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Abstract The chapter presents the second-order methods in variational data assim-
ilation. The algorithms to compute the Hessian of the cost function are discussed, the
second-order adjoint method among them. General sensitivity analysis for the opti-
mality system is presented. Using the Hessian, the sensitivity of the optimal solution
and its functionals is studied with respect to observations and uncertainties in model
parameters. Numerical examples for joint state and parameter estimation for a sea
thermodynamics model are presented.

1 Introduction

The methods of data assimilation (DA) have become an important tool for analysis
of complex physical phenomena in various fields of science and technology. These
methods allow us to combine mathematical models, data from observations and a
priori information.

Currently, there is an increasing interest in computational technologies that com-
bine the flows of real data and hydrodynamic forecasts using mathematical models.
This is especially true for 4D technologies - the combination of the flows of obser-
vational data and forecasts in a certain spatio-temporal domain. These methods have
received the greatest applications in meteorology and oceanography, where obser-
vations are assimilated into numerical models. Geophysical flows are governed by
equations derived from fluid dynamics: a set of nonlinear partial differential equa-
tions of the first order with respect to time. Formally, it is a Cauchy problem, and an
initial condition is necessary to integrate these equations, to carry out a prediction.
The purpose of assimilation procedures is to construct or refine the initial and bound-
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ary conditions (or other model parameters) to improve the accuracy of a prediction
model Le Dimet and Talagrand (1986), Asch et al. (2016), Fletcher (2017), Carrassi
et al. (2018).

At present, two main approaches are well known for the assimilation of obser-
vational data in models of geophysical hydrodynamics and oceanography. The first
is the Statistical approach which is based on the methods of probability theory and
mathematical statistics. Historically, its rigorous justification and limits of applicabil-
ity were given by Markov (1900) and Kolmogorov (1946). From a methodological
point of view, this method gave rise to the methods of optimal interpolation, the
Kalman filter methods and their subsequent modifications, widely used in various
fields of science and technology. This approach is used to estimate unknown quanti-
ties from measurement data, taking into account the random nature of measurement
errors.

The second approach is based on the methods of calculus of variations, optimal
control (see, e.g., Lions (1968), Pontryagin et al. (1964)) and the theory of adjoint
equations (see Marchuk (1995)). Compared to the statistical method, the variational
method has greater versatility. It allows, on a unified methodological basis, to solve
the problems of initializing hydrophysical fields, assessing the sensitivity of a model
solution, identifying model parameters, etc. The variational approach can be applied
by assimilating information of various types and measuring systems. In this case
this approach is reffered to as variational data assimilation (VDA) Le Dimet and
Talagrand (1986), Asch et al. (2016), Fletcher (2017), Carrassi et al. (2018). The
main idea of the method is to minimize some functional that describes the deviation
of themodel solution from the observational data, and theminimumof this functional
is sought on themodel trajectories, in otherwords, in the subspace ofmodel solutions.

Basically, as seen as a problemof optimal control,VDA is anoptimization problem
and as such we need to exhibit a necessary optimality condition derived from the
evaluation of the gradient of the cost function, which should be zero at the optimum.
Information on the gradient of the cost function (first-order information) is used to
construct the optimality system (OS). To this aim and for the numerical solution of the
optimization problem, the representation of the gradient through adjoint equations
(first-order adjoint problem) is often used Le Dimet and Talagrand (1986), Marchuk
(1995). In the case of discontinuous processes in the physics (rain, deep convection,
etc.) the cost function is no longer differentiable and the formal application of the
adjoint operator will evaluate a sub-gradient.

To study the variational data assimilation problem (as an optimal control prob-
lem) and to develop efficient algorithms for its numerical solution, second-order
information is needed. This is information about the Hessian of the cost function. A
necessary and sufficient optimality condition is to get the Hessian positive definite
at the optimum; therefore, a second-order analysis must be carried out. Often, to
construct the Hessian, it is necessary to differentiate the optimality system. In this
case, a second-order adjoint problem arises Le Dimet et al. (2002). The investigation
of the second-order adjoint equations and the Hessian of the cost functional plays an
important role in the study of the solvability of the variational assimilation problem,
the construction of algorithms for its numerical solution based on the modification
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of Newton type methods, the identification of model parameters, and the study of the
sensitivity of the optimal solution and its functionals. These issues are the subject of
this chapter.

2 Variational Data Assimilation

Variationalmethodswere introduced inmeteorology in 1958 by Sasaki (1958). These
methods consider the equations governing the flow as constraints and the problem
is closed by using a variational principle, e.g. the minimization of the discrepancy
between the model and the observations. Using Optimal Control Techniques (Lions
(1968))was proposedbyLeDimet (1982), LeDimet andTalagrand (1986), Talagrand
and Courtier (1987), Penenko and Obraztsov (1976), Marchuk et al. (1978).

Consider the mathematical model of a physical process that is described by the
nonlinear evolution problem

{
∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(1)

where the initial state u is supposed to be from a Hilbert space X , the unknown
function ϕ = ϕ(t) belongs to Y = L2(0, T ; X) with the norm ‖ϕ‖Y = (ϕ, ϕ)

1/2
Y =

(
∫ T
0 ‖ϕ(t)‖2Xdt)1/2, F is a nonlinear operator mapping Y into Y , f ∈ Y . We suppose

that for given u ∈ X, f ∈ Y there exists a unique solution ϕ ∈ Y to (1) with ∂ϕ
∂t ∈ Y .

Often, the the initial state u is supposed to be unknown, and one would like to
find it using the information from observations. Let us introduce the cost function as
a functional on X in the form

J (u) = 1

2
(V1(u − ub), u − ub)X + 1

2
(V2(Cϕ − ϕobs),Cϕ − ϕobs)Yobs , (2)

where ub ∈ X is a prior (background) function, ϕobs ∈ Yobs is a prescribed function
(observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs is a
linear bounded operator (observation operator), V1 : X → X and V2 : Yobs → Yobs
are symmetric positive definite bounded operators. Usually, V1, V2 are chosen as
inverse covarianvce operators of background and observation errors, respectively,
Asch et al. (2016), Carrassi et al. (2018).

Let us consider the following data assimilation problem with the aim to find the
initial value u: for given f ∈ Y, ϕobs ∈ Yobs, ub ∈ X , find u ∈ X and ϕ ∈ Y such
that they satisfy (1), and on the set of solutions to (1), the functional J (u) takes the
minimum value, i.e.
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⎧⎪⎨
⎪⎩

∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (u) = inf
w∈X J (w).

(3)

This is a so-called hind-cast (initialization) variational DA problem, a typical
DA problem often considered in numerical weather prediction and oceanographic
applications Le Dimet and Talagrand (1986), Asch et al. (2016), Fletcher (2017),
Carrassi et al. (2018). We suppose that the solution of (3) exists. To derive the
optimality system, we assume the solution ϕ and the operator F(ϕ) in (1)–(2) are
regular enough, and for u, w ∈ X introduce the directional (Gâteaux) derivative with
respect to u in the direction w (Gâteaux differential):

d J (u, w) = lim
τ→0

J (u + τw) − J (u)

τ
= d

dτ
J (u + τw)

∣∣∣∣
τ=0

.

If d J (u, w) is linear with respect to w, then it may be represented as follows:

d J (u, w) = J ′(u)w,

where J ′(u) is the gradient of J with respect to u. From (1)–(2) we get

d J (u, w) = (V1(u − ub), w)X + (C∗V2(Cϕ − ϕobs), φ̃)Y , (4)

where φ̃ is the solution to the tangent linear problem:

{
∂φ̃
∂t = F ′

ϕ(ϕ)φ̃, t ∈ (0, T ),

φ
∣∣
t=0 = w.

(5)

Here F ′
ϕ(ϕ) : Y → Y is the Fréchet derivative ofFMarchuk et al. (1996)with respect

to ϕ, and C∗ is the adjoint operator to C defined by (Cϕ,ψ)Yobs = (ϕ,C∗ψ)Y , ϕ ∈
Y, ψ ∈ Yobs .

Let us introduce the adjoint operator (F ′
ϕ(ϕ))∗ : Y → Y and consider the adjoint

problem: {
∂ϕ∗
∂t + (F ′

ϕ(ϕ))∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0.

(6)

The problem (6) is adjoint with respect to the linearized (tangent linear) problem (5),
therefore, it is also linear in ϕ∗, however, it is still nonlinear in ϕ.

In the below consideration, we assume that the direct and adjoint linear problems
of the form {

∂φ
∂t − F ′

ϕ(ϕ)φ = p, t ∈ (0, T )

φ
∣∣
t=0 = q,
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{
−∂φ∗

∂t − (F ′
ϕ(ϕ))∗φ∗ = g, t ∈ (0, T )

φ∗∣∣
t=T = 0

with p, g ∈ Y, q ∈ X have the unique solutions φ, φ∗ ∈ Y and ∂φ
∂t ,

∂φ∗
∂t ∈ Y .

From (4)–(6) we get

d J (u, w) = (V1(u − ub), w)X − (ϕ∗∣∣
t=0, w)X . (7)

The relation (7) exibits the linear dependence of d J (u, w) with respect to w. Thus,
d J (u, w) = J ′(u)w, and the gradient of J with respect to u is defined by

J ′(u) = V1(u − ub) − ϕ∗∣∣
t=0.

The necessary optimality condition Lions (1968) is J ′(u) = 0. From (3)–(7) we
obtain the Optimality System :

{
∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0 = u,

(8)

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ))∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0,

(9)

V1(u − ub) − ϕ∗∣∣
t=0= 0. (10)

It worth to point out that there is no approximation in the derivation of the opti-
mality system and the only assumption is the differentiability of the operator of the
model. Some authors consider, at this level, a so-called "linear tangent approxima-
tion", it is fully unnecessary.

We suppose that the system (8)–(10) has a unique solution ϕ, ϕ∗ ∈ Y, u ∈ X . The
system (8)–(10) may be considered as a generalized model of the form A(U ) =
0 with the state variable U = (ϕ, ϕ∗, u), and it contains the information on the
observation data ϕobs ∈ Yobs . The optimality system plays a fundamental role in
studying the solvability of the original data assimilation problem, searching efficient
algorithms for its solution, and studying the sensitivity of the optimal solution with
respect to observations.

3 Computing the Hessian

Consider the Hessian H(u) of the functional (2); it depends on u ∈ X (which may
be the exact solution, the optimal solution, or some arbitrary function u ∈ X ). For a
fixed u ∈ X the Hessian H(u) is defined by the successive solutions of the below-
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formulated problems. First we find ϕ and ϕ∗ by solving the direct and adjoint prob-
lems (like in the optimality system):

{
∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(11)

{
−∂ϕ∗

∂t − (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0.

(12)

Note that here u is not necessarily the optimal solution from the optimality system
(8)–(10); it is just somefixed function atwhichwewould like to compute theHessian.
(Hence, in general, the functions ϕ and ϕ∗ do not satisfy the optimality system). Note
also that (11)–(12) are usual two stepswhenwe compute the gradient of the functional
J (u) (at the point u) using the adjoint problem. If for a fixed u the functions ϕ, ϕ∗
are computed from (11)–(12), the gradient of J with respect to u is defined by

J ′(u) = V1(u − ub) − ϕ∗∣∣
t=0. (13)

To find the Hessian we should differentiate (11)–(13) with respect to u. Then,
the action of the Hessian H(u) on the function v ∈ X is defined by the successive
solutions of the following problems:{

∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ |t=0 = v,
(14)

{
−∂ψ∗

∂t − (F ′(ϕ))∗ψ∗ = (F ′′(ϕ)ψ)∗ϕ∗ − C∗V2Cψ, t ∈ (0, T )

ψ∗∣∣
t=T = 0,

(15)

H(u)v = V1v − ψ∗|t=0. (16)

Here ϕ and ϕ∗ are involved, being taken from (11)–(12). The problem (15) is a
so-called second-order adjoint problemLeDimet et al. (2002). It involves the second
derivative F ′′(ϕ) of the model operator F(ϕ) and depends on the solution ϕ∗ of the
first-order adjoint problem (12).

If u is the optimal solution, then ϕ and ϕ∗ are exactly the functions from the
optimality system (8)–(10).

Formulas (11)–(16) may be used to compute the Hessian of the original cost
functional. To solve the second-order adjoint problem (15), no additional software
is needed to be developed. To this aim, one can use the existing code for the first-
order adjoint problem (12), taking into account the new right-hand side involving
the term (F ′′(ϕ)ψ)∗ϕ∗. An alternative method to compute the Hessian H is the
method of finite differences described in Gill et al. (1981). However, this method
is not sufficiently accurate due to truncations used in a local Taylor expansion and
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is expensive for practical implementation. The sensitivity matrix method Thacker
(1989) is computationally efficient if the dimension of the observation vector is
much smaller than the dimension of the state vector, and so is feasible mainly for
the 3D-VAR applications. It requires full storage of the resulting matrix. The above-
formulated second-order adjoint method allows the actionHv to be computed, thus
does not require full storage of H.

In the finite-dimensional space,H(u) is a matrix. To obtain the first column of this
matrix, one can choose v in (14)–(16) to be the first basis vector v = (1, 0, . . . , 0).
To obtain the second column of this matrix, one can choose v in (14)–(16) to be the
second basis vector v = (0, 1, 0, . . . , 0), and so on.

In the linear case, the solution is unique if the Hessian is positive definite. In
this case, the necessary optimality condition given by the optimality system is also
a sufficient condition. From a general point of view the information given by the
Hessian is important for theoretical, numerical and practical issues. For operational
models it is impossible to compute the Hessian itself, as it is a square matrix with
around 1018 terms, nevertheless themost important information can be extracted from
the spectrum of theHessianwhich can be estimatedwithout an explicit determination
of this matrix. This information is of importance for estimating the condition number
of the Hessian for preparing an efficient preconditioning.

The above-obtained system with the second order adjoint is used to compute the
product of the Hessian by any vector. Of course, if we consider all the vectors of the
canonical base, then it will be possible to get the complete Hessian.

The determination of this product permits to access some information. So, by using
Lanczos type methods and deflation, it is possible to compute the eigenvectors and
eigenvalues of the Hessian. Also, to solve the variational data assimilation problem,
second-order optimization methods of Newton-type are used for equations of the
form:

J ′ (u) = 0.

The iterations are
un+1 = un − H−1 (un) J

′ (un) ,

whereH is the Hessian of J , or its approximation. At each iteration a linear system
should be solved. This is done by carrying out some iterations of a conjugate gradi-
ent methods which require computing the Hessian-vector product. To construct an
approximation of the inverse Hessian, the quasi-Newton BFGS algorithm may be
used Polak (1997). This algorithm generates H−1 in the course of a minimization
process.

In some applications (such as sensitivity analysis) one needs to solve the system of
equations in the formH(u)v = p. In this case, computing theHessian-vector product
by (11)–(16) may be efficient for using iterative algorithms. The following directions
to construct a specialized solver for the equation H(u)v = p could be considered:
the use of a multi-grid strategy; the use of reduced order models (Proper Orthogonal
Decomposition) or local approximations (splines, wavelets); decomposition of the
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spatial domain by the ‘region of influence’ principle, hence decomposition of a global
DA problem into a set of local open boundary DA problems.

The inverseHessian or its approximationsmay be used also to estimate the optimal
solution error covariances Gejadze et al. (2008, 2011, 2013), Shutyaev et al. (2012).
Assuming the so-called tangent linear hypothesis (TLH), the covariance is often
approximated by the inverse Hessian of the objective function. In practice, the same
approximation could be valid even though theTLH is clearly violated.However, often
we deal with such a highly nonlinear dynamics that the inverse Hessian approach
is no longer valid. In this case a new method for computing the covariance matrix
named the ‘effective inverseHessian’method can be used Shutyaev et al. (2012). This
method yields a significant improvement of the covariance estimate as compared to
the inverse Hessian. The method is potentially feasible for large-scale applications
because it can be used in the multiprocessor environment and operates in terms of the
Hessian-vector products. The software blocks needed for its implementation are the
standard blocks of any existing 4D-Var system. The results given by the method are
consistent with the assumption on a ‘close-to-normal’ nature of the optimal solution
error. This should be expected taking into account the consistency and asymptotic
normality of the estimator and the fact that the observation window in variational
DA is usually quite large.

4 Parameter Estimation

We shouldmention the importance of the parameter estimation problem itself. A pre-
cise determination of the initial condition is very important in view of forecasting,
however the use of variational data assimilation is not limited to operational fore-
casting. In many domains (e.g. hydrology) the uncertainty in the parameters is more
crucial that the uncertainty in the initial condition (e.g. White et al. (2003)). In some
problems the quantity of interest can be represented directly by the estimated param-
eters as controls. For example, in Agoshkov et al. (2015) the sea surface heat flux is
estimated in order to understand its spatial and temporal variability. The problems
of parameter estimation are common inverse problems considered in geophysics and
in engineering applications (see Alifanov et al. (1996), Sun (1994), Zhu and Navon
(1999), Storch et al. (2007)). Last years an interest is rising to the parameter esti-
mation using 4D-Var (Bocquet (2012), Schirber et al. (2013), Smith et al. (2013),
Yuepeng et al. (2018), Agoshkov and Sheloput (2017)).

We consider a dynamic formulation of variational data assimilation problem for
parameter estimation in a continuous form. Of course, the initial condition function
may be also considered as a parameter, however, in our dynamic formulation we
have two equations for the model: one equation for describing an evolution of the
model operator (involving model parameters such as right-hand sides, coefficients,
boundary conditions etc.), and another equation is considered as an initial condition.

Let the model be governed by the evolution problem of the form (1):
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{
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(17)

where F is a nonlinear operator mapping Y × Yp into Y , Yp is a Hilbert space (space
of control parameters, or control space). Suppose that for given u ∈ X, f ∈ Y and

λ ∈ Yp there exists a unique solution ϕ ∈ Y to (17) with ∂ϕ
∂t ∈ Y . The function λ is

an unknown model parameter.
Let us introduce the cost function

J (λ) = 1

2
(V1(λ − λb), λ − λb)Yp + 1

2
(V2(Cϕ − ϕobs),Cϕ − ϕobs)Yobs , (18)

where λb ∈ Yp is a prior (background) function, ϕobs ∈ Yobs is a prescribed func-
tion (observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs
is a linear bounded observation operator, V1 : Yp → Yp and V2 : Yobs → Yobs are
symmetric positive definite bounded operators.

Let us consider the following data assimilation problem with the aim to estimate
the parameter λ: for given u ∈ X, f ∈ Y , findλ ∈ Yp andϕ ∈ Y such that they satisfy
(17), and on the set of solutions to (17), the functional J (λ) takes theminimum value,
i.e. ⎧⎪⎪⎨

⎪⎪⎩
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (λ) = inf
v∈Yp

J (v).

(19)

We suppose that the solution of (19) exists. Let us note that the solvability of
the parameter estimation problems (or identifiability) has been addressed, e.g., in
Chavent (1983), Navon (1998). To derive the optimality system, we assume the
solution ϕ and the operator F(ϕ, λ) in (17)–(18) are regular enough, and for v ∈ Yp

find the gradient of the functional J with respect to λ:

J ′(λ)v = (V1(λ − λb), v)Yp + (V2(Cϕ − ϕobs),Cφ)Yobs

= (V1(λ − λb), v)Yp + (C∗V2(Cϕ − ϕobs), φ)Y , (20)

where φ is the solution to the problem:

{
∂φ
∂t = F ′

ϕ(ϕ, λ)φ + F ′
λ(ϕ, λ)v,

φ
∣∣
t=0 = 0.

(21)

Here F ′
ϕ(ϕ, λ) : Y → Y, F ′

λ(ϕ, λ) : Yp → Y are the Fréchet derivatives of F
Marchuk et al. (1996) with respect to ϕ and λ, correspondingly, and C∗ is the adjoint
operator to C defined by (Cϕ,ψ)Yobs = (ϕ,C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs .
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Let us consider the adjoint operator (F ′
ϕ(ϕ, λ))∗ : Y → Y and introduce the

adjoint problem:

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ, λ))∗ϕ∗ = C∗V2(Cϕ − ϕobs),

ϕ∗∣∣
t=T

= 0.
(22)

Then (20) with (21) and (22) gives

J ′(λ)v = (V1(λ − λb), v)Yp − (ϕ∗, F ′
λ(ϕ, λ)v)Y =

(V1(λ − λb), v)Yp − ((F ′
λ(ϕ, λ))∗ϕ∗, v)Yp ,

where (F ′
λ(ϕ, λ))∗ : Y → Yp is the adjoint operator to F ′

λ(ϕ, λ). Therefore, the gra-
dient of J is defined by

J ′(λ) = V1(λ − λb) − (F ′
λ(ϕ, λ))∗ϕ∗. (23)

From (20)–(23)we get the optimality system (the necessary optimality conditions,
Lions (1968)): {

∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0 = u,

(24)

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ, λ))∗ϕ∗ = C∗V2(Cϕ − ϕobs),

ϕ∗∣∣
t=T = 0,

(25)

V1(λ − λb) − (F ′
λ(ϕ, λ))∗ϕ∗ = 0. (26)

We assume that the system (24)–(26) has a unique solution. The system (24)–
(26) may be considered as a generalized model A(U ) = 0 with the state variable
U = (ϕ, ϕ∗, λ), and it contains information about observations.

If the observation operator C is nonlinear, i.e. Cϕ = C(ϕ), then the right-hand
side of the adjoint equation (25) contains (C ′

ϕ)∗ instead of C∗ and all the analysis
presented below is similar.

To compute the Hessian H(λ) of the cost function (18) one should differentiate
(24)–(25) and (23)with respect toλ, following Sect. 3. Then, the action of theHessian
H(λ) on a function w ∈ Yp is defined by the successive solutions of the following
problems: {

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = F ′
λ(ϕ, λ)w, t ∈ (0, T )

φ
∣∣
t=0 = 0,

(27)



Second-Order Methods in Variational Data Assimilation 165

{
−∂φ∗

∂t − (F ′
ϕ(ϕ, λ))∗φ∗ − (F ′′

ϕϕ(ϕ, λ)φ)∗ϕ∗ = (F ′′
λϕ(ϕ, λ)w)∗ϕ∗ − C∗V2Cφ,

φ∗∣∣
t=T = 0,

(28)
H(λ)w = V1w − (F ′′

ϕλ(ϕ, λ)φ)∗ϕ∗ − (F ′′
λλ(ϕ, λ)w)∗ϕ∗ − (F ′

λ(ϕ, λ))∗φ∗. (29)

The definition of the HessianH(λ) by (27)–(29) involves the second-order deriva-
tives of the model operator F with respect to ϕ and λ.

Numerical examples for computing theHessian for the parameter estimation prob-
lems are presented in Gejadze et al. (2010).

5 Sensitivity Analysis

In the environmental sciences the mathematical models contain parameters which
cannot be estimated precisely, because they are used to parametrize some subgrid
processes and therefore can not be physically measured. Thus, it is important to
be able to estimate the impact of uncertainties on the outputs of the model after
assimilation. The optimal solution depends on the parameters, which may contain
uncertainties, and for the forecasts it is very important to study the sensitivity of
the optimal solution and its functionals with respect to these parameters Marchuk
(1995), Cacuci (1981), Dontchev (1983), Griesse and Vexler (2007).

The necessary optimality condition is related to the gradient of the original cost
function, thus to study the sensitivity of the optimal solution, one should differentiate
the optimality system with respect to imprecisely known parameters. In this case, we
come to the second-order adjoint problem Le Dimet et al. (2002). The first studies of
sensitivity of the response functions after assimilation with the use of second-order
adjoint were done by Le Dimet et al. (1997) for variational data assimilation problem
aimed at restoration of initial condition, where sensitivity with respect to model
parameters was considered. The equations of the forecast sensitivity to observations
in a four-dimensional (4D-Var) data assimilation were derived by Daescu (2008).
Based on these results, a practical computational approach was given by Cioaca
et al. (2013) to quantify the effect of observations in 4D-Var data assimilation.

Sensitivity of the optimal solution is related to its statistical properties (seeGejadze
et al. (2008, 2011, 2013), Shutyaev et al. (2012)). General sensitivity analysis in
variational data assimilation with respect to observations for a nonlinear dynamic
model was given in Shutyaev et al. (2017)–Shutyaev et al. (2018) to control the
initial-value function and the model parameters.

Consider the mathematical model of a physical process that is described by the
evolution problem of the form (17):

{
∂ϕ
∂t = F(ϕ, λ), t ∈ (0, T )

ϕ
∣∣
t=0 = u.

(30)
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Suppose that for given u ∈ X and λ ∈ Yp there exists a unique solution ϕ ∈ Y to
(30).

We introduce the functional

J (u) = 1

2
(V1(u − u0), u − u0)X + 1

2
(V2(Cϕ − ϕobs),Cϕ − ϕobs)Yobs , (31)

where u0 ∈ X is a prior initial-value function (background state), ϕobs ∈ Yobs is a
prescribed function (observational data), Yobs is a Hilbert space (observation space),
C : Y → Yobs is a linear bounded operator, V1 : X → X and V2 : Yobs → Yobs are
symmetric positive definite operators.

Consider the variational data assimilation problem with the aim to identify the
initial condition: for given λ ∈ Yp find u ∈ X and ϕ ∈ Y such that they satisfy (30),
and on the set of solutions to (30), the functional J (u) takes the minimum value, i.e.

⎧⎪⎨
⎪⎩

∂ϕ
∂t = F(ϕ, λ), t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (u) = inf
v

J (v).

(32)

The necessary optimality condition reduces the problem (32) to the optimality
system: {

∂ϕ
∂t = F(ϕ, λ), t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(33)

{
−∂ϕ∗

∂t − (F ′
ϕ(ϕ, λ))∗ϕ∗ = −C∗V2(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0,

(34)

V1(u − u0) − ϕ∗∣∣
t=0= 0 (35)

with the unknowns ϕ, ϕ∗, u, where (F ′
ϕ(ϕ, λ))∗ is the adjoint to the Frechet derivative

of F with respect to ϕ.
We assume that the system (33)–(35) has a unique solution. The system (33)–

(35) may be considered as a generalized model F(U, λ) = 0 with the state variable
U = (ϕ, ϕ∗, u), and it contains all the available information. All the components of
U depend on the parameters λ ∈ Yp, which may contain uncertainties. An impor-
tant issue is to study the sensitivity of this generalized model with respect to the
parameters.

Let us introduce a response function G(ϕ, u, λ), which is supposed to be a real-
valued function and can be considered as a functional on Y × X × Yp. We are inter-
ested in the sensitivity ofG with respect to λ, with ϕ and u obtained from the optimal-
ity system (33)–(35). As is knownMarchuk (1995), Cacuci (1981), Dontchev (1983),
sensitivity is defined by the gradient of G with respect to λ, which is a functional
derivative:
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dG

dλ
= ∂G

∂ϕ

∂ϕ

∂λ
+ ∂G

∂u

∂u

∂λ
+ ∂G

∂λ
. (36)

If δλ is a perturbation on λ, we get from the optimality system:

{
∂δϕ
∂t = F ′

ϕ(ϕ, λ)δϕ + F ′
λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
∣∣
t=0 = δu,

(37)

{
−∂δϕ∗

∂t − (F ′
ϕ(ϕ, λ))∗δϕ∗ − (F ′′

ϕϕ(ϕ, λ)δϕ + F ′′
ϕλ(ϕ, λ)δλ)∗ϕ∗ = −C∗V2Cδϕ,

δϕ∗∣∣
t=T = 0,

(38)
V1δu − δϕ∗∣∣

t=0= 0, (39)

and (
dG

dλ
, δλ

)
Yp

=
(

∂G

∂ϕ
, δϕ

)
Y

+
(

∂G

∂u
, δu

)
X

+
(

∂G

∂λ
, δλ

)
Yp

, (40)

where δϕ, δϕ∗ and δu are the Gâteaux derivatives of ϕ, ϕ∗ and u in the direction δλ

(for example, δϕ = ∂ϕ

∂λ
δλ).

To compute the gradient ∇λG(ϕ, u, λ), let us introduce three adjoint variables
P1 ∈ Y , P2 ∈ Y and P3 ∈ X . By taking the inner product of (37) by P1, (38) by P2
and of (39) by P3 and adding them, we obtain:

(
δϕ,− ∂P1

∂t
− (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)

∗ϕ∗ + C∗V2CP2

)
Y

+
(

δϕ
∣∣
t=T , P1

∣∣
t=T

)
X
+

+
(

δϕ∗, ∂P2
∂t

− F ′
ϕ(ϕ, λ)P2

)
Y

+
(

δϕ∗∣∣
t=0, P2

∣∣
t=0−P3

)
X
+

+
(

δu,−P1
∣∣
t=0+V1P3

)
X

+
(

δλ,−(F ′
λ(ϕ, λ))∗P1 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

)
Yp

= 0. (41)

Here we put

−∂P1
∂t

− (F ′
ϕ(ϕ, λ))∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ + C∗V2CP2 = ∂G

∂ϕ
,

and

−P1
∣∣
t=0+V1P3 = ∂G

∂u
, P1

∣∣
t=T= 0,

∂P2
∂t

− F ′
ϕ(ϕ, λ)P2 = 0, P2

∣∣
t=0−P3 = 0.

Hence, we can exclude the variable P3 by
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P3 = P2
∣∣
t=0

and obtain the initial condition for P2 in the form:

V1P2
∣∣
t=0=

∂G

∂u
+ P1

∣∣
t=0.

Thus, if P1, P2 are the solutions of the following system of equations

⎧⎪⎨
⎪⎩

−∂P1
∂t − (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ + C∗V2CP2 = ∂G

∂ϕ
, t ∈ (0, T )

P1
∣∣
t=T = 0,

(42)⎧⎪⎨
⎪⎩

∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

V1P2
∣∣
t=0 = ∂G

∂u + P1
∣∣
t=0,

(43)

then from (41) we get

(
∂G

∂ϕ
, δϕ

)
Y

+
(

∂G

∂u
, δu

)
X

=
(

δλ, (F ′
λ(ϕ, λ))∗P1 + (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

)
Yp

,

and the gradient of G is given by

dG

dλ
= (F ′

λ(ϕ, λ))∗P1 + (F ′′
ϕλ(ϕ, λ)P2)

∗ϕ∗ + ∂G

∂λ
. (44)

We get a coupled system of two differential equations (42) and (43) of the first
order with respect to time. One equation has a final condition (backward problem)
while the other has an initial condition (forward problem) depending on the initial
value for the first equation: it is a non-standard problem.

Let us represent the non-standard problem (42)–(43) in an equivalent form:

⎧⎪⎨
⎪⎩

−∂P1
∂t − (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ + C∗V2CP2 = ∂G

∂ϕ
, t ∈ (0, T )

P1
∣∣
t=T

= 0,
(45)⎧⎪⎨

⎪⎩
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

P2
∣∣
t=0 = v,

(46)

V1v − P1
∣∣
t=0=

∂G

∂u
. (47)
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Herewe have three unknowns: v ∈ X, P1, P2 ∈ Y . Let uswrite (45)–(47) in the form
of an operator equation for v. We define the operator H by the successive solution
of the following problems:

⎧⎪⎨
⎪⎩

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = 0, t ∈ (0, T )

φ
∣∣
t=0 = w,

(48)

⎧⎪⎨
⎪⎩

−∂φ∗
∂t − (F ′

ϕ(ϕ, λ))∗φ∗ − (F ′′
ϕϕ(ϕ, λ)φ)∗ϕ∗ = −C∗V2Cφ, t ∈ (0, T )

φ∗∣∣
t=T = 0,

(49)

Hw = V1w − φ∗∣∣
t=0. (50)

Then (45)–(47) is equivalent to the following equation in X :

Hv = F (51)

with the right-hand side F defined by

F = ∂G

∂u
+ φ̃∗∣∣

t=0, (52)

where φ̃∗ is the solution to the adjoint problem:

⎧⎪⎨
⎪⎩

−∂φ̃∗
∂t − (F ′

ϕ(ϕ, λ))∗φ̃∗ = ∂G
∂ϕ

, t ∈ (0, T )

φ̃∗∣∣
t=T = 0.

(53)

It is easily seen that the operator H defined by (48)–(50) is the Hessian of the
original functional J considered on the optimal solution u of the problem (33)–(35):
J ′′(u) = H. Under the assumption that H is positive definite, the operator equation
(51) is correctly and everywhere solvable in X , i.e. for every F there exists a unique
solution v ∈ X and

‖v‖X ≤ c‖H‖X , c = const > 0.

Therefore, under the assumption that J ′′(u) is positive definite on the optimal
solution, the non-standard problem (42)–(43) has a unique solution P1, P2 ∈ Y .

Based on the above consideration, we can formulate the following algorithm to
solve the non-standard problem:

(1) For ∂G
∂u ∈ X, ∂G

∂ϕ
∈ Y solve the adjoint problem
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⎧⎪⎨
⎪⎩

−∂φ̃∗
∂t − (F ′

ϕ(ϕ, λ))∗φ̃∗ = ∂G
∂ϕ

, t ∈ (0, T )

φ̃∗∣∣
t=T = 0

(54)

and put

F = ∂G

∂u
+ φ̃∗∣∣

t=0.

(2) Find v by solving
Hv = F

with the Hessian of the original functional J defined by (48)–(50).
(3) Solve successively the direct and adjoint problems

⎧⎪⎨
⎪⎩

∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

P2
∣∣
t=0 = v,

(55)

⎧⎪⎨
⎪⎩

−∂ P̃1
∂t − (F ′

ϕ(ϕ, λ))∗ P̃1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ + C∗V2CP2 = 0, t ∈ (0, T )

P̃1
∣∣
t=T = 0,

(56)
and put

P1 = P̃1 + φ̃∗.

Thus, we obtain P1, P2 ∈ Y as the solutions to the non-standard problem (42)–
(43), which determine the sensitivity of the response function with respect to impre-
cisely known parameters according to (44).

6 Sensitivity with Respect to Observations

In geophysical applications a usual request is the estimation of the sensitivity with
respect to observations Langland and Baker (2004), Daescu and Langland (2013),
Kalnay et al. (2012), Godinez and Daescu (2009). What will be the impact of an
uncertainty on the prediction? It is clear that observations are not directly used in
the forward model, they are involved only as a forcing term in the adjoint model.
Therefore to apply the general formalism of sensitivity analysis we should apply it
not to the model itself but to the optimality system, i.e. the model plus the adjoint
model. A very simple example with a scalar ordinary differential equation is given
in Le Dimet et al. (2002) showing that the only model is not sufficient to carry out
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sensitivity analysis in the presence of data. Differentiating the optimality systemwill
introduce second order derivatives.

Consider the mathematical model governed by the nonlinear evolution problem
of the form (17): {

∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u.

(57)

We suppose that for given u ∈ X, f ∈ Y and λ ∈ Yp there exists a unique solution

ϕ ∈ Y to (57) with ∂ϕ
∂t ∈ Y . The function λ is an unknown model parameter, and we

suppose that the initial state u is also unknown, so we will consider joint parameter
and state estimation problem.

Let us introduce the cost function as a functional on X × Yp in the form

J (u, λ) = 1

2
‖V 1/2

1 (u − ub)‖X + 1

2
‖V 1/2

2 (λ − λb)‖Yp + 1

2
‖V 1/2

3 (Cϕ − ϕobs)‖Yobs ,
(58)

where u ∈ X, λb ∈ Yp are prior (background) functions, ϕobs ∈ Yobs is a prescribed
function (observational data), Yobs is a Hilbert space (observation space), C : Y →
Yobs is a linear bounded operator (observation operator), V1 : X → X, V2 : Yp → Yp

and V3 : Yobs → Yobs are symmetric positive definite bounded operators.
Let us consider the following data assimilation problem with the aim to find the

initial value u and the parameter λ: for given f ∈ Y, ϕobs ∈ Yobs , find u ∈ X, λ ∈ Yp

andϕ ∈ Y such that they satisfy (57), and on the set of solutions to (57), the functional
J (u, λ) takes the minimum value, i.e.⎧⎪⎪⎨

⎪⎪⎩
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (u, λ) = inf
w∈X,v∈Yp

J (w, v).

(59)

We suppose that the solution of (59) exists. The necessary optimality condition
reduces (59) to the optimality system:

{
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0 = u,

(60)

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ, λ))∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0,

(61)

V1(u − ub) − ϕ∗∣∣
t=0= 0, (62)

V2(λ − λb) − (F ′
λ(ϕ, λ))∗ϕ∗ = 0. (63)
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Here F ′
ϕ(ϕ, λ) : Y → Y, F ′

λ(ϕ, λ) : Yp → Y are the Fréchet derivatives of F with
respect to ϕ and λ, correspondingly, and C∗ is the adjoint operator to C defined by
(Cϕ,ψ)Yobs = (ϕ,C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs .

Supposing that the system (60)–(63) has a unique solution ϕ, ϕ∗ ∈ Y, u ∈ X, λ ∈
Yp, we will study the sensitivity of functionals of the optimal solution with respect
to the observation data ϕobs .

We introduce a response function G(ϕ, u, λ), which is supposed to be a real-
valued function and can be considered as a functional on Z = Y × X × Yp. We
are interested in the sensitivity of G with respect to ϕobs , with ϕ, u and λ obtained
from the optimality system (60)–(63). By definition, the sensitivity is defined by the
gradient of G with respect to ϕobs :

dG

dϕobs
= ∂G

∂ϕ

∂ϕ

∂ϕobs
+ ∂G

∂λ

∂λ

∂ϕobs
+ ∂G

∂u

∂u

∂ϕobs
, (64)

where ∂G
∂ϕ

: Z → Y, ∂G
∂λ

: Z → Yp,
∂G
∂u : Z → X , and ∂ϕ

∂ϕobs
, ∂λ
∂ϕobs

, ∂u
∂ϕobs

are

the Gâteaux derivatives of ϕ, λ, u with respect to ϕobs .
Let δϕobs be a perturbation on ϕobs , then we obtain from the optimality system

(60)–(63): {
∂δϕ
∂t = F ′

ϕ(ϕ, λ)δϕ + F ′
λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
∣∣
t=0 = δu,

(65)

⎧⎪⎨
⎪⎩

−∂δϕ∗
∂t − (F ′

ϕ(ϕ, λ))∗δϕ∗ − (F ′′
ϕϕ(ϕ, λ)δϕ)∗ϕ∗ = (F ′′

ϕλ(ϕ, λ)δλ)∗ϕ∗

−C∗V3(Cδϕ − δϕobs),

δϕ∗∣∣
t=T

= 0,

(66)

V1δu − δϕ∗∣∣
t=0= 0, (67)

V2δλ − (F ′′
λϕ(ϕ, λ)δϕ)∗ϕ∗ − (F ′′

λλ(ϕ, λ)δλ)∗ϕ∗ − (F ′
λ(ϕ, λ))∗δϕ∗ = 0, (68)

and (
dG

dϕobs
, δϕobs

)
Yobs

=
(

∂G

∂ϕ
, δϕ

)
Y

+
(

∂G

∂λ
, δλ

)
Yp

+
(

∂G

∂u
, δu

)
X

, (69)

where δϕ, δϕ∗, δλ, δu are the solutions of (65)–(68).
Following the methodology presented in Sect. 5, we obtain the gradient of G

through solutions of a non-standard problem.
Let P1, P2 ∈ Y, P3 ∈ Yp, P4 ∈ X be the solutions of the following systemof equa-

tions
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⎧⎪⎨
⎪⎩

−∂P1
∂t − (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ = (F ′′

λϕ(ϕ, λ)P3)∗ϕ∗ − C∗V3CP2

+∂G
∂ϕ

,

P1
∣∣
t=T = 0,

(70){
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 − F ′
λ(ϕ, λ)P3 = 0, t ∈ (0, T )

P2
∣∣
t=0−P4 = 0,

(71)

V1P4 − P1
∣∣
t=0=

∂G

∂u
, (72)

V2P3 − (F ′′
ϕλ(ϕ, λ)P2)

∗ϕ∗ − (F ′′
λλ(ϕ, λ)P3)

∗ϕ∗ − (F ′
λ(ϕ, λ))∗P1 = ∂G

∂λ
, (73)

where ϕ, ϕ∗ ∈ Y, u ∈ X, λ ∈ Yp are the solution of the optimality system (60)–(63).
Then the gradient of G with respect to ϕobs is given by

dG

dϕobs
= V3CP2. (74)

We obtain a coupled system of two differential equations (70) and (71) of the first
order with respect to time, with additional conditions (72)–(73). To study this non-
standard problem (70)–(73) with mutually dependent initial conditions for P1, P2,
we reduce it to a single operator equation involving the Hessian of the original cost
function J (u, λ).

The Hessian H : X × Yp → X × Yp acts on U = (w, v)T ∈ X × Yp and is
defined by the successive solution of the following problems:{

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = F ′
λ(ϕ, λ)v, t ∈ (0, T )

φ
∣∣
t=0 = w,

(75)

{
−∂φ∗

∂t − (F ′
ϕ(ϕ, λ))∗φ∗ − (F ′′

ϕϕ(ϕ, λ)φ)∗ϕ∗ = (F ′′
λϕ(ϕ, λ)w)∗ϕ∗ − C∗V3Cφ,

φ∗∣∣
t=T = 0,

(76)

HU =
(
V1w − φ∗∣∣

t=0, V2v − (F ′′
ϕλ(ϕ, λ)φ)∗ϕ∗ − (F ′′

λλ(ϕ, λ)w)∗ϕ∗ − (F ′
λ(ϕ, λ))∗φ∗

)T

,

(77)
where λ, u, ϕ and ϕ∗ are the solutions of the optimality system (60)–(63). It is easily
seen that (70)–(73) is equivalent to the following equation in X × Yp:

HU = F (78)

with some F ∈ X × Yp.
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Under the assumption that H is positive definite, the operator equation (78) is
correctly and everywhere solvable in X × Yp, i.e. for every F there exists a unique
solution U ∈ X × Yp and the estimate is valid:

‖U‖X×Yp ≤ c‖F‖X×Yp , c = const > 0.

Therefore, under the assumption that J ′′(u, λ) is positive definite on the optimal
solution, the non-standard problem (70)–(73) has a unique solution P1, P2 ∈ Y, P3 ∈
Yp, P4 ∈ X .

Based on (70)–(74),we can formulate the following algorithm to compute the
gradient of the response function G:

(1) For ∂G
∂λ

∈ Yp,
∂G
∂ϕ

∈ Y, ∂G
∂u ∈ X solve the adjoint problem

⎧⎨
⎩−∂φ̃∗

∂t − (F ′
ϕ(ϕ, λ))∗φ̃∗ = ∂G

∂ϕ
, t ∈ (0, T )

φ̃∗∣∣
t=T = 0

(79)

and put

F =
(

∂G

∂u
+ φ̃∗∣∣

t=0,
∂G

∂λ
+ (F ′

λ(ϕ, λ))∗φ̃∗
)T

.

(2) Find U = (w, v)T by solving

HU = F

with the Hessian of the original functional J defined by (75)–(77).
(3) Solve the direct problem

{
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = F ′
λ(ϕ, λ)v, t ∈ (0, T )

P2
∣∣
t=0 = w.

(80)

(4) Compute the gradient of the response function as

dG

dϕobs
= V3CP2. (81)

The last formula allows us to estimate the sensitivity of the response functions
related to the optimal solution after assimilation, with respect to observation data.
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7 Application for a Sea Thermodynamics Model

We consider the sea thermodynamics problem in the form Marchuk et al. (1987):

Tt + (Ū ,Grad)T − Div(âT · Grad T ) = fT in D × (t0, t1),

T = T0 for t = t0 in D,

− νT
∂T

∂z
= Q on 
S × (t0, t1),

∂T

∂n
= 0 on 
w,c × (t0, t1), (82)

Ū (−)
n T + ∂T

∂n
= QT on 
w,op × (t0, t1),

∂T

∂n
= 0 on 
H × (t0, t1),

where T = T (x, y, z, t) is an unknown temperature function, t ∈ (t0, t1), (x, y, z) ∈
D = � × (0, H), � ⊂ R2, H = H(x, y) is the function of the bottom releif,
Q = Q(x, y, t) is the total heat flux, Ū = (u, v, w), âT = diag((aT )i i ), (aT )11 =
(aT )22 = μT , (aT )33 = νT , fT = fT (x, y, z, t) are given functions. The boundary
of the domain
 ≡ ∂D is represented as a union of four disjoint parts
S ,
w,op,
w,c,

H , where 
S = � (the unperturbed sea surface), 
w,op is the liquid (open) part of
vertical lateral boundary, 
w,c is the solid part of the vertical lateral boundary, 
H is
the sea bottom, Ū (−)

n = (|Ūn| − Ūn)/2, and Ūn is the normal component of Ū . The
other notations and a detailed description of the problem statement can be found in
Agoshkov et al. (2008).

Problem (82) can be written in the form of an operator equation:

Tt + LT = F + BQ, t ∈ (t0, t1),

T = T0, t = t0,
(83)

where the equality is understood in the weak sense, namely,

(Tt , T̂ ) + (LT, T̂ ) = F(T̂ ) + (BQ, T̂ ) ∀T̂ ∈ W 1
2 (D), (84)

in this case L , F , B are defined by the following relations:

(LT, T̂ ) ≡
∫
D

(−TDiv(Ū T̂ ))dD +
∫


w,op

Ū (+)
n T T̂ d
 +

∫
D

âTGrad(T ) · Grad(T̂ )dD,

F(T̂ ) =
∫


w,op

QT T̂ d
 +
∫
D

fT T̂ dD, (Tt , T̂ ) =
∫
D

Tt T̂ dD, (BQ, T̂ ) =
∫
�

QT̂
∣∣
z=0d�,
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and the functions âT , QT , fT , Q are such that equality (84) makes sense. The prop-
erties of the operator L were studied in Agoshkov et al. (2008).

Problem (82) is linear in T, Q, however, written in the form (83), it is a particular
case of theoriginal problem (57), and all the reasoning and themethodologypresented
in Sect. 6 are easily transferred to the case of problem (83), understood in a weak
sense (83).

We consider the data assimilation problem for the sea surface temperature (see
Agoshkov et al. (2008)). Suppose that the functions Q ∈ L2(� × (t0, t1)) and T0 ∈
L2(D) are unknown in problem (82). Let also Tobs(x, y, t) ∈ L2(� × (t0, t1)) be the
function on � obtained for t ∈ (t0, t1) by processing the observation data, and this
function in its physical sense is an approximation to the surface temperature function
on �, i.e. to T

∣∣
z=0. We admit the case when Tobs is defined only on some subset of

� × (t0, t1) and denote the indicator (characteristic) function of this set by m0. For
definiteness sake, we assume that Tobs is zero outside this subset.

Consider the data assimilation problem for the surface temperature in the follow-
ing form: find T0 and Q such that

⎧⎪⎪⎨
⎪⎪⎩

Tt + LT = F + BQ in D × (t0, t1),

T = T0, t = t0

J (T0, Q) = inf
w,v

J (w, v),

(85)

where

J (T0, Q) = α

2

t1∫
t0

∫
�

|Q − Q(0)|2d�dt + β

2

∫
D

|T0 − T (0)|2dD+

+ 1

2

t1∫
t0

∫
�

m0|T
∣∣
z=0 − Tobs |2d�dt, (86)

and Q(0) = Q(0)(x, y, t), T (0) = T (0)(x, y, z) are given functions, α, β = const >

0.
For α, β > 0 this variational data assimilation problem has a unique solution.

The existence of the optimal solution follows from the classic results of the theory
of optimal control problems Lions (1968).

The optimality system determining the solution of the formulated variational data
assimilation problem according to the necessary condition gradJ = 0 has the form:

Tt + LT = F + BQ in D × (t0, t1),

T = T0, t = t0,
(87)
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−(T ∗)t + L∗T ∗ = Bm0(Tobs − T ) in D × (t0, t1),

T ∗ = 0, t = t1,
(88)

α(Q − Q(0)) − T ∗ = 0 on � × (t0, t1), (89)

β(T0 − T (0)) − T ∗∣∣
t=0= 0 in D, (90)

where L∗ is the operator adjoint to L .
Here the boundary-value function Q plays the role of λ from Sect. 6, ϕ = T , the

operator F has the form F(T, Q) = −LT + BQ, and F ′
T = −L , F ′

Q = B. Since
the operator F(T, Q) is linear in this case and F ′′

T T = F ′′
QT = F ′′

QQ = 0, the Hessian
H acting on someU = (w,ψ)T ,w ∈ L2(D), ψ ∈ L2(� × (t0, t1)) is defined by the
successive solution of the following problems:

{
∂φ
∂t + Lφ = Bψ, t ∈ (t0, t1)

φ
∣∣
t=t0

= w,
(91)

{
−∂φ∗

∂t + L∗φ∗ = −Bm0φ, t ∈ (t0, t1)
φ∗∣∣

t=t1
= 0,

(92)

HU = (βw − φ∗∣∣
t=0, αψ − B∗φ∗)T . (93)

To illustrate the above-presented theory, we consider the problem of sensitivity of
functionals of the optimal solution T0, Q to the observations Tobs . Let us introduce
the following response function:

G(T ) =
t1∫

t0

dt
∫
�

k(x, y, t)T (x, y, 0, t)d�, (94)

where k(x, y, t) is aweight function related to the temperature field on the sea surface
z = 0. For example, if we are interested in the mean temperature of a specific region
of the sea ω for z = 0 in the interval t̄ − τ ≤ t ≤ t̄ , then as k we take the function

k(x, y, t) =
{
1
/

(τmes ω) if (x, y) ∈ ω, t̄ − τ ≤ t ≤ t̄

0 else,
(95)

where mes ω denotes the area of the region ω. Thus, the functional (94) is written in
the form:

G(T ) = 1

τ

t̄∫
t̄−τ

dt

(
1

mes ω

∫
ω

T (x, y, 0, t)d�

)
. (96)
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Formula (96) represents the mean temperature averaged over the time interval t̄ −
τ ≤ t ≤ t̄ for a given regionω. The response functions of this type are ofmost interest
in the theory of climate change (Marchuk (1995), Marchuk et al. (1996)).

In our notations the functional (94) may be written as

G(T ) =
t1∫

t0

(Bk, T )dt = (Bk, T )Y , Y = L2(D × (t0, t1)).

We are interested in the sensitivity of the response function G(T ), obtained for
T after data assimilation, with respect to the observation function Tobs .

By definition, the sensitivity is given by the gradient of G with respect to Tobs :

dG

dTobs
= ∂G

∂T

∂T

∂Tobs
. (97)

Since ∂G
∂T = Bk, then according to the theory presented in Sect. 6, to compute

the gradient (97) we need to perform the following steps:
1) For k defined by (95) solve the adjoint problem

⎧⎨
⎩−∂φ̃∗

∂t + L∗φ̃∗ = Bk, t ∈ (t0, t1)

φ̃∗∣∣
t=t1

= 0
(98)

and put � = (φ̃∗∣∣
t=0, B

∗φ̃∗)T .

2) FindU = (w, v)T by solvingHU = �with the Hessian defined by (91)–(93).
3) Solve the direct problem

{
∂P2
∂t + LP2 = Bv, t ∈ (t0, t1)

P2
∣∣
t=t0

= w.
(99)

4) Compute the gradient of the response function as

dG

dTobs
= m0P2

∣∣
z=0. (100)

The last formula allows us to estimate the sensitivity of the functionals related to
the mean temperature after data assimilation, with respect to the observations on the
sea surface.

For numerical experiments have used the three-dimensional numerical model of
the Baltic Sea hydrothermodynamics developed at the INM RAS on the base of the
splitting method Zalesny et al. (2017) and supplied with the assimilation procedure
Agoshkov et al. (2008) for the surface temperature Tobs with the aim to reconstruct
the heat fluxes Q and the initial state T0.
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The parameters of the considered domain of the Baltic Sea and its geographic
coordinates can be described as follows: σ -grid is 336 × 394 × 25 (the latitude,
longitude, and depth, respectively). The first point of the "grid C" Zalesny et al.
(2017) has the coordinates 9.406◦ E and 53.64◦ N. The mesh sizes in x and y
are constant and equal to 0.0625 and 0.03125 degrees. The time step is �t = 5
minutes. The assimilation procedure worked only during some time windows. To
start the assimilation procedure, the function T (0) was taken as a model forecast for
the previous time interval.

The Baltic Sea daily-averaged nighttime surface temperature data were used
for Tobs . These are the data of the Danish Meteorological Institute based on mea-
surements of radiometers (AVHRR, AATSR and AMSRE) and spectroradiometers
(SEVIRI and MODIS) Karagali et al. (2012). Data interpolation algorithms were
used Zakharova et al. (2013) to convert observations on computational grid of the
numerical model of the Baltic Sea thermodynamics. The mean climatic flux obtained
from the NCEP (National Center for Environmental Prediction) reanalysis was taken
for Q(0).

Using the hydrothermodynamics model mentioned above, which is supplied with
the assimilation procedure for the surface temperature Tobs , we have performed cal-
culations for the Baltic Sea area where the assimilation algorithm worked only at
certain time moments t0; in this case t1 = t0 + �t . The aim of the experiment was
the numerical study of the sensitivity of functionals of the optimal solution T0, Q to
observation errors in the interval (t0, t1).

We use the discretize-then-optimize approach, and for numerical experiments
all the presented equations are understood in a discrete form, as finite-dimensional
analogues of the corresponding problems, obtained after approximation. This allows
us to consider model equations as a perfect model, with no approximation errors.

Let us present some results of numerical experiments.
The calculation results for t0 = 50h (600 time steps for the model) are presented in

Fig. 1 showing the gradient of the response functionG(T ) defined by (96) and related
to themean temperature after data assimilation,with respect to the observations on the
sea surface, according to (98)– (100). Here ω = �, τ = �t , t̄ = t1, α = β = 10−5

(Fig. 1).
We can see the sub-areas (in red) in which the response function G(T ) is most

sensitive to errors in the observations during assimilation. The largest values of the
gradient ofG(T ) correspond to the points x, y with a small depth (cf. sea topography,
Fig. 2). Thus, the considered functionalG(T ) of the optimal solution turned out to be
themost sensitive to observation errors at surface points near these regions. This result
is confirmed by the direct computation of the response function G(T ) according to
(96) obtained after assimilation, by introducing perturbations into the observation
data Tobs .

The above studies allow to determine the sea sub-areas in which the response
function related to the optimal solution is most sensitive to errors in the observations
during variational data assimilation.
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Fig. 1 The gradient of the response function G(T )

8 Conclusions

Variational data assimilation is an efficient method in modeling the large-scale geo-
physical flows, with the main difficulty being linked to the nonlinearity of the gov-
erning equations. This method allows to combine the observational data and the
model forecasts. From the mathematical point of view, we have to deal with the
initial-boundary-value control problems for a nonlinear evolution model governed
by partial differential equations. The necessary optimality condition is defined by the
optimality system which is based on the gradient of the cost function and involves
forward and adjoint equations. To study the variational data assimilation problem
as an optimal control problem and to develop efficient algorithms for its numerical
solution, second-order information is needed. This is information about the Hessian
of the cost functional. To construct the Hessian, it is necessary to differentiate the
optimality system and derive a second-order adjoint problem. The investigation of
the second-order adjoint equations and the Hessian of the cost function plays an
important role in the study of the solvability of the variational assimilation problem,
the construction of algorithms for its numerical solution based on the modification
of Newton type methods, the identification of model parameters. The Hessian allows
to study the sensitivity of the optimal solution and its functionals with respect to
observations and uncertainties in parameters.
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Fig. 2 Baltic Sea topography
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