
Chapter 5
Langmuir-Type Model Analysis

In this chapter, based on the rigorous theory of anomalous diffusion through fibrous
porous media (Langmuir-type model), its advantagens, limitations, and different
approaches (analytical and numerical), we present the correct prediction for thewater
absorption process in vegetable fiber-reinforced polymer composites. In the macro-
scopic and advanced mathematical modeling, both fiber and polymer are considered
a homogeneous mixture having water molecules in the free and entrapped states
inside the material, and the effect of swelling is neglected. Herein, different 1D and
3D simulation results of the average moisture content, moisture content as well as
free and entrapped water molecules concentration distribution at different times are
presented and analyzed. Applications have been focused to caroá fiber- reinforced
polyester composites and other arbitrary cases.

5.1 Fundamentals

The effects ofmoisture absorption on the physical and chemical properties of polymer
composite materials have received wide attention, not only due to the durability of
these materials in operation but also because of their wide field of application.

As already mentioned, the properties of composite materials depend on the
behavior of the matrix, the reinforcement and the fiber/matrix interface. Absorption
of water molecules in materials leads to degradation of the interface and swelling
of the matrix, generating internal stresses and decreasing mechanical properties.
Decreasing properties are intrinsically associated to the moisture diffusion process in
composite materials and therefore, in order to predict long-term behavior, in-service
failure and useful life estimation [1], it is essential to know the water absorption rate.

Diffusion models must reflect the moisture sorption process in different ways,
considering certain additional phenomena that can occur inside the material. Thus,
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each specific case must be analyzed not only based on the results of a good approxi-
mation between the experimental data and those predicted by the equations, but also
by the physical interpretation of the water sorption process included in the models.

In some cases, the water absorption kinetics is described assuming that water
absorption follows the classical treatment givenbyFick’s second lawof diffusion, that
is, that the diffusion process is driven by thewater concentration gradient between the
medium and the material and continues until hygroscopic equilibrium is reached. In
others, thismodel is notwell suited [2, 3], because thematerial presents an anomalous
water diffusion behavior, which implies in the existence of different stages of sorption
until the final mass balance is reached (hygroscopic equilibrium condition). In this
case, single-phase models cannot easily describe this kind of diffusion, and one
needs other more sophisticated models to describe the behavior of the material under
these physical conditions [4]. The Langmuir-type model is appropriate to predict the
non-Fickian diffusion process in this situation [5].

The Langmuir-type model explains moisture sorption by assuming that water
exists simultaneously in two phases: free (unbound) and entrapped (bound), during
the process. In this model, water molecules in the free phase are adsorbed (bound)
with a probability α per unit time, and the entrapped water molecules can leave the
connected state with a probability β per unit time. Thus, the diffusion process is
described by the classical diffusion equation, which is modified to take into account
the two phases of the moisture inside the material.

Figure 5.1 illustrates the moisture content transient behavior predicted by Fick´s
model and Langmuir-type model. According to the Langmuir-type model, during
the water absortion process, moisture migration is controlled by two phenomena:
dispersion of free water molecules due to random molecular motion and trapping
of water molecules due to interaction between the free water molecules and porous
within the polymer composite.

In Fig. 5.1, the pseudo-equilibriumpoint represents the point atwhich themoisture
migration rate drops dramatically.

The Langmuir-type model is well described in Glaskova et al. [6], Carter and
Kilber [5], Bonniau and Bunsell [1], Grace and Altan [2], Cotinaud et al. [7] and
Apicella et al. [8].

According to Carter and Kilber [5], the diffusive characteristics of the Langmuir-
type model are correlated to the simplest form of neutron transport theory, while that
the characteristics associated to free and entrapped water molecules are related to
the classical Langmuir´s adsorption isotherms theory.

According to these authors, composite anisotropy (structural heterogeneity),
swelling, size and distribution of micropores (microvoids), mechanical loading,
rearrangement of the polymer network (long-term relaxation), or some other
phenomenon not yet fully understood are responsible for the intensity of the physical
or chemical interactions at the microscopic level between polar water molecules and
molecular groups of the polymer chains (molecular binding). A detailed discussion
on the applications of this model are presented in the next section.



5.2 Moisture Absorption by Langmuir-Type Model 71

Fig. 5.1 Typical moisture
absorption kinetics predicted
by Langmuir-type model and
Fick´s model
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5.2 Moisture Absorption by Langmuir-Type Model

5.2.1 The Physical Problem

For the analysis of the physical problem studied here, consider a dry polymer
composite of parallelepiped geometry, at low temperature, suddenly immersed in
a stationary, heated, saturated fluid (water). As the surrounding fluid heats the dry
porous media, heat penetrates into the solid (as the result of a temperature differ-
ence) and moisture migrates into the solid by diffusion from the surface. Figure 5.2
illustrates the problem treated here. In this figure Lx, Ly, and Lz are the distances
from the composite surface to the maximum level of water in the container.

5.2.2 The General Mass Diffusion Equation

In the Langmuir-type model, the non-Fickian moisture absorption behavior can be
explained quantitatively by assuming that moisture absorption occurs in the pres-
ence of two simultaneous stages, one being the free water stage and the another
the entrapped water stage [5]. The following mass transfer equations describe this
model:
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Fig. 5.2 Squematic of the
composite immersed in a
stationary fluid and the
distance of the material to
borders of the fluid domain
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∂C

∂t
= ∇ · (D∇C) − ∂S

∂t
(5.1)

∂S

∂t
= λC − μS (5.2)

where: C is the concentration of the free solute diffusing into the material; S is the
concentration of the entrapped solute; D is the mass diffusion coefficient (free solute
molecules); t is the time; λ is the probability of a free solute molecule is entrapped
inside the solid and μ is the probability that an entrapped solute molecule becomes
free.

Careful analysis of Eq. (5.1), indicates that if λ = 0 or μ >> λ, it is reduced to
the simple diffusion theory (Fick´s second law of diffusion).

5.2.3 The Mass Diffusion Equation: 3D Approach
in Cartesian Coordinates

For a three-dimensional and transient approach, based on the considerations adopted,
the Langmuir model, in Cartesian Coordinates, can be written as:

∂C

∂t
= ∂

∂x

(
D

∂C

∂x

)
+ ∂

∂y

(
D

∂C

∂y

)
+ ∂

∂z

(
D

∂C

∂z

)
− ∂S

∂t
(5.3)

∂S

∂t
= λC − μS (5.4)

In order to solve Eqs. 5.3 and 5.4, the following initial and boundary conditions were
used:
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(a) Initial conditions: if the solid is completely dry at the beginning of the process,
then one can write:

C = S = 0;
⎧⎨
⎩

−R1 < x < R1

−R2 < y < R2

−R3 < z < R3

(5.5)

(b) Boundary conditions: the variation in the concentration of the solute in the
fluid medium on the surface of the solid is equal to the diffusive flux of solute
into the material. Then, one can write:

Lx1
∂C

∂t
= −D

∂C

∂x
;
{
x = −R1

t > 0
(5.6)

Lx2
∂C

∂t
= −D

∂C

∂x
;
{
x = +R1

t > 0
(5.7)

Ly1
∂C

∂t
= −D

∂C

∂y
;
{
x = −R2

t > 0
(5.8)

Ly2
∂C

∂t
= −D

∂C

∂y
;
{
x = +R2

t > 0
(5.9)

Lz1
∂C

∂t
= −D

∂C

∂z
;
{
x = −R3

t > 0
(5.10)

Lz2
∂C

∂t
= −D

∂C

∂z
;
{
x = +R3

t > 0
(5.11)

OnceC and S are determined at any point inside thematerial, it is possible to calculate
the total moisture content present in the material at any position and instant of time.
Therefore, the total moisture content is given by the sum of the concentrations of C
and S, as follows:

M(x,y,z,t) = C(x,y,z,t) + S(x,y,z,t) (5.12)

It follows from Eq. 5.12 that the average moisture content of the solid at any time of
the process is given by:

M = 1

V

∫
V

M(x,y,z,t)dV (5.13)
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Fig. 5.3 Geometrical
representation of the
one-dimensional physical
problem
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in which V is the total volume of the solid and dV = dxdydz is the volume of an
infinitesimal sample of the porous solid.

5.2.4 The Water Absorption Process: 1D Approach
in Cartesian Coordinates

5.2.4.1 The Physical Problem

For the physical model, a porous plate with thickness 2R2 = 2a, immersed in a fluid
solution (water) of height (Ly1 + 2a+ Ly2), as illustrated in Fig. 5.3 was considered.

Considering that R1 = R3>>R2, water absorption can be analysed just in the y
direction and the following assumptions were made: the material is homogeneous
and isotropic; the mass diffusion coefficient is constant; the solid is axisymmetric;
the process is transient; the dimensions of the material during the diffusion process
do not change; the capillary transport through the solid is negligible; mass generation
inside the solid is neglected; the solid is totally dry at the beginning of the process and
the solid is in equilibrium with the surrounding medium at the surface (equilibrium
boundary condition).

5.2.4.2 The Mass Diffusion Equation

In the Langmuir-Type model, the anomalous moisture absorption can be quantita-
tively determined by assuming that absorbed moisture consists of a mobile phase
and a bound phase. The model considers the interaction between the polar water
molecules and the resin molecular groups, predicting the existence of free and
bound molecules within the polymer network. This can be taken into account by
adding a new parameter to the classical Fick’s equation [9]. Considering the assump-
tions already cited, the Langmuir equation, written in Cartesian coordinates in a
one-dimensional approach, is described as follows:
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∂C

∂t
= D

∂2C

∂y2
− ∂S

∂t
(5.14)

where,

∂S

∂t
= λC − μS (5.15)

For the proposed problem the following initial and boundary conditions were
considered:

• Initial condition:

S = C = 0,−a < y < a, t = 0 (5.16)

• Boundary condition:

Ly1
∂C

∂t
= −D

∂C

∂y
y = - a, t >0 (5.17)

Ly2
∂C

∂t
= −D

∂C

∂y
y = +a, t > 0 (5.18)

where Ly1 and Ly2 represent the distance between the solid surface and the bottom
and top of the water tank, respectively. According to Eqs. (5.17) and (5.18), it is
assumed that the rate of solute that leaves the solution is equal to the diffusive flux
of solute at the surface of the plane sheet (see Fig. 5.3).

5.2.4.3 Solution Techniques: 1D Approach

Analytical Solution

Based on the works of Carter and Kibler [5] and Crank [10], Santos et al. [3] present
the exact solution for the Eqs. (5.14) and (5.15) using the method of Laplace Trans-
form. The application of the Laplace Transform consists in converting a partial differ-
ential equation in an ordinary differential equation which can be solved more easily.
After this procedure, the inverse Laplace transform is calculated to get the orig-
inal function of the problem that represent the solution of the governing equations
[11, 12].

In order to obtain the exact solution of the physical problem, the model was
simplified considering a porous plate with thickness 2R2 = 2a, immersed in a fluid
(water) of height (2L + 2a), where Ly2 = Ly1 = L (Fig. 5.3).

The final equation for the concentration of free solute inside the solid during the
water absorption process is obtained by considering the boundary conditions, the
domain of the functions and with the use of necessary simplifications. This equation
can be written as:
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C(y,t) = LCe
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where pn and kn are eigenvalues and C0 represent the initial solute concentration.
The final equation for the concentration of solute entrapped on the solid is written

as:

S(y,t) =
(

λ

μ

)
LCe
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)
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][
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+ a
2L

]} (5.20)

The total moisture content inside the material in a specific position x and instant
t is obtained from the sum of the amount of free solute and the amount of solute
entrapped according with the following equation:

M = S + C (5.21)

Based on Eq. (5.21), the average moisture content of the solid at different moments
of the water uptake can be computed as follows:

M = 1

V

∫
V

MdV (5.22)

or yet,

M = 1

2a

a∫
−a

M(y,t)dy (5.23)

where V is the volume of the solid.
FromEq. (5.23), the averagemoisture content of the solid at different water uptake

times can be computed as follows:

M

Me
= 1 −

∞∑
n=1

(1 + α)epn t

1 +
[
1 + μλ

(pn+μ)2

][
Lp2na
2D2k2n

+ pn
2k2nD

+ a
2L

] (5.24)
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where:

α = L

(R + 1)a
(5.25)

Me = LCe

(1 + α)a
(5.26)

In Eq. (5.24), M corresponds to the total amount of solute, both free and immo-
bilized to diffusion at a given time t, Me corresponds to the amount of moisture
at equilibrium, obtained after an infinite time, and R = λ

/
μ. The terms pn and kn

together form pairs of eigenvalues and aim to refine the approximate calculation
and the results. Thus, the higher the number of eigenvalues, the more accurate the
analytical results obtained. They correspond to non-zero roots of the Eq. (5.27) that
are originated from applying Eqs. (5.19) in (5.18).

Lp

D
= k tan(k × a) (5.27)

In Eq. (5.27), the values of k are given by:

k2 = − p

D

(
p + μ + λ

p + μ

)
(5.28)

For a 3D physical situation, the analytical solution can be obtained as the product
of the analytical solution for three infinite plates. In this case, each of the plates
must have thickness equal to 2R1, 2R2 and 2R3. Special care must be given in the
determination of the eigenvalues p and k, which are different for each of the x, y and
z diretions [2, 13–15].

Numerical Solution

The numerical solution of a partial differential equation basically consists of two
steps: (a) discretizing the physical domain under study in several sub domains and (b)
transforming the governing equation into a linear algebraic equation in the discretized
form applied to each sub domain contained in the solid under investigation. After
these procedures, the result is a set of linear algebraic equations whose solution
provides the distribution of the potential unknown inside the domain and in time.

Herein, the finite-volumemethod for numerical solution of the governing equation
[16–18] was used. For the discretization of Eqs. (5.14) and (5.15), the continuous
solid of a thickness 2awas subdivided in (np-2) control volumes, as shown in Fig. 5.4.

In Fig. 5.4 each control volume has thickness �x ; S, P and N represent nodal
points, while s and n represent the left and right faces of the control volume P,
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Fig. 5.4 Representation of the one-dimensional simulation domain with (np-2) control volumes

respectively; δys and δyn represent the distance between nodal point P and nodal
points S and N, respectively.

(a) Solution for the concentration of free solute

• Internal points

In the finite volume method, discretization is done by integrating all terms of
Eq. (5.14) in volume and time. Thus, after integration and using a fully implicit
formulation, rearranging the terms in the linearized discrete algebraic form at P,
leads to:

APCP = ANCN + ASCS + Ao
PC

o
P + BC

P (5.29)

where,

AP =
(

�x

�t
+ Dn

δxn
+ Ds

δx s
+ λ�x

)
(5.30)

AN = Dn

δyn
(5.31)

AS = Ds

δys
(5.32)

Ao
P = �y

�t
(5.33)

BC
P = μ�ySoP (5.34)

where the coefficients AP , AN , and AS are the conductance between the nodal points
P and their corresponding neighbors. The term Ao

P represents the influence of the
value of C on the value of C at t prior to that at the current time t. Equation (5.29)
is valid for all internal points of the domain except for the boundary and symmetry
points.
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• Bottom boundary points

In this case, the boundary flux is replaced by the existing boundary condition
(Eq. 5.17). By doing this, the linear discretized equation for the bottom boundary
points is:

APCP = ANCN + Ao
sC

o
s + Ao

PC
o
P + BC

P (5.35)

where,

AP = �y

�t
+ Dn

δ yn
+ 1(

δys
Ds

+ �t
Ly1

) (5.36)

AN = Dn

δyn
(5.37)

Ao
s = 1(

δys
Ds

+ �t
Ly1

) (5.38)

Ao
P = �y

�t
(5.39)

BC
P = μ�ySoP (5.40)

• Upper boundary points

In this case, the boundary flux that must be replaced by the existing boundary condi-
tion (Eq. 5.18) and the linear discretized equation for the boundary points is given
by:

APCP = ASCS + Ao
nC

o
n + Ao

PC
o
P + BC

P (5.41)

where,

AP = �y

�t
+ Ds

δ ys
+ 1(

δyn
Dn

+ �t
Ly2

) (5.42)

AS = Ds

δys
(5.43)

Ao
n = 1(

δyn
Dn

+ �t
Ly2

) (5.44)

Ao
P = �y

�t
(5.45)
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BC
P = μ�ySoP (5.46)

Equations 5.29, 5.35 and 5.41 when applied at each of the control volumes form
a system of algebraic linear equations whose solution indicates the concentration of
free solute within the solid during the water absorption process.

(b) Solution for the concentration of entrapped solute

In order to obtain the equations associated to the concentration of entrapped solute
in the solid, Eq. (5.15) is integrated in volume and time. Reorganizing the terms,
we obtain the following linear algebraic equation, valid for all control volume of the
domain:

APSP = Ao
PS

o
P + BS

P (5.47)

where,

AP = �y

�t
+ μ�y (5.48)

Ao
P = �y

�t
(5.49)

BS
P = λ�yCP (5.50)

It is important to notice that the Eq. (5.47) is an explicit equation, depending only of
the values of the free solute concentration at each nodal point and time.

The total moisture inside the material in a specific position x and instant t is given
by summing the amounts of free and entrapped solute as follows:

M = S + C (5.51)

Equation (5.23) yields the average moisture content of the solid at any time. This
equation in the discretized form is written as:

M = 1

2a

np−1∑
i=2

Mi�yi (5.52)

where np represents the total number of nodal points considered.
The linear algebraic equation system can be solved iteratively using the Gauss–

Seidel method, where is assumed that the numerical solution converges when, from
the initial condition, the following criterion is satisfied at each nodal point of the
domain, at a given time:
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∣∣Cn+1
P − Cn

P

∣∣ ≤ 10−10 (5.53)

where n represents the nth iteration at each instant. To obtain the predicted results, a
time step and mesh refinement study was performed. After this process a grid with
np = 20 nodal points and a time step �t = 20 s was chosen.

(c) Estimation of the model parameters

For the computer simulation of thewater absorption process using the Langmuir-type
modl, it is necessary to use D, λ and μ values consistent with the experimental data.
This procedure is described in detail below.

• Initial estimate of the probabilities λ and μ

Considering a one-dimensional approach, κ = π2D/(2R2)
2 and satisfying 2λ <<

κ and 2μ << κ, the following approximate solution for determining the average
moisture content (Eq. 5.24) is valid [5]:

M

Me
= μ

λ + μ
e−λt

[
1 − 8

π2

∞∑
n=1

e−κ(2n+1)2t

(2n + 1)2

]

+ μ

λ + μ

(
e−μt − e−λt

) + (
1 − e−μt

)
(5.54)

For long times, when κ × t >> 1, Eq. (5.54) is reduced to:

M

Me
= 1 − λ

λ + μ
Exp(−μ × t) (5.55)

which can be written, as follows:

M

Me
= 1 − AExp(−B × t) (5.56)

where

A = λ

λ + μ
(5.57)

B = μ (5.58)

With the values of the average moisture content over time obtained experimentally,
it is possible to perform a nonlinear regression of Eq. (5.56), to obtain the values
of A and B statistical parameters and, with those, determine the values of λ and μ

parameters using Eqs. (5.57) and (5.58).
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• Initial estimate of the probabilities λ and μ

In this case, considering a one-dimensional approach, for short times (t ≤ 0.7/κ),
the following approximate solution for determining the average moisture content
(Eq. 5.59) is valid [5]:

M = 4

π3/2

(
μ

λ + μ
Me

)√
κ × t (5.59)

or yet,

M = 4

π3/2

(
μ

λ + μ
Me

)√
κ × √

t (5.60)

Thus, substituting κ = π2D/(2R2)
2 in Eq. (5.60) we get:

M = 4

π3/2

(
μ

λ + μ
Me

)√
π2D

(2R2)2
× √

t (5.61)

Calculating the derivative of Eq. (5.61) with respect to time and since, for initial
times, the behavior of the average moisture content is approximately linear with
time, we can write:

dM

d
√
t

≈ M2 − M1√
t2 − √

t1
=

(
4

π3/2

) (
μ

λ + μ
Me

) (
π

2R2

)
× √

D (5.62)

which leads to:

D = π ×
(

R2

2Me

)2 (
λ + μ

μ

)2
(

M2 − M1√
t2 − √

t1

)2

(5.63)

whereM1 andM2 are values of the averagemoisture content obtained experimentally,
at times t1 and t2, respectively, and Me is the equilibrium moisture content.

An alternative method to estimate themass diffusion coefficient is to consider λ =
0 (Langmuir-typemodel tending to the Fick´smodel) and determineD using the least
square error technique to minimize the error between theoretical and experimental
data (Eq. 5.64).

It is important to notice that the model parameters D, μ, and λ determined as
already mentioned are only an initial estimate and that the mathematical procedures
reported above can also be used for a three-dimensional analysis.
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Table 5.1 Geometrical
parameters used in the
simulation

Parameter Value

L (m) 0.3

a (m) 1.5 × 10–3

• Actual estimate of the parameters D, μ, and λ

Once the initial estimate of parameters D, μ and λ was made, the real estimate of
these parameters can be performed, comparing the least square error between the
predicted and experimental data of the average moisture content, and varying these
parameters until a minimum error is reached, according to Eq. (5.64).

ERQM =
n∑

i=1

[
Mpredict − Mexp erimental

]2
(5.64)

where n is the number of experimental points.

5.2.4.4 Langmuir-Type Model Application: 1D Approach

Analytical and Numerical Results

• Absorbed Water Kinetics

The exact and numerical solutions of the governing equations were applied to predict
moisture diffusion in polymer composites reinforced with caroá fibers. As already
mentioned, the composites studied have width and length greater that its thickness.
The results that presented here refer to the case where Ly2 = Ly1 = L and R2 = a. It
is assumed that water penetrates only in the thickness. direction. Table 5.1 presents
the geometric parameters used in the simulation.

For the validation of themodel, the predicted result of the averagemoisture content
was compared with analytical results reported by Santos et al. [3] and the experi-
mental data reported by Silva [19] and Nóbrega et al. [20] for polymer composite
materials reinforced with Caroá fiber (T = 25 °C). From this comparison, the mass
diffusion coefficient and the probabilitiesμ and λ, of the model were estimated using
the least squares error technique, given by the following equation:

ERQM =
n∑

i=1

[
Mpredicted − Mexp erimental

]2
(5.54)

where n is the number of experimental points. According to Santos et al. [3], an
average quadratic error of 0.047467 kgwater/kgdry solid) was obtained. Table 5.2 shows
the estimated data.
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Table 5.2 Physical
parameters used in the
simulation

Parameter Value

D (m2s−1) 7.020 × 10–12

μ (s−1) 1.697 × 10–6

λ (s−1) 0.836 × 10–6

Table 5.3 Some values of
the p and k eigenvalues

n kn (m−1) Pn (m−1)

1 1049.07 −7.5768 × 10–6

2 1058.21 −1.29658 × 10–6

3 3142.29 −6.06761 × 10–6

4 3171.09 −1.44941 × 10–6

5 5236.41 −1.67169 × 10–6

Fig. 5.5 Numerical,
analytical and experimental
dimensionless average
moisture content of polymer
composites reinforced with
caroá fiber during the water
absorption process (T =
25 °C, Ly2 = Ly1 = 0.3 m)

These values led to 30 pairs of eigenvalues and one pair of imaginary root which
were used to obtain the exact solution of Eqs. (5.19), (5.20) and (5.24). Table 5.3
presents five values of pn and kn engeinvalues determined by Santos et al. [3].

Figure 5.5 illustrates the comparison between numerical, analytical and exper-
imental data of the average moisture content obtained during water absorption in
caroá fiber-reinforced polymer composites immersed in water at 25 °C.

Figure 5.5 shows some discrepancies between experimental and numerical data,
which can be attributed to the lack of suitable boundary conditions for the model and
the assumption of constant properties. The numerical results, however, showed good
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Fig. 5.6 Dimensionless
average moisture content of
the caroá fiber reinforced
polymer composite as a
function of modified Fourier
number of mass transfer
during the water absorption
process (T = 25 °C, Ly2 =
Ly1 = 0.3 m)

agreement with analytical results, indicating that the proposed mathematical model
properly describes the water diffusion process inside the material.

A more general mathematical analysis was obtained by plotting the dimesionless
average moisture content as a function of another dimensioless parameter Fo =
Dt/[(R + 1)a2] namely modified Fourier number for mass transfer. These results
are shown in Fig. 5.6.This procedure allows for results to be independent of mass
diffusivity, λ and μ probabilities, composite thickness and time. Analysis of this
figure indicates that water sorption is very quick in the early stages up to a modified
Fourier number of mass transfer of approximately 2.0, and tends to decline for long
exposure times until equilibrium is achieved (saturation condition, Me = 14.488%),
where the dimensionless average moisture content tends to a maximum value. The
time to achieve the hygroscopic equilibrium was estimated to Fo ∼= 10Fo ≈ 12.

• Absorbed Free and Entrapped Water Molecules Distribution

Figure 5.7 shows the variation of dimensionless free solute concentration (analytical
and numerical) along the thickness of the solid, given by C/Ce, where Ce (estimated
by Eq. 5.22 as Ce = 0.09778 kg/kg) represents the equilibrium concentration of the
solute in the fluid medium. Since the solid in question is symmetrical with respect to
its center, results are ploted only from the center (y= 0m) to the composite surface (y
= 0.0015 m). This figure shows that, for shorter times, moisture concentration varia-
tion is higher close to the surface of the material, that is, there is a high concentration
gradient of free water, in these regions. With increasing time, this relationship tends
to approach 1.0, as the hygroscopic equilibrium condition (saturation) is reached.
Besides, at any point within the solid, the moisture content increases with time until
it reaches equilibrium.
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y/a (-)
(a)

y/a (-)
(b)

Fig. 5.7 Dimensionless free solute concentration distribution inside the caroá fiber reinforced
plymer composite for different modified Fourier number of mass transfer. a Analytical and b
Numerical results (T = 25 °C, Ly2 = Ly1 = 0.3 m)

Figure 5.8 illustrates the distribution of the dimensionless bound (entrapped)water
molecules (numerical) along the thickness of the caroá fiber-reinforced polymer
composite.Analysis of this figure shows that an increase in the content of boundwater
molecules depends on the increase in the concentration of free water molecules into
the material. The major bound water concentration gradients are found near the solid
surface. For longer times, or when there is a greater amount of free water molecules
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y/a (-)

Fig. 5.8 Predicted dimensionless entrapped solute concentration inside the caroá fiber reinforced
plymer composite for different modified Fourier number of mass transfer (T = 25 °C, Ly2 = Ly1
= 0.3 m)

within the material, there is a higher number of entrapped water molecules, and this
condition occurs until that equilibrium is reached. This occurs as ∂S/∂t = 0, or yet,
λC = μS, which implies that S/Ce = λ/μ = 0.493, for t → ∞.

At the beginning, the observed behaviour for water absorption is Fickian, that
is, there is moisture migration of water molecules in “free” state. However, as time
goes by and as more moisture is absorbed, the water diffusion rate decreases. This
behaviour is explained by two phenomena: (a) as water absorbed more molecules are
linked to the polymer chains, thus reducing the amount of water that can be absorbed,
and (b) the relaxation rate becomes larger than the diffusion rate, controlling the final
stages of the process.

Figure 5.9 shows the dimensionless moisture content absorbed into the material,
obtained by the sum of the free water molecules concentration and the entrapped
water molecules concentration. In regions near the surface, water absorption is faster,
because there is a larger area in direct contact with water bath. The water penetrates
the interior of the material generating a higher moisture content gradient along the
thickness, which decreases with increasing immersion time. Thus, at any point inside
the solid, the moisture content increases with time until it reaches equilibrium, i.e.,
its saturation point. It is intuitive to say that at longer immersion times there is an
increase in the amount of molecules entrapped within the material while the amount
of free molecules to diffuse decreases.
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y/a (-)

Fig. 5.9 Predicted dimensionless misture content inside the caroá fiber reinforced plymer
composite for different modified Fourier number of mass transfer (T = 25 °C, Ly2 = Ly1 = 0.3 m)

For a more complex physical situation, for example, where Ly2 	= Ly1, Melo
et al. [21] reported a theoretical analysis aiming to evaluate the effect of the water
layer thickness (upper and bottom) on the water absorption behavior inside the
material. In that research, the authors considered equilibrium moisture content Me
= 0.14488 kg/kg, water bath temperature 25 °C, and total process time 2250 h.
Table 1 summarizes the data used in the simulations.

Figure 5.10 illustrates the average moisture content in the material along the
process for different arbitrary cases, as reported in Table 5.4. Figure 5.11 shows
the local moisture contents obtained from the sum of the free and bound water
molecule concentrations along the thickness of the material for different elapsed
times and distances from the composite surface to maximum water level in the
container. Figure 5.12 shows the behavior of the variation rate of the local moisture
content as a function of time in the center of the composite.

According to Melo et al. [21], water absorption kinetics is strongly affected by
the water layer thickness, the moisture content gradient, and the equilibrium mois-
ture content inside the material. These authors verified that the higher gradients are
found in the regions where Ly1 or Ly2 have higher value. Furthermore, the largest
concentration gradients of free and entrapped water molecules are at the composite
surface, and an asymmetric behavior of the process variables is obtained when the
geometric parameters Ly2 and Ly1 are different.
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Ly2=0.100 m; Ly1=0.100 m
Ly2=0.100 m; Ly1=0.010 m
Ly2=0.100 m; Ly1=0.001 m
Ly2=0.010 m; Ly1=0.100 m
Ly2=0.001 m; Ly1=0.100 m
Ly2=0.001 m; Ly1=0.001 m

Fig. 5.10 a Average moisture content as a function of the process time for different physical
saturations. b Detailed view of a

Table 5.4 Process parameters values of the polymer composite used in the simulations

To (°C) 2a (m) Ly2 (m) Ly1 (m) μ (10–6 s−1) λ (10–6 s−1) D (10–12 m2s−1)

25 0.003 0.100 0.100 5 1 5

25 0.003 0.100 0.010 5 1 5

25 0.003 0.100 0.001 5 1 5

25 0.003 0.010 0.100 5 1 5

25 0.003 0.001 0.100 5 1 5

25 0.003 0.001 0.001 5 1 5
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Fig. 5.11 Local moisture
content as function of the
position inside the material
at different process times

(a) 56 h

(b) 195 h

5.2.5 The Water Absorption Process: 3D Approach

5.2.5.1 Solution Techniques: 3D Approach

Numerical Solution

The finite volume method was used for the three-dimensional numerical solution
of the governing equations applied to moisture absorption in polymer composites
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(a)

(b)

Fig. 5.12 Temporal variation rate of the local moisture content in the center of the polymer
composite a and detail of the figure b

with parallelepipedic form, as reported by Santos et al. [22, 23], Brito et al. [24]
and Santos [25]. In this solution, a fully implicit formulation for the concentration
of free solute and explicit formulation for the concentration of trapped solute were
used. Figure 5.13 illustrates a control volume (sub domain) used for discretization
of the governing equations. The nodal point P (in the center of the control volume),
its adjacent neighbors W, E, S, N, T, and F, the distances between these nodal points,
and the dimensions �x, �y, and �z, of the control volume are also shown in this
Figure.
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Fig. 5.13 Three-dimensional control volume used in this work

Complete detailing of the numerical procedure used for the solution of the
governing equations is given below.

(a) Solution for the Free Water Molecules Concentration

• Internal points

The numerical solution of Eq. (5.3) is obtained by integrating it in volume and time.
Assuming a fully implicit formulation, one can write the Eq. (5.3) in its discretized
linear form as follows:

APCP = AECE + AWCW + ANCN + ASCS + AFCF + ATCT

+ Ao
PC

o
P + BC

P (5.66)

where:

AE = De

δxe
�y�z (5.67)

AW = Dw

δxw
�y�z (5.68)

AN = Dn

δyn
�x�z (5.69)
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Internal control-volume Surface control-volume

Fig. 5.14 Numerical grid showing the internal and surface control-volumes

AS = Ds

δys
�x�z (5.70)

AF = D f

δz f
�y�x (5.71)

AT = Dt

δzt
�y�x (5.72)

Ao
P = �x�y�z

�t
(5.73)

AP = �x�y�z

�t
+ De

δxe
�y�z + Dw

δxw
�y�z + Dn

δyn
�x�z + Ds

δys
�x�z

+ D f

δz f
�y�x + Dt

δzt
�y�x (5.74)

BC
P = −(

SP − SoP
)�x�y�z

�t
(5.75)

• Boundary points

It should be noted that Eq. (5.66) is only applied to the internal control volumes
of the computational domain (Fig. 5.14). For the other control volumes (symmetry
and border), a mass balance in each one of them is performed. In total, there are 27
different types of control volumes. As an example, the result of Eq. 5.3 applied to
the control volume of the right upper corner of the computational domain, as shown
in Fig. 5.14, is given by the following equation:
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APCP = AWCW + ASCS + ATCT + Ao
PC

o
P + BC

P (5.76)

where:

AW = DC
w

δxw
�y�z (5.77)

AS = Ds

δys
�x�z (5.78)

AT = Dt

δzt
�y�x (5.79)

Ao
P = �x�y�z

�t
(5.80)

AP = �x�y�z

�t
+ Dw

δxw
�y�z + Ds

δys
�x�z + Dt

δzt
�y�x + �y�x(

δzf
Df

+ �t
lz

)

+ �z�x(
δyn
Dn

+ �t
ly

) + �y�z(
δxe
De

+ �t
lx

) (5.81)

BC
P = Co

f�x�y(
δzf
Df

+ �t
lz

) + Co
e�y�z(

δxe
De

+ �t
lx

) + Co
n�x�z(

δyn
Dn

+ �t
ly

) − (
SP − SoP

)�x�y�z

�t
(5.82)

(b) Solution for the entrapped water molecules concentration

The numerical solution of Eq. (5.4) is obtained by integrating it in volume and time.
Assuming an explicit formulation, one can write the Eq. 5.4, in its discretized linear
form, as follows:

AP SP = Ao
P S

o
P + BS

P (5.83)

where:

Ao
P = �x�y�z

�t
(5.84)

AP = �x�y�z

�t
+ μ�x�y�z (5.85)

BS
P = λCP�x�y�z (5.86)

In the discretized form, the local and average moisture contents can be written,
respectively, as follows:
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Mi, j,k = Ci, j,k + Si, j,k (5.87)

M = 1

V

npx−1∑
i=2

npy−1∑
j=2

npz−1∑
k=2

Mi, j,k�Vi, j,k (5.88)

in which i, j e k represent the position of the nodal point in the x, y, and z directions,
respectively, and npx, npy and npz are the nodal point numbers in the x, y, and z
directions respectively.

From the discretization of the governing equations, a system of liear algebraic
equations is generated that must be solved to obtain the values of C, S and M within
the material throughout the process. The Gauss–Seidel iterative method can be used
for solving this systemof algebraic equations. In order to obtain the numerical results,
simulationswere performed using a gridwith 20× 20× 20 nodal points and time step
�t = 20 s. Other details about this numerical procedure can found in the references
already cited in this chapter.

5.2.5.2 Langmuir-Type Model Application: Three-Dimensional
Approach

Numerical Results

Based on the references already mentioned, the influence of the geometrical param-
eter Ly (see Fig. 5.2), in the process of water absorption in fiber-reinforced polymer
composites was evaluated. For this analysis, the authors considered μ = λ = 1.0 ×
10–6 s−1, D = 1 × 10–12 m2/s, R1 = R3 = 0.0100 m, R2 = 0.0015 m, R3 = 0.000 m,
Lx1 =Lx2 = 0.1000m, Lz1 =Lz2 = 0.1000m and Ly1 =Ly2 = 0.0010m, 0.0100m
and 01,000 m,

The obtained results indicated that variations in Ly values strongly affect the
average moisture content, and also average free and entrapped water molecules
concentrations. The higher the Ly value, the higher the water layer close to the
composite wall and the faster the water absorption rate. For initial times of the
process, the differences among the predicted results are not significant, however, in
the course of the process a different behavior of the water absorption kinetics can be
clearly observed.

Upon analyzing the free water molecules concentration distribution was verified
that, for small value of Ly, there is essentially no free water flux in the y-direction but,
in the opposite directions, the water flux is more intense and free water molecules
move horizontally (x—and z—directions) with nearly equal velocities.

A similar behavior for the distribution of entrappedwatermolecules concentration
to that presented by free solute concentration was observed. In general, the geometric
parameter Ly affects both the distribution of free and entrapped solute concentration
and, as a result, the total moisture content of the composite immersed in water.
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Besides, it was observed small values of the bound water molecules concentration
when compared to unbound water molecules concentration. Furthermore, a transient
analysis of the predicted results showed that the free water molecules concentra-
tion is increasing from the composite surface to its center with a horizontal flux of
moisture. Compared with the y-direction, the greatest moisture fluxes occur in x and
z- direction. The same behavior is observed when the entrapped water molecules
concentration is considered. Nevertheless, entrapped water concentration increases
more slowly than free water molecules concentration, mainly at the initial process
times.

As final comment, we notice that water absorption is facilitated when polymer
molecules have clusters capable of forming hydrogen bonds. Plant fibers are rich
in cellulose, hemicellulose and lignin which have hydroxyl groups, i.e., have high
affinity for water. The absorption of water by the resin, in turn, can be considered
practically null, since it has a considerable hydrophobic character [26]. Addition of
the plant fibers to hydrophobic resins leads to an increase in the water absorption
levels, so an important parameter to be analyzed is how much water is absorbed by
the material over time.

The effects caused by long time exposure tomoisturemaybe irreversible due to the
water molecules affinity with specific functional groups of the polymeric matrices.
Destructive changes usually occur due to degradation of existing physical–chemical
interactions between the resin and fiber and, as a consequence, there are changes in
the fiber, causing delamination and reduction in the composite material properties.
Thus, understanding of the water absorption process is crucial to predict the quality
of the material e wet environments.

From the physical and mathematical point of views is important to analyse quan-
titatively what happens with the general solution for the extreme values of the proba-
bility μ which correspond to very fast or very slow process. When μ is very large as
compared to λ, the process is very rapid compared with diffusion. In this situation,
the immobilized component is in equilibrium with the component free to diffuse
into the composite, or yet, the number of free molecules that become entrapped
and remain entrapped by a time long enough to hinder diffusion is very small, and
process is controlled by diffusion. However, if μ → 0, the process is infinitely slow,
the composite is occuped, by simple diffusion, and only a fraction of solute (moisture)
can be accommodated in the freely diffusing state and none in the immobilized state.
On the other hand, when λ increases sufficiently, moisture absorption is hindered due
to the higher probability that a free water molecule will become entrapped instead
of freely diffusing into the composite [10, 13]. Further, for the case where D is very
large, the diffusion is so rapid that the concentration of free and immobilized solute
(water) are almost uniform through the composite during the water uptake process.

From the explanation above it is possible to conclude that variations in the mass
diffusion coefficient and the probabilities that water molecules are free or entrapped,
deeply modifies the water absorption process, which proves the great potential of the
Langmuir-type model and its ability of adequately describing moisture migration
behaviour inside the polymer composite.



References 97

References

1. Bonniau, P., Bunsell, A.R.: A comparative study of water absorption theories applied to glass
epoxy composites. J. Compos. Mater. 15(3), 272–293 (1981)

2. Grace, L.R., Altan, M.C.: Characterization of anisotropic moisture absorption in polymeric
composites using hindered diffusion model. Compos. A Appl. Sci. Manuf. 43(8), 1187–1196
(2012)

3. Santos, W.R.G., Melo, R.Q.C., Lima, A.G.B.: Water absorption in polymer composites rein-
forced with vegetable fiber using Langmuir-type model: An exact mathematical treatment.
Defect Diffus. For. 371, 102–110 (2016)

4. Perreux, D., Suri, C.: A study of the coupling between the phenomena of water absorption and
damage in glass/epoxy composite pipes. Compos. Sci. Technol. 57(9–10), 1403–1413 (1997)

5. Carter, H.G., Kibler, K.G.: Langmuir-type model for anomalous moisture diffusion in
composite resins. J. Compos. Mater. 12(2), 118–131 (1978)

6. Glaskova, T.I., Guedes, R.M., Morais, J.J., Aniskevich, A.N.: A comparative analysis of mois-
ture transport models as applied to an epoxy binder. Mech. Compos. Mater. 43(4), 377–388
(2007)

7. Cotinaud, M., Bonniau, P., Bunsell, A.R.: The effect of water absorption on the electrical
properties of glass-fibre reinforced epoxy composites. J. Mater. Sci. 17(3), 867–877 (1982)

8. Apicella, A., Estiziano, L., Nicolais, L., Tucci, V.: Environmental degradation of the electrical
and thermal properties of organic insulating materials. J. Mater. Sci. 23(2), 729–735 (1988)

9. Popineau, S., Rondeau-Mouro, C., Sulpice-Gaillet, C., Shanahan, M.E.: Free/bound water
absorption in an epoxy adhesive. Polymer 46(24), 10733–10740 (2005)

10. Crank, J.: The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford (1975)
11. Fu, Z., Chen, W., Yang, H.: Boundary particle method for laplace transformed time fractional

diffusion equations. J. Comput. Phys. 235, 52–66 (2013)
12. Zhu, S., Satravaha, P., Lu, X.: Solving linear diffusion equations with the dual reciprocity

method in Laplace space. Eng. Anal. Bound. Elem. 13(1), 1–10 (1994)
13. Grace, L.: Non-Fickian three-dimensionalmoisture absorption in polymeric composites: devel-

opment and validation of hindered diffusion model. Ph.D Thesis, University of Oklahoma,
Norman, USA, (2012)

14. Luikov, A.V.: Analytical heat diffusion theory, p. 684. Academic Press, Inc. Ltd., London
(1968)

15. Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. 2nd edn, p. 510. University Press,
Oxford, New York (1959)

16. Melo, R.Q.C., Santos, W.R.G., Lima, A.G.B.: Applying the Lagmuir-type model on the
water absorption in vegetable fiber reinforced polymer composites: A finite-volume approach.
In: XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering,
Florianópolis, Brazil. (2017)

17. Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation,
New York (1980)

18. Maliska, C.R.: Computational heat transfer and fluidmechanics. LTC,Rio de Janeiro (2004).(In
Portuguese)

19. Silva, C.J.: Water absorption in composite materials of vegetal fiber: modeling and simulation
via CFX. Master Dissertation in Mechanical Engineering, Federal University of Campina
Grande, Brazil (2014) (In Portuguese)

20. Nóbrega, M.M.S., Cavalcanti, W.S., Carvalho, L.H., Lima, A.G.B.: Water absorption in unsat-
urated polyester composites reinforced with caroá fiber fabrics: modeling and simulation. Mat.
-wiss. u.Werkstofftech. 41(5), 300–305 (2010)

21. Melo, R.Q.C., Fook, M.V.L., Lima, A.G.B.: Non-fickian moisture transport in vegetable-fiber-
reinforced polymer composites using a Langmuir-type model. Polymers 12, 2503 (2020)

22. Santos, W.R.G., Melo, R.Q.C., Correia, B.R.B., Magalhães, H.L.F., Cabral, E.M., Figueiredo,
M.J., Lima, A.G.B.: Water absorption in vegetable fiber-reinforced polymer composites: A



98 5 Langmuir-Type Model Analysis

three-dimensional investigation using the Langmuir-type model. Defect Diffus For 399, 164–
170 (2020)

23. Santos, W.R.G., Brito, M.K.T., Lima, A.G.B.: Study of the moisture absorption in polymer
composites reinforced with vegetal fiber using Langmuir’s model. Mater. Res. 22, e20180848
(2019)

24. Brito, M.K.T., Santos, W.R.G., Correia, B.R.B., Queiroz, R.A., Tavares, F.V.S., Oliveira Neto,
G.L., Lima, A.G.B.: Moisture absorption in polymer composites reinforced with vegetable
fiber: a three-dimensional investigation via Langmuir model. Polymers 11, 1847 (2019)

25. Santos,W.R.G.: Heat andmass transfer in polymeric composites reinforced by vegetable fibers:
advanced modeling and simulation. Campina Grande: Doctoral Thesis in Process Engineering,
Federal University of Campina Grande, Campina Grande, Brazil, (2019)

26. Sanchez, E.M., Cavani, C.S., Leal, C.V., Sanchez, C.G.: Composites of unsaturated polyester
resin with sugarcane bagasse: influence of fiber treatment on properties. Polymer 20(3), 194–
200 (2010)


	5 Langmuir-Type Model Analysis
	5.1 Fundamentals
	5.2 Moisture Absorption by Langmuir-Type Model
	5.2.1 The Physical Problem
	5.2.2 The General Mass Diffusion Equation
	5.2.3 The Mass Diffusion Equation: 3D Approach in Cartesian Coordinates
	5.2.4 The Water Absorption Process: 1D Approach in Cartesian Coordinates
	5.2.5 The Water Absorption Process: 3D Approach

	References


