
Chapter 6
Abstract Generality, Simplicity,
Forgetting, and Discovery

Colin McLarty

Abstract The paper contrasts two ways of generalizing and gives examples: proba-
bly most people think of examples like generalizing Cartesian coordinate geometry
to differential manifolds. One kind of structure is replaced by another more com-
plicated but more flexible kind. Call this articulating generalization as it articulates
some general assumptions behind an earlier concept. On the other hand, by unifying
generalization, I mean simply dropping some assumptions from an earlier concept or
theorem. Hilbert, Noether, and Grothendieck were all known for highly non-trivial
unifying generalizations.

It is an error to believe that rigor in the proof is the enemy of simplicity…. The very effort
for rigor forces us to find simpler methods of proof. [8, p. 257]

Complaints about “abstract generality” in mathematics, like complaints about “kids
these days”, have always been around and always will. In both cases, the complaints
are not wholly wrong but are wrong on the whole. This paper looks at a kind of
generalizing abstraction Hilbert and many others have used to find simpler methods
of proof. Call it unifying generalization, in contrast to articulating generalization,
which expands some earlier kind of structure into anothermore complicated butmore
flexible kind. Both have been extremely productive and they often depend on each
other. But articulating generalization typically does not simplify earlier concepts or
proofs.1

This paper gives several examples and then focusses on Grothendieck’s the-
ory of schemes in algebraic geometry as a unifying generalization. This may be
Grothendieck’s single most influential generalization of any kind.2

1The very fruitfully simplifying work of Fields Medalist Peter Scholz might be an argument against
this claim. The reader may want to explore that possibility.
2The other candidate for his most influential generalization is his derived functor cohomology,
which is sketched from the same viewpoint as this article in [14].
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The various examples will use various bits of mathematics that philosophers
of mathematics will not normally know much about. This is an opportunity for
philosophers to do what mathematicians frequently do at convention talks: get the
gist of the math without all the details. The specifically relevant details are explained,
and references are given.

6.1 An Articulating Generalization: Riemannian Manifolds

High schools teach Cartesian coordinate geometry on the xy-plane R2. A small step
leads to all the finite dimensional coordinate spaces R

n. Bernhard Riemann took
a very large step when he set out, at Gauss’s request, to describe “The Hypotheses
which lie at the Bases of Geometry” [20]. He found the basic geometric concepts and
constructions can be fitted together in many more ways than just the original spaces
R

n. Today, these more general spaces are called Riemannian manifolds. The idea was
immediately intuitive, andproductive, for a handful of importantmathematicians.But
it took decades before this innovation was explicated clearly and concisely enough
to become a standard part of advanced mathematics.

Today, just to name some classics, the definition of Riemannian manifold can be
handled in a concise form such as [10], a leisurely highly illustrated form such as
[22], or a thoroughly physically motivated form such as [16].

The point for us here is that all of these accounts presuppose the coordinate spaces
R

n, and use calculus on those spaces to define manifolds. The general case is not just
motivated or introduced via the special case, but depends logically on first defining
the special case. And then the general case of manifolds needs a lot of apparatus
beyond the special case of coordinate spaces.

Without going into detail, the general case needs the idea of local coordinate
systems which are smoothly compatible with each other. Calculus on R

n can sim-
ply take vectors to be directed line segments in R

n, but calculus on a manifold M
needs more refined apparatus. Today that apparatus often takes the form of a tangent
bundle TM→M mapping to M. Generalization by adding new apparatus can work
beautifully. It does in this case. But it is not the only kind of generalization.

6.2 A Hypothetical Example of a Unifying Generalization

Many people throughout time have known that when the three sides of a triangle are
equal, then so are the three angles. Maybe some of the first people to theorize on this
(be it Thales or some others) proved it this way3:

3 Existing historical data are too thin to support or refute this parable as a historical conjecture. For
the extant Greek sources on this theorem, see [7, vol. 1, p. 252ff.].
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Let ABC be an equilateral triangle. Lift and turn it over, putting the side AB
down in the direction AC originally took. Because AB = AC in length, line AB
will now lie exactly where AC did. Because the angle ∠A has not changed, the line
AC will now lie in the direction AB originally took, and because they are the same
length AC will now lie exactly where AB did. So the line BC will lie just where it
originally did, but with reversed direction. The moved angle ∠B will coincide with
the original place of the angle ∠C, and vice versa, proving ∠B = ∠C. Those could
have been any two angles of ABC, so all the angles are all equal.

Anyone interested in this argument would quickly realize only the very last step
requires an equilateral triangle. Merely assuming AB = AC the reasoning already
shows ∠B = ∠C. The theorem on equilateral triangles generalizes to isosceles tri-
angles simply by ignoring the length of BC. And even if you only care about the case
of equilateral triangles, the quickest way to prove it is via this proof for isosceles
triangles.

6.3 Generalization at the Origin of Abstract Algebra

A brilliant unifying generalization lies at the base of modern mathematics, namely,
Hilbert’s solution to Gordan’s problem. Hilbert proved every algebraic form has a
finite complete system of invariants. I will not define any of those terms because
Hilbert’s strategy was to ignore them almost entirely. He just kept in mind that the
problem deals with “things” that can be added or multiplied by each other and can be
multiplied by numbers. He did not define any new abstract kind of algebraic system
to do this. He worked explicitly with polynomials over the complex numbers, but
explicitly ignored nearly everything specific to them!Then he and others immediately
saw this proof would apply to many other problems.4

Closely related to that example, the origin of commutative algebra illustrates both
kinds of generalization and forms the basis for Grothendieck’s theory of schemes.5

By the late nineteenth century, unique prime factorization for the ordinary integers Z
had two important articulating generalizations: to algebraic integers and to complex
function theory. They extended the theory of factorization from the integers to other
equally specific (and more complicated) domains.

4 For a fuller treatment, see [13].
5 A concise history from this viewpoint is [4, pp. 21–26].
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The ring of Gaussian integers Z[√−1] contains numbers of the form

a + b · √−1 with a, b ∈ Z.

A proof very like the familiar one for the integers Z shows Gaussian integers have
unique prime factorization. But a different algebraic equation, x2 = −5, gives a
different ring Z[√−5]

a + b · √−5 with a, b ∈ Z

which does not have unique prime factorization. These numbers have unique prime
ideal factorization where ideals are a concept not used in basic arithmetic. Dedekind
defined rings of algebraic integers where the ordinary integers Z are combined
with irrational numbers defined by any integer polynomial equations. The Gaussian
integers Z[√−1] are one example, Z[√−5] is another. Dedekind used rather special
features of integer polynomials to prove every such ring has unique prime ideal
factorization [2].6

In a further articulating generalization, important to Kronecker and especially to
Hilbert, integer polynomials are replaced by polynomials with coefficients in some
ring of algebraic integers. Again the details are not important except to say Emmy
Noether would remove them in her startling unified general theory.7

As to complex function theory, consider the two-variable polynomial equation

y2 = x3 − x .

Its complex-number solutions define a curve

C = {〈x, y〉 ∈ C × C | y = ±
√
x3 − x}.

A regular function on the curve C is any (complex coefficient) polynomial in x and
y, with the provision that two polynomials define the same function onC if they take
the same value at every point of C . So, for example, the polynomial x4 defines the
same function on C as xy2 + x2 because

x4 = xy2 + x2 whenever y2 − x3 + x = 0.

It was crucial to nineteenth-century algebra and toGrothendieck’s scheme theory that
the equation follows from simply factoring the difference between the polynomials:

(x4) − (xy2 + x2) = −x · (y2 − x3 + x),

and so each side equals 0 when y2 − x3 + x = 0.

6 A quick introduction is in [11].
7 [9, p. 13] correctly says “Noether’s proofs […] were (and remain) startling in their simplicity”.
Compare [15].
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Nineteenth-century complex analystsworked extensivelywith functions on curves
such as C using all the tools of calculus and infinite series expansions plus algebraic
means of reducing equations. In two (or more) variables, the reduction was not so
simple as prime factorization. It led to ideal factors as in arithmetic but beyond the
prime ideal factors it used a more general notion of primary ideal which will not be
explained here.8 And besides multiplying ideals by each other, it used intersections
of primary ideals.

6.4 Forgetting the Details, for a Time

Emmy Noether came on this scene in the 1920s known to all leading German mathe-
maticians and physicists for her work on conservation laws in Lagrangianmechanics.
She took Dedekind’s lead, but went far beyond him, seeing how huge amounts of
the theory of factorization could be unified by forgetting the details.

Arithmeticians could forget their polynomials had integer coefficients, or coeffi-
cients in some ring of algebraic integers. They could even forget they were working
with polynomials! They only had to remember the commutative, associative, and unit
laws for addition and for multiplication, and the distributive law relating them, plus a
few general conditions such as the ascending chain condition or integral closedness
which were known and used in all the special cases already. Complex analysts could
forget they were using the complex numbers, and forget about polynomials—and
keep just the same general facts as the arithmeticians.

Obviously, when they forget these things they lose many specific theorems. But
Noether saw the quickest way to those specific theorems was to start without the
details and fill them in later as needed. This was faster than the classical approaches,
simpler, more unified, and immediately gave strong new results about the special
cases. It also made the theorems more general in principle. At first this generality
held only in principle as the theorems were really only used for the previously known
cases. But the general theory quickly led to the creation of useful new specific cases
unimagined before.

Grothendieckwas in a different situation. For one thing,Noether’smethods though
only 20years old were a well-established success—so well established they were
rather taken for granted, hardly associated with her in Paris where she could be
regarded as having produced mere “generalities”. Mathematicians were accustomed
to this level of abstract generality as they had not beenwhenHilbert did his orNoether
did hers. For another thing, Grothendieck aimed from the start of his work on this to
produce a specific, new, yet-unknown case, namely, an arithmetic algebraic geometry
to state and prove theWeil conjectures.9 But he did not attack the conjectures directly.
He set out to unify all the tools bearing on the problem so a solution would appear
naturally.

8 See, e.g. [19, Chap.7].
9 The Weil conjectures are much discussed elsewhere. See [12] and references there.
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6.5 Schemes

Around 1950 algebraic geometry worked very well for cases meeting some condi-
tions. The first of these should be reasonably familiar to philosophers of mathematics
while the second is technical:

• for varieties defined by the complex-number solutions to polynomials with com-
plex coefficients;

• as long as the defining polynomial is reduced (no factor divides it more than once)
or the defining set of polynomials generates a reduced ideal.

These two together are sufficient, butnot necessary, conditions to give the classical
treatment of functions on varieties. Two different considerations were invoked above
to show x4 defines the same function on the curve C as xy2 + x2:

VALUES The two polynomials take the same value at every point 〈x, y〉 of the
curve C .

FACTORS The difference of the two polynomials is divisible by the defining poly-
nomial of C .

The reason classical algebraic geometry over the complex numbers insisted on using
reduced defining polynomials was precisely to make these two clauses equivalent:
any two polynomials on any variety V take the same values at every point of V if and
only if their difference is divisible by the defining polynomial (or ideal) of V . For
non-reduced defining polynomials, divisibility still implies equality of values but not
conversely.

It may seem plausible that the clause VALUES gives the right criterion for iden-
tity of functions: a function is determined by its values. And the clause FACTORS
explains why this part of geometry is algebraic: it reduces to polynomial algebra.
And indeed these two clauses are equivalent in much more general settings than the
classical. For example, the complex numbers can be replaced by any algebraically
closed field K and not only do the clauses remain equivalent but the proof of their
equivalence is nearly unchanged. This is the Hilbert Nullstellensatz described at the
start of any modern textbook on algebraic geometry.10

But André Weil’s vision of geometrized arithmetic required much more:

• varieties defined over the integers, without looking at integers as embedded in the
complex numbers;

• non-reduced ideals are of central interest.

This was the start of an extremely valuable generalization of algebraic geometry
to include arithmetic. Already in 1950 leading mathematicians saw that if it could
possibly be made to work it would produce huge progress in number theory—as, in
fact, it has.

10 Hilbert found it when he went to work replying to Gordan’s objections to Hilbert’s original
non-constructive solution of Gordan’s problem.
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Several candidates for such a theory before Grothendieck took the route of artic-
ulating generalization. They tried to replace the complex numbers by other specific
kinds of suitable rings, with suitable restrictions on the defining polynomials. In par-
ticular, most of them aimed to preserve the equivalence of VALUES and FACTORS.
For that reason, among others, the ring of integers Z itself did not seem suitable.
The appendix below uses a little pretty arithmetic to show how the equivalence of
VALUES and FACTORS fails on a naive approach to algebraic geometry over the
integers (even for reduced defining polynomials). When one thought only suitable
rings could define varieties, there were constant innovations in just which rings those
were. That is, people constantly sought larger and larger classes of rings that could
count as “geometrical”.

Grothendieck, though, took the route of unifying abstraction: do not introduce new
kinds of rings. Forget about complex numbers or integers. Forget the Nullstellensatz
and Noetherian conditions. Forget varieties are defined by polynomials. Forget that
functions on varieties are polynomials. Forget polynomials.

Of course, these things will come back as needed for specific results later on. But
forget them all in the basic theory.

Grothendieck insisted every ring should be the ring of functions on a space. He
named these spaces schemes. He immediately knew there was just one way to do it
and that way is quite naively intuitive. It is “of infantile simplicity” to quote [5, p.
P32]. It is exactlywhat classical algebraic geometry always did, except forgetting that
some things are complex numbers, and others are polynomials, and so on. Indeed,
mathematicians had long known there would be one and only one way to do it.11 It
just meant abandoning VALUES in favour of FACTORS. Grothendieck did it.

Here a ring is any set R with selected zero and unit elements 0,1, and selected
operations called addition, additive inverse, andmultiplication satisfying the familiar
laws. For all elements x, y, z ∈ R:

0 + x = x, x + (−x) = 0, 1 · x = x,

x + y = y + x, x + (y + z) = (x + y) + z,

x · y = y · x, x · (y · z) = (x · y) · z,
x · (y + z) = (x · y) + (x · z).

The integers Z are a familiar example as are the complex numbers C but the whole
point is to forget those specifics. A ring homomorphism h : R→ R′ is a function from
R to R′ that preserves 0, 1, and addition, additive inverse, and multiplication.

Each ring R is taken as the ring of regular functions on a space, a scheme, called
the spectrum of R andwritten Spec(R). Classical algebraic geometry defined regular
maps f :W →V between varieties in terms of polynomials. Scheme theory defines
maps between schemes exactly the same way—only forgetting about polynomials.

11 This includes Emmy Noether’s school following van der Waerden, plus Weil and all the leading
Parisian algebraic geometers, as documented in [12, p. 313ff.].
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To spell this out: in classical, complex algebraic geometry a regular function g
on any variety V will compose with any regular map f :W →V between varieties
to give a regular function g f on W

V
g

W

f

g f
C

.

Composition obviously takes the constant 0 function on V to the constant 0 function
on W, and similarly for the constant function 1. It also preserves pointwise addition
of functions of V , and pointwise multiplication. That is, composition with a regular
map produces a homomorphism from the ring of regular functions on V to that
on W . Conversely every homomorphism (preserving also the complex coefficients)
corresponds to a regular map.

Altogether a regular map of varieties W →V corresponds to a ring homomor-
phism, preserving complex coefficients, from the regular functions on V to those
on W . And this is no by-the-way fact. It is central to the techniques of algebraic
geometry.

A map of schemes Spec(R′)→Spec(R) corresponds to a ring homomorphism in
the other direction R→ R′. Just forget about complex numbers and polynomials.

In classical algebraic geometry, every reduced polynomial f on a varietyV defines
a subvariety V ′ ⊆ V , namely,

V ′ = {p ∈ V | f (p) = 0}.

More generally every reduced ideal I of regular functions on V defines a subvariety

V ′ = {p ∈ V | f (p) = 0 for all f ∈ I }.

The powerful algebraic fact is that two subvarieties V ′, V ′′ of V have V ′ ⊆ V ′′ if
and only if the ideal of V ′ contains the ideal of V ′′. In particular, the points of V
correspond to the maximal ideals of the ring of regular functions.

Scheme theory preserves all of this only forgetting about polynomials and
reducedness: Every element f ∈ R determines a closed subscheme of Spec(R).
Indeed every ideal I ⊂ R determines a closed subscheme, while inclusion of ideals
is equivalent to inclusion in the opposite direction of closed subschemes. Closed
points correspond to maximal ideals.

Obviously, a detailed account of either classical or scheme theoretic algebraic
geometry is impossible here. The comparison is made brilliantly in the famous Red
Book [17]. To summarize: take any account of classical, complex algebraic varieties
stated using the now classical ideas of Zariski topology and generic points, scratch
out all reference to the complex numbers, replace all reference to “polynomials”
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or “regular functions” by “ring elements”, scratch out the word “reduced”. What
remains is a reasonably clear account of scheme theory. Of course, it will only be
the basics.

In practice, these turn out to be the right basics even for classical algebraic geom-
etry. Thus, the introductory textbook [18] and the survey lectures [21] present basic
classical algebraic geometry in a form pervasively shaped by schemes even though
Reid mentions schemes only a few times—and Smith mentions them more often but
never actually defines them.

Schemes are a huge extension of varieties. Most rings are not at all like the
coordinate ring of any classical variety and so most schemes are not at all like vari-
eties. In this sense, Deligne says “the decision to let every commutative ring define a
scheme gives standing to bizarre schemes”. Yet schemes are standard in today’s alge-
braic geometry for two reasons. One is the unifying effect of taking restrictions out of
the basic definitions and theory. AndDeligne emphasizes the practical value of work-
ing in the full, larger domain: “it gives a category of schemes with nice properties”
[3, p. 13]. That is also how Grothendieck and Dieudonné explain the success of
schemesversus other attemptedmergers of arithmeticwith algebraic geometry.Arith-
metical and geometrical constructions “get easy mathematical expression thanks to
the functorial language (whose absence no doubt explains the timidity of earlier
attempts)” [6, p. 6].12

Appendix: Naive Algebraic Geometry over the Integers

Let y2 − x3 + x = 0 define a “curve” of integer points:

CZ = {〈x, y〉 ∈ Z × Z | y2 − x3 + x = 0}.

Efficient use of prime factorization, given below, shows CZ has exactly three points:

CZ = {〈−1, 0〉, 〈0, 0〉, 〈1, 0〉}.

All these points have y = 0 so the polynomials y and 0 give the same regular
function on CZ by criterion VALUES. Yet their difference y is obviously not divis-
ible by the defining polynomial y2 − x3 + x so they are not the same by criterion
FACTORS. To study CZ by tools of algebraic geometry, we must restore the role of
FACTORS.

There are two ways to do this: 1) find new kinds of points for the “curve” CZ so
that the polynomials y and 0 do not agree at all these points or 2) give up the idea that
a function is determined by its values at points. Scheme theory actually does both.

12 Pierre has explained some of the reasons behind this absence [1, p. 398].
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To keep the argument grounded in some mathematics, here is a proof that CZ has
just the three integer points.

Theorem 6.1 The curve CZ has just three integer points: 〈−1, 0〉, 〈0, 0〉, 〈1, 0〉.
Proof Setting y = 0 gives three trivial solutions to y2 = 0 = x3 − x , namely:

x = 0, y = 0 or x = 1, y = 0 or x = −1, y = 0.

This follows from factoring x3 − x as x · (x − 1) · (x + 1).
There are no solutions with y 
= 0. To see this, suppose x3 − x is a non-zero

square. Then x 
= 0 and x 
= ±1. And notice a prime factor of x cannot also be a
prime factor of x2 − 1. So, since their product x3 − x is a square, both x and x2 − 1
must be squares. (This is where the proof uses unique prime factorization of non-zero
integers.) But then the successive integers x2 − 1 and x2 would both be squares. And
this contradicts x 
= ±1 since the only successive integer squares are 0, 1.
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