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Introduction

The blood-testis barrier (BTB) in the adult mammalian testis is a unique blood-
tissue barrier which restricts paracellular (between cells; i.e., gate-keeper function
of the BTB) and transcellular (across cells; i.e., fence function of the BTB) transport
(or diffusion) of water, electrolytes, nutrients, cytokines and biomolecules including
paracrine and autocrine factors between adjacent Sertoli cells at the base of the
seminiferous tubules, alsoknown as the Sertoli cell barrier [ 1-6] (Fig. 1). Interestingly,
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microvessels found in the interstitial space between seminiferous tubules contribute
relatively little barrier function to the BTB in the testis of rodents, primates and
humans (Fig. 1) [5, 9]. The BTB also divides the seminiferous epithelium into the
basal and the adluminal (apical) compartments as noted in Fig. 1. As such, meiosis
I/Il and all the cellular events pertinent to post-meiotic development take place
behind the BTB in a specialized microenvironment (Fig. 1), whereas mitotic prolif-
eration of spermatogonia and differentiation/transformation of type A and type B
spermatogonia to earlier spermatocytes take place in the basal compartment [10-
12]. The BTB is a highly dynamic blood-tissue barrier since preleptotene spermato-
cytes, once derived from type B spermatogonia in the basal compartment rodents,
are to be transported across the BTB in late Stage VII through early Stage IX of the
epithelial cycle while differentiating into leptotene spermatocytes, which can be
transformed into zygotene and pachytene spermatocytes to prepare for meiosis.
Studies have shown that the BTB in the rodent testis is constituted by the actin-
based tight junction (TJ) between adjacent Sertoli cells, reinforced by a testis-
specific actin-rich adherens junction (AJ) type called basal ectoplasmic specialization
(ES), and supported by the actin-based gap junction, but also intermediate filament-
based desmosome [13—19]. Once haploid spermatids are formed through meiosis,
they are also being transported across the seminiferous epithelium in the adluminal
compartment before fully developed step 19, 16, and 12 spermatids in the testis of
rats, mice, and humans, respectively, are transformed to spermatozoa via spermio-
genesis [12, 14, 20] as these cells are lacking the ultrastructures found in motile
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Fig. 1 (continued) BTB (for basal ES) but also spermatid transport across the epithelium (for
apical ES). These germ cells, namely spermatocytes and developing spermatids are the car-
goes which are to be transported “directionally”, either to be base or to the adluminal edge
of the seminiferous epithelium, due to the polarized nature of the actin- and MT-based cyto-
skeletons through the MT- or actin-dependent motor proteins. For instance, dynein 1 moves
cargoes to the minus (—) end of MTs, and kinesin 15 to the plus (+) end of MTs; whereas
myosin VIIa moves cargoes to the plus (+) end of actin filaments and myosin VI to the minus
(=) end of actin filaments. In brief, the actin- and MT-based tracks found in Sertoli cells
work in concert to support the directional\transport of germ cells across the seminiferous
epithelium using the corresponding actin- and MT-based motor proteins. Even though germ
cells located outside the Sertoli cell actin- and MT-cytoskeletons, the ES provides the means
by which these germ cells anchor tightly onto the Sertoli cell cytoskeleton-based tracks to
facilitate their transport across the epithelium. Through these actions of corresponding
motor proteins, proper germ cell and cargo transports can take place across the seminiferous epi-
thelium during the epithelial cycle to support spermatogenesis
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Fig. 1 Schematic drawing of the cross-section of a typical Stage VII seminiferous tubule from
adult rat testes. The seminiferous epithelium across the tubule is constituted by adjacent Sertoli
cells which, in turn, support germ cells at different stages of their development during spermato-
genesis as noted herein with a Sertoli:germ ratio of about 1:30-50 [7, 8] (left panel). Between
adjacent Sertoli cells near the basement membrane are the specialized junctions, namely the actin-
based tight junction (TJ), basal ES (ectoplasmic specialization, a testis-specific adherens junction
type) and gap junction, which together with the intermediate filament-based desmosome constitute
the blood-testis barrier (BTB). The BTB also divides the seminiferous epithelium in the rat testis
and other mammalian testes into the basal and the adluminal (apical) compartments, such that
meiosis I/I and all subsequent events of post-meiotic spermatid development take place behind the
BTB. The most notable structural features are the microtubule (MT)-based and actin-based tracks
that stretch across the seminiferous epithelium. These tracks support the corresponding MT- and
actin-based motor proteins (see the insets on the right panel) to provide cellular transport of car-
goes as discussed in this review. For F-actin, besides serving as the track-like structures to support
cellular transport, actin filaments that lay parallel to the Sertoli cell plasma membrane are assem-
bled as bundles which appeared as aggregates of rod-like structures in cross-sections of the testis,
both at the Sertoli-spermatid site called apical ES and also at the Sertoli cell-cell interface at the
BTB called basal ES. The ES is not only an important ultrastructure to support spermatid and
Sertoli cell adhesion, they are crucial to support preleptotene spermatocyte transport across the
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cells, namely the lamellipodia and filopodia [21]. Spermatozoa are then line-up at
the edge of the seminiferous tubule lumen to undergo spermiation in Stage VIII of
the epithelial cycle in rodents versus VI in humans, respectively, which is composed
of a tightly regulated series of biochemical and cellular events involving multiple
signal and regulatory proteins [13, 22-24]. The testicular sperm emptied into the
epididymis are then undergo another series of maturation processes, rendering them
capable of fertilizing the egg.

Studies have shown that BTB dynamics that support preleptotene spermatocyte
transport across the immunological barrier, and the subsequent haploid spermatid
transport across the seminiferous epithelium, are tightly regulated cellular events.
These involve several biologically active peptides released at the basement mem-
brane but also at the Sertoli-spermatid adhesion site known as the apical ES via
proteolytic cleavage of the structural proteins at these two sites, namely the F5-, the
NCI1- and the LG3/4/5-peptide [9, 25-27]. These bioactive peptides, in turn, are
working in concert with a number of signaling proteins such as mTORC1/rpS6/
Akt1/2 and FAK-Y407, and cytoskeletal regulatory proteins such as Arp3, Eps8,
+TIPs and —TIPs to modulate BTB and ES dynamics [9, 27, 28]. The ultrastructures
and the biomolecules that support germ cell transport are the actin- and MT-based
cytoskeletons, as well as the corresponding actin- and MT-based motor proteins. In
brief, motor proteins are the “vehicles” that carry the “cargoes”, namely prelepto-
tene spermatocytes and spermatids, utilizing the corresponding actin or microtubule
(MT)-based cytoskeletons as tracks to transport developing germ cells and other
organelles (e.g., residual bodies, phagosomes, cell vacuoles, endocytic vesicles) to
their corresponding “destination” across the seminiferous epithelium (Fig. 1).
Furthermore, this requires intricate involvement of both actin- and MT-based cyto-
skeletons to support cargo transport across the seminiferous epithelium. However,
much of this information remains unknown. In this review, we provide a timely
discussion on latest findings in this area of research regarding the role of motor
proteins in supporting cargo transport across the seminiferous epithelium using the
rat testis as a study model. We also highlight some of the specific research areas that
deserve attentions in future studies, which should be helpful to understand the
underlying mechanism(s) of idiopathic male infertility.

Sertoli Cell Cytoskeletons in the Testis

In the seminiferous epithelium of adult rodent testes, similar to other mammalian
organs, the two prominent cytoskeletons are the intrinsically polarized actin- and
microtubule (MT)-based cytoskeletons which are composed of globular subunits of
actin and o-tubulin/p-tubulin oligomers, respectively (Fig. 1) [29-33]. These polar-
ized structures also serve as tracks to support specific motor proteins for directional
transport of cargoes across the seminiferous epithelium. On the other hand, the
intermediate filament-based cytoskeleton constituted by vimentin [16, 34] and the
septin-based cytoskeleton [35] are both apolar structures, thus, they do not support
motor proteins for directional cargo transport along their filaments.
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Actin-Based Cytoskeleton

A functional actin-based track is composed of linear actin filaments (i.e., filamen-
tous actin, F-actin) derived from polymerized globulin (G)-actin subunits, with the
fast-growing barbed (+) end near the base of the seminiferous epithelium, closest to
the basement membrane, and the slow-growing pointed (—) end near the seminifer-
ous tubule lumen (Fig. 1) [36, 37]. In brief, polymerization of a linear actin filament
occurs by incoming ATP-bound G-actin subunits at the fast-growing barbed (+) end
involving actin nucleation proteins (e.g., formin 1, spire 1). The ATP-bound G-actin
subunits are rapidly dephosphorylated to ADP-bound G-actin and are all found at
the slow-growing pointed (—) end near the tubule lumen (Fig. 1) [37, 38]. The actin-
based tracks are most notable in late Stage VIII of the epithelial cycle that stretch
across the seminiferous epithelium and align perpendicular to the basement mem-
brane [38] (Fig. 1). However, F-actin are also prominently noted at the apical ES
and basal ES/BTB wherein the actin filaments are aligned parallel to the Sertoli cell
plasma membrane and appear as bundled structures in cross-sections of the tubules.
As such, these actin filaments appear as “rod-like” structures in cross-sections of the
tubules at the apical ES and basal ES/BTB sites, thereby reinforcing cell adhesion
(Fig. 1). ES in the testis also plays a crucial role to support germ cell transport as
preleptotene spermatocytes (at the basal ES) and developing spermatids (at the api-
cal ES) tightly anchored onto the actin filament bundles at the ES, and with the MTs
located nearby [18, 33], which are located in close proximity to the plasma mem-
brane of the Sertoli cell. Thus, these cells are separated only by their apposing
Sertoli cell-cell or Sertoli-germ cell plasma membranes [3, 39]. Thus, even though
these germ cells, namely preleptotene spermatocytes or haploid elongate sperma-
tids, are located “outside” the Sertoli actin filament and MT networks, they are
anchor onto these cytoskeletons through the unusual adhesion of ES between these
adjacent cells, which are considered as cargoes to the Sertoli cell at the site. Due to
this intrinsic polarized nature of the actin filaments, the actin-based plus (+) end-
directed motor protein myosin VIla, and the actin-based minus (—) end-directed myo-
sin VI are capable of moving cargoes either to the base or to the tubule lumen across
the epithelium, respectively (Fig. 1).

MT-Based Cytoskeleton

Microtubules (MTs) are also polarized ultrastructures in which a microtubule is
composed of 13 laterally associated protofilaments of o- and B-tubulin heterodi-
mers, with a hollow lumen wherein the plus (+) fast growing end is near the base-
ment membrane and the minus (—) slow growing end near the tubule lumen (Fig. 1)
[40—43]. Due to the intrinsic polarized nature of MTs, the MT-based minus (—)
end-directed motor protein dynein 1 and the plus (+) end-directed motor protein
kinesins (e.g., kinesin 15) can move cargoes to the corresponding minus or plus end
of MTs, respectively [44—47].
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Motor Proteins

Motor proteins are a class of molecular motors that bind to either microtubule (MT)-
or actin-based tracks. They are capable of converting chemical energy through the
hydrolysis of ATP to generate the mechanical force necessary to transport cargoes
along the track across cell cytoplasm. Herein, we discuss several motor proteins that
have been studied in the testis pertinent to support spermatogenesis. Besides serving
as an update, this summary also provides the basis for future studies regarding the
role of motor proteins in supporting germ cell and cargo transport across the semi-
niferous epithelium.

MT-Based Motor Proteins: Dynein and Kinesin
Dynein

Dynein is a family of motor proteins that use MT-based track in retrograde sliding
movement towards the minus (—) ends of microtubules [47, 48]. In brief, a dynein
motor protein transports cargoes towards the center of the cell or seminiferous
tubule lumen in the testis. There are two major classes of dyneins, cytoplasmic and
axonemal dyneins, which are classified according to their function and structure
differences. Dynein 1 is a cytoplasmic dynein of about 1.5 megadaltons (MDa)
(Fig. 2; Fig. 3A), involved in intracellular transport, mitosis, cell polarization and
directional cargo transport. For instance, dynein 1 carries the cargo (e.g., spermatid)
by “walking” along the MT-track in the Sertoli cell. Even though spermatids locate
outside the Sertoli cell, but they are tightly anchored onto the MT-track in the Sertoli
cell at the apical ES (or preleptotene spermatocyte anchored onto the MT-track in
the Sertoli cell at the basal ES), which is a known adhesion ultrastructure that sup-
ports spermatid or preleptotene spermatocyte transport [3, 17]. There are 15 types
of axonemal dyneins to support ciliary (e.g., dynein 2) and flagellar movement [48—
51] such as sperm flagella that confers sperm progressive motility. Axonemal
dyneins support the beating of flagella and cilia through rapid and efficient sliding
movements of MTs [52]. In this context, it is of interest to note that mechanical
movement of hair cells in cochlea is supported by the motor protein prestin [53, 54]
which is different from the dynein family motor proteins. A functional dynein motor
protein is considerably larger and more complex than kinesin or myosin motors, and
it is composed of two heavy chains and a variable number of associated intermedi-
ate chains, light intermediate chains and light chains (Fig. 3A). For instance, dynein
1 is a dimeric protein composed of two identical heavy chains with a large molecu-
lar mass (Mr) of 500 kDa each. Each HC, in turn, binds to a light intermediate chain
(LIC), an intermediate chain (IC), and three light chains (LCs) of LC7, LC8, and
Tctex 1 (Fig. 3A). Thus, dynein 1 is a dimer of dimers. Each heavy chain is com-
posed of three functional domains: a coiled-coil stalk with MT binding domain
(MTBD) containing a globular motor head at the C-terminus, an AAA+ ring con-
taining six AAA+ modules that organized into a doughnut-like structure, and a
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Fig. 2 Schematic illustration on the functional domains of the microtubule-based motor proteins
dyneins and kinesins, and actin-based motor proteins myosins. The different functional domains of
motor proteins dyneins, kinesins and myosins are noted in corresponding panels. This figure was
prepared based on earlier reports [55-58]. Abbreviations: DYNC1HI, dynein cytoplasmic 1 heavy
chain 1; KIF, kinesin; MT, microtubule; SH3, SRC homology 3 domain; IQ motif, isoleucine and
glutamine motif is a basic unit containing about 23 amino acids; PEST motif, a motif rich in pro-
line (P), glutamic acid (E), serine (S) and threonine (T); PH domain, pleckstrin homology domain;
MyTH4 domain, Myosin Tail Homology 4 domain; FERM domain, F for 4.1 protein, E for ezrin,
R for radixin and M for moesin

cargo-binding tail at by N-terminus (Figure 3A). The AAA+ ring can hydrolyze
ATP hence converting chemical energy into mechanical force to support cargo
transport [59]. In the testis, dynein 1 interacts with a protein complex called dynac-
tin and cargo adaptor to form a functional motor protein called the dynein-dynactin-
adaptor complex that supports spermatid transport on MT-based cytoskeleton.
Dynein I also transports various cellular cargoes along MT towards the minus (—)
end of MT tracks [60]. Cargoes transported by cytoplasmic dynein include endo-
somes [61], lysosomes [62], phagosomes [63], melanosomes [64], peroxisomes
[65], lipid droplets [66], mitochondria [67] and vesicles from the endoplasmic retic-
ulum (ER) destined for the Golgi [68]. These cargo transports hence regulate the
intracellular function of cells and tissues through different cell signaling pathways.
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Fig.3 Schematic illustrations on the structural components of the functional motor proteins dynein
1, kinesin 15 and myosin VIla. (A) A functional dynein motor protein (e.g., dynein 1) complex is
composed of the dynein, dynactin and the cargo adaptor (left panel). The dynein motor protein
consists of two monomers. Each monomer is composed of a heavy chain (HC) motor and several
other subunits: an intermediate chain, a light intermediate chain, and three light chains called LC7
(light chain 7) LC8 and Tctex. Each HC has the N-terminus at the tail and the C-terminal motor unit
contains six AAA (ATPase Associated with Cellular Activities) domains, AAA1 to AAA6, and
organized into a ring-like structure, which in turn connects to the microtubule binding domain
(MTBD) in the motor head at the C-terminus which also binds onto the microtubule. AAA1
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In the rat testis, dynein 1 is necessary to confer Sertoli cell TJ-permeability barrier
function since its knockdown by RNAI perturbs the TJ-barrier function due to gross
defects of F-actin and microtubules (MTs) across the Sertoli cell cytosol wherein
both cytoskeletons become extensively truncated [69]. These defects, in turn, per-
turb the distribution of BTB-associated proteins at the site, including the cell adhe-
sion complexes CAR/ZO-1 and N-cadherin/B-catenin [69]. Furthermore, dynein 1
knockdown also perturbs the polymerization activities of F-actin and MTs [69],
possibly due to defects in transporting machineries (e.g., actin or MT polymeriza-
tion proteins) necessary to support cytoskeletal nucleation. More important, the loss
of dynein 1 function by RNAI also perturbs the BTB function in vivo since the bar-
rier no longer restricts the diffusion of small molecular biotin across the immuno-
logical barrier [69]. Multiple defective sperms are also noted in the epididymis
including extensive defects in spermatid heads, tail, and sperm morphology due
to defects of intracellular trafficking to support the assembly of essential cellular
components during spermiogenesis [69]. The importance of dynein-based motor
proteins is also noted in Table 1 since its KO in mice led to embryonic lethality.

Kinesin

Kinesin is a group of related motor proteins that use MT track in anterograde move-
ment, to transport cargoes towards the plus (+) ends of MTs [96-98] (Fig. 2). In
brief, a kinesin motor protein transports cargoes away from the center of the cell,
usually to cell peripheries to support cell homeostasis, or to the base of the seminif-
erous epithelium in the testis (Fig. 1). Kinesin superfamily members in humans and

<

Fig. 3 (continued) is the major site of ATP hydrolysis with other AAA sites play the regulatory
roles. AAAT1 converts the chemical energy (from ATP hydrolysis via ATPase) to mechanical force
which is transmitted to the HC tail at the N-terminal region. Dynein 1 interacts with its cofactor
called dynactin (which also composed of multiple subunits as earlier reviewed [47]) to form the
functional dynein-dynactin complex. This complex in turn interacts with the cargo adaptor to form
a functional motor protein to support cargo transport. On the right panel is the kinesin motor pro-
tein (e.g., kinesin 15) which is also a dimeric protein, composed of two monomers. Each monomer
has a heavy chain (HC) with its N-terminal region contains the motor head which is the site for
ATP hydrolysis to generate the chemical energy to be transmitted to the mechanical energy via the
tail to propel cargo transport at the C-terminal region. The motor head at the N-terminal region also
contains the microtubule binding domain. This is followed by the a-helical coiled-coil domain that
constitutes the stalk and ends with the C-terminal tail of cargo binding. (B) A functional actin-
based plus (+) end directed motor protein myosin (e.g., myosin VIIa) is also a dimeric protein
comprised of two monomers. Each monomer has a heavy chain (HC) that begins with the motor
head at its N-terminal region which contains the ATP hydrolysis motor domain and the actin-
binding domain. This is followed by the neck region that transmits the chemical energy derived
from ATP hydrolysis at the motor head to the tail cargo binding site through the coiled-coil domain
in the tail. The neck region has a pair of light chains which facilitates the transmission of chemical
energy to the cargo propelling mechanical force at the tail cargo binding site. The C-terminal tail
region contains the FERM (F, 4.1 protein; E, ezrin; R, radixin; M, moesin), MyTH4 Myosin tail
homology 4) and SH3 (SRC homolog 3) domains, and the globular tail domain (GTD) at the
C-terminus to support cargo binding
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rodents are organized into 14 families [99, 100]. A functional kinesin motor protein
is a tetrameric protein, comprised of two heavy chains and two light chains (Fig. 3A).
Each heavy chain has a globular motor head where microtubule binding and ATP
hydrolysis take place at its N-terminal region, which in turn generate the energy via
ATPase that converts chemical energy into mechanical force to elicit cargo trans-
port. The head region is connected by a short neck linker to a long intertwined
coiled-coil stalk, to be followed by the tail at its C-terminal region (Fig. 3A). A light
chain associates with a tail which serve as the adapter for binding to a cargo while
moving along the MT track towards the MT plus (+) end to facilitate cargo (e.g.,
spermatid, residual body, phagosome) transport [49, 97, 101] (Table 1). Kinesins
typically move cargoes in the direction of MT plus (+) end on MT tracks, such that
cargo is transported from the center of the cell to its periphery (i.e., anterograde
movement). However, some kinesins (members of the kinesin-5 family), such as
kinesin-14, move cargoes to the MT minus (—) end along the MT tracks wherein the
motor region is located at the C-terminal region of the heavy chain [102]. On the
other hand, kinesin-5 Cin8 (members of the kinesin-5 family) is a bidirectional
kinesin which can move a cargo towards the microtubule minus (—) end when works
alone but to the plus (+) end in an ensemble with a team of motors [103]. Emerging
evidence has shown that kinesins are crucial to support tumorigenesis. For instance,
KIF18A promotes invasion and metastasis by activating Akt and MMP-7/MMP-9-
related signaling pathways [104] whereas kinesins also support proliferation, cell
differentiation, aggressiveness and epithelial-mesenchymal transition of tumor cells
[105-109]. A recent report has demonstrated the importance of kinesin-9 in confer-
ring progressive motility in mouse spermatozoa since a deletion of 16 bp nucleo-
tides of the Kif9 gene in mice (Kif9~'9-1%) using CRISPR/Cas9 led to defects in
flagellar movement of sperm tails [110]. Studies have also shown that kinesin-7
CENP-E is crucial to support chromosome alignment and genome stability of sper-
matogenic cells (e.g., spermatogonia and spermatocytes) during mitosis and meio-
sis [111], whereas kinesin-5 Eg5 supports spindle assembly and chromosome
alignment of mouse spermatocytes [112]. Nonetheless, much work is needed to
better understand the role of kinesins in supporting spermatogenesis in the testis.
However, as noted in Table 1, deletion of one of the several kinesins in mice led to
embryonic lethality, illustrating the physiological significance of kinesin-based
motor proteins in supporting cellular function.

F-actin-Based Motor Proteins: Myosins
Myosins

Myosins are the only known actin-based motor proteins in mammalian cells and
tissues including the testis [47, 113]. There are 18 classes of myosin superfamily
members known to date based on phylogenetic analysis of their motor domain, and
at least 40 myosin genes have been identified [57, 114]. By converting chemical
energy via hydrolysis of ATP at the myosin motor head to mechanical energy, which
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Table 1 Phenotypes in mice following specific knockout (KO) of different motor protein genes

KO
Gene name type Phenotype(s) References
Mdhc77"~ Global | Asthenozoospermia Neesen et al. [70]
[Mouse dynein heavy chain-7
KO]
Dync2hl~"= Global | Preweaning lethality Adams et al. [71]
[Dynein cytoplasmic 2 heavy
chain 1 KO]
Dnall'- Global | Preweaning lethality Adams et al. [71]
[Dynein, axonemal, light chain
1 KO]
Dnah2~"- Global | Male infertility; abnormal Adams et al. [71]
[Dynein, axonemal, heavy locomotor activation and
chain 2 KO] impaired glucose tolerance
Mdnah5="~ Global | Primary ciliary dyskinesia and Ibanez-Tallon et al.
[DNAHS5 KO] hydrocephalus [72]
Dnah6="- Global | Enlarged heart and abnormal Adams et al. [71]
[Dynein, axonemal, heavy kidney morphology
chain 6 KO]
Dnahl7-'"- Global | Male infertility and sparse hair in | Adams et al. [71]
[Dynein, axonemal, heavy female mice
chain 17 KO]
Drc77- Global | Male infertility and abnormal Adams et al. [71]
[Dynein regulatory complex behavior; cardiovascular system
subunit 7 KOJ phenotype
Dynlrbl'~ Global | Embryonic lethality at E8.5 Harada et al. [73]
[DYNLRBI KO]
Kiflb='- Global | Preweaning lethality Adams et al. [71]
[KIF1B KO]
Kif2c™'~ Global | Preweaning lethality Adams et al. [71]
[KIF2C KO]
Kif3a™- Global | Embryonic lethality at E10.5 Takeda et al. [74]
[KIF3A KO]
Kif3b='- Global | Embryonic lethality at E12.5 Nonaka et al. [75]
[KIF3B KO]
Kif3c™'~ Global | Embryonic lethality at E15.5 Adams et al. [71]
[KIF3C KO]
Kif5a™"- Global | Preweaning lethality Adams et al. [71]
[KIF5A KO]
Kif5b='- Global | Embryonic lethality at E9.5-11.5 | Tanaka et al. [76]
[KIF5B KO]
Eg57~(Kifl17"7) Global | Embryonic lethality at E2.5-3.5 | Castillo and Justice
[KIF11 KO] [77], Chauviere

et al. [78]

Kifl6b="- Global | Embryonic lethality at E4.5 Ueno et al. [79]

[KIF16B KO]

(continued)
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Table 1 (continued)
KO
Gene name type Phenotype(s) References
Kifl18a™- Global | Testis atrophy and germinal cell | Liu et al. [80]
[KIF18A KO] aplasia
Kif18b'~ Global | Preweaning lethality Adams et al. [71]
[KIF18B KO]
Kif20a™"- Global | Preweaning lethality Adams et al. [71]
[KIF20A KO]
Kif2la™~ Global | Embryonic lethality at E12.5 Adams et al. [71]
[KIF21A KO]
Kif21b™"- Global | Abnormal neuroanatomy such as | Kannan et al. [81],
[KIF21B KO] microcephaly; brain dysfunction | Muhia et al. [82],
such as negative effect on neuron | Gromova et al.
and synaptic transmission; social, | [83], Morikawa
learning and memory deficits. et al. [84]
Kif26a~"- Global | Megacolon and dysfunction of Wang et al. [85],
[KIF26A KO] nociceptive responses; Zhou et al. [86]
preweaning lethality
Kif26b"- Global | Preweaning lethality Adams et al. [71]
[KIF26B KO]
Kif287'- Global | Preweaning lethality Adams et al. [71]
[KIF28 KO]
Myole~ Global | Impaired renal function Krendel et al. [87]
[Myosin IE KO]
Myolh™- Global | Preweaning lethality Adams et al. [71]
[Myosin IH KO]
Myo2d~ Global | Embryonic lethality at E7.5 Conti et al. [88]
[NMHC ITA KO]
Myo2b'~ Global | Embryonic lethality at E14.5 Tullio et al. [89],
[NMHC IIB KO] Ma et al. [90]
Myo3a™- Global | Abnormal behavioral response to | Adams et al. [71]
[Myosin XVIIIA KO] light and increased urine
magnesium level
Myo3b™"- Global | Convulsive seizures and Adams et al. [71]
[Myosin XVIIIB KO] decreased leukocyte cell number
Myo7a~ Global | Abnormal neuroanatomy; Adams et al. [71]
[Myosin VIIA KO] decreased body weight; metabolic
disorder; abnormal bone
morphology and structure and
persistence of hyaloid vascular
system
Myo9a'~ Hydrocephalus and abnormal Abouhamed et al.
[Myosin IXA KO] development of ventricular [91]

system

(continued)
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Table 1 (continued)

KO

Gene name type Phenotype(s) References
Myol0~- Global | Embryonic semi-lethality. Heimsath et al.
[Myosin X KO] Abnormal coat/hair pigmentation, | [92]

curly tail, abnormal eye

development, and webbed digits
Myol5- Global | Absent pinna reflex; increased Adams et al. [71]
[Myosin XV KO] total body fat amount and

decreased red blood cell

distribution width
Myol8a=- Global | Embryonic lethality at E13.5 Horsthemke et al.
[Myosin XVIIIA KO] [93]
Myol8bh~"- Global | Embryonic lethality at E10.5 Ajima et al. [94]
[Myosin XVIIIB KO]
Myo3a~Myo3b'~ Global | Deafness Lelli et al. [95]
[Myosin IITA KO and Myosin
I1IB KO]

in turn is used to propel cargo to be transported along the actin-based tracks, which
are most notable in late Stage VIII tubules across the seminiferous epithelium in the
testis [38]. Besides the regular myosins noted in mammalian cells, there is an emerg-
ing long-tailed unconventional class of myosins, namely myosin 1E and myosin 1F
[115]. In general, each myosin has a Mr of 520 kDa, consisting of six subunits: two
220 kDa heavy chains, and two pairs of light chains (20 kDa for each light chain)
(Fig. 3) [116]. Thus, there are two monomers in a functional myosin motor protein,
with each monomer consists of a heavy chain and a pair of light chains to a total of
three subunits. Each heavy chain, in turn, can be divided into distinctive head, neck
and tail domains (Fig. 3B). The globular head domain interacts with actin filaments
(i.e., actin-based track) though its actin binding site at the N-terminal region which
also contains the ATPase site, capable of hydrolyzing ATP to convert the chemical
energy to mechanical energy to propel cargo transport. The neck region of each
heavy chain serves as a linker, which also transduces force generated by the cata-
lytic motor domain at the head region. The neck region also provides the binding
site for a pair of light chains, which are distinct protein subunits that interact with
the neck region (Fig. 3B). The C-terminal tail contains a relatively long o-helical
coiled-coil domain and at its C-terminal region, it contains the sequential SH3 (SRC
homology 3), MyTH4 (myosin tail homology 4), FERM (F, 4.1 protein; E, ezrin; R,
radixin; M, moesin) domains and the globular tail domain (GTD) at its C-terminus.
GTD domain is supported by the FERM, MyTH4 and SH3 domains, and GTD also
recognizes different cargoes through direct interactions or mediated through adap-
tor proteins, such as vezatin in the testis [117] (Fig. 3B). Most myosins (e.g., myo-
sin VIIa) walk along actin filaments to the actin plus (+) end, but Myosin VI moves
cargoes to the minus (—) end of actin tracks [113]. Myosin VIla is a member of the
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myosin superfamily found in testis and other tissues [118] In testes, actin filament
bundles constitute the ectoplasmic specialization, which also serve as the attach-
ment site for cell adhesion protein complexes (e.g., N-cadherin-f-catenin, occludin-
Z0-1, nectin-afadin). It also supports the transport of spermatids or organelles (i.e.,
cargoes) by serving as the track [12, 18]. Studies of myosin VIIa in the testis have
shown that the knockdown of myosin VIla in the testis in vivo by RNAi perturbs the
organization of F-actin, but also MT tracks, across the seminiferous epithelium
wherein these cytoskeletal tracks are extensively truncated [119]. These disruptive
changes are likely the results of a considerably reduction in actin and MT polymer-
ization activity in Sertoli cells [119] due to defects in intracellular protein traffick-
ing. These defects also lead to formation of multiple defective sperms with gross
changes in their morphology including round-shaped epididymal sperm heads, con-
sistent presence of cytoplasmic droplets in the head region, and structural defects of
sperm necks [119]. These findings are also consistent with earlier reports which
have shown that KO of myosin motor proteins lead to embryonic fatality in mice
(Table 1), and its mutation or genetic variations in humans also lead to defects in
brain and heart development due to defects in intracellular protein trafficking.

Concluding Remarks and Future Perspectives

Herein, we summarize findings regarding the role of MT- and actin-based motor
proteins in supporting mammalian spermatogenesis. As seen in studies using genetic
models through gene deletion in mice (Table 1), and genetic mutations or gene vari-
ants in humans (Table 2), embryonic lethality (in mice) and serious pathological
conditions (in humans) are noted in Tables 1 and 2, illustrating the significance of
these motor proteins in cells and tissues, besides the testis. However, there are
main questions remain. For instance, what are the biomolecules that trigger the use
of specific plus (+) end or minus (—) directed motor proteins to initiate cargo trans-
port of germ cells or other organelles to support spermatogenesis through different
epithelial cycles? What is the mechanism(s) in place that selects the use of actin- or
MT-based tracks or both? How does actin- and MT-based cytoskeletons coordinate
with each other to streamline the transport of cargoes using their tracks to support
spermatogenesis? It is now known that the several locally produced biomolecules,
namely the F5-, NC1- and LG3/4/5-peptide, that regulate spermatogenesis exert
their regulatory effects through their corresponding downstream signaling mole-
cules on cytoskeletal organization. What is the mechanism(s) by which these bio-
molecules select the appropriate cytoskeleton, namely the F-actin or MT
cytoskeleton, to execute their function? The answers to many of these questions will
be helpful to understand and better manage unexplained male infertility. In brief, an
intensive race is on to search for answers to some of these questions in the years to
come, such as the role of many genes known to regulaste spermatogenesis to sup-
port motor protein function [191]. It is likely that the use of scRNA-seq and sc ATAC-
seq coupled with transcriptome profiling and bioinformatics analyses will provide
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Table 2 Pathological conditions in humans with mutation(s) and/or genetic variations of

motor genes

Mutation(s) or genetic variations

Human diseases/pathological
conditions

References

DYNCI1HI (Dynein Cytoplasmic
1 Heavy Chain 1)

Malformations of brain,
Charcot-Marie-Tooth disease
(CMT) and spinal muscular
atrophy

Poirier et al. [120],
Weedon et al. [121],
Harms et al. [122],
Vissers et al. [123],
Willemsen et al. [124],
Chen et al. [125]

DYNC2HI1 (Dynein Cytoplasmic
2 Heavy Chain 1)

Asphyxiating thoracic dystrophy
(ATD) and short rib polydactyly
syndrome (SRP) Type III

Dagoneau et al. [126], El
Hokayem et al. [127],
Schmidts et al. [128],
[129]

DNAII1 (Dynein intermediate
chain 1)

Asthenozoospermia (AZS) and
primary ciliary dyskinesia (PCD)

Zuccarello et al. [130],
Zariwala et al. [131]

DNAHS (Dynein Axonemal
Heavy Chain 5)

Asthenozoospermia (AZS)

Zuccarello et al. [130]

DNAHI11 (Dynein Axonemal
Heavy Chain 11)

Asthenozoospermia (AZS)

Zuccarello et al. [130]

KIF1A (Kinesin Family Member
1A)

Hereditary spastic paraplegia
(HSP), cognitive Impairment,
spastic Paraparesis, axonal
neuropathy, and cerebellar
atrophy

Blackstone [132], Lee
etal. [133]

KIF1B (Kinesin Family Member
1B)

Charcot-Marie—Tooth type 2
(CMT2)

Hirokawa and Tanaka
[134]

KIF1C (Kinesin Family Member
1C)

Hereditary spastic paraplegia
(HSP)

Caballero Oteyza et al.
[135]

KIF3B (Kinesin Family Member
3B)

Autosomal-Dominant Ciliopathy

Cogne et al. [136]

KIF3C (Kinesin Family Member
3C)

Infantile spasms syndrome (ISs)

Dimassi et al. [137]

KIF4A (Kinesin Family Member
4A)

Hydrocephalus internus

Meier et al. [138]

KIF5A (Kinesin Family Member
5A)

Hereditary spastic paraplegia
(HSP), Charcot-Marie-Tooth
type 2 (CMT2), amyotrophic
lateral sclerosis (ALS),
myoclonus and neonatal onset
progressive leukoencephalopathy,
slowly progressive atypical
motor syndrome

Reid et al. [139], Goizet
et al. [140], Crimella

et al. [141], Liu et al.
[142], Brenner et al.
[143], Duis et al. [144],
Rydzanicz et al. [145],
Filosto et al. [146]

KIF6 (Kinesin Family Member
0)

Neurodevelopmental defects and
intellectual disability

Konjikusic et al. [147]

KIF12 (Kinesin Family Member
12)

Congenital anomalies of the
kidney and urinary tract
(CAKUT)

Westland et al. [148]

(continued)



146

Table 2 (continued)
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Mutation(s) or genetic variations

Human diseases/pathological
conditions

References

KIF14 (Kinesin Family Member
14)

Abnormal development in brain,
kidney, ureter and female genital
organs

Meier et al. [138]

KIF15 (Kinesin Family Member
15)

Braddock—Carey Syndrome
(BCS)

Sleiman et al. [149]

KIF16B (Kinesin Family
Member 16B)

Novel autosomal-recessive
intellectual disability syndrome

Alsahli et al. [150]

KIF21A (Kinesin Family
Member 21A)

Congenital fibrosis of the
extraocular muscle type 1
(CFEOM1)

Yamada et al. [151]

KIF21B (Kinesin Family
Member 21B)

Brain malformations, including
corpus callosum agenesis (ACC)
and microcephaly

Asselin et al. [152]

KIF26B (Kinesin Family
Member 26B)

Autosomal dominant
spinocerebellar ataxia and
pontocerebellar hypoplasia

Nibbeling et al. [153],
Wojcik et al. [154]

MYH?2 (Myosin-2)

Myopathy, proximal, and
ophthalmoplegia (MYPOP)

Martinsson et al. [155]

MYH3 (Myosin-3)

Arthrogryposis and contractures,
pterygia, and variable skeletal
fusions syndrome

Chong et al. [156],
Carapito et al. [157],
Scala et al. [158],
Cameron-Christie et al.
[159], Toydemir et al.
[160], Tajsharghi et al.
[161]

MYL3 (Myosin light chain 3)

Cardiomyopathy, familial
hypertrophic 8 (CMHS)

Poetter et al. [162], Olson
et al. [163], Richard et al.
[164], Jay et al. [165]

MYH6 (Myosin-6)

Atrial septal defect 3 (ASD3),
cardiomyopathy, sick sinus
syndrome 3 (SSS3)

Ching et al. [166], Carniel
et al. [167], Holm et al.
[168]

MYH7 (Myosin-7)

Cardiomyopathy, familial
hypertrophic 1 (CMH1)

Fananapazir et al. [169],
Rayment et al. [170],
Bundgaard et al. [171],
Blair et al. [172], Richard
et al. [164], Erdmann

et al. [173], Van Driest

et al. [174], Hougs et al.
[175]

MYHS (Myosin-8)

Carney complex variant
(CACOV)

Veugelers et al. [176]

MYH9 (Myosin-9)

Macrothrombocytopenia and
granulocyte inclusions with or
without nephritis or sensorineural
hearing loss (MATINS),
deafness, Alport syndrome and
cataract

Seri et al. [177], Heath
et al. [178], Kunishima
et al. [179], Seri et al.
[180], Arrondel et al.
[181], Deutsch et al.
[182], Seri et al. [183],
Mhatre et al. [184],
Lalwani et al. [185]

(continued)
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Table 2 (continued)

Human diseases/pathological

Mutation(s) or genetic variations | conditions References
MYHI10 (Myosin-10) Intellectual disability (ID), brain | Tuzovic et al. [186],

malformations and/or congenital | Hamdan et al. [187]
diaphragmatic hernia (CDH).

MYHI1 (Myosin-11) thoracic aortic aneurysm/aortic | Zhu et al. [188]

dissection (TAAD) and patent
ductus arteriosus (PDA)

MYHI14 (Myosin-14) Peripheral neuropathy, myopathy, | Donaudy et al. [189],

hoarseness, and deafness Choi et al. [190]

many of the missing information in this race to tackle male infertility (or fertility) in
the years to come.Declaration of Conflicts of InterestThe authors have nothing to
declare,
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