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Abstract Multifidelity methods aim to leverage the availability of models at dif-
ferent levels of fidelity describing the same physical phenomena and are receiving
growing attention in computational science. One field that can considerably benefits
from statistical multifidelity approaches is data assimilation. This chapter presents a
broad overview of multifidelity methods in data assimilation for hierarchies of mod-
els and hierarchies of observations.We introduce the theoreticalmultifidelityKalman
filter, and discuss its practical implementation using an ensemble-based framework
as the multifidelity ensemble Kalman filter (MFEnKF). The discussion builds upon
the theory of linear and nonlinear control variates. Numerical examples compare the
multifidelity and the traditional EnKF.

1 Introduction

An often ignored principle in Bayesian inference is that the inference requires the uti-
lization of all available knowledge and all the relevant information available (Jaynes
2003). In the context of data assimilation, especially for physical systems, one often
has access to hierarchies of multiple models, each one more accurate than its prede-
cessor in the hierarchy; higher resolution models can be obtained by simply refining
the simulation grid or step-size, or through the ability to more accurately capture the
underlying physical phenomena. In addition, one frequently has access to observa-
tions of the same physical variable through different types of sensors. The principle
of Bayesian inference asks to not discard this information, but to incorporate it when-
ever possible.

Multifidelity data assimilation refers to methods that merge information about the
same underlying natural truth obtained through the use of multiple models or obser-
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vation operators at different levels of fidelity. For a survey of general multifidelity
methods and types of multifidelity models see Peherstorfer et al. (2018).

First introduced by Giles (2008) and then later more formally defined in Giles
(2015) the ‘multilevel’ Monte Carlo filter describes the optimal linear coupling
between different ‘levels’ of simulations (which we generalize to calling fidelities).
Here we aim to generalize the notion of levels to fidelities. We introduce a formal
notion of structure in the relation between fidelities, and also within the structure
that optimally combines the information contained therein.

This chapter is organized as follows. The rest of the introduction is concerned
with describing the data assimilation problem, and the idea of multifidelity models.
Control variate theory is introduced in Sect. 2. The problem of multifidelity inference
is introduced in Sect. 3, with the multifidelity Kalman filter discussed in Sect. 3.1 and
the multifidelity ensemble Kalman filter in Sect. 3.2. We then introduce the concept
of multifidelity observations in Sect. 4. A trivial numerical example with the Lorenz
’96 system is shown in Sect. 5. We conclude with some remarks in Sect. 6.

1.1 Notation

Consider a random variable χ . The distribution of χ is denoted by πχ , and an
ensemble representing N samples from the distribution by Eχ = [χ (1), . . . ,χ (N )].
We (exact) denote the mean by μχ , and the empirical sample mean by μ̃χ . The
covariance between random variables χ and υ is denoted by �χ,υ , and the empirical
sample covariance by ˜�χ,υ .

1.2 The Data Assimilation Problem

We seek to model the state X of a dynamical system with an imperfect model,

Xi = Mi (Xi−1) + �i , (1)

where the model errors at different times �i are independent of each other. We
assume the errors have mean zero, μ�i = 0, and covariances ��i ,�i .

Observations of the true state Xt
i are available at discrete time moments i :

Yi = Hi (X
t
i ) + ηi , (2)

where we again assume that the observation errors ηi at different times are indepen-
dent of each other, have mean zero, μηi = 0, and covariances �Yi ,Yi .

Given prior information Xb
i about the state at time i , and noisy observations of

the truth, the filtering problem consists of sequentially computing the posterior, Xa
i

in some (usually Bayesian) inference sense.
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Explicitly, the Bayesian formulation (Reich and Cotter 2015) aims to find

π(Xa
i ) = π(Xb

i |Yi ) = π(Yi |Xb
i )π(Xb

i )

π(Yi )
, (3)

in some approximate way, as the problem, more often than not, is computationally
intractable.

1.3 Multifidelity Models

The focus of multifidelity data assimilation is to compute the inference (3) using
not a single model (1), but leveraging a hierarchy of models at different fidelities.
Consider two levels of fidelity, and assume that our high fidelity state variable is X
and coarse fidelity variable is U . The two models that propagate these quantities in
time are:

Xi = MX
i (Xi−1), (4)

Ui = MU
i (Ui−1). (5)

The goal of multifidelity data assimilation is to make use of these different models
to incorporate as much information as possible.

An important aspect of multifidelity models, which is a generalization of multi-
level hierarchies, is that the the state spaces of the different models do not necessarily
have to be the same. In fact, we will assume that the fine fidelity model state can be
embedded into Rn and that the coarse fidelity model state can be embedded into Rr ,
where typically r < n, though this is not necessarily the case.

Alternatively, we can think of the word ‘model’ as describing the operator about
which we are optimizing. In a data assimilation context this will often be our obser-
vations. Assume that there exist two ways of obtaining observations (2) of the same
fundamental phenomenon, one defined by a fine fidelity operator Hχ , and the other
defined by a coarse fidelity observation operator,Hυ , such that,

Y χ = Hχ (Xt ) + ηχ , (6)

Y υ = Hυ(Xt ) + ηυ, (7)

wherein the goal would shift to either combining and utilizing the observations
in some optimal way without loss of information, but also without duplication of
information.
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2 Control Variates

The linear control variate technique (Rubinstein and Marcus 1985) is a method for
reducing the variance of an estimator by making use of highly correlated data about
which additional information is known. Assume our quantity of interest is described
by the distribution of the principal variateχ . The distribution of the highly correlated
control variate υ̂ describes information in an alternate way (such as in a different
space), and the distribution of an independent (or more weaker, uncorrelated) ancil-
lary variate υ describes information related to that of the control variate and shares
the same mean, μυ̂ = μυ . The linear control variate approach builds a total variate
ζ

ζ = χ − S(υ̂ − υ), (8)

where the free parameter S, known as the gain operator, is chosen to minimize the
generalized variance of ζ . The three variates that make up the total variate will be
collectively called the constituent variates.

Theorem 1 (Unbiased nature of linear control variates)Without proof, the mean of
the total variate equals the mean of the principal variate,

μζ = μχ . (9)

Theorem 2 (Optimal gain for linear control variates) The optimal gain matrix S that
minimizes the trace of the covariance of (8) is

S = �χ,υ̂

(

�υ̂,υ̂ + �υ,υ

)−1
. (10)

Proof Observe that the covariance of (8) is

�ζ,ζ = �χ,χ − S�υ̂,χ − �χ,υ̂ST + S�υ̂,υ̂ST + S�υ,υST . (11)

Taking the derivative with respect to S of the trace of (11),

∂

∂S
tr

(

�ζ,ζ

) = −2�χ,υ̂ + 2S
(

�υ̂,υ̂ + �υ,υ

)

, (12)

the local minimum is found at (10), as required.

Corollary 1 By simple manipulation, the covariance of the total variate under the
optimal gain from Theorem 2 is:

�ζ,ζ = �χ,χ − �χ,υ̂

(

�υ̂,υ̂ + �υ,υ

)−1
�υ̂,χ , (13)

from which it is clear that�ζ,ζ ≤ �χ,χ in the symmetric semi-positive definite sense.



Multifidelity Data Assimilation for Physical Systems 47

The linear control variate technique can be derived in a parallel but completely
alternateway.Taking the principal, control, and ancillary variates asGaussian random
variables, the total variate is the solution to the Bayesian inference problem,

π(ζ ) = π(χ |υ̂, υ). (14)

which is a well-known result due to Kalman (1960).
Following Nelson (1987) we now attempt to introduce the idea of non-linear

control variates. Instead of searching for function approximations that follow a set of
rules, we will instead view the problem of finding the total variate ζ in terms of the
principal, control, and ancillary variates as an inference problem, generalizing (14)
to arbitrary distributed variables. Specifically, we seek to cast the general inference
problem (and specific approximations thereof) into an application of some problem-
specific transform,

ζ = T (χ, υ̂, υ), (15)

with the function T represents a distribution transformation on the principal variate,
built making use of the information given by the control and ancillary variates.

For the remainder of this chapter we will assume that the control variate is related
to the principal variate through a deterministic function (coupling),

υ̂ = θ(χ), (16)

which implies that there is necessarily some loss of information from the space of
the total and principal variates to the space of the control and ancillary variates.

An important generalization of the control variate concept is its ability to be
applied in a nested form. This means that the total variate ζ can itself be an
ancillary variate for a finer fidelity principal variate. Assume that we have
to have F fidelities, with υF being the coarsest fidelity ancillary variate. Its
corresponding control variate is υ̂F , and its principal and total variates are on
levelF − 1: χF−1 and ζF−1. The total variate is then also the ancillary variate
for the next set,

υF−1 ←− ζF−1, (17)

which can be generalized all the way up the chain, until we reach the the
constituent variates χ1, υ̂2, and υ2, that represent the full information content
through the total variate ζ1. Explicitly, fromPopov et al. (2020), the total variate
for F fidelities and the corresponding optimal gain matrices can be written as,

ζ = χ −
F

∑

f =1

S f
(

υ̂ f − υ f
)

, S f =
f

∏

ψ=1

Sψ. (18)
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2.1 Ensemble Control Variates

Instead of employing the exact distribution of a random variable, which usually is
considered to be an intractable task, an ensemble of samples is typically used.

We will discuss the ways in which ensemble multifidelity inference is performed
in a later section. Here we concern ourselves with the problem of finding an ensemble
representation of the total variate (8) given an ensemble of Nχ samples of the principal
variate Eχ = [χ (1), . . . χ (Nχ )] and corresponding pairwise samples of the control
variate Eυ̂ = [υ̂(1)

, . . . υ̂
(Nχ )]. We seek to find an ensemble of the total variate Eζ =

[ζ (1), . . . ζ (Nχ )].
We will define the ensemble means as

μ̃χ = 1

Nχ

Eχ1Nχ
∈ �n, μ̃υ̂ = 1

Nχ

Eυ̂1Nχ
∈ �r , (19)

and the anomalies as,

Aχ = Eχ − μ̃χ1
T
Nχ

∈ �n×Nχ , Aυ̂ = Eυ̂ − μ̃υ̂1
T
Nχ

∈ �r×Nχ . (20)

Assume that we are given either the mean and covariance of the ancillary variate
(μυ and�υ,υ), or that we are able to derive empirical approximations μ̃υ and ˜�υ,υ an
ensemble of Nυ samples of υ, Eυ . In the first approach we utilize the linear control
variate framework (8).

There are numerous ways in which to derive the ensemble of the total variate.
One way is to create a synthetic ensemble of Nχ samples of the ancillary variate
sampled from its known distribution. Denote this ensemble ˜Eυ . Under the linear
control variate approach,

Eζ = Eχ − S(Eυ̂ − ˜Eυ), (21)

where the optimal gain is approximated by

˜S = ˜�χ,υ̂

(

˜�υ̂,υ̂ + �υ,υ

)−1
. (22)

The astute reader will recognize this as the ‘perturbed observations’ ensemble
Kalman filter (Houtekamer and Mitchell 1998).

An alternate formulation that does away with the synthetic ensemble assumes a
Gaussian prior on the ancillary variate, and uses the optimal empirical gain,

Eζ = μ̃χ1
T
Nχ

+ AχT
(

INχ
− 1

Nχ − 1
TTAT

υ̂ �−1
υ,υ(μ̃υ̂ − μυ)1TNχ

)

, (23)

T =
(

INχ
− 1

Nχ − 1
AT

υ̂

(

˜�υ̂,υ̂ + �υ,υ

)−1
Aυ̂

) 1
2

, (24)
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which the astute reader will recognize as the ensemble transform Kalman filter
(ETKF) (Bishop et al. 2001).

Note that if it is not possible to represent the covariance of the ancillary variate
exactly, then one needs to compute the optimal gain in alternate ways.

Another interesting approach to ensemble inference is the importance sampling
optimal transport procedure (Reich 2013). In essence, one constructs the posterior
mean from the importance sampling procedure,

μζ = Eχw, (25)

[w]i ∝ πυ(υ̂
(i)

). (26)

The anzatz is made that the optimal transportation into an equally weighted ensemble
with the same mean defines an ensemble with the same empirical moments as those
defined by the importance sampling weights,

Eζ = EχT∗, (27)

where the optimal transport is defined in the Monge-Kantorovich sense,

T∗ = argminT
∑

1≤i, j≤Nχ

[T]i j
∥

∥χ (i) − χ ( j)
∥

∥

2

2

subject to: T1Nχ
= Nχw, TT 1Nχ

= 1Nχ
, [T]i j ≥ 0,

(28)

which ensures that the weights of the new posterior ensemble are equal.
Second order accurate (preserving the weighted ensemble covariance) extensions

to this formulation exist (Acevedo et al. 2017) and should be used if thismethodology
is to be attempted operationally.

3 Multifidelity Filtering

For ease of exposition we primarily focus on the case of two fidelities; multifidelity
extensions will be described separately.

Assume now that the state of a dynamical system is our quantity of interest, and
that there are two different fidelities in which we can represent it: fine and coarse.
Let the distribution of the principal variate Xb represent the prior information about
the state at fine fidelity. Let Û b be its corresponding control variate, and Ub be the
ancillary variate, the distributions of which describe information about the state at
coarse fidelity.
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Assume that the prior total variate Zb represents the general posterior of the
multifidelity inference procedure (14). Note that it is possible, with some abuse of
notation, to represent the inference as an application of some nonlinear function,

Zb = C(Xb, Û b,Ub), (29)

with the function C defining an implicit assumption about the relationship between
the four variates, such as the linear control variate assumption (8) or an optimal
transport based assumption (27) if our variates are represented by ensembles. In the
most general sense, C can represent some non-linear variance reduction technique
that is informed by the distributions of the constituent variates (Nelson 1987).

The prior total variate is Zb and the posterior total variate is Za , defined by the
same function applied to its component variates:

Za = C(Xa, Û a,Ua). (30)

The inference step from the prior total to the posterior total variates is a filtering
step which explicitly combines information,

Za = F(Zb,H(Zb),Y ), (31)

with the function F standing in for some filter, such as the Kalman filter.
The principal variate can be propagated by some constituent filter,

Xa = ˜F Z
X (Xb,H(Xb),Y ), (32)

which is dependent on Zb, Za and the filter F that is implicitly applied between
them. Similar formulations can be made for the other constituent variates.

Note that the goal of one step of a multifidelity filter is not to find the posterior
total variate Za , but rather to find posteriors of its constituent variates, Xa ,
Û a , and Ua . In fact, as the total variate is merely a synthetic construction,
the multifidelity inference reduces to performing virtual inference on the total
variate by manipulating the principal, control, and ancillary variates. In this
way the explicit filtering of the total variate (31) is not performed, but only the
constituent filtering problems (32) are explicitly solved.

While the general problem of finding the analysis principal variate Xa given only
the analysis total variate Za is not well posed, the combined problem of finding the
distributions of Xa , Û a , and Ua may be posed in terms of a minimum cross entropy
problem:

Xa, Û a,Ua = argminXa ,Û a ,Ua H(Xb, Xa) + H(Û b, Û a) + H(Ub,Ua), (33)
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subject to the constraints,

Za = C(Xa, Û a,Ua), Za = F(Zb,H(Zb),Y ), (34)

E[Û a] = E[Ua], Û a = θ(Xa), (35)

from which the constituent filters (32) are implicitly defined.

A powerful assumption that can be made is that the same control structure
imposed on the prior is also imposed on the posterior. We call this the ‘control
structure consistency assumption’. One way in which this holds in the linear
control variate approach is:

Zb = Xb − Sb(Û b −Ub), (36)

Za = Xa − Sa(Û a −Ua), (37)

where the we impose the assumption that the (approximately) optimal prior
and posterior gains are equivalent,

Sb = Sa, (38)

meaning that we restrict all possible posterior constituent variates to ones that
obey the same structure as their prior counterparts. One way in which this is
achieved is by assuming a particular structure on the relationship between the
principal and control variate (16) from Popov et al. (2020).

3.1 Multifidelity Kalman Filter

We now introduce the multifidelity Kalman filter (MFKF), fleshed out from Popov
et al. (2020). AsGaussian random variables can be trivially combined through known
formulas involving their means and covariances, the MFKF is not an algorithm that
needs to exist for the purposes of practical implementation, but merely needs to exist
to explain derivations of practical extensions thereof.

We restrict ourselves to a linear principal-control variate coupling (16),

Ûi = θ(Xi ) = �Xi , (39)

with � a projection operator from the n-dimensional space of the principal variate
onto the r -dimensional space of the control variate. The corresponding interpolating
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operator is denoted� (such that�� = Ir ). We decompose the principal variate into
its control variate and residual variate components:

Xi = � Ûi + 
Xi . (40)

Additionally, as is canonical, we restrict ourselves to the case of a linear observa-
tion operator Hi .

For the rest of this chapter we assume that we seek to propagate the total variate,

Zi = Xi − Si (Ûi −Ui ), (41)

through both a dynamical model (forecast step), and through the analysis step con-
ditioned by observations.

We express the moments of the total variate in terms of the moments of the
corresponding constituents:

μZi = μXi − Si (μÛi
− μUi ), (42)

�Zi ,Zi = �Xi ,Xi + Si�Ûi ,Ûi
ST
i + Si�Ui ,UiS

T
i − Si�Ûi ,Xi

− �Xi ,Ûi
ST
i . (43)

We are now ready to look at theMFKF. For the forecast step, assume that we have
a linear fine fidelity modelMX

i , and a linear coarse fidelity modelMU
i . Assume that

the error �i of the fine fidelity model is unbiased and is known to have covariance
��i ,�i . Assume additionally that the coarse fidelity model has no error in the coarse
subspace in relation to the truth. This could be because the coarse fidelity model was
built to capture this error through data driven closures.

Assume that we have the posterior information at the previous step i − 1 about the
principal, control, and ancillary variates, and that the relation between the principal
and control variate (39) holds. We propagate the means as follows:

μXb
i

= MX
i μXa

i−1
, (44)

μÛ b
i

= MU
i μÛ a

i−1
, (45)

μUb
i

= MU
i μUa

i−1
, (46)

with the covariances propagated as,

�Xb
i ,X

b
i

= MX
i �Xa

i−1,X
a
i−1
MX,T

i + ��i ,�i , (47)

�Xb
i ,Û

b
i

= MX
i �Xa

i−1,Û
a
i−1
MU,T

i , (48)

�Û b
i ,Û b

i
= MU

i �Û a
i−1,Û

a
i−1
MU,T

i , (49)

�Ub
i ,Ub

i
= MU

i �Ua
i−1,U

a
i−1
MU,T

i , (50)
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We note that unless the principal variate residual is not propagated in control
space by the fine fidelity model,

�MX
i 
Xa

i−1 = 0, (51)

then the abovepropagationwill violate (39). Therefore, as a useful heuristic, the
propagation of the control variate moments can be replaced by the propagation
of the projected principal variate moments in order for the relation (39) to hold
more strongly at each step,

μÛ b
i

= MU
i �μXa

i−1
, (52)

�Xb
i ,Û

b
i

= MX
i �Xa

i−1,X
a
i−1

(

MU
i �

)T
, (53)

�Û b
i ,Û b

i
= MU

i ��Xa
i−1,X

a
i−1

(

MU
i �

)T
. (54)

This is especially useful if the models are non-linear, generalizing to the mul-
tifidelity extended Kalman filter, or in the case of the multifidelity ensemble
Kalman filter later in the chapter in Sect. 3.2.

Lemma 1 The fine fidelity model, coarse fidelity model, posterior optimal gain at
step i − 1, and prior optimal gain at time i are related as follows:

MX
i S

a
i−1 = Sbi M

U
i . (55)

Proof By simple manipulation,

MX
i S

a
i−1 = MX

i �Xa
i−1,Û

a
i−1

(

�Û a
i−1,Û

a
i−1

+ �Ua
i−1,U

a
i−1

)−1
(56)

= �Xb
i ,Û

a
i−1
MU,T

i

[

MU
i

(

�Û a
i−1,Û

a
i−1

+ �Ua
i−1,U

a
i−1

)

MU,T
i

]−1
MU

i (57)

= �Xb
i ,Û

b
i

(

�Û b
i ,Û b

i
+ �Ub

i ,Ub
i

)−1
MU

i = Sbi M
U
i , (58)

as required.

Theorem 3 The MFKF forecast is the total variate forecast:

μZb
i

= MX
i μZa

i−1
, (59)

�Zb
i ,Z

b
i

= MX
i �Za

i−1,Z
a
i−1
MX,T

i + ��i ,�i . (60)



54 A. A. Popov and A. Sandu

Proof Using lemma 1, manipulate the formulation for the mean of Z in (42),

MX
i μZa

i−1
= MX

i μZa
i−1

, (61)

= MX
i μXa

i−1
− MX

i S
a
i−1(μÛ a

i−1
− μUa

i−1
), (62)

= μXb
i
− Sbi M

U
i (μÛ a

i−1
− μUa

i−1
), (63)

= μXb
i
− Sbi (μÛ b

i
− μUb

i
) = μZb

i
, (64)

as required. A similar manipulation can be performed for the covariance.

In order to obtain an efficient implementation of the analysis step in theMFKF,we
need to restrict the projection operator (39) to a class that has ‘nice’ properties. We
assume that the joint variability of the principal variate in the orthogonal complement
space and control variate is negligible,

�
X,Û ≈ 0, (65)

or alternatively that the projection operator � captures the dominant linear modes
of the variability in the dynamics of X . Common methods by which such operators
can be obtained are POD and DMD, and variants thereof (Brunton and Kutz 2019).

Theorem 4 If the first twomoments of the control and ancillary variate are identical,
and assumption (65) holds, then the optimal gain is,

S = 1

2
�. (66)

Proof Observe by Theorem 2 and (65),

S = �X,Û

(

�Û ,Û + �U,U
)−1 = 1

2
��Û ,Û�−1

Û ,Û
= 1

2
�, (67)

as required.

If we choose a projection operator for which (65) holds, then the optimal gain is
constant and does not have to be estimated. Moreover this provides for a clear rela-
tionship between the projection operator� and the optimal gain, such that�S = 1

2 Ir .
For the rest of this section we assume that S is constant.

We next discuss the analysis step of the MFKF. Note first that the Kalman gain
is the optimal gain when the principal variate is the prior information about the state
of the dynamics, the control variate is that information cast into observation space,
and the ancillary variate are the independent observations. Assume that the arbitrary
variateWb

i represents some prior information, wewrite theKalman gain as a function
of Wb

i ,

KWb
i

= �Wb
i ,Hi Wb

i

(

�Hi Wb
i ,Hi Wb

i
+ �Yi ,Yi

)−1
. (68)
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The standard Kalman filter analysis step applied to the total variate, as described
by (31):

Za
i (KZb

i
) = Zb

i − KZb
i
(Hi Z

b
i − Yi ), (69)

can be decomposed into its constituent variates:

Xa − S(Û a −Ua) = Xb − S(Û b −Ub) − KZb
i

(

H
(

Xb − S(Û b −Ub)
)

− Y
)

.

(70)
Taking the ‘natural’ decomposition of this relation into components leads to, the
constituent filters (32):

Xa = Xb − KZb
i

(

HXb − Y
)

, (71)

Û a = Û b − �KZb
i

(

H�Û b − Y
)

, (72)

Ua = Ub − �KZb
i

(

H�Ub − Y
)

, (73)

which assumes that the control and ancillary variates do not carry any additional
information from the orthogonal complement space of the principal variate.

The authors conjecture that the decomposition (71) approximately minimizes
the cross entropy functional (33) out of all such decompositions, though there
is no strong evidence for this claim as of yet.

The propagation of the total mean through its constituent variate means is:

μXa = μXb − KZb
i
(HμXb − y) (74)

μÛ a = μÛ b − �KZb
i

(

H�μÛ b − y
)

, (75)

μUa = μUb − �KZb
i
(H�μUb − y) . (76)

The corresponding covariance update formulas are:

�Xa
i ,X

a
i

=
(

I − KZb
i
H

)

�Xb
i ,X

b
i

(

I − KZb
i
Hi

)T + KZb
i
�Yi ,YiK

T
Zb
i
, (77)

�Xa
i ,Û

a
i

=
(

I − KZb
i
Hi

)

�Xb
i ,Û

b
i

(

I − �KZb
i
Hi�

)T
, (78)

+KZb
i
�Yi ,Yi

(

�KZb
i

)T
, (79)

�Û a
i ,Û a

i
=

(

I − �KZb
i
Hi�

)

�Û b
i ,Û b

i

(

I − �KZb
i
Hi�

)T
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+�KZb
i
�Yi ,Yi

(

�KZb
i

)T
, (81)
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Fig. 1 A diagram of the
MFKF computations,
including the heuristic
re-correlation of the principal
and control variates (52), and
the assumed relation between
the forecast variates (16)
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+�KZb
i
�Yi ,Yi

(

�KZb
i

)T
. (83)

The inner working of the MFKF is illustrated in Fig. 1.

Theorem 5 Without proof, if the optimal gain interpolation projection step does not
remove additional information from the control and ancillary variate (that is (65) is
exact), then the ‘natural’ decomposition (71) is exact, thus the linear control variate
combination of the mean is the total variate analysis mean,

μZa
i

= μXa
i
− S(μÛ a

i
− μUa

i
). (84)

Similarly for the covariances.

Theorem 6 Without proof, if S is the optimal gain (Theorems 2 and 4), then the
simple relation between the covariances of the principal and total variates is,

�Zi ,Zi = (In − S�)�Xi ,Xi . (85)

Thus we are able to obtain a covariance for the total variate by only knowing the
covariance of the principal variate.
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Analternate decomposition forwhichTheorem5 is exactwithout qualification,
that we will not be analyzing is:

Xa = Xb − KZb
i

(

HZb − Y
)

, (86)

Û a = Û b − �KZb
i

(

HZb − Y
)

, (87)

Ua = Ub − �KZb
i

(

HZb − Y
)

, (88)

These formulas, however, are difficult to implement using ensembles.

We show next how the variability of the total variate Za
i (KZb

i
), the principal variate

Xa
i (KZb

i
), and the principal variate analyzed by itself Xa

i (KXb
i
) are related.

Theorem 7 The covariances of Za
i (KZb

i
), Xa

i (KZb
i
), Xa

i (KXb
i
) are such that:

�Za(KZbi
),Za(KZbi

) ≤ �Xa(KXbi
),Xa(KXbi

) ≤ �Xa(KZbi
),Xa(KZbi

). (89)

Proof By the optimality of the Kalman gain KZb
i
in Theorem 2,

�Za(KZbi
),Za(KZbi

) ≤ �Za(KXbi
),Za(KXbi

), (90)

and by the optimality of the control variate relation S from Corollary 1,

�Za(KXbi
),Za(KXbi

) ≤ �Xa(KXbi
),Xa(KXbi

). (91)

The second inequality similarly relies on the optimality of the Kalman gain
KXb

i
.

Theorem 7 shows that the principal variate covariance is an upper bound on the
covariance of the total variate.

Relations (89) in Theorem 7 are valid only when the means of the constituent
variates are roughly equivalent. This is especially important in the ‘extended’
and ‘ensemble’ extensions to theMFKF. To achieve this, at each step we apply
the following heuristic correction:

μXa
i

←− μZa
i
, μÛ a

i
←− �μZa

i
, μUa

i
←− �μZa

i
, (92)

which additionally enforces the control variate relation (39), ensures that the
principal and total variate means are equivalent, and that the control and ancil-
lary variate means are equivalent.
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3.2 Multifidelity Ensemble Kalman Filter

Following Popov et al. (2020), we present the multifidelity ensemble Kalman filter
(MFEnKF).

Assume now that instead of manipulating the first two moments of our variates,
we manipulate ensembles. Assume that we have NX pairwise correlated samples of
the principal and control variates (X(i),OU(i)) represented by the ensembles EX and
EÛ , respectively, and NU ≥ NX samples of the ancillary variate U(i), represented by
the ensemble EU . We wish to construct practical ensemble-based generalizations to
the MFKF.

The forecast step, similar to the standard EnKF, and MFKF ((44) and (47)),
propagates the ensemble members individually through their respective models,

Xb,( j)
i = MX

i (Xa,( j)
i−1 ) + ξ

( j)
i , 1 ≤ j ≤ NX (93)

Ûb,( j) = MU
i (Ûa,( j)

i−1 ), 1 ≤ j ≤ NX (94)

Ub,( j) = MU
i (Ua,( j)

i−1 ), 1 ≤ j ≤ NU , (95)

where each ξ
( j)
i is a random sample accounting for the fine fidelity model error. The

coarse fidelity model bias is accounted for by the propagation of both the control
variate ensemble and ancillary ensemble through the coarse fidelity model.

Assume that the sample means, anomalies, and covariances are readily available
for the three constituent ensembles, from which it is possible to derive the empirical
estimates of the first two moments of the total variate,

μ̃Zi
= μ̃Xi

− Si (μ̃Ûi
− μ̃Ui

), (96)

˜�Zi ,Zi = ˜�Xi ,Xi + Si˜�Ûi ,Ûi
ST
i + Si˜�Ui ,UiS

T
i − Si˜�Ûi ,Xi

− ˜�Xi ,Ûi
ST
i , (97)

where once again we assume that the optimal gain is constant (66) from Theorem 4.
Similar to the standard EnKF, it is not explicitly required to compute the full total

background covariance, but merely the related cross-covariances with respect to the
observation operator:

˜�Zb
i ,Hi Zb

i
= ˜�Zb

i ,Z
b
i
HT

i , (98)

˜�Hi Zb
i ,Hi Zb

i
= Hi˜�Zb

i ,Z
b
i
HT

i , (99)

which can efficiently be computed by utilizing the observation ensemble anomalies.
From this the sample Kalman gain can be computed.

Applying the MFKF formulas (71) to the MFEnKF statistics it is possible to gain
access to the corresponding empirical Kalman gain,

˜KZb
i

= ˜�Zb
i ,Hi Zb

i

(

˜�Hi Zb
i ,Hi Zb

i
+ �Yi ,Yi

)−1
, (100)
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and the corresponding analysis of the anomalies,

AXa
i

= AXb
i
− ˜KZb

i
(AHi Xb

i
− EX

Yi ), (101)

AÛ a
i

= AÛ b
i
− �˜KZb

i
(AHi�Û b

i
− EÛ

Yi ), (102)

AUa
i

= AUb
i
− �˜KZb

i
(AHi�Ub

i
− EU

Yi ), (103)

where each EYi is an ensemble of perturbed observations. In Popov et al. (2020)
it was shown that there is no unique ‘nice’ solution to the problem of perturbed
observations in the MFEnKF, thus we will leave this discussion aside in this chapter.

In order to get an ensemble of Za , we can look towards the ensemble transform
Kalman filter, specifically at the ‘left transform’ variant (Sakov and Bertino
2011). Using known properties of thematrix shift lemma (Asch et al. 2016) and
the linearity of the control variate relation (39) one canwrite the transformation
of the ensemble of Xa into anomalies of Za given by the ETKF (23) as:

EZa = μ̃Za1TNX
+ (In − S�)

1
2AXa , (104)

which can be implemented in any number of computationally efficient ways
(Allen et al. 2000) beyond the scope of this chapter.

Note however that thismethodology relies on the equality of the covariances
of the control and ancillary variates, which especially in the ensemble case will
be violated.

We now discuss the main advantage of the MFEnKF: utilizing the same amount
of samples of the fine fidelity model as the standard EnKF, the MFEnKF provides a
more accurate mean analysis.

Theorem 8 Assume that we have access to the exact Kalman gains KZb
i
, KXb

i

from (68), of the theoretical Kalman filters. The variance of the empirical mean
of the analysis total variate computed with the total variate Kalman gain is less that
the variance in the empirical mean in the analysis principal variate computed with
the principal variate Kalman gain,

�μ̃Zai (K
Zbi

),μ̃Zai (K
Zbi

)
≤ �μ̃Xai (K

Xbi
),μ̃Xai (K

Xbi
)
. (105)
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Proof Assuming again that NU ≥ NX , and by Theorem 7,

�μ̃Zai (K
Zbi

),μ̃Zai (K
Zbi

)
≤ N−1

X �Za
i (KZbi

),Za
i (KZbi

) (106)

+(N−1
U − N−1

X )S�Ua
i (KZbi

),Ua
i (KZbi

)ST , (107)

≤ N−1
X �Xa

i (KXbi
),Xa

i (KXbi
), (108)

= �μ̃Xai (K
Xbi

),μ̃Xai (K
Xbi

)
, (109)

as required.

The perturbed observations MFEnKF is similar to a typical EnKF algorithm
in the way in which inflation and B-localization can be applied. An important
salient difference is that there is now an additional hyperparameter, namely the
inflation factor for the ancillary ensemble αU . Inflation for the principal and
control ensembles αX should be the same in order to keep them highly corre-
lated. As optimal inflation is known to depend on the ensemble size (Popov
and Sandu 2020), it should generally be the case that αU < αX .

3.3 Other ‘Multi-x’ Data Assimilation Algorithms

In this section we discuss other data assimilation algorithms in the ‘multi-’ family
that do not, as-of-now, have rigorous multifidelity counterparts.

3.3.1 Particle Filters

In Giles (2008, 2015), Giles discusses ‘multilevel’ Monte-Carlo simulations. The
case of projection and interpolation is ignored, and the optimal gain is explicitly set
to be identity. The author examines the component variates as being coupled through
their differences, which in a two-level control variate framework is equivalent to
examining the variates:

{

U

X − Û
, (110)

treating each as an independent source of information, with means:

{

μU

μX − μÛ

. (111)
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The implicit assumption is that the only important source of information is the mean-
estimate, and that μU carries negligible uncertainty. The intended use of such algo-
rithms is in small-dimensional cases where large ensembles on coarse fidelitymodels
can be created, thus this is not an unreasonable assumption.

In Gregory et al. (2016), Gregory and Cotter (2017), Gregory and co-authors
propose ‘multilevel’ ensemble transform particle filters (ETPF). The authors again
employ a linear control variate structure where the optimal gain is assumed to be the
identity, and in which all variable operations are performed on the same empirical
measures. The authors pay attention to the need for their principal and control variate
ensemble to be related, but do not pay attention to the optimality of the couplings.
Furthermore the authors utilize a coupling that is optimal for Gaussian random vari-
ables; an optimal coupling based on optimal transport could be utilized, while at the
same time performing transformations between ensembles through optimal transport
techniques.

It is of independent interest to develop more rigorous ‘multifidelity’ generaliza-
tions of such algorithms using the couplings outlined in this chapter.

3.3.2 Ensemble Kalman Filters

In Chernov et al. (2017), Hoel et al. (2016), the authors propose a ‘multilevel’ EnKF.
The authors extend the empirical measures (110) to spatial relations. In a two-level
framework the authors analyze the variables

{

U

X − �Û
, (112)

again treating each as an independent source of information, with the means:

{

μU

μX − �μÛ

, (113)

and the signed empirical measure covariance estimates:

{

�U,U

�X,X − ��Û ,�Û

. (114)

This covariance estimate is not guaranteed to be semi-positive definite. Additionally,
no attention is paid to utilize an optimal gain linear control variate structure, and the
enforcement the principal-control variate relation.
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4 Multifidelity Observations

We now discuss an optimal way in which to combine observations from different
sources at roughly similar physical locations of the same phenomenon. In operational
literature this is commonly dubbed ‘super-observations’ (Cummings 2005; Oke et al.
2008), though such formulations are largely heuristic in that they take naive averages
of interpolations of similar observations. The chief reason why observations are
combined instead of used separately is to reduce the observation space dimension,
making similar information represented in a denser format.

Assume that the true state is Xt , and recall the multifidelity observation defini-
tion (6) where the observations Y χ and Y υ have the observation errors ηχ , and ηυ that
are assumed to be unbiased and independent. We make the additional assumption
that the fine fidelity and coarse fidelity observation operators are deterministically
related by the coupling

Hυ(x) = θ(Hχ (x)), (115)

similar to the state relation assumed in (16).
The truth in observation space is assumed to be the expected value of the obser-

vation for each fine and coarse observation. This can be alternatively reformulated
as the truth in observation space is distributed according to a distribution with mean
Yχ and Yυ for the fine and coarse observations respectively.

A canonical way of dealing with such a scenario is by ‘stacking’ the observations,
and creating the observation operator

H(X) =
[

Hχ (X)

Hυ(X)

]

. (116)

We will not pursue this approach, as it increases the dimensionality of the observa-
tions without increasing the information content.

Under the linear control variate approach the total variate observation mean is
defined to be:

μY ζ = μY χ − S(θ(μY χ ) − μY υ ), (117)

where one implicitly assumes that E[θ(Y χ )] = E[Y υ]. The optimal gain is,

S = �Y χ ,θ(Y χ )

(

�θ(Y χ ),θ(Y χ ) + �Y υ ,Y υ

)−1
, (118)

with the new covariance of the total observation given by

�Y ζ ,Y ζ = �Y χ ,Y χ − �Y χ ,θ(Y χ )

(

�θ(Y χ ),θ(Y χ ) + �Y υ ,Y υ

)−1
�θ(Y χ ),Y χ . (119)

Evaluation of this formula, however, requires knowledge of both �Y χ ,θ(Y χ ) and
�θ(Y χ ),θ(Y χ ), which might not be readily available.
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An alternate approach is to utilize the importance sampling framework. Assume
we have an ensemble of perturbed observations, EY χ = [

Yχ,(1), . . . ,Yχ,(M)
]

, rep-
resenting M independent samples from the assumed distribution of the fine fidelity
observation πY χ . Apply the importance sampling procedure to generate the weights:

[w]i ∝ πY υ

(

θ
(

Yχ,(i)
))

. (120)

The unbiased mean and covariance estimates of the total observation are given by

μ̃Y ζ = EY χw, ˜�Y ζ ,Y ζ = M

M − 1
EY χ

(

diag(w) − wwT
)

ET
Y χ . (121)

Alternatively, an ensemble of equally weighted perturbed observations to be used
with a perturbed observations EnKF can be derived by the optimal transport frame-
work,

EY ζ = EY χT∗, (122)

given by (27).
As many of these methods rely on empirical estimates of the total observation

covariance matrix, methods such as localization can trivially be applied, especially
since in most operational algorithms for physical systems the observation covariance
is typically assumed to be diagonal.

5 Numerical Experiments

For the sake of completeness we provide a simple twin experiment on a simple
dynamical system to test a two-fidelity MFEnKF.

For the fine fidelity model we use the 40-variable Lorenz ’96 system (Lorenz
1996), posed as an ODE:

x′
i = fX (x) = −xi−1(xi−2 − xi+1) − xi + 8, 1 ≤ i ≤ 40, (123)

where x0 := x40, x−1 := x39 and x41 := x1.
We use the method of snapshots (Sirovich 1987) to construct linear projection

and interpolation operators, � and �, utilizing 20000 snapshots over an expressive
time interval of 1000 units.

For the coarse fidelity we consider a reduced order model built using a naive
approach, where we evaluate the derivative in the full space and then project onto
the reduced space:

u′ = fU (u) = � fX (�u). (124)

For the Lorenz ’96 system this can be written equivalently as a multivariate quadratic
equation.
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Fig. 2 Comparison of the
analysis empirical mean
RMSE of a localized
perturbed observations
MFEnKF with a localized
perturbed observations
EnKF, for various fine
fidelity (full order) model
ensemble sizes
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The Lorenz ’96 system is known to have a Kaplan-Yorke dimension of 27.1
(Popov and Sandu 2019). For this reason we take r = 28 reduced modes to describe
the whole system (though this is only possible non-linearly). In the reduced model,
this represents about 90% of the total energy of the system, as represented by the
ratio of the captured eigenvalues to the total eigenvalues. In this context it is actually
relatively difficult to build a reduced order model for the Lorenz ’96 system.

We compare the algorithm to the standard perturbed observations ensemble
Kalman filter. Both algorithms will use forecast anomaly inflation and Gaspi-Cohn
covariance localization (Gaspari and Cohn 1999).

We observe every other variable every 
t = 0.05 time units, with a Gaussian
error (2) of �Y,Y = I20.

We perform localization and inflation as follows. For forecast anomaly inflation
for the full system we will take αX = 1.1 and for the coarse system αU = 1.00 as
the reduced order model is less stable than the full order model, thus not requiring
inflation. To retain an undersampled ensemble for the ancillary variate, we choose
an ensemble size of NU = 25. The inner parameter of the localization function is
selected to match that of a Gaussian kernel, and set the radius to be equal to 4 (Petrie
and Dance 2010).

Figure2 shows the relationship between the principal variate ensemble size and the
spatio-temporal RMSEof the empirical analysismean of theMFEnKF and the EnKF.
As can be seen, the problem is comparatively difficult for the EnKF, as it requires
at least 18 fine fidelity ensemble members for a stable behavior. The same RMSE
can be achieved with less than 10 fine fidelity ensemble members in the MFEnKF
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framework. Assuming the coarse fidelity model runs are significantly cheaper (not
true in this trivial contrived example) then the MFEnKF is clearly superior.

We note that there is some loss of accuracy in the results, due in part to several
assumptions that are violated. One is that the orthogonal complement space is uncor-
related with that of the full space (65). As we are capturing 90% of the energy of the
system, the rest of the energy is not that negligible, and is no doubt highly correlated
with the what is captured. Methods to diminish the influence of this error, would be
needed for operational systems.

6 Discussion

Multifidelity data assimilation, andmultifidelity inference in general, seek to leverage
the availability of information about reality at multiple resolution levels. The field is
still in its infancy, but the multifidelity methods are highly promising. This chapter
provides a general philosophical and theoretical framework for the development of
suchmethods. Newmultifidelity data assimilation approaches should utilize efficient
coarse fidelity models to speed up high fidelity inference. The new methods should
be grounded in sound statistical and probabilistic theory.

In this chapter we focus on the multifidelity stochastic EnKF. Variational mul-
tifidelity approaches have been developed in Stefanescu et al. (2015). Square root
multifidelity Kalman filters, analogues to the perturbed observations MFEnKF, must
be developed in the future. Particle filters that are appropriate for non-Gaussian
probability densities, or even hybrid EnKF-PF systems where different variates are
assimilated with different algorithms, might provide an avenue for development
of multifidelity particle filtering. Multifidelity hybrid data assimilation, that com-
bines multifidelity EnKF and multifidelity variational methods, are also a promising
future venue. Finally, the construction of a hierarchy of coarser models to support
data assimilation should be carefully investigated. For example, methods based on
machine learning (e.g., as discussed in Moosavi et al. 2018a, b, or non-linear projec-
tions using autoencoders) are of considerable interest.
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