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Abstract Several variations of the Kalman filter, such as the extended Kalman fil-
ter (EKF) and the unscented Kalman filter (UKF), are widely used in science and
engineering applications. However, traditional UKFs or EKFs cannot assimilate big
data sets associated with models that have high dimensions, such as those in opera-
tional numerical weather prediction. In this chapter, we introduce two sparsity-based
Kalman filters, namely the sparse-UKF and the progressive-EKF. The filters are
designed specifically for problems with high dimensions. Different from ensemble
Kalman filters (EnKFs) in which the error covariance is approximated using a set
of dense ensemble vectors, the algorithms developed in this chapter are based on
the sparse matrix approximation of error covariance. The new algorithms enjoy sev-
eral advantages. The error covariance has full rank without being limited within a
subspace generated by a set of ensembles. In addition to the estimated states, the
algorithms provide updated error covariance in every assimilation cycle. Taking the
advantage of sparsity, the required memory size and computational load can be sig-
nificantly reduced.

1 Introduction

For dynamical systems, data assimilation is a process that integrates observational
data with a numerical model for the purpose of estimating the system’s state. Data
assimilation is essential to numerical weather prediction (NWP). The estimate of the
state value is used as the initial condition for weather forecast. If the dimension is
relatively low and the data set is small, various linear and nonlinear estimators can
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be found in the literature that have optimal or suboptimal performances. However,
to assimilate big data sets with models that have high dimensions, such as those in
operational NWP systems with tens of millions of variables, achieving reliable state
estimation and error probability distributions is a challenging problem that have been
studied for decades with a huge literature.

There are two categories of methods widely used in NWP, namely the variational
method and the ensemble Kalman filter (EnKF) (Xu et al. 2005; Houtekamer and
Zhang 2016). The former is based on a weighted least-square optimization, such as
the four dimensional variational data assimilation (4D-Var) in a fixed time window
or the three dimensional version (3D-Var) that excludes the time variable. The EnKF
algorithm is based on the Kalman filter except that the error covariance is approx-
imated using a set of ensembles. 4D-Var methods are used in operational NWP
systems by many meteorological centers. While it serves as an effective method of
data assimilation, 4D-Var algorithms have difficulty to explicitly track the evolution
of error covariance within its estimation process due to high computational costs
and input/output (I/O) loads required by the process of high dimensional matrices.
EnKF, on the other hand, updates information about the error covariance in the form
of ensembles. However, it is common in practical applications that the number of
vectors in an ensemble is significantly smaller than the number of state variables.
As a result, the rank deficiency of error covariance tends to deteriorate the integrity
of the estimation process unless remedies to the algorithm, such as localization and
covariance inflation, are applied.

Different types of Kalman filters have been developed and widely used in science
and engineering applications, such as the EnKF, the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF). In this chapter, we introduce two sparsity-
based Kalman filters, namely the sparse-UKF and the progressive-EKF. The goal
of the work is to explore innovative ideas that take the advantage of the sparsity
structure of matrices so that analysis and error covariance can be updated effectively
and efficiently without the drawback of rank deficiency. The filters are developed
specifically for problems with high dimensions. Different from EnKFs in which the
error covariance is represented by a set of dense vectors in an ensemble, the new
algorithms in this chapter are based on a sparse but full rank matrix as an approxima-
tion of the error covariance. This is made possible because of two assumptions: (a)
the error covariance is approximately a sparse matrix; (b) the system model is com-
ponent based, i.e. the state vectors are divided into components that can be computed
independently in parallel. In Sect. 2, analysis is provided to justify that assumption
(a) is expected to hold for a large family of system models. Assumption (b) is about
the numerical method used for the system model, a topic that is not addressed in
this chapter. In Sect. 3, the sparse-UKF is introduced. Its performance is exemplified
using a Lorenz-96 model. In Sect. 4, the progressive-EKF is introduced and exempli-
fied using the same Loren-96 model as in Sect. 3. In all examples, the new estimation
methods developed in this chapter are compared to an EnKF as well as a traditional
UKF with a full rank dense covariance.



Sparsity-Based Kalman Filters for Data Assimilation 99

Fig. 1 Examples of Kalman filter error covariance

2 The Sparsity of Error Covariance

Shown in Fig. 1 are two error covariance matrices of Kalman filters, one for a linear
system of ordinary differential equations and the other for a discretized shallowwater
equation. The dimensions of the state spaces are n = 150 and n = 350, respectively.
The x- and y-axes represent row and column indices, i and j ; the z-axis represents the
absolute value of the error covariance, |Pi j |. Both matrices are approximately sparse,
i.e., the majority of entries are relatively small. The matrices have peak value around
one or multiple diagonals only. Approximating the covariance using a sparse matrix
by setting all small entries to zeros, one can significantly reduce the computational
cost, I/O loads and the amount of memory usage.

The approximate sparsity shown in Fig. 1 is not unusual. In fact, a theorem inKang
and Xu (2021) indicates that this type of sparse covariance is expected for a family of
dynamic systems. In the following, a matrix A is said to be banded with bandwidth
s ≥ 0 if Ai j = 0 whenever |i − j | > s. If s = 0, then the matrix is diagonal. We say
that a symmetric matrix P is less than or equal to another symmetric matrix G, or
P ≤ G, ifG − P is positive semidefinite. Consider the following system of ordinary
differential equations (ODEs)

ẋ(t) = Ax(t) + η(t), x, η ∈ R
n,

y(t) = Hx(t) + δ(t), y, δ ∈ R
m (1)

where x is the state variable, ẋ represents its time derivative, y is the observation
variable, η and δ are zero-mean Gaussian white noise with covariances Q and R,
respectively.

Theorem (Kang and Xu 2021) Suppose that A and Q in (1) are banded. Let P(t)
be the error covariance of the Kalman filter that estimates x(t). Then

0 ≤ P(t) ≤ eAt P(0)eA
T t + GC(t) (2)

where GC(t) is a symmetric matrix. Its entries have an upper bound
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|(GC(t))i j | ≤ Ḡα(|i− j |+β)/γ

((|i − j | + β)/γ )(|i− j |+β)/γ

for some constants Ḡ, α, β, and γ . The upper bound decreases at a rate greater than
exponential as |i − j | → ∞.

This result implies that |(GC(t))i j | is almost zero when |i − j | is large. Although
|i − j | is bounded by n − 1, the result is applicable if n is significantly larger than
the bandwidth of the banded matrices A and Q. In this case, GC is approximately a
sparse matrix. For the term of initial error covariance, eAt P(0)eA

T t , it can be proved
that this matrix is also approximately sparse if P(0) is banded with a bandwidth sig-
nificantly smaller than n. If the ODE in (1) is the discretization of partial differential
equations, which is the case in many NWP problems, then A is banded provided
that local discretization algorithms are used. Inspired by this theorem, we assume in
the following sections that the covariance of Kalman filters can be approximated by
a sparse matrix. We present two new algorithms of data assimilation in which the
matrix of error covariance is computationally tractable.

3 Sparse-UKF

Consider a dynamical system model in which the state variable is x(t), where t =
1, 2, 3, . . . represents time steps. The value of observation at t = k is denoted by
y(k). The system model is defined as follows,

x(k) = M(x(k − 1)) + ηk−1, x(k), ηk−1 ∈ R
n,

y(k) = H(x(k)) + δk, yk, δk ∈ R
m,

(3)

where ηk−1 is a random variable representing the model error. Its covariance is Q.
The observational error, δk , has a covariance R. In data assimilation, the goal is to
estimate the value of x(k) given the observations y(1), y(2), . . . , y(k) and the model
(3). If (3) is linear and if all random variables are Gaussian, then the Kalman filter
is an optimal state estimator. For nonlinear systems with non-Gaussian randomness,
various types of Kalman filters exist in the literature with successful applications in
science and engineering. If a system has a very high dimension, the conventional
form of Kalman filter based on a dense error covariance is not applicable. In this
section, we introduce an algorithm that is a variation of UKF for problems with
approximately sparse matrices of covariance.
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3.1 Sparse Matrix Algebra

In a sparse matrix, most entries are zeros. For some dense matrices in which most
entries are relatively small, we approximate them using sparse matrices. In this
chapter, we use an underbar to represent an operator that maps a vector or matrix to
a sparse one. For instance, given a vector x ∈ R

n . Let Nsp be an integer representing
the size of the sparsity and

I = {i1, i2, . . . , iNsp }

be an index consisting of a sequence of integers. Then the underbar operator maps x
to a vector x ∈ R

Nsp in which

xk = xik for k = 1, 2, . . . , Nsp.

It is equivalently to say that x is obtained from x by removing all xi if i /∈ I. Usually,
the removed entries are either zeros or relatively small (in absolute value). We would
like to emphasize that, although x is formally a vector inRNsp , it is treated as a vector
in Rn by setting the i th entry zero if i /∈ I. This vector in Rn is, in general, different
from the original vector, x , if the latter is a dense vector that is only approximately
sparse.

Similarly, we can define the underbar operator for matrices. Given P ∈ R
n×n . Its

columns may have different numbers of nonzero, or relatively large, entries. The
largest such number is denoted by Nsp. Then P is a set of vectors associated with
index sets

P = {P1, P2, . . . , Pn}, sparsity index set I = {I1, I2, . . . , In} (4)

where Pi associated with Ii is the sparse vector approximation of the i th column of
P . In all algebraic derivations, P is treated as a matrix in R

n×n in which all entries
are zeros except for those included in I.

In sparsity-based algorithms, a full model evaluation is not always necessary.
Using a component-basedmodel can significantly reduce the computational load. In
the notation, a component-based model has three inputs: state variable (either dense
or sparse), its index, and the index of the output state. More specifically,

x(k) = M(x(k − 1); I1; I2), (5)

where I1 is the index set of the sparse vector x(k − 1) and I2 is the index set of x(k).
The model evaluates only the entries with indices in I2, setting all other entries as
zeros. The indices in I2 represent those entries in x(k) that are most sensitive to the
variation of the entries in x(k − 1) with indices in I1. For instance, a discretization
of PDE using finite difference results in a model,M, such that each entry in x(k) is
sensitive only to the variation of its adjacent entries in x(k − 1). If the input vector,
x(k − 1), is dense, we omit I1 in the notation, i.e.
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Table 1 Notations

Notation Definition Notation Definition

x State variable y Observation variable

M Model function H Observation operator

n State space dimension t = 1, 2, . . . (Discrete) time
variable

xσ
i i th σ -point

xbi i th background state ybi Output of observation
operator H(xbi )

x̄b Average of xbi ȳb Average of ybi
Pb Background error

covariance

xa Analysis—state vector Pa Analysis–error
covariance

x(k) = M(x(k − 1); I), (6)

where I is the same as I2 in (5).
Additions and multiplications of vectors/matrices, in both dense and sparse for-

mats, are carried out in their original spaces, Rn or Rn×n . For instance,

P x or Px

are both evaluated using matrix multiplication inRn in the dense format. If one needs
the value at only a sparse set of locations, it is denoted by another underbar mapping

(Px)

Similarly, the summation of a dense vector and a vector in sparse formatmakes sense.
For instance,

x + x

is a vector inRn in which all entries of x is unchanged except that those with indices
in I are doubled. A new operation, called merging, between a sparse vector and a
dense vector is defined as follows,

z = x � w,

{
i th component of z = i th component of x, if i ∈ I.

i th component of z = i th component of w, if i /∈ I.
(7)

A summary of notations is listed in the following Table 1.
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3.2 UKF

The unscented Kalman filter has been increasingly popular in engineering applica-
tions since its introduction about twenty years ago (Julier et al. 2000; Julier and
Uhlmann 2004). In a UKF, the error covariance is propagated with the dynamics
using a set of vectors, or σ -points denoted by xσ . Their definition is given in (8)–
(9). The σ -points are computed at each time step using a square root of the error
covariance. In most UKF applications, σ -points are computed using either Cholesky
factorization or matrix diagonalization. In the notation, a variable with a superscript
‘a’, such as xa , represents the analysis value of the variable, i.e., the updated value
based on observations. A variable with a superscript ‘b’, such as yb, represents the
background, i.e., the propagated value of analysis using the system model. The algo-
rithm is summarized as follows. At t = k − 1, suppose we have the analysis and
error covariance as well as its square root

xa(k − 1), Pa(k − 1),
Xa(k − 1) = √

(n + κ)Pa(k − 1),
(8)

where κ is a scaling factor for the fine tuning of the higher order moments of the
approximation error (Julier et al. 2000). How to tune the value of κ for a sparsity-
based UKF is an open problem that needs further study. In this chapter, κ = 0 is used
in all examples. A set of σ -points is generated as follows,

xσ
0 (k − 1) = xa(k − 1),
xσ
i (k − 1) = xa(k − 1) + Xa

i (k − 1), 1 ≤ i ≤ n,

xσ
i (k − 1) = xa(k − 1) − Xa

i (k − 1), n + 1 ≤ i ≤ 2n.

(9)

where Xa
i (k − 1) is the i th column vector of Xa(k − 1). The next step is to propagate

the σ -points, which represent the background at t = k. For simplicity of notations,
the time variable ‘k’ in the kth time-step is omitted.

xbi = M(xσ
i (k − 1)), ybi = H(xbi ), 0 ≤ i ≤ 2n,

x̄ b =
2n∑
i=0

wi x
b
i , ȳb =

2n∑
i=0

wi y
b
i ,

(10)

where the weights are defined as follows

w0 = κ

n + κ
, wi = 1

2(n + κ)
, (11)

for i = 1, 2, . . . , 2n. Define the variations

Xb
i = xbi − x̄ b, Y b

i = ybi − ȳb. (12)



104 W. Kang and L. Xu

The background covariances are

Pb =
2n∑
i=0

wi X
b
i (X

b
i )

T + Q,

Pxy =
2n∑
i=0

wi X
b
i (Y

b
i )T ,

Pyy =
2n∑
i=0

wi Y
b
i (Y b

i )T + R.

(13)

The Kalman gain, K , satisfies the following equation,

K Pyy = Pxy . (14)

The analysis is updated as follows

xa = x̄ b + K (yo − ȳb),

Pa = Pb − K (Pxy)
T ,

(15)

where yo is the observation at t = k. This completes one iteration of the filter. For
the next step, t = k + 1, go back to (8) replacing the analysis by the updated value
of xa and Pa .

3.3 Sparse-UKF

The square root factorization of a matrix is not unique. For large and sparse matrices,
various algorithms and their implementations on different computing platforms have
been studied for many years. The literature can be traced back to the early days of
electronic computers (Davis et al. 2016). In the case of Cholesky factorization, the
square root of a sparse matrix is still sparse, although the computation may require
larger amounts of processor memory than the original matrix (Davis 2006; Rozin
and Toledo 2005).

A dense error covariance is intractable in computation for global models used
in NWP. In the following approach, we assume that P and

√
P are approximately

sparse. In the algorithm, they are replaced by their sparse approximations, P and
(
√
P). Their sparsity index sets are denoted by I and Iσ , respectively. When prop-

agating the σ -points using a component-based model, only a sparse subset of the
elements is computed. The indices of the subset form an index set, Ib. How to deter-
mine the index sets for sparse vectors and matrices is discussed later in this section



Sparsity-Based Kalman Filters for Data Assimilation 105

Algorithm I (sparse-UKF)
Given the initial analysis,

xa(k − 1), Pa(k − 1). (16)

Step 1. σ -points and forecast

Xa(k − 1) = √
(n + κ)Pa(k − 1), sparsity index set Iσ (17)

For i = 0,
xb0 = M(xa(k − 1)), yb0 = H(xb0 ). (18)

For i = 1, 2, 3, . . . , 2n,

xσ
i (k − 1) = xa(k − 1) + Xa

i (k − 1), 1 ≤ i ≤ n,

xσ
i (k − 1) = xa(k − 1) − Xa

i (k − 1), n + 1 ≤ i ≤ 2n.

xbi = M(xσ
i (k − 1); Ib

i ), ybi = H(xbi � xb0 ), 1 ≤ i ≤ 2n.

(19)

Step 2. Background covariances

x̄ b = w0xb0 +
2n∑
i=1

wi (x
b
i � xb0 ), ȳ

b =
2n∑
i=0

wi y
b
i (20)

Pb = w0(x
b
0 − x̄ b)(xb0 − x̄ b)T

+
2n∑
i=1

wi (x
b
i � xb0 − x̄ b)(xbi � xb0 − x̄ b)T + Q, sparsity index set I,

Pxy = w0(x
b
0 − x̄ b)(ybi − ȳb)T +

2n∑
i=1

wi (x
b
i � xb0 − x̄ b)(ybi − ȳb)T ,

Pyy =
2n∑
i=0

wi (y
b
i − ȳb)(ybi − ȳb)T + R.

(21)

Step 3. Kalman gain and analysis

K Pyy = Pxy,

xa = x̄ b + K (yo − ȳb),

Pa = Pb − K (Pxy)
T + γ I, sparsity index set I.

(22)

The constant term γ I in (22) is a diagonal matrix. The value of γ is selected
so that Pa is positive definite, which is guaranteed if γ is larger than the smallest
negative eigenvalue of

Pb − K (Pxy)
T . (23)
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If this matrix is positive definite, then γ = 0. In the case that a fixed lower bound
of eigenvalues is unknown, the value of γ can be adaptively changed in every cycle
depending on the smallest negative eigenvalue of (23). Numerical algorithms of find-
ing the smallest eigenvalue for high dimensional matrices is needed for the determi-
nation of γ . Studies about this problem is out the scope of this paper. A survey on
this topic can be found in Davidson (1989).

How to determine the index sets for sparse vectors/matrices? This is a problem
for which we do not have a complete answer. The selection of I for Pa is a trade-
off between the computational cost and the approximation accuracy. If |I| is small
(highly sparse), Pa may not be a good approximation of Pa because too many
nonzero entries are set to zero; if |I| is large, it increases the computational cost.
The sparsity index set, Iσ , of (

√
Pa) is determined by the sparsity of

√
Pa . If the

square root is the Cholesky factorization, this matrix is already sparse. The number
of nonzero entries in

√
Pa is larger than the size of I (Rozin and Toledo 2005).

However, one may use a smaller set as Iσ to speed up the computation. Once again,
this is a trade-off between computational cost and accuracy. In (19), Ib

i is the index
set of xbi , which is the propagation of the i th σ -point. The indices in Ib

i represent
those entries in xbi that are most sensitive to the variation of the entries of xσ (k − 1)
with indices in Iσ

i . Or equivalently, x
b
i contains those entries of x

b
i that have relatively

large change when the value of Xa
i is changed. In general, these sparsity index sets

are different from each other. However, as a means of reducing computational loads,
we may use one index set for all three, Ii , Iσ

i and Ib
i . This idea is tested in the next

section on a Lorenz-96 model.
In the sparse-UKF, the assumption is that Pa can be approximated by a sparse

matrix Pa . Although the σ -points in the algorithm play a similar role as that of
ensembles in EnKF, using sparse-UKF one can avoid the problem of rank deficiency.
For systems with very high dimensions, the number of ensemble members used in an
EnKF is much smaller than the dimension. As shown in Fig. 2 (left plot), the narrow
and tall matrix of ensemble vectors makes EnKF fundamentally a rank deficient
approach. In contrast, the block diagonal matrix Pa shown in Fig. 2 (middle plot) as
a sparse approximation of Pa has full rank.

The computational load required by (19) in Step 1 is extremely high if full state
vectors are computed. Thanks to the sparsity, we only need to compute the entries
with indices in Ib. For a sparse-UKF to be successful for high dimensional problems,
it is critical to have component-based numerical models so that only the entries with
indices in Ib are computed; and most entries of the state vector are not evaluated at
all. It is also important to point out that individual terms for i = 1, 2, . . . , 2n in (19),
(20) and (21) can be computed independent of each other, making the computation
perfectly parallel. Because matrices of covariance are symmetric, the memory size
and I/O usage for the computation of covariance can be significantly reduced. For
instance, the number of nonzero entries in the upper half of Pa is less than or equal to

n

(
Nsp − 1

2
+ 1

)
(24)
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Fig. 2 Patterns of ensemble vectors and sparse error covariances

If Nsp is an integer close to the ensemble size of an EnKF, then (24) is smaller than the
number of entries in the ensemble matrix, which is dense and nonsymmetric. Shown
in Fig. 2 (middle and right plots) are the sparsity patterns of Pa and

√
Pa that we find

in some examples. Note that the number of nonlinear entries in each column may
vary. An advantage of the sparse-UKF is the capability of easily assigning different
sparsity to different columns in Pa by using the index sets Ii , Iσ

i and Ib
i .

3.4 Lorenz-96 Model

In this section, we use a Lorenz-96 model that was first introduced in Lorenz (1996)
to test the performance of the sparse-UKF. Consider

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, . . . , n,

xn+1 = x1,

n = 40,

	t = 0.025,

F = 8.

(25)

The system has chaotic trajectories as shown in Fig. 3, a plot of x1(t), x2(t), x3(t).
The simulations are conducted based on a 4th-order Runge-Kutta discretization. The
trajectories are used as the ground truth. The sparsity pattern for Pa and

√
Pa are

assumed to be centered along the diagonal line with a fix length. The total number
of nonzero entries in each column is Nsp. We would like to point out that the sparse
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Fig. 3 A chaotic trajectory
of the Lorenz-96 model,
x1(solid), x2(dash), x3(dot)
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matrices are approximations of the true error covariance and its square root. The true
sparsity pattern of

√
Pa is, in fact, different from that of Pa . In the approximation,

however, we ignore the difference and use the same sparsity pattern for both. This
idea of simplifying index sets works fine for the Lorenz-96 model. A systematic way
of choosing the sparsity pattern for

√
Pa based on given Pa is an open problem that

needs further study.
The numerical experimentation is based on N = 1000 uniformly distributed ran-

dom initial states in [−1 1]. The time step size is 	t = 0.025. The total number
of time steps for each simulation is Nt = 4000. The number of observations at any
given time is m = 20, i.e. every other state variable is measured,

y(k) = [
x1(k) x3(k) x5(k) · · · x39(k)

]T
. (26)

The observational error has the Gaussian distribution. Its covariance is R = I , the
identity matrix. The initial background error covariance is Pb(0) = 0.2I . The esti-
mation error is defined by the following RMSE

RMSE =
√√√√ 1

n(Nt + 1)

Nt∑
k=0

||xa(k) − xtruth(k)||22. (27)

For comparison, an EnKF is also applied to the same data set. The localization radius
is ρ = 4 and the inflation factor is

√
1.08. A full scale UKF based on dense error

covariance is applied as the best estimator in the study. The number of nonzero entry
evaluations in the computation of Pa and

√
Pa , an indicator of computational load,

is
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Table 2 Summary of simulation results

Filter Size Nonzero Entries Error Error Error

Entries EVAL Median Mean STD

EnKF Nens = 10 400 in
ensemble

400 0.3462 1.0741 1.0652

S-UKF Nsp = 7 160 in Pa 600 0.3061 0.3067 0.0071

S-UKF Nsp = 11 240 in Pa 920 0.2691 0.2691 0.0048

UKF Full
covariance

820 in Pa 3200 0.2358 0.2360 0.0039

Fig. 4 Boxplot of RMSE
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2nNsp + n (28)

Reducing the number of entries being evaluated, such as using a smaller set of σ -
points, and testing the impact of Cholesky factorization on the efficiency of UKF are
ongoing research topics not addressed in this chapter.

Shown in Table2, the EnKF has Nens = 10 ensemble vectors with a total of 400
nonzero entries. In comparison, the sparse-UKFs with Nsp = 7 and 11 have much
smaller numbers of nonzero entries to be evaluated and stored in memory. A smaller
number is desirable because it implies reduce I/O load and the amount of memory
usage. In terms of computational load, the number of entry evaluations for the sparse-
UKFs are higher. This is mainly due to the propagation of the 2n σ -points. Studies
show that reducing the number of σ -points to n is possible. However, its impact on
the estimation accuracy has to be studied case by case, which is beyond the scope
of this chapter. In the columns under error median and mean, the numbers show that
both sparse-UKFs achievemore accurate estimation than EnKF. Themost significant
advantage of sparse-UKFs are the small variation of estimation error. In Table2, the
error standard deviation of the sparse-UKFs are 0.0071 and 0.0048, which is in
sharpe contrast to 1.0652 of EnKF. The error of EnKF has large variation due to the
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method’s high dependency on the subspace in which the ensembles are selected. This
problem does not exist for the sparse-UKF because Pa has full rank. The variation of
errors is clearly shown in the boxplot in Fig. 4. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points the algorithm considers to be not outliers, and the
outliers are plotted individually. For comparison, the error boxplot of the full size
UKF is included in Fig. 4.

4 Progressive-EKF

In a sparse-UKF, the σ -points are computed by taking a square root of the error
covariance, such as the Cholesky factorization. In this section, we propose a pro-
gressive algorithm of approximating error covariance without taking square roots.

4.1 Basic Ideas

The main assumption for this algorithm is the following progressive relationship

Mk−1Pa(k − 1)MT
k−1 = Pa(k − 1) + 	Pb, (29)

where	Pb is assumed to be small. In (29), Mk−1 is the Jacobian ofM at xa(k − 1).
Similarly, the Jacobian of H is Hk . To estimate 	Pb, assume

Mk−1 = I + 	Mk−1. (30)

where we assume that 	Mk−1 is small. If the system model is based on the dis-
cretization of a differential equation with a small time step size, then

M(x(k − 1)) = x(k − 1) + O(	tα), α > 1. (31)

The Jacobian of Ok−1(	tα) in space variables is expected to have small value if 	t
is small, which makes (30) a reasonable assumption. Then we have

Mk−1P
a(k − 1)MT

k−1

= (I + 	Mk−1)P
a(k − 1)(I + 	MT

k−1)

= Pa(k − 1) + 	Mk−1P
a(k − 1) + (

	Mk−1P
a(k − 1)

)T
+ 	Mk−1P

a(k − 1)	MT
k−1

≈ Pa(k − 1) + 	Mk−1P
a(k − 1) + (

	Mk−1P
a(k − 1)

)T
.

(32)
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This is in consistent with (29). It can be computed using a tangent linear model. Or
it can be approximated using the dynamical model

Mk−1P
a(k − 1)MT

k−1

= (I + 	Mk−1)P
a(k − 1)(I + 	MT

k−1)

≈ (M(x(k − 1) + δPa(k − 1)) − M(x(k − 1))
)
/δ

+ (M(x(k − 1) + δPa(k − 1)) − M(x(k − 1))
)T

/δ − Pa .

(33)

where δ > 0 is the step size of a finite difference approximation of 	Mk−1Pa . Its
value should be determined depending on the numerical model and its linearization.
In (33), a vector and matrix summation is a new matrix resulting from adding the
vector to every column in the matrix. Applying an operator to a matrix is to apply
the operator to every column in the matrix.

4.2 Progressive-EKF

The column vectors in the matrices in (32) and (33) are sparse. However, the number
of column vectors equals n, which can be as high as 106−107 for some atmospheric
models. Applying a full model to all the vectors is impractical because of the high
computational and I/O loads. Similar to the idea that we used in sparse-UKF, we
approximate the error covariance using a given sparsity, i.e., only a small portion of
the entries in each column vector is evaluated. Evaluating the entire state vector is
unnecessary. This is the reason we need a component-based model. Then the algo-
rithm of progressive-EKF is summarized as follows.

Algorithm II (progressive-EKF)
Given the initial analysis at t = k − 1,

xa(k − 1) and Pa(k − 1). (34)

Step 1. Forecast
xb = M(xa(k − 1)),
yb = H(xb).

(35)

Step 2. Background error covariance

Pb = (M (
xa(k − 1) + δPa(k − 1), I) − xb

)
/δ

+ (M (
xa(k − 1) + δPa(k − 1), I) − xb

)T
/δ − Pa + Q.

(36)

Step 3. Kalman gain and analysis
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K = PbHT
k (Hk P

bHT
k + R)−1,

xa = xb + K (yo − yb),

Pa = (I − K Hk)P
b.

(37)

Different from the sparse-UKF, this algorithm avoids the computation of matrix
square roots. However, the algorithm requires that 	Pb in (29) can be approximated
effectively. From (31), the method is expected to work better for a small time step-
size. If 	t is large, 	Mk−1 in (30) may not be small enough. A remedy is to use a
refined step-size in an inner-loop computation. More specifically, the discrete model
is a discretization of a continuous-time model. The discrete time moment k − 1
corresponds to the continuous time moment (k − 1)	t . We refine the step size by
dividing the time interval into np subintervals. In our examples, we choose np = 2.
The refined time steps are

(k − 1)	t, (k − 1)	t + 	t

n p
, . . . , (k − 1)	t + s

	t

n p
, . . . , k	t, 0 ≤ s ≤ np

(38)
For the inner loop, one can compute a sequence of backgrounds, x̃ b(s).

ts = (k − 1)	t + s
	t

n p
,

x̃ b(s) = M̃ts (x
a(k − 1)), s = 1, 2, . . . , np.

(39)

where M̃ts represents the refined model function in the time interval from t = (k −
1)	t to t = ts . In Step 2, repeat (36) np times along the sequence of background
states, x̃ b(s), without adding Q until the last round. This refined Step 2 increases the
computational load, while improving the accuracy of the progressive estimation.

4.3 Examples

In the following, we apply the progressive-EKF to the Lorenz-96 model using the
same parameters given in (25). The analysis is based on the simulation data using
N = 1000 random initial states, in which the value of each state variable is uni-
formly distributed in [−1, 1]. The error covariance is approximated using sparsity
matrices with Nsp = 7, 11, 17. For Nsp = 11, we tested the idea of refining step-size
using np = 1 and np = 2. The results are summarized in Table3. The boxplots of
error variation are shown in Fig. 5. Comparing to EnKF, the error variations of the
progressive-EKFs are significantly smaller. If Nsp = 7, which is smaller than the
ensemble size Nens = 10, the median value of estimation error is larger than that of
the EnKF. The median error for Nsp = 11 is comparable to that of the EnKF. If a
refined step-size in (39) is applied, for instance np = 2, the median estimation error
is further reduced. Comparing to the performance of the sparse-UKF in Table2, the
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Table 3 Summary of simulation results

Filter Size Nonzero Entries Error Error Error

Entries EVAL Median Mean STD

EnKF Nens = 10 400 in
ensemble

400 0.3462 1.0741 1.0652

P-EKF Nsp = 7
Np = 1

160 in Pa 320 0.3845 0.3846 0.0055

P-EKF Nsp = 11

Np = 1

240 in Pa 480 0.3455 0.3458 0.0050

P-EKF Nsp = 11

Np = 2

240 in Pa 480×2 0.3041 0.3041 0.0044

P-EKF Nsp = 17

Np = 3

360 in Pa 720×2 0.2872 0.2873 0.0046

Fig. 5 Boxplot of RMSE.
For Prograssive-KF, Nsp = 7,
11, and 17
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error variations are similar. However, the estimation error of the sparse-UKF has a
smaller median in all cases. For example, to achieve a similar performance as the
sparse-UKF when Nsp = 11, one has to use a larger sparsity index Nsp = 17 for the
progressive-EKF.

5 Conclusions

Two Kalman type filters, sparse-UKF and progressive-EKF, based on sparse error
covariances are introduced. They are tested using the Lorenz-96 model with 40 state
variables and chaotic trajectories. Both algorithms share the same basic idea: the
error covariance is approximated using a sparse matrix. Thanks to the sparsity, the
required memory size is significantly reduced. The symmetry of the error covariance
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can potentially reduce the I/O load. The analysis error covariance can be updated as a
sparse matrix in each cycle using a deterministic process, either a square root matrix
or a progressive algorithm. The updated sparse matrix is then used as the background
error covariance for the next cycle. Relative to EnKFs, the main advantage of the pro-
posed methods is that the estimation process do not need an ensemble; and the error
covariance has a full rank. The algorithms do not suffer issues of rank deficiency as
in EnKFs. As a result, the variation of analysis error is constantly small in all exam-
ples. Techniques of localization and covariance inflation are unnecessary. Relative to
4D-Var methods, the proposed algorithms are highly parallel in computation. They
provide not only the estimate of states but also the analysis error covariance. For
the purpose of scalability, we suggest that the proposed methods are applied with
component-based numerical models. From the examples, the sparse-UKF has better
accuracy than the progressive-EKF. On the other hand, the progressive-EKF is a
simple algorithm that avoids taking square roots of large matrices, provided that the
progressive approximation of error covariance is adequately accurate. The limited
number of examples in this chapter is not enough for drawing a comprehensive com-
parison between the two filters. More numerical experimentations and further study
of the methods using different types of system models are main topics of our future
work.
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