Chapter 3 ®)
On the Performance of Axiom Systems oo

Wolfram Pohlers

Abstract One of the aims of proof theory is to calibrate the strength of axiom sys-
tems by invariants. According to Godel’s discoveries these invariants will in general
not be finite but rather transfinite objects. Pioneering work in this direction had been
done by Gerhard Gentzen who characterized the axiom system for Peano arithmetic
by the transfinite ordinal &y. In this paper we try to develop a general framework for
characterizing ordinals of axiom systems and study to what extend these ordinals
embody a measure for their performance.

3.1 Introduction

Hilbert’s advocacy of the “axiomatic method”, as presented in his 1917 lecture in
Zurich (reprinted in [18]) has had a lasting influence on research and teaching in
mathematics. Nowadays, even beginners’ lectures are based on precisely introduced
axioms. Also in his Zurich lecture Hilbert emphasized the importance of the consis-
tency of the axiom systems used in the different areas of mathematics and explained
that this finally requires an axiomatization of number theory and set theory and the
underlying logic. But the quest for consistency, already expressed in Hilbert’s second
problem in [17], arose much earlier and formed the root of Hilbert’s program which
aimed at a finitistic confirmation of the axiom systems for number theory and logic.
Godel’s incompleteness theorems, published in [16], wrecked Hilbert’s dream of a
finitistic consistency proof for axiom systems comprising the theory of natural num-
bers. Nevertheless, Gerhard Gentzen in [13, 14] succeeded in giving a consistency
proof for an axiom system of Peano arithmetic by use of infinitary means which can
be merged into a single transfinite induction of height gy. It thus follows by Godel’s
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second incompleteness theorem that transfinite induction up to &y cannot be provable
in Peano arithmetic. In a subsequent paper [15] Gentzen gave a direct proof of this
unprovability and showed that, conversely, transfinite induction can be proved up to
any proper initial segment of &y by the Peano axioms. This was the birth of ordinal
analysis and established & as the proof-theoretic ordinal of Peano arithmetic.

Due to their genesis proof-theoretic ordinals are connoted with the problem of
consistency. The problem of consistency, however, is a problem which is provably
unsolvable. To prove the consistency of a (sufficiently strong) axiom system T we,
by Godel’s second incompleteness theorem, necessarily need an axiom system T’
which is “stronger” than T. To secure the consistency of T’ we need an axiom system
T” stronger than T” and so on. This leads to an “argumentum ad infinitum”. Of course
one can try to reduce T to an axiom system T’ whose proof-theoretic strength is in
principle that of T but whose consistency is intuitively more plausible. This form of
“reductive proof theory” is still flourishing.

Nevertheless, nowadays the problem of consistency no longer seems to play a
role in “everyday” mathematical discussions. Experience tells us that up to now
the assumption of the existence of abstract structures did not lead us to unsolvable
inconsistencies.

In this paper we will therefore put abstract structures in the centre and try to study
the role of proof-theoretic ordinals from this perspective. This puts their connection
to consistency in the background.

Characterizing properties of abstract structures by specific ordinals (and vice
versa) is a well-established tool in definability theory and generalized recursion
theory. One of the best-known examples is the ordinal w{*, the first ordinal which
cannot be represented by a recursive well-ordering on the natural numbers. So w{*
is the supremum of the order-types of well-orderings that are primitive-recursively,
elementarily' or even X|-definable in the structure 91 of the natural numbers. It is
moreover the closure ordinal of the structure 91, in the sense defined by Moschovakis
in [24], and the first ordinal above w at which the stage LwICK in the constructible
hierarchy becomes an admissible set, etc.

Investigating abstract structures by Hilbert’s axiomatic method requires an axiom-
atization T for 907, i.e. a set T of sentences in the language of 9t which we consider
to be characteristic for 91 and thus are assumed to be valid in the structure 1.

In Sect.3.2.2 we define the H}-ordinal 7™ of a countable abstract structure’
and its counterpart 7™ (T) for an axiomatization T of 901. Since we regard 7™ as
characteristic for 90t and 7™ (T) as characteristic for T, it is obvious to consider the
distance between 7 (T) and 7™ as a possible measure for the performance of the
axiom system T. It is one of the aims of this paper to find out to what extend this is
actually the case.

1 By the elementary language of a structure we understand the basis language of 9. This is in prin-
ciple always a first-order language. However, it does not exclude many sorted first-order languages,
e.g. weak second-order languages.

2 The properties of the ordinal 7™ are studied in [31]. In case that the structure 91 is the structure
9 of arithmetic, we get 77" = wX.
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The main tool in our investigations are semi-formal systems, i.e. systems of
formal inference rules which allow for inferences with infinitely many premises.
Semi-formal systems are introduced in Sect.3.2.1.2. The Boundedness Theorem? in
Sect.3.2.4 shows that the ordinal 7™ (T) is an upper bound for the ordinal §™(T),
which is the supremum of the order-types of elementarily definable orderings whose
well-foundedness is provable in T. If §™(T) = 7™ (T) we call 8™ (T) the proof-
theoretic ordinal of T. This coincides (at least in all cases that are known to us) with
the familiar definition of the proof-theoretic ordinal.

In Sect.3.2.5 we apply these definitions to the example of an acceptable count-
able structure and first-order axiomatizations for it. The lessons learned from these
examples are twofold. First it shows the importance of pseudo IT{-sentences* in the
axiomatization. Secondly it tells us that augmenting an axiom system by true elemen-
tary sentences will not improve its performance. For example, there is no difference
between the performance of the Peano axioms and an axiom system which, besides
Mathematical Induction, contains the full elementary diagram of 1, although the
elementary diagram should know everything about 1. The conclusion drawn from
these observations is that the ordinal 7 ™ (T) is rather a measure for the performance
of the axiom system T with respect to a universe above 9 than for 91 itself.’ This
is corroborated by the “No Enhancement Theorem” (Theorem 3.21) which states
that even the addition of true ¥-sentences to an axiom system will not enhance its
performance.

The focus of the paper therefore concentrates on universes above a structure
9 which have to be axiomatized by sentences “beyond” Ell (e.g. by pseudo H%-
sentences).

If a universe above 21 is supposed to contain only subsets of and functions on
N, the largest possible universe above 91 is apparently the full power set of . A
different option is to allow arbitrary sets above 9t and to regard the objects in 9T
as urelements (or sets in the universe). Since Analysis, i.e. the theory of sets and
functions on the reals R, lives in the powerset of the natural numbers we refer to the
first form of universes as analytical universes while in the second form we talk about
set-theoretic universes. Our original plan was to investigate both forms of universes
in the present paper, but it quickly turned out that such a paper would become much
too long. So we decided to postpone the set-theoretic universes to a forthcoming
paper and to concentrate on analytical universes. Even here we had to cut back and
to concentrate on universes with characteristic ordinals below the first recursively
inaccessible ordinal. We feared that otherwise the necessary overhead could bury
the idea of our approach.® Another argument is that for universes with characteristic

3 This theorem, in a different formulation, already appears in [15].

4 By a pseudo IT } -sentence we understand a formula in the elementary language of 9%, which must
not contain free first-order variables but may well contain free second-order variables. Semantically
pseudo H%—sentences are treated as H}—sentences.

3 That similarly 7™ is characteristic rather for an universe above 9t than for 9 itself follows from
Sect. 5 in [31].

6 Therefore many of the mathematical results presented here are not new. Most of them are already
contained in [33] but are presented here in a different context.
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ordinals above the first inaccessible ordinal the set-theoretic approach is much more
natural such that they should better be treated there.

The full powerset &2 (90) of a countable structure 91 is uncountable and thus out-
side of the reach of our methods. Therefore we restrict ourselves to universes that are
countable subsets of &2 (9N). Clearly not every subset of &7 () is a suitable universe
above 2. Only sets that fulfill certain closure properties are potential universes.

Good candidates are countable Spector classes above 91 as introduced in [24].
Spector classes above 9 are collections of relations on 9t whose properties are mod-
eled on the paradigmatic example of recursively enumerable relations. Their origin is
the attempt to generalize computability theory.” A partial function f: I —>, M
is partial I'-recursive iff its graph is in the Spector class I" above 91.

Among other properties, Spector classes are normed, which is one of their salient
properties. For every relation R in a Spector class I there is an ordinal A and a I'-norm
or: R 2% ) satisfying certain conditions. This entails that for every relation R in
a Spector class I' we have an ordinal o(R) which is the supremum of all possible
I'-norms on R. Putting o(I") as the supremum of all the I"-norms for relations in
I" we obtain a characteristic ordinal for a Spector class above a structure 9t which
generalizes the ordinal ™.

The new and central notion of this paper is the spectrum of an axiom system
which already has been touched in a very preliminary form in [26] and in a bit more
elaborated form in [33].

Given abasis structure 9J1 we construct a hierarchy of Spector classes 901, above I
and thus obtain a hierarchy /c/?‘ of characteristic ordinals. Spector classes in general
are difficult to axiomatize. Fortunately the least Spector class above a structure 9t
can be obtained as a positive fixed-point structure. Axiomatizing a hierarchy of
Spector classes above a countable structure 97 thus leads to iterated positive inductive
definitions which are well studied in proof theory.” If T is an axiomatization for the
basis structure 9t we extend T to an axiom system ID,(T) which axiomatizes the
hierarchy {901, | < v} above M.

We then obtain a whole spectrum of characteristic ordinals for ID, (T). If 91, for
w < v is a Spector class we define 0™ (ID,(T)) as the supremum of all M,,-norms
og(x) such that R € 9, and ID,(T) F x € R. Then Spec™(ID,(T)) is the set of
all ordinals 0™ (ID, (T)) such that 9, is a Spector class above M1.10

If 901 is an acceptable structure, i.e. a structure which contains an elementarily
definable copy of the natural numbers and an elementarily definable coding machin-
ery, and T an acceptable axiomatization for 9T which proves all the properties of the

7 Cf. Definition 3.25 and Note 3.30.

8 M

- corresponds to o(I") if I is the least Spector class above 9t (cf. Theorems 3.32 and 3.34).

9 Therefore, in some sense, we are selling “old wine in new skins”. Nevertheless we decided to
include—at least extended sketches of—many of the old proofs. First, of course, to make the paper
more self-contained and thus retain the survey character of the paper. Secondly because in many
cases the central ideas of the proofs are helpful (or even needed) to make our approach transparent.
10 Here one should observe that the spectrum of an axiomatization ID,,(T) for 91, also comprises
the ordinal 7 ™ (1D, (T)).
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coding machinery, then the spectral points in Spec™ (ID, (T)) represent exactly the
range of the 91, -recursive functions, whose totality is provable in ID,,(T).

The main technique used is that of collapsing operator controlled semi-formal
derivations."" The controlling operators are obtained by iterations of Skolem-hull
operators on ordinals as introduced in Sect. 3.3.3.1. The main result is the Collapsing
Theorem (Theorem 3.68).

In Sect.3.4.1 we apply the Collapsing Theorem to an axiom system T for I
which only contains Mathematical Induction as a non-elementary axiom. For such
an axiom system we obtain 0™ (ID, (T)) = 7™ (ID,(T)) < &com 41 If H is the oper-
ator which closes the set {K;m

1 < v} under + and the Veblen function ¢ we obtain

the iteration H* for & := 7™ (ID, (T)) as a suitable operator for the collapsing pro-
cedure. Upper bounds for the spectral points of ID, (T) are then uniformly generated
as 0™+ (ID,(T)) = H* (k%) Nk k).

In Sect.3.4.2 we show that for acceptable axiom systems T these are the exact
points.

We end the paper by the remark that a refinement of the collapsing techniques
can be used to characterize the recursive functions on 9t which are provably total
in ID,(T) even for the case v = 0. However, space did not allow to go into more
details.'?

3.2 Characteristic Ordinals

3.2.1 Semi-formal Systems

The central tools in our research are semi-formal systems. Semi-formal systems form
a bridge between proofs and semantics with a certain emphasis on the proof-theoretic
side. In designing semi-formal system we follow the pattern introduced in [31] and
start with a brief overview on semi-formal systems.

3.2.1.1 The Verification Tree

Given a countable abstract structure 90t with language . (9t) we denote by £ (9) ,
its extension by names m for all elements m in the domain M of 9. The verification
of £ (9M),, -sentences F can be arranged in countably branching well-founded trees
¥r, labeled by subsentences of F. The verification of atomic sentences in ¥% is given
by the diagram 2(91) of M, which consists of all true atomic .2 (901) ,,-sentences.
Composed sentences G in ¥ are verified logically by recurrence to a characteristic
sequence CS(G) of subsentences of G which depends on the language .2 (9). If

' ntroduced in Sect. 3.3.3.
12 A more elaborated sketch is in [33].
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all sentences of CS(G) are needed in the verification of G we say that G belongs
to /\ —type (conjunction type), if some of the sentences in CS(G) suffice then G
belongs to \/ —type (disjunction type). For composed sentences we thus have

F e /\ —type implies 1 = Fiff M = GforallG € CS(F)) 3.1)
and
F e \/ —type implies (M = F iff 9 = G for some G € CS(F)). 3.2)

For atomic sentences G we have CS(G) = () and 2(9M) C A —type since the
sentences in Z(91) need no logical verification.

The verification tree ¥ is, in principle, determined by F. The heights of well-
founded countable trees are measured by countable ordinals. For an ordinal o we

thus denote briefly by 9t Ii F that the verification tree ¥ for F has a height < «.
We assume that a language .Z (9) is characterized by its /\ —type,\/ —type and
the characteristic sequences CS(F) for .Z(9),,-sentences F. Under this assump-

tion there is an inductive definition of the verification relation )t Ié F by the two
rules:

(/\) Ifom Ii G andag < aholdstrueforall G € CS(F) thenconclude )t Ig F..
) Ifom Ig @G holds true for some G € CS(F) then 9t Ia: F holds true for all

o > .

The paradigmatic example for . (90) is the first-order language of 9. Since dealing
with negations causes technical inconveniences we generally do not count negation
among the logical symbols. Instead we assume that for every relation in 91 there is
also a symbol for its complement. Using de Morgan’s rules, negation of .Z(90),,-
sentences becomes definable by pushing the negation symbol in front of atomic
sentences and there using complements. We also restrict the propositional symbols to
conjunction and disjunction. Nevertheless we keep writing A — B whichis supposed
to be a “shorthand” for —A v B where —A is assumed to be defined in the just
mentioned way. For the first-order language we then get

e CS(F) = {(),if F is atomic,

e CS(AAB)=CS(AV B)={(A,B),

e CS((Vx)F(x)) = CS((@x)F(x)) = (F(m)|m € M), where we anticipate a given
enumeration of the elements of M,

and

e the /\ —type comprises all sentences in Z(9), all sentences of the form (A A B)
and (Vx)A(x),

o \/—type :={—F|F € /\ —type }, where —F is understood as defined in the
above sense.
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A canonical complexity measure rnk(F) for first-order formulae F' can be obtained by
counting the number of logical symbols occurring in F'. This yields rnk(G) < rnk(F)
for all G € CS(F).

For more complex languages the complexity rnk(F) may require a more sophisti-
cated definition. It is, however, essential that the complexity definition always fulfills
the requirement

rnk(G) < rnk(F)holds true for all G € CS(F). 3.3)

By an easy induction on the complexity of an . (901) ,,-sentence F using (3.1), (3.2)
and (3.3) we then obtain in general

rnk(F

m = F it M PR (3.4)

3.2.1.2 The Semi-formal System for Countable Structures

Equation (3.4) shows that 9t Ii F is just a redefinition of the familiar truth defini-
tion for the sentences in .Z (901) ,, which is usually defined by induction on rnk(F).
The situation changes if we allow free second-order variables in the language. We
call an Z (M) ,-formula a pseudo T1}-sentence if it does not contain free object vari-
ables but may contain free second-order variables. For convenience we sometimes
denote by .Z*(9) the set of pseudo H{-sentence of Z (M) .

The semantics for pseudo H}-sentences is defined by

ME=F(Xy, ..., Xp) ff ME F(Xy, ..., Xw)[S1,-.., Syl for any tuple

S1, ..., Sy of relations on M such that S; matches the arity of X;. 3.5

We thus treat pseudo ITi-sentences semantically as IT}-sentences.

The point is that we can extend the verification relation 97t I% F'to a semi-formal
system which includes pseudo IT{-sentences. We do that in form of a one-sided
sequent calculus a la Tait. That means that the semi-formal system derives finite sets
of .Z*(9M)-sentences which are to be interpreted as finite disjunctions. We still do
not count the negation symbol among the logical symbols but regard negation as
defined. Finite sets of pseudo I} -sentences are denoted by upper case Greek letters
and we freely use the notions which are common in proof theory. So we write A, I’
for AUT, A, G for A U{G} etc.

Since atomic pseudo H%—sentences s € X ands ¢ X are neither logically verifi-
able nor possess a truth value in 9 they belong neither to /\ —type nor to \/ —type .
However. observations (3.1) and (3.2) can be generalized.

Let Sy, ..., S, beatuple of relations on M whose arities match the arities of the
second-order variables occurring in a pseudo H%—sentence, F=F(X,,...,X,).
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IfF € /\—type we have M = F[Sy, ..., S, iff M= G[S1, ..., S,]forevery
pseudo H%-sentence G(Xyq,...,X,) € CS(F). (3.6)

IfF € \/—type we have M = F[Sy, ..., S.liff M= G[Sy, ..., S,] for some
pseudo H}-sentence G(Xy,...,X,) € CS(F). (3.7

Definition 3.1 Let A be a finite set of pseudo IT}-sentences. We define the semi-
Sformal proof relation N % A by the following clauses

X) Ifs=sy,....,5,andf=1y,...,1, are tuples of .Z(901) y,-terms such that
MEs;=tfori=1,....nand (5 € X,7¢ X} C AthenM|; A holds
true for all ordinals « and p.

(\) IfFeANn/\—type and M }% A, G holds true for all G € CS(F) then

M5 A holds true for all > sup {ag + 1| G € CS(F)}.
(\/) IfFeANn\ —type andOM }% A, G holds true for some G € CS(F) then
m % A holds true for all @ > .

(Cuty IEMEE A, F,MES A, —F and rmk(F) < p then M [5 A holds true for
all @ > «ap.

Theorem 3.2 9N % A implies M = \/ {F|F € A} in the sense of (3.6).
Proof This follows from (3.7) and (3.8) by induction on «. m]

The obvious next observation shows that the semi-formal system is a straightforward

extension of the verification relation.

Observation 3.3 Forevery £ (9N) y-sentence we have IN % F iffon lé F. Hence
k(F

m };"7() F holds true for every true £ (M) y-sentence F.

Lemma 3.4 Let A be a finite set of pseudo T1}-sentences such that its disjunction is
logically valid. Then there is a finite ordinal n such that 9N % A

Proof We just motivate the proof.'> It relies on the well-known fact that there
are finite sequent calculi in which every logically valid formula is cut-free deriv-
able. These finite derivations are easily translated into sm}% -derivations with a
finite o. O

The next theorem embraces the outstanding feature of the semi-formal system.

Theorem 3.5 For any countable structure M we get M = (VX) F(X) iff there is a
countable ordinal a such that I % F(X).

13 For a complete proof cf. e.g. [31] Theorem 4.4.
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Proof The direction from right to left is Theorem 3.2. For the opposite direction
assume 901 ){% F (X) for all countable ordinals « and construct a search tree for a semi-
formal proof of F (X) by inverting the rules (/\) and (\/). By assumption the search
cannot be successful and the search tree thus contains an infinite path f. Assigning
the relation S := {d € M"|a ¢ X appears in f} to the second-order variable X we
obtain 9 = G[S] for all formulae occurring in f. This shows I = (VX) F (X).
For a detailed proof see [31] Sect. 3. O

We close the section by listing some of the obvious properties of the semi-formal
system which all follow by an easy induction on «. Call two .Z*(91)-formulae 91-

equivalent it they at most differ in £ (90) ,-terms s1, ..., s, and 7y, . .., t, such that

M = (s; = 1;) holds true fori =1, ..., n.

Observation 3.6

(Weakening) W}%A,afﬁ,pfcandAgFimplyim}gF.

(/\-Inversion) m }% A, F and F € \ —type implies M }% A,G forall G €
CS(F).

(V-Exportation) 9[> A, AV B impliesM|> A, A, B.

(Tautology) m w A, F,—G holds true for all M-equivalent £+ (9N)-

formulae F and G.

Remark 3.7 The rules (/\), (\/) and (Cut) represent the logical part of the verifi-
cation calculus and the semi-formal system, respectively. Their non-logical part is
represented by the condition Z(9) < A\ —type.

3.2.2 The Ordinals ™" and ™ (T)

We use the I1}-completeness (Theorem 3.5) to define the I1}-ordinal of a countable
structure 9T.

Definition 3.8 Let 9 be a countable structure and F a pseudo I1}-sentence in the
language .2 (9) ;. Then we define

(F) = min {am% F} if this e%x1sts
wy otherwise
where w; denotes the first uncountable ordinal. The I1}-ordinal of 90 is defined by
7™ = sup {tc(F)| F is a pseudo H}—sentence and M = F}
where we again understand 90t = F in the sense of (3.6).

Let T be an axiomatization of the structure 91.'* We define the H%-ordinal of T
with respect to 90T by

a™(T) := sup {tc(F)| F is a pseudo 1'[{ — sentence and T F F}.

14 By an axiomatization of 9t we understand a set T of .Z(901)-sentences such that 90t = T.
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There is an obvious observation.

Observation 3.9 An axiom system T for a countable structure I is consistent iff
7T < o™,

Remark 3.10 Observation 3.9 is a triviality since we require 9t = T for any axiom
system T for 90t (otherwise it would not be an axiom system for 90). Let us—putting
for the moment consistency in the foreground—assume that T is just a set of .2 (90)-
sentences.Then it may happen that T - F but 90t = F. In that case we would get
7™(T) = w; even if T is consistent. For a consistent set T, however, there would
be a countable model & of T for which we would get 78(T) < 7% < w;. The
consistency of an arbitrary set of sentences is thus secured if we succeed to show
7S(T) < w; for some structure & which matches the language of T.'5 The definition
of 7™(T) thus depends on the intended structure 91.

In the following parts we want to study to what extend the distance between ™ (T)
and 7™ represents a measure for the performance of the axiom system T with
respect to the structure 1. To simplify notations we will mostly restrict ourselves to
acceptable structures which allow for an elementarily definable coding machinery.
We can therefore consider all second-order variables as unary and thus simply talk
about set variables.

3.2.3 Basics of Ordinal Arithmetic and Cut-Elimination

In Theorem 3.5 and Sect. 3.2.2 we have seen that cut-free semi-formal proofs and their
heights play a distinguished role. The essential feature of the semi-formal system
is that it allows for a cut-elimination procedure with computable increase of the
derivation height as stated in the Cut Elimination Theorem below. Though we will
not prove the theorem here—its proof is widespread and can be found in practically
all textbooks on proof theory—its understanding needs a rudimentary knowledge of
ordinal arithmetic which we are going to recap roughly.

We understand ordinals in the set-theoretic sense as hereditarily transitive sets
which are well-ordered by the membership relation €. Every ordinal is the set of all
its predecessors.

An ordinal is either 0, a successor ordinal of the form o U {«}, or a limit ordinal A
such that for every £ < A thereisann < X suchthat§ < 5. By o we denote the least
limit ordinal. It represents the order-type of the natural numbers.

Every class A € On of ordinals possesses an enumerating function ens which
enumerates the ordinals in A according to their natural ordering.

The enumerating function of a class which is closed and unbounded is a normal-
function, i.e. a function that is order-preserving and continuous with respect to the
canonical order topology of the ordinals.

15 This is just because any axiom system T is consistent iff there is a formula F such that T ¥ F.
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The fixed points of the enumerating function of a closed and unbounded class of
ordinals form again a closed and unbounded class.

Let A£. B + & be the enumerating function of the class {§| B < &}.

Thenweobtainae +0=«a, a+1=aU{a}, a+(B+1)=(a¢+B)+ 1and
sup {o + &|& < A} = o + A for limit ordinals A.

An ordinal 8 is additively indecomposable if it is closed under ordinal addition,
ie. &, n < Bimply & + n < B. The class H of additively indecomposable ordinals
is closed and unbounded. The first ordinals in H are 1 = {#}} and w.

Let \&. ¥ denote the enumerating function of the class H. Then =10 =w
and w* = sup {o* |& < A} for limit ordinals A. If « is additively indecomposable and
B <athen 8+ o = «.

An ordinal is an e-number if it is closed under w-powers, i.e. if @ < ¢ entails
* <e.

The Veblen functions ¢; are defined by o(€) := »* and for & > 0 the function
@ enumerates the common fixed points of the functions ¢, forn < . Theno < 8
implies ¢z (o) < @:(B), since g is an enumerating function, and £ < n implies
@z (9, (@) = ¢, (a), since ¢, () is a fixed point of ¢.

The function ¢; thus enumerates the e-numbers. Therefore we sometimes write
&¢ instead of ¢ (§).

An ordinal y is strongly critical if it is closed under the Veblen functions viewed
as a binary function, i.e. if a, B < y also implies ¢, (B) < y. Let A§. I's enumerate
the strongly critical ordinals. An ordinal y is strongly critical iff ¢, (0) = y.

Theorem 3.11 (Cut-Elimination) 9%t };j A entails M }Zi“" A

Remark 3.12 Thecase p = 0inthe cut-elimination theorem shows that the decrease
of the cut rank by one means an increase of the derivation hight by one w-power. This

. . . 2
can be improved to an increase by only a power of 2, i.e.to 9t % A =M }/fT A,
which may become important when it comes to not leaving the realm of the finite.

3.2.4 Boundedness

Another important feature of semi-formal systems is expressed in the Boundedness
Lemma and the resulting Boundedness Theorem. As a preparation we need some
notions.

Let < be a well-ordering on the domain M of a structure 91, B a finite subset of
field(<) and coenp enumerate the complement of {otyp_ (x)|x € B} in the ordinals.
Put BY := B U {x € field(<)|otyp_ (x) < coeng(e)} and B=* = BU Ué<o¢ BE.
Then we obtain
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coenpyyy(a) < coeng(a + 1), (3.8)
(BU{x})* € B*™ U {x}, (3.9)
{y|]y <x} € B~ = x € B". (3.10)

Proof Equation (3.8) is obvious for x € B. Otherwise there is an ordinal oy such that
otyp_ (x) = coeng(ay). For o < «y it is coenpyy) (o) = coeng(a). Fora = ag + &
we get coenpy(y (g + &) < coenp(ap+1+&)andopg+1+& <o+ 1.

Equation (3.9) follows directly from (3.8).

To show (3.10) observe that by the transitivity of the relation < we get for every
a < otyp_(x) a y < x such that otyp_(y) = . Claim (3.10) is trivial for x € B.
Otherwise there is a & such thatotyp_ (x) = coenp(§).1f§ < o wearedone. If o < &
then coenp(a) < coenp(€) and there is a y < x such that otyp_(y) = coenp(x).
Since otyp_(y) = coeng(x) excludes y € B we get the contradiction coeng(a) =
otyp_(y) < coeng(a). O

The Boundedness Lemma and the Boundedness Theorem provide statements
about the order-types of well-orderings that are definable in 9J1. The well-foundedness
of an order relation < can be expressed by the pseudo IT}-sentence WO(<, X) :=
VO)IVW[y <x >y e X] > x € X] —» (Vx €field(<))[x € X].

By Prog(<, X) we abbreviate the formula (Vx)[(VY)[y <x — y € X] - x € X].

Lemma 3.13 (Boundedness Lemma) Let 9 be a countable acceptable structure
and < a well-ordering that is elementarily definable in . If

M = Prog(<, X), x1 ¢ X, ..., % & X, A(X)

for a finite set of X-positive pseudo T1}-sentences A(X) then M = \/ A(X)[B=*]
for B :={x1,...,x,}.

Proof Since this is one of the central lemmas of the paper we sketch the crucial case
of its proof.'® We induct on .

Assume that the critical formula of the last inference is — Prog(<, X). Then we have
the premise

@) MG —Prog(<, X), x1 € X,.... ;0 ¢ X, (V0)[y < x = y € X] A ¥ ¢ X, AXX) .
By /\-inversion this entails

g m }% —Prog(<,X),x1 ¢ X,....x, ¢ X, VX)[y <x = y € X], A(X)
and

Gi) M }? —Prog(<,X),x1 ¢ X,....x, ¢ X, x ¢ X, A(X).

Assume 9 = \/ A(X)[B=Y]. By X-positivity this entails 2t = \/ A(X)
[B=*]. Then we obtain by (ii) and the induction hypothesis

@iv) M E= (Vx)[y < x > y € B=*] which by (3.10) implies x € B* C B=“.
By (iii) and the induction hypothesis it follows

V) MEAXI(BU{x})=*]and by (3.9) we have (B U {x})=* € B=* U {x}.

16 A full proof is given in [1].
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Since B<% U {x} = B=% by (iv) we have the contradiction 9 = \/ A(X)[B~*].
O

Since coenyg (&) = & we obtain the next theorem as a corollary of Lemma 3.13.

Theorem 3.14 (Boundedness Theorem) Let 9 be a countable structure and assume
that < is an £ (9M)-definable ordering on I such that sm% WO(<, X). Then
otyp(<) < a.

The Boundedness Theorem makes the connection of 7™ to better known character-
istic ordinals of a structure 901, e.g. the supremum of the order-types of well-orderings
that are definable in 9.

Definition 3.15 For a structure 91 and a language . C .Z(9N),, define
8% = sup {otyp(<)| < is.Z — definable in M and M = WO(<, X)}.

We briefly put 67 := §% .
For an axiomatization T of 91 let

§Z(T) := sup {otyp(<)| < is £ — definable in®and T F WOo(<, X)}

and
8T = 87T,

From the Boundedness Theorem we get immediately
87 < 8™ < 7™ for any sublanguage £ € .Z (M), (3.11)
and
87 (T) < 8™(T) < #™(T) for an axiomatization T for 1. (3.12)
If §™(T) = 7™ (T) we put
T |y = 8"(T) = x™(T) (3.13)

and call |T |gn the proof-theoretic ordinal of T with respect to 1.

By an ordinal analysis of an axiom system T we understand the computation of its
proof-theoretic ordinal. An ordinal analysis of T usually follows the pattern that we
first compute 77 ™ (T) to obtain an upper bound and then show that for every ordinal
o < w¥Y(T) there is an £ (9N) u-definable well-ordering < of order-type o such that
TF wo(<, X).

Note 3.16 If 9 is the structure ‘Oﬁ of natural numbers, we have 88 < §A<'> =5M<
851 < 7™ < 8% andlikewise 820(T) < 6%0(T) < 6%1(T) < 72(T) < 820(T) = Tlor.
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Hence 8™ = 7™ and §™(T) = »™(T).

In [31] we claimed that 8™ = 7™ holds true for all acceptable structures 9. This
is false in the there claimed generality. There are counterexamples which are count-
able elementary “Skolem” substructures of uncountable structures in which well-
foundedness is elementarily (i.e. first order) definable (cf.[24] Sect. 8D). These are
structures which allow for an elementarily definable coding machinery but in which
the characteristic sequences of elementary sentences are not elementarily definable.
Call astructure strictly acceptable if there is not only an elementarily definable coding
machinery but also all characteristic sequences for elementary sentences are elemen-

tarily definable. This requires an elementary coding "F forall Z (9N)-sentences such
that"G" € CS ( i )can be expressed by an elementary Z(ON) -formula.'” Then the
search tree for a pseudo H}-sentence becomes elementarily definable which entails
87 = ™ as shown in [31].!® The paradigmatic example for strictly acceptable
structure are structures above the natural numbers. In general, strictly acceptable
structures are even more “‘standard like” and therefore constitute a restriction of gen-
erality. However, since strictly acceptable structures are not in the centre of this paper
we will not go into further details.

Remark 3.17 It should be noted that there is a certain parallel between pseudo IT}-
sentences and I'I(l)—sentences of the first-order language of 1. For a recursive axiom
system T we can construct the Gédel sentence G (x) such that T = G(z) holds true for
every numeral z but T ¥ (Vx)G(x). For an arbitrary axiom system T, for which we
have an ordinal analysis, there is an .Z (901)-definable well-ordering <—whose order-
typeis | T|gn—and the pseudo H}—sentence G(z, X) =z € field(<) - WO(<]z, X)
such that T - G(z, X) forevery z € M but T ¥ (Vx)G(x, X).

Note 3.18 To avoid second-order variables the proof-theoretic ordinal of an axiom
system is occasionally defined by a scheme

IT| := sup {otyp(<)| < is Z (M) — definable A T+ WO(=, F)},

where F is any first-order sentence. This is not without problems. Let Def (9)
denote the collection of all subsets of 9t which are .Z(01)-definable from 1.
Then the scheme T+ WO(<, F) entails that (9%, Def () &= (VX) WO(<, X).
But (M, Def (M)) is in general not a B -model. So T = WO(<, F) in general will
not entail that < is well-founded. Therefore we must assume “from outside” that
< is a well-ordering. Since T = WO(=, X) implies T = WO(=, F) for all £ (90)-
sentences F we get under this assumption §”*(T) < |T|. On the other hand we can
show that for a strictly acceptable structure 9 there is an £ (901)-sentence G and
a well-ordering < of order-type 7™ (T) such that T + WO(<, G) proves the con-
sistency of T. Hence T ¥ WO(=<, G) by Godel’s second incompleteness theorem
which entails |T| < 7#™(T) = §™(T) and both ordinals coincide.

17 This implies that the well-ordering on the countable domain of 91 is elementarily definable.
18 Cf. Sects. 5.3 and 5.4 in [31].
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3.2.5 An Example

We give an example for an ordinal analysis. Let 91 be a countable strictly acceptable
structure, £ (9M) its first-order language and T be an axiom system for 9J%. Then F'
is a logical consequence of T if there are finitely many axioms Ty, ..., T, in T such
that the formula

Ty AN---NT,—> F

is logically valid. By Lemma 3.4 we thus obtain

M e —=Ty,....=T,, F fora finite ordinal k. (3.14)
Let us first assume that T € Z(9N),,. Since rmk(G) <w holds true for all sen-
tences G in Z(9M),, we get by Observation 3.3 901 OF T; with m; = rmk(T;) < w

fori =1,...,n.Form := max{m, ..., m,} + 1 we therefore obtain together with
Lemma 3.4 by n cuts followed by cut-elimination (cf. Remark 3.12)

(m) m
M E—2 F for 20 (k) := kand 2"V (k) = 227, (3.15)
If we assume that there is an upper bound for the complexities of the sentences in T
we thus get 7”(T) < w. If there is no such upper bound we get 7™(T) = w.

If we allow pseudo IT}-sentences among the axioms of T we can no longer apply
Observation 3.3 to obtain upper bounds for the truth complexities of the sentences
in T. In this case we need additional computations. As an example we compute the
truth complexity of the axiom of Mathematical Induction

OeXA(W)xeX—>(x+1)eX]—> (Vx)[x € X].
in the structure 91 of natural numbers. We show

NE0¢ X, AlxeX A (x+1) ¢ Xl.neX (3.16)

by induction on n. For n = 0 we obtain (3.16) by tautology (Observation 3.6). By
induction hypothesis we have

NEO¢X, @)xeX A @+ ¢gXlneX

and by tautology

NE0¢X. AxeX A+ D ¢XLn+1¢XntleX.

By an inference (/\) followed by an inference (\/) we get (3.16) with n replaced
by n + 1. From (3.16) we finally get
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NIZ0 e X, ~(Vx)[x € X = (x + 1) € X], (Vx)[x € X]
hence
m}‘;—*“gex AVX)[xeX — (x+1)e X]— (Vo)[x € X].

Call an axiomatization of an acceptable structure acceptable if it proves all the
properties of the coding machinery. We especially require that an acceptable axiom-
atization comprises a form of Mathematical Induction. The truth complexity of this
axiom may be a bit greater than w + 4—depending on the complexity of the elemen-
tarily definable copy(N? , <¢) of M1—but it will always remain smaller than » + .
If we assume that all other axioms in T are £ (90%) ,-sentences and thus have finite
truth complexities we obtain with the same procedure as above

200 (ot
mp— F

for every pseudo IT!-sentence which is provable from T. This shows 7¥(T) <
sup {27 (w + w) |m € w} = &, where & is the first ordinal o such that v* = «, i.e.
&0 = ¢1(0). Call such axiom systems Peano-like.

On the other hand already Gentzen in [15] has shown that the Peano axioms
PA suffice to show that for any ordinal o < &g there is a well-ordering < of order-
type a which is elementarily (even primitive-recursively) definable in 21—and thus
also in every acceptable countable structure 91—such that T F WO(<, X).So g <
8™ (PA). Since the critical axiom in the Gentzen proof is Mathematical Induction this
proof can be mimicked in any acceptable axiomatization of a countable acceptable
structure. So we have the following theorem.

Theorem 3.19 Let 9 be an acceptable countable structure and T an acceptable
axiomatization of 9N in which all axioms except Mathematical Induction are of finite
complexity. Then |T|gn = €9 and T is Peano-like.

Remark 3.20 Usually the Peano axioms PA are formulated in the first-order lan-
guage . Z(N) of I with the scheme of Mathematical Induction. This means that
we have PA € (M) which—according to our above considerations—Ieads to
7(PA) = w. This is irritating since it is well known that the proof-theoretic ordinal
of PAis gy. The reason for this irritation is the fact that the presence of the free second-
order variable X in WO(<, X) is essential for the validity of the Boundedness The-
orem. We cannot conclude otyp(<) < « from the scheme 907 % WO(<, F). Evenif
we extend the language of PA conservatively to PA(X) by adding second-order vari-
ables. We cannot infer PA(X) - WO(<, X) from the scheme PA(X) = WO(<, F),
where F only varies over .Z (PA)-sentences. The Boundedness Theorem is therefore
not applicable. Moreover we get 8"(T) = 0 in absence of second-order variables.
Without second-order variables, we thus have to rely on Godel’s second incomplete-
ness theorem and to argue as in Note 3.18.

According to Observation 3.3 we generally have tc(F) = rnk(F) for L (N)y-
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sentences which shows that tc(F) only carries additional information for pseudo
H{-sentences. In absence of free second-order variables the ordinal 7™? carries no
additional information. Thus second-order variables are 