Chapter 5 ®)
Reflections on the Axiomatic Approach oo
to Continuity

John L. Bell

Abstract In Hilbert’s paper “Axiomatic Thinking”—the published version of his
1917 Ziirich talk - he touches on the axiomatic treatment of continuity and, as he
puts it, “the dependence of the propositions of a field of knowledge on the axiom of
continuity”. By the “axiom of continuity”, Hilbert seems to mean a number of things.
In this paper I speculate on the various meanings Hilbert may have ascribed to the
term. I focus in particular on interpreting the “axiom of continuity” as the central
principal of Synthetic Differential Geometry that all real functions are smooth.

In Hilbert’s paper “Axiomatic Thinking”—the published version' of his 1917 Ziirich
talk which the present meeting commemorates—he touches on the axiomatic treat-
ment of continuity and, as he puts it, “the dependence of the propositions of a field
of knowledge on the axiom of continuity”.

By the “axiom of continuity”, Hilbert seems to mean a number of things. He
first assimilates it to the Archimedean axiom (which he also calls the “axiom of
measurement”) and observes its independence of the other axioms of the theory of
real numbers. Presumably, he means the other axioms of the first-order theory of real
numbers, since the Archimedean axiom is derivable in the second-order theory in
which order-completeness is assumed.

Hilbert goes on to observe that the Archimedean axiom plays—implicitly at
least—a role in physics.

It seems to me that it has principal interest in physics as well; for it leads us to the following
outcome. That is, the fact that we can come up with the dimensions and ranges of celestial
bodies by putting together terrestrial ranges, namely measuring celestial lengths by terres-
trial measure, as well as the fact that the distances inside atoms can be expressed in terms
of metric measure, is by no means a merely logical consequence of propositions on the
triangular congruence and the geometric configuration, but rather an investigative result of
experience. The validity of the Archimedean axiom in nature, in the sense indicated above,
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needs experimental confirmation just as much as does the proposition of the angle sums in
triangle in the ordinary sense.

Hilbert asserts that the validity of the Archimedean axiom is “an investigative
result of “experience”. What he may mean here is that in comparing astronomical,
terrestrial, and subatomic distances, none is infinitesimal, or infinitely large, with
respect to the others. Thus, in principle, the radius of an electron could be used as a
unit to measure terrestrial or astronomical distances.

What has this to do with continuity? Hilbert seems to imply that, so far as measure-
ment is concerned, the empirical validity of the Archimedean axiom means that there
is a kind of continuity—a smooth transition—between microcosm, mesocosm, and
macrocosm. None of these realms is cut off from the others.

While the Archimedean axiom is exact, the notion of “continuity” associated with
it, although suggestive, is essentially qualitative (and akin to Leibniz’s principle of
continuity, see below). In order to formulate an exact principle of continuity Hilbert
turns to physics:

In general, I should like to formulate the axiom of continuity in physics as follows: “If a
certain arbitrary degree of exactitude is prescribed for the validity of a physical assertion,
a small range shall then be specified, within which the presuppositions prepared for the
assertion may freely vary so that the deviation from the assertion does notoverstep the
prescribed degree of exactitude.” This axiom in the main brings only that into expression
which directly lies in the essence of experiments; it has always been assumed by physicists
who, however, have never specifically formulated it.

(Note the little dig at physicists with which Hilbert concludes this passage—is this
a foretaste of the famous, but perhaps apocryphal remark later attributed to Hilbert
that “Physics is obviously much too difficult for the physicists.*?).

Hilbert‘s formulation of the principle of continuity in physics—what I shall call
the physical continuity axiom (PCA) is evidently an empirical version of the familiar
(g, 8) definition of a continuous function. More precisely, the axiom asserts that any
physical function—that is, a function from real numbers to real numbers associ-
ated with a physical assertion—is (g, d)—continuous. This is an updated version of
Leibniz‘s Principle of Continuity: Natura non facit saltus.

Before the nineteenth century, PCA would have been formulated in terms of
infinitesimals, perhaps as follows:

If the degree of exactitude is prescribed for the validity of a physical assertion, is prescribed
to be within infinitesimal limits, then also within infinitesimal limits the presuppositions
prepared for the assertion may freely vary so that the deviation from the assertion does not
overstep the prescribed infinitesimal limits

This may be succinctly expressed as the Principle of Infinitesimal Continuity
for Physical Functions: any physical function sends infinitesimally close points to
infinitesimally close points.

These are all very strong “global” axioms which are to be contrasted with the
“local” continuity axioms imposed on the system of real numbers such as the
Archimedean principle or the order-completeness principle.
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Hilbert’s continuity axiom was formulated for the physical realm, but it can be
extended to mathematics where it takes the form of

Brouwer’s Continuity Principle:
BCP All real functions are continuous.

Of course, Brouwer did not regard this principle as an axiom—indeed he seems to
have had a low opinion of the axiomatic method in mathematics. Rather he regarded
it as a fact (albeit requiring demonstration) about the real numbers arising from the
nature of the continuum as he conceived it.

The “infinitesimal” version of Brouwer’s principle would read:

Universal Principle of Infinitesimal Continuity (UPIC): any real function sends
infinitesimally close points to infinitesimally close points.

The question of the consistency of these extended principle of continuity arises
immediately. It might seem at first glance that both BCP and UPIC are inconsistent
since the “blip” function b:R — R defined by b(0) = 1, b(x) = 0 for x #~ 0 is obviously
discontinuous, and, on any account of the notion of infinitesimal, fails to send points
infinitesimally close to—but different from—O0 to points infinitesimally close to O.
But the condition that b is defined on the whole of R rests on the unquestioned
assumption that, for any real number x, either x = 0 or x % 0. This in turn rests on
the Law of Excluded Middle (LEM)—the logical principle, going back to Aristotle,
that, for any proposition, either it or its negation must be true. While LEM is a core
principle of classical logic, it is not affirmed in intuitionistic logic, the system of
logic implicit in Brouwer’s conception of mathematics and later made explicit by his
student Heyting.

Thus, while BCP and UPIC are inconsistent with classical mathematics, that is,
mathematics based on classical logic, they can be, and in fact are, consistent with
intuitionistic mathematics, that is, mathematics based on intuitionistic logic. In fact,
within intuitionistic mathematics, LEM is refutable from BCP or UPIC in the sense
that?

BCP or UPIC = —Vx € R(x = 0V x # 0).

Here, we have an example of mathematical axioms actually refuting a logical
axiom. Itis of interest to note that Cantor, in introducing his transfinite numbers, had to
repudiate Euclid’s 5th axiom that the whole is always greater than the part, and Bolyai
and Lobachevsky (as well as Gauss) in their formulation of non-Euclidean geometry,
were compelled to repudiate Euclid’s 5th postulate. In both of these earlier cases the
question of consistency was central, and it is equally important in the case of BCP or
UPIC. In fact, just as models of non-Euclidean geometry were later constructed to
establish its consistency, so models of mathematics have been constructed based on
imtuitionistic logic and realizing BCP and UPIC, thus establishing the consistency
of both.

2 Of course, in the case of UPIC, a precise meaning must be assigned to the term “infinitesimal”.
This will mot be long delayed.
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An even stronger version of the continuity principle (implicitly adhered to in
differential geometry) is:

SP All real functions are smooth, i.e. arbitrarily many times differentiable. (More
generally, all functions between manifolds are smooth).

Axiom SP has been realized by adopting what amounts to a synthetic approach
to differential geometry.

Traditionally, there have been two methods of deriving the theorems of (classical)
geometry: the analytic and the synthetic or axiomatic. While the analytic method
is based on the introduction of numerical coordinates, and so on the theory of real
numbers, the idea behind the synthetic approach is to furnish the subject of geometry
with a purely geometric foundation in which the theorems are then deduced by purely
logical means from an initial body of axioms.

The most familiar examples of synthetic geometry are classical Euclidean geom-
etry and the synthetic projective geometry introduced by Desargues in the seventeenth
century and revived and developed by Carnot, Poncelet, Steiner and others during
the nineteenth century.

The power of analytic geometry derives very largely from the fact that it permits
the methods of the calculus, and, more generally, of mathematical analysis, to be
introduced into geometry, leading in particular to differential geometry (a term, by
the way, introduced in 1894 by the Italian geometer Luigi Bianchi). That being
the case, the idea of a “synthetic” differential geometry seems elusive: how can
differential geometry be placed on a “purely geometric” or “axiomatic” foundation
when the apparatus of the calculus seems inextricably involved?

To my knowledge, there have been two attempts to develop a synthetic differential
geometry. The first was initiated by Herbert Busemann in the 1940s, building on
earlier work of Paul Finsler. Here, the idea was to build a differential geometry
that, in its author’s words, “requires no derivatives”: the basic objects in Busemann’s
approach are not differentiable manifolds, but metric spaces of a certain type in which
the notion of a geodesic can be defined in an intrinsic manner.

The second approach, that with which I shall be concerned here, was originally
proposed in the 1960s by F. W. Lawvere, who was in fact striving to fashion a deci-
sive axiomatic framework for continuum mechanics. His ideas have led to what I
shall simply call synthetic differential geometry (SDG—often referred to as smooth
infinitesimal analysis SIA).> SDG is formulated within category theory, the branch of
mathematics created in 1945 by Eilenberg and Mac Lane which deals with mathemat-
ical form and structure in its most general manifestations. As in biology, the viewpoint
of category theory is that mathematical structures fall naturally into species or cate-
gories. But a category is specified not just by identifying the species of mathematical
structure which constitute its objects; one must also specify the transformations or
maps linking these objects. Thus, one has, for example, the category Set with objects
all sets and maps all functions between sets; the category Grp with objects all groups
and maps all group homomorphisms; the category Top with objects all topological
spaces and maps all continuous functions; and Man, with objects all (Hausdorff,

3 For accounts of SDG/SIA see [1] and [7].
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second countable) smooth manifolds and maps all smooth functions. Since differen-
tial geometry “lives” in Man, it might be supposed that in formulating a “synthetic
differential geometry” the category-theorist’s goal would be to find an axiomatic
description of Man itself.

But in fact the category Man has a couple of “deficiencies” which make it
unsuitable as an object of axiomatic description:

e Itlacks exponentials: that is, the “space of all smooth maps” T from one manifold
S to another T in general fails to be a manifold.

e It also lacks “infinitesimal spaces”; in particular, it contains no “infinitesimal”
manifold which could serve as a generic tangent vector for manifolds. If we
follow the nineteenth-century differential geometers in thinking of a tangent vector
to a manifold as an “infinitesimal straight path” in it, then a generic tangent
vector would be a an “infinitesimal” manifold A which generates arbitrary tangent
vectors in the sense that any tangent vector to a manifold M may be identified
with a smooth map from A to M. That being the case, the tangent bundle of an
arbitrary manifold M becomes identifiable as the exponential “manifold” M4 of
all smooth maps A — M. A generic tangent vector may be conceived as am
“infinitesimal” straight line segment A of which remains straight and unbroken
under any smooth map. In other words, the effect of any smooth map on A is to
subject it to nothing more than a Euclidean motion.

Lawvere’s idea was to enlarge Man to a category S—a category of so-called
(smooth) spaces or a smooth category—which makes up for these two deficiencies,
admits a simple axiomatic description, and at the same time is sufficiently similar to
Set for mathematical construction and calculation to take place in the familiar way.

The essential features of a smooth category S are these:

e In enlarging Man to S no “new” maps between manifolds are added, that is, all
maps in S between spaces of Man are smooth. (Notice that this is not the case
when Man is enlarged to Set.)

e S is Cartesian closed, that is, for any spaces S, T in S, the product space S x T
and the exponential space T* of all smooth maps from S to T are both contained
in S.

e S contains a generic tangent vector. This will be identified as a certain
“infinitesimal” segment A of the real line R.

From the presence of the generic tangent vector A in S, it follows that curves
are “infinitesimally straight” in the following sense. For consider any curve C in
a space M—that is, the image of a segment of R (containing A) under a (smooth)
map f into M. Then the image of A under f may considered as a short straight
line segment lying within C around the point p = f(0) of C coinciding locally—
“infinitesimally”—with the tangent line to C at p. Thus each point of C is “encased”
within an infinitesimal straight line lying entirely within C. In short, curves in S are
“imfinitesimally straight”. This is the Principle of Infinitesimal Straightness.

We can give an explicit description of A by considering the simplest curve devi-
ating from straightness, namely, the parabola with equation y = x. Since the tangent
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to this curve at x = 0 is the x-axis, A may be identified with the intersection of the
parabola with the x-axis. That is,

A:{x:xeR/\x2=O}.

Thus, A consists of real numbers whose squares vanish— “nilsquare” infinitesi-
mals We shall simply use the term “infinitesimal” for these, and the letter € to denote
an arbitrary infinitesimal in this sense.

A precise version of the Principle of Infinitesimal Straightness—the Principle of
Infinitesimal Linearity (or Kock-Lawvere axiom)—which we now state, ensures that
this is not the case in S. The principle states that

e in S, any map f: A — R is (uniquely) linear, that is, for some unique b € R, we
have, for all €,

f(e) = f(0) + be.

In essence, this asserts that that the action of any real function f on A is a Euclidean
transformation: a translation by f(0) and a rotation b called the slope of f.

The Principle of Infinitesimal Linearity asserts also that the map R® — R x R
which assigns to each f € R? the pair (f(0), slope of f) is an isomorphism:

R®= R x R.

In differential geometry, R x R is the tangent bundle of R, so this isomorphism
confirms that R* may also be identified as that tangent bundle.

For any space M in S, we take the tangent bundle 7M of M to be the exponential
space M2. Elements of M* are called tangent vectors to M. Thus, a tangent vector
to M atapoint p € M is just amap t: A — M with #(0) = x That is, a tangent vector
at p is an infinitesimal path in M with base point p. The base point map ©: TM — M
is defined by 7 (¢) = #(0). For p € M, the fibre ' (p) = T,M is the tangent space to
M at p.

Observe that, if we identify each tangent vector with its image in M, then each
tangent space to M may be regarded as lying in M. In this sense, just as each curve
in S is “infinitesimally straight”, each space in S is “infinitesimally flat”.

We check the compatibility of this definition of TM with the usual one in the case
of Euclidean spaces:

T(R") = (R")* = (R®)" = (Rx R)" = R" x R".

The assignment M — TM = M* can be turned into a functor in the natural way—
the rangent bundle functor. (For f: M — N, Tf: TM — TN isdefined by (T f)t = f ot
forr e TM.)

The whole point of synthetic differential geometry is to render the tangent bundle
Sfunctor representable: TM becomes identified with the space of all maps from some
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fixed object—in this case A)—to M. (Classically, this is impossible.) This in turn
simplifies a number of fundamental definitions in differential geometry.

For instance, a vector field on a space M is an assignment of a tangent vector to
M at each point in it, that is, a map §: M — TM = M* such that £(x)(0) = x for all
x € M. This means that 7 o £ is the identity on M, so that a vector field is a section
of the base point map.

The notions of affine connection, geodesic, and the whole apparatus of Rieman-
nian geometry can also be developed within SDG.*

As an axiomatic system, SIA may be set up as a system of axioms for the (smooth)
real line R involving the nilsquare infinitesimals already introduced. The core axiom
in SIA is the aforementioned Principle of Infinitesimal Linearity. Again writing A
for the set of infinitesumals, i.e.

A:{x:xeR/\x2:O},

the principle can be stated:
For any f: A — R, there is a unique b € R such that

f(e) = f(0)+be

holds for all .

This in turn gives rise to a simple definition of the derivative f’ of f: given r € R,
f’(r) is the unique b € R such that, for all ¢, f(r + €) = f(r) + be (apply Infinitesimal
Linearity to the function € — r + ¢). Then we get the equation:

far+e)=f@)+ef' )

(Here, ¢f ’(r) is the infinitesimal increment in the value of f). Similarly, we obtain
all higher derivatives f”, f”’, confirming that SP holds in S.

From the Principle of Infinitesimal Linearity we deduce the important Principle
of Infinitesimal Cancellation, viz.

Ifea = ¢eb forall €, thena = b.

For the premise asserts that the graph of the function g: A — R defined by
g(e) = ae has both slope a and slope b: the uniqueness condition in the Principle of
Infinitesimal Linearity then gives a = b. The Principle of Infinitesimal Cancellation
supplies the exact sense in which there are “enough” infinitesimals in STA.

In SIA, there is a sense in which everything is generated by the domain of infinites-
mals. Consider the set A% of all maps A — A. It follows from the Principle of
Infinitesimal Linearity that R can be identified as the subset of A consisting of
all maps vanishing at 0. In this sense, R is “generated” by A. Explicitly, A% is a

4 See [8].
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monoid under composition which may be regarded as acting on A by composition:
for f € A%, f - e = f(e). The subset V consisting of all maps vanishing at 0 is a
submonoid naturally identified as the set of ratios of infinitesimals. The identification
of R and V made possible by the Principle of Infinitesimal Linearity thus leads to the
characterization of R itself as the set of ratios of infinitesimals. This was essentially
the view of Euler, who regarded infinitesimals as formal zeros and real numbers as
representing the possible values of 0/0. For this reason, Lawvere has suggested that
R in SIA should be called the space of Euler reals.

Once one has R, Euclidean spaces of all dimensions may be obtained as powers of
R, and arbitrary manifolds may be obtained by patching together subspaces of these.

In SIA, the following are now easily deduced:

A is nondegenerate, i.e. A # {0}.0

e (Call x, y € R infinitesimally close and write x ~ y if x —y € A. If I is a closed
interval in R, any f:1 — R is infinitesimally continuous in the sense that, for x, y
eJ, x = yimplies fx = fy.

Accordingly, UPIC holds in SIA. That being the case, the postulates of SIA
guarantee that the “blip” function is not defined on the whole of R, so that SIA is
incompatible with the Law of Excluded Middle of classical logic. This fact is not
“noticed” in developing mathematics in SIA because in basic mathematical analysis
the Law of Excluded Middle is never actually invoked (through proofs by reductio
ad absurdum, for example).

I have pointed out that, in a certain sense, SIA embodies the idea that all manifolds,
in particular all (smooth) spaces arising in mathematical physics, are generated
by the domain of infinitesimals. Thus a “structural” link between the infinitesimal
world and the real world in its mathematical representation is “built into” SIA. This
link between the infinitesimal and the real within SIA nay be considered a precise,
but abstract, realization of the intuitive and somewhat nebulous—but sensationally
productive—use of infinitesimals in the differential calculus of the seventeenth and
eighteenth centuries. The link between the infinitesimal and the real in SIA can be
made concrete in the following way. Suppose that we are investigating the behaviour
of some variable quantity represented by a function F. The approach taken in SIA,
as (implicitly) in the differential calculus, is to begin the investigation by confining
it initially to the infinitesimal world. Life in the infinitesimal world is beautifully
simple: curves are just straight lines and the squares of incremental changes vanish.
This makes the determination of infinitesimal increments equally simple, enabling
the increment eF”’(x) in F(x) to be presented in the form ek(x), where k(x) is some
explicit function whose form has been obtained by “infinitesimal” analysis. Thus,
we obtain an “infinitesimal” equation of the form eF’(x) = ek(x). Applying the
Infinitesimal Cancellation Principle in turn yields the “differential” equation, but

5 See [9].

6 It should be noted that, while A does not reduce to {0}, nevertheless O is the sole element of
A in the (weak) sense that the assertion “there exists an element of A which is # 0” is refutable.
Figuratively speaking, A is the “atom” 0 encased in an infinitesimal carapace.
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still an equation relating “real” quantities

F'(x) = k(x) (5.1)

which holds in the real world.

The Infinitesimal Cancellation Principle thus provides a formal, astonishingly
simple link between the infinitesimal world and the real world, the world “in the
large”. The idea of a linkage between these two worlds was, as already observed, the
animating principle behind applications of the calculus throughout the seventeenth
and eighteenth centuries.

In practice, of course, Eq. (5.1), while of fundamental importance, is only the first
step in determining the explicit form of the function F. For this, it is necessary to
“integrate” k, that is, to provide k with an antiderivative, an explicit function G such
that G’ = k. It will then follow that F’ = G’, from which we will be able to conclude
that F = G. (Strictly speaking, F and G may differ by a constant function but we
shall ignore this here.)

Carrying out this procedure in SIA requires the introduction of an additional
postulate linking the infinitesimal with the real. Let I be a closed interval. We define
a stationary point of a function f: I — R to be a point a € [ at which f is locally
constant in the sense that, for all x € I, x & a implies fx = fa. If a is a stationary point
of f; then, for any infinitesimal ¢, since a 4+ ¢ &~ a so we must have f(a + ¢€) = f (a).
This means that f(a) + ¢f (@) =f(a), so that¢f’(a) = O for all ¢, from which it follows
by the Infinitesimal Cancellation Principle that f ‘(a) = 0. Thus, a stationary point of
a function is precisely a point at which the derivative of the function vanishes.

In classical analysis, if the derivative of a function is identically zero, the function
is constant. This fact is the source of the following postulate concerning stationary
points adopted in SIA:

Constancy Principle. If every point in a closed interval / is a stationary point of
f:1 — R (thatis, if f” is identically 0), then f is constant.

It follows from the Constancy Principle that two functions with identical
derivatives differ by at most a constant.

Put succinctly, the Constancy Principle asserts that “universal local constancy
implies global constancy”, or “infinitesimal behaviour determines global behaviour”
The Constancy Principle brings into sharp focus the difference in SIA between
points and infinitesimals. For if in the Constancy Principle one replaces “infinitesimal
constancy” by “constancy at a point” the resulting “Principle” is false because any
function whatsoever is constant at every point. But since in SIA all functions on R
are smooth, the Constancy Principle embodies the idea that for such functions local
constancy is sufficient for global constancy, that a nonconstant smooth function must
be somewhere nonconstant over arbitrarily small intervals.

The Constancy Principle thus provides yet another bridge between the infinites-
imal world and the world “in the large”. Hermann Weyl could not see such a direct
linkage between the two worlds, and inferred that this absence doomed the idea



140 J. L. Bell

of infinitesimal, leading to its inevitable replacement by the limit concept. In his
Philosophy of Mathematics and Natural Science [13], he says:

[In its struggle with the infinitely small] the limiting process was victorious. For the limit is
an indispensable concept, whose importance is not affected by the acceptance or rejection
of the infinitely small. But once the limit concept has been grasped, it is seen to render the
infinitely small superfluous. Infinitesimal analysis proposes to draw conclusions by integra-
tion from the behaviour in the infinitely small, which is governed by elementary laws, to
the behaviour in the large; for instance, from the universal law of attraction for two material
“volume elements” to the magnitude of attraction between two arbitrarily shaped bodies with
homogeneous or non-homogeneous mass distribution. If the infinitely small is not interpreted
‘potentially’ here, in the sense of the limiting process, then the one has nothing to do with the
other, the process in infinitesimal and finite dimensions become independent of each other,
the tie which binds them together is cut.

SIA reconnects the infinitesimal and the extended. Behaviour “in the large” is
completely determined by behaviour “in the infinitely small”.

The Constancy Principle has another important consequence. Let us call a subset
D C R discrete if infinitesimally close elements of it are identical. The set of natural
numbers and each of its subsets, all of which may be considered subsets of R are
discrete.

It follows quickly from the Constancy Principle that any map on R (or one of its
closed intervals) to a discrete subset of R is constant. To see this, let f be a map of
R to a discrete set D. Then from x & y, we deduce fx & fy, and hence fx = fy, in D.
So f is locally constant, and hence constant.

In ordinary analysis, R and each of its intervals is connected in the sense that they
cannot be split into two nonempty subsets neither of which contains a limit point
of the other. In SIA, these have the vastly stronger property of cohesiveness: they
cannot be split in any way whatsoever into two disjoint nonempty subsets.” This
follows quickly from the Constancy Principle: if R=U UV with U NV =0, let 2
be the discrete subset {0, 1} of R, and define f R — 2 by f(x) =1ifx e U, f(x) =
0if x € V. Then f is constant, that is, constantly 1 or 0. In the first case V = @, and
in the second U = (.

One of the most widely discussed axioms in mathematics is the Axiom of Choice.
Surprisingly, perhaps, this is incompatible with the various continuity axioms we
have discussed. This is because, as shown in the 1970s, it implies LEM.? We shall
demonstrate its refutability in SIA by deriving from it Vx € R(x = 0 Vv x # 0), and
hence that the discontinuous blip function is defined on the whole of R.

We take the Axiom of Choice in the particular form.

AC for any family A of nonempty subsets of R, there is a function f: A — R such
that f(X) € X for every X € A.

For each x € R, define

A, ={yeR:y=0vx =0},

7 For more on cohesiveness see [2].
8 See [4, 5.
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B,={yeR:y=1vx =0}

Clearly, 0 € A, and 1 € B,, so these sets are both nonempty. By AC, we obtain a
map fy: {Ay, By} — R such that, for any x € R, f(A,) € A, and f,(B,) € B,. Thus,

[f2(A) =0Vvx =0]A[fi(By) =1Vvx=0]
Applying the distributive law for Vv over A (valid in intuitionistic logic), we obtain

[fx(Ax) =0A fx(Bx) =1]vx=0

whence

(€)) fx(Ax) # fx(Bx) vx=0.

Now clearly, Ag = By = R, so that fy(Agp) = fo(By). Thus,

Sx(Ax) # fx(By) — x #0.

So from (*), it follows that

x#Z0vx=0

hence
Vx e Rx=0Vvx #0).

The refutability of the Axiom of Choice in SIA, and hence its incompatibility
with the Principle of Continuity which prevails there, is not surprising in view of
the Axiom’s well-known “paradoxical” consequences. One of these is the famous
Banach-Tarski paradox [12] which asserts that any solid sphere can be decomposed
into finitely many pieces which can themselves be reassembled to form two solid
spheres each of the same size as the original, or into one solid sphere of any preas-
signed size. Paradoxical decompositions such as these become possible only when
continuous geometric objects are, recalling Dedekind’s words, “dissolved to atoms
... [through a] frightful, dizzying discontinuity” into discrete sets of points which
the Axion of Choice then allows to be rearranged in an arbitrary (discontinuous)
manner. Such procedures violate the Principle of Continuity.

I conclude with some historical observations. While SIA was not developed until
the 1960s, the idea of treating infinitesimals as nilpotent quantities was first put
forward in works of 1694—6 by the Dutch physician Bernard Nieuwentijdt (1654—
1718). Nieuwentijdt developed his account of infinitesimals—a striking example
of axiomatic thinking—in conscious opposition to Leibniz’s well-known theory of
differentials. Nieuwentijdt postulates a domain of quantities, or numbers, subject
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to an ordering relation of greater or less. This domain includes the ordinary finite
quantities, but it is also presumed to contain infinitesimal and infinite quantities—a
quantity being infinitesimal, or infinite, when it is smaller, or, respectively, greater,
than any arbitrarily given finite quantity. The whole domain is governed by a version
of the Archimedean principle to the effect that zero is the only quantity incapable of
being multiplied sufficiently many times to equal any given quantity. Infinitesimal
quantities may be characterized as quotients b/m of a finite quantity b by an infinite
quantity m. In contrast with Leibniz’s differentials, Nieuwentijdt’s infinitesimals have
the property that the product of any pair of them vanishes’; in particular, squares and
all higher powers of infinitesimals are zero. This fact enables Nieuwentijdt to show
that, for any curve given by an algebraic equation, the hypotenuse of the differential
triangle generated by an infinitesimal absciss increment e coincides with the segment
of the curve between x and x + e. That is, a curve is locally straight, or, in seventeenth-
century parlance, an “infinilateral polygon”.

In responding to Nieuwentijdt’s assertion that squares and higher powers of
infinitesimals vanish, Leibniz remarked that “itis rather strange to posit that a segment
dx is different from zero and at the same time that the area of a square with side dx is
equal to zero”. Yet this oddity may be regarded as a consequence—apparently unre-
marked by Leibniz himself—of one of his own key principles, namely, that curves
may be considered as infinilateral polygons. Consider the curve y = x? below. Given
that the curve is an infinilateral polygon, the infinitesimal straight portion of the curve
between the abscissae 0 and dx must coincide with the tangent to the curve at the
origin—in this case, the axis of abscissae—between those two points. But then the
point (dx, dx?) must lie on the axis of abscissae, which means that dx> = 0.

Now Leibniz could retort that this argument depends crucially on the assumption
that the portion of the curve between abscissae 0 and dx, while undoubtedly infinites-
imal, is indeed straight. If this be denied, then of course it does not follow that dx? =
0. But still, if one grants, as Leibniz does, that there is an infinitesimal portion of the
curve between abscissae 0 and e (say) which is straight and does not reduce to a single
point (so that e cannot be equated to 0), then the above argument does show that ¢> =
0. It follows that, if curves are infinilateral polygons, then the “lengths” of the sides
of these latter must be nilsquare infinititesimals.'® Accordingly, to do full justice to
Leibniz’s conception, two sorts of infinitesimals are required: first, “differentials”

9 Here, Nieuwentijdt’s theory conflicts with SIA, for in the latter it is not hard to refute the assertion
that the product of any pair of infinitesimals vanishes. For more on this, see Bell [3].

10 This is essentially the converse of Nieuwentijdt’s observation above.
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obeying—as laid down by Leibniz—the same algebraic laws as finite quantities; and
second, the (necessarily smaller) nilsquare infinitesimals which measure the lengths
of the sides of infinilateral polygons. It may be said that Leibniz recognized the need
for the first, but not the second type of infinitesimal and Nieuwentijdt, vice versa.
It is of interest to note that Leibnizian infinitesimals (differentials) are realized in
nonstandard analysis,'" the other major modern account of mathematical analysis
built on a theory of infinitesimals. In fact it has been shown to be possible to construct
models of SIA which at the same time embody enough of the theory of nonstandard
analysis'? to allow for the presence of Leibnizian infinitesimals in addition to the
nilsquare variety.
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