of association rules and their visuali-
sation. Kumar in [26] uses clustering to reduce the formal context and, therefore,
the number of association rules extracted from it.

Other authors have used FCA in a variety of approaches to detect objects
with similar properties. In [22], triclustering, based on FCA, was developed to
detect groups of objects with similar properties under similar conditions and
used it to develop recommender systems. Cigarrán et al. have some interesting
works [7,9] applying FCA in Social Network Analysis to detect topics in Twitter.
These authors proved that FCA could solve real problems with better results
than classical techniques, generating clusters of topics less subject to cluster
granularity changes.

Other works deal with the idea of clustering association rules (in transactional
databases) to reduce the number of rules extracted [2,19,36]. These works do not
define rule dissimilarity as a function of each rule’s terms (items). Instead, they
define the dissimilarity between rules in terms of the sets of transactions sup-
porting each rule. Thus, the knowledge present in the rule clustering is explicitly
related to the database and cannot be abstracted from it.

3 Background and the fcaR package

Over the years, U. Priss has collected a list of the main FCA-based tools on its
website https://www.upriss.org.uk/fca/fca.html. We emphasise that the most
used for FCA are ConExp, ToscanaJ, Galicia, FcaStone, and some libraries
developed in C, Python, etc. In this work, we take the opportunity to present
the fcaR package1 as a valuable tool to solve real problems and bring FCA closer
to other communities.

In the following, we briefly summarise the main concepts in Formal Concept
Analysis (FCA) we need for this work, showing with a running example how the
fcaR package is used. For more detailed reading about FCA, see [18].

Definition 1 (Formal Context). A formal context is a triplet K := 〈G,M, I〉
where G and M are non-empty finite sets and I ⊆ G × M is a binary relation
between G and M .

The elements in G and M are named objects and attributes, respectively. In
addition, (g,m) ∈ I is read as the object g has the attribute m.

Example 1. We consider this example appearing in [18] where G is the set of
planets and M the set of some properties of these planets (Table 1).

In the R language, we will use the following to introduce this matrix with
the name planets in the fc planets formal context object. The sets G and
1 As far as we know, no package using the R language has been developed and pub-

lished in CRAN repository for FCA, even when the R language together with Python
are considered the main languages in data science, machine learning, big data, etc.
To this date, fcaR has more than 8,000 downloads.

https://www.upriss.org.uk/fca/fca.html

Clustering and Identification of Core Implications 141

Table 1. Properties of the planets of the solar system.

Small Medium Large Near Far Moon No moon

Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×
Pluto × × ×

M , and also subsequently computed concepts and implications, are stored inside
this formal context object2.

> library(fcaR)

> fc_planets <- FormalContext$new(planets)

> fc_planets$attributes

[1] "small" "medium" "large" "near" "far" "moon" "no_moon"

> fc_planets$objects

[1] "Mercury" "Venus" "Earth" "Mars" "Jupiter" "Saturn" "Uranus"

"Neptune" "Pluto"

Each formal context K defines two derivation operators, which form a Galois
connection between 〈2G,⊆〉 and 〈2M ,⊆〉. They are the following:

(−)′ : 2G → 2M where A′ = {m ∈ M | (g,m) ∈ I for all g ∈ A}.
(−)′ : 2M → 2G where B′ = {g ∈ G | (g,m) ∈ I for all m ∈ B}.

Example 2. In fcaR we use sparse matrices and sparse sets to provide efficiency
to the algorithms, then to use an object variable or an attribute variable, first
we create a new sparse variable (SparseSet$new method), and then we assign
the value 1 (variable$assign method). To compute intent and extent in R
language, with the planets example, we will do the following:

> # The planets are stored in a vector

> myPlanets <- c("Earth","Mars")

> # A new sparse object variable is created

> mySparsePlanets <- SparseSet$new(attributes = fc_planets$objects)

> # Assigning to myPlanets the value 1 in the variable sparse

> mySparsePlanets$assign(myPlanets,values = 1)

> # The content of the sparse variable is

> mySparsePlanets

2 In this work, we do not use all the methods in the fcaR package to manage the
formal context, the concept lattice, the concepts, the implications, etc. See https://
neuroimaginador.github.io/fcaR/ for more details.

https://neuroimaginador.github.io/fcaR/
https://neuroimaginador.github.io/fcaR/

142 D. López-Rodŕıguez et al.

{Earth, Mars}

> fc_planets$intent(mySparsePlanets) # Computing the intent

{small, near, moon}

In a similar way for attributes

> myAttributes <- c("medium", "far","moon")

> mySparseAttributes <- SparseSet$new(attributes = fc_planets$attributes)

> mySparseAttributes$assign(myAttributes,values = 1)

> mySparseAttributes

{medium, far, moon}

> fc_planets$extent(mySparseAttributes)

{Uranus, Neptune}

The main aim of this area is to extract knowledge from the context allowing
to reason. One of the ways to represent knowledge is utilising the concept lattice.
Another equivalent alternative knowledge representation, more suitable to define
reasoning methods, is given in terms of attribute implications.

Definition 2 (Attribute Implication). Given a formal context K, an
attribute implication is an expression A → B where A,B ⊆ M and we say
that A → B holds in K whenever B′ ⊆ A′.

That is, A → B holds in K if every object that has all the attributes in A also
has all the attributes in B. The closeness of these expressions with propositional
logic formulas leads to a logical style way to manage them. Although the most
used syntactic inference system is the so-called Armstrong’s Axioms, we will use
the Simplification Logic, SL, introduced in [10]. This logic allows the design of
automated reasoning methods [10–12,31] and it is guided by the idea of simplify-
ing the set of implications by efficiently removing redundant attributes. In [31],
the results and proofs about SL are presented.

Example 3. We use the fcaR package to extract the set of implications from the
formal context in Example 1, by using the Next Closure algorithm [16], using
the command fc planets$find implications(). The set of implications is

Γ = { {no moon} ⇒ {small, near}
{far} ⇒ {moon}
{near} ⇒ {small}
{large} ⇒ {far, moon}
{medium} ⇒ {far, moon}
{medium, large, far, moon} ⇒ {small, near, no moon}
{small, near, moon, no moon} ⇒ {medium, large, far}
{small, near, far, moon} ⇒ {medium, large, no moon}
{small, large, far, moon} ⇒ {medium, near, no moon}
{small, medium, far, moon} ⇒ {large, near, no moon}}

Clustering and Identification of Core Implications 143

An interesting argument of the find implications() function, when the num-
ber of implications is large, is parallelize to take advantage of the cores in the
machine. The functions size, cardinality can be applied to the imps variable
to check the number of implications and the size of the attributes on them. The
package eases the manipulation of implications using the typical operations of
subsetting in R language (imp[2:3], for instance).

To conclude this section, we introduce the outstanding notion of closure of a
set of attributes with respect to a set of implications, which is strongly related to
the syntactic treatment of implications. Note that the algorithms developed in
fcaR package to manipulate implications and to compute closures are based on
Simplification Logic [31]. For a set of implications, apply rules and closure
functions can be respectively applied to remove redundancy and to compute
the closures of attributes3. We make clear that the results in this paper are
independent of the closure algorithm used.

Definition 3. Given Γ ⊆ LM and X ⊆ M , the (syntactic) closure of X with
respect to Γ is the largest subset of M , denoted X+

Γ , such that Γ � X → X+
Γ .

The mapping (−)+Γ : 2M → 2M is a closure operator on 〈2M ,⊆〉. This notion is
the key to designing automatic reasoning methods due to the following equiva-
lence:

Γ � A → B iff {∅ → A} ∪ Γ � ∅ → B iff B ⊆ A+
Γ

From now on, we omit the subindex (i.e. we write X+) when no confusion
arises.

Example 4. We will use the following to compute the closure of the attribute
named small in Example 1 using our fcaR package:

> S <- SparseSet$new(attributes = fc_planets$attributes)

> S$assign("small"=1)

> imps$closure(S)

{small, far, moon}

4 Proposed Research Line

In this section, we propose a new research line accompanied by preliminary
results. In this line, we aim to study the potential use and applications of per-
forming (unsupervised) clustering on the Duquenne-Guigues basis of implica-
tions. We present this idea using a running example, and we have used the fcaR
package to help automate the computations and perform experiments.

Given a formal context K = (G,M, I), and a set of valid implications Γ , we
can interpret Γ as a partition (disjoint by definition), i.e., Γ = Γ1∪Γ2∪ . . .∪ΓK ,
where each set Γi is called a cluster of implications, and it is defined such that

φ(Γ1, . . . , ΓK) =
K∑

i=1

δ(Γi)

3 See https://neuroimaginador.github.io/fcaR/articles/implications.html.

https://neuroimaginador.github.io/fcaR/articles/implications.html

144 D. López-Rodŕıguez et al.

is minimum, where δ(Γi) represents an internal dissimilarity measure in Γi. Thus,
our motivation is to group similar implications in the same cluster, building
homogeneous groups of implications.

In a similar way to classical clustering techniques, δ(Γi) can be defined in
terms of the distances between implications in the same cluster Γi. Therefore, we
propose defining a distance function between implications that can adequately
capture and differentiate the essential aspects of their appearance and semantics.
Thus, given two implications P → Q and R → T from the Duquenne-Guigues
basis, we propose to quantify their different appearance by measuring the dis-
similarity between P and R and/or between Q and T . Their possibly different
semantic information can be quantified by comparing their syntactic attribute
closures P+ and R+. Our intuition is that the pseudo-intents and the closed sets
play an essential role in the clusters, but we want to explore the possibilities.

In order to measure the (dis)similarity between two sets of attributes, we can
consider several options. Let us suppose A,B ⊂ M . The following measures are
based on well-known distances:

– Hamming (or Manhattan) distance [20]: dM(A,B) = |A
B| (where

denotes the symmetric set difference operator) measures the amount of
attributes that are present in only one of A and B.

– Jaccard index [21]: dJ(A,B) = 1− |A∩B|
|A∪B| measures the proportion of common

attributes in A and B.
– Cosine distance: dcos(A,B) = 1 − |A∩B|√

|A|·|B| .

Thus, the dissimilarity dis(P → Q,R → T) between two implications P → Q
and R → T , following the previous comment, can be defined in terms of d(P,R),
d(Q,T) and d(P+, R+), where d is any of dM, dJ or dcos. The use of one or another
of these terms is subject to the interpretation and could partially depend on the
problem to solve.

Initially, we aim at studying these different possibilities:

dis1(P → Q,R → T) := d(P,R)

dis2(P → Q,R → T) := d(P+, R+)
dis3(P → Q,R → T) := d(P,R) + d(Q,T)

dis4(P → Q,R → T) := d(P,R) + d(P+, R+)

dis5(P → Q,R → T) := d(P,R) + d(Q,T) + d(P+, R+)

Remember that d(P,R) is a term that quantifies the difference between the
pseudointents forming the left-hand sides of the corresponding implications and
that d(P+, R+) measures the difference in the closed sets that are produced
by using the implications. Pseudointents and closed sets represent two levels in
the biclustering of the formal context. Therefore it is reasonable to think about
clustering the implications by using those distinctive components.

Once all the pairwise distances are computed, we can use a clustering algo-
rithm to generate the implication clusters. For each cluster, we determine an

Clustering and Identification of Core Implications 145

implication, named central implication, P → Q, providing the measure of inter-
nal dissimilarity in the cluster as follows:

δ(Γi) :=
1

|Γi|
∑

R→T∈Γi

dis(P → Q,R → T)

which can be interpreted as a measure of within Γi dispersion.
The clustering algorithm should provide a proper partition of Γ such that

φ(Γ1, . . . , ΓK) is minimum. Another characteristic of clustering is that each
implication R → T is assigned to a cluster Γi if, by definition, its dissimilar-
ity to the central implication of Γi (which we will call Pi → Qi) is lower than its
dissimilarity to the central implications of the other clusters, that is, if

dis(Pi → Qi, R → T) ≤ dis(Pj → Qj , R → T) ∀j �= i

Given the definition of dissimilarity above, the proposed clustering aims at
building coherent groups of implications that have similar pseudointents or pro-
duce similar closed sets.

There are many possible choices of clustering algorithms. In this paper, we
propose the use of the PAM (partitioning around medoids) algorithm [23] to
compute the clusters and their central implications, which, in this context are
called the medoids of the clusters, since it is more robust to the presence of noise
and isolated components in the data than the K-means algorithm [27], widely
used in machine learning.

Example 5. Following our running example, we will find clusters in the implica-
tions of Example 3. And, for instance, we consider the dissimilarity function

dis(P → Q,R → T) := |P
R| + |P+
R+| (1)

The next R code computes the dissimilarity matrix, that is, the matrix D =
(Di,j) where the entry Di,j := diss(Pi → Qi, Pj → Qj) is the dissimilarity
between the ith and the jth implications.

> diss <- implication_distance(imps)

> D <- as.matrix(diss)

> D

1 2 3 4 5 6 7 8 9 10

1 0 7 3 8 8 9 7 9 9 9

2 7 0 6 3 3 8 10 8 8 8

3 3 6 0 7 7 10 8 8 10 10

4 8 3 7 0 4 7 9 9 7 9

5 8 3 7 4 0 7 9 9 9 7

6 9 8 10 7 7 0 6 4 2 2

7 7 10 8 9 9 6 0 2 4 4

8 9 8 8 9 9 4 2 0 2 2

9 9 8 10 7 9 2 4 2 0 2

10 9 8 10 9 7 2 4 2 2 0

146 D. López-Rodŕıguez et al.

Then, we use the PAM algorithm of the cluster R package to compute the
clusters using K = 2 (two clusters) and their central implications.

> cluster <- cluster::pam(diss, k = 2)

> # The following are the central implications

> imps[cluster$id.med]

Implication set with 2 implications.

Rule 1: {far} -> {moon}

Rule 2: {small, near, far, moon} -> {medium, large, no_moon}

Therefore, we already have the implications in each cluster:

> imps[cluster$clustering == 1]

Implication set with 5 implications.

Rule 1: {no_moon} -> {small, near}

Rule 2: {far} -> {moon}

Rule 3: {near} -> {small}

Rule 4: {large} -> {far, moon}

Rule 5: {medium} -> {far, moon}

> imps[cluster$clustering == 2]

Implication set with 5 implications.

Rule 1: {medium, large, far, moon} -> {small, near, no_moon}

Rule 2: {small, near, moon, no_moon} -> {medium, large, far}

Rule 3: {small, near, far, moon} -> {medium, large, no_moon}

Rule 4: {small, large, far, moon} -> {medium, near, no_moon}

Rule 5: {small, medium, far, moon} -> {large, near, no_moon}

Note that the second cluster is formed by implications that present all the
attributes. This cluster can be disregarded as uninformative since its implications
present combinations of attributes that are not found in any object of the formal
context. In terms of association rules, they would be considered as implications
with zero-support and not interesting for our proposal. Thus, in what follows,
we will consider only implications that do not present all attributes.

> # Take the first 5 implications

> imps <- imps[1:5]

> diss <- implication_dist(imps)

> D <- as.matrix(diss)

> rownames(D) <- seq(imps$cardinality())

> D

1 2 3 4 5

1 0 10 4 12 12

2 10 0 8 4 4

3 4 8 0 10 10

4 12 4 10 0 4

5 12 4 10 4 0

Furthermore, for these implications, the computation of the clusters produces
the following clusters:

> cluster <- cluster::pam(diss, k = 2)

> # The central implications

> imps[cluster$id.med]

Clustering and Identification of Core Implications 147

Implication set with 2 implications.

Rule 1: {near} -> {small}

Rule 2: {far} -> {moon}

> # The cluster 1 is:

> imps[cluster$clustering == 1]

Implication set with 2 implications.

Rule 1: {no_moon} -> {small, near}

Rule 2: {near} -> {small}

> # The cluster 2 is:

> imps[cluster$clustering == 2]

Implication set with 3 implications.

Rule 1: {far} -> {moon}

Rule 2: {large} -> {far, moon}

Rule 3: {medium} -> {far, moon}

The computed clustering can be viewed as the result of minimising the clus-
tering algorithm’s objective function. It will be minimum the mean dissimilarity
of each implication in its cluster with respect to its central implication.

As a conclusion, we can observe that the clustering renders a natural result
describing the clusters as a set of implications with specific knowledge about:

1. Planets near the Sun which are therefore small.
2. Distant planets that, therefore, have satellites.

Now, we approach to experiment what happens when we change the dissim-
ilarity function to:

dis(P → Q,R → T) := |P
R| (2)

that is, when we consider only the difference in the pseudointents. Similarly, we
compute the new dissimilarity matrix and obtain:

> D_LHS

1 2 3 4 5

1 0 2 2 2 2

2 2 0 2 2 2

3 2 2 0 2 2

4 2 2 2 0 2

5 2 2 2 2 0

We can observe that any two implications are at distance 2. The consequence
is that the clusters will be uninformative. Any possible partition into two clusters
Γ1 and Γ2, using this dissimilarity matrix, has the same mean dissimilarity;
therefore, clusters can be considered as generated by randomness. We can check
the central implications:

> clusterLHS <- cluster::pam(dissLHS, k = 2)

> # The central implications

> imps[clusterLHS$id.med]

Implication set with 2 implications.

Rule 1: {large} -> {far, moon}

Rule 2: {medium} -> {far, moon}

148 D. López-Rodŕıguez et al.

Note the overlap in the closed sets defined by these central implications. In
this case, the implications in the first cluster and the unique implication in the
second cluster (that is also its central implication) does not provide any further
insight, making it clear that, in this case, the clusters are random guesses.

First cluster - Implication set with 4 implications.

Rule 1: {no_moon} -> {small, near}

Rule 2: {far} -> {moon}

Rule 3: {near} -> {small}

Rule 4: {large} -> {far, moon}

Second cluster - Implication set with 1 implications.

Rule 1: {medium} -> {far, moon}

It seems clear that to consider the dissimilarity measure proposed in Eq. (1),
representing the difference in the knowledge provided by pseudo-intents and
closed sets, is more appropriate than the proposed in Eq. (2), representing only
the differences in the pseudointents.

To conclude this section, we explain the line of research we have in mind.
The clustering relationship on implications to object and attribute clustering or
to concept clustering seems to be interesting. We devise potential future appli-
cations in reducing the computational cost of computing closures in specific sce-
narios or the possible application to FCA’s factorisation techniques. Also, it will
be of interest to study the different properties of implication clustering when
performed on different types of bases (direct-optimal [34] and ordered-direct
bases [1] and sets of implications without attribute redundancies, for instance).
Last, it will be of interest to extend the study to determine the properties of
clustering of association rules with this new proposal, in contrast to what has
already been studied [2,19,36].

5 Experimental Results

This section presents results to illustrate how the obtained clustering of impli-
cations is consistent with the formal context’s observed data.

We apply our proposal to the data from the so-called MONK’s problems [15],
a well-known set of 3 datasets used in machine learning competitions. Each of
the 3 datasets consists of 6 categorical attributes, a1 to a6, taking integer values,
and a binary class attribute. For this work, all categorical variables have been
binarized, making an aggregate of 19 binary attributes, including the two class
attributes, class = 0 and class = 1.

For each of these three problems, we have computed the Duquenne-Guigues
basis, consisting of 524, 723 and 489 implications, respectively. After removing
the implications that incorporate all the attributes, as commented before, the
final sets of implications consisted of 505, 704 and 471 implications for problems
MONKS-1, MONKS-2 and MONKS-3, respectively.

Then, we apply a dissimilarity function (one of dis1, . . . ,dis5, or any other
combination) to obtain a dissimilarity matrix. To determine the optimal number

Clustering and Identification of Core Implications 149

Fig. 1. Bi-dimensional representation of the implication space. Each dot represents an
implication. In order to obtain this plot, the multidimensional scaling technique has
been used to map implications to R

2 points, preserving their mutual dissimilarities.

of clusters present in the implication set, we use the silhouette index [35]. In all
these problems, the optimal number of clusters determined by this index was 2.

Thus, to continue with our proposal, for each problem we have applied the
method to partition the implication set into two clusters. For instance, if we
use the dissimilarity function dis4, which incorporated the distance between the
pseudointents and between the closures, with the Hamming distance, on the
MONKS-1 problem, we obtain the following central implications:

{a5 = 1} ⇒ {class = 1}
{class = 0, a2 = 1, a5 = 2} ⇒ {a6 = 2}

The clustering results can be visually inspected by applying an algorithm of
multidimensional scaling [25], whose results can be plotted to obtain a graphical
bi-dimensional representation of the implications space. This plot can also be
used to inspect the potential number of clusters present in the implications. The
results of the clustering can be checked in Fig. 1.

In that Fig. 1, we can check that 2 clusters seem to be a good proposal. The
clustering algorithm has almost correctly identified the two implication groups,
confirming the estimated value using the silhouette index.

We have explored the consistency of the clustering performed using the dif-
ferent measures of dissimilarity. proposed in Sect. 4 (dis1, . . . ,dis5), based on
different distance functions (Hamming, Jaccard and Cosine indexes).

First, we study if the implications leading to the same closed set are grouped
in the same cluster. Thus, we introduce the notion of closure purity. Let us
consider the set of equivalence classes in the Duquenne-Guigues basis Γ , as

[P → Q] = {R → T ∈ Γ : P+ = R+}
Two implications belong to the same equivalence class if the closures of their
respective pseudointents are the same. Then, we can define closure purity as the
proportion of those equivalence classes whose implications are all assigned to the
same cluster. The ideal situation is that this index equals 1, meaning that whole
equivalence classes form clusters.

150 D. López-Rodŕıguez et al.

Table 2. Closure purity for different dissimilarity measures and distance functions.

Problem Dissimilarity Hamming Jaccard Cosine

MONKS-1 dis1 0.953 1.000 0.983

dis2 1.000 1.000 1.000

dis3 0.962 0.953 0.953

dis4 1.000 1.000 0.971

dis5 1.000 0.988 0.962

MONKS-2 dis1 0.928 0.966 0.942

dis2 1.000 1.000 1.000

dis3 0.986 0.966 0.974

dis4 0.994 1.000 0.998

dis5 0.996 0.954 0.974

MONKS-3 dis1 0.923 1.000 0.972

dis2 1.000 1.000 1.000

dis3 0.935 0.985 0.978

dis4 1.000 0.997 0.994

dis5 1.000 0.994 0.966

The results of this comparison are presented in Table 2. It is evident that
dis2 achieves closure purity equal to 1 since it is defined as the dissimilarity
between the closures given by two implications. Thus, any two implications in
the same equivalence class have dissimilarity 0 and therefore are assigned to
the same cluster. Interestingly, other dissimilarity measures, such as dis4, taking
into account also the difference in the pseudointents, in many occasions achieve
closure purity equal to 1, meaning that they can also separate the equivalence
classes coherently.

Also, we study if there are common attributes inside the implications in a
given cluster. Table 3 shows the attributes that appear in at least 80% of the
implications in each cluster. Note that there is always a cluster with no common
attributes using both Jaccard and Cosine indexes, indicating greater heterogene-
ity in that cluster’s implications. With the Hamming distance, we obtain that the
dissimilarity measures dis2 (considering only P+ and R+) and dis4 (considering,
besides, the difference between pseudointents) always find common attributes in
each cluster. Remarkably, the common attributes found are the class attributes
mentioned earlier. Hence, the clustering procedure has been able to locate key
attributes in a completely unsupervised manner, provided the knowledge present
in the implication set. It is evident that if we reduce the threshold to be less
than 80%, we will find a greater number of common attributes. We have used a
threshold of 80% to retain just representative attributes in each cluster.

Clustering and Identification of Core Implications 151

Table 3. Sets of common attributes in each of the clusters found for different distance
functions and dissimilarity measures. A ∅ symbol indicates that no common attributes
are found in the implications of the given cluster.

Problem Diss. Hamming Jaccard Cosine

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

MONKS-1 dis1 {class = 1} ∅ {class = 1, a5 = 1} ∅ {class = 1, a5 = 1} ∅

dis2 {class = 1} {class = 0} {class = 1, a5 = 1} ∅ {class = 1, a5 = 1} ∅

dis3 {class = 1} ∅ {class = 1} ∅ {class = 1} ∅

dis4 {class = 1} {class = 0} {class = 1, a5 = 1} ∅ {class = 1} ∅

dis5 {class = 1} {class = 0} {class = 1} ∅ {class = 1} ∅

MONKS-2 dis1 ∅ ∅ {a5 = 1} ∅ {a4 = 1} ∅

dis2 {class = 0} {class = 1} {class = 0, a6 = 1} ∅ {class = 0, a5 = 1, a6 = 1} ∅

dis3 {class = 0} ∅ {class = 0} ∅ {class = 0} ∅

dis4 {class = 0} {class = 1} {class = 0, a4 = 1, a6 = 1} ∅ {class = 0} ∅

dis5 {class = 0} ∅ {class = 0} ∅ {class = 0} ∅

MONKS-3 dis1 ∅ {class = 1} {class = 0, a5 = 4} ∅ {class = 0, a5 = 4} ∅

dis2 {class = 0} {class = 1} {class = 0, a5 = 4} ∅ {class = 0, a5 = 4} ∅

dis3 {class = 0} ∅ {class = 0} ∅ {class = 0} ∅

dis4 {class = 0} {class = 1} {class = 0} ∅ {class = 0} ∅

dis5 {class = 0} {class = 1} {class = 0} ∅ {class = 0} ∅

This leads us to think that implication clustering could be used with promis-
ing results in classification tasks in datasets, and/or, for instance, in recom-
mender systems for medical diagnosis in which some attributes play the role of
identifying diseases from symptoms (the rest of the attributes). To finish this
section, it seems clear that very compelling results are emerging from the hidden
knowledge in the clusters of implications.

6 Conclusions

We have presented the fcaR package developed in the R language throughout
this work. The package has two objectives. The first one is to provide a tool
to the FCA community and make FCA works visible to other areas as machine
learning, data science, etc., where the use of the R language is widely extended.
Thus, in this line, to promote the so-called reproducible research and the sharing
of knowledge, the scripts to replicate the results in this work, as well as the
results themselves, are hosted in https://github.com/Malaga-FCA-group/FCA-
ImplicationClustering.

From the theoretical point of view, the paper proposes a method to cluster
implications, hence extracting interesting knowledge about the central implica-
tions, which reveal groups of objects with a special meaning and shared char-
acteristics. This work opens the windows to new interesting research in current
areas of interest as Social Network Analysis. The identification of topics could
be addressed by our clustering implication method based on logic.

Natural clusters (consistent with the data) seem to emerge from the impli-
cation clusters, and this could have potential applications to reduce the concept
lattice, the bases of implications, etc. Key attributes arise from the clusters, with

https://github.com/Malaga-FCA-group/FCA-ImplicationClustering
https://github.com/Malaga-FCA-group/FCA-ImplicationClustering

152 D. López-Rodŕıguez et al.

potential applications revealing attributes and object clusters and their leaders.
It could also be of interest to study the relationship between the concept lattice
obtained directly from a formal context and obtained after clustering objects.
The study of closure purity can reveal interesting properties about closed sets
and their features.

References

1. Adaricheva, K., Nation, J., Rand, R.: Ordered direct implicational basis of a finite
closure system. Discrete Appl. Math. 161(6), 707–723 (2013)

2. An, A., Khan, S., Huang, X.: Hierarchical grouping of association rules and its
application to a real-world domain. Int. J. Syst. Sci. 37(13), 867–878 (2006)

3. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of
all fixpoints of a fuzzy closure operator. IEEE Trans. Fuzzy Syst. 18(3), 546–557
(2010)

4. Bělohlávek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: Mis-
saoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 45–60.
Springer, Heidelberg (2006). https://doi.org/10.1007/11671404 3

5. Bocharov, A., Gnatyshak, D., Ignatov, D.I., Mirkin, B.G., Shestakov, A.: A lattice-
based consensus clustering algorithm. In: International Conference on Concept
Lattices and Their Applications, vol. CLA2016, pp. 45–56 (2016)

6. Carbonnel, J., Bertet, K., Huchard, M., Nebut, C.: FCA for software product line
representation: mixing configuration and feature relationships in a unique canonical
representation. Discrete Appl. Math. 273, 43–64 (2020)

7. Castellanos, A., Cigarrán, J., Garćıa-Serrano, A.: Formal concept analysis for topic
detection: a clustering quality experimental analysis. Inf. Syst. 66, 24–42 (2017)

8. Chemmalar Selvi, G., Lakshmi Priya, G.G., Joseph, R.B.: A FCA-based concept
clustering recommender system. In: Vinh, P.C., Rakib, A. (eds.) ICCASA/ICTCC
-2019. LNICST, vol. 298, pp. 178–187. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34365-1 14

9. Cigarrán, J., Castellanos, Á., Garćıa-Serrano, A.: A step forward for Topic Detec-
tion in Twitter: an FCA-based approach. Expert Syst. Appl. 57, 21–36 (2016)

10. Cordero, P., Enciso, M., Mora, A., de Guzmán, I.P.: SLFD logic: elimination of
data redundancy in knowledge representation. In: Garijo, F.J., Riquelme, J.C.,
Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 141–150. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36131-6 15

11. Cordero, P., Enciso, M., Bonilla, A.M., Ojeda-Aciego, M.: Bases via minimal gen-
erators. In: Proceedings of the International Workshop “What can FCA do for
Artificial Intelligence?” (FCA4AI at IJCAI 2013), Beijing, China, 5 August 2013,
pp. 33–36 (2013)

12. Cordero, P., Enciso, M., Mora, Á., Ojeda-Aciego, M.: Computing minimal gen-
erators from implications: a logic-guided approach. In: Proceedings of Concept
Lattices and Applications, CLA 2012. pp. 187–198 (2012)

13. Demko, C., Bertet, K., Faucher, C., Viaud, J.F., Kuznetsov, S.O.: NextPriority
Concept: a new and generic algorithm computing concepts from complex and
heterogeneous data. Theor. Comput. Sci. 845, 1–20 (2020)

14. Diatta, J.: A relation between the theory of formal concepts and multiway cluster-
ing. Pattern Recogn. Lett. 25(10), 1183–1189 (2004)

https://doi.org/10.1007/11671404_3
https://doi.org/10.1007/978-3-030-34365-1_14
https://doi.org/10.1007/978-3-030-34365-1_14
https://doi.org/10.1007/3-540-36131-6_15

Clustering and Identification of Core Implications 153

15. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

16. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-59830-2

17. Delugach, H.S., Stumme, G. (eds.): ICCS-ConceptStruct 2001. LNCS (LNAI), vol.
2120. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8

18. Ganter, B., Rudolph, S., Stumme, G.: Explaining data with formal concept anal-
ysis. In: Krötzsch, M., Stepanova, D. (eds.) Reasoning Web. Explainable Artificial
Intelligence. LNCS, vol. 11810, pp. 153–195. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31423-1 5

19. Hahsler, M.: Grouping association rules using lift. In: Proceedings of 11th
INFORMS Workshop on Data Mining and Decision Analytics (DMDA 2016)
(2016)

20. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J.
29(2), 147–160 (1950)

21. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2),
37–50 (1912)

22. Kashnitsky, Y., Ignatov, D.I.: Can FCA-based recommender system suggest a
proper classifier? In: Proceedings of the International Workshop “What can FCA
do for Artificial Intelligence?” (FCA4AI at IJCAI 2014), p. 17 (2014)

23. Kaufman, L., Rousseeuw, P.J.: Partitioning around medoids (program PAM). In:
Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344, pp. 68–125
(1990)

24. Konecny, J.: Attribute implications in L-concept analysis with positive and neg-
ative attributes: validity and properties of models. Int. J. Approx. Reason. 120,
203–215 (2020)

25. Kruskal, J.B.: Multidimensional Scaling, no. 11. Sage, Los Angeles (1978)
26. Kumar, C.A.: Fuzzy clustering-based formal concept analysis for association rules

mining. Appl. Artif. Intell. 26(3), 274–301 (2012)
27. MacQueen, J., et al.: Some methods for classification and analysis of multivariate

observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

28. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-
adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)

29. Melo, C., Mikheev, A., Le Grand, B., Aufaure, M.A.: Cubix: a visual analytics
tool for conceptual and semantic data. In: Proceedings - 12th IEEE International
Conference on Data Mining Workshops, ICDMW 2012, pp. 894–897 (2012)

30. Missaoui, R., Ruas, P.H.B., Kwuida, L., Song, M.A.J.: Pattern discovery in triadic
contexts. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol.
12277, pp. 117–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57855-8 9

31. Mora, Á., Cordero, P., Enciso, M., Fortes, I., Aguilera, G.: Closure via functional
dependence simplification. Int. J. Comput. Math. 89(4), 510–526 (2012)

32. Priss, U.: Formal concept analysis in information science. Ann. Rev. Inf. Sci. Tech-
nol. 40(1), 521–543 (2006)

33. Ravi, K., Ravi, V., Prasad, P.S.R.K.: Fuzzy formal concept analysis based opinion
mining for CRM in financial services. Appl. Soft Comput. J. 60, 786–807 (2017)

34. Rodŕıguez-Lorenzo, E., Bertet, K., Cordero, P., Enciso, M., Mora, A., Ojeda-
Aciego, M.: From implicational systems to direct-optimal bases: a logic-based app-
roach. Appl. Math. Inf. Sci. 2, 305–317 (2015)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/3-540-44583-8
https://doi.org/10.1007/978-3-030-31423-1_5
https://doi.org/10.1007/978-3-030-31423-1_5
https://doi.org/10.1007/978-3-030-57855-8_9
https://doi.org/10.1007/978-3-030-57855-8_9

154 D. López-Rodŕıguez et al.

35. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

36. Strehl, A., Gupta, G.K., Ghosh, J.: Distance based clustering of association rules.
In: Proceedings ANNIE, vol. 9, pp. 759–764 (1999)

37. Stumme, G., Maedche, A.: FCA-MERGE: bottom-up merging of ontologies. In:
IJCAI International Joint Conference on Artificial Intelligence, pp. 225–230 (2001)

38. Sumangali, K., Aswani Kumar, Ch.: Concept lattice simplification in formal con-
cept analysis using attribute clustering. J. Ambient Intell. Humaniz. Comput.
10(6), 2327–2343 (2018). https://doi.org/10.1007/s12652-018-0831-2

https://doi.org/10.1007/s12652-018-0831-2

Extracting Relations in Texts with
Concepts of Neighbours

Hugo Ayats(B), Peggy Cellier, and Sébastien Ferré

Univ Rennes, INSA, CNRS, IRISA Campus de Beaulieu, 35042 Rennes, France
{hugo.ayats,peggy.cellier,sebastien.ferre}@irisa.fr

Abstract. During the last decade, the need for reliable and massive
Knowledge Graphs (KG) increased. KGs can be created in several ways:
manually with forms or automatically with Information Extraction (IE),
a natural language processing task for extracting knowledge from text.
Relation Extraction is the part of IE that focuses on identifying relations
between named entities in texts, which amounts to find new edges in a
KG. Most recent approaches rely on deep learning, achieving state-of-
the-art performances. However, those performances are still too low to
fully automatize the construction of reliable KGs, and human interaction
remains necessary. This is made difficult by the statistical nature of deep
learning methods that makes their predictions hardly interpretable. In
this paper, we present a new symbolic and interpretable approach for
Relation Extraction in texts. It is based on a modeling of the lexical and
syntactic structure of text as a knowledge graph, and it exploits Concepts
of Neighbours, a method based on Graph-FCA for computing similarities
in knowledge graphs. An evaluation has been performed on a subset of
TACRED (a relation extraction benchmark), showing promising results.

1 Introduction

During the last decade, the need for reliable and massive knowledge bases, repre-
sented as Knowledge Graphs (KG), increased. KGs allow to structure, organize
and share knowledge. A challenge is to build KGs that are at the same time
reliable and large. There exist several ways to create those KGs: manually with
forms (e.g., wikidata1), providing reliability (assuming the producer is reliable),
or automatically by using Information Extraction (IE) techniques [8], allowing
to easily build very large KG by using the large amount of existing textual data
(e.g., scientific papers, books, official websites). IE is a natural language process-
ing task for extracting knowledge from text. Relation Extraction is a sub-task of
IE that focuses on identifying relations between named entities in texts, which
amounts to find new edges between KG entities. It is a classification task, where
given two named entities in a sentence, the goal is to predict the relation type
between the two.

1 https://www.wikidata.org/.
c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 155–171, 2021.
https://doi.org/10.1007/978-3-030-77867-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_10&domain=pdf
https://www.wikidata.org/
https://doi.org/10.1007/978-3-030-77867-5_10

156 H. Ayats et al.

Among existing approaches for the relation extraction task, the deep learning
methods are the most efficient. First, those method were based on convolutional
neural networks [15]. Other deep learning approaches, such as [17], work on
pruned dependency trees. Today, methods based on language models such as
BERT [18] provide the best results. However, those deep learning methods have
two main limitations. First, they are not sufficiently reliable for a full automation.
Second, they suffer, as most of numerical approaches, of a lack of explanations
for predictions, which hinders human interaction.

Formal Concept Analysis (FCA) has already been shown effective for clas-
sification tasks [9], and has the advantage to provide symbolic representations
of predictions that can be used as explanations. However, it faces a problem of
tractability when all concepts need to be computed. An interesting approach
is to adopt lazy learning, where this computation is delayed until there is an
instance to be classified, and only the concepts that are relevant to that instance
are computed. This lazy approach was applied early to the incremental building
of a logical context [4], then later advocated in [10] with Pattern Structures [6],
and applied, for instance, to relation extraction in biomedical texts [11]. More
recently, this has been formalized as Concepts of Neighbours [2] based on Graph-
FCA [1]. The particularity of the Concepts of Neighbours method, such as this
contribution, is the use of an efficient anytime algorithm based on the parti-
tioning of the set of entities into concepts. This has for consequence that there
is no need for a sampling strategy: all entities appear in the extensions of the
returned concepts. The use of Concepts of Neighbours has been applied to the
completion of knowledge graphs [3], and has shown competitive results compared
to deep learning approaches, and state-of-the-art results compared to rule-based
approaches such as AnyBURL [13] or AMIE+ [5]. Rule-based approaches are also
interpretable but they are not lazy because they compute a set of rules before
seeing any test instance. Therefore, they have to strongly restrict the consid-
ered graph patterns for combinatorial reasons, unlike in Concepts of Neighbours
where all connected graph patterns with constants are supported. AnyBURL
only mines path rules and AMIE+ focuses on small connected and closed rules.

In this paper, we introduce a symbolic and lazy approach for relation extrac-
tion based on Concepts of Neighbours. A first contribution is the representation
of sentences by graphs, covering both lexical and syntactic information. Other
contributions, compared to previous application of Concepts of Neighbours, are
that the instances to be classified are couples of graph nodes, instead of single
nodes, and that node labels are organized into a taxonomy (e.g., word hyper-
nyms). We validate our approach with experiments on TACRED [20], a dataset
for evaluating relation extraction methods.

In the sequel, Sect. 2 gives preliminaries about Graph-FCA and Concepts
of Neighbours. Then, Sect. 3 introduces the modeling of sentences as graphs.
Section 4 details how Concepts of Neighbours can be used for relation extraction.
Finally, Sect. 5 presents the experiments conducted on dataset TACRED.

Extracting Relations in Texts with Concepts of Neighbours 157

O = {Charles,Diana,William,Harry ,Kate,George,Charlotte,Louis,male, female}
A = {parent , spouse, female,male}
I = {parent({William,Harry}, {Charles,Diana}),

parent({George,Charlotte,Louis}, {William,Kate}),
spouse(Charles,Diana), spouse(William,Kate),
male({Charles,William,Harry ,George,Louis}),
female({Diana,Kate,Charlotte})}

Fig. 1. Example Graph-FCA context K = (O,A, I) describing part of the British royal
family. Notation p({a, b}, {c, d}) stands for p(a, c), p(a, d), p(b, c), p(b, d).

2 Preliminaries

In this section, we recall the main definitions and results of Concepts of Neigh-
bours [3]. We start by defining graph contexts and graph concepts, introduced in
Graph-FCA [1], a generalization of Formal Concept Analysis (FCA) [7] to graphs.
A graph context K = (O,A, I) is a labeled and directed multi-hypergraph, where
objects are nodes, attributes are edge labels, and incidence elements are edges
(noted like atoms in predicate logic a(o1, . . . , ok)). As a running example, Fig. 1
defines a small context describing (part of) the British royal family.

Definition 1. A graph concept is defined as a pair C = (R,Q), where R is a set
of k-tuples of objects and Q is a conjunctive query such that R = res(Q) is the
set of results of Q, and Q = msq(R) is the most specific query that verifies R =
res(Q). R is called the extension ext(C), and Q is called the intension int(C).

The most specific query Q = msq(R) is the conjunctive query representing
what the tuples of objects in R have all in common. For the sake of simplicity, we
restrict the following examples to 1-tuples, aka. singletons. In the running exam-
ple, the singletons (William) and (Charlotte) have in common the following
query, QWC , that says that both have married parents:

QWC = msq({(William), (Charlotte)})
= (x) ← parent(x, y), female(y), parent(x, z), male(z), spouse(y, z).

We have RWC = res(QWC) = {(William), (Harry), (George), (Charlotte),
(Louis)} so that CWC = (RWC , QWC) is a graph concept.

A concept C1 = (R1, Q1) is more specific than a concept C2 = (R2, Q2), in
notation C1 ≤ C2, if R1 ⊆ R2. For example, a concept more specific than CWC is
the concept of the children of Kate and William, whose extension is {(George),
(Charlotte), (Louis)}, and whose intension is:

(x) ← parent(x, y), (y = Kate), parent(x, z), (z = William).

The total number of graph concepts in a knowledge graph is finite but in the
worst case, it is exponential in the number of objects, and in arity k. It is therefore

158 H. Ayats et al.

not feasible in general to compute the set of all concepts. Instead of considering
concepts generated by subsets of tuples, we consider concepts generated by pairs
of tuples, and use them as a symbolic form of distance between objects.

Definition 2. Let t1, t2 ∈ Ok be two k-tuples of objects. The conceptual dis-
tance δ(t1, t2) between t1 and t2 is the most specific graph concept whose exten-
sion contains both tuples, i.e. δ(t1, t2) = (R,Q) with Q = msq({t1, t2}), and
R = res(Q).

For example, the above concept CWC is the conceptual distance between
(William) and (Charlotte). The “distance values” have therefore a symbolic
representation through the concept intension Q that represents what the two
tuples have in common. The concept extension R contains in addition to the
two tuples all tuples t3 that match the common query (t3 ∈ res(Q)). Such a
tuple t3 can be seen as “between” t1 and t2: in formulas, for all t3 ∈ ext(δ(t1, t2)),
δ(t1, t3) ≤ δ(t1, t2) and δ(t3, t2) ≤ δ(t1, t2). Note that order ≤ on conceptual
distances is a partial ordering, unlike classical distance measures.

A numerical distance dist(t1, t2) = |ext(δ(t1, t2))| can be derived from the
size of the concept extension, because the closer t1 and t2 are, the more specific
their conceptual distance is, and the smaller the extension is. For example, the
numerical distance is 5 between (William) and (Charlotte) (see CWC), and 3
between (George) and (Charlotte).

The number of conceptual distances δ(t1, t2) is no more exponential but
quadratic in the number of objects |O|. In the context of lazy learning, tuple t1
is fixed, and the number of concepts become linear. For k-tuples, that number
is bounded by |O|k. Those concepts are called Concepts of Neighbours.

Definition 3. Let t ∈ Ok be a k-tuple of objects. The Concepts of Neighbours
of t are all the conceptual distances between t and every tuple t′ ∈ Ok.

C -N (t,K) = {δ(t, t′) | t′ ∈ Ok}

Figure 2 shows the 6 Concepts of Neighbours of the singleton (Charlotte),
and their partial ordering as a Venn diagram. For instance, the concept con-
taining (Charlotte) only is included in the concept that also contains (Louis)
and (George), which is included in the concept that also contains (William)
and (Harry). This implies that George is semantically closer to Charlotte
than William is. Although (Louis) and (Diana) are both nearest neighbours
of (Charlotte), and at the same extensional distance 3, they are so for differ-
ent reasons as they belong to different Concepts of Neighbours with different
intensions. Louis has the same parents as Charlotte, while Diana has the same
gender.

The proper extension of a concept of neighbours δl is the part of its extension
that does not appear in sub-concepts. The proper extensions define a partition
over the set of objects O, where two objects are in the same proper extension if
and only if they are at the same conceptual distance. For instance, Diana and
Kate are in the same proper extension.

Extracting Relations in Texts with Concepts of Neighbours 159

x <− parent(x,y), (y = William),
parent(x,z), (z = Kate)

parent(x,z), female(z),
spouse(y,z)

x <− parent(x,y), male(x),

Charlotte

Charles

8
3

1

5

3

Louis

Diana
Kate

William Harry

George

x <− female(x)

x <−

numerical distance

x <− (x = Charlotte)

Fig. 2. Venn diagram of the extensions of the 6 Concepts of Neighbours of (Charlotte),
labelled by their intension (right) and numerical distance (inside).

3 Modeling Sentences as Graphs

The input data of relation extraction is a set of annotated sentences. Each sen-
tence is annotated by two entities, the subject and object of the relation, and
by the type of those entities. The input sentences are split in two parts: train-
ing sentences for which the relation is known, and test sentences for which the
relation is to be predicted. In this section we explain and discuss the modeling
of annotated sentences as graphs because this is the required input of Concepts
of Neighbours, and more precisely as RDF graphs because this is the expected
input of the existing implementation of Concepts of Neighbours.

3.1 NLP Treatments

Before building the RDF graph, several NLP treatments are applied on each
sentence2. First, the sentence is split into tokens. Second, part-of-speech (POS)
tags3 and lemmas are computed for each token. Third, the syntactic structure
of the sentence is extracted as a dependency tree4. Finally, named entities are
identified, and a named entity type is associated to each of them.

Table 1 shows the result of the processing of the sentence “The University of
Rennes is French”. For example, it shows that the 4th token is Rennes, has for
lemma Rennes and for POS tag NNP (a proper noun). It is part of a named
entity of type ORGANIZATION. It has for parent in the dependency tree the
2nd token and it is linked to this token via relation nmod (linking an nominal
modifier to its parent noun). We then apply a few post-treatments in order to
simplify and improve the sentence representation.

2 We use the CoreNLP tool [12] but other tools could be used.
3 We use the 58 POS tags of English Penn Treebank [16].
4 We use the dependency grammar proposed by Treebank Universal Dependencies.

160 H. Ayats et al.

Table 1. Example of a processed sentence.

ID Token Lemma POS NER Head Deprel

1 The The DT – 2 det
2 University University NNP ORGANIZATION 6 nsubj
3 of of IN ORGANIZATION 4 case
4 Rennes Rennes NNP ORGANIZATION 2 nmod
5 is be VBZ – 6 cop
6 French french JJ NATIONALITY – ROOT
7 – – – – 6 punct

Removing Punctuation. Punctuation tokens (e.g., token 7 in Table 1) and their
links are removed from the dependency tree. This is easy as they only occur as
leaves. Note that the parser takes into account punctuation when extracting the
dependency tree.

Compound Named Entities. A named entity can overlap several contiguous
tokens, for instance University of Rennes overlaps tokens 2–4 in the example.
However, a named entity is a semantic unit: it holds its own meaning, which can
be very different from the meaning of its individual tokens. Therefore, manipu-
lating a named entity as a succession of tokens can cause an important loss of
semantics. Except when there is a parse error, the tree structure of an entity
is a subtree of the dependency tree. We call it a factor by analogy with the
definition of a string factor. The proposed solution is to collapse the subtree into
its root. Then the sentence retains a valid syntactic and semantic structure (no
dangling link for instance). For example, in the sentence presented in Table 1,
the named entity “University of Rennes” is collapsed into token 2, and tokens 3
and 4 disappear. The expression “University of Rennes” can indeed be seen as
a proper noun (POS tag NNP). In case of a parse error, the named entity is
collapsed to the last token as a fallback.

3.2 Sentences as an RDF Graph

In order to model a set of processed sentences as one RDF graph, each token is
represented by an RDF node (e.g., id:1_2 for the 2nd token of the 1st sentence),
and each dependency link is represented by an RDF edge. The lemmas, POS
tags, and named entity types of a token are represented by RDF types on the
corresponding node (see discussion below). Figure 3 gives the RDF representation
for the example in Table 1. The 2nd token is modeled by node id:1_2, which has
as types lemma University of Rennes, POS tag NNP, and named entity type
organization, and is linked to node id:1_6 by relation nsubj.

Representation of Lemmas and POS Tags as RDF Types. As specified above,
we use relation rdf:type instead of defining specific relations for linking a node

Extracting Relations in Texts with Concepts of Neighbours 161

Fig. 3. Example of a sentence modeled as an RDF graph.

to its lemma or POS tag. This choice has been made for three reasons. First,
by having lemmas and POS tags represented by RDF types rather than RDF
nodes, we avoid to have two sentences get connected as soon as they share a
lemma or a POS tag. Second, for the computation of Concepts of Neighbours,
it prevents from having intensions including dummy patterns such as “has an
unspecified POS tag”. Third, as presented in Sect. 3.3, it allows us to create a
type hierarchy for lemmas and POS tags.

Lemmatisation of Named Entities. Note that, if in the general case the lemma of
a token is a good representation, it does not stand in the case of named entities:
e.g., unite state of America vs United States of America. Therefore, for named
entities, we use the original words instead of the lemmas in the RDF graph.

Optimization of the Modeling. Although the algorithm computing Concepts of
Neighbours is anytime, the size of the RDF graph has an impact on the number
of computed concepts, and hence on the quality of predictions. We can prune the
RDF graph according to the position of the subject and object, in a way that
reduces its size without loosing too much information. Indeed, Zhang et al. [19]
states that not all dependencies are of same interest for extracting relations.
Only those close to the path between the subject and the object carry useful
information. However, it can be easily seen that reducing the dependency tree
to a path would remove essential information for relation extraction, e.g. in the
case of a negation attached to a verb that is on the path. Our solution is to
prune the dependency tree to keep only the path between the subject and the
object, plus the tokens up to maximal distance K from this path. Several values
of K were tested, and the value K = 1 appears to be a good trade-off between
size reduction and performance.

162 H. Ayats et al.

Fig. 4. Fragment of a type hierarchy obtained from WordNet

3.3 Type Hierarchies

An RDF graph can be enriched with inferred types and edges by declaring
domain knowledge. The most common form of domain knowledge is hierarchies
of types, based on the RDFS property rdfs:subClassOf. The inference rule is
that: if node X has type A and A is a subclass of B, then X also has type B.
We use several type hierarchies to increase the generalization power of Concepts
of Neighbours. First, the set of POS-tags [16] is fine-grained enough to create a
hierarchy on a few POS-tags: for example, the gerund of a verb (POS-tag VBG)
is a subclass of verb (POS-tag VB). In total, we have 11 rdfs:subClassOf
declarations5.

Second, in order to add semantic knowledge to the modeling, the lexical
database WordNet [14] is used for creating a lemma hierarchy for nouns and
verbs. Each synset of a lemma is considered as a superclass of the lemma, and
each hypernym of a given synset is considered as a superclass of this synset.
Figure 4 shows a fragment of this lemma hierarchy. For instance, synset educa-
tional institution allows to generalize over lemmas university and school. The
lemma hierarchy thus increases the chance to find similarities between sentences
using words that have different lemmas but close meanings.

4 Relation Extraction with Concepts of Neighbours

Once the modeling is done, for each test example we want to compute which
examples of the training corpus are the more similar, and do a prediction from
their annotation. In order to do so, an RDF graph regrouping the modeling of
all the sentences of the dataset is made, the Concepts of Neighbours method is
used to group the examples by similarities, and then a decision method is used
to do a prediction from those Concepts of Neighbours. In the following, we first
present how the Concepts of Neighbours have been adapted to this specific task.

5 Full hierarchy at https://gitlab.inria.fr/hayats/jena-conceptsofneighbours/-/blob/
master/src/conceptualKNN/utils/postag.ttl.

https://gitlab.inria.fr/hayats/jena-conceptsofneighbours/-/blob/master/src/conceptualKNN/utils/postag.ttl
https://gitlab.inria.fr/hayats/jena-conceptsofneighbours/-/blob/master/src/conceptualKNN/utils/postag.ttl

Extracting Relations in Texts with Concepts of Neighbours 163

Then, we describe two decision methods for making prediction from Concepts
of Neighbours.

4.1 Concepts of Neighbours for Relation Extraction in Texts

In order to use Concepts of Neighbours on the modeling presented in Sect. 3, a
few aspects needs to be addressed. First, we need to clearly identify the RDF
nodes representing the subject and the object in each sentence. Then, we need
to compute Concepts of Neighbours on a (subject, object) couple, compared to
a single node in previous applications. This strongly increases the number of
potential neighbours. Finally, we show how to reduce this number of in the
specific case of relation extraction.

Identification of the Subjects and Objects. There is a need to unambigu-
ously identify the nodes of the RDF graph forming the (subject, object) couples.
The issue is that subjects or objects can overlap several tokens. The collapse of
the named entities presented in Sect. 3.1 solves this problem in the vast majority
of cases as subjects and objects are most of the time either named entities or
one-token expressions. However, ambiguous cases still exist in a small proportion
of the sentences. This problem can appear in three cases: first, when the subject
or object is expressed as a nominal group (e..g, “the man”, “the university”);
second, when the subject or object includes a named entity but is longer than it
(e.g., “the President of the United States of America” is a subject, whereas only
“United States of America” is tagged as a named entity); third, when the subject
or object is a named entity that has not been recognized as a named entity.

The solution proposed to solve these cases is similar to the solution presented
in Sect. 3.1 to collapse named entities: as a subject or an object is necessarily a
group of contiguous tokens with a particular meaning, it must form a tree factor
in the dependency tree. Therefore, it can be considered that the root of this
factor carries the semantic and syntactic information, and then can be pointed
out as the subject or the object. Like for named entities, if the tokens do not
form a tree factor because of a wrong annotation or a parse error, the last token
is used instead of the root. It can be pointed out that, unlike for named entities,
the choice has been made not to merge the tokens constituting the subject or
the object as their syntactic structure (if any) is generally informative, like in
“the President of X”.

Concepts of Neighbours for Couples of Nodes. The Concepts of Neigh-
bours of the identified couples (subject, object) are then computed. The method
was originally designed to generate Concepts of Neighbours for tuples of arbi-
trary size. However, until now, it was only applied for unary concepts. The
switch from unary concepts to binary ones (and by extension n-ary) has two
main consequences discussed in the following.

164 H. Ayats et al.

Intension. First of all, unlike unary concepts, binary concepts can have an inten-
sion that is not connected. For example, in the sentence presented in Fig. 3,
both the connected intension (relating the object to the subject via depen-
dency nsubj):

(s, o) ← nsubj(o, s), UnivRennes(s), french(o), cop(o, x), is(x)

and the disjoint one (no path between subject and object):

(s, o) ← UnivRennes(s), french(o), cop(o, x), is(x)

can appear during the computation of the Concepts of Neighbours. In both cases,
the pruning strategy presented in Sect. 3.2 ensures that the intension focuses on
and around the path between the subject and the object.

Reduction of the Set of Couples. Another issue is the large number of potential
neighbours: as detailed in [3], to compute the Concepts of Neighbours for a tuple
of k objects in a graph involving n objects, the algorithm has to generate and
partition nk tuples. Therefore, for a large graph, the computation of concepts
of arity greater than 1 is rapidly intractable. In the present case, if we consider
a dataset composed of ten thousands of sentences, there are tens of billions of
potential neighbours. However, the use of the Concepts of Neighbours method
is in this context for extracting relations by comparing a (subject, object) cou-
ple from a test sentence to annotated couples from the training dataset, and it
appears that the number of annotated couples is far smaller: only one per exam-
ple in the training dataset. Therefore, in the following, we use this set of couples
for the computation of Concepts of Neighbours, as it permits to simultaneously
reduce drastically the computation cost and remove noise from the computed
concepts while keeping all the knowledge of interest.

In addition, as evoked in Sect. 3, in a relation extraction dataset each subject
and object has a type, and these types can be used to reduce the set of potential
neighbours further. For example, if an example has for subject a person and for
object a location, it can be seen that the relation expressed by this example could
be place_of_birth or place_of_living, but can not be age or parent. Therefore,
for a given couple (subject_type, object_type), a set of compatible relations can
be deduced from the training dataset. If there is only one compatible relation,
this relation can be predicted without computing Concepts of Neighbours for this
example, and if there are several possible relations, the set of (subject, object)
couples from the training dataset that are annotated with compatible relation
types can be used as the set of possible neighbours in the algorithm.

4.2 Scoring Methods

The computation of Concepts of Neighbours of a (subject, object) pair from
the test dataset returns a set of concepts, each concept is associated to a set of
neighbour couples, and to an extensional distance. In addition, the specialization
presented in the previous section ensures that each neighbour couple is annotated

Extracting Relations in Texts with Concepts of Neighbours 165

with a compatible relation type. From this result, in order to be able to predict
a relation, we need to associate a score to each relation type. In the following
we present two scoring methods: one based on a weighted votation, and another
based on the confidence measure.

Exponential-Weighted Vote (EV). Each neighbour (s, o) of each concept “votes”
for its annotated relation type r(s, o). However, if not weighted this method
will only reflect the proportion of each relation among the training examples
annotated with a compatible relation. To avoid this problem, the extensional
distance dist(c) of concept c can be used to weight each vote. The extensional
distance of a concept of neighbours measures the degree of similarity between
the couple from which the concept has been computed and the neighbours that
the concept contains: the lower the distance, the higher the similarity. Therefore,
each vote is weighted by a decreasing function of the extensional distance. We
use the following formula to score a relation type r based on a set of Concepts
of Neighbours C.

score(r, C) :=
∑

c∈C

∑

(s,o)∈proper(c)

w(c) 1r(s,o)=r where w(c) = e−dist(c)

We have chosen the inverse exponential function to define each weight w(c)
because of its rapid decrease, which privileges nearest neighbours. This way, the
relation of one very similar example is preferred to the relation of a large number
of vaguely similar examples.

Maximum Confidence (MC). The second method is similar to the method used
by AnyBURL [13], and has been successfully used with Concepts of Neighbours
for link prediction [3]. The idea is to consider the intension int(c) = (s, o) ← Pc

of each concept c, to use pattern Pc as the body of a rule, and for each relation
type r to compute the confidence of the rule Rc,r : Pc → r(s, o), defined as usual
as:

conf (Rc,r) =
|{(s, o) | r(s, o)} ∩ ext(c)|

|ext(c)|
For each relation type r, the score is the list of the confidences of all rules

Rc,r predicting that relation, in descending order.

score(r, C) := (conf (Rc,r))c∈C in descending order

Such scores are ranked according to inverse lexicographic ordering. That is, the
predicted relation type is the relation type with the higher maximal confidence.
If several relation types have the same maximal confidence, the relation type
with the higher second maximal confidence is predicted, and so on.

5 Experiments

In this section we present the experiments conducted on TACRED [20], a stan-
dard relation extraction benchmark, to evaluate the proposed method.

166 H. Ayats et al.

5.1 Dataset and Baseline

TACRED is a dataset made of 106,264 annotated examples, split into a training
corpus (68,124 examples), a development corpus (22,631 examples) and a test
dataset (15,509 examples). Each example is a sentence with two identified entity
mentions (a subject and an object), typed among 23 possible types (the types
used by the Stanford NER system [12]), and annotated with a relation type
among 41 effective classes and a no_relation class denoting an absence of relation
between the two mentions. In order to reflect what can be found in real-world
texts, 79.5% of the examples are in the no_relation class.

Several remarks can be made about this dataset. First, as the classification
with Concepts of Neighbours is a lazy learning method, there is no validation
step, then the development dataset can be merged with the training dataset
to form a bigger training dataset. Second, the negative examples (those in the
no_relation class) have no reasons to look like each other but can look like
examples in other classes, because they express random situations. Therefore, as
our method looks for similarities between a test example and training examples,
those negative examples cannot easily be handled in our method. That is why
negative examples are removed from the dataset in the experiments, and we
focus on discriminating between the 41 relation types rather than discriminating
between the presence and absence of a relation. This shrinks the training corpus
to 18,446 examples and the test corpus to 3,325 examples.

The evaluation of an approach on TACRED is usually made using the micro-
averaged F1 score. However, as the negative examples have been removed from
the dataset, this score is equivalent to accuracy. Therefore, accuracy is the mea-
sure we use in this evaluation.

The fact that experiments are made on a subset of TACRED causes that
direct comparison with existing approaches is no longer possible. In order to
evaluate whether our modeling and use of concepts of neighbours are beneficial,
we introduce a simple baseline based on named entity types. It predicts the most
frequent relation type among the training sentences that have the same subject
type and the same object type as the test sentence.

5.2 Experimental Settings

As the algorithm to compute the Concepts of Neighbours is anytime, a timeout
has to be chosen. In order to see the influence of the computation time on the
classification task, eight experiments have been run with respective timeouts:
10, 20, 30, 60, 120, 300, 600 and 1200 s. For each timeout we compare four
configurations combining unpruned/pruned modelings (Sect. 3.2) and the two
scoring methods (Sect. 4.2).

We have implemented our approach in Java6, and we use library Concep-
tualKNN 7 for the computation of Concepts of Neighbours, which is based on

6 Code available at https://gitlab.inria.fr/hayats/conceptualknn-relex.
7 https://gitlab.inria.fr/hayats/jena-conceptsofneighbours.

https://gitlab.inria.fr/hayats/conceptualknn-relex
https://gitlab.inria.fr/hayats/jena-conceptsofneighbours

Extracting Relations in Texts with Concepts of Neighbours 167

Table 2. Accuracy of our approach depending on timeout, pruning, and scoring
method, compared to the baseline.

Approach Timeout (seconds)
10 20 30 60 120 300 600 1200

Baseline 80.4
Unpruned, EV 78.6 79.1 79.2 79.4 79.2 79.2 79.6 79.6
Unpruned, MC 78.0 78.2 78.3 78.9 79.9 79.8 80.2 80.4
Pruned, EV 79.5 79.7 79.6 80.1 80.4 80.3 80.4 80.4
Pruned, MC 79.1 80.1 80.3 81.3 82.1 82.5 82.6 82.5

Apache Jena8, a Java library for semantic web applications. Experiments have
been run on Grid50009 to exploit parallel computation.

5.3 Quantitative Results

Accuracy of the baseline and of the four versions of the proposed method are
presented in Table 2. For a timeout of at least 60s, the proposed approach with
the Maximum Confidence scoring and the pruned modeling, has a better accu-
racy than the baseline, surpassing it by 1.7 point with a timeout of 120s and by
2.2 points with a timeout of over 600s. It can be observed that the pruning of the
dependency trees in the modeling is necessary in order to beat the baseline. We
assume that, without pruning, the search space for concepts of neighbours gets
much larger, and so their computation cannot focus on the useful parts of the
dependency trees in the allocated timeout. The EV scoring method shows nega-
tive results compared to Maximum Confidence and the baseline. Two conclusions
can be made. First, the exponential decrease of vote weights seems to neglect too
much distant concepts as Maximum Confidence does not penalize them. Second,
it seems better to select a few high-confidence concepts than trying to aggregate
predictions from all concepts.

Considering the last line of Table 2 (pruned and MC method), we observe a
saturation phenomenon. Indeed, there is an important gain when timeout gets
from 10s to 120s, but a far smaller gain from 120s to1200 s. Most of the concepts
of neighbours are computed in less than 120 s, and over 120 s, only a few concepts
are added. The same phenomenon is seen in Fig. 5. The first chart clearly shows
that most of the concepts are obtained in less than 120s. In addition, the second
chart shows that, in the case of a model with pruned dependency trees, over 99%
of the test sentences have a fully computed set of Concepts of Neighbours – and
therefore the predictions are made on the Concepts of Neighbours themselves
and not an approximation – for a timeout over 600s, while for a model with full
dependency trees, only about 70% of the examples have fully computed set of
Concepts of Neighbours.
8 https://jena.apache.org/.
9 https://www.grid5000.fr/w/Grid5000:Home.

https://jena.apache.org/
https://www.grid5000.fr/w/Grid5000:Home

168 H. Ayats et al.

Fig. 5. Average number of concepts per example and proportion of fully computed sets
of Concepts of Neighbours

Fig. 6. Example of intension of a concept

5.4 Qualitative Results

An important asset of this relation extraction method is its interpretability: from
a prediction, it can be retrieved which Concepts of Neighbours were used to do
this prediction, and for each concept what graph pattern is expressed by the
intension and which sentences of the training dataset match this concept.

For illustration, we examine the following example: “Her husband,
Brad Hagemo, is an optometrist and Scientologist”. First, as the sub-
ject and the object (in bold) designate persons, there are six possible rela-
tions: per:spouse, per:siblings, per:parents, per:children, per:other_family and
per:alternate_names. After computation of the Concepts of Neighbours, the
relation per:spouse is predicted with Maximum Confidence. This prediction is
based on the fact that three Concepts of Neighbours predict this relations with
a confidence of 1, while at most two concepts predict any other relation with

Extracting Relations in Texts with Concepts of Neighbours 169

such a confidence. The graph pattern used as intension for these concepts can
be made explicit. For example, the intension of one of these concepts is shown
in Fig. 6. It expresses that the subject is a person designated as a husband, and
the object is a personal pronoun of lemma “she”. This intension can effectively
predict with quite a high confidence a marital relation. The training examples
matching this intension are the sentences “Kissel had [...] accused her husband,
Merrill Lynch investment banker Robert Kissel of [...] domestic violence.”
and “Jane Callahan Gude, 84, [...] a tireless campaigner for her husband,
former U.S. Rep. Gilbert Gude , died March 24 [...].”

This example shows that, with this method, an interpretation can be
extracted from a prediction. In addition, this shows that a prediction can be
made with good confidence from concepts with a disjoint intension. In practice,
we observed that concept intensions are rarely connected. A reason is that they
may form patterns that are too specific to match any sentence of the training
corpus.

6 Conclusion

We have presented a lazy-learning method for relation extraction, based on the
modeling of linguistic data as a graph and on the computation of Concepts
of Neighbours on this graph. This approach has been evaluated and validated
against a baseline on the subset of positive examples of the TACRED benchmark.
In addition, this comes with the advantage that this approach is interpretable
as, for each prediction, detailed information about how this prediction has been
made is given in the form of graph patterns over the linguistic structure.

Several aspects of this contribution lead to tracks for future work. First, this
method could be coupled with another method – potentially Deep Learning – in
order to be able to distinguish the positive examples from the negative ones. The
Concepts of Neighbours method can also be improved in order to provide more
flexible and expressive patterns, useful in the case of natural language processing.
Finally, our approach could be adapted to other NLP tasks that require search
for linguistic similarity.

References

1. Ferré, S., Cellier, P.: Graph-FCA: an extension of formal concept analysis to knowl-
edge graphs. Discrete Appl. Math. 273, 81–102 (2019)

2. Ferré, S.: Answers partitioning and lazy joins for efficient query relaxation and
application to similarity search. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS,
vol. 10843, pp. 209–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93417-4_14

3. Ferré, S.: Application of concepts of neighbours to knowledge graph completion.
Data Sci. (2020). https://content.iospress.com/articles/data-science/ds200030, to
appear

https://doi.org/10.1007/978-3-319-93417-4_14
https://doi.org/10.1007/978-3-319-93417-4_14
https://content.iospress.com/articles/data-science/ds200030

170 H. Ayats et al.

4. Ferré, S., Ridoux, O.: The use of associative concepts in the incremental build-
ing of a logical context. In: Priss, U., Corbett, D., Angelova, G. (eds.) ICCS-
ConceptStruct 2002. LNCS (LNAI), vol. 2393, pp. 299–313. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45483-7_23

5. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

6. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120,
pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-
8_10

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

8. Grishman, R.: Twenty-five years of information extraction. Nat. Lang. Eng. 25,
677–692 (2019)

9. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.
(ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24651-0_25

10. Kuznetsov, S.O.: Fitting pattern structures to knowledge discovery in big data. In:
Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp.
254–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38317-
5_17

11. Leeuwenberg, A., Buzmakov, A., Toussaint, Y., Napoli, A.: Exploring pattern
structures of syntactic trees for relation extraction. In: Baixeries, J., Sacarea,
C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 153–168.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_10

12. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 55–60 (2014)

13. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up
rule learning for knowledge graph completion. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, pp. 3137–3143 (2019)

14. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

15. Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional
neural networks. In: Proceedings of the 1st Workshop on Vector Space Modeling
for Natural Language Processing, pp. 39–48 (2015)

16. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology - NAACL 2003, vol. 1, pp. 173–180 (2003)

17. Wu, F., Zhang, T.: Simplifying graph convolutional networks. In: Proceedings of
the 36th International Conference on Machine Learning, p. 11 (2019)

18. Yamada, I., Asai, A., Shindo, H., Takeda, H., Matsumoto, Y.: LUKE: deep contex-
tualized entity representations with entity-aware self-attention. In: Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 6442–6454. ACL (2020)

https://doi.org/10.1007/3-540-45483-7_23
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/978-3-642-38317-5_17
https://doi.org/10.1007/978-3-642-38317-5_17
https://doi.org/10.1007/978-3-319-19545-2_10

Extracting Relations in Texts with Concepts of Neighbours 171

19. Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees
improves relation extraction. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2205–2215 (2018)

20. Zhang, Y., Zhong, V., Chen, D., Angeli, G., Manning, C.D.: Position-aware atten-
tion and supervised data improve slot filling. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 35–45 (2017)

Exploration and Visualisation

Triadic Exploration and Exploration
with Multiple Experts

Maximilian Felde1,2(B) and Gerd Stumme1,2

1 Knowledge and Data Engineering Group, University of Kassel, Kassel, Germany
2 Interdisciplinary Research Center for Information System Design,

University of Kassel, Kassel, Germany
{felde,stumme}@cs.uni-kassel.de

Abstract. Formal Concept Analysis (FCA) provides a method called
attribute exploration which helps a domain expert discover structural
dependencies in knowledge domains that can be represented by a for-
mal context (a cross table of objects and attributes). Triadic Concept
Analysis is an extension of FCA that incorporates the notion of condi-
tions. Many extensions and variants of attribute exploration have been
studied but only few attempts at incorporating multiple experts have
been made. In this paper we present triadic exploration based on Tri-
adic Concept Analysis to explore conditional attribute implications in
a triadic domain. We then adapt this approach to formulate attribute
exploration with multiple experts that have different views on a domain.

Keywords: Formal concept analysis · Triadic concept analysis ·
Attribute exploration

1 Introduction

Attribute exploration [3] is a well established knowledge acquisition method from
the field of Formal Concept Analysis (FCA) [8]. Attribute exploration works on
domains that can be represented as binary tabular data of objects and attributes
(also called features or properties). It helps a domain expert to uncover the
dependency structure of attributes of the domain. For non-binary tabular data
the method of conceptual scaling, cf. [7], can be used to transform non-binary
attributes into binary ones.

Attribute exploration is based on the idea that we extend domain informa-
tion through a domain expert. To this end, attribute exploration uses a question-
answer scheme to extract dependency information about attributes. The ques-
tions are in the form of implications, for example, do attributes A and B imply
attribute C? (also written as AB → C?). The expert’s task is to confirm or
refute the validity of such implications in the domain. If the expert refutes the
validity of an implication she has to offer a counterexample, for example, in case
of the question AB → C? an object of the domain that has the attributes A and
B but lacks attribute C.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 175–191, 2021.
https://doi.org/10.1007/978-3-030-77867-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_11&domain=pdf
http://orcid.org/0000-0002-6253-9007
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-030-77867-5_11

176 M. Felde and G. Stumme

The attribute exploration algorithm asks these questions in an optimized
manner such that the expert has to answer as few questions as possible until the
validity of every conceivable implication can be inferred from the answers given
by the expert. This is the case when every implication either follows from the
set of implications accepted as valid or is contradicted by one of the examples
given by the expert.

The basic version of attribute exploration requires an all-knowing expert
of the domain, i.e. an expert who can answer any question about the domain
correctly. It was introduced by Ganter in [3]. Since then, many variants and
extensions of attribute exploration have been studied. A good overview can be
found in the book Conceptual Exploration by Ganter and Obiedkov [6]. These
extensions and variants notably include: Attribute exploration with background
knowledge and exceptions [4,18], where the idea is to support the exploration
with prior knowledge about some of the relations between attributes, for exam-
ple if one attribute is the negation of another; attribute exploration with partial
information [11–13], where the expert is not required to be all-knowing and is
also allowed to answer I do not know in addition to confirming or refuting a
question. Further, the expert is not required to fully specify a counterexam-
ple as long as the specified parts contradict the implication in question; and a
sketch of how to explore triadic formal contexts [5,6], where the idea of attribute
exploration is transferred to triadic concept analysis (an extension of FCA with
conditions [17]). We elaborate further on this in Sect. 3.

However, most of the extensions and variants of attribute exploration that
have been studied are based on the idea of a single expert answering the questions.
As far as we know, there exist only a few papers that mention exploration with
multiple experts, notably: Paper [16] deals with how to perform exploration in par-
allel and potentially offers a way to speed up the exploration with multiple experts;
[10] addresses collaborative conceptual exploration based on the notions of local
experts for subdomains of a given knowledge domain; and [2] studies attribute
exploration in a collaborative exploration setting with multiple experts who share
the same view on the domain but only have partial knowledge thereof.

When we explore a domain with multiple experts, one of the fundamental prob-
lems we face is that different views on a domain, for example different opinions
whether an object has an attribute or not, or whether an implication is valid or
not in a domain, are impossible to resolve by combining different pieces of infor-
mation into one. Either, because there is no clear right or wrong, e.g. in case of
opinions, or simply because we can not know which information to trust most.
And, even if we used methods such as majority-voting on information, there is a
reasonable chance that the result is not always correct. Combined with the inher-
ent non-robustness of implication theories, i.e., small changes in the underlying
data can lead to a very different theory, this suggests that merging different views
on a domain is a bad idea for attribute exploration. If we take a closer look at the
publications mentioned before, we see that all three avoid this issue in their own
way. In [16] the experts all have the same complete knowledge about the domain;
in [10] the local experts have partial knowledge about the same consistent domain
knowledge; and, in [2] the problem was also avoided by defining expert knowledge
as partial knowledge of some consistent domain knowledge.

Triadic Exploration and Exploration with Multiple Experts 177

Attribute exploration where multiple experts can have truly different and
even opposing views on the domain has to the best of our knowledge not yet
been studied. To this end we develop triadic exploration based on ideas presented
by Ganter and Obiedkov in [5]. We then adapt triadic exploration to the setting
of multiple experts with different views on a domain and thus provide a step in
the direction of attribute exploration with multiple experts.

The paper is structured as follows: We begin by giving a brief introduc-
tion to the problem in Sect. 1. We recollect some fundamentals of Formal and
Triadic Concept Analysis in Sect. 2, in particular formal and triadic contexts,
attribute implications, the relative canonical base and attribute exploration. In
Sect. 3, we discuss implications in the triadic setting, in particular, we focus
on conditional attribute implications. Subsequently, we formulate triadic explo-
ration. In Sect. 4, we discuss how to adapt triadic exploration to model attribute
exploration with multiple experts with different views. Finally, Sect. 5 contains
conclusion and outlook. Note that for this paper we do not provide a separate
section for related work, instead we address related work throughout the paper
whenever appropriate.

2 Dyadic and Triadic Formal Contexts

In this section we recollect the fundamentals of (dyadic) Formal Concept Anal-
ysis and Triadic Formal Concept Analysis (TCA). We mostly rely on [8,19] for
FCA and on [17,20] for TCA. We begin with the definition of formal contexts
and associated notions. We then introduce triadic contexts and give an example
which will serve as our running example for the remainder of this paper. After-
wards, we briefly cover attribute implications, the relative canonical base and
attribute exploration. This serves as a foundation for Sect. 3, where we look at
implications in the triadic setting and subsequently develop triadic exploration.

2.1 Formal Concept Analysis

Formal Concept Analysis was introduced by Wille in [19]. As the theory matured,
Ganter and Wille compiled the mathematical foundations of the theory in [8]. A
formal context K = (G,M, I) consists of a set G of objects, a set M of attributes
and an incidence relation I ⊆ G × M with (g,m) ∈ I meaning object g has
attribute m. We define two derivation operators (·)′ : P(M) → P(G) and (·)′ :
P(G) → P(M) in the following way: For a set of objects A ⊆ G, the set of
attributes common to the objects in A is provided by A′ := {m ∈ M | ∀g ∈ A :
(g,m) ∈ I}. Analogously, for a set of attributes B ⊆ M , the set of objects that
have all the attributes from B is provided by B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈
I}. A formal concept of a formal context K = (G,M, I) is a pair (A,B) with
A ⊆ G and B ⊆ M such that A′ = B and A = B′. We call A the extent and
B the intent of the formal concept (A,B). The set of all formal concepts of a
context K is denoted by B(K). Note that for any set A ⊆ G the set A′ is the
intent of a concept and for any set B ⊆ M the set B′ is the extent of a concept.

178 M. Felde and G. Stumme

The subconcept-superconcept relation on B(K) is formalized by: (A1, B1) ≤
(A2, B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2). The set of concepts together with this order
relation (B(K),≤) forms a complete lattice, the concept lattice. The vertical
combination of two formal contexts Ki = (Gi,M, Ii), i ∈ {1, 2} with the same
set of attributes M is called the subposition of K1 and K2. Formally, it is defined
as (Ġ1 ∪ Ġ2,M, İ1 ∪ İ2), where Ġi := {i} × G and İi := {((i, g),m)|(g,m) ∈ Ii}
for i ∈ {1, 2}. The subposition of a set of contexts on the same set of attributes
is defined analogously and we denote this by subpos(·).

2.2 Triadic Concept Analysis

Triadic Concept Analysis (TCA) was introduced by Lehmann and Wille in [17]
as an extension to Formal Concept Analysis with conditions. In particular they
introduced the notion of triadic concepts for which Wille proceeded to show
the basic theorem of triadic concept analysis in [20] – clarifying the connection
between triadic concepts and complete tri-lattices, analogous to the dyadic case.

The basic structure in TCA is a triadic context which is similar to the formal
context in FCA. A triadic context is defined as a quadruple T = (G,M,B, Y),
where G,M and B are sets and Y ⊆ G × M × B is a ternary relation on these
sets. The elements of G,M and B are called objects, attributes and conditions
respectively. For g ∈ G, m ∈ M and b ∈ B with (g,m, b) ∈ Y we say that object
g has attribute m under condition b. The conditions are understood in a broad
sense, cf. [20]: They comprise, amongst others, relations, interpretations, mean-
ings, purposes and reasons concerning the connections of objects and attributes.

Example 1. The following example1 will serve as our running example through-
out the paper. It shows the situation of public transport at the train station Bf.
Wilhelmshöhe with direction to the city center in Kassel. From Bf. Wilhelmshöhe
you can travel by one of four bus lines (52, 55, 100 and 500), four tram lines (1,
3, 4 and 7), one night tram (N3) and one regional tram (RT5) to the city center.
These are the objects Gex. of our context. The buses and trams leave the station
at different times throughout the day. The attributes Mex. of our context are the
aggregated leave-times, more specifically, we have split each day in five distinct
time-slots: early morning (4:00 to 7:00), working hours (7:00 to 19:00), evening
(19:00 to 21:00), late evening (21:00 to 24:00) and night (0:00 to 4:00). The condi-
tions Bex. of our context are the days of the week. A bus or tram line is related to a
time-slot on a day if a bus or tram of this line leaves the station at least once during
the time-slot on the day. This describes the ternary relation Y ⊆ Gex.×Mex.×Bex..
We have aggregated Monday to Friday into a single condition, because the schedule
is the same for these days. Thus, we obtain the contextTex. = (Gex.,Mex., Bex., Y).
The resulting triadic context can be found in Fig. 1.

Naturally, we can view the triadic context as a family of formal contexts,
where each context represents one condition, basically slicing the triadic context

1 The example is similar to the one given in [6], which inspired it.

Triadic Exploration and Exploration with Multiple Experts 179

Fig. 1. Triadic context Tex. of
Example 1

Fig. 2. The triadic context Tex. from Example 1 rep-
resented as context family of the condition contexts
KMo-Fr, KSat and KSun

vertically along the conditions. In Fig. 2 we provide the resulting context family
of our running example.

Formally such a family of contexts representing a triadic context
T = (G,M,B, Y) is a set of contexts Kb, b ∈ B where Kb := (G,M, Ib) with
(g,m) ∈ Ib :⇔ (g,m, b) ∈ Y . We will refer to the contexts Kb as condition
contexts of the triadic context T; for our example these are KMo-Fr, KSat and
KSun.

2.3 Attribute Implications

Attribute implications are used to describe dependencies between attributes in
a formal context. In the following we give a brief introduction. Let M be a set of
attributes. (For a start, we do not require it to be related to a specific context.)
An attribute implication over M is a pair of subsets A,B ⊆ M of M . We denote
this by A → B. We call A the premise and B the conclusion of the implication
A → B.

We denote the set of all implications over a set M by ImpM = {A →
B|A,B ⊆ M}.

A subset T ⊆ M respects an attribute implication A → B over M if A
⊆ T
or B ⊆ T . We then also call T a model of the implication. T respects a set L of
implications if T respects all implications in L. An implication A → B holds in
a set of subsets of M if each of these subsets respects the implication.

For a formal context K = (G,M, I) we say that an implication A → B over
M holds in the context if for every object g ∈ G the object intent g′ respects the
implication. We then also call A → B a valid implication of K. An implication
A → B holds in K if and only if every object g ∈ G that has all attributes in A
also has all attributes in B. Further, an implication A → B holds in K if and only

180 M. Felde and G. Stumme

if B ⊆ A′′, or equivalently A′ ⊆ B′. An implication A → B follows from a set L
of implications over M if each subset of M respecting L also respects A → B.
A family of implications is called closed if every implication following from L
is already contained in L. Closed sets of implications are also called implication
theories.

Relative Canonical Base. The set of all implications that hold in a given con-
text K have a canonical irredundant representation which is called the canonical
base, cf. [8,9]. Stumme has generalized this representation to the case where
some (background) implications are known [18], i.e. attribute implications that
are known to hold based on prior knowledge.

Given a formal context K = (G,M, I) and a set of (background) implica-
tions L0 on M that hold in the context K, a pseudo-intent of K relative to
L0 is a set P ⊆ M where P respects L0, P
= P ′′ and if Q ⊆ P, Q
= P ,
is a relative pseudo-intent of K then Q′′ ⊆ P . The set LK,L0 := {P →
P ′′|P relative pseudo-intent of K} is called the canonical base of K relative to
L0, or simply the relative canonical base. All implications in LK,L0 hold in K.

Theorem 1. (see [5,18]). If all implications of L0 hold in K, then

1. each implication that holds in K follows from LK,L0 ∪ L0, and
2. LK,L0 is irredundant w.r.t. 1.

The notion of a relative canonical base combined with Theorem 1 allows
us to reduce the amount of questions that need to be posed during a triadic
exploration.

2.4 Attribute Exploration

Attribute exploration ([3], cf. also [6,8]) is a knowledge acquisition method based
on a question-answer scheme to obtain the implication theory of a domain.

Let us consider a domain (a formal context) (G,M, I) that we do not know
completely and that we want to explore and a domain expert for this domain. We
start with a (possibly empty) set of known (background) implications L and a
(possibly empty) set GE ⊆ G of known objects, represented as (possibly empty)
formal context E = (GE ,M, IE). In every step of the attribute exploration we
have a set of already accepted implications L and a context of already provided
counterexamples E. The attribute exploration algorithm picks the next implica-
tion A → B that does not follow from L and that holds in E. It then asks the
expert whether the implication truly holds in the domain. The expert can either
confirm that the implication holds or they can refute its validity by providing a
counterexample, i.e., an object g ∈ G whose intent does not respect the implica-
tion. If the expert confirms the implication’s validity in the domain, it is added
to the set L, otherwise the provided counterexample is added to the context of
counterexamples E. This process is repeated until there is no implication left to
be asked.

Triadic Exploration and Exploration with Multiple Experts 181

After performing the attribute exploration we have the (relative) canonical
base of implications from which (combined with the background implications)
every valid implication in the domain follows. Furthermore, for every implication
that is not valid, the set of examples contains a counterexample.

3 Triadic Exploration

In this section we look at implications in the triadic setting, in particular, we for-
mally introduce conditional attribute implications, and develop a triadic explo-
ration for Triadic Concept Analysis as proposed by Ganter and Obiedkov in
[5,6].

3.1 Conditional Attribute Implications

In formal contexts (of type (G,M, I)) the matter of implications is fairly straight-
forward: There are attribute implications to describe dependencies between
attributes (and dually there are object implications). In triadic contexts, the
notion of implication is not as simple. This manifests in a multitude of types of
implications that have been proposed: The earliest suggestion for a triadic impli-
cation came from Biedermann [1], where he suggested the study of implications
of the form (R → S)C which is interpreted as: If an object has all attributes from
R under all conditions from C, then it also has all attributes from S under all
conditions from C.

In [5], Ganter and Obiedkov studied some other types of implications for
the triadic setting. They introduced a stronger version of the triadic impli-
cation called conditional attribute implications to describe dependencies that
hold for some conditions. The symmetry arising from the arbitrary choice of
objects, attributes and conditions in a triadic context results in five more types
of implications. Further, they introduced another generalization of Biedermann’s
triadic implication called attribute×condition implication to express dependen-
cies between combinations of attributes and conditions. For the remainder of
this paper we will focus on conditional attribute implications, because they best
serve our goal of developing attribute exploration with multiple experts.

Given a triadic context T = (G,M,B, Y), a conditional attribute implication
is an expression of the form R

C−→ S where R,S ⊆ M , C ⊆ B, which reads as:
R implies S under all conditions from C. A conditional attribute implication
R

C−→ S holds in a triadic context T iff for each condition c ∈ C it holds that if
an object g ∈ G has all the attributes in R it also has all the attributes in S.
This is the case if the implication R → S holds in every conditional context Kc

for c ∈ C.

Proposition 1. Let T = (G,M,B, Y) and Kc, c ∈ B, be its respective condition
contexts. For a conditional implication R

C−→ S with R,S ⊆ M and C ⊆ B, the
following statements are equivalent:

182 M. Felde and G. Stumme

Fig. 3. The lattice of conditional implications of the running example Tex. with simpli-
fied labels, which consist of the relative canonical base with respect to the implications
in all nodes below. We omit the top label of implications as the extent of this concept
is always ImpM .

1. R
C−→ S holds in T

2. R → S holds in Kc for every c ∈ C
3. R → S holds in subpos({Kc|c ∈ C})
Proof. 1. ⇔ 2. follows directly from the definitions of holds in the triadic and
dyadic setting. 2. ⇔ 3. follows from the definition of subposition and that an
implication R → S holds in a context if and only if for every object g the object
intent respects the implication. ��
Example 2. In the context family of Example 1 in Fig. 2 we observe that the
implication early − morning → working − hours holds in all three condi-
tion contexts KMo-Fr, KSat and KSun, hence, early − morning

Mo-Fr,Sat,Sun−−−−−−−−−→
working − hours holds in Tex.. In contrast, the implication working − hours →
evening only holds in the condition context KSun because tram line
7 is a counterexample in KSat and bus line 55 is a counterexample
in KMo-Fr and thus working − hours

Sun−−→ evening holds in Tex., but
working − hours

Mo-Fr,Sat,Sun−−−−−−−−−→ evening does not.

Clearly, if a conditional implication R
C−→ S holds in a triadic context T

then all conditional implications R
D−→ S with D ⊆ C hold as well. Further, for

every subset C ⊆ B there is a set of conditional implications R
C−→ S that hold

in T. This set of conditional implications for a fixed set of conditions C is the
implication theory of the subposition of condition contexts subpos({Kc|c ∈ C}).

Context of Conditional Implications. A nice way to structure the con-
ditional implications that hold in a triadic context T is to use the approach

Triadic Exploration and Exploration with Multiple Experts 183

suggested by Ganter and Obiedkov, cf. [5], and to introduce a context of con-
ditional implications: Given a triadic context T, we construct a formal context
Cimp(T) := (ImpM , B, I), where the set of all possible implications on M is the
object set , the set of conditions B of the triadic context T is the set of attributes
and the incidence relation I is determined by

(R → S)Ic :⇔ R
c−→ S holds in T.

The formal concepts of Cimp(T) are pairs (L, C), where L is a set of impli-
cations and C is a set of conditions, such that L is the set of all implications
R → S for which R

C−→ S holds, and C is the largest set of conditions for which
this is the case. These concepts structure the set of conditional implications in
a lattice ordered by the conditions for which they hold. Their extents form a
system of implication theories.

Example 3. For our running example we present the concept lattice of Cimp(Tex.)
with simplified labels in Fig. 3: The extent of the top node always contains the
implications that hold under the empty set of conditions, i.e., the whole set
ImpM . We omit this label. For the other nodes we give the relative canoni-
cal base with respect to set of implications from all nodes below. Looking at
the implications from Example 2, we find the implication early − morning →
working − hours at the bottom node, because it holds for all three conditions,
whereas we find the implication working − hours → evening at the node for
Sunday, because that is the only condition for which it holds.

3.2 Triadic Exploration

Now, we develop Triadic Exploration to explore the conditional implications of
a triadic domain.

Previously, we have structured the conditional implications of a triadic
domain T as a system of implication theories by utilizing the context of con-
ditional implications Cimp(T). This was possible because we had complete infor-
mation about the domains implications in the context T. However, it is easy to
imagine a situation where we can access the information about a domain only
indirectly through a domain expert and where an attribute exploration might be
useful. For our running example, imagine someone with a bus and train schedule
where the information can be looked up but is not fully available at once. Now
the question is: How to explore the complete system of conditional implications?

A naive approach is to explore the implication theory for each fixed subset
of the conditions, essentially exploring each node of the system of implication
theories independently. But, this is clearly not a good idea; it means answering
many questions multiple times for each condition.

A better approach might be to only explore the implication theory for every
condition, each providing one column in the context of conditional implications
Cimp. Then we can compute the concept lattice without any further interactions
with the expert.

184 M. Felde and G. Stumme

However, there are some points to consider that suggest a different approach,
cf. [6]: First, to stay in the triadic setting, a complete counterexample to a
question should describe the new object by the attributes it has for each of the
conditions, and not only for the one, that is currently under consideration. And
second, some implications may hold for several conditions and the domain expert
might want to confirm each of them for multiple conditions at once.

Thus, we come back to the context of conditional implications. Ganter and
Obiedkov suggested to explore the triadic domain by exploring the nodes in
the lattice of conditional implications from the bottom up; using the already
known valid implications as background knowledge. Hence, as we explore the
system of conditional implications, we successively fill the context of conditional
implications.

In the following we describe the nested process of exploring the nodes of
the concept lattice of conditional implications with the help of two algorithms:
Algorithm 1 for the exploration of the conditional implications for a fixed set of
conditions and Algorithm 2 that uses this algorithm as a subroutine to explore
all conditional implications of the triadic domain.

Explore Conditional Implications for a Fixed Set of Conditions. For
a fixed set of conditions D ⊆ B in a triadic domain T = (G,M,B, Y), the
exploration algorithm is an adapted version of the algorithm for attribute explo-
ration with background implications and exceptions, see [6,18]. In Algorithm 1
we present an implementation for the exploration in pseudo-code.

The algorithm starts with some background knowledge, in particular: A tri-
adic context E = (GE ,M,B, YE), that contains some examples from the domain
T, and a set of implications L0 that are known to hold for all conditions in
D; both of these can be empty. The rest of the domain can only be accessed
by the algorithm through interaction with the domain expert. In each step,
the algorithm determines the next implication A → A′′ to ask the expert. To
determine the next question A → A′′ the algorithm uses both the information
from the examples in E and the known valid implications in L. It automatically
skips questions that follow from the implications in L or for which E already
contains a counterexample. More precisely, A is the next relative pseudo-intent
in subpos({Kd|d ∈ D}), i.e., the lectically smallest set A closed under the set
of known valid implications and background implications L that is not already
closed in the subposition context of examples for the conditions in D.

Essentially, this algorithm is an attribute exploration with background impli-
cations on the subposition of the condition contexts. Additionally, it tracks which
implications hold for which conditions in D. This enables us to reduce the amount
of interaction required from the expert in subsequent explorations by preventing
to ask the same question multiple times for different subposition contexts. The
proof of correctness for Algorithm 1 is a straightforward adaption of the proof
of [18, Theorem 6] and we therefore omit the details.

Note that we chose to collect all implications that are asked about and the
subset of conditions of D for which they hold in Line 13 instead of only adding

Triadic Exploration and Exploration with Multiple Experts 185

Algorithm 1. explore-conditions
Input: a set of conditions D ⊆ B, a triadic context E = (GE , M, B, YE) of examples

(possibly empty) and a set L0 of background implications known to hold for
all conditions in D (also possibly empty)

Interactive Input: (�) The expert confirms or rejects an implication to hold for
the set of conditions D. Upon rejection the expert provides a
counterexample g from the domain together with its relation to
all conditions and all attributes, i.e., the context Kg := (M, B, I)
where (m, b) ∈ I ⇔ g has m under the condition b in the domain.

Output: the relative canonical base L\L0 of implications that hold for all conditions
in D with respect to L0, a possibly enlarged triadic context of counterex-
amples E and the formal context C of asked implications and the conditions
for which they hold.

1 L := L0

2 A := ∅
3 C := (∅, B, ∅)
4 while A �= M do
5 while A �= A′′ in S where
6 S := (GS , M, J) = subposition of Kd for d ∈ D with
7 Kd := (GE , M, Id) where (g, m) ∈ Id ⇔ (g, m, d) ∈ YE

8 do
9 Ask the expert if A → A′′ holds for all conditions d ∈ D (�)

10 if A → A′′ holds then L := L ∪ {A → A′′}
11 else extend E with the counterexample provided by the expert (�)

12

13 extend C with the object A → A′′ and its relation to all conditions d ∈ D (�)

14 end
15 A := NextClosure(A, M, L) /* computes the next closure of A in M with

respect to the implications in L; see for example [6,8] */
16 end
17 return L \ L0, E and C

the implications that hold for all conditions in the context C. Hence, if there is
a counterexample, i.e., the implication does not hold for D, we track for which
subset of D (if any) the implication does hold. This further reduces the number
of questions posed in later explorations. The trade-off is that the background
knowledge we have is not just of nodes below the currently explored one in
the lattice but may also contain implications that first hold for the conditions
of the current node. This has no effect on the implication theory of the node
but somewhat complicates the labeling of the node – we cannot simply use the
relative canonical base with respect to the knowledge we have. In contrast, if we
only added the implications that hold for all conditions in the current exploration
then the labels are exactly the implications of the relative canonical base, but,
we might have to ask some questions multiple times for some of the conditions.
For our running example this approach further reduces the number of questions
posed to the expert from fifteen to twelve, cf. Example 5 in Sect. 3.3.

186 M. Felde and G. Stumme

The Order of Explorations. To determine the sequence in which the nodes
of the lattice of conditional implications are explored, Ganter and Obiedkov
further suggested to follow a linear extension of the lattice of conditional impli-
cations, see [5], and later specified this to follow the NextExtent-Algorithm, i.e.,
NextClosure on the extents, on the context of conditional attribute implications,
see [6].

However, in our setting the NextExtent-Algorithm does not fit. The problem
is that we may not have the necessary information to correctly determine the
next node to explore.2 This is because the questions that are asked during the
exploration of a node are not guaranteed to discriminate between the conditions
that are being explored. Questions that would discriminate between conditions
are not asked if there already exists a counterexample for any one of the condi-
tions. This might result in not exploring all nodes of the lattice.

Example 4. Let us illustrate the problem with a small example: Take a look at
the domain given by the triadic context T1 in Fig. 4. If we explore this context
and begin with the bottom node, i.e., the implications that hold for all conditions
without any background knowledge, then the first question posed to the expert
is ∅ → ab?, which the expert refutes with a counterexample – object 1 with all its
attributes under all conditions. It substantiates that implication holds for neither
of the conditions. The second question that is posed to the expert is b → a?
which the expert confirms. This concludes the exploration of the bottom node
in this example. If we now compute the next extent in the resulting context of
conditional implications C in order to determine which node to explore next, we
obtain NextExtent(∅) = {b → a} with intent {d1, d2} which we just explored and
then NextExtent({b → a}) = GC with intent ∅ which concludes the exploration.
However, clearly the implication ∅ → a holds in d1 but not in d2 and is missing
in C. The question ∅ → a? was not posed to the expert because there already
existed a counterexample for condition d2 after the first question. Similarly, the
implication a → b holds in d2 but not in d1 and is also missing. In Fig. 4, we
present both the lattice of C and the lattice of Cimp(T1). Hence, an exploration
that uses the NextExtent-Algorithm to determine which nodes of the conditional
implications lattice to explore next does not necessarily explore all nodes of the
lattice.

To circumvent this problem, we use the suggested strategy of exploring the
lattice node by node from the bottom up with the already known valid condi-
tional implications in Cimp as background knowledge. But, instead of using the
NextExtent-Algorithm to incrementally determine the next combination of con-
ditions to explore, we simply follow a linear extension of (P(B) \ ∅,⊇). Which
means, we walk through all subsets of B sorted by their cardinality from biggest
to smallest and stop when we have explored all subsets of cardinality one. At
first glance this might look as if we explore more nodes than necessary, because

2 For the same reason, the nested application of NextClosure for computing all con-
cepts of a triadic context, as described in [14,15], cannot serve as a base for the
triadic exploration.

Triadic Exploration and Exploration with Multiple Experts 187

Fig. 4. A triadic context T1, the lattice of conditional implications of T1, the context
C after exploring the conditional implications of T1 using the NextExtent-Algorithm to
determine the next conditions to explore, and the lattice of C

Algorithm 2. triadic-exploration
Input: a triadic context E = (GE ,M,B, YE) of examples (possibly empty) and

a context C = (GC, B, IC) of implications known to hold for some
conditions

Output: a triadic context of counterexamples E and the context of conditional
implications C, from which all valid conditional implications can be
inferred

1 for D in linear extension of (P(B) \ ∅,⊇) do
2 L := D′ (in C)
3 LD,ED,CD := explore-conditions(D,E,L)
4 E := ED

5 C := C ∪ CD = (GC ∪ GCD , B, IC ∪ ICD)

6 end
7 return E and C

the implication theory of a condition might be included in another one and thus
is explored at least twice – once in combination and once alone. But, because
we only ask questions about implications that are unknown with respect to the
knowledge we already have when the condition is explored alone, these questions
won’t be asked again.

In Algorithm 2 we present the algorithm for triadic exploration in pseudo-
code: We walk through (P(B)\∅,⊇), i.e. the subsets of conditions, in Line 1. For
each set of conditions D ⊆ B we determine the implications L that are known to
hold for all conditions in D in Line 2. We compute the canonical base relative to
L in the subposition of condition context of D Line 3. Then, update the known
examples E and the known implications in Lines 4 and 5.

188 M. Felde and G. Stumme

3.3 An Example for Triadic Exploration

Example 5. We now give a brief example for a triadic exploration of the domain
of our running example (Example 1): Let us assume we only have a triadic expert
for this domain and not the whole domain information – imagine someone with
access to a search interface for the bus and train schedule of Fig. 2. In Fig. 5
we have listed all interactions with the expert. Each row shows one interaction
and the order of interactions is from top to bottom. The resulting lattice of
conditional implications is exactly the lattice shown in Fig. 3. The extent of each
concept of this lattice is a generating set for the implication theory of implications
that hold for all conditions of the intent which follows from Theorem 1, and,
because we iteratively computed relative canonical bases. Thus, we know that,
for each concept, the implications in its extent are complete, but – as a union of
“stacked” relative canonical bases – not necessarily irredundant.

4 Application for Exploration with Multiple Experts

In this section we discuss how to adapt triadic exploration to a setting where we
have multiple experts with different views on a domain (i.e., a set of attributes).
In Sect. 1, we have briefly discussed the problem of exploration with multiple
experts with different views and concluded that combining answers from dif-
ferent experts is not a good strategy for attribute exploration in general. We
have further established that all previous methods for multi-expert exploration
avoided this problem by assuming that the experts’ knowledge is derived from
some consistent domain knowledge.

Fig. 5. Triadic Exploration of the running example. Each row represents one interaction
with the expert. It comprises the set of conditions that is explored, the question posed
in form of an implication, the conditions for which the implication holds, and, the
answer given by the expert.

Here, we suggest a different approach that allows for a group of experts with
different, opposing views on a domain. The basic idea is to accept all answers
equally and look for the subset of knowledge that all experts agree on. To explore

Triadic Exploration and Exploration with Multiple Experts 189

the domain we then explore the agreed-upon knowledge of different subsets of
the expert group.

If all experts know about the same objects of the domain we can regard the
group of experts as a triadic domain where each experts view is expressed as
one condition. In our running example, imagine that there are three experts for
the bus and train schedule: One for Monday-Friday, one for Saturday and one
for Sunday. The three experts will have different opinions about the implication
theory of the time slots.

To explore the dependencies of attributes in this triadic multi-expert domain,
we utilize triadic exploration. To ask about a conditional implication then means
to ask all experts if the implication holds in their view. However, a simple trans-
lation back to the triadic case means that each time an expert gives a coun-
terexample to a question, all experts must be consulted about their view on the
counterexample to stay within the triadic setting (because we need the full slice
of the triadic context). This is not ideal, but we can adapt the triadic explo-
ration to avoid this issue: Since we do not rely on any specific properties of the
triadic context other than being able to form the subposition of the condition
contexts Kd, we can simply leave the triadic setting behind and transfer the idea
of conditional attribute implications to a setting where we replace the triadic
context with a context family on the same set of attributes (but not necessarily
the same set of objects), i.e., a context family {Ke = (Ge,M, Ie)|e ∈ E} for a
group of experts E.

Note that we could also explore the implication theory for each context in
such a context family independently and combine the results afterwards, as ini-
tially suggested in Sect. 3. It is not obvious how this approach compares to the
triadic one. However, the triadic approach also allows to only explore a subset
of the system of implication theories.

A real world example for such a context family can be found in the BSI-IT-
Grundschutzkatalog3, a publication by the German Federal Office for Informa-
tion Security, which contains security recommendations on a wide variety of IT
topics. There, a general set of elementary threats is defined and for topics where
these threats are present (for example organizational, infrastructure and person-
nel) a set of measures is defined where each measure combats one or multiple of
the threats. Hence, if we regard the elementary threats as attributes, the topics
as conditions/experts and the measures as objects, we have a context family on
the same set of attributes but with different object sets.

To explore the domain of such a context family, where the set G varies for
the different conditions, we have to slightly alter Algorithms 1 and 2. In par-
ticular, we need to replace the triadic contexts with context families and the
conditions with the experts. The triadic context of counterexamples becomes a
context family of counterexamples where each expert has their own context of
counterexamples and the objects between them can differ. Hence, in Algorithm
1, A′′ is computed on the subposition of the respective contexts of counterexam-
ples and asking about the implication A → A′′ means asking each of the experts.

3 https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html.

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html

190 M. Felde and G. Stumme

Now, counterexamples from one expert can be accepted without having to ask
all other experts about their view on the example.

If we explore a triadic domain in this more abstract setting of context families
on the same set of attributes, the trade-off is that we obtain less complete infor-
mation about the counterexamples. However, we still obtain the same knowledge
in terms of conditional attribute implications that hold in the domain.

In addition, we gain the ability to explore context families that do not fit the
triadic setting or only do so after some modifications, as for example, the context
family of the BSI-IT-Grundschutzkatalog. Another example can be derived from
the running example: If we look at KMo-Fr in Fig. 2, imagine that instead of one
context (and thus one expert) of bus and tram lines we had one for bus lines
and one for tram lines. Clearly, this family of two contexts could be transformed
into a triadic context, however, to do so we would have to add bus lines to the
tram lines context and vice versa – mixing domains that might be perceived as
different.

5 Conclusion and Outlook

In this paper, we addressed the problem of multi-expert attribute exploration
in Formal Concept Analysis. To this end, we developed triadic exploration – an
analogue to attribute exploration – for Triadic Concept Analyis, which extends
Formal Concept Analysis with the notion of conditions. Triadic exploration helps
a triadic domain expert to explore the structure of the conditional attribute
implications of the domain.

We adapted triadic exploration to a multi-expert setting by considering the
experts’ views of a domain as conditions in a triadic setting. We discussed
the ramifications of this approach and subsequently suggested to adapt triadic
exploration to the more general setting of context families on the same set of
attributes.

This paper is a step towards multi-expert exploration where experts can have
different views on a domain. In contrast to the few prior works on this subject,
here the experts can have opposing views. A next step is the combination of this
approach with the notion of partial expert knowledge and a more in depth study
of context families as a foundation for multi-expert explorations.

References

1. Biedermann, K.: A foundation of the theory of trilattices. Dissertation, shaker, TU
Darmstadt, Aachen (1998)

2. Felde, M., Stumme, G.: Interactive collaborative exploration using incomplete con-
texts. CoRR abs/1908.08740 (2019). http://arxiv.org/abs/1908.08740

3. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B.
(eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 312–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11928-6_22

4. Ganter, B.: Attribute exploration with background knowledge. Theor. Comput.
Sci. 217(2), 215–233 (1999)

http://arxiv.org/abs/1908.08740
https://doi.org/10.1007/978-3-642-11928-6_22

Triadic Exploration and Exploration with Multiple Experts 191

5. Ganter, B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E.,
Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS-ConceptStruct 2004. LNCS (LNAI),
vol. 3127, pp. 186–195. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27769-9_12

6. Ganter, B., Obiedkov, S.: More expressive variants of exploration. In: Conceptual
Exploration, pp. 237–292. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49291-8_6

7. Ganter, B., Wille, R.: Conceptual scaling. In: Roberts, F. (ed.) Applications of
Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–
167. Springer-Verlag (1989)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin/Heidelberg (1999)

9. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résul-
tant d’un tableau de données binaires. Mathématiques et Sci. Humaines 95, 5–18
(1986)

10. Hanika, T., Zumbrägel, J.: Towards collaborative conceptual exploration. In: Chap-
man, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp.
120–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_10

11. Holzer, R.: Methoden der formalen Begriffsanalyse bei der Behandlung unvoll-
ständigen Wissens. Dissertation, shaker, TU Darmstadt (2001)

12. Holzer, R.: Knowledge acquisition under incomplete knowledge using methods from
formal concept analysis: Part i. Fundam. Informaticae 63(1), 17–39 (2004)

13. Holzer, R.: Knowledge acquisition under incomplete knowledge using methods from
formal concept analysis: Part ii. Fundam. Informaticae 63(1), 41–63 (2004)

14. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared
conceptualizations in folksonomies. Web Semant. 6(1), 38–53 (2008). https://doi.
org/10.1016/j.websem.2007.11.004

15. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias - an algorithm
for mining iceberg tri-lattices. In: Proceedings of 6th ICDM conference. Hong Kong,
December 2006. https://doi.org/10.1109/ICDM.2006.162

16. Kriegel, F.: Parallel attribute exploration. In: Haemmerlé, O., Stapleton, G., Faron
Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 91–106. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40985-6_8

17. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis,
G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS,
vol. 954, pp. 32–43. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60161-9_27

18. Stumme, G.: Attribute exploration with background implications and exceptions.
In: Bock, H.H., Polasek, W. (eds.) Data Analysis and Information Systems. Sta-
tistical and Conceptual approaches. Proceedings of GfKl 1995. Studies in Clas-
sification, Data Analysis, and Knowledge Organization 7, pp. 457–469. Springer,
Heidelberg (1996)

19. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston
(1982)

20. Wille, R.: The basic theorem of triadic concept analysis. Order 12(2), 149–158
(1995). https://doi.org/10.1007/BF01108624

https://doi.org/10.1007/978-3-540-27769-9_12
https://doi.org/10.1007/978-3-540-27769-9_12
https://doi.org/10.1007/978-3-662-49291-8_6
https://doi.org/10.1007/978-3-662-49291-8_6
https://doi.org/10.1007/978-3-319-91379-7_10
https://doi.org/10.1016/j.websem.2007.11.004
https://doi.org/10.1016/j.websem.2007.11.004
https://doi.org/10.1109/ICDM.2006.162
https://doi.org/10.1007/978-3-319-40985-6_8
https://doi.org/10.1007/3-540-60161-9_27
https://doi.org/10.1007/3-540-60161-9_27
https://doi.org/10.1007/BF01108624

Towards Interactive Transition from AOC
Poset to Concept Lattice

Tim Pattison(B) and Aaron Ceglar

Defence Science and Technology Group, Edinburgh, SA, Australia
{tim.pattison,aaron.ceglar}@dst.defence.gov.au

Abstract. Efficient algorithms exist for constructing the attribute-
object concept (AOC) partially-ordered set (poset) from a formal con-
text. The atoms and co-atoms of the corresponding concept lattice can be
determined from this AOC poset and horizontally ordered so as to reduce
arc crossings in a layered drawing of the AOC poset initially, and ulti-
mately of the concept lattice digraph. The remaining, abstract concepts
must then be computed and progressively inserted into the AOC poset
to construct the lattice digraph. This paper describes the preparation of
a formal context for efficient computation of these abstract concepts, and
the consequent localisation in the AOC poset digraph of any resultant
insertions. In particular, it provides simple screening tests for identify-
ing bigraph edges, and hence also any attributes and objects, which do
not contribute to abstract concepts. Elimination of these bigraph ele-
ments reduces the size of the context and paves the way for dividing and
conquering the enumeration of the abstract concepts. These screening
tests are also used to determine ab initio which arcs in the AOC poset
digraph will not be subject to subsequent transitive reduction. These arcs
are visually distinguished in the line diagram to focus attention on the
remaining digraph arcs where the insertion of additional concepts may
yet occur, and where the graphical interpretation of meets and joins is
unsafe.

Keywords: Formal concept analysis · Abstract concepts · Lattice
drawing · Divide and conquer

1 Introduction

1.1 Formal Concept Analysis and Scalability

A formal context is a bipartite graph – henceforth bigraph – whose vertices
are partitioned into objects and attributes, and whose edges are specified by a
binary relation I ⊆ G × M between the sets G of objects and M of attributes.
Formal Concept Analysis transforms this bigraph into a partially-ordered set –
henceforth poset – of formal concepts. Each formal concept consists of a maximal
set of objects, called its extent, and a maximal set of attributes, called its intent,
such that each object in the extent is adjacent in the bigraph to each attribute
c© Crown 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 192–207, 2021.
https://doi.org/10.1007/978-3-030-77867-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_12

Towards Interactive Transition from AOC Poset to Concept Lattice 193

in the intent, and vice versa. The set g′ ⊆ M of attributes adjacent to g ∈ G
is the intent of the corresponding object concept, and the set m′ ⊆ G of objects
adjacent to m ∈ M is the extent of the corresponding attribute concept. We refer
to object and attribute concepts collectively as concrete concepts, and to the
remainder as abstract concepts.

The set of formal concepts, partially ordered by extent set inclusion, forms a
complete lattice. This concept lattice can be represented as an acyclic directed
graph – henceforth digraph – whose vertices are formal concepts and whose
directed edges correspond to the cover relation – the transitive reduction of the
ordering relation – between concepts. A line diagram is an upward drawing of
this digraph in which each object and attribute concept is labelled with the
corresponding object(s) and attribute(s) respectively. Abstract concepts can be
readily recognised from this diagram as those which are not labelled.

A formal context may give rise to as many as 2min(|G|,|M |) formal concepts, of
which at most |G| + |M | are concrete. Abstract concepts therefore differ quanti-
tatively from concrete ones in that they are potentially far more numerous, and
actually so in pathological cases such as the contranominal scale [1]. The poten-
tial combinatorial explosion of concepts with increasing size of the formal context
poses challenges for the computation, layout and visualisation of, as well as inter-
action with, the lattice digraph. Contexts of even moderate size can produce a
large number of resultant vertices and arcs, which compete for limited screen
real estate and challenge user comprehension. On-demand construction and lay-
out of the entire lattice digraph cannot be achieved in interactive timescales for
large lattices, so either prior or user-guided construction and layout is required
to support responsive interaction.

1.2 AOC Poset

Some analytic objectives, such as identifying the upper neighbours of the infi-
mum and lower neighbours of the supremum, can be achieved without enumer-
ation of the full concept lattice. The Attribute-Object Concept (AOC) poset [2]
of a formal context consists of only the concrete concepts, once again ordered by
extent set inclusion. The AOC poset therefore has at most |G| + |M | elements,
allowing its elements and cover relation to be computed in less time [2], and its
line diagram presented using less screen real estate, than the concept lattice.
For convenience, we include the supremum and infimum of the concept lattice
in the AOC poset and corresponding line diagram, regardless of whether they
are concrete concepts.

Applying FCA to the domain of object-oriented software engineering, Godin
and Mili [5] used the term “abstract” to describe concepts lacking an object
label. The analogy between abstract concepts in FCA and abstract classes in
object-oriented software engineering is straighforward – an abstract class is one
from which an object cannot be directly instantiated, and in this sense (only)
abstracts from the properties of the classes which inherit it. Godin and Mili [5]
noted the existence of concepts which have neither object nor attribute labels
– for which we have reserved the term “abstract” – and described the benefits

194 T. Pattison and A. Ceglar

of including them in their analysis, both for domain understanding and object-
oriented design. The greatest lower and least upper bounds – meet and join
respectively – exist for any subset of concepts in the concept lattice, and can be
“read” from the line diagram as the concepts at which downward and upward
paths, respectively, from those concepts converge. Due to the absence of abstract
concepts, however, these bounds are not guaranteed to exist in the AOC poset,
and hence the corresponding interpretation of the line diagram is unsafe. The
AOC poset is consequently insufficient for analytical tasks which rely on the
existence of these bounds, such as deriving a basis for attribute implications.

1.3 Morphing AOC Poset into Concept Lattice

Pattison and Ceglar [9] therefore proposed a hybrid approach, which exploits the
computational and graph drawing benefits of the AOC poset to rapidly present
its line diagram to the user for familiarisation while they await computation of
the abstract concepts. Progressive insertion of the abstract concepts then morphs
this line diagram into that for the concept lattice, which contains all abstract
concepts and delivers the attendant benefits noted by Godin and Mili [5].

The lower neighbours of the supremum and upper neighbours of the infi-
mum in the concept lattice are referred to as atoms and co-atoms respectively.
Already present in the AOC poset, these can be horizontally ordered so as to
reduce arc crossings in – and hence improve the readability of – a layered drawing
of the AOC poset initially, and ultimately of the concept lattice digraph [10]. The
horizontal positions of the remaining concepts are derived from those of their
atomic descendants and co-atomic ancestors [9]. The AOC poset with atoms
and co-atoms so ordered therefore provides a suitable substrate for the subse-
quent progressive insertion of the remaining abstract concepts. This progressive
approach to construction of the lattice digraph allows users to familiarise them-
selves with the line diagram of the AOC poset while the abstract concepts are
being computed, and ideally to preserve their resultant mental model throughout
subsequent concept insertions.

1.4 Generating only Abstract Concepts

Pattison and Ceglar [9] did not specify how, having already identified the con-
crete concepts and constructed the line diagram for the AOC poset, an FCA
algorithm should thereafter efficiently and promptly produce only the remain-
ing, abstract concepts. Once the AOC poset has been constructed, a conventional
FCA algorithm could obviously be modified to simply discard any concepts it
generates which are not abstract. However re-generating, identifying and dis-
carding each concrete concept is not only inefficient, but also delays production
of the abstract concepts awaited by the user. A second alternative is that an
existing FCA algorithm might be modified to first produce the AOC poset, fol-
lowed by (only) the remaining, abstract, concepts. A third alternative is that
the AOC poset and its line diagram are generated by an existing algorithm such
as Hermes [2], and a novel algorithm generates only the abstract concepts for

Towards Interactive Transition from AOC Poset to Concept Lattice 195

subsequent insertion into the line diagram. This third option, and in particular
exposition of the novel algorithm, is the focus of this paper.

The generation of abstract concepts proceeds in three stages: pre-processing
of the clarified formal context to remove edges and vertices which do not satisfy
necessary conditions for their participation in abstract concepts; conventional
FCA of the pre-processed context; and efficient elimination of any resultant con-
cepts which are either not valid or not abstract in the original context. The
pre-processing step removes bigraph elements, and thereby ablates the formal
context, while preserving all abstract concepts. Established precedents for con-
text ablation include clarification and reduction [3], which remove selected ver-
tices and adjacent edges from a formal context while preserving the structure of
the lattice digraph. In addition to simplifying and expediting the subsequent pro-
cess of Formal Concept Analysis, context ablation has the beneficial side-effect
of reducing the cardinalities |G| and |M | of the context bigraph vertex sets, and
thereby lowering the a priori exponential bound on the number of concepts.

In [9], the user could either await the insertion of additional abstract concepts
potentially anywhere in the evolving poset digraph, or prioritise their generation
by selecting existing concepts and requesting their meet or join. Thus the user
may waste time waiting for, or trying to prioritise, the enumeration of abstract
concepts which do not exist. If immutable arcs in the AOC poset digraph – i.e.
those which will not be subject to subsequent transitive reduction – could be
identified ab initio, the remainder could be visually distinguished to focus user
attention on areas where the insertion of abstract concepts may yet occur, and
hence where the interpretation of meets and joins is unsafe. We argue that these
immutable digraph arcs include those corresponding to bigraph edges removed
during our context ablation step, and demonstrate empirically that many such
arcs can be identified as a by-product of context ablation.

1.5 Organisation

This paper is organised as follows. Section 2 describes the ablation of a formal
context to reduce the number of bigraph elements while preserving all abstract
concepts. It outlines the strategy, and details supporting theory, for the elimina-
tion of bigraph elements, illustrating their application using a worked example.
Those familiar with FCA theory can start from Definition 11. Section 3 describes
analysis of the ablated context to generate only abstract concepts for progressive
insertion into the line diagram of the AOC poset. As the line diagram is thereby
morphed into that for the concept lattice, the user’s attention is directed to
where such insertions may still occur. Section 4 summarises the contribution.

2 Context Ablation

2.1 Preliminaries

Definition 1. A formal context K = (G,M, I) is a labelled bipartite graph, or
bigraph, with object vertex set G, attribute vertex set M , and undirected edge
set I ⊆ G × M .

196 T. Pattison and A. Ceglar

Each vertex has a unique label which derives from the domain of application.
For bibliographic analysis, for example, the objects may represent publications
labelled by their title and the attributes may represent authors labelled by their
full name.

Definition 2. A sub-context K = (G,M, I) of a formal context K = (G,M, I)
is a formal context for which G ⊆ G, M ⊆ M and I ⊆ I ∩ (G × M).

Definition 3. K ≤ K iff K is a sub-context of K.

Definition 4. A biclique of the formal context K is a sub-context K = (G,M, I)
satisfying I = G × M ⊆ I.

Definition 5. A biclique (G,M,G × M) is proper if G �= ∅ and M �= ∅.
Definition 6. A biclique (E , I, E × I) of the formal context K is maximal if
no proper superset E : E ⊂ E ⊆ G satisfies E × I ⊆ I and no proper superset
I : I ⊂ I ⊆ M satisfies E × I ⊆ I.

Definition 7. A formal concept of the formal context K is an ordered pair (E , I)
consisting of the object set E ⊆ G and attribute set I ⊆ M of a maximal biclique.

The set E is called the extent of the formal concept, and the set I is called the
intent. A formal concept may have empty intent or extent, and hence need not
correspond to a proper biclique [4].

Definition 8. The intent operator maps any set A ⊆ G of object vertices to the
maximal set A′ ⊆ M of attribute neighbours satisfying A × A′ ⊆ I. The extent
operator maps any set B ⊆ M of attribute vertices to the maximal set B′ ⊆ G
of object neighbours satisfying B′ × B ⊆ I.

Since it is obvious from the context which of these two operators is intended,
the same symbol ′ usually suffices for both.

Observation 1 ([3]). The pair (E , I) with E ⊆ G and I ⊆ M is a formal
concept of K iff I = E ′ and E = I ′.

The intent I = E ′ and extent E = I ′ of a concept are closed under the compo-
sition ′′ of these two operators, since I = E ′ = I ′′ and E = I ′ = E ′′.

Definition 9. Formal concepts are partially ordered such that

(E1, I1) < (E2, I2) ⇐⇒ E1 ⊂ E2 and I1 ⊃ I2

The set B of formal concepts of the formal context K = (G,M, I), partially
ordered as per Definition 9, constitutes a complete lattice. The least upper
bound, or supremum, and the greatest lower bound, or infimum, of B are referred
to collectively as the extrema.

Definition 10. The object concept for object i is (i′′, i′), and the attribute
concept for attribute j is (j′, j′′).

Towards Interactive Transition from AOC Poset to Concept Lattice 197

Observation 2. A formal concept (E , I) satisfies

(j′, j′′) ≥ (E , I) ≥ (i′′, i′) ∀(i, j) ∈ E × I (1)

Definition 11. A formal concept (E , I) is abstract if E × I �= ∅ and

(j′, j′′) > (E , I) > (i′′, i′) ∀(i, j) ∈ E × I (2)

Definition 11 excludes attribute and object concepts, to which we refer collec-
tively as concrete concepts. It also excludes the supremum, since: the inequal-
ity is impossible – and the supremum an attribute concept – for any universal
attribute j ∈ I; and if instead I = ∅, then E × I = ∅. Definition 11 similarly
excludes the infimum. B can therefore be partitioned into the extrema, (other)
concrete concepts and the set of abstract concepts.
Corollary 1. A formal concept (E , I) : E × I �= ∅ is abstract iff

|E| > kE ≥ 1 (3a)
|I| > kI ≥ 1 (3b)

where

kE = maxi∈E |i′′| (4a)
kI = maxj∈I |j′′| (4b)

Proof. This result follows from Observation 2 and Definitions 11 and 9. The
constraint E × I �= ∅ is required to avoid maximisation over an empty set in
Eq. 4.

We denote by B∗ the set of abstract concepts of K, and refer to the corresponding
proper maximal bicliques as abstract bicliques. We denote by K

∗ = (G∗,M∗, I∗)
the sub-context of K consisting of the union of all abstract bicliques.
Observation 3. (E , I) ∈ B∗ is a formal concept of any K

′ : K
∗ ≤ K

′ ≤ K.

Proof. By our premise, (E , I) is a proper maximal biclique in K. It remains a
proper biclique in K

′ ≥ K
∗ because all of its constituent edges and vertices are

present in K
∗, and it remains maximal because all edges in K

′ ≤ K are also
in K.

2.2 Strategy

In order to enumerate only abstract concepts, we seek a procedure which iden-
tifies and removes edges and vertices in K \ K

∗ = (G \ G∗,M \ M∗, I \ I∗).
Such a procedure would ideally terminate when, and only when, K has been
transformed into K

∗. The remaining subgraph K
′ : K

∗ ≤ K
′ ≤ K would then be

divided into its connected components, the components subjected to indepen-
dent FCA, and those resultant concepts which are both valid in K and abstract
as per Corollary 1, progressively inserted into the AOC poset. Given that the
elements of the AOC poset have already been enumerated, the desired procedure
can use as input the properties of concrete concepts, such as intent or extent set
cardinality.

198 T. Pattison and A. Ceglar

F
ig
.
1
.

L
in

e
d
ia

g
ra

m
o
f

co
n
ce

p
t

la
tt

ic
e

fo
r
I
n
f
o
V
i
s

1
5
1

o
m

it
ti

n
g

th
e

ex
tr

em
a
.
A

to
m

s
(b

o
tt

o
m

)
a
n
d

co
-a

to
m

s
(t

o
p
)

a
re

o
rd

er
ed

u
si

n
g

re
si

st
a
n
ce

d
is

ta
n
ce

,
a
n
d

th
e

re
m

a
in

in
g

co
n
ce

p
ts

p
la

ce
d

a
t

th
e

h
o
ri

zo
n
ta

l
b
a
ry

ce
n
te

r
o
f
th

ei
r

co
-a

to
m

ic
a
n
ce

st
o
rs

a
n
d

a
to

m
ic

d
es

ce
n
d
a
n
ts

.

F
ig
.
2
.

L
in

e
d
ia

g
ra

m
o
f

A
O

C
p
o
se

t
fo

r
I
n
f
o
V
i
s

1
5
1

o
m

it
ti

n
g

th
e

ex
tr

em
a
.
N

o
n
-b

la
ck

o
b
je

ct
a
n
d

a
tt

ri
b
u
te

la
b
el

s
a
re

co
lo

u
r-

co
d
ed

fo
r

m
em

b
er

sh
ip

o
f
th

e
co

n
n
ec

te
d

co
m

p
o
n
en

ts
o
f
th

e
co

n
te

x
t

b
ig

ra
p
h

re
m

a
in

in
g

a
ft

er
th

e
a
b
la

ti
o
n

d
es

cr
ib

ed
in

E
x
a
m

p
le

4
.

Towards Interactive Transition from AOC Poset to Concept Lattice 199

Iteration over the edges of K = (G,M, I) to eliminate those not involved in
abstract concepts is viable provided the context is sparse. By “sparse” we mean
that the cardinalities |I|, |G|, |M | of the context relation I, object set G and
attribute set M satisfy |I| � |G||M |. We use as a running empirical example a
sub-context of the InfoVis 2004 bibliographic data set [12] having 151 proper
maximal bicliques. This clarified sub-context has 108 objects, 113 attributes and
273 � 108 × 113 edges. Hereafter, we refer to this context as InfoVis 151. A
drawing of the lattice digraph for this context, omitting the extrema, is shown
in Fig. 1. Abstract concepts are shown with coloured fill.

2.3 Elimination of Bigraph Elements

Observation 4. Let bigraph edge (i, j) participate in an abstract concept (E , I)
of K. Then

|j′| > |E| > |i′′| (5a)
|i′| > |I| > |j′′| (5b)

Observation 4 follows from Eq. 2 of Definition 11, and necessarily precludes (E , I)
from being the object concept for any g ∈ i′′ or the attribute concept for any
m ∈ j′′. However, it might still be the object concept for some g ∈ j′ \ i′′ or the
attribute concept for some m ∈ i′ \j′′. The following corollary therefore provides
a necessary but not sufficient condition for any concepts intervening between
(i′′, i′) and (j′, j′′) to be abstract.

Corollary 2. Let edge (i, j) participate in an abstract concept of K. Then

|i′| ≥ |j′′| + 2 (6a)
|j′| ≥ |i′′| + 2 (6b)

If (i, j) ∈ I does not satisfy Eq. 6, then (i, j) ∈ I \ I∗ and can be safely elim-
inated without compromising any abstract maximal bicliques of K. Eliminated
bigraph edges for which (j′, j′′) > (i′′, i′) correspond to arcs in the concept lattice
digraph. Such arcs are already present in the line diagram of the AOC poset, and
are immutable in the sense that they will not be interrupted by the subsequent
insertion of the remaining (abstract) concepts.

Example 1. Of the 11 edges in the simple context bigraph depicted in Fig. 3a,
Corollary 2 eliminates the 7 shown black. Of these, the 2 solid edges satisfy
(j′, j′′) > (i′′, i′), and hence correspond to lattice arcs already present in the line
diagram of the AOC poset shown in Fig. 3b; the remaining 5 dashed edges do
not. Solid bigraph edges correspond to mutable (red) and immutable (black) arcs
in the AOC poset line diagram; dashed edges have no corresponding poset arc.
The mutable (red) arcs in Fig. 3b are interrupted by the subsequent insertion of
the abstract concept ({1, 2}, {a, b}) shown grey in Fig. 3c.

Corollary 3. Let bigraph vertex α participate in an abstract concept of K. Then
in K

′ : K
∗ ≤ K

′ ≤ K, |α′| ≥ 2.

200 T. Pattison and A. Ceglar

Fig. 3. Simple context bigraph (a) and line diagrams for the corresponding AOC poset
(b) and concept lattice (c). Corollary 2 eliminates the black bigraph edges. Solid edges
in (a) correspond to mutable (red) and immutable (black) arcs in (b). The surviving
red edges and adjacent vertices in (a) correspond to the abstract (grey) concept in (c),
whose insertion interrupts the mutable arcs. (Color figure online)

Proof. Any vertex in a biclique has at least as many neighbours as the biclique
contains vertices of the opposite type. Equation 3 requires that |E| ≥ 2 and
|I| ≥ 2 for an abstract biclique, so that |α′| ≥ 2 in K. Observation 3 and
Corollary 2 ensure that no edge within an abstract biclique is deleted, so that
|α′| ≥ 2 also holds in K

′.

Vertices of degree less than two in K
′ can be safely deleted along with their

adjacent edges, since neither can participate in an abstract concept of K. By
removing the unrealistic requirement for apriori knowledge of the elements of
E and I, Corollary 3 clears the way for practical application of Corollary 1 to
context ablation in preparation for FCA.

Example 2. Following application of Corollary 2 to the example context in
Fig. 3a, Corollary 3 eliminates objects {3, 4, 5} and attributes {c, d, e}, leaving
only the red edges and adjacent vertices. These constitute the abstract biclique
({1, 2}, {a, b}) corresponding to the grey vertex in Fig. 3c.

Since Corollaries 2 and 3 impose conditions on bigraph elements which are neces-
sary but not sufficient for participation in abstract bicliques, the ablated formal
context may more generally still contain superfluous elements.

The deletion of vertices and their adjacent edges from K
′ according to Corol-

lary 3 produces a new context K
′′ : K

∗ ≤ K
′′ ≤ K

′ ≤ K to which Corollary 3
also applies. Corollary 3 should be applied iteratively, since the deletion of a
vertex having a single neighbour can cause the (formerly) adjacent vertex to

Towards Interactive Transition from AOC Poset to Concept Lattice 201

subsequently fail the neighbour cardinality test. In the worst case, one more
iteration may be required than the longest chain of vertices of degree 2.

Example 3. Following application of Corollary 2 to InfoVis 151, 2 iterations of
Corollary 3 eliminate 9 of the remaining 29 objects, 12 of 41 attributes and 20
incident edges, leaving three connected components of sizes 12 × 20, 4 × 5 and
4× 4. Additional iterations do not eliminate any further bigraph elements. FCA
can be applied independently to these three components.

Whilst Corollaries 2 and 3 can be applied in either order, the cardinalities
|i′|, |j′|, |i′′| and |j′′| required by the former must be calculated on the original
context K. Edge deletion may have decreased the vertex degrees |i′| and |j′|,
and, by removing the structural distinction between some vertices, increased the
closure cardinalities |j′′| and |i′′|. The vertex degrees |i′| and |j′| cannot have
increased, since no edges were added to K. Furthermore |j′′| and |i′′| cannot have
decreased, since vertices which were structurally equivalent in K remain so in K

′.

Fig. 4. Example illustrating that closure cardinality may be higher in K
′ than K.

The example context in Fig. 4 contains the maximal biclique ({1, 2}, {a, b}).
Each vertex of this biclique has an additional distinct neighbour so that the
biclique edges satisfy Corollary 2. The edges (1, c), (2, d), (3, a) and (4, b) do not
satisfy Corollary 2, and hence are not present in K

′. The degrees of objects 1 and
2 and attributes a and b have each decreased by 1. Object 1 is thereby rendered
indistinguishable from object 2, and attribute a from b. Thus for example |1′′|
is 1 in K but 2 in K

′.

2.4 Iterative Edge Elimination

We have seen that significant numbers of edges not involved in abstract concepts
of K can be removed by Corollary 2 to produce K

′ : K
∗ ≤ K

′ ≤ K. Since
Corollary 2 compares the cardinalities |i′|, |j′|, |i′′| and |j′′| calculated on K, it
no longer applies to K

′, and is therefore of no further use in approaching K
∗. In

Example 3, additional vertices and adjacent edges in K
′\K

∗ were then eliminated
through the iterative application of Corollary 3 to produce K

′′ ≥ K
∗. We now

202 T. Pattison and A. Ceglar

develop iterative variants of Corollary 2 which can be applied either to K
′ or to

K
′′ ≥ K

∗, and demonstrate empirically that in the former case they can delete
more edges than Corollary 3.

Observation 5. Let edge (i, j) participate in an abstract concept (E , I) of the
formal context K. Then in K

′ : K
∗ ≤ K

′ ≤ K, (j′, j′′) ≥ (E , I) ≥ (i′′, i′).

Proof. Denote by B′ the set of formal concepts of K
′. Observation 3 ensures that

(E , I) ∈ B′, and the result follows from Observation 2. Equalities are possible –
and hence (E , I) may not be abstract in K

′ – because, as a consequence of edge
deletions, it may now be the object [attribute] concept for i [j].

Corollary 4. Let bigraph edge (i, j) participate in an abstract concept of the
formal context K. Then in K

′ : K
∗ ≤ K

′ ≤ K

|i′| ≥ |j′′| (7a)
|j′| ≥ |i′′| (7b)

Observation 6. Let bigraph edge (i, j) participate in an abstract concept of the
formal context K. Then

|i′| ≥ |j′′| + 1 (8a)
|j′| ≥ |i′′| + 1 (8b)

where the derivation operators on the left- and right-hand sides are with respect
to K

′ : K
∗ ≤ K

′ ≤ K and K respectively.

Proof. Let the abstract concept be (E , I). From Observation 5, |i′| ≥ |I| and
|j′| ≥ |E| in K

′ and from Observation 4, |I| ≥ |j′′| + 1 and |E| ≥ |i′′| + 1 in
K. Pairing these inequalities and noting that E and I – and hence also their
cardinalities – are the same in both contexts yields the result.

Corollary 4 and Observation 6 both provide lower bounds on |i′| and |j′| in
K

′. The greater of these two lower bounds should be applied when determining
whether any additional bigraph edges can be eliminated.

In contrast with Corollary 2, which can be applied only once to K, Corol-
laries 3 and 4 and Observation 6 can be applied iteratively. The removal of a
non-compliant bigraph edge (i, j) in one iteration reduces |i′| and |j′|, and can
thereby cause other edges adjacent to object i or attribute j to fail Eq. 8 in the
next. Since only edges in K \ K

∗ are deleted, the iteration must halt when no
further edges can be deleted, leaving at least the abstract concepts intact.

Example 4. Following application of Corollary 2 to InfoVis 151, 4 iterations of
Observation 6 eliminated 29 additional bigraph edges, isolating an additional 11
objects and 16 attributes. No further edges were eliminated by the fifth iteration.
Three connected components remained, as for Example 3, but now with sizes
10×17, 4×5 and 4×3. The labels of the objects and attributes belonging to these
connected components, and the abstract concepts to which these components
give rise, are coloured in Figs. 2 and 1 respectively.

Towards Interactive Transition from AOC Poset to Concept Lattice 203

The overall context ablation procedure is listed in Algorithm 1. Corollary 2,
Observation 6 and Corollary 3 are implemented in turn by the loops commencing
at lines 8 and 13 and the assignments commencing at line 26 respectively. Since
Corollary 2 and Observation 6 both eliminate edges adjacent to vertices of degree
one, the subsequent application of Corollary 3 amounts to deleting vertices of
degree zero. Their more timely deletion would confer no computational benefit,
since Corollary 2 and Observation 6 both cycle through edges vice vertices.
The cardinalities |i′|, |i′′| ∀i ∈ G and |j′|, |j′′| ∀j ∈ M can either be passed
to Ablate() following preparation of the AOC poset, or re-calculated from the
context at line 3. The values for |i′′| and |j′′| are re-used throughout Algorithm 1.
Vertex k currently has Neighbours(k) neighbours, and Dirty(k) is true if one or
more of its adjacent edges has been deleted during the most recent pass through
the set of edges. Unless no adjacent edges remain, this flag is cleared after one
complete pass through the set of edges (adjacent to “dirty” vertices) fails to
delete any further adjacent edges.

3 Formal Concept Analysis of Ablated Context

Section 2 described the elimination of elements of the context bigraph K which
cannot participate in abstract formal concepts. Examples 3 and 4 demon-
strated that the resultant formal context can have considerably fewer graph
elements, thereby significantly constraining the potential combinatorial explo-
sion of abstract concepts. In this section, the remaining context K

′ is subjected
to conventional FCA, and the resultant concepts screened to eliminate any which
are either not valid in K or are not abstract. For reviews of FCA algorithms
applicable to the analysis of K

′, the interested reader is referred to [7,8,13].

3.1 Finding Valid Abstract Concepts

For the Infovis 151 context processed as per Example 4, K
′ contains a total

of 35 concepts, compared with the 151 concepts for K. Definition 11 and Corol-
lary 1 justify the immediate elimination of any resultant formal concepts which
have extent or intent cardinality less than 2, which for Infovis 151 leaves only
14 concepts as candidate abstract concepts of K. The more stringent form of
Corollary 1 involving Eq. 4 eliminates any concepts which are valid and concrete
in K; in this instance it eliminates a further 2 concepts.

Observation 3 applies only to the abstract concepts of K, since at least some
concrete concepts must be affected by the removal of edges or vertices to form
K

′. Indeed, as we have seen in the case of Infovis 151, many of the objects
and attributes whose corresponding attribute and object concepts are members
of the AOC poset are no longer present in K

′. For those which remain, their
corresponding object and attribute concepts in K

′ may not be valid concepts in
K. Screening the concepts generated by conventional FCA of K

′ for validity in
K according to Observation 1 can therefore eliminate some concepts which are
not viable candidates for abstract concepts of K, while preserving all abstract

204 T. Pattison and A. Ceglar

Algorithm 1. Implement Corollaries 2 and 3 and Observation 6
Require: Formal context (G, M, I), preferrably clarified
Ensure: B′(G′, M ′, I ′) contains all abstract concepts of (G, M, I)
1: procedure Ablate(G,M,I)
2: for all i ∈ G, j ∈ M do
3: Calculate |i′|, |i′′|, |j′|, |j′′|
4: Neighbours(i) ← |i′|, Dirty(i) ← False, NowDirty(i) ← False

5: Neighbours(j) ← |j′|, Dirty(j) ← False, NowDirty(j) ← False

6: end for
7: I ′ ← I
8: for all (i, j) ∈ I : |i′| < |j′′| + 2 or |j′| < |i′′| + 2 do � Corollary 2
9: I ′ ← I ′ \ (i, j)

10: Neighbours(i)−−, Dirty(i) ← True

11: Neighbours(j)−−, Dirty(i) ← True

12: end for
13: repeat � Observation 6
14: for all (i, j) ∈ I ′ : Dirty(i) or Dirty(j) do
15: if Neighbours(i) < |j′′| + 1 or Neighbours(j) < |i′′| + 1 then
16: I ′ ← I ′ \ (i, j)
17: Neighbours(i)−−, NowDirty(i) ← True

18: Neighbours(j)−−, NowDirty(j) ← True

19: end if
20: end for
21: for all (i, j) ∈ I ′ do
22: Dirty(i) ←NowDirty(i), NowDirty(i) ← False

23: Dirty(j) ←NowDirty(j), NowDirty(j) ← False

24: end for
25: until �(i, j) ∈ I ′ : Dirty(i) or Dirty(j)
26: G′ ← G \ {i : Neighbours(i) = 0} � Corollary 3
27: M ′ ← M \ {j : Neighbours(j) = 0}
28: return (G′, M ′, I ′)
29: end procedure

concepts according to Observation 3. Of the 12 remaining candidate concepts for
Infovis 151, only 6 are valid in K. In contrast, näıve application of FCA to the
original Infovis 151 generates and tests the novelty of at least 151 concepts.

3.2 Dividing and Conquering

A beneficial side-effect of the context ablation described in Sect. 2 is that it
allows us to divide and conquer the process of concept generation. The InfoVis
151 bigraph K is connected by virtue of pre-processing by the Carve algorithm
[11]. However, as Examples 3 and 4 have demonstrated, deletion of some bigraph
elements from K to form K

′ can cause the latter to be disconnected. In this case,
enumeration of its formal concepts can be divided and conquered through inde-
pendent FCA of each of its connected components. Pattison et al. [11] described
how the lattice digraph can be constructed from the digraphs for each of these

Towards Interactive Transition from AOC Poset to Concept Lattice 205

connected components. As per Example 4 for the InfoVis 151 context, which
contains 108 objects and 113 attributes, three connected components with a
total of 18 objects and 25 attributes can be identified following application of
Corollary 2 and Observation 6. The divide and conquer approach also extends
to checking of Corollary 1; for this purpose, each attribute and object should be
accompanied by the cardinality of its closure from the original AOC poset.

3.3 Anticipating and Localising Change in the AOC Poset

Pattison and Ceglar [9] described an incremental approach to drawing a concept
lattice whereby the elements of the attribute-object concept (AOC) poset were
first identified and positioned horizontally, and then the remaining concepts
progressively inserted into a two-dimensional drawing of the poset. This paper
has described an efficient, divide and conquer approach for producing those
remaining abstract concepts. As the line diagram for the AOC poset is morphed
into that for the concept lattice, user attention can be directed to or from regions
of the line diagram where the insertion of abstract concepts is still possible, and
hence where the graphical interpretation of meets and joins is unsafe.

Figure 2 shows the line diagram for the AOC poset of the Infovis 151 con-
text. The arcs shown red correspond to edges in the context bigraph which satisfy
the necessary conditions in Corollary 2 and Observation 6 for participation in
an abstract concept. For comparison, the line diagram for the concept lattice
digraph is shown in Fig. 1, with abstract concepts shown coloured. Many of the
arcs highlighted in Fig. 2 have subsequently been removed as a result of transitive
reduction. However, some of these remain in Fig. 1, indicating that there may
be opportunity to further refine the necessary conditions in Sect. 2 to reduce the
number of such false alarms. The highlighting in Fig. 1 is for illustrative purposes
only: once a connected component has been processed, and its abstract concepts
inserted into the line diagram, highlighting can be removed from any of its arcs
which remain highlighted.

4 Discussion and Summary

The context ablation procedure described in Sects. 2.3 and 2.4 does not require
the context to have been clarified. In an unclarified context, however, some
bigraph edges corresponding to immutable lattice arcs may pass the test in
Eq. 6, and thereby escape elimination. This would result in the generation of
additional concepts which must then be explicitly eliminated as per Sect. 3.1.

The technique described in [10] for horizontally ordering the lattice atoms and
co-atoms in the AOC poset requires that these concept sets are disjoint. FCA of
a formal context which does not meet this requirement can be recursively divided
using the Carve algorithm [11] into sub-contexts which do. Only the resultant
connected bigraphs would then be subjected to the techniques described in this
paper. These may be disconnected by the context ablation in Sects. 2.3 and 2.4,
and thereby further divided and conquered.

206 T. Pattison and A. Ceglar

A subgraph of the context bigraph is biconnected if it remains connected
upon removal of any one of its vertices, or 2-connected if a single vertex is not
considered “connected”. A bridge is a biconnected component of the context
bigraph containing exactly two vertices. An abstract maximal biclique of K is a
2-connected, bridgeless subgraph of K

′ : K
∗ ≤ K

′ ≤ K and hence is contained
within a single biconnected component of K

′. Efficient algorithms exist for finding
the biconnected components of a simple graph [6], and should be investigated for
simultaneous ablation and partitioning of K. Excluding any bridges from further
analysis effectively ablates the constituent edges from, and thereby disconnects,
the context bigraph.

Enumeration and visualisation of the AOC poset, vice concept lattice, scales
to larger formal contexts, since the former has at most |G| + |M | elements and
the latter |B| ≤ 2min(|G|,|M |). It therefore constitutes a more reliable first step
for interactive, on-demand FCA. For sparse contexts, mutable poset arcs can be
efficiently identified using context ablation, and the quantity

min(|j′| − |i′′|, |i′| − |j′′|) − 1

calculated for each as an upper bound on the number of abstract concepts
between the object concept for i and the attribute concept for j. Aggregat-
ing these bounds constrains the number of abstract concepts, from which the
feasibility of interactive visualisation of the concept lattice can be assessed. The
ablation and bounding steps are of course unneccessary if the results of prior, as
opposed to on-demand, computation and layout of the concept lattice digraph
are available. Visualisation of the AOC poset may still be appropriate in this
case if the digraph size challenges user comprehension. Selection of mutable arcs
might then drive on-demand insertion of any intervening abstract concepts.

Instead of morphing the line diagram for the AOC poset into that for the
concept lattice, the latter could be presented to the user as a separate view.
This would clearly distinguish between the line diagrams in which meets and
joins are and are not guaranteed to exist. This approach would transform the
challenge of maintaining the user’s mental model throughout the morph into one
of acquiring the association between the two views. A comparative evaluation of
the user experience will be required to decide between these two approaches.

This paper has described the ablation of a formal context to eliminate
many of the concrete concepts, dividing and conquering FCA of the remain-
ing sub-context, and screening the remaining formal concepts to produce only
the required abstract concepts. These are progressively inserted into the line
digram for the AOC poset, morphing it into that for the concept lattice. The
user’s attention is directed to where such insertions of missing meets or joins
may still occur. The potential utility of this approach has been demonstrated
using a single real-world context. Empirical studies will be required to confirm
and qualify its wider applicability to sparse contexts.

Towards Interactive Transition from AOC Poset to Concept Lattice 207

References

1. Albano, A.: Upper bound for the number of concepts of contra nominal-scale
free contexts. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) Formal Con-
cept Analysis, pp. 44–53. Springer (2014). DOI: https://doi.org/10.1007/978-3-
319-07248-7 4

2. Anne, B., Alain, G., Marianne, H., Amedeo, N., Alain, S.:Hermes: a simple and
efficient algorithm for building the AOC-post of a binary relation. Ann. Math.
Artif. Intell. 45–71 (2014). https://doi.org/10.1007/s10472-014-9418-6

3. Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/
978-3-642-59830-2

4. Gaume, B., Navarro, E., Prade, H.: A parallel between extended formal concept
analysis and bipartite graphs analysis. In: Hüllermeier, E., Kruse, R., Hoffmann,
F. (eds.) Computational Intelligence for Knowledge-Based System Design. LNCS,
vol. 6178, pp. 270–280. Springer (2010). DOI: https://doi.org/10.1007/978-3-642-
14049-5 28

5. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using
Galois lattices. In: OOPSLA ’93: Proceedings of the 8th Annual Conference Object-
Oriented Programming Systems, Languages, and Applications. pp. 394–410 (1993).
10.1145/165854.165931

6. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipu-
lation. Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.
362272

7. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In:
Kryszkiewicz, M., Obiedkov, S.A. (eds.) Proceedings of the 7th International Con-
ference. CLA. vol. 672, pp. 325–327. CEUR-WS.org (2010)

8. Kuznetsov, S.O., Obiedkov, S.A.: Algorithms for the construction of concept lat-
tices and their diagram graphs. In: Proceeding of the 5th European Conf. Prin-
ciples of Data Mining and Knowledge Discovery (PKDD 2001), LNCS, vol. 2168,
pp. 289–300. Springer (2001). 10.1007/3-540-44794-6 24

9. Pattison, T., Ceglar, A.: Interaction challenges for the dynamic construction of
partially-ordered sets. In: Bertet, K., Rudolph, S. (eds.) Proceedings of the 11th
International Conference CLA, vol. 1252, pp. 23–34. CEUR-WS.org (2014)

10. Pattison, T., Ceglar, A.: Simultaneous, polynomial-time layout of context bigraph
and lattice digraph. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) Proceedings of
the 15th International Conference FCA. LNCS: Artificial Intelligence, vol. 11511,
pp. 223–240 (2019). 10.1007/978-3-030-21462-3 15

11. Pattison, T., Ceglar, A., Weber, D.: Efficient formal concept analysis through recur-
sive context partitioning. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of the
14th International Conference CLA, vol. 2123, pp. 219–230. CEUR-WS.org (2018)

12. Plaisant, C., Fekete, J.D., Grinstein, G.: Promoting insight-based evaluation of
visualizations: from contest to benchmark repository. IEEE Trans. Vis. Comp.
Graph. 14(1), 120–134 (2008). https://doi.org/10.1109/TVCG.2007.70412

13. Priss, U.: Formal concept analysis in information science. Ann. Rev. Inf. Sci. Tech.
40, 521–543 (2006). https://doi.org/10.1002/aris.1440400120

https://doi.org/10.1007/978-3-319-07248-7_4
https://doi.org/10.1007/978-3-319-07248-7_4
https://doi.org/10.1007/s10472-014-9418-6
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-14049-5_28
https://doi.org/10.1007/978-3-642-14049-5_28
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1109/TVCG.2007.70412
https://doi.org/10.1002/aris.1440400120

Visualization of Statistical Information in
Concept Lattice Diagrams

Computational Logic Group, TU Dresden, Dresden, Germany

Abstract. We propose a method of visualizing statistical information
in concept lattice diagrams. To this end, we examine the characteristics
of support, confidence, and lift, which are parameters used in association
analysis. Based on our findings, we develop the notion of cascading line
diagrams, a visualization method that combines the properties of addi-
tive line diagrams with association analysis. In such diagrams, one can
read the size of a concept’s extent from the height of the correspond-
ing node in the diagram and, at the same time, the geometry of the
formed quadrangles illustrates whether two attributes are statistically
independent or dependent and whether they are negatively or positively
correlated. In order to demonstrate this visualization method, we have
developed a program generating such diagrams.

1 Introduction

Formal concept analysis (FCA) is a mathematical approach for analyzing con-
ceptual hierarchies arising from relationships between objects and attributes. By
means of an order relation, hierarchically grouped sets of entities can be sorted
by set inclusion and later visualized by means of line diagrams, from which qual-
itative, crisp dependencies between the examined attributes, called implications,
can be read off easily.

Association analysis is a data mining technique, used to discover and evalu-
ate quantitative relationships and dependencies in a data set. It offers ways of
characterizing the strength of these relationships, using the statistical measures
support, confidence and lift.

The use of association analysis to extract “imperfect implications” – referred
to as association rules – has been explored widely in data mining, but also
specifically in FCA [11,8,9,3]. Unfortunately, the same cannot be said about the
visualization part, i.e., representation of statistical information in line diagrams.
One 2004 paper introduced a method of lattice drawing where concepts were
placed at positions that were related to their support [10]. However, the authors
stated that this method sometimes created nearly horizontal lines in the diagram.
To address this problem, they introduced a spring-based lattice drawing method
in a follow-up paper [7]. Additionally, the authors proposed to generate a lattice
diagram in R3 and then allow the user to find a ”best” projection into R2 by
rotating the lattice around a central axis.

© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 208–223, 2021.
https://doi.org/10.1007/978-3-030-77867-5 13

Jana Klimpke(B) and Sebastian Rudolph

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-030-77867-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_13
http://orcid.org/0000-0002-1609-2080
http://orcid.org/0000-0001-5074-3089

Visualization of Statistical Information in Concept Lattice Diagrams 209

Our work aims at an approach for visualizing concept lattice diagrams in a
way that, on top of displaying all perfect relationships between attributes, also
reflects the frequencies of the depicted concepts as well as correlation strength
between attributes. To this end, we propose cascading line diagrams, realized
by means of a positioning rule that is inspired by the notion of additive line
diagrams but adjusts the height of the concept nodes according to their extent’s
cardinality. By choosing a logarithmic scale for the latter, statistic independence
between attributes manifests itself in perfect parallelograms, whereas positive
and negative correlations lead to obtuse or acute deviations from this parallelo-
gram shape. We present an open-source prototypical implementation for drawing
cascading line diagrams, which also allows for an intuitive interactive adjustment
of its parameters along the remaining degrees of freedom.

2 Preliminaries

Table 1. Cross table dis-
playing the relation be-
tween objects and at-
tributes of a given formal
context.

G \ M a b c d e

T1 × ×
T2 × ×
T3 ×
T4 × × ×
T5 ×
T6 × ×
T7 ×

We start by briefly introducing the basic notions of
FCA [6]. A formal context is a triple (G,M, I), con-
sisting of a set G of objects, a set M of attributes as
well as a binary incidence relation I ⊆ G ×M be-
tween G and M . As usual, the fact that I relates
an object g to an attribute m will be written as
(g,m) ∈ I.

The set of all object-attribute relationships of a
formal context can be written down by means of an
incidence matrix. An example of such a matrix, also
known as cross table, can be seen in Table 1.
The set of attributes, shared by a set A ⊆ G of ob-
jects can be derived by

A′ := {m ∈M | ∀ g ∈ A : (g,m) ∈ I}. (1)

Dually, the set of all objects that have each of the attributes in a set B ⊆ M
can be obtained by

B′ := {g ∈ G | ∀ m ∈ B : (g,m) ∈ I}. (2)

A pair (A, B), with A ⊆ G and B ⊆ M will be called a formal concept of a
context (G,M, I) if A′ = B and B′ = A. The set A will be called the extent and
the set B the intent of the concept. The set of all formal concepts of a formal
context (G,M, I) is denoted by B(G,M, I).

Concepts can be ordered hierarchically by using the order relation ≤. For the
concepts (A1, B1) and (A2, B2) one lets (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2. We call
(A1, B1) a lower neighbor of (A2, B2) – and write (A1, B1) ≺ (A2, B2) – whenever
both (A1, B1) ≤ (A2, B2) and there is no “intermediate concept” (Ȧ, Ḃ) satis-
fying (A1, B1) ≤ (Ȧ, Ḃ) ≤ (A2, B2). It turns out the set of a context’s formal
concepts together with ≤ is not only an ordered set, but even a complete lattice,

210 J. Klimpke and S. Rudolph

called the concept lattice of the context. As for partial orders in general, it is com-
mon to visualize concept lattices by means of line diagrams, where each node
represents one concept of the concept lattice and, for all (A1, B1) ≺ (A2, B2)
there is an ascending straight line connecting the node representing (A1, B1) to
the node representing (A2, B2). While this requirement puts some constraints
on the vertical positioning of the nodes in a lattice diagram, there is still a lot
of leeway and it is a non-trivial question how to arrive at a “good” diagram.

One approach to obtain particularly well-readable diagrams, called additive
line diagrams, will be explained in the following.

2.1 Additive Line Diagrams

An attribute m ∈M is called irreducible if there is no set X ⊆M of attributes
with m /∈ X so that {m}′ = X ′. The set of all irreducible attributes is denoted
by Mirr. The set irr(A,B) of all irreducible attributes of a concept is defined
by B ∩Mirr.
An additive line diagram is obtained based on a function mapping each irre-
ducible attribute to a two-dimensional vector according to Formula (3). The
position in the plane at which the node representing concept (A,B) should be
drawn is determined according to Formula (4) [6].

T4
a
T6

b cde

T1T2

T3T5T7

Fig. 1. Example of an additive
line diagram based on the con-
text given in Table 1.

vec : Mirr → R× R<0 (3)

pos(A,B) :=
∑

m∈irr(A,B)

vec(m) (4)

The resulting diagrams are characterized by many
parallel lines, which makes them easier to read
than most other diagrams. An example is dis-
played in Fig. 1.

An implication is a rule of the form X → Y ,
where X is the body and Y is the head of the
rule. X and Y are sets of attributes. Given a
formal context an implication X → Y is valid iff
Y ⊆ X ′′. It is not too difficult and a standard ex-
ercise in FCA to directly read implications from
a concept lattice diagram.

Visualization of Statistical Information in Concept Lattice Diagrams 211

2.2 Association Analysis

Association rule learning is a data mining method used to discover and evaluate
relationships and dependencies in databases. It is used, among others, in shop-
ping cart analysis. Put into FCA terminology, the goal of association analysis
is to find connections between individual attributes in order to be able to make
statements about which of them often co-occur together in objects. For this pur-
pose, one uses the statistical characteristics support, confidence and lift [4,5],
which are explained in this section together with their relationship to FCA.

The basis of association analysis are association rules, which have the form
X ⇒ Y . X and Y represent disjoint and real subsets of the set of all attributes M .
An object fulfills such a rule if it has all the attributes, which occur in X and Y .

Support. The support of an attribute set X describes the relative frequency
of their joint occurrence in the data (that is: the context) and is calculated by

supp(X) :=
|{g ∈ G | X ⊆ {g}′}|

|G|
=
|X ′|
|G|

. (5)

In the same way, the support of an association rule X ⇒ Y describes the fre-
quency with which the union X ∪ Y occurs in the data, that is

supp(X ⇒ Y) := supp(X ∪ Y) =
|(X ∪ Y)′|
|G|

. (6)

Confidence. The confidence is a measure of how often a rule is fulfilled in
relation to X. It is calculated by

conf (X ⇒ Y) :=
supp(X ⇒ Y)

supp(X)
. (7)

Lift. Since the confidence does not refer to the frequency with which the head
of the formula occurs “normally”, it cannot be used to make a statement about
how strong the body of an association rule really “promotes” the head. In order
to account for this fact, the lift is used, which is calculated by

lift(X ⇒ Y) :=
conf (X ⇒ Y)

supp(Y)
=

supp(X ∪ Y)

supp(X) · supp(Y)
. (8)

As is obvious from that formula, lift(X ⇒ Y) = lift(Y ⇒ X) always holds and
the corresponding value provides information regarding the correlation between
attribute occurrences X and Y . The following correspondences apply:

· lift(X ⇒ Y) > 1 : X and Y positively correlated

· lift(X ⇒ Y) = 1 : X and Y not correlated

· lift(X ⇒ Y) < 1 : X and Y negatively correlated

212 J. Klimpke and S. Rudolph

3 Weight-Dependent Positioning

This section describes how support, confidence, and lift can be read from a line
diagram where each concept node’s y-coordinate is chosen according to the size
of its extent. Refining this idea, we then introduce the diagram type cascading
(additive) line diagram, where dependencies between attributes, can be read
using the parallelogram method, which is also presented.

3.1 Weighted Formal Contexts

Table 2. Example of a
weighted context.

mult a b c d

O1 10 × ×
O2 10 × ×
O3 1 ×
O4 1 ×
O5 1 ×
O6 1 ×

Often, formal contexts representing large real-world
data sets contain many objects that coincide in
terms of their attributes. To represent such data
in a succinct but statistically faithful1 manner, we
endow formal contexts with weights. A weighted for-
mal context is a quadruple (G, M , I, mult) extend-
ing a formal context (G, M , I) by a mapping mult ,
which assigns a weight (or multiplicity)

mult : G→ N+ (9)

to every object. In our setting, mult(g) = n means that object g occurs n times
in our data set.2 In order to reflect this in cross tables, we extend them by a
column mult , which contains the weight of each object (cf. Table 2, where O1
and O2 are taken to appear 10-fold).

Based on this, the weight associated to a concept (A,B) is defined as the
sum of the weights of all objects contained in its extent A. We define:

wgt : P(G)→ N (10)

wgt(A) :=
∑

g∈A
mult(g) (11)

3.2 Linear Vertical Positioning

In this paper, the nodes in concept lattice diagrams are positioned in a 2-dimen-
sional Cartesian coordinate system. Thereby, in order to implement our goal
that statistical information be readable from the diagram, we first investigate
the approach where we let the y-position of a node be defined by its weight. In
the lattice diagram of a given weighted formal context (G,M, I,mult) defined
this way, the highest node has the y-coordinate wgt(G). We note that such a
positioning always creates admissible lattice diagrams, since the function defined
in Formula (11) is a monotonic mapping from (P(G),⊂) to (N, <).

1 clarifying the context would prune duplicates but distort the statistical information
2 Note, however, that the notion easily generalizes to settings where the weight ex-

presses other qualities that justify to assign more statistical importance to certain
objects (in which case one might rather choose Q or R as codomain).

Visualization of Statistical Information in Concept Lattice Diagrams 213

O5 O6

O2

dcba

O3

O1

O4

Fig. 2. Additive line diagram.

0

6

12

18

24

O1

a

O3

b

O4 O5

c

O6

d

O2

y in wgt(A)

Fig. 3. Y-weighted, additive line diagram.

In additive line diagrams, the position of a node is determined by summing
up the vectors associated to all irreducible nodes that define it and adding them
to a normalization vector. The lattice diagrams represented in this way are char-
acterized by many parallel lines, which increases readability. By simply adjusting
the y-coordinate in the way described above, this advantage is lost. To illustrate
this, consider the context from Table 2.

Figure 2 shows a possible additive line diagram which can be derived from the
context. Fixing the y-coordinate of each node with its weight results in Fig. 3.
The parallel sides of the diagram are lost and some of the lines have become
almost horizontal, which is obstructing readability. In this work, therefore, the
x-coordinate is not determined as an unweighted sum of the irreducible nodes,
as is the case with additive line diagrams. Instead, the x-position is determined
by compressing or stretching the vector resulting from the summation of the
vectors of all upper neighbor nodes. Figure 4 illustrates this approach. Figure 5
shows the resulting line diagram without auxiliary lines.

O1

d

O5

b

0

6

12

18

24

a

O3 O4

c

O6

y in wgt(A)

O2

Fig. 4. Weighted line diagram with
auxiliary lines.

d

O5

b

0

6

12

18

24

a

O3 O4

c

O6

y in wgt(A)

O1 O2

Fig. 5. X-Y-weighted, additive line di-
agram.

214 J. Klimpke and S. Rudolph

Support. Having in mind the meaning of multiplicities, the support of a weighted
context’s concept (A, B) is defined analogous to Formula (5) by its weight as

supp(B) :=
wgt(B′)

wgt(G)
=

wgt(A)

wgt(G)
=: supp(A) (12)

Since wgt(G) is constant and wgt(A) was used as the weight of the concept to
define the y-coordinate of the corresponding node, the support can also be read
from the previously defined lattice diagram. This only requires an adjustment of
the labeling of the y-axis.

Table 3. Distribution
by height and gender in
Germany 2006 [2].

m
u

lt

m
al

e

fe
m

al
e

<
17

5

≥
17

5

M1 31 × ×
M2 69 × ×
F1 91 × ×
F2 9 × ×

In order to illustrate this, we introduce a new ex-
ample, which will be used in the following to explain
how to read off the confidence, the lift, and the correla-
tion. The used weighted context is shown in Table 3. It
reflects the statistical distribution by height and gen-
der in Germany in 2006, differentiated by height <175
and ≥175 centimeters. The mult column shows the
percentage of the respective gender for each height.

Figure 6 shows a line diagram that can be derived
from the given context. On the y-axis, in addition to
the weight wgt(A), the support supp(A) is shown. The
support is calculated by Formula (12). This line diagram allows for reading the
weight as well as the support of the displayed concepts from the y-axis.

The natural way of defining the support of an implication in a weighted
context is by the weight of all objects that fulfill this implication, relative to the
weight of the set of all objects G. It can be formalized in two ways using the
intents X and Y or the extents X ′ and Y ′.

supp(X → Y) :=
supp(X ′ ∩ Y ′)

supp(G)
=

supp(X ∪ Y)

supp(G)
(13)

F2

female

M1

F1

male

<175

200 (1.0)

160 (0.8)

120 (0.6)

80 (0.4)

40 (0.2)

0 (0.0)

≥175

y in wgt(A) (supp(A))

M2

Fig. 6. Gender and size distribution with representation of wgt(A) and supp(A).

Visualization of Statistical Information in Concept Lattice Diagrams 215

Confidence. As explained in Section 2.1, implications can be read off from the
concept lattice diagram. For example, the line diagram displayed in Fig. 6 can
be used to find the implication {male} → {≥175}.

According to Section 2.2, the confidence of an association rule can be deter-
mined using Formula (7). For an implication X → Y , the confidence is defined
analogously as:

conf (X → Y) :=
supp(X → Y)

supp(X)
(14)

3.3 Logarithmic Vertical Positioning

Since the confidence is defined as a fraction, it is difficult to read it from the
previously defined representation of the concept lattice diagram. With the help
of the logarithmic law loga (x/y) = loga(x)− loga(y), Formula (14) can be trans-
formed and displayed as subtraction.

loga(conf (X → Y)) := loga

(
supp(X → Y)

supp(X)

)

(15)

= loga(supp(X → Y))− loga(supp(X)) (16)

The logarithmized confidence could be easily read from a line diagram, where
the logarithmic support is shown on the y-axis. There are several possibilities
for the choice of the base a of the used logarithm, but they only lead to a linear
vertical scaling. In the following, the base 2 was chosen, since log2(0.5) = −1.0
applies and thus the results can be easily estimated. The concept lattice with
logarithmically scaled y-axis is shown in Fig. 7.

W2

≥175

M2

y in log2(supp(A))

male female

M1

W1

<175

0

- 1.0

- 2.0

- 3.0

- 4.0

Fig. 7. Gender and size distribution with representation of the logarithmized support
of each node on the y-axis.

216 J. Klimpke and S. Rudolph

0
y in log2(supp(A))

- 1.54
- 1.36

- 1.00

X

X ∩ Y

Y

lo
g 2

(c
on

f(
X

→
Y

))

lo
g 2

(c
on

f(
Y

→
X

))

Fig. 8. Example for reading the logarithmic confidence for the implications X → Y
and Y → X.

Since nodes with weight zero would have the value −∞ with this scaling,
they are not displayed. To be able to see if a bottom element with weight 0
exists, short vertical auxiliary lines are attached to those nodes, that share an
edge with it. Those can be seen in Fig. 7. Figure 8 illustrates the process of
reading the logarithmic confidence for the implications X → Y and Y → X. It
shows an excerpt of Figure 7.

Reading correlation. As described in Section 2.2, it is possible to derive
from the lift of an association rule X ⇒ Y how X and Y are correlated. Anal-
ogous to Formula (8) for association rules, the lift for implications X → Y in
weighted contexts is defined by

lift(X → Y) :=
conf (X → Y)

supp(Y)
. (17)

Since statements about the polarity and approximate strength of the correlation
are usually more important than the correlation coefficient’s exact value, it is not
necessary to calculate the lift exactly. In many cases, a quantitative estimation
is sufficient. If the lift is greater than one, X and Y are positively correlated.
If it is smaller than one, they are negatively correlated. As the lift is defined
as a fraction, it is advisable to apply the logarithm, similar to the case of the
confidence. This way, we obtain the following characterization for the case of
positive correlation:

conf (X → Y)

supp(Y)
> 1.0 (18)

log2

(
conf (X → Y)

supp(Y)

)

> log2(1.0) (19)

log2(conf (X → Y))− log2(supp(Y)) > 0.0 (20)

log2(conf (X → Y)) > log2(supp(Y)) (21)

Visualization of Statistical Information in Concept Lattice Diagrams 217

0
y in log2(supp(A))

- 1.54
- 1.36

- 1.00

X

X ∩ Y

Y

lo
g 2

(c
on

f(
X

→
Y

)) lo
g 2

(s
up

p(
Y

))

Fig. 9. Estimating the dependence of X and Y by reading off confidence and support.

To estimate whether X and Y are positively correlated, it is therefore sufficient
to compare the logarithmic values of the implication’s confidence and the head’s
support. This can be done purely graphically.

Figure 9 shows the values to be read for the estimation of the lift for the
implication X → Y . It shows a cutout of Fig. 7, with X being ≥ 175 and Y
being male. It can therefore be concluded that there is a positive lift for the
implication {≥ 175} → {male}, since log2(conf ({≥ 175} → {male})) is −0.18
and log2(supp(male)) is −1.0. Comparing the two values shows

− 0.18 > −1.0 → positively correlated (22)

A second possibility to read the correlation between X and Y in the logarithmic
lattice diagram can be derived from the definition of the lift. This is due to the
fact that the lift for the implication X → Y mathematically equals the lift for
the implication Y → X.

Another way to determine whether X and Y are statistically dependent or
independent is the parallelogram method presented below. As already described,
X and Y are statistically independent exactly if

log2(conf (X → Y)) = log2(supp(Y)). (23)

If the independence of X and Y can be derived from X → Y , then follows

log2(conf (Y → X)) = log2(supp(X)). (24)

If X and Y are independent, i.e. Formulas (23) and (24) are satisfied, a parallel-
ogram is formed in the diagram. However, if they are dependent, a one-sided dis-
tortion of the parallelogram along the diagonal occurs. A simple, convex square
is formed. If the downward-pointing half of the parallelogram is compressed, X
and Y are positively correlated. If it is stretched, they are negatively correlated.
Table 4 shows all three possible correlation types together with an example.

On the basis of the deviation of the calculated parallelogram the dependence
of X and Y can be read. For this purpose, it may be helpful to mark the result-

218 J. Klimpke and S. Rudolph

male

≥175

0

y in log2(supp(A))

- 1.54
- 1.36

- 1.00

- 2.36

M2

Fig. 10. Illustrating the parallelogram method. The downward-pointing half of the
quadrangle is compressed, indicating that ≥ 175 and male are positively correlated.

ing parallelogram, which symbolizes independence, with auxiliary lines in the
diagram. Figure 10 shows such an example.

3.4 Cascading Additive Line Diagrams

In order to achieve that the parallelogram method can also be used in situations
where the nodes representing X and Y do not share an edge with the top node,
we refine our idea leading to the definition of cascading additive line diagrams3,
detailed below.

The y-coordinate of each node in a cascading additive line diagram is de-
fined by the logarithm of the support of the concept associated with the corre-
sponding node, just as it was described in Section 3.1. The x-coordinate, on the
other hand, is defined taking into account the positions of all upper neighbor
nodes, leading to a recursive definition – hence the name ’cascading’. The upper
neighbors (also called direct predecessors) of the node associated to the concept
(A,B) are determined according to the order relation as defined in Section 2 and
Formula (25).

pre(A,B) := {(C,D) ∈ B(G,M, I) | (A,B) ≺ (C,D)} (25)

Remember that in the diagram, these are just the nodes that have a higher
y-position and share an edge with the node in question. The unscaled position
upos(A,B) of each concept node is defined by adding the positions of all prede-
cessors:

upos(A,B) :=
∑

(C,D)∈pre(A,B)

pos(C,D) +
∑

m∈Mirr , A={m}′
vec(m) (26)

3 short: cascading line diagrams

Visualization of Statistical Information in Concept Lattice Diagrams 219

Table 4. Minimal examples showcasing the three different types of correlation. The
diagrams have been created with the help of the program described in Section 4.

negatively correlated independent positively correlated

mult a b

T 10
A 30 ×
B 30 ×

AB 10 × ×

mult a b

T 20
A 20 ×
B 20 ×

AB 20 × ×

mult a b

T 30
A 10 ×
B 10 ×

AB 30 × ×

lift({a} → {b}) =

1/8

1/2 · 1/2
= 1/2 < 1.0

lift({a} → {b}) =

1/4

1/2 · 1/2
= 1.0

lift({a} → {b}) =

3/8

1/2 · 1/2
= 3/2 > 1.0

stretched well-formed compressed

220 J. Klimpke and S. Rudolph

By scaling the unscaled position with respect to the y-coordinate, the final po-
sition of the node is determined:

pos(A,B) :=
log2(supp(B))

uposy(A,B)
· upos(A,B) (27)

Table 5. Example context.

mult g h k m

G 25 ×
H 30 ×

GH 5 × ×
GHK 20 × × ×
GHM 15 × × ×

GHKM 5 × × × ×

To illustrate this presentation method in more
detail, we use the context shown in Table 5.
This context is characterized by the indepen-
dence of {k} and {m}, which is proved math-
ematically in Formula (28) by calculating the
lift of {k} → {m}.

lift({k} → {m}) :=
supp({k} → {m})

supp({k}) · supp({m})

=
0.05

0.25 · 0.2
= 1.0 (28)

Figure 11 displays the corresponding concept lattice as a cascading additive line
diagram. It can be seen that the top-element forms a parallelogram with the
nodes labeled with ”GHK”, ”GHM” and ”GHKM”, thus displaying the inde-
pendence of {k} and {m}. If the node labeled ”GHKM” were higher, meaning
it had a larger y-coordinate, then {k} and {m} would be positively correlated.
If the y-coordinate were smaller, the parallelogram would be stretched on the
lower side. This would correspond to a negative correlation.

0.0

- 0.51

y in log2(supp(A))

- 0.42

- 1.15

G
g h

k

m

H

GHK

GHKM

GHM

GH

- 2.00

- 2.32

- 4.32

Fig. 11. Cascading line diagram of the context shown in Table 5.

Visualization of Statistical Information in Concept Lattice Diagrams 221

The cascading additive line diagram allows to read at each node that has exactly
two predecessors, the (in)dependence of these predecessors using the parallelo-
gram method. Furthermore, in all cases, it is possible to read the dependence by
means of the y-coordinates, as discussed in Section 3.1.

4 Prototype Implementation

To demonstrate the operation of the cascading additive line diagram, we imple-
mented a visualisation prototype. The source code is freely available online [1].
The tool creates concept lattice diagrams for given formal contexts. It is able to
generate both additive and cascading line diagrams.

Fig. 12. Display of a cross table in the program.

Figure 12 shows the user interface for entering the formal context. In the
screenshot, the example from Table 3 has been entered. Clicking on ’Create
Lattice’ triggers the creation of the concept lattice diagram. The additive line
diagram is created as described in Section 2.1. The cascading line diagram is
created as described in Section 3.4.

Upon displaying the diagram, the irreducible nodes are marked by green
squares. In the cascading view, the independence of two attributes is expressed
by the parallelogram formed with the top element. By left-clicking on a reducible
node with two predecessors, the parallelogram that would result if the predeces-
sors were independent is shown in red. This is shown in Fig. 13, using the context
from Table 3, which was considered in detail in Section 3.2. Figure 13 also shows
an information window, which opens upon right-clicking on a node.

5 Conclusion

The goal of this paper was to develop a representation for concept lattice dia-
grams that – in addition to the attribute-logical relationships – allows statistical
relationships between attributes to be read off the diagram. Toward a more suc-
cinct representation of the input data, the cross table defining the formal context
was extended by a multiplier column, where the positive natural number in this

222 J. Klimpke and S. Rudolph

Fig. 13. Display of a cascading additive line diagram in the program with the paral-
lelogram with the top element shown and the additional window opened.

cell indicates the weight or multiplicity of the associated object. This can be
understood to represent an aggregation of several objects with the same intent
from a normal cross table.

Inspired by the display form of additive line diagrams, a new display form
was then developed, which allows for reading statistical and associative measures
such as support, confidence, and lift from the concept lattice diagram. Further-
more, the statistical (in)dependence of two attributes can be derived from the
diagram. This was achieved by a vertical positioning following the logarithmized
support of the associated concept. Through additive scaling, it was also possi-
ble to develop a form of representation, called cascading additive line diagram,
in which the dependence or independence of two attributes can be intuitively
grasped from their formed parallelograms (or, rather, the deviation from the
parallelogram shape).

We presented a prototype implementation that allows to input a formal con-
text as a cross table and, from this, to derive, display, and adjust both additive
and a cascading line diagrams.

It has been shown in this paper that a formal context’s concept lattice can
be represented by a line diagram from which, beyond the classical logical depen-

Visualization of Statistical Information in Concept Lattice Diagrams 223

dencies, statistical relationships between attributes can be read rather directly
and intuitively.

As one avenue of future work, the proposed representation paradigm could
be coupled with existing optimization approaches toward a beneficial choice of
the vector assignment vec to the irreducible attributes, with the goal of avoiding
(near-)overlap of nodes, nodes being positioned on (or close to) edges they are
not incident with, and reducing the overall number of edge crossings.

Finally, our novel visualization approach will have to be tested empirically:
determining if this way of presenting statistical information is indeed useful to
human users and how well this paradigm works for larger concept lattices can
only be found out by means of comprehensive user studies.

References

1. https://github.com/Klimpke/Cascading-Line-Diagrams-Visualizer
2. Körpergröße in Deutschland nach Geschlecht 2006 [Body height in Germany

by gender 2006]. https://de.statista.com/statistik/daten/studie/1825/umfrage/
koerpergroesse-nach-geschlecht/. Accessed 23 Sept 2020

3. Abdullah, Z., Saman, M.Y.M., Karim, B., Herawan, T., Deris, M.M., Hamdan,
A.R.: FCA-ARMM: a model for mining association rules from formal concept anal-
ysis. In: Herawan, T., Ghazali, R., Nawi, N.M., Deris, M.M. (eds.) SCDM 2016.
AISC, vol. 549, pp. 213–223. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-51281-5 22

4. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings International Conference on Management
of Data (SIGMOD), pp. 207–216. ACM (1993)

5. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and im-
plication rules for market basket data. SIGMOD Rec. 26(2), 255–264 (1997)

6. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer-Verlag (1999). https://doi.org/10.1007/978-3-642-59830-2

7. Hannan, T., Pogel, A.: Spring-based lattice drawing highlighting conceptual simi-
larity. In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874,
pp. 264–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11671404 18

8. Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal
concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005).
https://doi.org/10.1007/11528784 10

9. Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A
new approach for association rule mining and bi-clustering using formal concept
analysis. In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 86–101.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31537-4 8

10. Pogel, A., Hannan, T., Miller, L.: Visualization of concept lattices using weight
functions. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) Supp. Proceedings
12th International Conference on Conceptual Structures (ICCS), pp. 1–14. Shaker
(2004)

11. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent struc-
turing and reducing of association rules with formal concept analysis. In: Baader,
F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 335–350.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45422-5 24

https://github.com/Klimpke/Cascading-Line-Diagrams-Visualizer
https://de.statista.com/statistik/daten/studie/1825/umfrage/koerpergroesse-nach-geschlecht/
https://de.statista.com/statistik/daten/studie/1825/umfrage/koerpergroesse-nach-geschlecht/
https://doi.org/10.1007/978-3-319-51281-5_22
https://doi.org/10.1007/978-3-319-51281-5_22
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/11671404_18
https://doi.org/10.1007/11528784_10
https://doi.org/10.1007/11528784_10
https://doi.org/10.1007/978-3-642-31537-4_8
https://doi.org/10.1007/3-540-45422-5_24

Force-Directed Layout of Order Diagrams
Using Dimensional Reduction

Dominik Dürrschnabel1,2(B) and Gerd Stumme1,2

1 Knowledge and Data Engineering Group, University of Kassel, Kassel, Germany
2 Interdisciplinary Research Center for Information System Design,

University of Kassel, Kassel, Germany
{duerrschnabel,stumme}@cs.uni-kassel.de

Abstract. Order diagrams allow human analysts to understand and
analyze structural properties of ordered data. While an expert can cre-
ate easily readable order diagrams, the automatic generation of those
remains a hard task. In this work, we adapt force-directed approaches,
which are known to generate aesthetically-pleasing drawings of graphs,
to the realm of order diagrams. Our algorithm ReDraw thereby embeds
the order in a high dimension and then iteratively reduces the dimen-
sion until a two-dimensional drawing is achieved. To improve aesthet-
ics, this reduction is equipped with two force-directed steps where one
step optimizes the distances of nodes and the other one the distances of
lines in order to satisfy a set of a priori fixed conditions. By respecting
an invariant about the vertical position of the elements in each step of
our algorithm we ensure that the resulting drawings satisfy all neces-
sary properties of order diagrams. Finally, we present the results of a
user study to demonstrate that our algorithm outperforms comparable
approaches on drawings of lattices with a high degree of distributivity.

Keywords: Ordered sets · Order diagram drawing · Lattice drawing ·
Force-directed algorithms · Dimensional reduction · Graph drawing

1 Introduction

Order diagrams, also called line diagrams, Hasse diagrams (or simply diagrams)
are a graphical tool to represent ordered sets. In the context of ordinal data
analysis, i.e., data analysis investigating ordered sets, they provide a way for a
human reader to explore and analyze complex connections. Every element of the
ordered set is thereby visualized by a node and two elements are connected by a
straight line if one is lesser than the other and there is no element “in between”.

The general structure of such an order diagram is therefore fixed by these
conditions. Nonetheless, finding good coordinates for the nodes representing the
elements such that the drawing is perceived as “readable” by humans is not a
trivial task. An expert with enough practice can create such a drawing; how-
ever, this is a time-consuming and thus uneconomical task and therefore rather
c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 224–240, 2021.
https://doi.org/10.1007/978-3-030-77867-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_14&domain=pdf
http://orcid.org/0000-0002-0855-4185
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-030-77867-5_14

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 225

uncommon. Still, the availability of such visualizations of order diagrams is an
integral requirement for developing ordinal data science and semi-automated
data exploration into a mature instrument; thus, making the automatic gener-
ation of such order diagrams an important problem. An example of a research
field that is especially dependent on the availability of such diagrams is For-
mal Concept Analysis, a field that generates a conceptual lattices from binary
datasets.

The generated drawings have to satisfy a set of hard constraints in order to
guarantee that the drawing accurately represents the ordered set. First of all,
for comparable elements the node representing the greater element has to have a
larger y-coordinate then the lesser node. Secondly, no two nodes are allowed to be
positioned on the same coordinates. Finally, nodes are not allowed to touch non-
adjacent lines. Beside those hard criteria, there is a set of commonly accepted
soft criteria that are generally considered to make a drawing more readable, as
noted in [16]. Those include maximizing the distances between element nodes
and lines, minimizing the number of crossing lines, maximizing the angles of
crossing lines, minimizing the number of different line directions or organizing
the nodes in a limited number of layers. While it is not obvious how to develop
an algorithm that balances the soft criteria and simultaneously guarantees that
the hard criteria are satisfied, such an algorithm might not even yield readable
results as prior works such as [3] suggests. Furthermore, not every human reader
might perceive the same aspects of an order diagram as “readable”; conversely,
it seems likely that every human perceives different aspects of a good drawing as
important. It is thus almost impossible to develop with a good fitness function
for readable graphs. Those reasons combined make the automatic generation of
readable graph drawing - and even their evaluation - a surprisingly hard task.

There are some algorithms today that can produce readable drawings to
some extent; however, none of them is able to compete with the drawings that
are manually drawn by an expert. In this paper we address this problem by
proposing our new algorithm ReDraw that adapts the force-directed approach
of graph drawing to the realm of order diagram drawing. Thereby, a physical
simulation is performed in order to optimize a drawing by moving it to a state
of minimal stress. Thus, the algorithm proposed in this paper provides a way
to compute sufficiently readable drawings of order diagrams. We compare our
approach to prior algorithms and show that our drawings are more readable
under certain conditions or benefits from lesser computational costs. We provide
the source code1 so that other researchers can conduct their own experiments
and extend it.

2 Related Work

Order diagram drawing can be considered to be a special version of the graph
drawing problem, where a graph is given as a set of vertices and a set of edges and
a readable drawing of this graph is desired. Thereby, each vertex is once again
1 https://github.com/domduerr/redraw.

https://github.com/domduerr/redraw

226 D. Dürrschnabel and G. Stumme

represented by a node and two adjacent vertices are connected by a straight line.
The graph drawing problem suffers from a lot of the same challenges as order
diagram drawing and thus a lot of algorithms that were developed for graph
drawing can be adapted for diagram drawing. For a graph it can be checked in
linear time whether it is planar [11]), i.e., whether it has a drawing that has no
crossing edges. In this case a drawing only consisting of straight lines without
bends or curves can always be computed [12] and should thus be preferred.
For a directed graph with a unique maximum and minimum, like for example
a lattice, it can be checked in linear time whether an upward planar drawing
exists. Then such a drawing can be computed in linear time [2]. The work of
Battista et al. [2] provides an algorithm to compute straight-line drawings for
“serial parallel graphs”, which is a special family of planar, acyclic graphs. As
symmetries are often preferred by readers, the algorithm was extended [10] to
reflect them in the drawings based on the automorphism group of the graph.
However, lattices that are derived from real world data using methods like Formal
Concept Analysis rarely satisfy the planarity property [1]. The work of Sugiyama
et al. [14], usually referred to as Sugiyama’s framework, from 1981 introduces an
algorithm to compute layered drawings of directed acyclic graphs and can thus
be used for drawing order diagram. Force-directed algorithms were introduced
in [5] and further refined in [7]. They are a class of graph drawing algorithms
that are inspired by physical simulations of a system consisting of springs.

The most successful approaches for order diagram drawing are a work of
Sugiyama et al. [14] which is usually referred to as Sugiyama’s framework and a
work of Freese [6]. Those algorithms both use the structure of the ordered set to
decide on the height of the element nodes; however, the approach choosing the
horizontal coordinates of a node differ significantly. While Sugiyama’s framework
minimizes the number of crossing lines between different vertical layers, Freese’s
layout adapts a force-directed algorithm to compute a three-dimensional drawing
of the ordered set. DimDraw [4] on the other hand is not an adapted graph
drawing algorithm, but tries to emphasize the dimensional structure that is
encapsulated in the ordered set itself. Even though this approach is shown to
outperform Freese’s and Sugiyama’s approach in [4], it is not feasible for larger
ordered sets because of its exponential nature. In [4] a method is proposed to
draw order diagrams based on structural properties of the ordered set. In doing
so, two maximal differing linear extensions of the ordered set are computed. The
work in [8] emphasizes additive order diagrams of lattices. Another force-directed
approach that is based on minimizing a “conflict distance” is suggested in [17].

In this work we propose the force-directed graph drawing algorithm ReDraw
that, similarly to Freese’s approach, operates not only in two but in higher dimen-
sions. Compared to Freese’s layout, our algorithm however starts in an arbitrarily
high dimension and improves it then by reducing the number of dimensions in
an iterative process. Thus, it minimizes the probability to stop the algorithm
early with a less pleasing drawing. Furthermore, our approach gets rid of the
ranking function to determine the vertical position of the elements and instead
uses the force-directed approach for the vertical position of nodes as well. We

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 227

achieve this by defining a vertical invariant which is respected in each step of
the algorithm. This invariant guarantees that the resulting drawing will respect
the hard condition of placing greater elements higher than lesser elements.

3 Fundamentals and Basics

This section recalls fundamentals and lays the foundations to understand the
design choices of our algorithm. This includes recalling mathematical nota-
tion and definitions as well as introducing the concept of force-directed graph
drawing.

3.1 Mathematical Notations and Definitions

We start by recalling some standard notations that are used throughout this
work. An ordered set is a pair (X,≤) with ≤ ⊆ (X ×X) that is reflexive ((a, a) ∈
≤ for all a ∈ X), antisymmetric (if (a, b) ∈ ≤ and (b, a) ∈ ≤, then a = b) and
transitive (if (a, b) ∈ ≤ and (b, c) ∈ ≤, then (a, c) ∈ ≤). The notation (a, b) ∈ ≤
is used interchangeably with a ≤ b and b ≥ a. We call a pair of elements a, b ∈ X
comparable if a ≤ b or b ≤ a, otherwise we call them incomparable. A subset of
X where all elements are pairwise comparable is called a chain. An element a is
called strictly less than an element b if a ≤ b and a �= b and is denoted by a < b,
the element b is then called strictly greater than a. For an ordered set (X,≤),
the associated covering relation ≺ ⊆ < is given by all pairs (a, c) with a < c for
which no element b with a < b < c exists. A graph is a pair (V,E) with E ⊆ (

V
2

)
.

The set V is called the set of vertices and the set E is called the set of edges,
two vertices a and b are called adjacent if {a, b} ∈ E.

From here out we give some notations in a way that is not necessarily stan-
dard but will be used throughout our work. A d-dimensional order diagram
or drawing of an ordered set (X,≤) is denoted by (�pa)a∈X ⊆ R

d whereby
�pa = (xa,1, . . . , xa,d−1, ya) for each a ∈ X and for all a ≺ b it holds that ya < yb.
Similarly, a d-dimensional graph drawing of a graph (V,E) is denoted by (�pa)a∈V

with �pa = (xa,1, . . . , xa,d−1, ya) for each a ∈ V . If the dimension of a order dia-
gram or a graph drawing is not qualified, the two-dimensional case is assumed.
In this case an order diagram can be depicted in the plane by visualizing the
elements as a node or nodes and connecting element pairs in the covering rela-
tion by a straight line. In the case of a graph, vertices are depicted by a node
and adjacent vertices are connected by a straight line. We call ya the vertical
component and xa,1, . . . , xa,d−1 the horizontal components of of �pa and denote
(�pa)x = (xa,1, . . . , xa,d−1, 0). The forces operating on the vertical component are
called the vertical force and the forces operating on the horizontal components
the horizontal forces. The Euclidean distance between the representation of a and
b is denoted by d(�pa, �pb) = |�va −�vb|, while the distance between the vertical com-
ponents is denoted by dy(�pa, �pb) and the distance in the horizontal components is
denoted by dx(�pa, �pb) = d((�pa)x, (�pb)x). The unit vector from �pa to �pb is denoted
by �u(�pa, �pb), the unit vector operating in the horizontal dimensions is denoted by

228 D. Dürrschnabel and G. Stumme

�ux(�pa, �pb). Finally, the cosine-distance between two vector pairs (�a,�b) and (�c, �d)

with �a,�b,�c, �d ∈ R
d is given by dcos((�a, b), (�c, �d)) := 1 −

∑d
i=1(bi−ai)·(di−ci)

d(a,b)·d(c,d) .

3.2 Force-Directed Graph Drawing

The general idea of force-directed algorithms is to represent the graph as a
physical model consisting of steel rings each representing a vertex. For every
pair of adjacent vertices, their respective rings are connected by identical springs.
Using a physical simulation, this system is then moved into a state of minimal
stress, which can in turn be used as the drawing. Many modifications to this
general approach, that are not necessarily based on springs, were proposed in
order to encourage additional conditions in the resulting drawings.

The idea of force-directed algorithms was first suggested by Eades [5]. His
algorithmic realization of this principle is done using an iterative approach where
in each step of the simulation the forces that operate on each vertex are computed
and summed up (cf. Algorithm 1). Based on the sum of the forces operating on
each vertex, they are then moved. This is repeated for either a limited number of
rounds or until there is no stress left in the physical model. While a system con-
sisting of realistic springs would result in linear forces between the vertices, Eades
claims that those are performing poorly and thus introduces an artificial spring
force. This force operates on each vertex a for adjacent pairs {a, b} ∈ E and is
given as fspring(�pa, �pb) = −cspring · log

(
d(�pa,�pb)

l

)
·�u(�pa, �pb), whereby cspring is the

spring constant and l is the equilibrium length of the spring. The spring force
repels two vertices if they are closer then this optimal distance l while it operates
as an attracting force if two vertices have a distance greater then l, see Fig. 1.
To enforce that non-connected vertices are not placed too close to each other, he
additionally introduces the repelling force that operates between non-adjacent
vertex pairs as frep(�pa, �pb) = crep

d(�pa,�pb)2
· �u(�pa, �pb). The value for crep is once again

constant. In a realistic system, even a slightest movement of a vertex changes the
forces that are applied to its respective ring. To depict this realistically a damping
factor δ is introduced in order to approximate the realistic system. The smaller

Algorithm 1. Force-Directed Algorithm by Eades
Input: Graph: (V, E) Constants: K ∈ N, ε > 0, δ > 0

Initial drawing: p = (�pa)a∈V ⊆ R
2

Output: Drawing: p = (�pa)a∈V ⊆ R
2

t = 1
while t < K and maxa∈V ‖Fa(t)‖ > ε :

for a ∈ V :
Fa(t) :=

∑
{a,b}�∈E frep(�pa, �pb) +

∑
{a,b}∈E fspring(�pa, �pb)

for a ∈ V :
�pa := �pa + δ · Fa(t)

t = t + 1

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 229

Fig. 1. The forces for
graphs as introduced by
Eades in 1984. The fspring
force operates between
adjacent vertices and has
an equilibrium at l, the
force frep is always a
repelling force and operates
on non-adjacent pairs.

Fig. 2. Horizontal forces
for drawing order diagrams
introduced by Freese in
2004. The force fattr oper-
ates between comparable
pairs, the force frep between
incomparable pairs. There
is no vertical force.

Fig. 3. Our forces for draw-
ing order diagrams. fvert
operates vertically between
node pairs in the cover-
ing relation, the force fattr
between comparable pairs
and the force frep between
incomparable pairs.

this damping factor is chosen, the closer the system is to a real physical system.
However, a smaller damping factor results in higher computational costs. In some
instances this damping factor is replaced by a cooling function δ(t) to guarantee
convergence. The physical simulation stops if the total stress of the system falls
below a constant ε. Building on this approach, a modification is proposed in the
work of Fruchterman and Reingold [7] from 1991. In their algorithm, the force
fattr(�pa, �pb) = −d(�pa,�pb)

2

l · �u(�pa, �pb) is operating between every pair of connected
vertices. Compared to the spring-force in Eades’ approach, this force is always
an attracting force. Additionally the force frep(�pa, �pb) = l2

d(�pa,�pb)
·�u(�pa, �pb) repels

every vertex pair. Thus, the resulting force that is operating on adjacent ver-
tices is given by fspring(�pa, �pb) = fattr(�pa, �pb)+frep(�pa, �pb) and has once again its
equilibrium at length l. These forces are commonly considered to achieve better
drawings than Eades’ approach and are thus usually preferred.

While the graph drawing algorithms described above lead to sufficient results
for undirected graphs, they are not suited for order diagram drawings as they
do not take the direction of an edge into consideration. Therefore, they will
not satisfy the hard condition that greater elements have higher y-coordinates.
Freese [6] thus proposed an algorithm for lattice drawing that operates in three
dimensions, where the ranking function rank(a) = height(a)−depth(a) fixes the
vertical component. The function height(a) thereby evaluates to the length of
the longest chain between a and the minimal element and the function depth(a)
to the length of the longest chain to the maximal element. While this ranking
function guarantees that lesser elements are always positioned below greater ele-
ments, the horizontal coordinates are computed using a force-directed approach.
Freese introduces an attracting force between comparable elements that is given
by fattr(�pa, �pb) = −cattr ·dx(�pa, �pb) ·�ux(�pa, �pb), and a repelling force that is given
by frep(�pa, �pb) = crep · dx(�pa,�pb)

|yb−ya|3+|xb,1−xa,1|3+|xb,2−xa,2|3 · �ux(�pa, �pb) operating on

230 D. Dürrschnabel and G. Stumme

incomparable pairs only, (cf. Fig. 2). The values for cattr and crep are constants.
A parallel projection is either done by hand or chosen automatically in order to
compute a two-dimensional depiction of the three-dimensional drawing.

4 The ReDraw Algorithm

Our algorithm ReDraw uses a force-directed approach similar to the one that is
used in Freese’s approach. Compared to Freese’s algorithm, we however do not
use a static ranking function to compute the vertical positions in the drawing.
Instead, we use forces which allow us to incorporate additional properties like
the horizontal distance of vertex pairs, into the vertical distance. By respecting
a vertical invariant, that we will describe later, the vertical movement of the ver-
tices is restricted so that the hard constraint on the y-coordinates of comparable
nodes can be always guaranteed. However, the algorithm is thus more likely to
get stuck in a local minimum. We address this problem by computing the first
drawing in a high dimension and then iteratively reducing the dimension of this
drawing until a two-dimensional drawing is achieved. As additional degrees of
freedom allow the drawing to move less restricted in higher dimensions it thus
reduces the probability for the system to get stuck in a local minimum.

Our algorithm framework (cf. Algorithm 2) consists of three individual algo-
rithmic steps that are iteratively repeated. We call one repetition of all three
steps a cycle. In each cycle the algorithm is initialized with the d-dimensional
drawing and returns a (d − 1)-dimensional drawing. The first step of the cycle,
which we refer to as the node step, improves the d-dimensional drawing by opti-
mizing the proximity of nodes in order to achieve a better representation of the
ordered set. In the second step, which we call the line step, the force-directed app-
roach is applied to improve distances between different lines as well as between
lines and nodes. The resulting drawing thereby achieves a better satisfaction of
soft criteria and thus improves the readability for a human reader. Finally, in
the reduction step the dimension of the drawing is reduced to (d − 1) by using a
parallel projection into a subspace that preserves the vertical dimension. In the
last (two-dimensional) cycle, the dimension reduction step is omitted.

Algorithm 2. ReDraw Algorithm
Input: Ordered set: O = (X, ≤) Constants: K ∈ N, ε > 0, δ > 0,

Initial dimension: d cvert > 0, chor > 0,
Output: Drawing: p = (�pa)a∈V ⊆ R

2 cpar > 0, cang > 0, cdist > 0

p = in i t i a l d r aw i n g (O)
while d ≥ 2 :

node step (O, p, d, K, ε, δ, cvert, chor)
l i n e s t e p (O, p, d, K, ε, δ, cpar, cang, cdist)
i f d > 2 :

d imens ion reduct ion (O, p, d)
d = d − 1

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 231

The initial drawing used in the first cycle is randomly generated. The vertical
coordinate of each node is given by its position in a randomly chosen linear
extension of the ordered set. The horizontal coordinates of each element are set
to a random value between −1 and 1. This guarantees that the algorithm does
not start in an unstable local minimum. Every further cycle then uses the output
of the previous cycle as input to further enhance the resulting drawing.

Compared to the approach taken by Freese we do not fix the vertical com-
ponent by a ranking function. Instead, we recompute the vertical position of
each element in each step using our force-directed approach. To ensure that the
resulting drawing is in fact a drawing of the ordered set we guarantee that in
every step of the algorithm the following property is satisfied:

Definition 1. Let (X,≤) be an ordered set with a drawing (�pa)a∈X . The drawing
(�pa)a∈X satisfies the vertical constraint, iff ∀a, b ∈ X : a < b ⇒ ya < yb.

This vertical invariant is preserved in each step of the algorithm and thus in the
final drawing the comparabilities of the order are correctly depicted.

4.1 Node Step

The first step of the iteration is called the node step, which is used in order to
compute a d-dimensional representation of the ordered set. It thereby empha-
sizes the ordinal structure by positioning element pairs in a similar horizon-
tal position, if they are comparable. In this step we define three different
forces that operate simultaneously. For each a ≤ b on a the vertical force
fvert(�pa, �pb) =

(
0, . . . , 0,−cvert ·

(
1+dx(�pa,�pb)

dy(�pa,�pb)
− 1

))
operates while on b the force

−fvert(�pa, �pb) operates. If two elements have the same horizontal coordinates it
has its equilibrium if the vertical distance is at the constant cvert. Then, if two
elements are closer then this constant it operates repelling and if they are far-
ther away the force operates as an attracting force. Thus, the constant cvert is a
parameter that can be used to tune the optimal vertical distance. By incorporat-
ing the horizontal distance into the force, it can be achieved that vertices with a
high horizontal distance will also result in a higher vertical distance. Note, that
this force only operates on the covering relation instead of all comparable pairs,
as Otherwise, chains would be contracted to be positioned close to a single point.

On the other hand there are two different forces that operate in the hori-
zontal direction. Similar to Freese’s layout, there is an attracting force between
comparable and a repelling force between incomparable element pairs; however,
the exact forces are different. Between all comparable pairs a and b the force
fattr(�pa, �pb) = −min

(
dx(�pa, �pb)3, chor

) · �ux(�pa, �pb) is operating. Note that in
contrast to fvert this force operates not only on the covering but on all compa-
rable pairs and thus encourages chains to be drawn in a single line. Similarly,
incomparable elements should not be close to each other and thus the force
frep(�pa, �pb) = chor

dx(�pa,�pb)
· �ux(�pa, �pb), repels incomparable pairs horizontally.

We call the case that an element would be placed above a comparable greater
element or below a lesser element, overshooting. However, to ensure that every

232 D. Dürrschnabel and G. Stumme

Algorithm 3. ReDraw - Node step
Input: Ordered set: (X, ≤) Constants: K ∈ N, ε > 0, δ > 0,

Drawing p = (�pa)a∈X ⊆ R
d cvert > 0, chor > 0

Output: Drawing: p = (�pa)a∈X ⊆ R
d

t = 1
while t < K and maxa∈X ‖Fa(t)‖ > ε :

for a ∈ X :
Fa(t) :=

∑
a≺b fvert(�pa, �pb) − ∑

b≺a fvert(�pa, �pb)
+

∑
a≤b fattr(�pa, �pb) +

∑
a�≤b frep(�pa, �pb)

for a ∈ X :
�pa := ove r shoo t i ng p r o t e c t i on (�pa + δ · Fa(t))

t = t + 1

intermediate drawing that is computed in the node step still satisfies the vertical
invariant we have to prohibit overshooting. Therefore, we add overshooting pro-
tection to the step in the algorithm where (�pa)a∈X is recomputed. This is done
by restricting the movement of every element such that it is placed maximally
cvert
10 below the lowest positioned greater element, or symmetrically above the

greatest lower element. If the damping factor is chosen sufficiently small over-
shooting is rarely required. This is, because our forces are defined such that the
closer two elements are positioned the stronger they repel each other, see Fig. 3.

All three forces are then consolidated into a single routine that is repeated at
most K times or until the total stress falls below a constant ε, see Algorithm 3.
The general idea of our forces is similar to the forces described in Freese’s app-
roach, as comparable elements attract each other and incomparable elements
repel each other. However, we are able to get rid of the ranking function that
fixes y-coordinate and thus have an additional degree of freedom which allows
us to include the horizontal distance as a factor to determine the vertical posi-
tions. Furthermore, our forces are formulated in a general way such that the
drawings can be computed in arbitrary dimensions, while Freese is restricted to
three dimensions. This overcomes the problem of getting stuck in local minima
and enables us to recompute the drawing in two dimensions in the last cycle.

4.2 Line Step

While the goal of the node step is to get a good representation of the internal
structure by optimizing on the proximity of nodes, the goal of the line step is to
make the resulting drawing more aesthetically pleasing by optimizing distances
between lines. Thus, in this step the drawing is optimized on three soft criteria.
First, we want to maximize the number of parallel lines. Secondly, we want to
achieve large angles between two lines that are connected to the same node.
Finally, we want to have a high distance between elements and non-adjacent
lines. We achieve a better fit to these criteria by applying a force-directed algo-
rithm with three different forces, each optimizing on one criterion. While the

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 233

Algorithm 4. ReDraw - Line Step
Input: Ordered set: (X, ≤) Constants: K ∈ N, ε > 0, δ > 0,

Drawing p = (�pa)a∈X ⊆ R
d cpar > 0, cang > 0, cdist > 0

Output: Drawing: p = (�pa)a∈X ⊆ R
d

t = 1
while t < K and maxa∈X ‖Fa(t)‖ > ε :

A = {{(a, b), (c, d)} | a ≺ b, c ≺ d, dcos((�pa, �pb), (�pc, �pd)) < cpar}
B = {{(a, c), (b, c)} | (a ≺ c, b ≺ c) or (c ≺ a, c ≺ b), dcos((�pa, �pc), (�pb, �pc)) < cang}
C = {(a, (b, c)) | a ∈ X, b ≺ c, d(�pa, (�pb, �pc)) < cdist}
for a ∈ X :

Fa(t) :=
∑

{(a,b),(c,d)}∈A fpar((�pa, �pb), (�pc, �pd)) +
∑

(a,(b,c))∈C fdist(�pa, (�pb, �pc))

− ∑
{(b,a),(c,d)}∈A fpar((�pa, �pb), (�pc, �pd)) − 1

2

∑
(b,(a,c))∈C fdist(�pa, (�pb, �pc))

+
∑

{(a,c),(b,c)}∈B fang((�pa, �pc), (�pb, �pc))

for a ∈ X :
�pa := ove r shoo t i ng p r o t e c t i on (�pa + δ · Fa(t))

t = t + 1

previous step does not directly incorporate the path of the lines, this step incor-
porates those into its forces. Therefore, we call this step the line step.

The first force of the line step operates on lines (a, b) and (c, d) with a �= c
and b �= d if their cosine distance is below a threshold cpar. The horizontal

force fpar((�pa, �pb), (�pc, �pd)) = −
(
1 − dcos((�pa,�pb),(�pc,�pd))

cpar

)
·
(

(�pb−�pa)x
yb−ya

− (�pd−�pc)x
yd−yc

)

operates on a and the force −fpar((�pa, �pb), (�pc, �pd)) operates to b. This result of
this force is thus that almost parallel lines are moved to become more parallel.
Note, that this force becomes stronger the more parallel the two lines are.

The second force operates on lines that are connected to the same node and
have a small angle, i.e., lines with cosine distance below a threshold cang.

Let (a, c) and (b, c) be such a pair then the horizontal force oper-
ating on a is given by fang((�pa, �pc), (�pb, �pc)) =

(
1 − dcos((�pa,�pc),(�pb,�pc))

cang

)
·

(
(�pc−�pa)x

yc−ya
− (�pc−�pb)x

yc−yb

)
. In this case, once again the force is stronger for smaller

angles; however, the force is operating in the opposite direction compared to fpar
and thus makes the two lines less parallel. Symmetrically, for each pair (c, a) and
(c, b) the same force operates on a. There are artifacts from fpar that operate
against fang in opposite direction. This effect should be compensated for by using
a much higher threshold constant cang than cpar, otherwise the benefits of this
force are diminishing.

Finally, there is a force that operates on all pairs of nodes a and lines (b, c),
for which the distance between the element and the line is closer then cdist.
The force fdist(�pa, (�pb, �pc)) = 1

d(�pa,(�pb,�pc))
·
(
(�pa − �pc) − (�pa−�pc)·(�pb−�pc)

(�pb−�pc)·(�pb−�pc)
(�pb − �pc)

)

is applied to a and −fdist(�pa, (�pb, �pc))/2 is applied to b and c. This results in a
force whose strength is linearly stronger, the closer the distance d(�pa, (�pb, �pc)).
It operates perpendicular to the line and repels the node and the line.

234 D. Dürrschnabel and G. Stumme

Similar to the node step, all three forces are combined into a routine that is
repeated until the remaining energy in the physical system drops below a certain
stress level ε. Furthermore a maximal number of repetitions K is fixed. We
also once again include the overshooting protection as described in the previous
section to make sure that the vertical invariant stays satisfied.

The line step that is described in this section is a computational demanding
task, as in every repetition of the iterative loop the sets of almost parallel lines,
small angles and elements that are close to lines have to be recomputed. To
circumvent this problem on weaker hardware, there are a number of possible
speedup techniques. First of all, the sets described above do not have to be
recomputed every iteration, but can be cached over a small number of iterations.
In Algorithm 4 these are the sets A, B and C. By recomputing those sets only
every k-th iteration a speedup to almost factor k can be achieved. Another
speedup technique that is possible is to only execute the line step in the last
round. Both of these techniques however have a trade off for the quality of the
final drawing and are thus not further examined in this paper.

4.3 Dimension Reduction

In the dimension reduction step, we compute a (d−1)-dimensional drawing from
the d-dimensional drawing with the goal of reflecting the structural details of
the original drawing like proximity and angles. Our approach to solve this is to
compute a (d − 1)-dimensional linear subspace of the d-dimensional space. By
preserving the vertical dimension we can ensure that the vertical invariant stays
satisfied. Then a parallel projection into this subspace is performed.

As such a linear subspace always contains the origin, we center our drawing
around the origin. Thereby, the whole drawing (�pa)a∈X is geometrically trans-
lated such that the mean of every coordinate becomes 0. The linear subspace
projection is performed as follows: The last coordinate of the linear subspace will
be the vertical component of the d-dimensional drawing to ensure that the verti-
cal invariant is preserved. For the other (d− 1) dimensions of the original space,
a principle component analysis [13] is performed to reduce them to a (d − 2)-
dimensional subspace. By combining this projection with the vertical dimension
a (d − 1)-dimensional drawing is achieved, that captures the structure of the
original, higher-dimensional drawing and represents its structural properties.

It is easily possible to replace PCA in this step by any other dimension reduc-
tion technique. It would thus be thinkable to just remove the first coordinate in
each step and hope that the drawing in the resulting subspace has enough infor-
mation encapsulated in the remaining coordinates. Also other ways of choosing
the subspace in which is projected could be considered. Furthermore, non-linear
dimension reduction methods could be tried in order to achieve drawings, how-
ever our empirical experiments suggest, that PCA hits a sweet spot. The payoff
of more sophisticated dimension reduction methods seems to be negligible as
each drawing is further improved in lower dimensions. On the other hand we
observed local minima if we used simpler dimension reduction methods.

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 235

5 Evaluation

As we described in the previous sections, it is not a trivial task to evaluate the
quality of an order diagram drawing. Drawings that one human evaluator might
consider as favorably might not be perceived as readable by others. Therefore,
we evaluate our generated drawing with a large quantity of domain experts.

Fig. 4. Top: Drawing of the lattices for the formal contexts “forum romanum” (top)
and “living beings and water” (bottom) from the test dataset.

5.1 Run-Time Complexity

The run-time of the node step is limited by O(n2) with n being the number
of elements, as the distances between every element pair are computed. The
run-time of the line step is limited by O(n4), as the number of lines is bounded
by O(n2). Finally, the run-time of the reduction step is determined by PCA
which is known to be bounded by O(n3). Therefore, the total run-time of the
algorithm is polynomial in O(n4). This is an advantage compared to DimDraw
and Sugiyama’s framework, which both solve exponential problems; however,
Sugiyama is usually applied with a combination of heuristics to overcome this
problem. Freese’s layout has by its nature of being a force-directed order dia-
gram drawing algorithm, similar to our approach, polynomial run-time. Thus,
for larger diagrams, only ReDraw, Freese’s algorithm and Sugiyama’s framework
(the latter with its heuristics) are suitable, while DimDraw is not.

236 D. Dürrschnabel and G. Stumme

5.2 Tested Datasets

Our test dataset consists of 77 different lattices including all classical examples
of lattices described in [9]. We enriched these by lattices of randomly generated
contexts and some sampled contexts from large binary datasets. An overview of
all related formal contexts for these lattices, together with their drawing gener-
ated by ReDraw is published together with its source code. We restrict the test
dataset to lattices, as lattice drawings are of great interest for the formal con-
cept analysis community. This enables us to perform a user study using domain
experts for lattices from the FCA community to evaluate the algorithm.

Fig. 5. Top: Drawing of the lattices for the formal contexts “therapy” (top) and “ice
cream” (bottom) from the test dataset.

5.3 Recommended Parametrizations

As it is hardly possible to conduct a user study for every single combination of
parameters, our recommendations are based on empirical observations. We used
a maximal number of K = 1000 algorithm iterations or stopped if the stress in
the physical system fell below ε = 0.0025. Our recommended damping factor
δ = 0.001. In the node step we set cvert = 1 as the optimal vertical distance and
chor = 5. We used the thresholds cpar = 0.005, cang = 0.05 and cdist = 1 in the
line step. The drawing algorithms are started with 5 dimensions as we did not
observe any notable improvements with higher dimensional drawings. Finally
the resulting drawing is scaled in horizontal direction by a factor of 0.5.

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 237

5.4 Empirical Evaluation

To demonstrate the quality of our approach we compare the resulting drawings
to the drawings generated by a selected number of different algorithms in Fig. 4
and Fig. 5. The different drawings are computed using Sugiyama’s framework,
Freese’s layout, DimDraw and our new approach. Additionally, a drawing of our
approach before the line step is presented to show the impact of this line step.
In the opinion of the authors of this paper, the approach proposed in this paper
achieves satisfying results for these ordered sets. In most cases, we still prefer the
output of DimDraw (and sometimes Sugiyama), but ReDraw is able to cope with
much larger datasets because of its polynomial nature. Modifications of ReDraw
that combine the node step and the line step into a single step were tried by the
authors; however, the then resulting algorithm did not produce the anticipated
readability, as the node and line forces seem to work against each other.

5.5 User Evaluation

To obtain a measurable evaluation we conducted a user study to compare the dif-
ferent drawings generated by our algorithm to two other algorithms. We decided
to compare our approach to Freese’s and Sugiyama’s algorithm, as those two
seem to be the two most popular algorithms for lattice drawing at the moment.
We decided against including DimDraw into this study as, even though it is
known to produce well readable drawings, it struggles with the computational
costs for drawings of higher order dimensions due to its exponential nature.

Experimental Setup. In each step of the study, all users are presented with
three different drawings of one lattice from the dataset in random order and
have to decide which one they perceive as “most readable”. The term “most
readable” was neither further explained nor restricted.

Results. The study was conducted with nine experts from the formal concept
analysis community to guarantee expertise with order diagrams among the par-
ticipants. Thus, all ordered sets in this study were lattices. The experts voted
582 times in total; among those votes, 35 were cast for Freese’s algorithm, 266
for our approach and 281 for Sugiyama. As a common property of lattices is to
contain a high degree of truncated distributivity [15], which makes this property
of special interest, we decided to compute the share of distributive triples for
each lattice excluding those resulting in the bottom-element. We call the share
of such distributive triples of all possible triples the truncated relative distribu-
tivity (RTD). Based on the RTD we compared the share of votes for Sugiyama’s
framework and ReDraw for all order diagrams that are in a specific truncated
distributivity range. The results of this comparison are depicted in Fig. 6. The
higher the RTD, the better ReDraw performs in comparison. The only exception
in the range 0.64–0.68 can be traced back to a small test set with n = 4.

238 D. Dürrschnabel and G. Stumme

Discussion. As one can conclude from the user study, our force-directed algo-
rithm performs on a similar level to Sugiyama’s framework while outperforming
Freese’s force-directed layout. In the process of developing ReDraw we also con-
ducted a user-study that compared an early version to DimDraw which suggested
that ReDraw cannot compete with DimDraw. However, DimDraw’s exponential
run-time makes computing larger order drawings unfeasible. From the compari-
son of ReDraw and Sugiyama’s, that takes the RTD into account, we can follow
that our algorithm performs better on lattices that have a higher RTD. We
observed similar results when we computed the relative normal distributivity.
The authors of this paper thus recommend to use ReDraw for larger drawings
that are highly distributive. Furthermore, the authors observed, that ReDraw
performs better if there are repeating structures or symmetries in the lattice as
each instance of such a repetition tends to be drawn similarly. This makes it the
algorithm of choice for ordered sets that are derived from datasets containing
high degrees of symmetries. Anyway, the authors of this paper are convinced
that there is no single drawing algorithm that can produce readable drawings
for all different kinds of order diagrams. It is thus always recommended to use
a combination of different algorithms and then decide on the best drawing.

Fig. 6. Results of the user study. L: Number of votes for each algorithm. R: Share of
votes for ordered sets divided into ranges of different truncated distributivity.

6 Conclusion and Outlook

In this work we introduced our novel approach ReDraw for drawing diagrams.
Thereby we adapted a force-directed algorithm to the realm of diagram drawing.
In order to guarantee that the emerging drawing satisfies the hard conditions of
order diagrams we introduced a vertical invariant that was satisfied in every step
of the algorithm. The algorithm consists of two main ingredients, the first being
the node step that optimizes the drawing in order to represent structural prop-
erties using the proximity of nodes. The second is the line step that improves
the readability for a human reader by optimizing the distances of lines. To avoid
local minima, our drawings are first computed in a high dimension and then iter-
ativly reduced into two dimensions. To make the algorithm easily accessible, we

Force-Directed Layout of Order Diagrams Using Dimensional Reduction 239

published the source code and gave recommendations for parameters. Generated
drawings were, in our opinion, suitable to be used for ordinal data analysis. A
study using domain experts to evaluate the quality of the drawings confirmed
this observation.

Further work in the realm of order diagram drawing could be to modify the
line step and combine it with algorithms such as DimDraw. Also modifications
that produce additive drawings are of great interest and should be investigated
further. Finally, in the opinion of the authors the research fields of ordinal data
analysis and graph drawing would benefit significantly from the establishment
of a “readability measure” or at least of a decision procedure that, given two
visualizations of the same ordered set identifies the more readable one.

References

1. Albano, A., Chornomaz, B.: Why concept lattices are large: extremal theory for
generators, concepts, and vc-dimension. Int. J. Gen. Syst. 46(5), 440–457 (2017)

2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

3. Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, Ml, Wulf, L.: A greedy
heuristic for crossing-angle maximization. In: Biedl, T., Kerren, A. (eds.) GD 2018.
LNCS, vol. 11282, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04414-5 20

4. Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing order diagrams through two-
dimension extension. CoRR abs/1906.06208 (2019)

5. Eades, P.: A heuristic for graph drawing. Congressus Numer. 42, 149–160 (1984)
6. Freese, R.: Automated Lattice Drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS

(LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24651-0 12

7. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

8. Ganter, B.: Conflict avoidance in additive order diagrams. J. Univ. Comput. Sci.
10(8), 955–966 (2004)

9. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-59830-2

10. Hong, S., Eades, P., Lee, S.H.: Drawing series parallel digraphs symmetrically.
Comput. Geom. 17(3–4), 165–188 (2000)

11. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974)

12. Nishizeki, T., Rahman, M.S.: Planar graph drawing. In: Lecture Notes Series on
Computing, vol. 12. World Scientific (2004)

13. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space.
London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

14. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

https://doi.org/10.1007/978-3-030-04414-5_20
https://doi.org/10.1007/978-3-030-04414-5_20
https://doi.org/10.1007/978-3-540-24651-0_12
https://doi.org/10.1007/978-3-540-24651-0_12
https://doi.org/10.1007/978-3-642-59830-2

240 D. Dürrschnabel and G. Stumme

15. Wille, R.: Truncated distributive lattices: conceptual structures of simple-
implicational theories. Order 20(3), 229–238 (2003)

16. Yevtushenko, S.A.: Computing and visualizing concept lattices. Ph.D. thesis,
Darmstadt University of Technology, Germany (2004)

17. Zschalig, C.: An FDP-algorithm for drawing lattices. In: Eklund, P.W., Diatta, J.,
Liquiere, M. (eds.) Proceedings of the Fifth International Conference on Concept
Lattices and Their Applications, CLA 2007, Montpellier, France, 24–26, October
2007. CEUR Workshop Proceedings, vol. 331. CEUR-WS.org (2007)

Short Papers

Sandwich: An Algorithm for Discovering
Relevant Link Keys in an LKPS Concept Lattice

Nacira Abbas1(B), Alexandre Bazin1, Jérôme David2, and Amedeo Napoli1

1 Université de Lorraine, CNRS, Inria, Loria, 54000 Nancy, France
Nacira.Abbas@inria.fr, {Alexandre.Bazin,Amedeo.Napoli}@loria.fr

2 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
Jerome.David@inria.fr

Abstract. The discovery of link keys between two RDF datasets allows the iden-
tification of individuals which share common key characteristics. Actually link
keys correspond to closed sets of a specific Galois connection and can be dis-
covered thanks to an FCA-based algorithm. In this paper, given a pattern concept
lattice where each concept intent is a link key candidate, we aim at identifying the
most relevant candidates w.r.t adapted quality measures. To achieve this task, we
introduce the “Sandwich” algorithm which is based on a combination of two dual
bottom-up and top-down strategies for traversing the pattern concept lattice. The
output of the Sandwich algorithm is a poset of the most relevant link key candi-
dates. We provide details about the quality measures applicable to the selection
of link keys, the Sandwich algorithm, and as well a discussion on the benefit of
our approach.

1 Introduction

Linked data are structured data expressed in the RDF (Resource Description Frame-
work) model where resources are identified by Internationalized Resources Identifiers
(IRIs) [7]. Data interlinking is a critical task for ensuring the wide use of linked data.
It consists in finding pairs of IRIs representing the same entity among different RDF
datasets and returning a set of identity links between these IRIs. Many approaches have
been proposed for data interlinking [8–11]. In this paper, we focus on the discovery
of link keys [2]. Link keys extend the notion of a key as used in databases and allow
the inference of identity links between RDF datasets. A link key is based on two sets
of pairs of properties and a pair of classes. The pairs of properties express sufficient
conditions for two subjects, instances of the classes, to be the identical. The link key

k = ({〈designation,titre〉},{〈designation,titre〉,〈author,auteur〉},〈Book,Livre〉)

states that whenever an instance a1 from the class Book and an instance b1 from the class
Livre have the same values for the property designation and for the property titre,
and that a1 and b1 share at least one value for the properties author and auteur, then a1

and b1 denote the same entity. We say that a link key k generates the identity link 〈a1,b1〉.
A. Napoli—This work is supported by the French ANR Elker Project ANR-17-CE23-0007-01.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 243–251, 2021.
https://doi.org/10.1007/978-3-030-77867-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_15

244 N. Abbas et al.

Link keys are in general not provided and they have to be discovered in the datasets
under study. The discovery of link keys consists in extracting link key candidates from
a pair of datasets and then to evaluate their relevance for the interlinking task. The
relevance of a given link key is measured w.r.t. two criteria, (i) correctness, and (ii)
completeness.

Link key candidates correspond to closed sets of a specific Galois connection. For
this reason the question of using Formal Concept Analysis (FCA) [6] to discover link
keys was naturally raised [3]. In [4] authors proposed a formal context for the discovery
of link key candidates for a given pair of classes. However, when there is no alignment
between classes, the choice of the right pair of classes is not necessarily straightforward.
To overcome this limitation, a generalization of link key discovery based on Pattern
Structures [5] was proposed in [1]. The authors introduced a specific pattern structure
for link key candidate discovery over two datasets D1 and D2 called LK-pattern structure
without requiring an a priori alignment. An LKPS-lattice is the lattice of pattern concepts
generated from an LK-pattern structure. Each concept intent is a link key candidate and
each extent is the link set generated by the link key in the intent.

The size of an LKPS-lattice may be prohibitively large and not all link key candi-
dates are relevant for the interlinking task. Our purpose in this paper is to identify the
relevant link keys in the LKPS-lattice and to discard the irrelevant ones. The evaluation
criteria of a link key candidate, i.e., completeness and correctness, are based on adapted
evaluation measures that can be used for selecting the relevant link keys, i.e., the value
taken by a candidate for such a measure is above a given threshold. The evaluation
measures should also be monotone, i.e., increasing or decreasing, w.r.t. the order of the
LKPS-lattice. Moreover, completeness and correctness verify an “inverse” relationship,
as correctness tends to decrease when completeness increases. In this paper we rely on
this observation and we show that the upper part of an LKPS-lattice contains the most
complete but the least correct link keys, while the lower part of the LKPS-lattice contains
the most correct but the least complete link keys.

Starting from this observation, we introduce an original pruning strategy combin-
ing a “bottom-up” and a “top-down” pruning strategies, while the most relevant link
key candidates are lying “in the middle” and achieve the best compromise between
completeness and correctness. Accordingly, we propose the Sandwich algorithm that
traverse and prune the LKPS-lattice w.r.t. two measures estimating correctness and com-
pleteness. The input of this algorithm is an LKPS-lattice, a correctness measure and
a threshold, and as well a completeness measure and a threshold. The output of the
Sandwich algorithm is a poset of relevant link key candidates. To the best of our knowl-
edge, this is the first time that such an algorithm is proposed for selecting the best link
key candidates w.r.t. adapted measures. In addition, this is also an elegant way of taking
advantage of the fact that link key candidates correspond to the closed sets of a given
Galois connection which is made explicit in the following.

The organization of the paper is as follows. First we make precise definitions and
notations, and we briefly present the problem of link key discovery in a pattern structure
framework. Then we present the correctness and the completeness of link keys, and the
Sandwich algorithm for pruning an LKPS-lattice. Finally we discuss on the benefit of
our strategy.

The Sandwich Algorithm 245

2 The Discovery of Link Keys with Pattern Structures

2.1 A Definition of Link Keys

We aim to discover identity links among two RDF datasets D1 and D2. An identity
link is a statement of the form 〈s1,owl:sameAs,s2〉 expressing that the subject s1 ∈
S(D1) and the subject s2 ∈ S(D2) represent the same real-world entity. For example,
given D1 and D2 in Fig. 1, the data interlinking task should discover the identity link
〈a1,owl:sameAs,b1〉 because the subjects a1 and b1 both represent the same vaccine
"Pfizer-BioNTech". For short, we write 〈a1,b1〉 and we call this pair a link. A link
key is used to generate such links.

Fig. 1. Example of two RDF datasets. On the left-hand side, the dataset D1 populated with
instances of the classes: Vaccine and Organism. On the right-hand side, the dataset D2 pop-
ulated with instances of the classes: Drug, Virus and Bacteria.

Let us consider two RDF datasets D1 and D2, two non empty subsets of pairs of
properties, namely Eq and In, such that Eq ⊆ P(D1)×P(D2), In ⊆ P(D1)×P(D2),
Eq ⊆ In, two class expressions –conjunction or disjunction– C1 over D1 and C2 over
D2. Then k= (Eq, In,〈C1,C2〉) is a “link key” over D1 and D2. An example of a link key
is k = ({〈type,tech〉},{〈type,tech〉,〈name,designation〉},〈Vaccine,Drug〉).

A link key may or may not generate links among two datasets as made precise
here after. Let k = (Eq, In,〈C1,C2〉) be a link key over D1 and D2. The link key k

246 N. Abbas et al.

generates a link 〈s1,s2〉 ∈ S(C1)×S(C2) iff 〈s1,s2〉 verifies the link key k, i.e. (i) p1(s1)
and p2(s2) should be non empty, (ii) p1(s1) = p2(s2) for all 〈p1, p2〉 ∈ Eq, and (iii)
p1(s1)∩ p2(s2) �= /0 for all 〈p1, p2〉 ∈ In.

The set of pairs of subjects 〈s1,s2〉 ∈ S(C1)× S(C2) verifying k is called the link
set of k and denoted by L(k). As the properties in RDF are not functional, we compare
the values of subjects in two ways, (i) Eq are pairs of properties for which two subjects
share all their values, and (ii) In are those pairs of properties for which two subjects
share at least one value. Then 〈a1,b1〉 verifies k = ({〈type,tech〉},{〈type,tech〉,
〈name,designation〉},〈Vaccine,Drug〉), because 〈a1,b1〉 ∈ S(Vaccine) ×
S(Drug), and type(a1) =tech(b1), and name(a1)∩designation(b1) �= /0.

Algorithms for link key discovery [1,2,4] discover firstly the so-called “link key
candidates” and then evaluate each candidate using quality measures. The relevant link
key candidates are selected to generate identity links between datasets.

A link key candidate is defined in [4] as the intent of a formal concept computed
within a particular formal context for link key candidate discovery, given pair of classes
〈C1,C2〉 ∈Cl(D1)×Cl(D2). Actually, link keys are equivalent w.r.t. their link set, i.e.
if two link keys k1 and k2 generate the same link set then they are equivalent. Link key
candidates are maximal elements of their equivalence classes and thus correspond to
closed sets. Moreover, the set of links must not be empty for a link key candidate. This
explains the use of Formal Concept Analysis [6] in the discovery of link key candidate.

However, the pair of classes 〈C1,C2〉 ∈ Cl(D1)×Cl(D2) is not always known in
advance and thus a generalization of the existing algorithms based on Pattern Structures
was proposed in [1], as explained in the following.

2.2 A Pattern Structure for Link Key Discovery

In a pattern structure designed for the discovery of link key candidates over two datasets
[1], the set of objects is the set of pairs of subjects from the two datasets and the descrip-
tions of objects are potential link keys over these datasets. A link key candidate corre-
sponds to an intent of a pattern concept in the lattice generated from this pattern struc-
ture. Moreover the link set of a link key candidate corresponds to the extent of the
formal concept. In the following, we do not provide any definition but we recall some
important results from [1]. Moreover, for simplicity, we consider only the In set of pairs
of properties in a link key, i.e. k = (In,〈C1,C2〉) (as Eq ⊆ In).

The Lk-pattern structure for the datasets in Fig. 1 is given in Table 1. The associated
concept lattice, called an LKPS-Lattice, is displayed in Fig. 2. An example of link key can-
didate is given by k2 = ({〈name,designation〉,〈type,tech〉},〈Vaccine,Drug〉),
and the related link set is L(k2) = {〈a1,b1〉,〈a2,b2〉,〈a3,b3〉}.

3 The Pruning of an LKPS-lattice

3.1 Correction and Completeness of a Link Key Candidate

Given an LKPS-lattice, we aim at identifying the most relevant link key based on a set
of adapted interest measures. Link key relevance depends on two main criteria, namely

The Sandwich Algorithm 247

Table 1. The Lk-pattern structure over the datasets D1 and D2 represented in Fig. 1.

S(D1)×S(D2) In 〈C1,C2〉
〈a1,b1〉 {〈name,designation〉,〈type,tech〉} 〈Vaccine,Drug〉
〈a1,b2〉 {〈type,tech〉} 〈Vaccine,Drug〉
〈a2,b2〉 {〈name,designation〉,〈type,tech〉} 〈Vaccine,Drug〉
〈a2,b1〉 {〈type,tech〉} 〈Vaccine,Drug〉
〈a3,b3〉 {〈name,designation〉,〈type,tech〉} 〈Vaccine,Drug〉
〈a4,b4〉 {〈genus,gen〉,〈realm,realm〉} 〈Organism,Virus〉
〈a4,b5〉 {〈realm,realm〉} 〈Organism,Virus〉
〈a5,b5〉 {〈genus,gen〉,〈realm,realm〉} 〈Organism,Virus〉
〈a5,b4〉 {〈realm,realm〉} 〈Organism,Virus〉
〈a6,b6〉 {〈genus,gen〉,〈phylum,taxo〉} 〈Organism,Bacteria〉
〈a7,b7〉 {〈genus,gen〉,〈phylum,taxo〉} 〈Organism,Bacteria〉

Fig. 2. The LKPS-lattice generated from the Lk-pattern structure in Table 1. The different colors
distinguish the different pairs of classes.

“correctness” and “completeness”. The correctness of a link key is its ability to generate
correct links, while its completeness is its ability to generate all the correct links.

Firstly, we start from the hypothesis that the higher the number of pairs of properties
for which two subjects s1, s2 share a value is, the greater is the probability that the link
〈s1,s2〉 is correct. Then the size of the link key candidate k= (In,〈C1,C2〉) is |k| = |In|.
Moreover, the size of link keys is monotone w.r.t the intents of pattern concept intents
in an LKPS-lattice.

In [2], the measure of coverage was proposed to evaluate the completeness of a
link key candidate. The coverage of a link key k = (In,〈C1,C2〉) is defined as follows:

248 N. Abbas et al.

co(k) = |π1(L(k))∪ π2(L(k))|/|S(C1)∪ S(C2)|, where π1(L(k)) = {s1|〈s1,s2〉 ∈ L(k)}
and π2(L(k)) = {s2|〈s1,s2〉 ∈ L(k)}. The coverage is locally monotone, i.e. when the
link key candidates are associated with the same pairs of classes, the coverage is mono-
tone w.r.t extents of these candidates in the LKPS-lattice.

3.2 Sandwich: An Algorithm for Selecting the Most Relevant Link Key
Candidates

Given an LKPS-lattice, we propose the Sandwich algorithm for identifying the rele-
vant link key candidates (intents) and discarding the irrelevant candidates. The input
of Sandwich is a LKPS-lattice, a correctness measure σcor and a minimum threshold
μcor, and a completeness measure σcomp and a minimum threshold μcomp. The output
of Sandwich is the poset of all relevant link key candidates. It should be noticed that
a link key candidate may be relevant for a given pair of classes and not relevant for
another pair, i.e. a given link key candidate may generate all the correct links over a
pair of classes and no correct link over another pair. Accordingly, it is more appropri-
ate to identify relevant link keys associated with each pair of classes. Thus, in a first
step, Sandwich splits the lattice into sub-lattices where all intents are link key candi-
dates associated with the same pairs of classes. In a second step, Sandwich prunes the
sub-lattices based on correctness and completeness measures.

Regarding correctness, Sandwich retains the link key candidates k for which the
score of correctness measure σcor(k)≥ μcor. The correctness measure should be mono-
tone w.r.t. the intents in the LKPS-lattice, and the larger intents are at in the “bottom
part” of the lattice (w.r.t. the standard concept lattice order). Therefore, the most correct
link keys are lying in the lower part of the considered given LKPS-lattice and a “bottom-
up pruning strategy” is carried out. The intents of the retained concepts correspond to
link key candidates k verifying σcor(k) ≥ μcor.

The strategy for retaining the complete kink keys is roughly the same, i.e.,
Sandwich retains link key candidates k for which the score of completeness mea-
sure σcomp(k) ≥ μcomp. However, by contrast, the most complete link keys are having
the better covering w.r.t. the extents of concepts, which are lying in the “upper part”
of a given LKPS-sub-lattice. This time, a “top-down pruning strategy” is carried out,
and the extents of the retained concepts correspond to link key candidates k verifying
σcomp(k) ≥ μcomp.

Finally, the Sandwich algorithm retains the concepts which are selected at the same
time by both pruning strategies.

For illustrating the pruning strategy1, let us consider the example of LKPS(D3,D4)
displayed in Fig. 3. The correctness measure which is monotone w.r.t. intents is the size
of the link key and the threshold is set to μcor = 3 (minimum size). The completeness
measure which is monotone w.r.t extents is the coverage of a link key and the threshold is
set to μcomp = 0.9 (minimum coverage). For the pair of classes 〈Person,Personne〉, the
bottom-up pruning strategy returns all the pattern concepts whose intent size is greater
than 3, i.e., {k5,k6,k7}. The top-down pruning strategy returns all the pattern concepts

1 The datasets and the implementation generating the lattice can be checked at https://gitlab.
inria.fr/nabbas/sandwich algorithm.

https://gitlab.inria.fr/nabbas/sandwich_algorithm
https://gitlab.inria.fr/nabbas/sandwich_algorithm

The Sandwich Algorithm 249

whose coverage is above 0.9, i.e., {k4,k5}. Finally, the best link key w.r.t. to both strate-
gies is k5, and it can be used to find identity links over the RDF datasets D3 and D4.

Fig. 3. The LKPS-lattice of link key candidate over the datasets D3 and D4.

4 Discussion and Conclusion

In this paper, we have studied the problem of the discovery of link keys in an FCA
framework. We have proposed an algorithm based on pattern structures which returns
a pattern concept lattice where the intent of a pattern concept corresponds to a link
key candidate and the associated extent corresponds to the set of links related with the
link key candidate. Indeed, FCA and pattern structures are well adapted to study the
discovery of link keys above two datasets as link keys can be considered as “closed
sets”. Actually they are introduced as the maximum element in an equivalence class in
[4]. Making a parallel with equivalence classes of itemsets this emphasizes the fact that
a link key corresponds to a closed set.

Then, given the pattern concept lattice including all link key candidates, one cru-
cial problem is to select the best link keys, in the same way as one could be interested
in some “good concepts” extracted from the lattice to be checked by a domain expert.
For that we introduce a set of quality measures that can be used for checking two main
properties, namely correctness and completeness of the link keys. As a (pattern) concept
lattice is based on duality and two anti-isomorphic orders, the measures of correctness
and completeness are also behaving in a dual way. Intuitively, the correctness of a link

250 N. Abbas et al.

key measures the capability to generate correct links, and in this way, the largest link
key will be among the best link keys (w.r.t. a reference pair of classes). Dually, the com-
pleteness of a link key measures the capability to generating the largest set of links, and
such a link key will also be among the best link keys (w.r.t. a reference pair of classes).

Furthermore, following the duality principle, designing an algorithm able to dis-
cover the best link keys, i.e. reaching the best compromise between correctness and
completeness, amounts to exploring the pattern concept lattice in both and dual ways,
namely top-down and bottom-up. This is precisely the work of the Sandwich algorithm
which combines two pruning strategies, a top-down traversal and a bottom-up traver-
sal, for reaching the most complete set of links and at the same time the most correct
link key candidates. This is a straightforward illustration of the duality principle in a
(pattern) concept lattice.

Now, the Sandwich is generic and is able to work with different quality measures as
soon as they are monotone or locally monotone. For the next step, we should improve
the present research work in a number of directions. First, we should enlarge the collec-
tion of measures and include more current measures used in the FCA and data mining
communities, such as “stability” or “lift” for example. They could provide interesting
directions of investigations for characterizing link keys. Second, we should improve
the global traversal strategy and combine the characterization of link key candidates
at the construction of the pattern concept lattice if possible. In this way, each pattern
concept could be tagged with its characteristics w.r.t. a pair of classes and some quality
measures. Finally, we have run a complete set of experiments for validating the cur-
rent proposal on a real-world basis, and as well check the foundations and improve the
algorithmic part of the Sandwich algorithm.

References

1. Abbas, N., David, J., Napoli, A.: Discovery of Link Keys in RDF data based on pattern
structures: preliminary steps. In: Proceedings of CLA, pp. 235–246. CEUR Workshop Pro-
ceedings 2668 (2020)

2. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey extraction. In:
Proceedings of ECAI. pp. 15–20. IOS Press (2014)

3. Atencia, M., David, J., Euzenat, J.: What can FCA do for database linkkey extraction? In:
Proceedings of FCA4AI Workshop. pp. 85–92. CEUR Workshop Proceedings 1257 (2014)

4. Atencia, M., David, J., Euzenat, J., Napoli, A., Vizzini, J.: Link key candidate extraction with
relational concept analysis. Discrete Appl. Math. 273, 2–20 (2020)

5. Ganter, B., Kuznetsov, S.: Pattern Structures and Their Projections. In: Delugach, H.S.,
Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8 10

6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-59830-2

7. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan &
Claypool Publishers, Synthesis Lectures on the Semantic Web (2011)

8. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current link discovery
frameworks. Semant. Web 8(3), 419–436 (2017)

https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2

The Sandwich Algorithm 251

9. Ngomo, A.N., Auer, S.: LIMES - a time-efficient approach for large-scale link discovery on
the web of data. In: Proceedings of IJCAI, pp. 2312–2317. IJCAI/AAAI (2011)

10. Symeonidou, D., Armant, V., Pernelle, N.: BECKEY: understanding, comparing and discov-
ering keys of different semantics in knowledge bases. Knowl Based Syst.195, 105708 (2020)

11. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework for the web
of data. In: Proceedings of the WWW 2009 Workshop on Linked Data on the Web (LDOW).
CEUR Workshop Proceedings 538 (2009)

Decision Concept Lattice vs. Decision
Trees and Random Forests

Egor Dudyrev(B) and Sergei O. Kuznetsov(B)

National Research University Higher School of Economics, Moscow, Russia
eodudyrev@edu.hse.ru, skuznetsov@hse.ru

Abstract. Decision trees and their ensembles are very popular models
of supervised machine learning. In this paper we merge the ideas under-
lying decision trees, their ensembles and FCA by proposing a new super-
vised machine learning model which can be constructed in polynomial
time and is applicable for both classification and regression problems.
Specifically, we first propose a polynomial-time algorithm for construct-
ing a part of the concept lattice that is based on a decision tree. Second,
we describe a prediction scheme based on a concept lattice for solving
both classification and regression tasks with prediction quality compa-
rable to that of state-of-the-art models.

Keywords: Concept lattice · Decision trees · Random forest

1 Introduction

In this work we propose an approach to combining the ideas based on concept
lattices and decision trees, which are extensively used in practical machine learn-
ing (ML), in order to create a new ML model which generates good classifiers
and regressors in polynomial time.

Formal Concept Analysis (FCA) is a mathematically-founded theory well
suited for developing models of knowledge discovery and data mining [8,11,18].
One of the serious obstacles to the broad use of FCA for knowledge discovery
is that the number of formal concepts (i.e. patterns found in a data) can grow
exponentially in the size of the data [15]. Sofia algorithm [7] offers a solution to
this problem by constructing only a limited amount of most stable concepts.

Learning decision trees (DT) [5] is one of the most popular supervised
machine learning approaches. Most famous methods based on ensembles of deci-
sion trees – aimed at increasing the accuracy of a single tree – are random
forest (RF) [6] and gradient boosting over decision trees [9]. Both algorithms are
considered among the best in terms of accuracy [17].

There are a number of papers which highlight the connection between the
concept lattice and the decision tree. The work [4] states that a decision tree
can be induced from a concept lattice. In [16] the author compares the ways
the concept lattice and the decision tree can be used for supervised learning.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 252–260, 2021.
https://doi.org/10.1007/978-3-030-77867-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_16&domain=pdf
http://orcid.org/0000-0002-2144-3308
http://orcid.org/0000-0003-3284-9001
https://doi.org/10.1007/978-3-030-77867-5_16

Decision Lattice 253

Finally, in [12] the authors provide a deep mathematical explanation on the
connection between the concept lattice and the decision tree.

In this paper we develop the previous work in a more practical way. We
show that the decision tree (and its ensembles) can induce a subset of concepts
of the concept lattice. We propose a polynomial-time algorithm to construct a
supervised machine learning model based on a concept lattice with prediction
quality comparable to that of the state-of-the-art models.

2 Basic Definitions

For standard definitions of FCA and decision trees we refer the reader to [10]
and [5], respectively.

In what follows we describe algorithms for binary attributes, numerical data
can be processed by means of interval pattern structures or can be scaled to
binary contexts [13].

3 Construct a Concept Lattice via a Set of Decision Trees

Definition 1 (Classification rule). Let M be a set of attributes of a context K

and Y be a set of “target” values. A pair (ρ, ŷρ), ρ ⊆ M, ŷρ ∈ Y is a classification
rule where ρ is called a premise and ŷρ is a target prediction.

Applied to object g ⊆ G it can be interpreted as “if the description of g
falls under the premise ρ, then object g should have the target value ŷρ” or
“if ρ ⊆ g′ ⇒ ŷρ”.

In the case of classification task Y can be represented either as a set {0, 1}:
Y = {y ∈ {0, 1}}|G|

i=1 or a set of probabilities of a positive class: Y = {y ∈
[0, 1]}|G|

i=1. In the case of regression task target value Y is a set of real valued
numbers: Y = {y ∈ R}|G|

i=1.
We can define a decision tree DT as a partially ordered set (poset) of classi-

fication rules:

DT ⊆ {(ρ, ŷρ) | ρ ⊆ M, ŷρ ∈ Y } (1)

where by the order of classification rules we mean the inclusion order on their
premises:

(ρ1, ŷρ1) ≤ (ρ2, ŷρ2) ⇔ ρ1 ⊆ ρ2 (2)

Here we assume that a decision tree is a binary tree, i.e. its node is either a
leaf (has no children) or has exactly 2 children nodes.

The other property of a decision tree is that each premise of its classification
rules describes its own unique subset of objects:

∀(ρ1, ŷρ1) ∈ DT, �(ρ2, ŷρ2) ∈ DT : ρ′
1 = ρ′

2 (3)

These simple properties result in an idea that 1) we can construct a concept
lattice by closing premises of a decision tree, 2) join semilattice of such concept
lattice is isomorphic to a decision tree.

254 E. Dudyrev and S. O. Kuznetsov

Proposition 1. Let K = (G,M, I) be a formal context, L(K) be a lattice of the
context K. A subset of formal concepts LDT (K) forming a lattice can be derived
from the decision tree DT (K) constructed from the same context as:

LDT = {(ρ′, ρ′′) | ∀(ρ′, ŷρ) ∈ DT (K)} ∪ {(M ′,M)} (4)

Proposition 2. Join-semilattice of a concept lattice LDT is isomorphic to the
decision tree DT .

Proof. Given two classification rules (ρ1, ŷρ1), (ρ1, ŷρ1) ∈ DT let us consider two
cases:

1. ρ1 ⊆ ρ2 ⇒ (ρ′
1, ρ

′′
1) ≤ (ρ′

2, ρ
′′
2)

2. ρ1 	⊆ ρ2, ρ2 	⊆ ρ1 ⇒ ∃m ∈ M : m ∈ ρ1,¬m ∈ ρ2 ⇒ (ρ′
1, ρ

′′
1) 	≤

(ρ′
2, ρ

′′
2), (ρ′

2, ρ
′′
2) 	≤ (ρ′

1, ρ
′′
1)

Thus the formal concepts from the join-semilattice of LDT possess the same
partial order as the classification rules from DT .

Since we can construct a concept lattice from a decision tree and there is
a union operation for concept lattices then we can construct a concept lattice
which will correspond to a “union” of a number of independent decision trees
(i.e. a random forest).

Proposition 3. Let K = (G,M, I) be a formal context, L(K) be a lattice of the
context K. A subset of formal concepts LRF (K) of the concept lattice L(K) form-
ing a lattice can be obtained from a random forest, i.e. from a set of m decision
trees constructed on subsets of a formal context DTi(Ki), i = 1, ...,m,Ki ⊆ K:

LRF (K) =
m⋃

i=1

LDTi
(Ki) (5)

The size of the lattice LRF is close to the size of the underlying random
forest RF : |LRF | ∼ |RF | ∼ O(mG log(G)), where m is the number of trees in
RF [3]. According to [2] the time complexity of constructing a decision tree is
O(MG2 log(G)). Several algorithms for constructing decision trees and random
forests are implemented in various libraries and frameworks like Sci-kit learn1 ,
H2O2 , Rapids3 . The latter is even adapted to be run on GPU.

Thus, our lattice construction algorithm has two steps:

1. Construct a random forest RF
2. Use random forest RF to construct a concept lattice LRF (by Eq. 3)

Both strong and weak side of this algorithm is that it relies on a supervised
machine learning model, so it can be applied only if target labels Y are given.
In addition, the result set of concepts may not be optimal w.r.t. any concept
interestingness measure [14]. Though it is natural to suppose that such set of
concepts should be reasonable for supervised machine learning tasks.
1 https://scikit-learn.org/stable/modules/ensemble.html#random-forests.
2 http://h2o-release.s3.amazonaws.com/h2o/master/1752/docs-website/datascience/
rf.html.

3 https://docs.rapids.ai/api/cuml/stable/api.html#random-forest.

https://scikit-learn.org/stable/modules/ensemble.html#random-forests
http://h2o-release.s3.amazonaws.com/h2o/master/1752/docs-website/datascience/rf.html
http://h2o-release.s3.amazonaws.com/h2o/master/1752/docs-website/datascience/rf.html
https://docs.rapids.ai/api/cuml/stable/api.html#random-forest

Decision Lattice 255

4 Decision Lattice

Given a formal concept (A,B) we can use its intent B as a premise of a classifi-
cation rule (B, ŷB).

The target prediction ŷB of such classification rule (B, ŷB) can be estimated
via an aggregation function over the set {yg | ∀g ∈ A}. In what follows we use
the average aggregation function:

ŷB =
1

|A|
∑

∀g∈A

yg (6)

Let us define a decision lattice (DL) as a poset of classification rules.

Definition 2. Let M be a set of attributes of a formal context K and Y be a set
of target values. Then a poset of classification rules is called a decision lattice
DL if a premise of each classification rule of DL describes its own unique subset
of objects (similar to DT in Eq. 3).

Decision lattice DL can be constructed from a concept lattice L as follows:

DL = {(B, ŷB) | (A,B) ∈ L} (7)

where ŷB can be computed in various ways (we use the Eq. 6).
To get a final prediction ŷg for an object g a decision tree DT firstly selects

all the classification rules DT g describing the object g. Then it uses the target
prediction of the maximal classification rule from DT g

DT g = {(ρ, ŷρ) ∈ DT | ρ ⊆ g′} (8)
DT g

max = {(ρ, ŷρ) ∈ DT g | �(ρ1, ŷρ1) ∈ DT g : ρ ⊂ ρ1} (9)
ŷg = ŷρ, (ρ, ŷρ) ∈ DT g

max (10)

We use the same algorithm to get a final prediction ŷg for an object g by a
decision lattice DL. The only difference is that when the subset DT g

max always
contains only one classification rule a subset DLg

max may contain many. In this
case we average the predictions of maximal classification rules DLg

max:

ŷg =
1

|DLg
max|

∑

(ρ,ŷρ)∈DLg
max

ŷρ (11)

Let us consider the fruit context K = (G,M, I) and fruit label Y presented
in Table 1. We want to compare the way decision lattice makes an estimation of
the label ymango of object mango when this object is included in the train or the
test context.

Figure 1 represents decision lattices constructed upon fruit context with (on
the left) and without (in the center) mango object. In both cases we show only
the classification rules which cover (describe) mango object.

256 E. Dudyrev and S. O. Kuznetsov

Table 1. Fruit context and fruit labels

Objects G Attributes M Label Y

Firm Smooth Color Form Fruit

Yellow Green Blue White Round Oval Cubic

Apple X X X 1

Grapefruit X X 1

Kiwi X X 1

Plum X X X 1

Toy cube X X X X 0

Egg X X X X 0

Tennis ball X X 0

Mango X X X 1

The left picture represents a decision lattice with 8 classification rules and
1 single maximal classification rule: (“color is green & form is oval & smooth”,
1). Therefore we use this classification rule to predict the target label of mango.

The picture in the center shows a decision lattice with 6 classification rules and
2 maximal classification rules: (“color is green & form is oval”, 1), (“form is oval
& smooth”, 1/2). We average the target predictions of these classification rules to
get a final prediction of 3/4 as shown in the picture on the right.

Fig. 1. Example of prediction of mango object

5 Experiments

We compare our decision lattice (DL) approach with the most popular machine
learning models on real world datasets. One can reproduce the results by running
Jupyter notebooks stored on GitHub [1]. Decision lattice models are implemented
in open-source Python library for FCA which is called FCApy and located in
the same GitHub repository.

We use ensembles of 5 and 10 decision trees to construct decision lattice
models DL RF 5 and DL RF 10, respectively. The same ensemble of 5 decision
trees is used by random forest models RF 5. Thus, we can compare prediction

Decision Lattice 257

qualities of DL RF 5 and RF 5 based on the same set of decision trees (and,
consequently, classification rules).

The non-FCA model we use for the comparison are decision tree (DT), ran-
dom forest (RF) and gradient boosting (GB) from sci-kit learn library, gradient
boostings from LightGBM (LGBM), XGBoost (XGB), CatBoost (CB) libraries.

We also test Sofia algorithm [7] as a polynomial-time approach to construct
a decision lattice DL Sofia. We compute only 100 of most stable concepts by
Sofia algorithm because of its time inefficiency.

Metadata of the datasets is given in Table 2.

Table 2. Description of the datasets

Dataset name Task type # Instances # Attributes

Adulta Bin. class 48842 14

Amazonb Bin. class 32770 10

Bankc Bin. class 45211 17

Breastd Bin. class 569 32

Hearte Bin. class 303 75

Kickf Bin. class 72984 34

Mammographicg Bin. class 961 6

Seismich Bin. class 2584 19

Bostoni Regression 506 14

Calhousej Regression 20640 8

Diabetesk Regression 442 10
ahttps://archive.ics.uci.edu/ml/datasets/Adult
bhttps://www.kaggle.com/c/amazon-employee-
access-challenge/data
chttps://archive.ics.uci.edu/ml/datasets/
bank+marketing
dhttps://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)
ehttps://archive.ics.uci.edu/ml/datasets/
heart+Disease
f https://www.kaggle.com/c/DontGetKicked/data?
select=training.csv
ghttp://archive.ics.uci.edu/ml/datasets/
mammographic+mass
hhttps://archive.ics.uci.edu/ml/datasets/seismic-
bumps
ihttps://archive.ics.uci.edu/ml/machine-learning-
databases/housing
jhttps://scikit-learn.org/stable/datasets/
real world.html#california-housing-dataset
khttps://scikit-learn.org/stable/datasets/
toy dataset.html#diabetes-dataset

Table 3. Weighted average percentage
error (best model delta)

Model Boston Calhouse Diabetes Mean delta

Train Test Train Test Train Test Train Test

DL RF 5 0.02 0.06 0.14 0.05 0.05 0.00 0.07 0.04

DL RF 10 0.01 0.07 0.13 0.04 0.01 0.01 0.05 0.04

DL Sofia 0.29 0.20 0.40 0.11 0.35 0.16

DT 0.00 0.05 0.00 0.09 0.00 0.12 0.00 0.09

RF 5 0.05 0.01 0.14 0.04 0.15 0.02 0.12 0.03

RF 0.04 0.00 0.06 0.02 0.12 0.00 0.07 0.01

GB 0.05 0.00 0.17 0.02 0.16 0.00 0.13 0.01

LGBM 0.04 0.01 0.13 0.00 0.11 0.00 0.09 0.01

CB 0.02 0.00 0.13 0.00 0.06 0.00 0.07 0.00

Best result 0.00 0.14 0.00 0.21 0.00 0.31 0.00 0.22

For each dataset we use 5-fold cross-validation. We compute F1-score to
measure the predictive quality of classification and weighted average percentage
error (WAPE) to that of regression. In Tables 3, 4 we show the difference between
the metric value of the model and the best obtained metric value among all
methods.

As can be seen from Tables 3, 4 DL RF model does not always show the best
result among all the tested models, though its prediction quality is comparable
to the state-of-the-art.

https://archive.ics.uci.edu/ml/datasets/Adult
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://www.kaggle.com/c/DontGetKicked/data?select=training.csv
https://www.kaggle.com/c/DontGetKicked/data?select=training.csv
http://archive.ics.uci.edu/ml/datasets/mammographic+mass
http://archive.ics.uci.edu/ml/datasets/mammographic+mass
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://archive.ics.uci.edu/ml/machine-learning-databases/housing
https://archive.ics.uci.edu/ml/machine-learning-databases/housing
https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset
https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset
https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset
https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset

258 E. Dudyrev and S. O. Kuznetsov

T
a
b
le

4
.
F
1
sc
o
re

(b
es
t
m
o
d
el

d
el
ta
)

M
o
d
e
l

A
d
u
lt

A
m
a
z
o
n

B
a
n
k

B
re
a
st

H
e
a
rt

K
ic
k

M
a
m
m
.

S
e
is
m
ic

M
e
a
n

d
e
lt
a

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

T
ra

in
T
e
st

D
L

R
F

5
−
0
.3
5

−
0
.0
6

−
0
.0
1

−
0
.0
0

−
0
.4
1

−
0
.1
6

−
0
.0
1

−
0
.0
1

−
0
.0
3

−
0
.0
2

−
0
.5
9

−
0
.0
3

−
0
.0
3

−
0
.0
2

−
0
.2
4

−
0
.1
5

−
0
.2
1

−
0
.0
5

D
L

R
F

1
0

−
0
.3
3

−
0
.0
5

−
0
.0
1

−
0
.0
0

−
0
.3
7

−
0
.1
4

−
0
.0
0

−
0
.0
0

−
0
.0
1

0
.0
0

−
0
.5
8

−
0
.0
3

−
0
.0
1

−
0
.0
2

−
0
.1
3

−
0
.1
5

−
0
.1
8

−
0
.0
5

D
L

S
o
fi
a

−
1
.0
0

−
0
.9
5

−
0
.3
3

−
0
.2
7

−
0
.8
7

−
0
.7
2

−
1
.0
0

−
0
.1
5

−
0
.8
0

−
0
.5
2

D
T

0
.0
0

−
0
.1
0

−
0
.0
0

−
0
.0
1

0
.0
0

−
0
.2
4

0
.0
0

−
0
.0
6

0
.0
0

−
0
.1
5

0
.0
0

−
0
.0
5

−
0
.0
0

−
0
.0
8

0
.0
0

0
.0
0

−
0
.0
0

−
0
.0
9

R
F

5
−
0
.3
5

−
0
.0
5

−
0
.0
1

−
0
.0
0

−
0
.4
1

−
0
.1
2

−
0
.0
1

−
0
.0
1

−
0
.0
5

−
0
.0
7

−
0
.6
0

−
0
.0
2

−
0
.0
4

−
0
.0
2

−
0
.3
6

−
0
.0
7

−
0
.2
3

−
0
.0
5

R
F

−
0
.0
0

−
0
.0
4

0
.0
0

0
.0
0

0
.0
0

−
0
.1
1

0
.0
0

0
.0
0

0
.0
0

−
0
.0
0

−
0
.0
0

−
0
.0
1

0
.0
0

−
0
.0
3

−
0
.0
0

−
0
.1
2

−
0
.0
0

−
0
.0
4

G
B

−
0
.3
6

−
0
.0
2

−
0
.0
1

−
0
.0
0

−
0
.4
7

0
.0
0

0
.0
0

−
0
.0
1

−
0
.0
7

−
0
.0
1

−
0
.6
2

−
0
.0
0

−
0
.0
7

0
.0
0

−
0
.4
2

−
0
.0
9

−
0
.2
5

−
0
.0
2

L
G
B
M

−
0
.3
1

−
0
.0
0

−
0
.0
1

−
0
.0
0

−
0
.3
2

−
0
.0
4

0
.0
0

−
0
.0
2

0
.0
0

−
0
.0
3

−
0
.6
0

−
0
.0
0

−
0
.0
3

−
0
.0
2

−
0
.0
0

−
0
.1
1

−
0
.1
6

−
0
.0
3

C
B

−
0
.3
1

0
.0
0

−
0
.0
1

−
0
.0
0

−
0
.3
1

−
0
.0
5

0
.0
0

−
0
.0
1

−
0
.0
1

−
0
.0
1

−
0
.5
9

0
.0
0

−
0
.0
4

−
0
.0
1

−
0
.3
3

−
0
.1
3

−
0
.2
0

−
0
.0
2

B
e
st

re
su

lt
1
.0
0

0
.6
5

0
.9
8

0
.9
7

1
.0
0

0
.4
8

1
.0
0

0
.9
5

1
.0
0

0
.7
6

1
.0
0

0
.3
5

0
.9
5

0
.8
1

1
.0
0

0
.1
5

0
.9
9

0
.6
4

Decision Lattice 259

DL Sofia model shows the worst results. There may be 2 reasons for this.
First, it uses only a hundred of concepts. Second, we use Sofia algorithm to find
one of the most stable concepts, but not the ones which minimize the loss.

Figure 2 shows the time needed to construct a lattice by the sets of
5 (DL RF 5) and 10 (DL RF 10) decision trees and by Sofia algorithm
(DL Sofia). The lattice can be constructed in a time linear in the number
of objects in the given data.

Fig. 2. Time needed to construct a lattice

6 Conclusions

In this paper we have introduced a new concept-based method to classifica-
tion and regression. The proposed method constructs concept-based classifiers
obtained with decision trees and random forests. This method is quite efficient
and can be used for big datasets. We have shown that our approach is non-
inferior to the predictive quality of the state-of-the-art competitors.

In the future work we plan to extend the algorithm for constructing decision
trees in the case of data given by pattern structures.

Acknowledgments. The work of Sergei O. Kuznetsov on the paper was carried out
at St. Petersburg Department of Steklov Mathematical Institute of Russian Academy
of Science and supported by the Russian Science Foundation grant no. 17-11-01276

References

1. Experiments source code. https://github.com/EgorDudyrev/FCApy/tree/main/
notebooks/DecisionLattice evaluation

2. Sci-kit learn description of decision trees. https://scikit-learn.org/stable/modules/
tree.html

3. Sci-kit learn description of random forest. https://scikit-learn.org/stable/modules/
ensemble.html#parameters

https://github.com/EgorDudyrev/FCApy/tree/main/notebooks/DecisionLattice_evaluation
https://github.com/EgorDudyrev/FCApy/tree/main/notebooks/DecisionLattice_evaluation
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/ensemble.html#parameters
https://scikit-learn.org/stable/modules/ensemble.html#parameters

260 E. Dudyrev and S. O. Kuznetsov

4. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Inducing decision trees
via concept lattices (2007)

5. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression
Trees. Taylor & Francis, New York (1984)

6. Breiman, L.: Random forests. Machine Learning (2001)
7. Buzmakov, A., Kuznetsov, S., Napoli, A.: Sofia: How to make FCA polynomial?

In: FCA4AI@IJCAI (2015)
8. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S., Napoli, A., Rassi, C.: FCA and

pattern structures for mining care trajectories. In: CEUR Workshop Proceedings,
vol. 1058 (2013)

9. Drucker, H., Cortes, C.: Boosting decision trees, vol. 8, pp. 479–485 (1995)
10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Berlin Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2
11. Kaytoue, M., Kuznetsov, S., Napoli, A., Duplessis, S.: Mining gene expression data

with pattern structures in formal concept analysis. Inf. Sci. 181, 1989–2001 (2011)
12. Krause, T., Lumpe, L., Schmidt, S.: A link between pattern structures and random

forests. In: CLA (2020)
13. Kuznetsov, S.: Pattern structures for analyzing complex data, vol. 5908, pp. 33–44

(2009)
14. Kuznetsov, S., Makhalova, T.: On interestingness measures of formal concepts. Inf.

Sci. 442 (2016)
15. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating

concept lattices. J. Exp. Theor. Artif. Intell. 14, 189–216 (2002)
16. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.

(ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24651-0 25

17. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost:
unbiased boosting with categorical features (2019)

18. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp.
314–339. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01815-
2 23

https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/978-3-642-01815-2_23
https://doi.org/10.1007/978-3-642-01815-2_23

Exploring Scale-Measures of Data Sets

Tom Hanika1,2 and Johannes Hirth1,2(B)

1 Knowledge and Data Engineering Group, University of Kassel, Kassel, Germany
{tom.hanika,hirth}@cs.uni-kassel.de

2 Interdisciplinary Research Center for Information System Design,
University of Kassel, Kassel, Germany

Abstract. Measurement is a fundamental building block of numerous
scientific models and their creation in data driven science. Due to the
high complexity and size of modern data sets, it is necessary to develop
understandable and efficient scaling methods. A profound theory for scal-
ing data is scale-measures from formal concept analysis. Recent devel-
opments indicate that the set of all scale-measures for a given data set
constitutes a lattice. In this work we study the properties of said lattice
and propose a novel and efficient scale-measure exploration algorithm,
motivating multiple applications for (semi-)automatic scaling.

Keywords: Measurements · Data scaling · Formal concepts · Lattices

1 Introduction

An inevitable step of any data-based knowledge discovery process is measure-
ment [14] and the associated (explicit or implicit) scaling of the data [17]. The
latter is particularly constrained by the underlying mathematical formulation of
the data representation, e.g., real-valued vector spaces or weighted graphs, the
requirements of the data procedures, e.g., the presence of a distance function,
and, more recently, the need for human understanding of the results. Consider-
ing the scaling of data as part of the analysis itself, in particular formalizing it
and thus making it controllable, is a salient feature of formal concept analysis
(FCA) [5]. This field of research has spawned a variety of specialized scaling
methods, such as logical scaling [15], and in the form of scale-measures links the
scaling process with the study of continuous mappings between closure systems.

Recent results by the authors [11] revealed that the set of all scale-measures
for a given data set constitutes a lattice. Furthermore, it was shown that any
scale-measure can be expressed in simple propositional terms using disjunction,
conjunction and negation. Among other things, the previous results allow a com-
putational transition between different scale-measures, which we may call scale-
measure navigation, as well as their interpretability by humans. Despite these
advances, the question of how to identify appropriate and meaningful scale-
measures for a given data set with respect to a human data analyst remains

Authors are given in alphabetical order. No priority in authorship is implied.

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 261–269, 2021.
https://doi.org/10.1007/978-3-030-77867-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_17

262 T. Hanika and J. Hirth

unanswered. In this paper, we propose an answer by adapting the well-known
attribute exploration algorithm from FCA to present a method for exploring scale
measures. Very similar to the original algorithm does scale-measure exploration
inquire a (human) scaling expert for how to aggregate, separate, omit, or intro-
duce data set features. Our efforts do finally result in a (semi-)automatic scaling
framework. Please note, some proofs are outsourced to the journal version [10].

2 Scales and Measurement

Formalizing and understanding the process of measurement is, in particular in
data science, an ongoing discussion, for which we refer the reader to Represen-
tational Theory of Measurement [13,18] as well as Numerical Relational Struc-
ture [14], and algebraic (measurement) structures [16, p. 253]. Formal concept
analysis (FCA) is well equipped to handle and comprehend data scaling tasks.
Within this work we use the standard notation, as introduced by B. Ganter and
R. Wille [5]. A fundamental approach to comprehensible scaling, in particular
for nominal and ordinal data as studied in this work, is the following.

ha
s
lim

bs
(L

)
br
ea
st

fe
ed

s
(B

F
)

ne
ed

s
ch

lo
ro
ph

yl
l
(C

h)
ne

ed
s
w
at
er

to
liv

e
(W

)
liv

es
on

la
nd

(L
L
)

liv
es

in
w
at
er

(L
W

)
ca
n
m
ov
e

(M
)

m
on

o c
ot
yl
ed

on
(M

C
)

di
co
ty
le
do

n
(D

C
)

dog × × × × ×
fish
leech × × ×
corn × × × ×
bream × × × ×
water
weeds × × × ×
bean × × × ×
frog × × × × ×
reed × × × × ×

frog reed

dog
BF

bream
ww cornbean

DCfish leech

MC
L

LWM Ch

LL

W

Fig. 1. This figure shows the Living Beings and Water context in the top. Its concept
lattice is displayed at the bottom and contains nineteen concepts.

Definition 1 (Scale-Measure (cf. Definition 91, [5])). Let K = (G,M, I)
and S = (GS,MS, IS) be formal contexts. The map σ : G → GS is called an
S-measure of K into the scale S iff the preimage σ−1(A) := {g ∈ G | σ(g) ∈ A}
of every extent A ∈ Ext(S) is an extent of K.

This definition resembles the idea of continuity between closure spaces
(G1, c1) and (G2, c2). We say that the map f : G1 → G2 is continuous if and
only if for all A ∈ P(G2) we have c1(f−1(A)) ⊆ f−1(c2(A)). In the light of the
definition above we understand σ as an interpretation of the objects from K

in S. Therefore we view the set σ−1(Ext(S)) :=
⋃

A∈Ext(S) σ−1(A) as the set of
extents that is reflected by the scale context S.

Exploring Scale-Measures of Data Sets 263

We present in Fig. 2 the scale-context for some scale-measure and its concept
lattice, derived from our running example context Living Beings and Water
KW, cf. Fig. 1. This scaling is based on the original object set G, however, the
attribute set is comprised of nine, partially new, elements, which may reflect
species taxons. We observe in this example that the concept lattice of the scale-
measure context reflects twelve out of the nineteen concepts from B(KW).

W LW plants animals land plants water plants land animal water animal mammal
dog × × × ×
fish
leech × × × ×
corn × × ×
bream × × × ×
water
weeds × × × ×
bean × × ×
frog × × × × ×
reed × × × × ×

plants := Ch
animals := M
land plants := LL ∧ plant
water plants := LW ∧ plant
land animal := LL ∧ animal
water animal := LW ∧ animal
mammal := animal ∧ BF

frog reed

dog
BF

bream
ww cornbean

DCfish leech

MC
L

LWM Ch

LL

W

⇒

W

frog reed

dog
mammal fish

leech,
bream

water animal
water
weeds

water plant

land animal
corn,
bean

land plant

animal LW plant

∼=

{}

frog reed

{R}dog

{D}
fish leech,

bream
water weeds

corn, bean

{Co, Be, R}

{D, FL,
Br, F}

{FL, Br,
WW, F, R}

{Co, WW,
Be, R}

{D}

{D, F}

Fig. 2. A scale context (top), its concept lattice (bottom middle) for which idG is a
scale-measure of the context in Fig. 1. The reflected extents by the scale σ−1(Ext(S))
of the scale-measure are indicated in gray in the contexts concept lattice (bottom
left). The concept lattice on the bottom right is the output scale of the scale-measure
exploration algorithm and is discussed in Sect. 4. The employed object order is: Be >
Co > D > WW > FL > Br > F > R

In our work [11] we derived a scale-hierarchy on the set of scale-measures, i.e.,
S(K) := {(σ,S) | σ is a S−measure of K}, from a natural order of scales intro-
duced by Ganter and Wille [5, Definition 92]). We say for two scale-measures
(σ,S), (ψ,T) that (ψ,T) is coarser then (σ,S), iff ψ−1(Ext(T)) ⊆ σ−1(Ext(S)),
denoted (ψ,T) ≤ (σ,S). This also yields a natural equivalence relation ∼, which
in turn, allowed for the definition [11] of a scale-hierarchy S(K) = (S(K)/∼,≤).
For any given context K, the scale-hierarchy is lattice ordered [11] and isomor-
phic to the set of all sub-closure systems of Ext(K) ordered by ⊆. To show
this, we defined a canonical representation of scale-measures, using the so-called
canonical scale KA := (G,A,∈) for A ⊆ Ext(K) with Ext(KA) = A. In fact, for
context K and (S, σ) ∈ S(K) a scale-measure, then (σ,S) ∼ (id,Kσ−1(Ext(S))).

264 T. Hanika and J. Hirth

We argued in [11] that the canonical representation eludes human explanation
to some degree. To remedy this issue by means of logical scaling [15] we used
scales with logical attributes MS ⊆ L(M, {∧,∨,¬}) ([11, Problem 1]). Let m ∈
M , then we define Im = I ∩ G × {m}, gIφ1∧φ2(φ1 ∧ φ2) iff gIφ1φ1 ∧ gIφ2φ2),
gIφ1∨φ2(φ1 ∨ φ2) iff gIφ1φ1 ∨ gIφ2φ2, and gI¬φ(¬φ) iff not gIφφ.

Proposition 1 (Conjunctive Normalform (cf. Proposition 23, [11])).
Let K be a context, (σ,S) ∈ S(K). Then the scale-measure (ψ,T) ∈ S(K) given
by ψ = idG and T = |A∈σ−1(Ext(S))(G, {φ = ∧ AI}, Iφ) is equivalent to (σ,S)
and is called conjunctive normalform of (σ,S).

3 Ideals in the Lattice of Closure Systems

The goal for the main part is to identify outstanding and particularly inter-
esting data scalings. This quest leads to the natural question for a structural
understanding of the scale-hierarchy. In order to do this we rely on the isomor-
phism [11, Proposition 11] between a context’s scale-hierarchy S(K) and the
lattice of all sub-closure systems of Ext(K). The latter forms an order ideal,
denoted by ↓FG

Ext(K), in the lattice FG of all closure systems on G. This ideal
is well-studied [1]. We may omit G in ↓FG

Ext(K) to improve the readability.
Equipped with this structure we have to recall a few notions and defini-

tions for a complete lattice (L,≤). In the following, we denote by ≺ the cover
relation of ≤. Furthermore, we say L is 1) lower semi-modular if and only if
∀x, y ∈ L : x ≺ x ∨ y =⇒ x ∧ y ≺ y, 2) join-semidistributive iff ∀x, y, z ∈ L :
x ∨ y = x ∨ z =⇒ x ∨ y = x ∨ (y ∧ z), 3) meet-distributive (lower locally
distributive, cf [1]) iff L is join-semidistributive and lower semi-modular, 4) join-
pseudocomplemented iff for any x ∈ L the set {y ∈ L | y ∨ x = �} has a least, 6)
ranked iff there is a function ρ : L �→ N with x ≺ y =⇒ ρ(x) + 1 = ρ(y),
7) atomistic iff every x ∈ L can be written as the join of atoms in L. In
addition to the just introduced lattice properties, there are properties for ele-
ments in L that we consider. An element x ∈ L is 1) neutral iff every triple
{x, y, z} ⊆ L generates a distributive sublattice of L, 2) distributive iff the equal-
ities x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for every
y, z ∈ L hold, 3) meet irreducible iff x �= � and

∧
y∈Y y for Y ⊆ L implies x ∈ Y ,

4) join irreducible iff x �= ⊥ and
∨

y∈Y y for Y ⊆ L implies x ∈ Y . For the rest
of this work, we denote by M(L) the set of all meet-irreducible elements of L.

We can derive from literature [1, Proposition 19] the following statement.

Corollary 1. For K = (G,M, I), ↓ Ext(K) ⊆ FG and R,R′ ∈ ↓ Ext(K) that:
R′ ≺ R ⇐⇒ R′ ∪ {A} = R with A is meet-irreducible in R.

Of special interest in lattices are the (meet-) join-irreducibles, since every
element of a lattice can be represented as a (meet) join of these elements.

Proposition 2. For K, ↓ Ext(K) ⊆ FG and R ∈↓ Ext(K): R is join-irreducible
in ↓ Ext(K) ⇐⇒ ∃A ∈ Ext(K) \ {G} : R = {G,A}

Exploring Scale-Measures of Data Sets 265

Next, we investigate the meet-irreducibles of ↓ Ext(K) using a similar app-
roach as done for FG [1] based on propositional logic. We recall, that an (object)
implication for some context K is a pair (A,B) ∈ P(G) × P(G), shortly
denoted by A → B. We say A → B is valid in K iff A′ ⊆ B′. The set
FA,B := {D ⊆ G : A �⊆ D ∨ B ⊆ D} is the set of all models of A → B.
Additionally, FA,B |Ext(K) := FA,B ∩Ext(K) is the set of all extents D ∈ Ext(K)
that are models of A → B. The set FA,B is a closure system [1] and therefor
FA,B |Ext(K), too. Furthermore, we can deduce that FA,B |Ext(K) ∈↓ Ext(K).

Lemma 1. For context K, ↓ Ext(K) ⊆ FG, R ∈ ↓ Ext(K) with closure operator
φR we find R =

⋂{FA,B |Ext(K) | A,B ⊆ G ∧ B ⊆ φR(A)}.

For R ∈ ↓ Ext(K) the set {FA,B |Ext(K) | A,B⊆G ∧ B⊆φR(A)} contains only
closure systems in ↓ Ext(K) and thus possibly meet-irred. elements of ↓ Ext(K).

Proposition 3. For context K, ↓ Ext(K) ⊆ FG and R ∈ ↓ Ext(K): 1. R is
meet-irreducible in ↓ Ext(K) 2. ∃A ∈ Ext(K), i ∈ G with A ≺Ext(K) (A ∪ {i})′′

such that R = FA,{i}|Ext(K)

Propositions 2 and 3 provide a characterization of irreducible elements in
↓Ext(K) and thereby in the scale-hierarchy of K. Those may be of particular
interest, since any element of ↓Ext(K) is representable by irreducible elements.
Equipped with this characterization we look into counting the irreducibles.

Proposition 4. For context K, the number of meet-irreducible elements in the
lattice ↓ Ext(K) ⊆ FG is equal to |≺↓Ext(K)|.

Next, we turn ourselves to other lattice properties of ↓ Ext(K).

Lemma 2 (Join Complement). For K, ↓ Ext(K) ⊆ FG and R ∈ ↓ Ext(K),
the set R̂ =

∨
A∈M(Ext(K))\M(R){A,G} is the inclusion minimum closure-system

for which R ∨ R̂ = Ext(K).

All the above results in the following statement about ↓ Ext(K):

Proposition 5. For any context K, the lattice ↓ Ext(K) ⊆ FG is: i) join-
semidistributive ii) lower semi-modular iii) meet-distributive iv) join-pseudo-
complemented v) ranked vi) atomistic

4 Recommending Conceptual Scale-Measures

For the task of efficiently determining a scale-measure, based on human pref-
erences, we propose the following approach. Motivated by the representation of
meet-irreducible elements in the scale-hierarchy through object implications of
the context ((Proposition 3), we employ the dual of the attribute exploration algo-
rithm [6] by Ganter. We modified said algorithm toward exploring scale-measures

266 T. Hanika and J. Hirth

Algorithm 1: Scale-measure Exploration: A modified Exploration with
Background Knowledge
Input : Context K = (G, M, I)
Output: (idG, S) ∈ S(K) and optionally LS

Init Scale S = (G, ∅, ∈)
Init A = ∅,LS = CanonicalBase(K) (or LS = {} for larger contexts)
while A �= G do

while A �= AISIS do
if Further differentiate objects having AISISIK

by attributes in AIK \ AISISIK? then
LS = LS ∪ {A → AISIS}
Exit While

else
Enter B ⊆ AIK \ (A)ISISIK that should be considered
Add attribute BIK to S

A =Next Closure(A, G, LS)

return : (idG, S) and optionally L

and present its pseudo-code in Algorithm 1. In this depiction we highlighted our
modifications with respect to the original exploration algorithm (Algorithm 19,
[7]) with darker print. This algorithm semi-automatically computes a scale con-
text S and its canonical base. In each iteration of the inner loop of our algorithm
the query that is stated to the scaling expert is if an object implication A → B
is true in the closure system of user preferences. If the implication holds, it is
added to the implicational base of S and the algorithm continues with the next
query. Otherwise a counter example in the form of a closed set C ∈ Ext(K)
with A ⊆ C but B �⊆ C has to be constructed. This closed set is then added as
attribute to the scale context S with the incidence given by ∈. If C �∈ Ext(K)
the scale S would contradict the scale-measure property (Proposition 20, [11]).

The object implicational theory LS is initialized to the object canonical base
of K, which is an instance of according to attribute exploration with background
knowledge [6]. This initialization can be neglected for larger contexts, however it
may reduce the number of queries. The algorithm terminates when the implica-
tion premise of the query is equal to G. The returned scale-measure is in canoni-
cal form, i.e., the canonical representation (idG, (G,Ext(S),∈)). The motivation
behind exploration queries is to determine if an implication holds in the unknown
representational context of the learning domain. In contrast, the exploration of
scale-measures determines if a given Ext(K) can be coarsened by implications
A =⇒ B, resulting in a smaller and thus more human-comprehensible concept
lattice B(S), adjusted to the preferences of the scaling expert.

Querying object implications may be less intuitive compared to attribute
implications, hence, we suggest to rather not test for A =⇒ AISIS for A ⊆ G
but for the difference of the intents AIK and (AISIS)′ in K. Finally, as a post-
processing, one may apply the conjunctive normalform [11, Proposition 23] of

Exploring Scale-Measures of Data Sets 267

scale-measures to improve human-comprehension. Yet, deriving other human-
comprehensible representations of scale-measures is deemed to be future work.

(Semi-)Automatic Large Data Set Scaling. To demonstrate the applicability of
the presented algorithm, we have implemented it in the conexp-clj ([9]) soft-
ware suite. For this, we apply the scale-measure exploration Algorithm 1 on
our running example KW , see Fig. 1. The evaluation steps of this algorithm are
displayed in more detail in the long version of this work. One such intermedi-
ate step is for example row two where the implication {} =⇒ {D,FL,Br,F}
is true in the so far generated scale S and it is queried if it should hold. All
objects of the implication do have at least the attributes can move and needs
water to live. The answer of the scaling expert envisioned by us is the attribute
lives on land. Thus, the object counter example is the attribute-derivation the
union {M,W,LL}IW = {D,F}. In our example of the scale-measure exploration
the algorithm terminates after the scaling expert provided in total nine counter
examples and four accepts. The output is a scale context in canonical represen-
tation with twelve concepts as depicted in Fig. 2 (bottom right).

5 Related Work

Measurement is an important field of study in many (scientific) disciplines that
involve the collection and analysis of data. A framework to describe and ana-
lyze the measurement for Boolean data sets has been introduced in [8] and [4],
called scale-measures. It characterizes the measurement based on object clusters
that are formed according to common feature (attribute) value combinations. An
accompanied notion of dependency has been studied [19], which led to attribute
selection based measurements of boolean data. The formalism includes a notion
of consistency enabling the determination of different views and abstractions,
called scales, to the data set. Despite the expressiveness of scale-measure frame-
work, as demonstrated in this work, it is so far insufficiently studied in the
literature. In particular algorithmical and practical calculation approaches are
missing. Comparable and popular machine learning approaches, such as feature
compression techniques, e.g., Latent Semantic Analysis [2,3], have the disadvan-
tage that the newly compressed features are not interpretable by means of the
original data and are not guaranteed to be consistent with said original data.
The methods presented in this paper do not have these disadvantages, as they
are based on meaningful and interpretable features with respect to the original
features. In particular preserving consistency, as we did, is not a given, which
was explicitly investigated in the realm scaling many-valued formal contexts [15]
and implicitly studied for generalized attributes [12].

6 Conclusion

With this work we have shed light on the hierarchy of scale-measures. By apply-
ing multiple results from lattice theory, especially concerning ideals, to said hier-
archy, we were able to give a more thorough structural description of ↓FG

Ext(K).

268 T. Hanika and J. Hirth

Our main theoretical result is Proposition 5, which in turn leads to our practi-
cal applications. In particular, based on this deeper understanding we were able
to present an algorithm for exploring the scale-hierarchy of a binary data set
K. Equipped with this algorithm a data scaling expert may explore the lattice
of scale-measures for a given data set with respect to her preferences and the
requirements of the data analysis task. The practical evaluation and optimiza-
tion of this algorithm is a promising goal for future investigations. Even more
important, however, is the implementation and further development of the auto-
matic scaling framework, as outlined in Sect. 4. This opens the door to empirical
scale recommendation studies and a novel approach for data preprocessing.

References

1. Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and
implicational systems on a finite set: a survey. Discrete Appl. Math. 127(2), 241–
269 (2003). http://www.sciencedirect.com/science/article/B6TYW-46VBMT3-1/
2/d6bbb12c7831e113c5e91bebc320bee1

2. Codocedo, V., Taramasco, C., Astudillo, A.: Cheating to achieve formal concept
analysis over a large formal context. In: Napoli, A., Vychodil, V. (eds.) CLA, vol.
959, pp. 349–362. CEUR-WS.org (2011)

3. Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–
230 (2004). https://doi.org/10.1002/aris.1440380105

4. Ganter, B., Wille, R.: Conceptual scaling. In: Robert, F. (ed.) Applications of
Combinatorics and Graph Theory to the Biological and Social Sciences. IMA, vol.
17, pp. 139–167. Springer-Verlag, Heidelberg (1989). https://doi.org/10.1007/978-
1-4684-6381-1 6

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin (1999). https://doi.org/10.1007/978-3-642-59830-2

6. Ganter, Bernhard: Attribute exploration with background knowledge. Theor. Com-
put. Sci. 217(2), 215–233 (1999). https://doi.org/10.1016/S0304-3975(98)00271-0

7. Ganter, B., Obiedkov, S.: More expressive variants of exploration. In: Conceptual
Exploration, pp. 237–292. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49291-8 6

8. Ganter, B., Stahl, J., Wille, R.: Conceptual measurement and many-valued con-
texts. In: Gaul, W., Schader, M. (eds.) Classification as a Tool of Research, pp.
169–176. North-Holland (1986)

9. Hanika, T., Hirth, J.: Conexp-clj - A research tool for FCA. In: Cristea, D., Le
Ber, F., Missaoui, R., Kwuida, L., Sertkaya, B. (eds.) Supplementary Proceedings
of ICFCA 2019, volume 2378 of CEUR WS Proceedings, pp. 70–75. CEUR-WS.org
(2019). http://ceur-ws.org/Vol-2378/shortAT8.pdf

10. Hanika, T., Hirth, J.: Exploring scale-measures of data sets (2021)
11. Hanika, T., Hirth, J.: On the lattice of conceptual measurements. arXiv preprint

arXiv:2012.05287 (2020)
12. Kwuida, L., et al.: Generalized pattern extraction from concept lattices. Ann.

Math. Artif. Intell. 72(1-2), 151–168 (2014)
13. Duncan Luce, R., Krantz, D.H., Suppes, P., Tversky, A.: Foundations of Measure-

ment - Representation, Axiomatization, and Invariance, vol. 3. Academic Press
(1990)

http://www.sciencedirect.com/science/article/B6TYW-46VBMT3-1/2/d6bbb12c7831e113c5e91bebc320bee1
http://www.sciencedirect.com/science/article/B6TYW-46VBMT3-1/2/d6bbb12c7831e113c5e91bebc320bee1
https://doi.org/10.1002/aris.1440380105
https://doi.org/10.1007/978-1-4684-6381-1_6
https://doi.org/10.1007/978-1-4684-6381-1_6
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1016/S0304-3975(98)00271-0
https://doi.org/10.1007/978-3-662-49291-8_6
https://doi.org/10.1007/978-3-662-49291-8_6
http://ceur-ws.org/Vol-2378/shortAT8.pdf
http://arxiv.org/abs/2012.05287

Exploring Scale-Measures of Data Sets 269

14. Pfanzagl, J.: Theory of Measurement. Physica, Heidelberg (1971)
15. Prediger, S., Stumme, G.: Theory-driven logical scaling: Conceptual information

systems meet description logics. In Enrico Franconi and Michael Kifer, editors,
Proc. KRDB’99, volume 21, pages 46–49. CEUR-WS.org, 1999. URL http://ceur-
ws.org/Vol-21/prediger.ps

16. Fred, S.R.: Measurement Theory. Cambridge University Press, Cambridge (1984)
17. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680

(1946). ISSN 0036–8075. https://doi.org/10.1126/science.103.2684.677, https://
science.sciencemag.org/content/103/2684/677

18. Suppes, P., Krantz, D.H., Duncan Luce, R., Tversky, A.: Foundations of Measure-
ment - Geometrical, Threshold, and Probabilistic Representations, vol. 2. Academic
Press (1989)

19. Wille, R.: Dependencies of many valued attributes. In: Bock, H.-H. (ed.) Classifi-
cation and related methods of data analysis, pp. 581–586. North-Holland (1988)

http://ceur-ws.org/Vol-21/prediger.ps
http://ceur-ws.org/Vol-21/prediger.ps
https://doi.org/10.1126/science.103.2684.677
https://science.sciencemag.org/content/103/2684/677
https://science.sciencemag.org/content/103/2684/677

Filters, Ideals and Congruences
on Double Boolean Algebras

Tenkeu Jeufack Yannick Léa1(B), Etienne Romuald Alomo Temgoua2,
and Léonard Kwuida3

1 Department of Mathematics, Faculty of Sciences, University of Yaoundé 1,
P.O. Box 47, Yaoundé, Cameroon

2 Department of Mathematics, Ecole Normale Supérieure, Taoundé, Cameroon
3 Bern University of Applied Sciences (BFH), Bern, Switzerland

leonard.kwuida@bfh.ch

Abstract. Double Boolean algebras (dBas) are algebras D := (D;�,
�,¬, �,⊥,�) of type (2, 2, 1, 1, 0, 0), introduced by R.Wille to capture the
equational theory of the algebra of protoconcepts. Boolean algebras form
a subclass of dBas. Our goal is an algebraic investigation of dBas, based
on similar results on Boolean algebras. In these notes, we describe filters,
ideals and congruences, and show that principal filters as well as principal
ideals of dBas form (non necessary isomorphic) Boolean algebras.

Keywords: Double Boolean algebra · Protoconcept algebra · Concept
algebra · Formal concept

1 Introduction

In order to extend Formal Concept Analysis (FCA) to Contextual Logic, a nega-
tion has to be formalized [8,10]. There are many options; one of these wants to
preserve the correspondence between negation and set complementation, and
leads to the notions of semiconcept, protoconcept and preconcept [10]. To cap-
ture their equational theory, double Boolean algebras have been introduced by
Rudolf Wille and coworkers. Wille proved that each double Boolean algebra
“quasi-embeds” into an algebra of protoconcepts. Thus the equational axioms
of double Boolean algebras generate the equational theory of the algebras of
protoconcepts [10](Corollary 1).

To the best of our knowledge, the investigation of dBas has been so far con-
centrated on representation problem such as equational theory [10], contextual
representation [9], and most recently topological representation [2,6]. Of course
the prime ideal theorem [7] plays a central role in such representation.

For a better understanding of the structure of dBas, our goal is to start with
purely algebraic notions such as filters, ideals, congruences, homomorphisms,
etc. They are the cornerstone in structure theory, representation, decomposition
as well as classification of algebraic structures. In these notes we describe filters
(resp. ideals) generated by arbitrary subsets of a dBa and show that the set of

c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 270–280, 2021.
https://doi.org/10.1007/978-3-030-77867-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_18

Filters, Ideals and Congruences on Double Boolean Algebras 271

principal filters (resp. ideals) of a dBa form a bounded sublattice of the lattice
of its filters (resp. ideals), and are (non necessary isomorphic) Boolean algebras.
For any congruence θ in any bounded lattice L (particularly in any Boolean
algebra), the congruence class of the smallest (resp. largest) element ⊥ (resp. �)
is an ideal (resp. filter). This result is not more true for double Boolean algebras.
We therefore give necessary and sufficient conditions for the congruence class [⊥]θ
(resp. [�]θ) to be an ideal (resp. a filter). The rest of this contribution is organized
as follows: In Sect. 2 we recall some basic notions and present protoconcept
algebras as a rich source of examples for dBas. We present our results on filters
and ideals of dBas in Sect. 3 and those on congruences in Sect. 4. We finish with
a conclusion and further research in Sect. 5.

2 Concepts, Protoconcepts and Double Boolean Algebras

In this section, we provide the reader with some basic notions and notations.
For more details we refer to [4,10].

A formal context is a triple K := (G,M, I) where G is a set of objects, M
a set of attributes and I ⊆ G × M , a binary relation to describe if an object of
G has an attribute in M . We write gIm for (g,m) ∈ I. To extract clusters, the
following derivation operators are defined on subsets A ⊆ G and B ⊆ M by:

A′ := {m ∈ M | gIm for all g ∈ A} and B′ := {g ∈ G | gIm for all m ∈ B}.

The maps A �→ A′ and B �→ B′ form a Galois connection between the powerset of
G and that of M . The composition ′′ is a closure operator. A formal concept
is a pair (A,B) with A′ = B and B′ = A; We call A the extent and B the
intent of the formal concept (A,B). They are closed subsets with respect to ′′

(i.e. X ′′ = X). The set B(K) of all formal concepts of the formal context K can
be ordered by (A1, B1) ≤ (A2, B2) : ⇐⇒ A1 ⊆ A2 (or equivalently, B2 ⊆ B1).

The poset B(K) := (B(K),≤) is a complete lattice, called the concept
lattice of the context K. Conversely each complete lattice is isomorphic to a
concept lattice. This basic theorem on concept lattice (Theorem 3[4]) is a tem-
plate for contextual representation problems. The lattice operations ∧ (meet)
and ∨ (join) can be interpreted as a logical conjunction and a logical disjunction
for concepts, and are given by:

meet: (A1, B1) ∧ (A2, B2) =
(
A1 ∩ A2, (A1 ∩ A2)

′)

join: (A1, B1) ∨ (A2, B2) =
(
(B1 ∩ B2)

′
, B1 ∩ B2

)
.

To extent FCA to contextual logic, we need to define the negation of a con-
cept. Unfortunately, the complement of a closed subset is not always closed.
To preserve the correspondence between set complementation and negation, the
notions of concept is extended to that of protoconcept.

Let K := (G,M, I) be a formal context and A ⊆ G,B ⊆ M . The pair (A,B)
is called a semi-concept if A′ = B or B′ = A, and a protoconcept if A′′ = B′.
The set of all semi-concepts of K is denoted by h(K), and that of all protoconcepts

272 T. J. Y. Léa et al.

by P(K). Note that each semi-concept is a protoconcept; i.e. h(K) ⊆ P(K).
Meet and join of protoconcepts are then defined, similar as above for concepts.
A negation (resp. opposition) is defined by taking the complement on objects
(resp. attributes). More precisely, for protoconcepts (A1, B1), (A2, B2), (A,B)
of K we define the operations:

meet: (A1, B1) � (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)′)
join: (A1, B1) � (A2, B2) := ((B1 ∩ B2)′, B1 ∩ B2)

negation: ¬(A,B) := (G \ A, (G \ A)′)
opposition: �(A,B) := ((M \ B)′,M \ B)

nothing: ⊥ := (∅,M)
all: � := (G, ∅).

The algebra P(K) := (P(K),�,�, �, �,⊥,�) is called the algebra of proto-
concepts of K. Note that applying any operation above on protoconcepts gives
a semi-concept as result. Therefore H(K) is a subalgebra of P(K). For the struc-
tural analysis of P(K), we split H(K) in �-semiconcepts and �-semiconcepts,
P(K)� := {(A,A′) | A ⊆ G} and P(K)� := {(B′, B) | B ⊆ M}, and set
x ∨ y := ¬(¬x � ¬y), x ∧ y =�(�x��y), � := ¬⊥ and ⊥ :=�� for x, y ∈ P(K).
P(K)� := (P(K)�,�,∨,¬,⊥,¬⊥) (resp. P(K)� := (P(K)�,∧,�, �, ��,�))) is
a Boolean algebra isomorphic (resp. anti-isomorphic) to the powerset algebra of
G (resp. M).

Theorem 1. [10] The following equations hold in P(K):

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) ¬(x � x) = ¬x
(5a) x � (x � y) = x � x
(6a) x�(y∨z) = (x�y)∨(x�z)
(7a) x � (x ∨ y) = x � x
(8a) ¬¬(x � y) = x � y
(9a) x � ¬x = ⊥
(10a) ¬⊥ = � � �
(11a) ¬� = ⊥

(1b) (x � x) � y = x � y
(2b) x � y = y � x
(3b) x � (y � z) = (x � y) � z
(4b) �(x � x) =�x
(5b) x � (x � y) = x � x
(6b) x � (y ∧ z) = (x � y) ∧ (x � z)
(7b) x � (x ∧ y) = x � x.
(8b) ��(x � y) = x � y
(9b) x��x = �
(10b) �� = ⊥ � ⊥
(11b) �⊥ = �

(12) (x � x) � (x � x) = (x � x) � (x � x)

A double Boolean algebra (dBa) is an algebra D := (D;�,�,¬, �,⊥,�) of
type (2, 2, 1, 1, 0, 0) that satisfies the equations in Theorem 1. Wille showed that
these equations generate the equational theory of protoconcept algebras [10]. A
dBa D is called pure if it satisfies x � x = x or x � x = x, for all x ∈ D.
In fact, H(K) is a pure dBa. A quasi-order � is defined on dBas by: x � y :
⇐⇒ x � y = x � x and x � y = y � y. A dBa is regular if � is an order
relation. We set D� := {x ∈ D : x � x = x} and D� := {x ∈ D : x � x = x}.

Filters, Ideals and Congruences on Double Boolean Algebras 273

The algebra D� := (D�,�,∨,¬,⊥,¬⊥) (resp. D� = (D�,�,∧, �,�, ��)) is a
Boolean algebra. In addition x � y iff x � x � y � y and x � x � y � y, for all
x, y ∈ D [10]. A dBa D is called complete if and only if its Boolean algebras
D� and D� are complete. Additional known properties of dBas, that we will
need in these notes are put together in the next proposition.

Proposition 1. [5,7,10] Let D be a dBa and x, y, a ∈ D. Then:

1. ⊥ � x and x � �.
2. x � y � x, y � x � y.

3. x � y =⇒
{

x � a � y � a
x � a � y � a.

4. ¬(x ∨ y) = ¬x � ¬y.
5. ¬(x � y) = ¬x ∨ ¬y.
6. x ��y ⇐⇒ y ��x.

7. ¬¬x = x � x and ��x = x � x.
8. ¬x, x ∨ y ∈ D� and �x, x ∧ y ∈ D�.

9. x � y ⇐⇒
{¬y � ¬x

�y ��x.
10. �(x ∧ y) = �x��y.
11. �(x � y) = �x∧�y.
12. ¬x � y ⇐⇒ ¬y � x.
13. ¬x � ¬x = ¬x and �x��x =�x.

3 Filters and Ideals of a Double Boolean Algebra

In this section, we study filters and ideals of dBas with respect to their order
structures and generating subsets. The goal is to extent some results from
Boolean algebras to dBas. Let D be a dBa. A nonempty subset F of D is
called filter if for all x, y ∈ D, it holds: x, y ∈ F =⇒ x � y ∈ F and
(x ∈ F, x � y) =⇒ y ∈ F . Ideals of dBas are defined dually. We denote
by F(D) (resp. I(D)) the set of filters (resp. ideals) of the dBa D. Both sets are
each closed under intersection [7]. Note that F(D)∩I(D) = {D}. For X ⊆ D, the
smallest filter (resp. ideal) containing X, denoted by Filter〈X〉 (resp. Ideal〈X〉),
is the intersection of all filters (resp. ideals) containing X, and is called the filter
(resp. ideal) generated by X. A principal filter (resp. ideal) is a filter (resp.
ideal) generated by a singleton. In that case we omit the curly brackets and set
F(x) := Filter〈{x}〉, and I(x) := Ideal〈{x}〉. A set F0 is a basis of a filter F if
F0 ⊆ F and F = {y ∈ D : x � y for some x ∈ F0}. Basis of ideals are defined
similarly.

Lemma 1. [10] Let F ∈ F(D). Then F ∩ D� and F ∩ D� are filters of the
Boolean algebras D� and D�, respectively. Each filter of the Boolean algebra D�
is a base of some filter of D, and each ideal of D� is a base of some ideal of D.

To describe the ideal (resp. filter) generated by X ⊆ D, we need the following
lemma, which is a slight generalization of Proposition 1. 3. in [7].

Lemma 2. Let D be a dBa and a, b, c, d ∈ D. Then if a � b and c � d, then
a � c � b � d and a � c � b � d. i.e. � and � are compatible with �.

Proof. We assume a � b and c � d. Then

(a � c) � (b � d) = (a � b) � (c � d) = (a � a) � (c � c) = (a � c) � (a � c).
(a � c) � (b � d) = ((a � a) � c) � (b � d) = [(a � b) � c] � (b � d)

= [(a � b) � (c � c)] � (b � d) = [(a � b) � (c � d)] � (b � d)
= [(b � d) � (a � c)] � (b � d) = (b � d) � (b � d).

274 T. J. Y. Léa et al.

Thus a � c � b � d. The rest, a � c � b � d, is proved similarly. ��
For F ∈ F(D), I ∈ I(D) and a ∈ D, we have a ∈ F iff a�a ∈ F and a ∈ I iff

a�a ∈ I. Therefore Filter〈a〉 = Filter〈a�a〉 and Ideal〈a〉 = Ideal〈a�a〉. To prove
the prime ideal theorem for dBas, a description of filter (resp. ideal) generated
by an element w and a filter F (resp. ideal I) was given in [7] as follows:

Filter〈F ∪ {w}〉 = {x ∈ D : w � b � x for some b ∈ F},

Ideal〈J ∪ {w}〉 = {x ∈ D : x � w � b for some b ∈ J}.

In the following proposition, we extent this description to arbitrary subsets.

Proposition 2. Let D be a dBa, ∅ �= X ⊆ D, F1, F2 ∈ F(D) and I1, I2 ∈ I(D).

(a) I(a) = {x ∈ D | x � a � a} and F(a) = {x ∈ D | a � a � x}.
(b) Ideal〈∅〉 = I(⊥) = {x ∈ D | x � ⊥ � ⊥} and

Filter〈∅〉 = F(�) = {x ∈ D | � � � � x}.
(c) Ideal〈X〉 = {x ∈ D | x � b1 � . . . � bn for some b1, . . . , bn ∈ X,n ≥ 1}.
(d) Filter〈X〉 = {x ∈ D | x � b1 � . . . � bn for some b1, . . . , bn ∈ X,n ≥ 1}.
(e) Ideal〈I1 ∪ I2〉 = {x ∈ D | x � i1 � i2 for some i1 ∈ I1 and i2 ∈ I2}.
(f) Filter〈F1 ∪ F2〉 = {x ∈ D | f1 � f2 � x for some f1 ∈ F1 and f2 ∈ F2}.
Proof. (e) follows from (c), with the facts that � is commutative, associative,
and ideals are closed under �. (d) and (f) are similarly to (c) and (e). Let D de
a dBa, and ∅ �= X ⊆ D.

(a) Let a ∈ D. We will show that the set J := {x ∈ D | x � a � a} is an ideal
containing a, and is contained in any ideal containing a. From a � a � a we
get a ∈ J . If x, y are in J , then we have x � a � a and y � a � a. Thus
x � y � (a � a) � (a � a) = a � a (by Lemma 2 and Theorem 1(1b)). If y ∈ J
and x � y, then x � y � a � a, and x � a � a; i.e. x ∈ J . If G is an ideal
and a ∈ G, then a � a ∈ G. Each x ∈ J satisfies x � a � a, and is also in G.
Thus J = I(a). The description of F(a) is obtained dually.

(b) From ⊥ � x for all x ∈ D (Proposition 1.1.) and that each ideal is non
empty, it follows that ⊥ is in each ideal. Thus Ideal〈∅〉 = I(⊥) = {x ∈ D |
x � ⊥ � ⊥}. The last equality follows from (a). The equality Filter〈∅〉 =
F(�) = {x ∈ D | � � � � x} is proved dually.

(c) We set J := {x ∈ D | x � b1 � . . . � bn for some b1, . . . , bn ∈ X, n ≥ 1}. We
will show that J is the smallest ideal that contains X. For x ∈ X, we have
x � x � x, and x ∈ J . If y ∈ D, x ∈ J and y � x, then y � x � b1 � . . . � bn

for an n ≥ 1 and b1, . . . , bn ∈ X. By transitivity of �, we get y ∈ J . Now, if
a, b ∈ J , then a � a1 � . . . � an and b � b1 � . . . � bm for some n,m ≥ 1 and
ai, bi ∈ J , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Therefore a�b � a1� . . .�an �b1� . . .�bm,
by Lemma 2. Thus a � b ∈ J . It is easy to see that any ideal containing X
also contains J . ��

Recall that F(D) and I(D) are closure systems, and thus complete lattices. The
meet is then the intersection, and the join the filter and ideal generated by the

Filters, Ideals and Congruences on Double Boolean Algebras 275

union. For F1, F2 ∈ F(D) we have F1∧F2 = F1∩F2 and F1∨F2 = Filter〈F1∪F2〉.
Similarly we have I1 ∧ I2 = I1 ∩ I2 and I1 ∨ I2 = Ideal〈I1 ∪ I2〉 for I1, I2 ∈ I(D).
We set F(D) := (F(D);∨,∧,F(�),D) and I(D) := (I(D);∨,∧, I(⊥),D).

Now, we study some properties of the set Fp := {F(a) | a ∈ D} of principal
filters of D, and the set Ip := {I(a) | a ∈ D} of principal ideals of D. Observe
that Fp = {F(a) | a ∈ D�} and Ip = {I(a) | a ∈ D�}, since F(a) = F(a � a) and
I(a) = I(a � a) for any a ∈ D. The following proposition gives distributivity-like
properties of dBas.

Proposition 3. Let D be a dBa and a, b, c, d ∈ D. We have:
(i) a ∨ (b � c) = (a ∨ b) � (a ∨ c).
(ii) a ∧ (b � c) = (a ∧ b) � (a ∧ c).
(iii) a ∨ (a � b) = a � a.

(iv) a ∧ (a � b) = a � a.
(v) (a � a) ∨ (b � b) = a ∨ b.
(vi) (a � a) ∧ (b � b) = a ∧ b.

(vii) The binary operations ∨ and ∧ are compatible with �, that is,
if a � b and c � d, then a ∨ c � b ∨ d (1) and a ∧ c � b ∧ d (2) .

Proof. (ii), (iv) and (vi) are the dual of (i), (iii) and (v), respectively.

(i)
a ∨ (b � c) def= ¬(¬a � ¬(b � c)) = ¬(¬a � (¬b ∨ ¬c)) (by (5), Proposition 1)

= ¬((¬a � ¬b) ∨ (¬a � ¬c)) (by axiom 6a))
= ¬(¬(a ∨ b) ∨ ¬(a ∨ c)) = ¬[¬[(a ∨ b) � (a ∨ c)]]
= ¬¬[(a ∨ b) � (a ∨ c)] = (a ∨ b) � (a ∨ c) (by axiom (8.a))

(iii)
a ∨ (a � b) = ¬(¬a � ¬(a � b)) = ¬(¬a � (¬a ∨ ¬b)) (by (5), Proposition 1)

= ¬(¬a � ¬a) = ¬(¬a) = a � a = a ∨ a
(v) (a � a) ∨ (b � b) = ¬(¬(a � a) � ¬(b � b)) = ¬(¬a � ¬b) = a ∨ b.
(vii) We assume a � b and c � d. Then by the definition of � we have

a � b = a � a (1.1), a � b = b � b (1.2), c � d = c � c (1.3), c � d = d � d (1.4).

We need to show that a ∨ c � b ∨ d (1) and a ∧ c � b ∧ d (2).

(a ∨ c) � (b ∨ d) = [(a ∨ c) � b] ∨ [(a ∨ c) � d] (by axiom (6a))
= [(b � a) ∨ (b � c)] ∨ [(d � a) ∨ (d � c)]
= [(a � a) ∨ (b � c)] ∨ [(a � d) ∨ (c � c)] (by (1.1) and (1.3))
= (a � a) ∨ (c � c) ∨ (b � c) ∨ (a � d) (∨ associative in D�)
= (a ∨ c) ∨ (b � c) ∨ (a � d) (by (v))
= (a ∨ c) ∨ (b � c � c) ∨ (a � a � d) (by axiom (1.a))
= (a ∨ c) ∨ (b � c � d) ∨ (a � (b � d))
= (a ∨ c) ∨ ([(b � d) � c] ∨ [(b � d) � a])
= (a ∨ c) ∨ [(b � d) � (a ∨ c)] (by axiom (6a))
= (a ∨ c) � (a ∨ c) (by (iii))

Therefore (1) holds. The proof of (2) is similarly to (1). ��

276 T. J. Y. Léa et al.

Lemma 3. Let D be a dBa and a, b in D. Then

(i) a � b =⇒ F(a) ⊇ F(b). The converse holds if a, b ∈ D�.
(ii) a � b =⇒ I(a) ⊆ I(b). The converse holds if a, b ∈ D�.
(iii) F(a � b) ⊆ F(a) ∩ F(b) ⊆ F(a),F(b) ⊆ F(a � b)
(iv) I(a � b) ⊆ I(a) ∩ I(b) ⊆ I(a), I(b) ⊆ I(a � b).

Proof. (ii) and (iv) are dual of (i) and (iii). Let a, b ∈ D.

(i) We assume that a � b. Then a � a � b � b � b. If x ∈ F (b) then b � b � x.
Since � is transitive, we get a � a � x, and x ∈ F (a). Thus F (b) ⊆ F (a).
Conversely, if F (b) ⊆ F (a) then b ∈ F (a) and a � a � b, which is equivalent
to a � b if a ∈ D�.
(iv) a� b � a, b � a� b =⇒ F (a� b) ⊆ F (a)∩F (b) ⊆ F (a), F (b) ⊆ F (a� b).

��
Note that F(⊥) = D and I(�) = D. The next result shows that the principal
filters form a bounded sublattice of the lattice of all filters.

Proposition 4. Let D be a dBa, and a1, . . . , an, a, b, c ∈ D. Then:

(1)
n∨

i=1
F(ai) = F(

n�
i=1

ai) =

Filter〈{a1, . . . , an}〉.
(3)

n∨
i=1

I(ai) = I(
n�

i=1
ai) =

Ideal〈{a1, . . . , an}〉.
(5) b ∈ F(¬a) =⇒ ¬b ∈ I(a).
(7) F(a) ∧ F(¬a) = F(�).
(9) F(a) ∨ F(¬a) = F(⊥).

(2)
n∩

i=1
F(ai) = F(

n∨
i=1

ai).

(4)
n∩

i=1
I(ai) = I(

n�
i=1

ai).

(6) b ∈ I(�a) =⇒ �b ∈ F (a).
(8) I(a) ∨ I(�a) = I(�).
(10) I(a) ∧ I(�a) = I(⊥).

(11) F(a) ∧ (F(b) ∨ F(c)) = (F(a) ∧ F(b)) ∨ (F(a) ∧ F(c)).
(12) I(a) ∨ (I(b) ∧ I(c)) = (I(a) ∨ I(b)) ∧ (I(a) ∨ I(c)).

Proof. (1)–(4) can be proved by induction. We will give a proof for n = 2. The
rest is obtained dually. Let a, b, x ∈ D.

(1) From a�b � a, b we get F(a),F(b) ⊆ F(a�b) and F(a)∨F(b) ⊆ F(a�b). If
x ∈ F(a�b), then a�b � x. But a ∈ F(a) and b ∈ F(b) imply a�b ∈ F(a)∨F(b),
and yields x ∈ F(a) ∨ F(b). Thus F(a � b) = F(a) ∨ F(b).
(2) x ∈ F(a ∨ b) ⇐⇒ (a ∨ b) � (a ∨ b) � x ⇐⇒ a ∨ b � x

⇐⇒ (a � a) ∨ (b � b) � x ⇐⇒ a � a � x and b � b � x

⇐⇒ x ∈ F(a) and x ∈ F(b) ⇐⇒ x ∈ F(a) ∩ F(b).
(5) b ∈ F(¬a) ⇐⇒ ¬a � ¬a 	 b ⇐⇒ ¬a 	 b ⇐⇒ ¬b 	 a =⇒ ¬b ∈ I(a).

(7) F(a) ∧ F(¬a) = F(a ∨ ¬a) = F(¬(¬a � ¬¬a) = F(¬⊥) = F(� � �) = F(�).

(9) F(a) ∨ F(¬a) = F(a � ¬a) = F(⊥).
(11) F(a) ∨ (F(b) ∧ F(c)) = F(a) ∨ (F(b ∨ c)) = F(a � (b ∨ c))

= F((a � b) ∨ (a � c)) = F(a � b) ∧ F(a � c)
= (F(a) ∨ F(b)) ∧ (F(a) ∨ F(c)). ��

Filters, Ideals and Congruences on Double Boolean Algebras 277

It is known that if L is a complete lattice, then its set I(L) (resp. F(L)) of ideals
(resp. filters) is a lattice and its set of principal ideals (resp. filters) is a sublattice
of I(L) (resp. F(L)) isomorphic to L. Similar results hold for dBas. For a ∈ D
we set, F(a)c := F(¬a), I(a)c := I(�a), Fp(D) := (Fp(D);∨,∧,c ,F(�),F(⊥))
and Ip(D) := (Ip(D);∨,∧,c , I(⊥), I(�)).

Theorem 2. Let D be a double Boolean algebra. Then Fp(D) and Ip(D) are
Boolean algebras, and bounded sublattices of F(D) and I(D), respectively. The
map ϕ : D� → Fp(D), a �→ F(a) is an anti-isomorphism, and ψ : D� →
Ip(D), a �→ I(a) is an isomorphism of Boolean algebras.

Proof. From Proposition 4, we know that Fp(D) is a bounded sublattice of F(D),
is distributive, and F(¬a) is a complement of F(a) for each a ∈ D. Moreover,
ϕ(¬a) = F(¬a) = F(a)c = ϕ(a)c, ϕ(a�b) = F(a�b) = F(a)∨F(b) = ϕ(a)∨ϕ(b),
and ϕ(a ∨ b) = F(a ∨ b) = F(a) ∧ F(b) = ϕ(a) ∧ ϕ(b). By definition ϕ is onto.
Let a, b ∈ D� with ϕ(a) = ϕ(b). Then F(a) = F(b) and a = b. Thus ϕ is an
anti-isomorphism. The proof for ψ follows dually. ��
Corollary 1. If D is a complete dBa, then F(D) and I(D) are Boolean alge-
bras.

Let L be a lattice. An element a ∈ L is compact iff whenever
∨

A exists and
a ≤ ∨

A for A ⊆ L, then a ≤ ∨
B for some finite B ⊆ A. L is compactly gener-

ated iff every element in L is a supremum of compact elements. L is algebraic if
L is complete and compactly generated [3].

Proposition 5. The compact elements of F(D) (resp. I(D)) are the finitely
generated filters (resp. ideals). Moreover, F(D) and I(D) are algebraic lattices.

Proof. Let X := {a1, . . . , an} ⊆ D and F := Filter〈X〉 ⊆ ∨
i∈I

Fi. Each ai is in a

Fji , 1 ≤ i ≤ n and ji ∈ I. Thus F(ai) ⊆ Fji and F =
i=n∨
i=1

F(ai) ⊆ i=n∨
i=1

Fji .

Let G be a compact element of F(D). From G ⊆ ∨
a∈G

F(a) we get G ⊆
∨{F(a1), . . . ,F(an) : a1, . . . , an ∈ G} = Filter〈{a1, . . . , an}〉 = G.

Let (Fi)i∈I be a family of filters of D. Then ∨
i∈I

Fi =
⋃

(i1,...,in)∈I∗
(Fi1 ∨. . .∨Fin)

where I∗ is the set of finite tuple (i1, . . . , in) ∈ In, n ≥ 1, n ∈ N. Dually one can
see that I(D) is algebraic. ��

In Boolean algebras there are several equivalent definitions of prime filters.
These definitions can be carried over to dBas. To solve the equational theory
problem for protoconcet algebras, Rudolf Wille introduced in [10] the set FP (D)
of filters F of D whose intersections F ∩ D� are prime filters of the Boolean
algebra D�, and the set IP (D) of ideals I of D whose intersections I ∩ D� are
prime ideals of the Boolean algebra D�. To prove the prime ideal theorem for
double Boolean algebras, Léonard Kwuida introduced in [7] primary filters as
proper filters F for which x ∈ F or ¬x ∈ F , for each x ∈ D. Dually a primary

278 T. J. Y. Léa et al.

ideal is a proper ideal I for which x ∈ I or �x ∈ I, for each x ∈ D. We denote by
Fpr(D) the set of primary filters of D, and by Ipr(D) its set of primary ideals.
In [5] Prosenjit Howlader and Mohua Banerjee showed that FP (D) = Fpr(D)
and IP (D) = Ipr(D). The following theorem extends the above results.

Theorem 3. Let D be a double Boolean algebra. Then F(D�) and F(D) are
isomorphic lattices. Dually, I(D�) and I(D) are isomorphic lattices.

Proof. The maps Φ : F(D�) → F(D), E �→ Φ(E) := {x ∈ D,∃u ∈ E, u � x}
and Ψ : I(D�) → I(D), I �→ Ψ(I) = {x ∈ D,∃x0 ∈ I, x � x0} are isomorphisms.

4 Congruence on Double Boolean Algebras

Definition 1. [7] A double Boolean algebra is trivial iff � � � = ⊥ � ⊥.

Let D be a dBa and � the quasi-order defined above. Let τ be the equivalence
relation defined on D by xτy : ⇐⇒ x � y and y � x. It is known that τ
is a congruence on D and from [10] τ = {(x, x), x ∈ D} ∪ {(x��, x��), x ∈
D}∪{(x��, x��), x ∈ D}. (D/τ ; �̃, �̃, ¬̃, �̃, �̃, ⊥̃) is the quotient algebra of D by
τ . Let �̃ be the quasi-order defined on D/τ . One can show that for any x, y ∈ D,
x�̃y iff there exists u ∈ [x]τ , v ∈ [y]τ such that u � v.

It is known that for every boolean algebra B and a congruence θ on B, the
set [⊥]θ is an ideal on B and the set [�]θ is a filter on B (see [3]). We consider
the above congruence τ defined by xτy iff x � x = y � y and x � x = y � y. On
the double Boolean algebra D3 of Kwuida, where D3 = {⊥, a,�}, ⊥ � a � �,
a � a = a � a = a = ⊥ � ⊥ = � � �. We have [⊥]τ = {⊥} and [�]τ = {�}, it
follows that ⊥ � ⊥ = a �∈ [⊥]τ , so [⊥]τ is not an ideal of D3. We have also that
� � � = a �∈ [�]τ , so [�]τ is not a filter of D3.
Observation 3. A dBa of Kwuida shows that in a dBa D, giving a congruence
θ, the class [⊥]θ need not be an ideal and the class [�]θ need not be a filter.
The above Observation 3 allows us to ask the following questions: in which
conditions [⊥]θ is an ideal? [�]θ is a filter?

Now we are going to give some properties of congruences on a double Boolean
algebras.

Proposition 6. Let D be a dBa and θ ∈ Con(D). The following hold:

(1) For any x, y ∈ [⊥]θ, x � y ∈
[⊥]θ.
(2) For any x, y ∈ [�]θ, x � y ∈
[�]θ.

(3) If x � y and y ∈ [⊥]θ, then x �
y ∈ [⊥]θ.
(4) If x ∈ [�]θ and x � y, then x �
y ∈ [�]θ.

(5) If x ∈ [⊥]θ, then for any a ∈ D, (x � a,⊥) ∈ θ.
(6) If x ∈ [�]θ, then for any a ∈ D, (x � a,�) ∈ θ.
(7) If (⊥,�) ∈ θ, then D� ∪ D� ⊆ [⊥]θ.
(8) If D is a pure double Boolean algebra such that (⊥,�) ∈ θ, then θ = D2.
(9) If D is a trivial double Boolean algebra, then ∇ is the only congruence
on D such that [⊥]θ is an ideal and [�]θ is a filter.

Filters, Ideals and Congruences on Double Boolean Algebras 279

(10) [�]θ is a filter if and only if � � � ∈ [�]θ and for any x ∈ [�]θ, [x,�]θ ⊆
[�]θ.
(11) [⊥]θ is an ideal if and only if ⊥ � ⊥ ∈ [⊥]θ and for any x ∈ [⊥]θ,
[⊥, x] ⊆ [⊥]θ.

Proof. The proofs of (2),(4),(6) and (11) are dual to those of (1),(3),(5) and
(10), respectively. Here we give the proofs for (1),(3),(5) ,(7), (8) and (10). Let
x, y, a ∈ D.
(1) Proof follows from � preserves θ and ⊥ � ⊥ = ⊥.
(3) Assume that x � y and y ∈ [⊥]θ, then (y � x,⊥ � x) = (x � x,⊥) due to
x � y ,θ reflexive and (y,⊥) ∈ θ.
(5) Assume that x ∈ [⊥]θ. Since x � a � x and x ∈ [⊥]θ, using (3) we get
(x � a,⊥) ∈ θ.
(7) Assume that (⊥,�) ∈ θ and x ∈ D� ∪ D�. If x ∈ D�, then x � � and
� ∈ [⊥]θ, so using (3), we get x � � = x � x = x ∈ [⊥]θ. If x ∈ D�, then ⊥ � x
and ⊥ � x = x � x = x ∈ [�]θ = [⊥]θ.Thus D� ∪ D� ⊆ [⊥]θ.
(8) It is a consequence of (7).
(9) Assume that D is trivial, [⊥]θ an ideal and [�]θ a filter. Since [⊥]θ is an ideal
and [�]θ a filter, we have ⊥ � ⊥ = � � � ∈ [�]θ ∩ [⊥]θ, so (⊥,�) ∈ θ and by
using (7) D� ∪ D� ⊆ [⊥]θ = [�]θ. It follows that θ = ∇.
(10) Assume that [�]θ is a filter, then � � � ∈ [�]θ. For x, y ∈ [�]θ we have
(x � y,� � �) ∈ θ due to the fact that θ is compatible with �, and by the
transitivity of θ we ge (x � y,�) ∈ θ. Let x ∈ [�]θ and y ∈ D such that x � y,
then y ∈ [�]θ due to [�]θ is a filter. Conversely, assume that � � � ∈ [�]θ and
for any x ∈ [�]θ, [x,�] ⊆ [�]θ. If x, y ∈ [�]θ, then (x � y,� � �) ∈ θ and the
transitivity of θ yields (x � y,�) ∈ θ, hence (10) holds.

5 Conclusion

We have described filters (ideals) generated by arbitrary subsets of a double
Boolean algebras, and shown that its principal filters(ideals) form a bounded
sublattice of the lattice of filters (resp. ideals) and are (non necessary isomorphic)
Boolean algebras. We have also shown that F(D) (resp. I(D)) and F(D�) (resp.
I(D�)) are isomorphic lattices and give some properties of congruences on dBas.

References

1. Balbiani, P.: Deciding the word problem in pure double Boolean algebras. J. Appl.
Logic 10(3), 260–273 (2012)

2. Breckner, B.E., Sacarea, C.: A Topological representation of double Boolean lat-
tices. Stud. Univ. Babes-Bolyai Math. 64(1), 11–23 (2019)

3. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts
in Mathematics. Springer, New York (1981)

4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

https://doi.org/10.1007/978-3-642-59830-2

280 T. J. Y. Léa et al.

5. Howlader, P., Banerjee, M.: Remarks on prime ideal and representation theorem
for double Boolean algebras. In: The 15th International Conference on Concept
Lattices and Their Applications (CLA 2020), pp. 83–94. Tallinn (2020)

6. Howlader, P., Banerjee, M.: Topological Representation of Double Boolean Alge-
bras. ArXiv:2103.11387. (March 2021)

7. Kwuida, L.: Prime ideal theorem for double Boolean algebras. Discus. Math. Gen.
Algebra Appl. 27(2), 263–275 (2005)

8. Kwuida, L.: Dicomplemented lattices. A contextual generalization of Boolean alge-
bras. Dissertation, TU Dresden, Shaker Verlag (2004)

9. Vormbrock, B., Wille, R.: Semiconcept and protoconcept algebras: the basic theo-
rem. In Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis: Foun-
dations and Applications. pp. 34–48. Springer, Berlin Heidelberg (2005)

10. Wille, R.: Boolean concept logic. In Ganter, B, Mineau, G.W. (eds.) Conceptual
Structures: Logical Linguistic, and Computational Issue. pp. 317–331. Springer,
Berlin Heidelberg (2000)

http://arxiv.org/abs/2103.11387

Diagrammatic Representation
of Conceptual Structures

Uta Priss(B)

Ostfalia University, Wolfenbüttel, Germany
http://www.upriss.org.uk

Abstract. Conceptual exploration as provided by Formal Concept
Analysis is potentially suited as a tool for developing learning materi-
als for teaching mathematics. But even just a few mathematical notions
can lead to complex conceptual structures which may be difficult to be
learned and comprehended by students. This paper discusses how the
complexity of diagrammatic representations of conceptual structures can
potentially be reduced with Semiotic Conceptual Analysis. The notions
of “simultaneous polysemy” and “observational advantage” are defined
to describe the special kind of relationship between representations and
their meanings which frequently occurs with diagrams.

1 Introduction

When learning mathematics, students need to acquire concepts using some kind
of informal conceptual exploration where they mentally verify implications and
identify counter examples to rule out misconceptions. The Formal Concept Anal-
ysis (FCA) method of conceptual exploration can formalise such a process by
determining the relevant implicit knowledge that is contained in a domain. But
concept lattices tend to contain too many concepts to be individually learned.
Most likely some form of covering of the content of a concept lattice is required.
Diagrams and visualisations often provide very concise representations of knowl-
edge, because, as the proverb states, “a picture is worth 1000 words”. But visu-
alisations have both advantages as well as limits. Different students may be more
or less adept in reading graphical representations. Thus not a single, but a vari-
ety of forms of representations may be required and students need to learn to
switch between them.

A supportive theory for understanding the role of diagrams for conceptual
learning is supplied by Semiotic Conceptual Analysis (SCA) – a mathematical
formalisation of core semiotic notions that has FCA as a conceptual founda-
tion (Priss 2017). A sign in SCA is a triple consisting of an interpretation, a
representamen and a denotation (or meaning) where interpretations are par-
tial functions from the set of representamens into the set of denotations. The
capacity of a representamen (such as a diagram) to denote more than just one
meaning is introduced in the notion of simultaneous polysemy in this paper.
Simultaneous polysemy is contrasted with ambiguous polysemy which describes
a representamen being mapped onto slightly different meanings in different usage
c© Springer Nature Switzerland AG 2021
A. Braud et al. (Eds.): ICFCA 2021, LNAI 12733, pp. 281–289, 2021.
https://doi.org/10.1007/978-3-030-77867-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77867-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-77867-5_19

282 U. Priss

contexts. Both forms of polysemy contribute to the efficiency of sets of repre-
sentamens: a smaller set of representamens is capable of representing a larger
set of denotations. For example, it is more efficient and easier to learn to read
and write languages that use an alphabet as compared to Chinese. Letters of
an alphabet are ambiguously polysemous because each letter expresses a small
variety of different but similar phonemes in different usage contexts. Diagrams
are usually simultaneously polysemous which is further explored in the notion of
observational advantage adopted from the research about diagrams by Stapleton
et al. (2017), although with a somewhat different formalisation.

The next section introduces a few non-standard FCA notions and the core
SCA notions required for this paper. An introduction to FCA is not provided
because FCA is the main topic of this conference. Section 3 discusses observa-
tional advantages of tabular, Euler and Hasse diagrams. Section 4 provides a
small example of how to obtain an observationally efficient diagram. The paper
finishes with a conclusion.

2 FCA and SCA Notions

This section repeats relevant notions from SCA, introduces some new SCA
notions and a few non-standard FCA notions. A supplemental concept is a
concept whose extension equals the union of the extensions of its proper sub-
concepts. In a Hasse diagram with minimal labelling, supplemental concepts
are those that are not labelled by an object. Each supplemental concept cor-
responds to a clause because for such a concept c with extension ext(c) and
intension int(c) and the condition ∀(oi ∈ ext(c) : ∃(ci < c : oi ∈ ext(ci))) it
follows that

∧
(ai ∈ int(c)) ⇒ ∨

(ai | ∃ci : ci < c, ai ∈ int(ci), ai �∈ int(c)) is a
clause. Supplemental concepts are particularly interesting if the formal context
is non-clarified and contains all objects that are known to be possible within a
domain. In that case a clause presents not just information about the concept
lattice but instead background knowledge about the domain.

In this paper the notion conceptual class is used as a placeholder for a for-
malisation of conceptual structures. A conceptual class is a structure consisting
of sets, relations and functions. A logical description of a conceptual class L(C)
is defined as a set of true statements according to the rules of some logical lan-
guage L. A logical description could be provided by a description logic, formal
ontology or other formal language. Further details are left open so that SCA can
be combined with a variety of conceptual formalisations.

The following definitions briefly summarise SCA. More details can be found
in Priss (2017). A sign is a triple or element of a triadic relation:

Definition 1. For a set R (called representamens), a set D (called denotations)
and a set I of partial functions i : R �→ D (called interpretations), a semiotic
relation S is a relation S ⊆ I × R × D. A relation instance (i, r, d) ∈ S with
i(r) = d is called a sign. For a semiotic relation, an equivalence relation ≈R

on R, an equivalence relation ≈I on I, and a tolerance relation ∼D on D are
defined.

Diagrammatic Representation of Conceptual Structures 283

Additionally, the non-mathematical condition is assumed that signs are actu-
ally occurring in some communication event at a certain time and place. Rep-
resentamens are entities that have a physical existence, for example as a sound
wave, a neural brain pattern, a text printed in a book or on a computer screen or
a state in a computer. Perceiving a sound wave or a pattern on a computer screen
as a word is already an interpretation. Denotations represent meanings of signs
usually in the form of concepts. Because of their physical existence, representa-
mens tend to be at most equivalent instead of equal to each other. For example,
two spoken words will never be totally equal but can be considered equivalent if
they are sufficiently similar to each other. When referring to a sign, the notions
“sign” and “representamen” are sometimes used interchangeably because a rep-
resentamen is the perceptible part of a sign. For example, one might refer to
“four” as a sign, word or representamen.

The tolerance relation in Definition 1 expresses similarity amongst meanings
corresponding to synonymy. For example, “car” might be a synonym of “vehicle”
and “vehicle” a synonym of “truck”, but “truck” not a synonym of “car”. In
some domains (such as mathematics), equality of denotations is more important
than similarity. The tolerance relation also serves the purpose of distinguishing
polysemous signs (with similar meanings) from homographs which have totally
unrelated meanings. For example (i1, “lead”, [some metal]) and (i2,“lead”, [to
conduct]) are homographs whereas the latter is polysemous to (i3,“lead”, [to
chair]). An equivalence relation on interpretations can express a shared usage
context of signs consisting of time, place and sign user. Equivalent interpretations
belong to a single, shared usage context and differ only with respect to some
further aspects that do not define a usage context. The first part of the next
definition is repeated from Priss (2017) but the rest is new in this paper.

Definition 2. For a semiotic relation S, two signs (i1, r1, d1) and (i2, r2, d2) are
synonyms ⇐⇒ d1 ∼D d2. They are polysemous ⇐⇒ r1 ≈R r2 and d1 ∼D d2.
Two polysemous signs are simultaneously polysemous if i1 ≈I i2. Otherwise they
are ambiguously polysemous.

Formally any sign is polysemous to itself, but in the remainder of this paper
an individual sign is only called polysemous if another sign exists to which it is
polysemous. Ambiguous polysemy refers to a representamen being used in dif-
ferent usage contexts with different meanings. The usage context disambiguates
such polysemy. Ambiguous polysemy poses a problem if the ambiguity cannot
be resolved by the usage context. A benefit of ambiguous polysemy is that a
small number of representamens can refer to a much larger number of denota-
tions because each representamen can occur in many usage contexts. Ambiguous
polysemy involving different sign users expresses differences in understanding
between the users. For example a student and a teacher might use the same
terminology but not have exactly the same understanding of it.

284 U. Priss

Definition 3. For a semiotic relation S with a sign s := (i, r, d), the sets
Ssp(s) := {s}∪{(i1, r1, d1) | ∃s2∈Ssp(s) : (i1, r1, d1) polysemous to s2 and i1 ≈I i}
and Dsp(s) := {d1 | ∃(i1, r1, d1) ∈ Ssp(s)} are defined. For S1 ⊆ S the sets
Ssp(S1) :=

⋃
s∈S1

Ssp(s) and Dsp(S1) :=
⋃

s∈S1
Dsp(s) are defined.

The semiotic relation Ssp(s) contains all signs that have interpretations that
can be applied to r within the same usage context. It should be noted that
|Ssp(s)| > |Dsp(s)| is possible because two interpretations of signs in Ssp(s) can
map r onto the same denotation. For ambiguous polysemy we have in the past
suggested to use neighbourhood lattices1 (Priss and Old 2004). In the terminol-
ogy of SCA, such neighbourhood lattices only consider a binary relation between
representamens and denotations. A neighbourhood context is formed by starting
with a denotation and finding all representamens that are in relation with it,
then all other denotations which are in relation with one of the representamens
and so on. Alternatively, one can start with a representamen. Depending on
the sizes of the retrieved sets one can determine when to stop and whether to
apply different types of restrictions (Priss and Old 2004). Definition 3 suggests
a similar approach for simultaneous polysemy: Dsp(s) and Dsp(S1) retrieve all
denotations belonging to a representamen or set of representamens with equiv-
alent interpretations.

In some cases, a sign s has a representamen r which has parts that are
representamens of signs (e.g. s1) themselves. In that case a mapping from s
to s1 is called an observation if an additional non-mathematical condition is
fulfilled that the relationship is based on some perceptual algorithm. For a dia-
gram and the set S1 of all signs that can be simultaneously observed from it,
Dsp(S1) models an “observational advantage” in analogy to the notion of Sta-
pleton et al. (2017). In domains such as mathematics, an implication can be
considered to hold between signs if it is logically valid amongst the denotations
of the signs. Observations, however, hold between signs based on representa-
mens. Ideally observations amongst signs should imply implications and, thus,
representamen-based relationships should correlate with or at least not disagree
with denotation-based relationships.

Definition 4. For a semiotic relation S with signs s := (i, r, d), s1 := (i1, r1, d1),
i ≈I i1 and d = d1, the sign s has an observational advantage over s1 if |Dsp(s)| >
|Dsp(s1)|. For two semiotic relations S1 and S2 whose interpretations all belong
to the same equivalence class, S1 has a higher observational efficiency over S2 if
Dsp(S1) = Dsp(S2) and |Ssp(S1)| < |Ssp(S2)|. A semiotic relation S has maximal
observational advantage over a conceptual class if Dsp(S) contains the set of true
statements of the logical description of the conceptual class.

The last sentence of the definition extends the notion of observations to a
relationship between signs and conceptual classes where a conceptual class is
purely denotational and not a semiotic relation itself. Alternatively, conceptual

1 Neighbourhood lattices were originally invented by Rudolf Wille in an unpublished
manuscript.

Diagrammatic Representation of Conceptual Structures 285

classes could also be formalised as semiotic relations. Observational advantage
and efficiency can be considered a measure of quality for representamens. A
sign with a higher observational advantage might be better for certain purposes
because it provides more information. A semiotic relation has a higher observa-
tional efficiency if it can express the same content with fewer signs. With respect
to semiotic relations, the measure could be further refined, because otherwise just
containing a single sign with an observational advantage is sufficient to cause a
semiotic relation to have a higher observational efficiency.

Flower et al. (2008) distinguish concrete and abstract diagrams. A concrete
diagram is actually drawn whereas an abstract diagram contains all the informa-
tion that is required for producing a concrete diagram. For example, an abstract
Hasse diagram describes nodes, edges, labels and their relationships to each
other. A concrete diagram also contains x- and y- coordinates, fonts, colours
and so. Such distinctions are, for example, relevant for the planarity of graphs:
an abstract diagram is called planar if a concrete drawing without line crossings
is possible. In SCA, an interpretation maps a concrete diagram onto an abstract
diagram (as a denotation) which can then be considered a representamen and
mapped onto a conceptual class. In general, it is always a matter of judgement
to choose interpretations and denotations of a semiotic relation.

For example, one can argue that a (concrete or abstract) Hasse diagram of
a concept lattice has maximal observational advantage over its concept lattice.
This follows directly from how Hasse diagrams are defined, but still depends on
how a conceptual class of concept lattices is defined. Formal contexts as diagrams
might contain fewer representamens than Hasse diagrams of their concept lattices
and could thus have a higher observational efficiency. But it can be argued that
only a binary relation can be observed from a formal context. Constructing a
lattice from a binary relation involves implications as well as observations. While
it may be possible to read maximum rectangles from a formal context, most
people would have great difficulty observing the complete conceptual ordering
and, for example, the top and bottom concepts from a formal context. In any
case, both formal context diagrams as well as Hasse diagrams of concept lattices
have maximal observational advantage over the binary relation between objects
and attributes.

3 Tabular, Euler and Hasse Diagrams

Euler diagrams are a form of graphical representation of subsets of a powerset
that is similar to Venn diagrams but leaves off any zones that are known to be
empty. Not all subsets of a powerset can be represented by an Euler diagram
in a well-formed manner without including some supplemental zones (similar to
supplemental concepts). Supplemental zones are often shaded in order to indi-
cate that they are empty. Figure 1 shows an Euler diagram in the middle. It is
slightly unusual because its curves are boxes instead of circles or ellipses. The
correspondence between the Euler diagram and the Hasse diagram on the right
should be evident from the letters. The reason for drawing the Euler diagram

286 U. Priss

with boxes is because it allows a reduction to a diagram shown on the left which
is called tabular diagram in this paper. It seems that there should be an estab-
lished notion for “tabular diagrams” but there seem to be a variety of similar
notions (mosaic plots/displays, contingency tables, Karnaugh maps) which all
have slightly different additional meanings. In a sense, tabular diagrams are a
2-dimensional version of the “linear diagrams” invented by Leibniz (Chapman
et al. 2014).

ccb

d

e

F
G H

I J

N

L

P O

M

K

A

b dc

F

ONM

G H I J K

e

L

A

P

F
G H

I J

N

L

P O

M

K

A

d

b

e

Fig. 1. Tabular, Euler and Hasse diagrams

Considered as single representamens, each diagram in Fig. 1 is simultane-
ously polysemous because it contains a large amount of information: objects,
attributes, their binary relation and implications amongst attributes. The three
types of diagrams can be considered to denote the same conceptual class and thus
to have the same observational advantage. Instead of considering each diagram
as one representamen, it can also be considered as a semiotic relation consist-
ing of parts that are representamens. For the following theorem it is assumed
that sets (or curves) with multiple labels are not allowed and that each diagram
contains more than one set.

Theorem: Tabular, Euler and Hasse diagrams denote a shared conceptual class
corresponding to partial orders of sets with labels and elements. If they exist,
tabular diagrams have a higher or equal observational efficiency than Euler dia-
grams which have a higher observational efficiency than Hasse diagrams.

It should be noted that an Euler diagram might just be a partially ordered
set, not a lattice. A translation from Euler to Hasse diagrams is discussed by
Priss (2020) and shall be omitted here. The proof of the second half of the theo-
rem is that tabular diagrams contain exactly one representamen for each object,
at most two representamens for each attribute (the name of the attribute and
a bracket) and nothing else. Euler diagrams also contain one representamen for
each attribute and object, and one curve for each attribute. Because a bracket
in a tabular diagram can be omitted if the attribute belongs to just one row or
column and the outer curve may be omitted, tabular diagrams contain poten-
tially fewer representamens than Euler diagrams. Hasse diagrams contain labels
for the objects and attributes, one node for each attribute, but also some edges,
thus more representamens than Euler diagrams.

Diagrammatic Representation of Conceptual Structures 287

The question arises as to which concept lattices and which Euler diagrams
can be represented as tabular diagrams. Any tabular diagram can be converted
into an Euler diagram by extending the brackets into boxes but the resulting
Euler diagram may not be well-formed. For more than 4 elements, it may not be
possible to construct a tabular diagram at all. A solution is to duplicate some of
the row and column labels, if the diagram is not possible otherwise. Being able
to embed a lattice into a direct product of two planar lattices, is not sufficient as
a condition for a corresponding tabular diagram. Petersen’s (2010) description
of an “S-order” characterises lattices which correspond to 1-dimensional linear
diagrams and could lead to a characterisation. Answering such questions may be
as difficult as it is to determine which Euler diagrams are well-formed (Flower
et al. 2008) which has only been solved by providing algorithms so far.

Observability as defined in the previous section is a formal condition. It does
not imply that all users can actually observe the information. If a diagram gets
too large and complex, users will have difficulties observing anything. Also, some
people are more, some less skilled in reading information from graphical repre-
sentations. Furthermore, we are not suggesting that tabular or Euler diagrams
have a higher observational efficiency over Hasse diagrams with respect to all
possible conceptual classes nor that they are in any other sense “superior” to
lattices. In fact a comparison between Euler and Hasse diagrams shows varied
results (Priss 2020).

One of the disadvantages of Euler and tabular diagrams is that some of the
structural symmetry may be missing. The dashed lines in Fig. 1 indicate rela-
tionships between concepts that are neighbours in the Hasse diagram (and in the
ordering relation), but are not neighbours in the tabular diagram. Thus observ-
ability has many aspects to it. Modelling with different semiotic relations and
conceptual classes will produce different results. Psychological aspects relating
to perception exist in addition to formal aspects.

4 Obtaining an Observationally Efficient Diagram

This section employs an example of a formal context and lattice from Ganter
and Wille (1999, Sect. 2.2) consisting of seven prototypical types of triangles and
their properties (Fig. 2). The example is discussed using a 3-step investigation:
1. conceptual exploration, 2. reduction of the concept lattice using background
knowledge and 3. finding a diagrammatic representation that has a high obser-
vational efficiency.

The corresponding lattice is shown in Fig. 2 with empty nodes representing
supplemental concepts and filled nodes for non-supplemental concepts. More
than half of the concepts are supplemental – and adding more types of triangles
as objects would not change that. If one removes the attribute “not equilateral”
(and stores it as background knowledge), then the resulting lattice in the left
half of Fig. 3 contains fewer supplemental concepts. Since there is only one object
that has the attribute “equilateral”, this information can still be observed from
the lattice. Thus the complexity of the lattice can be reduced if some of the
information is stored as background knowledge.

288 U. Priss

obtuse

acute

equilateral

obtuse

acute, isoseceles

right

equilateral

acute

oblique isosceles not equilateral

right

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj 7

obtuse, isosceles

right, isosceles

Fig. 2. Classification of triangles (according to Ganter and Wille (1999))

The third step consists of considering observational advantages and efficiency.
By representing formal objects as diagrams of triangles, each object visually con-
tains the information about which attributes it has. Thus, for example, the trian-
gle for Obj 4 is simultaneously polysemous because the fact that it is equilateral,
acute, oblique and isosceles can be observed from it if one knows what having
such an attribute looks like. If one uses a string “equilateral triangle” for Obj 4
then only the attribute “equilateral” can be observed. The other attributes can
be inferred but not observed. Representing formal objects as diagrams provides
observational advantages over presenting them as strings. Of course, in most
applications it will not be the case that objects can be represented as diagrams.
Furthermore, in some disciplines diagrams are more suitable than in others.

equilateral

right

obtuse

oblique

right

acute

oblique isosceles
acute obtuse

is
os

ce
le

s

eq
ui

la
te

ra
l

Fig. 3. Classification of triangles: Hasse and tabular diagram

The tabular diagram on the right of Fig. 3 provides a higher observational
efficiency as explained in the previous section. If a student wants to memorise all
existing types of triangles, then maybe this is the most suitable diagram. Apart
from the bottom node of the lattice, the other supplemental concepts are still
structurally present in the tabular diagram which becomes clear if the curves
of the Euler diagram are added. If the attribute “not equilateral” was added
then an Euler diagram would also have more empty zones, but those would not
be visible in the tabular diagram. Again, we are not suggesting that in general
hiding information is an advantage. It depends on the purpose of a diagram.

Diagrammatic Representation of Conceptual Structures 289

5 Conclusion

This paper discusses means of obtaining diagrammatic representations of con-
ceptual structures that provide observational advantages and high observational
efficiency. A background for this research is to find ways of developing teaching
material that covers a topic area efficiently but also, if possible, by connecting to
visual structures. Mathematical statements and proofs often present a combina-
tion of information that can be observed and information that must be known
or inferred. We believe that in particular the notion of “seeing” information in
representations is not yet fully understood, even though there is a long tradi-
tion of and large body of research in diagrammatic reasoning and information
visualisation.

References

Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., Blake, A.: Visualizing sets: an
empirical comparison of diagram types. In: Dwyer, T., Purchase, H., Delaney, A.
(eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 146–160. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44043-8 18

Flower, J., Fish, A., Howse, J.: Euler diagram generation. J. Vis. Lang. Comput. 19(6),
675–694 (2008)

Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer,
Berlin-Heidelberg-New York (1999)

Petersen, W.: Linear coding of non-linear hierarchies: revitalization of an ancient clas-
sification method. Adv. Data Anal., pp. 307–316. Springer, Data Handling and Busi-
ness Intelligence (2010)

Priss, U., Old, L.J.: Modelling lexical databases with formal concept analysis. J. Univ.
Comput. Sci. 10, 8, 967–984 (2004)

Priss, U.: Semiotic-conceptual analysis: a proposal. Int. J. Gen. Syst. 46(5), 569–585
(2017)

Priss, U.: Set visualizations with Euler and Hasse diagrams. In: Cochez, M., Croitoru,
M., Marquis, P., Rudolph, S. (eds.) GKR 2020. LNCS (LNAI), vol. 12640, pp. 72–83.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-72308-8 5

Stapleton, G., Jamnik, M., Shimojima, A.: What makes an effective representation of
information: a formal account of observational advantages. J. Logic Lang. Inf. 26(2),
143–177 (2017)

https://doi.org/10.1007/978-3-662-44043-8_18
https://doi.org/10.1007/978-3-030-72308-8_5

Author Index

Abbas, Nacira 243
Ayats, Hugo 155

Bansal, Saurabh 107
Bazin, Alexandre 243
Behrisch, Mike 3

Ceglar, Aaron 192
Cellier, Peggy 155
Chavarri Villarello, Alain 3
Cordero, Pablo 74, 138

David, Jérôme 243
Dudyrev, Egor 252
Dürrschnabel, Dominik 224

Enciso, Manuel 74, 138
Euzenat, Jérôme 20

Felde, Maximilian 175
Ferré, Sébastien 155

Hanika, Tom 261
Hirth, Johannes 261

Janostik, Radek 91

Kailasam, Sriram 107
Klimpke, Jana 208
Konecny, Jan 91

Koyda, Maren 38
Krajča, Petr 91
Kuznetsov, Sergei O. 252
Kwuida, Léonard 270

Léa, Tenkeu Jeufack Yannick 270
López-Rodríguez, Domingo 138

Mora, Ángel 74, 138

Napoli, Amedeo 243
Nourine, Lhouari 57

Obiedkov, Sergei 107

Pattison, Tim 192
Pérez-Gámez, Francisco 74
Priss, Uta 281

Rudolph, Sebastian 208

Stumme, Gerd 38, 175, 224

Temgoua, Etienne Romuald Alomo 270
Trnecka, Martin 125
Trneckova, Marketa 125

Vargas-García, Edith 3
Vilmin, Simon 57

	Preface
	Organization
	Abstracts of Invited Talks
	What do the Sources Say? Exploring Heterogeneous Journalistic Data as a Graph
	Ontologies for On-Demand Design of Data-Centric Systems
	Towards Human-Guided Rule Learning
	Sustainable AI – What Does It Take for Continued Success in Deployed Applications?
	Contents
	Theory
	Representing Partition Lattices Through FCA
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Partitions
	2.2 Notions of Formal Concept Analysis

	3 Relation Between the Lattices Ln and Ln+1
	4 Standard Context of Ln
	References

	Fixed-Point Semantics for Barebone Relational Concept Analysis
	1 Motivation
	2 Preliminaries and Related Work
	2.1 Formal Concept Analysis
	2.2 Extending FCA
	2.3 Relational Concept Analysis
	2.4 RCA0

	3 RCA May Accept Different Concept Lattice Families: Illustration
	4 Semantics and Properties: A Context Approach
	4.1 The Lattice K of RCA0 Contexts
	4.2 The Context Expansion Function F
	4.3 Fixed Points of F
	4.4 The Well-Grounded Semantics of RCA is the Least Fixed-Point Semantics
	4.5 Computing the Greatest Fixed Point

	5 Self-supported Fixed Points
	5.1 The Lattice L of RCA0 Lattices and the Lattice Expansion Function E
	5.2 Self-supported Lattices

	6 Discussion
	7 Conclusions
	References

	Boolean Substructures in Formal Concept Analysis
	1 Introduction
	2 Recap on FCA and Notations
	2.1 Foundations
	2.2 Relating Substructures in FCA

	3 Related Work
	4 Boolean Subcontexts and Sublattices
	5 Closed-Subcontexts
	6 Connecting Boolean Suborders and Boolean Subcontexts
	6.1 Embeddings of Boolean Substructures
	6.2 Subconcepts Associated to Suborders

	7 Interplay of Both Approaches
	8 Conclusion
	References

	Rules
	Enumerating Maximal Consistent Closed Sets in Closure Systems
	1 Introduction
	2 Preliminaries
	3 Closure Systems Given by Implicational Bases
	4 Minimal Generators with Bounded Size
	5 Biatomic Atomistic Closure Systems
	6 Conclusions
	References

	A New Kind of Implication to Reason with Unknown Information
	1 Introduction
	2 Preliminaries
	2.1 FCA Preliminaries
	2.2 Attribute Implications

	3 An Algebraic Framework for Unknown Information
	3.1 The -semilattice of 3-sets
	3.2 The Lattices of 4-sets and -sets

	4 Extending the Concept of Lattice
	5 Reasoning with Weak Implications
	6 Conclusion and Further Work
	References

	Pruning Techniques in LinCbO for Computation of the Duquenne-Guigues Basis
	1 Introduction
	2 Preliminaries
	2.1 Formal Concept Analysis, Theories, Models, and Bases
	2.2 Duquenne-Guigues Basis
	2.3 LinCbO

	3 Pruning in Pseudointent Computation
	4 How LinCbO Utilizes the Pruning
	5 Experimental Evaluation
	6 Our Observations
	7 Conclusion
	References

	Approximate Computation of Exact Association Rules
	1 Introduction
	2 Main Definitions
	3 Probably Approximately Correct Computation of Implications
	4 Computing Frequency-Aware Approximations
	5 Experimental Evaluation
	5.1 Quality Factor
	5.2 Testbed
	5.3 Data Sets
	5.4 Experiments

	6 Conclusion
	References

	Methods and Applications
	An Incremental Recomputation of From-Below Boolean Matrix Factorization
	1 Introduction
	2 Problem Description
	2.1 Non-incremental From-Below BMF
	2.2 Incremental From-Below BMF

	3 Incremental Algorithm
	3.1 Adding of New Entries
	3.2 Removing of Existing Entries
	3.3 Time Complexity

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Adding of New Entries
	4.3 Removing of Existing Entries
	4.4 Running Times

	5 Conclusions
	References

	Clustering and Identification of Core Implications
	1 Introduction
	2 Previous Works on FCA and Clustering
	3 Background and the fcaR package
	4 Proposed Research Line
	5 Experimental Results
	6 Conclusions
	References

	Extracting Relations in Texts with Concepts of Neighbours
	1 Introduction
	2 Preliminaries
	3 Modeling Sentences as Graphs
	3.1 NLP Treatments
	3.2 Sentences as an RDF Graph
	3.3 Type Hierarchies

	4 Relation Extraction with Concepts of Neighbours
	4.1 Concepts of Neighbours for Relation Extraction in Texts
	4.2 Scoring Methods

	5 Experiments
	5.1 Dataset and Baseline
	5.2 Experimental Settings
	5.3 Quantitative Results
	5.4 Qualitative Results

	6 Conclusion
	References

	Exploration and Visualisation
	Triadic Exploration and Exploration with Multiple Experts
	1 Introduction
	2 Dyadic and Triadic Formal Contexts
	2.1 Formal Concept Analysis
	2.2 Triadic Concept Analysis
	2.3 Attribute Implications
	2.4 Attribute Exploration

	3 Triadic Exploration
	3.1 Conditional Attribute Implications
	3.2 Triadic Exploration
	3.3 An Example for Triadic Exploration

	4 Application for Exploration with Multiple Experts
	5 Conclusion and Outlook
	References

	Towards Interactive Transition from AOC Poset to Concept Lattice
	1 Introduction
	1.1 Formal Concept Analysis and Scalability
	1.2 AOC Poset
	1.3 Morphing AOC Poset into Concept Lattice
	1.4 Generating only Abstract Concepts
	1.5 Organisation

	2 Context Ablation
	2.1 Preliminaries
	2.2 Strategy
	2.3 Elimination of Bigraph Elements
	2.4 Iterative Edge Elimination

	3 Formal Concept Analysis of Ablated Context
	3.1 Finding Valid Abstract Concepts
	3.2 Dividing and Conquering
	3.3 Anticipating and Localising Change in the AOC Poset

	4 Discussion and Summary
	References

	Visualization of Statistical Information in Concept Lattice Diagrams
	Force-Directed Layout of Order Diagrams Using Dimensional Reduction
	1 Introduction
	2 Related Work
	3 Fundamentals and Basics
	3.1 Mathematical Notations and Definitions
	3.2 Force-Directed Graph Drawing

	4 The ReDraw Algorithm
	4.1 Node Step
	4.2 Line Step
	4.3 Dimension Reduction

	5 Evaluation
	5.1 Run-Time Complexity
	5.2 Tested Datasets
	5.3 Recommended Parametrizations
	5.4 Empirical Evaluation
	5.5 User Evaluation

	6 Conclusion and Outlook
	References

	Short Papers
	Sandwich: An Algorithm for Discovering Relevant Link Keys in an LKPS Concept Lattice
	1 Introduction
	2 The Discovery of Link Keys with Pattern Structures
	2.1 A Definition of Link Keys
	2.2 A Pattern Structure for Link Key Discovery

	3 The Pruning of an lkps-lattice
	3.1 Correction and Completeness of a Link Key Candidate
	3.2 Sandwich: An Algorithm for Selecting the Most Relevant Link Key Candidates

	4 Discussion and Conclusion
	References

	Decision Concept Lattice vs. Decision Trees and Random Forests
	1 Introduction
	2 Basic Definitions
	3 Construct a Concept Lattice via a Set of Decision Trees
	4 Decision Lattice
	5 Experiments
	6 Conclusions
	References

	Exploring Scale-Measures of Data Sets
	1 Introduction
	2 Scales and Measurement
	3 Ideals in the Lattice of Closure Systems
	4 Recommending Conceptual Scale-Measures
	5 Related Work
	6 Conclusion
	References

	Filters, Ideals and Congruences on Double Boolean Algebras
	1 Introduction
	2 Concepts, Protoconcepts and Double Boolean Algebras
	3 Filters and Ideals of a Double Boolean Algebra
	4 Congruence on Double Boolean Algebras
	5 Conclusion
	References

	Diagrammatic Representation of Conceptual Structures
	1 Introduction
	2 FCA and SCA Notions
	3 Tabular, Euler and Hasse Diagrams
	4 Obtaining an Observationally Efficient Diagram
	5 Conclusion
	References

	Author Index

