
Chapter 3
On the Performance of Axiom Systems

Wolfram Pohlers

Abstract One of the aims of proof theory is to calibrate the strength of axiom sys-
tems by invariants. According to Gödel’s discoveries these invariants will in general
not be finite but rather transfinite objects. Pioneering work in this direction had been
done by Gerhard Gentzen who characterized the axiom system for Peano arithmetic
by the transfinite ordinal ε0. In this paper we try to develop a general framework for
characterizing ordinals of axiom systems and study to what extend these ordinals
embody a measure for their performance.

3.1 Introduction

Hilbert’s advocacy of the “axiomatic method”, as presented in his 1917 lecture in
Zurich (reprinted in [18]) has had a lasting influence on research and teaching in
mathematics. Nowadays, even beginners’ lectures are based on precisely introduced
axioms. Also in his Zurich lecture Hilbert emphasized the importance of the consis-
tency of the axiom systems used in the different areas of mathematics and explained
that this finally requires an axiomatization of number theory and set theory and the
underlying logic. But the quest for consistency, already expressed in Hilbert’s second
problem in [17], arose much earlier and formed the root of Hilbert’s program which
aimed at a finitistic confirmation of the axiom systems for number theory and logic.
Gödel’s incompleteness theorems, published in [16], wrecked Hilbert’s dream of a
finitistic consistency proof for axiom systems comprising the theory of natural num-
bers. Nevertheless, Gerhard Gentzen in [13, 14] succeeded in giving a consistency
proof for an axiom system of Peano arithmetic by use of infinitary means which can
be merged into a single transfinite induction of height ε0. It thus follows by Gödel’s
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second incompleteness theorem that transfinite induction up to ε0 cannot be provable
in Peano arithmetic. In a subsequent paper [15] Gentzen gave a direct proof of this
unprovability and showed that, conversely, transfinite induction can be proved up to
any proper initial segment of ε0 by the Peano axioms. This was the birth of ordinal
analysis and established ε0 as the proof-theoretic ordinal of Peano arithmetic.

Due to their genesis proof-theoretic ordinals are connoted with the problem of
consistency. The problem of consistency, however, is a problem which is provably
unsolvable. To prove the consistency of a (sufficiently strong) axiom system T we,
by Gödel’s second incompleteness theorem, necessarily need an axiom system T′
which is “stronger” than T. To secure the consistency of T′ we need an axiom system
T′′ stronger than T′ and so on. This leads to an “argumentum ad infinitum”. Of course
one can try to reduce T to an axiom system T′ whose proof-theoretic strength is in
principle that of T but whose consistency is intuitively more plausible. This form of
“reductive proof theory” is still flourishing.

Nevertheless, nowadays the problem of consistency no longer seems to play a
role in “everyday” mathematical discussions. Experience tells us that up to now
the assumption of the existence of abstract structures did not lead us to unsolvable
inconsistencies.

In this paper we will therefore put abstract structures in the centre and try to study
the role of proof-theoretic ordinals from this perspective. This puts their connection
to consistency in the background.

Characterizing properties of abstract structures by specific ordinals (and vice
versa) is a well-established tool in definability theory and generalized recursion
theory. One of the best-known examples is the ordinal ωCK

1 , the first ordinal which
cannot be represented by a recursive well-ordering on the natural numbers. So ωCK

1
is the supremum of the order-types of well-orderings that are primitive-recursively,
elementarily1 or even �1

1-definable in the structure N of the natural numbers. It is
moreover the closure ordinal of the structureN, in the sense defined byMoschovakis
in [24], and the first ordinal above ω at which the stage LωCK

1
in the constructible

hierarchy becomes an admissible set, etc.
Investigating abstract structures byHilbert’s axiomaticmethod requires an axiom-

atization T forM, i.e. a set T of sentences in the language ofM which we consider
to be characteristic forM and thus are assumed to be valid in the structure M.

In Sect. 3.2.2 we define the �1
1-ordinal πM of a countable abstract structure2

and its counterpart πM(T) for an axiomatization T of M. Since we regard πM as
characteristic forM and πM(T) as characteristic for T, it is obvious to consider the
distance between πM(T) and πM as a possible measure for the performance of the
axiom system T. It is one of the aims of this paper to find out to what extend this is
actually the case.

1 By the elementary language of a structure we understand the basis language ofM. This is in prin-
ciple always a first-order language. However, it does not exclude many sorted first-order languages,
e.g. weak second-order languages.
2 The properties of the ordinal πM are studied in [31]. In case that the structureM is the structure
N of arithmetic, we get πN = ωCK

1 .
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The main tool in our investigations are semi-formal systems, i.e. systems of
formal inference rules which allow for inferences with infinitely many premises.
Semi-formal systems are introduced in Sect. 3.2.1.2. The Boundedness Theorem3 in
Sect. 3.2.4 shows that the ordinal πM(T) is an upper bound for the ordinal δM(T),
which is the supremum of the order-types of elementarily definable orderings whose
well-foundedness is provable in T. If δM(T) = πM(T) we call δM(T) the proof-
theoretic ordinal of T. This coincides (at least in all cases that are known to us) with
the familiar definition of the proof-theoretic ordinal.

In Sect. 3.2.5 we apply these definitions to the example of an acceptable count-
able structure and first-order axiomatizations for it. The lessons learned from these
examples are twofold. First it shows the importance of pseudo �1

1-sentences
4 in the

axiomatization. Secondly it tells us that augmenting an axiom system by true elemen-
tary sentences will not improve its performance. For example, there is no difference
between the performance of the Peano axioms and an axiom system which, besides
Mathematical Induction, contains the full elementary diagram of N, although the
elementary diagram should know everything about N. The conclusion drawn from
these observations is that the ordinal πM(T) is rather a measure for the performance
of the axiom system T with respect to a universe above M than for M itself.5 This
is corroborated by the “No Enhancement Theorem” (Theorem 3.21) which states
that even the addition of true �1

1-sentences to an axiom system will not enhance its
performance.

The focus of the paper therefore concentrates on universes above a structure
M which have to be axiomatized by sentences “beyond” �1

1 (e.g. by pseudo �1
1-

sentences).
If a universe above M is supposed to contain only subsets of and functions on

M, the largest possible universe above M is apparently the full power set of M. A
different option is to allow arbitrary sets above M and to regard the objects in M
as urelements (or sets in the universe). Since Analysis, i.e. the theory of sets and
functions on the reals R, lives in the powerset of the natural numbers we refer to the
first form of universes as analytical universes while in the second form we talk about
set-theoretic universes. Our original plan was to investigate both forms of universes
in the present paper, but it quickly turned out that such a paper would become much
too long. So we decided to postpone the set-theoretic universes to a forthcoming
paper and to concentrate on analytical universes. Even here we had to cut back and
to concentrate on universes with characteristic ordinals below the first recursively
inaccessible ordinal. We feared that otherwise the necessary overhead could bury
the idea of our approach.6 Another argument is that for universes with characteristic

3 This theorem, in a different formulation, already appears in [15].
4 By a pseudo �1

1-sentence we understand a formula in the elementary language ofM, which must
not contain free first-order variables but may well contain free second-order variables. Semantically
pseudo �1

1-sentences are treated as �1
1-sentences.

5 That similarly πM is characteristic rather for an universe aboveM than forM itself follows from
Sect. 5 in [31].
6 Therefore many of the mathematical results presented here are not new. Most of them are already
contained in [33] but are presented here in a different context.
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ordinals above the first inaccessible ordinal the set-theoretic approach is much more
natural such that they should better be treated there.

The full powersetP(M) of a countable structureM is uncountable and thus out-
side of the reach of our methods. Therefore we restrict ourselves to universes that are
countable subsets ofP(M). Clearly not every subset ofP(M) is a suitable universe
above M. Only sets that fulfill certain closure properties are potential universes.

Good candidates are countable Spector classes above M as introduced in [24].
Spector classes aboveM are collections of relations onMwhose properties aremod-
eled on the paradigmatic example of recursively enumerable relations. Their origin is
the attempt to generalize computability theory.7 A partial function f : M −→p M
is partial �-recursive iff its graph is in the Spector class � above M.

Among other properties, Spector classes are normed, which is one of their salient
properties. For every relation R in a Spector class� there is an ordinalλ and a�-norm
σR : R onto−→ λ satisfying certain conditions. This entails that for every relation R in
a Spector class � we have an ordinal o(R) which is the supremum of all possible
�-norms on R. Putting o(�) as the supremum of all the �-norms for relations in
� we obtain a characteristic ordinal for a Spector class above a structure M which
generalizes the ordinal πM.8

The new and central notion of this paper is the spectrum of an axiom system
which already has been touched in a very preliminary form in [26] and in a bit more
elaborated form in [33].

Given abasis structureMweconstruct a hierarchyofSpector classesMμ aboveM
and thus obtain a hierarchy κM

μ of characteristic ordinals. Spector classes in general
are difficult to axiomatize. Fortunately the least Spector class above a structure M
can be obtained as a positive fixed-point structure. Axiomatizing a hierarchy of
Spector classes above a countable structureM thus leads to iterated positive inductive
definitions which are well studied in proof theory.9 If T is an axiomatization for the
basis structure M we extend T to an axiom system IDν(T) which axiomatizes the
hierarchy {Mμ μ ≤ ν} above M.

We then obtain a whole spectrum of characteristic ordinals for IDν(T). IfMμ for
μ ≤ ν is a Spector class we define oMμ(IDν(T)) as the supremum of allMμ-norms
σR(x) such that R ∈Mμ and IDν(T) x ∈ R. Then SpecM(IDν(T)) is the set of
all ordinals oMμ(IDν(T)) such that Mμ is a Spector class above M.10

If M is an acceptable structure, i.e. a structure which contains an elementarily
definable copy of the natural numbers and an elementarily definable coding machin-
ery, and T an acceptable axiomatization forM which proves all the properties of the

7 Cf. Definition 3.25 and Note 3.30.
8 πM corresponds to o(�) if � is the least Spector class above M (cf. Theorems 3.32 and 3.34).
9 Therefore, in some sense, we are selling “old wine in new skins”. Nevertheless we decided to
include—at least extended sketches of—many of the old proofs. First, of course, to make the paper
more self-contained and thus retain the survey character of the paper. Secondly because in many
cases the central ideas of the proofs are helpful (or even needed) to make our approach transparent.
10 Here one should observe that the spectrum of an axiomatization IDν(T) for Mν also comprises
the ordinal πMν (IDν(T)).



3 On the Performance of Axiom Systems 39

coding machinery, then the spectral points in SpecM(IDν(T)) represent exactly the
range of the Mμ-recursive functions, whose totality is provable in IDν(T).

The main technique used is that of collapsing operator controlled semi-formal
derivations.11 The controlling operators are obtained by iterations of Skolem-hull
operators on ordinals as introduced in Sect. 3.3.3.1. The main result is the Collapsing
Theorem (Theorem 3.68).

In Sect. 3.4.1 we apply the Collapsing Theorem to an axiom system T for M
which only contains Mathematical Induction as a non-elementary axiom. For such
an axiom systemwe obtain oMν (IDν(T)) = πMν (IDν(T)) ≤ εκM

ν +1. IfH is the oper-
ator which closes the set {κM

μ μ ≤ ν} under+ and the Veblen function ϕ we obtain
the iterationHα for α := πMν (IDν(T)) as a suitable operator for the collapsing pro-
cedure. Upper bounds for the spectral points of IDν(T) are then uniformly generated
as oMμ+1(IDν(T)) = Hα

(
κM

μ

) ∩ κM
μ+1.

In Sect. 3.4.2 we show that for acceptable axiom systems T these are the exact
points.

We end the paper by the remark that a refinement of the collapsing techniques
can be used to characterize the recursive functions on M which are provably total
in IDν(T) even for the case ν = 0. However, space did not allow to go into more
details.12

3.2 Characteristic Ordinals

3.2.1 Semi-formal Systems

The central tools in our research are semi-formal systems. Semi-formal systems form
a bridge between proofs and semantics with a certain emphasis on the proof-theoretic
side. In designing semi-formal system we follow the pattern introduced in [31] and
start with a brief overview on semi-formal systems.

3.2.1.1 The Verification Tree

Given a countable abstract structureMwith languageL (M)we denote byL (M)M
its extension by names m for all elements m in the domain M ofM. The verification
ofL (M)M -sentences F can be arranged in countably branching well-founded trees
VF , labeled by subsentences of F . The verification of atomic sentences inVF is given
by the diagram D(M) of M, which consists of all true atomic L (M)M -sentences.
Composed sentences G in VF are verified logically by recurrence to a characteristic
sequence CS(G) of subsentences of G which depends on the language L (M). If

11 Introduced in Sect. 3.3.3.
12 A more elaborated sketch is in [33].
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all sentences of CS(G) are needed in the verification of G we say that G belongs
to

∧−type (conjunction type), if some of the sentences in CS(G) suffice then G
belongs to

∨−type (disjunction type). For composed sentences we thus have

F ∈
∧
−type implies (M |= F iff M |= G for allG ∈ CS(F)) (3.1)

and

F ∈
∨
−type implies (M |= F iff M |= G for someG ∈ CS(F)). (3.2)

For atomic sentences G we have CS(G) = 〈 〉 and D(M) ⊆∧−type since the
sentences in D(M) need no logical verification.

The verification tree VF is, in principle, determined by F . The heights of well-
founded countable trees are measured by countable ordinals. For an ordinal α we

thus denote briefly byM
α

F that the verification tree VF for F has a height ≤ α.
We assume that a languageL (M) is characterized by its

∧−type ,∨−type and
the characteristic sequences CS(F) for L (M)M -sentences F . Under this assump-

tion there is an inductive definition of the verification relation M
α

F by the two
rules:

(
∧
) IfM

α
G

G andαG < α holds true for allG ∈ CS(F) then concludeM
α0

F ..

(
∨
) IfM

α0
G holds true for some G ∈ CS(F) then M

α
F holds true for all

α > α0.

The paradigmatic example forL (M) is the first-order language ofM. Since dealing
with negations causes technical inconveniences we generally do not count negation
among the logical symbols. Instead we assume that for every relation in M there is
also a symbol for its complement. Using de Morgan’s rules, negation of L (M)M -
sentences becomes definable by pushing the negation symbol in front of atomic
sentences and there using complements.We also restrict the propositional symbols to
conjunction anddisjunction.Neverthelesswekeepwriting A→ Bwhich is supposed
to be a “shorthand” for ¬A ∨ B where ¬A is assumed to be defined in the just
mentioned way. For the first-order language we then get

• CS(F) = 〈 〉, if F is atomic,
• CS(A ∧ B) = CS(A ∨ B) = 〈A, B〉,
• CS((∀x)F(x)) = CS((∃x)F(x)) = 〈

F(m) m ∈ M
〉
, wherewe anticipate a given

enumeration of the elements of M ,

and

• the
∧−type comprises all sentences inD(M), all sentences of the form (A ∧ B)

and (∀x)A(x),
• ∨−type := {¬F F ∈

∧
−type }, where ¬F is understood as defined in the

above sense.
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Acanonical complexitymeasure rnk(F) for first-order formulae F canbe obtainedby
counting the number of logical symbols occurring in F . This yields rnk(G) < rnk(F)

for all G ∈ CS(F).
For more complex languages the complexity rnk(F) may require a more sophisti-

cated definition. It is, however, essential that the complexity definition always fulfills
the requirement

rnk(G) < rnk(F) holds true for allG ∈ CS(F). (3.3)

By an easy induction on the complexity of anL (M)M -sentence F using (3.1), (3.2)
and (3.3) we then obtain in general

M F M F .iff
rnk(F )

(3.4)

3.2.1.2 The Semi-formal System for Countable Structures

Equation (3.4) shows thatM
α

F is just a redefinition of the familiar truth defini-
tion for the sentences in L (M)M which is usually defined by induction on rnk(F).
The situation changes if we allow free second-order variables in the language. We
call anL (M)M -formula a pseudo �1

1-sentence if it does not contain free object vari-
ables but may contain free second-order variables. For convenience we sometimes
denote byL +(M) the set of pseudo �1

1-sentence of L (M)M .
The semantics for pseudo �1

1-sentences is defined by
M |= F(X1, . . . , Xm) iff M |= F(X1, . . . , Xm)[S1, . . . , Sm] for any tuple
S1, . . . , Sm of relations onM such that Si matches the arity of Xi . (3.5)

We thus treat pseudo �1
1-sentences semantically as �1

1-sentences.

The point is that we can extend the verification relationM
α

F to a semi-formal
system which includes pseudo �1

1-sentences. We do that in form of a one-sided
sequent calculus à la Tait. That means that the semi-formal system derives finite sets
of L +(M)-sentences which are to be interpreted as finite disjunctions. We still do
not count the negation symbol among the logical symbols but regard negation as
defined. Finite sets of pseudo �1

1-sentences are denoted by upper case Greek letters
and we freely use the notions which are common in proof theory. So we write �,�

for � ∪ �, �,G for � ∪ {G} etc.
Since atomic pseudo �1

1-sentences �s ∈ X and �s /∈ X are neither logically verifi-
able nor possess a truth value inM they belong neither to

∧−type nor to
∨−type .

However. observations (3.1) and (3.2) can be generalized.
Let S1, . . . , Sn be a tuple of relations on M whose arities match the arities of the

second-order variables occurring in a pseudo �1
1-sentence, F ≡ F(X1, . . . , Xn).
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If F ∈
∧
−type we have M |= F[S1, . . . , Sn] iff M |= G[S1, . . . , Sn] for every

pseudo�1
1-sentence G(X1, . . . , Xn) ∈ CS(F). (3.6)

If F ∈
∨
−type we have M |= F[S1, . . . , Sn] iff M |= G[S1, . . . , Sn] for some

pseudo�1
1-sentence G(X1, . . . , Xn) ∈ CS(F). (3.7)

Definition 3.1 Let � be a finite set of pseudo �1
1-sentences. We define the semi-

formal proof relation M
α

ρ � by the following clauses

(X) If �s = s1, . . . , sn and �t = t1, . . . , tn are tuples of L (M)M -terms such that
M |= si = ti for i = 1, . . . , n and {�s ∈ X, �t /∈ X} ⊆ � then M

α

ρ � holds
true for all ordinals α and ρ.

(
∧
) If F ∈ � ∩∧−type and M

αG

ρ �,G holds true for all G ∈ CS(F) then

M
α

ρ � holds true for all α ≥ sup {αG + 1 G ∈ CS(F)}.
(
∨
) If F ∈ � ∩∨−type andM

α0

ρ �,G holds true for someG ∈ CS(F) then

M
α

ρ � holds true for all α > α0.

(Cut) If M
α0

ρ �, F , M
α0

ρ �,¬F and rnk(F) < ρ then M
α

ρ � holds true for
all α > α0.

Theorem 3.2 M
α

ρ � implies M |=∨ {F F ∈ �} in the sense of (3.6).
Proof This follows from (3.7) and (3.8) by induction on α. ��
The obvious next observation shows that the semi-formal system is a straightforward
extension of the verification relation.

Observation 3.3 For everyL (M)M-sentencewe haveM
α

0
F iffM

α
F . Hence

M
rnk(F)

0
F holds true for every trueL (M)M-sentence F.

Lemma 3.4 Let � be a finite set of pseudo �1
1-sentences such that its disjunction is

logically valid. Then there is a finite ordinal n such that M n

0
� .

Proof We just motivate the proof.13 It relies on the well-known fact that there
are finite sequent calculi in which every logically valid formula is cut-free deriv-
able. These finite derivations are easily translated into M

α

0
-derivations with a

finite α. ��
The next theorem embraces the outstanding feature of the semi-formal system.

Theorem 3.5 For any countable structureM we getM |= (∀X)F(X) iff there is a
countable ordinal α such that M α

0
F(X) .

13 For a complete proof cf. e.g. [31] Theorem 4.4.
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Proof The direction from right to left is Theorem 3.2. For the opposite direction
assumeM� α

0
F(X) for all countable ordinals α and construct a search tree for a semi-

formal proof of F(X) by inverting the rules (
∧

) and (
∨

). By assumption the search
cannot be successful and the search tree thus contains an infinite path f . Assigning
the relation S := {�a ∈ Mn �a /∈ X appears in f } to the second-order variable X we
obtain M �|= G[S] for all formulae occurring in f . This shows M �|= (∀X)F(X).
For a detailed proof see [31] Sect. 3. ��

We close the section by listing some of the obvious properties of the semi-formal
system which all follow by an easy induction on α. Call two L +(M)-formulae M-
equivalent it they at most differ inL (M)M -terms s1, . . . , sn and t1, . . . , tn such that
M |= (si = ti ) holds true for i = 1, . . . , n.

Observation 3.6

(Weakening) M
α

ρ � , α ≤ β, ρ ≤ σ and � ⊆ � imply M
β

σ � .

(
∧
-Inversion) M

α

ρ �, F and F ∈∧−type implies M α

ρ �,G for all G ∈
CS(F).

(∨-Exportation) M
α

ρ �, A ∨ B implies M α

ρ �, A, B .

(Tautology) M
2·rnk(F)

0
�, F,¬G holds true for all M-equivalent L +(M)-

formulae F and G.

Remark 3.7 The rules (
∧
), (

∨
) and (Cut) represent the logical part of the verifi-

cation calculus and the semi-formal system, respectively. Their non-logical part is
represented by the condition D(M) ⊆∧−type .

3.2.2 The Ordinals πM and πM(T)

We use the �1
1-completeness (Theorem 3.5) to define the �1

1-ordinal of a countable
structure M.

Definition 3.8 Let M be a countable structure and F a pseudo �1
1-sentence in the

language L (M)M . Then we define

tc(F) :=
{
min {α M

α

0
F} if this exists

ω1 otherwise

where ω1 denotes the first uncountable ordinal. The �1
1-ordinal of M is defined by

πM := sup {tc(F) F is a pseudo �1
1-sentence and M |= F}

where we again understand M |= F in the sense of (3.6).
Let T be an axiomatization of the structure M.14 We define the �1

1-ordinal of T
with respect toM by

πM(T) := sup {tc(F) F is a pseudo �1
1 − sentence and T F}.

14 By an axiomatization ofM we understand a set T of L (M)-sentences such that M |= T.
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There is an obvious observation.

Observation 3.9 An axiom system T for a countable structure M is consistent iff
πM(T) ≤ πM.

Remark 3.10 Observation 3.9 is a triviality since we requireM |= T for any axiom
system T forM (otherwise it would not be an axiom system forM). Let us—putting
for the moment consistency in the foreground—assume that T is just a set ofL (M)-
sentences.Then it may happen that T F but M �|= F . In that case we would get
πM(T) = ω1 even if T is consistent. For a consistent set T, however, there would
be a countable model S of T for which we would get πS(T) ≤ πS < ω1. The
consistency of an arbitrary set of sentences is thus secured if we succeed to show
πS(T) < ω1 for some structureSwhichmatches the language ofT.15 The definition
of πM(T) thus depends on the intended structureM.

In the following parts we want to study to what extend the distance between πM(T)

and πM represents a measure for the performance of the axiom system T with
respect to the structureM. To simplify notations we will mostly restrict ourselves to
acceptable structures which allow for an elementarily definable coding machinery.
We can therefore consider all second-order variables as unary and thus simply talk
about set variables.

3.2.3 Basics of Ordinal Arithmetic and Cut-Elimination

InTheorem3.5 andSect. 3.2.2wehave seen that cut-free semi-formal proofs and their
heights play a distinguished role. The essential feature of the semi-formal system
is that it allows for a cut-elimination procedure with computable increase of the
derivation height as stated in the Cut Elimination Theorem below. Though we will
not prove the theorem here—its proof is widespread and can be found in practically
all textbooks on proof theory—its understanding needs a rudimentary knowledge of
ordinal arithmetic which we are going to recap roughly.

We understand ordinals in the set-theoretic sense as hereditarily transitive sets
which are well-ordered by the membership relation ∈. Every ordinal is the set of all
its predecessors.
An ordinal is either 0, a successor ordinal of the form α ∪ {α}, or a limit ordinal λ

such that for every ξ < λ there is an η < λ such that ξ < η. By ω we denote the least
limit ordinal. It represents the order-type of the natural numbers.

Every class A ⊆ On of ordinals possesses an enumerating function enA which
enumerates the ordinals in A according to their natural ordering.

The enumerating function of a class which is closed and unbounded is a normal-
function, i.e. a function that is order-preserving and continuous with respect to the
canonical order topology of the ordinals.

15 This is just because any axiom system T is consistent iff there is a formula F such that T � F .
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The fixed points of the enumerating function of a closed and unbounded class of
ordinals form again a closed and unbounded class.

Let λξ. β + ξ be the enumerating function of the class {ξ β ≤ ξ}.
Then we obtain α + 0 = α, α + 1 = α ∪ {α}, α + (β + 1) = (α + β)+ 1 and

sup {α + ξ ξ < λ} = α + λ for limit ordinals λ.
An ordinal β is additively indecomposable if it is closed under ordinal addition,

i.e. ξ, η < β imply ξ + η < β. The class H of additively indecomposable ordinals
is closed and unbounded. The first ordinals in H are 1 = {∅} and ω.

Let λξ. ωξ denote the enumerating function of the class H. Then ω0 = 1, ω1 = ω

and ωλ = sup {ωξ ξ < λ} for limit ordinals λ. If α is additively indecomposable and
β < α then β + α = α.

An ordinal is an ε-number if it is closed under ω-powers, i.e. if α < ε entails
ωα < ε.

The Veblen functions ϕξ are defined by ϕ0(ξ) := ωξ and for ξ > 0 the function
ϕξ enumerates the common fixed points of the functions ϕη for η < ξ . Then α < β

implies ϕξ (α) < ϕξ (β), since ϕξ is an enumerating function, and ξ < η implies
ϕξ (ϕη(α)) = ϕη(α), since ϕη(α) is a fixed point of ϕξ .

The function ϕ1 thus enumerates the ε-numbers. Therefore we sometimes write
εξ instead of ϕ1(ξ).

An ordinal γ is strongly critical if it is closed under the Veblen functions viewed
as a binary function, i.e. if α, β < γ also implies ϕα(β) < γ . Let λξ. �ξ enumerate
the strongly critical ordinals. An ordinal γ is strongly critical iff ϕγ (0) = γ .

Theorem 3.11 (Cut-Elimination) M α

β+ωρ � entails M
ϕρ(α)

β
� .

Remark 3.12 The caseρ = 0 in the cut-elimination theoremshows that the decrease
of the cut rank by one means an increase of the derivation hight by oneω-power. This

can be improved to an increase by only a power of 2, i.e. toM α

β+1 � ⇒ M
2α

β
� ,

which may become important when it comes to not leaving the realm of the finite.

3.2.4 Boundedness

Another important feature of semi-formal systems is expressed in the Boundedness
Lemma and the resulting Boundedness Theorem. As a preparation we need some
notions.
Let ≺ be a well-ordering on the domain M of a structure M, B a finite subset of
field(≺) and coenB enumerate the complement of {otyp≺(x) x ∈ B} in the ordinals.
Put Bα := B ∪ {x ∈ field(≺) otyp≺(x) ≤ coenB(α)} and B<α = B ∪⋃

ξ<α Bξ .
Then we obtain
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coenB∪{x}(α) ≤ coenB(α + 1), (3.8)

(B ∪ {x})α ⊆ Bα+1 ∪ {x}, (3.9)

{y y ≺ x} ⊆ B<α ⇒ x ∈ Bα. (3.10)

Proof Equation (3.8) is obvious for x ∈ B. Otherwise there is an ordinal α0 such that
otyp≺(x) = coenB(α0). For α < α0 it is coenB∪{x}(α) = coenB(α). For α = α0 + ξ

we get coenB∪{x}(α0 + ξ) ≤ coenB(α0 + 1+ ξ) and α0 + 1+ ξ ≤ α + 1.
Equation (3.9) follows directly from (3.8).
To show (3.10) observe that by the transitivity of the relation ≺ we get for every

α < otyp≺(x) a y ≺ x such that otyp≺(y) = α. Claim (3.10) is trivial for x ∈ B.
Otherwise there is a ξ such that otyp≺(x) = coenB(ξ). If ξ ≤ α we are done. Ifα < ξ

then coenB(α) < coenB(ξ) and there is a y ≺ x such that otyp≺(y) = coenB(α).
Since otyp≺(y) = coenB(α) excludes y ∈ B we get the contradiction coenB(α) =
otyp≺(y) < coenB(α). ��

The Boundedness Lemma and the Boundedness Theorem provide statements
about the order-types ofwell-orderings that are definable inM. Thewell-foundedness
of an order relation ≺ can be expressed by the pseudo �1

1-sentence WO(≺, X) :≡
(∀x)[(∀y)[y ≺ x → y ∈ X ] → x ∈ X ] → (∀x ∈ field(≺))[x ∈ X ].
By Prog(≺, X) we abbreviate the formula (∀x)[(∀y)[y ≺ x → y ∈ X ] → x ∈ X ].
Lemma 3.13 (Boundedness Lemma) Let M be a countable acceptable structure
and ≺ a well-ordering that is elementarily definable inM. If

M
α

0
¬ Prog(≺, X), x1 /∈ X, . . . , xn /∈ X,�(X)

for a finite set of X-positive pseudo �1
1-sentences �(X) then M |=∨

�(X)[B<α]
for B := {x1, . . . , xn}.
Proof Since this is one of the central lemmas of the paper we sketch the crucial case
of its proof.16 We induct on α.
Assume that the critical formula of the last inference is¬Prog(≺, X). Then we have
the premise
(i) M

α0

0
¬Prog(≺, X), x1 /∈ X, . . . , xn /∈ X, (∀x)[y ≺ x → y ∈ X ] ∧ x /∈ X, �(X) .

By
∧
-inversion this entails

(ii) M
α0

0
¬Prog(≺, X), x1 /∈ X, . . . , xn /∈ X, (∀x)[y ≺ x → y ∈ X ],�(X)

and
(iii) M

α0

0
¬ Prog(≺, X), x1 /∈ X, . . . , xn /∈ X, x /∈ X,�(X) .

Assume M �|=∨
�(X)[B<α]. By X–positivity this entails M �|=∨

�(X)

[B<α0 ]. Then we obtain by (ii) and the induction hypothesis
(iv) M |= (∀x)[y ≺ x → y ∈ B<α0 ] which by (3.10) implies x ∈ Bα0 ⊆ B<α .
By (iii) and the induction hypothesis it follows
(v) M |= �(X)[(B ∪ {x})<α0 ] and by (3.9) we have (B ∪ {x})<α0 ⊆ B<α ∪ {x}.

16 A full proof is given in [1].
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Since B<α ∪ {x} = B<α by (iv) we have the contradiction M |=∨
�(X)[B<α].

��
Since coen∅(ξ) = ξ we obtain the next theorem as a corollary of Lemma 3.13.

Theorem 3.14 (Boundedness Theorem)LetM be a countable structure and assume
that ≺ is an L (M)-definable ordering on M such that M α

0
WO(≺, X) . Then

otyp(≺) ≤ α.

The Boundedness Theorem makes the connection of πM to better known character-
istic ordinals of a structureM, e.g. the supremumof the order-types of well-orderings
that are definable in M.

Definition 3.15 For a structureM and a language L ⊆ L (M)M define

δL := sup {otyp(≺) ≺ isL − definable inM andM |= WO(≺, X)}.

We briefly put δM := δL (M).
For an axiomatization T of M let

δL (T) := sup {otyp(≺) ≺ is L − definable inM and T WO(≺, X)}

and
δM(T) := δL (M)(T).

From the Boundedness Theorem we get immediately

δL ≤ δM ≤ πM for any sublanguageL ⊆ L (M)M (3.11)

and

δL (T) ≤ δM(T) ≤ πM(T) for an axiomatizationT forM. (3.12)

If δM(T) = πM(T) we put

|T |M := δM(T) = πM(T) (3.13)

and call |T |M the proof-theoretic ordinal of T with respect toM.

By an ordinal analysis of an axiom system T we understand the computation of its
proof-theoretic ordinal. An ordinal analysis of T usually follows the pattern that we
first compute πM(T) to obtain an upper bound and then show that for every ordinal
α < πM(T) there is anL (M)M -definable well-ordering≺ of order-type α such that
T WO(≺, X).

Note 3.16 If M is the structure N of natural numbers, we have δ�0
0 ≤ δ�1

0 = δN ≤
δ�1

1 ≤ πN ≤ δ�0
0 and likewise δ�0

0 (T) ≤ δ�1
0 (T) ≤ δ�1

1 (T) ≤ πN(T) ≤ δ�0
0 (T) = |T|N.
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Hence δN = πN and δN(T) = πN(T).
In [31] we claimed that δM = πM holds true for all acceptable structures M. This
is false in the there claimed generality. There are counterexamples which are count-
able elementary “Skolem” substructures of uncountable structures in which well-
foundedness is elementarily (i.e. first order) definable (cf.[24] Sect. 8D). These are
structures which allow for an elementarily definable coding machinery but in which
the characteristic sequences of elementary sentences are not elementarily definable.
Call a structure strictly acceptable if there is not only an elementarily definable coding
machinery but also all characteristic sequences for elementary sentences are elemen-

tarily definable. This requires an elementary coding F for allL (M)-sentences such
that FG CS can be expressed by an elementaryL (M) -formula.17 Then the
search tree for a pseudo �1

1-sentence becomes elementarily definable which entails
δM = πM as shown in [31].18 The paradigmatic example for strictly acceptable
structure are structures above the natural numbers. In general, strictly acceptable
structures are even more “standard like” and therefore constitute a restriction of gen-
erality. However, since strictly acceptable structures are not in the centre of this paper
we will not go into further details.

Remark 3.17 It should be noted that there is a certain parallel between pseudo �1
1-

sentences and �0
1-sentences of the first-order language ofM. For a recursive axiom

systemTwe can construct theGödel sentenceG(x) such thatT � G(z) holds true for
every numeral z but T � (∀x)G(x). For an arbitrary axiom system T, for which we
have an ordinal analysis, there is anL (M)-definablewell-ordering≺—whose order-
type is |T|M—and thepseudo�1

1-sentenceG(z, X) :≡ z ∈ field(≺)→ WO(≺�z, X)

such that T � G(z, X) for every z ∈ M but T � (∀x)G(x, X).

Note 3.18 To avoid second-order variables the proof-theoretic ordinal of an axiom
system is occasionally defined by a scheme

|T| := sup {otyp(≺) ≺ isL (M)− definable ∧ T � WO(≺, F)},

where F is any first-order sentence. This is not without problems. Let Def (M)

denote the collection of all subsets of M which are L (M)-definable from M.
Then the scheme T � WO(≺, F) entails that (M,Def (M)) |= (∀X) WO(≺, X).
But (M,Def (M)) is in general not a β -model. So T � WO(≺, F) in general will
not entail that ≺ is well-founded. Therefore we must assume “from outside” that
≺ is a well-ordering. Since T � WO(≺, X) implies T � WO(≺, F) for allL (M)-
sentences F we get under this assumption δM(T) ≤ |T|. On the other hand we can
show that for a strictly acceptable structure M there is an L (M)-sentence G and
a well-ordering ≺ of order-type πM(T) such that T + WO(≺,G) proves the con-
sistency of T. Hence T � WO(≺,G) by Gödel’s second incompleteness theorem
which entails |T| ≤ πM(T) = δM(T) and both ordinals coincide.

17 This implies that the well-ordering on the countable domain of M is elementarily definable.
18 Cf. Sects. 5.3 and 5.4 in [31].
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3.2.5 An Example

We give an example for an ordinal analysis. LetM be a countable strictly acceptable
structure, L (M) its first-order language and T be an axiom system for M. Then F
is a logical consequence of T if there are finitely many axioms T1, . . . , Tn in T such
that the formula

T1 ∧ · · · ∧ Tn → F

is logically valid. By Lemma 3.4 we thus obtain

M
k

0
¬T1, . . . ,¬Tn, F for a finite ordinal k. (3.14)

Let us first assume that T ⊆ L (M)M . Since rnk(G) < ω holds true for all sen-
tences G in L (M)M we get by Observation 3.3 M

mi

0
Ti with mi = rnk(Ti ) < ω

for i = 1, . . . , n . Form := max{m1, . . . ,mn} + 1 we therefore obtain together with
Lemma 3.4 by n cuts followed by cut-elimination (cf. Remark 3.12)

M
2(m)(k)

0
F for 2(0)(k) := k and 2(m+1)(k) := 22

(m)(k). (3.15)

If we assume that there is an upper bound for the complexities of the sentences in T
we thus get πM(T) < ω. If there is no such upper bound we get πM(T) = ω.

If we allow pseudo �1
1-sentences among the axioms of T we can no longer apply

Observation 3.3 to obtain upper bounds for the truth complexities of the sentences
in T. In this case we need additional computations. As an example we compute the
truth complexity of the axiom of Mathematical Induction

0 ∈ X ∧ (∀x)[x ∈ X → (x + 1) ∈ X ] → (∀x)[x ∈ X ].

in the structure N of natural numbers. We show

N
2n

0
0 /∈ X, (∃x)[x ∈ X ∧ (x + 1) /∈ X ], n ∈ X (3.16)

by induction on n. For n = 0 we obtain (3.16) by tautology (Observation 3.6). By
induction hypothesis we have

N
2n

0
0 /∈ X, (∃x)[x ∈ X ∧ (x + 1) /∈ X ], n ∈ X

and by tautology

N
2n

0
0 /∈ X, (∃x)[x ∈ X ∧ (x + 1) /∈ X ], n + 1 /∈ X, n + 1 ∈ X.

By an inference (
∧

) followed by an inference (
∨

) we get (3.16) with n replaced
by n + 1. From (3.16) we finally get
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N
ω

0
0 ∈ X,¬(∀x)[x ∈ X → (x + 1) ∈ X ], (∀x)[x ∈ X ]

hence

N
ω+4
0

0 ∈ X ∧ (∀x)[x ∈ X → (x + 1) ∈ X ] → (∀x)[x ∈ X ] .

Call an axiomatization of an acceptable structure acceptable if it proves all the
properties of the coding machinery. We especially require that an acceptable axiom-
atization comprises a form of Mathematical Induction. The truth complexity of this
axiommay be a bit greater than ω + 4—depending on the complexity of the elemen-
tarily definable copy(NC ,≤C ) ofN—but it will always remain smaller than ω + ω.
If we assume that all other axioms in T are L (M)M -sentences and thus have finite
truth complexities we obtain with the same procedure as above

M
2(m)(ω+ω)

0
F

for every pseudo �1
1-sentence which is provable from T. This shows πM(T) ≤

sup {2(m)(ω + ω) m ∈ ω} = ε0, where ε0 is the first ordinal α such that ωα = α, i.e.
ε0 = ϕ1(0). Call such axiom systems Peano-like.

On the other hand already Gentzen in [15] has shown that the Peano axioms
PA suffice to show that for any ordinal α < ε0 there is a well-ordering ≺ of order-
type α which is elementarily (even primitive-recursively) definable in N—and thus
also in every acceptable countable structureM—such that T WO(≺, X). So ε0 ≤
δN(PA). Since the critical axiom in the Gentzen proof isMathematical Induction this
proof can be mimicked in any acceptable axiomatization of a countable acceptable
structure. So we have the following theorem.

Theorem 3.19 Let M be an acceptable countable structure and T an acceptable
axiomatization ofM in which all axioms except Mathematical Induction are of finite
complexity. Then |T|M = ε0 and T is Peano-like.

Remark 3.20 Usually the Peano axioms PA are formulated in the first-order lan-
guage L (N) of N with the scheme of Mathematical Induction. This means that
we have PA ⊆ L (N) which—according to our above considerations—leads to
πN(PA) = ω. This is irritating since it is well known that the proof-theoretic ordinal
of PA is ε0. The reason for this irritation is the fact that the presence of the free second-
order variable X in WO(≺, X) is essential for the validity of the Boundedness The-
orem. We cannot conclude otyp(≺) ≤ α from the schemeM α

0
WO(≺, F). Even if

we extend the language of PA conservatively to PA(X) by adding second-order vari-
ables. We cannot infer PA(X) � WO(≺, X) from the scheme PA(X) � WO(≺, F),
where F only varies overL (PA)-sentences. The Boundedness Theorem is therefore
not applicable. Moreover we get δN(T) = 0 in absence of second-order variables.
Without second-order variables, we thus have to rely on Gödel’s second incomplete-
ness theorem and to argue as in Note 3.18.
According to Observation 3.3 we generally have tc(F) = rnk(F) for L (M)M -
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sentences which shows that tc(F) only carries additional information for pseudo
�1

1-sentences. In absence of free second-order variables the ordinal πM carries no
additional information. Thus second-order variables are essential for the definition
of δM.

However, Theorem 3.19 leads to another oddity. Let T be any Peano-like axiomati-
zation for a strictly acceptable countable structure M. If we denote by Th(M) :=
{F F is anL (M)M − sentence and M |= F} the elementary diagram ofM and by
(Ind) the pseudo �1

1-sentence which expresses Mathematical Induction we obtain

|T|M = | Th(M)+ (Ind)|M = ε0.

A surprising fact because Th(M) should know everything aboutM. This shows that
|T|M = πM(T) cannot serve as a measure of the performance of T with respect to
the ground structure M but is rather a measure of its performance with respect to a
“universe” above M.19 This observation is corroborated by the next theorem.20

Theorem 3.21 (No Enhancement Theorem) Let M be an acceptable countable
structure and T an acceptable axiomatization of M such that |T|M = πM(T). Let
(∃Y )F(Y ) be a �1

1-sentence which is true in M and T′ := T + (∃Y )F(Y ). Then
|T′|M = |T|M.

Proof From T′ WO(≺, X) we get T ¬F(Y ) ∨ WO(≺, X). Therefore there is
an ordinal α < πM(T) such that

M
α

0
¬ Prog(≺, X),¬F(Y ), (∀x)[x /∈ field(≺) ∨ x ∈ X ] .

By the Boundedness Lemma (Lemma 3.13) we thus obtain

M |= ¬F(Y ) ∨ (∀x ∈ field(≺))[otyp≺(x) < α].

Since M �|= ¬F(Y ) this entails otyp(≺) ≤ α < πM(T) = |T|M. Hence δM(T′) ≤
πM(T) = δM(T). The converse inequality holds trivially. ��

3.3 Analytical Universes AboveM

Taking the distance between πM(T) and πM as a measure for the performance of
an axiom system T, the considerations of the previous section have shown that the

19 To what extend the ordinal |T|M also has a meaning for the ground structure M will be briefly
touched in Sect. 3.5.
20 Rumor has it that this observation is due to Kreisel. Unfortunately I know no reference.
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performance of an axiom system forM can only be increased by additional axioms
for universes above M.21

There are in principle two possibilities to build universes above a structureM. Set
universes with the elements of M as urelements or “analytical” universes which only
talk about sets which are subsets of M . The more general and also more promising
approach are set universes. However, historically older is the concept of analytical
universes, which we think is also of interest for itself. For reasons of space we cannot
treat both approaches in this paper. Thereforewedecided to postpone the approachvia
set theoretical universes to another paper and to concentrate on analytical universes.

Axioms for universes above M need an extension of the first-order language of
M. Already the introduction of pseudo �1

1-sentences constitutes such an extension.
Themost obvious way is to expand the language to a second-order languageL 2(M).
The second-order quantifiers in full second-order logic vary over the full power set
of M . Since real numbers can be identified with subsets of natural numbers, “Real
Analysis” can be formulated within second-order logic. Hence the term “analytical
universe”. There is, however, no completeness theorem for full second-order logic
and therefore no formal calculus for full second-order logic which is sound and
complete.

There are calculi which are sound for second-order logic, which, however, are
in fact two sorted first-order calculi. We refer to such calculi as weak second-order
calculi. A second-order sentence is valid in weak second-order logic, if it holds in
all structures U (M) = (M,U (M), · · · ), where the range U (M) of second-order
quantifiers is supposed to be any subset of the full power set P(M). However,
we count only such subsets U (M) ⊆P(M) that satisfy certain closure conditions
among possible candidates for “analytical universes”.

The full structure (M,P(M), · · · ) is uncountable and therefore not accessible
to the methods introduced in Sect. 3.2. The largest structure which could possibly
be accessible to these methods is M2 := (M,D(M), · · · ) where D(M) is the set
of all subsets of M which are definable in the second-order language L 2(M). For
countable structures M this is again a countable structure.

Any axiomatization T for the structure M can be extended to an axiomatization
T2 forM2 by adding the comprehension scheme

(CA) (∃X)(∀x)[x ∈ X ↔ F(x)],
where F is any formula in the second-order language L 2(M) not containing the
variable X .

Remark 3.22 Since “Real Analysis”, i.e. the theory of real numbers can be for-
malized in this axiom system, which is based on classical logic, it is often referred
to as “Classical Analysis”.22 Another common—perhaps even better—name for the
system is “Second-Order Number Theory” which we abbreviate by SONT.

21 This is familiar from “Reverse Mathematics” as, e.g. presented in [38]. The increasing strength
of the axiom systems treated there is due to additional set-existence axioms.
22 To distinguish Analysis in the meaning of “Real Analysis” from analysis in concepts such as
“ordinal analysis” we capitalize Analysis, whenever we mean it in the former sense.
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Note 3.23 An extensive study of axiom systems for Analysis, i.e. subsystems of
SONT, can be found in [38]. However, Simpson’s studies in [38] go in a dif-
ferent direction. He begins with a collection of essentially five axiom systems—
formulated in second-order language—and examines which analytical universes ful-
fill these axioms and which known mathematical theorems are theorems—or even
equivalents—of these axiom systems.

Today we are still far away from an ordinal analysis of T2. The reason is the
impredicativity of second-order logic. The decoration for a second-order quantifi-
cation (QX)F(X,m) can only be the sequence

〈
F(S,m) S ∈ D(M)

〉
and the set

S := {x (QX)F(X, x)} is a member ofD(M). So we run into a vicious circle which
shows that the condition rnk(G) < rnk(F) can hardly bemet for allG ∈ CS(F). But
this condition is crucial for �1

1-completeness as well as for cut-elimination. There-
fore, we do not even have a definition of πM2 , let alone a computation of πM2(T2)

or δM2(T2).

3.3.1 Spector Classes

To come to structures which are within the reach of our methods we must further
restrict the “universe” D(M). Clearly only universes with sufficiently good closure
properties are interesting. Examples for such universes are Spector classes aboveM.

Definition 3.24 A Spector class above an abstract structure M = (M,F ,R) is a
collection � =⋃

n∈N �n of relations on M which satisfy the following conditions.23

(C) � is closed under the positive Boolean operations, first-order quantification
and trivial combinatorial substitutions.

(U) � is universal, i.e. for any n ∈ N there is a n + 1-ary relation U ∈ �n+1
such that for every n-ary R ∈ �n there is an element e ∈ M such that
M |= (∀�x)[R(�x) ↔ U (e, �x)].24

(N) � is normed, i.e. for every R ∈ � there is an ordinal λ and a norm σ : R onto−→ λ

such that the stage comparison relations

(N1) �m �∗σ �n :⇔ R( �m) ∧ [R(�n) → σR( �m) ≤ σR(�n)]
and

(N2) �m ≺∗σ �n :⇔ R( �m) ∧ [R(�n) → σ( �m) < σ(�n)]
are both in �. Call such a norm a �-norm on R.

(A) Every f ∈ F and every R ∈ R belongs to the self-dual class � = � ∩ �̆

where
�̆ :=

⋃
{X⊆Mn (Mn \ X) ∈ �n}

23 Spector classes are introduced in [24] Chap.9.
24 In abuse of notation we will often use �x ∈ R and R(�x) synonymously.
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denotes the dual of �.
Here f ∈ � means {(�x, f (�x)) �x ∈ dom( f )} ∈ �.

As remarked above, second-order quantifiers are difficult to decorate. Therefore it
might be difficult to define the �1

1-ordinal πM for structures which comprise an
analytical universe. For Spector classes, however, there is a canonical replacement
for the ordinal πM.

Definition 3.25 For a Spector class � and R ∈ � we define the ordinal

o(R) := sup {σ(�x)+ 1 R(�x) and σ is a �-norm on R}

and for a subset � ⊆ �

o(�) := sup {o(R) R ∈ �}.

We define the Spector spectrum of an abstract structure M by

SPEC(M) := {� � is a Spector class aboveM}

and the ordinal spectrum of M

SpecM := {o(�) �is a Spector class aboveM}.

The intersection of Spector classes above M is clearly again a Spector class above
M. Therefore there exists a least Spector class

SPM :=
⋂

SPEC(M)

above M and we put

κM := o(SPM) hence κM = min SpecM. (3.17)

Lemma 3.26 Let � be a Spector class above a countable acceptable structure M
and ≺ a well-ordering in �. Then otyp(≺) ≤ o(�). Hence δM ≤ κM.

Proof Let U 2 parameterize the binary relations in � and τ : U 2 onto−→ λ be a norm
for U 2. Then, given a well-ordering ≺ ∈ �, the relation

R := {(u, x) (∀y)[y ≺ x → (u, u, y) ≺∗τ (u, u, x)]}

is a relation in �2 which, in turn, is parameterized by a fixed element a ∈ M . Hence

(∀y)[y ≺ x → (a, a, y) ≺∗τ (a, a, x)],

which shows otyp≺(x) ≤ otyp≺∗τ ((a, a, x)) and thus also otyp(≺) ≤ o(�) by ≺-
induction on x . ��
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Remark 3.27 For a Spector class � and R ∈ � we have R ∈ � iff o(R) < o(�).
(Cf. [24] Theorem 9C.4).

3.3.1.1 A Hierarchy of Spector Classes Above M

The existence of a least Spector class above M opens the possibility to built a
hierarchy of Spector classes above M. Call a structure of the form (M, �, · · · ),
where � is a Spector class above M = (M, · · · ), a Spector structure. Augmenting
a structure M = (M, · · · ) by the relations in SPM we obtain a Spector structure
M1 := (M, SPM, · · · ). Iterating this procedure yields a hierarchy SP

n
M of Spector

classes above M and Spector structures Mn = (M, SP
n
M, · · · ). This hierarchy can

be continued into the transfinite by defining

SP
0
M = ∅,

SP
μ+1
M := SPMμ

forMμ := (M, SP
μ

M, · · · ) and
SP

λ
M =⋃

ξ<λ SP
ξ

M for limit ordinals λ.

Let κM
μ denote the corresponding closure ordinals of the Spector classes SP

μ

M, i.e.

κM
0 := 0, κM

μ+1 := o(SP
μ+1
M ) and κM

λ := o(SP
λ
M) = sup {κM

ξ ξ < λ}.
Remark 3.28 All the structures Mμ+1 are Spector structures. For limit ordinals λ

this is not true in general. IfMλ happens to be a Spector structure, we call κM
λ aM-

recursively inaccessible ordinal (mostly omitting the M). Recursively inaccessible
ordinals play an important role in the study of set universes above M. In this paper,
however, we will not study these aspects. Therefore we just neglect recursively
inaccessible ordinals which amounts to considering only ordinals μ below the first
recursively inaccessible ordinal.

3.3.1.2 The Ordinal Spectrum of an Axiom System

Definition 3.29 Let T be an axiomatization for a universe above M.
For � ∈ SPEC(M) let

o�(T) := sup {σR(�x)+ 1 R := {�y ∈ Mn F(�y)} ∈ � ∧ T F(�x)}

where σR again varies over the �-norms for R. Let

SpecM(T) := {o�(T) � ∈ SPEC(M)}, κM(T) := oSPM(T) = min SpecM(T).

The distance between κM(T) and κM represents a measure for the performance of
the axiom system T with respect to SPM. We have δM(T) ≤ κM(T) and in case that
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δM(T) = κM(T) we put |T|M = κM(T) and call |T|M the proof-theoretic ordinal
of T in relation toM. 25

Note 3.30 Spector classes are introduced and studied in [24] Chap.9 and [25].
Spector classes are designed to generalize computability in an abstract way. The
archetype of a Spector class is the collection RE of recursively enumerable sets.
Clearly, in RE we have to replace closure under first-order quantification by clo-
sure under bounded quantification. The universal set isU = {〈x, e〉 (∃y)T (e, x, y)},
where T denotes the Kleene predicate, and for m ∈ P = Ue we get the norm
σe(m) := min {n T (e,m, n)}. Then we get

m �∗ n :⇔ (∃z)[(∃y ≤ z)T (e,m, y) ∧ ¬(∃y < z)T (e, n, y)]

and
m ≺∗ n :⇔ (∃z)[(∃y ≤ z)T (e,m, y) ∧ ¬(∃y ≤ z)T (e, n, y)]

which are both recursively enumerable.
So the class RE of recursively enumerable sets could be viewed as Spector class
with o(RE ) = ω. Nevertheless, because of its restricted closure properties, we do
not count RE among SPEC(M). So we always have ω < κM.
The analogy of Spector classes to recursively enumerable sets forms the background
for the definition of partial �-recursive functions. If � is a Spector class above a
structure M we call a partial function f : Mn −→p M partial �-recursive iff its
graph G f belongs to �.

3.3.2 Fixed-Point Theories

3.3.2.1 General Fixed-Point Theories

The notion of a Spector class is very general. Consequently the Spector spectrum of
a countable acceptable structure M is huge, even when we restrict it to countable
Spector classes aboveM. Moreover, because of the ordinals needed in condition (N)
Spector classes cannot be directly axiomatized in L 2(M).26 Therefore we need a
more specific characterization of Spector classes.

The essential examples for Spector classes are obtained by fixed points ofL (M)-
definable operators on M . We briefly recap some of their key properties.27 Again we

25 For strictly acceptable structuresM and acceptable axiom systems T which prove Weak König’s
Lemma we always have δM(T) = κM(T) (cf. [30] Thm. 6.7).
26 The lack of direct access to ordinals inL 2(M) is one of the reasons why ordinal analysis shifted
from the studyof analytical universes to the studyof set-theoretic universes inwhich ordinal numbers
occur naturally (cf. [32] for a brief overview).
27 The theory of fixed points is studied in [25]. We will, however, by far not exhaust the very general
approach in [25].
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restrict ourselves to countable acceptable structuresM. We thus can regard Spector
classes above M as subsets ofP(M).

Any formula F(X, x) in the language ofL (M), which contains only the shown
free variables, defines an operator

�F : P(M) −→ P(M)

�F (S) := {m ∈ M M |= F[S,m]}.

A set S ⊆ M is a fixed point of �F iff �F (S) = S. Let us denote by �α
F the α-th

inflationary iteration of �F , i.e. �α
F := �<α

F ∪�F (�<α
F ) for �<α

F := ⋃
ξ<α �

ξ

F . For
cardinality reasons there is a countable ordinal σ such that �σ

F = �<σ
F . Let |�F | be

the least such ordinal, the closure ordinal of F . Clearly IF := �
|�F |
F is a fixed point of

�F . Defining σF (a) := min {α a ∈ �α
F }we obtain a norm σF : IF onto−→ |�F |whose

stage comparison relations are given by

m ≺∗F n :⇔ (∃α)[m ∈ �α
F ∧ n /∈ �α

F ]

and
m �∗F n :⇔ (∃α)[m ∈ �α

F ∧ n /∈ �<α
F ].

Let F be a complexity class for the formulae in L (M). A set A ⊆ M is F-
inductive iff there is a formula F(X, x) in F and an element m ∈ M such that A =
{x 〈x,m〉 ∈ IF }. For F(X, x) ∈ F let F∗(X, x) :⇔ F((x)0, {(x ′)0 x ′ ∈ X}) ∧
(x)1 /∈ {(x ′)1 x ′ ∈ X}. It easily follows that 〈m, n〉 ∈ �

ξ

F∗ ⇔ m ∈ �
ξ

F ∧ n /∈ �
ξ

F .
Provided that F∗(x, X) still belongs to F this shows that ≺∗F is F-inductive and
similarly we obtain that also �∗F is F-inductive. So ≺∗F and �∗F satisfy condition
(N). Under certain (mild) additional conditions on F also conditions (C) and (U) are
fulfilled and the class F− IND of F-inductive sets then forms a Spector class.28

However, we still have the problem that the definition of fixed points needs ordi-
nals. This can be circumvented by the use ofprewellorderings as suggested byMöller-
feld in [23]. The triple (IF ,�∗F ,≺∗F ) forms a prewellordering with IF = {x x �∗F x}
satisfying

(∗) m �∗F n ⇔ m ≺∗F n ∨ F(n, {x x ≺∗F n}).

Let FIXF (X) express that ({x 〈x, x〉 ∈ (X)0}, (X)0, (X)1) is a prewellordering
which fulfills (*) with �∗F replaced by (X)0 and ≺∗F replaced by (X)1. The scheme
(FIXF (X)) is expressible in second-order logic. If T is a strictly acceptable axiom-
atization for a countable strictly acceptable structureM then the scheme

T + {(∃X)FIXF (X) F ∈ F}

axiomatizes the Spector class F− IND above M.

28 See [24, 25] for details.
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Note 3.31 In [29] (reprinted in [30]) we gave an ordinal analysis of the theory
�0

1 − IND above the structure of natural numbers which is based on the axioma-
tization outlined above. In general, however, �0

1 − IND is not a full Spector class
above arbitrary countable acceptable structures but only a semi-Spector class which
lacks full closure under first-order existential quantification.29 For countable strictly
acceptable structures M the search tree for pseudo �1

1-sentences is elementarily
definable. Since the well-foundedness of the search tree can be expressed by a �0

1
inductive definition this entails that �0

1 − IND and the �1
1-relations onM coincide.

This makes �0
1 − IND a full Spector class above strictly acceptable structures.

Whilst �0
1 − IND equals the collection of �1

1-relations above N and thus
o(�0

1 − IND) = πN = ωCK
1 , the ordinals o(F− IND) for complexities classes F

above �0
1 are much larger.30 There are—at least to my knowledge—also no direct

ordinal analyses of axiom systems for such F− IND-theories.31

3.3.2.2 Positive Fixed-Point Theories

From a proof-theoretic point of view the structures F− IND are difficult to han-
dle. Fortunately the construction of the hierarchy SP

α
M can be obtained by a more

restricted class of fixed-point theories.
An operator�F is X -positively definable if its defining formula F(X, x) contains

no occurrence of X in the negated form s /∈ X . Due to the X -positivity of F(X, x)
such operators are monotone, i.e. X ⊆ Y entails �F (X) ⊆ �F (Y ) for all subsets X ,
Y of M . For an X -positive formula F(X, x) the formula F∗(X, x), as defined above,
is of course no longer X -positive. This makes it a bit harder to prove that �∗F and
≺∗F are positively definable inductive sets. A proof can be found in [24] Thm. 2A.2.

Of distinguished importance is Corollary 9A.3 of [24] which we state as theorem.

Theorem 3.32 Let M be an acceptable structure. Then the collection of positively
definable inductive relations on M form the least Spector class above M.

Given a relation R ∈ SPM and a SPM-norm σ : R −→ λ on R, the associated
relation ≺∗σ belongs to SPM and is thus a positively definable inductive relation
on M. If ≺∗σ is a slice of a fixed point which is defined by an X -positive formula
F(X, x) we obtain λ ≤ otyp(≺∗σ ) ≤ |�F |, where |�F | denotes the closure ordinal
of F . In order to obtain upper bounds for o(SPM) and oSPM(T )) it therefore suffices
to compute upper bounds for |�F |.
Remark 3.33 It follows from Theorem 3.32 that the ordinal κM

μ+1 coincides with
the closure ordinal of Mμ in the sense of [24] Chpt. 2B.32 For the structure N of
the natural numbers it is a folklore result that κN = ωCK

1 which is the initial ordinal

29 Cf. [25] Sect. 8.
30 Cf. [36].
31 Although some proof-theoretic ordinals are known via embeddings into set-theoretic universes.
32 Hence the notation κM

μ+1.
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of the second constructive number class.33 Therefore we obtain κN
μ = ωCK

μ and the
ordinals κN

μ coincide with the initial ordinals of the constructive number classes.

Because of the monotonicity of a positively defined operator �F its fixed point can
easily be obtained as the intersection of all �F -closed subsets of M , i.e.

IF =
⋂
{S⊆M �F (S) ⊆ S}.

For a fixed point IF ∈ SPM we can express s ∈ IF by the pseudo �1
1-sentence

(∀x)[F(X, x) → x ∈ X ] → s ∈ X . Therefore we have

Mμ+1 |= s ∈ IF iff Mμ |= (∀x)[F(X, x) → x ∈ X ] → s ∈ X. (3.18)

There is also a modification34 of the Boundedness Theorem for fixed points which
provides a link to the ordinal πM.

Theorem 3.34 LetM be a countable structure and F(X, x) an X-positiveL (M)-
formula. Then M

α

0
¬(∀x)[F(X, x) → x ∈ X ], s ∈ X implies SPM |= s ∈ �<2α

F ,
where �F denotes the operator defined by F(X, x).

As an immediate consequence of Theorem 3.34 we obtain

δM ≤ κM ≤ πM (3.19)

and for strictly acceptable structures M even equality.

Remark 3.35 As shown in [31] Theorem 5.32 we have πM = κM for structures
M which allow for an inductive pairing, especially for acceptable structures. This
shows that already the ordinal πM and thus also the ordinal πM(T) refers to the least
Spector class above M.
As an example let Mμ be our basis structure and Dμ be the elementary diagram
Th(Mμ) plusMathematical Induction. Since o(SP

μ

M) = κM
μ wemay assume that all

sentences inL (Mμ) have complexities less than κM
μ .35 If we now follow the pattern

of the example in Sect. 3.2.5 we obtain the ordinal εκM
μ +1, the first ε-number above

κM
μ , as an upper bound for πMμ(Dμ). For R ∈ SPMμ

=Mμ+1 there is an X -positive
formula F(X, x) in L (Mμ) and an n ∈ M such that s ∈ R ⇔ 〈s, n〉 ∈ IF ⇔
(∀x)[F(X, x) → x ∈ X ] → 〈s, n〉 ∈ X . So ifDμ G(s) and {y G(y)} ∈Mμ+1 we
can assume that G(s) is a pseudo �1

1-sentence (∀y)[F(X, y) → y ∈ X ] → s ∈ X .
Together with Theorem 3.34 this shows that oMμ(Dμ) ≤ εκM

μ +1, the first ε-number

above κμ. Gentzen’s accessibility proof for ε0, the first ε-number above 0 = κN
0 , can

33 Cf. e.g. [27] Sect. 7.2.
34 The proof of the modification follows in principle the same pattern as the proof of Theorem 3.14.
Because of the more blurred estimate 2α it is even a bit easier and does not need the notion of
co-enumeration. However, the extra 2-power is indispensable.
35 An assumption that will be substantiated later.



60 W. Pohlers

easily be relativized to show also εκM
μ +1 ≤ oMμ(Dμ). Hence oMμ(Dμ) = εκM

μ +1. If
Dμ F(s) then {s F(s)} is a set in at mostMμ+1. Therefore we get SpecMμ(Dμ) =
{εκM

μ +1}, hence |Dμ|Mμ
= εκM

μ +1. For a Peano-like basis structureM and μ = 0 we

get SpecM(D0) = {ε0} which shows that Definition 3.25 generalizes Definition 3.8
at least for Peano-like structuresM.

3.3.2.3 An Axiomatization of the Structures Mμ

Although we can express s ∈ IF by a pseudo �1
1-sentence we would have to leave

the first-order language if we wanted to express s /∈ IF . This can be circumvented
by introducing constants IF for fixed points defined by X -positive formulae F(X, x)
together with their defining axioms

(ID1) (∀x)[F(IF , x) → x ∈ IF ],
(ID2) (∀x)[F(X, x) → x ∈ X ] → (∀x)[x ∈ IF → x ∈ X ]

into the language of SPM. This leaves us in the realm of first-order logic.
Given an axiomatization T of a structureM we thus get an axiomatization ID(T)

for the least Spector class SPM above M by augmenting T by the schemes ID1 and
ID2. Finding a decoration and thus a semi-formal system for the structure of SPM

is, however, not so easy. We need a decoration for the formulae s ∈ IF and s /∈ IF .
The only option is to define

CS(s ∈ IF ) := 〈F(IF , s)〉 and CS(s /∈ IF ) := 〈¬F(IF , s)〉.

Since both characteristic sequences have only one element the type of these atomic
sentences is irrelevant. However, this decoration violates the condition rnk(G) <

rnk(F) for G ∈ CS(F) and this condition is crucial for both �1
1-completeness

and cut elimination. Nevertheless we obtain for the resulting semi-formal system
SPM

α

ρ � a modified version of �1
1-completeness.

Theorem 3.36 Let M be a (strictly acceptable) countable structure and G(X) be
a pseudo �1

1-sentence in the language of SPM which contains at most positive
occurrences of constants IF . Then SPM |= (∀X)G(X) iff there is a countable ordinal
α(< κM) such that SPM

α

0
G(X) .

Proof We sketch the proof. The soundness direction follows easily by induction on
α. For the completeness direction we generalize the singleton {G(X)} to a finite set
�(X, IF ) of�1

1-sentenceswhich contain atmost positive occurrences of constants IF
and define a search tree for �(X, IF ) by inverting the (

∧
) and (

∨
) rules (including

the rules generated by CS(s ∈ IF )). If M is strictly acceptable then S� is L (M)-
elementarily definable. If the search tree iswell-foundedwe have a semi-formal proof
for �(X, IF ) of countable height which is less than κM if M is strictly acceptable.
Otherwise there is an infinite path f through S� and we assign to the variable X
the set S := {s ∈ M (s /∈ X) occurs in f }. Then we prove by main induction on ξ
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with side induction on rnk(H(X,Y )) that Mν �|= H(X,Y )[S, I ξ

F ] holds true for all
formulae H(X, IF ) occurring in f and all ordinals ξ . Observe that the X -positivity
of the defining formula F(X, x) for IF is essential for the positive occurrence of IF
in the characteristic sequence of s ∈ IF . ��

Unfortunately we cannot gain much information from Theorem 3.36. One fact
that we can learn from it is that allowing positive occurrences of constants for fixed
points in the defining X -positive formula F(X, x) of an operator �F will not extend
its closure ordinal |�F | beyond πMμ+1 . This is in accordance with the known fact
that positive inductive definitions are closed under “positive inductive in”. (Cf. [24]
Theorem 1C.3.)

Iterating the passage from T to ID(T) we obtain axiomatizations for all finite
levels Mn in the hierarchy of Spector classes. To obtain also axiomatizations for
the transfinite hierarchy we need ordinal notations in M. So assume that there is an
elementarily definable setOn ⊆ M togetherwith an elementarily definable transitive,
irreflexive, and linear “less than” relation ≺ on On. To emphasize that the elements
in On are ordinal notations we use lower case Greek letters as syntactical variables
for ordinal notations and write μ < η instead of μ ≺ η. To ensure that On is in fact
an ordinal notation system for the ordinals < ν we need the axiom of transfinite
induction

(TIν) (∀ξ)[(∀ρ)[ρ < ξ → ρ ∈ X ] → ξ ∈ X ] → (∀μ)[μ ∈ X ]
where we already use the convention that lower case Greek letters vary over On.
By the subscript ν we indicate that (On,≺) is supposed to be a well-ordering of
order-type ν. In abuse of notation we occasionally even use the same letter μ for the
element μ ∈ On ⊆ M and the ordinal μ which represents the order-type of μ in the
well-ordering≺. It should always be clear from the context to which object we refer.

Every inductive set in Mμ is either already in Mξ for some ξ < μ or a slice of
a fixed point of an positive operator �F with defining formula F(X, T1, . . . , Tn, x)
where T1, . . . , Tn are inductive sets belonging to someMξ for ξ < μ. Because of the
universality of Spector classes we can replace T1, . . . , Tn by n-slices of an universal
set U and thus assume n = 1. Moreover we may assume that universal sets Uξ

for every Spector class SP
ξ

M can be uniformly generated by an X -positive L (M)-
formula U (X,Y, x) with no further occurrence of free variables. So we arrive at the
following axiomatization for the structure Mν :

For any X -positive L (M)-formula F(X,Y, x) without further free variables
we introduce a constant IF . To formulate the defining axioms for the constants IF
we use the abbreviation s ∈ IFμ

for 〈s, μ〉 ∈ IF and define s ∈ IF<μ
to denote the

formula (∃ξ < μ)[s ∈ IFξ
].

The defining axiom schemes for the constants are

(ID1
ν) (∀μ)(∀x)[F(IFμ

, IF<μ
, 〈x, μ〉) → x ∈ IFμ

],
(ID2

ν) (∀μ)(∀x)[F(X, IF<μ
, 〈x, μ〉) → x ∈ X ] → (∀x)[x ∈ IFμ

→ x ∈ X ]
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For an axiomatization T for M let IDν(T) denote T together with the axiom
schemes (TIν), (ID1

ν) and (ID2
ν).

36

Note 3.37 Axiomatizations for iterations of positive inductive definitions have been
introduced by Georg Kreisel in [21, 22] for foundational investigations. There was
hope that suitable inductive definitions could generate the bar recursive functionals
of higher types required by C. Spector in a consistency proof for Second-Order
Number Theory ([39]). To cite Sol Feferman from [9] “Kreisel wanted to see whether
iterated inductive definitions (of classes of lawlike sequences …) could serve to
model the bar recursive functionals of higher types” This hope did not materialize
as only bar recursive functionals of types ≤ 2 could be generated.37 Nevertheless
iterated inductive definitions started to become a relevant topic in the foundations of
mathematics.38

On the other hand inductive definitions on abstract structures were also studied
from a purely mathematical point of view. Yannis Moschovakis summarized these
studies in his monograph [24] and the subsequent paper [25]. There he also intro-
duced the notion of Spector classes and investigated their connections to inductive
definitions. The emphasis of the present paper is on iterated inductive definitions as
abstract structures.

3.3.2.4 The Structures M∗
ν

InRemark 3.35we sketched an ordinal analysis ofDμ as an axiom system forMμ and
suggested in Sect. 3.3.2.3 a decoration for the language ofMμ+1 = (M, SPMμ

, . . . ).
But the semi-formal system for Mμ+1 induced by this decoration cannot help us
to an ordinal analysis of ID(Dμ) or ID(T) for another axiom system T for Mμ.
All we can conclude from ID(T) s ∈ IF is Mμ+1 |= s ∈ IF , hence Mμ+1 |=
(∀x)[F(X, x) → s ∈ X ] → s ∈ X ], hence Mμ+1 α

0
(∀x)[F(X, x) → x ∈ X ] → s ∈ X

for some ordinal α < κM
μ+1, which finally implies |s|F < κM

μ+1. But this already fol-
lows by the definition of κM

μ+1 (which we in fact used in the proof of Theorem 3.36).
What is lacking is a cut elimination procedure for the semi-formal system which
allows a computation of the increase (or decrease) of the derivation-height during
the procedure and thus gives a better estimation of the ordinal α. For an ordinal anal-
ysis of ID(Dμ) we thus need a decoration for the formulae in Mμ+1 which satisfies
rnk(G) < rnk(F) for G ∈ CS(F).

The standard structuresMν for ν > 0 are apparently not sufficiently fine grained
to allow for a decoration of the language of L (Mν) with this property. To obtain
a finer graining we have to resolve the fixed points in Mν into their stages. This
needs ordinal constants in the language. Every fixed point IF in SP

μ

M is the union

36 This axiom system is essentially the axiom system for iterated inductive definitions as introduced
by Sol Feferman in [8].
37 Cf. [22].
38 Cf. e.g. [8, 10, 11] and the bibliographic notes given there.
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⋃
ξ<κM

μ+1
I ξ

F of its stages. Let SP
μ

M∗ denote the set of all stages of fixed points in SP
μ

M

and put M∗
μ := (M, SP

μ

M∗ , · · · ). The language of M∗
μ thus contains also constants

for ordinals. These ordinal constants must not be confused with the ordinal notations
in On which are just elements in M . However, ordinal notations and ordinals are
connected in so far that for every ordinal notation μ ∈ On (whose order-type is
represented by the ordinal μ) there is an ordinal constant κM

μ and thus also constants
for all ordinals less than κM

μ .
To facilitate the decoration for the languageL (M∗

μ) it is preferable to introduce

constants I<ξ

Fμ
for the union of stages below ξ instead of constants I ξ

Fμ
for the stage

ξ and constants IF<μ
for the union of fixed points below μ. The formula s ∈ I ξ

Fμ
is

then simply an abbreviation for F(I<ξ

Fμ
, IF<μ

, 〈s, μ〉) and we get the fixed point IFμ

as I
<κM

μ+1
Fμ

.

Definition 3.38 Formally we define the languageL (M∗
ν) by the following clauses:

• Every pseudo �1
1-sentence inL (M) is an L (M∗

ν)-formula.
• Every free second-order variable is a set term.
• For every ordinal notation μ ∈ On of order-type μ there are ordinal constants ξ

for all ξ ≤ κM
μ .

• For every X -positive L (M)-formula F(X,Y, x) without further free variables,
every ordinal notation μ ∈ On and every ordinal constant ξ ≤ κM

μ+1 there are set
constants I<ξ

Fμ
and IF<μ

. Every set constant is a set term.
• If s is a closed L (M)M -term and S a set term then s ∈ S and s /∈ S are L (M∗

ν)

formulae.
• TheL (M∗

ν)-formulae are closed under the positive Boolean operations ∧, ∨ and
quantification over elements of M .

Using the translation A �→ A∗, which maps IFμ
to I

<κM
μ+1

Fμ
and then proceeding induc-

tively, we obtain
Mν |= A ⇒ M∗

ν |= A∗. (3.20)

3.3.2.5 The Semi-formal System for M∗
ν

To decorate the languageL (M∗
ν)we first fix the notions of

∧−type and
∨−type .

Definition 3.39 (
∧−type and

∨−type of L (M∗
ν))

(
∧−type ) The

∧−type comprises all true atomic L (M)M -sentences, all for-
mulae of the form (A ∧ B), all formulae of the form (∀x)F(x), all
formulae of the form s /∈ IF<μ

and all formulae of the form s /∈ I<ξ

Fμ
.

(
∨−type ) The

∨−type comprises all false atomic L (M)M -sentences, all for-
mulae of the form (A ∨ B), all formulae of the form (∃x)F(x), all
formulae of the form s ∈ IF<μ

and all formulae of the form s ∈ I<ξ

Fμ
.
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(No Type) Atomic formulae of the form s ∈ X and s /∈ X belong neither to∧−type not
∨−type .

The finer graining of the structure M∗
ν now allows for a decoration of L (M∗

ν)-
formulae, which is summed up by the clauses

• CS(F) = 〈 〉, if F is atomic,

• CS(s ∈ IF<μ
) = 〈

s ∈ I
<κM

σ+1
Fσ

σ < μ
〉
,

• CS(s /∈ IF<μ
) = 〈

s /∈ I
<κM

σ+1
Fσ

σ < μ
〉
,

• CS(s ∈ I<ξ

Fμ
) = 〈

F(I<η

Fμ
, IF<μ

, 〈s, μ〉) η < ξ
〉 =: 〈s ∈ I η

Fμ
η < ξ

〉
,

• CS(s /∈ I<ξ

Fμ
) = 〈¬F(I<η

Fμ
, IF<μ

, 〈s, μ〉) η < ξ
〉 =: 〈s /∈ I η

Fμ
η < ξ

〉
,

• CS(A ∧ B) = CS(A ∨ B) = 〈A, B〉,
• CS((∀x)F(x)) = CS((∃x)F(x)) = 〈

F(m) m ∈ M
〉
, wherewe anticipate a given

enumeration of the elements of M .

We define the rank of a set term by rnk(I<ξ

Fμ
) = κM

μ + ω · ξ and rnk(IF<μ
) := κM

μ +
1. Since second-order variables X stand for arbitrary set terms we define rnk(X) =
κM

ν . For a formula A(S1, . . . , Sn) let rnk(A(S1, . . . , Sn)) := max{rnk(S1), . . . ,
rnk(Sn)} + #A(S1, . . . , Sn), where #A counts the number of logical symbols occur-
ring in A.

Lemma 3.40 For all H ∈ CS(G) we have rnk(H) < rnk(G).

Proof This is obvious for atomic formulae G. For G ≡ s ∈ (/∈)IF<μ
this follows

from κM
σ+1 < κM

μ + 1 for all σ < μ. For G ≡ s ∈ (/∈)I<ξ

Fμ
this follows from the fact

that κM
μ + ω · η + n < κM

μ + ω · (η + 1) ≤ κM
μ + ω · ξ holds true for all η < ξ

and finite n. The remaining cases follow easily be induction on #G. ��
However, the decoration has a weakness. Only the direction from right to left in

condition (3.2) is satisfied. The induced verification calculus M
α

F therefore
only satisfies

M
α

F M
α

F (3.21)

which is only one half of Eq. (3.4). The opposite implication, which commonly
follows by induction on rnk(F), does not hold. The problem is caused by the ordinals
κM

μ+1, which are abstractly defined by their closure properties

M∗
ν |= F(I

<κM
μ+1

Fμ
, IF<μ

, 〈s, μ〉) ⇒ M∗
ν |= s ∈ I

<κM
μ+1

Fμ
for all μ < ν. (3.22)

These closure properties are not canonically reflected in the verification calculus.
To extend the verification calculus to a semi-formal system which is suited for an
analysis of the systems IDν(T) we therefore need additional non-logical rules (Clμ)

for all ordinal notations μ < ν which axiomatize the ordinals κM
μ+1.
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(Clμ) If μ ∈ On, (s ∈ I
<κM

μ+1
Fμ

) ∈ � and M∗
ν

α0

ρ �, F(I
<κM

μ+1
Fμ

, IF<μ
, 〈s, μ〉) then

M∗
μ

α

ρ � holds true for all α > α0.

The semi-formal system M∗
ν

α

ρ � thus comprises the rules (
∧

), (
∨

), (Cut), (Clμ)

for all μ < ν and the (X)-rule, where we, in view of the definition rnk(X) := κM
ν

for second-order variables X , only allow ordinals ≥ κM
ν as derivation heights in the

(X)-rule.
Despite of these alterations the semi-formal system has all the properties of semi-

formal systems as described in Sect. 3.1. The alteration of the (X)-rules is needed to
ensure the validity of substitution.

Theorem 3.41 (Substitution) IfM∗
ν

α

ρ �(X) thenM∗
ν

α

ρ �(S) holds true for every
set constant S in the language of M∗

ν .

Proof The proof is a simple induction on α. In case that the last inference is an (X)-
rule and S a set constant we replace the (X)-rule by tautology (cf. Observation 3.6).
Since 2 · rnk(S) ≤ κM

ν ≤ α holds true for any set term or set variable the claim
follows by weakening. ��

Inspecting some basis properties of the semi-formal systemM∗
ν

α

ρ we start with
a useful observation.

Lemma 3.42 (Detachment Lemma) Let � be a finite set of falseL (M∗
ν)-sentences.

IfM∗
ν

α

ρ �, � we can detach � and obtain M∗
ν

α

ρ � .

Proof Straightforward by induction on α. ��
The Detachment Lemma provides a small bridge from the semi-formal system

M∗
ν

α

ρ to the systemMν
α

ρ as a semi-formal system above the structure Mν .

Theorem 3.43 Let� be a finite set of pseudo�1
1-sentences in the languageL (Mν).

Then M∗
ν

α

κM
ν

�∗ entails Mν
α

0
� .

Proof We induct on α and sketch the main cases. The case of an (X)-rule is obvious.

If the last inference is a an (
∧

) rule with main formula s /∈ I
<κM

μ+1
Fμ

then μ < ν and

we have the premisesM∗
ν

αξ

κM
ν

�∗, s /∈ I<ξ

Fμ
for all ξ < κM

μ+1. If (s /∈ IFμ
) ∈ D(Mν)

we obtain the claim by an inference (
∧

) with empty premise. Otherwise we have

M∗
ν �|= s /∈ I<ξ0

Fμ
for some ξ0 < κM

μ+1. By detachment we obtain M∗
ν

αξ0

ρ �∗ , hence

Mν

αξ0

0
� by induction hypothesis and the claim by weakening. The other

∧
-cases

follow immediately from the induction hypothesis.

If the last inference is an (
∨

)-rule or (Clμ)-rule with main formula s ∈ I
<κM

μ+1
Fμ

then

again μ < ν and we have the premise M∗
ν

α0

κM
ν

�∗, s ∈ I<ξ

Fμ
for some ξ ≤ κM

μ+1.

Again we are done if (s ∈ IFμ
) ∈ D(Mν). Otherwise we haveM∗

ν �|= s ∈ I ξ

Fμ
for all

ξ ≤ κM
μ+1 and proceed as in the previous case.
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If the last inference is a cut with cut formula F we have rnk(F) < κM
ν . Therefore

F cannot contain a free set variable, hence is anL (M∗
ν)-sentence. So eitherM

∗
ν |= F

orM∗
ν �|= F .We detach the false sentence from the corresponding premise and obtain

the claim by induction hypothesis and weakening. ��
The purpose of the semi-formal system M∗

ν

α

ρ is to find upper bounds for the

points in SpecM(IDν(T)) of an axiom system IDν(T) where T is an axiomatiza-
tion for M. Theorem 3.43 enables us to find an upper bound for the largest point
oSPMν (IDν(T)) in SpecM(IDν(T)). Given an X -positive formula F(X,Y, x) in the
language ofM we express by the formula

ClFμ
(X) :⇔ (∀x)[F(X, IF<μ

, 〈x, μ〉) → x ∈ X ]

the closure of X under the operator �Fμ
.

Theorem 3.44 IfM∗
ν

α

κM
ν

¬ClFν
(X), s ∈ X then σFν

(s) < 2α .

Proof FromM∗
ν

α

κM
ν

¬ClFν
(X), s ∈ X we obtainMν

α

0
¬ClFν

(X), s ∈ X by The-

orem 3.43 which in turn entails s ∈ �<2α

Fν
by Theorem 3.34. ��

Remark 3.45 To obtain an upper bound for oSPMν (T) we can follow the technique
described in Sect. 3.2.5. We translate the formal T proof of a pseudo �1

1-sentence
into a semi-formal proof, then eliminate all cuts with complexities above κM

ν and
finally apply Theorems 3.43 and 3.44 to obtain εκM

ν +1 as an upper bound.

For the points below o(SPMν
(T)), however, we need finer tools. An important

tool is provided by the following lemma.

Lemma 3.46 (Boundedness Lemma forL (M∗
ν))AssumeM

∗
ν

α

ρ �(I<ξ

Fμ
) holds true

for some α, ξ ≤ κM
μ+1. Then M∗

ν

α

ρ �(I<η

Fμ
) holds true for all η ∈ [α, ξ ].

Proof We induct on α and just sketch the main cases. If the main formula of the
last inference is s ∈ I<ξ

Fμ
, then we have the premise Mν

α0

ρ �(I<ξ

Fμ
), s ∈ I ζ

Fμ
for

some ζ < ξ or, in case of a (Clμ)-rule, for ζ = ξ = κM
μ+1. By induction hypothe-

sis we get Mν

α0

ρ �(I<η

Fμ
), s ∈ I α0

Fμ
. Since α0 < α ≤ η we obtain the claim by an

inference (
∨

). In the case that the main formula is s /∈ I<ξ

Fμ
we have the premises

M∗
ν

αζ

ρ �(I<ξ

Fμ
), s /∈ I ζ

Fμ
for all ζ < ξ . By induction hypothesis and η ≤ ξ we thus

getM∗
ν

αζ

ρ �(I<η

Fμ
), s /∈ I ζ

Fμ
for all ζ < η and the claim follows by an inference (

∧
).

In case of a cut we have to observe that η ≤ ξ implies rnk(I<η

Fμ
) ≤ rnk(I<ξ

Fμ
) which

ensures that the cut rank cannot increase. ��
The Boundedness Lemma and Eq. (3.21) have an obvious corollary.

Theorem 3.47 (Boundedness Theorem for L (M∗
ν)) M

∗
ν

α

ρ s ∈ I<ξ

Fμ
for some α <

κM
μ+1 implies s ∈ I<α

Fμ
, hence σFμ

(s) < α.
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While Theorem 3.44 requires the elimination of all cuts above κM
ν , Theorem 3.47

apparently works without cut elimination. This is corroborated by the fact that cut-
elimination below κM

ν nearly comes for free.

Theorem 3.48 Let� be a finite set ofL (M∗
ν)-sentences such thatM

∗
ν

α

κM
ν

� . Then

we already have M∗
ν

α

0
� .

Proof The proof is by induction on α. The critical case it that of a cut which is
treated as the cut in the proof of Theorem 3.43. ��

3.3.2.6 Embedding

For the remainder of this section assume that T is an axiom system forM. We have
to check that the axioms IDν(T) are indeed semi-formally provable.
First we observe that the semi-formal system proves the monotonicity of positively
definable operators.

Lemma 3.49 (MonotonicityLemma)AssumeM∗
ν

α

ρ �,¬F(s),G(s) for all s ∈ M
and let A(X) be an X-positive formula in the language L (M∗

ν). Then we obtain

M∗
ν

α+β

ρ �,¬A(F), A(G) for β = 2 · #A.
Proof This is an easy induction on #A, the number of logical symbols occurring in
A. ��

TheMonotonicity Lemma is needed to prove a generalization of transfinite induc-
tion.

Lemma 3.50 Forμ < ν wegetM∗
ν

κM
ν +ω(ξ+1)
0

¬ClFμ
(X), s /∈ I ξ

Fμ
, s ∈ X for every

ordinal ξ < κM
μ+1.

Proof The proof is by induction on ξ , using monotonicity and tautology which is
responsible for the κM

ν in the derivation height. It should be noted that the proof
never uses one of the non-logical rules (Clμ). ��

Observe that for F(X, η) :⇔ (∀ξ)[ξ ≺ η → ξ ∈ X ] the formula ClF0(X) is the
formula Prog(≺, X)whichwe introduced inSect. 3.2.4 to expresswell-foundedness.
Therefore we obtain with the same proof.

Lemma 3.51 We have M∗
ν

κM
ν +ω(μ+1)
0

¬ Prog(≺, X), μ /∈ On, μ ∈ X for every
ordinal notation μ ∈ On.

Lemmata39 3.51 and 3.50 show the semi-formal provability of TIν and (ID2
ν)
∗.

39 Observe that μ in the derived formula stands for the ordinal notation and μ in the derivation
height for its order-type in ≺.
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Theorem 3.52 (Embedding of transfinite induction) We have

M∗
ν

α

0
(∀ξ)[(∀ρ)[ρ < ξ → ρ ∈ X ] → ξ ∈ X ] → (∀μ)[μ ∈ X ]

for an ordinal α < κM
ν + ν + ω.

Theorem 3.53 (Embedding of (ID2
ν)) For any μ < ν we get

M∗
ν

α

0
(∀x)[F(X, IF<μ

, 〈x, μ〉) → x ∈ X ] → (∀x)[x ∈ I
<κM

μ+1
Fμ

→ x ∈ X ]

with α < κM
ν + κM

μ+1 + ω. Hence

M∗
ν

κM
ν ·2
0

(∀μ)
[
ClFμ

(X) → (∀x)[x ∈ I
<κM

μ+1
Fμ

→ x ∈ X ]] .

None of these embedding theorems needs one of the non-logical rules (Clμ). For the
embedding of axiom (ID1

ν), however, (Clμ) is inevitable.

Theorem 3.54 (Embedding of (ID1
ν)) For any μ < ν we have

M∗
ν

κM
ν

0
(∀μ)(∀x)[F(I

<κM
μ+1

Fμ
, IF<μ

, 〈x, μ〉) → x ∈ I
<κM

μ+1
Fμ

] .

Proof By tautology we have M∗
ν

αμ

0
¬F(I

<κM
μ+1

Fμ
, IF<μ, 〈s, μ〉), F(I

<κM
μ+1

Fμ
, IF<μ, 〈s, μ〉)

with αμ < κM
μ+1 + ω for all μ ∈ On and s ∈ M . Applying a (Clμ)-rule and two (

∨
)

rules we obtain
M∗

ν

αμ+3
0

F(I
<κM

μ+1
Fμ

, IF<μ
, 〈s, μ〉) → s ∈ I

<κM
μ+1

Fμ

for all μ ∈ On and s ∈ M . The claim follows by two clauses (
∧

). ��

3.3.3 Collapsing

It follows fromTheorems 3.52, 3.54, and 3.53 that all the additional axioms in IDν(T)

are semi-formally provable. But we also have to observe that the derivations have
heights above κM

ν . In Theorems 3.52 and 3.54 this may be due to the technical
peculiarities of our system. It is not absolutely necessary to assign the complexity
κM

ν to free set variables. We could even get along with schemes instead of pseudo
�1

1-sentences. Also alternative complexity measures are thinkable that allow for
semi-formal derivations of tautologies with heights below κM

ν and thus decrease the
derivation heights in Lemma 3.51 and Theorem 3.54. In Lemma 3.50, however, and
thus also in Theorem 3.53 the height above κM

ν is inevitable. Our standard procedure,
as we had described it in Sect. 3.2.5, will therefore not be of use here, as it would
deliver too big upper limits.
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What is needed is a procedure to collapse derivations of the formM∗
ν

α

ρ s ∈ I
<κM

μ

Fμ

into derivations of heights below κM
μ+1. Such a procedure is not obvious and forces

us to leave our still predominantly semantical point of view in favour of a more
proof-theoretically oriented standpoint. The translation of a formal derivation of a

sentence s ∈ I
<κM

μ+1
Fμ

will in general require the detour through semi-formal derivations

of heights above κM
μ+1. The key idea is that the ordinals generated by the embedding

procedure should leave gaps, which are sufficiently large to allow for a collapsing
procedure. Therefore a reasonable idea is only to use those ordinals as a measure
for the heights of semi-formal derivations which are generated by the embedding
procedure and the necessary subsequent manipulations and then to try to find a
collapsing procedure for these ordinals. This generation process can be described by
an operator applied to the ordinal constants occurring in the derivation. Therefore
we need controlling operators for semi-formal derivations which we will develop in
the next sections.40

3.3.3.1 Iterated Skolem-Hull Operators

The Skolem-hull operator S generated by a collection F of ordinals and ordinal
functions assigns to any set X of ordinals the least set S(X) of ordinals which
contains X , all ordinals in F and is closed under the functions in F .

Observe that for Skolem-hull operators we always have X ⊆ S(X) = S2(X).
They are monotone which entails that with X ⊆ S(Y ) we also have S(X) ⊆ S(Y ).
A useful notation is S[X,F ] for a set X of ordinals and a collection F of functions.
It denotes the Skolem-hull operator obtained from S by extending its generators by
the elements of X and the functions in F .

The functions which are indispensable in proof theory are ordinal addition and
the Veblen functions as introduced in Sect. 3.2.3. Our basic operator will therefore be
the operatorAwhose generating functions are+ and ϕ, viewed as binary functions.
Our aim is to extendA to an operatorH which is suited to control theM∗

ν-derivations
which arise as translations of formal IDν(T)-derivations.

Since we assume that the ordinals less than ν are given “from outside”, we have
to assume that ν + 1 = {ξ ξ ≤ ν} is among the generators of H .

The landmarks in SpecM(IDν(T)) are apparently the ordinals κM
μ . These are

ordinals which are abstractly defined by their model theoretic closure properties as
displayed in (3.22). These closure properties are complicated and thus difficult to
handle. Therefore we introduce names �μ for the ordinals κM

μ and axiomatize them
by simpler closure conditions. The intended interpretation for �μ is of course κM

μ

but other interpretations are possible.
We thus defineH := A[ν + 1, {�μ 0 ≤ μ ≤ ν}]. SinceH2(X) = H(X) all iter-

ations ofH become already stationary in the first step. To get really growing iterations

40 The idea to control semi-formal derivations by ordinal operators has been introduced byWilfried
Buchholz in [5] as a simplification of local predictivity which has been used in [26].
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Hα we have to augment the generating functions of Hα in every iteration step. We
will start with an informal description how such functions can be obtained.

If we apply the Skolem-hull operatorH to a transitive subset X of the ordinals—
which for proper subsets X � Ord automatically is an ordinal, say ξ—it will in
general not return a transitive subset, i.e. an ordinal. In general H(ξ) will not even
fill the gap between ξ and ξ+ := min {�μ+1 ξ < �μ+1}. Assuming that we already
defined the iterationsHβ for all β ≤ α, the idea is now to give for �μ ≤ ξ < �μ+1
the first ordinal in the gapHα(ξ) ∩�μ+1 the name ��μ+1(α). In this way we obtain
new functions��μ+1 for allμ < ν bywhichwe augment the generators ofHα+1. This
allows us to iterate the operator H stepwise to a Skolem-hull operator Hα which,
besides+ and ϕ, also has the functions ��μ+1�α among its generators and to extend
the functions ��μ+1�α to the argument ��μ+1(α) := min {ξ �μ+1 ≤ ξ /∈ Hα(ξ)}.
For α /∈ Hα(ξ), however, this strategy would imply Hα(ξ) = Hα+1(ξ) and thus
would make ��μ+1 many one. In order to obtain ��μ+1 as a one-one function we
restrict ��μ+1 to those α for which there is a ξ such that α ∈ Hα(ξ) and �μ+1 ≤ ξ /∈
Hα(ξ). The price to pay is that ��μ+1 becomes partial.

Formallywe characterize the set {�μ 0 ≤ μ ≤ ν} of initial ordinals together with
the functions ��μ+1 and the iterated Skolem-hulls Hα by the following axioms:

Definition 3.55

(A0) �0 = 0, ν < �1.
(A1) (∀μ≤ν)(∀ξ)(∀η)[ξ, η < �μ → ξ + η < �ν ∧ ϕξ (η) < �μ].
(A2) (∀μ≤ν)(∀σ < μ)[�σ < �μ].
(A3) �λ = sup {�σ σ < λ} holds true for all limit ordinals λ.
(B0) H0 := H .
(B1) ��μ+1(α) := min {ξ α ∈ Hα(ξ) ∧ �μ ≤ ξ /∈ Hα(ξ)}.
(B3) Hα(X) is the least set that comprisesH(X) and is closed under+, λξη.ϕξ (η)

and ��μ+1�α for all μ < ν.
(B4) (∀μ < ν)(∀α ∈ dom(��μ+1))[��μ+1(α) < �μ+1].
Theorem 3.56 The axiom system in Definition 3.55 is consistent.

Proof The sequence 〈0〉�〈ℵμ 0 < μ ≤ ν
〉
41 obviously fulfills axioms (A0) through

(A3). Constructing Hα and ��μ+1 according to (B0)–(B3) we obtain that the cardi-
nality ofHα(ξ) is the maximum of ℵ0 and the cardinality of ξ . A simple cardinality
argument now shows that also (B4) is fulfilled. ��
Remark 3.57 Whenever we write ��μ+1(α) we tacitly assume α ∈ dom(��μ+1),
often without mentioning it explicitly.
The definition of the operatorsHα depends of course on ν. We have refrained from
expressing this through another index, as we will have to introduce this index later
anyway.

41 By ℵ we denote the enumerating function of the infinite cardinals. As usual we write ℵμ instead
of ℵ(μ).
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Instead of H as the starting point of the iteration we could use H[�μ]. Then we of
course only allow the functions ��σ+1�α for μ ≤ σ < ν and initial ordinals �σ for
μ < σ ≤ ν as generators of H[�μ]α . Since H[�μ](0) = H(�μ) we easily obtain
H[�μ]α(0) = H(�μ).

We collect the main properties of the Skolem-hull operators Hα and the associated
collapsing functions ��μ+1 in the following Lemma.

Lemma 3.58 For α, β ∈ dom(��μ+1) we have

(i) Hα(��μ+1(α)) = Hα(�μ),
(ii) ��μ+1(α) = Hα(�μ) ∩�μ+1 = {ξ α ∈ Hα(�μ) ∧ Hα(ξ) ∩�μ+1 = (ξ)},
(iii) ��μ+1(α) < ��σ+1(β) iff μ < σ , or μ = σ and α ∈ Hβ(�σ ) ∩ β,

and
(iv) ��μ+1(α) = ��σ+1(β) iff μ = σ and α = β.

Proof Wesketch the proofs. Letη := min {ξ α ∈ Hα(�μ) ∧ �μ ≤ ξ /∈ Hα(�μ)}.
Then η ⊆ Hα(�μ), hence Hα(�μ) = (Hαη), which in turn implies ��μ+1(α) =
η. Then we show by induction on α that Hα�μ ∩�μ+1 is transitive. If not, let
δ be the least ordinal in Hα(�μ) which is bigger than ��μ+1(α). By minimality
δ is strongly critical, hence of the form ��μ+1(ρ) for some ρ < α. By induction
hypothesis we have ��μ+1(α) < ��μ+1(ρ) = Hρ(�μ) ∩�μ+1 ⊆ Hα(�μ) ∩�μ+1
which contradicts the definition of��μ+1(α). So we have (i) and (ii). Claims (iii) and
(iv) are immediate consequences of (ii). ��

By (ii) of Lemma 3.58 we see that ν < ��1(α) holds true for any α ∈ dom(��1).
We already mentioned that interpreting �μ by ℵμ for μ > 0 is for cardinality

reasons a sound interpretation. However, we aim at an interpretation of �μ by the
initial ordinals κM

μ in the spectrum of IDν(T). As a preparation we need a lemma.

Lemma 3.59 For an acceptable structureM we have Hα(κM
μ ) ∩�μ+1 < κM

μ+1.

Proof The idea of the proof is to show that there is an elementarily definable copy of
HακM

μ in Mμ which entails that the order-type of Hα(κM
μ ) ∩�μ+1 = ��μ+1(κ

M
μ )

is less than κMμ = κM
μ+1. We just outline the main arguments.

First we observe that the sets Hα(X) are almost syntactically definable by the
clauses

• X ∪ (ν + 1) ⊆ Hα(X),

• ρ ≤ ν implies �ρ ∈ Hα(X),

• α, β ∈ Hα(X), imply {α + β, ϕα(β)} ⊆ Hα(X)

• γ ∈ Hα(X) ∩ α and γ ∈ dom(��ρ+1) imply ��ρ+1(γ ) ∈ Hα(X).

The only “non-syntactical” condition in this inductive definition is γ ∈ dom(�ρ+1).
According to Lemma 3.58 (i) this condition is equivalent to α ∈ Hα�ρ . From the
above inductive definition we can read off the definition of a set Kμ(γ ) of ordinals
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such that γ ∈ Hα(�μ) holds true iff ξ < α holds true for all ordinals in Kμ(γ ). We
put

Kμ(γ ) :=

⎧
⎪⎨

⎪⎩

∅ if γ < �μ or γ ≤ ν or γ = �ρ forμ ≤ ρ ≤ ν,

Kμ(ξ) ∪ Kμ(η) if γ = ξ + η or γ = ϕξ (η),

{β} ∪ Kμ(β) if�μ < γ = ��ρ+1(β).

Sowe can replace the non-syntactical condition γ ∈ dom(��μ+1) by themore syntac-
tical condition Kμ(γ ) < γ . This condition is more syntactical in the sense that if we
represent the ordinals in Hα(X) by terms built up according to the above induction
steps, the ordinals in Kμ(γ ) are represented by previously defined terms.

Since �ν is the largest initial ordinal in any H(X) and all ordinals ��ρ+1(α) are
less than �ν no iteration of H will reach beyond ��ν+1, the first strongly critical
ordinal bigger than �ν . This implies that the set H��ν+1(κM

μ ) ∩ ��ν+1 is the largest
set of ordinals which we can reach from κM

μ . It should be obvious from the above
considerations that we can represent the ordinals inH��ν+1(κM

μ ) ∩ ��ν+1 by ordinal
terms which are recursively definable in parameters from κM

μ and ν + 1.
According to Lemma 3.58 (iii) we obtain ��ρ+1(α) < ��σ+1(β) iff ρ < σ or

α ∈ Hβ(�σ ) ∩ β which in turn holds true iff {α} ∪ Kσ (α) < β. Together with the
well-known fact that size comparison between ordinal terms of the form α + β,
ϕα(β) is recursively describable we thus obtain the set H��ν+1κM

μ ∩ ��ν+1 and the
size comparison on this set recursive in κM

μ .
The remaining problem is that there are no ordinals in Mμ. However, for μ

a successor ordinal ρ + 1 there is a set Oμ ∈ SPMρ
whose complement is not in

SPMρ
.42 Let σμ be an associated SPMρ

-norm for Oμ. Since Oμ is self-dual iff43

o(Oμ) < κMρ = κM
μ : and Oμ is not self-dual, we have o(Oμ) = κMρ = κM

μ and the
relations≺∗σμ

and�∗σμ
are in SPMρ

and thus elementary inMμ. For a limit ordinal μ
we may therefore assume that for all ρ < μ there is an elementarily definable set Oρ

and an elementarily definable relation≺ρ on Oρ of order-type κM
ρ . We can then take

the disjoint union Oμ of the sets Oρ to obtain an elementarily definable well-founded
relation of order-type κM

μ inMμ.
Taking the elements in the prewellordering Oμ as representatives for the ordinals

below κM
μ we can elementarily define a copy of H��ν+1κM

μ in Mμ. This entails
that for α ∈ H��ν+1(κM

μ ) the order-type of Hα(�μ) ∩�μ+1 and thus the ordinal
��μ+1(α) is less than κM

μ+1. ��
We define an interpretation IM

μ by

IM
μ (�σ ) :=

{
κM

σ if σ ≤ μ,

ℵσ ifμ < σ.

42 This is the familiar diagonal argument.
43 Cf. e.g. [24] Theorem 2B.1.
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Theorem 3.60 For an acceptable structure M the interpretation IM
μ is for all

μ ≤ ν a sound interpretation for the variables �μ.

Proof We proceed by induction on μ. As already remarked, the interpretation IM
0

is a sound interpretation for cardinality reasons.
Clearly all the ordinals κM

μ are strongly critical, such that κM
ρ < κM

μ holds true
for ρ < μ. Moreover we have ν + 1 < κM

1 , since ν is elementarily represented in
M. If we assume that IM

μ is a sound interpretation we obtain ��μ+1(κ
M
μ ) < κM

μ+1
by Lemma 3.59. Interpreting �μ+1 by κM

μ+1 satisfies axiom (B4) in Definition 3.55.
Thus IM

μ is a sound interpretation. For limit ordinals λ we get the claim from the

induction hypothesis and κM
λ = sup {κM

μ μ < λ}. ��
Corollary 3.61 Interpreting �μ standardly by κM

μ is sound for acceptable struc-
turesM.

In view of Corollary 3.61 we stick to the standard interpretation of the constants �μ.
Nevertheless we continue to write �μ instead of κM

μ (it is easier to type and looks
typographically better).

Note 3.62 The development of iterated Skolem-hull operators has a long history. It
goes back to an unpublished idea of Sol Feferman around 1970. This idea has been
pursued (among others) by Peter Aczel, Jane Bridge (Kister) ([3]) and especially
Wilfried Buchholz in a series of papers.44

3.3.3.2 Operator Controlled Derivations

Assume that M is a countable structure which contains constants for ordinals in its
language. For an L (M)-formula F we denote by par(F) the set of ordinal con-
stants occurring in F . For a finite set � of L (M)-formulae we put par(�) :=⋃ {par(F) F ∈ �}. Let S be a Skolem-hull operator extendingA. We call the lan-
guage L (M) S-regular if rnk(F) ∈ S(par(F)) holds true for all L (M)-formulae
F . For S-regular languages we extend Definition 3.1 to a definition SM

α

ρ � of an
operator controlled derivation.

Definition 3.63 LetM be an acceptable countable structure andS be a Skolem-hull
operator such that L (M) is S-regular. For a finite set of pseudo �1

1-sentences we
define the operator controlled semi-formal proof relation SM

α

ρ � by the following
clauses

(X) If �s = s1, . . . , sn and �t = t1, . . . , tn are tuples of L (M)M -terms such that
M |= si = ti for i = 1, . . . , n and {�s ∈ X, �t /∈ X} ⊆ � thenSM

α

ρ � holds
true for all ordinals ρ and �ν ≤ α ∈ S(par(�)).

44 Cf. [5] for a survey and further citations.
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(
∧
) If F ∈ � ∩∧−type and SM

αG

ρ �,G hold true for all G ∈ CS(F) then

SM
α

ρ � holds true for all α ≥ sup {αG + 1 G ∈ CS(F)} such that α ∈
S(par(�)).

(
∨
) If F ∈ � ∩∨−type and SM

α0

ρ �,G holds true for some G ∈ CS(F)

such that par(G) ⊆ S(par(�)) then SM
α

ρ � holds true for all α > α0 such
that α ∈ S(par(�)).

(Cut) IfSM
α0

ρ �, F ,SM
α0

ρ �,¬F , par(F) ⊆ S(par(�)) and rnk(F) < ρ then

SM
α

ρ � holds true for all α > α0 such that α ∈ S(par(�)).

We obviously have ω + 1 ⊆ S({∅}) and with α ∈ S({∅}) also ω · α ∈ S({∅}) for
any Skolem-hull operator S that extends A. The first and main observation is that
tautologies of the form ¬F ∨ F are operator controlled derivable.

Lemma 3.64 (Controlled Tautology) Let S be a Skolem operator extending A,
L (M) anS-regular language and F and F ′ beL (M) formulae which at most differ
inL (M)M-termswhichhave the samevalue inM. ThenweobtainSM

α

0
�,¬F, F ′

for α = 2 · rnk(F).

Proof We sketch the main case. W.l.o.g. let F ∈∧−type . For G ∈ CS(F) let G ′
be the corresponding formula in CS(F ′) which differs from G at most in the same

L (M)M terms as F and F ′. We have SM
βG

0
�,¬F, F ′,¬G,G ′ with βG = 2 ·

rnk(G) for every G ∈ CS(F) by induction hypothesis. By an inference (
∨

) we get

SM
βG+1
0

�,¬F, F ′,G for all G ∈ CS(F) which is applicable since par(G ′) ⊆
S(par(�,¬F, F ′,G)). Because of βG + 1 < 2 · rnk(F) ∈ S(par(�,¬F, F ′)) we
obtain the claim by an inference (

∧
). ��

BasedonControlledTautologywecan show that all the embeddings ofSect. 3.3.2.6
areH-controlled derivable. In detail we obtain

HM∗
ν

n

0
� with n < ω for any logically valid set ofL (M∗

ν)− formulae. (3.23)

HM∗
ν

�ν+ω·(μ+1)
0

¬(∀ξ)[(∀ρ)[ρ < ξ → ρ ∈ X ] → ξ ∈ X ] , μ /∈ On, μ ∈ X.

(3.24)

HM∗
ν

�ν+�μ+1
0

¬ClFμ
(X), s /∈ I

<�μ+1
Fμ

, s ∈ X for everyμ < ν. (3.25)

HM∗
ν

α

0
¬F(I

<�μ+1
Fμ

, IF<μ
, 〈s, μ〉), s ∈ I

<�μ+1
Fμ

for some α < �μ+1 + ω. (3.26)

Remark 3.65 Since the elements of On are not counted among the parameters
of an L (M∗

ν)-formula we need the set ν + 1 among the generators of H to
obtain (3.24) in full generality.45 Put, for the moment, H0 := A[{�μ 0 ≤ μ ≤ ν}].
ThenHα = Hα

0 holds true whenever ν + 1 ⊆ H��ν+1
0 (0) ∩�1 =: �H0

�1
(��ν+1). For

45 The assumption that ν + 1 is among the generators of H is usually omitted. For example, I
omitted it in [33]. This is harmless since it suffices to know that (3.24) is provable with an upper
bound �ν +�1, which is operator controlled.
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ν < �
H0
�1

(��ν+1) the generator ν + 1 forH is thus dispensable.
For an axiom system T forM, containing the axiom of Mathematical Induction, the
extension IDν(T) proves induction up to all ordinals less than�

H0
�1

(ε�ν+1)46 which—
in principle—makes (TIν) superfluous for ν < �

H0
�1

(ε�ν+1).
As remarked in Note 3.37 iterated inductive definitions have their origin in founda-
tional problems. From a foundational point of view it makes little sense to iterate
inductive definitions along ordinals ν > �

H0
�1

(ε�ν+1)without having additional infor-
mation about the foundational meaning of ν.
Of greater interest are iterations which generate the initial ordinals by a bootstrap
procedure. An example is the operator I := A[{I }, {λξ.�ξ }], where I is a symbol
whose intended interpretation is the first recursively inaccessible ordinal. Defining
the iterations Iα simultaneously with an axiomatization of I we obtain a model by
using cardinals instead of initial ordinals. By a slight generalization of the method
sketched here, we then obtain that also the intended interpretation is a correct one.
However, this method develops its strength rather in the investigation of set universes
above M, which we will not pursue further in this paper. An overview of such sys-
tems and their connections to axiom systems for Analysis and set theory is given in
[28] and its aftermath paper [12].

Note 3.66 The idea to control semi-formal derivations by ordinal operators goes
back to a paper by Wilfried Buchholz ([4]) in which he proposed this method as
a simplification of the original method of local predicativity which depended on
special notation systems for ordinals.

3.3.3.3 The Collapsing Procedure

The main concern of operator controlled derivations is to enable a procedure to

convert a derivation of the form α

ρ s ∈ I
<�μ+1
Fμ

into a derivation
β

σ s ∈ I
<�μ+1
Fμ

such that the ordinal β < �μ+1 is computable from the data α, ρ and μ. If
α

ρ s ∈ I
<�μ+1
Fμ

has been obtained by transforming a formal IDν(T)-proof this, accord-
ing to the Boundedness Theorem (Theorem 3.47), yields β as an upper bound for
κMμ(IDν(T)) = oMμ+1(IDν(T)).

In Lemma 3.50 we have shown that M∗
ν

α

0
�(I

<�μ

Fμ
) with negative occurrences

of (I
<�μ

Fμ
) requires an α ≥ �μ+1. So it is hardly likely that we can collapse such

derivations into derivations of heights below�μ+1. Thereforewe say that anL (M∗
ν)-

sentence belongs to
∨�μ+1 −type if it only contains constants IF<ρ

with ρ < μ,

constants I<ξ

Fρ
with ρ ≤ μ and ξ < �μ+1 and at most positive occurrences of I

<�μ+1
Fμ

.

Only for sentences in
∨�μ+1 −type we can expect semi-formal derivations with

heights below �μ+1.

46 Cf. Sect. 3.4.2.
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Althoughwe do not need a cut-free derivation to apply the Boundedness Theorem,
cut-elimination still plays an important role in the collapsing procedure.We therefore
have to reformulate cut-elimination for operator controlled derivations.

Theorem 3.67 Assume that there is no initial ordinal in the interval (β, β + ωρ]. If
HM∗

ν

α

β+ωρ � holds true for ρ ∈ H(par(�)) then we obtain HM∗
ν

ϕρ(α)

β
� .

Proof The proof is the standard onewith some extra care to get ϕρ(α) ∈ H(par(�)).

For the main theorem we define �′
ρ :=

{
�ρ if ρ is a limit ordinal,

�ρ + 1 if ρ is a successor ordinal.

Theorem 3.68 (Collapsing Theorem) Let � be a finite set of L (M∗
ν) formulae

belonging to
∨�μ+1 −type. IfHγ+1

M∗
ν

α

�′ρ
� holds true for some γ ∈ Hγ (par(�)) and

Hγ+1
M∗

ν
(par(�)) ⊆ Hγ+1

M∗
ν
(�μ) thenHβ+1

M∗
ν

��μ+1 (β)

��μ+1 (β)
� holds true for β = γ + ω�ρ+α .

Proof This follows bymain induction on ρ with side induction onα.We just indicate
the most spectacular case of a cut47

(C) Hγ+1
M∗

ν

α0

�′ρ
�,G and Hγ+1

M∗
ν

α0

�′ρ
�,¬G ⇒ Hγ+1

M∗
ν

α

�′ρ
�

with �μ < �′
ρ = �σ+1 + 1. and rnk(G) = �σ+1. Then G is a formula s ∈ I<�σ+1

Fσ
.

Here we have the problem that¬G /∈∨�σ+1 −type. However, for any ξ < �σ+1 we
have (s /∈ I<ξ

Fσ
) ∈∨�σ+1 −type. We therefore obtain by induction hypothesis and∧

-inversion

H δ+1
M∗

ν

��σ+1 (δ)

��σ+1 (δ)
�, s ∈ I<�σ+1

Fσ
and H δ+1

M∗
ν

��σ+1 (δ)

��σ+1 (δ)
�, s /∈ I<ξ

Fσ

for δ = γ + ω�σ+1+α0 and all ξ < �σ+1. By Boundedness we thus get

H δ+1
M∗

ν

��σ+1 (δ)

��σ+1 (δ)
�, s ∈ I

<��σ+1 (δ)
Fσ

and by cut

H δ+1
M∗

ν

��σ+1 (δ)+1
��σ+1 (δ)+1

� . Hence

H δ+1
M∗

ν

η

�′σ
� for η = ϕ��σ+1 (δ)+1(��σ+1(δ)+ 1)

by cut-elimination. By the main induction hypothesis we obtain

(i) H ζ+1
M∗

ν

��μ+1 (ζ )

��μ+1 (ζ )
� for ζ = δ + ω�σ+η. We have

α0 ∈ H δ+1(par(�,G)) ⊆ H δ+1(par(�)) ⊆ H δ+1(�μ) ⊆ Hβ(�μ)

as well as
γ ∈ Hγ (par(�)) ⊆ Hγ+1(par(�)) ⊆ Hγ+1(�μ) ⊆ Hβ(�μ).

This implies δ = γ + ω�σ+1+α0 ∈ Hβ(�μ) ∩ β, hence��σ+1(δ) ∈ Hβ(�μ) ∩ β and
thus also η ∈ Hβ(�μ) ∩ β which, in turn, implies ζ ∈ Hβ(�μ) ∩ β. So��μ+1(ζ ) <

��μ+1(β) and the claim follows from (i) by weakening. ��

47 More details are in [33] Theorem 8.4.
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3.4 Ordinal Analysis for Arithmetical Universes

3.4.1 Upper Bounds

TheCollapsingTheorem togetherwith the results of Sect. 3.3.3.2 allowus to compute
upper bounds for the points in SpecMμ(IDν(T)) where T is an axiomatization for
the structureMμ for 0 ≤ μ ≤ ν. As an example we assume that T is a subset of Dμ,
which is the elementary diagram ofMμ plus the axiom for Mathematical Induction,
and compute upper bounds for the points in SpecMμ(IDν(Dμ)). As indicated in
Remark 3.35 the spectrum SpecMμ(Dμ) is the singleton {ε�μ+1}.

If T is an axiom system for Mμ we do not need axioms for fixed points already
belonging toMμ. We therefore specify the axioms of IDν(T) as follows.

(ID1
ν) (∀σ)(∀x)[μ ≤ σ ∧ F(IFσ

, IF<σ
, 〈x, σ 〉) → x ∈ IFσ

],
(ID2

ν) (∀σ)(∀x)[μ ≤ σ ∧ F(X, IF<σ
, 〈x, σ 〉) → x ∈ X ] → (∀x)[x ∈ IFσ

→
x ∈ X ].

For an axiomatization T forM let IDν(T) denote T together with the axiom schemes
(TIν), (ID1

ν) and (ID2
ν).

We have rnk(F∗) < �μ + ω ⊆ H(�μ) = H[�μ](0) for everyL (Mμ)-sentence F
and therefore by induction on rnk(F∗)

H[�μ]M∗
ν

rnk(F∗)
0

F∗ for all F in the elementary diagram ofMμ. (3.27)

As in the example in Sect. 3.2.5—recall that rnk(X) := �ν—we obtain

H[�μ]M∗
ν

�ν+ω·2
0

0 ∈ X ∧ (∀x)[x ∈ X → (x + 1) ∈ X ] → (∀x)[x ∈ X ]
(3.28)

Together with (3.23)–(3.26) we thus obtain

IDν(Dμ) F ⇒ H[�μ]M∗
ν

α

�ν+n F∗ for α ∈ H[�μ] ∩ ε�ν+1 and some n < ω

which by cut-elimination entails

IDν(Dμ) F ⇒ H[�μ]M∗
ν

α

�′ν
F∗ for α ∈ H[�μ] ∩ ε�ν+1. (3.29)

By Theorem 3.44 this shows

oSPMν (IDν(Dμ)) ≤ ε�ν+1. (3.30)

For μ ≤ σ < ν we obtain from (3.29) by the Collapsing Theorem
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IDν(Dμ) s ∈ IFσ
⇒ H[�μ]αM∗

ν

��σ+1 (α)

��σ+1 (α)
s ∈ I<�σ+1

Fσ
for some

α ∈ H[�μ]ε�ν+1(0) ∩ ε�ν+1 = Hε�ν+1(�μ) ∩ ε�ν+1 ⊆ Hε�ν+1(�σ ) ∩ ε�ν+1
(3.31)

which entails by Boundedness σF (s) ≤ ��σ+1(α) < ��σ+1(ε�ν+1) and therefore

oMσ+1(IDν(Dμ)) ≤ ��σ+1(ε�ν+1) forμ ≤ σ < ν. (3.32)

Remark 3.69 The technique used for the exampleDμ seems to work for any axiom
system T whose spectrum contains exactly one point. Call such axiom systems sim-
ple.48 The ordinal obtained from Eq. (3.28) has to be replaced by the ordinal which is
needed to derive the pseudo�1

1-sentences inT. To illustrate this letμ = 0 and assume
that the proof-theoretic ordinal α := |T|M has a notation in the, say fixed-point free,
n-aryVeblen functions and letα(ν) be the notationwhich is obtainedwhen replacing 0
by�ν . Thenwe conjecture that the technique just shownwill give |IDν(T)|Mν = α(ν)

and the operatorHα(ν)

as a generator of the ordinalsHα(ν)

(�μ) ∩�μ+1 which repre-
sent upper bounds for the points in SpecM(IDν(T)).49 Clearly such a conjecture can
hardly be proved in the stated generality. For many systems already the computation
of |T|M often needs a subtle procedure50 which has to bemirrored in the computation
of |IDν(T)|Mν . Such cases need to be checked individually.

Even more subtle is the situation if T is not simple. Here it has to be checked
whether the definition of the iterations IDν(T) makes sense at all, or whether we are
not trying better to find an embedding of T into IDν(T′) for a simpler axiom system
T′ and an appropriate ν. An obvious example is an axiom system T for Mμ which
could be replaced by an axiom system IDμ(T′)+ T0, where T′ is an axiom system for
M and T0 is an appropriate subset ofDμ covering the additional first-order properties
ofMμ as expressed in T. A more complex example is the axiom system (�1

1-CA) for
�1

1-comprehension formulated in (weak) second-order logic, which can be reduced
to ID<ω(PA). The problems that may arise here are partly discussed in [8].

Further insights can be expected in the study of set-theoretic universes. First steps
in these directions have been made by M. Rathjen in [35] which are based on his
dissertation [34].

48 One of the “simplest” examples for a theorywhich is not simple is ID1 (i.e. ID1(PA)). Its spectrum
consists of two points {��1 (ε�1+1), ε�1+1}.
49 In case that the notation for α needs n-ary Veblen functions it is wise to count also these functions
among the generating functions of H . This is, however, not absolutely necessary. Even in our
definition of H the Veblen functions ϕξ for ξ > 0 are dispensable in principle. These Veblen
functions can be expressed in terms of the �-functions. However, the then obtained results look
somewhat weird, very unfamiliar and thus much less attractive (and are therefore also more difficult
to read and to memorize).
50 Examples could be systems in weak second-order logic, e.g. (�1

1-CA).
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Another open question is if a simple axiom system coincides with systems which
are metapredicative in the sense of the Berne school.51 We guess that the answer is
yes.

3.4.2 Lower Bounds

To obtain also lower bounds for the points in the spectrum of an axiom system we
have to refer to Sect. 3.3.3.1wherewe indicated that there is an elementarily definable
copy ofH��ν+1(�μ) inMμ. We require that T ⊆ Dμ is an acceptable axiomatization
of the structure Mμ. Then T is also strong enough to prove all the properties of
H��ν+1(�μ).52 We work within the Axiom system IDν(T). For α ∈ H�ν+1(�μ) we
define its strongly critical components above �σ+1 by

SCσ (α) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ if�σ < α = �τ orα = 0,

SCσ (β) if�σ+1 < α = ��τ+1(β),

{α} ifα < �σ+1 andα is strongly critical,

SCσ (η) ∪ SCσ (ζ ) ifα = ϕη(ζ ) and η, ζ < α,

SCσ (α1) ∪ SCσ (α2) ifα = α1 + α2 andα1, α2 < α.

For μ ≤ σ < ν we define

Mσ := {α < �σ+1 (∀ρ)[μ ≤ ρ < σ → SCρ(α) ⊆Wρ]},

where Wρ is the fixed point defined by the formula

Aσ (X, ξ) :⇔ ξ ∈ Mσ ∧ Mσ ∩ ξ ⊆ X.

Then IDν(T) proves for μ ≤ σ < ν

(A) α ∈Wσ ↔ α ∈ Mσ ∧ Mσ ∩ α ⊆Wσ

and

(B) (∀α)[α ∈ Mσ ∧ Mσ ∩ α ⊆ X → α ∈ X ] →Wσ ⊆ X .

Lemma 3.70 For μ ≤ σ < ν the setsWσ are closed under ordinal addition.

Proof Let B := {α (∀ξ)[ξ ∈Wσ → ξ + α ∈Wσ ]}. Then α ∈ Mσ ∧ Mσ ∩ α ⊆ B
entails α ∈ B and the claim follows by (B). ��
Lemma 3.71 For μ ≤ σ < ν the setsWσ are closed under the Veblen functions.

51 Cf. [19].
52 As an example the Peano axioms suffice to prove the properties of H��ν+1 (0).
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Proof Let B = {α (∀ξ)[ξ ∈Wσ → ϕα(ξ) ∈ �σ ]}. Then α ∈ Mσ ∧ Mσ ∩ α ⊆ B
entails α ∈ B and the claim follows by (B). ��
Lemma 3.72 For μ ≤ σ < ν and α < �σ+1 we have SCσ (α) ⊆Wσ iff α ∈Wσ .

Proof This follows from the definition of SCσ (α) and Lemmata 3.70 and 3.71. ��
Lemma 3.73 For μ ≤ σ ≤ τ < ν we have Wσ ⊆Wτ .

Proof We induct on τ and assume α ∈Wσ and Mσ ∩ α ⊆Wτ . Then α ∈ Mσ ,
hence SCρ(α) ⊆Wρ for μ ≤ ρ < σ . For σ ≤ ρ < τ we get α ∈Wρ by induc-
tion hypothesis, hence SCσ (α) ⊆Wρ by Lemma 3.72. So α ∈ Mτ holds true. It
isMτ ∩ α ⊆ Mσ ∩ α ⊆Wτ , hence α ∈Wτ . By (B) we get Wσ ⊆Wτ . ��
Lemma 3.74 It is Mν ∩�ν =⋃ {Wσ μ ≤ σ < ν}.
Proof If α ∈ Mν ∩�ν then α < �σ+1 and α ∈Wσ for some μ ≤ σ < ν by Lem-
mata 3.72 and 3.73. Hence α ∈⋃ {Wσ μ ≤ σ < ν}. If α ∈Wσ ⊆ Mσ ∩�σ+1
for some μ ≤ σ < ν then SCρ(α) ⊆Wρ for all ρ < σ and SCρ(α) ⊆Wρ for all
σ ≤ ρ < ν by Lemmata 3.73 and 3.72. Hence α ∈ Mν ∩�ν . ��
Lemma 3.75 For μ ≤ σ < ν we have �σ ∈Wσ .

Proof �σ ∈ Mσ holds trivially by definition of SCσ (�σ ). For α ∈ Mσ ∩�σ there
is a ρ < σ such that α < �ρ+1 and SCρ(α) ⊆Wρ ⊆Wσ . Hence �σ ∈Wσ by
Lemma 3.72 and (A). ��
Lemma 3.76 (Condensing Lemma) Let μ ≤ ρ ≤ σ < ν and α ∈Wσ . Then
��ρ+1(α) ∈Wρ holds true for all α ∈ Hα(�ρ).

Proof Let Bσ := {α (∀ρ)[μ ≤ ρ ≤ σ ∧ α ∈ Hα(�ρ) → ��ρ+1(α) ∈Wρ]}
and assume α ∈ Mσ as well asMρ ∩ α ⊆ Bσ , i.e.

(i) (∀ρ)[μ ≤ ρ ≤ σ ∧ ξ ∈ Mρ ∩ α ∧ ξ ∈ H ξ (�ρ)→ ��ρ+1(ξ) ∈Wρ].
We want to show α ∈ Bσ , i.e.

(ii) (∀ρ)[μ ≤ ρ ≤ σ ∧ α ∈ Hα(�ρ) → ��ρ+1(α) ∈ Wρ].
By (A) it suffices to show

��ρ+1(α) ∈ Mρ ∧ Mρ ∩��ρ+1(α) ⊆Wρ for μ ≤ ρ ≤ σ .
For τ < ρ ≤ σ we have SCτ (��ρ+1(α)) = SCτ (α) ⊆Wτ , hence ��ρ+1(α) ∈ Mρ .
Assume ξ ∈ Mρ ∩��ρ+1(α). We prove ξ ∈Wρ by induction on the definition of ξ ∈
H��ν+1(�μ). If ξ is not strongly critical this follows immediately from the induction
hypothesis and Lemmas 3.70 or 3.71, respectively. If ξ = �ζ then �ζ ≤ �ρ and we
can apply Lemma 3.75. If ξ = ��τ+1(β) then τ ≤ ρ and β ∈ Hβ(�τ ) ∩ α. If τ < ρ

then ξ < �ρ ∈Wρ . If τ = ρ then SCζ (β) = SCζ (��τ+1(β)) ⊆Wζ for all ζ < ρ.
Hence β ∈ Mρ ∩ α and ��ρ+1(β) ∈Wρ by (i). So we have ��ρ+1(α) ⊆Wρ , hence
α ∈ Bσ . If α ∈ Mσ andMσ ∩ α ⊆ Bσ and ρ ≤ σ we also haveMρ ∩ α ⊆ Bσ , hence
α ∈ Bσ , as we have just seen. By (B) it follows Wσ ⊆ Bσ which is the claim. ��
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Let

TI(X,Mν, α) :⇔ α ∈ Mν ∧ (∀ξ)[Mν ∩ ξ ⊆ X → ξ ∈ X ] → Mν ∩ α ⊆ X

express transfinite induction along Mν up to α.

Theorem 3.77 (Condensing Theorem) Let μ ≤ σ < ν. Then TI(X,Mν, α) and
α ∈ Hα(�σ ) entail ��σ+1(α) ∈Wσ .

Proof By (A) we have (∀ξ)[Mσ ∩ ξ ⊆Wσ ↔ ξ ∈Wσ ]. Since α ∈ Mν ∩�σ+1
implies α ∈ Mσ we get from TI(X,Mν, α) first Mν ∩ α ⊆Wσ and thus α ∈Wσ .
Together with α ∈ Hα(�σ ) this implies by Lemma 3.76 ��σ+1(α) ∈Wσ . ��
Theorem 3.78 TI(X,Mν,�ν).

Proof Assume α ∈ Mν ∩�ν then we have SCρ(α) ⊆Wρ , hence α ∈Wρ , for all
μ ≤ ρ < σ . From (∀ξ)[Mν ∩ ξ ⊆ X → ξ ∈ X ] we get by (B)Wρ ⊆ X , hence α ∈
X . ��

Let ω(0)(�ν) = �ν + 1 and ω(n+1)(�ν) = ωω(n)(�ν). Having the axiom of Math-
ematical Induction among the axioms of T we can use the familiar Gentzen tech-
nique to prove TI(X,Mν, ω

(n)(�ν)) for all finite n. This entails oMμ+1(IDν(T)) ≥
��μ+1(ε�ν+1) for all acceptable axiom systems T for Mμ which contain the axiom
of Mathematical Induction. As a summary of Sects. 3.4.1 and 3.4.2 we have the
following theorem.

Theorem 3.79 Let T ⊆ Dμ be an acceptable axiomatization for the structure Mμ.
Then we obtain for 0 ≤ μ ≤ ν

SpecMμ(IDν(T)) = {��ρ+1(ε�ν+1) μ ≤ ρ < ν} ∪ {ε�ν+1}
= {Hε�ν+1(�ρ) ∩�ρ+1 μ ≤ ρ ≤ ν}.

Remark 3.80 The proof of the lower bound also may carry over to simple axiom
systems.53 If T is a simple axiom system with |T|M =: α then there regularly
is a fundamental sequence

〈
αn n < ω

〉
, converging to α, such that T TI(X, αn)

implies T TI(X, αn+1). This has to be converted into a sequence
〈
α(ν)
n n ∈ ω

〉
such

that IDν(T) TI(X, α(ν)
n ) implies IDν(T) TI(X, α

(ν)
n+1)while IDν(T) TI(X,�ν)

holds trivially. By condensing this yields lower bounds for the points in the spectrum
of IDν(T). Together with Remark 3.69 we may therefore conjecture that

SpecMμ(IDν(T)) = {Hα(ν)

(�σ ) ∩�σ+1 σ ≤ ν}

holds true for (most?) simple axiom systems T.
Again this is a coarse conjecture which is probably unprovable in full generality.

53 Recall that an axiom system is simple, if its spectrum is a singleton.
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Neverthelesswe think that there are good reasonswhy the computation of the spectral
points works in a very general manner. Of course we are aware that there are axiom
systems T for which the “well-ordering proof” (i.e. the computation of the lower
bound) is so sophisticated that its conversion into a IDν(T)proof is not straightforward
and may need careful checking.

3.5 Provably Recursive Functions

We return to Note 3.30 in which we have briefly touched generalized recursive
functions.

Definition 3.81 LetS be a Spector structure above a structureM. f : Mn −→p M
a partial n-ary function and G f := {〈�x, y〉 �x ∈ Mn ∧ f (�x)  y} its graph. We say
that f is partial S-recursive, if G f is a relation in S. Let Rp(S) denote the set
of partial S-recursive functions and R(S) denote the set of S-recursive functions,
i.e. the functions in Rp(S) which are total. For an axiomatization T of a countable
Spector structure S let

RS(T) := {G f f is partialS− recursive andT (∀�x)(∃y)[ f (�x) = y]}

denote the set ofS-recursive functions whose totality is provable in T. ThenRS(T)

is a subset of S and we have o(RS(T)) ≤ o(R(S)) ≤ o(S) by Definition 3.25.

Given an axiomatization T of a countable structureM we obviously have for μ ≥ 0
o(RMμ+1(IDν(T))) ≤ oMμ+1(IDν(T)). As a corollary to Eq. (3.32) we obtain for
μ ≥ 0

o(RMμ+1(IDν(T))) ≤ ��μ+1(ε�ν+1)

for any axiom system T ⊆ D0. For the proof of Theorem 3.79 we defined a sequence〈
αn n ∈ ω

〉
of ordinal terms such that αn ∈ Hε�ν+1(�0) and supn∈ω αn = ε�ν+1. In

an acceptable structure M we thus obtain by primitive recursion a function F such
that where N denotes the copy of the natural numbers in
M and codes αn . Let

F(p, q) :⇔ p ∈ N ∧ q ∈ N ∧ Seq(p) ∧ lh(p) = q ∧ (∀z ≤ q)[(p)z = F(z)].

Putting , we obtain functions fμ : N −→ Mμ
54

fμ(x) = ξ :⇔ (∃p)[F(p, x) ∧ ξ = �μ+1(|(p)x |)].

In Theorems 3.79 and 3.76 we have shown that for any acceptable axiom system
T ⊆ D0 we obtain

54 Recall that in general we have no ordinals inMμ but have to represent them by elements in Oμ

as discussed in Sect. 3.3.3.1.
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IDν(T) (∀x)(∃ξ)[ fν(x) = ξ ∧ TI(X,Mν, ξ)]

and
IDν(T) (∀x)(∃ξ)[ fμ(x) = ξ ∧ ξ ∈Wμ].

for 0 ≤ μ < ν. SinceWν := {ξ TI(X,Mν, ξ)} ∈ SPMν
=Mν+155 andWμ ∈Mμ+1

the functions fμ areMμ+1-recursive for 0 ≤ μ ≤ ν and we have

σWν
( fν(n)) ≥ αn and σWμ

( fμ(n)) ≥ �μ+1(αn) for μ < ν.

Hence o(RMν+1(IDν(T))) ≥ ε�ν+1 and o(RMμ+1(IDν(T))) ≥ ��μ+1(ε�ν+1) for 0 ≤
μ < ν and thus

o(RMμ+1(IDν(T))) = oMμ+1(IDν(T)) (3.33)

for μ ≤ ν. To sum up we have the following characterization of theMμ+1-recursive
functions whose totality is provable in IDν(T).

Theorem 3.82 Let M be a countable acceptable structure and T ⊆ D0 an accept-
able axiomatization of M. Then SpecM(IDν(T)) = {o(RMμ+1(IDν(T))) μ ≤ ν} =
{Hε�ν+1(�μ) ∩�μ+1 μ ≤ ν}.
The combinatorial power of a structureM is manifested in the �0

2-sentences which
are valid in M. The functions in R(M) comprise the �0

2-Skolem functions of the
structure M. The combinatorial power of an axiom system T for M is therefore
quite well characterized by the set RM(T). Theorem 3.82 therefore shows that
SpecM(IDν(T)) is a pretty good measure for the combinatorial strength of IDν(T)

in relation to the hierarchy of Spector structures Mμ+1 above M for μ ≤ ν. We
moreover see that for axiom systems IDν(T) with T ⊆ D0 this spectrum is generated
by the operator Hε�ν+1 . The conjecture is that this result can be extended to simple
axiom systems T with α = |T|M, for which the spectrum is generated byHα(ν)

. It is
therefore a reasonable statement that the operatorHα(ν)

is a fairly good measure for
the performance of the axiom system IDν(T).

In computing oMμ+1(IDν(T))we encounter the same phenomenon as in the exam-
ple in Sect. 3.2.5. The results of Sects. 3.4.1 and 3.4.2 show that

oMμ+1(IDν(T)) = oMμ+1(IDν(T)+ Dσ )

holds true for σ ≤ μ ≤ ν. Therefore it is not possible to enhance the performance
of IDν(T) with respect to Spector classes Mμ+1 for μ ≥ σ by adding true Mσ -
sentences.56

The obvious, not yet answered question is the case μ = 0. In general, M0 is not
a Spector structure but we may ask if Hε�ν+1 may help to characterize the class

55 Cf. Sect. 3.3.2.2.
56 Without having checked that we conjecture that also the “No Enhancement Theorem” can be
generalized to this situation.
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R(IDν(T)) of general recursive functions which IDν(T) proves to be total. The
answer is yes. Unfortunately, the remaining space does not allow us to respond fully
to it. Therefore we just report the result for a Peano-like axiomatization.57

The key notions are again Skolem-hull operators and their iterations. Accord-
ing to Sect. 3.3.3.1 the sets H�ν+1(�μ) are definable by an inductive definition
with closure ordinal ω. Therefore we have an inductive norm Nμ(α) < ω for any
H�ν+1(�μ). Given a primitive recursive start function � : N −→ N which is
sufficiently strongly increasing58 we define the function

φμ(α) := sup {φμ(β)+ 1 β ∈ H�ν+1(�μ) ∩ α ∧ Nμ(β) ≤ �(Nμ(α))}.

For μ = 0 there are only finitely many β such that N0(β) ≤ �(N0(α)) below α.
Hence φ(α) := φ0(α) < ω holds true for all α ∈ Hε�ν+1(0). Any ordinal has the
form ω · α + n where n < ω is its finite remainder. Defining

�α(n) := φ(ω · α + n)

we obtain a hierarchy of functions �α : N −→ N , which for finite α approxi-
mately coincides with the αth iteration �α of the function �. For α < ω we get
�α(x) ≤ �α(x) ≤ �α(2x + α)+ α. So �α represents a subrecursive hierarchy of
functions whose initial part essentially coincides with the so-called “fast growing”
hierarchy.59

By a refinement of the collapsing procedure in Sect. 3.3.3.3, applied to “frag-
mented operator controlled derivations” in which we also have to count the constants
in N occurring in a formula F among the parameters of F , we can finally show
that the provably recursive functions inRM(IDν(T)) are exactly the functions which
are primitive recursive in the functions

〈
�α α < ��1(ε�ν+1)

〉
60 and this includes the

case ν = 0, i.e. a characterization of the recursive functions that are provably in T.
The hierarchy �α depends upon the starting function �. But this dependence

is not very sensitive. Thus, for example, the hierarchies for different (sufficiently
increasing) primitive recursive starting functions quickly catch up and yield the same
hierarchies at ordinals far below ε0. Nevertheless, the “No Enhancement Theorem”
is not applicable for R(IDν(T)). For example, while R(IDν(PA)) consists of the
functions that are primitive recursive in the hierarchy

〈
�α α < ��1(ε�ν+1)

〉
, already

the setR(D0), and thus alsoR(IDν(D0)), contains all the recursive functions on the
natural numbers although SpecN(IDν(D0)) and SpecN(IDν(PA)) coincide.

So R(IDν(T)) depends upon the L (M)-sentences in T. Let us assume for the
moment that the structure M (besides equality) only contains functions and T is
an acceptable axiom system for M with |T|M = α which comprises the defining
equations for a subset F of the functions in M. Then we can pick any sufficiently

57 A more detailed proof sketch can be found in [33].
58 E.g. �(n) := 3n+2 is sufficiently increasing for the basis structure N.
59 Cf. [7].
60 Such a result has been first obtained by Andreas Weiermann. (Cf. [2, 40]).
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increasing starting function � : M −→ M , which is primitive recursive in F , to
obtain R(T) as the set of functions which are primitive recursive in the sequence〈
�ξ ξ < α

〉
.

On the other hand the hierarchy
〈
�ξ ξ < α

〉
also depends on the norm function

on the ordinals. If, however, the proof-theoretic ordinal is obtained by application
of a Skolem-hull operator, this norm is canonically given by the inductive definition
of the Skolem-hull of 0. It is perhaps a remarkable fact that even for simple axiom
systems, which need no collapsing procedure in the computation of their spectra, the
characterization of the provably recursive functions can be pretty uniformly obtained
via a collapsing technique using a Skolem-hull operator which, of course, in general
is weaker than H . In the case of the Peano axioms, for example, the operator A0

would suffice, which is generated by the functions {0},+ and λξ. ωξ . Then |PA|N =
A0(0) ∩�1 = ε0

61 andR(PA) is the set of functionswhich are primitive recursive in
the sequence

〈
�ξ ξ < ε0

〉
for any sufficiently increasing primitive recursive starting

function �.
In this sense we can claim that not the bare proof-theoretic ordinal |T|M but

the Skolem-hull operator which is needed in the computation of |T|M carries the
information about the performance of T in relation to the ground structure M.

3.6 Conclusion

In this paper we tried to clarify in how far the proof-theoretic ordinal can be regarded
as a measure for the performance of an axiom system for a countable acceptable
structureM. ThoughN, the structure of natural numbers, is the paradigmatic example
for such structures, we tried to do this in a more general framework. In some cases,
however, we had to restrict ourselves to strictly acceptable structures which allow for
an elementary definition of their verification tree and thus are even more “standard
like” than countable acceptable structures in general. A central observation is the
“No Enhancement Theorem” which shows that the proof-theoretic ordinal of T is
rather a measure for the performance of T in relation to a universe aboveM than for
the basis structureM itself.

For this paper we decided to concentrate on the study of countable “analytic
universes” aboveM, which are countable subsets of the powerset ofMwith sufficient
closure properties. Good candidates for universes with sufficient closure properties
are Spector classes above M whose closure properties allow for a generalization of
computability. We get the least Spector class above M as slices of fixed points of
operators on the powerset of M which are positively definable in M. In turn, the
theory of fixed points of positively definable operators is easily formalizable in first-
order logic with additional constants for fixed points. So we were able to concentrate
on the study of the formal theories IDν(T) of ν-fold iterated inductive definitions.

61 The intersection with �1 is of course superfluous and should only illustrate the bridge to the
previous results.
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Although these theories have already been extensively studied in the past we have—
also for the sake of more completeness—outlined their essential features from the
angle of their performance in relation to Spector classes above M.

This leads to the definition of a spectrum SpecM(IDν(T)) of characteristic ordi-
nals which is generated by the αth iterationHα of a Skolem-hull operatorH where
the ordinal α is computable from the proof-theoretic ordinal of T in relation to the
basis structure M. The spectrum SpecM(IDν(T)) reflects the combinatorial power
of IDν(T) in so far, that it characterizes the IDν(T)-provablyMμ-recursive functions
onM in terms of their Mμ-norms.

By an refinement of the collapsing technique, which is needed in the computation
of the spectrum, this can even be extended to a characterization of the IDν(T)-
provably recursive function onM in terms of a subrecursive hierarchy generated by
the operator Hα .

By a similar refined collapsing technique we can also characterize the recursive
functions whose totality is provable from a simple axiom systemT, whose spectrum
is a singleton and thus does not need a collapsing technique in its computation.
Here again the T-provably recursive functions are characterized by a subrecursive
hierarchy which is generated by an operator whose closure ordinal, i.e. the first
ordinal which cannot be reached by the operator is the proof-theoretic ordinal |T|M.
If not the bare proof-theoretic ordinal, so yet the operator which leads to the proof-
theoretic ordinal, actually carries some information about the performance of T in
relation toM.

The theories IDν(T) can therefore be viewed as a yardstick for axiomatizations of
universes above a basic structureM. Applications as yardstick are already included
in [8]. More examples of embeddings of second-order theories for universes above
N into iterated inductive definitions have been given in [28] and partially corrected
in [12]. There we included already the first steps towards the use of set-theoretic
axioms for universes above M as yardsticks. We think that on the long run this is
the better and farer reaching perspective. Its basic principles will be compiled in a
forthcoming paper.

Acknowledgements I want to thank the anonymous referee for her or his criticism and the many
extremely helpful comments and corrections.
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