
Chapter 4
Well-Ordering Principles in Proof
Theory and Reverse Mathematics

Michael Rathjen

Abstract Several theorems about the equivalence of familiar theories of reverse
mathematics with certain well-ordering principles have been proved by recursion-
theoretic and combinatorialmethods (Friedman,Marcone,Montalbán et al.) andwith
far-reaching results by proof-theoretic technology (Afshari, Freund, Girard, Rathjen,
Thomson, Valencia Vizcaíno, Weiermann et al.), employing deduction search trees
and cut elimination theorems in infinitary logics with ordinal bounds in the latter
case. At type level 1, the well-ordering principles are of the form

(*) “if X is well-ordered then f (X) is well-ordered”

where f is a standard proof-theoretic function from ordinals to ordinals (such f ’s are
always dilators). One aim of the paper is to present a general methodology underlying
these results that enables one to construct omega-models of particular theories from
(∗) and even β-models from the type 2 version of (∗). As (∗) is of complexity
�1

2 such a principle cannot characterize stronger comprehensions at the level of
�1

1-comprehension. This requires a higher order version of (∗) that employs ideas
from ordinal representation systems with collapsing functions used in impredicative
proof theory. The simplest one is the Bachmann construction. Relativizing the latter
construction to any dilator f and asserting that this always yields a well-ordering
turns out to be equivalent to �1

1-comprehension. This result has been conjectured
and a proof strategy adumbrated roughly 10 years ago, but a detailed proof has only
been worked out in recent years.

4.1 Introduction

The aim to illuminate the role of the infinite in mathematics gave rise to set theory
and proof theory alike. Whereas set theory takes much of the infinite for granted
(e.g. full separation and powerset), proof theory strives to analyse it from a stance of

M. Rathjen (B)
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK
e-mail: M.Rathjen@leeds.ac.uk

© Springer Nature Switzerland AG 2022
F. Ferreira et al. (eds.), Axiomatic Thinking II,
https://doi.org/10.1007/978-3-030-77799-9_4

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77799-9_4&domain=pdf
mailto:M.Rathjen@leeds.ac.uk
https://doi.org/10.1007/978-3-030-77799-9_4


90 M. Rathjen

potential infinity. While the objects that proof theory primarily deals with are rather
concrete (e.g. theories, proofs, ordinal representation systems), it is also concerned
with abstract higher type1 properties of concrete objects (e.g. well-foundedness,
preservation of well-foundedness). In ordinal analysis, the impetus is to associate
an ordinal representation system OR with a theory T in such a way that the former
displays the commitments to the infinite encapsulated in T . Less poetically, it entails
that PRA + TIq f (OR) proves all �0

2 theorems of T , however, no proper initial seg-
ment ofOR suffices for that task (where PRA refers to primitive recursive arithmetic
and TIq f (OR) stands for quantifier-free transfinite induction along OR).2 The first
ordinal representations were offshoots of ordinal normal forms such as Cantor’s and
Veblen’s from more than a hundred years ago. Gentzen employed the Cantor normal
form with base ω to provide an ordinal representation system for ε0 in his last two
papers [22, 23], which mark the beginning of ordinal-theoretic proof theory.

It is often stressed that ordinal representation systems are computable3 structures,
which is true and allows for the treatment of their order-theoretic and algebraic
aspects in very weak systems of arithmetic, but it is only one of their distinguishing
features. Overstating the computability aspect tends to give the impression that their
study is part of the venerable research area of computable orderings. In actual fact,
the two subjects have very little in common.

There are many specific ordinal representations systems to be found in proof
theory. To make the choice of these systems intelligible one would like to discern
general principles involved. A particular challenge is posed bymaking their algebraic
features explicit, i.e. those features not related to effectiveness or well-foundedness.
This constitutes a crucial step towards a general theory via an axiomatic approach. As
far as I’m aware, it was Feferman [11]who first initiated such a theory by isolating the
property of effective relative categoricity as the fulcrum of such a characterization.
Through the notion of relative categoricity, he succeeded in crystallizing the algebraic
aspect of ordinal representation systems by way of relativizing them to any set of
order-indiscernibles, thereby in effect scaling them up to functors on the category of
linear orders with order-preserving maps as morphisms.

1 Or ideal properties in Hilbert’s sense.
2 In some books, the proof-theoretic ordinal |T | of a theory T is defined as the supremum of the
order types | ≺ | of the T -provable well-orderings ≺, i.e.

|T |sup = sup{|≺| : ≺ primitive recursive ; T � WO(≺)}
where WO expresses that ≺ is a well-ordering. This definition, however, conflates extensional
aspects, i.e. the order type of≺ in some background universe of set theory, with intensional aspects,
i.e. the niceties of the coding of ≺ in the integers. This is liable to lead to results where |T |sup has
nothing to do with the “real” proof-theoretic strength of T . For example, one can define “faithful”
theories T1 and T2 such that (a) |T1|sup is the Bachmann-Howard ordinal but T1 is finitistically
reducible to PA, proving the same �0

1-theorems as PA; (b) |T2|sup = ε0 but T2 proves the same
arithmetical theorems as an extension of ZFC with large cardinal axioms. Thus, paraphrasing the
title of Paul Benacerraf’s famous 1965 paper, one could say that |T |sup displays what the proof-
theoretic ordinal of T could not be. For more on this, see [48].
3 They actually possess a very low computational complexity; see [65].
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Ordinal representation systems understood in this relativized way give rise to
well-ordering principles:

“ifX is a well-ordering then so isORX”

where ORX arises from OR by letting X play the role of the order-indiscernibles.
Several theories of reverse mathematics have been shown to be equivalent to such
principles involving iconic ordinal representation system from the proof-theoretic
literature. From a technical point of view, the methods can be roughly divided into
recursion-theoretic and combinatorial tools (Friedman, Marcone, Montalban et al.)
on the one hand and proof-theoretic tools (Afshari, Freund, Girard, Rathjen, Thom-
son, Valencia Vizcaíno, Weiermann et al.) on the other hand, where in the latter
approach the employment of deduction search trees and cut elimination theorems in
infinitary logics with ordinal bounds play a central role.

This is a survey paper about these results that tries to illuminate the underlying
ideas, emphasizing the proof theory side.

4.1.1 Reverse Mathematics

It is assumed that the reader is roughly familiar the program of Reverse Mathematics
(RM) and the language and axioms of the formal system of second-order arithmetic,
Z2 as, for instance, presented in the standard reference [64]. Just as a reminder, RM
started out with the observation that for many mathematical theorems τ , there is
a weakest natural subsystem S(τ ) of Z2 such that S(τ ) proves τ . Moreover, it has
turned out that S(τ ) often belongs to a small list of specific subsystems of Z2. In
particular, ReverseMathematics has singled out five subsystems ofZ2, often referred
to as the big five, that provide (part of) a standard scale against which the strengths
of theories can often be measured:

1. RCA0 Recursive Comprehension
2. WKL0 Weak König’s LemmaA
3. ACA0 Arithmetical Comprehension
4. ATR0 Arithmetical Transfinite Recursion
5. �1

1−CA0 �1
1-Comprehension

4.2 History

The principles we will be concerned with are particular �1
2 statements of the form

WOP( f ) : ∀X [WO(X) → WO( f (X))] (4.1)
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where f is a standard proof-theoretic function from ordinals to ordinals and WO(X)

stands for “X is a well-ordering”.4 There are by now several examples of functions f
familiar from proof theory where the statementWOP( f ) has turned out to be equiv-
alent to one of the theories of reverse mathematics over a weak base theory (usually
RCA0). The first explicit example appears to be due toGirard [26, 5.4.1 theorem] (see
also [31]). However, it is also implicit in Schütte’s proof of cut elimination forω-logic
[58] and ultimately has its roots in Gentzen’s work, namely, in his first unpublished
consistency proof,5 where he introduced the notion of a “Reduziervorschrift” [21,
p. 102] for a sequent. The latter is a well-founded tree built bottom-up via “Reduk-
tionsschritte”, starting with the given sequent and passing up from conclusions to
premises until an axiom is reached.

4.2.1 2X and Arithmetical Comprehension

In our first example, one constructs a linear ordering 2X = (|2X |,<
2X

) from a given
linear orderingX = (X,<X ), where |2X | consists of the formal sums 2x1 + . . . + 2xn

with xn <X . . . <X x1, and the ordering between two formal sums 2x0 + . . . + 2xn ,
2y0 + . . . + 2ym is determined as follows:

2x0 + . . . + 2xn <2X 2y1 + . . . + 2ym iff ∃i ≤ max(m, n)[xi <X yi ∧ ∀ j < i x j = y j ]
or n < m ∧ ∀i ≤ n xi = yi .

Theorem 4.1 (Girard 1987) Over RCA0 the following are equivalent:

(i) Arithmetical comprehension.
(ii) ∀X [WO(X) → WO(2X)].
Another characterization from [26], Theorem 6.4.1, shows that arithmetical compre-
hension is equivalent to Gentzen’s Hauptsatz (cut elimination) for ω-logic. Connect-
ing statements of form (4.1) to cut elimination theorems for infinitary logics will be
a major tool in this paper.

4.2.2 ACA+
0 and εX

There are several more recent examples of such equivalences that have been proved
by recursion-theoretic as well as proof-theoretic methods. The second example is a
characterization in the same vein as (4.1) for the theoryACA+

0 in terms of the ξ 
→ εξ

4 And WOP is an acronym for the German word “Wohlordnungsprinzip”.
5 The original German version was finally published in 1974 [21]. An earlier English translation
appeared in 1969 [19].
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function. ACA+
0 stands for the theory ACA0 augmented by an axiom asserting that

for any set X the ω jump in X exists. This theory is very interesting as it is cur-
rently the weakest subsystem of Z2 in which one has succeeded to prove Hindman’s
Ramsey-type combinatorial theorem (asserting that finite colourings have infinite
monochromatic sets closed under taking sums) and the Auslander/Ellis theorem of
topological dynamics (see [64, X.3]). The source of the pertaining representation
system and its relativization is the Cantor normal form.

Theorem 4.2 (Cantor, 1897) For every ordinal β > 0, there exist unique ordinals
β0 ≥ β1 ≥ · · · ≥ βn such that

β = ωβ0 + . . . + ωβn . (4.2)

The representation of β in (4.2) is called the Cantor normal form. We shall write
β =CNF ωβ1 + · · · + ωβn to convey that β0 ≥ β1 ≥ · · · ≥ βk .

ε0 denotes the least ordinal α > 0 such that β < α ⇒ ωβ < α, or equivalently,
the least ordinal α such that ωα = α. Every β < ε0 has a Cantor normal form with
exponents βi < β and these exponents have Cantor normal forms with yet again
smaller exponents, etc. As this process must terminate, ordinals < ε0 can be effec-
tively coded by natural numbers.

We state the result before introducing the functor X 
→ εX.

Theorem 4.3 (Afshari, Rathjen [1]; Marcone, Montalbán [37]) Over RCA0, the
following are equivalent:

(i) ACA+
0 .

(ii) ∀X [WO(X) → WO(εX)].
Given a linear orderingX = 〈X,<X 〉, the idea for obtaining the new linear order-

ing εX is to create a formal ε-number εu for every u ∈ X such that if v <X u then
εv <εX εu , and in addition fill up the “spaces" between these terms with formal
Cantor normal forms.

The ordering <εX

Definition 4.4 Let X = 〈X,<X 〉 be an ordering where X ⊆ N. <εX and its field
|εX| are inductively defined as follows:

1. 0 ∈ |εX|.
2. εu ∈ |εX| for every u ∈ X , where εu := 〈0, u〉.
3. If α1, . . . , αn ∈ |εX|, n > 1 and αn ≤εX . . . ≤εX α1, then

ωα1 + . . . + ωαn ∈ |εX|

where ωα1 + . . . + ωαn := 〈1, 〈α1, . . . , αn〉〉.
4. If α ∈ |εX| and α is not of the form εu , then ωα ∈ |εX|, where ωα := 〈2, α〉.
5. 0 <εX εu for all u ∈ X .
6. 0 <εX ωα1 + . . . + ωαn for all ωα1 + . . . + ωαn ∈ |εX|.
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7. εu <εX εv if u, v ∈ X and u <X v.
8. If ωα1 + . . . + ωαn ∈ |εX|, u ∈ X and α1 <εX εu then ωα1 + . . . + ωαn <εX εu .
9. Ifωα1 + . . . + ωαn ∈ |εX|, u ∈ X , and εu <εX α1 or εu = α1, then εu <εX ωα1 +

. . . + ωαn .
10. If ωα1 + . . . + ωαn and ωβ1 + . . . + ωβm ∈ |εX|, then

ωα1 + . . . + ωαn <εX ωβ1 + . . . + ωβm iff

n < m ∧ ∀i ≤ n αi = βi or

∃i ≤ min(n,m)[αi <εX βi ∧ ∀ j < i α j = β j ].

Let εX = 〈|εX|,<εX〉.
One then proves (for instance, in RCA0) that εX is linear ordering. If we denote by
LO the category of linear orderings whose objects are all linear orderings and whose
morphisms are the order-preserving maps between linear orderings, then X 
→ εX
gives rise to an endofunctor of LO: For a morphism, f : X → Y define ε( f )(t) for
t ∈ |εX| by replacing every expression εu occurring in t by ε f (u). Then ε( f ) : εX →
εY. Moreover, the restriction of this functor to well-orderings is a dilator in the sense
of Girard [24] as it preserves pullbacks and direct limits (more about this in Sect.
4.4.2).

Ordinal Representation Systems: 1904–1909

At the beginning of the twentieth century, mathematicians were intrigued byCantor’s
continuum problem. Hardy in 1904 wanted to “construct” a subset of R of size ℵ1.
In [28], he gave explicit representations for all ordinals < ω2. Hardy’s work then
inspired O. Veblen, who in his paper from 1908 [69], found new normal forms for
ordinals and succeeded in “naming” ordinals of an impressive chunk of the countable
ordinals. In doing so, he also furnished proof theorists with the central idea for
creating ordinal representation systems that were sufficient for much of their work
until the middle of 1960s. His ϕ-function was crucial in the work of S. Feferman and
K. Schütte who in the 1960s determined the limits of predicative mathematics with
a notion of predicativity based on autonomous progressions of theories (cf. [10, 11,
61, 62]).

Veblen considered continuous increasing functions on ordinals. Let ON be the
class of ordinals. A (class) function f : ON → ON is said to be increasing if α < β

implies f (α) < f (β) and continuous (in the order topology on ON) if

f (lim
ξ<λ

αξ ) = lim
ξ<λ

f (αξ )

holds for every limit ordinal λ and increasing sequence (αξ )ξ<λ. f is called normal
if it is increasing and continuous. By way of contrast, the function β 
→ ω + β

is normal, whereas β 
→ β + ω is not since, for instance, limξ<ω(ξ + ω) = ω but
(limξ<ω ξ) + ω = ω + ω.

To these normal functions Veblen applied two operations:
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(i) Derivation
(ii) Transfinite Iteration.

The derivative f ′ of a function f : ON → ON is the function which enumerates in
increasing order the solutions of the equation

f (α) = α,

also called the fixed points of f . It is a fact of set theory that if f is a normal function,

{α : f (α) = α}

is a proper class and f ′ will be a normal function, too.
Using the two operations, Veblen defined a hierarchy of normal functions indexed

along the ordinals.

Definition 4.5 Given anormal function f : ON → ON,define ahierarchyof normal
functions as follows:

1. f0 = f,
2. fα+1 = fα ′,
3.

fλ(ξ) = ξ th element of
⋂

α<λ

{fixed points of fα} for λ limit.

Starting with the normal function f (ξ) = ωξ , the function fα is usually denoted by
ϕα.

The least ordinal γ > 0 closed under α, β 
→ ϕα(β), i.e. the least ordinal >0 satis-
fying (∀α, β < γ ) ϕα(β) < γ is the famous ordinal �0 that Feferman and Schütte
determined to be the least ordinal “unreachable” by certain autonomous progressions
of theories.

The two-place ϕ-function gives rise to a normal form theorem.

Theorem 4.6 (ϕ normal form) For every additive principal6 ordinal α, there exist
uniquely determined ordinals ξ and η such that α = ϕξ (η) and η < α.

Proof See [63, Theorem 13.12] or [51, Theorem 5.27]. ��
The following comparison theoremencapsulates a procedure for recursively deter-

mining the order of ϕ-expressions, which can then be utilized to develop a represen-
tation system for the ordinals below �0.

Theorem 4.7 (ϕ-comparison)

(i) ϕα1(β1) = ϕα2(β2) holds iff one of the following conditions is satisfied:

a. α1 < α2 and β1 = ϕα2(β2),

6 This means that α > 0 and ∀δ, δ′ < α δ + δ′ < α.
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b. α1 = α2 and β1 = β2,

c. α2 < α1 and ϕα1(β1) = β2.

(ii) ϕα1(β1) < ϕα2(β2) holds iff one of the following conditions is satisfied:

a. α1 < α2 and β1 < ϕα2(β2),

b. α1 = α2 and β1 < β2,

c. α2 < α1 and ϕα1(β1) < β2.

Proof [63, Theorems 13.9, 13.10] or [51, Theorem 5.25]. ��
The representation system for �0 can be relativized to any ordering X by first intro-
ducing formal function symbols ϕu for any u ∈ X and secondly creating terms out of
these using also 0 and formal addition +, and finally singling out the normal forms.
The crucial case in defining the ordering is the following:

ϕus <ϕX
ϕvt iff u <X v ∧ s <ϕX

ϕvt or

u = v ∧ s <ϕX
t or

v <X u ∧ ϕus <ϕX
t,

where all terms are assumed to be in normal form (for details see [37, 55]).
ϕX induces a functor on LO that characterizes ATR0.

Theorem 4.8 (Friedman, unpublished;Marcone andMontalbán;Rathjen andWeier-
mann) Over RCA0 the following are equivalent:

1. ATR0

2. ∀X [WO(X) → WO(ϕX)].
Friedman’s proof uses computability theory and also some proof theory. Among
other things, it uses a result which states that if P ⊆ P(ω) × P(ω) is arithmetic,
then there is no sequence {An | n ∈ ω} such that (a) for every n, An+1 is the unique
set such that P(An, An+1) and (b) for every n, A′

n+1 ≤T An .
Of the two published proofs of the foregoing theorem, A.Marcone andA.Montal-

bán employ tools from computability theory as their paper’s title, The Veblen function
for computability theorists [37], clearly indicates. A. Weiermann and the author of
this paper use purely proof-theoretic means in [55].

We would like to give the reader some insight into a proof strategy for showing
theorems such as Theorems 4.3 and 4.8. However, we will be doing this by way of
a different example. To state this result, it is convenient to introduce the notion of
countable coded ω-model.

Definition 4.9 Let T be a theory in the language of second-order arithmetic, L2. A
countable coded ω-model of T is a set W ⊆ N, viewed as encoding the L2-model

M = (N,S,∈,+, ·, 0, 1,<)
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with S = {(W )n | n ∈ N} such that M |= T when the second-order quantifiers are
interpreted as ranging overS and the first-order part is interpreted in the standardway
(where (W )n = {m | 〈n,m〉 ∈ W } with 〈 , 〉 being some primitive recursive coding
function).

If T has only finitely many axioms, it is obvious how to express M |= T
by just translating the second-order quantifiers QX . . . X . . . in the axioms by
Qx . . . (W )x . . .. If T has infinitely many axioms,+, one needs to formalize Tarski’s
truth definition for M. This definition can be made in RCA0 as is shown in [64],
Definition II.8.3 and Definition VII.2.

We write X ∈ W if ∃n X = (W )n .

The notion of countable codedω-model lends itself to alternative characterizations
of Theorems 4.3 and 4.8.7

Theorem 4.10 Over RCA0 the following are equivalent:

(i) ∀X [WO(X) → WO(εX)] is equivalent to the statement that every set is con-
tained in a countable coded ω-model of ACA0.

(ii) ∀X [WO(X) → WO(ϕX0)] is equivalent to the statement that every set is con-
tained in a countable coded ω-model of �1

1-CA (or �1
1-DC).

Proof See [52, Corollary 1.8]. ��
Whereas Theorem 4.10 has been established independently by recursion-theoretic
and proof-theoretic methods, there is also a result that has a very involved proof
and so far has only been shown by proof theory. It connects the �-function with the
existence of countable coded ω-models of ATR0. For this we need to introduce the
endofunctor X 
→ �X of LO. The linear ordering �X is created out of X by adding
formal �-terms �u for every u ∈ X with the stipulation that �v <�X �u if v <X u,
and in addition one fills up the “spaces” between these terms with formal sums and
Veblen normal forms. The details can be found in [52, Definition 2.5].

Theorem 4.11 ([52, Theorem 1.4]) Over RCA0 the following are equivalent:

(i) ∀X [WO(X) → WO(�X)].
(ii) Every set is contained in a countable coded ω-model of ATR0.

The tools from proof theory employed in the above theorems involve search trees and
a plethora of cut elimination techniques for infinitary logic with ordinal bounds. The
search tree techniques is a starting point that all proof-theoretic proofs of the theorems
of this paper have in common. It consists in producing the search or decomposition
tree (in German “Stammbaum”) of a given formula. It proceeds by decomposing
the formula according to its logical structure and amounts to applying logical rules
backwards. This decomposition method has been employed by Schütte [59, 60] to
prove the completeness theorem for ω-logic. It is closely related to the method of
“semantic tableaux” of Beth [6] and the tableaux of Hintikka [29]. Ultimately, the
whole idea derives from Gentzen [20].

7 The standard systems of reverse mathematics have the induction axiom ∀X [0 ∈ X ∧ ∀y (y ∈
X → y + 1 ∈ X) → ∀y y ∈ X ] but aren’t capable of deducing the induction scheme for all for-
mulas of L2. Note that an ω-model of such a theory will always satisfy the full induction scheme.
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4.2.3 Proof Idea of (1)⇒(2) of Theorem 4.11

In it we shall use a simple result, namely that ATR0 can be axiomatized via a single
sentence �1

2 sentence ∀X C(X) where C(X) is �1
1 (see [64]).

Definition 4.12 Let L2 be the language of second-order arithmetic. We assume that
L2 has relation symbols for primitive recursive relations. Formulas are generated
from atomic R(t1, . . . , tn) and negated atomic formulas ¬R(t1, . . . , tn) , where R is
a symbol an n-ary primitive recursive relation and t1, . . . , tn are numerical terms,8

via the logical particles ∧,∨, ∃x,∀x, ∃X,∀X ; so formulas are assumed to be in
negation normal form.

(a) Let U0,U1,U2, . . . be an enumeration of the free set variables of L2.
(b) For a closed term t , let t

N

be its numerical value.We shall assume that all predicate
symbols of the language L2 are symbols for primitive recursive relations. L2

contains predicate symbols for the primitive recursive relations of equality and
inequality and possibly more (or all) primitive recursive relations. If R is a
predicate symbol in L2 we denote by R

N

the primitive recursive relation it stands
for. If t1, . . . , tn are closed terms the formula R(t1, . . . , tn) (¬R(t1, . . . , tn)) is
said to be true if R

N

(t
N

1 , . . . , t
N

n ) is true (is false).
(c) Henceforth a sequent will be a finite list of L2-formulas without free number

variables. Sequents will be denoted by upper case Greek letters.
Given sequents � and � and a formula A, we adopt the convention that �, A,�

denotes the sequent resulting from extending the list � by A and then extending
it further by appending the list �.

(i) A sequent � is axiomatic if it satisfies at least one of the following conditions:

a. � contains a true literal, i.e. a true formula of either form R(t1, . . . , tn) or
¬R(t1, . . . , tn), where R is a predicate symbol in L2 for a primitive recursive
relation and t1, . . . , tn are closed terms.

b. � contains formulas s ∈ U and t /∈ U for some set variableU and terms s, t
with s

N = t
N

.

(iv) A sequent is reducible or a redex if it is not axiomatic and contains a formula
which is not a literal.

Definition 4.13 (Deduction chains in ω-logic) A deduction chain is a finite string

�0;�1; . . . ;�k

of sequents �i constructed according to the following rules:

(i) �0 = ∅.
(ii) �i is not axiomatic for i < k.

8 They are generated from numerical variables x, y, z, . . ., the constants 0, 1, and the function
symbols +, · for addition and multiplication, respectively.



4 Well-Ordering Principles in Proof Theory and Reverse Mathematics 99

(iii) If i < k and �i is not reducible then

�i+1 = �i ,¬C(Ui ).

(iv) Every reducible �i with i < k is of the form

�′
i , E, �′′

i

where E is not a literal and �′
i contains only literals.

E is said to be the redex of �i .

Let i < k and �i be reducible. �i+1 is obtained from �i = �′
i , E, �′′

i as follows:

1. If E ≡ E0 ∨ E1 then

�i+1 = �′
i , E0, E1, �

′′
i ,¬C(Ui ).

2. If E ≡ E0 ∧ E1 then
�i+1 = �′

i , E j , �
′′
i ,¬C(Ui )

where j = 0 or j = 1.
3. If E ≡ ∃x F(x) then

�i+1 = �′
i , F(m̄), �′′

i ,¬C(Ui ), E

where m is the first number such that F(m̄) does not occur in �0; . . . ;�i .
4. If E ≡ ∀x F(x) then

�i+1 = �′
i , F(m̄), �′′

i ,¬C(Ui )

for some m.
5. If E ≡ ∃X F(X) then

�i+1 = �′
i , F(Um), �′′

i ,¬C(Ui ), E

where m is the first number such that F(Um) does not occur in �0; . . . ;�i .
6. If E ≡ ∀X F(X) then

�i+1 = �′
i , F(Um), �′′

i ,¬C(Ui )

where m is the first number such that m �= i + 1 and Um does not occur in �i .

The set of deduction chains forms a tree T labeled with strings of sequents. We
will now consider two cases.
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Case I: T is not well-founded.

Then T contains an infinite path P. Now define a set M via

(M)i = {tN | t /∈ Ui occurs inP}.

Set M = (N; {(M)i | i ∈ N},+, ·, 0, 1,<).
For a formula F , let F ∈ P mean that F occurs in P, i.e. F ∈ � for some � ∈ P.

Claim Under the assignment Ui 
→ (M)i we have

F ∈ P ⇒ M |= ¬F.

The Claim implies thatM is an ω-model of ATR0.

Case II: T is well-founded.

We actually want to rule this out. This is the place where the principle

∀X [WO(X) → WO(�X)]

in the guise of cut elimination for an infinitary proof system enters the stage. Aiming
at a contradiction, suppose that T is a well-founded tree. Let X0 be the Kleene-
Brouwer ordering on T. Then X0 is a well-ordering. In a nutshell, the idea is that a
well-founded T gives rise to a derivation of the empty sequent (contradiction) in the
infinitary proof systems T∞

Q from [42]. This is were the really hard work lies and
we have to stop here; details are in [52].

4.3 Towards Impredicative Theories

The proof-theoretic ordinal functions that figure in the foregoing theorems are all
familiar from so-called predicative or meta-predicative proof theory. Thus far a func-
tion from genuinely impredicative proof theory is missing. The first such function
that comes to mind is of the Bachmann type [4]. We will shortly turn to it.

Veblen in [69] ventured very far into the transfinite in his 1908 paper,way beyond a
representation system that incorporates the�-function. He extended the two-place ϕ-
function first to an arbitrary finite numbers of arguments, but then also to a transfinite
numbers of arguments, with the proviso that in, for example

� f (α0, α1, . . . , αη),
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only a finite number of the arguments αν may be non-zero. In this wayVeblen singled
out the ordinal E(0), which is often called the big Veblen number. E(0) is the least
ordinal δ > 0 which cannot be named in terms of representations

��(α0, α1, . . . , αη)

with η < δ, and each αγ < δ.

4.3.1 The Bachmann Revelation

In a paper published in 1950, Heinz Bachmann introduced a novel idea that allowed
one to “name" much larger ordinals than by the Veblen procedures. He had the
amazing idea of using uncountable ordinals to keep track of diagonalizations over a
hierarchies of functions. In more detail, he used the following steps:

• Define a set of ordinalsB closed under successor such thatwith each limitλ ∈ B is
associated an increasing sequence 〈λ[ξ ] : ξ < τλ〉 of ordinals λ[ξ ] ∈ B of length
τλ ∈ B and limξ<τλ

λ[ξ ] = λ.
• Let � be the first uncountable ordinal. A hierarchy of functions (ϕ

B

α )α∈B is then
obtained as follows:

ϕ
B

0 (β) = ωβ ϕ
B

α+1 =
(
ϕ
B

α

)′
, (4.3)

ϕ
B

λ enumerates
⋂

ξ<τλ

(Range of ϕ
B

λ[ξ ]) λ limit, τλ < �, (4.4)

ϕ
B

λ enumerates {β < � : ϕ
B

λ[β](0) = β} λ limit, τλ = �.

Distilling Bachmann’s idea.

What makes Bachmann’s approach rather difficult to deal with in proof theory is the
requirement to endow every limit ordinal with a fundamental sequence and referring
to them when defining ϕλ, notably in the diagonalization procedure enshrined in
(4.4). This layer of complication can be dispensed with though. What underpins
the strength of Bachmann’s approach can be described without the bookkeeping of
fundamental sequences. We start by imagining a “big" ordinal �. What this means
will become clearer as we go along, but definitely � should be an ε-number. Using
ordinals < � and � itself as building blocks, one then constructs further ordinals
using Cantor’s normal form, i.e. if α1 ≥ . . . ≥ αn have already been constructed,
then we build α := ωα1 + · · · + ωαn provided that α > α1. In this way we can build
all ordinals < ε�+1, where the latter ordinal denotes the next ε-number after �.
Conversely, we can take any α < ε�+1 apart, yielding smaller pieces as long as the
exponents in its Cantor normal are smaller ordinals. This leads to the idea of support.
More precisely define:
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Definition 4.14 (i) supp�(0) = ∅, supp�(�) = ∅.
(ii) supp�(α)= supp�(α1) ∪ · · · ∪ supp�(αn) ifα =CNF ωα1 + · · · + ωαn > α1.
(iii) supp�(α) = {α} if α is an ε-number < �.

Note that supp�(α) is a finite set.

To define something that is equivalent towhat Bachmann achieves in (4.4), the central
idea is to devise an injective function

ϑ : ε�+1 → �

such that each ϑ(α) is an ε-number. Think of ϑ as a collapsing, or better projection
function in the sense of admissible set theory. For obvious reasons, ϑ cannot be order
preserving, but the following can be realized:

α < β ∧ supp�(α) < ϑ(β) → ϑ(α) < ϑ(β).

With the help of ϑ-function9 one obtains an ordinal representation system for the
so-called Bachmann ordinal, also referred to as the Bachmann-Howard ordinal.10

Definition 4.15 We inductively define a set OT(ϑ).

(i) 0 ∈ OT(ϑ) and � ∈ OT(ϑ).
(ii) If α1, . . . , αn ∈ OT(ϑ), α1 ≥ · · · ≥ αn , then ωα1 + · · · + ωαn ∈ OT(ϑ).
(iii) If α ∈ OT(ϑ) then so is ϑ(α).

(OT(ϑ),<) gives rise to an elementary ordinal representation system. Here <

denotes the restriction to OT(ϑ).
The Bachmann-Howard ordinal is the order-type of OT(ϑ) ∩ �.

4.3.2 Associating a Dilator with Bachmann

The Bachmann construction can be relativized to an arbitrary linear ordering X, as
was shown in [53], giving rise to a dilator

X 
→ ϑ
X

and the well-ordering principle

WO(X) ⇒ WO(ϑ
X
). (4.5)

9 This function is a cousin of the θ-function whose definition and properties are owed to Feferman,
Aczel, Buchholz, and Bridge (see [63, IX]) . ϑ was first defined in [44] and used in [54].
10 Bill Howard was looking for a description of the proof-theoretic ordinal of the theory of non-
iterated inductive definitions. He was amazed and delighted to find it in Bachmann’s paper [4].
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Definition 4.16 [53, 2.6] Again, let � be a “big" ordinal. Let X be a well-ordering.
With each x ∈ X we associate a ε-number Ex > �. The set of ordinals OT

X
(ϑ) is

inductively defined as follows:

(i) 0 ∈ OT
X
(ϑ), � ∈ OT

X
(ϑ), and Ex ∈ OT

X
(ϑ) when x ∈ X .

(ii) If α1, . . . , αn ∈ OT
X
(ϑ), α1 ≥ · · · ≥ αn , then ωα1 + · · · + ωαn ∈ OT

X
(ϑ).

(iii) If α ∈ OT
X
(ϑ) then so is ϑ

X
(α) and ϑ

X
(α) < �.

To explain the ordering onOT
X
(ϑ) one needs to extend supp�: Let supp

X

�(Ex ) = ∅.
One then sets

1. Ex < Ey ↔ x <X y.
2. ϑ

X
(α) < ϑ

X
(β) ↔ ([α < β ∧ suppX

�(α) < ϑ
X
(β)] ∨ [∃γ ∈ suppX

�(β)

ϑ
X
(α) ≤ γ ]).

(OT
X
(ϑ),<) yields an ordinal representation system elementary in X.

The principle (4.5) turns ot to be equivalent over RCA0 to asserting that every set is
contained in a countable coded ω-model of the theory of Bar Induction, BI, whose
formalization requires some preparations.

For a 2-place relation ≺ and an arbitrary formula F(a) of L2 define

Prog(≺, F) := (∀x)[∀y(y ≺ x → F(y)) → F(x)] (progressiveness),
TI(≺, F) := Prog(≺, F) → ∀xF(x) (transfinite induction),
WF(≺) := ∀XTI(≺, X) :=
∀X (∀x[∀y(y ≺ x → y ∈ X)) → x ∈ X ] → ∀x[x ∈ X ]) (well-foundedness).

Let F be any collection of formulae of L2. For a 2-place relation ≺ we will write
≺∈ F , if ≺ is defined by a formula Q(x, y) of F via x ≺ y := Q(x, y).

Definition 4.17 BI denotes the bar induction scheme, i.e. all formulae of the form

WF(≺) → TI(≺, F),

where ≺ is an arithmetical relation (set parameters allowed) and F is an arbitrary
formula of L2.

By BI we shall refer to the theory ACA0 + BI.

The theorem alluded to above, due to P.F. Valencia Vizcaíno and the author,
conjectured in [55, Conjecture 7.2], is the following:

Theorem 4.18 (Rathjen, Valencia Vizcaíno [53]) Over RCA0 the following are
equivalent:

1. ∀X [WO(X) → WO(OT
X
(ϑ))].

2. Every set is contained in a countable coded ω-model of BI.
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4.4 Towards a General Theory of Ordinal Representations

We have seen several ordinal representation systems and their relativizations to an
arbitrary well-ordering X. Ordinal representation systems understood in this rela-
tivized way give rise to well-ordering principles:

(∗) “ifX is a well-ordering then so isORX”

where ORX arises from OR by letting X play the role of the order-indiscernibles.
Any principle of the form (∗) is of syntactic complexity�1

2; thus cannot characterize
stronger comprehensions such as �1

1-comprehension.11 We are therefore led to the
idea of higher order well-ordering principles. To this end we require a general theory
of ordinal representation systems. A crucial step towards a general theory via an
axiomatic approach was taken by Feferman in [11], who singled out the property of
effective relative categoricity as central to ordinal representation systems. Through
the notion of relative categoricity he succeeded in crystallizing the algebraic aspect
of ordinal representation systems by way of relativizing them to any set of order-
indiscernibles, thereby in effect scaling them up to functors on the category of linear
orders with order-preserving maps as morphisms. Below we recall his approach
in [11].

4.4.1 Feferman’s Relative Categoricity

Definition 4.19 Let f1, . . . , fn be function symbols with fi having arity mi .
The set of terms Tm( f1, . . . , fn) is defined inductively as follows:

(i) 0̄ ∈ Tm( f1, . . . , fn);
(ii) each variable xi is in Tm( f1, . . . , fn);
(iii) if t1, . . . , tmi ∈ Tm( f1, . . . , fn), then so also

fi (t1, . . . , tmi ).

Let Ord denote the class of ordinals. Now suppose given a system of functions
Fi : Ordmi → Ord (where 1 ≤ i ≤ n). By an assignment we mean any function
σ : ω → Ord. With each assignment σ and any t ∈ Tm( f1, . . . , fn) is associated an
ordinal |t |σ , determined as follows.

1. |0̄|σ = 0;
2. |xk | = σ(k);
3. | fi (t1, . . . , tmi )|σ = Fi (|t1|σ , . . . , |tmi |σ ).

11 �1
1-comprehension is syntactically of complexity �1

3. If it were equivalent to a �1
2 statement,

say on the basis of ATR0, then it would follow that �1
1-CA0 proves its own consistency, e.g. by

[64, Theorem VIII.5.12].



4 Well-Ordering Principles in Proof Theory and Reverse Mathematics 105

The system �F is said to be replete if for every ordinal α the closure of α under �F is
an ordinal.

An ordinal κ > 0 is said to be �F-inaccessible if whenever α1, . . . , αmi < ρ

then Fi (α1, . . . , αmi ) < ρ holds for all Fi . �F is effectively relatively categori-
cal if, roughly speaking the order relation between any two terms s(x1, . . . , xk),
t (x1, . . . , xk) can be effectively determined from the ordering among x1, . . . , xk
provided that these all represent �F-inaccessibles. In particular for assignments σ, τ

into �F-inaccessibles it means that if

∀i, j ∈ [1, . . . , n](σ (xi ) < σ(x j ) ↔ τ(xi ) < τ(x j ))

then

|s(x1, . . . , xk)|σ < |t (x1, . . . , xk)|σ ↔ |s(x1, . . . , xk)|τ < |t (x1, . . . , xk)|τ ,
|t (x1, . . . , xk)|σ < |s(x1, . . . , xk)|σ ↔ |t (x1, . . . , xk)|τ < |s(x1, . . . , xk)|τ ,
|s(x1, . . . , xk)|σ = |t (x1, . . . , xk)|σ ↔ |s(x1, . . . , xk)|τ = |t (x1, . . . , xk)|τ .

In his paper [12], with the title Hereditarily replete functionals over the ordinals,
Feferman extended the foregoing notions also to finite type functionals over ordinals.

4.4.2 Girard’s Dilators

A general theory of ordinal representation systems was also initiated by Girard who
coined the notion of dilator [24].

LetORD be the category whose objects are the ordinals and whose arrows are the
strictly increasing functions between ordinals. ORD enjoys two basic properties.

Lemma 4.20 (i) ORD has pullbacks.
(ii) Every ordinal is a direct limit lim−→(np, f pq)p⊆q∈I of a system of finite ordinals

n p with I being a set of finite sets of ordinals.

Proof (i): Let f : α → γ and g : β → γ be in ORD. One easily checks that any
h : δ → γ such that

ran(h) = ran( f ) ∩ ran(g) (4.6)

is a pullback of f : α → γ and g : β → γ . Note that h : δ → γ is uniquely deter-
mined by (4.6) and that such an h always exists: Let δ be the Mostowski collapse
of ran( f ) ∩ ran(g), clpseran( f )∩ran(g) be the pertaining collapsing function, and h be
the inverse of the collapsing function.

(ii): Fix anordinalα. Let I be the collectionoffinite subsets ofα. I is orderedby the
inclusion relation, which is also directed, i.e. for s, t ∈ I there exists q ∈ I such that
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s ⊆ q and t ⊆ q. Let s ∈ I . Then s = {α0, . . . , αn−1} for uniquely determined ordi-
nalsα0 < . . . < αn−1. Define ns := n and fs : ns → s by fs(i) = αi . By design, fs is
an order-preserving bijection between ns and s. For p ⊆ q ∈ I define f pq : np → nq
by f pq := ( fq)−1 ◦ f p. Thus, f pp is the identity on np, and if p ⊆ q ⊆ r , one has
f pr = fqr ◦ f pq . As a result,

α = lim−→(np, f pq)p⊆q∈I . ��

Of special interest are the endofunctors of this category that can be characterized
by the two foregoing notions.

Definition 4.21 A dilator is an endofunctor of the category ORD preserving direct
limits and pullbacks.

Dilators can be characterized in straightforward way.

Lemma 4.22 For a functor F : ORD → ORD, the following are equivalent:

(i) F is a dilator.
(ii) F has the following two properties:

a. Whenever f : α → γ , g : β → γ , h : δ → γ , then

ran(h) = ran( f ) ∩ ran(g) ⇒ ran(F(h)) = ran(F( f )) ∩ ran(F(g))

(4.7)

b. For every ordinal α and η < F(α) there exists a finite ordinal n and strictly
increasing function f : n → α such that η ∈ ran(F( f )).

Proof It follows from the proof of Lemma 4.20(i) that preservation of pullbacks
and condition (ii)(a) are equivalent. It remains to show that in ORD preservation of
direct limits and condition (ii)(b) amount to the same. This can be gleaned from the
proof of Lemma 4.20(ii), however, as the details are not relevant for this paper, we
just refer to [24] for the details. ��

There is an easy but important consequence of the above, i.e. of Lemma 4.20(ii).

Lemma 4.23 Adilator is completely determined by its behaviour on the subcategory
of finite ordinals and morphisms between them, ORDω.

At this point, it is perhaps not immediately gleanable what the connection between
ordinal representation systems and dilators might be. This is what we turn to next.

Denotation systems and dilators

Girard (cf. [24, 25, 27]) provided an alternative account of dilators that assimilates
them more closely to ordinal representation systems and in particular to Feferman’s
notion of relative categoricity.
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Definition 4.24 Let ON be the class of ordinals and F : ON → ON. A denotation-
system for F is a classD of ordinal denotations of the form

(c;α0, . . . , αn−1;α)

together with an assignment D : D → ON such that the following hold:

1. If (c;α0, . . . , αn−1;α) is inD, thenα0 < . . . < αn−1 < α and
D(c;α0, . . . , αn−1;α) < F(α).

2. Every β < F(α) has a unique denotation (c;α0, . . . , αn−1;α) inD, i.e.
β = D(c;α0, . . . , αn−1;α).

3. If (c;α0, . . . , αn−1;α) is a denotation and γ0 < . . . < γn−1 < γ , then (c; γ0, . . . ,

γn−1; γ ) is a denotation.
4. If D(c;α0, . . . , αn−1;α) ≤ D(d;α′

0, . . . , α
′
m−1;α), γ0 < . . . < γn−1 < γ , γ ′

0 <

. . . < γ ′
m−1 < γ , and for all i < n and j < m,

αi ≤ α′
j ⇔ γi ≤ γ ′

j and αi ≥ α′
j ⇔ γi ≥ γ ′

j

then
D(c; γ0, . . . , γn−1; γ ) ≤ D(d; γ ′

0, . . . , γ
′
m−1; γ ).

In a denotation (c;α0, . . . , αn−1;α), c is called the index, α is the parameter and
α0, . . . , αn−1 are the coefficients of the denotation. If β = D(c;α0, . . . , αn−1;α),
the index c represents some ‘algebraic’ way of describing β in terms of the ordinals
α0, . . . , αn−1, α.

Lemma 4.25 Every denotation system D induces a dilator FD by letting FD (α) be
the least ordinal η that does not have a denotation of the form D(c;α0, . . . , αn−1;α),
and for any arrow f : α → δ of the category ORD letting

FD ( f ) : FD (α) → FD (δ)

be defined by

FD ( f )(D(c;α0, . . . , αn−1;α)) := D(c; f (α0), . . . , f (αn−1); δ).

The converse is also true.

Lemma 4.26 To every dilator F one can assign a denotation system DF such that
β < F(α) is denoted by

(γ ;α0, . . . , αn−1;α)

where n is the least finite ordinal such that there exists a morphism f : n → α with
β ∈ ran(F( f )). Moreover, γ < F(n) is uniquely determined by F( f )(γ ) = β, and
α0 = f (0), . . . , αn−1 = f (n − 1).
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Proof F being a dilator, we know that such an f exists. f is also uniquely deter-
mined since n is chosen minimal: for if g : n → α also satisfied β ∈ ran(F(g)), then
their joint pullback h : m → α would satisfy β ∈ ran(h) as well, so that n = m and
ran(h) = ran( f ) = ran(g), meaning f = g. ��

4.5 Higher Order Well-Ordering Principles

We already noted that a statement of the form WOP( f ) is �1
2 and therefore cannot

be equivalent to a theory whose axioms have an essentially higher complexity, like
for instance �1

1-comprehension. The idea thus is that to get equivalences one has to
climb up in the type structure. Given a functor

F : (LO → LO) → (LO → LO),

where LO is the class of linear orderings, we consider the statement12:

HWOP(F) : ∀ f ∈ (LO → LO) [WOP( f ) → WOP(F( f ))].

There is also a variant of HWOP(F) which should basically encapsulate the same
“power”. Given a functor

G : (LO → LO) → LO

consider the statement:

HWOP1(G) : ∀ f ∈ (LO → LO) [WOP( f ) → WO(G( f ))].

It was conjectured in [38] that a principle of the form HWOP(F) might be
equivalent to �1

1-comprehension. In [56] is was claimed that for a specific func-
tor B : (LO → LO) → LO, HWOP1(B) is equivalent to �1

1-comprehension. B is
a functor that takes an arbitrary dilator F as input and returns an ordinal represen-
tation system; this amounts to combining the Bachmann procedure with the closure
under F . [56] also adumbrated the steps and a proof strategy for this result.

4.5.1 Bachmann Meets a Dilator

The idea to combine the Bachmann construction with an arbitrary dilator one finds
in [38, 56]. The details were worked out in Anton Freund’s thesis [13].13

12
HWOP being an acronym for the German “Höherstufiges Wohlordnungsprinzip”.

13 Of course, Definition 4.16, which harks back to [53], set an important precedent.
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Definition 4.27 Again, let � be a “big” ordinal. Let D be a system of denotations.

(i) 0 ∈ OTD(ϑ), � ∈ OTD(ϑ).
(ii) If α1, . . . , αn ∈ OTD(ϑ), α1 ≥ · · · ≥ αn , then ωα1 + · · · + ωαn ∈ OTD(ϑ).
(iii) If α ∈ OTD(ϑ) then so is ϑD(α) and ϑD(α) < �.
(iv) If α0, . . . , αn−1 ∈ OTD(ϑ), α0 < · · · < αn−1 < �, and σ = (c; 0, . . . ,

n − 1; n) ∈ D, then

Eσ
α0,...,αn−1

∈ OTD(ϑ) and � < Eσ
α0,...,αn−1

.

To explain the ordering on OTD(ϑ) one needs to extend supp�: Let

suppD
�(Eσ

α0,...,αn−1
) = {α0, . . . , αn−1}.

The ordering between ϑD -terms is defined as before:

ϑD(α) < ϑD(β) ↔ ([α < β ∧ suppD�(α) < ϑD(β)] ∨ [∃γ ∈ suppD�(β) ϑD(α) ≤ γ ]).

How do we compare terms of the form Eσ
α0,...,αn−1

and Eτ
β0,...,βm−1

? To this end let
σ = (c; 0, . . . , n − 1; n) and τ = (e; 0, . . . ,m − 1;m); also let k be the number
of elements of {α0, . . . , αn−1, β0, . . . , βm−1}. In a first step, define f : n → k and
g : m → k such that

f (i) < g( j) ↔ αi < β j ,

f (i) = g( j) ↔ αi = β j .

Then
Eσ

α0,...,αn−1
< Eτ

β0,...,βm−1

if and only if

D(c; f (0), . . . , f (n − 1); k) < D(e; g(0), . . . , g(m − 1); k).

It is rather instructive to see whyOTD(ϑ) is a well-ordering.We shall prove that with
the help of strong comprehension.

Theorem 4.28 (�1
1-CA0) For every dilator D, (OTD(ϑ),<) is a well-ordering.

Proof Let I be the well-founded part of OTD(ϑ) ∩ � := {α ∈ OTD(ϑ) | α < �}.
�1

1-comprehension ensures that I is a set. ThenI := (I,<� I × I ) is awell-ordering.
Now let

M := {β ∈ OTD(ϑ) | suppD
�(β) ⊆ I } and M := (M,<� M × M).

We claim that M is a well-ordering, too. To see this, note that the set of terms of
the form Eσ

α0,...,αn−1
with α0, . . . , αn−1 ∈ I is well-ordered as they are in one-one and
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order preserving correspondence with the denotations D(c;α0, . . . , αn−1;I) where
σ = (c; 0, . . . , n − 1; n). Now, M is obtained from I by adding the latter terms as
well as �, and then closing off under + and ξ 
→ ωξ (or more precisely, Cantor
normal forms). It is known from Gentzen’s [23] that this last step preserves well-
orderedness.14

Thus, if we can show that OTD(ϑ) is the same as M we are done. For this it is
enough to establish closure of M under ϑD .

Claim : ∀α ∈ M ϑD(α) ∈ M.

The Claim is proved by induction on α. So assume α ∈ M and

(∗) ∀β ∈ M [β < α → ϑD(β) ∈ I ].

To be able to conclude that ϑD(α) ∈ I , it suffices to show that δ ∈ I holds for all
δ < ϑD(β). We establish this via a subsidiary induction on the syntactic complexity
of δ (so this is in effect an induction on naturals). If δ = 0 this is immediate, and if δ =
ωδ1 + . . . + ωδn with δ > δ1 ≥ . . . ≥ δn this follows from the subsidiary induction
hypothesis and the fact that I is closed under + and ξ 
→ ωξ .

This leaves the case that δ = ϑD(ρ) for some ρ. Since ϑD(ρ) < ϑD(α) there are
two subcases to consider.

Case 1: ρ < α and suppD
�(ρ) < ϑD(α). By the subsidiary induction hypothesis,

suppD
�(ρ) ⊆ I as the syntactic complexity of terms in suppD

�(ρ) is not bigger than
that of ρ and thus smaller than that of δ. Therefore, ρ ∈ M , and since ρ < α it follows
from (∗) that δ = ϑD(ρ) ∈ I .

Case 2: There exists ξ ∈ suppD
�(α) such that δ ≤ ξ . α ∈ M entails that ξ ∈ I ,

and thus δ ∈ I . ��
Theorem 4.29 The following are equivalent over RCA0:

(i) �1
1-comprehension.

(ii) For every denotation systemD, OTD(ϑ) is a well-ordering.

A proof of this result was adumbrated in [56] while the first detailed proof was given
in Anton Freund’s thesis [13] and in his papers [14–16]. Below, however, we will
be presenting another proof, partly going back to [56], since the purpose here is
to convey the intuitions behind the result to the reader and present them without
employing category-theoretic terminology.

The direction (i)⇒(ii) of Theorem 4.29 is taken care of by Theorem 4.28. Next,
we will be concerned with giving a proof sketch for the direction (∗) (ii)⇒(i). For (∗)

it is enough to show that every set Q̄ ⊆ N is contained in a countable coded model
M = (M, E) of Kripke-Platek set theory (with Infinity), where the interpretation E
of the elementhood relation is well-founded. This is so because a �1

1-definable class
of naturals, {n ∈ N | F(n, Q̄)}, with second-order parameter Q̄ is �1-definable over

14 For details, consult [63, VIII.2], [40, 9.6.2] or [50, Section4].
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M (see [5, IV.3.1]), and therefore a set in the background theory. Important techniques
include Schütte’s method of search trees [59] for ω-logic but adjusted to α-logic for
any ordinal (or rather well-ordering) α and proof calculi similar to the one used for
the ordinal analysis of Kripke-Platek set theory (originally due to Jäger [32, 33]).
It is not necessary, though, to use the machinery for the ordinal analysis of KP.
Instead, one can also directly employ the older techniques from ordinal analyses
of the formal theory of non-iterated arithmetic inductive definitions as presented in
[39, 40]. Technically, though, the easiest approach appears to be to work with an
extension of Peano arithmetic with inductive definitions and an extra sort of ordinals
to express the stages of an inductive definition as in Jäger’s PA� from [34].

Definition 4.30 In what follows, we fix a set Q̄ ⊆ N and a well-ordering X =
(X,<X ) with X ⊆ N. Let L1 be the first-order language of arithmetic with number
variables x, y, z, . . . (possibly with subscripts), the constant 0, as well as function
and relation symbols for all primitive recursive functions and relations, and a unary
predicate symbol Q. Let L1(P) be the extension of L1 by a further “fresh” unary
relation symbol P . The atomic formulas of L1(P) are of the form Q(t), P(t) and
R(s1, . . . , sk), where t, s1, . . . , sk are terms and R is a relation symbol for a primi-
tive recursive k-ary relation. The literals of L1(P) are the atomic formulas and their
negations ¬Q(t), ¬P(t) and ¬R(s1, . . . , sk). The formulas of L1(P) are then gen-
erated from the literals via the logical connectives ∧,∨ and the quantifiers ∀x and
∃x . Note that the formulas are in negation normal form. As per usual, negation is
a defined operation, using deletion of double negations and de Morgan’s laws. A
formula is said to be P-positive if it contains no occurrences of the form ¬P(t).
A P-positive formula in which at most the variable x occurs free will be called an
inductive operator form; expressions A(P, x) are meant to range over such forms.

L1 will be further extended to a new language L
X
by adding a new sort of ordinal

variables α, β, γ, . . . (possibly with subscripts), a new binary relation symbol < for
the less relation on the ordinals15 and a binary relation symbol PA for each inductive
operator form A(P, x).16 For each element u of thewell-orderingXwe also introduce
an ordinal constant αu into the language L

X
. Ordinal constants inherit an ordering

fromX, namely αu is considered to be smaller than αv if u <X v. In future, when we
talk about the least ordinal constant satisfying a certain condition we are referring to
that ordering.

Since subscripts are often a nuisance to humans, we will use overlined ordinal
variables, i.e. ᾱ, β̄, . . ., as metavariables for these constants.

The number terms s, t, . . . of L
X
are the number terms of L1; the ordinal terms

of L
X
are the ordinal variables and constants. The formulas of L

X
are inductively

generated as follows:

1. If R is a k-ary relation symbol of L1 and s1, . . . , sk are number terms, then
R(s1, . . . , sk) is an atomic formula of L

X
.

15 The usual ordering on the naturals will be notated by <N .
16 Observe that the place holder predicate P of L1(P) is not part of the language LX .
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2. a < b, a = b and PA(s, a) are atomic formulas of L
X
whenever a and b are ordinal

terms and s is a number term.
3. Negations of atomic formulas of L

X
are formulas of L

X
. The latter together with

the atomic formulas make up the literals of L
X
.

4. If B,C are formulas of L
X
, then so are B ∧ C and B ∨ C .

5. If F(x) is a formula of L
X
, then so are ∃xF(x) and ∀xF(x).

6. If G(α) is a formula of L
X
, then so are ∃αG(α) and ∀αF(α).

7. If G(α) is a formula of L
X
and b is an ordinal term, then so are (∃α < b)G(α)

and (∀α < b) F(α).

As per usual, B → C is an abbreviation for ¬B ∨ C (with ¬ being the obvious
defined operation of negation), and B ↔ C abbreviates (B → C) ∧ (C → B).

In future, we write Pa
A (s) for PA(s, a). We also write P<a

A (s) for (∃β < a) Pβ

A (s)
and PA(s) for ∃α Pα

A (s).

Definition 4.31 The axioms of PA
X
fall into several groups:

1. True literals: These are of three forms.

a. Let R be a symbol for a k-ary primitive recursive relation and s1, . . . , sk
are closed number terms. R(s1, . . . , sk) is a true literal if R(sN1 , . . . , sN1 ) is
true in the naturals, where R denotes the predicate pertaining to R and sNi
denotes the value of the closed number term si in the standard interpretation; if
R(s1, . . . , sk) is false under the standard interpretation, then ¬R(s1, . . . , sk)
is a true literal.

b. Q(s) is a true literal if sNi ∈ Q̄, and ¬Q(t) is a true literal if tNi /∈ Q̄, where
s, t are closed numeral terms.

c. Let αu, αv are ordinal constants with u, v ∈ X. αu < αv is a true literal if
u <X v, and otherwise ¬αu < αv is a true literal. αu = αu is a true literal
whereas ¬αu = αv is a true literal if u �= v.

2. Stage axioms: These are all sentences of the form ∀α ∀x [A(P<α
A , x) → Pα

A (x)].
3. Reflection: These are all sentences of the form ∀x [A(PA, x) → ∃α Pα

A (s)].
4. Let A0, A1, . . . be a fixed enumeration of all stage and reflection axioms. Note

that all of these are closed formulas (sentences) and that none of them contains
any ordinal constants.

4.5.2 Deduction Chains in PAX

Sequents are finite lists of sentences of L
X
; they will be notated by upper case Greek

letters.17

17 As before, �, A denotes the sequent obtained from � via appending the formula A to the list �.
Similarly, �, A1, . . . , Ar ,� stands for the list C1, . . . ,Cn, A1, . . . , Ar , D1, . . . , Dq if � is the list
C1, . . . ,Cn and � is the list D1, . . . , Dq .
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Definition 4.32 (i) A sequent � is axiomatic if it contains a true literal.18

(ii) A sequent is reducible or a redex if it is not axiomatic and contains a formula
which is not a literal.

Definition 4.33 A PA
X
-deduction chain is a finite string

�0;�1; . . . ;�k

of sequents �i constructed according to the following rules:

(i) �0 = ∅.
(ii) �i is not axiomatic for i < k.
(iii) If i < k and �i is not reducible then

�i+1 = �i ,¬Ai

where Ai is the i-th formula in the list from Definition 4.31(4).
(iv) Every reducible �i with i < k is of the form

�′
i , E, �′′

i

where E is not a literal and �′
i contains only literals. E is said to be the redex

of �i .

Let i < k and�i be reducible.�i+1 is obtained from�i = �′
i , E, �′′

i as follows:

a. If E ≡ E0 ∨ E1 then

�i+1 = �′
i , E0, E1, �

′′
i ,¬Ai .

b. If E ≡ E0 ∧ E1 then
�i+1 = �′

i , E j , �
′′
i ,¬Ai

where j = 0 or j = 1.
c. If E ≡ ∃x ∈ N F(x) then

�i+1 = �′
i , F(m̄), �′′

i ,¬Ai , E

where m is the first number such that F(m̄) does not occur in �0; . . . ;�i .19

d. If E ≡ ∀x ∈ N F(x) then

�i+1 = �′
i , F(m̄), �′′

i ,¬Ai

for some m.

18 Note that if � contains formulas R(�s ) and ¬R(�t ), where sNi = tNi and R is a symbol for a
primitive recursive relation or equals Q, then � is axiomatic.
19 There is the slightly irksome possibility that x does not occur free in F(x). Then m can be any
number for it doesn’t matter which number one choses.
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e. If E ≡ ∃ξ F(ξ) then

�i+1 = �′
i , F(δ̄), �′′

i ,¬Ai , E

where the ordinal constant δ̄ is picked as follows. If there occurs an ordinal
constant γ̄ in�0; . . . ;�i such that F(γ̄ ) does not occur in�0; . . . ;�i then let
δ̄ be the least such (with leastness understood in the sense of X). If, however,
for all ordinal constants γ̄ in �0; . . . ;�i the formula F(γ̄ ) already occurs in
�0; . . . ;�i , then δ̄ can be any ordinal constant.20

f. If E ≡ ∀ξ F(ξ) then

�i+1 = �′
i , F(δ̄), �′′

i ,¬Ai

where δ̄ is any ordinal constant.
g. If E ≡ (∃ξ < ᾱ) F(ξ). then

�i+1 = �′
i , δ̄ < ᾱ ∧ F(δ̄), �′′

i ,¬Ai , E

where the ordinal constant δ̄ is picked as follows: If there occurs an ordinal
constant γ̄ in �0; . . . ;�i such that γ̄ < ᾱ is true and F(γ̄ ) does not occur in
�0; . . . ;�i , let δ̄ be the least such. If, however, for all ordinal constants γ̄ in
�0; . . . ;�i with γ̄ < ᾱ true the formula F(γ̄ ) already occurs in �0; . . . ;�i ,
then δ̄ can be any ordinal constant.

h. If E ≡ (∀ξ < ᾱ) F(ξ) then

�i+1 = �′
i , δ̄ < ᾱ → F(δ̄), �′′

i ,¬Ai

where δ̄ is any ordinal constant.
i. If E ≡ P ᾱ

A (s). then

�i+1 = �′
i , A(P<ᾱ

A , s), �′′
i ,¬Ai .

j. Let E ≡ ¬P ᾱ
A (s). Then

�i+1 = �′
i ,¬A(P<ᾱ

A , s), �′′
i ,¬Ai .

The set of PA
X
-deduction chains forms a treeT

Q̄

X labeled with strings of sequents.
We will now consider two cases.

20 One might be tempted to decree that δ̄ be the first ordinal constant (in the sense of X) that does
not occur in �0; . . . ; �i . However, this is problematic for two reasons. Firstly,Xmight be finite and
thus such a constant might not exist. Secondly, and more seriously, such a choice would heavily
depend on X and would not be natural from a category-theoretic standpoint that demands a purely
finitistic and syntactic treatment.
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• Case I: There is a well-ordering X such that T
Q̄

X is not well-founded.

Then T
Q̄

X contains an infinite path P.

• Case II: All T
Q̄

X are well-founded.

Case I: Let P be an infinite path through T
Q̄

X. LetOrdP be the set of ordinal constants
that occur in sentences of P. The language LP is the restriction of L

X
that has only

the ordinal constants in OrdP. We now define a structure MP for this language.
The number-theoretic part of MP is just the standard model of the naturals plus the
interpretation of Q as Q̄ while the ordinal part has as its universe OrdP with the
ordering:

ᾱ <
MP

β̄ iff ᾱ < β̄ is a true literal.

Note that <
MP

is a well-ordering because X is.
Also the predicates PA have to be furnished with an interpretation:

PMP

A (n, β̄) iff ¬PA(n̄, β̄) is a formula of a sequent occurring in P.

The aim is to show thatMP models PAOrdP .

Definition 4.34 For a sentence F of LP we write F ∈ P if F occurs in a sequent
that belongs to P.

Lemma 4.35 1. P does not contain any true literals.
2. If P contains E0 ∨ E1 then P contains E0 and E1.
3. If P contains E0 ∧ E1 then P contains E0 or E1.
4. If P contains ∃xF(x) then P contains F(n̄) for all n.
5. If P contains ∀xF(x) then P contains F(n̄) for some n.
6. If P contains ∃ξF(ξ) then P contains F(β̄) for all β̄ ∈ OrdP.
7. If P contains ∀ξF(ξ) then P contains F(β̄) for some β̄ ∈ OrdP.
8. If P contains (∃ξ < ᾱ)F(ξ) then P contains F(β̄) for all β̄ ∈ OrdP such that

β̄ < ᾱ holds true.
9. If P contains (∀ξ < ᾱ)F(ξ) then P contains F(β̄) for some β̄ ∈ OrdP.
10. If P contains ¬P ᾱ

A (s) then P contains ¬A(P<ᾱ, s).
11. If P contains P ᾱ

A (s) then P contains A(P<ᾱ, s).

Proof The proof is routine. For an existential formula note that such a formula will
become the redex of a formula infinitely many times as it never vanishes.Thus, for
every formula ∃xF(x) in P, the substitution instance F(n̄) will be in P for every
n. Likewise, for an existential formula ∃ξF(ξ) in P, the substitution instance F(ζ̄ )

will be in P for every ζ̄ inOrdP; although not necessarily for all ordinal constants η̄.
Similar consideration apply to bounded existential ordinal quantifiers. ��
Definition 4.36 For the next Lemma (or rather its proof) it is convenient to introduce
a measure for the complexity of a LP-sentences.



116 M. Rathjen

An ordinal constant ᾱ is of the form αu for a unique u ∈ X . Define its rank, rk(ᾱ),
to be the order-type of the initial segment of <X determined by u.

Let u0 be the least element of X with regard to <X .

1. |F | = 0 if F is a literal not containing ordinal constants.
2. |ᾱ < β̄| = |¬ᾱ < β̄| = max(rk(ᾱ), rk(β̄)) · ω.
3. |ᾱ = β̄| = |¬ᾱ = β̄| = max(rk(ᾱ), rk(β̄)) · ω.
4. |PA(s, ᾱ)| = |¬PA(s, ᾱ)| = rk(ᾱ) · ω + ω.
5. |B ∧ C | = |B ∨ C | = max(|B|, |C |) + 1.
6. |∃xF(x)| = |∀xF(x)| = |F(0̄)| + 1.
7. |∃ξF(ξ)| = |∀ξF(ξ)| = max(τ · ω, |F(αu0)| + 1) where τ is the order-type of

X.
8. |(∃ξ < ᾱ)F(ξ)| = |(∀ξ < ᾱ)F(ξ)| = max(rk(ᾱ) · ω, |F(αu0)| + 1).

Lemma 4.37 If F ∈ P then MP |= ¬F.

Proof The proof proceeds by induction on |F |. The claim is obvious for literals as
P does not contain true literals.

If F is of the form¬PA(s, ᾱ) then, by definition ofMP, we haveMP |= PA(s, ᾱ),
whence MP |= ¬F .

Let F be of the form PA(s, ᾱ). Then, byLemma4.35, A(P<ᾱ, s) ∈ P. One also has
that |A(P<ᾱ, s)| < |PA(s, ᾱ)|, and hence, by the induction hypothesis, (∗) MP |=
¬A(P<ᾱ, s). If MP |= PA(s, ᾱ) were to hold, this would mean that ¬PA(s, ᾱ) ∈ P

and thus ¬A(P<ᾱ, s) ∈ P by Lemma 4.35, yielding MP |= A(P<ᾱ, s), again by
invoking the induction hypothesis, which contradicts (∗). As a result, MP |=
PA(s, ᾱ).

If F is of the form ∃ξG(ξ) then G(β̄) ∈ P for all β̄ ∈ OrdP, and hence, by the
induction hypothesis, MP |= ¬G(β̄) holds for all β̄ ∈ OrdP, thence MP |= ¬F .

If F is of the form ∀ξG(ξ) then G(β̄) ∈ P for some β̄ ∈ OrdP, and hence, by the
induction hypothesis, MP |= ¬G(β̄), thence MP |= ¬F .

The remaining cases are similar. ��
Corollary 4.38 (i) MP |= ∀α∀x [A(P<α

A , x) ↔ Pα
A (x)].

(ii) MP |= ∀x [A(PA, x) ↔ PA(x)].
(iii) If U ⊆ N is a set such that ∀x [A(U, x) → U (x)], then {n ∈ N | MP |= PA(n̄)}

⊆ U.

Proof (i) The formula ∀α∀x [A(P<α
A , x) → Pα

A (x)] is a stage axiom, and hence its
negation ¬∀α∀x [A(P<α

A , x) → Pα
A (x)] is in P, thus MP |= ∀α∀x [A(P<α

A , x) →
Pα
A (x)].
Conversely, if MP |= P β̄

A (s) then ¬P β̄

A (s) ∈ P, thus ¬A(P ᾱ, s) ∈ P, yielding
MP |= A(P ᾱ, s) by Lemma 4.37.

(ii) Note that the forward part of the equivalence is a reflection axiom. So the for-
mula¬∀α∀x [A(PA, x) → PA(x)] is in P, and thereforeMP |= ∀α∀x [A(PA, x) →
PA(x)] by Lemma 4.37. If MP |= PA(s), then MP |= P β̄

A (s) for some β̄. The
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latter entails MP |= A(P<β̄

A , s) by (i), which on account of positivity implies
MP |= A(PA, s).

(iii) Assume ∀x [A(U, x) → U (x)]. By induction over OrdP we prove

{n ∈ N | MP |= P ᾱ
A (n̄)} ⊆ U,

from which (iii) follows. By induction hypothesis,

{n ∈ N | MP |= P β̄

A (n̄} ⊆ U

holds for all β̄ such that MP |= β̄ < ᾱ. Thus,

{n ∈ N | MP |= A(P<ᾱ
A , n̄)} ⊆ {n ∈ N | A(U, n)}

by positivity, and hence, by (i), {n ∈ N | MP |= P ᾱ
A (n̄)} ⊆ U . ��

Corollary 4.39 (ACA0) The class {n ∈ N | H(n, Q̄)} with H(x,U ) being a �1
1-

formula and all free variables exhibited, is first-order definable over MP. Thus it is
a set.

Proof It is well-known21 (and provable inACA0) that every class {n ∈ N | H(n, Q̄)}
is many-one reducible to one of the form

{n ∈ N | ∀X (∀u[A(X, u) → u ∈ X ] → n ∈ X)}. (4.8)

The latter class, however, is the same as {n ∈ N | MP |= PA(n̄)} by Corollary 4.38.
��

From the foregoing, we conclude that �1
1-comprehension obtains (on the basis of

ACA0) if for all sets of naturals Q there exists a well-ordering X such that the the
search tree T

Q̄

X is ill-founded. Thus we want to exclude the possibility that for some

Q̄ all of the search trees T
Q̄

X for well-orderings X are well-founded. To this we turn
next.
Case II: All T

Q̄

X are well-founded. The strings of sequents that make up the nodes of

T
Q̄

X can be linearly ordered by the Kleene-Brouwer tree ordering, which is a well-

ordering on account of the well-foundedness of the tree. Let KB
Q̄

X be the Kleene-

Brouwer ordering of T
Q̄

X (see e.g. [64, V.1.2] for a definition). Owing to the careful

design of T
Q̄

X, the map X 
→ (T
Q̄

X,KB
Q̄

X) gives rise to an endofunctor F
Q̄
of the

category of well-orderings. To see this, letY be another well-ordering and f : X →
Y be a an order preserving function. Each element ofT

Q̄

X can be viewed as a notation
S(αu0 , . . . , αun−1) where αu0 , . . . , αun−1 are the ordinal constants occurring in it with
u0, . . . , un−1 ∈ X and u0 <X . . . <X un−1. Now define F

Q̄
( f ) by

21 See for instance [30, III.3.2] or [64, V.1.8].
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F
Q̄
( f )(S(αu0 , . . . , αun−1)) := S(α f (u0), . . . , α f (un−1)).

Then
F
Q̄
( f ) : (T

Q̄

X,KB
Q̄

X) → (T
Q̄

Y,KB
Q̄

Y).

We shall denote the denotation system associated with this dilator by DQ̄ . More
concretely, DQ̄ can be visualized as consisting of the denotations

(S(x0, . . . , xn−1); u0, . . . , un−1;X)

where S(αu0 , . . . , αun−1) ∈ T
Q̄

X.
For notational reasons, let’s drop the subscript Q̄, writing D := DQ̄ . Next, D is

wedded to the Bachmann construction as in Definition 4.27, giving rise to the ordinal
representation systemOTD(ϑ). The aim is now to show that the well-foundedness of
OTD(ϑ) leads to a contradiction. Let I be the subordering ofOTD(ϑ) ∩ � ofOTD(ϑ)

obtained by allowing only elements α with α < �. By assumption, the search tree
T

Q̄

I is well-founded. A first step consists in realizing that T
Q̄

I is actually contained in

OTD(ϑ). Moreover, this order-morphism sends elements of T
Q̄

I to ε-numbers above
� in OTD(ϑ).

Lemma 4.40 There is an order-morphism that maps T
Q̄

I, equipped with the Kleene-
Brouwer ordering, into OTD(ϑ). Moreover, this order-morphism sends elements of

T
Q̄

I to ε-numbers above � in OTD(ϑ).

Proof An element of T
Q̄

I is a string of sequents, S(α0, . . . , αn−1), whose ordi-
nal constants α0 < . . . < αn−1 are from I. Letting c := S(x0, . . . , xn−1) and σ :=
D(c; 0, . . . , n − 1; n), define the desired map by

S(α0, . . . , αn−1) 
→ Eσ
α0,...,αn−1

.

By definition of D and the ordering of OTD(ϑ) it is (quite) clear that this mapping
preserves the order. ��

An important step consists in viewing T
Q̄

I as the skeleton of a proof in an infinite
proof system that enjoys partial cut elimination, for this will mean that one obtains a
cut-free proof of the empty sequent, which is impossible. The infinitary system we
have in mind is a variant of PA

I
. To be precise, Definition 4.31 only lists the axioms

and Sect. 4.5.2 only defines deductions chains in PA
I
. To render it a proper proof

system, we have to add inference rules.

Definition 4.41 PA∗
I
has the same axioms as PA

I
except for the stage and reflection

axioms, which will be turned into rules.
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The inference rules of PA∗
I
are22:

(∧)
�, E0 �, E1

�, E0 ∧ E1

(∨)
�, Ei

�, E0 ∨ E1
if i = 0 or i = 1

(∀
N
)

�, F(n̄) for all n ∈ N

�, (∀u ∈ N) F(u)

(∃
N
)

�, F(s)
�, (∃u ∈ N) F(u)

s number term

(b∀)
�, F(β̄) for all β̄ < ᾱ

�, (∀ξ < ᾱ)F(ξ)

(b∃)
�, F(β̄)

�, (∃ξ < ᾱ)F(ξ)
if β̄ < ᾱ

(∀)
�, F(ᾱ) for all ᾱ

�,∀β F(β)

(∃)
�, F(ᾱ)

�, ∃β F(β)

(PA)
�, A(P<ᾱ

A , s)
�, PA(ᾱ, s)

(¬PA)
�,¬A(P<ᾱ

A , s)
�,¬PA(ᾱ, s)

(Ref) �, A(PA, s)
�, ∃ξ PA(ξ, s)

(Cut) �, A �,¬A
�

where in the above rules s is always a number term.

The first observation worthy of note is that any sequent provable inT
Q̄

I is provable

in PA∗
I
in a very uniform way. T

Q̄

I consists of deduction chains �0; . . . ;�r−1, and

we say that �r−1 is provable in T
Q̄

I. More precisely, we write

T
Q̄

I

S(α0,...,αn−1)
�

if there exists a deduction chain �0; . . . ;�r−1 such that S(α0, . . . , αn−1) is the nota-
tion for this chain and � is �r−1.

It has always been a challenge of impredicative ordinal-theoretic proof theory to
control infinitary derivations. They have to be of a very uniformkind so as to be able to
prove (partial) cut elimination for such derivations. The problem arises for first time

22 There is a slightly annoying aspect to this proof system.PA∗
I
is supposed to be a proper deduction

calculus, which entails that we have to pay attention to structural rules, too. These boring rules can
be moved under the carpet by conceiving of sequents as finite sets of formulas. Thus, in what
follows, sequents in the sense of PA∗

I
will be understood as finite sets of formulas. Notations like

�, A and �,� will consequently have to be deciphered as � ∪ {A} and � ∪ �, respectively.
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when analysing systems such as ID1, KP and bar induction whose proof-theoretic
ordinal is the Bachmann-Howard ordinal. There are several technical approaches
from the 1980s, e.g. [9, 32, 33, 39, 40], that could be enlisted to analyse PA∗

I
, too.

These days, though, Buchholz’ technique of operator controlled from [8] is most
widely used and we will also refer to it when defining the uniform derivations of
PA∗

I
. However, we will not go into much detail as these techniques are standard by

now.23 For our purposes, an operatorH is just a monotone, inclusive and idempotent
function from subsets of OTD(ϑ) to subsets of OTD(ϑ) such that for all X , H(X)

contains 0 and � and the following holds:

• If α has Cantor normal form ωα1 + . . . + ωαn then α ∈ H(X) ⇔ α1, . . . , αn ∈
H(X);

• If α0, . . . , αn−1 ∈ X , α0 < · · · < αn−1 < �, and σ = (c; 0, . . . , n − 1; n) ∈ D,
then Eσ

α0,...,αn−1
∈ H(X).

We shall write
H δ

ρ �

to convey that the sequent � is deducible in PA∗
I
controlled by the operator H with

length δ and cut rank ρ.
For an operator H and finite subset U of OTD(ϑ), H[U ] stands for the operator

with H[U ](V ) := H(U ∪ V ). One then obtains the following interpretation result
with the length of the derivation determined by the order-morphism of Lemma 4.40.

Theorem 4.42 For every operator H ,

T
Q̄

I

S(α0,...,αn−1)
� ⇒ H[{α0, . . . , αn−1}]

Eσ
α0 ,...,αn−1

�+k
�

for some k < ω, where c := S(x0, . . . , xn−1) and σ := D(c; 0, . . . , n − 1; n).

WithH controlled derivations one obtains partial cut elimination in that all prov-
able sequents consisting entirely of �-formulas, i.e. formulas without unbounded
universal ordinal quantifiers, have a cut-free proof. The bottom node of the tree T

Q̄

I

is its maximum element in the Kleene-Brouwer ordering. Denoting it by S0, we have

T
Q̄

I

S0 ∅ with ∅ standing for the empty sequent (without any formulas). Owing to
the interpretation Theorem 4.42, we then have

H Eσ0

�+3
∅ (4.9)

where c := S0 and σ0 := D(c). Now, it is possible to turn the derivation of (4.9)
into a cut-free one. Technically, however, the cut elimination procedure requires a
hierarchy of ever stronger operatorsH∗

ξ with ξ ∈ OTD(ϑ) that, with growing ordinal
index, accommodate more and more ordinals engendered by the collapsing function

23 E.g. in the textbook [41].
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ϑD , which is to say that the sets H∗
ξ (X) enjoy ever stronger closure properties with

regard to ϑD as ξ increases. As this is a standard technique in ordinal analysis (see
[8, 41, 51]) at the lowest level of impredicativity, we will not go into details. The
upshot is that by applying cut elimination to the derivation in (4.9) we arrive at a
cut-free PA∗

I
-derivation of the empty sequent

H∗
ρ

τ

0
∅

for specific ρ, τ ∈ OTD(ϑ) with ρ < �. But this is absurd for a cut-free proof as
(Cut) is the only inference that could yield the empty sequent as a consequence;
hence case II has been ruled out, thus it’s always case I, concluding this direction of
the main theorem’s proof.

4.5.3 A Glimpse of Anton Freund’s Work

In his thesis and a series of papers [13–16], Anton Freund presents a much broader
perspective on the connection between �1

1-Comprehension and various Bachmann-
Howard principles. In particular, he developed a nice categorical approach to the
support operation as a natural transformation, thereby introducing the notion of a
prae-dilator.

Definition 4.43 The functor

[ · ]<ω : LO → Set

is defined by letting

[X]<ω = the set of finite subsets of X,

[ f ]<ω : [X]<ω → [Y]<ω

[ f ]<ω({x1, . . . , xn}) = { f (x1), . . . , f (xn)}

whenever f : X → Y and x1, . . . , xn ∈ X .
An endofunctor T : LO → LO is called a prae-dilator if there exists a natural

transformation
supp : T ⇒ [ · ]<ω

i.e. the square

T (X)

T ( f )

suppX [X]<ω

[ f ]<ω

T (Y)
suppY

[Y]<ω
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commutes for every f : X → Y in LO, and for σ ∈ T (X),

σ ∈ ran(T (ισ )),

where ισ : suppX(σ ) ↪→ X denotes the obvious inclusion map.

It’s not the purpose of this paper to presentmore details of Freund’swork, however,we
strongly recommend looking at the original sources [13–16]. Tofinish this subsection,
we quote the following characterization theorem from [13, 15, 16].

Theorem 4.44 The following are equivalent over RCA0:

(i) The principle of �1
1-comprehension.

(ii) The abstract Bachmann-Howard principle: Every dilator has a well-founded
Bachmann-Howard fixed point.

(iii) The computable Bachmann-Howard principle: For every dilator T the linear
order ϑ(T ) is well-founded.

4.6 There Are Much Stronger Constructions Than
Bachmann’s

In the list of strong theories for which an ordinal analysis has been achieved, the
theory of non-iterated inductive arithmetic definitions (embodied in PA�) is just the
starting point. Likewise, Bachmann’s ordinal representation system is just the first
in a long line of ever bigger ones. It is thus natural to ponder what happens when
one marries the stronger representation systems with a dilator in the same vein as
4.27. As some WOP( f ) principles turned out to be equivalent to the existence of
countable coded ω-models, one is led to think that there is a stronger notion of model
that pertains to principles such as HWOP(F). After ω-models come β-models and
we take interest in statements of the form “every set belongs to a countably coded
β-model of T ” for various theories T.

Definition 4.45 Every ω-model M of a theory T in the language of second-order
arithmetic is isomorphic to a structure

A = 〈ω;X; 0,+,×, . . .〉

where X ⊆ P(ω).
A is a β-model if the concept of well ordering is absolute with respect to A, i.e.

for all X ∈ X,

A |= WO(<X ) iff <X is a well ordering,

where n <X m :⇒ 2n3m ∈ X .
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A natural test case is to consider β-models of �1
1-comprehension. There already

exists a characterization of the statement that every set is contained in an ω-model
of �1

1-comprehension in [57] due to Ian Alexander Thomson and the author of this
paper, as well as a characterization of the statement that every set is contained in anω-
model of�1

1-comprehension plus bar induction due to Ian Alexander Thomson [67].
This requires relativizing a stronger ordinal representation system than Bachmann’s.
The construction gives rise to a dilator, too.

Definition 4.46 We do not want to elaborate greatly on the details of the definition
of the representation system OT(�ω · X) for a well-ordering X, but like to give the
main ideas. The crucial extension here is that there is not just one strong ordinal
� as in Definition 4.16 but infinitely many �1,�2, . . . , �n, . . . with �ω denoting
their limit.X enters the representation systemOT(�ω · X) as follows: For u ∈ X one
has �ω · u ∈ OT(�ω · X), and if u <X v and α < �ω, then �ω + α < �ω · u and
�ω · u + α < �ω · v.

Moreover, each�n comes equipped with its own (partial) collapsing function ϑX
n ,

mapping the elements of OT(�ω · X) below �n , more precisely

ϑX
n : OT(�ω · X) −→ (�n−1,�n)

where (�n−1,�n) denotes the interval of terms strictly inbetween �n−1 and �n with
�0 := 0. Furthermore, each �n has its own support function supp�n

and ϑX
n (α) is

only defined if the ordinals in supp�n
(α) are strictly less than α, for which we write

supp�n
(α) < α. supp�n

(α) is defined as follows:

(i) supp�n
(0) = ∅, supp�n

(�τ ) = ∅ for τ ∈ ω + 1.
(ii) supp�n

(α) = supp�n
(α1) ∪ · · · ∪ supp�n

(αn) if α =CNF ωα1 + · · · + ωαn >

α1.
(iii) supp�n

(�ω · u + α) = supp�n
(α) for α < �ω and u ∈ X.

(iv) For β = ϑX
m (γ ), supp�n

(β) = ∅ if m < n and

supp�n
(β) = {γ } ∪ supp�n

(γ )

if m ≥ n.
Finally, the ordering between terms ϑX

n (α) and ϑX
m (β) is determined as follows:

ϑX
n (α) < ϑX

m (β) iff n < m ∨ [n = m ∧ α < β].

Theorem 4.47 (Rathjen, Thomson [57]) Over RCA0 the following are equivalent:

(i) Every set is contained in an ω-model of �1
1-comprehension.

(ii) ∀X [WO(X) → WO(OT(�ω · X)].
Proof [57]. ��
The construction of Definition 4.46 lends itself to a combination with any dilator
D, following the pattern of Definition 4.27, giving rise to an ordinal representation
system notated by OTD(�ω).
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Definition 4.48 In OTD(�ω), in place of the objects �ω · u for u ∈ X one has the
following closure property of Definition 4.46:

If α0, . . . , αn−1 ∈ OTD(�ω), α0 < · · · < αn−1 < �ω, and σ = (c; 0, . . . , n −
1; n) ∈ D, then

Eσ
α0,...,αn−1

∈ OTD(�ω) and �ω < Eσ
α0,...,αn−1

.

ObjectsEσ
α0,...,αn−1

act as ε-numbers above�ω. The ordering between termsEσ
α0,...,αn−1

and Eτ
β0,...,βm−1

is defined as in Definition 4.46. Furthermore, the support functions
need to be extended to these terms:

supp�n
(Eσ

α0,...,αn−1
) = supp�n

(α0) ∪ . . . ∪ supp�n
(αn−1).

Terms ϑD
n (α) are generated by the following clause:

If supp�n
(α) < α then ϑD

n (α) ∈ OTD(�ω) and ϑD
n (α) < �n .

Finally, the ordering between terms ϑD
n (α) and ϑD

m (β) is determined as in Defi-
nition 4.46:

ϑD
n (α) < ϑD

m (β) iff n < m ∨ [n = m ∧ α < β].

By combining the techniques of [57, 67] and Sect. 5, one arrives at a characteri-
zation of β-models of �1

1-comprehension.

Theorem 4.49 Over RCA0 the following are equivalent:

(i) Every set is contained in a countably coded β-model of �1
1-comprehension.

(ii) For every dilator D, OTD(�ω) is a well-ordering.

Proof See [17]. ��
In all likelihood, Theorem 4.49 is not a singularity. For instance, using a represen-
tation system with an inaccessible as in the ordinal analysis of �1

2-comprehension
plus bar induction (see [35]), one should arrive at a dilatorial characterization of
β-models of �1

2-comprehension. Similar characterizations should be obtainable for
β-models of theories axiomatizing recursively Mahlo universes (cf. [2, 45, 47]) or
�3-reflecting universes (cf. [3, 46]) and much more, the general conjecture, stated
somewhat loosely, reads as follows:

Conjecture 4.50 Ordinal representation systems OT used in ordinal analyses of
strong systems T give rise to functors

FOT : DIL −→ WO

sending dilators to ordinal representation systems. The assertion that FOT sends dila-
tors to well-orderings is equivalent to the statement that every set is contained in a
countably coded β-model of T .
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