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Abstract. In the article, linear and nonlinear parameter identification methods
were described relating tomathematicalmodels of rotor oscillations for centrifugal
pumps and turbochargers. For solving a nonlinear estimation problem, the com-
bined use of several methods at each iteration step was proposed. In this regard,
the determination of initial values for the estimated parameters was based on both
the finite element and the discrete models. For studying the nonlinear rotor oscil-
lations, a method for designing the discrete mathematical models was proposed
based on the linear identification of equivalent masses using data obtained by the
calculation of eigenfrequencies and mode shapes as a result of the finite element
analysis. Using the artificial neural network, the methodology for estimating the
inertia coefficients of rotor systems based on measurements of oscillation ampli-
tudes at the frequency close to the critical onewas developed. Finally, the proposed
techniques were developed by implementing both quasilinear regression analysis
and the artificial intelligence system. The corresponding program techniques were
proved by the experimental research data of rotor oscillations using the acceler-
ating and balancing stand with the vacuum camera. The developed methods and
related program applications help evaluate the dynamic characteristics of pumps
and turbochargers.

Keywords: Finite element model · Discrete model · Eigenfrequency ·
Amplitude · Regression analysis · Artificial neural network · Inertia coefficients ·
Nonlinear component

1 Introduction

The problem of parameter identification for mathematical models as an essential sci-
entific direction in modeling dynamic systems is exceptionally urgent. In this regard, it
should be emphasized that the scientific and theoretical fundamentals for implementa-
tion of the parameter identification of centrifugal machines’ rotors were developed and
presented in the article [1].

Notably, oscillations of rotors of centrifugal power machines are polyharmonic ones
[2]. This fact is due to the nonlinear behavior of the interaction between a rotor and a stator
in bearing supports [3], sealing systems, and in the flow path. Even if neglecting these
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disturbances and consider only the influenceof imbalances, oscillations, alongwith direct
synchronous precession, will have asynchronous sub- and super-harmonic components
[4]. According to the experimental research, these components reach significant values
[5], and in some cases, they lead to a loss of rotation stability [6].

Therefore, to calculate the vibrations and stability of rotor systems and evaluate
the critical frequencies and corresponding mode shapes, it is advisable to calculate the
spectra of forced vibrations. The last one can be obtained by considering discrete models
based on the system of nonlinear differential.

One of the ways to implement such calculations realizes by evaluating a discrete
multi-mass model. This evaluation is carried out by eigenfrequencies and mode shapes
obtained using the finite element model. Traditionally, such analyses contain the follow-
ing stages. Firstly, the parameters of the conservative linear model of free oscillations
are calculated [7]. After, linear components of the reactions from bearing supports [8],
sealing elements [9], and flow paths [10] are added to the resulting equations. This
model can be used for obtaining rotation stability regions [11]. At the next step, nonlin-
ear components of the reactions from the rotor’s interaction with the stator [12, 13] are
added to the obtained equations. The rotor system’s obtained nonlinear model [14] can
be numerically integrated using the numerical simulation methods [15]. Finally, spectral
analysis [16] of the received oscillation response is performed.

2 Literature Review

Plenty of scientific research works in rotor dynamics highlight the scientific novelty of
the stated problem. Particularly, P. Dang et al. [17] studied static characteristics of the
system “rotor – bearings” using the finite element method. As a result, the corresponding
mathematical model was developed for the case of a rigid rotor-bearing system.

Liang [18] investigated the impact of rolling bearings on rotors’ nonlinear dynamics.
For this purpose, the nonlinear response was calculated using theNewmark-β integration
method [19].

Kubyshkin [20] studied self-excited oscillations of rotor systems. Notably, the non-
linear mathematical model with distributed parameters considering the material’s inter-
nal friction [21] was proposed. As a result of using the modified Galerkin method [22],
the method of invariant manifolds [23], and the bifurcation theory [24], the stability
conditions were found.

K. Lu et al. [25] proposed applying the proper orthogonal decomposition (POD)
method in dual rotor-bearing systems considering the couplingmisalignment.As a result,
for verifying the higher computational efficiency of this method for the dimension reduc-
tion, it was compared with both the reduced-order model (ROM) [26] and the full-order
model (FOM) [27].

Numerous applications of the rotor systems highlight the practical importance of the
stated problem. Particularly, the ways for ensuring the reliability of rotors for hydraulic
drives were described in papers [28–30]. Technologies for protecting contacting surfaces
of sliding bearing for multistage centrifugal machines were presented in the research
work [31].

A general approach for the vibration diagnostics of turbine bearings was developed
in the article [32]. A particular case for calculating and designing rotodynamic pumps
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was presented in the paper [33]. Additionally, ways for ensuring the vibration reliability
of turbopump units using artificial neural networks were proposed in the article [34].
Moreover, an engineering methodology for evaluating the reliability of rotor bearing
supports was developed in the research works [35, 36]. Finally, a methodology for
nonlinear simulations of hydraulic drives was developed in the paper [37].

As a result of the critical analysis of the research mentioned above works, the arti-
cle aims at ensuring the vibration reliability of rotor systems in centrifugal machines.
The following objectives have been formulated to achieve this goal. Firstly, a general
approach for reducing degrees of freedom for discrete systems should be proposed. Sec-
ondly, linear and nonlinear evaluation of masses for the discrete mathematical model
should be developed using both the linear regression procedure and artificial neural net-
works. Thirdly, the mathematical model of rotor oscillations should be developed based
on the proposed discrete model considering linear and nonlinear reactions in a flow
path, bearings, and sealing systems. Finally, the proposed mathematical model’s relia-
bility should be proved numerically for an example of rotor oscillation for a particular
centrifugal machine.

3 Research Methodology

3.1 The Conservative Discrete Model

It is sufficient for most pumps and turbochargers to consider a three-mass model [38]
for describing the rotor oscillations. In this case, the design scheme of the conservative
discrete model is presented in Fig. 1.

Fig. 1. The design scheme of the conservative discrete model.

According to D’Alembert’s principle [39], the matrix equation of free oscillations
in reverse form is as follows:

xi =
∑n

j=1
βijFj = −

∑n

j=1
βijmjẍj. (1)

where i, j – node number (i, j = 1, 2, …, n); n – total number of discrete masses;
xi – displacement of i-th node; Fj = −mjẍj – inertia forces; β ij – compliances as

deflections of i-th node from the j-th node’s unit force Fj = 1 determined using the
authors’ file “Forced oscillation of the rotor” (Reg. No. 61788, 23.09.2015, Ukraine),
which implements the finite element method.
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For the case of free oscillations, the substitution of the expression xi = Bi·sin ωt
in Eq. (1), after identical transformations allows obtaining the system of linear
homogeneous equations for determining eigenfrequencies and mode shapes:

Bi = ω2
∑3

j=1
βijmjBj. (2)

Models (1) and (2) are a system of equations for free oscillation of a beam with stiffness
properties equivalent to an actual rotor’s finite element model. The discrete masses mi

are evaluated by the following methods: the linear parameter identification based on the
condition for the maximum coincidence of eigenfrequencies and mode shapes of finite
element model and the discrete model; the nonlinear parameter identification using the
artificial neural network.

3.2 The Linear Parameter Identification

The method of linear parameter identification is used to estimate the discrete masses.
Introduction of the parameter z = 1/ω2 and dimensionless amplitudes Uj = Bj/B1 (in
this case, U1 = 1) allows obtaining the system of n = 3 homogeneous equations:

∑n

j=1

(
βijmj − δijz

)
Uj = 0, (3)

where δij – Cronecker symbol [40] (δij = 1 for i = j; δij = 0 for i �= j).
Since the finite element model allows evaluating eigenfrequencies ωj (or parameters

zj = 1/ω2
j ) and the relative amplitudes of the mode shapes U<j>

i (i – mass number; j –
eigenfrequency number), the problem of identifying a discrete model can be considered.
In this case, the discrete masses mi are the estimated parameters.

Using the calculation data for the first n = 3 eigenfrequencies and mode shapes,
Eq. (3) can be rewritten in the following matrix form:

[
D

]{m} = {
C

}
, (4)

where:
[
D

] =
[[

D
〈1〉]T

,
[
D

〈2〉]T
, . . . ,

[
D

〈n〉]T
]T

– matrix of dimension (n2 × n),

elements of the submatrix of whichD
〈k〉
ij = βijU

〈k〉
i (k = 1, 2,…, n); {m} – column-vector

of n estimated masses;
{
C

} =
{{

C
〈1〉}T

,
{
C

〈2〉}T
, . . . ,

{
C

〈n〉}T
}T

– column-vector of

the right parts of dimension (n2 × 1), elements of subvectors of which
{
C

<k>
}

=
zkU<k>

i .
Equivalent masses of the discrete model are evaluated using the linear regression

formula [41]:

{m} =
([
D

]T [
D

])−1[
D

]T {
C

}
. (5)



Methods and Algorithms for Calculating Nonlinear Oscillations 67

To check the estimation accuracy, the eigenfrequencies of the discrete model ωk =
1/

√
zk are evaluated from the condition for the existence of non-trivial solutions of the

homogeneous system (3):

det

⎡

⎣
∑3

j=1

(
βijmj − δijzk

)
U 〈k〉
j

⎤

⎦ = 0. (6)

The corresponding algorithm for implementing the proposed linear parameter identifi-
cation method of discrete masses is graphically presented in Fig. 2a.

3.3 The Nonlinear Parameter Identification Using the Artificial Neural Network

For a more precise solving of the estimation problem, an approach for nonlinear esti-
mation of discrete masses is applied using the artificial neural network [42]. The
corresponding algorithm is presented in Fig. 2b.

a b

Fig. 2. The algorithms of linear (a) and nonlinear (b) parameter identification.

This algorithm is fundamentally different from the linear regression procedure
since estimating discrete masses does not involve dimensionless displacements as mode
shapes’ amplitudes. Thus, the discrete masses are estimated directly from the available
set of the first three eigenfrequencies of the rotor system.

3.4 The Nonlinear Discrete Model

The design scheme of the tree-mass nonlinear non-conservative discrete model of rotor
oscillations is presented in Fig. 3.

The following general equations describe the oscillation equations of the discrete
rotor model:

{
xi = ∑n

j=1 βijFjx;
yi = ∑n

j=1 βijFjy,

}
(7)
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Fig. 3. The design scheme of the nonlinear discrete model.

where xi, yi – nodal displacements in directions of x- and y-axis, respectively;
Fjx , Fjy – projections of j-th nodal forces on the x- and y-axis, respectively:

F1,3x = −m1ω0
d2x1,3
dτ 2

− dbω0
dx1,3
dτ

− f
(
x21,3 + y21,3

)
x1,3 − qby1,3;

F1,3y = −m1ω0
d2y1,3
dτ 2

− dbω0
dy1,3
dτ

− f
(
x21,3 + y21,3

)
y1,3 + qbx1,3;

F2x = −m2ω0
d2x2
dτ 2

+ m2eω2ω2
0cosωτ − q0y2;

F2y = −m2ω0
d2y2
dτ 2

+ m2eω2ω2
0sinωτ + q0x2.

(8)

These expressions contain the following parameters: ω – rotor frequency, rad/s; ω0 –
nominal operation frequency; ω = ω/ωn – dimensionless frequency; τ = ωn·t – dimen-
sionless time; e – eccentricity; f – coefficient of nonlinear stiffness of bearing supports,
N/m3; db – damping factor of bearings; qb = δ·ω·db – circulating force coefficient in
bearing supports (δ – dimensionless factor of the circulating force); q0 – circulating
force coefficient in the flow path. Notably, the coefficients f , db, qb are taken the same
for both bearing supports.

The nonlinear differential Eqs. (8) system can be further used to study the rotor’s
polyharmonic oscillation response.

4 Results

4.1 Description of the Design Model

As an example of using the proposed methodology, the analysis of forced oscillations
and stability of the rotor’s rotation of a centrifugal compressor for underground gas
storages with 25 MW power is considered. The nominal frequency of the rotor ωn =
785 rad/s.

Figure 4a presents the main view of the studied compressor unit. The cross-section
of the rotor and its finite element model is shown in Fig. 4b–c.

4.2 Evaluation of the Discrete Masses

As a result of numerical simulation using the author’s file “Critical frequencies of the
rotor” of the computer algebra systemMathCAD(Reg.No. 59855, 27.05.2015,Ukraine),
which implements the finite element method, the first three eigenfrequencies have been
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  a    b 

c 

Fig. 4. The compressor S325GC-650/6-56M12 for underground gas storages: photo (a); cross-
section (b); design scheme (c).

Fig. 5. 1st (1), 2nd (2), and 3rd (3) mode shapes of the rotor.

obtained: ω∗
1 = 307 rad/s, ω∗

2 = 991 rad/s, and ω∗
3 = 1689 rad/s. The corresponding

mode shapes are presented in Fig. 5.
With the use of the regression algorithms mentioned above, the following equivalent

masses have been evaluated: m1 = 183 kg, m2 = 1333 kg, and m3 = 725 kg.
The reliability of the obtained three-mass discrete model of the rotor oscillations is

verified by comparing the corresponding eigenfrequencies. In this case, the relative error
is as follows:

εi =
∣∣∣∣
ωi

ω∗
i

− 1

∣∣∣∣ · 100 % , (9)

where ωi – eigenfrequencies of the discrete three-mass rotor system.
The discrete model’s eigenfrequencies determined from the non-trivial solution con-

ditions to a homogeneous system (3) are as follows: ω1 = 308 rad/s, ω1 = 933 rad/s, and
ω3 = 1876 rad/s. In this case, the following relative errors are calculated: ε1 = 0.3%, ε2
= 5.8%, and ε3 = 11.1%.
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4.3 Harmonic Analysis of the Nonlinear Discrete System

As an example of the studying polyharmonic oscillations of the rotor system, below are
presented results obtained during solving a system of nonlinear differential Eqs. (8).

The time characteristics and the spectrum of rotor oscillations for 2nd mass in direc-
tions of the x-axis (a) and y-axis (b) in the case of the stable rotation (db = 0.35·105

N·s/m; δ = 0.3; q = 0; ω = ωn) are shown in Fig. 6.
An indication of the stability loss is the occurrence of the subharmonic component.

However, rotor oscillations can still be within acceptable limits. Particularly, for param-
eters causing instability (db = 0.35·105 N·s/m; δ = 0.3; q= 2·106 N/m;ω = 1030 rad/s),
the time characteristics, the spectrum, and the orbit are presented in Fig. 7.

a b

c 

Fig. 6. The time characteristics (a, b) and the spectrum (c) of rotor oscillations for 2nd mass in
directions of the x-axis (a) and y-axis (b) in the case of stable rotation (ω = ω0 = 785 rad/s).

4.4 Dynamic Stability of the Rotor System

According to calculations of different combinations of practically varying bearing
parameters db, δ, and f , the circulating force’s effect on the rotation stability has been
investigated. In this case, the coefficient of the circulating force q0 has varied within
limits, which are acceptable for actual operational practice.

The boundaries for the stability regions (Fig. 8) reflect the circulating forces’ influ-
ence on the rotor stability. Based on these data, it can be concluded that the stability is
provided quite reliably in the range of the operating frequencies.
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a b

c d 

Fig. 7. The time characteristics (a, b), the spectrum (c), and the orbit (d) of rotor oscillations for
2nd mass in directions of the x-axis (a) and y-axis (b) in the case of the unstable rotation.

Fig. 8. The stability regions for different values of the circulating force q, N/m: 0 (1), 1·106 (2),
2·106 (3), and 3·106 (4).

5 Conclusions

Thus, a general approach for reducing degrees of freedom for rotor dynamics has been
proposed. As a result, the three-mass discrete model has been developed. The algorithms
for linear and nonlinear parameter identification of the proposed model’s inertia coef-
ficients have been developed based on linear regression and artificial neural networks.
Notably, for the practical case of the compressor S325GC-650/6-56M12 for underground
gas storagewith the power of 25MWand the operation frequency of 785 rad/s, the system
of three discrete masses 183 kg, 1333 kg, and 725 kg have been evaluated.
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The reliability of the proposed methodology has been proved by relatively small
errors in calculating critical frequencies. Notably, for the particular case study, the first
three critical frequencies 307 rad/s, 991 rad/s, and 1689 rad/s have been calculated using
the authors’ file of the computer-algebra system. After implementing the parameter
identification algorithms, the discrete three-mass rotor system’s eigenfrequencies vary
from these values insignificantly for practical purposes. Notably, the relative errors are
0.3%, 5.8%, and 11.1% for different mode shapes.

After evaluating discrete masses, the nonlinear mathematical model of rotor oscil-
lations was developed based on the proposed discrete model considering linear and
nonlinear reactions in bearings, flow paths, and sealing systems.

The main advantages of the proposed methodology are due to the following facts.
Firstly, the proposedmathematicalmodel allows analytically studying forced oscillations
of rotor systems considering the nonlinear components of reaction forces in a flow path,
bearings, and sealing systems. Additionally, the proposed discrete model allows for
studying the stability of the nonlinear dynamic system.

Overall, the developed methodology will help scientists and practicians ensure the
vibration reliability of centrifugal pumps and compressors.
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