
Chapter 8
Axiomatics as a Functional Strategy
for Complex Proofs: The Case
of Riemann Hypothesis

Jean Petitot

Abstract My purpose is to comment some claims of AndréWeil (1906–1998) in his
letter of March 26, 1940 to his sister Simone, in particular, the following quotation:
“it is essential, if mathematics is to stay as a whole, to provide a unification, which
absorbs in some simple and general theories all the common substrata of the diverse
branches of the science, suppressing what is not so useful and necessary, and leaving
intact what is truly the specific detail of each big problem. This is the good one can
achieve with axiomatics”. For Weil (and Bourbaki), the main problem was to find
“strategies” for finding complex proofs of “big problems”. For that, the dialectic
balance between general structures and specific details is crucial. I will focus on
the fact that, for these creative mathematicians, the concept of structure is a func-
tional concept, which has always a “strategic” creative function. The “big problem”
here is Riemann Hypothesis (RH). Artin, Schmidt, Hasse, and Weil introduced an
intermediary third world between, on the one hand, Riemann original hypothesis
on the non-trivial zeroes of the zeta function in analytic theory of numbers, and,
on the other hand, the algebraic theory of compact Riemman surfaces. The inter-
mediary world is that of projective curves over finite fields of characteristic p ≥ 2.
RH can be translated in this context and can be proved using sophisticated tools of
algebraic geometry (divisors, Riemann-Roch theorem, intersection theory, Severi-
Castelnuovo inequality) coupled with the action of Frobenius maps in characteristic
p ≥ 2. Recently, Alain Connes proposed a new strategy and constructed a new topos
theoretic framework à la Grothendieck where Weil’s proof could be transferred by
analogy back to the original RH.
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8.1 Axiomatics, Analogies, Conceptual Structures

My purpose is to comment some claims of AndréWeil (1906–1998) in his celebrated
letter [22] written in prison to his sister Simone (March 26, 1940).

Let us begin with the following quotation:

It is hard for you to appreciate that modern mathematics has become so extensive and so
complex that it is essential, if mathematics is to stay as a whole and not become a pile of little
bits of research, to provide a unification, which absorbs in some simple and general theories
all the common substrata of the diverse branches of the science, suppressing what is not so
useful and necessary, and leaving intact what is truly the specific detail of each big problem.
This is the good one can achieve with axiomatics (and this is no small achievement). This is
what Bourbaki is up to. (p. 341)

I want to emphasize four points:

1. the unity of mathematics (“to stay as a whole”);
2. the axiomatization of general abstract structures; but also
3. the requirement of “leaving intact what is truly the specific detail of each big

problem”;
4. the emphasis on “big problems”.

For Weil (and Bourbaki), the dialectic balance between general structures and
specific details was crucial. A “big problem” needs a conceptually complex proof
which is a very uneven, rough, ruggedmulti-theoretical route in a sort of “Himalayan
chain”whose peaks seem inaccessible. It cannot be understoodwithout the key thesis
of the unity of mathematics since its deductive parts are widely scattered in the global
unity of the mathematical universe. It is holistic and it is this holistic nature I am
interested in.

As was emphasized by Israel Kleiner for Wiles’ proof of the Shimura-Taniyama-
Weil conjecture (leading to Fermat theorem)1:

What area does the proof come from? It is unlikely one could give a satisfactory answer, for
the proof brings together many important areas – a characteristic of recent mathematics.

As was also emphasized by Barry Mazur:

The conjecture of Shimura-Taniyama-Weil is a profoundly unifying conjecture – its very
statement hints that we may have to look to diverse mathematical fields for insights or tools
that might lead to its resolution.

In his letter to Simone, Weil described in natural language his moves towards
Riemann Hypothesis and he used a lot of military metaphors to emphasize the fact
that finding a proof of a so highly complex conjecture is a problem of strategy:

find an opening for an attack (please excuse the metaphor), [...] open a breach which would
permit one to enter this fort (please excuse the straining of the metaphor), [...] it is necessary
to inspect the available artillery and the means of tunneling under the fort (please excuse,
etc.). [...] It will not have escaped you (to take up the military metaphor again) that there is
within all of this great problems of strategy.

1 For a summary of the proof, see Petitot [15].
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My purpose is not here to discuss philosophically Bourbaki’s concept of structure
as mere “simple and general” abstraction. It has been done by many authors (see,
e.g. Leo Corry’s [8] “Nicolas Bourbaki: Theory of Structures”). And many authors
have also criticized the very limited Bourbaki’s conception of logic. My purpose is
rather to focus on the fact that, for these outstanding creative mathematicians, the
concept of “structure” is a functional concept, which has always a “strategic” creative
function. Once again, the priority is “leaving intact what is truly the specific detail
of each big problem”. As Dieudonné always emphasized it, the “bourbakist choice”
cannot be understood without references to “big problems”. It concerns the context
of discovery rather than the context of justification.

There is a fundamental relation between the holistic and “organic” conception of
the unity of mathematics and the thesis that some analogies can be creative and lead
to essential discoveries. It is a leitmotive since the 1948 Bourbaki (alias Dieudonné)
Manifesto [2]: “L’architecture des mathématiques”. The constant insistence on the
“immensity” of mathematics and on its “organic” unity, the claim that “to integrate
the whole of mathematics into a coherent whole” (p. 222) is not a philosophical
question as for Plato, Descartes, Leibniz, or “logistics”, the constant critique against
the reduction of mathematics to a tower of Babel juxtaposing separated “corners”
are not vanities of elitist mathematicians. They have a very precise, strictly technical
function: to construct complex proofs in navigating into this holistic conceptually
coherent world.

The “structures” are tools for the mathematician. ([2], p. 227)

“Each structure carries with it its own language” and to discover a structure in a
concrete problem

illuminates with a new light the mathematical landscape (Ibid. p. 227)

In [8], Leo Corry has well formulated the key point:

In the “Architecture” manifesto, Dieudonné also echoed Hilbert’s belief in the unity of
mathematics, based both on its unifiedmethodology and in the discovery of striking analogies
between apparently far-removed mathematical disciplines. ([8], p. 304)

And indeed, Dieudonné claimed that

Where the superficial observer sees only two, or several, quite distinct theories, lending one
another “unexpected support” through the intervention ofmathematical genius, the axiomatic
method teaches us to look for the deep-lying reasons for such a discovery.

It is important to understand that structures are guides for intuition and to overcome

the natural difficulty of the mind to admit, in dealing with a concrete problem, that a form
of intuition, which is not suggested directly by the given elements, [...] can turn out to be
equally fruitful. ([2], p. 230)

So

more than ever does intuition dominate in the genesis of discovery (Ibid. p. 228)

and intuition is guided by structures.
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8.2 Navigating Within the Mathematical Hymalayan Chain

Any proof of Riemann Hypothesis (RH) would be highly complex and unfold in
the labyrinth of many different theories. As Alain Connes explains in “An essay on
Riemann Hypothesis” ([4] p. 2) we would have (note the strategy metaphor as in
Weil)

to navigate between the many forms of the explicit formulas [see below] and possible strate-
gies to attack the problem, stressing the value of the elaboration of new concepts rather than
‘problem solving’.

And here “concepts” mean “structures”.
In the history of RH, we meet an incredible amount of deep and heterogeneous

mathematics.

1. Riemann’s use of complex analysis in arithmetics: ζ -function, the duality between
the distribution of primes and the localization of the non-trivial zeroes of ζ (s),
RH.

2. The “algebraization” of Riemann’s theory of complex algebraic (projective)
curves (compact Riemann surfaces) by Dedekind and Weber.

3. The transfer of this algebraic framework to the arithmetics of algebraic number
fields and the interpretation of integers n as “functions” on primes p. It is the
archeology of the concept of spectrum (the scheme Spec(Z)).

4. The move of André Weil introducing an intermediary third world (his “Rosetta
stone”) between arithmetics and the algebraic theory of compact Riemann sur-
faces, namely, the world of projective curves over finite fields (characteristic
p ≥ 2). The translation of RH in this context and its far-reaching proof using
tools of algebraic geometry (divisors, Riemann-Roch theorem, intersection the-
ory, Severi-Castelnuovo inequality) coupled with the action of Frobenius maps
in characteristic p ≥ 2.

5. The generalization of RH to higher dimensions in characteristic p ≥ 2. Weil’s
conjectures and the formal reconstruction of algebraic geometry achieved by
Grothendieck: schemes, sites, toposes, etale cohomology, etc. Deligne’s proof of
Weil’s conjectures. Alain Connes [4] emphasized the fact that, through Weil’s
vision, Grothendieck’s culminating discoveries proceed from RH:

It is a quite remarkable testimony to the unity of mathematics that the origin of this
discovery [topos theory] lies in the greatest problem of analysis and arithmetic. (p. 3)

6. Connes’ return to the original RH in pure arithmetics by translating algebraic
geometry à la Grothendieck (toposes, etc.) and Weil’s proof in characteristic
p ≥ 2 to the world of characteristic 1, that is, the world of tropical geometry and
idempotent analysis.
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8.3 Riemann’s ζ -Function

8.3.1 The Distribution of Primes

The story of RH begins with the enigma of the distribution of primes. The multi-
plicative structure of integers (divisibility) is awful.

For x ≥ 2, let π(x) be the number of primes p ≤ x . It is a step function increasing
of 1 at every prime p (one takes π(p) = 1

2 (π(p−) + π(p+)) the mean value at the
jump). From Legendre (1788) and the young Gauss (1792) to Hadamard (1896) and
de la Vallée Poussin (1896), it has been proved the asymptotic formula called the
prime number theorem:

π(x) ∼ x

log(x)
for x → ∞.

8.3.2 Definitions of ζ(s)

The zeta function ζ(s) encodes arithmetic properties of π(x) in analytic structures.
Its initial definition is extremely simple and led to a lot of computations at Euler
time:

ζ(s) =
∑

n≥1

1

ns
,

which is a series—now called a Dirichlet series—absolutely convergent for integral
exponents s > 1. Euler already proved ζ(2) = π2/6 (Mengoli or Basel problem,
1735) and ζ(4) = π4/90.

A trivial expansion and the existence of a unique decomposition of any integer
in a product of primes show that, in the convergence domain, the sum is equal to an
infinite Euler product (Euler 1748) containing a factor for each prime p (we note P
the set of primes):

ζ(s) =
∏

p∈P

(
1 + 1

ps
+ . . .

1

pks
+ . . .

)
=

∏

p∈P

1

1 − 1
ps

.

The local ζ -functions ζp(s) = ∑
k≥0

1
pks = 1

1− 1
ps
are the ζ -functions of the local rings

Zp of p-adic integers (see below).
The ζ -function is a symbolic expression associated to the distribution of primes,

which is well known to have a very mysterious structure. Its fantastic strength as
a tool comes from the fact that it can be extended by analytic continuation to a
meromorphic function on the entire complex plane. It has a simple pole at s = 1 with
residue 1.
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8.3.3 Mellin Transform, Theta Function, and Functional
Equation

It was discovered by Riemann in his celebrated 1859 paper [16] “Über die Anzahl
der Primzahlen unter einer gegeben Grösse” (“On the number of prime numbers
less than a given quantity”) that ζ(s) has also beautiful properties of symmetry.

This can bemade explicit noting that ζ(s) is related by aMellin transform (a sort of
Fourier transform) to the theta functionwhich has beautiful properties of automorphy.
Automorphymeans invariance of a function f (τ ) defined on the Poincaré hyperbolic
half complex plane H (complex numbers τ of positive imaginary part �(τ ) > 0)
w.r.t. to a countable subgroup of the group acting on H by homographies (Möbius
transformations) γ (τ) = aτ+b

cτ+d .
The theta function �(τ) is defined on the half-plane H as the series

�(τ) =
∑

n∈Z
ein

2πτ = 1 + 2
∑

n≥1

ein
2πτ .

�(τ ) > 0 is necessary to warrant the convergence of
∑

e−n2π�(τ ). �(τ) is what is
called a modular form of level 2 and weight 1

2 . Its automorphic symmetries are

1. Symmetry under translation: �(τ + 2) = �(τ) (level 2, trivial since e2iπ = 1
implies ein

2π(τ+2) = ein
2πτ ).

2. Symmetry under inversion: �(−1
τ

) = (
τ
i

) 1
2 �(τ) (weight 1

2 , proof from Poisson
formula).

If f : R+ → C is a complex-valued function defined on the positive reals, its
Mellin transform g(s) is defined by the following formula:

g(s) =
∫

R+
f (t)t s

dt

t
.

Let us compute the following Mellin transform

ζ ∗(s) = 1

2
g

( s
2

)
= 1

2

∫ ∞

0
(�(i t) − 1) t

s
2
dt

t
=

∑

n≥1

∫ ∞

0
e−n2π t t

s
2
dt

t
.

In each integral, we make the change of variable x = n2π t . The integral becomes

∫ ∞

0
e−x x

s
2 −1 (

n2π
)− s

2 +1 (
n2π

)−1
dx = n−sπ− s

2

∫ ∞

0
e−x x

s
2 −1dx .

But
∫ ∞
0 e−x x

s
2 −1dx = �

(
s
2

)
where � (s) = ∫ ∞

0 e−x xs−1dx is the gamma function,
which is the analytic meromorphic continuation of the factorial function� (n + 1) =
n! to the entire complex plane C. � satisfies the functional equation:



8 Axiomatics as a Functional Strategy for Complex … 171

-4 -2 2 4

-6

-4

-2

2

4

6

Fig. 8.1 The � function on the real axis

� (s + 1) = s� (s) ,

and has poles at s ∈ −N. Figure8.1 shows its graph along the real axis.
So, we have

ζ ∗(s) = ζ(s)�
( s
2

)
π− s

2 .

ζ ∗(s) (often noted ξ(s)) is called the total (or “completed”) ζ -function. Due to
the automorphic symmetries of the theta function it satisfies a functional equation
(symmetry w.r.t. the critical line 
 (s) = 1

2 )

ζ ∗(s) = ζ ∗(1 − s).

As an Euler product

ζ ∗(s) = π− s
2 �

( s
2

) ∏

p∈P

1

1 − 1
ps

.

The factor π− s
2 �

(
s
2

)
corresponds to the place at infinity ∞ of Q (see below) and

ζ ∗(s) is a product of factors associated to all the places of Q:
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ζ ∗(s) =
∏

p∈P∪{∞}
ζ ∗
p (s),

with ζp(s) = 1
1− 1

ps
for p ∈ P and ζ∞(s) = π− s

2 �
(
s
2

)
.

8.3.4 Zeroes of ζ(s)

As ζ(s) iswell defined for
(s) > 1, it is alsowell defined, via the functional equation
of ζ ∗, for 
(s) < 0, and the difference between the two domains comes from the
difference of behaviour of the gamma function �. As ζ ∗ is without poles on ]1,∞[
(since ζ and� are without poles), ζ ∗ is also, by symmetry, without poles on ]−∞, 0[.
So, as the s = −2k are poles of �

(
s
2

)
, they must be zeroes of ζ (see Fig. 8.2). These

zeroes are called “trivial zeroes”.
But ζ(s) has also non-trivial zeroes ρ, which are necessarily complex and con-

tained in the strip 0 < 
 (s) < 1. Due to the functional equation they are symmetric
w.r.t. the critical line 
 (s) = 1

2 . Their distribution reflects the distribution of primes
and the localization of these zeroes is one of the main tools for understanding the
mysterious distribution of primes.

A pedagogical way for seeing the (non-trivial) zeroes (J. Arias-de-Reyna) is to
plot in the s-plane the curves 
 (ζ(s)) = 0 and � (ζ(s)) = 0 and to look at their
crossings (see Fig. 8.3).

It is traditional to write the non-trivial zeroes ρ = 1
2 + i t with t ∈ C. As they code

for the irregularity of the distribution of primes, they must be irregularly distributed.
But the irregularity can concern 
 (t) and/or � (t). When � (t) �= 0 we get pairs of
symmetric zeroes whose horizontal distance can fluctuate.

An enormous amount of computations from Riemann time to actual supercom-
puters (ZetaGrid: more than 1012 zeroes in 2005) via Gram, Backlund, Titchmarsh,
Turing, Lehmer, Lehman, Brent, van de Lune, Wedeniwski, Odlyzko, Gourdon, and
others shows that all computed zeroes lie on the critical line 
(s) = 1

2 .

-10 -5 5 10

-1

1

2

-10 -8 -6 -4 -2

-0.03

-0.02

-0.01

0.01

Fig. 8.2 The graph of the zeta function along the real axis showing the pole at 1 (left). A zoom
shows the trivial zeroes at even negative integers (right)
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Fig. 8.3 The null lines of
the real part (red) and the
imaginary part (blue) of the
zeta function
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8.3.5 Riemann Hypothesis

The Riemann hypothesis (part of 8th Hilbert problem) conjectures that all the non-
trivial zeroes of ζ(s) are exactly on the critical line, that is, are of the formρ = 1

2 + i t
with t ∈ R (i.e. � (t) = 0). It is an incredibly strong—still open—conjecture and an
enormous part of modern mathematics has been created to solve it.

Speiser proved that RH is equivalent to the fact that all folded blue lines� (ζ(s)) =
0 cross the critical line. One point of intersection (crossing with a red line
 (ζ(s)) =
0) is a non-trivial zero and the other is called a Gram point. Gram points seem to
separate the non-trivial zeroes (Gram’s law), but it is not always the case. We meet
actually a lot of strange configurations (see Figs. 8.4, 8.5).

So RH is really not evident. As noted by Pierre Cartier, the risk would be to see a
pair of very close “good” zeroes bifurcate into a pair of very close symmetric “bad”
zeroes.

8.3.6 The Problem of Localizing Zeroes

The problem is, given the explicit definition of ζ (s), to find some information on
the localization of its zeroes. As was emphasized by Alain Connes, this is a wide
generalization of the problem solved by Galois for polynomials (of one variable).
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Fig. 8.4 Configuration where a zero (crossing of folded red and blue lines) is nested. Alternating
Gram→zero→Gram→zero
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Fig. 8.5 Lehmer’s example of two extremely close consecutive zeroes between two Gram points.
(we are at the height of the 26 830th line)

8.4 Explicit Formulas

8.4.1 Riemann’s Explicit Formula

One of the most “magical” results of Riemann is the explicit and exact formula
linking explicitly and exactly the distribution of primes and the (non-trivial) zeroes
of ζ (s).

The idea was to factorize ζ (s) in terms of its trivial (−2n) and non-trivial (ρ)

zeroes (all included in the left half-plane
 (s) < 1) and to compare this product with
the Euler product defining ζ (s) in the half-plane
 (s) > 1. Riemann anticipated this
possibility, which was later technically validated by Weierstrass and Hadamard for
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Fig. 8.6 Two classical
approximations of the
distribution of primes: x

log(x)
(in grey) and Riemann’s
R(x) (in blue)
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entire functions with appropriate growth conditions. It can be shown that the entire
function (s − 1) ζ (s) satisfies these conditions and this leads to the product formula
(see Paul Garrett [10]):

ζ (s) = ea+bss
∏

ρ

((
1 − s

ρ

)
e

s
ρ

)∏

n≥1

((
1 + s

2n

)
e− s

2n

)
.

Computations lead then to Riemann’s exact explicit formula for π (x). We have
seen that, for x ≥ 2, π(x), the number of primes p ≤ x , satisfies the asymp-
totic formula (prime number theorem) π(x) ∼ x

log(x) for x → ∞. A better approx-
imation, due to Gauss (1849), is π(x) ∼ Li(x) where the logarithmic integral is
Li(x) = ∫ x

2
dt

log(t) (for small n, π(x) < Li(x), but Littlewood proved in 1914 that the
inequality reverses an infinite number of times). A still better approximation was
given by a Riemann formula R(x). Figure8.6 shows the step function π(x) and its
two approximations x

log(x) (in grey) and R(x) (in blue).
Let

f (x) =
k=∞∑

k=1

1

k
π

(
x

1
k

)
.

π(x) can be retrieved from f (x) by the inverse transformation (μ is the number of
prime factors of m):

π(x) =
m=∞∑

m=1, m square free

(−1)μ
1

m
f
(
x

1
m

)
.

In his 1859 paper [16], Riemann proved the following (fantastic) explicit formula:

f (x) = Li(x) −
∑

ρ

Li (xρ) +
∫ ∞

x

1

t2 − 1

dt

t log t
− log 2.
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Fig. 8.7 The approximation
(red curve) of π (x) by
Riemann’s explicit formula
up to the twentieth zero of
ζ (s)
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The approximation ofπ(x) using Riemann’s explicit formula up to the twentieth zero
of ζ(s) is shown in Fig. 8.7.We see that the red curve departs from the approximation
R(x) and that its oscillations draw near the step function π(x).

Riemann’s explicit formula concerns only ζ(s) and therefore only the p-adic
places ofQ (with completionsQp). Butwe know that the structural formulas concern
ζ ∗(s) with its �-factor and must take into account the Archimedean real place ∞
(with completion R). This step was accomplished by André Weil.

8.5 Local/Global in Arithmetics

Let us go now to the deep analogies discovered between arithmetics and geometry.

8.5.1 Dedekind-Weber Analogy

One of the main idea, introduced by Dedekind and Weber in their celebrated 1882
paper [9] “Theorie der algebraischen Funktionen einer Veränderlichen”, was to
consider integers n as kinds of “polynomial functions” over the sets P of primes p,
“functions” having a value and an order at every “point” p ∈ P.

These values and orders being local concepts, Dedekind and Weber had to define
the concept of localization in a purely algebraic manner. Dedekind used his concept
of ideal he worked out to understand the “ideal numbers” introduced by Kummer. If
p is prime, the ideal (p) = pZ of p in Z is a prime (and even maximal) ideal. To
localize the ring Z at p means to delete all the ideals a that are not included into (p)
and to reduce the arithmetic of Z to the ideals a ⊆ (p). For that, we add the inverses
of the elements of the complementary multiplicative subset S of (p), S = Z − (p).
We get a local ring Z(p) (“local” means: with a unique maximal ideal) intermediary
between Z and Q.
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Z(p) is arithmetically much simpler than the global ring Z but more complicated
than the global fraction fieldQ since it preserves the arithmetic structure inside (p).
The maximal ideal of Z(p) is m(p) = pZ(p) and the residue field is Z(p)/pZ(p) =
Z/pZ = Fp. In the local ring Z(p), every ideal a is equal to some power (p)k of (p).
As (p)k ⊃ (p)k+1, we get a decreasing sequence—what is called a filtration —of
ideals which exhausts the arithmetic ofZ(p). The successive quotientsZ(p)/pk+1

Z(p)

correspond to the expansion of natural integers n in base p. Indeed, tomake pk+1 = 0
is to approximate n by a sum

∑i=k
i=0 ni p

i with all ni ∈ Fp. These quotients constitute
a projective system and their projective limit yields the ring Zp of p-adic integers:

Zp = lim←−
Z

pkZ
.

If n ∈ Z, n is like a polynomial function on the “space” of primes p and to look at
n “locally” at p is to look at n in the local ring Z(p), while the “ value” of n at p is its
class in Fp, i.e. n modulop. This is the origin of the modern concept of spectrum in
algebraic geometry, and in this perspectiveQ becomes the “global” field of “rational
functions” on this “space”.

8.5.2 Weil’s Description of Dedekind-Weber Analogy

In his letter to Simone, Weil describes very well Dedekind’s analogy:

[Dedekind] discovered that an analogous principle permitted one to establish, by purely alge-
braic means, the principal results, called “elementary”, of the theory of algebraic functions
of one variable, which were obtained by Riemann by transcendental [analytic] means.

Since Dedekind’s analogy is algebraic it can be applied to other fields thanC accord-
ing to the analogy:

Integers ←→ Polynomials
Divisibility of integers ←→ Divisibility of polynomials
Rational numbers ←→ Rational functions
Algebraic numbers ←→ Algebraic functions

Dedekind’s “different” ideal ←→
Hilbert

Riemann-Roch theorem

Abelian extensions ←→ Abelian functions
Classes of ideals ←→ Divisors

And Weil adds

At first glance, the analogy seems superficial. [...] But Hilbert went further in figuring out
these matters.
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8.5.3 Valuations and Ultrametrics

Dedekind and Weber defined the order of n ∈ N at p using the decomposition of
n into primes. If n = ∏i=r

i=1 p
vi
i , vi is called the valuation of n at pi : vpi (n). It is

trivial to generalize the definition to Z andQ. So the valuation vp(x) of x ∈ Q is the
power of p in the decomposition of x in prime factors. It satisfies “good properties”
in the sense that |x |p = p−vp(x) is a norm on Q defining a non-Archimedean metric
dp (x, y) = |x − y|p which satisfies the ultrametric property

|x + y|p ≤ Max
(|x |p , |y|p

)
.

This inequality is much stronger than the triangular inequality of classical metrics.

8.5.4 p-Adic Numbers

The idea of expanding natural integers along the base p with a metric such that∣∣pk
∣∣
p −→ 0

k→∞ leads naturally to an operation of completion of the metric |•|p associ-
ated to the valuation vp and yields the ring Zp of p-adic integers (Hensel).

8.5.5 Hensel’s Geometric Analogy

In Bourbaki’s Manifesto [2], Dieudonné emphasizes Hensel’s unifying analogy

where, in a still more astounding way, topology invades a region which had been until then
the domain par excellence of the discrete, of the discontinuous, viz. the set of whole numbers.
(p. 228)

As we have already noted, the geometrical lexicon of Hensel’s analogy can be
rigourously justified using the concept of scheme:

1. primes p are the (closed) points of the spectrum Spec(Z) of Z,
2. the local rings Z(p) are the fibres of the structural sheaf O of Z,
3. the finite prime fields Fp are the residue fields at the points p,
4. integers n are global sections of O, and
5. Q is the field of global sections of the sheaf of fractions of O.

In this context, Zp and Qp correspond to the localization of global sections,
analogous to what are called germs of sections in classical differential, analytic, or
algebraic geometry.
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8.5.6 Places

On Q there exist not only the p-adic valuations of the “finite” primes p but also the
real absolute value |x |, which can be interpreted as associated to an “infinite point”
of Spec(Z) and is conventionally written |x |∞. To emphasize the geometrical point-
like intuition, the finite primes and the infinite “point” are all called places. To work
in arithmetics with all places is a necessity if we want to specify the analogy with
projective (birational) algebraic geometry (Riemann surfaces) and transfer some of
its results (as those of the Italian school of Severi, Castelnuovo, etc.) to arithmetics.
Indeed, in projective geometry, the point ∞ is on a par with the other points.

Weil emphasized strongly this point from the start. Already in his 1938 paper [21]
“Zur algebraischen Theorie des algebraischen Funktionen”, he explained that he
wanted to reformulate Dedekind-Weber in a birationally invariant way. In his letter
to Simone, he says

In order to reestablish the analogy [lost by the singular role of ∞ in Dedekind-Weber], it is
necessary to introduce, into the theory of algebraic numbers, something that corresponds to
the point at infinity in the theory of functions.

This is achieved by valuations, places, and Hensel’s p-adic numbers (plus Hasse,
Artin, etc.). So, Weil strongly stressed the use of analogies as a discovery method:

If one follows it in all of its consequences, the theory alone permits us to reestablish the
analogy at many points where it once seemed defective: it even permits us to discover in the
number field simple and elementary facts which however were not yet seen.

8.5.7 Local and Global Fields

All the knowledge gathered during the extraordinary period initiated by Kummer in
arithmetics and Riemann in geometry led to the recognition of two great classes of
fields, local fields, and global fields.

In characteristic 0, local fields are R, C and finite extensions of Qp. In charac-
teristic p, local fields are the fields of Laurent series over a finite field Fpn and their
ring of integers are those of the corresponding power series. Local fields possess a
discrete valuation v and are complete for the associated metric. Their ring of integers
is local. Finite extensions of local fields are themselves local.

In characteristic 0, global fields are finite extensionsK ofQ, i.e. algebraic number
fields. In characteristic p, global fields are the fields of rational functions of algebraic
curves over a finite field Fpn . The completions of global fields at their different places
are local fields.

We note a fundamental difference between the cases of characteristic 0 and p. In
the later case, all structures are defined over a common base field, namely, the prime
field Fp. It is not the case in characteristic 0 and this lack of a common base is one of
the main reasons of the difficulty of the arithmetic case. It has been overcome only
very recently with the introduction of the paradoxical “field” F1 of characteristic 1 !
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8.6 The RH for Elliptic Curves Over Fq (Hasse)

One of the greatest achievements of Weil has been the proof of RH for the global
fields in characteristic p, namely, the global fieldsK/Fq (T ) of rational functions on
an algebraic curve defined over a finite field Fq of characteristic p (q = pn), that is,
finite algebraic extensions of Fq (T ).

8.6.1 The “Rosetta Stone”

The main difficulty was that in Dedekind-Weber’s analogy between arithmetics and
the theory of Riemann surfaces, the latter is “too rich” and “too far from the theory
of numbers”. So

One would be totally obstructed if there were not a bridge between the two. (p. 340)

Hence, the celebrated metaphor of the “Rosetta stone”:

my work consists in deciphering a trilingual text; of each of the three columns I have only
disparate fragments; I have some ideas about each of the three languages: but I know as well
there are great differences in meaning from one column to another, for which nothing has
prepared me in advance. In the several years I have worked at it, I have found little pieces of
the dictionary. (p. 340)

From the algebraic number theory side, one can transfer the Riemann-Dirichlet-
Dedekind ζ and L-functions (Artin, Schmidt, Hasse) to the algebraic curves over
Fq . In this third world, they become rational functions (quotients of polynomials), a
fact which simplifies tremendously the situation.

8.6.2 The Hasse-Weil Function

For the history of the ζ -function of curves over Fq , see Peter Roquette’s extremely
detailed historical study [17] “The Riemann hypothesis in characteristic p. Its origin
and development” and Pierre Cartier’s 1993 survey [3] “Des nombres premiers à la
géométrie algébrique (une brève histoire de la fonction zeta)”.

1. On the arithmetic side (spec(Z), Qp, etc.), we have RH.
2. On the geometric side, we have the theory of compact Riemann surfaces (projec-

tive algebraic curves over C).

On the intermediary level, at the beginning of the twentieth century, Emil Artin
(thesis, 1921 published in 1924, [1]) and Friedrich Karl Schmidt (1931, [18]) formu-
lated the RH no longer for global number fieldsK/Q but for global fields of functions
K/Fq (T ). As Cartier says,
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Artin-Schmidt theory is developing in parallel with that of Dirichlet-Dedekind, and seeks
to mimic the already achieved results: definition by means of a Dirichlet series and Euler
product, functional equation, analytic prolongation. (p. 61)

The main challenge was to interpret geometrically the zeta function ζC (s) for alge-
braic curvesC defined over Fq . A key point was to understand that ζC was a counting
function, counting the (finite) number N (qr ) of points of C rational over the succes-
sive extensions Fqr of Fq :C being defined over Fq , all its points are with coordinates
in Fq , and we can therefore look at its points with coordinates in intermediary exten-
sions Fq ⊂ Fqr ⊂ Fq .

The generating function of the N (qr ) is by definition

ZC (T ) := exp

(
∑

r≥1

N
(
qr

) T r

r

)
,

and the Hasse-Weil function ζC (s) of C is defined as

ζC (s) := ZC
(
q−s

)
.

Note that

T
Z ′
C (T )

ZC (T )
=

∑

r≥1

N
(
qr

)
T r .

ζC (s)will correspond to the two expressions of the classicalRiemann’s ζ -function
(Dirichlet series and Euler product) if one also introduces the concept of a divisor D
on C as a finite Z-linear combination of points of C : D = ∑

j a j x j . The degree of
D is defined as deg(D) = ∑

j a j and D is said to be positive (D ≥ 0) if all a j ≥ 0.
Then

ζC (s) =
∑

D>0

1

N (D)s
=

∏

P>0

(
1 − N (D)−s

)−1
,

where the D are positive divisors on Fq -points, the P are prime positive divisors
(i.e. P is not the sum of two smaller positive divisors), and the “norm” N (D) is
N (D) = qdeg(D).

The key problem is, as before, the localization of the zeroes of ζC (s). If ρ is a
zero, q−ρ is a zero of ZC . Conversely, if q−ρ is a zero and if ρ ′ = ρ + k 2π i

log(q)
, then

q−ρ ′ = q−ρ is also a zero. So the zeroes of the Hasse-Weil function ζC (s) come in
arithmetic progressions, which is a fundamentally new phenomenon.
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8.6.3 Divisors and Classical Riemann-Roch (Curves)

In the other direction, one try to transfer to curves over Fq the results of the theory
of Riemann compact surfaces, and, in particular, the Riemann-Roch theorem.

If C is a compact Riemann surface of genus g, to deal with the distribution and
the orders of zeroes and poles of meromorphic functions on C , one also introduces
the concept of a divisor D on C as a Z-linear combination of points of C : D =∑

x∈C ordx (D)x with ordx (D) ∈ Z the order of D at x . All the terms vanish except a
finite number of them. The degree of D is then defined as deg(D) = ∑

x∈C ordx (D).
It is additive. D is said to be positive (D ≥ 0) if ordx (D) ≥ 0 at every point x .

By construction, divisors form an additive group Div(C), but Div(C) conveys
very little information about the specific geometry of C . Yet, if f is a meromorphic
function on C , poles of order k can be considered as zeroes of order −k and the
divisor ( f ) = ∑

x∈C ordx ( f )x is called principal. Due to a fundamental property of
meromorphic functions on compact Riemann surfaces (a consequence of Liouville
theorem), its degree vanishes: deg( f ) = ∑

x∈C ordx ( f ) = 0. As the meromorphic
functions constitute a field K (C) having the property that the order of a product is
the sum of the orders, principal divisors constitute a subgroup Div0(C). The quotient
group Pic(C) = Div(C)/Div0(C), that is, the group of classes of divisors modulo
principal divisors, is called the Picard group of C . It encodes a lot of information
about the specific geometry of C .

Ifω andω′ are twomeromorphic differential 1-forms onC ,ω′ = f ω for some f ∈
K (C)∗ = K (C) − {0}, div(ω′) = div(ω) + ( f ) and therefore the class of div(ω)

mod (Div0(C)) is unique: it is called the canonical class of C and one can show that
its degree is deg(ω) = 2g − 2.

For instance, if g = 0, C is the Riemann sphere Ĉ and the standard 1-form is
ω = dz on the open subset C. Since to have a local chart at infinity we must use the
change of coordinate ξ = 1

z and since dξ = − dz
z2 , we see that, on Ĉ, ω possesses no

zero and a single double pole at infinity. Hence deg(ω) = −2 = 2g − 2.
For g = 1 (elliptic case) deg(ω) = 0 and there exist holomorphic nowhere van-

ishing 1-forms. As C � C/� (� a lattice), one can take ω = dz.
To any divisor D one can associate what is called a linear system, that is, the set

of meromorphic functions on C whose divisor ( f ) is greater than −D:

L(D) = {
f ∈ K (C)∗ : ( f ) + D ≥ 0

} ∪ {0}.

Since a holomorphic function on C is necessarily constant (Liouville theorem), we
have L(0) = C. One of the most fundamental theorems of Riemann’s theory is the
theorem due to himself and his disciple Gustav Roch:

Riemann-Roch theorem. dim L(D) = deg(D) + dim L(ω − D) − g + 1.
If dim L(D) is noted �(D), we get

�(D) − �(ω − D) = deg(D) − g + 1.
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Corollary. �(ω) = 2g − 2 + 1 − g + 1 = g (since �(0) = 1).

A very important conceptual improvement of RR is due to Pierre Cartier in the
1960s using the new tools of sheaf theory and cohomology. LetO = OC be the struc-
tural sheaf of rings O (U ) of holomorphic functions on the open subsets U of C ,
andK = KC the sheaf of fieldsK (U ) of meromorphic functions. To any divisor D,
Cartier was able to associate a line bundle on C with a sheaf of sections O (D). Then
he has shown that the C-vector space of global sections of O (D) can be identified
with L (D), i.e. L (D) = H 0 (C,O (D)). This cohomological interpretation is fun-
damental and allows a deep “conceptual” cohomological interpretation of RR using
the fact that dim L(D) = dim H 0 (C,O (D)).

8.6.4 Divisors and Classical Riemann-Roch (Surfaces)

For surfaces S overC, RR is more involved. Divisors are now Z-linear combinations
no longer of points but of curves Ci . One has to use what is called the intersection
number of two curves C1 • C2 (and of divisors D1 • D2). For two curves in general
position, one defines C1 • C2 in an intuitive way as the sum of the points of inter-
section, and one shows that, as the base field C is algebraically closed, this number
is invariant by linear equivalence D1 ∼ D2.

One shows also that for any divisors D1 and D2, even when D1 = D2, there exist
D′

1 ∼ D1 and D′
2 ∼ D2 which are in general position, and one then defines D1 • D2

by D1 • D2 = D′
1 • D′

2.

The RR theorem is then

j=2∑

j=0

(−1) j dim H j (S,O (D)) = 1

2
D • (D − KS) + χ (S)

with χ (S) = 1 + pa , pa being the “arithmetic genus”.
What is called Serre duality says that

dim H 2(S,O (D)) = dim H 0(S,O (KS − D)).

Now, dim H 0 and dim H 2 are ≥ 0 while − dim H 1 is ≤ 0, so one gets the RR
inequality:

�(D) + �(KS − D) ≥ 1

2
D • (D − KS) + χ (S) .
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8.6.5 RR for Curves Over Fq

From Artin to Weil, the theory of compact Riemann surfaces has been transferred to
the intermediary case of the curvesC/Fq . In particular, Schmidt andHasse transferred
the RR theorem. A fundamental consequence was that ZC (T ) not only satisfies a
functional equation but also is a rational function of T .

For instance, let us consider the simplest case K = Fq (T ) (analogous to the
simplest number fieldQ). Each unitary polynomial P (T ) = Tm + a1Tm−1 + . . . +
am of degreem gives a contribution (qm)−s to the additive (Dirichlet) formulation of
ZK (T ) since the norm qdeg(P) of its ideal is qm . But there are qm such polynomials
since the m coefficients a j belong to Fq , which is of cardinal q. So

{
ζK (s) = ∑m=∞

m=0 qm (qm)−s = 1
1−q1−s ,

ZC (T ) = 1
1−qT .

Hence, as ZC (T ) is a rational function of T , it has a finite number of zeroes
t1, . . . , tM , and therefore the zeroes of ζC (s) are organized in a finite number of
arithmetic progressions ρ j + k 2π i

log(q)
with q−ρ j = t j . This is a fundamental difference

with the arithmetic case, which makes the proof of RH much easier.

8.6.6 The Frobenius Morphism

In the Fq case, a completely original phenomenon appears. Indeed, a fundamental
property of any finite fieldFq is that xq = x for every element x . So, one can consider
the automorphism ϕq of Fq , ϕq : x �→ xq (it is an automorphism) and retrieve Fq as
the field of fixed points of ϕq . ϕq is called the Frobenius morphism.

For a curve C/Fq , the Frobenius ϕq acts, for every r , on the set of points C
(
Fqr

)

with coordinates in Fqr , and the number Nr = N (qr ) of points ofC rational over Fqr

is the number of fixed points of theFrobeniusϕqr . So, the generating counting function
ZC (T ) counts fixed points and has to do with the world of trace formulas counting
fixed points of maps. In particular, N1 = C

(
Fq

) = #ϕFix
q = ∣∣Ker

(
ϕq − I d

)∣∣. It is
like a “norm”.

8.6.7 RH for Elliptic Curves (Schmidt and Hasse)

Schmidt (see [18]) was the first to add the point at infinity (as for projective curves
and compact Riemann surfaces) and to understand that, in the case of K/Fq (T ),
the functional equation of ζC was correlated to the duality between divisors D and
D − K in Riemann’s theory. As Cartier [3] says
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we meet here one of the first manifestation of the trend towards a geometrization in the study
of the ζ function. (p. 69)

Schmidt proved that

ZC (T ) = L (T )

(1 − T ) (1 − qT )

with L (T ) a polynomial of degree 2g. The fact that ZC is a rational function corre-
sponds to the fact that Riemann’s ζ function is a meromorphic function.

For instance, if we come back to the simple case of K = Fq (T ) and look at its
projective extension P of genus g = 0 by adding the point∞, we must add this point
to the qm other points and, using the fact that exp

(∑
m≥1

Tm

m

) = 1
(1−T )

, we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ZP (T ) = exp
(∑

m≥1 (qm + 1) Tm

m

)

= (
exp

(∑
m≥1 q

m Tm

m

)) (
exp

(∑
m≥1

Tm

m

))
,

= 1
(1−T ))(1−qT )

ζP (s) = 1
(1−q−s )(1−q1−s)

with L (T ) = 1 a polynomial of degree 0.
Schmidt showed, moreover, that L (T ) is, in fact, the characteristic polynomial

of the Frobenius ϕq , i.e. the “norm” (the determinant) of I d − Tϕq . So

ZC (T ) = det
(
I d − Tϕq

)

(1 − T ) (1 − qT )

and ZC (T ) satisfies the functional equation

ZC

(
1

qT

)
= q1−gT 2−2g ZC (T )

while for ζC the symmetric functional equation is

q(g−1)sζC (s) = q(g−1)(1−s)ζC (1 − s)

T → 1
qT corresponding to the symmetry s → 1 − s.

Then, in three fundamental papers of 1936 “Zur Theorie der abstrakten ellip-
tischen Funktionenkörper. I, II, III” [11], Hasse proved RH for elliptic curves. As
g = 1, L (T ) is a polynomial of degree 2. And asC is elliptic, it has a group structure
(C is isomorphic to its Jacobian J (C)), which is used as a crucial feature in the proof.
Indeed, one can consider the group endomorphisms ψ : C → C and their graphs �

in C × C , what Hasse called correspondences.
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For g = 1, ZC (T ) satisfies the functional equation

ZC

(
1

qT

)
= ZC (T )

and ζC the symmetric functional equation

ζC (s) = ζC (1 − s)

as Riemann’s ζ .
Then, Hasse proved that, due to the functional equation, L (T ) is the polynomial

L (T ) = 1 − c1T + qT 2 with

L (1) = 1 − c1 + q = N1 = ∣∣C
(
Fq

)∣∣ .

So
L (T ) = (1 − ωT ) (1 − ωT )

with ωω = q and ω + ω = c1 the inverses of the zeroes since

L (T ) = ωω

(
T − 1

ω

) (
T − 1

ω

)
.

As |ω| = |ω|, we have |ω| = √
q. But, since ζC (s) = ZC

(
q−s

)
, the zeroes of ζC (s)

correspond to q−s j = (
ω j

)−1
. So we must have

∣∣q−s j
∣∣ = |q|−
(s j) = q−
(s j) = 1∣∣ω j

∣∣ = 1√
q

= q− 1
2

and 
 (s) = 1
2 . Hence, the RH for elliptic curves over Fq .

We can rewrite RH in away easier to generalize. One has
∣∣C

(
Fq

)∣∣ − q − 1 = −c1
with c1 = ω + ω = 2
 (ω). But ω = √

qeiα and therefore 
 (ω) = √
q cos (α). So

c1 = 2
√
q cos (α) and RH is equivalent to

∣∣∣∣C
(
Fq

)∣∣ − q − 1
∣∣ ≤ 2q

1
2 .

8.7 Weil’s “Conceptual” Proof of RH

To tackle the case g > 1,Weil had to take into account thatC is no longer isomorphic
to its Jacobian. For a description of Weil’s proof, see, e.g. James Milne’s paper [14]
“The Riemann Hypothesis over finite fields fromWeil to the present day” (2015). See
also Marc Hindry [12].
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Weil worked over Fq (to have a good intersection theory) and in the square S =
C × C of the curve C extended to Fq . He used the graph �q of the Frobenius ϕq on
Fq , which is a divisor of the surface S = C × C . As the Fq -points of C , i.e. C

(
Fq

)
,

are the fixed points of ϕq , their number is the intersection number: �q • � where �

is the diagonal of S = C × C .
Then Weil transferred Hurwitz trace formula (1887), which says that, for a Rie-

mann surface C and a divisor � in S = C × C associated to a map ϕ : C → C , one
has

� • � = Tr
(
ϕ | H0

(
C,Q

)) − Tr
(
ϕ | H1

(
C,Q

))

+Tr
(
ϕ | H2

(
C,Q

))
.

Here this formula implies that

�q • � = �q • ξ1 − Tr
(
ϕq | H1

(
C

)) + �q • ξ2

= 1 − Tr
(
ϕq | H1

(
C

)) + q

with ξ1 = e1 × C and ξ2 = C × e2 (e j points of C).
If one considers the symmetric quadratic intersection form s

(
D, D′) = D • D′,

one notes that ξ1 • ξ1 = ξ2 • ξ2 = 0 (the ξ j are isotropic) and ξ1 • ξ2 = 1 (it is exactly
the reverse of orthonormality).

The key point is that, in this geometric context, RH for curves overFq is equivalent
to the negativity condition D • D ≤ 0 for all divisors D of degree = 0. And this is
equivalent to the Castelnuovo-Severi inequality for every divisor D:

D • D ≤ 2 (D • ξ1) (D • ξ2) .

Indeed, let

def (D) = 2 (D • ξ1) (D • ξ2) − D • D = 2d1d2 − D • D ≥ 0

be what Severi called the “defect” of the divisor D. Writing def
(
mD + nD′) ≥ 0

for all m, n, we find

∣∣D • D′ − d1d
′
2 − d ′

1d2
∣∣ ≤ (

def (D) def
(
D′)) 1

2 .

If we apply this to the Frobenius divisor �q when C has genus g, and use the
fact that d1 = �q • ξ1 = 1 and d2 = �q • ξ2 = q, we compute def

(
�q

) = 2gq and
def (�) = 2g. So we get

∣∣�q • � − q − 1
∣∣ ≤ 2gq

1
2 .
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But, as �q • � = ∣∣C
(
Fq

)∣∣, one has
∣∣∣∣C

(
Fq

)∣∣ − q − 1
∣∣ ≤ 2gq

1
2

which proves RH for genus g.
It is to prove Castelnuovo-Severi inequality that RR enters the stage with the

inequality

�(D) − �(KS − D) ≥ 1

2
D • (D − KS) + χ (S) .

Indeed, let us suppose D • D > 0.

1. One then uses RR to show that after some rescaling D � nD we must have
�(nD) > 1. So one can suppose �(D) > 1.

2. Now it can be shown that if �(D) > 1, then D is linearly equivalent to D′ > 0.
One can therefore suppose D > 0.

3. Then one shows that this implies the positivity (D • ξ1) + (D • ξ2) > 0. So D • ξ1
and D • ξ2 cannot vanish at the same time (D cannot be orthogonal to both the
ξ j ).

4. One then applies Castelnuovo-Severi lemma saying that if, for every D s.t.
D • D > 0, D • ξ1 and D • ξ2 cannot vanish at the same time then for any D

D • D ≤ 2 (D • ξ1) (D • ξ2) .

8.8 Connes’ Strategy: “A Universal Object for the
Localization of L Functions”

8.8.1 Come Back to Arithmetics

To summarize:Weil introduced an intermediate world, the world of curves over finite
fields Fq . He reformulated the RH in this new framework and used tools inspired by
algebraic geometry and cohomology over C to prove it.

It is well known that the generalization of this result to higher dimensions led
to his celebrated conjectures and that the strategy for proving them has been at the
origin of the monumental program of Grothendieck (schemes, sites, toposes, etale
cohomology). But after Deligne’s proof of Weil’s conjectures in 1973 the original
RH remained unbroken.

Some years ago, Alain Connes proposed a new strategy consisting in constructing
a new geometric framework for arithmetics where Weil’s proof could be transferred
by analogy. His fundamental discovery is that a strategy could consist in working in
the world of “tropical algebraic geometry in characteristic 1”, and apply it to the
non-commutative space of the classes of adeles. In his 2014 Lectures at the Collège
de France, he said that he was looking since 18years for a geometric interpretation
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of adeles and ideles in terms of algebraic geometry à la Grothendieck. And in his
essay [4] he explains:

It is highly desirable to find a geometric framework for the Riemann zeta function itself,
in which the Hasse-Weil formula, the geometric interpretation of the explicit formulas, the
Frobenius correspondences, the divisors, principal divisors, Riemann-Roch problem on the
curve and the square of the curve all make sense. (p.8)

The reader will find some details of this program in his extraordinary paper [7]
(2016) with Caterina Consani “Geometry of the scaling site”.2

8.8.2 The Hasse-Weil Function in Characteristic 1: Soulé’s
Work

The first move towards an interpretation of Riemann’s original ζ (s) in terms of a
ζC (s) for an “untraceable” curve-like object C defined over an “untraceable” new
“prime field” F was achieved by Christophe Soulé.

We have seen that for curves C over finite fields Fq , the Hasse-Weil zeta function
ζC (s) counts the (finite) number N (qr ) of points of C rational over the successive
extensions Fqr . Yet, the generating function of the N (qr )

ZC (T ) := exp

(
∑

r≥1

N
(
qr

) T r

r

)

(remind that ζC (s) := ZC
(
q−s

)
) can be defined for a lot of functions N (qr ) which

do not derive from a curve.
A natural question is, therefore, to know if it is possible to retrieve Riemann’s

original ζ (s) as a limit case of Hasse-Weil function ZN
(
q−s

)
for a well-defined

N . In [19], Christophe Soulé worked out the deep idea of looking at ZN
(
q−s

)
for

q → 1. More precisely, as ZN (T ) has a pole of order N (1) at q = 1, he looked at
limits

ζN (s) = lim
q→1

ZN
(
q−s

)
(q − 1)N (1) .

The question becomes then to know if there exists a counting function N yielding

ζN (s) = ζ ∗ (s) = ζ(s)�
( s
2

)
π− s

2 .

Now, such a “function” N does exist. If one takes the logarithms, one gets

log ζN (s) = log ζ ∗ (s) = lim
q→1

(
∑

r≥1

N
(
qr

) q−sr

r
+ N (1) log (q − 1)

)

2 For previous elements, see Connes, Consani, Marcolli [5].
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Fig. 8.8 The integral of
Soulé’s distribution

and Connes and Consani have shown in [6] that the logarithmic derivative is given
by the formula

ζ ′
N (s)

ζN (s)
= ζ ∗′ (s)

ζ ∗ (s)
= −

∫ ∞

1
N (u) u−s du

u
,

where N is the well-defined distribution

N (u) = u + 1 − d

du

(
∑

ρ

uρ+1

ρ + 1

)
,

and theρ being thenon-trivial zeroes of ζ (s). N (u) is the derivative in the distribution
sense of the increasing step function J (u) on [1,∞) diverging to −∞ at 1 (see
Fig. 8.8).

J (u) = u2

2
+ u −

(
∑

ρ

uρ+1

ρ + 1

)
.

8.8.3 Semi-rings and Semi-fields of Characteristic 1

The second step in implementing Connes’ strategy is to find what can mean an alge-
braic geometry in characteristic q = 1.3 The (revolutionary) first move is to change
the basic algebraic structures and shift from rings and fields to semi-rings and semi-
fields, that is, to algebraic structures

(
A, +̊, ×̊)

where +̊, ×̊ are only monoid laws
(i.e. associative, with neutral element, +̊ commutative, ×̊ distributive). In particular,

3 For an overview of the various approaches towards F1-geometry, see, e.g. López Peña-Lorscheid
[13].
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one can look at Z, Q, or R using the sup ∨ as new addition +̊ and the + or the × as
new multiplication ×̊.

For instance, Zmax = {−∞} ∪ Z is a semi-field with −∞ as the neutral element
of +̊ = ∨ since x ∨ −∞ = x , and with 0 as the neutral element of ×̊ = + since
x + 0 = x . Another semi-field is R+

max = R
+ with +̊ = ∨ (0 is the neutral element

since all x are > 0) and ×̊ = × (1 remains the neutral element). In these semi-rings,
the “addition” +̊ is idempotent since x+̊x = x ∨ x = x and it is for this reason that
one says they are of characteristic 1.

It is essential to note that Zmax is a semi-field with natural Frobenius endomor-
phisms. Indeed, if n ∈ N

×, ϕn : x �→ xn = nx (×̊ = + is the natural addition and
therefore exponentiation is the natural multiplication) is an endomorphism of Zmax

since n (x ∨ y) = nx ∨ ny and n (x + y) = nx + ny. Idem for Rmax.
The basic structure in characteristic 1 is the Boolean semi-field B = {0, 1} with

∨ and ×, and hence 1 ∨ 1 = 1. R+
max is an extension of B (there don’t exist finite

extensions of B). Its Galois group is

Gal
(
R

+
max

) := AutB
(
R

+
max

) = R
∗
+ ,

and the λ ∈ R
∗+ act as Frobenius maps ϕλ : x �→ xλ. One has actually (x ∨ y)λ =

xλ ∨ yλ since x, y ≥ 0 and λ > 0, and of course (xy)λ = xλyλ. So one gets a Frobe-
nius flow (a multiplicative 1-parameter group) ϕλ on R

+
max.

Now, a simple but remarkable result is that B is the only finite semi-field which
is not a field.

Theorem. If K is a finite semi-field, then either K is a field (a Fpn ) or K = B.
So one can use the Boolean semi-field B as the base for a new world of algebraic

structures, try to do algebraic geometry in characteristic 1, that is, over a putative “
non-existent” field F1, and look at the possibility of transferring Weil’s proof of RH
to this new framework.

We have already emphasized that for curves over Fq=pn , that is, global fields
K (C) /Fq (t), the base fieldFp is a common underlying structure to all localizations,
while it is not the case for the global field Q and its algebraic extensions. A great
advance is the idea that B can overcome this lack.

Remark. The world of semi-rings and semi-fields in characteristic 1 is intimately
correlated to what is called tropical geometry, idempotent analysis, and what V.P.
Maslov called “dequantization”. A great advantage of this framework for optimiza-
tion problems is that Legendre transforms become simply Fourier transforms. Its
origin is to be found in the technique of Newton polygons introduced by Newton to
localize the zeroes of polynomials.
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8.8.4 The Arithmetic ToposA =
(
N̂×,Zmax

)

The third step of Connes’ strategywas to find the “untraceable” geometric arithmetic-
like objectA enabling to interpret ζ (s) as a ζA (s). The jump is fantastic. Connes and
Consani used the topos conception of algebraic geometry developed byGrothendieck
and considered a topos adapted by construction to characteristic 1.

The starting point is incredibly simple, “d’une simplicité biblique”. Connes and
Consani identify N

× to the small category with a single object ∗ and morphisms
n ∈ N

× with composition n ◦ m given by the multiplication nm. Then they look at
the category N̂× of presheaves on N×, that is, the category of contravariant functors(
N

×)op → Set, that is, the category of sets endowed with a N×-action.
If N× is endowed with the trivial Grothendieck topology, presheaves become

sheaves and N̂× becomes a topos on the site N
×. Now, Zmax is a semi-ring in this

topos since N× acts on Zmax through the Frobenius maps ϕn . Connes takes it as the
structural sheaf of the topos N̂× and calls A = (

N̂×,Zmax
)
the arithmetic site (or

topos). It is a geometric object “defined over” B, “geometric” in the topos sense but
of an arithmetic essence.4

The key idea is then to develop the analogy:

arithmetic site A = (
N̂×,Zmax

)

over the finite semi-field B of characteristic 1
�

algebraic curve C
over the finite field Fq of characteristic p

There are some very “encouraging” results:

1. The “points” of the topos A correspond, up to isomorphism, to the additive sub-
groups H of Q, and it is well known that these subgroups are parametrized by
suitable equivalence classes of finite adeles of Q (i.e. those whose Archimedean
component = 0). Moreover, if Hmax is the semi-field Hmax = {−∞} ∪ H with
+̊ = ∨ (−∞ is the neutral element) and ×̊ = +, then Hmax is the stalk of the
structural sheaf Zmax at the point H . Hence, a very deep arithmetic content of the
topos A.

2. In particular, the subgroups of Q: Hp =
{

n
pk | n ∈ Z, k ∈ N

}
for p prime are

special points of N̂×. And, as the primes p are the (closed) points of the scheme
Spec (Z), one gets a canonical interpretation of Spec (Z) into the arithmetic
topos A.

3. In Connes’ analogy, the arithmetic topos A corresponds to a curve C over a finite
field Fq . But we have seen that Weil’s proof of RH uses intersection theory and

4 As was emphasized by a reviewer, “Zmax, when viewed just as a semi-field, is not sufficiently
deep” because “multiplication of numbers is not part of the structure of Zmax as a semi-field. By
employing the arithmetic site, multiplication is put back in. The true object to consider is then Zmax
regarded as a sheaf over the arithmetic site”.
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Riemann-Roch theorem in the squareC × C . So, to keep onwith the analogy, one
has to define the square A × A and use the Frobenius maps to “count the points”.
It is a very difficult and highly technical stuff. To define A, Connes scales A: he
enlarges the trivial underlying site N× of A to the category C of open intervals �

of [0,∞) with morphisms the n : � → �′, n ∈ N
× s.t. n� ⊂ �′ (i.e. n acts as a

scaling); then he defines a structural sheaf O (it is too technical to be explained
here).

4. Then Connes and Consani extend the scalars to Rmax+ , extension which adds a lot
of new points, namely, all the subgroups of the form λHa , where a λ ∈ R scales an
additive subgroup Ha of Q parametrized by a finite adele a. The scalings λ ∈ R

add to the finite adeles aArchimedean components and introduce the other adeles.

5. Connes and Consani show that—as well as one has C
(
Fq

)
= C

(
Fq

)
in the

case of curves over Fq—one has here A
(
R

max+
) = A

(
R

max+
)
, the isomorphism

classes of points of A
(
R

max+
) = A

(
R

max+
)
being now parametrized by suitable

equivalence classes of adeles in AQ.
6. In A all the points λHa lie over the point Ha of A. In particular, all the points

λHp with Hp =
{

n
pk | n ∈ Z, k ∈ N

}
lie over the point Hp of A. Connes and

Consani show they are parametrized by R
∗+/pZ and constitute in some sense a

“circle” Cp over p which is a periodic orbit of the Frobenius scaling flow ϕλ.
7. An extremely striking achievement, more than “encouraging”, is that Cp is anal-

ogous to an elliptic curve (EC) and that all the results of p-adic EC can be trans-
ferred to Cp, including the Riemann-Roch theorem. For proving this beautiful
result, Connes uses Tate’s 1959 reformulation of the classical theory of EC over
C, which can be transferred to the the p-adic case. One of the definitions of an EC
over C is a quotient Eτ = C/� of C by a lattice � = 〈1, τ 〉 with � (τ ) > 0 (i.e.
τ ∈ H , the hyperbolic Poincaré half-plane). But this definition cannot be extended
to the p-adic context. To overcome this difficulty, Tate (see [20]) remarked that,
since functions f over Eτ are doubly periodic functions f (z) over C with peri-
ods 1 and τ (elliptic functions), one can “absorb” the period 1 in the change of
variables z �→ u = e2π i z . This is a Fourier transform transforming the cylinder
(C/Z,+, 0,×, 1) into (C∗,×, 1, exp, 1). Then f (z) becomes a function f (u) on
C

∗ with period τ . Applying again a Fourier transform, namely, q = e2π iτ (|q| < 1
since � (τ ) > 0), f (z) becomes q-periodic and hence a function on C

∗/qZ. So
Eτ can be identified withC∗/qZ, q = e2π iτ , and Tate reformulated the whole the-
ory of elliptic curves in that new context and showed how it can be transferred to
the p-adic case. And Connes shows how Tate’s theory of C∗/qZ can be faithfully
reformulated for Cp � R

∗+/pZ.

8.9 Conclusion

Connes andConsani’s program is now to develop the intersection theory in the square
A × A of the scaled arithmetic topos, to prove RR for this “surface” and show that
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for divisors D on A × A one has the inequality

dim
(
H 0 (D)

) + dim
(
H 0 (−D)

) ≥ 1

2
D • D,

which would be the analogue of the classical formula over S = C × C for curves:

�(D) + �(KS − D) ≥ 1

2
D • (D − KS) + χ (S) .

But this is another story.
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