
Chapter 10
Axiomatic Thinking in Physics—Essence
or Useless Ornament?

Domenico Giulini

Abstract In the first part of this contribution, I will present aspects and attitudes
towards “axiomatic thinking” in various branches of theoretical physics. In the sec-
ond and more technical part, which is approximately of the same size, I will focus
on mathematical results that are relevant for axiomatic schemes of space-time in
connection with attempts to axiomatize Special and General Relativity.

10.1 Prologue

In the introduction to his “Axiomatik der relativistischen Raum-Zeit Lehre”, Hans
Reichenbach [65] wrote the following words, emphasizing the principal difference
between physics and mathematics, as regards the axiomatic method. In the English
translation by his wife Maria [66], they read1:

The value of an axiomatic exposition consists in summarising the content of a scientific
theory in a small number of statements. An evaluation of the theory may then be limited to
an evaluation of the axioms, because every statement of the theory is implicitly contained
in the axioms. [...] The problem of the axioms of mathematics was solved by the discovery
that they are definitions, that is, arbitrary stipulations which are neither true nor false, and
that only the logical properties of a system—its consistency, independence, uniqueness, and
completeness—can be the subjects of critical investigation.

There is, however, a fundamental difference between physics and mathematics. Physical
statements are more than mere consequences of arbitrary definitions; they are supposed to
describe the real world.

“Truth” and “falsehood” have entirely different meanings in physics and in athematics; to
judge that a statement in physics is true is not a logical judgement but a judgement concerning
the occurrence or nonoccurrence of sense perceptions. To the physicist the question of truth is
the most interesting one, for if his theory is true, he can call it in a certain sense a description
of reality.

1The German originals of all translated quotations will be given in the appendix.
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The axiomatic exposition of a physical theory is at the outset subject to the same laws as that
of a mathematical theory [...]. Yet since the physical axioms also contain the whole theory
implicitly, theymust themselves be justified: theymust not be arbitrary but true. ‘True’ refers
again to a factual judgment ultimately tested by perception.

10.2 Introduction

The foundation on which contemporary physics rests consists of various theories
describing “physical systems”, their “interactions” and “evolution” in time. These
systems are thought of as being embedded in an exterior structures called “space”
and “time”, or “space-time” for short. These exterior structures are themselves either
fixed, in the sense of not being acted upon by the systems it contains, or changing
according to some dynamical laws that also govern the interaction of the systems
(i.e. “matter”) and space-time. We will have later plenty of opportunity to further
explain this difference, but for the moment it suffices to say that in our current
collection of theories in physics, only General Relativity makes use of a dynamical
space-time structure and that this theory need not be considered if gravitational fields
play no significant role in the theoretical description of the system and its associated
phenomena. So for a very large piece of physics space-time is a fixed entity the
structure of which is unchanging. This does, of course, not mean that the laws of
physics are insensitive to that fixed structure; quite the contrary! But it does mean
that all systems are embedded into the very same exterior structure that universally
acts on all (non-gravitating) systems.

Having said this, I wish to start by briefly recalling some disciplines in physics,
where axiomatic thinking has made, or continues to make, fruitful contributions
for progress and understanding. I will also list some names associated with these
developments, without in any way claiming even approximate completeness, neither
in the areas and certainly not for the names. They just reflect what I am more or less
familiar with. I do not want to rule out the possibility that there exist other examples
which are equally well suited.

• Mechanics: Isaac Newton (1642–1726), Joseph-Luis de Lagrange (1736–1813),
Carl Gustav Jacobi (1804–51), William Rowan Hamilton (1805–65), William
Thomson [Lord Kelvin](1824–1907), Peter Guthrie Tait (1831–1901), Ludwig
Lange (1863–1936), Gottlob Frege (1848–1925), Heinrich Hertz (1857–94),
Georg Hamel (1877–1954), Jean-Marie Souriau (1922–2012), Ralph Abraham
(1936),Wladimir IgorewitschArnold (1937–2010), JerroldEldonMarsden (1942–
2010), ...

• Thermodynamics: Constantin Carathéodory (1873–1950), Robin Giles (1935),
Elliot Lieb (1932) & Jakob Yngvason (1945), ...

• Electrodynamics: James Clerk Maxwell (1831–79), Gustav Mie (1868–1957),
Evert Jan Post (1915–2015), Friedrich Hehl (1937) & Yuri Obukhov (1956), ...
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• Special Relativity: Wladimir Sergejewitsch Ignatowski (1875–1942) Hermann
Rothe (1882–1923), Alfred Robb (1873–1936), Hans Reichenbach (1891–1953),
AlexanderDanilowitschAlexandrow (1912–99), ErikChristopher Zeeman (1925–
2016), Walter Benz (1931–2017), ...

• General Relativity: David Hilbert (1862–1943), Hermann Weyl (1885–1955),
Alfred Schild (1921–77), Felix Pirani (1928–2015), Jürgen Ehlers (1929–2008),
Andrzej Trautman (1933), Herbert Pfister (1936–2015), Jürgen Audretsch (1942–
2018), ...

• Quantum Theory: George David Birkhoff (1884–1944), Paul Adrien Maurice
Dirac (1902–84), Johann von Neumann (1903–57), Joseph Maria Jauch (1914–
74), GeorgeWhitelawMackey (1916–2006), Günther Ludwig (1918–2007), Con-
stantin Piron (1932–2012), ...

• Quantum Field Theory: Res Jost (1918–90), Lars Gøarding (1919–2014), Arthur
StrongWightman (1922–2013), Rudolf Haag (1922–2016), Daniel Kastler (1926–
2015), Huzihiro Araki (1932), Robert Schrader (1939–2015), Konrad Osterwalder
(1942), Detlev Buchholz (1944), Alain Connes (1947), ...

–and many others–

I cannot do even do approximate justice to all the past and present developments
in these areas. Instead I will pick some examples, most of them well known, to
illustrate some attitudes towards axiomatic thinking in physics. The reader should
not be surprised that within the physics community opinions differ regarding the use
and value of axiomatic thinking. The above quotation of Reichenbach’s words should
make clear why this is the case. Another famous and memorable quotation in that
regard is that Einstein’s gave as the answer to what he called a “disturbing riddle”,
namely, how can it be that mathematics, which is a product of human thinking alone
and independent of experience, fits so well to the objects in the world around us? Is it
possible that the humanmind is capable to discover and understand the world around
us—at least to some extent—by pure reason and without any resort to experience?
Einstein’s proverbial answer is now a classic [22]:

Insofar as the statements of mathematics refer to reality [German: Wirklichkeit] they are not
certain and insofar they are certain, they do not refer to reality.

Einstein praises the axiomatic method for bringing clarity into this dichotomy. It
allows to cleanly separate the formal aspects from those regarding the (physical)
content. I think it is fair to say that this is an attitude most working theoretical
physicists would agree with.

In a second and more technical part, I will focus on the geometric theories of
Special and General Relativities, which I am most familiar with. There I will also
report on somemathematical results that relate to various axiomatizationprogrammes
of space-time theories.
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10.3 Some Examples

In this section, I wish to touch upon a few examples in modern (after and including
Newton) physics, with ambivalent attitudes towards axiomatization.

10.3.1 Isaac Newton and Mechanics

Ever since Newton’s “Principia” (Philosophiae Naturalis Principia Mathematica
(1686)); see Fig. 10.1, theories for selected parts of the phenomenological world
have been presented in a more or less axiomatic form. In the physics community, it
is widely accepted, if sometimes only implicitly, that

falsification is the essence of progress in physics

A → B ⇒ B̄ → Ā (10.1)

Fig. 10.1 Isaac Newton and the cover page of his ‘Principia’, in which he presented his theory in a
form that would do honour tomodern treatments in its consistency and clarity with which ideas from
mathematics andnatural philosophy (physics) are developed separately and—carefully—connected.
[Picture credits: Wikimedia]
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Only if the physicist’s “deduction” A → B from the theoretical hypotheses—here
collectively denoted by the letter A—to the phenomenological consequences—
collectively denoted by B—is indeed an unbroken logical conclusion (within the
logical system of the theory at hand) can we actually learn something definite from
the occurrence of B̄, namely, that at least some of our hypotheses within A must be
false. Nothing definite can be learned from B happening, except a gain in (subjective)
confidence into our theory, which is often referred to as a theory’s “confirmation”. It
is mainly for this reason that the axiomatic method is accepted in physics as a proper
mode of generating progress.

For a modern physicist, Newton’s Principia is the classic example for that kind
of approach. Rigorous mathematical deductions are based on careful and profound
conceptual discussions. On the other hand, in order to keep this rigorous line of
reasoning, Newton had to abstain from certain speculations that, too, are a necessary
part of theorizing in physics. A good example of this is given by his letter to Bently of
February 25, 1692, in which Newton clearly states—like nowhere in the Principia—
his belief that his theory of gravity is essentially incomplete, independent of the fact
that it allows to compute celestial motions. What it lacks is a proper “philosophical”
understanding of how the gravitational action, the quantity of which he had fully
outlined, is actually mediated from one body to another. He writes [60, Letter 406,
pp. 253–4]

That gravity should be innate inherent and essential to matter so that one body may act
upon another at a distance through a vacuum without the mediation of anything else by and
through which their action of force may be conveyed from one to another, is to me so great
an absurdity that I believe no man who has in philosophical matters any competent faculty of
thinking can ever fall into it. Gravity must be caused by an agent acting constantly according
to certain laws, but whether this agent be material or immaterial is a question I have left to
the consideration of my readers [of the Principia].

By “leaving the decision to the readers” Newton seems to say that the intended
applications of his theory are independent of such “philosophical” questions. This
is, of course, not true. In 1805, Laplace in his Mécanique Céleste considered a
fluid model of the aether as the carrier of gravitational fields, which put the finite
propagation speed into evidence and had the immediate consequence that the force
that one body exerts onto another does not point parallel to the line connecting
simultaneous positions. Nevertheless, the tremendous success of the Principia can
be seen as due to Newton’s clever and well-chosen separation between aspects that
fit into an axiomatic scheme of sufficient predictive power and those aspects that
await further “philosophical” clarification without much impact on the current set of
intended applications. In my opinion, a very strong case for the axiomatic method
indeed.
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10.3.2 Heinrich Hertz and Modern Analytical Mechanics

Hertz’s “Prinzipien der Mechanik” was finished in October 1893, 3 months before
the author’s tragic death at the age of 36 due to “blood poisoning” (Fig. 10.2).2

It was published posthumously in 1894 by his assistant Philipp Lenard. This is
a very unusual book indeed, praised by many, but also considered as “not really
useful” and “totally unsuitable for the beginners” (Sommerfeld).3 It presents the
foundations of mechanics in a new and axiomatic way, keeping a strict separation
between “kinematics and geometry” on one side and “mechanics proper” on the other.
A central aim of Hertz’s programme was to eliminate the semi-intuitive usage of the
concept of “force” and to replace it with the analytically much clearer variational
principles (d’Alembert, Maupertuis, Lagrange, Jacobi, Hamilton), to the collection
of which Hertz contributed yet another one: the principle of straightest path.

Today Hertz’s Mechanics is little to almost not known by physicists. What
remained of his treatment are the systematic distinction and characterization of
“holonomic” (integrable) and “anholonomoic” (non-integrable) constraints, nowa-
days presented in modern differential-geometric language, and, more famously, the
exceptional introductory chapter that outlines in a programmatic fashion and in great
detail (50 pages) Hertz’s epistemological concept of the role of theories in physics
and science in general. It gives a clear view on the philosophical attitude behind
this remarkable treatise on mechanics. It is symptomatic that this “Einleitung” is
still available as a separate book in a modern edition, whereas the actual text on
mechanics only exists as a photocopy-based reproduction by Sändig Reprint Verlag,
Liechtenstein (1999).

The extensive “Einleitung” is, to be sure, meant to justify the approach that
is to follow: a meticulously organized string of definitions, remarks (“Anmerkun-
gen”), theorems (“Lehrsätze”), conclusions (“Folgerungen”), additions (“Zusätze”),
and exercises (“Aufgaben”). The book is divided into two parts, called “books”
(“Bücher”), the first being entitled: “On geometry and kinematics of material sys-
tems”, the second: “On mechanics of material systems”. The logic behind this strict
division reflects the epistemological Ansatz outlined in the introduction to Hertz
[32]:

We form for ourselves images or symbols of external objects; and the form which we give
them is such that the necessary consequents of the images in our mind are always the
necessary consequents in nature of the things pictured.

The images whichwe here speak of are our conceptions of things.With the things themselves
they are in conformity in one important respect, namely, in satisfying the above-mentioned

2 A very readable biography of Hertz is by Fölsing [24].
3 In his book onmechanics, [72], which form the first volume of his famous six-volume lecture series
on theoretical physics (“Vorlesungen über Theoretische Physik”) Arnold Sommerfeld mentions
Heinrich Hertz’s book on Mechanics in connection with the idea to eliminate the notion of “force”
with the following words: “Heinrich Hertz hat dieses Programm mit meisterhafter Konsequenz
durchgeführt. Aber zu fruchtbaren Folgerungen ist seine Methode kaum gelangt; insbesondere für
den Anfänger ist sie völlig ungeeignet”.
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Fig. 10.2 Heinrich Hertz and the cover page of his remarkable book on the “Prinzipien der
Mechanik”, which unfortunately left little lasting impression in the physics community. [Pic-
ture credits: Wikimedia (left); the right picture is taken from the public domain reprint of Hertz [32]
by Sändig Reprint Verlag, Liechtenstein (1999)]

requirement. For our purpose it is not necessary that they should be in conformity with the
things in any other respect whatever.

The images which we may form of things are not determined without ambiguity by the
requirement, that the consequences of the images must be the images of the consequences.

Of two images of the same object, that one is the more appropriate which pictures more
of the essential relations of the object,—the one which we may call the more distinct. Of
two images of equal distinctness the more appropriate is the one which contains, in addition
to the essential characteristics, the smaller number of superfluous or empty relations—the
simpler of the two.

The table of contents of both books are given in Fig. 10.3. This division clearly
illustrates Hertz’ epistemology: Abstract pictures (left-hand side) obtained from
“inner inspection” (innere Anschauung) versus knowledge of the real world (right-
hand side) obtained from “experience” (Erfahrung). For example, the first chapter
in each book is on the concepts of “Time, Space and Mass”, approached via “inner
inspection” and “experience”, respectively. This may be criticized onmany accounts,
not least because “experience as such” is too naive a concept. But what is impor-
tant for us here is that this dual approach that aims for axiomatization is spelled out
explicitly and embedded in a rich epistemological discussion. Hertz convincingly
demonstrates how this “mapping-epistemology” almost inevitably leads the require-
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Fig. 10.3 Table of contents of both parts—“books”—ofHertz’ “Prinzipien derMechanik”. The first
book (left) on the “geometry and kinematics or material systems” is deliberately and carefully kept
distinct from the second (right) on the “mechanics of material systems”. [Picture credits: Pictures
reproduced from the public domain reprint of Hertz [32] by Sändig Resprint Verlag, Liechtenstein
(1999)]

ment of a dual development, keeping the formulation of structures based on “inner
inspection” and “outer experience” sufficiently independent with connections being
carefully (and reversibly!) drawn only after they are reasonably matured.

10.3.3 Constantin Carathéodory and Classical
Thermodynamics

A classic branch of physics that has invited axiomatic formulations again and again
up to this very day is Thermodynamics. The preface of Sommerfeld’s 5th volume of
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his “Lectures on Theoretical Physics”, which are on Thermodynamics and Statistics,
opens with the following sentence:

Thermodynamics is the paradigm [german: Musterbeispiel] of an axiomatically constructed
science.

The person most often named as the initiator of serious mathematical attempts in this
direction is Constantin Carathéodory4 In 1909, he gave an innovative axiomatic for-
mulation of phenomenological (i.e. not statistical) thermodynamics which included
his “principle of adiabatic inaccessibility” Carathéodory [14] (Fig. 10.4). That prin-
ciple, which he understood as direct expression of numerous phenomenological
facts, had a very simple formulation in terms of Pfaffians (differential one-forms).
Is says—in modernized vocabulary—that the kernel distribution for the one-form of
heat must be integrable and hence admits an integrating factor (denominator), the
latter being essentially the temperature (up to reparametrization). In this way, the
powerful machinery of differential forms was identified as the right tool to express
phenomenological facts of great generality and almost universal applicability.5

With a delay of about 10 years, Carathéodory’s axiomatization was greeted with
much respect and considered highly useful for future developments, including ped-
agogical aspects. The first to recognize this was Born [10], followed by Ehrenfest-
Afanasjewa [21] and even the influential and widely read Geiger-Scheel Handbook
of Physics included a separate entry on Carathéodory’s axiomatization, written by
Landé [43]. Born, who can be said to have made the strongest early supporter of this
line of research, remained a lifelong advocator, as can be seen from his wonderful

4 A biography of Carathéodory is that of Georgiadou [26].
5 More precisely, the assumptions are as follows: The set M of equilibrium states of a thermody-
namical system is assumed to be a smooth manifold. The inner energy of the system is represented
by a real-valued function U on M ; it is a function of state. “Heat” is also a real-valued quantity,
but in contrast to energy it is not associated to states, i.e. points in M , but rather to “quasi-static
processes”, i.e. piecewise C1 curves in M . These are called “quasi-static” because the process is
assumed to remain within M , i.e. to only proceed in a succession of equilibrium states, which
means that the real-time process must be “sufficiently slow”. Hence, heat is represented by a one-
form that we denote by ω. Another one-form is that of “reversible work”, which we denote by
α. Typically one has α = −p dV + · · · , where p stands for pressure and V for volume, both of
which are functions of state. The first law of thermodynamics then says that dU = ω + α. Now,
a quasi-static process γ (piecewise C1 a curve in M) is called “adiabatic” if ω(γ̇ ) = 0, i.e. if the
heat associated to this process vanishes. Carathéodory’s principle of adiabatic inaccessibility then
says that for any p ∈ M and any neighbourhood Vp ⊂ M of p there is a point q ∈ Vp such that
no adiabatic process exists connecting p and q. If Tp M denotes the tangent space to M at p ∈ M
and T M = ∪p∈M Tp M its tangent bundle, we define the “kernel distribution” as the subbundle
Kω := {v ∈ T (M) : ω(v) = 0} ⊂ T (M). It is clear that the principle of adiabatic inaccessibility
holds if Kω is integrable: just choose for q a point in Vp that is not on the same integral submanifold
(leaf) as p. The no-trivial mathematical result of Carathéodory [14] is the proof of the converse, that
is, adiabatic inaccessibility is not sufficient but also necessary for Kω to be integrable. Integrability
is equivalent to dω|Kω = 0 or ω ∧ dω = 0, as has been known from Frobenius [25] long before
[14]. This implies the existence of a function T on M such that d(ω/T ) = 0 (T is a so-called
integrating denominator). Hence, (locally) there is a function S on M such that ω/T = d S; this is
how temperature T and entropy S emerge from the principle of adiabatic inaccessibility.
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Fig. 10.4 Constantin Carathéodory and the top of the first page of his axiomatic formulation of ther-
modynamics [14] that later received great recognition and largely influencedmodern developments.
[Picture credits: Wikimedia (left) and Springer Verlag (right)]

presentation of Carathéodory’s ideas in his famous semi-popular book “Natural Phi-
losophy of Cause and Chance” [12]. Many modern textbooks and lecture notes from
the second half of the twentieth century pay due tribute to thework ofCarathéeordory,
see, e.g. [73] and [74].

But there is more to it. Carathéodory’s work inspired others to pursue further
this programme of axiomatization of thermodynamics. In particular, it was felt that
Carathéodory’s principle is genuinely local in nature, whereas one would also like to
makeglobal statements, see [27,Chap.1.3].Moreover, itwas felt that the restriction to
equilibrium states should be relaxed, so as to also include themore realistic processes
in actual applications. This development already set in the 1960s with the remarkable
treatise byGiles [27], the programmeofwhichwas extended and given new lifewith a
“fresh approach” byElliot Lieb and JakobYngvason in an impressive series of papers
addressing a wide range of interested physicists and mathematicians alike Lieb and
Yngvason [45–48]. Theirwork is fundamentally based on the structure imposed by an
order relation≺ to be read as: A ≺ B if and only if state B is adiabatically accessible
from state A. Now this relation is defined globally on the space of admissible (not
necessarily equilibrium) states.

Many physicists think that abstract experimenting with axiomatic formulations is
a game to be played as best after the essential physics has already been understood.
But thermodynamics is a case where this critical attitude is certainly unjustified. It
that respect it is remarkable that the “tour de force of physical and mathematical
reasoning”, as the Lieb-Yngvason approach was sometimes called [50, p. 631], was
highly welcomed by some members of the engineering departments, as is evidenced
by the textbook of [76] entitled: “The Entropy Principle” and the subtitle: “Ther-
modynamics for the Unsatisfied”. In the preface of that book, the author, who is a
professor of mechanical engineering, states his dissatisfaction with the often-made
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Fig. 10.5 MaxBorn and the cover pageof his bookon the “mechanics of the atom” (Atommechanik)
that resulted from his lectures of the winter semester 1923/24 in Göttingen and that at the eve of
Quantum Mechanics he described as a “logical experiment”. [Picture credits: Springer Verlag
(left) and Wikimedia (right)]

claim by physicists that the concept of entropy cannot be understoodwithout recourse
to statistical mechanics. He tells the story that when he came across the “fresh look
at entropy and the second law of thermodynamics” [47] and also the corresponding
more technical elaboration [46], he felt that

For the first time in my academic life I began to feel that I really understood the entropy of
classical thermodynamics.[...] Although the theory is mathematically complex, it is based
on an idea so simple that each student of science or engineering should be able to understand
it. I then decided to involve my students in order to test whether the Lieb-Yngvason theory
is as convincing as I believed.

Well, the test went apparently positive and the book [76] by Thess is an outcome of
that endeavour.

10.3.4 Max Born and the “Old” Quantum Mechanics

Quantum Mechanics, as we know and use it today, was formulated by Heisenberg
(matrixmechanics 1925) and Schrödinger (wavemechanics 1926). In the time imme-
diately before that period, the physicists’ approach to the “mechanics of the atom”
consisted in applications of advanced methods from analytical mechanics and per-
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turbation theory, mostly borrowed from the methods that theoretical astronomers
used. In particular, this included Hamilton-Jacobi theory. These methods were sup-
plemented by “quantum rules” that were imposed on top of, and largely in contra-
diction with, the dynamical laws of mechanics and electrodynamics, so as to be able
to explain the typical quantum phenomena, like the discrete spectral lines, which
must correspond to transitions between discrete stable stationary states of the atom,
whereas the classical theory inevitably leads to a continuum of unstable states (due
to electromagnetic decay). It was clear to everybody that a proper theoretical under-
standing had to come from a fundamental change in the theoretical foundations,
though opinions and expectations differed as to which of the fundamental principles
could be maintained and trusted and which had to be given up.

One might think that there can be little value to any attempts to axiomatize a
theory that in the minds of the leading scientists is already “written-off”. The Bohr-
Sommerfeld theory, as it was called, was a pragmatic list of recipes to calculate
(surprisingly successfully) spectroscopic data, but what could possibly be gained
from a deep-lyingmathematical and conceptual analysis? After all, the theory simply
cannot be true.

Precisely! one may reply with Max Born. And because it cannot be true we wish
to know how and where it fails, not just that is fails “somehow” and “somewhere”. In
order to be able to draw such conclusions, or at least in order to gain insights in that
direction, wemust give the doomed theory a logical shape that—in principle—allows
to draw such conclusions. The book “Atommechanik” by Born [11] is just such an
attempt (Fig. 10.5). This is best explained in the introduction by Born himself:

The title ‘Atommechanik’ of this lecture, which I delivered in the winter-semester 1923/24 in
Göttingen, is formed after the label ‘CelestialMechanics’. In the sameway as the latter labels
that part of theoretical astronomy which is concerned with the calculation of trajectories of
heavenly bodies according to the laws of mechanics, the word ‘Atommechanik’ is meant to
express that here we deal with the facts of atomic physics from the particular point of view of
applying mechanical principles. This means that we are attempting a deductive presentation
of atomic theory. The reservations, that the theory is not sufficiently developed (matured), I
wish to disperse with the remark that we are dealing with a test case, a logical experiment,
the meaning of which just lies in the determination of the limits to which the principles of
atomic- and quantum physics succeed, and to pave the ways which shall lead us beyond
that limits. I called this book ‘Volume I’ in order to express this programme already in the
title; the second volume shall then contain a higher approximation to the ‘final’ mechanics
of atoms.

We refer to [29] for a detailed discussion of Born’s book. As a result, one may say
that it did serve its purpose to some extent, for it was Born himself who made some
of the decisive contributions to quantum mechanics in the years to follow. In that
sense, the book is now obsolete, though it is still known for its concise discussion
and application of Hamilton-Jacobi theory (in the older, non-geometric presentation)
and its use in mechanical perturbation theory.
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10.3.5 Werner Heisenberg and Quantum Field Theory

It is interesting to compare the approaches discussed so far with that of Heisenberg,
who in his later years hoped to give a unifiedmathematical formulation of elementary
particles and their interactions. His basic idea arose from his critical reflection on the
very notion of “particle”, which in quantum field theory is far less obvious concept
than the often made recourse to ancient philosophical concepts might suggest. In
quantum field theory, the basic entity is the field, which obeys dynamical laws and
respects certain symmetries, including the automorphisms of space-time. Particles
are associated to certain states, which may or may not be dynamically stable accord-
ing to the laws of interaction. Heisenberg compared these states with the states of an
atom in ordinary quantummechanics, among which there may be transitions accord-
ing to dynamical laws and selection rules imposed by symmetries. This attempt of
Heisenberg’s was not successful for many reasons, not least because of its uncertain
mathematical setting and the ensuing lack of mathematical control, which prevented
proper deductions. What is of interest to us here is that Heisenberg takes a different
view as regard to what should come first: a controlled mathematical setting or a
proper physical understanding. This Heisenberg [31] outlined in the preface of his
book “Einführung in die Einheitliche Feldtheorie der Elementarteilchen” (Fig. 10.6):

Most physicists would presumably agree that one should not start too early to
strive for mathematical rigour. On the other hand, it also seems unclear what it
could mean that a physical problem has been “solved”, if not on the basis of “exact
mathematical expression”. Here, in my opinion, Born has the better approach in
regarding exact mathematical expressions as part of a “logical experiment”. Like a
laboratory experiment requires utmost care in the articulation of its set-up as well as
its actual performance in order to guarantee its reproducibility, a logical experiment
can likewise not bear with faulty or uncontrolled mathematical expression. Proper
understanding in physics equally relies on both of these aspects, which should go
hand in hand rather than being played off against each other.

This ends our presentation of selected examples of axiomatic thinking in physics.
Perhaps the biggest gap in our selection is that left by omitting axiomatic quantum
field theory, which would have gone beyond the scope of this presentation. In the
second part of this contribution, I will focus on theories and mathematical models
of space-time, which due to their close relation with geometry can be viewed as an
ideal playing ground for axiomatic thinking.

10.4 Space-Time

Ever since the advent of Special Relativity (SR) in 1905 and General Relativity in
1915, it becamemanifest that the geometric structure of space-time is to be addressed
explicitly as a contingent entity in the formulation of physical laws. This is not to
say that space-time structure has a lesser role in, say, classical mechanics. But for a
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Fig. 10.6 Quotation from, and cover page of, Werner Heisenberg’s book on the attempted unified
field theory of elementary particles Heisenberg [31]. [Picture credit: Cover page reprinted with
kind permission of Hirzel Verlag]

long time that structure was taken as more or less self-evident and without need to be
separately listed among the hypotheses of physical theories. It is characteristic of that
situation that the need to spell out explicitly the geometric hypotheses underlying
Galilei-Newton space-times was only felt after Special Relativity was formulated. To
my knowledge, the first to do this for Galilei-Newton space-time was HermannWeyl
in his famous book Raum-Zeit-Materie, the first edition of which appeared in 1918.6

He characterized the geometry of Galilei-Newton space-time in terms of affine and
metric structures, the latter separately for a “time-metric”, that measures oriented
time distances between any two points—also called “events”—in space-time, and a
space metric that measures distances between any pair of simultaneous points, i.e.
points of vanishing time difference. Following the spirit of his Erlanger Programm,
Klein [38] [78, §18] argued that this type of “geometry” may be characterized by
its automorphism group, which in case of Newton-Galilei space-time is the inho-
mogeneous Galilei group and in case of Special Relativity is the inhomogeneous
Lorentz group, also known as Poincaré group. See Künzle [40] for a comprehensive
comparison of these structures.

6 This Weyl extended in the third and fifth editions of 1921 and 1923.
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10.4.1 Minkowski Space

SinceWeyl’s treatment of various space-time structures from a unifying perspective,
the question of how to characterize andmotivate them appeared time and again on the
agenda of mathematically inspired physicists. It led to various attempts to axiomatize
the geometry of Minkowski space, i.e. the space-time of SR. An early and very elab-
orate attempt—even before Weyl—is that of Robb [67–70], who based his axioms
on light propagation in the attempt to design primitives based on intuitive physical
operations. Characteristic for his complex systems of axioms7 is the fundamental role
played by relations of causality, which in view of later developments (see below) lets
Robb appear much ahead of his time Briginshaw [13]. Another system of axioms for
Minkowski space, somewhat modelled after Hilbert’s system for Euclidean Geome-
try, has been established by Schutz [71]. Remarkably, this system of axioms is shown
to be independent. Let it also be mentioned that once more Carathéodory [15] was
among the first to give a simplified axiomatic formulation of SR, the intention of
which was also to eliminate “rods” but retain a simplified concept of “clock” based
on light signals, a so-called “Lichtuhr”, the concept of which already appeared in [34,
p. 54], though without further explanation.8 Weyl once more returned to an axiomati-
zation of Minkowski space in his (so far unpublished) lecture on “Axiomatik” held at
the University of Göttingen of the winter semester 1930–31, of which a manuscript
survived at the Princeton Institute for Advanced Studies [77].9

It would clearly be hopeless to attempt to give a fair overview over these devel-
opments over the last 100 years, not all or which appeal to the physicist. For a
physicist, the axioms should have some more or less intuitive relation to operations
that can, in principle, be carried out by means of existing objects. Rather, I wish to
state some more or less recent results that are of interest from the physical as well as
mathematical point of view.

10.4.1.1 Beckman-Quarles Analogues

We begin by recalling the famous theorem of Beckman and Quarles [5] that charac-
terizes the Euclidean group as distance-preserving maps:

7 Robb’s system in its final form is complex and takes more than 400 pages for its presentation
and discussion Robb [70]. It contains 21 axioms which are based on the relations of “before” and
“after” which can be reduced to that of lightlike connectability. It was later shown by Mundy [59]
that this system is amenable to considerable simplification.
8 This concept was only spelled out 40 years after Carathéodory byMarzke andWheeler [52] based
on Marzke [51].
9 Weyl’s “Axiomatik” lecture has 40 paragraphs grouped into five chapters: chapter I (paragraphs1–
9) on “Geometrie”; chapter II (paragraphs10–15) on “Die Raum-Zeit-Lehre der Speziellen Relativ-
itätstheorie”; chapter III (paragraphs16–25) on “Raum und Zahl”; chapter IV (paragraphs26–36)
on “Algebra”; chapterV (paragraphs37–40) on “Topologie”.
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Theorem 10.1 (Beckmann & Quarles 1953) Let (Rn, Q) be Euclidean space for
n ≥ 2 with standard Euclidean quadratic form Q(x) = ∑n

i=1 x2
i and associated

distance function d(x, y) := √
Q(x − y). Let T : Rn → R

n be a map such that there
exist a positive real number ρ so that d(x, y) = ρ ⇒ d

(
f (x), f (y)

) = ρ, then T
is an element of the group En of Euclidean transformations (including orientation
reversing reflections).

This theorem is remarkable insofar as the map T is not required to fulfill any other
property than preserving a single length ρ. No assumptions whatsoever are made
concerning injectivity, surjectivity, bijectivity, continuity, or affine-linearity.All these
properties are implied by the single requirement that some distance ρ > 0 be pre-
served, aswell the isometry property that if a single distance is preserved, all distances
are.Note also that forn = 1 the statement of the theorem is obviously false: For exam-
ple, the map T : R → R given by T (x) = x + 1 for x ∈ Z ⊂ R and T (x) = x for
x /∈ Z ⊂ R satisfies the hypotheses for ρ = 1.

It is clear that the Beckman-Quarles theorem can just as well be stated for a
general real (or complex, but we are interested in the real case only) affine space
An of dimension n ≥ 2, whose associated vector space V has a symmetric, positive
definite inner product g : V × V → R, associated quadratic form Qg(x) = g(x, x)

and distance function dg(x, y) := √
Qg(x − y).

The situation in Special Relativity differs from that only insofar as g is not positive
definite, but rather has signature (−1, 1, 1, 1). This means that point pairs (x, y) have
either

Qg(x − y)

⎧
⎪⎨

⎪⎩

< 0 ⇔ (x, y) are timelike separated,

= 0 ⇔ (x, y) are lightlike separated,

> 0 ⇔ (x, y) are spacelike separated.

(10.2)

In this case, a distance function dg does not exist. For example, the naive generaliza-
tion,dg(x, y) = √|Qg(x − y)|, givesdg(x, y) = 0whenever (x, y) are lightlike sep-
arated and does not imply x = y. However, it is clear that we could have formulated
the Beckman-Quarles theorem using the “squared distance” d2

g (x, y) = Qg(x − y).
Then it is natural to ask whether the corresponding statement remains true in the
indefinite case. This is not at all obvious since the starting idea of the proof given in
[5] is tailored to the positive definite case. However, after some efforts, it turned out
that a Beckman-Quarles result indeed holds for non-zero “squared-distances”:

Theorem 10.2 (Benz 1980-1 and Lester 1981) Let (Rn, g) be Minkowski space
for n ≥ 2 with standard Minkowskian quadratic form Qg(x) = g(x, x) = −x2

0 +
∑n−1

i=1 x2
i . Let T : Rn → R

n be a map such that there exists a non-zero real number
σ so that Q(x − y) = σ ⇒ Q

(
T (x) − T (y)

) = σ . Then T is an element of the
Poincaré group Pn of (Rn, g), i.e. the composition of a translation and a Lorentz
transformation (including orientation-reversing reflections).

The cases of timelike separation (σ < 0) were proven for all dimensions (n ≥ 2) by
Benz [6], the planar case (n = 2) for timelike or spacelike separation (σ �= 0) by
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Benz [7], and the remaining cases of spacelike separation (σ > 0) and dimensions
n ≥ 3 by Lester [44].

10.4.1.2 Causal Relations

What about lightlike separations? Here no Beckman-Quarles theorem is known.
What is known are several results for maps that are required to be bijections and that
in both directions preserve the causal- and light-cone structure implicit in (10.2),
possibly refined by adding a time orientation.

To state them more precisely, we recall that a time orientation on Minkowski
space consists in the selection of one of the two components of the set of non-zero
causal (i.e. timelike or lightlike) vectors. The selected component is then called the
set of “future pointing” causal vectors. Any member o of that component may then
represent the choice of orientation as follows: Let (V, g) be an n-dimensional real
vector space with inner product of signature (−1, 1, · · · , 1). Let o be timelike, i.e.
g(o, o) = −1 (without loss of generality we can choose o to be normalized). The
cone of causal vectors in which o lies is called “the future”. Then it is easy to see
that any other non-zero causal (i.e. timelike or lightlike) vector v (i.e. g(v, v) ≤ 0)
is also an element of the future, if and only if g(v, o) < 0.

This allows to introduce intoMinkowski space M (the affine space corresponding
to V ) the notions of causal and chronological future and past, as well as the light
cones, as follows:

I +(x) := {y ∈ M : Qg(y − x) < 0 ∧ g(y − x, o) < 0} (10.3a)

= “chronological future of x”,

I −(x) := {y ∈ M : Qg(y − x) < 0 ∧ g(y − x, o) > 0} (10.3b)

= “chronological past of x”,

J+(x) := {y ∈ M : Qg(y − x) ≤ 0 ∧ g(y − x, o) < 0} (10.3c)

= “causal future of x”,

J−(x) := {y ∈ M : Qg(y − x) ≤ 0 ∧ g(y − x, o) > 0} (10.3d)

= “causal past of x”,

L+(x) := {y ∈ M : Qg(y − x) = 0 ∧ g(y − x, o) < 0} (10.3e)

= “future light-cone of x”,

L−(x) := {y ∈ M : Qg(y − x) = 0 ∧ g(y − x, o) > 0} (10.3f)

= “past light-cone of x”.

Clearly L±(x) = J±(x) − I ±(x). We also use the notation I +(x) ∪ I −(x) =
I (x) and correspondingly J+(x) ∪ J−(x) = J (x) and L+(x) ∪ L−(x) = L(x) for
the double cones.
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Using this language, we first state some of the main theorems concerning the
question as to how far the casual relations determine the Poincaré group and therefore
encode the geometry of Minkowski space-time:

Theorem 10.3 (Alexandrov, Zeeman, Borchers & Hegerfeld) Let (M, g) be n > 2-
dimensional Minkowski space and T : M → M a bijection so that whenever y ∈
I +(x) then T (y) ∈ I +(

T (x)
)

and T −1(y) ∈ I +(
T −1(x)

)
; then T is the composition

of a time-orientation-preserving Poincaré transformation and a positive constant
rescaling x �→ ax, called a positive “homothety”, where a > 0. The same is true if
we replace I + by I − or J+ or J−, L+ or L−. Moreover, without invoking a time ori-
entation, we still have the corresponding statements. That is, if y ∈ I (x) implies
T (y) ∈ I

(
T (x)

)
and T −1(y) ∈ I

(
T −1(x)

)
, then it follows that T is a Poincaré

transformation (including time-orientation-reversing ones) and general homotheties
x �→ ax with a �= 0.

Most of this was proven by Alexandrov [1] and independently by Zeeman [79], the
non-time-oriented case separately by Borchers and Hegerfeld [9]. Note that the exis-
tence of the additional homotheties x �→ ax is obvious, since they clearly preserve
the causal and chronological relations and also lightlike separations. In that sense,
the stated results are the strongest one could have hoped for, except perhaps for the
requirement that the maps be bijections, a requirement that was not necessary in the
Beckman-Quarles case. But again we emphasize that continuity and even the affine
character was not required, but rather comes out as a result.

The results of this last theorem have been interpreted in various ways. For exam-
ple, the fact that Poincaré transformations and homotheties are the only bijections
that preserve the relation of point pairs to be lightlike separated can be read as say-
ing that the invariance of the speed of light alone already determines the Poincaré
group (up to homotheties), without any essential further input from the “principle
of relativity” and, in particular, the “law of inertia”. We recall that it is the latter
that is usually invoked to get the affine structure of space-time through the particular
path structure determined by the law of inertia.10 Hence, we may say that the affine
structure of Minkowski space is already encoded in its light-come structure, and
also its causal structure. Sometimes, this is expressed—not quite accurately—that
“causality implies the Lorentz group”, which, in fact, is just the title of [79].

10.4.1.3 Non-standard Topologies

An related line of attack for characterizing the full structure of Minkowski space by
axioms in terms of operations that have a more or less intuitive physical meaning
in terms of elementary operations is to endow it with another, finer (in the sense of

10 See [16, 18] for the formal definition of a path structure and [28, 64] for the discussion of the
law if inertia and its impact on space-time structure.
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“more”open sets) topology than the standardone.11 Afirst suggestion in that direction
was made by Zeeman [80] with his “fine topology”, which is the finest that induces
the standard topology on any timelike straight line and any spacelike hyperplane.
This topology is strictly finer than the standard one and Zeeman showed that the
group of homeomorphisms of Minkowski space endowed with the fine topology
is precisely the Poincaré group extended by homothetys. Negative aspects of this
fine topology are that, albeit being Hausdorff connected and locally connected, it
is neither normal, nor locally compact, nor first countable. Zeeman concluded that
“these disadvantages are outweighed by the physical advantages” [80, p. 162]. The
physical advantages may be expressed by saying that “openness” in this topology is
defined in a physically more operational form, since a set is defined to be open if
an inertial observer (moving on a timelike straight line) “times” it to be open, and if
every equivalence class of mutually simultaneous events intersect it in an open set.

That these “advantages” are not so obvious has been argued by Hawking et al.
[30]. First, the restriction to inertial observers (i.e. to straight timelike lines) is clearly
too restrictive and, second, an experiment that takes place in real time with finite
duration cannot directly access sets of mutually simultaneous events. Consequently,
a different topology was proposed in [30], called the “path topology”, which is
defined to be the finest topology that induces the standard topology on any timelike
curve.12 That is, a set is open if and only if any observer “times” it to be open.
This definition applies to arbitrary space-times, not just Minkowski space, and leads
to topologies which are path connected, locally path connected (hence connected
and locally connected), and Hausdorff, but improves on Zeeman’s fine topology by
being also first countable and separable. However, it is not regular, normal, locally
compact, or paracompact [30, Theorem3]. The set of homeomorphims of a space-
time in the path topology are precisely the smooth conformal isometries. In that sense
can the causal, differential, and conformal structure of a space-time be encoded into
a topology that has a fairly straightforward physical interpretation. That this is true
in any space-time (and not just the so-called strongly causal ones, as assumed by
Hawking et al. [30]) has been proven byMalament [49]. Moreover, for special space-
times which obey the condition of being “future and past distinguishing”, there is
indeed a certain analogue of the Alexandrov-Zeeman results quoted above. To state
it, we remark that the definitions (10.3) can be generalized to arbitrary Lorentzian,
time-oriented manifolds (M, g) where the chronological future I +(x) of a point x
is the set of points that can be connected to x by a future-pointing timelike smooth
curve. If we replace the word timelike by causal (i.e. nowhere spacelike) we get the
definition of J+(x). Now, a space-time is future or past distinguishing, if and only
if I +(x) = I +(y) implies x = y and I −(x) = I −(y) implies x = y, respectively.
Then, we have

11 We recall that an affine space inherits a natural topology from its associated vector space. This
is also the natural manifold topology it receives from the atlas of affine charts, i.e. it is the coarsest
(in the sense of “fewest” open sets) topology in which all chart maps are continuous.
12 The set of timelike curves considered here includes nowhere differentiable ones; the notion of
being timelike cannot in this case be defined by the tangent vector and has to be generalized.
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Theorem 10.4 (Malament 1977) Let (M, g) and (M ′, g′) be two future and past dis-
tinguishing space-times (connected, time-oriented, four-dimensional smooth Lorentz
manifolds without boundary). Let T : M → M ′ be a bijection so that y ∈ I +(x)

implies T (y) ∈ I +(
T (x)

)
and T −1(y) ∈ I +(

T −1(x)
)
. Then T is a smooth confor-

mal isometry, that is, T is a diffeomorphism and there exists a smooth, nowhere
vanishing function � on M so that T ∗g′ = �2 g.

This is proven (among other results) by Malament [49]. The half-order relation of
causal connectibility encodes the entire topological, differential, and conformal struc-
ture, at least if the space-time is assumed to be future—as well as past distinguishing.
The necessity of both conditions has been demonstrated by Malament [49].

10.4.2 General Relativity

With the work of Hawking et al. [30, 49] we have entered the realm of General Rel-
ativity, the axiomatization of which goes back to Hilbert’s “Grundlagen der Physik”
[33–35]13 and had ever since remained a research topic on the agenda of interested
and mathematically inspired relativists. Activities in the 100 years since Hilbert’s
first attempts have rather increased than decreased if one compares the second to the
first 50 years since then.

General Relativity describes the gravitational interaction of matter in terms of
the geometry of space-time (M, g), which is considered to be a four-dimensional
differentiable manifold M (the points of which are called “events”) with Lorentzian
structure g (i.e. a symmetric, non-generate bilinear form in each tangent space,
which is of signature (−1, 1, 1, 1)). The fundamental physical principle behind this
geometrization of gravity is Einstein’s Equivalence Principle, according to which
all matter components, from elementary fields and particles to astronomical objects,
couple to gravity in a universal fashion. This “universality” is such that it can be
encoded in a single geometry of space-time that is the common habitat for any form
of matter.

Hilbert’s axiomatization of General Relativity is closely linked up with the far
more ambitious project to find a common basis for all of (fundamental) physics in
terms of the then known fundamental fields, namely, the gravitational and the elec-
tromagnetic field. For the latter, he followed the lines of “Grundlagen einer Theorie
der Materie” by Mie [55–57], the plan of which was to understand the elementary
constituents of matter, e.g. the electron, in terms of exact, finite-energy solutions
of a mathematically modified, non-linear theory for the electromagnetic field. At
that time, Mie’s theory was perceived by many to be a promising candidate, and
among them Weyl, who from the third edition [78] included summaries of Mie’s
theory in his “Raum-Zeit-Materie”, though in the fifth edition turned more sceptical.
The “feldtheoretische Einheitsideal”, as Hilbert still liked to call it in [35, p. 1], was

13 [35] is a combination of Hilbert [33, 34] with various changes taking into account suggestions
and criticism by Klein [39] and results of Noether [61], which also led to additional axioms.
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looked upon with increasing scepticism by the then younger generation of physi-
cists, perhaps most penetrating by 20-year young Wolfgang Pauli, who ended his
celebrated 237-page article “Relativitätstheorie”, written for the “Enzyklopädie der
Mathematischen Wissenschaften”, after having devoted separate chapters to various
“matter-theories” of Mie, Weyl, and Einstein, with the following words [62, p. 775]:

Whatever one may think of these arguments, one thing seems certain: that the foundations
of the current theory need to be supplemented by new elements, which are foreign to the
continuum theory of fields, in order to achieve a satisfactory solution of the problem of
matter.

More modern attempts to give an axiomatic basis for General Relativity are much
more reluctant in linking it upwith contemporary theories of fundamentalmatter. Still
today it is entirely unclear how the quantum(field)-theoretic nature of fundamental
matter relates to the classical field theory of space-time and its geometry, which has
so far resisted all attempts to “quantization”, despite enormous efforts up to this day.
On the other hand, General Relativity needs matter for its interpretation as a theory
of “physical geometry”. Its geometric statements refer to the actual behaviour of
“clocks” and “rods”. But “clocks” and “rods” are usually very complex many-body
systems, eventually based on the laws of quantum physics.

This operational meaning of the notion of “geometry” in physics has been fre-
quently stressed by Einstein, in a very illuminating form in his “Geometrie und
Erfahrung” [22]. “Clocks” and “rods” entered the picture as idealized objects the
relations of which define what one intends to define by “physical geometry” in the
first place. Hence, there is a reciprocal dependence between matter and geometry,
since the laws of matter also depend on the geometry of space and time.

One might argue that even with the addition of the qualification “idealized”,
clocks and rods are not yet sufficiently well characterized, for it has not yet been said
precisely what geometric relations they are supposed to determine. This has once
been pointedly expressed by Robb, whose scepticism against the use of such vaguely
defined concepts is omnipresent throughout his entire work [67–70]. In [70, p. 13],
he wrote:

It is not sufficient to say that Einstein’s clocks and measuring rods are ideal ones: for, before
we are in the position to speak of them as being ideal, it is necessary to have some clear
conception as to how one could, at least theoretically, recognise ideal clocks and measuring
rods in case one were ever sufficiently fortunate as to come across such things; and in case
we have this clear conception, it is quite unnecessary, in our theoretical investigations, to
introduce clocks or measuring rods at all.

In a memorable discussion that took place in September 1920 at the “Tagung
der Gesellschaft Deutscher Naturforscher und Ärzte in Bad Nauheim”, where many
“anti-relativists” voiced their “concerns”, Einstein addressed this fundamental diffi-
culty in a reply to the mathematician Georg Hamel, who inquired about the physical
interpretation of gravitational redshift. Einstein’s reply reads as follows [37, Doc. 46,
p. 353]:

It is a logical weakness of the theory of relativity in its present state to be forced to introduce
rods and clocks as separate entities instead of being able to deduce them as solutions of
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differential equations. However, in view of the empirical foundations of the theory, those
consequences regarding the behaviour of rigid bodies and clocks are among the most reliable
ones.

Weyl, who also attended and spoke at this conference, was the first to systematically
replace these unclear (in the sense of their dynamical modelling) notions of “clocks”
and “rods” by somethingmore transparent. He clearly felt that these notions of uncer-
tain physical foundation should not serve as primitives in any axiomatic scheme of
GR. This is why he came up with the idea to at least reduce complexity by replacing
“clocks” and “rods” with “particles” and “light-rays”, both of which are, in fact,
solutions to differential equations, as Einstein required in his reply to Hamel. Par-
ticles move on timelike “autoparallel curves”, by which one understands geodesics
modulo their parametrization. If the autoparallel curve is parametrized by its proper
length, or any parameter affinely equivalent to that, it is called a “geodesic”.14 But
here it is deliberately not assumed that the particle is a clock, that is, it is not capable
of measuring and recording the length of the curve.15 Hence, “particles” determine
the set of all timelike autoparallels (or unparametrized timelike geodesics), which
in Weyl’s terminology define a “projective structure”. In contrast, an “affine struc-
ture” is defined by the set of all geodesics (parametrized). Light rays, on the other
hand, determine the light cone in each tangent space of the manifold. Now, knowing
the set of vectors v for which Qg(v) = 0 determines the quadratic form Qg , and
hence g, up to a multiplicative constant. For the manifold, this means that light rays
determine the metric up to conformal rescalings g �→ �2g, or, in other words, the
conformal structure. Weyl proved that a Lorentzian metric is—up to globally con-
stant rescalings—uniquely characterized by the conformal and projective structures
it defines.

But the actual task is the converse: To derive the existence of a Lorentzian metric
form the primitives consisting of a set M of events and sets of subsets called “par-
ticles” and “light rays“. In 1972 Ehlers et al. [19]16 posed and partially solved the
ambitious problem of setting up a system of axioms involving only “particles” and
“light rays”, from which the hierarchy of

topological–differential–conformal–projective–affine–metric

14 Here we use the following terminology: An “autoparallel” is a curve λ �→ x(λ) that satisfies
the differential equation ẍa + 	a

bc ẋb ẋc = f (λ)ẋa , where f remains unspecified. A “geodesic”
is a curve that satisfies this differential equation for f ≡ 0. Note that 	a

bc are the components
of the connection (the Christoffel symbols in Riemannian and semi-Riemannian geometry). Any
autoparallel can be turned into a geodesic by reparametrization. This fixes the parameter λ up to
affine transformations: λ �→ λ′ := aλ + b, where a ∈ R − {0} and b ∈ R. Sometimes people speak
of “unparametrized geodesics” instead of “autoparallels”, but we shall not adopt this terminology
here.
15 In General Relativity, a “clock” is usually defined as any device that is capable of measuring
the proper length (or any preferred parameter affinely equivalent to that) of a timelike curve. This
may be its own worldline (if it defines any) or that of another object. How this can be done—in
principle—with light rays alone, thereby giving operational meaning to the concept of a “Lichtuhr”
already mentioned by Hilbert [34, p. 54], has been explained by [52] based on [51].
16 This difficult-to-access paper was republished as “Golden Oldie” by Ehlers et al. [20].
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structures should be derived, eventually resulting in a four-dimensional differentiable
manifold with pseudo-Riemannian structure of Lorentzian signature (−,+,+,+).

10.4.2.1 The Ehlers-Pirani-Schild System

The system of axioms set up by Jürgen Ehlers, Felix Pirani, and Alfred Schild—or
“EPS-System” as it is often called—has, roughly, the following structure:

• Primitive elements are a set M of “events” (points in space-time) and two sets
of subsets L and P, called “light-rays” and “particles”.

D A set D1, · · · , D4 of four axioms characterize the differential-topological struc-
ture of M . Typical requirements are that “particles” are smooth (here C3) one-
dimensional manifolds and that the self-maps from one particle to itself based on
light-“echoes” (forward-backward connections between neighbouring particles
using light rays) are also smooth.

L On top of [D], a set L1, L2 of two axioms fix the causal structure with an
underlying C3 manifold M and a C2 conformal structure. The latter con-
sists in a conformal equivalence class C of Lorentzian metrics: if g ∈ C then
C = {exp(�)g : � ∈ C2(M,R)}. Here C2(M,R) denotes the set of twice con-
tinuously differentiable (C2), real-valued functions on M .

P On top of [D], a set P1, P2 of two axioms characterize a projective struc-
ture P , by which one understands the class of free-fall worldlines with-
out parametrization, i.e. embedded one-dimensional submanifolds. In terms of
curves as maps R → M , i.e. parametrized curves, the former can be character-
ized by equivalence classes with respect to the equivalence relation induced
by reparametrization. Eventually, P can be thought of as an equivalence
class of torsion-free connection, where if 	 ∈ P and E denotes the T 1

1 (M)-
valued tensor-field of identity-endomorphisms (in each tangent space), then
P = {	 + E ⊗ ϕ + ϕ ⊗ E : ϕ ∈ ST ∗(M)}. (ST ∗(M) denotes the set of smooth
sections in the cotangent bundle.)

C A last axiom, C , requires some “compatibility” (see below) between the con-
formal structure C and the projective structureP . Given that compatibility, the
authors claim to be able to derive a Weyl structure,17 by which one understands
a triple (M,C ,∇), where ∇ is a C -compatible connection, which means that it
is torsion free and there exists for any g ∈ C a covector field ϕg such that

∇g = ϕg ⊗ g. (10.4)

17 A “Weyl structure” is equivalent to a “Weyl geometry” inMatveev and Scholz [53]’s terminology.
The latter is defined by an equivalence class of pairs (g, ϕ) with equivalence relation (g, ϕ) ∼
(g′, ϕ′) ⇔ g′ = exp(�)g and ϕ′ = ϕ + d�. It is easy to see by the obvious generalization of the
standard Koszul formula that for any given pair (g, ϕg) there is a unique torsion-free ∇ satisfying
(10.4).
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It is easy to check that if (10.4) holds for (g, ϕg) then it also holds for (g′, ϕg′)

with g′ = exp(�)g and ϕg′ = ϕg + d�.
R In order to reduce this to a semi-Riemannian geometry, additional physical input

is needed. Ehlers et al. [19] choice was to postulate the absence of so-called
“second clock-effect”.18 In this case, the one-form ϕg is closed, dϕg = 0, and
hence locally exact, ϕg = −d�, so that ∇ is the Levi-Civita connection for
g′ = exp(�)g and we are back to the semi-Riemannian case. In this case, one
calls the Weyl geometry “integrable”.

There is a technical and a conceptual problem with this approach. The technical
issue concerns the precise notion of “compatibility” that should be invoked in axiomC
to achieve the reduction to aWeyl geometry. The conceptual issue concerns the choice
of physical input that allows to further reduce the Weyl to the semi-Riemannian
geometry.

Let us start with the conceptual problem first. It was felt by many that the choice
of Ehlers et al. [19], to just declare the non-existence of the second clock-effect,
is physically not convincing and going against the spirit of the whole approach.
First, it is not convincing because just postulating the absence of these unwanted
effect is conceptually not sufficient. Rather, one should show their incompatibility
with fundamental properties of matter. Second it’s against the spirit because it re-
introduces the notion of “clocks” which we wanted to eliminate.19

It is clear that in order to meet this conceptual criticism one has to inject more
physics into the scheme that, first, allows to eliminate non-integrableWeyl geometries
and, second, keeps the newly injected physics simple enough to not lead us back to
“clocks” and “rods”. The central and physically very plausible idea was to inject the
information that the point particles that define the projective structure are, according
to modern physics, eventually described by quantum mechanics and/or quantum
field theory, the wave equations of which lead to particle trajectories in the short-
wavelength limit. Just like light rays emerging in the short-wavelength limit from
Maxwell’s equations. But here we get timelike worldlines for massive fields. It could
indeed be shown that using matter fields as primitives suffices to finally arrive at
semi-Riemannian geometries, see [2–4].

18 The “first clock-effect” just means that initially synchronized clocks generally show different
readings when connecting two timelike separated events by different worldlines. Geometrically
this just refers to the trivial fact that the lengths of paths connecting two given points in space-time
depend on the paths. The “second clock-effect” refers to the (mathematical) possibility that the
ticking rates of the two clocks may also differ upon being brought together, depending on their
pre-history. A general, non-integrable Weyl geometry allows for such second clock-effects.
19 Note that a Weyl structure(M,C ,∇) only includes a conformal equivalence class C of semi-
Riemannian metrics. This suffices to define timelike curves as those curves γ where g(γ̇ , γ̇ ) < 0
for one—and hence any—representative g ∈ C , which also does not depend of the parametrization.
But lengths of curves are not determined by C so that the notion of a “clock” cannot be defined
as before in footnote15, namely, as a device measuring the proper lengths of timelike curves (or
any of the affinely equivalent parameters). Instead, in Weylian space-times, a “clock” is defined,
according to Perlick [63], by a device that allows to measure any of the preferred parameters within
the affine equivalence class of curve parameters with respect to which the acceleration γ̈ = ∇γ̇ γ̇ is
C -perpendicular to the direction of the curve, i.e. g(γ̈ , γ̇ ) = 0 for one—and hence any—g ∈ C .
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As regards the technical problem, it turned out that that there can be subtle differ-
ences in the precise formulation of how the projective structureP and the conformal
structureC are required to be “compatible”. A recent paperMatveev and Scholz [53]
distinguishes three notions of compatibility:

(A) Light cone compatibility: Every lightlike autoparallel of C is an autoparallel of
one (and hence each) connection representingP . This is how the compatibility
is formulated by Ehlers et al. [19].

(B) Riemannian compatibility: There exists a g ∈ C the Levi-Civity connection of
which represents P .

(C) Weyl compatibility: There is a C -compatible Weyl connection representingP .

The issue arises because in [19] compatibility is defined as in (A) above, but the
conclusion drawn by these authors is as if (C) were required. Now, it is not difficult
to see that (C) and (B) each imply (A). Comparatively, recently, it was shown by
Matveev and Trautman [54] that (B) is strictly stronger than (A), i.e. that (A) does
not imply (B). This left open the question whether (A) implied (C), as conjectured by
Ehlers et al. [19]. This question was answered in the affirmative only very recently
by Matveev and Scholz [53], so that (A) and (C) are, in fact, equivalent.

Finally, I wish to add one more technical observation concerning the EPS scheme.
One might wonder how, despite the final gap fromWeyl to semi-Riemannian geome-
tries, this scheme manages to end up straight with the already very special class of
Weyl geometries. How, for example, does it come about that Finsler geometries are
ruled out? We recall that Finsler-like generalizations of Lorentzian geometries can
be defined20 and have been applied to problems in gravitational physics in order
to test possible deviations from the predictions of General Relativity, see [41, 42].
Now, given a Lorentzian metrig g, it is not difficult to see that Finsler geometries (of
Berwald type) exist that have the same conformal and projective structure as g but
are not semi-Riemannian, see Tavakol and van den Bergh [75].21 This suggests that
EPS’ final arrival at a Weyl structure may crucially depend on fine-tuned technical
assumptions the physical justification of which one should clarify. To see this in
slightly more detail, we look at their axiom L1 (Fig. 10.7):

The subtle point here is the required differentiability class C2 of the function
g : p �→ −t (e1)t (e2) on all of U , that is, including the points p on P . The func-
tion g itself is something like the squared spacelike distance of p to the midpoint
between e1 and e2. If the distance function is of Euclidean type, i.e. its square is a
homogeneous polynomial of degree two (in the limit p → e), its second derivative

20 There are various approaches, not all of which allow the notion of lightlike geodesics. A scheme
in which this is possible has been introduced and used in [42]. See [41] for a review and references
[58] for a discussion of conditions on Finsler metrics that lead to Lorentzian-like two-component
lightcones.
21 The idea is simple: Take a Lagrange function (square of the “Finsler function”) L(x, ẋ) =
exp

(
2σ(x, ẋ)

)
gab(x)ẋa ẋb with σ : T M → R any smooth function. This obviously leads to the

same conformal structure. As shown by Matveev and Trautman [75], it has the same projective
structure if σ satisfies ∂σ/∂xb − (∂σ/∂ ẋa)	a

bc ẋc = 0, where 	a
bc are the components of the Levi-

Civita connection (Christoffel symbols) for g.
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Fig. 10.7 Drawing and quotation fromEhlers et al., [20, p. 72–73]. [Picture credit: Springer Verlag;
the figure on the left is reproduced from the cited reprint]

would just be twice the metric tensor at e. But for a genuine Finsler metric the limit
p → e of the second derivative will be direction dependent. The C2-requirement
therefore eliminates all Finsler metrics which are not of (semi-)Riemannian type.22

Note that Finsler metrics still give rise to well-defined geodesic problems, that is,
curves extremizing the length functional (in the positive definite case) or energy func-
tional (in the indefinite case), giving rise to ordinary differential equations satisfying
existence and uniqueness criteria, like Lipschitz continuity, so that Picard-Lindelöf’s
theorem can be applied to assure existence and uniqueness. Hence, from that perspec-
tive, it would have been sufficient to adopt a weaker than C2 criterion and still obtain
well-defined geodesic principles.23 This point has already been made by Tavakol and
van den Bergh [75] and more recently by Lämmerzahl and Perlick [41]. For a very
most recent comprehensive account, see Bernal et al. [8].

So how could the C2-requirement really be justified? Ehlers et al. [19] discuss
the physical motivation for their axiom L1 and refer to Isaak [36] for observa-
tional/experimental support. But looking up this reference the reader finds no real
“paper” but rather a short letter to the editor (about two-third of a single column
on a two-column page), followed by the referee’s report which is so critical that
the editor decided to only publish the paper together with the report “by arrange-
ment with the author and the referee”. In any case, Isaak [36] reports on what was

22 To prove that the C2 requirement is, in fact, sufficient, to deduce the Lorentzian nature of the
geometry is one of the crucial steps in [19] which is not proven in detail. It relies on the classification
of quadrics in projective 3-space (not stated by the authors) from which the further axiom L2 then
picks out those containing the required two components of the set of lightlike directions.
23 This was just the central idea behind Paul Finsler’s generalization of Riemannian geometry
that he developed in his 1918 thesis under the supervision of Carathéodory: to generalize the
geodesic variational principle as much as possible while maintaining existence and uniqueness for
the solutions of the resulting Euler-Lagrange equations [23].
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then the current observational status on the universal properties of light propagation
in matter-free space; universality meaning independence of (a) orientation in space,
(b) the source’s state of motion, (c) the frequency, and (d) the polarization. Finslerian
geometries are generically non-isotropic and would hence violate (a) and possibly
also (c) and (d), though there are interpretational issues regarding cancellations of
these non-isotropy effects, which act on the optical as well as solid-state components
of the actual experimental device; compare [42].

The lesson to be learned from this is that much more physics than naively antici-
pated may be hidden in apparently small and innocently looking regularity assump-
tions which, therefore, are not so innocent after all.24

10.5 Conclusions and Summary

This ends our little tour on selected aspects of axiomatic thinking in physics. Some of
these aspects were rather superficial, others somewhat deeper. I find it hard to come
up with a résumé that states more than what has already been said (and partially
quoted) by Reichenbach and Einstein. It is clear that the famous dictum ascribed to
Hilbert, who in view of the axioms of Euclidean geometry allegedly once said that
instead of “points”, “lines”, and “planes” we could just as well say “tables”, “chairs”,
and “beer-mugs” is a critical one when applied to axiomatic physics. In an obvious
sense, it remains true: axiomatization of, say, geometric structures do as such not care
aboutwhat the objects of this geometry are. Theymay, for example, be quantum states
(density matrices), classical states, or space-time points. But then, as Reichenbach
stressed at the beginning, the task for the physicist is not finished. The primitives need
to be related to reality, they need to be endowed with a “Wirklichkeitsbezug”. And
then, a “beer-mug” makes quite a difference to an abstract “plane”. For the working
physicist, the most important value in axiomatic thinking lies in, what Einstein [22]
called the clean separation of formal aspects from those regarding the (physical)
content. Clearly, one might argue that this dichotomy is by itself not so well founded
as Einstein made it sound, and I would be inclined to agree with that. On the other
hand, I would not know how to substantially improve on Einstein [22]’s statement
from “Geometrie und Erfahrung”, which reads as follows [37, Doc. 52, p. 386]:

The progress brought about by axiomatics consists in separating the logically-formal aspects
from the actual content and intuitive [anschaulische] aspects; only the logically-formal is
subject to axiomatics, not the intuitive [anschauliche] or any other [sonstige] content.

24 In fact, after this paper was written, my attention was drawn to the very recent work of Bernal
et al. [8] in which a far more detailed analysis of the compatibility of Finsler geometries with the
EPS scheme was made. In particular, the authors also discuss the justification of the C2 assumption
in axiom L1 in more detail as here and as by Lämmerzahl and Perlick [41] and also come to the
conclusion that it may well be relaxed. I thank Christian Pfeifer for pointing out this reference
to me.
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I do not quite like the “any other” [sonstige], as if the scheme alone is devoid of any
content. To me, the physical content cannot be thought of as entirely independent of
the logical andmathematical structureswithinwhich the articulation of that “content”
takes place. Pursuing this will presumably lead me onto rather thin ice. So let me
therefore summarize the following:

• Hilbert’s axiomatization programme is pursued—in one form or another—inmany
branches of classical and modern physics, though the status of axioms is different
to that in pure mathematics.

• Opinions diverge as regard to its heuristic value, that is, concerning its use and
power in the creative process of developing “insight” into the Laws of Nature.

• One of themost interesting but alsomost difficult question intimately associated to
this programme is how to interpret Hilbert’s term “deepening” (German: “Tiefer-
legung”). There is no natural objective measure for “depth” and often, in physics,
the number of axioms is reduced at the price of a priori inbuilt physical limitations
(e.g. Hilbert’s connection of General Relativity with Mie’s theory).

• In physics, this is related to the problem of “fundamentality”, which is often
passionately discussed with too many ideologically motivated preconceptions. I
suggest to follow Max Born and regard axiomatic approaches pragmatically as
“logical experiments”, which contribute to our understanding just as much as
experiments in the lab do. Both should go hand in hand and not be played off
against each other.

• Axiomatic approaches to space-time theories in physics are alive and active.

Acknowledgements I sincerely thank the organizers for inviting me to the conference Axiomatic
Thinking: One hundred years since Hilbert’s address in Zürich, held at Zürich University on 14–15
September 2017.

Appendix: German Originals of Quotations

Reichenbach

From “Axiomatik der relativistischen Raum-Zeit Lehre”
[65, p. 1–2], quoted on page 231:

Es ist derWert einer axiomatischen Darstellung, dass sie den Inhalt einer wissenschaftlichen
Theorie in wenigen Sätzen zusammenfasst; jedes Urteil über die Aussagen der Theorie
darf sich dann auf ein Urteil über die Axiome beschränken, denn in ihnen ist jeder Satz
der Theorie schon implizite enthalten. ... die Frage der mathematischen Axiome ist geklärt
durch die Entdeckung, dass die mathematischen Axiome Definitionen sind, d.h. willkürliche
Fest-setzungen, über die es kein wahr oder falsch gibt, und dass nur die logischen Eigen-
schaften des Systems,Widerspruchsfreiheit, Unabhängigkeit, Eindeutigkeit, Vollständigkeit
Gegenstand der Kritik sein können.

Die Physik unterscheidet sich jedoch von der Mathematik in einer wesentlichen Beziehung.
Ihre Sätze wollen mehr sein als konsequente Folgen willkürlicher Setzungen; sie wollen für
die Wirklichkeit Geltung besitzen.
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Das Urteil ‘wahr’ oder ‘falsch’ bedeutet deshalb in der Physik etwas wesentlich anderes
als in der Mathematik; es ist eine außerlogische Beziehung, es besagt das Zutreffen oder
Nichtzutreffen eines Wahrnehmungserlebnisses. Und die Frage nach der Wahrheit erscheint
demPhysiker als das eigentlich Interessante; dennwenn sie bejaht wird, darf er seine Theorie
in einem gewissen Sinne als eine Beschreibung der Wirklichkeit bezeichnen.

Die axiomatische Darstellung einer physikalischen Theorie ist zunächst den gleichen Gese-
tzen unterworfen wie in der Mathematik [...]. Aber gerade weil die physikalischen Axiome
ebenfalls die ganze Theorie schon implizite enthalten, überträgt sich der Geltungsanspruch
auch auf sie; die physikalischen Axiome dürfen nicht willkürlich, sie müssen wahr sein.
Wahr bedeutet hier wieder ein Tatsachenurteil, welches letzten Endes die Wahrnehmung
fällt.

Einstein

From “Geometrie und Erfahrung”
[37, Doc. 52, p. 385–6], quoted on page233:

Insofern sich sie Sätze der Mathematik auf die Wirklichkeit beziehen sind sie nicht sicher,
und insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit.

From discussions at Bad-Nauheim (1920)
[37, Doc. 46, p. 353], quoted on page236:

Es ist eine logische Schwäche der Relativitätstheorie in ihrem heutigen Zustande, dass sie
Maßstäbe und Uhren gesondert einführen muss, statt sie als Lösungen von Differential-
gleichungen konstruieren zu können. Was aber die Zuverlässigkeit der Konsequenzen hin-
sichtlich der Beziehung auf das empirische Fundament der Theorie anbelangt, so sind die
Konsequenzen, welche das Verhalten der starren Körper und Uhren betreffen, die am besten
gesicherten.

From “Geometrie und Erfahrung”
[37, Doc. 52, p. 386], quoted on page 257:

Der von der Axiomatik erzielte Fortschritt besteht nämlich darin, dass durch sie das Logisch-
Formale vom sachlichen oder anschaulichen Gehalt sauber getrennt wurde; nur das Logisch-
Formale bildet gemäß der Axiomatik den Gegenstand der Mathematik, nicht aber der mit
dem Logisch-Formalen verknüpfte anschauliche oder sonstige Inhalt.

Hertz

From the introduction of “Prinzipien der Mechanik”
[32, p. 1–3], quoted on page 236:

Wir machen uns innere Scheinbilder oder Symbole der äußeren Gegenstände, und zwar
machen wir sie von solcher Art, dass die denknotwendigen Folgen der Bilder stets wieder
die Bilder seien von den naturnotwendigen Folgen der abgebildeten Gegenstände.

Die Bilder, von welchen wir reden, sind unsere Vorstellungen von den Dingen; sie haben mit
den Dingen die eine wesentliche Übereinstimmung, welche in der Erfüllung der genann-
ten Forderung liegt, aber es ist für ihren Zweck nicht nötig, dass die irgend eine weitere
Übereinstimmung mit den Dingen haben.

Eindeutig sind die Bilder, welche wir uns von den Dingen machen wollen, noch nicht be-
stimmt durch die Forderung, dass die Folgen der Bilder wieder die Bilder der Folgen seien.
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Von zwei Bildern desselben Gegenstandes wird dasjenige das zweckmäßigere sein, welches
mehr wesentliche Beziehungen des Gegenstandes wiederspiegelt als das andere, welches,
wie wir sagen wollen, das deutlichere ist. Bei gleicher Deutlichkeit wird von zwei Bildern
dasjenige zweckmäßiger, welches neben den wesentlichen Zügen die geringere Zahl über-
flüssiger oder leerer Beziehungen enthält, welches also das einfachere ist.

Pauli

From [62, p. 775], quoted on page250:

Wie immer man sich im Einzelnen zu diesen Argumenten stellen mag, so viel scheint sicher
zu sein, dass zu den Grundlagen der bisher aufgestellten Theorien erst neue, der Kontinu-
umsauffassung des Feldes fremde Elemente hinzukommen müssen, damit man zu einer
befriedigenden Lösung des Problems der Materie gelangt.
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