
Chapter 7
Varieties of Infiniteness in the Existence
of Infinitely Many Primes

Victor Pambuccian

Abstract By providing quantifier-free axioms systems, without any form of induc-
tion, for a slight variation of Euclid’s proof and for the Goldbach proof for the exis-
tence of infinitely many primes, we highlight the fact that there are two distinct and
very likely incompatible concepts of infiniteness that are part of the theorems proved.
One of them is the concept of cofinality, the other is the concept of equinumerosity
with the universe.

7.1 Introduction

After looking at various proofs for the same result, in his essay [7], David Hilbert
wrote

These specific executions show how various methods of proof are applicable to the same
problem; they also suggest to us the necessity to study the essence ofmathematical proof itself
if such questions as those of decidability by finitely many operations should be answered at
all.1

Hilbert’s suggestion, to look at various “methods of proof” and to study “the
essence of mathematical proof itself” will be applied here to two proofs of the
infinitude of primes, one going back to a letter Christian Goldbach wrote to Leonhard
Euler (in Latin) from Moscow on 20 (31) July 1730 (see [3, p. 32f]) regarding the
co-primeness of the Fermat numbers, re-discovered in [8, 10] and used to prove the
infinitude of primes (see [4] for the proof’s history), and a slightly modified version
of Euclid’s proof, whose logical underpinnings have already been the subject of study

1Diese speziellen Ausführungen zeigen, wie verschiedenartige Beweismethoden auf dasselbe Pro-
blem anwendbar sind, und sollen nahelegen, wie notwendig es ist, das Wesen des mathematischen
Beweises an sich zu studieren, wenn man solche Fragen, wie die nach der Entscheidbarkeit durch
endlich viele Operationen, mit Erfolg aufklären will.
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by Andrew Arana in [1, 2]. Studying the proofs themselves will inform us what the
minimal assumptions are that are needed to carry out the deductions. We will find
out, in the process, that, while on an informal level, the two proofs prove the same
result, at the formal level, they prove two different, very likely incompatible results,
that the kinds of infinity each finds the collection of primes to display are essentially
different.

In what follows, we will first provide an axiomatic analysis of the two proofs, in
the sense described by Hilbert in [6]:

By the axiomatic analysis of a mathematical truth I understand an investigation, which does
not aim to discover new or more general theorems relative to that truth, but rather aims to
clarify the position of that theorem inside the system of known truths and their mutual logical
connections in such a way that one can indicate exactly which conditions are necessary and
sufficient for justifying that truth.2

The problem regarding the assumptions needed to prove the cofinality of prime
numbers has been recently treated in [1, 2], where the main concern is to distinguish
a pure proof of the cofinality of primes from one that is not pure. Euclid’s proof,
slightly modified to ensure that it proves cofinality, is found to be pure, and an axiom
system that allows one to reason along the lines of Euclid’s proof is presented in
[1, 2]. The axiom systems presented in the two papers contain the axiom of induction,
as well as the requirement that the product of all primes less than a certain given
number exists.

The proofs we will present in this paper can also be considered to be pure, in
the sense that they use only notions and axioms that belong to elementary number
theory. If one thinks of purity in terms of Hilbert’s [5, pp. 315–316] comment that

In modern mathematics such criticism is raised very often, where the aim is to preserve the
purity of method, i.e. to prove theorems if possible using means that are suggested by the
content of the theorem.3

Then one cannot say that they are pure, for neither the exponential function that
appears in the proof based on the co-primality of theFermat numbers nor the existence
of a number divisible by all primes≤ x are “suggested by the content of the theorem”.

The axiom systems will contain only what is really needed to carry the respective
proofs through. Both axiom systems will consist entirely of quantifier-free axioms.

When understood in the sense of cofinality, the existence of infinitelymany primes
states that, for any given number x , there is a prime number larger than x . When
understood in the sense of equinumerosity with the universe, it states that there exists

2 Unter der axiomatischen Erforschung einer mathematischen Wahrheit verstehe ich eine Unter-
suchung, welche nicht dahin zielt, im Zusammenhange mit jener Wahrheit neue oder allgemeinere
Sätze zu entdecken, sondern die vielmehr die Stellung jenes Satzes innerhalb des Systems der
bekannten Wahrheiten und ihren logischen Zusammenhang in der Weise klarzulegen sucht, daß
sich sicher angeben läßt, welche Voraussetzungen zur Begründung jener Wahrheit notwendig und
hinreichend sind.
3 In der modernen Mathematik wird solche Kritik sehr häufig geübt, wobei das Bestreben ist, die
Reinheit derMethode zuwahren, d.h. beimBeweise eines Satzes womöglich nur solcheHülfsmittel
zu benutzen, die durch den Inhalt des Satzes nahe gelegt sind.
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a definable function τ , with τ(x) > 1 for all x , such that, for all x , τ(x) is a prime
number and τ(x) = τ(y) → x = y holds. One can think of τ as an injective function
from the natural numbers to the prime numbers.

7.2 The Axiom System and Some Basic Facts for the First
Proof

The language for the proof based on the co-primeness of Fermat numbers consists

of 0, 1,+, ·,−,<,
[
x
y

]
, 2x , π—in which 0 and 1 are individual constants, +, ·, and

− are binary operations (x − y taking arbitrary values for x ≤ y), < is a binary

relation,
[
x
y

]
is a binary operation, 2x and π are unary operations. We will also

use the defined relation | with n |m ⇔ [
m
n

] · n = m as well as the defined relation
≤, with x ≤ y ⇔ x < y ∨ x = y. Here [ xy ] will stand for the greatest integer ≤ x

y ,
whenever y �= 0, and for an arbitrary value if y = 0, 2x for “2 to the power x”, and
π(x) for the smallest prime number that divides x , for x > 1, and for an arbitrary
value for x ≤ 1. We will denote by n the term 1 + (1 + . . . 1)) . . .), where 1 shows
up n times, where n is a natural number. The terms n will be referred to as numerals.
The axioms are

A 1 (x + y) + z = x + (y + z),

A 2 x + y = y + x ,

A 3 (x · y) · z = x · (y · z),
A 4 x · y = y · x ,
A 5 x · (y + z) = x · y + x · z,
A 6 x + 0 = x ∧ x · 0 = 0,

A 7 x · 1 = x ,

A 8 (x < y ∧ y < z) → x < z,

A 9 ¬x < x ,

A 10 x < y ∨ x = y ∨ y < x ,

A 11 x < y → x + z < y + z,

A 12 (0 < z ∧ x < y) → x · z < y · z,
A 13 x < y → x + (y − x) = y,

A 14 0 < 1 ∧ (0 < x → 1 ≤ x),
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A 15 0 ≤ x ,

A 16 0 < x → (([ y
x

] · x < y ∧ y − [ y
x

] · x < x
) ∨ [ y

x

] · x = y
)
,

A 17 0 < x → 1 < 2x ,

A 18 2x · 2y = 2x+y ,

A 19 x < y → 22
x + 1 | 22y − 1,

A 20 1 < x ∧ x | 2y → 2 | x ,
A 21 1 < x → (1 < π(x) ∧ π(x) | x),
A 22 1 < x ∧ 1 < p ∧ p | x → π(x) ≤ p.

A1–A15 are the axioms of an established theory, PA− (see [9]). A16 states the
possibility of Euclidean division with remainder. The meaning of A17 and A18 is
obvious. A21 states that, for all x > 1, π(x) is a non-trivial divisor of x while A22
states that π(x) is the smallest non-trivial divisor of x .

Here are some basic properties one can prove from our axioms.

Lemma 7.1 If a < b, then a + 1 ≤ b.

Proof By A15, A13, and A6, we have 0 < b − a. By A14, we have 1 ≤ b − a. By
A13 and A11, we get a + 1 ≤ b.

Lemma 7.2 If z �= 0 and a · x = z, then a = [ zx ].
Proof ByA16,

[
z
x

] · x ≤ z. If
[
z
x

] · x = z, then we have
[
z
x

] · x = a · x . By A15, A6
and the fact that z �= 0, we have 0 < x . By A10, we have [ zx ] < a ∨ [

z
x

] = a ∨ a <[
z
x

]
. If

[
z
x

]
< a were the case, then, by A12, we would have

[
z
x

] · x < a · x , and
similarly if a <

[
z
x

]
were the case. Thus

[
z
x

] = a.
If

[
z
x

] · x < z, then, by A10, A12, and the fact that x �= 0, we have that
[
z
x

]
< a.

By A16,

z −
[ z
x

]
· x < x . (7.1)

Since [ zx ] < a, we get, by Lemma 7.1,

[ z
x

]
+ 1 ≤ a. (7.2)

By (7.1), A13, A5, A2, A4, and (7.2), z < x + [
z
x

] · x = x · (1 + [
z
x

]
) ≤ a · x = z,

contradicting A9.

Thus, the definition of a | b could be rephrased as “there exists a u such that a · u =
b”. This should not be interpreted as an introduction of the existential quantifier
through the back door. Although we will make free use of this observation in the
sequel, there is no need for it in the proofs that follow. Indeed, a first draft of this
paper carried the proofs without use of Lemma 7.2. The proofs were just longer and
typographically cumbersome.
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Lemma 7.3 x | y ∧ y | z → x | z.
Proof To prove this, let us first notice that, if z �= 0 and a · x = z, then, by Lemma

7.2, a = [ zx ]. Since x | y and y | z amount to
[ y
x

] · x = y and
[
z
y

]
· y = z, we have[

z
y

]
· ([ y

x

] · x) = z. By A3 and Lemma 7.2 we conclude that x | z.
We can prove that

Lemma 7.4 For 1 < x, π(x) is irreducible, i.e. a · b = π(x) → (a = 1 ∨ b = 1).

Proof Suppose π(x) = a · b, with a �= 1 and b �= 1. Then, by A14, A15, A6, and
A21, 1 < a and 1 < b. . Since a · b = π(x) implies that a | π(x), and since π(x) | x ,
we have, by Lemma 7.3, also a | x . By A22 we should have π(x) < a or π(x) = a.
Sinceπ(x) = a · b and 1 < b, we have, byA12 andA4, a < π(x). This contradiction
proves that one of a or b must be 1.

A19 states that 22
x + 1 divides 22

y − 1 whenever x < y. If y = x + n, then we
can prove A19 from the other axioms, but, in general, the difference between y and
x does not need to be a numeral.

The infinity of primes, which we will prove, is in the form of the equinumerosity
of a set of primes with the universe, the function τ(x) being in our case a term,
namely, π(22

x + 1). It is the statement

IP π(22
x + 1) = π(22

y + 1) → x = y.

7.3 Proof of the Infinity of Primes Based
on the Co-Primeness of the Fermat Numbers

Let Fn = 22
n + 1. If 20 = 0, then, by A18 and A6, we should have 2x = 0 for all

x , contradicting A17 and A14. Thus, by A15, 0 < 20. By A18, 20 · 20 = 20+0, and,
since 0 + 0 = 0 by A6, we have 20 · 20 = 20. Since 0 < 20, by A14, we have either
20 = 1 or 1 < 20. If 1 < 20 were the case, then, by A12 and A7, we would have
20 < 20 · 20, which contradicts A9. Thus 20 = 1. Notice that, by A17, A15, A14,
and A8, 1 < 22

n
, for all n, so that, by A11, 2 < Fn , for all n. By A19, Fn |Fm − 2

for all n < m. Thus π(Fm) �= π(Fn) for all m �= n. For, suppose, for some n < m,
we had π(Fm) = π(Fn), and let α denote that common value. Notice that, by A13,
A10, and A11, we have, for x > 1, (x + 1) − 2 = x − 1. Thus α | Fm (by A21)
and, by Lemma 7.3, α | Fm − 2. Thus, for some u and v, α · u = Fm and α · v =
Fm − 2. By A10 and A11, we have v < u. By A13, v + (u − v) = u, and thus, by
A5, α · v + α · (u − v) = α · u, whichmeans that (Fm − 2) + α · (u − v) = Fm . By
A13 and A10, we get α · (u − v) = 2. This implies α | 2. We also have, by A20, that
2 | Fm − 1, and thus, given Lemma 7.3, α | Fm − 1. Repeating the argument that has
led us from α | Fm and α | Fm − 2 to conclude that α | 2 with 1 instead of 2, we get
that α | Fm and α | Fm − 1 imply α | 1. However, since 1 < Fm , we have, by A21,
1 < α, so, by A12 and A9, we cannot have α | 1.
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WithH = {A1 − A22}, we have proved that

Theorem 7.5 H � IP.

7.4 Euclid’s Proof for the Cofinality of Primes

For the formalization of Euclid’s proof, slightly modified by Arana, of the cofinality

of primes, the language will contain 0, 1,+, ·,−,<,
[
x
y

]
, π , with the same intended

interpretation as above, as well as the unary operation ε, with ε(x) to be read, for
x > 1, as a multiple of each prime≤ x , an arbitrary number for x = 1 and for x = 0.
Besides A1–A16, A21, A22, we need the following axiom:

A 23 1 < x ∧ π(x) = x ∧ x ≤ z → x | ε(z).
In this setting, one can prove the cofinality of primes, that is:

CP 1 < x → x < π(ε(x) + 1).

To see this, notice that, by A10, if that is not the case, then x = π(ε(x) + 1)
or π(ε(x) + 1) < x . So, if we denote π(ε(x) + 1) by u, then, by A21, we have
u | ε(x) + 1. Since u = x ∨ u < x and π(u) = u (since u is irreducible by Lemma
7.4), by A23, we have u | ε(x). By A13, A10, A11, and A5, we get u | 1, which
contradicts the fact that 1 < u. With E = {A1 − A16,A21 − A23}, we have proved
that

Theorem 7.6 E � CP.

If we want to have a description of ε that comes closer to “the product of all
primes ≤ x”, we need to add the following two axioms:

A 24 1 < x ∧ π(x) = x ∧ z < x → x � | ε(z)
A 25 1 < x ∧ π(x) = x ∧ (z < x ∨ z = x) → x2 � | ε(z).

These, however, have no role to play in the proof of CP, which is why we did not
adopt them as axioms for our proof.

7.5 Comparing Notions of Infinity

We have come to our main point, namely, the observation that IP and CP are funda-
mentally different statements, that none is stronger than the other. To make our state-

ment precise, let T be a theory in a language either containing 0, 1,+, ·,<,
[
x
y

]
, π
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or one in which these notions can be defined in terms of the primitive notions of T ,
which proves A1–A16, A21, A22. We say that T proves that the number of primes
is equinumerous with the universe if it satisfies

IP0 There exists a function τ , definable in T , with T � 1 < τ(x), T � π(τ(x)) =
τ(x), and T � τ(x) = τ(y) → x = y.

We say that T proves the cofinality of primes if

CP0 T � (∀x)(∃y) x < y ∧ π(y) = y.

One could think that any theory T which proves IP0 must also prove CP0 by
reasoning informally as follows: All the π(τ( j)) for 1 ≤ j ≤ x cannot be≤ x by the
pigeonhole principle, so there is a j such that x < π(τ( j)). However, the pigeonhole
principle is a very powerful statement, when looked at with formal eyeglasses. It is
usually proved by using the induction axiom (see [9, p. 68]) and there is no reason
to believe that for T = H one could prove the particular instance of the pigeonhole
principle scheme corresponding to τ(x) = π(22

x + 1).
Let us look what it would mean forH to prove CP0. It would mean that we knew

of a term θ(x) in the language 0, 1,+, ·,<,
[
x
y

]
, 2x , π , such that H would prove

x < π(θ(x)). Now, there is no axiom in H which could help with the size of π(x),
so it appears to be hopeless to try to find such a term θ(x).

What would it mean for E to satisfy IP0? It would mean that we knew of some
function τ(x), such that E � π(τ(x)) = τ(x) and E � τ(x) = τ(y) → x = y. E is
almost certainly too weak to prove any such result.

We are thus led to the following:

Conjecture E does not satisfy IP0 and H does not satisfy CP0.
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