
Chapter 2
Simplified Cut Elimination
for Kripke-Platek Set Theory

Gerhard Jäger

Abstract The purpose of this article is to present a new and simplified cut elim-
ination procedure for KP. We start off from the basic language of set theory and
add constants for all elements of the constructible hierarchy up to the Bachmann-
Howard ordinal ψ(ε�+1). This enriched language is then used to set up an infinitary
proof system IP whose ordinal-theoretic part is based on a specific notation system
C(ε�+1, 0) due to Buchholz and his idea of operator controlled derivations. KP is
embedded into IP and complete cut elimination for IP is proved.

2.1 Introduction

Kripke-Platek set theory KP (with infinity) is a remarkable subsystems of Zermelo-
Fraenkel set theory and had an enormous impact on the interaction between various
fields of mathematical logic; see, for example, Barwise [1]. Its proof-theoretic anal-
ysis has been carried through in Jäger [11], and it is known that the proof-theoretic
ordinal ofKP is theBachmann-Howard ordinalψ(ε�+1) and thatKP proves the same
arithmetical sentences as the theory ID1 of positive inductive definitions (cf. Fefer-
man [8] and Buchholz, Feferman, Pohlers, and Sieg [6]). Functional interpretations
of KP have been studied by Burr [7] and Ferreira [9].

The purpose of this article is to present a new and simplified cut elimination
procedure forKP.We start off from the basic language of set theory and add constants
for all elements of the constructible hierarchy up to the Bachmann-Howard ordinal
ψ(ε�+1). This enriched language is then used to set up an infinitary proof system
IP whose ordinal-theoretic part is based on a specific notation system C(ε�+1, 0)
due to Buchholz (see, for example, Buchholz [3]) and his idea of operator controlled
derivations. KP is embedded into IP and complete cut elimination for IP is proved.

In the older proof-theoretic treatments of theories for admissible sets infinitary
systems of ramified set theory play a central role. The build up of the set terms in
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these systems has always been complicated—requiring a lot of technical intermediate
steps to deal with, for example, extensionality and equality—and is now for free.

This article is organized as follows: We begin with a very compact presentation
of Kripke-Platek set theory KP (with infinity) and its Tait-style variant KPT . Then
we discuss the ordinal notation system and the derivation operators needed for our
analysis. Here we can confine ourselves to a “slimmed down” version of Buchholz
[3]. It follows the presentation of the new infinitary system IP with its very simple
term structure. After some partial soundness and completeness results for IP we
show how to embed KPT into IP. The last two sections are dedicated to cut elimina-
tion: predicative cut elimination and collapsing. The Hauptsatz then tells us that the
Bachmann-Howard ordinal is an upper bound for the cut-free embedding of the �

fragment ofKP into IP; also, the constructible hierarchy up to theBachmann-Howard
ordinal is a model of the �2 fragment of KP.

2.2 Kripke-Platek Set Theory

Let L be the standard first-order language of set theory with ∈ as the only relation
symbol, countably many set variables, and the usual connectives and quantifiers of
first-order logic.With regard to the later proof-theoretic analysiswewant all formulas
ofL to be in negation normal form. Thus, the atomic formulas ofL are all expressions
(u ∈ v) and (u /∈ v). The formulas of L are built up from these atomic formulas by
means of ∨,∧, ∃,∀ as usual. We use as metavariables (possibly with subscripts):

• u, v, w, x, y, z for set-theoretic variables,
• A, B,C, D for formulas.

As you can see, we have no connective for negation. However, the negation ¬A
of A is defined via de Morgan’s laws and the law of double negation. In addition, we
work with the following abbreviations:

(A → B) :≡ (¬A ∨ B),

(A ↔ B) :≡ ((A → B) ∧ (B → A)),

(∃x ∈ u)A[x] :≡ ∃x(x ∈ u ∧ A[x]),
(∀x ∈ u)A[x] :≡ ∀x(x ∈ u → A[x]),

(u = v) :≡ (∀x ∈ u)(x ∈ v) ∧ (∀x ∈ v)(x ∈ u).

To simplify the notation we often omit parentheses if there is no danger of con-
fusion. Moreover, we shall employ the common set-theoretic terminology and the
standard notational conventions. For example, Au results from A by restricting all
unbounded quantifiers to u. The �0, �, �, �n , and �n formulas of L are defined as
usual.

The logic ofKripke-Platek set theory is classical first-order logic. The set-theoretic
axioms of KP consist of

(Equality) u ∈ w ∧ u = v → v ∈ w,

(Pair) ∃z(u ∈ z ∧ v ∈ z),
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(Union) ∃z(∀y ∈ u)(∀x ∈ y)(x ∈ z),
(Infinity) ∃z(z 
= ∅ ∧ (∀x ∈ z)(x ∪ {x} ∈ z)),
(�0-Sep) ∃z(z = {x ∈ u : D[x]}),
(�0-Col) (∀x ∈ u)∃yD[x, y] → ∃z(∀x ∈ u)(∃y ∈ z)D[x, y],
(∈-Ind) ∀x((∀y ∈ x)A[y] → A[x]) → ∀x A[x].
The formulas D in the schemas (�0-Sep) and (�0-Col) are �0 whereas the formula
A in the schema (∈-Ind) ranges over arbitrary formulas of L.

2.3 A Tait-Style Reformulation of KP

For the later embedding into the infinitary system IP it is technically convenient to
work with a Tait-style variant KPT of KP. In KPT we derive finite sets ofL formulas
rather than individual formulas. In the following the Greek letters �,	,
 (possibly
with subscripts) act as metavariables for finite sets of L formulas. Also, we write
(for example) �, A1, . . . , An for � ∪ {A1, . . . , An}; similarly for expressions such
as �,	, A. Finite sets of formulas are to be interpreted disjunctively.

Axioms of KPT .

(Tnd) �, A, ¬A for allL formulasA.

(Equality) �, u ∈ w ∧ u = v → v ∈ w.

(Pair) �, ∃z(u ∈ z ∧ v ∈ z).
(Union) �, ∃z(∀y ∈ u)(∀x ∈ y)(x ∈ z).
(Infinity) �, ∃z(∅ 
= z ∧ (∀x ∈ z)(x ∪ {x} ∈ z).
(�0-Sep) �, ∃z(z = {x ∈ u : D[x]}).
(�0-Col) �, (∀x ∈ u)∃yD[x, y] → ∃z(∀x ∈ u)(∃y ∈ z)D[x, y].
(∈-Ind) �, ∀x((∀y ∈ x)A[y] → A[x]) → ∀x A[x].
The formulas A in the Tertium-non-datur axioms (Tnd) and ∈-induction axioms
(∈-Ind) range over arbitrary L formulas whereas the formulas D in (�0-Sep) and
(�0-Col) are supposed to be �0.

Rules of inference of KPT .

(or)
�, Ai for i ∈ {0, 1}

�, A0 ∨ A1
(and)

�, A0 �, A1

�, A0 ∧ A1

(b-ex)
�, u ∈ v ∧ A[u]
�, (∃x ∈ v)A[x] (b-all)

�, u ∈ v → A[u]
�, (∀x ∈ v)A[x]

(ex)
�, A[u]

�, ∃x A[x] (all)
�, A[u]

�, ∀x A[x]

(cut)
�, A �, ¬A

�
.
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In the rules (b-all) and (all) the eigenvariable u of these rules must not occur in
their conclusion.

The notions of principal formula and minor formula(s) of an inference and that
of cut formula(s) of a cut are as usual. We say that � is provable in KPT iff there
exists a finite sequence of finite sets of L formulas

	0, . . . , 	n

such that	n is the set� and for any i = 0, . . . , n one of the following two conditions
is satisfied:

• 	i is an axiom of KPT ;
• 	i is the conclusion of an inference of KPT whose premise(s) are among

	0, . . . , 	i−1.

In this case we write KPT � �. It is an easy exercise to show that a formula A is
provable in one of the usual Hilbert-style formalizations of KP iff KPT � A. We
leave all details to the reader.

2.4 An Ordinal System for the Bachmann-Howard Ordinal

Buchholz has developed several ordinal notation systems based on so called collaps-
ing functions; see, for example Buchholz [2–4]. In the following we work with a
reduced version, which is sufficient for our purposes. For that we need the following
ingredients:

(1) Let On be the collection of all ordinals and let � be a sufficiently large ordinal.
To simplify matters we set � := ℵ1, but also ωck

1 or even somewhat smaller
ordinals could do the job.

(2) The basic ordinal operations λη, ξ.(η + ξ) and λξ.ωξ .
(3) The binary Veblen function ϕ, where ϕα is defined by transfinite recursion on α

as the ordering function of the class

{ωβ : β ∈ On & (∀ξ < α)(ϕξ (ω
β) = ωβ}.

In the following we write ϕαβ for ϕα(β).
(4) An ordinal α is called strongly critical iff α = ϕα0.
(5) Every ordinal α has a normal form

α =NF ϕα1β1 + . . . + ϕαnβn

with βi < ϕαiβi for i = 1, . . . , n and ϕα1β1 ≥ . . . ≥ ϕαnβn .
(6) The collection SC(α) of strongly critical components of an ordinal α is defined

by
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SC(α) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if α = 0,

{α} if α is strongly critical,

SC(β) ∪ SC(γ ) if α = ϕβγ and β, γ < α,
⋃n

i=1 SC(αi ) if α =NF α1 + . . . + αn and n > 1.

Based on that we can now introduce, for all α and β, the ordinals ψ(α) and the
sets of ordinals C(α, β).

Definition 2.4.1 By recursion of α we simultaneously define:

(1) ψ(α) := min(β : C(α, β) ∩ � = β).
(2) C(α, β) is the closure of β ∪ {0,�} under +, ϕ, and (ξ �→ ψ(ξ))(ξ<α).

Since C(α, β) is countable, it is clear that ψ(α) is always defined and less than
� in case that � is interpreted as ℵ1. If � is interpreted as ωck (or a smaller ordinal),
then additional considerations are required.

Now we list a series of properties of the sets C(α, β). Their proofs are either
standard or follow from the results in the articles of Buchholz mentioned above.

Lemma 2.4.2 We have for all ordinals α and β:

(1) C(α, 0) = C(α, ψ(α)).
(2) C(α, ψ(α)) ∩ � = ψ(α).
(3) C(α, β) ∩ � is an ordinal.

Every set C(α, 0) is well-ordered by the usual less relation < on the ordinals but
is not an ordinal itself. For example,

� ∈ C(α, 0) and (∀ξ < �)(ψ(α) ≤ ξ → ξ /∈ C(α, 0)).

If we write ot(α, ξ) for the order-type of an element ξ of C(α, 0) with respect to
C(α, 0), then

• ot(α, ξ) = ξ for all ξ ≤ ψ(α),
• ot(α, ξ) < ξ for all elements of C(α, 0) greater than ψ(α).

In particular, we have ot(α,�) = ψ(α) and the order types ot(α, ξ) of all elements
ξ of C(α, 0) are countable.

We write ε�+1 for the least ordinal α > � such that ωα = α. Its collapse η :=
ψ(ε�+1) is called the Bachmann-Howard ordinal. This number gained importance
in proof theory since it is the proof-theoretic ordinal of the theory ID1 of one positive
inductive definition and of Kripke-Platek set theory KP; see, for example, Buchholz
and Pohlers [5], Jäger [11], and Pohlers [13].
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2.5 Derivation Operators

The general theory of derivation operators and operator controlled derivations has
been introduced in Buchholz [3]. His main motivation was to provide a conceptually
clear and flexible approach to infinitary proof theory that allows to put the finger
on that part of the ordinal analysis of a sufficiently strong formal theory where the
uniformity of proofs and a collapsing technique play the central role.

In this article we confine ourselves to that part of the general theory that goes
along with the notation system C(ε�+1, 0) described in the previous section.

Definition 2.5.1 Let Pow(On) denote the collection of all sets of ordinals. A class
function

H : Pow(On) → Pow(On)

is called a derivation operator (d-operator for short) iff it satisfies the following
conditions for all X,Y ∈ Pow(On):

(i) X ⊆ H(X).
(ii) Y ⊆ H(X) =⇒ H(Y ) ⊆ H(X).
(iii) {0,�} ⊆ H(X).
(iv) For all α,

α ∈ H(X) ⇐⇒ SC(α) ⊆ H(X).

Hence every d-operator H is monotone, inclusive, and idempotent. Every H(X)

is closed under + and the binary Veblen function ϕ, and the decomposition of its
members into their strongly critical components.

LetH be a d-operator. Then we define for all finite sets of ordinalsm the operators

H[m] : Pow(On) → Pow(On)

by setting for all X ⊆ On:

H[m](X) := H(m ∪ X).

IfH and K are d-operators, then we set

H ⊆ K := (∀X ⊆ On)(H(X) ⊆ K(X)).

In this case K is called an extension of H. The following observation is immediate
from this definition.

Lemma 2.5.2 IfH is a d-operator, then we have for all finite sets of ordinals m, n:

(1) H[m] is a d-operator and an extensions of H.
(2) If m ⊆ H(∅), then H[m] = H.
(3) n ⊆ H[m](∅) =⇒ H[n] ⊆ H[m].
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Now we turn to specific operatorsHσ . They will play a crucial role in connection
with the embedding of KP into the infinitary proof system IP—to be introduced in
the next section—and the collapsing procedure for IP.

Definition 2.5.3 We define, for all ordinals σ , the operators

Hσ : Pow(On) → Pow(On)

by setting for all X ⊆ On:

Hσ (X) :=
⋂

{C(α, β) : X ⊆ C(α, β) and σ < α}.

The following lemmas summarize those properties of these operators that will be
needed later. For their proof we refer to [3], in particular Lemma 4.6 and Lemma
4.7. Assertion (5) is a consequence of Lemma 2.4.2(3).

Lemma 2.5.4 We have for all ordinals σ, τ and all X ⊆ On:

(1) Hσ is a derivation operator.
(2) Hσ (∅) = C(σ + 1, 0)).
(3) τ ≤ σ and τ ∈ Hσ (X) =⇒ ψ(τ) ∈ Hσ (X).
(4) σ < τ =⇒ Hσ ⊆ Hτ .
(5) Hσ (X) ∩ � is an ordinal.

Lemma 2.5.5 Letm a finite set of ordinals and σ an ordinal such that the following
conditions are satisfied:

m ⊆ C(σ + 1, ψ(σ + 1)) ∩ � and σ ∈ Hσ [m](∅).

Then we have for α̂ := σ + ω�+α and β̂ := σ + ω�+β:

(1) α ∈ Hσ [m](∅) =⇒ α̂ ∈ Hσ [m](∅) and ψ(̂α) ∈ Hα̂[m](∅).
(2) α ∈ Hσ [m](∅) and α < β =⇒ ψ(̂α) < ψ(β̂).
(3) Hσ [m](∅) ∩ � ⊆ ψ(σ + 1).

From now on the letter H will be used as a metavariable that ranges over d-
operators.

2.6 The Infinitary Proof System IP

Henceforth, all ordinals used on the metalevel range over the set C(ε�+1, 0) if not
stated otherwise. In this section we introduce an infinitary proof system whose terms
are constants for the elements of the initial segment of the constructible hierarchy
Lη and whose proofs are controlled by derivation operators. Later we show that KP
can be embedded into IP and that IP permits cut elimination and collapsing.



16 G. Jäger

Definition 2.6.1 The language of IP is the following extension L[η] of L:
(1) For each element a of Lη we fix a fresh constant ā. These constants are the terms

of IP. The letters r, s, t (possibly with subscripts) act as metavariables for the
terms of IP.

(2) The level |ā| of ā is the least ξ such that a ∈ Lξ+1.
(3) The formulas of IP are now easily obtained from the formulas of L by simply

replacing all their free variables by terms of IP; i.e. the formulas of IP are the
sentences of L[η].

Accordingly, the �0, �, � �n , and �n formulas of IP are the �0, �, � �n , and
�n sentences of L[η], respectively.
Definition 2.6.2 Every IP formula is an expression of the form F[ā1, . . . , ān]where
F[u1, . . . , un] is a formula of L with the free variables indicated and a1, . . . , an are
elements of Lη. The set

par(F[ā1, . . . , ān]) := {|ā1|, . . . , |ān|}

is called the parameter set of this formula.

Observe that each �0 sentence of L[η] has a non-empty parameter set. Below
it will be necessary to measure the complexities of the cut formulas appearing in a
derivation. To this end we assign a rank to each L[η] sentence.
Definition 2.6.3 The rank rk(F) of an L[η] sentence F is defined by induction on
the number of symbols occurring in F as follows.

(1) rk(ā ∈ b̄) := rk(ā /∈ b̄) := ω·max(|ā|, |b̄|).
(2) rk(F ∨ G) := rk(F ∧ G) := max(rk(F), rk(G)) + 1.
(3) rk((∃x ∈ ā)F[x]) := rk((∀x ∈ ā)F[x]) := max(ω·|ā|, rk(F[∅̄]) + 1).
(4) rk(∃xF[x]) := rk(∀xF[x]) := max(�, rk(F[∅̄]) + 1).

Finally, we define the level lev(F) of an IP formula F by

lev(F) :=
{
max(par(F)) if rk(F) < �,

� if � ≤ rk(F)).

Some important properties of the ranks of L[η] sentences are summarized in the
following lemma. Its proof is straightforward and left to the reader.

Lemma 2.6.4 We have for all IP formulas F,G and all a, b ∈ Lη;

(1) rk(F) = rk(¬F).
(2) rk(F) < ω·lev(F) + ω.
(3) rk(F), rk(G) < rk(F ∨ G).
(4) |b̄| < lev(F[∅̄]) =⇒ rk(F[b̄]) = rk(F[∅̄]).
(5) b ∈ a =⇒ rk(F[b̄]) < rk((∃x ∈ ā)F[x]).
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(6) rk(F[b̄]) < rk(∃xF[x]).
(7) rk(F) ∈ H[par(F)](∅).
(8) α ∈ par(F) =⇒ α ≤ rk(F).

The proof system for IP will be Tait-style. From now on we let the Greek letters
�,	,
 (possibly with subscripts) also range over finite sets of L[η] sentences.

For a finite set S = {F, . . . , Fm, r1, . . . , rn} of formulas and terms of IP we set

par(S) := par(F1) ∪ . . . ∪ par(Fm) ∪ {|r1|, . . . , |rn|}.

Accordingly,

H[�, F1, . . . , Fm, r1, . . . , rn] := H[par(�) ∪ par({F1, . . . , Fm, r1, . . . , rn})].

Variants of this notation may also be used. However, it will always be clear from the
context what is meant.

Axioms of IP. The axioms of IP are all finite sets

�, (ā1 ∈ b̄1) and �, (ā2 /∈ b̄2)

with a1, a2, b1, b2 ∈ Lη, a1 ∈ b1, and a2 /∈ b2.

So the axioms of IP are the finite sets that contain true atomic sentences of L[η].
The next definition introduces the derivability relation, controlled by derivation oper-
ators.

Definition 2.6.5 H α

ρ
� iff par(�) ∪ {α} ⊆ H(∅) and one of the following cases

holds:

(Ax) � is an axiom

(∨) F0 ∨ F1 ∈ � & H α0

ρ
�, Fi & α0 < α, i ∈ {0, 1}

(∧) F0 ∧ F1 ∈ � & H αi

ρ
�, Fi & αi < α for i = 0, 1

(b∃) (∃x ∈ ā)F[x] ∈ � & H α0

ρ
�, F[b̄] & α0, |b̄| < α, b ∈ a

(b∀) (∀x ∈ ā)F[x] ∈ � & H[b̄] αb

ρ
�, F[b̄] & αb < α for all b ∈ a

(∃) ∃xF[x] ∈ � & H α0

ρ
�, F[b̄] & α0, |b̄| < α,

(∀) ∀xF[x] ∈ � & H[b̄] αb

ρ
�, F[b̄] & αb < α for all b ∈ Lη

(Ref) ∃xFx ∈ � & H α0

ρ
�, F & α0,� < α, F ∈ �

(Cut) H α0

ρ
�, F & H α0

ρ
�,¬F & rk(F) < ρ, α0 < α
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We now list a series of properties of operator controlled derivations before we turn
to embedding, cut elimination, and collapsing in the following sections. The first is
the Weakening Lemma, and its proof is by straightforward induction on α.

Lemma 2.6.6 (Weakening)Assume thatH ⊆ H′,α ≤ β, ρ ≤ σ , and that par(
) ∪
{β} ⊆ H′(∅). Then

H α

ρ
� =⇒ H′ β

σ
�,
.

In the following, we will frequently make use of Weakening without making
specific reference to it. An important such use is described in the next remark.

Remark 2.6.7 The inference rules formulated above are somewhat special in the
sense that it is assumed that the principal formula of each rule (R) is an element of
the premise(s) of (R). In general, however, this is not a severe limitation. Assume
that we have a rule (R)with the principal formula F and the minor formulas (Fi )(i :I ).
Suppose further that F does not belong to � and that we have

Hi
αi

ρ
�, Fi and αi < α (for all i ∈ I ) (∗),

where Hi is either of the form H or H[b̄i ], and possibly further side conditions. If
par(F) ∪ {α} ⊆ H(∅)—and this requirement will be satisfied below in all relevant
cases—then we can apply Weakening and obtain

Hi
αi

ρ
�, F, Fi and αi < α (for all i ∈ I ).

Now the premises have the right form to conclude

H α

ρ
�, F. (∗∗).

In the following, this intermediate step will often be omitted, and we go directly over
from (*) to (**).

Also the next lemma presents some basic properties of IP; its proof is again by
induction on α.

Lemma 2.6.8 (Inversion)

(1) H α

ρ
�, F0 ∨ F1 =⇒ H α

ρ
�, F0, F1.

(2) H α

ρ
�, F0 ∧ F1 and i ∈ {0, 1} =⇒ H α

ρ
�, Fi .

(3) H α

ρ
�, (∀x ∈ ā)F[x] and b ∈ a =⇒ H[b̄] α

ρ
�, F[b̄].

(4) H α

ρ
�,∀xF[x] and |b̄| ∈ H(∅) =⇒ H α

ρ
�, F[b̄].

(5) H α

ρ
�,∀xF[x] and x does not occur in F[x] =⇒ H α

ρ
�, F.

(6) H α

ρ
�,∀xF[x] and |ā| ∈ H(∅) =⇒ H α

ρ
�, (∀x ∈ ā)F[x].

We end this section with a third structural lemma. It will be essential in connection
with the Collapsing Theorem of Sect. 2.10.
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Lemma 2.6.9 (Boundedness) Let F be a � sentence of L[η] and assume that
α ≤ β ∈ H(∅) ∩ � and that r is the constant L̄β . Then we have

H α

ρ
�, F =⇒ H α

ρ
�, Fr .

Proof Weshow this assertion by induction onα and assumeH α

ρ
�, F . First observe

that this derivation contains no instances of (Ref) since α < �. If �, F is an axiom,
then �, Fr is an axiom as well, and we are done. Otherwise we distinguish cases
according to the last inference of H α

ρ
�, F .

(i) The last inferencewas (∃)with principal formula F . Then F is of the form ∃xG[x]
and there exist an α0 < α and a set b ∈ Lα such that

H α0

ρ

, F,G[b̄],

where 
 := � \ {F}. By two applications of the induction hypothesis we obtain

H α0

ρ

, Fr ,Gr [b̄].

Since b ∈ Lα ⊆ Lβ and (∃x ∈ r)Gr [x] is the formula Fr , an inference (b∃) yields

H α

ρ

, Fr .

(ii) In all other cases we apply the induction hypothesis to the premise(s) of this
inference (once or twice depending on whether F was the principal formula of this
inference), and then apply it again.

2.7 Partial Soundness and Completeness of IP

The design of the infinitary proof system IP is so that all its axioms and rules of
inference—with the exception of (Ref)—are correct with respect to Lη. This gives
us the following result.

Theorem 2.7.1 (Partial soundness of IP) For any �, any d-operatorH and all α, ρ

we have that
H α

ρ
� and α < � =⇒ Lη |= �.

Proof By straightforward induction on α. Observe that because of α < �, the infer-
ence rule (Ref) has not been used in this derivation.

It is clear that (Ref) is not correct in Lη. For proofs of depths greater than �,
which use the rule (Ref), more subtle considerations are needed. We will see what
to do with such derivations in Sect. 2.10.
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Let us now turn to (partial) completeness. We will show that all � sentences that
are true in Lη can be derived in IP. To prove that we need the following auxiliary con-
sideration. Recall the introduction of the derivation operatorH0 in Definition 2.5.3.

Lemma 2.7.2 If a and b are elements of Lη with b ∈ a, then we have for all L[η]
sentences G[∅̄] that

H0[G[b̄]] ⊆ H0[(∃x ∈ ā)G[x]].

Proof Let K be the d-operator H0[(∀x ∈ ā)G[x]]. Then we clearly have

par(G[∅̄]) ∪ {|ā|} ⊆ K(∅).

By Lemma 2.5.4, the set K(∅) ∩ � is an ordinal. Therefore, |b̄| ∈ K(∅). Conse-
quently,

par(G[b̄]) ⊆ K[∅].

Thus Lemma 2.5.2 yields our assertion.

Theorem 2.7.3 (Partial completeness of IP) If F is a � sentence of L[η], then

Lη |= F =⇒ H0[F] rk(F)

0 F.

Proof First observe that par(F) ∪ {rk(F)} ⊆ H0[F](∅); see Lemma 2.6.4(7). The
proof is by induction on rk(F).

(i) F is atomic. Then F is an axiom and, therefore, H0[F] rk(F)

0 F .

(ii) F is of the form (∃x ∈ ā)G[x]. Then there exists a b ∈ a such that Lη |= G[b̄].
By the induction hypothesis we thus have

H0[G[b̄]] αb

0 G[b̄]

for αb := rk(G[b̄]). From the previous lemma (and Weakening) we see that

H0[(∃x ∈ ā)G[x]] αb

0 (∃x ∈ ā)G[x], G[b̄].

An application of (b∃) implies the assertion; that |b̄| < rk((∃x ∈ ā)G[x]) follows
from Lemma 2.6.4(8).

(iii) (ii) F is of the form ∀xG[x]. Then

Lη |= G[b̄]

for all b ∈ Lη and the induction hypothesis implies

H0[G[b̄]] αb

0 G[b̄]
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for αb := rk(G[b̄]). Since par(G[b̄]) ⊆ par(F, |b̄|) we obtain (Weakening)

H0[F, b̄] αb

0 F,G[b̄]

for all b ∈ Lη. It only remains to apply an (∀) inference.

(iv) All other cases are similar or even simpler.

It is worth pointing out that the above approach does not work for � sentences
true in Lη: Assume that Lη |= ∃xG[x] for a, say, �0 sentence G[∅̄]. Then there
exists a b ∈ Lη for which Lη |= G[b̄]. With the induction hypothesis we would get

H0[G[b̄|] rk(G[b̄])
0 G[b̄],

leading then, by an application of (∃), to

H0[G[b̄]] rk(∃xG[x])
0 ∃xG[x].

But H0[G[b̄|] may depend on b̄, and can this dependency be avoided?

2.8 Embedding of KPT into IP

In order to show that KPT can be embedded into IP we first deal with the axioms of
KPT . We show—step by step—how they can be proved in IP.

Lemma 2.8.1 (Tertium-non-datur) For all �, all F, and all d-operators H,

H[�, F] α

0 �, F, ¬F,

where α := ωrk(F) # ωrk(F).

Proof In view of Lemma 2.6.4(7) the ordinal condition

par(�, F) ∪ {α} ⊆ H[�, F](∅)

is clearly satisfied. We prove our assertion by induction on rk(F).

(i) If F is atomic, the �, F,¬F is an axiom since either Lη |= F or Lη |= ¬F .

(ii) F is of the form ∃xG[x]. Pick an arbitrary b ∈ Lη. Then we define

αb := ωrk(G[b̄]) # ωrk(G[b̄]),

βb := |b̄| + αb,

γb := ωrk(∃xG[x]) # ωrk(G[b̄]).
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Obviously, par(�, F,G[b̄]) ⊆ par(�, F, b̄), and by some simple ordinal computa-
tons we obtain

|b̄| < βb + 1 < γb < α.

The induction hypothesis implies

H[�, F, b̄] αb

0 �, F, ¬F, G[b̄], ¬G[b̄],

and using an inference (∃) we arrive at

H[�, F, b̄] γb

0 �, F, ¬F, ¬G[b̄].

Therefore, an application of (∀) gives the desired result.

(iii) All other cases are similar.

Lemma 2.8.2 (Equality) For all � and all a, b, c ∈ Lη,

H[�, ā, b̄, c̄] α

0 �, ā = b̄ ∧ ā ∈ c̄ → b̄ ∈ c̄,

where α := max(ω·|ā| + 4, ω·|b̄| + 4, ω·|c̄| + 2).

Proof This is an immediate consequence of Theorem 2.7.3 since α is the rank of the
formula (ā = b̄ ∧ ā ∈ c̄ → b̄ ∈ c̄).

Lemma 2.8.3 (Pair) For all �, all a, b ∈ Lη, and all d-operators H,

H[�, ā, b̄] α+2
0 �, ∃x(ā ∈ x ∧ b̄ ∈ x),

where α := max(|ā|, |b̄|).
Proof We know that a, b ∈ Lα+1 ∈ Lη and, if r is the constant for Lα+1,

par(ā ∈ r ∧ b̄ ∈ r) ⊆ H[ā, b̄](∅).

Since ā ∈ r and b̄ ∈ r are axioms of IP we have

H[�, ā, b̄] 1
0 �, ā ∈ r ∧ b̄ ∈ r

and an application of (∃) yields our assertion.

Lemma 2.8.4 (Union) For all �, all a ∈ Lη, and α := |ā|

H0[�, ā] ω·α+ω

0 �, ∃z(∀y ∈ ā)(∀x ∈ y)(x ∈ z).

Proof Let r be the constant for Lα . Then
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Lη |= (∀y ∈ ā)(∀x ∈ y)(x ∈ r).

Now we set

F :≡ (∀y ∈ ā)(∀x ∈ y)(x ∈ r),

G :≡ ∃z(∀y ∈ ā)(∀x ∈ y)(x ∈ z).

Then it is clear that

H0[�, F,G](∅) ∪ {ω·α + ω} ⊆ H0[�, ā](∅).

Therefore, Theorem 2.7.3 and Lemma 2.6.4(2) (plus Weakening) imply that

H0[�, ā] ω·α+n
0 �, G, F

for a suitable n < ω. An application of (∃) yields our assertion.

Lemma 2.8.5 (Infinity) For all �,

H0[�] ω2+ω

0 �, ∃z(x 
= ∅ ∧ (∀x ∈ z)(x ∪ {x} ∈ z)).

Proof Clearly, ω ∈ H0(∅) and

Lη |= ω 
= ∅ ∧ (∀y ∈ ω)(y ∪ {y} ∈ ω).

Hence we already know, cf. Theorem 2.7.3 and Lemma 2.6.4(2), that

H0[�] ω2+n
0 �, ω̄ 
= ∅ ∧ (∀y ∈ ω̄)(y ∪ {y} ∈ ω̄)

for some n < ω. Thus an application of (∃) finishes our proof.

Lemma 2.8.6 (�0 Separation) Let A[x, y1, . . . , yn] be a �0 formula of L with all
free variables indicated and assume a, b1, . . . , bn ∈ Lη. If we set

m := {|ā|, |b̄1|, . . . , |b̄n|} and α := max(m),

then we have that, for all �,

H0[�,m] ω·(α+2)
0 �, ∃z(z = {x ∈ ā : A[x, b̄1, . . . , b̄n]}).

Proof Under the above assumptions it is clear that there exists a set c ∈ Lα+2 such
that

Lη |= c = {x ∈ a : A[x, b1, . . . , bn]}.

Moreover, we have for
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F :≡ c̄ = {x ∈ ā : A[x, b̄1, . . . , b̄n]},
G :≡ ∃y(y = {x ∈ ā : A[x, b̄1, . . . , b̄n]}) :

• rk(F) = ω·(α+1) + n for some n < ω,

• H0[F,G](∅) ∪ {ω·(α+2)} ⊆ H0[m](∅).

Therefore, Theorem 2.7.3 (plus Weakening) gives us

H0[�,m] ω·(α+1)+n
0 �, G, F

and after an application of (∃) we are done.

Lemma 2.8.7 (∈-Induction) Given the IP formula F[∅̄], we let G be the formula
∃x((∀y ∈ x)F[y] ∧ ¬F[x]) and set

γ := rk(∃xF[x]), β := ωγ # ωγ , αa := β + ω·|ā| + 2,

where a ∈ Lη. For all � and all d-operators H we then have:

(1) H[�,G, ā] αa

0 �, G, F[ā].
(2) H[�, F[∅̄]] β+�+2

0 �, ∀x((∀y ∈ x)F[y] → F[x]) → ∀xF[x].
Proof We prove (1) by ∈-induction. From Lemma 2.6.4(6) we immediately obtain
that rk(F[ā]) < γ for all a ∈ Lη. Pick any a ∈ Lη. Then the induction hypothesis
(plus Weakening) implies

H[�,G, ā, b̄] αb

0 �, G, (∀y ∈ ā)F[y], F[b̄]

for all b ∈ a. Therefore, an application of (b∀) yields

H[�,G, ā] β+ω·|ā|
0 �, G, (∀y ∈ ā)F[y].

On the other hand, Lemma 2.8.1 (together with Lemma 2.6.4(6,7) and Weakening)
tells us that

H[�,G, ā] β

0 �, G, ¬F[ā], F[ā].

Hence by (∧),

H[�,G, ā] β+ω·|ā|+1
0 �, G, (∀y ∈ ā)F[y] ∧ ¬F[ā], F[ā].

From the latter we obtain our assertion (1) by an application of (∃). Assertion (2) is
an immediate consequence of (1).

Lemma 2.8.8 (�0 Collection) Let A[x, y, z1, . . . , zn] be a �0 formula of L with
the indicated free variables and assume a, b1, . . . , bn ∈ Lη. If we set
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m := {|ā|, |b̄1|, . . . , |b̄n|}, b := b̄1, . . . , b̄n,
α := rk((∀x ∈ ā)∃yA[x, y,b]), β := ωα # ωα,

then we have

H[�,m] β+3
0 �, (∀x ∈ ā)∃yA[x, y,b] → ∃z(∀x ∈ ā)(∃y ∈ z)A[x, y,b]

for all � and all d-operators H.

Proof From Lemma 2.8.1 we know that

H[�,m] β

0 �, ¬(∀x ∈ ā)∃yA[x, y,b], (∀x ∈ ā)∃yA[x, y,b].

Now we apply (Ref) and obtain

H[�,m] β+1
0 �, ¬(∀x ∈ ā)∃yA[x, y,b], ∃z(∀x ∈ ā)(∃y ∈ z)A[x, y,b].

Then two applications of (∨) finish our proof.

Now we know that all axioms of KPT can be embedded into IP. Before turning to
the embedding theorem we need some further notation. If �[x1, . . . , xk] is the finite
set of L formulas

{A1[x1, . . . , xk], . . . , An[x1, . . . , xk]}

whose free variables are among x1, . . . , xk and if r1, . . . , rk are terms of IP (i.e.
constants for elements of Lη), then �[r1, . . . , rk] stands for the set of IP formulas

{A1[r1, . . . , rk], . . . , An[r1, . . . , rk]}.

Theorem 2.8.9 (Embedding) If KPT proves �[u1, . . . , uk], then there exist m, n <

ω such that
H0[r1, . . . , rk] ω�+m

�+n �[r1, . . . , rk]

for all IP terms r1, . . . , rk .

Proof Note that

• par(�[r1, . . . , rk]) ∪ {ω�+m} ⊆ H0[r1, . . . , rk](∅).

• If A[u1, . . . , uk] is a formula of L with at most the indicated free variables, then
there exists an nA < ω such that

rk(A[r1, . . . , rk]) < � + nA

for all terms r1, . . . , rk of IP; see Lemma 2.6.4. Since every derivation in KPT

contains only finitely many formulas A, we simply choose n to be the maximum
of all such nA.
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Now we proceed by induction on the length of the derivation of �[x1, . . . , xk] in
KPT .

(i) �[u1, . . . , uk] is an axiom of KPT . By Lemmas 2.8.1–2.8.8 we then have

H0[r1, . . . , rk] ω�+2

0 �[r1, . . . , rk]

for all IP terms r1, . . . , rk .

(ii) The last inference was (ex). Then �[u1, . . . , uk] contains a formula
∃xF[x, u1, . . . , uk] and the premise of this inference is

�[u1, . . . , uk], F[v, u1, . . . , uk]

for some variable v. By the induction hypothesis there exists an m0 < ω such that

H0[r1, . . . , rk] ω�+m0

�+n �[r1, . . . , rk], F[s, r1, . . . , rk]

for all IP terms r1, . . . , rk . Here s is the term ri if v is the variable ui for some
i ∈ {1, . . . , k} and the term ∅̄ if v is different from all u1, . . . , uk . An application of
(∃) yields our assertion for m := m0 + 1.

(ii) The last inference was (cut). Then the two premises of (cut) are

(1) �[u1, . . . , uk], A[u1, . . . , uk, v1, . . . v�],
(2) �[u1, . . . , uk], ¬A[u1, . . . , uk, v1, . . . v�],
with cut formula A[u1, . . . , uk, v1, . . . v�], where v1, . . . , v� lists its free variables
not belonging to u1, . . . , uk . By the induction hypothesis we have m0,m1 < ω such
that

(3) H0[r1, . . . , rk] ω�+m0

�+n �[r1, . . . , rk], A[r1, . . . , rk, ∅̄, . . . ∅̄],

(4) H0[r1, . . . , rk] ω�+m1

�+n �[r1, . . . , rk], ¬A[r1, . . . , rk, ∅̄, . . . ∅̄].
(Cut) applied to (3) and (4) yields our assertion for m := max(m0,m1) + 1.

(iii) All other cases can be treated accordingly.

2.9 Predicative Cut Elimination

The rules of inference of IP can be divided into two classes: (i) In all rules with the
exception of (Ref) the principal formula is more complex (or complicated if you
want) than the respective minor formula(s). We, therefore, consider rules of this sort
as predicative rules. (ii) On the other hand, in (Ref) we transform a � sentence
into a (generally) less complex �1 sentence. This is a sort of impredicativity and,
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consequently, we consider (Ref) as an impredicative inference. This distinction is
also reflected in the elimination of cuts from proofs in IP; it proceeds in two steps.

In this sectionwe show that all cut formulas, that come fromapredicative inference
rule, can be eliminated by standard methods as described, for example in Schütte
[16]. The principal formula of an (Ref) inference has rank� and so we do not touch,
in this section, cut formulas of rank �.

Lemma 2.9.1 (Reduction) Let F be an L[η] sentence of the form (G0 ∨ G1),
(∃x ∈ ā)G[x], or ∃xG[x] and assume that ρ := rk(F) is different from �. Then
we have, for all �,
, α, β and all d-operators H,

(a) H α

ρ
�,¬F and (b) H β

ρ

, F =⇒ H α+β

ρ
�,
.

Proof One easily checks that

par(�,
) ∪ {α + β}) ⊆ H(∅)

follows from (a) and (b). The proof is by induction on β, and we distinguish the
following cases.

(i) 
, F is an axiom of IP. Then 
, F contains an atomic formula true in Lη, and
this formula must be different from F . Hence �,
 contains this formula as well and
so is an axiom of IP.

(ii) The last inference was (∃)with principal formula F . Then F has the form ∃xG[x]
and there exist a b ∈ Lβ and a β0 < β such that

H β0

ρ

, F, G[b̄]. (2.1)

By the induction hypothesis we have

H α+β0

ρ
�, 
, G[b̄]. (2.2)

From (2.1) we also obtain

|b̄| ∈ H(∅) provided that b̄ occurs in G[b̄], (2.3)

par(
) ∪ {β0} ⊆ H(∅). (2.4)

(a) and (2.3) yield by Inversion that

H α

ρ
�,¬G[b̄]

and therefore, by (2.4) and Weakening,
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H α+β0

ρ
�, 
, ¬G[b̄]. (2.5)

Since rk(G[b̄]) < ρ it only remains to apply (Cut) to (2.2) and (2.5).

(iii) All other last inferences with principal formula F are treated analogously. F
cannot be the principal formula of (Ref) because of rk(F) 
= �.

(iv) Finally, if F was not the principal formula of the last inference, we apply the
induction hypothesis the premise(s) of this inference and then carry it out again.

As mentioned above, we restrict ourselves in this section to eliminate all cuts
whose cut formulas do not have rank �. With the help of the previous lemma the
proof of the following theorem is standard.

Theorem 2.9.2 (Predicative elimination)We have for all � and all derivation oper-
ators H:

(1) H α

�+n+1 � =⇒ H ωn(α)

�+1 �.

(2) H α

ρ
� and ρ ∈ H(∅) ∩ � =⇒ H ϕρα

0 �.

For details see Buchholz [3] and/or Schütte [16]. Recall that ω0(α) := α and
ωn+1(α) := ωωn(α).

2.10 Collapsing Theorem

We begin this section by showing how to eliminate cut formulas of rank �. More
precisely, we will show that any operator controlled proof of a set � of � sentences
in which all cut formulas have ranks ≤ � can be collapsed into a proof of depth and
cut rank less than �. This technique—called collapsing technique—is the corner
stone of impredicative proof theory.

Together with the results of the previous sections this collapsing theorem will
then lead to the Hauptsatz of this article.

Theorem 2.10.1 (Collapsing) Let � be a finite set of � sentences of L[η] and γ an
ordinal such that

par(�) ⊆ C(γ + 1, ψ(γ + 1)) and γ ∈ Hγ [�](∅).

Then we have, for all α,

Hγ [�] α

�+1 � =⇒ Hα̂[�] ψ(̂α)

ψ(̂α)
�,

where α̂ := γ + ω�+α .
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Proof We show this assertion by induction on α and assume Hγ [�] α

�+1 �. Then
we have (see Lemmas 2.5.4 and 2.5.5):

par(�) ∪ {α} ⊆ Hγ [�](∅) ⊆ Hα̂[�](∅), (2.1)

α̂ ∈ Hγ [�](∅) and ψ(̂α) ∈ Hα̂[�](∅). (2.2)

Now we proceed with a distinction by cases according to the last inference of
Hγ [�] α

�+1 � and note that this cannot be (∀). In the following we confine our
attention to the interesting cases; all others can be dealt with in a similar manner.

(i) � is an axiom. Then Hα̂[�] ψ(̂α)

ψ(̂α)
� follows from (2.1) and (2.2).

(ii) The last inference was (b∀). Then � contains a formula (∀x ∈ ā)F[x] and we
have

Hγ [�, b̄] αb

�+1 �, F[b̄] (2.3)

with αb < α for all b ∈ a. We also know that |ā| ∈ Hγ [�](∅). Since |b̄| < |ā| for
all b ∈ a, Lemma 2.5.2, Lemma 2.5.4(5), and (2.1) yield

|b̄| ∈ Hγ [�](∅) ⊆ Hα̂[�](∅), Hγ [�, b̄] = Hγ [�], Hα̂[�, b̄] = Hα̂[�]. (2.4)

Hence (2.3) gives us
Hγ [�] αb

�+1 �, F[b̄],

and by the induction hypothesis we obtain that

Hα̂b [�] ψ(̂αb)

ψ(̂αb)
�, F[b̄],

and, therefore,
Hα̂[�] ψ(̂αb)

ψ(̂αb)
�, F[b̄], (2.5)

always for all b ∈ a. Furthermore, from (2.3) and (2.4) we can also deduce that
αb ∈ Hγ [�](∅) for allb ∈ a. In viewofLemma2.5.5(2)we thus haveψ(̂αb) < ψ(̂α)

for all b ∈ a. An application of (b∀) yields Hα̂[�] ψ(̂α)

ψ(̂α)
�.

(iii) The last inference was (∃). Then � contains a formula ∃xF[x] such that

Hγ [�] α0

�+1 �, F[b̄] (2.6)

for some α0 < α and some set b ∈ Lα . Now set

r :=
{
b̄ if b̄ occurs in F[b̄],
∅̄ if b̄ does not occur in F[b̄],

In view of (2.6) we have α0, |r | ∈ Hγ [�](∅). The induction hypothesis yields
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Hα̂0 [�] ψ(̂α0)

ψ(̂α0)
�, F[r ],

thus also
Hα̂[�] ψ(̂α0)

ψ(̂α0)
�, F[r ].

Now recall that from Lemma 2.5.5(3) that

Hγ [�](∅) ∩ � ⊆ ψ(γ + 1) ≤ ψ(̂α)

and conclude that |r | < ψ(̂α). In addition, ψ(̂α0) < ψ(̂α) follows from
Lemma 2.5.5(2). Therefore, (∃) applied to (2.5) yields Hα̂[�] ψ(̂α)

ψ(̂α)
�.

(iv) The last inference was (Ref). Then � contains a formula ∃xFx , where F is a �

sentence, and there exists an α0 < α such that

Hγ [�] α0

�+1 �, F

and α0 ∈ Hγ [�](∅). Now the induction hypothesis yields

Hα̂0 [�] ψ(̂α0)

ψ(̂α0)
�, F,

hence
Hα̂[�] ψ(̂α0)

ψ(̂α0)
�, F.

We know ψ(̂α0) ∈ Hα̂[�](∅) and therefore, since F is a � sentence, the Bounded-
ness Lemma gives us

Hα̂[�] ψ(̂α0)

ψ(̂α0)
�, Fr , (2.7)

where r is the constant for the set Lψ(̂α0). In view of α0 ∈ Hγ [�](∅) and
Lemma 2.5.5(2) we also have ψ(̂α0) < ψ(̂α). Hence we can apply (∃) to (2.7) and

obtain Hα̂[�] ψ(̂α)

ψ(̂α)
�.

(v) The last inference was (Cut). Then there exist an ordinal α0 < α and a sentence
F with rk(F) ≤ � such that

Hγ [�] α0

�+1 �, F and Hγ [�] α0

�+1 �,¬F (2.8)

and par(F) ∪ {α0} ⊆ Hγ [�](∅). We distinguish two cases:

(v.1) rk(F) < �. Then from Lemma 2.6.4(7) and Lemma 2.5.5(3) we conclude
that rk(F) < ψ(γ + 1) ≤ ψ(̂α). Also, F and ¬F are � sentences. Therefore the
induction hypothesis applied to (2.8) yields

Hα̂0 [�] ψ(̂α0)

ψ(̂α0)
�, F and Hα̂0 [�] ψ(̂α0)

ψ(̂α0)
�,¬F
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As before, ψ(̂α0) < ψ(̂α). Hence (Cut) gives us Hα̂[�] ψ(̂α)

ψ(̂α)
�.

(v.2) rk(F) = �. Then F or ¬F is of the form ∃xG[x] with G[∅̄] being a �0

sentence. We assume that F is ∃xG[x]. The induction hypothesis applied to the left
hand side of (2.8) yields

Hα̂0 [�] ψ(̂α0)

ψ(̂α0)
�, F

Since ψ(̂α0) ∈ Hα̂0 [�](∅) we can apply the Boundedness Lemma and obtain

Hα̂0 [�] ψ(̂α0)

ψ(̂α0)
�, Fr , (2.9)

where r is the constant for the set Lψ(̂α0). By applying Lemma 2.6.8 to the right hand
side of (2.8), we get

Hα̂0 [�] α0

�+1 �,¬Fr .

We also have α̂0 ∈ Hγ [�](∅) ⊆ Hα̂0 [�](∅) and

par(�) ⊆ C(γ + 1, ψ(γ + 1)) ⊆ C (̂α0 + 1, ψ(̂α0 + 1)).

Hence, since ¬Fr is a � sentence, we are in the position to apply the induction
hypothesis, yielding

Hα1 [�] ψ(α1)

ψ(α1)
�,¬Fr , (2.10)

whereα1 := α̂0 + ω�+α0 = γ + ω�+α0 + ω�+α0 < γ + ω�+α = α̂ and, in addition,
α1 ∈ Hγ [�](∅); see Lemma 2.5.5(1).

Clearly, rk(Fr ) < � and, according to (2.9), we have par(Fr ) ⊆ Hα̂0 [�](∅).
Hence rk(Fr ) < ψ(̂α0 + 1) by Lemma 2.6.4(7) and Lemma 2.5.5(3). Furthermore,
ψ(̂α0) < ψ(α1) < ψ(̂α). Therefore, we can apply (Cut) to (2.9) and (2.10) and

obtain Hα̂[�] ψ(̂α)

ψ(̂α)
�.

Theorem 2.10.2 (Hauptsatz)Let A[u1, . . . , uk] be a� formula ofLwith at most the
indicated free variables and suppose that it is provable in KPT . For all a1, . . . , ak ∈
Lη there exist a d-operator H and an ordinal α < η such that

(1) H[ā1, . . . , āk] α

α
A[ā1, . . . , ān].

(2) H[ā1, . . . , āk] ϕαα

0 A[ā1, . . . , ān].
Proof By Theorem 2.8.9 there are m, n < ω with

H0[r1, . . . , rk] ω�+m

�+n+1 A[r1, . . . , rk]

for all IP terms r1, . . . , rk . By a first application of predicative cut elimination, cf.
Theorem 2.9.2(1), we obtain

H0[r1, . . . , rk] β

�+1 A[r1, . . . , rk] (2.1)
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for β := ωn+1(� + m) and all IP terms r1, . . . , rk .
Now we pick specific a1, . . . , an ∈ Lη. Then there exits an � < ω such that

a1, . . . , an ∈ Lψ(γ ) for γ := ω�(� + 1).

It follows that

{|ā1|, . . . , |āk |} ⊆ C(γ + 1, ψ(γ + 1)) and γ ∈ Hγ [ā1, . . . , āk](∅) (2.2)

and from (2.1) we obtain

Hγ [ā1, . . . , āk] β

�+1 A[ā1, . . . , āk]. (2.3)

Because of (2.2) and (2.3) we can apply Theorem 2.10.1, yielding

Hβ̂[ā1, . . . , āk] ψ(β̂)

ψ(β̂)
A[ā1, . . . , āk] (2.4)

for β̂ := γ + ω�+β . A simple calculation shows that α := ψ(β̂) is smaller than η

and thus the required ordinal for (1).
By making use of Theorem 2.9.2, the second assertion is an immediate con-

sequence of (1). It only has to be verified with the help of Lemma 2.5.5 that
ψ(β̂) ∈ Hβ̂[ā1, . . . , āk](∅).

The notion of �2 ordinal of a theory T has been introduced in Jäger [12]. It is
defined there as the least ordinal α such that Lα |= A for all �2 consequences of
T . One of the most prominent results along these lines and a direct consequence of
Jäger [11] states that η is the �2 ordinal of KP. Besides that [12] contains a series
of results about �2 ordinals of theories for iterated admissible sets.

�2 ordinals have also been considered in Rathjen [15] and Pohlers [14]. Some
remarks have been made in these articles and in [12] about the relationship between
proof-theoretic ordinals and �2 ordinals. It is planned to come back to this topic
from a more general perspective in Jäger [10].

It is not surprising that our Hauptsatz directly implies that η is the �2 ordinal of
KP.

Corollary 2.10.3 (�2 ordinal of KP) If A is a �2 sentence of L, the we have

KP � A =⇒ Lη |= A.

Proof A has the form ∀x∃yB[x, y] such that B[x, y] is a �0 formula of L with at
most x, y free. Since KP proves A, it is clear that KPT proves ∃yB[u, y] for any u.
Now pick an arbitrary a ∈ Lη. Then the Hauptsatz tells us that

H[ā] α

α
∃yB[ā, y]
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for some d-operator H and some α < η. Therefore,

Lη |= ∃yB[ā, y]

according to Theorem 2.7.1. Since this is so for any element a of Lη, we have
Lη |= A.
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