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Abstract The ensemble data assimilation system is beneficial to express flow-
dependent model errors. Furthermore, the effectiveness of this system depends on
the accuracy of the flow-dependent background error covariance. However, the back-
ground error covariance is often underestimated due to limited ensemble size, sam-
pling errors andmodel errors, which causes a filter divergence problem—the analysis
state diverges from the nature stage ignoring the observation influence. As one of
the remedies to solve this problem, the stochastic representations address the model-
related uncertainties by perturbing the model tendency or parameters using a random
forcing to replenish the insufficient model errors. In this study, we implemented a
stochastic perturbation hybrid tendencies (SPHT) scheme, which perturbs both phys-
ical tendency and dynamical tendency using the random forcing, and assessed its
impact on the spread of ensemble forecast and ensemble mean error.

1 Introduction

Ensemble data assimilation (EnsDA) finds the best initial conditions of the numerical
weather prediction (NWP) model using model forecasts and their error covariance as
well as observations Evensen (1994). In particular, it describes the flow-dependent
forecast error covariance through an ensemble of the model forecasts. Therefore, it
contains uncertainties in both the initial conditions and the model. Model uncertainty
representations can be distinguished from actual model errors: the former samples
model perturbations from some distribution while the latter presents only one real-
ization per model and forecast Leutbecher et al. (2017). In this study, we focus on
the model uncertainty in the EnsDA system using the stochastic representations that
simulate the errors of model tendencies from random components.
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In EnsDA, themodel uncertainty is used in the ensemble background error covari-
ance (BEC) through the 6-h forecasts. However, it is found to be underdispersive due
to the limited ensemble size, sampling error, and imperfect model parametrization,
resulting in over-confidence in ensemble forecasts Buizza et al. (2005). This prob-
lem is usually covered by covariance inflation, e.g., multiplicative inflation Anderson
and Anderson (1999), additive inflation Mitchell and Houtekamer (2000), combined
multiplicative and additive inflation Whitaker and Hamill (2012), relaxation to the
prior Zhang et al. (2004), multischeme ensembles Meng and Zhang (2007), and so
on.

In general, the ensemble BEC, composed of an ensemble spread (σ (x)), i.e., the
standard deviation to the ensemble mean (x̄), should reflect the ensemble mean error
(e(x̄)) because the ensemble spread distribution determines the analysis status (see
Fig. 1). Here, themodel error is expressed by the distance between the ensemblemean
and the observation while the ensemble spread is represented by the pre-described
ensemble distribution. The optimal ensemble spread is expected to have a spread
similar to the ensemble mean (Fig. 1a), i.e.,

σ(x) ≈ e(x̄); (1)

then, the analysis includes reliable information from the model and observations.
The underdispersive ensemble members show a smaller ensemble spread compared
to the model error, i.e.,

σ(x) � e(x̄), (2)

where the analysis ignores the observation and trusts the model more due to small
ensemble BEC (Fig. 1b). The overdispersive ensemble members show the larger
ensemble spread compared to the model error, i.e.,

σ(x) � e(x̄). (3)

In this case, the analysis ignores the model errors and relies more on the observation
due to the larger ensemble BEC (Fig. 1c).

To remedy the general problem of the underdispersive model error, various
stochastic schemes can be used, e.g., Buizza et al. (1999), Shutts (2005), Palmer et al.
(2009). It is based on the fact that the NWP models represent the physical process
with simplifications and approximations due to incomplete knowledge and computa-
tional costs. The European Centre for Medium-RangeWeather Forecasts (ECMWF)
developed the original version of the Stochastically Perturbed Parametrization Ten-
dencies (SPPT) scheme—called the Buizza-Miller-Palmer (BMP) scheme Buizza
et al. (1999)—for the first time and introduced the stochastic representation of model
uncertainty that perturbs the total parametrized physics tendencies using the random
forcing. After major revisions on random patterns and distribution of perturbations in
2009 Palmer et al. (2009), the BMP scheme has evolved into the SPPT scheme. Since
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Fig. 1 Schematic diagram of the ensemble spread, σ(x), and the ensemble mean error, e(x̄):
a optimal ensemble spread, b underdispersive ensemble spread, and c overdispersive ensemble
spread

then, the SPPT scheme has been employed by many operational NWP centers, e.g.,
Environment Canada (EC), Japan Meteorological Agency (JMA), the United States
National Centers for Environmental Prediction (NCEP), and the United Kingdom
Met Office (UKMO), for their global prediction systems Charron et al. (2010), Leut-
becher et al. (2017). It has also been implemented in regional prediction systems,
e.g., the Application of Research to Operations at Mesoscale convection-permitting
model (AROME) of Meteo-France Bouttier et al. (2012) and the Weather Research
and Forecasting (WRF) model Romine et al. (2014), Berner et al. (2015).

Afterward, the Stochastic Kinetic Energy Backscatter (SKEB) scheme was intro-
duced to represent the model uncertainties for scale interactions what is absent in a
truncated numerical model by randomly perturbing the stream function and poten-
tial temperature tendencies Shutts (2005). The SKEB has also been used for global
ensembles in many operational center, e.g., ECMWF, EC, and UKMOCharron et al.
(2010), Tennant et al. (2011), Sanchez et al. (2016) as well as regional ensembles
(e.g., WRF) Berner et al. (2011), Berner et al. (2015). Recently, a stochastic convec-
tive backscatter scheme has been introduced Shutts (2015).

Alternately, the Stochastically Perturbed Dynamical Tendencies (SPDT) scheme,
which perturbs the total dynamical tendencies using the random forcing, was intro-
duced: the scheme proved to be effective in global ensemble forecasting Koo and
Hong (2014), e.g., in the Global/Regional Integrated Model system (GRIMs) Hong
et al. (2013). By combining the SPDT and SPPT schemes, Lim et al. Lim et al. (2020)
devised the stochastic perturbation hybrid tendencies (SPHT) scheme to improve the
underestimated BEC in the EnsDA system of the Korean Integrated Model (KIM)
Hong et al. (2018)—a global model developed at the Korea Institute of Atmospheric
Prediction System (KIAPS).
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In this study, we introduce the SPHT scheme in the EnsDA system as a covariance
inflation method in order to solve the underestimated ensemble BEC by taking into
account that model variables are integrated by changes in physical and dynamic
tendencies every time. Themethodology is described in Sect. 2, and the experimental
designs and results are in Sects. 3 and 4, respectively. Section5 provides the summary
and suggests the direction to further development.

2 Methodology

2.1 Local Ensemble Transform Kalman Filter (LETKF)

Weemploy the EnsDA system ofKIAPS,which is a four-dimensional local ensemble
transform Kalman filter (4D-LETKF). The analysis is obtained by assimilating the
available observations within a local region Hunt et al. (2007), Shin et al. (2016),
Shin et al. (2018). This LETKF also provides ensemble perturbations to the hybrid
four-dimensional ensemble-variational (H4DEV) system, another data assimilation
systemoperated byKIAPS. In this study,we use the LETKF results just to distinguish
the changes of ensemble BEC.

The control variables are zonal wind, meridional wind, potential temperature,
mixing ratio, and surface pressure. The KIM Package for Observation Process-
ing (KPOP) provides quality-controlled real observations to the data assimilation
system Kang et al. (2018), including the sonde, surface, aircraft, Global Position-
ing System-Radio Occultation (GPS-RO), Infrared Atmospheric Sounding Inter-
ferometer (IASI), Advanced Microwave Sounding Unit-A (AMSU-A), Cross-track
Infrared Sounder (CrIS), Microwave Humidity Sounder (MHS), Advanced Tech-
nology Microwave Sounder (ATMS), Atmospheric Motion Vectors (AMVs), and
tropical cyclone initialization.

In resolving the filter divergence problems in LETKF, three approaches used to
be applied in terms of ensemble size, localization, and inflation method, which are
specified below for this study:

1. Ensemble size: Increasing the ensemble size is commonly limited due to compu-
tational costs. At the early stage of developing LETKF, we used an ensemble size
of 30 members, which is now increased to 50 members and is used in this study.

2. Localization:We implemented both horizontal and vertical localizations. The hor-
izontal localization is expressed by a Gaussian-like piecewise fifth-order rational
function Gaspari and Cohn (1999), Miyoshi (2011) varying from 660 to 1800km
depending on vertical levels Kleist and Ide (2015). The vertical localization varies
depending on the observational types (e.g., conventional versus satellite data). For
conventional data, it is defined by a Gaussian-like rational function, represented
by 2

√
10/3 · σv where σv is chosen to be 0.2 ln p for wind and surface pressure

and 0.1 ln p for mass variables. For the satellite radiance data, the vertical weight-
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ing function is defined by the gradient of transmittance of the measured radiance
Thépaut (2003).

3. Inflation method: We used two inflation methods in this study. The additive infla-
tion adds the perturbations randomly sampled from the bias-corrected lagged
forecast differences to each ensemble member after the analysis step Whitaker
et al. (2008). The relaxation to prior spread (RTPS) relaxes the ensemble standard
deviation of analysis back to the background Whitaker and Hamill (2012). How-
ever, the LETKF still requires additional inflation method to make a sufficient
ensemble BEC: we will cover it through the stochastic representation method in
this study.

2.2 Numerical Weather Prediction (NWP) Model

We employ the KIM, a global NWP model developed at KIAPS Hong et al. (2018),
which has recently been operationally implemented in the Korea Meteorological
Administration (KMA). It is a non-hydrostatic model on a cubed sphere with state-
of-the-art physics parametrization packages—including radiation, gravitywave drag,
vertical mixing, convection, cloud physics, and so on.

Since our concern is a BEC in the data assimilation process, we only deal with
the 6-h forecast (prior) results. The ensemble size is 50 members and the horizontal
resolution for the ensemble forecast is 50km. The initial conditions of the ensemble
forecast have been generated by the lagged forecast difference samples, which are
used to generate the static BEC in H4DEV Kwon et al. (2018).

2.3 Stochastic Perturbation Hybrid Tendencies (SPHT)
Scheme

In this study, we introduce a stochastic perturbation hybrid tendencies (SPHT)
scheme that perturbs the dynamic tendency

(
∂x
∂t

)
dyn

and the physical tendency
(

∂x
∂t

)
phy

of the model variables x at each time step n using the multiplicative random
forcing (r):

xn∗ = xn + (1 + μr)

(
∂xn

∂t

)

dyn

�t

xn+1 = xn∗ + (1 + μr)

(
∂xn∗

∂t

)

phy

�t (4)
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where μ ∈ {0, 1} represents the vertical tapering function (eη−1) in the generalized
vertical coordinate η. The model variable x consists of temperature and humidity
mixing ratio only. Note that in the KIM, physics and dynamics are coupled by time-
splitting method; thus, this approach differs from the method of perturbing total
model tendency by simply adding up perturbations of two tendencies, i.e.,

(1 + μr)

[(
∂x
∂t

)

dyn

+
(

∂x
∂t

)

phy

]

.

Here, r is a 2-dimensional value following the Gaussian distributed zero-mean per-
turbation considering spatial and temporal correlation. Occasionally, μ is applied to
perturbations for the upper model levels to avoid the instability issue. The amplitude
is determined by the standard-deviation (σ ), and the length and time scales are based
on the decorrelation lengths (L) and times (t), respectively.

The SPPT assumes that the model errors from the parametrized physical tendency
are proportional to the total physical tendency Buizza et al. (1999), Palmer et al.
(2009) while the SPDT assumes that the model errors from the dynamic tendency
concern with the computational representations of the underlying partial differential
equations Koo and Hong (2014). Since both methods deal with the model tendency,
we devised a hybrid stochastic scheme (i.e., SPHT) by combining the two pertur-
bation tendencies based on Eq. (4). The SPHT scheme is applied to the ensemble
forecasting in LETKF to obtain an ensemble BEC.

3 Experimental Designs

To identify how the SPHT scheme increases the ensemble spread, we designed two
experiments: CTRL (representing the control run) is without the SPHT scheme and
STOC (representing the stochastic run) uses the SPHT scheme to perturb the model
variables (e.g., temperature and specific humidity). To avoid instability due to exces-
sive inflation, we suppressed perturbation of wind variables. To test the effectiveness
of the inflation method, the warm cycle is started from 1200 UTC 22 June 2018 and
ended on 1200 UTC 7 July 2018.

The random forcing in both SPPT and SPDT is described in Fig. 2. The SPPT
(Fig. 2a) has horizontal correlation scales of 500km (mesoscale), decorrelation times
of 6h, and standard deviations of 1.0. On the other hand, the SPDT (Fig. 2b) has
horizontal correlation scales of 500km, decorrelation times of 3h, and a standard
deviation of 0.5. The SPDT especially used a tapering function that decreased expo-
nentially with height (e.g., in the upper level) to prevent instability. It is designed to
generate a smaller random forcing to ensure stability because the dynamic tendency
variability is sensitive to r .
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Fig. 2 Randompatterns of (a) SPPT and (b) SPDT atmodel 90-th level, represented as an ensemble
mean of the 6-h forecast initiated from 1200 UTC 6 June 2018

4 Results

We have evaluated the SPHT scheme through the root-mean-square difference
(RMSD) and ensemble spread. The RMSD represents the model error while the
ensemble spread explains the model uncertainty. Here, we assume that the true state
is the ECMWF Integrated Forecast System (IFS) analysis, which is well known for
high forecast skill. To identify the vertical distribution of ensemble mean spread
and ensemble mean error globally, we analyzed the zonal mean during the experi-
ment periods, excluding the spin-up. The STOC, including both SPPT and SPDT,
increases the ensemble spread below 700 hPa in the troposphere and above 10 hPa
in the stratosphere (Fig. 3).

Increase in ensemble spread is evident because the model variables are perturbed
by the random forcing. Therefore, it is essential to check if the increase in ensem-
ble spread induces reduction in ensemble mean error: if the ensemble mean error
increased, the ensemble spread increase is ineffectual. The augmented ensemble
spread reduces the ensemble mean RMSD as well, mostly in the tropical troposphere
for wind and in the low to mid-troposphere for temperature and specific humidity
(Fig. 4).

Fig. 3 The difference of zonal mean ensemble spread (STOC − CTRL) for the prior for (a)
temperature (in K), (b) specific humidity (in g kg−1), and (c) zonal wind (in m s−1), averaged
for the period of 1800 UTC 25 June – 1800 UTC 7 July 2018. Black dots indicate 95% statistical
significance based on two-tail t-test
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Fig. 4 Same as in Fig. 3 but for the difference of zonal mean RMSD against IFS analysis

Fig. 5 Time series of the globally-averaged ensemble mean spread (dotted line) and the ensemble
mean RMSD (solid line) in the prior for STOC (red) and CTRL (black) for (a) temperature (in K),
(b) specific humidity (in g kg−1), and (c) zonal wind (in m s−1)

We also have assessed the performance of the SPHT scheme, which is applied to
the KIM global model, by evaluating the ensemble quality via the globally-averaged
RMSD and ensemble spread. The global performance at each prior (the 6-h back-
ground) is evaluated with regard to the vertically-averaged RMSD from 1000 hPa to
10 hPa over the globe (see Fig. 5). As shown in Fig. 5, the ensemble spread augmenta-
tion obviously brought on the RMSD reduction during the whole experiment period.
For temperature, the ensemble mean RMSD decreased by 1% when the ensemble
mean spread increased by 3.7%; for specific humidity, the former decreased by 0.65%
when the latter increased by 2.0%.

5 Summary

We implemented the stochastic perturbation hybrid tendencies (SPHT) scheme per-
turbing both the physical tendency and the dynamic tendency in a global numer-
ical weather prediction model—the Korean Integrated Model (KIM)—which has
recently been operational in the Korea Meteorological Administration. The SPHT
scheme inflates the insufficient ensemble background error covariance coupled with
the local ensemble transform Kalman filter system: it leads to an increase in ensem-
ble spread as well as a decrease in the ensemble mean errors, thus improving the
ensemble background error covariance and ensemble prediction.
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The stochastic schemes can be used in various fields as the demand for ensem-
ble systems increases. Recently, Ollinaho et al. Ollinaho et al. (2017) developed the
stochastically perturbed parametrizations (SPP) scheme to perturb the parameters
and variables in physical parametrizations. For example, many physical processes,
including turbulent diffusion, sub-grid orography, convection, cloud, large-scale pre-
cipitation, and radiation, used to be perturbed to cover the model uncertainty in
the European Centre for Medium-Range Weather Forecasts (ECMWF). As demon-
strated, we can extend the use of the stochastic perturbation schemes on demand to
overcome underestimation of model uncertainty.
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