Chapter 1 ®)
A Framework for Metamathematics G

Lorenz Halbeisen

Abstract First, we consider Hilbert’s program, focusing on the three different aspect
of mathematics called actual mathematics, formal mathematics, and metamathe-
matics. Then, we investigate the relationship between metamathematics and actual
mathematics, describe what shall be achieved with metamathematics, and propose a
framework for metamathematics.

1.1 Hilbert’s Program Revisited

Motivated by prior work of Frege and Russell, Hilbert describes in [3] what he calls
axiomatic thinking. He concludes his article with the following words:

Ich glaube: Alles, was Gegenstand des wissenschaftlichen Denkens iiberhaupt sein kann, ver-
fallt, sobald es zur Bildung einer Theorie reif ist, der axiomatischen Methode und damit mit-
telbar der Mathematik. Durch Vordringen zu immer tieferliegenden Schichten von Axiomen
[...] gewinnen wir auch in das Wesen des wissenschaftlichen Denkens selbst immer tiefere
Einblicke und werden uns der Einheit unseres Wissens immer mehr bewufit. In dem Zeichen
der axiomatischen Methode erscheint die Mathematik berufen zu einer fiihrenden Rolle in
der Wissenschaft iiberhaupt.!

At this early stage of Hilbert’s program, the focus is on the “objects of scientific
thought” which become dependent on the axiomatic method. When these “objects of

11 believe: anything at all that can be the object of scientific thought becomes dependent on the
axiomatic method, and thereby indirectly on mathematics, as soon as it is ripe for the formation of
a theory. By pushing ahead to ever deeper layers of axioms [...] we also win ever-deeper insights
into the essence of scientific thought itself, and we become ever more conscious of the unity of
our knowledge. In the sign of the axiomatic method, mathematics is summoned to a leading role in
science. (Translation taken from [2].)
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scientific thought” are mathematical objects, one can think of these objects as being
part of the real mathematical world.

Later in 1922, Hilbert went a step further. The focus is now not on the “objects
of scientific thought” which shall be axiomatized, but on the consistency of the
axiomatic systems. In [5, p. 174], Hilbert summarizes his program as follows:

Erstens: Alles, was bisher die eigentliche Mathematik ausmacht, wird nunmehr streng for-
malisiert, so daB die eigentliche Mathematik oder die Mathematik im engeren Sinne zu einem
Bestande an beweisbaren Formeln wird. [. . .]

Zweitens: Zu dieser eigentlichen Mathematik kommt eine gewissermaflen neue Mathematik,
eine Metamathematik, hinzu, die zur Sicherung jener dient, indem sie sie vor dem Terror
der unnotigen Verbote sowie der Not der Paradoxien schiitzt. In dieser Metamathematik
kommt—im Gegensatz zu den rein formalen Schlulweisen der eigentlichen Mathematik—
das inhaltliche SchlieBen zur Anwendung, und zwar zum Nachweis der Widerspruchsfreiheit
der Axiome.

Die Entwicklung der mathematischen Wissenschaft geschieht hiernach bestiandig wechselnd
auf zweierlei Art: durch Gewinnung neuer “beweisbarer” Formeln aus den Axiomen mit-
tels formalen SchlieBens und durch Hinzufiigung neuer Axiome nebst dem Nachweis ihrer
Widerspruchsfreiheit mittels inhaltlichen Schliefens.?

What we see here is the beginning of a paradigm shift: In classical mathematics,
axioms were a statement that was taken to be true. Axioms served as premises or
starting points for further reasoning and arguments. Therefore, it would have been
absurd to consider different contradicting axiom systems, since at most one of these
systems can be true in an absolute sense, and all the others systems must be false
or meaningless. Now, focusing on the consistency of axiom systems rather than on
their inherent truth, we do not need to restrict ourselves to axiom systems which are
relevant for actual mathematics (i.e. for the investigation of objects in the, to some
extend, real mathematical world), but could investigate any consistent axiomatic
system, no matter whether it is relevant for actual mathematics or not.

However, since the ultimate goal of Hilbert’s program was to give a firm (i.e.
provably consistent) foundation of actual mathematics, there are still some axiomatic
systems which are more relevant for mathematics, and some which are less relevant
for mathematics. This situation is similar to geometry, where one could argue that
the only geometric system which is relevant, is the one which describes the space

2 First: everything that hitherto made up [actual mathematics] is now to be strictly formalized, so
that actual mathematics, or mathematics in the strict sense, becomes a stock of provable formulae.
[...]

Secondly: in addition to actual mathematics, there appears a mathematics that is to some extent
new, a metamathematics which serves to safeguard it by protecting it from the terror of unnecessary
prohibitions as well as from the difficulty of paradoxes. In this metamathematics—in contrast to
the purely formal modes of inference in actual mathematics—we apply contentual inference; in
particular, to the proof of the consistency of the axioms.

The development of mathematical science accordingly takes place in two ways that constantly
alternate: the derivation of new “provable” formulae from the axioms by means of formal inference;
and the adjunctionn of new axioms together with a proof of their consistency by means of contentual
inference. (Translation taken from [2], except that we translated “eigentliche Mathematik” as
“actual mathematics” and not as “mathematics proper”.)
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in which we live. Even though from a physical point of view this argument makes
sense, from a mathematical point of view it is immaterial. For example, it is very
unlikely that our space satisfies the axioms of projective geometry, but nevertheless,
projective geometry is the key tool in the investigation of conic sections in Euclidian
geometry.

To sum up, we can say that Hilbert’s program was the beginning of a paradigm
shift from “axioms as obviously true statements” towards “axioms as mutually non-
contradictory statements”. However, since there is still a presupposed actual math-
ematics, this paradigm shift was not carried out thoroughly. For example, let us
consider the axiomatic system ZFC, which is Zermelo-Fraenkel Set Theory ZF with
the Axiom of Choice AC. One of the earliest problems in set theory was the question
whether the Continuum Hypothesis CH holds (which is the first of the twenty-three
problems Hilbert presented at the ICM 1900 in Paris). On the one hand, it is known
that CH is independent from ZFC (i.e. within ZFC we can neither prove nor dis-
prove CH), and on the other hand, ZFC serves as a foundation of mathematics. Now,
if one believes in a unique actual mathematics, then CH should be either true or
false, which implies that ZFC is not strong enough to serve as the foundation of
actual mathematics. So, we have to extend ZFC by adding new axioms in such a
way that the extended systems decide CH. However, by Gadel’s Second Incomplete-
ness Theorem, this does not really help, since no matter how we extend ZFC, we
always obtain a sentence which is undecidable within the extended system. In other
words, having Godel’s Second Incompleteness Theorem in mind, it is not possible
to axiomatize actual mathematics in such a way that the axiomatic system obtained
fully represents actual mathematics, which also shows that Hilbert’s program must
fail.

Let us turn back to the paradigm shift from “axioms as true statements” towards
“axioms as mutually non-contradictory statements”, which was initiated by Hilbert’s
program: The above explanations show that in order to make the paradigm shift
complete, we have to give up the idea of actual mathematics as the unique real
mathematical world, since strictly formalizing actual mathematics in 1st order logic
yields a formal axiomatic system of which actual mathematics is just one of numerous
models. However, we can conceive actual mathematics as the collection of all models
of axiomatic systems which form a foundation for mathematics. Such systems are
consistent extensions of ZF, whose models are proper models for mathematics, i.e.
models in which we can carry out essentially all mathematics.

In order to see how and where we build these models, we have to combine Godel’s
Completeness Theorem for 1st order logic with Hilbert’s metamathematics: Godel’s
Completeness Theorem together with the Soundness Theorem states that a sentence
¢ is provable from an axiomatic system S, denoted S + ¢, if and only if ¢ is valid in
each model of S. In particular, we obtain that an axiomatic system S has a model if and
only if S is consistent. So, for any axiomatic system S, Hilbert’s metamathematics
has the task to decide whether S is consistent, or equivalently, to decide whether S
has a model. By Godel’s Incompleteness Theorems we know that this task cannot
be carried out in a formal system. In other words, Hilbert’s metamathematics can
not be formalized, and therefore, does not belong to actual mathematics—which is
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indicated by the prefix “meta”, which means “behind” (i.e. metamathematics is a
kind of “background-mathematics’). Moreover, even in the case when we know that
some axiomatic system S is consistent, and therefore has a model, in general, the
construction of a model of S cannot be carried out in a formalized system, i.e. the
construction of a model must in general be carried out in metamathematics.

Since metamathematics plays an important role in the investigation of axiomatic
systems and in the construction of models, and since metamathematics cannot be
formalized, it is natural to ask what kind of principles we have in metamathematics.
An answer to this question is given in the next section.

1.2 Non-constructive Principles of Metamathematics

The previous section can be summarized as follows: In mathematics we investi-
gate formal axiomatic systems. In particular, we investigate which sentences can be
derived from a given axiomatic system S, which sentences are consistent with S,
and which sentences are independent of S, where the investigations themselves are
based on the construction of various models of axiomatic systems. In particular, we
have to construct models of variations of ZF (i.e. models of extensions of ZF). The
construction of models is carried out in a moderate constructive way, which we are
going to circumscribe now.

1.2.1 What We Need

The construction of a model for an axiomatic system is carried out by following
Henkin’s proof of Gddel’s Completeness Theoremfor 1st order logic. Now, beside the
constructive parts of Henkin’s proof, which are described explicitly or by algorithms,
there are also some non-constructive parts using principles which are usually tacitly
assumed. The goal is now to make these principles explicit.

The most important principle we need in metamathematics is the notion of FINITE-
NESS. Hilbert writes in [4, p. 154]:

Die beweisbaren Formeln [. . .] haben s@mtlich den Charakter des Finiten, d.h. die Gedanken,
deren Abbilder sie sind, konnen [...] mittels Betrachtung endlicher Gesamtheiten erhalten
werden.?

The notion of FINITENESS plays a crucial role not only in the investigation of
provable formulae, but also in the proof of Gddel’s Incompleteness Theorems. In fact,
if the notion of FINITENESS could be formalized (i.e. if FINITENESS were a notion of

3 The provable formulae [. . .] all have the character of the finite; that is, the thoughts whose images
they are can also be obtained [...] from the examination of finite totalities. (Translation taken

from [2].)
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formal mathematics), then Godel’s Incompleteness Theorems would disappear and
Hilbert’s program would succeed.

What we also need to construct models is the notion of a POTENTIALLY INFINITE
SET, like the natural numbers 0, 1, 2, ... Notice that we do not require to have the
entire set IN of natural numbers, which would be an actual infinite set. In fact, a closer
look at Henkin’s proof of Gddel’s Completeness Theorem shows that in order to
construct non-finite models (e.g. models of Peano Arithmetic PA or models of ZFC),
a POTENTIALLY INFINITE SET is sufficient—but also necessary.

Finally, we need a kind of LAW OF EXCLUDED MIDDLE. This law is crucial
in the completion of axiomatic systems S, since in each step of the completion of
S, for some ¢ we have to decide whether or not ¢ is consistent with the exten-
sion of S we already have constructed. In other words, for every axiomatic sys-
tems S and each sentence ¢, we must be able to decide whether ¢ is provable from
S (i.e. S - ¢), and since a formal proof is just a special FINITE sequence of formulae,
either there is such a sequence or there is no such sequence. The difficulty is, that
we probably cannot decide in FINITELY many steps, whether or not S I ¢. Now, this
non-constructive part in the proof of Godel’s Completeness Theorem is handled by
the LAW OF EXCLUDED MIDDLE. If we would formalize this law, we would obtain
what is known as the WEAK KONIG’S LEMMA, which is just KONIG’S LEMMA for
infinite, binary 0-1-trees.

1.2.2 What We Obtain

In the framework described above, we can construct models of all kind of axiomatic
systems. For example, we can construct models of ZFC, or models of ZF in which the
Axiom of Choice fails, and we can carry out Forcing constructions in order to obtain
models of ZFC (or of ZF) in which certain statements become valid. In particular,
we can construct models of ZFC in which CH holds or in which CH fails. This way,
we obtain different models of the standard real numbers. On the other hand, we can
also construct non-standard models of the real numbers, for example, the hyperreal
numbers or the surreal numbers, which give us also non-standard models of Peano
Arithmetic. In fact, even non-standard approaches to mathematics, like intuitionism,
can be modelled. There is a lot of freedom we have, and it might be this freedom,
which Cantor meant when he writes ([1, p.564])

... das Wesen der Mathematik liegt [. . .] in ihrer Freiheit.*

4 ... the essence of mathematics lies [. . .] in its freedom.
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1.3 Conclusion

The view of mathematics we proposed can be described as follows:

e In mathematics we investigate formal axiomatic systems. In particular, we inves-
tigate which sentences we can derive from a given axiomatic system S, which
sentences are consistent with S, and which sentences are independent of S.

e The investigations are based on the construction of various models of axiomatic
systems, in particular, on the construction of models of variations of ZFC.

e The construction of models is carried out in metamathematics, where metamathe-
matics consists of all we can describe explicitly or by algorithms, together with
the notions of FINITENESS and POTENTIALLY INFINITE SET, and the LAW OF
EXCLUDED MIDDLE.

On the one hand, this view of mathematics is quite formal in the sense that there
is no unique real mathematical world anymore, but on the other hand, we have a
realm of models of various axiomatic systems, which distinguishes this view from
pure formalism. Moreover, one of the features of this view is that we do not have
any kind of “ideology” like constructivism, platonism, or intuitionism, which would
lead us to the “right” mathematical world: No matter which approach we take, with
Hilbert’s axiomatic thinking—enriched by Godel’s work—we are able to create
various mathematical worlds. With respect to this kind of mathematics, we would
like to say:

From the realm of mathematics, which Hilbert and Godel created for us, no-one shall
expel us.
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